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FOREWORD

This MATSCIENCEEEPQRT presents the Proceedings of the
'Second Conference on Number Theoryt conducted by Matscience at
the Rindustan Photo Films Club House, 00 t.acamund, during Au~ust
3-7,. 1980. This conference is the 38th in the series of conferences
conducte~ by Matscience on a wide range of topics in mathematical
sciences"

The conference was inaugu.rated by Mr.p.R.S.Rao, the Managing
Director, Hindustan Photo Films Manafacturing Company Limited,
and Professor Alladi Ramakr'Lshnan, Director, Natscience, released
the Matscience Report on the Proceedings of the First Conference
on Number Theory held at Nysore in August 1979.

Professor K.Ramacpandra of the Tata Institute of FlIDdamental
Research, Bombay and Dr.Krishnaswami· Alladi of the Department of
Mathematics, University 0 f Michigan1 .•cnn ...l.rbor, V. S.a. itrere the
principal speakers at the ccnrer ence , Besides the active research·
workers in the field of number theory from various universities
and research institutions, post-graduate teachers from colleges
also participated. The organisers wish to thank all the partici-
pants for their enthusiastic cooperation in m~ng the conference
a success. The present report contains the papers in Rumber Theory
contributed by the participants arranged according to the alpha&e-
tical order of the names of the authors except for the problems
and some papers at the end whicb are of an interdisciplinary
nature.

lie are grateful to Mr. P.R. S~Rao, the Managing Director,
R.P.F. Ootacamund and his colleagues for providing the conference
hall, accommodation for the participants and all. other necessary
facilities· and the kind hospi tali ty shown to us. 1.fewish to thank
Mr.N.S.Sampath,JaIli'h~"J'~yaraman and other supporting staff of .._.
our Institute for help rendered in organising the conference and
bringing out this report.

R. JAG.lNNATH.ih'\J·
MATSCIENCE
Nadras -600 ,020

. 198;l~,,:>.:-:' -S'~'--'.-"---~:~



· IRRATIONALITY ESTDlATES USING LEGENDRE POLYNOHIALS

Kr'Ls'hnaswanri,Alladi
Department of Hathematics ~ University of Michigan

Ann Arbor, Michlgan 48109, USA.
+*+*+*

1. llfTRODUCTION

, It is generally very difficult to establish the irrationa-

lity of a given number~ Therefore considerable interest remains

in the subject even though its origines:' go back to Greek anti qui ty.

Over the years several ingeneious methods have been developed,

yet, .one almost always ends up using the following irrationality

cri -ljrion due to Dirichlet (see [14J '1 p, 44):

.A. necessary and sufficient condition for a real number e
to be irrational is that there exist integer sequences £ Pn ~

and { qn ~ such that

o f. I qn e ~ Pri .}. -?' 0 as n ---7 Q) ., ( 11) 1)

To establish this criterion Dirichlet used his famous

pigeon-hole principleo Thus the criterion is of an existential

nature, and in general there is'no hint to construct the

sequences Pn and

For certain special numbers such as 1."2 and e the

construction of these sequences Js simpleo For instance, by

observing that 0 < 12.- 1 <.1 we see that the binomial

theorem yields
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In the case of

e 1
Iii!':::

we set
n
L

:m::O
1 ,mr (102)and Pn ,:::

and observe that
00 1 < 2

0 < qne - Pn ::: n1• L. m! n+l -70, as n-7-"oo
meraL (1.3)

The proof of the irrationality of e given in (1.3) makes
use of the special divisibility properties of the factorial
sequence (see 1.2»), and the fact that the series for e con-
verges very rapidly. If either one of these features fail to
hold the proof could become much more complicated or even break
down. For instance, if we modify the series fore very slightly
and consider

1
m!+l ,

,we get a number whose irrationality is yet to be confirmed - and
perhap swill not be for some time 1 Evan for a simple series like

00
L

m=l
1
m2

the construction of the Pn and qn is much mo~e complicated,
and does not even faintly resemble (]..2), because this series
converges much more slowly.
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For s '7 1 let ~ (s)

defined by

(Riemann zeta function) be

~ (s)
00

E
n=l

, (1.4)1-s
n

=

By a very special method 'involving the transcendence of 'TT

the numbers L;(2n) , n = 1,2,3, •••• were shown to be Lrr a'tLona.L

(see [1]), but no one knows whe+her the numbers L; (2n+l) ,
~ /n = 1,2,... are all irrational" In 1978, H".i!.pery, a French

mathematician surprised everyone by producing a truly remarkable

proof of the irrationality of ~(3)' (see [16J ), and further

light on his result ,.0..11be shed in Section 9.
/' ,

The proof due to <llpery created renewed interest in ' '

irrationali ty and over the past three year's gave rise to detailed

investigationo' Some of these investigations have revealed the

dominant role played by lLegendre polynomials!

Pn(x) 1 an
[xn (l-x) n 1 (1.5)= -.,n; dxn

in such proofs, and also led to 'improvements of several

earlier results. This article i\Till review some of these results

due to the author [1 J ,the author in col.Labor at.Lon with

Robinson .L 2] , Beuker s L6] , L 7 J ,Bombieri [8J , and

Choodnovsky [9 J , [10, ' [11] and [;1.2J ¥1 the context of

several classical results .•

Besides the proof the irrationality of a number e ,it

is of considerable interest, for its own sake or for the purpose
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of applications, to derive an irrationality estimte for e •
More prefisely, one would like to, obtain lower bounds of the

type

for all rationals p/ q, where ~ depends on' e. It is in

this sense that the Legendre polynomials Pn(x) recently played

an important role and improved substantially on irrationality

estimates for certain numbers, provided by various classical

approaches.

2. Irrationality tYpe and measure.

Wewill be considering two kinds of irrationality estimates.

An irrational 9 is of type at most 1:, (or ~ 1:), if given

£/,,0,
p/q with

, there exists Cia ( E) ,'such that for all r~tionals

I q I > qp( f;) , we have

~1>1l~\\e (2.1)

If no such 1: exists, 'l,ve say e is of ini Lrrl te type. We saY

that e is of type 1: ~ if it is of type ~ 1:) but is not,

of tyPe < 't* for any 1:* -: 1: • It is well known (see [14J ,
p.42) that all irrationals are type ~ 2. Therefore, if an

!... '"

typeirrational is of type 2, it is of 2.

-Sometimeswe require an effective version of (2.1), for

the purpose of applications. More precisely we want an inequality

v
c·o

t

n

"i
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given

,

ity

5
")/

\9 (2.2)

valid for ~, rationals p/q, ~mere ~ in (2.~ is either
co.nstant (if de. is tOf .fini"t~ tvue) or ~ '. .incre&sin'J;. tini t~!Lcr q, ten a.ng 0 mrmi ty vi tb q, a.r 9 1S 0'1" tnraru te

type.' If '~ is finite in (2.2) we say it is an irrationality

measure for 9.

Howdoes one arrive at i~equalities like (2.1) and (2.2) ?
We state two lemmas below, the first as in [2 J , and second

as in [1] •
Lemma1; Let K be either the rationals or an imaginary quadratic

field. Le~, R be the ring of~inte~ers in K • Let e be a

comptexc number.

(a) Suppose there exists Q:/ 1 and E /1, and Pn'<1n e R

satisfying

and-
( 2.4)

Then e it K and given 'E.:> 0 there exist bOC E. )

if .a, b 8 R and 1 b \ -;7 bo(- £) then

such that

, r = 10g(QE)/log E. (2.5)
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In particular a is of type at most ~ •

(b) Suppose there exis tQ > 1, E '> 1, ko '> 0,

and Pn' qn e R , satisfying (2.4) and

Then for any a, b e R we have

where

,/.L = (log ~E) flog E and c = 1
21<0

E-3rlog 2b )
log E

Q e {2.1)

In particular, e has irra~ionality measure /.L.

We only prove part (b) of Lemma1.

Letm be. the least po~itive integer such that
..;1

( qm' e-Pml f > 2b for all mT > m, From (2.6) we deduce

that

m 5 .log (2 \ b{~ 0) +1 •

Choose n = ill or m+ 1 so that, aqn.==t~bPne' Then

Thus (2 • .8) and (2.9) imply that

\ e - ~ \? 2 I~I '1n > ~ ~llI!-l
c= 1f

as claimed.

i

1

t

c

L-
r

l
f
!
r

I
,t

I

('
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Unless the Pn,qn are given in a certain conveni~nt form

it Ls usually cumbersome to check (2.4). Thus we state another

lemma which does not require the verification of (2,4), provided

the logarithms of the quantities \'q \ \p \n 'n
.! . can beestimate~asymptbtically.

I,.

1
2f6T

a r.eal number 0 Suppose P /"q is an nLemma'2e Let e' be

rational sequence satisfying'

(ii)
ql+O(l)

11. .

(iii) For some f.. 8',(0,1) we have

o
1

•

Then e

(l+}.)· (1+0(1))
qn .

is irrational of type at most 1+ ~ ~ ~ •

Essentially, conditions (i), (n) and (iil) enable us

to show that given Pn/qn with qn large, there exists Pm!qm

such that"

This is a substitute for (2.4), and Lemma2 can be proved in a

manner similar to .Lemma1. 'Weomit the details and refer the

reader to [1JoIn other 1,10rds , given the sequence Pn/ qn ,

one can extract a subsequence satisfying (2,4). The mere

existence of this subsequence suffices, and we need not concern
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ourselves with the construction of this subsequence. Thus

Kemma2 is in certain cases more useful.

Inequalities like (2.1) and (2.2) have lots of appli-

cations. Liouville was the first to use them, Whenhe deduced

the existence of transcendental numbers by showing that all

algebraic numbers are of finite tyPeo • More precisely, if ~

is algebraic, then it is of type z:. deg ~ = t , Thus

t= Q)

1:
n=l

1

is transcendental since it is of infinite type. This fundamental

observation of Liouville has undergone several improvements,

some of which are considered in the next section.

3. The Thue Equation.

In 1909 A. Th1.1Elobtained the first significant improvement

of Liouville1s theorem, by showing that every algebraic number ~

of deg ~ = n > 3 is of t.ype < n, More precise~y, he showed

that such an ~ is of type ~TI + 1. From this he deduced that

if F(x,y) is an irreducible binary form of degree n "> 3, then

for any integer m the Diophantine Equation (Thue1s equation)

F(x, y) = m

can have oril.y a fim te number of solutions in integers x and

y •. For, we can rewrite (3.1) as

i

!
1

r

t
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where the os.. are algebraic. Thus if (3.1) had an infinite
\

number of ,solutions in integers x and y, then at least one of
the ~ will have infinitely many rational approximations x/y
satisfying

, (3.3)

and this vtoLate.sThue J s bheor em,

Over the. decades this result of Thus lUldterwentseveral
improvements and Roth in 1955 finally established the deep result

that all algebraic irratfonal numbers are of tyPe 2. Thus,
an irrational number of type). 2 is t.r'anscendent a.l., The main
difficulty with the application of the Roth and Thue theorems
is that they are non-effective. If one wants for instance.to
.effecti vely find' all the solutions to (3.1), it is desirable to
obtain effective versions of their inequalities. Therefore

. . .

it is of considerable interest to derive :i:lI!'l!~measures
I-L ( see 2.2) with I-L < deg .c{ , by simple methods , even if the
values I-L are larger than the irrationality types provided by
ThU:e and Roth. Baker [ 3] " [ 4 J in 1964 derived such measure s
for certain algebraic numbers, by the use of hypergeometric
functions. In particular he showed that

,_ :2 \ >
q 1-

.\

t
r
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and, thus deduced that the equation

3 3x - 2y ::: m

has all its integer solutions satisfying

max Cf,:x \ , J y'\ ) Z. (3 .10 5 , m) 23 •

Similar to Baker 1 s result for j~ and other algebraic

numbers, we will derive in Section 7 using an even simpler

method involving Legendre polynomials, irrationality measures

f.L < • As far as Ideg ~, for certain algebraic numbers

know, this is the simplest way to obtain such non-trivial

results for specific algebraic numbers.

4.' The Classical Contin ue,d Fraction Hethod•

one of the first methods employed in prvofs of irrationa-

Ii ty was the continued fraction approach. To be more precise,

this method enabled one to prove the irrationality of certain

numbers e which are of the form f(p/q) , P,q, e z; ,where

f is a function possessing a convergent continued fnaction

expansion. For instance if we consider the Ricatti differential

equation

(4.1)

where Qe(X) ,'PI(X) e ~CxJ , and iterate (4.1) without bother-

ing about conver-geric e, we get

]



c

.1

.)

:r-

. f

.' : ....

"

11

= (4.2)

"There the are defined recursively byand

1 - Q, n

~n (4.3)•, Pn+l :::

From (4.~ and (4.3) it follows that if the expansion is con-
vergent at x =p/q , then (4.2) yi~~ds a sequence of rational
approximat.ions to f(p/q) = e. One woul.d hope ttrat these
approximations are 'good enought to establish the irrationality
of e •

There is however a major drawback. The nth-convergent
Pn/qn to (4.2) is such that Pn and qn are rationals,
and not necessarily integers. Thus 'if we clear these rationals
of their denominators the quality of,the approximation might
diminish. In fact it might diminish to such an extent, that
the new approximations thus generated may not satisfy Dirichlet's
criterion (1.1), and thus 'the irrationality proof might break
down. At any rate, even if the proof of irrationality survives,

" '

the irrationality estimate derived will not in general be good.
Historically, this method was used to establish the

irrationality of certain classes o~ numbers, but the irrationality
types and measures thus derived were often much weaker than
what one would expect is the truth.
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In 1761, Lambert confirmed the irrationality of 11" by
this method, and later in 1765 established similar results for
tan x , eX (and sonsequently lo g x), for suitable' ra tional x,

The irrationality measures turned out to be pooro
The first good 'irrationality measure for ~ was due to

Mahler who shows that ii L 420 This result has been improved
since then, and Apery1s recent work shows that 11" is irrational
of type t... 23071 •• 0 •

The irrationality measures we discuss here by the Legendre
Polynomial method, are very good, considering the simplicity of
approacho In fact, in certain cases, the estimates are the best
known to date. Without much further ado, we describe the procedure
by considering first the exponential function, and the number .~ •

5. The Exponential Function and 11".

'l?lebegin by deriving as in [1] a result for the exponen-
tial functiono

lrheorem 1. If s is rational and ~ O,·then eS is irrational
of type 2 01

proof. First, consider
1

S sx rar ~ e x dx ~

°
(501)

NE

s1

If

an

(5

On
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Next, let s = p/q ,where p,q e zz , Then (5.1) and (1.5)

show that
1

pI>!-l ~ Pn(x) eSxdx = qneS - Pn' qn,Pn e zz ,

o
(5.2)

An n-fo1d integration by parts in ( 6.2) yields

1 I

~

n I S esxxn( I-x) ndxPn(x) esxdx = 12-
n C!iIT •

0 q 0

If we combine (5.2) and (5.3) we arrive at

( 5.3)

-:>- 0 as n ~ ill (5.4)

and that proves the irrationality of eS •

To deduce the irrationality tgpe, we note that (5.~ and

(5.2) show that

pnnt. «qn <<.. 4npnqnn'.

On the other hand from (5,,2) and (503) , we get

( 5.5)

(5.6)

because for a continuous function f, we have \\ f H n ~ 1/ fll co

as n ~ co. So, (5~5) and (5.6) shows that the Pn' qn

satisfy the condi tions of Lemma2 with A = 1, and therefore eS

i is of type 2.
t;
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Corollary 1. If .s is rational and -F: 11 then log s is

irrational.

Next we prove

Theorem 2. rr2 is irrational. ,

Proof. (Be'ilkers [?] ) ~

(5.7)

(5.8) \

From (5. 7) we see that In is a linea~ combination of terms like

b

i

t

i

f

a

t

t

E

E

For a positive integer n let
11 sin 71t P2n( t) dt ,

o

In ==

(5.9)

(5.10)

Ail 2n-fold integrati&n by parts of In yields

1
. n rr2n S

In == (-l)"(2n.)l .
o

Therefore·
·1

• C2n) l

1S tm sin 'IT'tdt, .0 < m < an ,

o
Of

J~ simple calculationi(5.9) shows that
1 -2,.

In == 1T Qne'lT' )

where Qn(x) 8 z [xJ is ~ degree Z ~, Therefore if

'IT'2== pi q is rational, then (5.10) shows that
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( 5.11)

because In :f. O. Estimates (5.8) and
~", .,

if is large, we' deduce thatn and so
; f

; I

.ke

(5. ll) a.r e Lncompati ble

~2 is irrational.

Corollary 2. rr is irrational.

This proof unfortunately does not yield an irrationality

type for rr2 or 'It, Note that while Theoreml yields a good

irrationality type for eS, we dO not derive any such estimate

for- the logarithm in Corollary 1, by simply viewing the logarithm

as the inverse of t he exponential function. It is thus desirable

to have a method which directly constructs the Pn 'and qn for

the logari tbm, and so enables UB too btain a good irrationality

estimate. This is what we consider next •
•,1,

6. Irrationality Estimat~s for the Logarithm.

For any. compiex number -z let

~ 2/ ,_ A (z) ::::nrln( \ (1 ± -VzI-z) 2\) •c{( z) :::: max (I (1 '± Z l-z) _) I-' I I

We then have the following resu1:to
(::

~. Theorem 3. Let K and R be as in Lemma1. Let r, s 8 R satisfy

and 'Cii) ~ (~) • \ r I • e < 1 •
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Then 10gCl"~) ¢ K. Also, given £; > 0 there exist bOCE.)

such that for all a, b 8 R "rit~ \b \> bO( S) we have

\
10gC1 - rs) _ a \ >' 1 -

b .. \b"r ':~e '
where

1:='( =1 +r,s
log(o«(r) .r) + 1

s (6.2)-------- ..
loge 0«( ~) • r-1)-1

In particular 10g(1 - r) is irrational of type at most 1: •. s r,s

. ,

An

By
tha

whe

To keep the exposition simple we only prove Theorem 3 for the qn

case r, s 8 zt, r < s. For- the case of general r and s we refer

to [2J where this problem is considered in detail.

Sketch of the Proof. For any n 8 Ltand z ¢ .[1,00) we have

1
\' xndx
J l-zx
o

-1 [ n zk
=zn+l . 10g(1-z)+ k~i kJ ·

Let
= ~ Pn(x) dx)

J 1 - zx
o

•

From (6.3) , (6.4) and (1.5) we se,e that

In( z) 1 1). 1 ...•1
= - - p (- 10g( l-z) +. QnCz)~ . ,z n z

where Qn(x) 8 1L Lx1 is of degree n, xl Qn(x) and

\.
i
i·
It'

Ii

(6.4)

(6.5)

. ;....,: .'
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(6.6)

by parts in (604) shows that.
1 n n

( -z) n S x (1-x2 dx • ( 6. 8)
. '0 (l-zx) n+1

in (6.5) we see from (6.8), (605) and (606)

An n-fold integra.tion

" By letting z = r/ s

6.2) that

I
or the t
refer

vner e
n rn+1 ra = -d rrl.... (s:-. p = rIlA (.§..\!., E = (-1) - I (-) d ( 6.10)

~ n Pn ~'n ~n ~ s n sn s n·

From the prime Number Theorem (see L~Veque [13J, Vol.2
K

!' po230-50) it follows that
d = en( l+o( 1) ) •
n

Also, note that for 0 (~ < 1 we have

sup xC l;X) . = ~ (~) C>

o <-.x <- 1 1--;:-x
....-.. - . .;:>

Therefore, by reasoning similar t.O (6c6) we get

r . r? n( 1+0( 1) )
En = Ge,r.~ (5) S .

On the other hand, it is weLl, known that {see Szego [15J ,

7e

Ther(3fore

C 6.11)

( 6.12)

( 6.13)

p.194)

( 6.14)
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S-' r ~ n(l+o(l))2. erc{( s) ). ( 6. 15) ,.

( 1, r, s 8 2Z+ , follows fr omLemma2, (6.9),'

qn =
Theorem 3 for 0 ( ~

(6013) and (6.15) e

~'lhfle proving Theorem 3 for general rand s certain

technical difficulties ariseo First, it is not at all clear in

(6.8) that I ' f- 0
n for infinitely many n. This fact can be

established using the orthogonality of Pn. Next, t;he sup norm

type estimate in (6012) does not Lndf.cat.e the t rue size of En.

,.1 satisfactory asymptotic estimate for

that of In' by establishing that the

can be derived from

satisfy a recurrence

relation and using a theorem of Poincare on recurrences. The

proof of Theorem 3 can then by cow~leted using Lemma1, by esta-

blishing (2.4) by means of a lemma from Pade - Approximation

Theory. For all details we refer to' [2] " for a complete

treatment.

We mention in closing, that an effective version of

Theorem ·3 can be formulated (see Theorem 3 ofC 2J ) 0 In this

case one haS to calculate upper bounds for q andE explicitly.n n
In particular one can show that for all post, tive rationals a/b,

and

.'

