MAT:T ...YCE REPORT 83

NEW CO: ICEPTS IN ARITHMETIC FI'NCTIONS

KRISHNASWAMI ALLADI

THE INSTITUTI OF MATHEMATICAL SSIE:CES, MADRAS-600020. (INDIA)

NEW CONCEPTS IN ARITHMETIC FUNCTIOIS \triangle

Krishnaswami Alladi
Vivekananda College, Madras-600004
INDIA
$\Delta_{\text {This report is an outcome of a series of lectures given by }}$ the author at MATSCIENCE during the period October 19.74January 1975. The author is a nineteen year old student of the final year B.Sc. in Vivekananda College.

Krishnaswami Alladi
Vivekananda College Madras-600004 INDIA
Krishnaswami Alladi
vivekananda College, Madras-600 004, INDIA
${ }^{*}+*+*+*+\dot{*}$ 'divisor' leads to remarkable Arithmetic functions. In this paper we discuss properties of arithmetic functions 'of higher order defined through the introduction of a new concept of a 'divisor of higher order'. We shall construct an infinite sequence of Euler like functions and the well known Euler function shall be the first member of this sequence. Particular care has been given to the construction of such divisors se that the exact formulae for these functions can be gut once the canonical representation of the integer concerned is known. Asymptotic estimates of such functions are given and a study of erro functions associated with the Euler like sequence is made. We would like to mention that the familiar number theoretic functions become only the first members of en infinite sequence Cf functions Cf similar behaviour.

If ' d ' and ' n ' are two positive integers and if $a \mid n$. We say d is a first order divisor of n and change the notation tc $\left.d\right|_{1} n$. When 'a' and ' b ' are two positive integers (a, b) rewritten as $(a, b)_{l}$ shall denote the largest divisor of 'a' dividing b. When $(a, b)_{1}=1$ we say 'a' is prime to 'b' order 1 .

If ' d ' and ' n ' are two integers, then d is said to be a divisor of n cf second order, denoted by di n if

$$
\left(\frac{n}{d}, d\right)_{1}=1
$$

(This is the definition of unitary divisor). The symbol
$(a, b)_{2}$ represents the largest divisor ' c ' of a, satisfying $\|_{2}$ b. If $(a, b)_{2}=1$ we say 'a' is prime to order 2. (a' is semiprime to ' b ' in standard usage). Here comes the departure. A divisor d if n is a divisor of third order (notation: $d 3^{n}$) if

$$
\left(\frac{n}{d}, d\right)_{2}=1
$$

The symbol $(a, b)_{3}$ stands for the largest divisor 'c' of 'a' that satisfies $\left.c\right|_{3} b$. If $(a, b)_{3}=1$ we say 'a' is prime to k order 3. We generalise by saying that $d \|_{r} n$ if

$$
\left(\frac{n}{d}, d\right)_{r-1}=1
$$

and

$$
(a, b)_{r}=\max \left\{\left.\left.c\right|_{1} a \cdot c\right|_{r} d_{\}}\right.
$$

If $(a, b)_{r}=1$, then 'a' is prime to 'b' order r. NO:E. The definition of $\left.d\right|_{3} n$ given by us differs from the two well known extensions of the concept of a unitary divisor given by Chidambaraswamy $[2]$ and Suryanaraýnna $[5]$ respectively. The former defines 'd' to be a semi-unitary divisor of n if $\left(d, \frac{n}{d}\right)_{2}=1$, as opposed to our $d \mid 3^{n}$ where $\left(\frac{n}{d}, d\right)_{2}=1$. The latter defines d to be a bi-unitary divisor of n if $\left(a, \frac{n}{d}\right)^{* *}=1$ where $(a, b)^{* *}$ represents the largest common unitary divisor of ' a ' and ' b '. However in both the papers [2]. and [5] , the concept of a unitary divisor is just extended one step beyond.

Our definition of higher order divisor is given in such
a way that the higher order divisors share many several properties in common su that it is possible to discuss together the properties of arithmetic functions of $x^{\text {th }}$ order, as we shall see in the theorems that follow. Moreover some of the familiar
number theoretic results follow as corollaries if we set $r=I$, and some of the results of cohen can be deduced it we set $n=2$. [3] We now define $r^{\text {th }}$ order analogues tu sume well known arithmetic functions. However as $(a, b)_{r} \underset{(b)}{ }(b, a)_{r}$ in general these functions have interesting dual functions. Denote by

$$
\varphi_{r}(n, x)=\sum_{\substack{0<a \leqslant x \\(a, n)_{r}=1}} 1 \quad ; \quad \varphi_{r}(n, n)=\varphi_{r}(n)
$$

and its dual

$$
\varphi_{r}^{*}(n, x)=\sum_{\substack{0<a \leq x \\(n, a)=1}} 1 \quad \varphi_{r}^{*}(n, n)=\varphi_{r}^{*}(n)
$$

for $r \geqslant$. We define $Y_{0}(n, x)=\varphi_{0}^{*}(n, x)=[x]$, where $[x]$ denotes the largest integer $\leqslant x$. Note that $\varphi_{1}=\varphi_{1}^{*}=\varphi$ (Euler) we define the divisor functions

$$
\sigma_{\gamma, k}(n)=\sum_{\left.d\right|_{r}} d^{k} \text { and } \sigma_{r_{2}}^{i}(n)=\sum_{\left.d\right|_{r} n}\left(\frac{n}{d}\right)^{k}
$$

Before we take up the study of these functions we need to define some mure functions. Let $\left\{F_{\gamma}\right\}_{\gamma=0}^{\infty}$ denote the sequence given by

$$
F_{0}=0, F_{1}=1 \quad F_{n}=F_{n-1}+F_{n-2} \quad n \geqslant 2
$$

Let $\ell(\mathrm{y})$ and $\ell^{*}(\mathrm{y})$ denote respectively the least integers
$>$ and \geqslant y. Further define

$$
\begin{aligned}
& f_{v}(x)=2\left(\frac{F_{\gamma-1}}{F_{r}} x\right) \text { when } r \equiv 1(\bmod 2) \\
& f(x)=\ell\left(\frac{F_{r-1}}{F_{r}} x\right) \text { when } r \equiv 0(\bmod 2)
\end{aligned}
$$

Let $f_{r}^{-1}(x)$ denote the largest integer y with $f_{r}(y)=x$. And if $n=\prod_{i=1}^{s} p_{i} \alpha_{i}$ be the canonical decomposition of n, then let

$$
\beta_{1}(n)=n \text { and } \beta_{r}(n)=\prod_{i=1}^{S} p_{i}^{f_{r}^{-1}\left(\alpha_{i}\right)+1}
$$

We will now show
LEMMA 1. If $n=\prod_{i=1}^{S} p_{i} \alpha_{i}$ be the canonical decomposition of n as a product of distinct primes, and if $\left.d\right|_{1} n$, then $\left.d\right|_{r} ^{n}$ if and only if $d=\prod_{i=1}^{s} p_{i} \beta_{i} \quad$ where

$$
\beta_{i}=0 \quad \text { or } \quad f_{\gamma}\left(\alpha_{i}\right) \leqslant \beta_{i} \leqslant \alpha_{i}
$$

Proof, For $r=1, f_{\gamma}\left(\alpha_{i}\right)=1$ and so the lemma holds trivially. For $r=2, f_{r}\left(\alpha_{i}\right)=\alpha_{i}$ and $\beta_{i}=0$ or $\beta_{i}=\alpha_{i}$ for a unitary divisor and the lemma is true.

Let $r=3$ and $d=\prod_{i=1}^{s} p_{i}^{\beta_{i}}$ satisfy $\left.d\right|_{3}$ n. clearly $\left.d\right|_{1} n$ and so $\alpha_{i} \geqslant \beta_{i}$ trivially holds. Now

$$
\frac{n}{d}=\prod_{i=1}^{s} p_{i} \alpha_{i}-\beta_{i}
$$

If $\left.d\right|_{3} n$ then $\left(\frac{n}{d}, d\right)_{2}=1$. Thus there is no divisor except 1 of n / d which is a divisor of d of second order. This is possible if and only if

$$
\alpha_{i}-\beta_{i}<\beta_{i} \quad \text { or } \quad \beta_{i}=0
$$

For if $\alpha_{i}-\beta_{i} \geqslant \beta_{i}$ then $\left.p_{i} \beta_{i}\right|_{1}\left(\frac{n}{d}\right)$ and $\left.p_{i}^{\beta_{i}}\right|_{2} d$ contradiction. Thus $\alpha_{i}-\beta_{i}<\beta_{i}$ 。 If $\alpha_{i}-\beta_{i}<\beta_{i}$ and $\beta_{i} \left\lvert\,\left(\frac{n}{d}\right)\right.$ that $0<\gamma_{i} \leqslant \alpha_{i} \beta_{i}<\beta_{i}$ and so $p_{i} \gamma_{2} \alpha$. Hence $\left(\frac{n}{d}, d\right)_{2}=1$.

Thus

$$
\alpha_{i}-\beta_{i}<\beta_{i} \Leftrightarrow \beta_{i}>\frac{\alpha_{i}}{2}=\frac{F_{2}}{F_{3}} \alpha_{i}
$$

Moreover β_{i} is an integer and si $\hat{\beta}_{i} \geqslant f_{3}\left(\alpha_{i}\right)$ proving lemma for $r=3$.

In general let the lemma hold for $1,2, \ldots r, r$ even. Now $\left.d\right|_{r+1} n$ if and only if $\left(\frac{n}{d}, d\right)_{r}=1$ where

$$
d=\prod_{i=1}^{\prod_{i} p_{i}} \quad \beta_{i} \quad \frac{n}{d}=\prod_{i=1}^{3} p_{i} \alpha_{i}-\beta_{i}
$$

Now $\left(\frac{n}{d}, d\right)_{r}=1$ says that there is no divisor of $\frac{n}{d}$ save 1 , that is a divisor of d order r. This is possible if and only if $\alpha_{i}-\beta_{i}<\frac{F_{r-1}}{F_{r}} \beta_{i}$ or $\beta_{i}=0$. For otherwise if $\alpha_{i}-\beta_{i} \geqslant \frac{F_{r-1}}{F_{r}} \beta_{i} \quad$ then one can find a γ_{i} satisfying

$$
\alpha_{i}-\beta_{i} \geqslant \gamma_{i} \geqslant \frac{F_{\gamma-1}}{F_{\gamma}} \beta_{i}
$$

so that $\left.p_{i}^{\gamma_{i}}\right|_{1}\left(\frac{n_{i}}{d}\right)$ and $\left.p_{i}^{\gamma_{i}}\right|_{r} d$ a contradiction. Thus we have

$$
\alpha_{i}-\beta_{i}<\frac{F_{\gamma-1}}{F_{\gamma}} \beta_{i}
$$

or $\quad \beta_{i}>\frac{F_{r}}{F_{\gamma+1}} \alpha_{i} \quad$ and β_{i} is an integer.
Thus $\beta_{i} \geqslant f_{r+1}\left(\alpha_{i}\right)$ proving the lemma for $r+1$ odd. The proof for the case $r+1$ even in similar.

The higher order divisors share in common the property. LEMMA 2. (a) If a, and n are integers then for any nonnegative integer λ

$$
(a, n)_{r}=(\lambda n+a, n)_{r}=(\lambda r-a, n)_{r}
$$

(b) We have $(n, a)_{r}=1$ if and only if

$$
(n, a)_{r}=\left(n, \lambda \beta_{r}(n)+a\right)_{r}=\left(n_{d} \lambda \beta_{r}(n)-a\right)_{r}=1
$$

We omit the details of the proof of (a) ard (b) as they are direct consequences of the definitions. Fe shell need Lemma 2 in the discussion of the error functions.

$$
\begin{aligned}
\text { THEOREM 1. If } n & =\prod_{i=1}^{s} p_{i} \alpha_{i} \quad \text { az in Lemma } 1, \text { then } \\
\varphi_{\gamma}(n) & =n \prod_{i=1}^{s}\left(1-\frac{1}{p_{i} f_{\gamma}(\alpha)}\right)
\end{aligned}
$$

Proof. We know that

$$
\varphi_{\gamma}(n ; x)=\sum_{\substack{0<a \leq x \\(a, n)_{\gamma}=1}}^{1}=[x]-\sum_{0<a \leq i}^{1} 1
$$

Now $(a, n)_{r}>1$, if there exists a $\left.d\right|_{r} n_{i}=>1$ with
$d \mid I$ a. We know from Lemma 1 that $\left.d\right|_{1} n$ and only if $\beta_{i}=0$ $f_{r}\left(\alpha_{i}\right) \leqslant \beta_{i} \leqslant \alpha_{i}$ where $d=\prod_{i=1}^{S} p_{i} \beta_{i}$. This implies that If $p_{i} l_{1}$ a and $\left.p_{i}\right|_{1}(a, n) r$ then $\left.p_{i}^{f_{r}\left(\alpha_{i}\right)}\right|_{1} a$. Thus the

$$
\left.\begin{array}{c}
\text { combinatorial } \varphi_{r}(n, x)=[x]-\sum_{0<i \leqslant s}\left[\frac{x}{p_{i} f_{\gamma}\left(\alpha_{i}\right)}\right]+\sum_{0<i<j \leqslant s}\left[\sum_{i} \frac{x}{p_{r}\left(\alpha_{i}\right) p_{i}\left(\alpha_{j}\right.}\right] \\
+\ldots
\end{array}\right]
$$

If we pour $x=n$ in the (1) we get Theorem 1. Now (1) also
indicates that
IREMIA 3. If $e_{r}\left(n_{x} x\right)=\frac{\dot{x}}{n} \varphi_{\nu}(n)-\varphi_{V}\left(n_{2} x\right)$ then

$$
e_{r}(n, x)=O\left(n^{\epsilon}\right) \quad \forall \epsilon>0
$$

Proof. We can rewrite (I) as

$$
\begin{aligned}
\varphi_{\gamma}(n, x)= & x-\sum_{0<i \leqslant s} \frac{x}{p_{i}^{f_{r}}\left(\alpha_{i}\right)}+\sum_{0<i<j \leqslant s}^{1} \frac{x}{p_{i} f_{\gamma}\left(\alpha_{i}\right) p_{j} f_{r}}\left(\alpha_{j}\right) \\
& +O\left(1+\sum_{p_{i} \mid n} 1+\sum_{p_{i} p_{j} \mid \eta} 1+\cdots\right) \\
& =\frac{x}{n} \varphi_{\gamma}(n)+O(\psi(n))
\end{aligned}
$$

where $\psi(n)=2^{S} \quad$ when $n=\prod_{i=1}^{S} p_{i} \alpha_{i}$. Thus we have

$$
e_{r}(n, x)=\frac{x}{n} \varphi_{r}(n)-\varphi_{r}(n, x)=O\left(w(x)=O(\tau(n))=O(n)^{\in} \nabla \in>0\right.
$$

as

$$
\psi(n)=2^{s} \leqslant \prod_{i=1}^{S}\left(\alpha_{i}+1\right)=O\left(n^{\epsilon}\right) \cdot \operatorname{see}[4]
$$

This establishes the lemma.

$$
\begin{aligned}
& \text { THEOREM 2. If } n=\prod_{i=1}^{n} p_{i} \alpha_{i} \quad \text { then } \\
& \rho_{\gamma}^{*}\left(n, \beta_{r}(n)\right)=\varphi_{1}\left(n, \beta_{r}(n)\right)_{i=1}^{11}\left(1+\frac{s}{p_{i} f_{r}^{-1}\left(\alpha_{i}\right)+i\left(1-\frac{1}{p_{i}}\right)}\right) .
\end{aligned}
$$

Proof. We defined

$$
\varphi_{r}\left(n_{2} x\right)=\sum_{0<a \leqslant x,(n, a)_{r}=1} \frac{1}{1}
$$

Now $(n, a)_{r}=1$ can arise out of two cases. If $(n, a)_{1}=1$ then $(n, a)_{r}=(a, n)_{r}=1$. or $(n, a)_{1}>1$ in which case there is a $\left.p_{i}\right|_{I} n$ and $\left.p_{i}\right|_{I}$ a. $A s(n, a)_{r}=I$ even if $\left.d\right|_{I} a$, $d A_{r} a$ for all a $\left.\right|_{1} n^{n}$ Thus $\left.p_{i}^{f_{r}^{-1}\left(\alpha_{i}\right)+1}\right|_{1} a$. Thus from the combinatorial expansion we have

$$
\begin{align*}
\varphi_{r}^{*}(n, x)= & \varphi_{1}(n, x)+\sum_{0<i \leqslant s}^{B} \varphi_{1}\left(\frac{n}{p_{i} \alpha_{i}}, \frac{x}{p_{i} f_{r}^{-1}\left(\alpha_{i}\right)+1}\right)+ \\
& \sum_{0<i<j \leqslant s}^{1} p_{1}\left(\frac{n}{p_{i}^{\alpha_{i} p_{j} \alpha_{j}}}, \frac{x}{p_{i}^{f_{i}^{-1}\left(\alpha_{i}\right)+1} p_{j}^{f_{r}^{-1}\left(\alpha_{j}\right)+1}}\right)+\cdots \tag{2}
\end{align*}
$$

If we put $x=\beta_{\gamma}(n)$ in (2) and use Lemma 2 which for $r=1$ gives $\varphi_{1}(n, \lambda n+\mu)=\lambda \varphi_{1}(n)+\varphi_{1}(n, \mu)$ we get theorem 2 immediately. In fact one has from (2) the following result. LEMMA 4. If $\varepsilon_{\gamma}^{*}\left(n_{1} x\right)=\frac{x}{\beta_{\gamma}(n)} \varphi_{\gamma}^{*}\left(n, \beta_{\gamma}^{(n)}--\varphi_{\gamma}^{*}\left(n_{1} x\right)\right.$ then $\mathcal{E}_{\gamma}^{*}\left(n_{1} x\right)=O\left(n^{\epsilon}\right) \forall \epsilon>0$

We omit the details of the proof.
We are now in a position to prove
THEOREM 3. For any pair of integers n and k we have
a) $\quad \varphi_{1}(n) \leqslant \quad \varphi_{3}(n) \leqslant \varphi_{5}(n) \leqslant \cdots \leqslant \varphi_{6}(n) \leqslant \varphi_{4}(n) \leqslant \varphi_{3}(n)$
b) $\sigma_{2, k}(n) \leqslant \sigma_{4, k}(n) \leqslant \sigma_{6, k}(n) \leqslant \cdots \leqslant \sigma_{5, k}(n) \leqslant \sigma_{3, k}(n) \leqslant \sigma_{1, k}(n)$
c) $\sigma_{2, k}^{*}(n) \leqslant \sigma_{4, k}^{*}(n) \leqslant \sigma_{6, k}^{*}(n) \leqslant \cdots \leqslant \sigma_{5, k}^{*}(n) \leqslant \sigma_{3, k}^{*}(n) \leqslant \sigma_{1, k}^{*}(n)$
a) $\quad \frac{\varphi_{1}^{*}\left(n, \beta_{1}(n)\right)}{\beta_{1}(n)} \leqslant \frac{\varphi_{3}^{*}\left(n, \beta_{3}(n)\right)}{\beta_{3}(n)} \leqslant \frac{\varphi_{5}^{*}\left(n, \beta_{5}(n)\right)}{\beta_{5}(n)} \leqslant \cdots$

$$
\leq \frac{\varphi_{6}^{*}\left(n, \beta_{6}(n)\right)}{\beta_{6}(n)} \leqslant \frac{\varphi_{4}^{*}\left(n, \beta_{4}(n)\right)}{\beta_{4}(n)} \leq \frac{\varphi_{2}^{*}\left(n, \beta_{2}(n)\right)}{\beta_{2}\left(n n^{2}\right)}
$$

