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Chapter 1

Introduction

The discovery of Quantum Field Theory (QFT) alongwith its successful application towards
the conception of the Standard Model of particle physics can be hailed as one of the most
remarkable achievements in the history of physics. It was an endeavour which led to
the emergence of a concrete framework, which consistently describes three of the four
basic interactions as are observed to act between the elementary particles, namely, the
strong and electro-weak forces. Although such a description is not strictly complete in
the sense that some of its parameters are undetermined and also that it does not include
the gravitational interactions, it has stood the test of experiments. The confirmation of
its theoretical predictions through the legendary discovery of Lamb-shift and anomalous
magnetic moment of the electron in QED exhibits its extraordinary power to calculate
observables of microscopic scales to extremely high accuracy.

The perturbative framework of QFT underlying the Standard Model is based upon the
principle of gauge invariance. This implies that the theory be characterised by a Lagrangian
given in terms of local fields and remain invariant under local transformations acting on
the fields, i.e., local gauge transformations. The standard model Lagrangian leads to a
theory which is known as perturbatively renormalizable. This implies that the infinities
which typically appear in the perturbative expansion can be absorbed away through the
redefinitions of the parameters of the theory which can be measured through experiments.
The robustness of the Standard Model against experiments has propelled the point of view
that QFT should be regarded as a general framework which can incorporate all the known
fundamental forces as observed in nature.

From this perspective, it seems natural to expect that such a potentially comprehen-
sive construction should also apply to the case of gravity, the only known fundamental
interaction which is not included in the standard model. In other words, one should be
able to find a quantum field theoretic formulation of General Relativity (GR), which has
been known to be the correct classical description of gravitational interactions. GR, when
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applied to various large scale phenomena as governed by gravitational forces, has enjoyed
tremendous experimental success. To cite an example, the relativistic prediction for the
centennial precession of the orbit of Mercury was ∆φ ≈ 43.03s/century while the observed
value was ∆φ ≈ 43.11s/century. Looking at such remarkable successes of QFT and GR in
their respective domains, one might wonder if they are compatible in some way, and can
be embedded in one single framework to describe nature as it is.

According to a field-theoretic viewpoint, the theory of gravity should be characterised
by a Lagrangian given in terms of local fields and exhibiting the appropriate local gauge
symmetries. The corresponding quantum theory, at its naive best, would lead to particle-
like excitations which would be the carriers of the gravitational force in a fixed background
spacetime. For gravity, the corresponding local field theory is given by the Einstein-Hilbert
action:

L = − 1

κ

∫
d4x (−g)1/2R

where κ is related to the Newton’s constant as κ = 16πG. Here the metric gµν is treated
as the basic field variable and is expanded around a fixed background:

gµν = g(0)µν +
√
κhµν

Such a scheme is evidently perturbative in nature. Using this approach, it was shown
by t’Hooft and Veltmann[1] that the one-loop s-matrix for four dimensional pure gravity
is finite. However, catastrophe hits soon at the second order. Goroff and Sagnotti[2]
provide an explicit demonstration of the divergence of pure Einstein gravity at two loops.
Thus the same perturbative quantization scheme which consistently describes the strong
and electroweak forces seems to fail when applied to GR, at least in the arena where
renormalizabity holds the forte.

One can still take the point of view that such a failure might be an inherent feature of
the perturbative approach alone. In a more liberal attempt, perhaps non-perturbative in
nature, the usual problems plaguing the perturbative programmes might disappear alto-
gether. In non-perturbative approaches, a convenient way to proceed is to write the theory
of gravity in a Hamiltoninan form and then carry out the canonical quantization. The
initial attempts to this end were developed using the spatial metric gab and its conjugate
pab(related to the extrinsic curvature) as the canonical pair. Unfortunately, this seems
to lead to a dead end as well because of the complicated nature of the non-polynomial
Hamiltonian constraint. However, the hope of a non-perturbative quantization of grav-
ity was revived soon, after it was demonstrated([3]) that gravity can be described as a
complex SU(2) gauge theory. In this (Sen-Ashtekar) formulation, the theory of gravity is
given entirely in terms of complex SU(2) connection gauge fields. The most important and
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attractive feature of this formulation was the polynomial form of the canonical constraints.
Moreover, the rotation constraints take the form of Gauss’ law as in non-abelian gauge
theories, and generate the SU(2) gauge transformations on the basic fields. One can ob-
tain a real section of the complex phase space by introducing suitable reality conditions.
Subsequently, Barbero and Immirzi[4] showed that gravity can be directly formulated as a
gauge theory in terms of real SU(2) connection fields, hence bypassing the need to deal with
the non-trivial reality conditions. But in this real formulation, the Hamiltonian constraint
takes a more complicated form and regains its original non-polynomial character. However,
as noted by Thiemann[5], this feature does not pose a serious threat to quantization since
the non-polynomial factors in the constraint can be represented consistently in terms of
the basic operators in the quantum picture.

The relevance of the real SU(2) formulation does not end in being just another novel de-
scription of gravity as a gauge theory. Not only does this allow the application of standard
tools of gauge theories, but this also leads to a framework which can naturally incorporate
the notion of background independence. To emphasize, this opens up the possibility of
studying the dynamics of spacetime as a whole without having to face any of the subtleties
regarding the choice of a background spacetime. This is indeed desirable once we adopt
the dictum that gravity should be quantized in a manifestly non-perturbative manner.
The quantization proposal known as Loop quantum Gravity (LQG) was developed from
such a perspective. In this formulation, one introduces Wilson-loop variables associated
with the SU(2) gauge fields as in gauge theories. In the corresponding quantum the-
ory, the kinematical states are associated with one dimensional, polymer-like excitations.
However, while significant progress has been made along these lines towards developing
a non-perturbative quantization programme, a full solution of the Hamiltonian constraint
within such frameworks continues to be elusive.

Here in this thesis we investigate various aspects of the real SU(2) canonical formu-
lation of gravity as mentioned above. The analyses involve both classical and quantum
perspectives. The main results of these studies are summarised below.

As is well known, the real SU(2) formulation of gravity contains a free parameter,
namely, (the inverse of) the Barbero-Immirzi parameter, η. We clarify and explain the exact
origin of this parameter in chapter-1 (and in the subsequent analysis). The Lagrangian
description containing η was originally given in terms of the Holst Lagrangian density [6].
In the first order form with the tetrads and the spin-connections as independent variables,
this can be written as1:

L =
1

2
eΣµν

IJR
IJ

µν (ω) +
η

2
eΣµν

IJ R̃
IJ

µν (ω) (1.1)

1here we assume that κ = 1
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where,

Σµν
IJ :=

1

2
(eµI e

ν
J−e

µ
Je

ν
I ) , R

IJ
µν (ω) := ∂[µω

IJ
ν] +ω IK

[µ ω J
ν]K , R̃ IJ

µν (ω) :=
1

2
εIJKLRµνKL(ω).

The first term is the standard Hilbert-Palatini term. The second is the Holst term with η,
the inverse of the Barbero-Immirzi parameter, appearing as its coeffiecient. This additional
term and hence η, does not affect the classical equations of motion of the Hilbert-Palatini
action. However, introduction of matter-coupling in the Lagrangian requires additional
modifications other than the Holst term in order to preserve the classical equations of
motion. These modifications are not universal and change with the matter content of the
theory. In chapter-2 we develop a canonical formulation based on an action containing the
Nieh-Yan topological density instead of the Holst term[7] (publication 1). This has the
following advantages:

(a) While the new Lagrangian density leads to a real SU(2) theory as earlier, inclusion of
matter now does not need any further modifications and the equations of motion continue
to be independent of η for all couplings;

(b) The Nieh-Yan term provides a topological interpretation for η unlike the Holst term.
For these reasons, addition of the Nieh-Yan density in the gravity action supercedes the
Holst formulation. As an elucidation of these facts, the method has been applied to spin-1

2

fermions coupled to gravity in chapter-3[7] (publication 1). In chapter-4[8] (publication
2), we perform a similar analysis for spin-3

2
fermions and illustrate how the supergravity

theories (N = 1, 2, 4 etc.) in general can be handled likewise.
In a separate investigation in chapter-5, we analyse the case of gravity coupled to

antisymmetric tensor gauge fields of rank two. The particular form of the coupling is
inspired from string theory and is non-linear in curvature. Hence it is essentially a higher
derivative coupling in nature unlike the fermionic cases. Here we see that although the
symplectic structure gets modified in a non-trivial manner, the SU(2) interpretation for
the theory of gravity remains robust.

In four-dimensional gravity, there are two more topological densities other than the
Nieh-Yan term, namely, the Euler and Pontryagin densities. In a complete theory of
gravity, one needs to include all of them. A detailed study regarding how they affect
the canonical structure of gravity is carried out in chapter-6[9] (publication 4). Here
we demonstrate that one obtains a SU(2) theory of gravity where the canonical theory
develops dependence on all three topological parameters associated with the three terms.
The SU(2) gauge field contains the Barbaro-Immirzi parameter as the coupling constant.

We may recall that in QCD, the role of the θ parameter in the quantum theory can be
studied through the method of wavefunction-rescaling. From this perspective, it is natural
to ask whether there could be a similar procedure for gravity where the Nieh-Yan density
may emerge as the source of a quantization ambiguity reflected by η. As it turns out, for
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gravity with or without matter, such a rescaling cannot be implemented using the Dirac
quantization method. In other words, if the second-class constraints of Hilbert-Palatini
theory are enforced before quantization, as is required by Dirac’s procedure, the rescaling
operator vanishes identically. To emphasize, such a situation does not arise in QCD where
the corresponding classical theory has no second-class constraints. For the case of gravity,
a non-vanishing operator, and hence a well-defined rescaling, can be invoked only if the
second-class constraints are treated using alternative quantization schemes. We address
this issue in chapter-7[10] (publication 3). Here we set up a general rescaling procedure
for gravity with any arbitrary matter-coupling using the Gupta-Bleuler and coherent state
quantization approaches. Such a construction provides a natural quantum framework for
studying the possible non-perturbative vacua of gravity characterised by η, similar to the
θ vacua in QCD.
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Chapter 2

Topological interpretation of
Barbero-Immirzi parameter

It is well-known that Einstein’s General Theory of Relativity can be described as a gauge
theory[11]. In other words, the theory can be characterised by a local Lagrangian which is
invariant under certain local gauge transformations acting on the basic fields. These trans-
formations involve both spacetime-diffeomorphisms and local Lorentz transformations. In
the canonical formulation, the existence of such gauge symmetries implies that the canon-
ical variables are not all independent. Thus, there exist relations between these variables
which make some of them redundant. These relations, when expressed in a functional form
in terms of the phase space variables, are known as constraints. It is convenient to analyse
systems with constraints within a Hamiltonian framework. Within such a set up, the gauge
symmetries of the theory get reflected through the constraints and the distinction between
true and redundant variables becomes transparent. Since the theory of gravity exhibits
gauge symmetries, it can be put into the Hamiltonian form with constraints. From the
Hamiltonian description, one can pass over to the quantum theory.

Our subsequent analysis will be based on the standard approach for the constrained
Hamiltonian systems as mentioned above. The general prescription has been discussed in
detail in ref.[12, 13].

The theory of pure gravity is characterised by Hilbert-Palatini Lagrangian. This is writ-
ten in terms of the connection field ωIJµ (x) and tetrad eIµ(x) as independent field variables
(assuming κ = 1):

L(e, ω) =
1

2
eΣµν

IJR
IJ

µν (ω) (2.1)

where, Σµν
IJ := 1

2
(eµI e

ν
J − eµJe

ν
I ) is the antisymmetric product of the inverse tetrads eµI

and R IJ
µν (ω) := ∂[µω

IJ
ν] + ω IK

[µ ω J
ν]K is the field-strength corresponding to ωIJµ . Also,
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R̃ IJ
µν (ω) := 1

2
εIJKLRµνKL(ω). The variation of this Lagrangian density with respect to

ωIJµ and tetrad eIµ leads to the following expression (ignoring total derivatives):

δL(e, ω) = e
(
−eµKeαI eνJ +

1

2
eαKe

µ
I e
ν
J

)
RIJ
µν(ω) δeKα − Dµ(ω)

(
εµναβεIJKLe

I
αe

J
β

)
δωKLν

Thus, we obtain two sets of equations of motion given by,(
eµKe

α
I e

ν
J −

1

2
eαKe

µ
I e
ν
J

)
RIJ
µν = 0 (2.2)

D[µ(ω)eIν] = 0 (2.3)

Equation (2.3) implies the vanishing of torsion. These can be solved to write ωIJµ in terms
of the tetrads, i.e., ωIJµ = ωIJµ (e). When this solution is inserted in (2.2), the equations
of motion of standard Einstein gravity are recovered.

The Holst generalisation of Hilbert-Palatini formulation is given in terms of the La-
grangian density [6]:

L =
1

2
eΣµν

IJR
IJ

µν (ω) +
η

2
eΣµν

IJ R̃
IJ

µν (ω) (2.4)

The second term is the Holst term with η−1 as the Barbero-Immirzi parameter [4]. For
η = −i, this Lagrangian density leads to the canonical formulation in terms of the self-
dual Ashtekar connection which is a complex SU(2) connection [3]. For real η, we have
a Hamiltonian formulation in terms of a real SU(2) connection, which coincides with the
Barbero formulation for η = 1 [4, 14].

Inclusion of Holst term does not change the classical equation of motion of the Hilbert-
Palatini action; there is no dependence on η in the equations of motion. In fact, when the
connection equation ω IJ

µ = ω IJ
µ (e) is used, Holst term is identically zero.

Adding matter in the generalised Lagrangian density (2.4) needs special care. In partic-
ular when spin 1

2
fermions are included through minimal coupling, the classical equations

of motion acquire a dependence on η [15]. However it is possible to modify the Holst term
in such a way that classical equations of motion remain unchanged. Such modification for
spin 1

2
fermionic matter and also those in the N = 1, 2 and 4 supergravities have been ob-

tained [16, 17]. When the connection equation of motion is used, the modified Holst terms
in each of these cases, become total divergences involving Nieh-Yan density and divergence
of axial current densities involving the fermion fields. The modified Holst term used in
these formulations changes with the matter content of the theory.

It has been suggested that the Barbero-Immirzi parameter should have a topological
interpretation in the same manner as the θ parameter of QCD [18]. For this to be the case, η
should be the coefficient of a term in the Lagrangian density which is a topological density.
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Since such a term would be a total derivative for all field configurations, the classical
equations of motion would remain unaltered. Such a term would be universal in the sense
that it would not change when any matter coupling to gravity is introduced. The Holst term
in (2.4) or any of its modifications mentioned above do not have such a property. However,
there is a topological density in four dimensions which can be algebraically thought of as
an extension of the Holst term. We introduce this term in the next section and discuss
some of its important properties before going into the main part of our analysis.

2.1 The Nieh-Yan topological density

The Nieh-Yan density is given by [19]:

INY = εµναβ
[
Dµ(ω)eIν Dα(ω)eIβ −

1

2
ΣIJ
µν RαβIJ(ω)

]
, Dµ(ω)eIν := ∂µe

I
ν+ω I

µ Je
J
ν . (2.5)

and the SO(1, 3) covariant derivative is: Dµ(ω)eIν = ∂µe
I
ν + ω I

µ Je
J . This is a topological

density, and can be written as a total divergence:

INY = ∂µ[εµναβeIνDα(ω)eIβ] (2.6)

Note that in (2.5), the first term is quadratic in torsion and the second term is nothing
but the Holst term itself. The Nieh-Yan density vanishes identically for a torsion free
connection. In the Euclidean theory, this topological density, properly normalized, charac-
terizes the winding numbers given by three integers associated with the homotopy groups
Π3(SO(5)) = Z and Π3(SO(4)) = Z + Z.

Since the Nieh-Yan density is a total derivative, its addition to the Hilbert-Palatini La-
grangian does not change the classical equations of motion. In other words, the Lagrangian
density containing both the Hilbert-Palatini and Nieh-Yan terms, given by

L =
1

2
eΣµν

IJR
IJ

µν (ω) +
η

2
INY , (2.7)

leads to the same equations of motion as coming from the Hilbert-Palatini Lagrangian. This
is to be contrasted with the case involving Holst term or its modifications used earlier.

We shall demonstrate that the canonical Hamiltonian formulation based on this new
Lagrangian density (2.7) also leads to a theory of real SU(2) connections, exactly the same
as that emerging from the theory with original Holst term. This in turn, for η = 1, is
the Barbero formulation. Inclusion of matter now does not need any further modification
and hence, in this sense, the Nieh-Yan term has a universal character. This also allows a
direct interpretation η as a topological parameter, leading to a closer and more complete
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analogy with the θ-parameter in QCD. In this sense, the subsequent analysis here settles
the long-standing issue of the exact origin of the Barbero-Immirzi parameter in the theory
of gravity.

