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Abstract

Formal methods for the analysis of concurrent systems is an active area of research.

Many mathematical models like Petri nets, communicating automata, automata with

auxiliary storage like counters and stacks, rewrite systems and process algebras have been

proposed for modelling concurrent in�nite state systems. E�cient algorithms for analysis

and the power to express interesting properties of concurrent systems are con�icting

goals in these models. Having too much expressiveness results in undecidability, so it

is important to get an insight into what kind of restrictions will lead to good analysis

algorithms while retaining some expressive power. Restrictions like reversal boundedness

in counter automata, disallowing cycles in network of push-down systems etc. lead to

decidability in the respective models.

In this thesis, we propose to use the framework of parameterized complexity to study

the e�ect of various restrictions on the complexity of problems related to some models and

logics of concurrent systems. Parameterized complexity works by trying to �nd e�cient

algorithms for instances of hard problems where one can identify structure that helps

in analysis. A numerical parameter is associated with problem instances and algorithms

are designed whose time and/or memory requirement is a fast growing function of the

parameter, but growing slowly in terms of the size of the instance. On instances where

the parameter is small, such algorithms run e�ciently. Apart from providing e�cient

algorithms, parameterized complexity provides a mathematically rigorous way of studying

�ner structure of the models under analysis.

In the �rst part of this thesis, we look at the e�ect of well known graph parame-

ters treewidth and pathwidth on the parameterized complexity of satis�ability of some

logics used to specify properties of �nite state concurrent systems. This is followed by

parameterized complexity of some problems associated with synchronized transition sys-

tems and 1-safe Petri nets, which are compactly represented �nite state systems. In the

second part of the thesis, we look at general Petri nets (which are in�nite state) and

study the parameterized complexity of coverability, boundedness and extensions of these

problems with respect to two parameters.
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Chapter 1

Introduction

Parameterized complexity [25] works by trying to �nd e�cient algorithms for instances of

hard problems where one can identify structure that helps in analysis. A numerical parame-

ter (usually denoted by k) is associated with problem instances and algorithms are designed

whose time and/or memory requirement is a fast growing function of the parameter, but

growing slowly in terms of the size of the instance. On instances where the parameter is

small, such algorithms run e�ciently. For example, with hard problems for which all known

algorithms have worst case running time exponential in the size n of the input size, param-

eterized complexity looks for algorithms with worst case running time f(k)nc, where f is

some computable function of the parameter k and c is a constant. Parameterized problems

with algorithms of such running time are in the class Fixed Parameter Tractable (Fpt),

which can be thought of as parameterization of the classical complexity class Polynomial

time (Ptime). Appendix A contains a brief introduction to concepts related to Fpt and

a hierarchy of parameterized complexity classes believed to be intractable. Other classical

complexity classes can also be parameterized [35]. There are articles in the literature that

consider questions that are essentially parameterized complexity problems related to concur-

rent systems [86, 44]. We re�ne such results by considering other parameters and utilizing

techniques that have been recently developed in the �eld of parameterized complexity.

The study of parameterized complexity derived an initial motivation from the study of

graph parameters. Many problems that are complete for non-deterministic polynomial time

(Np) can be solved in polynomial time on trees and are Fpt on graphs that have tree-

structured decompositions.

De�nition 1.1 (Tree decomposition, treewidth, pathwidth). A tree decomposition of a

graph G = (V,E) is a pair (T , (Bt)t∈nodes(T )), where T is a tree and (Bt)t∈nodes(T ) is a family

of subsets of V such that:

• For all v ∈ V , the set {t ∈ nodes(T ) | v ∈ Bt} is nonempty and the subgraph of T
induced by the set is connected.

• For every edge (v1, v2) ∈ E, there is a t ∈ nodes(T ) such that v1, v2 ∈ Bt.

The width of such a decomposition is the number max{|Bt| | t ∈ nodes(T )} − 1. The
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treewidth tw(G) of G is the minimum of the widths of all tree decompositions of G. If the

tree T in the de�nition of tree decomposition is a path, we get a path decomposition. The

pathwidth pw(G) of G is the minimum of the widths of all path decompositions of G.

Treewidth is a well-studied graph parameter that arises naturally in many contexts. For

example, Thorup has shown that �ow graphs resulting from structured programs of many

languages have small treewidth [92]. Treewidth has also been used as a unifying framework

for many decidability results for automata with auxiliary storage [66] and for e�cient model

checking of First Order logic [2]. Treewidth being such a fundamental and widely occurring

concept, we study its impact on the satis�ability of modal and temporal logics. Modal logics

have many applications (reasoning about knowledge [30], programming [80] and hardware

veri�cation [83] etc.), in addition to nice computational properties [96, 40]. Many tools have

been built for checking satis�ability of modal formulas [52, 76], despite being intractable in

the classical sense (Pspace-complete or Np-complete in most cases). Complexity of modal

logic decision problems is well studied [59, 46, 45]. Temporal logic is widely used for formal

speci�cation and veri�cation of concurrent systems and extensively researched [14, 97, 67, 58].

In the �rst part of this thesis, we study the e�ect of treewidth as a parameter for the

satis�ability problems of modal logic, Linear Temporal Logic (LTL) and Computational Tree

Logic (CTL). The LTL satis�ability problem is known to be polynomial space (Pspace)-

complete [89] and CTL satis�ability problem is known to be exponential time (Exptime)-

complete [34, 27]. For modal logic, the satis�ability problem is usually Pspace-complete or

non-deterministic polynomial time (Np)-complete [59], depending on the restrictions imposed

on satisfying models. We look for Fpt algorithms or for hardness for some parameterized

complexity class believed to be intractable (details in Appendix A). It turns out that when

there is transitivity or some equivalent concept such as in LTL, CTL and modal satis�ability

in transitive models, treewidth does not help. We will see that treewidth does help in the

general modal satis�ability problem, thus gathering some evidence that it is transitivity that

makes treewidth useless, as far as Fpt algorithms are concerned.

Labelled Transition Systems (LTS) are models of sequential systems while extensions like

Synchronized LTS and 1-safe Petri nets compactly represent concurrent �nite state systems.

We continue to study parameterized complexity of problems associated with these models.

Most of the problems we consider are Pspace-complete.

Petri nets, introduced by C. A. Petri [79], are popularly used for modelling concurrent

in�nite state systems. Using Petri nets to verify various properties of concurrent systems is

an ongoing area of research, with abstract theoretical results like [4] and actually constructing

tools for C programs like [55]. Reachability is one of the most fundamental problems of Petri

nets. Although it is known to be decidable [70, 57], the complexity is not known. Complexity

of the reachability problem is known for many subclasses of Petri nets1, which are the result

of various restrictions on Petri nets. Finding such restrictions helps in understanding the

structure of Petri nets and in developing techniques. We use parameterized complexity as

1A survey can be found in [81]
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a mathematically rigorous way of analyzing structural restrictions. With the capability of

having an �extended dialog� with hard problems [24], answers to parameterized complexity

questions can provide �ner understanding of the problems under consideration.

Apart from reachability, coverability and boundedness are some of the most fundamental

questions about Petri nets. All three of them are exponential space (Expspace)-hard [65].

Coverability and boundedness are in Expspace [82]. Reachability is known to be decidable

[70, 57, 61, 64] but no upper bound is known. Other interesting properties of Petri nets

include liveness, deadlock, fairness etc., which especially arise in the context of concurrent

reactive systems. Logics have been proposed to uniformly describe such properties of Petri

nets [51, 98, 3, 44]. In the second part of this thesis, we study the parameterized complexity

of the coverability and boundedness problems. We also study the parameterized complexity

of model checking a logic that we have carefully designed to avoid expressing the reachability

problem, but is powerful enough to express coverability, boundedness and some extensions.

Let us denote the size of an input instance of a problem by n. If the problem is Ex-

pspace-hard, any algorithm will require memory space exponential in n in the worst case.

Let us consider some parameter denoted by k. For an Expspace-hard problem such as

those mentioned in the previous paragraph, a suitable parameterized complexity theoretic

question would be to check if there are algorithms solving the problem using memory space

O(f(k)poly(n)). The function f(k) may be any computable function of the parameter k

while poly(n) is some polynomial of the input size. Such algorithms are called ParaPspace

algorithms. Fundamental complexity theory of such parameterized complexity classes have

been studied [35]. We consider two parameters and provide ParaPspace algorithms for cov-

erability, boundedness and model checking the newly designed logic. One of the parameters

we consider is called vertex cover number, which has been widely studied in the literature,

especially in the literature related to graph theory. The other parameter is called bene�t

depth, which is newly introduced here in the context of Petri nets.

The rest of this chapter is organized as follows. In section 1.1, we give an informal intro-

duction to modal logic and give some motivation for considering treewidth as a parameter.

In section 1.2, we introduce Petri nets and the associated problems when used to model

concurrent systems. Finally, section 1.3 gives an overview of the organization of the rest of

the chapters of this thesis.

1.1 Introduction to Modal Logic and Relevance of

Treewidth

Modal logic can be considered as an extension of the standard propositional logic. We will

use the symbol ∧ for conjunction (�and�) and ∨ for disjunction (�or�). Given propositional

variables q, r, s and a truth assignment for these variables that assigns either true (>) or false
(⊥) to each variable, a propositional logic formula such as (q ∨ r) ∧ s is either true or false
according to the standard semantics of propositional logic. Now, consider a directed graph
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in which every vertex has its own truth assignment for the set of propositional variables (we

will see later in Chapter 2 that such a structure is called a Kripke model). Figure 1.1 shows

an example.

w0TrAs0 : {q, r, . . .} → {>,⊥} (q ∨ r) ∧ s

TrAs1 TrAs2 TrAs3 TrAs4

TrAs5 TrAs6

Figure 1.1: An example of a Kripke model

Henceforth, we will call the vertices of the directed graph as worlds. We can now consider

the truth or falsity of logical formulas at some world. The truth of a propositional logic

formula such as (q ∨ r) ∧ s at some world like w0 in the above example depends only on

the truth assignment at w0. To reason about other worlds, modal logic provides modalities

diamond (♦) and box (�). To explain the meaning of these modalities, let us call the worlds

having truth assignments TrAs1, TrAs2 and TrAs4 in the above example successors of w0.

The modal logic formula ♦φ is true in the world w0 if the formula φ is true in one of the

successors of w0 (the formula φ itself can be either some propositional logic formula or some

other modal logic formula). The modal logic formula �φ is true in w0 if φ is true in all

successors of w0. Given a modal logic formula φ, the satis�ability problem for modal logic is

to check if there is a Kripke model that has a world in which φ is true. In the general case, the

satis�ability problem is Pspace-complete. After giving formal de�nitions in Chapter 2, we

will see that the complexity may vary depending on restrictions imposed on Kripke models.

To illustrate how modal logic can be useful, consider the case where propositional variables

are true or false depending on whether integer variables of a certain program are zero or not.

Di�erent worlds of the Kripke model correspond to di�erent states of the program memory

and directed edges correspond to program statements. Modal logic formulas can then be

used to reason about program variable values resulting from many possible executions of the

program. This idea was studied systematically by Pratt [80].

We will now motivate the reason for using treewidth as a parameter for the satis�ability

problem of modal logic, again using propositional logic as the basis for ease of comprehension.

Given a propositional logic formula F in Conjunctive Normal Form (CNF), its incidence

graph is a graph that has one vertex each for every clause and every propositional variable of

F . A vertex corresponding to a clause and a vertex corresponding to a propositional variable

are connected by an edge if the variable appears in the clause (either positively or negatively).

Figure 1.2 shows examples of some propositional logic formulas and their incidence graphs.

As can be seen from the above examples, the number of cycles in the incidence graph

4



cl1 cl2 cl3 cl4
(x1 ∨ ¬x2) (x3 ∨ x4) x5 (¬x6 ∨ ¬x7)∧ ∧ ∧

cl1 cl2 cl3 cl4
x1 x2 x3 x4 x5 x6 x7

cl1 cl2 cl3 cl4
(x1 ∨ ¬x2) (¬x1 ∨ x2 ∨ x3) (¬x4 ∨ x5) (¬x5 ∨ x6)

cl1 cl2 cl3
(x1 ∨ ¬x2) (x2 ∨ ¬x1 ∨ x3) (¬x1 ∨ ¬x2 ∨ ¬x3)

Figure 1.2: Some propositional logic formulas and their incidence graphs

increases as the number of variables shared among clauses increases. Hence, the treewidth of

the incidence graph can be used as a quantitative measure of the extent of �inter-dependency�

among clauses of a formula. Since checking of satis�ability is relatively easier when clauses

do not share many variables with each other, we can expect the complexity of checking

satis�ability to be low when incidence graph has low treewidth. While this idea has been

explored for propositional logic and constraint satisfaction problems [17, 12, 77, 87], we will

extend the notion of incidence graphs to modal logic formulas in Chapter 2 and study the

parameterized complexity of the satis�ability problem for modal logic.

1.2 Introduction to Petri Nets

Consider a system consisting of a device that can be in one of three states: ready, restart and

idle. Suppose the system also maintains a variable with possible values 0, 1, 2 to keep track of

the device. This system can be modelled as two labelled transition systems as shown at the

top of Fig. 1.3. Suppose the system has been designed in such a way that the variable changes

its value from 1 to 2 precisely when the device goes from ready state to restart state. One way

to model this synchronization between the variable and the device is as shown at the bottom

of Fig. 1.3. The variable's transition from 1 to 2 is �merged� with the device's transition from

ready state to restart state to form a single transition labelled t. The device's states of ready

and restart are now represented by the circles labelled p4 and p5 respectively. Henceforth,

we will call these circles as places. The device being in state ready can be represented by

putting a token in place p4 and the variable having value 1 can be represented by putting a

token in place p2. Executing the transition labelled t can be thought of as removing a token

each from places p2, p4 and adding a token each to places p3, p5. The places p1, p2, p3, p4, p5, p6

5



0

1

2

Ready

Restart

Idle

p1

p2

t

p3

p4

p5

p6

Figure 1.3: A Concurrent system modelled as a Petri net

and transitions t and the four other unlabelled transitions constitute an example of a Petri

net. Petri nets were introduced by C. A. Petri [79].

A function assigning a number of tokens to each place of a Petri net is called a marking.

Only positive number of tokens are allowed. If a transition is executed at a marking as

explained above, the number of tokens will change in some places resulting in a new marking.

Given a Petri net with an initial marking, the set of all markings that can be reached by

�ring any sequence of transitions is called the set of reachable markings. If any marking

reachable from the initial marking has at most one token in each place, then the Petri net is

called a 1-safe Petri net. A marking reachable in a 1-safe Petri net can have a token each in

places belonging to some set of places, the set of places potentially being any subset of the

set of all places. Thus, if there are m places, the number of reachable markings can in general

be as much as 2m. Therefore, a 1-safe Petri net can be a compact representation of a much

larger structure. We will see in Chapter 4 that this is the reason for the high complexity

of many problems related to 1-safe Petri nets. We look at parameters (including treewidth)

that restrict the ability of 1-safe Petri nets to compactly represent larger structures.

Instead of merging two transitions as done at the bottom of Fig. 1.3, we can label each

transition with letters from an alphabet. We can then model synchronization by insisting

that if there are transitions in two di�erent transition systems labelled by the same letter,

then they can only be executed simultaneously. The resulting models are called synchronized

transition systems and is the subject of Chapter 3. Synchronized transition systems again

turn out to be compact representations of larger structures and we study parameters that

restrict this ability.

If we remove the restriction that all reachable markings should have at most one taken

in each place, we get general Petri nets. The number of markings reachable from the initial

marking can be in�nite in general (checking that it is not so is called the boundedness prob-

lem). In an attempt to understand what causes Expspace-hardness of boundedness and

other problems, we study the parameterized complexity of these problems with respect to

various parameters in Chapter 6 and Chapter 7.
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1.3 Organization of the Thesis

This thesis is organized as follows. In Chapter 2, we study the extent to which treewidth can

help in obtaining Fixed Parameter Tractable (Fpt) algorithms for satis�ability of various

modal logics. In Chapter 3, we give some parameterized complexity results for synchronized

transition systems. In Chapter 4, we consider 1-safe Petri nets. Here, the problems under

consideration are Pspace-complete and we look for Fpt algorithms (or their absence). We

give a brief survey of the literature on concepts and models related to Petri nets and their

logics in Chapter 5. In Chapter 6, we introduce a parameter that we call bene�t depth,

motivated by some re�nements in Racko�'s Expspace upper bound [82] for coverability and

boundedness. In Chapter 7, we consider another parameter vertex cover and its e�ect on

the complexity of coverability and boundedness. We summarize our results in Chapter 8.

Appendix A gives a brief introduction to parameterized complexity and some intuition about

why parameter treewidth makes certain problems easier.

Some of the work mentioned above has been published in the following papers.

1. M. Praveen and K. Lodaya. Modelchecking counting properties of 1-safe nets with

bu�ers in parapspace. In Foundations of Software Technology and Theoretical Com-

puter Science, volume 4 of Leibniz International Proceedings in Informatics, pages

347�358, 2009.

2. M. Praveen. Does treewidth help in modal satis�ability? (extended abstract). In

Mathematical Foundations of Computer Science, Springer Lecture Notes in Computer

Science, volume 6281, pages 580�591, 2010. Full version submitted to journal.
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Chapter 2

Treewidth and Satis�ability of Modal

Logics

Treewidth as a parameter has been very successful in obtaining Fixed Parameter Tractable

(Fpt) algorithms for many classically intractable problems. One such class of problems is

constraint satisfaction and closely related problems like satis�ability in propositional logic

and the homomorphism problem [17, 87]. There have been recent extensions to quanti�ed

constraint satisfaction [12, 77]. In such problems, treewidth is used as a measure of modu-

larity inherent in the given problem instance and algorithms make use of the modularity to

increase their e�ciency. Understanding the extent to which treewidth can be stretched in

such problems is an active area of research [69, 42]. In this chapter, we explore treewidth

with respect to satis�ability of modal and temporal logics.

Given a propositional formula in Conjunctive Normal Form (CNF), its incidence graph

is a graph whose vertices are the clauses and propositional variables. A clause vertex is

connected to a variable vertex i� the variable occurs in the clause. We generalize this to

modal logic. It is known that any modal logic formula can be e�ectively converted into a

CNF [28, 49]. Given a modal logic formula in CNF, we associate a graph with it. Restricted

to propositional CNF formulas (which are modal formulas with modal depth 0), this graph

is precisely the incidence graph associated with propositional CNF formulas. We also de�ne

CNF fragments of LTL and CTL and associate a graph similar to incidence graphs for

formulas in those fragments. We prove that

1. with the treewidth of the graph and the modal depth of the formula as parameters,

satis�ability in general models is Fpt and so is satis�ability in re�exive models,

2. with the pathwidth and modal depth as parameters, satis�ability in transitive models

is W[1]-hard,

3. with the pathwidth and modal depth as parameters, satis�ability of LTL and CTL

formulas in CNF is W[1]-hard and

4. with treewidth as the parameter, satis�ability in models that are Euclidean1 and any

1A binary relation 7→ is Euclidean if ∀x, y, z, x 7→ y and x 7→ z implies y 7→ z.

8



combination of re�exive, symmetric and transitive is Fpt.

Since modal formulas of modal depth 0 contain all propositional formulas, bounding modal

depth alone will not give Fpt results (unless Ptime=Np). The main idea behind our Fpt

results is to construct a relational structure whose domain elements are clauses and literals of

a modal formula, with binary relations indicating which literals occur in which clause. Then,

satis�ability of the modal formula can be expressed in Monadic Second Order (MSO) logic

over the relational structure, enabling us to apply Courcelle's theorem [16]. The lower bound

proof involves carefully designing a modal formula of low pathwidth that can implement

counting mechanisms using the underlying transitivity. With a suitably de�ned CNF, we

extend the lower bound to satis�ability of LTL and CTL.

Beginning with the seminal paper of Ladner [59], a lot of research has been done on

the complexity of modal satis�ability. In [45], Halpern considers the e�ect of bounding

di�erent parameters (such as the number of propositional variables, modal depth etc., but

not treewidth) on complexity. In [75], Nguyen shows that satis�ability of many modal logics

is in Ptime under the restriction of Horn fragment and bounded modal depth. In [1],

Achilleos et al. consider parameterized complexity of modal satis�ability in general models

with the number of propositional variables and other structural aspects (but not treewidth)

as parameters. In [2], Adler et al. associate treewidth with First Order (FO) formulae and

use it to obtain a Fpt algorithm for model checking.

The Complexity of satis�ability of modal logics follow a pattern. In [47], Halpern

et al. prove that with the addition of Euclidean property, complexity of (in�nitely) many

modal logics drop from Pspace-hard to Np-complete. [48] is another work in this direction.

Similar pattern is observed in graded modal logics [56]. With treewidth and modal depth

as parameters, our results indicate similar behaviour in the world of parameterized complex-

ity � satis�ability in transitive models is W[1]-hard, while satis�ability in Euclidean and

transitive models is Fpt, even with treewidth as the only parameter.

2.1 Notation and Preliminaries

We use standard notation about parameterized complexity like Fpt algorithms, Fpt reduc-

tions and W[1]-hardness from [36]. We will also use notation and de�nitions of relational

structures and their tree decompositions from [36]: a relational vocabulary τ is a set of rela-

tion symbols. Each relation symbol R has an arity arity(R) ≥ 1. A τ -structure S consists

of a set dom called the domain and an interpretation RS ⊆ domarity(R) of each relation

symbol R ∈ τ . A graph is an {E}-structure, where E is a binary edge relation. A tree is

a graph without cycles. Suppose τ is a relational vocabulary consisting of only unary and

binary relation symbols. The Gaifman's graph of a τ -structure is the graph whose vertices

are domain elements of the τ -structure and whose edges are elements of binary relations of

the τ -structure. The treewidth of a τ -structure is the treewidth of its Gaifman's graph.

Monadic Second Order (MSO) logic is a powerful logic capable of expressing properties
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of relational structures. Let x, y, . . . be a set of �rst order variables and X, Y, . . . be a set

of second order variables. For a given relational vocabulary τ , well formed formulas of MSO

logic are those generated by the following syntax:

φ ::= x = y | x ∈ X | R(x, y, . . . ), R ∈ τ | φ ∨ φ | ¬φ | ∃xφ | ∃Xφ

In the formula R(x, y, . . . ) above, the number of elements in the tuple x, y, . . . should be equal

to the arity arity(R). In the formula ∃xφ, occurrences of x in φ are said to be bound by the

quanti�er ∃x. First order variables not bound by any quanti�er are said to be free variables.

Similar terminology is followed for second order variables. We write φ(x, . . . , X, . . . ) to

indicate that x, . . . and X, . . . are free �rst order and second order variables of φ respectively.

An MSO sentence is a formula without free variables.

Given a MSO formula φ and a relational structure S, an assignment s is a function that

assigns an element of the domain of S to each free �rst order variable of φ and a subset of

the domain to each free second order variable. Another assignment s′ (for the free variables

of a potentially di�erent formula φ′) is said to be an extension of s if s′(x) = s(x) and

s′(X) = s(X) for each free �rst order variable x and free second order variable X of φ. The

fact that φ is true in (S, s) (denoted as S, s |= φ) is de�ned inductively as follows:

S, s |= x = y i� s(x) = s(y)

S, s |= x ∈ X i� s(x) ∈ s(X)

S, s |= R(x, y, . . . ) i� (s(x), s(y), . . . ) ∈ RS
S, s |= φ1 ∨ φ2 i� S, s |= φ1 or S, s |= φ2

S, s |= ¬φ i� S, s 6|= φ

S, s |= ∃xφ i� there is an assignment s′ extending s such that S, s′ |= φ

S, s |= ∃Xφ i� there is an assignment s′ extending s such that S, s′ |= φ

The formula ∀xφ is an abbreviation for ¬∃x¬φ and ∀Xφ is an abbreviation for ¬∃X¬φ.
We will extensively use Courcelle's theorem:

Theorem 2.1 (Courcelle's theorem, [15]). The following problem is Fpt:

p-tw-MC(MSO)

Instance: A relational structure S and a MSO sentence φ.

Parameter: The treewidth of S and the size |φ| of φ.
Problem: Decide whether φ is true in S.

The proof of the above theorem is based on constructing a tree automaton and running it

on the tree decomposition of the given relational structure. The running time of the resulting

algorithm is linear in the size of the relational structure. The size of the tree automaton is

a function of the size of the MSO sentence and the treewidth of the relational structure. In
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particular, the size of the automaton can be non-elementary in the size of the MSO sentence,

hence the dependence of the running time of the algorithm is in general non-elementary in

the size of the MSO sentence. It is known that unless Ptime = Np, such non-elementary

dependence can not be avoided [38].

Given a graph, computing a tree decomposition of optimal width is Np-complete, but

parameterized by treewidth, it is Fpt:

Theorem 2.2 ([6, 7]). The following two problems are Fpt:

p-Compute-Tree-Decomposition

Instance: A graph G.

Parameter: The treewidth of G.

Problem: Compute an optimal tree decomposition of G.

p-Compute-Path-Decomposition

Instance: A graph G.

Parameter: The pathwidth of G.

Problem: Compute an optimal path decomposition of G.

The basic modal language is de�ned using a set of propositional variables Φ (whose

elements are usually denoted q, r, s and so on) and unary modal operators ♦ (`diamond')

and � (`box'), in addition to the standard Boolean operators. We use standard notation for

modal logic from [5]: the well-formed formulae φ of the basic modal language are given by

the grammar

φ ::= q | ⊥ | ¬φ | φ ∨ ψ | ♦φ | �φ

where q ranges over Φ. This means that a formula is either a propositional variable, the

propositional constant false (`bottom'), a negated formula, a disjunction of formulae or a

formula pre�xed by a diamond or a box. We use standard abbreviations like φ ∧ ψ ≡
¬(¬φ ∨ ¬ψ), φ⇒ ψ ≡ ¬φ ∨ ψ etc.

A Kripke model for the basic modal language is a tripleM = (W, 7→,Val), where W is

a set of worlds, 7→ is a binary accessibility relation on W and Val : W × Φ → {>,⊥} is
the valuation function. If Val(w, q) = >, we think of it as q being true in the world w. For

w, v ∈ W , if w 7→ v, then v is said to be a successor of w. The pair (W, 7→) is called the

frame A underlyingM.

We denote the fact that a modal formula φ is satis�ed at a world w in a model M by
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M, w |= φ. The |= relation is de�ned inductively as follows.

M, w |= q i� Val(w, q) = >
M, w |= ⊥ never

M, w |= ¬φ i� notM, w |= φ

M, w |= φ ∨ ψ i�M, w |= φ orM, w |= ψ

M, w |= ♦φ i� for some successor v of w,M, v |= φ

M, w |= �φ i� for all successors v of w,M, v |= φ

If the accessibility relation 7→ is re�exive, then the frame A and the model M are said

to be a re�exive frame and a re�exive model respectively. Similar nomenclature is followed

for other properties of 7→. The relation 7→ is Euclidean if for all w1, w2, w3, w1 7→ w2 and

w1 7→ w3 implies w2 7→ w3.

A modal formula φ is satis�able if there is a model M and a world w in M such that

M, w |= φ. A modal formula φ is satis�able in re�exive models if there is a re�exive model

M and a world w in M such that M, w |= φ. Similar nomenclature is followed for other

restrictions on the accessibility relation 7→. A world w′ is said to be reachable from w if

there are worlds w1, w2, . . . , wm such that w 7→ w1 7→ · · · 7→ wm 7→ w′. It is well known

that if some modal formula is satis�ed at some world w in some Kripke model, discarding

worlds not reachable from w does not a�ect satis�ability [5, Proposition 2.6]. Henceforth, if

some modal formula is satis�ed at some world w in some Kripke modelM, we will assume

that M consists of only those worlds reachable from w. Satis�ability in general, re�exive

and transitive models are all Pspace-complete [59], while in models where the accessibility

relation is an equivalence relation, satis�ability is Np-complete [59].

The modal depth md(φ) of a modal formula φ is inductively de�ned as follows. md(q) =

md(⊥) = 0. md(¬φ) = md(φ). md(φ ∨ ψ) = max{md(φ),md(ψ)}. md(♦φ) = md(�φ) =

md(φ) + 1. We will use the Conjunctive Normal Form (CNF) for modal logic de�ned in [49]:

literal ::= q | ¬q | �clause | ♦CNF

clause ::= literal | clause ∨ clause | ⊥
CNF ::= clause | CNF ∧ CNF

where q ranges over Φ. Any arbitrary modal formula φ can be e�ectively transformed into

CNF preserving satis�ability [28]. In section 2.4, we will see that satis�ability problem for

modal logic formulas in CNF is still Pspace-hard. A CNF is a conjunction of clauses and

a clause is a disjunction of literals. A literal is either a propositional variable, a negated

propositional variable or a formula of the form �clause or ♦CNF . If a clause clause1 is such

that clause1 = literal1 ∨ literal2 ∨ · · · literalm, where literal1, literal2, . . . , literalm are literals

according to the above grammar, then literal1, literal2, . . . , literalm are immediate literals of

clause1.
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If we remove the literals�clause and ♦CNF from the above grammar, we get the standard

Conjunctive Normal Form for propositional logic: a literal is either a propositional variable

or its negation, a clause is a disjunction of literals and a CNF formula is a conjunction of

clauses. Consider for example the modal CNF formula [¬q ∨ � [r ∨ ¬s]] ∧ [q ∨ ¬r] ∧ [r ∨
♦[¬s]] ∧ [¬r ∨ ♦[(t ∨ ¬s) ∧ r]]. This modal CNF formula has four clauses: [¬q ∨� [r ∨ ¬s]],
[q ∨ ¬r], [r ∨ ♦[¬s]] and [¬r ∨ ♦[(t ∨ ¬s) ∧ r]]. The last clause has two literals: ¬r and

♦[(t ∨ ¬s) ∧ r]. The second literal is of the form ♦CNF , where the inner CNF formula is

(t ∨ ¬s) ∧ r.
Suppose φ is a modal formula in CNF. If φ is of the form clause1∧clause2∧· · ·∧clausem,

then clause1, clause2, . . . , clausem and all immediate literals of these clauses are said to be at

level md(φ). If �clause1 is a literal at some level i, then clause1 and all immediate literals

of clause1 are said to be at level i− 1. If ♦CNF is a literal at some level i and CNF is of the

form clause1 ∧ clause2 ∧ · · · ∧ clausem′ , then clause1, clause2, · · · , clausem′ and all immediate

literals of these clauses are said to be at level i− 1. Note that a single propositional variable

can occur in the form of a literal at di�erent levels.

We will give lower bounds for satis�ability of Linear Temporal Logic (LTL) and Compu-

tational Tree Logic (CTL). With a set of atomic propositional variables Φ = {q, . . . }, well
formed LTL formulas are those generated by the following syntax.

φ ::= q ∈ Φ | ¬ φ | φ1 ∧ φ2 | Xφ | φ1Uφ2

These LTL formulas are interpreted on sequences of subsets of Φ. Given a sequence π =

Φ0Φ1 · · · of subsets of Φ, the satisfaction of a LTL formula φ at some position i in this

sequence is de�ned as follows.

• π, i |= q i� q ∈ Φi.

• π, i |= ¬φ i� π, i 6|= φ.

• π, i |= φ1 ∧ φ2 i� π, i |= φ1 and π, i |= φ2.

• π, i |= Xφ i� there is a position i+ 1 in π and π, i+ 1 |= φ.