Proof. We shall prove (a) and (b). Theorem proofs of (c) and (d) are similar. First we observe that $\frac{F_{2 k}}{F_{2 k-1}}$ from an increasing sequence and $\frac{F_{2 k-1}}{F_{2 k}}$ form a decreasing sequence, both
converging to $\frac{\sqrt{5}-1}{2}$. Further we note that if $x<y$ then

$$
\begin{equation*}
\ell(x) \leqslant \ell(y), \quad \ell^{*}(x) \leqslant \ell(y) \quad \text { and } \ell(x) \leqslant \ell^{*}(y) \tag{5}
\end{equation*}
$$

the first two inequalities being trivial, but the last not so. These follow from the definition of ℓ, and l^{*} (page 2). Now (3) implies that for any integer ${ }^{\mathbf{t}} \mathrm{m}$ ' we have

$$
\begin{equation*}
f_{1}(m) \leqslant f_{3}(m) \leqslant f_{5}(m) \leqslant \cdots \leqslant f_{6}(m) \leqslant f_{4}(m) \leqslant f_{2}(m) \tag{6}
\end{equation*}
$$

We now assume $n=\sum_{i=1}^{s} p_{i} \alpha_{i} \quad$: Then if we use (4) and Theorem 1 we get (a). Now (4) and theorem (2) will give (d) on similar lines of reasoning for $f_{v}^{-1}(\mathrm{~m})$

To prove (b) it is enough to observe that
$\left.\left.d\right|_{2 m^{n}} \Rightarrow d\right|_{2 m \neq 2^{n}},\left.d\right|_{2 m+1^{n}} \Rightarrow d_{n-1} n,\left.\left.d\right|_{2 m^{n}} \Rightarrow d\right|_{2 m^{\prime}+1^{n}}$
for any pair of integers m and m^{2}. This follows from lemma 1. Thus the set of inequalities (b) and (c) are true. This proves the theorem. we now take up the asymptotic estimates of $\sigma_{r, k}$ and $\sigma_{r, k}^{*}$. Let us define two constants for $k>0$

$$
\begin{equation*}
\alpha_{v, k}=\frac{1}{k+1} \sum_{n=1}^{\infty} \frac{\varphi_{n-1}(n)}{n^{k+2}} \tag{5}
\end{equation*}
$$

$\alpha_{r, k}^{*}=\frac{1}{k+1} \sum_{n=1}^{\infty} \frac{\varphi_{r-1}^{*}\left(n, \beta_{r-1}(n)\right)}{n^{k+1} \beta_{r-1}(n)}$

THEOREM 4. a) $\sum_{n=1}^{m} \sigma_{r, k}(n)=\alpha_{n, k}^{*} m^{k+1}+O\left(m^{k+\frac{1}{2}}\right)$
b) $\sum_{n=1}^{n 1} \sigma_{r, k}^{*}(n)=\alpha_{r, k} m^{k+1}+O\left(m^{k+\frac{1}{2}}\right)$

Proof. We shall prove the second part of Theorem 4. Part a will follow on similar reasoning. We shall first need an estimate of

$$
\begin{align*}
& \sum_{1}^{1} a^{K} \tag{7}\\
& 0<a, \quad(a, n)_{r}=1
\end{align*}
$$

Let $A(n, r, s)$ denote the s th number ' a ' such that $(a, n)_{r}=$ I. It is obvious that

$$
\varphi_{\gamma}(n, \quad A(n, r, s))=s
$$

We know from Lemma 3 that

$$
\varphi_{r}\left(n, A(n, r, s),=\frac{A(n, r, s)}{n} \varphi_{r}(n)+o\left(n^{E}\right)=s \forall \in>0\right.
$$

so that

$$
\begin{equation*}
A(n, r, s)=\frac{n s}{\varphi_{\gamma}(n)}+\frac{n}{\varphi_{\nu}(n)} \quad 0(n) \forall \in>0 \tag{8}
\end{equation*}
$$

We deduce from theorem 3 that for $r \geqslant 0 \quad \varphi_{r}(n) \geqslant \varphi_{1}(n)=\varphi(n)$
(as $\left.\quad \varphi_{0}(n)=n\right)$. As it is known that $n / \varphi(n)=0(\log \log n)$ $\log n)$ see $[4]$ we infer

$$
\frac{n}{\varphi_{r}(n)}=0 \quad(\log \quad \log n)
$$

so that (8) is rewritten as

$$
\begin{equation*}
A(n, r, s)=\frac{n s}{\rho_{\gamma}(n)}+O(n \in) \quad \forall \in>0 \tag{9}
\end{equation*}
$$

Thus

$$
\begin{align*}
& \begin{array}{ll}
0<a \leqslant x & 0<s \leqslant \varphi_{r}(n, x) \quad 0<s \leqslant \varphi_{r}(n, x) \\
(a, n)_{r}=* & 0
\end{array} \\
& =\frac{n^{k}}{\varphi_{r}(n)^{k}} \sum_{0<s \leqslant \varphi_{\gamma}(n, x)} s^{k}+\frac{n^{k-1}}{\varphi_{\gamma}(n)^{k-1}} \sum_{0<s \leqslant \varphi_{\gamma}(n, x)}^{1} O\left(s^{k-1} n^{\epsilon}\right) \forall \in>0 \\
& =\frac{n^{k}}{\varphi_{\gamma}(n)^{k}}\left(\frac{\varphi_{r y}(n, x)^{k+1}}{k+1}+O\left(\varphi_{\gamma}(n, x)^{k}\right)\right)+O\left(\frac{n^{k-1+\epsilon}}{\varphi_{r}(n)^{k-1}} \varphi_{r}(n, x)^{k}\right) \\
& =\frac{n^{k}}{\varphi_{r}(n)^{k}}\left(\frac{x^{k+1} \varphi_{r}(n)^{k+1}}{(k+1) n^{k+1}}+O\left(x^{k+\epsilon}\right)\right)+O\left(n^{\epsilon} \varphi_{r}(n, x)^{k}\right) \\
& \forall \in>0 \\
& =\frac{x^{K+1} \varphi_{r}(n)}{(k+1) n}+O\left(x^{k+\epsilon}\right) \forall \epsilon>0 \tag{10}
\end{align*}
$$

by (8) where x is taken as $\geqslant \mathrm{n}$.
We shall return to (10) after making a geometric interpretation of $\sigma_{\gamma} k$ consider the hyperbole $x y=m$ above the x-axis. Call a lattice point $\left(x_{0}, y_{0}\right)$ good if $0<x_{0} . y_{0} \leqslant$ (y with $\left(y_{0}, x_{0}\right)_{r-1}=1$.

Let G denote the set of good lattice points. Divide the region under the curve into three nob-interming regions $A, O P$ and B. Clearly we have

which can be split up as

$$
\sum_{n=1}^{m} \sigma_{r, k}^{*}(n)=\sum_{\left(x_{0}, y_{0}\right) \in G}^{y_{0}}
$$

$$
\begin{aligned}
\sum_{n=1}^{m} \sigma_{r, k}^{*}(n) & =\sum_{\left(x_{0}, y_{0}\right) \in G \cap A}^{i} \sigma_{r, k} y_{0}^{k}+\sum_{\left(x_{0}, y_{0}\right) \in G \cap B}^{k} y_{0}^{k}+\sum_{\left(x_{0}, y_{0}\right) \in G \cap} y_{0}^{k} \\
& =S_{1}+S_{2}+S_{3} \text { say }
\end{aligned}
$$

Clearly

$$
S_{3}=O\left(m^{(K+1) / 2}\right)
$$

To estimate S_{2} pick a point S^{\prime} on $O Y$ at a distance n from 0 with $n \leqslant \sqrt{m}$. The sum of $y_{o}^{k}=n^{k}$ over $R^{i} S^{t}$ through S^{\prime} is

$$
\sum_{1}^{1} n^{k}=n^{k} \varphi_{r-1}^{*}\left(n, n, \frac{m}{n}\right)
$$

$$
n<x_{0} \leq \frac{m}{n}
$$

$$
\text { (where } \underset{r, 1}{\left(n, x_{0}\right)_{r-1}} \underset{\varphi_{r-1}^{1}}{n}(n, c, d)=\sum_{c<a \leqslant d} 1
$$

we have $[\mathrm{m}] \quad * \quad c<a \leq d_{1},(n, a)_{r-1}=1 \sum_{[\sqrt{m}]}$. Thus

$$
\begin{aligned}
S_{2} & =\sum_{n=1}^{1} n^{k} \varphi_{r-1}^{*}\left(n, n, \frac{m}{n}\right)=\sum_{n=1} n^{k} O\left(\frac{m}{n}\right)=m \sum_{n=1}^{n} n^{k-1} \\
& =O\left(m^{(k+2) / 2}\right)=O\left(m^{k+\frac{1}{2}}\right) \text { for } k \geqslant 1 .
\end{aligned}
$$

To estimate S_{1} pick an S on $O X$ at a distance n from 0 with $n \leqslant \sqrt{m_{0}}$ Draw RS through it. The sum of y_{o}^{k} over Yo lying on RS is

$$
\underset{\substack{\left.y_{0}, n\right)_{r-1}=1}}{y_{0}^{k}}=\frac{m^{k+1} \varphi_{r-1}(n)}{(k+1) n^{k+2}}+O\left(\frac{m^{k+\epsilon}}{n^{k+\epsilon}}\right)-\frac{n^{k} \varphi_{r-1}(n)}{k+1}+O\left(n^{k+\epsilon}\right) \forall \epsilon>0
$$

Using (10), where x takes values n, and $\frac{m}{n}$. If we sum (12) from 1 to $[\sqrt{m}]$ we get s_{1} which is

$$
S_{1}=\frac{m_{1}^{k+1}}{k+1} \sum_{n=1}^{[\sqrt{m}]} \frac{\varphi_{v-1}(n)}{n^{k+2}}+O\left(m^{k+e}\right)+O\left(m^{(k+2) / 2}\right) \quad \forall \in>0
$$

so that

$$
\begin{aligned}
& S_{1}=\frac{m}{k+1} \sum_{n=1}^{k+1} \frac{[\sqrt{m}]}{\varphi_{n-1}(n)}+O\left(m^{k+2}+\frac{1}{2}\right) \\
& =\frac{m^{k+1}}{k+1}\left(\sum_{n=1}^{\infty} \frac{\varphi_{n-1}(n)}{n^{k+2}}-\sum_{n=[\sqrt{m}]+1}^{\infty} \frac{\varphi_{r-1}(n)}{n^{k+2}}\right)+0\left(n^{k+\frac{1}{2}}\right) \\
& =\alpha_{v, k^{\prime}}+m^{k+1} O\left(\sum_{n=[\sqrt{m}]+1}^{\infty} \frac{1}{n^{k+1}}\right)+O\left(m^{k+\frac{1}{2}}\right) \\
& =\alpha_{r, k^{m^{k+1}}}+m^{(k+1) / 2} O\left(m^{\frac{(k+1)}{2}} \sum_{n=[\sqrt{m}]+1}^{\infty} \frac{1}{n^{k+1}}\right)+O\left(m^{k+\frac{1}{2}}\right) \\
& =\alpha_{r, k} m^{k+1}+O\left(m^{(k+2) / 2}\right)+O\left(m^{k+\frac{1}{2}}\right) . \\
& =\alpha_{r, k} m^{k+1}+O\left(m^{k+\frac{1}{2}}\right) \quad \text { for } k \geqslant 1 \text {. }
\end{aligned}
$$

If we substitute these estimates of S_{1}, S_{2} and S_{3} in (11) we get

$$
\sum_{n=1}^{m} \sigma_{r, k}^{*}(n)=\sigma_{r, k} m^{k+1}+O\left(m^{k+\frac{1}{2}}\right)
$$

proving part (b). The proof of part (a) is similar with the following changes. We have to replace $f_{r-1}(n) / n$ by $\varphi_{r-1}\left(n, \beta_{r-1}(n) / \beta_{r-1}(n)\right.$ and use Lemma 4 instead of Lemma 3 to get a estimate similar to (10). The proof is complete.

We deduce a few corollaries to our theorem.
COROLIARY 1. If $\mathcal{O}(n)$ denotes the sum of the divisors of n then

$$
\sum_{n=1}^{m} \sigma(n)+\frac{\pi^{2}}{12} m^{2}
$$

COROLLARY 2. If $\sigma_{1, k}(n)$ denotes the sum of the $k^{\text {th }}$ powers of the divisors of n then

$$
\sum_{n=1}^{m} \sigma_{1, k^{\prime}}(n)=\frac{5(k+1)}{k+1} m^{k+1}+O\left(m^{k+\frac{1}{2}}\right)
$$

COROLIARY 3. If $\sigma_{2, I}(n)$ denotes the sum of the unitary divisors of n then

$$
\sum_{n=1}^{m} \sigma_{2,1}(n)=\frac{\bar{H}^{2} m^{2}}{12 \zeta(3)}+O\left(m^{3 / 2}\right)
$$

Proof Corollary 1 follows from theorem 4 if we estimate $\alpha_{1,1} \cdot c l e a r l y$

$$
\alpha_{11}=\alpha_{11}^{*}=\frac{1}{2} \sum_{n=1}^{\infty} \frac{1}{n^{2}}=\frac{\pi}{12}^{2}
$$

Corollary 2 follows if we find $\alpha_{1, k}$ which is $\quad \zeta(k+1) / k+1$. Corollary 3 follows from an estimate of $\sigma_{2, k}$ which is

$$
\sigma_{2,1}=\sigma_{2,1}^{*}=\frac{1}{2} \sum_{n=1}^{\infty} \frac{10(n)}{n^{3}}=\frac{\pi^{2}}{12 \zeta(3)} .
$$

which is the result due to cohen $[3]$.
COROLIARY 4. For $k \geqslant 1$ we have

$$
\alpha_{2, k} \leqslant \alpha_{4, k} \leqslant \quad \cdots \cdots \leqslant \alpha_{5, k} \leqslant \alpha_{3, k} \leqslant \alpha_{1, k}
$$

This follows directly from theorem 3. We raise the following
question. (which we do not at the moment answer). What is $r \xrightarrow{\lim } C D \alpha_{r, k}$? Finally we take up the discussion of error functions associated with the Euler functions. (A similar discussion for $r=1$ is made in $[I]$).
We first calculate the average value of $e_{r}\left(n_{1} x\right)$ and $\varepsilon_{\gamma}^{*}\left(n_{l} x\right)$ for fixed n where x is discrete.

THEOREM 5.

$$
\begin{aligned}
& \lim _{m \rightarrow \infty} \frac{1}{m} \sum_{i=1}^{m} e_{r}(n, i)=-\frac{\varphi_{r}(n)}{2 n} \\
& \lim _{m \rightarrow \infty} \frac{1}{m} \sum_{i=1}^{m} \varepsilon_{r}^{*}(n, i)=\frac{\varphi_{r}^{*}\left(n, \beta_{r}(r)\right)}{\beta_{r}(n)}
\end{aligned}
$$

Proof. From Lemma 2 we deduce that

$$
\begin{aligned}
e_{r}(n, i)+e_{r}(n, n-j) & =0 \text { if }(i, n) \neq 1 \\
& =-1 \text { if }(i, n)=1
\end{aligned}
$$

so that we get

$$
\sum_{i=1}^{n} e_{r}(n, i)=-\varphi_{r}(n) / 2
$$

Now Lemma 1 says

$$
\begin{aligned}
e_{r}(n, \lambda n+i) & =\frac{\lambda n+i}{n} \varphi_{r}(n)-\varphi_{r}(n \gamma \lambda+1)=\frac{\lambda n+i}{n} \varphi_{\gamma}(n)-\lambda \varphi_{r}(n)-\varphi_{r}(n, i) \\
& =e_{r}(n, i)
\end{aligned}
$$

Let $m=\lambda n+\mu$ for some nonnegative integer λ where $0 \leq$ $0 \leqslant \mu<\lambda$.
Clearly

$$
\begin{aligned}
& \frac{1}{m} \sum_{i=1}^{m} e_{r}(n, i)=\frac{1}{m} \sum_{i=1}^{n} e_{r}(n, i)+\frac{1}{m} \sum_{i=1}^{2 n} e_{r}(n, i)+\cdots \frac{1}{m} \sum_{i=1}^{\lambda} e_{\gamma}^{n}(n, i) \\
& \\
& +\frac{1}{m} \sum_{i=1}^{\lambda n+(\lambda-1) n+1} e_{\gamma}(n, i)
\end{aligned}
$$

$$
\begin{aligned}
& =\frac{-\lambda \varphi_{r}(n)}{2 m}+\frac{1}{m} \sum_{i=1}^{\mu} O\left(n^{t}\right) \\
& =\frac{-\varphi_{2}(n)}{2 n}+O\left(\frac{1}{m}\right)
\end{aligned}
$$

so that proceeding to the limit as $m \rightarrow \infty$, we get the first part of the theorem, The second part follow on similar reasoning. However the mean over the continuous variable vanishes. To be more precise

THEOREM 6.

$$
\int_{0}^{n} e_{r}^{n}(n, x) d x=0 ; \quad \int_{0}^{\beta_{r}(n)} \varepsilon_{r}^{*}(n, x) d x=0 .
$$

proof. The above theorem is an immediate consequence of the following Lemma.

IEMMA If f is Riemann integrable in $[0, m]$ and $f(x)+f(m-x)=0$ for all but a finite x in $[0, m]$, then $\int_{0}^{m} f(x) d x=0$ clearly

$$
\int_{0}^{m} f(x) d x=\int_{0}^{m} f(m-x) s x=\frac{1}{2} \int_{0}^{m} f(x)+f(m-x) d x=0
$$

Note that $e_{r}\left(n_{1} x\right)+e_{r}(n, n-x)=0$ for all x except When $(x, n)_{r}=1$ similarly $\varepsilon_{\gamma}^{*}\left(n_{1} x\right)+\varepsilon_{\gamma}^{*}\left(n, \beta_{r}(n)-x\right)=0$ for all x except when $\left(n_{1} x\right)_{r}=1$, Thus Theorem 6 is true.

