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PREFACE

These notes are based on a series of lectures we gave at
the Institute of Mathematical»Sciences in Madras. The lectures
were intended to be pedagogical in nature, and no prior familiarity
with the material was assumed. Although we haQe tried to provide
some references where the reader can obtain more details than are
presented here we have not attempted to beisystematic about it. Many
of the results presented here are due to the work of others; both
published and ﬁnpublished. More complete references can be found
in the references we have cited.

' These notes would not have been possible without the
high degree-of audience participation. We owe a special debt to
Biswajit Chakraborty and Sumitra Ranganathan who took the notes and
asked many insightful questions which helped us to polish the
presentation. We also want to thank Mrs;E.Géyathri'for her careful
typing of the manuscript. We hopg eventually td giveva more
detailed bresentation of this material. We would therefore appreciate
the reader's comments.

Our stay in India was made poséible by Indo-American
Fello&ships through the Indo-US Subcommission, funaed jointly by the
USIA and the NSF in the US and by the UGC in India. To all these
o:ganizations we are very grateful. Special thanks are due to
Prof.N.D.Hari Dass and the Institute of Mathematical Sciences for

inviting us to Madras.

Tevian Dray & Corinne A, Manogue
Oregon State University
Corvallis, OR 97331, U.S.A.
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Lecture 1 : Introduction

In this introduction to quantum field theory in curved spacetime
we shall treat the curved spacetime as a given, classical background,
We shall not attempt to quantize the gravitational field. Instead,
we shall deal with the gquantization of the scalar field on this
classical gravitational background ignoring any back reaction.

It should be emphasized that only "elementary" properties of
general relativity and guantum field theory will be used. Specifically,
from GR the concepts used are covariant differentiation and the
curvature tensor, whereas from QFT we need only the standard Fock
space quantization of the Klein~Gordon scalar field and the notion
of Bogoliubov transformations,

The remarkable thing is that equipped only with‘these simple
tools physically interesting results can be calculated which are
both new and profound, The principle example is Hawking radiation,
which will be discussed in lecture 3.

At the same time, it should also be emphaéized that the
rigorous mathematical foundations of this approach are not at all
satisfactory. During these lectures we will attempt to point out
some of the places where this occurs. A good (in factthe only)

general reference is Birrell & DavieS , chapters 2,3,4.

General Relativity

A spacetime is a manifold M equipped with a metric tensor Ip*

In general, n will denote the dimension of M, but we will usually
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consider only n = 2 or n = 4, The signature of b is taken to be
( = + + + 20s), and we set h = c = G = k=1 (geometrical units).
Covariant derivatives with respect to the(metriq compatible, torsion
free) Levi-Civita connection will be denoted by Y:Z; and the Ricci
scalar will be denoted by R.

The d!Alembertian operator [:] is defined by

O¢ = 9°°U
i ab T
== W)

where g = det (gab).
The topology of M will not be explicitly specified, but in

n
most cases it may be taken to be ﬂe - We will also usually assume

a
the existance of a timelike Killing vector field zg: e lee.
OZX. b = VaX, +V X, = O (2)

where ;ZT denotes Lie derivative,

Klein-Gordon equation

We now show how the Klein-Gordon equation for the scalar field

-can be generalized to curved space. In flat space we have
Z\ — .
(O-mD = O o
In curved space the Klein-Gordon equation is

(,D*?Q-mq@.: @) (4)

where ?g' is an arbitrary coupling constant and m is the usual mass
parameter, Notice that the coupling of the scalar field to gravity

occurs in two ways: due to the covariant derivatives in [:7 and due



P mass independent
to the presence of R., The ii’F? term is included as the only possible{
scalar constructed from the metric and curvature tensors which has the
right dimension, A more intuitive argument for its presence is due
to the fact that one expects the massless scalar field to propagate

along null directions (i.e, at the speed of light) and thus be

conformally invariant. As an example consider n = 4, Then if

T A
Fab = 2 9.1 (5)

we also have

Do =070 «+217°5°GNG @«

and
N A
~2 -3
R=0"R-6J270002
(7)
(the numerical coefficients are dimension~dependent). Thus, setting

o=0"d _
(O-2R)d = N3(G-LR) O

so that the (massless) Klein-Gordon equation is conformally invariant
in 4 dimensions if and only if ?? = 1/@ which 1is célled conformal
coupling. The choice i?::() is referred to as minimal coupling.
In 2 dimensions it turns out that conformal coupling and
minimal coupling coincide, i.e. that -§§::() gives a conformally
A

invariant equation., Furthermore, here (t): d) e The general relatio

are
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! N2
: — s < (10)
3 Y Nn-i

d) — Q(Z )/2 CD ‘ (11)

The equation of motion (4) can be derived from the Lagrangian

Y = -+53[5t0000(30m 0]

Let us first consider flat space in n dimensions, The metric

is just 9aL = /Mol iee.
2 2
(S"Z = - ’t 4= d;' _ (13)

and the Klein~Gordon equation is ( /\ denotes the n-1 dimensional

density

spatial Laplacian)‘
2 2 ks
(-Qt +A~m)d>—-0 | (14)

There is a natural (i.e.conserved) scalar product, called the Klein~

Gordon product, defined by

A~ . t/; . R n-{ .
(@ (D)‘—wf(@da-%D CD) X , (15)
/
where the dot refers to time derivatives and the sufface of integration
is taken to'be é{£=constan£§ °

’ Assuming that the surface term resulting from integration by

parts vanishes one can see that
~0 . P~ P * ﬂ“\ ——
(0.8) = if(aB-Baa®)d"x =0 o4

We can generalize this to any spacelike hypersurface jg with

a
unit (timelike, future pointing) normal N as



-
~ . —~ ~
(CP/CD> :AJ ha(CD*QaG)‘CDQQ @*) Az (17)
and one can show (agaif, up to boundary terms which are assumed to be
zero) that (@,@\ is independent of é for any two solutions of (4),
Some properties of this scalar product are
1) (CD,CD) =0 for @ real
~ ~
2 (8 @) = (cIJ,aﬂ’"~
N (o* 3% =-(o, ®)" (18)
From 2) we see that the Klein-Gordon product is Hermitian , so that
(@,@)em but from 3) with (’B':CD we see that vl is not positive
definite, )
A Hilbert space is by definition a complex vector space
equipped with a Hermitian, positive definite inner product. and
which is Cauchy complete . We will only consider separable Hilbert
spaces, i.e. we will assume the existence of a countable basis, (Almost
all Hilbert spaces in physics are separable)

We therefore pfoceed as follows. Choose a countable set of

solutions u Ké‘Z to (4) which are orthonormal, i.e.
kS, g

(ux, uk'\ = A-Kk' = (u:/ U,(,*> , [ur, u::\ =0 (19)

and complete in the sense that "any" real solution can be written

CD — {(OK U, * OK* uk*\ (20)
- K

Classical Solutions: We now construct the Hilbert space of classical,

positive frequency solutions Ghl‘ by taking the Cauchy completion of

the span of Z(u“g (but not including 51:‘;) with respect to the
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Klein-Gordon product, 2;1{? is an orthonormal basis of ih‘
and the Klein-Gordon product is clearly positive definite there.
x :
We can also consider the space iki of negative frequency

<
solutions, In general, the space of complex solutions \v7 is

\/-af:_ W@w* (21)

'q
One thing to be noted here is that specifying-\dr does not

given by

uniquely determine the decomposition (21); the choice of positive/
negative frequency depends on the choice of LJK « As a simple

.example of this, consider a new set éiqkzg given by

\/K = Aux + Buk* | (22)

with A2—82=1. Then é?kﬁ(}>satisfies (19) and (20) and, denoting

the corresponding Hilbert spaces by ﬁb%x and C}¥> » we have
* « 6,“ w*
6?944 @ faya - NV] - v @ v (23)
although 6}¥V is clearly different from 6}40,.

" Second guantization

% ,
So far we have treated the coefficients CJ% and er in

(20) as being C-numbers. Here their status is uplifted to that of
- X
operators, and C)K is replaced by C7K7 .
So Ct7 itself becomes an operator, acting on a Fock space

which we now construct., We impose the canonical commutation relations

‘r .
[Ok/ Okz] = JKK' J [—OK, OKTJ =0 :[;)Krl QK":] (24)

and define the vacuum state [oj> by




Celod=0 Yk ; olo> =]

The Hilbert space of one particle states is defined as the span of
.f
the orthonormal basis gQK ‘O>? » and this space is isomorphic

to f}# . Multiparticle states are obtained as usual by construct-

ing the Fock space F over c?#’ (cf.Wald)
F= 71 ®H¥ ®(W@}W>ébm (26)
where QZ} denotes the symmetrized tensor product.

Bogoliubov transformations

As above, if we consider some other definition of positive

frequency {\{0? satisfying (19) and (20) then we get a different
decomposition of F, i.e, usually Fu = FV although '%u :FONV -
We now show in more detail how this works,

In addition to (20) we now assume that we can expand CD
as

RS ACARIWVAY e

2

or at the level of second quantization

%(OK Ug + akfuz*) =@ = jf(bj\{p *ngr\{o*) (28)

But since the bases are different, the notion of particle
is different! 1In particular, there is no reason for l?ﬂ to annihilate

the same vacuum as C)xl'
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Since we are assuming completeness, we can write

\Zp = ?@Kuk * ﬁjku:‘) (29)
where  ofp =(Vp,Ud) , Boe = = (Ve U).

Similarly, ‘
x, , X
Ue = £ (0N~ Bp,™)
Equivalently, using (28) and (19) we can write
— \
L{g - (Vﬂ, CD}
— * - x 1
- §(°(JK Qk ﬁ_,p;( Qz ) a1}

Q.= (U, @)

é(JKJ+Bj ) 42)

Completeness forces these transformations to be invertible, i.e.
* *
% - )
Z (ol g ~ Bo Box) = G1p

zZ (O(.,?K IB.,V"( B /%VKOSWJ = | 2

|

and
Z(%ox %oxr™ BoxBroe) = S
—?Z(O(IK ﬁ_ﬂk’ - EJKO(JK'> =0 (34)

We can now ask how many "v" particles there are in the "u" vacuum
l 0u>_ . The number operator associated with "v" particles is

i lo‘;.‘?j - o SO the answer is (using (31)).




2{0 b, |0y
IBJK/BIK'<O | A Aur [Ou>

: *
__a K [g_,p;( )@J’k

= +r ( BB7)

so that +ﬁ‘(¥%8{) gives the total number of "v" type particles

JKK‘

(35)

"created" in the "u" vacuum. nNote that 2 is the coefficient which
‘mixes positive and negative frequencies.

