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INTRODUCTION

This report forms part of the lectures given by the
author on his own research work during his stay at MATSCIENCE
as a Senior Research PFellow.

» Chanter 1l,deals with the characterisation of the direct
nroduct of a Boolean ring and a lattice ordered group, thereby
solving Birkhoff's »roblem no.105 "Lattice Theory™ A.M.S. Col.
Pub. XXV (1948) ("Is there a common abstraction which includes

of Boolean rings (algebras) and lattice ordered groups as special
cases?). These results which are also a generalisation of the
anthor's osper "On a comuon abstraction of Boolean rings and
latiice ordered grouns I" Manatshefte fur Matheuatik 73 411-421
(1969), have been accepted for »publication in ilath. Slovaca.

In Chapter 2, "Dually residuated lattice ordered semigroups"
or briefly D,R.L. semigroups have been generalised to semi-dually
residuatcd lattice ordered semigroups 11 include semni-Brecuwerian
algebras. Semi D,R.L. semigroups have many interesting properties
of D.R.L, semifroups and these have been studied in detail. '
The relationship between a seni D.R.L. semigroun and a Boolean-1-
algebra has been discussed with some interesting resulits. The
results of this Chapter have anpeared as a note in Math. Seminar
‘notes Vol.6 (1978).

Chapter 3 is devoted to the study of the structure of a D.R.L.
senigroup and a class of D,R.L. semi;roups which can be obtained
as a global sections with comvact Casmiss of a sheaf of nontrivial
totally ordered D,R.DL. semiprouns over a Boolean space; has been
characterised by means of two conditinns, These results have been
comuunicated to Math. Seminar Hotes and their acceptance for

mublicatiorn is awaite..

In the last chapter an attem»t has been made to obtain the
Telationship between normel and distributive *. lattices.

The author has great pleasure in acknowledging the
stimulating inspiration given to him by the Director, Professor
Alladi Remakrishnan.

15.9.1978 VV,RAMA RAO



ON_A PROBLEN OF GARRETT BIgKHOFE
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Introduction

In this chanter we shall solve Birkhoff's sroblew Ho.l0%
(Is there a common abstraction which includes Boolean rings
(al&ebra) and lattice ordered groupss as snecial cases?) by
characterising the direct pfoduct B x G o a Boolean ring
and a lattice ordered group G by a se¢t of five conditions
1,2,%,4 and 5. In ;2. this author has obtained a siwmilar characte-
rlsa%ﬁgdeu%o%di%}o%: %O%%%g%%%s4la§egigent§cél condition 5'
is a much weaker than condition 5. Thus the present results unay
be treated as a generalization of the author's work in [ 2]
It may also be noted the vroofsin [2j are greatly simplified
and made much more elegant, here,

We specifically prove the following

Main Theorem: ILet 4={(A. U0 © —) be an algebra of

e

.“‘.'*,_,-i'
species (2,2,2,1). Then a necessary and sufficient condition 4

is isomorhic to the direct product B x G of a Boolean ring B
and a lattice ordered groun G is

1) (4:+) is a groun

2) (A; 2, 0) is a lattice

(a+x4b) J (a+y+b)
(a+x+b) 0 (a+y+Db)

3) a + xJUy + b

if (a+b)Ox = (a+b) ny.

i

a + x5y + b

it

1"

4) a -(xyy)=b
a -(xny)=b

(a~x+b) O (a-y+b)

(a+b) U y.
(a-x+b) U (a-y +b)

if (a+b)u x

H

H

5) aui0 - ano av—a. for all a,b,x,y¢ A.
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- . . eloned
section 1: Proof of thce llain Theorem iz gradually dev

Soutmiiy

‘ _ : : , stands
n the following two sections. Throughout this Section A ©

N 3 ) L. -~ . - T = ;»1‘" a}»ld
for an algebra of species (2,2,2,1) satisfying 1 throuls &

in the following a,b,x,¥...etc denote the clements ol A.

EMIA 1.1: If a>D then a-b >0 and-b + az 0

2 -

(a-Db).
Proof: If a>b, then a-b = a-af:b = (a—a);}(a—b)(by“>so'(a ).

Hence a-b> 2. Jdimilarly -b+a = -(amb)+a = (—a+a)g}('b+a)(by“)

=0V (-b+a). So -b+a>0. . -6 D
COROLLARY 1,1: If a <0, then -az0 .
Proof: By Lemuaz 1.1, -a = 0-a 0. Q.E.
LEMMA 1.23 If a0b = 0, then a+b = aub.
Proof: If anbd = 0, ﬂmna;;O,béOemdaHa:aHNO =
(a+b)u a (by 3). Similarly a+b =(a+b) v b. Therefore a+b =

a-a(yb+b = (a-a+b) U (a-b+d) (by 4) = bya = aUb.

LEMEA 1,.3: 2 Ub-b = a-aDb.

e ~ e

Proof: O = a}b - (aub) = (avb-a) N(auvb-b) (by 4). So bY

Lemia 1.2, (aub-a)+(ayb-b) = (auvb-a)ylauvb-b) = a-b-arp(by 4)-
D

- = L
Hence aub-b = a-anb, ALK PP s

COROLLARY 1,2: If a.b = O then a+b = aib.

~— e

=
COROLLARY 1,3: If + is commtative then a%QiiggﬁUﬁiQ

COROLLARY 1.4: (a~anb) (i(b-aid) = 0,

COROLLARY 1.5: a = ayo+aNo = afjo+a'lo.

———— O

LEMMA 1.4 /i is a distributive lattice.




Proof: Let aub = avc and anb = anc. Then by Lemua 1.3,
alb-b = a-anb = a-anc = ayc-c = ayb-c, or v = ¢. Therefore 4

is a distributive lattice. ‘ Q.E.D.

Now we prove,

THEORE:L 1.1+ If every nongzero eleuwent of f has additive order

AN

Iwo then (A

"~ w-—v/

N) is a Boolean riug,

Proof: It is clear that (i;+) is a commutative group since
_every nomnzero element has order two: and (Lsn) is a semigroup
and every element of i is (multiplicativgly) idempotent. \In
order to comnlete the »roof, we iust now show that h distributes
with respect to +; and this requires souwe Hreparation.

We now assume that every nonzero element of A has order two.

LEMMA 1,55 0 is the least elenent of A,

. s Bt e e

Proofs (ato)n(ase)=ano.

0 = -(afo)ii(avo) (by Corpllary 1,4) =
Therefore af}o Tor all a € b Q.E.D.

LEMMA 1,65 a+b< aub.

FoA S R S

(ayb-a) {1 (aub)

(mr)$aub, Bysymwﬁﬁ,aMMJé ayb. HNov a+b = aJb+andb =

Proof: b+alb = b ~anbd = ayb-a = aub-(aJ o)

atb-anb = (avb-a)y (ay b-D) (by 4) (b-anb) ¢ (a-anb)
(b+a(1b)u(a+af\b)é aub. AE L

LEMMA 1.7 aUb = (a+b) U (anb) and a °bn(a+b)

Proof: apb = atb+and & (a+b)u (and) (by Lemuia 1.6)
£(aUb)y(anbd) = aUb. So that ayb = (a+b)u(and). iow
auvb = (anb)U(é+b) = anb+a+b+anbn(a+b) = aub+erbn(a+b).

Thel‘efore af‘bﬂ(a+b) = O. 1 QOEO«JC



LEMMA 1.8 anbiane = an(bic)

Pro-£f: anb+anc+anbic = atb+anc+(anb)n(anc) = (arb) U(anc)=
a(bue) = afb+c)u(bne); = (an(b+e)) ¢ (anbnc) = ar(b+c)+anbic+

-

aN(b+c)nbac = al\(b+c)+afibhe -, afb+anc = al{b+c). RQ.E.D.
LEMMA 1.8 completes the oroof of Theorem 1.

The followiny two t-eoreus seenm to indicate that 5 Of'“121
is perhaps not independeat of 1 through 4. However, the author

has not succeeded in esiablishing 5 completely.

THEOREM 1.2: The following statements are ecuivalent in A.

i) (a-b)y(b-2) = asb-(a b)
ii) If alb = 0 then a+b = (a-bu(b-a)

Proof: That (i) implies (ii) is obvious by Lemua 1.2. We
prove that (ii) implies (i). By Corollary 1.4, (a-anb)n(b-arb)=0.
Hence a_b-and = (agb-a)y(ayb-b) (by 4) = (a-2mbd) +(b-amb) =

.. (a-anb+anb-b)y(b-aprb+anb-a) = (a-b)u(b-a). QB Dy

HLA

THECREM 1,3: (a-b)\(b-a, = ai/b-(anb) in A if

a'o-(ai0) = av-a.

o —- =

i)

ii) if aib = o then an(b+b) =0.

the »roof of +this theosorem requires a Lemua and we now assume

ajo-ano = ar—a for all a.

AV

LEMMA 1.9:  If 25 o then ax -a, -2ato and 2a> 0

Pyt o T

Proof 2 szzzo, then a = ap0-an0 = a'-a by (i), or a > ~a.
Mso a = (Ov-a)-00(-a). Therefore -2a = -a~a = -((0Oy-a)-(0fi-a))+

Ol-tl v vty q= ON-a-(0J~a) 0U-a40/1-a = ON-a40n-a = ON(-a)n(0N-a-a) L0

By Corollary 1.1, 2a20. \ Q.E.D.
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proof of Theorem 1.3: Let afb = 0, then ayb 2 ay-b =

B

¥

[

ﬁ(a+2b-2b)t)(—b) = (au2bh-2b)uv{-b) (since apn(.+b) = O and by

Lemia 1.2) = (2-20)U(2b-20)Y(-b) (by 3) = (a-2b)roy -b 3 (a-2b)u-b
= (ayb-2b) (by 3) = a+b~25 = a-b. On the sawc lines, ‘e have
aub > b-a. Therefore apb> (a-b)ulb-a). ilso (a-b)uo = (a+b-2b)u0
= (aub-20))0 (by Lemaa 1.2). (a-2b)L(-D)0 (by 3) = (a-2b)L0=

¢ -2b (by 3) = a+2b-2b = a. SimiiarlyA(b»a)UO;;b. So that
(a_b)L)(b—a) = (a—b)U(b—a)L}O;:a)b.‘ Hence aib = (a—b)U(b-a)e By

. Theorem 1.2 it now follows that asb-ard = (a-b)ub-ajalvays. Q.E.D.
Section 2

From now on wards, we assume that A satisfies the additional

: . el N
condition 5 also. We first orove

COROLARY, 1.6: If a is of order two, then ax0.

Proof: If a is of order two, then a = -a and at-a = a > 0.
(by 5') the following lemuwa gives a complete characterisation of

. the elements of order two.

LEMIL 1,102 An element a L is of order two, iff

2 = ay ~+0p-a

Proof: If = is of order two, then a = -a and a = av0+an0 =
2b0 +0fr 3
Now a2:0400-a+0i-a+an0 = as0-a+an0 = -(an0)+ah0 = 0. Hence

av0+0i1-a = -(0{-a+a0). Llso (Ona)W(0f-a) = On(ay-a)y = 0 (by 5')

So that by Corollary 1.2 Cna+On-a = On-a+0na.