:: .
. '.'

wl:

Fj
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2..( '1::1. < {.L1 ::: 2 + 0 (1), as ill ~ 00 •,m ,m

Note finally that as 1',s ~ CD satisfying log r/log s--=7' 0,

2.1::r,s
y Theorem 3 and (6.16) are the best known yet for these logarithms.

Irrationality estimates of the type provided

~rrationa1ity Estimates for th .•.. .k -roo cs,

The method described in Section 6 can be applied to

1 Pn(x) dx .
In::: S (1~2x) J: /k .o .

(7,,1)

where t ,k are relatively prime integers and z t [1,CD) •

First, the substitution u::: 1 - ,zx ..shows that

1

S
o

::: (.1) mrl
z

~ (m
Jo

) (-l)j) 1 -
j:::O L

(1-2) j+l - t-/k Z
j+l-Q//k J

(7., 2)
(l-zx) Q /k

for all positive integers m. So, if we set

dn(l-\:, ~) ::: 1.c.Ill. (kill + k - Z 1 m ::: 1,2, ••• ,nJ,

we deduce from (7.1) and (7.2) that

'.

1 ~

1 _. Pn(x) dx 1- k
. dnCk, t) z11+ r --. . It/ ::: (l-z) Bn( z) + ~(z) (7.3)

J (1 _ zx) . k .o .
where .An(x) and Bn(:X:) 8 2Z [x] ar e of degree n.

We need now an estimate on the size of dnCk, ~), similar

to that on dn provided by (6.11). The Prime Number Theorem for

.1rithmetic Progres sions( [13] , Vole 2,. p, 256) implies that ..
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(for a proof see Lemma1 of [2 J )
, d

n
(k, Z) == ef( k) n( l+o( 1» , (7.4)

where l'\, :

k k 1f(k) == f (k)'
z: . ( 7.5) ~.

a=l a , PJ
(a,k) ==1

~ is Euler's function.
ai

and

of yields
b

..•\n n-fold integration by parts In T:
l~ n '

le n
Q/ l)J ( 7.6) :•...

I (j + n ~ (l-x) dx
== -;;-r .1T k",'~, ( -z)

n n, J=l (l-zx) n+ Q. /k
0 i

If z == -r/s is rational, then the sup-norm argument used in the , a

previous section shows that

l In \ == (I '~ 1 • i3 (r / s~( l+o( 1» • ( 7.7)

On the o_th~~,hand from (6.14) , , ( 7.2-), (7.3) and (7.4) it follows

So, the point is that for z == ~r/s, one can clear (7.3) of de-

nominators and obtain an expression

J.r -~/ko r qn(1 + s ) - Pn == En , Pn~n e ~ "

and use (7.8)' and (7.7) to deduce that

(7.9)

, I"

';, •••.•• 1': .,

. '; -', .' •...:
';, ,,' .

"', ""'~:"';'::.';,.: ..~.

: I.,

a

1:

f

t

j

1
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Where

(7010)

4s in the general case of Theorem I? the non-vanishing of
./

Pnqn+-l - ~Pn+l follows frcm Pade J.•.pproximation Theory. Thus

an irrationality type for (1 + ~ ) 2/l{ can be deri ved fr~~ (7.9)

by the use of Lemma1 and this (is given be Low,

Theorem 4. Let ~ , k~ r, s be positive integers wi th

Q, <, k, (~,k) = 1 and. r ,::.;; J.130 let \E \ '7 1, where

is as in (7.10) 0 Then (1 + ~ 'V k is irratiorialof type

E

at most ~ = ~ wherer,s,k

1: = + 1 ,
10g'~(s/r2)(I+,/r+ r7s)2J - f(k}

and f(k) as in (705).

~ effective version of Theorem 4 can be derived with a

bit more care; One has for instance to use explicit upper bounds

for ~ (k, ~) instead of the weaker estimate (704) () For a de-

tailed discussion on this .effective version and on '."T..llneorem4

itself, see [ 2J c

J.s in. Theorem 3., note here also that r -- 2 ifr,s,k~
log r/log s ~O, as r , s ~ co ~ 'l'hus for such r and s one could

have
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if k > 3:.. This is, as we know, a useful fact in Diophantine
Equations. For instance by taking r .~ 1, s ::::5831, n:::: 1, and

3 N
k ::::3, we see from Theorem 4 that Vi7 is irrational of type
2.5763.... The effective version of Theorem 4 derived in [2J
shows that

~or all rationals a/b. Therefore, all the integer solutions of
the equation

ill , ill8~

satisfy

The method underlying Theorem 4 differs significantly from
the earlier approach of Baker [3J, [4J who used hyPergeo-
metri c functions, or the recent observations by Beukers and
Choodnovsky [10 ] • I confess however, that Theorem 4 yields
weaker. irrationality types than these other more advanced
methods. At any r~te, to my knowledge, the method discussed
in this section is the simplest one knovffiso far to derive
non-trivial irrationality types for ~pecial algebraic numbers.

E

r

J

f
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Irrationali ty of -e. (2) and 'c; (3)

In June 1978, R•.il.peryproduced remarkable proofs of the

irrationality of

~(2)
CD,

1:
n=l

1 ' 'TT2 ,
~ ::: "'6 and
n

2:; (3) = <D
1:

n=l

1
3·n

:::

His proof impliCitly used Legendre PolynOmials, but this fact was

unnoticed until Beukers observed ito Beukers then rewrote the

linear forms of ..Aperyfor' ~(2) and ~ (3) in terms of Legendre

Polynomials, and thus simplified the proof (see [6J )0

The key observation is that for positive integers rand s

1 1

~ So 0

xrysdxdy
l-xy (8.1)

is rational ~Qth denominator dividing r > s, and is equal

to
£;(2) -1- J # •••

if r ::: So Thus
1 1 n

d2
~ S Pn(x) (l-y)dxdy

~ 'S(2)- 1 - xy
::: - Pn' Pn' qn8 ]x; •

n
0 0 (8.2)

The non-vanishing of the expression in (8.2) and an upper bound

for it can be easily derived by an n-fold integration by parts

with respect to x which' yields
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o
11
I~yfl nn n , : '

_ p ;.;;d2 (l-x) Y (l-Y) dxdy
n n ffilo () (1- xy)

2 f5-1 )5n< dn ?; (2) ( 2

"

t:;
'r',

v- ur
"

be

s

Note that (6,.11) implies that

.r;: Bn
d2 '( ).(.§-l ). =
n 2, i. -J5-1 5 ~ nCl+o( 1)) 0,

e(- () ) -7
~

as n ---=:700 • (8.4)

The irrationality ·of ~ (2) f'o.Ll.ovs from (803) and(804).

The above method also yields an irrationality type 4. 11.85

for ~ (2). The important thing is that this proof derives the

irrationality of t; (3) without appeal to the special properties

cDf·1T •

The irrationality of <:;(3) is deduced from the above proof

for L: (2) by means of 1 trickt • The basic observation is that

d Q) 1 \ _- ('" . " . ) -/..J ,', ",' . _do- 1 ('-~.i':..:-)S 0- - 0n= '-n+U)
- s t.; (s+l) •

Thus the integral representation for 'c; (3) can be guessed from

(8.l..) by differentiating with respect to xy by taking r = s ,

In particular ore starts with
1 1 1 1 1

I = log xy.xrys dxdy _ r .~ ~
1 - xy j

r s
X y dxdydz
1•..(I-xy) z

o 0 000

and notes that I is rational with demominator d3 if r >r

and

.... :':...
" '~"'~J
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I = 2( 1C; (3) - 1 - ~
2

- ... l..
- -~ ), if r = s,

r
Thus

1 1 1

S
\ Pn(x) Pn(y)dxdydz =
J _I - (l-xy) z qn ~ (3) - Pn,Pn,qn 8 7l •

(8.5)o 0

The irrationality of 2; (3) follows from (8.5), using integration

by parts n-times with respect to x and y. But here a clever

substitution

l-zw = l-(l-xy) z

is required. Wedo not want to elaborate on this, since we vnll

simply be reproducing the exposition of Beukers • The only

unfortunate thing is that no one yet knows how to extend this

beautiful proof to get the irrationality of ~ (§), for
+s 8 Zl ~ s > 4.

J.peryts observation ~hat 't; (2) = rr2/6 has irrationality

type .( 11085yields a uniform upper bound for the irrationality

type of numbers 1f/~k, -:-ae th~ following observation shows;

\~ -;j·lt +tl\.
Thus for all posi,ti ve rationals k, 71'/ {k is irrational of type

.( 2( 11. 85) = 23.70 • (8.6)

In particular this yields an irrationality type for rr which is

superior -eo Mahler1s estimate.
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9. Comparisons

Theorem 1 yields the best irrationality type for those

Logari thms it treats. Choodnovsky [9 J Lndep enderrt Ly derived

this result and later a whole lot, more ,! Bombieri[ 8J also

proved 'theorem 3, and other interesting results by the use of

differential equations •. lie shall touch upon their i.deas in

Section 10 and Section 11.

Previously, the best known result for logarithms of special
functidns

numbers were due to Baker [5 J, who usedJiype r geomet.r-i.c yto derive

the following. Ifm 8 'ffl , then for all a, b 8 zt

.{10g (1 + -ml) _ -ba \:> . c ( m) ,- \.b\ ~m
(9.1)

where

1 ( 4 {2 m2 )
og m+l

~l := 12. 5, i32 := 7 an d ~m ::;: 2 , for m > 3,

and
5

c( 1) := 10-10 ,.
. 4

~2m ) -10 ,ill'> 2.c( m) := (

< (22m)-3c(m)Wenote that and

t~·2)

Thus (6.16) is better thaJl (9.1). All three quqntities in (9.2)

.» -"'.'
'. :,~.,.;
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Whereas the hyper geometric function method of Baker yields
,

a weaker result for the logarithm, it scores over the Legendre
Polynomial method in the most important situation - namely, in
deriving irrationality types for algebraic numbers. In particular
his results are superior to those'provided by Theorem 4. BUt in
view of the simpli city of the method underlying Theorem 4, it seems
worthwhile to improve it without much loss of simplicity in treat-

ial mente Beukers and Choodnovsky have recently derived results 'like

d

rive Theorem 3 by employing the more general Jacobi Polynomials

.1)

.2)

Their method has more in common with Bakert$ than the method of
Section 7.

Foz' the specific irrational Tr/ {3 ,Theorem ~ yields a
method

in (8.6). To see this take
.K =~( [=3) in Theorem 3. We then

1: = 8.309986 ....
and this is < the irrationality type for 'If/ {3 be ca.use

r 1T:i.
10g( 1 ... s) = 3 ·

ChoodnovskYL9 J who independently observed this, claimed .Ln a
bri+liant lecture at Oberwolfach in May 1979, that even for a
s.l.Lghtid mpr-ovemerrt of this particular result for 11"/ {3 ,a major
new idea will be requiredl Unfortunately, Theorem 1 does not yield

,-an irrationality type for 'If , whereas the Apery result (8.6) does.
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n, , 10. Differential Equations.
Ii '.'

,'(:',. ,

'Ih

Soon after Apery announced his result on the irrationality

ofe; (3) ,Bombieri [8 J vf.ewed the problem as one involving

differential equations. The motivation for this observation was

a sketch of the proof of the ir-rationali ty of log 2 in Exercise 8

of Vander Poorten I s delightful article [15J
..•

on Apery1s proof.

',wIBy developing this idea Bombieri not only established a form of

Theorem 3, but also derived the results of li1.peryon t; (2) and

t; (3). In addition he could also derive Thuets theorem for cer-

tain kth roots. To give a glimpse of the method we sketch Bombieri I, '

version of VanderPoorten 1 s Exercise 8.

Consider the differential operator

lio
If b ::: 2a + 1

Yo

Next, define

2 d· d 0
:::(x - 2bx + l)di + (x-b) (ax) . •

is an odd integer notice that

::: (x2 - 2bx + 1) -1/2 8 lZ [[x JJ and !5oYO:::o.
\

x
Y1(x) ~ S YO(t)dt

o
and .notie ..:that

~OYI == 10

The singulari ties for )]0 are at 0( and ~ defined respectively

by 2a + 2 ~ a(a+l) + 1 • So 0 < ~ < 1< 0( , and 0$ :::
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-But note that

Y1 -- CD yo ( 10•1)

has no singularity at ~ '. if co == ~ lo.g(l + !). Jill estimate on

the size of the coefficients of (10.1) yields

(10.2)

\',~ 1 =( e~) n( 1+0(1)) (10.3)

Theorem 3 for r == 1, s == a , f'oLl.ows from (10.2), (10.3) and

Lemma2.,

It is interesting to note that YO is the generating

function for the Legendre Polynomials Pn(a).

Most recently Bombieri has pursued his method to the' pro-

blem of obtaining transcen~ence measure" but that is beyond the

scope of this a~ticleo

90 !t",§.s.~!?:.t Pr 0gr.~.§,~

The most significant progress 3.:h1 irrationality since

Ap~ryls result, is due to Choodnovsky. By a varietya[' methods

involving Legeridr e , Jacobi, Hermite and other orthogonal polynomials

and in particular differential equations he has established

i.rr~tionality estimates for a wide class of number's (see [9J ,
[101 ,[llJ and[12J) •
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In particular he can estimate the irrationality type of

log 3 , which is beyond the scope of Theorem '3. In addition

he Can derive a ru ee irrationality estimate for 7T directly,

l.uth&ut involving 2
'IT F' l' h d' . t' Lt.t. ln8.--..LY5e can lSCUSS a.rra a ona l y

estLmat.es at r ata.cnal, points x close to zero, for the dilogarithm

and trilogarithm funct~ons defined respectively by

dilog(l+x) .,co
L:

neL
, trilog( l+x) ::::::::

Bombieri independently obtained similar results for these two

f'unctd.ons ,

In summary, the most powerful methods at present in irra-

t.Lonal.L ty inv,olve different·ial equations and the clever use of

orthogonal polynomials. The orthogonality occurs q,uite naturally
, /
In pade - Approximations. ..l.t any rate, the Legendre Polynomial,.

method Ive have discussed, besides being i:ateresting and useful in
J.'i

its own right, has given us a glimpse of deeper methods and more
\. 't'"'\

interestinp; t.echm ques that Li.eiahead, Foran enJ.:ightening

/
t.

, 01;"

10.

li.

12.
.:~

discussion on these more advanced metriods , we refer to Choodnovsky' s

article [12J ,1>Thich treats these r-e ce.rt advances in the context

of various classical appr oaches ,

... ' ... ' ,-,,:.

':;13.
.'';1



:, .

31

REFERENCES

K•.•~lladi, Legendre Polynornials and Irrationality, lMatscience
Report lOOt, Institute of Mathematical Sciences, Madras, India
(1979) ••
K•.••'::Uladi and HflLoRobinson, Legendre Polynomials and Irrational
Numbers, Jouro fur die reine and ang. Math., 318(1980) ,137-155.
l.i..Bak.§r, Rational approximations. to certain algebraic numbers,
Pr'o c, Lond , Mat.h, Soc., 14 (1964) ,. 385-393.

:z ~
..!tt'lBaker,Rational approximations to ~ 2 and other algebraic
nnmbers, quarto J ..•Math••, 15 (1964), 376-383.
A ••Baker, ,t;"pproximation to the logarithms of certain rational
numbers, Acta •. :l.rith., lOC1964), 315-323.
F.BBukers ~ Jio. note on the irrationality of S(2) and '£; (3) ,
Bull •• Londo Math. Soc .•, 11(1979), ?68-272.
FoBeukers, Legendre Polynortials in irrationality proofs (to
appear) •
E.Bombieri, Ordinary differential equations and irrational
numbe r s , Notes of the Zivret lectures, Un i.v, of Michigan, ...:~nn
I:.rbor (1978) •.
G",V. Choodnovsky, ."lpproximation rationnelles des lko gar.i thmes de
nombres rationnelles, CeR.A.S"P., 288 (1979) ,607,.;~-609~l.
G. V••Choodnovsky, Formules d 1 Hermite pour Le s approximants de Pade!
de logarithmes et de fonctions binomes et measures dfirrationa-
Ii te ,C. R.A.S ..Pe, 288( 1·969), 965:1..-967..\.

;/

G~VeChoodnovsky, Un systeme explicite d1approximants de Pade
pour les fonctions hyPergeometriques generalisees avec applica-
tion, a 11ar i th..rnetique , C.R,:!..SeP., 288( 1979) 100Ll-IOO4.i.
G~V_ Choodnovsky, Transcendental Numbers, Pr oc, Coni. on Nunber
Theory at carbondale (1979), Le ctur e Notes in Mathematics 751,
45-69"
ill. J oLeVegue,_ Topics in Number Theory, 1 and 2, "~ddison Wesley,
Reading, Masso (1956) ..
LNiven, Irrational Numbers, Carus Mathematical Nonograph, 11
(1956)0 .
G. Szego , Orthogonal Polynomials ~ New York (1939) •
.•1. ••VanderPoorten, ii. proof that Euler missed-l(peryls proof of the
irrati onali ty of L:; (3), Hath., Intelligencer, 1 (1979),195...203.

NSS/8a5081.



In p.ll, (4.2) - (4.3) should read as:-

(

"P, .

::: Qo + 0.\ -+ Pz.. )
Q 2 + ?3 / Q.:1 + . . ~.

.~ and Pn are defined recursively by
n Io Qn-I + 'P'h, 0 P _ F-n

'Yl> - ., 'YL'+ \ .- -
1- QI i -Q 'V1.n-l IV

In the follovling,theLegendre polynomial 1PnI has been

by 'Pn' • Thd corresponding correct versions are~-
. . 1
. . . . -rv+l S SXP - \ 3 ") Q.. k.. 5 • Ot Co?", ~): p '?n( )()e ~X

o '
n I r . ~ ) .L . 5;<p, 13, :",. tv .• ~, 01' ( -.) •• "3 : S ?")'t. lx..) e cL X

o
i

p.14., 1,rv,S. Ot(5'7)~ SSln.:rr1:~ Ct)cLt. 2n
o

p. 16 1 '1. ~v. s. o-\' (b" 4): 5 'P,. ( )() J-x
. 'I -zx

r- 16, " h- • s , 0\ «;'5): ~~ ";l',.(~)J-s (1-2)+ Q. n,( ~ ) c!..-~,
r·l~>; 4th line, 2nd p ar-agr aph e estat71ished ... orthogonality of'

1..1 -rvPn' .....
p . JJ 3, ~..k ' s. 0 t (S <2- ) ~ ~ ~ S "P,. l )() (1- Y) cAXd..Y

o 0 1- xy
p. ~5, 2. h"c;. of (8-5)-, vt~ S S 5 P)'L~x)r\/Y) d-xd.yotz

o 6 0 L - (i - X Y)Z

32

Note the following corrections in the above text:-

a) In p.5 the second line after (2.2) should read asj -:

constant increasing function........ -, ...- .
b)

y
,/1

where the

c)

. :;. .:

(4.2)

( 4.3)
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H,,;.RMONICSUMSOF' CERT,,~INSUBSETSOF' NONNEG..l.Tl[VEINTEGERS

V.S. Joshi
Department of Mathematics
South Gujarat University

SU&~T395007 (INDIA).

Let B be any subset of the set N of natural numbers. We

denote the sum of the reCiprocals of element's of S by H(S)~· In

this paper, we describe a sufficient condition for H (S) to be

finite. The condi td on has been described in terms of the basis

representation of a natural number n in an arbitrarily fixed

integer g greater than 1.

1. INTRODUCTIONANDNOT"lTIONS:

Let S be any subset of the set N of all natural numbers.

It/e de fine H (B), the harmoni c sum of S, by H (S) = [ ~ It may
'(1ES

be noted that H(S),being a summation of positive terms, does

not depend on any particular ordering of e'lements of S.

Therefore, without any loss of generality, we assume that the

elements of S are arranged in natural (increasing) order •

Let g be any fixed natural number > 1. It is weLl.e-known

that every nonnegative integer n can be expressed uniquely in

the form

( 1.1)

i::O
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Where 0 ~ el < g, and only finitely many ei 1S are nonzerc

This is called ;the basi s representation of n in the base g.

Throughout this paper, a sequence shall always. mean a

strictly increasing infinite sequence of nonnegative integers.

The complementing sequence £ a ~ ~ of the sequence -[ an <s is

the strictly increasing sequence of nonnegative integers which

are not e Lemerr'i s of ian~. e. g the complementing se quence

of t.he sequence of prime numbers (which is 2,3,5,7,11, ••• ) is
,

0,1,4,6,8,9,10, •• 0 '.lie make it clear that the complementing

sequences can be fini teor even empty. If for the sequence

{,an "5 and an integer m, IIl;:::ar for some r, then we say that

m is a member or an element of'[an.5 or m appears in £..an 3
We define S ~an ~ the setLet tan~ be any sequence.

generate~. by lan~ , by

S t.an~ = In/nt:.N, p (n) is·tr~~ t:
wher-e P (n) is ~ •• ••

o •

I 'When n is expressed in the form (1.1), for each

element i of ~ an ~ the coefficient e. of gi is zero I '.~ .

In this paper, we prove the follo,dng-

Theorem! If [an} is a sequence satisfying,

a· 1 - a <::::' B for all nn+;n ,

H (S tan '$) is finite.then

2. ~ simple result :

Theorem 2.1: Let S and T be any two infinite subsets of

N. If sn ~ tn, where sn is the n-th element of Sand tn that

, ~.'

