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FOREWARD

These notes are based on lectures given by the author to

the mathematics teachers of Madras University in connection with

the prescribed syllabus for M.Sc, in respect of tensors and

relativity. The concepts involving vectors are tensors are common

to three prescribed courses, viz, Modern Algebra; Mechanics amd

Relativity. The principal books recommended by the University were

Fundamental Structures of Algebra by G,D,Mostow, J,H,Sampson,

. JJPMeyer, Differential Geometry by Stouik, IntroductionAto Riemanian
Geometry and Tensor Calculus by C.E,Weatherburn, Thedry of Relativity
by A,S,Eddington, Between Mostow-et. al. and other books recommended$

&jfhere is a wide gap in the approach to concepts of vectors and tensors.
Lﬁ %hs present notes an attempt has been made to bridge the gap,
since also the current literatures in physics requires increasing
awareness of more general stand~-point as presented in Mostow et. al.

igIt must be cmphasiscﬁ‘that no attempt is made to develop the subject

1 of tensor ana;ysis’;%gorously from a modern stdndgﬁoint. The ehject
of these notes is merely to expose the reader to the modern terminology
which enables one to have a clearer, more unified picture of the various
concepts that arise in the discussion. The reader is recommgkded to

Tovliien.
consult the following bcoks forApursuing the subject of relativity:

in the spirit of the present introduction to the subject,

1, LECTURES ON GENERAL RELATIVITY, Brandeis Summer Institute in

Theoretical Physics, ¥ol. 1, 1964, A.Trautman, F,A.E.Pirani,
H,Bondi (Prentice Hall, New Jersey)

*The lectures were given in May 1973 at two centres: Matscience (to
the Government College Tcachers, under Inservice Training Programme)
and Loyola College (Under the College Science Improvement Programme)



iv

2, GRAVITATION (1973), C.W,Misner, K,5,Thorne, J,A,Wheeler

(W.H.Freeman, San Francisco).

3. The Large Scale Structure of Space~time, S,W,Hawking and
G,F.R,E11is, ‘Cambridge University Press (1973).
)
On the subjecthfpocial theory of rclativity the following
references may be found useful,

1. The theory of Rclativity, by R.K.Pathria (Hindustan Pyb-
lishing Corp. = Dclhi, 1963), particulary for historical
introduction, |

2¢ The Special Theory of Relativity by J.Aharoni (2nd Ed,,

' Oxford, 1965).

The plan of these notes is as follows: First four

Chapters are devoted to introducing the concepts on vectors, matrices
and tensors., In Chapter V Egclidean Spaces are discussed, It is
useful to emphasise that whereas in a vector space all pardllel
vectors of the same length and same orientation are i&gntified inl

1
a Buclidean space the basic notion is that of a vector together with
i

its starting point: Conscquently what was taken as a basis in a
vector space 1s reinterpreted as 'frame vectors! and refer to a |
coordinate frame, This interprctation becomes particularly important
when one introduces general cocordimtes in a Euclidean space or

when one consicders more genecral spacesy in this case the frame vectors
are actually 'vector ficlds', The basis is now given by'a/237tz

(and the coordimtec differcntials dxi in the dual space) in a

local coordinate system, This point is cxplained in sections (V,.6,

VI.1,2)§ and in Section VI,3 the general curved spaces involving

a linear connection are discussed in this spirit, Ir section VI,6

the frame vector ficlds arc emnphasised and Ricnannian spaces are



discussed from this viewpoint, The discussion in sections V,9,10,
which is also applicable mutatis mutandis to the gencral Riemannian
spaces, 1s strongly coordinatc dependent and is in the spirit of the
formulation given in Weatherburn., It is hoped that these various
treatnents would cnable the postgraduate teachers to broaden their
outlook on the subject and thus further their understanding of the
basic notions involved, Furthermore it should also help those who
are interested in pursuing research to understand current literature
in modern theorctical physics and Relativity. The last two chapters
on special and general relativity, are developed in the same spirit,
Equations in each chapter arc mmbered afrpash starting from
1, Except in chapters V and VI, the chapter number is not indicated

on the equations,

METSC IENCE K.H,Mariwalla
Madras«600 020
Datey June 1975,



l. Some Definitions.

I,1. Let S denote a set of ¢lement {x,y,v--. -j . Let @

denote a Binary operation for every pair X,y of the set 8 such

that X'@ )Y ‘is again an element of the set 8 (-cilosure property).

8 is said to be the internal‘Operétion of the set,

T.2; DEFINITION, The set S together with the internal operation
is called a Groupoid. .

1.2, DEFiNITION. A groujoid with the following pfopertieS'is

called a group.

(a) the operatiori 6 1s associative

.(b) there exists a 'neutral element' E such tha:t for each
Xin § , E@X=X0E=X. E is also called the
identity element. -

(e) To evefy X in S there corresponds an inverse ele-

ment '(usually. denoted) )(." -in S such that

Yex'=x'ex = F

I,4, DEFINITION, A group in vhich the operation © is such that

KeY=Ye X for all pairs X,Y in § is called an
Abelian g'oun. The operation 6 1s said to be commutativej -it
is dften dencted by + , ant the neutral element by O.
Is5. Other recl.ted notions that we might haw}e occasion %o use are
Subgroup (subset of a groun satisfying group axioms), representation
of a group, discrete and continuous groups., We shall explain these

notions iIm the relevant context,



.

6‘\” 91_ will be denoteld by = O,6, e s o BN

I.-,?c

-2

ine more than one type of internal binary operatid

set., Such o set S tojnther wvith two binary operations

DEFINITION, & set S

062 S »

is said %o be a Field if
[ i)

(2) S. . is an ebelian 5Srowd, ¢ dJdenotes ‘the neu

(m 8 :‘-—_—,{Q - Og is a orown, i.e. the set S ftom whichi

¢ ke * . ;. ‘

" the neutral element of is excluded 1is a group
with respect to the » oneration

(cy If X,), % s any elements of § , then the follov-§

ing holdé: - and
(X+Y)Z=XREXIVYE
X(¥+2&) = XY X XZ-
PTNITION, A4 field is said to be commtatiwe if S, is an
abelien grown. Well Imown ejamnles of commutatic: fielGs a:

the fields of real and comnle:z numbers. An exammle of a non-
=

comautative field is ¢

—

N

P - A ;
¢ field of <uar:erans. The elements ‘

of these Tields may ve renresented as linear combinations of

2 x 2 Pauli matrices, Thus

; - is 't entd né E : 0<¥{ are real murber st
» l) o~ = (o =t ) | o

and <0 :'<—\ o/ 272 "\1 o /I <‘

i mabrices, ‘In what follows we ~"hall rcfer To real

ahd comnhlexX numbers

. et

es scalars, The symbol o. a general fiel

will be }< and for real numbers E{_ . I thls nanner an

G~

N -tupple of fields will be denoted by R™M (Ry)or WM (K
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II. VECTOR SPiC3

II.1. Let us consider a systein consisting of two seits togetner

with the internal onercmom ~nd inter-set operutions (exbternal

' : i - -
oneration). Let Y¢ 31(,“ oo Joend )\l I ¥ be scts
such that , '
(a) \'\,\_ . 1is a fieldy (O is the neutral element in ~4-

oneration and 1 the icentity element in the dot oneration

(b) V+ is an abelien groun with resnect to <= onerction
~and O is its neutral element | » ‘

(c) there exists an interset operation calleéed scalar multinli~

cation obeying the following rules

d) o (b";f) ;"' Qa- 13(_‘;('5) for ol

i) (a+ b) = a¥ + b¥ % b w g
W) X = T(’ o

(V) o (X +¥Y )= ax+ay KoY ¥

-
y OOF O \mplies k=

J

DEFINITION, The set V  together with thhe set K and with
5 b}
these nroperities is colled o vector space or linear snace over the
,Y are called vectors and @,b scalars.
In what follows we sinzll generally tale K—;R »
T - -
II.2. Let uv\‘)“’_)b'i- be elements of V, taen they are linearly
cependent if there exist scalars Qy,05--- Gy not all zero such

\

=>¢ == —
AWM+ Gyl ----- + Ay Uy = O - (II.1)



=
If (1) is true only if all Q;Q_ are zevoy thewy Ay lhqje-Uy are
sald to be lincarly incdepencent.
DEFINITION,A vector snmace V is said to be of dimension n 1f

thme exists a mzu\imal set of M\ linearly indépendent vectors
-y

Q‘ ; e.“- - ,e. such that any vector X in '}/ can be written
as a linear combination of these vectars {91_, .-~ -~€1\§ with
coeffigients in Y ¢

o

X = )(’5 € | (II.2)
wvhere, and in wnat .LOllOW.; we shall assume summation whenever there
is one upper and one lower index reneated (Einstein Smnma‘cion
convention). 3

DEFINITION, An 6rdsfad pair 6f H 1inearly independent
vectors is culled a basis of the vector snace and the n-tupple of
scalars Y"’} as in eqn, (2) are called the coordinates or come-
ponents of the vector S? in the basis {E,&E

II.3. In the above, by choosing a basis in VM we have re-
presented an arpitrary vector in th ‘in terms of n-’cuplés of
scalars, Since vectors are elements of Vq\ and scolars elenents
of K one expresses this by saying that one has mapped from V,n

to K™ . If we denoted this map by T, then

TIX) = (XY -, x™)

(I1.3)

TV )z TIX) +T(Y) (11.9)
= {x! : Layux n

T(c\?)~( TR0 e

= QYUY
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i.e, there is a onc to one correszondence that nreserves vector
operations. ﬁ‘hus K"‘ behoves like a vector space of dimension n
anG is said to be isumorphic to vﬂt . {In fact 2ll vector spaces
of the same Gimension Ta::e isomornhic to ecch other).

IT,4, Wé have vonsidcred vhe linear map T from ‘ Vyy  to Kn .

AL T e
We now consider a line .» map fren \/ © to V Cefined by
e =7

».J) 5 w - . “") A \ i‘ < \/
CR(aTT)E A g AR RY)

v ~ Y =
wihere (3 ), £ (¥ jare elements of ‘K amd X, Y any two elements
of \/‘Y\ - {» is call~d@ a linear .form.or linear function (or one-
form) on \f,}, « The set of all linear forms {{")g)" - -E from \/l'Y\

1

to Y, with the following properties
UA)T) = F (7)) 900
eI = qggﬁf)
LX) =0 “er e s ;;-,fr.'_.\ ‘hﬂ\)gxléﬁo t=0 (117

Clearly forms a vector space of dimension 1| . It 1s called the
-

) 7 " ’)J‘“ S 3 4
dual space of \f,\ and 1s denotec by \f{{\ Sl Qd is a basis in

N
_ : . .
V’?\ than a linear form is completely Getermined by N scalars

| Dby o
*?{) ="' 1 (&)

Conversely, a set of = scalars unlquely determines a linear form

. (1I.8)

on '\fm in a given basis of

.
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Let us defige n 11*1911' forms as follows
k , = _
e (&)= { k—}"ﬁ- (11.9)
A = .
The symbol 6 s 1s called the Imonecker S-symbol, For any
—-7
£ in \/”r and )( in |/, , it follows from

(1.5 -and (I1,.9) that

(XY )=x"?

vl T .o ' (I1,10).
£ (% )=X3 %, =4, c@(x)
Since this is true for any >\ it further follows that
4= e | (II.11)

the scalars %{ are said to be the components of -f- in the
basis {Qé& of V’;\X « The basis §ﬂ3} is the dual basis
of { e’ﬂg .
e {57 .
IT,5. Let {6,3} 5 4 Q&,} be two basis in VN\' These
must be linearly related, ’

R => = e
6% A R > e‘p,’ Aha 59/ (1I.12)

For reasors of consistancy we must Jave

Rop ¢ ¥
2 ;\R - 8’3' (I1.13)
_— .
P\k P\Q! = 8\1
it X9 5 X a3l are the components of T in the two basis t

then one must have

— ’ -3y | »
)( =g X,b = €, W | (II.14)




e———————————

e

On substitution from (IT,1%) and (II.13) we find that
v

. o
Xl P\“y{Xh‘, X\R:RR;&;XU : (I1.15)
< -
Let Cﬂ) 6_0”‘ be the besis in \/3\(— corresnonding to El, €,
in V,Y\ « Consider
! e, !
Le’d ) =€ H\ " GW\’) A Sgw\\ (II.16)

' \
Since also. P\Q‘%“ “Q‘K € {@0) it follows that

‘ [
ol — Q\Q' Qk. (I1.17)
Now, a vector in \{* nust Sa'Lle'jf

,g. ‘F ﬁa —_— ’E’d’ p 0 (Ii.13)
so that.the comgonentg of a one-form transform under the change of

basio ‘
{according to the formula

T = 'F\Q f\k‘--q' C(Ina9)

II.6. We have found that V and V* have same dimension and
are therefore isomorphic. But this does not mean that one can jpst
abolish V*, The trouble can be tr;qced to equation (II,9) which
shows that the basis ek and e‘a tronsform in an inverse fashion
so that the two can not be identified excent in a special choice of
basis (canonical basis). On the other hand one can show that V**,
the vector space of linear forms on V* can be put into correspon-
dence with V ihdependent of the choice of a particular basis chosen,

Thus there is a natural Isomornhicsm between V and V**, and the two

may bel taken as identical,



IIT. MATRICES AND DETERMINANTS

.-/”

—111.1 1In (11'5) Qe have coné{aered tra

ormations from one

basis to the other in terms of YIL scaYars. According to the
notation used there we denoted both tWe transformetions for
— vty -—»
C,’A. —-> Q,§| and eo, ﬁ by the same Kernel letter A.
The difference between the natur

indicated in terms of the p” e of primed and umprimed indices.

of two trunsformations was

An alternate notation is ( ‘use different kernel letters and if
the use of primes is necfé:ar7 then put these on kernel letters
and not on the 1ndlc§/ Instead of putting primeé on kernel

" letters aud could al o ars different kernel letters. Thus the

equations (15),(1¢, e (13) of section II 2y be Tewritten as
wt (\%\a AT XF_B 3 X (})
¢ v= N {' A\Q | (2) “

m}jé v T B R ,BW\ % AR 0" £ Q (3)

One can aréange the r}L scalars /;?‘k. in a square array called

a squ e matrlx"

L
At d

« ’Y\ ‘W S
Az SO
LN A, A (4)
and similavly for B’é W The letters 3 52’ k. are called

indices of the matrix, labelling its com»monents (whlch are scalars)

9

— — |||m, - : 7



rs)

(;;?