1

Kso aw0-af0 = ay-a = OU-a -(0N-a) or a0 = Ou-a -(On-a)+0iia

= OU-a40Na-(0n-2a), so that av0+0N-a = OU-a+40Na = ~(0y-a+ai0)

S0 a)0+40ri-a is of order two Q.E.D.




IEMMA 1,113 If 2a>0 and .. b20 b «rtz o0

Proof: a+b = a+(atd)ub = (a+anb) (U (a+b) (by 3). Hence
: Ea;b:ga+amb and a>anbz -(andb) since anb > 0(by Lemma 1.9).

Therefore a+anb > O and hence a+b>0. Q.E.D.

= aUO+On~a. Then

Definition 1.1: Fpr any a@l\ 1et a,

e mraierr i [N e ¢ s e e A N

’{vat,ls called the boolean ooqoonent of a and the Sét AB of all ag

for every aQ A and 1qclmd115 0O is called the Bnolean component of

—— - o ot et e i e

A.
We justify the naming of,ABas the Boolean couponent by the

following

THEOREM 1.4: (Aq;+,0 ) is 2 Boolean ring
e o A

Proof: Let a,b¢ Al, then a>, 0, b >0 by Corollary 1.6 and
by Lemua 1.11 a+b > 0. Now a+b> -(a+b) = b+a by Lemaa 1.9.
{ Similarly b+a > a+b., Hence a+b = b+a.

Now O = a+a+b+b = a+b+a+b so that a+be€ AB' Therefore (A§;+)

@;is a coumutative groun. - | -

Now ajb+b = ayb-b = a-aib so that -(anb) = a+a-anb =
a+ayb+b> 0 so that -(anb) > anb. Since aﬂbgzo; avb » -(anb).
§Hence ar,v = -(ahb). simjilarly avb = -(aub). Then (AB;+,ﬁ ) is a

flattice. By theorem 1.1 it now follows but (Ags+5 1)) is a
Boolean ring. : : Q.E.D.

We will prove a very important

LEMMA 1,12: If a is of order two and X£0, then afl (-x)

Pomsmpteidmibol i Y
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Proof: x+ay-x > 0 (by Lemme 1.1) and so -(af-x) =

x+al-Xx+2.2 0. Hence —(eﬁx))/ ah-x (hy 5'). !dso an-x>0 so that
an-x> -(an-x) (by 5'). fThus -(ai-x) = afj-x or an-x is of order
two.

Now (a+x)N0 = ail\-x+x (by 3) so that (a+x)N0 -x = aj-x 5,0.
Adding x both sides. (by 3) we have (a2+x)N0 = (a+x)\0 -x+x > Xx.

Similarly adding (a+x)i0 to x-(a+x)1 0 = -(a -x) > 0, we have

J x = x-(a+x)00 +(a+x) N0 > (a+x)N0. So that x-(a+x)NO0 = 0 or
x = (a+x) N0, Hence afj-x = 0. Therefore a -x = al})'-X = -X+a,
so that a+x = x+a. Q.E.D.

COROLLARY 1,7: For ia:nya ani b, ag + b}f, ._ by + ap where

- i i

vhere b = -(0(H) 400 b.
” Proof: Proof of this Corollary follows from Lemua 1,12 and
Corollaery 1.2,

Definition 1,27 For any at A, a. = -(0f-a)+al0 is called

the L-group component of a. The set of all “i for every a € A,

= e

Lo be denoted by At , is celled the L-grows component of L.

e ATt ot

LEMA 1,1%: For any a and b A, 2.2 b iff a-b = 0.

Before we prove this lemwa, we uske the following

Rewark 1,1: If a->0 and x-/ 0 then a-x > -x and a+x 2 b+x for

b :>, Oy if a \; b. -
Proof: 1by(3) we have (a-x) L) -x+x = a0 = a or

(a-X)l"?-X = a-X,., Hence a«-x;—x.

-

it ay b then a+x = a!b+x = (a+x){y (b+x) or atX - b+x. -
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Proof of Lemug 1.1%: If a > by

have a-t 2 0. Conversely, let a-b = 0. Th n a-(0fb) = a~-(0n D)+

then by Lemma 1,1 we

i h-(0N -b) = a-b; -(on-b) » -(0.\-b) by Remark 1.1. Now a = a-(0n D)

0N 2> ~(00-D) 400 be = by Wbl

LEMEA 1.14:a7+b2(a+b)y and (a+b)L by, »ap for all a,be i.

'-‘w'-‘nv_ MN\N\‘* . i

NY%

Proof: (a+b)B+(a+b)L = a+b = ap+a, +bp+by = ap+tbprar+bp

—

by Ooroll‘ary 1.7. Hence Oz bB+aB+(a+b)B= 8'L+bL'<a+b)L so that
by Lemua 1.13 we have ar+br>(a+b)y . Llso, 04 bp+ap+(a+b)y = -
...(b!_'-i—al +(a+b). ) = ‘(QL-:-b’,—(a-*-b)L) = (a+b)L -b -a S0 that by
Lemaa 1.13, we. have ’(a,+b)L~va>/ ag,.

LEMMA 1.15: a > 0 iff C.,L>O and if aL> O *‘x,hen -ap £ 0.

<.

mu~~.._-..h,._._-w_~.m~¢.- — A Vo .

(ol

Proof: If 230, then ap +ap=a> 0 and ap> 0 so that

ay, = aptapter > g. if a; >0 then a = ag+a; >0 , Dby Lemma 1.11.

o~

If a2 0 then a 2 0 and —aL = Oi-a - Ojya = 0N -a\x'\ 0., Q.E.D.

LELAA 1,162 If ,’.C,LL“"},O, or, 2 0, then (d—b)L_ ap+bs ap-bp =

e i e W A M e, e e L BT WA R e 's‘l—.v*‘-«‘»

(a-—b;Lo.le 0L+" = ( h-La)L

——

Proof: Let a;,» 0 and b Then ~by 40 (by Lemma 1.15 and

L,:;»,O.
aL""bL.Z’(a'Fb)IE’O by Lemas 1,14. Hence Ay A =Dy = (aL+bL) Y, (a+b)L
~by = (aL+bL—bﬁU(8’+b)L_bL) = aLUt(a“"b)L"bL ). so that
aLf)(a+b)L—bL' By Lewuia 1l.14, (a+b)L—bL>/ o7, » S0 that

(a+h)L-bL= ag, or (a+b)i = ap+bp,




Mso by Lem:a 1.14, ar = by, > (a-b) end (a-—b)L+ by >ap > 0.,

-

3
s

- Therefoi. (a-b)y= (a~b)i+bL’bL = (((a-b) +b ) Uag) -Dbrs=
((a—-b)L+bL——bL)i_f(aL—bL) (by 3) = (a-Db,)) (a1-by) C{hﬁs (a—b)L %
.aL_bL and hence (a~b)L = 'a,L—bL. Cnce again using I{emaiaa 1.14,
we have —’0L+aL>/(—b+a)L and (—b+a)L~aL2;~bL . |
Therefore by+(-b+aj;-ar:0 and by Lemua 1.13 by +(-bia) . ap ,0
and (-b+a)y = -bp+bp+(-Db+a)y = =0y +(op+(=bta) ) Uag) =

k ubL"-bL"'(—bfa)Lj 0 SL_"‘bL‘LaL (by (3)) = (-b+a) i (mbL+a'IJ ).
Therefore (-b+a)y, ,;;;-bL+a.La Hence (-b+a); = ~b+ap . Q.E.0D.

COROLLARY 1.8 a; = (av0)y+(a 0)g

—— o o R

Proof: We have by Lemaa 1.14, (a f)O)L+(a.£"O)L>, (a;)O+aI‘xO)L =a,
Also by Lemme 1.14, a,L-(a;;O)L = (a.UOv+av(}O)L—(anO)L;> (aL‘O)L 2 0.
Hency by(3)
aL::aL—(e.“Oi +(ae\O)L ;(aiw——(a(“O)L)i) (aUO)L+(a'O)L=(aL—(af\O)Lf(af\O)L)
L ((a.0), +(an0); ). Therefore ar>(av0)+(a )y and so

ap = (a.,O)'L-+(av\O)L .

LEM A ‘l.‘l_"?’;. ’(*§+1O)L: :—J,L-:-"DL and (a+b)B = aptb,

e ST - B e i e s e =

Proof: By Corollary 1.8 we have ap = (aUO)L-(-(aﬂO)L ).
Now ap+by, = (ay0)-(-(ar0)y) + (b0)g- (~(br0);) = (a.0);~(-(210)y)
+(1D‘~'!’O)L+<_(€:"‘"‘O>L) - il—(bin)LJ.u(—(aJ‘:O)L)}; = (a'\}O)L—(—-(aﬂO)L)\-F Lo
(00 ~(200)) ~(~(v0), + ~(a.0),) (by Lemsa 1.16) = (av0)p+ -
- #H-(=(a:0) + D0 - (810)))-((~DA0 - a0)y) (by Lemaa 1.16) =

= (a.0 =(~(arn0)) + b0 —anO)L ~{~b10 - a.,O)L = a0 =(-ai0)+b0-a0.
7 42,0 4 bA0)p = (aU0+a(0+bVO+bN0} = (a+b)y,
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Now (a+b)B+ (a+b)L = a+b = aptap+bptby = aptbgtar +by =
aB+bB+(a+b)L . G.E.D,
Therefore (a+b)B= agt bge

LEM I8 1,18: (A +) is 2 oubgﬂrow) of (4 +)

L o S i M L ]

i"d

f's f a '/’ {L— -'l\:t > = PR = e |-} = - )
oof: If ap, B¢ b then ar-bp = ap+ (=b)y = (a-D)g.
Hence (AL +) is a subgroup (A3+)9 <

"LEMMA 1,19: aL?bL _u;f ag,+*Cy, = DL+CL a.na’cT-kaL 2. CL+bL for

Al

D e T I S e S e SO B g

_Iix;qpﬂ_; Let apzby than a;-bp> 0, -bL+aL‘>.O by Lemma 1.1 and
aL+cL-(bL+CL) = (a+c)L Lb+C)L (by Lemma 1.17) = (a+o-—(b+c))L =

= (e.—b)L = aL—bL>/O. Therefore ag*op = (a+c)L}_(’o+c)L = bpter

by Lemaa 1.1%, +the other inecuality follows with the help of
the following

Remerk 1.2: a = by 11f -b,+a > 0 for any a,bch

- _h,-,....---._.....>ﬁ4--——--< e —

LEMMA 1, (b.L U, *) is-a lattice ordered group.