. ;:--: ....

<:, ./
~. ~."
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of T, ·.'then
.•..,

H (T) ~ H( S) "

proof~ 'H(T) == '2:( tn) -1 ~ ~ (Sn) -1 ::: H:(S) .
, .

j ~ .", • - ~ •

3. J4. P:iliTICULARG••~sE-{)F ·THE6·REl~1 1.'1::: ' .

Theor~~ 3~1~1et d be ani' fixeh nat.ur af rrumber and. -' .;.. , •. it:· ~ ...•

if a~ =nd, then'H(S' [an:~)is i'init;e •. :

Pro or: As. easily. observed, if d=l, then
,

S ~ an~ = f,.,1;2,a,'.;. ... , g-1 .5
and H(S {an 3 ) is obviously fim te.

Let d ').1. and ltre write D=d2 and S forS 1.. ani Define

R (n) =l/n for all n cS Nand J.t (0)=0. Now,

H(S) = L R(n) = L R(n)+ Z R(n) = Sl+S2, say
'1t.. E S 'rt-E. S. Y'l E S

1\..< gD 't\~gJ)

. pince Sl is finite,. it is sufficient to prove finiteness

And I.",

(3 ••1) S2 =. ~. "')'L ~cv- . - L F(rr)?
--rz: d-

where,

(3
0
2) F(r) = L R C'-A,}

Y)~ ~ , (I +-\)ch
<g"'f~ ~ f\.< g
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Now, the number of elements of S satisfying gr~ n< gCr+l) d......

does not exceed gCr+l) d-r. For, every natural number

n < ir+l) d is of the form

Cr+l) d-l

Z < , .g,
i=o

The number of ei 1s is, thus, ~ (.r+1) e, Also, ei =0,

if i E [d, 2d, ••• , rd ~ and each of the remaining ei Is can

have atmost g different va Lues , Therefore", the number of terms

on the right side of .(3.2) is atmo~t g(r+l)d-r

and since each term . <, g",,:,rd it follows that~s <, ,

) )./ d-r(3,.3 F(r .:::::-g

On substituting (3.3) in (3.1), we obtain,
,00

82, ~_ ~ d-rL g " < -.JL
g-l

r=d

Thi:s completes the proof.

(Remark~' It can be' shown that, 81 ~ d210gg'+ Y +Blg

where ry and B, are some constants independent of d and g )

4. NORE..~BOUTCOMPLEHENTINGSEQUENCES ~

T'heorem 4.1: Let {a~ 1 be the

of [an~ ,then a Ik ,exi sts only; if

~ ~ D:l-lw-l, -for somen.

complementing sequence

,
"!

1
Proof: We prove that if, an n+-:k~1:,for all n°,' then-,,a k

does not exist.
"

Let me"be, any arb;i trarily large fixed natural

number. Observe the first m-k terms of t a~ I'
al,a2,a3'···' am_k•

•,



.~.i

~ms

e

1

a k

al

... .,...

Since am_k::S rn-2, it follows that out of first m-l non-

negative integers whi.ch do not appear in { an~ and are -{.m-2,

do not exceGd (m-U -(m-k) -k-l. in number. Since m is

'arbitrary, it f'o Ll.ows that ak does not exist. This proves the

theorem.

We now prove that the necessary condition described just

now for the existence of ak is sufficient also.

Theorem 4.2: If t.a~ ~ is the complementing sequence

of [an \ and if an ~k-l for some n, then a~ exists.

Proof: Let no be any integer sat'isfying a ~ n +1{-1.
no n

On observing the first n elements of ~ a S-o G m )

'~'ie see that out of first n +k nonnegative integers atmosto
I

no integers appear in [ an S . Hence the existence of ak is

guar arrtee d,

Theorem 403~ Let ~.a 1 ~ be the complementing sequence of
v n

If ak exists, then

( 4.1) ak = no +k-2?

lJihere, no is the .sma.l.Le s t natural number satisfying

(4.2) an ~ no+k-lo
0

Proofg Tlus is proved by induction on k. We note that

If at1Let k=L, exists, then let no
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be the smallest natural number, which exists by theorem 4.2,

satisfying the relation (4.2), with' k=l, i.e.

(4;21) an ~. no·
o

If no = 1, then al ~ 1 and' a~ =0, in which case (4.1)

is true. If no)l, then for 1 {n <no~

Hence, an =n-l, if 1~n (n~ and an ~
,0

which is nothing but (4.1). This completes the proof of the

theorem in the'case k=l.
1

Now, suppose that the Theorem is true for k-r. Then, if ar

exists then

(4.3)
t

a =n +r-2,
:r 0

no is the smallest natural number for whichwhere

(4.4) +r-le
I 1

Now, ~ssume the existence of ar+l then ar must exist and

(.3) is valid. Let t be the largest integer for which at=( ar"

(If t does not exist, we then define t to be zero and in this

case the set £ aI' a2••• } in the, fol101ving discussion to be

r egar-de d as the nullset.) Consider the set

l al,a2,o .... ,at l U {a~,a;, f; ••• ,a~(=no+r-2) ~

which consists of r+t distinct element2 and they are, infact,

0,1,2, ••• ,no+r-2. Hence we must have, t+r=no+r-l, L,e
,

t=no-l. \'/e now define bn=at+n-ar' -1. It is easily verified

that t bn }is a strictly increasing infinite sequence of non-

negative integers. L'ettb~'~ be the complementing sequence of
:

this sequence bn. Does bt exist? Yeso For, if not, then
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1
bn=n-l for all n, i. e. :at+n=ar+n for all n,

In view of (4.3), this reads as

a( no-1) +n=(no+r-2) +n, since t=no-l

Putting n=1,2,8, ••• ~, we find that all the integers

~ no+r-l appear in f an ~ and since a~=no+r-2, at r= L does
I

not exist, which contradicts the hypothesis that ar+l exists.
t I I

Thus bl exists. It is easily verified that a~l =bl +1. But,
I

b. =
.J

(4.5)

mo-i, where mo is the smallest natural number satisfying,

or equivalently Vo is the sma.llest natural number satisfying

(4. 6) O: ~. V + ('i" +l ') ,-I where V .;::::..VI + yY) - (
V;,-O 0 o ()

o
I I . I ,

and Ov b + Cl. Y + \ .
I-T{ _ C~ -I) +CY)~-+y_2t)+l

t>

:::::.(n 0 -\- YYl (} - I) +(i' ;;+!) - L

Vo + (1+1)-2.

(4. 7)

On comparing (4.6) and (4. 7) '\'rith (4. 1) and (4. 2), we
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find that the theorem is true fork=r+l. This completes the

proof.

5. NATUH.ALORDERINGOF Stan ~ :

Let ~an~ be any sequence and sn denote the n-th element

of S [an ~ , when the elements are arranged.in increasing

order. We exhibit relations between

sequence La~} of f an :5
S and the cOm.PlementingY\...

Theorem 5. 1: Let [a~ ~ be the complementing sequence of

any natural number. Further letL an <:r and let n be
YYt.

~ r("t. / / -LO
L e~~ ,O~~{'-~) f?'('r1-T- 0

\...t -=-b
I

Then sn exists if and only if amtl exists.

Proof! . Every element of S £ an } is of tbe form

k !(A...

Le~~ 1-,
l

-t =0

in S

I
Hence, if am+1

l an3~gm~l,

does not exist then the number of elements

gm. Thus sexists'. n
exists, then

;1:,
only if a Im+l

while n is certaintly ~
I

exists. Conversely if am +1

contains atleast gm+':l elements and since n < gmt-I, sn exists.

Theorem 5.2: Let ~a~ ~be the complementing sequence of

VV\. 1.
Le~ If
\ 1..
1-::::"'0

representation of n in the base g. If n-th element

o c e . z(-.. "t. ,
Let n ,

be the

r

.",
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sn of s'[an~

(5 e 1)

exists, then is given by

,YYV, ~~;
~ €\~ 1+\
, 7...,
1., -==-0
proved by induction on n. We note that, whenProof: This is

n is represented in the base g vr.i.th its leading co-effi cient em

I
non-zero, in vie,w of the ~revious theorem a m+l exists.

If n=l, then m=o and al exists and obviously
at

Sl=g 1 , which satisfies (5.1) with n=l. Thus the theorem-'- '

is true if n=l.

~fe now as sume that the theorem is true if n=k and

prove it for n=k+L, Let

(502) k= Z ~~ f=-Oe I , 0 < -e, L:.~<) eyY1~ -v 'I - 1.-,
\ ::"0

and by ·the assumption,
V'Y\

L e~~
we have

I

Q.i ",,-I(5 e 3)
g

k I '1, :::"D

Case (i). In (5.3), ei :::g-l for 0 ~ i .::; m, Then,

(5 e 4) k+l:::g ns-L and a~2 exists. (For, we are assuming that

S,k+1 exists) I0...-

Hence g )r. +2 is an element of S

Let t be any natural number satisfying

< ( I

sk t g anH-2.

i .•e. m I I

~ gai+l a
( g-l) «t <- g ,ID!- 2.

i=o
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Then, it is easily seen that t can not be an element of

For, at least one i, the coefficient, say E?~, of gi
~ .

in the representation of t in the base g will be non-zero on

one hand and this i w:i,ll be some an on the other; \mich is not

consistent with the definition of S tan~ • Thus the element

in S ~ 1. next to :s is n (]..I yY\ -\- 2. Therefore
tan) k 16 - .

f
r< (J... vY\ + 'l.
"r! uJ .:tft, k 4- \
\) ,

Case (ii) In (5.3) at least one of the ei 1 s is different

from g-l.

Then

Here let r be the smallest for which er =J= g~l
VvV 1

+
t<"f ", 8;; ( 1-

<2,,('5 + L1. :::.'Vi-I

~- I 1

k-::L(~-"()~
r
1=-0

We, then, have by hypothesis I vY\ o:.J. .
"(-I I LOv ",(-4-! -« X-l-I

c - ,L Uf-I) rt o,~i-I-t e
T
'< + L Q.; '<i;

k t::.o i -=-l-\-\

Now,

(5.5)
,

(Observe that 0 {. er+l < g and therefore, (5.5) represents

k+L in the base g.)

Wewrite,
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Clearly, p is an element of S $" anS. e Also, it is easily
<-- J

can not be an element ofshown that if s, <. t < D, then tK " .•

S [an 5 because of the sane reasoning descri bed in case
r WI- o..l~

Hence, O-,y-+I d 1..+1
S - r _ (e"1~+\) ~ -\- L e-{5

k+1 . VV\.- 1-=Y+1
'{ - 61

\~ith k-rl -=-(e-y +I)~ + J- ,e;S
1.. :::.Y+I

Thus, in this case also, the required relation is true

for n=k+L, if assumed it to be true for n=k, This completes

the proof 0

6•• T01tlARDSTHE PROOF OF HAIH THEOE@.'1~

Theorem 6.1: Let [a~ ~ and (bn
l! be the complementing

sequences of the sequences [aJ and{ bn3 respectively. Further,
1 1

assume that an:S bn for all n, Then, bk exists, whenever ak

exists and bT ( aTk <, k.

Proof~ Suppose 2.k exists" Then, by theorem 4.3,
1

(6.1) ak' = no+k-2,

where no is the smallest na tur aI numbe r satisfying,

(6.2) an ~ no+k-lm
o

But, then, bn ::>: an /".....no+k-l by (6.2) which shows, in view
0""'" 0

1
of theorem 4.2, that bk existsc Also,

I
(6.3) bk =mo+k-2,

Where mo is the smallest natural nwnber for which

( 60 4) bm ~ mo +x-i.
o
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Therefore, n ~ m and hence
, 0, 0

, bk = mo+k-2 ~ no+k-2= ak by (6.1).

Thi s proves the theorem.

Theor~m 6.2: For the sequences tan} andt.bn '} suppose that

an {bn for all, n, Then H (S£ an1),(H(S {' bn J i.

Proof; Let liu and vn denote the n-th elements of S {an r
and st bn~ respectively. If for a fixed natural numper n, its

'VY\,.{'l ' d
representation in the base g is given by n~ ~ C{ S }O.!:: ~-{ fey-b'C ~~o

VVI -:f::? j then by theorem 5.1. ~ exi sts if and only ,.if arhrl

exists. Suppose'~ ex:Lsts- Then a~l. exists, But then b1hrl

does exist by theorem 6.1. Now, with the help of the theorem

5.2. Un and Vn are easil~ described as foll~s: 'b.
( 6.5) t\ :::-~ C, d o, t+1 ONS- 'v _-= "Y C,. g 1- T 1

'Y\.. 1- 1., 5 "\'v L-. 'l.•

I'},:::' 0 i'-:: 0

t.
l

, 1;

me';

The

1) ,

Till.,

LIT

ear

lnly1:
I! "

The

The

, a d

Since, bi{.ai for all i, itcfollows that ~ ~vn and I: pre

consequently by theorem 2.1, H (S tan}) ~ Hest bn ~ )~ } L(

Proof of the main theorem: Let Z an ~ be any sequence for wn.ich '; Clc

an+l -an(. Bl for all n, where Bl is any'fixed positive.' 2)

integer. Let b= max [ a...-\) Bl~.~onsider bn ,where bn=n B•• ' ant

Clearly al{B=bl, If an ~bn' then an+l~an+Bl ~ n x -; re~

/(B+B= (n+l) B=bn;.l. Thus an ~ bn for all n, Hence H (SE aJ) Ii 'k2(

H (S ~}n~). But the last expression here is finite by -x L1'

theorem 3.1 and the proof is completed.

···.Jl

'~i.".'. ;

~ e,
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J~ BRIEF SUHMARYOF SOHE RESULTS IN THE AN.ALYTIC

lHEORY OF NUMBERS

K. RAM.ACRllNDRb.
T.ttT,1INSTITUTE OF FUND~l.MENTALRESEARCH,

BOMI BllilBHAROAD, BOlVIB:.•.Y 400 005, INDIA.

1. l.N11ill.PUCTIOJ{~ I Irish to speak about some results by

me and some jOint wor-k wi, th my colleague Hr. R. &U,...lSUBRil.MJllUAN.

The results are ~T

1) :.~ proof that ~ 51 ~ (i +~-t) t4clt::::. 0 (C \2.06 T )4) j T~;2 .
IT

This result is not new, It is due to G.B. I-LlliDYand J .E.

LITTLEWOOD" But the method is new and simplifies
results

the

earlier (complicated) but very useful on the

bybrid fourth power moments. of L-series due to B.L.MONTGOMERY•

The new method turned out to be useful in density theorems.

The method is ve~y simple but sufficiently important. For

a description of the method see (K. fu;'}UCH,,'l.l\TDM,I•.simple

proof of the mean fourth power estim~te for 'l; ( i+ it) and

L( ~ + 1:\:;/(;) "Annali de L'l,a Sc~ula Normale Superiore di ~isa,

Classe di s cl , Section IV, Vol.I (1974), 81 - 97).

2) Let kl~ k2 be integers subject to 3 { kl ~ k2• Let ~ I

and ~ be two non-principal real characters mod kl and mod k2

respectively such that for at least one integer n( ~ t 2), Xl (n)x

'Xxln) ::: -10 put Ll ::: L (1, ltl) and L2 ::: L (1, 'X~ • Then

11 < j. implies L > L ~(~~(rk )-2 k-C L I 1~
... log lC~ ~QOZ k~l. ~ I '1.
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't1here ..!., B, C are effective positive constants independent

of kp k2,A.l and')¢2D The proof of this new result uses only

very simple facts from the theory of functions of a real var Labl,e ,

See my paper (K& RJlM...:lCHli.NDR11.,one more proof of Siegelf s

'cheorem, HlillDY....Rll'LiNUJ"tNJOURl'L~, VoL 3 (1900))

3) Next I state a result due to myself and R. BA.LASUBR;.1.M~~NIJ.N.

(Ref. R. B.r1L~l.SUBR.JvU.NLl.N!.i.NDK.R.UVl:4CH..:i.NDRlt,some problems of

Analytic number theory II I ,H •.lliDY

(1981), to appear). Let r (""\
II) '::6} =-

- R::.H':~!lmJ~lliJ OURN.:..L,VoL 4
00 by1.-
~ -. be a seriesL-yt?
Y1.;:: I

complex number s = ,0- + it,whf.ch converges at least for one

( b1u being complex numbers) and hence in a half plane.

Let k ~, 2 be an inte ge r constant and i... a constant -;;; 2 k,
\ 't ,..... tIT / L

put 0( = "1 - ~k and suppose that In ( o: ~ ~ - A? ~ c~~T) ,

Fo(s) admits an analytic continuation and there M defined

by H = max ! fa OS) \ does not exceed Exp (is) ifuere B is

constant and T ~ JD. Put iF (s) = (1="0 ('b)) ~a positive

~£ ~
\1,.::: I '1L

that if f l'bJo

at s + 2). Let

wheref (s) is absolutely convergent (noteo

is convergent at sit is absolutely convergent

H(VI) be an analytic on a curve L consisting

of finitely many fixed straight lines all contained in

(~. W ~ \ + ct , \ Im wi ~ 13 ) and we assume that H(w]
W

is analytic on L.Put Deu)

where u '> o.

,
iJihere Next put E( u)u /" O~

, , '.•
. .:' ,:

»:
. "'

(.;:
, .(.\.y
si

,CQ
<
"

wt
tt

tl

Ct,
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<et 0(11 0(2' 0(3' e and C be positive constants subject
l , . \
'0 ;....;<. _\ _ 1. < C)( /... 0< <. r::J. < ~ j G < \- -r , and

v\ --';:u A \ 2. .3 :2.. ¥:.
, , V -c \ \-\CW) l ...(C

urther assume that ma:x."bn4 > T and max Y\/ ~ - .
n '~T_ »t oo: L

\CJQ

there exists an effective constant To = To (k,A,B,C'o(t'0(2'
such that for

max
T ..c:.: U .:f (M+T) To

all T ~
rp there holds~o

':1v
I '- cA.

~ \

'1; <. '"Lv)
0( I:u

u

_ 2 T .2..0-

1there V(0-) =: 1- 2- \ b'f1- \ ('IV)
1" h~T/\OO

(
"" -III \'1\k ' . e
L I""fu \ v'YV) Qoes not exceed T
YL~\ ./

sic1e of our main inequality.

"I
/ clcrYV)
/t; ::.\

wher-edl'YL) is def:Lned by, L.
Yl, :::. i

provided only that

times the right hand

the E,uler's cons t.ant ,

The paper contains some other r esu.Lt s as weLL, For
y( .

Example Q ( N 10) for the error term in the abelian group
~ -\i

problem and Q ( N 4- ~ ~9 r-l) 7_) for the error term in
lattice 0

the ~ point problem for 2. 'circle. There are.f2. results
±

also~ but the exponents Jere f~ll short of optimal, exponents.
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In the case of Q results the exponents are optimal but the

log factors are not the best known. The theorem stated above

is of interest because of its generalityo For the history of

the problem see the introduction to the joint paper cited

above.

2. SOHEREtvL:~RKS ONTHENE.:lNFOURTHPOvlEROF L; ( ~ + ;;l)

In a subsequent paper (J. London, Hath. Soc., (1975»)

I have shown that my method works even to prove _
~T 4- I 0 4- f) ,3)1. \' \ r.; ( ~ + {l) \ dvt :::.~ (X)J6T) + 0 (( WOT) .

T .) .
T

This is an old result of i",.Eo INGH"}.1vfand his proof was

complicated. However these results are superseded by a result

due to D.R. H&1TH-BROHNwhich states that R H S can be

replaced by _1_'2- P(.iod-T) (where PlX)) is a monic

polynomial o;~e gree 4) plus an err o;- which is 0 (T ( E - ~ ') )

for every fixed a. >0. HEJlTH- BROWN1Sresult is very deep.

My proof of the result quoted above goes through with very

little modifications to prove a hybrid analogue for fourth

power moments of L-series (For these and many-. other results..,
see a paper by R. B..tL.•lSUBR.:J.'1 .•.~NI.~Nto appe ar-) ; To give an idea

of these results I give in a few lines a proof of

1- 51\~ ( ~+{ t),4cL\: -::: 0 (TE) - (\)
T-r

valid for every fixed <E /'00 Put s = ~+ <t t'j \ ~ ,t ~ ~ T,
..L

D < E. < 'CD "
1+ t.

l'\ -= \" and define d( n) by

. Her

G

I"~.
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\(Q., "2 =?-1 . Then, we have,

In Q2 we move the line of integration to Re W = -Z f

. Using the asymptotics of the gamma Tunct.Lons, the functional

equation gives ..L -1<o.(.b +W)

'X;2.(HW) "= O((T+ \r""w\)"- )
~~ere Re W is any fixed constanto Using this for Re W = ~-l,

and ~W ::: -~ the required result (1) follows 'on using



...,ihere in one complex and 8 is 'an arbitrary constant subject

to 0 < ~ <' 1.
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ON CERT~UNSUMSINVOLVINGTHEH~~n'l•.:.L K -FlillB DIVISORFUNCTION

V.Sita Ramaaah, ..r~.Siva Rama Sarma and G.Sri Rama Ohandra Murthy
Dept. of Maths., Ji..ndhra University, wl:iliT.:li.IR-530003.INDIA

§1. .INTRODUCTION

Throughout this paper, m denotes a positive integer, p

denotes a prime and x denotes a real number ~ 1. Let k

denote a fixed integer ~ 2.. ..~s usual, m is called k--f'r-e e

if it is not divisible by the k -th power of any prime.