Plane Waves

In practice, however, the standard proéedure is to choose
a. "basis" of plane waves, For instance, in flat space one usually

considers

,‘kx -iwt

: e kx e R
| J{NT)"'ZLJ X € (36)

which satisfy

(U Ue) = 8 (k-x)

It can not be emphasized too strongly that these LJK are not

< .
a basis because they are not even in the space R} of "suitable"
This difficulty
solutions because they are not normalizable! /is usually hidden by
statements like "only suitable linear combinations ,f LJK are

allowed".

The above discussion of Bogoliubov transformations can

. nevertheless be carried over to the case of a continuous parameter

E k Dby replacing sums over Kk with jc;“'u( . However, if
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{UK? and fvj? are not bases then it becomes very hard
to decide if the two resulting expansions of "suitable" functions
- are equiQalent,_i.e,if the two sets of “"suitable" functions define

the same space.

One can easily see that even though C{;K and ;gﬂK ‘now

acquire the dimensions of (length)nml,

Tr (ﬂﬁf) :‘[/ﬁgjpiﬂ A" kd™p ' (38)

remains dimensionless and still represents the total number of
"yt pafticles in the "u" vacuum,
Finally, it should be pointed out that there is another use

of the term Bogoliubov transformation in the special case where
| A (n=1) |
— ~!
O(KK’ = O(K P) (k k")
”~ n‘. " )
-—..:/3 JC \(V—K') :
XK' K (39)

n A
in which case one often refers to O(K /2K instead of
4
°<kxl, ;L<(, as being the Bogoliubov coefficients. Note that

in this case we have

b (B") = b (B4 700
= 1 (BE) gap [ A7 -

- (AR ' a
r ﬂIB is the number density. of create

50 that

’ry"‘l

pParticles.
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Lecture 2: Rindler Space

In this lecture we shall consider 2-dimensional Minkowski

space with metric

OQSZ':: "0”12*' dxz (2.1)

and eonsider the scalar field as seen by an observer undergoing
constant acceleration, We again consider the Klein-~Gordon

equation

(_ 9; + ;xz — mz> P =0 (2.2)

and for ease of calculation we will work with the standard, Dirac

délta function normalized set of modes
! Jlkx-wi)

— =
ux T Jumw
with (J= +~Jk%m‘ ana K€IR Y

However, before proceeding to the actual calculation let us

(2.3)

recall where the LJK come from and why other solutions are
not considered.,

Separable Solutions

The LJK are clearly separable, i.e. satisfy
D(xt) =XV T (2.4)

What if we consider all separable solutions? For the massless case

(m=0) we woﬁld get the following possibilities for the functions)Z;T}



~:12:-

(X 'qe’.wf Beﬁlk)< ﬂem+89-" ArBx
T —

- - -kt ]
Ce* D Y (ce¥t D™t (4Dt
p) /- (2.5)

where A, B, C, D are arbitrary constants. For m # 0 the solutions
are similar. Note that the LJK are a special case of the first
possibility. The second possibility ("imaginary
frequency") consists of solutions which diverge as x(or t) goes to
r 0o « Thus, they can not even be normalized to Dirac delta
functions. We will say more below about the last possibility
("zero frequency").

Fourier expansion in t

We can also obtain the LJK if we Fourier decompose

solutions of (2,2) as
D = fe_‘UtCDv(x')oj‘J (2.6)

This approach is especially attractive when, as here, t corresponds
to an isometry of spacetime, i.e. 2% is a Killing vector. But
if we now consider the massive case (m # 0) and use (2.2) we find

N

that the CDU must satisfy

( 4 2\ -~ _
L&—m>CDU+CDU = O (2.7)
For [W| >mM this indeed yields the Uk , but for [WI[<m one is

again led to divergent, non-normalizable solutions. Als0 for /k}/:vwxv

: — :
one possible solution is CDQ9::)( ¢+ which leads to the same

problem,
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Fourier decomposition in X

If we instead try

b= [‘9 hh @, (t) ok (2.8)

we obtain the following equation for CDK

(K?+ rY\Z» é\)K + CDK

)

@
(2.9)

which does yield the LJK except for the case k=0=m, for which
o t would be a solution.

The motivation for this discussion is to emphasize that it
is not enough just to give a set of modes \JK + especially
when they are not normalizable., In addition one must also specify
in some physical manner, e,g. by giving boundary conditions, which
conbinations of the modes are acceptable,

Zero frequency

For m # 0 there are two perfectly well-behaved
timt .
(K OS modes namely \J e e « But for m = 0, not only is
there a degeneracy in that \Jo==LA? but the normaliration factor
l/<|u9 diverges., In practice this is usually ignored, but in
fact this is one of the reasons that the m = 0 case (especially in

2 dimensions) is the hardest to justify rigorously.

However, since "zero modes" may be important if the space
is compact, we point out here that there does exist a nonstandard

choice of modes which does have a zero frequency limit, namely

KX Cinwt (2.10)
= - Coswt — & 5
for X
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In particular, for m = 0, the zero mode

1
- T— l‘-it) ' (2.11)
\L@ \SHTF (,
is normalizablé to a Dirac delta function,

Accelerating Consider now an observer moving along the trajectory
Cbserver:

L4 L
X‘=-t = —= (2.12)

We claim that this observer moves with uniform acceleration a as
measured in his instantaneous rest frame. To see this, let 'Zf
denote the proper time of the observer, i,e. the time measured by
his watch. Then we can view X,t as being functions of 7r . The

2-velocity of the observer is defined by

ot/ 0T\ a _
uq:( . L”au_'"_-

(2.13)
0%/
which can easily be solved to give
| . |
Zf:.-—"Sm)-\ a7 x:——CosLaT
. ’ a (2.14)
where we have assumed t(0) = 0 and X »0 . The 2~acceleration
is now given by
a L & u? a sinh at
A =u VEU =) ~ | a cosh aT
(2.15)

4]
Note that A% is orthogonal to Lj

uaAq:O

(2.16)

I Ty
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a
But U is precisely the instantaneous time axis, which means
that the acceleration is proportional to the instantaneous space

axis, Therefore, the acceleration measured by the observer

) qQ
(the "spatial" component of f9 ) is just

/
( Aa QQ)'Z = QA (2.17)

as claimed.
We now introduce Rindler coordinates, which are the
coordinates appropriate to uniformly accelerating observers.

Define coordinates f,’E implicitly by
! a ;
=2 e sinha?

q
X = -C'—; €8 cosh o T (2.18)

So that

Q4G P

X = = 2 (2.19)
a |
From the above discussion,.we see that the trajectories éﬁ?== constanE}
-a
correspond to observers undergoing constant acceleration Q& § .
Note furthermore that coordinate time 2 is in general only
proportional to the proper time of such an observer, and is only
equal to the proper time for the observer 533(3, corrésponding -

to acceleration a.

These relations are depicted in Figure 1,



Figure 1: The Rindler coordinates (j{ 77) of

(2.18) cover only one wedge (I) of
Minkowski space,
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The metric in these coordinates becomes

ds? = eza’o(-d’fz+a/fz> (2.20)

Note that this metric is conformally flat. (It is of course also
flat since it equals (2,1),) Furthermore, T corresponds to
an isometry, i.e. 9’1’ is a (timelike) Killing vector.

For the other wedge (II) one replaces eaf in (2,18)

a )
by - £ § « To cover both wedges at once, introduce

| Oj7
o) e for the right wedge (I)

| a
-a e $ for the left wedge (II) (2.21)

so that [I>0 corresponds to the right and rfr<o to the
left,

In Rindler coordinates the massless Klein-~Gordon equation

(! 2 |
- + =
and the KleinwGordon product (in one wedge) is
+ ©0
. . T ~
(q)lc[))—:.-4 (®2, -0 ;t®>df’ | (2.23)

-0
where the integral is over a T = constant surface. But

becomes

(2,22)

(222) and (2.23) are formally identical to their Minkowski analogues!

This leads one to write down immediately the Dirac delta function

normalized modes
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l
Vs = Jumiwr
| ,’(a"‘fln[ar)—h)l?.’)
YT L (2.24)

—
—

for Lkﬁé'nz. (This is not the same [} as in (243).)
In Minkowski coordinates we have the second quantized

expansion
: 2 |
= t * )
CDM - f(C?(K)LJK* a (K)U,(>5/k (2.25)
, . =oo e
with

[ae), al(c] = S(=x) G

Similarly, in Rindler coordinates we have in the right wedge

CDQ: ((B(u)\/u fU(w)\/L;)OIL.} (2.27)

and in the left wedge

Pp = foo(d(‘*’)\/u + CN{“’)VJB dus (2.28)

-0
(Technically we should distinguish hetween the 'IAAw’ of (2,27)

and the J£\<~9 of (2.28) which have support in the right/left

wedge, respectively). Furthermore, due to causality, the

expressions (2.27) and (2,28) should commute, i.e. symbolically

[b J]=0 e

We can now set these expansions equa% i.€q



CDM = CDR (2430)

and calculate the Bogoliubov coefficients as explained in the
last lecture. However, before doing this let us ask whether

(2.30) holds classically, i.e, whether the expansions (2,25)

and (2.27) ,(2.28) are equivalent. To do so requires us (finally!)
to discuss boundary conditions in more detail.

Boundary conditions

One criterion which is often suggested is that CD should

be square integrable, i.e.

fCD: Dy dx < (2.31)

t = const 2 :
(one writes (DN16‘L (QJX\ -if this is satisfied.) But this

time
is too weak, because the Mderivatives of CDM are unrestricted.
‘Thus, this is not sufficient to guarantee that the Klein-Gordon
norm (22ﬂ‘CDM\ of CDP\ will be finite, let alone that the

necessary boundary terms are zero in the proof of the time

:
1
:
3
4

independence of the Klein-~Gordon product,
So assume that both GZW and ;t(1%1 are square integrable,-

This is sufficient to satisfy the criteria of the preceding

paragraph, but it turns out to be too strong. In this context,

requiring CDM & Lz (JX) and Qt (DM sz(OlX) is equivalent to

demanding that @M ¢ HY(J‘»\) . ‘,where H‘ is a Sobolev space.

(The "energy norm'" of CD»« is finite .) But because of the formal

Symmetry between Minkowski space and Rindler space it is clear that

- 1f we require (Dmé"H,[Jx} we had better require (DQG'H'(J‘?) .
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The immediate question is this: Are f{ Yﬁg,x) . and
H‘[Ag)@ l-—l I(Jg\ (one copy for each wedge) equal in an
appropriate sense? (i.e, is the intersection dense in each‘of>

them?). The answer turns out to be no (cf. Dray & Manogue),.

