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ON ARITHMETIC FlJNCTIONS AND DIVISORS OF HIGHER

Krishnaswami Alladi
Vivckananda College, I'18dras-600004, INDIA
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It is well known that the fundamental concept

'divisor' leads to remarkable Arithmetic functions. In this

paper we discuss properties of arith.metic functions 'of higQ£E.

order' defined through tne introduction of a new concept of a

'divisor of highe~ order'. We shall construct an infinite

sequE:nce of Euler like functions and the well known Euler function

shall be the first member of this sequence~ Particular care has

been given to the construction of such divisors 60 that the

exact formulae for these functions can be gt...tcnce the

canonical representation of the integer concerned is known.

Asymptotic. estimates of such func t.Lons are given and a st.udy of errOJ:-

functions associated with the Euler like sequence is made.

We would like to mention that the familiar number theoretic

function8 become only the first rnembers of" an infinite sequence

<..,ffunctions c.f similar behaviour.

If "d ' and In' are tvJO positive integers and if dt n. vJe

say d isa first order divisor of n and change the notation tC"

dltn. When "a ' and 'bl are +wo positive integers (a,b) rewritten

as (a,b) 1 shall Q1ennte the largest divisor of I a r dividing b.

When (a.•.b)l = I we say fu.' is prime t.o "b' order 1.

If 'dl and 'nl are t~integers, then d is said to be

a divisor of n c£ second 0rder, denoted by d12n if .
_ ..,;e,_" •
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(This is ~he definition of unitary divisor). The syrnbo L

'c' of a, satisfying(a.lb)2 r8presents the largest diviS('lr

t: 12b. If (a,b)2 = 1 we say 'a' is prime to order 2. (a' is

semiprime to "b I in standard usage). Here corne s the departure.

A divisor d('lf n is a divisor of third order

(notation: di3n) if

The symbol (a,b)3 stands for the largest divisor 'c' of 'a'

that satisfies c/3b. If (a,b) 3 = lwe say' a' is prime to b

order 3. We generalise by saying that dlrn if

n d)r_l 1( d ' =

and

(a, b) = max ~ c ila • c \r ~.. r
J

If (a,b)r ::; 1, then 'a f is prime to 'b' order r.

Na:.'E. The definition of d13n given by us differs from

the two well known extensions of the concept of a unitary divisor

given by Chidambaraswamy [2J and SuryanaraYClna [5J respectively.

The former defines 'd' to be a semi-unitary divisor of

n if (d,~l2 = I, as opposed to our d 13n where (~ I d)2 = 1.

The latter defines d to be a bi-unitary divisor of
n )** **(d, d = 1 where (a,b)

n if

represents the largest common

unitary divisor of lal and "b ! , However in both the papers{ZJk

and (5] , the concept of a unitary· divisor is just extended one

step beyond.

OUr definition of higher order divisor is given in such
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a way that the higher order divisors share many several properties

in common S0 that it is possible to discuss :together the

properties of arithmetic functions of rth order, as we shall see

in the theorems that folluw. l'1o:;:-eoversome of the f arrri Lf.a r

number theoretic results fo11Q',11as corollaries if we set r :::I,

and some of the results of Cohen can be deduced it we set 17 = 2.[3J
We now define rth orde',-analogues b.J some well known

arLthmetic functions. T-Toweve~~ ~ (a b) -~ (b, a) in general"" ..L GO ci, r 1 .r

these functions have interesting dual functions. Denote by

and its dual

for r ~ 1.
~

We define )0 (n;x ) = 'fo (ri, x ) ::: LxJ0 .1

•denotes the largest integer ~ x. Note that[x]

Y?~ ::
/

<T(n)
'Y:K.
)

where

\lve define the divi sor functions:::

. k2:: c{'
I

qj yt
t'(

Before we take up th2 study of these functions we need
<;1OQ
( Fry 5 denote the

'"f=O
to define some mure functionsc Let

sequence given by

Let ~(y) and
11

() "'-
(,(y) denote respectively the least integers

'/ and ~ Y$Further define
~("X..) = 1(:-, ?,:..I yvhe-n 'Y'.=. 1(moot 2)

\ r'Y' )

tr ('1.) ::: /~(~--I':tl Ivfte. 11.. r =- 0 (yYfcd 2.)
. . 1-1 J

'-l

,~,-",~~j
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L€t f (x) denote. r

S (XD
And if ~ IT p,. Ln • L

t: =-1

the largest integer y ,::ith fr (y) = x.

be the canonical decomposition of n, then
~ f-~(IJ{,)...L 1
~ 1"(' (,. ,-

A en)::::. 11 ?,.
('";r • L

L ~-I

let

\-1ewill nON show
.s 0<'LElvjJ111..A10 If t'fL ::: Ii p_ L be the canonical

C=I l
of n as a product of distinct primes, and if

.:5 .•
d t rn if' and only if d = JJ po~L where

L";J l.

decomposition

d lln , then

Proof. For r =1, fy( ex.;) :::..1 and so the lemma holds

trivially. F<br.r = 2, fr (Cil.: ) ;: OIL and ~ ~ = 0 or ~~ c;;: f)(:

for a unitary divisor and the·lemma
/; p. Sl

Z=-, L

is true.
Let r = :3 and d = Clearlysatisfy
and trivially hulds. Now

If d 1·3n then (dnI d)2 --1. . 1Thus there is no div~sor except .

of n/d which is a divisor of d of second order. This is possible
if and only if

IX. _(1.,. «s ,
l \-L l"t,
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Thus

MJreover (3 ~ is an integer andS!)F L ~ .fs (0;t ) proving

lemma for r = 3.

In general let the lemma hold for 1,2, ••• x , r even. Now

d lr+l n if and only if (:2
I d) = 1 'where

d r
~) f;~ I 3 ex ," ~f~

d zz: ,1\"r2 n := lIF'
~

- . (,d: " '=-1l,,=/

( n d) 1 that is divisor of n 1,Now , = says there no d sC".ved r ;::.,,>...

that is a divisor of d order r. This is possible if and only

if c(~-~L <
Fr-l f:>l .:: 0 For otherwi.se(30 or •---}:' ! L.

r

if£>(._~ Fr-l f-Yt then find ~L satisfying» one can a
L ( Fr

so that Thusa contradiction.

we have

{3c: Fy o: • f>~or > Fy+J L and is an integer.

Thus (3~?- fr+l (C(. ) proving the lemma for r+l odd. The
L

proof for the case r+l even' in similar.

The higher order divisors share in common the property.

LEMrvlA 2. (a) If a, and n are integers then for any

nonnegative integer A



( /) n + a , n)r :::: (Ar: - at n )r=

(b) We have (n/a) ::::1 if anc only if
r

\1·Jeomit the details of the proof of (a) ard (b) as they are

direct consequences of the definitions. ":e shall need Lemma2

in the discussion of the error functions •.s
THEOREM 1. If n = II f· 0( [ ae in LemmaI, then

Z:;.! L

ei-: - n} ('- ;,t:. (0(') ).
rr { =-/. /,'''''

Proof. We know that

- -.::::;-'.i_ L,
O<q~x.
(a,n) ~,;y

Now (a/n) > 1, if there exists ar 1 with

d \1 a. vJe know from Lemma 1 that a ] rn :f and only if ~L = 0
"S A.

f (f'i.) < «, <.. C(. where d::: II o. (-[r -'( --tV L -- L • rL
(""'-I

if Pi 11, a and Pi 1 (a, n) then p.. -t./cxt.')fa.. • Thus the
ex fJ~C1i'\, 1 r L 1..

cOmbinatorial~leads to

'f (n, x.) - «: - ~I [ p~y(CI,)
7 o<~~3 L J

• Thi: implies that

+ ...
y

\.-1)

If we pur x = n in the (1) we get Theorem 1. Now'(:) also
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indicates that
ilEJv1I"lA 3. If then

Proof. We can revvrite (1) - as
-J X

- ~I . -E: (C(. )
0< l'::::5 ? "Y (,c

--;::::::-'X
+ -:', -p-. ':/-1-(-0(-(' )-r-' *7." (Qjl )

0< t. <J:::;:.5 '- .J

+- 0(1+ ~ ..i.. "",\ '1
L, + L1-

Pll7l, p~PI J Yl

+O(~(n,))

~ «;
where 'Y (n) = 2S when n = I!?~ • Thus \ve have

l=:. I L _

ery (n}?C) == ~ y</ Cn) -lfyCYl) X) ::::O(ryJ(r;l) =- 0 (?:(YL)) =: ofy1t-)

'\r>('Yl) -= 2$ ~ ,~ (<Xi +1) -;::.oCytE) --<See[4+]
. l=\

as

This establishes the lemma.
S- ex'

THEOREM 2. If n = II p. ( then
L=. I c

. ~I / )y:* (1'2 ~ (77)) ~ I..PI(rt,F..,fr'L))I.-:' I. 1-+ ~-J(O(I..),j-I(I __ ' ') .
--( I (~y .•••.I \ P . r» •

. G. It .

i.() (n x) = ::2/-L
T y::t 0<0. ~?( .>0, et.)')' ==- I

can arise out of two cases. If (n,a)l = 1 then

We defined

Now (ns a )
r = I

(n,a) = (a,n) :;: 1. Or (Dla)1 > 1r .r in which case there is a

Pi I nand
I

all d\ In. Thus from the combinatorial

expansion we have

--l

.J



(2.)

If we put x = lj (n) in (2) and use Lemma 2 which for r = 1
(:. ''/

gives ~ Crt, ~71 +j'<') := A'fJ ('>1) + V:i ('YLI;U) we get theorem 2
,immediately. In fact one h2B from (2) the following result.

* * ~LEMMl>.4. If C,.,. (nIx) = ~:(n) if!v(n, (5...)n)- -tt;.,(nlx)

*then Gt(nlx) = 0 (ne)V e » 0

We omit the details of the proof ••

vle are now in a posi tion to prove

THEOREM 3. For any pair of integers nand 'k we have

a) \,.0 (n) <-T, -......;;

Proof. We shall prove (a) and (b). Theorem proofs of

(c) and (d) are similar. First we observe that' 'F2k from anF2k_1
increasing sequenee and F2k_l

F2k
form a decreasing sequence, both

j
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converging to 15-1 Further we note that if x< y then
2 •

'* * 7f
.f (x ) ~ 1!. (1') 1(x)~ ley) and f(x)~ f,(y) (5 ),

the first two inequalities being trivial, but the last not so.