Let 'i~(m) denote the maximal k - free divisor of m,

Let Y (1) = 1 and if m > 1, y( ri1) be the product of

distinct prime factors of m, It is clear that 12.(rrv= Y(m).

It is well-known that ill is called squarefull if '/ ri?rv
,

.1et}k( m) denote the characteristic function

of the square-full integers; that is, ~(m) = 1 or 0

according as m is square-full or not.

In this paper, 'voleestablish (See § 5) an asymptotic

formula fo::, .:;L lk (Y'ri)),(hi) with an error term Ek(x) ,
~<~ -

<, 2.R~f' ~
where E rJ X) :::: c ( X~ r;(~)) ()Y 0 ( o; 4- S (1--) )

it
(JI. OC~3) J

according as k is even or k = 3 or k is odd ~ 5 respectively,

where E (:L) = 0i<F {~H ib~3J5 'd-,;( ( ~~. QJO~ 3-;() ~JJ5 5 •
H being a positive consbarrt , On the as sumption of the

Riemann hypothesis, we prove that (See ~. ~
S-Iq __3

t
k
(!.):::: 0 (:t.. r 0 W(j)) , whenever k =~ or k is even,

-,~--------------------------------------------------------------
V. Si ta Ramaiah
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. -I

vn1ere W ( x-) == =r t H V;o} Q;)c ( ~ JIb d 3x) 3 In the

case k=2, an asymptotic formula for the above sum has been

established by R. Sita Ram~Chandra' Rao (4) with a weaker

o - estimate of the error term Viz., Ot -:27t).

In ~;;; 2,3 and 4,. we establish asymptotic formulae for

the sums z. C7Rem)) ~ L 1'~(v/") and ~ Yk (yV\2f3)
Wlzj:.- vn ~?G YYl <-x ,

( ~Yl"7}l)-= I (1'V1) ')1) ~ I ......._
wi.t h uniform order estimates of the error terms, where u is

a fixed real number '3- 1, n denotes a fixed positive integer

and t_ denote's a square-free integer. These formulae are

required to establish the main results of this paper.

~ 2• .in asymptotic formula for ): Ct~( WI)) u 11

'vVl.( ~
(i\t17n7 :: I

Throughout this section, u denotes a fixed real

number ~ 1 and n denotes a fixed integer): 1. For s >0,
. '/

let
1> ~ --~

( 'J~I /) J (m) ::: vYI L M. (d )J-~ . ci/ yr11 .
where J.1, is the IvIobius function.

Clearly Jl(m) = cpCm) , the Euler tolient function • ..IUSO, it

is clear that for s '7 1,

(2.2) 0(1) G

di~

COI

~

es:

k

(2

(2

un

(2

H
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( 2. 3) Lemma.
(2.4)

We have
~*( cU

(t(d)}S ~
~-T~(\'1\) -= YY1 L

Jb::::VY\

l0\ I~J== 1
1,I[here ~-*CYV\ J :::: E:: I)0JC ) coon) being the number of
distinct prime factors of m and (d,6) , as usual, the greatest
common divisor of d and 6.
Proof. ./J.. proof of this lemma in case s::::lhas been
established by D.Suryanarayana and'R. SitaRama Chandra Raq
\~f. (8), Lemma 2.12). The same proof works for any s,

Let.qk denote the characteristic functipn of the
k - free integers. Then we have
(2.5) Lemma. For 0 < s < 11k,--....

, -where I
.. -, . ~o (x. ~ ~(t) v: ;b o» ) ,

unif orrnly',
-*cr_ h ('1'\.)(2.7)

-0~ d. V-61.(&) )
el\ 111

being the Riemann Zeta function, and
, 3(::; 20 -J:: (

0(;1.) z: ~d-H -end ;Jvx' (QoJ 53:j:)", S J

~ (s)

(2.8)

H being a positive constant.
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(2.9) Lemma. If the Riemann hypothesis (R.H) is true, then
the error term in the asymptotic formula (2.~ is given by

c.L

r; 0 (::(.1+l2.->t 1.,( ~) r\ (M) ),~( Z ; f1\. ) -= VV.A- 'J II

'"Where

( 2.10) e-C n) -

and

IV (1-) = 0><-p t f-j Qn}:t"'-. (9-<1} k& '3X)1 J"
H being a positive constanto

(2.11)

(2.12) Remark. Formula (2.6) has been established by
D. Suryanarayana and R. Sita Rama Chandra Rao (~f~ (6),Theorem ,
3. 1) wi th '" 0 ( ~ * ) ryf I )o R(:c ; /(l-) == 'X Sc x.) 0- .l,( t'f\) cpCn ,
which, of course, implies Lewna 205. However, the term

-I

(~(')1)rfV appearing in the order estimate of L.\z(X ~'YlJ

above is due to a lemma (tef. (6), Lemma 2.,2) in the proof
of which the authors (~ made use of the erroneous result viz.,

for all x ? 1 > 1,;/Cf>e x, ")tQL) == 0 C x: c.p (,yl )%I )

1ffiere<?( x, n) is the number of posi tive

and n

prime to n,

integers < x and....•..•. .

of (6) what one gets
(

r . *() ~ 8(1--) 0- 2, (r(L)) 4

Thus from the methods
actually is that L (:x:.. 0) "y'v) , ==

~
~lso, on the assumption of the Riemann hypothesis, the
same authors (d:f (6), Theorem 3.1, s == 0) have established
th t .A ( , . ~!0+-IL~ ) . - \)

a D,<z L J rYL). ::=: 0 ()( . W ( 1.) 6-( yv) cp( ')1 ) 'tv ..

.-----_._-----_ .._ .. -.---~------..."...---

. ,.. ...
",:,;' ..

The
only

(2.1

incr

Wher
(2. J

in t

the
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The above mentioned remark applies here also, and we get
only that

c(2.l3) Remark. It is clear that for each f e> 0, Z &:1-) i:s
increasing for large x•. Using this it can be shown that

S CC-
~ & (09) ~ Ci-1 ~ 5(X) ,

·for all s, I ~ ~ ~ x. .., where al is a positive constant
depending only on_ E,and the constant H in (2.8)
(2.l4) Remark. It is clear that W( '(,) is increasing. for
large x. Using this it can be shown that if x ~ l, then

for all y ~ x, where a2 is an absolute positive constant.
The following two lemmas (lemmas 2.l5 and 2.l7) are

immediate consequen.ces of lemmas 2.5, 2.9 and partial
summation.
(2.l5) Lemma. For 0 ~ ~ < \/'r<- ') we have

'""- lA> u:+1 R -\ )
( 2. l6) 'Z- rv1 cy \ 11\) -:::::- )(. /}'V pC 1\

YY\~X ~ (U.+I) Z;UZ) ~(71)
(YVI)'Y\)=I

Where the 0 -constant depends only on k,s and u.
(2.l~ Lemma. If the R.H is true, then the error term
in the asymptotic formula (2.l~ is given by

O(9tIH I~~ l-i(Jl)&(1"\.))
the 0 - constant being dependent only on k and u.
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00 I
( 2. 18) Lemma. l-VYla. MIIlJ
a "/ 0

converges for every

Proof. Since the product

zz: IT) l+ 1 2. converges for a > 0, the
~ ( PC P (1,_ ,) .>

lemma fol~ows from Theorem 41 of (2)

(2.19) Lemma. We have

J

1i/here
(2.21)

and
(2.22)

general term of the se~ies is multiplicative inm. Now the
lemma follows on expanding the series as an infinite
product of Euler type (<": ~~.(3),.Theor'9m 286)

" "~", '.

'~'- .•..v

(:

1

(

f
(

(



he

".\ .

57

(2.23) Lemma. For o < a <: 1,

(
-\+0,,)

:=: 0 :x.
Proof.

~ j'

1tIiI> 'vY\ DIm)
IIt)( ,

From lemma 2.18 it follows \that

lemma 2.23 follows from this and partial summation.

(2.25) Lemma. For
/

Z l/k,we have
~-t-I k -\ ~

Je. IYu ,?C Yt-) I' R , 'lJ,.,

C 1..l +1) sC R) ~ ('It) 13 (YL){..... I~k ! 7.A

+ 0 (X 'll-Hy<. (i (;,.) rJ*i~)),

a «: s-
( 2" 26: Z- Jv.\W\ ) cyk(yY))

WL~'X-

(yvl,~) = J

Where the O-constantdepends only on k, s and u.
Proof. By lemmas 2.3,' 2.15 and 2.19, we have

"""> -r- d ~ ct 2J. IJ.*"( d) CV I~ ( 0.) ~ Q '. "u '-'u(~ ) q; (YY'tJ =- £- ! - r~ L g ,CVR ( D)
y(l ~ ~. . Ie( dv ~ X CYC&'") ) (; ~ xl 9v
('NIt1t)=/ C,*/Tl)::/ Cb; c.\'VI) =-t
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(2.27)

Since o=-* (cl) ::::.0 (~/.) for ~very e> 0, if 0 < t. < 11k,-~
We have by Remark 2.13 and lemma 2.18,

Now the lemma follows

I ..

=O~()()L ljR~~ ) ..
. J~Xdv y(~)
:= O(&(~)).

from (2.28), (2. 27) and lemma 2.24.

(2.29) Lemma. If the R.H. is true, then the error term in
the asymptotic formula (2.26) is given by

+ ~ .o (r:x: -u, I+~ w ()\.) 8(/Yl-)) ,

the 0 -estimate being urrif or-m in x and n,

proof. Following the same procedure adopted in the proof of
lemma 2.25, making use of lemma 2.17 and Remark 2.14 instead
of lemma 2.15 and Remark 2.13, v[8 get this Lemma,
(2.30) Remark. Lemmas 2.25 and 2.29 have·been established
by V. Sita Ramaiah (5) in a complicated way. Formula (2.26)

.. " ."

. :( ..
'0 "

in (
P.Sl

Whe:

can

Thi
fro:
can

o
s .
.\. ter

Sin
the

(~f

wit
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met
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in case u = 1 has been established by D. Suryanarayana and

p.Subrahmanyam (:Cf,(9), Theorem 401) with an error term

Where A(x) = log 2/3x{ log log x) 4/3. These two a - terms
'2 \ -t.l-

can be combined into a single a -term Viz., a (G C1\.;) :c ~ 6 ('X.))'

I

This a-estimate is clearly weaker than the one we obtain

from (2. 26) (u = 1). However, using their method (9), one

can establish formula (2.26) (u=l) with error term
, '-t- y~ ( .O( eC'IL) x; 0(1-.-») .•. But this a-estimate of the error

term is also "!9fl,ker than the one given in (2.26) (u=l),
-*Since cr (Nt) ~ 5(ryl..)-~

the Riemann hvp ot.he si s , Do Suryanarayana and poSubrahmanyam

• Further, on the assumption of

(~f. (9) / Theorem 4,.2) have established (2.26) (u=l)

1.n th an error term
. \-}- <tbj ( \ + .)j<)- 2..
()(erC~)::C W(x.)) +oCe-Ctf'\;)X\(X)).

These two a··terms can be again combined into a single a-term

V· 2.' (r"JJ lc (+ W I '\ ,which is weaker than
J_ Z. , 0 ( & (f)'L,) ''X. \~ (J.-) .J

the one It.Je obtain from Lemma2029 (u=l). However using their

method (9), assuming the Ri.emann hypothesis, one can
1+ ~u/(\+~)

establish (2 ••26) (u=l) wlt.h an error term 0(9-(1')))( W(i))/
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Tbi s is same as the 0 -term of lemma 2•.29 (u=l). Finally

we may mention here that the methods of D.Suryanarayana

and P. Subrahmanyarn (9) adopted in establishing formula

(2.26) (u=l) are complicated than our-s,

(2031) Coro~_lar.y (Lemma2.25, u=l, k=2).

we have

For 0 .c. s .(.1/2,-
']

+0 (X 2-O(X-) a~~\)1))
-..& /~

2-
(2.32) ') V ('<Y\)cp (WI)

CYV\ ,1t) ::: \

Uniformly, where

(2033) TIll I ~
P ( FCr-H) S '

~('lL) = IT ~!- F~r11) J
r(ttu

(2 .•35) CQ.rolla.I.'l:o(Lemma 2029~ u=L, k=2). If the R.H. is

true, then the error term in the asymptotic formula (2.32)

and

(2 e- 34)

is given by

Formulla (2. 32) (~~ was originally
o (J( 7/'+ )-,established by S. jligert (10) ltJi th an error term

using analytic methods~ This O-estimate was improved to

o C )C0:>I'Jv ) by E. Cohen r er, (1), corollary 5. 1.2),

using elementary methods~

..
j'. (2 3",
.~i . •

(2.3E

WherE

are c

Prooj

( 2 '":l(•.......

Now·
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Theorem.. For 0 <C s Z. 11k, we have
---. "<- -1),·-2

L (Y (1Y\)) C)A. X_lA._+\_S_(_1A_+_1)_0_\t<_,v--_~-(-IY1.-) _J_Lt_+_~~_)_'YL_

r< .
( V-t-\ ) S (k) Jk \ 'YL-) r Y<I'LlC'Yl)

+ O(-xu+i!K€(X)O*J->(tYL»),
Where the O-estimate is uniform in x and n, Q and D..I-.,.(r(l)'~RI'J..l \....-K,'V..

;'(2.38),.

yY)~)C
em I 1)t,J = I

I.,

given in (2.21) and (2.22)

( 2.39)

Since L J ~d) = )yt'tl~ we have
U'*-lm

~rJYr1))'LC =: L J",.\ t\) = L J,,,(d) 'V\<z(G\) ,
. dl0'r<( 'Y" ) J. (1ft . _

..
Now by (2.39), lemma 2.25 and Remark 2.13, we have .
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2- 1/ +u+l == '<;(tlTI) JU + le'l'\) -t- 0(~c-'1A,) •
t~J:-.>(f/Y\)::;1 /}'LLl.+I

~e obtain Theorem 2.37, after using (2~~ ~d the fact
Vo. ( I'Y'v ) == ex u .

\ k: ('U.-
(2.40) Theorem. If the R.R. is true, then the error term in
the asymptotic formula (2.38) is given by

O .C
· tl + g.; /(( +~F) \.I . )z, VV (i) 0-C'Yt)

Proof. Following the same procedure adopted in the proof
of Theorem 2.37, making use of lemma 2.29 and Remark 2.14

instead of lemma 2.25 and Remark 2.13, we obtain this theorem.
~ 2. 41) Remark. Taking 1'(\;:::: Uv ~ \ in Theorems 2.37

and 2.40, we obtain results of D.Suryanaray~na and P.Subrah-
manyam (:ef. (9), Corollaries 4.3.1 and 4.4.1).

(2.42) Corollary (Theorem 2.37, u= 1, k ~2). For

(2.43) ~ --I
_ )( 0\ CPCr>vL )'Y\.

d.;~((yL)"rY\ <X-.....
CfYI,)\.)::: I

where 0( and \1i\)aregiven by (2.33) and (2.34).

(2.44) Corollary (Theorem 2.40, u=l, k=2). If the R.R. is
true, then the error term in the asymptotic formula (2.43)

is given by 0 (XI!!J W( x.) B (ry).)) •

§ 3. An as ympt ct Lc formula for 2: ')";",(YVl2.).m ~:x.- r'. . .
('1111\')'\) =l

. ",'.

First
(3.1)

(3.2)

"Where

and
(3.4)

Proof

(3.5)

Furt!
(3.6)

For,
in m,

a pr:

Theo:
r ep L:

in tl
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~

Further

~~ ~

(3.6)

rem.
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;. First we' have

'Where

(3.3)

and

(3.4)

. a prime power. But this can be easily done using (3.5). Now,

Theore m 3. 1 follows from (3. 6) and Theore m 2.37 ,..D. th k

replaced by ~ and u '::::2 -
IiJ.;

(3.7) Theorem~ If the R.H. is true, then the error term
. ~ T?v/(~t~)
in the asymptotic formula (3.2) is given by O(~ WCOB('11j).
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Proof. Follows from (3.~ and Theorem 2.40 with kreplaced

by k+l and u =2
2

Throughout the following we suppose that k is even

and k ~ The follo,nngtwo lemmas (lemmas 3.8 and 3.10)

are immediate consequences of corollaries 2.31, 2.35 and partial

summation.

(3'11 8) Lemm~q For 0 ~ s <, l/2, we have

(3.10) k~. If the R.H is

R~(~)T~0n)~(fY(;)
. ( t:<. -I)? . "* (IVI)'-+ 0 x, . ~ cSex,,) v_51.> '1'.1 •

true, then the error term in

the asymptotic formula in (309) is given by

Me write

~3.ll)

is that by the Mol~jus inversion formula (tf.(3) , Theorem 26~

we have

Hence by (3.5) we have for j ~ 1,

, " ""

;. (3.14
~" ..

wherE

(3. It

and

(3.1

r~, .
. .~



{R(f~) = YI«P'1}) -YR(r\Ji-~)
. r~,,Ct,i ) )~ i-:'F- / ':0 '

r 1\-~ CP(P) , --'t i = Rj", '
o , -ii i > k/?J "

(3.13) Lemm.a.For 0 < s < 1/2, we have-

ed

))

; where
ir, .
~. (3" 15)

1';

(3.16)

267)

." ..:'.

65
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(3.17)

(3.18) I 'V kh., (ml) 1(m,)
'f'rt,rR -\ o.(m, IJ

lit.. <)C. t"
\"-

( '(Yt\,IL) ::=. I

Also, by Remark 2.13 and the fact

+ At<.
- T
A (1'\)(\

J
..
; .

. "j'.- '

'vie have -toy 0 < ~ < \/~ ,. *"
p.1.9) ') T~(1l'\,) ~(X-j tfI- ,) 0-_ ~(1Yl ':

L '('f\}i-\Il
YYL <:t. I

I<, l

=: 6(5Cr..) L. '(\~3/2 - i[) = 0Uu.) ) ·
\'VI, <. xl......

Now the lemma follows from (3.18), ,(3.19) and (3.17)
(3.20) Lemma. If the R.H. is true, then the error term in
the asymptotic formula (3.14) is given by

0(1-31) Well) 6(f1I-») .
Proof. Following the same procedure adopted in the proof of
lemma 3.13, making use of lemma 3.10 and Remark 2.14

k be E

. i

. ~ (3.22)
~:
~-

the O·

1

I ~.',.',
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:, instead of Lemma308 and Remark 2.13, 'tle obtain lemma 3.20.

, r (3.21) Theorem. ~With the notation of lemma 3.13). Let'

k be even and k ~ 4. Then for 0 ~ s <1/2, we have

(3. 22) ~ ~Iz(m2)
m~'2-

( Wl ,11..-') :::: \

the O-estimate being uniform in,x an~ n.

proof. By (3.11) and lemma 3.13, we .have

the later being a consequence of Remark 2.13.
Hence Theorem 3.21 follows.
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(3.23) Theorem.Let k be even and k ~ 4. If the R.H.

is true). then the error term in the asymptotic formula (3.22)

is given by

Proof. Following the same procedure adopted in the .pr oof of

Theorem 3.21, making use of lemma 3.20 and Remark 2.14

instead of lemma 3.13 and Remark 2.13, we obtain this theorem.

Hence Corollary 2.42 gives a formula for L r~('1}12)
yY1~-:L

(\'vt,'Yt) = Iwhen lc=2.
,

~ 4. An asymptotic formula for ~ Y~ (YV\.2...rr2) .
yY1~~

Throughout this section, n denotes a square-free number.

First we have.

(4.~Lemma. Let gk be the multiplicative function

defined by

.~,.
~:

(4.2)

.~1i~:

~i'
:/'

'.•1•.1i
..I/'i

;·'11.:Ii

. ,~", .

Prooj

mul.t:
c

2
rm,

Henc

wher

(4. E

'.'proe

; Fir~
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'proof. I t is clear that
o

--lJ:l OJ

where
(4.5)

proof. We have
0()

::::IT f i+ 'Z
( y

\~\ryU }=I
First suppose that k is odd. For k=3,

Hence for k =3,
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~ h(m) _ IT ~1+ ~ + IQ1, -> ···;-n f'+-\J 5~~(l\)·
\Y\ =1 hj J, F \ rye f' r _ fi"'U ~
For k=5, ",J ~ 3 R~+3). 4 ~O'I~Jf j) ~ r ~ 1f- ( r ~r) D-~NA 6 ~J .

~\:

Hence for k::::5,

~ d~(m) ~ IT r \-+ L ~<. I-: ('it) •L..J b ( A)--&
lye ::::1 YYL f I% ~ r -!

Let k .> 7 and k == 2t+3, so that t ~ 2. Then
:,....-- ~ /'" I

oD Y ( t}+3) r-I ~}+3 o(j Rtr1-;),;.