2.2 Hamiltonian Analysis

We propose the Lagrangian density for pure gravity to be that given in equation(2.7),
rewritten as:

L =
1

2
eΣµν

IJR
IJ

µν (ω) +
η

2

[
eΣµν

IJ R̃
IJ

µν (ω) + εµναβDµ(ω)eIν Dα(ω)eIβ
]

=
1

2
eΣµν

IJR
(η)IJ
µν (ω) +

η

2
εµναβDµ(ω)eIνDα(ω)eIβ , (2.8)

where R(η)IJ
µν (ω) := R IJ

µν (ω) + ηR̃ IJ
µν (ω) and we have used the identities,

Σµν
IJ R̃

IJ
µν (ω) = Σ̃µν

IJR
IJ

µν (ω) , eΣ̃µν
IJ :=

e

2
εIJKLΣµνKL = − 1

2
εµναβΣαβIJ . (2.9)

Introducing the notation, taI := ηεabcDb(ω)eIc, ε
abc := εtabc, ε0ijk := εijk, ε

0ijk := −εijk, the
3+1 decomposition is expressed as:

L = eΣta
IJR

(η)IJ
ta (ω) +

e

2
Σab
IJR

(η)IJ
ab (ω) + taI

(
Dt(ω)eIa −Da(ω)eIt

)
(2.10)

Defining ω(η)IJ
a := ωIJa + ηω̃IJa and Σ

(η)ta
IJ := Σta

IJ + ηΣ̃ta
IJ we get,

L = eΣta
IJ∂tω

(η)IJ
a + ωIJt Da(ω)

(
eΣ

(η)ta
IJ

)
+
e

2
Σab
IJR

(η)IJ
ab (ω)

+taI∂te
I
a + ω IJ

t taIeaJ + e It Da(ω)taI − ∂a
(
taIe

I
t + eΣ

(η)ta
IJ ωIJt

)
(2.11)

We parametrize the tetrad fields as:

eIt =
√
eNM I +NaV I

a , eIa = V I
a ; MIV

I
a = 0 , MIM

I = − 1 (2.12)

and then the inverse tetrad fields are:

etI = − MI√
eN

, eaI = V a
I +

NaMI√
eN

;

M IV a
I := 0 , V I

a V
b
I := δba , V

I
a V

a
J := δIJ +M IMJ (2.13)

Defining qab := V I
a VbI and q := detqab leads to e := det(eIµ) = Nq. We may thus trade

the 16 tetrad fields with the 9 fields V a
I (M IV a

I = 0), the 3 fields M I (MIM
I = −1) and

the 4 fields N and Na.
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Next using the identity,

Σab
IJ = 2NeΣ

t[a
IKΣ

b]t
JLη

KL +N [aΣ
b]t
IJ , (2.14)

and dropping the total space derivative terms,

L = eΣta
IJ∂tω

(η)IJ
a + taI∂te

I
a −NH −NaHa − 1

2
ωIJt GIJ (2.15)

where 2eΣta
IJ = −√qM[IV

a
J ] , taI := ηεabcDb(ω)VIc and

H = 2e2Σta
IKΣtb

JLη
KLR

(η)IJ
ab (ω)−√qM IDa(ω)taI , (2.16)

Ha = eΣtb
IJR

(η)IJ
ab (ω)− V I

aDb(ω)tbI , (2.17)

GIJ = −2Da(ω)
(
eΣ

(η)ta
IJ

)
− ta[IVJ ]a . (2.18)

Introduce the fields,

Ea
i := 2eΣta

0i , χi := −Mi/M
0 , Aia := ω(η)0i

a − χjω(η)ij
a , ζ i := − Ea

j ω
(η)ij
a . (2.19)

In terms of these, we have 2eΣta
ij = −Ea

[iχj] and eΣta
IJ∂tω

(η)IJ
a = Ea

i ∂tA
i
a + ζ i∂tχ

i, and the
Lagrangian density is:

L = Ea
i ∂tA

i
a + ζ i∂tχ

i + taI∂tV
I
a −NH −NaHa − 1

2
ωIJt GIJ , (2.20)

where, now we need to re-express H,Ha and GIJ (Gi
boost := G0i , G

i
rot := 1

2
εijkGjk) in terms

of these new fields:

Gi
boost = −∂a

(
Ea
i − ηεijkEa

j χk
)

+ Ea
[iχk]A

k
a + (ζ i − χ · ζχi)− ta[0Vi]a , (2.21)

Gi
rot = ∂a

(
εijkEa

j χk + ηEa
i

)
+ εijk

(
AjaE

a
k − ζjχk − tajV k

a

)
(2.22)

Ha = Eb
i

[
R

(η)0i
ab (ω)− χjR(η)ij

ab (ω)
]
− V I

aDb(ω)tbI (2.23)

= Eb
i ∂[aA

i
b] + ζ i∂aχ

i − V I
a ∂bt

b
I + tbI∂[aV

I
b]

− 1

1 + η2

[
Eb

[iχl]A
l
b + (ζi − χ · ζχi)− tb[0Vi]b − ηεijk(A

j
bE

b
k − ζjχk − tbjV k

b )
]
Aia

− 1

1 + η2

[
1

2
εijk(ηGk

boost +Gk
rot)− χi(G

j
boost − ηG

j
rot)

]
ω(η)ij
a (2.24)

H = −Ea
kχkHa −

1

2
(1− χ · χ)Ea

i E
b
jR

(η)ij
ab (ω)−

(
Ea
kχkV

I
a +
√
qM I

)
Db(ω)tbI

= −Ea
kχkHa + (1− χ · χ)

[
Ea
i ∂aζi +

1

2
ζiE

a
i E

b
j∂aE

j
b

]
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+
1− χ · χ
2(1 + η2)

ζi
[
−Gi

boost + ηGi
rot

]
−
(
Ea
kχkV

I
a +
√
qM I

)
∂bt

b
I

−1− χ · χ
1 + η2

[
1

2
Ea

[iE
b
j]A

i
aA

j
b + Ea

i A
i
aχ · ζ + ηεijkζiA

j
aE

a
k

+
3

4
(χ · ζ)2 − 3

4
(ζ · ζ) +

1

2
ζit

a
[0Vi]a −

η

2
ζiε

ijktajV
k
a

]
+

1− χ · χ
1 + η2

[
1√
E
Aiat

a
i +

1

2
V i
a

(
ζ · χtai − χiζjtaj + ηεijkζjt

a
k

)]

+
1− χ · χ
1 + η2

[
− 1√

E
χit

b
j +

η

2
√
E
εijktbk + (1 + η2)Ea

i ∂aE
b
j + Ea

i χjE
b
mA

m
a

−ηεimnEa
mE

b
nA

j
a −

η

4

(
εijmEb

n + εijnEb
m

)
χmζn

]
uijb

+
1− χ · χ
2(1 + η2)

(χmχn − δmn)Ea
jE

b
iu

im
a u

jn
b (2.25)

In the above, Ei
a :=

√
EV i

a is the inverse of Ea
i i.e. Ei

aE
b
i = δba , E

i
aE

a
j = δij and

E−1 = q(M0)2 equals detEa
i . Furthermore we have also set uija := ω(η)ij

a − 1
2
E[i
a ζ

j]. Notice

that Eb
iu

ij
b = 0. The six independent fields in uija may be parametrized in terms a symmetric

matrix M ij as, uija := 1
2
εijkEl

aM
kl [14].

We have replaced the original 16 tetrad fields with 16 new fields: Ea
i , χi, N and Na. In

place of the original 24 connection fields ωIJµ we use the new set of 24 fields Aia, ζi,M
kl, ωijt

and ω0i
t . The fields V I

a and taI are not independent; these are given in terms of the funda-
mental fields as: V I

a = υIa and taI = τaI where

υ0a := − 1√
E
Ei
aχi , υia :=

1√
E
Ei
a (2.26)

τa0 := ηεabcDb(ω)V0c = η
√
EEa

m

[
Gm

rot −
χl
2

(
2fml +Nml

1 + η2
+ εmlnG

n
boost

)]
(2.27)

τak := ηεabcDb(ω)Vck = −η
2

√
EEa

m

[
2fmk +Nmk

1 + η2
+ εkmnG

n
boost

]
(2.28)

where,

2fkl := εijkE
a
i

[
(1 + η2)El

b∂aE
b
j + χjA

l
a

]
+ η

(
Ea
l A

k
a − δklEa

mA
m
a − χlζk

)
+ (l↔ k) (2.29)

Nkl := εijk(χmχj − δmj)Ea
i u

lm
a + (l↔ k) (2.30)

= (χ · χ− 1)(Mkl −Mmmδkl) + χmχnMmnδkl + χlχkMmm − χm(χkMml + χlMmk)

We can upgrade V I
a and taI as independent fields through terms containing the Lagrange

11



multiplier fields ξaI and φIa in the Lagrangian density:

L = Ea
i ∂tA

i
a + ζ i∂tχ

i + taI∂tV
I
a −H

H := NH +NaHa +
1

2
ωIJt GIJ + ξaI (V I

a − υIa) + φIa(t
a
I − τaI ) (2.31)

where υIa and τaI are defined in equations (4.10 - 2.28). We have 24 pairs of canonically con-
jugate independent field variables (Ea

i , A
j
b), (ζ

i, χj), (taI , V
I
a ). The remaining fields, namely,

N,Na, ωIJt , ξ
a
I , φ

I
a and Mkl have no conjugate momenta since in the Lagrangian their ve-

locities do not appear. Preservation of these constraints (vanishing of the variation of the
Hamiltonian with respect to the fields) leads to the secondary constraints. From variations
with respect to the fields ω0i

t , ω
ij
t , N

a, N, ξaI and φIa, we get the constraints:

Gi
boost ≈ 0 , Gi

rot ≈ 0 ; Ha ≈ 0 , H ≈ 0 ; (2.32)

V I
a − υIa ≈ 0 , taI − τaI ≈ 0. (2.33)

From the variation with respect to Mkl or equivalently uija , we get:

δH
δMkl

δMkl ≈ δH

δMkl
δMkl =

(1− χ · χ)

2(1 + η2)
[(ηtak − εijkχitaj )V l

a + fkl +
1

2
Nkl]δM

kl ≈ 0.

This leads to

(ηtak − εijkχitaj )V l
a + fkl +

1

2
Nkl + (k ↔ l) ≈ 0 (2.34)

Using constraints (2.33), and the expressions (25-2.28) for τaI , υ
I
a, equation (2.34) implies :(

ηεijkχi + δkj
)

(2fjl +Njl) + η(1 + η2)
(
δklχmG

m
boost − χlGk

boost

)
+ (k ↔ l) ≈ 0

Using (2.32), this in turn implies the constraint:

2fkl +Nkl ≈ 0 (2.35)

where, fkl and Nkl are given in (28,29). This constraint can be solved for Mkl. Furthermore
it implies, from the definitions (2.27, 2.28), that τaI ≈ 0 and hence,

taI ≈ 0 . (2.36)

Implementing this constraint then reduces the Hamiltonian density to

H = NH +NaHa +
1

2
ωIJt GIJ (2.37)
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where now,

Gi
boost = −∂a

(
Ea
i − ηεijkEa

j χk
)

+ Ea
[iχk]A

k
a + (ζ i − χ · ζζ i) ≈ 0 ,

Gi
rot = ∂a

(
εijkEa

j χk + ηEa
i

)
+ εijk(AjaE

a
k − ζjχk) ≈ 0 ,

Ha = Eb
i ∂[aA

i
b] + ζi∂aχi

− 1

1 + η2

[
Eb

[kχl]A
l
b + ζi − χ · ζχi − ηεijk(AjaEa

k − ζjχk)
]
Aia

− 1

1 + η2

[
1

2
εijk(ηGk

boost +Gk
rot)− χi(G

j
boost − ηG

j
rot)

]
ω(η)ij
a ≈ 0 ,

H = −Ea
kχkHa + (1− χ · χ)

[
Ea
i ∂aζi +

1

2
ζiE

a
i E

b
j∂aE

j
b

]
+

(1− χ · χ)

2(1 + η2)
ζi[−Gj

boost + ηGj
rot]

−(1− χ · χ)

1 + η2

[
1

2
Ea

[iE
b
j]A

i
aA

j
b + Ea

i A
i
aχ · ζ + ηεijkζiA

j
aE

a
k +

3

4
(χ · ζ)2 − 3

4
(ζ · ζ)

]
+

(1− χ · χ)

2(1 + η2)

[
fklM

kl +
1

4
(χ · χ− 1)(MklMkl −MkkM ll)

+
1

2
χkχl(M

ppMkl −MkpM lp)
]
≈ 0

In the last equation we have Mkl given by the constraint 2fkl + Nkl = 0, which can be
solved as:

(1−χ ·χ)Mkl = 2fkl + (χmχnfmn− fmm)δlk + (χmχnfmn + fmm)χkχl− 2χm(χlfmk +χkfml)
(2.38)

This is the same set of equations as those obtained by Sa [14] in his analysis of the
action containing Holst term.

2.3 Time gauge

We may fix the boost gauge transformations (time gauge) by imposing χi ≈ 0 which
together with the Gi

boost ≈ 0 forms a second class pair. Solving the boost constraint with
χi = 0 yields,

ζi = ∂aE
a
i (2.39)

The constraints become-

Gi
rot = η∂aE

a
i + εijkAjaE

a
k ≈ 0 ,

13



Ha = Eb
i ∂[aA

i
b] −

1

1 + η2

[
ζi − ηεijkAjbE

b
k

]
Aia −

1

2(1 + η2)
εijkω(η)ij

a Gk
rot ≈ 0 ,

H = Ea
i ∂aζi +

1

2
ζiE

a
i E

b
j∂aE

j
b −

1

1 + η2

[
1

2
Ea

[iE
b
j]A

i
aA

j
b + ηεijkζiA

j
aE

a
k −

3

4
(ζ · ζ)

]
+

1

2(1 + η2)

[
fklM

kl − 1

4
(MklMkl −MkkM ll)

]
+

η

2(1 + η2)
ζiG

j
rot ≈ 0

(2.40)

Note that the rotation constraint is exactly of the form of Gauss’ law as in non-abelian
gauge theories. These act as the generators of the SU(2) symmetry transformations. Thus,
in time gauge we recover a canonical Hamiltonian formulation in terms of real SU(2) gauge
fields Aia which reduces to the Barbero formulation for η = 1 [14].

2.4 Summary

We have demonstrated that the inclusion of Nieh-Yan topological density in the Lagrangian
density of a theory of gravity allows us, in the time gauge, to describe gravity in terms of a
real SU(2) connection. The set of constraints so obtained in the Hamiltonian formulation,
for η = 1, is the same as that in the Barbero formulation. For other real values of this
parameter, we have the Immirzi formulation with Barbero-Immirzi parameter γ = η−1.

Our analysis shows that the Barbero-Immirzi parameter η−1 has a topological origin,
exactly like the θ-parameter in QCD. Such a topological interpretation for η does not exist
in the Holst formulation. Like the famous theta vacua of QCD, whether the η-parameter
also does lead to a rich vacuum structure in quantum gravity is an intriguing issue in
itself. Questions regarding the possible non-trivial import(s) of the η-parameter in the
(non-perturbative) quantum theory of gravity need a detailed study.
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Chapter 3

Gravity with Spin-12 fermions

Here we consider the spin-1
2

Dirac fermion with its usual minimal coupling to gravity and
demonstrate how the general prescription as discussed in chapter-2 applies to such a case
and leads to a SU(2) interpretation for this theory.

3.1 Fermionic Lagrangian

The Lagrangian density corresponding to massless Dirac fermions coupled to gravity is1,

L =
1

2
e Σµν

IJ R
IJ

µν (ω) +
ie

2
[λ̄γµDµ(ω)λ − Dµ(ω)λγµλ] (3.1)

where,

Dµ(ω)λ := ∂µλ +
1

2
ωµIJ σ

IJ λ , Dµ(ω)λ := ∂µλ̄ −
1

2
λ̄ ωµIJ σ

IJ

and the field λ represents a spin-1
2

majorana fermion. To this Lagrangian, we add the
Nieh-Yan density-

L =
1

2
e Σµν

IJ R
IJ

µν (ω) +
η

2
INY +

ie

2
[λ̄γµDµ(ω)λ − Dµ(ω)λγµλ] (3.2)

Notice that, unlike earlier attempts of setting up a theory of fermions and gravity
with Barbero-Immirzi parameter [16, 17] where the Holst term was modified to include an
additional non-minimal term for the fermions, the Lagrangian density here containing the
Nieh-Yan density does not require any further modification, just the usual minimal fermion
terms suffice. This is so because the Nieh-Yan term is universal and serves the purpose for
any matter coupling without any need for modifications.

1Our Dirac matrices satisfy the Clifford algebra: γIγJ + γJγI = 2ηIJ , ηIJ := diag(−1, 1, 1, 1). The
chiral matrix γ5 := iγ0γ1γ2γ3 and σIJ := 1

4 [γI , γJ ].
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3.2 Canonical analysis

We expand the fermion terms as

L(F ) :=
ie

2
[λ̄γµDµ(ω)λ − Dµ(ω)λγµλ]

=
[
∂tλ̄Π − Π̄∂tλ

]
− NH(F ) − NaHa(F ) − 1

2
ωIJt GIJ(F ) (3.3)

where Π̄ and Π are canonically conjugate momenta fields associated with λ and λ̄
respectively. Explicitly 2,

Π̄ = −ie
2
λ̄γt =

i
√
q

2
MI λ̄γ

I , Π = − ie

2
γtλ =

i
√
q

2
MIγ

Iλ (3.4)

GIJ(F ) = Π̄σIJλ + λ̄σIJΠ (3.5)

Ha(F ) = Da(ω)λΠ − Π̄Da(ω)λ (3.6)

H(F ) = (−2 e Σta
IJ)

[
Da(ω)λ σIJ Π + Π̄ σIJ Da(ω)λ

]
(3.7)

Incorporating these fermionic terms in the pure gravity Lagrangian density given in
equation (2.31), we write the full Lagrangian density as,

L = Ea
i ∂tA

i
a + ζ i ∂tχi + taI∂tV

I
a + ∂tλ̄ Π− Π̄ ∂tλ−NH ′ −NaH ′a −

1

2
ωIJt G′IJ

− ξaI (V I
a − υIa)− φIa(taI − τaI ) (3.8)

where now

G′IJ = GIJ + GIJ(F ) , H ′a = Ha + Ha(F ) , H ′ = H + H(F ) , (3.9)

with GIJ , Ha and H as the contributions from the pure gravity sector as given by the
equations (2.16 – 2.18) or equivalently by the equations (2.22 – 2.25).

