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- It is well known that the fundamental concept of
'divisor' leads to remarkable Arithmetic functions, In this
paper we discuss properties of arithmetic functions 'of higher
order' defined throuch the introduction of a new concept of a

'divisor of hiqher order', We shall construct an infinite

sequence of Euler like functions and the well known Euler function
shall be the first member of this sequence. Particular care has
béen given to the construction of such divisors s¢ that the

exact formuiae for these functions can be gut cnce the

canonical representation of the integer concerned is knoﬁn.
Asymptotic estimates of such functions are given and a study of erro
functions associated with the Euler like sequence is made.

We would like to mentidn that the familiar.number theoretic
functions become only the first merbers of en infinite sequence

cf functions cf similar behaviour. |

If 'd' and 'n' are two positive integers and if d| n. We

say d. is a first order divisor of n and change the notétiOn tc
d 1n. When *a' and 'BH' are two positive integers (a,b) rewritten
as (a,b)l shall dennte the largest divisor of ‘a' dividing Db,
When (a,b), = 1 we say 'a' is prime to 'b' order 1.

If 'd' and 'n' are tw integers, fhen d is said to be

a divisor of n cf second order, denoted by df,n if

n | -
ipey Fd d) = lo :
( a 1 .
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(This is the definition of unitary divisor). The symbel

(a,b)2 represents the largest diviscr 'c' of a, satisfying
o izb‘ If (a,b)2 = 1 we say 'a' is prime to order 2. (a' is

semiprime to 'b' in standard usage). Here crmes the departure,
A divisor 4 of n 1is a divisor of third crder
(notation: dan) if
5

(a-l d—)z =1

The symbol (a,b)3 stands for the largest divisor 'c' of ‘'af
that satisfies cl3b. If (a,b)3 = 1 we say 'a' is prime to b

order 3. We generalise by saying that dtrn if

ol i
. -
=
1]
[

and

(a,b) . = max Slc}la . c‘rl%

If (a,b)r = 1, then 'a‘ is'prime to 'b' order  r.

NOZE. The definition of dan given by us differs from
the two well known extensions of the concept of a unitary divisor
given by Chidambaraswamy [2] and Suryanarayana [5] respectively.

The former defines 'd' to be a semi-unitary divisor of

n if (d,g 2 = 1l, as opposed to our d iBn where (E R d)2 = 1,.
The latter defines d +to be a bi—unitary divisor of n if

* % *% )
(a, % ) = 1 where (a,b) represents the largest common

unitary divisor of 'a' and 'b', However in both the papersﬁékhw
andiﬁ] , the concept of a unitary divisor is just extended one
step beyond.,

Our definition of higher order divisor is given in such
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a way that the higher order divisors share many several properties
in common su that it is possible to discuss together the ,
properties of arithmetic functions of rth order, as we shall see
in the theorems that folluw, Moreoﬁer some of the familiar
number theoretic results follow as corollaries if we set r = 1,
and some of the results of Cohen can be deduced it we set n = Z.Eﬂ
We now define rth order analogues tu sume well known
arithmetic functions. IHowever as (a,b)r 7 (b,a)r in general
these functions have interesﬁing dual functions, Denote by

—rf

ﬁ(nl?(jzz_; 1 2 %(n)n):‘ﬁ/(n)

o<a X
and its dual
X, < X
‘72( n,x)=2_1 Y (nn)=¥(n)
7 ¥
oxasX
(ﬁ,]a2Y=
‘ *
for r 3 1. We define P (n,x) = W n,x) = [x] <
where Ei] denotes the largest integer < x. Note that ‘
X .
V? = %7 = ¥ (Euierj, We define the divisor functions
1 ) \ K
. K * -
- < . (L N
gm= 2,4 and g 0y= 2 (&)
TR d] vl o d) n '
/Y .
Before we take up ths study of these functions we need
. S
to define some mure functions. Let % EY} denote the
Y=0
sequence given by '
£=0,F=l L=h 4h, 7322
ﬁ%
Let 4ky) and ¢ (y) denote respectively the least integers
D and > V. Further define
Vg \
;)ﬁ,(.x):,iZ(LZ:/. o;) whem Y= 1 (wodl 2)
N ¥
:f/(?i = f(ﬁj@ when 7 =0 {mod 2)
A Ny '
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Let £ _(x) denote the largest integer y with fr(y) = X,
. S o
And if n = .// /3L L be the canonical decomposition of n, then
e » _
let ) s T (@) +1
=y
We will now show ‘
é 0(9 :
LEMMA 1. If m=Hph ¢ be the canonical decomposition
(::}(.
of n as a product of distinct primes, and if a lln . then
| S
di n if’and only if a =.ll p. where
r =) A
: /o
Br=0 or £ LPr =
Proof, For r = 1, f{(q[) :i and so the lemma holds
trivially, For.r = 2, fr(Q/L' ) = o7 and @_L = o‘ or @.= (.
for a unitary divisor and the lemma is true.
: s »
, = . A
Iet ¥y = 3 and d = ,// /9/' - satisfy dl.3n. Clearly
=y ¢
d i 17 and so ol 2 B3 trivially hulds, Now
= v 3
KO /3,0{6 2
CL L=} ¢ !
If d}3n then g p d)2 = 1. Thus there is no divisor except 1

of n/d which is a divisor of @ of second order, This is possibie

if and only if
Xe-Be <@ or €=

O
° n 4
For if O('C —@L 3(3;{’ then FL' @Ci (_d_) and P C(Zd,
Contra(?iction + Thus o(; *{3(~<@‘- o I

that‘ D<'Y){_’$O(£-{-5[: <B; and so p."¥ . . Hence (%, d)



Thus e
—_ v (':.‘:.\ ® > O(L e _E: X
o =g, <y < 8T s
Moreover @Lo is an integer ands'a[sto > J%CO(L") proving

lemma for r = 3,

In general let the lemma hold for 1,2,...r, r even, Now

: . e BT oss o oa
dj ,; n if and only if (= . a)r 1 ‘where
d / SR Sl CH
I SL I
L a l‘z':l[

o7} fu !

Now ( -g— , d) = 1 says that there is no divisor of _save 1,
r , SV -

that is a divisor of d order r. This is possible if and only

P :
1€ /s r-1 o or ;=0 ., For otherwise
(-G < 5 R fo
, r :
fx--g > Fr 1 (37 . then one can find a ’7)[ satisfying
L ﬁl Zz—F Vit _
CFL -
Ny ~fr 2 Tz e
Fy
")>c l . "‘?°
so that p, * 1 and p. ‘] o & contradiction. Thus
we have

Fy
£, 3
or B, > ?:}i’ X and B is an integer.

Thus (51‘, > £, (&) proving the lemma for r+l odd. The

proof for the case r+l even in similar,
The higher order divisors share in common the property.
LEMMA 2. (a) If a, and n are integers _then-for any

nonnegative integer A
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(An + a, n)r = (Ar ~ a, n)r

(a, n)r
(b) We have (n,a)r = 1 4if ané only if
= 1.

Jr(n) + a)r = (nA @'r(n)-—a)r

= (n,)\ﬁ

(ﬁl a)r

We omit the details of the proof of (a) ard (b) as they are
“e shall need Lemma 2

direct consequences of the definitions,
error functions,

in the discussion of the
-~
' ~ 7 5. X :
THEOREM 1. If n =/ p; az in Lemma 1, then
(=1
2. ’ {
C?’L — ,rl,// ( - f‘ (/: ]
fy ) (;:_} fi» Y 0")
Proof. We know that )
f . —1
Y iu,x) = :EZ‘i = [x]‘“ 21‘1‘_
v 0<a <z o<a<nm
% !
i > 1 with

Now (a,n)r > 1, if there exists a djrn,

a %l a, We know from Lemma 1 that dl rn }f and only 1f @Z= 0
Thi: implies that

S
. g 5 = (
fr(o([?g@z < X; where 4 = ali,PL (3 *
» nRCED Y
i€ piiia and py { (a,n)r then ﬁ} ¥ L){ a. + Thus the
: CJLFOﬂdﬁ&n 1 1
combinatorial ,(leads to :
' a- 2 =5 S
-—-———-—-——-—-—-:—’ ~_—_____.____,___./'
1} :
v , i i
+ e 0 j, pS | Pﬁ’@@) Q
SR ‘ o

Now ' (1) also

n in the (1) we get Theorem 1,

If we pur x
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indicates that

IEMVMA 3. If er(Q&x) = % \ﬁi(n) = %%(pix) then

@Y(n,z’,) -0 Ye>o -

Proof, We can rewrite (1)- as

¢ on 1) S an t 2
nx)= - ! " ’ 4—} 7,00 ) ,‘ﬁ}(o(\l’)
A O<‘IS§ /Z'DC’Y((XL 0<1: ng_sf?z, e ??J

= Z 9 5 O(vm))

S e
X

N
L=

S

‘where Wp(n) = 2S when n = R Thus we have

ery‘ (ﬂ’l ?(’) = E %\,, C"/L) — %),(712 K) = O(V(f‘fl) = 0(2’(‘)&)): 06’){;) V‘G?/O‘
4

S A
) =29 < 1 kD =O0n) e [4]
L=}

This establishes the lemma.5

- ()(\
THEOREM 2, If n =L” pe ot then
=) '

. S /
* \ // l//+ =l i : ‘ .
£, 01 f,00) < o f,om); ! \ (Nb)'*'(’“?v"r >

¢

1

x,@,a) =I

- Now (n,,a)r = 1 can arise out of two cases, If (n,a)l = 1 then

Proof, We defined yO (nyx) = 7
e A o<a £

(n'a)r = (a,n)r = 1, Or (n,a)il > 1 in which cese there is a

Py !ln and pisl a. As (n,a)r =1 even if d\l a, dk;a for

£y +y
all d&ln. Thus ﬁi R’ . Thus from the combinatorial
. 14 '

expansion we have



: * 58 LP (’YL R 4 A :
SQ(%,X): 5?(%/2)+ Sto g\ p i tjﬁ,“(éﬂ-%&—\) =te

o<izs '\ RN T p
P " 2L
L 3 ) .. {(Z
Z T\ PR Tp e e (=
O<i1< €5 L ) 5 ¥
- (2)
If we put‘ x = f(n) in (2) and use Lemma 2 which for r = 1
: =¥

gives ), (7, Am —-‘}‘/{.L> = ?ﬁ{/’ () + ('Vl.,/u) we get theorem 2

 immediately. In fact one has from (2) the;: following result.

x *
LEM 4, If & (nx) = —m— P (0, g (n) - ~¥(ngx)

B

* .
then &, (nyx) = OWH)Y >0

We omit the details of the proof,
We are now in a position to prove

THEOREM 3, For any pair of integers n and k we have
a) KR (n) < &P?) (n) < \PS_. n) & +..: < (pé (n)é’%_(n)é ‘ﬂ%(n)
b) 65 e €5 3.Mg T (ML wse T3, (n)<6“ x (R, k0

X x>

» X *
) Gy (Mg @—'«ﬁ’km)é 5“6’k(n) L eeeLBg 4 (nl Gy L (n<E] L (n

a ¥ <n,ﬁw> B o, pa0) e B L

ﬁ ey 3 ﬂ 571 ¥ ¥
< «,f“m/ g _ R 0,40, go o)
e B, (") B, o1 & ) \

Proof, We shall prove (a) and (b). Theorem proofs of
Fox from an
Fok-1

(c) and (d) are similar. First we observe that

5 % " : . F } N . .
lncreasing sequenee and 2k-1 form a decreasing sequence, both

Fox

:
n,
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converging to 521 . Further we note that if x £ y then

: X x* *
L)< Ly) | 2 6)< Lly) and Ax)g (y) (5)

the first two inegualities being trivial, but the last not so,

>
These follow from the definktion of £ , and ¢  (Page 2).