• π, i |= φ1Uφ2 i� for some j ≥ i, π, j |= φ2 and for all i ≤ l < j, π, l |= φ1.

Usual abbreviations are > = p ∨ ¬p, Fφ = >Uφ and Gφ = ¬F¬φ.
With a set of atomic propositional variables Φ = {q, . . . }, well formed CTL formulas are

those generated by the following syntax.

φ ::= q ∈ Φ | ¬φ | EXφ | AXφ | E[φ1Uφ2] | A[φ1Uφ2]

CTL formulas are interpreted on trees whose nodes are labelled with subsets of Φ. For a

tree T and a node η labelled by the subset Φη, satisfaction of a CTL formula is de�ned as

follows.
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• T , η |= q i� q ∈ Φη.

• T , η |= ¬φ i� T , η 6|= φ.

• T , η |= φ1 ∧ φ2 i� T , η |= φ1 and T , η |= φ2.

• T , η |= EXφ i� there exists a child η′ of η with T , η′ |= φ.

• T , η |= AXφ i� for every child η′ of η, T , η′ |= φ.

• T , η |= E[φ1Uφ2] i� for some path η0η1η2 · · · of T starting from η = η0, there exists

i ≥ 0 such that T , ηi |= φ2 and for all j with 0 ≤ j < i, T , ηj |= φ1.

• T , η |= A[φ1Uφ2] i� for every path η0η1η2 · · · of T starting from η = η0, there exists

i ≥ 0 such that T , ηi |= φ2 and for all j with 0 ≤ j < i, T , ηj |= φ1.

Usual abbreviations are EFφ = E[>Uφ], AGφ = ¬EF¬φ, AFφ = A[>Uφ] and EGφ =

¬AF¬φ.

2.2 Treewidth for Modal Logic Formulas

In this section, we will associate a relational structure with a modal CNF formula. We show

that checking satis�ability of a modal CNF formula is Fpt, parameterized by modal depth

and the treewidth of the associated relational structure. We begin with an example modal

CNF formula.

Consider again the modal CNF formula [¬q∨� [r ∨ ¬s]]∧[q∨¬r]∧[r∨♦[¬s]]∧[¬r∨♦[(t∨
¬s)∧ r]]. Its modal depth is 1 and has 4 clauses at level 1. Figure 2.1 shows a graphical rep-

resentation of this formula, which is very similar to the formula's syntax tree. The 4 clauses

at level 1 are represented by e1, e2, e3 and e4. e1 represents the clause {¬q ∨� [r ∨ ¬s]}.
Since ¬q occurs as a literal in this clause, there is a dotted arrow from e1 to q. � [r ∨ ¬s]
(represented by e9) also occurs as a literal in clause e1 and hence there is an arrow from e1

to e9. e4 represents the fourth clause at level 1, which contains ♦ [(t ∨ ¬s) ∧ (r)] as a literal.

This ♦CNF formula is represented by e10. The two clauses (t ∨ ¬s) and (r) are represented

by e7 and e8 respectively and are connected to e10 by arrows. The propositional variable r

occurs as literal at 2 levels, indicated as Lv 0 and Lv 1.

s r t

e5 e6 e7 e8

e9 q r e10

e1 e2 e3 e4

Lv1

Lv0

Figure 2.1: Relational structure associated with the modal formula [¬q ∨� [r ∨ ¬s]] ∧
[q ∨ ¬r] ∧ [r ∨ ♦ [¬s]] ∧ [¬r ∨ ♦ [(t ∨ ¬s) ∧ r]]
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Now we will formalize the above example. The intuition behind the following de�nition

is to represent all clauses and literals of a modal CNF formula by the domain elements of

a relational structure. Binary relations are used to indicate which literals occur in which

clause (and which clauses occur in which literal). Unary relations are used to indicate which

elements represent literals and which elements represent clauses. This will enable us to

reason about clauses, literals and their dependencies using MSO formulas over the relational

structure.

De�nition 2.3. Given a modal CNF formula φ, we associate with it a relational structure

S(φ). It has one domain element for every clause in φ. It has one domain element for

every literal of the form �clause or ♦CNF in φ. It also has one domain element for every

propositional variable used in φ.

The relational structure has two binary relations Oc (occurs) and Oc (occurs negatively).

For any two domain elements e1, e2, Oc(e1, e2) i� e1 represents a clause and e2 represents

a propositional variable occurring negated as a literal in the clause represented by e1. If

e1 represents a clause, then Oc(e1, e2) i� e2 represents an immediate literal (of the clause

represented by e1) of the form �clause, ♦CNF or a non-negated propositional variable. If e1

represents a literal of the form �clause, then Oc(e1, e2) i� e2 represents the corresponding

clause. If e1 represents a literal of the form ♦CNF , then Oc(e1, e2) i� e2 represents a clause

in the corresponding CNF . Finally, the following unary relations are present:

Cl : contains all domain elements representing clauses

Lt : all domain elements representing literals

B� : all literals of the form �clause

D� : all literals of the form ♦CNF

(Lv i)0≤i≤md(φ) : all clauses and literals at level i

The relation Oc is the one represented as dotted arrows in Fig. 2.1. For clauses and

literals of the form �clause or ♦CNF , there is one domain element for every occurrence of

the clause or literal. For example, if the literal ♦(q1 ∧ q2) occurs in two di�erent positions of

a big formula φ, the two occurrences will be represented by two di�erent domain elements

in S(φ). In contrast, di�erent occurrences of a literal that is just a propositional variable

or its negation will be represented by the same domain element. In the rest of this chapter,

whenever we refer to the treewidth of a modal CNF formula φ, we mean the treewidth of

S(φ).

If e1 represents a clause, Oc(e1, e2) means that the clause represented by e1 can be

satis�ed by satisfying the literal represented by e2. Similarly, Oc(e1, e2) means that the

clause represented by e1 can be satis�ed by setting the propositional variable represented by

e2 to false.

If Cl0 ⊆ Cl ∩ Lv 0 is a subset of domain elements representing clauses at level 0, let

CNF (Cl0) be the modal CNF formula that is the conjunction of clauses represented by

domain elements in Cl0. We will now see how to check satis�ability of CNF ({e7, e8}) in

Fig. 2.1 and describe the generalization of this process given in (2.2) below. We use cl and
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lt for �rst order variables intended to represent clauses and literals respectively. First of

all, there must be a subset Tr 0 ⊆ {r, s, t} = Lt ∩ Lv 0 that will be set to >, as written in

the beginning of (2.2). Then, we must check that this assignment satis�es each clause cl in

Cl0, written as ∀cl ∈ Cl0 in (2.1). To check that the clause represented by e7 is satis�ed,

either a positively occurring literal like t must be set to > and hence in Tr 0 (written as

�∃lt ∈ Tr 0 : Oc(cl , lt)� in (2.1)) or a negatively occurring literal like s must be set to ⊥ and

hence not in Tr 0 (�∃lt /∈ Tr 0 : Oc(cl , lt)� in (2.1)). A similar argument applies to e8 as well.

ζ(Cl ,Tr) = ∀cl ∈ Cl{[∃lt ∈ Tr : Oc(cl , lt)] ∨ [∃lt /∈ Tr : Oc(cl , lt)]} (2.1)

ξ[0](Cl0)
a

= ∃Tr 0 ⊆ (Lt ∩ Lv 0) : ζ(Cl0,Tr 0) (2.2)

ξ[i](Cl i)
a

= ∃Tr i ⊆ (Lt ∩ Lv i) : ζ(Cl i,Tr i)

∧[B�i−1 = {cl ′ ∈ (Cl ∩ Lv i−1) | ∃lt ′ ∈ Tr i ∩ B�,Oc(lt ′, cl ′)} ⇒
∀lt ∈ Tr i ∩ D� : D�i−1 = {cl ∈ (Cl ∩ Lv i−1) | Oc(lt , cl)} ⇒

ξ[i− 1](D �i−1 ∪B�i−1)]

(2.3)

Checking satis�ability at higher levels is slightly more complicated. Suppose Cl i ⊆ Cl ∩
Lv i is a subset of clauses at level i. We will take Cl1 = {e1, e3, e4} from Fig. 2.1 as an

example. If some world w in some Kripke modelM satis�es CNF (Cl1), there must be some

subset Tr 1 of literals at level 1 satis�ed at w (�∃Tr i ⊆ (Lt ∩ Lv i)� in (2.3)). As before,

we check that for every clause represented in Cl1 (�∀cl ∈ Cl i� in (2.1)), there is either a

positively occurring literal in Tr 1 (�∃lt ∈ Tr i : Oc(cl , lt)� in (2.1)) or a negatively occurring

literal not in Tr 1 (�∃lt /∈ Tr i : Oc(cl , lt)� in (2.1)). Next, we must check that the literals

we have chosen to be satis�ed at w (by putting them into Tr 1) can actually be satis�ed.

Suppose Tr 1 was {e9, q, r, e10}. Since e9 represents a literal of the form �clause (with the

clause represented by domain element e5), we are committed to satisfy the clause represented

by e5 in any world succeeding w. Let B�0 = {e5} be the set of clauses occurring at level 0

that we have committed to as a result of choosing corresponding �clause literals to be in

Tr 1 (�B�i−1 = {cl ′ ∈ (Cl ∩ Lv i−1) | ∃lt ′ ∈ Tr i ∩ B�,Oc(lt ′, cl ′)}� in (2.3)). Now, since we

have also chosen e10 to be in Tr 1 and e10 represents a ♦CNF formula, there is a demand

to create a world w′ that succeeds w and satis�es the corresponding CNF formula. We

have to check that every such demand in Tr 1 can be satis�ed (�∀lt ∈ Tr i ∩ D�� in (2.3))

by creating successor worlds. In case of the demand created by e10, {e7, e8} = D�0 is the

set of clauses in the demanded CNF formula (�D�i−1 = {cl ∈ (Cl ∩ Lv i−1) | Oc(lt , cl)}�
in (2.3)). Our aim now is to create a successor world w′ in which all clauses represented

in D�0 are satis�ed. However, w′ is a successor world and we have already committed to

satisfying all clauses represented in B�0 in all successor worlds. Hence, we actually check if

the clauses represented in B�0 ∪D�0 are satis�able by inductively invoking ξ[0](D �0 ∪B�0)

(�ξ[i− 1](D �i−1 ∪B�i−1)� in (2.3)).

Now, we formalize the above arguments. The part of the formula [B�i−1 = {cl ′ ∈
(Cl ∩ Lv i−1) | ∃lt ′ ∈ Tr i ∩ B�,Oc(lt ′, cl ′)} ⇒ · · · ] in (2.3) can be written in formal MSO
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syntax as follows:

∀B�i−1 ∀cl ′ B�i−1(cl ′)⇔ [Cl(cl ′) ∧ Lv i−1(cl ′)∧
∃lt ′Tr i(lt ′) ∧ B�(lt ′) ∧Oc(cl ′, lt ′)]⇒ · · ·

We will continue to use the slightly informal syntax of (2.2) and (2.3). The following lemma

formalizes the meaning of ζ(Cl ,Tr), which will occur repeatedly in many other formulas.

Lemma 2.4. Let φ be a modal CNF formula, Cl be any subset of clauses, Tr be any subset

of literals and ζ(Cl ,Tr) = ∀cl ∈ Cl{[∃lt ∈ Tr : Oc(cl , lt)] ∨ [∃lt /∈ Tr : Oc(cl , lt)]}. Let M
be some Kripke model and w be a world in it. If ζ(Cl ,Tr) is true in S(φ), all literals in Tr

are satis�ed at w and any propositional variable not in Tr is set to ⊥ at w, then all clauses

in Cl are satis�ed at w. If all clauses in Cl are satis�ed at w and Tr is the set of literals

satis�ed at w that are sub-formulas of some clause in Cl , then ζ(Cl ,Tr) is true in S(φ).

Proof. Suppose ζ(Cl ,Tr) is true in S(φ) and cl is some clause in Cl . If [∃lt ∈ Tr : Oc(cl , lt)]

is true in S(φ), then some literal in Tr occurs in cl , so cl is satis�ed at w (since lt is satis�ed

at w). If [∃lt /∈ Tr : Oc(cl , lt)] is true in S(φ), then a propositional variable not in Tr (and

hence set to ⊥ in w) occurs negatively in cl , so cl is satis�ed at w.

Suppose Tr is the set of literals satis�ed at w that are sub-formulas of some clause in Cl

and all clauses in Cl are satis�ed at w. Let cl be any clause in Cl . Since cl is satis�ed at w,

either a positive literal occurring in cl is satis�ed at w or a propositional variable occurring

negatively in cl is set to ⊥ in w. In the �rst case, [∃lt ∈ Tr : Oc(cl , lt)] is true in S(φ)

and in the second case, [∃lt /∈ Tr : Oc(cl , lt)] is true in S(φ). Therefore, ζ(Cl ,Tr) is true in

S(φ).

Lemma 2.5. The property ξ[i](Cl i) in (2.3) can be written in a MSO logic formula of size

linear in i.

Proof. We will prove that the length |ξ[i]| of ξ[i] is linear in i by induction. Let c be the

length of ξ[i] without length of ξ[i − 1] counted. As can be seen, |ξ[0]| ≤ c. Inductively

assume that |ξ[i− 1]| ≤ ic. Then, |ξ[i]| = c+ |ξ[i− 1]|. Hence, |ξ[i]| ≤ c+ ic = c(i+ 1).

Lemma 2.6. If φ is any modal formula in CNF and Cl i is any set of domain elements

representing clauses at level i, then CNF (Cl i) is satis�able i� ξ[i](Cl i) is true in S(φ).

Proof. By induction on i.

Base case i = 0: All literals at level 0 are propositional variables or their negations.

Suppose ξ[0](Cl0) is true in S(φ). Lemma 2.4 implies that in a world w, if we set exactly

those propositional variables occurring in Tr 0 to >, all clauses in Cl0 are satis�ed at w. If all

clauses in Cl0 are satis�ed at some world w, then let Tr 0 be the set of propositional variables

set to > in w that occur as literals in some clause in Cl0. Lemma 2.4 then implies that

ξ[0](Cl0) is true in S(φ).

Induction step: Suppose Cl i is a set of domain elements representing clauses occurring at

level i and ξ[i](Cl i) is true in S(φ). Consider a Kripke modelM with one world w where the
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propositional variables occurring in Tr i are set to > and others are set to ⊥. If we can prove

that all literals occurring in Tr i can be satis�ed at w, then Lemma 2.4 implies that all clauses

in Cl i are satis�ed at w. So let B�i−1 = {cl ′ ∈ (Cl ∩ Lv i−1) | ∃lt ′ ∈ Tr i ∩ B�,Oc(lt ′, cl ′)}
be the set of clauses that we have to satisfy in all successors of w, since the corresponding

�clause is in Tr i. Let lt ∈ Tr i ∩ D� be a literal of the form ♦CNF in Tr i such that

D�i−1 = {cl ∈ (Cl ∩ Lv i−1) | Oc(lt , cl)} is the set of clauses to be satis�ed at a successor

of w in order to satisfy lt at w. Since ξ[i − 1](D �i−1 ∪B�i−1) is true in S(φ), by induction

hypothesis there is a world w′ in some Kripke modelM′ where all clauses in D �i−1 ∪B�i−1

are satis�ed. Make w′ a successor of w to satisfy lt at w. Repeat this for every lt ∈ Tr i ∩D�
to satisfy all literals in Tr i at w.

Now we will prove the other direction of the induction step. Suppose Cl i is a set of

domain elements representing clauses occurring at level i and there is a Kripke model

M and a world w such that M, w |= CNF (Cl i). Let Tr i be the set of literals satis�ed

at w that are sub-formulas of some clause in Cl i. Lemma 2.4 implies that ∀cl ∈ Cl i :[
(∃lt ∈ Tr i : Oc(cl , lt)) ∨ (∃lt /∈ Tr i : Oc(cl , lt)

)]
is true in S(φ). Suppose B�i−1 = {cl ′ ∈

(Cl ∩ Lv i−1) | ∃lt ′ ∈ Tr i ∩ B�,Oc(lt ′, cl ′)} is the set of clauses such that the correspond-

ing �clause is in Tr i. Let lt ∈ Tr i ∩ D� be a literal of the form ♦CNF in Tr i such that

D�i−1 = {cl ∈ (Cl ∩ Lv i−1) | Oc(lt , cl)} is the set of clauses in the corresponding CNF

formula. Since all literals in Tr i are satis�ed at w, there must be a successor w′ of w where

all clauses in D �i−1 ∪B�i−1 are satis�ed. By induction hypothesis, ξ[i − 1](D �i−1 ∪B�i−1)

is true in S(φ). Hence, ξ[i](Cl i) is true in S(φ).

Theorem 2.7. Given a modal CNF formula φ, there is a Fpt algorithm that checks if φ is

satis�able in general models, with treewidth of S(φ) and modal depth of φ as parameters.

Proof. Given φ, S(φ) can be constructed in polynomial time. To check that all clauses of φ

at level md(φ) are satis�able in some world w of some Kripke modelM, we check whether

the formula ∃Clmd(φ)∀cl(Clmd(φ)(cl)⇔ (Cl(cl) ∧ Lvmd(φ)(cl))) ∧ ξ[md(φ)](Clmd(φ)) is true in

S(φ). By Lemma 2.6, this is possible i� φ is satis�able and length of the above formula is

linear in md(φ). An application of Courcelle's theorem will give us the Fpt algorithm.

2.2.1 On the Relevance of Treewidth for Modal Logic

In Theorem 2.7, the role of treewidth is buried inside the proof of Courcelle's theorem.

Here, we try to motivate why small treewidth implies more e�cient algorithms. Informally,

treewidth is a measure of how close a graph is to being a tree. Given a modal logic formula φ

in CNF, the associated structure S(φ) is very similar to the syntax tree of φ. The structure

S(φ) is not a tree (i.e., it has cycles) because a single propositional variable may be shared

by many clauses of the formula. Thus, if very few variables are shared across clauses, S(φ)

is very close to a tree, i.e., S(φ) will have small treewidth. In the example of Fig. 2.1, the

propositional variable r is shared by the clauses represented by domain elements e2, e3 and

e4. If we replace r by r′ in the clause represented e4 as in Fig. 2.2, the number of shared
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Figure 2.2: Relational structure associated with the modal formula {¬r ∨� [r]}∧{r ∨ ♦⊥}∧
{r ∨ ♦ [¬r]} ∧ {¬r ∨ ♦ [(t ∨ ¬r) ∧ (r)]}

variables and cycles will decrease. For example, e4 was part of many cycles in Fig. 2.1 but

not so in Fig. 2.2. Small treewidth thus implies less sharing of variables across clauses and

hence less work for the algorithm.

Treewidth is a very fundamental concept and naturally arises in many contexts, even

in industrial applications like software veri�cation [92]. Applications of treewidth related

techniques to propositional logic is extensively studied � see [33, Section 1.4] and references

therein. Modal logic being a natural and very useful extension of propositional logic, we might

expect some bene�t by exploring applicability of treewidth related techniques to modal logic.

The set of modal formulas with small treewidth is powerful enough to encode complex

formulas. In section 2.4, we prove that there are classes of modal formulas with con-

stant treewidth whose satis�ability is Pspace-complete. Hence, the restriction of bounded

treewidth is not a severe one.

2.3 Re�exive Models

In this section, we extend the basic technique described in section 2.2 to satis�ability in

re�exive models. Let Oc∗(x, y)
a

= ∀X[X(x) ∧ ∀z∀u(X(z) ∧ Oc(z, u) ⇒ X(u))] ⇒ X(y) be

the MSO formula such that Oc∗(x, y) holds i� (x, y) is in the re�exive transitive closure of

the binary Oc relation.

The arguments of this section are slightly more complicated than those in section 2.2.

Following is the intuition behind this complication. Suppose that in order to satisfy some

clause clause at some world w, we decide to make a literal �clause ′ (that occurs in clause)

true at w. Since w is its own successor (due to re�exivity of the underlying frame), this

means that in order for w to satisfy �clause ′, it has to satisfy clause ′ too. In our attempt to

satisfy a clause clause at some world w, we are forced to satisfy clause ′ at the same world.

Note that clause ′ is at a lower level than clause. Hence, we can no longer hope to satisfy a

clause of level i at a world w by satisfying some literals of level i at world w as we did in

section 2.2. We will also have to look at clauses and literals of level lower than i. The rest

of this section gives the formal arguments needed to handle this.

Let Cl i be some set of domain elements representing clauses at level at most i. The

property ξ[i](Cl i) de�ned below checks if there is a re�exive Kripke model M and a world
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w in it that satis�es all clauses in Cl i. Recall the de�nition of ζ(Cl ,Tr) from (2.1).

ξ[0](Cl0)
a

= ∃Tr 0 ⊆ (Lt ∩ Lv 0) : ζ(Cl0,Tr 0) (2.4)

ξ[i](Cl i)
a

= ∃Tr i ⊆ Lt :

∀lt ∈ Tr i ∃cl ∈ Cl i : Oc∗(cl , lt)

∧B�i−1 = {cl ′ ∈ Cl | ∃lt ′ ∈ Tr i ∩ B�,Oc(lt ′, cl ′)} ⇒
ζ(Cl i ∪B�i−1,Tr i)

∧∀lt ∈ Tr i ∩ D� : D�i−1 = {cl ∈ Cl | Oc(lt , cl)} ⇒
ξ[i− 1](D �i−1 ∪B�i−1)

(2.5)

Lemma 2.8. The property ξ[i](Cl i) can be written in a MSO logic formula of size linear in

i. If φ is any modal formula in CNF and Cl i is any subset of domain elements representing

clauses at level at most i, then CNF (Cl i) is satis�able in a re�exive model i� ξ[i](Cl i) is true

in S(φ).

Proof. We will prove that the length |ξ[i]| of ξ[i] is linear in i by induction. Let c be the

length of ξ[i] without the length of ξ[i− 1] counted. As can be seen, |ξ[0]| ≤ c. Inductively

assume that |ξ[i− 1]| ≤ ic. Then, |ξ[i]| = c+ |ξ[i− 1]|. Hence, |ξ[i]| ≤ c+ ic = c(i+ 1).

We will now prove the second claim by induction on i.

Base case i = 0: Same as the base case in the proof of Lemma 2.6.

Induction step: Suppose Cl i is a subset of domain elements representing clauses occurring

at level at most i and ξ[i](Cl i) is true in S(φ). We will build a re�exive Kripke model M
and prove that it has a world w such that M, w |= CNF (Cl i). We will start with a single

world w in which the propositional variables occurring in Tr i are set to > and others are set

to ⊥. Let B�i−1 = {cl ′ ∈ Cl | ∃lt ′ ∈ Tr i ∩B�,Oc(lt ′, cl ′)} be the set of clauses such that the

corresponding�clause is in Tr i, so that all clauses in B�i−1 are to be satis�ed at all successors

of w, including w itself. The condition ∀lt ∈ Tr i ∃cl ∈ Cl i : Oc∗(cl , lt) ensures that all

literals in Tr i are at level at most i. Suppose lt ∈ Tr i ∩D� is any literal of the form ♦CNF

in Tr i such that D�i−1 = {cl ∈ Cl | Oc(lt , cl)} is the set of clauses in the corresponding

CNF . Since all clauses in D �i−1∪B�i−1 are at level at most i−1 and ξ[i−1](D �i−1∪B�i−1)

is true in S(φ), by induction hypothesis there is a re�exive Kripke modelM′ with a world

w′ in it that satis�es all clauses in D �i−1 ∪B�i−1. Make w′ a successor of w to satisfy lt

at w. Repeat this for every lt ∈ Tr i ∩ D�. By induction on the modal depth of any clause

cl ∈ Cl i ∪B�i−1, we show that cl is satis�ed at w. If
(∃lt /∈ Tr i : Oc(cl , lt)

)
is true in S(φ),

a propositional variable occurring negatively in cl is set to ⊥ at w. If (∃lt ∈ Tr i : Oc(cl , lt))

is true in S(φ) and lt is a propositional variable, there is a propositional variable occurring

in cl set to > in w. If lt is of the form ♦CNF , we added some world w′ succeeding w to

satisfy lt at w. If lt is of the form �clause, then the corresponding clause cl ′ is in B�i−1

and has modal depth lower than cl . By induction hypothesis on the modal depth of cl ′, it is

satis�ed at w. It is also satis�ed at all other successors of w by construction.

Now we prove the other direction of the induction step. Suppose Cl i is a subset of domain

elements representing clauses occurring at level at most i and that there is a re�exive Kripke
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model M and a world w such that M, w |= CNF (Cl i). We prove that ξ[i](Cl i) is true in

S(φ). To begin with, we choose Tr i to be the set of precisely those literals satis�ed at w that

are sub-formulas of some clause in Cl i. This will ensure that ∀lt ∈ Tr i ∃cl ∈ Cl i : Oc∗(cl , lt)

is true in S(φ). Let B�i−1 = {cl ′ ∈ Cl | ∃lt ′ ∈ Tr i∩B�,Oc(lt ′, cl ′)} be the set of clauses such
that the corresponding �clause is in Tr i. The world w satis�es all clauses in Cl i and since

w is its own successor, it also satis�es all clauses in B�i−1. Therefore, Lemma 2.4 implies

that ∀cl ∈ Cl i ∪B�i−1 :
[
(∃lt ∈ Tr i : Oc(cl , lt)) ∨ (∃lt /∈ Tr i : Oc(cl , lt)

)]
is true in S(φ).

Let lt be any literal of the form ♦CNF in Tr i and let D�i−1 = {cl ∈ Cl | Oc(lt , cl)} be
the set of clauses in the corresponding CNF formula. Since w satis�es lt , there must be a

successor w′ of w that satis�es all clauses in D�i−1 and also all clauses in B�i−1 since w′ is

a successor of w. Since all clauses in D �i−1 ∪B�i−1 are at level at most i − 1 and w′ is a

world in a re�exive Kripke model that satis�es all clauses in D �i−1 ∪B�i−1, we can apply

induction hypothesis to conclude that ξ[i− 1](D �i−1 ∪B�i−1) is true in S(φ).

Theorem 2.9. Given a modal CNF formula φ, there is a Fpt algorithm that checks if φ

is satis�able in re�exive models, with the treewidth of S(φ) and the modal depth of φ as

parameters.

Proof. Given φ, S(φ) can be constructed in polynomial time. To check that all clauses of φ

at level md(φ) are satis�able in some world w of some re�exive Kripke modelM, we check

whether the formula ∃Clmd(φ)∀cl(Clmd(φ)(cl) ⇔ (Cl(cl) ∧ Lvmd(φ)(cl))) ∧ ξ[md(φ)](Clmd(φ))

is true in S(φ). By Lemma 2.8, this is possible i� φ is satis�able in a re�exive model. The

length of the above formula is linear in md(φ). An application of Courcelle's theorem will

give us the Fpt algorithm.

2.4 Lower Bounds for Treewidth

In [45], Halpern proved that even with one propositional variable, modal satis�ability is

Pspace-hard in general models and in re�exive models. This hardness proof involves a

modal formula and here, we will observe that the modal formula is in CNF with constant

treewidth. This implies that with treewidth alone as parameter, modal satis�ability is not

Fpt unless Ptime = Pspace.

Let F be a propositional 3-CNF formula with variables q1, q2, . . . , qn. LetQ1, Q2, . . . , Qn ∈
{∀, ∃} be Boolean quanti�ers so that Q1q1Q2q2 · · ·QnqnF is a Quanti�ed Boolean Formula.

It is known that checking the truth of such formulas is Pspace-complete.

Let ♦i (�i) denote ♦ · · ·♦ (� · · ·�), with ♦ (�) repeated i times respectively. If clause

is a clause in F and qi, i ≥ 2 occurs as a literal in clause, replace qi with the ♦CNF literal

♦[♦(¬r∧♦ir)∧�(r∨�i−1¬r)]. Replace occurrences of q1 with ♦2(¬r∧♦r). Similarly replace

occurrences of ¬qi, i ≥ 2 and ¬q1 by the �clause literals �[�(r ∨ �i¬r) ∨ ♦(¬r ∧ ♦i−1r)]

and �2(r∨�¬r) respectively. Let clause1, clause2, . . . , clausem be the clauses of F after the

above replacements. Conjunction of the following formulas is equivalent to the formula ψTA
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de�ned in [45, Section 3].

init
a

= d0 ∧ ¬d1

depth
a

=
n+1∧
i=1

�n(¬di ∨ di−1)

determined
a

=
n∧
i=1

�n[¬di ∨ ¬qi ∨�(¬di ∨ qi)] ∧�n[¬di ∨ qi ∨�(¬di ∨ ¬qi)]

branching
a

=
∧

i:Qi+1=∀
{�n[¬di ∨ di+1 ∨ ♦(di+1 ∧ ¬di+2 ∧ qi+1)]

∧�n[¬di ∨ di+1 ∨ ♦(di+1 ∧ ¬di+2 ∧ ¬qi+1)]}
∧

∧
i:Qi+1=∃

�n[¬di ∨ di+1 ∨ ♦(di+1 ∧ ¬di+2)]

satisfy
a

=
m∧
j=1

�n[¬dn ∨ clausej]

By replacing q1, q2, . . . , qn, d0, . . . , dn+1 by ♦2(¬r∧♦r),♦[♦(¬r∧♦2r) ∧�(r ∨�1¬r)], · · · ,

♦[♦(¬r ∧ ♦nr) ∧�(r ∨�n−1¬r)],♦[♦(¬r ∧ ♦n+1r) ∧�(r ∨�n¬r)], · · · ,♦[♦(¬r ∧ ♦2n+2r) ∧
�(r ∨ �2n+1¬r)] respectively in the above formula, we get a modal CNF formula ψTCNF

that is satis�able in a re�exive Kripke model i� Q1q1Q2q2 · · ·QnqnF is true [45, Section 3].

Note that r is the only propositional variable used in ψTCNF . Hence, if the domain element

representing r is removed from S(ψTCNF ), the remaining structure is a tree, which has a de-

composition with each bag containing at most 2 elements. Adding the element representing

r to all bags will give a tree decomposition of S(ψTCNF ) of width 2. Therefore, satis�ability

of modal CNF formulas of constant treewidth in re�exive models is Pspace-hard. Hence,

unless Ptime = Pspace, modal satis�ability in re�exive models is not Fpt with treewidth

alone as parameter. It is proved in [45, Section 3] that a simpler version of ψTA (called ψKA )

will work for satis�ability in general models. It is routine to check that using the same pro-

cedure as above, a modal CNF formula ψKCNF with S(ψKCNF ) having constant treewidth can

be constructed such that ψKCNF is satis�able i� Q1q1Q2q2 · · ·QnqnF is true. Hence, unless

Ptime = Pspace, modal satis�ability in general models is not Fpt with treewidth alone as

parameter.

2.5 Models with Euclidean Property

In this section, we will investigate the parameterized complexity of satis�ability in Euclidean

models. The main observation leading to the Fpt algorithm is the fact that if a modal

formula is satis�ed in a Euclidean model, then it is satis�ed in a rather simple model. As

proved in [56], if a modal formula is satis�ed at some world w0 in some Euclidean modelM,

then it is satis�ed in a model whose underlying frame is of the form (W ∪ {w0}, 7→) where

W×W ⊆7→. The frame looks as illustrated in Fig. 2.3. The worlds w1, w2, w3 serve to satisfy
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w0

w1 w2 w3

W ×W

Figure 2.3: Illustration of an Euclidean frame

some ♦CNF formulas at w0.