These follow from the definxtion of 1 *I and --t (page 2).

NOvl (3) implies that for any integer 'mr VJehave

f5 (m)'~ ; •• ~f6 (m) ~ f4 (rn) ~ f2 (rn)

(6)

..5 CX"
We now assume n = . F p . 0

~~ J L

Theorem 1 we get (a}, Now (4) and theorem(2) will give (d)
- , =!

on similar lines of reasoning for ;£ (M)
'V'

'. Then if we use (4) and

'.
To prove (b) it is enough to observe that

,

for any pair of integers m and mf. Thi s follows from
,

lemma 1. Thus the set of inequalities (b) and (c) are true.

This proves the theorem. We now take up the asymptotic estimates

ofG":: k and * Let define t\\Q constants for k > 0
~/k • usr,

00 1.£- (Y'l.)
J ~:(}\ - 'Y-/

(5 )
o/}K K+I 11 =, 11k.1-2

(6)

Our main theorem is
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THEORElVI 4. a)

b)

Proof.. We shall prove the second part of Theorem 40
Part a vvill follow on similar reasoning. v,Je shall first need

an estimate of

(7 )

Let A(n,r,s) denote the ths number 'a 1 such that

(a, n)r 1. It is obvious that

Lf!(n, A (n, r ..s)) := s
y

Vie know from LeITht12 3 that

A(n,r,s) ==
A(n,r,s)

n
lP.. (n )

'Y
+

(f-
O(n )

so that

'A (n, x , s) 'fry (n)
+ Eo (ri) \t E- > o. (8 )DS

"vve deduce from theorem 3 that for r 3- 0 !fry (n) ~ tP, (n) := 'f (n)

(as 'fo (n) = n) , As it is known that n/ 'P (n) == 0 (10g(03'11)

log n) see [4J we infer

n ::::: 0 (Log Log n)
'f?/n) -

so that (8 ) is rewritten as E- v e- >0A(n, r, s) == ns + O(n ) (9 )

SO'}' (n)

Thus

_____.....JII-- __ ~ __ ~ _



Z; ale
0<' o.:f)<.
Cain) ==1;ry

11 )K::::L: (~~"Yl) + O(yt~) t' e >0

0<.5:;; v;, (Y\/X)

+ n)(-I 2-.: O(SK~~€-) t/Q.;::>D
If;}nl--J o..c 5~ Lfry(Yl, 'X..)

by (8) where' K is taken as ?- n,

vJe shall return to (10 ) after making a geometric inter-
pretation of r::r~ Consider the hyperbola xy == m above theI')K
x-axis •. Call a lattice point (x I y )"good if O<x .• y <:.. rn

0 0 0 0-

Let G denote the set of good latt:i:cepoints. Divide the region

Clearl we have
under the curve into three nob-interf;::,,~-i'.!1gregions A, OP and B.

--------.;.--:......--~.-------'--'
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Clearly
( v<+v/Z)3

0
::: o : -1vj.

8
2

pick a point Sl on nOY at a distanceTo estimate
from 0 with

,<"

y~
k

n fivern The sum of

through 8 lis

Thus

To estimate 81 pick an 8 on OX at a distance n from

o \vi th ky . overothrough it" The sum ofDraw RS

;)0
L:; joK

< '-'! ..::: M..I.'1
JO - 'r :

1Jo ,Y\)"" = I
,-IUsing

;Lyingon RS is
~ K+I tf! (YI)
_ ' 'V-I

~ + t) 1'1- K-t- 2.. +.0 ( 1'Ylk+&~. 0 <£ (VI)-+- 0 (I--/'\+E-) U-E-. "> 0 /J~
. K+& - 'Y-/ v \l.

-Y) K+1

takes values n, andm• If we sum (12)n
(10),.where x

from 1 to
[~l

w..K+J ")-T
0~::: - L,

1<:.+1 11=1

[rm] we get 81 which is

(..=-r2)12..)+ 0 rn .'d E-/'0

so that



13
V! (VI)

'i_I
,?tK+ 2

I

0( /Pv\K+'-.+ O(1vl K+Z)'
¥,K .

If we substitute these estimates of SI' S2 and S3 in (11)
we get

4V\ *' It cc: l/(Yl) . ~ ()(1vlK+1 + 0 (WI k+ z:.)
r" '" 'V) I<

11:::: I

pr-cvInq part (b)"- The proof of part (a) is similar with the

following changes. We have to replace \..{)r_~Y1) /Yl. my

and use Lemma 4 instead of Lemma 3

to get a estimate similar to (10). The proof is complete.
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We deduce a few corollaries to our theorem.

COROLU\RY 1. If ~(n) denotes the sum of the divisors

thenof n 'h'\
~1 O-(n) rl

VI =t./

COROLLARY 20 If ~ k (n) denotes the sum of the kth

powers of the divisors of n then
M1L; ~x:(Y\)

111=1

COROLLARY 3. If 0;, 1(n) denotes the sum of the unitary

divisors of n then
1-v,

"2\ D (t')
I Z 1

'h-:::..t )

Proof. Corollary 1 follows· from _theorem 4 if we est.Lrna t.e

O(l,r Clearly
00 -2.;r. I -. I J

0(1/ ::;;!. C¥, I JI- - 2,~- .--2- " Yl /:2..
V)=I

Corollary 2 follov18 if we fii.1d0(1 ' which is,K

Corollary 3 follows from an estimate of 02/k
'j(k+l)/k+l.

which is

Which is the result due to Cohen [31 .
-l

COROLLARY 4. For k ". 1 vie have
/

• '••• ·<.0(5 k <- 0(3 k ~ 0(1 k-- ~ -- ,-...;, •

This follows directly from theorem 3. We raise the following-••....-----_._-_.__ ...
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question. (\vhichw~ do not at the moment anSt..ver)..,vJhat is

Lim
r -)ct)

0(
r,k ? Finally we take up the discussion of

error functions associated with the Euler f unc t.Lone, (A similar

discussion for 1 is made in [1] ). /r =
7f

We first oe Lcu.Late the average value of er(nlx) and <:1' (nIx)

for fixed n x is discrete.where

THEOREM 5.

~ ~(Yl·(fY(YI))

(f>v('Yt-)

-tPy(VI) .
2..Y\.,

.Proof. From Lemma 2 we deduce that

e (n,i) + e (n,n-i) = 0 if (i~n) ~~ 1r r r

= -1 if (i, n) = 1.

so that we get

. ~ev(I1)L)
L::.r

Now Lemma 1 says
e" (11 ) ). YH· U -:>,r;: i ~ (>1J - 'f~'(~yln+ I)='":~i'£,(n) -/I '{'ifn)-'f;Jn)J

,e (i1,,;',),.- /

Let m == /\ n +)A'
"<r-: ~,

Clearly
VV'\

--L 2"' €yCI1,i)
• I

/I'vl l'-=-I

for some non-negative integer /\ where Oc:::::

---------_ .. __ . - .. - .. -- ..-,
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+
2. Vvl

-« (-y)) 0 r ( ), + \~
2vl

so that proceedlng to the limit as m -~ 00 , we get the first

part cf the theorem, The second part follow on similar reasoning.

However the mean over the continuous variable vanishes. To be

more precise
THEOREM 6.

}
'Yl

e (VI, x)d?t ::::D .;'
y

o
proof. The above theorem is an immediate consequence of

the following Lemma e

IE t-'lJvJA If f is Riemann integrable in [o,m]
m

[o/m]
and

f(x)+f(m-x) = 0

then I '7(x) dx
D

Clearly
rm

J
o

f (x rdx ==

infor all but a finite x

= 0 .:f(x) + f(m-x) dx
o

1
2

=0

Note that e Cn x) + e (n,n-x) == 0 for all x :=cxcept
r 1 r

1..4 K-
when (x , n ) 1 similarly r> (nIx) + E (n, ~r(n)-x) 0-- r: ==r '-'r r
for all x except when (nIx)r == l~ Thus Theorem 6 is true.

\Ii1B:-1n01:J study of additive e~ror functionsthe properties
¥

~ 5,
Lf (Vl) ,~.C/ L )

"V (. ==-1

associated v,rith II') andT;y

ft (Yl '<XI ) !Y~} ." • C<s) .:.:
~,4 .

Define for S? 2
S

.~ lPry ( V1 ) ex t )
t. :::::.1

o
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<:::;"1

'- ,L.'I
(::::'1

Webegin by showing

THEOREM 7"

a) lim .L,
I'll -7' o() /.'1/\

'\

and the much similar

n'\ \ *'
) E (11 )(¥ , G\ ,..!t- )~I Y ) Z) :;:,

M >1=,
b) lim

;':--c:)
-',. -.-.-

Proof: We only ~ the ~-£i~ parto The rec::o:ridequation

follows on similar lines~ Weknow
1'11. " 111 <: YV\ 5 ....

2, ey(n/XI)~)H'cx.s) =i 2, lfrY(71) ~tX() .~ ~2;' 'f, Y?v<-n;~;).
)):::/ 11::../' l>:./ ' n-=/ i."'-I 'r

(13)

(/4-)

:J
If

~\
in (13) we set ~!Y, '<..

t :::--/
and proceed to the limit m

and C¥.
L

as j, and then use (14)

_) ~ we get Theorem 7 Part a.

Part b fo11ovls. by. observing that



·J
~:

)

0.=-/

This completes the proof.
Note that the right hano.side of (a) and (b) are of the

form

and

which resembles remarkably the forms of er(n'~1~~21& ••••~) and
¥

er(n'~1 2'····~)·

We conclude by proving a necessary and sufficient condition

for a nurnber n to be a power of a prime using er(n, 0(1' 0(2).

