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Participants of the Second Matscience Conference on Number Theory held
at Ootacamund (August, 1980)



FOREWORD

This MATSCIENCEliEEQRT presents the Proceedings of the
'Second Conference on Number Theory'! conducted by Matscience at
the Hindustan Photo Films Club House, Ootacamund, during August
3=7, 1980. This conference is the 38th in the series of conferences

conducted by Matscience on a wide range of topics in mathematical
sciences, |

The conference was inaugurated by Mr.P+.R+.S.Rao, the Managing
Director, Hindustan Photo Films Manafacturing Company Limited,
and Professor 4lladi Ramakrishnan, Director, Matscience, released
the Matscience Report on the Proceedings of the First Conference
on Number Theory held at Mysore in August 1979.

Professor K,Ramachandra of the Tata Institute of Fundamental
Research, Bombay and Dr.Krishnaswami Alladi of the Department of
Mathematics, University of Michigan 4nn .irbor, U.Se.d. were the
principal speakers at the conferences Besides the active research
workers in the field of number theory from various universities
and research instiﬁutions, post-graduate teachers from colleges
also participateds The organisers wish to thank all the partici-
pants for their enthusiastic cooperation in making the conference
a successs The present report contains the papers in H.umber Theory
contributed by the participants arranged according to the alphabe~
tical order of the names of the authors except for the problems

and some papers at the end which are of an interdisciplinary
nature. ‘

We are grateful to Mr.P.R.S8.Rao, the Managing Director,
HeP.F. Ootacamund and his colleagues for providing the conference
hall, accommodation for the participants and all other necessary
facilities and the kind hospitality shown to use We wish to thank
Mr.N.S.Sampath,MnéRhiayafaman and other supporting staff of -..
our Institute for help rendered in organising the conference and
bringing out this report.

R JAGANNATHAN
MATSCIENCE
Madras-600 020

27th May 198l




-IRRATIONALITY ESTIMATES USING LEGENDRE POLYNOMTIALS
Krishnaswami Alladi
Department of Mathematics, University of Michigan
Ann Arbor, Michigan 48109, USA.
L -

1. _ INTRODUCTION

. It is generally very difficult to establish the irrationa-
}lity of a given number, Therefofe considerable interest remains
in the subject even though its origines go back to Greek antiquity.
Over the years several inéeneious methods have been developed,

yety one almost always ends up using the following irrationality
critirion due to Dirichlet (see [ 14 | , po 44):

A necessary and sufficient condition for a real number 6
to be irrational is that there exist integer sequences g pn%

and _%ﬂ qn % such that

0 { QG @ = Py ‘ = 0 asn > ® & (1L 1)

To estéblish this criterion Dirichlet used his famous
pilgeon~hole principle. Thus the criterion is of an existential
nature, and in general there is no hint to construct the
sequences p, and g, . | |

For certain special humbers such as Vﬂg_ and e the
construction of these sequences is simple., For instancey by
observing that O <(;J5~‘~ 1L 1 we see that the binomial
theorem yilelds

0((\[2— -DH" = qnﬁ~pn—?0, as I = 00,



In the case of

we set
(1.2)

and observe that

O< e - pn=n‘.> O% - 4 -I;%'j'_— >0y as n =00
' (1.3)
The proof of the irrationality of e given in (1e3) makes
use of the special divisibility properties of the factorial
sequence (see 1.2)), and the fact that the series for e con-
verges very rapidly. If either one of these features fail to
hold the proof could become much more cdmplicated or even break

down. For instance, if we modify the series for e very slightly

and consider

@
1 .
o L
0 Me+1L 7

we get a number whose irrationality is yet to be confirmed -~ and
perhaps will not be for some time | Even for a simple series like
00
L
m=lm
the construction of the p  and g, is much more complicated,

and does not even faintly resemble (l.2), because this serles

converges much more slowly,




' For s jo i let 'Zg (s) (Riemann zeta function) be

defined by

00 1 _

G(s) = I ==, | (L9

n=1 n
By a véry special method ‘involving the transcendence of
the numbers - X(2n), n = 1,2,3,... were shown to be irrational
(see {:l:] ) 3 but no one knows whether the numbers 75 (2n+1),
n = 1,2,s.s are all irrational, Ih 1978, R«Apéry, a French
mathematicién suiprised everyone by producing a truly remarkable
proof of the irrationality of Y5(38) (see [ 167 ), and further
light on his result will be shed in Section 9.

The proof due to apery created renewed interest in -

~irrationality and over the‘past three years gave rise to detalled

investigation, - Some of these investigations have revealed the

dominant role played by 'Legendre polynomials'

. n
0 -y S P et &

inASuch proofs, and alsd led to improvements of several
earlier results. This article will review some of these results
due to the author [ﬁlt] s the author in collaboration with
Robinson [:2] , Beukers [6] , {7] , Bombieri [8] , and
Choodnovsky [ 971, [16_1, [llj and ‘:12] in the context of
several cla551cal resultss

Besides the proof the irrationality of a number 6 4 1t

is of considerable interest, for its own sake or for the purpose



of applications, to derive an irrationality estimme’for 8 o
More prefisely, one would like to obtain lower bounds of the
type

\e - g‘-\ > bio

for all rationals p/q , where %3 depends on 0 o It is in

this sense that the Legendre polynomials Pn(x) recently played
an important role and improved substantially on irrationality
estimates for certain humbers, provided by various classical

approaches, - ;

2. Irrationality type and measure,

-We will be considering two kinds of irrationality estimates.,
An irrational 6 is_of type at most T s (or j; T4 if given
5~:§<): y there exists qo( € ) 4 such that for all rgtionéls
p/q with qu > a,( €) s we have |

oD TS

|6 - q[>—-———-—q = (2.1
If no such T exists, we say © is of infinite type. We say
that 6 1s of type T , if it is of type f; T, but is not
of type & T for any T*+ T, It is well known (see [14) ,
pe42) that all irrationals are type 2 2, Therefore, if an |
irrational is of type L2, it is of type 2. 4 |

Soﬁétimes we require an effective version of (2,1), for |

the purpose of applications, More precisely we want an inequality




o -5>F - e
valid for all rationals p/q , where i in (242) 1s either
sestant (1L 8 45 o TPHAS AT % 1R Ttk
types  If W '.LS finite in (2.2) we say it is an :erationality
measure for 6 .

How does one arrive at inequalities like (2,1) and (2.2) ?
We ‘state two lemmas below, the first as in [23 s and second
as in [lj o |
Lemma le Iv.eti K be either the rationals or an imaginary quadratic
fielde Let R be the ring of integers inX . Let 8 be a
complbx< number, | _
(a) Suppose there exists Q >> 1 and E > 1, and pﬁ,qn ER

satl sfyihg

1+o( L o | E PO
\ Cln\ S Qn( +o( 1)) , l .8 = P, \é B n@.-;;ggl)) .
and- - |
Prnel ¥ WPrel (2.4)
Then ¢ £ K and given ¢ > O there exist by( 5. wiuch Bhes

if asb € R and lb 1 - bO(A ¢ ) then

| _.g'. l - = - ’ ’2.
le =% P SEE 0 C log(QE) /log B.  (245)




G

Thus (2,8) and (249) imply that

In particular 6 is of type at most T .« - |
(b) Suppose there exist Q@ > 1, E> 1, k; > 0, > /QOZ

and Pps 9y € R . Satisfying (244) and
lqn\ U { 40 = Py ) < Q’CE?n ‘ (245)

Then for any a,b € R we have

where

log 2b
. é"'2*'log E)

= (log QE) /log E and ¢ = 21{0 Q . ‘(2-'?)

In particular, 6 has irrationality measure [ o
We only prove part (b) of Lemma 1,

Let m be.the least positive integer such that

’ -] » ,
Ay € =Py Z 2b for all m' > m, From (2,6) we deduce
that ' |
m< log (2) ol ) + 1. (2.9
Choose n=m or m+ 1 so that ag, =% bpn.' Then \
P 1
a n a —
oo o =81 2w L1 -2] - 9"‘“)%: - 3po] =
' (249)

a 1
e -~ — > emsreeerenpiane .__.,__._.______,l n = E—-—
\ : b\"2}b1 qn> 2k, Qm{-l, w

as claimed,




7

Unless the Ppsd, 2are given in a certaln convenient form

it is usually cumbersome to check (2.4). Thus we state another
lemma which does not require the verification of (2.4),_provided
the logarithms of the qugntitiés s qn\ ,\pn\ and \ an—pns
can be estimatedasymptotically.
Lemma'ze‘ Lgt 6 be a real number. Suppose pn/qn is a
rational sequence satisfying‘ |

(1 94y = @

(ii) 1*0(1)'

qﬂ}l = 4y

(iii) TFor some N €.(0,1) we have

» ; Py 1
0 # ( ® “‘c‘['\ = TN (o(D)
n Ay
Then 6 is irrational of type at most 1 + % = T o

‘Essentially, conditions (i), (Ii) and (iii)'enable us
to show that given pn/qn with q, large, there exists pm/qm

such that’ _ » '
m = q%fO(lb.and Ppdn # APy

‘This is a substitute fér (244) , and Lemma 2 can be proved in a

manner similar to-Lemma 1, We omit the details énd refer the

reader to [:i] ° Iﬁ/oﬁher words, given the sequence pn/qn s

one can extract a subseqﬁence satisfying (244)« The mere

existence of this subsequence suffices, and we need not concern



N

ourselves with the construction of this subsequences Thus
Kemma 2 is in certain cases more useful,

Ipequaiities like (2.1) and (2.2) have 1ots of appli-
cations. Liouville was the first to use them, when he deduced
the existence of transoendental numbers by showing that all
algebraic numbefs are of finite type. . More precisely,'if of

is algebraic, then it is of type < deg o« = T o Thus

m :

{= X ===

v n=1 10™* ;

is transcendental since it is of infinite type. This fundamental
observation of Liouville has undergone several improvements,

some of which are considered in the next section,

3., The Thue Eguation.

 In 1909 4, Thue obtained the first significant improvement
of Liouville's theorem, by showing that‘eVery,algebraic number o
of deg £ = n = 3 1is of type £ n, More precisely, he showed
that such an « 1is of type é;.% + 1, From this he deduced that
if P(x,y) 1s an irreducible binary fdrm of degree n > 3, then

for any integer m the Diophantine Equation (Thue's equation)

F(X,y) = m - 02D
can have only a finite number of solutions in integers x and

¥ o - For, we can rewrite (3.,1) as




a(X~{1y) oo (x=Ly) = m, (32)

where the o are algebraic, Thus if (341) had an infinite
number of solutions in integers x and ¥y s then at least one of
the di will have infinitely many rational approximations x/y

satisfying
X | 1
S Kl o

and this violates Thue's theorem,
Over the decades this result of Thus unﬁerweht several

improvements and Roth in 1955 finally established the deep result

that all glgebraic irrational numbers are of type 2. Thus,

an irrational number of ﬁype.:§ 2 is transcendental. The main
difficulty with the appiication of the Roth and Thue theorems
1s that they are non-effective, If one wants for instance to
effectively find all the solutions to (3.1), it is desirable to
bbtain effective versions of their inequalities. Therefore

it is of considerable interest to derive irest:

L (see 2,2 with pu <: deg « 4 by simple methods, even if the
values [ are larger than the irrationality types provided by
Thue and Roth. Baker [ 3] , [4 7 in 1964 derived such measures
for certain algebraic numbers, byvthe use of hypefgeometric

functions, In particular he showed that

-6

- 3> Ao




and. thus deduced that the equation

has all its integer solutions satisfying

T 5 .23
%X(p\,wt)<((&m_,m .
.. ©, .
Similar to Baker's result for 2 and other algebralc

numbers, we will derive in Section 7 using an even simpler

~method involving Legendre polynomigls, irrationality measures

u  deg o , for certain algebraic numbers o« o 4s far as I
know, this is the simplest way to obtain such non-trivial

results for specific algebraic numbers,

44" The Classical Contin ued Fraction Method.

One of the first methods employed in proofs of irrationa-
lity was the continued fraction approach. To be more precise,
this method enabled one to prove the irrationality of ceftain
numbers & which are of the form f(p/q), Psdy € Z 4 where
f 1is a function possessing a convergent continued fnaction

expansion, For instance if we consider +the Ricatti differential

equation
Y o= QuY' + Py (y=1(®) o (4D

where Qa(x); Pl(x) e =mix] , and iterate (4,1) without bother-

ing about convergence, we get
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Pl |

, Q + ;;2/(92”‘?3’/( Quts v s

where the Qn and p, are defined recursively by
N ,
Qn-l = le s P = B1'3- (4e3)

From (4e2) ahd (443) it follows that if the expansion is con-
vergent at x = p/q , then (4.2) yields a sequenée of rational
approximations to f(p/q) = 8. One would hope that these
approximations are 'good enough' to establish the irrationalilty
of @ . |
There is however a major drawback, The'nth~00nvergent
pﬁ/qn to (4.2) 1is such that p, ad g, are rationals,
and not necessarily integers, Thus if we clear these rationals.
of their denpminators the quality of the approximation might’
diminishe In faét it might diminish to such an extent, that
the new-approximatioﬁs thus generated may not satisfy Dirichlet’s
criterion (1l.1), and thus the irrationality proof might break
downe At any rate, even if the‘proof of irrationality survives,
the irrationality estimate derived will not in géneral be good.'
Historically, thié method was used to establish the
irrationality of certain classes o? numbers, but the irrationality
types and measures fhus derived were often much weaker than

what one would expect is the truth.
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In 1761, Lambert confirmed the irrationality of ™ by
this method, and later in 1765 established similar results for

tan x , e*

(and sonsequently log x), for suitable rational X
The irrationality méésﬁfes turned out to be poor.

The first good irrationality measure for 7 was due to
Mahler who shows that pu £ 42, This result has been improved
since then, and Apery's recent wbrk showé that w dis irrational
of type £ 23.71 eeo &

The irrationality measures we discuss here by the Legendre
Polynomial method, are very good, considering the simplicity of
approach, In fact, in certain cases, the estimates are the best

known to date. Without much further ado, we describe the procedure

by considering first the exponential function, and the number = .

5. The BExponential Function and 1 .

We begin by deriving as in ljl:] a result for the exponen-
tial function.

Theorem 1, If s is rational and # 0,-then e° is irrational

of type 2 ,
Proof, First, consider
1 s
= e x%ax = (=D7zl < 1~-s+ s” - + +£:;l§5£ eS-1)
ar --'b X = Sr+l [ "210" s e T ey ]
5 .

i1

("l)r'llres -~ Vr, r = 091922..‘0 s » (501)
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Next, let s = p/q , where p,q € z. Then (5,1) and (1.5)

show that
1

p™a g p(Re’Fax = qe® -~ p , qp, € e (5.9

0

An n-fold integration by parts in (86.2) yields

1 1

: n ~
S pn(x) e"Xax = -p--n o -13:?- S esxxn(l-x) Dax o (5,3)
o @ 0.

If we combine (5,2) and (5.3) we arrive at

5 GSZmi
0 # ‘ q.e” = p \<Z -~B — 0 as n -—=> o (5.4
n = n_,
n ( 4q) e -
and that proves the irrationality of e° .
To deduce the irrationality type, we note thét (561) and

(5¢2) show that

ol K q, << 4% M (545)
On the other hand from (5,2) and (5,3) , we get

S

g e - p, = (nl)"l+°(l),

as n o @, (5.6)

because for a continuous function f , we have ||f||, — || £]] .’

as N = 0. 80, (5¢5) and (5.6) shows that the Ppsdp

satisfy the conditions of Lemma 2 with A = 1, and therefore e”

is of type 2.
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Gorollary 1. If s is rational and # 1/ then log s is
irrational. ' f ' g
Next we prove

Theorem 2. ﬂ2 is irrational. .

Proof. (Beukers [7] ) %
For a positive integer n let
L
= sin wt
I = S Do, () dta | (5.7

0

& 2n-fold integratidn by parts of I, yields

1 .
I = (=% . & S sin Tt o t )R
o =GR e ! (1-t) “"dt.

Therefore. _
: - 2n 1 (5.9)
of{:nf { B T | .8
From (5.,7) we see that In is 3 linear combination of terms like
1 » _
g t"sinmtat, 0<mn < on, (5.9)
S

af
A simple calculation£$5.9) shows that

s |
I =2 () (5410)

where Q (X) € Z [%:} is of degree & % , Therefore if

w2 = p/q is rational, then (5.10) shows that




BRIl e/ o i e i ¢ o g o SR AL N P &
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\1,} > 1w ” (5.11)
because In # 0. Estimates (5.8) and (5.11) are incompgtible

if n 1is large, and so we deduce that e is irrational.

Gorollary 2. ¥ 4s irrational,

This proof unfortunately does nct yield an irrationality
type for w2 or T 4 Note that while Theoreml yields a good

irrationality type for e®

, we do not derive any such estimate
for the logarithm in Corollary 1, by simply viewing the logarithm

as the inverse of the exponential function. It is thus desirable

. to have a method which directly.constructs the p, 'and q, for

the logarithm, and so enables us to obtain'a good irrationality

estimate. This is what we consider nexts

6. Irrationality Estimates for the Logarithm.

For any complex number z let

| 2
«(z) = nmx(‘cri ;E:azm) ‘?B(@ =IMm(}O-ii?:® )>.

We then have the following resulte

Theorem 3. Let K and R be as in Lemma l. ILet rys € R satisfy

(i)‘ -Jsg-z El,oo) Aand ‘(ii) B (-IS:) - \rf. e<1
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Then log(l --E) £ K. 4lso, given £ > O there exist bO(E)

such that for all a,b € R with \b\ 7> byl €) we have

log(l -~ 2 - %}>Tﬁf.-§;g,
where

log(o((}:).r) + 1 _ '
T=T = 1 + S . (6.2)

Log(et(D) ,x™h) -1

In particular log(l - -]S?—) is irrational of type at most Ty o
v ’
To keep the exposition simple we only’prove Theorem 3 for the
case I'ys € i, r { s . For the case of general r and s we refer
to [2] where this problem is considered in detall.,

Sketch of the Proof, For any n € Z and z g [‘l,'oo) we have

1 ,
n ; n k v
xdx ., =l Z_ f
S Toox = I [ lee(ta) « X} ] £6a3)
0 z . |
Let 3
P, (%) dx)
Iz = S Tz (6e4)
0
From (643), (6.4) and (1l.5) we see that
= o1 ' L g1
I(e) = -3 ep(ploel-2) + QP » (645)

where Qn(x) e %EX] is of degree n, X‘ Qn(X) and
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dn Pt l.C.m. El,z,g,.‘l’nl ] (6.6)

in n-fold integration by parts in (6.4) shows that

, . | 64 8)
(1-zx) L ( '

1
_ < 71 X 1-x) Pdx
I (2 = (-2) S
, - 0
By letting z = r/s in (6.5) we see from (648) 4 (665) and (6.6)
that | |
T ,
0 # qnlog(l - ’5) = Pn En) 9,3Pp € z, (659)

where
. ' w1
q, = - (D, p, = r'q (DI, B = (-DZ IR, . (6.10)

From the Prime Number Theorem (see LeVeque [13], Vol,2

p.230-50) it follows that

a_ = et{Iro(D)), (6411)
&lso, note that for O <~Is:< 1 we have
swp  EIE g (D (6.12)

0¢x< 1 1-Tx

Therefore, by reasoning similar to (6.6) we get

. n(1+o(1))
¢ :

B = feyrp (6013)

n

‘0n the other hand, 1t is well known that (see 8zego EI'SJ, p.194)

| .5 _ r n(1+o(1))
P (D = (DT ), | (6.14)

Therefore



¢(6oﬂ$ and (6,15) .

.1 satisfactory asymptotic estimate for E, can be derived from

that of I

18

. - gero((i_)%n(lﬁ—o(l?).

(6.15)
n o

Theorem 3 for 0 { & { 1, rys € Z* , follows from Lemma 2, (6.9),

While proving Theorem 3 for general r and s certain
technical difficulties arise, First, it is not at all clear in
(6.8) that I_# 0 for infinitely many n . This fact can be
established using the orthogonality of p, . Next, the sup norm

type estimate in (6,12) does not indicate the true size of Ee

by establishing that the I_ satisfy a recurrence

n ¢ n

relation and using a theorem of Poinéare on recurrences, The
proof of Theorem 3 can then by completed using Lémma 1, by esta-
blishing (2¢4) by means of a lemma from Padé - &pproiimation
Theory. For all details we refer to [ 21 , for a complete
treatment,

We mention in closing, that an effective version of

Theorem 3 can be formulated (see Théorem 3 Qf'[;Z:})a In this
case one has to calculate upper bounds for q, and B explicitly, .

In particular one can show that for all positive rationals a/by

-1
o .2 2000
log 2 - §{ > L‘béps')?_l

and

| 051+ - —%bﬁ-ﬁi - (m e 2y, (6.6)
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oF £ T:j_’m< by g = 2+ 0o(l), as m = o .

