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PREFACE

These notes are based on a series of lectures we gave at

the Institute of Mathemntical Sciences in Madras. The lectures

were intended to be pedagogical in nature, and no prior familiarity

with the material was assumed. Although we have tried to provide

some references where the reader can obtain more details than are

presented here we have not attempted to be systematic about it. Many

of the results presented here are due to the work of others, both

published and unpublished. More complete references can be found

in the references we have cited.

These notes would not have been possible without the

high degree of audience participation. We owe a special debt to

Biswajit Chakraborty and Surnitra Rangariathan who took the notes and

asked many insightful questions which helped us to polish the

presentation. We also want to thank Mrs.;E.Gayathri for her careful

typing of the manuscript. We hope eventually to g1ve a more,

detailed presentation of this material. We would therefore appreciate

the reader's comments.

Our stay in India was made possible by Indo-American

Fellowships through the Indo-US Subcommission,funded jointly by the

USIA and the NSF in the US and by the UGC in India. To all these

organizations we are very grateful. Special thanKs are due to

Prof.N.D.Hari Dass and the Institute of Mathematical Sciences for

inviting us to Madra~

Tevian Dray & Corinne A.Manogue
Oregon State University

Corvallis, OR 97331, U.S.A.
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Lecture 1 Introduction

In this introduction to quantum field theory in curved spacetime

we shall treat the curved spacetime as a given, classical background.

We shall not attempt to quantize the gravitational field. Instead,

we shall deal with the quantization of the scalar field on this

classi cal gravitational background ignoring any back reaction •

.It should be emphasized that only "elementary" p rope rt Les of

general relativity and quantum field theory will be used. SpecificallYI

from GR the concepts used are covariant differentiation and the

curvature tensori whereas from QFT we need only the standqrd Fock

space quantization of the Klein-Gordon scalar field and the notion

of Bogoliubov transformations.

The remarkable thing is that equipped only with these simple

tools physically interesting results can be calculated which are

both new and profound. The principle example is Hawking radiation,

which will be discussed in lecture 3.

At the same time, it should also be emphasized that the

rigorous mathematical foundations of this approach are not at all

satisfactory. During these lectures we will attempt- to point out

some of the places where this occurs. A good (in factthe only)

general reference is Birrell & Davies I

General Relativity

A spacetime is a manifold M equipped with a metric tensor gab-

In general, n will denote the dimension of M, but we will usually

chapters 2,3,4 •.
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consider only n :::2 or n = 4. The signature of gab is taken to be

( _ + + + ••• ), and we set 11 = c = G = k.= 1 (geometrical units).

Covariant deri vati ves wi th respect to the (met.ric cornpa t.i.bLe , torsion

free) Levi-Civita connection will be denoted by ~ and the Ricci

scalar will be denoted by R.

The dtAlembertian operator 0 is defined by

o cO - 3ob\la ~ cb

F5" do eM ~ab db cD}
where g = det (gab).

The topology of M will not be explicitly specifiedl but in
{j)n •most cases it may be taken to be I~ We will also usually assume

the existance of a timelike Killing vector field Xa,i .e.

where :t.. denotes Lie derivative.

Klein-Gordon equation

We now show how the Klein-Gordon equation for the scalar field

can be generalized to curved space. In flat space we have

o
In curved space the Klein-Gordon equation is

where the usual mass

-- o
is an arbitrary coupling constant and m is

parameter. Notice that the coupling of the scalar field to gravity

occurs in two ways: due to the covariant deri vati ves in 0 and due

( 1)

(2)

(3 )

(4)
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to the presence of R. The 1'R mass independent
term is.included as the only possible/

scalar constructed from the metric and curvature tensors which has the

right dimension. A more intuitive argument for its presence is due

•• to the fact that one expects the massless scalar field to propagate

along null directions (i.e. at the speed of light) and thus be

conformally invariant. As an example consider n = 4. Then if

(5)

we also have

(6)

and

(7 )

(the numerical coefficients are dimension-dependent). Thus , 3etting

(8 )

we obtain

(0 - tR)cP -- (9)

so that the (massless) Klein-Gordon equation is conformally invariant

in 4 dimensions if and only if 3 = 1/6,which is called conformal

coupling. The choice $==0 is referred to as minimal coupling.

In 2 dimensions it turns out that conformal coupling and

invariant equation.

that 3:::: 0 gives a con formally
A-l __ ~Furthermore# here W/ U/ • The general relations

minimal coupling coLnci de , i ••e.

are
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n-z
n-I

The equation of motion (4) can be derived from the Lagrangian

density

Let us first consider flat space in n dimensions. The metric

is just goL = l720b i.e.

elS? =-= -dt1. +-d~~
and the Klein-Gordon equation is (~ denotes the n-l dimensional

spatial Laplacian)

There is a natural (i.e.conserved) scalar p roduct , called the Kiein-

Gordon product. defined by

( (1), (B) = -torra/ iP - d:> "'35) 01 "-'X

(12)

(13)

(14)

(15)

where the dot refers to time deri vati ves and the surface of integration

is taken to be [t:::constantj •

Assuming that the surface term resulting from integration by

parts vanishes one can see that

== ; j( a:/"6. iP - 4),6. (f)*) jn-I x -z: 0

hypersurface ZWe can generalize this to any spaceltke
Q

unLt (timelike., future po i nt Lnq) normal n as

(16)

with
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(LV (5) -; ~j---nO(a/:d", (j) - {j5 do a/') vi £" (17)

I -.z
and one can show (again# up to boundary terms which are assumed to be

zero) that (cp( m \ is independent of Z for any two solutions of' (4).;

Some properties of this scalar product are

1) (cPl' CD) -::::0 Por CO re« I
2 ) (&... (!)) -::: ((J) / d5) ;f(

3) (!p ~ cO 11:) -= - ( cD, as) ~ (18)

From 2) we see that the Klein-Gordon product is Hermitian" so that

but from 3) with we see that it is not positive
def i n i t.e ;

A Hilbert space is by definition a complex vector space

equipped with a Hermitian~ positive definite inner product and

wt.i.ch is Cauchy complete. We will only consider separable Hilbert

spaces, i.e. we will assume the existence of a countable basis. (Almost

all Hilbert spaces in physics are separabl~)

We therefore proceed as follows. Choose a countable set of

solutions [Uk: J I 1<£Z J

(U~Uk') -= Jk"I(I,

to (4) which are orthonormal~ i.e.

(Uk: U;') =0
;

(19)

and complete in the sense that "any" real solution can be written

(20)

Classical Solutialli: We now construct the Hilbert space of classical#

positive frequency solutions ~ by taking the Cauchy completion of

the span of {U,,] (but not including fUt:1) with respect to the
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Klein~Gordon product~ [UI(J is an orthonormal basis of ~

and the Klein-Gordon product is clearly positive definite there.
<;:\..J *'We can also consider the space ~ of negative frequency

~ C
solutions. In general, the space of complex solutions 'v' is

given by

C
One thing to be noted here is that speci fying V does!22!

uniquely determine the decomposition (21); the choice of positive!

negative frequency depends on the choice of U1<. As a simple

example of this. consider a new set 1:\I~Jr given by

with A2
_S

2
=1. Then fVk:3 satisfies (19) and (20) and •.denoting

the corresponding Hilbert spaces by -u: and Vf:fv # we have
0).../ (£; O)...} ~ = V s: = /cI-. (£J c?).) *
Hu Ht..f v rt'v (23)

although <7p,fv is clearly different from ~u.

Second quantization

So far we have treated the coefficients OJ< and in

(20) as being C-numbers. Here their status is uplifted to that of

operators# and o~I< is replaced by OKt •

So itself becomes an operator, acting on a Fock space

which we now construct. We impose the canonical commutation relations

J
(24 )

and define the vacuum state I o~ by

(21 )

(22 )
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Ok'/v)=o z%)=J (25)
)

The Hilbert space of one particle states is defined as the span of

the orthonormal basis f a.,/ lo>? ' .and this space is isomorphic
to <f::I.

• Multiparticle states are obtained as usual by construct-

ing the Fock space F over W (c f ,Wald)

F - 1. ff)~ (£)(?/.~~)(f) ... (26)

where ~ denotes the symmetrized tensor product.

Bogoliubov transformations

As above, if we consider some other definition of positive

frequency ~~ Jr
decomposition of F, i.e. usually

satisfying (19) and (20) then we get a different

F = F althoughu v •

We now show in more detail how this works.

In addition to (20) we now assume that we can expand cD
as

(27)

or at the level of second quantization

(28)

But since the bases are different, the notion of particles

is different! In particular, there is no reason for b~ to annihilate

the same vacuum as 01('1 .
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Since we are assuming completeness. we can write

"-J := f'(~K IAk t fo.JI1( Uk* )
where cXJ", -= (VJ~Ut<) ~ p.JJ( = - (VJ,U:) .
Similarly.

Equivalently~ using (28) and (19) we can write

b-i

Completeness forces these transformations to be invertible. i.e.

~..P'

o
and

§(o<y: ~~,- f5.Qk{3~K') -= ~K'

f(0(lr; ft-Il#<:' - fi..PK CX..R:') -== 0

We can now ask how many ·v" particles there are in the "u" vacuum

The number operator associated with "v" particles is

• so the answer is (using (31».

(29)

(30)

(31 )

( 32)

( 33)

(34)

,,
··t-"~
~1
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f <OU I bJbJIOu)
-t,1(' #.1k P~, <0..1 a; a/(~ / 0•.•'1

50 that

- £. 'n ()'*
- -P, I( j-J..R I< }J...R I<

-== i; ( ppt)
h- (ppt) gives the total number of" V" 'type particle'S

(35)

"created" in the "u" vaGuum. Note that ~ is the coefficient whichmixes positiv~ and negative fre~uencies.
Plane Waves

In practice. howeverl' the standard procedure is to choose

a "basI.s " of plane waves. For Lns t ance , in flat space one usually

considers

(36)

which satis~y

(UI(, uJ (37)

It can not be emphasized too strongly that these U,,< are not

:' a basis because they are not even in the space VC of "sui table"
This difficulty

solutions because they are not normalizable! lis usually hidden by

statements like "only suitable linear mrrbinations of are
allowed".