Wennow study the properties of additive error functions associated with φ_{r} and φ_{γ}^{*}. Define for $s \geqslant 2$ and $e_{r}\left(n, \alpha_{1}, \alpha_{2}, \cdots, \alpha_{s}\right)=\varphi_{r}\left(n, \sum_{i=1}^{s} \alpha_{i}\right)-\sum_{i=1}^{s} \varphi_{\gamma}\left(n, \alpha_{i}\right)$

$$
e_{\gamma}^{*}\left(n, \alpha_{1}, \alpha_{2}, \quad \circ \quad \alpha_{s}\right)=\varphi_{r}^{*}\left(n_{i}, \sum_{i=1}^{S} \alpha_{i}\right)-\sum_{i=1}^{S} p_{T}^{*}\left(n, \alpha_{i}\right)
$$

We begin by showing THEOREM 70
a) $\lim _{m \rightarrow \infty} \frac{1}{m} \sum_{n=1}^{m} e_{\gamma}\left(n, \alpha_{1}, x_{2}, \ldots \alpha_{s}\right)=\sum_{n=1}^{\alpha_{1}+\alpha_{2}+\ldots \varphi_{r}\left(n, \beta_{r}(n)\right)}{\beta_{r}(n)}_{\beta_{n}}^{\infty} \sum_{i=1}^{\infty} \sum_{n=1}^{\alpha_{i}} \frac{\varphi_{r}^{*}(n ; \beta \gamma(n))}{\beta_{r}(n)}$
and the much similar
b) $\lim _{m \rightarrow \infty} \frac{1}{m} \sum_{n=1}^{m} e_{n}^{n}\left(n, \alpha_{1}, \alpha_{2}, \ldots \alpha_{s}\right)=\sum_{n=1}^{q_{1}+\cdots \alpha_{n}} \frac{\varphi_{n}(n)}{n}-\sum_{i=1}^{s} \sum_{n=1}^{\alpha_{i}^{i}} \frac{\varphi_{y}(n)}{n}$

Proof: We only prove the -first part. The second equation.
follows on similar lines. we know

$$
\frac{1}{m} \sum_{n=1}^{m} e_{r}\left(n, \alpha_{1}, \alpha_{2}, \ldots, \alpha_{S}\right)=\frac{1}{m} \sum_{n=1}^{m} P_{r}\left(n_{1} \sum_{i=1}^{S} \alpha_{i}\right)-\frac{1}{m} \sum_{n=1}^{m} \sum_{i=1}^{S} \varphi_{r}\left(n, \alpha_{i}\right)
$$

$$
\begin{aligned}
& \sum_{n=1}^{m} \varphi_{r}(n, j)=\sum_{n=1}^{n} \sum_{i=1}^{n} 1(i, n)_{r}=1=\sum_{n=1}^{i} \sum_{\substack{i=1 \\
(n, i)}}^{i n}=\sum_{n=1}^{i} \varphi_{r}^{i}(n, m) \\
& =m \sum_{n=1}^{i} \frac{p_{r}^{*}\left(n, p_{r}(n)\right)}{\beta_{r}(n)}+O(1)
\end{aligned}
$$

This implies that

$$
\lim _{m \rightarrow \infty} \frac{1}{m} \sum_{n=1}^{m} \varphi_{r}(n, j)=\sum_{n=1}^{j} \frac{\varphi_{\gamma}^{*}\left(n,\left(\beta_{r}(n)\right)\right.}{\left(B_{r}(n)\right.}
$$

If in (13) we set $\sum_{i=1}^{5} \alpha_{i}$ and α_{i} as j, and then use (14) and proceed to the limit $m \rightarrow \infty$ we get Theorem 7 Part a. Part b follows by observing that

$$
\lim _{m \rightarrow \infty} \frac{1}{m} \sum_{n=1}^{m} \varphi_{r}^{*}(n, j)=\sum_{n=1}^{j} \frac{\varphi_{r}(n)}{n}
$$

This completes the proof.
Note that the right hand side of (a) and (b) are of the form

$$
g_{r}\left(n, \sum_{i=1}^{S} \alpha_{i}\right)-\sum_{i=1}^{S} g_{r}\left(n, \alpha_{i}\right)
$$

and

$$
g_{\gamma}^{*}\left(n, \sum_{i=1}^{s}\left(q_{i}\right)-\sum_{i=1}^{S} g_{v}^{*}\left(n_{1} x_{i}\right)\right.
$$

which resembles remarkably the forms of $e_{r}\left(n, \alpha_{1}, \alpha_{2}, \ldots \alpha_{5}^{\prime}\right)$ and $e_{I}^{*}\left(n, \alpha_{I}, \quad 2, \cdots \alpha_{S}\right)$.

We conclude by proving a necessary and sufficient condition for a number n to be a power of a prime using $e_{r}\left(n, \alpha_{1}, \alpha_{2}\right)$.

THEOREM 8. A necessary and sufficient condition for n to be a power of a prime is that

$$
\begin{equation*}
e_{r}\left(n, \alpha_{1}, \alpha_{2}\right) \leq 0 \quad 0 \quad \forall \alpha_{1}, \alpha_{2} \in Z^{-1}=\{1,2,3, \cdots\} \tag{15}
\end{equation*}
$$

proof. The necessity part is easy to establish. We know that

$$
\begin{gathered}
\varphi_{\gamma}\left(n, \alpha_{1}+\alpha_{2}\right)=\alpha_{1}+\alpha_{2}-\left[\frac{\alpha_{1}+\alpha_{2}}{p_{\gamma}(m)}\right] \\
\varphi_{v}\left(n, \alpha_{1}\right)=\alpha_{1}-\left[\frac{\alpha_{1}}{p_{\gamma}(m)}\right] ; \varphi_{r}\left(n_{1} \alpha_{2}\right)=\alpha_{2}-\left[\frac{\alpha_{2}}{p_{2}(m)}\right]
\end{gathered}
$$

where $n=p^{m}$ and $[x]$ represents the largest integer \leq. . Now as $[x+y] \geqslant[x]+[y]$, the necessity part follows directly.

To prove sufficiency let (15) hold and let $n=\prod_{i=1}^{s} p_{i}, s>1$. we shall get a contradiction. Consider the two numbers $p_{i}^{f_{r}\left(\beta_{i}\right)}, \hat{p}_{j}^{f}\left(\beta_{j}\right.$ for any two distinct i, j with $1 \leqslant i<j \leqslant$ s. As these numbers are relatively prime there exist positive integral solutions to

$$
\left|x p_{i}^{f_{r}\left(\beta_{i}\right)}-y p_{j}^{f_{r}\left(\beta_{j}\right)}\right|=1
$$

Without loss of generality let y $p_{j}^{f_{r}(\beta j)}>x p_{i}^{f_{r}\left(\beta_{i}\right)}$.
Consider now an integer m. satisfying

$$
\begin{equation*}
m \equiv O\left(\bmod p_{1}^{f_{r}\left(\beta_{1}\right)} \cdots p_{s}^{f_{\gamma}\left(\beta_{s}\right)}\right) \tag{16}
\end{equation*}
$$

and let

$$
m^{\prime}=\prod_{i=1}^{s} p_{i} f_{r}\left(\dot{\beta}_{i}\right)
$$

One can show that $(a, n)_{r}=1$ if and only if

$$
\begin{equation*}
\left(\lambda m^{4}+a, n_{1}\right)_{r}=\left(A_{1}^{\prime}-a_{1} n\right)_{r}=1 \tag{17}
\end{equation*}
$$

Now consider the intervals ($\left.0, \mathrm{y} \quad \mathrm{p}_{\mathrm{j}}\left(\beta_{j}\right)\right]$ and $\left(m-2, m+y p_{j} f_{r}\left(\beta_{j}\right)-2\right]$
It is evident from (16) and (17) that for every 'a' with $0<a \leqslant y p_{j}{ }_{r}\left(\beta_{j}\right)-2$ and $(a, n)_{r}=1$ there is an ${ }^{\prime} m+a$ ' with $m<\sum_{f_{r}(i)}+a \leqslant m+y p_{j}^{r}(\beta j)-2$ and $(m+a, n)_{r}=1$. But neither $\times p_{i}$ are prime to n order r (we use Lemma 1 here). Yet as $(1, n)_{r}=1$ we have $\left.(m-1), n\right)_{r}=1$.

Thus

$$
\varphi_{r}\left(n, m-2, m+y p_{j}^{f_{r}\left(\beta_{j}\right)}-2\right)=\varphi_{r}\left(n, y p_{j}\left(\beta_{j}\right),+1\right.
$$

which is the same as saying

$$
\begin{aligned}
& e_{r}\left(n, \alpha_{I}, \alpha_{2}\right)=I>0 \\
& f_{r}\left(\beta_{j}\right)
\end{aligned}
$$

if we set $\alpha_{I}=m-2, \alpha_{2}=p_{j}$ in (18), a contradiction
to our assumption (15) for some $\alpha_{1}, \alpha_{2} \in z^{+}$(actually for infinitely many as the solutions to (16) are infinite). Thus $s=1$ which establishes sufficiency. The proof is complete. *+*+*+*+*+*+*+*

REFERENCES

1) K. Alladi, On a Generalization of the Euler function, Professor S. Ramanujan Commemoration Volume, Oxford Press, Madras, India to appear December 1974.
2) Chidambaraswamy
3) E. Cohen, on Arithmetic functions associated with the unitary divisors of an integer, Math. Z. 1960, 74
4) W. J. LeVeque, Topics in number theory, Vol. I, Addison Wesley Reading, Mass, 1960, pp.120-140.
5) D. Suryanarayana, on the number of bi-unitary divisors of an integer, Proc, Conf, on Arithmetic Functions, Springer-Verlag 19, Berlin, Heidelberg, New York.

RE/
20.12.74

Krishnaswami Alladi
Vivekananda College, MADRAS 600004

Krishnaswami Alladi
Vivekananda College, Madras, India

Introduction:-
One of the features of number theoretic functions ia that though the rate of growth is not predictable, yet the sumatory values $\dot{\text { of }}$ the function behave very well. A typical example is the function $\tau\left(r_{i}\right)$ which represents the number of divisors of n_{r} a positive integer. The equation $\widetilde{c}(x)=2$ has infinitely many solutions in x (integers) namely the primes, and $\tau(x)=m$ also has a solution however large m be. And it is known [1]

$$
\begin{equation*}
\sum_{n=1}^{m} \tau^{\prime}(n)=m \log m+(2 r-1) m+O(\sqrt{m}) \tag{I}
\end{equation*}
$$

where γ is the Euler's constant. In this paper we shall deal with the asymptotic behaviour when functions are summed over a set of \because integers with positive natural density. Here our interest will centre around functions "uniformly asymptotic" (see. Definition l) and functions which can be expressed in terms of these uniformly asymptotic functions.

UNIFORMLY ASYMPTOTIC FUNCTIONS Here and in what follows by an integer we refer to an integer \geqslant and $Z^{+1}=\{1,2,3, \ldots\}$ Whenever we speak of a function we mean a real valued function with $f(x) \geqslant 0$ Now let $A \subset Z^{+}$. For real x denote by

$$
A(x)=\sum_{a \in A,}^{i} a \leqslant x
$$

and by $\delta(A)$ the limit of (if it exists)

$$
\lim _{x \rightarrow \infty} \frac{A(x)}{x}=\delta(A)
$$

$\delta(A)$ is called the natural density of A.
Let f be a function and let $\sum_{0<n \leq x} f(y)=F(x)$ diverge to infinity monotonically. In this paper we shall be interested in limits of the form

$$
\lim _{x \rightarrow \infty} \sum_{0<n \leqslant x}^{1} f\left(r_{i}\right) / \sum_{0<n \leqslant x} f(n)=l
$$

It is quite natural to expect $\ell=\delta(A)$. However it will be convenient to know what exactly the members of A are besides knowing $\delta(A)>0$.

This leads to the definition of a uniformly asymptotic function. Definition 1: Let f be a function and A an integer. If we have $\sum_{0, n} f(n)$

$$
\begin{equation*}
\lim _{x \rightarrow \infty} \frac{0<n \leq x, i \equiv \mu(\bmod \lambda)}{\sum_{0<n \leq x} f(n)}=\frac{1}{\lambda} \tag{3}
\end{equation*}
$$

for all residue classes $\quad 0 \quad(\bmod \lambda)$ then we say f^{\prime} 'is uniformly asymptotic modulo . By U(\AA) is meant the set of all ' f^{\prime} ' uniformly asymptotic modulo A. If $f \in U(\lambda) \quad{ }^{\prime} \lambda \in Z^{+}$we say ${ }^{*} f^{\prime}$ is a uniformly asymptotic function.

Lemma 1: If $f_{1}, f_{2} \ldots f_{n} U(\lambda)$ and is $\alpha_{1}, \alpha_{2} \ldots \sigma_{n}$ are real constants >0, then $f \in U(\lambda)$ where

$$
f=\sum_{i=1}^{n} \alpha_{i} f_{i}
$$

Proof: It is evident from Definition 1 that $g \in(\lambda)$ implies $\mathcal{G} \in(\lambda)$ where θ^{\prime} is a constant $\rangle t$. Now let $g, A \in U(\lambda)$. We will show that $(g+h) \in U(\lambda)$. Denote by

$$
u_{i n}=\frac{\left.\sum_{n=1}(\lambda)(\beta)+n(n)\right)}{\sum_{n=1}^{m}(g(n)+n(n))}
$$

where μ is some residue class modulo $\underset{M}{m}$. clearly if a_{m}, b_{m}, c_{m} od m denote

$$
\begin{equation*}
u_{m}=\frac{a_{m}+b_{m}}{c_{m}+d_{m}} \tag{4}
\end{equation*}
$$

New let $\left.\varepsilon_{m}=\left|\frac{1}{\lambda}-\frac{a_{m}}{Q_{m}}\right| \begin{array}{c}a \\ a_{m} \\ a_{m} \\ \varepsilon_{m}\end{array}=\left\lvert\, \frac{1}{\lambda}-\frac{b_{m}}{d_{m}}\right.\right)$, Clearly (4)indicates that , α_{m} lies in between $\frac{a_{m}}{C_{m}}$ and $\frac{b_{m}}{\alpha_{m}}$ so that

$$
\left|u_{m}-\frac{1}{n}\right| \leq \max \left(\varepsilon_{m}, \varepsilon_{m}\right)
$$

Now as $g, h \in \cup(\lambda), \varepsilon_{m}$ and $\varepsilon_{\text {an }} \rightarrow 0$ as $m \rightarrow \infty$ so that $u_{m} \rightarrow \frac{1}{\lambda}$ as $m \rightarrow \infty$. This proves $g+h \in U(\lambda)$

- It is now a straightforward deduction that $f \in U(\lambda)$ proving the lemma It is an easy exercise to verify that if $f(n)=n^{k}$ with ce Z^{*} then f is uniformly asymptotic. Now Lemma l actually tells us that

Lemma 2: If $f(x)$ is a polynomial then $f^{\prime} f$ is uniformly asymptotic. Actually Lemma 2 becomes a particular case of a more general
theorem we shall prove presently o
Theorem:- Lei f be a function and let- $\sum_{1} f(n)$ diverge. If...

$$
\begin{equation*}
\lim _{n \rightarrow \infty} \frac{f(n+1)}{f(n)}=1 \tag{5}
\end{equation*}
$$

then f is uniformly asymptotic. Conversely if f is uniformly asymptotic and if the following limit exists
then ${ }_{\text {t }}=1 \quad \lim _{n \rightarrow \infty} \frac{f(n)}{f(n-1)}=l$
Proof:- Consider $a \lambda \in Z^{\frac{1}{1}}$ and a residue μ of λ with $0 \leqslant \mu<\lambda$. Let \mathscr{Q}. be a real number and partition $[0, x]$ as $[0, \mu],[\mu, \mu+\lambda] \ldots$ $\left[\lambda n^{\prime}+\mu, x\right]$. Now as (5) holds we have for any $k \in Z^{+}$

$$
f(n+k)=f(n)+o(f(n))
$$

Choose $k<\lambda$, Now every integer μ, \therefore between $\lambda i+\mu$ and $\lambda(i+1)+\mu$ so that

$$
\begin{align*}
& \sum_{n=\lambda i+\mu+1}^{\lambda(i+1)+\mu} \underset{\lambda i}{ } \quad \sum_{n=\lambda i+i}^{\lambda(n)} f(\lambda i+\mu)+o(f(\lambda i+\mu)) \\
& =\lambda f(\lambda i+\mu)+o(f(\lambda i-i-\mu)) \tag{7}
\end{align*}
$$

clearly

$$
\begin{array}{lcc}
\sum_{1}^{\prime} f(n)=\lambda \sum_{n \leq x} f(n)+\sum_{1} o\left(f(n)=\lambda \sum_{1} f(n)+o\left(\sum_{0}^{1} f(n)\right)\right. \\
o a n \leqslant x & \gamma \equiv \mu(m o \lambda) \quad n \equiv \mu(\bmod (\lambda) \quad & n \equiv \mu(\bmod \lambda)
\end{array}
$$

as $\sum_{0=1}^{1} f(n)$ diverges s_{4} This imp? iss that
or $f \in U(\lambda)$ since μ was arbitrary. $\lambda s \lambda \in \mathcal{Z}^{+}$is arbitrary, f is uniformly asymptotic.

Conversely let $f \in U(\lambda) \forall \lambda \in Z^{r}$. Now let $\ell<1$. Then $\sum_{n=1}^{\infty} f(n)<\infty$ so that $f \notin U(\lambda)$ a contradiction. Thus $\ell \geqslant 1$. Let $l>1$ so that (6) gives $\left.f(n+1)={ }^{i} \ell f(n)+\rho(n)\right)$
Now using arguments simian to (i) we have for $x=\lambda n+\mu-1$ for some residue class mod λ

$$
\sum_{0<n \leq x}^{1} f(n)=\left(1+\ell+e^{2}+\cdots e^{n-1}\right) \sum_{0<n \leqslant x} f(n)+o\left(\sum_{n=1}^{\sum_{0<n}^{1} f(n)} f\right)
$$

which gives

$$
\lim _{x \rightarrow \infty} \sum_{\substack{0<n \leqslant x \\ n=1}} f(n) / \sum_{1}^{1} f(n)=\frac{1}{1+l+l^{2}+\ldots l^{n-1}} \neq \frac{1}{\lambda}
$$

$$
x \rightarrow \infty \quad n=\mu(\bmod n) / 0 n \leq x
$$

a contradiction to $f \in U(\lambda)$. Thus $l=1$ proving the theorem.
It is however not necessary for the limit k to exist in (6) if $f \in U(\lambda) \forall \lambda \in Z^{+}$. We now give, rn example of a function which is uniformly asymptotic without limit $f(x+i) / f(x)$ existing. For real x bet $[x]$ denote the largest integer \lll. Let the fractional part of 2 denoted by $\{x\}$ stand for $x-[x]$; Let >0 be an irrational and define a function f by

$$
\begin{equation*}
f(n)=\{n \theta\} \quad n \in Z^{+} \tag{8}
\end{equation*}
$$

Theorem 2: The function f in (8) is uniformly asymptotic. We need two lemmas to prove our theorem.

Lemma 3: If $\alpha_{1}, \alpha_{2} \ldots \sigma_{n} \ldots$ is a sequence with $\alpha_{n} \in[0,1]$ and uniformly distributed then

$$
\lim _{m \rightarrow \infty} \frac{\alpha_{1}+\alpha_{2}+\cdots \alpha_{m}}{m}=\frac{1}{2}
$$

(Note: By uniform distribution is meant the following. Let $o \leq \alpha<\beta \leq 1$ and $\varphi_{n}(\alpha, \beta)=\sum_{i \leqslant n t, \alpha_{i}}, 1$

$$
\operatorname{Din}_{n} \ln _{n}(\alpha, \beta)=\left|\frac{\varphi_{n}(\alpha, \beta)}{\eta}-(\beta-\alpha)\right|
$$

If $D_{n}(\alpha, \beta) \rightarrow 0$ ai $\eta_{1} \rightarrow \infty \quad \forall 0 \leq \alpha<\beta \leq 1$ then the sequence $\left(\alpha_{n}\right)_{n=1}^{\infty}$ is uniformly distributed or u d, in $[0,1$,$] (sec [2 for details).$ If for any $\left(\alpha_{n}\right)_{n=1}^{\infty}$ the sequence of fractional parts of α_{n} ie $\left\{\alpha_{n}\right\}_{n=1}^{\infty}$ is u. d in $[0,1] \quad \operatorname{then}\left(a_{n}\right)_{n=1}^{\infty} u_{1}$ d. $\bmod 1$)

To prove the lemma let us partition $[0,1]$ into $\left[0, \frac{1}{2 N}\right],\left[\frac{1}{2 N}, \frac{2}{2 N}\right]$ $\ldots\left[\frac{2 N-1}{2 N}, \frac{1}{1}\right]$ and let $\beta_{d}=\frac{\gamma}{2 N}=0,1,2,3, \ldots 2 N$. clearly as $\left(\alpha_{n}\right)$ is $u_{0} d_{0}$ in 0,1 we nave.