L o S SR

Proof-_— (b 5+) is a group by Lemma 1.18 and by Lemaa 1,19
it is a partially ordercd group. It is easy to see that

a,0¢ "‘L for every a« 4, Now if a. ‘A‘L then a O = a-ai0 ¢ AL'

Hence if a,b{ Ay then aib = (a-b) J0O+b ¢h, . Similarly anb ¢ A

and S0 (I;IJ; /1) is o lattice. Therecfore (AL; +,UNn ) is a
lattice ordered group. ‘ B.E. D
LEMMA 1.21:  (aub)y = a Ub aund (afb)y = a;Nby

o~ ‘x-,.*_._

Proof: Iet ab = 0 then a>»o0, B >0 and 0 = anb >/ -2y =D,
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==
o)
ol
=
Y
©
1

(C\'—u+a(‘,0)’e (O’\v‘: —-b+b§u\i0) = (OL —-a) f‘\ (OU —b) =

0. 4&lso observe that

H

0J(-afj -Db) agfey, = 0 =’apiby = by by =
bpnag, by Lemua 1.12.
= afib = (agtar) ) (bptbp) = (agpar) N (bguby) =

~

5l U (aLl'\ by) U (E‘.Ls‘\,bL) = QuOvO U (a,Tl')bL he
Therefore 2y, b 0. dlso apn by - 0 so that a;Nby = 0.
Now comsidering in gemeral apuby -(anb)y = (aL-\(IaOb)L) U (b ~(ard)y,
= (a-2 (D) (J(b-a:b), = (a-anib)p+ (b-and)y (by above,since
(a—an b)p(b-anblis always 0))= (a—a._b+b»aﬂb)L = (a\jb-ai\b)L =

\ [ = ‘ —
(ald)) . Thus agl'by = (alb)y,.

so (afb)y = (a-(auvb) + b)y = ay, -(aub)y +by, = 2, -(aguby) + by

= agfiby . o 5 Q.E.D.
LEMIA 1.22: (aub)y = aplby and (alib)y = aghby .

Proof: Let a > 0 and ©>0, then by iumia 1.12,

ngaL =0 = pBﬂbL = aBnbL = bBﬁaL « Therefore (oLD)B aTaoL

) ab). = allb = (a+a) L = (a i a ) (bg)
= (H.Lb)B + (uvu;L = alib = (aB+ L) (bB-}-bL ) = ( Bv\a.L) (bB bL)
= a_uUb_ Jla U1 = a b a b, since (a_ b )N\ (a_ | b.) = 0.
ogPyU(alby) = by + apdy since (aglbp) Alap Uy )

Thus (2 UDb)p= aplby - Similarly we can show that (aNb)p= agiby
Q.E.D.

Proof of the #cin Theorem: By Theorem 1.3 (z-.B;+ N) is a

Boolean ring and by +e.wia 1,15 (A ,+ !N) is a lattice ordered

group. Also the napring A-— Ag X AL defined by a > (aB s A, )

‘

is en isoworphism, since Lemmas 1.17, 1.21 and 1.22 assert that
the overations +,J ,(i are counonent-wise. Therefore L is

A

isonornhic to I‘B X Ly



3.2

Conversely if B is any Boolzan ring and L any lattice
ordered group then B x L is both a group and lattice., We shall

show that 3 and 4 are velid in any Boolean rinag.

Let (a+h) N x = (a+b) Oy.

Then (a+x+b) N (a+y+b) = (a+x+b) ma+(a+x+b) iy +(a+x+b) NDd =
a+X i Vatb na+a O+ Y+ y+anbax N b+b = a+(asb) N x+(a+b)py+xey +
= a+Xny+b.
On the same lines it also follows that (a+x+b) U (a+y+b)=a+xuy+b.

Now let a4b+x+(a+b)fi x = (a+b) Ux = (a+b)Uy = a+b+y+(a+b)Ny.

1}

Then (a+x4b) N (a+y+b) = a+b+(a+b) . x+(a+b) Ny+x Ny = X+a+b+y+

1)

(a+b) Ny+(a+D)Ny+xNy = a+x+y+X Ny +b = a+x() y+b = a-(xy) +b.

Similarly a-(xfy)+b = (a-x+b) U(a-y+b).

Therefore 3 and 4 are satisfied in BxL. Also in B
al0-ai0 = & 1)0+aN0 = a = aj~a. So fhat 5' 1is 2180 #er€.
Hence BxL satisfies 1 througsh 5°'.
Thercefore the »roof of the Mein Theorem is conplete. C.E.D.
The following twe theoiems seen to have an interest of their
own, though they follow from the Main Theorem,

KR

Theorem 1,5: If there is g leastdeaent in &, then 4 is

o e A e @A m e

a Boolean ring.

|
t
i
b
¢
i
i
1
e

i) (43+,N) is a Boolean ring,

ii) a-(xy) = (2-x) N(a-y) iff aix = aly for all a,<,y < L.

1ii) efx ) (a-x): ' (a-y) iff ax = a’y for all a,x,v ¢ L.
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CHAPTER 2

e

B

SEMI-DUALLY RESIJ"ATED LATTICE 0xDERED SEMIGROUP

The concept of a D.R.L. Semigroup (Dually Residuated
lattice ordered semigroup: see{,4,5,6§)goes back to K.L.N.Swemy,
who introduced it and obtained it as a comaon abstraction of
Boolean rings and lattice ordered groups, thereby solving
Birkhoff's problem lio,105 [;J : Is there a common abstraction
which includes Boclean élgebras (Rings) and lattice ordered

groups as special cases. D,R.L. Semigroups include Brouwerian

algebras also.

It is intefesting to observe that both in Boolean rings
and lattice ordered groups the semilattice operation.“f}” is
actually not independent of the rest. i.e. if B (B; + ..) is
a Boolean ring with“[)”and ;" as the corresponding lattice
operations, then d.nk — W - T ot o+ @ u'b . Dimilarily
if 0 = (G334, W,n) is a lattice ordered group then

anb = w~Ca ub . is is not true i
G “-Ca ub) «+ > However this is not true ii

Brouwerien algebras and we call a system (3 — (i34, -
where (B; & ) is a semilattice (i.e. &_U b is the least upner
bound of a and b) and " _" is a binary operation on B such
that a-b is the least element satisfying (cu-1)O B 2 & )

as a semi Brouwerian algebra. An implicative semilattice

(see{2) is actually the dual of a semi Brouwerian algebra.
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The »roblem nov arises ‘s whether it i- possible 1o
obtain 2 comuson abstraction of Semi-Brouwerian algebras ang
D,R,1. semigrouns, \

In this chanier we shall solve the above vproblem in the
.affirmaﬁiveg by prownosing a commaon absitraction which we call g
Semi-D.R,L. semigroup and which includes Semi-Brouwerian algebras,
D.R.L. semigroups and hence Brouwerian algebras, Boolean algebras,
and lattice oraered groups as speclial cases,

It turms out that the class of Semi-D.P.L. semigrouns is
fairly wider than Semi-Brouwerian algebras and D.R.L. seulgrouns,
and to this wider clss w€ shall extend almost all the resultis
(algebraic as well as geometric) of-semi—Brouwerian algebras and
D.R.L. semigroups.,.

In 1, we define, a semi-D.R.L. semigroup and stdy the
consequences of our definition. We obtain necessary and

ol

sufficient conditions for the degenerac: of & Semi-D,R.L. semigrouvp,

)

into a semi-Brouwerian algedbra, a lattice ordered group and their
direct product. In 2, we study thd structure of a semi-D.R.L.
semigroup and establish a one to one correspondence between the
congruvence relatioiis and ideals, while 3 is devoted to the study

of geometry of a commutative semi-D,R.,L. gemigroup.

Definition 2.1: A system A = (A; VU, +, —-) is called a

N —

semi-D,R,.L. semigroupviff
(1.1) (A; y ) is a semi lattice i.e, "U" is a idempotent,
| commitative and associative binary operation on A (with %%
as the least upner bound of a and b) and (A;+) is a semi
group with "0" such that a + Xy y + b = (a + x + b))

v(a +y + b) for all a, b, x and y ¢ A. . o




L3

(1.2) Given a and b in A there exists a least "x" such that
x +b > aand this "x" is denoted by a - b. Where
"> " ig the partial ordering induced by " " i.e. a < b
iff agyb = b.

(1.3) (a - D) Uo+ b apsb

(1.5) If 0 - a =0 and x <0, then (0 - x) +a + X > a.

We shall illustrate the definition by means of some

exasmples,

Example 2.1: If G = (G; +, i , N ) is a lattice ordered group
then (G; y , +, =) is a semi-J.R.L. Semigroup.

Example 2,2: If B = (B; +, ) =) is a Boolean:ring them~ .

(B; 0 , 4+, =) isia:Semi—D.B.L;HSSmigroup where alUb =a + b + a.0
ey £ a + alb, ‘

Example 2.3: If B = (B; ',y ; -) is a Brouwerian algebra then
(B y , -) is a Semi-D.R,L. semigroup.

Eﬁagglgwgééi If D=(D;u, M , + -) is a D.R.L. Semigroup then
(Dgy), +, =) is a Semi-D.R.L. Semiéroup.

Example 2,5: If B = (B; U, -) is a Semi Brouwerian algebra (i.e.
(B: U ) is a Semi lattice and a - b is a the least element
satisfying (‘-{éi;\kab > a) then (B; U, 4, -) is a Semi-D.R.L.

Semi group (where of course + = ).

e - S e

| *EXamples 2.1, 2.2 and 2.3 are only special cases of example 4 btut
they have been clearly stated here for the convenience of the
reader who is not familiar with D,R.L. Semigrouns,.
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The Jollowing is an example of a Semi-D.R.L. Semigroup
which is different from both semi Brouwerian algebras and D.R.L.
Semigrouns.

Example 2.6: Iet B be the powerset of a two element et  a,b’

Iet D

be the D.R.L. Semigroup of all non negative integers

(see "5 1 ). Define f: BXD--.»D by £(0,d4) = d and f(c,d) =0
if ¢ £ 0. Define © on B x D as follows (a,d) 6 (b,e) iff a =D
cand f(a;d) = f(a,e). It easily follows that 6 is an equivalence

relation and define +, (j and - on (B x D) © as follows

\asdluibe] = . a b, d sey, (a,d +(be;={aunb, d+e)

and Lg,d] - tb,el = janb', f(b,d - e)} where Lx,yiéis the

equivalence class of (x,y). That the operations are well defined
is a routine computation and with these operations (B x D)/6
becomes a Semi-D.R.L. Semigroup. If (%3] 42,0 and \p,0) then
x = 0 and Qoyy]@\o,y +1} 2,0 and b,0 . Fence (B x D)/& is not
a lattice. |

Throughout this naner A = (A4; ! ; +, —) stande for z Seni-D.R.T
Semigroup and a,b,X,7.....etc. denote the elements of A.

The following lemnas (éxoepting lemwma 2.11) and theoreas
(upto theorem 2,7)of D.R.L. Semigroups 4 are found to be valid
cin Semi-D.R.L. OSemigroups also. We shall merely state them here
as-the proofs given in 4 are valid here also.

Lemma 2.1: a - a =0 and a - O_:

- Lemma 2.2: (a - b)U 0 +b=2abb
£

Lemuia 2.%: a &b implies a - ¢

< b-candc-Db £c - a
Lemma 2.4: aub-c = (a-0c)Y (b-c) |

We understand that "-" in Example 3 (5] is the following,
If aj;bg a-b = usual difference otherwise a-b = 0,

1.
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Coxoliary 2.1 a 2z b implies a - b= O

Lemua 2.5: a-(b+ec)=(a-c)-D

Lewna 2,65 agb iff a - Db (0

—~——

N

Lemma 2,7 a>b implies (a - b) +D

A N

Corollary 2.2: (a + (¢ - D) = a - (b - o)

Lemma 2.9: a<bsc implies (¢ - b) + (b - a) =(c - a)
Lem.a 2.10: Lz

Lemaa 2.11: (a - D)y (b —'a) > 0

Proof: (a-1b) i (b-a) + a ‘b= (a-1b)u (b-a)+a .

