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Synopsis

We study a frustrated quantum spin 1/2 model on a hexagonal lattice [A]
which was originally proposed and analysed by A. Kitaev. This model was
introduced for possible implementation in the field of topological quantum
computation. It has anisotropic type nearest neighbour spin spin interaction
which depends on the direction of the bonds which can be written as follows,

H = −
∑

x−link

Jxσ
x
i σ

x
j −

∑

y−link

Jyσ
y
i σ

y
j −

∑

z−link

Jzσ
z
i σ

z
j (1)

Here x, y and z link are three different bonds in the hexagonal lattice which
are related by 120o rotation and i,j denotes nearest neighbour sites. The
model has conserved quantities associated with each hexagonal plaquette
and all closed loops. The energy eigenvalues of the ground state energy and
a set of low lying excited states have been calculated exactly. The original
spin model has been fermionised with four Majorana fermions to fermionise
the local spin 1/2 operator. This fermionisation process enlarges the lo-
cal Hilbert space of the spin 1/2 operator and maps the original spin 1/2
Hamiltonian into a tight binding Hamiltonian of Majorana fermion hopping
problem where hopping matrix element is coupled with local static Z2 gauge
fields. It has been shown that ground state sector belongs to the case where
all Z2 gauge fields take value 1. It has been shown that for this particu-
lar gauge configuration the spectrum has two distinct phases. For certain
values of parameter the spectrum is gapless otherwise it is gapped. While
the gapped phase contains abelian anyonic excitations, the gapless mode
contains non-abelian excitations. In Chapter 1 and 2 of this thesis , we give
a brief introduction of the Kitaev model and review the relevant research
done on it.

Though it was proposed with the view of application in quantum compu-
tation, we are interested in many-body aspect of the Kitaev Model. To this
end, an alternative method of the exact solution of this model using Jordan-
Wigner fermionization has been studied. The ground state degeneracy of the
system on a torus has been shown to be four all over the parameter space.
These have been presented in Chapter 3. In Chapter 4, spin-spin correla-
tion function has been calculated exactly. A spin operator is shown to be
fractionalised into two static π fluxes and a dynamical Majorana fermion.
Multi-spin correlations are also computed. The entanglement aspect of this
model has been investigated in Chapter 5. In Chapter 6, the toric code
limit ( Jz ≫ Jx, Jy ) of the Kitaev model has been studied in terms of gauge
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invariant Jordan-Wigner fermions. The stability of this spin model has been
studied against Ising perturbation in Chapter 7. In Chapter 8 and 9, an ex-
tension of the 2D Kitaev model to 3 spatial dimensions has been presented
and solved exactly. Various many body aspects and the low energy excita-
tions of this 3D spin model have also been studied .

Exact solution by Jordan-Wigner fermionisation :

To solve this spin model exactly we have used Jordan-Wigner fermioni-
sation (JWF) to map the spin problem into a fermionic problem. This JWF
is exact and it does not enlarge the local Hilbert space of spin 1/2 operators.
We have formulated a generalised JWF which can be used in open bound-
ary as well as in periodic boundary condition. It has been shown that JWF
also maps the spin problem into a tight binding Majorana fermion hopping
problem. It is quite clear in our formalism that it can be thought of as
a Z2 gauge fixing procedure. We showed that this transformation simpli-
fies the conserved quantities in terms of the gauge invariant Jordan-Wigner
fermions. Also JWF enables to construct the eigenstates of conserved quan-
tities explicitly. We have reproduced the phase diagram of Kitaev model
exactly. Moreover it has been shown that in the thermodynamic limit the
ground state is four-fold degenerate on a torus and it is true for both the
gapless and gapped regime [4]. This four fold degeneracy corresponds to
topologically different gauge field configurations corresponding to uniform
flux free configuration. We have analytically showed that these can be taken
care of by suitably defining fourier transformation with various boundary
conditions in the reciprocal(momentum) space.

Spin correlation and fractionalisation :

Extending Kitaev’s fermionisation we have formulated a canonical trans-
formation introducing the concept of bond fermion. This clarifies the dy-
namics of the spin explicitly and shows that a spin can be thought of a
composite of a Majorana fermion and two static adjacent Z2 fluxes [1]. Us-
ing this method we have shown that two-spin correlation function is zero
beyond nearest neighbour separation. This is true for not only ground state
but also for every eigenstate. We have also shown the bond dependency
of the two spin correlation functions. Existence of such spin-spin correla-
tions is a consequence of flux conservations. We have analysed multispin
correlations. We have shown that particular dimer-dimer correlation can be
long range with power law behaviour in gapless phase of the spectrum. We
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have also shown the presence of multi-spin correlation function which is a
string like operator. This short range nature of spin-spin correlation pre-
vails over the entire parameter space irrespective of gapless or gapped phase.

Entanglement study :

We have calculated concurrence and entanglement entropy for this model.
While the concurrence is zero the entanglement entropy is finite throughout
the parameter space and never diverges. This is expected given the short
range nature of the correlation and absence of any long range correlation
between the spins.

Abelian anyons :

In the toric code limit(Jz ≫ Jx, Jy) [B] of the 2D Kitaev model we have
derived an effective Hamiltonian in terms of the gauge invariant Jordan-
Wigner fermions and showed that the effective Hamiltonian takes very sim-
ple form. The four degenerate ground states have been explicitly con-
structed. The excitations over the ground state have been discussed and
it has been shown that if one takes one excitation across the torus and
brings it back to its original position the original state goes to a different
state. This shows that wave function behaves like a multicomponent object.
Moreover we are able to show that winding of an excitation over the torus
in two orthonormal directions commutes. This is in conformity with the
abelian nature of the quasiparticle excitation in the toric code limit.

Stability of Kitaev model :

We have analysed the stability of Kitaev model against an Ising pertur-
bations [3]. The Jordan Wigner fermionisation still yields a local Hamil-
tonian though it contains four Majorana fermion terms. The gauge fields
are no longer static and turn out to be dynamic. Using appropriate mean
field expansion we have decomposed each four fermionic term in the Hamil-
tonian. The resulting Hamiltonian now consists of three different parts.
The first one refers to the Majorana fermions which appear in pure Kitaev
model and the second corresponds to the fermions which form the gauge
fields. The Hamiltonian also contains a coupling between these two species
of fermions. We solve this mean field ansatz numerically and it is found that
for ferromagnetic Ising Hamiltonian there is a first order phase transition
at λ = 0.07, where λ is the strength of Ising interaction. This first order
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phase transition is marked by the vanishing of conserved gauge field from 1
to 0 and simultaneous onset of non zero spin-order parameter. The energy
density also shows a discontinuity in its derivative. For anti ferromagnetic
Ising perturbations, Kitaev model is seen to be stable up to λ = 0.08 and
after this the system undergoes a first order transition with similar charac-
teristics as seen in Ferromagnetic case.

Exactly solved 3-Dimensional Kitaev model :

We introduce a spin 1/2 model [2] in three dimensions which is a gen-
eralisation of the 2D Kitaev model on a honeycomb lattice. Here we also
notice the presence of large number of conserved quantities each associated
with every closed loop in the lattice. We have solved this spin model exactly
by mapping it to a theory of noninteracting fermions in the background of
static Z2 gauge fields. The ground state lies in the vortex free sector like 2D
Kitaev model. We have numerically verified this. For the vortex free sector
the phase diagram consists of a gapped phase and a gapless one, similar to
the 2D case. Low energy excitations are the fermionic excitations in the
gapless phase. We notice that unlike in the two dimensional model, in the
gapless phase the gap vanishes on a contour in the k-space. Again here we
see that two spin correlation function is short range providing an example
of 3 dimensional quantum spin liquid. We also see the presence of string
type and brane type correlations which are nothing but various multispin
correlations. We also notice, like in the 2D Kitaev model, there is no obvi-
ous symmetry breaking associated with the gapless to gapped transition of
the spectrum. Furthermore, we show that the flux excitations of the gauge
fields, due to some local constraints, form loop like structures; such loops
exist on a lattice formed by the elementary loops of the original lattice and
is topologically equivalent to the pyrochlore lattice.

Effective Hamiltonian of 3d Kitaev model in Jz ≫ Jx, Jy limit.

In analogy to 2D Kitaev model toric code limit, we have derived an
effective Hamiltonian in the limit Jz ≫ Jx, Jy for our 3D Kitaev model.
The analysis shows that the low energy excitations in this limit are the flux
like excitations (which exist in the form of closed loop) rather than point
like excitations. These flux excitations are nothing but the conserved loop
operators expressed in this limit. Again the ground state belongs to the
vortex free sector. This corroborates the numerical finding that the vortex
free sector is the ground state sector for the the case of arbitrary value of
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Jx, Jy , Jz. We have classified the basic excitations over the ground state.
The ground state is an example of condensation of closed string operators.
We have shown the existence of string operators which create loop like ex-
citations at the end of the string. We have also demonstrated the existence
of membrane operators which are able to detect these loop excitations.
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The woods of Arcade are dead
And over is their antique joy

Of old the world on dreaming fed
Grey Truth is now her painted toy

The song of the happy shepherd- W B Yeats

Chapter 1

Introduction

The traditional condensed matter physics based on Landau’s theory of phase
transition and symmetry breaking mechanism [1, 2] is quite successful in ex-
plaining a variety of phenomenon. The essence of this theory is that differ-
ent phases of matters correspond to different orders among the constituent
atoms or molecules. It is the order or the symmetry among the constituent
particles which determines the phases. When a material changes from one
order to another order (i.e, as the material undergoes a phase transition),
what happens is that the symmetry of the organisation of the constituent
particles changes. The simplest examples is liquid to solid transition. We
see that the continuous translation symmetry is present in the liquid phases
and absent in the solid phase and this difference characterises the phase
transition completely. The successful implementation of Landau’s theory
of phase transitions based on symmetry breaking mechanism can be found
in explaining different phases of magnetism, super-fluid phases of He4 and
He3, the superconductivity in metals, etc.

But in recent theoretical speculations as well as experimental systems, it
has been observed that the symmetry alone can not characterise the phase
transitions [3, 9–12]. Moreover the phase transitions associated with such
phenomena are not associated with any long range orders. In fact, for the
case of quantum Hall liquid (QHL) [3–8], the different phases correspond to
the same symmetry. It could also be mentioned that a theoretical model to
explain high temperature superconductivity(Kalmeyer and Laughlin, 1987)
also assumed no symmetry breaking [9]. The new order which goes beyond
the Landau theory (based on local order parameters and long range correla-
tions) which distinguishes the phase transition associated with these novel
phases is called topological order [14–18]. Topological order is a new type of

1
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order distributed over many particles. Local measurements may not specify
it. One might try to think of this as a result of long range quantum en-
tanglement distributed over many particles which can not be quantified by
local order parameters or long range correlations of local operators. For this
reason when in a phase transition the topological order changes from one
to another, local order parameters would not be able to detect it. However
topological orders can be described by a new set of quantum numbers, such
as ground state degeneracy, quasi particle fractional statistics, edge states,
[4, 14, 15] topological entropy etc.

Systems with topological orders predict existence of exotic phases which
must be explained with new theory. These systems are important for many
other reasons also, for example, its possible application in quantum com-
putations. As mentioned before, in the system with topological order, the
excitations are topological defects which are distributed over many particles.
For this reason they do not undergo decoherence easily. These topological
defects may be created, moved and manipulated for the effective implemen-
tations in quantum computations [23–35]. These topological defects may
show exotic exchange statistics depending on the dimensions of the sys-
tems. While in three and higher dimensions, they can only obey Bose or
Fermi statistics, in two dimensions such topological excitations may show
exchange statistics which are in between fermions and bosons. In two di-
mension when such two particles are exchanged, the wave function in general
gets multiplied by a phase eiθ other than +1 or -1. It is the braid group
and not the permutation group which determines the effect of exchange of
such quasi particles [41, 42]. These special objects are termed as Anyons.
Anyons are important not only for theoretical interests but also for other
reasons. Recently it has been proposed to use certain classes of topological
anyonic excitations [37–39] (which are quite stable) as q-bits which will be
able to store and manipulate informations [20, 23, 34, 35]. The braiding
property of anyons would govern the manipulation of q-bits. These form
the basics of topological quantum computations. A quantum computer is
a device which makes use of distinctively quantum mechanical phenomena
such as superposition and entanglement to perform operations on data. The
data is stored in qubits which is abbreviation of quantum binary digits. But
basic problems with qubits are that they very easily interact with external
world and decohere instantly. In this perspective the anyons which are sta-
ble due to their topological character, hold a promise to be good candidates
for quantum bits. The motivation for quantum computer arises as it can
provide fast solutions for certain computational problems( e.g factoring and
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discrete logarithm) which require exponential time on an ordinary computer.

With the view of quantum computations, Kitaev proposed a topologi-
cally ordered state which can serve as a simple physical realization of such
anyons [32]. This particular model which is often referred as “toric code
model” realizes abelian anyons as excitations. Let us imagine a spin 1/2
objects residing on the links of a torus of square lattice. Then this model is
defined by the following Hamiltonian,

H = −
∑

plaquette

Ap −
∑

stars

Bs (1.1)

Ap =
∏

σzi ; Bs =
∏

σxj

Here the product over ‘i’ runs over the four bonds of a plaquette and the
product over ‘j’ runs over the four bonds emanating from each vertices. The
ground state(|G〉) is given by the condition Ap(Bs)|G〉 = |G〉. It has been
shown that in this model there exists two distinctively basic excitations cor-
responding to negative eigenvalues (-1) of the operator ‘Ap’ and ‘Bp’. We
can call these excitations as ‘A’ particles and ‘B’ particles for simplicity. It
was shown that when a ‘A’ particle moves around another ‘A’ particle the
wave function does not pick up any phase. Same is true for two ‘B’ particles.
But taking one ‘A’ particle around another ‘B’ particle yields a phase factor
eiπ to the wave function. It was also shown that a composite object of ‘A’
and ‘B’ particle behaves as fermions. Going beyond this toric code model he
discussed the non abelian anyons which might be useful in quantum compu-
tation. The braiding group of such anyons which are fundamental in view
of executing and manipulation of such qubits has been discussed at length.

Recently he proposed an exactly solvable spin 1/2 model [33] on the 2-
dimensional hexagonal lattice which drew a considerable attention from the
condensed matter community. The toric code Hamiltonian (1.1) mentioned
before can be realized in this model at some special limit. This particular
spin model contains anisotropic nearest neighbour spin-spin interaction. One
may identify three different kind of bonds in hexagonal lattice which are
related by 120o rotations. Let us call them x-bonds, y-bonds and z-bonds.
The Hamiltonian contains bond dependent nearest neighbour interactions.
If the two spins are joined by a x-bonds they only interact with their x-
component of spin operator. So we can write the Hamiltonian as,

H = −
∑

x−link

Jxσ
x
i σ

x
j −

∑

y−link

Jyσ
y
i σ

y
j −

∑

z−link

Jzσ
z
i σ

z
j (1.2)
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Here Jx, Jy, and Jz are the strength of interactions along three different
directions. It is noteworthy to mention that in reference [39], a similar model
in a square lattice was proposed in the context of quantum computations.
Besides the novelty of this interaction which causes a frustration to the spins
at each site, this model contains local conserved quantities associated with
every plaquette. This conserved quantities also commute mutually. It was
shown that this model shows the emergence of both abelian as well as non
abelian anyons depending on the relative magnitude of Jx, Jy , Jz. Kitaev
showed that this model can be solved exactly by suitably fermionising the
spin operators in terms of Majorana fermions. The effective Hamiltonian
reduces to Majorana fermions hopping problem coupled with local static
Z2 gauge field. The ground state belongs to the gauge sector where all Z2

gauge fields are 1. The spectrum thus obtained is gapless in the region
|Jx−Jy| ≤ Jz ≤ Jx+Jy , otherwise it is gapless. The toric code limit which
corresponds to Jz ≫ Jx, Jy contains the abelian anyons. It was shown that
the gapless phase opens up a gap in the presence of small magnetic field
and Chern number calculation demonstrated that it is ±1 for the gapless
phase and zero for the gapped phases. This proves that theses two phases
are topologically distinct . While in the gapless phase the excitations are
non abelian anyons, the gapped phase contains abelian anyons as the low
energy excitations. The braiding property of these anyonic excitations which
are fundamental in defining the basic operations in the context of quantum
computations, was discussed at length. On the other hand the perturbative
study of toric code Hamiltonian (1.1) in the presence of magnetic field was
shown to give rise a nontrivial phase diagram which displays first-order and
second-order transition lines merging in a topological multi critical point lo-
cated at the confluent of topological and ordered states [90]. It is important
to note that though the excitations of the toric code limit Hamiltonian is
dispersion less, perturbative study in the presence of magnetic field showed
that these excitations acquires a dispersion [46].

Though this novel spin model has been proposed with the view of quan-
tum computation, it is a very interesting many body quantum system in
its own right. There is reason why researchers have extensively explored
different aspects of this model [46, 74, 76–78, 80, 82, 83, 85–88, 91]. Ex-
actly solvable models [92–95] in condensed matter physics are very rare. In
comparison to other quantum spin liquid systems Kitaev model is quite dis-
tinct and has unusual properties. It is an example of a frustrated quantum
spin system but unlike other frustrated spin model (eg. Heisenberg model
defined on Pyrochlore lattice) frustration does not arise due the geometry
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of lattice. The frustration is due to the competing anisotropic interactions
along three different directions. The ground state does not have any sym-
metry breaking. Thus the four fold degeneracy found for the ground state
is of topological origin. It was already mentioned that the mapping of the
spins in terms of Majorana fermion makes this spin model into a Majorana
fermion hopping problem coupled to static Z2 gauge field. These gauge fields
reside on the links. It very closely resembles the situation for a RVB state
which was proposed in the context of high temperature superconductivity
[50–56]. A valence bond state is a singlet state, 1√

(2)
(| ↑i〉| ↓j〉 − | ↓i〉| ↑j〉)

associated with two site. For nearest neighbour sites this state lives on a
bond. The Z2 gauge structure in the Kitaev model shows that it is in the
same universality class of RVB state.

An important investigation [82] studied quench dynamics and defect pro-
duction in Kitaev model. It showed contrasting results compared to known
behaviour . Quantum phase transition is accompanied by diverging length
scales [102] leading to the adiabaticity for the system sufficiently close to
the quantum critical points. Thus a quantum system fails to follow its in-
stantaneous ground state when some parameter in its Hamiltonian is varied
in time at a finite rate 1/τ which takes the system across the critical point.
This study [82] carried the quenching of the Kitaev model by varying Jz
from −∞ to ∞ at a rate 1/τ , keeping Jx, Jy fixed. It showed that density
of defect production scales as 1/

√
τ instead of expected scaling 1/τ [103].

Recently a general spin-S Kitaev model [83, 84] has been studied and
unlike spin 1/2 Kitaev model it is not exactly solvable. But surprisingly the
Z2 gauge structure of the spin 1/2 Kitaev model survives along with a set
of commuting plaquette operators. This makes the spin-spin correlation to
be of same nature as spin 1/2 Kitaev model. This study also shows that
ground state of the classical spin-S model has a correspondence with dimer
coverings and with self avoiding walks on honeycomb lattice.

The novel of the nature of interaction of the Hamiltonian (1.2) makes it
challenging to find a real systems to have such kind of interaction. But there
has been proposal to experimentally realize this spin 1/2 model using cold
atoms as well as using polar molecules [96–98]. Recently it has been pro-
posed to realize Kitaev model in a real system [99, 100]. Also many schemes
have been developed how to create and manipulate the abelian anions (in
the toric code limit) and hence making way of successful implementations
of braiding effect of anyons [104–108].
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The inherent novel exact solubility with the possibility of anyonic ex-
citation has resulted in proposing many other models in two as well as in
three dimensions which has Kitaev like interaction [85–88]. It has been
shown that a Kitaev like Hamiltonian can be defined if one replaces a sin-
gle site of the hexagon lattice by three sites. The resultant lattice is called
decorated triangle [86]. The Kitaev model extended in this lattice is shown
to break time reversal symmetry spontaneously signifying the presence of
chiral spin liquid. Very recently many 3 dimensional model with Kitaev like
Hamiltonian have been investigated and it is observed that all this is exactly
soluble and one can construct chiral spin liquid in three dimensions [85, 87].
The study of 3 dimensional topological model [19, 109] is also important
from the point of quasi-particle excitations. We know that 2 dimensional
Kitaev model supports abelian and non abelian anyon in different param-
eter regime and they exhibit nontrivial statistics. But anyons are special
and they exist only in two dimensions. However in three dimensions the
topologically ordered state is shown to include (deconfined) gauge bosons as
well as fermions.

A large class of 3dimensional models with topological order has been dis-
cussed in the references [21]. It was shown that topological phases of such
system can be characterised by string-net and membrane net condensation.
At low energy the microscopic degrees of freedom can organise themselves
in extended objects which are called strings [19, 21, 22]. A string-net is
a object which is made of strings that meet at branching point or nodes.
Ends of open strings are particle like objects which can have a nontrivial
statistics. When in a two-dimensional system such a quasi particle winds
around another quasi particle of a different kind, its wave function picks up
a phase. This phenomena corresponds to the fact that the ends of an open
string can be detected by a closed string of another type that encloses its
ends. On a three dimensional lattice , the end of an open string can be
detected by a closed surface. This motivates an enquiry about the meaning
of the condensation of closed membranes. A microscopic picture of topo-
logical phase transition of certain systems has been investigated in terms
of string-net and membrane-net condensation [19, 21, 22]. The Landau’s
phase transition can be understood as particle condensation. For a topolog-
ical phases the notion of particles are generalised to notion of strings and
membrane. Dynamics of these string-nets governs the dynamics of low en-
ergy dynamics. If this strings extend over the system size it condenses (very
much like particles condensations) and one gets topologically ordered states.
Similar to closed-string condensation , closed-membrane condensation is a
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superposition of closed membranes of arbitrary sizes , shapes and numbers.
Just like closed-string condensations, closed-membrane condensations also
implies topological order as a big closed membrane can explore the topology
of the lattice. Many 3D model with topological order have been analysed
with condensation of either membrane-net or string-net or both [22].

In the present work we present some theoretical investigations regarding
many body aspects of 2D Kitaev model and some of its generalisations. In
the next chapter, we introduce the Kitaev model very briefly and present its
formal solution as obtained by Kitaev himself [33]. In chapter 3, we shall
solve the Kitaev model using Jordan-Wigner Fermionisation(JWF). Kitaev
model is one of the very few 2 dimensional model where the one dimensional
Jordan-Wigner transformation produces a local Hamiltonian [77, 78, 80].
This is quite significant in the sense that this reaffirms the exact solubility
of Kitaev model. Because in the JWF we do not introduce any extra degrees
of freedom. The Hilbert space dimension of the spin space and the fermionic
space is equal. We give a complete mapping of all the conserved quantities
in terms of gauge invariant Jordan-Wigner fermions and calculate the eigen-
states of the conserved quantities and the fermionic Hamiltonian explicitly.
We also derive the four field degeneracy explicitly in the thermodynamic
limit.

In chapter 4, we derive the spin-spin correlations by using Kitaev’s
fermionisation. We show that two spin correlation function vanishes beyond
nearest neighbour separation. This proves that Kitaev model is an example
of quantum spin liquid. Two spin correlation is shown to depend on the
directions of bonds. We explicitly show that a spin undergoes fractional-
isaton into a dynamic Majorana fermion and two static Z2 fluxes. This is
very similar to what has been observed in other quantum spin liquids where
fractionalisation occurs [60–67]. The spin-spin correlation shows absence of
long range order in both the gapless and gapped phases. Thus it proves no
obvious symmetry breaking at the phase transition which is a good indica-
tor of topological order. Though the two spin correlation functions is short
range, certain many spin correlation could be long range. Our derivation
of spin-spin correlation functions in the Kitaev model can be easily gener-
alised to other Kitaev like model which have been proposed recently [85–88].

In chapter 5, some results regarding quantum entanglement measure for
the Kitaev model are presented. The entanglement studies captures the
signature of quantum phase transition across the gapless to gapped phase.
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Recently varius aspects of entanglements and fidelity have been investigated
in [129–134]. In references [130, 131], a quantity called ‘topological entropy’
is shown to capture the topological order of the Kitaev model. In [132, 133],
fidelity susceptibility(FS) has been investigated and it has been shown that
it scales differently in gapless and gapped region of the Kitaev model. While
in gapless region FS scales as L2lnL, in gapped region it scales as L2.

Next, in chapter 6, we discuss the toric code limit of the Kitaev model
in terms of gauge invariant Jordan-Wigner fermions. We derive the effective
Hamiltonian corresponding to toric code limit in terms of the gauge invari-
ants Jordan-Wigner fermions. We explicitly calculate the four degenerate
ground states and showed that a particular ground state get mapped to
another ground state when quasi particles are exchanged over these ground
states. It is noteworthy to mention references [45–48] which studied toric
code limit in great detail bringing many important revelations.

In chapter 7, we study Kitaev model with an Ising interactions added to
it. Ising interactions destroys the exact solubility of Kitaev model. The Z2

gauge fields which were static in Kitaev model become dynamic. We present
a mean field studies of these Z2 gauge field dynamics. We show, within mean
field, that there is a small region of stability around Kitaev model where it
retains its quantum spin liquid behaviour and Z2 gauge fields are essentially
static. Beyond this limit the system undergoes a quantum phase transition
to a magnetically ordered state and Z2 gauge fields on the links vanishes
identically. Our results may be relevant in the experimental realisation of
Kitaev model [100, 101]

We have already mentioned that following Kitaev model [33], a large
number of exactly solvable model with Kitaev like Hamiltonian have been
proposed and solved exactly [85–88]. We introduce an exactly solvable 3D
Kitaev model in chapter 8. It bears all the key features of the 2D Kitaev
model and it is an example of a 3D quantum spin liquid. We solve this
model exactly and finds it phase diagram. It contains both gapless and
gapped phase depending on the relative strength of the interaction parame-
ter. However unlike 2D Kitaev model, in our model dispersion is gapless on
a contour in k space, not on isolated points. We also classify the possible
excitations of this 3D model

In the chapter 9, we study the toric code limit of this 3D Kitaev model.
We show that the low energy excitation are loop excitations. Statistics of the
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elementary loop excitations have been studied. Both fermionic and bosonic
loop excitations are shown to exist. We also discuss the the existence of
more complex loop excitations and membrane excitations of this model.

We complete this thesis by summarising all our results in chapter 10.
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She was a phantom of delight
When first she gleamed upon my sight;

A lovely Apparition, sent
To be a moment’s ornament;

She was a phantom of delight- Wordsworth

Chapter 2

The Kitaev Model

In this Chapter we briefly introduce the Kitaev model and discuss it’s formal
solution as obtained by Kitaev himself [33]. This spin 1/2 model has been
defined on a honeycomb lattice with a spin 1/2 at every site.

z
xy
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2
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56

z

y

x

z

y

x

p

   Quantum Spin 1/2 at each site 

unite cell

‘a’ sub-lattice

‘b’ sub-lattice

~e1

~e2

Figure 2.1: In this figure we pictorially describe the Kitaev model. The
Kitaev model describes an anisotropic spin-spin interactions which depend
on the orientations of the bonds. Bonds are labelled with x, y or z to indicate
the bond-dependent nature of the interactions.

In honeycomb lattice one can identify three kind of bonds which are
related by 120o of rotation. The Hamiltonian describes a nearest neighbour
spin-spin interactions which is anisotropic, i.e, depends on the directions of
the bonds or links. For this reason the links are divided into three types, “x-
links”,“y-links” and“z-links” as shown in Fig. (2.1). Two nearest neighbour
spins joined by x (α = x, y, z) link interact with x component of their spins

11
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yielding a term σxi σ
y
j to the Hamiltonian. Here the subscript ‘i’ and ‘j’

stand for site indices. The same is true for interactions along “y-links”
and“z-links”. Thus we can write down the Hamiltonian as,

H = −Jx
∑

x−links

σxj σ
x
k − Jy

∑

y−links

σyj σ
y
k − Jz

∑

z−links

σzjσ
z
k (2.1)

where Jx, Jy and Jz, are model parameters. ‘j’ and ‘k’ denote generic
nearest neighbour sites. From this anisotropic interactions it is clear that
this spin model is an frustrated spin system because a spin on a given site
could not satisfy all the three different kind of interactions along the three
different links simultaneously. Another key feature of this model is the
presence of large number conserved quantities. For each plaquette we can
define an operator which commutes with the Hamiltonian. We call this
plaquette operator as Bp where the subscript ‘p’ stands for the plaquette
index. Plaquette operators defined on different plaquettes commute among
themselves. With reference to the Fig. (2.1) Bp is defined as,

Bp = σy1σ
z
2σ

x
xσ

y
4σ

z
5σ

x
6 . (2.2)

Thus for each plaquette ‘p’ we can define a Bp. It can be easily checked
that,

[Bp,H] = 0 , [Bp, Bq] = 0, p 6= q, p, q indicate to different plaquette indices.
(2.3)

This implies that Bp’s are conserved quantities for this model. It is easy to
verify that B2

p = 1 which implies that eigenvalues of Bp are ±1.

We now present the formal solution of this spin model as obtained by
Kitaev himself [33]. He showed that this spin model can be solved exactly
using a fermionisation procedure which expresses the spin 1/2 operators in
terms of Majorana fermion operators. In the next section we elaborate on
this.