We will drop all unary relations (Lv i)0≤i≤md(φ). Instead, we will have one unary relation

Pv containing all domain elements representing propositional variables. This will not change

the treewidth of S(φ). Let B� be a set clauses and Tr be a set of literals of the form ♦CNF .

The following formula checks if there exists a Kripke model with a frame of the form W ×W
as shown in Fig. 2.3.

χ(B�,Tr)
a

= ∃Tr 0 ⊆ Lt \ Pv :

B�0 = {cl ∈ Cl | ∃lt ∈ (Tr 0 ∩ B�) ∧Oc(lt , cl)} ⇒
∀lt ∈ Tr : ∃Pv 0 ⊆ Pv : D�0 = {cl ∈ Cl | Oc(lt , cl)} ⇒

∀cl ∈ D �0 ∪B� ∪B�0 :

[(∃lt ∈ Tr 0 ∪ Pv 0 : Oc(cl , lt)) ∨ (∃lt /∈ Pv 0 : Oc(cl , lt))]

∧∀lt ∈ Tr 0 ∩ D� : ∃Pv 1 ⊆ Pv : D�1 = {cl ∈ Cl | Oc(lt , cl)} ⇒
∀cl ∈ D �1 ∪B�0 :

[(∃lt ∈ Tr 0 ∪ Pv 1 : Oc(cl , lt)) ∨ (∃lt /∈ Pv 1 : Oc(cl , lt))]

(2.6)

Lemma 2.10. Suppose φ is a modal CNF formula, B� is a set of clauses and Tr is a set of

literals of the form ♦CNF . Then χ(B�,Tr) is true in S(φ) i� there is a Kripke model where

all worlds are accessible from one another such that for each ♦CNF literal in Tr , there is a

world satisfying the corresponding CNF formula and all clauses in B�.

Proof. Suppose χ(B�,Tr) is true in S(φ). LetM be a Kripke model with one world wi for

each literal lt i ∈ Tr , where the propositional variables in the corresponding Pv 0 (as witnessed

by the truth of χ(B�,Tr) in S(φ)) are set to > and others are set to ⊥. Add one world wj

for each literal lt j ∈ Tr 0 ∩ D� of the form ♦CNF in Tr 0, where the propositional variables

in the corresponding Pv 1 are set to > and others are set to ⊥. By induction on the modal

depth of any clause cl , we prove the following claim:

Claim: If cl is in D �1 ∪B�0 where D�1 = {cl ′ ∈ Cl | Oc(lt j, cl ′)} for some literal

lt j ∈ Tr 0 ∩ D�, then cl is satis�ed at the world wj. If cl is in D �0 ∪B� ∪ B�0 where

D�0 = {cl ′ ∈ Cl | Oc(lt i, cl ′)} for some lt i in Tr , then cl is satis�ed in the world wi.

Let cl be any clause as in the claim. If ∃lt ∈ Tr 0 is true and lt is of the form ♦CNF ,

then the clauses in the corresponding CNF have modal depth less than cl and satis�ed is

some world wj by induction hypothesis. If lt is of the form �clause, then the corresponding

clause belongs to B�0 with modal depth less than cl , so it is satis�ed in all worlds by
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induction hypothesis. Otherwise, cl is satis�ed by the valuation of propositional variables in

the corresponding world. This proves thatM meets the requirements of the lemma.

For the other direction, suppose there is a Kripke model M as speci�ed in the lemma.

Let Tr 0 be the set of literals of modal depth at least 1 that are satis�ed at some world in

M. Let B�0 = {cl ∈ Cl | ∃lt ∈ (Tr 0 ∩ B�) ∧ Oc(lt , cl)} be the set of clauses such that the

corresponding �clause is in Tr 0. All clauses in B�0 are satis�ed in all worlds ofM. For any

literal lt ∈ Tr , there is some world w inM satisfying the corresponding CNF formula and

all clauses in B�. Let D�0 = {cl ∈ Cl | Oc(lt , cl)} be the set of clauses in the corresponding

CNF formula and Pv 0 be the set of propositional variables set to > in w. Since all clauses

in D �0 ∪B�∪B�0 are satis�ed at w, [(∃lt ∈ Tr 0 ∪Pv 0 : Oc(cl , lt))∨ (∃lt /∈ Pv 0 : Oc(cl , lt))]

is true in S(φ). Finally, let lt ∈ Tr 0 ∩ D� be a literal of the form ♦CNF in Tr 0. There

must be a world w′ inM satisfying the corresponding CNF formula. Let D�1 = {cl ∈ Cl |
Oc(lt , cl)} be the set of clauses in the corresponding CNF formula and let Pv 1 be the set

of propositional variables set to > in w′. Since all clauses of D �1 ∪B�0 are satis�ed at w′,

[(∃lt ∈ Tr 0 ∪ Pv 1 : Oc(cl , lt)) ∨ (∃lt /∈ Pv 1 : Oc(cl , lt))] is true in S(φ).

The following formula makes use of χ(B�,Tr) to check if a set of clauses Cl0 is satis�able

in an Euclidean model. Recall the de�nition of ζ(Cl ,Tr) from Lemma 2.4.

χ′(Cl0)
a

= ∃Tr 0 ⊆ Lt : ζ(Cl0,Tr 0)

∧χ({cl ∈ Cl | ∃lt ∈ Tr 0 ∩ B�,Oc(lt , cl)},Tr 0 ∩ D�)
(2.7)

Lemma 2.11. Let Cl0 be a set of clauses occurring in a modal CNF formula φ. CNF (Cl0)

is satis�able at a world w0 in an Euclidean model M in which w0 is not its own successor

i� χ′(Cl0) is true in S(φ).

Proof. Suppose χ′(Cl0) is true in S(φ). LetM be a Kripke model with one world w0 where

the propositional variables in Tr 0 are set to > and others are set to ⊥. Let {cl ∈ Cl | ∃lt ∈
Tr 0 ∩ B�,Oc(lt , cl)} be the set of clauses such that the corresponding �clause is in Tr 0.

By Lemma 2.10, there is a Kripke model M′ with all worlds accessible from one another

such that for each literal of the form ♦CNF in Tr 0 ∩ D�, there is a world satisfying the

corresponding CNF formula and all clauses in {cl ∈ Cl | ∃lt ∈ Tr 0 ∩ B�,Oc(lt , cl)}. Make

all such worlds successors of w0 so that M is an Euclidean model where all literals in Tr 0

are satis�ed at w0. Lemma 2.4 implies that all clauses in Cl0 are satis�ed at w0.

For the other direction, suppose there is a Euclidean modelM as speci�ed in the lemma.

Let Tr 0 be the set of literals satis�ed at w0 that occur as sub-formulas of some clause in Cl0.

Lemma 2.4 implies that ζ(Cl0,Tr 0) is true in S(φ). Let W be the set of worlds inM other

than w0 reachable from w0. SinceM is Euclidean, all worlds in W are accessible from one

another. For each ♦CNF literal in Tr 0, one of the worlds in W accessible from w0 satis�es

the corresponding CNF formula and all clauses in {cl ∈ Cl | ∃lt ∈ Tr 0 ∩ B�,Oc(lt , cl)}.
Therefore, Lemma 2.10 implies that χ′({cl ∈ Cl | ∃lt ∈ Tr 0 ∩ B�,Oc(lt , cl)},Tr 0 ∩ D�) is

true in S(φ).
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Theorem 2.12. Let φ be a modal CNF formula. With treewidth of S(φ) as parameter, there

is a Fpt algorithm for checking whether φ is satis�able in a Kripke model that satis�es

Euclidean property and any combination of re�exivity, symmetry and transitivity.

Proof. Let Cl0 be the set of clauses in φ at the top level. To S(φ), add a new literal element

lt of the form ♦CNF , and add Oc edges from this new lt element to all clauses Cl0. This

will increase the treewidth of S(φ) by only a constant. If φ is satis�ed at a world w0 that

is its own successor, then Euclidean property will force all worlds to be accessible from

one another. Therefore, by Lemma 2.10 and Lemma 2.11, checking satis�ability of φ in an

Euclidean model is equivalent to checking the truth of χ′(Cl0) ∨ χ(∅, {lt}) in the modi�ed

S(φ). Addition of re�exivity or symmetry again forces all worlds to be accessible from one

another (except in the case where there is only one world, which can be easily handled by a

small MSO formula), so checking satis�ability of φ in a Euclidean model that is also re�exive

and/or symmetric is equivalent to checking the truth of χ(∅, {lt}) in the modi�ed S(φ).

If the model is required to be Euclidean and transitive, then, referring to Fig. 2.3, all

worlds in W would be accessible from w0. If a literal �clause has to be satis�ed at w0,

all worlds in W have to satisfy the corresponding clause. This can be easily handled by

modifying χ(B�,Tr) as follows:

χ(B�,Tr)
a

= ∃Tr 0 ⊆ Lt \ Pv :

B�0 = {cl ∈ Cl | ∃lt ∈ (Tr 0 ∩ B�) ∧Oc(lt , cl)} ⇒
∀lt ∈ Tr ∪ (Tr 0 ∩ D�) : ∃Pv 0 ⊆ Pv :

D�0 = {cl ∈ Cl | Oc(lt , cl)} ⇒ ∀cl ∈ D �0 ∪B� ∪B�0 :

[(∃lt ∈ Tr 0 ∪ Pv 0 : Oc(cl , lt)) ∨ (∃lt /∈ Pv 0 : Oc(cl , lt))]

(2.8)

All the MSO formulas used above are of constant length. Hence, an application of Cour-

celle's theorem gives the desired result.

The Euclidean property is very strong in the sense that it makes the complexity of

in�nitely many modal logics drop from Pspace-hard to Np-complete [47]. One might hope

for extending the results of this section to any modal logic whose frames is a subset of

Euclidean frames. The results in [47] use semantic characterizations while our MSO formulas

can only reason about syntax of modal logic formulas. Even though there is a close relation

between the syntax and semantics of modal logic of Euclidean frames (which have been used

to obtain the results of this section), it seems di�cult to exploit this relation to obtain Fpt

algorithms for arbitrary extensions of modal logic of Euclidean frames. It remains to be seen

if other tools from the theory of MSO logic on graphs can be used to achieve this.

2.6 Transitive Models

In transitive models, formulae with small modal depth can check properties of all worlds

reachable from a given world. This makes it di�cult to obtain Fpt algorithms for satis�a-

bility in transitive models. Similar to hierarchies of intractable problems like the polynomial
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hierarchy in classical complexity theory, there are hierarchies of intractable parameterized

problems. The parameterized complexity classW[1] is in one such hierarchy. Parameterized

problems that are W[1]-hard are believed not to have Fpt algorithms. More details can be

found in [36, 25].

To formally prove W[1]-hardness, we will give a parameterized reduction from the Parti-

tioned Weighted Satis�ability (p-Pw-Sat) problem to satis�ability of modal CNF formulas

in transitive models. The primal graph of a propositional CNF formula consists of one vertex

for each propositional variable, and an edge between two variables i� they occur together in

a clause. For e ∈ N, let [e] denote the set {1, 2, . . . , e}. The p-Pw-Sat problem is de�ned

as follows:

p-Pw-Sat

Instance: A propositional CNF formula F over variables Φ = {q1, . . . , qn}, a
partition part : Φ→ [e] of the variables and a target function tg : [e]→ N.

Parameter: Pathwidth of the primal graph of F and the number of parts e.

Problem: Decide if there is a satisfying assignment that sets exactly tg(ρ) variables

to > in each part ρ.

Lemma 2.13. The p-Pw-Sat problem is W[1]-hard when parameterized by the number of

parts e and the pathwidth of the primal graph.

Proof. We will give a parameterized reduction from the Number List Coloring Problem

(Nlcp). An instance of Nlcp is a graph G = (V,E), a set of colors Sv for each vertex v ∈ V
and a target function tg : ∪v∈V Sv → N. We need to check if G can be properly colored

(every adjacent pair of vertices get di�erent colors) such that every vertex v is colored from

its set Sv and there are exactly tg(`) vertices colored with ` for every ` ∈ ∪v∈V Sv. In [31],

it is proved that even for graphs of pathwidth 2, Nlcp is W[1]-hard when parameterized by

the total number of colors in ∪v∈V Sv.
Given an instance of Nlcp with a graph of pathwidth 2, we associate with it an instance of

p-Pw-Sat with the set of propositional variables {q`v | v ∈ V, ` ∈ Sv}. Every color ` ∈ ∪v∈V Sv
is a part of the set of propositional variables and contains the variables {q`v | Sv ⊇ {`}}. The
target function is the same as the target function of the Nlcp instance. The CNF formula

is the conjunction of the following formulae:

atLeast
a

=
∧
v∈V

(∨
`∈Sv

q`v

)
atMost

a

=
∧
v∈V

∧
` 6=`′∈Sv

(
¬q`v ∨ ¬q`

′
v

)
proper

a

=
∧

(v,u)∈E

∧
`∈Sv∩Su

(¬q`v ∨ ¬q`u)
Suppose the given Nlcp instance is a Yes instance. In the associated p-Pw-Sat instance,

set q`v to > i� the vertex v receives color ` in the witnessing coloring. Since every vertex gets
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a color from its set, the formula atLeast above is satis�ed. Since every vertex gets at most

one color, the formula atMost is satis�ed. If (v, u) is any edge in the graph, then since v and

u get di�erent colors in the witnessing coloring, the formula proper above is also satis�ed.

Since target function of the p-Pw-Sat instance is same as the target function of the Nlcp

instance, the target function of p-Pw-Sat is also satis�ed.

On the other hand, suppose that the instance of p-Pw-Sat is a Yes instance. Color

a vertex v with the color ` i� the propositional variable q`v is set to > in the witnessing

satisfying assignment. The formula atLeast ensures that every vertex gets at least one color

from its set, while the formula atMost ensures that every vertex gets at most one color. If

(v, u) is an edge in G and ` is a common color between Sv and Su, then the formula proper

above ensures that at least one of the vertices v, u do not get the color `. Hence, the coloring

given to the graph G is proper. Again since the target function of the p-Pw-Sat instance

is same as the target function of the Nlcp instance, the target function of Nlcp is also

satis�ed.

Now, it is left to prove that the parameters of the p-Pw-Sat instance is bounded by

some functions of the parameters of the Nlcp instance. The �rst parameter of the p-Pw-

Sat instance is the number of parts, which is same as the total number of colors in the

Nlcp instance (and later is a parameter of the Nlcp instance). The second parameter is

the pathwidth of the primal graph of the CNF formula. Consider any path decomposition

of width 2 of the graph G in the Nlcp instance. For every bag B and every vertex v in

the bag, replace v by the set {q`v | ` ∈ Sv}. We claim that the resulting decomposition is

a path decomposition of the primal graph of the CNF formula in the p-Pw-Sat instance.

It is su�cient to prove that for every clause in the CNF formula, there is a bag containing

all propositional variables occurring as literals in that clause. For any clause in the formula

atLeast or atMost associated with a vertex v, any bag that contained the vertex v before

replacement will meet the above criteria. For a clause in the formula proper associated with

an edge (v, u), any bag that contained the vertices v and u before replacement will su�ce.

In the new path decomposition, number of elements in any bag is at most 3 times the total

number of colors in the Nlcp instance. Hence, the pathwidth of the primal graph of the

CNF formula in the p-Pw-Sat instance is also bounded by a function of the parameters of

the Nlcp instance.

Theorem 2.14. With pathwidth and modal depth as parameters, modal satis�ability in tran-

sitive models is W[1]-hard.

The rest of this section is devoted to a proof of the above theorem, which is by a pa-

rameterized reduction from p-Pw-Sat to satis�ability of modal CNF formulae in transitive

models. From De�nition 1.1, it is clear that pathwidth is at least as large as treewidth.

Hence, any problem that is W[1]-hard when parameterized by pathwidth is also W[1]-hard

parameterized by treewidth. Given an instance (F , part : Φ → [e], tg : [e] → N) of p-Pw-

Sat problem with the pathwidth of the primal graph of F being pw , we construct a modal

CNF formula φF of modal depth 2 in Fpt time such that the pathwidth (and hence the

27



treewidth) of S(φF) is bounded by a function of pw and e and p-Pw-Sat is a Yes instance

i� φF is satis�able in a transitive model. Suppose the propositional variables used in F are

q1, q2, . . . , qn. The idea is that if φF is satis�ed at some world w0 in some transitive model

M, then M, w0 |= F . To check that the required targets of the number of variables set

to true in each part are met, φF will force the existence of worlds w1, w2, . . . , wn arranged

as w0 7→ w1 7→ w2 7→ · · · 7→ wn. In the formula φF , we will maintain a counter for each

part of the propositional variables. At each world wi, if qi is true, we will force the counter

corresponding to part(qi) to increment. At the world wn, the counters will have the number

of variables set to > in each part. We will then verify in the formula φF that these counts

meet the given target. Such counting tricks are standard in complexity theoretic arguments

of modal logics, for example [5, Section 6.8]. The challenge here is to implement the counting

in a modal formula of small pathwidth.

In a p-Pw-Sat instance containing n propositional variables and e parts, we will denote

the number of variables in part ρ by n[ρ]. We �rst construct an optimal path decomposition

of the primal graph of F in Fpt time. We will name the variables occurring in the �rst bag

as q1, . . . , qi. We will name the variables newly introduced in the second bag as qi+1, . . . , qi′

and so on. In the rest of the construction, we will use this same ordering q1, . . . , qn of the

propositional variables. This will be important to maintain the pathwidth of the resulting

modal formula low. The modal CNF formula φF will use all the propositional variables

q1, . . . , qn used by F and also use the following additional variables:

• t↑1, . . . , t↑e, f ↑1, . . . , f ↑e: part indicators.

• For ρ ∈ {1, . . . , e}, tr 0
ρ, . . . , tr

n[ρ]
ρ ,fl0

ρ, . . . ,fl
n[ρ]
ρ : counters to count the number of vari-

ables set to > and ⊥ in part ρ.

• d0, . . . , dn+1: depth indicators.

The modal CNF formula φF is the conjunction of the formulae described below. For clarity,

we have used the implication symbol ⇒ but it can be easily converted to CNF. Also for

notational convenience, we will use part(i) instead of part(qi). Φ(ρ) is the set of variables

among {q1, . . . , qn} in part ρ. The formula determined ensures that all successors of w0

preserve the assignment of q1, . . . , qn. The formula depth ensures that for all i, di ∧ ¬di+1

holds in the world wi.

In wi−1, if qi is set to >, we want to indicate that in wi, the counter for part part(i)

should be incremented. We will indicate this in the formula setCounter by setting the

variable t↑part(i) to >. Similar indication is done for the counter keeping track of variables
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set to ⊥ in part ρ.

determined
a

=
n∧
i=1

qi ⇒ �qi ∧
n∧
i=1

¬qi ⇒ �¬qi

depth
a

= ♦(d1 ∧ ¬d2) ∧
n−1∧
i=1

� [(di ∧ ¬di+1) ⇒ ♦(di+1 ∧ ¬di+2)]

setCounter
a

= (q1 ⇒ t↑part(1)) ∧ (¬q1 ⇒ f ↑part(1))

∧
n∧
i=2

�
{

[di−1 ∧ ¬di]⇒ [(qi ⇒ t↑part(i)) ∧ (¬qi ⇒ f ↑part(i))]
}

incCounter
a

= (t↑part(1) ⇒ �tr 1
part(1)) ∧ (f ↑part(1) ⇒ �fl1

part(1))

∧
e∧

ρ=1

n[ρ]−1∧
j=0

�[t↑ρ ⇒ (tr jρ ⇒ �tr j+1
ρ )] ∧�[f ↑ρ ⇒ (fl j

ρ ⇒ �fl j+1
ρ )]

targetMet
a

=
e∧

ρ=1

�[dn ⇒ (tr tg(ρ)ρ ∧ ¬tr tg(ρ)+1
ρ )]

∧
e∧

ρ=1

�[dn ⇒ (fln[ρ]−tg(ρ)
ρ ∧ ¬fln[ρ]−tg(ρ)+1

ρ )]

Variables tr 0
ρ, . . . , tr

n[ρ]
ρ implement the counter keeping track of variables set to > in part

ρ. If j variables in Φ(ρ) ∩ {q1, . . . , qi} are set to >, then we want tr jρ to be set to > in wi.

To maintain this, in wi−1, if it is indicated that a counter is to be incremented (by setting

t↑ρ to >), we will force all successors of wi−1 to increment the trρ counter in the formula

incCounter. Finally, we check that at wn, all the targets are met in the formula targetMet.

The modal CNF formula φF we need is the conjunction of F , the formulae de�ned above

and the miscellaneous formulae below (which ensure that counters are initiated properly and

are monotonically non-decreasing).

determined′
a

=
e∧

ρ=1

tr 0
ρ ⇒ �tr 0

ρ ∧
e∧

ρ=1

fl0
ρ ⇒ �fl0

ρ

countInit
a

= d0 ∧ ¬d1 ∧
e∧

ρ=1

(¬tr 1
ρ ∧ ¬fl1

ρ ∧ tr 0
ρ ∧ fl0

ρ)

depth′
a

=
e∧

ρ=1

n[ρ]∧
j=0

[
�(tr jρ ⇒ �tr jρ) ∧�(fl j

ρ ⇒ �fl j
ρ)
]

countMonotone
a

=
n∧
i=1

�(di ⇒ di−1) ∧
e∧

ρ=1

n[ρ]∧
j=2

[
�(tr jρ ⇒ tr j−1

ρ ) ∧�(fl j
ρ ⇒ fl j−1

ρ )
]

Lemma 2.15. If a p-Pw-Sat instance is a Yes instance, then the modal formula constructed

above is satis�ed in a transitive Kripke model.

Proof. We will construct a transitive Kripke model using the satisfying assignment f that

satis�es F while meeting the given target. The modelM consists of worlds w0, w1, . . . , wn
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arranged as w0 7→ w1 7→ w2 7→ · · · 7→ wn. In all worlds, qi is set to f(qi) for all i, thus ensuring

thatM, w0 |= F ∧ determined. In wi, {d0, . . . , di} are set to > and {di+1, . . . , dn+1} are set
to ⊥ for all i between 0 and n, thus ensuring thatM, w0 |= depth ∧ d0 ∧ ¬d1, the last two

clauses coming from the formula countInit. It also ensures thatM, w0 |=
∧n
i=1�(di ⇒ di−1),

which is part of countMonotone. We will set tr 0
ρ and fl0

ρ to > in all worlds and tr 1
ρ and fl1

ρ

to ⊥ in w0 for all parts ρ, thus ensuringM, w0 |= countInit∧ determined′. At wi−1, we will

set t↑part(i) to qi's value in the same world and f ↑part(i) to ¬qi's value. This will ensure that
M, w0 |= setCounter.

At wi, for any part ρ, if j variables in Φ(ρ) ∩ {q1, . . . , qi} are set to >, then we will set

{tr 0
ρ, . . . , tr

j
ρ} to > and {tr j+1

ρ , . . . , tr
n[ρ]
ρ } to ⊥. If j′ variables in Φ(ρ) ∩ {q1, . . . , qi} are set

to ⊥, we will set {fl0
ρ, . . . ,fl

j′
ρ } to true and {fl j′+1

ρ , . . . ,fln[ρ]
ρ } to ⊥. For any ρ 6= part(i + 1),

we will set t↑ρ and f ↑ρ to ⊥ at wi. These will ensure thatM, w0 |= incCounter ∧ depth′ ∧
countMonotone.

Combined with the above settings of all propositional variables inM, it is easy to check

that the fact that f meets the target for each part impliesM, w0 |= targetMet.

Lemma 2.16. Suppose the modal CNF formula φF constructed above is satis�ed at some

world w0 of some transitive Kripke model M. Then M contains distinct worlds w1, . . . , wn

such that for each i between 1 and n, wi is a successor of wi−1. Moreover, {d0, . . . , di}
are set to > and {di+1, . . . , dn+1} are set to ⊥ in wi. For any part ρ, if j variables in

Φ(ρ) ∩ {q1, . . . , qi} are set to > in w0, then {tr 0
ρ, . . . , tr

j
ρ} are all set to > in wi. If j′

variables in Φ(ρ) ∩ {q1, . . . , qi} are set to ⊥ in w0, then {fl0
ρ, . . . ,fl

j′
ρ } are all set to > in wi.

Proof. We will �rst prove the existence of worlds w1, . . . , wi by induction on i.

Base case i = 1: SinceM, w0 |= depth, there must be a successor w1 of w0 that satis�es

d1 ∧ ¬d2. SinceM, w0 |= countInit, w0 satis�es d0 ∧ ¬d1 and hence w1 can not be same as

w0. Since M, w0 |= �(d3 ⇒ d2) (part of countMonotone) and w1 is a successor of w0, we

getM, w1 |= d3 ⇒ d2. Since d2 is set to ⊥ in w1, this means that d3 is also set to ⊥ in w1.

Similar reasoning can be used to prove that all of {d2, . . . , dn+1} are set to ⊥ in w1. The fact

thatM, w1 |= d1 ⇒ d0 means that d0 is set to > in w1 (since d1 is set to > in w1).

Induction step: Assume that worlds w1, . . . , wi exist in M with the stated properties.

Hence, wi satis�es di ∧ ¬di+1. Since w0 satis�es depth and wi is a successor of w0 (by

transitivity), there must be a successor wi+1 of wi that satis�es di+1 ∧ ¬di+2. Since all

worlds w0, . . . , wi satisfy ¬di+1, wi+1 is distinct from all of them. The fact that wi+1 satis�es

di′ ⇒ di′−1 for all i
′ (these formulae are part of countMonotone formula satis�ed by w0) can

be used to show that all of d0, . . . , di+1 are set to > in wi+1 and all of di+2, . . . , dn+1 are set

to ⊥ in wi+1.

We will now prove the second claim of the lemma, which is about values of {tr 0
ρ, . . . , tr

j
ρ}

in wi. We will �rst prove that tr jρ is set to > by induction on i.

Base case i = 1: If q1 is not in part ρ, there is nothing to prove (tr 0
part(1) is set to > in all

worlds). If q1 is in part ρ and q1 is set to ⊥, there is nothing to prove. If q1 is in part ρ and

q1 is set to >, then since w0 satis�es setCounter, we getM, w0 |= q1 ⇒ t↑part(1). Since, q1 is
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set to > and part(1) = ρ, we get that t↑ρ is set to > in w0. Since w0 satis�es incCounter,

we get M, w0 |= t↑ρ ⇒ �tr 1
ρ and hence M, w0 |= �tr 1

ρ. Since w1 is a successor of w0, we

conclude that in w1, tr 1
ρ is set to >.

Induction step: Case 1: qi is not in part ρ and none of the variables in Φ(ρ)∩{q1, . . . , qi}
are set to to > in wi. In this case, there is nothing to prove.

Case 2: qi is not in part ρ and some 1 ≤ j < i variables in Φ(ρ) ∩ {q1, . . . , qi} are set

to >. By the induction hypothesis, tr jρ is set to > in wi−1. Now M, w0 |= depth′. Hence

M, w0 |= �(tr jρ ⇒ �tr jρ), and henceM, wi−1 |= tr jρ ⇒ �tr jρ (since wi−1 is a successor of w0),

and henceM, wi−1 |= �tr jρ (since tr jρ is set to > in wi−1), and henceM, wi |= tr jρ (since wi

is a successor of wi−1).

Case 3: qi is in part ρ and qi is set to⊥. If none of the variables in Φ(ρ)∩{q1, . . . , qi} are set
to >, then the argument is similar to case 1. If some 1 ≤ j < i variables in Φ(ρ)∩{q1, . . . , qi}
are set to >, then the argument is similar to case 2.

Case 4: qi is in part ρ and qi is set to >. We know that wi−1 satis�es di−1 ∧ ¬di.
Since w0 satis�es setCounter, we have M, w0 |= �

{
[di−1 ∧ ¬di]⇒ [qi ⇒ t↑part(i)]

}
, and

hence M, wi−1 |= [di−1 ∧ ¬di] ⇒ [qi ⇒ t↑part(i)] (since wi−1 is a successor of w0), and

hence M, wi−1 |= qi ⇒ t↑ρ (since M, wi−1 |= di−1 ∧ ¬di), and hence M, wi−1 |= t↑ρ
(since M, wi−1 |= qi). Since w0 satis�es incCounter and wi−1 is a successor of w0, we

getM, wi−1 |= t↑ρ ⇒ (tr j−1
ρ ⇒ �tr jρ). We have already seen that t↑ρ is set to > in wi−1 and

tr j−1
ρ is set to > in wi−1 by the induction hypothesis (j is at least 1 since qi is in part ρ and

is set to >). Hence, we get M, wi−1 |= �tr jρ. Since wi is a successor of wi−1, we conclude

that tr jρ is set to > in wi.

Now, since w0 satis�es �(tr jρ ⇒ tr j−1
ρ ) (this is part of countMonotone) and wi is a

successor of w0, we getM, wi |= tr jρ ⇒ tr j−1
ρ . Since tr jρ is set to > in wi, it follows that tr j−1

ρ

is also set to > in wi. Similarly, tr 0
ρ, . . . , tr

j
ρ are all set to > in wi.

The proof for values of {fl0
ρ, . . . ,fl

j′
ρ } is symmetric to the proof of values of {tr 0

ρ, . . . , tr
j
ρ}.

Theorem 2.17. If φF constructed above is satis�ed in a transitive model, then the p-Pw-Sat

instance is a Yes instance.

Proof. Suppose φF is satis�ed in some world w0 of a transitive model. Since F is part of φF ,

the assignment to {q1, . . . , qn} induced by w0 satis�es F . We claim that this assignment also

meets the targets. If not, we will derive a contradiction. For some part ρ, suppose there are

more than tg(ρ) variables set to >. Then by Lemma 2.16, tr
tg(ρ)+1
ρ will be set to > in wn,

contradicting the fact that w0 satis�es targetMet. For some part ρ, if there are less than

tg(ρ) variables set to >, then there will be more than n[ρ] − tg(ρ) variables set to ⊥. By

Lemma 2.16, fln[ρ]−tg(ρ)+1
ρ will be set to > in wn, again contradicting the fact that w0 satis�es

targetMet.

Given an instance of p-Pw-Sat problem, the formula φF described above can be con-

structed in Fpt time. To complete the proof of Theorem 2.14, we will prove that the path-
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width of φF is bounded by some function of e and pw . φF has been carefully constructed to

keep pathwidth low.

Lemma 2.18. The pathwidth of S(φF) is at most 4pw + 2e+ 5.

Proof. Given an optimal path decomposition of the primal graph of F , depth counters can

be added to the bags without increasing their size much since the order of depth counters is

same as the order of q1, . . . , qn. There are only 2e part indicators t↑1, . . . , t↑e, f ↑1, . . . , f ↑e, so

they can also be added to the bags without increasing their size very much. However, the set

of 2n part counters (of the form tr jρ or fl j
ρ) has to be added carefully to maintain the size of

the bags. Formulas of φF have been carefully designed to enable this. The key observation

is that the only �link� between q1, . . . , qn and part counters are part indicators and there are

only 2e of them. The following proof relies on this observation.