(a -b) v (b-a) +b = (b-a) +at v (a-D +b

>buas=a)b. Hence by (1.2) (a - b)) (b-2)>20  QFE.D.

Theorem 2.1  Any Semi-D.R.L. semigroup can be equatiordly

IS L T n

defined as an algebra with the binary'operations U . ~— + ~ eand

" - " by renlacing (1.2) by the_equations

{1.2.1) (a=b) + b>a, (1.2,2) x -y £ _x iz - y-eand

(1.2.3) (x +y) -3 $* X,

e

The following theorems give the degeneracy of A into a

Semi-Brouwerian algebra and a laftice ordered group.

I

¥

Theorem 2.2: A is a Semi Brouweriagn algebra iff a + b-a . b

for a1l a and b.  Also if (A; v , -) is a semi-Brouwerisn algebrs

dhen a + b = a b,

 mea T R L
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Theorem 2.3: The following are equivalent in A

i) LAs +) is a group

ii) a-b=a-c=5>b - c.

S SRR

Definition 2.2: An eleuwent x is szid to be invertible

iff there exists a, vy ¢ A such that Xx +y =y + x =0

Theorem 2.4 [The sef of all invertible elewents of A& is a

lettice ordered groun.

Definition 2.%: If there is an element 1.% A such that

(L -a) +a=2a + (1l-a) =1 +1 for all a, then A is said to have
wity 1.

Theorem 2.5: In A with 1, i) 1 is unigque ii) A is a lattice
ordered grouwn iff 1 = 0. | |

Theorem 2.6: If A contains a least element x, then x = O..

Dually if A (with 1) contains e greatest element x, then x = 1.

Theorem 2.7: If L conteins an element which is strictly

less tha "0".then it contai is an infinity ~f elements.

The following theorem gives the degeneracy of A into the
direed ;Qraduct of a Bemi-Brouwerian algebra aud & lattice
ordered group.

Theorem 2.8: A is the direct product of a Semi-Brouwerian

alpebre and g lattice ordered groun iff a - (b + b) = (a-b) +(0-Db)

for all a, b € A.
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We shall first prove a lemma which we need in the proof

of the 2"ove theoren,

Lemug 2.12: If 0 - a =0, and x ~ 0 then a + X = X + a.

— . Y —— e - —— ————— e

AR e —— A 3

Proof: (0 - x) +a73 0 - x since a2 0. Lety +a >0~

Then 0 - (0 - x) 20 - (y + a) (by lemma 2.3) = (0 - a) = y = O-y.
ow by corollary %o lewma 2.8, x > 0 - (0 - x) > 0 - y. Hence
y20-(0-y)>0-x, Tus (0 - x) is the least element such
that (0 - x) + a20 - x. Hence by (1.2) 0 - x = (0 - x) - a.

Now (0 - x) s a = (0 - x) - a2t Jy0 +a ( by leiwa 2.2)=(O—§)+a,
so that a + (0 = x) =a© (0 -x) (0 -x) +a. Orx +a-=

X +a + (0 - x) %x;x+(0-—x) +a+x=a+x_._’.By (1.5) we

have (0 - x) + a +x > A Hence x + (0 - x) +a + x.

X +a Orac + X =X + a.

The proof of this theorea is divided into the following
leimas and fron now on, we assuwne a - (b + b) = (a - b) + (0 - b)

for all =, b « A.

Lemua 2.13: Tet Ay ="a A "'ta +a=a . Ten A isa

Semi Brouwerian algebra. '

Proof: If af A, thenO = 2a - 2a = (2a - a) -a =

’. % \ . / .~ ~

. a) -2~0 - a. A A T S S LI -2 T G i £

Hence 2> 0 - (0 - a) =0, Siwmilarly if a - 0, and 0 - a = 0O,

then 0 = 2a - 2a

i

(2a-a) + (0O -a) =2 - a. Hence !2ax a.

Since a 0, 2a: = a, Hence a ¢ Ag-
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Let a; D £ Ay . Thena + b »0and 0 - (a2 +Db) =(0 - b) -a
0 - a=0. Hencea+b@AB. Also a - b20 - b = 0, so wnatb

at/yb=a-Db) +b. Nowa+b=~(a+b)ub=ayb+bs=

11

_j(a -b) +b ; +b=(a-Db) +Db=a:'b Hence a )b: A, sn

sait

that 0 - (aUu D) =0 - ((a - b) + D) (0 -Db) - (a-D) =0 ~(a-1),

11

Hence a - b ¢ A,. “Thuc Ag is closed under the operations ; aiic -
and so AB'is a Semni Brouwerian algebra, Q.E. D,

1

Lemua 2.14: Let Ay =7 2a - a la¢ At Then . is a lattice

— T i T s -~ e : —— . Ty

ordered group,

Proof: By lemma 2.10, 2a - a Q a and so (0 - a) Q 0 —(Po--"
and 0 — (2a - a) QL (a - 2a) (since a - (b - c)\< a + {c - b) for
all a,b,cy) =0 - a (by leuma 2.5). Hence 0 - a =0 - (2a - a)

Now O = 23 - 2a = (2a - a) + (0 - a) = (2a - a) + 0 - (2a - a)

20~ 0-(2a-28)’+0- (2a-2)] > 0sc that

0-30~-(2a~a) +0- (2ag-a) =0. Now 0 = 270 - (2a - »’
- 2,0 - (22 - a)l

ot

25

(@)
{
~~
N
fend
i
&
{

1

Y- (2 -a) +0 -

a) both sides, 1e have

0 - (22 - a), . Adding 0 - (Za

o

0 -(2a-a) =7250-(2a-a);- 0~ (2~ 2

‘:O - 0 - (2a - a) J I, £ T TR N T B L

{

30 - (2a - a) +0 =23 0= (22 a){~ 30~ (2a - a)y .

a—

Hence 0 - (8a - a) ¢ A, \ and 2a - a

(2a - a) + 0 = (2a -a)

+ 20 - (22 - a) ")g'-— 250 - (2a -a)”

1

(2a - a) r2ﬂ 0 -(2a-a)
-10 -~ (2a -a) & i +0 - a - (22 - a) = (2a - a) + 6 -(2a ~a),
+ 0 - bO - (2a -a) =0 -—(3;‘O~(2a - a) / . ELcnce every (?» - -°

is invertible end so A is a lattice ordered group by theorem 4.

Q.ED.,



Lew

———a - e

Proof : a

y + (2a - a) =
<

iQ = (23-— a)}

such that g +g 0 - (2a -

=a- (2a - a).

- a

since a - (2a - a) >

Lemiga 2.16:

a 2,151

all a, b A,

Proof.

+30 - (2a - a) §

©

=0 -1\a 4-5 0 - (2a - a)*lj .

Since every eleuwent - T

Now O

B U G

Tet

e =
B

e e . — " —

+ (22 - a) - a Tet
Then ¥ = y* (2a - a}-LzO - (2a - a)iza +

Thus » = {2a = a)g is the leasgt elexent

a); + 2a - a2 a. Hence a + 0 ~ (2a -a),
i "

2a -~ 2a = (2a 0 - (2a - a).

i

- a) - as (s,;*O -

Mso a + 0 - (2a -a)f Z 0

/,On Hencd ap + ap = ap Or ap éiAB° GelioDa

Let a = 2a - a, then bB a, = aL bB for

L B e St e e —

%;%ﬂbewmimnastMawm

of a negative element and an inverce of a negative element; the

lemma follows by lemuaa 2,12, LB, D,
envia o - — y 3 = .
ferie 2d1: (o v Dlp =g+ pend o v h) -ont By
Proof: If x is invertilble, then (a + x) - x = a3 For if
Yy +X >a+x, theny =y + %X +t> a +x + % =awhere t is the

inverse of x.

Thus a = (a + X)

Now for any a, a =

Hence a is the least element

satisfying a + x}; a+x.,

= X

ag + ap - Let a = x + y where X(}~AB and

yg_AL-a.L_=o~’.2a-a)=0~a=0—(y+><)=(O-x)—;~=

O -y =-y. Hence a;, =75 and 80 ap =a - ap=a-7 =X

Hence the representation of a as the suz. of agp and aq, is unicme.
Now ap = by + ar, + b, =ap + a; + by + Db = a + b = (a + b)E
+ Fa + D)y Hence ap + by = (a + b)B and ap + bL_ (a % b)To O3,
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Lemug 2.18: a > b iff ey » by and ay, 2 b

—..—a-.....__...-.- S BT W e r— e S gt -

L

Proof: If a > b then—bL:-O-'-(2b-b)=O~b>‘0~a=
O—-(Z‘a»a)-—aLor > br. Also ap = i ) i(a - 1b) +

bpr=(a~b;3 +bB>/bB., IfaLE;bL and 25 = bE then

= boocd = ’3-1."0
aaa.B+aL’>/b]3+a,L _bB +bL = Db, CBE,D

bemua 2.19: ap = (ay 0) 3

R s T Ty uan—-u-

roof: If x is invertible, then (2% - X) + X = 2x and so
2X - x = (2x - x) + x tY =X +X+y =xvhere y is the inverse
of x. Hence 2x ~ x = x or x - (2x - x) = xy = 0. Now 0 - &
is invertible for all a and 80 is O0W(0 - a). Hence 0 (0 - a)';;:B:O

and so (a .} 0 - a)B = .0y (0 - a); b= 0. Hence 0 = (a0 ~a)B>/

(a v o)}3 = ag > 0 so that (a o O)psag . By leuma 2.18,

Lemna 2.20: (a ) b)g= ag U bg and (a y D), = aLUbLfor all

T i it - ,—.-“-..._‘.\-—_, T ——— iy ————

ag =.ap + (0 - b)B = j:‘fa + (0 - beB >/ (a - b)B

Now (a b)B =_,_:(a - D) yo + bf".B = 2 (a - b)(‘jo%p‘ + bB‘ = (a—b)B+

v

by = (a - b yvy ¢ ®p\UPg and so (a Jyb)g = ag by by
lemua 2.18,  — -,

Also ap - by = a;, + (0 - b)r=1a + (0 - b)ZL/j, (a - b)y,
Alsa (a - b)L + b

Sy
L.

T ='i(a"b) +b{;L>) ag, . Hénce (a-—bIJ

aL"‘bL. ThusaL—bL=(a-b)L-




How (aUb)y =- (a-1b)JoO +b§L = ; (a - b) VO g + by =

(ag, = by, J 0 0 + by = ap by, since ( a}0)y = a7 50 for all a.
Q.E.D.

-~

Lemuma 2.21: (a - D)y = ag - by onr 2ll a;b

.I_).?QQ.;:; ag - bB = (a - aL) - (b - bL) = (La - !r (a - ‘6)L+bL ;j-
(b - b)) =-(a=-Dy) - (a-b)pf-(b-b) =(a=-Dbp) -
“.(b - bL + (a - b)L:= (a "bL) - *(a = b)L-l- (b - bL):% =
;la=-1bp) - (d-D). -(a-Db)y=2a=-5(b-Dbp) + - (a-Db)s=

(a = 2) - (a=-D) = (a- Dby Q.E.D.

The mapping a~—}(aB, aL) is an isomorvhism from A onto

Ay x A as is shown by lemaas 2,17, 2.20 and 2.21. Thus. 4 is

isomorphic to A x A, , The converse is obvious and so the
proof of theoren 2,8 is complete,
The following theorem of Swamy (Theorem 3.4 6 ) follows as

a corollary to Theorem 2.8.