Now (3) implies that for any integer 'm!'! we have
£, m) < £5(m) £ fom) < . LE ML £ m)LEH(m)
(6)
. 5 a(it . ;
We now assume n = _§ ﬁ%- v « Then if we use (4) and
L=}

Theorem 1 we get (a), Now (4) and theorem(2) will give (d)
on similar lines of reasoning for ji—%ha)

.

To prove (b) it is enough to cbserve that

d'iZnP”é§-d}2m*én ! d12m+1n > ggm»ln' d ‘2mn > d\éﬁ#ln

for any pair of integers m and m', This follows from
} lemma 1, Thus the set of inequalities (b) and (c) are true,
This proves the theorem, We now take up the asymptotic estimates
of(7; X and 67”%£ . Let us define two constants for k > 0
’ r, :
od :
]
D

% - o= e B T 2 : | (5)

C\/% = L z’ L,i—’(n)[:’)*)(ﬂ))
R K] (6)
Wy N @kaO :

Our main theorem is

)
;
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]
LT v "*“ }(—f, -[_.
77:’ 7 K
1
f A ..L =
. A
b 2, e = 4, M Ol )
M=

Proof. We shall nrove the second part of Theorem 4.
Part a will follow on similar reasoning. We shall first need

an estimate of

— K
2,

0 <a =< X, (a,n)r = 1 (7)
th o
Let a(n,r,s) denote the s number a such that
(a,n)r = 1., It is obvious that

‘ﬁ(n, A(n,r,s)) = 8

We know from Lemma 3 that

'\.P(n Al(n,r,s) ) = A(n,r,s) %(n) + O(n\) = s YV &€>0
9 e n
so that
aln,r,s) = "”“I}ETH) s ‘“ﬁ'(n) o(rf) ¥ & > o. (8)
»O(y 1‘-}/ .

B

We deduce from theorem 3 that for r = O \0 (n) > P (n) = \JO(n)

(aé \fg (n) =n). As it is known that n/ \f (n) =0 (log(qa?@

W

log n) see [4] we infer

_n_ = 0 (Log Log n)
P (n)
so that (8) is rewritten as .
AA(n,r,s) = ns + Oo(n ) Y & >o (9)

Séé(n)

Thus



1,

11 ns K
s + O(ﬂé)) v eso

Ca,ngyﬂ |
- E’f ,I S ‘F’)’LKMi .) z: O(SK-LVLQ) Ye>0
%O’L)K o<35g<n,z) f}?ﬂK O<s< R (%)
..Lf K—'-FG )
e (g™, ) ol 9
== : + Olemx))) + U\ —m 5047
‘{;m)’( K+1 N | ) LT
v K PEYTPNN ' \
= N pé ‘;,Q,(”) , K+€\ | é K
ek | e O{x ) "'LO(% B2
M .+J)VLK+/
¥€>0

(o)

by (8) where' x 1is taken as » m.

We shall return to (10) after maeking a geometric inter-
pretation of Cg'ij Consider the hyperbols xy = m above the

x~-axis, Call a lattice point (xo, yo)_good if o) <'XO - YoéQ I
Divide the region

he set of good lattice pcints,
and B.

Let G denote ¢
under the curve intc three nob-intere=%i ‘'ng regions A, OP

we have
—> Ay T A m . )
R j ' ~Zlfcr-*("") = :i: Jo
. 1} "r.,K o
PQ%,JQ«) ' (Z,,Mo) € G

» B
0 ~\_J§ *&Xe,¥0) € Gl?t
wich can be split up as

Clearl
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PR - Yy K <y K
Tiehm = g8 + 2%+ LY
M= (zozﬁo)ééﬁ\(\ o M) EGNB @o M) EG0
S + Sy +J5 Ay
Clearly

O

To estimate 82 pick a point S' on OY at a distance n

( o K+ I)/Z)

. k.
from O with n < ./ m The sum of yg‘ = I dver R'S!

through S*' is

I K K X Z
g \ R se"i O, 1, Y
h< x <M
n
@ixo),,,:l ;
(where ) (n,¢,d) = {
T . c< a<g 4, (n..a.)r__l = 1 « Thus
we ha\/;e /_1] X \ ““M"J Wi [M:’
&S e ) = 2 nRo( ) =m 2w
2. N=1 N= 'Vl:)
r2)y +1L
= WA ) = O(/Wl ) jco‘/ K

To estimate S pick an S on OX at a distance n £from

1
fm agh 4 .
O with n <£/m¢ Draw RS through it, The sum of Yy_- over

v

yo dying on RS 1is

K K+1 ) /«+6—
2k = v “"fr_cf'j 0! _ L e O (R e o
<Yo £ 2 (/<+) i MK+€ RA
jO )Y\) ‘-\_. [ / n s
Using (10), where x takes values n, and Eg— ¢ If we sum (12).
from 1 +to / J we get 8; which is
I~ ’
Lo :
. gl 1 ( ; . &+2/2
5= 2 2 ?:J? + O™E) 1 0mT2) Wezo



N=y
! o
K+1 <!
02" ;Z,
K1 N=

i

k414
m
OQ'K i

|1

K+1

= m .
K + M

i
24

H

Yy

a=
4 K’M}S lq— O m

13

{ () ; 1
f’;ﬁ + Om™* 2)
/}«LK‘)"Z

N 9 .
gy S ) KL
L 5 = ' Stz + O (”’V‘
NK+Z o Wl

|

Kl =D ! 1
padt @ ( 2_, L R ) —+ O(W‘ 2)
(M= [ |+ /

"WLZ

e | A
s O( e Z Jk+, 3 - o6 2)
Ne= [+ " / |

(k+2y,

w4 Ofom 2) 3 D(qm’(*'z)

.
K+ "2 _
2) for Kz 4

If we substitute these estimates of S;» S2' and Sq in (11)

we get

2 cr*%( ) =
] 75K.M -
=,

i

proving part (b).

following changes.

\ L
o K-+ R
The proof of part (a) is similar with the

We have to replace HPIMEW) /ai by

[} 7 » s
frkl(n,Br“l(n)/ ﬁ%_l(n) and use Lemma 4 instead of Lemma 3

to get a estimate s

imilar to (10). The proof is complete,
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We deduce a few corollaries to our theorem,

COROLIARY 1., If @& (n) denotes the sum of the divisors

of n then

m -—2 2.
S 0n) L
V;TLI ,2- /
th
COROLLARY 2, If @E’ X (n) denotes the sum of the k
rd

powers of the divisors of n then

G . (K41 K+ K+ %
S a0 = i ::’ M o)
=

COROLLARY 3, If0,

> 1(n) denotes the sum of the unitary
4

divisors of then

n :

—2 Z S
S'e ) = L 4 06w
ney 2 12 7 (3)

—

proof, Corollary 1 follows from theorem 4 if we estimat=

qul°' Clearly

% et ]

Corollary 2 follows if we find&(y 5 which is Ef(k+l)/k+l.

Corollary 3 follows from an estimate of(?g X which is
) '

x 0o 0 (n) —2
G- =G = L 3 ,
20 AL Faey 12 Z3)

which is the result due to Cohen [ﬁle

COROLIARY 4, TFor k ;f 1 we have

~’
Xy < O(é,k < ey K 0(3,ké o<1,k .

This follows directly from thecrem 3, We raise the following
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guestion. (which we do not at the mcoment answer)-. What is

dim o4 ? Finally we take up the discussion of
r 3>cd r,k

error functions associated with the Euler functions. (A similar

" discussion for r = 1 is made in [13 ).

X
We first calculate the average value of er(nlx) and é;,(nlx)

for fixed n where ¥x 1s discrete,

"
THEOREM 5, , ) = — P

o J~‘2: G&(AJL - Vi
MM-300 MLy Zn
Gow 1 S'efmi) o = GOESY
m—00 M /=, 6, )

Procf, From Lemma 2 we deduce that

er(n,i) + er(n,n~i) =0 if (i,n) #- 1
= =} if {i,n) = I,

so that we get

€ (”)b) SOV
(= §
'Now Lemma 1 says

e (n,/\n-m) n+e
m

SL;,(? \P \”7/‘ 72—!—!) AYH“(’ LE/()/)) —ag(ﬂ)-‘f/(n (/

= e‘y(ﬂ 2 .‘.',') -

Let m = ;\n +/AL 1“or scme non-negative integer A where o<

O</1&<?\

Clearly 21 AM
n
L Semne, Lemi+.=3,8m0)
E € CM L) i L_-:{,v ; ™ L= ﬂ-f—/ (= Q,’)y\_#_‘
!/m L., ’\Y‘T/b( q
+ o 2 e U
L=AN+H|
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P
- —'/\\PV(M) -+ -:——- ,2" @(ﬂé)
Z v i =]

2n
so that proceeding to the limit as m - X, We get the first
part cf the theorem, The second part follow on similar reasoninge
& »
However the mean over the continuous variable vanishes., To be
. f SR

more precise

THEOREM 6. p,n)

Xl
kJ/Q},CW,1\)0{% =D ; L/é;%(n,-x)d?:(, = O
o) O

The above theorem is an immediate consequence of

Proof.
the following Lemma.
IEMMA If £ is Riemann integrable in {:0,&3 and
m
fx)+f(m-x) = O for all but a finite X in [O,HD "
then \{ f(x) &z =0
) 0
Clearly
P nwA we :
rm i . 1 e
J fx)ax = f{m-x)sx = 5 !j fx) + f{m-x) dx =
O ' I}
Note that er(nlx) - ‘er (n,n-x) = 0 for all x ccxcept
X X
when . = imils £ e : - -
’ (% n) 1 similarly T “ﬁ.) s é; (n, ﬁrln) x) =0
= 1, Thus Theorem 6 1is true,

for all x except when (nlx)r

Wennow study the properties of additive error functions
-~
S;A

x : Define for

%& and yz/ .

=
Q,Y(H,Q’”%_‘,‘“ %) = ﬁ(”) 'z—;/c{‘: ) I
= £

Oond

LV.\

associated with

V@(M,Wg)

1

M

!

i




: Q% o v .—‘%/ Ve %) :,;{ \ San \/ *
€,’Y (‘ﬂgdlz{XQ_) ave Oi‘j >:: L):{\ ]{::[,2’,3(~) (:41 LP’Y (W)(xg:)
=2 =}
We begin by showing
3 79
THEOREM 9(,';_&,24”'%*
] g
. ey . ' (n AN .
—a) lim | 2; (:f,y(r"),ie,a’héfz Ji o 'ﬁ(g) = j’ (79/(‘”/ @'Y )— 5__, & (ﬁ’i\?n, y’('?))
/h/;'_;w V"/\ ﬂ:i ”"’1’ (’Q)“/ij)) Z*;: 7" B (‘ﬂ)
and the much similar :
. , s X’
) iﬂ .‘)‘L q"/'*‘lv < 3
A ot ‘ 7 !
b) 1lim / > ny’ (n)quqq)s.. flg) e ; _kpfr(ﬂ) . Z ' gz__(j?
i _ ==f ‘ s 3 ¢
m oD W Ne=) N=i L l=t Ny 7L

Proof: We only PZove the - first part. The second equation -
lines. We know

follows on similar 1
M

}

2 € (N, % 0 50 O(%)“*)*j ~P(Y\/17z—, %) -
M=

h 7\-— t=y N=y
. For any J.nteger j we have - \7
2 ( | 33 - 3y
f n ]) = 5 j— = b= :
} N=) 4:,&%1’;) N=y L=y :i
m}l‘)v:’
L vl@ (1))
= M 2 W -
+ 0D R

Nz {3,-(“‘/?)