THEOREM 8. A necessary and sufficient condition for

n to be a power of a prime is that

Proof. The necessity part is easy to establish. vJe know

that

where n = pm and [x] represents the largest integer <, x,-"Now as
I the necessity

part follows directlyo



19
:3 f3'

To prove. sufficiency let (15) hold and let ?7.:::, Tr h. L S>:i.• /-.!L )
t~1

He shall get a contradiction. Consider the two numbers p.:£/f;O p:yCf$;)
L I J

for any two distinct i, j , z J.' <.J.. __ • s•. Asjwith

these numbers are relatively prime there exist positive integral

solutions to

i

Consider now an integer m satisfying

(/6)

and let s
, -II' ir C(3i )

/lA/l . h.r r » ,f/(
L-"~i

One can show that (a,n) = 1 if and only ifr
( 9\ 'YIIIA+ Cil, n) r ~ (iU'Y1'- CA.) }') \. ::::- (

fre(=, j) 1
Now consider the intervals (0, y Pj

lM.·-Z, 111) +j $- fLy (~j)_ 2]
and

It is evident from (16) and (17) that·for every lal with
I f (f6')() < a c:::::. y p. r. J _ 2 and (a,n ) = 1 there is an

- J rfr «(3.)
m <, m + a <S m + y Pj J - 2 and (rn+a , n )r = 1.

frC i)

x PiBut neither order r (we useare prime to n

Lemma 1 here). Ye-t as (l,n) :::;1 we have (m-l),n) = 1,
r . r



.;;.;,.:.
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20

f
r

) + 1 {1S)m + y

which is the same as saying

er (n, 0( 1"C(2) = 1 :> a

fr((3j)
Pj= m-2 r CY2if we set ~ (18), a contradiction= in

to our assumption (15) for some 0(1" 0( 2 E:- +Z (actually for

infinitely many as the solutions to (16) are infinite). Thus

s= 1which establishes sufficiency. The proof is complete.
*+*+*+*+*+*+*+*
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ONTHEASYMPTOTICDISTRIBUTIONOF FUNCTIONS
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Krishna~"'ami Alladi
vivekananda College, Madras, India

one of the features of number theoretic functions iathqt

though the rate of qr cwt.h is not predictable, yet the summatory -

values IDf the function behave very well. A typical example is the

function '£('(1.) which represents the number of divisors of n, a

po~itive integer.. The eql::.::.tion ~'v(X)= 2.. has infinitely many

, solutions in /(, (Lrrt.eqe r s ) namely the primes, and ("'(I(.) =?Yt. also

ha5 a solution however large m be. And it is known [lJ
'YVI,

L; ?J( 1'7) = 'WllvJ?-t') -t (Z f-I) 'rn+ o (J1'Y1 ) (1)
"1 zz: I

where l' is the Eulerfs constant. In this paper we shall deal with

the a sympt.ot.Lo behaviour when funct.Lone are summed over a set of ','~

integers with positive natural den~ity. Here our interest will centre

around functions 11 uniformly asymptotic" (see. Definition 1) and
-

functions which can be expressed in +errne of th •.ese uniformly

asymptotic functions.

UNTFORMLYASYMPTOTICFUNCTIONSHere and in what -follows by an integer

we refer to an integer ~ 0
'/

~fuenever we speak of
t-

Now letACZ •a function we mean a reClI valued function with Jet) ~ c
For real x.. denote by

A, ( 7() :::2: 1
(;\r;.A)Ct~X

and by SCA) the limit of (if it exists)
/j !-\(X) 0()\-;!,1'J-1 -- ::::.. 0 A

r>. /( ~ ,C>CJ Ie
<t(A) is called the natural density of A •

Let -f be a f unct.Lon and let 2: :fey,) =- F(X)diverge to infinity
, D41'1/- x..

monotonically. In this paper vie ;hall be interested in limits of the form

f t,;'hA >-: f (-I'd / " L () -:::.,€,~ o cr.ex: L. ;J 71. 4. 7CO 71<;A / o-<.;..~X-
It is qUJ.te natural to expect f.=-~(A). However it will be convenient

to know Hhat exactly the members of A are besides knowf.nq a(A.) '/0.



This leads to the definition of a uniformly asymptotic function.

Q.efini ti on 1: Let -F be a function and A an integer. If we have
~ ..f.,c:..()) .
L_I TC'

O-<:il~ ;1'':) ?\'=f()noc(~.) .L,
2:; f(/yj '1 ~

o<Y)::f 'X. '. J

for all residue classes ,M-(mod1\) then we say -f is uniformly asymptotic
. II

modulo·~ .By V(A) is meant the set of all f~ uniformly asymptotic
- + ~ /

modulo 9\. If -nEIJ(/\) ~ 7l~-Z we say f is a uniformly a.symptotic
.,

Lv'?y1.
'174oQ (3 )

function.

J.Jernma1: If ~) f:z. ..•.• fntf- V(;U and =-4 0'/) q'l.. •••• G1(?\ are real

constants > 0 I then fG. tJ(/\,} where
11,

. -f :: ,2,.«.f; .
;/;=1 '

Proof: It is evident from Definition 1 that 9 ff IJ(?I) implies .~ ~~}

where .fIIt; is a constant ~~'. Nowlet 9.)" f: U(;\).. Wewill show that

(4) .

(4 hndicates that

- .

. It is now a straightforward deduction that -F~v(?l)proving the lemma•..,.
J;t is an easy exercise- to verify that if -fCY/):::I1K. withl(e- 2. then -f is

uni'fonnly asymptotic. NO\'J Lemma1 actually tells us that

Lemma2: Iff-(X) is a polynomial then~) is uniformlyasymptoti-c.

Actually Lemma2 beODmesa pal:.?ticular case of a more general



theorem we shall prove pre sent.Ly,

Theorem:-, .
If" .'

then + is unifOi:'Inl'} asyrnpco't.Lo, Conve~:sely if.-f is uniformly

asymptotic and j.f -tile fO.U6vr:ng limit "2x:i.sts

+-' f. 1~i1en -'" :r::. .--.

(6)

. ,
Proof :=. Consid~r·a..:iE Z I e.nd a res:i.due /v.. of ;1 with D~ tt <. A • Let

~ be a rea~ nurnber and p<::rtit:i.on [o,~] as- [0l.ttJ , ~)f+~ •••••

[A,{ -+r ~ ';N]'. '~lOW as (5) bolas we h2:ver for any I< (i Z +
-f(?1+ J<) zr: fr'l1) +- DC -Ft;(~)

Choose "~I\ .. Nowf=ve:..y:tnV:;ger n :".-)be·,:.ween .1Lt-J\..(. and 'i}{l+t) +}..It so that
/) (I'. -t' I ) -~"/vt ".lit f~) -+l~·A... I I

'Z~f(?1) ~n~~i:~:t.+f<) + u(fC~r")\jJ-~ .
1l:::/)~~-I-1 \' I r- " ',' ()

-== .~ + (0 L +~J.t- oC T(l\lYfA)) 7
clearly

,A '2: of ('Yl) + 0(:L( -f(71)\
0-<1) 6;x::. O~Y1i:i:.?C /

11 ~;(~cJ?;)

~I f;..( \ == /\ >- ;.. r- Cr.) -r ~: 0 (f(?1) -z::
'.•.••.t "If 'Y1 'I "Y\ "'./ ¥'I , rv

'. I :S ';( • •. ;.~•.••.I~ "!., f •..••,

04'l1~ ~ '/"=-f.A(/}'!'10cJ.1\) 11=l..((1n~/I/

as ?;' f(''Y») diverge\3~ :l'his imp:i~s that
04 ':t. e. ~-:f{I'/,,)- Ic --.;.'\..c t: ) .L,

" ..vrt\ 0<+1 $ X L..} I \ 'Y\ 11
, ~'cO ?1 =-p...~,tx:I-t!). O"-r1~?( t:

or fE- UC'A) since II.. wa,s arbit.rary. As ~<;~' is arbitrary, f is
\

uniformly aeympt.o+Lc, \
i . ~

Conversely Ie+..: ff U(I\) 11?t E Z·~ Now let -e< 1. Then ~+("11) <00
'>\=,

3~ that -fl L)(?i'}~ct contradiction. Thus :'l~ 1 . Let' <e-~:1 so that (6)

gi ve s .p(rn..+ I) ::::i R {(/1) ~ off (Yi) ;.

Now using arguments . ., '~ ('., )S1mJ,~aD ~o I we
\

have for A:: r: /\n+/1.{.•.•., for some

..~
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1.

proviLg the theorem.

It is however not necessary for the limit..t' to exist in (6)

if FJ? uf;.)) V jj'f 2+e Vve nO\<7giv(>.; r-n example of a function which is
, ", .

unifor~ly,.asymptotic without limi t. -f(?C+ 1) If ex.) existing. For real '?G

iqt [x] denote the largest integer ,. X • Let. the fractional part of
, r 7 -tl d~moted by,~X. S =s= for 4' - L4:J. :rt ~ >0 be an irrational and define

a function f by

-fC'71) =- {n BJ '1"1 e Z ~, ,
-.-"I, '

(8 )
lheorem' 2 :\, The Eunct.Lori ·f in (8 ) is uniformly asymptotic. We need two

,lemmas to ;>rove our theorem"
,"~'!

Le,mma:3: If tX', a; e H c{1V\ eo 0 is a sequence withC.{.....••.(f[O) J.] and) 1- . fl.) '/I

upiformly distributed then
'j), c(\ + CX?. + ' ••W\.M. ~ .L:

, ~rJ'Y1' - 1-
\ "W\ ......:; 00 'rM,

,(Note: By uniform distribution is meant the following. Let b-s,oi4.. r 4 i
an~'f(D(~)= ~ i andTet;

?\ v t en ;«; E[c(ilf3] ~ /~" .) =1 tjJrn(()(if;) - (f.>~}1
'\..:..)?1'-M' I (3 . , ""Yi

J:f ~"Y1(d"0) ~ 0 as 'Yt ~ 00 V 0 L: 0(4 (3::f i then. the ,sequence &t~rI
i~, uru.f orrnl.y distributed or u.d& in [0, 1:) (see [2~for details).