Corollary 2.32: A D.R.L. Semigroup is the direct product of a
Brouwerian algebra and a lattice group iff a2 - (b + b) = (a - D)+

(O - b)o

The following theorem chagi,cterises the direct nroduct of a
Semi D.R.L. Semigroup G i+4n "0" as least element and a comuuta-

tive lattice ordergjy eroup, among the class of Semi-D.R.L.

Semigroups.



Theorem 2,.9: A is the direct product of a Semi-D.R,L.

e e e B S ML e e e hom ke e S Bt o i o e ot A Ao -

Semigrouw. with O as least eleuwent and a cosirtative lattice

ordered group iff 0 - (x +y) = (0 - x) + (0 - v) for all x,¥y.

Proof: As in theorem 8, we divide the proof of this theorem

Fhaz?

into he following lemwas and assume 0 - (x +y) = (0 - x) + (0 -y

Lemiug 2,22, Let AS ::ahe A "1 0 -a = OJ\ . Then Ads a

ecaoca - v it SEL I USRS RPN A

Semi-D.R.L. Semigroup with 0 as least elemnent
Proof: If a , ‘beAS, then 0 - (a + 1) = (0 - b) - a = 0-a=0.

Hence a #+ b Ag. Also a>0 - (0 - a) =0 and so a - >(0 -b) =0
Hence 0 ~ (a - b) £ 0. Also a4 a +band so0>a - (a +Db) =

(e - D) -aora->biaso that 0 - a4 0 - (a - b). Hence
0 - (a=-"b) =0 or a.—bGAS. Mso ayb = (a - b) +b Ag,

so that Ay is a semi-D,R.L. Semigroup with "0" as least element.

Q.E.D.
Lemug 2.23: Tet Ap=SaCA |0 - (0~ a) =a7. Then Apis

_a commutative lattice ordered group.
Let aiAp. Now a + (0 -a, -, 0~- € - a): +(0-2a)=
L y

O—%(O-—a) +a;=(0 ~-2a)~-(0~-a)=0. Aso (0 - a) +a =

(0-2a)+0-(=-2a) =0-.a+(0-2a);= 0-1(0 -a)r-a=0.
{ g

Hence every elementi of ALis invertible and so AL is a lattice

ordered group.

Wow b + (0 - a)

]

)O"(O”b):;‘;’ﬂ‘a=0—%’a+(0-‘D)",\=-_—

(0 - a) +0 - (0 -p) (0 - a) + b. Hence A, is comn.tative.

Q.E.D,
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For any a, let a, =0 - (0 - a) and ag = (0 - a) + a then

Ler.ia 2.24: (a + b)L = aL_f,PL and (& + b)s ag + bg for all

o et

aand b.

Proof. 0 - a +ap =0 -50-(0 -a), +0 ~ (0 - a)
0-,0-(=-2)+(©=-2),=0-(-a) -,0-(0-a)i =0.
A € = U - IO et e my - - ”\ e 0 -
- 7 1

Now 0 =0 - ((0 - a; ) +ap ) =:0- (0 - a )f + (0 - ap). Adding
a, both sides, a =0 - (0 - ap) + (0 -ag) +ap=0- (0 - ag).

Hence a (- A . And since 0 —iA(O - a) + a = (0 -a) - (0 ~-a) =0,

(0 - a) +a « Ag. Now ap + ag ZT.O - (0 - a)f + (0 -a) +a-=

0- (0-a2a)+ar+a=(0-a2a)-(©0-a) + 3 = a and by lemua 2,77

a; + ag = ag + ap .
Wow if a = X + y vwhere x € Ag and y ¢ Aq, then 0 - a =
0 -(y +x) = -%x) —-y=0-~-y. Hence 0 - (0 - a} =
0 - -y) = yg and (0 - a) +a =0~y +¥ +x = x. Hence the

representation of a as the sua of ap and ag 18 unique.

Also 'aS + bS + 2y, + bL = ag +'aL+ bs + bﬂ = a + D =
(a + blg + (a + b)L. Hence (a f b)L = ap, + by and (a +b)s =
aS + bS. (Q'E.D'

Lemmg, 2.25¢ >/b iff ag>Dbgand aL>/bL

—— e

H

Proof: If a>=b, thrn 0 - b =20 - a and 50 ap

1!

0-( -2a)>0-(Q-D) =b, . Also ag = (ayb)g
(a-D)Yyuo +b;ﬁs=,‘,( - D)UO . gF .;S>bs. Also if ag > D

and a7y, ZrbL then a = ag + ay, Ei bS + aIP?bS + bL = b. Q.u. D,
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)

.I:'«G,Ikn.mé £ ‘QZ (a U O)S = aS § S and (a‘u b)L = aL:'lbL

—

Proof: (a\)b)s = {0 - aub) + ayubd

L0 - aJb) +b £3(0 - a) +aj \;fw(o - b)

By the aiove leuma, (o ) b)g >aq U by and hence (ai) b)é

Also let ar, 0~ = x, . Then Xy, + aS;;(aL + as)ajO = ai 0.

]

, (0 - a b)+a/,

)
+ b!;’ = a(g

il
o
&

X = (XL)L + (as)L;a_(a{J O)L . Hence (a?jO)L = ap 0.

Now (& - D)y, + by, = (a-1b) +b} > a so that (A=D) 1

- Kls - b = 2 - —
Hence (g - b)L = ap, - bL‘

Mse (2 b)p =y (a-1b)yo +bL

a + (0 - D> (a -D) g, -

=%ﬁ(a - b) Oty + Dby =

(a = D)o + b = (ap - br) JO + by = aryby  Q.E.D

l’..ealg@.._a;,.?:.gl (a - b)g-— aS - bS

A e

Proof: ag = by = (a - aL) -~ (b - bL)
(B =bp) = (a-bp) - (6 - b)pi- (b - b

P~ by v (- b)pisa - b - {(a - b)g+ b

cle =) - (- o)) - (- by ;? - ¥
(& = b) - (a-b)y = (a-D)g.

It

1,7

(v

5 o i(a-b)L+bL

—
.—.a-bL—-‘i

bLj

= by, + bl (a-b); -

=)

The mapping a-w>(ag, aL) froa A onto A_x AL is an isomor-

phism as is shown by lemmas 2.24, 2,26 and

.27 and so A is

isomorrihic to AS X QL. The converse is obvious. Thus the

proof of Theorem 2.9 is couplete.

Q.EDD.

Corollary 2.4: L D.R.L. Semigroup is the direct oroduct of

a D.R.L. Semigroup with "0" as least elewent and = 001VLtat1ve

lattice ordered group iff O - (x +y) =0 -x) + (0 - y) for =211

X and y (Theorem 3,6 [61]).
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Definition 2.4 A subset S of A is called an idesl iff
s

i) 2, b S iwply a + b¢S. ii) a & S and b * Oéa * 0 imply b7 S

iii) x« B imnlies (a + x) - S for all a.

0y
8k

Theorem 2.10: Any ideal S of A is a convex sub Semi D,R.L.

Semigroup in the sense that i) It is closed under the overations

- i

rat i " end M =" i) e, b Sand ad x< b implies xS,

e ———— T

fede

roof: Let a, bt S. Since (a ¥0) ¥0 =a ¥ 0, a ¥ 0 S,

Similarly b ¥ 0 ¢S and a *0 + b *0 =a U (0 = a) + DU(0 - b) >

ca+ (0 - D). UO;(a— b)J 0 and so by (ii) (a - b))y O €S,

;

Similarly (b - a) (y 0¢ S and auUb = (a - B)UO + b S by

N,

(i), so that a * b = (a - b) U (b - a)t S, Now (a - b) ¥ O\(’a * b

and hence a - bg 5. Hence S is a Sub Semi-D.R.L. Semigroup.

N

Let a4x £b, Thenz *0ZL b U(0 -a ) = (b *0)U(a *0)¢ S

and so X ¢ S. Thus S is a comvex-Sub-3emi-D,R.L. Semigroup of Ai.

4
=

(;.EOD.

Koo

Iheoxewm 2.11: There is a one 1to one correspondence between

the ideals and congruence relations of 4.

Proof: Let 5 be an ideal in 4. Define a=Db iff a * b¢ S
i.e. iff 2 b, b - a€3. First we shall show that = is a congruence
relation.

That "="is reflexive aund symuwetric is obvious. If a =D,

(@]

and b= ¢, thena -b, b -a, b-c, ¢c -beS and (a - c)VO0 L

(a - 0) +(b-¢c)fU0€ 5andso (2-c)D 0ES by ii,

A

Similarly (¢ - a) U 0 € S and hence a ¥ ¢ = (a - c)UJ(c -~ a)¢ S

°r a=c. Hence "= " is an equivalence relation.

ey
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Kiso & - (x +a) =0 - x and (x + a) *a;{(x+a) - aly
%Qa (x+a)%$xU(O—x) =x ¥ 0, Hence (x +a) * a € S
for ail a, iT x € S, or (x +a) - a € Sif = € S;

If aZ b, t’neni (2 -Db) +(b=-c)}—(b-c)ES and
,fb(a - b) + (b - c)} - (b -¢)= (a-c) - (b~ c) which implies
f(a-0) - (- )}u0 &S by (i1). Sinilarly{(d - o) -

(a - c)}UOQ S and hence (b - ¢c) * (a-c¢c)€& Sora-c=Db - c.

Also,i(c - 2a) = (a - ‘o}} - (c - a) > (¢ = b) - (¢ - a)
and since «; (¢ - a) + (a - "o)} - (c - a)&s vy (iii){; (e - B} —
(c ~a)§ 0€ S, Similarly {(c - a) - (c - D)JU0€ S and
hence (¢ - a) * (¢ - b)¢ Sorc - azc - b.

Thus if a= b, and ¢ =d, then a - c=b - c=D - d.

Aléoy (a +¢) - (b +¢) =, (a +c) - c}-—béa— b.
Hence ; (a + ¢) - (b + C)j o (1, S by (ii) if a - DES,
Similarly%(b +¢) - (a + c)}L)O ¢ Sif b - a €95 and so
(a+c) *(b+c)Z-Sora+c=b+cifa*b &8,

}5 (¢ +2a) - b ~cg
(&4

0.. the saue lines, (¢ + a) - (¢ + D) &

1¢+(a-b)f-ckS by (ii) if a - bES. Hence
(e +a) - (e +D)Ju0oL S if a-be S, Similarly
(c+b)—(c+'a):{,u0(l» S if b - a{~ S,so that (¢ + a) *
(c +D)ES, if a *b e S orc+a§c+bifa“—3b.
Thus if a = b eand ¢ =d, then a + c= b +c=D + d.
Finally, (aUe) *(bud) = (avc-dUd)L (a - D)U
(b -2a) Q(c-4a) V(@ =-2¢) = (a *D)V(c *3d) so that |
alc *bUdeSifa *b,c*d€ sorayc=br)dif a =b.
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1"

Thereiore is a congruence relation.