This implies that ‘
m J ¥
= « o~
L3 e o,g) = 5 )

lim
: 14
mo L =
7\’\—% 2. Q) 7} = ,;:/ ‘\?SfY Q?’f)
and &. as J, and then use (14)

If in (13) we set Z*
=y
e

and proceed to the limit m —> o wWe get Theorem 7 Part

Part b follows by. observing that

3, 21 i) (1)

A

/



e

S

I

" \.MQQ_ .

36
m
X
A

X
L
S

This completes the proof.

Note that the right hand side of (a) and (b) are of the

form S
9, (n .,50( ) = 3 d )
v % t=y \/
S
and 5 | X, o
3y (n, ~ 2 9, @)
o~; =/
which resembles remarkably the forms of ef(n,&&,Qb,,....qg) and
*

er(n,aa, 2,....qg).

1

We conclude by proving a necessary and sufficient condition

for a number n to be a power of a prime using er(n,c¥l,<X2).

THEOREM 8, A necessary and sufficient condition for

n to be a power of a prime is that

4+ @
er\(n, X X)) €0 o VX,x,€Z4 :%)]2153.,5}, G,

S—

Proof., The necessity part is easy to establish. We know
that
: o, + Y
I —_ wf TN

0o +a,) < &, [lof“(m)]

| 5 | N [ &,
' O) =00 ~ L tvn
Lﬁs/(y})u,) ot [ Iof-cm)] J %(M) 2.) 2 f?‘j;:/(m?_

where n = pm

~—

and [x] represents the largest integer <. X,

Now as [&A&J P2 xj [&' + the necessity

part follows directly,

——
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3 ,g(
To prove sufflclency let (15) hold and let 77~‘})%) 5>,1.

61/
£ A
Wwe shall get a contradiction. Consider the two numbers/D f‘)e (%

for any two distinct i, J with 1 € i < j < s. B&s

these nunbers are relatively prime there exist positive integral

solutions to

{%-fo@( 3{,* Mﬁ( ,

oy

v
L (A L ¢
Without loss of generality let Y b Iy (J P 4&L)

Consider now an integer m = satisfying

%, (s
™ = <”"°O”°YC(5 s ( ) (76

and.let ’ S .

- T p (A)

One can show that (é,n)r =1 1f and only if
| (Anm'+ e, n),= (Rm'—a, 1), =1 (7

) £ ;
Now consider the intervals (0, v p

. and .
A CA;) ’ |
M—2 Y "J"'J
( , M+YP z |
It is evident from (16) and (17) that for every ‘'a' with
f (
0 L a < XSJ - 2 and (a,n)r = 1 there is an
£ -
. o , r (ﬁj)
m+a' with m < m-+a_(\,m+ypj - 2 and (m+a,n)r=l.
£ ) :
r( i/

But neither x p, are prime tc n order r (we use

Lemma 1 here), VYet as (1,n)_ = 1 we have (m-l),n)r =1,
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fr(ﬁj) fr (ﬂj)

.‘?%(n,m&, m+y Py - 2) =§2(n, Y P )+ 1 (18)

which is the same as saying

i

er(ni(xlr(Xé) i B ©

h.

L(B;)

if we set Qi = m~2,'Q% = pj in (18), a contradiction

to our assumption (15) for some(Xllfxz & Z+ (actually for
infinitely many as the solutions to (16) are infinite)., Thus

s = 1 which establishes sufficiency. The proof is complete,
K gk ok pRkpxpR kgt
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" oN THE ASYMPTOTIC DISTRIBUTION OF FUNCTIONS
- MODULO AN INTEGER |

Krishnaswami Alladi
vivekananda College, Madras, India

| :\T,’Mt‘ion $~—
one of the features of number theoretic functions ia that
though the rate of grcwth is not predictable, yet the summatory
values ©f the function behave very well, A typical example is the
function T(”h) which represents the number of divisors of n, a
positive integer., The equation "C\'(';‘C).-; “ has infinitely many
- golutions in Z (integers) namely the primes, and ((X)= vl also

has a solution however large m be, And it is known [l]

aq

}Z,’ (n) = m (07 +(27=1)m + O(m) (1)

9 =

where 9" is th,e Euler's constant. In this paper we shall deal with
the asymptotic behaviour when functiones are summed over a set of
integers with positive natural density. Here our interest will centre
around functions "uniformly asympvtotic" (see. Definition 1) and
functions which can be expressed in terms of these uniformly
asymptotic functions.,

UNIFORMLY ASYMPTOTIC FUNCTIONS Here and in what follows by an integer

. - 7 ¢ =
we refer to an integer 2 ¢ and Z =:1,2,3,... % Whenever we speak of

‘ +
a function we mean a real valued function with :F('Z'.)) ¢ Now letAcCZ.

For real x denote by
A=z 2, 1
- aca,as X
and by 5(A) the limit of (if it exists)
é/.l.-’}" f\.ﬁi‘): i A
N §(A)

~ . X =00
&(A) is called the natural density of A .

Let £ be a function and let S #£1) = F(x)aiverge to infinity
m _ C Dend X
onotonlcally. In this paper we shall be interested in limits of the form
. o '
Vorn 2,500 ) o, =4
s CLNLK / f
Tt is quice oo0 TWEA  Tocns ’
Juite natural to expect ,@;S’(A). However it will be convenient

t g
© know what exactly the members of A are besides knowlag g(A) 7 0.



.

Thig leads to the definition of a uniformly asymptotic function.

pefiniticn 1l: Let -‘C ‘be a function and ;\ an integer, If we have

‘}"‘ .f(y\)
/&;M O(Y‘«,ﬁ’) et /J.()'V\OO{A) - ) (3)
, T = 3
ES0q jﬁ(/r%- A

O<n4wx
for all residue classes /;,L(*nod 7\\ tht,n we say-f is uniformly asymptotic

modulo & "By U(A) is meant the set of all { uniformly asvmptotlc
_+ K.
modulo A . If ‘}"fé U(;\) A&/ we say + is a uniformly asymptotic
\ i/
function. |
. o = 44 o -
Lemma 1: If{— ~,C P f\)(;\g and i3 Q,DO(% <ase Oy Are real
constants >@ ., then f¢ u(A} where
4 = 41 0('{
Proof: It is evident ¢rom Definition 1 that g & () implies @nggu@?\)
where @‘@ is a constant > . Now let 3)!\60(,\) . We will show that

(gf-h)é oy . Denote by

., (g0 he)
:», n ;ﬂ((’)ncd 2)

2 G(ﬂ)—k him))

where /U is some res%\iue class modulo

Ny
1"
swl

’é Clcdrly iF G"'m bm)c gd,denote

2‘4 :
(4'/2) . pad /‘\{)’)} 4 —— (’Y] [ = A
),M 29 ; bm ,h);,’ S Cm"n:’,g ) G(Mh,;iaj, m)
2 'C(-,?i\—% b)ﬂ {4)
Mmoo Gatdm B
-Ngw let ¢ :/ﬂ ~ Gm and &' —/~—- bm} Clearly (4 Yindicates that
o m A Qﬁw/ qu 7 /ﬂ
‘.44 . 1lies in between _"7and Y? so th‘*t
m T Ty

/u,h,,»;f]./: max (£, Eq’y,)
‘\Iow a8 g H g and g£f 0 28 MapopsO that W — J*as4n...>oo.
This proves j+hé U"%}
<It is now a straightforward deduction that -f:ﬁ: U(?})proving the lemma
&t is an easy exercise to verify that if f(ﬁ) )1 w1th{<€-Z. then ¥ :LS
unlformly asymptotic, Now Lemma 1 actually tells us that v
Lemma 23 If{_(;;i) is a polynomial then({i’is uniformly asymptotic

Actually lemma 2 becomes a particular case of a more general




2
ws G es
theorem we Shall prove presen'-,ly,,

g |
Theorem:= Lét £ be a function and let- 2, F(mldiverge. If~ -

k<
Ao ;2% <%
/&fm ‘:ﬂ e 1
N -y Cin ) (5)

then —-{v is unifoirmly asymptotic, Conversely if _7C is uvniformly

asymptotic and if the followlng limit =xists
L &.@. = ¢ (6)
/g/ Nedveg F(A-)
then ¥ = 1, . ,
Proof:~ Cohsider.a A€z aud a residue A of ] with Og < A . Let
A be a real numbe:r and pertition {’O /c] as [O /%J [M,IM-I-W} SOG00

[)7{7"« %:{ Now as {5) holds we have for any KGZ%
{f'/z-;-,k) -;CVOW**O(‘H/’O/
Choose }g‘-}\ Now gevery integer %) - be:,wc,en 2(1"/\4 and 2(L+/)+/\i so that
Arn ALl 3p4.
E‘f ) _l‘-_ 2 FAtep) + a(.{.(m.,»/m)
% .‘2 _-- ,v(
N=]+ +f At : (7)
, - '\{(3 L)+ o (FO ,M)) :
clearly : . '
ST fimy = A D FE) = 3 o(Emy = A Z ) + o o)
2, 3 : Newx DN N - DLNEX o<yIE X
0404‘5_;(, '___M(:yu,u_/;(;‘\) = Mfm A7) m—z/«(mafZ)

l

2}\ 'F(’H) dlverqesq This 1mp l"b that ‘
. B0 sy =
A

Famn 0LNAX
= O rn._/uwt)d;‘) 0471’/ . &

or {~& U('A) since e AL g arbitrary. As A€ ‘,"}” is arbitrary, ._F is

uniformly a "ympi,o i ‘
‘ - o0

Converse]*r let ¢ 0(675‘1 Y NeZ'. Now let €<j_ Then 2 -F(ﬂ) £00
30 that §% l)(?x}a contradiction. Thus { . Let ﬁ)j so that (6)

gives  £(n+) = F £ # offtm) -

Now using arguments similar tc (7) we have for x:}\n+/w~: for some

residue class mod A ' ,
AN ST 0 7 £m)
2, ‘F(TD “("' Crl e 6 | )ofﬂeic(rﬂ) M ( o< X




—dm

which gives }j £(n) ' _ z + /
Zm 0471 =T , T'FC’??) N |+ O g_*’;,._ ,g;H A
=00 4, M(:moc%/‘) R £

a contradictior to 7&( U(// . Thus {”,.4 provirg the theorem.