The various quantities above can then be rewritten in terms of the basic fields as:

G′iboost = −∂a(Ea
i − ηεijkEa

j χk) + Ea
[iχk]A

k
a + (ζ i − χ · ζ χi)− t′a[0Vi]a

+
[
Π̄(1 + iηγ5)σ0iλ + λ̄(1 + iηγ5)σ0iΠ

]
; (3.10)

G′irot = ∂a(ε
ijkEa

j χk + ηEa
i ) + εijk(AjaE

a
k − ζjχk − t′aj V

k
a )

+
[
Π̄(iγ5 − η)σ0iλ + λ̄(iγ5 − η)σ0iΠ

]
; (3.11)

2The fermions are Grassmann valued and the functional differentiation is done on the left factor which
accounts for the signs in the definitions of the conjugate momenta in (3.4).
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H ′a = Eb
i ∂[aA

i
b] + ζi∂aχi − ∂b(t

′b
I V

I
a ) + t′bI ∂aV

I
b

+
[
∂aλ̄(1 + iηγ5)Π − Π̄(1 + iηγ5)∂aλ

]
−
[
λ̄σ0iΠ + Π̄σ0iλ

]
Aia

− 1

1 + η2

[
Eb

[iχl]A
l
b + ζi − χ · ζχi − t′b[0Vi]b − ηεijk (AjaE

b
k − χjζk − t′bj V k

b )
]
Aia

− 1

1 + η2

[
1

2
εijk

(
ηG′kboost +G′krot

)
− χi(G′jboost − ηG

′j
rot)

]
ω(η)ij
a (3.12)

H ′ = −Ea
kχkH

′
a − (Ea

kχkV
I
a +
√
qM I) ∂bt

′b
I + (1− χ · χ)

[
Ea
i ∂aζi +

1

2
ζiE

a
i E

b
j∂aE

j
b

]
−(1− χ · χ)

1 + η2

[
1

2
Ea

[iE
b
j]A

i
aA

j
b + Ea

i A
i
aχ · ζ + ηεijkζiA

j
aE

a
k +

3

4
(χ · ζ)2 − 3

4
(ζ · ζ)

]
+

(1− χ · χ)

2(1 + η2)

[
ζi − 2V i

b (tb0 − t′b0 )
] [
−G′iboost + ηG′irot − t′a[0Vi]a + ηεijkt

′a
j V

k
a

]
+

(1− χ · χ)√
E(1 + η2)

[
t′bmA

m
b +

1

2
Ei
bt
′b
[iχj]ζj +

η

2
εijkt

′b
i E

j
bζk

]
− 2e Σta

IJ

[
∂aλ̄(1 + iηγ5)σ

IJΠ + Π̄(1 + iηγ5)σ
IJ∂aλ

]
+ Ea

kχk
[
∂aλ̄(1 + iηγ5)Π− Π̄(1 + iηγ5)∂aλ

]
− 2e Σta

IJ

[
−λ̄σ0l σIJΠ + Π̄σIJ σ0lλ

]
Ala − Ea

kχk [Π̄σ0lλ+ λ̄σ0lΠ]Ala

+
(1− χ · χ)

2(1 + η2)

[(
ηt′ak − εijkχit′aj

)
V a
l + fkl + (1 + η2)Jkl +

1

4
Nkl(M)

]
Mkl (3.13)

where as earlier, 2e Σta
0i = Ea

i , 2e Σta
ij = − Ea

[iχj] and fkl , Nkl(M) are given by
equations (4.11, 4.12) respectively. Also,

t′aI := taI − ηe Σta
IJ λ̄γ5γ

Jλ (3.14)

= taI +
iη
√
q
e Σta

IJ

[
MJ(Π̄γ5λ− λ̄γ5Π) + 2ML(Π̄γ5σ

LJλ+ λ̄γ5σ
LJΠ)

]
2Jkl :=

1

2
√
E
λ̄γ5

(
χkγl + χlγk + 2δkl

M IγI
M0

)
λ (3.15)

=
i

2
(δkl +MkMl)(Π̄γ5λ− λ̄γ5Π) + iMlM

J(Π̄γ5σJkλ+ λ̄γ5σJkΠ) + (k ↔ l)

The Hamiltonian density now reads:

H = NH ′ + NaH ′a +
1

2
ωIJt G′IJ + ξaI (V I

a − υIa) + φIa(t
a
I − τaI ) (3.16)

The constraints associated with the fields Na, N, ω0i
t , ω

ij
t , ξ

a
I and φIa respectively are:

H ′a ≈ 0 , H ′ ≈ 0 , G′iboost ≈ 0 , G′irot ≈ 0 (3.17)

17



V I
a − υIa ≈ 0 , taI − τaI ≈ 0. (3.18)

The remaining fields Mkl, from δH′

δMkl δM
kl ≈ 0, lead to the constraint,

(ηt′ak − εijkχit′aj )V l
a + fkl +

1

2
Nkl + (1 + η2)Jkl + (k ↔ l) ≈ 0 (3.19)

Using taI ≈ τaI , we write

t′ak ≈ −η
2

√
E Ea

l

[
2fkl +Nkl

1 + η2
+ 2Jkl + εklnG

′n
boost

]

t′a0 ≈ η
√
E Ea

l

[
G′ lrot −

χk
2

(
2fkl +Nkl

1 + η2
+ 2Jkl + εkln G

′n
boost

)]
(3.20)

Using (3.20) in (3.19), leads to

2fkl +Nkl + 2(1 + η2)Jkl ≈ 0 (3.21)

generalizing the constraint (2.35) of the pure gravity case. This in turn implies

t′aI ≈ 0 (3.22)

corresponding to the constraint (2.36) for pure gravity. Implementing this constraint along
with those in (59) reduces the Hamiltonian density to

H = NH ′ +NaH ′a +
1

2
ωIJt G′IJ (3.23)

where the final set of constraints are obtained from equations (51-54) by substituting t′aI = 0
and dropping the terms containing G′iboost, G

′i
rot in H ′a, H

′. The Mkl is given by the solution
of the constraint (3.21).

3.3 Time gauge:

We may now make the gauge choice χi = 0 and solve the boost constraint G′iboost = 0
to obtain

ζi = ∂aE
a
i − iη

[
Π̄γ5σ0iλ+ λ̄γ5σ0iΠ

]
(3.24)

Thus we have a canonical Hamiltonian formulation for a theory of gravity with fermions
in terms of real SU(2) gauge fields Aia with the following constraints:

G′irot = η ∂aE
a
i + εijkAjaE

a
k + i[ Π̄γ5σ0iλ+ λ̄γ5σ0iΠ] ≈ 0;

18



H ′a = Eb
i ∂[aA

i
b] + [ ∂aλ̄(1 + iηγ5)Π− Π̄(1 + iηγ5)∂aλ ]

− 1

1 + η2

[
∂aE

a
i − ηεijkA

j
bE

b
k − iη

(
Π̄γ5σ0iλ+ λ̄γ5σ0iΠ

)]
Aia ≈ 0;

H ′ = [Ea
i ∂aζi +

1

2
ζiE

a
i E

b
j∂aE

j
b ]−

1

1 + η2

[
1

2
Ea

[iE
b
j]A

i
aA

j
b + ηεijkζiA

j
aE

a
k −

3

4
ζ · ζ

]
+ 2Ea

i

[
∂aλ̄(1 + iηγ5)σ0iΠ + Π̄(1 + iηγ5)σ0i∂aλ

]
+ Ea

i

[
λ̄σilΠ + Π̄σilλ

]
Ala

+
1

2(1 + η2)

[{
fkl + (1 + η2)Jkl

}
Mkl − 1

4

(
MklMkl −MkkM ll

)]
≈ 0 (3.25)

where ζ i are given by (4.23) and

Mkl = 2
[
fkl + (1 + η2)Jkl

]
− δkl

[
fmm + (1 + η2)Jmm

]
(3.26)

with

2fkl = (1 + η2)εijkEa
i E

l
b∂aE

b
j + η

(
Ea
kA

l
a − δklEa

mA
m
a

)
+ (k ↔ l)

2Jkl = iδkl
[
Π̄γ5λ− λ̄γ5Π

]
(3.27)

This completes our discussion of a Dirac fermion minimally coupled to gravity including
the Nieh-Yan term. We have showed that the Nieh-Yan topological term indeed allows a
SU(2) gauge theoretic description.
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Chapter 4

Supergravity

In this chapter we analyse the case of spin-3
2

fermions coupled to gravity. We illustrate
how the general proposal as given in chapter-2 can be applied to this case, and hence to
supergravity theories in general.

The theory of supergravity is based on the assumption that there exists a fundamental
symmetry between bosons and fermions, called supersymmetry. Through this symmetry,
every bosonic particle can be transmuted to a fermionic counterpart, and vice versa. Appli-
cation of this principle to gravity naturally implies that there should be a fermionic partner
of graviton, called gravitino. From the historical perspective, the original idea behind su-
pergravity was to yield a perturbatively finite theory of quantum gravity, as it was noticed
that some of the divergences as appearing in Einstein quantum gravity could be cancelled
through the introduction of supersymmetry. However, keeping aside such details as these
are not necessary for our original purpose here, we focus on the canonical formulation of
the theory of gravity coupled to spin-3

2
fermions and develop the subsequent analysis.

4.1 N=1 supergravity Lagrangian

The Lagrangian density for gravity coupled to spin-3
2

Majorana fermions is given by [20]:

L =
1

2
eΣµν

IJR
IJ

µν (ω) +
i

2
εµναβψ̄µγ5γνDα(ω)ψβ (4.1)

where1,

Dµ(ω)ψa := ∂µψa +
1

2
ωµIJσ

IJψa , Dµ(ω)ψ̄a := ∂µψ̄a −
1

2
ψ̄a ωµIJσ

IJ

1The Dirac matrices here obey the Clifford algebra: γIγJ +γJγI = 2ηIJ , ηIJ := diag(−1, 1, 1, 1). The
chiral matrix γ5 := iγ0γ1γ2γ3 and σIJ := 1

4 [γI , γJ ].
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Here the gravitino field ψµ is the fermionic companion of graviton. The action is invariant
under local supersymmetry transformations which have the following action on these fields:

δψµ = Dµε = ∂µε +
1

2
ωµIJσ

IJε

δeIµ = ε̄γIψµ

The canonical treatment of this theory has been considered earlier in several contexts[22,
21]. In ref.[22], the Hamiltonian analysis of the corresponding Holst action has been carried
out in time gauge. Here we consider a Lagrangian density describing the same theory,
but containing the Nieh-Yan invariant instead of the Holst term in addition to the usual
Hilbert-Palatini and spin-3

2
fermionic terms. In the next section, we demonstrate that the

set of constraints corresponding to this Lagrangian leads to a real SU(2) description of
this theory in terms of the Barbero-Immirzi connection. We also add a few comments on
how to recover the correct transformation properties of the fields under the action of the
symmetry generators.

4.2 Hamiltonian analysis

Following the general proposal made in chapter-1 for any arbitrary matter-coupling, we
add the Nieh-Yan density to the supergravity Lagrangian in (4.1) to write:

L =
1

2
eΣµν

IJR
IJ

µν (ω) +
i

2
εµναβψ̄µγ5γνDα(ω)ψβ +

η

2
INY (4.2)

This can be recast as:

L =
1

2
eΣµν

IJR
(η)IJ
µν (ω) +

i

2
εµναβψ̄µγ5γνDα(ω)ψβ +

η

2
εµναβDµ(ω)eIνDα(ω)eIβ (4.3)

where R(η)IJ
µν (ω) := R IJ

µν (ω) + ηR̃ IJ
µν (ω)

The Nieh-Yan density serves as the term through which η manifests itself as a topolog-
ical parameter in the supergravity action, and does not show up in the classical equations
of motion. This new Lagrangian density also preserves the supersymmetry properties as
characterised by (4.1) since INY is a total derivative.

Next we develop the analysis in the same manner as done for gravity with spin-1
2

fermions in [7]. The 3+1 decomposition of (4.3) can be achieved through the following
parametrisation for the tetrads and their inverses:

eIt =
√
eNM I +NaV I

a , eIa = V I
a ;

MIV
I
a = 0 , MIM

I = − 1
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etI = − MI√
eN

, eaI = V a
I +

NaMI√
eN

;

M IV a
I = 0 , V I

a V
b
I = δba , V

I
a V

a
J = δIJ +M IMJ

Also, we define qab := V I
a VbI and q := detqab which leads to e := det(eIµ) = Nq.

Ignoring the total spatial derivatives, the Lagrangian density can be written as:

L = eΣta
IJ∂tω

(η)IJ
a + taI∂te

I
a − π̄a∂tψa − NH − NaHa −

1

2
ωIJt GIJ − 2S̄ψt

where H, Ha, GIJ and S̄ are given below in equation (4.6) and

2eΣta
IJ = −√qM[IV

a
J ]

taI = ηεabcDb(ω)VIc

π̄a = − i
2
εabcψ̄bγ5γc (4.4)

Here π̄a is the canonically conjugate momenta associated with ψa
2. The last equation

in (4.4) can be inverted as:

ψ̄a =
√
q π̄bγaγb (4.5)

The action does not contain the velocities associated with the gravity fields N,Na, ωtIJ
and the matter field ψt. Hence these are Lagrange multipliers, leading to the primary
constraints H, Ha, GIJ and S̄, respectively:

GIJ = −2Da(ω)
(
eΣ

(η)ta
IJ

)
− ta[IVJ ]a + π̄aσIJψa ≈ 0

Ha = eΣtb
IJR

(η)IJ
ab (ω)− V I

aDb(ω)tbI +
i

2

√
q εbcdπ̄eγbγeγ5γa Dc(ω)ψd ≈ 0

H = 2e2Σta
IKΣtb

JLη
KLR

(η)IJ
ab (ω)−√qM IDa(ω)taI +

iq

2
εabcπ̄dγaγdγ5MIγ

IDb(ω)ψc ≈ 0

S̄ = Da(ω)π̄a −
i
√
q

4η
π̄aγbγaγ5γ

ItbI ≈ 0 (4.6)

where γa is defined as :

γa = γIV
I
a = (γi − γ0χi)Vai (4.7)

While H, Ha, GIJ are the constraints for the pure gravity sector, S̄ is the generator of
the local supersymmetric transformations.

2The functional derivative involving the Grassmann variables (fermions) acts on the left factor resulting
in a sign in the definition of the conjugate momenta in (4.4).
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Following the general framework of ref.[7], we introduce the following set of convenient
fields,

Ea
i := 2eΣta

0i , χi := −Mi/M
0 , Aia := ω(η)0i

a − χjω(η)ij
a , ζ i := − Ea

j ω
(η)ij
a (4.8)

alongwith the decomposition of the nine components of ω(η)ij
a in terms of three ζi’s and six

Mkl’s (Mkl = Mlk) :

ω(η)ij
a =

1

2
(E[i

a ζ
j] + εijkEalM

kl) (4.9)

In terms of the fields in (4.8), we have 2eΣta
ij = −Ea

[iχj] and eΣta
IJ∂tω

(η)IJ
a = Ea

i ∂tA
i
a+ζ i∂tχ

i.

Note that the eighteen coordinate variables ωIJa have been reexpressed in terms of the twelve
variables Aai and χi. The remaining six variables are the Mkl’s, whose velocities do not
appear in the Lagrangian density. Hence these are the additional Lagrange multiplier fields.

Thus the Lagrangian density takes a simple form as follows:

L := Ea
i ∂tA

i
a + ζ i∂tχ

i + taI∂tV
I
a − π̄a∂tψa − NH − NaHa −

1

2
ωIJt GIJ − 2S̄ψt

The fields V I
a and taI are not really independent, these are given in terms of the basic

fields as: V I
a = υIa and taI = τaI where

υ0a := − 1√
E
Ei
aχi , υia :=

1√
E
Ei
a

τa0 := ηεabcDb(ω)υ0c

= η
√
EEa

m

[
Gm

rot −
χl
2

(
2fml +Nml

1 + η2
+ εmlnG

n
boost

)
− iπ̄bγ5(σ0m +

χl
2
σml)ψb

]
τak := ηεabcDb(ω)υck

= −η
2

√
EEa

m

[
2fmk +Nmk

1 + η2
+ εkmnG

n
boost + iπ̄bγ5σkmψb

]
(4.10)

In the above, fkl and Nkl are defined as:

2fkl := εijkE
a
i

[
(1 + η2)El

b∂aE
b
j + χjA

l
a

]
+ η

(
Ea
l A

k
a − δklEa

mA
m
a − χlζk

)
+ (l↔ k)(4.11)

Nkl := (χ2 − 1)(Mkl −Mmmδkl) + χmχnMmnδkl + χlχkMmm − χm(χkMml + χlMmk)

(4.12)

We shall treat V I
a and taI as independent variables and introduce associated Lagrange

multipliers ξaI and φIa to express the equations in (4.10) as constraints.
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Thus we write the full Lagrangian density as,

L = Ea
i ∂tA

i
a + ζ i∂tχi + taI∂tV

I
a − π̄a∂tψa −NH −NaHa −

1

2
ωIJt GIJ

− ξaI (V I
a − υIa)− φIa(taI − τaI ) − 2S̄ψt (4.13)

The constraints in (4.6) can now be rewritten in terms of the canonical fields. These can
be worked out in an analogous manner as in ref.[7]. Thus the corresponding expressions
for Gboost

i := G0i, G
rot
i := 1

2
εijkGjk, Ha, H and S̄ are:

Gi
boost = −∂a(Ea

i − ηεijkEa
j χk) + Ea

[iχk]A
k
a + (ζ i − χ · ζ χi)− t′a[0Vi]a

+ π̄aσ0iψa +
η

4M0E
εijkEalE

b
kπ̄

a(γj − γ0χj)(γl − γ0χl)(γ0 − γmχm)ψb;

Gi
rot = ∂a(ε

ijkEa
j χk + ηEa

i ) + εijk(AjaE
a
k − ζjχk − t′aj V

k
a )

+ iπ̄aγ5σ0iψa −
η

4M0E
Ealπ̄

a(γ[i − γ0χ[i)E
b
j](γl − γ0χl)γjψb;

Ha = Eb
i ∂[aA

i
b] + ζi∂aχi − ∂b(t

b
IV

I
a ) + tbI∂aV

I
b

− 1

1 + η2

[
Eb

[iχl]A
l
b + ζi − χ · ζχi − tb[0Vi]b − ηεijk (AjaE

b
k + χjζk − tbjV k

b )
]
Aia

− 1

1 + η2

[
1

2
εijk

(
ηGk

boost +Gk
rot

)
− χi(Gj

boost − ηG
j
rot)

]
ω(η)ij
a

− 1

4(1 + η2)

1

M0
√
E
εbcdπ̄eγbγe(η − iγ5)γ[aω(η)ij

c] (σij + 2σ0iχj)ψd

− 1

2(1 + η2)

1

M0
√
E
εbcdπ̄eγbγeγa(η + iγ5)σ0iA

i
cψd

H = −Ea
kχkHa + (1− χ · χ)

[
Ea
i ∂aζi +

1

2
ζiE

a
i E

b
j∂aE

j
b

]
+

1− χ · χ
2(1 + η2)

ζi
[
−Gi

boost + ηGi
rot

]
−
(
Ea
kχkV

I
a +
√
qM I

)
∂bt

b
I

−1− χ · χ
1 + η2

[
1

2
Ea

[iE
b
j]A

i
aA

j
b + Ea

i A
i
aχ · ζ + ηεijkζiA

j
aE

a
k

+
3

4
(χ · ζ)2 − 3

4
(ζ · ζ) +

1

2
ζit

a
[0Vi]a −

η

2
ζiε

ijktajV
k
a

]
+

1− χ · χ
1 + η2

[
1√
E
Aiat

a
i +

1

2
V i
a

(
ζ · χtai − χiζjtaj + ηεijkζjt

a
k

)]

+
1− χ · χ
2(1 + η2)

[
(ηt′ak − εijkχit

′a
j )
Eal√
E

+ 2fkl +
1

2
Nkl(M) + 2(1 + η2)Jkl

]
Mkl

− 1− χ.χ
2(1 + η2)

1

M0E
εabcπ̄dγaγdγ0(η + iγ5)

(
σ0iA

i
bψc +

1

4
(σij + 2σ0iχj)Eb[iζj]ψc

)
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+
1− χ · χ
2(1 + η2)

ζi π̄
a(1− iηγ5)σ0iψa

S̄ = ∂aπ̄
a − 1

1 + η2
π̄a(1− iηγ5)

[
σ0lA

l
a +

1

2
(σij + 2σ0iχj)ω

(η)
aij

]
− i

4ηM0
√
E
π̄aγbγaγ5γ

ItbI

(4.14)

where we have used the definitions:

t′aI := taI −
η

4
εabcψ̄bγIψc

= taI −
η

4M0
√
E
εijkEa

kE
c
jE

l
b π̄

b(γi − γ0χi)(γl − γ0χl)γIψc (4.15)

2Jkl :=
1

4
εabcψ̄bγkψcEal + (k ↔ l)

=
1

4M0
√
E
εimlEajE

b
mπ̄

a(γi − γ0χi)(γj − γ0χj)γkψb + (k ↔ l) (4.16)

The Hamiltonian density now reads:

H = NH + NaHa +
1

2
ωIJt GIJ + ξaI (V I

a − υIa) + φIa(t
a
I − τaI ) + 2S̄ψt

The constraints associated with the fields Na, N, ω0i
t , ω

ij
t , ξ

a
I , φIa and ψt respectively are:

Ha ≈ 0 , H ≈ 0 , Gi
boost ≈ 0 , Gi

rot ≈ 0

V I
a − υIa ≈ 0 , taI − τaI ≈ 0 , S̄ ≈ 0.