Let "0" be a congruence relation and L be the set of 211
X ¢ A& such that x = 0(8). It is easy to see that if %, 7 < L

then x +y (b and (a + x) ~ a& L for 211 a. Lety *0L x *0
end x - L then x = 0(@) so that 0 - x =7 0(8) so that 0 - x L
herce x * 0 = x (O -x)& L, NowO= x *0 =(x ¥0)L (y ¥0)=
OU(y *0) =y *0. Hence y ¥ Ovt hlso O Ty * 0 = i.yu(o -y, y

= 0Ly so that yu 0f{ L similarly OQ (0 - y)¢ L. Now
y=04+y= (0-y)lo + vy= ¥y 0 so that y =0 or y L. Hence
L is an ideal.

Now let R be the congruence relation obtained by defining

a =~ b(R) iff a-b, b - a ¢ L., Then a= b(R)&= a * b Li—pa ¥ >

0(8) so that ( a-b) U 0z 0(B). Now ayyb = (a - D) UJO +D

0O + b= b(e)., Similarly ayb=al®) or a=b(8) , on the same liunes

if a=b(e) then (a - ) YO Z0(8) and (b - &) V0O =0(8) or a * b
0(B) or a *b& T so that a= b(k).
Hence the ideals corresmond one to one to its congruence

relations.

Corollary 2.5: There is a one to one correspondence betveen
the congruence relations and ideals of a commutative D,R.L., Semi-

group (Th., 1.2 (6 ).
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In this section we show that a commutative Semi-D,R.L.
Semigroup is an autometrized algebra, A system B = (B; &, +, *)
is called an autometrized algeabra iff (i) (B; +) is a binary
comautative al:;ebra with a zero element "O" (ii) S is an anti-
symuetric reflexive ordering on B(iii) * : B x B Bis a
mapping satisfying (iv) a ¥ b 20 with equality iff a = b
(vva ¥*b=Db*¥a, (vi)a*cta*Db+b*c, (for details see [ 7).
\
In this section we assume that (A;+) is a commitative
Semigroup.

"o
©

Define a . b = adb - a * b. We refer 2s the multinli-

cation in i
Lemag 2.28., ag.b<La and ©

Proof: a + (ar- b)U(b -a) =e(a-D)JoU (b -2a) +a =

Pty

;;_.(a—b)‘\)O +a?\rU§:b(b~a) +a'ir>/aub, Hence a >/ avb -

(a - D)u(b-a) =a * b, similarly > a.b. Q.E.D.

emna, 2,295 aVb - a.b =3a *Db

[rratinCuet PR A

Proofs allb - a.b = (a - ab) {J (b - ab) 2 (a - b)Y (b - a).
Msoa*bi+ab=ab+a *b=(adb-2a*b) +a*biay b

Hence a * b 2a (Jb - ab. Thus a {!Db - ab = a * b, Q.E.D.

Theorem 2.12: A is an autometrized algebra with "*" as a

distance function.

Proof: Define d: L x A-—A Dy d(a,b) = a * b, Then by

lemna 11, 2 * b > 0. Ifa *b =0 thena - b<La *Db =0 so0

that a £ b, Similarly b £ a and so a = b. Llso a *b + b ¥ ¢

T

5 (a =D) +(d=-c)ry Lc=Db) +(b-a)i=2a*c. Hence 4 is

Al autometrized algebra. Q.E.Do
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From the_above theorem it follows that, comuwutative lattiice
ordered groups, Brouwerian algebras commutative D.R.L. Semigirouns
and Semi Brouwerian algebras are all autometrized algebras. We
refer to * as the wetric on 4 and 2 * b as the distance between
a and b,

In a comautative lattice ordered groun, the metric * is
“invariant under the group trenslations. That this property
characterises latiice ordered grouns among\the class of Semi-
D.R.L. Semigroups is established by the following.

Theorem 2.,13%: gﬁwﬂiﬁg;nggiijggﬁice ordered group iff the

distance is invariant under translations i.e. a * b = (a + X) =

(b _+ x) for all X.

e §

L1 -1) +1%=

Proof. 1 *¥0 =1 * (1.1) = (L +1) ¥
(1 +1) *1 =1 %1 =0. Hence 1 = 0. Hence by theorcm 5, L is
a lattice ordered'group.

Definition. 4 is said to beAsymmetric iff a ¥ b = (a + b)*a=b.
~Our definition is slightly different from the one gives in f73
but is more general.

Theorem 2.14: A is symaetric iff . is a Semi-Brouverian

e o ot W

algebra.

Proof: a - a.0 =a *¥*a.0 = (a +0) *a.0 =a *0 =a 0 - a.0.
Hence a = (a - 2.0) + 2.0 = (2!)0 ~-2a.0) +a.0=a JO so that
a0 for all a. Hence a + b,B,a Wb. Llso (a +a) * a.a = ax~

aj)b + ai)bz;
2+ b, Hence a + b = aiyb for all a and b and so 4 is a Seui-

1l

= 0 which implies a +a = a.a = a so that aUD

Brouwerian algebra., . : Q.E.D.
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TIheorem 2,15: 4 is a Boolean ring iff * is associative
The proof of this theorewm recuires the foliowiig HWo
lemues,

Temug 2.30: If a>b Yec and a -bza - c then ¢ = b.

B oSO A . Sp - 9 T s e

Proof: a *¥ (a *¥0) =(a *a) *¥0 =0 so that a = a *¥ 0 or

a? O for all a (¢, A. Hence a-b &a. Mso if a>b then a - (a-b)
=a*(a*b) =(a*a) *b=0*b=">b, Novif a> byc and
a—bi—ja—-ct’nenc:a—(g-c),‘;a—-(a—b) = b, QB Dk

T

Pronf: Let x /a and b, Then a - b<a - x and b - a < b - x.

_ & ! —~
Hence agy b -x=(a~-x) 0 (b-x) (a-Db)\y(b=~-a) =avb-a.b
so that by the above lemua a.b >/ - Q.BE.D.

Proof of Theorem 2.,15: Now by the above two lemmas, it

foliows that A is a lattice and so A is a D.F.L. Semigroup.

Hence by Theorem 5, [43 L is a Boolean ring. Q.E.D.

Iheorew 2.16: If a y(a - a) =1 in & with 1, then the

following are equivalent.

i) a *b = a *c—>b=c ii) L is regular and the group
of isometries of A is siuwply transitive. iii) L is a Boolean
algelbra.,

(in autometrized aliebra is said to be regular iff a *0 = a
for 2ll the elements a. l. mapping ¢ from an autometrized algebra
into itself is called an isometry iff a * b = g (a) *¥ ¢ (b) for
all a, b. The group of isometries is calied simply transitive iff

given x and y there exists an element a such that x = a * y and

‘/Y=a*xsee [_U).
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Proof: i==(iii). I. a>D, then & * ra - (a - b): =
a—--("a— (a—b)§ =a-Db=2a *b., Hence a - (a~ b) = b, IF
arzb v canda-bZa-c tienc=a- (a- c)>/a - (a - b) =
Hence ¢ ™ b, If x.a and b, then ayb - x = (a - x) © (b - x>
(a - 2) ) (b~-a) =a(b-ab, Hence z £a.b., Thus a.b, is
the greatest lower bound bf & and b, or L is a lattice. Hence
l'b i A = By % i ° ”‘ 3 Al
Ii is a Boolean ‘algebra by Theorem 2.2 [ 5] Q.E. 0.

ii i follows frow Theorew 13 7 |

iii i and ii obvious.
Theorem 2.17;: The following are equivalent in .
i) a.b. is the greatest lower bound of a and b.
ii) axDb implies a.c £b.c
1ii, = ey e =W - ) Soooall e o -
1iy) aU(b.c) = (a U D) . (aljc)
W) a_ 2bvcand a - b2 - c imply c 2 Db
v.) a>b implies a - (a - b) = b
vi ) azb iff a.b. = Db

Proof. That i .3(ii), and (iv) is obvious.

iz (v) we have 2.b..2 b since ab is the greatest lower
bound and b is a lover bowid of a, but a.b « L. Hence ab D,
Similarly ac = c. Now ¢ = ac = a c - (a ¥¢) = a - (a - ¢) =
W»(a - b) = a.b = b.

(i1) =(i) Let x- a and p. Then X = x.x < x.b4x. Hence

% e
X.b =x., Nowx =x.b £ a.b. Hence a.b. is the greatest

lower bound.
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(,.- ) *s_;\,.<i\) IfT X ~ &,

= . a, and b, then x7 (a.b) = (xua).(x: D) =

2a.b therefore x a.b

(v) =) If a>bc and a - bZa-cthenc=a-(a-c)a
(a-b) = b.

(v) (w) a ->a-(a=-Db):=a-b. Hence a - (a - b) = b.

(v ) and (vi ) are ecuivzlent Q.E.D.

The importsnce of the e2bovwe theorem is reflected in the following

Theoren 2.18: Let L = {L;y} ,-) be a systen such that

m oo

(L., V) is a given semi lattice and is a boneey oneration

onn L satisfying

"1l. aub-c¢ =(a-c)P(b - c)
a - (bue) = (a -Db) . (a - ¢c) where in genural for x,y L
Xy = xlgy —3x = gl = X
2. a b f;;O -b=( -2a) - (b-a) for ai. c.

3., Given a and b in L there exists ¢ »p - ¢ = (p - b) - a =(p-a)-b
for all t ; then (L‘\Q) is a lattice and a commtative boolean-

L-al;ebra if a - (b: ¢) = (a - b§ (a - 2)

o

Proof: In view of the above theowrem it is sulficient

i

to show that a.b is the qreatest lower bound of a and b.
Let x.2a,b then x - a .b = (x - a) U(x - )£ 0 therefore

X AP

Remark 2.6: If (2 - D) . (b - a) < O, then A is a Boolean-

L-alzebra (see [ 3)) iff any one of the above statements holds in

&,
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CHARACTERIZATION OF A CLASS OF DUALLY RESIDUATED

LATTICE ORDERED SEMI GROUPS BY SHEAVES

INTRODUCTION:

The notion of a Duslly residuated lattice ordered semigrou:
or briefly D.R.L. sewnigroup goes back to K.L.N.Swamy (see
{?93,4,53 ) who introduced it and obtained it as a common
abstraction of Boolean rings and iattice ordered groups, therevy
solving Birkoff's urcblem no.l05 {jl} (Ié there a com:aon
abstraction which inc¢ludes Boclean rings (algebras) and Lattice

crdered gromps as S cases?) in a generzl way. In this

}J

‘Q

ecial

vaper we study the structure of a D.R.L. semigrous and characte-
rise the class of all J.R.L. semigrouprs which can be obtained as

the 'global sections with compact onen supports cof a Hausdorff
Sheaf (™7, [T, x ) of nontrivial totally or lered D.K.L. senmi-
groups over a base svace x which is locally Boolean' by a2 set of
three conditions 1, 2 and 3.

These three conditions hzve a useful interpretation in the
Particular case when the D.R.L. scmigroup is a latiice ordered
group. Condition (1) is always irue in any arbitrary lattiice
ordered group, but not so conditions (2) and (3). In fact

6

Banaschewski has shovn in { +that in a latticé ordered grou)

— :

G condition (2) is satisfied iff G has a realigzation. Banasche-

VSkl has =z1s0 established < _dition (3) in a complete lattice
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\

(1.3) Given a and b in & th=i< 2 a least x such that

x -b>a (this x is decaoted by =-d)
(1.4) (a-DP)Uu 0O +b £ aybforaila, b, x,y A4

(105) a — a ‘)/(y_:’o

e

For further resuiis on D,

&3]

. senigrouns, which we will e using,
without making an explicit wmention of them, we refer to i2 354, 51
Throughout this »aver A stands for a D.R.DL. seuaigroun and

A;DyXs¥ses... €Lc, dencte the elements of A, Ve assume that A

satisfies the Iclloving two ceonditions

l.afNb~¢c={a~-c)N(b - z)

x> 0 implies x N(a + x} - a> 0.