It is however not necessary for the limit £ to exist in (6)
if 75( L) ’V'ﬁc Z' We now give. rn example of a function which is
unlformly _asymptotic without S.lI“lt 7C(7c+,)/§(7)@xlut1ng. For real 7@
ﬁ@é‘ E?(j denote the largest integer ¢ X . Let the fractional part of
ZZ denotcd byéx_s stgnd for Lx] Let ©®>0be an irrational and define
a function { by ' ‘
0 + () :gﬂe} mnez® 8)

ﬁ‘heorem?;“._ The function ;L in (8) is uniformly asymptotic. We need two

Jlemmas to prove ‘our theorem.
Lemma 3;. CIf d cee G{,n) .00 13 a séequence witho{%é[o) 1] a_nd
Uplfor'mly dlstrlbuted then
a ).‘ b 0o Q —pe —.— ¢
AM oy + X ? WMo

2
; (No‘ce- By unlform distribution is meant the following., Let béaf"@f i

and \?(y@)ﬁ and let
£ , (o, )
H 7: O(L [ { 2 @ﬂcq/}p) :I lf‘!?%/i_(_a_ e (({;—-of){
L5 Q {o @ A0 88 M 300 ’v‘ 02954(5-/ then the sequence @(,,50

"ﬂ",'
is. umfomly dlstrlbutea or ud, in LO, 1*} (sec [2 gfor detalls)

1f for any (Q/ ) the sequeice of fractional parts of q, ;e %o(ﬁ,& is
R T ) M=y

2.d in- {: 1_1 then Qﬁ(ﬂ)lo t.d. mod 1)
To prove the lemma 1et us partition [O, 17 into [D,ZN} EN D

2N-) ;} N AR .
‘i and let @ =77 = 0.1,2,3,....2N, Clearly as (tn)

‘is wde in 0,1 we nave
A

R =F Tt o

oy ety & s Ol i‘ﬁvy(.‘Fm((é,,”m) _ Bt o)

LI A

Now

3

—

m pope T o
= L 1. . :




so that A +Gpt elpn

! do
- i S - a‘-‘t G o
R m—z\g{; fu\W
similarly AN/ N
0\/1"?0‘&-%0‘ O(w\ 73 44/ é{,,\'pm((oy-’_l)@'}’>_:_“-)~l @'{Al\a}'\j%’ O(M) ; »
i V=i -7 T=i - -5 1 "'ZN"f' Uﬁi;
M ’ i, . = i

4

" s g o l
°r  dion tMF gq{,*‘q’z‘*j_“ Mo L

Z S
M 00 A 4
- . () ) ) _,4\ . % 2 .
Now as the choice of N is arpitrary x;,:,(.msvvb o m/xc»mm-f_m~ proving

lemma 3.
Ly . t oy
Lemma 4: If (D(A/\)] is u,d. mod 1. and ¢  a constant then
B Y= | :

SO is(@ }oo where B8 = (¢4
&ﬂ‘,)q~ m = 7T O

Proof:~ Pick ¢ and (3 sxiéh that 05(7{4(55’; 4 Find &—¢ , and
é—CQ mod 1 and let the\se bé 7 and 5 respectively, If 12§ £h§en
5-1= (5 o+ Now g@q\%@)})ﬂ and Z"(ﬂz G[O, ,,_J with the condition that
Sof., zg [\§]  if and only if {8 { elet @] - 1t §< 7 then denc'te
byl'l:[o')gj and _’[g:[ﬂ 7_2 . We have then ?{?,%'Zse }:0(1(5] ~ if and only
if Sud €T, 0T, - Now I,0I,=¢ and [T,0Tq|=1T,|+|Ty]
(where |I\|denotes the length of an interval I ). Clearly eas %o('% iss

_ o
1. d. mod 1 we have ((7 is u.de mod 1 also',prcgving the lemma.

Ny
Proof of theorem 2: It is known that %1\_9% is u.de in [O, ﬂ (see [2]

: 3 .
so that lemmas gives
-~ % WR, - —
2,4’(‘(\) =z . O(A) . (9)
ODanax
Now pick any 7¢ 27 and let M be a residue of A with DME& 7
Clearly ' ,
/ N G Y B — & AT va
_ﬁ(%*/u) 9)%%(/”!’?‘/\&)3{: - % rué@‘}'/ @?
Now AD is irrational zo that (\mﬂ@) is u,d, mod 1. L.t @{ﬂzm?«@
in Temma 3 and ¢ =a® 9B 1= 4 is w.d. in (O J Applyin
P9 56, e fompos) 5 wa an [0, aorayins

ILemma 3 we get

e FURER Y ST ¢ .
g.Am) = 557 S (10)
s Dan<x s -

k4
v

k- e ) - -
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Now (9) and (10) together give that £e& U( A) as the choice of
was arbitrary, Aas _, itself is arbitrary,.{,l is a unifoﬁnly
asymptotic function proving theorem 2,

We now study the behaviour of functions over the set of
integers relatively prime to an integer, Here our interest shall be
on function which can be expressed in terms of uniformly asymptotic
functions, Here wé come across an interesting analogue of the

Riemann Zeta function. Define for $S>1

-—-) ¢ . - ,
gﬁ<<m~ ;_;_ , LU =LG6,m), 2e,0)=e> (D

(n AD =
as (n, N) ; !1 <_-f;( (@,N) = L— )-— 1¥al n the following are
immediate deductions,
poie ) i = z . ~\4 |
> i \ N
g,%g- : Z(ﬁ)/d) ;‘21 ,(:L)s Z(S)’V/ 5 %2_ f‘('%): 4’(5—_”/\/) (12
(M0 = @, M= | @’L’II\O"/ £ 0)

under suitable domalns of convergence, where &D denotes the Euler
function j 1 /tA,Lne Moebius function (see (:1.] ) and T
XX En ) @:ﬂ)~’3
the function mentioned in (lj Let us obtain the valLe of g(s )
in terms of Z(A) Now/11)implies that
' A (5. 1) Og (WY/
2 (8) = Z' >”c:s M= 3 déz‘d M) = [s ) Oy (NV/ NS
which gJ.ves = qlN 5 here OO (M) denotes the sum
gac N =) Y /6 wY 5
of the Sth powers of the dJ._Vlsors of N,
We give two more definitions before goinc_} to prove the
theurems, In (2) if £>9(A) we say F is strongly asymptotic
over A, If /,<vg<A)then + 1is weakly asymptotic over A. Further

let R(N) denote the set of all 1nteger§f r)elat:vely prime to N so that
SRV =PIM/N  as R -Ju Ay

where A ?\w-r/ujzmth O</U (/\/ ,U being thej nurber relatively
rime to N. Note also that if PeU(nN) there

S D ~ P (V) 4 +(nD
O<n<.x YIGK(N) v 04/\ Lo
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: s .
Theorem 3: Let {-e 4 Gdland } +(n) = C‘ X + O(Z,5 ”{) where
<n<x (n, N)=)

€€ >0 anmd S>1 . F(n) = = f(d) then F is weakly
asymptotic over R(N) and d)n (
> 2 =(n) )
Oem =i 0, = _ V)8 s,N) : (/5)'
M —Sod: f—\r Etn) N NR(8)
Proof: From the de;‘.l(nltl'\n of Ewe have
m m ’YY'\ _g’l’_i »
SR = 2, 2 D = 2, 2 fe') = 2 C‘[MJ +5<}_—cr
M= mdi d=) o'z
2. S—&
' i
‘(a T C(a) +C<( eV, )}
Ev
= C%’{s 2 —= T O(”"s)
m,  6—€ | |
(as }-:; (g—v) == O(W\-é> ' where//} S-€ 1s <L, = 0o > 1 as
§>1 )y, | . o % ,
S / L o(m®)
= Cm (Z L - 3 —-—) +
dr-l ds d=m+/?lé
= cm®ys) 4 o) + Am)
. 2 Ccm® Yeo) 4 DCMS_) (14
ow bed| bO
. . =
SEm b3 S Fe) =3 2, £(4")
N= N=1 dlm = =
o= QN = (d, )= @hwn)=
. n S 3 S“G
”d?’, LE,%I)C} 21 & <a"—‘- ) as £ € O(w)
Ld,‘N):I O_O_‘_L‘ . -
= C»‘E(N)’Msd_/ 45 + 0(m®) (75)
A% CH N)._,

(fFor reasons similar to (14;.

= ?(N) ¢ MOl ) + o Cri)
Now (15) and (14) together - give (i3). and as Y (S;a) < Y (s

we have the limit < S(Rr (N)Y) or F is weakly asymptotic

over R(N).
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Theorem 4:—~ Let ]C be a function and Fn) = 4-/7@') If F(u‘(‘/u) V/VE-Z+

U =) = K xS Ofx°€
=N N e ¢ Ry, & >O S>> 7
o<z K, M) = ) Al
then F is stroncﬂv aoymp tic over R(N) and

and

) F(n)
o N= (/5)
nzt,?¢ ‘ @»im o _ P F)
71— o] . '!.,.x {( ) NS E,A)
71
y,._
Proof:- As F(n) = l~((, , we have from the Moebius inversion

formula (see [1[) d £ () = =, /‘4(6{) F 5{7')

.Now ) ,;'1' [M
. = > Fd')
SFey == 2 med) XG) = g., yca)
7);, y):/d,!“/\ _ ' =
"L [crd” \
= < /\A(d ‘\ > }/..,— ()(yy)5> (’FOY Y€asSons Simiglay
5{: -J .
! “ =) “Q@)

= cm® 3 /V‘(f_o+ omS. > O( + o(m®)
Of:{ d“'}’.’-ﬂ
AT o
- ._c._.'%.._. + OCMQ)— : C17)
fn;i‘m (12). Again ' 4 [ﬁ—v{'}
ad DY N B Y > Fd)
> fo) =3 ZH@FR) - A=
7"‘! 7=y M o, N) = ! oo
: ~..@‘/N) =) Q’f‘m)w G0 (> ¥)=1 ,
/N s _ -
:( S, p@(ERT G ) 4 o6us) Qs FE0V)’
47 \ A~ N, .
(4, %)= R,y
—cms = Z‘iﬂ"ﬁvif_ O(Cms 2, 7_y + o(m3)
d=7 d= pn - d=m]
(d;!\.‘_):/
cpnd \p(»\,) 5
N 5, n) N + 0(m

Now (17) and (18) together imply (16). Now as (s, V) £ %(6) '
the limit is > Wewdly = §(CRCN)) which gives that /~ is
strongly asymptotic over. R(N). The proof is complete.

We now deduce two interesting results from theorems3 and 4.
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STy R . £ k>0
Theorem 5:- a) Gu(nm)'= =d /Eeoq For

—YI
BN ey ,-—-—-._._LP(ND “?(Kv”;/\f)
Al S K+1) ~n
&Qijm) =1 o
b) :E,»f\ W) denotes the Buler function then
) = 2
&, m0= | |
Proof: Set £ (x) = 2%  in Theorem 3, Then F(Y):):-GZ,(’)’)) Here
Ce= :‘—<i: and S=KkK-| > 4. Part _(a) follows from (15), Note that
/ R | -
Feow) as f is uniformly asymptotic (Lemma 2).

Set F(X)=X in Theorem 4. Then £ (7n) = PC(n) . Here C= A
and §=Z , Part b follows as /~(n)= ) for Lemma 2 gives that
F is uniformly asymptotic,

\ - s L
Our final theorem deals with the case 2 FCn)ro € X"+ Or 7 )

! 0<ﬂ<‘>€ i
where C .’ 70 and 5= . ‘ @y=
NEZ . g Je .