The above discussion of Bogoliubov transformations can

nevertheless be carried over to the case of a continuous parameter
k by replacing sums over k • However, if;.

,
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are not bases then it becomes very hard

to decide if the two resulting expansions of "suitable" functions

are equf va Len t , i.e. if the two sets of "suitable" functions define

the same space.
One can easily see that even though o{,~ and

( )n....1acquire the dimensions of length ~

now

( 38)

remains dimensionless and still representiJ the total number of

"v" particles in the "u" vacuum.

Finally~ it should be pointed out that there is another use

of the term Bogoliubov transformation in the special case where

d
K

1(' - ~I< d (,,~.\(k-k")

PK 1(' ~ PI< c> (1\") (k-)<") (39)

in which case one often refers to instead of

as being the Bogoliubov coefficients. Note that

in this case we have

(40)

so that -l-,... (n n t)
(2 Jr)"-I r r

particles.

is the number density. of created
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Lecture 2: Pindler Space

In this lecture we shall consider 2-dimensional Minkowski

space with metric

(2.1)

and eonsider the scalar field as seen by an observer undergoing

constant acceleration. We again consider the Klein-Gordon

equation

(- d/ + d 2 rnZJ (j) z: 0 (2.2)
)(

and for ease of calculation we will work with the standard, Dirac

delta function normalized set of modes

JY7rLcJ

with w= +Jk't/r{ and KC"rR -.

(2.3)

However~ before proceeding to the actual calculation let us

recall where the come from and why other solutions are

not considered.

Separable Solutions

The LAK are clearly separable~ i.e. satisfy

CD ()(,-t) -= X ()c;) T (t ) (2.4)

What if we consider all separable solutions? For the massless case

(m=O) we would get the following possibilities for the functions lr,lr:
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-
(2.5)

are similar. Note that the UK
where A, Bt C~ D are arbitrary constants. For m i 0 the solutions

are a special case of the first

possibility. The second possibi Iity ("imaginary

TOO

frequency") consists of solutions which diverge as x (or t.) goes to

• Thus~ they can not even be normalized to Dirac delta

functions. We will say more below about the last possibility

("zero frequency").

Fourier expansion in t

We can also obtain the UI('

solutions of (2.2) as

if we Fourier decompose

This approach is especially attractive when. as here, t corresponds

to an isometry of space t Lme , i.e. dt is a Killing vector. But

if we now consider the massive case (m # 0) and use (2.2) we find
"..."CD~ must satisfy

( ~t_ (Y'\t) mLJ +- &L..J 11

For I wi > rY\ this indeed yields the

that the

-==0

~ but

(2.7)

f?r (uJl<~ one is

/IJ/ =(Y'.again led to divergent, non-normalizable solutions. AlsO for
one possible solution is

,...,
CD =Xk9

~ which leads to the same
problem.
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Fourier decomposition in x

If we instead try

we obtain the following equation for
/\.CPK

• •
( k'"lt fY\2) &.< t- cPK -==0

(2.9)

which does yield the
"CP -= to

except for the case k=O=m, for which

would be a solution.

The motivation for this discussion is to emphasize that it

is not enough just to give a set ·of modes lJ~ ~ especially

when they are not normalizable. In addition one must also specify

in some physical manner. e.g. by giving boundary conditions,. which

conbinations of the modes are acceptable.

Zero frequency

For m ~ 0 there are two perfectly well-behaved

Uo
...., e t1""t • But for m = 0,. not only is

there a degeneracy in that u, :: U/' but the normali rat t on factor
( k'-== 0 ') modes namely

diverges. In practice this is usually ignored. but in

fact this is one of the reasons that the m = 0 case (especially in

2 dimensions) is the hardest to justify rigorously.

However~ since "zero modes" may be important if the space

is compact. we point out here that there does exist a nonstandard

choice of modes which does have a zero frequency limit, namely

(2.10 )
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In particular. for m = ~ the zero mode

is normalizable to a Dirac delta function.

, t~X -
AcceleratingConsider now an observer moving aJ.ong the trajectory
Observer:

We claim that this observer moves with uniform acceleration a as

measured in his instantaneous rest frame. To see this. let Y

(2.11)

(2.12)

denote the proper time of the obs erver, .i.e. the time measured by

his watch. Then we can view x.t as being functions of Y . The

2-velocity of the observer is defined by

which can easily be solved to give

I
x:: i-cos~aT

where we have assumed t(O) = 0 and X > 0 • The 2-acceleration

is now given by

b a
::::-LA 'Vb LA - (:

a UQ
Note that A is orthogonal to • .i.e

q

u A-=-o
Q

,(2.13)

(2.14)

(2.15)

(2. 16)
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But is precisely the instantaneous time axis. which means

that the acceleration is proportional to the instantaneous space

axis. Therefore. the acceleration measured by the observer

(the "spatial" component of is just

o (2.17)

as claimed.

We now introduce Rindler coordinates, which are the

coordinates appropriate to uniformly accelerating observers. ,

Define coordinates f, L implicitly by

t I eQfs;hh aT- a
X I eO§' cash ot:: (2.18)- -Q

So that eJ4.!

02

From the above discussion •. we see that the trajectories [~= constan~

ae-Qf•correspond to observers undergoing constant acceleration

z t~X - (2.19)

Note furthermore that coordinate time ~ is in general only

proportional to the proper time of such an observer, and is .only

equal to the p rope r time for the observer f =0 ,

to acceleration a.

corresponding

These relations are depicted in Figure 1.
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Figure 1: The Rindler coordinates (.f I L) of
(2.18) cover only one wedge (I) of

Minkowski space.

·"'f,.'::

:~~~~i~~~~~;-:...,
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The metric in these coordinates becomes

(2.20)

Note that this metric is conformally flat. (It is of course also

flat since it equals (2.1}.) Furthermore, Ir corresponds to

an Lsorre t ry, i.e. d-r is a (timelike) Killing vector.

For the other wedge (II) one replaces in (2.1S)

by • To cover both wedges at once, introduce

r -- * e
Of

I Of-0 e

for the right wedge (I)

for the left wedge (II) (2.21)

so that r,,>o corresponds to the right and to the

left.

In Rindler coordinates the massless Klein-Gordon equation

becomes

(2.22)

and the Klein~Gordon product (in one wedge) is
+00

(CO, CD) = if( crf d-r as - (f5 de <1>1<) d f (2.23)

-~
where the integral is over a jl = constant surface. But

(2.22) and (2.23) are formally identical to their Minkowski analogues!

This leads one to write down i~~ediately the Dirac delta function

normalized modes
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e .I' ( Wf - I LJI 7::)

( 2.24)

for vJ 6 fR. (This is not the same kJ as in (2.3).)

In Mink.owsk.icoordinates we have the second quantized

expansion
00

- [( arK) U", ~ at (k)U,/') dk
-00

,(2.25 )

with

Similarly, in Rindler coordinates we have in'the right wedge
'00

cPR -:::r (b(0.9)V", I- bt(LJ)V,.nJt.J (2.27)

-boO

and in the left wedge
00

LPR -:::[ (J(tJ)VW ~ (/((J)V~)dt.J
-00

(2.28)

(TechnicallY' we should dLst i nqu i sh between the, rVw of (2.27)

and the JIVt..J of (2.28) which have support in the right/left
wedge, respectively). Furthermore., due to causality the

I

expressions (2.27) and (2.28) should commute, i.e. symbolically

(2.29)

We can now set these expansion~ equa~ i.e.
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(2.30 )

anG calculate the Bogoliubov coefficients as explained in the

last lecture. However, before doing this let us ask whether

(2.30) holds Classically# .i.e. whether the expansions (2.25)

and (2.27) ,(2.28) are equivalent. To do so requires us (f i.naLl.y t )

to discuss boundary conditions in more detail.

Boundary condi tions

One criterion which is often suggested is that (!J should

be square integrable, i.e.

!dJ: (PM oJ ><
I: ~ (O",j l /

(cne writes cDM EL (ell()
time

is too weak, because the ;tierivati ves of

00 (2.31)

if this is satisfied.) But this

are unrestricted.

Thus, this is not sufficient to guarantee that the Klein-Gordon

norm ((JiM I (PM1 of (PM will be finite, let alone that the

necessary boundary terms are zero in the proof of the time

independence of the Klein-Gordon product.

So assume that both rh andlY."'1 are square integrable.'

This is sufficient to satisfy the criteria of the preceding

paragraph, but it turns out to be too strong. In this context#

requiring ~ce(Jx) and
CD

M
<= HI(d~)

(The "energy norm" of cPM is fini te .)

dt cPM e (l(dx)
• where H I is a Sob oLev 'space.

is equivalent to

demanding that

But because of the formal

symmetry between Minkowski space and Rindler space it is clear that

if we require cDM c H(dJ<) we had better require COR cH'(d.f) ·



20

The immediate question is this: Are /-1 I(d l( ) .and

H'(e::Jf) d) I~'(Jgl (one copy for each wedge) equal in an

appropriate sense? (i.e. is the intersection dense in each of

them?) • The answer turns out to be no (cf. Dray & Manogue).
te /-J I (d>(). which is

H'(dg) (!) H'( dg)
Theorem: There exists a function

orthogonal to every function in •

To avoid this problem~ one must reexamine the physical

conditions one wishes to impose. What one really wants is f~r the

Klein-Gordon norm of positive frequency solutions to be finite, and

this turns out to be equivalent to demanding

(2.32 )

. Ut(*(where the "+" means that the integral (2.25) has no terms) •

This avoids all of the problems discussed above.

We now return to the comparison of (PH with and

the calculation of Bogoliubov coefficients. (The following calcu-

lation was done by Pierre van Baal for a course taught by Gerard

't Hoeft).