As mentioned earlier, the momenta conjugate to Mkl are zero. The preservation of this
constraint requires:

δH

δMkl

≈ 0 ,

which implies:

(ηt′ak − εijkχit′aj )V l
a + fkl +

1

2
Nkl + (1 + η2)Jkl + (k ↔ l) ≈ 0 (4.17)

where, fkl and Nkl are given in (4.11, 4.12). This constraint can be solved for Mkl. Next,
using taI ≈ τaI , we write

t′ak ≈ −η
2

√
E Ea

l

[
2fkl +Nkl

1 + η2
+ 2Jkl + εklnG

′n
boost

]

t′a0 ≈ η
√
E Ea

l

[
G′ lrot −

χk
2

(
2fkl +Nkl

1 + η2
+ 2Jkl + εkln G

′n
boost

)]
(4.18)
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Using (4.18) in (4.17), we obtain

2fkl +Nkl + 2(1 + η2)Jkl ≈ 0 (4.19)

These constraints are second-class in themselves and therefore can be implemented strongly.
Here the Jkl piece captures all the contribution coming from the spin-3

2
fermions. Note

that this equation has the same form as the one for spin-1
2

fermions [7]. This constraint,
from (4.18), further implies:

t′aI ≈ 0 => taI =
η

4
εabcψ̄bγIψc (4.20)

This is exactly same as the connection equation of motion which is obtained in the La-
grangian formulation by varying the standard supergravity action without the Nieh-Yan
term (see [23], for example).

Using (4.20), the final set of constraints read:

Gi
boost = −∂a(Ea

i − ηεijkEa
j χk) + Ea

[iχk]A
k
a + (ζ i − χ · ζ χi)

+ π̄aσ0iψa +
η

4M0E
εijkEalE

b
kπ̄

a(γj − γ0χj)(γl − γ0χl)(γ0 − γmχm)ψb

Gi
rot = ∂a(ε

ijkEa
j χk + ηEa

i ) + εijk(AjaE
a
k − ζjχk) + iπ̄aγ5σ0iψa

− η

4M0E
Ealπ̄

a(γ[i − γ0χ[i)E
b
j](γl − γ0χl)γjψb

Ha = Eb
i ∂[aA

i
b] + ζi∂aχi − ∂b

(
(τ ′bi − χiτ ′b0 )

Ei
a√
E

)
− τ ′b0 ∂a

(
χi
Ei
b√
E

)
+ τ ′bi ∂a

(
Ei
b√
E

)

− 1

1 + η2

[
Eb

[iχl]A
l
b + ζi − χ · ζχi −

1√
E
τ ′b[0Ei]b − ηεijk (AjaE

b
k + χjζk −

1√
E
τ ′bj E

k
b )

]
Aia

− 1

8(1 + η2)

1

M0
√
E
εbcdπ̄eγbγe(η − iγ5)γ[a(E[i

c]ζ
j] + εijmEn

c]Mmn)(σij + 2σ0iχj)ψd

− 1

2(1 + η2)M0
√
E
εbcdπ̄eγbγe(η − iγ5)γaσ0kAkcψd

H = (1− χ · χ)
[
Ea
i ∂aζi +

1

2
ζiE

a
i E

b
j∂aE

j
b

]
− 1− χ · χ√

E
∂bτ
′b
0

−1− χ · χ
1 + η2

[
1

2
Ea

[iE
b
j]A

i
aA

j
b + Ea

i A
i
aχ · ζ + ηεijkζiA

j
aE

a
k

+
3

4
(χ · ζ)2 − 3

4
(ζ · ζ) +

1

2
√
E
ζi(τ

′a
0 − χkτ ′ak )Ei

a −
η

2
√
E
ζiε

ijkτ ′aj E
k
a

]

+
1− χ · χ
1 + η2

[
1√
E
Aiaτ

′a
i +

1

2
√
E
Ei
a

(
ζ · χτ ′ai − χiζjτ ′aj + ηεijkζjτ

′a
k

)]
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− 1− χ.χ
2(1 + η2)

1

M0E
εabcπ̄dγaγdγ0(η + iγ5)

(
σ0iA

i
bψc +

1

4
(σij + 2σ0iχj)Eb[iζj]ψc

)

+
1− χ · χ
2(1 + η2)

ζi π̄
a(1− iηγ5)σ0iψa +

1− χ2

4(1 + η2)
[fkl + (1 + η2)Jkl]M

kl

S̄ = ∂aπ̄
a − 1

1 + η2
π̄a(1− iηγ5)

[
σ0lA

l
a +

1

4
(σij + 2σ0iχj)(Ea[iζj] + εijlEamM

lm)
]

where τ ′aI is defined as

τ ′aI :=
η

4
εabcψ̄bγIψc

=
η

4M0
√
E
εijkEa

kE
c
jE

l
b π̄

b(γi − γ0χi)(γl − γ0χl)γIψc (4.21)

and fkl , Jkl and Mkl are given by the (4.11), (4.12), (4.16) and (4.19). In writing S̄, we
have made use of the Fierz identity-

εµναβψ̄µγIψνγ
Iψα = 0 ,

which makes the piece proportional to taI dissapear.

4.3 Time gauge:

One may adopt the time gauge through the choice χi = 0 . Since this condition forms a
second-class pair with the boost constraint, both have to be implemented together. Gboost

i

can be solved as:

ζi = ∂aE
a
i − π̄aσ0iψa −

η

4M0E
εijkEalE

b
kπ̄

aγjγlγ0ψb (4.22)

We can rewrite this as:

ζi = ∂aE
a
i +

1√
E
τ ′
a
0Eai +

1

η
√
E
εijkτ ′

a
jEak (4.23)

with

τ ′aI =
η

4
√
E
εijkEa

kE
c
jEblπ̄

bγiγlγIψc

In this gauge the constraints, which are first-class, reduce to simpler expressions as follows:

Gi
rot = η ∂aE

a
i + εijkAjaE

a
k −

1

η
√
E
τ ′
a
0Eai −

1√
E
εijkτ ′

a
jEak
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Ha = Eb
iF

i
ab +

1

2(1 + η2)

[
Aka − Ei

aE
b
kA

i
b

]
ζk −

1

η2
√
E
τ ′b0 EbiAai −

Eai√
E

[
∂bτ
′b
i +

1

η
εijkAjbτ

′b
k

]

H = −η
2
Ea
i E

b
jε
ijk

[
F k
ab + (η +

1

η
) Rk

ab

]
− 1√

E

[
∂aτ

′a
0 −

1

2η
(εijkEj

aζkτ
′a
i + Ej

aτ
′a
i M

ij)

]

S̄ = ∂aπ̄
a − 1

1 + η2
π̄a(1− iηγ5)σ0k

[
Aka +

1

2
iγ5(εjklζj +Mkl)Eal

]
(4.24)

In these equations, we have used the following definitions:

Γai =
1

2
εijkωajk

F k
ab = ∂[aA

k
b] +

1

η
εijkAaiAbj , Rk

ab = ∂[aΓ
k
b] −

1

η
εijkΓaiΓbj

and ζ i is given by (4.23). Also, in the time gauge :

Mkl = (1 + η2)
(
εijkEl

b∂aE
b
j − εijmEm

b ∂aE
b
jδkl

)
Ea
i + (1 + η2) (2Jkl − Jmmδkl)

+ ηEa
l Aak + (k ↔ l)

2Jkl =
1

4M0
√
E
εimlEajE

b
mπ̄

aγiγjγkψb + (k ↔ l)

Here in (4.24) we have dropped terms proportional to rotation constraints from Ha and H.
As is evident, the dynamical variable which enters in the constraints apart from the

fermionic degrees of freedom is the Barbero-Immirzi connection Aia. Thus in the time gauge
we obtain a real SU(2) formulation of the theory of gravity coupled to spin-3

2
fermions.

Notice that in the matter sector, π̄a and ψa are not independent variables. These obey
the second-class constraints:

Ca := π̄a +
i

2
εabcψ̄bγ5γc ≈ 0

In order to implement these constraints, we need to go to corresponding Dirac brackets for
the matter fields π̄a, ψa. This then leads to the correct transformations (modulo rotations)
on the fields through their Dirac brackets with the corresponding generators. In particular,
the Dirac brackets of the fields with the supersymmetry generator S̄ make them transform
properly under its action.

4.4 Summary

We have presented a framework to incorporate the Barbero-Immirzi parameter as a topo-
logical coupling constant in the classical theory of N = 1 supergravity. This is achieved
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through the inclusion of the Nieh-Yan density in the Lagrangian. This additional term,
being a topological density, preserves the equations of motion and the supersymmetry of
the original action. The canonical formulation has been first developed without going to
any particular choice of gauge. This clarifies the structure of the theory exhibiting all of its
gauge freedom. In the time gauge, the theory is shown to admit a real SU(2) formulation
in terms of the Barbero-Immirzi connection Aia.

The essential features for spin-3
2

fermions turn out to be very similar to those for spin-
1
2

fermions as described in chapter-3, except that here we have the additional constraint
S̄ which acts as the generator of local supersymmetry transformations. The cases for
N = 2, 4 and higher supergravity theories can be treated in exactly similar fashion. There
the constraint analysis leads to the same form of the connection equation of motion as given
here (i.e., equation (4.19)), a fact which is evident from the structure of the fermionic terms
in these theories. Only the expression for Jkl in terms of the matter fields gets modified.
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Chapter 5

Antisymmetric tensor gauge fields

This chapter concerns the theory of gravity coupled to antisymmetric tensor gauge fields of
rank two. This coupling is very different in nature as compared to the fermionic couplings
studied in the previous chapters. Such couplings appear naturally in the perturbative
formulations of quantum gravity, e.g. string theory and supergravity. Here the form of the
coupling is taken to be exactly that as in string theory, i.e. as it appears in the context
of anomaly cancellation mechanism. To elaborate, we deal with a gauge invariant field
strength H = dA + ωL, where A is the antisymmetric tensor gauge field of rank two and
ωL is the Lorentz Chern-Simons three form.

From the viewpoint of the canonical SU(2) formulation of gravity, such a matter cou-
pling poses some novel challenges. Firstly, since the Chern-Simons term is linear in cur-
vature and the Lagrangian density is quadratic in the field strength H, one is essentially
dealing with a higher curvature coupling. Also, Hamiltonian analysis of this theory shows
that the canonical momenta Ea

i conjugate to the Barbero-Immirzi connection Aia gets
modified unlike in the case of fermions. This implies a non-trivial modification in the cor-
responding symplectic structure. In what follows next, we investigate whether in presence
of such a matter content one can use the general framework as developed in chapter-2 and
obtain a SU(2) formulation for the theory of gravity with the Barbero-Immirzi coefficient
as a topological parameter as in the earlier cases.

5.1 Antisymmetric tensor coupling

We introduce the coupling of gravity to antisymmetric tensor field of rank two through the
following Lagrangian density in the first order formulation:

L =
1

2
eΣµν

IJR
IJ

µν (ω) +
1

12
eHµναHµνα (5.1)
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The field strength Hµνα is defined as:

Hµνα = ∂[µAνα] + Cµνα (5.2)

= ∂[µAνα] + Tr (ω[µ∂νωα] +
2

3
ω[µωνωα]) (5.3)

where Cµνα is the Lorentz Chern-Simons term. The field strength tensor is invariant under
the tensor gauge transformations δAµν = ∂[µλν]. There is an additional local symmetry
under the infinitesimal Lorentz transformations. Under this, the fields transform as follows,
leaving Hµνα invariant:

δωIJµ = DµΘIJ , (5.4)

δAµν =
1

2
ΘIJ∂[µω

IJ
ν] (5.5)

As is evident, the coupling has a non-linear dependence on the spin-connection and also
introduces a non-vanishing torsion in the theory.

Now as proposed in chapter-2, we add the Nieh-Yan topological density INY to (5.1):

L =
1

2
eΣµν

IJR
IJ

µν (ω) +
1

12
eHµναHµνα +

η

2
INY (5.6)

where the Nieh-Yan density is given by:

INY = εµναβ
(
Dµ(ω)eIν Dα(ω)eIβ −

1

2
ΣIJ
µν RαβIJ(ω)

)
, Dµ(ω)eIν := ∂µe

I
ν + ω I

µ Je
J
ν .

(5.7)
As discussed in [7], this is the general prescription which should provide a SU(2) formula-
tion for a theory of gravity with (or without) any arbitrary matter coupling. The analyses
in the cases for spin-1

2
fermion coupling and supergravity theories already substantiate this

proposal. Here we discover that unlike these cases, this coupling changes the momenta con-
jugate to the real SU(2) connection Aia. This introduces additional degrees of freedom with
additional constraints in the theory, leading to a non-trivial modification of the symplectic
structure.

5.2 Canonical Analysis: Matter Sector

Next we perform the Hamiltonian decomposition of the matter part given by:

Lm =
1

12
eHµναHµνα (5.8)
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This can be rewritten as:

Lm =
1

12
e
(
3H tabHtab +HabcHabc

)
=

1

4
ΠabHtab +

1

12

(
− 3NaΠbcHabc +NqqadqbeqcfHabcHdef

)
where Πab is the canonical momenta conjugate to Aab:

Πab =
∂L

∂(∂tAab)
= eH tab

= e
(
(gttgac − gtcgta)gbd + gtcgtbgad

)
Htcd + egtdgaegbcHcde

The indices of Πab are lowered using the 3-metric qab; i.e.,Πab = qacqbdΠ
cd. Now, using the

identities-

ΠabHtab = Πab
(
∂tAab + 2∂aAbt + Ctab

)
= NaΠbcHabc − NΠabΠab and

ΠabCtab = 2Πabω0i
b ∂tω

0i
a − Πabωijb ∂tω

ij
a + 2ΠabR0i

abω
0i
t − ΠabRij

abω
ij
t ,

we arrive at the following expression:

Lm = µai ∂tω
(η)0i
a + P a

i ∂tω
0i
a +

1

2
Πab∂tAab + ΠabR0i

abω
0i
t −

1

2
ΠabRij

abω
ij
t

− 1

2
NaΠbcHabc + N

(1

4
ΠabΠab +

1

12
qqadqbeqcfHabcHdef

)
− Abt∂aΠ

ab (5.9)

where we have defined-

µai =
1

η2
Πab

(
ω0i
b − ω

(η)0i
b

)
P a
i =

1

η2
Πab

(
ω
(η)0i
b + (η2 − 1)ω0i

b

)

5.3 Canonical analysis: Full theory

Using equations (5.9), the full Lagrangian density in (5.6) can now be written as :

L =

(
eΣta

IJ −
1

2(1 + η2)
Πab(ωbIJ − η ω̃bIJ)

)
∂tω

(η)IJ
a + taI∂tV

I
a +

1

2
Πab∂tAab

− 1

2
ωIJt Ĝ

IJ − NaHa − NH − Abt∂aΠ
ab

= πaIJ∂tω
(η)IJ
a + taI∂tV

I
a +

1

2
Πab∂tAab −

1

2
ωIJt Ĝ

IJ − NaHa − NH

− Abt∂aΠ
ab
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where the constraints are given by the following expressions :

GIJ = 2Da(ω)(eΣ
(η)ta
IJ ) − ta[IVJ ]a + ΠabRabIJ

Ha = eΣ
(η)tb
IJ R

(η)IJ
ab − V I

aDb(ω)tbI +
1

2
ΠbcHabc

H = 2e2Σ
(η)ta
IK Σ

(η)tb
JL ηKLR

(η)IJ
ab + η

√
qM IDa(ω)taI −

1

4
ΠabΠab

− 1

12
qqaa

′
qbb

′
qcc

′
HabcHa′b′c′ (5.10)

Here the momenta πaIJ conjugate to ω(η)IJ
a are constrained, a fact reflected through the six

primary constraints Cab:

Cab := εIJKLΣta
IJ Σtb

KL ≈ 0

Preservation of these lead to the secondary constraints Dab:

Dab := 8e2Σ̃tc
IJΣta

KIDc(ω)
(
eΣtb

JK

)
+

η

1 + η2
√
qM ItbJ

(
eΣ̃ta

IJ + ηΣta
IJ

)
− 1

2
qqbb

′
qcc

′
qdd

′
Hb′c′d′R

IJ
cd eΣ̃

ta
IJ + ( a↔ b )

Now, we split up the 18 canonical pairs (ω(η)IJ
a , πaIJ) into two sets of 9 pairs, namely,

(Aia = ω(η)oi
a , E ′ai ) and (ωoia , π

a
i ). In terms of these, the Lagrangian density becomes:

L = E ′ai ∂tA
i
a + πai ∂tω

0i + taI∂tV
I
a +

1

2
Πab∂tAab −

1

2
ωIJt Ĝ

IJ − NaHa − NH

− Abt∂aΠ
ab

where, E ′ai = Ea
i +

1

η
εijkEa

j χk + µai ; µai =
1

η2
πab(ω0i

b − Aib)

πai = −
(
η +

1

η

)
εijkEa

j χk + P a
i ; P a

i =
1

η2
πab

(
ω0i
b − (1− η2)Aib

)
The constraints, when written in terms of the canonical variables, are given by the following
expressions :

−Gboost
i := G0i = Da(A) (E ′ai + πai − µai − P a

i ) − 1

η
εijkω0j

a

(
(1 + η2)E ′ak + πak

− (1 + η2)µak − P a
k

)
+ ta[0Vi]a + ΠabR0i

ab
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Grot
i :=

1

2
εijkGjk = η Da(A) (E ′ai − µai ) +

1

1 + η2
εijkωoja (πak − P a

k )− εijktajVka

+
1

2
εijkΠabRjk

ab

Ha =

(
E ′bi +

1

1 + η2
πbi − µbi −

1

1 + η2
P b
i

)
R

(η)0i
ab +

1

2(1 + η2)
εijk(πbk − P b

k)R
(η)ij
ab

− V I
aDb(ω)tbI +

1

2
ΠbcHabc

H =
η

1 + η2
εijk

(
E ′ai +

1

1 + η2
πai − µai −

1

1 + η2
P a
i

)
(πai − P a

i )R
(η)0k
ab

− 1

2

(
(E ′ai − µai )(E ′bj − µbj) +

2

1 + η2
(E ′ai − µai )(πbj − P b

j )

+
1− η2

1 + η2
(πai − P a

i )(πbj − P b
j )

)
R

(η)ij
ab − η

√
qM IDa(ω)taI −

1

4
ΠabΠab

− 1

12
qqaa

′
qbb

′
qcc

′
HabcHa′b′c′

The constraints Cab, which imply that the momenta πai are not all independent, become:(
E ′ai − µai +

1

1 + η2
(πai − P a

i )

)
(πbi − P b

i ) + ( a↔ b ) ≈ 0 (5.11)

Similarly, the expression for Dab can also be obtained by replacing Σta
IJ -s by πaIJ -s. To keep

things simple, we do not write it explicitly here since that does not provide any conceptual
insight as such.