Co ~ - 00

~~ ~or any (e("I) ) the sequ.e'~ce of fractional parts of <r'Y\I'e t<x",,1 is
.' - 'Y'I :: I "'Or. , '71 =-4

u, d in {9,lJ t.heri<'0('1\) 1.'5 \4 d.'rnod 1)' '

To prove the lemmaY):}etus partition [0" 1] into [0, ~"']) [2IrJ)IN]
r.;l.N~ I1 let -r v," ••• t2"''J~ and ~'r-::"2.N:; == O,,1/2,3, •••• 2N. Clearly as (o(ry'))

,is u, d" in 0,1 we have'

Now
o; I +ot'l,2 ~~ ..•• C(W' /

. .' .L .

~

"
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M_)O(I

Now as .t.he choice of N

or

proving

lemma 3.
e:.o '

If (o(~I\}"" _ i s u, e.
, ,1-1

wher e f3 =C+ 00: '71 ; ')-\

mod L
{ )

and c a constant thenLemma 4:
so i s (~1l,O(J

'Y\=1

Proof :- Pick c( and r-~ such t.hat, 0 ~ Of c:.,(O..¢ :lFind 0(-<;. , and
\ \

(0 _C\f mod 1 and let these be I( and & respectively. If 1<. S then
i

'S-l'sf$-C<' Now r01,}S~[c);G and fC<'Tl~ 6[0>.:;.] with the condition that

lo('YI1E [f/i1 if arid only if f (71 ~ E-[ot/(3] e If &< l' then deno'te

by I, :::(o)'8J and 1:2=-[ ~ 11 " 'We have then i~'1"L'\ <= [0{ f ~? 1f and on.Ly

if lo(~~ E II U T2_ f} Now .Y/)T,:?.-=-cb and II! or 2. \ .- LTd+ \I2.1
(where \ I \ denotes =. length .of an interval 2.). Clearly as ~ i:s

u.d,. mOO1 we have (fj')Xl is u"G.~,mod 1 a Leojpr ovLnq t.he lemma. '
--.') 1,,\-:r.1 '

proof of the9rem 2 ~ It, is known that 17'\~1is uv d, in [0,:1 (see ,[2] )

1 3.
so that em~a~ g1ves

y" ~ =!L- + o(x)/-,-1'(n) :2.
04: ')\ ore:. ";C

(9 )

Now pick any ;~j£7.. -1" and 1e":. fA be a residue of /\ wi t.~ 0 <..r-6 1\

Clearly

4.~+-IU.) 8) = iOf'l'l-J-,M)flt -::; 11'1~i9+F~~
~ow~~ is irr<.ltional 30. that ('Yl?le) is u, do mod 1.

in 'Lemma3 and c. '::/"t~) ,,~~ '<.= j:fC~'i"I1.u)Q)is u, d. in [0,
! Go 'Yi.~ l'\': { .

Lemma 3 we ge;t

fL'~'C ~'YI:::;'7\;1e

~
Applying

(10)

--.--.-~--- .,--
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Now (9) and (10) together give that fE- U( A) as the choice of

was a.r:bitrary~ As /\ itself is arbitrary~ if is a unifonnly

asymptotic function proving theorem 20
IrVenow study the behaviour of functions over the set of

integers relatively prime to an integere Here our interest shall be

on func-tion wh i.ch can be expressed in terms of uniformly asymptotic

functions. Here we come acr0ss an interesting analogue of the

Riemann Zeta funct.Lon, Define for 671.
- C>()

~(S,N) ::: 2; J 5
a. 17:::../ 11,

(21- / N) =ct
As (n, N) = 1 <~

. ( 11)

the following are

immediate deductions~.

o(!] oQ 00

" ?(~_ i . ) 1'2."(111) ~. 2- . ~ c.p('YI,,'j . ~(5-1 ..N)
L, s y. ('0) "') J oC.-, 6 4 '($) N) ;L, "A S = -S . J _ (/2)
'Yl= I -11, t; '11::::../ /Yt ')1- I 'r..., Y:( J\

("YlJN) .:;:..1 ~(,/N)= I ~J fvJ=/ L; . $, rv~
under sui table domains of convergence, where <p denotes the Euler

function 2': .1 fA'the Moebius function (see G]) and 1:-'
CXC\:~' Y/ 1 (g, 11) ~ /). . 1:

the function mentioned in (1.). Let us obtain the value of -2:(S,:) N)
v

in terms Oft:(S). Now21) implies that

Y' (5'\ z: ~ YC j N) -:;::2 ~ Y(S)N) ~~ ) L,·~, -I d ~
.. . q IN ~ . O{IN
wh.i ch qa.ve s :(C6

J
IV) -:::<;'cs) NS/B; (AJyhere

of the 8th powers of the divi sors of N.

l'CS) rv)6$(N)/NS

0S eN) denotes the sum

Wegive two more definitions before going to prove the

theurems. In' (2) ·if .l.><i}(A) we say f is strongly asymptotic

over A. If l < ~(A) then y is weakly asymptotic over A. Further

let R(N) . denote the set of all, integers (relativeiy prime to N so that
f)CRCN)}=- f(N)/N OJ:, RCN) - ~.::JAJ .

where .4 ':::~'Y1+L{}withO.(jA· <NM' befn~ Ithe jth number relatively
'.d l' Fj 5 J' I oJ

prime to N. Note also that if f1t:tJ(N) ther.e
~

>f,C'Y\) ,<:'C'P(N) 5jfl"')4/ _ L-I

O~I'\~'X..,Y7€RCN) 'V O.(~ 6 X,..



"PC N) '-8 CS) N)

N ~(S)

. (10)

where s- €. LS <; = (Tf '> 1
I as

~.' C ')1,,,5" If (.5) + 0 ( ~t» + 0(WI)

~ eM S \fC'5) + D(wtS)

~o~ . / ~ ~ rc) '::l~flJ C('J I)2, Fen), !::;.;::..., ..d...,T 'd . ~, ~I T l::A
'n ::.I 71= I ell'll ct =-1 d =- { ,
(?l/N)=/ <"'?1IN) =1 (eLM):::":.fE.I ,N):::I

-;:. ~ If(N)C r ~A]S+ rI( ~)5 -E:- ) 0.6
,.d=1 N L..~ ..•••• \. d '
, ~/N).~ I 00
. '. ,.~. -L-. ( 5)
':=C .'feN) "hl~ d~1 . d:5 + 0 ''VI
, 1\1 (d,IV)'":.:1

(for reasons similar to 0.4).

=- f( N) C 1Y\0~(~(8) /\J) + 0 (I'l')
/v

Now (15) and (14) together' g:i.ve (13). And as ~(5,N) -< If(s)

we have the i-imit < S ( 12. ( N)) or F is weakly asymptotic
\

(/4- )

-f e O(N)

over R(N).

\
-'-.-"''''-,'.
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d

function and F(1'I) = 2d{:1). If FfU(tV) tiIVE-Z.+
~ c1h'.r ~ 0 r 0 / 'S -G)· ,. AI x: =r: l /t :J K.,v) ~ >0 ~. :5 »: :1.

(;6)

I we have from the Moebius inversion

(17)

from (12) •
.?v1

'2;' {(n)
7\:;::/

···,01,N)::::;'/

strongly asymptotic over R(N). The proof is complete .•

We now deduce two interesting results from theorem:;3 and. 4.

------ -------- ---_._------- -._-- ------, ...._,
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-~d I\. .r: I<. 02· If)e?1 TOY » .Theorem 5:- <3.) Q (71) (- ,\""- otl-r'l \
. .~ 1Yt

K
-I-1t.p (tJ).~(K.+ I) IV)'.2; ~(?1) rV I,/") -~ -= I \,.{",+I AI

(:r;jN) =1

b) If Lpr,/"l) denotes the 'Euler function then
1Y\.

IY'L ZZ l{>(71) - ---
'71= I . ,.., LO"'.2. . )'.~ J'-. )N

('l1) N).'= I

Proof: Set f (?c ) :::.. ~ « in Theorem 3. Then F(-n).:- ~ ( 'YI ) Here
I

C~ I<.+-/ and S:=-k.-r-/ > :i..J Part_(a) follows from (15). Note that

f e U (N) as;f- is unifo:nnly asymptotic (Lemma2).

Set PC'X) =-X in Theorem 4. Then ~f'(71) =- tpC'>1) • Here C =: 12

\.

and -6=: 2 • Part- b follows as /::::Cn):::: t.JCv) for Lemma2 gives that

F is uniformly asymptotic~

Our final theorem deals w,ith the case L,'-rC--'l)rv c x5-t- 0(· ~ j
, ~-;?~?( IV

where C)'.' 70 and ')= _' .. (}lIN) =tN - +: ~
'tI NE Z...::::-I ) .. ··•..C f ) C .Theorem 6:- Let\fGU(N) and 41:T(7) ~ C.:vX --+u -,;L - J/IJ/-r:,.,- :";._

1 /... o~~:.(, ([; IN.-b I '
Let Fe--n) == 2;:f(dJ. Then F is weakly asymptotic over R(N) and

d 1'"1'1 3: Fen) --= /lP
N

c,.V)j.:2.t"~ '''/I ="ftJ ",I) -== I \
?Y\ -.=, 00 2;; F(n)

o<."t1 :5 JrV"'I

Proof: Very much similar ·to the proof of Theorem 3. We omit the detaili

but give the sketch of i~

The only change comes in (15) where

is uniformly asymptotic, (we deduce this from Theorem 1) and so an

extra ~(N) IN appears in the ,limit..

---.~

. {ctMrtrstmm .~
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/
Corollary IfL'($epresents the function given in (1) Then

~ ,-,." {If(Ni) ~.c, c ('Y\)" "_"_. 1'vd~ Iv)..j- O( 'WI)
11=-1 . N

('11) AI) =. I
(a resu1 t known to Cordon and ROgers~3 J)

corollary follows if 'we set ~ =- 0 and use (1) to
m

-. '"N
estimate 2/ L en)

f!I.-:::"l
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FUNCTIONAL ANALOGUES TO DISTRIBUTION AND DENSITY

Krishnaswami Alladi
Vivekananda College, Madras,

+*+*+*+*+*+*+*
INDIA

In this paper we discuss functional analogues to the concepts

of density of integer sequences and uniform distribution in the

sense of Weyl [6J and Niven [5]

Part 1:

Throughout this section whenever we refer to a function Iff

we mean a function on f.?, ~ which has atmost a finite number of
. 00

discontinuities and f (x) > 0, O_,~ x ~ 1. Let A = SO( 1... be
l n}n=l

a sequence in (0, 1) and 'f' a function. Let O() ~ be real

numbers such that 0 ~ 0( < ~ ~ i . We denote by

\ ""-.
Fn (C!( l ~) = L, -f {'O( ~')

O<i E- [C() (3 ).
Lt::1'\

(1.1)

and by

(1.2)

If Dn(~) to) -? 0 as n ~ oo for

sequence fOr'n} 4IIIb is unf.Eorrnl.y 'f

denote it in lli=l~rtby A is u, d (f)

all o ~ (:)(f..~ :::::.i we say that the

-distributed in r~,J) and

in LO,l) • This is the centFal

idea of this section.