;

in a given basis. “he metrix itself nay just be written as A or
’ “M 0
B. The matrix coaponents > A in (3) then correspond %o the

unit matrix denoted by Iﬁ

)L o (5)

"~ The equetions (3) then collectively read

AB =BA =1 ' (6)

I follows that B is a matrix inverse to the matrix A and one writes

B=A '. One may verify that the arrays thus introduced are

required to satisfy the following rules of adcdition ahd multi-

plication for any N AT matrices A,B,C.
e - . . A
a) " C = AN+ R = w+ N o C..Q A .:Rkﬁ*% 3 . (7)

PRRO: (hDC »3ék%gwﬁm\a%(?\zQBQW\Q(’N‘*@)

0>£\{Ba—c)ﬂ\%—mc;Lg+c_)1\:~.g§\.;rc_:ﬁ\ (9)
The null matrix, with all elements zero may be defined as the
neutral g&enent with respect to addition of matrices. It'is clear

however that given an arbitrairy matrix M there does not neceszarily

exist a matrix inverse to it. In this important respect the set

of all matrices differs from a field, and such a system &s called

a Ring.



III.2 : One can alsgo introduce rectangular matrices by considering

a mapni between two vector spaces of different dimensions but

defined 3ver the same field ~ These have the fornm

CQ o Q L A . . K
N \
\

‘ 2=
CZ.‘ _ - . s & C "M
(0) |
\ <

such an arry is called “wX Y\ matrix (Q,:\“- M), Xz~ *q).

0f particular inﬁer,st are matrices in which either or N is
P . v

equal to 1. Thus C 4 is a \ XM row natrix and C,z" is a

m X\ colonn matrix. For instance the n-tkipple of scalars %

X 9 } = X} and{ =y 5 — are respectively . 1

L X Ty [ =] |

x| and | X M matrices

4 [y T EE
e L B B (LY

2

' o (11)
XM ‘
This notation is consistent with the rules for matrix multi-

plication,and the ftransform tions (1) and (2) now read
= REXE IR TN Y
C{:I] . [‘F] ,\“\ L‘Fl? [{;1 N ,' - (12)




Also we see that

_1;(;(-): (o) =A; %% = "7, 5 0 Y=reqs
AR KRS ) e B E A FES G

N )L_ "

|

It further follows that the "product" of (colomn matrix)x(row

matrix) is a rectangulars matrix. Thus e zot the square natrix

E RN S SN (P O ,x*ﬁx
X2 b ] ){L(‘. : _

!

X | T e W 1

III1.3: Since the ba:s*iﬁ, of 4 and ny\% satisfy
R (e ) -k
e. : 6 - & ,() S .

it is easy to see that it is possible to choose the basiz such
._#

theat e\{ are cclomn vectors and €3 row vectors in

'

conformity with the rules for the multiplicution of row and colomn
g L}

metrices. The simplest, form of such a representzation of the basis
vectors is called canonicel and is given by

— » ')‘ '

e \r=3\ (o k

L " - VN A

K) l/ - > (€ ) :

1

r )
B~ « = ~-i“'00a
| |

2

t

where é indicates the conponent of the colomn owd Yem vectors.

&



According to this scheme, we introduce the following notation

Ret R = \k> = ce@% o

3_ v bl
Bior | = k] - (€k> | el s

e T (15)
‘ L———-—-—-\R Ah Plce-

o rmoatos.  acond

xS 24 kax-zxv\w {}
x"

Then the varlous important

© (164)

<‘¥\E§“R‘“ i “Z(b){ TR 41‘ - (16B)

4@\k> % R - - =~ = -orthogonality ..(160)
V>R =[5 - -2 -e]

¢ - o e ey O

L,_ S e
OB B ‘
o

A At Clomm

2 RS <R =

FIXT) = <% \X> = -Fé % i e
IX> <A =4,

closure (16E)

\

! / \
Xh{) i - - ’Xv\‘gw‘
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It is further clear that if C}S k are copmponents of a matrix

¢ ) . ; o .
a, then the mutrix itself is given by

»Y\

—

Thus (16D) furnishes the cancnical basis for the matrix ring.

| 4 ITT.4: We have scen that an arbitrary M XM metrix involves

e e

N\~ scalars, and in the canonic 1 basis one can write a matrix

[ in the form (17). Thouyl the canonical basis wppears rather
) P natural, because of its highly singuler nature it is never ex»nli-

citly used. One nay ask do there exist any other basis that are

, , , , ' m
not singular. ¥When the dimension of snace is Y= € (M=integer

1~
ore

[ode
e

;31) there exist Y\?‘ elemen#s of "e1if ford algebra® {éﬂ al
is a vector spaéc in which a mﬁltiplioation ig defined with the
properties (XA-F)\_)%: K%*%%;X(%*é) = X3+XF

N v,
O (XW)z (aX)Y = X {c\\é) . For an associete algebra

D)
‘ .y 2 - Y\ . which can be used as a basis
(x8)2 =x13 )= xQg W 5.
The W% elements of the clgebra are determined in termd of (.mn)
natrices \(P' (}v\ - \)z - ‘Z’n’lyv}:zj_c}tl satisfy
E) '
.
\Q/;v\ Ty~ ¥y 75,»« = - oMy ' (18)
F) , \ _ |
Actually (2m+1) matrices satisfy this relation. The Pauli matrices
nentioned elsewhere sre narticular case of .he algebra for m = 1.
For an arbitrary (finite) dimension there is a theorem of
_ _ Ta
G ) Alladi Ramakrishnan cccording whicl: one .can expand an azrbitrary




NXN matrix .A as

R:z; Zwékﬂ{B'C.. - -
U,:\ R:\, . . (19)

where c<‘3\z are elenents of R and matrices B,C arise as

representations of nth roats of unity. In particular one can take

T O B O
'.‘ \‘\\ ) .‘ bi t
‘ . :
~ . . '
o X .
R §
3
_?. o . . a -?J Q?O)

where LY = exp (L‘\TL )’Y\) )“q.' = ¥ ,_.\’le—,(?‘;t. Since also

BC = W CB it follows that in the algebra of these matrices

there are exactly 7\7— independant elements. The Alladi bssis
is apparently the only nousinmiler métrix basis valid for any

dimensionality.

III.5: In equations (16-17) we have secen how one may write a matrix
in a given basis. DBut in general it is not necessary to worry

n L B
about the basi as we are dealing with R‘ (or rore ﬁcnerallyiﬂ )
anc entries in the matrix components is what matiers. But if we

change the basis: P\ \’}) == \/a ’> , then an arbitrary matrix

M also undergoes a lincar transform-tion:

M o= A M A ] (21)

and is called a gimilarity transformation. The matrices M and IM'




TR

~15~

are said to be similar. We now mention soue important properties
of matrices that arc*unchansed underA§1mllnllty trans formations.

(a) Let A Dbe a matrix treusformziion in \/4\ . Fer cvery i?

in V'M)A.X‘t Y is in V’Y\ . The trausposed matrix, denoted AT,
is defined by

G‘) AX) = Q{ AT, X> | (22)

-

m . ;
. . I 3 - .
It is easy to verify that A” is relaed to A with its rows and

colomns interchanged. If A A™, it is called a symnetrig matrix
C o T .. . ' . .

and if A = - A” it is called a ske -symmetric matrix; these

properties are unchansed under similarity transformations.

(b) An important class of matrix equations is the eigenvalue

eaquation for a symmetric natrix

= |
: W\?:/\X (23)

: : : o >
In Y\ dimensions there arc in eneral Yy solutiod and . )\s are
called the eigenvalues. Henco the 1is as .ociated with Y1 sinul-

5
taneous equations (23) the ’hik degree equation in X.s °
s

<

n-Y
‘M\ M%L\m/\ ) A=l
The eigenvalues >\§ , 88 elso the ﬁfé which are functions

Of >\a are characteristic o: the motrix and are unchenized under
a sinilarity transform:tion. In fact there always exists a

similerity transformintion thot can diagonalize o syametric matrixs



==
\

\ :

. (25)

~ . . \\ - 7 y :
A little reflection shiows that the QQGiIlClentS\ K\Q e2n be des-
ﬁ . o . .v
" cribed comrletely in terms of two types of invariant functions on

matrices callad “rice or Spur (Tr. or Sp.)/and determinent
, : I 7
(dr.?'t‘or \\ \\ ). Thus R { !
. ) /
8" ! .
4 \ 5 !
b<]__ = Z)\T = gun of the disgonal elcm2nts of U / (26)
(L=

¥

=TTy WM . /

"
0< = TV )\l = product of diagonal elemcnts of
A e ' .
= Det | 1) | . (27)

|
Similarly other (X A are determined in terms of "Trace" and

determninant of powers of M. In-general the determinant of a

matrix may be expressced as

)C'M’.: ._..\... Wy s My G Q'V\
be g h\u 8“ o .Q'\’\, \'\/\ W\‘ Tz m

\
My (28)
where the generalized Kronetker & is defined as

’W\\“"W\\e | Hif e .(W\\a is an even perrutation of
8 — - Q\’k-h_“" X U

v
is odd mutati '
518 0 pernutation of

Q\'*QL“" ﬂFQM‘
O in 211 other cuazes (29)

<

*\ \{' "“\.'.: = "M\Q




=

The equation of the type (24) for an erbitrary matrix A (whether

symretric or not) may be. written as

N R
P\ >\T r\ Gt e . — R
biL ) R | (Y\‘m E3\4\"“““- p\gl._ )\’L'\n-‘\.\—

(R=2) \ - - - -~ 5
(-\yr/\‘( Q\*” 0 n-x Ry Py (_\Y\-\ h\ .
AT B e Moy O A B A A
RTINS PE I S I R Y
(30)
f where we have renecctedly u”ed the forquld
. R\"’“"*x B h“r-*} -
\
GDQ‘ m\ é (?\ xf,)wé2*121i7£xsjwj
e e i T in evaluating the ex»ansion on

\f

the right, and I is the unit matrix.

)
)

From this definition of the determinant one c¢an easily deduce
the verious familiar properties of a deternminent, but we shall not
do that. An innortant property to note is thet determinant of a
product of séveral natrices is ecual to the preduct of their
dcterminants. The opgrutlnu of tzking a determinant is not line:r;
thus if ¢ is a sc lar, dct (cA) = C (?et A) fof the«dimension

Y\ . It follows that deverminunt of a skew synmetric matrix

in odd dimeusions vanishes identically. Since the troce of a skew

synnetric matriz venishes for ~11 dinensions, it follows fron

E equation (30) that one root of )\ for a skew symmetric natrix
.:E . - o I - . . Al . . w
in odd dinensions is zero. Determinunt of a symnetric matrlegven

dimens ions 1is »nositive semi-definite.
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We define the eofcctor of & dc;-terr;in?mt as
Q\ ,_! c;ds“ o AR Q\_;.:::Q' A A Xy
Voo =0l \R\“ Ry 0T Ty (31)

go GJhat{/

@etMS\D 0! R\P\ ‘\3 S “,".-(,32)

From this' 1t is eqsv to seec t° Bt thr codt: mtox & \K of "the el xnent
: \
_ 1% .