5.4 SU(2) interpretation

We focus onto the expression of the rotation constraint to see how it can be interpreted as
the generator of the SU(2) gauge transformations on the basic fields. After some algebra,
this takes the following form:

Grot
i = η Da(A)E ′ai + εijkω0j

a π
a
k − εijktajVka −

1

η
Πab(∂aA

i
b − ∂aω0i

b )

We note that the rotation constraint as above already provides an SU(2) gauge theoretic in-
terpretation in terms of the field ω(η)0i

a . This can be seen explicitly from the transformation
property of ω(η)0i

a . From equation (5.4), we obtain :

δAia = δω(η)0i
a = ηDaθ

i (5.12)
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for the transformation parameters Θjk = −εijkθi and Θ0i = 0. This implies that Aia
transforms as a gauge field under a rotation. Now, under the rotation Grot

i given by, ω(η)0i
a

transforms as :

δAia = [Aia, θ
kGrot

k ] = ηDaθ
i (5.13)

which agrees exactly with (5.12). Also, according to (5.4), the matter fields transform as

δAab =
1

2
Θij∂[aω

ij
b] = − 1

2η
θi(∂[aA

i
b] − ∂[aωoib] ) (5.14)

which is exactly what is reproduced by Grot
i :

δAab = [Aab, θ
kGrot

k ] = − 1

2η
θi(∂[aA

i
b] − ∂[aωoib] ) (5.15)

Here we have exploited the fact that the pairs (Aia, E
′a
i ) , (ω0i

a , π
a
i ) , (V i

a , t
a
i ) and (Aab, π

ab)
are canonical. Thus, we have an SU(2) theory already at this stage. To emphasize, this
SU(2) description is independent of any gauge choice. One can nevertheless fix a gauge
in order to exhaust some of the gauge freedom in the original theory. However, this is
purely optional and the SU(2) interpretation would be preserved as it is in the gauge fixed
theory as well. This completes the demonstration that the theory of gravity coupled to
antisymmetric tensor gauge fields admits a real SU(2) description.
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Chapter 6

Gravity with all possible topological
parameters

Here we include all possible topological densities as in four-dimensional gravity and analyse
the implications in the classical theory. As earlier, we first write this theory in the canonical
form and investigate if it is possible to obtain a SU(2) gauge theoretic formulation.

6.1 Topological invariants in four dimensions

In (1+3) dimensions, apart from the Nieh-Yan term as discussed earlier, there are two other
possible topological terms that can be added to the Hilbert-Palatini Lagrangian density.
These are:

(i) Pontryagin class:

IP = εµναβRµνIJ(ω)R IJ
αβ (ω) (6.1)

This is the same topological density as in the case of QCD except that the gauge group
here is SO(1, 3) instead of SU(3). Again, it is a total divergence, given in terms of the
SO(1, 3) Chern-Simons three-form:

IP ≡ 4∂µ

[
εµναβω IJ

ν

(
∂αωβIJ +

2

3
ω K
αI ωβKJ

)]
(6.2)

For the Euclidean theory, this topological density, properly normalized, characterizes the
winding numbers given by two integers corresponding to the homotopy group Π3(SO(4)) =
Z + Z.

(ii) Euler class:

IE = εµναβRµνIJ(ω)R̃ IJ
αβ (ω) (6.3)
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which again is a total divergence which can be explicitly written as:

IE ≡ 4∂µ

[
εµναβω̃ IJ

ν

(
∂αωβIJ +

2

3
ω K
αI ωβKJ

)]
(6.4)

For the Euclidean theory, integral of this topological density, properly normalized, over a
compact four-manifold is an alternating sum of Betti numbers b0−b1+b2−b3 , characterizing
the manifold.

Now we may construct the most general Lagrangian density by adding all three topo-
logical terms, namely the Nieh-Yan, Pontryagin and Euler, with the coefficients η, θ and φ
respectively, to the Hilbert-Palatini Lagrangian density. Since all the topological terms are
total divergences, the classical equations of motion are independent of the parameters η,
θ and φ. However, the Hamiltonian formulation and the symplectic structure do see these
parameters. Yet, classical dynamics are independent of them. But, quantum theory may
depend on them.

All these topological terms in the action are functionals of local geometric quantities,
yet they represent only the topological properties of the four-manifolds. These do not
change under continous deformations of the four-manifold geometry.

Notice that, while the Nieh-Yan INY and Pontryagin IP densities are P and T violating,
the Euler density IE is not. So in a quantum theory of gravity including these terms, be-
sides the Newton’s coupling constant, we can have three additional dimensionless coupling
constants, two P and T violating (η, θ) and one P and T preserving (φ).

6.2 Hamiltonian formulation of gravity with Nieh-Yan,

Pontryagin and Euler densities

Here we shall carry out the Hamiltonian analysis for the most general Lagrangian density
containing all three topological terms besides the Hilbert-Palatini term:

L =
1

2
e Σµν

IJ R
IJ

µν (ω) +
η

2
INY +

θ

4
IP +

φ

4
IE (6.5)

We shall use the following parametrization for tetrad fields1:

eIt = NM I +NaV I
a , eIa = V I

a ;

MIV
I
a = 0, MIM

I = −1 (6.6)

1This parametrization differs from the one used earlier in [7]. To obtain the present parametrization
replace eN by N2 in the earlier parametrization.
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with N and Na as the lapse and shift fields. The inverse tetrads are:

etI = −MI

N
, eaI = V a

I +
NaMI

N
;

M IV a
I = 0 , V I

a V
b
I = δba , V I

a V
a
J = δIJ +M IMJ (6.7)

The internal space metric is ηIJ ≡ dia(−1, 1, 1, 1). The three-space metric is qab ≡ V I
a VbI

with q = det(qab) which leads to e ≡ det(eIµ) = N
√
q. The inverse three-space metric is

qab = V a
I V

bI , qabqbc = δac . Two useful identities are:

2eΣta
IJ = −√q M[IV

a
J ] , eΣab

IJ =
2Ne2
√
q

Σ
t[a
IKΣ

b]t
JLη

KL + e N [aΣ
b]t
IJ (6.8)

In this parametrization, we have, instead of the 16 tetrad components eIµ, the following
16 fields: 9 V a

I (M IV a
I = 0), 3 M I (M IMI = −1) and 4 lapse and shift vector fields N , Na.

From these, instead of the variables V a
I and M I , we define a convenient set of 12 variables,

as:

Ea
i = 2eΣta

0i ≡ e
(
et0e

a
i − etiea0

)
= − √q M[0V

a
i] , χi = −Mi/M

0 (6.9)

which further imply:

2eΣta
ij = − √q M[iV

a
j] = −Ea

[iχj] (6.10)

Now, using the parametrization (6.6, 6.7) for the tetrads, and the second identity in
(6.8), we expand the various terms to write:

1

2
e Σµν

IJ R
IJ

µν (ω) +
η

2
INY = eΣta

IJ∂tω
(η)IJ
a + taI∂tV

I
a −NH −NaHa −

1

2
ωIJt GIJ (6.11)

where we have dropped the total space derivative terms. Here taI ≡ ηεabcDb(ω)VcI with

εabc ≡ εtabc and, for any internal space antisymmetric tensor, X
(η)
IJ ≡ XIJ + ηX̃IJ = XIJ +

η
2
εIJKLX

KL. Further,

H =
2e2
√
q

Σta
IKΣtb

JLη
KLRIJ

ab (ω) =
2e2
√
q

Σta
IKΣtb

JLη
KLR

(η)IJ
ab (ω)−M IDa(ω)taI

Ha = eΣtb
IJR

IJ
ab (ω) = eΣtb

IJR
(η)IJ
ab (ω) − V I

aDb(ω)tbI

GIJ = − 2Da(ω)
{
eΣta

IJ

}
= − 2Da(ω)

{
eΣ

(η)ta
IJ

}
− ta[IVJ ]a (6.12)

where we have used the following identities:

M IDa(ω)taI ≡
2ηe2
√
q

Σta
IKΣtb

JLη
KLR̃ IJ

ab (ω)

V I
aDb(ω)tbI ≡ ηeΣtb

IJR̃
IJ

ab (ω) , ta[IVJ ]a ≡ −2ηDa(ω)
{
eΣ̃ta

IJ

}
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Next notice that, dropping the total space derivative terms and using the Bianchi
identity, εabcDa(ω)RbcIJ ≡ 0, we can write

θ

4
IP +

φ

4
IE = eaIJ ∂tω

(η)IJ
a (6.13)

where eaIJ are given by(
1 + η2

)
eaIJ = εabc

{
(θ + ηφ)RbcIJ(ω) + (φ− ηθ) R̃bcIJ(ω)

}
(6.14)

Thus, collecting terms from (6.11) and (6.13), full Lagrangian density (6.5) assumes
the following form:

L = πaIJ∂tω
(η)IJ
a + taI∂tV

I
a − NH − NaHa −

1

2
ωIJt GIJ (6.15)

with

πaIJ = e Σta
IJ + eaIJ (6.16)

In this Lagrangian density, the fields ω(η)IJ
a and πaIJ form canonical pairs. Then, H, Ha

and GIJ of (6.12) can be expressed in terms of these fields as:

GIJ = − 2Da(ω)π
a(η)
IJ − ta[IVJ ]a (6.17)

Ha = πbIJR
(η)IJ
ab (ω) − V I

aDb(ω)tbI (6.18)

H =
2
√
q

(
π
a(η)
IK − e

a(η)
IK

) (
π
b(η)
JL − e

b(η)
JL

)
ηKLR IJ

ab (ω)−M IDa(ω)taI (6.19)

where we have used the relations: Da(ω)eaIJ = 0 and Da(ω)ẽaIJ = 0 which result from the
Bianchi identity εabcDa(ω)RbcIJ(ω) = 0, and also used ebIJR

IJ
ab (ω) = 0 and ẽbIJR

IJ
ab (ω) = 0

which follow from the fact that 2q (θ2 + φ2)RabIJ = εabc {(θ + ηφ) ecIJ − (φ− ηθ) ẽcIJ}.
Now, in order to unravel the SU(2) gauge theoretic framework for the Hamiltonian

formulation, from the 24 SO(1, 3) gauge fields ω IJ
µ , we define, in addition to 6 field variables

ωIJt , the following suitable set of 18 field variables:

Aia ≡ ω(η)0i
a = ω0i

a + ηω̃0i
a , Ki

a ≡ ω0i
a (6.20)

The fields Aia transform as the connection and the extrinsic curvature Ki
a as adjoint repre-

sentations under the SU(2) gauge transformations. In terms of these, it is straight forward
to check that:

πaIJ∂tω
(η)IJ
a = 2πa0i∂tω

(η)0i
a + πaij∂tω

(η)ij
a = Êa

i ∂tA
i
a + F̂ a

i ∂tK
i
a (6.21)

39



with

Êi
a ≡ − 2

η
π̃
a(η)
0i ≡ − 2

η
(π̃a0i − ηπa0i) = Ea

i −
2

η
ẽ
a(η)
0i (A,K) +

1

η
εijkEa

j χk(6.22)

F̂ a
i ≡ 2

(
η +

1

η

)
π̃a0i =

(
η +

1

η

){
−εijkEa

j χk + 2ẽa0i(A,K)
}

(6.23)

where ea0i and ẽaoi ≡ 1
2
εijkeajk as defined in (6.14) and ẽ

a(η)
0i ≡ ẽa0i − ηea0i are written as

functions of the gauge field Aia and the extrinsic curvature Ki
a using

R 0i
ab (ω) = D[a(A)Ki

b] −
2

η
εijkKj

aK
j
b

R ij
ab (ω) = − 1

η
εijkF k

ab(A) +
1

η
εijkD[a(A)Kk

b] −
(
η2 − 1

η2

)
Ki

[aK
j
b] (6.24)

with the SU(2) field strength and covariant derivative respectively as:

F i
ab(A) ≡ ∂[aA

i
b] +

1

η
εijkAjaA

k
b , Da(A)Ki

b ≡ ∂aK
i
b +

1

η
εijkAjaK

k
b (6.25)

Now, using (6.21), the Lagrangian density (6.15) can be written as:

L = Êa
i ∂tA

i
a + F̂ a

i ∂tK
i
a + taI∂tV

I
a − NH − NaHa −

1

2
ωIJt GIJ (6.26)

Thus, we have the canonically conjugate pairs (Aia, Ê
a
i ), (Ki

a, F̂
a
i ) and (V I

a , t
a
I). We may

write GIJ , Ha and H of (6.17)-(6.19) in terms of these fields. For example, from (6.17):

Grot
i ≡ 1

2
εijkGjk = ηDa(A)Êa

i + εijk
(
Kj
aF̂

a
k − tajV k

a

)
(6.27)

Gboost
i ≡ G0i = −Da(A)

(
Êa
i + F̂ a

i

)
+ εijkKj

a

{(
η +

1

η

)
Êa
k +

1

η
F̂ a
k

}
− ta[0Vi]a (6.28)

= −Da(A)F̂ a
i + εijkKj

a

{(
η +

1

η

)
Êa
k +

2

η
F̂ a
k

}
− 1

η
εijktajVak − ta[0Vi]a −

1

η
Grot
i

where the covariant derivatives are: Da(A)Êb
i = ∂aÊ

b
i + η−1 εijkAjaÊ

b
k andDa(A)F̂ b

i = ∂aF̂
b
i

+ η−1 εijkAjaF̂
b
k . Next, for the generators of spatial diffeomorphisms Ha from (6.18):

Ha = Êb
iF

i
ab(A) + F̂ b

iD[a(A)Ki
b] −Ki

aDb(A)F̂ b
i + tbiD[a(A)V i

b] − V i
aDb(A)tbi

+ tb0∂[aV
0
b] − V 0

a ∂bt
b
0 −

1

η

(
Grot
i + ηGboost

i

)
Ki
a

= Êb
i ∂[aA

i
b] − Aia∂bÊb

i + F̂ b
i ∂[aK

i
b] −Ki

a∂bF̂
b
i + tbi∂[aV

i
b] − V i

a∂bt
b
i

+ tb0∂[aV
0
b] − V 0

a ∂bt
b
0 +

1

η
Grot
i Aia −

1

η

(
Grot
i + ηGboost

i

)
Ki
a (6.29)
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where we have used −V I
aDb(ω)tbI ≡ −V I∂bt

b
I + tbI∂[aV

I
b] + tbIVJbω

IJ
a . Similarly we can

express H of (6.19) in terms of these fields.
Now, notice that all the fields (Aia, Ê

a
i ), (Ki

a, F̂
a
i ) and (V I

a , t
a
I) in the Lagrangian

density (6.26) are not independent. Of these, the fields V I
a and taI are given in terms of

others as: V I
a = vIa and taI = τaI with

via ≡
1√
E
Ei
a , v0a ≡ −

1√
E
Ei
aχi (6.30)

where Ei
a is inverse of Ea

i , i.e., Ei
aE

b
i = δba, Ei

aE
a
j = δij and E ≡ det(Ei

a) = q−1(M0)−2

and

τai ≡ ηεabcDb(ω)vic = εabc
(
ηDb(A)vic − εijkK

j
bv

k
c +Ki

bv
0
c

)
,

τa0 ≡ −ηεabcDb(ω)v0c = −ηεabc
(
∂bv

0
c +Kj

bv
j
c

)
(6.31)

In addition, the fields F̂ a
i , which are conjugate to the extrinsic curvature Ki

a, are also not
independent; these are given in terms of other fields by (6.23) .

In the Lagrangian density (6.26), there are no velocity terms associated with SO(1, 3)
gauge fields ωIJt , shift vector field Na and lapse field N . Hence these fields are Lagrange
multipliers. Associated with these are as many constraints: GIJ ≈ 0, Ha ≈ 0, and H ≈ 0
where the weak equality ≈ is in the sense of Dirac theory of constrained Hamiltonian
systems. Here from the form of Grot

i = 1
2
εijkGjk in (6.27), it is clear that these generate

SU(2) rotations on various fields. The boost transformations are generated by Gboost
i = G0i,

spatial diffeomorphisms by Ha and H ≈ 0 is the Hamiltonian constraint. This, thus can
already be viewed, without fixing the boost degrees of freedom and without solving the
second class constraints (6.30) and (6.31), as a SU(2) gauge theoretic framework. Here,
besides the three SU(2) generators Grot

i , we have seven constraints, Gboost
i , Ha and H. We

may, however, fix the boost gauge invariance by choosing a time gauge. Then we are left
with only the SU(2) gauge invariance besides the diffeomorphism Ha and Hamiltonian H
constraints. This we do in the next section.