Note finally that as r,s = o satisfying log r/log s—> 0,

we have To. s - 2, Irration'ality estimates of the type provided
’

by Theorem 3 and (6,16) are the best known yet for these logarithms.

7, Irrationality Estimates for kUC-roots.

The method described in Section 6 can be applied to
" 1

P_(x) dx _
I = 2 6 . y (7nl)
n S (lQZX)‘-i/k ’
o :
where §, e are relatively prime integérs and =z ¢ Cl,oo)._

First, the substitution u = 1 - :zx shows that

1

g X0 gy * _ (_1_)154.1 g () (1) j{ 1 - (1~2) +1 - L /% }
(1-zx) /K = j=0 Y S L 1-0 /.

for all positive integers m , 8o, if we set
dn(].{, 9/) = lQCQIll. Ekrﬂ + k - }7/9 m = 192,...,1’1],

we deduce from (7.1) and (7.2) that

e

.
T P (x) & 1-
‘ _ 1 ;
e [ R

o)
where An(x) and Bn(X) e ZZ[\:] are of degree n .

B (2) + &,(2) (743)
(1 - ZX)Q-/k = ,

We need now an estimate on the size of d (k, Q,) s Similar
to that on d, provided by (6.11)., The Prime Number Theorem for

Arithmetic Progressions( (:13] s Vole24 po 256) implies that



(for a Proof see Lemma 1 of {;23 )

‘dn(k,fl) g ef(k)n(l+o(l)), (7e4)
where
k ko4 -
f(k) = _ﬂ) aél '5 s (,705)
' (ayk) =1 |

and (b is Buler'!s function,

An n-fold :Lntegratlon by parts of I yields

R e S v P 1-x)ax (7.6
wlim (3+‘-—_-1)]( S (1-z0) = V/E

If z = -r/s 1is rational, then the sup-norm argument used in the

previous section shows that

Tul= ] - pa/apPietd (7D
On the other hand from (6414), (742), (7.3) and (7.4 it follows
The | | | ' (1+0(1) )
r : = r| _£(%) " ¥
(%<~§ﬂ«\ﬁ\Pg~§mng>é{b§e (- %(m@ |

So, the point is that for =z = ~r/s, one can clear (7.3) of de-

nominators and obtain an expression

_ ) |
| 0 # q (1 + %) /k,pn.—_En,pngneZ-z (7.9)
and use (7.8) and (7.7) to deduce that |

[qn\f Qn(l+o(l)) \En‘ é, E-n( l+o(l)_).

?
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Q = :ef(kgd(~ % ) aad BE = pel(®) 8 ( - gﬁo (7. 10)

4s in the general case of Theorem 1, the non-vanishing of
Py * GPpq follows from Pade 4pproximation Theory, Thus

an irrationélity type for (1 + 'E‘ ) 2

can be derived from (7.9)
by the use of Lemma 1 and this, is given below,
Theorem 4, Let Q , k, ry s be positive integers with

<, ($0) =1 and v s, &lso let |E\ > 1, wnere E

. P . |
is as in (7,10). Then (1 + .15) B/K 5 irrational of type
at most tr,s,k = T where

{ s VTR 2 7

v = . Jlogis(I+Vitr/s)” [ &+ £(k)

‘ +1
log § (s/t) (1 + yT# 179 %§ - £(9) ’

and ﬁ(k) as in (7.5) «

an effective version of.Theorem 4 can be derivéd with a
bit more care. One has for instance to use explicit upper bounds
for dn(k, Q ) instéad of the weaker estimate (7,4), For a de~
-tailed discussion on this effective version and on "qheorem 4
itself, see EZ] ¢

As in Theorém 3, note here also that Tr,s,k —= 2 if
log r/log s —>0, as T'yS —> ® Thus for such r and s one could

have

3T, /_:_.d.eg Z(,(l + -JS?-) ’Q’/kiz K ,
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if kizi 3y This is, as we know, a useful fact in pjiophantine
Equations, For instamce by taking rgl, s=>581 | =1, and
k = 3, we see from Theorem 4 that BVES- is irrational of type
12,6763 &+ The effective version of Theorem 4 derived in [—%]
shows that

S 10—20

- fb {2,9

%7 - ¢

for all rationals a/b . Therefore, all the integdr solutions of

the équation
. 3 '
Xx =17 =m, meZ
- satisfy
’ , 2
max (||, |y] ) £ 3(m10"H W0,

The method underlying Theorem 4 differs significantly from
the earlier approach of Baker »[:3:], [4;1 who used hypergeo-
metric functions, or the recenﬁ observations by Beukers and
Choodnovsky -[Lo} « I confess however, that Theorem 4 yields
weaker irrationality types than these other more advanced
methods. &t any réte,fto my knowledge, the method discussed
in this section is the simplest one known so far to derive

non=trivial irrationality types for special algebraic numbers,
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9, Irrationality of © (2) and 5 (3)

In June 1978, R.apery produced remarkable proofs of the

irrationality of

o0 - 2 (e0)

~ 1 i - 1
(2 = I =5 = Lad B = I -

n=1 n 6 ni=l n3

His proof implicitly used Legendre Polynomiéls, but this fact was
unnoticed until Beukers observed it, Beukers then rewrote the
linear forms of Agery for’ ¥(2) and 5(3) in terms of Legendre
Polynomials, and thus simplified the proof (see [6] ).

The key observation is that for positive integers r and s

r s
S *~ -ng | | (8+1)

is rational with denominator dividing df, if 1 > s, and is equal

to

!
(F) = I oo = wos = o
5 = | 12

if 1 = s, Thus

1 %

p,(x) (1-y)“dxdy
S 1 - xy == 0,5(2) = ppy Pyy € Z
5 .

(8,2)

The non~vanishing of the expression in (8 2) and an upper bound

O e

for it can be easily derived by an n-~fold integration by parts

with respect to x which yields



0 # 452 -3, = W“ “"?l ety (8:3)
~ 5n
PRI

Note that (6.1l) implies that

di ( -5[:—551 )5n = §e<»~——ﬁgl )5 % nld+olD) o,

as N _=, @. (8e4)
The irrationality of 7o (é) follows from (8.3) and(8.4). _ | ‘

The above method also yields an irrationality type é_ 11,85
for ¥ (2). The important thing is that this proof derives the
irrationality of & () without. appeal to the special properties
6L T, ' ‘

The irrationality of 7:’;(3) is deduc.ed from the above proof

for 7 (2) by means of 'trick'. The basic observation is that

d. @ 1 . .
S S R

Thus the integral representation for ,t; (3) can be guessed from
(8,1) by differentiating with respect to xy by taking r = s.

In particular ore starts with

| 1 1 11
' » T8
I= - S S log xy.X y> axdy _. S g S Xy~ dxdydz
| T -xy 1-(1-xy) 2
0O © 0 0 O
and notes that I dis rational with demominator di if r» >

and

S,‘
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1 1
1 = 8( %(3) -l-—gé--—é-:?-...——"g),lfr—S.
Thus ,

1 1
3 pn(x)pn(yﬁdxdydz
dnS S S T - (L=xyz Y G (3 = ppabpdy € Z

(845)
0 0 0

The irrationality of Z3 (3) follows from (845), using integration
by parts n-times with respect to x and y. But here a clever

substitution

1=z
Vo= I ISy z

is required. We do not want to elaborate on this, sir;ce we will
simply be reproducing the exposifion of Beukers [6] « The only
unfortunate thing is that no one yet knows how to extend this
beautiful proof to get the irrationality of ¥ (8), for
seZ ;s > 4 |

««lﬁery‘s observation that Z‘; (2) = 1r2/6 has irrationality
type é 11,85 yields a uniform upper bound for the irrationality
typé of numbers 'IT/\/T, “He the following observation showss

2 2 ‘
Z 4 2.

\Lc_-é_
. Vi

(]

= \_JI_ -2

kop JE P

Thus for all positive rationals k, m/\k is irrational of type
L 2(11le85) = 23,70 . | (8.6)

In particular this yields an irrationality type for w which is

superioi- £o Mahler?ds estimate,



26

O Compar:l. sons

Theorem 1 y:Lelds the best 1rratlonahty type for those
Logarithms it treats. Choodnovsky [9] independently derived
this result and later a whole lot moTe ! Bombieri [81 also
proved Theorem 3, and other ihteresting results by the use of
differential equations.. We shall touch upon their ideas in
Section 10 and Section 11,

Prév1ously, the best known result for logarlthm%nocf 1&3e01al

numbers were due to Baker | 5] s Who used hypergeometrlc/to derive

the Lollow:Lng. Ifme ﬁ' X then for all a, beZ

BRELCE 5 -2 ‘27-0-%%—— i . (941)
i b m i |
where .
| 2
Log( 4E1m )
‘31:12055 B2=78Ildﬁm::2 - {2‘ 3 ,foI‘mZB,
m
log( 2)
(m+1)
and : ,
. ) ,
o(1) = 0707, o) =( \12m>“l° 52,

We note that co(m) < (2om) ™3 and

1:1 " < ”1 0 S Bpe (82
Thus (6. 16) is better than (9 l). 411 three qugntities in (9.2)

tendto 2 as m > .
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Whereas the hypergeometric function method of Baker yields

a weaker result for the logarithm, it scores over the Legendre
Polynomial method in the most iﬁportant situation - namely, in
deriving irrationality types for algebraic numbers., In particular
his results are superior to those provided by Theorem 4. But in
view of the simplicity of the method underlying Theorem 4, it seems
worthwhile to improve it without much loss of simplicity in treat-
mente. Beukers and Choodnovsky have recently derived results like

Theorem 3 by employing the more general Jacobil Polynomials

~-m
Tan® = Er (H)® MRa"E .

Their method has morerin common with Baker's than the method of
Bection 7.
For the specific irratiomal ﬂ/WJg s Theorem 2 yields a
better irrationality type, than that provided by Apery's method
1

in (8e¢6) ¢ To see this take r = % J[%i— s s = 1, and

X = Q(q -3 ) in Theorem 3, We then get
T = 8,309986 «us

——

and this is < the irrationality type for =/V3 becayse

log( 1 ~ % ) = %% o
Choodnovsky {:9j} who independently observed this, claimed in a
brilliant lecture at Oberwolfach in May 1979, that even for a
slight improvement of this particular result for ﬂy“JB y a major
new idea will be requiredl Unfortunately, Theorem 1 does not yield

&n irrationality type for m , whereas the Apéry result (846) does,



10, Differential Equations, - | | |
Soon after Apery announced his result on the irrationality |
of G (3) , Bombieri [:8:1 viewed_the problem as one involving
differential equations, The motivation for this obser&ation was
a sketch of the proofyof thé irrationality of log 2 in Exercise 8
of Vander Poorten's delightful article [:153 on Apéry’s prodf.
By develbping this idea Bombieri not only established a form of
Theorem 3, but also derived the results of ipéry on (2 and

23 (3) &« In addition he could also derive Thue's theorem for cer-

tain kB roots. To give a glimpse of the method we sketch Bombieri's

version of VanderPoorsen'!s Exercise 8,

Consider the differential operator

’ 0
=i70 = (XZ - 2bX + 1)3% + (x—b)(%}?. K

If b= 2a»+'l is an odd integer nofice that

vy = (X2 ~ 2bx + Zl.)"'l/2 e Z[[X]] and Jjoyo = Qb

Next, define '

X
y1(x) = S Yol ) at
S

and note:that
%Oyl = lo
The singularities for jﬁo are at o and B defined respectively |

A
N

by 2 + 2y a(atl) +1, So 0 < g 1< o, andep = 1§
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L'But note that

V1 =@ ¥, (10.1)

has no singularity at g 4 if o = % log(1l + % Yo dAn estimate on

the size of the coefficients of (10.1) yields

qnlog(l + %) - p, = (GB?(:H'O(D), (102)
where qn,'pn € Z and '
‘Qn‘ _ (eq>n(l+o(l)) _ (1042)

Theorem 3 for r =1, s = a , follows from (10+2), (10e3) and
Lemma 2, |

It is interesting to note that y, is the generating
function for the Legendre Polynomials pn(a).

Most recently Bombleri has pursued his method to the pro-
blem of obtaining transcendence measuresg, but that is beyond the

scope of this article,

9. Recent Progress

The most significant'progfess ¥m irrationality since
Kpéry’s resul£3 is due to Choodnovsky. By a varietyd methods
-in&olving Legendre. Jacobi, Hermite and other orthogonai polynomials
and in particular differential equations he has established

irrgtionality estimates for a wide class of numbers (see ['93 .

[107 , 1] anaf12] ).
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In particular he can estimate the irrationality type of
log 23 4 which is beyond the scope of Theorem 3, In addition
he can derive a niee irrationality estimate for = directly,

. . . 2 . . . . . .
withéut involving 7 . Finally, he can discuss irrationality

estimates at rational points x close to zero, for the diloggrithm

and trilogarithm fuhctions defined respectively by

- ® oo} AL
dilog(l+x) = % 52 trilog(l+x) = 2 g; .
n

n=1 n° ° =1,

Bombieri ind;pendentiy obtéiﬁed simitar results for these two
functions, |

In summary, the most powerful methods at present in irra-
tionality invclve differehtial equations and the clever use of
orthogonal polynomials, The orthogonality occurs quite naturally
in Padé - dpproximations., .t any rate, the Legendre Polynomigl
method We have discussed, besides being interesting and useful in
its own right, has given us a glimbse'Of deeper methods énd more
interesting techniques that lie ahead. For an enlightenihg
discussion on these more advanced methods. we refer to Choodnovsky':
article {:lé} g Which treats these receut advances in the-context

of various classical approaches,
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Note the following corrections in the above text.-

a)

b)

S e P

In pe5 the second line after (2,2) should read as:-

constant eecesees-

In pelly (442) ~ (443) should read asi-

ig!
Y - +<Q P
7 ‘QO +Q+P5/Q+

~ where the 'Qn and P,

Q = _Q'YL" +’P’YZ

Yo

1 - D\/Y‘L—i

In the follow1ng, the Legendre polynomlal ‘P ! has been denoted

eees increasing function

j) (4.2)

are defined recur51vely by

Py

———— .

Q. @

by 'p,' « Thd correSpondlng correct versions ares-

P13, .k.s. of G-a) ! b

P4, T g,

p.l6, Y heS, of (624):

P“\éw T. h.

of (5:7) e

ST’ (xye” atx
p-13, R-h.s.0{(5-3)¢ SP (x)e dx

S vabjrthzyéit)th

O i
LB (%0 AX

o

P 8, 4th’ line, 2nd paragraph

S of (& 5). .._“P (*)Iog(i—z)-l-Q (‘z)ot}'“

established. orthogon311ty of
Py

-----

P.u%, Y.h.s. of (3 J,)‘CL SS?(X)H YT Axdy
o O

P.QJS, 0. h.e.

of (8-5)~

A

)
w

VA )

0L

L
¥

{— Xy
Ppixd P (¥) Axdydz

1 - (Ll-xY)=z
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HARMONIC SUMB OF CERTAIN SUBSETS OF NONNEGATIVE INTEGERS
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ABSTRACT &

Let 8 be any subset of the set N of natural numbers, We
denote the sum of the reciprocals of elements of 8 by H(S).
this paper, we describe a sufficient condition for H (8) to be
finite. The condition has been described in terms of the basis
representation of a natural number n in an arbitrarily fixed
integer g greater than 1. |

1. INTRODUCTION AND NOT.ATIONS ¢

Let S be any subset of the set N of all natural numbers.
We define H (8), the harmonic sum of 8, by H (8)= ZZ qb It may
be noted that H(S), belng a summation of positive ézims, does
not depend on any particular ordering of elements of S.
Therefore, without any loss of generality, we assume that the
elements of '8 are arranged in natural (increasihg) order,

Let g be any fixed naturai number > 1., It is well-known

that every nonnegative integer n can be expressed uniquely in

the form
O

(1.1 n = ig ey gl

R o
i
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A

Where 0 £ el< g, and only finitely maony ei‘s are nohzel‘o
This is called the basi‘s representation of n in the base g.
Thr-oughouﬁ this paper, a sequence shall alwayé, mean a
strictly increasing infinite sequence of nonnegative integers, -
The complementing sequence §_a‘,m”5 o,'f the sequence {anzg is
the strictly increasing sequence of nonnegative integers which
are not‘ elemen’s of %an% . be.g the coxﬁplementing ,sequevr.xce
of the sequence of prime numbers (which is 248, 5sTyllsnus) is
04154,648,9,10,440 UWe make it clear that the complementing
sequences can be finite or even empty, If for the sequence
{an gand an integer m, m=a, for some r, then we say that
m 1s a member or an element ofrian_?g Or m appears in {éng
Let {_ang be any sequence, We qefin_ei-s ian’g the set
generated by L%Zﬁ s by

S gk = {a/iEN, P (m) is true §

where P (n)v is % 3 2

Vighen n is expressed in the form (1.1), for each
element i of{anithe coefficient e; of gi is zero!!',
In this paper, we prove the following-

Theorem; If {an } is a sequence satisfying,

- <
a1 — &, = B for all n,
then H (8 Y a %) is finite,

2. A simple result $

Theorem 2,1 Let S and T be any two infinite subsets of

N, If s/ étn where s, is the n-th element of § and t. that
’ : - n o
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of T then, | Y )
e < oHe
proofy H(T) =Y (t) 5 <L 2 (s )“l B (8).
3. & PARTICULAR CiSE -OF THEOKEM 1.1

o

Theorem 3.1e _.et d be any f:l.xed naturaI number and

if a = nd, then HS {_a %)15 finite,

Proof° As easily observed, if d_l, then " T
s a3} = {123,....,, b

and H(S %;a ) is obviously finite,
Let d >1. and we write D=d° and § for S {wané» Define
R (n)=1/n for all n o N and % (0)=0, Now,

H(S) = Z R(n) = > R(n)-% kZ_fR(n) = Sl+82’ say
nES e S Nes
n<gd  nzg?

Since 84 1s finite, it is sufficient to prove finiteness

-of 82’

4nd : bo ‘

(3.1) 8g = Z ‘Q(m) Z E(T)y
nep T=d
n>dg>

where,

(3.2) F(r) = Z K

nes (Y+Oc

g en<g
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Now, the number of elements of S satisfying grg ny g(I‘i-l)d

( I+ l) d"rc

does not exceed g For, every natural number

n < g(m'l)d is of the form
ST &4 8 sy 0 L g
i=o

‘The number of e; 's is, thus, £ (r+1)d, Aalsoy e;=0,
if 1 €§d, 2dye..y rd $ and each of the remaining e,'s can
have atmost g different values, Therefore, the number of terms
on the right side of (3.2) is atmost g(m'l) 2ol
and since each term is < g™ 9, it follows that
(3.3 F(r) <L g&*

Oon substi;:gting (3.,3) in (B.l), we obtaiﬂ,

<
So N Z gd--»:c' < _g%I
r=d '

This completes the proof,

r T - Py . . 2')/ el

(Remark o It can be shown that 8; £ d% logg+ & +B;%
where Y and By are some constants independent of d and g )
4, MORE -‘BOUT COMPLEMENTING SEQUENCES °

Theorem 4.1s Let { % be the complementing sequence

!

of{ o8 o then a' exists only if

a, =2 ntk-l for some e -~ ¢ F. gE R PP

. 1
Proof & We prove that ifs a, ntk-1 ; for all n," them .a .

-t

does not exist., Let ne be any arbg.trarlly large fixed natural

number. Observe the first m-k terms of za E H

31y Bga8zseeey Ap pe
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Since a,_, <m-2, it follows that out of first m-1 non-
negative integers which do not appe;ar in { anzs and are é.m-z,
do not eicceed (r-1) ~(m-k) --k-—l‘, in number.r Since m is
'af»bitrary, it follows xthat a, does not exist. This proves the
theorem, |
We now prove that the necessary condition described just

now for the existence of . is sufficient also,
Theorem 4,2 ;. It {a;lg is the complementing sequence

1

of i an% and if a  entk-l for some n, then a,  exists.

Proofe Let n, be any integér satisfying a > n +k-1,
’ ‘ o)

On observing the first ng elements of {/an%

a1, Bgroeces 8y ( =2 n

0O

- +k-1)

- We see that out of first no+k nonnegative integers atmost

!
n, integers appear inian é . Hence the existence of a is

guaranteed,

Theorem 4,33 Let ga‘n gbe the complementing sequence of
Lot |
If &y existvs, then
(4.0 “al‘{ = n, +k-2,
Where, n, is the .smallest natural number‘ éatisfying
(4.9 ano > ngtk-1, R |
Proof? This is proved by induction on k., We note that

a; 2o and a, >a+m, Let k=1, If aj exists, then let nj



<7 ag

be the smallest natural number, which exists by theorem 442,
satisfying the relation (4.2), with k=1, i.e.