L: ~ Fe ~ ~ ~ f ~ r ( + 2- ~ ~~::\ r J 81R (f 'l) P C j ::I \0 J Sid: f d .l
,<_I f c: ~ ..
• +-; 1>-2.. + ~ , -- - ').,

Hence 00 d YZ( l't'I ) . F i I f' - I r~-- )
~. :& - ~ IT 5 1+ 4-1 ~,==- ~ (rf1v) ~

Yyv~1 \fY1 1\11-- Lp -, j
Suppose now that k is even. For k=2 or 4, we have

~ dK ( 'fY1) TT \' _I ~ . ' ~ ~ < F
L---1 - 0 = I \ C \ + ~D + b '"-h + J ---- 6 (1Vl) •

~ -= (Vv1 P ((Yv \, r
Let k? 6 and b == ~ Clearly 2j + 3 <k, if and

2
Hence ~

o ~ \ +~ 0() 0 1'\ -I
= _I S.~ .r d , 1 J..2.. + \

103 L f.=-I r j' (> ~ Po J 6
I ~~X,-t-I

~' I +t z ~
b-~ h-f -I f -/ rJ)-~)

;,i:

~il
)~
'i~:'.,~Ii~.:'
~:

r~tt,

I:
'!l!!,:

only if J' <o<J ' -:-... b.

,2: I'd~~+3~
~=I IR\p3) rj6

" .,'

'. \<", 't.:,'·, ~ i

Cor

Her

(4.

hav

w
~4.

odd

we

I (4.

-1fhe

and

(4.

Fe
Pro
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Consequently,

~ ~p-(~)
LJ ~ ~ ~ (rtl) ,
h1. ::::-1 YY1

Hence lemma 4.4 follows.

(4.5) Lemma. Let s '> 2. Then for any e, 2<. e Z s, we

L. d Kt t)/ t~=- O( i=: ("f\) X e - ~ )
t>X 9

have

Proof. Follows from lemma 4.4 and partial Summation.

(4••6) Theorem., (With the notation of Theorem 3.1). Let k be

odd and n be squar e-f'r ee , Then for 0 { s Z 2/(k+l)",
R-\-\ _4

2 ~ .
JC 'l: (3) ~k'Yk(-y\'3)~('Y\)J3('YUrl Gy~,1\)

3 S(C R+1) I~")T B:±-J. (r(L,) Pk ( ryt )
. 2-

-t- 0('x:(.+ :-•., c1(;J s:::::( 'Yl) 'Yti'Yl3) Fe, (Y\) ) ,

we have

2

k+l<
and 0()

(4.8) C; R(1Yl) L d Rem)
~

Y\'1 s: I \n .3

Fe en) being given by (4~ 5) with s replaced by e
Proof. By (403) and Theorem 3.1, life have
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-1fhere Gk(n) is given by (4.8). Also, by Remark 2.13

and lemma 4.4,

~ s()./t)~Y<.( t) (. 6( ?l) ~ k (t-) 0
(4.11) ~ - 0 2 . .

I LQ,-t- '-t/(t<.-+l) - ~ s x t?.+ ~!lQ+t)-~
t~x T -

=- () (~( il)~(')O).
·Substituting (4.10) and (4.11) 'Lnto (4.9), Theorem 4.6 follows.
(4.12) Theorem. Let k be odd. If the R.H. is true, then the
error term in the asymptotic formula (4.~is given by

:z
O( 't~+ iZ+IW(1.)Ef(')\) dk( Il't~) F/YlU,

where c = 2+- 2

k+2

~. • • '. f/ •

'0:. ,I

of
in
(4

ev
we

WI

aJ

(

. :E

(
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proof. Following the same procedure adopted in the proof

of Theorem 406, making use of Theorem 3.17 and Remark 2.14

instead of Theorem 3.1 and Remark 2.13.

(4013) Theore~ O/i th the notat i.on of lemma 3.13). Let k be

even, k ~ 4 and n be squar-e-d'r ee , Then for 0 ~ s «: 1/2,

we have
.x ~ <; ( I«J A h"'(-Yl ) ~ ( 'l1.-) G; E(11 )

R ~(Q) ~('Y\) ~(rn) A R(ryt) 11~-3
(4.14) Z O~ (yyf-~) ==

WI ~x

where 0.. =- R -~ - c .'l- .,

.:c. ~._··;_I-:~ . .OJ .)

and

( 4.15)
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1
"Where Gk (n) is given by (4.15). I t follows from Remark 2.13

and lemma 4.4 (vii th e =a) the inner sum in the 0 -term of

(4.16) is 0 ( 8(=:c.)-r==- (fY1..'O ); Theorem 4.13 follows
0-

from this, (4.17), (4.16) and the fact that for square-free

nand k ~ 4, tk (n 3) = n2•

(4.18) Theorem. Let k be even and k ~ 4. If the R.H. is

true, then the error term in the asymptotic formula (4.~4)

is given by

where b = k - 3/5.

Proof. Following the same procedure adopted in the proof

of Theorem 4.13, making use of theorem 3.23 and Remark 2.14

instead of Theorem 3.21 and Remark 2.13, we get this theorem.

(4.19) Theorem. If n is square-free and 0 e: s <. 1/2, then
'-

(4. al) L:: 't(YWn) = 0( J("-f.~)1/'t,!2 + 0 ( x~1R,6(?L) l'L (T* (')\)) .

YY1~y: ~~("Yt)~(Y1) -~ .

Proof. For Square-free n we have ¥en) = nand Y(f'{'(\. "2..ryt.?)

:::::y( yv\. '}\,J for all me and n, Hence by (4.3) (k=:2) we get

Y (nVrt) == <Yt I' d~~d-)If d) •
dt =W\.
(&,11..).::::[

Hence by Corollary 2.42 and Remark 2.12 we have for 0< _ f<1/2,

-,~. <'

aJ

(

F

(

(
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(4.21)

From (4.2) (k=2) it follows that

for all t,

and

}=

(4 ..24)

(4 •.25)

since 0< S <1/2. NowTheorem 4.19 follows by

substi tuting (4.25) and (4 ..24) into (4.21) •
.

(4.26) Theorem. If the R.H. is true, then the error term

in the asymptotic formula (4.20) is given by

proof .• Fol1o",ring the same procedure adopted in the proof

of Theorem 4.19, making use of Corollary 2.44 and Remark 2.14,

instead of 9orollary ~.42 and Remar.k2.13, we obtain this

theorem.
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Let ~(m) denote the characteristic function of the square-full
integers. Then VIehave ~..
(5.1) Lemma ~<iL(7) , 'p. 198). ')

(5.2) Theorem. We have
( 5.3) '"I/.I Y( VY\) ~(m) ::: ~ + 0 (x~46CXJ) .

7Yl~x
Proof. By lemma 5.1 and Theorem 4.19,

(5.4)

(5.510

Z~
1\ -==- 1

of T

4.19

(5. 'j

(5. ~

(5. '

( 5.

anc

( 5.

Pr(-
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Theorem. If the R~H. is true, then the error term in
the asymptotic formula (5.3) is given by

Following the same procedure adopted in the proof
of Theorem 5.21, making use of Theorem 4.26 instead of Theorem
4.19, we obtain this theoremo

(5.7) Theorem.. Let k be even and k ~ 4. Then
~/~ LR -- *-1

(5.8) . L 1\'llllH (Y11).:::: xc::·) Ii< +o(:z 4 6 (X) )?
~ ~~x k~~
? /.;here IT \ Z.pb-+ t5_;q 4+1 ( > ~ R =- 4

~ L 10 (~-tl) v
(5.9)

( 5. 10) . Ak (p)

and

(5.11)

Proof. By lemma 5.1 and Theorem 4.13 we have

+~f'k/'r -\
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L'. Y\<Z(\'1\) ~ ('1\1 ) = L ~'p'\J 2: . Yy,J\IY\ '<tt.3)

ryy)~ x YL~X~ VYJ.{ ;/jA(L3/2
N~ . !

(5.12) _ X ?;i r-~c<A ~ L 1'\1m)~l Y1):r;~)G .,Vn)
R ~("\) f'h < ~ %?R ~fo I (jV\) G('}'\)

IU-....X, 'Q; r

~ -I 6 (tj -n,%) \5o:*y,(y.) '¢::0..C;vc),y(- )

+ O( DC. 4- L Jo 'tl-' (~-\)/4
'YL <:. 'X,3 '--

By lemma 4.4 and (4.15) ,

I

GkliW) === 0 ( FR~)) = 0 C 'YLC ) ,

for every [ ) 0 , so 'tha.t

(5.13) L
n.>X~

for every S»o. Further it is not difficult to show

that ,

- Tk;'( 5.14)

Where Tk is given by (5. 9)

Also, by Remark '2.13 and the fact that Q ~ (M) == () (ry't E)
and Fa (I'\('v) ::: 0 (tYL ~) , for every c;>o, it follows that

c ". ,

th

Th
(5

th

gi

·Pr

of

ir.

tt

(E

(E

WI

( !
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the inner sum in the o-term of (5.12) is 0 (6(x));
Theorem 5.7 follows from this, (5.13), (5.14) and (5.12).
(5.15) Theorem. Let k be even and ~ 4. If the R.H. is true,;r .

then the error term in the asymptotic formula (5.~ is
given by 5t'--~0\ rx.. 10 ~g~))e

Proof. Following the same procedure adopted in the proof
of Theorem 5.8, making use of Theorem 4.18 and Remark 2.14
instead of Theorem 4.13 and Remark 2.13, we obtain this
theorem.
(5.16) Theorem.· Let k be odd. Then.

3/:2 . (ex. -Z;(3)~~~ A ( )+ Dk:l ,
3 ~ ( ( R+1 )/ R.)

vThere
(5.18)

f
(5.19) ~
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where for k~ 7,
1+ (p~')

. p~:~s:(F-\)

1- (b¥j)_~\n(r):= I ~
\ r- " 2.. k.±J

P (r ~l)
and ~ k is as g~yen in (3.3)

Proof. By lemma 5.1 and Theorem 4.6 we have

(5.20)

(5.21)

Let

~fr R:::. ~ }

ik~~
For any b :> 2, using a standard argument, it follows
from (4.5) that
( 5.25) :E- te (91.,) ::::. O(X) 0

V'I~:x:.

Fu

so

He

(E

( t

LE
F(

s<

hi

)

w:
u

(
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Further ~y (4.8), lemma4.4 and (5.25),

Z CK()i) -=-O(X)"
il ~:L,

so that by partial summation, for any s "> 1 , we have

~ C RlII) _ . ( . \ - ~ \
4 - 0 J( ).

'{\;;rx 'Yt .
Hence by (5.24) , ' _\~) •
( 5. 26) 'y 12 . _ (0 (x. ~At k z; 3 ,.c: f 10K\1)\.) - ~ -J-t ~

n> ~~ ,( O( x. 0) ~-1 k\~;- I>

Also, it is not difficult to show that
e>-J

~ 8k(1\) ='l '
I

/Where Tis given by ( 5. 19)
k .

Let Ck( x) denote the Stun in the 0 -term in (5.22).

For k=3, using Remark 2.13 we can shew that

(5.27)

c!'<-- (~.) ~ O( 6 (')0) ,
so that by (5.23), (5.27), (5. 26) and (5.22), we

have (for k=3) ,

2 Y\cz(n1)Q(-m)

J'n ~)C

which implies Theorem 5.16 in case k=3. For k ~ 5

(5.28)
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~e can suppose in the following that 's~ O. Nowby (2.7)

and (5. 25) (vii th b= e) , vie get.

so that
_ --L- ..

)i;+/) •
(5.29)

Hence for k ~. 5, i t t'o.LLovs from (5.29), (5.23), (5.27)

( 5. 26) and (5. 22) that

(5.30) Z Y~SvY\)~ (vn) -
'((l <. ')G--.......

which proves Theorem 5.16 when k >- 5.
/' .

( 5.31) Theorem. If the R •H. is true, then the err or

term in the asymptotic formula (5.18) (k=3) is given by
10 I '?L3(x) == O(X, W('l));o,

0:

0:

tl

RI

( ~

( ~
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Proof. Following the same procedure adopted in the proof

of Theorem 5.16 ( k=3), making use of Theorem 4.12 instead

of Theorem 4.6, we obtain Theorem 5.31.

(5.32) Remark. Bq, (5.30) shovs rtha t our method does not

gi ve any improvement in the order estimate of ~ i r) fork' --
~~:9 even on the assumption of the Riemann hypothesis.
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ON JillSTRdCT HOBIUS INVERSION

R. SIV.1ELJlU.KRISHN1J~
Department of Nathematics,

University of Calicut
KEIUL"l - 673 635.

INDU.

JWSTR...~CT:

This paper deals vIith some extensions of the pr Lnc.l.p Le of

Mobius Inversion considered by G.C. Rota who introduced the

theory of LncLdence algebras in 1964. Three theorems have

been proved wi th a vi.ew to obtaining inversion formulae for

ari t.hmet i c functions of two variables. The f'oLj.owi.ng

identities have been obtained as illustrations:

(1) If ~(r) denotes Euler's phi-function

'Zhll I <I.) <\> lTUJ

d,,\6t .;r) J~ ('11.r-r/Jv 2)

( 2) If "CCr) represents the number of divisors of r ,then

0: (3) fYC T/ C( 'J - 2.:- 2- 'LCd 7 rJ ) ~ ( 'I' / U 9>U/ vt) "d -=('(L;r)
:( Q IItY1 J\ 1

where vCr) denotes the S1J.l:l of the squares of the
"JJ .

divisors of r.

(3) If C(n,r) denotes Ramanuj an l s SUll1 and ~/(r) is the

Mobius function,

Lee rf/I jJ.? f\jel)cl ~(&) ==- ~q1-) 3

d-\ ("(L :·r)
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l. INTRODUCTION:~

In 1964, G. C. Rota (1) introduced the theory of IvIobius

functions in the context of incidence algebras which he used

as a powerful tool for the study of combinatorial theory~ The

subsequent papers of D• .A. Smith (2), (3), (4), (5), give a

detailed account of the major results obtained in the area of

generalized arithmetic function algebras. In (6), Robert Spira

has also given a lucid exposition of the principle of abstract

Mobius inversion, using the description of Mobius function

due to G. C. Rota ,,(1). The purpose of this paper is to extend..
the idea of abstract Mobius inversion to other inversion

formulae which have applications to arithmetic functions of

two variables. We formulate our results in a setting si!Ililar

to that used by Spira (6)

2. PRELIMINAlliIES:

Let P be a non-empty set which is partially ordered by

the relation'::; on P. Suppose that for x,y E:P, the segment

x ~ z and

is finite. Under this assumption, the partially ordered set

is said to be locally finite. P is also assumed to have a

minimal element denoted by O. That is, 0 ~x for all x E P.

Further, we need P to be a semi-lattice. That is, there

exists for all x, 'YE P, a greatest lower bound g (called

the meet of x and y and denoted by x 1\ y) such that g <: x,y-........:

and z.( x,y imply that z ~ go By g :<"x,y ,we mean g <x<, -.......:: <,

. tel ~,' •

anc

fun

Cle

tha

the

( 1.

In

poi:

is I

(1.:
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and g -< v-
Let K be an arbitrary field. We say that a function

f ~ PzP ~ K is an incidence f'uncti.on if f(x,y) == 0, except

possi bly when x ~ s, The composition of two incidence

.functions f and g is defined by

Cf. g) (x,y) == l. L f(x,z) g(z,y)x <::..z~y..•.....

0, otherwise.

, if x <»<,( 1.1)

Clearly, (f.g) is an incidence function. It is easy to verify

that the incidence functions form a ring with identity under

the operations of addition and composi tion (1.1) '. The

identity element under compositionis

(1. 2) Sex, y)
if, x -:}. y.

, if x == y

In fact, the set ~ of incidence functions forms a K-algebra with

poarrtwi.s e addition, scalar multiplication arid composition. .A

is called an incidence algebra over: P and J:5:. Defining

( 1.3) ~1
l 0

.-
,if x ~ Y

e( x, y) ==
, otherwise

(1.4)
1 ,if x == y

L /-LeX, z)
x<.z~ y...••. -......:

/-L (x, y) =

~....... 0, othervr.i.se
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we note that

(1.5) {..L • e = e. {..L = 6

If we consider the point-wise product fg(x,n = f(x,n g(x,y), A
is a commutative K-algebra with identity e(x,Y) (1.3).

N01.v, the theorem on abstract Hobius inversion may be

stated as fo1.lows :

For f, g e: : such that g(O,y) = Z f(O,x)

then

o ~x{" y
f( 0 ,y) = Z g( 0 , x) {..L (x , y)

o ~x~y

In the case of Z+, the set of positive integers, taking partial

order as Idivides' we obtain the classical Mobius inversion

formula as a special case of the above result.

Next, \ife denote the set of all finite se gments of P by S. Let

F be. a mapping from SxS -:?K. F( [u,x], [v,y..] ) is defined

to be zero unless u ~ x and v' ~ s; In the same manner, ve

may define a mapping Pf : SXS ~ K by letting

= r f( u,x) whenever [u,xJ = [v,yJ
L 0 otherwise.

\t/e call Pf , the principal function determined by the

incidence function f.

2. INVERSION FOR.HUL,,~:

Let 3rbe the set of incidence function on S x S. For F,G ~

vre define the product (F.G) ·as

.,~~~~~~~-~-~~--~==--------------------------------------~---------
-", ~'.'

(:

iJ

a:

aJ

ar

wI:

ti

Le

Fe

(E
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(F. G) ( [U,X] ,[V,YJ)" f:-, F( [U,wJ ,LV,z]q~,xl.~,Yl)
u <w..( x

-.: "-
v~z~y

where , as indicated, the sUDunatioDis over all w in ru,~ and z

(2.1)

inCv,Yj.

It is easy to observe that the above composition is

associative. We need the f'o Ll.owi.ng elementary functions wru ch

are required in the illustration of the composition (2.1)

and which lead to the proposed Lnve r sd on formulae.

(2.2)

(2.3)

(2.4)

,b..( [u,xJ,[v,y]) =

E( [u,x],[v,y J )
H( [u,x';J1[v,y])

6 (u,x) S (v , y)

::: e(u,x) e(v,y)

::: {..L (u,x) /..L (v,y)

defined in (1.2), (1.3)("'where 0, e and ~t .ar e as

tively.

and (1.4) respec-

Lermna: 1. (E.H) (

For, from (2.3) and

(E.N) (~,xJ ,[v,y] )

[u,x] ,[v,y] ) ::: ~\~,xJ , [v,y])

(2.4) ,we have::: )> ~ e(u,\lT)e(v,z) {..L (w,x) {..L (z,y)

uzw«x v~z~y- --
::: E{..L (vl,X) {..L(z,y)

u ~ w '~X V ~ Z ~ Y

" E/.L(W,X) )! ,'/.L(Z,y)

u<w~x v'::; z~ y--::: & ( u, x) ~ (v , y) ,by (l~ 4)

::: f::,. ( [u,x ] , [v, y] )



Hence the lemma. 5 L f( [~,xJ;~ ,~J),J.t lt~'

. Lenuna: 3 (fe,F)(rv.,x], [lJ,~:JJ)~)V~W~':Xf'Y _

lo'j~·

90

This proves the lemma. It may also b.e noted that (M.:E) = 6.

proof:
(PS' F) (['lL,!'-] .: 'lJ, yJ) = L f'8( Lu,w] , lV,'Z]) F( [W,x.] ,('2 \/]

. . ru. ~w .(x.
V ~z.f:y

. <0 ••

o )' ~.2r~ tWl;'2e ,
Bui

So

proof I'o.l.Lows on lines similar to that of Lemma 2.

Lemma: \ f,tv •fe ') ( [ tel )OJ , [V, 'yJ) := j 1\(t«.x-] " [ tl, YJ )A i
( 0, o-tt"\JJI ..~ .

Proof: Using the definition of P ,we have
11

Th

th

TH

•. :-< ."
. '.-X'. :- ;.
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(f~''?e)(['LA/X] ~Jv').».

So,

(Pv-: Pe) ( [u,x} ,[Y,y] )

91

Z t"{ u,w)fQC[W)'(.] ,rw,y))
1\ ~N ~ 'X r:Y i 'U.,:::Y

0, otne rwi se

=(~' if x .J:. y, by the definition of,
e

0, otherwi se,

_ SS(U,x) ,if u= v

l0 , otherwise

= S P~ ( Q1,XJ ,[u, Jj)

L 0, otherwise
This completes the proof of the lemrna.

if u = v

Now, we come to the main .results embodied in the following
theorems :
THEOREH: 1. If G (Cu, x] , f,yJ ) =' Z F(CU'V1J~tr,ZJ )
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then,

F( [u,X] ,[y,y]). = L G([u,w],(v,z:l)/L(w,x)/L (z,y)

u{w~x
v£::.z(.,.y

Proof: Wenote that in terms of the composition (2.1,) ,

G( [u,x] ,[v,y]) = (F.E) ~ [u,x] ,[v, yl )
and

L G ([ u, wJ ,Lv,zJ ) {.L (w , x) {.L (z, y) =: (G. M) ( [u, xJ [v, ~ ~
u~w<x~ <,

v<zzy- --..:

Simplification of (G.M) leads to

(G.M) ( [u,xj[v,y]) =: ( (F.E). M .) ([u,x] ,[v,y] )

=: ( F. ( E. M) ) ( eu,x] [v, yJ )
::: (Fo t:0 ( [u,x] ,[v,y] ), by lemma1

=: Fe [u,xJ ,[v,y] )

Hence the theorem.