We introduce the following notation:

Sjn (r)
Sjr'\ (k)

so that E = •. I
(2.33)

in the leftin the right wedge (1) and 6=-1

wedge (r r) etc. We will also write 6 (l.J) for both

expansions (2.27) and (2.28). We shall use the following useful
relation
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- 1-o (2.34)

Define new operators
. t.J I K).a -z:

0(2"1<) € dk
o (2. 35)

But now multiplying LP~ by

(r ,L 1/ and integrating over L
00

I r ~LJ1:
J2Tf (J)M e J L

-'00

j tJL:'e ~replacing (X, t.) by

yields

J kd1: (2.36)

linear combinations of the a(k). Thus, the vacuum annihilated

by the 0<t (LJ) is the same as that annihilated by the a (k) I

namely the usual Minkowski vacuum

-------~-------~~ __ ._Q~A~U··~· ~-'·.·.:.-••••••••
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On the other han d, replacing clJM by cDR yields

directly

(2. 38)

In what follows we will always assume LJ >0 • Comparing (2.38)

with (2.37) using (2.30) we can express band bt in terms of

0<:t as follows
"TrtJ TfI..9]

b (0) -= JJlJ [ot.. (lJ) eG" i:Q + 0(+ t(_LJ} e-~ I"Q

, (. c IT&J G Tn..)]
b (-IJ) = FJ0 L 0(_ (u) e Za t cx_t(-u) e- Za

t) r. t e1nJ -e1T"tJJb (w = ~i3 L«, (0) e -"0 t- «, (-v) e 2<;

I t ( r. t G" rrtJ e Tr...,]
b -lJ.) -= J)i:;L0( (LJ) e 2a + eX_ (-tJ) e- u; (2.39)

One can now check the commutators of the 6{~) directly.

obtaining

(2.40)

where we have used
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(2.41)

(Note that each of (2.40) and (2.41) corresponds to two equations~

one for W>O (and 0(;::0(+ ), the other for lAJ -< 0

(and 0( = D( _ ) • )

But while (2.40) is the expected result in the right wedge~

it appears to be wrong in the left wedgel The reason for this is

that in the left wedge_ L
should really have been replaced by - y. This would of course

runs backwards in time and

interchange the roles of positive and negative frequency solutions

operator d (W ) byand corresponds to replacing the "annihilaticn"

We can now solve (2.39) for

C{LJ)
rrt,.} _ 7T1J

b(-I-LJ) e za_ CT(!-U) e La
1TtJ _vLJ

c.(J:LJ) e za bt(1: u) e za

the new creation operator

now corresponds to

as desired •

and

I
J:>t3 o(r (LJ) =

• Making this changel (2.40)

(2.42)

eX.t in terms of

obtaining

(2.43)



1 _ -----------------

•..•: 24 ._

3ut since D<I (LJ) IOfV'!'> = 0 we are led to
- 7Ll.btib (LJ ) 10M,> x: Ci(w) e- Q 10M')

C (w) )OM'> -= bt (w) e-Tr1W' 10M.> (2.44)

This enables us to express the Mlnkowski vacuum in the Fock space

appropriate to Rindler space. i.e. wi th respect to a basis 1m, n>
corresponding to m lib•..type" particles in the right wedge and n

IIc_type" particles in the left wedge. The result is

- rrrt!wl10M> = 1Jf e Q tV{W) /n,n> (2.45)

where N I, tJ)~ = I - e-~Il~ ~. The Minkowski vacuum contains

Rindler particles! An accelerated observer in the usual Minkowski

vacuum observes particles!

To obtain the observed spectrum. one computes the expecta-

tion value of the number operator

<OM Ibt(tJ) b(lJ\ 10M')

== <OM I Ct(W) C(LJ)/ OM'>
(

_ 21T1 LJI) »: - 2ID\~J== 1- e C5 Zn e 0

1/(e 2~JIJ' _ I')
which is just a Planckian spectrum with te~perature

(2.46 )

(2.47)---

We have shown that an accelerated observer sees a thermal

spectrum of particles. But we have only considered the 2-dimensional,

massless scalar field. It turns out that this doesn't matter,. e.g. the
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massive scalar field in 4 dimensions can also be solved exactly

and yields the same temperature. Also. other fields. e.g. fermions,.

again lead to (2.47).

Lecture 3:· Hawking Radiation

In this lecture we will show how to use the results of

the Rindler calculation to derive Hawking's famous prediction that

a quantum mechanical black hole radiates with a thermal spectrum.

We will first consider the mathematically simpler case of an

"eternal" black hole s :and chen briefly discuss the procedure used

in the more physically interesting case of stella~ collapse to form

a black hole.

The Schwarzschild metric is given by

(3.1 )

• This is the unLque , stationary. spherically

symmetric# vacuum solution of Einstein's equations corresponding to

mass m

The Klein~Gordon equation cannot b~ solved fo~

this metric! Therefore~ for the time being we shall no~ bother

about the angular coordinates (e, tP) and shall instead work in

2 dimenstans with metric

(3.2)

We can rewri.te this in a suggestive form by introducing the

"tortoise coordinate" r* for t" >;)rn via'

(3.3)
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so that the metric becomes

(3. 4)

equation
The massless scalar field/can now ea811y be solved using standard

plane wave modes. Note that both (3.2) and (3.4) are badly behaved

at r -:::2m # and that Iir"'f\ r" =. - CO •
r~lm

Introduce Kruskal ~oordinates (T~R) via

T= Lf mer 'X"" S';"h (tAM ')
R rz: Y m erY4

("f\ cos~ (t 14m') (3.5)

leading to the metric

(3.6)

Note that since in (3.6) is a function of Tr

(and R) # is not a Killing vector. Thus# the justification

for working in Kruskal coordinates is not obvious. We will defer

a discussion of this pOint until later when we discuss stellar collapse.

dtr is~ howeverl a conformal Killing vector)
•

But (3.6) is perfectly regular at r -= 2m We can illustrate

this by drawing the (R~T) plane; ,see Figure 2. The eorresponding

Pen~ose conformal diagram is shown in Figure 3.

Comparing Figures 1 & 2 we see that the Kruskal coordinates

(T,R) corres~ond to Minkowski coordinates (t; I x ) # whe reas the

Schwarzschild coordinates correspond to Rindler coordinates

•
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'-L
R

Figure 2: The Schwarzschild black hole. is shown in
Kruskal coordinates (TlR). The Schwarzschild
coordinates (t, r*) cover only one wedge (I)
as shown. Compare Figure 1.

1=0

...

:;-

Figure 3: The Penrose conformal diagram for the (maximally
extended) Schwarzschild black hole. Each point
represents a 2-spherel and light moves at 450•
Region III is the black holel Region IV is a
white hole. and Regions I & II represent two
different external universes.
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The above discussion shows that the Schwarzschild

traj ectories [r :xconstantJ correspond to the Rindler trajector~es

~f =constan~ which are uniformly accelerated. But this makes

physical sense: The station~ry observer at fixed distance from the

black hole experiences a constant gravitational force due to the

black hole. To remain stationary, such an observer must accelerate

uniformly away from the black hole (e.g. with a space ship).

The correspondence between Minkowski/Rindler coord~nates

and Kruskal/Schwarzschild coordinates can also be seen directly

by comparing (3.5) with (2.18) if one replaces a by 1/4m. But the

Bogoliubov transformations calculated in Lecture 2 depended only

on the coordinate transformations! Another way of saying this is

that since (3.6) is conformally the same as the flat metric (2.l) t

if one considers the conformally coupled (J:: 0 in 2-qimensions!) ~

massless scalar field in each case the results should be the same.

The conclusion is that in order to determine the particle

spectrum- seen by a Schwarzschild observer in the Kruska~ vacuum

I OK,? ~ _it is sufficient to replace a by 1/4m in (2.471 • Thus

such an observer sees a Planckian spectrum of particles with

tempe rature
I

«?rrKGm (3.7)

This is Hawking's result# .and is called the Hawking temperature.
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Hawking's original calculation was for a

4-dimensional collapsing star scenario. While it turns out that

the result (3.7) does not depend on the fact that we considered a

very special case~ namely the 2-dimensional~ massless. conformally

coupled scalar field. this fact is not at all obvious. We will

therefore briefly discuss a (2-dimensional) collapse scenario.

Our treatment follows chapter 8 of Birrell & Davies and is very

similar to the case of a moving mirror in Minkowski space s

We first introduce null coordinates. For Rindler., define

U-:::L:-f
V ;:::Y+f (3.8)

and for Minkowski define

u
V

i-x
- t. 1->(

l -au--ea
i- e QV (3.9)

---
---

so that the Minkowski metric becomes

(3.10)----
Analogously~ for Schwarzschild define

u «t:> r~
v=tt-r~ (3.11)

and for Kruskal define

Ci -=T- R
V ~ T+R

-U/4M
- - '1('(\e

4- rr-; e vi 4rr-.----
(3.12)
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so that the Schwarzschild metric becomes

(3.13)

Comparing (3.9) and (3.12) again shows the exact analogy between

the two sets of coordinate transformations which is obtained by

replacing a by 114m.

Collapse

Let us now consider a 2-dimensional model of a collapsing

spherical star. The surface of the star will describe some timelike

trajectory. as shown in Figure 4. outside the star, .the metric

will be the Schwarzschild metric .i.e.··

(3.14)

whereas inside the star the metric will be assumed to be arbitrary~

cls.~:=- 3 dU clV (3.15)

Since there are only two discrete null directions we can assume

that u depends only on u, and V depends only on v~ i.e.

U = A(u)

v =·B (v) (3.16)

We could of course choose A and B to be the identity and put all

the information about the interior of the star into the function
whichg.. But for reasonsLwil1 become clear, we prefer to require that

v- U ::::7r (3.17)

which, asean be seen from (3.11), is not satisfied by u,v.
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Figure 4: A schematic, 2-dimensional representation
of stellar collapse. The curve r~h(t) represents
the surface of the star.

o
II
L

Figure 5: The (partial) Penrose diagram for a collapsing
star, as in Figure 4. The arrow shows an incoming
wave at early times which passes through the
star and is "reflected" into an outgoing
wave at late times.
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4-dimensional
In order to model ;Spherical syrrunetry in 2 dimensions, impose

perfectly reflecting boundary conditions, i.e.