2.1 Fermionisation of spin 1/2 operators

Let us assume that every lattice sites have two fermions labelled by ‘1’ and
‘2’. Thus we have following creation and annihilation operators associated
with these two fermions, c1, c2, c

†
1, c

†
2. This means we are dealing with a four

dimensional fock space with the states |0, 0〉, |1, 0〉, |0, 1〉, |1, 1〉 where ‘0’ and
‘1’ denotes the occupation number of the fermions, the first number and the
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second number in the kets signify the occupation number of the first and the
second fermion respectively. For a given site we construct four Majorana
fermions out of this two complex fermions in the following way,

c = (c1 + c†1) (2.4)

cx =
1

i
(c1 − c†1) (2.5)

cy = (c2 + c†2) (2.6)

cz =
1

i
(c2 − c†2). (2.7)

In the above expressions we have not displayed the site index explicitly. We
can easily verify the following commutation relation among these Majorana
fermion operators,

{cα, cβ} = 2δα,β ; cα = cα†, α, β = x, y, z (2.8)

Original spin 1/2 operators which are present in the spin Hamiltonian
are expressed in terms of this Majorana fermion operators in the following
way.

σx = icxc (2.9)

σy = icyc (2.10)

σz = iczc (2.11)

It can be checked that any two operators, σα, σβ, anti-commutes for α 6= β,
here α and β stands for any one of the component x, y, z. However this
does not complete the Pauli spin algebra. The condition σxσyσz = i implies
the constraint, cxcyczc = 1. Let us call cxcyczc = D. D can be written as

D = (2c†1c1 − 1)(2c†2c2 − 1). Now D is 1 only in the subspace spanned by
the states |0, 0〉 and |1, 1〉. For the other two states, |0, 1〉 and |1, 0〉, D is
-1. For this reason the subspace involving only the states |0, 0〉 and |1, 1〉
is called physical subspace as the definitions of spins in terms of Majorana
fermions are exact only in this subspace. It can be seen that the operator D
acts as a generator of a local Z2 gauge group. The above definition implies
that we must apply the projection operator ‘P ’ which will project out the
unphysical states. The projection operator Pi at site ‘i’ is given by,

Pi = (1 +Di)/2 (2.12)
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2.2 Quadratic Hamiltonian

Now we write the Hamiltonian in terms of fermionic operators. After insert-
ing the relations given by equations (2.9,2.10,2.11) in Eq. (2.1), the original
spin Hamiltonian reduces to

H =
∑

x−link

Jx(ic
a
x,ic

b
x,j)ic

a
i c
b
j +

∑

y−link

Jy(ic
a
y,ic

b
y,j)ic

a
i c
b
j

+
∑

z−link

Jz(ic
a
z,ic

b
z,j)ic

a
i c
b
j (2.13)

We observe that each term in the above Hamiltonian is quatric in Ma-
jorana fermion operators. However it can be easily noted that operators in
the parenthesis of each term of the above Hamiltonian commute with the
Hamiltonian and commute among themselves. It means that they are con-
served quantities as far as this fermionised Hamiltonian is concerned. This
fact makes Eq. (2.13) to be effectively quadratic in Majorana fermions. Let
us call, icax,ic

b
x,j = uxi,j for the x-link. Similarly we define uyi,j and uzi,j on y

and z links respectively. It is obvious that, ui,j = −uj,i and its eigenvalues
can take value ±1. Here we follow the convention of keeping the indices of
the site belonging to the ‘a’ sub lattice first and then for ‘b’ sub lattice in
the expression of ui,j . Then the Hamiltonian takes the following form,

H =
∑

x−link

Jxu
x
i,jic

a
i c
b
j +

∑

y−link

Jyu
y
i,jic

a
i c
b
j +

∑

z−link

Jzu
z
i,jic

a
i c
b
j (2.14)

Now we see that above Hamiltonian describes a tight binding Majorana
fermion hopping interactions but the hopping matrix elements are coupled
with gauge fields uαi,j on each bonds. The conserved quantity Bp can be
expressed in terms of the Majorana fermions and it turns out to be,

Bp =
∏

(j,k)ǫboundary(p)

uj,k (2.15)

It is to be noted that the new conserved quantities, ui,j, were absent
in the original spin Hamiltonian and they are not gauge invariants ( i.e, it
does not commute with the projection operator P ). But their product over
a plaquette yielding Bp according to equation (2.15) is a gauge invariant
object.

The meaning of the Hamiltonian given in Eq. (2.14) is following. It
describes free Majorana fermion hopping interactions with a Z2 gauge po-
tential in the background. Here we call ui,j as the Z2 gauge potential. For
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each configuration of ui,j along every link we realize a distinct free Majo-
rana fermion hopping Hamiltonian on a honeycomb lattice. Let us call this
Hamiltonian as H{u} corresponding to a certain distribution of ui,j along
every links. This H{u} can formally be diagonalised and one would then get
the spectrum leading to ground state energy for such distribution of ui,j. A
natural question arises for what configurations of {u} the spectrum contains
global minima. A theorem by Lieb [110] states that the minimum energy
configuration is achieved by taking Bp = 1 for each plaquette and this is
obtained by fixing ui,j = 1 for every link. This has also been confirmed by
Kitaev numerically [33]. It is to be noticed that all configurations of ui,j
which produces a certain realizations of Bp for each plaquette are equiva-
lents as Bps are the only gauge invariant objects. For the uniform choices
of ui,j(which corresponds to global minima ) we can easily diagonalise the
Hamiltonian and get the ground state |ψ〉ext in the extended space. To get
the true ground state belonging to the physical subspace we must project
out the unphysical state which is done in the following way.

|ψ〉w = P̂ |ψ〉ext (2.16)

Where P̂ is the global projection operator and is defined as,

P̂ =
∏

iǫall sites

(1 +Di)

2
(2.17)

Here |ψ〉w is the ground state belonging to the physical subspace. The
configuration ‘w’ denotes the equivalent class of ‘u’ under the gauge trans-
formation Di. However the spectrum obtained in the extended subspace
remains valid as Hamiltonian commutes with the global projection opera-
tor. Next we proceed to calculate the spectrum for Kitaev model.

2.3 The ground state

We have already argued that it is the uniform configuration of Bp = 1
which contains the global minima of the spectrum. Here we consider the
choice uij =1 for each link which is one of the realizations of Bp = 1 for
each plaquette. After doing so we notice that Majorana fermion hopping
Hamiltonian reduces to a translational invariant Hamiltonian facilitating
easy solution using Fourier transformations. The translational invariant
Hamiltonian is given by,

H =
∑

x−link

Jxic
a
i c
b
j +

∑

y−link

Jyic
a
i c
b
j

∑

z−link

Jzic
a
i c
b
j (2.18)
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To solve the above Hamiltonian we define the Fourier transformations for
the Majorana fermion operators as ,

ca,bi =
∑

k

1√
MN

ei
~k.~rca,bk . (2.19)

Here we have taken a lattice with M and N unit cells in the directions of
~e1 and ~e2 respectively(Fig. (2.1)). Here ~r = m~e1+n~e2 and ~k = p

M
~G1+ q

N
~G2,

where ~G1,2 are the reciprocal lattice vectors and are given by,

~G1 =
4π√

3
(

√
3

2
ex +

1

2
ey) ; ~G2 =

4π√
3
ey (2.20)

Here ‘p’ and ‘q’ varies from −M/2 to M/2 and −N/2 to N/2 respectively.
The above discussion fully describes the Brillouin zone. We notice that the
property c†i = ci implies ck = c†−k. After performing the Fourier transfor-
mation, we get the Hamiltonian in k-space as follows,

H =
∑

kǫHBZ

(c†k,ac
†
k,b)

(
0 if∗k

−ifk 0

)(
ck,a
ck,b

)
(2.21)

In the above equation ‘HBZ’ stands for half Brillouin zone. The spectral
function fk is given by,

fk = Jz + Jxe
−ik1 + Jye

−ik2 (2.22)

In above expression ‘k1’ and ‘k2’ are the components of ~k along x bond and
y bond respectively. They are given by,

k1 = ~k.n̂1 ; k2 = ~k.n̂2 (2.23)

n̂1 =
1

2
êx +

√
3

2
êy ; n̂2 =

−1

2
êx +

√
3

2
êy (2.24)

Here n̂1 and n̂2 are the unit vector along the x and y bond respectively.
The Hamiltonian given in Eq. (2.21) can be diagonalised easily with the
following unitary transformation given below,

(
ck,a
ck,b

)
=

1√
2

(
vk −vk
1 1

)(
αk
βk

)
, (2.25)

with vk = if∗k/|fk|. The diagonalised Hamiltonian is given by,

H =
∑

k

Ek(α
†
kαk − β

†
kβk) (2.26)
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Where Ek = |fk| is the quasi particle energy associated with new field oper-
ators αk and βk. The ground state is obtained by filling up all the negative
energy states of βk quasi particles and can be written as,

|G〉 = Πk,HBZβ
†
k|0〉 (2.27)

Where |0〉 represents the quasi particle vacuum such that αk|0〉 = βk|0〉 = 0.
Here the summation is over the half Brillouin zone. To find whether the
spectrum is gapless or not we solve for fk = 0. It turns out that the,
fk = 0, has solutions if and only if |Jx|, |Jy |, |Jz | satisfy the following triangle
inequalities:

|Jx| ≤ |Jy|+ |Jz |, |Jy| ≤ |Jx|+ |Jz |, |Jz| ≤ |Jx|+ |Jy| (2.28)

B

A

AA

Phase Diagram

Gapless

Phase

Gapped

Phase

Jx = 0Jy = 0

Jz = 0

Figure 2.2: Phase diagram for Kitaev model in the parameter space. A point
in the above triangle describes relative magnitudes of Jx, Jy, Jz . Three sides
of the triangle describe Jx = 0, Jy = 0 and Jz = 0 as given in the figure.
The region ‘A’ is gapped and the region ‘B’ is gapless. The gapless region
acquires a gap in the presence of Magnetic field.

If the inequalities are strict, there are exactly 2 solutions: k = ±q∗, one
in each HBZ . The region defined by inequalities in Eq. (2.28) is the shaded
region B in Fig. (2.2); this phase is gapless. The region marked by A is
gapped. The low energy excitations are different in these two phases. In
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the gapless phase the low energy excitations are the Majorana fermions but
in the gapped phases the low energy excitations corresponds to the vertex
excitations which corresponds to the excitations of Bp. In the presence of
magnetic field the phase B acquires a gap. These two regions are topo-
logically distinct as indicated by spectral Chern number which is zero for
phase A and 1 for the phase B [33]. We have argued that as the projection
operator P̂ commutes with the Hamiltonian, the solution obtained in the
extended Hilbert space is exact. One can indeed show that there exists a
non zero projections ( in chapter four we elaborate more on this). But this
method of solving does not give exact eigenstates of the Hamiltonian as well
as the eigenstates states of the conserved quantities in an easy way. In the
next chapter, we will solve the Kitaev model with the help of Jordan-Wigner
transformations and apart from recovering the exact eigenvalues obtained
in this chapter, we construct explicit eigenstates of the Hamiltonian and the
conserved quantities.



I came upon a little town
That slumbered in the harvest moon,

And passed a-tiptoe up and down,
Murmuring, to a fitful tune,

The madness of king Goll-W B Yeats

Chapter 3

Exact eigenstates:J-W
transformations

Jordan-Wigner transformation is quite well known for its successful appli-
cation to one dimensional spin 1/2 models which involve local interactions
[135, 136]. We know that in this particular procedure spin operators are re-
expressed in terms of new fermionic operators which are non-local in general
but in one dimension if the Hamiltonian involves local spin-spin interactions
it often yields local fermionic Hamiltonian which is easy to solve. Recently
a generalisation of Jordan-Wigner transformation to higher dimensions has
been suggested in [136]. In this chapter we show that the novelty of Kitaev
model enables us to apply the one dimensional Jordan-Wigner transforma-
tion(JWT) to solve this two dimensional spin 1/2 model. In the previous
chapter we have used four Majorana fermions(or equivalently two complex
fermions) to fermionise the spin operators at a given site. It implies local
fock space dimensions at each site to be four though the original spin 1/2 was
defined with a fock space dimensions two at every sites. The importance of
Jordan Wigner transformation is that it does not enlarge the Hilbert space
dimensions of a given site as it deals with one spin-less complex fermion at
a given site. Moreover we are able to construct explicit eigenstates of the
conserved quantities and Hamiltonian. We also confirm that the solution
for spectrum obtained in previous chapter is exact [77, 78]. We note that
though Jordan-Wigner transformation has been applied previously to solve
Kitaev model in [78, 79], our method has some advantage as it can be ap-
plied for any kind of boundary conditions. Moreover our construction can
be generalised to higher dimensional Kitaev model also.

We can define the Jordan-Wigner transformation(JWT) for Kitaev model

19
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with open and periodic boundary conditions. In this chapter, we apply JWT
for periodic boundary conditions, i.e on a torus. In the appendix A, we have
given the details of JWT for open boundary condition.

Before coming to the JWT, we discuss in more detail about the conserved
quantities of this model for a lattice with periodic boundary condition. This
would explain the degeneracies associated this model.

3.1 Conserved quantities

z−link

x−link y−link

Fig−1c

1
2

3

46
5

x

x y

y

z

z

x x x x

x x x

x x x

x x xyyy

y y y y

yyy

yyyy

z zzz

z z z z

z zzzz

z z z z z

Fig−1a

Fig1−b

y

yx

x

x

z

y

1 2 3 4 5 6 7 8 1

Figure 3.1: In figure 1a, we have shown a part of honeycomb lattice. Links
are marked with x,y and z to indicate the bond dependent nature of spin-
spin interactions. There exists a non trivial loop operator for each 1D chain
of this two dimensional model. We have indicated such a chain by the index
1 to 8. In figure 1c, we have presented a single hexagon to explain Bp. See
text for more explanation.

We mentioned before that there is a conserved quantity associated with
every plaquette of the lattice. If the plaquette is denoted by ‘p’ and its
vertices are labelled as shown in Fig. (3.1, 1c) then, following Kitaev’s
notation, the conserved quantity is,

Bp = σy1σ
z
2σ

x
3σ

y
4σ

z
5σ

x
6 (3.1)

We have B2
p = 1, implying that the eigenvalues of Bp can take values ±1. It

is clear that a product of any number of Bp commutes with the Hamiltonian.
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In fact there is a conserved quantity associated with every closed self avoiding
loop, C, on the lattice which can be defined in the following way. If the sites
of C are i1, i2, .....iN , then the conserved quantity associated with it is,

Bc =
N∏

n=1

σαnin (3.2)

where αn denotes the outgoing bond at the site in . It can be verified that,

[Bc,H] = 0, B2
c = 1 (3.3)

We call C topologically trivial if it can be written as a product of only
Bps. On the torus, we have two loop operators which wind around the torus
in two orthogonal directions and which cannot be expressed as a product of
Bps. These two topologically non-trivial loops are denoted by Bc1 and Bc2.
From the Fig. (3.1, 1a) we find for horizontal winding along a complete
x− y chain, the following conserved operator, Bc1 ,

Bc1 = σz1σ
z
2σ

z
3σ

z
4σ

z
5σ

z
6σ

z
7σ

z
8 . (3.4)

For each x−y chain we can find one conserved operator like above. How-
ever only one among these is independent. Same is true for winding along
x − z chain which gives the other non-trivial loop conserved operator Bc2.
However winding along y−z chain does not result into another independent
conserved loop operator as it can be constructed out of Bc1, Bc2 and suitable
combinations of Bps. We note that all the Bps are not independent due to
the following constraint on a torus,

∏

p

Bp = 1 (3.5)

Thus there are Np − 1 independent Bp, where Np = MN is the number of
plaquettes. Together with Bc1 and Bc2, we have a total of Np + 1 conserved
quantities on the torus. Let us count the number of independent ways we
can choose a certain configuration of Bp( i.e a distribution of eigenvalues of
Bp for each plaquette) and we obtain,

2Np+1

2Np−1
= 22 = 4 (3.6)

The above counting shows that there are four different states having
same configuration of Bp . Thus if the ground state sector belongs to the
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uniform configuration of Bp, we should obtain four degenerate states having
same ground state energy as the spectrum depends only on Bp and not on
Bc1 and Bc2. Indeed, later we will show that this is the case. Now we are
in a position to discuss JWT transformation for Kitaev model.

3.2 J-W transformation for periodic boundary condition

To define the Jordan-Wigner transformation, we need a path defined on the
lattice which we call Hamilton path. This Hamilton path should contain all
the sites of the lattice and it should be self avoiding. Hexagonal lattice has
connectivity three which means a site is connected to three neighbouring
sites. If we consider a particular site we find that Hamilton path contains
two of the bonds coming out from this site. We call these two bonds ‘tangent
bonds’. The remaining bond which go out from the Hamilton path is called
‘normal bond’. In Fig. (3.2), we explain our notion of normal bonds and
tangential bonds. When we find such Hamilton path we observe that the
normal bonds form a dimer covering of the lattice as shown in Fig 3.3. We
associate two tangential vectors for the two tangent bonds, t̂1i and t̂2i which
are either x̂, ŷ or ẑ according to the direction of the incoming bond and the
outgoing bond respectively. The subscript ‘i’ refers a particular site on the
Hamiltonian path. We then define a normal vector n̂i as ,

i

j

k

l

n̂i

n̂j

n̂k

n̂l

t̂1i

t̂2i = t̂1j

t̂2j = t̂1k

t̂1l

t̂2l

Figure 3.2: A part of the Jordan-Wigner path. The red links constitute
the normal bonds and the black links constitute the tangential bonds. The
Jordan-Wigner path is shown by the direction of arrows.
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n̂i ≡ t̂1i × t̂2i (3.7)

We now explicitly define the periodic boundary condition which is being
used in this thesis. The honeycomb lattice is a triangular lattice with a basis
of two sites. The sites of the triangular lattice are given by,

RI = I1e1 + I2e2 (3.8)

where I1, I2 are integers and e1 ·e2 = −1
2 , e1 ·e1 = 1 = e2 ·e2. The label ‘i’

which is used to denote a site for the honeycomb lattice therefore stands for
(I1, I2, r) where r = 1, 2 is the sub lattice indices. The periodic boundary
conditions are then defined by,

σaI1,I2,r = σaI1+M,I2+N,r (3.9)

3.2.1 The ‘Disorder’ Variable for JWT

We define the Jordan-Wigner transformation as follows. We take a Hamilton
path on the lattice defined by a sequence of sites in, n = 1, . . . , NS , where
NS is the number of sites in the lattice. Next we introduce the disorder
variables which are useful to define the JWT in an easy way.

µin =

n−1∏

m=1

(n̂im · σσσim) (3.10)

we note that while we are using the standard Jordan-Wigner nomenclature
in calling these the disorder variables, there is no order-disorder transition
in this model. The disorder variables have the following properties,

µ2
in = 1 (3.11)

[µin , µim ] = 0 (3.12)

[̂tain · σσσin , µim ] = 0 a = 1, 2 m ≤ n (3.13)

{t̂ain · σσσin , µim} = 0 a = 1, 2 m > n (3.14)

It is instructive to express µin in terms of the Majorana fermions. Using
the identities,

t̂1in = t̂2in−1
(3.15)

cin · n̂in = ± (̂t1in · cin) (̂t2in · cin) (3.16)

we get,
µin = ± t̂2in−1

.cin−1

(
uin−1in−2

. . . ui2i1
)

t̂1i1 · ci1 (3.17)
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µin is therefore an open Wilson line with two Majorana fermions attached
at the ends. The operator which corresponds to a closed Wilson loop along
the Hamilton path is a conserved quantity which we call S.

S ≡
NS∏

n=1

(n̂im · σσσim) (3.18)

=
(
ui1iNSuiNS iNS−1

. . . ui3i2ui2i1

)
(3.19)

S is a well known conserved quantity in the one-dimensional applications
where it corresponds to the total number of fermions modulo 2 and deter-
mines the boundary conditions on the fermions. Here we will see that it
also gives a constraint on the total number of fermions. Also the conserved
quantity S can be interpreted as the generator of suitable rotation at every
sites of the lattice which keeps the spin Hamiltonian invariant. To elucidate
this we first notice that a global rotation of nπ around z-axis makes every
σxi and σyi to be ±σxi and ±σyi respectively. Kitaev Hamiltonian is invariant
under such global rotation with open boundary conditions. This rotational
operator can be written as,

S = einπ
P

i σ
α
i (3.20)

In above equation α denotes that component of spin which is associated
with the normal bond coming put from the site ‘i’. The significance of the
operator S is that it generates a local rotation at every site of the lattice
so that the Kitaev Hamiltonian remains invariants under periodic boundary
condition. Thus for a given Jordan-Wigner path the operator S generates
such a unitary transformations which keeps the Hamiltonian invariant.

3.2.2 Gauge invariant Jordan-Wigner fermions

The Jordan-Wigner fermions are defined as usual as the product of the spin
variables with the disorder variables,

ξin = (̂t1in · σσσin) µin (3.21)

ηin = (̂t2in · σσσin) µin (3.22)
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The anti-commutation relations of the fermions follows from equations (3.11-
3.22),

{ξi, ξj} = 2δij

{ηi, ηj} = 2δij (3.23)

{ξi, ηj} = 0

Since the Jordan-Wigner fermions are constructed entirely from the spin op-
erators, they are manifestly gauge invariant. It is also instructive to rewrite
equations (3.21) and (3.22) in terms of the original Majorana fermions and
gauge fields,

ξin = icin
(
uin−1in−2

. . . ui2i1
)

t̂1i1 · ci1 (3.24)

ηin = icin · n̂in
(
uin−1in−2

. . . ui2i1
)

t̂1i1 · ci1 (3.25)

Above transformations can be inverted to write the spins in terms of the
fermions as written below,

n̂in · σσσin = iξinηin (3.26)

t̂1in · σσσin = ξinµin (3.27)

t̂2in · σσσin = ηinµin (3.28)

3.2.3 The gauge fixed Hamiltonian

After implementing Jordan-Wigner transformations (as discussed in the pre-
vious subsection), original spin Hamittonian takes the following form,

H̃ = Jx
∑

〈ij〉x
iξiũijξj + Jy

∑

〈ij〉y
iξiũijξj + Jz

∑

〈ij〉z
iξiũijξj (3.29)

where the gauge fixed Z2 fields, ũij are,

ũij = iηiηj, for normal bonds (3.30)

= 1 for tangential bonds except (ij) = (i1iNS ) (3.31)

ũi1iNS = S, for end bonds (3.32)

Here it is instructive to compare the above Hamiltonian with that of Eq.
(2.14). While in Eq. (2.14) Z2 gauge fields appear on every bonds, in Eq.
(3.29) they appear selectively, namely on normal bonds. Thus the Jordan-
Wigner transformation is equivalent to a gauge fixing procedure where all
the gauge fields on the tangential bonds (except on the end bonds) are set
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equal to 1. The choice of the Hamilton path amounts to a gauge choice
since it defines which of the bonds are tangential and which are not. It also
defines the sign in the definition of uij for the normal bonds uniquely. In
equations (3.30,3.31,3.32), the sign corresponds to a Hamilton path which
winds regularly in the ê1 direction as shown in Fig. (3.3). Here after all
explicit computations will be done with respect to this Hamilton path. A
general algorithm to go to this gauge from any arbitrary gauge, which we
refer to as the Jordan-Wigner gauge, is discussed in appendix A.
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Figure 3.3: Jordan-Wigner path for PBC. The red links constitute the nor-
mal bonds. The Jordan-Wigner Path is shown by the direction of arrays.

3.2.4 The fermionic conserved quantities

We note that all the gauge invariant Z2 fields are conserved quantities. We
re-express them in terms of the gauge fixed bond fermions, χij, defined on
the normal bonds connecting sites ‘i’ and ‘j’,

χij ≡
ηi + iηj

2
χ†
ij ≡

ηi − iηj
2

(3.33)

The conserved quantities are then reduced to occupation number operators
of the bond fermions defined on every normal bonds,

ũij = 2 χ†
ijχij − 1 (3.34)

As there are Np normal bonds, the bond fermion occupation numbers form a
set of Np conserved quantities. Thus along with S, we have Np+1 conserved
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quantities consistent with total number of conserve quantities derived before
in section (3.1). This gives a complete account for conserved quantities
in terms of fermions and spin variables. To see the meaning of S, it is
convenient to define complex fermions out of the two ξ fermions on every
normal bond as given below,

ψij ≡
ξi + iξj

2
ψ†
ij ≡

ξi − iξj
2

(3.35)

It can then be shown that,

S = (−1)(Nψ+Nχ+NS+1) (3.36)

Nψ ≡
∑

normal
bonds

ψ†
ijψij (3.37)

Nχ ≡
∑

tangential
bonds

χ†
ijχij (3.38)

Thus the operator S fixes total number of ψ and χ fermions of the sys-
tem. We can easily express the operator Bp in terms of this gauge invariant
fermions. We see that every plaquette contains two normal bonds. Bp for
any plaquette is just the product of the conserved Z2 fields associated with
these two normal bonds.

Bp = ûij ûkl (3.39)

(3.40)

In the above equations ‘ij’ and ‘kl’ denote pairs of sites of z-bonds shared
by the plaquette ‘p’. Though the above representation is true for all the
plaquettes, it is different for the plaquette where the Jordan-Wigner ends
points meet. We need to multiply the above expressions with −S to get
the expressions for Bp. Now we express the topologically nontrivial loop
operators Bc1 and Bc2 in terms of the Jordan-Wigner fermions. We know
that Bc1 is nothing but the product of σz for all sites which reside in a given
horizontal x − y chain. With reference to Fig. (3.3), we notice that any
horizontal zig-zag x − y chain contains a slanted normal y-bond. Then we
find that Bc1 for this x − y chain is given by the conserved gauge field ûij
present on the slanted normal y-bond for this x− y chain. We see that all
the sites of a given x− y chain can be denoted by the lattice indices (m,n)
where ‘m’ runs from 1 to ‘N ’ and ‘n’ is fixed. We take this ‘n’ to label the
x− y chain. Then the conserved quantity for this chain is given by,



28 Exact eigenstates:J-W transformations

Bn
c1 = û 0,n

0,n+1
(3.41)

Similarly we can label zig-zag y − z chain by the index ‘m’ where ‘m’
corresponds to lattice translation along e1 direction. Now we see that it
contains a number of normal bonds, each one having a conserved gauge field
associated with it. Then Bc2 is just the product of all these conserved gauge
fields living on these normal bonds. Thus we can write,

Bm
c2 =

∏

n=1,N

ûm,n. (3.42)

3.3 Four fold degeneracy for ground state

We have shown before that there are four different states having identical
configuration of Bps. This is also true for ground state configuration of of
Bp implying four fold ground state degeneracy. This is due to the presence
of Bc1 and Bc2 which can take four possible different values for a given
configuration of Bp. We will show that when we fix this four possible choices
for the eigenvalues of Bc1 and Bc2, it imposes constraints on the values of
Z2 gauge fields. But in thermodynamic limit the fermionic ground state
energies obtained in different gauge choices are identical. Now we examine
each of these four flux free configurations and compute the corresponding
fermionic ground state energy in each case and show that in thermodynamic
limit they lead to identical ground state energy.

All the calculations are done following the Jordan-Wigner gauge which
has been explained in detail in the appendix B and corresponds to the
Jordan-Wigner path given in Fig. (3.3). The normal bonds are the ones
that form the basis of the triangular lattice except for the (O, I2, r) line. On
this line normal bonds are the ones between (0, I2, 1) and (0, I2 + 1, 2)). We
choose the first site of the path to be i1 = (0, 0, 2). We group the terms
of the Hamiltonian in three parts, Hint, Hslant and Hend. Hint includes
interactions for all the internal bonds and Hslant includes interactions for
all the boundary bonds except one where the Jordan-Wigner end points
meets.(Here by boundary bonds we refer slanted red bonds as shown in Fig.
3.3). Hend includes the interaction for the bond where the Jordan-Wigner
end points meet each other. Similarly all the Bps are grouped in the above
three different ways. The three parts of the Hamiltonian are given by,
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Hint =
∑

m,n

iJxη
a
m,nη

b
m+1,n+1 +

∑

m,n

iJyη
a
m,nη

b
m,n+1

+
∑

m,n

iJzUm,nη
a
m,nη

b
m,n (3.43)

Where Um,n is defined on each internal z-bond and represents the eigenvalue
of the corresponding gauge field ûm,n.

Hslant =
∑

m,n

iJyU(m,n),(m,n+1)iη
a
m,nη

b
m,n+1 + Jziη

a
m,nη

b
m,n (3.44)

Where U(m,n),(m,n+1) is defined on each boundary y-bond. The Hamiltonian
for the end bond is given by,

Hend = −SiηaM,Nη
b
M,N (3.45)

Now with the definition of ψ fermion and χ fermion we get the Eq. (3.43)
as,

Hint = Jx(ψ
†
m,n + ψm,n)(ψ

†
m+1,n+1 − ψm+1,n+1)

+Jy(ψ
†
m,n + ψm,n)(ψ

†
m,n+1 − ψm,n+1)

+JzUm,n(2ψ
†
m,nψm,n − 1) (3.46)

Similarly the Hamiltonian for the slanting bonds is given by ,

Hslant =
∑

m,n

JyU m,n
m,n+1

(ψ†
m,n + ψm,n)(ψ

†
m,n+1 − ψm,n+1)

+Jz(2ψ
†
m,nψm,n − 1) (3.47)

Lastly the Hamiltonian term for the end bond where end points of Jordan-
Wigner path meets is given by,

Hend = −SJz(2ψ†
m,nψm,n − 1) (3.48)

Um,n is the eigenvalue of the conserved quantity ûm,n defined on each internal
z-bond which is given by,

Um,n = (2〈χ†
m,nχm,n〉 − 1), (3.49)
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In the above equation angular bracket denotes the eigenvalue of correspond-
ing operator inside the angular bracket. Similarly the conserved quantity
defined on each slanting y-bond which is labelled by the z-bonds it is joined
with (i,e u m,n

m,n+1
) is given by,

U m,n
m,n+1

= (2〈χ†
m,n
m,n+1

χ m,n
m,n+1

〉 − 1) (3.50)

And S, for the Jordan-Wigner gauge, is given by,

S = −(−1)MN+Nψ+Nχ . (3.51)

Here MN denotes total number of lattice site and Nψ and Nχ denote total
number of ψ and χ fermions. Below we discuss in detail the spectrum for
four choices of gauge field configurations corresponding to Bp = 1 for all pla-
quettes. Now we proceed to discuss the four field ground state degeneracy.
We explicitly describe the gauge field configurations for each case.