Consider an optimal path decomposition of the primal graph of F with each bag con-

taining at most pw elements. Ensure that for all i with 1 ≤ i < n, there is a bag containing

both qi and qi+1 or there is a bag with qi such that the next bag contains qi+1 (call this the

continuity property). If this is not the case for some i, consider the last bag B containing qi

and the �rst bag B′ containing qi+1. No bag that is between B and B′ will introduce any new

variable (if it did, that new variable would have been qi+1 according to our order). Hence,

all the bags in between B and B′ are subsets of B. Hence, they can all be removed and B′

can become the bag immediately after B. The resulting decomposition is still a path decom-

position of the primal graph of F with each bag containing at most pw elements. Moreover,

the order of variables q1, . . . , qn does not change due to the change we have made in the

path decomposition. This new decomposition has a bag containing qi such that the next bag

contains qi+1. Now, we can repeat the above process until we get a path decomposition with

the continuity property.

For any i with 1 ≤ i ≤ n, let Bi be a bag containing the propositional variable qi. We will

expand this path decomposition by adding variables used in φF such that for every clause

that appears in φF , there is a bag that contains all propositional variables appearing in that

clause. Each of these expanded bags will have at most 4pw + 2e elements. We will then

show how to expand this into a path decomposition of S(φF), by adding at most 6 elements

to each bag (creating duplicate copies of existing bags if required). This will prove that the

pathwidth of S(φF) is at most 4pw + 2e+ 5.

First, in each bag B and each element qi in it, add di−1, di and di+1. Note that due to

continuity property of the decomposition we started with, the expanded decomposition still

retains the property that all bags containing an element forms a connected component, even

after adding depth counters d0, . . . , dn+1. Next, add t↑1, . . . , t↑e, f ↑1, . . . , f ↑e to all the bags.

Apart from qi, the bag Bi (mentioned in the beginning of the previous paragraph) now also

contains di−1, di and di+1. Now, we have a decomposition with each bag containing at most

4pw +2e elements, and the last bag contains dn. To this bag, we will append 2e paths serially.

For 1 ≤ ρ ≤ e, (2ρ − 1)th path will be as follows: {dn, t↑1, . . . , t↑e, f ↑1, . . . , f ↑e, tr 0
ρ, tr

1
ρ} −

{dn, t↑1, . . . , t↑e, f ↑1, . . . , f ↑e, tr 1
ρ, tr

2
ρ} − · · · − {dn, t↑1, . . . , t↑e, f ↑1, . . . , f ↑e, trn[ρ]−1

ρ , tr
n[ρ]
ρ }. We
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will refer to these bags as B1
ρ , . . . , B

n[ρ]
ρ . 2ρth path is similar, with flρ variables replacing trρ

variables. We will refer to these bags in 2ρth path as B1′
ρ , . . . , B

n[ρ]′
ρ . Each of these new bags

has at most 2e+ 3 elements, and the whole decomposition still retains the property that for

any element, the set of bags containing that element forms a connected component.

Now we will show how to expand the above decomposition into a path decomposition of

S(φF). We have to add clauses and literals occurring in φF and ensure that for any pair

of elements Oc(e1, e2) or Oc(e1, e2), there is a bag containing both e1 and e2. To achieve

this, we may have to �augment� an existing bag with new elements. If Bi is a bag in the

path decomposition · · · − Bi − . . . , augmenting Bi with elements e1 and e2 means that we

add another bag · · · − B′i − Bi − . . . with B′i containing all elements of Bi and in addition

containing e1 and e2. If we ensure that these new elements introduced during augmentation

is never added to any other bag in the decomposition, augmentation will not violate the path

decomposition's property that for any element, the set of bags containing that element forms

a connected component. Now, we will go through each sub-formula of φF and prove that all

its clauses, literals and Oc pairs are already represented in the path decomposition we have

constructed above or that the decomposition can be augmented to represent them.

• Clauses in F : For each clause in F , the propositional variables in that clause form a

clique in the primal graph of F . Hence, there is a bag B in the new decomposition

that contains all propositional variables occurring in that clause. Augment B with a

new domain element representing the clause.

• determined: Here, the clauses are of the form ¬qi ∨ �qi and qi ∨ �¬qi. Augment the

bag Bi containing qi with 3 domain elements, one for the clause ¬qi∨�qi itself, one for
the literal �qi and one for the clause in this literal that contains qi as its only literal.

Perform similar augmentation for the clause qi ∨�¬qi.

• depth: For ♦(d1 ∧ ¬d2), augment the bag B1 containing d1 and d2 with 4 domain

elements representing literals and clauses of ♦(d1 ∧ ¬d2). Augment the bag Bi+1 con-

taining di, di+1 and di+2 with 6 elements representing literals and clauses of �[¬di ∨
di+1 ∨ ♦(di+1 ∧ ¬di+2)].

• setCounter: Augment the bag B1 containing q1 and t↑part(1) with one element repre-

senting the clause ¬q1∨ t↑part(1). Do a similar augmentation for the clause q1∨ f ↑part(1).

�(q ∧ r) is equivalent to �q ∧ �r. Hence, the latter part of setCounter can be split

into clauses �(¬di−1∨di∨¬qi∨ t↑part(i)) and �(¬di−1∨di∨ qi∨ f ↑part(i)). Augment the

bag Bi containing di−1, di, qi, t↑part(i) and f ↑part(i) with 6 elements representing clauses

and literals of these two clauses.

• incCounter: Augment the bag B1
part(1) containing t↑part(1) and tr 1

part(1) with 3 elements

representing clauses and literals of (¬t↑part(1) ∨ �tr 1
part(1)). Similarly augment the bag

B1′
part(1) for (¬f ↑part(1) ∨�fl1

part(1)). Augment the bag Bj+1
ρ containing t↑ρ, tr jρ and tr j+1

ρ

with 6 elements representing literals and clauses of �(¬t↑ρ ∨ ¬tr jρ ∨�tr j+1
ρ ). Similarly

augment Bj+1′
ρ for �(¬f ↑ρ ∨ ¬fl j

ρ ∨�fl j+1
ρ ).
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• targetMet: Augment the bag B
tg(ρ)+1
ρ containing dn, tr

tg(ρ)
ρ and tr

tg(ρ)+1
ρ with 6 elements

for the literals and clauses in�(¬dn∨tr
tg(ρ)
ρ ) and�(¬dn∨¬tr

tg(ρ)+1
ρ ). Similarly augment

B
n[ρ]−tg(ρ)+1′
ρ for �(¬dn ∨ fln[ρ]−tg(ρ)

ρ ) and �(¬dn ∨ ¬fln[ρ]−tg(ρ)+1
ρ )

• determined′: Augment the bag B1
ρ containing tr 0

ρ with 3 elements representing literals

and clauses of ¬tr 0
ρ ∨�tr 0

ρ. Similarly augment B1′
ρ for ¬fl0

ρ ∨�fl0
ρ.

• countInit: Augment the bag B1 containing d0 and d1 with 2 elements representing

the clauses in d0 ∧ ¬d1. Augment the bag B1
ρ containing tr 0

ρ and tr 1
ρ with 2 elements

representing the clauses in ¬tr 1
ρ ∧ tr 0

ρ. Similarly augment B1′
ρ for ¬fl1

ρ ∧ fl0
ρ.

• depth′: Augment the bag Bj
ρ containing tr jρ with 6 elements representing literals and

clauses of �(¬tr jρ ∨�tr jρ). Similarly augment Bj′
ρ for �(¬fl j

ρ ∨�fl j
ρ).

• countMonotone: Augment the bag Bi containing di and di−1 with 3 elements repre-

senting literals and clauses of �(¬di ∨ di−1). Augment the bag Bj
ρ containing tr jρ and

tr j−1
ρ with 3 elements representing literals and clauses of �(¬tr jρ ∨ tr j−1

ρ ). Similarly

augment Bj′
ρ for �(¬fl j

ρ ∨ fl j−1
ρ ).

In the absence of transitivity, the above reduction would require a formula of modal depth

that depends on n (and hence it would no longer be a parameterized reduction). The above

hardness proof will however go through for any class of transitive frames that has paths of

unbounded length of the form w1 7→ w2 7→ · · · 7→ wn without any reverse paths. See [90] for

some context on such classes of transitive frames of unbounded depth.

2.7 Temporal Logics

In this section, we prove W[1]-hardness of satis�ability of a CNF fragment of LTL and CTL

given below, with treewidth and modality depth as parameters. The proof is very similar

to the one in the previous section. We give a parameterized reduction from p-Pw-Sat

to satis�ability of LTL/CTL formulas. The formulas required are obtained by the modal

formulas given in the previous section by replacing ♦ with X and � with G in case of LTL

and ♦ with EX and � with AG in case of CTL. We will consider the following fragment of

LTL and associate treewidth to a LTL formula of this form in the same way we associated

treewidth to modal logic formulas in CNF.

literal ::= q | ¬q | Gclause | XCNF

clause ::= literal | clause ∨ clause | ⊥
CNF ::= clause | CNF ∧ CNF
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For LTL formulas of the above Conjunctive Normal Form, we associate modality depth in

the same way we associate modal depth to modal logic formulas, replacing ♦ with X and �

with G.

We will also consider the following fragment of CTL and associate treewidth to a CTL

formula of this form in the same way we associated treewidth to modal formulas in CNF.

literal ::= q | ¬q | AGclause | EXCNF

clause ::= literal | clause ∨ clause | ⊥
CNF ::= clause | CNF ∧ CNF

For CTL formulas of the above Conjunctive Normal Form, we associate modality depth in

the same way we associate modal depth to modal logic formulas, replacing ♦ with EX and

� with AG.

Theorem 2.19. The satis�ability of the CNF fragment of LTL/CTL given above is W[1]-

hard, with the pathwidth of the relational structure associated with the formula and the modal-

ity depth of the formula as parameters.

The rest of this section is devoted to a proof of the above theorem. Given an instance

(F , part : Φ→ [e], tg : [e]→ N) of p-Pw-Sat problem, compute an optimal path decomposi-

tion of the primal graph of F and order the propositional variables as q1, . . . , qn as described

in the beginning of section 2.6. Consider LTL formulas in (2.9) and the CTL formulas in

(2.10).

Lemma 2.20. If a p-Pw-Sat instance is a Yes instance, then the LTL formula that is the

conjunction of F and formulas in (2.9) is satis�able, and so is the CTL formula that is the

conjunction of F and formulas in (2.10).

Proof. It is routine to verify that the model w0 7→ w1 7→ · · ·wn constructed in Lemma 2.15

satis�es the LTL and CTL formulas.
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determined
a

=
n∧
i=1

qi ⇒ Gqi ∧
n∧
i=1

¬qi ⇒ G¬qi

depth
a

= X(d1 ∧ ¬d2) ∧
n−1∧
i=1

G [(di ∧ ¬di+1) ⇒ X(di+1 ∧ ¬di+2)]

setCounter
a

= (q1 ⇒ t↑part(1)) ∧ (¬q1 ⇒ f ↑part(1))

∧
n∧
i=2

G
{

[di−1 ∧ ¬di]⇒ [(qi ⇒ t↑part(i)) ∧ (¬qi ⇒ f ↑part(i))]
}

incCounter
a

= (t↑part(1) ⇒ Gtr 1
part(1)) ∧ (f ↑part(1) ⇒ Gfl1

part(1))

∧
e∧

ρ=1

n[ρ]−1∧
j=0

G[t↑ρ ⇒ (tr jρ ⇒ Gtr j+1
ρ )] ∧G[f ↑ρ ⇒ (fl j

ρ ⇒ Gfl j+1
ρ )]

targetMet
a

=
e∧

ρ=1

G[dn ⇒ (tr tg(ρ)ρ ∧ ¬tr tg(ρ)+1
ρ )] (2.9)

∧
e∧

ρ=1

G[dn ⇒ (fln[ρ]−tg(ρ)
ρ ∧ ¬fln[ρ]−tg(ρ)+1

ρ )]

determined′
a

=
e∧

ρ=1

tr 0
ρ ⇒ Gtr 0

ρ ∧
e∧

ρ=1

fl0
ρ ⇒ Gfl0

ρ

countInit
a

= d0 ∧ ¬d1 ∧
e∧

ρ=1

(¬tr 1
ρ ∧ ¬fl1

ρ ∧ tr 0
ρ ∧ fl0

ρ)

depth′
a

=
e∧

ρ=1

n[ρ]∧
j=0

[
G(tr jρ ⇒ Gtr jρ) ∧G(fl j

ρ ⇒ Gfl j
ρ)
]

countMonotone
a

=
n∧
i=1

G(di ⇒ di−1) ∧
e∧

ρ=1

n[ρ]∧
j=2

[
G(tr jρ ⇒ tr j−1

ρ ) ∧G(fl j
ρ ⇒ fl j−1

ρ )
]

Lemma 2.21. Suppose F and the conjunction of the formulas in (2.9) or (2.10) is satis�ed

at position 0 of some model π (a linear sequence in case of LTL, tree in case of CTL). Then

the model contains positions 1, . . . , n such that for each i between 1 and n, position i is a

successor of i − 1. Moreover, {d0, . . . , di} are set to > and {di+1, . . . , dn+1} are set to ⊥ in

position i. For any part ρ, if j variables in Φ(ρ) ∩ {q1, . . . , qi} are set to > in position 0,

then {tr 0
ρ, . . . , tr

j
ρ} are all set to > in position i. If j′ variables in Φ(ρ) ∩ {q1, . . . , qi} are set

to ⊥ in position 0, then {fl0
ρ, . . . ,fl

j′
ρ } are all set to > in position i.
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determined
a

=
n∧
i=1

qi ⇒ AGqi ∧
n∧
i=1

¬qi ⇒ AG¬qi

depth
a

= EX(d1 ∧ ¬d2) ∧
n−1∧
i=1

AG [(di ∧ ¬di+1) ⇒ EX(di+1 ∧ ¬di+2)]

setCounter
a

= (q1 ⇒ t↑part(1)) ∧ (¬q1 ⇒ f ↑part(1))

∧
n∧
i=2

AG
{

[di−1 ∧ ¬di]⇒ [(qi ⇒ t↑part(i)) ∧ (¬qi ⇒ f ↑part(i))]
}

incCounter
a

= (t↑part(1) ⇒ AGtr 1
part(1)) ∧ (f ↑part(1) ⇒ AGfl1

part(1))

∧
e∧

ρ=1

n[ρ]−1∧
j=0

AG[t↑ρ ⇒ (tr jρ ⇒ AGtr j+1
ρ )] ∧ AG[f ↑ρ ⇒ (fl j

ρ ⇒ AGfl j+1
ρ )]

targetMet
a

=
e∧

ρ=1

AG[dn ⇒ (tr tg(ρ)ρ ∧ ¬tr tg(ρ)+1
ρ )] (2.10)

∧
e∧

ρ=1

AG[dn ⇒ (fln[ρ]−tg(ρ)
ρ ∧ ¬fln[ρ]−tg(ρ)+1

ρ )]

determined′
a

=
e∧

ρ=1

tr 0
ρ ⇒ AGtr 0

ρ ∧
e∧

ρ=1

fl0
ρ ⇒ AGfl0

ρ

countInit
a

= d0 ∧ ¬d1 ∧
e∧

ρ=1

(¬tr 1
ρ ∧ ¬fl1

ρ ∧ tr 0
ρ ∧ fl0

ρ)

depth′
a

=
e∧

ρ=1

n[ρ]∧
j=0

[
AG(tr jρ ⇒ AGtr jρ) ∧ AG(fl j

ρ ⇒ AGfl j
ρ)
]

countMonotone
a

=
n∧
i=1

AG(di ⇒ di−1) ∧
e∧

ρ=1

n[ρ]∧
j=2

[
AG(tr jρ ⇒ tr j−1

ρ ) ∧ AG(fl j
ρ ⇒ fl j−1

ρ )
]

Proof. We will �rst prove the existence of positions 1, . . . , i by induction on i.

Base case i = 1: Since π, 0 |= depth, there must be a successor 1 of 0 that satis�es

d1 ∧¬d2. Since π, 0 |= G(d3 ⇒ d2) or π, 0 |= AG(d3 ⇒ d2) (part of countMonotone) and 1 is

a successor of 0, we get π, 1 |= d3 ⇒ d2. Since d2 is set to ⊥ in 1, this means that d3 is also

set to ⊥ in 1. Similar reasoning can be used to prove that all of {d2, . . . , dn+1} are set to ⊥
in 1. The fact that π, 1 |= d1 ⇒ d0 means that d0 is set to > in 1 (since d1 is set to > in 1).

Induction step: Assume that positions 1, . . . , i exist in π with the stated properties.

Hence, position i satis�es di ∧ ¬di+1. Since position 0 satis�es depth and i occurs after 0,

there must be a successor i + 1 of i that satis�es di+1 ∧ ¬di+2. The fact that position i + 1

satis�es di′ ⇒ di′−1 for all i
′ (these formulae are part of countMonotone formula satis�ed by

position 0) can be used to show that all of d0, . . . , di+1 are set to > and all of di+2, . . . , dn+1

are set to ⊥ in position i+ 1.

We will now prove the second claim of the lemma, which is about values of {tr 0
ρ, . . . , tr

j
ρ}
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in position i. We will �rst prove that tr jρ is set to > by induction on i.

Base case i = 1: If q1 is not in part ρ, there is nothing to prove (tr 0
part(1) is set to > in all

positions). If q1 is in part ρ and q1 is set to ⊥, there is nothing to prove. If q1 is in part ρ and

q1 is set to >, then since position 0 satis�es setCounter, we get π, 0 |= q1 ⇒ t↑part(1). Since,

q1 is set to > and part(1) = ρ, we get that t↑ρ is set to > in position 0. Since position 0

satis�es incCounter, we get π, 0 |= t↑ρ ⇒ Gtr 1
ρ or π, 0 |= t↑ρ ⇒ AGtr 1

ρ and hence π, 0 |= Gtr 1
ρ

or π, 0 |= AGtr 1
ρ. Since position 1 occurs after 0, we conclude that in position 1, tr 1

ρ is set to

>.
Induction step: Case 1: qi is not in part ρ and none of the variables in Φ(ρ)∩{q1, . . . , qi}

are set to to > in i. In this case, there is nothing to prove.

Case 2: qi is not in part ρ and some 1 ≤ j < i variables in Φ(ρ) ∩ {q1, . . . , qi} are set to
>. By the induction hypothesis, tr jρ is set to > in position i− 1. Now π, 0 |= depth′. Hence

π, 0 |= G(tr jρ ⇒ Gtr jρ) or π, 0 |= AG(tr jρ ⇒ AGtr jρ), and hence π, i − 1 |= tr jρ ⇒ Gtr jρ or

π, i − 1 |= tr jρ ⇒ AGtr jρ(since position i − 1 occurs after 0), and hence π, i − 1 |= Gtr jρ or

π, i− 1 |= AGtr jρ(since tr jρ is set to > in position i− 1), and hence π, i |= tr jρ (since position

i occurs after i− 1).

Case 3: qi is in part ρ and qi is set to⊥. If none of the variables in Φ(ρ)∩{q1, . . . , qi} are set
to >, then the argument is similar to case 1. If some 1 ≤ j < i variables in Φ(ρ)∩{q1, . . . , qi}
are set to >, then the argument is similar to case 2.

Case 4: qi is in part ρ and qi is set to >. We know that position i− 1 satis�es di−1 ∧¬di.
Since position 0 satis�es setCounter, we have π, 0 |= G

{
[di−1 ∧ ¬di]⇒ [qi ⇒ t↑part(i)]

}
or

π, 0 |= AG
{

[di−1 ∧ ¬di]⇒ [qi ⇒ t↑part(i)]
}
, and hence π, i− 1 |= [di−1∧¬di]⇒ [qi ⇒ t↑part(i)]

(since position i−1 occurs after 0), and hence π, i−1 |= qi ⇒ t↑ρ (since π, i−1 |= di−1∧¬di),
and hence π, i−1 |= t↑ρ (since π, i−1 |= qi). Since position 0 satis�es incCounter and position

i − 1 occurs after 0, we get π, i − 1 |= t↑ρ ⇒ (tr j−1
ρ ⇒ Gtr jρ) or π, i − 1 |= t↑ρ ⇒ (tr j−1

ρ ⇒
AGtr jρ). We have already seen that t↑ρ is set to > in position i− 1 and tr j−1

ρ is set to > in

position i − 1 by the induction hypothesis (j is at least 1 since qi is in part ρ and is set to

>). Hence, we get π, i − 1 |= Gtr jρ or π, i − 1 |= AGtr jρ. Since position i occurs after i − 1,

we conclude that tr jρ is set to > in i.

Now, since position 0 satis�es G(tr jρ ⇒ tr j−1
ρ ) or AG(tr jρ ⇒ tr j−1

ρ ) (this is part of

countMonotone) and position i is a successor of 0, we get π, i |= tr jρ ⇒ tr j−1
ρ . Since tr jρ

is set to > in position i, it follows that tr j−1
ρ is also set to > in position i. Similarly,

tr 0
ρ, . . . , tr

j
ρ are all set to > in position i.

The proof for values of {fl0
ρ, . . . ,fl

j′
ρ } is symmetric to the proof for values of {tr 0

ρ, . . . , tr
j
ρ}.

It is routine to verify that the proofs of Theorem 2.17 and Lemma 2.18 also prove Theo-

rem 2.22 and Lemma 2.23 below respectively. This completes the proof of Theorem 2.19.

Theorem 2.22. If the LTL or CTL formula obtained by conjoining F with the formulas in

(2.9) or (2.10) is satis�able, then the p-Pw-Sat instance is a Yes instance.
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Lemma 2.23. The pathwidth of the LTL or CTL formula obtained by conjoining F with the

formulas in (2.9) or (2.10) is at most 4pw + 2e+ 5.

2.8 Remarks and Open Problems

By expressing satis�ability of modal formulae as a MSO property, we obtained a Fpt al-

gorithm for modal satis�ability in general models with treewidth and modal depth as pa-

rameters. The resulting algorithm has running time linear in the size of the modal formula

by Courcelle's theorem. Due to the dependence of the constructed MSO sentence on modal

depth, the Fpt algorithm obtained in section 2.2 has a running time with a tower of 2's

whose height is O(md(φ)). It remains to be seen if this can be improved or there is a lower

bound that prevents any improvement. Lower bounds in similar but di�erent contexts have

been proved in [1, 77]. The parameterized complexity of modal satis�ability in symmetric

models is open.

In modal formulas, di�erent occurrences of the same sub-formula are considered as sep-

arate syntactic objects, increasing the overall size of the formula if same sub-formula is re-

peated many times. Another direction is to look at satis�ability of modal circuits, where there

is only one syntactic object for a sub-formula and di�erent occurrences of that sub-formula

are indicated by referring to the same syntactic object. There are variations of incidence

graphs, such as primal/dual graphs [87], whose e�ect on complexity of satis�ability may also

be considered.
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Chapter 3

Synchronized Transition Systems

Labelled Transition Systems (LTSs) are popularly used to model sequential systems. Syn-

chronized transition systems are generalizations where we can model many sequential systems

interacting with one another through synchronization. With the number of systems partici-

pating in such synchronization as a parameter, parameterized complexity of many problems

like reachability and model checking are studied in [20]. All the problems studied are shown

to be complete for some intractable parameterized complexity class. In this chapter, we will

introduce a stronger parameter and give parameterized complexity results with a combination

of the new and old parameters.

3.1 Preliminaries

A labelled transition system (LTS) over some alphabet Σ = {a, b, . . . } is a tuple A =

(Q,Σ,→) where Q = {s, u, . . . } is the set of local states and →⊆ Q × Σ × Q is the set

of local transitions. We assume the standard notation s
a−−→ u, s

w−−→ u (w ∈ Σ∗), s ∗−−→ u,

s
+−−→ u etc. For W ⊆ Σ∗, s W−−→ u means that for some w ∈ W , s

w−−→ u. The size of

a �nite LTS A is |A | = |Q| + |Σ| + | → |. Product systems are products of individual

LTSs. Assuming Ai = (Qi,Σ,→i) for i = 1, . . . , k, which are called processes, the product

A1 × · · · × Ak denotes a LTS (Q,Σ,→) where Q =
∏k

i=1Qi is the set of global states and

the set of global transitions →⊆ Q×Σ×Q is de�ned as follows. The processes synchronize

on transitions labelled by the same letter: 〈s1, . . . , sk〉 a−−→ 〈u1, . . . , uk〉 i� si a−−→ ui for every

i = 1, . . . , k. A global state s = 〈s1, . . . , sk〉 of A1 × · · · ×Ak corresponds to each process Ai

being in the local state si for every i = 1, . . . , k.

De�nition 3.1. Given an initial and a �nal global state of the product system, the reachability

problem is to check if starting from the initial global state, the product system can reach the

�nal global state through a sequence of transitions.

It is known that for 1-safe Petri nets (which are a form of product systems), reachability

and other problems like model checking LTL and µ-calculus are Pspace-complete [29]. In

[20], the parameterized complexity of these problems for product systems are studied with
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the number of processes k as parameter. Following are the main results from [20], where the

number of processes k is the only parameter by default.

1. Reachability and its re�nements repeated reachability, local reachability and fair reach-

ability are AW[SAT]-hard.

2. Linear Temporal Logic and Computational Tree Logic model checking are AW[SAT]-

hard with both the size of the formula and the number of processes k as parameters.

3. Hennessy-Milner Logic model checking is AW[1]-complete with both the size of the

formula and the number of processes k as parameters.

4. µ-calculus model checking is XP-complete with both the size of the formula and the

number of processes k as parameters.

5. Bisimulation is XP-complete.

It is shown in [20] that most of the above classi�cation remain intact under variations like

replacing global synchronization with binary synchronization (where only two processes can

participate in a global transition) and bounding the size of the alphabet Σ by a constant.

With such robust hardness results, we are forced to de�ne stronger parameters to obtain

Fpt results.

Following is the de�nition of a stronger parameter with which we show Fpt results. The

intuition behind this de�nition is to restrict a particular behaviour of product systems that

is common in most of the hardness proofs mentioned in the previous paragraph. Consider a

product system consisting of two processes A1 and A2. Let {s1, . . . , sn1} and {u1, . . . , un2}
be the set of local states of A1 and A2 respectively. The number of global states would be

very large if every global state (si, uj) is reachable in the product system (indeed this is the

case in product systems constructed in many hardness proofs of [20]). In product systems

where this is not the case, the number of reachable global states will be small. The following

de�nition formalizes this notion.

De�nition 3.2. For two LTSs A1,A2 with initial local states sin, uin, suppose s is a local

state of A1 and Ws ⊆ Σ∗ is a set of strings such that ∀w ∈ Ws, sin
w−−→ s. De�ne

synchronous Ws-neighbours of s ∈ Q1 to be Nbr [Ws] = {u ∈ Q2 | uin W−−→ u}. Let

m[A1,A2] = max{|Nbr [Ws]| | ∃s ∈ Q1,Ws ⊆ Σ∗ : ∀w ∈ Ws, sin
w−−→ s}. Generalizng

this, let A1, . . . ,Ak be LTSs and de�ne m[i] = max{m[Ai,A j] | j 6= i} and m = min{m[i] |
1 ≤ i ≤ k}. The numberm is called the synchronous neighbourhood size of A1×· · ·×Ak.

For the two LTSs A1,A2 in the above de�nition, there are at most m[A1,A2] global states

all of which have the same local state in A1 but have distinct local states in A2. Figure 3.1

shows an example of a synchronized transition system with three processes. Local states are

shown as small circles and local transitions as directed edges with labels alongside. Initial

local states are shown with an arrow pointing to them. Consider the local state s of A1 and

the set of strings Ws represented by the regular expression abb∗. Considering A1 and A2, the
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Figure 3.1: An example system with small synchronous neighbourhood size

synchronous Ws-neighbours of s is given by Nbr [Ws] = {u1, u2, u3, u4}. It can be seen that

m[2] = 3 as per De�nition 3.2.

In the following section, we give Fpt upper bounds when both synchronous neighbour-

hood size and number of processes are parameters. In section 3.3, we show W[1]-hardness

when synchronous neighbourhood size is the only parameter.

3.2 Upper Bound

Lemma 3.3. For a product system A1 × · · · ×Ak with synchronous neighbourhood size m,

the number of reachable global states is at most nmk−1, where n is the maximum number of

local states in any one LTS.

Proof. The required result is obvious for k = 1 since nm1−1 = n. Suppose k > 1 and the

number of reachable global states is greater than or equal to nmk−1 + 1. In such a case, we

claim that m[i] > m for every i = 1, . . . , k, a contradiction.

For any i = 1, . . . , k, there are at most n local states in Ai. For each local state s of

Ai, let Qs be the set of k − 1 tuples that form a reachable global state when combined with

s. There is at least one local state s in Ai such that |Qs| ≥ mk−1 + 1 (otherwise, total

number of reachable global states will be at most nmk−1). Let s be such a local state. For

each j 6= i, let Qj
s be the set of local states in Aj that appear in the jth process of some

tuple in Qs. There is at least one j such that |Qj
s| ≥ m + 1 (otherwise, |Qs| ≤ mk−1). Let

Qj
s = {u1, . . . , um+1, . . . }. Now, (s, u1), . . . , (s, um+1) are each part of some reachable global

state. Let wl be the sequence of transitions that enables the product system to reach a

global state with Ai in local state s and Aj in local state ul. Now, with the set of strings

{w1, . . . , wm+1}, Ai reaches one local state s while for the same set of strings, Aj reaches

m+ 1 di�erent local states {u1, . . . , um+1}. Hence, m[i, j] > m.

Theorem 3.4. With the number of processes k and synchronous neighbourhood size m as

parameters, reachability in product systems is Fpt.

Proof. With both the number of processes m and synchronous neighbourhood size k as
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parameters, the upper bound of Lemma 3.3 allows us to construct the whole state space of

the composed system in Fpt time, hence reachability is Fpt.

3.3 Lower Bound

With the result of the previous section, a natural question would be whether reachability is

Fpt when parameterized by the synchronized neighbourhood size alone. In this section, we

answer this question in the negative, by a parameterized reduction from the Parameterized

Weighted 2-CNF- Satis�ability (p-W2Cnf--Sat). An instance of p-W2Cnf--Sat consists

of a 2-CNF formula F over the propositional variables q1, . . . , qn and a number k such that

each literal in every clause is a negated propositional variable. The problem is to check if

there is an assignment satisfying F while setting exactly k variables to >. This problem is

known to be W[1]-hard [36, Theorem 6.28].

Theorem 3.5. With the synchronous neighbourhood size m as parameter, reachability in

product systems is W[1]-hard.

Proof. Given an instance of p-W2Cnf--Sat, construct a product system consisting of the

following LTSs. The LTS shown in Fig. 3.2 is a controller ensuring that exactly k variables

are set to >. For q1, qn and all qi for each i between 2 and n− 1, the LTSs shown in Fig. 3.3,

C0 C1 Ck g

Σ \ {t, fin}

Σ \ {t, fin}

Σ \ {t, fin}
t t t fin

Figure 3.2: Controller

Fig. 3.5 and Fig. 3.4 are constructed respectively. If there are γ clauses C1, . . . , Cγ in F ,

q1
x1f

x1t

y1f

y1t

g
f

t

n2

n2

fin

fin

Σ \ {fin}

Σ \ {fin, z1f}

Figure 3.3: Assignment for q1

then for each j between 1 and γ − 1, the LTS shown in Fig. 3.6 is constructed. Finally, the

LTS shown in Fig. 3.7 is also constructed. In Fig. 3.6 (resp. Fig. 3.7), it is assumed that the

clause Cj (resp. Cγ) is ¬qi ∨ ¬qi′ .
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Σ \ {ni}

Σ \ {fin}
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Figure 3.4: Assignment for qi

to assign last variable.aux

x′
n

qn
xnf

xnt

ynf

ynt

g
nn

f

t

γ1

γ1

fin

fin
Σ \ {nn}

Σ \ {fin}

Σ \ {fin, znf}

Figure 3.5: Assignment for qn

to ensure clause is satis�ed.aux

Cj C ′
j Dj D′

j g
γj

zif

zi′f

γj+1 fin

Σ \ {γj} Σ \ {fin}

Figure 3.6: Checking satisfaction of Cj

to ensure that last clause is satis�ed.aux

Cγ C ′
γ Dγ g

γγ
zif

zi′f

fin

Σ \ {γγ}

Figure 3.7: Checking satisfaction of Cγ
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In the initial global state, the controller LTS in Fig. 3.2 is in the state C0. LTSs in

Fig. 3.3, Fig. 3.4 and Fig. 3.5 are in states q1, qi and qn respectively. LTSs in Fig. 3.6 and

Fig. 3.7 are in states Cj and Cγ respectively. In the �nal global state to be reached, all LTSs

are in the state g.