If A = to(n} O(J

n=l

functions fand 9 are A - equivalent, (notation: f A.; g) if

denotes a sequence in~,~ we say two

A is u, d. (f) and u, d' in [0,1). Clearly this is an equivalence
~b A

relation. We,shall characterise in Theorem/,the relation frv g.

------~,----~-- .-------- -.,
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;j Note .that if f (x) = 1 and A is u.d (f) in to, 1) then A is

uniformly distribut.ed in the sense of liJeyl t6]. 'i>Jealso apply

the concept u~d. £' to numerical integration.

of A

Let 0( t\. be the first number
ic; 10(1) .

that lies in I. Let D( Y1. be the next
'2.

member of A in I, •••
-"-
If for i = 1,2,3,... then

we,
B = lf~I is called the restriction ?f A tb I, />egin by proving

') 1- oo
LEM!'1A1:1: If A ='L. 0(1-\JJiI='1 is uniformly distributed in

[0,1) and rcr [0,1) then {~~ S:':~ the restriction of A to I is

Uhiformly distributed in I.

Proof: Let (lli()~) c [0,1).

rx.":SO«(<~' ~ ~
'f (0( I:I~ I) == 2: i ,

rl\ D(f.<::..R • ..(./?,I L~ M
-~t. - (-)

let

be real numbers

Denote by

Now
(1.3)

Nowas

(1.4)

Nowas A Ls u. d. in [O,l\(j..
I 4

, indicates that lf~l{);II(3') /YL; (O-(X

- .~ -o() so that from (3) we infer~.as m ~.:Rl • Moreover nml
n

that
which establishesfor all

Lemma1.I.

For a more quantitative estimate of Dm(~I]@I) one can shoW

t -

using' that
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(1.5)

denotes as usual the discrepancy of the first

N terms of A.

By a rational step fUnction f on fOr i\
-+ -

"Je mean a step

function which has f(x) ratior.al O.c::: x ~ 1 I and its points of
) -

discontinuity Yo' Yl' •••• y~ are all rational.

THEOREM 1.2: If 'f' is a rational step function then there

exist sequences which are uniformly f-distributed in lo,~ .
Proof: Let the points of discontinuity of f, YI'·· YJ,-v be

rational. As theYi are rational it is possible to subdivide

[O,lJ into intervals II' T Ik defined by points"'2 •••.• c-

O = x < xl -< x2
L... .... <. x '"'xk = I where 1.-, = lXr-I' x.y) r

0 k .."
such that \Ir \ 1 r 1,2, 0.' • K, and the s . forrn a subset of= k , = Yi

the xjs. We are now sure that f is oont.Lm.ous Ln each Ik and

is also constant. f(x) = qr/s I r = 1/ •••• K.
r

For x (£;. I
r

let

Consider the rationals Sri r r=l, 2, •••. K. If q = [q. q l'q~ n ••• ~ k_

denotes the l.c.m of them :-::-ewrite as

r=l, 2, ••• K. /

00
Consider any sequence A = <" ofh 1; that is u. de in (9,1). Let

't JY\~I

Ar denote the restriction of A to Ir • Clearly by, J.Jemma1.1 each

Ar is u. d, in Ir

Construction:-

r=l, 2, ••• K.,

pick the firEt.:~1 members fror.nAl I the first

P2 members 'from A2,o •• and put them side by side wjth members of Ai
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preceding those of l-'.j if i< j.. Clearly 'ltJehave PI + P2 -i- •••• Pk =P

members. Repeat this performance with the members of A. I without. l

its first Pi members and lay these next the P members formed.
co

Continue the precess to get a sequence ffn5
n=l

b

which lh a

rearrangement of Ao

Claim:- 6= ;('3~'lr106 is ri. d, (f) in La' 1)
l jt'\~ \

Let 0 -< O( -<: f:> ~ i

n= /\ 'P +/(', 0 '.S /Z <: ?
as [CX1X(lJJ'X£,XQ+IJ

and n an arbitrary integer with

• Let lex ,(3) be split using the

0;)" ['X 10/1-1 ? (3) . • Clearly we have splitx,s
J

up [()(If-» as

[c<,~)

s9 that

~ 1...0<, f-»~ 1. ~(~~)
. ~ ~E [()(I f->}) r-~}1

1<. r< rn we have

For r = 1 we note that the re[t::-iction of A to II is 11. d. so

that x.e -ex ~ PR.4- Of?) + 0 (/))

I .Tel

and similarly

,
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where x a, 1/ I II J • Clearly we have

F (0,1) = K I\q + O(p) + 0(/1).n
(1.8)

Now (7) and (8) together imply thus as (2) holds·
is u.d. (f) inwi th O(l replaced so that

We now apply the concept of u.d.f to Numerical Integration.
*For the step function f discussed above let f denote

f(x) :;:: Pr when f (x) = qr (1.9)
p I Ir 1 Sr .

We call f* as the normaliser of f.
\

Let R [O,lJ denote all Riemann Integrable functions in [0, lJ
We are now in a position to prove our main theorem which is

THEOREM 1.3. If f is a rational step fUnction and
A = [<::(11- ~:I C [O?i) is uv d, (f), and c:P ~ .L{[O,1]

1'\ If"* d.n~m 00 _I d; </>(O(e) = ~(~)f (~);(
)1 i;::'l U

Proof: As in Theorem 1.2. we divide rO,l) =r~l Ir

then

,

and f (x ) = qr/Sr I
x E I •r The sequence f-n is renamed as ~rv

here. We can straightaway write



(1.10)

Clearly we have
f'l1 (.11')

'">1
P'Y -+- o(j)
P

so we r ev- -;ote (10) as

I

VI

1'I'-rI cr,) . 1.. ':2,' '" (C< .: )
Y::::r 11\ ~'17CI.'"() fY~E-1.r

~~Y\

(1.11)

As the restriction?f A in Ij is uniformly distributed we

deduce from Weyl1s criterion [6] that ~

~ I 2/' ¢(exe) -= '~ f 4~tX)d';(
l£.(Ty)" o(:E-::f.y II'YI~

" -7 00?1 0 . 'Y-I
L~ 11

On applying (12) to (11) we obtain ~

11m -L ~ ¢f(t~) _ ~ py S4~>()J'X,
1V\.....y 00 Vl {,.!;:. I 'Y-:::::~p IT-(I ~'Y-t

(1.12)

proving the theorem as claimed. . i: f I
Li.rn ~ ~I 1'(~.t) :::. ° f>(~) of. X

Corollary:.... -·.LI -,
1) -"'> 00 1-1 L:::', f- (0( c:) 0

. !
N0W iOf <f) 3 1f R 0,1 (with 19¥(-:x.):/'X :::- I) then one has

THEORE1'11.4: There exists a sequence u, d. (f) in [0,1) , where

f is a rational step function such that

1
_, ~/' 4>(CX~) - j'4>(';() :f*"cx.)d'A{

~ l~1 0
This is a straightf()rward deduction of

<E

LEMMA1.5: If 9 Eo R (0,1], then there is a rational

step function f such that

-- -~
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We omit the details of the proof.
Our final theorem of this section characterises fAg.

S • 10{) r JTHEOREM 1.6: If lei" nd=l = 1\ is u,d. (f) in --.0,1 r then

a necessary and sufficient condition _that f ~ g is that there

_exists a positive constant K such that f(x) = Kg(x) holds for

all but a finite number of x
Proof: The sufficienc)T is easy to establish. As f ~ R L0, IJ

and f > 0 we have
F «('),1) = 2If(0(~)n I 0cX~ ) (, ~ VI

as a monotonic increasing sequence diverging to infinity. Thus

-1'\,

7,' k f (<X~) -+ €(CX~)
I

(:='I ()( 0 0-1.
'1Iv. 2 (, (13)

~2::f(C«() + £ (OCe) .

'~I \K ,~:f,,~~~)~O(~

(K ~I +V:x~) ) -+ 0 C.i)

if we proceed to the limit as n --=:;;:.- I we-,
As 21 f diverges

observe that (13) gives Af \'..J g.

Now let there be nO constant K such that f(x) = K g(x) for

all but a finite number of x. Thus there exists a constant

Csuch that f(x) "> cg(X;- or f(x).:::'eg(x) has infinitely many

solutions. For otherwise f(x) = cg(x) for all but a finite

number of x which gives a contradiction. Now If both inequali-

ties have infinitely many solutions then there/are constants

e·, ell with er< e" such that f(x') = c'y(x") and f(x") = C"g(X")

at points x ", x" which are points of continuity of f. Otherwise

----~---'"-----------~.--.--..- ZC;,. ,
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the infinity of x which have f (x) > Cg (x) must have two

points of continuity where : ~'~~ is distinct. Denote by K

the maximum of f ex)
g(x) , where x is continuous. say Xo and

there is a point of continuity of f and 9 where (f (x)1 9(~l~K~~K.

KI< f(x) < K.
g(x)Thus consider an interval I \vith x <=- I wher eo

For thi s 'I we have

"2.1(K'+e)f(D(~) + O(i)
O(t~::t~t~\I\ ->

so that
2 9(0(,)

I 1. i :C>(t~ ) l-_J'\

2:: :3 (C<&)
[G. 11'\

a contradiction to ltXnf 1- = A~u.d. (g). Thus f(x)' = K g(x)n-

lim inS f
'f\~ 0()

\\" I

for all but a finite number of x LO,l} proving the theorem.