/f)/ =0
W r=O (3.18)

The reason for this is that a waveapproachingthe origin fromone direction

(<91 If)
(TT- e, 1Tt- 4')/

in spherical coordinates leaves in the antipodal direction
2-dimensional

corresponding to a reflection in the i( r, t) plane.

So ccnsider the situation depicted in Figure 5, narrelyan incomingwave

which, at early tires (g-)
(up to nornalization)

is just the usual positive frequency J1"OCE

(3.19)COin
(<me can easily check, using (3.11), that this corresponds to an ingoing wave.)

But (again using the confornal Invarfanoe of the mass.lessequation in two

dirrensions), (3.19) is clearly an exact solution of the Klein-Gordonequation,

which is new

o (3.20)

It therefore only remains to impose the boundary condition (3.18) so

that

CD (3.21)e-.;L....9V) .

r-=O
But

8(V)/,o:o
B (UlL: 8(A(u~La (3.22)

Thus, the simple ingoing wave (3.19) is turned into the complicated

outgoing wave

(3.23)--
•••••••.....------------
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A more detailed examination (highly nontrivial!) shows that.

:independent of the details of the collapse (i.e. the choice of g and

A (u)
g(v) (3.24)

-i.e. U corresponds to the Kruskal coordinate u. and V corresponds

to the Schwarzschild coordinate v. Despite the fact that V does not

correspond to the Kruskal v • the Bogoliubov coefficients are

essentially the same. and in particular the same temperature (3.7)

results.

Different vacua

In fact, there are three different vacua floating around.

The first is the Hartle-Hawking vacuum which is just the Kruskal

vacuum 10K? to define positiveobtained using

frequency. This corresponds vacuum 10M) into the Minkowski. .

-.icJU -;J\}e Ie
-sut:~e

I

f'La t; space and to the modes , i.e.

10K) ( ~ 10M'> (3.25)

'!he Hartle-Hawkingvacuum describes thermal equilibri urn at the Hawking

t~mperature~ i.e. it corresponds to a black hole in a perfectly

.reflecting cavity or in a heat bath at the Hawking temperature.

The vacuum which is invariant under the isometry dt is

called the Boulware vacuum and is just the Schwarzschild vacuum

I OS'> ' corresponding to the Rindler vacuum (OR.'> in flat
space, i.e.

,.,"
')
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-..iLJUe,
(3.26)

-.;wv
e

I

Since the Schwarzschild spacetime is asymptotically flat~

Schwarzschild observers are "almost Minkowskian" far from the black

hole. This means that the Boulware vacuum "looks likell

the Minkowski vacuum far from the black hole.

vacuum

Finally, the vacuum appropriate to collapse is the Unruh

I O~~ • and corresponds to the case of an accelerating

mirror in flat space, ,i.e.

( 0\..4 ) ~ accelerating mirror
',012--.,.,...rU -JtJV."......,e I e (3.27)

This vacuum is the physically interesting one corresponding to a

collapse scenario, .and represents a thermal flux (black body

spectrum) of particles leaving the black hole at the Hawking temperature.

Penrose diagrams

We have given' the Penrose diagram of an eternal black hole

in Figure 3. One can also, draw the Penrose diagrams appropriate to

a collapsing star and to Hawking radiation., These are shown in

Figures 6 & 7 respectively. Note that since the Hawking temperature

is inver'sely proportional to the mass it gets hotter and hotter

as it decreases in size. This has led Hawking to predict the

eventual explosion of a black hole, at the point labelled P. It should

be emphasized that all calculations presented here assume a fixed,

backqround spacetime, whe reas the evaporating black hole scenario

depicted in FiGure 7 assumes some sort of back reaction on the
spacetime due to Hawking radiat Lon , e. g. the mass of the black hole

decreases.
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o
,I

L

:;-
Figure 6: The Penrose diagram of a collapsing star

which forms a black hole. Compare Figure 5.

o
"L

Figure 7: The Penrose diagram appropriate to a black hole
which is first formed by stellar collapse as in
Figure 6, then loses mass due to Hawking radiation,
and finally evaporates or explodes at the point P. .t,~~

Ii,!

;" I
i

1:;]1

'ii:
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Hawking radiation made easy

There is a trick related to the requirement tpat the

Euclidean Green function be analytic which enables one 'to calculate

the Hawking temperature much more quickly.

Consider polar coordinates in two dimensions

clsZ
(3.28)--

This metric is badly behaved at but we know that ther=0
underlying spacetime rR'

e is chosen to be If,

is well-behaved there so long

as the periodicity of

however, we choose some other periodicity for e , e.g.

identifying with 8=0" then the resulting manifold,

although flat, will be a cone and will not be differentiable at
r -= 0 • (Try carrying out the above construction using

paper and a pair of scissors and tape to make the identification,)

This can be made precise as follows. Consider the metric

(3.29)

where the periodicity of e is assured to be A, L;e, 8E[O,A')
This metric is badly behaved at ,--::::roand where

so the question is whether or not there is a 00nical singularity

there.

To avoid a conical singularity we must have

geodesic circumference ~
geodesic radius = ~o/1lI (3.30)
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or in other words A

, ••I"Y\
( JFole
o -~rr - r~~ [SGJr-

~

1 "I'V")
AF'- 2SF i\i

']i- (3.31) 'I

("~ro I

JG I

..spacetime is regular at r = ro if and only if the periodicity is

where we have used l'H~pitai's rule in the last step. Thus. the

chosen to satisfy

A= 4TT JFG
F'

(3.32)

For the Rindler metric (2.20)~ make the substitutions

r=.f
J )

G -== e~or

(3.33)

This brings (2.20) to the form (3.29). Then (3.32) yields

ARindler
LfTT--;}a ?7r-q (3.34)

For the Schwarzschild metric (3.2), make the substi tutions

(3. 35)

which result in

Aschwarzschild = (3.36)
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In both cases the temperature is just the reciprocal .of the

periodicity!
Lecture 4:· Rober"tson;"'WalkerSpa"cetlmes

In this lecture we will consider particle definitions in

Robertson-Walker spacetimes. The presentation is based on a series

of 3 papers by Dray et ale (DraYf Renn & SalLsbury and 2 papers by

Dray & Renn). But first we present some new notation (cf.Ashtekar &
Magnon) •

Complex St"ructure

Let V be the space of (suitable) real solutions Qf the

Klein ..••Gordon equation • .and let V+ denote a choice of posi tive

frequency so Lut Lons , Then the space VC of comple"x solutions

can"be decomposed as

(4.1)

*where V - "V+ • We have already considered the Bilbert space of

positive frequency solutions as (the Cauchy completion of)

I
(4.2)(

where ) denotes the Klein~Gordon product. But this corresponds

to the quantization of the real scalar field. so we expect there to be

a representation in terms ofV. But there is clearly a map

V+~ V

4>~~ ClI.•. ~ cPr~-= :IRe C1J+
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what about the other direction? From (4.1)~ given a choice of

positive frequency there is a unique decomposition of d>~\Tas
;t:,
~
I

,[
, ~: .

"

(4.4)

with this can. be used to define a map from V -=, V+

J : V ~ V

as follows.

First define a map

:'> ~ (6J.•.- d)_\

::= -J rY"Y\cO+
(4.5)

Then clearly

1 (TcP) + -.A (TdJ)_
- .1 () cD+-} -.A' (- ~ cD-l

-cp (4. 7)

This is the desired map. Furthermore,

-,

so that

T' == - JL (4.8)

Thus. one can use J to turn the real space V into a vector space

over cf.. For this reason~ J is called a complex structure.

We can now use (4.6) to express / A"-I ~ \ in terms of
\U/+ UI+)

I

I

Y

I ( .,......,,,.....,)
Lt CV-,;TCD J LP -";TCD

( Q)/cp) 1- (TeD Tm)
I

+~ (T~~) -A' ((]), TeD)
(4.9)
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However, it follows directly from

((1)+ CD)
J

o (4.10)

that

(4.11)

We can now introduce the Hilbert space of real solutions

as (the Cauchy completion. of)

(4.12)

where

(4.13)

where we have written

(4.14)

<n 1s called the symplectic structure.) In general, we can

start from (4.12), (4.13) I (4.14) for any J satisfying (4.8) and

n(-:np, TeD) 0=: J1 (([),as)
S2.(CD/TCD) ~o

(4.15)

(4.16)

(4.15) is equivalent to (4.11), while (4.16) insures that the scalar

product is posi ti ve definite. A choice of J anourts to a choice of pqsitive and ~neoatave freqrency.on
We will also work with ini tial data / a hypersurface instead

of the actual solution of the Klein-Gordon equation. Let ~ be

a Cauchy surface (spacelike hypersurface; usually ~t=constant} ) for
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the spacetime and define data

(4.17)

Thenthere is a 1....1 correspondence between solutions CP()(, t) and

• In this representation~ J becomes an

:
l
!
!

I
I
t

operator-valued matrix. As an example~ the standard definition of

positive frequency in Minkowski space corresponds to

T (4.18)

where • (This can easily be checked by considering
/'h e; (J(,t( -~t) -.•(tlC'-\Ji)

the data corresponding to the real solution \J,I:::- l' e .)
We have considered J and hence ~ to be defined with

respect to ~ Cauchy surface 2. • but we can also define a

complex structure Jl and hence ~t on each Cauchy surface

Z t • This .gi ves us a definition of particles. at each time. The

natural question is # how are the particle defini tions ~t and Tt, ~

related~ i.e. how many particles are created between t = t1 and t = t2?