Suppose that the given p-W2Cnf--Sat instance is satis�able. For each qi, if the satisfying

assignment assigns ⊥, take the transition labelled f from x′i to xif in the LTS of Fig. 3.4. If

the satisfying assignment assigns >, take the transition labelled t from x′i to xit, taking the

controller LTS one step nearer to Ck in the process. Since there are exactly k variables set

to > in the satisfying assignment, the controller LTS will reach Ck, k LTSs reach yit and the

remaining LTSs among those in Fig. 3.3, Fig. 3.4 and Fig. 3.5 reach yif . Since all clauses

are satis�ed, LTSs in Fig. 3.6 and Fig. 3.7 can reach the state D′j. Now, all LTSs can take

the transition labelled fin to reach the state g.

On the other hand, suppose the �nal global state can be reached from the initial global

state in the product system constructed above. Consider the assignment that assigns > to qi

if the LTS in Fig. 3.3 takes the transition labelled t from x′i to xit and assigns ⊥ otherwise.

Since the controller LTS in Fig. 3.2 needs exactly k transitions labelled t to reach g, the

assignment constructed above sets k variables to > and all others to ⊥. Since all LTSs in

Fig. 3.6 and Fig. 3.7 reach g and the clause Cj has to be satis�ed to reach Dj from C ′j, the

constructed assignment satis�es all clauses.

Except the controller LTS of Fig. 3.2, all other LTSs have a constant number of states.

Hence, the synchronous neighbourhood size of the product system constructed above is a

constant. Therefore, with synchronous neighbourhood size as parameter, reachability in

product systems is W[1]-hard.
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Chapter 4

1-safe Petri Nets

1-safe Petri nets are powerful models that can compactly represent �nite state systems.

They can model concurrent behaviour such as causality, independence, synchronization etc.

Complexity of various problems of 1-safe Petri nets are known [13, 29], most of them Pspace-

complete. In this chapter, we show either a Fpt algorithm or W[1]-hardness for various

problems with respect to the parameters treewidth, bene�t depth and vertex cover number.

Apart from throwing light on the e�ect of treewidth on 1-safe Petri nets, we also get as a

corollary a proof of a conjecture about a graph pebbling problem made by Downey, Fellows

and Stege [26, section 5].

It turns out that most of the problems for 1-safe Petri nets areW[1]-hard with treewidth

as parameter. Therefore, we turn to the stronger parameter vertex cover number. This helps

in understanding the role of di�erent parameters in the complexity of our problems and the

techniques may be useful in other contexts as well. We show that LTL model checking is

Fpt with the size of the LTL formula and vertex cover number as parameters, by combining

the well known automata theoretic method with a powerful result about feasibility of Integer

Linear Programming (Ilp) parameterized by the number of variables [63, 53, 37]. Automata

theoretic methods are extensively studied and arise in many other contexts [96, 44, 58].

The Signed Digraph Pebbling problem considered in [26] can simulate 1-safe Petri

nets and it is shown that with treewidth and the length of the �ring sequence as parameters,

this problem is Fpt. Downey, Fellows and Stege conjectured that with treewidth alone as

parameter, the problem is W[1]-hard [26], which we prove here.

4.1 Petri Nets and Problem De�nitions

Let Z be the set of integers and N the set of natural numbers. We �rst de�ne general Petri

nets and then impose some restrictions to get 1-safe Petri nets. A Petri net is a 4-tuple

N = (P, T,Pre,Post), where P is a set of places, T is a set of transitions and Pre and Post

are the incidence functions: Pre : P × T → [0 . . .W ] (arcs going from places to transitions)

and Post : P × T → [0 . . .W ] (arcs going from transitions to places), where W ≥ 1 is the

maximum arc weight. A place p is an input (output) place of a transition t if Pre(p, t) ≥ 1
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(Post(p, t) ≥ 1) respectively. Conventionally, •t (t•) denote the set of input (output) places

of a transition t. In diagrams, places will be represented by circles and transitions by thick

bars. Arcs are represented by weighted directed edges between places and transitions.

A functionM : P → N is called amarking. A marking can be thought of as a con�guration

of the Petri net, with every place p havingM(p) tokens. Given a Petri net N with a marking

M and a transition t such that for every place p, M(p) ≥ Pre(p, t), the transition t is

said to be enabled at M and can be �red. After �ring, the new marking M ′ (denoted as

M
t

==⇒M ′) is given byM ′(p) = M(p)−Pre(p, t)+Post(p, t) for every place p. We can think

of �ring a transition t resulting in Pre(p, t) tokens being deducted from every input place

p and Post(p′, t) tokens being added to every output place p′. A sequence of transitions

σ = t1t2 · · · tr (called �ring sequence) is said to be enabled at a marking M if there are

markings M1, . . . ,Mr such that M
t1==⇒ M1

t2==⇒ · · · tr==⇒ Mr. Markings M,M1, . . . ,Mr are

called intermediate markings and the sequence of markings MM1 · · ·Mr is called a run. The

fact that �ring σ atM results inMr is denoted byM
σ

==⇒Mr and we say thatMr is reachable

from M . The set R(N ,M0) is the set of markings reachable from the initial marking M0.

For the purposes of complexity analysis, we assume that when a Petri net is given as

input to algorithms, it is presented as two matrices for Pre and Post . We will assume that a

Petri net N has m places, n transitions and that W is the maximum of the range of Pre and

Post . We de�ne the size of the Petri net to be |N | = 2mn logW + m log |M0| bits, where
|M0| is the maximum of the range of the initial marking M0.

De�nition 4.1 (Reachability, Coverability and Boundedness). Given a Petri net with an

initial marking M0 and a target marking Mcov, the Coverability problem is to determine if

there is a �ring sequence σ such thatM0
σ

==⇒M ′ and for every place p, M ′(p) ≥Mcov(p) (this

is denoted as M ′ ≥ Mcov). If we replace M ′ ≥ Mcov by M ′ = Mcov, we get the reachability

problem. The boundedness problem is to determine if there is a number c ∈ N such that for

every �ring sequence σ enabled at M0 with M0
σ

==⇒M , M(p) ≤ c for every place p.

Let N be a Petri net with an initial marking M0 with M0(p) ∈ {0, 1} for every place p.

For every �ring sequence σ enabled at M0 with M0
σ

==⇒ M , if we have M(p) ∈ {0, 1} for
every place p, then the Petri net N with initial marking M0 is said to be a 1-safe Petri net.

Reachability, coverability and model checking some temporal logics on 1-safe Petri nets are

complete for Pspace.

4.2 Logics for Specifying Properties

We will use Linear Temporal Logic (LTL) for specifying properties of 1-safe Petri nets. Syntax

of LTL is the same as the one de�ned in section 2.1, except that instead of a set Φ of atomic

propositional variables, we will use the set of places of a Petri net. For a Petri net with set of

places P , LTL formulas are formed by the following syntax. We follow the notation in [29].

φ ::= p ∈ P | ¬ φ | φ1 ∧ φ2 | Xφ | φ1Uφ2
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These LTL formulas are interpreted on runs of a 1-safe Petri net. Given a run π = M0M1 · · · ,
the satisfaction of a LTL formula φ at some position i in this sequence is de�ned as follows.

• π, i |= p i� Mi(p) = 1.

• π, i |= ¬φ i� π, i 2 φ.

• π, i |= φ1 ∧ φ2 i� π, i |= φ1 and π, i |= φ2.

• π, i |= Xφ i� there is a position i+ 1 in π and π, i+ 1 |= φ.

• π, i |= φ1Uφ2 i� for some j ≥ i, π, j |= φ2 and for all i ≤ l < j, π, l |= φ1.

Usual abbreviations are > = p ∨ ¬p, Fφ = >Uφ and Gφ = ¬F¬φ. Let N be a 1-safe

Petri net with initial marking M0. A �ring sequence σ enabled at M0 is said to be maximal

if σ is in�nite or it is �nite, M0
σ

==⇒ M and no transition is enabled at M . A 1-safe net

N with initial marking M0 is a model of an LTL formula φ i� every run π that can be

obtained by �ring any maximal sequence of transitions fromM0 (we will call themmaximal

runs) satis�es π, 0 |= φ. Much more expressive is the Monadic Second Order (MSO) logic of

Büchi [11], interpreted on a maximal run M0M1 · · · , with π, s |= p(x) i� Ms(x)(p) = 1 under

an assignment s to the variables, which denote positions of the run. First- and (monadic)

second-order quanti�ers and Boolean operations are available as usual. The satisfaction of a

MSO formula by a run is independent of places that do not occur in the MSO formula:

Proposition 4.2. Let N be a 1-safe net and φ be an MSO formula. Let Pφ ⊆ P be the

subset of places that occur in φ. Let π = M0M1 · · · and π′ = M ′
0M

′
1 · · · be two �nite or

in�nite runs of N such that for all positions i of π and for all p ∈ Pφ, Mi(p) = M ′
i(p). For

any assignment s, we have π, s |= φ i� π′, s |= φ.

Proof. By a straightforward induction on the structure of φ.

Some interesting properties of Petri nets like liveness (a transition is live if it can always

occur again) cannot be expressed in LTL. Another such example is specifying that the initial

marking is a home marking, which means that the initial marking can be reached from any

reachable marking. Computational Tree Logic (CTL) introduces quanti�cation over set of

computations starting from a marking to enable expressing such properties. As in LTL, CTL

syntax is the same as given in section 2.1 with the set of places P replacing the set of atomic

propositional variables Φ. Following is the CTL syntax for 1-safe Petri nets, again using the

notation of [29].

φ ::= p ∈ P | ¬φ | φ ∧ φ | EXφ | AXφ | E[φ1Uφ2] | A[φ1Uφ2]

CTL formulas are interpreted on computation trees, which are possibly in�nite trees

labelled with a set of atomic propositions. A sequence of tree nodes η0η1η2 · · · is a path if for

each i ≥ 0, ηi+1 is a successor of ηi. A path is maximal if it is in�nite or it is �nite and its last

node does not have any successor in the computation tree. In case of 1-safe Petri nets, the
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set of atomic propositions is the set of places. The root of the tree is labelled with the initial

marking. Every node of the tree labelled by some marking M will have as its successors, the

set of nodes labelled by markings that are reachable from M by �ring a transition. We will

call this the reachability tree of the 1-safe net. For a tree T and a node η labelled by the

marking Mη, satisfaction of a CTL formula is de�ned as follows.

• T , η |= p i� Mη(p) = 1.

• T , η |= ¬φ i� T , η 2 φ.

• T , η |= φ1 ∧ φ2 i� T , η |= φ1 and T , η |= φ2.

• T , η |= EXφ i� there exists a child η′ of η with T , η′ |= φ.

• T , η |= AXφ i� for every child η′ of η, T , η′ |= φ.

• T , η |= E[φ1Uφ2] i� for some maximal path η0η1η2 · · · of T starting from η = η0, there

exists i ≥ 0 such that T , ηi |= φ2 and for all j with 0 ≤ j < i, T , ηj |= φ1.

• T , η |= A[φ1Uφ2] i� for every maximal path η0η1η2 · · · of T starting from η = η0, there

exists i ≥ 0 such that T , ηi |= φ2 and for all j with 0 ≤ j < i, T , ηj |= φ1.

Usual abbreviations are EFφ = E[>Uφ], AGφ = ¬EF¬φ, AFφ = A[>Uφ] and EGφ =

¬AF¬φ. Checking that all maximal runs of a 1-safe Petri net satisfy a given LTL formula

is Pspace-complete and so is the problem of checking that the reachability tree satis�es a

given CTL formula [29].

4.3 Treewidth, Pathwidth and 1-safe Petri Nets

Given a Petri net N , we associate with it an undirected �ow graph G(N ) = (P,E) where

for two places p1 6= p2, (p1, p2) ∈ E i� for some transition t, Pre(p1, t) + Post(p1, t) ≥ 1 and

Pre(p2, t) + Post(p2, t) ≥ 1. If a place p is both an input and an output place of a single

transition, the vertex corresponding to p has a self loop in G(N ). Informally, if P1 = t• ∪ •t
is the set of input and output places of a transition t, then P1 induces a clique in the �ow

graph. With a similar notion of a �ow graph for product systems that we saw in Chapter 3,

a global transition would have induced a clique intersecting each process. Presence of cliques

increases the treewidth and pathwidth of graphs. In 1-safe Petri nets, such induced cliques

are localized to set of places interacting with a transition.

The intuition behind the �ow graph is to connect a pair of places by an edge in the �ow

graph if they are related in some way in the Petri net. In the example of Fig. 4.1, places p1

and p2 both need a token to enable the transition t. Hence, they are connected by an edge

in the �ow graph as de�ned. Places p1 and p3 are connected too; the relation between them

is that if transition t is �red, a token is removed from p1 and a token is added to p3.

In this section, we will proveW[1]-hardness for problems associated with 1-safe nets, with

treewidth of the �ow graph of the Petri net as parameter. For this, we give a parameterized
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Figure 4.1: A simple Petri net and its �ow graph

reduction from the p-Pw-Sat problem. Recall from Lemma 2.13 that when parameterized

by the number of parts e and the pathwidth of the primal graph, p-Pw-Sat is W[1]-hard.

Now we will demonstrate a parameterized reduction from p-Pw-Sat to reachability in

1-safe Petri nets, with the pathwidth of the �ow graph of the Petri net as parameter. Given

an instance of p-Pw-Sat, let q1, . . . , qn be the variables used. Construct an optimal path

decomposition of the primal graph of the CNF formula in the given p-Pw-Sat instance

(this can be done in Fpt time [7]). For every clause in the CNF formula, the primal graph

contains a clique formed by all variables occurring in that clause. There will be at least

one bag in the path decomposition of the primal graph that contains all the vertices in this

clique. Order the bags of the path decomposition from left to right and call the clause whose

clique appears �rst C1, the clause whose clique appears second as C2 and so on. If more than

one such clique appears for the �rst time in the same bag, order the corresponding clauses

arbitrarily. Let C1, . . . , Cm be the clauses ordered in this way. We will call this the path

decomposition ordering of clauses, and use it to prove that the pathwidth of the �ow

graph of the constructed 1-safe Petri net is low (Lemma 4.4). For a part ρ between 1 and

e, we let n[ρ] be the number of variables in ρ. We will construct a 1-safe Petri net with the

following places.

1. For every propositional variable qi used in the given p-Pw-Sat instance, places qi, xi, xi.

2. For ρ ∈ {1, . . . , e}, places t↑ρ, f ↑ρ, tr 0
ρ, . . . , tr

tg(ρ)
ρ and fl0

ρ, . . . ,fl
n[ρ]−tg(ρ)
ρ .

3. For each clause Cj, a place Cj. An additional place Cm+1.

4. Places s (for serializing certain operations in the Petri net) and g (for checking some

global conditions).

The construction of the Petri net is illustrated in the following diagrams, divided into

modules for understandability. The notation part(i) stands for the part to which qi belongs.

For each propositional variable qi used in the given p-Pw-Sat instance, part of the net

shown in Fig. 4.2 is constructed. Intuitively, the truth assignment of qi is determined by

�ring ti or fi. The token in xi/xi is used to check satisfaction of clauses later. The token in

t↑part(i)/f ↑part(i) is used to count the number of variables set to >/⊥ in each part, with the

part of the net in Fig. 4.3. To transfer a token from tr 0
ρ to tr 1

ρ, we need to have a token in

t↑ρ. To transfer a token from tr 0
ρ to tr

tg(ρ)
ρ , we will need tg(ρ) tokens in t↑ρ. Similarly for f ↑ρ.

For each clause Cj between 1 and m, the part of the net shown in Fig. 4.4 is constructed.

In Fig. 4.4, it is assumed that Cj = q1 ∨ q2 ∨ q3. For each clause, the corresponding part
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Figure 4.2: Part of the net for each variable qi

•
tr 0
ρ tr 1

ρ tr tg(ρ)ρ

t↑ρ s

•
fl0
ρ fl1

ρ fln[ρ]−tg(ρ)
ρ

f ↑ρ s

Figure 4.3: Part of the net for each part ρ between 1 and e

x1 x2 x3

Cj Cj+1

Figure 4.4: Part of the net for each clause Cj
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of the net has to be constructed similarly according to the literals occurring in the clause.

Intuitively, a token can be moved from place Cj to Cj+1 i� the clause Cj is satis�ed by the

truth assignment determined by the �rings of ti/fi for each i between 1 and n.

Finally, the part of the net in Fig. 4.5 checks that the given target has been met for

all parts. The initial marking of the constructed net consists of 1 token each in the places

Cm+1 tr
tg(1)
1 trtg(e)

e f l
n[1]−tg(1)
1 f l

n[e]−tg(e)
e

g

Figure 4.5: Part of the net to check that target has been met

q1, . . . , qn, s, tr
0
1, . . . , tr

0
e,fl

0
1, . . . ,fl

0
e and C1, with 0 tokens in all other places. The �nal mark-

ing to be reached consists of 1 token each in the places s, g and 0 tokens in all other places.

Lemma 4.3. Given a p-Pw-Sat instance, the Petri net described above can be constructed

in time O(f(pw)poly(n, γ)), where f(pw) is some computable function of the pathwidth pw of

the primal graph of F and poly(n, γ) is a polynomial in the number of propositional variables

and number of clauses. The constructed Petri net is 1-safe. The given instance of p-Pw-Sat

is a Yes instance i� in the constructed 1-safe net, the required �nal marking can be reached

from the given initial marking.

Proof. The only non-trivial process in the construction of the Petri net is computing an

optimal path decomposition of the primal graph of the CNF formula in the given p-Pw-Sat

instance. This can be done in time O(f(pw)poly(n, γ)) and the rest of the construction can

be done in polynomial time.

To see that the constructed net is 1-safe, observe that in the given initial marking, the

only transitions enabled are t1, f1, . . . , tn, fn. Only one of these transitions can be �red since

they all take away the only token available in the place s. Once some transition ti/fi �res, the

only other transition enabled is tci/fci respectively (transitions tdi/fdi will also be enabled,

but since they never add any token to any place, �ring those will never violate 1-safeness).

On �ring one of these, the only transition enabled is the transition in Fig. 4.3 that can shift

a token from tr 0
part(i) to tr 1

part(i). On �ring this transition, the situation is similar to the one

at the initial marking. If some clause Cj is satis�ed by the truth assignment determined by

the �ring of ti/fi transitions, some transition in Fig. 4.4 may be enabled. However, such a

transition may only shift a token from Cj to Cj+1 and will not violate 1-safeness. Finally,

the transition in Fig. 4.5 is enabled at most once since all its input places can get at most

one token at most once.
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Suppose the given instance of p-Pw-Sat is a Yes instance. Starting with i = 1, repeat

the following �ring sequence for each i between 1 and n. If qi is > in the witnessing satisfying

assignment, �re ti else �re fi. Then use the token thus put into t↑part(i)/f ↑part(i) respectively

to shift a token one place to the right in Fig. 4.3 and put a token back in the place s. Continue

with the next i. Since the witnessing assignment meets the target in each part, we will have

one token each in the places tr
tg(1)
1 , . . . , tr

tg(e)
e ,fl

n[1]−tg(1)
1 , . . . ,fln[e]−tg(e)

e . In addition, there

will be a token in xi/xi i� the witnessing assignment set qi to >/⊥ respectively. Since this

witnessing assignment satis�es all the clauses of the CNF formula, we can move the initial

token in C1 to Cm+1 using the transitions in Fig. 4.4. Now, the transition in Fig. 4.5 can be

�red to get a token into the place g. Now, the only tokens left are those in the places s and

g, and those in xi/xi. We can remove the tokens in xi/xi by �ring tdi/fdi to reach the �nal

marking.

Suppose the required �nal marking is reachable in the constructed Petri net. Since a

token has to be added to the place g to reach the �nal marking and the transition in Fig. 4.5

is the only transition that can add tokens to g, all input places of that transition must

receive a token. The only way to get a token in places tr
tg(ρ)
ρ is to shift the initial token

in the place tr 0
ρ tg(ρ) times. This requires exactly tg(ρ) tokens in the place t↑ρ. A similar

argument holds for getting a token in fln[ρ]−tg(ρ)
ρ . Since the only way to add a token to

t↑ρ/f ↑ρ is to �re transitions ti/fi (such that part(i) = ρ), the only way to get a token each

in tr
tg(1)
1 , . . . , tr

tg(e)
e ,fl

n[1]−tg(1)
1 , . . . ,fln[e]−tg(e)

e is to �re either ti or fi for each i between 1 and

n. Consider any �ring sequence reaching the required �nal marking. Consider the truth

assignment to q1, . . . , qn that assigns > to exactly those variables qi such that ti was �red in

the �ring sequence. This truth assignment meets the target for each part since this �ring

sequence adds one token each to the places tr
tg(1)
1 , . . . , tr

tg(e)
e ,fl

n[1]−tg(1)
1 , . . . ,fln[e]−tg(e)

e . To

reach the �nal marking, a token is also required at the place Cm+1. The only way to get this

token is to shift the initial token in C1 to Cm+1 through the transitions in Fig. 4.4. This

means that every clause is satis�ed by the truth assignment we constructed.

It is now left to prove that the pathwidth of the �ow graph of the constructed 1-safe net

is a function of the parameters of the given p-Pw-Sat instance.

Lemma 4.4. Suppose a given instance of p-Pw-Sat has a CNF formula whose primal graph

has pathwidth pw and e parts. Then, the �ow graph of the 1-safe net constructed as described

above has pathwidth at most 3pw + 4e+ 7.

Proof. We show a path decomposition of the �ow graph of the net. Call the set of places

{s, g, Cm+1, t↑1, . . . , t↑e, f ↑1, . . . , f ↑e, tr
tg(1)
1 , . . . , tr

tg(e)
e ,fl

n[1]−tg(1)
1 , . . . ,fln[e]−tg(e)

e } as P1. Con-

sider an optimal path decomposition of the primal graph of the CNF formula. In every bag,

replace every occurrence of each qi by the set {qi, xi, xi} ∪ P1.

Let C1, . . . , Cm be the clauses in the path decomposition order as explained in the begin-

ning of this sub-section. We will �rst show that places representing clauses can be added to

the bags of the above decomposition without increasing their size much, while maintaining

the invariant that all bags containing any one place are connected in the decomposition. We
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will do this by augmenting existing bags with new elements: if B is any bag in the decom-

position and p is an element not in B, recall from the proof of Lemma 2.18 that augmenting

B with p means creating a new bag B′ immediately to the left of B containing p in addition

to the elements in B. We will call the new bag B′ thus created an augmented bag. Perform

the following operation in increasing order for each j between 1 and m: if B is the �rst

non-augmented bag from left to contain all literals of the clause Cj, augment B with Cj.

There will be m new bags created due to the above augmentation steps. Due to the

path decomposition ordering of C1, . . . , Cm, the augmented bag containing Cj+1 occurs to

the right of the augmented bag containing Cj for each j, 1 ≤ j < m. There might be some

non-augmented bags between the augmented bags containing Cj and Cj+1. If so, add Cj to

such non-augmented bags. Now, to every bag, if it contains Cj for some j between 1 and m,

add Cj+1. It is routine to verify the following properties of the sequence we have with the

bags modi�ed as above.

• Each bag has at most 3pw + 4e+ 8 elements.

• The set of bags containing any one element forms a contiguous sub-sequence.

• Every vertex and edge in any subgraph induced by the parts of the net in Fig. 4.2,

Fig. 4.4, and Fig. 4.5 is contained in some bag.

To account for the subgraph induced by the parts of the net in Fig. 4.3, we append the

following sequence of bags for each ρ between 1 and e:

({tr 0
ρ, tr

1
ρ} ∪ P1)− ({tr 1

ρ, tr
2
ρ} ∪ P1)− · · · − ({tr tg(ρ)−1

ρ , tr tg(ρ)ρ } ∪ P1)−
({fl0

ρ,fl
1
ρ} ∪ P1)− ({fl1

ρ,fl
2
ρ} ∪ P1)− · · · − ({fln[ρ]−tg(ρ)−1

ρ ,fln[ρ]−tg(ρ)
ρ } ∪ P1)

The resulting sequence of bags is a path decomposition of the �ow graph of the Petri net,

whose width is at most 3pw + 4e+ 7.

Lemma 4.3 and Lemma 4.4 together give a parameterized reduction from p-Pw-Sat to

reachability in 1-safe nets with the pathwidth of the �ow graph of the net as parameter. We

thus get the following theorem.

Theorem 4.5. With the pathwidth of the �ow graph of a 1-safe Petri net as parameter,

reachability is W[1]-hard.

In the above reduction, it is enough to check if in the constructed 1-safe net, we can reach

a marking that has a token at the place g. This can be expressed as a coverability problem,

CTL model checking and also as complement of LTL/MSO model checking problems with

formulas of constant size. Hence, we get the following theorem.

Theorem 4.6. With the pathwidth of the �ow graph of a 1-safe Petri net as parameter,

coverability, CTL and the complement of LTL/MSO model checking problems are W[1]-hard,

even when formula sizes are constant.
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4.3.1 Treewidth, Pathwidth and Graph Pebbling Problems

The techniques used in the above lower bound proof can be easily translated to some graph

pebbling problems considered in [26]. It is conjectured in [26, section 5] that Signed Di-

graph Pebbling parameterized by treewidth is W[1]-hard. In [26], this parameterized

problem is referred to as Signed Digraph Pebbling I. Corollary 4.8 below proves the

stronger result that Signed Digraph Pebbling parameterized by pathwidth isW[1]-hard.

De�nition 4.7 (Signed Digraph Pebbling,[26]). Instance: A red/blue bipartite digraph

D = (V,A) for which the vertex set V is partitioned V = R ∪B into two parts, and also the

arc set A is partitioned into two parts A = A+ ∪ A−. Each arc in A has one of its vertices

in R and the other one in B.

Question: Starting from the start state where there are no pebbles on any of the red vertices,

is it possible to reach the �nish state where there are pebbles on all of the red vertices, by a

series of moves of the following form? A legal move: If b is a blue vertex such that for all

u such that (u, b) ∈ A+, u is pebbled, and for all u such that (u, b) ∈ A−, u is not pebbled

(in which case we say that b is enabled), then the set of vertices u such that (b, u) ∈ A+ are

reset by making them all pebbled, and the set of all vertices u such that (b, u) ∈ A− are reset

by making them all unpebbled.

Corollary 4.8. Parameterized by pathwidth, Signed Digraph Pebbling is W[1]-hard.

Proof. We will reduce p-Pw-Sat to Signed Digraph Pebbling. First reduce the given

p-Pw-Sat instance to an 1-safe net as shown above. From this 1-safe net, construct an

instance of Signed Digraph Pebbling as follows. Let the set of all places form the set of

red vertices R and the set of all transitions form the set of blue vertices B. The arcs of the

Signed Digraph Pebbling instance are as follows.

1. If Pre(p, t) = 1 in the 1-safe net, draw an A+ arc from p to t in the Signed Digraph

Pebbling instance.

2. If Pre(p, t) = 1 and Post(p, t) = 0, draw an A− arc from t to p.

3. If Pre(p, t) = 0 and Post(p, t) = 1, draw an A+ arc from t to p.

Suppose that in the 1-safe net,M1
t

==⇒M2. It is clear that the constructed Signed Digraph

Pebbling instance in the state where precisely those red vertices are pebbled that have a

token in M1 enables the blue vertex t, and can move to the state where precisely those red

vertices are pebbled that have a token inM2. Add a special blue vertex b1 with A
+ arcs from

b1 to q1, q2, . . . , qn, tr
0
1, . . . , tr

0
e,fl

0
1, . . . ,fl

0
e, C1 and s. Add A

− arcs from all red vertices to b1.

In the start state where there no pebbles at all, b1 is the only blue vertex enabled. The blue

vertex b1 is enabled only in the start state. Upon performing the legal move using b1 from

the start state, we will reach a state in which precisely those red vertices are pebbled that

have a token in the initial marking of the 1-safe net. From this state, there is at least one

pebbled red vertex in any reachable state, so b1 is never enabled again. From this state, we
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can reach a state with the red vertex g pebbled i� the given p-Pw-Sat instance is a Yes

instance. Add another special blue vertex b2 with an A+ arc from the red vertex g to b2.

Add A+ arcs from b2 to all red vertices. All blue vertices except b1 and b2 unpebble at least

one red vertex. Hence, the only way to reach the �nish state (where all red vertices must be

pebbled) from the start state is to enable b2. The only way to enable b2 is to reach a state

where the red vertex g is pebbled. Hence, the constructed Signed Digraph Pebbling

instance is a Yes instance i� the given p-Pw-Sat instance is a Yes instance.

To complete the reduction, it only remains to show that the pathwidth of the Signed

Digraph Pebbling instance is bounded by the pathwidth of the �ow graph the intermediate

1-safe net. Consider an optimal path decomposition of this �ow graph. For every transition

t, the set of all input and output places of t forms a clique in the �ow graph. Hence, there will

be at least one bag B in the path decomposition containing all these places. Create an extra

bag B′ adjacent to B containing all elements of B and also the blue vertex corresponding to

t. After doing this for each transition, add the vertices b1 and b2 to all bags. The resulting

decomposition is a path decomposition of the Signed Digraph Pebbling instance. Its

width is at most 3 more than the pathwidth of the graph �ow the 1-safe net.

4.4 Bene�t Depth and 1-safe Petri Nets

In this section, we will introduce a parameter called bene�t depth and show that bene�t

depth as a parameter is not helpful for 1-safe Petri nets, by showing W[1]-hardness results.

In Chapter 6, we give a positive result using bene�t depth as a parameter for general Petri

nets.

De�nition 4.9. Given a place p, the set of places Ben(p) ⊆ P and the set of transitions

Tben(p) ⊆ T bene�ted by p are the smallest sets that satisfy the following properties:

1. p ∈ Ben(p).

2. If some p′ ∈ Ben(p) and there is a transition t with Pre(p′, t) ≥ 1, then t ∈ Tben(p).

3. If some transition t ∈ Tben(p) and there is a place p′′ such that Post(p′′, t) ≥ 1, then

p′′ ∈ Ben(p).

The bene�t depth of a 1-safe Petri net is de�ned as maxp∈P{|Ben(p)|}.

Intuitively, places in Ben(p) are those that can get a token from p, may be through a

sequence of many transitions. If p1 is an input place of a transition t and p2 is an output

place of t, then p2 is reachable from p1 through transition t (this is di�erent from reachability

between markings). Intuitively, bene�t depth is the maximum number of places reachable

from any one place, through sequences of transitions.