We denote by At 'thv set of a1l ¢ such that x 2 0.

ZEFIAT ..&2. Afilter M in A* is said te bo normal

x € M iavlies (o + X ) -a i ¥ Fex every a.

LEMGE B.1:7f M 3s =n vwltre filter in AY, then M ie noxmsl

T e N e D L T e

rroofs Let z € M and supvese (s + x) - aé} Y for. some a.

3 g S da U L e Y . g ot o e o Ty a
Since ¥ is vltra tuere ¢xists o suen thetiisin)-alie = 0,

-’

- -~ N & .
Now x e 3V (s 222 ~a=x06 N ~ 2t

'~ 2

,_.
—~
»

.
ki
b
e

a +¢c) - a §{ = O which is a contradiction tc condition (2)

[}

IEIEA 5:2 If ¥ is sn <ltre £ilior in A* such that

¥ onece again

=
D
L
~
o
}
5
et
§
o
fas
j==4
=
2
]
oy
f-r
e
o
C
L#7]
:. Al
—~
jo)
|..J
(@]
‘..J
o
o+
L
ra
5

there exisis c€ :f such that x N ¢ = 0 and since ¢ ¢ M,
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{(a =2} - atnila nr=lz+xhe) - o=(2+0)-a=0

which is again a coniradac

W th.e above lemmea,

D Rabie ped grous:

norual, then (2)

D) -~ - 3 o] 1 Ko
32 (: 4 » Sa ‘lCl. n ¥, TR I Y '].eigl-.) e 3- I\ —LOII ‘L‘::"--A-} Do
{0 o <) i .
\ T

~ & ¢ M for overy a, FHence = § (a+x) - af > 0. QE.9

A4 subset L of 5 D.R.L. sewdgroup B is g.id

_:U (1.302)

. WJ_0-2)

BN
r ';__B..
L = * ¢35 where M is an
~iagal T
o e s -
et x € Ky iff x * 0CK g and e X
B .
and. = *F 8 . 3 iah X, ¥ & i\-“ sc That x ¥ O ff M

=
Q.
*

(3
o

F*O) e =Cw(y *2) A d. Hemee (2 ¥0 +y ¥*0)ideNd =0




How (x+y) * 0 = (x+y) U;. O-(x+y) ¥ = (x+y) U‘: (O—y)-x}&i(x*()ﬂr*of)

U{(y*o'j+ x*O):}& X*0 +y *0 +y *¥0 +x *0CKyhaX+y € Ky

in order to complete the proof we now have to check whether 1.3.2
is satisfied in Ky, let x € K, then x * O£ K and so is (a+x *0)-a
1f (a + x) - av¢' Ky then »L( a4 ar * 0 ¢ M and since S ] (a+x)-a &* 0
(a+x * 0)-a, since the latier belongs to I, we get a contradiction.

Therefore (a+x) - a € KM and S0 KM is an - ~ideal. JeCalia

Remark 3,1: It is easy to see¢ ‘that KM is infact a ainimal

prime- ! —ideal.

——

LEMMA 3.5: A [K, NAK. =¢ ¥ £ N, vhere A/ K, and
uN &Ky = vhexre 1 BRs

A/’KN are the ouotient D.X.DL. semizronns wodulo Ky and Ky

respectively.

Proof: Suppose E(K“q) = ?(KI\T} wvhere _:E(K\&) and J(KN) are
the congruence clegses of x snd y medulo KI«-'I and K..,_M..- respectively.

Let s € Eyo Now x-(x+48) = (x-8)-z L (x + (G-35))-x € K,, so .that

/1~

by l.3.2§;}:—(x+s). G0 € Ky, also (x+s)-x € Ky so tiat

X ¥ (x + 5) i (x + s)-x‘«}!)i« (x - ix+s)} € Ky. Hence x+s ¢ ;(KM)

I

so that x + s EF’ {Ky)s therefore (x+s)-y ¢ Xy. Fow 5 (x+8)-x &
\~5L(X+s)—y} + (v-x) € KN' St that $ (x+8)-x % v 0 € KN by 1.3.2.
CAlso x-(x+8) = (x-8)-% \('(:»:-f»("-?'"ii i=X & Ky 8inee O-8¢ Ky

:x - (z+s) TU G o Ky v} hence (xse)} ¥ X Ky oo that
(x4s)-x & Ey. Since Ky is normel, we have s £ Ky.. Therefore

Kh - K’H and so N C M, Therefcre N =M g€ .4




In “his seciion we ccmsiruct a Sheaf - %, T, X > of non-
~trivial simply ordered J.R.L. semigrours over a locally Boolean
base space X . PFor this purpcse ve-assume that 4 satisfies

1
-

the following,

(3) giver =z,x & A+ with (x)° & (&) there is a positive u

sztisfying (x *u) 7 = =0 =:nd (w)* = (a)* vhere in general
For the elcnentery resulits on Sheais, vhich we will be
7 wenitioning “bhem, we refer to | 7}

.- . = S s ; ~ - P -
We demote by X(A) +r2 ezt of 2131 wltra filters in AT and

*locally Boclean space' siructure for X 13.);-

TEOAREN Z 1V = C o £ ) e T - en b e
THLOREM Jel:fs =5 mila) ) a2 © 4 } iz & Clopen base for a
Housdorff tovology 7 on #(4) and 20! “s T _~compact.,

( ~

Clc rly ! J v {a} = XA} amdmr{a, 9 g."{ (b} = mla D b).

Gt .
T ~ V2 o~ PP ~ . - R ; ¥ s 59
Hence Y% fomiz a base for a topslosy €4 on X(A). We will now show

that sach 7 (2) is T ~olosed. et U ¢ X(A) - M (o) then ag M

and s0 tnere exists ¢ £ ¥ such that a1 o o= 0. Hence M t7(c)
' e q it AY
- X(A - (2), Therefoze M (a) is T -clomed. Llso if E,H ¢ X(A)
i 7
and M £ N, then there euwisis o ¢ ¥ sgesh whay ad H and hence
i

there exists ¢ & K such that ance = C. xow n(e) is a n.h.d, of
.

N and is disjoint with™m{a). Thus X{i; is =z hav%ao ff space.
In oxder to obtain the ecco A part of ihe lemma, we shall
irzt show that every basic closed sw bset ol 7 (a) is of the form

£ o (a)

-

¥ it vy G r; ! G jt Ve e AR et o N EE
7(¢) for soue o, How let F be a basic clos  wubset

,.;.
©



i.e. F =M(a) - 7(a » b) for some Db. We have (a) *< (an b)
and sc hy (3) there exists u satisfying (w)* = (a A b)* and (a-u)
NaN P =0, Itis casy to seec that “f"g_\(a—u) i1 (a ﬁb))i=“’{ (a)
and so ‘*’L(a} - n (g O o) :'-“‘_.i_(_(l—-u) - (ah b))g‘ ‘hich establishes
ouwr cleii.

Nov let 3 :q(‘c) t b ¢ I%be a fmaily of basic closed sub-
sets of 7}(9". ith the finite intersectiown property where I is a
subset of A*. Since 9; v (b)) b & I} setisfies finite intersection
property. 50 is I =nd consider the filter I generated by I. Let
M be an ultrafilter such that L & M. Since b e ¥ for every b ¢ I,

€
we have ¥ € (p) fao 7 5 whict 5 N T (b)Y £ ¢
av ¢ M (b) for every b which means {1} T (b) # &.

Therefore v ( ) is coupact for ‘3'4.0:11 Ce " QeCsle

Remaxk 3.2: There is ne difficuliy in r:T.aDll shing tliat cvery

O

—~— Tl T

oupacth onen subset of X(£) is of the form m(a) for soue a,

Ve will now comstruct a Sheaf { %, 1T, X > with X = X(A) as
follows, ™t “¥(4) = 3 4 K-- and define . Y (L&) —>
i

I‘x'li {:' X( [\'_

N e ‘.~»;» e . ¥ 3 S~ . > *: . 73 % » -
KAL) by 1T (s) = H where 8 = X(Ky). For each x ¢ L, let
i3

x: X(4) ——3F (4) ve defincd by z(M) = z(Xy). Then clearly

L x(n(2)) = Y (4) so that xC(aj)l z¢€ 4 a & A7 3
a &« A" xe¢ bk
Torm-a subbase forl a2 topology ox A .

THEOREW 3 2< F(a), T Z(A) 5 iz a Hausdorff Sheaf of non-
triviel simply ordered u.f.L. Semigroups and x ——> X is en
emnaed.vilné of & 11&5}; ‘!"‘« (X, § ) where P {11'9 Lc),) is the seft of all
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hz11 sheovw that each 1 is open-continuous
A Ny
X

) iy e D ora B W
= identity. Siacc * (7 \'1"“)) ! M Y‘L("‘) ‘

g
W
(@]
(o]
rt
r
iy
H
0
ot
<
(]
( 2

z *ydi fo=n (a) N % X(.-;) ~ M (x*y) { vwhich is cloven. Hence x
! N k
.<r

is contiimious. Cle-_:"l" ¢ach X is open end 17 ¢ x = -identity fou

every x. Secondly, we sball »'-:f‘stsc.b‘l.i:z:h i1 as a local homeomorbhlsx

et & = y_t(KN) CFia). Mea s e zO(A)) 1for soac a € M,

AN A
How x |m(a) . "'z (a) ———= =0 (2)7" is 4,,m., coniinuous and is
e bigection. Also W/x(-"lka}} =<z (a)’S so that W is a local

homeomorphisu, Las‘rl,l;y'? pat & Fa)+ EAan —> ~(A)
be defined by & (s,t) =5 © & vhere € - | + or -, We shall
show that & is co NTLMI0LS, Let (ssﬁ} ¢ v (A) + = (&) so that
s = 3. (M) and + = z{M) and M = {T(s) = 7 {¢) and let /; (% (é))
'r\(a) and since Sc\(lﬂ) = u'f'(_‘\z (M)
it follows that thers is a n.h.d, 7+ {(b) of M on which ;c =7 €& 2z

A

1 3

be a a.h.d. 0f s I t, Now i

: A
3 e : —r . S T ! 7 . s ;:
New .-_"1,2,4:' i o= (:._;,( l}(b W \ ) i BN :_b <Y r!)) is o n.h.dp of (S_'_,'{J)
wWith ¢ { E¥ R 4 l' V&) . BN A VIO ea s BRI~ S ¢ SOl O ¢ (S LA PR.- S1ince

it K= 0% it regdily follows that X - X is an embedding,

nentrivinl and sinmvliy ordered follows

AN

Treom tht rximeness of X, Thus .. ¥ 7 X Dis a sheaf of nontrivial

simply crdered D.E.L. serigrouvns and the nroef ¢i the theorem is
< OL’-T;{:]_E, e