3.3.1 Choice 1

Here the flux free configuration is obtained by making all the Um,ns to be 1
and S to be -1. Topologically non-trivial loop conserve quantities Bc1 and
Bc2 are also set to 1. The above choices make Hamiltonian completely trans-
lational invariant( refer to equations (3.46, 3.47, 3.48) ) and usual periodic
boundary condition in both the directions can be used to define the Fourier
transformations. From now on we will explicitly write the Hamiltonian in
terms of complex fermion ψ. However one can equivalently work in terms
of η, Majorana fermion representation. To keep this in mind we continue to
mention appropriate gauge transformations for η fermions as well as for ψ
fermions. The translational invariant Hamiltonian is given by,

H = Jx(ψ
†
m,n + ψm,n)(ψ

†
m+1,n+1 − ψm+1,n+1)

+Jy((ψ
†
m,n + ψm,n))(ψ

†
m,n+1 − ψm,n+1)

+Jz(2ψ
†
m,nψm,n − 1) (3.52)

We see that the above Hamiltonian is equivalent to that of the Kitaev’s
Hamiltonian after fermionisations. Thus it reaffirms that the solution ob-
tained by Kitaev is exact. This Hamiltonian also signifies a p-wave super
conducting Hamiltonian and can easily be diagonalised in going to the mo-
mentum space. The boundary condition on ηm,n is, ηM+1,n = η1,n and
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ηm,N+1 = ηm,1 , or alternatively, ψM+1,n = ψ1,n and ψm,N+1 = ψm,1. How-
ever we prefer to work in the representation of ψ where implementing the
boundary condition on fermion occupation number is easy. We define the
Fourier transformation for the ψm,n as,

ψ~R =
1√
MN

∑

~k

ei
~k. ~Rψ~k (3.53)

or ψm,n =
1√
MN

∑

p,q

ei(k1m+k2n)ψ~k (3.54)

Where k1 = 2π p
M and k2 = 2π q

N and ~R = m~e1 + n~e2. This is obtained by

noticing the fact that we can write ~k = p
M
~G1 + q

N
~G2 where ~G1,2 are the

reciprocal lattice vectors and are given by,

~G1 =
4π√

3
(

√
3

2
ex +

1

2
ey) ; ~G2 =

4π√
3
ey (3.55)

The Eq. (3.53) and the Eq. (3.54) are same. In the former we have used
position vector where as in the later we have used the lattice site indices to
represent a given site. Substituting Eq. (3.54) in Eq. (3.52) we get,

H =
∑

k∈bz
(ǫkψ

†
~k
ψ~k + i

δk
2
ψ†
~k
ψ†
~G−~k − i

δk
2
ψ ~G−~kψ~k) (3.56)

Where, ǫk = 2(Jx cos kx + Jy cos ky + Jz) and δk = 2(Jx sin kx + Jy sin ky).

kx = ~k.~nx, ky = ~k.~ny and ~nx,y = 1
2~ex ±

√
3

2 ~ey are unit vectors along x and
y-bonds respectively.

Now we rewrite the Hamiltonian in the following way,

H =
∑

k∈hbz
(ǫkψ

†
kψk − ǫkψ−kψ

†
−k + iδkψ

†
kψ

†
−k − iδkψ−kψk)

+ǫ0,0ψ
†
0,0ψ0,0 + ǫπ,0ψ

†
π,0ψπ,0 + ǫ0,πψ

†
0,πψ0,π + ǫπ,πψ

†
π,πψπ,π

+
∑

k∈hbz
ǫk −MNJz (3.57)

In the above equation we have omitted the vector notation for momen-
tum variable. Here the sum over ‘k’ runs over first half of the Brillouin zone
and does not includes the point (π, 0), (0, π), (0, 0), (π, π). The first line of
the Hamiltonian is diagonalised by the following orthonormal transforma-
tions,
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(
αk
βk

)
=

(
cosθk −i sinθk

−i sinθk cosθk

)(
ψk
ψ†
−k

)
(3.58)

Where cos 2θk = ǫk/Ek and αk and βk denotes new fermionic quasi particles
which diagonalizes the Hamiltonian. Rewriting the Hamiltonian we get,

H =
∑

k∈HBZ

Ek(α
†
kαk − β

†
kβk)

+ǫ0,0ψ
†
0,0ψ0,0 + ǫπ,0ψ

†
π,0ψπ,0 + ǫ0,πψ

†
0,πψ0,π

−1

2
(ǫ0,0 + ǫ0,π + ǫπ,0 + ǫπ,π) + (

∑

k′

1

2
ǫk′ −NzJz) (3.59)

Here sum over ‘k′’ runs over full Brillouin zone. The last term in the paren-
thesis is always zero for a Torus. Ek is defined as,

Ek =
√

(ǫ2k + ∆2
k) (3.60)

where ǫk = 2(Jx cos kx + Jy cos ky − Jz) and ∆k = 2(Jx sin kx + Jy sin ky).

3.3.2 Choice 2

Here the flux free configuration is obtained by making all U to be -1 and S to
be -1. Bc1 and Bc2 are also set to -1. We make following gauge transforma-
tions to facilitate Fourier transformation. ηbM,n = −ηbM,n for all ‘n’. In terms

of ψ fermion the necessary gauge transformation is, ψM,n = −ψ†
M,n for all ‘n’.

Then the Hamiltonian demands ηM+1,n = −η1,n and ηm,N+1 = ηm,1(or al-
ternatively ψM+1,n = −ψ1,n and ψm,N+1 = ψm,1). This constraint amounts
to an anti-periodic boundary condition in ~e1 direction and periodic bound-
ary condition in ~e2 direction. To implement this boundary condition we
define Fourier transform in the following way,

ψm,n =
1√
MN

∑

p,q

ei(k1m+k2n) (3.61)

with k1 = 2π
M (m+ 1

2); k2 = 2π n
N . Substituting this in the Hamiltonian

and subsequently diagonalising we get,

H =
∑

k∈HBZ

Ek(α
†
kαk − β

†
kβk) + (

∑

k′

1

2
ǫk′ −NzJz) (3.62)
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Here also ‘k’ varies over first half of the Brillouin zone and the ‘k′’ goes
over the full Brillouin zone. We note the absence of (0, π), (π, 0) (0, 0) mode.
They do not appear for this anti-periodic boundary condition. Here Ek is
defined as,

Ek =
√

(ǫ2k + ∆2
k) (3.63)

ǫk = 2(Jx cos kx + Jy cos ky − Jz) (3.64)

∆k = 2(Jx sin kx + Jy sin ky) (3.65)

3.3.3 Choice 3

The required values for gauge fields are, UM,n = −1 for all ‘n’ from 1 to N-1.
All other Us are 1 and S is also 1. The loop conserve quantity Bc1 takes
value 1 and and Bc2 takes value -1. Here the necessary gauge transformation
is ηbm,N = −ηbm,N for all m. In terms of ψ fermion the necessary gauge trans-

formation is ψm,N = −ψ†
m,N for all ‘m’. This gauge transformations implies

ηm,N+1 = −ηm,1 and ηM+1,n = η1,n(or alternatively ψm,N+1 = −ψm,1 and
ψM+1,n = ψ1,n). To meet this constraint we impose ant-periodic boundary
condition in ~e2 direction and periodic boundary condition in ~e1 direction.
This is obtained by expressing,

k1 = 2π
m

M
; k2 =

2π

N
(n+

1

2
) (3.66)

Next we perform Fourier transformations and subsequently diagonalise the
Hamiltonian. The resulting diagonalised Hamiltonian is identical with Eq.
(3.62). However here one obtains for ǫk,

ǫk = 2(Jx cos kx + Jy cos ky + Jz) (3.67)

3.3.4 Choice 4

Here the necessary values of conserved quantity is given by, UM,n = 1 for
all ‘n’ from 1 to N − 1 . All other Us are -1 and S is 1. We have for this
case, Bc1 = −1 and Bc2 = 1. Here we need combined gauge transformations
implemented for the choices 2 and 3 i.e we need anti-periodic boundary
condition in both the directions which is done by the following way,

k1 =
2π

M
(m+

1

2
); k2 =

2π

N
(n+

1

2
) (3.68)

Proceeding as before we get exactly Eq. (3.62) with similar expression for
ǫk as obtained in Eq. (3.67).
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3.3.5 Ground State Energy in the Thermodynamic limit

To get the ground state energy for the choice 2, 3 and 4, we are to fill up
the negative quasi particle states βk consistent with the boundary condition
(i, to satisfy the constraint on S which fixes the number of particle (odd or
even number)to be taken). It is given in the Appendix B for every possible
cases of M and N whether M and N can be odd or even. For the choice
1, we need to fill up all the βk states. But for (0, 0), (0, π) etc mode, we
need to check whether ǫ0,0, etc are positive. In any case it is clear after
taking into consideration of the constant terms that it only contributes as
1
2 |ǫ0,0|, 1

2 |ǫ0,π| etc. Thus for the ground state energy we can write for the
choice 1,

Eg1 =
∑

k∈HBZ

−Ek−
1

2
(ǫ0,0 + ǫ0,π + ǫπ,0 + ǫπ,π)+ (

∑

k′∈FBZ

1

2
ǫk′ −NzJz) (3.69)

In the above sum the four points are excluded. Now we can convert the
above sum over the full Brillouin zone (FBZ) as follows,

Eg1 =
∑

k∈FBZ

−1

2
Ek + (

∑

k′

1

2
ǫk′ −NzJz) (3.70)

with Ek =
√
ǫ2k + δ2k where ǫ2k and δ2k is defined after equation ( 3.56). For

the choice 2,3 and 4 , we can write for the ground state energy,

Eg2 =
∑

k∈FBZ

−1

2
Ek + (

∑

k′

1

2
ǫk′ −NzJz) (3.71)

Eg3 =
∑

k∈FBZ

−1

2
Ek + (

∑

k′

1

2
ǫk′ −NzJz) (3.72)

Eg4 =
∑

k∈FBZ

−1

2
Ek + (

∑

k′

1

2
ǫk′ −NzJz). (3.73)

In the above equations, the subscript 2, 3 and 4 refers to the ground state
energy corresponding to choice 2, 3 and 4 respectively. The expressions for
Ek are not necessarily same since the values of ks are different and they are
explicitly defined before. Now for M,N → ∞ the sum over the ‘k’ points
corresponds to same Brillouin zone and the terms in the parenthesis becomes
zero. Moreover we notice that appearance of a ‘−’ sign in the expression
of ǫk for choices 2 and 4 can be accounted for by shifting the k1 integral to
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π − k1. Thus in the thermodynamic limit ( M,N → ∞), we can write for
the ground state energy as (for all the above four cases),

EG = −
√

3

16π2

∫

BZ
E(kx, ky)dk1dk2 (3.74)

With E(kx, ky) defined in choice 1. Thus it is clear that in Thermodynamic
limit ground state has four fold degeneracy.

To summarise in this chapter we have shown that the Jordan-Wigner
transformation in the Kitaev model can be interpreted as a Z2 gauge fixing
procedure resulting in gauge invariant [77–79] (gauge fixed) Majorana and
bond fermions . The choice of the Jordan-Wigner path amounts to a choice
of the Z2 gauge. We have also explicitly expressed all the conserved spin
variables in terms of JW fermions. We have explicitly derived four degen-
erate ground states on the torus in both phases. This is true for gapless
as well as in gapped phase. Our JWT can be implemented for every Ki-
taev like model [85, 86]. Later we will show that this method can also be
implemented in 3D lattice also, in fact in any dimensions provided lattice
connectivity three is being maintained.

3.4 The ‘8’ site problem

To examine the correctness of our Jordan-Wigner transformation and sub-
sequent definitions of spin operators in terms of complex fermions we have
taken a small system, i.e, 2×2 hexagonal system and compared the results
obtained from numerical exact diagonalisation of spin Hamiltonian and the
results obtained by solving analytically the fermionic Hamiltonian obtained
after Jordan-Wigner transformations. These two results obtained from two
different ways match to each other which validate our definition of spin
operators in terms of complex fermion. The correlation function obtained
numerically is of the same nature as argued before. Energy eigenvalues also
match.

The exact diagonalisation of this spin systems revealed many important
aspects of Kitaev model. It is observed that ground state of this 8-site system
has a large singlet component and a small triplet component as far as the
nearest neighbour sites are considered. This signifies its closeness to RVB
gauge theory. The average value of the square of the total spin operator S2

comes about 2.5358 whereas the maximum possible value of S2 is 20. The
value of the nearest neighbour x− x, y− y, and z − z correlations along the
x, y and z bond respectively is −0.57. Any other nearest neighbour spin
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Figure 3.4: 2×2 hexagon and J-W path for periodic boundary condition for
this. The numerics in the figure describe the sequences of Jordan-Wigner
path

correlations are zero. We have found that the state which is a superposition
of the singlet states taken along the x-bond, y-bond and z-bond has about
80 percent overlap with the ground state.

|Z〉 = [1, 8][2, 7][4, 5][3, 6]

|X〉 = [1, 4][8, 5][7, 6][2, 3]

|Y 〉 = [1, 2][3, 4][5, 6][7, 8]

|Ω〉 = 1√
4.5

(|Z〉+ |Y 〉+ |X〉) (3.75)

In the above [i, j] denotes the singlet on the bond joining site ‘i’ and site ‘j’.
We got, 〈Ω|G〉 = 0.8, where |G〉 is the ground state wave function. It shows
that ground state is primarily a valence bond state. The nearest neighbhour
spin-spin correlation obtained with respect to this state is −0.444 which
shows that this state is very much near to the actual ground state.

It has been found that ground state for this small system corresponds to
uniform Bp = −1. From Ref. [110] we note that for a hexagonal lattice the
Z2 flux over a hexagonal plaquette must be 1 for the ground state. For a
square lattice the Z2 flux should be −1. If we look at this small system care-
fully, we notice that the smallest plaquette for this system is not a hexagonal
but a square one, as shown in the Fig. (3.4). Thus if we apply Lieb theorem
on the face 1278,2763 and 1234 and add them together we get Bp to be −1
for the path 123658. The same is true for other plaquettes as well. Thus
the numerical finding, Bp = −1, agrees with the Lieb’s result as discussed
in [110].
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The spin-spin correlation functions for this small system have also been
computed. In the next chapter we will be discussing about the spin-spin
correlation function in detail. The results we got for this small system
conforms with the results shown in next chapter. To mention it is found
that two spin correlation are non vanishing only for nearest neighbour sites.
The bond dependent nature of correlation function is also checked. It proves
that the nature of correlation function does not depend on the size of the
lattice as proved in the chapter 4.
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This is my delight,
thus to wait and watch at the wayside

where shadow chases light
and the rain comes in the wake of the summer

Where Shadow Chases Light-Tagore

Chapter 4

Spin-Spin correlations

In this chapter we present our study of spin-spin correlation functions in
the Kitaev model. We show that for this model we can formally calculate
all spin-spin correlation functions exactly for all eigenstates. The method
we follow to deduce spin-spin correlation functions is an extension of the
fermionisation procedure implemented in [33] . We have already seen that
the fermionisation procedure taken in [33] enlarges local Hilbert space di-
mensions but because of the presence of local conserved quantities in the
Kitaev model, Hilbert space enlargement only produces ‘gauge copies’, with-
out altering the energy spectrum. This helps us to determine the spin-spin
correlation function exactly within this formalism. This remarkable feature
is absent for standard 2D Heisenberg models when studied using enlarged
fermionic Hilbert space [55, 68].

4.1 Bond fermion formalism

We have seen in chapter 2 that two complex fermions yield four Majorana
fermions. Basically each complex fermion can be rewritten into two Majo-
rana fermions. Now to facilitate the easy computation of spin-spin correla-
tions we invert the above procedure by regrouping two different Majorana
fermions to define a complex fermion. We have seen that at every link
there has been one conserve quantity named uαi,j made out of the Majorana
fermion bαa,i and bαb,j. Here ‘i’ and ‘j’ denotes the two sites of a bond, ‘a’ and
‘a’ denotes sub-lattice indices and ‘α’ denotes a specific bond(α = x, y, z).
We regroup these two Majorana fermions to describe a complex fermion
named χ〈ij〉α which lives on the bond joining sites ‘i’ and ‘j’. We call this
procedure as bond fermion formalism.

39
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From now on we follow the convention that the site ‘i’ in the bond 〈ij〉α
belongs to a sub-lattice and the‘ j’ belongs to b sub-lattice. Also from now
on we do not mention the sub-lattice index ‘a’ and ‘b’ explicitly. We define
complex fermions on each bond as,

χ〈ij〉α =
1

2

(
cαi + icαj

)
(4.1)

χ†
〈ij〉α =

1

2

(
cαi − icαj

)
(4.2)
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Figure 4.1: Elementary hexagon and ‘bond fermion’ construction. A spin is
replaced with four Majorana fermions (c, cx, cy, cz). Bond fermion χ〈23〉 for
the bond joining site 2 and site 3 is shown . Spin operators are also defined.

For example with reference to the Fig. (4.1), for the z-bond joining site
2 and site 3, and for the y-bond joining site 1 and site 2, we define,

χ〈23〉z = (cz2 + icz3) ;χ〈12〉y = (cy1 + icy2) (4.3)

Then it follows that for the site ‘2’ and ‘3’ the σz operator becomes,

σz2 = ic2(χ〈23〉z + χ†
〈23〉z ) ; σz3 = c2(χ〈23〉z − χ

†
〈23〉z ) (4.4)

Below we write the result of this re-fermionisation for a bond of type ‘α’
joining site ‘i’ and ‘j’,

χ〈ij〉α =
1

2

(
cαi + icαj

)
; χ†

〈ij〉α =
1

2

(
cαi − icαj

)
(4.5)

σαi = ici

(
χ〈ij〉α + χ†

〈ij〉α

)
; σαj = cj

(
χ〈ij〉α − χ

†
〈ij〉α

)
(4.6)

It is clear that three components of a spin operator at a site gets connected
to three different χ fermions defined on the three different bonds emanating
from it. The bond variables are related to the number operators of these
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fermions, û〈ij〉α ≡ icαi c
α
j = 2χ†

〈ij〉αχ〈ij〉α − 1. Thus the effective picture is
understood easily from the Fig. 4.1. We identify a χ fermion on every bond
whose occupation number can be 0 or 1. This occupation number determines
the value of u〈ij〉 on that bond. But these fermions are conserved and serve
as an effective Z2 gauge potential for hopping ‘c’ fermions. As χ fermions
are conserved, all eigenstates can therefore be chosen to have a definite χ
fermion occupation number. The Hamiltonian is then block diagonal in
occupation number configurations, each block corresponding to a distinct
set of χ fermion occupation numbers for every bonds. Thus all eigenstates
in the extended Hilbert space take the following factorised form,

|Ψ̃〉 = |MG ;G〉 ≡ |MG〉|G〉 (4.7)

with χ†
〈ij〉αχ〈ij〉α |G〉 = n〈ij〉α |G〉 (4.8)

where n〈ij〉α = (u〈ij〉α + 1)/2 and |MG〉 is a many body eigen-state in the
matter sector determined by ‘c’ fermions, corresponding to a given Z2 field
configuration determined by |G〉.

π π
i

j
��

|ψ〉

σzi

|ψ′〉

Figure 4.2: How a spin fractionalises into two static π fluxes and a dynamic
Majorana fermion is shown. |ψ〉 is a state with zero flux. We apply σzi where
site ‘i’ is connected with site ‘j’. As a result we get a state |ψ′〉 with two
static π fluxes at the plaquette sharing bond 〈ij〉 and a dynamic Majorana
fermion represented by black circle.

Now we discuss the advantage of the above canonical transformations
in detail. Written in the above form (refer to Eq. 4.5), the effect of σαi on
any eigen-state becomes simple. In addition to adding a Majorana fermion
at site ‘i’, it changes the bond fermion number from 0 to 1 and vice versa
(equivalently, u〈ij〉α → − u〈ij〉α), at the bond 〈ij〉α. The end result is that
one π flux is added to each of the two plaquettes that are shared by the
bond 〈ij〉a (Fig 4.2). We denote this symbolically as

σαi = ici

(
χ〈ij〉α + χ†

〈ij〉α

)
→ ici π̂1〈ij〉α π̂2〈ij〉α (4.9)
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with π̂1〈ij〉α and π̂2〈ij〉α defined as operators that add π fluxes to two adja-
cent plaquettes shared by the bond 〈ij〉α (Fig (4.2)). Further π̂2

1〈ij〉α = 1,

since adding two π fluxes is equivalent to adding (modulo 2π) zero flux.
It is completely clear that two states with different flux configurations has
vanishing overlap as they belong to different distribution of χ fermion occu-
pation numbers. This observation is the key ingredient to compute spin-spin
correlations exactly. First we present the calculation of two spin correlations
functions. Other multi spin correlation can be calculated with straight for-
ward generalisations of this procedure.

4.2 Two-spin correlations

Here we calculate spin-spin correlation functions in extended Hilbert space.
We note this result can be extended exactly in physical Hilbert space for
the following reason. Since the spin operators are gauge invariant, we can

compute the correlation in any gauge fixed sector and the answer will be

the same as in the physical gauge invariant subspace. (We have confirmed
this by a calculation in the projected physical subspace. For details please
look at appendix C). First we consider the two spin dynamical correlation
functions, in an arbitrary eigen-state of the Kitaev Hamiltonian in some
fixed gauge field configuration G,

Sαβij (t) = 〈MG |〈G|σα(t)
i σ

β(0)
j |G〉|MG〉 (4.10)

Here A(t) ≡ eiHtAe−iHt is the Heisenberg representation of an operator A,
keeping ~ = 1. As discussed before we write the action of spin operator on
any eigenstate as,

σ
β(0)
j |G〉|MG〉 = ci(0)|Giβ〉|MG〉 (4.11)

σ
α(t)
i |G〉|MG〉 = ei(H−E)tcj(0)|Gjα〉|MG〉 (4.12)

where, |Giα(jβ)〉 denote the states with extra π fluxes added to G on the two
plaquette adjoining the bond 〈ik〉α〉(〈lj〉β〉) and E is the energy eigenvalue of
the eigenstate |G〉|MG〉. Since the Z2 fluxes on each plaquette is a conserved
quantity, it is clear that the correlation function in Eq. (4.10) which is the
overlap of the two states in equations (4.11, 4.12) is zero unless the spins are
on neighbouring sites. Namely, we have proved that the dynamical spin-spin
correlation has the form,

Sαβij (t) = g〈ij〉α(t)δα,β , for i, j nearest neighbours (4.13)

= 0 otherwise.
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Figure 4.3: Contour plot of nearest-neighbour z − z correlation.

Computation of gij(0) is straight forward in any eigen-state |MG〉. For the
ground state where conserved Z2 charges are unity at all plaquette, the equal
time 2-spin correlation function for the bond 〈ij〉α is given by the analytic
expression:

〈σαi σαj 〉 ≡ Sαα〈ij〉α(0) =

√
3

16π2

∫

BZ
cos θ(k1, k2)dk1dk2

Where cos θ(k1, k2) = ǫk
Ek

, Ek =
√

(ǫ2k + ∆2
k), in the Brillouin zone. ǫk =

2(Jx cos k1 + Jy cos k2 + Jz), ∆k = 2(Jx sin k1 + Jy sin k2), k1 = k.n1, k2 =

k.n2 and n1,2 = 1
2ex ±

√
3

2 ey are unit vectors along x and y bonds. At the
point, Jx = Jy = Jz, we get Sαα〈ij〉α(0) = −0.52. The figure (4.3) shows how

the nearest neighbour z − z correlations varies in the parameter ( Jx, Jy, Jz
) space. To compute g〈ij〉α(t) we substitute for the σ’s from equation (4.1)

and (4.2). We choose a gauge where u〈ij〉α = −1 implying χ†
〈lj〉β |G〉 =

χ†
〈ik〉β |G〉 = 0. We note that the above condition imposed at t = 0 continues

at all times since the bond fermion numbers are conserved. We then have,

g〈ij〉α(t) = 〈MG |〈G| ici(t)χ†
〈ij〉α(t)χ〈ij〉α(0) cj(0)|G〉|MG〉

(4.14)

The time dependence of evolution can be expressed in terms of the Hamil-
tonian and noting that it is diagonal in the number operators χ†χ, we get,

g〈ij〉α(t) = 〈MG |eiH[Giα]tici(0)e
−iH[Giα ]t(−1)cj(0)|MG〉 (4.15)

where H[Giα] is the tight binding Hamiltonian in the background of the
static gauge field configuration Giα. The (−1) factor is the eigenvalue of
u〈ij〉α. This expression can be re-written in the following way,

g〈ij〉α(t) = 〈MG |ici(t)T
(
e−2Jα

R t

0
u〈ij〉αci(τ)cj(τ)dτ

)

u〈ij〉αcj(0)|MG〉 (4.16)
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The above equation is written in an arbitrary gauge. We see that the cal-
culation of time dependence correlation function for the ground state corre-
sponds to solving a single impurity problem. But here the word ’impurity’
means breaking of a translation invariance on a particular bond which has
opposite sign for hopping element compared to the rest of the bonds.

4.3 Fractionalisation and deconfinement

We have thus derived a simple but exact expression for the spatial depen-
dence of the two spin dynamical correlation function. We have also obtained
an exact expression for the time dependence in terms of the correlation func-
tions of non-interacting Majorana fermions in the background of static Z2

gauge fields. Eq. (4.16) represents the propagation of a Majorana fermion
in the presence of two injected fluxes.

i_ Ht 
e

iπ
π

π
π

i= Aij(t)

kk

j

j

j

Majorana Fermion

Figure 4.4: Time evolution and fractionisation of a spin flip at t = 0 at site
‘i’, into a π-flux pair and a propagating Majorana fermion.

The notion of Fractionalisation of spin-flip quanta is the natural interpreta-
tion of our results [55, 76]. Now let us discuss in detail the time evolution
of a single ‘spin-flip’ at site ‘i’ given in Eq. (4.12). Using the notation
introduced in Eq. (4.9) we have,

σαi |Ψ̂〉 ≡ ici(t)T (e2u〈ik〉αJα
R t

0
ci(τ)ck(τ)dτ )π̂〈ik〉α1

π̂〈ik〉α2
|Ψ̂〉

(4.17)

A spin-flip at site ‘i’ at time t = 0, is a sudden perturbation to the matter
(Majorana fermion) sector, as it adds two static π-fluxes to adjoining plaque-
tte. The time ordered expression represents how a bond perturbation term(
i2u〈ik〉αJαcick) evolves the Majorana fermion state, in ‘interaction represen-
tation’. At long time scale the resulting ‘shakeup’ is simple and represents
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a rearrangement (power law type for gapless case) of the Majorana fermion
vacuum to added static π-flux pairs. The Majorana fermion, produced by a
spin-flip, ci(t) propagates freely, as a function of time.

As spin-flip at site ‘i’ is a composite of a Majorana fermion and π-flux
pair (Eq. (4.9)), two spin correlation function defines the probability that we
will detect the added composite at site ‘j’ after a time ‘t. As the added π-flux
pair do not move, the above probability is identically zero, unless sites ‘i’
and ‘j’ are nearest neighbours and spin components are identical, i.e, a = b.
This is why the spatial dependence of two spin correlation functions are
sharply cut off at nearest neighbour separation. The asymptotic response
to an added π-flux pair and free dynamics of the added Majorana fermion
control the long time power law behaviour of our only non vanishing nearest
neighbour two spin correlation function.

Further, for a given pair of nearest neighbour sites, only one Ising spin
pair of a corresponding component is non-zero. Other pairs and cross cor-
relation functions vanish. More specifically, for a given bond the only non
zero two spin correlation function is the bond Hamiltonian.

What is unusual is that the above result is true for all eigen-states of
the Kitaev Model, irrespective of their relative energies. It follows that it is
valid for thermal averages too. This is an unusual result, indicating exact
fractionalisation occurring at all energy scales. In known models such as 1D
repulsive Hubbard model or spin half Heisenberg chain, fractionisation is
only a low energy asymptotic phenomenon. Our results show the all energy

scale exact confinement of the spin-flip quanta, and exact Deconfinement of
the Majorana fermions in the Kitaev model.

Kitaev model supports non-abelian anyons in the presence of uniform
external magnetic field. Non-abelian anyons are believed to be fundamental
in topological quantum computation. Even though we can not calculate
correlation functions exactly in the presence of external magnetic field, we
find that the short range character of spin-spin correlation and quantum
number fractionalisation phenomenon continues. A major difference is that
π fluxes acquires their own dynamics and have a band like motion.