To show that with bene�t depth as parameter, reachability in 1-safe nets is W[1]-hard,

we will show a parameterized reduction from the constraint satisfaction problem (Csp). The

parameterized Csp we are interested in is de�ned as follows:
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p-Csp

Instance: A set of variables {q1, . . . , qn}, domain {1, . . . , dom} and a set of

constraints C. Each constraint C ∈ C is a pair (S,R), where S,

the constraint scope, is a non-empty sequence of variables from

{q1, . . . , qn}, and R, the constraint relation, is a relation over

{1, . . . , dom}, whose arity matches the length of S.

Parameter: The size of the domain dom and the maximum number deg of

constraints in the scopes of which any one variable can occur.

Problem: Decide if there is an assignment s : {q1, . . . , qn} → {1, . . . , dom} such
that for each constraint C = (qi, . . . , qi′ , R) ∈ C, (s(qi), . . . , s(qi′)) ∈ R.

This parameterized version of Csp is W[1]-hard [87, Corollary 2]. Given an instance of Csp

with domain size dom, degree deg, n variables and m constraints, we construct a 1-safe net

with the following places.

1. For every variable qi, a place qi.

2. For every constraint Cj where j is between 1 and m, a place Cj.

3. For every i between 1 and n, for every domain element d between 1 and dom, for every

constraint Cj in which qi appears, the place q[i]
d
j .

4. One place g for checking that all constraints are satis�ed.

We assume without loss of generality that every variable occurs in at least one constraint.

Construction of the 1-safe net is illustrated in the following diagrams. For every variable

qi and domain value d (between 1 and dom), part of the net shown in Fig. 4.6 is con-

structed. Intuitively, the transition tdi is �red to assign domain value d to qi. In Fig. 4.6,

qi

tdi

q[i]d∗ q[i]d∗ q[i]d∗

t[i]d∗ t[i]d∗ t[i]d∗

Figure 4.6: Part of the net for every variable qi and domain value d

the set of places labelled by q[i]d∗ should be understood to stand for the set of places

{q[i]dj | qi occurs in constraint Cj}. The set of transitions labelled t[i]d∗ should be similarly

understood. For every constraint Cj and every admissible tuple of domain values for Cj, part

of the net shown in Fig. 4.7 is constructed. In Fig. 4.7, it is assumed that the constraint Cj

consists of variables q1, q2 and q3 and that (3, 5, 6) is an admissible tuple for this constraint.
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Cj

q[1]3j q[2]5j q[3]6j

Figure 4.7: Part of the net for every constraint Cj and every admissible tuple

g

C1 C1 Cm

Figure 4.8: Part of the net to check that all constraints are satis�ed

Finally, the part of the net in Fig. 4.8 veri�es that all constraints are satis�ed. The initial

marking has 1 token each in each of the places q1, . . . , qn and 0 tokens in all other places.

The �nal marking to be reached is 1 token at the place g and 0 tokens in all other places.

Lemma 4.10. Given a Csp instance of domain size dom and degree deg, the bene�t depth

of the 1-safe net constructed above is at most 2 + deg(dom+ 1). The given Csp instance is

satis�able i� the required �nal marking is reachable from the initial marking in the constructed

1-safe net.

Proof. Maximum number of places are bene�ted by some place in {q1, . . . , qn}. Any place

qi can bene�t itself, the place g, all places {q[i]11, . . . , q[i]domdeg } and at most deg places among

{C1, . . . , Cm}. This adds up to at most 2 + deg(dom+ 1).

Suppose the given Csp instance is satis�able. For each variable qi, if d is the domain

value assigned to qi by the satisfying assignment, �re the transition tdi shown in Fig. 4.6.

Since the satisfying assignment satis�es all the constraints, the transitions shown in Fig. 4.7

can be �red to get a token into each of the places C1, . . . , Cm. Then the transition shown in

Fig. 4.8 can be �red to get a token in the place g. Any tokens remaining in places q[i]d∗ can

be removed by �ring transitions t[i]d∗ shown in Fig. 4.6. Now, the token in the place g is the

only token in the entire net and this is the �nal marking required to be reached.

Suppose the required �nal marking is reachable in the constructed 1-safe net. Consider

any �ring sequence reaching the required �nal marking. Since the �nal marking needs a

token in the place g and the only transition that can add token to g is the one shown in

Fig. 4.8, the �ring sequence �res this transition. For this transition to be enabled, a token

needs to be present in each of the places C1, . . . , Cm. These tokens can only be added by
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�ring transitions shown in Fig. 4.7. To �re these transitions, tokens needs to be present in the

places q[i]d∗. To generate these tokens, the �ring sequence would have to �re some transition

tdi for each i between 1 and n. Consider the assignment that assigns domain value d to qi i�

the �ring sequence �red tdi . By construction of the Petri net, this assignment satis�es all the

constraints.

Since the 1-safe net described above can be constructed in time polynomial in the size of

the given Csp instance, Lemma 4.10 shows that this reduction is a parameterized reduction

from Csp (with dom and deg as parameters) to reachability in 1-safe nets (with bene�t depth

as the parameter). We thus get the following theorem.

Theorem 4.11. With bene�t depth as the parameter, reachability in 1-safe Petri nets is

W[1]-hard.

Again in the above reduction, it is enough to check if in the constructed 1-safe net, we

can reach a marking that has a token at the place g. This can be expressed as a coverability

problem, CTL model checking and also as the complement of LTL/MSO model checking

problem with a formula of constant size. Hence, we get the following theorem.

Theorem 4.12. With bene�t depth as the parameter, coverability, CTL and the complement

of LTL/MSO model checking problems are W[1]-hard, even when formula sizes are constant.

4.5 Vertex Cover and Model Checking 1-safe Petri Nets

A vertex cover VC ⊆ V of a graph G = (V,E) is a subset of vertices such that for every

edge in E, at least one of its vertices is in VC . The vertex cover number of a graph

is the size of a smallest vertex cover. In this section, we will show that with the vertex

cover number of the �ow graph of the given 1-safe Petri net and size of the given LTL/MSO

formula as parameters, checking whether the given net is a model of the given formula is

Fpt. With vertex cover number as the only parameter, we cannot hope to get this kind of

tractability:

Proposition 4.13. Model checking LTL (and hence MSO) formulas on 1-safe Petri nets

whose �ow graph has constant vertex cover number is Co-Np-hard. Model checking CTL

formulas on 1-safe Petri nets whose �ow graph has constant vertex cover number is Co-Np-

hard.

Proof. We give a reduction from the propositional logic validity problem. Let F be a propo-

sitional formula over variables q1, . . . , qn. Consider the 1-safe net NF shown in Fig. 4.9. The

initial marking consists of 0 tokens in g2 and 1 token each in all other places. The �ow graph

of NF has a vertex cover of size 2 ({g1, g2}). Every marking M reachable in NF de�nes

an assignment to the variables used in F : qi = > i� M(qi) = 1. Every assignment can be

represented by some reachable marking in this way. We claim that F is valid i� NF is a

model of the LTL formula ¬(> U ¬F). If F is valid, then none of the markings reachable in
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•
q1

•
q2

•
qn

•g1 g2

Figure 4.9: The net NF associated with a propositional formula F

NF satis�es ¬F . Hence, NF is a model of the LTL formula ¬(> U ¬F). On the other hand,

if NF is a model of ¬(> U ¬F), then none of the markings reachable in NF satis�es ¬F .
Hence, F is valid. This means that model checking LTL (and hence MSO) is Co-Np-hard

even when the �ow graph has constant vertex cover number.

We claim that F is valid i� NF is a model of the CTL formula ¬E[> U ¬F ]. If F
is valid, then there is no run along which a marking de�nes an assignment satisfying ¬F .
Hence, NF is a model of the CTL formula ¬E[> U ¬F ]. If NF is a model of the CTL

formula ¬E[> U ¬F ], then none of the reachable markings de�ne an assignment satisfying

¬F . Hence, F is valid. This means that model checking CTL is Co-Np-hard even when the

�ow graph has constant vertex cover number.

Since a run of a 1-safe net N with set of places P is a sequence of subsets of P , we can

think of such sequences as strings over the alphabet P(P ) (the power set of P ). It is known

[11, 96] that with any LTL or MSO formula φ, we can associate a �nite state automaton Aφ
over the alphabet P(P ) accepting the set of �nite strings which are its models, as well as a

�nite state Büchi automaton Bφ accepting the set of in�nite string models.

Given a Petri net N , consider its �ow graph G(N ). Any vertex cover of G(N ) should

include all vertices that have self loops. Suppose VC is a vertex cover for G(N ). We use the

fact that if v1, v2 /∈ VC are two vertices not in VC that have the same set of neighbours, v1

and v2 have similar properties. This has been used to obtain Fpt algorithms for many hard

problems (e.g. [32]).

Figure 4.10 shows the schematic of a simple manufacturing system modelled as a 1-

safe Petri net. Starting from p1, it picks up one unit of a raw material α and goes to p2,

then picks up raw material β, then γ. Transition t1 does some processing and then the

system starts from p1 again. Suppose we want to make sure that whenever the system picks

up a unit of raw material β, it is processed immediately. In other words, whenever the

system stops at a marking where no transitions are enabled, there should not be a token in

p3. This can be checked by verifying that all �nite maximal sequences satisfy the formula

∀x((∀y y ≤ x)⇒ ¬p3(x)). The satisfaction of this formula depends only on the number of

units of raw materials α, β and γ at the beginning, i.e., the number of tokens at the initial

marking. The naive approach of constructing the whole reachability graph results in an

exponentially large state space, due to the di�erent orders in which the raw materials of each
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•
p1

p2 p3

p4

α

α

α

•
•

β β β
• •

γ

γ

γ

•

t1

Figure 4.10: An example of a system with small vertex cover

type can be drawn. If we want to reason about only the central system (which is the vertex

cover {p1, p2, p3, p4} in the above system), it turns out that we can ignore the order and

express the requirements on the numbers by integer linear constraints. Roughly speaking,

our Fpt algorithm works well for systems which have a small �core� (vertex cover), a small

number of �interface types� with this core, but any number of component processes using

these interface types to interact with the core. Thus, we can have a large amount of con�ict

and concurrency but a limited amount of causality.

De�nition 4.14. Let VC be a vertex cover of G(N ). The VC -neighbourhood of a tran-

sition t is the ordered pair (•t ∩ VC , t• ∩ VC ). We denote by l the number of di�erent

VC -neighbourhoods.

De�nition 4.15. Suppose N is a Petri net with l neighbourhoods for vertex cover VC ,

and p /∈ VC . The VC -interface I[p] of p is de�ned as the function I[p] : {1, . . . , l} →
P({−1, 1}), where for every j between 1 and l and every w ∈ {1,−1}, there is a transition

tj of VC -neighbourhood j such that w = −Pre(p, tj) + Post(p, tj) i� w ∈ I[p](j).

In the net in Fig. 4.10 with VC = {p1, p2, p3, p4}, all transitions labelled α have the same

VC -neighbourhood and all the corresponding places have the same VC -interface. Since there

can be 2k arcs between a transition and places in VC if |VC | = k, there can be at most 22k

di�erent VC -neighbourhoods of transitions.

Place p can have one incoming or one outgoing arc with each transition of the net. It

cannot have both an incoming and an outgoing arc since in that case, p would have a self

loop and would be in VC . If p′ is another place not in VC , then no transition can have arcs

to both p and p′, since otherwise, there would have been an edge between p and p′ in G(N )

and one of the places p and p′ would have been in VC . Hence, places not in VC cannot

interact with each other directly. Places not in VC can only interact with places in VC
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through transitions and there are at most l VC -neighbourhoods of transitions. Since l ≤ 22k,

there are at most 422k
VC -interfaces. The set of interfaces is denoted by Int .

Proposition 4.16. Let N be a 1-safe net with VC being a vertex cover of G(N ). Let

p1, p2, . . . , pi be places not in the vertex cover, all with the same interface. Let M be some

marking reachable from the initial marking of N . If M(pj) = 1 for some j between 1 and i,

then M does not enable any transition that adds tokens to any of the places p1, . . . , pi.

Proof. Suppose there is a transition t enabled at M that adds a token to pj′ for some j′

between 1 and i. Then there is a transition t′ with the same neighbourhood as t (and hence

enabled at M too) that can add a token to pj. Firing t
′ from M will create 2 tokens at pj,

contradicting the fact that N is 1-safe.

If the initial marking has tokens in many places with the same interface, then no transition

can add tokens to any of those places until all the tokens in all those places are removed.

Once all tokens are removed, one of the places can receive one token after which, no place

can receive tokens until this one is removed. All these places have the same interface. Thus,

a set of places with the same interface can be thought of as an initial storehouse of tokens,

after depleting which it can be thought of as a single place. However, a formula in our logic

can reason about individual places, so we still need to keep track of individual places that

occur in the formula.

Let N be a 1-safe net such that G(N ) has a vertex cover VC of size k. Suppose φ is

a formula and we have to check if N is a model of φ. For each interface I, let PI ⊆ P be

the places not in VC with interface I. If PI \ Pφ 6= ∅ (i.e., if there are places in PI that

are not in φ), designate one of the places in PI \ Pφ as pI . De�ne the set of special places

S = VC∪Pφ∪{pI ∈ PI\Pφ | I is an interface and PI\Pφ 6= ∅}. Note that |S| ≤ k+|φ|+422k
.

Since this is a function of the parameters of the input instance, we will treat it as a parameter.

We need a structure that keeps track of changes in places belonging to S, avoiding a

construction involving all reachable markings. This can be done by a �nite state machine

whose states are subsets of S. Transitions of the Petri net that only a�ect places in S can

be simulated by the �nite state machine with its usual transitions. To simulate transitions

of the net that a�ect places outside S, we need to impose some conditions on the number of

times transitions of the �nite state machine can be used. The following de�nition formalizes

this. For a marking M of N , let MdS = {p ∈ S |M(p) = 1}.

De�nition 4.17. Given a 1-safe net N with initial marking M0 and S de�ned from φ as

above, the edge constrained automaton AN = (QN ,Σ, δN , `, FN ) is a structure de�ned

as follows. QN = P(S) and Σ = Int ∪ {⊥} (recall that Int is the set of interfaces in N ).

The transition relation δ ⊆ QN ×Σ×QN is such that for all P1, P2 ⊆ S and I ∈ Int ∪ {⊥},
(P1, I, P2) ∈ δ i� there are markings M1,M2 and a transition t of N such that

• M1dS = P1, M2dS = P2 and M1
t

==⇒M2,

• t removes a token from a place p ∈ P \ S of interface I if I ∈ Int and
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• t does not have any of its input or output places in P \ S if I = ⊥.

The edge constraint ` : Int → N is given by `(I) = |{p ∈ PI \ S | M0(p) = 1}|. A subset

P1 ⊆ S is in FN i� for every marking M with MdS = P1, the only transitions enabled at M

remove tokens from some place not in S.

Intuitively, the edge constraint ` de�nes an upper bound on the number of times those

transitions can be used that reduce tokens from places not in S.

De�nition 4.18. Let AN be an edge constrained automaton as in De�nition 4.17 and let

π = P0P1 . . . be a �nite or in�nite word over P(S). Then π is a valid run of AN i� for

every position i ≥ 1 of π, we can associate an element Ii ∈ Int ∪ {⊥} such that

• for every position i ≥ 1 of π, (Pi−1, Ii, Pi) ∈ δ and

• for every I ∈ Int , |{i ≥ 1 | Ii = I}| ≤ `(I).

• if π is �nite and Pi is the last element of π, then Pi ∈ FN and for every interface

I ∈ Int with a marking MidS = Pi enabling some transition that removes tokens from

some place in PI \ S, |{i ≥ 1 | Ii = I}| = `(I).

Next we have a run construction lemma.

Lemma 4.19. Let N be a 1-safe net with initial marking M0, φ be a formula and AN be as

in De�nition 4.17. For every in�nite (maximal �nite) run π = M0M1 · · · of N , there exists

an in�nite (�nite) run π′ = M ′
0M

′
1 · · · such that the word (M ′

0dS)(M ′
1dS) · · · is a valid run of

AN and for every position i of π, M ′
idPφ = MidPφ. If an in�nite (�nite) word π = P0P1 · · ·

over P(S) is a valid run of AN and P0 = M0dS, then there is an in�nite (�nite maximal)

run M0M1 · · · of N such that MidS = Pi for all positions i of π.

Proof. Let π = M0M1 · · · be an in�nite or a maximal �nite run of N . For every interface

I ∈ Int , perform the following steps: if for some marking M in the above run, {p ∈ PI |
M(p) = 1} = ∅, letMI be the �rst such marking. By Proposition 4.16, no transition occurring

before MI will add any token to any place in PI . If there is any transition occurring after

MI that adds/removes tokens from PI \ S, replace it with another transition with the same

neighbourhood that adds/removes tokens from pI . By Proposition 4.16, such a replacement

will not a�ect any place in Pφ and the new sequence of transitions is still enabled at M0.

After performing this process for every interface I ∈ Int , let the new run be π′ = M ′
0M

′
1 · · · .

By construction, we have M ′
idPφ = MidPφ for all positions i ≥ 0 of π. If π is a maximal

�nite run, so is π′.

Now we will prove that the word (M ′
0dS)(M ′

1dS) · · · is a valid run of AN . Suppose the

sequence of transitions producing the run π′ is M ′
0

t1==⇒ M ′
1

t2==⇒ M ′
2 · · · . For each position

i ≥ 1 of this run, de�ne Ii ∈ Σ as follows:

• if ti has all its input and output places among places S, let Ii = ⊥.
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• if ti removes a token from some place in PI \ S for some interface I, let Ii = I. Due to

the way π′ is constructed, this kind of transition can only occur before the position of

MI and the number of such occurrences is at most |{p ∈ PI \ S |M0(p) = 1}| = `(I).

Due to the way π′ is constructed, there will not be any transition that adds tokens to

any place in PI \ S for any interface I. By de�nition, it is clear that for every position

i ≥ 1 of π′, (M ′
i−1dS, Ii,M ′

idS) ∈ δN . In addition, for every interface I ∈ Int , we have

|{i ≥ 1 | Ii = I}| ≤ `(I). Hence, the word (M ′
0dS)(M ′

1dS) · · · is a valid run of AN if the

word is in�nite. If π′ is �nite, suppose M ′
r is the last marking of the sequence π′. Suppose

for some variety I ∈ Int , there is some marking M such that MdS = M ′
rdS and M enables

some transition t that removes tokens from some place in PI \ S. Since M ′
r does not enable

any transition, all transitions (including t) removing tokens from some place in PI \ S are

disabled in M ′
r. This means that every place in PI \ S that had a token in M0 has lost its

token in M ′
r. Since such loss of tokens can only happen by �ring transitions that remove

tokens from places in PI \ S, we have |{i ≥ 1 | Ii = I}| = `(I). Hence, to prove that

(M ′
0dS)(M ′

1dS) · · · (M ′
rdS) is a valid run of AN , it is left to show that M ′

r ∈ FN . To see that
this is true, observe that if some marking M with MdS = M ′

r enables a transition that does

not remove any token from P \ S, then so does M ′
r, a contradiction.

Next, suppose π = P0P1 · · · is an in�nite or �nite word that is a valid run of AN such

that P0 = M0dS. For every position i ≥ 1 of π, there are Ii ∈ Int ∪ {⊥}, transition t′i
and markings M ′

i−1 and M ′
i such that (Pi−1, Ii, Pi) ∈ δN , M ′

i−1

t′i==⇒ M ′
i , M

′
i−1dS = Pi−1 and

M ′
idS = Pi. De�ne transitions ti as follows:

• If Ii = ⊥, transition t′i has all its input and output places in S. Let ti = t′i.

• If Ii = I ∈ Int , transition t′i removes a token from some place in PI \ S. Let t′ be

a transition of the same neighbourhood as t′i that removes a token from some place

pi ∈ {p ∈ PI \S |M0(p) = 1} such that no transition among t1, . . . , ti−1 removes tokens

from pi. This is possible since, due to the validity of π in AN , |{i′ ≥ 1 | Ii′ = I}| ≤
|{p ∈ PI \ S |M0(p) = 1}| = `(I). Let ti = t′.

We will now prove by induction on i that there are markings M0,M1, . . . such that M0
t1==⇒

M1
t2==⇒ · · · ti==⇒Mi and MidS = Pi for every position i of π.

Base case i = 1: If I1 = ⊥, the fact that M0dS = P0, M
′
0

t1==⇒ M ′
1 and that t1 has all its

input and output places in S implies that M0
t1==⇒ M1 for some M1 such that M1dS = P1.

If Ii = I ∈ Int , then t1 removes a token from some place p1 ∈ PI \ S. Again the fact that

M0dS = P0 and M
′
0

t′1==⇒M ′
1 implies that M0

t1==⇒M1 for some M1 such that M1dS = P1.

Induction step: If Ii+1 = ⊥, the fact that MidS = Pi, M
′
i

ti+1
==⇒ M ′

i+1 and that ti+1 has

all its input and output places in S implies that Mi
ti+1

==⇒ Mi+1 for some Mi+1 such that

Mi+1dS = Pi+1. If Ii+1 = I ∈ Int , then ti+1 removes a token from some place pi+1 ∈ PI \ S.
Again the fact that MidS = Pi and M

′
i

t′i+1
==⇒M ′

i+1 implies that Mi
ti+1

==⇒Mi+1 for some Mi+1

such that Mi+1dS = Pi+1.
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If π is a �nite word, we have to prove that the run constructed above is a maximal

�nite run. Let Mr be the last marking in the sequence constructed above. We will prove

that Mr does not enable any transition. Suppose some transition t is enabled at Mr. Since

MrdS ∈ FN , t removes a token from some place in PI \ S for some variety I. Since |{i ≥
1 | Ii = I}| = `(I), there are `(I) transition occurrences among t1, . . . , tr that each remove

a token from some place in PI \ S. Since there were exactly `(I) places in PI \ S that had

a token in M0 and no other transition adds any token to any place in PI \ S, t can not be

enabled at Mr. Hence, no transition is enabled at Mr.

Lemma 4.19 implies that in order to check if N satis�es the formula φ, it is enough to

check that all words accepted by AN satisfy φ. This can be done by checking that no �nite

sequence is accepted by both AN and A¬φ and no in�nite sequence is accepted by both AN
and B¬φ. As usual, this needs a product construction. Automata A¬φ and B¬φ run on the

alphabet P(Pφ). Let QA and QB be the set of states of A¬φ and B¬φ respectively. Then,

A¬φ = (QA,P(Pφ), δA, Q0A, FA) and B¬φ = (QB,P(Pφ), δB, Q0B, FB).

De�nition 4.20. AN ×A¬φ = (QN ×QA,Σ, δNA , {M0dS} ×Q0A, FN × FA, `), AN ×B¬φ =

(QN ×QB,Σ, δNB , {M0dS} ×Q0B, QN × FB, `) where

((q1, q2), I, (q
′
1, q
′
2)) ∈ δNA i� (q1, I, q

′
1) ∈ δN and (q2, q1 ∩ Pφ, q′2) ∈ δA

((q1, q2), I, (q
′
1, q
′
2)) ∈ δNB i� (q1, I, q

′
1) ∈ δN and (q2, q1 ∩ Pφ, q′2) ∈ δB

An accepting path of AN × A¬φ is a sequence (q0, q
′
0)I1(q1, q

′
1) · · · Ir(qr, q′r) which is δNA -

respecting:

• (q0, q
′
0), (q1, q

′
1), . . . , (qr, q

′
r) ∈ QN ×QA,

• the word I1 · · · Ir ∈ Σ∗ witnesses the validity of the run q0q1 · · · qr in AN (as in De�ni-

tion 4.18) and

• the word (q0∩Pφ) · · · (qr∩Pφ) is accepted by A¬φ through the run q′0q
′
1 · · · q′rq′F for some

q′F ∈ FA with (q′r, qr ∩ Pφ, q′F ) ∈ δA.

An accepting path of AN × B¬φ is de�ned similarly.

Proposition 4.21. A 1-safe net N with initial marking M0 is a model of a formula φ i�

there is no accepting path in AN ×A¬φ and AN × B¬φ.

Proof. Suppose N is a model of φ. Hence, all maximal runs of N satisfy φ. We will prove

that there is no accepting path in AN ×A¬φ and AN ×B¬φ. Assume by way of contradiction

that there is an accepting path (q0, q
′
0)I1(q1, q

′
1) · · · Ir(qr, q′r) in AN ×A¬φ. By De�nition 4.20,

q0q1 · · · qr is a valid run of AN . By Lemma 4.19, there is a �nite maximal run M0M1 · · ·Mr

of N with MidS = qi for all positions 0 ≤ i ≤ r. By De�nition 4.20, (q0 ∩ Pφ) · · · (qr ∩ Pφ)

is accepted by A¬φ and hence satis�es ¬φ. Proposition 4.2 now implies that M0M1 · · ·Mr

satis�es ¬φ, a contradiction. The argument for AN × B¬φ is similar.
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Suppose N is not a model of φ. Suppose there is a �nite maximal run M0M1 · · ·Mr

of N that satis�es ¬φ. By Lemma 4.19, there is a �nite maximal run π′ = M ′
0M

′
1 · · ·M ′

r

such that the word (M ′
0dS)(M ′

1dS) · · · (M ′
rdS) is a valid run of AN and for every position i

of π′, M ′
idPφ = MidPφ. By Proposition 4.2, (M ′

0dPφ)(M ′
1dPφ) · · · (M ′

rdPφ) satis�es ¬φ and

hence accepted by A¬φ, say with the run q′0q
′
1 · · · q′rq′F . Let the word I1 · · · Ir ∈ Σ∗ witness the

validity of the run (M ′
0dS)(M ′

1dS) · · · (M ′
rdS) inAN , as in De�nition 4.18. By De�nition 4.20,

the sequence (M ′
0dPφ, q′0)I1(M ′

1dPφ, q′1) · · · Ir(M ′
rdPφ, q′r) is an accepting path of AN × A¬φ.

The argument for maximal in�nite runs is similar.

To e�ciently check the existence of accepting paths in AN × A¬φ and AN × B¬φ, it is
convenient to look at them as graphs, possibly with self loops and parallel edges. Let the

set of states be the vertices and each entry of a transition (q, Ii, q
′) be an edge leaving q and

entering q′. If there is a path µ in the graph from q to q′, the number of times an edge e

occurs in µ is denoted by µ(e). If u 6= q, q′ is some node occurring in µ, then the number of

edges of µ entering u is equal to the number of edges of µ leaving u. These conditions can

be expressed as integer linear constraints.∑
e leaves q

µ(e)−
∑

e enters q

µ(e) = 1∑
e enters q′

µ(e)−
∑

e leaves q′
µ(e) = 1 (4.1)

u 6= q, q′ :
∑

e enters u

µ(e) =
∑

e leaves u

µ(e)

In connected graphs, the above conditions are also su�cient for the existence of a path. The

following generalization of Euler's theorem is also useful in other problems of general Petri

nets [85, section 2.1].

Lemma 4.22 (Theorem 2.1,[85]). In a directed graph G = (V,E) (possibly with self loops

and parallel edges), let µ : E → N be a function such that the underlying undirected graph

induced by edges e such that µ(e) > 0 is connected. Let q 6= q′ be two vertices. Then, there is

a path from q to q′ with each edge e occurring µ(e) times i� µ satis�es the constraints (4.1)

above.

If the beginning and end of a path are same (i.e., if q = q′), the conditions of (4.1) can

be simpli�ed as follows.

u is a vertex :
∑

e enters u

µ(e) =
∑

e leaves u

µ(e) (4.2)

Lemma 4.23 (Theorem 2.1,[85]). In a directed graph G = (V,E) (possibly with self loops

and parallel edges), let µ : E → N be a function such that the underlying undirected graph

induced by edges e such that µ(e) > 0 is connected. Let q be a vertex such that there exists

an edge e incident on q with µ(e) 6= 0. Then, there is a loop from q back to q with each edge

e occurring µ(e) times i� µ satis�es the constraints (4.2) above.
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Theorem 4.24. Let N be a 1-safe net with initial marking M0 and φ be a MSO formula.

Parameterized by the vertex cover number of G(N ) and the size of φ, checking whether N is

a model of φ is Fpt.

Proof. By Proposition 4.21, it is enough to check that there is no accepting paths inAN×A¬φ
and AN × B¬φ. To check the existence of accepting paths in AN × B¬φ, we have to check if

from some initial state in {M0dS} × Q0B, we can reach some vertex in a maximal strongly

connected component induced by ⊥-labelled edges, which contains some states from QN×FB.
For every such initial state q and a vertex q′ in such a strongly connected component, check

the feasibility of (4.1) along with the following constraint for each interface I:∑
e is I− labelled

µ(e) ≤ `(I) (4.3)

To check the existence of accepting paths in AN ×A¬φ, check the feasibility of (4.1) and

(4.3) for every state q in {M0dS} × Q0A and every state (P1, q
′′) in FN × QA with some

qF ∈ FA such that (q′′, P1 ∩ Pφ, qF ) ∈ δA. If some marking M with MdS = P1 enables some

transition removing a token from some place with interface I, then for each such interface,

add the following constraint: ∑
e is I− labelled

µ(e) = `(I) (4.4)

This will ensure that all available tokens are used up so that only maximal runs are considered.

The variables in the above Ilp instances are µ(e) for each edge e. The number of variables

in each Ilp instance is bounded by some function of the parameters. As Ilp is Fpt when

parameterized by the number of variables [53, 63, 37], the result follows.

4.6 Open Problems

With the vertex cover number of G(N ) and the size of a given CTL formula as parameters,

the parameterized complexity of checking whether the 1-safe Petri net N satis�es the given

CTL formula is open.
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Chapter 5

Survey of General Petri Nets and

Related Concepts

Works on logical characterization of seemingly unrelated models relate to languages of Petri

nets and counter automata. In this chapter, we survey some of the logics whose satis�ability

or provability relates to languages of Petri nets or counter automata in some way. The logics

considered are LTL with freeze operators [21], FO2(∼, <,+1) on data words [8], Existential

Monadic Second Order (EMSO) logic of Petri net languages [78], provability in fragments of

linear and relevance logic [93, 94, 95] and Presburger arithmetic with monotone transitive

closure operator [84]. We also look at the coverability and boundedness of Branching Vector

Addition Systems (BVAS) [19] and Yen's path logic for deciding the existence of certain Petri

net paths [98, 3].

5.1 Petri Nets and Some Properties

Recall the de�nition of Petri net reachability, coverability and boundedness from De�ni-

tion 4.1. In the Petri net shown in Fig. 5.1, the initial marking M0 is given by M0(p1) = 1

and M0(p2) = M0(p3) = 0. If Mcov is de�ned as Mcov(p1) = Mcov(p2) = 1 and Mcov(p3) = 0,

thenMcov is not coverable since p1 and p2 cannot have tokens simultaneously in any reachable

marking. Since for any c ∈ N, the Petri net in Fig. 5.1 can reach a marking where p3 has more

than c tokens (by �ring the sequence t1t2 repeatedly), this Petri net is not bounded. Lipton

proved both coverability and boundedness problems to be Expspace-hard [65, 29]. Racko�

provided Expspace upper bounds for both problems [82]. Lipton's Expspace lower bound

applies to the reachability problem too, and this is the best known lower bound. Though the

reachability problem is known to be decidable [70, 57, 61, 64], no upper bound is known.