Now

$$
\varphi_{m}\left(\beta_{r-1} f_{y}\right)=\frac{m}{2 N}+o(m)
$$

,

$$
\begin{aligned}
\frac{\alpha_{1}+\alpha_{2}+\ldots \alpha_{m}}{m} & \leqslant \frac{\sum_{n=1}^{2 N} \beta_{r}\left(\varphi_{m}\left(\beta_{\gamma-1} ; \beta_{1}\right)\right)}{m}=\frac{\sum_{\gamma=1}^{2 N} \beta_{r}\left(\frac{m}{2 N}+o(m)\right)}{m} \\
& =\frac{1}{2}+\frac{1}{4}+o(1)
\end{aligned}
$$

so that

$$
\begin{aligned}
& \limsup _{m \rightarrow \infty} \frac{\alpha_{1}+Q_{2}+\cdots \alpha_{m}}{m} \leq \frac{1}{2}+\frac{1}{4 N} \\
& \frac{\alpha_{1}+\alpha_{2} \cdot \alpha_{m}}{m} \geqslant \frac{\sum_{n=1}^{2 N} \beta_{r-1} P_{m}\left(\beta_{r-1} \beta_{r}\right)}{m n}=\frac{\sum_{r=1}^{2 N} \beta_{r-1}\left(\frac{m}{2 N}+o(m)\right.}{m} \frac{1}{2}-\frac{1}{4 N}+0(1)
\end{aligned}
$$

Similarly
or $\lim _{m \rightarrow \infty} \lim _{m \rightarrow \infty} \frac{\alpha_{1}+\alpha_{2}+\ldots a_{m}}{r_{1}} \geqslant \frac{1}{2}-\frac{1}{\infty N}$.
Now as the choice of N is aroitrary himsup himmfich proving lemma 3.

Lemma 4: If $\left(\alpha_{n}\right)_{n=1}^{\infty}$ is $u_{2} d_{n} \bmod ^{\infty} I_{0}$ and' $^{\prime}{ }^{\prime}$ a constant then so is $\left(\beta_{n}\right)_{n=1}^{\infty} \quad$ where $\beta_{n}=c+\alpha_{n}$.
Proof:- Pick α and β such that $0 \leq \alpha<\beta \leq 1$ Find $\alpha-c$, and $\beta-C^{\gamma}$ mod I and let these be γ and δ respectively. If $\gamma<\delta$ then $\delta-\gamma=\beta-\alpha$, Now $\left\{\beta_{n}\right\} \in[0,1]$ and $\left\{\alpha_{n}\right\} \in[0,1]$ with the condition that $\left\{\alpha_{n}\right\} \in[\gamma, \delta]$ if and only if $\left\{\beta_{n}\right\} \in[\alpha, \beta]$, If $\delta<\gamma$ then denote by $I_{1}=[0, \delta]$ and $I_{2}=[\gamma, 1]$. We have then $\left\{\beta_{n}\right\} \in\left[\alpha_{1} \beta\right]$ if and on it jiff $\left\{\alpha_{n}\right\} \in I_{1} \cup I_{2}$. Now $I_{1} \cap I_{2}=\phi$ and $\left|I_{1} \cup I_{2}\right|=\left|I_{1}\right|+\left|I_{2}\right|$ (where 1 Il denotes the length of an interval I). Clearly as $\{0\}$ is i. d. mod I we have $\left(\theta_{n}\right)_{r=1}^{\infty}$ is u. de mod i $^{\infty}$ also, proving the lemma. Proof of theorem 2 : It is known that $\{n \theta\}$ is u. d. in $[0,7]$ (see $[2]$ so that lemma $\frac{3}{3}$ gives

$$
\begin{equation*}
\sum_{0<x_{1} x} f(x)=\frac{x}{2}+o(x) \tag{9}
\end{equation*}
$$

Now pick any $\hat{i} \neq Z^{+\quad}$ and let μ be a residue of λ with $0<\mu \leqslant \lambda$ clearly

Now $\lambda \theta$ is irrational $B 0$ that $(\eta \lambda \theta)$ is u, do mod 2 . wa $\alpha_{n}=n \lambda \theta$ in Lemma 3 and $c=\mu \theta \cdot\left\{\beta_{n}\right\}=f((\lambda \mu \mu) \theta)$ is us. in $[0,1]$ Applying Lemma 3 we get

$$
\begin{equation*}
\sum_{0<n \leq x}+(n)=\frac{x}{2 \lambda}+O(x \tag{10}
\end{equation*}
$$

Now (9) and (10) together give that $f \in U(\lambda)$ as the choice of was arbitrary o As λ itself is arbitrary. f is a uniformly asymptotic function proving theorem 2 。

We now study the behaviour of functions over the set of integers relatively prime to an integer. Here our interest shall be on function which can be expressed in terms of uniformly asymptotic functions. Here we come across an interesting analogue of the Riemann Zeta function Define for $s>1$

$$
\begin{equation*}
\zeta_{d}(s, N)=\sum_{\substack{n=1 \\(n, N)=d}}^{\infty} \frac{1}{n^{s}}, b_{1}^{\infty}(s, N)=\zeta(s, N), \quad \dot{b}(s, 1)=\xi(s) \tag{11}
\end{equation*}
$$

As $\left.(n, N)=I \Leftrightarrow(d, N)=\left(\frac{n}{d}, N\right)=I \forall d \right\rvert\, n$ the following are immediate deductions.
$\sum_{\substack{n=1 \\(n, N)=1}}^{\infty} \frac{\mu(n)}{n^{s}}=\frac{1}{\zeta(s, N)} ; \sum_{\substack{n=1 \\(n, N)=1}}^{\infty} \frac{\tau(n)}{n^{s}}=\zeta_{S}^{\infty}(s, N)^{2} ; \sum_{\substack{n=1 \\(n, N)=1}}^{\infty} \frac{\varphi(n)}{n^{s}}=\frac{\zeta(s-1, N)}{\zeta(s, N)}(12$
under suitable domains of convergence, where φ denotes the Euler function $\left.\sum_{\alpha a \leq n}^{1} 1(a, n)=1\right) \mu$ the Moebius function (see $[I]$) and τ the function mentioned in (II. Let us obtain the value of $\sum_{0}\left(S_{0} N\right)$ in terms of $\zeta(S)$. Now (11)implies that

$$
\zeta(s)=\sum_{d N_{N}}^{\infty} \varphi(S, N)=\sum_{d}^{-1} \frac{1}{a^{s}} \zeta(S, N)=\zeta(S, N) \sigma_{s}(N) / N^{s}
$$

which gives $\zeta_{S}(S, N)=Z /(S) N S / \sigma_{S}(N)$ where $\sigma_{S}(N)$ denotes the sum of the $s^{\text {th }}$ powers of the divisors of N.

We give two more definitions before going to prove the theorems. In (2) if $\ell>\delta(A)$ we say f is strongly asymptotic over A. If $l<\delta(A)$ then f is weakly asymptotic over A. Further let $R(N)$ denote the set of all integers relatively prime to N so that

$$
\delta(R(N))=\varphi(N) / N \text { as } R(N)=\bigcup_{j=1}^{(n)} A_{j}
$$

where $A_{A}=\left\{n+\mu_{j}\right\}$ with $0<\mu_{j}<N, \mu_{j}$ being the $j^{\text {th }}$ number relatively prime to N. Note also that if $f \in U(N)$ theme

$$
\sum_{0<n \leqslant x}^{1} f(n) \quad n \in R(N)=\frac{\varphi(N)}{N} \sum_{0<n \leqslant x} f(n)
$$

Theorem 3: Let $f \in 0$ (wand $\sum_{0,1} f(n)=C_{N} x^{5}+O\left(x^{5-E}\right)$ where $C, C>0$ and $S>1$. If $F(n)=\sum_{d i n}^{i} f(d)$ then F is weakly asymptotic over $R(N)$ and

$$
\begin{equation*}
\lim _{m \rightarrow \infty} \frac{\sum_{n=1} F(n, N)=1}{\sum_{n=1}^{m} F(n)}=\frac{\varphi(N) \varphi(s, N)}{N \varphi(5)} \tag{13}
\end{equation*}
$$

Proof: From the definition of F we have

$$
\begin{aligned}
& \sum_{n=1}^{m} F(n)=\sum_{n=1}^{m} \sum_{d i n} f(d)=\sum_{d=1}^{m} \sum_{d i}^{\left[\frac{d}{d}\right]} f\left(d^{\prime}\right)=\sum_{d=1}^{m} c\left[\frac{m}{d}\right]^{s}+\Delta\left(\left[\frac{m}{d}\right]^{5-\epsilon}\right) \\
& \left.\left.=\sum_{d=1}^{m}\left[c\left(\frac{m}{d}\right)^{s}+d\left(\frac{m}{d}\right)^{s-1}\right)+c\left(\frac{m}{d}\right)^{s-\epsilon}\right)\right] \\
& =c m^{5} \sum_{d=1}^{m} \frac{1}{d^{5}}+O\left(m^{5}\right)
\end{aligned}
$$

(as $\sum_{d=1}^{m}\left(\frac{m}{d}\right)^{s-E}=0\left(m^{5}\right)$ where $s-\varepsilon$ is $<,=$ or >1 as $s>1)$.

$$
\begin{align*}
& =c m\left(\sum_{d=1}^{\infty} \frac{1}{d^{5}}-\sum_{d=m+1}^{\infty} \frac{1}{d^{5}}\right)+O\left(m^{s}\right) \\
& =c m^{s} \varphi(s)+O\left(m^{s}\right)+O(m) \\
& =C m^{s} \varphi(s)+O\left(m^{s}\right) \tag{14}
\end{align*}
$$

Now

$$
\begin{align*}
& \sum_{1}^{m} F(n)=\sum_{n=1}^{m} \sum_{d / n} f(d)=\sum_{d=1}^{m} \sum_{d^{\prime}}^{m} f\left(d^{\prime}\right) \\
& \begin{array}{l:cc}
n=1 & n=1 \text { din } & \left(\begin{array}{l}
d=1 \\
(n, N)=1
\end{array}\right. \\
(n, N)=1 & (d, N)=1 & (d, N)=1
\end{array} \\
& =\sum_{d=1}^{m} \frac{\varphi(N)}{N} c\left[\frac{n n}{d}\right]^{E}+O\left(\left(\frac{m}{d}\right)^{s-E}\right) \text { as } f \in U(N) \\
& \begin{array}{l}
(d, N)=1 \\
=c Y(N) n^{5} \sum_{d=1}^{\infty} \frac{1}{d^{s}}+O\left(m^{s}\right)
\end{array} \tag{15}
\end{align*}
$$

(for reasons similar to (14).

$$
=\frac{1(N)}{N}\left(m^{\dot{N}} g(s, N)+o\left(m_{1}^{s}\right)\right.
$$

Now (15) and (14) together give (13). And as $Y(s ; N)<\varphi(s)$. we have the limit $<\delta(F(N))$ or F is weakly asymptotic over $R(N)$.

Theorem 4:- Let f be a function and $F(n)=\sum_{d i n}^{\infty} f(x)$ If $F \in U(N) \forall N \in Z^{+}$ and $\sum_{1}^{1} F(n)=k_{N} x^{5}+O\left(x^{5-\epsilon)^{\prime}, k_{N}, \epsilon>0, \sigma>1}\right.$ $0<n \leqslant x,(n, N)=1$ then f is strongly asymptotic over $R(N)$ and

$$
\begin{equation*}
\lim _{m \rightarrow \infty} \frac{\sum_{n=1}^{m} f(n)}{\sum_{n=1}^{n} f(n)}=1 \quad \frac{p(n) \varphi(s)}{n}, f(5, N) \tag{16}
\end{equation*}
$$

Proof:- As $F(N)=\sum_{i=1}^{n=f}(d)$, we have from the Moebius inversion formula $\left(\right.$ see $[1]$) wm $f(n)=\frac{\frac{2}{d}}{d / n} \mu(d) F\left(\frac{n}{d}\right)$

$$
\sum_{n=1}^{n o w} f(n)=\sum_{n=1}^{m} \sum_{d \mid n}^{m} \mu(d) F\left(\frac{n}{d}\right)=\sum_{d=1}^{m} \mu(d) \sum_{d!1}^{\left[\frac{w 1}{d}\right]} F\left(d_{1}^{\prime}\right)
$$

$$
=\left(\sum_{d=1}^{m} \mu(d)\left(\frac{c m^{s}}{d^{5}}\right)\right)+o\left(m^{s}\right) \quad(\text { for reasuns similar } \quad \underset{\infty}{1 /}
$$

$$
=c m^{s} \sum_{d=1}^{\infty} \frac{\mu(d)}{d s}+c m s \sum_{d=m+1}^{\infty} O\left(\frac{1}{d^{s}}\right)+o\left(m m^{5}\right)
$$

$$
\begin{equation*}
=\frac{\operatorname{com}^{s}}{\varphi(5)}+0\left(m^{5}\right) \tag{17}
\end{equation*}
$$

Now (17) and (18) together imply (16). Now as $Y(S, N) \leqslant Y(s)$
the limit is $>P(N) / N=\delta(R(N))$ which gives that $\mathrm{F}=$ is strongly asymptotic over $R(N)$. The proof is complete.

We now deduce two interesting results from theorems 3 and 4 .

$$
\begin{aligned}
& \text { from (12). Again } \\
& \sum_{1}^{n} f(n)=\sum_{n=1}^{m} \sum_{d i n}^{n} \mu(d) F\left(\frac{n}{d}\right)=\sum_{d=1}^{m} \mu(d) \sum_{d i=1}^{\left[\frac{1}{d}\right]} F\left(d^{1}\right) \\
& \begin{array}{lll}
n=1 & (n=1, d n & (d, N)=1
\end{array} \quad(d!, N)=1 \\
& \begin{array}{l}
=\left(\sum_{d=1}^{m} \mu(d)\left(c \frac{m^{5}}{d=} \frac{P(N)}{N}\right)\right)+0\left(m^{5}\right) \quad a \leq F \in U(N) . \\
=C m^{s} \sum_{d=1}^{\infty} \frac{\mu(d)}{d s} \frac{\varphi N}{N}+O\left(m^{s} \sum_{d=1}^{\infty} \frac{1}{d^{s}}\right)+0\left(m^{s}\right) .
\end{array} \\
& =\frac{c n^{S}}{\rho(S, N)} \frac{\varphi(N)}{N}+0\left(m^{s}\right)
\end{aligned}
$$

Theorem 5:- a) $\sigma_{k}(n)=\sum_{d i n}^{1} d^{k}$ then for $k>0$

$$
\sum_{\substack{k=1 \\ k \\(n i, N) \\ m}}^{\infty} \sim \frac{m^{k+1} \varphi(n)}{(k+1) N} \varphi(k+1, N)
$$

b) If $\varphi(n)$ denotes the Euler function then

$$
\sum_{\substack{n=1 \\(n, N)=1}}^{n} \varphi(n)=\frac{m^{2}}{2 \varphi(2, N)}
$$

Proof: set $f(x)=x^{k}$ in Theorem 3. Then $f(n)=\sigma_{k}(n)$ Here $c=\frac{1}{k+1}$ and $S=K-1>$ 1. Part.(a) follows from (15). Note that $f \in U(N)$ as f is uniformly asymptotic (Lemma 2).

Set $F(x)=x$ in Theorem 4. Then $f(x)=\varphi(x)$. Here $C=1 / 2$ and $s=2$. Part b follows as $F(n)=U(N)$ for Lemma 2 gives that F is uniformly asymptotic,

Our final theorem deals with the case $\left.\sum_{0<n \leq x}^{1} f(n) \sim c_{N} x^{5}+0!\therefore\right)$ where $c_{N}, \prime>0$ and $S=-$
 Let $F(n)=\sum_{d \mid n}^{1} f(d)$. Then F is weakly asymptotic over. $R(N)$ and

$$
\lim _{m \rightarrow \infty} \frac{\sum_{n=1}^{M} F(n)}{\sum_{0<n} F(n)}=\left(\frac{\varphi(N)}{N}\right)^{2}
$$

Proof: Very much similar to the proof of Theorem 3. We omit the details but give the sketch of it.

The only change comes in (15) where $s=1$: $50 \frac{1}{d}=\mathscr{F}(d)$ is uniformly asymptotic, (we deduce this from Theorem 1) and so an extra $\varphi(N) / N$ appears in the limit.

Corollary If $\tau(n$ eperesents the function given in (I) Then

$$
\begin{aligned}
& \qquad \sum_{n=1}^{m} \tau(n)=\left(\frac{\varphi(N)}{N}\right)^{2} m \log m+O(m) \\
& (n, N)=1
\end{aligned}
$$

Corollary follows if we set $k=0$ and use (1) to estimate $\sum_{n=1}^{m} \tau(n)$

References: 1) w. J. Leveque, Topics in Number Theory, Vol. 1, Addison Wesley, Reading, Mass, p. p. 100-140
2) Ivan Niven, Introduction to Diophantine Approximations, Interscience Publishers, cohn Wiley and Sons, New York, London 1063 p. p. 10-40
3) B. Gordon and K. Rogers, Sums of the divisor function, Canad. J. of Math., 16, 1964, p.p.151-158

Krishnaswami Alladi
Vivekananda College
Madras-600004
INDIA

> Krishnaswami Alladi Vivekananda College, Madras, INDIA $+^{*}++^{*}++^{*}++^{*}$

In this paper we discuss functional analogues to the concepts of density of integer sequences and uniform distribution in the sense of Weyi [6] and Niven [5]

Part I:

Throughout this section whenever we refer to a function 'f' we mean a function on $[0,1]$ which has atmost a finite number of discontinuities and $f(x)>0,0 \leqslant x \leq 1$. Let $A=\left\{\alpha_{n}\right\}_{n=1}^{\infty}$ be a sequence in $[0,1)$ and $' f$ ' a function. Let α, β be real numbers such that $0 \leqslant \alpha<\beta \leqslant 1$. We denote by

$$
\begin{equation*}
F_{n}(\alpha, \beta)=\sum_{\substack{\alpha_{i} \in[\alpha, \beta) \\ i \leq n}} f\left(\alpha_{i}\right) \tag{1.1}
\end{equation*}
$$

and by

$$
\begin{equation*}
D_{n}(\alpha, \beta)=\left|\frac{F_{n}(\alpha, \beta)}{F_{n}(0,1)}-(\beta-\alpha)\right| \tag{1.2}
\end{equation*}
$$

If $D_{n}(\alpha, \beta) \rightarrow 0$ as $n \rightarrow \infty$ for all $0 \leqslant \alpha<\beta \leqslant 1$ we say that the sequence $\left\{\alpha_{n}\right\}^{\infty}$ is uniformly $f-$ distributed in $[\underline{O}, 1$) and denote it in $n_{n}^{n}=1$ br t by is u. $d(f)$ in $\{0,1$. This is the central idea of this section.

$$
\text { If } A=\left\{\alpha_{n}\right\}_{n=1}^{\infty} \text { denotes a sequence in }[0,1) \text { we say two }
$$

functions f and g are A - equivalent, (notation: $f \stackrel{A}{f}$) if A is u. d. (f) and u. d_{a}. in $[0,1$) Clearly this is an equivalence relation. We shall characterise in Theorem the relation $f^{A} g$.