Robertson ••Walkerspacetime s

We consider the (4-dirnensional) metric

(4.19)

for which the Klein-Gordon equation becomes

• •
C{J o (4.20)
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where

(4.21)+ m"z' -l- Ir<
ro"J

and ~ is the standard Laplacian in I~ • This metric describes

a unt verse with flat spatial cross-sections Z't -' {taconstant}

undergoing an expansion (or contraction) described by a(t). We

--

Fourier decompose to obtain the modes

. where satisfies (4.20) with L<.91. replaced by

1. k'Z 2 R
I~ -_+m+-7lA.../

k
- al ..5 (4.23)

Note the several differences between (4.20)~ (4.23) and the correspond-

ing statements in flat space. First of all, due to the presence of

the functions a (t) and R (t~) LJIC is 'not constant. .Furthermore,.

(4.20) contains a term in •lP • Howevertwe can remove this term

by changing var LebLes ,

Introduce new variables

(4.24)

(4.25)

Then if

5hl.-al

(4.19) with (4.22) becomes

~ (4.26)

o (4.27)
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with

(4.28)

and where we have denoted s derivatives by prime. The choice of

g(t) (and hence also h(t» will be referred to as a cboice.of

normal-form. (The most conwon choice is g=a=h •.which exploits the

fact that (4.19) is conformally flat.)

But~ (normalized) solution to (4.27) can be written

(with the suffix k dropped)

\ 1/ I e-J.J'VVdS
'¥ = ~J'W

(4.29)

(this is not obvious 1) where V satisfies

'Z. _ r12 ..L 'NilS W·l
\IV - ~ L -:- 2 .vv + y wz.

We will treat J asa multiplication operator on the Fourier decomposed

modes, i.e.

(e~1 -r)T '-- -e .: j;:;
(4.31)

where e and f > 0 are functions of k and t. This corresponds to
making the choice of positive frequency at time t given by

(~:: J (e~) I-- J ;;ral ~!

2t (4.32)

«4.32) is just the (noDmalized) eigenvector of (4.31) with eigenvalue

+i; cf.(4.5).)

;-'

,

l
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By expanding e,f.w in powers of 11k (and setting g=1).

and using approximate solutions of (4.30) to compare data at
different times, one can calculate the Bogoliubov coefficients

relating the definitions (4.32) of pns Ltive frequency at
two different times. (For details see Dray, Renn & Salisbury.) But
recall from Lecture 1. that the number density of particles "creet.ed"
between these two times is just

(4.33)
One can also consider the energy density

(4.34)

If one requires that J reduce to (4.18) if a=O and that D#E be
finite one can show that the expansion for J in powers of 11k is

-LJ-) (.E.+ 3LJ
o 0

(4.35)

where

:- ((fO-~)~_I
C -=_19a

• The first

+ ...

is the trace of the extrinsic curvature of
term is just the flat space result, .the second

guarantees 1) <: oo , .and the third guarantees E< CO •

Ashtekar & Magnon give a prescription for finding J which
here yields only the first term of (4.35). Note that this leads to
an infinite density of created particles between any two instants
of time!

J
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Adiabatic particle definitions

Approximate solutions to, 14.30} 'et:ndhence tp (4.20)

can be constructed as follows

I vv.. II
- 2N
2 '-"QN

(4.36)

leading to

These solutions are approximate in the sense that for each

I cPZN - cP}

cP such that

/K O(K~N'I) (4.37)

N there is an exact solution

--
The 2Nth order adiabatic particle definition at time t is obtained

by inserting the approximate solution w2N into (4.29) and (4.25)

and defining posi ti ve frequency to be thee'x:act solution whose data

at time t agrees with the resulting ({)2N •
~gain comparing the particle definitions at different times

one can easily show that N ~ 0 implies 1)< 00 ; N~ l implies

E < 00 • For the full (N -\t:>O) adiabatic particle definition

~k falls off faster than ~~ power of 11k.

Furthermore, the full adiabatic particle definition is

independent of the choice of variables (choice of normal-form) used

in its construction. This is not generally true of other quantization

prescriptions (e.g. Hamiltonian diagonalization).

'Stable adiabatic vacua

Finally, one can ask for spacetimes in which the adiabatic

vacuum leads to zero particle producti~n. The simplest case of this

;.
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is an exact solution of (4.30) i.e.

1
(4.38)

is an exact solution df (4.20) for all k and defines the adiabatic

vacuum at all instants of time.

One can show that this leads to two conditions. one on the

normal-form and one on the spacetime. The condition on the normal

form is
a (4.39)

(or one other. very messy choice) and the condition on the spacetime

is

o (4.40)

The solutions of (4.40) are

J=~ ~
.11 3*6 J YY'\=O ~

III 3" -:t:t ' rY):t:" 0 -=r

"} "Z. __ Zr'Y'\~
where /\....,....'"J~I • Case I implies that the conformally
coupled. massless scalar field produces no particles. - This is just

I Y"'=o Or- 6-=0
a~= At"2.r ~t f-e
a~:::A eA..t +- B e-x t+ ( (4.41)

m

t

:f

what one expects since (4.19) is conformally flat. Note that Case II

wi th B=C=O is the Milne universe and wi th A=C=O is the radiation dominate -.

. d . 7< -,'Frle mann universe. while Case III with c=o and 5
part of the de Sitter universe as a special case.

includes

Further details of the above results involving the adiabatic
particle definition can be found in t.he two papers by Dray Or Rerm ,
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Lecture 5: The Klein Paradox
Here we will consider particle creation due to an electro-

magnetic background instead of a gravitational background. using the
*techniques developed in Lecture 1. The action for a massive scalar

field minimally coupled to an electromagnetic potential
is

(5.1)

where the gauge covariant derivative • is defined such that

cP~ ::;(d..4) -A' e Ap) (/)
{j).fc:/A = ( ~ .•.~e Ap) CD * (5.2)

Variation of the action (5.1) with respect tc leads to
the dynamical equation

(5.3)

We Will specialize to electric potentials of the form
A.M:: (i(lCtq q 0) where l'(~)is a barrier Which goes to a

Vconstant value' -'2 as x ~ -t)() (on the "left") and to
V'2 as x~+()O (on the "right"). See figureS.·

We can Fourier decompose in the X:::;. (y.z) and t directions
giving

(5.4)

where f(x) must satisfy the separated dynamical equation

(5.5)

* This presentation is based on a paper by C.A.Manogue, liThe Klein
Paradox and Superradiance", to appear in Annals of Physics.
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Figure 8: An example of the type of potential ~ (x) considered, showing
the different frequency regions which determine the behaviour of
the modes.

•••
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Far from the barrier the solutions of (5.5) look like linear combina-
+'q

tions of plane waves e _..L .••)( on the left •. and like combinations

of e :t1r>( on the right, where

f -(LJ r ~y2._ (~~r rnl)
r' =: (0 _e£1')"l. - ( k"'rm1.)

Notice that q is imaginary for ~ such that

_~V -('£:/"rml)'/Z'<LJ-< -rf-(J~7.+-m'/z.

(5.6)

(5.7)

(see figure 8) leading to exponentially damped solutions on the

left so that "waves cannot be "sent in" from the left f'Ol."'.frequencies

eV--2.

Similarly r is, imaginary for uJ such that

(~?t-rr>l.)'h< r.-.J < ~~ + {!E.7.+rf'ly'Z. (5.8)

in this range.

(see figure 8) so that waves cannot be -"sent in" from the right for

frequencies in this range.

The dispersion relations (5.6) do not determine the signs of

q and r for q and r reat , These signs are determined by

using the group velocity to specify the direction of travel. For

e;(~x-~t)
has groupexample. a wave on the left of the form

velocity

-- 1.0 eV"'V-f. - '2.

-This wave will travel to the right (left) if its group velocity is

positive (negative). ,i.,e. if the sign of q is the same as (opposite)

to) that of u.}.•.eV .• Similarly. ,a wave on the right of the form
"2.
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has group velocity

- 1A9- ~"2.
(5.10)

r
eVis compared to the sign of v.J - 2. •

A complete set of solutions of the dynamical equation (5.3)
looks asymptotically like

---:.. . (K·Y - L.J t)
- N e' --

( ~ (5.11)
).;.-3) i~ I

(x-« -00)
(x~ .•oo) (5.12)

c:..-

U'.", -
~ ';(K'Y ~wl)N e --

If the signs of q and r are chosen so that

~)r '> 0

~ ,>0.1 r< o
~I r c 0

(see Figure 8) then the modes (5.11) correspond to the infinite

plane wave limit of a wave packet which comes in from the left at

early times with both a reflected piece back to the left and a

transmi tted piece to the right at late times. (See Figure 9a) The

modes (5.12) are the same with the words left and right interchangE!d.



Fi"qure9a: Spacet.ime diag'ram for modes
of type (5• 11)

J
00

00

J

" F1"gure9b: Spacetime di.agram for modes
of type (5.12) .

- .,", ~. ,~~...• ;------ . --'~ __'"_._.:.2" ~-. -.--~~-"=-" ~"~.".""""..~-~."~-".
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($ee figure 9Q.) This set of modes will be called lIinllmodes because

they come in from infinity at early times.
Another complete set of solutions (lIout"-modes) is given

asymptotically by

Uout =:- -Jrxe
(5.14)·

( '>(~ + (0)

~

Uo....t ----

With the same choices of sign for q and r • these correspond to

waves which come in from infinity from both sides at early times in

such a way that they conspire to go out to infinity at late times

in only one direction; to the left (5.14) or to the right (5.15).

(See figure 10.)

The Klein Gordon product appropriate to the action (5.1) is

(5. 16)

cf , (1.15 ). In particular notice the appearance of the gauge

covariant derivative.

To normali ze the in- (out-)· modes it is sufficient to normalize

the incoming (outgoing) wave in the asymptotic potential which it

sees. This corresponds to taking the plane wave limit of the normali-

zation of a broad packet. Delta function normali zation car. be imposed.