4.4 Dimer-Dimer Correlation

Though the two spin-correlation is short range and vanishes beyond near-
est neighbour, certain dimer-dimer spin correlations can be long range. In
the case of two-spin correlation we have noticed that the combination of
two nearest-neighbour spins which preserves the flux configuration yields a
non-vanishing correlation. Now let us consider a pair of such two nearest-
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neighbour as shown in Fig. (4.5), then obviously it would not change flux
configuration and hence will be non vanishing. But unlike two-spin corre-
lation function here we need to evaluate average of four Majorana fermion
term.
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〈σz1σz2σx5σx6 〉

Figure 4.5: Some example of non vanishing long range dimer-dimer correla-
tions. As shown in the figure a combination of two spin pair where each spin
pair is nearest neighbour, gives rise to non vanishing long range dimer-dimer
spin correlations .

Like two spin correlations, the dimer-dimer correlation functions can
be expressed as the product of Hamiltonian interaction terms for two links
arbitrarily separated. Taking one bond to be at the origin and the other at
some location R, the dimer-dimer correlation for such dimers is given by,

〈σαa,0σαb,0σβa,Rσ
β
b,R〉 = 〈G|ica,0cb,0(2χα†0 χα0 − 1)ica,Rcb,R(2χβ†R χ

β
R − 1)|G〉

(4.18)
Here α and β can be x, y and z depending on whether the dimer lives

on x, y or z bonds. The terms in the parenthesis yields unity for the ground
state as all the gauge fermions occupation number is 1. Though Eq (4.18)
can be evaluated for any two dimer, we take two z-dimers for simplicity.
Then we get the following expression for 〈σza,0σzb,0σza,Rσzb,R〉,

〈σza,0σzb,0σza,Rσzb,R〉 = 2

∫ ∫
dkdk′{cos(θk + θk′) + cos((k− k′).R) −

cos((θk + θk′) + (k− k′).R)} (4.19)

Here θk = ǫk/
√
ǫ2k + δ2k and

ǫk = 2Jxcosk1 + 2Jycosk2 + 2J3 (4.20)

δk = 2Jxsink1 + 2Jysink2 (4.21)
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Where k1 and k2 is given by,

k1 = ~k.(
1

2
~ex +

√
3

2
~ey) ; k2 = ~k.(−1

2
~ex +

√
3

2
~ey) (4.22)

Here we give a qualitative analysis of how dimer dimer correlations depends
on the distance between two dimers. We find a power law behaviour for
the case Jx = Jy = Jz which can be easily extended to all over the gapless
phase. To do this we do long wavelength approximations. The zero for
spectrum is obtained at k1 = 2π/3 = −k2. We take k1 = 2π/3 + q1 and
k2 = −2π/3 + q2 then expanding around the zeros we get cos θk = −qx/|q|
and sin θk = −qy/|q| where qx,y is the component along Cartesian x and y
axis. Here ‘q’ denotes small momentum around the spectral minima.

Now in the expression for dimer-dimer correlation function(Eq. (4.19))
first term is R independent. Let us look at the second term which can be
written as (in the long wave length limit λ << R)

∫ ∫
dkdk′ =

∫ ∫
dqdq′

= Re(

∫
eiq.Rdq)(

∫
e−iq′.Rdq′) (4.23)

Now we take R to be along the x-axis. Then each integral becomes,

I =

∫ λ

0

∫ 2π

0
eiqR cos θqqdqdθq

=
1

R2
2π

∫ λR

0
J0(x)xdx (4.24)

Where x=qR. Thus as each term varies as R−2 , the second term gives R−4.
Similarly the last term in Eq. (4.19), can be factorised in to many terms.
Each term is a product of two integral, one over ‘q’ and another over q′ and
each has the following form,

I =
1

R2

∫ λR

0

∫ 2π

0
cos θeix cos θxdxdθ (4.25)

Thus this also give R−4 variation. This power law behaviour of dimer-dimer
correlation is true for all over the gapless phase in the parameter space [81].
A more detailed analysis of dimer-dimer spin correlation can be found in
[81] which shows that in gapped phase the dimer-dimer correlation function
decays exponentially.
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4.5 Multi spin correlations

Multi spin correlation functions can also be calculated in our formalism. We
have already seen that only non vanishing two spin correlations are those
spin combinations which preserve the flux configuration. We found that it is
the bond Hamiltonian which does this. The multi-spin correlation functions
is just the extension of this fact. It follows that any multi-spin correlations
to exist among a certain number of site , it must be expressed as the product
of the bond Hamiltonians among the sites. In the picture below we elaborate
this fact.
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ration is non zero
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∏
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Figure 4.6: Only non-vanishing multi-spin correlations among the sites 1 to
6 is obtained by taking product of bond Hamiltonians containing the sites.

In the Fig (4.6) we have shown a string like multi-spin correlations among
the site (1,2,3,4,5,6). We easily find that only non-vanishing multi-spin
correlations among these sites are,

Sm = σx1σ
y
2σ

y
3σ

z
4σ

z
5σ

y
6 =

∏

i,j

hij . (4.26)

Where hij is the bond Hamiltonian for the bond 〈ij〉. It is straightforward to
show that equal time multi-spin correlations for a string like path as shown
in the figure above is equal to

ST ≡ cicf (4.27)

Where ‘i’ and ‘f ’ denotes the initial and final site of the strings. What
follows directly from the Eq. (4.27) is that for a close loop, where i = j, we
get ST ≡ 1. But this is nothing but the product of Bp which should be ±1
depending on the flux configurations of the gauge sector. For the ground
state it is 1.
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4.6 Fractionalisation in other Kitaev like model

The method we employ here can be applied to all models containing Kitaev
like interactions [85–87]. In all these model we see similar nature of two-spin
correlations and the multi-spin correlations, basically it should be products
of bond Hamiltonians. Again in all these model we notice fractionalisation to
occur but the notion of fractionalization depends on the details of the lattice.
To summarise, we have shown certain exact analytical results for the spin
dynamics and a spin-flip fractionisation scheme for the Kitaev model. As
this non-trivial spin model has been proposed for possible implementation of
topological quantum computation, our exact results should provide insights
into qu-bit dynamics and possible ways of generating emergent topological
qubits. Our formalism, which uses the factorised character of the eigen-
functions in the extended Hilbert space, is easily adapted to the calculation
of multi-spin correlation functions, which is a key step in the calculation and
understanding of quantum entanglement properties.
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Prisoner, tell me, who was it that wrought this unbreakable chain?’
‘It was I,’ said the prisoner, ‘who forged this chain very carefully.

Prisoner-Rabindranath Tagore

Chapter 5

Quantum entanglement
study on Kitaev model

In this chapter we present our studies on quantum entanglement in the Ki-
taev model. We know that the entanglement arises out of the non-local
correlations of quantum states. In the vicinity of quantum phase transition
it is natural to expect that various parts of the system get entangled in a
nontrivial way. The relation between quantum phase transition and entan-
glement has been investigated in the seminal works [28, 111–114] dealing
with one dimensional systems. Among many entanglement measures that
exist for a many body system the entanglement entropy and the concur-
rence is well known [123, 124, 126] . This measure is defined by dividing
the systems into two subsystems ‘A’ and ‘B’ and then calculating reduced
density matrix of one subsystem only (e.g ρA = trBρ obtained by tracing
over degrees of freedom of B subsystem) . After this one looks into the
quantity called von-Neumann entropy (SA) which is defined as,

SA = −tr[ρAlnρA] (5.1)

It is to be noted that by definition ρA = ρB. The matrix ρB contains
the residual entanglement information between the subsystem ‘A’ and ‘B’.
In case of concurrence the partition of the system is done in a subsystem
of ‘two particles’ and the rest of the system excluding those ‘two particles’
. In case of block entanglement one usually divides the total system into a
square block with length ‘L’ and the rest of the system. In the later case one
generally looks at the scaling of SA with respect to size ‘L’. Concurrence and
the entanglement entropy is known to either diverge or show some jump at a
quantum phase transition [112–116, 118, 121–123]. For a critical fermionic
system with gapless excitation, the bulk entanglement entropy is shown
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to vary as S ∼ Ld−1logL . Away from the criticality, it varies as ∼ Ld−1

[126, 126, 127]. Here we calculate concurrence and binary entropy for Kitaev
model. Both of the above entanglement measures was shown to capture the
presence of quantum phase transitions [121, 123, 124] . However for Kitaev
model we find concurrence to be zero for any two sites. We argue that binary
entropy shows the presence of phase transition in Kitaev model.

5.1 Concurrence

We can write the reduced density matrix ρ12 for two arbitrary site ‘1’ and
‘2’ is given by,

ρ12 =




v 0 0 u
0 w y 0
0 y w 0
u 0 0 v


 (5.2)

The above reduced density matrix is derived in the standard z-basis
[116]. The various parameter appearing in the above equation is given by
[120],

v =
1

4
(1 + 〈σz1σz2〉) (5.3)

w =
1

4
(1− 〈σz1σz2〉) (5.4)

y =
1

4
(〈σx1σx2 〉+ 〈σy1σ

y
2〉) (5.5)

u =
1

4
(〈σx1σx2 〉 − 〈σy1σ

y
2〉) (5.6)

The definition of the concurrence is the following [116]. Let us construct
a matrix C given by,

C = ρ12ρ̃12, where ρ̃12 = σy
1 ⊗ σ

y
2ρ12σ

y
1 ⊗ σ

y
2 . (5.7)

The above transformation causes partial transpose of the matrix ρ12 with
respect to element ‘2’ . The concurrence is defined as :C = max{0, λ1 −
λ2 − λ3 − λ4} . Here λi’s are the eigenvalues of the matrix C and they are
ordered in decreasing order. If the quantity C is positive then concurrence
is finite otherwise it is zero. In Kitaev model, for a pair of sites which is
joined by a z-bond we get u = y = 0. Then we have for C (for such two
sites joined by z-bond ) ,
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C =




v2 0 0 0
0 w2 0 0
0 0 w2 0
0 0 0 v2


 (5.8)

From the definition of C, we find that concurrence is zero as we have v2

and w2 positive or zero. Similarly it can be easily shown that concurrence
between any two sites is zero.

5.2 Binary entropy

We can easily calculate the von-Neumann entropy for this two spin subsys-
tem as we can easily diagonalise the reduced density matrix ρ12 in this case.
This entropy which is also called binary entropy is defined as,

S12 = −
∑

i

λilnλi (5.9)

where λis are the eigenvalues of the reduced density matrix ρ12. The von-
Neumann entropy for two nearest neighbour site is given by,

Sa12 = −1

2
{(1 + p)ln(1 + p) + (1− p)ln(1− p)}+ 2ln2 (5.10)

where p = 〈σa1σa2〉 and a = x, y, z depending on the bond. This is always
finite as in complete parameter space we have, 1 ≤ p ≥ 0. For the sites which
are not nearest neighbour the von-Neumann entropy is 2ln2, a constant. The
above result is consistent with the fact that in the Kitaev model, the phase
transition is not associated with any long range spin-spin correlations. Thus
the binary entropy is expected to be finite all over the parameter space.
Below we present how the binary entropy behaves as a function of Jz . For
simplicity we take Jx = Jy.

From the Fig (5.1), we observe that binary entropy is maximum at Jz = 0.
This limit corresponds to isolated 1 dimensional chain and there is no cou-
pling between two sites joined by a z-bond. It just reproduces the constant
term in the r.h.s of Eq. (5.10). At Jz = 1, we have Jx = Jy = 0 and the two
spins of a z-bond are either in ferromagnetic or anti ferromagnetic alignment
and entanglement entropy reaches a minima here. However it is interesting
to note that the gradient of the binary entropy reaches maximum at Jz = 0.5
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Figure 5.1: Along the horizontal axis we plot the strength of Jz and along
the vertical axis we plot the binary entropy.

which is the transition point from gapless to gapped phases in Kitaev model.
Thus it is evident that binary entropy is able to capture the presence of phase
transition as corroborated in other investigations [117, 121].



Bee! I’m expecting you!
Was saying Yesterday

To Somebody you know
That you were due –

Bee! I’m expecting you!-Emily Dickinson

Chapter 6

Toric code limit of 2D
Kitaev model

One of the basic properties which characterises fundamental particles or
quasi-particles in many real systems is exchange statistics obeyed by them.
Let us consider a two body wave function of such two particles, ψ(x1,x2).
When one particle is taken around another particle completely, the wave
function in general get multiplied by a phase, i.e, we get for the new wave
function eiφψ(x1,x2). For bosons we have, φ = 2π and for fermions φ = π.
In 3 or higher dimension only possible statistics among elementary parti-
cles or among quasi-particle excitations of certain system can only be either
fermionic or bosonic. However in 2 spatial dimension mutual statistics be-
tween two quasi-particles are special and here φ can be anything in between
0 to 2π. These special excitations or particles are termed anyons whose ex-
change statistics interpolate the statistical behaviour intermediate between
bosonic and fermionic statistics [41, 42]. There are examples where they are
predicted to exist in real condensed matter systems. One of the ready exam-
ple is Laughlin state [70] in the Fractional Quantum Hall Systems at filing
factor n = 1/3 . It carries abelian anyons with exchange phase φ = π/3 and
electric charge ±1/3. The fractional charge has also been experimentally
seen in shot noise measurements [71, 73]. The Kitaev model which is de-
fined in 2 Dimension also supports anyons in some regions of the parameter
space. It has been shown that in the presence of magnetic field the gapless
phase opens up a gap and it has non-abelian anyons as excitations [33]. On
the other hand the gapped phase is described by abelian anyons. In this
chapter we will be discussing the effective Hamiltonian in the toric code
limit(Jz ≫ Jx, Jy) and examine the effective Hamiltonian obtained in terms
of Jordan-Wigner fermions. This toric code Hamiltonian has been investi-
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i

j

k

l
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A B
C

| ↑↑〉
| ↓↓〉

Figure 6.1: Reduction of the Kitaev model in toric code limit. Strong links
in the original model (A) constitute effective spins (B) , which are associated
with the links of a new lattice (C). The lattice in Fig C can be obtained
from the lattice of Fig B by a bond to site and site to bond transformations.

gated in other important works [45, 46, 49]revealing many insightful results
on Kitaev model. At first we briefly outline the main results obtained in
[33]. The Hamiltonian we investigate is the following,

H = H0 +H ′

H0 = −
∑

z−link

Jzσ
z
i σ

z
j

H ′ = −
∑

x−link

Jxσ
x
i σ

x
j −

∑

y−link

Jyσ
y
i σ

y
j (6.1)

In the above equation we have Jz ≫ Jx, Jy. This is why we write Hamil-
tonian into two separate parts. H0 describes the unperturbed Hamiltonian
and H ′ is treated as a perturbation to H0. The ground state configuration
for the unperturbed Hamiltonian H0 corresponds to spin states | ↑↑〉 or | ↓↓〉
at every z-bond. If we are having a system with a total of Nz z-bond the
ground sector has a degeneracy of 2Nz . In perturbation theory it has been
observed that first nontrivial contribution appears only in fourth order [32].
Without going into details we write the results obtained in [32]. We denote
by τ the effective spin operator in the ground state sub space of each z-bond
(spanned by the state | ↑↑〉 and | ↓↓〉 ), then the effective Hamiltonian is
given by(in appendices E, we derive the effective Hamiltonian in detail.),

Heff = −
J2
xJ

2
y

16|Jz |3
∑

Qp, Qp = τyi τ
z
j τ

y
k τ

z
k (6.2)
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The above Hamiltonian is defined on a square lattice which is obtained
from hexagonal lattice after replacing each z-bond by a site as shown in Fig.
(6.1). Now if we do a unitary transformation such that for all the horizontal
links of the effective lattice (Fig. 6.1 B) we replace τy → τ z and for all the
vertical links τy → τx, then we can write referring to the Fig. (6.1 C) , the
following Hamiltonian,

Heff = −Jeff



∑

vertices

Qs +
∑

plaquettes

Qp


 (6.3)

where Qs = Πstar(s)τ
x
j and Qp = Πboundary(p)τ

z
j . Here the star denotes the

vertices of the square lattice. This is the famous toric code Hamiltonian
and has been extensively studied in the references [32, 33]. Ground state
of this Hamiltonian is obtained by having all Qs = 1 and all Qp = 1 . It
has been shown that on a torus all the Qp satisfy the constraint ΠpQp = 1 .
All Qs satisfy similar constraint. These two constrains give rise to four fold
ground state degeneracies. From the above constraints we also notice that
on a torus one can only create the excitations in pair. By excitations we
mean a state with eigenvalue of some Qp or Qs to be -1. It has been shown
[32, 33] that when one Qp excitation goes around another Qp excitation, the
wave function does not pick up any phase and the same is true for Qs. But
if a Qp excitation goes around another Qs the global wave function picks
up a phase -1.s Thus all Qps (and Qs) are Bosons among themselves but
mutually they behave like Semions.

Below we present the effective Hamiltonian in the Jordan-Wigner formal-
ism. In Jordan Wigner formalism we are able to write down explicitly the
four fold degenerate ground states. We show that when two quasi particles
are being exchanged the wave function itself get mapped from one degener-
ate ground state to another degenerate ground state. This proves that wave
function behaves as multicomponent object revealing the characteristics of
anyonic system. Also we demonstrate that the matrix representing the ef-
fect of exchanging two quasi particles along horizontal direction and vertical
direction commute with each other. This conforms, in a most elementary
way, the one dimensional nature of braid group representation associated
with this exchange operation. This is in conformity with the abelian nature
of the quasi particles in the large Jz limit.
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6.1 Toric code limit in Jordan-Wigner formalism

In Jordan-Wigner formalism the effective Hamiltonian becomes quite simple
and specifying the four ground sector can be done easily. Let us write the
Hamiltonian in terms of ψ and χ fermion, as written in equations (3.46,
3.47, 3.48). Again we work in a particular gauge choices which corresponds
to the J-W path given in Fig (3.3). Similar to Eq. (6.1), we write the
Hamiltonian into two parts, H0 which is given by z − z interaction and H ′

which contains x − x and y − y interaction and is treated as perturbation
to H0. Further, depending on whether a bond is on the side boundary or in
interior we separate H0 (and H ′) into H0b and H0i (H ′

b and H ′
i ). Thus

we have ,

H0 = H0b +H0i +Hend (6.4)

H0b = −
∑

mn

Jz(2χ
†
mnχmn − 1)(2ψ†

mnψmn − 1) (6.5)

H0i = −
∑

mn

Jz(2ψ
†
mnψmn − 1); Hend = −SJz(2ψ†

MNψMN − 1)(6.6)

In above Hend denotes the bond interactions where Jordan-Wigner paths
end points meet each other (referring to the Fig. 6.2, it is given by bond
joining site ‘1’ and ‘32’). We rewrite H ′ in the following way,

H ′ = H ′
b +H ′

i (6.7)

H ′
b =

∑

mn

Jx(ψ
†
m,n + ψm,n)(ψ

†
m+1,n+1 − ψm+1,n+1)

+
∑

mn

Jy(ψ
†
m,n + ψm,n)(ψ

†
m,n+1 − ψm,n+1)

H ′
i =

∑

m,n

JyU m,n
m,n+1

(ψ†
m,n + ψm,n)(ψ

†
m,n+1 − ψm,n+1) (6.8)

In above equations subscript ‘b’ and ‘i’ refers to boundary bonds and
internal bonds respectively. U m,n

m,n+1
is defined on each slanted y-link con-

necting site (m,n) and (m,n+1) and is given by,

U m,n
m,n+1

= (2χ†
m,n
m,n+1

χ m,n
m,n+1

− 1). (6.9)

Now looking at the Hamiltonian H0 we can very easily find the ground
state subspace by specifying the χ and ψ fermion occupation numbers on
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each link. It is clear from Eq. (6.5) that for every internal z-bond we have
two degenerate states minimising the bond energy. They corresponds to
states where both ψ and χ fermion are present or absent. Moreover except
the end z-bond all the other boundary z-bonds have ψ fermion occupation
number 1. Thus there is no degeneracy associated with these bonds. This
also imposes a constraint on the number of ψ fermions which is given by,

Πmnρ m,n
m,n+1

= 1 ρ m,n
m,n+1

= U m,n
m,n+1

(6.10)

Now we write down the effective Hamiltonian obtained in fourth order of
perturbation. For convenience we separate the plaquette operators into two
parts, one which is in the interior of the lattice and the rest which shares
boundary.

Heff = −Jeff
∑

pi

Qpi − Jeff
∑

pb

Qpb − JeffQend (6.11)

Qpi = nm,nnm+1,n nm,n = (2ψ†
m,nψm,n − 1) (6.12)

Qpb = nm,nnm+1,nρ m,n
m,n+1

ρ m,n
m,n+1

= U m,n
m,n+1

(6.13)

The expression for Qend is that of Qpb multiplied by S. ‘pi’ and ‘pb’
refer to the interior and boundary plaquettes respectively. Every internal
z-links are associated with one χ fermion and one ψ fermion. They appear
in the effective Hamiltonian as ρm,n and nm,n respectively. Every boundary
z-links are associated with one ψ fermion which appears as nm,n in effective
Hamiltonian. All slanted boundary y-links are associated with one χ fermion
operators which appear as ρ m,n

m,n+1
. The effective plaquette operators are just

the product of above mentioned density operators appropriately (obtained
in perturbation theory). An internal plaquette operator is given by the
product of nm,n of two z-links associated with this plaquette. Thus it is very
easy to construct eigenstates of these plaquette operators, we only need to
specify the fermion occupation numbers on each z-bonds. We have already
discussed that there are four ways to make all effective plaquette operators
eigenvalues to be 1. In the table below we specify the eigenvalues of density
operators corresponding to four degenerate ground state wave functions.
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Figure 6.2: (A) A pair of plaquette excitations have been created on plaque-
tte ‘L’ and ‘R’. This is done by applying tk on the ground state. (B) The
plaquette excitation ‘R’ has been moved to a new position by the application
of suitable string operator.

S n0,N n0,m ρ m,n
m,n+1

ρm,n(nm,n) ρn,M

m 6= N n 6= 0 n 6= 0

|G〉1 1 1 1 1 1 1

|G〉2 1 1 1 -1 -1 -1

|G〉3 -1 -1 1 1 1 -1

|G〉4 -1 -1 1 -1 -1 1

6.2 Excitations and more

Excitations over these ground states can be easily represented by changing
the occupation number of fermions consistent with the boundary conditions.
The characterisation of excited states are also straightforward. Here we
discuss some elementary braiding properties of such excitations. Braiding
properties of excitations has been discussed in detail in [32, 33]. Here we
take a small lattice and study the braiding properties in terms of Jordan
Wigner fermions. Namely we elaborate to show the multicomponent nature
of ground state wave function. We take a 4 × 4 lattice and try to see the
braiding properties of excitations. We start with ground state |G〉1. We
remember that the choice 1 ensures a state which is denoted by all density
operator to have eigenvalue 1 which means at every dimer all the ψ fermions
are present. Moreover the χ fermions on the internal z-bonds and on the
slanted y-bonds are also occupied. This ensures that S = 1. It is to be
noticed that we can not change the ψ0,m(m 6= N). This is clear from the
Eq. (6.4). If we do so we get a state which is outside the ground state
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manifold. The Ground state for this sector(choice 1) can be written as,

|G〉1 = Πi,jψ
†
iχ

†
j|0〉 (6.14)

In the above equation products go over all normal bonds. Other ground
states can also be written easily by fixing the occupation number for all the
fermions at every z bond following the above table. Now we create a pair
of excitations above the Ground state and examine the effect of exchanging
these excitations over the torus. For this we take the ground state given
by Eq. (6.14). The operator (ψmnχmn + ψ†

mnχ
†
m,n) acting on |G〉1 creates a

pair of excitations at the plaquette shared by the z-bond labelled by (m,n).

In Fig. (6.2 A), the operator, tk = ψkχk + ψ†
kχ

†
k produces a pair of flux

excitations shown by shaded plaquettes labelled by ‘L’ and ‘R’. Now we
move the plaquette excitation ‘R’ and bring it to a new position as shown
in (6.2 B). The operator which does this operation is given by,

Slb = tlti,mtntotptmatb. (6.15)

Here ti,m is given by , ti,m = (χi,m+χ†
i,m), same is true for tab. They are

defined on slanted normal bonds connecting the z-dimer ‘i’ and ‘m’ (and ‘a’
and ‘b’ respectively). Now to exchange the ‘L’ and ‘R’ excitation, we bring
‘R’ excitation to the initial position of ‘L’ excitation and then bring the
‘L’-excitation to the initial position of ‘R’ excitation. The operator which
does this complete operation is given by,

Σh = Πi,〈j,k〉titj,k (6.16)

Here the product goes over all the z-links of the lattice. However we
find that Σh|G〉1 = |G〉2 where |G〉2 is the ground state wave function corre-
sponding to choice 2. Similarly it can be checked that Σh|G〉3 = |G〉4. Up to
now all operators correspond to a particular Jordan-Wigner path(which we
call Hamilton path) which winds the lattice in Horizontal direction. We can
define another Jordan-Wigner path which corresponds to vertical winding
for which we also obtain four degenerate ground state |G〉′i. We can make a
connection between this two sets of Ground states and get one to one map-
ping between these two sets of ground state. For the vertical winding, we
see that after a full translation the state Σv|G〉1 goes to = |G〉3 and Σv|G〉1
goes to = |G〉3. We denote by Wh the operator which summarises complete
exchange effects in two different directions. Thus we can write,
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


|G〉1
|G〉2
|G〉3
|G〉4


→Wh




|G〉1
|G〉2
|G〉3
|G〉4


 ;Wh =




0 1 0 0
1 0 0 0
0 0 0 1
0 0 1 0


 (6.17)

Similarly for the vertical winding we can write,




|G〉1
|G〉2
|G〉3
|G〉4


→Wt




|G〉1
|G〉2
|G〉3
|G〉4


 ;Wt =




0 0 1 0
0 0 0 1
1 0 0 0
0 1 0 0


 (6.18)

Now it is easy to check that Wh and Wt commutes. It is important to note
that toric code Hamiltonian is obtained from original spin Hamiltonian at
4th order of perturbation theory. All the terms in the effective Hamilto-
nian describe noninteracting abelian anyons. However a more detail study
[47, 74] in toric code limit which extends beyond 4th order of perturbation
shows presence of emergent fermions and interacting anyons. It is to be
noted that Refs. [47, 74] use perturbative continuous unitary transforma-
tions (PCUT) instead of J-W transformations (or Majorana fermions) as
analytical method.



One day the Nouns were clustered in the street.
An Adjective walked by, with her dark beauty.

The Nouns were struck, moved, changed.
The next day a Verb drove up, and created the Sentence.

Permanently-Kenneth Koch

Chapter 7

Stability of Kitaev Model
against Ising perturbations

In chapter 2 we have seen that the exact solution of Kitaev model was pos-
sible because original spin Hamiltonian was mapped to a non-interacting
Hamiltonian describing nearest neighbour hopping interactions for Majo-
rana fermions. Moreover the gauge fields coupled to the hopping matrix
elements were static. These two facts rendered the original spin Hamilto-
nian quadratic in Majorana fermions which was exactly solvable. In this
chapter we study the dynamics of gauge fields in an elementary way. We
make the gauge fields dynamic by adding suitable interactions to the original
Hamiltonian of Kitaev model. When gauge fields are not conserved then a
generic term in the Hamiltonian describes interaction among four Majorana
fermions. There are many possible ways to introduce such dynamics to Z2

gauge fields in Kitaev model. One way to achieve this is to add a Zeeman
term to Kiteav Hamiltonian which has already been treated in [33]. It has
been shown that addition of such interaction to original Kitaev model causes
gapless phase to acquire a gap. But this study was done primarily to investi-
gate the topological nature of the model rather than investigating the gauge
field dynamics. Here we introduce dynamics to the gauge fields by adding a
nearest neighbour Ising interactions to Kitaev Hamiltonian. We show that
depending on the strength of the Ising interaction the Hamiltonian describes
a spin liquid regime where Z2 gauge fields are static (conserved) and a mag-
netic ordered state where Z2 gauge fields are dynamic. A quantum phase
transition is observed between these two phases as we vary the strength of
Ising interactions.

63
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7.1 Kitaev-Ising(K-I) model

The Hamiltonian we study is, HK−I = HK + HI where HK refers to the
original Kitaev interactions and HI refers to Ising interactions.

HK = −Jα
∑

α−bond

σαi σ
α
j , α = x, y, z ; HI = −λ

∑

all bond

σzi σ
z
j (7.1)

If the coupling constant λ is positive then the coupling of Ising Hamil-
tonian is ferromagnetic otherwise it is anti-ferromagnetic. We study both
the cases. Let us explain how the Ising interaction introduces gauge field
dynamics. We know that the Kitaev model (i.e, λ = 0) contains conserved
operators (Bp) (Eq. 2.3) associated with each plaquette of honeycomb lat-
tice . It can be readily checked that Bp does not commute with the Ising
interactions of HK−I . We know that when we fermionise the spin operators
Bp can be re-expressed as a product of appropriate Z2 gauge fields associ-
ated with the bonds of the plaquette ‘p’. We will show that this Z2 gauge
fields are no longer conserved as they do not commute with the resulting
fermionised interaction terms derived from Ising perturbations.

7.2 Classical ground states

Before proceeding further with the fermionic Hamiltonian obtained from
HK−I , first we discuss about the possible classical ground states of the
Hamiltonian (7.1) so that we can describe appropriate mean field analysis
around these classical minima. For λ positive (ferromagnetic Ising inter-
action), the classical minima is obtained by aligning all the spins in the
positive z direction or in the negative z direction [83]. The classical energy
density per unit cell for such configuration is,

EFM = −(3λ+ 1). (7.2)

However for λ negative, there exist two classical minima depending on
the relative magnitudes of J and λ. In the Fig (7.1), we have drawn these
two classical configurations. The left one is called dimer state and the right
one is the familiar Neel state.