(42) 8, > n,

b % ot et
If ny =1, then a; > 1 and a; =0, 1in which case (4.1)
is true, If n »l, then fqr 1 £n {ng; a, Ln and ané” ?o.
Hence, a, =n-l, if 1 £n <ﬂn6 and anO;; N Therefore al=n0~19

which is nothing but (4.1). This cémpletes the proof of the

theorem in the case k=1,
1
Now, suppose that the Theorem is true for k-r. -Then, if a,
~exists then
I
where n_ is the smallest natural number for which

( 4‘.. 4) ano \2; no +I"'la

' 1 R :
Now, assume the existence of a, 4 then a, must exist and

(-..3) is valid. Let t be the largest integer for which atfg a0

j*‘ (If t does not exist, we then define t to be zero and in this
| case the set {;al,az... } in the.following discussion to be

regarded as the nullset.) Consider the set

v : !

i al,a2,o."’.’atéu { al’acz,G--. ,ar(=n0+r-2)§
which consists of r+t distinct elements and they are, infact,
Oyly25ee0sgngtr~2, Hence we must have, t+r=nd+r—l, i.e

i t=n,-l. .We now define by=ay -8, =l. 714 i3 easily verified

that gfbn §is a strictly increasing infinite sequence of non-

- . - ’ i
negative integers., Letibn gbe the complementing sequence of
this sequence b . Does b; exist? Yeg,

+

For, if not, then
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. i 4
b =n~l for all Ne 1.6 ag, =840 for all ny

In view of (4.3), this reads as

a(no—l)+n;(no+r"2)+n7 since t=n -1

Putting n=142484e...5 we find that all the integers
!

he w g !
Z n+r-l appear in {E%I% and since a_=n _+r=-2, 2 1

r 0

’ !
not exist, which contradicts the hypothesis that 2n 1 existsa

does

!
Thus bl exists. It is easily verified that a

t
1 ~bl +1, But,
bj = m,~i, where m, 1s the smallest natural number satisfying,
(4.5) |
IDYWO = /
e, O > ™M+ Qo |
Lo, a, > M, + (M, ~\—""-f>\l)“'
Mg+ M, -1

= (Mo Mo \HW—%)*’

or equivalently v, is the smallest natural nﬁmber'satisfying

and o L )3 _\.CL +\
= ) (N Y= 2)+

————

Z V(D =2

- (na+ywo~0~+cvﬂ'>“g'

(4.7

On comparing (4.6) and (4.7) with (4.1) and (4.2), we



$a,$

40

find that the theorem is true for k=r+l. This completes the

proof, »
5. NATURAL ORDERING OF § { a_3:

Let {anf; be any sequence and s, denote the n-th element
of 8 {an% s when the/elements are arranged in increasing
order. We exhibit relations between Swand the complementing

§equencé {/a;l % of {an}

, § ,
Theorem 5,12 Let { angbe the complementing sequence of

i anZS and let n be any natural number, Further let

YYu ‘
: -1 '
’Y\;::E QQ%/,QéCL{QQ,?miO"
A =6

- . - . 3 ,
Then Sp exists if and only if a1

Proof? - Every element of § { a, % is of the form

k Q‘,/ Ve
0

2 v

exists,

4

1
Hence, if a1 does not exist then the number of elements

~

4 m g . . m ;

in S { an:gég -1, while n is certa1ntly>/- g o Ihus Sp exists
: ! .

onlty if a'm+l exists., Conversely if ag +] €xists, then 8 {an

contains atleast gm*'_}l elements and since n <gm*'l, sn exists.

Theorem 5,2! Let {ari ¢be the complementing sequence of

M 1
— : +0
et n = e, 8 , oge g, e #0;
t =0 :
be the representation of n in the base g« If n-th element
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S of.S'i_anz exists, then is given by

g . Z-e\(%/ 7+
n 5 =0 7

(5.1
Proofs This is proved by induction on n, We note that, when

n is represented in the base g with its leading co~efficient e

‘ 1
non-zero, in view of the previous theorem a existse.

m+1

If n=1, then m=o0 and a; exists and obviously

srzgai s which satisfies (5.1) with n=1., Thus the theorem
is true if n=1, o | o

‘We now assume that the theorem is true if n=k and

prove it for n=k+l. Let

- .
/ 1
(5.2) k= Z_e; g , O g‘@@' 42/9» 6m #0
, =0 ;

and by -the assumptlon, we have

(5.3) Z g
?
1=

Case (i) In (5.3), el:g—l for o £1 L'm. Then,

.
(5:4) ktl=g gL and a 2 exists, (For, we are assuming that

Siea 1 exists) |

Hence g{(nlw‘42is_an element of § {,35%

Let t be any natural number satisfying
1
Syc <t < : am+¢.

i. e, !

:Z (g ~1) ga1+l t < g,m+2.
1=0 .
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Then, it is easily seen that t can not be an element of
S iang . For, at least one i, the coefficient, say e;,»of.‘ g

in the representation of t in the base g will be non-zero on

one hand and this i will be some a_  on the otherj which is not

n
consistent with the definition of 8 § a % . Thus the element
in 8 {an'§ next to s, 1is g®m+z Therefore ‘
| |
G’m+1 M+ 2 |
§k+\ - g , w&jj—h )<~\-1 e g an T&{/xw&k.

Case (ii) In (5.3) at least one of the e; 's is different

from g~1. Here let T be the smallest for which e, + g-1
Then '

il 1
Z(%f W’)Q B <§+ T &g
1=0 LD

We, then, have by hypothes:.s

- m
Z(Q{-»t) 4"“*@{ & Z T

k 3 | | =Y \
Now,
(5.5) “
K = (@ € + Z:)) ¢

(Observe that o e+l ( g and therefore, (5,5 represents
k+1l in the base g.) l

}

We write, F - (QY'M)Q/ Z e g

Tt

* 41
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Clearly, p is an element of S 5 a 73 « Also, it is easily
shown that if s, % { P, then t can not be an element of

S C n% because of the bame reasoning descrlbed in case (i),

Hence, QI’Y*H W A
‘K""‘ ’Y'::
g - Y+J
vith kot =(e, 4+ g/ + Z\Yf Ej’ :

Thus, in this case also, the required relation is true

for n=k+l, 1f assumed it to be true for n=k. This completes

the nroof,
©. TOWARDS THE PROOF OF MAIN THEOREMS
o <! :
Theorem 6.1ls Let {an'% and ibn% be the complementing
v g‘ 5 .
sequences of the sequences ¢ arg and{ bng reSpe_ctlvely. Further,

1 !
assume that ané b, for all n, Then, b, exists, whenever ay

-

Lo

exists and bl S a;

Proofs Suppose 8, oxists, Then, by theorem 4,3,
1

(6.1) a, = nk-2,

where n_ is the smallest natural nuhber satisfying,

(6.2) ano >/ nt+k-1,

But, then, bn > a, 7/‘no+k-l by (6.2) which shows, in view

0 o) i
of theorem 4,2, that b, exists. 4lso,
b !
Where m is <the smallest natural number for which

(6. 4) bmo > m, +k-1,



44
Therefore, n, 2 m, and hence
‘bl’{ = m +ke2 éno+k-2= aL,c by (6.1)
This proves the theorem. |
Theorem 6.2% For the sequences iang and{bn§ suppose that
an é b, for all n. Then H (S'{ an§)<H(S {bné )e
Proof§ Let u, and v, denote the n-th elements of S {an zf

and S{bnf respectively. If for a fixed natmural number n, its

B q -
representation in the base g is given by n=Z C{é 3 L C,\: ég !
- 1=0
LM“#O J then by theorem 5.1, u, exists if and only if a} ;

exists. Suppose u, exists- Then ar‘m-l. exists., But then b1}1+l
does exist by theorem 6.1. Now, with the help of the theorem

n .
VW - ",
(6.5) u‘YL: ZC{IE/OV‘L'H QN\(?\,\/%'—': zc;g
i=o , =gt

5.2. U. and V_ are ‘easiiy described as followss !
- , m b+t

& 1 . . : ‘
Slnce,v by éai for all i, it follows that u, >v, anfi
consequently by theorem 2,1, H (8 g an %) S H(S % bné )
Proof of the main theoreme Let § anij be any sequence for which

aytl -anéBl for all n, where By is any fixed positive

integer, Let b= max g oy 3 Blg_Gonsider b, 'where‘ pn=n B. ‘
Clearly a;{B=bj. If a Kby, then a  ;La+B; L nX

\)(B+B= (n+1) szm—l. Thus an\<_ b,  for all n, }Ience H (SE arf;)
H (8 (E-an g )« But the last expression here is finite by

theorem 3,1 and the proof is completed.
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4 BRIEF SUMMARY OF SOME RESULTS IN THE ANALYTIC
THEORY OF NUMBERS

K.RAMACHANDRA
T4TA INSTITUTE OF FUNDAMENTAL RESEARCH,
HOMI BHABHA RO4D, BOMBAY 400 005, INDIA.

1, INTRODUCTION & I wlsh to speak about some results by

me and some Joint work with my colleague Mr, R,BaLASUBRAMANIAN,.
The results are

1) & proof that ——-S)Zﬁ‘,("'{%t)\(’&“ O((Qafy‘ ) ) T=2.

This result is not new. It is due to G.H. HiRDY and J.FE.
LITTLEWOOD, But the method is new and simplifies the

earlier (complicated)' but very useful . _reg.ults I

on the
Bybrid fourth power moments of L-series due to H.L.MONTGOMERY.
The new method turned out to be useful in density theorems,
The method is very simple but sufficiently important. For
a description of the method see (K. RAMACH. WDRA, & simple
proof of the mean fourth power estlmate for \g( —}*L%) and
L( 5l +1%\;7C)fimna11 della Scoula Normale Superiore di Bisa,

. Classe di sci, Section IV, Vol.I (1974), 81 - 97,
2) Let kq, ko be integers subject to 3< ky & ko TLet i &
and “xi:é he two non-principal real characters mod ki and mod ko

respectively such that for at least one integer n( 2=, 2 ,Xgl(n)x
¥uy(n) = ~L. Pubt Ly = L (1,7 and Ly = L (1,%)). Then

Li ¢ implies | b9 K -2, -kt
: m g S 2

log l:;
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“fhere 4, B, C‘ are effective positive constants independent

of kq, kz, X’L and%2 The proof of this new result uses only
very simple facts from the theory of functlons of a real var:Lableb
See my paper (K. R.Sl\l-nCH‘LNDR‘A., one more proof of Siegel's

theorem, HiRDY - RAMiNUJAN JOURI\L.&, Vol, 3 (1980))

3) Next I state a result due to myself and R. BJLLASUBR;:MANIM\T.
(Ref. R. BALASUBRIMANIAN AND K.RiMLCHANDR4A, some problems of
Analytic number theory III, HARDY ~ RIMANUJAN JOURN&L, Vol, 4

(1981), to appear). Let }’.‘ (%) — E: b*; be a series

YU
=
wnilch converges at lcast for one complex number s = o 4 it,

( b/y, being complex numbers) and hence in a half plane. .

Let k;, 2 be an integer constant and 4 a constant =2 2 k.

put o = Lot and suppo’se that in ( o~ > é“’lﬁ; DTété%‘T)s

o

. # 2k
Fé(s) admits an analytic continuation and there M defined

by M = max i FOU:DE does not exceed Exp (TB) Where B is
a positive constant and T =2 10. Put  F {g) = U‘: (55))}1
. ¢

_ PR

('m —_
= Z Y where ¥§‘so(s) is absolutely convergent (note
uhat if FUQ is convergent at s it is absolutely convergent
at s+ 2. Let H(W) be an analytic on a curve L consisting

of finitely many fixed straight lines all contained in

( Rewg ‘ot \Im w =B ) and we assume that HQw)

: - W

is analytic on L. ‘Put D(w) = S H(W) WdLW
k uJWl

#here u > 0. Next put E(uw) = Z o. — D(W) vwhere u > o.
s ™
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iet o{q; A5y 39 & and C be positive constants subaect

to o £ E“i‘{D\ {o( <<>< <Q_3@< —E 5 and

- W
further assume that max);bn{ — 7 “C and mex 2 i < C.

w
n<T VVaﬂ\_

i Then there exists an effective constant T, = T, (k,.&,B,C,o(;_,o(z,

o) such that for al1 T 2 T, there holds
W

| € (w)
max S \ T

| (o8
T £ U < (M+D)

.
dow

> ) e e |
3

’ £ 1 i
Where V(_v} -1 2 \ \ < 7{,7 provided only that
T ng ‘/\CO
= 2Nk Pt | )
\A.. % \‘bw\ ) does not exceed T° - times the right hand

S“dé of our main inequality,

SOROLLARY j:ckm) - K\U&J% N-MV DN “"SLQN (QDZN) )
i { Mt o0

where d{m) is defined by . ki &?o(b)) Q&?Q)and Y is
=i o’

' Tuler!
the AUWLEIS constant.

The paper contains some other results as well, For
\r . : X
Example Q ( N/‘O) for the error term in the abelian group
L ~
problem and @ ( N c QQ@«M\ ) /7') for the error term in

lattlce . '
the poin% pl.oblem for a circle. There are {1 results

alsoi but the exponents vere fall short of optimal = exponents.

~
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In the case .vof‘ Q results the exponénts are optimal but the
log <factors are not the best known., The theorem stated above
is of interest because of its’ generalityo For the hi.story of |
the problem see the introduction to the joint paper cited

above,

2, SOME REMARKS ON THE MEAN FOURTH POWER OF (& +it)

In a subsequent paper (J. London, Math., Soc.,, (1975))
I have shoa\):n% that my method wlorks even to prove ;
: - i *

! ST\@(;Z + 1) e = 7 (BT Oy ™).
This is an oid result of 4,E. INGHM and his proof was
complicateds However these results are superseded by a result
due to D.R. HEATH-BROWN which states that R HS can be
replaced by i%ra P(XO%T) (where P (X)) is a monic -
polynomial of degree 4) plus an erro:* which is O(T £ E.—@'))
for every fixed E > 0. HEATH - BROWN'S result is very deep.
My proof of the result quoted above goes through with very
little modifications to prove a hybrid analogue for fourth
powef moments of ?-series (For these and many . other results
see a paper by R, BALASUBR.MANIAN to appear). To give an idea

of these results I give in a few lines a proof of

27 A __{
LB (il de = 0(T) ()
| T 7T |
valid for every fixed £ 0., Put s = -li 4 1t 5 T = t LT,

—

i HE
b EL od & A= T  and define d(n) by
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2’ oU’m __@z)) Where T{QJ’Z_ . Then, we have,

W=y +9 00
2 A e’% 1 %&l i [ow) dw
% = s +W)IX (W)
= = z( |
s | € —l+100

2 { W &N
= L AW X w>&w+ 1S (%+\N>xr'( )
5 lﬂigg( t : S

|8+ = =100 .8-—! — 100
; e
Hence (writing £(3qwd = 0C (Bxw) T (I=3-WD
‘ = N y ‘
¥ o (.Y\J> b w3 ) 2 dw 4 + i
=5 XL & g Hawd X (W) m&(@\ q,),
L=y “% QITK \ _ \
\R +W —~1 T
. 8,-\-&-’1',00 &,U\>
whnere \/\]
Q = g WU (%+w><2 o\ )X (W) AW
b2 ' nzT
£\ -0
and \ £ +to0 At o
Q = o - Q 7(,1(24—»\)) ( ) W;ngw“ ))( Dwdw -
&L OAJT'\ . Ny
E- =100 h
In Q, we move the line of integration to Re W = =% ,

Using the asymptotics of the gamms functions, the functional
equation f;lves %;_—-"RO_QAHN))
(3w = O(( T+ [ Tmw))

Where Re W is any fixed constant. Using this for Re W = €-1,

and RQ,\J\} o the required result (1) follows on using



the trivial fesu}t o
e o
\ N — Ty 5
:‘:S‘ } > G.m l db = O(}_ \ &l (:F) (YyT)
T Yin £y Yy < 2y |

“fhere in one complex and B is an arbitrary constant subject

to o < L
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O x
ON CERTAIN 8UMS INVOLVING THE MaXTMAL K ~FREBR DIVISOR FUNGTION

VeS8ita Ramaiah, 4.8iva Rama Sarma and G,Sri Rama Chandra Murthy
Dept. of Maths., 4ndhra University, WALT&IR-530 003.INDI4&
$ 1, -INTRODUCTION

Throughout this paper, m denotes a positive integer, p
denotes a prime and x denotes a real number -2 1, Let k |
denote a fixed 'integer 7/ 2o 4s usual, m is called k-free
if it is not divisible by the k -th power' of any prime,

Let 'Z/R (m) denoté the maxima‘l k - free divisor of me.
Let Y(1) =1 and if m > 1, )/(m) be the product of
distinct prime factors of m. It is clear that Yl(m)= V(.

It is well-known th}at'm is called squarefull if -~/ F}?Y\/
implies to‘)‘[rm/ o Let ;L(m} denote the characteristic function
of the square-full integers] that is, (l(m) = 1 or 0 |
according as m is square~full or not.

‘In this paper, we establish (See § 5) an asymptotic

formula for 'Yh(W\)/Q W) with an error term E,(x),
m<X

9k-l
Awhefe Elr) = 00 7 "(7@) or O(oc%cx—)) o O(XB)D

according as k i1s even or Kk = 8 or k is odd = 5 I‘eSpectlvely,

’ - /5
where g(f)Q = e/x(’ { i QO? ZLI (ﬂo? @oj 37¢} g
H being a positive constant., On the assumption of the

Riemann hypothesis, we prove that (See & 9)
k3 |
Ek('(‘) — O (I. o 'W(;()) 5 whenever k =3 or k is even,

-—-...—-.—__.—_—-——-.._.-___—-—-—.-—-.—..—-...-—._..._—-..—..._——_._—-..___._.-_—_.—..-_—.-._._-__.-.

i . *Presented by 3 V. Sita Ramaiah
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Where \/\/()L) = e/xlu{ H QD} fb;c (Qﬂ%,@bj 31)%In the
case k=2, an asymptotic formula for the above sum has been
established by R. Sita Rama Chandra Rao (4) with a weaker

0 ~ estimate of the error term Viz., 0C x,/"'_)

In €% 2,3 and 4, we establish asymptotic formulae for

{ W 213

the sums Z K-yp\(W’)) . Z /XR(WL ). and Z ?/[((W\ ‘f)
m< X m&«<x ?
(VV}/Y‘)-—— ’ (M ’Y])

m.th uniform order estimates of the error terms, where u is

a fixed real number >~ 1, n denotes a fixed positive 1nteger

and t denotes a square-fr'ee integér. These formulae are

required to establish the main results of this paper.
% 2. 4n asymptotic formula for > (?{R( WU)

' (YV':‘M? Z}
Throughout this section, u denotes a fixed real

number 7 1 and n denotes a fixed integer > 1. For s 5 Oy
let '

| /S m
@ Jom = % Md) m> T (-
Where K is the Mobius function, }O/
Clearly J(m) = ¢(m) , the Euler tolient function. ilso, it
i1s clear that for s > 1, |
%

(20 2) m e O({) 3

Ty(m)




(2.3) Lemma. We have

(2.4) T Z' M*(&J
=YY} ‘ _
Ton (yw)?

(2=
Where V\Cm ~U)0’(

distinct prime factors of m and (d,8), as usual, the greatest

w(m) being the number of

common divisor of d and 0.
Proof . & proof of this lemma in case s=1 has been
established by D.Suryanarayana and R. Sita Rama Chandra Rao
(ef. (84 Lemma 2.12), The same proof works for any Se

Let q denote the characteristic function of the
k - free integers, Then we have

(2.5 Lemma. For o < s < Vk,

R - |

. (m) = X @(m) 4 A ~ 'ﬂ,) )
(e ym z_ Y 20R)T () (%

(Ml“) S| p ‘

. Where | i{ _ -

uniformly, | iy
(2.7 o-’j:) (m) = Z— d, fﬂ@(&),

N - i\n

% (s) being the Riemann Zeta functlon, and

o d(n) = ,@fxyoé H)Cvj ?}/x (Qag %}Jx)~g§

H being a positive sonstant.
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(2.9) Lemma, If the Riemann hypothesis (R.H) is true, then

the error term in the asymptotic formula (2.6) is given by
Q.

A zsm) = O (< VESNICIHP

Where

« 7GLD)
(210 8. = o (W =& 5

and N
(2.1 W(x) = @XP CH Q@} % /Es (Qoi/eo} 81) %
H being a positive constant, '

(2.12) Remark. Formula (2.6) has been established by

D. Suryanarayana and R. Sita Rama Chandra Rao (€f, (6), Theorem

3.1 with

1]

AK(DC%M) O(X 5(1)3—- fY\)CP(Y‘»)%l_)D

which, of course, implies Lemma 2,5, However, the term
o

(P(n)/ﬁ/ appearing in the order estimate of Ak(l J)

above is due to a lemma (&f, (6), Lemma 2,2) in the proof

of which the authors (6) made use of the erroneous result viz.,

C()(JC,)%) — O(X(PW’)/Y\T‘) for all x > 1 andn >1,
Where @(x,n) is the number of positive integers < x and }
prime to n, Thus from the methods of (6) what one gets
actually is that AR (< ) = 0 (xr’n §(x) o:—,:(’ﬂ)),
Alsoy on the assumption of the Riemann hypothesis, the

same authors (¢f (6), Theorem 3.1, s = o) have established

» . ) R ~
that A‘R(Lyﬂ) — 0 ()C /wf- >U(1) Bnd P \>_.
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The above mentioned remark applies here also, and we get
. A
Ah(x ym) = O(QC‘+%W(X)®(ﬂ)).