The modes (5.11) and (5.14) are positive (negative) normed if q is

positive (negative). The sign of the norm of the modes (5.12) and

follows the sign of r •



Figure lOa: Spacetime diagram for modes of
type (5.14)

I

I

Figure lOb: Spacetime diagram for modes of
type (~.15)

I..
..
I~
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Notice that for a given basis of solutions it is the Sign

of the norm and not the sign of W which determines the definition

of "positive and negative frequency", i.e. which determines which

modes are to be associated with creation operators and which with

annihilation operators. Suppose u is a negative normed solution of

the dynamical equation and suppose you mistakenly associate u with

the annihilation operator a (instead of the creation operator

Then, since Q :::-(U,cP) (since u is negative normed) and

we have

[a, QtJ ::::[- (u, cD), (u~<!)t)J
z: f..•f(u~(j).t-U~t (J))d>cdfy ) -'!(UcP.f - u.t<bt)Js;iy]
= +J.ff (u~ LI.#. -LJ.~ u) J(>\-x) J1.(t.-i) 01>< dxdt

y Jl..y
= + (UI u)
-= -1 (5.17)

where the canonical commutation relation [cP(x"y), cD.r(~,FTI7:1 ~(x-x)iYr -y)
has been used to obtain the third line. We see that we do not have

the canonical commutation relation for a and at. The creation and

annihilation operators have been misidentified. Nowhere does the sign
of enter the discussion!

Although the reflection and transmission coefficients in

(5.11, 5.12, 5.14, 5.15) depend upon the detailed shape of the

barrier, general relations among the coefficients (known as Wronskian

relations) can be obtained from current conservation. If f1 and

f2 are any two solutions of (5.5) for the same values of ~ and
k, then

(5.18)
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s a conserved current, i.e. is independent of x. This is easy to

rove by taking the x derivative and using (5.5). This is analogous

o the proof of time invariance of the Klein-Gordon product on

pacelike hypersurfaces. In particular, for a solution of the type

5.11 } aud its complex conjugate, evaluating (5.18) on the left

.nd on the right gives

(5.19)
r
c:t

.n the Klein region (i.e. in the region where q and

I R 1'1. ">1. The' reflected

r have opp6site

ligns cf.
. . (5.13)} then current is

Jreater than the incident current!- a phenomenon known as super-

~adiance or stimulated emission.

It is important to mention that most textbook discuEsions
.f the fermionic Klein paradox in~orrectly state that fermions are

rLso superradiant. The analysis of the Dirac equation in '~ electro-

lagnetic potential is completely analogous to this discussion of the

rcaLar wave equation. Howeve r q and r in the anaLoque of (5.19') #

:or the case of fermions,are multiplied by E and (2' r'eapect.LveLy,

rhere 6 is +1 when q is positive and -1 when q is negative

:similarly for IE" and r )• Thus (R }'.:::-1 always •. Fermions do

Lot superradiate. (Physically, .this is due to the Pauli exclusion

)rinciple.) The usual treatment of the fermionic Klein paradox gets
I

:he signs of ~ and ~ correct but assumes q and r positive by

:ailing to use the argument about the group velocities. Thus the

"eflected current appears to be greater than the incoming current

r
I

. -",.
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What has really happened is that a mode which was ~~t to be of the

\
~T I 2type in figure 9a is actually of the type in figure lOa.

is then the current from an additional incoming piece and the single

outgoing current I.).RI2 is the sum of the 2 incoming currents as

expected.

The reason for the superradiance is that the potential

barrier is dissolving to make particle-antiparticle pairs. (You must

continually pump energy into the barrier to maintain its original

l.ape , ) Even in the vacuQ~, there is a constant flow of particles

from the barrier. Several 'different calculations give a measure

of the number of particles produced.

Current ,.,u
Varying the action (5.1) with respect to A gives an

/h m* •expression for the current in terms of LV and ~ Expanding

these in terms of modes and creation -and annihilation operators, -and

taking the vacuum expectation value, gives asymptotic values for the

cUrrent in the x-direction namely

(5.20)
where the integrals extend only over modes in the Klein region,

Since q and r have opposite signs in this region, we see that there

is a current flowing from the right to the left. Notice that the

spontaneous emission in the vacuum (5.20) is related to the stimulated
emission rate g'iven by LIT I'2

~
•

,J
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Momentum

Varying the action (5.1) with respect to

T:..U))
expression for the stress-energy tensor .

5»\> gives an
in terms of (j)

1'fI"'-and yv • Analogously to the computation of the current. we

obtain an asymptotic expression for the momentum in the x-direction

<Oin./Ttx 10;,,) -= (~rr)3 f(4J +e;'); trt "/",,,l5 (x~-)
(5.21)

:::: (~11"~ [( ~- ¥); j T I~ ~ .,J~ (~~ "0)
where again the integrals extend only over modes in the Klein

region. We see that momentum flows away from the barrier in both

directions (cf.(5.aO».

Number Density of Created Particles

For a complex field such as we are studying here. unlike a

real field. the negative norrned antiparticle modes (linegative

frequencyll) are not the complex conjugates of the positive norrned

particle modes. (llpositive frequency"). Therefore. when the field

is expanded in terms of a complete set of states. it looks like

where the

cP
U·,(,

f"a .i U1. +- f b~Vf
are the positive normed modes and the \lp are

the negative norrned modes. Q.
.l operators are nowThe and

independent and the vacuum must be defined by

a .)0> = 0 -= b 10>). r (5.23)

Define Bogoliubov transformations via
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U· f -= [. ct .. U..
..l 0\.1 • ..tJ J It"'\

J +£f3'Q~'~ ""1;> 11 ,,,

Vp out '= f Dpj Uj ,'", .j- { t'p~V~In

Then. as in lecture 1 (cf , (1.35» ~ .the number of particles • .labelled

(5.24)

by i~ at late time in the vacuum of early time is

.(0;...1 0]out O';o"t I 0;",>:::- {P..i;~;..i
Similarly the number of antiparticles, labelled by p ~ is

/ 1 bt I (0 ,,- £-6:.('.O;p,,OJ,,,. p ()l.4t b,. out I',..., I - J J J

The relevant Bogoliubov coefficients are obtained by a simple calcu-

(5.26)

lation comparing modes in the asymptotic regions:

{1,.p - (3{1A7, ~ I t-l WI', r'/ ~) -= ( ; (zyJ'(~_~I)Jtk -1<')

. (5.27)

1
r J III ~ 1(" I. ~ il.( ,)

'6p.l == if (~~,.-,.I"",'k' I ~ ) -::::-"i T J ltJ-L.J J 0 !:-/(.

showing that the total number current of out particles or

antiparticles in the in-vacuum is

(5.28)

where again the integrals extend only over modes in the Klein

region (cf, (5.20), (5.21».

Even though fermions do not superradiate, electromagnetiC
potentials in the vacuum do create fermions, according to equations .

3'

principle~
:t
.~

analogous to (5.20), (5.21) and (5.28). (The Pauli exclusion

still holds: /TIl.. is much smaller for fermions~

c

a

c

c

I
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Lect ure 6: The Rotating Vacuum
,

1ft 1948 Casimir made the astounding prediction that two

'lean flat conducting parallel plates in the vacuum would experience

, mutual attractive force inversely proportional to the fourth power

If the distance between them. This force can be understood in terms

If the Van der Waals forces between the atoms of the pLat.e s, but this is

lot how Casimir made his prediction. His prediction is based on the

f i:- ~tcJ per mode vacuum energy of electromagnetic field theory.

bis infinite vacuum energy is ordinarily thrown away as being

.hysically irrelevant. However# in the presence of the two conductors,

:he normal mode expansion of the electromagnetic field will be altered

.n order to satisfy the new boundary conditions. The new sum £t 1;Wn('w
ri.ll also be infinite but different. For high enough frequencies •

•hysical plates will fail to be perfect conductors and become transparent

md the terms in the sums become :'identical. The physically relevant

[uantity is the difference. between the two sums. i.e. the difference in

racuum energy due to the presence of the plates. The failure of the

ier fe ct; conductor boundary conditions introduces a natural cut-off

,nto this difference, leaving a finite answer which turns -out to be

,ndependent of the cut-off. The finite energy difference gives

~ise to the force between the plates. When Casimir's prediction was

~rlfied by Sparnaay in 1958, it was the first physical evidence that
-

:he infinite energy of the vacuum has_to be t.aken

leriously and should not simply be thrown away unthinkingly in all

:ircumstances. Since that time. the "Casimir effect" has been·

.aLcuLet.ed for many other kinds of fields,and shapes and types of

ioundar-Lea, The Rindler problem. lecture 2. is essentially a generali-

4

'I' :
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zation of the Casimir effect to moving (i.e. accelerating)

boundaries. In this,lecture we will discuss the calculation of the

Casimir effect for static boundaries in more detail and then examine

the results of a calculation for rotating boundaries. The presentation

is based on (Manogue).

Casimir's method of sUffillUngover modes gives as a result

the total energy between the plates. ~ more modern approach is to

calculate the vacuum expectation value of the stress tensor ~[)J-r-~~Io~
which contains much more information. First it gives the energy

density between the plates as a function of position. Second it gives

the other components of the stress tensor such as momentum density

and pressure density.

An expression for the stress energy tensor is

obtained by varying the action with respect to the metric :J,).Al.> •

(In this talk we will~ for simplicity, consider the massless scalar

field in four dimensions instead of the electromagnetic field. In all

known cases the results are qualitatively the same.) The expression

is then quadratic in derivatives of ~ .• As in the

other lectures~ cD can be expanded in terms of a complete

set of modes and the vacuum expectation value of ,.»lJ can be

evaluated. However, in this picture it is difficult to implement the

renormalization procedure which subtracts off the infinite vacuum

expectation value of the stress tensor which corresponds to the

absence of boundaries. Alternatively one can use the method of
of

Green's functions. A Green's function is a function~wo spacetime

points x and x' which satisfies the equation

••



(6.2)
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where 0 is the field operator defined in (1.1). It can be

shown that (where T denotes time ordering)

so that the vacuum expectation value of for a given

problem can be written as the Limi t as x' approaches x of a

differential operator acting on the Greents function appropriate to

that problem (in particular the Green's function asa fUnction of

<OIT~\)/o,> .
Ii~ ~ (..!.. -2''?)( "uv fC7"n 1) \
')(4xL- 2. J j j f (JI I

+t(I-21)( j»i:J))fTl + j.,Mo-~~f) 1).rJ)cr'

-?(9'»j'j\)(jI~:O(J1+ j»iJ'VIrDfDcr)] (-l)G ("'>(')
where 3.MV' (>;»: )

(6.3)

either x or x' should satisfy the same boundary conditions as the

field d) ). i.e.

is the bivector of parallel transport which trans-

ports vectors from x' to x, and 1).» is the covariant deri vati ve operator.