Classical energy density for these two configurations are given by ,

EDimer = −J − λ; ENeel = −3λ+ J (7.3)

EDimer − ENeel = 2(λ− J) (7.4)
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Dimer State Neel state

~a1

~a2

Figure 7.1: Two different classical configurations minimising the classical
energy density at different parameter regime. For λ ≤ J , the dimer state
minimises the classical energy. For λ ≥ J , Neel state yields the minimum
classical energy density.

Thus it is clear that for λ ≤ J , it is the Dimer state which corresponds to
classical minima.

classical energy density

FM State

Dimer
State

Neel State

λ→λ = 0λ = −1

Figure 7.2: The classical phase diagram for the Hamiltonian (7.15). For λ
negative we expect a transition from Dimer state to Neel state at λ = −1.
We have taken J = 1.
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Having discussed the classical configurations of spins which minimises
HK−I , we proceed with the Hamiltonian given in Eq. (7.1). We will develop
appropriate mean field analysis around these classical configurations. Now
we discuss the fermionised form of the spin Hamiltonian given by Eq. (7.1).

7.3 Fermionisation of Kitaev-Ising model

Following Kitaev’s Majorana fermionisation [33], we substitute the spin-
1/2 operators in terms of appropriate combination of Majorana fermions,
namely, σαi = icib

α
i , then we get,

Hk =
∑

x−link

Jxib
x
i b
x
j icicj +

∑

y−link

Jyib
y
i b
y
j icicj +

∑

z−link

Jzib
z
i b
z
j icicj(7.5)

HI =
∑

all−link

ibzi b
z
j icicj (7.6)

Where the bαi and ci are Majorana fermions. Here the index ’i’ belongs to
sub lattice ’1’ and ’j’ belongs to sub lattice ’2’. In previous chapters we
have used ‘a’ and ‘b ’as the sub-lattice indices, here we use ‘1’ and ‘2’ as the
sub-lattice index as here we use the letter ‘b’ to denote gauge fields.

We see that the terms (ibxi b
x
j ) and (ibyi b

y
j ) (which are nothing but the Z2

gauge fields appearing on x and y bonds) commute with the Hamiltonian as
before. But the gauge fields ibzi b

z
j appearing on z-bonds no longer commute

with Hamiltonian. If we apply the Jordan-Wigner formalism we get the
gauge fields on x and y bonds set to 1. Then we are left with the following
Hamiltonian,

Hkitaev =
∑

x−link

Jxicicj +
∑

y−link

Jyicicj +
∑

z−link

Jzib
z
i b
z
j icicj (7.7)

Hising =
∑

all link

ibzi b
z
j icicj (7.8)

We have already mentioned that addition of Ising interactions to Kitaev
model makes the flux operator Bp not to commute with the Hamiltonian
Hki . In terms of fermions this is obvious from the fact that the quantity
ibzi b

z
j on z-bonds do not commute with the Hamiltonian. Working with the

open boundary condition, we get the expression of Bp as,

Bp = ibz1,ib
z
2,iib

z
1,jb

z
2,j (7.9)
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where ‘1’ and ‘2’ refers to the sub-lattice index and ‘i’ and ‘j’ denote the
two z-bonds shared by a plaquette.

7.4 Mean-field decomposition

Looking at the equations (7.7) and (7.8), we observe the following facts. The
Hamiltonian contains terms quatric in Majorana fermions. In the absence of
Ising interactions Hamiltonian effectively reduces to quadratic in ‘c’ fermions
as the combination ibzi b

z
j in each quatric term commute with the Hamiltonian

and also commute among themselves. But this is not the case in the presence
of Ising interactions. Thus the ‘b’ fermions also acquire their own dynamics.
To proceed further with this situations, we make appropriate mean field
decompositions for each four fermion terms of the Hamiltonian given in Eq.
(7.7) and in Eq. (7.8). Let us write the mean field decomposition for one of
the generic term in the Hamiltonian,

ibzi b
z
j icicj = 〈ibzi bzj 〉icicj + ibzi b

z
j 〈icicj〉

−〈icibzi 〉icjbzj − 〈icjbzj 〉icibzi
−〈ibzi bzj〉〈icicj〉+ 〈icibzi 〉〈icjbzj 〉 (7.10)

We introduce following order parameters which will be used in subse-
quent analysis,

〈icibzi 〉 = ∆1
z (7.11)

〈icjbzj 〉 = ∆2
z (7.12)

〈ibzi bzj 〉 = γα α = x, y, z (7.13)

〈icicj〉 = γ0α α = x, y, z (7.14)

We observe that by doing this mean field decomposition we reduce the
Hamiltonian into one which contains terms quadratic in majorana fermion
operator. γα can be identified with the previously mentioned gauge field
(conserved for only Kitaev Hamiltonian). The term ∆1

z is nothing but 〈σ1
i 〉

and hence measures the spin-order of the system. Here the index ‘1’ and
‘2’ refer to sub-lattice index. From the symmetry of our problem we expect
γx = γy and we call it γh. Similarly we put γ0x = γ0y = γ0h. A nonzero
value of ∆1

z implies the emergence of spin-order due to the Ising Interaction.
On the other hand, a non-vanishing value of γα is a measure of residual
conserved Z2 gauge fields associated with pure Kitaev model. Inserting the
Eq. (7.10) into Eq. (7.7) and in Eq. (7.8) we get,
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HK−I =
∑

x−link

Jxicicj +
∑

y−link

Jyicicj

+ (Jz + λ)

(
∑

z−link

γzicicj + γ0zibibj −∆1
zicjbj −∆b

zicibi +Nz(∆
1
z∆

2
z − γzγ0z)

)

+ λ

(
∑

x−link

γhicicj + γ0hibibj −∆a
zicjbj −∆b

zicibi +Nx(∆
1
z∆

2
z − γhγ0h)

)

+ λ



∑

y−link

γhicicj + γ0hibibj −∆1
zicjbj −∆2

zicibi +Nx(∆
1
z∆

2
z − γhγ0h)


 (7.15)

From now on we set Jx = Jy = Jz = 1 and Nx = Ny = Nz = N for conve-
nience without loss of generality.

7.5 Mean field ansatz around classical minima

First we derive mean field solutions for the spectrum around ferromagnetic
state and Neel state. For this we substitute in Eq. (7.15) , ∆1

i = ∆1 and
∆2
j = ∆2, where the index ‘i’ belongs to sub-lattice ‘1’ and ‘j’ belong to sub-

lattice ‘2’. Ferromagnetic state and Neel state can be obtained by putting
∆1 = ∆2 and ∆1 = −∆2 respectively..

Then rearranging the terms of Eq. (7.15), we get the following,

HK−I =
∑

x−link

(1 + λγh)icicj +
∑

y−link

(1 + λγh)icicj +
∑

z−link
γz(1 + λ)icicj

+
∑

x−link

λγ0hibibj +
∑

y−link

λγ0hibibj +
∑

z−link

γ0z(1 + λ)ibibj

−
∑

i∈′1′

(1 + 3λ)∆2
zicibi −

∑

i∈′2′

(1 + 3λ)∆1
zicibi

+ N(1 + 3λ)∆2
z∆

1
z − 2Nλγhγ0h −N(1 + λ)γzγ0z (7.16)

The first line in the above equation describes the hopping Hamiltonian
for the ’c’ Majorana fermions (which we describe as the matter field for
only Kitaev model). The second line describes the hopping interactions for
‘b’ (referred as gauge fields) Majorana fermions. The last line describes a
coupling between ‘b’ fermions(gauge fields) and ‘c’ fermions(matter fields).
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For future references we define following parameters,

Jch = (1 + λγh) ; Jcz = γz(1 + λ)

Jbh = λγ0h ; Jbz = γ0z(1 + λ)

t1 = (1 + 3λ)∆1
z ; t2 = (1 + 3λ)∆2

z (7.17)

To proceed with the mean field Hamiltonian (Eq. (7.16)), we go to mo-
mentum space by introducing usual Fourier transformation for the fermionic
field operators.

ci,1 =
1√
M

∑

k

eirikck,1, cj,2 =
1√
M

∑

k

eirjkck,2 (7.18)

with ck = c†−k to ensure that ci’s are Majorana fermions. Substituting (7.18)
in (7.16) and simplifying we get,

H =
∑

k∈HBZ

(
c†1,k c†2,k b†1,k b†2,k

)



0 ifk −it2 0
−if∗k 0 0 −it1
it2 0 0 igk
0 it1 −ig∗k 0







c1,k
c2,k
b1,k
b2,k




+ M2(1 + 3λ)∆2
z∆

1
z − 2M2λγhγ0h −M2(1 + λ)γzγ0z (7.19)

Where gk and fk are given by,

fk = Jche
ik1 + Jche

ik2 + Jcz (7.20)

gk = Jbhe
ik1 + Jbhe

ik2 + Jbz (7.21)

After diagonalising the Hamiltonian we get the dispersions as ,

E1−4 = ± 1√
2

(
|fk|2 + |gk|2 + t21 + t22 ± δk

) 1

2 (7.22)

In the above equation we have wrote the 4 bands of the spectrum in a
compact way. where δk is given by,

δk = {4(f∗kgk − t1t2)(−fkg∗k + t1t2) + (|fk|2 + |gk|2 + t21 + t22)
2}1/2 (7.23)
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7.5.1 Spectrum for Mean field around FM and Neel State

To get the ground state energy for mean field ansatz around FM state, we
substitute ∆z

1 = ∆z
2 and for Neel State we substitute ∆z

1 = −∆z
2. From the

Eq. (7.19) we can write for ground state energy density Eg per unite cell as
given below,

Eg = − 1

M2

∑

k

(Ek,1 + Ek,2) + a(1 + 3λ)∆1
z∆

1
z − 2λγhγ0h − (1 + λ)γzγ0z

(7.24)

where a = 1 corresponds to ground state energy around FM state and
a = −1 is the ground state energy around Neel state. Taking thermody-
namic limit we convert the summation to integral in Eq. (7.24) and then
performing change of variables we obtain for ground state energy,

Eg = − 1

2π2

∫ π
2

0
dkx

∫ 2π

0
dky (Ek,1 + Ek,2)

+a(1 + 3λ)∆1
z∆

1
z − 2λγhγ0h − (1 + λ)γzγ0z, (7.25)

where Ek,1 and Ek,2 have been defined earlier and |fk| , |gk| are given by,

|fk| =
√

(ǫ2ck + ∆2
ck) ; |gk| =

√
(ǫ2bk + ∆2

bk)

δk = {(|fk|2 − |gk|)2 + 4t2|fk + gk|2}1/2

ǫck = Jcz − 2Jch cos kx sin ky ; ∆ck = 2Jch cos kx cos ky

ǫbk = Jbz − 2Jbh cos kx sin ky ; ∆ck = 2Jbh cos kx cos ky (7.26)

In the next section we derive the ground state energy density around
Dimer state.

7.5.2 Spectrum for Mean field around dimer state

From the discussions made in Section (7.2), we get the following spatial
dependency for the spin-order parameter ∆ for Dimer state,

∆1,2
i = ei

~Ri. ~G∆ where ~G2 =
4π√

3
êy (7.27)

Here ~G2 is the reciprocal lattice vector corresponding to the lattice trans-
lation vector ~a1 and ~a2 shown in Fig (7.1). After inserting Eq. (7.27) in
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Eq. (7.15) and then performing Fourier transformation we get the k-pace
Hamiltonian as follows,

H =
∑

k

(
ifkc

†a
k c

b
k + igkb

†a
k b

b
k + tic†ak b

a
k+G2/2

+ tic†bk b
b
k+G2/2

)

+ N(J − λ)∆2 − 2Nλγhγ0h −N(1 + λ)γzγ0z (7.28)

Where fk and gk are given by (7.20) and t = (J − λ) . N is the number
of unit cells. We get the following dispersions,

E1−4 = ± 1√
2

(
|fk|2 + |lk|2 + 2t2 ±

√
(|fk|2 − |lk|2)2 + 4t2|fk + lk|2

) 1

2

(7.29)

E5−8 = ± 1√
2

(
|gk|2 + |hk|2 + 2t2 ±

√
(|gk|2 − |hk|2)2 + 4t2|gk + hk|2

) 1

2

(7.30)

Where gk and fk are as before and hk and lk are given by,

hk = −Jcheik1 − Jcheik2 + Jcz (7.31)

lk = −Jbheik1 − Jbheik2 + Jbz (7.32)

Similar to Eq. (7.25), we can easily write down the ground state energy
density per unit cell for the Dimer state. Having derived the spectrum for
mean field solutions around each classical configurations we proceed to ob-
tain self consistent solutions for various order parameters given in equations
(7.11,7.12,7.13,7.14).

7.6 Minimisation of ground state energy

To calculate the various order parameters (corresponding to various mean
field ansatz) we minimise the respective ground state energy with respect
to each order parameter and solve for resulting equations self-consistently.
Here below we write the self consistent equations for various order parameter
for FM and Neel state. Solutions corresponding to Dimer state can be found
in a similar way.
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γh =
1

2π2

∫ π
2

0
dkx

∫ 2π

0
dky

(
∂Ek,1
∂Jcz

+
∂Ek,2
∂Jcz

)
(7.33)

γz =
1

2π2

∫ π
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0
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0
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0
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+
∂Ek,2
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)
(7.36)

∆ = − a

4π2

∫ π
2

0
dkx

∫ 2π

0
dky

(
∂Ek,1
∂t

+
∂Ek,2
∂t

)
(7.37)

In the last equation ‘a’ is 1(-1) for solution around FM(AFM) state.
After evaluating all the parameters self consistently we calculate mean value
of Bp (the flux operator). We know that the flux operator is given by,

Bp = ib1,ib2,iib1,jb2,j (7.38)

Where ‘i’ and ‘j’ are two z-bonds shared by the hexagonal plaquette ‘p’
and 1, 2 refers the sub lattice indices. 〈Bp〉 denotes the average value of
flux operator and a non-vanishing value of this signifies a spin liquid phase
(which we also refer as Kitaev phase). In the following section we present
the behaviour of 〈Bp〉 and ∆ as a function of λ to explain the possible phases
of HKI.

7.7 Numerical results

7.7.1 For FM Ising interaction

We begin with positive λ corresponding to ferromagnetic Ising perturbations
to the Kitaev Hamiltonian. First we plot the spin-order parameter and flux-
order parameter in the figure below. We see from Fig (7.1) that at λ = 0.07,
spin order parameter ∆ takes a finite value discontinuously. At the same
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value of λ the flux order parameter also goes to zero from 1. It is evident
that this marks phase transition from spin liquid phase to magnetically
ordered state. The Kitaev phase which is characterised by a finite flux order
parameter is stable up to λ = 0.07. This transition is first order as indicated
by the Fig. (7.4) where we plot ground-state energy density as a function
of λ.
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Figure 7.3: The red points corresponds to flux order parameter and black
points corresponds to spin-order parameter. Both of them undergoes a dis-
continuous change around λ = 0.1

7.7.2 For AFM Ising interaction

We have already discussed that for small λ it is the Dimer state which
corresponds to true classical minima. This is also evident from the ground
state energy densities as shown in Fig. (7.6). In Fig. (7.5), we plotted 〈Bp〉
and ∆ verses λ. In this case we also observe a discontinuous change of flux
order parameter 〈Bp〉 and ∆ around λ = −0.1.
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Figure 7.4: Here we plot the ground state energy density vs λ . The be-
haviour of energy density suggests a first order phase transition at λ = 0.07.
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Figure 7.5: The pink points correspond to flux-order and black points corre-
spond to spin-order parameter. We observe discontinuous changes for both
the order parameters as λ is being varied

7.8 Discussion

From the above results we conclude that around λ = 0 , there is a small
region(of about 10 percent of J) where Kitaev model is stable and flux or-
der parameter is non-zero describing a spin liquid state. As we increase λ
further the system undergoes a ‘first order’ transition at mean field level to
a magnetic state and flux-order parameter vanishes. The stability of Kitaev
phase around λ = 0 might be important from the view point of experimental
realisation of Kitaev model [96, 97]. Because there may have trace of other
kind of interactions to be present when realizing Kiteav interaction experi-
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Figure 7.6: Here we plot the ground state energy density vs λ . The black
line corresponds to energy density for Neel state and red line corresponds
to energy density for Dimer state. We see that for intermediate value of λ
it is the Dimer state which corresponds to true minima.

mentally. Our analysis gives a first hand measure of how much impurity of
interaction may be acceptable in practical realisation of Kitaev model.
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If the red slayer think he slays,
Or if the slain think he is slain,

They know not well the subtle ways
I keep, and pass, and turn again.

Brahma-Ralph Waldo Emerson

Chapter 8

3D Kitaev model

8.1 Introduction

In previous chapters we have been studying various many body aspects of
the 2 dimensional Kitaev model. We have seen that this spin 1/2 model
can be solved exactly. It is very remarkable in the sense that exactly solv-
able models are not very common [137–139]. We have also seen that this
spin model represents a quantum spin liquid state. It supports anyonic ex-
citations which can be useful in quantum computation. Given the novelty
of this 2 dimensional model, it is very natural to search for other possible
Kitaev like models. Thus it is no surprise that following Kitaev model, a
number of exactly solvable models have been proposed in 2 dimension as
well as in 3 dimension with Kitaev like interactions [85–89]. Apart from the
exact solvability one is also interested to examine how the dimensionality
and the difference in underlying lattice structures yield new topological or-
der and nontrivial statistics of excitations (if any) in all these models. In
this chapter we introduce a 3 dimensional generalisation of the Kitaev model
[87]. We have seen that exact solution of 2D Kitaev model was possible as
it could be mapped to non-interacting Majorana fermion hopping problem
with background static Z2 gauge fields. This feature remains intact in all
the models with Kitaev like interactions. However depending on underlying
lattice on which the model is defined, it possesses many new features com-
pared to original Kitaev model. We first give details of the 3D lattice on
which our 3 Dimensional Kitaev model has been defined.

77
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8.2 The 3D lattice

We note two features of the honeycomb lattice that are very important to the
construction of the 3D lattice : (1) The coordination number of the lattice
is 3. (2) The three types of links x, y and z are distributed in such a way
that two links of the same type do not touch each other. In the figure (8.1,
A) we have drawn a part of the 3D lattice. Let us explain how to construct
this 3D lattice in steps. We can describe the 3D lattice as a connected 2D
lattices parallel to x − y plane. We first explain how to construct the 2D
lattices parallel to x − y plane. Then we will show how to connect these
2D lattices in z-directions to get the complete 3D lattice. Every 2D plane
repeats itself after every fourth plane in the z-directions.

Let us first construct the 2D lattice on the plane z = 0. This 2D lattice,
essentially, contains disconnected 1 dimensional chains parallel to x-axis. In
the Fig. (8.1), the red lines, r1, r2 and r3 denote such 1 Dimensional chain.
It is to be noticed that these 1D chains are completely disconnected. If
the distance between two sites in a given chain is unity then the distance
between two parallel disconnected chains are of 2 units. We can write for
the position of the sites of this 1D chains as,

~r = rxx̂+ 2ry ŷ ; rx, ry ∈ integer (8.1)

Now let us construct the 2nd plane which is defined by z = 1. Sim-
ilar to the 1st plane it also contains disconnected 1D chains but here the
disconnected 1D chains are parallel to y-axis. In the Fig. (8.1), they are
represented by pink lines, p1 and p2, etc. The co-ordinates for the sites of
the 2nd layer are,

~p = 2pxx̂+ pyŷ + ẑ ; px, py ∈ integer (8.2)

The third plane is specified by z = 2. It is identical to the first plane but
only shifted by 1 unit in y-direction. The black lines b1 and b2 denotes such
1D chains. The co-ordinates of the sites for this plane are given by,

~b = bxx̂+ (2ry + 1)ŷ + 2ẑ ; bx, by ∈ integer (8.3)

Similarly the fourth plane is given by z = 3 and it is a repetition of 2nd
plane but shifted along x-direction by unite distance. Thus we can write for
the sites of this plane,

~l = (2lx + 1)x̂+ lyŷ + 3ẑ ; lx, ly ∈ integer (8.4)
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Figure 8.1: In the right side we show a part of the 3D lattice. In the left an
elementary structure of 3D lattice has been shown. The complete 3D lattice
can also be constructed by suitably pudding up this elementary object. The
red bonds are x-bonds, blue bonds are y-bonds and the vertical bonds are
z-bonds. Sites 1 to 10 constitute an elementary loop in the lattice. Sites 1
to 18 form an elementary object mentioned before. An elementary object
contains four elementary loops. These loops are associated with conserved
quantities of the 3D Kitaev model which are analogous to Bp in 2D Kitaev
model. This 3D lattice is a bipartite one and we have shown this in the right
side of the figure. The small black points and the big black points indicate
different sub-lattices.
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1

2

x link
y link

z link

a−sub lattice

b−sublattice

~A = 2ax̂

~B = 2aŷ

~C = ax̂+ ax̂+ 2ax̂

~R = m~A+ n ~B + p ~C

A section of 3d lattice

Figure 8.2: The 3D lattice. The four sites inside the closed loop constitute
a unit cell.

Now the fifth plane is exactly on top of the first plane and situated at
z = 4. After every four plane the patterns repeat. We can easily construct
the 3D lattice by suitably connecting the sites of different planes. The rule
is the following. Connect all the sites which are at unit distance from each
other. This will suffice to describe the 3D lattice. To see how this makes
the 3D lattice completely connected let us see the above figure. In each 1D
chain alternative sites are connected with the sites belonging to the plane
just above and below respectively. This is true for each 1D chain.

Now we can parameterise the lattice sites completely. For this purpose
we note that the unit cell contains four sites. Since the lattice is bipartite,
it is convenient to introduce two indices to label the sites within a unit cell;
µ = 1, 2 denotes the dimer to which a site belongs and α(= a, b) denotes
the sub lattice (see Fig. (8.2)) indices. The position vector of a unit cell is
given by,

r = ma1 + na2 + pa3, m, n, p ∈ integer, (8.5)

a1 = 2x̂, a2 = 2ŷ, a3 = x̂ + ŷ + 2ẑ. (8.6)

Where x̂, ŷ and ẑ are unit vectors along x, y and z directions respectively.
The location of the sites {(µ, α)} in the unit cell at r are given as follows:

(1, a) → r− ŷ

2
− ẑ (8.7)

(1, b) → r− ŷ

2
(8.8)



8.3 The 3D Kitaev model 81

(2, a) → r +
ŷ

2
(8.9)

(1, b) → r +
ŷ

2
+ ẑ (8.10)

8.3 The 3D Kitaev model

In the Fig. (8.2), we have labelled 4 different sites which belong to a unit
cell. Dashed bonds refer to x-interaction, solid horizontal links refer to
y-interaction and vertical bonds refer to z-interactions. We have taken 2
z-bonds inside the unite cell. This lattice is a bipartite lattice. We denote
the coordinate of unit cell as (i, j, k) where ‘i’ stands for ‘x’ co-ordinate and
so on. The length of each x/y/z bond is taken to be of unity. Then the
Hamiltonian is given by,

H =
∑
−Jxσxi,j,k,1aσxi,j,k−1,2b − Jyσyi+1,j,k−1,2bσ

y
i,j,k,1a

−Jxσxi,j,k,2aσxi,j,k,1b − Jyσyi,j,k,2aσ
y
i,j+1,k,1b

−Jz(σzi,j,k,1aσzi,j,k,1b + σzi,j,k,2aσ
z
i,j,k,2b) (8.11)

Similar to 2D Kitaev model, 3D Kitaev model also have conserved loop
operators associated with each plaquette. The conserved quantity associated
with the plaquette ‘p’ as shown in Fig. (8.1, B), is given by,

Wp = σx1σ
y
2σ

y
3σ

y
4σ

z
5σ

x
6σ

y
7σ

y
8σ

y
9σ

z
10 (8.12)

Like before the conserved quantity associated with each plaquette is the
product of out going sigma matrices of each sites of the plaquette. It is easy
to check that like 2D Kitaev model [Wp,Wq] = 0 and [Wp,H] = 0 . Thus
they form a complete set of commuting operators.

8.4 Fermionization of spin operators.

In the next step, following Kitaev, we use a representation of Pauli matrices
in terms of Majorana fermions to obtain a fermionic Hamiltonian from Eq.
(8.11). In chapter 2, section (2.1) we have discussed it in detail, here we
present the final form of the fermionised Hamiltonian.
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H =
i

2

∑

j,k

Âjkcjck,

Âjk =

{
Jαjk ûjk if j and k are linked,

0 otherwise,

ûjk = ib
αjk
j b

αjk
j . (8.13)

In the above equation ci and bαikj are the Majorana fermions. We note that
ûjk = −ûkj, and in the sum the links are treated as directed and therefore
counted twice. We use a hat to emphasise that ûjk is an operator; ujk is the
corresponding eigenvalue and takes values ±1. Further,

[H, ûjk] = 0, [ûjk, ûlm] = 0 ∀ j, k, l,m. (8.14)

Therefore, the Hilbert space breaks up into various sectors, each correspond-
ing to a particular set {ujk}; the matrix elements of H̃ between states be-
longing to different sectors are zero. The Hamiltonian in a given sector is
obtained by replacing the ûjk operators with the corresponding eigenvalues,
ujk.

Hu =
i

2

∑

j,k

Ajkcjck. (8.15)

We notice that the spin model has conserved quantities associated with
all closed loops, where as the Majorana fermionised Hamiltonian 8.15 has
a conserved quantity on each link. The projection of ûjk on the physical
subspace is zero, as consistency would demand. The gauge invariant physical
conserved quantities in the extended space are

Wl =
∏

<j,k>∈l
ûjk, (8.16)

where l, as before, is an arbitrary closed loop and < j, k >’s are the links
which, strung together, forms l.

8.5 Gauge fixing and solving the model

In chapter 2 when studying 2 dimensional Kitaev model, we have seen that
the gauge sector where all the gauge fields ûij are 1, is the ground state
sector. This follows from a beautiful theorem by Lieb in [110]. It studied
problem of free fermions hopping on a d-Dimensional hyper cubic lattice
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with hopping strength |tij|eiθij between nearest neighbour sites i and j. It
was shown that, if |tij | is reflection symmetric about planes which does
not contain any sites, then in the ground state the flux of the phase along
elementary loops, Φ ≡ ∑<ij> θij, equals to π if the length of the loop is
0 mod 4, and equals to 0 if the length is 2 mod 4. Unfortunately, Lieb’s
result cannot be directly applied to our case because the lattice does not
have reflection symmetry about planes which does not contain sites. We
have studied the Hamiltonian in Eq. (8.15) numerically and found that the
ground state has a uniform flux configuration of Φ = 0 for all the elementary
loops. We have taken a lattice of 500 sites and compared the ground state
energy of the uniform flux configuration with other chosen configuration of
fluxes for sufficiently large number of times and we always found that the
uniform flux 1 corresponds to the universal minima. This is consistent with
Lieb’s result since the elementary loop in our lattice has length 10, which is
2 mod 4. In terms of the loop operators, Wl = 1, ∀l. This is satisfied if
ujk = 1, for all links <j, k >. (Of course, any configuration related to this
one by a gauge transformation will also satisfy the above condition on Wl.)
The Hamiltonian in this sector in its explicit form is

H = i
∑

r

[
Jxc1a(r)c2b(r + a3) + Jyc1a(r)c2b(r + a1 + a3) + Jxc2a(r)c1b(r)

+Jyc2a(r)c1b(r + a2) + Jzc1a(r)c1b(r) + Jzc2a(r)c2b(r)
]
, (8.17)

where r and ai are given in Eqs. (8.5) and (8.6). Next we define the Fourier
transformation in the following way,

cr,jα =
1√
PQR

∑

r

e−ir.kck,jα (8.18)

Where ‘j’ can take value 1 to 4 and α = a, b. ck has the property, c−k = c†k.
PQR is the size of the lattice where ‘P ’, ‘Q’ and ‘R’ denote the number of
unit cells taken in each three direction of lattice translations.

r = i ~a1 + j ~a2 + k ~a3

~a1 = (2, 0, 0)

~a2 = (0, 2, 0)

~a3 = (1, 1, 2) (8.19)

~aj is the lattice translation vector. With this definition we get,
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H =
∑

k

ie−ik3(Jx + Jye
ik1)ck,1ac−k,2b

+i(Jx + Jye
ik2)ck,2ac−k,1b

+iJz(ck,1ac−k,1b + ck,2ac−k,2b) (8.20)

k1, k2, k3 are the components of k along the three translation vectors. Using
the property of c−k = c†k and replacing k = −k we rewrite it,

H =
∑

k

i

2
(e−ik3δ1kck,1ac

†
k,2b + eik3δ∗1kc

†
k,1ack,2b)

+
i

2
(δ2kck,2ac

†
k,1b + δ∗2kc

†
k,2ack,1b)

+
i

2
Jz(c

†
k,1ack,1b + c†k,2ack,2b) (8.21)

Here δ1k and δ2k is given by,

δ1k = (Jx + Jye
ik1), δ2k = (Jx + Jye

ik2) (8.22)

Eq. (8.21) looks like following when written in matrix form.