THEOREM! 2. If G( {U,x],[v, y]) =~ F(C z.,xj, ~,y] )

u~z~xj\ y

then F ([u,xJ, [u, yJ ) =L/L( u, z) G( [z,x J, (z,y] )

u~z~xI\Y
Proof: By lemma3 , we have

LF( [w, x 1, ['''' y J) = (P eOF) ( [u, x 1,[1.A; y] )

U<W<Xf\y--.. -

't-.".,.

Bu·

Tn

IDa:

in

u<

an:

Till

thE

Pre
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But, 2" J.L(u, z) G( [ z, xl, [z, yJ )
u ~z ,~ x .~ y

::: (P u.G) ( [u,xl ,G., yJ )
I

:::(PJ.L. (Pe_F) ([u,xj,(u,yj)

= ((PIJ,_Pe) .F) ([u,x] , [u,yJ)
::: (P S • F) ([u, x1, [u,Yl~,by

lemma 4
::: F ([ u, x J ,eu,yJ ), by lemma 2

This proves the theorem.

Next, we define (e.e) (x,y) as r(x,y)::: \ Cx,y] I (which

may be considered as the number of chains of length 2 contained

in [x, yl ) • Therefore"

Z E ( [z,x l ,[z,y ] )
'u-Sz {x A y

and so, (P eeE) ( [u,x J ,[ u, yJ )

THEOREt·l: 3. If G( [u,x] ,[u,yJ)

::: 1:(u, x /\ y)

x /\ 1) •
[w,x J ,[z,yJ )

::: '( u,
~

= ~F(

u 5; w { x

U~Z~y
::::---i:::~1(u.,.w' "z) F( [~V,~ ,[z,YJ)

u~wzx- -
u.L z~ y

then L G C[z,x], ~,yJ )

U ~ -Z S ")CAY

proof: From the structure of G ,we have

G( [ u, xJ ,[u, y J) == (E. F) ~ [u, xJ, tu, y] )

NovT,

L~G([ z,xl, [z, yJ )
Vv<"2 S )(1\"1 .

::: (P e. G). ( [u, xJ ,[u, yJ )
::: (P e·(E.F)) ( [u,xl , [u,y])
::: ((Pe.E ).F)( [u,x] ,[u,y] )
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== 't' ( u, x I\Y ). F( [. u,x1,[u, yj )
==Lt(U, wj\z )FC [w,x] ,[!, yJ)

u <w <:: x- -
u ~z ~ Y

This completes the proof of the theorem.

3. J.RITHtvIETICFUl~CTIOHSOF TWOV.•ill.L:.BLES:

The following inversion formulae (3.1) and (3.2) follow

as special cases of Theorems 1 and 2 respectively.

(3.1) If f(n,r) and g(n,r) are two arithmetic functions which

are such that

g( n, r) ==

then, f( n,r) == b
t\n

Z+, the set of positive inte gers I{ith partial

g(t ,d) p,(n/ t) p,(rid)

For, considering

order Idivides1, let

F( [1,n1,[1,r]) == f(n,r) andG C[l,nJ ,[l,r]) == g(n,r).

Then, using Theorem 1 we obtain

2 :t ,F( [1, tj, [l,d J )
l<t~n l~d~r

and this implies and is implied by~-~ ,.; ...

Fe [l,nJ, [l,r]). == L:oc[1, e}, [l,dl ) p,(t,n) ii (d,r)

1<::::' t <. n
'.- ,.r-; J

l( d<r.....•.
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1:..s I.L (t,n) = l.L(n/t) [6 J and I.L (d,r) = l.L(r/d) ,(e.l) follows.

(3.2) If f.(n,r) and g(n,r) are such that g(n,r) = Tr f(n/d,r/d)

d ) (n,r)

then, f( n,r) = :>'I I.L( d)

d ( (n,r)

g(n/d,r/d)

and conversely.

To prove (3.2), ve observe th-t for Z + under the partial

order 1divides I =t.»> (n,r) whenever n,rEZ+, where (n,r)

"eno te s the g. c.•d of nand r , Clearly, (3.2) is a particular

case of Theorem 2.

(3.3) If f(n,r) and g(n,r) are such that

g(n,r) = ~ If( nit,

q ('('v d.\,-
~L«t,d»

t \ n d I r

f(n/t, rid)

rid)

then

g(n/d, r/d) =
d \ (n,r)

where L (r) denotes the number of divisors of r.

(303) may be deduced from Theorem 3. The derivation is

similar to that of (3.1) and (3.2). The details of proof are

omitted.

4. J~PLIC,,:"'TIONS TO IDENTITIES:

.•cs applications of the inversion formulae proved in S 3,
v

we give below a few identities connected \·:ith Euler IS totient ~ (r)

and Ramanujan1s Sum d(n,r).
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( 4.1)
~

~ (n/d) cp,(r/d)

d I (n,r) d cp (nr/d2;

Proof: It is well known that ~ (nr). =

= 1

g =(n,r)

That is, <\:J ( g)

g

G>(n) cb (r)

~(nr)

== r ?(n) cP
~(nr)

(r)

==

--..;;;:r~_ j./,( d)
d

J~ppealing to (3.2). vie obtain

(rid) cP ~,n/d) cp (r/d)

~ Cnr/d2)
== r

which reduces to (4.~
(4.2) LLt((t,d» cP

t \ n d! r

on cancellation of r.
/

(n/t) <p(r/d) == OZ(~Onr/g2 ; g == (n,r).

'<Therea: (r) denotes the sum of the squares of the divisors of r,2 .
Proof: _~s Z <p (d) == r , we have

d I r

L L=: ? (nit) cp (r/d) = nr

t \ n d \ r

If 0- 2( r) denotes the sum of the squares of the divisors

of r, it is easy to see that

~
d 1 g

(In (3.3) ,

2nr/g ; g = (n,r)

f(n,r) = cf (.n) ~(r) and g( n,r)take ::: nr ,

I

f

Tl

';
, \

c(

,vIr

PI

Tl

fr
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"Then, it f'o Ll.ows from (3.3) that

o:2(g)
2 Z Lnr/g = r(((t,d» ~ (nit) c)y (rid) .•

t \ n d \ r

Remarl<::: It may be pointed out that (4.2) is proved in ~7, Section

,'V) using the properties of functions of ~'..., :" .: ,': greatest

commondivisor ••
-
Next, let C(n,r) denote Ramanujants sum defined by

C( n,r) = L:P ( 21Tibn/r)

h(mod r)

(h,r) = 1

vJhere the summation is over a reduced residue system mod r ,

It is known that

r. :::-\

C(n,r) = L /.L (rid) d.

~
d\ (n,r)

( 4.•3) 6 C(n/d, rid) d /.L( d) JJ- (r) •• g = (n, r) •~ ,
d \g

C(n, r) L j.L ( r/d)
Proof •• 11e note that• =

r dj g r/d

Therefore, from (3.2) 1,.;eget

~

C(nld,r/ d)
~~'(d) /.L ( r)=

rid r

from whi.ch (4.3) follovrs immediately.'
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CONCLUDINGREM.•atKS :

The results obtained in this paper vlere the outcome of

an attempt to study }fobius Inversion in the context of

aritrunetic functions of two variables.

There are many identities involving C(n,r) ,~(r) and

other related arithmetical functions. Some of them ( see for

example (4.1), (4.2) and (4.3» can be brought under some sort

of an inversion principle. However, the following identities

for ~ (r) are not quite revealing from the point of view

of inversion:

= L L
tin dlr

Vaidyanathas'.J'amy [7] obtains the above identity from the

identical equation for totients •

( 4. 4) <p ( nr)
nr

(t, d) fJ,( t) fJ,( d) / td

•~n identity due to S.S.f'illai is the following

(4.5) L· <p Cn/d) cf(r/d) d

d I (n,r)
~(nr) =

whenever- nand r do not have a commonunitary divisor greater

than 1.

It is shown in [ 7J that (4.5) is a special case of a

restricted Busche-Ramanujan Identity.

(4.6) L (nr/d
2

) d /1. (d) = f< n/u) ~ <r/u) f> 2(u)

d I (n, r)

Where u is the greatest commonsquare-free unitary divisor of
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(n,r) and
~ 2(r) = r n (1 ~ 2/p)

P r r

We observe that (4.6) can be deduced from the multiplicative
property of cr(nr) considered as a function of two
variables n,r •

yet another identity satisfied by ¢(r) is

(4.7) ~(n) cP (r) = L <fJ(nr/d) J.L (d)
d I (n,r)

(4.7) is due to Venkataraman [8J . It does not seem to
be the result of a Nobius Inversion, as it is obtained as a
property of symmetric multiplicative functions [8J.
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11",~JJvLtU,K-th POWER;;iNDTHEH.lXJJvL.LK-th POkIERUNIT.J.-tYDIVISOR

OF Ju'\T INTEGER oft

P.Subrahmanyam and D.Suryanarayana.

Dept. of Mathematics,
S.R.J. College1Shreerari1nagal~-53GlO1.

Vi zianagaram D:Lstrict
'J~DH&~pfu~DESn.

T q'.mcn.a
1. INTRODUCTION!

Let k be C:I. fixed integer ~ 2. "':.positive integer n is

called a k-th power, if in its prime power factorization each

exponent is a multiple of k. By a k-th power, ur~tary divisor

of n we mean a divisor d of n such that d is a k-th power

and also d unitarily divides n, Let rr<..('Y\) denote the maximal
*' .k-th power di vi sor of n and ~(.Y\.) denote the maxima.l, k-th

power unitary divisor of n. Further a positive integer n is

called unitarily k-freo ,if n is not divisible unitarily

by the k-th power of any integer :> 1. The- concept of

(3) §x )
qt (n)

Let r* In)
\A..)'R,

denote the maximal unitarily k-free, uni tary divisor of n,

It is easy to observe that \' ~ l''(\)::::::II ~c.Y\,) the raaxi.ma Lu. r 2: - u,
exponentially odd, unitary divisor of n, (Integers in whose'

unitarily k-free integers was introduced by E. Cohen(cf

*Le~Qk denote the set of unitarily k-free integers and

*denote the characteristic function of the set Qk.

prime power factorizations each- exponent is odd, are called

exponentially odd integors).

*Presented by: P. Subrahl11anyaYJ..
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In this paper, we establish·asymptotic formulae for the
. * \

sumrnatory (unctions of (1) r~.(ry"G) (2) l'f<.("(\..-) (3) --:"r.:-'-K-l"0-•.•-)

and (4) r~(,-,) • As consequences of the asymptotic formulae

for the functions (3) and (~ we obtain asymptotic formulae

for the summatory functions of -rr~J'/'1.;) and r\A..~ R..ln)

respectively, wher e -r;{~ldenotes the divisor of. n conjugate.

to the greatest k-th power divisor of n.

In § 20 v!e prepare the necessary background and

establish the main results of this pa:per in <§ 3. We discuss

the consequences of the Riemarm hypothesis in § 4.

§~r~li~narj.e~~.

In this section "ole introduce some notation, state some

lemm's already established and then prove some lemmas which are

needed in our present discussion. Let y-("¥\.-)andCPCo'\..) denote

respectively the Mobius fLillction and the Euler Iptient function.

Let ~ ~ (n) denote the unitary an~logue of the Mobius function
~ 0..J t.""TV)

defined by ~ (n) = c..-\) , wher e LUCY\.-) is the number of

distinct prime factors of n :> 10 Let 8- (ry-......) denote the number

of square-free divisors of no Let the constant

defined, by

e be
R

't; (R) n (- VR -'- -~R:')
f .

c<) l

Where <;C~) is the Riemann Zeta function def'Lned by C;CJI:,) =-2 -,I)

))t-=\ Y'rl
for s > 10 Let Ek (n) be the fu,nction define,d by Ek( 1)=1 and

( 2.1) e
R

!i§
Ir

( :

i:

(:
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(2.2) E' n(p ( I:)~-I) )
k(1V) = n. P\'\OJ FR~ '2 yo +-'

Remark 2.1 Clear ly t1 (n.) < -C-(v\) the number of divis ors of n.- 'In our present discussion we need the following elementary

Z '1JJ212- O( OI'l'J 2-x) (C~ .[11 ) r;70 J ~)m <. :x yY\ "-'V-d P/vtJ\.~

Lemma 2.1 --( ~t.c.~,.]) ~\L "fV\lVV'-O' ... ~ I::,) L") ~cYt 'R ~ 0

) y~ -\-\ )~
(2.7 Z yYLr~ 'JC '. ~ \ V\) + 0( 0( VI) 'X., )

'M ~.X . <. 'rY\ ,Y\.) == \ ~ +\ Y\.

Lemma 2.2 (!:-t-.' [ry-'], ~~.&f7-QjV\A. 3'03")
00

~ ctIt<5m") /V{(~ tz: r;(~) / C;('R~)
Wt -::::\

Where ~{ (n) is the characteristic function of the

estimates.
( 2.3)

(2.4)
\~-

ro >,J:. frL0

2, '1. lVV'. )

'l'0~c(

(2.5)

(2.6)

(2.8)

( C h[Il ~0HU"vv
'3.2(0.))

lc ~o[IJ T-PA-.Q..v'wVY\
3·2;(~))

k-free integers
(Integers in whose cannonical representation each exponent
is. , < k )
Lema 2.3 (r:_-\. l3]

(2.9) ov* (''(0) -
1'<-

) (3 ../) (A/V'A

~ ~,,*(ct)
'4\~S -=1L.,
( J, ,1> ) ..:-1
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Lemma 2.4 (cf [\Il? ~YA-CV ". b ~ 56 == ~+\")

(2.10) if: V'* (YlI) <f\i'l'l) "" z; (\~)IT (1_ ~ +L \n'\)O (f'R_))
R +1 . I \ b F- 10 R-+\) ~ b\:<tl \I)s« ::::\ Yv\, k:> I· \ b\1'\) - '21+1

\. \M l Y\) =- \ . 1- f

Lemma 2.,§ (cf (ll) , Lemma 2. 4,s = l{+ 1)

(2.11) Z ~\.*(W\)Cf(Y'r1)':::: 0 f. t]()\) :~))

r() >" 'X- m'r:z +\ \ X
(\11('(\)::: )

\

Where 8 (x) is tg~:y-A 0na31S"=- ~1 R.o1 'X r 1"1 ; ?l~3
(2.12) sex) =:. r L '~~J . 0 f

i,6<)(·'(3.

A being a positive absolute constant.

Lemma 2.6 ( cf •• (11), Lemma 2.13, 8 = k- I) If the Riemann

hypothesis is true, then for x ~ 3,
~*(W)) f.{J(m) _

?-.t\
YV\

)ff (1\ ) W CJ...) iu~:::c
R-~?C 2...

( 2.13) z:m>x
( VV\ \"t\.) == 1

Uniformly wher-e W (x) is given by -l

W (:;>0) _ r ""'f' £.A .eo~cc ( 0J6ll.u~:L) ~

(\ ~·OY '0 <ix, <3 '
( 2.14)

A being a positive constant.

Lemma 2.7 (cf. (10), lemma 2.8) For x ~ 3

I ..,

( ~

is

(2

Un

(2

(2

hy
(2

me
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( 2. 15) M* (~):::: Z~"*-( YY\ ) 0( Eil 'YU :t. S ( :S:-) )
11 - 'fYI ~ "X-

('NIl""') ·::::1

Uniformly vhcr e 8( x) is given by (~~.12)

Lerr.m.a2.8 ( cf , (lD) Lemma 2.16). If the Riemarm hypct.he si s

is true, then for x :>3,
1-::2o ( eot'Yl) X. CU(z) tJd X)( 2.16) :::::-L ~Jo¥<( Th} 7"

m<,x<,

( YY\ IV\) -::: \

Uniformly v-rherew(x) is given by (2~14)

k.~l11l1la 2. 9 ( cf', (12) , 3

(2.17)

J-Jernma2.lD. (cf (9) , Theorem 3.2, n=L) If the Riemann

hypothesi s is true then for x .:>-: 3 _-'-__

(2.19) ';C'. y~(ff\) ::::: 0:_ + o(x 2R\-1 cue)..o))
",,",< 2;( K)
ITI" X.

Uniformly where w(x) is given by (2.14)

Lemma 2.11 ( cf (7), Lemma2.4). If fen) and g(n) are

multiplicative then

(2.3))

is also

~ ~\O,)~\ (-SO)

c\Rb .::::/I..
multiplicative.
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Lemma2.1~ (cf (8), Theorem 2.4) If. fen) and g(n) are

multiplicative then

\~~l'Y\J:::: ~ ~lJ) ~(o)
X I 6. Y\r; -= V\.

(J- .0 ') :::.\
is also multiplicative

)

C2.21)

Lemma2~13. For x
v

( 2. 22) L ~('f(\)

'ff\~l
(~I'(\")= \

Uniformly? where e.'R,) E,,(Y\ J and b 'y-<..C:t) are respectively

given by (201), (2., 2) and (2018)

~'.. ' .
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+ 0 (e-l'1l) 2: 1:\ VY\) )

-m:s ~2
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(2.27)

Hence ,by (2.23), (2.24), (2.26) and (2.27) we have

(2.28) Z ~:(y~) = tg, ~k(y\') q-C't1) + 0 (&IVl) 1'1- Pi:o C (y:<) 13-'-)
1-(-, ~ )( "YL '2. , f

('(IA, ilA) -::::::\

+ o (6-{VI) ~~ ~~l)
N h . \ y-

aw"c oc sa.ng S =- rex) -:::::.<: . ---2~.)~ It<
, 3Jr; ,. 1<s (x. -;- ~ .

f (x) = 10g ( 'l..~\,) ( Zo,\Qno ( ,./i~))~s in ( cf' , (6), Theorem 4.1,

(4.12), (4.13) and following the same theorem referred here

and writing

we get the first and second 0 - terms of (. :~'128) ar-e each of

Thi s completes the proof of Lemma2.13.

Lemma2.14 If the Riem~nn hypothesis is true, then for'x ~ 3

( 2. 29) Z ~i~CVYI) .::: e k: fr.«Y\.) €?('fI) 1-4- 0 (&(\1) ?+1 W (:;(..»)
'i"r'~).... , '2.

\. y,<, , Y\ j.::. \ n..
Uniformly wher-e(i!l(x) is given by (2.14).

Proof. Following the same procedure adopted in p r ovi.ng

le~na 2.13 and maY~nguse of lemmas 2.6 and 2.8 instead of

le~~as 2.5 and 2.7 we

( 2.30) .?~Oy; (VY\) _
W\ ~ ')... .

(yY\ \VI) -::::\

get the following instead of (2.28)

e~CQ, (.f\) £\<:(1\\ ')(. +Ol $-()\) f ~-~J,.'2(..JCfi) Q;)J~2)}
rt2.. + 0 C Q.c v') ~ z ~)~ (PZ))

, fir

Her

pre

ThE

fu

Pr

by

ar

ar
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-'dTz+, ~ - R ~S == -E: We see that a < ~..~ 1 and ~ Z =- ~ Z:
,
:Now'choosing

2j -z. 'R-\-\?c since da6(x) is monotonic increasing, we have

~ ® ( z:) and also log ~c ~ log l . Hence the3:-- J..
r. first and second a-terms in (2.30) are each of 0 (9lY\)X~\'I..-t-' w():."')

2-

= 0 ( &( y\) X'2.R 4-\ Cu C;c)) •

2.14 follows.

The Case n=l of lemmas 2.13 and 2.14 have been

proved by D. Sur yanar ayana and CL. Si ta rtamachandra Rao ( cf (10),

Theorem 3.1 and Theorem 3.2)

Nowwe establish the f o.LLowi.ng identities.

j Lemma2.15 ~

( 2.31) r:("'t\) -=::; ~ ct· =;(8 )
1"'- ~\\b-:..\''1

_ L CVr~(6) / ~R
0.~ 8" ='(1. ''«. .:f.- e= d. q KCC)

J. &~~,
(O,I'O)=='\ .

~ . ~/v,*-CO)/ K
L-J . r- I~

0.f{0 ;;::,».
Cd I~) ::,

*Where ~(~ and ~ (n) denote respectively the characteristic

functions of the set of k-free and unitarily k-free integers.

Proof. Since 9k (n) and%(n) are multiplicative, it follows

by lemmas 2.ll and 2.12 that the right side sums of (2.31) - (2.34)

are multiplicative, also \'('Yv)) ~,:.). r\~(\\) (M,jt ~¥(.'\. R. y,: (Y\ I , R )l)

are multiplicative. It therefore suffices to verify (2.31) - (2.34)

(2.32)

(2 •.33)
~('A)

~
r",C'l\)

t( 2.34)



110

at n =
rJ... .

p a pra me power.