Theorem 6:- Let & L)CN) and 5 f(‘r)) ,‘VDC +0( 1 )99\/ RaC R Y-

\ b, @ M=) |
Let F(n) = ?f(d) ’I‘hen F is weakly asymptotic over. R(N) and

alm
. S FCYD A~
s W”’ = (%7‘)‘) |
m— 00 F(?’i)

’ 347{! ~rn .
Proof Very much similar to the proof of ‘Theorem 3. We omit the details

but give the sketch of 1t. | ; x
The only change comes ‘in '(15) where . - Sg 1 . fo ——=gcd)
is unlformly asymptotic, (we deduce this from Theorem 1) and so an

extra \P(n)/ N appears in the limit.,




5 .
,

Corollary I@?bﬁgepresents the function given in (1) Then
" 2%
= v — (vY)”
>, T(m) = (‘P /mloj’m-l» O(m)
N=y \ N '
(ﬂ,md::l

(2 result known to Cordon and Rogers £31)

Corollary follows if we set K= O and use (1) to

meo
estimate 2, C ()
=
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De Po 100~140 | '
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FUNCTIONAL ANALOGUES TO DISTRIBUTION AND DENSITY

Krishnaswami Alladi
Vivekananda College, Madras, INDIA
+* +* +-~k +* +* +* +*

In this paper we discusgs functional analogues to the concepts
of density.of integer sequences and uniform distribution in the
sense of Weyl [6} and Niven [5:)

Part 1:

Throughout this section whenever we refer to a function 'ff

we mean a function on Y_O,]?_) which has atmbst a finite number of

Ay

: o0
discontinuities and £(x) > 0, O« x< 1., ILet A= {o(n'ls be
n=

a sequence in {O,' 1) and 'f' a function. Let X, ¢ Dbe real

numbers such that O0<L& < B <1 . We denote by

F(e,8) = 2. 5(u) (1.1)
o e[, 8}
l&an
and by
R, @ (1.2)
D, o) = (oD ~ (- ] -

If Dn(q)@) —> 0 as n-3e0 for all Ogwygf<l we say that the
sequence {O(n} is uniformly £ -distributed in Y(_),ZD and
denote it in BRdrt by A is w,d(f) in {O, 1) . This is the ceéntral
idea of this section,
oo :
If A =20(n% denotes a sequence in @, 1) we say two
n=1
functions £ ‘and g are A - equivalent, {(notation: fr'A\J g) if

A is u.d, (f) and w.d * . in [O, 1 . Clearly this is an equlvalence
. . le 6
relation, We shall characterise in Theorem/the relation f(\) e

A Y




—D

Nete that if f(x) =1 and A is.u.d (f) in fp,l) then A is
uniformly distributed in the sense of Weyl {6] . We also apply
the concept wd. f' to numérical integration,

et T = Jot.p) «lo,) . ret Xp be the first number
of A = {O(n}oz_lc [o)j) that lies in I. Let O(y‘z be the next

-.\‘ '
member of A in I,... If {63: (XVLi for i =1,2,3,... then
» we

B = {F} is called the restriction of A to I- /\begin by proving
' 0
LEMA 1:1: TE A = § O }m " is uniformly distributed in
Eo 1) and IC [0, 1) then {,5 the restriction of A to I is

£"]

uhiformly distributed in T,
proof: Let {w,p) & lo,D. Let «' @' be real numbers
with 0("'<o(1<€,' & . Denote by

\P((XJ@> 2 3 Fon (18 = 1
xizfi <, iem
Now let

! g&,&“%ﬁ’) é'——fX'_ _ "PW\(D(',@'? Lim _fi,:'_(}:! (1.3)

= PR

ﬁ@(ﬁ)‘",. Vil '"‘,6—~cx - an TP el

4.
14

Now as ﬁ“ = O(na we deduce that

...J
1 _
! s 1.4
KP {3) 0( e.ro({ (5] (A= o ( )
ot
Now as A is u.d. in {O,l))@,‘ ~ indicates ‘that LPmko‘,ﬁ)/ﬂ. ol &

3as m—>x ., Moreover n., —> “,/fp —a) so that from (3) we infer
v " y

’ )
that Dm(O(')@l ) = 0 for all x <x' <P <P which establishes

Lemma l.1.

!
For a more guantitative estimate of Dm(o(',fj3 ) one can show

1"
T using that



.

& (e = 8 < 2D
o= L, ',pl< (LC:)?)J;‘)C[N.@J m B ” w1,

'here DN denotes as usual the discrepancy of the first

! terms of A,
By a rational step function £ on [Q,il we mean a step
“unction which has f(x) ratioral /O« x €1, and its points of

liscontinuity y_, ¥is eve- are all rational,

Y4

THEOREM 1,2: If 'f' is a rational step function then there

xist sequences which are uﬁiformly f-distributed in Lp,i] .

Proof: Let the points of discontinuity of £, yl"' Y, be

~ational. As the y,  are rational it is possible to subdivide

»1] into intervals I;+ I, eeese I, defined by points

= % = = \
) XO < xl < Xz ‘4-- e o0 -4 < Xk-,sl Xk 1 Where Irr [Xr"'l’ X'f/ s
such that sir\ = % + T =1,2,0,.K, aﬁd the Yi s fform a subset of

-he xjs. We are now sure that £ is contim.ous fn each Ik and

s also constant, For x ¢ Ir let £(x) =g_, "+ r=l....K
: r

>onsider the rationals Sr/qd’ r=1,2;40.. XK. If g =: [qh ....3q£]

lenotes the l.c.m of q; S them rewrite S las P

r/q r/4q

Y
:=ll2)oooKb g

o0

Consider any sequence A = E}Ynﬁ that is w.d. in (é,i) . Let
Nn=j

&r denote the restriction of A to I, . Clearly by Lemma 1.1 each

\r is u.d, in Ir r=1;2,40.Ko

Construction:-~ Pick the first’ﬁl members frorm Ay . the first

>, members from Ajeo.. and put them side by side with members of Ay
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preceding those of AJ. if i¢ j. Clearly we have p; + P, + oeeaDy

mermbers. Repeat this performance with the members of A; . without

its first Py members and lay these next the P members formed.

cO
Continue the precess to get a sequence {ﬁn} which (s a
n=1
rearrangement of A,

: - OO
Claim:= Bz $@n3,., 18 wd. (£) in o, 1)

Let 0 € X < (6 <1 and n an arbitrary integer with
- .
n= ?\'P—!—/‘-ﬁ, o S./L < ! i Iet YD{,(’{)) be split using the

xjs as ‘{:o("xz) )[SCQ’XQM\) P [%M~.7f3)'. Clearly we have split

up ]:o<-)(5> as

o
[o,8) g,é[ 128 j :;:)Qi[a,p)n:zd
so that ” |
Fn (02 8 g[o% (rg)un =5 %g:’éﬁéiomf
which_'reduces o . — g o
A0 = j 57 /;G[a@ﬂn* 720 Sy (L) Lot
wgere—x'r = [G<;€o3.f\-_7 g P, 1) :O{E,\I‘:Liéh. Clearly for

l<r<m we have
! — / >y ]
L () = Prp(Ty) +0(P) = Ap, + O(P)
For r = 1 we note that the recstriction of A to Il is wd., SO

that 9( o
/ _ A O(P) + o(a)
¥ (z)) = PapTe) +0(F) ITE} by + O(FD

and similarly

o l2],) - 04Tl 40P = S g, # 0P otA)
1L ]

P




s0 (6) reduces to

A Ed = ( Z ‘7/7;\p)+3p£ % Zg-o +3J>MM B—Zm-1, 0(p)+ 0(2)

7= 4 ey T

= gAML+ + ;\oyﬁ___ -Mq/ Ty O + o(A)

= K29 (p-x) + O(P>+0 (N (1:7)
where K & 1/ )Il ] . élearly we have

(0,1) =KAg + 0(P) + O()). ‘ (1.8)

!

Now (7) and (8) together imply thus as n -9, (A —0) (2) holds:
with & replaced" %Fig so that a6n§jil is u.d.gf) in
[0,1) as claimea,

We now apply the concept of u.d.f to Numerical Integration,.

, %
For the step function £ discussed above 1let £  denote

£x) = _Pr___ when f(x) = % - .9
p lIr} . ' Sp

We call f£* as the normaliser of f£.

Let R [Q,;l denote all Riemann Integrable functions in [O, l]

We are now in a position to prove our main theorem which is

THEOREM 1,3, If £ is a rational step functlon and

{O(nﬁ,h_l c [o 1) iswa (£), and p€ 2 Jo,1]  then
aldm, L z S = f A1) £ el x

L:‘.)

k
Proof: As in Theorem 1,2. we divide [9,1) =éil Ir s

and f(x) = dr g + X S I. . The sequence fal is renaméd as q%/

here, We can straightaway wrife



" ‘. | |
z; PO = Z 2 qST((x:g ' (1,10)

-

Clearly we have
kﬁﬂ(lv) = EZ - O(i)
) (&

so we rew ite (10) as

K,
. T '
/ §!¢(0(:) = 2%( DL S by aan
" Z:’_' - Lot LQ/)(I”)ODQ("F
' c<n .

As the restriction of A in I, is uniformly distributed we

deduce from Weyl's criterion [§] that z, —_

Lo / vzy<ﬁ(0(g) = fqﬁ(fx)d?(

on applying (12) to (11) we obtaln

lim L qum)._ 3 M fqﬁma?x fcﬁ(oe),ccx)olgc
=)

N~ o)

' proving the theorem as claimed.

A~
n @) ' .
Corollary: 1lim e ' CE_;_‘_ :fé(’ﬁ) oA =
Moo N = FT@D )
: /

Now if qS)g-* R 0,1 (with fg*(tx)d'x = | ) then one has
o : N

THEOREM 1,4: There exists a‘sequénce u.d, (£) in lb,l) ., where

£ 1is a rational step function such that
I § P (o) _.j qS(z)j (x)o('x/ < &
£~
71 L=}
This is a straightforward deduction of

LEMMA 1,5: If ge€& R [O,l] . then there is a rational

step function £ such that

U'gzz);&’(x) d:c}<8 ¥ §»0
S0 ,



We omit the details of the proof,
our final theorem of this section characterises £ A e ¥
THEOREM 1, 6: If gd } A is w.d. (f) in (O,l] , then

.nl
a necessary and suff1C1cnt condition that Fr\) g is that there

_exists a positive constant K such that f(x) = Kg(x) holds for
all but a finite number of x [p,i]
Proof: The sufficiency is easy to establishs As £ € R [o,i}

and £ > O we have

Fl’l (0,1) = § :F(O( )

O(L)L n
as a monotonic increasing sequence:diverging to infinity. Thus

JW 4’\,

db
305 eé § kg (g Y4+ ECo)
) Z'l o &L

It

=)
S gQom) zy’i(o( Y+ £xg)
= ‘ V\jf«x) 4 0d)

— L= el

(k 2 F) )...0(13

=1

(13)

c»

As El £f diverges if we proceed to the limit as n —> , we

observe that (13) gives fcéj g,

Now let there be no constant K such that £(x) = K g(x) for
all but a finité nurber of . Thus there exists a constant
¢ such thet f£(x) S cg(# or £(x)« eglx) has infinitely maﬁy
solutions. For otherwise f(x) = Cg(x) for all but a finite
number of x which gives a contradiction, Now If Dboth inequali-
ties have infinitely many solutions then there .are constants
Cc?, C" with C!'< C" such that £(x') = C'y(x") and £(x") = C"g(x")

at points x', x" which are points of continuity of £, Otherwise
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the infinity of x which have £(x) > Cg(x) must have two.

points of continuity V'vhere ;g{; is distinct., Denote by‘ K

£ (x)

S where x 1is continuous., say X and

O

the maximum of

» . g =kt )
there is a point of continuity of £ and g where (f (x)/g (x)f-:.K::K.
) \ _ . O (x)
{ g C e t < K.
Thus consider an interval I with xoC I where K'<« W

For this I we have

(o) , |
Cg'\ A S (KIS + O(4)
SR AYY [ > O(ﬁei-s ?.é "

}Z'9<°(c) 2, KLy + O(4)

(€< e wn
so that
- S, 9
lim in . e
N o0 GeD PEN o AT
S N (o)
L i
&n
a contradiction to %D(nffui = asud.(g)e Thus £(x) = K g(x)

for all but a finite number of x [O,l]_» proving the theorem,

Part 2
Now we take up the discussion of functional analogues to £he
concepts of .dens-ity and distribution modulo an integer, in the
sense of Niven ES] . Whenever we refer to a function '£' in this

section we mean f(ri) > O ne& Z+ = { 1,2,3,...} and

- .
OZA {_::&bo diverges to infinity with x monotdnacally.