H =
∑

k

(
ξ†1 ξ†2

)( 0 A
AT 0

)(
ξ1
ξ2

)
(8.23)

Where

ξ1 =

(
ck,1a

ck,2a

)
(8.24)

ξ2 =

(
ck,1b

ck,2b

)
(8.25)

and

A =
i

2

(
Jz ei(k3)δ∗1k
δ∗2k Jz

)
(8.26)

The eigenvalue equation of A is given by,

(
0 A

AT 0

)(
η1

η2

)
= λ

(
η1

η2

)
(8.27)

Here η1 and η2 are two component column matrices. These equations yield
the following conditions,
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Aη2 = λη1 AT η1 = λη2 or

ATAη2 = λ2η2 AAT η1 = λ2η1 (8.28)

Solving above equations would give η1, η2, λ
2. Then the actual eigenvectors

of Hamiltonian with eigenvalue ±λ can be made of

(
η1

η2

)
and

(
η1

−η2

)

Solving for the λ we get the eigenvalues as,

Ek =
±1

2
√

2
(∆k ±∆3k)

1

2 (8.29)

The various parameters appearing in the above equation are given by,

∆k = |δ1k|2 + |δ2k|2 + 2J2
z (8.30)

∆3k =
√

(∆2
12k + +4J2

z (|δ2k1 |+ |δ2k2 |+ (δ1kδ2ke−i(k3) + c.c)) (8.31)

∆12k = (|δ1k|2 − |δ2k|2) (8.32)

It is clear that Ek is gapless when ∆3k is equal to ∆k. This condition
gives following equation,

2J2
z δ1kδ2ke

−i(k3) = |δ1k|2|δ2k|2 + J4
z (8.33)

To solve the above equation, we substitute x = δ1kδ2ke
−i(k3) and obtain

J4
z + x2 − 2J2

z x = 0

x = J2
z (8.34)

Thus we get the following condition for gapless spectrum,

δ1kδ2ke
−i(k3) = J2

z

δ∗1kδ
∗
2ke

i(k3) = J2
z (8.35)

The above equation can be written as,

J2
z =

(
J2
x + J2

y + 2JyJx cos k1

)1/2 (
J2
x + J2

y + 2JyJx cos k2

)1/2
.(8.36)
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We notice that the maximum value r.h.s of the above equation can pro-
duce is (Jx + Jy)

2. If Jz is greater than Jx + Jy, Eq. (8.36) can not be
satisfied. Thus gapless region is obtained for Jz ≤ Jx + Jy. Now we look at
the other end. The minimum value r.h.s can produce is given by (Jx−Jy)2.
Thus if Jz is less than Jx − Jy, Eq. (8.36) can not be satisfied for any value
of k1 and k2. So we get another condition, Jz ≥ Jx − Jy or Jx ≤ Jz + Jy.
Similarly we would get Jy ≤ Jx + Jz.

In summary, we can write the condition for the gapless spectrum as,

Jz ≤ Jx + Jy; Jx ≤ Jz + Jy; Jy ≤ Jx + Jz (8.37)

We note that this condition is identical to the gapless condition for the 2d
Kitaev model. The above condition for gapless spectrum is derived assuming
that all J’s are positive. If this is not the case then equation (8.37) should
be rewritten as,

|Jz | ≤ |Jx|+ |Jy|; |Jx| ≤ |Jz |+ |Jy|; |Jy | ≤ |Jx|+ |Jz| (8.38)

Below we have given the phase diagram for positive J ’s. The shaded
region is the gapless region. We have also shown the value of ‘k’ for which
minimum occurs in the gapped phase.

Jz = 0

Jx = 0Jy = 0

(0,0)

(π, π) (π, π)

Figure 8.3: Phase diagram for 3d Kitaev model in the parameter space of
Jx, Jy , Jz. The shaded region is gapless. The value of the kx and ky for
which spectrum is minimum in the gapped region is specified.
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After presenting the formal solutions of the model we proceed to discuss
some many body aspects of this model. We start with a discussion on spin-
spin correlations.

8.6 Spin correlations

Various spin correlations can also be calculated following the way we did for
2D Kitaev model. And no wonder that like Kitaev model and other Kitaev
like model here also correlation function is short range and follows exactly
the same nature as seen in other Kitaev like model. In other words, the
only non-zero correlations are those of operators which are a product of an
arbitrary number of the terms that appear in the Hamiltonian. We notice
that, quite remarkably, this is true for all eigenstates of H, not just the
ground state. In particular, the only non-vanishing two-spin correlations
are those of the terms in the Hamiltonian; it vanishes identically beyond
nearest neighbours. Moreover, this is a general result that holds for both
the gapped as well as the gapless phases. This suggests that the transition
between the two phases cannot be characterised by a local order parameter.
But here a single spin fractionalises into a Majorana fermion and a number
of π fluxes in the elementary loops.

8.7 Excitations

Original Kitaev model which has been defined in 2 Dimensions has anyonic
excitations, i.e., there are particle-like excitations which obey nontrivial ex-
change statistics. Anyons are very specific to two dimensions and cannot
exist in higher Dimensions—the fundamental reason being that in D > 2
there are no nontrivial paths which take a particle around another. How-
ever in three dimensions, excitations localised on loops may show nontrivial
exchange statistics. We will now explain that such excitations may exist in
our model.

In Sec 8.4, we have seen that the link variables ûjk are static. Further,
in Sec 8.5, we have explained that numerically we found that in the ground
state, Wl, the product of ûjk’s along the loop l takes the value 1 for all closed
loops l. It then follows that the excitations are of two types:

1. Configurations of ûjk which violate the condition Wl = 1; i.e.,
Wl = −1 for some of the loops. It can be looked upon as creating a π
flux over those loops.
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2. Fermionic excitations of the field cj in the background of static con-
figurations of ûjk.

We will next show that the excitations of the first type are localised on
closed ‘loops’.
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Figure 8.4: (a)-(d) The four elementary loops. (e) Part of the lattice in-
volving four such adjacent loops; the corresponding operators give rise to a
constraint. The ellipses, labelled a to d, respectively represent each of the
loops and they form a tetrahedron.

Earlier, we mentioned that not all Wl’s are independent; now we will find
the constraints among them. Note that the most elementary loop consists of
10 sites; let Bα denote the loop operator corresponding to such a loop. There
are four types of such loops—labelled a, b, c and d—which are distinguished
by their orientation (see Fig. 8.4 a-d). For an open system, Wl for any
closed loop l can be written in terms of Bα’s. To find the constraints among
Bα’s we consider a part of the lattice, shown in Fig. 8.4e, which consists of
four adjacent elementary loops—each a different type. Let the corresponding
loop operators beBa, Bb, Bc, andBd, respectively. Here the links are labelled
1 to 20 (this is different from our earlier notation where links were labelled
in terms of the sites). In this notation, the Bα operators corresponding to
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the four loops are

Ba = u11u12u13u14u18u19u20u9u10u1,

Bb = u15u16u17u5u6u7u8u20u19u18,

Bc = u1u2u3u4u5u6u7u8u9u10,

Bd = u11u12u13u14u15u16u17u4u3u2. (8.39)

where um, as defined in Eq. (8.13), is understood to be the product of
the c Majorana fermions at the two sites that form the link m, with the
convention that the operator belonging to the a-sub lattice comes to the
left. Since u2

m = 1,
BaBbBcBd = 1. (8.40)

The above constraint can be graphically understood using Fig. (8.4,e): it
represents the left hand side of Eq. (8.40); evidently, each link m is shared
by two of the Bα’s and therefore every um appears twice in the product,
which makes the latter 1. For open boundary conditions, relations such as
Eq. (8.40) exhaust all the constraints. [For periodic boundary conditions, it
is easy to check that the number of independent Bα’s is (2N + 1), where N
is the number of unit cells.]

C̃

Figure 8.5: The lattice L formed by the elementary loops—the pyrochlore
lattice. The dashed curve C̃, which goes through 6 sites, is the shortest
possible loop in L that lies within the tetrahedra. The minimum energy flux
configuration has Bα = −1, if α ∈ C̃, and Bα = 1, otherwise.

To find the configurations of {Bα} which satisfy all the constraints, it
is instructive to consider a lattice obtained by representing each elemen-
tary loop by a single site. An elementary loop has a step like structure,
which consists of two rectangles perpendicular to the x− y plane connected
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by another rectangle on the x − y plane. Each loop can be uniquely rep-
resented by a point at the centre of the rectangle on the x − y plane (in
Fig. 8.4e such points are marked by ellipses). Let L be the new lattice thus
obtained—topologically, it is the pyrochlore lattice, which is an arrangement
of corner-sharing tetrahedra (see Fig. (8.5)). In this description, the four
elementary loops that give rise to the constraint in Eq. (8.40) are the four
sites of a tetrahedron, and each tetrahedron corresponds to an independent
constraint. Therefore, any configuration satisfying all the constraints will
have an even number of Bα taking value −1 in each tetrahedron, where α is
now the site index in L. Now it is clear how to obtain such configurations:
Draw a closed loop C which does not cross itself and which lies entirely
within the tetrahedra, and let

Bα =

{
−1, if α ∈ C,

1, otherwise.

Any closed, self-avoiding loop contains an even number of sites (0, 2 or
4) belonging to any particular tetrahedron; hence all the constraints are
satisfied. There is a one-to-one correspondence between the set of all allowed
configurations {Bα} and the set of all closed loops (including multiple ones,
but which do not cross each other). We have thus shown that, topologically,
the flux excitations have the structure of loops in the lattice L.

8.8 Counting of Conserved Quantities

Here we calculate the number of independent conserved quantities of 3D
Kitaev model using gauge invariance principle. We will also be giving a
simple arguments using Jordan-Wigner transformation as we have done for
2D Kitaev model. In the Kitaev model, we have Z2 gauge field, uij, which
lives on the bond connecting the sites i and j and take values ±1. The total
number of states is 2Nb , where Nb is the number of bonds. Then we can
define a gauge transformation (GT) given by,

ũij = WiuijWj, (8.41)

where Wi is ±1. All states related to each other by a GT represent the same
physical state. The total number of gauge transformations is 2Ns , where Ns

is the number of sites. There are two GT’s under which uij ’s are invariant—
Wi = +1, ∀i and Wi = −1, ∀i. Therefore number of states representing
one physical state is 2Ns−1. And the total number of physical states, Dphys,
is given by

Dphys = 2(Nb−Ns+1). (8.42)
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Any loop operator is gauge invariant and also takes values ±1; therefore the
number of independent loop operators is,

Nl = Nb −Ns + 1. (8.43)

Counting of independent loop operators for 3D Kitaev model

Let us repeat the above calculation for 3D Kitaev model. Let N be the
number of unit cells. Then Ns = 4N and Nb = 6N . Using Eq. (8.43),
number of independent loops,

Nl = 6N − 4N + 1 = 2N + 1. (8.44)

Now we calculate the number of independent loops by finding total num-
ber of loops which exist and then subtracting from them total number of
constraints among them. If there are Nt number of loops and Nc number
of constraints among them, then the number of independent loops, ‘Ni’, is
given by,

Ni = Nt −Nc (8.45)

Let us consider a lattice with Nx, Ny and Nz number of unit cell in x, y
and z directions respectively. We know that each unit cell has four sites, then
total number of sites is 4NxNyNz. From the Fig. (8.6), we find that each
pair of unit cells constitute a loop of a particular type. Then we have total
number of a particular type of elementary loops as NxNyNz. As there are
four different type of elementary loops, we have in total 4NxNyNz number
of local loops. Moreover we have three topologically nontrivial global loops
which wind around the three directions. Thus the total number of loops
which is given by,

Nt = 4NxNyNz + 3 (8.46)

Now, let us find the total number of constraints. We have already seen in
Fig. (8.4) that every four different type of loops which constitute an elemen-
tary object ‘A’ gives a local constraint. Again each elementary loop is part
of two different elementary object ‘A’. Thus total number of independent ‘A’
objects is 4NxNyNz/2 = 2NxNyNz. But all of these local constraints is not
independent. Due to the periodic boundary condition, we have one global
constraint among these local constraints, thus the total number of indepen-
dent local constraints is 2NxNyNz−1. Apart from these local constraint we
have other global constraints as well. A particular type of loop in a given
plane gives rise to a constraint. We call them planar constraints. There are
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Figure 8.6: Jordan Wigner Path for 3d Kitaev lattice with periodic bound-
ary condition. We have taken a system with 2× 2× 2 unite cell. Numerical
number gives the sequences of Jordan Wigner path. The pink links consti-
tute the normal bonds and black links are tangential path.

‘3’ such planer constraints corresponding to three different orthogonal plane
that exists in three dimensions. Thus total number of constraints Nc is,

Nc = 2NxNyNz − 1 + 3 = 2NxNyNz + 2 (8.47)

Then from equation (8.45), we get the total number of independent loop
as,

Ni = 4NxNyNz + 3− (2NxNyNz + 2) = 2NxNyNz + 1 (8.48)

Having presented in detail the complete account of the independent con-
served quantities we now show that this result can be easily reached if we
consider Jordan-Wigner fermionisations. In chapter 3, we have outlined a
general procedure for Jordan-Wigner Transformations(JWT) which can be
used in any Kitaev type of model defined on a lattice with co-ordination
number three. In the Fig. (8.6), we have shown a J-W path for the 3D lat-
tice. We know that to define JWT on such lattice we need to define normal
bonds such that it contains all sites without sharing sites among themselves.
For a lattice with N site, we must have N/2 Normal bonds. Then according
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to the construction given in section (3.2.4), there will be a conserved quanti-
ties on each such normal bonds. So we have N/2 such conserved quantities.
Apart from that we will be having one more conserved quantity analogous
to Eq. (3.18) which fixes the total number of fermions. Thus we must
have, (N/2+1= 2NxNyNz+1), number of conserved quantity. This is fully
consistent with equations (8.44) and (8.48). In the next chapter we briefly
discuss toric code limit of this 3D Kitaev model which corresponds to the
limit Jz >> Jx, Jy .
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And write my old adventures with the pen
Which on the first day drew,

Upon the tablets blue,
T h e dancing Pleiades and eternal men.

Bacchus-Ralph Waldo Emerson

Chapter 9

Toric code limit of 3D
Kitaev model

In this chapter, we study the limit, Jz >> Jx, Jy, for the 3D Kitaev model
discussed previous chapter. We derive the effective Hamiltonian at lowest
nontrivial order and present a short account of the various properties of
the elementary excitations of the effective Hamiltonian. We show that the
effective Hamiltonian is very similar to that of 2D toric code Hamiltonian
[32]. Following 2D Kitaev model [33] , we start from a Hamiltonian, H =
H0 + V , where H0 and V are given by,

H0 = −Jz
∑

z−link

σzjσ
z
k, V = −Jx

∑

x−link

σxj σ
x
k − Jy

∑

y−link

σyj σ
y
k (9.1)

Like 2D Kitaev model it is clear that in the limit, Jz ≫ Jx, Jz , the low
energy subspace of H is governed by the state | ↑↑〉 or | ↓↓〉 at every z-
bond. Here the state | ↑↑〉 (| ↓↓〉) represents a state where the two spins
on a z-bond aligned in the positive (negative) z-direction. We denote these
subspace by Υ. To find out whether the Hamiltonian, H, admits any “
effective Hamiltonian ” within ground state subspace we work out the per-
turbation theory. The “effective Hamiltonian” can be derived by examining
the self-energy,

∑
(E). The self-energy can be computed by the standard

green function formalism. Let, G′
0(E) =

(
(E −H0)

−1
)′

be the unperturbed
Green function for the excited states of H0. The ‘prime’ sign indicates that
the operator

(
(E −H0)

−1
)′

acts on excited states in the natural way but
vanishes on ground states. Then

∑
(E) = Υ†(V + V G′

0V + V G′
0V G

′
0V + V G′

0V G
′
0V G

′
0V + .....)Υ. (9.2)

95
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Here Υ is a map which maps the effective Hilbert space onto ground state
subspace of H0. Setting E = E0 and computing, Heff = E0 +

∑
, at different

orders we get the following, (in appendix E, we give a detailed derivation of
the effective Hamiltonian),

• H1
eff = Υ†VΥ = 0

• H2
eff = Υ†V G′

0VΥ = constant

• H3
eff = Υ†V G′

0V G
′
0VΥ = 0

• H4
eff = Υ†V G′

0V G
′
0V G

′
0VΥ = constant

• H5
eff = Υ†V G′

0V G
′
0V G

′
0V G

′
0VΥ = 0

• H6
eff = Υ†V G′

0V G
′
0V G

′
0V G

′
0V G

′
0VΥ

= constant −∑ aJ4
xJ

2
y

J5
z
B1 −

∑ aJ4
yJ

2
x

J5
z
B2

HereB1 andB2 are operators associated with two different kind of plaquettes
in the 3D lattice. They differ in the distribution of x and y bonds along the
respective plaquettes. In the Fig. (9.1) B and C, we have drawn these two
kinds of plaquettes. In operator form we have following expressions for B1

and B2,

B1 = τxi τ
z
j τ

y
k τ

x
l τ

z
mτ

y
n (9.3)

B2 = τyi τ
z
j τ

x
k τ

y
l τ

z
mτ

x
n (9.4)

In the above equations subscripts refer to indices for ‘z-bonds’(refer to
Fig. (9.1 B and C)) and superscripts denotes the components of effective spin
operators (τ) defined on each z-bonds. The numerical number, a = 0.02734,
is obtained by summing the contributions from 6! = 720 terms that appear in
calculating H6

eff . It is at the sixth order, we get first nontrivial contribution
to the effective Hamiltonian. As the higher order terms are less significant we
confine our analysis to H6

eff . Omitting all the constant term in the effective
Hamiltonian we write the Hamiltonian in the Jz ≫ Jx, Jy limit as,

H = −Je1
∑

p

B1,p − Je1
∑

q

B2,q Je1 =
aJ4

xJ
2
y

J5
z

, Je2 =
aJ4

yJ
2
x

J5
z

(9.5)

where the sum over ‘p’ and ‘q’ refers the sum over two different type of
plaquettes described before.
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Figure 9.1: In figure A we have shown an elementary objects containing two
kind of elementary plaquettes which has been redrawn separately in fig B
and C. These two different kind of plaquette differ in the distribution of x
and y bonds along respective plaquettes.

The easy way to remember the effective plaquette operators present in
the effective Hamiltonian is the following. For a given plaquette the contri-
bution from a z-dimer in the expression of effective loop operator depends
on the bonds just behind it and after it. If these two bonds are identical then
the z-dimer contributes a τx to the effective plaquette operator otherwise it
contributes a τy operator. This can be understood easily from effective spin
representation in the subspace Υ. Let us consider the dimer ‘k’ in Fig. (9.1)
B which contains two sites 3 and 4. The effective spin representations (τ ’s)
in the subspace | ↑↑〉 or | ↓↓〉 are given by,

σx3 ⊗ σx4 = τxk , σy3 ⊗ σ
y
4 = −τxk , σx3 ⊗ σy4 = σy3 ⊗ σx4 = τyk

σz3 = σz4 = τ zk , σz3 ⊗ σz4 = I (9.6)

Now using the above representations we show that the effective plaquette
operators which appear in Heff are nothing but the old plaquette conserved
quantities expressed in the low energy subspace. Let us look at the Fig.
(9.1), B. The conserved quantity associated with this elementary plaquette
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is given by( written in terms of original spin variables σs),

B = σy1σ
z
2σ

x
3σ

y
4σ

y
5σ

y
6σ

z
7σ

x
8σ

y
9σ

y
10 (9.7)

Now using the relations given in equation (9.6) for each dimer associated
with the plaquette B in figure (9.1) we get,

B = τxi τ
z
j τ

y
k τ

x
l τ

z
mτ

y
n (9.8)

In the same way it can be shown that all the effective plaquette operators
which appear in the effective Hamiltonian are respective plaquette conserved
quantities. The ground state for thisHeff is characterised by the state |G〉 for
which B1,p|G〉 = |G〉 and B2,q|G〉 = |G〉 for all ‘p’ and ‘q’. This fact is con-
sistent with the numerical results that for arbitrary Jx, Jy , Jz uniform flux
configuration 1 corresponds to ground state sector of the Majorana fermion
hopping Hamiltonian in the presence of background Z2 gauge fields. Excita-
tions can be created by creating the state |ψ〉 such that for some plaquette
‘p’, B1,p|ψ〉 = −|ψ〉. However due to the presence of local constraints, a
single flux excitation is not possible. The minimum number of fluxes which
can be excited is 8. We already discussed that in the pyrocholore lattice
representation plaquettes are replaced by a site. Thus 8 flux configuration
forms a loop of 8 sites in the pyrocholore lattice representation. This 8-flux
excitations can be created by applying τ zi on the ground state. It turns
that 6 flux excitation(due to the constraint given by Eq. (8.40)) which is
the minimum for loop excitation we mentioned in the previous chapter, is
forbidden here. We recall that in the 3D Kitaev model if we apply σxi on
the ground state ( which is flux free state) it creates a 6 flux excitation. But
σxi has vanishing matrix element in the ground state subspace i.e,

Υ′σxi Υ = 0 (9.9)

where Υ′ and Υ are two eigenvectors of the H0 in Eq. (9.1). For this
reason creation of isolated single six flux excitation is forbidden. We have not
found any local or non local operator which creates a single 6-flux excitation.
However six flux excitations can be created in pair. In the next section we
discuss in detail the correspondence between the original lattice (in which
3D Kitaev model has been defined) to the pyrocholore lattice in order to
explain the excitations systematically.

9.1 Loop Excitations

We have seen that 3D lattice on which the 3d Kitaev model is defined is
topologically equivalent to pyrochlore lattice. Each basic object(I) which is
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formed by 4 types of basic loop(F) touching each other, is equivalents to
a tetrahedron(T) in the pyrochlore lattice. A smallest closed basic loop(F)
in the 3D lattice is replaced by a site in the pyrochlore lattice. In the
limit Jz >> Jx, Jy, the effective lattice is formed by the location of z-bonds
only, nonetheless the pyrochlore structure of the basic objects(I) remains
unchanged because effective Hamiltonian contains terms defined on each
plaquettes which are the sites of the pyrochlore lattice. We also observe
that a z-bond has a 4 nearest-neighbour z-bonds and it shared 10 basic
objects(I) and 12 basic loops(F). Though the elementary plaquettes of the
original lattice is replaced with sites in the pyrochlore lattice, we need to
identify the corresponding τ operators associated with the z-bonds of the
original lattice in the pyrochlore lattice. In the pyrochlore lattice we identify
such an object which has the above characteristics of the z-bonds in the
original 3D lattice . We refer this object as U’ and it represent z-bonds of
the original 3D lattice. This basic object U’ is assigned with an index ‘i’.
In the Fig. (9.1), we have represented such a basic objects in fig (1a) and
(1b). The pyrochlore lattice can be built with this objects too. We see that
each of this objects contains four six-site close loop and each two six-site
close loop gives a 8-site closed loop. Thus we have three 8-site loops in
together. Any two 8-site close loop yield the remaining 8-site loop. For this
reason we anticipate that this object U’ can be associated with the z-link.
Three τ operator for this z-bond will create three 8-sight loops which can
be associated with the τα, α = 1, 2, 3. There is a unique point in such ‘U’s
which can be used to label these basic objects(hence it will correspond to
z-bonds of the original 3D Kitaev model). In figure 9.1, point ‘p’ and ‘q’
denote such points. The point p’ is the intersection point of the line joining
K,L and M,N.

Next question is how to represent and label the loops. We assign two
indices to every closed 6-site loop. We see that pyrochlore lattice can also
be described by four different 2D kagome lattice intersecting each other. We
will call this parallel plane as 0, x, y, z planes. Referring to the Fig. (9.1) 1b,
the plane formed by the points (9,10,4,5,11,12) lie on the z-kogome plane.
The plane formed by (11,12,8,7,1,13) is on the 0-kagome plane. The sites
(1,2,3,4,5,6) are on the y-kagome plane. And the sites (7,8,9,10,3,2) are on
the x-kagome plane. The first index given to a 6-site loop corresponds to
the plane it resides. Secondly a six-site loop is shared by two basic object
U for example ‘p’ and ‘q’ which can be assigned to a 6-loop. Thus we can
represent a 6-site loop by L6

p,α or L6
q,α. Where α is a kagome plane shared

by the basic object ‘p’ and ‘q’. It is understood that L6
p,α ≡ L6

q,α.
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Figure 9.2: The objects (1a) and (1b) are equivalent to z-bonds of the orig-
inal lattice. We represent these objects by the point ‘p’ and ‘q’ respectively.
The straight line joining blue point and p’ (and q’) connects p’ with its
nearest neighbour. This has been shown schematically in (1c) and (1d). A
object like (1c) (or 1a) is surrounded by four (1d) (or 1b). By this way we
can construct the effective lattice formed by these objects.



9.2 Statistics of the elementary excitations 101

We know that the ground state of the effective model at large Jz have
no loop excitations (which corresponds to the site of the pyrochlore lattice).
For excited states, some of the loops are excited. We also discussed that it
is forbidden to create a single six-site loop L6. However they can be created
in pairs. The smallest single closed loop we can create is a 8-site loop. If we
apply τ zp on the ground state |G〉, it corresponds to a state with 8-site closed
loop excitations L8 in the pyrochlore lattice. Any 8-site closed loop can be
made out of two overlapping six-site closed loops with two sites common in
between them. These two 6-site loops must belong to same unit cell U’. For
this reason we denote L8 as a product of two L6 belonging to same unite
cell. Thus referring to the unite cell ‘p’ we denote the action of ταp on the
ground state as follows,

L8
p,α = L6

p,α ⊗ L6
p,0, α = x, y, z (9.10)

We notice that though a single closed L6 is shared by two unit cell
and a L8 is shared by one unit cell only. Thus there is no ambiguity in
representing the L8 in the above way. We wish to determine the statistics of
loop excitations L8 and L6. First we derive the statistics between two L6.

9.2 Statistics of the elementary excitations

Now we proceed to derive the statistics of the loop excitations. Effective
Hamiltonian has no dynamics in its own, in the sense that it contains con-
served operators commuting with each other. To generate a dynamics we
can add a simple Zeeman perturbation to it. Thus we study,

H = H0 −
∑

α=x,y,z

Bα
∑

i

τi,α (9.11)

Here H0 is the original effective Hamiltonian and second term describes
the Zeeman interactions. Now the Zeeman part of the Hamiltonian anti-
commute with the loop operators of H0, thus bringing a dynamics among
them. The basic excitations which satisfy all the constraints are L8 and
two separated L6. If we restrict ourselves to the low energy excitations
comprising L8 and a pair of L6, the effective Hamiltonian can be described
by hopping operators represented by the 2nd term of the Eq. (9.11), where
the coefficient Bα represents the hopping energy and σi,α causes the loop
excitations to hop. Two separated L6 excitations are created by successive
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application of suitable nearest L8 excitations. Below we write down the
hopping rules for L6 excitations.

L6
p,0 → L6

p,α ∼ ταq , α = x, y, z (9.12)

L6
p,α → L6

p,0 ∼ ταq , α = x, y, z (9.13)

L6
p,α → L6

p,β ∼ τβq ταq , α , β = x, y, z , α 6= β (9.14)

The above rules for intra-cell hopping are consistent with each other and
can be derived from each other. Moreover this definition also removes the
possibility of any residual gauge field/source bringing any unphysical phases
associated with the hopping of loops.

Now we derive the statistics of two well separated L6 using the above
hopping rules. In Fig. (9.2), we represented a cartoon picture of four unit
cells labelled by i, j, k and l. The well separated loops are L6

0,i and L6
y,k.

We take the following steps for interchanging them [74, 75]. First we move
L6
y,k to some other location. Next we bring L6

0,i to the original position

of L6
y,k. Finally we bring L6

y,k to the original position of L6
0,i. For the

step one we take L6
y,k to L6

0,l via the path yk → 0k → zl → 0l. Here
0i denotes the ‘0’th six-site loop of the cell unit ‘i’. The second step is
achieved via the path 0i → 0j → yk. The final step is achieved via the path
0l → zl → 0j → xj → 0i. The operators which are required for these three
steps are given by ,

T1 = τyl τ
z
l τ

z
j τ

y
j τ

y
k τ

z
k (9.15)

T2 = τ zk τ
y
k τ

y
j τ

x
j τ

x
i (9.16)

T3 = τxi τ
x
j τ

y
j τ

y
j τ

z
j τ

z
l τ

y
l (9.17)

We find that T3T2T1 = −1, which proves that mutual statistics between
loops excitations L6

0,i and L6
y,k are fermionic. Using the same procedure one

can easily prove that all L6 are fermions. Similarly we find mutual statistics
between any two L8 excitations are Bosonic. This is no surprise as a L8 is
comprised of two L6. Besides these two basic excitations, there are more
complex and extended loop operators which can be constructed out of these
basic excitations.