Theorem: There exists a function frk?}fl(ZJK);which is
‘orthogonal to every function in H ng\ ® H'(df) .

To avoid this problem, one must reexamine the physical
conditions one wishes to impose, What one really wants is for the
Klein-~Gordon norm of positive‘frequency solutions to be finite, and

this turns out to be equivalent to demanding
+ 1/2 .
®,, € H? (dx) (2.32)

(where the "+" means that the integral (2.25) has no LJ;* terms) .
This avoids all of the problems discussed above.

We now return to the comparison of CtLi with Cpp and
the calculation Qf Bogoliubdv coefficients. (Thé following calcu-
lation was done by Pierre van Baal for'a course taught'by Gerard
't Hooft). |

We introduce the following notation:

€ = s9n (r)
g = Sgn (k)

(2,33)
so that & =+ in the right wedge(I) and ér='-l in the left

wedge (II) etc, We will also write L)(LJ\ for both

expansions (2.27) and (2.28). We shall use the following useful

relation
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] e’ e L
- DO |
LTkl s T
:"lc'," e P(#)@ e

Defihe new operators
P g
| "'k)> | +l \ GJP(
. FAW a(tk) e
C>(i:<qA9) = C)JEZ?% (ﬂ Qa .)WTTK <,

0 (2.35)

_ JIT
But now multiplying Cﬁ%ﬂ by & » replacing (x,t) by

(}”,’7T \ and integrating over [ yields
/ .

o9
l 0 e?jhyqu’ZT
2T M -5
_% ikre T o7
' 9 oo l Q(K\) e &
A — Cepo 9T AkdT (2. 36)
=,y—m( Jumikl| +allk) e T
— 00 - 00

LW L% P
pes.4 { ET1r1/C3FI Cx;(fk,)fzé'zzr - C{;?:AJ) f? 6,2%9

._'h! " r Hl! i L MY
+€Ja’ 'G l(d_(w)eé-za fd_T(‘-L\))eégq

It is to be noted that the operators CX+.(kﬂ) are just

(2.37)

linear combinations of the a(k). Thus, the‘vacuum annihilated

by the CXt (u}] is the same as that annihilated by the a(k) .

namely the usual Minkowski vacuum | C%q\> .
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On the other hand, replacing Cppj by Cﬁk vields

directly
JT [L(w\ e;%’"l‘”tuﬁu) e”fg"‘lar'] (W>o)
U(u) e"iaqfn)(.zrl* E'j‘(—u)eiaqln’ar? (<0)

In what follows we will always assume hj >0 . Comparing (2.38)

with (2,37) using (2.30) we can express b and bt in terms of

C1+ as follows

b (1) = J2 [, (w) e €%, O(T(u)eéz.q:)
b (-V) = 20 [« (W)e ‘B, lru) e g;’;’)
b(w)= M[wr(u)egw o, (e
U(-u):m[o(f(u €% s o () ”:’] (2.39)

One can now check the commutators of the L)(k)) directly,

obtaining

Trkﬁ

[L)(m U(u\‘) = @(u) e B
F (), -0 o
= & J(w-w’)

(2.40)

where we have used
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d (W-w)
["‘(“’) (1] = 2w (e 3 —W)

(Note that each of (2,40) and (2.,41) corresponds to two equations,

ws>o We«o

(and of = o'

‘(2.41)

(and WE‘-«.‘.

) .)

one for ) ¢ the other for
But while (2.,40) is the expected result in the right wedge,

it appears to be wrong in the left wedge! The reason for this is

T

should really have been replaced by -1Z' .

that in the left wedge_ in time and

runs backwards
This would of course

interchange the roles of positive and negative frequency solutions
operator cJ(L)) by

CTT(L}) . Making this change, (2.40)

and corresponds to replacing the "annihilation"

the new creation operator

now corresponds to
e | +/ :
[b( W) bl

= § (- =[C(u), Cf/w’)j

(2.42)
as desired.
We can how solve (2,39) for O(.t (w) in terms of
b(u) and C(U) obtaining |
! e, £
Bo (W) =b(tw)e @ /ns)e
— o, [-1) = c[rw)gy._g 1) Ej%g

(2.43)
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3ut since O( (LJ lOM> = ( we are led to .

blw)lowy = )& o3
c (W) )OM> = Lj(‘«ﬂ €~E7LBJ ,OM> (2.44)

This enables us to express the Minkowski vacuum in the Fock space

appropriate to Rindler space, i.,e. with respect to a basis Irvyt\:>
corresponding to m "b ~type" particles in the right wedge and n

"c-type" particles in the left wedge, The result is

~TTh|wWl
]OM> = T\;rnze _E'L_N[LJ) /n,n> (2.45)

- Wl

Z
where h/(hy) = ’—-62 a . The Minkowski vacuum contains
Rindler particles! An accelerated observer in the usual Minkowski

vacuum observes particles!

To obtain the observed spectrum, one computes the expecta-

tion value of the number operator
CAEIIC =W
= <ol (W) c(w)l 0 |
____(l__ _zmul>{ 5 2_7!_‘21_5,)1 2.16)

s ;/( zvlul‘{)

which is just a Planckian spectrum with temperature

—-ZL = ha (2447)
ST 2TTKC |

We have shown that an accelerated observer sees a thermal

s

spectrum of particles, But we have only considered the 2-~dimensionals

massdess scalar field., It turns out that this doesn?t matter, €.9. the@
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massive scalar field in 4 dimensions can also be solved exactly
and yields the same temperature, Also, other fields, e.g. fermions,

again lead to (2.47).

Lecture 3: Hawking Radiation

In this lecture we will show how to use the results of
the Rindler calculation to derive Hawking's famous prediction that
a quantum mechanical black hole radiates with a thermal spectrum,
We will first consider the mathematically simpler case of an
"eternal" black hole,,and then briefly discuss the procedure used
in the more physically interesting case of 8tellar collapse to form
a black hole. m

The Schwarzschild metric is given by

. |
de? = - £ dt* + -O—’FL + r’(d@zt Sin‘@alwz) k3wd)

with f’;: I- gﬁ? . This is the unique, stationary, spherically

symmetric, vacuum solution of Einstein's equations corresponding to

The Klein~Gordon equation cannot ba solved for
this metric! Therefore, for the time being we shall not bother
about the angular coordinates (E;,LP) and shall instead work in

2 dimensians with metric

ds?=~fdit+ f’f—;z 3. 2)

We can rewrite this in a suggestive form by introducing the

. . *
"tortoise coordinate" r for U 2>72M via

F*zf_afic: {+2m [ :T:"ﬂ“‘, (3.3)




50 that the metric becomes

dSfo(*c/tz+c/r*z> | o (3.4)

equation ‘
The massless scalar field/can now easily be solved using standard

plane wave modes., Note that both (3.2) and (3.4) are badly behaved
at r = 2Zm . and that i r*:-—-OO.

r>»2m
Introduce Kruskal coordinates (T,R) via

T—‘:: Hm Er%m g,’,\)“ (tAfmw
R = 4m er‘/qm CosL(é/qm\ (3.5)

leading to the metric

= {2 ¢ Z
ds*=ZRe P aTr Ak

Note that since r in (3.6) is a function of T
(and R), .91. is not a Killing vector. Thus, the justification
fof working in Kruskal coordinates is not obvious. We will defer
a discussion of this point until later when we discuss stellar collapSe.
( ¢;1. is, however, a conformal Killing vector)

But (3.6) is perfectly regular at r = 2m ! We can illustrate
this by drawing the (R,T) plane; .see Figure 2, The e€orresponding
Penrose conformal diagram is shown in Figure 3.

Comparing Figures 1 & 2 we see that the Kruskal coordinates

(T,R) correspond to Minkowski coordinates (t,x) . whereas the

Schwarzschild coordinates (% [‘*) correspond to Rindler coordinates

(T.e0 -




Figure 2:

The Schwarzschild black hole is shown in
Kruskal coordinates (T,R). The Schwarzschild
coordinates (¢,r*) cover only one wedge (I)
as shown. Compare Figure 1,

Figure 3:

r=o

The Penrose conformal diagram for the (maximally
extended) Schwarzschild black hole. Each point
represents a 2-sphere, and light moves at 450,
Region III is the black hole, Region IV is a
white hole, and Regions I & II represent two
different external universes.
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The above discussion shows that the Schwarzschild
trajectories éﬁrzconstangg correspond to the Rindler trajectorjes
éif =constan€} which are uniformly accelerated., But this makes
physical sense: The stationéry observer at fixed distance from the
black hole experiences a constant gravitational force due to the
black hole., To remain stationary, such an observer must accelerate
uniformly away from the black hole (e.g. with a space ship).

.The correspondence between Minkowski/Rindler coordinates
and Kruskal/Schwarzschild coordinates can also be seen directly.
by comparing (3.5) with (2.18) if one replaces a by 1/4m., But the
Bogoliubov transformations calculated in Lecture 2 depended only
on the coordinate transformations! Another way of saying this is
that since (3.6) is conformally the same as the flat metric (2.1),
if one considers the conformally coupled (.—37:-_-0 in 2~dimensions!),
massless scalar field in each case the results should be the same.

The conclusion is that in order to determine the particle
spectrum seen by a Schwarzschild observer in the Kruskal vacuum
‘C)g) ;,it is sufficient to replace a by 1/4m in (2.47) , Thus

such an observer sees a Planckian spectrum of particles with

3
| kK
1 = ST gTKk Gm (3.7)

temperature

This is Hawking?®s resuit,'and is called the Hawking temperature,
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Hawking®s original calculation was for a

- 4-dimensional collapsing star scenario, " While it turns out that
the result (3.7) does not depend on the fact that we considered a
véry special case, namely the 2-dimensional, massless, conformally
coupled scalar field, this fact is not at all obvious. We will
therefore briefly discuss a (2-dimensional) collapse scenario,
Our treatment follows chapter 8 of Birrell & Davies and is Qery
similar to the case of a moving mirror in Minkowski space.