5.2 Data Words

Since the semantics for LTL with freeze quanti�er and FO2(∼, <,+1) are through data

words, we start with data words. Let Σ be a �nite alphabet. A data word σ over Σ is a �nite
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•p1

t1

p2

t2 p3

Figure 5.1: An example of a Petri net

word str(σ) over Σ together with an equivalence relation ∼σ on its positions. Equivalently,

a data word σ can also be thought of as a �nite sequence of letters from Σ in which, every

position is also associated with a datum from an in�nite domain such that any two positions

have the same datum i� they are equivalent with respect to ∼σ.

5.2.1 LTL Over Data Words

All notation and results of this subsection are from [21]. To reason about data words, the

syntax of LTL is extended by freeze operators. In the following syntax, atomic propositions

a are elements of Σ and r ranges over positive integers.

φ ::= a | > | ¬φ | φ ∧ ψ | Xφ | φUψ | X−1φ | φU−1ψ | ↓rφ | ↑r

The formula F−1φ is an abbreviation for >U−1φ. The semantics for LTL with freeze

operators is de�ned over data words. A register valuation v for a data word σ is a �nite

partial map from positive integers to the equivalence classes of the positions of σ with respect

to ∼σ. Given a data word σ, a position i and a register valuation v, the de�nition of σ, i |=v φ

is the usual de�nition for Boolean operators and temporal operators X and U . The symbol

[i]∼ stands for the ∼σ equivalence class of the position i of σ. The symbol v[r → [i]∼] stands

for the register valuation that is same as v except that r is mapped to [i]∼.

σ, i |=v a i� σ(i) = a

σ, i |=v X
−1φ i� i− 1 ≥ 0 and σ, i− 1 |=v φ

σ, i |=v φU
−1ψ i� for some j ≤ i, σ, j |=v ψ and for all j′ with j < j′ ≤ i, σ, j′ |=v φ

σ, i |=v ↓rφ i� σ, i |=v[r→[i]∼] φ

σ, i |=v ↑r i� r ∈ dom(v) and i ∈ v(r)

Let LTL↓n(TO) be the fragment of LTL with n registers (i.e., r ranges over {1, . . . , n})
and temporal operators in TO.

Theorem 5.1 ([21]). Satis�ability for LTL↓1(X,U) is decidable and not primitive recursive.

The decidability is shown in [21, Theorem 4.4] and non-primitive recursive lower bound

in [21, Theorem 5.2]. The decidability is shown in two stages � �rst, satis�ability is reduced

to the non-emptiness problem for alternating automata with 1 register (an extension of the
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standard translation of LTL to alternating automata, e.g., [96]). Register automata are �nite

state automata augmented with registers. Transitions can store the datum in the current

position into a register. They can also compare the datum of the current position with any

register for equality. The second step of decidability consists of reducing non-emptiness of

alternating automata with 1 register to non-emptiness for incrementing counter automata.

Incrementing counter automata are �nite state automata augmented with a �nite set of

counters that can store natural numbers. Transitions can increase the value of a counter by

one or decrease it by one if the current value is not zero. Zero-testing transitions are allowed,

which can be executed only if a counter speci�ed in the transition has value zero. The

counters may have incrementing errors, that is, the value of any counter may erroneously

increase at any time. Non-primitive recursive lower bound of Theorem 5.1 is shown by a

logspace reduction from incrementing counter automata.

Small extensions of the logic lead to undecidability.

Theorem 5.2 ([21]). The satis�ability problems for LTL↓2(X,U) and LTL↓1(X,U, F
−1) are

undecidable. The emptiness problem for 2-way alternating register automata is undecidable.

5.2.2 Two Variable Logic on Data Words

Most of the results in this subsection are from [8]. First order formulas using at most 2

variables built using binary relations ∼, < and +1 are considered. < and +1 correspond to

the usual ordering and successor function on the set of positions of a data word. In general,

+n corresponds to the �nth successor� function on positions. Two positions x and y satisfy

x ∼ y i� both positions have the same datum from the in�nite data domain.

First, the following result from [21]. We will use X2 (resp., X−2) as an abbreviation for

XX (resp., X−1X−1). In general, Xn (resp., X−n) is an abbreviation for n repetitions of

X (resp., X−1). A formula in LTL↓1({X,X−1, X2F,X−2F−1}) is said to be simple i� each

occurrence of a temporal operator is immediately preceded by ↓1 (and there are no other

occurrences of ↓1). In the following, equisatis�able formulas means one is satis�able i� the

other one is.

Theorem 5.3 ([21]). 1. For each sentence of simple LTL↓1({X,X−1, X2F,X−2F−1}), an
equisatis�able formula of FO2(∼, <,+1) is computable in logarithmic space.

2. For each formula of FO2(∼, <,+1) with one free variable, an equisatis�able sentence

of simple LTL↓1({X,X−1, X2F,X−2F−1}) is computable in polynomial space.

It is proven in [8] that satis�ability of FO2(∼, <,+1) is decidable by a reduction to Petri

net reachability. This is done in two stages. First, it is shown that an arbitrary formula can

be e�ectively transformed into an equivalent normal form. We need the following notions to

de�ne this normal form.

1. The formula θ# ensures that the unary predicate symbol R# is used to denote a unary

predicate that contains exactly those positions whose datum is di�erent from the previ-

ous position (that is, R# marks the positions where datum changes). It can be de�ned
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as follows:

θ# = ∀x(R#(x)↔ ∀y(x = y + 1→ x � y))

2. A formula θ is data-blind if it does not use ∼.

3. A type is a one-variable formula α(x) that is a conjunction of unary predicates or their

negations.

4. A formula θ is type-ordering if it is in one of the following forms, where α, β indicate

arbitrary types:

(a) Each equivalence class of ∼ contains at most one occurrence of α:

θ = ∀x∀y((α(x) ∧ α(y) ∧ x ∼ y)⇒ x = y)

(b) In each class, all occurrences of α occur strictly before all occurrences of β:

θ = ∀x∀y((α(x) ∧ β(y) ∧ x ∼ y)⇒ x < y)

(c) In each class with at least one occurrence of α, there must be a β too:

θ = ∀x∃y(α(x)⇒ (β(y) ∧ x ∼ y))

A formula is in data normal form if it is a disjunction of formulas of the form

∃R1 . . . RmR#(θ# ∧
∨

θ)

where all predicates Ri, R# are unary and each θ is either a data-blind or a type-ordering

FO2(∼, <,+1) formula. This data normal form is an extension of the classic Scott normal

form (see e.g. [41]).

In the second stage, satis�ability of FO2(∼, <,+1) formulas in data normal form is

reduced to reachability in Petri nets. Intuitively, data-blind formulas can be handled by the

usual �nite state automata. The other forms of simple FO2(∼, <,+1) formulas above induce

regular conditions on the class strings of a data word (a class string is the projection of a

data word to the set of all positions having a given datum). Each class string can hence

be recognized by a �nite state automaton but a-priori, there is no limit on the number of

classes. So we have to shu�e unboundedly many �nite state automata, which results in a

Petri net with given initial and �nal markings.

Theorem 5.4 ([8]). From each FO2(∼, <,+1) formula we can compute an equivalent for-

mula in data normal form with a doubly exponential number of disjuncts, each of exponential

size. From each formula φ in data normal form we can compute a Petri net of exponential

size such that the set of all strings that can be �red from the net's initial marking to reach its
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�nal marking is equal to the string projection of the set of data words satisfying φ. Empti-

ness of multicounter automata (without zero tests) can be reduced in polynomial time to the

satis�ability problem of FO2(∼, <,+1).

Some decidable and undecidable extensions of FO2(∼, <,+1) are also considered in [8].

Theorem 5.5 ([8]). The satis�ability problem for FO2(∼, <,+1, . . . ,+n) is decidable.

The proof of the above theorem is an extension of the proof of Theorem 5.4. In view of

this, [21] extends Theorem 5.3 to establish equivalence between FO2(∼, <,+1, . . . ,+n) and

LTL↓1(X,X
−1, . . . , Xn, X−n, Xn+1F,X−n−1F−1).

Suppose that there is a linear order on the in�nite data domain. Let ≺ be a binary

relation on the positions of a data word such that x ≺ y i� the data value at x is smaller

than the one at y.

Theorem 5.6 ([8]). The satis�ability problems for FO3(∼,+1) and FO2(∼,≺,+1, <) are

undecidable.

The availability of the equivalence relation ∼ and linear order < in FO2 are very powerful,

as evidenced by the following decidability results. Consider the logic FO2(Σ,+1α,+1β). This

logic is interpreted on structures similar to words but have two successor relations +1α and

+1β instead of the usual one successor relation in words. Formulas in this logic can also

reason about letters from the �nite alphabet Σ. Another way of thinking about this is to

consider data words as usual, but that have a second successor relation inherited from a

successor relation of the in�nite data domain, assuming that no two positions have the same

data value.

Theorem 5.7 ([68]). Satis�ability of FO2(Σ,+1α,+1β) is decidable.

Small extensions are again undecidable. Let <α, <β be the linear orders corresponding

to the successor relations +1α,+1β respectively. Let +2α be the two step successor function

corresponding to the successor relation +1α (+2α(x, y) i� ∃z : +1α(x, z) ∧ +1α(z, y)). The

relations +3α and +2β are de�ned similarly.

Theorem 5.8 ([68]). Satis�ability of the following logics are undecidable: FO2(Σ,+1α, <α

,+1β, <β), FO3(Σ,+1α,+1β) and FO2(Σ,+1α,+2α,+3α,+1β,+2β).

Decidability can be regained by giving up the successor relation +1 on the positions of a

word and the equivalence relation ∼ of the in�nite data domain. Let - be a binary relation

on the positions of a data word such that x - y i� the data value at x is smaller than or

equal to the one at y. Let ≤ be the re�exive closure of the linear order on the positions of a

data word.

Theorem 5.9 ([88]). The satis�ability of FO2(Σ,≤,-) is in Expspace.
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5.3 Petri Net Languages

All notation and results in this section are from [78]. We consider Petri nets with a labelling

L : T → Σ from the set of transitions to a �nite alphabet Σ. We assume that Petri nets

come with an initial markingM0 and a �nite set of �nal markings F . The di�erent languages

associated with a Petri net N are as below.

De�nition 5.10. The language of N is its labelled �ring sequences:

L(N ) = {w ∈ Σ+ | ∃Mf ∈ F ∃σ ∈ T+ M0
σ

==⇒Mf L(σ) = w} .

The deadlock language of N is its maximal labelled �ring sequences:

T (N ) ={w ∈ Σ+ | ∃M ∈ N|T | ∃σ ∈ T+ M0
σ

==⇒M L(σ) = w

and no transition is �rable at M} .

The weak language of N is de�ned by a �covering� property of �ring sequences.

G(N ) ={w ∈ Σ∗ | ∃M ∈ N|T | ∃Mf ∈ F ∃σ ∈ T ∗ M0
σ

==⇒M M ≥Mf

L(σ) = w} .

To avoid some technical complexities, only Petri nets that do not have arc weights (this

corresponds to W = 1 in the de�nition of a Petri net given at the beginning of section 4.1)

are considered in [78]. In addition, it is assumed that initial and all �nal markings have at

most one token in each place. It is shown how to e�ectively transform an arbitrary Petri net

into another one satisfying the above conditions, preserving languages and weak languages.

This transformation may however result in an exponential blowup in the size of the Petri

net.

To reason about Petri net languages, the usual syntax of MSO on words is extended by

second order binary relation symbols ≤g and =g, introduced in [78]. If X and Y are monadic

second order variables representing subsets of domain elements from [n] = {0, . . . , n − 1},
then

X ≤g Y
a

= ∀j ≤ n, |X ∩ [j]| ≤ |Y ∩ [j]|
X =g Y

a

= X ≤g Y and |X| = |Y | .

Intuitively, if Y is the set of positions of a string containing opening bracket and X is the

set of positions of the string containing closing bracket, then the string is well bracketed i�

X =g Y .
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The syntax of the logic with the above extension is as follows.

χ ::=x = y | x ≤ y | Xx | X ≤g Y | X =g Y | χ ∧ ξ | χ ∨ ξ | ¬χ |
∃xχ | ∀xχ | ∃Xχ | ∀Xχ

Various syntactic fragments of the above logic are considered. A quanti�er free formula is

any formula obtained from the following syntax.

χ ::=x = y | x ≤ y | Xx | X ≤g Y | X =g Y | χ ∧ ξ | χ ∨ ξ | ¬χ

A �rst order formula is any formula obtained from the following syntax.

χ ::=x = y | x ≤ y | Xx | X ≤g Y | X =g Y | χ ∧ ξ | χ ∨ ξ | ¬χ |
∃xχ | ∀xχ

A L1-formula is any formula obtained from the following syntax.

χ ::=x = y | x ≤ y | Xx | χ ∧ ξ | χ ∨ ξ | ¬χ |
∃xχ | ∀xχ | ∃Xχ | ∀Xχ

Let X be a set of MSO variables. Let χ(X) denote a formula whose free variables are

among X. Following is the main theorem in [78].

Theorem 5.11 ([78]). Let L be a language over an alphabet Σ. The following are equivalent:

1. L is a Petri net language.

2. L is a Petri net deadlock language.

3. L is de�ned by a sentence of the form ∃Xχ(X), where χ(X) is a �rst order formula.

4. (Normal form I) L is de�ned by a sentence of the form ∃Xχ(X), where χ(X) is a

positive Boolean combination of formulas of the form X =g Y and �rst order L1-

formulas.

5. (Normal form II) L is de�ned by a sentence of the form ∃Xχ(X), where χ(X) is a

Boolean combination of formulas of the form X ≤g Y and �rst order L1-formulas.

The direction of proof from the fragments of MSO in the above theorem to Petri nets

is very similar to the proof of the classical Büchi-Elgot-Trakhtenbrot theorem. Most of the

translation can be done with �nite state automata. An extra step is needed while translating

the atomic formula X =g Y , where we need to recognize well bracketed strings. Unboundedly

many opening brackets may occur before a closing bracket. We need to keep track of number

of opening brackets that are not yet closed and this is where the power of Petri nets are used.

Each occurrence of =g in the MSO formula will necessitate a new type of opening-closing
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bracket pair, so a �nite state automaton with one stack is not powerful enough to handle

this.

In the direction from Petri net languages to fragments of MSO above, the �ring sequences

are treated as strings where positions that add tokens to a place are associated with an

opening bracket and positions removing tokens from that place are associated with closing

bracket. Since transitions can add/remove at most one token at a time from a place and

initial and �nal markings can have at most one token in every place, the �ring sequence

should be well bracketed (except for a missing bracket at the end). These conditions can

be encoded in the fragments of MSO given above. The second order relation =g is only

used to encode well bracketedness. It may be noted that most of the MSO formulas used

in this direction of the proof can be written as data blind FO2(<,+1) formulas de�ned in

section 5.2.2, except the formula that uses =g. To express well bracketedness, type-ordering

formulas de�ned in section 5.2.2 are su�cient.

If we relax the well bracketedness condition to pre�x of well bracketedness strings, ≤g is
enough.

Theorem 5.12 ([78]). Let L be a language over an alphabet Σ. The following are equivalent:

1. L is a weak Petri net language.

2. L is de�ned by a sentence of the form ∃Xχ(X), where χ(X) is a positive Boolean

combination of formulas of the form X ≤g Y and �rst order L1-formulas.

The proof of Theorem 5.12 is very similar to that of Theorem 5.11. Since we only have

to test that a string is a pre�x of a well bracketed string, ≤g su�ces and =g is not needed.

5.4 Exponential Space Upper Bound for Petri net Cov-

erability and Boundedness

In this section, we give a sketch of the Expspace upper bound given by Racko� [82] for the

Petri net coverability and boundedness problems.

We call a function M : P → Z a vector. A transition t may be taken as a step at the

vectorM yielding a new vectorM ′ given by the equationM ′(p) = M(p)−Pre(p, t)+Post(p, t)

for all p ∈ P . This is denoted as M
t−−→ M ′. Taking a transition t as a step from a vector

M is a weaker notion than the �ring of t from a marking M ′′, since the latter does not allow

negative numbers. A �nite transition sequence σ = t1t2 · · · tr is a walk from an initial vector

M0 to a vector Mr if there exist intermediate vectors M1,M2, . . . ,Mr such that for all i with

1 ≤ i ≤ r, we have a step from Mi−1 to Mi using the transition ti. We write M0
σ−−→Mr.

Let Q ⊆ P be a subset of places. We will need the in-between notion (due to Racko�

[82]) of σ being a Q-run in which, for every intermediate vector Mi, 0 ≤ i < |σ|, Mi(p) ≥
Pre(p, ti+1) for every place p in Q. Thus a �ring sequence is a P -run. A ∅-run is a walk. For

two vectors M1 and M2, we say M1 ≥Q M2 if for every p ∈ Q,M1(p) ≥ M2(p). A walk σ
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from M1 is said to Q-cover a marking Mcov if it is a Q-run and the �nal vector M2 obtained

by walking σ from M1 satis�es M2 ≥Q Mcov. We say σ covers a marking if σ P -covers it.

We will �x for this section Mcov as the marking to be covered. For the purpose of

complexity analysis, we will denote the maximum of the range of Mcov by R.

De�nition 5.13. A Q-covering run is a Q-run that Q-covers Mcov. Let Q0 ⊆ Q. A Q-

run from M0 to Mr is said to be c-bounded for Q0, c ∈ N, if for all intermediate vectors

Mi, 0 ≤ i < r, Mi(p) is in {0, . . . , c} for every place p in Q0.

De�nition 5.14. [82] Let Q ⊆ P . De�ne lencov(Q,M,Mcov) to be the length of the shortest

Q-covering run from the vector M . If there is no such sequence, de�ne lencov(Q,M,Mcov)

to be 0. For 0 ≤ i ≤ b, `(i,Mcov) is de�ned to be max{lencov(Q,M,Mcov) |M a vector, Q ⊆
P and |Q| = i}. In this section we abbreviate `(i,Mcov) to `(i).

The following recurrence relation for `(i) is the main technical lemma used in [82] to

obtain Expspace upper bound for coverability. A closer analysis of this recurrence relation

is performed in the next two chapters and here, only a sketch of the proof is given. Recall

from the beginning of section 4.1 that W is the maximum arc weight. Also recall that we

denote the maximum of the range of Mcov (the marking to be covered) by R.

Lemma 5.15 ([82]). `(0) ≤ 1 and `(i+ 1) ≤ (W`(i) +R)i+1 + `(i).

Proof. Suppose Q ⊆ P , |Q| = i+ 1 and there is a Q-covering run. If this run is (W`(i) +R)-

bounded for Q, then we can get a Q-covering run of length at most (W`(i) + R)i+1 by

removing portions of the run between two vectors that are equal with respect to all places

in Q. Otherwise, there is an intermediate vector M and a place q ∈ Q such that M(q) ≥
(W`(i) + R). The portion of the Q-covering run occurring after M can be replaced by a

shorter (Q \ {q})-covering run of length at most `(i).

With the recurrence relation obtained above, we can calculate an upper bound on the

length of a shortest P -covering run that is double exponential in the size of the Petri net.

Exponential space is enough for a Turing machine to guess and verify such a sequence.

De�nition 5.16. Let M be a vector and Q ⊆ P . A sequence of transitions σ is said to be a

M,Q-enabled self-covering run if σ is a Q-run such that for some two positions i < j of σ,

the intermediate vectors Mi and Mj satisfy Mj ≥P Mi and for some p ∈ P , Mj(p) > Mi(p).

It is known [54] that self-covering sequences are necessary and su�cient for unbounded-

ness. Suppose σc is a Q-covering run with last vector M and σsc is a Q-enabled self-covering

run with vectors Mi and Mj as de�ned above. While it is enough to ensure that M ≥Q Mcov

for the Q-covering run, we have to ensure that Mj >P Mi for the Q-enabled self-covering

run. Now, we will prove a lemma which states that if there is a self-covering sequence in

which the tokens in some subset Q of places always remains less than some c ∈ N, then there

is one such sequence that is not too long.

76



Lemma 5.17 ([82]). Let Q ⊆ P be a subset of places, M a vector and c ∈ N a number.

Suppose there is a M,Q-enabled self-covering run that is c-bounded for Q. Then, there is a

M,Q-enabled self-covering run of length at most (Wc)poly(m), where poly() is a polynomial

whose degree does not depend on m,W or c.

Proof. The idea is to remove portions of the self-covering run between intermediate vectors

that are equal with respect to all places in Q (such sequences are called Q-loops). However,

since we have to maintain the requirement that Mj ≥P Mi as in De�nition 5.16, we can

not remove all Q-loops as we did from Q-covering runs in Lemma 5.15. The requirement of

Mj ≥P Mi can be stated in the form of a linear Diophantine equation whose solution will

tell us how many Q-loops need to be retained to satisfy the requirement. Using the fact that

feasible linear Diophantine equations have small solutions [9], many loops can be removed,

leaving behind a short self-covering sequence.

De�nition 5.18. Let Q ⊆ P and M a vector. De�ne λ(Q,M) to be the length of the

shortest M,Q-enabled self-covering sequence and 0 if there is no such sequence. Let λ(i) =

max{λ(Q,M) |M a vector, |Q| = i}.

Lemma 5.19. λ(0) ≤ 2poly(m) and λ(i + 1) ≤ (W 2λ(i))poly(m), where poly() is a polynomial

whose degree is a constant independent of m,W and i.

Proof. Suppose Q ⊆ P , |Q| = i + 1 and there is a M,Q-enabled self-covering run for some

vector M . If this run is (Wλ(i))-bounded for Q, then the result follows from Lemma 5.17.

Otherwise, there is an intermediate vector M ′ and a place q ∈ Q such that M ′(q) ≥ Wλ(i).

The portion of the M,Q-enabled self-covering run occurring after M can be replaced by a

shorter sequence of length at most λ(i).

With the recurrence relation obtained above, we can calculate an upper bound on the

length of a shortest self-covering sequence that is double exponential in the size of the Petri

net. Again, exponential space is enough for a Turing machine to guess and verify such a

sequence.

5.5 A Uni�ed Approach for Deciding the Existence of

Certain Petri Net Paths

The notation and results of this section are from [98, 3]. As usual, we denote by N =

(P, T,Pre,Post) a Petri net with places P and transitions T . If σ is a �ring sequence, then

its Parikh image #(σ) : T → N is a mapping such that each transition t appears #(σ)(t)

times in σ. Yen [98] de�ned a class of path formulas for Petri nets consisting of the following

elements.

1. Variables: There are two types of variables, namely marking variables M1,M2, . . . and

variables for transition sequences σ1, σ2, . . . .
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2. Terms: Terms are recursively de�ned as follows.

• For every mapping c ∈ NP , c is a term.

• For all j > i, Mj −Mi is a term, where Mj and Mi are marking variables.

• If T1 and T2 are terms, then so are T1 + T2 and T1 − T2.

3. Atomic predicates: There are two types of atomic predicates.

(a) Transition predicates:

• z � #(σi) ≥ c and z � #(σi) > c are predicates, where i > 1, c ∈ N is a

constant, z is a mapping from T to Z and � is the vector dot product.

• #(σ1)(t) ≥ c and #(σ1)(t) ≤ c are predicates, where c ∈ N is a constant and

t ∈ T is a transition of N .

(b) Marking predicates:

• M(p) ≥ z andM(p) > z are predicates, whereM is a marking variable, p ∈ P
is a place of N and z ∈ Z is an integer.

• T1(p1) = T2(p2), T1(p1) < T2(p2) and T1(p1) > T2(p2) are predicates, where T1
and T2 are terms and p1, p2 ∈ P are two places of N .

A predicate is any positive Boolean combination of transition predicates or marking pred-

icates. The semantics of predicates is de�ned below. Assuming that marking variables

M1,M2, . . . stand for markings M1,M2, . . . of a Petri net N and variables for transition se-

quences σ1, σ2, . . . stand for �ring sequences σ1, σ2, . . . of N , semantics of terms and atomic

predicates are as follows.

1. Terms: Semantics of terms are recursively de�ned as follows.

• For all j > i, Mj −Mi is the term de�ned as (Mj −Mi)(p) = Mj(p)−Mi(p) for

all p ∈ P .
• If T1 and T2 are terms, then T1 + T2 (resp., T1 − T2) is the term de�ned as (T1 +

T2)(p) = T1(p) + T2(p) (resp., (T1 − T2)(p) = T1(p)− T2(p)) for all p ∈ P .

2. Atomic predicates:

(a) Transition predicates:

• z�#(σi) ≥ c if
∑

t∈T z(t)#(σi)(t) ≥ c and z�#(σi) > c if
∑

t∈T z(t)#(σi)(t) >

c.

• Semantics of #(σ1)(t) ≥ c and #(σ1)(t) ≤ c are according to the standard

semantics of ≥ and ≤ on integers.

(b) Marking predicates:

• Semantics of M(p) ≥ z and M(p) > z are according to standard semantics of

≥ and > on integers.
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• Semantics of T1(p1) = T2(p2), T1(p1) < T2(p2) and T1(p1) > T2(p2) are accord-

ing to standard semantics of =, < and > on integers.

Boolean operators on predicates work according to standard Boolean laws.

A path formula is a formula of the form

∃M1, . . . ,Mr∃σ1, . . . , σr

(
(M0

σ1==⇒M1
σ2==⇒ · · · σr==⇒Mr) ∧ φ(M1, . . . ,Mr, σ1, . . . , σr)

)
where φ is a predicate and M0 is the initial marking of N . A Petri net N with initial

marking M0 satis�es the above path formula if there are reachable markings M1, . . . ,Mr

and �ring sequences σ1, . . . , σr such that M0
σ1==⇒ M1

σ2==⇒ · · · σr==⇒ Mr and the predicate

φ(M1, . . . ,Mr, σ1, . . . , σr) is true.

Theorem 5.20 ([3]). Given a Petri net N with initial marking M0 and target marking M1,

another Petri net N ′ and a path formula f can be constructed in polynomial time such that

M1 is reachable from M0 in N i� N ′ satis�es f . Given a Petri net N and a path formula

f , another Petri net N ′ can be constructed in polynomial time such that N satis�es f i� N ′
can reach the marking that has 0 tokens in all places.

An Expspace upper bound is given in [3] for model checking a fragment of path formulas.

De�nition 5.21. A path formula

∃M1, . . . ,Mr∃σ1, . . . , σr

(
(M0

σ1==⇒M1
σ2==⇒ · · · σr==⇒Mr) ∧ φ(M1, . . . ,Mr, σ1, . . . , σr)

)
is called increasing if φ(M1, . . . ,Mr, σ1, . . . , σr) does not contain transition predicates and

implies Mr > M1.

Theorem 5.22 ([3]). Given a Petri net N and an increasing path formula f , checking

whether N satis�es f can be done in exponential space.

The proof of the above theorem involves extending Racko�'s induction strategy for bound-

edness [82] to increasing path formulas.

5.6 Simulating Exponential Space Turing Machines on

Vector Addition Systems with States

A Vector Addition Systems with States (VASS) is a �nite directed graph (Q,E), an integer

m ∈ Z called its dimension and a mapping R : E → Zm. Here, Q is the set of states and E is

the set of transitions. A con�guration of a VASS is a pair (q,M) where q ∈ Q is a state and

M ∈ Zm is a vector of integers. A walk is a pair (σ,M0) where M0 ∈ Zm and σ = e1 · · · e|σ|
is a sequence of edges forming a path in the graph (Q,E). The sequence of con�gurations in

the walk is (q0,M0), (q1,M1), . . . , (q|σ|,M|σ|), where for each 1 ≤ i ≤ |σ|, Mi = Mi−1 + R(ei)

and qi−1 and qi are the start and end vertices respectively of the edge ei. Each Mi is called
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an intermediate vector in the walk and M0, q0 are called the initial vector and initial state

respectively. A positive walk is one where the initial vector and all intermediate vectors are

made up of natural numbers. A positive walk is represented as (q0,M0)
σ

==⇒ (q|σ|,M|σ|).

De�nition 5.23 (Reachability, Coverability and Boundedness). Given a VASS with initial

state q0, initial vector M0 and a target con�guration (q,Mcov), the Coverability problem is

to determine if there is a positive walk (σ,M0) such that (q0,M0)
σ

==⇒ (q,M|σ|) and for every

1 ≤ i ≤ m, M|σ|(i) ≥ Mcov(i) (this is denoted as M ′ ≥ Mcov). If we replace M ′ ≥ Mcov

by M ′ = Mcov, we get the reachability problem. The boundedness problem is to determine

if there is a number c ∈ N such that for every positive walk σ starting at (q0,M0) with

(q0,M0)
σ

==⇒ (q|σ|,M|σ|) M|σ|(i) ≤ c for every place 1 ≤ i ≤ m.

VASS are known to be equivalent to Petri nets. In [86], a detailed lower bound is given

for the boundedness problem of VASS. There, the contribution of various natural parameters

of VASS to the lower bound is studied in detail. VASS provide a natural way to separate

control structure and counters. The graph underlying a VASS can be thought of as a control

structure, and parameters of the graph can be used to study parameterized complexity. A

close examination of the control structure of the VASS used in [86] (which is in turn based

on Lipton's lower bound proof [65]) gives us the following result.

Proposition 5.24. For every exponential space Turing machine and an input for this ma-

chine, there exists a VASS with some initial and �nal con�guration such that the Turing

machine accepts its input i� the �nal con�guration of the VASS is reachable from the intial

con�guration. The pathwidth of the graph underlying the VASS depends only on the Turing

machine and not on the input to the Turing machine.

Proof. It is known that counter machines (without incremental errors) can simulate Turing

machines [50, 74]. In particular, if a Turing machine operates in space exponential in the size

of its input, then it can be simulated by a counter machine with a �xed number of counters

such that the numbers in the counters never exceed double exponential of the size of the

input. The only reason VASS can not simulate counter machines in general is that VASS

can not test numbers for zero. Using the fact that counters never exceed double exponential

values, Lipton [65] shows that zero testing can be simulated by VASS when counters are

bounded ([86, 29] also contain detailed descriptions of Lipton's construction). The following

proof is based on a close examination of Lipton's construction. Suppose a co-ordinate i′ that

can hold values up to 22j is to be tested for zero. Another co-ordinate i is maintained with

the invariant that the sum of values in i′ and i is 22j throught the VASS's operation. To test

i′ for zero, it is enough to check that i has value 22j . Figure 5.2 shows a schematic of the

control structure of the VASS that does this.

The idea is that two co-ordinates i1 and i2 that can hold values up to 22j−1
are used as

indices to run nested loops that decrement i. The control begins at q0 with values 22j−1
in i1, i2

and reaches qN if i′ is not zero (this can be easily tested by decrementing and immediately

incrementing i′ once). In the other case, control reaches q1 from where the outer loop begins.
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q0

qN
q1

q2

i′ ↑ i ↓

qi

q3
q4

22j−1

qo q5 q6

qY

i1 ↓
i2 ↓

Figure 5.2: Control structure of VASS for zero testing

From q1 to q2, i1 is decremented and from q2, i2 is decremented. Then i is decremented

once. At qi, if i2 is not zero, control goes back to q2 for the next iteration of the inner loop.

Otherwise, i2 is tested for zero by transferring the control to another module of the VASS

that performs zero tests for co-ordinates that can hold values up to 22j−1
. The loop between

q3 and q4 implement a �argument passing system� to ensure that i2 is the one being tested

for zero. When this module returns control at q0, if i1 is non-zero, control is transferred to

q1 for the next iteration of the outer loop. Otherwise, i1 is tested for zero by passing it as a

parameter to the same inner module through the loop formed by q5 and q6. If i1 also happens

to be zero, then the control is transferred to qY to indicate that i′ was zero. Indeed, since

both i1 and i2 are zero, decrementing i (the block with i ↓) is executed 22j−1 × 22j−1
= 22j

times, which means that i had value 22j , which means that i′ had 0.