6.3 Time gauge

We work in the time (boost) gauge by choosing the gauge condition χi = 0 which then
implies for the tetrad components e0a ≡ V 0

a = 0. Correspondingly the boost generators
(6.28) are also set equal to zero strongly, Gboost

i = 0. In this gauge, the Lagrangian density
(6.26) takes the simple form:

L = Êa
i ∂tA

i
a + F̂ a

i ∂tK
i
a + tai ∂tV

i
a −H (6.32)
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with the Hamiltonian density as:

H = NH + NaHa +
1

2
εijkωijt G

rot
k + ξai

(
V i
a − via

)
+ φia (tai − τai ) + λia

{
F̂ a
i − 2

(
η +

1

η

)
ẽa0i(A,K)

}
(6.33)

where all the fields involved are not independent. In particular, the fields V i
a , tai and F̂ a

i

depend on other fields. This fact is reflected in H above through terms with Lagrange
multiplier fields ξai , φia and λia. Now, in this time gauge, expressions for Grot

i , Ha and H
are:

Grot
i ≡ ηDa(A)Êa

i + εijk
(
Kj
aF̂

a
k − tajV k

a

)
Ha ≡ Êb

iF
i
ab(A) + F̂ b

iD[a(A)Ki
b] −Ki

aDb(A)F̂ b
i + tbiD[a(A)V i

b] − V i
aDb(A)tbi − η−1Grot

i Ki
a

= Êb
i ∂[aA

i
b] − Aia∂bÊb

i + F̂ b
i ∂[aK

i
b] −Ki

a∂bF̂
b
i + tbi∂[aV

i
b] − V i

a∂bt
b
i + η−1Grot

i

(
Aia −Ki

a

)
H ≡

√
E

2η
εijkEa

i E
b
j

{
F k
ab(A)−

(
1 + η2

) (
D[a(A)Kk

b] − η−1 εkmnKm
a K

n
b

)}
+ Ki

at
a
i − η ∂a

(√
EGrot

k Ea
k

)
(6.34)

where Da(A) is the SU(2) gauge covariant derivative. In the last line, we have used the
time-gauge identity: ta0 = τa0 = η

√
EGrot

k Ea
k . Also Ea

i are functions of Êa
i , Aia and Ki

a:

Ea
i = Ea

i (Ê, A,K) ≡ Êa
i +

2

η
ẽ
a(η)
0i (A,K) (6.35)

.
Associated with the Lagrange multiplier fields ωijt , Na and N in (6.33), we have the

constraints:

Grot
i ≈ 0, Ha ≈ 0 , H ≈ 0 (6.36)

In addition, corresponding to Lagrange multiplier fields ξai and φia, we have more con-
straints:

V i
a − via(E) ≈ 0 , tai − τai (A,K,E) ≈ 0 (6.37)

where, from (6.30) and (6.31), in the time gauge:

via ≡
1√
E
Ei
a , τai ≡ ηεabcDb(ω)vic = εabc

(
ηDb(A)vic − εijkK

j
bv

k
c

)
(6.38)
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Similarly, from the last term in (6.33), there are the additional constraints:

χai ≡ F̂ a
i − 2

(
η +

1

η

)
ẽa0i(A,K) ≈ 0 (6.39)

Here ea0i and ẽa0i of (6.14), with the help of Eqn.(6.24), are written as functions of the gauge
fields Aia, extrinsic curvature Ki

a and the topological parameters θ, φ besides η as follows:

η2
(
1 + η2

)
ea0i(A,K) ≡ −εabc

{
η (φ− ηθ)F i

bc(A)− 2η
((

1− η2
)
φ− 2ηθ

)
Db(A)Ki

c

−
(
η
(
3− η2

)
θ +

(
3η2 − 1

)
φ
)
εijkKj

bK
k
c

}
η2
(
1 + η2

)
ẽa0i(A,K) ≡ −εabc

{
η (θ + ηφ)F i

bc(A)− 2η
((

1− η2
)
θ + 2ηφ

)
Db(A)Ki

c

−
((

3η2 − 1
)
θ − η

(
3− η2

)
φ
)
εijkKj

bK
k
c

}
(6.40)

From these we can construct for e
a(η)
0i ≡ ea0i + ηẽa0i and ẽ

a(η)
0i ≡ ẽa0i − ηea0i:

e
a(η)
0i = −1

η
εabc

{
φF i

bc(A)− (φ− ηθ)D[b(A)Ki
c] −

(
(η2 − 1)φ+ 2ηθ

η

)
εijkKj

bK
k
c

}

ẽ
a(η)
0i = −1

η
εabc

{
θF i

bc(A)− (θ + ηφ)D[b(A)Ki
c] −

(
(η2 − 1)θ − 2ηφ

η

)
εijkKj

bK
k
c

}
(6.41)

The χai constraints (6.39) are of particular interest. To study their effect, we note that
(Aia, Ê

b
j ) and (Ki

a, F̂
b
j ) are canonically conjugate pairs. They have accordingly the standard

Poisson brackets. From these, using the relation (6.35) expressing Ea
i in terms of Êa

i , Aia
and Ki

a, as indicated in the Appendix, the following Poisson brackets can be calculated
with respect to phase variables (Aia, Ê

a
i ) and (Ki

a, F̂
a
i ):[

Aia(x), Eb
j (y)

]
=
[
Aia(x), Êb

j (y)
]

= δijδ
b
a δ

(3)(x, y),[
Ki
a(x), Eb

j (y)
]

= 0 ,
[
Ea
i (x), Eb

j (y)
]

= 0

These then imply the Poisson bracket relations:[
χai (x), Ajb(y)

]
= 0 ,

[
χai (x), Kj

b (y)
]

= − δijδab δ(3)(x, y) ,[
χai (x), Eb

j (y)
]

= 0 ,
[
χai (x), χbj(y)

]
= 0 (6.42)

Using these, we notice that the Poisson brackets of Hamiltonian constraint H and χai
are non-zero. Requiring [χai (x), H(y)] ≈ 0 leads us to the secondary constraints as:

tai −
(

1 + η2

η2

){
ηεijkDb(A)

(√
EEa

jE
b
k

)
+
√
EE

[a
j E

b]
i K

j
b

}
≈ 0
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which can be rewritten as:

tai −
(

1 + η2

η2

)
εabc

{
ηDb(A)vic − εijkK

j
bv

k
c

}
≈ 0

Next, since from (6.37) and (6.38), tai ≈ τai ≡ εabc
{
ηDb(A)vic − εijkK

j
bv

k
c

}
, this implies

tai ≈ 0. Thus we have the constraints:

εabc
{
ηDb(A)vic − εijkK

j
bv

k
c

}
≈ 0

These can be solved for the extrinsic curvature Ki
a and recast as the following secondary

constraints:

ψia ≡ Ki
a − κia(A,E) ≈ 0 ,

κia(A,E) ≡ η

2
εijkEj

aDb(A)Eb
k

− η

2E
Ek
aε
bcd
{
Ek
bDc(A)Ei

d + Ei
bDc(A)Ek

d − δikEm
b Dc(A)Em

d

}
(6.43)

These are additional constraints and have the important property that these form second
class pairs with the constraints χai of (6.39):[

χai (x), ψjb(y)
]

= − δab δ
j
i δ

(3)(x, y) (6.44)

To implement these second class constraints, χai and ψia, we need to go over from
Poisson brackets to the corresponding Dirac brackets and then impose the constraints
strongly, ψia = 0 (which also implies tai = 0) and χai = 0, in accordance with Dirac theory
of constrained Hamiltonian systems. As outlined in the Appendix, the Dirac brackets of
fields Aia and Ea

i turn out to be the same as their Poisson brackets; these are displayed in
(6.71). On the other hand, those for (Aia, Ê

a
i ; Ki

a, F̂
a
i ) are different; these have been listed

in (6.73) and (6.74).
Finally, after implementing these second class constraints, we have the Lagrangian

density in the time-gauge as:

L = Êa
i ∂tA

i
a + F̂ a

i ∂tK
i
a −H (6.45)

with the Hamiltonian density

H = NH +NaHa +
1

2
εijkωjkt G

rot
k (6.46)
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and a set of seven first class constraints:

Grot
i ≡ η Da(A)Êa

i + εijkKj
aF̂

a
k ≈ 0

Ha ≡ Êb
iF

i
ab(A) + F̂ b

iD[a(A)Ki
b] − Ki

aDb(A)F̂ b
i − η−1 Grot

i Ki
a ≈ 0

H ≡
√
E

2η
εijkEa

i E
b
jF

k
ab(A)−

(
1 + η2

2η2

)√
EEa

i E
b
jK

i
[aK

j
b] +

1

η
∂a
(√

EGrot
k Ea

k

)
≈ 0 (6.47)

with Ea
i in the last equation given by: Ea

i = Ea
i (Ê, A,K) ≡ Êa

i + 2
η
ẽ
a(η)
0i (A,K). The

fields (Aia, Ê
a
i , K

i
a, F̂

a
i ) have non-trivial Dirac brackets as listed in (6.73) and (6.74). The

second class constraints χai and ψia are now set strongly equal to zero:

Ki
a = κia(A,E) ≡ η

2
εijk Ej

aDb(A)Eb
k −

η

2E
Ek
a ε

bcd
{
Ek
bDc(A)Ei

d + Ei
bDc(A)Ek

d

− δikEm
b Dc(A)Em

d

}
F̂ a
i = 2

(
η +

1

η

)
ẽa0i(A,K) (6.48)

In writing the Hamiltonian constraint H in (6.47) from (6.34), we have used the identity:

√
E εijkEb

iE
c
j

(
Db(A)Kk

c −
1

η
εkmnKm

b K
n
c

)
= − ∂a

(√
EEa

i G
rot
i

)
(6.49)

which holds due to the time gauge relation EEa
i G

rot
i = εabcEi

bK
i
c with the constraints

Ki
a = κia(A,E) imposed strongly.

6.4 SU(2) interpretation

To evaluate the effect of generators (6.47) on various fields, we need to use the Dirac
brackets instead of the Poisson brackets. For example, for the SU(2) gauge generators,
using the results listed in the Appendix, we obtain:[

Grot
i (x), Êa

j (y)
]
D

= εijkÊa
k δ

(3)(x, y) ,[
Grot
i (x), Aja(y)

]
D

= −η
(
δij∂a + η−1 εikjAka

)
δ(3)(x, y) (6.50)

reflecting the fact Grot
i are generators of SU(2) transformations: Aia transform as the SU(2)

connection and fields Êa
i as adjoint representations. Besides, the fields F̂ a

i , K
i
a and Ea

i also
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behave as adjoint representations under SU(2) rotations:[
Grot
i (x), F̂ a

j (y)
]
D

= εijkF̂ a
k δ

(3)(x, y)[
Grot
i (x), Kj

a(y)
]
D

= εijkKk
a δ

(3)(x, y)[
Grot
i (x), Ea

j (y)
]
D

= εijkEa
k δ

(3)(x, y) (6.51)

Similar discussion is valid for the spatial diffeomorphism generators Ha. The Dirac
brackets of Ha with various fields yield the Lie derivatives of these fields respectively,
modulo SU(2) gauge transformations.

As stated earlier and demonstrated in the Appendix, Dirac brackets for the fields
(Aia, Ê

a
i ; Ki

a, F̂
a
i ) are different from their Poisson brackets (see (6.72), (6.73) and (6.74)).

This is so because the transition from Poisson brackets to Dirac brackets, except for some
special cases, in general, does not preserve canonical structure of the algebra. When the
second class constraints are imposed strongly, the algebraic structure of the Dirac brackets
of phase variables (Aia, Ê

a
i ) of the final theory is different from those of the phase variables

(Aia, E
a
i ) of the standard canonical theory. Thus the variables (Aia, Ê

a
i ) are not related

to (Aia, E
a
i ) through a canonical transformation. However, it is possible to construct a set

of new phase space field variables whose Dirac bracket algebra has the same structure as
that of the standard canonical variables (Aia, E

a
i ).

In fact, in general, for theories with second class constraints as is the case here, instead of
the ordinary canonical transformations, what is relevant are the Gitman D-transformations,
which preserve the form invariance of Dirac brackets and equations of motion [24]. Thus,
in the present context also, new phase variables can be constructed through these D-
transformations. These transformations change both the gauge fields as well as their con-
jugate momentum fields.

6.5 Poisson and Dirac brackets

In the time-gauge Lagrangian density (6.45), the fields (Aia, Ê
a
i ) and (Ki

a, F̂
a
i ) are canonical

pairs which have the standard Poisson bracket relations:

[Aia(t, ~x), Êb
j (t, ~y)] = δijδ

b
a δ

(3)(~x, ~y) , [Ki
a(t, ~x), F̂ b

j (t, ~y)] = δijδ
b
a δ

(3)(~x, ~y) (6.52)

and all other brackets amongst these fields are zero. Thus the Poisson bracket for any two
arbitrary fields P and Q is given by:

[P (x), Q(y)] =
∫
d3z

(
δP (x)

δAia(z)

δQ(y)

δÊa
i (z)

− δP (x)

δÊa
i (z)

δQ(y)

δAia(z)

)
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+
∫
d3z

(
δP (x)

δKi
a(z)

δQ(y)

δF̂ a
i (z)

− δP (x)

δF̂ a
i (z)

δQ(y)

δKi
a(z)

)
(6.53)

From these, using Ea
i = Ea

i (Ê, A,K) ≡ Êa
i + 2η−1 ẽ

a(η)
0i (A,K), we have the Poisson

bracket relations[
Aia(x), Eb

j (y)
]

=
[
Aia(x), Êb

j (y)
]

= δijδ
b
a δ

(3)(x, y),
[
Ki
a(x), Eb

j (y)
]

= 0 (6.54)

Using the expressions for ea0i(A,K) and ẽa0i(A,K) as functions of Aia and Ki
a as in (6.40),

the following relations obtain:

[
Êa
i (x), Eb

j (y)
]

=
2

η

[
Êa
i (x), ẽ

b(η)
0j (y)

]
= − 4

η2
εabc

{
θDij

c −
(
θ + ηφ

η

)
εikjKk

c

}
δ(3)(x, y)

[
F̂ a
i (x), Eb

j (y)
]

=
2

η

[
F̂ a
i (x), ẽ

b(η)
0j (y)

]
=

4

η2
εabc

{
(θ + ηφ)Dij

c −
(

(1− η2)θ + 2ηφ

η

)
εikjKk

c

}
δ(3)(x, y)

[
ẽ
a(η)
0i (x), Eb

j (y)
]

=
[
ẽ
a(η)
i (x), Êb

j (y)
]

=
2

η
εabc

{
θDij

c −
(
θ + ηφ

η

)
εikjKk

c

}
δ(3)(x, y)

(1 + η2)
[
ẽa0i(x), Eb

j (y)
]

= (1 + η2)
[
ẽa0i(x), Êb

j (y)
]

=
2

η
εabc

{
(θ + ηφ)Dij

c −
(

(1− η2)θ + 2ηφ

η

)
εikjKk

c

}
δ(3)(x, y) (6.55)

where the SU(2) gauge covariant derivative is: Dij
c ≡ δij∂c + η−1εikjAkc . These Poisson

bracket relations imply for Ea
i = Ea

i (Ê, A,K) ≡ Êa
i + 2η−1 ẽ

a(η)
0i (A,K):[

Ea
i (x), Eb

j (y)
]

= 0 (6.56)

Now, using these Poisson bracket relations along with (6.54), yields:[
κia(x), Eb

j (y)
]

=
[
Aia(x), Eb

j (y)
]

= δbaδ
i
j δ

3(x, y) (6.57)

where κia(E,A) is given by (6.43) and can be rewritten explicitly as:

κia(A,E) = Aia + f ia(E)

f ia(E) =
η

2
εijkEj

a∂bE
b
k −

η

2E
Ek
a ε

bcd
(
Ei
b∂cE

k
d + Ek

b ∂cE
i
d − δikEl

b∂cE
l
d

)
= − η Ej

a ε
bcd
(
vib∂cv

j
d −

1

2
δij vrb∂cv

r
d

)
(6.58)
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with via ≡ Ei
a/
√
E. It is straight forward to check that f ia satisfy the identity:

εabc
{
∂bE

i
c − ∂b(ln

√
E) Ei

c − η−1εijkf
j
bE

k
c

}
= 0

Equivalently, this relation can also be written as:

∂aE
a
i − η−1εijkf jaE

a
k ≡ Da(A)Ea

i − η−1εijkκjaE
a
k = 0 (6.59)

These relations can be used to calculate the variation δf ia to be:

δf ia = S ilabδEb
l − η ∂c

(
A cil
ab δEb

l

)
+
η

2

(
∂cA cil

ab

)
δEb

l (6.60)

with

S ilab = −
(
El
af

i
b + Ei

bf
l
a

)
+

3

4

(
Ei
af

l
b + El

bf
i
a

)
− 1

2
Em
a E

m
b

(
Ec
i f

l
c + Ec

l f
i
c

)
+

1

4

(
Em
a E

l
bE

c
i + Em

b E
i
aE

c
l

)
fmc +

(
Ei
bE

l
a − Ei

aE
l
b + δliEn

aE
n
b

)
Ec
mf

m
c

− η

4
εimk

(
∂cE

m
a E

l
b − ∂cEl

bE
m
a

)
Ec
k −

η

4
εlmk

(
∂cE

m
b E

i
a − ∂cEi

aE
m
b

)
Ec
k

+
η

2
εilk (∂cE

m
a E

m
b − ∂cEm

b E
m
a )Ec

k

A cil
ab =

(
εilkEm

a E
m
b −

1

2
εimkEm

a E
l
b +

1

2
εlmkEm

b E
i
a

)
Ec
k (6.61)

Notice that S ilab and A cil
ab are respectively symmetric and antisymmetric under the inter-

change of the pair of indices (a, i) and (b, l):

S ilab = S liba , A cil
ab = − A cli

ba (6.62)

These properties, immediately, lead to the relation:

δf ia(x)

δEb
l (y)

=
δf lb(y)

δEa
i (x)

(6.63)

Next, using χai (x) ≡ F̂ a
i (x)− 2(1+η2)

η
ẽa0i(x) from (6.39), equations (6.52) also imply the

following:

[
χai (x), Êb

j (y)
]

= − 2(1 + η2)

η

[
ẽa0i(x), Êb

j (y)
]

= − 4

η2
εabc

{
(θ + ηφ)Dij

c −
(

(1− η2)θ + 2ηφ

η

)
εikjKk

c

}
δ(3)(x, y)
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[
χai (x), F̂ b

j (y)
]

= −2(1 + η2)

η

[
ẽa0i(x), F̂ b

j (y)
]

=
4

η2
εabc

{(
(1− η2)θ + 2ηφ

)
Dij
c +

(
(3η2 − 1)θ − η(3− η2)φ

η

)
εikjKk

c

}
δ(3)(x, y)[

χai (x), Ajb(y)
]

= 0 ,
[
χai (x), Kj

b (y)
]

= − δji δab δ(3)(x, y)

(1 + η2)
[
χai (x), eb0j(y)

]
= (1 + η2)

[
F̂ a
i (x), eb0j(y)

]
=

2

η
εabc

{(
(1− η2)φ− 2ηθ

)
Dij
c +

(
η(3− η2)θ + (3η2 − 1)φ

η

)
εikjKk

c

}
δ(3)(x, y)

(1 + η2)
[
χai (x), ẽb0j(y)

]
= (1 + η2)

[
F̂ a
i (x), ẽa0j(y)

]
=

2

η
εabc

{(
(1− η2)θ + 2ηφ

)
Dij
c +

(
(3η2 − 1)θ − η(3− η2)φ

η

)
εikjKk

c

}
δ(3)(x, y)

[χai (x), ẽ
(η)b
j (y)] = [F̂ a

i (x), ẽ
(η)b
j (y)]