+ - 3
et A C Z . Denote by Af(x) and Zf(x) the following




i .
Af(x) = Zl“f‘(ﬂ) 3 24(’2) - 2, £,
- o<ngEx ’ o<ins X
mE€ A me :.'f’+

we denote by Sf (&) the limit of the following (if it exists)

lim Af(X) = 84:(1\.)' (2.1)

x = O Zf(x)

‘and call 85(1&) as the f- density of A, When £(x) = K then
e '

Sf (A) = §(a) the natural density of A.

The menbers of A shall be representéd by a, s N=),2,37e600
where a, < aJ. if i < j. We only discuss sets which have
infinitely many members for trivially gf (A) = 0 when A is
finite as Zf(x) S o0 as X =S O

Now we go to the generalisation of Niven's concept of uniform

distribution modulo an integer, Denote by

a_(?C) /M,A) = 2 + )

+ o<n<Ex, M€

m 2/‘*("%00{)\)

1f

lim a_‘,c(zz/“‘ﬁ): N (202)
X0 A @) A |

for all O 5/,{ <A, ME z7 we say A is uniformly f£- distributed:

modulo /A and denote it by A is u.d. £(mod A ). Note that A#1
for A =1 i's trivial and moreover uniform f-distribution modulo 1
(in [0,1) ) has been intfoduced in § 1.

The most fundamental functions for uniform distribution

happen to be functions uniformly asymptotic modulo A introduced

for the first time in [1] by the author, We describe them briefly.

_ If we have
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0
1im D;;:‘<dx(ﬂ) ' J)
SRS . Za{x M
X>o0 MNpmod) 1= Lo iﬁ*— (2.3)

S fen) 2 X200 Zg ()

o< L

+
for all © f/b( < A, M € Z then £ 1s uniformly asymptotic
modulo A (or u.a mod in short,) By U (A) 4is meant the set
of all £, ua mod A It was for example shown in [1] that if

(f‘ ) — 1

1im =

n oo T ~ (Ro4>

then £ & U(Q) YAe Z+. However (2.4) is not a necesséry condition
as is demonstrated by the follow:Lng example,

1 & is irrational and f£(n) = 710~ @] = (9), then
£ e O(A) for a11 Aez” '

We begin by proving

THEOREM 2.1: If £ € U(QA) and gf(A) < 1 1, then

if A is u.d, f(mod A) sodis a =27 - A,

THEOREM 2.2: If £ € U(A)and gf(A) =1 then A is

wd, £ (modA).

Proof:- Denote by ac (x,/* ,A ) and Ef(x) the following:

._)tf-hﬂ . = =, £
CL m)/“"w oang L NeA \A?C = b=V X
N= Qwod/\) - ne A

with the above notation we deduce that

ag (o MAT) + g x)/uj ) = Belx fanA) (2.5)

Now (2.5) reduces to
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At g L B R0 _ZG N

‘ : (2.6)
Af (x) Zéz (x) Z_)c ) ZOC (%) Z':F (x)
Now as A (X)/Zf(x) - 1 - @DC(‘X)/thfx))we infer from (2.6) that
A |z i :
Z,. (% N |
jc( ) zgc(x) _ A_f_(@ Z:,C 20 aA+(x) (2.7)

~ Now if we proceed to the limit X — e0 then‘ﬁ (x)/Z (x) ~'>S:’F(,‘4’)

AFurther as £ e V(N) Zoa(X,/«w(\)/z#x) —> T by @oa)

If we assume A to be wd.f(mod D ), the right side of (2.7)

vanishes because of (2,2) and (2. -3)‘ But as @(A )<.1, SG(Z) F0

as 8‘@)4-:{3(4) Thus a (x /u_,\)/ﬂ( )———) /2 oS X 00

which means Theorem 2,1 is eqtabllshed.

If c?; (A) =] then SZF(A) = (0 so that the left side of (2.7)
vahishes, 'I‘hﬁs as £fc O(A) we see (2.3) holds and so (2.2)-.
hbids which means Theorem 2,2 is true,

Examples:- 1) If A = F denotes the Fibonacci Sequence given by

F,=F , + F o, nx>=22 PF =0 F =1

and if

I

f(F)) =2 when n= 0 (mod 3)

It

£(F,) 1 when n# O (mod 3)

then A =F is ud. f modulo 2.
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2) If A= g denotes the set of sguare free integers

and if

£(8) 1 s &85 s = 1 (med 2)

i

£(s) 2 s & S S 2 (mod 2)

1Al

h

then g is u.d. modulq 2

THEOREM 2.3 If Acz’ and '£' a function such that

xy = £(x) £(y) Xy Y 2zt then gf(A) exists and is

equal to S\(A)5 of S(A) #0 ex ks
proof: It is obvious that

1im  £(n+l)

n_..;ao f(n = 1 (2'8)

We shall make 'f' a continuous function by the following pProcessSs

v +
For n< x < n+1l, ne? define f(x) as satisfying

f(x) - £(n) = £(n+l) - £(n)
X =n 1 ‘ (2.9)

Clearly from the definition of £ 1in (2.8) we have either

£(n) < n+1 .
- = £(x) dx <  £(n+l)
) _
or
n+1l
£n) > (f(x) ax > £(n+l)
.

Now (2.8) ifnplies that we can write

n ,
f(n)=J F(x) ax + O (£(@)) .

n-1

which gives
X
) -
> £@) = jf(x) ax +  2,0(£(n))
P2 07% O‘(/" f} ' ,
=Lf' (x) ax +0 [ D f(n)> = z.(x) (2.10)
o ' &ox.;'ag_x :

as»Zf(x) —seoo @as X —» 0. If $(n) =8%0¥ and a the

n



nth member of A then
Ay, = no + O(n) (2.11)
where —S_ E= 1/6‘. . Clearly from (2.11) we have
> . ,
25 = T Fn8) 4+ o ( Y £(m8) (2.12)
‘ O;nesf: o< Rk, 0<nE < x
| 0<nd < X
Now one can show thét 3 ‘
fng ) = 1 V) ofx) ax o+ O(f (nd ) ) (2.13)
(21-—!)§ .

so that arguments similar to those of (2.10) gives on putting

together (2,11) and (2,12) . ,
AX)E :

ag(x) = D<3-,;2(1‘1) = S(A)j £(x) dx + O ( Zf-(ﬂg) ) (2,14
7Ne A .0 Os AL

R
. &

Now as xNVy =5 f(x) o £(y) and as Zf(x) —> 00 as x > cp one

can show that
£(t)

. f(t) = lim = 0 '
T 2. (%) (:_\,,o\rf(t)dt
: )

which is the same as sayiﬁg t eot' gives

Zf(t) ~ Zf(t')

and | - t t!
j‘f(x) — j £ (x)dx
O o

For a proof of (2.15) sée Ll] . Thus (2.14) by virtue of (2,15)

reduces to

. . X )
A (x) = & @) S £(x) ax  + »o( Z:F(ﬂ? (2.16)

& X
> o<ne

clearly from (2,10) and (2,16) we infer
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1im Af(X) = g-’(A) = S(A)

X <508) Af(x) t

which estsblishes theorenv 2, 3.

One can also show on similar lines of reasoning ghe converse

of theorem 2. 3.

Xy =D AX)evEly), x, 7€

then so . oes g(A) and g(A)

ctually theorems 2,3 and 2,4

THEOREM 2,5:= If Xy = f(x)cv f(y) and acztis

# 0 then & is u.d.§ mod A- Gemaéovéﬂ‘gz;
sad : ) :

2k

u.d. mod A , with g(A)

G
O

PART 3 :-—

- nm .
We now go back to sequences A = gO(nf é[O, l] that are
} n=1 4
u,d. (f) (where by f we mean a function with f(x) > 0, and at most

a finite number of discontinuities, in the sense .of § l . We
discuss analogues to (2.,1) and (2.2) in the preSent section,

If A be any modulus and /,ce 27 with oM < A) denote

; < oQ
by A/&'= Za}\n+/u} . If each A/u ,./«/\:o,t,---af—l is u.d..

n=1 ‘

(£) in [O, 1] we say that a =§_0(n?J is uniformly distributed in
[O, 1] strongly mod A  (notation’A is u.d. (f) in [O,l]‘ S. (mod A ).7
For any sequence B = go(né A { n & A" C_Z+} ., and

— - & e
B = gtxﬂeA LﬂéZtA?[ denote by Sf_(B) and df(B) the following

e,

e

RPN G
Naco N

limits.if they exist T
5\ _ Ya (0,1) . g (B')
f(B) = lim Fn(o,15 ! £
N= oo :
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where _

F (0,1) = z £(&-) \P’Q(O,l) ?:P(O(D ﬂP(o)i)—— Zf' (o)
= o(~e’x5 - € B

Cleerly as B =a-B, §;®) +3,(3) = 1. let A be wd (£)

in -[O, 1]

THEOREM 3, 1: If§f(B)< 1 and B is wd. f%&),l] then

Sp is B .

. IRe . _ .
THEOREM 3,2¢ If§.(B) =1 &nd B is wd. (£) ®nl 0,1 n. &

= Proof: With the usual notation we have

P, (o, 8+ P, (x8) = F, (0, )

-~

. so that we deduce

GO £10,1) L P B B, (0,4) ) (3.2)
¥,0,1) " F,(0,4) ?,(0,4) [, (0,4)  Fu0,)

Now as (3.1) indicates that
kP,,,co Do ®,lo,4)

we rewrite (3 2) as
B (0,4) | Fnlt® p e ] R B0 |
F.0,4) | \F‘ (D, i) k9‘7’,‘(0,1’.) Ff0,4) 2,0,

x

Clearly as n — o0 F (X0 )/F (0,1)>(-X ., Moreover
$,(0,1)/F (0,1) > B . (B). I£S5.(B) < 1 then and B is wd

f, CO, 1] then as Sf (B) # O we infer theorem 3.1, If CSJ;(B) = 1

then® (B) =0 so that theorem 3.2 is true,
£

We return to the above-theorems after proving

(=0
THEOREM 3,3: If A = {&,] is wd.(f) in [0,1] s (modA)
n=y



£,

and ‘/\/@-‘jﬂﬂdivides A ., then A is wd. (f) in [O,l]

!
Semod A .
Proof: Theorem 3.3 is a direct conseguence of a concept

we call blending of sequences, If Sl,~82,ona,s? are K
kY

. th S
sequences whose n terms are represenced by Sr ’

s}

= 1,2;4c.0Ks Define a seguence

K

n = 112[ oo o ar<D
- s -5 , 0L M<K p=hz,. .00
o S Akt M7 SE o = i

~ L
is called a 'blending® of 5.; S,s eeeeS » Clearly
1 2 k

S

if each Si' 1=212:000:k is w, d, (£) vin [b,il ", S is

alsoc w.d.(f) in [O,i} . In the above theorem have
/iu /u :o,uz,..ﬁ.yf as u.d., (f) in [.O,lfza Now there are
t ] ’ y - .
med A (Kot foaue A rermtalolon ! omaed 24 . Thear cAaraes
exactly 2/ | classes ; determine sets AL+ A, .- A
i 7 4 : Al @
A i Yt s Aan = A
_ 5o
M=

- which when blended give ’Q/M’ S ¢ ,3%7£AUS

| : _ . =
: an S . b o a0 !
Thus /%u, is wd.(£) in [Q,l}r for /AL = L%"ZI‘. a{*’?

i

proving the theorem.