. &
(2.13) Remark. It is clear that for each fg>0, =X &) is

only that

increasing for large x. Using this it can be shown that
428 (a) S 80x)

for all y, | < ’LA/ < x ,where a; 1s a positive constant

depending only on _¢and the constant H in (2.8 |

(2.14) Remark. It is clear that W(y) is increasing for

- large x. Using this it can be shown that if x > 1, then

W) < @ WD

for all y > Xy where a, is an absolute positive constant,
The following two lemmas (lemmas 2,15 and 2,17) are

immediate consequences | of lemmas 2.5, 2,9 and partial

summation,

(2.15) Lemma. For ¢ <9> <‘/R » we have

o WH R - | L+ VK
(2. 16) 2_ m q/ m — 44" CP(’Y\)‘__ +O< é{;d{ij}(ﬂ\)
£ o (UH) BR) Fpm R
(mmy=I

Where the 0 -constant depends only on k,s and u.
(2.17) Lemma, If the R.H is true, then the error term

in the asymptotic formula (2.16) is given by

0 < x T T:%R W(x) ()

the 0 = constant being dependent only on k and u.



56

[o%)
. l
(2.18) Lenma. Z/ converges for every
— m*yrm) -
M=
a > o
o0

| | I “
Proof. Since the product W{(_}— = mﬁ‘g :
=R -

1 ‘
== ( ! e % converges for a > 04 the

lemma follows from Theorem 41 of (2)

(2.19) Lemma, We have

o8 " | R-% |
(2.20) Z }A*(m) @(m)Q/R(m)m _ QKM 7
= (T/(M))“j;{(w B (W
(mm)=1 . '
Where
. R~
- -—l)
- Pou (g" Uin'k §
oy PP~
and
k-
(2. 29) | 3 o Y
PR ™ = Wg"‘ @Tf‘g)‘ % '
. P WD
Proof, Since L,

: R
[&L*(W\) C{XW‘)% (n)m A
T = v J
(Ym)™ T my
the series in (2,20) converges absolutelys Further the
general term of the series is multiplicative in m, Now the
lemma follows on expanding the series as an infinite

product of Euler type (:7(f,(3), Theoren 286)
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(2.23) Lemma. For o La 1,

~l+a
g = (). .
Mm>x | L = O(x > '
Proof. From lema 2,18 it follows that m <x Ym) ?

lemma 2,23 follows from this and Partial summation.

(2.24) Lemma, For 0 < a < 1, we have

| im) Gm) Y (m) mR= - “\+a
mZ</a e tf\ (312\1« +O<x\+ )
(mm)\ (V(W\)) TK('W) | @k/uw’)

Proof. Follows from lemmas 2.19 and 223
(2.25) Lemma, For 0 < s < l/k; we have

Dcwﬂ/y}vi (W
(228 3 T\mq,(m) I TR
WL (u»rl)?g(R)J’ m(ﬁ

(M) =|

’ \
aad 5(7() o (””)

+0 (
Where the O—constanf'depends bnly on k, s and u

Proof. By lemmas 2,3, 12,15 and pE 19 we have
M om) =3 S 8, (6)

my dex U/(cm §< /4
()= . Chkmd=) + - (&,dW) =)




8

. R~
wt' k- W) d)WK(o\)O‘v

= X AN ‘P(ﬂ) ti;
(UADERI T < (X(oo) J,(d)
(2,27 (de)*,
. 'm-t " Zé(x/&) o (O\) '
*O<x Ro* (0 =

- d<x

Since O,* (d) =0 (&E> for every £»0, if 0K < L/k,

We have by Remark 2,13 and lemma 2,18,

g(ot/ d) ’Uf; () | L |

), -29) — ~ Of(x)Y =< )
- OLZIC e (&) <( L< RS
| = QO (&) .

Now the lemma follows from (2.28), (2,27) and lemma 2,24,

(2,29) Lemma, If the R,H, is true, then the error term in

the asymptotic formula (2,26) is given by
2

-0 ('DQM +2R W () Bn)
the O-~estimate being uniform in x and n,
Proof. Followiné the same procedure adopted in the proof of
lemma 2,25, making use of lemma 2.17 and Remark 2,14 instead
of lemma 2.15 and Remark 2,13, we get this lemma.
(2,30) Remark, Lemmas 2,25 and 2,22 have been established
by V. 8ita Ramaiah (5) in a complicated way. Formula (2,26)
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in case = 1 has been established by D. Suryanarayana and

P.Subrahmanyam (£f,(9), Theorem 4,1) with an error term

i
QQ%(%) acHr RENEO) +0 (el(rn) 3 X XD

where A(x) = log 2/3}( (log log x) 4‘/3. These two 0 -~ terms

can be combined into a single O-term Viz., 0(Q (W x R &()-

This O-estimate is clea{rly weaker than the one we obtain
from (2.26) (u= 1). However, using their method (9), one

can establish formula (2.26) (u=1l) with error term

I+ Vi
O(@C’YW o 6(7(‘))< But this O~estimate of the error
term is also weaker tha‘n the one given in (2.26) (u=l),
Since g" x"’U £ 8w . Further, on the assumption of
the Riemann hypothesis, D.Suryanarayana and P.Subrahmanyam

(£f. (9), Theorem 4,2) have established (2.26) (u=1)

with an error term _
- & (\*\’PJQ
@(@\m) - / W (X )) +O(e(fn)x>\(1>)

These two O-terms can be again combined into a single O-term

. (4 & ]+ 2D
Viz., O(GBZ(%)' T &/ /(

the one we obtain from lemma 2,29 (u=l), However using their

W(n) o which is weaker than

method (9), assuming the Riemann hypothesis, one can
i~ 'Z// 2R
W(p).

establlsh (2.26) (u~l) with an error term O(b\(m)



This is same as the O-tei'm of lemma 2.29 (u=l). Finally
we may mention here that the methods of D.Suryanarayana
and P. Subrahmanyam (9) adopted in establishing formula
(2.26) (u=l) are complicated than ours,

(2.31) Corollary (Lemma 2,255 u=l, k=2), For 0 < s & 1/2,

we have % . 2
>C ¥, QD X
s Kmem) = = “‘O@C S0 O
2.32) 2 RTDT, () pom)
M=
(m M) =
Uniformly, where
(2.33) W E
LN Mﬁﬂ)

and
(2034) (/Yl/ — W g { g

) = < PC}O H)

m;
(2.35) Corollary. (Lemma 2,29, u=l, k=2). If the R.H. is
true, then the error term in the asymptotic fermula (2.32)
is given by
75

O(Dc Wye(m))

(2:36) Remark, Formulla (2. 32) (n=1) was originally
_ . 4 )

established by 8. Wigert (10) with an error term (D( b

using analytic methods, This O~estimate was improved to
O(jg)m’) by E.Cohen (£f. (1), corollary 5. 1.2),

using elementary methods,
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g_(2.3'7) Theorem. For 0 « s L 1/k, we have
; - '

R -2
U+ " (myn
(2.38) > (yk(w\))%:‘ X ?(M«H) @K/MCP( )Ju*,
L ' l
(. =) (H) B R Tl i o L™
- + O~ ‘“‘/R&(X) 2)(ryu),

Where the O-estimate is uniform in x and n, and (3 (")
: @\Q,u, R,u
are as given in (2.21) and (2.22)
- Proof. S;nce Z J‘ Qd) =m we have

| & m ~

(2.39)

| m)™ = 2 T W= 2T <a>%(o\)

9| W ") &[m

Now by (2.39) , lemma _2. 25 and Remark 2,13, we have

S (1 =y 7 ISNOERT

mex o pex  A=TC
(m )= (&,m=! (dim)= -
. . Uf‘ . - [

= (éh:?f»q\)(,ﬂ)% gJ fux!
QAH)\@(\Q)PE,M(’MJL(’N) -g

Ctmy=
u+ Vi

+O( 5CL T, (%)Z ‘/(Jtu”k £3>

whire 0 < ¢4 Vg - W&u+ ~C > amd
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- ( ) 35, () —an

:Z~ }//%Lk+ — ?;( . W+ ‘Y<)( 5C j).,
t<x, () s W+ '
We obtain Theorem 2,37, after using (2,2 and the fact

" :
(2,40) Theorem, If the R.H, is true, then the error term in

the asymptotic formula (2,38 is given by

| +¢ n ,
O(xu PR W) g(w)

Proof. Following the same procedure adopted in the proof
of Theorem 2,37, making use of lemmg 2,29 and Remark 2,14
instead of lemma 2,25 and Remark 2,13, we obtain this theoremn,
(2.41) Remark. Taking M= A = ) in Theorems 2,37

and 2,40, we obtain results of D,Suryanarayana and P.Subrah-
manyam (#f., (9), Corollaries 4.3.1 and 4,4.1),

(2.42) Gorollary (Theorem 2,37, U= 1, k =8). For 0L 3(}

%
9 -
(2. 43) W K Qv 3)6 |
MZ H(m) = N :P +Q(9&/z5(1)5‘;—(%)s
<X n) -
(M) = '

where « and e@) are given by (2.,33) and (2.34).
(2.44) Corollary (Theorem 2,40, u=l, k=2)., If the R.H, is

true, then the errdr term in the asymptotic formula (2,43)
is gi /8-S
is given by O(x \,\/(X)S(’Yl))v

- S Fopnl

€ 3, 4n asymptotic formula for 2 YK(YVL > ‘
m<x '
(VW\'Y\) :)
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in the asymptotic formula (3.2) is given by ()(

DR LA - T

. First we have

(3.1) Theorem, Let k be odd, Then for 0< s 2/(k+l)

lS_t‘_
X ‘5(3)6; M I, ()M =

@0 T () = _

m<Lx 3@((@41)[1)3—#&4 (/YL)(?’,Q(’YU)

(Whﬂ):
B+ P Rm :
0 (x ¥ 500 o ),

Mhere L S

(3.3) Py = T}J’g{_ (p =) J%

and 4
v | g
(3.4) Y _(
@R(/Yv) = W i& F___g_—f——
Proof.e It is clear that for 3
(3.5 Yk (}04) = { *% 6L<R
Further :

(3.6) ){K(fm?’) = LL (m) .

For, it is clear that both 51des of (3.6) are multiplicative

in m. Hence it is enough if we verify (3.6) when m = pJ

a prime power. But this can be easily done using (3.5)« Now,
Theorem 3.1 follows from (3.6) and Theorem 2,37 with k
replaced by &jﬂ and u =2 o

U
(3.7) Theorem. If the R,H. is true, then the error term -
%w/(mw

WO Bl
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Proof, Follows from (3.6) and Theorem 2,40 with k replaced
by Lkl and u =2
2

Throughout the following we suppose that k is even
and k 24, The following two lemmas (lemmas 3,8 and 3,10)
are immediate consequences of corollaries 2,31, 2.35 and partial
summation, |

(3,8 Lemma, For 0 < s < 1/2, we have

R-% k
(39 > m gx mygim) = X AP
<o !Qﬁ(fZ}TQJ(/m@(”’“)
(ml'n/> = o O(DQ 6( -)D-—— %(M))

(3,10) Lemma. If the R.H is true, then the error term in

the asymptotic formula in (3.9) is given by

l
(e WO Bm).
We write |

(3.11) YP

%

(M) = > 4.
M m

is that by the Molxius inversion formula (&f,(3), Theorem 267)

we have

%&w = 5 (uom/k mq?) .

Hence by (3.5) we have for Jj > l, |
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;3.;2) {\Q(P/\} Y <FQ}> YR<\O‘A} 'Qx)

pﬁ}) g (?d‘/bv’
PR 5 3 [ =¥ -

—

o , 4 ¢ R/ »
_,"'(3.13) Lemma, For 0 s  1/2, we have
(3.14) 5 g o ki
| % (m) = A p T 440(1 8 x)cr%(m>
/yn<% \Qﬁk?\nf n). p(rm}%\ (%)
) =l
where (mm) k(R-1D
(3,15) A TX‘ i\ (\()9—’_‘)<\0. 2._;1) 5
. . ___M_,..ﬁ_.___ﬂ ,
T ’ D
R-p O )
k(R

and
| )(p 2_y)
(3.16) _ 5 UD _ ;

‘proof, By (3.12) and lemma 3.8, we have

r

k-2 N
Z %h- Z T(mw (W)M ?{m@)\m(mg)
’\mé% Wl Yﬂob<x
(mm) = (Vm,U%),( = 1
. (Y)’LUW)R):]
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,_;L_ 3‘(W1Y%V UﬂﬂE: m @(ml)%?onq)_

:C . 2\ X/m,

( \)'Y\)-:' (VY\Q_ Tum () -

= xR gemm Vi () 900
"_’_—__————‘_—_’-__-‘ ,.

RE (T, (MBI e , “pumM)

(\(LUYL) =1
(3.17) 5 R_VE % ZU’(M,)&(X/M\)U— x(m')‘
O( 5 (fn,) o -V=
' M, << ‘ [

It is not difficult to show that

(3.19) Z O\/R/L (Mm )CP(YYU) 4 A O< by }e)
(m)) A T )
W oc @ (Y\)

4Also, by Remark 2,13 and the fact k = 4, . - TR SN i

sde have tor o< e< Va2 , !
m 0— m
(3.19) (Tﬂ)gx/m,)cr (m)) L m,é(m/ oy (M) ,
L AV VrL < :
YYL<}_ ! p/ A

= G(MZ w <) = o)

Now the lemma 1ollows from (3.18), (3.19) and (3.17)

(3.20) Lemma, If the R.H. is true, then the error term in

the asymptotic formula (3,14) is given by

O+ Wogem) |

Proof. Following the same procedure adopted in the proof of

lemma 3,13, making use of lemma 3,10 and Remark 2.14
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instead of lemma 3,8 and Remark 2.13, we obtain lemma 3.20.
(3.21) Theorem., (With the notation of lemma 3.13). Let -

k be even and k¥ = 4, Then for 0 < s <1/2, we have

-—

v |
(3.22) Z }/k(m2> _ X o(A}z CPM)TR(%)?&}O__W
me k() T, (1 f0n) Aglm) n™
(m, ) =1\

‘ R Vi .
+ Q(xh /Q’Su){%m) ,

the O-estimate being uniform in x and n.

Proof. By (3.11) and lemma 3.13, we have

Z Y (m?) = z Z '%k(cw
M<x tax A<t
(ma)=| (k=1 (&dm) =1

= 2% A ()T z

e

R
\Qf(ﬂ;)l’;vtfﬂ)@m) Adm) T ey t
(4 m) =i

R-Ya, : Lh~\/2
+0(x pmi s £
- t<x

< TR Ry«
oot A @I (nyBC | -
- pt(;)s‘m)@(m/‘xn(m St +000+ O(Z S0 M)
‘ e

k‘-’/z_ 6 )>

stree () anT'z o) awmd L SO/ ETTE = OG0
( hy(my) =00 oue Lo /
the later being a consequence of Remark 2,13,

Hence Theorem 3.21 follows.»‘
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(3.23) Theorem,Let k be even and k .2 4., If the R.H.
is true,. then the error term in the asymptotic formula (3.29)

is given by

Proof., Following the same procedure adopted in the Aproof' of
Theorem 3,21, making use of lemma 3,20 and Remark 2.14

instead of lemma 3,13 and Remark 2,13, we obtain this theorem,

(3.24) Remark. For k =2, Xk(mﬁ) _ X(W\?) =Y(m),

Hence Corollary 2.42 gives a formula for Z B/p(,m 2)

wm L%
when k=2, . (w7 =|

& 4. 4n asymptotic formula for 5 YK (mE3) .
M L x
Throughout this section, n denotes a square-free number,
First we have,
(4.1) Lemma, Let g, be the multiplicative function
defined by

%,6‘)___{0»;’0. P _
3 TP M) fr (1) Pl

(4. 2)

for all j }/ 1., Then

B 2- :
2 ) L k .
(43, (wied) = % (MLJ)O\ZMZRM )k (8
: (d\lm)—\-] ‘
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roof. It is clear that Y (vam?)/ YVilm

?multlpllcatlve function of m, Hence for

%M :H {+ Yy ().

M= | i’ kam) 5 ’F&XR(%a)

Jlg ‘
b, Jo T
= Yy 5 (™
= L 5 me
iyt W=l

 Hence (4.3) follows.

- (4.,4) Lemma, For s > 2,

O g ()
7 5" 0(Em)
m =l

| where

; w(d)
(49 -5 2 =[] 1+
h E(%) i JQ\QN) ;o(m)

‘proof. We have

+ ’7}<”9%¥L%)

3),{};@

s > 2 we have

| F Y}z(%)

1) P

4 :Y)' , %W N ’57// »  Hence for k =3,

™

’—"0

S g A SE TR + BED,.
P



2. gplm) S R . 3<F(‘>v
L %’R :T\- Y =k -+ w)—&- ° \_,TY { -+ ,g_) S\b“,
ggsqkzgw%) f MJC le% F Rikf' H 4§ P ‘ |
Vol = ot B(pE2) = el 2
Hence fir k=5,
YW‘) = $\+j’__ <En).
Lt m T(E; e S
Let k> 7 and k = 2t+3, so that t > 2, Then
9 24+3 Y X
s VK(}OK%L) ”‘ng_\ ."H —\-Z F%A |
S R SR R = Jé
4=t PP SRS A
: <"'\'—T -+ < = .
Hence o ko » ﬁ—*l o &—- | = L‘zi
=) 3}6((77\) to )

i e :F: 'Y\V>«-
Z:, Wt m{"‘- T, 5 =R

hat k is even, For k=2 or 4, we have

! | ‘
S B T e e TR,

only if, j < b. Hence &

g %z(})q‘”'s? _
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Consequently,
E 3 (YV\) :
R ~
é‘ n).
g?é- mq5 %( >

Hence lemma 4,4 follows.
. ,
(4.5 Lemma, Let s > 2. Then for any 6, 2,6 { s, we

?km/’c = O( P (n) 18‘2))

have

t>x

Proof, Follows from lemma 4,4 and partial Summation,

§4,6) Theorem. (With the notation of Theorem 3.1). Let k be

odd and n be square-free, Then for 0 £ s 4 2/(k+1) 4
}Q

we have
(7 57 Y | ) t“ﬁ@/ (gL () Ty(on Gh\)
M R 3 2((kr)[2) Tpy (VB (M
i \ -
*0(0(9&75‘ 5(1){:(@%(%3)%(@);
Ahere 6=2+ -_k_f_.i-_ _ E,,) O<E <
. and . o0
(4.8) G\ Z 3 m)
WL5

Fy (n) being given by (4.5) with s replaced by 8
Proof. By (4.3) and The orem 3.1, we have



7 Y =y () 2, HZ [mi)
M<x <.°< (OLYL;(-—I ket _q

— Y (13 % (5 By 7, (i@ oM~ 5 %RW
3z ((RH)/@ Tkm W‘)ph(ﬂ) Lo x &

Sy RE
O e

(4.9)

By lemma 4,54 we have

B 5 B 010 (560 )
Jcéoc

Alnere Gy (n) is given by (4.8). A4lso, by Remark 2,13

and lemma 4, 4,

G 3T LB 50O il
| {_141//((“0: ({—cx H\*'@‘/W‘r‘)“é

= O (R, (n6(%)-
Substltutlng (4.10) and (4.,11) into (4.9), Theorem 4,6 follows.

JCSDC

(4.12) Theorem. Let k be odd. If the R.H, is true, then the

error term in the asymptotic formula (4.7) is given by

O 2 5 e B Ty (22) F 00,

2
k+2

where cC = 2+
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Proof. Following the same pr'ocedure adopted in the proof

of Theorem 4,6, making use of Theorem 3.17 and Remark 2,14
instead of Theorem 3.1 and Rémark 2.13.