Part 2:

Now we take up the discussion 'of fUnctional analogues to the

concepts of density and distribution modulo an integer, in the

sense of 'Niven [5J. Whenever we refer to a function IfI in this

section we mean f (n ) > 0 n E Z+:::: f I, 2,3, •••J and

L' f (,,,)
o<VfG A..

Let

x monotdnically.diverges to infinity with
+

A c; Z • Denote by Af (x ) and Zf(x) the following

... ~
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_IL; -fCYl}
0"::: 1'1 ~ 'X..

'Y1 € .A

-I=- 2, -f (Y1),

O<Y1~x.

'YlE-z+

= 'II, Z-f (?I:)

we denote by bfCA) the limit of the following, (if it exists)

lim
x -7 00

b.f= (A)
.L. (2.•1)

and call S.c (A) as the f- density of A. 1fJhen f (x) ;:: K then
J..

?)f (A) = S (A) the natural density of A.

The members of A shall be represented by a I n=).,2,3,••••n

where if i < j. We only discuss sets which have

infinitely many members for trivially ~f(A) =0 when A is

fini te as Zf (x ) 4 00 as x -') 00

Now we go to the generalisation of Niven's concept of uniform

distribution modulo an integer.. Denote by

q, (z., /(,)/\) Z .f<?1)
0-< r1~ 'Z., Y1 G-A

111 ~fA~od A)

lim ~, (Xl Iv.. ,I'.) _ .L
;t ~oo ~ (7,( ) }\

for all 0 ~ j0 < ?I;> /< E Z 7- VIe say A

modulo /\ and denote it by A is lie d.

If

is uni~orrnly f- distributed

f (mod /\). Note that /l 1= 1

for ~ ;::1 is trivial and moreover uniform f-distribution modulo 1

(in [0,1) ) has been int;oduced in f 1.

The most fundamental functions for unlforrn distribution

happen to be functions uniformly asymptotic modulo l\ introduced

for the first time in [lJ by the author. We describe them briefly.

If we have

-------- -_. - -----

II
j',
I
tl-

f~,
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lim

X~OO

11-;f(y?}
f

D<n~x
.'Yl ¥ YV\.DcAi\

~ -f (Y)
I

D< 'Xl. ~ .'X.-

(2.3)
~ (--x )j<- -.(1)

~ (-X)

+
for all c) ~~ < 1\ ) j-t G Z' then f is uniformly asymptotic

modulo?' (or u. a mod in short.') By U CA) is meant the set

of all f, u, a mod /\ It was for example shown in [lJ that if

. f (!#,··l)
l~m fen)

n ~oO
= 1

then .f E UC 1\') tJ/lc. z 1-. However (2.4) is not a necessary condition

as is demonstrated by the following example.

If f} is irrational and f (n) = 11Q -In f:}1- (11 ()), then

f E- u eX) for all A E-Z +-

We begin by proving

THEOREM2.1: If fEU (/\) and ~f (A).< 1 1, then.

if A is u, d. £ (mod '(.) so i s~' = Z+ - A.

THEOREM2.2: If f E V(I\)and bf(A) = 1 then A is

U. d. f (mod(\).

Proof: - Denote by af (x,/ ) /\) and Af (x) the following:

with the above notation we deduce that

(2.5)

Now (2.5) reduces to
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== Z-f-(-X ')t')/-.)
Z;; c'.t.)

%.(X=,t-/\) "A:fC"x)

A-f ex) 2.f(x)
(2.6)

_ a£(~6A)

ttA;JA:) (2. 7)

. Now if we proceed to the limit x ~ 00 then Af(X)/Zf(X) «>7~(A)

Further as

If we assume .A to be u, d. f (mod~ ) I the right side of (2.7).

vanishes because of (2.2) and (2.3). But as ~(A)"(.i)&:(A):j=O

as ~(A) =, - ~ (,4). Thus af(x,,P, A)/%- (7.) ~ Y/i . OLS ~ ~ 00

which means Theorem 2.1 is established.

If ~ (A) =-1 then %(A) ··0 so that the left side of (2.7)

vanishes. Thus as f E lJ (I\}' we see (2.3") holds and so (2.2)

holds which means Theorem 2.2 is true.

Examples :- 1) If A = F denotes the Fibonacci Sequence given by
t,

F ::::F . +Fn n-l n-2 n ~ 2 F = 0 Fl = Io ..

and if
f(Fn) = 2 when n = 0 (mod 3)

f(Fn) :::: 1 when n ~ 0 (mod 3)

then A = F is u, d. f modu.lo 2.

\

....~
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2) If A == j denotes the set of square free integers

and if
f (S)

r 1 (mod 2)
== 1 S E-~ S =

f (S) = 2 S E ~ S == 2 (mod 2)

then § is u. d. .JC: modulo 2..L

THEOREM2d If i\CZ+ arid If' a function such that

xN y ~ f (x ) ("J f (y) X, <r z+ then 6f(A) exists and is
.t

equal to ~(A). if 8(A)-=/=0 eX"li6ks
)

Proof: It is obvious that

lim
n -=;. 00

f(n+l)
fen)

(2.8)= 1

We shall make 1ft a continuous function by the following process.

For n <:. x <: n + 1,
+n E Z define f(x) as satisfying

f (x) f (n)
x - n

= f(n+l) - fen)
1

(2.9)

Clearly from the definition of f in (2.8) we have either·

jn+l
f (n) ~ f (x ) dx

'1'\..

f(n+l)

or

S
n+l

fen) ~ f(x) dx ~ f(n+l)
'V\..

Now (2.8) implies that we can write
n

f (n) = J f (x ) dx
n-l

(f(n».+ o

which gives X..

2If(n) =If(X)
~

dx + L, O(f (n)
I 0< VI~ X. .

O<Yl~Jl 0

=.J1(x) / _I )
dx + 0 (of~~~(n) = Zf(x) (2.10)

0

as Zf(x) ~oo as x --? 0() • If 6'(A) = S t eci and an the



nth member of A then

an = nS + o Ir.) (2•.11)

where .8 = 1/0 . Clearly from (2.11) we have-

1

(2.12 )

Now one can show that
+ O(f (no) ) (2.13)- = ......;1=-. _

5'
f(n 6 )

so that arguments similar to those of (2.10) gives on putting
together (2.11) and (2.12)

2, f (n)
ex 716 x:

"., E A-
SA (x)&'

S (A) - f (X) dx
o

+ 0 ( ~ f-[Yl~) ) (2.14-0.::: ?'I~ ~ ?t

= =

Now as xNy ~ f (x ) <'"'J f (y) and as Zf (x) ~ 00 as x ~ 00 one

can show that
lim _. f (t)
f:. ~ 00 Zf (t)

lim f(t)
b ~ pOff (t)dt

~()

which is the same as saying t Nt I gives

= 0= (2.15 )

and J ~(x ) dx "-' ff(xldx
o

For a proof of (2.15) see [1]. Thus (2.14) by virtue of (2.15)

reduces to S xf{X)dx o(o~~~~Af(X) = SeA) + (2.16 )
o

clearly from (.2.10) and (2. 16) we infer



lim
'X~oO

= ~(A)

which esta.blishes theoreny 2. 3.

One can also sh 'on similar

THEOREIvI 2 Let A c: Z+

f he ax>nverse

. PART 3 :-

We now go back to sequences A = ~O(n 1OQ e [0, V that are

n=l
u, d. (f) (where by f we mean a function with f (x) >- 0, and at most

·0

of theorem 2.3.
with x

X N Y ~ (x ) C'J f (y) I

then so oes S'(A) and SeA)
If and is non-zero,

ctually theorems 2. 2.4 imp1

u.d.
"12 .4

THEOREM 2.5:- If XN Y ~ f Ix ) IV fey) and A c.z" is

mod 1\ I wi th [; (A) 1= 0 then ;i is u, d.-f mod/\. (},,~.{)At;;
~) 1M dQ7I4.MU;l~.., IM~ 4---..J ~ l.(.f'dQ~f8<:i·ItJ

a finite nurriber of discontinuities, in the seriee vof fl .. We

discuss analogues to (2.1) and (2.2) in the present sectiot:1.

If ~ be any modulus and/A- e z" with 0 ~ < ~) denote

by Ar = [aJ\n+rJ :1' If each A/", /" = 0, " ... ~-I is u. do

(f) in [0,1] we say that A =~D( 1Jon is uniformly distributed in

[O,1J strongly mod '[t (not.a t.LonjA is u, d. (f) in [a, i1 s. (mod~ )~

For any .sequence B = ~Db ~ A {

) I 1- 1 C'B = 2 lX''fl E- A ~ -Y) Ez--4 r denote by () f-(B)

n E- A' c:. Z+ }, and
(l _

and o f (B) the following

limits.if they exist("' 'Pn (0,1)
0f(B) = lim F (0,1)

n~OO n
.
I I, lPn (0,1)

arn r= (0,1)
')1-40() n

(3.1)

-J
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where

Fn(O,l) f (0(. )
1.0 i \.f? (0,1)

'11

Cle-_rly as B = A -B, S'f (B) + Sf (i3) = 1. Let A be ucd, (f)

in [O/lJ

THEOREM3.1: If eff (B) < 1 and B is u, d. f ~~/l J then

S8. is B •

THEOREM3. 2 i B is u, d. (f) i!nl

. Proof: With the usual notation we have

'f'Yl (CX'I (3'-.+ ~V1(0( i~) = ~vi (ex, p)
: so t.ha t we deduce

~'7"I(lX,~ 0 tf7'1(O,:1) + "Cp-yj(O(lfJ) e ~V1(O):1..) ~F~{D(I~)

'fl1<O, i) FYI (O,;i) ~Vl (0):1..) ~ (0,1..) - FV\ (0
7

-1.)

Now as (3.1) indicates' that

(3.2)

~{O/.1)

~ (0)1.)