Note that if $f(x)=1$ and A is u. $d(f)$ in $[0,1$) then A is uniformly distributed in the sense of Weyl [6]. We also apply the concept $u, d . E^{\prime}$ to numerical integration. Let $I=[\alpha, \beta) \quad \in[0,1)$. Let α_{n}, be the first number of $A=\left\{\alpha_{n}\right\}_{n=1}^{\infty} \subset[0,1)$ that lies in I. Let $\alpha_{n_{2}}$ be the next member of A in I, \ldots If $\beta_{i}=\alpha_{n_{i}}$ for $i=1,2,3, \ldots$ we then $B=\left\{\beta_{i}\right\}$ is called the restriction $o f A$ to I, begin by proving LEMMA 1:1: If $A=\left\{\alpha_{n}\right\}_{n=1}^{\infty}$ is uniformly distributed in $[0,1)$ and $I C[0,1)$ then $\left\{\beta_{i}\right\}_{i=1}^{\infty}$ the restriction of A to I is uniformly distributed in I_{6}

Proof: Let $[\mathcal{X}, \beta) \quad[0,1)$. Let $\alpha^{\prime}, \beta^{\prime}$ be real numbers with $\alpha^{*} \leqslant \alpha^{\prime}<\beta^{\prime} \leqslant \beta \quad$ Denote by

$$
\Psi_{m}\left(\alpha^{\prime}, \beta^{\prime}\right)=\sum_{\alpha^{\prime} \leq \beta_{i} \leq \beta^{\prime}, i \leq m}^{1} 1 \quad ; P_{m}(\alpha, \beta)=m
$$

Now let

$$
\begin{equation*}
D_{m}\left(\alpha^{\prime}, \beta^{\prime}\right)=\left|\frac{\varphi_{m}\left(\alpha^{\prime}, \beta^{\prime}\right)}{m}-\frac{\beta^{\prime}-\alpha^{\prime}}{\beta-\alpha}\right|=\left|\frac{\varphi_{m}\left(\alpha^{\prime} \beta^{\prime}\right)}{n_{m}} \cdot \frac{n_{m}}{m}-\frac{\beta^{\prime}-\alpha^{\prime}}{\beta-\alpha}\right| \tag{1.3}
\end{equation*}
$$

Now as $\beta_{i}=\alpha_{n i}$ we deduce that

$$
\begin{equation*}
\varphi_{m}\left(\alpha^{\prime}, \beta\right)=\sum_{\alpha_{i} \in\left[\alpha^{\prime}, \beta^{\prime}\right] i \leqslant n_{m}}^{1} \tag{1.4}
\end{equation*}
$$

Now as A is u. d. in $[0,1),\left(1\right.$. indicates that $\varphi_{m}\left(\alpha^{\prime}, \beta^{\prime}\right) / n_{m} \rightarrow \beta^{\prime}-\alpha^{\prime}$ an $m \rightarrow \infty$. Moreover $n_{m / n} \rightarrow-1 / \beta-\alpha$) so that from (3) we infer that $D_{m}\left(\alpha^{\prime}, \beta^{\prime}\right) \rightarrow 0$ for all $\alpha \leq \alpha^{\prime}<\beta^{\prime} \leq \beta \quad$ which establishes Lemma 1.1.

For a more quantitative estimate of $D_{m}\left(\alpha^{\prime}, \beta^{\prime}\right)$ one can show using ${ }^{\prime}$ that
$0 \leqslant D_{m}\left(\alpha^{\prime}, \beta^{\prime}\right) \leqslant \sup _{\left(\alpha^{\prime}, \beta^{\prime}\right)<[\alpha, \beta]} \theta_{m}\left(\alpha^{\prime}, \beta^{\prime}\right)=\theta_{m} \leqslant 2 D_{n_{m}}$

There D_{N} denotes as usual the discrepancy of the first terms of A.

By a rational step function f on $[0,1]$ we mean a step Function which has $f(x)$ rational, $0 \leqslant x \leqslant 1$, and its points of discontinuity $Y_{0}, Y_{1}, \ldots Y_{\not}$ are all rational.

THEOREM 1.2: If ' f ' is a rational step function then there exist sequences which are uniformly $£$-distributed in $[0,1]$.

Proof: Let the points of discontinuity of $f, Y_{1} \ldots Y_{h}$ be rational. As the y_{1} are rational it is possible to subdivide ,1] Into intervals $I_{I}, I_{2} \ldots \ldots I_{k}$ defined by points
$=x_{0}<x_{1}<x_{2}<\ldots<x_{k+1}<x_{k}=1$ where $I_{r r}=\left[x_{r-1}, x_{r}\right)$, such that $\left|I_{r}\right|=\frac{1}{k}, r=1,2, \ldots K$, and the $y_{i} s$ form a subset of che x_{j}. we are now sure that f is continuous in each I_{k} and is also constant. For $x \in I_{r}$ let $f(x)=q_{r / s_{r}}, r=1 \ldots \ldots k$. consider the rationals $s_{r / q_{\gamma}} r=1,2, \ldots k$. If $q=\left[q_{n} \ldots, q_{k}\right]$ denotes the l. C. m of $q_{i} s$ them rewrite $s_{r / q_{r}}$ as $p_{r / q}$ $=1,2, \ldots \mathrm{~K}$.

Consider any sequence $A=\left\{\alpha_{n}\right\}_{n=1}^{\infty}$ that is u. d_{e} in $[0.1$). Let denote the restriction of A to I_{r}. Clearly by Lemma 1. 1 each is u. d. in $I_{r} \quad r=1,2, \ldots K_{0}$
Construction:- Pick the first ${ }_{1}$ members from A_{1}, the first D_{2} members from $A_{2} \ldots$ and put them side by side with members of A_{i}
preceding those of A_{j} if $i<j$. clearly we have $p_{1}+p_{2}+\ldots p_{k}=p$ members. Repeat this performance with the members of A_{i}, without its first p_{i} members and lay these next the p members formed. Continue the precess to get a sequence $\left\{\beta_{n}\right\}_{n=1}^{\infty}$ which is a rearrangement of A.

Claim:- $\bar{B}=\left\{\beta_{n}\right\}_{n=1}^{\infty}$ is u. d. (f) in $[0,1)$
Let $0 \leq \alpha<\beta \leq 1$ and n an arbitrary integer with $n=\lambda P+\mu, 0 \leq \mu<P \quad$. Let $[\alpha, \beta)$ be split using the $x_{j} s$ as $\left[\alpha_{1} x_{l}\right),\left[x_{l}, x_{l+1}\right) \circ\left[x_{m-1}, \beta\right)$. Clearly we have split $\operatorname{up}[\alpha, \beta)$ as

$$
[\alpha, \beta)=\bigcup_{\gamma=1}^{K}\left\{[\alpha, \beta) \cap I_{\gamma}\right\}=\bigcup_{\gamma=\ell}^{M}\left\{[\alpha, \beta) \cap I_{\gamma}\right\}
$$

so that

$$
F_{n}(\alpha, \beta)=\sum_{\beta_{i} \in[\alpha, \beta), l \leqslant n} f\left(\beta_{i}\right) \quad \sum_{\gamma=l}^{M_{i}} \sum_{\substack{i \in[\alpha, \beta) \cap I_{r} \\ i \leq n}} f\left(\beta_{i}\right)
$$

which reduces to

$$
\begin{equation*}
F_{n}(\alpha, \beta)=\sum_{r=\ell}^{m} \frac{q_{r}}{s_{r}} \sum_{\delta_{i} \in[\alpha, \beta) \cap I_{r}}^{1} \frac{1}{L_{i}}=\sum_{r=\ell}^{m} \frac{q_{r}}{s_{\gamma}} \varphi_{n}\left(I_{\gamma}^{\prime}\right) \tag{1.06}
\end{equation*}
$$

where $I_{r}^{\prime}=\left[\alpha_{1} \beta\right) \cap I_{\gamma}$ and $\varphi_{n}(I)=\sum_{\alpha_{i} \in I, i \leqslant n}^{\prime} 1 . \quad$ Clearly for
$I<r<m \quad$ we have

$$
\varphi_{n}\left(I_{\gamma}^{\prime}\right)=\varphi_{\lambda P}\left(I_{y}^{\prime}\right)+O(P)=\lambda_{p_{\gamma}}+O(P)
$$

For $r=I$ we note that the restriction of A to I_{1} is $u_{0} d$. so that

$$
\varphi_{n}\left(I_{\ell}^{\prime}\right)=\varphi_{\lambda p}\left(I_{\ell}^{\prime}\right)+O(P)=\frac{x_{\ell}-\alpha}{1 I_{\ell}} \lambda p_{l}+O(P)+o(\lambda)
$$

and similarly

$$
\varphi_{n}\left(I_{m}^{\prime}\right)=\varphi_{\lambda p}\left(I_{m}^{\prime}\right)+O(P)=\frac{\beta-x_{m-1}}{\left|I_{m}\right|} \lambda p_{m}+O(P)+o(\lambda)
$$

so (6) reduces to

$$
\begin{align*}
& F_{n}(\alpha, \beta)=\left(\sum_{r=\ell+1}^{m-1} \frac{q_{r}}{s_{\gamma}} \lambda p_{\gamma}\right)+\lambda p_{\ell} \frac{q_{l}}{s_{\ell}} \frac{x_{\ell}-\alpha}{\left|I_{l}\right|}+\lambda p_{m} \frac{q_{m}}{s_{m}} \frac{\beta-x_{m-1}}{\left|I_{m}\right|}+O(p)+o(\lambda) \\
& =q \lambda(m-l+1)+\lambda q \frac{x_{l}-\alpha}{\left|I_{l}\right|}+\lambda q \frac{\beta-x_{m-1}}{\left|I_{m}\right|}+O(p)+o(\lambda) \\
& =k \lambda q(\beta-\alpha)+O(p)+o(\lambda) \tag{1.7}
\end{align*}
$$

where $K \mathbb{L}\left|/ I_{I}\right|$. Clearly we have

$$
\begin{equation*}
F_{n}(0, I)=k \lambda q+O(P)+O(\lambda) \tag{1.8}
\end{equation*}
$$

Now (7) and (8) together imply thus as $n \rightarrow \infty,(\lambda \rightarrow \infty)$ (2) holds with α_{i} replaced $\left\{\beta_{i}\right\}$ so that $\left\{\beta_{n}\right\}_{n=1}^{\infty}$ is us. (f) in
$[0,1)$ as claimed.
We now apply the concept of u. d. f to Numerical Integration. For the step function f discussed above let f^{*} denote

$$
\begin{equation*}
f(x)=\frac{p_{r}}{p\left|I_{r}\right|} \text { when } f(x)=\frac{q_{r}}{S_{r}} \tag{1.9}
\end{equation*}
$$

We call f^{*} as the normaliser of f.
Let $R[0,1]$ denote all Riemann Integrable functions in $[0,1]$ We are now in a position to prove our main theorem which is

THEOREM 1.3. If f is a rational step function and $A=\left\{\alpha_{n}\right\}_{n=1}^{\infty} \subset[0,1)$ is u.d. (f), and $\phi \in R[0,1]$ then $n \xrightarrow{\lim _{\rightarrow}} \frac{1}{n} \sum_{i=1}^{n} \phi\left(\alpha_{i}\right)=\int_{0}^{1} \phi(x) f^{*}(x) d x$
Proof: As in Theorem 1.2. we divide $[0,1)=\bigcup_{r=1}^{k} I_{r}$.
and $f(x)=q_{r} / S_{r}, x \in I_{r}$. The sequence β_{n} is renamed as α_{n} here. We can straightaway write

$$
\frac{1}{n} \sum_{i=1}^{n} 1 . \phi\left(\alpha_{i}\right)=\frac{1}{n} \sum_{\gamma=1}^{k} \sum_{\alpha_{i} \in I_{r}, i \leqslant n}^{6} \phi\left(\alpha_{i}\right)
$$

Clearly we have

$$
\frac{\varphi_{n}\left(I_{r}\right)}{n}=\frac{P_{r}}{P}+o(1)
$$

so we rev ite (10) as

$$
\frac{1}{n} \sum_{i=1}^{n} \phi\left(\alpha_{i}\right)=\sum_{r=1}^{k} \frac{\varphi_{n}\left(I_{r}\right)}{n} \cdot \frac{1}{\varphi_{n}\left(I_{\gamma}\right)} \sum_{i=1}^{i} \phi\left(\alpha_{i}\right) \quad \text { (1.11) }
$$

As the restriction of A in I_{j} is uniformly distributed we deduce from weyl's criterion $[6]$, that

$$
\begin{equation*}
\lim _{n \rightarrow \infty} \frac{1}{\varphi_{n}\left(I_{\gamma}\right)} \sum_{\substack{\alpha_{i} \in I_{r} \\ i \leqslant n}} \phi\left(\alpha_{i}\right)=\frac{1}{\left|I_{\gamma}\right|} \int_{x_{\gamma-1}}^{x_{r}} \phi(x) d x \tag{1.12}
\end{equation*}
$$

On applying (12) to (11) we obtain

$$
\lim _{n \rightarrow \infty} \frac{1}{n} \sum_{i=1}^{n} \phi\left(\alpha_{i}\right)=\sum_{r=1}^{k} \frac{p_{r}}{p\left|I_{r}\right|} \int_{x_{r-1}}^{x_{r}} \phi(x) d x=\int_{0}^{1} \phi(x) f^{*}(x) d x
$$

proving the theorem as claimed.

$$
\begin{aligned}
& \text { ing the theorem as claimed. } \\
& \text { Corollary: } \lim _{n \rightarrow \infty} \frac{1}{n} \sum_{i=1}^{n} \frac{\phi\left(\alpha_{i}\right)}{f^{*}\left(\alpha_{i}\right)}=\int_{0}^{1} \phi(x) d x .
\end{aligned}
$$

Now if $\phi, g^{*} \mathrm{R} 0,1$ (with $\left.\int_{0}^{1} g^{*}(x) d x=1\right)$ then one has THEOREM 1.4: There exists a sequence u. d. (f) in $[0,1$), where f is a rational step function such that

$$
\left|\frac{1}{n} \sum_{i=1}^{n} \phi\left(\alpha_{i}\right)-\int_{0}^{1} \phi(x) g^{*}(x) d x\right|<\varepsilon
$$

This is a straightforward deduction of
LEMMA 1.5: If $g \in R[0,1]$, then there is a rational step function f such that

$$
\left|\int_{0}^{1} g(x)-f(x) d x\right|<\delta \quad \forall \delta>0
$$

We omit the details of the proof.
Our final theorem of this section characterises $f^{A} g$. THEOREM 1.6: If $\left\{\alpha_{n}\right\}_{n=1}^{\infty}=A$ is u.d. (f) in $[0,1]$, then a necessary and sufficient condition that $f \stackrel{A}{\sim} g$ is that there exists a positive constant K such that $f(x)=K g(x)$ holds for all but a finite number of $x[0,1]$.

Proof: The sufficiency is easy to establish. As $f \in R[0,1]$ and $£>0$ we have

$$
F_{n}(\theta, 1)=\sum_{\alpha_{i}, i \leq n}^{1} f\left(\alpha_{i}\right)
$$

as a monotonic increasing sequence diverging to infinity. Thus

$$
\begin{aligned}
& \frac{\sum_{i=1}^{n} g\left(\alpha_{i}\right)}{\sum_{i=1}^{n} g\left(\alpha_{i}\right)}=\frac{\sum_{i=1}^{n} k f\left(\alpha_{i}\right)+\varepsilon\left(\alpha_{i}\right)}{n}=\frac{\sum_{i=1}^{n} f\left(\alpha_{i}\right)+\varepsilon\left(\alpha_{i}\right)}{\left(k \sum_{i=1}^{n} f\left(\alpha_{i}\right)\right)+O(1)} \\
&=\frac{(13)}{\left(k \sum_{i=1}^{n} f\left(\alpha_{i}\right)\right)+O(1)}
\end{aligned}
$$

As $\quad \sum_{1}^{\prime} f$ diverges if we proceed to the limit as $n \rightarrow$, we observe that (13) gives fri; go

Now let there be no constant K such that $f(x)=K g(x)$ for all but a finite number of x. Thus there exists a constant C such that $f(x)>C G(x$ or $f(x)<\ln (x)$ has infinitely many solutions. For otherwise $f(x)=C g(x)$ for all but a finite number of x which gives a contradiction. Now If both inequalities have infinitely many solutions then there are constants $C^{\prime}, C^{\prime \prime}$ with $C^{\prime}<C^{\prime \prime}$ such that $f\left(x^{\prime}\right)=C^{\prime} y\left(x^{\prime \prime}\right)$ and $f\left(x^{\prime \prime}\right)=C^{\prime \prime} g\left(x^{\prime \prime}\right)$ at points x^{\prime}, $x^{\prime \prime}$ which are points of continuity of f. Otherwise
the infinity of x. which have $f(x)>C g(x)$ must have two points of continuity where $\frac{f(x)}{g(x)}$ is distinct. Denote by K the maximum of $\frac{f(x)}{g(x)}$, where x is continuous. say x_{0} and there is a point of continuity of f and g where $\left(f(x) / g(x)^{\prime}=k^{\prime} \leqslant k\right.$. Thus consider an interval I with $x_{0} \in I$ where $K^{\prime}<\frac{f(x)}{g(x)}<K$. For this I we have

$$
\frac{\sum_{i \leq n, \alpha_{i} \in \pm} g\left(\alpha_{i}\right)}{\sum_{i \leq n}^{1} g\left(\alpha_{i}\right)}>\frac{\sum_{\alpha_{l} \in \pm, \ell \leq n}^{1}\left(k^{\prime}+\varepsilon\right) f\left(\alpha_{i}\right)+O(1)}{\sum_{i \leq n}^{1}\left(k^{\prime}+\varepsilon\right) f\left(\alpha_{i}\right)+O(1)}
$$

so that

$$
\liminf _{n \rightarrow \infty} \frac{\sum_{i \in I, i \leq n} g\left(\alpha_{i}\right)}{\sum_{i \leqslant n} g\left(\alpha_{i}\right)}>|I|
$$

a contradiction to $\left\{\alpha_{n}\right\}_{n=1}^{\infty}=A$ is $u_{0} \cdot d_{0} \cdot(g)$. Thus $f(x)=K g(x)$ for all but a finite number of $x \quad[0,1]$ proving the theorem

Part 2:

Now we take up the discussion of functional analogues to the concepts of density and distribution modulo an integer, in the sense of Riven [5]. Whenever we refer to a function 'f' in this section we mean $f(n)>0 \quad n \in Z^{+}=\{1,2,3, \ldots\}$ and $\sum_{0<n \leqslant x} f(m)$ diverges to infinity with. x monotdnaically. Let $A \subset Z^{+}$. Denote by $A_{E}(x)$ and $Z_{E}(x)$ the following

9

$$
A_{f}(x)=\sum_{\substack{0<n \leq x \\ n \in A}} f(n) \quad ; \quad Z_{f}(x)=\sum_{\substack{1 \\ n \in n \\ n \in Z^{+}}}^{1} f(n) .
$$

we denote by $\delta_{f}(A)$ the limit of the following (if it exists)

$$
\begin{equation*}
\lim _{x \rightarrow \infty} \frac{\bar{A}_{f}(x)}{Z_{f}(x)}=\delta_{f}(A) \tag{2.1}
\end{equation*}
$$

and call. $\delta_{f}(A)$ as the f-density of A. When $f(x)=K$ then $\delta_{f}(A)=\hat{\delta}(A)$ the natural density of A. The members of A shall be represented by $a_{n}, n=1,2,3, \ldots$ where $a_{i}<a_{j}$ if $i<j$. we only discuss sets which have infinitely many members for trivially $\delta_{f}(A)=0$ when A is finite as $\mathrm{Z}_{\mathrm{f}}(\mathrm{x}) \rightarrow \infty$ as $\mathrm{x} \rightarrow \infty$

Now we go to the generalisation of Riven's concept of uniform distribution modulo an integer. Denote by

If

$$
\begin{aligned}
& a_{f}(x, \mu, \lambda)= \sum_{1} f(n) \\
& 0<n \leqslant x, n \in A \\
& n \equiv \mu(\bmod \lambda)
\end{aligned}
$$

$$
\begin{equation*}
\lim _{x \rightarrow \infty} \frac{a_{f}(x, \mu, \lambda)}{A_{f}(x)}=\frac{1}{\lambda} \tag{2.2}
\end{equation*}
$$

for all $0 \leqslant \mu<\lambda, \mu \in Z^{+}$we say A is uniformly f-distributed modulo λ and denote it by A is u. d. $f(\bmod \lambda)$. Note that $\lambda \neq 1$ for $\lambda=I$ is trivial and moreover uniform f-distribution modulo 1 (in $[0,1)$) has been introduced in $\oint I$.