(4,13) Theorem (With the notation of lemma 3.13), Let k be
even, k> 4 and n be squaremfreeo Then for 0 £ s < 1/2,

we have
k
Xot TROAS ) J ) 6 (m) |
(419 >, f, <W%(Y§) = 27
WML x k (T, () pln) Ak(m)fn

btz N
,\.O<)( - é()() .'Y\,LD“:Z\(W\)F&('Y\))7

where OJ:_—!Q__.‘P;__g" oL el 5/2
il i 3 /o
and
(4.15) ka(‘“) = Z 8k(m)
M= '

Proof. By (4.3) and Thecrem 3.21, we have

ZV(W\«L) T, (w )2_ \&(@Z Xk

m<Lx cX<9(/E
s rY\)“‘
(4. 16) < O\A {\Q)Yk(ﬂj)({(“\) Z %R(D
B C(‘“)T v\)\@(m A (m

/¢- (t) ¢
By lemma 4.5 (with & = ) we have C<X {:\Q {4

(417 S %Ew — G (m) ‘*’O(F ’Y))DC,O R)

t<x




4

“Where Gf{ (n) is given by (4.15). It follows from Remark 2.13
and lemma 4.4 (with 6 =a) the inner sum in the O-term of
(4.16) is 0 ( SCDC)F' (D )§ Theorem 4,13 follows

from this, (4.17) 4 (4.16) and the fact that for sq_uare-free
nand k > 4, %{ (n)

(4.18) Theorem. Let k be even and k > 4, If the R.H. is
true, then the error term in the asymptotic formula (4.14)
is gilven by R- }/5 |

0>

where b=k - 3/5,

79/“19 m) F 7\))

Proof. Following the same procedure adopted in the proof

of Theorem 4,13, making use of theorem 3,23 and Remark 2.14
instead of Theorem 3,21 énd Remark 2,13, we get this theorem,
(4.19) Theorem., If n is square~free and 0 < s ( 1/2, then

; 2 2
(&%)ZZMmm:zﬁifﬂﬁi_%Q@ﬁ&épunwzmg.

Proof., For Square-free n we have 'f(n) = n and “)/[fry\z/y{,g)

_ Y( YV\'Y&) for all me and n. Hence by (4.3) (k=2) we get

Y () = %Z R

(dl %)«l
Hence by Corollary 2,42 and Remark 2,12 we have for 0 . f<1/2,

S%m) =v > A (b > Yd)
Lo

<o d<x(t
(d(W) =1
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C(aen = oOC HM ;
wpm e

From (4.2) (k=2) it follows that

: 7D
oz( ) +O('x &()L)o*(ﬂ) Tor €>..

X

(4.22) ] %Q(D{ <, for all t,
and
5 2
(4.23) 84“ —Y[—]-_.\_.—*t-——— 4o = _L o
22“ p( p+ % )

From (4.22) and (4. 23) we have

4, 0
e Z 7&& o J_('Y\) (Jc )
%(yc _ |

and from (4: 22):-

H -—~ " .. |
( 4.25) Z ﬁ(,—_ sz“ﬁ;jé’*oc)v

since O< - ¢{3/2. Now Theorem 4,19 follows by
substituting (4.25) and (4,24) into (4.21) »
(4.26) Theorem. If the R.H. is true, then the error term

in the asymptotic formula (4.20) is given by

s
0= W) ndn) -
proof. Follow:n_ng the same procedure adopted in the proof
of Theorem 4.19, Il aklng use of Corollary 2,44 and Remark 2. 14,

instead of Corollary 2.42 and Remark 2.13, we obtain this

- theorem.
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§5 An asymptotlc formula for Z Y X/ WD
M L

Let ¥(m) denote the characteristic function of the square-full
integers. Then we have (- ,
(5.1 Lemma (@f.(7, pe 108, . Z sz((n)

(5.2) Theorem, We have

(5.3) o oY Y4 «
> Ymdm) = - +0(x™ 6w,

M L2 ' s
Proof. By lemma 5.1 and Theoremn 4.19,-

Mz<x)((m)l( ) = Z\ BN o 7//‘/ st
= AL N '}_}«_2(“) (?( W

TN T(ﬂ)(o(%)
z /1.
+ Q{ %LZ ‘SCX 2 ) o /ﬁ(Y‘)>

( 5. 4) L rex w4

—\

: UZ_(V\)(P(”)W . . 214
= &KL | ' 23y O T a0,
T Yi=| g\,QW‘)(D(/V‘) N Q(’DQ ) ™ ( ‘ )

By (2.34) and (2.33), we have N
2y )t (p-VF
(565 )
';lf bkﬁﬂiwﬂ“)% :T\_SLH- zy I {
2 S T
4L
\‘/ )M}o 1 % T ( }“(}04—‘)?3 L«

Substltutlng (B, 5) into (5. 4) s Theorerr 5.2 follows.
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(5.6) Theorem, If the R.,H. is true, then the error term in

' the asymptotic formula (5.3) is given by

O(’Xﬁ/‘o W) |

- Proof., Following the same procedure adopted in the proof

" of Theorem 5.21, making use of Theorem 4,26 instead of Theorem
:

f 4,19, we obtain this theorem,

,s“

(5 7) Theorem, Let k be even and k >/ 4, Then

JELp Vemd(m) = = Moo +O(x ¥ sw),

/Where E L

ML kz(9)

——

:0\ 'fj_l‘_rﬂfié 4 k=4

o> (p+1)

(5.9) Iy =

k-8 ~ | K ¢ £ '
% T (P p) A )G P
Q’\a—e)/zgo
}Ck\(p—‘)/4‘> B }Q>b

T

P

= |4 %C\ v ()
._O/ZQ('—FP—H

(5.10) Ay (P

and

(5.11) A
(s e ‘ _.00 "\’ _)6\‘
Gk ?’ iO | }okz | )O—l

Proof. By lemma 5,1 and Theorem 4.13 we have



e S R Pt g e, e R T e <

T

S = s

78

> Y im) =5 Mmz Y ()

WM< X | '{\SKJ? M« ;c/"-/%3/z

_ ack/gé‘(kg ____EZ ﬁm)cpmﬂ}(m)ﬁfk(m)

(5.19)
RT() .~ » sR—6_ v A
) mgxs T o p

L - 2
dhel () o mEGIN >

S

B O(DL _ I /n/:ﬁ(gz/h‘\)/Ar
'YL£’13 .

By lemma 4.4 and (4.195),

le(fw) - O(F, ) = 0o(nt),

for every £70, so that

<3R-4 .
= -
av

‘ - )
. 4" ) G —
> R (nypw AL
= Ofx )
for every £ 0. Further it is not difficult to show

that o0

(5.14) (XAR Z
W=| B8

KU g TGl T

G R
EERAOTICY

Where Ty is given by (5.9)
- i _;é e
Also, by Remark 2.13 and the fact that C‘___%(jv\) = OC'YL )

and F (W) = 0(m%) , for every . £)o, it follows that



g (5.19) R
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the inner sum in the O-term of (5.12) is 0 (&(X));

Theorem 5,7 follows from this, (5.13), (5.14) and 4(5. 12),
(5.15) Theorem. Let k be even and > 4. If the R.H. is true,
then the error term in the asymptotic formula (5.9) is

given by &R =D

OK m———l—a’\/\j (7()) .

Proof. Following the same prbcedure adopted in the proof
of Theorem 5.8, making use of Theorem 4,18 and Remark 2,14
instead of Theorem 4,13 and Remark 2.13, we obtain this |
theorem,

(5.16) Theorem., Let k be odd. Then.

/:52
(5.17) ZYQ(W’)WM) = @(3)@7’\1,\ + 4,00,
e 3 5((Re1)/a)

where

(5.18) A () = O( Wiy /\% k=3 .
ox*7), i k7o,

e o ke
. t k=%
"Rty 4

T b7 e )P Go(P 57
k pi RN Fep ko
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where for k> 7, k-9
(5.20) ~ : 3 Qo -2 |
B G =
P i

(5.21) @Mo) = ‘—{ 1) 9
P?'(% wl)

and @)h is as given in (3.3)

Proof, By lemma 5.1 and Theorem 4,6 we have

ST Yl = > MW)ZYK(W\' )

m<iac < < Y2 |
N 3z (( h+D/7>D %< 3 /LJ_);M CVOP (w)
et N Q( I+ > r;cv\)w Pt ““5{? /% mnﬁ M)E
@5-23% ) Fl) ,<(>(V>>U”3<w>nk%“. (M
R(M = = [t Pal® |
If nis square-free, then Y ()%= yy> Lw  according as

k = 3 or k>/ 5. Hence we have

=5l . -
N | BR( ) —

O(GR(Y\)WJ/&) 5 })5 kR>5.

For any b > 2, using a standard argument, it follows
from (4.,5) that

(5,25) = F@(M :O(x) s
n<x
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Further by (4.8), lemma 4.4 and (5, 25) 4

>, Gl =000,

MESS
so that by partial summatlon, for any s > 1 4 we have
= G p\b) , R S
2 7 =0(x /-
N> n

Hence by (5. 24) 4

AX A4 ke
(5.2'6) Z B K'Y\a) e gO( L > {X Y

N> o2 ol ), “% k=S
Also, 1t 1s not difficult to show that
(5.27) Z B (Y\) = TQ 4

/

e T,
R
Let Gy (x) denote the sum in the O-term in {529 &

/Wher 1s given by (5.19)

For k=3, using Remark 2.13 we can show that

Cplr) = O(§00) »

so that by (5.23) s (5.27), (5.26) and (5. 22), we
have (for k=3),

Ry,
35(r¥)/2)

which implies Theorem 5, 16 in case k=3, For k > 5§

using 8(x) < 1, we have

) £ z: REAROINON
=L 5 , AU'(Y‘

\4

RAZARN

(5. 28) (x

L O To(fx /46\1))
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We can suppose in the following that s 7~ 0. Now by (2.7)
and (5.25) (with b = e), we gete

2, O‘ w.)F n)lﬁv\) LT 4 F (d){:m

Ti€x ()‘8 <X
I F«w?ir(ﬁ>
d < x o< 2y
=0[x2 PV E () = o,
{ d(jc )
since s >0 and t’: (d) = G( a) for every ¢ yo -implies
'ZL& wa;:OUL
d< e
It now follows from *)artlal sunmatlon and (5.28) that
o

L (x) = O(f)(" E:‘)

so that I
3 R4
(5.29) ¢ () = 0O x . )

Hence for k > 5, it fol;Lows from (5.29), (5.23), (5.27)
(5.26) and (5.22) that |

| 93 | " |
IR X ») P T = 4
(5.30) Z YR(W\_UZ(V") = X )(&k\\ k +O(X d)'{'O(J(J)
"< 8 3((k+)/2)
which proves Theorem 5,16 when Kk 2 S.

(5.31) Theorem If the R .H. is true, then the error

term in the asymptotic formula (5. 18) (k=3) is glven Dy

A(JO- Q()L Y  ‘1>)-'
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Proof, Following the same procedure adopted in the proof

of Theorem 5,16 ( k=3), making use of Theorem 4,12 instead

of Theofemv4.6, we obtain Theorem 5,31,

(5.32) Remark. Eq. (5;30) shows .that our method does not

give any improvement in the order estimate of ZS (X)) for

klé> 5 even on the assumption of the Riemann hypothesis,

&€ 6, iAcknowledgement. One of the authors (V.S.R.) wishes to
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ON ABSTRACT MOBIUS INVERSION

R. SIV.RAMAKRISHNAN
Department of Mathematics,
University of Calicut
KER4La - 673 635,

INDIA.

. ABSTR.CT 2

This paper déals'with some exteﬁsibné of the principlé of
Mobius Inversion considered by G.C. Rota who introduced the
theory of incidence algebras in 1964, Three theorems have
been proved with a view to obtaining inversion formulae for
arithmetic functions of two variables. The following
identities have been obtained as illustratioﬁs o

(1 If ¢)(r) denotes Euler's phi~-function
— D) ST/
5 bk

A SR

S
At ) dd (m/a”)
(2) If "Z(r) represents the number of divisors of r then

_ o N p _ Y Db =(7r)
o (9) m/%ob _ %ﬁ}wr_«t?dw(wuﬂ /d) > 9

where Qi(r) denotes the sum of the squares of the

divisors of r,.

(3) If C(n,r) denotes Ramanujan's Sum and }L(r).is the

- Mobius function,

A e

ST C(mfd, YAYARE) =R,
e
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1. INTRODUCTION o

»

In 1964, G.C. Rota (1) introduced the theory of Mobius
functions in the context of incidence algebras which he used
as a powerful tool for the study of cémbinatorial theory. The
subsequent papers of D.i. Smith (2), (3), (4, (8, give a
detailed account}of the major results obtained in the area of
generalized arithmetic function élgebraS. In (6), Robert Spira
has also given a lucid exposition of the principle of abstract
Mobius inversion, usiﬁgrthe description of Mobius function
due to G.C. Rota (1). Theipurpose of this paper is to extend
the idea of abst;act Mobius inversion to other inversion
formulae which have applications to arithmetic functions of
two variables., We formuléte our results in a setting similar
to that used by 8pira (6)

2o PRELIMINARIES o

Let P be a non-empty set which is partially ordered by
the relation < on P. ©Suppose that for x,y €P, the segment

[x,y]-:--gzt x g'z and zéyg
is finite, TUnder this assumption, the partially ordered set
is said to be locally finite, P is also assumed to have a
minimal element denoted by O. That is, 0 £x for all x &€ P,
Further, we need P to be a semi-lattice, That is, there
exists for all x,y &P, a greatest lower bound g (called
the meet of x and y and denoted by x A\ y) such that gfs_x,y
cand z £ x,y imply that z < g, By g x5y , we mean g <X
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and g << Ye

Let K be an arbitrary field. We say that a fuction
£ 5 PxP = K is an incidence function if f(x,3) = 0, except
possibly when x < y. The composition of two incidence

functions £ and g is defined by

(1.1 (fo) (x5 = I f(xyz)elz,y) 5 ifx (y
x_s;z;gy

0 4 otherwise,

Clearly, (f.g) is an incidence function. It is easy to verify
that the incidence functions form a ring with identity under
the operations of addition and composition (l.1). The
identity element under composition is
(1.2) E5(x,y) = {l s It x=y

| 0 ,1if x # .
In fact, the set 4 of incidence functions forms a K-~algebra with
pointwise addition, scalar multiplication and composition. .&

is called an incidence algebra over P and K. Defining

¢l Hif x Iy

1

(1.3) e(xX,¥) 3
¢ 0 s Otherwise

1 ,1if x=y
(1.4) b (xey)

I

- 2 u(xy2z)
x$z<y

~ 0 4 otherwise




88

we note that
(1.5 e @ s 6
If we consider the point-wise product fg(x,y) = f(x,y) 8(Xx,¥) 4 &
is a commutative K-algebra with identity e(x,y) (1.3).
Now, the theorem on abstréct Moblus inversion may be

stated as follows o

For f,g &€ i such that g(0,y) = Zf(O,x)

0<x<y

5 then  £(0,y) = z g(0,x) u (x,Y)
\; 0gxgy

In the case of Z+, the set of positive integers, taking partisl
order as 'divides! we obtain the classical.Mobius inversion
formula as a special case of the above result, |
é Next, we denote the set of all finite segments of P by S. Let
F be a mapping from 8x8 —>X. F( [ u,x], v,y ) is defined
to be zero unless u £ x and v < Ye In the same manner, we

may define a mapping Pe . SxS > K by letting

P [g,x [V, i] ) §~f(u,x) whenever [u XJ [:v,yj

otherwise,
We call P s the principal function determined by the

incidence function f.
2. INVERSION FORMUL.ES$

Let_ﬂ%be the set of incidence function on 8§ x S. For F,G 3%

we define the product (F.G) -as
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(2.1  (F.G Eu,x] ,Lv,y—_\) >"’\ R( [, w] o[ Vyz G@,xjﬂz,y
u gw é
v<z<y
where , as indicated, the summation 1s over all w in (u,x) and z
in (Ve o
| It is easy to observe that the above composition is
associative. We need the following elementary fuﬁctions which
are required in the illustration of the composition (2.1)

and which lead to the proposed inversion formulae.

(2.2) : A( [u,X],[V,Yj) g(U,X) S(V)Y>

1l

(2.3) K Eu,xj,[v,y]) = e(uyX) e(v,}y)
(2.4 M( [u,xﬂf[v,y]) = g (u,x) o (vyy)

where 8, e and i .are as defined in (1.2), (1.3) and (1l.4) respec=~ "
tively.

Lema ¢« 1. (E.M ( [u,x:l ,[v,y] ) = Auﬁ’xj ):v,yj)

For, from (2,3) and (2.4 , we have

@30 (oyxl ,[v,7) )

il

>z e(u,w) e(vyz) p (wyx) b (247

uLwLx v < z<L 5y

E o (wyx) B (Zyy)

uwLx vz

= Z 1 vy X) S u(24y)

uow <X v é 2Ly
(w0 §(vyy) 4 by (Li4)

I

1

= AC [wx], Cvyyd)



This proves the lemma. It may also be noted that (M E) = A

Lenma ¢ 2

. | i) L) Uy
(P[] mv}y-—i‘:(u A5

o, Otharawise
Proofs
(e F)(DM)‘] ['U y)) = Z Ps(Luw], LV, 2] )F( W, %) 5(2 \/]1
, y<wLxX
V-<;z<:y L

> 8'%»@F<£w,ﬂ,tw,«ﬂ>1 CCF (D], D))y

ULW £xX : N Lo
=3 U=w <Y %}u—V \ .
g 0 }' BQQILW&"
O obtiwuaial |
| Hence.the lemma, ZZ: F:< EMJXJ 1&4 5]) A%{L’
Lemma 3 (P .F)(Tun], [ny])= zu SWLAAY
| . ‘o‘,'WUMvu$n5£ -

Proof follows on lines 31m11ar to that of Lemma 2,

Wy u, l
(?/N-Pe\([?m],[‘v,y}):fé (05T Y]

0, sl e .

Lemma &

Proof$ Using the definition of P 5 we have
1
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’UN)PQLWK][W[DV

( e
y

UgwgX
w

—

. ( ?}}V .‘P@([M"X]’ [V" ﬂ) - 0, otherwise

P | {LMMW(LMMW
(

W< €AY A =V

I\

0, otherwise

0, if x £ y, by the definition of -

~ But, - fx(’u\)w) 9% Y =V
(?M‘Pe)([’”?ﬂ?[\’sxj): ‘ W W '5)7(,' :

: b, otherwise.
C(uyx) , ifu=v
h 0 4 otherwise

50, :
(B e P [u,x]',[,v,y‘] } =) Pe £ Eu,x} s [ Wy ifu= v
04 otherwise
 This completes the proof of the lemma.

Now, we come to the main results embodied in the following

theorems ¢

THEOREM: 1. If G ([u,xj [,yj) = Z ([u,w ])Lf z])



92

then,

F( [ uyx] y(vyy) ) = Z G([u,wj,[v,ﬂ)u(w,x)u (2z,9)
ulwgx
v< oz Cy

Proofe We note that in terms of the composition (2.1) ,

o Cuyx] 4[v, 7)) = (F.B) ( [uyx] (v, 5] )

and

Z G([‘%ﬂ aﬂvaﬂ) k(w,x) i (z,5) = (G.M) ( [u,xj,[v,@,.

uéw$x
v<z éy
Simplification of (G.M) leads to.
(G) € [wx]yvyy)) = ( (F.B)o M ) ([ux]),lvyy]) )
(Fo(BM)C [uyx] Lvyv])
(Fo & ([wyx],[v,yl), by lemma 1

B( [u,x} 3["73’] )

i

Hi

I

Hence the theorem,
THEOREM? 2. If 6( [[u,x],{vyy]) =ZF( [ 2:s%)5[2,7] )
u<LzLXAY
then ¥ ([uyx ], [uyy] ) ;Zu(u,z} G( [z,x], (zsv] )
ugz<x Ay :

Proof: By lemma 3 , we have

ZF( [W,X],[W,Y] ) = (PeeF)( Eu’xjgﬁﬁ‘-" YJ )
u < w LXAY
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But, z p(uyz) G( [z,x_l,[z,y] ) = (PLL.G) ( [u,.x] :Euaﬂ)
u Lz & x NV ‘ = (P (PgoF) ( (uyx) 4 (wyy]})
- = ((P“.Pe) B (Cuyxl y [wyy])

= (P¢ cF)((uyx)y Cu,v ), by

lemma 4

F ([u,x] 3 Eu,fz’]), by lemma 2

1

This proves the theoremn,

Next, we define (e.é) (zy7) as  Txyy) = \ (x,yjl (which
may be consideregi as the number of chains of lgngth 2 contained
in [x,yj). Therefore,

ZE C[zyx ] ,Bov]) = Ty xAD
VLB L TAT |
and so, (Po.E) ( [(uyx] Juyl) = T(wy x A9,
THEOREMS 3. If G( [[u,x] ,[uw,v]) _ZF( Lw,x] ,[z,y:l )

ugwgx
' u<Lzy
then Z g ([z,x], @,y]) = 2 Ty W A FC Ty 52050
W <7 €AY uéw(x
* ud z< v

proof ¢ From the structure of G , we have

Gl Eu,xj 9[‘133’1 ) = (B.F) ( Cuyx] [uafY])

Now,

il

ZG([Z x‘} Tzyv])

W<z <any

(PG'G),i [U-yX] 3[11,3’] )
(P~ (BN C [wyx] y [wy])
(@B ).F)C [wyx] 5layy )

it

11
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=V uy, xAY )FCLuyx |y [uyy))
":Z(t(u’ wAz YF( [wyx) ,[z, vi)
T u fgw'éix
u<z<y
This completes the proof of the theoremn,
3¢ ARITHMETIC EUNCTIONS OF TWO V.RI.LBLESS
The folloWing inversion formulae (3.1) and (3.2) follow
as special cases of Theorems 1l and & respectively,
(3.1) If f(n,r) and g(n,r) are two arithmetic functions which

'are such that

A
gln,r) = :ZLJ :ZiAf(t,d)

| 'E[n al r
then,  Hmyn) = S S et W/t W/
. t \ n dl r
For, considering Z+., the set of positive integers with partial
| order 'divides'!', let o
: P [l,nl ,[l,r]) = f(n,r) and G ([l,n] ,El,r] Y = glns?)s
‘ Then, using Theorem 1 we obtain
s o [1,n] ,[{1,0]) = ZJF( [1,£], (1,870 )
1Lt <n 1<a<r
and this implies and is implied by 5
F( [1,n], [1,z]) = Z G_(:El,tj,[l,d] ) 'u(t,'n) L (dyT)
1<6gn |
1<da<r
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4s u (tyn) = u(n/t) lj6i3 and-u-(d,r) = u(r/d) 4 (es1) follows.
(3.,2) If f(n,r) and g(n,r) are such that g(n,r) = ;§: f(n/dyz/d)
é o f“_‘“ d ) (n,r)
§ then, f(n,r) = ;z u(d) gln/d,r/d)

d ( (n,r)

and conversely,

LU I G i R R R R Bl

To prove (3.2), we observe th-t for Z ' under the partial
order 'divides!' n A r = (n,r) whenever n,réE’Z+, where (n,T)
"snotes the g.c.d of n and r. .Glearly, (3.2) 1s a particular
% case of Theorem 2,

(3.3) If £(n,r) and g(n,r) are such that

gln,r) = ;ZLJ j{;f{ n/ty r/d)

E then £PW d‘¥
i E g(n/dy v/d) = E Zid((t,d)) f(n/t, r/d)
d ‘(H,T) t\ n d { r

where T (r) denotes the number of divisors of r.