‘We have as a corcllary

r, 10
COROLLARY:—= If 2 =2¥X $

L n =)

(modA ) then ¢, § = A is wd. (£)

is wd. (£) in 0,1 ] . 6‘61«07;?%’\/
v

Now the akove corollary‘together with theorem 3,1 gives
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'THEOREM 3,4:— If B denotes the union of some of the A/u, ’

and B =A - B, then both B, and B are u,d. (£) in [0,1]

hWe¢ omit the details of the proof,

our next question is obviocus. Are there sequences (given
an f£) that are u,d. £ S(moda) for some ,| . Consider the step
function £ in [oO, l'\ and the number P we defined. Define a

cyclic operation

D) = = .
C(X) = C(Xllx?..rooooxp) \Xp;}xl.,.xp’_l)
and C)\(xl,xz,...x ) =€ (C...,.(Z)— . 'mes,

Réarrange the ; so constructed cycllca ly mod - as followe,
Define for AC Z° A

| ( Q-0P+1 2" YAP) = (%"U‘P’h’ ﬁa?)
One can show on rather straightforward but laborious computation
that if {O(ng were u.d. in [, 1) S(mod P) then ¥ is w.d. (£)
in [9,1] é.mod p. (Note.Whenever Vf (x)=1 wquit’ mentioning f).
Here one has only to show that if A =((L'D(n2 is w,d. in E), 11‘
Semod P, and ICZ 0,1 then the restriction of A to I is also

u.d. in I s. (mod P), Thus we hrve

THEOREM 3.5 If 2 =7{«:{n’7§°") is u.d. in 16, 1] s mod P and
. r‘—'l S y
f a rational step function \thh P as defined in Theorem 1l,1l) then
A can be rearrangod so as to be u.d, £ in Lo,l:( : >d P. We'

conclude by producAno sequences in 0,1 “hat are W& S(mod )

We observe that the two most common sequences possess this
property. ‘

THEOREM 3,6:~ If € is irrational and 0{7,‘2’719" [Y\G’J:(’hg)

thensLO( is v.d. in EPI sSmod 5y YAezt

Sy DProof: We observe that

. (mepde) s (n{a0hiuo)
Now | i3 dirrationa. and ) constant, "
Ao /u B a és an Thl,ls“ (g}\rnwgg)

o’




PO = e = 0,

s (mod/\ ) ¥V AE

ie wd, in[0,1] or §&{ ic wd, in {o.1]  semodN Vaez”

The final theorem is more complicated tc prove. Write the

seguence of rati onaLS in LO' 1»{ in petural order, To be more

precise the rationals in the Farey Sequence of oxder mn (see ZBJ )
N :
are written in ascending order and precede those of the Farey

- le%a)
< . i , )
Sequence of order n+l, This set ig denoted by }rnj o We now
L

show

THEOREM 3, 7:-- Tha scquence %r “is wd. in LO,l,

.
i

- Proof:~ Le% \JD(n) denote the Euler ‘{) function, We know 3

and,

b =< -

?(Vfﬁ‘) = ;}23 -LPCV;): om D (mlo w.) (3.4)
=} Tz

Thus S?(m+l)/f(m> =>4 af m-—3> . Let A)/»(, be given

integers with O,{:’/M < A . Denote for [&(?1 CZO,:(:L’

Yl @ - | B
‘(Z‘) .\{va (.‘ r.c’\/ 6) L ’ (30 5)
ff ~1,<waf//i)
and - < g
W, Lol )“‘ - Sy N (3.6)
‘,’ e LQI"(:)') 2 t -~ M -

One has_frbm (3.5) and (3.6)

\P’Y\ (O;,ZD:" n= ovn ol g‘)(o}j):@ﬂ%)/ﬂ]

. Now consider a rational j/m' with fixed denominatorim', Clearly

the number of such m' such that j/mt € [N;(%) is LP(M? {SM’,)--* '
3 )., ¢ ,»i,c',i £41

where

30(7} 1) = )



The number of these

is
t (3

{

i RN
Wine, M) —

16

A

Now summing (3.7) with m!

from 1

- le ;‘)

{5\

(Pc—]': { m)

Thus

CE%%@»
(M)

49 (E;}(z é)
f

(01
»(m?)

= [o(F)+

Ww 'C)(’VVL;’

Vg

(1)

__!._

A

(B =

o, @)
- (p-QO

ﬁﬁ(m)

where D (&, 8 )

terms of ri o

D, ) « 20,
’@(m} E-Zg\'m)

Clearly

‘ . T :
(see Niederreiter L4j for details)

~ (x.8) =0of -~
’Ug_ﬁ(m)lz ) B u( 14/.‘)
thus
N i kf’i ’% (D,fb)
9}0‘%) O<pzl Pl)

For any integer n,

Now (3.4) indicates that n - & (m) =

a more general form

v

there exists

to

~o(L)

so that (3.

m

j/m' that are of the form Ij.

i _=_/J, (mod A )

O (1) S
m we get
(3.8)
)@, B)
&.‘/@*ﬂ)' + O(m) (
s _ (e
(F o - )/
\ ;44) > \—'J&‘{Q/' 6) (:'\cfl)

such that

O (m)

represents the discrepancy in (-0(,(6) of the first N

(3,16)

9) reduces to

(3,11)

= 0(3)

——

Pw

——

2= )

so that (3.8) takes



20

¥ (v p) ,
%;(éﬁp) = h2%¥_i_ e ()(Mﬂ) (3.12)

so compatation similar to (3.10) yields
(3.13)

or

Now (3.13) and’(3.12) together give that 225(@}6) D0 Ay N— o

v : 1 ‘
or Iy . i EV/& (mod A ) is u.d, in {O,l) proving theorem .

Moreover we have on observing (3.13), (3,11) and (3.4)

2, = 9=

7 vn s
This completes the prdof.
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A FUNCTIONAL ANALOGUE TO KOKSMA'S INEQUALITY

Krishnaswami Alladi
Vivekananda College. Madras-600 004, India

* xhkkk*xk

This is an addenda to "Functional Analogues to Distribution
and Density" [1] by the same author, and s¢ we refer to this
paper for necessary background. We actually be concerned with
§l of Qh .

Let R‘[O,l] denote +the set of Riemann Integrable functions
in 0,1} , and let 0 & R 0,1 . Let f Dbe a rational step

So 1

. )
function with normaliser £ , and A =7 nj 1
ns

7

¢ [0,1] is wad. (£).

It was shown in.[1] that
=i 1 s
1 2L Pe) = [P0 d

n——S& ' 1N i=1 o

(1)

Now (1) can be rewritten as

4 £
um L Pl f‘/“‘(fz)ofz (2)
: - 4 IJL (\)o

For a subinterval ﬁ?)@) of [b,l) if %’ represents the

4

S
i

characteristic function of [&, g) then (2) implies that A is

\ 1 . . ..L*é

u.d<;§w9 in [b,%] « This also follows from theorem/
X

z = K £ and so f & 2 —
£ £
I n
* = | C* : o _L___
Let now A (t,N) = 2, - (M) 2
(A
and
* e *
Ry (&) A (t,N) t and P (t) A* (t,N) £
N N



Denote by .
- X
* _ i * . i ' (t’)l
DN = sup %RN (t)‘ and by %V ~.0<J_(1 EM
O=st< i
Clearly we have 1lim Dq = }im gg/ = lim D = o,
N-=>o0t V=00 A —> o0

when A is u.d. (f), where D stands for

Dy = sw D_. (&)

Dn(O,t) as in'[;] « With the above notation

Il

where Dn(t)

it is clear that (2) can be restated in an equivalent from
Mo Pee) L
as- <t L _ ) *
nN-= o0 F (N) t=} > o

We now show that for AﬂgR [0,11 with bounded variation ‘%/(Qg)-

tj%t)dt-— ) :[;

THEOREM 1:

\/((p)@

proof: As \Pe = EO 1 we see that
1 .
fP (t) o Pe) ~/ A éjdw; — [edoey =1,-12,.
4 F“‘(/\’) O '
Plainly using integration by parts.,
1
I, = P “‘J[S_D(e)c:t N €3

o
8 *
Define a function Cc (£,x) es

c (t,%) 2 x < €
£ (x)

O Otherwise

so that




2
1

T, =2 [5e Y (e
LT FRy at’c (6 o) dpe) = ey ;]C' o) b pce)
O
A % |
=15 fl—~ ey = L ?5 Pl P }
R i=r ) FXo) =i zf’e(rxt) R
¢ ,
. P ot | |
s—wﬁ-:~~,q@hw) @
Now (%) and (3) tegether imply
?V'A -
fﬂ ey I 3R e ac
Pee)= F*w) {dl oy S e de (5)

O

so that Theorem 1 follows from (5) by the definition of V(%Q)

*
and Dy -

If we had instead considered

J (C’)C{ (PCL)

then computatlon similar to (3), (4) and (5) would yield

THEOREM 2:
 d
Yo x X
_/_2 LS <V(EE + L) S (1)
2 s /weﬂcﬁ $E+ P8

< §V(@)+ PO} &

We omit the details of the proof, Actually theorem 2 is a

quantitative estimate of (2),

* .
If we set f£f(x) = K so that f (x) =1 0 &£x < 1, then

Koksma's inequality follows from Theorem l;v The case £(x) = K

corresponds to uniform distribution in the sense of Weyl
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oN GENERALIZED EULER FUNCTIONS AND RELATED TOTIENTS

Krishnaswami Alladi
Vivekananda College, Madras-600004, INDIA

koK Kok ok

In this paper we discuss two generalizations of the Euler
function SD(n) and use these functions to make estimmtes of
the averages connected with the greatest common divison (a,b) and the
least common multiple [a,b:j of wo integers 'a' and 'b!