;\\i Y is (—1) ’5 times the determinant of the metrix I
when its jth row & ith eolomn are deleted. If we define
\ 1
= A" 3

T S (33)
3 del N

We see that the matrix is inverse of matrix R

s A -
X QP‘QQ'gQ ) 0“\ AN =T (34)
It is also clear that detOL = = (d €T P\) and DetX = CC\ETH)

Tet the elembnts of - notrix ¥ be differentiable functions bg' Q

,,,,, cnetér t.  Yhen usinge the above definitions for det(\. and X A

a aqg‘ |
n




‘ L
Bétﬁ“\% - gQ““ L -ACU.BAQ,_ iz
R\ T

>t oo 7’?‘ Y R ot Ae3 Ay
+L_:\f—\*‘)\8:‘: 2{1 B:t Ac‘fl' At‘” (36)
at k)wm;\a e obtain
b e xtq 2R
e - wr (37)
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IV TENSORS:

I. Let' VW be vector spaces and V x W their cartesian product.
Def. A furction F ; V.x W —> R is bilinear if '.:;
FlaXAsY,0) = aE (KUY +bF (%0
K, D za FEOD b E D) (1) 1

: f.l~» ; , ;ﬁ =2 ‘ ;

for all a,b in R, x,y in V and W, U in W. 1
The set of all bilinenr functionsF on V x W can be givén the

structure of a vector =pnacc by the procedure used earlier for
linear forms on a vector space. Let €7, , T ba the basis in
1

X
V,¥; Then

T(u? ») F‘(X e'\ou Io()

TR T xius
Hs D), 1 () e e 7

Yol
G
b

the basis in V . 1T we rewrite

‘ s B T n X =
xtux-_—_e“(x):uu): (er® 1) G U, o)

. qQ . & .
Then we see that the furctions € & I are linear on (x, )

(i.e. linear in each factor) and are linenrly independ nt, since

. 1 X : :
\<‘\°§ e &e = implies that

& 4 T E et
\{ {L @ ( > o 2_9 for all ccuples of

indices (’]}o() ,

e, = — - e e R R R .




The symbol C ISNreao tensor product and the vector sprce of

biline r functions on V x W is c:-1lled the tensor product ’V’L_ *

of V* and W*. The dimension of V ® W*' ig the product of
W* 2

the dimensions of V'x anad its elenments are of the form

F=Fiqe'® 1" - )

-~

and are c lied tvuce covarinont tengors; Eic( are the components of
: : L :
F in the basis @€ @ I

s . N 3 . 5 L% ** Q"*‘* . 3
Since V,W may be identified with V ,W one can in the_s:zme

fashion construct the vector sovace of ‘itwice .cuntravariasnt tensors"

o . 1K B o~ @
v ® WV with elements of the form F = 6{ @ Q.x .
Similarly one can construct s»aces of once coveriant and on0'>
X 1
(e g I N T N3 ol
contiavarisnt tensors: V C N of teusors F‘,{ e @ I,o(
and V @ W of tensors FQK e C ‘ID(

One can gencralize the notion to consider tensor nroduct of

of several vector =paces as 1t 18 assocliative

->; "‘> =
FHE[A®F X [=zon ETJRFE)
. R
= (Z®ROF) (¥, wHX) |

(5)

by the definingf eruation.

In what follows ‘e shall confine ourselves to tensor products

of a vector space with itself or with its dual. The elements of

the repested tensor procuct space @k V @ (® V*’) are

cnlled mixed tensors of valence (\R, Q) and rank \1 +£ and




have the form

F:Fa,h—--’éh\o ‘Fgé.\@_._ ®€’5k®e L. -®et (6
B DR ')

It s cle r that there can be several ta.or spaces of the sane

ha Seywe
rank snd even o%ﬂsane velence: they zre isomorphic in the sexe of

having the same dimensiorn; however there is no natural isomorphism
between them in the sense thot there is ne busis independent one

v
to one c rresnsond:nce between their elements in general. (In the

Lot
partvicular ~ of a "Riemannian

o

pace” the natural isomorpuism i
does exist).
IV.2: Take any T :hn\rég V; Then

A == ——

F=f' ;@€ (7)

In the new basis

_ ety > e
F: = fld/ X & 3! (8)
— —

On substituting for Q{/ we find

e o . L v : ?
FUO= Ay W 0 F ' (9)

This is the usual dcfinition of a contraverient tensor of second

rank in terms of ivs components. Similarly the components of a
coveriant tensor of second ronk transform as

o _ L 3 ™
F%’%)' p ?\if Prg\ ¥TQ?W ) (10)




P

0)

|

and those of.t'he mlxe{fi \ten or. as

~ ) N _‘\0\

Ftss - N ﬁ.gﬂ S
F ) R i\?’ c o

: : s e B
\ ‘. 2 ;
Tor “the kronecker syﬂb\ we have’

, i
8.’5.

. 3 Ce\e’)“\}\;\ ) \Ak‘ EQC;\:)
o lP\\&) 86 | | - (12)

So the Kroneckor stol 1s a mlxed tensor of the gecond rank.

We note that matrires»of'linmr naps V "'>W are mixed tensors
of V¥ (x‘{.' W. Thus’ srmure e tflCCa give components of the elevernts
of V ? V. M 48 a souare matrix ctwrg* on v, thdn the map

M X is t;le Value of thp tonsor m (\‘\ 3 e(l 6@ ea on the
v\octor X in V °&‘ :z . L S
WY N LTI R e
M X = M ’3 e i e; Eé\x, )= xi?’ e (X’) & |
A , ‘ : I (13)
(W\ X ) /() = i

and is clearly an eleme\@ qf_ V e call this map the contdetjod

S~
of an element M of V CX’ V b‘/’ the. element X  of V (or just

contl (Stion of M by 2( 3 ,Qr in ovl"dﬂérv texts inner product of I
and. )( ). : , g o

It is clear that the Kronecker tensor . 6 [/ 0ives the

identity. map 6 of V into itgelf. The corwu_cctlon of & mixed
s . . i

tensor T of valence ) with is a tensor of valence.
. . : e B : b

(p-1 ,1—1) and is referred to as "the contvaction of T". For a mired
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R RY o R
tensor i YQ we have contractions
\

(,“BT‘}\%Z\R <O k\ — T%\/}L% - l‘tg‘z,
\.'_‘.“3\ -

. @ ,&; ‘g% : : : e : : ; . N 2 ?
- 5

which shows that contraction is prescribed with respect to a puir

of upper znd lower indices. Contraction of an arbitrary tensor Dy

another tensor, ceu be similarly effected if there are suitable
pairs of upper asnd lower indices. ThithVDe of cont:aption iz also @

referred in okrder terts es inner product of two tcnuorb.

The contraction of a mateix jV\ 6 is its trace YV\ Q
: : v Co 1 )

by the definition of contraction, it is a real number 1ndependent

PR

of the basis in V.
Suppose we have o ) % \“QR ' . of wWn | 3
DPOS ave an objec Pﬂ 4 *“l“‘?“é of unknown P

character under transformstion : of he vasis; but givén )
U—' Q / "
vector 0 (con, qv"rLcht veetor U‘ ) the et ni quantities
(\.. Q\*-"" QR f\rnl Q\ . / e . i .
LQ‘“\ (Q ™ . -ﬂh “y“)a>'trunoform as comnonents

: : I
of a tensor ot Vi luqco (\g—w )9> [Lh, ~Y>J then it would follow,

fron the transformation character of the voctor that fﬂ - th 1

N

)

IV.3: If we have a covariant (contravariant) tepsor of second rank, @&

is a tensor of valence (}{)4%‘>(Quotient Lav)

we see that under the tiansformation of basis each 1ndox trdnsiorms

linearly. Hence synmetry or antisyaunetry wlth resp: ct tb inter-

change of indices is a property that is indepepdent of the basis.

y et o — ov—h



ents

Irms 1

\\
N =C5-
\\\
Let \\.
P . -
F\-’J - N (F‘s""?m)“*‘ (F‘s“HU

A TR (15)
Vo7

one’ can express the tensor corresvondlu, to the components F oA

’1 )

=5 5W\ Fome'®@e’= Fiy eiged 7

= 5 ‘
"F\% eqoﬁg 2

where the symbol (:) is read as 'Tedge product or exterior producs

(16)

-

of vector spaces and
L ™
m S48 4
% -cA€j—

is Cdlled the generalized kronecker ES tensor of rank 4; its

(17)

tensor character folil »v'c fom the tensor character of és g
In a space of n-dimensions one can define sevcral sencralized

tensors of rank 2'™M = 2n °

&r.‘NQW_ ¢ é ﬁ%xv>chwm\cww¢u;nb¥k km
8[% \{M—— = - gM wom edd beamudalion of g, k;
o W ol slkET CasegT X\ F ke #km
Each of those can be expressed in terms of the kronecker\'&)symbol
as a detefuinant:
e oA |
8% 1%w§* gam”é;L | ‘”“‘"‘6%

Ry e géz S,

fa g} B A"‘ l/grm (18)
5 O e |
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*«s?z‘f.

The tensor character of qenofilized %S is also obhvious.

Given an arbitrary covariant (cont-avariant) tensor one can
decompbse it into tensors cf different synuctry type by taking
suitable linccr combinetions as we did for & se:ond-ﬁank_tensor.
Tor §n mMth rank quariant tensor, the completely antisymmetric

part is given by the formula which sensralized (16):

F S L ghtm

L dnd ™ 4 i Tl k(9
The squure bracket dénbtcs:that it ig ahtisymmetric with.respmot
to the interchanse of any two indices. "The vector space of anti-

symnetric tensors is an important subspace of tensor space. To

furthey clarify it in the spirit of generalizing (16), we can ' E
write the tenscr as ’ e , »ﬁ

=Ty, ﬁwj CRETE eq‘@ @_e%f RN |

Hh

wheye

N Yo d%\ \ B dwm R
e \) s — — !
@e @e fYnL &‘Q\\“ b\wﬁ

= o = , ==
ey ® ey - @:ew L AW E BE - ® G
('m‘\’nu ;_ _ ® (C\E—I l\\?’2_> €m+® - ® e:n

- -~ 4
e ----0€e ~B

(21)

(a2)




Thus the subspace \!Nn. is dotermined completely (within a scular

factor) by an m-vector or a (m-n) form and convergely. In fact

the number of components of a m-vector is same as that of an (m-n)

#  form. Since
2 I M \a‘ - R

L L™ v (em)L T Mem - " (23)

Geometrical iy m-dinensional surfnces in an n-dimensional snace

correspond to the componznts of an m-vector.
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V. Buyclidean and Pseudo-Euclidean Snace

L)
. L s e A S A MR %

V,1l. Let V be a vector snace, we can define a scalar

nroduct (dot product) in V as o mawing of V xV —>K with

the following jj'z"Qp erties

e o - oy
XY =9 X Xe(0g¥b3 )-ax g +bx" 3 (V.1)
. ) -y
From these also follows (‘Q. X-\-L‘é) g = O )\ g + b ‘3% '
We note narcnthatically that lf X ‘é e s Gl ket P

implies that KX=0 then the sckl ar product is called non-~

degenerate, As we shall see this is always so for Zuclidean spaces,

For Pseudo-Euclidecan spaces the degenerate case arises,
-~ L
t Let e'a be '° basis in V, define the set of scalars
| » o
| % - . £ B (Va2
z in — ST 3 —
! — /)
| Cors ider the change in basis @, = R € 4 then
Ty = A SRR G, -
AN A i AR 2 (Ve3)
this shows that the set of scalars % " are commonents of a co~ @

veriant tensor of the second rank (compare eqne IV.10): |

—> -‘ ij
| % %”k 6,1@ A (7.4)

! We shall now show that using this tensor one can establish a natural
isomorphism between V and V¥ in the sense that for every element of ]
V (or one of its tensor product spaces) there is an exact element in
V* (or its tensor product space) and vice-versa, For this reason

! the tensor 3 3 is called the fundamental tensor.

L

B 55058 ey ==
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Recall that if F 1is an elenent of V@ y and -f an ele~

ment of V* , then the man

. - -
%L-F):(w‘\gﬁ‘“)f—y (V.5)

T defines a unique element of V, Similorly one may consider the map
V*‘@ V*"“*‘%’V*
1 If u UQ € . is an element of V then clearly

_ 1 i -
= ‘(%“6 u’é) e is an element of \/ :
Let us denote the combonents of (/L in the basis C 1 by \,\q 5
. T
E 3 U" \ALﬁ— 5 Uq — %IQ u_ (V,6)
Let %1% be comnonents of the matrix which is inverse of the

matrix with comnonents 06 ‘."3 s then

D 4 = o R o

From (V.7) the tensor character of the components % k is obvious

e S T s i e e

s e Ao et
e

r U= '\S‘{e is an elenent of \f’* then the corresponding ele-~

ment of \/ is given by

= (%‘“U‘)ew 0= g '

1 (V.8)

In this manner % can be used to define a natural isomorphism
‘l ", 1. (al A5} Q Sl . J 3 ) . .
i between tensor spaces of the sjgme Cimension, -We note that if €y

i
denotes the linear form correshonding to f,i in V and if we de-

fine the scelar nroduct in V* by

?
g

—~=

¢

(V.9)

A,

1°
64 QQ‘: 4’6"6 5 @

=47
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T "
The “TowaelL % e, @ e_?.! is called the contravariant
14 :

* fundamentel tensor.