The most fundamental functions for uniform distribution happen to be functions uniformly asymptotic modulo λ introduced for the first time in [1] by the author. We describe them briefly. If we have
for all $0 \leqslant \mu<\lambda, \mu \in Z^{+}$then f is uniformly asymptotic modulo λ (or u_{0} a mod in short.) By $U(\lambda)$ is meant the set of all f , usa mod λ It was for example shown in [1] that if

$$
\begin{equation*}
\lim _{n \rightarrow \infty} \frac{f(n-1)}{f(n)}=1 \tag{2.4}
\end{equation*}
$$

then $f \in U(\lambda) \forall \lambda \in Z^{+}$. However (2.4) is not a necessary condition as is demonstrated by the following example.

If θ is irrational and $f(n)=n \theta-[n \theta]=(n \theta)$, then $f \in U(\lambda)$ for all $\lambda \in Z^{+}$

We begin by proving
THEOREM 2.1: If $f \in U(\lambda)$ and $\delta_{f}(A)<11$, then
if A is u. d. $f(\bmod \lambda)$ so is $A=Z^{+}-A$.
THEOREM 2.2: If $f \in U(\lambda)$ and $\delta_{f}(A)=1$ then A is u. d. $f(\bmod \lambda)$.

Proof:- Denote by $\bar{a}_{f}(x, \mu, \lambda)$ and $\bar{A}_{f}(x)$ the following:

$$
\bar{a}_{f}(x, \mu, n)=\sum_{\substack{1 \\ 0<n \leqslant x, n \in \bar{A} \\ n \equiv \mu(\bmod \lambda)}}^{1} ; \bar{A}_{f}(x)=\sum_{\substack{0<n \leqslant x \\ n \in \bar{A}}} f(n)
$$

with the above notation we deduce that

$$
\begin{equation*}
a_{f}(x, \mu, \lambda i f)+\grave{a}_{f}(x, \mu, \lambda)=z_{f}(x, \mu, \lambda) \tag{2.5}
\end{equation*}
$$

Now (2.5) reduces to

$$
\begin{equation*}
\frac{a_{f}(x, \mu, \lambda)}{A_{f}(x)} \cdot \frac{A_{f}(x)}{z_{f}(x)}+\frac{\bar{a}_{f}(x, \mu, \lambda)}{\bar{A}_{f}(x)} \cdot \frac{\bar{A}_{f}(x)}{z_{f}(x)}=\frac{z_{f}\left(x, \mu_{\eta} \lambda\right)}{z_{f}(x)} \tag{2.6}
\end{equation*}
$$

Now as $A_{f}(x) / Z_{f}(x)=1-\left(\bar{A}_{f}(x) / z_{f}(x)\right)$ we infer from (2.6) that
$\frac{\bar{A}_{f}(x)}{z_{f}(x)}\left(\frac{\bar{a}_{f}\left(x, \mu_{7}, \lambda\right)}{\bar{A}_{f}(x)}-\frac{a_{f}\left(x, \mu_{,} \lambda\right)}{A_{f}(x)}\right)=\frac{z_{f}(x, \mu, \lambda)}{z_{f}(x)}-\frac{a_{f}\left(x, \mu_{1}, \lambda\right)}{A_{f}(x)}(2.7)$
Now if we proceed to the limit $x \rightarrow \infty$ then $\bar{A}_{f}(x) / z_{f}(x) \Rightarrow \delta_{f}(\bar{A})$ Further as $f \in U(\lambda), z_{f}(x, \mu, \lambda) / z_{f}(x) \rightarrow \frac{1}{\lambda}$ by (203).

If we assume A to be $u_{0} d_{0} f(\bmod \lambda)$, the right side of (2.7). vanishes because of (2.2) and (2.3). But as $\delta_{f}(\bar{A})<1, \delta_{f}(\bar{A}) \neq 0$ as $\delta_{f}(\bar{A})=1-\delta_{f}(A)$. Thus $\bar{a}_{f}(x, \mu, \lambda) / A_{f}(x) \rightarrow 1 / \lambda$ as $x \rightarrow \infty$
which means Theorem 2.1 is established.
If $\delta_{f}(A)=1$ then $\delta_{f}(\bar{A})=0$ so that the left side of (2.7) vanishes. Thus as $f \in U(\lambda)$ we see (2.3) holds and so (2.2) holds which means Theorem 2.2 is true.

Examples:- 1) If $A=F$ denotes the Fibonacci Sequence given by

$$
F_{n}=F_{n-1}+F_{n-2} \quad n \geqslant 2 F_{0}=0 \quad F_{1}=1
$$

and if

$$
\begin{array}{lll}
f\left(F_{n}\right)=2 & \text { when } & n \equiv 0(\bmod 3) \\
f\left(F_{n}\right)=1 & \text { when } & n \neq 0(\bmod 3)
\end{array}
$$

then $A=F$ is u_{0} d. f modulo 2 .
2) If $A=\xi$ denotes the set of square free integers and if

$$
\begin{array}{ll}
f(S)=1 & S \in S \\
f(S)=2 \quad S \in S(\bmod 2) \\
S & S \equiv 2(\bmod 2)
\end{array}
$$

then ξ is u.d. f modulo 2.
THEOREM 2.3 If ACZ ${ }^{+}$and 'f' a function such that $x \sim y \Rightarrow f(x) \sim f(y) \quad x, y \quad Z^{+}$then $\delta_{f}(A)$ exists and is equal to $\delta(A) ;$ if $\delta(A) \neq 0$ exiofts

Proof: It is obvious that

$$
\begin{equation*}
\lim _{n \rightarrow \infty} \frac{f(n+1)}{f(n)}=I \tag{2.8}
\end{equation*}
$$

We shall make 'f' a continuous function by the following process. For $n<x<n+1, n \in Z^{+}$define $f(x)$ as satisfying

$$
\begin{equation*}
\frac{f(x)-f(n)}{x-n}=\frac{f(n+1)-f(n)}{1} \tag{2.9}
\end{equation*}
$$

Clearly from the definition of f in (2.8) we have either

$$
f(n) \leqslant \int_{n}^{n+1} f(x) d x \leqslant f(n+1)
$$

or

$$
f(n) \geqslant \int_{n}^{n+1} f(x) d x \geqslant f(n+1)
$$

Now (2.8) implies that we can write

$$
f(n)=\int_{n-1}^{n} f(x) d x+0(f(n))
$$

which gives

$$
\begin{align*}
\sum_{0<n \leq x}^{1} f(n) & =\int_{0}^{x} f(x) d x+\sum_{0<n \leq x}^{x} O(f(n)) \\
& =\int_{0}^{x} f(x) d x+0\left(\sum_{0<n \leq x}^{1} f(n)\right)=Z_{f}(x) \tag{2.10}
\end{align*}
$$

as $Z_{f}(x) \rightarrow \infty$ as $x \rightarrow \infty$. If $\delta(A)=\delta \neq$ and a_{n} the
$n^{\text {th }}$
member of A then

$$
\begin{equation*}
a_{n}=n \bar{\delta}+o(n) \tag{2.II}
\end{equation*}
$$

where $\bar{\delta}=1 / \delta$. Clearly from (2.11) we have

$$
\begin{equation*}
\sum_{\substack{0<n \leqslant x \\ n \in A}} \frac{1}{\sum_{\substack{0<n \leqslant A(x)}} f(n \bar{\delta})}+\quad o\left(\sum_{0<n} f(n \bar{\delta})\right) \tag{2.12}
\end{equation*}
$$

Now one can show that

$$
\begin{equation*}
f(n \bar{\delta})=\frac{1}{\bar{\delta}} \int_{(n-1) \bar{\delta}}^{n \partial} f(x) d x+o(f(n \bar{\delta})) \tag{2.13}
\end{equation*}
$$

so that arguments similar to those of (2.10) gives on putting together (2.11) and (2.12)

$$
A_{f}(x)=\sum_{\substack{0<n \leqslant x}} f(n)=\delta(A) \int_{0}^{A(x) \bar{\delta}} f(x) d x+0\left(\sum_{0<n \vec{\delta} \leqslant x} f(n \bar{\delta})\right)(2.14
$$

Now as $x \sim y \Rightarrow f(x) \sim f(y)$ and as $Z_{f}(x) \rightarrow \infty$ as $x \rightarrow \infty$ one can show that

$$
\begin{equation*}
\lim _{t \rightarrow \infty} \frac{f(t)}{Z_{f}(t)}=\lim _{t \rightarrow \infty} \frac{f(t)}{\int_{0} f(t) d t}=0 \tag{2.15}
\end{equation*}
$$

which is the same as saying tN' gives

$$
Z_{E}(t) \sim Z_{E}\left(t^{\prime}\right)
$$

and

$$
\int_{0}^{t} f(x) d x \sim \int_{0}^{t^{\prime}} f(x) d x
$$

For a proof of (2.15) see [1]. Thus (2.14) by virtue of (2.15) reduces to

$$
\begin{equation*}
A_{f}(x)=\delta(A) \int_{0}^{x} f(x) d x+o\left(\sum_{0<n \leqslant x}^{1} f(n)\right) \tag{2.16}
\end{equation*}
$$

Clearly from (2.10) and (2.16) we infer

$$
\lim _{x \rightarrow \infty} \frac{A_{f}(x)}{A_{f}(x)}=\delta_{f}(A)=\delta(A)
$$

which establishes theorem 2.3.
One can also show on similar lines pf reasoning the converse
theorem 2.3 .
THEOREM 2, 4:- Let $A \subset Z^{+}$and ' $£$ ' a function with x $x \sim y \Rightarrow f(x) \sim f(y), x, y \in z^{\sharp}$. If $\delta_{f}(A)$ exists and is nonzero, then so foes $\delta(A)$ and $\delta(A) \neq \delta_{f}(A)$.

Actually theorems 2.8 and 2.4 imply
THEOREM 2.5:- If $x \sim y \Rightarrow f(x) \sim f(y)$ and $A \subset Z^{+}$is u. d. $\bmod \lambda$, wi th $\delta(A) \neq 0$ then s is us. f mod λ. Germensehng if in is Mede ad then A is unda(moct λ)

PART 3:-

We now go back to sequences $A=\left\{\alpha_{n}\right\}^{\infty} \in[0,1]$ that are $n=1$
u. d. (f) (where by f we mean a function with $f(x)>0$, and at most a finite number of discontinuities, in the sense of $\oint 1$. We discuss analogues to (2.1) and (2.2) in the present section.

If λ be any modulus and $\mu \in z^{+}$with $0 \leqslant \mu<\lambda$, denote by $A \mu=\left\{a_{A n+\mu}\right\}_{n=1}^{\infty}$. If each $A \mu, \mu=0,1, \cdots \hat{A}-1$ is u. d. (f) in $[0,1]$ we say that $A=\left\{\alpha_{n}\right\}$ is uniformly distributed in $[0,1]$ strongly mod λ. (notations is u. d. (f) in $[0,1]$ s. (mod λ).) For any sequence $B=\left\{\alpha_{n} \in A \mid n \in A^{\prime} \subset Z^{+}\right\}$, and $\bar{B}=\left\{\left.\alpha_{n} \in A\right|_{\|} \in Z^{+}-A\right\}$ denote by $\delta_{f}(B)$ and $\delta_{f}(\bar{B})$ the following limits.if they exist

$$
\begin{equation*}
\delta_{f}(B)=\lim _{n \rightarrow \infty} \frac{\varphi_{n}(0,1)}{F_{n}(0,1)} ; \delta_{f}\left(B^{\prime}\right)=\lim _{n \rightarrow \infty} \frac{\bar{\varphi}_{n}(0,1)}{F_{n}(0,1)} \tag{3.1}
\end{equation*}
$$

where

$$
F_{n}(0,1)=\sum_{i \leqslant n} f\left(\alpha_{i}\right) ; \varphi_{n}(0,1)=\sum_{\substack{i \leqslant n \\ \alpha_{i} \in B}} f\left(\alpha_{i}\right), \bar{\varphi}_{n}(0,1)=\sum_{\substack{i \leqslant n \\ \alpha_{i} \in \bar{B}}} f\left(\alpha_{i}\right)
$$

cle.r.rly as $\bar{B}=A-B, \delta_{f}(B)+\delta_{f}(\bar{B})=1$. Let A be u. d. (f) in $[0,1]$

THEOREM 3.1: If $\delta_{f}(B)<1$ and B is u. d. fin $[0,1]$ then So is $\overline{\mathrm{B}}$.

THEOREM 3.2! If $\delta_{f}(B)=I$ then B is u. a. (f) ind 0.11%.
Proof: With the usual notation we have

$$
\varphi_{n}(\alpha, \beta)+\bar{\varphi}_{n}(\alpha, \beta)=F_{n}(\alpha, \beta)
$$

so that we deduce

$$
\begin{equation*}
\frac{\varphi_{n}(\alpha, \beta)}{\varphi_{n}(0,1)} \cdot \frac{\varphi_{n}(0,1)}{F_{n}(0,1)}+\frac{\bar{\varphi}_{n}(\alpha, \beta)}{\bar{\varphi}_{n}(0,1)} \cdot \frac{\bar{\varphi}_{n}(0,1)}{F_{n}(0,1)}=\frac{F_{n}(\alpha, \beta)}{F_{n}(0,1)} \tag{3.2}
\end{equation*}
$$

Now as (3.1) indicates that

$$
\frac{\varphi_{n}(0,1)}{F_{n}(0,1)}=1-\frac{\bar{\varphi}_{n}(0,1)}{F_{n}(0,1)}
$$

we rewrite (3.2) as
$\frac{\bar{\varphi}_{n}(0,1)}{F_{n}(0,1)}\left[\frac{\bar{\varphi}_{n}(\alpha, \beta)}{\bar{\varphi}_{n}(0,1)}-\frac{\varphi_{n}(\alpha, \beta)}{\varphi_{n}(0,1)}\right]=\frac{F_{n}(\alpha, \beta)}{F_{n}(0,1)}-\frac{\varphi_{n}(\alpha, \beta)}{\varphi_{n}(0,1)}$
Clearly as $n \rightarrow \infty \quad F_{n}\left(\alpha_{1} \beta\right) / F_{n}(0,1) \rightarrow \beta-\alpha$. Moreover
$\bar{\varphi}_{n}(0,1) / F_{n}(0,1) \rightarrow \delta_{f}(\bar{B})$. If $\delta_{f}(B)<1$ then and B is $u_{0} d_{\text {. }}$ $f,[0,1]$ then as $\delta_{f}(\bar{B}) \neq 0$ we infer theorem 3.1. If $\delta_{f}(B)=I$ then $\delta_{f}(\bar{B})=0$ so that theorem 3.2 is true.

We return to the above theorems after proving THEOREM 3. 3: If $A=\left\{\alpha_{n}\right\}_{n=1}^{\infty}$ is $u_{0} d_{\text {. (f) }}$ in $[0,1] \mathrm{s}(\bmod \lambda)$
and $\lambda^{\prime} \in i^{+}$divides λ, then A is $u_{0} d$. (f) in $[0,1]$ S. mod λ^{\prime}.

Proof: Theorem 3.3 is a direct consequence of a concept we call blending of sequences. If $S_{1}, S_{2} \ldots \ldots S_{k}$ are k sequences whose $n{ }^{\text {th }}$ terms are represented by $S_{r, n}$, $\mathrm{n}=1,2, \ldots \ldots \infty \mathrm{r}=1,2, \ldots \ldots \mathrm{k}$. Define a sequence $S=s_{\lambda k+\mu}=s_{\mu, \lambda}, \quad 0 \leqslant \mu<k, \lambda=1,2, \cdots \infty$ § is called a 'blending ${ }^{\text { }}$ of $s_{1}, s_{2}, \ldots s_{k}$. Clearly if each $S_{i}, 1=I_{2} 2, \ldots, k$ is $u_{0} a_{\text {. (f) }}$ in $[0,1], S$ is also u_{n} d. (f) in $[0,1]$. In the above theorem have $A_{\mu}, \mu=0,1,2 \ldots \lambda-1$ as $u_{c} a_{0}(£)$ in $[0,1]$. Now there are mod λ that leave a remaidor $\mu^{\prime \prime}\left(\bmod \lambda^{\prime}\right)$. These chasses exactly $\lambda / \lambda^{\prime}$ classes A_{0} determine $\operatorname{sets} A_{\mu_{1}^{+}}^{+}, A_{\mu_{2}}, \cdots A_{\mu}\left(\lambda \lambda^{\prime}\right)$ which when blended give $A_{\mu}^{\prime}{ }^{\prime}=\left\{x_{\lambda} n+\mu\right\}_{n=1}^{\infty}$ Thus $A_{\mu^{\prime}}^{\prime}$ is $\mu_{0} \bar{a}$. ($£$) in $[0,1]$ for $\mu^{\prime}=0,1,2, \cdots \lambda^{\prime}-1$, proving the theorem.

We have as a corollary
COROILARY:- If $\left.A=\left\{\alpha_{n}\right\}\right\}_{n=\text { ? }}^{\infty}$ is u. (f) in $[0,1]$. Strongly (mod $\lambda)$ then $\left\{\alpha_{n}\right\}=A$ is u. a_{0}. (f)

Now the above corollary together with theorem 3.1 gives

Theorem 3.4:- If B denotes the union of some of the $A \mu$, and $\bar{B}=A-B$, then both B, and \bar{B} are $u_{0} d_{0}(f)$ in $[0,1]$. We omit the details of the proof.

Our next question is obvious, are there sequences (given an f) that are $u, d . f(\bmod \lambda)$ for some λ. Consider the step function f in $[0,1]$ and the number P we defined. Define a cyclic operation

$$
\begin{gathered}
c(\vec{x})=c\left(x_{1}, x_{2}, \ldots x_{p}\right)=\left(x_{p}, x_{1} \ldots x_{p-1}\right) \\
\text { and } c^{\lambda}\left(x_{1}, x_{2}, \ldots x_{p}\right)=c(c \ldots \cdot(\vec{x}) \ldots \text { Ines. }
\end{gathered}
$$

Rearrange the ${ }_{i}$ so constructed cyclically mod as follows. Define for $\lambda \in \mathcal{Z}^{+}$

$$
\left(\gamma_{(\lambda-1) p+1}, \ldots \gamma_{\lambda p}\right)=c^{\lambda}\left(p_{\theta-1) p+1}, \ldots \beta_{\lambda p}\right)
$$

one can show on rather straightforward but laborious computation
 in $[0,1]$ s. mod p. (Note, Whenever $f(x)=1$ we omit mentioning f). Here one has only to show that if $A=\left\{\alpha_{n}\right\}$ is $u_{0} d_{0}$ in $[0,1]$. S. mod P, and IC 0,1 then the restriction of A to I is also u.d. in $I, S .(\bmod P)$. This we $h=v e$

THEOREM 3.5 If $A=\left\{\hat{r n}_{n}^{n}\right\}_{n=1}^{\infty}$ is $u_{0} d_{0}$ in $[0,1] \mathrm{s} \cdot \bmod P$ and fa ration el step function (with P as defined in Theorem 1.1) then A can be rearranged so as to be u. d. f in $[0,1]$ dd p. We conclude by producing sequences, in 0,1 . hat are $u_{0} \mathrm{~S}(\mathrm{mod})$

We observe that the two most common sequences possess this property.