We first introduce null coordinates. For Rindler, define
U="7T-p
\/ ::’[’-t-f (3.8)

and for Minkowski define

| U

e A -Qq

= avVv

Vv =ttt X = L e (3.9)

Q

so that the Minkowski metric becomes

_ 2ap -
ds? = - dady = - d (3.10)

Analogously, for Schwarzschild define

and for Kruskal define

—cn

T-R = g
T +R

———
——
—~——-
—

Lfrﬁ\ 62¥N/Hrvx

<l <}

)

(3.12)




s0 that the Schwarzschild metric becomes

am /e
0'5‘2-’-"‘?_ e Jadv = -fdudy G

Comparing (3.9) and (3.12) again shows the exact analogy between
the two sets of coordinate transformations which is obtained by
replacing a by 1/4m,
Collapse

Let us now consider a 2—dimensidna1 model of a collapsing
spherical star. The surface of the star will describe some timelike
trajectory, as shown in Figure 4., Outside the star, the metric

will be the Schwarzschild metric i.e.

st == Cddu dh

whereas inside the star the metric will be assumed to be arbitrary,

ds* = -9 dUdV (3.15)

Since there are only two discrete null directions we can assume

that §) depends only on u, and V depends only on v, i.e.
U = A(u)
V:

-B(V) (3.16)

We could of course choose A and B to be the identity and put all
"the information about the interior of the star into the function

: which
ge But for reasons/will become clear, we prefer to require that

V"U = QF (3.17)

which, as can be seen from (3.11), is not satisfied by u,v;




>
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l.nsic/e Ou'}S;ale

r

Figure 4: A schematic¢, 2-dimensional representation
of stellar collapse. The curve r =h(t) represents
the surface of the star.

Figure 5: The (partial) Penrose diagram for a collapsing
star, as in Figure 4. The arrow shows an incoming
wave at early times which passes through the
star and is "reflected" into an outgoing
wave at late times.

‘,\4’
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4-dimensional
In order to model /spherical symmetry in 2 dimensions, impose

perfectly reflecting boundary conditions, i.e.

CD, =0 ©(3.18)
f=o

The reason for this is that a wave approaching the origin from one direction
( CD! LF\) in Spherical coordinates leaves in the antipodal direction
2-dimensional
(TT-' e, T+ LP‘)/ corresponding to a reflection in the /(r,t) plane.
So consider the situation depicted in Figurs 5, namely an incoming wawe

which, at early tinmes (’ff-> is just the usual positive frequency mode

. - a3V
CDin - e ‘ (3.19)

(One can easily check, using (3.11), that #his corresponds to an ingoing wawve,)

(u to normalization)

But (again using the conformal invariance of the massless equation in two

dimensions), (3.19) is clearly an exact solution of the Klein-Gordon equation,

()u 9\, @ =0 (3.20)

It therefore only remains to impose the boundary condition (3.18) so

which is now

that

[

WV s
CD: e — P v _ (3.21)

=o

But

\/{r‘=o = Q(V>/r‘
= B(w)| = B,

Thus, the simple ingoing wave (3.19) is turned into the complicated

)

o
(3.22)

outgoing wave

CD - —-,:w[%(ﬁ(uﬁ

out (3.23)

-
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A more detailed examination (highly nontrivial!) shows that,

*independent of the details of the collapse (i.e. the choice of g and

h),

,q(u) g e—u/qm )

- Q(v) ~ N (3.24)

i.e, U corresponds to the Kruskal coordinate u, and V corresponds

to the Schwarzschild coordinate v, Despite the fact that V does not

correspond to the Kruskal Vv , the Bogoliubov coefficients are
essentially the same, and in particular the same temperature (3.7)

results,

. Different vacua

In fact, there are three different vacua floating around,
The first is the Hartle-Hawking vacuum which is just the Kruskal
vacuum lC>KT> obtained using bT‘ to define positive
frequency. Thié corresponds to the Minkowski wvacuum lor;>' in
~sW0 =9V

flat space and to the modes & = - Y-

10K> > [oM> ~ e—;w&/ e—;uV (3.25)

The Hartle-Hawkingvacuum describes thermal equilibrium at the Hawking

temperature, i.e., it corresponds to a black hole in a perfectly

reflecting cavity or in a heat bath at the Hawking temperature.
The vacuum which is invariant under the isometry ét is

called the Boﬁlwarer vacuum and is just the Schwarzséhild vacuum

IC)ST> + corresponding to the Rindler vacuum ‘C)éj) in flat

space, l.e.



—AWU -V
lOS> HIOR Nt e ’ e (3.26)

Since the Schwarzschild spacetime is asymptofically flat,
Schwarzschild observers are "almost Minkowskian" far from the black
hole, This means that the Boulware vacuum ' Ogt> "looks like"
the Minkowski vacuum lOM> far from the black hole.

Finally, the vacuum appropriate to collapse is the Unruh
vacuum ’ Ck;:> o and corresponds to the case of an accelerating

mirror in flat space, i.e,

-sWtu -4V
‘Ou> &—> accelerating mirror ~~ & ; e (3.27)

This vacuum is the physically interesting one corresponding to a
collapse scenario, and represents a thermal flux (black body

spectrum) of particles leaving the black hole at the Hawking temperature.

Penrose diagrams

We have given the Penrose diagram of an eternal black hole
in Figure 3, One can also.draw the Penrose diagrams -appropriate to
a collapsing star‘and to Hawking radiation.: These are shown in
Figures 6 & 7 respectively. Note that since the Hawking temperature
is inversely proportional to the mass it gets hotter and hotter
as it decreases in size., This has led Hawking to predict the
eventual explosion of a black hole, at the point labelled P. It should
be emphasized that éll caléulations presented here assume a fixed,
background spacetime, whereas the evaporating black hole scenario
depicted in PAgure 7 assumes some sort of back reaction on the

spacetime due to Hawking radiation, e.g. the mass of the black nole

decreases.




black hole

Figure 6: The Penrose diagram of a collapsing star
which forms a black hole. Compare Figure 5.

[(lat space

5

©

®
=0

§+

- NL

Figure 7: The Penrose diagram appropriate to a black hole
- which is first formed by stellar collapse as in
Figure 6, then loses mass due to Hawking radiation,

and finally evaporates or explodes at the point P.
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Hawking radiation made easy

There is a trick related to the requirement that the
Euclidean Green function be analytic which enables one to calculate
the Hawking temperature much more quickly,

Consider polar coordinates in two dimensions

2
G’SZ = 0“"21‘(16}9 (3.28)

This metric is badly behaved at r=0 but we know that the
underlying spacetime ﬂ?l is well-behaved there so long

as the periodicity of 69 is chosen to be :?TT « If,

however, we choose some other periodicity for 69 , €.d.

identifying 6:_32_“[7' with 6'-:0., then the resulting manifold,
although flat, will be a cone and will not be differentiable at
r = 0 . (Try carrying out the above construction using
paper and a pair of scissors and tape to make'thevidentification)

This can be made precise as follows. Consider the metric

dst = G(r) de® « F(r) dB* s

where the periodicity of 9 is assumed to be 2, i.e. GGCO‘A)
and where F:(}B) = . This metric is badly behaved at f‘==f;

so the question is whether or not there is a conical singularity

there.

To avoid a conical singularity we must have

\;rn gecodesic circumference _
r—(, geodesic radius “'”;Pl [ (3.30)




~: 37 :=

i Ofﬂf}?ag
I M an
| o

AF

or in other words

| i —=
=~ rar 2JF (2.31)

JG

where we have used 1%H8pitai®s rule in the last step., Thus, the
" spacetime is regular at = Fo if and only if the periodicity is

chosen to satisfy

— (3.32)

For the Rindler metric (2.20), make the substitutions

| e ""'t J r f J o > |
| F=G= e®*" |

This brings (2.20) to the form (3.29). Then (3.32) yields

HTT 21
Rindler Qa G
For the Schwarzschild metric (3,2), make the substitutions
B=il [, =2m
= ol G '/ (3.35)
§ which result in
LTr LT
Aschwarzschild _'("/ —~  2Zm = gTrfY\ (3.36)




In both cases the temperature is just the reciprocal .of the
periodicity!

Lecture 4: Robertson-Walker Spacetimes

In this lecture we will consider particle definitions in
Robertson-Walker spacetimes, The presentation is based on a éeries
of 3 papers by Dray et al., (Dray, Renn & Salisbury and 2 papers by
Dray & Renn), But first we present some new notation (cf.Ashtekar &
Magnon) ,

Complex Structure

Let V be the space of (suitable) real solutions ©f the
Klein~Gordon equation, and let V4, denote a choice of positive
£ < - ,
requency solutions, Then the space ijr of complex solutions

can' be decomposed as

\f“::\/@xV:\Z@\Z (4.1)

*
where V__=-.V+ » We have already considered the Hilbert space of

positive frequency solutions as (the Cauchy completion of)

%Z{\f*‘)(’\ - (4.2)

where ( , ) denotes the Klein-Gordon product. But this corresponds
to the quantization of the real scalar field, so we expect there to be

a represéntation in terms of V., But there is clearly a map
V+-—) v

P, @, + (D: =JRe D,

(4.3)

£
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what about the other direction? From (4,1), given a choice of

positive frequency there is a unique decomposition of d)é\f'as

,,‘

O=@P,+PQ. =+, (4.4)

with CD‘_ C—‘V; )‘ this can be use}d to define a map from V — V,_

as follows.
First define a map

J : V —™> V
O+ 0. L(O,— D) |
= __:7 :[:ryxcizy (4.5)

Then clearly

o, = 222 e

This is the desired map. Furthermore,
T(T0)=4(T0), ~i(TO)
= A (x' @f_) - (—'4' CD_.\

— @

T=-1

Thus, one can use J to turn the real space V into a vector space

(4.7)

il

so that

over d: . For this reason, J is called a complex structure.

Va4
We can now use (4.6) to express <ZD*_(D;\ in terms of
: /

o, |
(o &)= L (@70, &-TD)

=4[ (0,8)+ (T T0)
i (TOB) -4 (0T
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However, it follows directly from

(CD,,'ED:)?:O

that
(CDITEB§ = (—— Td)/ @) (4.11)

We can now introduce the Hilbert space of real solutions

as (the Cauchy completion of)
’ (4.12)
H=svT <, >3 |
/7 /

D, By =+ (0,78 + £ (0,5) ww

where we have written

where

<’(IZ (is ) = ,i'.sz (,CEE EE;) 4

( { 2 is called the symplectic structure,) In general, we can

start from (4,.,12), (4.,13), (4.14) for any J satisfying (4.8) and

f;2_<43‘1§b.j‘2f5) =J1 (2D,ii3) ; (4.15)
(o 7T0) > 0

(4415) is equivalent to (4,11), while (4,16) insures that the scalar

(4.16)

product is positive definite, A choice of J amownts to a choice of positiwe and{
- negative frequency.
We will also work with initial data /a hypersurface instead
of the actual solution of the Klein-Gordon equation, Let EE be

a Cauchy surface (spacelike hypersurface; usually ‘£’=constan€} ) for
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the spacetime and define data

(W —= (@ : (4.17)
LIS %) s

Thenthere is a 1~1 correspondence between solutions (D(x,t) and
i i b S an

data (Lﬂ()(\, TT()(\) . In this representation, J become

operator-valued matrix. As an example, the standard definition of

positive frequency in Minkowski space corresponds to

, o .
T N W o (4,18)

where L&9'= ;_ﬁ£&+,~\z . (This can easily be checked by considering
, on D= ilkx-W9t) -4 (kx-l)
the data corresponding to the real solution =L + e .
We have considered J and hence ibL to be defined with
respect to one Cauchy surface 2; s but we can also define a
complex structure :Jt and hence ﬁhﬁ on each Cauchy surface
ZE‘t « This .gives us a definition of partlcles at each time. The
natural questlon is, how are the particle definitions :) and :]f

related, i.e. how many particles are created between t = t1 and t = t2?