9.3 Overview of the basic excitations of 3d Kitaev model

To summarise, we have shown that the 3D Kitaev model has 2 different
kind of low energy excitations. Firstly, fermionic excitations for a given
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Figure 9.3: See text for detail explanation. In this cartoon picture we have
represented the exchange of two L6 which are represented by green circle at
site ‘j’ and blue circle at site ‘k’. We have taken the exchange path such that
it does not encircle any closed area. This forbids the inclusion of any gauge
field in the determination of the statistics. In the B we have schematically
represented then exchange procedure. A six site loop L6 is represented by
a coloured circle, four different colour represent four different type of L6,
as shown in C. In fig B we have given a simplified description of exchange
processes of fig A.
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background distribution of conserved operators Wl. Secondly, we have loop
excitations where the eigenvalues of some ‘Wl’ is -1. The ground state corre-
sponds to vortex free sector(meaning eigenvalue for all Wl is 1). Fermionic
spectrum can be gapless and gapped depending on the parameters used in
the model. In gapless phase the low energy excitations are fermionic excita-
tions over this vortex free configuration, as discussed in previous chapter. In
the gapped phase the low energy excitations are the loop excitations where
the eigenvalues of some ‘Wl’ is -1. In this chapter we have studied the low
energy excitations in the gapped phase in the limit Jz >> Jx, Jy. In py-
rochlore lattice representations the description of loop excitations becomes
easy and each site of the pyrochlore lattice corresponds to a given basic
loop, ‘Wl’, of the original model. The basic loop excitations, which satisfy
all the constraints, corrrespond to a pair of loop excitations of 6-sites (L6)
and a single loop excitation of 8-sites (L8) in pyrochlore lattice. Mutual
exchange statistics between two ‘L6’ is fermionic, whether mutual statistics
between two ‘L8’ are bosonic. Moreover one can have membrane excitations
also in the effective Hamiltonian [19, 21, 22]. However the detail properties
of these exotic excitations are being carried out now and will be presented
elsewhere.



They are all gone away,
T h e House is shut and still,
There is nothing more to say.

-The House on the Hill-E A Robinson

Chapter 10

Summary and Discussion

In this thesis, we have presented some theoretical investigations on 2D Ki-
taev model [32] and some of its generalisations. We have presented an
alternative solution to 2D Kitaev model using Jordan-Wigner fermionisa-
tion(JWF) [77–80]. The application of Jordan-Wigner transformation to
solve this model is significant for two reasons. Firstly, to out knowledge, it
is the first two dimensional model where JWF is shown to solve the model ex-
actly(it may be noted that JWF was successfully applied to other 2d Kitaev
like model which was proposed after Kitaev’s original work [32]). Secondly
JWF is exact in the sense that it did not bring any unphysical states like
the fermionisation procedure used in [32]. The four fold degeneracy of the
ground state was explicitly derived using JWF in the thermodynamic limit.

Next, spin-spin correlation functions have been studied for the Kitaev
model. Extending Kitaev’s fermionisation procedure we showed that the
two spin correlation function vanishes beyond nearest neighbour [76]. The
correlation functions are anisotropic and bond dependent. This proves that
the Kitaev model is an example of a quantum spin liquid. In our bond-
fermion formalism introduced in [76], the calculation of spin-spin correlation
function becomes straightforward. Existence of string type multi-spin corre-
lations have also been shown. A spin is shown to undergo fractionalisation
into two static Z2 static π fluxes and a dynamic Majorana fermion. Our for-
malism to calculate the spin-spin correlation function can be easily applied
to calculate spin-spin correlation functions of other Kitaev-like model.

We have discussed the toric code limit of the Kitaev model in terms of
gauge invariant Jordan-Wigner fermions. We have calculated four degen-
erate ground states explicitly and have demonstrated the multicomponent
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nature of the ground state wave functions. Further we have calculated con-
currence and von-Neuman entropy for kitaev model.The exact calculation
of spin-spin correlation function enables us to calculate these quantities ex-
actly. While concurrence is zero for the Kitaev model in complete phase
space, binary entropy is finite throughoout the phase space.

The stability of Kitaev model and the Z2 gauge dynamics against a Ising
perturbation has been studied within the mean field theory and it revealed
that Kitaev phase is stable up to 10 percent (of J , where J is the strength
of Kitaev interaction) against an Ising interaction [101]. Our analysis shows
that in the presence of Ising interaction, the system undergoes a quantum
phase transition from a spin liquid state to a magnetically ordered state.
The nature of magnetically ordered state depends on the nature of Ising
interactions. If the Ising interaction is ferromagnetic then the magnetically
ordered state is a ferromagnetic state. On the othehand for intermediate an-
tiferromagnetic Ising interaction, the magnetically orderded state is a dimer
state. For stronge antiferromagnetic interaction the magnetically ordered
state is Neel state.

We have introduced an exactly solvable 3D Kitaev model and solved it
exactly [87]. It has all the key features of the 2D Kitaev model and an
example of 3D quantum spin liquid. Like Kitaev model it has conserved op-
erator Wl associated with every basic loops (‘l’) of the model. Low energy
excitations of this 3D spin model have been classified. It consists of two
kind of excitations. Firstly, fermionic excitations for a given background
distribution of conserved operators Wl. Secondly we have loop excitations
where the eigenvalues of some ‘Wl’ is -1. We have shown that our 3D lat-
tice is topologically equivalent to pyrochlore lattice. In pyrochlore lattice
representations the description of loop excitations becomes easy and each
site of the pyrochlore lattice corresponds to a given basic loop ‘Wl’ of the
original model. The basic loop excitations which satisfy all the local con-
straints corrrespond to a loop excitation of 6-sites (L6) and 8-sites (L8) in
pyrochlore lattice. In the chapter 9, we have studied the large Jz limit of
this 3d kitaev model. We have shown that the elementary excitations of
the effective Hamiltonian at this limit are loop excitations and they are ex-
plained in pyrochlore lattice representations. Mutual statistics between two
‘L6’ is fermionic, whether mutual ststistics between two ‘L8’ are bosonic.



Appendix A

J-W Transformation for
OBC

In this appendix we briefly outline the details of Jordan-Wigner transforma-
tion (JWT) applied to open boundary geometry for the Kitaev model. For
this we first need to specify a suitable lattice geometry on which JWT can
be applied.

S

E

Figure A.1: Jordan-Wigner path for a lattice with open boundary condition.
It starts at the site ‘S’ and follows the directions given arrows and ends at
site ‘E’.

In the above figure we have drawn a finite honeycomb lattice which is
used for open boundary Kitaev model. The upper and lower boundaries are
of zig-zag boundary and the sides are of arm-chair boundary. This finite
lattice can be extended to an infinite one without loosing generality. We
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know that the Jordan-Wigner transformation needs an one dimensional path
( Hamilton path) which passes through all the sites of the lattice exactly
once, i.e, the path does not cross to itself anywhere. The above geometry of
the lattice enables us to find such an one dimensional path. This path starts
at the site labelled by ‘S’ and follows the directions of arrows and ends at site
‘E’. Though the above path is shown for a finite lattice, it can be extended
easily for an infinite lattice. Now we explain how this particular lattice
geometry helps us to find a appropriate fermionic Hamiltonian to be solved
easily. Since the vertical bonds contain only Jzσ

z
jσ

z
k interaction, we can

choose such one dimensional Jordan-Wigner path that is made-up of only
x and y bonds (except at the edges) and cover the 2D lattice. We need to
adhere this kind of boundary to define the Jordan-Wigner transformations.
Further the vertical bonds that connect neighbouring zig-zag chains do not
transfer Jordan-Wigner fermions from a chain to its neighbouring chain,
this is due to the fact that all the vertical bonds are having z-z interactions
and in Jordan-Wigner transformations the expression for z-component of
spin is local. Thus we end up with fermions hopping along the 1-D chain
that covers the 2-D lattice. However there is a “density-density” interaction
along the vertical bonds that makes the problem 2-dimensional. Now we
give the details of fermionisations in JWT.

We define the fermionization by the following way,

σa,xi = (cai + ca†i )µai

σa,yi = i(cai − ca†i )µai

σa,z = (2ca†i c
a
i − 1) (A.1)

In the above equation ‘a’ represents sub-lattice index. ‘µ’ is the Jordan
Wigner tail which is given by,

Ti = Πforallj<iσ
z
j (A.2)

Here ‘i’ stands for all the sites which resides behind the site ‘j’ in the se-
quence of Jordan-Wigner path as shown in the figure A.1. It is easy to
note that in defining the above transformations we did not enlarge the orig-
inal fock space dimension of the spin problem. The dimension of the spin
space and the fermionic space is identical. Now plugging the transformations
given by equation (A.1) in the Kitaev Hamiltonian, we get the fermionised
Hamiltonian as,
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H =
∑

m,n

−Jx(ca†m,n − cam,n)(cb†m+1,n+1 + cbm+1,n+1)

− Jy(c
a†
m,n − cam,n)(cb†m,n+1 + cbm,n+1)

+ Jz(2c
a†
m,nc

a
m,n − 1)(2cb†m,nc

b
m,n − 1) (A.3)

Before diagonalising the above Hamiltonian we introduce two complex
fermions, χ and ψ, on all z-bonds and define the following transformations,

cam,n =
1

2
{(χm,n + χ†

m,n)− i(ψm,n + ψ†
m,n)} (A.4)

cbm,n =
1

2
{(χ†

m,n − χm,n)− i(ψm,n − ψ†
m,n)}. (A.5)

The inverse transformation is given by,

χm,n =
1

2
{(cam,n + ca†m,n)− (cbm,n − cb†m,n)} (A.6)

ψm,n =
i

2
{(cam,n − ca†m,n) + (cbm,n + cb†m,n)} (A.7)

Then the Hamiltonian given by equation (A.3) reduces to,

H =
∑

(m,n)

−Jx(ψm,n + ψ†
m,n)(ψm+1,n+1 − ψ†

m+1,n+1)

−Jy(ψm,n + ψ†
m,n)(ψm,n+1 − ψ†

m,n+1) +

Jz(2ψ
†
m,nψm,n − 1)(2χ†

m,nχm,n − 1) (A.8)

Looking at the above equation, it can be readily verified that χ†
iχi on any

z-bond commutes with the Hamiltonian. Thus it is a conserved operator.
Moreover χ†

iχi defined on each z-bond mutually commutes. For a given
occupancy of χ fermion, Hamiltonian reduces to a bilinear one in ψ fermions.
However the ground state sector corresponds χ†χ = 0 for every site for the
following reason. The plaquette conserved quantity Bp’s are made out of
χ†χ. Let us call, ρ = (2χ†χ − 1). Then for all plaquettes, Bp = ρiρj
where the label ‘i’ and ‘j’ denote the label of two z-bond associated with a
plaquette. Now we know that ground state sector belongs to Bp = 1 which
can be obtained by taking all ρ to be ±1. For the choice ρ = 1, Hamiltonian
becomes,

H =
∑

(m,n)

−Jx(ψm,n + ψ†
m,n)(ψm+1,n+1 − ψ†

m+1,n+1)

−Jy(ψm,n + ψ†
m,n)(ψm,n+1 − ψ†

m,n+1)− Jz(2ψ†
m,nψm,n − 1). (A.9)
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Now let us look back to the Chapter 1, Eq. (2.18). The Eq. (2.18) can be
brought to the form of Eq. (A.9) easily with the following transformations,

cam,n = ψm,n + ψ†
m,n ; cbm,n =

1

i
(ψm,n − ψ†

m,n) (A.10)

Now let us define the Fourier Transformations , ψi = 1√
MN

∑
k e

i~k.~rψk,

then equation (A.9) becomes,

H =
∑

(ǫkψ
†
kψk + i

δk
2
ψ†
kψ

†
−k − i

δk
2
ψ−kψk) (A.11)

Where ǫk = 2(Jx cos k1 + Jy cos k2 + Jz) and δk = 2(Jx sin k1 + Jy sin k2).
Where k1 and k2 has been defined before. Following Bogoliubov transfor-
mation diagonalizes this Hamiltonian,

ψk = cos
θk
2
αk + i sin

θk
2
α†
−k (A.12)

where cos θk = ǫk/
√

(ǫ2k + δ2k) with θk = −θ−k and the diagonalised Hamil-
tonian reads as,

H = Ekα
†
kαk + E0 (A.13)

E0 is the ground state energy and is given by,

E0 =
∑

k

1

2
(ǫk −

√
ǫ2k + δ2k −NzJz) (A.14)

.
Nz = MN is the number of z-bond. Ek is given by ,

Ek =
√
ǫ2k + δ2k (A.15)

The inverse Bogoliubov transformation is given by,

αk =
1

cos θk
(cos

θk
2
ψk − i sin

θk
2
ψ†
−k) (A.16)

This completes our short discussions of JWT for open boundary condi-
tions.



Appendix B

The gauge fixing algorithm
and J-W gauge

In this appendix we show a correspondence between the fermionised Hamil-
tonian obtained in chapter 2 and the fermionised Hamiltonian obtained in
chapter 3. In chapter 3 we explained that JWT can be thought of as a
gauge fixing procedure and showed it for a particular Jordan-Wigner path
called Hamiltonian Path. Here we show how one can obtain this gauge fixed
Hamiltonian starting from fermionised Hamiltonian obtain in chapter 2. We
also present details of derivation of fermionic Hamiltonian in Jordan-Wigner
gauge.

Let us recall the fermionic Hamiltonian (2.14), which is given by,

H =
∑

x−link

Jxu
x
i,jic

a
i c
b
j +

∑

y−link

Jyu
y
i,jic

a
i c
b
j +

∑

z−link

Jzu
z
i,jic

a
i c
b
j (B.1)

Here ci’s are Majorana fermions and uαi,j are Z2 conserved gauge fields which
can take values ±1. These Z2 gauge fields appear on every links. In the
contrary we have seen in chapter 3 that Jordan-Wigner transformation yields
a fermionic Hamiltonian where Z2 gauge fields appear only on the normal
bonds fixed by the Hamiltonian path. Now we will show that these two are
completely equivalent by reducing Eq. (B.1) to the same form as in J-W
gauge after suitable gauge transformations.

From the Fig. (B.1), we write for the Hamiltonian for all the bonds that
appear in the figure,
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i

j

k

l

n̂i

n̂j

n̂k

n̂l

t̂1i

t̂2i = ˆt1j

ˆt2j = ˆt1k

t̂1l

t̂2l

m

i′

j′

k′

l′

n

Figure B.1: A part of the Jordan-Wigner path. Black arrows follow the
Jordan-Wigner path and they constitute the tangent bonds. The red links
constitute the normal bonds.

H = um,nJmnicmci + ui,jJijicicj + uj,kJjkicjck + uk,lJklickcl

+ ui,i′Ji,i′icici′ + uj,j′Jj,j′icjcj′ + uk,k′Jk,k′ickck′ + ul,l′Jl,l′iclcl′

(B.2)

In the first line we have written the Hamiltonian for the tangential bonds
and in the second line we have written the Hamiltonian for the normal bonds.
Now we do the following gauge transformation.

ci → um,ici (B.3)

cj → ui,jum,icj (B.4)

ck → uj,kui,jum,ick (B.5)

cl → uk,luj,kui,jum,icl (B.6)

(B.7)

The above gauge transformations keep all the fermionic commutation
relations unchanged. After inserting these transformations into Eq. (B.2),
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we get the following form of the Hamiltonian,

H = Jmnicmci + Jijicicj + Jjkicjck + Jklickcl

+ u′i,i′Ji,i′icici′ + u′j,j′Jj,j′icjcj′ + u′k,k′Jk,k′ickck′ + u′l,l′Jl,l′iclcl′

(B.8)

Now from the Eq. (B.8), we see that gauge fields only appear on the normal
bonds. The new Z2 gauge fields appearing only on the normal bonds are
given by,

u′i,i′ = ui,i′um,i (B.9)

u′j,j′ = uj,j′ui,jum,i, and so on (B.10)

(B.11)

The above method can be easily generalised for an infinite or finite lattice
once we find a Hamilton path which is nothing but the Jordan-Wigner path.
For a finite lattice size, if there are in total ‘N ’ sites, we label the site of
the lattice by in n = 1, N . Here the labelling of the sites are done by their
position on the Hamilton path. Then the following gauge transformations
reduce the Hamiltonian (Eq. (2.1)) to the same form obtained in Jordan-
Wigner gauge.

cin → ui1,i2ui2,i3...uir ,ir+1
..uin−1,incn (B.12)

B.1 Jordan-Wigner gauge

Now we give details of the Jordan-Wigner gauge mentioned in chapter 3.
First we write the normal and tangent vectors for each site as defined by
Eq. (3.7). We notice that for m 6= 0,

t̂a1m,n = ŷ; t̂a2m,n = x̂; n̂a1m,n = −ẑ
t̂b1m,n = x̂; t̂b2m,n = ŷ; n̂a1m,n = ẑ (B.13)

And for m = 0,

t̂a1m,n = ẑ; t̂a2m,n = x̂; n̂a1m,n = −ŷ
t̂b1m,n = x̂; t̂b2m,n = ẑ; n̂b1m,n = −ŷ (B.14)

Then starting with the z − z interactions of the Hamiltonian we get, for
m = 0, n = 0,

−σaz0,0σbz0,0 = −iηa0,0ηb0,0S (B.15)
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For m 6= 0
−σazm,nσbzm,n = −iηam,nηbm,n(iξam,nξbm,n) (B.16)

now for m = 0, n 6= 0
−σaz0,nσbz0,n = iηa0,nη

b
0,n (B.17)

The above three equations give complete description of all the z − z
interactions of Kitaev model.

Now for the y-bond we get for m = 0

−σay0,nσ
by
0,n+1 = −iηa0,nηb0,n+1(iξ

a
0,nξ

b
0,n+1) (B.18)

For m 6= 0 we get

−σaym,nσbym,n+1 = iηam,nη
b
m,n+1 (B.19)

Finally we writethe Hamiltonian terms for x−x interactions. For m = 0

−σax0,nσbx1,n+1 = −iηa0,nηb1,n+1 (B.20)

And for m 6= 0 we get,

−σaxm,nσbxm+1,n+1 = −iηam,nηbm+1,n+1 (B.21)

Now we make the following gauge transformation which we call Jordan-
Wigner gauge.

ηrm,n → (−1)mηrm,n (B.22)

After this, we choose for each normal bond, Ui,j = −iξai ξbj . This gives
the Jordan-Wigner Hamiltonian given by Eq. (3.43) to Eq. (3.45). Then
we define complex fermion, χm,n, on each normal internal z-bonds in the
following way,

ξam,n = (χm,n + χ†
m,n) ; ξbm,n =

−1

i
(χm,n − χ†

m,n) (B.23)

Similarly on each normal slanted y-bond which is joined by the z-bond (m,n)
and (m,n+1), we define,

ξam,n+1 = (χ m,n
m,n+1

+ χ†
m,n
m,n+1

) ; ξbm,n =
−1

i
(χ m,n
m,n+1

− χ†
m,n
m,n+1

) (B.24)

With this we have always, Ui,j = (2χ†
i,jχi,j − 1). Finally on each z-link we

define ψ fermions in the following way,

ηam,n = (ψm,n + ψ†
m,n) ; ηbm,n =

1

i
(ψm,n − ψ†

m,n) (B.25)

This gives the Eq. (3.46) to Eq. (3.50). This completes the details of
Jordan-Wigner gauge used in chapter 3.



Appendix C

Notes on Spin-Spin
Correlation

C.1 Corelation function in Physical Subspace

In Chapter 4, we have derived the spin-spin correlation functions for Kitaev
model. However we have worked in the fermionisation procedure adopted by
Kitaev [33]. We have seen that this fermionisation procedure enlarges the
local Hilbert space dimension. But we argued that as the spin operators are
gauge invariant, the results obtained in enlarged Hilbert space is identical
with the results one should have obtained in physical Hilbert space. In this
appendix, we explain this. We have seen that the operator Di defined in
equation chapter 1 at the site ‘i’ does following operation,

Di|si〉 = |si〉, |si〉 ∈ physical subspace

Di|si〉 = −|si〉, |si〉 ∈ physical subspace. (C.1)

Where |si〉 is any one of the four states defined in terms of two complex
fermion at the site ’i’. The projection operator Pi can be easily defined as
Pi = (1 +Di)/2, then it follows that the global projection operator is,

P =
∏

i

Pi (C.2)

where the product runs over all the sites of the lattice. We have seen that
an eigenstate of the Hamiltonian can be written as |MG〉 ⊗ |G〉, where |G〉
represents the configuration of gauge sector which can be written as,

|G〉 = |χx〉 ⊗ |χy〉 ⊗ |χz〉 (C.3)
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The state |χα〉 (α = x, y, z) gives a full description of the occupation number
of χα fermions on every α-bonds. We have seen that for the ground state all
the χα fermion occupation number is 1. Now we can easily write down the
normalized ground state wave function belonging to the physical subspace
as follows,

|ψPhy〉 = 2M−1
∏

i

(1 +Di)

2
|ψext〉 (C.4)

Where |ψext〉 = |MG〉 ⊗ |χx〉 ⊗ |χy〉 ⊗ |χz〉 and M is the number of z-bonds
present in the lattice (which is equal to half of the total lattice sites). We
know that the projection operator P commutes with all spin operators. Let
Ô be any operator made out of the product of the spins at different sites.
We wish to evaluate,

〈Ô〉 = 〈ψw|Ô|ψw〉
= 〈ψext|PÔP |ψext〉22(M−1)

= 〈ψext|ÔP |ψext〉22(M−1) (C.5)

Let us simplify the expression P |ψext〉. We can write P as,

P =
1

22N

∑

i6=j
(
∏

Di +
∏

Dj) (C.6)

A careful observation tells that the each terms in the parenthesis of the
above equation has identical effects on the gauge sector of the wave function
|ψext〉. The simplest example is, (1+

∏
iDi). The next pair is (Di+

∏
j 6=iDj)

and so on. The action of the first term is to yield 2|ψext〉. The second pair
changes the |ψG〉 and also annihilates one χ fermion from each adjacent links
of the site Ram,n. The other operators in the expansion of P change |ψG〉
in a different way and all of them have certain number of χ fermion absent
on various links. But they all have at least four or more χ fermions absent
in them. But in all this resultant terms, the value of Bp for each plaquette
remains one. We represent P |ψext〉 in the following way,

P |ψext〉 = |ψext〉+
∑

[i,j,k]

Nijk|MG〉ijk ⊗ |χx,i〉 ⊗ |χy,j〉 ⊗ |χz,k〉 (C.7)

Here ‘[i, j, k]’ denotes a definite number of χ fermion occupation number.
Now whenever we would be calculating spin-spin correlations with respect
to any |ψext〉, it must preserve the fermion occupation number [i, j, k]. Oth-
erwise there will be no non-zero overlap with the original state and hence all
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the spin-spin correlation function would be zero. From this consideration it
is completely clear that only non-zero correlations are those which preserve
the flux configurations because fermion occupation number determines the
flux configurations. Again from Eq. (C.7) it is clear from the orthogonality
of different gauge copies created by the operation of projection operator that
〈ψext|ÔP̂ |ψext〉 is same as 〈ψext|Ô|ψext〉.

C.2 Exact solvability of the Kitaev model

Now we can easily comment on the exact solvability of Kitaev model. If
we take the operator 0̂ to be ‘H’, the Hamiltonian for Kitaev model then
the expression, 〈ψext|HP |ψext〉22(M−1) measures whether there is a non-zeo
projection of the ground state obtained in the extended Hilbert space to
the physical subspace. And from the discussions made in this appendix we
observe that there really exists a nonzero projection.
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Appendix D

Spectrum Analysis for 3D
KM

In this appendix we present some detail analysis of the spectrum obtained
for 3D Kitaev Model.

D.1 Spectrum Analysis

We have seen that the spectrum for 3D Kitaev Model is given by,

E =
±1

2
√

2
(∆k ±∆3k)

1

2 (D.1)

where various parameters are given by

δ1k = (Jx + Jye
ik1), δ2k = (Jx + Jye

ik2) (D.2)

∆k = |δ1k|2 + |δ2k|2 + 2J2
z (D.3)

∆12 = |δ1|2 − |δ2|2 (D.4)

∆3k =
√

(∆2
12 + 4J2

z (|δ21 |+ |δ21 |+ (δ1δ2e−i(k3) + c.c)) (D.5)

The condition for minimum of E can be obtained by maximising ∆3k.
We differentiate ∆3k with respect to k3 and get the following condition,

δ1kδ2ke
−i(k3) = δ∗1δ

∗
2e
i(k3) (D.6)

This shows that δ1kδk2e
−i(k3) is purely real, imaginary part is zero and its

value is,

δ1kδ2ke
−i(k3) = |δ1k||δ2k| (D.7)
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Real part of the above identity is given by,

Rp = cos k3(J
2
x + JyJx(cos k1 + cos k2) + J2

y cos(k2 + k1))

+ sin k3(JyJx(sin k1 + sin k2) + J2
y sin(k2 + k3)) (D.8)

and imaginary part is given by,

Ip = i(− sin k3(J
2
x + JyJx(cos k1 + cos k2) + J2

y cos(k1 + k2))

+ cos k3(JyJx(sin k1 + sin k2) + J2
y sin(k1 + k2))) (D.9)

From the above equation we get,

tan kz =
JyJx(sin k2 + sin k1) + J2

y sin(k1 + k2)

J2
x + JyJx(cos k1 + cos k2) + J2

y cos(k1 + k2)
(D.10)

The Eq.(D.10) gives the condition for which the spectrum is gapless.
It is clear from this above identity that for 3D Kitaev model spectrum is
gapless on a contour in k-space determined by Eq. (D.10).

D.2 Some analysis

Here we derive the condition for gapless spectrum in detail. Let us call,
F = E2 = 1

8(∆k − ∆3k). We have also the relation for gaplessness of the
spectrum, δ1kδ2ke

−ik3 = |δ1k||δ2k| = δ∗1kδ
∗
2ke

ik3 . We substitute it in the
expression of ∆3k and obtain,

∆3k = (|δ1k|+ |δ2k|)
√

4J2
z + (|δ1k| − |δ2k|)2 (D.11)

Then we get for F,

F = |δ1k|2 + |δ2k|2 + J2
z − (|δ1k|+ |δ2k|)

√
4J2

z + (|δ1k| − |δ2k|)2 (D.12)

We search for the minimum of F and equate its partial differentiations w.r.t.
k1 and k2 to zero. Doing this get the following equations,

∂|δ1k|
∂k1

(
2|δ1k| −

√
4J2

z + (|δ1k| − |δ2k|)2 −
|δ1k|2 − |δ2k|2√

4J2
z + (|δ1k| − |δ2k|)2

)
= 0.

(D.13)
And

∂|δ2k|
∂k2

(
2|δ2k| −

√
4J2

z + (|δ1k| − |δ2k|)2 +
|δ1k|2 − |δ2k|2√

4J2
z + (|δ1k| − |δ2k|)2

)
= 0.

(D.14)
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We do not demand ∂|δ1k|
∂k1

= 0 and ∂|δ2k |
∂k2

= 0. They will turn out to be
solutions for the gapped phase. For the moment we demand,

2|δ1k| −
√

4J2
z + (|δ1k| − |δ2k|)2 −

|δ1k|2 − |δ2k|2√
4J2

z + (|δ1k| − |δ2k|)2
= 0 (D.15)

and

2|δ2k| −
√

4J2
z + (|δ1k| − |δ2k|)2 +

|δ1k|2 − |δ2k|2√
4J2

z + (|δ1k| − |δ2k|)2
= 0 (D.16)

We solve for |δ2k| and |δ1k| for the gapless phase. Subtracting Eq. (D.15)
from Eq. (D.16) we get ,

(|δ1k| − |δ2k|)
(

1− |δ1k|+ |δ2k|√
4J2

z + (|δ1k| − |δ2k|)2

)
= 0 (D.17)

Then adding equation (D.15) and (D.16) we get,

|δ1k|+ |δ2k| −
√

4J2
z + (|δ1k| − |δ2k|)2 = 0 (D.18)

Again we do not demand |δ1k| = |δ2k|, equating the term inside the bigger
parenthesis we find the following condition,

|δ1k||δ2k| = J2
z (D.19)

Thus we recover the earlier solutions for the gapless phase.

D.2.1 Minimum in the gapped region

We have the following expression for ‘F ’ in the gapped phase,

F = |δ1k|2 + |δ2k|2 + J2
z − (|δ1k|+ |δ2k|)

√
4J2

z + (|δ1k| − |δ2k|)2 (D.20)

For finding the extrema of a given function ‘F ’, we need to calculate the
following object ‘M ’ where ‘M ’ is given by,

M = Fxx(a, b)Fyy(a, b)− (Fxy(a, b))
2 (D.21)

If M > 0 and Fxx(a, b) > 0 then F (a, b) is a local minimum.
If M > 0 and Fxx(a, b) < 0 then F (a, b) is a local maximum.
If M < 0 then F (a, b) is a saddle point.
If M = 0 then the second derivative test is indecisive. We only take values
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for which Fx = 0 = Fy. Now let us look at equation (D.12). At minimum
the square of spectrum is given by,

F = |δ1k|2 + |δ2k|2 + J2
z − (|δ1k|+ |δ2k|)

√
4J2

z + (|δ1k| − |δ2k|)2 (D.22)

Evaluating ‘M ’ as directed by equation (D.21) we find that for the region
Jz ≥ Jx + Jy, kx = 0, ky = 0 is the condition for minimum. kx = π, ky = π
is the condition for extrema.

Similarly for the region, Jy ≥ Jx + JzandJx ≥ Jy + Jz, kx = π, ky = π is
the condition for a minimum. kx = 0, ky = 0 is the condition for an extrema.

In all cases kx = 0, ky = π and kx = π, ky = 0 satisfy the conditions for
saddle point.