THEOREM 3.5:- If θ is irrational and $\alpha_{n}=n \theta-[n \theta]=(n \theta)$ then $\left\{\alpha_{n}\right\}$ is $u_{0} \lambda_{0}$ in $[0,1]$ s mod $\lambda \forall \lambda \in Z^{+}$.
T_{E} Proof: we observe that

$$
(\{\lambda n+\mu\} \theta)=(n(\lambda \theta\}+\mu \theta)
$$

Now $\lambda \theta$ is irrational and $\mu \theta$ a constant. Thus $\left(\left\{\lambda n_{i \mu}\right\} \theta\right)$

113.

is u. a. in $[0,1]$ or $\left\{\alpha_{n}^{\prime}\right\}$ is u. d. in $[0,1]$ somod $\lambda \forall \lambda \in Z^{+}$.
The final theorem is more complicated to prove. Write the sequence of rationals in $[0,1]$ in retral order. To be more precise the rationals in the Frey sequence of order n (see [3]) are written in ascending order and precede those of the Farcy sequence of order $n+1$. This set is denoted by $\left\{r_{n}\right\}_{n=1}^{\infty}$. . We now
show
THEOREM 3.7:.. The sequence $\left\{r_{n}\right\}_{n=1}^{\infty}$ is u_{0} d. in $[0,1]$ S. $(\bmod \lambda) \forall \lambda \in z^{+}$

Proof:- Let $\varphi(n)$ denote the Euler φ function. We know 3

$$
\begin{equation*}
\Phi(m)=\sum_{n=1}^{m} \varphi(n)=\frac{3 m^{2}}{\pi^{2}}+O(m \log m) \tag{3.4}
\end{equation*}
$$

Thus $\Phi(m+1) / \Phi(m) \rightarrow L$ as $m \rightarrow \infty$. Let λ, μ be given integers with $0 \leqslant \mu<\lambda$. Denote for $[\alpha, \beta] \subset[0,1]$

$$
\begin{equation*}
P_{n}\left(\alpha_{1} \beta\right)=\sum_{\left.x_{i} \in \Gamma, \beta, \beta\right) i \leqslant n}^{i=k(n \alpha d \lambda)} \tag{3.5}
\end{equation*}
$$

and •

$$
\begin{equation*}
\psi_{n}(\alpha, \beta)=\sum_{i=[\alpha, \beta), i \leqslant n .}^{v_{0} \in 1} \tag{3.6}
\end{equation*}
$$

One has from (3.5) and (3.6)

$$
\psi_{n}(0,1)=n, \text { and } \varphi_{n}(0,1)=[(n-\mu) / \lambda]
$$

Now consider a rational j / m^{1} with fixed denominator m^{t}. Clearly the number of such m^{t} such that $j / m^{t} \in[\alpha, \beta)$ is $\varphi\left(m, p n^{\prime}\right)$ en a where

$$
\varphi(n, x)=\sum_{0<1}^{1} 1
$$

The number of these j / m^{\prime} that are of the form r_{i}, $i \equiv \mu(\bmod \lambda)$
is

$$
\begin{equation*}
\frac{\varphi\left(m^{\prime}, \beta m^{\prime}\right)-f\left(m^{\prime}, \alpha m^{\prime}\right)}{\lambda}+O(1) \tag{3.7}
\end{equation*}
$$

Now summing (3.7) with $m^{\text {: from }}$ I to in we get

$$
\begin{equation*}
\varphi_{\Phi(m)}(\alpha, \beta)=\frac{\psi_{\Phi(m)}^{(\alpha, \beta)}}{\lambda}+O(m) \tag{3.8}
\end{equation*}
$$

$$
\begin{aligned}
& \text { Thus } \\
& \phi_{\Phi(m)}(\alpha, \beta)=\left|\frac{\varphi_{\Phi(\alpha, \beta)}}{\varphi_{\Phi(0,1)}}-(\beta-\alpha)\right|=\left|\begin{array}{l}
\frac{\Psi_{\Phi(m)}(\alpha, \beta)}{\lambda}+O(m) \\
(\Phi(m)-\mu) / \lambda
\end{array}(\beta,-\alpha)\right| \\
& =\left|O\left(\frac{1}{m}\right)+\frac{\Psi \Phi\left(\alpha_{1}(\beta)\right.}{\Phi(m)}-(\beta-\alpha)\right| \leqslant O\left(\frac{1}{m}\right)+\frac{D(\alpha, \beta)}{\Phi(m)}
\end{aligned}
$$

where $D_{N}(\alpha, \beta)$ represents the discrepancy in (α, β) of the first N terms of r_{i}. Clearly

$$
\begin{equation*}
D_{\Phi(m)}(\alpha, \beta) \leqslant 2 D_{\Phi(m)}=O\left(\frac{1}{m}\right) \tag{3.10}
\end{equation*}
$$

(see Niederreiter [4] for details) so that (3.9) reduces to

$$
\begin{equation*}
\mathcal{P}_{\Phi(m)}(\alpha, \beta)=O\left(\frac{1}{m}\right) \tag{3.11}
\end{equation*}
$$

thus

$$
D_{\Phi(m)}=\sup _{0 \leq \beta \leq 1} \mathcal{D}_{\Phi(m)}(0, \beta)=O\left(\frac{1}{m}\right)
$$

For any integer n, there exists m such that $\Phi(m) \leqslant n<\Phi(m+1)$
Now (3.4) indicates that $n-\Phi(m)=O(m)$ so that (3.8) takes a more general form

$$
\begin{equation*}
\varphi_{n}(\alpha, \beta)=\frac{\psi_{n}(\alpha, \beta)}{\lambda}+O(m) \tag{3.12}
\end{equation*}
$$

so compatation similar to (3.10) yields

$$
\begin{equation*}
D_{n}\left(\alpha_{i} \beta\right)=O\left(\frac{1}{m}\right) \tag{3.13}
\end{equation*}
$$

or

$$
\theta_{n}=\delta_{n}, p \quad \theta_{n}\left(\alpha_{1}, \beta\right)=0\left(\frac{1}{m}\right)
$$

Now (3.13) and (3.12) together give that $\theta_{n}(\alpha, \beta) \rightarrow 0$ an $n \rightarrow \infty$ or $r_{i}, i \equiv \mu(\bmod \lambda)$ is $u_{i} d_{0}$ in $[0,1]$ proving theorem. Moreover we have on observing (3.13), (3.11) and (3.4)

$$
A_{n}=0\left(\frac{1}{\sqrt{n}}\right)
$$

This completes the proof

REFERENCES

1) K. Alladi, on the asymptotic distribution of functions modulo on integer, submitted for publication
2). K. Alladi, On a generalisation of the Euler function, Prof. S. Ramanujan Com. Vol, Madras, India 1974 pep.
2) W. J. LeVeque, Topics in Number Theory, Vol. I, Addison Wesley, Reading Mass. 1960
3) H. Niederreiter, The Distribution of Farey Points, Math. Ann. 201, 1973. pp. 341 . 345
4) I. Niven, Uniform distribution of sequences of integers, Trans. Amer. Math. Soc., 1961, VoI.98, No. 1, pp. 52-61
5) H. Weyle, U bet die Gleichverteilung vo Zahlen modulo eins, Math. Ann, Vol. 77 (1916) pp.313-352
kG/
3.1. 1975

A FUNCTIONAL ANALOGUE TO KOKSMA'S INEQUALITY

Krishnaswami Alladi
Vivekananda College: Madras-600 004, India

$$
\star * * * * * *
$$

This is an addenda to "Functional Analogues to Distribution and Density" [1] by the same author, and so we refer to this paper for necessary background. We actually be concerned with $\delta 1$ of [I]。

Let $R[0,1]$ denote the set of Riemann Integrable functions in $[0,1]$, and let,$O \in R[0,1]$. Let f be a rational step function with normaliser f^{*}, and $A=\left\{\alpha_{n}\right\}_{r=1}^{\infty} \subset[0,1]$ is u. d. (f) It was shown in $[1]$ that

$$
\begin{equation*}
\lim _{n \rightarrow \infty} \frac{1}{n} \sum_{i=1} \varphi\left(\alpha_{i}\right)=\int_{0}^{1} \varphi(x) f^{+}(x) d x \tag{1}
\end{equation*}
$$

Now (1) can be rewritten as

$$
\begin{equation*}
\lim _{n \rightarrow \infty} \frac{1}{n} \sum_{i=1}^{n} \frac{18\left(x_{i}\right)}{f^{H}\left(x_{i}^{*}\right)}=\int_{0}^{1} \varphi(x) d^{\prime} x \tag{2}
\end{equation*}
$$

For a subinterval $[\alpha, \beta\rangle$ of $[0,1]$ if φ represents the characteristic function of $[\alpha, \beta$) then (2) implies that A is u. $a\left(\frac{1}{f^{*}}\right)$ in $[0,1]$. This also follows from theorem $h^{\text {as }}$ $\frac{1}{f^{*}}=K f$ and so $f \stackrel{A}{A^{*}} \frac{1}{f^{*}}$

Let now $\cdot A^{*}(t, N)=\sum_{\substack{i=1 \\ \alpha, j}}^{n} \frac{1}{f^{*}\left(\alpha_{i}\right)}, F^{*}(N)=\sum_{i=1}^{n} \frac{1}{f^{*}\left(\alpha_{i}\right)}$ $\alpha_{i} \leq t$
and

$$
R_{N}^{*}(t)=\frac{A^{*}(t, N)}{E^{*}(N)}-t \text { and } N_{N}^{*}(t)=\frac{A^{*}(t, N)}{N}-t
$$

Denote by

$$
D_{N}^{*}=\sup _{0 \leqslant t<1} \sum_{N}^{*}(t) \mid \text { and by } \delta_{N}^{*}=\sup _{0 \leqslant t<1}^{*}\left|\varphi_{N}^{*-}(t)\right|
$$

Clearly we have $\lim _{N \rightarrow \infty} D_{N}^{*}=\lim _{N \rightarrow \infty} \delta_{N}^{*}=\lim _{N \rightarrow \infty} D_{N}=0$,
when A is u. ${ }^{\text {. (f), where }} D_{N}$ stands for

$$
D_{N}=\sup _{0 \leqslant t<1} D_{N}(t)
$$

where $D_{n}(t)=D_{n}(0, t)$ as in [1]. With the above notation
it is clear that (2) can be restated in an equivalent from as.

$$
\begin{equation*}
\lim _{N N \rightarrow \infty} \frac{1}{F^{*}(N)} \sum_{i=1}^{n} \frac{f\left(\alpha_{i}\right)}{f^{*}\left(\alpha_{i}\right)}=\int_{0}^{1} \varphi(x) d x \tag{*}
\end{equation*}
$$

We now show that for $\mathscr{H}[0,1]$ with bounded variation $V(\varphi)$
THEOREM 1: $\left|\int_{0}^{1} \varphi(t) d t-\frac{1}{F^{*}(N)} \sum_{i=1}^{N} \frac{\varphi\left(\alpha_{i}\right)}{f^{*}\left(\alpha_{i}\right)}\right| \leqslant V(\phi) D_{N}^{*}$
Proof: As $\quad \varphi \in R[0,1]$ we see that

$$
\int_{0}^{1} R_{N}(t) d \varphi(t)=\int_{0}^{1} \frac{A^{*}(N, t)}{F^{*}(N)} d \varphi(t)-\int_{0}^{1} t d \varphi(t)=I_{1}-I_{2}
$$

plainly using integration by parts.

$$
I_{2}=\varphi(1)-\int_{0}^{1} \varphi(t) d t
$$

Define a function $c^{*}(+, x)$ as

$$
\begin{aligned}
c^{*}(t, x) & =\frac{1}{f^{*}(x)} \quad x<t \\
& =0 \quad \text { otherwise }
\end{aligned}
$$

so that

$$
\begin{align*}
I_{1} & =\frac{1}{F^{*}(N)} \int_{0}^{1} \sum_{i=1}^{N} C^{*}\left(t, \alpha_{i}\right) d \varphi(t)=\frac{1}{F^{*}(N)} \sum_{i=1}^{N} \int_{0}^{1} C^{*}\left(t, \alpha_{i}\right) d \varphi(t) \\
& =\frac{1}{F^{*}(N)} \sum_{i=1}^{N} \int_{\alpha_{i}}^{1} \frac{1}{f^{*}\left(\alpha_{i}\right)} d \varphi(t)=\frac{1}{F^{*}(N)} \sum_{i=1}^{N}\left\{\frac{\varphi(1)}{f^{*}\left(\alpha_{i}\right)}-\frac{\varphi\left(\alpha_{i}\right)}{f^{*}\left(\alpha_{i}\right)}\right\} \\
& =\varphi(1)-\frac{1}{F^{*}(N)} \sum_{i=1}^{N} \frac{\varphi\left(\alpha_{i}\right)}{f^{*}\left(\alpha_{i}\right)}
\end{align*}
$$

Now (4) and (3) together imply

$$
\begin{equation*}
\left|\int_{0}^{1} R_{N}^{*}(t) d \varphi(t)\right|=\left|\frac{1}{F^{*}(N)} \sum_{i=1}^{N} \frac{\varphi\left(\alpha_{i}\right)}{f^{*}\left(\alpha_{i}\right)}-\int_{0}^{1} \varphi(t) d t\right| \tag{5}
\end{equation*}
$$

so that Theorem 1 follows from (5) by the definition of $V(\varphi)$ and D_{N}^{*}.

If we had instead considered

$$
\int_{0}^{1} p_{N}^{*}(t) d \varphi\left(t^{2}\right)
$$

then computation similar to (3), (4) and (5) would yield
THEOREM 2:

$$
\begin{aligned}
\left|\frac{1}{N} \sum_{i=1}^{N} \frac{\varphi\left(\alpha_{i}\right)}{f^{*}\left(\alpha_{i}\right)}-\int_{0}^{1} \varphi(t) d t\right| & \leqslant V(\phi) \delta_{N}^{*}+\varphi(1) \delta_{N}^{*}(1) \\
& \leqslant\{V(\varphi)+\varphi(1)\}_{N}^{*} \delta_{N}^{*}
\end{aligned}
$$

We omit the details of the proof. Actually theorem 2 is a quantitative estimate of (2).

If we set $f(x)=K$ so that $f^{*}(x)=1 \quad 0 \leqslant x \leqslant 1$, then Koksma's inequality follows from Theorem 1 . The case $f(x)=K$ corresponds to uniform distribution in the sense of weyl.

REFERENCE:

1) K.Alladi, Functional Analogues to distribution and density.

This note is actually part of $[1]$, and will be incorporated when $[1]$ is written in revised form,

RG/
10.1 .75

Krishnaswami Alladi Vivekananda College, Madras-600 004 IND IA.

[^0]Krishnaswami Alladi
Vivekananda College, Madras-600004, IND IA

In this paper we discuss two generalizations of the Euler function $\varphi(n)$ and use these functions to make estimates of the averages connected with the greatest common divison (a,b) and the least common multiple $[a, b]$ of wo integers ' a ' and ' b '

$$
\text { § } 1
$$

Define for real $r \geqslant 1$ a function φ_{r} by

$$
\begin{equation*}
\sum_{d n} \varphi_{r}(d)=n^{r} \tag{1.1}
\end{equation*}
$$

Clearly from (1.1) we infer by Moebius Inversion [4]

$$
\begin{equation*}
\varphi_{r}(n)=\sum_{d / n} \mu(d)\left(\frac{n}{d}\right)^{r} \tag{1.2}
\end{equation*}
$$

where μ is the Mobius function. For integral values of $r, \varphi_{r}(n)$ is Jordan's function $J_{r}(n)$ (see [2]) which can be written in more general form

$$
\begin{align*}
\varphi_{\tau}\left(n, x_{1}, x_{2}, \ldots x_{r}\right)= & \sum_{\left(a_{1}, a_{2}, \ldots a_{r}, n\right)=1}^{1} \quad 0<a_{i}, i=1,2, \ldots r \tag{1,3}\\
& a_{1} \leqslant x_{1}, a_{2} \leqslant x_{2}, \ldots a_{r} \leqslant x_{r}
\end{align*}
$$

with the notation

$$
\begin{align*}
& \varphi_{r}(n, x)=\varphi_{r}\left(n, x_{1}, x_{2}, \ldots x_{r}\right), x_{i}=x, i=1, \ldots r \tag{1.4}\\
& \varphi_{r}(n, n)=\varphi_{r}(n)
\end{align*}
$$

If $n=\prod_{i=1}^{S} p_{i} \alpha_{i}$ one can deduce from (1.3) the following

$$
\varphi_{r}\left(n, x_{1}, x_{2}, \ldots x_{r}\right)=\left[x_{1}\right]\left[x_{2}\right] \ldots\left[x_{r}\right]-\sum_{0<i<a}\left[\frac{x_{1}}{p_{i}}\right]\left[\frac{x_{2}}{p_{i}}\right] \cdots\left[\frac{x_{r}}{p_{i}}\right]
$$

$$
\begin{equation*}
+\sum_{0<i<j \leqslant 5}^{1}\left[\frac{x_{1}}{p_{i} p_{j}}\right]\left[\frac{x_{2}}{p_{i} p_{j}}\right] \cdots\left[\frac{x_{r}}{p_{i} p_{j}}\right]-\cdots \tag{1.5}
\end{equation*}
$$

where $[x]$ represents for real x the largest integer $\leqslant x$. Now (1.4) and (1.5) together imply that for integral r

$$
\begin{equation*}
\varphi_{r}(n, x)=\sum_{d \mid n} \mu(d)\left[\frac{x}{d}\right]^{r} \tag{1.6}
\end{equation*}
$$

Then we can define $\varphi_{r}(n, x)$ for all real r using (1.6) so that Moebius inversion for two variables again indicates that

$$
\begin{equation*}
\sum_{d \ln } \varphi_{r}\left(\frac{n}{d}, \frac{x}{d}\right)=[x]^{r} \tag{1.7}
\end{equation*}
$$

One can show (1.7) and (1.6) to be equivalent from Moebius Inversion given below. I_{f}

$$
F\left(n_{2} x\right)=\sum_{d \mid n} f\left(\frac{n}{d}, \frac{x}{d}\right)
$$

then

$$
f(n, x)=\sum_{d \mid n} \mu(d) F\left(\frac{n}{d}, \frac{x}{d}\right)
$$

Actually (1.7) indicates that

$$
\begin{equation*}
\varphi_{r}(n, x)=\frac{x^{r}}{n^{r}} \varphi_{r}(n)+0\left(x^{r-1} \tau(n)\right) \tag{1.8}
\end{equation*}
$$

and

$$
\begin{equation*}
\varphi_{r}\left(n, x_{1}, x_{2}, \ldots x_{r}\right)=\frac{x_{r}}{n} \varphi_{r}\left(n, x_{1}, x_{2}, \ldots x_{r-1}, n\right)+0\left(\varphi_{r}\left(r_{1} x_{1}, x_{2}, \ldots x_{r-1}\right)\right) \tag{1.9}
\end{equation*}
$$

where $\tau(n)$ represents the number of divisors of n. We begin by making an asymptotic estimate of $\varphi_{r}(n)$.