=
2

η
εabc

{
(θ + ηφ)Dij

c −
(

((1− η2)θ + 2ηφ

η

)
εikjKk

c

}
δ(3)(x, y) (6.64)

which further imply:[
χai (x), Eb

j (y)
]

= 0 ,
[
χai (x), κib(y)

]
= 0,

[
χai (x), χbj(y)

]
= 0 (6.65)

For ψia ≡ Ki
a−κia(A,E) as given by (6.43), using (6.54) and (6.58), we have the following

useful relations:[
ψia(x), Eb

j (y)
]

= −
[
κia(x) , Eb

j (y)
]

= −δbaδij δ3(x, y),[
ψia(x), Ajb(y)

]
= −

[
κia(x), Ajb(y)

]
=

δκia(x)

δEb
i (y)[

ψia(x), Ej
b (y)

]
= −

[
κia(x), Ej

b (y)
]

= Ej
aE

i
b δ

3(x, y),[
ψia(x), E(y)

]
= −

[
κia(x), E(y)

]
= EEi

a δ
3(x, y) (6.66)

The Poisson bracket relations among χai and ψia, obtained by using the properties listed
above, can be summarized as:[

χai (x), χbj(y)
]

= 0 ,
[
χai (x), ψjb(y)

]
= −δab δ

j
i δ

(3)(x, y) ,
[
ψia(x), ψbj(y)

]
= 0 (6.67)

where the last equation follows from the relation:

[
κia(x), κjb(y)

]
=

[
Aia(x), f jb (y)

]
+
[
f ia(x), Ajb(y)

]
=

δf jb (y)

δEa
i (x)

− δf ia(x)

δEb
j (y)

= 0 (6.68)
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Here the Poisson brackets involving f ia(E) are calculated by using their expressions as
functions of Ei

a as given by (6.58). The identity (6.68) further implies the following Poisson
bracket relations:[

F i
ab(x), κjd(y)

]
+
[
D[a(A)κib](x), Ajd(y)

]
= 0,[

F i
ab(x), D[c(A)κjd](y)

]
+
[
D[a(A)κib](x), F j

cd(y)
]

= 0,

η
[
D[a(A)κib](x), D[c(A)κjd](y)

]
+
[
F i
ab(x), εjmnκmc (y)κnd(y)

]
+
[
εiklκka(x)κlb(x), F j

cd(y)
]

= 0[
D[a(A)κib](x), εjmnκmc (y)κnd(y)

]
+
[
εiklκka(x)κlb(x), D[c(A)κjd](y)

]
= 0, (6.69)

To implement the second-class constraints χai ≈ 0 and ψai ≈ 0, we need to go over to
the corresponding Dirac brackets and then put χai = 0 and ψai = 0 strongly. From the
Poisson bracket relations of these constraints (6.67), the Dirac bracket of any two fields C
and D can be constructed to be:

[C, D]D = [C, D]− [C, χ] [ψ, D] + [C, ψ] [χ, D] (6.70)

Using the Poisson bracket relations listed above, it is straight forward to check that the
Dirac brackets amongst Aia and Ea

i are the same as their Poisson brackets:[
Ea
i (x), Eb

j (y)
]
D

=
[
Ea
i (x), Eb

j (y)
]

= 0 ,
[
Aia(x), Ajb(y)

]
D

=
[
Aia(x), Ajb(y)

]
= 0[

Aia(x), Eb
j (y)

]
D

=
[
Aia(x), Eb

j (y)
]

= δbaδ
i
j δ

3(x, y) (6.71)

Also we note that,[
Ki
a(x), Eb

j (y)
]
D

=
[
κia(x), Eb

j (y)
]
D

=
[
κia(x), Eb

j (y)
]

= [Aia(x), Eb
j (y)] = δbaδ

i
j δ

3(x, y),[
Ki
a(x), Ajb(y)

]
D

=
[
κia(x), Ajb(y)

]
D

=
[
κia(x), Ajb(y)

]
=
[
f ia(x), Ajb(y)

]
= − δf ia(x)

δEb
j (y)

,[
Ki
a(x), Kj

b (y)
]
D

=
[
κia(x), κjb(y)

]
D

=
[
κia(x), κjb(y)

]
=
[
Aia(x), f ib(y)

]
+

[
f ia(x), Ajb(y)

]
= 0 (6.72)

where in the last terms of second and third equations, the Poisson brackets are to be
evaluated using (6.58) which express f ia(E) as functions of Ei

a.
The Dirac brackets of (Aia, Ê

a
i ) and (Êa

i , Ê
b
j ) are not same as their Poisson brackets:

[
Aia(x), Êb

j (y)
]
D

=

[
Aia(x), Eb

j (y)− 2

η
ẽ
b(η)
0j (y)

]
D

= δbaδ
i
j δ

3(x, y)− 2

η

[
Aia(x), ẽ

b(η)
0j (κ; y)

]
,
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[
Êa
i (x), Êb

j (y)
]
D

=
4

η2

[
ẽ
a(η)
0i (κ;x), ẽ

b(η)
0j (κ; y)

]
= − 4(θ2 + φ2)

η3
εacdεbef

([
F i
cd(x), εjmnκme (y)κnf (y)

]
+
[
εimnκmc (x)κnd(x), F j

ef (y)
])

=
4(θ2 + φ2)

η2
εacdεbef

[
D[c(A)κid](x), D[e(A)κjf ](y)

]
(6.73)

Here the argument κ in ea0i(κ) and ẽa0i(κ) is to indicate that these are as in (6.40) with Ki
a

replaced by κia which in turn are given by (6.58) as functions of Aia and Ea
i . Further, here

in the second equation, we have used:[
Ea
i (x), ẽ

b(η)
0j (κ; y)

]
+

[
ẽ
a(η)
0i (κ;x), Eb

j (y)
]

= 0

Also,

[
Aia(x), F̂ b

j (y)
]
D

=
2(1 + η2)

η

[
Aia(x), ẽb0j(y)

]
D

=
2(1 + η2)

η

[
Aia(x), ẽb0j(κ; y)

]
[
Ea
i (x), F̂ b

j (y)
]
D

=
2(1 + η2)

η
[Ea

i (x), ẽb0j(y)]D =
2(1 + η2)

η

[
Ea
i (x), ẽb0j(κ; y)

]
[
F̂ a
i (x), F̂ b

j (y)
]
D

=
4(1 + η2)2

η2

[
ẽa0i(x), ẽb0j(y)

]
D

=
4(1 + η2)2

η2

[
ẽa0i(κ;x), ẽb0j(κ; y)

]
=

4(1 + η2)

η2

(
θ2 + φ2

)
εacdεbef

[
D[c(A)κid](x), D[e(A)κjf ](y)

]
[
Êa
i (x), F̂ b

j (y)
]
D

+
[
F̂ a
i (x), Êb

j (y)
]
D

= − 8 (1 + η2)

η2

[
ẽa0i(κ;x), ẽb0j(κ; y)

]
= − 8 (θ2 + φ2)

η2
εacdεbef

[
D[c(A)κid](x), D[e(A)κjf ](y)

]
[
Ki
a(x), F̂ b

j (y)
]
D

=
2(1 + η2)

η

[
Ki
a(x), ẽb0j(y)

]
D

=
2(1 + η2)

η

[
κia(x), ẽb0j(κ; y)

]
(6.74)

6.6 Summary

We have analysed the most general gravity Lagrangian with three topological densities,
namely, the Nieh-Yan, Euler and Pontryagin, from a classical canonical perspective. The
canonical theory develops a dependence on all three parameters which are coefficients of
these terms. In the time gauge, we obtain a real SU(2) gauge theoretic description with

51



a set of seven first class constraints corresponding to three SU (2) rotations, three spatial
diffeomorphism and one to evolution in a timelike direction. Inverse of the coefficient of the
Nieh-Yan term, identified as the Barbero-Immirzi parameter, acts as the coupling constant
of the gauge theory.

It would be of interest to see how any or all of these three topological parameters
affect the quantum theory of gravity, if at all. Also, since two of the topological densities,
namely, the Nieh-Yan and Pontryagin, are parity odd, it is possible that they might leave
their signatures through some parity-violating effect(s) in gravity.
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Chapter 7

Second-class constraints and
quantization

Here we explore the issue of constructing an appropriate quantum framework where the
imports of the topological Nieh-Yan term can be seen in a way as is typical in gauge
theories.

It is well-known that the presence of total divergences in the Lagrangian does not
affect the classical dynamics. However, when the divergences are of topological origin, the
corresponding quantum theory might be affected by such additions. For example, exactly
such a situation is realized in QCD. The classical vacua there are given by the condition of
a vanishing field strength and are characterised by pure gauge configurations for the gauge
fields:

Aµ = g−1∂µg

The group elements g fall into homotopy classes labelled by integers n. Thus, the classical
ground states are infinitely degenerate. The naive quantum vacua, corresponding to each
of these states, would also be infinitely degenerate. However, due to tunneling effects, the
actual quantum vacuum is actually a linear superposition of the perturbative vacua asso-
ciated with these ground states and is essentially non-perturbative. The existence of such
a non-trivial vacuum structure can also be understood through an effective Lagrangian,
which contains a topological density in addition to the standard kinetic term. This is
known as the Pontryagin density of SU(3) gauge theory with a constant coefficient θ. This
parameter, although classically irrelevant, shows up in the quantum theory through the
true non-perturbative vacuum state which can be written as a superposition of all the
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perturbative ground states:

|ψ >vac =
+∞∑

n=−∞
einθ|ψn >

The integers n correspond to the charges given by the integral of the Pontryagin density and
are associated with the homotopy maps s3 → s3. These are characterised by the homotopy
group π3(SU(3)) = Z. Moreover, when this theory is coupled to massive fermions, physical
quantities like the electron dipole moment of the neutron depend on θ.

In a quantum framework, the implications of a topological term can also be understood
through a rescaling of the wavefunctional by a topologically non-trivial phase factor. This
procedure is used in non-abelian gauge theories[25] where the wavefunctional is rescaled
by the exponential of the Chern-Simons three-form with iθ as its coefficient:

ψ′ = eiθ
∫
d3xjt ψphy with jt = εabc(Aia∂bA

i
c +

2

3
εijkA

i
aA

j
bA

k
c )

Here jt is the time component of the 4-vector jµ, the Chern-Simons 4-current and i, j, k
denote the SU(N) group indices. For Yang-Mills theory and QCD, N=2 and 3, respec-
tively. The physical states ψphy are invariant under ‘small’ gauge transformations built
out of infinitesimal ones, but not under the ‘large’ gauge transformations which cannot be
constructed out of infinitesimal ones. Under these, the gauge fields transform as follows:

A′iµTi = g−1AiµTi g − g−1∂µg

Thus, when g, the SU(N) group element, belongs to the trivial homotopy class, it is de-
formable to identity and corresponds to the ‘small’ gauge transformations. On the other
hand, the ‘large’ gauge transformations arise when the g-s correspond to the non-trivial
homotopy classes. These cannot be deformed to identity and under these the physical state
ψphy is only phase-invariant. To be precise, under a representative gauge transformation
belonging to the n-th homotopy class, ψphy transforms with a winding number n:

gnψphy = einθψphy

Note that the rescaled wavefunctional ψ′ is invariant under both ‘small’ and ‘large’ transfor-
mations by construction. This can be seen from the fact that under ‘large’ transformations,
the functional as in the exponent in equation (7.1) transforms as:∫

d3xjt
′

=
∫
d3xjt − n

Through ψ′, the non-trivial import of the topological parameter θ in the quantum theory
gets manifested in a transparent manner. The study of the underlying non-perturbative
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vacuum structure in non-abelian gauge theories becomes particularly simpler within such
a framework.

Motivated by the gauge theory example, we might invoke a similar construction for
gravity in order to study the potentially non-trivial import of the topological Nieh-Yan
density which can be added to the gravity Lagrangian. However, it turns out that it is
not possible to do so when one uses the standard quantization procedure of Dirac. To see
why this is so, let us study the rescaled wavefunctional in the case of gravity in analogy to
gauge theories:

ψ′ = eiη
∫
d3xjtNY ψ with jtNY = εabcV I

aDbV
I
c (7.1)

Here ψ is the wavefunctional representing the formally quantized Hilbert-Palatini theory
and jtNY is the time component of the Nieh-Yan 4-current jµNY . Its divergence gives the
Nieh-Yan topological density: ∂µj

µ
NY = INY . Here jtNY and INY are to be seen as the ana-

logues of the Chern-Simons functional jt and Pontryagin topological density in the gauge
theory case, respectively. However, the canonical theory of gravity contains second-class
constraints (unlike the gauge theories as above) in addition to the first-class constraints.
The standard quantization method of Dirac requires these second-class pairs to be imple-
mented before quantization. When this is done for pure gravity, this implies vanishing of
torsion, and results in a vanishing rescaling functional jtNY . Thus the rescaling in equation
(7.1) becomes trivial. This precludes any possibility of studying the import of the Nieh-Yan
topological term in the quantum theory through the rescaling framework.

Hence, for this purpose, one must adopt alternative quantization methods instead of
the Dirac procedure. Here we use the Gupta-Bleuler and coherent state quantization
approaches which involve a different treatment of the second-class constraints. These
methods are quite general and can be used for gravity theory with or without matter.

We note that the procedure of rescaling has been applied earlier to gravity coupled
to spin-1

2
fermions [16]. However, the approach in ref.[16] uses Dirac’s method to solve

the second-class constraints before quantization, or in other words, uses the connection
equation of motion. As explained already, this method cannot be applied to pure gravity,
since the rescaling functional jtNY vanishes when the connection equation is used.

The general idea of the Gupta-Bleuler quantization [26] is to split the original set
of first and second-class constraints into a holomorphic and an anti-holomorphic set of
first-class constraints related through the hermitian conjugation. The physical subspace
contains only those ket states which are annihilated by the holomorphic set. Here we apply
this method to Hilbert-Palatini theory. The resulting space of physical wavefunctions is
then used to employ the rescaling. This leads to the canonical formulation based on
the Lagrangian containing both Hilbert-Palatini and Nieh-Yan terms, as desired. Next
we repeat this exercise using the coherent state quantization for constrained systems[27].
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There we consider a squared sum of the original second-class constraints to define the
physical Hilbert space. Note that such squared combinations also appear in the context
of the Master constraint programme[28], where the constraints are enforced in a different
way than above.

In contrast to Dirac’s approach, our analysis in either cases does not require the use of
the connection equation of motion for the rescaling. This particular feature is essential in
order to recover a complete topological interpretation of the Barbero-Immirzi parameter,
independent of any matter coupling.

In the following section we demonstrate the rescaling procedure in time gauge, first in
the Gupta-Bleuler and then in the coherent state approach. We work in a representation
diagonal in the densitized triad operators. Subsequently, we generalise our construction
for any choice of gauge.
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7.1 Hilbert-Palatini canonical theory

First-class constraints

The Hilbert-Palatini Lagrangian density is given by :

L =
1

2
eΣµν

IJR
IJ
µν (7.2)

We parametrize the tetrad fields as [23] :

eIt =
√
eNM I +NaV I

a , eIa = V I
a ; MIV

I
a = 0 , MIM

I = − 1 (7.3)

and then the inverse tetrad fields are :

etI = − MI√
eN

, eaI = V a
I +

NaMI√
eN

;

M IV a
I = 0 , V I

a V
b
I = δba , V

I
a V

a
J = δIJ +M IMJ (7.4)

Introducing the fields

Ea
i = 2eΣta

0i , χi =
Mi

M0

, ω̃ 0i
b = ω 0i

b − χmω
im
b , ζj = ωaijχ

i (7.5)

the Lagrangian density in (7.2) can be written as :

L = Ea
i ∂tω̃

0i
a + ζ i∂tχi − ω0i

t G0i −
1

2
ωijt Gij − NH − NaHa (7.6)

H, Ha and Gboost
i and Grot

i are the scalar, vector, boost and rotation constraints, respec-
tively (Gboost

i := G0i , G
rot
i := 1

2
εijkG

jk) .
In terms of the canonical variables, the Nieh-Yan functional jtNY becomes :

jtNY =
1

2

√
EεijkEa

jE
b
k

[
− χi∂a

(√
Eεlmnεbcd χlE

c
mE

d
n

)
+ ∂a

(√
EεimnεbcdE

c
mE

d
n

) ]
− Mkk −

1

2(1− χ2)
χkχlMkl − εijkχjω̃

0i
b Eb

k (7.7)

where we have used the identities

εabcVkc =
√
EεijkE

aiEbj,
√
EVck = Eck and

√
EVc0 = χkEck
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and also the decomposition1:

ωaij =
1

2
Ea[iζj] +

1

2(1− χ2)
εijkEalM

kl, Mkl = M lk

which is just a way to represent the nine components of ωaij in the basis of three ζi’s and
six Mkl’s.

One can choose the time gauge by putting χi ≈ 0 . As this condition forms a second
class pair with the boost constraint, they have to be imposed together.

The boost constraint is given by -

Gboost
i = − ∂aE

a
i − ωaijE

a
j

= − ∂aE
a
i + ζi

which is solved by the condition

ζi = ∂aE
a
i . (7.8)

The first-class set of constraints are given by the following expressions :

Grot
i = εijkω

0j
a E

a
k

Ha = Eb
iR

0i
ab

= Eb
i ∂[aω

0i
b] − ω0i

a ζi + [ εijlEajζi − EakM
kl ] Grot

l

H = − 1

2
Ea
i E

b
jR

ij
ab

= Ea
i ∂aζi +

1

2
ζiζi −

1

2
Ea
i Ebjζi∂aE

bj +
1

2
εijm Ea

i Ebn∂aE
bjMmn

+
1

8
[ 2ζiζi + MkkM ll − MklMkl] − 1

2
Ea
i E

b
j ω

0i
[aω

0j
b] (7.9)

where ζi is given by (7.8) .
From (7.7) , we get the following expression for jtNY in time gauge :

jtNY =
1

2

√
EεijkEa

jE
b
k∂a

(√
EεimnεbcdE

c
mE

d
n

)
− Mkk (7.10)

Second-class constraints

1The parametrisation for ωaij here is different from that in ref.[23]
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As the Lagrangian density (7.6) is independent of the velocities associated with Mkl,
we have the primary constraints involving the corresponding momenta :

πkl ≈ 0 (7.11)

These in turn imply secondary constraints, which essentially lead to the vanishing of torsion
(see [23] for details) :

[H, πkl] ≈ 0

=> εijkE
a
i Ebl∂aE

b
j +

1

2
( M iiδkl − Mkl ) + (k ↔ l) ≈ 0

=> Mkl − Fkl(E
a
i ) ≈ 0 (7.12)

where we have defined Fkl as 2 :

Fkl(E
a
i ) =

1

2
εijmE

a
i E

b
m∂aEbj δkl − εijkE

a
i E

b
l ∂aEbj + (k ↔ l) (7.13)

Dirac’s prescription leads to the next step where the second-class constraints are solved
before quantization or are eliminated through Dirac brackets. This is equivalent to impos-
ing them ‘strongly’ as operator conditions[12]. Thus the physical subspace of the original
Hilbert space would be obtained through the states which are annihilated by the operators
corresponding to the remaining set of first-class constraints. However, here the second-class
pair in (7.11) and (7.12), when enforced strongly, leads to the vanishing of the rescaling
functional jtNY . Thus, the Dirac quantization procedure as it is cannot provide any pas-
sage to the new set of constraints corresponding to the Lagrangian density containing the
Nieh-Yan term.