Appendix E

Effective Hamiltonian in
toric code limit of the
Kitaev model

In this Appendix we derive the effective Hamiltonian of the 2D and 3D
Kitaev model in large Jz limit, i.e, Jz >> Jx, Jy. This particular limit,
in 2D, is often referred to as the toric code limit. We derive the effective
Hamiltonian at lowest nontrivial order of perturbation. The Hamiltonian
we study is given by (as given by Eq. (6.1) and Eq. (9.1) ),

H = H0 + V

H0 = −Jz
∑

z−link

σzjσ
z
k, V = −Jx

∑

x−link

σxj σ
x
k − Jy

∑

y−link

σyj σ
y
k (E.1)

Here we take H0 as the unperturbed Hamiltonian and treat V as pertur-
bation. For a given z-bond we can have four states but among them only
| ↑↑〉 and | ↓↓〉 contribute to the ground state subspace of the Hamiltonian
H0. If there are Nz number of z-bonds, we have 2Nz number of degenerate
ground state of the Hamiltonian H0. Details of perturbation theory lead-
ing to effective Hamiltonian for 2D and 3D Kitaev model is derived in the
AppendixF. Here we mention the results. The perturbation theory yields a
non-trivial effective Hamiltonian only in the 4th and 6th order for 2D and
3D Kitaev model respectively. For 2D Kitaev model effective Hamiltonian
is obtained by evaluating the identity,

〈b|Heff |a〉 =
∑

ji

〈b|V |j1 × j1|V |j2 × j2|V |j3 × j3|V |a〉∏
ji,i=1,3(E

0 − E0
ji
)

(E.2)
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The corresponding formula for 3D Kitaev model is given by,

〈b|Heff |a〉 =
∑

ji

〈b|V |j1 × j1|V |j2 × j2|V |j3 × j3|V |j4 × j4|V |j5 × j5|V |a〉∏
ji,i=1,5(E

0 − E0
ji
)

(E.3)

In the above formula i, j.. refers only the excited states. Kitaev has shown
that for 2D Kitaev model, the first non-identity corrections comes at 4th
order. For 3D Kitaev model, first non-identity corrections comes in 6th
order. First we re-derive the effective Hamiltonian for 2D Kitaev model
and then derive the effective Hamiltonian for 3D Kitaev model. Here by
‘effective Hamiltonian’ we mean first non-identity corrections.

E.1 2D Kitaev model

It can be seen very easily that at first order H1
eff is zero. In the 2nd order we

get a non vanishing matrix element which connects every state of the ground
state subspace to itself and yields a constant term which can be represented
by the identity operator. The 3rd order terms vanishes identically as in this
order every matrix element in Eq. (E.2) is zero. In the fourth order we get
three different type of terms which give non-vanishing contributions. Let us
look at the part of V which includes Hamiltonian terms of a single hexagon
as shown in Fig. (E.1). Then we can write,

V = v1 + v2 + v3 + v4 (E.4)

v1 = −σx1σx2 ; v2 = −σy3σ
y
3 ; v3 = −σx4σx5 ; v4 = −σy5σ

y
6 (E.5)

The fourth order term in the perturbation is given by,

∑

j1,j2,j3

〈a|V |j1〉〈j1|V |j2〉〈j2|V |j3〉〈j3|V |b〉
(E0 − Ej1)(E0 − Ej2)(E0 − Ej3)

(E.6)

After inserting equation (E.4) and (E.5), we observe that following three
types of terms yielding non vanishing contributions.

1. Terms in which any vi appears four times. It yields a constant and
can be represented by identity operator.

2. Terms in which any pair of vi’s appear twice. This can also be repre-
sented by a constant multiplied by identity operator.

3. Terms in which all vi appear only once without repetition. There are
24 terms of this type. They connect different states of the ground state
subspace. Below we find effective operator representing these terms.
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We know that for a given z-bond the low energy subspace is given by
the state, | ↑↑〉 and | ↓↓〉. Let us write down for a given pair of spin in a
z-bond (for exmp. for spin at site 3 and 4), the effective operators in the
low energy subspace can be written as,

σx3 ⊗ σx4 = τxk , σy3 ⊗ σ
y
4 = −τxk , σx3 ⊗ σy4 = σy3 ⊗ σx4 = τyk

σz3 = σz4 = τ zk , σz3 ⊗ σz4 = I (E.7)
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Figure E.1: In this figure we have shown the elementary plaquettes of 2D
and 3D Kitaev model.

The part of the degenerate ground state subspace which is effected by V
is given by the 8-site as shown in Fig. (E.1,A). There are 4 dimers involved
which means we are dealing with 24 = 16 states. Now we derive the H4

eff

in conformity with Eq. (E.2). The fourth order term is given by,

∑

p

∑

j1,j2,j3

〈a|v1|j1〉〈j1|v2|j2〉〈j2|v3|j3〉〈j3|v4|b〉
(E0 − Ej1)(E0 − Ej2)(E0 − Ej3)

(E.8)

Here the summation is performed over the excited states and the sum
over ‘p’ denotes a sum over other combinations of vi obtained by permuta-
tions. Let us take any one of these terms and select |a〉 and |b〉 such that
it yields a non-vanishing contribution. It is easy to see that if any one of
the 24 terms yields a non vanishing contribution for a given |a〉 and |b〉, the
other remaining 23 terms will be giving non vanishing contribution as well.
And finally they just add up. We take, |b〉 = | ↑1↑6↑2↑7↑3↑4↑5↑8〉. Let us
calculate the following term,
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∑

j1,j2,j3

〈a|v1|j1〉〈j1|v2|j2〉〈j2|v3|j3〉〈j3|v4|b〉
(E0 − Ej1)(E0 − Ej2)(E0 − Ej3)

= −
J2
xJ

2
y

64J3
z

|b〉 = | ↑1↑6↑2↑7↑3↑4↑5↑8〉
|j3〉 = | ↑1↓6↑2↑7↑3↑4↓5↑8〉; E0 − Ej3 = −4Jz

|j2〉 = | ↑1↓6↑2↑7↑3↓4↑5↑8〉; E0 − Ej2 = −4Jz

|j1〉 = | ↑1↓6↓2↑7↓3↓4↑5↑8〉; E0 − Ej1 = −4Jz

|a〉 = | ↓1↓6↑2↑7↓3↓4↑5↑8〉
(E.9)

In the above equation we have written in detail the various intermediate
state connecting the state |a〉 and the state |b〉. Now if we look at the spin
states of each dimer we see that they have changed from | ↑↑〉 to | ↓↓〉 or
itself. Let us take the pair | ↑1↑6〉. It has been connected to state | ↓1↓6〉.
Definitely some operator equivalent to τx or τy can only connect these two
states. Similarly for the pair | ↑2↑7〉, we can say τz or identity operator
has acted on. Below we write the combination of original spin operators(
denoted by σ) and their effective spin representation in the ground state
subspace(represented by τ).

σx1σ
y
6 ∼ τ

y
i ; σy3σ

x
4 ∼ τyk

σx2σ
y
2 ∼ iτ zj ; σx5σ

y
5 ∼ iτ zl

(E.10)

Looking at the above expression we can say that Eq. (E.7) can be written
as

∑

j1,j2,j3

〈a|v1|j1〉〈j1|v2|j2〉〈j2|v3|j3〉〈j3|v4|b〉
(E0 − Ej1)(E0 −Ej2)(E0 − Ej3)

≡
J2
xJ

2
y

64J3
z

〈a|τyi τ zj τ
y
k τ

z
l |b〉 (E.11)

Now summing the contributions from the remaining 23 terms we get
J2
xJ

2
y

16J3
z

which means that the effective operator representation at fourth order

is given by,

H4
eff = −

J2
xJ

2
y

16J3
z

τyi τ
z
j τ

y
k τ

z
l (E.12)
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The above representation for effective Hamiltonian would yield right ma-
trix element for the state |a〉 and |b〉 used in equation (E.9). Now we would
show that the effective Hamiltonian representation given by equation (E.9)
is true for any pair of states in the ground state subspace. Let us, for exam-
ple, take |b′〉 = | ↓1↓6↑2↑7↑3↑4↑5↑8〉, then |a′〉 must be | ↑1↑6↑2↑7↓3↓4↑5↑8〉.
Let us write the result we got,

∑

p

∑

j1,j2,j3

〈a|v1|j1〉〈j1|v2|j2〉〈j2|v3|j3〉〈j3|v4|b〉
(E0 − Ej1)(E0 − Ej2)(E0 − Ej3)

≡ 〈a| −
J2
xJ

2
y

16J3
z

τyi τ
z
j τ

y
k τ

z
l |b〉

(E.13)

Here |a〉 and |b〉 are as used in equation (E.9). Now we will show that the
above equation imply the correct matrix element (H4

eff ) between any two
given pair. For example we take |a′〉 and |b′〉. And if we replace |a〉 and |b〉
by |a′〉 and |b′〉 respectively, then we should obtain −J2

xJ
2
y

16J3
z

instead of
J2
xJ

2
y

16J3
z
.

Let us define a unitary operator, u = σx1σ
x
6 , it is clear that uu† = 1. Now

we see that,

∑

p

∑

j1,j2,j3

〈a′|v1|j1〉〈j1|v2|j2〉〈j2|v3uu†|j3〉〈j3|v4|b′〉
(E0 − Ej1)(E0 − Ej2)(E0 − Ej3)

=
∑

p

∑

j1,j2,j3

〈a′|uu†v1uu†|j1〉〈j1|uu†v2uu†|j2〉〈j2|uu†v3uu†|j3〉〈j3|uu†v4uu†|b′〉
(E0 − Ej1)(E0 − Ej2)(E0 − Ej3)

= (−)
∑

p

∑

j′
1
,j′

2
,j′

3

〈a|v1|j′1〉〈j′1|v2|j′2〉〈j′2|v3|j′3〉〈j′3|v4|b〉
(E0 − Ej1)(E0 − Ej2)(E0 −Ej3)

= (−)
J2
xJ

2
y

16J3
z

by Eq. (E.13) (E.14)

Here we have used the fact u†v4u = −v4 and all other v remain un-
changed under the unitary transformation u†viu. The summation over prime
and unprimed states are equivalent as they are dummy indices.

E.2 3D Kitaev model

We proceed exactly the same way as in 2d Kitaev model. We see that in
second and fourth order we get non-vanishing contribution which is constant
and can be represented by identity operator. Only in sixth order we get a
nontrivial contribution having non-vanishing matrix element between two
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different degenerate eigenstate of the H0. Very similar to 2d Kitaev model,
we need to sum a total of 6! = 720 terms in the expansion of sixth order
perturbation(we have wriiten a computer code to perform this sum). In the
Fig. (E.1), we have drawn two different kind of elementary loops present in
the 3d Kitaev model. In the Figure (E.1), we represent these two loop by B
and C. For both the loop, we get 7/256 after summing all the 720 terms. It
is to be noted that the differences in the distribution of x and y bond in the
elementary plaquettes B and C in Fig. (E.1) does not make any differences
in the final result. Thus we can write for the effective operator for plaquette
B in Fig. (E.1)as follows,

H6
eff = − 7

256

J4
xJ

2
y

J5
z

τxi τ
z
j τ

y
k τ

x
l τ

z
mτ

y
n (E.15)

For plaquette C in Figure (E.1), we have the effective operator as given by,

H6
eff = − 7

256

J4
yJ

2
x

J5
z

τyi τ
z
j τ

x
k τ

y
l τ

z
mτ

x
n (E.16)

Now we would like to prove that the Eq. (E.15) would imply Eq. (E.16).
Let us take,

|a〉 = | ↑1↑10↑2↑11↑3↑4↑5↑6↑7↑12↑8↑9〉
= | ⇑i⇑j⇑k⇑l⇑m⇑n〉 (E.17)

|b〉 = | ↓1↓10↑2↑11↓3↓4↓5↓6↑7↑12↓8↓9〉
= | ⇓i⇑j⇓k⇓l⇑m⇓n〉 (E.18)

Fort the state |a〉 and |b〉, we have a non-vanishing matrix element at
sixth order of perturbation. Let us write the equation for the sixth order
perturbations for the plaquette B in the figure (E.1),

∑

p,j

〈b|v1|j1〉〈j1|v2|j2〉〈j2|v3|j3〉〈j3|v4|j4〉〈j4|v5|j5〉〈j5|v6|a〉
(E0 − Ej1)(E0 − Ej2)(E0 −Ej3)(E0 − Ej4)(E0 − Ej5)

=
7

256

J4
yJ

2
x

J5
z

(E.19)

Here the expressions for vi’s are given by,

v1 = σx1σ
x
2 , v2 = σy2σ

y
3 , v3 = σx4σ

x
5 , v4 = σx6σ

x
7 , v5 = σy7σ

y
8 , v6 = σx9σ

x
10 (E.20)
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To get the expression for effective Hamiltonian for the plaquette C in
Fig(E.1), we must have following vi’s in Eq. (E.19),

v1 = σx1σ
x
2 , v2 = σy2σ

y
3 , v3 = σy4σ

y
5 , v4 = σx6σ

x
7 , v5 = σy7σ

y
8 , v6 = σy9σ

y
10 (E.21)

Let us define an unitary transformation U given by,

U = eiπ(σz
4
+σz

5
+σz

9
+σz

10
)/4 (E.22)

We notice that v3 and v6 undergoes following transformation under the
action of U .

v3 = σx4σ
x
5 → Uσx4σ

x
5U

† = σy4σ
y
5 , same is true for v6 (E.23)

The all other vi’s in Eq. (E.20) remain unchanged under the action of
’U ’. Now inserting UU † into the l.h.s of Eq. (E.19) at appropriate places,
we find that one must have,

∑

p,j

〈b|v1|j1〉〈j1|v2|j2〉〈j2|v3|j3〉〈j3|v4|j4〉〈j4|v5|j5〉〈j5|v6|a〉
(E0 − Ej1)(E0 − Ej2)(E0 − Ej3)(E0 − Ej4)(E0 − Ej5)

=
7

256

J4
yJ

2
x

J5
z

(E.24)

where various vi’s are given in Eq. (E.21).
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Appendix F

Perturbation theory for
the Kitaev model

In this Appendix we develop perturbation theory leading to the effective
Hamiltonian of the 2D and 3D Kitaev model in large Jz limit, i.e, Jz >>
Jx, Jy. The Hamiltonian we discuss is given by,

H = H0 + λV (F.1)

H0 = −Jz
∑

〈ij〉z−bond

σzi σ
z
j (F.2)

V = −Jx
∑

〈ij〉x−bond

σxi σ
x
j − Jy

∑

〈ij〉y−bond

σyi σ
y
j (F.3)

H0 is taken as the unperturbed Hamiltonian. We discuss the limit Jx, Jy <<
Jz. λ is an arbitrary parameter introduced to develop the perturbation
theory. It can be set 1 at the end. The eigenstates of H0 are divided
into two classes, one which constitute the (degenerate) ground states and
the others belongs to excited states. It may be mentioned that excited
states are also degenerate. We denote the ground states as |E0

a〉 and excited
states as |E0

i 〉. We calculate the effective Hamiltonian at first non-identity
corrections. Though we are dealing with a degenerate perturbation theory
we follow usual non-degenerate perturbation theory as it does not create
any problem for our purpose of calculating effective Hamiltonian belonging
to ground state sub-space at first leading order. This privilege is special to
Kitaev model and is due to the following reason.

• The usual perturbation theory fails for degenerate states as we en-
counter a term 〈a|V |b〉

E0
a−E0

b

which is diverging for E0
a = E0

b . However as

131



132 Perturbation theory for the Kitaev model

far as we have 〈a|V |b〉 = 0, a 6= b we are safe to use non-degenerate
perturbation theory

• It happens that this is exactly the case for 2D and 3D Kitaev model
where the effective Hamiltonian at lower order do not have any off
diagonal matrix element in ground state subspace. Thus if we intend
to calculate the leading order corrections in the ground state subspace
we can use non-degenerate perturbation theory in sub-leading order.

Now we develop the perturbation theory for Kitaev model. As usual we
write the expected normalized eigenvectors as,

|Ea〉 = |E0
a〉+ λ|E1

a〉+ λ2|E2
a〉+ λ3|E3

a〉+ ..... (F.4)

Ea = E0
a + λE1

a + λ2E2
a + λ3E3

a + ..... (F.5)

In the above equation |Eia〉 and Eia denote the i’th order corrections to
perturbed eigenstate |Ea〉 and perturbed energy Ea. We expand |Eia〉 in the
following way,

|Eia〉 =
∑

Aaγ |E0
γ〉 (F.6)

Below we write down the set of equations we need to solve at various orders,

(H0 − E0
a)|E1

a〉+ (V − E1
a)|E0

a〉 = 0 (F.7)

(H0 − E0
a)|E2

a〉+ (V − E1
a)|E1

a〉 − E2
a|E0

a〉 = 0 (F.8)

(H0 − E0
a)|Ena 〉+ (V − E1

a)|En−1
a 〉 −

n−2∑

i=0

En−i|Eia〉 (F.9)

We also know that for calculating the n-th order corrections to energy we
need to calculate the perturbed eigenvectors upto (n-1)th order. The energy
correction to n-th order then obtained by calculating 〈E0

aV |En−1
a 〉. It turns

out that for calculating the effective Hamiltonian upto first non-identity
corrections we need to carry the calculations upto 5th order for 3D Kitaev
model. Below we write down the expressions for Ena and Ena at various order.
We continue to explain why the non-degenerate perturbation theory does not

create any problems. We define the effective Hamiltonian obtained at n-th
order by the existence of following matrix element,

Heff ≡ Ẽab = P 〈E0
b |V |En−1

a 〉P (F.10)

In the above equation P is the projection operator which project out any
matrix element between an initial ground state and final excited state.
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F.1 1st order

First order corrections to energy and eigenfunctions are given by,

E1
a = 〈E0

a |V |E0
a〉 = 0 (F.11)

|Ea〉 = |E0
a〉+

∑

a6=i

Via
E0
a − E0

i

|E0
i 〉 (F.12)

It is to be noted that the summation is over only the excited states.

F.2 2nd order

Results of the 2nd order corrections are the following,

E2
a =

∑

i

|〈E0
i |V |E0

a〉|2
E0
a − E0

i

(F.13)

Heff = P 〈E0
b |V |E2

a〉P = Constant (F.14)

|Ea〉 =


1− λ2

2

∑

γ 6=a

|Vaγ |2
(E0

a − E0
γ)

2


 |E0

a〉+ λ
∑

γ 6=a

Vγa
E0
a − E0

γ

|E0
γ〉

+λ2
∑

γ 6=a

1

E0
a − E0

γ



∑

δ 6=a

VδaVγδ
E0
a − E0

δ


 |E0

γ〉 (F.15)

It may be noted that though we have written the summation over all states,
contribution in the summation comes only from the excited states.
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F.3 3rd Order

Proceeding to the third order we get the following expressions for energy
corrections

|Ea〉 = |E0
a〉+ λ

∑

γ1 6=a

Vγ1a
E0
a − E0

γ1

|E0
γ1〉 −

λ2

2

∑

γ2 6=a

|Vγ2a|2
(E0

a − E0
γ2)

2
|E0
a〉

+λ2
∑

γ2 6=a

∑

δ2 6=a

Vδ2aVγ2δ2
(E0

a − E0
γ2)(E

0
a −E0

δ2
)
|E0
γ2〉+ λ3A3

aa|E0
a〉

+λ3
∑

γ3 6=a


1

2

∑

γ2 6=a

|Vγ2a|2Vγ3a
(E0

a − E0
γ2)

2(E0
a − Eγ3)


 |E0

γ3〉

+λ3
∑

γ3 6=a



∑

γ2 6=a

∑

δ2 6=a

Vδ2aVγ2δ2Vγ3γ2
(E0

a − E0
γ2)(E

0
a −E0

δ2
)(E0

a − E0
γ3)


 |E0

γ3〉

+λ3
∑

γ3 6=a

(
E2
a

Vγ3a
(E0

a − E0
γ3)

)
|E0
γ3〉 (F.16)

We need to solve for A3
aa by using normalization condition. Inequalities and

various matrix elements are such that the r.h.s of the above expressions are
finite. The expressions for A3

aa is given by,

A3
aa = −

∑

γ2 6=a

∑

δ2 6=a

Vδ2aVγ2δ2Vγ2a
(E0

a − E0
γ2)

2(E0
a − E0

δ2
)

(F.17)

E3
a = 〈E0

a |V |E2
a〉 = λ

∑

γ 6=a

|Vγa|2
E0
a −E0

γ

+λ2
∑

γ 6=a

∑

δ 6=a

VδaVγδVγa
(E0

a − E0
γ)(E

0
a − E0

δ )
(F.18)

Heff = P 〈E0
b |V |E2

a〉P = 0 (F.19)
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F.4 4th order

4th order corrections to the energies are given by,

E4
a = 〈E0

a|V |E3
a〉 = λ

∑

γ1 6=a

|Vγ1a|2
E0
a − E0

γ1

+λ2
∑

γ2 6=a

∑

δ2 6=a

Vγ2aVδ2aVγ2δ2
(E0

a − E0
γ2)(E

0
a − E0

δ2
)

+λ3
∑

γ3 6=a

1

2

∑

γ2 6=a

|Vγ2a|2|Vγ3a|2
(E0

a − E0
γ2)

2(E0
a − Eγ3)

+λ3
∑

γ3 6=a

∑

γ2 6=a

∑

δ2 6=a

Vδ2aVγ2δ2Vγ3γ2Vγ3a
(E0

a − E0
γ2)(E

0
a − E0

δ2
)(E0

a − E0
γ3)

+λ3
∑

γ3 6=a
E2
a

|Vγ3a|2
(E0

a − E0
γ3)

(F.20)

At this point, for 2D Kitaev model, we get a non-vanishing matrix ele-
ment for the matrix element 〈E0

b |V |Ea〉 where |E0
a〉 and |E0

b 〉 both belong to
ground state subspace. Thus we encounter the first contribution to effective
Hamiltonian. The second last term of the Eq. F.16 yields a non-vanishing
matrix element with 〈E0

b |V . The effective Hamiltonian for 2D Kitaev model
can be written as,

Heff =
∑

a,b

∑

γ3 6=a

∑

γ2 6=a

∑

δ2 6=a

Vδ2aVγ2δ2Vγ3γ2Vγ3b
(E0

a − E0
γ2)(E

0
a −E0

δ2
)(E0

a − E0
γ3)

(F.21)

The expressions for fourth order corrections to eigenfunction is given by,

|E4
a〉 = A4

aa|E0
a〉+

∑

γ4 6=a
A4
aγ4 |E

0
γ4〉 (F.22)

A4
aγ4 = −

∑

γ3 6=a

∑

γ2 6=a

1

2

|Vγ2a|2Vγ3aVγ4a
(E0

a − E0
γ2)

2(E0
a − E0

γ3)(E
0
a − E0

γ4)

+
∑

γ3 6=a

∑

γ2 6=a

∑

δ2 6=a

Vδ2aVγ2δ2Vγ3γ2Vγ4γ3
(E0

a − E0
γ2)(E

0
a − E0

γ3)(E
0
a − E0

γ4)(E
0
a − E0

δ2
)

−E2
a

1

2

∑

γ2 6=a

|Vγ2a|2Vγ4a
(E0

a − E0
γ2)

2(E0
a − E0

γ4)
− E2

a

∑

δ2 6=a

∑

γ2 6=a

Vδ2aVγ2δ2Vγ4γ2
(E0

a − E0
γ2)(E

0
a − E0

δ2
)(E0

a − E0
γ4)

−
∑

γ1 6=a

E3
aVγ1aVγ4γ1

(E0
a − E0

γ1)(E
0
a − E0

γ4)
(F.23)
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The expressions for A4
aa is obtained by normalization condition and is given

by,

A4
aa =

1

4



∑

γ2 6=a

|Vγ2a|2
(E0

a − E0
γ2)

2




2

+



∑

γ2 6=a

∑

δ2 6=a

Vδ2aVγ2δ2
(E0

a − E0
γ2)(E

0
a − E0

δ2
)




2

−



∑

γ2 6=a

|Vγ2a|2
(E0

a − E0
γ2)

2


×



∑

γ2 6=a

∑

δ2 6=a

Vδ2aVγ2δ2
(E0

a − E0
γ2)(E

0
a − E0

δ2
)




+
∑

γ3 6=a


1

2

∑

γ2 6=a

|Vγ2a|2|Vγ3a|2
(E0

a − E0
γ2)

2(E0
a − Eγ3)2




+
∑

γ3 6=a



∑

γ2 6=a

∑

δ2 6=a

Vδ2aVγ2δ2Vγ3γ2Vγ3a
(E0

a − E0
γ2)(E

0
a − E0

δ2
)(E0

a − E0
γ3)

2




+
∑

γ3 6=a

(
E2
a

|Vγ3a|2
(E0

a − E0
γ3)

2

)
(F.24)

F.5 5th order

In a similar way we can proceed to 5th order and we find that Heff = 0
for 3D Kitaev model. We do not write down the expressions for energy
corrections for this order but write down the expressions for the perturbed
eigenfunctions which is needed to calculate the effective Hamiltonian at next
order. As usual the the perturbed eigenfunctions is obtained by calculating,

|E5
a〉 = A5

aa|E0
a〉+

∑

γ5 6=a
A5
aγ5 |E

0
γ5〉 (F.25)

where A5
aγ5 and A5

aa are given by,

A5
aγ5 = − E4

a

E0
γ5 − E0

a

〈E0
γ5 |E

1
a〉 −

E3
a

E0
γ5 −E0

a

〈E0
γ5 |E

2
a〉 −

E2
a

E0
γ5 − E0

a

〈E0
γ5 |E

3
a〉

− E1
a

E0
γ5 − E0

a

〈E0
γ5 |E

4
a〉+

〈E0
γ5 |V |E4

a〉
E0
a − E0

γ5

, (a 6= γ5) (F.26)

Expression for A5
aa is,

A5
aa = −1

2
(〈E1

a|E4
a〉+ 〈E2

a|E3
a〉+ 〈E4

a|E1
a〉+ 〈E3

a|E2
a〉) (F.27)

Expressions for various Eias have already found in preceding sections.
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F.6 Effective Hamiltonian for 3D Kitaev model

We are in a position to derive the effective Hamiltonian at first leading or-
der. Before we write down it we discuss why the calculation done so far
does not make any problem though we are dealing with degenerate ground
states. We calculated the perturbed eigenstate |Ea〉 which reduces to |E0

a〉
at zeroth order. |E0

a〉 is a representative ground state eigenvector. Upto
the 5th order corrections to eigenstate |E0

a〉 and eigenvalue E0
a we do not en-

counter any term which diverges due to vanishing denominator. This can be
verified easily and is due to the reason that starting from a given eigenvector
belonging to ground state subspace we need a minimum six consecutive ap-
plications of perturbed Hamiltonian to reach for another degenerate ground
state. However at even order of perturbations one has a possibility to return
back to original state E0

a which corresponds to trivial corrections. We notice
from the equations (F.25) and (F.26) that |E5

a〉 contains contribution from
all the preceding orders however only the last term (containing |E4

a〉) in the
Eq. F.26 yields the first non-trivial corrections to the energy. Again we
see from the expressions of |E4

a〉 that it is the fourth order term which is
responsible for this non-trivial corrections. For this reason we write down
the expressions for this terms explicitly,

|Ẽ5
a〉 =

∑

γ5 6=a

∑

γ4 6=a

∑

γ3 6=a

∑

γ2 6=a

∑

δ2 6=a

Vδ2aVγ2δ2Vγ3γ2Vγ4γ3
(E0

a − E0
γ2)(E

0
a − E0

γ3)(E
0
a − E0

γ4)(E
0
a − E0

δ2
)
×

〈Eγ5 |V |Eγ4〉
(E0

a − E0
γ5)
|Eγ5〉

=
∑

γ5 6=a

∑

γ4 6=a

∑

γ3 6=a

∑

γ2 6=a

∑

δ2 6=a

Vδ2aVγ2δ2Vγ3γ2Vγ4γ3
(E0

a − E0
γ2)(E

0
a − E0

γ3)(E
0
a − E0

γ4)(E
0
a − E0

δ2
)
×

Vγ4γ5
(E0

a − E0
γ5)
|Eγ5〉 (F.28)

All the variables used in the above summation are excited states only.
Eγ5 can be such that it yields a non-vanishing matrix element of V with a
ground state |E0

b 〉. This means we have 〈E0
b |V |Eγ5〉 6= 0 for some |E0

γ5〉 .
Here |E0

b 〉 is another degenerate ground state. Thus only at this order we find
off-diagonal matrix element in the ground state subspace and it constitute
the effective Hamiltonian in the ground state subspace. The Heff can be
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written as,

Hba
eff =

∑

γ5 6=a

∑

γ4 6=a

∑

γ3 6=a

∑

γ2 6=a

∑

δ2 6=a

Vδ2aVγ2δ2Vγ3γ2Vγ4γ3
(E0

a − E0
γ2)(E

0
a − E0

γ3)(E
0
a − E0

γ4)
×

Vγ4γ5Vγ5b
(E0

a − E0
δ2

)(E0
a − E0

γ5)

≡ 〈b|Heff |a〉

=
∑

ji

〈b|V |j1 × j1|V |j2 × j2|V |j3 × j3|V |j4 × j4|V |j5 × j5|V |a〉∏
ji,i=1,5(E

0 − E0
ji
)

(F.29)

In the above equation we have substituted j1 = γ5, j2 = γ4, j3 = γ3, j4 =
γ2, j5 = δ2. Similarly the effective Hamiltonian for 2D Kitaev model is
obtained by evaluating,

Hba
eff = 〈b|Heff |a〉 =

∑

ji

〈b|V |j1 × j1|V |j2 × j2|V |j3 × j3|V |a〉∏
ji,i=1,3(E

0 − E0
ji
)

(F.30)

The perturbation theory developed here can be applied to non-degenerate
perturbation problem upto 6th order. It can also be applied to degenerate
perturbation theory if it happens that perturbation does no have any off-
diagonal matrix element between any two degenerate ground states upto 5th
order.
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