Yie =hz11 nov shew *that scoiions with coaract open supports,

Th~ preof of this thesrem ic established i the following




LEMMA 3.6.Given =z, = At with 3 (a) C ’l(z)’ there exists
w €& A* suzh taat
N A
u= z on (&)
I~ .
= o0 outside
. - * ’ 4 -X— el
Proof: Since ““i (a) € ’i(z) we have (z) < (a) . Hence by (3)
there exists w  A° such that (z%) Na =0 and (W)* = (a)*. Now
if MY (2) for e.ny M Z(A), then a & I so that (z*‘a) - Ky from

which we get % = u on M., If M}Z 'q(a) then ¢ N a = 0 for some
-
~
¢ € M and hence u) ¢ = 0, sc that ur K, and so u = 0, at M.
ay. ¥
q.e.d.
LEIL A _3:7: Tet X€ Aand a¢ At with m(a)c M (x *0), then
‘ N s i 7 '
Yy & 4 can be so chosen that y = x on "M (a) a
. R
= 0 outside

Proof: If xt* =0 y x and ¥~ = 0U (o-x) then x + ol (0-%) =
b (x4 00-2))>2x VU0 and 87 X = x + O =% X +0 U (0-%) § -
o uflo~-x)ti 2y 0~-0 (0 -x). Llso x Vo - o\ (0-%) =
xyo -~z U0 -x) + (o -x70) +xN o2zVo +xNo =X,
g0 that z = x* - x7. Since fr-{(a N xty O f=(y+\ and - (a N x)c ‘l (X)
it follows frci: the above lemma thatl ithere exist u,v ¢ L% such

A ' . ~ ~_ .
that v = xt onmy (2 x?) and v = X onw (a N X)

N ' ' N V'
= o outside = o0 on outside, _
Now y = u~-v serves our wursose. For if I (f?\(a} tnen M(} r‘(aé\ xt)
. A ~ A AN
and I:}(;“ “l(ﬁ M X), 80 that w = 0, v = 0 at i ,dld 80 y = o. Now
let U €T(a) then either ¢ ¥ (anx®) or He N (ﬂ;’\ x) (ut not
/ \
_ . /\ R
both) if A€ # (e N =) then x~ (M) = o(ﬂl) so that y =u =X =X
~ ! A A - -

= x at M a2 siuiler argument pives y = x if Mt (a (\ x) q.e.d.




rouf: et V be the supnort- of £f. Then for each M¢V, there

—— s s

C)\’lS'ts Xy € 4 such that f(*.'I) ,(M) so that £ = x4 on some

compact open n.h.d., l (2y) .5 since f = x,. ou xL\.g AELSE Y
#3 L5 L
and support of <1, v (YY) [ we have MO {a 0w, v eV

« It folionws that ¥V is open im X. Now for each M !:- V thexe

exists a compact opin rui.d. Vi of Howith "y <= V. The fauily

-

:L .\?Lq’ i &V T is an cpen cover for V sc that by the par tltlon
. . ;s - ¢ s Qm (’“
progperty, we can chooge X ¥a, - ¥ R 0L, et 1ch
in T )
-t ~ { 7 oo . .. ~ f - e YR .
that \[ - U ‘:i\ e \‘ and i, L ori -\i VOE D )
o Tt :
) 5 . _ =Y
and ‘”L {G.)e m (1) 3y the abeve lemas we have o L
,'A\
such that U cT AL oon mia,)
: A Y
o] wl s, de ~

Hemerk #.8: 18 < % (7, X . is_ any sheaf of nontrivisl simg
ordered . E.d., senigrovos ;w;;.,n”ij;__}}_‘f_;},;as Jthg ses of all sec

ghen conditions (1), (2) mmd (3) are satisfied iz | (X, F ).

A
14
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RUMARKS ON NORMAL AND DISTRIBUTIVE # LATTICES™®

Introduction.

e AL T AT e e w—

The notions of Normal and Distributive x latitices were
introduced by W, H.Cornish and T.P.Speed respectively in Z1923
It turns out that a normal lattice is.a generalisation of Stone
lattice; while the class of distributive « lattice includes that
of distributive pseudocomplemented 1attices and hence there is
-some underlying relationship between these two classes, which‘
has not been fully studied. However, the following result of
W,H.Cornish is significant. "Every Normal Distributive =x 1attice
is sectionally stone'.

In this chapter;we shall make a .mch deeper study into the
internal relationship of normal and disffibufive * lattices and
obtain some interesting results which we present them as remarks.
These rewarks will in turn, exhibit the unlikelyhood of the
generalisation of the results on Stone lattices or distributive
pseudocomplemented lattices to Normsel and Distributive x lattices.

In a distributive % - lattice L, %i x L there exists,
an x'. L such that x ., x' =0 and x ,x' is dense. The
folliowing reuark establishes that the association x-—>»x' éan

never be a mapping without L being pseudocomplemented,

Rewark 4.1: A distributive * lattice L is pseudocomplemented

iff yuasn, 3. aunique | X' Xy x' is dense and

Xi{,x'" =0,

P S, e e

PN e e g+ S e i e TP o P B o T -

* Presented at the meeting of the Tami . .adu Academy of Sciences
held on 24.10.1977 at Matscience, Madras, (India).
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N

)

Proof: Suppose there exists a unique x' such that x > x' = ¢
and x) x' 1is dense, in L, We shall show that x' is the
pseudocouwplement of x. TLet xiy =0. Then xi,(yux') =¢C
and x'*(y  x") is a dense element. Therefore v x' an eleuern”
satisfying the conditions and hence by the unigueness of x', we
have x' = yux' or y < x'. Thus x' is the largest element,
which is disjoint with x and hence is the pseudocomplement.  L'h

« . . Eventhough the association x ——3 x' cannot be a mapping
in a distributive x lattice, the following remark will establish
that out of the many x° ),4-, not even one can be complemented.

Remark 4.2: A distributive * lattice L is »seudoccmplemented
(and hence ;. stone lattice) iff Y x ¢ 1L +there exists a comple-

mented x' such that x ry x' 0O and x i) X' is demnse,

i

Proof: Suppose x' is a complemented element such that
XN x' =90 and x iy x' 1is dense, in g distributive x lattice L,
We shall show that x' is the pseudocomplement of x.

Let x{3yy =0 and 2z be the complement of x' i.e.
X'y 2z = 1 and x' ¢, 2 =0, Now xi{.y 2z = 0 and
x'Nynz = 0 sothat (x Jx') vy nz = 0. Since xy x'
is dense we get yi\z=0. 3o that x' =0 U x' =(yNz)yU x'
=yuox")nlz Yy x") = (y J x")U1 = yux' or 7 & =
Thus x' is the pseudocomplement of x and since it is complemented

i
.

L is a stone lattice, - =~k
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Eventhough Cornish has obtained that every normal distrihutive
¥ lattice is sectionally stone the following remark tells us how
far a distributive % lattice can be treated ac 2 normsl lattice.

Reuwark 4.5. Bvery distributive % lattice L is a generalised
normal lattice in the fullowiiy sense: given x, y ¢ L such that
X ¢y = 0 then 3 Xy ¥y F X0y 1s dense and x ) yfogy(‘\yl: 0

4 L Xqo
NI A NS |

Proof: Let L be a distributive % lattice and let x 'y =0

for x, ye¢ L. Take X =y U x' and ¥y1 = X0 ¥'. Then

X)) yy= yUX' U xyy' is dense and y £ Xy, X 4 y,and

1
x () Xy = X N (yy x') = xny) U x0Ox') =0 and

y Ny =y Ny =GN LGNy =0. QE.D.

Reaark 4.4: A normal lattice M is pseudocomplemented and

hence is a stone lattice iff x 0 y = 0 implivs there exist

*
5,y l=x%00 Edet/\\X:O:yﬂyl and (x)*:(yl)

Proof: Suprose M is a normsl lattice such that x My =0

implies there exist x, , y; & M Hox N X=0 =y N y, and
(x)* = (3&)* for every x,y ¢ Ii. Ue shell show that M is pseudo-

complemented. Suppose x € M is such that (x)* = (0). Then
define the nseudocomplement x* nf x as x* = 0. If(x)* £ (0),
then there exist y¢umw x N y =0. Then by hynothesis there
exist Xy ,y;3 1 =% Uy, end xNxy =0 =y ¥y Le shall

n

show that x; is the pseudocouplement ~F x. Iet xil'z =0.

:'*( ~ .
Then z ¢ (x)* and since (x) = (yl)* we have z [} y= 0. Hence
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Z =107 = (Xl&}yl )0 z = (xl Nz )Y (yl(\ z) = X () 2.

mherefore z\é X - Hence x is the pseudocnimlzsuiesnt of -,

It now follows that y1 is the pseudocouplement of x, since y-
is the complement of Xy . Q.E.D.

Remark 4.5 Every completec normal lattice is nsendocomnlenented |

Proof:

o

Let M be a comnlete normal latiice. If x ¢ M is

o

such that (x)* = (0) then ve define the pseudocomplement x* of
Xy, as x* = 0. If x is such that (x)* £(©) then there exist

a ¥Y{ M3>x "y y =0 and since M is normal, we have X1, y1 €M

i

1

such that x \ =0 =y (]yland 1= XUy, - Consider the set ;

1

I of all x;'s such that x N X7= 0 and 1 = x; \J y; and let x*

1
be the l.,u.b of N, Then obviously x* is the pseudocomplement ofi x.

[

',.0‘_' i i 3 (,\ LU )

s

Remark 4.6: Every complcfie distributive * lattice is a
nseudocomplemented,

Proofs Obviouso

Remark 4.7:; The following hold in a sectionally stone
lattice.

i) (zuy)**

ii) (xhy)**

1l

(X) *% U (y) **
(x)** o (y)**

I

iii) (xUy)* = (X)*0i(y) *
iv) (x0g)* = (x)*V(y)*

Proof: Tet M be a sectionally stone lattice. Since evéry
seciionally stone lattice is normal, we have (iv). (iii) is truc
in any distributive lattice. We shall nrove (ii).

(xny)** = i (x)* k)(y)*lé*.(since M is normal) = (x)**N(y)*"

o




W]
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Finally, let us 'rove (i). It is obvious tiat
(x)** 3 (N)** ¢ (xyy)**. Let celx y)**. Since M is sectionally

stone, we have ¢ = tU ¥, for % £(x)%, t € (x)**. Sinilarly

¢ = syus, for sté(y)*, s%ze(y)**. Therefore B b= 1\ Sps

so that tl = t15\§111>29 = tlv§(sl{J %? = (tlij s) iJ (tl 0 g5)

Also f‘P‘Sgé'(X)*f}(y)* and t‘?\sl.ézc and ¢ & ((x)* 1y (y)*)*.

Hence t)(}sy= 0 so that %= %) Ns,¢ s, Thus ¢ = HU t,¢8, 01,
It is obvious that SRL)¢};§C so that ¢ = tQL)SQ (x)** ) (3) **.

Hence (x Qy)** < (x)** ) (y)** so that (xyy)** = (x)**Y(y)**
' Q.E.D.

An interesting corollary is the following

Corollary 4.1: Let M be a seciionally stone lattice and

q

let C(M) = é‘x £ M\ (x) = (x)***g. C(M) is a Boolean ring and

P ol

kS i i < b niT - 9. . . .
D(M) = ;x ¢ M| (x)* =0 % D(M) is a distributive lattice.

I am extremely grateful to Professor Alladi Ramakrishnan
Drector, Matscience, for his encouragement during the »renara-
: \
tion of this paver.
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