Hence, one must adopt alternative quantization procedures to impose the second-class
constraints in the quantum state space. Here we first employ a method which is a slight
generalisation of the Gupta-Bleuler approach in electrodynamics, and then repeat the
exercise using the coherent state quantisation. Both the cases result in a non-vanishing
rescaling functional through which the canonical transformation can be carried out.

7.2 Gupta-Bleuler quantization

Following the general idea of Gupta-Bleuler quantization, we have to find suitable holo-
morphic and anti-holomorphic sets containing all the constraints. Here the sets can be

2In the presence of matter coupling this would be [ Mkl − Fkl(E
a
i , φm) ] ≈ 0 , where φm denotes the

matter fields, eg. fermions when gravity is coupled to fermions
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defined as:

C :=
(
Gi
rot, Ha, H̃, (Qkl + iαπkl)

)
C† :=

(
Gi
rot, Ha, H̃

†, (Qkl − iαπkl)
)

(7.14)

where α is a constant and H̃, H̃†, Qkl are defined as:

H̃ = Ea
i ∂aζi +

1

2
ζiζi −

1

2
Ea
i Ebjζi∂aE

bj +
1

2
εijm Ea

i Ebn∂aE
bj(Mmn + iαπmn)

+
1

8
[ 2ζiζi + (Mkk + iαπkk)(Mll + iαπll) − (Mkl + iαπkl)(Mkl + iαπkl)]

− 1

2
Ea
i E

b
j ω

0i
[aω

0j
b]

H̃† = Ea
i ∂aζi +

1

2
ζiζi −

1

2
Ea
i Ebjζi∂aE

bj +
1

2
εijm Ea

i Ebn∂aE
bj(Mmn − iαπmn)

+
1

8
[ 2ζiζi + (Mkk − iαπkk)(Mll − iαπll) − (Mkl − iαπkl)(Mkl − iαπkl)]

− 1

2
Ea
i E

b
j ω

0i
[aω

0j
b]

Qkl = Mkl − Fkl(Ea
i )

Thus we have two sets of first-class constraints which satisfy the required algebra given
by[26]:

[CA, CB] ≈ 0 ≈ [C†A, C
†
B],

[CA, C
†
B] ≈ ZAB (7.15)

where ZAB, the central charge is a function of α in our case.
In the definitions (7.14), instead of H, one needs to take the classically equivalent

constraints H̃ and H̃† in order to ensure the abelian property of the individual sets, and
hence to reproduce the correct algebra as in (7.15). H̃ and H̃† are obtained by replacing
Mkl in H by (Mkl + iαπkl) and (Mkl − iαπkl) , respectively.

Next we define a representation based on the fundamental commutation relations as:

Êa
i |Ψ > = Ea

i |Ψ > , ω̂ 0i
a |Ψ > = − i

δ

δÊa
i

|Ψ >

M̂kl |Ψ > = Mkl |Ψ > , π̂kl |Ψ > = − i
δ

δM̂kl

|Ψ >

Here |Ψ > represents the formally quantized Hilbert-Palatini theory. The physical subspace
is obtained through the realisation of the set C on the ket states:

Ĉ |Ψ > = 0 (7.16)
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Thus, the constraints involving the canonical pair (M̂kl, π̂kl) act as:

(Q̂kl + iαπ̂kl) |Ψ > = 0 (7.17)

The hermitian conjugation of the above implies that the physical bra states are annihilated
by C†.

¿From (7.17), it follows that the original second-class constraints are satisfied individ-
ually through the expectation values with respect to the physical states:

< Ψ|Q̂kl|Ψ > = < Ψ|π̂kl|Ψ > = 0

This is how the correspondence with the classical formulation emerges in this framework.
Equation (7.17) completely specifies the dependence of the wavefunctional on the vari-

ables Mkl, whereas the constraints Grot
i , Ha and H̃ determine the Ea

i dependence. Note
that in H̃, Mkl appears only through the corresponding constraint. Thus the full wave-
functional can be written as:

Ψ(M,E) = φ̃(M − F ) φ(E) (7.18)

where φ̃(M − F ) is a Gaussian functional of (Mkl − Fkl) = Qkl. Thus the Gupta-Bleuler
wavefunctional differs from the one obtained through Dirac’s procedure by the vacuum of
the oscillator in the Q space. The integral representation for the inner product becomes:∫

dM (φ̃(M − F ))2
∫
dE φ′∗(E)φ(E) =

∫
dQ (φ̃(Q))2

∫
dE φ′∗(E)φ(E) (7.19)

where we have used the fact that the Jacobian corresponding to the change of variables
from M to Q is identity. The Q integration can be performed trivially, leaving only the E
integral. This then becomes equivalent to the reduced space integral as would be obtained
by Dirac’s procedure, upto a normalisation.

Importantly, the above expression contains no delta-function corresponding to the con-
straint in (7.17), which usually appears as a projector in the inner product for first-class
constrained systems (see chapter-13 in [13], for example). Also, note that the presence of
the Gaussian functional φ̃(M −F ) in (7.19) leads to normalisable states in the Mkl sector.

7.3 Rescaling

Next we proceed to perform the rescaling in the quantized phase space. Note that jtNY de-
pends only on the operators corresponding to the configuration variables (Ea

i ,Mkl). Thus,

61



the new momenta conjugate to Êa
i are thus given by :

ω̂
′0l
d Ψ′ = eiη

∫
d3xjtNY ω̂ 0l

d e−iη
∫
d3xjtNY Ψ′

=

(
δ

δÊd
l

− η
δjtNY (Êa

i , M̂jk)

δÊd
l

)
Ψ′

=

 δ

δÊd
l

− η

2
εijlω̂dij + η

 ÊdiÊal − 1
2
ÊdlÊai√

Ê

 t̂ai

 Ψ′

where we have used the expression

δjtNY
δEd

l

= εijk∂b

(
Eci√
E

)
δ(
√
EEbjEck )

δEd
l

=

(
1

2
εijlωdij −

[
EdiEal − 1

2
EdlEai√

E

]
tai

)

with tai defined as :

tai = εabcDbVci

= εabc∂b

(
Eci√
E

)
+

√
E

2
[ εijkEa

k∂bE
b
j + Ea

kMik − Ea
iMkk ] (7.20)

The new π̂kl’s are obtained as -

π̂′kl Ψ′ = eiη
∫
d3xjtNY π̂kl e

−iη
∫
d3xjtNY Ψ′

=

(
δ

δM̂kl
− η

δjtNY (Êa
i , M̂jk)

δM̂kl

)
Ψ′

=

(
δ

δM̂kl

+ η δkl

)
Ψ′

Note that this procedure goes through in presence of matter couplings which lead to
non-vanishing torsion.

As already mentioned, the expectation value of the constraint (7.17) among the physical
states in the Mkl sector (i.e., the states φ̃(M − F ) in (7.18) ) leads to the relation-

< M̂kl >M = < Fkl(Êa
i ) >M ,

which is the analogue of the classical constraint in (7.12). To emphasize, here torsion as
an operator in (7.20) does not annihilate Ψ, rather its expectation value vanishes. This is
to be contrasted with the Dirac procedure where the torsion operator vanishes ‘strongly’.
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New constraints

The new constraints, which annihilate the rescaled wavefunctional Ψ′, can be found by
introducing the new momenta in the expressions as given in (7.9) . We illustrate this for
Ĝrot
i below.

The rotation constraint for the action in (??) containing the Hilbert-Palatini and Nieh-
Yan terms is given by :

Ĝ
′rot
i = eiη

∫
d3x ˆjtNY Ĝrot

i e−iη
∫
d3x ˆjtNY

= η ∂aÊ
a
i + εijkω̂

′0j
a Êa

k −
η√
Ê
εijkÊbj t̂

b
k

Taking the expectation value with respect to the states φ̃(M−F ), we arrive at the familiar
SU(2) Gauss’ law :

< Ĝ
′rot
i >M = η∂aÊ

a
i + εijkÂjaÊ

a
k

where,

Âld = < ω̂
′ 0l
d >M = ω̂ 0l

d − η

2
εijlω̂dij

Without going into the detailed algebraic expressions of the remaining constraints corre-
sponding to (??) as they are not relevant for our purpose here, we observe that they can
be obtained in a similar manner as shown for Ĝrot

i .

7.4 Coherent state quantization

We now demonstrate another approach, namely, the coherent state quantization for con-
strained systems[27]. Although this was originally designed to develop an alternative path-
integral formulation using coherent states, here we use the essential idea to enforce the
appropriate ‘quantum’ constraints. This would allow a consistent rescaling formulation for
gravity with or without matter.

Following the general construction developed by Klauder [27] , we seek the states for
which

< Ψ|
(
(M̂kl − F̂kl(Êa

i ))2 + π̂2
kl

)
|Ψ > = < Ψ|(Q̂2

kl + π̂2
kl)|Ψ > = 0 (7.21)

However, since we have < Â2 >= (∆Â)2 + < Â >2 for any operator Â, equation (7.21)
cannot be satisfied by any Â with non-zero uncertainty ∆Â. Hence, as suggested in ref.[27],
one has to modify the above criterion as

< Ψ|(Q̂2
kl + π̂2

kl)|Ψ > ≤ λ0 (O(h̄)) (7.22)
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where, λ0 denotes the minimum eigenvalue in the spectrum of the constraint operator.
The modification, being of the order of h̄, is a purely quantum feature. The rest of the
constraints Grot

i , Ha and H, as given by equation(7.9), are imposed as they are on the
physical states:

Ĝrot
i |Ψ > = Ĥa|Ψ > = Ĥ|Ψ > = 0 . (7.23)

Now, there is a family of minimum uncertainty states, namely, the canonical coherent
states, defined as:

|M,π > = e−iMπ̂eiπM̂ |β > (7.24)

where M =< M̂kl >, π =< π̂kl > and |β > is some fiducial state for which M = 0, π = 0
(we supress the indices just to simplify the notation). Among these, the one satisfying
(7.22) is the coherent state for which Q = (M − F (E)) = 0, π = 0, with F (E) =<
F̂kl(Ê

a
i ) >. Using (7.24) , the explicit form of this state reads:

Ψ(M) = e−iF (E)π̂ β(M) = β(M − F (E))

where β(M) is the fiducial state functional in a representation diagonal in M̂kl.
In this formulation, one can define a projection operator P onto the physical Hilbert

space, requiring the following properties[27]:

P † = P, P 2 = P

In our case P (in the Mkl sector) becomes simply |Ψ(M) >< Ψ(M)| .
The full wavefunctional representing the physical subspace can thus be written as:

Ψ(M,E) = β(M − F ) φ(E)

The inner product in this space reads:∫
dMdE Ψ′∗(M,E)Ψ(M,E) =

∫
dQ β∗(Q)β(Q)

∫
dE φ′∗(E)φ(E)

As in the Gupta-Bleuler case, here also the Qkl (or, Mkl) sector factors out leaving only
the E integral in the product. In particular, we can choose the fiducial state to be the
oscillator ground state in this case. Then this expression reproduces the Gupta-Bleuler
product as in (7.19). Thus the two Hilbert spaces are equivalent. The rescaling can now
be implemented along the lines of our previous discussion.
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7.5 Rescaling for any gauge choice

Now we provide a brief outline of the rescaling procedure without choosing any gauge. For
non-zero χi, the canonical coordinates in the Lagrangian density in (7.6) are ω̃ 0i

a , Mkl and
χi where ω̃ 0i

a is given by equation (7.5) .
Y in (7.7) can be rewritten as :

jtNY =
1

2

√
EεijkEa

jE
b
k

[
− χi ∂a

(√
Eεlmnεbcd χlE

c
mE

d
n

)
+ ∂a

(√
EεimnεbcdE

c
mE

d
n

)]
− Mkk −

1

(1− χ2)
χkχlMkl − 2εijkEa

j χk∂aχi + 2χkG
rot
k (7.25)

The structure of Y suggests that we can choose the representation to be diagonal in the
operators Êa

i , M̂kl and χ̂i . In the above equation the last term involving Ĝrot
i commutes

with all other remaining terms and acts trivially on |Ψ > to give zero. Hence this term
can be ignored at this stage itself.

One can follow exactly the same procedure as earlier to define a suitable physical sub-
space using either the Gupta-Bleuler or the coherent state method, and then find the new
set of canonical operators through the rescaling. Thus, the new momenta ω̃

′0i
a conjugate

to Ea
i read:

ω̃
′0l
d = ω

(η) 0l
d − χjω

(η) lj
d − ηεiklχk∂dχi

+ η

(
EaiEdl

2
√
E

+
√
EεilkεabdE

b
k

)
(tai − χit

a
0) (7.26)

where we have defined :

ω
(η) 0l
d = ω 0l

d − η

2
εjklωdjk , ω

(η) lj
d = ω lj

d − η εjklωd0k ,

tai = εabc DbVci = εabc [ ∂bVci + ωbijV
j
c − ω0i

b Vc0 ] ,

ta0 = εabc DbVc0 = εabc [ ∂bVc0 − ω0i
b V

i
c ]

As is evident, we recover the new momenta in time gauge when χi = 0 and ζi = ∂aE
a
i .

The momenta corresponding to Mkl and χi transform as follows:

π′kl = πkl + η

(
δkl +

χkχl
1− χ2

)

ζ ′i = ζ i − ηεijkEa
j

[
∂aχk −

√
EEb

kχm∂a

(
Em
b√
E

)]
+

η

1− χ2

(
δij +

χiχj
1− χ2

)
χkM

jk

The new set of constraints, which annihilate the rescaled wavefunctional Ψ′ can now be
obtained in a manner as demonstrated for the time-gauge fixed theory.
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7.6 Summary

We have illustrated how to arrive at the canonical formulation corresponding to the ac-
tion containing the Hilbert-Palatini and Nieh-Yan terms starting from the Hilbert-Palatini
canonical theory through a generic rescaling procedure. The constraint operators, through
their action on the physical states, reproduce the real Ashtekar-Barbero formulation.

As it turns out, one cannot invoke such a rescaling to obtain the Ashtekar-Barbero con-
straints if the Hilbert-Palatini second-class constraints are eliminated before quantization,
as is done in Dirac’s method. Here we have provided a remedy to this problem by using
alternative approaches, namely, the Gupta-Bleuler and the coherent state quantizations.
These two cases result in the same physical Hilbert space. Also, here the torsional degrees
of freedom as associated with the second-class constraints emerge as relevant canonical
operators through M̂kl and π̂kl. To emphasize, these do not appear in the Dirac-quantized
phase space where the second-class constraints are eliminated beforehand. It would be
interesting to see the implications of this particular feature. The framework as devel-
oped here provides a natural arena where the potential role of the torsional fluctuations
in quantum gravity can be studied further. Any progress along such lines might also shed
some light on the possible import of the Nieh-Yan density in the quantum theory. Note
that a concrete understanding of this particular issue might be difficult, if not impossible,
within the Dirac quantization scheme where the Nieh-Yan term is trivially zero. Thus, the
alternative frameworks as proposed here might provide some insight in this regard.

As both the quantization methods lead to a non-vanishing rescaling functional jtNY , they
apply to any arbitrary matter coupling. When such couplings lead to nonzero torsion (e.g.
fermion coupled to gravity), one can obtain the new canonical constraints by writing jtNY in
terms of the geometric variables (i.e., tetrads and spin connections). Using the connection
equation of motion to write jtNY in terms of matter fields there becomes purely optional.
Thus our analysis provides a complete topological interpretation of the Barbero-Immirzi
parameter in a quantum framework, whether or not matter is coupled to gravity.

We have also shown that the rescaling can be carried out without having to choose any
particular gauge (e.g., time gauge). Thus the appearance of η as a topological parameter
in this quantum description is not an artifact of some special gauge choice, as also shown
in chapter-2 from a classical perspective.
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Chapter 8

Concluding remarks

The investigations and results as presented in this thesis provide some perspective into
what could be potentially worthwhile issues to explore.

In the case of gauge theories, the import of the topological Pontryagin term in the
quantum theory is non-trivial, as already explained in the previous chapter[25, 29]. It
leads to a ground state which is very different from the one as would be obtained through
a naive analysis. The (degenerate) minimum energy states all conspire to form a new vacua.
Each of them contribute with a phase which depends on the topological θ parameter. This
effect is non-perturbative in nature as semiclassical perturbation theory for small coupling
constant cannot sense such state of affairs. Also, some of the observables in the quantum
theory do depend on the topological parameter. For example, the electric dipole moment
of the neutron depend on the θ parameter of QCD.

Whether some or all of the three topological terms in gravity theory imply such rich
vacuum structure demands a careful investigation. Such questions are also tied up with
issues like a suitable classification of the vacuum configuration in gravity and the precise
analogue of the large gauge transformations as in non-abelian gauge theories. To emphasize,
it would be important to study what might be the winding numbers associated with the
topological invariants and whether there are instanton-like configurations in gravity which
lead to tunneling effects. Such analyses might unravel some important features of the
quantum theory of gravity, a complete understanding of which still eludes us.

Also, since the Nieh-Yan term vanishes on-shell for pure gravity, it is not a priori
clear how its coefficient η might contribute to the tunneling amplitude, if at all. A rigorous
investigation along these lines would require a consistent path-integral formulation in place
for gravity in the first-order framework. This seems to be one possible way to understand
if the torsional fluctuations play any role in the quantum theory of gravity.

The analyses in this thesis are sufficiently general to suggest that the the topological
parameters should manifest themselves in any quantum theory of gravity. In particular,
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one can study how the Nieh-Yan invariant, and hence its coefficient η, does emerge in
the low energy effective action of string theory, which is a candidate theory for quantum
gravity. In such a framework, η might show up as a dynamical field, leaving open the issue
of possible mechanisms through which it can be fixed at some expectation value.

The results here indicate that a complete theory of gravity would contain two other
topological parameters, i.e., the coefficients of the Euler and Pontryagin densities, along
with the Barbero-Immirzi parameter. As is well-known, the spectrum of the area operator
in Loop Quantum Gravity depends on η[30]. It is intriguing to see whether the other
two also do leave their imprints on any geometrical operators or show up through other
non-perturbative effects as such.
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