(3.3) may be deduced from Theorem 3. The derivation is
similar to that of (3.1) and (3.2)., The details of proof are
omitted.

4, LPPLICATIONS TO IDENTITIES.

s applications of the inversion formulae proved in é; 3,

we give below a few identities connected with BEuler's totient qD(r)

and Ramanujan's Sum G(n,r).
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(4.1 "z’: b ez

d](n,r) d @(nr/d% @(n) @(r)
Proofe It is well known that qD(nr).=
b

LR Jile]

g =(n,7)

That is, (e o )
6 Hnm)
or, r W = ret) $ )
d‘ & b (ar)

Appealing to (3.2).we obtain
(r/d) ¢ (w/d) P(x/d)
ale $ (nr/a%)

which reduces to (4.1) on cancellation of r.

(2.2) 2.7 T8, & (W b(x/d) = oy(p)nr/e® § €= (nyo).

t\ n d{ ;o ‘
where Oi (r) denotes the sum of the squares of the divisors of r,
Proofs s EZL q) (&) = r , we have
d | r
> o b (wh) o (r/) = nr

t‘ n d tr
IT cr9(r) denotes the sum of the squares of the divisors

of r, it is easy to see that

%E 2 2 . \
nr/d = 0 = T
e g nr/g” g = (n,r)
(In (3.3) 4 take f(n,r) = qa(n)qs(r) and g(n,r) = nr,



b ian MM e ~ 5

p s o o) g L sl s AR At i ¢ BT Yo S LR v { A

97

Then, 1t follows from (3.3) that

2
THe w/e = LS ) S P /.

t\ n d\ 5

Remark ® It may be pointed out that (4.2) is proved in g7,’Section
V) using the properties of functions of Ti..i. .o .7 greatest
comron divisor, '

Next, let C(n,r) denote Ramanujan's sum defined by

o(n,r) = Ze\xP( 2 Trihn/r )

h(mod IT)
(he2) = 1
where the summation is over a reduced residue system mod T.

It is known that

—

C(n,r) = ;ZJ w (r/d) d.
G | (n,1) | |
X
(4.3) /| G(n/dyz/d) d (@) = p(n) 5 g= (0,0,
e O(nyr) (r/a)
- gt L (r
Proof & We note that ’ = EZl
: r d] & r/d
Therefore, from (3.2) we get
C(n/d,r/d ‘ A
(n, )I‘/) ]J,v(d) _ 1 ()
dlg T/ e "

from which (4.3) foliows immediately.
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CONCLUDING REM..RKS ¢

The results obtained in this paper were the outcome of
an attempt to study Mobius Inversion in the context of
arithmetic functions of two variables,

There are many identities involving C(n,T) ,<b(r) and
othef related arithmetical functions., Some of them ( see for
example (4.1), (4.,2) and (4.3)) can be brought under some sort
of an inversion principle, However, the following identitiles

o1 ¢7(r) are not quite revealing from the point of view

of inversion$
(a9 @D - > E (t,d) w(t) w(d)/ td
nr ’ )
t ln d]r
Vaidyanathaswamy[j?] obtains the above identity from the
identical equation for totlents.

AN ldentity due to S.S.Pillai is the following

(4. 5) <{9(nr) } Z b (0/Q) <\s(r/d)d

d| (n,r)

whenever n and r do not have a common unitary divisor greater
than 1.

It is shown in[i?i) that (4.5) is a special case of a

restricted Busche-Ramanujan Identity,
(4.6) E (nr/d%) d p () ={)(n/u) cp(r/u) @2(11)
dl (n,7)

Where u 1s the greatest common square-free wnitary divisor of




(n,r) and |
Sgm = [T (12
p [z
We observe that (4.6) can be deduced from the multiplicative
property of 43(nr) considered as a function of two
variables n,r .

lYet another identity satisfied by (b(r) is

(4.7 ¢ bm = E:q}(mm i (a)
d l (n,r) ‘
(4,7 is due to Venkataraman (:8:3 « 1t does not seem to

be the result of a Mobius Inversion 4 as it is cbtained as a

property of symmetric multiplicative functions [:BTL

# AR
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MalMal K-~th POWER aAND THE MiXTMaL K-th POWER UNIT.ARY DIVISOR

 OF AN INTEGER =

PosSubrahmanyam and D.Suryanarayana .

Dept. of Mathematics,
S.R.J. College
Shreeramnagar~53él©l.
Vizianagaram District
- NNDHR&A PRADESI: .
India
1. INTRODUCTION«

Let k be a fixed integer 2 2, 4 positive integer n is
called a k-th powery, if in its prime power factorization each
exponent is a mﬁltiple of ke By a k~th power, unitary divisor
of n we mean a divisor d of n such fhat d is a k-~th power
and also d unitarily divides n. Let (;§Cﬂﬂ denote the maximal
k-th power divisor of n and ﬂg?;)denote the maximal k-th
power unitary divisor of n., Further a positive integer n is
called unitarily k-free , if n is not divisible unitarily
by the k-th power of any integer > 1. Thé»concept of
unitarily k-free integers was introduced by E. Cohen(cf (3)§fg)
Let Qg* denote the set of unitarily k-free integers and ggftm
denote the characteristic function of the set Qk' Let thi ()
denote the maximal unitarily k-free, unitary divisor of n,

It is easy to observe tThat W/j)é_yx) = r\fzyg the maximal
exponentially odd, unitary divisor of n., (Integers in whose"
prime power factorizations each exponent is odd, are called
exponentially odd integers).

e e me e e e T T s - — e e e em ~— - e - e am e em e e - .-

*Presented by s« P.Subrahmanyan.
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In this paper, we establish asymptotic formulae for the
. > \
summatory functions of (1) r;q,(%) (2) PK(W) (3) EAE)
153
and (4 P C”m o As consequences of the asymptotic formulae
for the functlons (3) and (4) we obtain asy‘mptotlo formulae
for the summatory functions of"T-‘ ()  and )—1 (L)

W R
respectively, where Y"m\ denotes the divisor of. n conjugate-
to the greatest k-th power divisor of n.

In % 2. We prepare the necessary background and
establish the main results of this paper in § 3. We discuss
the consequences of the Riemann hypothesis in % 4y

§ 2. Preliminaries.

In this section we introduCé ‘some notation, state some
lemm's already established and then prove some lemmas whi.ch are
needed in.our present discus'sion., Let }_,g,oroand Qv denote
respectively the Mobius function and the Buler lotient function.
Let U * (n) denote the unitary analogue of the Mobius function
deflned by u (n) (= )c.umw? where (WYY is the number of
distinct‘prime factors of n > 1. Let & (/) denote the number

of square-free divisors of n., Let the constant & Dbe

defined, by _
TS <y \
R P PR R

Where 2;(29 is the Riemann Zeta fu.nctlon defined by (% __Z

m’S

for s> 1l., Let By (n) be the function defined. by By ( Lzl and :



(2.2)

&
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b (P
k('“f) Tb? < Pkﬂ Q\P +) >

Remark 2,1  Clearly 8 (10 <<’CLV\)the number of divisors of n.

In our present discussion we need the following elementary

estimatese.

(2.3)
(2.4

(2.9

(2.6)

z Jvﬁ = b‘}”w e Q(%'c-) (el mem;)

Tmnm<x

=2 TH GLWW\

=, ‘>> = o(x'"") e (e[ N gw\

RS AL | e

STqiw) = O(’XQQ‘X L) u@[ﬂ g
™M <oC .

7
- = (cf[V1,pP70
Mizﬁ%l = O(leg =2 il /w&iﬂm 35

Lemma 2.1 (Cg .EJQJ ’ QS,YVVWwJL Q}‘E:)E; ) F;y% k: /

(2.7

>

[ZE R
k e N NN : s
L - L 0LErm )

W <IC (MY =) R+t n

Lema 2.2 (cp. (5], Thaswm 30%)

(2.8

= QI = BB 2k
Y=y

Where Y (r) is the characteristic function of the

k~free integers

(Integers in whose cannonical representation each exponent

is .

. < kD

Lema 2.3 (¢{.U=z] , (3*"7) armd (3+1) ab Vs o0 )

(29

Y-
I - A Y
R (ﬁY{S =YL '
(L.3)
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Lemma 2.4 (,CT—{LE\\’]‘> b G rn e 2;*6",, %= Re\)
o ¥ olm

SE D i Ul WW s WW -
=4

R }OR FR*\ JDRH P

wony =\
Lemma 2,5 (cf (11), Lemma 2,4, s = k+1)

(1) 3 W) @Cm). ( @(ME.(X)>

"> R xR
(YYI Y\):
Where 8 (x) is given by 5;& Q,G
=X
(2.12) Ao @X\O A - @)Og) b )

13 6<x<3.

4 being a positive absolute constant. )
Lemma 2,6 ( cfe (11), Lemma 2,13, 8 = k+1) If the Riemann

hypothesis is true, then for x = 3,

) @(n) 6oy W Xog %
(2.13) 2. = = O e
m > * ' | oc N 2
(v, ) =)

Uniformly where G (x) is given bY. -1
% >3
| {expialogr (lpe) § e
(2 14) U)(”)C) = '
Lov 0 <x <3

4 being a positive constant,

Lemma 2,7 ( cf, (10), lemma 2,8 For x > 3
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(2.19) M:CHE mz(r*(m) = O G X8 )
(_W\Fm:t

Uniformly where &(x) is given by (2.12)
Lemma 2.8 ( cf.(10) Lemma 2,16). If the Riemann hypothesis

is true, then for x> 3, ,

(2.16) M,,T("O =5 Wem) = (@(’n X * w(z) & 3)@

Uniformly where @) (x) is given by (2.14)

Lemma 2.9 ( cf,(1l2), <sadt=. ] P.1S2), For x > 3

(2.17) X e
)\\<)Q

Uniformly where By (x) is given by

. 2l .
(2.18) iexy f# ; /'v 01 DQ(Qoa Qm 1) fc,
(L]’

C Vo Hov o <x<3

Lemma 2.10. ( cf (9), Theorem 3,2, n=1) If the Riemann

hypothesis is true then for x > 3 :_
V:‘ = ! ' 2 "‘t
(219 = G lm) = —— *o(fx, cuuo)

Uniformly where (5(x) is given by (2.14)

Lemma 2,11 ( cf (7)), lemma 2.,4), If £(n) and g(n) are

multiplicative then
(2.20) hiw = HAHR(E) Rz
(:KY\% =M

is also multiplicative,
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( of (8, Theorem 2,4)

Lemma 2,12 If f(n) and g(n) are

multiplicative then
(2.21) (5) , R>
i) ~% fa g
At =
(A 63 =\

is also multiplicative

Lemma 2,13 For x > 3 e » o
(2.22) Z o\;};(\f‘l\) :‘e C‘?(Y\\ \Q_O\> X O (gm)x & (1)%
=)

Uniformly, where Q, Ek(*(\) and SY&X) are respectively
given by (2.1, (2,2) and (2,18

Proof, By lemma 2,3 we have

\ %

s = = Z )
2.9 (W\) , aRE <X
<xYZ mL e ARg =m @g:)__‘
W< = = =
cm,qu (WD =1 (4 3)=! (o\,'i)-:x

Let Z2 = I\Q and 0 < @ = 9(2> <\ where ©(Z) will be suitably

chosen later, If dkg < then both A >PZand & 7 9

cannot simultaneously hold good and so '

: )
S qpim = ZN“*Z“ @ = 7k
mer Mg “’1 s<e7"
- < ez bsv Ad, )=
=SS a1 @s=(a®=! &@ 8=
(2023) = Sl + 82 - 837 say

By Lemma 2,1 (k=0) Remark 2.1 and (2. 5) we have

- Z N1 Z !

d<g < §< X/0
(&1‘1\):5 ( \-ﬁqy\\

=

= W (a\>& % QLN

OBy

A §Z
Qékq‘f\)——\

& & F

v
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% S
_ 'IC‘?“‘) Z W {m) *\Yﬂ) L0 (9(*32 NC‘-W‘O
— W\RH

™ o mg ¥z ™MeyE
] (M!Y\):‘
;‘ - ) X 1) Z
'\ fecas 3((()0/\.) Z \y At o YL i R
. : T T ™>§7
I YL YY1 = ) ‘
- ) , . (WL\Y\)"‘
i (mm)=|

7 Q(%;(,v\) 0z Q@% §2 )

ﬁence by lemmas 2.4y 2.5 and (2.1), (2.2) we have ’
(P | . - .
“ (“5\3 \(Y\.> \
ks )+ QRS = NCE
T : - Q&) 9
| O6m 52 g37)

We have by lemma 2,7 " 'y
A RS UENSIN Jx X
' (E.ypy=\ (4.8%) =" R[S _ oz (Do Vi
@ince 5 (x) is monotonic decreasing and \/;;\‘ = Me -

o

:(2624_') c = =

have 6(6‘%— L &[4, dlso, we have Ly Remark 2.1 ,

2(2. 5 and by partial summation

- Geyn , .
= = 0(F o< )

m§§~}< m R
}

(9 26\ A STATR = : S ] /Q ‘
e g = OlemsT 2 sl

A1lso, by lemma ©.7 and Remark 2.1 and (2.5) we have

I e Mo \ ¥ :
8<§ -x A g2 5(;*;_‘.5;“‘& Giff

(3 w)=! Ch B =) ('E,"ﬁ):\

s Bown §2837)
msf‘k
(W) =)
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= 0( @) $2 3(82) A&”’“) "U.(Sw s2tisz wg o R )
m<p

(227 33 = Q(p{me zaa?zb%g )

Hence, by (2.23), (2,24), (2.26) and (2.2'7) we have

(2,29) b OW\(M - O qu(m@( ) O(SW)Y z b(?Z)Qﬁa )
X v’
(W\x\l\) *—-\

+ O(m 32 Qoay'i)

~, ol and writing
vf(X)*‘ 6(19‘\(‘ ;‘\’

i

Now choosing S)

£ () = log (1 ) )b«Qqa z\q)) as in ( cf. (6), Theorem 4,1,

(4.12), (4.13) and following the same theorem referred here

we get the first and second O - terms of {.72.28) are each of
| .
, —
O xR a ()

This completes the proof of lemma 2,13,

Lemma 2,14 If the Riemann hypothesis is true, then for x> 3

(2.29) Zo‘ ) = EE (mIfw)
™M X k .
) 2

(Y\an\)':\ w

Uniformly where G#(x) is given by (2.14),

- O (F)(y\) jcmH u)(lﬁ)

Proof. Following the same procedure adopted in proving

lemma 2,13 and making use of lemmas 2.6 and 2.8 instead of

lemmas 2.5 and 2,7 we get the following instead of (2 28)

. \ % Cp QW E (N J
(2430) "—'\E %F‘(W\) = Bk R O(G(“)? u)(?g) (73@2_#)

W <X Y&

Coan) = -+ Olew y2 Q“%’ (£2))
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,, = ~,p

Now choosing g.. =2 ZRH We see that 0 < P <1 and ¢ z° ::fi
;

= o 7z k] since i x) 1s monotonic increasing, we have

"
i

w ($2) < @ ( £) and also log 7 < log Z . Hence the N
first and second O-terms in (2 30) are each of O(Q(W)xl\“‘*‘ WUCR)
S

Qoai) = Q(&( Y ¢ 2R+ wp@)

Hence lemma 2,14 follows.

Remark 2.2. The Case n=1 of lemmas 2,13 and 2.14 have been
proved by D.Suryanarayana and -+. Sita famachandra Rao ( cf (10),
Theorem 3.1 and Theorem 3.2)

Now we establish the following identities.

Lemma 2,15 C\\Q (5
S s N o, 3
(2.32) _Ad o Z OVR{B)/A

Te(™ ARG =¥t

(2.33) o A Re (3)
i = 2, 4
Ca,3)=)

(2.34) {  Krsy/
| S-SR AL A
‘R(f\) AR =7
(& RYES

Where %(n) and %: (n) denote respectively the characteristic
functions of the set of k-free and unitarily k-free integers.
Proof. Since % (n) and '%?(n) are multiplicative, it follows

by lemmas 2.11 and 2.12 that the rlght side sums of (2,31) =~ (2.34)

p r o, Fe(\'\} Ou\/\ék \/éé(n)

are multiplicative, It thbrefore sufflces to verify (Q.Bl) - (2,34)

are multiplicative, also r‘ (°ru)
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at n = pg‘ a prime power,

For proving (2.31) we note that any £ > k can be

uniquely written a§ <= bk $h o< £k Ap Uhak

k o\ ’ o .?3‘\ '
5 4% (g = 4( s (p%) - for o<k _&§w~,fx<\e |
A K ‘ !
ARE = \’9‘ [ Ftkcv (-}f‘) $ov dok ,}otk o> R
Nelp™) %Muwmwrv ‘
—-—- \’\v\/x o,

Hence (2.31) follows. (2.,32) can be proved in a similar way..

For proving (2.33)

. , - . k , oA
5 AUWkW) §\%£(ﬁ) %‘R*x*% jﬁﬁ* |
e M ez e T
(hid) =) a = ey

Thus (2.33) follows. In a similar way (2.34) can be proved.
é 3, First we establish.
Theorem 3,1 For x =
(3.1) ( R+\)
. = ﬁkm)r
e ° (R+) 5(?(4—\)
Proof. By (2.31), lemmas 2, 1 and 2,2 and (2,3) We have

2 = cw (6 =2 (§) AN

o + 0 (x Xo}))() |

WM< ™ <o ¢<x ks(%)ﬁ %
oy . LR ) R SUVIRE IR 'Y
Sid‘/\\m )* { R+ (( 5) ) + 0 K( %}k) )g ,é
<A | |
_ :(,H—”E — OV\(\WV\) ¢ I.z .,L 3\ |
TR ek MR Sl




1LL

LR DA s Vel ¢ ot ley )

5 TQ«-\ v “m\*E ——\m)x \m 5

' . H"k\:e ‘é’( )

- T S b + 00t L)
* kRt L BRAD K ) E :
| — t(Qb‘ .\“D/kD ‘X,\ Y ‘R‘ + O (QI)C& 0(.)

RM)*(@ +)
Thls COmpgt tes “the proof of theorem 3.1

gCorollary 3.1 For x =z 2

ey 3/2) 32
(3.2) Z } (W ) Sl Q
. >C o8 X
Where D(W\) is the maximal square divisor of m

- Theorem 3.2 For X 2 3,

(3.3) v Bk =
s A =2 L oGRs w)
™S ((Wﬁ) CR) < R |

| Where & (x) is given by (2.18)
 proof, By (2.32) and lemma 2.9, we have

> R D S L RZ QV (o)
| gy e ““S-ac e =m QN d‘ikd 54 h
S T 2 ecver O(l‘§ )
| sk A =kl (5&) ®y 'Sik)) %
(3.4) _ X L{;\sﬁ Q(%;Il& "\i‘”‘g (i’f‘)hg\*\%‘—‘))
k) WSx® -

\
e :
Since x & SX(X) is monotonic increasing for sufficiently
- 0

large x9
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We have J~
[ X
Z i‘m*(m) K m) ! D(K% 2 “‘R)
ML xk m< x ®
O(U‘g (x3) -
Further by the definition of 23 (s) given 1n (2,1) and by (2.4
we have X3 1 f; \
N L -/ TR
£ Iy \'YL'LR < \fYL h W‘>X~EQW\ | ’
™M <oo R W =|

- etk o(xR) M) C”“*‘O{XR

Thus from (3.4) and the above dlscu551on, we have

A 3R » -’rQ( ‘\ +0(x R%(IO
WX RIS
= t(a»\Hle A V)

Hence theorem 3,2 follows.