We consider the (4-dimensional) metric

Olfz:*diz*o(é\z d;z | (4.19)

for which the Klein-Gordon equation becomes

$+390+we =0 e



where

2 A [2
W =-—=+m + 3R (4.21)
a
3
and [2; is the standard Laplacian in [F3 . This metric describes
a universe with flat spatial cross~sections f éz:constant}
underg01ng an expansion (or contraction) described by a(t)., We

Fourier decompose (b to obtain the modes

CD = CP,( (ﬂ eik.x (4,22)

LS
where CIL satisfies (4,20) with W2 replaced by

2
L«)kl = ‘g; m® + ?Q (4.23)

Note the séveral diffefences between (4.20), (4.23) and the correspond—
ing statements in flat space. First of all, due to the presence of

the functions a(t) and R(tb lét is mnot constant. .Furthermore,

(4,20) contains a term in Ci) . However, we can remove this term
by changing variables,

Introduce new variables

S - tolt | (4.24)

9(4) |
W =h @ s

SR _
C33
(4,19) with (4,22) becomes

'+‘Dk U/K =0 | (,4.27)

Then if

1 | (4.26)




with

ﬂ: — 31(4}: _ [ﬁ/lq . (4.28)

and where we have denoted s derivatives by prime. The choice of
g(t) (and hence also h(t)) will be referred to as a choice. of

normal—~forms (The most common choice is g=a=h, which exploits the

fact that (4,19) is conformally flat.)

But any (normalized) solution to (4,27) can be written

(with the suffix k dropped)

=L o [wds

— (4.29)
Jaw
(this is not obvious! ) where V¥ satisfies 
2 ,
2 _ szz w3 W
W — ] —\:7 + o Wz ‘ (4430)

We will treat J as a multiplication operator on the Fourier decomposed

modes, i.e.
e o
J = [ e

£ - € | (4.31)

where e and £ D 0 are functions of k and t. This corresponds to

‘making the choice of positive frequéncy' at time f-givén by

W | ({‘ |
rrk". Qfa:‘ €-4 f

{ | (4.32)

((4.32) is just the (normalized) eigenvector of (4.31) with eigenvalue

+l,' Cf. (4.5) o)
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By expanding‘e,f,w in powers of 1/k (and setting g=1),

and using approximate solutions of (4.,30) to compare data at

different times, one can calculate the Bogoliubov coefficients

CXK gx relating the definitions (4.32) of pmnsitive frequency at
‘ .

two different times, (For details see Dray, Renn & Salisbury,) But

recall from Lecture l that the number density of particles "created"

betwean these two times is just
— 2 .3 |
D -‘J/7‘ﬁrl d°K v (4.33)
One can also consider the energy density
iy 13 : (4.34)
E-[wklﬁkl A*k

If one requires that J reduce to (4.18) if a=0 and that D,E be

finite one can show that the expansion for J in powers of 1/k is

| O -—-u9 <
T = W L (e ©
W o -

3w e (4.35)
- o R, ;3
+ E‘ w "‘l"’ [ Y
.Ef_,EL)uj"
34 9 12 =
where & = - a is the trace of the extrinsic curvature of

iE.t -« The first term is just the flat space resﬁlt,,the second
guarantees D < 0O » and the third guarantees E< 0o,

Ashtekar & Magnon give a prescription for finding J whichv
- here yields only the first term of (4¢35). Note that this leads to

an infinite density of created particles between any two instants

of time!
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Adiabatic particle definitions

Approximate sclutions to (4.30) and hence to (4.20)
can be constructed as follows

w,m = ()F -

i I ‘ ,
Z 21 W o, 3 [ (4.36)
\/M/ — - 2 +
INW2 ) WhHin H \ W,y
leading to \"VZN and @ZN .

These solutions are approximate in the sense that for each

N there is an exact solution Cp such that

i
| B~ @l = 7= O(c7

The 2Nth order adiabatic particlé definition at time t is obtained

by inserting the approximate solution W,y into (4,29) and (4.25)

N
and defining positive frequency to be the exact solution whose data
at time t agrees with the resulting CIEPJ‘

Again éomparing the particle definitions at different times
one can easiiy show that N >/ O implies D<w; N>/l implies
E <> . For the full (/\/.wo') adiabatic particle definition
F;K' falls off faster than any power of 1l/k. |

Furthermore, the full adiabatic particle definition is
independent of the choice of.variables (choice of normal~form) used
in its construction. This is not generally true of other guantization
prescriptions (e.g. Hamiltonian diagonalization).

‘Stable adiabatic wvacua

Finally, one can ask for spacetimes in which the adiabatic

vacuum leads to zero particle production, The simplest case of this




—: 46 :-

is when \AJ;={Y2 is an exact solution of (4,30) i.e.
. -1
D = ! eﬂ'fﬂxﬂ Jdt
k = J2R.a%™

is an exact solution of (4.20) for all k and defines the adiabatic

(4.38)

vacuum at all instants of time,

One can show that this leads to two conditions, one on the
normal-form and one on the spacetime, The condition on the normal
form is

5 = d (4.39)
(or one other, very messy choice) and the condition on the spacetime
is
.

(?—jf R + %é [ml*(?‘ﬂ@ =0 (4. 40)

The solutions of (4.40) are
. —'g— == m=0 or Q=0
II : t?’q:é_lrrr=C) et C]z:: F)tz4~(32?‘F(;
‘ -2
'}—_f;é__,mi‘@ﬁ a":ﬂe"t’fBe +( (4.41)

where :\1:: _ « Case I implies that the conformally
coupled, massless scalar field produces no particles. This is just
what one expects since (4,19) is conformally flat. Note that Case II
with B=C=0 is the Milne universe and with A=C=0 is the radiation dominated!
Friedmann universe, while Case III with C=0 and ?§ﬂ< %T includes
part of the de Sitter universe as a special case.

Further details of the above results involyving the adiabatic

particle definition can be found in the two papers by Dray & Renn,
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Lecture 5: The Klein Paradox

Here we will consider particle creation due to an electro-

magnetic background instead of a gravitational background, using the
. ' *
techniques developed in Lecture 1, The action for a massive scalar

field CZ) minimally coupled to an electromagnetic potential

X
S= "f (pr@,u+ m"CD*CD)d”x (5.1)
where the gauge covariant derivative + is defined such that
z(aﬂ"’x‘eﬁﬂ)@
X . X
Cb,/u “(%u*'xeﬂj,‘)@ (5.2)

Variation of the action (5.1) with respect tc CI)ik leads to

is

the dynamical equation
M 2 .
_Cb'/“ -m @ =0 (5.3)

We will specialize to electric potentials of the form

A (&(’() 00 0) where E(k) is a barrier which goes to a

constant value - ~'5 as X — - (on the "left") and to

\'4 .
7 as X —>» +® (on the "right"), See figure 8,

We can Fourier decompose in the 'y = (v,2) and t directions

Cp N Ky wm?{‘(") (5.4)

where f(x) must satisfy the separated dynamical equation

(’351 + (W—QE(X’))Z . (Ezfsz [‘(X)‘—'O (5.5)

* This presentation is based on a paper by C.A.Manogue, "The Klein

giving

Paradox and Superradiance", to appear in Annals of Physics.
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Figure 8: An example of the type of potential ‘ZZ(%) considered, showing
the different frequency regions which determine the behaviour of

the modes.
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Far from the barrier the solutions of (5.5) look like linear combina-

ti9x
tions of plane waves & +1

on the left, and like combinations
tirx ‘
e

of on the right, where

122(‘49*ev) S m) (5.6)
r = (- &)t = (KTrm?)

Notice that q is imaginary for > such that

.._._- -—-(K +m)lz< W< - zvi-(ﬁz*”m?)‘lz (5.7)

(see figure 8) leading to exponentially damped solutions on the
left so that waves cannot be "sent in" from the left for . frequencies

in this range, Similarly r is imaginary for w | such that
2% 4
eV._ (L<_2+m‘)'/’-< W %— (KN e
2 ' '

(see figure 8) so that waves canno£ be "sent in" from the right for
frequencies in this range,

The dispersion relations (5.,6) do not determine the signs of
q and r for q and r real. These signs are determined by
using fhe group velocity to specify the direction of travel, For

‘4(3>( k?t)

example, a wave on the left of the form & has group

velocity

oW _ 3
ai W+ =

-This wave will travel to the right (left) if its group velocity is

E’V (549)

positive (negative), i.e, if the sign of q is the same as (opposite)

to) that of U9+ g%’ . Similarly, a wave on the right of the form




e;(rx-uf) TR

has group velocity

2\45 = E v (5.10)
or T w-% ‘
eV
i.,e, the sign of r is compared to the sign of W - 3{ .

A complete set of solutions of the dynamical equation (5,.3)

looks asymptotically like

S0
1L9% A9 %
N A'(Ky-ui) e ? +~P€ ? (x—;-bo\
=Ne -~

—_—
‘ — 1 5.11
Uin T odrx (emn suy) (501D

5 = Rj—ei(ﬁ'zéwi] T e’ #~ (x— =)

e—irx%"‘?‘e;rx (x> 49 (5.12)
If the signs of q and r are chosen so that
| q,rf >0 Lor QZ:\[+(EZ+M-¢)’/Z < LS 5. 13)
I50,r<0  for ~ S (Ko < & (K"
1,0<O  for w(_%\_fﬁ(gzmz)-/g

(see Figure 8) then the modes (5.11) correspond to tﬁe infinite
plane wave limit of a wave packet which comes in from the left at
early times with both a reflected piece back to the left and a
transmitted piece to the right at late times., (See Figure 9a) The

modes (5,12) are the same with the words left and right interchanged.