| V.2, Given an n dimensional (Pseudo) Buclidean space it
3

is always wnossible to choose!.a bagis Q,L such that
e/‘\ .Q.‘- T’Y\\IX =] Ar\ \Tﬂ | 6 (V.lO)
* — - . ‘, B A e
| =0 0 1%} n
Z_’Y\,i,t ~ A& o is calleC the signature of \),W. @f the total
1 ' : ~
number n of <the comj.go%ents ,Yl ’1’13 AL LA'\—ﬂ)aLe + | and = {'Y%-/S)

are =1, If \/,5\ - fY\, the basis-is orthonormal s cet the
ordinafy Euclicean ssace, If A< M, 'the space is c'alL%éd
pseudo-Euclidean of signature A . The syﬁlfé‘Lce in Newtonlan mechanics
is Euclidenn and snace-time of Npc,cz_al relatlv:l.ty is nseuao-ﬁ.ncll-
dean of signature + 2, ’

|
Voo x‘i"Si?111ple basis in Buclidean space may be chosen as -

Uohole et ot o e oy
v %%"\\~»~’1\_

This basis is called 'Fhe canonical basis. If the saace is not V)seudo-; '

(V.11)

Buclidean then in thls basis the dlotll’lCthl’l be L,ween \/ and V*'
~> o
complep'ely cllsappears.- For every vector X in a Euclidean Space,

the' norm of the vector is defined as an element of R y

('v

UGt - e, e

The notion of. inner *)roauct ca.n be @cs

l-’~

ly defined by means of the
fornula S

D T S S e



;
i

It follows from the Schwarz inequality, LXJ%)L < \X\L \\6 \"L,tkd.
. >

( X,4)
< +\.
W) W4 \

and is a measure of the angle between two vectors and -

If we put Lor & = (x,g) / , then

—\ =

(V.14)

SRS O&Je,é) )\ \X\ oty | (739

where 0<'6 denotes the 'angle! between X anc 60 and(,&o‘)(a .

are the @tirection cosines in this basise If )< )/ are two

vectors with comnonents }( 3 %~ in the canonlca.l basis, then

<E .\ i : 5.
X‘Q:\X—-‘a \ = 2 (X’i“\a’i) \ (V.16)
4

and is called squarce of the distance bctween two vectors. We note
that there is a whole class of basis related to tle canonical basis
for which the norm (V,12) and square of the distance (V.16) are
given by the same formulas as above, The trensformation matrices
connecting these basis have the »roperty that

AT KV, NAT =) (AT homepond of Y7217
Such matrices are called orthogonal, hence the transformations
which leave the eguations (V.12), (V.18) unchanged as also the
corresponding class of basils are called orthogonal, These trans-
formations fo%?é groun calleG¢ the orthogonal group O(n). The

subgroup of 0(w) with ded A =+) is denoted by 80(n).
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V.4, For a Euclidean space, in the canonical ba.s:Ls, the matrices
S + . 5 5 \ ’b :
corresnoncing to the components of N anc % are unit
matrices, But if the snace is pseudo-Buclidean then their compo-

nents in the canonical basis, though again identical to each other

are now given by

)= (Mag)=

‘6 =t 1 (V.18)

A
Emn
For the norm of the vector we now write
24 ‘o
; 2 -
i\X\ = Z.:—\ 66 x'} (V.124)
=

From the definition of the fundamental tensor and the 'distance

formula! for vectors (v.12, V,16), we see that in general these

may be written as
'L_ & Y « ~
S SR ’\ (\ () — A ’a
SX\A —-”’\,w '(X -9 > (X 6 ) ‘ (V.16a)

Faor this reason the tensor 'Y\ 'Y) C e @ 66 also called the
e 'L

Metric Tensor. If x are components of a contravariant vector.
then for . covariant vector the COlll‘)O'lOntu are X,a -% NP X E .

for the pseudo-Euclidean snace Jhe)go are { 6(5) X'\j , in this
canonical basis, é i £
O prim o] (C“‘,ﬂ

.

d
i
s




| planes,

The transformations which leave (¥,16A) unchanged in form

£
(O]

civen by the matrices [\ which satisfy

(V.19%

N
Lo ALY ane =Nt M AR
(({r) 4 }\3 ,O’“‘Q I\Qg [\ ’?lewa /\L 7\\(%}

We consider the particular case when space is of the Lorentz

tyne g eé — —\ for ;a:\J~-~J7\—\med + | for ’Sz’n. The

transformations are of the following types

(a) Ordinary rotations R

]
(oS SW\O( 0 -~ - ogo
S\mog Lpgo( i }
e .~— - -0 \ (VOZO)
g P
0 - - - - T \o\ié_
° T ot o)L .

This matrix represents a rotation in 1-2 plane, There are in all

-—-(7\-\3 (M=~2) such matrices giving rotations 1n)( X (& Xu.-.,\( X‘

These matrices are orthogonal :.nd so are their products.
" Hence the set of all these matrices and their products form a
*

group - the subgroup of orthogonal groun in O’l-—l) dimensions °

SO ['Y\"D where the symbol § denotes that the determinant of

these matrices is =\



~ B4

1

(b) Hyperbolic Rotations 51%_
— S 2
22 S (oG © ~ — - = ~Ojswie

‘n ~

S~

—— : o
= T 1
!
)
\

~
C o--g_.y\.j_\'ot
b léq‘-’ e
(S WB o ~ ~ - - -~ - B fethe]
This matrix represents a hynerbolic rotaticn in ]—~2_ plane, There

are (’h.—-\) such hyperbholic rotations in the |-N,2-M, --sh-Yy-n
of the same form (rotice *hat M\"»’k is a symmetric matrix) as a
pure hyperbolic rotation »ut also involves ordinary rotations,
Hence hyperbolic rotaticis do no* ferm a group: though together
with ordinary rotations @, they Go form a group, the promer
Lorentz group in n dinmencsions

We note that the mect zenercl matrix [\ involving both
ordinary and hyperbolic rotations may be written as

_— /\; \ N
I\ —“ \F\C\ \“\ ‘.3:3!/\\3 (V.22)

°

. planes, The products of two such matrices in different planes is notj

o . 7 - ;
To show this consider the exprossion ‘f—'\& I\RB.’ it is of the formg

o

1"" ;

-

s
l
l

>

|

Kt

ok

i T

{ T

}‘ o " \ 1

(;) o o _o‘ \_s
L] (V.23)
|

O ~ — ~.0

L
! :

|

’

o~y E .
3L e e e e v st S .}

«.w.\_
.
1~

N
P

N D
>

o e R e e W

L S
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For a suitable choice of (ﬂ\~\) X[N\—{) orthogonal ~atrices
a and b we can put

aR, = ( /\° b) 1= (037-" - 01%50-0) s

:; 02:_‘
1 ke /\o |

k.
b=

°° (V.24)
y 00 - ~ -~ .. """r\oo""‘ oo A :
| T !
4 B
ot & to obtain }\\Q as a hynerbolic rotation in the \(—71 nlane,
r (¢) Discrete transformations
space reflection
T, = -~ o
- -~ ~ 2
A
!
. SRR (V.25)
L ~ . \ !
-ql i
AN i
N /
_ ol |
Time reversal
I‘ . el = —~ "3‘ ;
= ! 4 s
I S _ 1
. ‘ - l I
é? - _— h -_>‘.t';;..‘c \ g : (V026)
D = = — -~ — \,.-*'1- é
g - = - — q
OISR |

Space~time inversion —-

— (V. 27)
LST _— T z 2
With these defining matrices we cuan now classify the transformations

leaving (V.12A) unchanged when there is a Lorentz signature +(n-2):
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%‘ _
L, (vomeformTm L) dekh=t) .5

ad
& _ &
L_ —:EsL* Chjk:«\ °3+‘ _
(N \» _ ? ""'T 08)
Ly = Fsr Ly dedN=xt AN <=V

i v :
! DL e o det o=l NoS-]
i ¢
b Except for \f? ’ the rest of the scts do not form a groun. %
é But some of their combination do form groups and may be classified i
t as under CE‘; %‘ﬁ' Ao Aot A)
) Lorentz group Symbol Characterization {;
type @

Restricted AY\ o s v:
(connected) L_‘_ /\ o l‘_-, c\?j A" \ 5) €>D I‘

, % ﬁ\ /T\ o ,:
Orthochronous Lo:‘:. L UI = )__ U L?: A . >/ ] (V,29):
OYtkochcvous /\\ - | ‘

L,> \-+UI LMN & >0

Fickey L =N UT =Y, A= P

In the above tle Dynool U Qenotes the union of sets, a

V.5, If we substitute the series expression for iy and g
ﬂfﬁ Lo X in equation(V,20) we see on close examination that one %

can rewritte it as

¢ R = exP o X SQ‘E




where the matrix
S\f”a@\l\ = (V.31)
0%y~
3) f; Alternately we can also write

®\11 eX P 3\ = L\z} 3 (V.32)

1 )
a B Lo o X, 2 — : (V.32)
1 | | ™
E This latter form of ‘Q\1~ isre certain sense more general 1n
?ﬁ that one can use it for function of the coordinate vector also.

For the particular case when §2\7 acts on a coordinate vector we
get the expression (V,20-31)., In general the rotation transforma-

tion in a kri nlane is given by

®\RQ (b‘) — E»X\P EL@ }"‘\Q Q} .

if } 3 _22_. (Ve323)
1 Lo = Xyg 0¢ — Xy Ok R= Xk

In the case of 3-dimensional Buvlidean snace, the most general

=)

rotation may be expressed in terms of three BEuler angles,
Kl,pv) = %5\(’(\ \?3 (@B\Q% (?5) : (V.34)

0)




vhere, €.%.
&%; Ry =exp (« L%) ) :
. LX,L%,\—%_ cre Cefinec by
L\Q_‘: X\é'é"’xabi /{J'S.)\Q C\aw,c,g-:_xj\é)%/ (V.35)
For a msure Lorentz transiormation Lfy\ = 0y
?’L\Rt@) =R Y‘\y,\) Lo xa
- [ )
M= X de + 10Xy ObEHE |7

L am M2 s
k and k}\callod grenerators of the transformations and

) L > .
When acting en the coordinate space L is possible

(V,36)

are 6 in nuaber,

to express L\Q and M\Q as L‘.xq matrices,
If we had mn n-G mensional space there will be ‘!;:'71(.“'"‘)

generators which ccn be looleG unon as components of an antisymmetric

natrix, The sisnificance of this is that in n-dimensional space o

there are exactly ..;:'n(fn-—i) two-Cimensional surfaces,

Under a general Lorentvz transformation the basis transform as

-->/ s

= (V.2%)
—

wvhere & stands for the colmn vector of base vectors, Differen-

tia%lng with resnect to an arbitrary parameter we get

=5

de AN oAk 2

e o E_:;:: (_LI\) € (V,38)
c&&’%‘m A N [\-—y ' (V,39)
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A

ot -
he motrix (:(){> is called the Carten matriii If LAqi 7 denote

the compon:znts of the Carton matrix C, then Jor the Euclidean
snace, Bince metrices [\ are orthogonal, we zét 03.3—-..u§@ :
oA ’ - ~ <o (e “~ =i P , & "L T q—
For o wnseuto-Buclidean space if 71\, are comsonents of the metric
13

tensor, then

'V(\ LQR' "“‘LJ\) = = Ll

1R™ 4 14 31 (V.40)
The equation (V,23) arc .called the {“(eﬂét equations for an
orthogonal frame., The Cartan matrixz has the following important

properties

CRNY= R C(N)  , Ra scdan
CNF) =N+ Ne() N o

These are of considerable importance in dirfferential geometry.

V,G.' We have seen that seusre of a vector takesa particularly simple
form in the canonically adomted basis., All these basis are related
to each other by orthogonal or pscudo orthogonal transfqrmation
which form the zroun ()(jq.yg >/S). The corresponding co-ordinates
are called cartvesiane If we udmit transformations of the general
linear groun, i.e. when transfermation matrix has no particular
restriction on it, then the matrix corresponding to Y\’L\({ is no
longer diagonal 2nd we denote 1t by e§r1 . Here one has to
clearly distinguish bDetween the basis K} and its dyal {ek}

.

Undlilke Convesian eo-prdinates maieh ore (hgouﬁo) orthogonal, the

LY.

cooréinctes in this case one in gencrol oblique to each other in



e T ST
e iR s

oL

the nictorial sense.

One can further gencrelise the transformations such that the

tronsforning matrix itself cepends -or the coordinates, If this

case one can not sneal of a coordinate vector and one has to con-

. n

r instead & cooriinete Lifferential, i.e. we define & yeneral

h.:

sice

coordinc.te tronsformation as a Hoint transformation

)
14
‘ A 'L( \ 2 "
X’ = X, X5, ~~--1X (7,42
Wwhere -f are assumel to be ¢ifferentisble ~———— gsufficient

nunber of times (a%t leust four fold d¢ifferentiable). The Jacobian
matrix at ?o s 1in neighborhood of which the coordinate trons-

oL

fornction is G“TZS; ced is assimed to be non-sins gulaxr s

M@“ 4 (X x)] =+ 0 _

det

o el

bxﬂ

In This-case “the:coordinate diflerentials transform linearly and

homogeneously .