G e s i o o

Corollary 3.2 For p'd ;; 3,

, L
™ <x S(\*A) Z(2)

Remark 3.1 We have Tk(n) X Y;{(n) = n, Where Tk(n) ié

the divisor of n conjugate to the greatest k-th power divisor

of n. so that T (n) = qu/(ﬂk(Yg>

Now we have the following,

Theorem 3,3, For x > 3.
(3.6) =, T (wm} =% lﬁ( R +U(1{ é}R(;O)‘
N <s¢ W h = CY\) ‘
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iproof. This follows by theorem 3.2 and Abels identity
( ¢f. (1), Theorem 4.2)

Gorollary 3.3 For X > 3

1 F(A) Y2
1 (3.7 ZECW) oo YL O(l é’&b\))
3 m<1‘ Y &-("()
’ Remark 3.2 From (3.7 1t follows that the average order of
To (m) 1is ?0(4’3 i-ﬁ'x- a result that has been
WCfC") 30
| established by B-Cohen ( cf (4), Corollary 2,23) .
TheoremIB_._{;L_ For x 2 2 \
= o3 :{/ (ym Q‘)(m) . B
(2.9 < TF e LS 0 L
,Zw] ("m)“?( - > T "‘\"O( Ko x)
k 2+
oo S (\:(-H) w =] m
proof: By (2.33)', lemma 2.1, Remark 2. 1, (2 9 and (2.6) |
we have Z\—‘ ) = Z- d\ a/ (V) = C\/F(ﬁ) LN
\R(m \Lr\‘Rb \f* E &% A BN
= <=k
M {a »6) a\ _&;_)\\{\
{XD3F
i H-\Q \" -
- S P G K R SR A(CIRSDE
mE X
RN ) glmd .
_ R s YRR s BV
e, MKx T e M

A - o
S S W e T ) (1) )

wig Y

= = M + 00 ’—\-O(i&@‘ali)

Qg;\—p | \ wL oo ¥
Hence thé proof of theorem 3.4 1s complete.
Corollary 3.4. For x 2> 3, Iy

%

| ), u\,p cm) CQ\W\) . 2.
(3.9 = F‘&QW\J = _/2’ = -——————7—:~ +O(:¢Qo¢§ %)

mlx 7 3 =) YL



114
,&f_.‘
where | ) denotedthe maximal square, unitary
divisor of m,

Theorem 3,5. For x 2= 3

2 g(m) BV A
Gy = A - wey T e+ O (R
WL < TT\JY”D "ﬂ \ ' ‘

* Where Q’R and & é“\are respectively given by (2.1) and (2.2)
Proof, By (2.,34) and lemma 2,13 we have

<. %
E* Z cvk,(.b,) }: qv'k(‘s)

" T\&:\-(W\) m<x g%s =m AR 4kg <x d\‘“

v " (d.3) =( (&.3)=)
_ = rQ ZQ/K(-S) - < L8 e. (s E (n) LQ“‘) :;_(
rLy & R /d 1y K L, -
N xk (s
(:3.11) -, &),‘ N
% s q,‘(yp“EkU'\) "\"Q( -‘ e(\‘\) ( > \(‘ : (A
(\n‘f-\)> = e 'L\n(\*v{ 2L Rt Y‘QI,K ,\L Y‘K \'.4 ;
We have _{__ “'OK since ~u T— K( ER__\) > 1 < )
L. " ey T e\ PE
W) ‘ P b i
Y .
> T ) i 411 since ,w (L) is
TT( v ) Z(R) xR
monotamc increasing -f\or sufficiently large x we have 6 .
, e | (M)
Z L/(W\) ( . j&i 5 )
g R W\R (‘m‘[‘) =0 (l 6¥<§ﬂ)w;g :('{z m"

R A
_ = Ol Re (0
D(XY\S (X) <LW‘ > 0(1 S (X)
follows 1, Remark 2 l and h((m) _0 («m ) for every & ~» 0.

Thus from-(3.11) and ‘che above dlSCU.SSlOIl we have

\ e 0 Sy Bt S »
TR R E o PN Ry [
R = mAx“nf ~

m< e 'r‘y\ (m) i (rat)
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o _ .
| e Byl Ly L
= %\ r\f"(n*” o O( x* ) +O(’(k gh\ )\7)
MO RS G
; _ 9 )\
fl == DCG\Q‘ =1 r(L+\) +O(‘( gk )

) !“

This completes the proof of theorenm Sed

Gorollary 3.5 For x > 3

. 2 QU E, (W
- (3.12) > \x. X.Cy Q( {
(W) A=) S

I

+0O(X Zg”)

Remark 3.3 We note that each positive integer n can be

+ LK
written uniquely as N = AR D where
‘ T T T; (1

denotes the maximal unitarily k-free, unitary divisor of ne

As a consequence of Remark 3.3 , Theoren 3.5 and

abels identity ( cf (1), Theorem 4. 2) we have the follow:mg.

Theorem 3.6 For x7z 3 2 o W EL(n) oL

(3.13) Z’ \*{U (M ) X L S Q?(Y\) (\;: +0 (QL k(“ﬁm)
\\(\ém k % R V= “{Lz )

Corollary 3.6 For x > 3

(3.14) < {gr(m = 9:;}6 Dgz- ?(Y?)EJ*’O +O (chh&. ('X))
w4 N Ram omb =

. *
Where r‘&( n) denote the maximal exponentially odd, unitary

divisor of me

Theorem 3. 7. For X > 2 )
- e %ka)&yﬁm) b2
(3.19 S Y" = R oL JrO(.XJ.% :x)
( W\) W= | ’r‘"\,‘_ +_E. \

WMo Wk
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Proof.. This follows by Remerk 3.3. Abels identity ( cf (1),
Theorem 4,2 and theorem 3,4)

é‘é. Here we discuss the consequences of the Riemann
hypothesis,

Theorem 4.1, If the Riemann hypothesis is true, then

-~

for x > 3 the 0 - term in (243) can be replaced by

2/ 9k+
0 (Y / 3R+

Proof, Following the same-procedure adopted in the proof

(A)(gq) where @ (x) is given by (2,14)

of Theorem 3,2 and making use of lemma 2,10 instead of
lemaa 2,9 and noting that 8(x) is monotonic increasing

we get theorenm 4,1,

Theorem 4,2, If the Riemamn hyﬁothesis is true, then f%E

x Z 3, the O-term in (3.6) can be replaced by ()("(,!f,\ﬂ*'z\;‘:4 W (W)
Proof. Following the same procedure adopted in the proof of
theorem 3,3 and making use of theorem 4,1 instead of theorem
3.2 and noting that W(xX) is honotonic increasing we get

theorem 4.2,

Theorem 4,3 of the Riemann hypothesis is true, then for

x 7 2 the O-term in (3.10) can be replaced by

5 5 } »

0 ( 1L 4 U W)

Proof. Following the sane nrocedure aaopited i the proof
of theorem 3.5 and making use of lemma 2,14 instead of
lemma 2.13 and noting that W(x) is monotonic increasing

we get theorem 4,3,
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Iheorem 4,4  If the Riemann hypothesis is true, then faF

X » 3, the O-term in (3,13) can be replaced by()(iz 2R+ 1))

Proof. Following the same procedure adopted in the proof of

theorem 3,6 and making use of theorem 4,3 instead of theorem 3,5,

we gét theorem 4a 4,
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REPRESENTING INTEGERS 4S8 SUMS OF TWO RELALTIVELY

PRIME COMPOSITE INTEGERS

AeM. Vaidya :
Department of Mathematics
South Gujarat University
: Surat 3950C7.
INDI A,

It has-been known that every sufficiently large integer
is a sum of two integers each of which is a product of at most
three primes. In this note we prove a much more modest but
also a slightly different result. Just and Schaumberger (1) have
proved that every even integer greater than 38 is a sum of
two odd composite integers, Here, we prove the following

Theorem « Bvery sufficieﬁtly large integer is the sum of

two relatively prime composite integers.
Proofs  Clearly

n=a+by(ay » =1=>(ny a=1landa < nj
Conversely )

a = 1y, a<n : n=a + (n - with (ay n - a) = 1.

(ay 0 ’ § = _ ( a) (ay n - a) 4
Thus

n=a+ by (ay b) = Liff (ny, @ =1 and a < n.

Let ajy agy eeey 3 Dbe the k = ¢ (w) integers no@w

exceeding n and relatively prime to n (n ;; 3)s Then

-

a; + (n - al)

ag + (n - aQ %

Seo L I ] e

ay + (n - %9

(1) | X

o -
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are all the representations of n as a sum of two relatively

prime integers., Of coﬁrse in (D s each representation occurs
twice since a; + (n - ai) also occurs as a; + (n - aj)
where ay = 0 = aj. So the number of distinct representations

i
is 1/2 ¢ (n).

The representations a; + (n - ai) and a, + (n - aj)

J
will be called duplicates of each other if ay + as = n,
Now we want ay and n - ay not only to be relatively

prime but also composite. If n=a+ b, ay b composite
and (ay b) = 1, we shall call this a relaevent representation.
First, note that the set { 89 29 ....,akécontains
all the primes upto n except thgse that divide n, So this
set contains m(n) - W(n) primes, whére m (n) is the number
of primes not exceeding n and Wy(n) denotes the number of
prime divisors of ne In addit:ion to these 7 (n) - W(n)
noncomposite numbers, the set contains one more noncomposite
number, viz. 1. Therefof’e, out of the k representations (I),
mn) - W(n) + 1 are certainly not relevent. The duplicate
of an irrelevent representation is i.tself irrelevent., 8o there
are at most 2{17 () - W(n) + l% representations in (I)
which are not relevent, Hence the number of relevent
representations in (I) is at least,
F() -2 r() -W(n +1%.
Eliminating duplications, we see that the number of distinct

relevent representations of n  is at least ’é{ﬁjm)" {TY(YO—WM)-H i
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" We have therefore proved that if f(n) is the number
of ways in which n can be represented as a sum of two relatively
prime composite integers, then for n 7/ 8',

2(m > 3L —grny f + AWl -§ -

Now (1) W(n) - 1 Z O,

(ii) 1im inf g (n) _ oC
= 3
n >0 n/log log n
where C is Buler'!s constant (2) and by Prime Number Theorem
(1ii) lim T(n) =1
B =2 e n/log n

Thus as n>®0, ¢ (n) | has a larger order than Tﬂ’gn)
consequently as n-»#, we find that f(n) ->¢O ., This not
only proves the theorem as stated but actually proves the
followinge

Given a positive integer t, every sufficiently
large integer can be expressed as a sum of two relatively prime

composite integers in at least. t different wayse
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PARIITIONS WITH CONGRUNCH CONDITIONS AND COLOR

RiesTRICIIONS

S. Vangipuram
Department of Mathematics,
Sri Venkateswara University,
Tirupati, 4.P., (India)

T skeopaek

Abstract:

In this paper the author has obtained a convergent
series for b(qx,; QL_;nq)\Q) , the number of
partitions of a positive integer n into the parts congruent
to j:& (mod m), w1th any part congruent to +—(15(mod m)
appearlng in atmost B colors and allowing the repetitions

J

of the’parts with the same color, where

5 ‘ . m . . 9 ..
Ouéf;@ ‘§a\)@1)--'>QT?SJ\$&J<§ )23530-52.,32, 8yS,

using the Hardy-Ramanujan-Rademacher method.

81. Introduction: In this paper we obtain a convergent

series and asymptotic formulae for &3@ﬂfj@l}ﬁm)%§ the
number of partitions of a positive integer n ¥Ynto the parts
congruent to 4 Q) (mod m), with any part congruent to4Gs (mod m),
appearing in almost /X- colors and allowing repetitions of the
parts with the same color where xe @° EC”UCXQL)—~~)CXY E
$aj< e A 3 f

Io obtain the convergent series for the partition

function - F (Wb; 0 )WYH)Ef-D we follow the Famy circle
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dissection method of Rademacher [4-] For this we need the
behaviour of their generating functions in the neighbourhood

of a rational point on a circle of radius & 1 and concentric

to the unit circle.
g§2: Iransformation formula for the generating function of

Pl 5 @ ,m, 9)

The generating functions of ]{’)(%7 a m, N D) ié
given by : .
TY\U-\-GA )"Sj]x
FOo, @ om, §) =F0) =17 {\_OU—
O‘»Jg& YY\))—Q& ~%]
[ﬂ- (- )
V=
OO YU
= Zp(myem K =T pomx
V=0

AR '\o(O) =1.

Io study the behaviour of F(x) in.the neighbourhood of %__
foT any two integers h,k such that (b, 58 =14 LOLh <Ry, r

we Take o = iQMY<NWI\»\) VT % )% R&’% >0 and study the
the transformation =« = whereX &w Q/T(mh'Y‘ wﬁ)?

h' being a fixed solutions of hh' = -1(mod)k),

—_—

N : 5ok ¢ (Lewm e m k), d= (LR

. . | '
with \Z/ = dk W= A v and‘QC) Y ‘being a pair of
! i
fixed integers, satisfying ()C R J—YW\ =4 5.
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We set \mﬂf&S:%KA—\‘v\fj . 0O <L ﬁj<3< -

Using Mellins formula, properties of the i ‘I'W’" tz Zeta function

and following the:method of Subrahmanya Sastrl ‘_Sj, we obtain

the transformatlon formula as

—° A
Flo = Q;tyg(agk,k)TY (C&wc/ ‘T&J )x
. O\ E& W

X Qnf i&k Q’%"Aﬁ) H(X; a, g, & k) (2.1)

&

where QQ - p[/a\l(mm\m’) 0 < &J<m_ :
kas = i—_b ("W\Dd/ o(,) whichever ylelds O<b {:%}

Ok \“ }‘4) is exponential of a generalised Dedekind sum viz

Xd, k) = exp{miT(d,h, % here
WV (R M5 = ,
T, bR = Z 3 Z\( ) 353 )) oqij__ i@jimjajm)
BNS 7
v+ b}
H(x&fdﬂ T{TVQ 9:x L
G, eq VR -3,
AV 0,
X\)ﬂ\ > :% (2.2)
? =4 B ,
" ATNARAY
with &;o = Q,j: “.,\ d/mj | according as }Lﬁ = iQ;(YY\OdLm)/
& =50 \O\ =@ 0 =01 woax&\)l
T3 z% _mawga ) | ,
B = J\z% | Z%’J (o -—éovwrf”>
),
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83: Convergent Series for ¥>@YVB Gl;g?/ﬁv - :

In this section we deal with the main problem of
determining p(n) in the form of convergent series using the
transformation equation (2.1) obtained in 82, For this purpose,
we express p(n) as c@ntour integrals on the circle

\1, QM%JQ AT N % using C%@hy‘s integral formula and
obtain the integrals-.as convergent series using the Farey
circle dissection method of Kademacher ['4j]

For this we shall first find the estimate of an
exponential sum of the roots of unity involving 7@(}£;thki>
taken over the integers belonging to a reduced system of residues
(mod k) as the trivial estimate Ofk) will not suffice out
purpose. We adopt essentially the methodology of Lehner {:Bil,
Hagis (Jr.) (17| and Subrahmanya Sastri | 5] and obtain the
following result.

Ir A + )Ly the exponential sum

Sy, 'Y)—Z(X (d, M.k).Qﬂ\o)““m (oo — \(»Yv)>

v (mod R) St
(b=
'&v‘: 'rf (YM*(S\ &>
(where Vb»L — _1(mod %)), is subject to the estimate
O(Wb k} | > we shall now find a convergent

series for p(n). Applying Cauchy's integral formula and Farey
eircle dissection method, following the method of Subrahmanya

Sastri[j5:}, we obtain the following theorem,

zii
p



DR 1: If M 2O, yug AN, then for
the number p(n) of partitions of n into any positive summands
congruent to i:aj (mod m) with any pért congruent to ﬂj&j(YnMLWQ
appearing'in almost 2; colors and allowing the repetitions

of the parts with the same color, where

Q€ QL0 Gas - O} 1O, ped: B3y, 8 s
d

we have the convergent series representation

A 8 8,
PV = Wy Z K W S 'TTMX%
2@4‘:\ 0 <T\<(;\ \ & m'

QR ,‘ﬁ\) =a (’Vl )_AO =\

¢y Z(n, v, L)

V(B
\ad

where @(Y\,,V,‘\() is given by (3 1)

l
_ 1qvd)2 T .
L= = W02 T g (500

\]—~

\Q(lllmw—}\)z ‘Lt/W>A )
| Y ldm
B-wd)” T Ty M“) o ML’)Z%
b (A (7R ‘
R A=y % er<'¥ ,
\ UM

A0,
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I (7\63 J(Zé) being the Bessel functions of the first

order whose expressions are given by

— L) s Q/>\+\ \ .
L) = T8 - i{@ At |

and Cu)) A(D is the coefficient of )Q\) in H(Y;&)y d)k>
in (2.2).

Here we exclude M= ‘\A , for in this case, the
exponential sums in (3.1) doaﬁryllot admit of a better general
estimate than O(k) which will not be sufficient for the purpose.
For this particular value of n, p(n) ean be obtained directly |
A/&&Wﬂ

by finding the coefficient of 7 in (2.1).

84. Special Case

We consider the case (@ ;{Qj ’;$Q§<% ) (Qa’,m)zlj

and {g ) fr=4 VL . This gives us the

§ =
formula for the number of part_ltions.,of g positive integer n
into parts relatively prime to m' with each part appearing in
at most clolors and zllowing the repetitions of the parts with

the same Q,QQ,@,‘« and we obtain the following theorem from

Theorem 1.

A m) MMLM
R Y

the convergent series for P*( ’YL,,SA) the number of partitions

Theorem 2: For Y =0 )%7_L_

of n into parts relatively prime to m, each part appearing in
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atmost 's' colors and alloving repetitions of the parts with

the same color is given Dby

o '
,Flk (M, 8) =&7T T = 2 > cs(mv) L(n.v)
o | A R=4 Y §g(miD

)= 244
where
SMY) = S Sy, D= ).
o <N <d
M.4) =
L) = L(nw,vm) Fer A8
and
M = product of all distinct primes dividing m
D = prqduct of a1l distinct primes dividing d

If we put s = 1 in Theorem 2, we obtain Subrahmanya Sastri's
resul t [5] . If we put, in particular, that m is square free
and if s = 1, then D = d and we obtain Iseki's result [;\

If we put m = p, an odd prime p > 3, & = 1, we obtain Hagi®

result [ﬁ:l .
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ON_THE USE OF MATRIX METHODS IN CERTAIN NUMBER THEORETIC PROBLEMS

%

Re JaGANNATHAN

; Institute of Mathematical Sciences, 'MATSCIENCE!'
MADRAS ~ 600 020, INDIA.

ABSTRACTS

Matrix theory is used to sﬁudy a spectral decomposition
of arithmetic functions introduced recently by Krishnaswamk
Alladi, 4lso there is included a brief sketch of the recent
work of the author and Santhanam on the use of the concept
of generalized matrix inverse to solve elegantly certain set
of linear diaphontine equations occuiring in the study of

the structure of the Lie group SU(3)

1, LNTRODUCTION

In two earlier papersl92 the author has used a matrix
aoproach to understand the Dirichlet products and inverses of
arlthmetlc functions and hence to derive certain number
theoretic identities., Particularly the Mobius function r¢(qt)

has been represented in the interesting form

Qi h oy . B
w =M E ORI
e Z) Zc L "
\VLYU"' ”’Ffv >)
resultlng from the identification that the matrlx M with
elements
' ‘ (2)2 0 othe“ wise, (L2

'VSectlon 3 of the paper presents the Joint work of the author

and T.Se.Santhanam, montlgnea in the artlcle by T.S.Santhanam
I .1.1 T N I S S RN A0="174



is the inverse of the matrix E with elements

(L x e,
E =4 THR

(1.3)
O other wise.
It is clear that if matrices are associated with arithmetic

functions in the above fashion then the Dinchlet product can be -

understood simply as a matrix product.