THEOREM 1.

$$
\sum_{0<n \leqslant x} \varphi_{r}(x)=\frac{x^{r+1}}{(r+1) \zeta(r+1)}+O\left(x^{r} \log x\right)
$$

Proof. We have by (1.2)

$$
\begin{aligned}
& \sum_{0<n \leqslant x}^{1} \varphi_{r}(n)=\sum_{0<n \leqslant x} \sum_{d \mid n}^{1} \mu(d)\left(\frac{n}{n}\right)^{r}=\sum_{0<d \leqslant x} \mu(d) \sum_{0<d^{\prime} \leqslant x / d}^{\prime} d^{\prime r} \\
& =\sum_{0<d \leqslant x}^{1} \mu(d)\left\{\left(\frac{x}{d}\right)^{\gamma+1} /(\gamma+1)+o\left(\left(\frac{x}{d}\right)^{\gamma}\right)\right\} \\
& =\frac{x^{r+1}}{r+1} \sum_{0<d \leqslant x^{2}}^{-1} \frac{\mu(d)}{d^{r+1}}+O\left(x_{0<d \leqslant x}^{r} \sum_{0} \frac{\mu(d)}{d d^{r}}\right) \\
& =\frac{x^{r+1}}{r+1}\left\{\sum_{d=1}^{\infty} \frac{\mu(d)}{d^{r+1}}-\sum_{d>x}^{\infty} \frac{\mu(d)}{d^{r+1}}\right\}+O\left(x^{r} \log x\right) \\
& =\frac{x^{r+1}}{(r+1) S^{2}(r+1)}+O\left(x^{r+1} \sum_{d>x} \frac{1}{d^{r+1}}\right)+O\left(x^{\gamma} \log x\right) \\
& =\frac{x^{r+1}}{(r+1) S^{\rho}(r+1)}+O\left(x^{r} \log x\right)
\end{aligned}
$$

Theorem I will enable us to make an estimate of the average of $\varphi_{\gamma}(n) / n^{r}$ once we use Abel Summation formula given below. LEMMA 1. Let $\left\{\lambda_{n}\right\}_{n=1}^{\infty}$ be a monotonic increasing of real numbers, $\lambda_{n} \rightarrow \infty$ as $n \longrightarrow \infty,\left\{C_{n}\right\}_{n=1}^{\infty}$ a sequence of real or complex numbers. Let ' f ' be a function with a continuous derivative in $\left[\lambda_{1}, \infty\right)$ and denote by

$$
C(x)=\lambda_{n} \leqslant x^{c}{ }_{n}
$$

Then

$$
\lambda_{n} \leqslant x^{\sum} e_{n}\left(\lambda_{n}\right)=C(x) f(x)-\int_{\lambda_{1}}^{x} C(t) f^{\prime \prime}(t) d t
$$

For a proof of Lemma I (see [4]). If we set $\lambda_{n}=n, f(x)=$ I / x^{r} and $c_{n}=\varphi_{r}(n)$ then Lemma I and Theorem I together give THEOREM 2. $\lim _{x \rightarrow \infty} \frac{1}{x} \sum_{0<1 E x^{n^{2}}}^{1} \frac{\varphi_{r}(n)}{\zeta_{0}(r+1)}$

Note that if $\sigma_{r}(n)$ denotes $\sum_{d \mid n} d^{r}$ then one can show (see $[2]$) THEOREM 2*. $\lim _{x \rightarrow \infty} \frac{1}{x} \sum_{o<n \leqslant x^{n^{2}}} \frac{\sigma_{y}(n)}{y}=y(r+1)$

From this we infer that $\varphi_{r}(n), n^{r}, \sigma_{r}(n)$ are roughly geometry. Actually $\varphi_{r}(n)$ and $\sigma_{r}(n)$ have lot of connections. One can show for integral r the non-trivial result

$$
\begin{equation*}
\varphi_{r}(n) \sigma_{r}(n) \leqslant n^{2 r} \tag{1.10}
\end{equation*}
$$

As r is an integer (1.3) reveals that for any $d n$

$$
\varphi_{r}(d, d n) \geqslant \varphi_{r}(n, d n)
$$

so that we have trivially

$$
\sum_{d \mid n} \varphi_{r}(d, d n) \geqslant \sum_{d / n} \varphi_{\gamma}(n, d n)
$$

which on observing (1.2) can be written as

$$
\sum_{d \mid n} \varphi_{r}\left(d . n^{r} \geqslant \sum_{d \mid n} d^{r} \varphi_{r}(n)\right.
$$

or

$$
n^{2 r} \Rightarrow \varphi_{r}(n) \sigma_{r}(n)
$$

from (1.1) and so (1.10) is true. As it is known that

$$
\sigma_{r}(n)=O\left(n^{r} \log \log n\right)
$$

we have from (1.10) the following
THEOREM 3. FOr all integral r, there exists a constant c_{r} such that

$$
\varphi_{r}(n)>\frac{C_{r} n^{r}}{(\log \log n)}
$$

We now make an estimate of the average error involved in the approximation given in (1.8). Denote by $e_{r}(n, x)$

$$
e_{r}(n, x)=\frac{x^{r}}{n^{r}} \varphi_{r}(n)-\varphi_{r}\left(n_{2} x\right) .
$$

THEOREM 4. For any pair of integers $r, i>0$ we have

$$
\lim _{m \rightarrow \infty} \frac{1}{m} \sum_{n=1}^{m} e_{r}(n, i)=\frac{i^{r}}{\zeta(r+1)}-\sum_{j=1}^{i} \frac{\varphi_{r}(j, j, i, i, \cdots i)}{j}
$$

Proof. We know that

$$
\begin{equation*}
\frac{1}{m} \sum_{n=1}^{m} e_{r}(n, i)=\frac{\dot{2}^{r}}{m} \sum_{n=1}^{m} \frac{\varphi_{r}(n)}{n^{r}}-\frac{1}{m} \sum_{n=1}^{m} \varphi_{r}(n, i) \tag{1.11}
\end{equation*}
$$

We know from Theorem 2

$$
\lim _{m \rightarrow \infty} \frac{1}{m} \sum_{n=1}^{m} \frac{P_{r}(n)}{n^{2}}=\frac{1}{\zeta(r+1)}
$$

So we only have to estimate the second summation in (1.11). We have

$$
\begin{aligned}
& \frac{1}{m} \sum_{n=1}^{m} \varphi_{r}\left(n_{2} i\right)=\frac{1}{m} \sum_{n=1}^{m} \sum_{\left(a_{1}, a_{2}, \ldots, a_{r}, n\right)=1}^{1} \\
& 0<a_{j} \leqslant \text { 共, } j=1,2, \ldots r \\
& =\frac{1}{m} \sum_{a_{1}=1}^{i} \sum_{\left(n, a_{2}, \ldots, a_{2}, a_{1}\right)=1}^{1} \\
& n \leqslant m, a_{j} \leqslant 2 \\
& j=2,3, \ldots r \\
& =\frac{1}{m} \sum_{a_{1}=1}^{i} \varphi_{r}\left(a_{1}, i, i, \ldots i, m\right)
\end{aligned}
$$

$$
\begin{aligned}
& =\frac{1}{m} \sum_{a_{1}=1}^{m} \frac{m}{a_{1}} \varphi_{r}\left(a_{1}, i, i, \ldots i, a_{1}\right)+O\left(\varphi_{r}\left(a_{1}, i, i, \ldots i\right)\right) \\
& =\sum_{j=1}^{i} \frac{\varphi_{r}(j, j, i, i, \ldots . i)}{j}+O\left(\frac{1}{m}\right)
\end{aligned}
$$

If we proceed to the limit $m \rightarrow \infty$ we get theorem 4 . For the case $=1$ theorem 4 reduces to the simple form (see $[1]$)

$$
\lim _{m \rightarrow \infty} \frac{1}{m} \sum_{n=1}^{m} e_{1}(n, i)=\frac{6 i}{\pi^{2}}-\sum_{j=1}^{i} \frac{\varphi(j)}{j}=o(i)
$$

We now take up an estimate of the average value of (a, b) and use $\varphi_{r}(n)$ to help us. But first we prove a very interesting relation connecting $\varphi_{r}(n)$ and (a, b). This is due to Jagannathan and Ranganathan $\left[\frac{3}{4}\right]$ who stated it without proof in a slightly different form. We supply here a proof.

LEMMA 2. For all real $\boldsymbol{r} \geqslant 1$ we have

$$
n \sum_{d \| n}^{1} \frac{\varphi_{r}(d)}{d}=\sum_{l=1}^{n}(l, n)^{r}
$$

Proof. First we write the right side as

$$
\begin{equation*}
\sum_{l=1}^{n}(l, n)^{r}=\sum_{l=1}^{n} \sum_{\substack{1 \\(l, n)=d \\ d / n}}^{n}(l, n)^{r}=\sum_{d \mid n} d^{r} \varphi\left(\frac{n}{d}\right) \tag{1.12}
\end{equation*}
$$

We know that

$$
\begin{aligned}
& n \sum_{d \mid n}^{1} \frac{\varphi_{r}(d)}{d}=\sum_{d \ln }^{\prime}\left(\frac{n}{d}\right) \sum_{d^{\prime} / d}^{\prime} \mu\left(d^{\prime}\right)\left(\frac{d}{d^{\prime}}\right)^{r}=\sum_{d \ln }^{\prime}\left(\frac{n}{d}\right) \sum_{1}^{\prime} \mu\left(\frac{d}{d^{\prime}}\right) d^{\prime} d^{\prime} \\
& =\sum_{d \mid n}^{1} d^{v} \sum_{e \left\lvert\, \frac{n}{d}\right.}^{1} \mu(e)\left(\frac{1}{d}\right)=\sum_{d \mid n}^{-1} d^{r} \sum_{e \left\lvert\, \frac{n}{d}\right.}^{1} \mu\left(\frac{n}{d e}\right) e \\
& =\sum_{d 1 n}^{n} d^{v} P\left(\frac{n}{d}\right)=\sum_{\ell=1}^{n}\left(\ell_{1} n\right)^{v}
\end{aligned}
$$

using (1.12). This establishes the lemma.
Define for real $r \geqslant 1, P_{r}(n)$ a generalisation of Pillai's function

$$
\begin{equation*}
P_{r}(n)=\sum_{l=1}^{n}(\ell, n)^{r}=\sum_{d \mid n}^{n} \varphi_{r}(d)\left(\frac{n}{d}\right)=\sum_{d i n} d^{r} \varphi\left(\frac{n}{d}\right) \tag{1.13}
\end{equation*}
$$

Estimates for $r=1$ can be made and one can show that

$$
\begin{equation*}
\sum_{0<n \leqslant x}^{1} P_{1}(n)=\frac{3}{\pi^{2}} x^{2} \log x+O\left(x^{2}\right) \tag{1.14}
\end{equation*}
$$

and equivalently using Abel's summation formula

$$
\begin{equation*}
\sum_{0<n \leqslant x} \frac{P_{1}(n)}{n}=\frac{6}{\pi^{2}} x \log x+o(x) \tag{1.15}
\end{equation*}
$$

Put crudely (1.15) implies that $P_{1}(n) / n$ behaves like $\log n / \pi^{2}$ or the average value of (a, n) is $6 \log n / \pi^{2}$. We make asymptotic estimates of $P_{r}(n) r>1$ using (1.13) in two ways

THEOREM 5.

$$
\sum_{0<n \leqslant x} P_{r}(n)=\frac{x^{r+1} \zeta(r)}{(r+1) \zeta(r+1)}+O\left(x^{r+1-\varepsilon}\right) \quad \begin{aligned}
& 0<\varepsilon<1 \\
& r-\varepsilon>1
\end{aligned}
$$

Proof. Method I
We have

$$
\begin{aligned}
& \sum_{0<n \leqslant x} P_{r}(n)=\sum_{0<n \leqslant x} \sum_{1}^{1} d^{r} \varphi\left(\frac{n}{d}\right)=\sum_{0<d \leqslant x} P(d) \sum_{0<d^{\prime} \leqslant \frac{x}{d}}^{1} d^{\prime^{r}} \\
& =\sum_{0<d \leqslant x} \varphi(d)\left\{\left(\frac{x}{d}\right)^{r+1} / r+1+O\left(\left(\frac{x}{d}\right)^{r}\right)\right\} \\
& =\frac{x^{r+1}}{r+1} \sum_{0 \leq d \leqslant x}^{\prime} \frac{P(d)}{d^{r+1}}+O\left(x^{\left.x^{r} \sum_{1}^{1} \frac{\varphi(d)}{\alpha^{r}}\right)}\right. \\
& =\frac{x^{r+1}}{r+1}\left\{\sum_{d=1}^{\infty} \frac{\varphi(d)}{d^{r+1}}-\sum_{d>x} \frac{\varphi(d)}{d^{r+1}}\right\}+O\left(x^{r+1-\varepsilon}\right) \\
& =\frac{x^{r+1} \zeta(\gamma)}{(\gamma+1) \zeta(r+1)}+O\left(x^{r+1-\varepsilon}\right)
\end{aligned}
$$

Method 2
We also know

$$
\begin{aligned}
\sum_{0<n \leqslant x}^{1} P_{r}(n) & =\sum_{0<n \leqslant x}^{1} \sum_{d \ln }^{1} \varphi_{r}(d)\left(\frac{n}{d}\right)=\sum_{d \ln _{0} d}^{1} d \sum_{0<d^{\prime} \leqslant x / d}^{1} \varphi_{r}(d) \\
& =\sum_{0<d \leqslant x}^{1} d\left\{\frac{\left(\frac{x}{d}\right)^{r+1}}{(r+1) \zeta(r+1)}+O\left(\left(\frac{x}{d}\right)^{r} \log \left(\frac{x}{d}\right)\right)\right\} \text { using Theorem } 1 \\
& =\frac{x^{r+1}}{(r+1) \zeta(r+1)} \sum_{0<d \leqslant x^{d^{r}}}^{1} \frac{1}{O}+O\left(x^{r} \sum_{0<d \leqslant x}^{1} \frac{1}{d^{r-1}} \log \frac{x}{d}\right) \\
& =\frac{x^{r+1} \zeta(r)}{(r+1) \zeta(r+1)}+O\left(x^{r+1-\varepsilon}\right)
\end{aligned}
$$

We infer from Theorem 5 by Abel's summation formula

COROLLARY.

$$
\lim _{x \rightarrow \infty} \frac{1}{x} \sum_{0<n \leqslant x^{n^{r}}} \frac{P_{r}(n)}{\zeta(r+1)}
$$

Ki.

We turn our attention to an analogue of $P_{r}(n)$ which is

$$
\begin{equation*}
A_{r}(n)=\sum_{a=1}^{n}[a, n]^{r} \tag{2.1}
\end{equation*}
$$

where by $[a, n]$ is meant $a n /(a, n)$. It is interesting to observe that

$$
\begin{equation*}
A_{r}(n)=\sum_{a=1}^{n}[a, n]^{r}=\sum_{a=1}^{n} \frac{a^{r} n^{r}}{(a, n)^{r}}=n^{r} \sum_{d \mid n}^{1} \varphi^{(n)}\left(\frac{n}{d}\right) \tag{2.2}
\end{equation*}
$$

where by $\quad \varphi^{(r)}(n)$ is meant

$$
\begin{equation*}
\varphi^{(r)}(n)=\sum_{0<l \leqslant n}^{1}, \ell^{r}(\ell, n)=1 \tag{2.3}
\end{equation*}
$$

a generalization of Euler's $\varphi(n)$ attributed to Whacker (see [2]). We make use of (2.2) to make an asymptotic estimate of $A_{r}(n)$.

THEOREM 6. $\sum_{0<n \leqslant x}^{1} A_{r}(n)=$
Proof. We have by (2.2)

$$
\begin{equation*}
\sum_{0<n \leqslant x}^{1} A_{\gamma}(n)=\sum_{0<n \leqslant x} n^{r} \sum_{0<n}^{1} \varphi^{(v)}\left(\frac{n}{d}\right) \tag{2.4}
\end{equation*}
$$

$$
\varphi(n, x)=\sum_{o<a \leqslant x,(a, n)=1}^{1}, \text { then } \varphi(n, x)=\frac{x}{n} \varphi(n)+o(n \epsilon) \forall \in>0
$$

so that we infer

$$
\begin{equation*}
\varphi^{r}(n)=\frac{n^{r} \varphi(n)}{(r+1)}+O\left(n^{r+\varepsilon}\right) \forall \varepsilon>0 \tag{2.5}
\end{equation*}
$$

Thus (2.5) and (2.4) together imply that

$$
\begin{aligned}
& \sum_{0<n \leqslant x} A_{r}(n)=\sum_{0<n \leqslant x} n^{r} \sum_{1}^{\prime}\left\{\frac{\left(\frac{n}{d}\right)^{r} \varphi\left(\frac{n}{d}\right)}{\left(r^{r}+1\right)}+o\left(\left(\frac{n}{d}\right)^{17 \varepsilon}\right)\right\} \quad \forall \varepsilon>0 \\
& =\frac{1}{r+1} \sum_{0<n \leqslant x}^{1} n^{2 r} \sum_{d i n}^{1} \frac{\varphi(n / d)}{d^{r}}+O\left(\sum_{0<n \leqslant x} n^{2 r+\varepsilon} \sum_{d / n}^{1} 1\right) \forall \varepsilon>0 \\
& =\frac{1}{r+1} \sum_{\substack{1 \\
0<d \leqslant x}}^{\infty} \sum_{0<d^{\prime} \leqslant \frac{x}{d}}^{-1} \varphi\left(d^{\prime}\right) d^{\prime 2 r} d^{2 r}+O\left(x^{2 r+1+\varepsilon}\right) \forall \varepsilon>0 \\
& =\frac{1}{r+1} \sum_{0<d \leqslant x}^{1} d^{r} \sum_{0<d^{\prime} \leqslant \frac{x}{d}}^{1} P\left(d^{\prime}\right) d^{\prime 2 r}+O\left(x^{2 r+1+\varepsilon}\right) \forall \varepsilon>0
\end{aligned}
$$

If we use Abel's summation formula we get

$$
\begin{align*}
\sum_{O<n \leqslant x}^{1} \varphi(n) n^{2 r} & =\left\{\frac{3 x^{2}}{\pi^{2}}+O(x \log x)\right\} x^{2 r}-\int_{1}^{x}\left\{\frac{3 t^{2}}{\pi^{2}}+O(t \log t)\right\} \operatorname{drt} t^{2 r-1} d t \\
& =\frac{3 x^{2 r+2}}{\pi^{2}}+O\left(x^{2 r+1} \log x\right)-\frac{2 r}{2 r+2} \cdot \frac{3}{\pi^{2}} x^{2 r+2}+O\left(x^{2 r+1} \log x\right) \\
& =\frac{6 x^{2 r+2}}{\pi^{2}(2 r+2)}+O\left(x^{2 r+1} \log x\right) \tag{2.7}
\end{align*}
$$

substituting estimate (2.7) in (2.6) we get

$$
\begin{aligned}
\sum_{0<n \leqslant x} A_{r}(n)= & \left.\frac{1}{r+1} \sum_{0<d^{2} \leqslant x}^{1} d^{r}\left\{\frac{6 x^{2 r+2}}{\pi^{2}(2 r+2) d^{2 r+2}+O(} \frac{x^{2 r+1}}{d^{2 r+1}} \log \left(\frac{x}{d}\right)\right)\right\} \\
& +O\left(x^{2 r+1}+\varepsilon\right) \\
= & \frac{x^{2 r+2} \frac{6}{2(r+1)^{2} \pi^{2}} \sum_{0<d \leqslant x} \frac{1}{d^{r+2}}+O\left(x^{2 r+1} \log x\right)+}{O\left(x^{2 r+1+\varepsilon}\right) \forall \varepsilon>0} \\
= & \frac{x^{2 r+2} \rho^{\rho(r+2)}}{2(r+1)^{2} \varphi(2)}+O\left(x^{2 r+1+\varepsilon}\right) \forall \varepsilon>0
\end{aligned}
$$

and the proof is complete.
If we set $r=1$ in Theorem 6 we get

$$
\sum_{0<n \leqslant x} A_{1}(n)=\frac{x^{4} \zeta(3)}{8 \zeta(2)}+O\left(x^{3+\varepsilon}\right) \forall \varepsilon>0
$$

Now Abel's summation formula implies that

$$
\sum_{0<i \leqslant x}^{1} \frac{A_{1}(n)}{n}=\frac{x^{3} \zeta(3)}{\zeta(2)}+O\left(x^{2+\varepsilon}\right) \forall \varepsilon>0
$$

which means $A_{1}(n) / n$ behaves like $n^{2} \zeta(3) / 2 \mathscr{\zeta}(2)$. Thus the average value of $[a, n]$ is $n^{2} \varphi(3) / 2 \varphi(2)$.

REFERENCES
I) K.Alladi, On a generalisation of the Euler function, Prof. S. Ramanujan Comm. Vol., Madras, Dec. 1974, pp.114-124.
2) L.E.Dickson, Theory of Number's, Vol.1, Chelsea, New York, 1962 pp.110-140.
 groups II', Reports on Mathematical Physics (to appear)
4) W.J.LeVeque, Topics. in Number Theory, Vol.l, Addison Wesley, Reading, Mass, 1960, pp.120-140.

[^0]: Jecture delivered at the Institute of Mathematical Sciences, Adyar, Mad̉ras-600 020, on 18th January 1975.