Ao ax!t s A ve
= X3 = b, dX
a X S 8 Noc a0y

and are said o form comnonents of a contraveriant vector (compare

eqii. I1Z.15), Similariy

2 DAR .
S T

S |

DX axd  OXR

X k. (V,45)




transform as components of a covariant vector.
Here it is useful to make a caubtionary remark that the co-
ordinate differentials or component of the gradient operator do
not have any intrinsic meaning. It turns out that one has to
J v
interpret these in the sense e“-__.>> C\X;I. and ?;l-—’;» 3/5)(‘1
Consider a curve T (‘t) in R’Y\ , where ‘t is a parameder along
the curve, In terms of coordinates in ’R"f\ it is given by the
function {.O(‘Lt))x’-({.))“ --‘x"?[t))) which we nssume to be
differentiable, then
A
A AXe 3 £«
;IE# o C% = BX’6

Through a noint Fo we can have an infinity of such curves and

(V.46)

A
cs)('a )A‘t‘ are the usual components of the tangent vector to tue
~ ©
curve., The vector components O / }X?’ then given the busis of
the tangent vector space ‘\, at Fo . It is then natural to
]

take AX‘B as components in ‘the cotangent space which is dual

tO g\bo . N .
; o - : Gy ¢

It is possible to justify the ildentification € '—> cb( ’

e,t = b/b){l we have just I‘flf'ﬂ.e)ll’l a nezative sense which

brings out the fact that the usual vector snace basis can not be

aken over us such and has to be reintersreted. By the rules of

calculus, the components of a tan:2nv vector =t )EO

transform as

(G Ry i \/fS(XB) (7.47)



On differentiation we obtain

9}__@_‘ 24 [c\vk+bx‘<a‘a \xQ FJ

At T XK oy axtaxP AT

(V,48)

Bk sre the cortecsian coordinates, it is “clear that in transie-

tion to a sencral coordinate system the derivative of a vector does

not transform uas a vector, In the canonical hasis
~——-> - ,
o > L ] . ' . die O
vector is given by >/ - \A'E ea . , since @_D,} are constants,

the coorcinate

&4 = dys 2, “dyk(ﬁl (,aB—c\x\Q e, .9

Can one considep e 3 6 E%G/bxk as commonents of the new
o £
basis 2 To answer this we note that under the generel change of
{
coordinates (say from cartesian to nolar coordinates (\3 )‘3 =5 9

2 T 57 : s
X\;YJ)(—;&) the releation \é ;.\8'3 e‘)é has no meening, it is
*
however still nossible to interpret ﬁR:B\é’b [BX\Q as

24

components of a vector, It is cleasr that e\g are 111 genera
dxk
P
0 A ’eh
We = 10 reicr to {_e\q\ :g as frame

vectors, An arbitrary contvoveriant vector at %c can be written

(¢ifferentiable) functions of coordinatesz, Since c\‘g@ an
are the basis in different coordinate sysceus the functions C

prescribe the coorinate Ir

=
down as a linear combination of its comnonents with X e\‘i as

coefficients which preseribe the coordinate frume, This set of
»-» 5
vectors EY{ is some times referred to as n-bien (Vierbiea

ol

5 e . : —> . w - "
for 4 dimensions). Since {6 \Q‘(S are functicns of coordinates.




to point and are therefore sirictly speal-
N\ vectors {ehlg":c sresent 1) cuc.rm.tles

in vhis Jorm of a metrix with components € k

By the methol we obtilned these (they are linearly izqcepemellt at
)f Y it s elasr Yot the matris 6“ \2 is nonsin;ulsr. One

cen therefore ¢efine the reciprocal vectors ¥ with components

@Q )o\ such that _ Q
eQa\ e’ k — >

We note that for &n «obiv
—é.?\c at f’ s the conditions

oL " R— Ok e ¢ =° (3¢ = B/BXO (V.51)

are the integrability conditions of the system

(I.JU)

rary set of linearly indenencent vecsors

%o\ (,X\') XZ‘--'X“\J» ' Ve 52)

We shall see that the conditio

B
—
»r:.:
-
[6)]
l_—l
A
(@]
jeb}
S
=
3
= O
=
]
C
(¢
(0}
G
(@)
-~
O
o)
o
!

ditions to be fulfilled For = Riemannian sopace,.

V.7. Since the {dxk} corres-ont to the bosis al ‘70 in the
cotangent shace, the co-vectors (covarimnt vectnrs)

o one forus %

= -FQAXQ (V.52
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If the comonents of a covariant vector _F‘ oe of the form
‘g* ra = B{ }BX'O , then (A is o complete differential. In
section (IV.2) we ha¢ introduced the concest of exterior product
We zeneralize this to the case of exterior differential forms on

Sl 42 = 3 35 o m ~ a
an n~dimensilonzl nseudo-Euclidean space. If %

Vo Ve

comnletely antisymaetric tensor field of the \6\\'\ rank (\Q ('\/\}
then a ky\k_ differential form called L<~Lorm is defined by

R =~ w% }LX - XM ,c\xl?n@AX%@w@dxg&
S

ore cifer ena,lable functions of )<\ci then the ~

If WA .
N A v
formal 'giterior ifferential' of (O D) 15 a R\~ form given by

x> 2~ x ™) A L
AR Z 2%yt mdle - - @AXR
D XL
It follows from this definition that

ddntkd — _ad nk =g,
U

This is called Poinccres foruula, it is basis to the Elclidean geo~-

netry and seneralizes to the Riemannien geomctry. An immortant

nolnt however is that one can use this method as a formal calculus;

the calculus of éifferential Forms,.

In narticuler for the coordinate differential we nust have

AAX = 2i5 At @dx®s (3 Ce-dpee) dnldnk B

=e

(v.55 B
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since the term in narenthesis is jus?t
the system (V,E1). This
seoretry.
Ve3s Now consicder a vector in
_T-? s—— » N
V= €, 4% = e\
6 aavae 6
A N
vhere NY‘Q~:~%‘Q O .
' 1

Tals case by eqi.
Ry — |\
"= 3

’

integrability condition for

condition also characierises -

We congicder
=

CWiy) .
Yo R4

~eneral coordinates

the case when

fr k=

o Y=g

o *\v—"f‘&-:\:’b

is then

=
(o

nossible To &

The commonents czlled the

ﬁé‘ are
—,
U3

torthogonal basis

in the basis
are connected

%ﬁf

thoszonal curvilinear!

ZobR: Eions, denose the cart

generalized 'ort

with nroperty (V.57 ) somiines called), th

“

and (V.57 <that

afine (no sun over

waich 1s an orthogonal bosise.

to cach

_L

coordinates

)

physicel comnonents of
Dif

other by orithogonal

ferent

aienanniar

n by

(V.56)

2 vecsor

t0 wn.» -

n coordinates and Xq‘ the

{as o¥e coordinates

en if fsllows from (V.”9)



A \= [ XA \~ &
('—djﬁz\% ""'—’) (V. 60)

In particular the physical cmﬁvonen+s of the 'coordinate

differentisls (Pfaffiang' ore C\@/)':: \\/?Cé‘x

13

(no sum over‘é)

C.>o

In the followingz table we swimarize Sole of the well-lnown curvi-

L5

1inear orthogonal coordinate syscems in three dimensions
o

Curvilinear orihosoral| C\Q‘

‘ | ‘QQTL A3
%Oor%l.lu ue SJ vew as & ' 3
mction of cartesiscn \
c:)o‘"( inates | = h\/l)(\ - L\Z_C\X - L\QC\X

o e e vt Sae e Gie [ im0 B P S e B ey w Gy e P S A2 S S B

- e . 3s ae mw e mm w e Grd W G G Sa N tee Se S e Sl G S SR S e

1, Cartesian v { 'ci
= 4 X c
%‘3\31‘)\33: X)‘})% e ‘6 %
2. Cylindrical
:‘[ X*A 3 d§ QC},C.P d%
PoAun' Bx y D |

7]

)

2, Spherical Poluw ' | i
Y= {x-x p*r32 AN Y ds  |Yewodep
6= w\flww«f«-

4., Parabolic
v J /\

——

Y3 fm | {Tz
51 vATY M A C{
po g ans 1| da | ap [P

o = \{ /\q‘(?"ﬂ

7L

e S e S S 0 W B e e S e e (B S A 2 o e e B S S R S S S P e R SRR
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Just as different orthogonal basis are connected via orm_o“onal

transformations the various nhysical components of 'coordlna‘:,e

differentials (Pfaffians) ' are also similarly connected

dQ¥ = hydx® = K3, Jy® i

For the cartesian coordinates the matrix A is identity matrix,

For the other three cases listed above it is riven by

réoocﬂ S«fv\q o , |She e SMmO e log
+ - -
—Gmep  [pacp O (0B (socp @r® Gy —%mB
& 0 - $m
_ L = (vo® O
‘ \ (V.62)
(ool Gmp ol -5
~ & ’ b &
Bocp YmZ 99 Sz leo | .
\
— Y@ Lo P O
The elements of these matrices arc Tt the components of the secalar
T = .
product matrix W ; ()(). € according to the schenme
5

u ) L (u (, ) O
2 x re H X . V. )
The surface tensdr for 3 —(11116 nsional SHbS')aCG has '")hy“ ical!' con=-

ponents L\{'/U Ll(h—) AX @ "“C‘S h and the
v»:lue element is \qk )\n[’h)h&) C\X @C\X @ = c\ v’ﬂ(Q' Since



in thvyee dimensions & COR hletely antisymmetric tensor has just
‘ R0 .
one component tie valuﬁ slenent may be written as
A\/ \A\L\ \\3 éX AX AY where we have omitted the tensor product
sign, Similarly the 'suriace vector'! 1s§‘ - '6
0" m\nck) dx Cm

with IS,\P‘) L cyclie.

V.9, In a Fucl idean ceometry the distance bo tween LtWo OOlfl‘bS

on a crave 1is by <"<,fir>ition ziven by integrating c\ == ] 6\\3 . C\\a

where "6 eoq % ‘6 L ,re the cartesian coordinates
also
and Q‘O’L is the caponicol basis, It may be written as

—>

As = '(ié;t-fé'o;& c\f&ﬂé =" C\\éqa\aé . (V.69)

Under a general coordinate tr ansformation \6 — X’l {- (13 ""3 ))

we get

( 23" 3%% )aXQc\xm

a1y ,"}f 5\Q 5)\“”‘

‘WL%Q’YYL C\XQ‘ C\XM

(V.65)

where %Q are comnonents of this netric tensor
L

= L sud
BT L Nk e

4



o iy G

i n
™ L) Ax™ :

and &XQC\)( actually mean ARk (X) AR , but since there
is no possibility of coniision we shall onil tie tensor product

3 s =7 . T | —— . ; 'l.:-a
ailgn. For a Euclidean snace eo)\ ' Qo;ﬁ = g t'() [: ”«’(, el

s *

0 Tor 1 =% "5-.3 + but in the pseudo-Buclidean space '71{, =11

.\ ' Gy |} a
be a= 4 and o for =k ® . The contravariant components of

the metric tensov are

oo bt e 2x

) (V 6’?)

s v U A
1 where ood
. ~ . - ‘}‘ § 0 A o Q . i
4 (v\r\ ’B‘ i oo Al o A (2"\' ‘\4 ’\(.-\ - 2
4 e RS < N @ WA ; Ve a .
E 0 £ ) S 4 W \‘:} 8 \Q__ (V. 67&)
The equation fur o s*raignh line in cartesian coordinate is
§ : 1V b
b . 4 LT e IR T R
Q~d .
Jae o | (V. 68)

We would like to fuihc ik correcponding cguation in general co-

%

oriiraves, Under the cirnos af coordincices a contravariant tensor

S

transforns as _
4 .
-~ L N
4d  — oOgv A S
\/ {“\3)” == (V.69)
DX |

L]
Let 3/& be the cartesiaen coordinutes, then
LY

AV ) Y a\jﬁi; ,, ‘al—t‘;’é axt k
- e S\ (X))

d & Toax® o € ik SR A4S

a\é’?} [C"\V‘.x)\ Bx‘({ az\é\’h \ v b n (V,70)
Sds T awm YRR A8

6)
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At this noint it is convenient to infroduce some new symbols,

a straight forworc coa~utotion shows thot
Q‘M) 'Y\] e \ ¢ S (6 )
E By (3 ”‘“‘*‘\/@"%“Q*“m Lo, m (V,71)

::-'N\%'% D ﬂ\\gi E>Q;6'ﬂﬁ\g/& ) : .;

wvhere etec, and

(éavn,vx:;B”nfgtvm: g%tam‘Bqup ’

) n
%lk }Jﬁ %k% Mw___‘g'—‘-axk 2" 4 . (7, 72)

¥Y™ A xLIX™

The symbols [:qu\‘wl] {qu\} ave called Christoffel symbols
of the first and szcond v resnectively, They are both symmetric
with respect to the ingterciacnge of indices Q)TW o« Under a change
IS 1 2 PT R
of tne coordinctes )(2_-:>>( :F—- Lx\)x'lh,_‘,x’\),;t is
straightforwvard to
! — e N
hk} et {m,}*ax =
—— 7 . o —
™ X 3 0 SxY DAL dIK™

From this it is clear thaot the Christoffel symbols core not tensors,

¢ wop Tt
HOY Cile b

’ (V.72)

but can be made to vanish in suitable coorcdinate system (a

o

certesian systen Tor Buclidean sp:ce), In this notation cgne (V.70)

read
AV ¥ 249 VE R dx?
& 8): a\i\e [C\ 1 l'mETé‘ Vo)

5_3& Ed_ VR k dx 8 v’m( ;g)] i | |
a*gk e ' |
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From this ecuation we can drzw several conclusions,