§ 1

———

Define for real r > 1 a function ¥ Dby

Z - r
d[n (p'f (d) = o o (1.1)
Clearly from (1,1) we infer by Moebius Inversion [4]
!
r : .
() = 2 w(d (P (1.2)
o ~ dfn g

where p is the Mobius function, For integral values of r, Y (n)
is Jordan's function Jr(n) (see [2] ) which can be written in
more general form

=i
Yoin,x,x, w0 %,) = o+ (1.3)
(a l>OL2 Q”’) 7’1) 1 o<t / i
o<, QA Tgyen @, <x,,
with the notation
klprr(n;x.) = W)’(n)xl)xz_)”'z?’)? XL-':.‘?C, i e w7 (1.4)
C () =800
—§—-’— L)
If n= /,O'L.o(L one can deduce from (1.,3) the following
K v ]
2 } Xo Zy
ﬁ“(n, Z), Xy e Tyl = [xc][12] v [x'v] - z [F‘_ [P,; J»“ [Pa
. 0<el<g ’

5 T °
o<L<J<IP Pi J Pe b5 i Pg |




-

where [x] v__represer.lts for real x the largest integer < x. Now

(1.4) and (1,5) together imply that for integral r

r
Y (n,x) = £ u(d) I%} ) (1.6)

d[_n - d
Then we can define %V(I‘, x) for all real r using (1.6) so that

Moebius inversion for two variables again indicates that
LT
Z (2,2 = [x]

One can show (1.7) and (1,6) to be equivalent from Moebius Inversion
7/

(1.7)

given below, If

F ) = X %

(n d/n £ § ) g
then

f(n,x) = y o ou(d)y Fo( d’ d)

4| n

Actually (1.7) indicates that

_ . |
P (n,x) = 5; Yol + o(x" ™t w(m) (1.8)
n . . :
and
X
P (DgX 3550 0ax,) = -r-ll'- B0y % 9 %550 0aX, _1om + O B (ra%) 3Xgye X, )
| (1.9)

where ‘t(n) represents the number of divisors of n, We begin by

making an asymptotic estimate of Yo dn),
THEOREM 1,
1] _
Z Pind) = *® . 4 o (x /oyx)

O<nex (1) ;"(TH)




Proof, We havé by (1.2)

S = S Z/(d)("’ - /,M)g_oc

O<a(<>c o<dlg X/ A

O<neX o<ngx dln
S(A
(d)s\G %
0<d < \;‘* /-\d)/(‘“) ( )) (

- x’r:}-l Zl/b((d) + O<X /M(Of;/l>

T ' Tekl o<d<x@t /
o<dgx
g R A )
22 S p0 "T: o i ? 4 ox” /033(;)
== ! T+ AT+
T d=1 d>%
yas s Tl ! id
L, ol 3 ) + O )
a1 Zr+1) d7x
el g
=2 4+ 0(= og x)

G+ Z0ap

Theorem 1 will enable us to make an estimate of the average of
Lf/,;,(n)/nr' once we use Abels Summation formula given below.

0o
LEMMA 1, Let i?\n} be a monotonic increasing of real

. . ,00
numbers, A, —> ® as n — oo)%Cn }nzla sequence of real or

complex numbers, Let 'f' be a function with a continuous

derivative in {:7\1,00) and denote by

C ') = Z C e
C(x e x "
Then X
s e £(a) = C(x) £(x) - C(t) £ (t)dt.
A< X a a

n ' ’ ‘ ?\1




.

For a proof of Lemma 1 (see [ﬂj) . If we set AN, =1, £(x) =

1/x and c = (2, (n) then Lemma 1 and Theorem 1 together give
THEOREM 2, ‘ -~ B _ 4
Lo, 1. 2, —~—~.;/ NS
x =00 Lownax g0
Note that if Gr(n) denotes d%n . [2] )
% . . Aot .
THEOREM 2 .  Cowe - S T ) = PO
M 2 ¥

<UL

From this we infer that %;(n), nr, Gf(n) are roughly geometry.
Actually @(n) and gf(n) have lot of connections, One can show
for integral r the non-trivial result
& 2r ."O
yzjlﬁ of(n) < n (1.10)
As r is an integer (1,3) reveals thet for any d n
\(/DT(d,dn) = %ﬂ(n’dn)
so that we have trivially

5 0 (d,dn S £ o (n,dn)
d|n v = dlm e iR

which on observing (1.2) can be written as

2 BN T n
aln Y(an® > d{znd ©_(n)

or

et = fAn) o, (n)

from (1,1) and so (1,10) is true. As it is known that
Gf(n) = O (r 1og log n)
we have from (1,10) the following

THEOREM 8, For all integral r, there exists a constant ¢;

such that
Cc

\ I
%;(DJ -~ (log log n)




5

We now make an estimate of the average error involved in the appro-

ximation given in (1.8). Denote by er(ngd
£
e (ng = T Y () - B (nx

THEOREM 4, For any pair of integers r,i > O we have

ni I 7‘. N ’}
bt ] ' ' 1. 2 Z')" 2
Boo L 2le i) = L 3 B39 %
Vi~ 00 g T :(Y+‘) jr_—;, ‘7‘
Proof. We know that
2
M 'T M ] ] -
1 ‘é',rv('*’l b &= _é__. ,' %/(ﬂ’) U Z) ‘/2/("/1—;1) ' (1.11)
s Y Y
M n=, n vz 7N = -

We know from Theorem 2

o Py L ) i
Lo L 35 2T =
- N=

M0 M g g+

So we only have to estimate the second summation in (1.,11). We have

""/1, ~ t
;VLLZ%(%QZ): 5;/4“2 E,i o
: N=y N=y (Ovl;az)!"- a, n
<o <PL, f=0,2, .07
1
= / ! 2
- R;L}%:,LQA .a, A, )=1
)T y ozttt T 4
M Lm, Q‘éi



-

= » g i)
o D 5@,(@1)2)2).v.zjﬁj)—#-o(Sf,(aj,,z,zp"'?/

T we proceed to the limit m — o we get theorem 4., For the case

r = 1 theorem 4 reduces to the simpie form (see [l] )

e (‘JZ', Z\ SU(J
> -~ ’ J) .
,Z/w(, ook Z Qi[-"Ijz_) = ~—-——-—) = 2’ — = O(Z‘)
m—>00 M n- ] g=; I

We now take up an estimate of the average value of (ayb) and .
use %,,(n) to help us. But first we prove a very interesting
relation connecting o(n) and (a,b). This is due to Jagannathan
and Ranganathan [% who stated it without proof in a slightly
different form, We supply here a proof,

LEMMA 2, For all real Fy 1 we have

‘ (d 2
n 2 %;, 2 = S "
» OH% . =,

Proof. First we write the right side as

o 7

v U ~~
Z (4,n) = z 2 em) = Z d“kp(%) (1.12)
L= O (Ln)=d dln

We know that




dim 4 dim o T
=>' A" S m@ () =S S m(L)e
din e[g—— din Qif—
Y
= DT R(R) = 2 (e
0‘\',7,\ 7=

using (1.12)., This establishes the lemma.

Define for real r >z 1, P.(n) a generalisation of Pillai's

}unction
Y v ’
(7'}') = Z (4m) = Z (0()('02“ Z oA ‘P<’:T) ' (1.13)
&= i dln
BEstimates for r = 1 can be made and one can show that
Z . . 9
cLn&X A

and equivalently using Abel's summation formula

2 E_(_Z:)-)» = 6 x,og,c ) O(X)

ocngx V! w2 | (1.15)
Put crudely (1.15) implies that Pl(n)/n behaves like f}log n/ W2
or the>average value of (a,n) is 6 log n/ wz. We make asymptotic
estimates of Pr(n) r > 1 wusing (1.13) in two ways
THEOREM 5,
Tl -

T3 | &
;zf P Qﬂ) ?E__,J;EZ? + o (x ) o<e<4
DandX QC"") Zr+1) 7T-€ > 4

B



Proof; Method 1
We have
- ; f =~ Y
SR = 5 S = O e I o
o<ng X o<nax dixn o<d<y O@’s%
Yt |
_ > @(d)%()/ + o(&) }
Ocd £ X
R i 2 R O("*VZLP—*”(DS>
¢ D) LP(O") L K¢
= = 52 oo Z a7 (7 + 0z )
T+ (o{_‘ d d>xK _ _
Vgl '
N & (v) 74 £
= _*____2_:_} + O0(x )
Q0 Lova)
Method 2
We also know

Sieen = 2 2 pr(o()( 1Y) = Std 5 ea)
SeNngx din dlin OCd’S 2/

Ocn £

-3 4

« g(_})m

oLd £ X

+0(G) g (% ))} ﬁwag

ocd e M) YD
R oY . -
= X Z — 4 O(?C £, (‘r! Dg >
Q/‘H) ZCYH) 0<d§,td O<d < x i
',V+/-'
= X C 4| — €
X gw o, o(x )

@+ KCW D)



O -

We infer from Theorem 5 by Abel's summation formuka

COROLLARY,

. « PGp L)
Z(/\/.A L 2} L4 = =
x> oo oaen<x™ €<7/’H)
g 2

We turn ocur attention to an analogue of Pf(n) which is

n . o - .
A(n) = I Ta,n| (2.1)
a=1 , :

where by [a,n] is meant an/(a,n). It is interesting to observe

that
A 4 [a,n] = 5 ol = D %M(ﬁ-) (2.2)
r )= az o az (@’ gy, A ¢

- 7/)
where by ‘fﬁ'(n) is meant

oy -3 o 5
o ocdgn @)=l A . :

a generalization of Euler's ( (n) attributed %o Thacker (see [é]'}.

We make use of (2,2) to make an asymptotlc estimate of A (n).

THEOREM 6, . 2'>’+«/~
i Zt A_',(“/O - ZCK—F@ L0 <xZY+H!C

o<nen 2(7+;)2 ¥c2)

Proof. We have by (2;2)

| S @ o 4
DA = 3 A 2 P(G) (2.9
O<ngx oCn &N
If P, ) _ S 1 , then (P, %) = X o)+ o(né) ve>o

- —
ocacx, @md=l

so that we infer




E s

Thus (2,5) and (2,4) together imply that

2 Ao

OLNZS R

i

>3 o) |

o<Ng d (rr'__,)
v-£
S A7 S U o(?‘«f

""\‘H ocn<x. dln A7 ot

20 2o

Z 0(‘)’ 4—; L\D(O(,)d' o

°’~?~\ oed< 2 o<d's A

.+

&
S a” Zecd)d
La /OAdé?Q p<cdl< X

I+ we use Abel's summation formula we get

O (x

(8.5)

Y E o

2 & ) Yo
d i

Zy4-14-2

) YVeo

+ O (xzr+'+€) ¥eso

(2,6)

A v 3> ’ —|
O<NEX
2737, ‘
\3 274 o A 2r4 van
a0 g ) “fm":?z‘ 0 leg 0
2% 2. 1
= 8% w0t g ) @




~11 -

substituting estimate (2,7) in (2.6) we get

ZI A () | z' A7 ¢ 67627’-‘_2 0 XQ-‘V«H‘ 7(
4 '7] -— ' 1 - B | “f’
O« v\’z. x’r T+ o ed<y, ZTTZ(ZHZ-)O(ZHZ ( vt °F (“Z())%
+ 0 (%ZY-H -+ E,)
— 2v+Z — s
7C Tz _ 2., -+ O( X ﬂloa%) -+
2(r+)" T F dm—z
D40f<)(, ' O(‘)(,Zn_'_'l 6) YE>0
274+, v ,
X éoCof—pz) B
= +— O<7C$f++€) Veso.

VA
2.(r+1) ™~ 22(2)
and the proof is complete,

If we set r =1 in Theorem 6 we get

Z‘A!(M) - x Z"(B) N O(;(,s+€)\‘t7['8>o’
OLNng | 3’2‘?2}

Now Abel's summation formula implies that

rA O x3 &2
— : 2
— + O(x™¢y ye>o
O<ing x. % S2)
2
which means Al(n)/n behaves 1like g’ )f(s)/z §(2>’ Thus the

average value of‘ [a,n] is ﬂzgﬂ(g) /2 éyCZ) .
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