For proving (2.3~ we note that any ~ ~ k can be

uniquely wri tten a~ ~ = r-\'Z +-JL,. .J 0 < 9t. ~. \:z k.-~ tl,-ol
. --

S IRq;, ( p"') {lrf{)( <\< ~ \ ~ 0( < II;

- l ftk~ (y/') i-<1'- J.~I< =( rH:i~"
~ . ~ t~·

- \~. ( rIX ) <+'f"'l--~ yyv\,J)l?~
<. • o-R.. \~ w... ~ .

Hence (2.31) f'o Ll.ows , (2.32) can be proved in a similar way_.

Th
Co:-
(3.

, .'

Th
(3

Thus (2.33) follows. In a similar way (2.34) can be proved.

~ 3. First »te establish.

(:

!,

I

I10..: . ._ .. .. __ ._ .. . . ... . _._. __

""t1:.,;
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Corollary 3.1 For x ~ 2
-..::;:- .,-,\. ~ ( 3/ 2.)
.L- ('M) ::::

Y'{\ ~. 1... ~j "3 L;. (~ )
Where rzC)\'\) is the maximal square divisor of m

, (3.3)

Theorem 3.2. For x

J-
Since x R 0x(x) is monotonic increasing for sufficiently

large x2 :c..
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we have

COl'ollary 3.2 For x ~ 3,

'L:'( 4-)
" J(

t

+ 0CJ~2 d~(JJ)

Remark 3.1 We have Tk(n) X \~ (n) ::: n, Where Tk(n) is

the divisor of n conjugate to the greatest k-th power divisor

of n, so that Tk (n) = 1'--( r'K( y\.;)

Now we have the f o.l.Lowi.ng,

Theorem 3,3. For x

(3.6)

,
:,'pro
~-

( c

. .cor--..--
(3.

esi

Iill
(3.

\.;e

.' f
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This follows by theorem 3.2 and Abels identity

:( ef. (1), Theorem 4.2)

';Corollary3.3 For x ~ 3
2. \C ( . ) ~/r)_ ~- ~ .-=-. -+ 0 C X - ~ <S~ \ )\) )

(x.' ~(~)

+o(;(~ :)
J
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-*,-
Where rL c.•';)
divisor of m,

denote~the maximal square, unitary

lheorem 3. 5. For x
\- •..... -* -r~(y)\)

Th:

(3.

Re:

vi:

de

ab

Th
(3

(2

(~
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l

+ 0 \~(kSR (~) )

theorem 3.5

Remark 3.3 We note that each positive integer n can be-.' *", ,~-*wri,tten urri q'ueLy as n::::: r (nJ r' (V\) \\m.eref ,()l)
'" I ~ ~ . \A, \"

denotes the maximal unitarily !{-free, unitary di vis or of n,

As a consequence of Remark 3.3, Theorem 3.5 and

Abels identity ( cf (1), Theorem 4.2) we have the following.

For x ~ 3

* 'L, f.>Or-1 'J' ,.,
I' \ i\) ,'- -;;; E~~ .c:

'U (N .' V\:::.)

(3.14)

~
Yf\ ~l

. '*
vihere flt(n)

divisor of m,

denote r.he maximal exponentially odd, urri tary

For x '>, ;:/
\

(3.15) :s
\~\.,,<.Jc..
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P,roof., This fo.l.Lows by Remark 3.3. Abels identity ( cf (1) ,

Theorem 4.2 and theorem 3.~
••..
~ 4. Here VIe discuss the cons e quence s of the Riemann

hypothesis.

~heorem4.1. If the Riemann hypothesis is true, then

for x ~ 3 the 0 - term in (3.3) can be replaced by

O (
y ~ / !).i(+l I "c "'It). ) h ( ). . b (C~ 14)-t V...I .A. were &Ii x a s gi. ven y z ,

Proof. Following the same-procedure adopted in the proof

of Theorem 3.2 a!ld making use of lemma 2.10 instead of

Lernna 2.9 and noting that ib (x) is monotonic increasing

we get theorem 4.1.

l'heorem 4.2. If the Ri emann hyp ot.he s i.s is true, then f<l
\+~

x -;::: 3, the o-term in (3.6) can be replaced by O( ';(, 2..R

pyoof. Following the same procedure adopted in the proof of

theorem 3.3 and making use of theorem 4.1 inste8.d of theorem

3:2 and noting that W(x) is monotonic increasing 1.:1e get

theorem 4.2.

Theorem 4.3 of the Riemann hypothesis is true, then for

x ~ 3 the O-term in. (8.10) C8.r~ be replaced by
< ( 2/~k--t'Oil - uJ C 1--) )

Proof. Fo Ll.owi ng the sallie p r oc e dur e ac:iopted in the proof

of theorem 3.5 and mak.i ng use of lemma 2.14 instead of

Lerrma 2.13 and noting thp.t WJ (x) is monotonic increasing

lITe get t.he crem " .,1±• .0.

'''s. .:

.1
x

(

(

(

(

(

(

(

(
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Theorem 4.4 If the Riemarm hypot.he sf.s is true, then fp,r
. I+~

x ~ 3, the O-term in (3.13) can be replaced by 0 (X ~R+t U)C~..))

Proof. Following the same procedure adopted in the proof of

theorem 3.6 and making use of theorem 4.3 instead of theorem 3.5,

we get theorem 4.~

REFERENCES:

(1) T.H. ApostOli Introduction to Analytic Number Theory,
Springer-Ver ag, New York, 1976.. .

(2) J". Chidambara Swamy, Sum junctions of unitary and semi
unitary divisors, J. Ind. Math. Soc., 31 (1967:" 117-126.

(3) E. Cohen, Some sets of integers related to the k-free
integers, Acta. Sci. Math. (Sieged) 22 (1961), 223-233.

(4) E. Cohen, Some asymptotic formulae in the theory of
numbers, Trans. of the Amer. MDth. Soc., 112 (1964),
214-227. -

(5) G.H. Hardy and E.B. Wright, An introduction to the theory
of numbers, Clarondon Pres s, Oxford, 1960.

(6) P. Subrahmanyam and D. Suryanarayana, The maximal K-free
divisor of m whi ch is prime to n-L, Acta Nath. Acad. Sci.
Hungarica, 30 (1977), 49-67.

(7) D. Sur'yanar ayana , The numbe r of k- an divisors of an integer,
Monatasch. Maths., 72 (1963), 445 - 450.

(8) D. Suryanarayana, T::lO arithmetic functions and asymptotic
densi ties of related sets, Portugal Hath. 31 (1972).

(9) D.Suryanarayana and R.Sita Raraachandr a Rao , Urri.f or m 0-
estimate for k-free into gers, J. Reine Ange"ifTHath., 261 (1973) ,
146-152.

(10) D.Suryanarayana and R. 8i ta .I.\amachandra Rao , Distribution of
unitarilyk-free integers, J. A.ustral:tvlath. Soc., 20 (1975),
129-141.



ll8

(11) D. Suryariarayana and R.Sita Ramachandra Rao, The number
of unitarily k-free divisors of an integer, J.~ustral,
Hath. Soc., 21 (1975), 19;;035.

(12) &~ Walfisz, Weylsche Exponential summer in der neuvcn zahlen
theoric, Nath. For s Chungs berichta 15, V E B Deutcher
Verlagder Wissenchaften, Berlin, 1963.

" :0"

'.,' ,;



119

REPRESENTING INTEGERS :is SUl1S OF TWO REL:~TrVELY

PRINE COHPOSITE INTEGERS

A.M. Vaidya
Department of Mathematics

South Gujarat University
. Surat 39.50C 7.

INDIi .•.•

It has been known that every sufficiently large integer

is a sum of two integers each of which is a product 01 at most ,.. ;

three pr Lmes, In this note 1,-Ie prove a much more modest but

also a slightly different result. Just' and Schaumberger (1) have

proved that every even ~n.teger greater than 38 is a sum of

two odd c omposa te Lnt.e ger s ; Here, we prove the I'o'Ll.owi.ng

Theorem: Every sufficiently large integer is the sum of

two relatively prime compos'i te integers.

Proof: Clearly

n = a + -b, (a, b) = 1 ~ Cn;' a) = l and a ~ n;

Convl?rsely

(a, n) = 1, a <n ~. n = a + (n - a) with Ca, n :- a) = 1-<,

Thus
n= a+ b, (a, b) = 1 iff Cn, a) = 1 anda.:( n,

Let aI' a2, ••• , ak be the k = 0 (n) integers not

exceeding n and relatively prime to n (n ~ 3). Then

al + Cn - al)

a2 + (n - a~
(f) 11_,

••• • •• •
ak + (n - ak)
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are a.Ll, the representations of n as a sum of two relatively
COUl~se in (I), each representation occurs
- ai) also occurs as aj + (n - aj)
So the number of distinct representations

prime integers. Of
twice since ai + Cn
where aj = n a·•a
is 1/2 0 (n) •

The representations ai + (n - <3.i) and aj + (n - aj)
vdll be called duplicates of each other if a· + a. = n.

l J
Now we want ~ and n - ai not only to be relatively

prime but also composite. If n = a + b, a, b composite
and (a, b) = 1, we shall call this a relavent representation.

First, note that the set t:,. aI' a2, •••• ,ak ~contains
all the primes upto n except those that divide n.· So this
set contains iT( n) - W( n) primes, where iT (n) is the number
of primes not exceeding n and tiJ' (n) denotes the number of
prime divisors of n, In addition to these rr Cn) - Wen)
noncomposite numbers, the set contains one more noncomposite
number, viz. 1. Therefore, out of the k representations (I),
7T( n) - We n) + 1 are certainly not relevent. The duplicate

of
pri

(i

cc
or
fc

1;

c(
of an irrelevent representation is itself irrelevent. So there
are at most 2£rr ~nJ - Wen) + l~ representations in (I) ~
which are not relevent. Hence the number of relevent
representations in (I) is at least.

~ Cn) - 2 ~ rr (n) - W Cn) + 1 } •
Eliminating duplica.tions, vie see that the number of distinct
relevent representations of n is at Least; ~ ,0("1\)- {TffYl)-W{il) +1 ~,

-"-,::.---- .. " ,

(

(
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We have therefore proved that if fen) is the number

of ways in which n can be represented as a sum of two relatively

prime composite integers, then for n ~ 3,

f( n) ~ i1.¢( tyl) - Jrl'il) J + {W(-Yl)-l ~ a

Now (:1.)

(ii)

111 (n) - 1 ~ 0,

(0. (n) = -ce ,lim inf
n 7·c4

is Euler1s
n/log log n

constant (2) and by Prime Number Theoremwhere C

(iii) mn)lim
n ~oo n/log n

Thus as 11. 7CO, 0 (n) has a larger order than JT (n)

consequently as n..::rrlO, -VT8 find that f( 11.) ~ c:(). This not

only proves the theorem as stated but actually proves the

following:

Given a positive integer t, every sufficiently

large integer can be expressed as a sum o.f two relatively prime

composite integers in at least t. di fferent ways,
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PARrIrIONS wrrH CONGRUr;NCt: CONDITIONS ANDCOLOR

RESrRICrrONS

S. Vangipuram
Department of Mathematics,
Sri Venkateswara University,
Tirupati, A.P., (India)

, **'**

Abstract:

In thi~ paper the author has obtained a convergent

s e r Le s t f'o r h(M.· ffi "'fV1 ~())v v., ~) "c) ~ , the number of

parti tions of a posi ti ve integer n into the parts congruent

to ±(l ~(mod

appearing in

of the parts

m), with any part congruent to + (11 (~lod m)
! , 0

atmost .8J colors and allowing the repetitions

with the same color, where

using the Hardy-Ramanuj an-Bademache r method.

§l. Introduction: In this paper we obtain a convergent

series and asymptotic formulae for pC I'f1> \ CJi} rn., tg')

number of partitions of a positive integer n Ynto the parts

the

congruent to ± 0.1\ (mod m), with any part congruent to+o..~ (mod
o - J

appearing in a.tmo~~ }J j colors and allowing repetitions of the

parts with the same co.I or where o: '. G. & ~io..,.\)Q.~) - --';(\1 t
. j

~iE~: £~\)~2J)---.J :g~i'

m) ,

\~ Q\ < I1'\., j

d c;)J
fo obtain the,convergent series for the parti tion

function ." we follow the Fa~ circle
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dissection method of Rademacher [4 J" For this we need the

behaviour of their generating functions in the neighbourhood

of a rational point on a circle of radius < 1 and concentric

to the unit circle,

§2: rransformation formula for the generating function of

The generating functions of P (%; CL.) In I ':J )
given by r =. It) \J -I-0j )-Z j J X

F(x.; & ,l"f\,) ~) -.:;:F (:L) :::TT l ~ 0(1- X .
0:..- E e. 00 yy\ lJ -0~)-~J]

J []YI (1- X
00

~L ~v~ r ( ry't/; ~ ,YY) i 'S)x = 2- \0(1") x,
VL=o

vJ ).tt r (0) -=:: 1 <"

is

I'o study the behaviour of F(x) in the neighbourhood of -\lv
~for any two integers h,k such that (\rv I R) = 1. .>O~ tv <. ~ ,

we take oc. -= t<2.¥, ('JvlT~ \v _ Jj\l~ ) ~ .» ~ l' >0 and study the

~ K .'~ ~ )
the transformation X 7> J( where X ::: ~ ~ ( ;U1l ~ or -;:: )5
h ' being a fixed solutions of hh ' =: -l(mCld)"k),

X ' ~ '(Y\. " R t (~'(''IV . eJ 'fY\.- / ~) , cl =- (yY'v.> ~ J

wi th \z; = dv~' ,\YV= c:L 'y,{\;' and' cL) Y being a pair of

fixed integers, satisfying c£ 'R' -l- 'j'yY\' ::::..1 I

Us

an

tt
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We set

Using Hellins formula; properties 0 f the Hur'1tf.i_t-zZeta function

and following the .me thod of Subrahmanya ,sastri [5 J, we obtain

the transformation formula as

fC tJ -=::

where d,:- t{~}WVlJ-m!) 0 < ~}< ~', ..d
''-OJ = ± bJ C ')VU)d, dv) whichever yields 0 (bi ~ [ ~]
?\,( cl)\t ,'f<,) is exponential of a generalised Dedekind sum viz

whe r e
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§3~ Convergent Series for rCrrv; & J~.I(Yl) ':

In this section we deal with the main problem of

determining pen) in the form of convergent series using the

transformation equation (2.1) obtained in ~2. For this purpose,

we express pen) as 'contour integrals on the circle

\ :z l= Q;y: ~ t-~lIt~-~~

obtain the integrals~as

usi ng Cctchyts inte gral formula and,....

convergent series using the Farey

circle dissection method of Rademacher [4~ .
For t hi s we shall fi rst find the estdmat e of an

exponential sum of the roots of unity involving XlJ)Vv",R)
taken over the Lnt eger s belonging to a reduced system of residues

(mod k) as the tri~al estimate Otk) will not suffice our

purpose. We adopt essentially the methodology of Lehner [31,
nagis (Jr.) [lJ and Subr ahmanya oastri [5J and obtain the

following resul t.

I fAt- )~ 'fY\)'\., the exponential sum

s en, I v j 1')) = L j\ (d ,\~-L I Y\;) Qh<~

L(YY\-ob 'R )
(h''lRJ=1
{v~ '11 Cn"l'J ~,)

\ ( ,

(where ~\'l- = -l(mod k)), is subject to the estimate
I ()-

OCYtl~ ~+E)
series for p(n).

we' shall now find a convergent

Applying Cauchy's integral formula and Farey

eircle dissection method, following the method of bubrahmanya

Sastri [5J, we 0btain the following theorem.

.',;.,
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, 'tV"* A / r:nYl ,then for

the number pen) of partitions of n into any positive summands

congruent to ±:a· (mod m) with any part congruent to:ho.}J lmoctrA)
. J

appearing in almost~. colors and allowing the repeti tions
J

of the parts with the same color, where

x L ((U) y\) s (,n}) V J ry)) L ( n I \)I 1)

V<~
I~~
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1\(7'0); JI(~) being the Bes se L functions of the first
order whose expressions are given by

Db

II(~) := - { ~(76) == L S ~ '\ '1A+I \ ~
A-={) l\;JJ) . tl. \\+\ )

Vis the coefficient of Aan d C ( V) 'Y\)
.in (2.2).

Here we exclude /(V::::: A 1 for in this case, the
\Qryit

exponential sums in (3.1) do not admit of a better general
estimate than odn which will not be sufficient for the purpose.
For this particular value of n , pen) (Ian be obtained directly
by finding the coefficient of XA/1d;(n in (2.1).

§4 ..Spe cial Case-

and

We consider the case crL: {(J j /1:SQ1 < ~ ) (Qj)nI) =IJ
(0 5 q) I a I ~ 1-1-( I Thi s gives us the
J = L ;))1J1-==, ) V) ~

formula for the number of partitions.of a positive integer n
into parts relatively prime to m with each part appearing in
at most clolors and allowing the repetitions of the parts with
the same and we obtain the following theorem from
Theorem 1.

Theorem_2: For M ro , jJ ~(YY\) MfiM,)',v>O ) 'v 1-
~4nv

the conve r gen t series for p*( fY1;') %) the number of partitions
of n into parts relatively prime to ill, each part appearing in

..:; ~.;..
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atmost "s'. colors and allov'ing repeti tions of the parts wi th

the same color is given by

~ ((\1) S (rf'L1 v) L( \'\..u)

\J<. 3(~(YY\)D

dJ4-O-.

where
SC'ft,v) ~ S('Yl1 V)"6)) / C(v) =: (( ))//1; I

0<1) <.ct
(,\,&) = I

L( 1L Y) == L(rr\.-) V /'1) t e« cUi III
and

M = product of all distinct primes dividing m

D = product of all distinct primes dividing d

If we put s = 1 in Theorem 29 we obtain Subrahmanya Sastri 's

result [5J If we put, in particular 1 that m is squar'e free
and if s = 19 then D = d and we obtain Iseki's result [2J •
If we put ill = p, an odd primep > 39 s = 1 9 vIe obtain HagiB

result [1J ·
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*n, J~~GA.l'i""NJ!kTH.AN
Institute of Mathematical SCiences, lH./.l.TSCIENCEJ
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MS1MQl.~
Matrix theory is used to study a spectral decomposition

of arithmetic functions introduced recently by Krishnasw~
J..lladi" Also there is included a.brief sketch of the recent
work of the author and Santhanam on the use of the concept
of generalized matrix inverse to solve elegantly certain set
of linear diaphontine equations occurring in the study of
the structure of the Lie group SU(3)

1" INTRODUCTION:.-"-~""''''''''-:.-...r:--_~'

In two earlier papersl,2 the author has used a matrix
approach to understand the Dir:i.chletproducts and inverses of
arithmetic functions and hence to derive certain number
theoretic identities" Part:i.cularly the Hobius function ~C'11...)

has been represented in the interesting form

\LL~) 0= IZJl)k{f(-Jr-\~)[~-,(~~:1:,_ I )J ~;
~_ (t"'l ~-, -i- J-I 0( I r:J..y-

VYU ~p - - - Pi' > J.)
. tresulting from the identification that the matrix H with

(lGl)

elements ~~(~) ~ ~I R,
t 0 other wise~

-.".,j:Section 3 of the paper presents the joint work of the authorand T.S.Santhanam, mentloneQ in the article by T.S.Santhanam
.!.- -'-1_'! ~ ..J'!~~~ _,~ 1')0=1110
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is the inverse of the matrix E with elements

~ 1 At· LI R ,

La other wise.
(1.3)

It is clear that if matrices are associated with arithmetic
functions in the above fashion then the Dinchlet product can be
understood simplY as a matrix product.

Recently Krishnaswami ~11adi3 has shown that if we define

L: }"-td) ~ (Jv) =- ~~( tYv)

dv(rw
then for a square-free function

(1.4)

and (1.5)

are such that

(1.7)

(J..6)

and

In section 2 below we shall understand this result as a
special case of a spectral decomposition of any arithmetic
function in terms of matrix theory.

Section 3 gives a brief report of.a recent attempt of
the author and Santhanam to study certain sets of linear
diaphontine equations occuring in the problem of internal
multiplicity structure of weights for the SU\3)-group4,5
using the concept of generalized matrix inverse.

s:
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Let us rewrite the product relation in (1.4) as
*1 (I)

:::;.:.:: 1- i»
1*('3)..

P.Cl) 0

~U) f.Z{~)

~(I) uCl)
I

o
o
fL(3) ,.

, .
. .

• , "

.. , ,
" (2.1)

Since /.L(n)takes only three v!tlues ~0, +1, -1) the eigen value
equation

blU<lJa(J.) = .\.1("")
cl,t )V

admits only three eigen values, namely
(2.2)

( 2.3)

If we now solve the eigen value equations (2.m for the
particular values of A given by (2.3) it is found easily that
any arithmetic function fen) is such that C {OJ t+J ~_)
defined by

( 2••4)

(2.5)
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obey

Then we have

Thus for any arithmetic function there is a spectral decomposi-
tion having the properties given by (2.1) and (2.4) - (2.7).
The result of Krishnaswami Alladi given in section-l for
square-free functions 'With to C /1'1..,) -==- b is seen to be a
special case of the above general result for any arithmetic
function.