-If l'1(0 1 ~) _ 1-

~y\ (O,~)

we rewri te (3. 2) as

~ (0,;1)\ 'CpV)(<t;~_ '-Pm (QI,(->? Jl _ ~ {(J.,(» LP?1 {(J.l»

~ (0 :1) ~. (D).i ) lfy](D11..) FV}<p)1.) lP-nW).:1)
VI t= _ n

Clearly as n ~ 00 Fn( cc t (3 )/F n (0,1) 4~ .sx, M:>reover

~(O/l)/Fn(O/l) ~ ~f(B) •. If 8f(B) < 1 then and B is u. d,

f, [OllJ then asS f (B) I Owe infer theorem 3.•1. If ~ (B) = 1

(3.3)

then S~(B') = o so that theorem 3.2 is true.

We return to the above·theorems after proving

THEOREM3.•3: If .A = ~ 0('7\ r~ is u, d. (f) in [0,1] S (modt1 )
M=I '

.J
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''),1, ~+ .. 'Aand /l f- L.. d i,v i.de s /1 r then A is u.,d. (f) in [Or1J
,

s. mod [\ •

Proof: Theorem 3. 3-t S 2, d.Lr ect; consequence of a concept

we call blending of sequences. If Sl ..•· S2.1ono.~ are K

sequences whose
t"bn . Iterms are repre aerrccd by Sr,D

r-
~ is called .. Clearlyc.- ••• ":>k

iSu. d. (f) in [OJ 1]. r s ' is

also u...d. (f) in
J' -,LO.. lJ In ,.the above theorem have

Thus AI, is ~.l.•d.(f)
/A
I

in

proving the theorem.

·vie have as a corollary

If 1., ~~j 0< } ex)
1. n -1n-__

COROI.Lt:"RY :-

( ~
(mod/\ ) then ~~n~

'- -
. ,0,. is uod. (f)

Nowthe above corollary together with theorem 3.1 gives
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THEOREM3.4;- If B denotes the union of some of the A~ I

and B = A - B, then both B, and B are u; do (f) in [0,1] •

Ne amit the details of the proof.

Our next question is obvLoua, ta:e there sequences (given

an f) that are u,d. f S (modA) for some /1. Consider the step

func·tion f, in [0/11 and the number' P we def'Lned, Define a

cyclic operation
-7.

C(x) = c(x1,x2, ••ooxp) = (Xp,x1•• oxp_1)

~ , ~
C (x1,x2/.". xp) = C (C••••• (f.) - '~mes.and

Rearrange the i so constructed cyclically mod as followeo

..4-
Define for ~ E-- Z '

C'S - i) 1'.•.1 ) ••. '(;\ p) ~. C
A (~~!JP", ,'" f3M) )

One can show on rather straightforward but laborious computation

r-
nS(med p) then is u,d. (f)

in f9,l] a, mod p. (Note. Whenever f (x) =1 we omit mentioning f).

Here one has only to ShOW'that if A =~o(n\ ',is u,d. in 19,11-
S. mod P, and Ie: 0,1 then the restriction of A to I is also

u. d. in I) S. (modP). Thus we h~ve

THEOREM3" 5 is u, do in (9/1J s : mod P andIf ."1\.

f a r a't.LoneL step function (wJ,th P as defined in Theorem 1.1) then

,A can be rearrange~ so as to 'be U•.d. f in [0, ~ od P. We
conclude by pr-oducxnq ec quenoe s. in O~1 I-hat are u, ~ S (mod )

We observe that the 1.::\';0 most common sequences possess this,'
property.,

THEOREM30';:-

then ~O( 1 is u, d.L n ~
'.i: Proof: We observe that

( ii\7) +!~ J 9 )::;: (11 {1\9] +fA 9)
Now 119 i:3 Lr-rat i.ona ; and .LA e-- a constant.

/

If e is irrational ~nd 0('"1\="119- [Yl~J::::'(?19J

in [9,1J S mod 71 \i ;'\€- Z+,

Th~S,.(fi\71-rjQ)
,

1

.J
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., C>\ ~ i.:: u,d.l. rd inor

The final theorem is more complicated tc prove. Write the

r- '1sequence of rationals in L?,1.1 in cpt'Tal order. To be more

precise the rationals in. the Farey Sequence of o::der n (see {3J )
\.

are wri t ten in a scending order arid precede tbose of the Farey
( ,00

Sequence of orde~:- n+L, This set. is denoted by (r I- ,0 We now
l n)n=l

show

THEOREM3.7:-· 'l'he sequence C J.d)I "!'" ..
1.. '-n~

'n=l

'is u, d. in

+
S. (mod/\ ) V i'\ f z .

-Proof :- Let 'fen) denote the Euler If f':lnction. We know 3
'MA,

P (W,I :=. ~<P( y,) z: OI112.+- 0 (WlloJ ""')
Yl::: I If z.

(3.4)

Thus Let /\) tv be given

[~J(31 CLo,il• Denote for

(3.5)

and .
(3.6)

Nowconsider a rational j/m1 with fixed denomf.nat.o.r m", Clearly

the number of such m' .such that j/ml e [0I1~) is '--P(W/)(-3h1')<-~=:0:;,;~(;n'")

where

----_._---------......,\-'-------_._ .._-'---

. ,

,. _'d,•••)-'~;-dor;;;;1ie;..k+;J



The number of these jim' that are of the form z .1.

is if'(vvt! i C( VI1.! ) + 0(1.)._----_._-_.-_. __ ..__ .._-----

Now summing
.

(3.7) w.i, th m I from 1
-y U<, ~,)
, P(w.)

/\

to -m vie get

Thus
oeM) (

--<f,-<X) I
,

. (.J( )-- tv-CX
l.D (0,1'\
T:TZ( -I'±' m)

i =- / (mod,il)

(3.7)

(3.8)

represents the discrepancy in (~I~) of the first N

Clearlyterms of

e: 2J) . .~0 (L )- PfWl) L/tl\ .
(3.10 )

(see Niederreiter [4J for details) so that (3.9) reduces to

:::.O(_L)'
. W1

thus Q, (0 B)vfJ, (
¢()I'/!)

tlt'f'
0<. eL( .-1_\ __ L

there
if-.,- =

Cj>(;}'1)

For any integer n,

(3. 11)

I I
I
i
1

1

1

exists m such that ~(vYl) ~ vi «: 2Ji (lYI+I)

Now (3.4) indicates that n - ~(m) = Oem) so that (3.8) takes

a more general form
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~ (W,~)" , + O(WI) (3. 12)

so compatation similar to (3.10) yields

'"'l (_I ')
C h1 (3. 13)

or
-=- ,s Vl,f-J

0:::: (8<1,

o (_1.)\
t-YI

Now (3.13 ) and (3.12 ) together give that ~(0(,(6) ~O Ov'} 'n --=J ~

i .(mod/\) is 11. do in t l proving theorem; -or r. , = v... la' 1J1 ~I

Moreover \"le have on-1~:.. observing (3.13) I

(
/ I \

o JY);'

(3•.11) and (3.4)

This completes the prdof~
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A FUNCTIONAL ANALOGUE TO KOKS~'S INEQUALITY

Krishnaswami Alladi
Vivekananda Coll0ge; Madras-600 004, India

*******

This is an addenda to "Functional Analogues to Distribution

and Densityll fll by the same aut.hor , and si we refer to this~ ..•.

paper for nece.seary background" vJe actually be concerned with

Let R r01 1J denote the set of Riemann Integrable functions

[O,lJ
;

R • Let f be a rational step

* S 7... co
[0" 1Jf i and A :±: 2o(nI C is u.d•. (f).-)r:;;l

and let '[1 Cl' \..-

function with normal.:tser

It was shown in·fll
- -I

that
1Zf (C{') = r<rex) f~'-(;()d·z

i==l v
. 0

(1)1im 1
n -)..0. ' n

Now (1) can be rewritten as

1im
n--?oO

~I 'POX,)
L .-.-_.-
• I _L)f-- .
{=/ J "(c.v.:.J

= J~(~)dX
o

(2 )_1-
>1

For a subinterval 10, if) of (0 s 1) if ~ represents the

characteristic function vf [WJ~) then (2) implies that A is
1..• 6

This also f'o Ll.ow s from theorem A as-,U.d<+j in [Of 1J ("

1 K f and-.-*- = so
f

1
~
f

~i ;r ) ~ ~ I
* F (IV) :21

Let now ,A Cot, N) = ) - f't"(O(l)<-=1 UXz . 'l,'::'1
(X·LI-t..--.

and ><
* A (t., N) * A* (t,N)

~
(t; ) == - t and fN(t) = - t

*F (N) N

- .--..-----~--
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2

Denote by

= and by

Clearly we have *lirri D
N~c() N

== 0,= lim D
Al0 oo N

=

when A is u.d. (f), where D stands
N

for

= sup . DN (t)
C)~ t: <. i

where Dn (t.) = Dn (0.1 t) as in (1J. with the above notation

it is clear that (2 ) can be reDtated in an equivalent from
Vi FCc<') '1

as~ 1 ,I ...:.--{.
'= J (fCZ)c#X .. *lim * ;2-1 f~elK.·J (2 )

nN~ 0<> F (N) (. -=-1 '"
0

v({{)) .

VC,):D:

We now show that for :.y?'~R [0,11 wL th bounded variation
. N

THEOREM 1: I S / ,-t tp(O(V \
' ' ({)(t)dt - -L \~L)L ) ~

I F*~N\c=t :} "(O:~
Q ' ,'/

Proof: As 'f E- K [0) i1
~ , ·t *f RN(I:) dr tp(t) =- j A" CM) t)d <pet)

==c N)
c) 0

Plainly using integration by parts~

(
1 '

I2 = r(L) - J -Cp(t)dt

o
*Define a function C (t,x) as

we see that

*c (t,x) 1 'X<f::= *f (x )

= 0 o+herwf se

so that

I,. i

1



Nt. .,

.,«: :2.' fcxct <X") d wc«:
.'.L I ) ( 'r

r->r( )'1- N L.:';'I

o -

F*( N)

-- !.pC i) ( 4-)

(5 )

so that Theorem 1 follows from (5) by the definition of v(~)
*and DN •

If we had instead considered
(,J....