Figure 9a: Spacetime diagram for modes

of type (5.11)

- 'Fi'gure 9b:

Spacetime diagram for modes
of type (5.12) ' -

-t 16 :-
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(See figure 9L) This set of modes will be called "in" modes because
they come in from infinity at early times,
Another complete set of solutions ("out"~modes) is given

asymptotically by
£ ;3)< (X>ﬁ~00\

& ixy-wb) (€7 Be
out 5 e_;rx (X——)*-OO\)

(5.,14)

..C( _[\j)ei('_{'j'“)ﬂ 'S_:'e"i X (x—-w)
out

ll

(5.15)
arX | ot

e +6?€ (x—a-no\

With the same choices of sign for q and r , these correspond to

waves which come in from infinity from both sides at early times in

such a way that they conspire to go out to infinity at late times

in only one direction; to the left (5,14) or to the right (5.15).

(see figure 10.)

The Klein Gordon product appropriate to the action (5.1) is

(U,G) = jf(u%g.t__ufta') dx oy (5.16)

cf, (1.15 ), 1In particular notice the appearance of the gauge

covariant derivative. : 3

To normalize the inw-(out-) modes it is sufficient to normalize
the incoming (outgoing) wave in the asymptotic potential which it
sees., This corresponds to taking the plane wave limit of the normali-
zation of a broad packet, Delta function normalization car. be imposedf
The modes (5.11) and (5.14) are positive (negative) normed if g 1is
positive (negative). The sign of the norm of the modes (5.12) and (5.1

follows the sign of r |,
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Figure 10a: Spacetime diagram for modes of Figure 10b: Spacetime diagram for modes of
. type (5.15)

type (5.14)
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Notice that for a given basis of solutions it is the sign

of the norm and not the sign of L&7 which determines the defjpjtion
of "positive and negative frequency", i.e. which determines which
modes are to be associated with creation operators and which wjtnp
annihilation operators. Suppose u is a negative normed solution of
the dynamical equation and suppose you mistakenly associate u with
the annihilation operator a (instead of the creation operator éT), .
Then, since Q :‘<U/CD) (since u is negative normed) and al = (u%:@

we have

[a,a) =[~(u.0), (% "]
= (i f(Up U D)y if(ua] -u.t¢+)of§a’lj{)
=44 [[(UFU - Uy W) S (x-R) I (y-Delx dZ 'y dy
=+ (U, u)

= -1 (5.17)

where the canonical commutation relation [Cb(x,z)l QZ{Z?’S} == 9 S(x-{))’l(_).f-:)’)

has been used to obtain the third line. We see that we do not have

the canonical commutation relation for a and aT: The creation and
annihilation operators have been misidentified. Nowhere does the sign
of W enter the discussion!

Although the reflection and transmission coefficients in
(5.11, 5.12, 5.14, 5.15) depend upon the detailed shape of the
barrier, general relétions among the coefficients (known as Wronskian
relations) can be obtained from current conservation. If f. and

1
f2 are any two solutions of (5.5) for the same values of LL} and

kK, then
4 CJ ci (“
l(‘\(‘[‘z (ax -F.\ - (5.18)
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s a conserved current, i.e, is independent of x, This is easy to
rove by taking the x derivative and using (5.5). This is analogous
o the proof of time invariance of the Klein-~Gordon product on
pacelike hypérsurfaces. In particular, for a solution of the type
5¢11 ) and its complex conjugate, evaluating (5.;3) on the left

nd on the right gives
2 r — C

l —_ [QI — é“ /T) T | (5.19)

n the Klein region (i.e, in the region where q and r have opposite
- o, a , .

igns, cf. (5.,13)) then I R l >l. The reflected current is
1reatér than the incidént current!— a phenomenon known as éuper—
‘adiance or stimulated emission,

It is important to mentioﬁ that most‘textbobk disdﬁssibns
f the fermionic Klein paradox . ingdrrectlyiétate thaﬁ fermions are
11so superradiant. The analysis of the Dirac éduation in an electro-
\agnetic potential is completely analogous to this discussion of the
calar wave equation. However q and T in the analogue of (5.1%),
Eo; the case of fermions,are multiplied by é; ~and é;/ respectively,
here € is +1 when q is positive ahd -1'Qhen.q is negative
similarly for &’'and r )e Tﬁus (—é 114 1 always. . Fermions do
ot superradiate, (Physically;lthis is due to the Pauli exclusion
rinciple.) The usual treatment of the fermionic Klein paradox gets
he signs of é; and églcorrect but assumes q and r pqsitive by
‘ailing to use the argument about the group velocities. Thus the

eflected current appears to be greater than the incoming current

IR >1).
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What hés really happened is that a mode which was thought to be of the
type in figure 9a is actually of the type in figure 1l0a, {?l 2
is then the current from an additional incoming piece and the single
outgoing current [ﬁ‘z is the sum of the 2 incoming currents as
~expected.

The reason for the superradiance is that the potential
barrier is dissolving’to make particle-antiparticle pairs, (You must
continually pump enerqgy into the barrier to maintain its original

l.ape.) Even in the vacuum, there is a constant flow of particles
from the barrier. Several different calculations give a measure
of the number of particles produced.
Current

» M

Varying the action (5,1) with respect to /\ gives an
expression for the current in terms of (I) and GD*'. Expanding

these in terms of modes and creation and annihilation operators, and

taking the vacuum expectation value, gives asymptotic values for the

-current in the x-direction namely

el - | e
<O'm | T Oir\> - ﬁ’g [Tl dwatx (x>
(5.20)

where the integrals extend only over modes in the Klein region,
Since q and r have opposite signs in this region, we see that there
is a current flowing from the right to the left, Notice that the

sSpontaneous emission in the vacuum (5,20) is related to the stimulated

o ro== 2
emission rate given by -——['T" .
> 4



Momentum

Varyiné the action (5,1) with respect to EiAJ\) gives an
expression for the stress-energy tensor frzu‘) in terms of
and QDk . Analogously to the computation of the current, we

obtain an asymptotic expression for the momentum in the x-direction

<<C:%r\l—1—ﬁtx'C>u;j> (ZTT)B’I?16?+';&T)11 TTAI GJu)CJ K (x—a-

(5421)

1 -
= o [(0-)F Tk o
where again the integrals extend only over modes in the Klein
region, We see that momentum flows away from the barrier in both
directions (cf, (5.20)),

Number Density of Created Particles

For a complex field such as we are studying here, unlike a
real field, the.negative normed antiparticle modes ("negative
frequeﬁcy“) are not the complex conjugates of the positive normed
particle modes ("positive frequency"), Therefore, when the field

is expanded in terms of a complete set of states, it looks like

Cp £a U + {E - (5¢22)

where the LJi are the p031t1ve normed modes and the \/P are
the negative normed modes. The 531 and L)P operators are now

~ independent and the vacuum must be defined by

ai]O>=O:LPIO> (5.23)

Define Bogoliubov transformations via
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U out ::'gz CXQJ jin T EE’ﬁB ig z ies ’ |

\/P Oui' = i Kfj ujfn 4 Zé})g 2 e (5,24)
3 g ‘
Then, as in lecture 1 (cf. (1.35)), the number of particles, labelled

by i, at late time in the vacuum of early time is

(Ol'nl OJ'.TOUT aim;t' Oin> = é@‘ (5425)

Similarly the number of antiparticles, labelled by P, is

<O;,\1 t’;:-o«t e oul {On > { P JP (5.26)

The relevant Bogoliubov coefficients are obtained by a simple calcu-

lation comparing modes in the asymptotic region5°
B =Wk, «lw, K e-\) =[s [T § (w-5") S~
(5.27)

S e |
K= r (ko 0K, - )=~ Ig ] T () (k)

showing that the total number current of out particles or

antiparticles in the in-—vacuum is
a7p) [T]T] dwa
(:m)‘[ 7 dwd K

where again the integrals extend only over modes in the Klein

(5.28)

region (cf, (5.20), (5.21)).

Even though fermions do not superradiate, electromagnetic

potentials in the vacuum do create fermions, according to equations
analogous to (5.20), (5.21) and (5.28).(The Pauli exclusion principl€

. hend K X
still holds: I l‘ is much smaller for fermionS)
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Lecture 6: The Rotating Vacuum

A}

In 1948 Casimir made the astounding prediction that two
lean flat conducting parallel plates in the vacuum would experience
" mutual attractive force inversely proportional to the fourth power
f the distance between them, This force céﬁ be understood in terms
f the Van der Waals forces between the atoms of the plates, but this is
ot how Casimir made his prediction., His prediction is based on the
?f-%-t\b} per mode vacuum energy of electromagnetic field theory.
his infinite vacuum energy is ordinarily thrown away as being
hysically irrelevant. However, in the presence of the two conductors,
he normal mode expansion of the electromagnetic field will be altered
n order to satisfy the new boundary conditions. The new sum Z%t\wnew
111 also be infinite but different. For high enough frequéncies,
hysical plates will fail to be perfect conductors and become transpafent
nd the terms in the sums become :-identical, The physically relevant
uantity is the difference between the two sums, i.e. the difference in
racuum energy due to the presence of the plates, The failure of the
erfect conductor boundary conditions introduces a natural cut-off
nto this difference.ileaving’a finite answer which turns out to be
.naépendent of the cut-off, The finite energy differmnce gives
ise to the férce between the plates, When Casimir®s prediction was
rerffied by Sparnaay in 1958, it was the first physical evidence that
he infinite energy of the vacuum has_to be taken
eriously and should not simply be thrown away unthinkingly in all
ircumstances. Since that time, the "Casimir effect'" has been:
alculated ‘for many other kinds of fields, and shapes and types of

oundaries. The Rindler problem, lecture 2, is essentially a génerali—



zation of the Casimir effect to moving (i.e, accelerating)
boundaries. In this, lecture we will discuss the calculation of the
Casimir effect for static boundaries in more detail and then examine
the results of a calculation for rotating boundaries. The presentation
is based on (Manogue),

Casimir?s method of summing over modes gives as a result
the total energy between the plates. A more modern approach is to
calculate the vacuum expectation value of the stress tensor <:Z)}_T1}[D|C9>
which contains much more information. First it gives the energy
density between the plates as a function of position. Second it gives
the other components of the stress tensor such as momentum density
and pressure density.