Krishnaswami Alladi-3 has also defined a generalized
Mobius function

. 1- ~ 'TV zz.]

wet>\)
[L~c.'T\..):= 7:.. for square-free IrV >}

o otherw.ise
associated with the inversion formula

6 f(~·) -::F(rvv) &7 f(1'\,) =L:)(X
1

) ~J~C,{')L tt~(cl~)2: r<-id.3)···
~ "'" J-1, Y\i cl~IcL I &-3/ ~ z .

~.~L: fJ.? (C£1'1_1 )

J,~-t !J.,Yl_ ~
so that Z = -1 corresponds to the well-known Mobius inversion.

(2.9)

formula. It is quite clear that0gna~Gguous to this developement
one can easily generalize the above-discussed spectral

{
th

sh
tr

3.

we

II

w::

tl

8.1
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decomposition of ar LthBeti c f'unctri.oris alsohy replacing

{-I ==~ff ~ by t-Zn,.~~f(~)J·N9~rsince

the equation tC'Y\) -=2jA."C;ca)dC<!) -=A~(",)has (n+l) eigen values

}'0 +- ~ · I.. _(j ~~ ,,,~~the ana Logue of (2.4) in this case
( ) "-I\, ,,... - ,)N, ..••.1$
should involve the n-df.mens.Lcna.L Sylvester or "fini te Fourier

transform matrix

3. ON A SET OF DI~HOnTINE EQUATIONS:
In the study of t.he m~tiplicity ,structure 'O'f the

weights of SUe3)'- gr-oup usi.ng Kost~ntl s formula Santhanam5

(See also 4 for earlier literature) has' found that the set of
r ,}

linear dd.aphontd.ne equations .'

wi th known inteL;el' values for eki' k~ are to be solved for
~;):;:.

the unknown Lnbe ger va.Lues of ea,i"~ 8.2 a3). Recently the
.'.':-' ,

author and Santhanam have r eexamfnod this problem as f'o LLows

,Let us denote

( ~ °t II) . c (:3. 2)
Then by the well-known theorem 6,7 on the general solution

of the equation of the type (3 .1) it f'o l.Lows that ,we can write

(~) == ( (it )(tJ+L(~~n-(Cj'c)l;::)
(s' '3.)
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-1
wher e (xl' x2' x3) are;farbitrary and Cg is the

generalized inverse ?f the rnatrix C. In this case

. -\
C

d

vle have

.". ( !!J' ~. ~ )
:=- ~ -\ ~

l I.
t· (.", -\ \)'- "3 -I '" J

l l ~ .'

,

-1
if we compute Cpo using the standard procedure due to

o

(3.4)

Greville (ef. 7 for the details). Nowusing (3.4), (3~3) can be

explicitly written as '-.t~\- Rl -.,")(\'*.,t '4 ..,-:( .3

-~( +-:L'T:',(, +)..2 -?<3

~ ..•.•. -::x. -X +.x.3 .
Kr, "2 I 4.

\
- "3

Let us now denote

x == x1+x2-x3 ,

Y == k:f.+k2-X •.

Then (3.5) becomes

,

Since (X~ x2• ,~) or X can be chosen arbitrarily (3.6)

and (3.7) indicate clearly tJ::1ai:;the integer solutions for (

(aI' 212' a3) are 0 b,tained choosi ng

(3.6)
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(3.8)

Thus leading to the result that total nwnber of
solutions = 1+ min (k1, k~ (3.9)

for the set .:t diaphontine equations (3.1). The same result
.has been derived e~I'lier in a different fashion, a review of

8 ~which has been given by Santhanam in these proceedings. also.
For higher order Lie groups also the sets of linear aiaphontine
equations to be solved in the above problem are of the
:~'a.me structure as (3.1) .though involving hiGher dimensional
" ' ~x
matrices in place of the simple C-mat~obtained for SU(3). We
hope that the above elegant method based on the use of
generalized matrix inverse .~ be adont.ed fruitfully in the

.~~~;!::- ,;.

other cases also. We plan to discuss this in future elsewhere.

I wi.sh to thank Professor Allaoi Ramakr i shnan for ldnd and
.,. cons tant encouragement. I am grateful to Dr. Krishnaswami .ll.lladi

for very useful discussions. My thanks are also due to
Professor T.S. Santhan81ilfor c~iscussions and. fruitful
collaboration.



138

REFEB.ENCES:

•••... :.••• 'v, . '4_ .'
." .-..•. - .

1. R. J agannat.han , Hatscience Re}lort ill, 6 (1977)

2. R. Ja;;annathan, Ma-cscience Re.ior t WI, 75 (1980)

3. Krisl1nasvJoam~11acli,. pr Lvatecommunication.

4. D. Radhaltrishnan and T.S. Santhanam, J. Hath. Phys. 8,

2206 (1967)

5. T.S. Santhanaril, J. Hath. Plrys , 10, 1704 (1969)

6. O.R. Rae and S.K. Nitra, IGeneralized inverses of

matrices and a-9plications 1, John Wiley, 1971.

7. ThomasL. Boullion. and Patrick L. Odell, IGeneralized

inverse matrices I, Jolm Wiley, 1971.
8. T. S. Sa..nt:1aWiElJ t~1is }wo.ce8dj_nr~~;~:.Jj). 139-142.



,
"

139
DIDPHAN Tn-m EQUATIONS AND PARTITION

FUNCTIONS

MATSCIl!:NCE ,
T.&.Santhanam

The Institute of Mathematical Sciences,
Madras-6vO 020. (Indi,a)

**'**

Many years ago, when I was working on the problem of
tmultiplicityl in classical groups, I came across the problem
of solving, more precisely to find the degeneracy of the
solutions, some linear diophantine equation~. I solved the
problem by using the method of'generating functions.

The multiplicity M of a weight m which belongs to the
irreducible representation of a group G with the highest weight
A is given by Kostaut1s formulal)

2:. bs-P[Vv1+R.o-S(A+Ro)] (1)

SEW

I'hesum is over the elements S of the discrete Weyl group "'I ,
b :::::± i. depending' on whether the action of S permutes

Seven or odd. £ is the partion function defined by

--p CA ') = number of ways

A can be written as

A - E Q ~o( t->'- >

~E 2.+
,ctp- = Wvt~QM ~'O

( 2)
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The 0<."2; belong to the space 2+-of the' posi ti ve roots of G and

(3)

Since A can be written in terms of simple roots ~ as

(4)t. -;:0 \

(J., , E 11
\ -' 1. '

k· =- \MJQ~]\.b ~ 0
(,

The
,

IT t~\~ belong to the space of the simple roots, is

')

the rank of the group. Since O<,J:! can be expressed in terms of
j

~~ with non-neg3.tive coefficients, we see that the value of

£(A) is eeual to the cE gene racy of the solutions of the Diophan4:~

equations.
\:<.. CJ Q

'\ 1fV- )V-

A.. =- \) - ->9.
jJ-;;: \, - - - > ~
I

N = ~vbv-,- o~ ~o~tVvQ '>\.ootb O-f G;

(5)

•• -. e .

The problem is that ~iven a set of

to find the number of non-negative

non-negati ve integers R',
't-

0., .,0 which will satisfy ther,!.
above equation.

7 i P'

....
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In the simple case of A 2. N $Vv(3)

( \ o \)
o \ \

2)
and Gruber and I found the solution as

(6)

In the more complicated case of G2- , the matrix is

(\6 \ '2 "3
~ )-C. - 0\

, \'tyv

3)
Radhakrishnan and I
generali ty.

solved to find the solution in complete
4)

Belinfante has 5ucceeded in writing a neat
computer programme for the same.

Let us now:~iscuss the general cas~. We define the
. 5) .

generating function· f'o r the group G as
I\J

{(Xu
\TT

~=\

• - • J

I \ -< \- X ( 7)

It can be easily seen that P is nothing but the coefficient of
k, R9.X I - - - Xi in the 'I'ayLor expansion of f. I'hamerit of this

method is that one can set recursion relations for P and the·
problem can be solved by reducing the calculation to that of

, .calculating P for low rank grours. For instance, for the case of
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unitary group s • As, one finds5) that

(8)

In ref.5) , I have built such recursions for all classical groups

RecentlY, Jagannathan and 17) solved the simple'Su(3) problem

using the method of generaliz~d inverses.
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BR01J~RtS FIXED POINT THEOREM

Department of Hathematics,
St.Joseph! s Colle ge (Autonomous) Tiruchirapalli_ b '2.0 00'2. ,

T. "I'D I!~

It is very well known that all familiar proofs of the
Brouwer's fixed point theorem use either combinatorial argu-
ments, homology theory, differential forms or methods from
geometric t.op o.Logy, Compare (1), (2), (3). The aim of this
lecture is to present a proof of Brouwer!s fixed point theorem,
which is completely non-combinatorial and also to illustrate
the power of the diff~rentiable approach to topological
questions. It is pertinent to mention that John Hilner (4)
has recently presented a very elementary proof of this
classical theorem which is strangely very simple.

Let us recall that the Brouwer 1 s fixed point theorem
says that every continuous self map of the closed unit ball
in Rn has a fixed point.

Theorem: Let Vl: := {x := (Xl' x2' ••••••:xn) ~Rn/ II x II ~ 1~
n n

be the unit ball in Rn. Suppose f: VI ~ VI is a H'

continuous map, then there exists a point n.V~ such that-'.f(Ai)':= X.

Proof: step I :
lie first claim that it suffices to prove Brouwer's

Theorem for differentiable maps. Suppose f
is continuous. Let ._~/ O. Letlf • Vlll~

S •

n nVI -7" VI
V~ --:..t be the"

••
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retracti on of vi onto its subset vl~.. C

in formulas, we write

I tis de ar that d(f, 1"1 ~e
metric. Consider the maps

where d is the supremum
1t 'YL_ d) '3VI ~ Y:/ - _I J rn. - ,J.;/ )

moO
we can find C

- - -.}(L f :
yY)

By Weierstrass approximation Theorem,
.om such that d( JC~ f) ¢m) ~ ~ ..

rfL, I'(\)In particular this means that 0m (V ) c V
\. I - I ~

maps

AS sumi.ng BrouvrerI s theorem for smooth map s, t.her-e is an '
'1'fIv rfl Y11 ' '(Y'v '1 ;)X E; VI ~)KeJ- 0' 'YYl(7-- ) -= x, ) yyv .. Iy? - .. =,

Since Vi is compact ( we may pass through a subsequence
if necessary) we may assume xm ~ x..o e V;-yV.. Using
continuity of f and the triangle inequality, we note that Xo
is a fixed point for f.
step II: To prove Br ouwe r+s theorem for smooth maps, it is

n' nenough to prove that there is no smooth map 0 :V1---=;;:. 81
restricted to S1 is the identity.such that {O

, 1U { l'v
( ~ \ =L~ 'R ,) \\ X 1\ = 1 ). It is a folk-loreresuit
that this last statement is actually equivalent to Brouwer1s
theorem and we do not step here to prove it. So what remains

~.. "

-'-\<."

'-'<l'· ••i,
' ..
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then is to prove the no-retraction theorem for smooth maps.

Suppose there were a ccC map Yf: v~ ~ 8~ whose restriction
n rl nto 81 is the identity map. To say that 'P. is smooth on VI

means that there is an extension of 0 to an open neighbourhood

NCv¥:) of VI whi.ch is s', now 0: N(V1)--=:;;> 81 is a smooth

map from an n-dimensional manifold onto an (n-l) - dimensional
ryv .

s'ubmani.f'oLd; Let r) e s\ be a regular value for 0. (Thanks to

Sard. Such a p exists!) Note that 0-l(p) is a one dimensional

submanifold of N(v~, since Codim of ,0 -Ie p) in N(VI) equals

Codim of (p] in 81, which is n-l. Let K be the cormected

component of 0-l~p) containing p. Remembering the result

that every connected onedimensional manifold is diffeomorphic

ei ther to an open interval or a circle, (5), we will have

to consider two possi bili ties for K.

Step II I: (a) K is diffeomorphic to an open interval. Now
rYV

K is a closed subset of N (V~ and so K nV I is closed in V~.

Par~metri1:e K by ie (s) ~ - 00 < s < + ot;} and let e(O)=p.
First of all', K must pierce 81 at p, i.e. it can not be

that K C VI or K ,~ l~(VI) / vl. For othe rwl se K would be

tangent to 81at p which would contradict the regularity

of 0 at p, As e(o) = p, e (- E ) must lie either inside or

outside VI tor small f '> O. Let us assume that e ( ~ c ) lies

in the interior of vl. We then claim that 6(s) ~ Int vf
. n

for all s < O. Otherwise q = Be so) E 81 for some $0 < o.
Now q I: p for otherwise K would not be diffeomorphic to an
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open interval. But 0 restricted to Sn is the identity and·1

so q ;:: fi( q) =0(&( so)) :::p. Hence So cannot exist.
"' n

Similarly e( s)E N(V~ / Vl for all s > O. Consider the set

of pOints in V~ of the form e( s), s <: O. Let (sJ be a

sequence of real numbers tending monotonely to - cO and

consider the sequence of pOints'[ e( sJ} • Passing to a

we may assume lim e[sd =o(EV~ exists.
. 1l.. . .

n and by continuity of 0, 0 ~~ =p.
rY\.., rY\.

k nV/since K nV \
contradicts the fact

subsequence if necessary,

No"V[ 0 [6 (sn)] = p for all

Thus ~ € ,¢- I l~)n K n v~ z:

closed in V~. But this clearly

is

that K is diffeomorphic to an open interval. Hence case (a)

is completed.

(b) K is diffeomorphic to a circle - a~ in case (a) ,

it cannot be .that K.lies ~ompletely inside V~ or completely

inside N(V~) / v~. But since K is essentially a circle,. K

must pierce S~, in two pOints, say at p;q, q I p. But, as

in case (a), q = 0( q) = ¢( p) =. p a contradiction. This proves
I

case (b), .and completely proves no-retraction theorem •.

APPLIC.•l.TIONS•
• As a surprisingly contrete application of

Brouwer, we can prove the theorem of Frobenius.

Theorem. If the entries in an nxn real matrix K•
are all non negative, then K has a rea.l non negative

eigenvalue.

~n idea of the Proof; May as sume that K is nonsingular;

ot.he rwi.s e 0 is an eigenvalue. Let K also denote, the

\:.,~;

'l.~,~i



associated linear operator on Rn, and consider the map
f: x -;;> Kx I \ Kx \ restricted to S1:-l---;;::.,
Note that this maps the Ifirst quadrant l.

F::: {\x1.' x2' ••••• ~) E: Sn-l: all Xi ~ a 1-
T.,T t' f . 1 th ·t F' 1- h' to vnl-ll\'lIesa ~s y ourse ves a- 1S Ilomeomorp 1C

invoke Brouwer.
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PROBLEMS

Problem 1 (by Krishnaswami Alladi, Department of Hathematics,

Universi ty of Michigan, Ann Arbor, Michigan, USA)

Let ~(n1) denote the largest prime f~ctor of an integer

::j~ >1 and put; PCI) ,=.:1... ~ o.~et.. p S~:J?-te a prime number.

If r is a bounded.arithmetic function satisfying

then

G, (1)

QA/m; \- 2:= t ('P(f(L)) -==- c . (2)
:r -7OJ .'X-t I ./ .

~ l"v ~ :L

The converse of this statement is not true. In fact one ·can easily

construct a bounded function 1: satisfying (2) such that the

limi t in (1) does not even exist.

if

Denote by Ifl Ci) -:::I ~ L ~( r (I'YlJ) - C' • Show that
f ·1~yV~JG.

11t (x.) ~ 0 sufficiliffitly rapidly, as , ?c...-::r 00 , then

holds with the same value of C • We conjecture that( 1)

suffices.
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PROBL&1~ (by K.Ramachandra, School of Mathem~tics,

Tata Institute of Fundamentai Research, Bombay)

Prove that

:s ~ ~(ctl) ~lct~)/ ~dv\)J2~
cL J \)'L d.o1 lfYl./ ..,

SOLUTION.

Let

putting

Ministry of Defence, Government of India, New Delhi) •

This is a particular case of quite a general class of

resul ts which 'can be obtained with the same case, using the techni-

que of multiplicativity in several arithmetic variables. (cf. N.
Ba1asubramanian, Proceedings of the First Conference on Number

Theory, Matscience Report 101, (1980) 47-62)

j
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Let

i(1lv,j'ft,CiJ) ~.~ 2- lA{cll)r(d2}/rd()~2-3
cLd'R, ~Z\I1J 2-

Note that t, 3 the 1. c. m, is mUltiplicative strictly •. Hence

where

So

~(f~'r~)=: ~({'I\;,,')1.(1)
~Mew (1'}) l'lt \,yi ~ S

PROBLEH3. (by Ns BaLasubr amarri.an, Joint Cipher Bureau,

Ministry 0 f Defence, Government of India, New Delhi.)

In the theory of arithmetic functions ,nth multiplicativity

in more than .one varIable on whidh Vaadyana'thaswamy, Kesava Menon

and others have worked extensively the convolution
.:::. . ~ J?- (<it u - - > 'YLl' ) ~. ~ Q ( 1tt \) - - , ) 11'i)

. L- Eo •• 2 -0 . X L ---L. (] .
\ . f"YI x, M1y \. 1 1'l~I 'Y1~'Y'

'Iv I - - -:-J It( 00 ,) r·, rr
. (Xl -vv(rrv

l
)---7L,y)

- 2-·--~ g\ J'Y'
I 'Yl, - - - ~iJ
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''''"here-tc'YVp---}'\1'Y').· 2 ---1 t(Jv--A~)'~L~'--) jj
ell \'fI., I 'Y} n'Y'

plays a fundamental role in obtain ing multi-dimensional extension
of Mobius inverseion and other techniques. In this connection I
have defined certain simple arithmetic function such as

7T(r(1; I) - --/YL"(') -:::.I or 0

~(11\)---/~~):::.10'(0

according as the n Is are coprime or not

according as the n1s are all equal
or not.

These functions, along with the g. c. d. and 1. c. m., I have shown,
to be multiplicative strictly and they could be \fielded to obtain
the results of all the earlier work (mentioned in the beginnin~
in a unified manner. The solution of the above problem by
Ramachandra is a case in point. The problem now proposed by me
is to extend this technique to the. convolution over unitary divisors
of a natural number through defining a suitable function like the
ones mentioned above.

PROBLEM 4. (by R.Sivaramakrishnan, Department of Mathe-
matics, University of Calicut, CallcutJ): _).

D is an integral domain in which primes are run.ts de-
fined by using the divisibility property. It is known that every
non-unit in D is a finite product of distinct primes,~at are
the necessary and sufficient conditions under which D will

,-:.(

.... '"

;' '!.
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become a unique factorization domain? The solution to this

problem would lead, to a proof that the ring of number - theoretic

functions is a unique factorization domain, without appealing

to the methods already given by Cashwell and Everet:h; (Pac. J. Math.

1959) ) •

PROBLEM5. (by A.H.Vaidya, and V.S.Jos~i, Department of

Mathematics,and Statistics, South Gujarat University, Surat) .

Let 1\" be any posi ti ve integer written in the decimal
I ,

scale. .add the sum of the digits of ')"\"'\to n( . Suppose we

get 1'v:J.t. Do the ~ame torn...~ to get 113 and so on , We get what

is called the digit-addition series of 11 0 Prove that
( I

(i) if (t(\j) 3) -::::.\, the digit-addition series of n will merge

with that of 1 after a finite number of step s •

(ii) if 311Y/;a~dgf0t' the digit-addition series of n will

merge with that of 3.
(iii) if q (% then the digi t-addi td.on of n will merge with that

of 9.
.

(eag. note that digit-addition series of 86 is 86, ~OO, lDl, 103,

• • • • • •• and that of 77 is 77, 91, 101, lD3, •••• so that we say

that the two series merge at 10~o

PROBLD,1 6~ (by', ';;'.,H~va.l dy a , and V.•S • .JDshii, Department of

Nathematics and Statistics, South Gujarat University, Surat) ,) .

If sum of the digits of 11, in the decimal scale is R ,
and k\fi1, , we say that 'n is a Harshad snumber or spec;if;ica~ly
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a Harshad number for R • Let i( R) be the least Harshad

number for rz • E.G. f( 1) = 1, f( 11) = 209, f(12) = 48.

Find estimates ofiLR) • itl1so· determine the asymptotf,c density

of liarshad numbers and the behaviour of the harmonic series of

the Harshad numbers.

PROBLl!ll,l7. (by R.Jagannathan, Matscience,The Institute

of Mathematical Sciences, Madras, India).

If J is a positive integer and tyV.~ I) ~ = O} =1=I ± ~ ---/ .) .

'-' r ~
(:(T+I); L (-rr--ryl.,)

Y= -J
( -:;t. -yv) ..

for any given value of J and· n vn th I/)IV/ ~ :r .•.. This sum

then evaluate the sum

occurs in a problem in physics.

NSS/22.5.81

_ 'll!"'W --_.

/
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