Recently Krishnaswami Alladi3 has shown that if we define

2 W) 1D = £
o

(L.9)
then for a square~free function
and €+ 2 % { (1.5
{ *
= L
%—% 2 % f (1.6)
are such that %+ = %—[— > %,_ '—‘—"“,%_
and %** =P | (L7

In section 2 below we shall understand this result as a

special case of a spectral decomposition of any arithmetic
function in terms of matrix theory,

Section 3 gives a brief report of a recent attempt of
the author and Santhanam to study certain sets of linear
diaphontine equations occuring in the problem of internal
multiplicity structure of weights for the SU(B)-group4’5

using the concept of generalized matrix inverse.
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_ARITHMETIC FUNCTIONSS

Let us rewrite the product relation in (l.4) as

*_

po) 0 0 - v /{m) @

) w0 - - 4w ] Z [
RO wzy - o e L 3) @

o

s (2,1)

Since u(n) takes éhly three vglues (0, +1, -1) the eigen value

equation

S T4 G (d) = ’ |
%H I = Age (2.9
admits only thrla“é eigen values, namely ’

A=o =t (2.3)

If we now solve the eigen value equations (2.2) for the
particular values of )\ given by (2¢3) it is found easily that
ithmetic f i f i h that ’ v
any arithmetic function f(n) is such tha C,%o? %-’t‘) ;g___)

défined by
F, (W) = §w) /%(?fcm)
fuln = g 3(vew) + § NCEOX
£ in = 2 Y%P(y(m)),.g (?fm))E

() (O
Yo =TT 5 o = TTHE"

A= 1= (2.5
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obey
‘ s Py 2Ry == g, (20
Then we have |

f@(m = go<m+g+(~n>+g,{m > %*T'n) = %(’m’). (2.7)

Thus for any arithmetic funbtidn there is a spectral decomposi-
tion having the properties given by (2,1) and (2.4) - (2.7 .
The result of Krishnaswami Alladi given in section-l for
square-free functions with €OCA¢D =0 is seen to be a
special case of the above general result for any arithmetic
functione

3

Krishnaswami 411adi™ has also defined a generalized

Mobius function

A '%6100 =
W)
V@g(ma — A Fa for square-free m >)

L 0 otherwise CZ‘SD

associated with the inversion formula

> A =F &> =) F(F e (42t (d) ) p )

OUW ‘M O‘&H’x | ds”z
ce ) Hadg ) e
&%,‘Lkw,a, o

so that Z = -1 corresponds to the well-known Mobius inversion
formula, It is quite clear bhatognaloguous to this developement

one can easily generalize the above-discussed spectral
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decomposition of arithmetic functions also hy replaéing

{ -~} = ﬁ:r % by {2 e 93(#’( } NQw. since
the equation jﬁ('“) Z}A- (6\)3(@ )\%(-,\‘)has (n+1) elgen values
' {0 2%3* 03‘32) ‘Uﬂ“‘%’che analogue oi‘ (2.4) in this case

should :anolve tae nudlmensmnul Sylves ter or finite Fourier

transform matr_lx ' e ER

3. ON A SET OF DIAPHONTINE EQUATIONSS A

In the study of the multiplicity structure of the
weights of SU(3) - group ysing Kostant's formula San‘chanamS
(See also 4 for earl.Ler llbe.l.abLh.e) has' found that the set of

linear diaphontine ecuatlons ' __ "
h — @ _\—Q Vo ) £y

k | o

= +Q,3 © i a
& | | 3/(5.1)

with known integer values for (Lcl,hz) are to be solved for
the unknown integer ‘falues of (8‘1 ag a3) Recently tne

author and Santhanam have reexamined tnis problem as follows

\M):Cj e
o/ |

. Let us denote

Then by the well-known theorem on the general solution

of the equation of the type (3.1) it follows that we can write
fo,
Q) = C
\ %3
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: -1
i a 2 » 1y e ral ) 3 4-
where (%, Xo5 XS) ale:”:alblt ary ;11& Cp is the
generalized inverse of the matrix C. In this case we have
T ), — ‘
BT L
I s -
Lo |
I R (3.4)
CZC = B[ = > | >’ .
T ST
-1

if we compute C_, using the standard procedure due to
Greville (Cf.7 for the details). Now using (2.4), (3.8) can De

explicitly written as

(L\ Qth‘hla\»x‘«b”"l—,—is
‘ ] ;
a, = T *h{‘\"ﬂjb\i*xx*xz""% v
%3 | ?M-' ko.“x&"lz_"kx\? . (8.9

Let us now denote

= Kyt Xo~Xa R

Then (3.5) becones

aq = l:l' - % ,
a3 = Y . . ‘ (1-307)
o

k)
Since (Xl; Xy %q ) or X can be}chko.sen arbitrarily (3.6)

L]

and (3.7) indicate clearly that the integer solutions for (

(ayy 89y ag) are obtained choosing
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,
-

Thus leading to the result that totai number of
solutions = 1 + min (ky, ky ' (3.9)

for the set eof diaphontine ecuations (3.1). The same result

.has been derived earlier in a different fashion, a review of

-

which has been given by Santhanam in these proceedings also.
For higher order Lie groups also the sets of linear diaphontine

equations to be solved in the above problem are of the

. same structure as (3.1) though involving higher dimensional
oL *ix
matrices in place of the simple C—matkobtained for SU(3). We

hope that the above elegant method based on the use of
generalized matrix inverse #&n be adopted fruitfully in the

et

other cases also, We plan to discuss this in future elsewhere.

I wish to thank Professor 4llaci Ramakrishnan for kind and
constant encouragement. I am grateful to Dr. Krishnaswami alladi
for very useful discussions. My thanks are also due to
Professor T.S. Santhanam for c¢iscussions and fruitful

collaboration.
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DIOPHANTINE ECUATIONS AND PARTITION
) FUNCTIONS

T.S.Santhanam
MATSCIENCE, TIhe Institute of Mathematical Sciences,
Madras-6u0 020. (India)

sk ok K

Many years ago, when I was working on the problem of
'multiplicity! in classical groups, 1 éame across the problem
of solving, more precisely to find the degeneracy of the
solutions, some linear diophantine equations. I solved the
problem by using the method of-geﬁerating functions.

The multiplicity M of a weight m which belongs to the
irreducible representation of a group G with the highest welght

N is given by Kostaut's formulal)

A
My = = 5P [m+ Ry=s(A+Re )
seWw
The sum is over the elements S of the discrete Weyl group W ,
S = =1 depending on whether the action of & permutes

even or odd. P 1is thé‘partion function defined by

AP('Ay ‘ = number of ways

A can be written as

(2)
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9 -+ '
The % belong to the space > of the positive roots of (¢ and

| - ,
K =@:Zo<f)~ : (3)
B Y&GE ZfF' .

Since A can be written in terms of simple roots B as

X
A= 5 R; ®.
=)\
G,em
k‘ = 'V\AAE%/QJ'\}:J 7/0

1

(4)

. | —
The ﬁifb belong to the space [\ of the simple roots, { is

.
the rank of the group. ©Since & & can be expressed in terms of
¥
P2 with non-negative coefficients, we see that the value of
P(A) is ecual to the dgeneracy of the solutions of the Diophanésﬂﬁ

equations.

.= G,
R 2o
PO N (5)
N= - - N

N = oy of pDﬁi&Aﬂ nools 0* G

- NP
3

The problem is that given a set of non-negative integers ‘{&,

to find the number of non-negative CL;ﬁ>which will satisfy the

above equation.
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In the simple case of AZ ~ SW3B)
Vo
CaLVv o <\ o \ \.>

_ 2)
and Gruber and I  found the solution as

/P = |+ M(Y”\\ )Y{Qj. L

In the more complicated case of C;i_ , the matrix is

. __<\©\ez‘33‘
e Notu b2

3)

Radhakrishnan and I  solved to find the solution in complete

: 4) ,
generality. Belinfante  has succeeded in writing a neat
computer programme for the same,

Let us now:discuss the general case. We define the

)
generating function for the group G as
_ N .\
‘F(X\J“‘) xﬂ_) = : Q
<,
| , 'l = W TR
p-:\ [ Q
x| < (7)
It can be easily seen that P is nothing but the coefficient of /
X,'__- Xsi in the Taylor expansion of f. TIhe merit of this

method is that one can set recursion relations for P and the
problem can be solved by reducing the calculation to that of

calculating P for low Tank gTOUPS. For’ihstance, for the case of
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‘unitary groups. 4s, one finds5) that

P (R )

]
N
o
i
;ﬁ’
L.
ixf

T
T
N

(8)
In ref.5), I have built such recursions for all classical groups
Recently, Jagannathan and 17) solved the simple Su(3) problem

using the method of generalized inverses.
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BROUWER'S FIXED POINT THEOREM |

Ne JAYASANKARAN

Dpnartment of Mathematlcs
St. Joseph’s College (Autonomous) Tlruchlrapalll..QQC)OOA
TNDIA

It is very well known that all familiar proofs of the
Brouwer’s fixed point theorem use either combinatorial argu-
ments, homology theory, differential forms or methods from
gebmetric topology. Compare (1), (2), (3). The aim of.this
lecture is to present a proof of Brouﬁer;s fixed point theorem,
which is completely non~c§mbinatorial and also to illustrate
the power of the differentiable approach ﬁo topological
questionse. It is pertinent to ﬁention that John Milner (4)
has recently presented:a Very elementary proof of this
classical theorem which is strangely very simple./

Let us recall that the Brouwer's fixed point theorem
says that every continuous self map of the closed unit ball

in R™ has a fixed point,

Theoremas Let Vl {:x = (Xq, XZ, sew e o) &R/ H x|l S %

n n .
 be the unit ball in R™. Suppose f & Vv, = vy lsa .. ..

continuous map, then there exists a point XEV?' such that £(x) 1= X

Proof @ 8tep I o

We first claim that it suffices to prove Brouwsr's
Theorem for differentiable maps. Suppose £ 2 V? > V?

is continuous. Let . > O. LétﬂTr . '\?_‘ —= V]_-, @ be the’
’ . g !
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retraction of Vri onto its subset Vil‘_, <
in formulas, we write

5 *Jg W) <1-€

(%) =

(-2) iy llx =]

\) o I\

It is clear that 4(f, -7 _g ) < &  where d is the supremum

<

metric, Consider the maps j[ % \/ %V ook ) = "2 3,0,
W\ mo

By Welerstrass approximation Theorem, we can find C maps

g such that a( JC < 4.
m ( —‘}LYI-{;) SZ({YJ ~ v

. . 1 ¥y
In particular this means that @, ( ‘ ) < \/‘ .

Assuming Brouwer's theorem for smooth maps, there is an

x = \/I /‘\‘WW ﬁrm("xm): xm"m:ﬁ_i’g”"v
Since Vl is compact ( we may pass through a subsequence

if necessary) we may assume X =% _6\/%» Using
continuity of f and the triangle inequalits‘r, we note that x

¢
is a fixed point for £,

Step IT1 & To prove Brouwer's l.the'o_rem for smooth maps, it is
* enough to prove that there is no smooth map ¢ :Vil._.; SE

such that ¢§ restricted to sg_l is the identity.

sV ) Jors Fosd
( Sy == {DL‘EQ WX =1y, It is a folk-lore result
that this last statement is actually equivalent to Brouwer's

theorem and we do not step here to prove it. So what remains
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then is to prove the no-retraction theorem fof smooth maps.
Suppose there were a i map @ V? = S? whose Trestriction
to Sg is the identity map., To say that ¢ is smooth on V&
means that there is an extension of @ to an open neighbourhood
N(Vﬁ) of Vl which is Cd, now @ . N(Xl)_;;, Sl is a smooth
map from an n—dlmen31onal manifold onto an (n~l) = dimensional
submanifold. Let P‘E g\ be a regular value for @g. (Thanks to
Sard. B8uch a p existsd) .Note that Q”l(p) is a one dimensional
submanifold of N(V??,'sinée Codim of ¢ "l(p) in.N(Vﬁ? equals
codim of [p) in Sg, which is n-l, Let K be the comnected
component of ﬁ"lgp) containing p. Remembering the result

that every cdnnected ongdimensional manifold is diffeomorphic
either to an open interval or a circle, (5), we will have

to consider two possibilities for X,

Step ITI¢ (& X 1s diffeomorphic to an Open interval, Now

K is a closed subset of N (le and so K (\V‘ is closed in V?,
| Parametrlze K byice (s) - - oO < s < + o@E and let 6{0)=p.
First of all, K must pierce Sl ’at Py le€e 1t can not b@

‘that K < Vl or K /g; N(Vl) / Vg. For otherwise K would be
tangent to S? at p which would contradict the regularity

of ¥ at p. is 8(0) = py 6 (—¢ ) must lie either inside or
outside VE for small gij> 0. Let us assume that e(Tng; ) lies
in the interior of Vi. We then claim that 8(s) < Int V?

for all su<:‘0. Otherwise q = G(So)éf S? fof §bme sO<< C.

Now g # p for otherwise K would not be diffcomorphic to an
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open interval. But ¢ restricted to S? is the identity and

so q=@(qg =g(6ls)) :p];l Hence s, cannot exist, |
Similarly 6(s)E N(Vﬁ)./ vy for all s => 0. Consider the set
of points in V% of the form 6(s), s € 0. Let [b;} be a

sequence of real numbers tending monotonely to - <0 and
consider the sequence of points{}a(%g'é . Passing to a
subsequence if necessary, we may assume lim e(s ) =deEV? exists,
Now ¢ [6(s,)] = p for all n and by contingity of ¥, ¢ (=0 :b,
Thus o/ ¢ ;é\_l(\o)ﬂ K0 V;” = KQVT;inoe -K ﬂ\/(lyl is
closed in Vﬁ. But this clearly contradicts the fact

that K 1s diffeomorphic to an open interval. Hénoe caée (a)
1s completed, |

(b X io diffeomorphic to a circle - as in casé‘(a),
it cannot be that XK lies oompletely inside V? or completely
inside,N(V?) / Vﬁ. But since X is essentially a circle, K
must pierce §7, in two points, say at p;q, 4 £ p. Bub, as
in case (a), 4 = ¥(q =¢(p =p a contradiction. This proves

case (b). and completely proves no-retraction theoremn, :

APPLI CATIONS As a surprisingly concrete application of

Brouwer, we can prove the theorem of Frobenius.
Theorem « If the entries in an nxn real matrix K

[ ]
are all non negative, then K has a real non negative

elgenvalue,

4an idea of the Proofs May assume that K is nonsingular}

otherwise O is an eigenvalue, Let K also denote. the
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. 3 n :
associated linear operator on R7, and consider the map

£3 x > xkx/ |Kx| restricted to 87T —>  gih
Note that this maps the 'first quadrant'.

o {QXJ.’ Xgy eerseXp) & sn‘l: all x; 2 0 € into itself,
We satisfy ourselves that F is homeomorphic to V?“l and then

invoke Brouwer,
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PROBLEMS

P:c'éblem 1 (by Krishnaswami Alladi, Department of Mathefnatics,

University of Michigan, Ann Arbor, Michigan, USA)

Let P(M) denote the largest prime factor of an integer
2L 2] and put R 4:..{,, . fDet. |5 denote a prime number,

- £

It % is a bounded .arithmetic function satisfying

. fm = C W
Then 4
) ° \ G . \ .
o SR =
The converse of this statement is not true. In fact one can easily
construct a bounded function % sétisfying-(2) such that the
limit in (1) does nout even exist.
1> %(P(%H—c\ . Show that
Zgn € x ‘

Denote by rﬂf(i)-:
if ’Q%(x) —0 suffioj.arntly rapidly, as _ ’X-—?oo y then

(1) holds with the same value of (= . We conjecture that

’qg@);—; Q((Qﬁp)-w)

suffices,
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PROBLEM 2s (by K.Ramachandra, Schqol of Mathématics,
Tata Institute of Fundamental Research, Bombay)

Prove that

j{l S5 M‘iOkAUi>/S&A)&z% ¢@u .

dy\n d |m,
SOLUTION,
o) pd,)
et g omy =S S MU
( ;L-) o{/[m/‘ 2 mz {(g"/d’Z%

Note F(q%()lkfﬂap and {'ﬂq,Yl % are multiplicative arithmatic
functions of A@ and QQ

x B y&pé)y(Pg)

'(,m/uﬂ’ = Z Tz — -
% ol/> g ;g j:-O {Y).LJ Fﬁé
=TTty :TTPG' d, p=0

Putting (Wb =y S0 that o = ﬁ s We get

Y by = TR dn)

GENERALYZATION. (by N.Balasubramanlan, J01nt Cipher Bureau,

wheTre

Ministry of Defencé,’Govérnment of India, New Delhi),

This 1s a particular case of quite a general class of
results which can be obtained with the same case, using the techni-
que of multiplicativity in several arithmetic variables. (cf, N.

Balasubramanian, Proceedings of the First Conference on Number

Theory, Matscience Report 101, (1980) 47-62)
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Let

poma) = Z 3 KOO /g

Note that ); ,% the l,c,m, is multiplicative strictly. . Hence

o, my) = T )

where
mt:ﬂPd ) “w.-‘iﬂ(}’@{ oty 20
.. [ N
zfy(/n,pfn.g@ _ II_TZOL Z MF ; ko) _ cb({'w., :e;)
b 1=0 3:0 PWLO/X('[,}_)‘ g.%“y,&lz

PROBLEM 3, (by Ne.Balasubramanian, Joint Cipher Bureau,

S0

Ministryof Defence, Government of India, New Delhi.)
In the theory of  rithmetic functions with multiplicativity
in more than one vaTiable on whidh Valdyanathaswamy, Kesava Menon

and others have worked extensively the convolution

’g((ﬂ'u ~—‘rn~r) > = GV -—-, N

Z Z X Z _-2 A ’Yl&v
ol
-z J@v(%,,—--’nnf)

Z--—Z 2, S

I St WA

\ , %,&“__rni m
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h ‘ L Y -
o /e\/(%p L Z = —= %’(OQ!»‘*’)OQT)%(&"/ 5 —O—Ql-)
dﬂl7bl G&T}W1w"
plays -a fundamental role in obtain ing multi-dimensional extension

of Mobius inverseion and other techniques. In this connection I

have defined certain simple arithmetic function such as
~7T(ﬂ%‘,,_-fylf> ~ | @7 according as the n's are coprime or not

&(qL‘J_W”JTuT)':J (v (0 according as the n's are all equal
_ v ' or not.

These functions, along with the gacede and l;c.nu,.I have shown,
to be multiplicative strictly and they could be wielded to obtain
the results of all the earliér work (mentioned in the beginning)
in é unified manner, The solution of the above éroblem by
Ramachandra is a case in point. The problem now proposed by me
i1s to extend this technique to the convolution over unitary divisors
of a natural number through defining a suitable function like the
ones mentioned above, |

PROBLEM 4, (Dby ReSivaramakrishnan, Department of Mathe-
matics, University of Calicut, Calicut,). ),

D is an integral domain in which primes are units de-
fined by using the divisibility propertyes It is known that every
non-unit in D is a finite product of S primes What are

the necessary and sufficient conditions under which D will
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become a unique factorization domain ? The solution to this
problem would lead to a proof that the ring of number ~ theoretic |
functions is a unique factorization domain, without appealing

to the methods already given by Cashwell and Evereth (Pac. J« Math,
1959)) .

PROBLEM 5, (by 4.M.Vaidys, and V.S.Joshi, Department of
Mathematiés,and Statistics, South Gujarat UniVersity,”Surat)'

Let qL| be any positive integer wfitten in the.decimél
scale, Add the sum of the digits of ", to T, Suppose we

get Q% . Do the same to M, to get ﬂ@ and so on, We get what

is called the d1g1t~add1tlon S%lles of - 71 o« Prove that
(1) if (v, 3) =) 5 the d1g1t~add1tion series of n will merge
with that of 1 after a finite number of steps.
(1i) if gldbahd Q> the digit-addition series of n will
merge with that of 3.
(iidi) 4if Q(Wb then the digit-addition~ofl n will merge with thét
of 9, |
(e,g.-note that digit-addition series of 86 is 86, 100, 101, 103,
"essseee and that of 77 is 77, 91, 101, 103, .... sSo that we say
that the two series merge at 101).
PROBLEM 6, (by . ‘“iull.Vaidya: and V,S‘}OShLiDepartment of
Mathematics and Statistics, South Gujarat University, Surat) . ..
If sum of the digits of M in the decimal scale is R ’

and h&ﬂb g We say that n 1is a Harshad snumber or specifically
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a Harshad . }Q o Let ‘g( R) be the least Harshad
number for R o E.C. 7(1) =1, £(11) = 209, £(12) = 48,

Find estimates of %(R) . a.lso deterrm.ne the asymptotic dens:.ty
of Harshad numbers and the behav1our of the harmonic series of

the Harshad numbers.
PROBLELVI 7. (by R.,Jagannathan, Matscience', The Institute
of Mathematlcal Sc:l.ences, Madras, India). |

If T is a positive integer and /r\/yT,% 0, +| Lt -

then evaluate the sum

: B
: Z (nr.m§2 %W)o[ W};igs DJE

(2741)3
Q%M

for any given value of J and ‘'n with }qul <T .. This sum

oceurs in a problem in physicse

NSS/22,5.81
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