(L) If we denote the expressions in the square brackets

‘chx) and Vi)

by then we see that under the coordinate
| as | . ds ' -
[ o XXt \
i V% 0 _ 2X® DV L0 (V. 71)
aS X%+ A4S

Since VR are components of a wector iicld cili S8 1s the Cx.ista,r*;ce
parameter along a curve, we coll

‘.DV*‘ M A VR _*_é R ‘i Cjﬁ \/WL

I e R e (7. 72

as the absolute deriv:tive of \/\Q ant transforis as a contra-

veriant vector. The generzliz~tion of ithe cf;;ia*?:ion of a straight
;; 7 linc, coan, (V.68) in generelized coordinates is then given by
d x’\ bt c;}X\q' dXQ C\X% *
( - L ™ =0 Gcoer)
e ds

ond b called Al ev,\,i\m %wacyla‘a\rgum /. "
B) One can rewrite the absolute derivative as
' R k d x
?\g = BV e
W (V. 72)
CokddE R ek R ? o

Uy = D, ks 2R/l
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= (= 2 o A
The set of Y\ guenties Vk, 0 tronsform as components of mixed
K}

tensor of second ranl and is cclled covariant derivative of a

contravariant vector, Similarly one finds for the covariant deri-

vative of a covariant vector

o
AQ\,\'{,: tht":—- \/R)Q’ { Q_kg Vm . (V.74)

Covariant derivatives of higher ranit Tensor, can also be . written

down by direct' computations thus c. 3.
Mmh o MmN mn —\w kM anw ok
AV =V 3L Vo e a RQ,V + 1 ke v
™ mo M m \k _TR
BV =V me =\, it ka\) n P’n

(V.75)
= ~ .k _ [k
AQ\/’Wﬂ VM%;Q - v'm'n, ["F'mz Vk'n r e mek
where we have nut P‘W\IL—E {% Q’E for convenience,

V.10. Using the equetion (V.74 and 75) we want to evaluate

the expression

R R R |
V 3l;m” \/ 3m53:“"’?\ "§>’m€ \/F, (V,79)

Direct substitution ylolfu,

Rt bl ™ Fu,m ke rm)c“"P P'm% P'Mn Lp

\"lk 1N . |
nLe ! mip (V.77

=g (ngp *
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where the re fm_] stands for antisymmetrization |

B@ ]’ Bzrﬁvx%"bm ek etc, Since left hand side

of (V.76) is a difference of two tensors of the same type (mixed of

rank three) it is also a tensor, The right hand side is there-

fore ulso a ton.aor. By quotient rule it follows that since Vh

are components of a vector, the set of gquantities &R \a’YY\& are

components of a fourth rank tensor. The tensor R\Q 1is
pme

called the Riemann-Christoffel curvature tensor, If we lower one

of 1ts indices, we get

Rivide= 24 DRohI-3y Tido kT4 Thked 4% ]
""D\»;c) ) cﬂ {,{L }
(V.73)

=500 T dd ey SRIRINIERRTS By
'*6 (E"'@amj[,\«ka@ [’Lk}ﬂmjl\a’zJQ;D

It is casy to see that it has the following symmetry properties

Ryige™ Ringi ™ Riniysr = °
Rnige ¥ Rk s = Rui sk =0
Rnidk = R4k > Rhise *RyudkitRigid=o

The first three conditions tell us that the Riemann tensor is egui-

(V. 79)

valent to a symmetric tensor of the second rank in A:.}_'n(n—-!)

dimensions, Hence it's components are -:2\-_6\ Ld-\-—D in number,



gy
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From this one must subtraoct the number of conditions due to the
fourth identity. Sirce thoe last three indices are cyclically
symmetrized in this cquation, it is equivalent to a complete
antisymmetric tensor of the dourth rank whichk"as CQ) independent
components, Hence the number of algebraically independent comno=-

nents of the Riemann tensor are

L]

Ly ime) - () = 5 mne- 1)

V2 (V.80)

In addition to the algebraic identities discussed above one
can show by straightforward computation that the Riemann tensor

also satisfies. the 10170w1ng differential identities

ka, R«kma*ﬁwah Seiceiecd) (V.81)

h
Rwh " R ﬁ’mmk—\—R s 4 +RR cims ] o
 (Veblem) - |

At this point it is useful to note that it follows from the
definition of a covariant cerivative and the Cristoffel symbol of
the second kind that the covariant cerivative of the metric tensor

vanishes identically

(3 . — ¢8Q/% e -
ARy ’ 3R (V.83) ‘
We shallﬁghe properties (V,31-83) to construct an identity for a 4

secont rank tensor which is of considerable importance in the theory
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of general relativity, Relézring to (V,77) and contracting

on R am M e geb

Roye= D Pl Myt Tl he Tk Ty
:B\meﬁ—éﬁtﬁ?ﬁg(‘{‘gm d T -89

whers %?—M[%fﬁlﬂdr\ikfég_ Wy G . The-

R\:Q © 1s a symmetric tensor of the second rank and is called

the Ric€&i tensor, We note that

Returning to (V.81) and contracting on hand M e get

\\ —— [} . ’ .
R A kyk Rl Cask]  onmultiplying throughout by «3'a\<
and using (V.83) we obtaisn

: h '
it (R 4R $3),,20, o

where we have put P\ = %m\e R,\k (scalar curvature), and (‘rké

are components of the Einstein tensor
W _ h l h
C‘:‘ AN — R A = R % )
[ ¢ 2
The entire analysis of the detailed properties of the Riemann tensor

has a glaring draw back, It is based on the }nitial assumntion
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that the space is (pseudo-) Euclidean, For such a space we have

seen that it is possible to choose a basis such that %VQ are

constants everywhere and thercfore the Riemann tensor vanishes

identically., Conversely if the Riemann tensor vanishes, then

Z;' e ') {':: and the covariant derivatives 'j
Q'BAR bebj)vr=o0 ’ 3

comiute as one would expect in a Euclidean space, Hence the vanish-
ing of the Riemann tensor is necessary and sufficient condition
for the space to be (nscudo) Euclidean or Flat,

We emphasise that the various formulas obtained feor the ' @
absolute and covariant derivatives and for the Riemann tensor con-
tinue to be valid for an arbitrary space to which is a@signed a

"twice covariant metric tensor field % f% so as to progtide a

measure of the Pythagorean Gistance jaccording to the eqn. (V.65)3

such 2 snace 1s called a Riemannian space,
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VI, Gene,aLL“ ion of Buclidean Structure

B -

VI.1 Supposec we ere given a general space can one do things

on it as we did ip tnc case of a Buclidean space? Recall that

if we have an chstract vector space \qu. one may translate it
into KW\ or R’VL by the manning v ._;,R 3 then since R“
has somc very natural properties fomiliar to us we could do many

things. ;n f et in this case because of the linear structure of

a vector space we ené up with a Euclidean space. Similarly if

we have an abstracy group G one makes a homomorni map of (;:
into another groun or a linear snmace H (many to one map from

C} to H such that not every element of H is necessarily
an imege of G} ). The homomorphic image then gives the
Tepie ~tion of 6% » It is clear from these examples taat
onc must nrescribe some such map for our general space,
You in case of the number space R, if a < b  are two
nuabers, we dcfine an open interval as a € x <b . If we suit-

ably device the numoer svace into

denumerable set of imtervals

o

then any open set of R (including R and the empty set)ucan be
xpressed as a union of such intervals. The set of all the open
intervals and their unions is said to provide the natural topology
of R and the basic set of open intervals considered gives the

base of the tonology. OGne con now discuss the questions of
continuity etc, in terus of open’sets. An immortant nronerty

of the real line is thut if we define the neligzhbourhood of 3

point as an open set then for two distinc

c-h
s
o
(]
o

1 - .
here sxist
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neighbourhoots wiose intersoction is enpty (Houscorf topology) .
We assume o1l the ¢ nroperties for our general space S and
; . / v 3 _ et e o
call it a topological sSpace /S (this is not & defenition)
DEFENITION, If there cxzists a nomeonorniic manping (one to one
map such that the mapping ant 1its inverse are botl continuous)
S
of a neighbourhood U (_") of every »oint 3? of the

tonological snace }_S" into a neighbourhood V of a point P

in a Buclidean space R’ﬂ , then }_S is called a manifold
and Y\ is the dimension of ’S“ (Recall here that a linear

manifold is a vector subspace).

If we define a set ’_D of real valued functions on ’S{
with values in (R« then via the homeomorphic mapping of a
neighbourhood \) H:) in fS’ to a corresnponding ﬁeigh’oourhood

of a point in R’VL one may specify coordinates in ’Sls thus

£8Py = FO(X, 0, X

S’q) X\D\ oare real valued functions on S (i.e. they are
in D) ané F(R are functions from RN\ —_— R ,

In this manner we introduce coordinates for guch neighbour-
hood of the points of ,_S\ ond the coordinctes so introduced
ore elements of 'Kn. If the coordinates are 'Y\-fold

1]
differentianle Ffunctions we say that /5/% is a differentiable
manifold of class CQ’ . In gencral we shall assume it to he
a COO manifold,
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For two different neighbourhoods of a point F in ,S/ we
1 P o s DN : 3
get different coordinates in « Since the corresnonding
neighbourhoods have points in common (for instznce the pointt> )
1t is possible to introduce the concept of coordinate transfor-
be
mations, Since these are all assumed to,differentiable functions,

AN
the Jacobian matrices defined ¥‘a

ST
are ndn-singu_lar and the transformotion in R’Y\ is defined by
)(c\ — XQ’ ::FO" (Xb*“)(’y)where )(Q) XC\' are in R‘ﬂ.
and the transformation is defined only in a certain neighbourhood
(an opven subset in )Q_‘.‘ (P‘

VI.2. Def. Let —€ < + £+ & be an open interval in (<
Then the R~—> 'S/ differentiable map + —5‘3[{-) for points
F in }5’ is called a differentiable curve in }Sf : r[t).
The tangent vector to G"(‘k‘) at }’o is a map from the set
of all real valued differentiable functions é,{:g defifxed in

the neighbourhood of %0 into R and 1s given by

T ~ o £.by
u.hf'§> == ‘J‘_‘if F t)\‘t:—to (2)

In the local coordinate system in R’YL , this may be computed

- .
L’Q’)‘:f\_. (X‘,“*Xm ".:.C\X,a oF
L " )h 4t bﬁﬁh’ @



—60—

T1 t of ¢ tange sctors at %3 ( , has a vector
e set of all tangent vector . Th(‘\s‘)

space structure, since
— — |
(L (‘U}Q‘AV\]‘DO>{':W ('f)‘*“\/‘:o('{') (4)
@ (0 Uy, § = a U, () (o
(3) As  (117) is true £ey a whole class of F we can Ryvte
— dx® 2 |
u\= Tt OK? \ = U G \h -

The dimension of this vector space is therefore clearly T

and the — natural basis is given by

= B
€7 B

We noto th.ut in addition to the properties (1),(2),(3) of the:-"

voctor SPMCO “the tangent vectors satisfy .

_\f(‘r%)[; Fy v +fg\%u(+)’ ()

We shall often refer to such action as a derivation.

In order to define the dual space T* US‘) it has to be

kept in mind that this property (V g) is agaoi' satisfied, We

call the elements of S\a* ( St ){m T,--~ [ as covectors or

differential for: oxjfk’ and —W’ is itself called the cotangent
(4

vector space., If u¥ is an element of then the man

..—L,,
R-ﬁ R definec¢ by U\\O——-) Cf’k’ (-{) is a linear map and




S

is locally a map of ‘Si,nﬁ R s Since {; is in ! ) » Hence

it determines a differential form at t? « If we denote it by

d‘f‘ y then o?.m‘b- o

(9)

and satisfies

AEPUW) = § d£T)+ $dgal)

(10)

>
in virtue of (V-g). Since this holds for all u, 3

d ( ¥)=df .3+ £4 O Inparticuler if we choose
for —f- the local coordinates {XQE
D\XQU?):: L\ (xo\)-;_ \lo\» (11)

— =7 TN |
U= U 8L o tmas dYA(I) = UPdxT e y=ye,

But | u
hence
= 7 Q ’
dx* (ep D= gb SR e (12)
Thus {C\XO\} is a basis dual to %E /B }(0{ and any differw

ential form at }: can be written as

: —_ a
WD = W N d A (13)
In particular if &) is 4 complete differential, W, is -of

th€ form a-F /a)(‘*\ with -F~ 2 real valued function on

‘_Sf._..._}R (ie, in]\)



The divectional derivative of 4~ in the direction of a

\-ﬁ X
veetor Q is said t be the@ 'volue! of A‘E‘ on (A and is

written -5) b-{-/ X9 . Whercas the {irst derivative
L}
'Q‘ !

Qa
of{- isc\

written as
»

3*F = X‘baX") Ax QO dX (1)
(see W”" secbion M- e

Now we can define a vector field on S as a correspon-

()\ x 34 [ 3y d the second cerivotive is

dence which assoclaotes with every point ‘9 in lS\ and every
system of local coorcinntes L)(?g around SF a set of real
numbers CL} 2L R wnich transform under the coordinates
as components of & contravariant vector. In a similar fashion
one can also define higher rank tensor fields. The covariant
tensor fields then arisce as differentiable form fields on ,S) .