It can be seen that once the proper Green1s function is found,

the cailculation of <,oIT.MVlo) is the purely mechanical one of

" ,

taking derivatives and limits.

The Method of Images

For boundary conditions with a high degree of symrnetry~

it is often easiest to use the method of images to find the appropriate

Green's function. For example, consider Casimir's original case

of 2 parallel plates separated by a distance a (see figure 11 ). .I



•n=-2 •n:-I

yl\

•
n=O

source

•n=1 •n=2 ..
I

a

x

Figure 11: Casimir's parallel plates, separated by the distance a. The first few
images for the Green's function are shown.

-
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where the Green's function should satisfy Dirichlet boundary

conditions on the plates, i.e.

G (X,X.') I>(=:t~ 0 (6.4)

2
The Green1s function for unbounded flat Minkowski space is

•A.- (6.5)

If the point x is on the le ft-hand plate (>( -:::- i) and x· is between

the plates then the Green's function has a particular value. Write

down a similar Green1s function with x' shifted to the "mirror image"

position using the left-hand plate as the mirror. Since the Green1s

function depends only on the distance between x and x· and since x·

and its mirror image are at the same distance from x , the values of

these two Green's fUnctions are identical. Therefore the difference

of these two Green's functions is a new Green's function which is

zero for x on the left-hand plate· One, of the two boundary

conditions is satisfied. To satisfy the boundary condition on the

right-hand plate one must subtract off two more Green's functions#

reflecting both the original x. and its first image, now using the

right-hand plate as a mirror. But this destroys the left-hand

boundary condition which must be resurrected by yet more mirror

images etc. The final Green·s function is an infinite series

,(--- 4rr7.. n ::-00

(see figure 11.)
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The Stress Tensor

If this Green's function is used in (6.3) to calculate

<0' T.A.I))I 0'> • the answer is of course infinite •. This is just because

<01 T-U\)) 0> for unbounded Minkowski space is infinite and (6.6)

contains the Minkowski term (n :::0). What we are really interested

in is the difference between <0\ y.A.n.JJ 0,> in the presence of

boundaries and in the absence of any boundaries. - This istri vially

accomplished by subtracting the ordinary Minkowski piece (n :::OJ

from (6.6).

In the conformally coupled choice (3= ~) , the result is

<oIT,UVlo)
(6.7)

Notice that the energy density is constant between the plates.

Except for a factor of ~ due to the scalar field naving half the

number of degrees of freedom of the electromagnetic field~ this

will integr~te to give exactly Casimir's result for the total

energy. For the minimally coupled choice (3=0) I (6.7)

will have an additional term

""]- 2 S;"2 (rr(~tsr))
Sin ~(~ ~.t)) (6.8)

Notice in particular that the energy density is not constant

between the pLa t.e s , In fact. it di verges as the plate is approached
(x ::: + a)- 2· Originally , this divergence was considered to be

a good reason for choosing the conformal stress tensor over the

m1nimal one. However, it has been shown (Deutsch & Candelas) that such
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divergences near boundaries are generic even for the conformal

stress tenSQr unless special symmetries (such as the flatness of

the plates) are presen t., One can see how these divergences arise.

The Green I s function (6.5) diverges if Xl approaches x , However.

the contribution of this divergence to the stress tensor is

subtracted off in the renormalization procedure. But when x' is

on the boundary. it is also possible for the mirror image of x· to

approach x I creating a divergence in the n = +1 terms of (6.6).

These divergences are not subtracted off in the renormalization

procedure. It turns out that for the conformal stress tensor the

Green's function terms from an odd number of reflections through a

flat boundary do not contribute and so these divergences do not

arise. In most other circumstances they do arise. The problem is

really due to the imposi tion of perfect conductor boundary conditions.'

In physical situation~ boundaries will be transparent to waves

whose wavelengths are small compared to the interatomic spacing

in the plates. Thus a natural cut-off will be introduced. Howeverf

if the interatomic spacing is small compared to the spacing

between the plates {or whatever other natural length scale is present

in the problem under consideration),then, while the stress tensor

will not actually become infinite near a boundary, it can become

very large. This is a real physical effect which must not be
thrown away_

As another example, consider two plates which come together

to form a right angle. The Green's function appropriate to

Dirichlet boundary conditions will have 4 terms: the original
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Minkowski piece (6.5), the two mirror image terms each formed

from a single reflection in one of the plates. and the mirror

image term formed from a double reflection- first in one plate and

then in the other. Again# renormalization throws away the original

Minkowski piece. The conformal stress tensor does not have contri-

butions from the two single reflection terms and therefore is ~inite

on the plates. However. it does have contributions from the double

reflection. This image can approach the corne r where the plates, meet

and therefore the (perfect conductor # conformal) stress tensor, does

di verge there. The minimal stress tensor has the expected divergen.ces

on both the plates and in the corner.

Rotating Boundaries

The simplest example of rotating boundaries is an infinitely

long circular cylinder rotating around its long central axis.

However. in this case. both the boundary and the boundary conditions

are invariant under rotation. There is no way to tell the vacuum

that the boundary is rotating! Indeed, detailed calculation shows

that there is no difference in the stress tensor between a rotating

and nonrotating cylinder. (Both of these do, of course. contain a

static Casmir piece.}

One way to make the vacuum sense the rotation of the

boundary is to make the cross-section of the cylinder square instead

of round. Then the corners will "push" the vacuum around. It is

impossible to solve the rotating image problem exactly. but a

perturbation expansion in powers of the angular velocity ~

can be made (perturbing around the Green.s function for a nonrotating

square cylinder). To first order in the angular velocity, only the
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momentum density terms in the stress tensor receive a correction

over and above the static Casimir piece of the nOl)rotating square

cylinder. In figure 12, this momentum density is plotted as a

vector. (Details of this messy calculation can be found in

(Manogue) •)

The momentum density is diverging near ~he boundaries even

for the conformal stress tensor. This is because the boundaries

are curved in a space-time sense.

Since the energy density for a nonrotating square cylinder

turns out to be negative, the velocity density describes rotation

counter to the rotation of the box. But negative energy density is

l~ke negative mass; if you push on it, it moves back toward you.

So the vacuum really does rotate the opposite way from the cylinder.

(An interesting historical aside: soon after Casimir's

result, it was suggested that a stable electron could be formed as

a spherical shell using the attractive Casimir force to balance the

repulsive force due to c.oncentration of the negative charge. The. .

exact balancing of these two forces would predict a radius for the

electron. Unfortunately. the Casimir energy inside a sphere is

posi tive resulting in a repulsive Casimir force, so such an electron

cannot be spherical. But the energy density inside a square cylinder

is negative, maybe electrons are really square!)

Notice that the motion of the vacuum is not ciIicular. In

fact, for Neumann boundary conditions (i.e. the first derivative of

cj) is zero on the boundary), .this effect is even more pronounced.
(See figure 13.) There are actual whirlpools in this case. Can one

ascribe a IIviscosity" to the vacuum? Are we returning to an "etherll?
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The vacuum expectation value of the momentum density
inside a clockwise rotating squar~ cylinder. Only the
upper right-hand corner of the box is shown. The lengths
of the vectors have been scaled by taking eighth roots
in order to show motion near the center of the box.
G (x, x") sat.LsfLes Dirichlet boundary conditions.
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In this lecture we will consider the massles~ scalar wave

equation propagating on a two dimensional spacetime whose spatial

cross sections change topology, i.e. at early times the spacetime

will be a flat, two dimensional cylinder with circumference :JA .
After some time, this cylinder splits into two disjoint cyLt nde rs,

each with circumference ~ (See figure 14.) The spacetime

looks like an inverted pair of trousers.

At early times and late times the cylinders can be chosen

to be flat and the wave equation is just the usual one

(7.1)

Howevert if we t~ke the region where the topology change occurs

to be smooth# then there must be a coordinate patch at the crotch of

the trousers which is locally Euclidean whereas the rest of the

spacetime is locally Lorentzian. The metric changes signature.
Changing from Lorentzian to Euclidean signature changes the sign of

the determinant of the metric. If the metric is real* the determinant

must pass through zero. Otherwise the determinant takes on complex

values. In either case* the interpretation of the wave equation is

unclear. To avoid these problems we will shrink the Euclidean patch

to a single extremely singular point and then remove this point from

the spacetime. The resultinG manifold is Lorentzian everywhere and

may be chosen to be flat everywhere so that (7.1) holds throughout.

We are now left with the problem of specifying what happens to
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,
"- - - '

-x x

o

Figure 14: The trousers spacetime. The area enclosed by
the dotted line ,is a Euclidean patch. Everywhere
else the spacetime is Lorentzian.
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solutions of (7.1) when they reach the singulari'ty. It must be

emphasized that the existing laws of physics can not handle this

situation. We are inventing totally new physics. A warning to

those interested in string theory.: The situation considered here is

analogous to string interactions. The problems discussed here are

avoided in string theory by pretending that the surface is Euclidean.

This only avoids the problems by refusing to consider them.