An expression for the stress energy tensor _T_>U\) is
obtained by varying the action with respect to the metfic ELUL> .
(In this talk we will, for simplicity, consider the massless scalar
field in four dimensions instead of the electromagnetic field. In all
known cases-the results are qualitatively the same.) The expression
for grfjlu is then quadratic in derivatives of CD -« As in the
other lectures, } (t> can be expanded.in terms of a complete
set of modes and the vacuum expectation value of 'Tfjju can be
evaluated. However, in this picture it is difficult to implement the
renormalization procedure which subtracts off the infinite vacuum
expectation value of the stress tensor which corresponds to the
absence of boundaries. Alternatively one can use the method of

of

Green®s functions., A Green?s function is a function Awc spacetime

points x and x* which satisfies the equation

© O Glxxt) = I (xx) o
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where [:] is the field operator defined in (1.1). It can be

shown that (where T denotes time ordering)
G (xx) =<o|[TP()O(x)| 0 (6.2)

UV
so that the vacuum expectation value of 'Y— : for a given
problem can be written as the limit as x' approaches x of a
differential operator acting on the Greent!s function appropriate to
that problem (in particular the Green's function as a function of
either x or x! should satisfy the same boundary conditions as the

field @ ), i.e.

Claaa k)
= [ (-2)(5*5DD,)
z(1-23) (9‘“‘” 7 +j’“’3 £) De D,
F(5*5510 7, + P DT (216 (<)

where 3jiv (xng) is the bivector of parallel transport which trans-

(6:+3)

ports vectors from x' to k, and T&Ais the covariant derivative operator,
It can be seen that once the proper Green’®s function is found,

the caiculation of <2)'T—*AU[O> is the purely mechanical one of

taking derivatives and limits,

The Method of Images

For boundary conditions with a high degree of symmetry,
it is often easiest to use the method of images to find the appropriate
Green'!s function., For example, consider Casimir!s original case

of 2 parallel plates separated by a distance a (see figure 11 b
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Figure 11: Casimir's parallel plates,
images for the Green's function are shown.
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where the Green's function should satisfy Dirichlet boundary

conditions on the plates, i.e.

G (x,x) |

The Green!s function for unbounded flat Minkowski space is

=0 (6.4)

X=X

N O

! 1

N\ — A (605)
G(x,xV= 7 T ot Gy s (3 2%

If the point x is on the left-hand plate (X':-%'\ and x' is between
the plates then the Green's function has a particular value, Write
down a similar Green's function with x! shifted‘to the "mirror image"
position using the left-hand plate as the mirror. Since the Green's
function depends only on the distance between x and x% and since x!
and its mirror image are at the same distance from x, the valﬁes of
these two Green'!s functions are identical. Therefore the difference
of these two Green's functions is a new Green's function which is
zero for x on the left-hand plate- One - of the two boundary
conditions is satisfied. To satisfy the boundary condition on the
right-hand plate one must subtract off two more Green's functions,
~reflecting both the original x' and its first image, now using the
right-hand plate as a mirror.‘ But this destroys the left-hand
boundary condition which must be resurrected by yet more mirror

images etc. The final Green?!s function is an infinite series

| . o
6(& X'\ e B g ll (6.6)
N T g S, O+ (k= ()x enaY r (rer) e (2-2)

(see figure 11l.).
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The Stress Tensor

If this Green's function 1is used in (6.3) to calculate
<<C>|’rﬂfvlcj> » the answer is of course infinite,  This is just because
<(c>l‘r*f”)oj> for unbounded Minkowski space is infinite and (6.6) )

contains the Minkowski{term {(n = 0). What we are reélly interested
in is the difference between ‘<ﬂ9|:T”“\”'O>> iﬁ the presence of
boundaries and in the absence of any boundaries.- This is trivially
accomplished by subtracting the ordinary Minkowéki piece (n = 0)
from (6.6), |

In the conformally coupled choice (753: é)), the result is

(6.7)

Tt ‘ ‘
LolTH"0) = fqmgaidiag (-1,-3;1 1)

Notice that the energy density is constant between the plates.
Except for a factor of % due to the scalar field having half the
number of degrees of freedom of the electromagnetic field, this
will integrate to give exactly Casimir's result for the total
energy .. For the minimally coupled choice (?:O) . (6.7)

will have an additional term

P . +2)
L'8CJ | SU/\H(/TT C? : >

—

d.'aj (-1, 0,1, 1) (6.8) H

Notice in particular that the energy density is not constant

between the plates. In fact, it diverges as the plate is approached

= a .
(x = + 5). Originally + this divergence was considered to be

a good reason for choosing the conformal stress tensor over the

minimal one. However; it has been shown (Deutsch & Candelas) that such
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divergences near boundaries are generic even for the conformal
stress tensar unless special symmetries (such as the flatness of
the plates) are present, One can see how these divergences arise,
The Green's function (6.5) diverges if x?' approachas x. However,
the contribution of this divergence to the stress tensor is
subtracted off in the renormalization = procedure. But when x is
on the boundary, it is also possible for the mirror image of x' to
approach x » creating a divergence in the n = +1 terms of (6.6)
These divergences are not subtracted off in the renormalization
procedufe. It turns out that for the conformal stress tensor the
Green's function terms from an odd number of reflections through a
flat boundary do not contribute and so thege divergences do not
arise., In most other circumstances they do arise, The problem is
really due to the imposition of perfect conductor boundary conditions.’
In physical situations boundaries will be tranéparent to waves
whose wavelengths are small compared to the interatomic spacing
in the plates. Thus a natural cut-off will be introduced. However,
if the interatomic spacing is small compared to the spacing
between the plates (or whatever other natural length scale is present
in the problem under consideration ), then, while the stress tensor
will not actually become infinite near a boundary, it can become
very large. This is a real physical effect which must not be
thrown away.

As another example, consider two plates which come together
to form a right angle. The Green's function app:opriate to

Dirichlet boundary conditions will have 4 terms: the original
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Minkowski piece (6.5), the two mirror image terms each formed

from a single reflection in one of the plates, and the mirror

image term formed from a double reflection—first in one plate and
_then in the other. Again, renormalization throws away the original

| Minkowski piece, The conformal stress tensor dqes not have contri-
butions from the two single reflection terms and therefore is finite
on the plates. However, it does have contributions from the double
reflection. This image can approach the cotner where the plates meet
and therefore the(perfect conductor, conform6¥)5tress tensor.does
diverge there. The minimal stress tensor has the expected divergences
on both the plates and in the corner.

Rotating;poundariesy

The simplest example of rotating boundaries is an infinitely
loﬁg circular cylinder rotating around its long central axis.
However, in this case, bbth the boundary and the boundary conditions
are invariant under rotation, There is no way to tell the vacuum
that the boundary is rotating! Indeed, detailed calculation shows
that there is no difference in the stress tensor between a rotating
and nonrotating cylinder.(Both of these do, of course, contain a
static Casmir piece.)

One way to make the vacuum sénse the rotation of the
boﬁndary is to make the cross-section of the cylinder square instead
of round. Then the corners will "push" the vacuum around. It is
impossible toAsolve the rotating image problem exactly, but a
perturbation expansion in powers of the angular velocity 1:2
can be made (perturbing around the Greent!s function for a nonrotating

square cylinder). To first order in the angular velocity, only the




momentum density terms in the stress tensor receive a correction
over and above the static Casimir piece of the nonrotating square
cylinder. In figure 12, this momentum density is plotted as a
vector. (Details of this messy calculation can be found in
(Manogue) .)

The momentum density is diverging near the boundaries even
for the conformal stress tensor. This is because the boundaries
are curved in a space-time sense.

Since the energy density for a nonrotating square cylinder
turns out to be negative, the velocity density describes rotation

counter to the rotation of the box. But negative energy density is

like negative mass; if you push on it, it moves back toward you.
So the vacuum really does rotate the opposite way from the cyiinder.
(An interesting historical aside: soon after Casimir’s
result, it was suggested that a stable elecfrop could be formed as
a spherical shell using the attractive Casimir force to balance the
repulsive fofce due'té concentration of the pegative charge. The
exact balancing of these two forces would predict a radius for the
electron. Uhfortunately,Athe Casimir energy inside a sphere is
positive resulting in a repulsive Casimir force,ASO such an electron
cannot be spherical., But the energy density inside a square cylinder
is negative, maybe electrons are really square!)
Notic¢ that the motion of the vacuum is not circular. 1In
fact, for Neumann boundary conditions (i.e. the first derivative of
QD is zero on the boundary), this effect is even more pronounced,

(see figure 13,) There are actual whirlpoolsfin,this case, Can one

ascribe a "viscosity" to the vacuum? Are we returning to an "ether"?
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'Lécture 7: The Trousers Problem

In this lecture we will consider the massless scalar wave
equation propagating on a two dimensional spacetime whose spatial
cross sections change topology, i.e. at early times the spacetime
will be a flat, two dimensional cylinder with circumference :)7\.
After some time, this cylinder splits into two disjoint cylinders,
each with circumference ;\ . (See figure 14.) The spacetime

looks like an inverted pair of trousers.

At early times and late times the cylinders can be chosen

to be flat and the wave equation is just the usual one

(— étz ¥ sz) @ =0 (7.1)

However, if we t§ke the region where the topology change occurs
' ?o be smooth, then there must be a coordinate patch at the crotch of
the trousers which is locally Euclidean whereas the rest of the
i spacetime is locally Lorentzian, The metric changes signature.,
Changing frbm Lorentzian to Euclidean signature changes the sign of
the determinant of the metric. If the metric is real, the determinant
must pass through zero. Otherwise the determinant takes on complex
values. In either case, the interpretation of the wave equation is
unclear. To avoid these problems we will shrink the Euclideaﬁ patch
to a single extremely singular point and then remove this point from
the spacetime. The resulting manifold is Lorentzian everywhere and

may be chosen to be flat everywhere so that (7.1) holds throughout,

We are now left with the problem of specifying what happens to
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Figure 14: The tfousers épacetime. The area enclosed by

the dotted line is a Euclidean patch. Everywhere
else the spacetime is Lorentzian.
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solutions of (7.1) when they reach the singularity. It must be

emphasized that the existing laws of physics can not handle this
situation, We are inventing totally new physics. A warning to
those interested in string theory.: The situation considered here is
analogous to string interactions. The problems discussed here are
aVoided in string theory by pretending that the surface is Euclidean,
This only avoids the problems by refusinglto consider them.