VI.3 In the snirit of the above formulaticn, an affine conne-

ction is introduced as the map i\f /US\ >x \S’ given by

=
(UJU")“—%K‘VV}‘:‘ e eL" Va\)—b (15)
-

SOl

b b
b, MVEIVALI IrC e

V(;\U the covariant derivative of a contravariant vector

field. Similerly onec cin def

=

ne a coveriant derivotive of a

covariant vector fiel.l :f;pz,_l generalize the notion to tensor fields

of higher ronl:,




-»
If W 1s a tangent vector field defined on a curve o (t)
thgn the absolute derivative of a vector field V in ’S') along
the curve is given by

= —>
%—:KVU“ e&(é_\fﬁr[ﬂ bs\.?(f),

(17)

If the absolute derivetive of V vanishes along O we say
that V 1s parallel along O and the value of 7 at
one point on O determines its value at any other point em 0~
by parallel transport,

iy
If o= 1is such that the absolute derivatives of . (A
Vanishes along it then @~ is called a geodesic and t is

called the affine parameter, In a local coordinate system

is given by

drx {w axt x™
e

Lm I e = 0= ‘(18)

The curvature tensor can be introduced through the mapping

‘S’ X ,S’ xﬁg’;,given by
-

(Q, T )»Q\Dc 0, & W )

=Wy (Vv Y - Ve (W70 "’)-r(v v WIW =7 W )it
=€ Ry ubyee wd (19)




i
ki

In local coordinates the components of the curvature tensor are

& q a e na e
Rbaa‘"Buchb‘*Pae. c-s"\ce_\au- (20)

' We remark that the components YTq of a general affine
be
connection can be decomparcd into symmetric and antisymmetric

parts

6 _ e Q g

where \__o\ g Lo‘ arc the components of a tensor of third
bc b
rank,
VI.4 . The basic mathematical notions introduced above even
though rether general cenable us only to deal with local questions
in the ncighbtourhood of a point F in ¢f . Many relati-
vists feel that it is necessary for o full understanding of
relativity, (particularly in connection with quantization of
relativity) to have more zeneral structure that would enable oneI,
treat questions of global nature. But here we are not interested
in these., Our intlerest here is local Ricecmannian geometry. A
Riemannian space is as 2n open set in a cartesian space

in which is defined a symmetric metric

497 = &, 0 dX' @ dxdag, Axtdxd
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A Reimannian manifold is a manifold oh which is defined a symme-~
tric twice covariant tensor field %: % \\"b (X)

In the terminology introduced above the metric tensor
fiela g is given on a differentiable manifold /5' 'if there
1s Gefined in the tangent space at every point )D in /S’ a

Scalar product
—=p =3 - M.,
ur\r:%cu)U“%‘o‘W” (23)

From this difinition it is clear that in the tangent space the
scalar product induced by the coordinates is Buclidean one,
A metric affine connections exists if for any differentiable

.—-.? ;
curve G‘ﬁt-) and any vector field \( parallel m‘o‘nz_ (o e

we have
a{-% W’ V) ('c\.t 2 d B 0(24)
— —
Since is parallel along  g— , E\DTE— =9 and in the
local coordinate system AU‘% r\ g U ; where
':o\X"M[clt . Hence if we WI‘ltG d%V'S | 4t =
ul dg %\fa 5 we get

~ P 9 N
%% (V,V7) = v1ou 6\7‘2%73)“0’ (25)
It follows that
] \Y% ™ *\”m _
1 Q%TQ o 313 P g(mg M% =0 (20

3
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,-'\’YY\.
1f e do not assume the symmetry of . then one has

1¢

to be careful about the order of indices and we write in full

i}
|
2
4
5
i

e & T R _mm
V‘L%Q}Q ’—B/La'gﬁ T\})/Z %'ma 21 %zéfm ) i

e TR ELAS By e i

V’é%SL;L = bé gz& M %AMQ 4} % o  (27B)
If we subtract the first of these equations from the sum

of the last two equations we obtain on multinlying throughbut by
|
“-2': 2

\.\{2:§ }*%Q%(%m\w\n% i >+\_~..

Thus we see that the symmetric part is given by ('2_8)'.

E: {q‘ j*%% (-(é'im Lﬂm@\a-\— (%fm LM"L]o)- L

R
If L ,{/'a vanishes then the symmetric nar% is completely

determined by the metric tensor I field g ,‘) . Hence if the

(28)

affine connection is symmetric and. a metric tensor field is
given then the latter completely deternines the affine connection.

The symools _

‘ a0

AT L0k B~ Yeke)
i -‘—_%'}Q E/:\:;\JQ_J

(30)




1,

e Y

are called christoffed symbols of the second kind and [_g\hg‘]
of the first kimd, . .ol

At this point it is useful to note that as far as the
geodesic equation is concerned the nonsymmetric part is in any

case not relevant, It is therefore amusing to consider a

situcetion when the affine connection is given as

t‘? ={51 23T, &5

A
AR
where {Q/a is a tensor symmetric in ‘l/a . Let the

geodesic equation corresponding to this be given by

d2xt sl dx® ax?

L (32)
i o
Atz 14 AY 4t
We ask under what restrictions on is the solution of
(32) identical to that given by
ar®= é dxTdxo . (23)

!
If we multiply (144) by %Q,W\_ o ym™m )o{/t’ it takes the

form

¥

clxq’ dXQT AxX™ 1yt 1xa
o L 5 37 ]+ Tmiy 57 45 S =4

which shows that necessary cond¢ition that the parameter along

a geodesic is given by (23) is that hﬁ- is symmetric of

the form (32) and such that the tensor 6 T . satisfy



(35)

Tg‘qa +T’\fé€ TT,“,L =0

We make several remerks regerding the nature of the

curvoture tensor 1n V"rious cases, f~or the general affine

vy (V.76) does not nold’, we get instead

conneotions the form

Y VZ)VR V \% V,—B*}EMV ZKQ" V (36)
when ’@h

Vs
— t \/.7-0
% Q“Og) \"3 Q +Q‘L'LO ~06 (37)

’h‘i\ % 5.
Thepe are M= L conditions and hence E 9_,“—hasn (_ )

independent com;onents. .ne,;,,."«J;(,uare tensor can be written as

e . N . .
n depending on the symmetric pert and the

a su of two Ternsors Ol
other on the antisymaetric part, For thié symmetric affiniteg ’

(V.76) type relation holés

@u-mayre vt -

BR . A he «»e\(a\h
The i) A Q now satl s;.yf\;wa*etry conditions
> (374)

h = -

(e Bh@ S e %b\ﬁr{"%h "g-serq‘-M‘-- R

The first of these conditions irmose (M%I} condition. The

vy, in 1ight of the conditions (a) is

tensor U,Ry’%n = 'E (0 3
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completely antisymmetric in alil the three indices Q,’), ’13 hence

the conditions (b) are m [?} in number, The number of inde~

pendent components therefore are Y\L! -N (')\‘H)..y} "ﬂ) .nzn )

When the affinity is completely determined by the metric one

denotes the curvature tensor by the symbol RhQ/i 1 and is
called Reimann-Christoffel tensor. Using the netric tensor for
lowering indices one finds thot th‘%:‘ is also antisymmetric
with respect to th¥# interchange of ‘R and Q . Thus
R

S — g ’n+\ Nng i+ a o
(a) B 0-(’&'1) =0 n ( 7.) conditions (37B)

o= n s
(m B (232) =9 M (3) conditions (59B)
© Breyji =0 2

Since B(RQ)Q"L is antisymmetric in é}l ';)( )MV.) ’Yl('ﬂ‘}'l),"t('“")

: 2 ey
independent components. IHence the number of indesendent
components of the Riemann tensor is

mq*(nltm:v_n(g)_(%:)ﬂé—): M= %ZL__Q .

From the condition (a) and (c) it follows the symmetry conditions

L)

() Rkgig = Rig po - )
Now according to (a) and (c¢) each ma2i- of indices 'i’é and kf_

\ -
represent — ™M Ln-—\) ':( ,;l_ ndepencent components.

(R

According to Lc\) , R\.'jh 1] is symmetric with respect to

A

the interchange of the pairs QQ and R{ 4 hence by(q)JLc)) (J)

the number independent components is

"(’2"_ 2_) [(1\_} +J ~—--’h (M=) [’h ST



In the light of conditions (a),(c) and (&) we see that

U«\R Qfé ’1 e R % L«Q—’i\ ,D is completely anti-

symmetric, with respect to interchange of any two indices %

if therefore renresents (.?l> conditions., Hence the number of
independent components of the Riemann tensor amr ONQ
. o5
LMY T () = -\
= (3) Ll s —

o

as before:

The curvature tensor in general has two contrections, one anti- b

symmetric and other nonsymmetric., When the connection is symme-
tric the sun of the nonsymmetric end ontisymmetric contractions 5
is symmetric° For the metric connection the cntisymmetric
contraction vanishes identically and we are left with the
symmetric contraction ?{ & which 1s called the Rieci

tensor,.

Vi.6. In this section we want to establish connection with

considerctions of chapter V. We have defined a Riemannian space

. B
as an open set in FL in which is cefined o s

C\SL = Oé/{ i

. (] . . . .
Since g’La is a symmetric matrix there always exists O«

similarity transformation which can diagenalize it.

TS

In parti-

cular at some point ?30 there exists a coordinate system and




-]
¢
a transformation matrix .Ta\;{\ (X ; x‘) =3 B._)S.....,_ such that
xR

axt
xR %ng%) bX“'J q}k'n'uﬂ =

Since X\R\ :g k()( l X 1\) (by implicit function theorem) it
follows that this condition (42) may be satisfied in some neigh-
bourhood of }"0 (bhougn not outsicde it). In the tangent

snace at ﬂ the scalar product u'~7 rln\y’} dscad

the primed covordlnfxtes is therefore euclidean, He;lce the
covariant and contravariant tensors of the same rank may be
identified as in (Pseudo) euclidean geometry ant verious consi-
derations of sections V,9 and V.10 carry over with the appro-
priate proviso that the property (43) and hence the choice of the
cartesian system as assumed in egns. (V.64 - V,72) is valid only
in the neighbourhrod of I and not outside it.
Considerations of cncnter V utilized the concept of frame

vectors. Here also in each tangent space (\ao we can choose

different fromes and as before tane scalar product is

1 ik = e\@ . (44)

We remarked that property (43) can be made to hold only in
neighbourhool of a point. On the other hanc :Lﬁ the transforming
nmatrix J cen not be written down in the form axﬁl},x‘

there exists no coordinate system in which this can be done.
Sunnose there exists a matrix A such that there existy

5 omd
'orthosonal freome vectors! Ui ,:

é :



._...-\2 )25 -—\7\
Mo = B, e”(\ (45)
o~ Ot \A’\O - ff\ o‘,\b

(46)

—
holds *everyvhere, We refer to such franes ~ as non-
O

nolonomic frames$ the reason for tiis terminology is that the
integrability condition (V.51) is not satisfied so that the
solution in the form of {V.52) is not possible. Consequently
e
also the vectors U»« in general can not be chosen as tangents
o parcmeter lines.
)
Consider now a differentiable curve )( (‘E‘) through' the

point \"D L";X (,.'t'=°) :XO). The tangent vector To our curve

is

(474)

(47B)

wvhere (g& 1s a pfaffian given in terms of coordinate differ-

ential as ('A"\ )mé Cb( ¢ = (/Oo" . Bquation (42) now

takes the form

S

*
(" \ 2
AS%:%,}/ A X AxT = Z. (LQK (48)
3 ~
3 : . 1 o G P ¢
Since VY prescribes an orthogonal frame Dy consite-
rations st the end of section V.5, the frenet equations for the

curve will heve the form (see eqns. V.38~40)




-73~

b‘»

A)I} ‘ﬂ‘o, (LL b, (49)

b
where the Caortan ma*ris -fL tisfies
b'Yh: - u(L “"‘*n-ca e Differ enciating (45) gives
C.

here e-j te a lon
Lc\ULJ dNCET+AdLE] ere [ & Jaenotes o s
vector with commouents Qa, and A is thio otp 1‘;(’ One may

rewrite this with the ICTP of (46) =2nd (43) as

where the matrix P is given b
e [ L—dA NN (51)

— |
If we recognise thet dNk N is the cortan matrix C(AN)
0-;- A, §51) may ve rewritten as

L=k DN () s

(5
It is cleer from this and the formula (V,41) for the composition
O‘f‘ cartan matrices that P transforms like a cartan
metriz, Since (O™ are praffiams and so are JLa-b, the
matrix F may be written as
A}

{T%': F%kCAXE

(52)
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As an axiom of Riem-nian geometry are now assume that the

exterior deriv-tive of (47) vonishes

P —
=5 3
dd X ﬁaeé@c\ - ekr A ® dX D= s
From this it follows tnat (-1 \‘ﬂ\e‘Q is syrmetric in }a and Q .