However~ at eaz Ly and at late times the existing laws of

physics do hold and we can write down a complete orthonormal set of

solutions of (7.1) at each of these times. At early times~ in the

trunk#the solutions, called in or trunk modesf' are

_ -.i I< ( ± X - t)
U~ =N; e

I

0( f3t
(7.2)

where Nt< 0< Q
, I r are normalization constants and + refer

to right and left moving modes respectively. For k '::::.~-rr J n=',2, ...
all these modes are periodic. Unlike the case of unbounded

Minkowski space, on the cylinder the constant mode and the mode

proportional to t have finite Klein Gordon product with each other (and

are orthogonal to the LIt( and Ut(~ ) , so they must be

included in the complete set of modes. The field cp can be
expanded as a sum over these solutions

(7.3)

and the in vacuum is defined by
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(7.4)

(The correct quantization of the operators q andp will be

discussed at the end of the lectureJ

At late times the two legs are completely independent so

that ([J can be expanded using out or leg modes as

(/) ::: ~ (OPL U-'l ~ aJL u1;. -/.0.PI<U.PI<" O';U.7R)
+ <tL ex;. ~ ~ flL t .,.~R O<R .,.. PR ~R t

(7.5)

where the subscript L refers to modes which are analogous to (7.2)

in the left leg (with k replaced by -R =:- :; m"IT. A.
are zero in the right leg. The

to satisfy the

periodicity condition) and which

subscript R is similar, interchanging right and left. The out

vacuum is defined bY

We are ultimately interested in calculating the vacuum

expectation value

( 7. 7)

the stress tensor at late times in the early time vacuum. If this

turns out to be finite everywhere, then only a finite number of

particles are created during the topology change. If it turns out

to be locally infinite, with finite integral over a spatial slice,

then one might argue that the· infinity is due to the artificial

shrinking of the singularity to a single point. A suitably

"c .•
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smoothed out version might then be finite everywhere. If, however,

even the spatial integral of (7.7) is infini te, then an infini te

number of particles are produced, requiring an infinite amount of

energy, and the topological change will never take place.

In order to calculate (7.7), we first need to choose a

propagation rule which propagates the trunk modes up into the legs

and propagates the leg modes down into the trunk. We would

certainly like such an propagation rule to preserve the orthonormality

of the individual sets of modes. This problem was first considered

in (Anderson & DeWitt). Let us examine their propugation rule,

called the shadow rule. Two basic principles underlie the shadow

rule. The first principle is inherent in all physically realistic

propagation rules ; Since we are considering a massless

scalar field, information about the occurrence of the topology change

can only propagate along the light cones leading out from the

singularity. Until those light cones are reached, modes will

propagate as usual, governed by (7.1). The second principle, which

amounts to a choice of propagation rule, is that right moving solutions

will continue to be only right moving and left moving solutions,

left moving. No part of a solution is "reflected" off the singularity.
Let us consider some examples of the shadow rule.

The trousers can be cut apart and unrolled. (See figure 15.) Since the

trunk mode

(7.8)

is right moving, .it will continue to be right moving in the legs.

The solution will continue to look like (7.8) throughout the

triangular region OAB until it hits the light cone from the singularity

.1

"
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-1:.=-0 F o
A -1.:0

G
X-=-"A

~-------------+------------~~H
~:~'X -='0

Figure 15: The unrolled trousers showing "barber pole" stripes
appropriate to a right moving trunk mode with~ odd.
Identify the line segments OC = AB, 00 = FE, AH = FG.
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But we know that we must indentify the side AB ()t(o:: A\ wi th

(x = 0), so the solution must be continuous across this join, i.e.

:all that • If n is even~then we see that the mode

)ks like (7.8) everywhere. It does not see the singularity. However,

!n n is odd. then near OC the solution must look like

N· e ",'k()(-i\
Ul( -=:- J< (7. 10)

ltinuing this analysis, keeping the mode right moving and matching

solution across the cut in the trouser leg when necessary, we

that the complete solution for n odd will form "barbe.r pole"

.Lpea up the trouser leg, alternating sign wi th every stripe.

:t moving modes will form stripes which circle the legs in the

!re will be identical ~tiipes in the left leg. (See Figure 15.)

losite direction.

Using the theta-function defined by

()((o)
(-\"=0)
()( ">0)

is possible to wri te down an expression for {7.8} in the legs.

right leg

~k'-::-Nt( ~ (-If e·~"-t 'fe(t-x- I\it.-A.) +e (t-)(- f"l"A'J)
·1\"0 [C !)(7.12)

left leg
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In a similar manner we can construct the propagation of
I-

the leg modes back into the trunk towards early times. The solutio

left leg

right leg

(7.13)
o

looks like - I

= N.q i' e;.i(><-f) (!;a-X +')nIt +A') - 6l(t -)( +2nA~
n-=o

(7.14)

in the trunk. (See Figure 16.) Because
11 "ZmTf..x -:::: "A. o"J, 2m is always

even~ so there is no sign flip in this case. However. (7.13)

is zero in the left leg. The barber pole stripes here alternate
between zero and + Nj) e;1 ()(-t)

Notice that since these solutions are purely right or

left moving, they are trivially solutions of (7~1) everywhere excep

at the singularity.

As in the previous lectures~ we obtain an expression for

by variation of the action with respect to

is quadratic in derivatives of • Anderson and

DeWitt argue that because of the theta functions in (7.12) and

(7.14). the first derivatives of will have a term proportio

to the delta function. Then. generically. will have
-,--....,.u'V

J is nterms which are q uadrat.Lc. in delta functions. _i.e.

only locally infinite. its spatial integral is infinite as well.

t-=o
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o

,;()(-t l
NReA

Figure 16: The unrolled tro use rs showing "barber pole" stripes
appropriate to a right moving leg mode which is
nonzero in the right leg.

r
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What is not clear from their discussion is whether or not it is

possible for the coefficient of this delta squared term to be zero,

Let us examine this possibility in more detail.

To calculate (7.7). we first expand the dI 's in T...uV

as in (7.5). We then use Bogoliubov transformations to write the

out operators in terms of in operators. Bogoliubov transformations

are just Klein-Gordon products of in modes with out modes. These

would be straightforward to calculate except that for the shadow ru

the answer is different depending on.whether we take the space like

hypersurface to be before or after the sLnqu Lar'f ty. What can be don

about this undesirable situation?

It turns out that there are two extra solutions of, the wave

equation

0 in trunk.

00 ~ [6J(i-x-n)) +e(t ~>(~n;\'-I\)J in right leg (7.1
,.. =-0

~ ·C- e(l-x-n"-).) -e{t+X -n'X\J in left leg
n=:o

and

00 [e(t-l( -2nl\.+";\.)- e (t -X+2.r'lA) ~
,,{ -ea.>(>lr\).)+-S(t.x +lnA-~. in trunk

0'= 0 in right leg (7.

in left, leg

(See Figure 17~) is orthogonal to all of the trunk modes ;' ;

and orthogonal to itself so the orthonormality of the trunk
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Fi<;ure l-}a: The extra trunk mode ~.

,'-
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..
I

Fi'g'ure 17b: The extra leg mode O.
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preserved if an arbitrary amount of lC is added to each one, i.e

(7.17)

Th

lp. The

where is an arbitrary parameter. Similarly
elta func

is orthogon
long the

to all of ~he leg modes, so orthonormality of the leg modes is

preserved under

(7.18)

Since Bogoliubov transformations of trunk modes with ([ and leg

modes with also depend on whether the hypersurface of

integration occurs before or after the singularity, it might be

possible to choose AK and so that the total Bogoliubov

transformation is independent of hypersurface. Surprisingly (there

are more equations than parameters), it turns out that not only

can this be done, but there is one leftover free parameter A.

Preliminary calculations nevertheless indicate that there

is no clioice·of the free parameter A which eliminates the delta

squared terms in • However, the preliminary calculation

yield three terms, each infinite, which must be handled very

carefully. One of these looks like the Minkowski infinity everYWh

exce-pt on the light cone, one is the delta squared piece, and one

looks like minus the Minkowski infinity everYWhere. (This last

piece arises from the renormalization procedure -normal ordering

with respect to the out operator~ Thus we see that a delta

squared term is not only expected. it is desirable as long as it

contributes just the expected Minkowski infinity which is missing

from the first term. Unfortunately, the term proportional to A

~appears to be even more divergent than the Minkowski imfinity. l
!
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There are other modes besides ~ and '0 which might

These look like the delta function (or derivatives of the

ta function); flashes arising from the singularity and propagating

ng the light cone. These may affect the .ceLcu.Iat i.on of (7.7) in

ways. First they may represent extra freedom in the propaca t.Lon

e (in a manner analogous to the above discussion of ~ and ~ ),

reby changing the Bogoli ubov trans formations. Second, they may,

ether with and naturally form canonically

jugate pairs of modes which should be included in the expansions

(j) .' (7.3) and (7. 5). We are now pursuing these two possi-

ities.

Now a word about the zero frequency modes ~ and pt •

ce they are real. their norms are zero; but their Klein Gordon

duct with each other is nonzero. Demanding the commutation relation

(7.19)

oses canonical commu.tation relations on q and P. the operators

ociated with 01 and p t respectively. ,i.e•

•

iving the Hamiltonian H from the action in the usual way, we see

t H has a term 1 2 Also Hlo) =0,'zP • demanding we can see

t we must have (since p and q are Bermi tian)

plo'> 0 - <01 p- (7.21)

\
f

I
'[

'-
I ,;

I :
, I

! '
[. ;
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The conditions (7.20) and (7.21) appear to be inconsistent.

On the one hand, using (7.20)

<ol[~/PJI 0> ==«01110) -=,.«010'> +0 (7.22)

On the other hand, using (7.21)

(O/[=/',I'J}O) =<Ol~p-'p~lo> - 0 (7.23)

This apparent inconsistency is related to the fact that q is not-

a well defined operator on the space of eigenfunctions of p.

A correct resolution of this dilemna shows that quantities like

(7.24)

are divergent. It is interesting to note that while such ter~~ do

not appear in the calculation of <'OJ,, lT~)) IO,:J which we

have been considering. they do appear in the time reversed pj 1blem

• It is possible that -these diverqences

could cancel the delta squared terms encountered above. If this

A.As1

Pre

N.D.)

Car

Ph~

T.Drc

Spa

T.Dra

Par

T.Dra

Gen

T.Dra:
Iens:

turns out to be true. then topology change mio.ht be possible in only 0 D35
4

~irection. A single circle could not break up into two. but two

circles could join into one. This is reminiscent of the classical

black hole theorem which says that a black hole cannot break up into

two black holes.-but two can come together to form one.

M.Reec

Fun(

R. Wale
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