Howevgr, at early and at late times the existing laws of
physics do hold and we can write down a complete orthonormal set of
solutions of (7.1) at each of these times, At early times, in the

trunk, the solutions, called in or trunk modes, are

u:k(i‘x -t) o ‘J.K(i' X -"ﬂ
uk = NK e . ul{ == NK e
(7.2)
o Bt
where PJK ,<?<I B are normalization constants and + refer
to right and left moving modes respectively. For K= %lT ) n=..2...

all these modes are periodic. Unlike the case of unbounded

Minkowski space, on the cylinder the constant mode and the mode

proportional to t have finite Klein Gordon product with each other (and
X

are orthogonal to the LJK and ng ). so they must be

included in the complete set of modes. The field CZ> can be

expanded as a sum over these solutions

CD = g (Oxuk + a:u:> ¥ id*Pﬁi (7.3)
K ,

and the in vacuum is defined by



Uy IO.',—,> = 0= Pl 0D (7.4)

(The correct gquantization of the operators q and p will be
discussed at the end of the lecture)
At late times the two legs are completely independent so

that (25 can be expanded using out or leg modes as

t % LT i
@ = g (QpLuJL* Ao U * AppUgp* O-Peu19> (7.5)

+ 2,00 BB T * 2% * FrPpet
where the subscript L refers to modes which are analogous to (7.2)

dmiT
A

periodicity condition) and which are zero in the right leg. The

in the left leg (with k replaced by ,?==

to satisfy the

subscript R is similar, interchanging right and left. The out

vacuum is defined by

Ay {Oou4> = O.OQ{ OOu+> =0=f (0,7 = fo ,OND”‘E’)

We are ultimately interested in calculating the vacuum

expectation value

(O«nl _I—;ﬁvl O,~,\> ( 7.7)

~ the stress tensor at late times in the early time vacuum. If this
turns out to be finite everywhere, then only a finite number of
particles are created during the topology change. If it turns out
to be locally infinite, with finite integral over a spatial slice,
then one might argue that the - infinity is due to the artificial

shrinking of the singularity to a single point. A suitably
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smoothed out version might then be finite everywhere. If, however,
even the spatial integfal of (7,7) is infinite, then an infinite
number of particles are produced, requifing an infinite amount of
energy, and the topological change will never take place.

In order to calculate (7.7), we first need to choose a
propagation rule which propagates the trunk modes up into the legs
and propagates the leg modes down into the trunk. We would
certainly like such an propagation rule to preserve the orthonormality
of the individual sets of modes. This problem was first considered
in (Anderson & DeWitt). Let us examine their propagation rule,
called the shadow rule, Two basic principles underlie the shadow
rule, The first principle is inherent in all physically realistic
propagation rules : Sipce we are considering a massless
scalar field, information about the occurrence of the tdpology change
cén only propagate along the light cones leading out from the
singulérity. Until those light cones are reached, modes will
propagate as usual, governed by (7.1). The second principle, which
~amounts to a choice of propagation rule, is that right moving solutions
will continue to be only right moving and left moving solutions,

left moving. No part of a solution is "reflected" off the singularity.

Let us consider some examples of the shadow rule,
The trousers can be cut apart and unrolled. (See figure 15.) Since the

trunk mode

. lk(x—t\

U, =N € (7.8)
is right moving, it will continue to be right moving in the 1legs.
The solution will continue to look like (7.8) throughout the

triangular region OAB until it hits the light cone from the singularity




N Q)l((k"t)
= VK

Figure 15: The unrolled trousers showing "barber pole" stripes.
appropriate to a right moving trunk mode with_n odd.
Identify the line segments OC = AB, OD = FE, AH = FG.



But we know that we must indentify the side AB 6x=70\ with

(x = 0), so the solution must be continuous across this join, i.e.

NK ejk(h-t\z U. (o, t) e

‘all that - . If n is even, then we see that the mode

yP

ks like (7,.,8) everywhere. It does not see the singularity. However,

n n is odd, then near OC the solution must look like

4 R(x-t) (7.10)

uK:—'NKe

itinuing this analysis, keeping the mode right moving and matching
» solution across the cut in the trouser leg when necessary, we

» that the complete solution for n odd will form "barbe&r pole"
ripes up the trouser leg, alternating sign with every stripe,

:re will be identical Etripes in the left leg. (See Figure 15.)

't moving modes will form stripes which circle the legs in the
osite directioﬁ.

Using the theta-~function defined by

O  (x<o) |
@(x) == % (X-—-o) (7.11)
1 (x >0)

is possible to write down an expression for (7.8) in the legs.

Ax ::[\/K g(—n\ﬂe" ldb”[@(t-xﬂw?\ tA) - O (,5 ~AX - n]ﬂ
right leé

,{K‘: [\/g ? (—-Q’\ eﬂibtfe(t_x‘n)r)q-!- & (t-- X n)Ef

left leg

(7.12)



In a similar manner we can construct the propagation of

the leg modes back into the trunk towards early times. The solutio

N e"‘j("‘t) right leg
U R - (7413)

/4
(:) left leg

looks like

N, £ e 6N fplix g - lt-x 2]
uﬂR B -pﬂ:o

(7.14)
| 2m Tl

in the trunk. (See Figure 16 ,) Because ,0 = _éi%_OAJZHliS always

even, so there is no sign flip in this case. However, (7.13)

is zero in the left leg, The barber pole stripes here alternate

between zero and + N.O e‘.’? (x‘t\

Notice that since these solutions are purely right or

left moving, they are trivially solutions of (7,1) everywhere excep®

at the singularity.
As in the previous lectures, we obtain an expression for
e by variation of the action with respect ﬁo :ijjv .
_1’70\9 is quadratic in derivatives of QD , Anderson and
DeWitt argue that because of the theta functions in (7.12) and
(7.14), the first derivatives of (1) will have a term proportion
to the delta function, Then, generically, '—r1lfp will have
—uV .

terms which are quadratic. in delta functions, i.e, T 25 oy

only locally infinite, its spatial integral is infinite as well,

i e i



Figure 16: The unrolled trousers showing "barber pole" stripes
appropriate to a right moving leg mode which is
nonzero in the right legq.
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what is not clear from their discussion is whether or not it is
possible for the coefficient of this delta squared term to be zero,
Let us examine this possibility in more detail,

To calculate (7,7), we first expand the d) ¥s in —I-—,UD
as in (7,5)., We then use Bogoliubov transformations to write the
out operators in terms of in operators. Bogoliubov transformations
are just Klein-Gordon products of in modes with out modes, These
would be straighfforward to calculate except that for the shadow rull
the answer is different depending on whether we take the spaéelike
hypersurface to be before or after the singularity. What can be done€
about this undesirable situation?

It turns out that there are two extra solutions of the wave

equation

[®) in trunk

Z [@(t-x-'f\)\\ *9(i*><*n?t"7tD | invright leg (7.1“

o
Il

z C-e[i*X~n7\‘>\\“9(i*X~n7\\] in left leg
and i |
09 [ O(t-x +2nA+X)= O (£ -x+2nX)
{ ~B(t+x +2rA)*+ 6 (#+x +2mA-A) | in trunk
J= nC:DO | ~ in right leg (7.8
O in left. leg
(See Figure 17) b: is orthogonal to all of the trunk modes

and orthogonal to itself so the orthonormality of the trunk modGSf



v

The extra leg mode

Figure 17b:

Figure 17a: The extra trunk mode 2%-
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preserved if an arbitrary amount of B: is added to each one, i.e
U, U+ A (7.17)

where /}K is an arbitrary parameter. Similarly Z/ is orthogon
to all of the leg modes, so orthonormality of the leg modes is

preserved under

Uj > U, *+ H!J (7.18)

Since Bogoliubov transformations of trunk modes with 5, and lég
modes with ZE also depend on whether the hypersurface of
integration occurs before or after the singularity, it might be
possible to choose qu and /)ﬂ so that the total Bogoliubov J
transformation is independent of hypersurface, Surprisingly (there
are more equations than parameters), it turns out that not only
can this be done, but there is one leftover free parameter A,
Preliminary calculations nevertheless indicate that there
is no choice of the free parameter A which eliminates the delta
squared terms in _Tﬂj[D « However, the preliminary calculationsgy
yield three terms, each infinite, which must be handled very &
carefully. One of these looks like the Minkokski infinity everywhe
except on the light cone, one is the delta squared piece, and one

looks like minus the Minkowski infinity everywhere, (This last

e
piece arises from the renormalization procedure —normal ordering
, 4
with respect to the out operators) Thus we see that a delta

squared term is not only expected, it is desirable as long as it
contributes just the expected Minkowski infinity which is missing

from the first term., Unfortunately, the term proportional to A

PR

appears to be even more divergent than the Minkowski ismfinity.

o sreiaamion

|3
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There are other modes besides 2{ and b’ which might

Pe These look like the delta function (or derivatives of the

ta function); flashes arising from the singularity and propagating

ng the light cone, These may affect the calculatioén of (7,7) in
ways, First they may represent extra freedom in the propagation
e (in a manner analogous to the above discussion of Zg and 5
reby changing the Bogoliubov‘transformations. Second; they may,
ether with a: and .4 naturally form canonically
jugate pairs of modes which should be included in the expansions
@ 2 (7¢3) and (7.8). We are now pursuing these two possi~
ities,

Now a word about the zero frequency modes © and Ft .

ce they are real, their norms are zero; but their Klein Gordon

Yo

duct with each other is nonzero, Demanding the commutation relation

[@66), ) =2500x) o

oses canonical commutation relations on g and p, the operators

ociated with © and ﬁi’ 'respectively, i.ee

EQL / P] = 1 | (7420)

iving the Hamiltonian H from the action in the usual way, we see
1.2 - :
t H has a term 5P . Also demanding H'O> =0 s We can see

t we must have (since p and g are Hermitian)

plo> =0 =<olp ‘(.7..21)

= O

s ki
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The conditions (7,20) and (7.,21) appear to be inconsistent,

On the one hand, using (7.20)
(Olfi,93|°>:(0lilo> =.lolo> o  (7.22)

on the other hand, using (7.21)
©llg,p]loy =<olgp-PLlo> =0 (.3

This apparent inconsistency is related to the fact that g is not-
a well defined operator on the space of eigenfunctions of p,

A correct resolution of this dilemna shows that quantities like

(OI %z /0> | | (7.24)

are divérgent. It is interesting to note that while such terms do
not appear in the calculation of (Ofn l—[—oﬁv O,D which we

- have been considering, they do appear in the time reversed p; >blem
<:C%“4|—T;:u;){c:%u{\:> " . It is possible that - these divergences
could cancel the delta squared terms encountered above. If this
turns out to be true, then topology change might be possible in»only or]
directidn. A single circle could not break up into two; but two
circles could join into one, This is reminiscent of the classical
black hole theorem which says that a black hole cénnot break up into

two black holes, but two can come together to form one,
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