‘ N\
From (50) and (52) we see tnat

/,M-.--._ .‘\__\hence
on differantiating (44) we obtalns B\Qe a { M{Q 1 )

. (54)
Dt = i ¢
wRiqs = 1y o T g“~n-
9 }l)/()\R >4k 'W‘\ F’L) 1k
as before,
Let W be an orthonorm=l frame in the tangent

space {\p stop . Tntroduce a stendard euclidean space R
)

taking u’ as the basis, The« * each tan"cﬁ’%u)uce F is
o - ‘_» ‘ m —
the image of R N inder the map U ool = ‘_[io( (-Vand \A-:.(,(\VD'
- =D :

Let VD be a vector in R’n and Let V U V e the images

—=
of in the ngent spaces ° then it follows that
vo I tan _ﬂ; JT}D ’
s ...._._?

= M (XM S (55)

e
More generally tl';is relationship nolds it \/J \/ are parallel.

If a vector \[o is transported 2long a curve 7(: («t) such that

it remains parallel to itself then clearly
— =7, t -
VX)) -,-vb-»,-jhol v x> -
) ~1 e
- W\[XH}} M (Xs) \/o B

(56)
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Gifferentiating along the curve (or one may expand M D( [‘t‘)J

a taylor series) , we get

C\V [xt)] = dMIxi6)M Lx 107V Ex )
o [x DNV Lxm], (57)

If the vectors V and v are not parallel then it follows
- ; 0
that the operation

AV-w\/ | (58)

gives the measure of deviation of a vector from parallelism., In
a local coordinate system one may compute it formally as

follows,

2y &y (\;55;) :c{\/é'é; § %, e \/k') (59)

9 :
W we have used eqn. (50). On writing D\/é :C\)(ZAQVQ

. 3 ‘
we obtain the covariant derivative of a contravariant vector:

‘ 2} v k_
BoVd= 3, ve 2,V (&0
In an analogous Tashion other covariant derivatives may be
computed, Although we have used c\d?;o t define in a

unigue fashion the rﬂatﬁ;:' T\ it is not possible to choose

P such that C}C\Q\e WOW
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e “

= R%kme ey A dxt

: A : &) ‘ ;
'\(a . . . a {
RhW\Q‘”BW‘\.\?’RwBQP ’W\-\{+

’*“V%WPE\Q*PQQ i (6%

In terms of the language of cartan matrixz if we write

C\A‘éz/: &('D) 672 ) then using (45) and (51) we get
AR UMK = =

With components —QO 7 4, e 2 m”é&lf M ise cartan

N
matrix, then r = A -l in this case the frame
\)\a ~ A \ € is constont over the whole spaceé, SO

d
c\m = O")' the metric 'u\&» \kb is also constant ané the

space 1s flat.
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VII, FOUNDATIOQNS OF INEJTONIAN MECHANICS AND SPECIAL RELATIVITY

VII,1. Basgic Agsumntions of Newton on Space-time
Issac Newton made many contributions to a wide ranging

branches of sciencc - what was in those days called naturel

Knew YL
philosonhy, In phvsics proper, among hiS'wellhgontributions are

in thc subjects of heat ontics, clectricity and magnetism.

/
However he is most known for his formulation of mechanics and
his law of gravitational attractionl, Before going on to state
laws of motion, Newton discussed at length the significance of
various terms that he was using and carefully stated his basiec
assumptions on space and time in the context of the prevalent

notions and terminélogy. According to Einstein2 "Newton himself

was better awarce of the wesknessecs inherent in his intellectual

edifice than the generations which followed him., This fact has

always roused my admiration',

We shall therefore start herc by stating the basic assump-
tions made by Newton and in the spirit of modern trends in
physics deduce Newton's laws from there. This avporoach would
enable us to see clearly the "weaknesses" that Einstein has
spoken of, and would otherwise help us in developing the course.
These assumptions of Newton are:

3

4
1. Space is absolute®, has dimension 3 and is Euclidean

3
2. Time is absolute and flows uniformaly
By absolute in the above is meant that any physical pheno-
mena whatsoever occurring in naturc (in space time) have no

effect on the propertics of space time (ard vice versa), which
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Fuclidean nature of space one m
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i
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space

uniforiity of time

P

X‘/b \ . (4)

0

crmatlon «is0 leaves it unchanged

Galilean transformations (5)

the *ransformation and can be

~oncept of velocity arises

time.,

£11 ohysical phenomeha

cunl of the concept of flow of

in space is said to have a non-

] 4

on (cscrdinates X 1) changes in

-0t unlform then the
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concept of velocity will not be very useful.
Collecting the transformations (1-3,5) we find that the

nost general transformation that leaves (4) unchanged is
+ ’ v * 'i

’t':‘\i+C (6B)

It might appear that if we replace t by f(t) in (SZ)the form
(4) is again left unchanged. However then the form of the most
general transformation will not be (6) and would lead to severe

complications due to (6B).

VII,2. First L: f Moti nd "Cons 4" Obi
We now ask what is the gimplest law of motion for a free
particle consistent with this transformation. The answer is

clearly the Newton's first law:

Itz =0 . (74)

Notice that (7A) is also unchanged under the affine change of t:
+ = attb . (8A)
On the other hand, if we revlace eqns. (74) by

ATXE |
A'\:L =0 (7B)




and assume that when t undergoes an affine change (8A), M

undergoes the change of scale

YV\ - Ck?; ﬁﬂ 5 | (8B)

then the left hand side of (7B) remains unchanged under the
combined transformations (8,4,B),

Now consider a closed system of several particles. This
system as a whole will satisfy the first lawy howevér, what is
to be the interpret-tion of M? If we consider M to be "property
of a point pafticlé”, then the analogue of (7B) for a closed

system of particles will be

| Z TV\ c\lg(‘\;' -5 (&)
< T T '

As t undergocs the transformation ‘t% oL ,\\/\0< undergoes

the change M(,(% OLLM o . It is clear that if we inter-
opret D\c( as a number characteristic of a provertyv of the
partidee, then the numerical value assigned to this property

is arbitrary upto a_constant. If we therefore fix this constant,
it fixes not only the relative values of qurbut also the para-
meter associated with the affine trnnsfo:mation (8) of t. 1In
particular for a=1, we obtain »recisely the group of transfor-
mations that leaves (4) unchanged together with the concept of
"property of a particle" which is charactérised by the nmumbers M

o

which we shnll rcfer to as "Mass" of the q{h particle. From the
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basic assumptions of space-time it is clear that M is indepen-
dent of S-Z’ and t.

If we integrate (7B) over a time interval [ ,,t | we
obtain the conservation laws:

T S, dX

= e

}E:

s
mé__% F - (10)

& dt [,

—

) Y
The vector F\: is called momentum eQuantity of Motion-Newton)
of the particle. Taking the scalar product of (7B) with U
and integrating over the interval E‘tg,t] gives

&5

"\"M-\?z—\t: *}ZVM.\?L {:‘:‘T% (11)

Y 7
We call T the kinetic energy (Vis Vive-Newton) of the particle.
Multiply (7B) by )('3 and subtract from it the expression

obtained by interchanging 1 and j:-

e
O%E[me}*FQxﬂ.:;—_FL{'Q:O (12)

Compore nts of the antisymmetric tensor are the familiar

components of the vector product

where E\{gk is the Levi-Civita, compnletely antisymmetric tensor):



[

R

it is +1 for ijk an ever permutation of 1,2 3¢y and -1 for odd
permutation of 1,2,3 and zero in all other cases. P,T and L
are sald to be constonts of the motion. It further follows from
(10) that the particle moves with uniform velocity Vﬁ so that

;7 a further constant of the motion - we state without nroof
thet tpese constants are connected respectively with the symme-
trics defined by (1), (3), (2) and (5).

Formula (10) can he irmadiately generalised for the case

of a system of »articles, esh.(9):
> uh Sl —
Z;MOKVK } F (P Q:‘ *"““'“i DZ(:_ MQ( U; \"to . | (14)

A further integration of (14) yields

— -
ZW\«RZ ‘A/PD ey X:\t:ia (15)

We define the "centre of mass" cf a closed system of particles

& — -
X= Tt
- = ' (16)
Z_ My 2 My

It is then clecar that the centre cf mass of a closod system of

narticles moves with a constant velocity \/ /P /Z_MK as
~7 #LQ_-Q'

if it was a Pieeparticle. Cons,anzy of the velocity of centre

of mass, as vointed out carlier arises from the invariance of

equations of motion under Galilean “ransformations.




VIT,3. Concept of Forcet the IInd and IIIrd laws

Next let us consider a closed system of two varticles.

This system satisfies the first law:

s 2.
’YY\h\'i\__._&B. _\,/Y)/\ CX X% =0 (17)
at™ SRR ‘
A%
If we call T =k as the acccleration veetor and

denote it by a; then we sec from (16) that one can also define
ratio of the masscs of two particle in a closed system as the
inverse ratio of thc magnitudes of their accelerations (provided

of coursc that their accelerations are nonvanishing):ﬁw$wgtgo[
/
QHN&-p¢;{ ‘ftcc..zyavauz ‘bﬂSfLLJL_'
...—)7
A
LA g e

(18)
v\ e~
= | &%\
Further we can rewrite (17) as
v =% 2y dof =
SN a-Aw fiq'f..% - J’YVLBC\ ch&_&F (194)
4+~ — AR a1 B

— —
, —~ »  (19B)
F?\%(YJ\TJ-t>+ FBR( XJ\th) — O

B

and we call the vector function ;a\ as the force vector:
)

the force duc to B on As similarly F&SF\ is the force due to
A and B. Equation (19B) then says that thesc forces that A and

B exert on cach other are cqual and ovvoosite.

= e}
FPAB ==

A Fra



\3

TIn this meonrer we have thus arrived =t the concept of
force (second 1A w) and the third law which says that action

and rcaction arc cgual and oopnosite.

VII, 4h_ Symmctry and Conscrvation Laws

Lot us multinly thc first of ~quations (194) with 'W\.g and

the second with 'W\A and subtreoct:

4T (G —%a) b My M, M oy
}k &‘tz' F‘T\B DV W\ -\-'m:g/

Tt follows from this equation and cquations (19) that | has

the form

=, =
Fe =F ( Xp~

—

Z,

>\ X ~; —t) 3 (204)

where )/ ('( X ) H’ We have thus reduced the two particle

system (19) to a single naerticle eocuation

rﬁi L (X »-.35@ . o

together with the ccnservation law
= <7 7 :
(W\AVR 4 M 2 \/B = C@»fmt&w?t (22)
~ == 'h'ul_

wherc /U\ is thc rcduced mass, X = x;} e XQ'(relatlvk
e 4

position , and l)", 15 the relative velocity. We leage as
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PN
Exerciso,s, to prove the following statecments on conservation

laws arising from (214) as integrals of thec motion. From (214)
we obtain the following formal integrals whosc cexistence is
determined by certain symmctry propertics

—

?“'Lx) _py e[ g dt| ¢ (23)

By L pv = 5
= L VR (R AL

where the linc integral is over an arbitrary path of the parti-

(24)

elicis
T\R CORY) = L\olj QR dk (25)

where o, , { are thc Euler angles, L= X l\]D KX ;\V

is "orbital"™ angular momentum and \_Q. arc the components of

-—%7
the vector 7)\ F.

The rJ_n‘l: erals! ’PJ} exist and are constants of ‘the
motion if ?% [X) = P@ { X~ 8\() i.0. if ?'3 is indepen-

dent of x ; and in this case '\P/a arc called generalized

L)

momonta,l\condltlon for this is
t

240 — A« .
DX A | (234)

and the genersl form is [\Eﬁ - 75? (\730 t)J



T = 2R Phopraa AL,

(23B)

Then H(t) exists it is called the cnergy integral; the condition

is that H(t) = H(t+ §t) which vields

?__: T _,,vdP(x) (248)

where B 1is a function of x and t. Similearly for conservation

7

of angular momentum ore has to consider an infinitesimal change

=2
in (5 Y . For FAaXzo0 , orbital angular momontum

= ~—»
L = ?\? is conscrved. The gencralized momentum defined by

= C\OZ}C'C> .
- = : (254)

is conscrved if

-"-:"
N XA X
DZ* x7 = 0 ) == A . (258)
- Fuks
‘.
The vectors )( ) of P F form an orthogonal tma«i and may
be taken along the spherical polar unit veetors Yg 8 > $ . .

Even if |7 1is not conserved, it could hapnen thet |

constant of thc motions this is the case if
L

F: = AR = N4+ VU acl (25C)

where A and B arc parallel and perpendicular to Y ; € 1is




is

—-87=
R s PR
normal to .\?- and is in the X~ planey so that \~ , Z’and L
form an orthogonal triad.
To summarise, one can deduce the conserved quantities by

-
studying the bechaviour of F wunder space-time changes as under

infinitesimal change conserved quantity
-)..(5 o ?*&- 5 X linear momentum
‘\: -> Xt 8t energy
K> kX ) N - angular momentum
'—9
X—=> X+t Sv centre of mass

In addition, mass is always strictly conserved.

VII,4B, Using the results of section V.8 and V,9 in particular
equations (V.68, 68A) we can rewrite thc Newtons law of motion,

eqn, (21A) in gencral coordinates as

dxxd 14 1 xR 4x? A = T
Y‘[‘-—-—'\’{QJ‘ % ‘='§:/‘)()?3X %,

c\'tz" ' . (21B)
d 1 aX? ™ amy =
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