J'~*(t) c! <P(L-)
II

o
then computation similar to (3), (4) and (5) would yield

THEOREM 2:

-/~(t) ci t I,;; V (~)S'!\Jl:'-+ <PU) (;(1)
o , ~ lV(~)+ ~(~))~:

Ve omit the details of ,the proof.. Actually theorem 2 is a

quantitative e?timate of (2).
If we set f(x) *= K so tbe,t f (x) = 1 0 ~ x ~ I, then

Koksma1s inequality follows from Theorem 1.. The case f(x) = K

corresponds to uniform distribution in the sense of Weyl.
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REF,ERENCE:
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1) , 'K.Alladi, Functional AnaLoques to distributl.on

and density.

This note is actually part of [lJ I and •..lill be incorporated

when [1] is written in revised fiorrn,
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ON GENERALIZED EULER FUNCT10 NS AND RELATED TOTIE NTS

Krishnaswami Alladi
Vivekananda College, Madras-690004, INDIA

******
In this paper we discuss two generalizations of the Euler

function YJ (n) and use these functions to make estimates of
the averages connected with the greatest common divison (a,b) and the
least common multiple [a,b]

§ 1

of ~o integers 'a' and 'b'

Define for real r ~ 1 a function <f.., by

d/ n IP'f(d) = n
r

Clearly from (1.1) we infer by Moebius Inversion [4J
r= ~ J.L ( d) ( .0)

d(n d

(1.1)

(1.2)

where J.L is the Mobius function. For integral values of r) ~~(n)
is Jordan's function Jr(n) (see [2J ) which can be written in
more general form

(1.3)

with the notation
'f'"f"C nJ x') ::::..~ Cn,x,) xz) ... z'Y') I

If, ('Y1. I 71.) = tp..., (n)

.,...·-x ~';:-I 'j .y-'
"'"f- -, I (1.4)

.s
If n = .Ilp.~~ one can deduce from (1.3) the following

(,=-/ L

'1'.•.•( ", z , X.,'" >:,)= [2,][1:2J ..• [x~J - ~ [~ J(~;J..L :tJ
O<-L~S

(1.5)

i:
~:
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where [xl ,represents for real x the larges t integer :!Sx, Now

(1.4) and (1.5) together imply that for integral r

fXdl rtJ,( d)
- -

(1.6)= LdIn
Y'r- ( p"x) r using (1.6) so thatfor all realThen we Can define

Hoebius inversion for two variables again indicates that

(1.7)

One

2, y;~(; ) ~) == [i]r
~I~ .

can show (1.7) and (L,6) to be equivalent from Noebius Inversion
/

given beLow, If

F(:o" x) = L f( n ~ )
dIn d , d

then

f(n-,x) , = L g( d) F ( !! ~
din

d' d

Actually (1.7) indicates that

~'\'"(n, x)
xr 'Pr- (n) + O(xr-l 't( n) )= rn

(1.8)

and
x

\f.y-(n.,xl,x2,···xr) = rf ~r(D~xl,x2,.··xr_l,n) + O( r')-'(r.,yl.'x2,.·xr_1))

(1.9)
where 'ten) represents the number of divisors of n. We begin by

making an asymptotic estimate of

THEOREM 1.

L ~(n)
0< n ~'X.

r=t.: .« + 0 (x-r /oJ x)
tr+1) 5(r+1)

/

----------------_ ..__ ...- - "

i
. :1

'.i,,

, .
j
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Proof. We have by (1.2)

·+1'X.-

r-+l

Theorem 1 will enable us to make an estimate of the average of
rtfr (n) In once we use Abels

00

LEMHA1. Let r:l\n~n=l

Summation formula given below •.

be a monotonic increas ing of real

numbers, . 'An ~ CD as

complex numbers.

~ ,-00

n -7 00) 1Cn ~ a sequence of real
~"I

Let If1 be a function with a continuous

or

derivative in (}.l' 00) and denote by

C(x) = E
}. ..c xn-

c •n

Then xf C(t)

~

"I
i'(t)dt.e f(}.)

x n :r:
C(x) f(x) _ -=

.. ~
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For a proof of Lemma 1 (see If Ioleset }.: = n f'( x) =
n '

l/xr and 'f? (n) then Lemma 1 and Theorem 1 together givec =n
TBEOREH 2.

~
I :t .'fr(~) s.

x.~oO ~ I n'Y ~('}'-:';-I)A..... 0< 11";;' -;(. o

Note that if G.•.•(n) denotes
.L dl-ndr then one can show (see [2J

*THEOREN 2 •

ActuallY y?-( n) . and
tfr-Cn) , nr, (Jr (n)

(J (n) have lot of
r

connections. One can show
From this we infer that are roughly geometry.

for integral r the non-trivial result
() «: 2r<fry-'( n) (Jr n ---n

As r is an integer (1.3) reveals that for any

(1.10)
d n

, sPr (d,dn) ?-- Pr (n,dn)

so that Me have trivially

which on

E VJ (d ,dn)
d~n 17

observin~ (1.2) can be 1,vritten as

f If) ( l) . rd n T-r- Q,11

or
2rn . ? ~-(n) Gr(n)

from (1.1) and so (1.10) is true. As it is known that
(Jr( n) ~ 0 (nr log log n)

we have from (1.10) the following
THEOREH 3. For all integral r, there exists a constant cr

such that
C nr

Y!r-(n) > (10~ log nT

)
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We now make an estimate of the average errDr involved in the appro-

ximation given in (1.8). Denote by er(n..,x)

THEOREH 4. For any pair of integers r ,i > 0 vIe have
L i}_ l: tp-y-(j) J~ i, i) .'

J

d~/ J

.,
Z

Proof. "'Ie know that

J
h1

We know from Theorem 2

/ 1. l.f?r-(7'1)
I n'Y

vvt "1.::::. J

(1.11)

So we only have to estimate the second summation in (1.11). \Vehave

:z: 1-
( o, a ~ ,.. cty 71.) .:::..:i

I, 4}. ]

o <. 0::i ~71i. ) j =', 2 I • ~ r-

J
?'Y'l..

.. ' ~ -rvt)
I

I ;

i :
:



"'W'\-
I 2' /)'lI}-

'1'"Vl I etA
Ct-:=:'I ...!..

I.
1...

-6-

+-
1. \0(-

/I'v'\- )

~'
L,.

J=I
D

j

If life proceed to the limit m --j> CX) we get theorem 4. For the case

r = 1 theorem 4 reduces to the simple form (see [lJ )

/'~
•bi L <Pc])

~.

I L e (-1 i.) ;/ 0(£)- - --~
~ J :l ) lT2.. • I . -~ -» 00 11=, J=-I j

VIe now take up an estimate of the average value of (a;b) and
<t,< n) to help us. But first we prove a very interestinguse

relation connecting
and Ranganathan [~

~r(n) and (a,b). This is due to Jagannathan
who stated it without proof in a slightly

different for~. We supply here a proof.
LEMHA 2. For all real J! ';!? 1 we have

'VI.Z (1.,'11.)"
t-::"I

Proof. First we write the right side as

'n
~'
LJ

e::::1

We know that

== ! c{ftp(~)
d /7'\

----...--------------------------- ----

(1.12)
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using (1.12). This establishes the lemma.

Define for real r ~ 1, Pr(n) a generalisation of Pillai's

function

(-1.13)

Estimates for r = 1 can be made and one can show that

(1.14)

and equivalently using Abel's summation formula
P, Cr1) - t X- J09?t-+ 0 C~)

II .2 (j (1.15)
J - 2Put crudely (1.15) implies that PI (n) In behaves like -~log n/ 7T

or the average value of (a, h) is 6 log n/ 7T2• vie make asymp totic

estimates of P (n) r >- r
THEOREH5.z: 'P<y(~)

o<V\~X

1 using (1.13) in two ways

...: .'.::':''',l~

J -

i -,

I _
I -
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Proof. Hethod 1
We have

L! Py("i))
0< V\tS X

== :z! 2:: c{ Yt(?( -~ ') == L, lP(d) i d \'l'
0< l'\ ~ x ci \ ")'1 0 <.d :S::t:. 0 <d J~ ~

= 2. lp(d) +. 0.f/ + 0 (GYJ }
o c.d S ~ LI /)'-+1

r+1

Method 2

------ 1
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vIe infer from Theorem 5 by Abel i s summation f'or-muaa

COROLLARY.
>;("'1)

?"<:'Y+/)

vie turn our attention to an analogue of Pi- (n) whd ch is

( 2.1)

where by [a,n] is meant an/(a,n). It is interesting to observe

(2.2)

A (n)r

n= E
a=l

<fiT) (Yl) .:t c Y

D<~~'1 / (g, YJ) -:: I

a generalization Of Euler's <f (n) attributed to Thacker (see [2]

( 2.3)

vIe make use of (2.2) to make an asymptotic estimate of Ar(n).

THEOREl16 .... Z' A1' ('/1)
0< 11::;?C.

20/+2 ..
:z: C('"f -+{} +

2. (Y+I) 2. '('(2)

that·

wher-e by

Proof. Wehave by (2.2)

. I

If If (n X) =: :?; i , then
I o~Q ~ A.. • <9., 'YJ ) :::::::-1 _

So that vIe infer

:i
II
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( 2.5)

Thus (2.5) and (~,,4) together imply that

I 2' ot 'Y
r+ t ,

I OL.d ~ x

I 2.."{2-/T, LP(cJ.I)d cd -+
o<ot'~ 2L

&

O ( 2."+1 + f) s.:+ X vE>o

(2.6)

If we use Abel's summation formula we get
X.

...;:;-1 I()C' 2..1' ~. .3 -x.:z. . (I ,7 2 Y ((" z, J -"1_ 2..1'-1
... L, T ~) -vt. -=- ---z -IT 0 X- o~ X) s· X. - I < .3t + oCt; lo~t) eur-t q t:

0< V\~ x If '] .) ( ITQ U
:i

1.,

.i
j
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substituting estimate (2.7) in (2.6) we get

2,' .A-r (?1)

0..:::\1\ 61t

+ 0 ( rl"2.Y+'I-+£)
~ +18>0·

and the proof is complete.

If we set r = I in Theorem 6 we get

x4- ~(3). 8 -Le .~
- + 0(~ T) -Vc> 0 .

g-);(2)

NowAbel~ssummation formula implies that

:<'
2-

which means Al Cn) In behaves like n ~(:Oh~(2.). Thus the

average' value of [a,n] is 11.2..-;;(8) /2 ?;(2.) •
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