The above sketch skips many intricate details and the interested reader is referred to

[86, 29]. The main point to be noted is that the inner VASS module referred to above is

constructed inductively in the same way, with loops controlled by counters with value 22j−2
.

Let Qj be the set of control states of the VASS above, without taking into account the

states of inner modules. If a co-ordinate with maximum value 22n has to be tested for zero,

the set of states of the VASS constructed inductively as described above would have set of

states Qn ∪ Qn−1 ∪ · · · ∪ Q0. Since there is no edge across states in Qj and Qj−2 for any j,

following is a path decomposition of the entire control graph of the VASS for zero testing:

(Q0 ∪Q1)− (Q1 ∪Q2)− · · · − (Qn−1 ∪Qn). For larger n, this decomposition will be longer

but the size of each bag remains the same. Addition of other parts of the counter machine's
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�nite state control will increase the size of the bags by only a constant.

Proposition 5.24 reduces the acceptance problem of Exponential space bounded Turing

machines to the reachability problem in VASS. By adding simple gadgets to the VASS, the

same problem can also be reduced to the coverability or boundedness problems in VASS.

Hence, to get better algorithms, we will have to consider parameters that also take into

account the way counters interact with each other. This is the motivation for considering

the parameter bene�t depth in the next chapter.

5.7 Presburger Arithmetic with Monotone Transitive Clo-

sure

Since Petri net reachability sets need not be semilinear, Presburger arithmetic (�rst order

theory of natural numbers with addition) cannot de�ne reachability sets. In [84], Presburger

arithmetic is generalized by introducing an operation called monotone transitive closure. Let

Φ = {x, y, . . . } be a set of variable symbols. The generalization of Presburger arithmetic

mentioned above is made up of terms τ and formulas φ, given by the following syntax.

τ ::= 0 | x ∈ Φ | S(τ) | τ + τ

ψ ::= τ = τ | ¬ψ | ψ ∨ ψ | ∃xψ
φ ::= mTC(ψ(x1, . . . , xk, y1, . . . , yk)) | φ ∧ φ | φ ∨ φ | ∃xφ (5.1)

In the formula mTC(ψ(x1, . . . , xk, y1, . . . , yk)), x1, . . . , xk, y1, . . . , yk are the free variables of

ψ.

Let s : Φ→ N be an assignment to the variable symbols. This assigns a natural number

JτKs to every term τ as de�ned below.

J0Ks = 0, the smallest natural number.

JxKs = s(x)

JS(τ)Ks = JτKs + 1

Jτ1 + τ2Ks = Jτ1Ks + Jτ2Ks

If s is an assignment and n ∈ N is a natural number, then s[x→ n] is the assignment that

is same as s except that x is assigned n. The de�nition of an assignment s satisfying a formula

φ (denoted as N, s |= φ) is as below. We write N |= ψ(n1, . . . , nk, n
′
1, . . . , n

′
k) to denote the
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fact that N, s[x1 → n1, . . . , xk → nk, y1 → n′1, . . . , yk → n′k] |= ψ(x1, . . . , xk, y1, . . . , yk).

N, s |= τ1 = τ2 i� Jτ1Ks = Jτ2Ks

N, s |= ¬ψ i� N, s 6|= ψ

N, s |= ψ1 ∨ ψ2 i� N, s |= ψ1 or N, s |= ψ2

N, s |= ∃xψ i� there is a n ∈ N such that N, s[x→ n] |= ψ

N, s |= mTC(ψ(x1, . . . , xk, y1, . . . , yk)) i� (s(x1), . . . , s(xk), s(y1), . . . , s(yk)) ∈ Tc,

where Tc ∈ N2k is the smallest set satisfying the following properties:

1. (n1, . . . , nk, n1, . . . , nk) ∈ Tc for n1, . . . , nk ∈ N,

2. (n1, . . . , nk, n
′
1, . . . , n

′
k) ∈ Tc whenever N |= ψ(n1, . . . , nk, n

′
1, . . . , n

′
k),

3. (n1, . . . , nk, n
′′
1, . . . , n

′′
k) ∈ Tc whenever (n1, . . . , nk, n

′
1, . . . , n

′
k) ∈ Tc,

(n′1, . . . , n
′
k, n

′′
1, . . . , n

′′
k) ∈ Tc and n′1, . . . , n

′
k ∈ N, and

4. (n1 +n′′1, . . . , nk +n′′k, n
′
1 +n′′1, . . . , n

′
k +n′′k) ∈ Tc whenever (n1, . . . , nk, n

′
1, . . . , n

′
k) ∈ Tc

and n′′1, . . . , n
′′
k ∈ N.

N, s |= φ1 ∨ φ2 i� N, s |= φ1 or N, s |= φ2

N, s |= φ1 ∧ φ2 i� N, s |= φ1 and N, s |= φ2

N, s |= ∃xφ i� there is a n ∈ N such that N, s[x→ n] |= φ

Condition (1) above can be thought of as indicating the fact that in a Petri net, a marking

can be reached from itself by �ring the empty �ring sequence. Condition 3 indicates that if

M
σ

==⇒M ′ and M ′ σ′
==⇒M ′′, then M σσ′

==⇒M ′′. Condition 4 indicates that if M
σ

==⇒M ′, then

M +M ′′ σ
==⇒M ′ +M ′′ for every marking M ′′.

Theorem 5.25 ([84]). Given a formula φ as given in (5.1), checking for the existence of a

satisfying assignment to its free variables is decidable.

The proof of the above theorem is through usage of some newly de�ned operators operat-

ing on sets of multisets. Expressions made up of such operators can be built up corresponding

to the given formula (or as shown in [84], corresponding to a given Petri net with initial and

�nal markings). The expression can then be simpli�ed resulting in a lengthier expression,

following the style of proof of decidability of Petri net reachability.

5.8 Branching Vector Addition Systems

The notation and results of this section are from [19]. A Branching Vector Addition System

(BVAS) is a tuple B = (m,A0, R1, R2) where m ∈ N is the dimension, A0 ⊆ Nm is a
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non-empty �nite set of axioms and R1, R2 ⊆ Zm are �nite sets of unary and binary rules,

respectively. A derivation of B is a labelling D : T → Zm such that:

• T is a �nite binary tree,

• if η has one child in T , then D(η) ∈ R1 and

• if η has two children in T , then D(η) ∈ R2.

Vectors that are derived at every node are recursively obtained as follows:

• if η is a leaf in T , then D̂(η) = D(η).

• if η has one child η′ in T , then D̂(η) = D(η) + D̂(η′).

• if η has two children η′ and η′′ in T , then D̂(η) = D(η) + D̂(η′) + D̂(η′′).

Now, we say that D is:

• initialized i�, for each leaf η of T , D(η) ∈ A0.

• admissible i�, for each node η of T , D̂(η) ∈ Nm.

• derives D̂(ε), which is the vector derived at the root.

A BVAS produces a vector v if v is derived from an initialized admissible derivation. Given

a BVAS B and a target vector t of the same dimension, the reachability problem is to decide

if B can produce the vector t. Given a BVAS B and a target vector t of the same dimension,

the coverability problem is to decide if B can produce a vector v such that v ≥ t. The

boundedness problem is to decide if the set of all vectors produced by B is �nite.

Theorem 5.26 ([19]). The covering and boundedness problems for BVAS are complete for

doubly-exponential time.

The proof of the above theorem involves extending Lipton's counting strategy in [65] and

Racko�'s induction strategy in [82] to branching systems. For boundedness, this extension

requires proving new upper bounds for small solutions of linear Diophantine equations.

Theorem 5.27 ([62]). The reachability problem for BVAS is hard for double exponential

space.

The proof of the above theorem involves a careful combination of Lipton's counting strat-

egy [65] and branching to compute triply-exponentially large numbers.
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5.9 Petri Nets and the Theory of Tensor ?

Linear logic has been described as a �resource conscious logic�. In its proofs occurrences

of propositions can not be used more than once, neither can they disappear unless they are

explicitly used up by the rules of inference. Similar ideas being present in Petri nets, relations

between them have been explored. In this section, we use the fragment of linear logic built up

from the connectives tensor ? and implication→. Meanings of these connectives are implied

by the proof rules given below. The following relation between the deducibility problem for

sequents in �nitely axiomatized ?-theories and the Petri net reachability problem is from [93,

Chapter 1].

We begin with the theory consisting of axioms

id:X → X

(for any string X constructed from the places p1, p2, . . . and ?) and two general rules

t : p1 → p2 t′ : p2 → p3

t · t′ : p1 → p3

t : p1 → p2 t′ : p3 → p4

t ‖ t′ : p1 ? p3 → p2 ? p4

(the �rst rule corresponds to sequential composition of transitions; the second one corre-

sponds to parallel composition). For each Petri net transition, an axiom is added. If a

transition t for example removes 2 tokens from p1, removes 3 tokens from p2, adds one token

to p3 and adds 2 tokens to p4, we add the axiom

t : p2
1 ? p

3
2 → p3 ? p

2
4 .

Here, p2
1 denotes p1 ? p1. Since ? is associative and commutative, this shorthand notation

can be used. A �nal marking Mf is reachable from an initial marking M0 in a Petri net N
i� M0 →Mf is deducible in the theory formulated above.

5.10 Relevance Logic

Formulas of relevance logic are built up from atomic propositions using the Boolean connec-

tives ∧,∨ in addition to implication → and fusion ◦. Di�erent choices of connectives and

axioms lead to di�erent fragments of the logic. In the following sub-sections, we look at two

such fragments.

5.10.1 Implication Conjunction Fusion Fragment of Relevance Logic

The notation and results of this section are from [94]. The logic discussed is the system

R→∧◦, which contains the fusion connective ◦ in addition to → and ∧. The axioms for the

system are

1. >
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2. > → (q → q)

3. (q → r)→ ((r → s)→ (q → s))

4. (q → (r → s))→ (r → (q → s))

5. (q → (r → s))→ ((q → r)→ (q → s))

6. (q ∧ r)→ q

7. (q ∧ r)→ r

8. (q → r) ∧ (q → s)→ (q → (r ∧ s))

9. q → (r → (q ◦ r))

10. (q → (r → s))→ ((q ◦ r)→ s)

Following are the inference rules of R→∧◦.

q → r q

r
(modus ponens)

q r

q ∧ r (adjunction)

The semantics of relevance logic is based on a structure with a ternary relation. A model

structure is a triple (o,W,E), where W is a set, o ∈ W and E is a ternary relation on W

satisfying the following conditions for all w,w1, w2, w3, w4, w5 ∈ W :

1. E(o, w, w)

2. E(w,w,w)

3. (E(w1, w2, w3) ∧ E(w3, w4, w5))→ ∃w6(E(w1, w4, w6) ∧ E(w6, w2, w5))

4. (E(o, w1, w2) ∧ E(w2, w3, w4))→ E(w1, w3, w4)

5. (E(w1, w2, w3) ∧ E(o, w3, w4))→ E(w1, w2, w4).

If M = (o,W,E) is a model structure, then a valuation V is a function that assigns to each

propositional variable q a set V (q) ⊆ W , and which satis�es the condition: if w ∈ V (q) and

E(o, w, w′) then w′ ∈ V (q). A model is a model structure with a valuation.

IfM is a model, the truth relative to a point is de�ned recursively as follows:

1. M, w |= q i� w ∈ V (q)

2. M, w |= > i� E(o, o, w)

3. M, w |= q → r i� ∀w1w2((E(w,w1, w2) andM, w1 |= q)⇒M, w2 |= r)

4. M, w |= q ◦ r i� ∃w1w2(E(w1, w2, w) andM, w1 |= q andM, w2 |= r)

5. M, w |= q ∧ r i�M, w |= q andM, w |= r
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A formula q is valid ifM, o |= q in all modelsM.

Exponential space lower bound is shown for the validity problem through semi-Thue

systems. If Σ is a �nite alphabet, a semi-Thue system S is a �nite set of pairs of strings

in Σ∗. Pairs of strings in the semi-Thue system are written as α → β and referred to as

production rules of the system.

If S is a semi-Thue system, we write γαδ =⇒ γβδ(S) if γ and δ are words in the alphabet

of S and the production rule α→ β belongs to S. The relation
?

==⇒ is the re�exive transitive

closure of =⇒.

A semi-Thue system over an alphabet Σ is said to be commutative if it includes all

productions of the form ab→ ba for all a, b ∈ Σ; it is contractive if it includes all productions

of the form aa→ a for all a ∈ Σ. If S is a commutative contractive semi-Thue system, then

a production in S is said to be proper if it is not of the form aa→ a or ab→ ba.

If S is semi-Thue system over Σ, de�ne a ternary relation E over Σ∗ as E(α, β, γ) i�

αβ
?

==⇒ γ(S). With every letter a ∈ Σ, associate a propositional variable q(a). If α ∈ Σ∗, then

q(α) is the propositional expression corresponding to α, where concatenation is represented

by the fusion operator. The triple (ε,Σ∗, E) will form a model structure, where ε is the

empty string. The valuation V over this model structure de�ned as V (q(a)) = {α ∈ Σ∗ |
a

?
==⇒ α(S)} for all a ∈ Σ, gives the canonical model M(S) associated with S. Suppose

α1 → β1, . . . , αn → βn are the proper productions of S. If γ, δ are words in Σ∗, then

ψ(S, γ, δ) is the formula

[q(β1)→ q(α1) ∧ · · · ∧ q(βn)→ q(αn) ∧ >]→ (q(δ)→ q(γ)) .

Theorem 5.28 ([94]). Let S be a commutative, contractive semi-Thue system over Σ and

γ, δ words in Σ∗. Then M(S), γ |= q(δ) i� δ
?

==⇒ γ(S). In addition, R→∧◦ ` ψ(S, γ, δ) i�

γ
?

==⇒ δ(S).

It is also shown in [94] how to construct in logspace a commutative, contractive semi-Thue

system from a given doubly exponential bounded 3-counter machine so that the termination

problem for such 3-counter machines can be reduced to the word problem for commuta-

tive, contractive semi-Thue systems. This gives an exponential space lower bound for the

deducibility problem of R→∧◦. It is also shown in [94] how to apply McAloon's result [71]

about upper bounds for Dickson's lemma to conclude that Kripke's decision procedure for

deducibility in R→∧◦ (described in [91, pp. 30�39]) is primitive recursive in the Ackermann

function.

5.10.2 LR+ Fragment of Relevance Logic

Results from this section are from [95], where complexity of decision procedures for the

system LR+ is considered. This system consists of the connectives fusion ◦, →, ∧ and ∨.
The axiom system consists of all axioms from the previous subsection and some additional

ones for ∨.
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1. >

2. > → (q → q)

3. (q → r)→ ((r → s)→ (q → s))

4. (q → (r → s))→ (r → (q → s))

5. (q → (r → s))→ ((q → r)→ (q → s))

6. (q ∧ r)→ q

7. (q ∧ r)→ r

8. (q → r) ∧ (q → s)→ (q → (r ∧ s))

9. q → (r → (q ◦ r))

10. (q → (r → s))→ ((q ◦ r)→ s)

11. q → q ∨ r

12. r → q ∨ r

13. (q → s) ∧ (r → s)→ ((q ∨ r)→ s)

Following are the inference rules of R→∧◦.

q → r q

r
(modus ponens)

q r

q ∧ r (adjunction)

A non-primitive recursive lower bound is shown for validity in systems of LR+ through

a series of reductions. First, 3-counter machines whose counters are bounded by Ackermann

function of the size of the machine are considered. The termination problem for such machines

is known to be non-primitive recursive.

The above termination problem is reduced to termination of Expansive counter machines

with zero tests (ECMs). An ECM is a counter machine where the automaton can test

counters for zero and counters that have non-zero value can arbitrarily increase their value.

The zero testing ability is critically used to ensure that these expansion errors do not hinder

simulation of Ackermann bounded 3-counter machines.

The termination problem for ECMs is reduced to the acceptance problems for Expansive

And branching Counter Machines (EACM). An EACM is similar to an ECM but zero tests

are not available. Instead, EACMs have branching transitions. On executing a branching

transition, two copies of the counter machine are created, each copy in a new control state

and values of the counter same as those before the transition. An initial con�guration thus

gives rise to a computation tree. An initial con�guration is said to be accepted if there is a

computation tree rooted at that con�guration such that all leaves are in accepting state and

all counters are zero in all leaves. It is easy to simulate ECM by EACM � whenever we need
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to perform a zero test in the ECM, we provide a branching transition in the EACM. One

branch assumes that the counter under consideration is zero and continues the computation.

The other branch tests that the counter is actually zero.

Finally, the acceptance problem for EACMs is reduced to deducibility in LR+. A sequent

calculus equivalent to the axiom system given above is given in [95]. A sequent is associated

with every transition of the EACM. In the resulting theory, the sequent corresponding to

the initial con�guration of the EACM is derivable i� the initial con�guration is accepted

by the EACM. Finally, it is shown that deducibility in the sequent calculus is equivalent

to theoremhood in LR+, so that the decision problem for LR+ is not primitive recursive.

Utilizing some translations from LR+ to implication conjunction fragment of some other

logics [72, 73], this lower bound is extended to R→∧.

As is done in the previous subsection, an upper bound that is primitive recursive in the

Ackermann function is shown by analysing a decision procedure for LR. LR results from R

by dropping the distribution axiom.

5.11 Summary of results

The following table summarizes the results mentioned in this chapter. The lower bound

mentioned in the �Lower bound� column of the table need not imply a formal complexity

theoretic lower bound in all cases, since some of the reductions involve exponential blowups,

such as those for satis�ability of EMSO with =g.

Problem Lower bound Upper bound

LTL↓1(X,U) Satis-

�ability

Non-primitive recursive. Reduc-

tion from non-emptiness of Ex-

pansive counter machines (ECMs)

with zero tests [21].

Reduction to non-emptiness of

alternating register automata

to non-emptiness of ECMs

with zero tests [21].

LTL↓2(X,U) and

LTL↓1(X,U, F
−1)

satis�ability.

Undecidable. Reduction from ter-

mination problem for Minsky ma-

chines [21].

�

Non-emptiness of

2-way alternating

register automata.

Undecidable. Reduction from ter-

mination problem for Minsky ma-

chines [21].

�

FO2(∼, <,+1) sat-

is�ability.

Logspace reduction from Petri net

reachability [8].

Double exponential time re-

duction to Petri net reachabil-

ity [8].

FO3(∼,+1) and

FO2(∼,≺,+1, <)

satis�ability.

Undecidable [8]. Reduction from

Post's Correspondence Problem

[8].

�
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Problem Lower bound Upper bound

Satis�ability of ex-

istential MSO with

=g.

Reduction from Petri net reacha-

bility [78].

Reduction to Petri net reacha-

bility [78].

Satis�ability of ex-

istential MSO with

≤g.

Reduction from Petri net cover-

ability [78].

Reduction to Petri net cover-

ability [78].

Petri net coverabil-

ity and bounded-

ness.

Expspace-hard [65]. Expspace [82].

Model checking

Yen's path logic

formulas on Petri

nets

Polynomial time reduction from

Petri net reachability [3].

Polynomial time reduction to

Petri net reachability [3].

Model checking in-

creasing path for-

mulas of Yen's path

logic on Petri nets

Expspace [65]. Expspace [3].

Emptiness and sat-

is�ability for Pres-

burger arithmetic

with monotone

transitive closure.

Reduction from reachability in

Petri nets with inhibitor arcs [84].

Reduction to emptiness of ex-

pressions built from operators

operating on sets of multisets

[84].

BVAS covering and

boundedness prob-

lems

Doubly exponential time. Reduc-

tion from acceptance in alternat-

ing doubly exponential bounded

counter machines [19].

Doubly exponential time. Ex-

tension of Racko�'s induction

to BVAS [19].

Deducibility in the

theory of tensor ?.

Polynomial time reduction from

Petri net reachability [93].

Polynomial time reduction to

Petri net reachability [93].

Deducibility in con-

junction, implica-

tion, fusion frag-

ment of Relevance

logic.

Reduction from termination of

doubly exponential bounded 3-

counter machines to the word

problem in commutative contrac-

tive semi-Thue systems to de-

ducibility [94].

McAloon's ordinal recursive

bound on Dickson's lemma

[94].
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Problem Lower bound Upper bound

Validity in LR+

fragment of Rele-

vance logic.

Reduction from termination of

Ackermann bounded 3-counter

machines to termination of ECMs

with zero tests to acceptance in

expansive and-branching counter

machines without zero tests to de-

ducibility to validity [95].

McAloon's ordinal recursive

bound on Dickson's lemma

[95].

91



Chapter 6

Petri Nets and Bene�t Depth

Communicating automata with bu�ers [10] is a model of concurrent communicating systems.

In this chapter, we consider a small generalization where 1-safe Petri nets (which we call

components) communicate through bu�ers. Thus we have a system model which allows

communication by message-passing as well as by synchronization, since 1-safe Petri nets can

model the latter.

We introduce a logic to express some counting properties of Petri nets. This logic can

express coverability, boundedness and some extensions, so its model checking problem is

Expspace-hard. We consider the parameter bene�t depth that we introduced in Chapter 4

and extend it to 1-safe Petri nets communicating through bu�ers. With this extension, bene�t

depth measures how much bu�ers can a�ect one another. Bene�t depth is upper bounded by

the number of bu�ers but it seems reasonable that, in a loosely coupled distributed system,

the communication graph amongst bu�ers is not dense and bene�t depth can be low. We will

show ParaPspace upper bound for model checking the above mentioned logic with respect

to this parameter (recall from Chapter 1 that ParaPspace algorithms are those that run

in space O(f(k)poly(n)), where the function f(k) may be any computable function of the

parameter k while poly(n) is some polynomial of the input size n). The main idea behind

this result is that if a transition bene�tting from a place occurs before a transition that does

not bene�t from that place, the two transitions can be swapped. This fact can then be used

for �ner combinatorial analysis of recurrence relations that are the main tools for Racko�'s

Expspace upper bounds [82].

6.1 System Model

Our results work for any Petri net. But we divide the net into bounded and unbounded

portions to emphasize the fact that our problem formulation strictly generalizes reachability

for 1-safe Petri nets. The model of systems we consider in this chapter consists of some 1-

safe nets, called components, which can add or remove tokens to/from a set of unbounded

places that we refer to as buffers.

De�nition 6.1. A net of communicating automata with bu�ers (we just use the word
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�net� in the rest of this chapter) is a Petri net where the set of places is partitioned into a

set of bu�ers B and component places C = P \B. We require that all places in C remain

1-bounded regardless of the number of tokens in the bu�ers at the initial marking. We will

use the notation |B| = b and |C| = a.

De�nition 6.2. Recall the de�nition of the set of places Ben(p) ⊆ P and the set of tran-

sitions Tben(p) ⊆ T bene�ted by a place p from De�nition 4.9. Ind(p) = P \ Ben(p) and

Tind(p) = T \ Tben(p) are the places and transitions independent of p. The bene�t depth of

a net is de�ned as K = max{|Ben(p) ∩B| − 1 | p ∈ B}.

The diagram shown in Fig. 6.1 illustrates a communicating automaton with bu�ers. The

ob1

ib1

line 1

ob2

ib2

line 2

obr

ibr

line r

master line 1

pr1

master line 2

pr2

Figure 6.1: Illustration of communicating automata with bu�ers

boxes labelled as line 1, line 2 etc. can be thought of as assembly lines represented by 1-

safe Petri nets, drawing raw materials from bu�ers ib1, ib2 etc. Output of these assembly

lines are deposited into bu�ers ob1, ob2 etc. Boxes labelled master line 1 and master line 2

can be thought of as master assembly lines that use the output of earlier assembly lines as

their input. They deposit their output in bu�ers pr1 and pr2 respectively. Irrespective of

the number of assembly lines, bene�t depth is 3 since only obi, pr1 and pr2 can bene�t by

decreasing tokens from ibi.

6.2 Bene�t Depth and Coverability

Recall the concept of vector from section 5.4. In this chapter, we will consider only those

vectors M : P → Z that satisfy M(p) ∈ {0, 1} for all places p ∈ C. The following is same as

De�nition 5.14 adapted to nets of communicating automata with bu�ers.

De�nition 6.3. [82] Let C ⊆ Q ⊆ P . De�ne lencov(Q,M,Mcov) to be the length of the

shortest Q-covering run from the vectorM . If there is no such sequence, let lencov(Q,M,Mcov)

to be 0. For 0 ≤ i ≤ b, `(i,Mcov) is de�ned to be max{lencov(Q,M,Mcov) |M a vector, C ⊆
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Q ⊆ P and |Q \ C| = i}. In this section we abbreviate `(i,Mcov) to `(i). In section 6.4 we

will abbreviate `(b,Mcov) to `′(Mcov).

De�nition 6.4. Let C ⊆ Q ⊆ P and p ∈ B be a bu�er. De�ne covindp(Q,M,Mcov) to

be the length of the shortest Q-covering run in Tben(p)∗ from the vector M . If there is no

such sequence, de�ne covindp(Q,M,Mcov) to be 0. Let `1(i) = max{covindp(Q,M,Mcov) |
M a vector, p a bu�er, |Q ∩Ben(p) ∩B| = i}.

Our strategy is to segregate covering sequences into two parts, the �rst made of transitions

in Tind(p) and the second one made of transitions in Tben(p). We need the following technical

lemma, which is a generalization of the exchange lemma [22, Lemma 2.14] to Petri nets

with weighted arcs.

Lemma 6.5. Let p be a place and tben ∈ Tben(p) and tind ∈ Tind(p) be transitions. Let Q ⊆ P

be some set of places. If tbentind is a Q-run from some vector M , then so is tindtben.

Proof. We will �rst prove that tind is a Q-run from M . Suppose not. Now, suppose p′ ∈ Q is

one of the places that do not have su�cient tokens at M to enable tind. Since tind ∈ Tind(p),
we know from De�nition 6.2 that for all p′′ ∈ Ben(p), Pre(p′′, tind) = 0. Hence, p′ /∈ Ben(p),

i.e., p′ ∈ Ind(p)∩Q. Now, we have M tben−−→M1
tind−−→M2 for some vector M1, tind is a Q-run

from M1 but not from M since a place p′ ∈ Ind(p) ∩Q does not have enough tokens at M .

Since p′ has enough tokens at M1, tben adds some tokens to p′, i.e., Post(p′, tben) ≥ 1. This

contradicts the fact that tben ∈ Tben(p). Therefore, tind is a Q-run from M . So, M
tind−−→ M3

for some vector M3.

Now, we will prove that tben is a Q-run from M3. Suppose not. Let p
′ ∈ Q be one of the

places that do not have enough tokens atM3 to enable tben. Since tben is a Q-run fromM , tind

must decrease the number of tokens in p′. Since tind ∈ Tind(p), we know from De�nition 6.2

that tind does not decrease tokens in any place that belongs to Ben(p). Hence, p′ /∈ Ben(p),

i.e., p′ ∈ Ind(p) ∩ Q. Let q′ be the number of tokens in p′ at M and let tind decrease the

number of tokens in p′ by q1. Now, if d2 = Pre(p′, tben) is the number of tokens needed by

tben, then d2 > q′ − q1. Now, if tbentind is run from M , number of tokens in p′ at the end

will be q′ − d2 − q1 < 0 (Post(p′, tben) = 0 since p′ ∈ Ind(p)), which contradicts the fact that

tbentind is a Q-run from M . Therefore, p′ cannot be in Ind(p)∩Q and hence there is no such

p′. This means that tben is a Q-run from M3 and hence tindtben is a Q-run from M .

In the following lemma, we give a �ner analysis of a recurrence relation introduced by

Racko� in [82] that we mentioned in Lemma 5.15. The idea is that using the exchange lemma

above, all transitions bene�ting from a place can be moved to the right. Properties of the

resulting sub-sequence can be used to get better upper bounds.

Lemma 6.6. Let N be a net with maximum arc weight W , bene�t depth K and let R

be the maximum of the range of Mcov, the marking to be covered. If K ≤ i < b, then

`(i+ 1) ≤ (W`1(K) +R)i+12a + `(i) + `1(K).
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Proof. Suppose that Qi+1 = C ∪ A where |A| = i + 1 and that there is a Qi+1-covering run

from some vector M . If this run is W`1(K) + R-bounded for Qi+1, then there is a similar

run where no two intermediate vectors are equal when restricted to Qi+1. The length of such

a sequence is at most (W`1(K) +R)i+12a.

Otherwise, there is a Qi+1-covering run fromM that is not W`1(K)+R-bounded for Qi+1.

Then there exist runs σ1 and σ2 such that σ1σ2 is Qi+1-covering from M , σ1 is W`1(K) +R-

bounded for Qi+1 and the �nal vector M ′ obtained by walking σ1 at M has more than

W`1(K) + R tokens at some place p ∈ A. Let Qi = Qi+1 \ {p}. As above, we can assume

that length of σ1 is at most (W`1(K) +R)i+12a.

Now, σ2 is a Qi-covering run from M ′. By de�nition, there is a Qi-covering run σ′2 from

M ′ whose length is at most `(i). Since σ′2 is a Qi-run from M ′, we can apply Lemma 6.5

repeatedly to rearrange σ′2 into another sequence τ1τ2 such that τ1 ∈ Tind(p)∗, τ2 ∈ Tben(p)∗,

τ1τ2 is a Qi-run from M ′ and |τ1τ2| = |σ′2| (see Fig. 6.2). This rearrangement of σ′2 could

p

M

C

A

Qi+1

M ′

σ1

↑
↑
↑

↑
↑
↑

M ′′

τ1

Tind(p)∗

↓
↓

↓
↓

τ ′2
Tben(p)∗

⊆ Ind(p)

⊆ Ben(p)

Qi

≤ `ß(k)

Figure 6.2: Sequences and bounds used in the proof of Lemma 6.6
↑ (resp. ↓) inside places indicates that tokens are non-decreasing (resp. non-increasing).

potentially cause places in C to get more than 1 token in an arbitrary Petri net. However,

our assumption that places in C remain 1-bounded regardless of the number of tokens in

the bu�ers at the initial marking ensures that the rearrangement doesn't disturb the 1-

boundedness of places in C. Let M ′′ be the �nal vector obtained by walking τ1 at M
′. Now,

τ2 ∈ Tben(p)∗ and is a Qi-covering run from M ′′. Hence, by De�nition 6.4, there is a Qi-

covering run τ ′2 from M ′′ with τ ′2 ∈ Tben(p)∗ and |τ2| ≤ `1(|Ben(p)∩B| − 1). Since |τ1| ≤ `(i)

and `1(|Ben(p) ∩ B| − 1) ≤ `1(K), |τ1τ ′2| ≤ `(i) + `1(K). Since τ1 ∈ Tind(p)∗, De�nition 6.2

implies that no transition in τ1 decreases tokens from p. SinceM ′′(p) ≥M ′(p) ≥ W`1(K)+R

and each transition in τ ′2 removes at most W tokens from p, σ1τ1τ
′
2 is a Qi+1-covering run

from M whose length is at most (W`1(K) +R)i+12a + `(i) + `1(K).

The bound on `(i+1) given by Racko� in [82] is similar to the one in Lemma 6.6 but uses

`(i) in place of `1(K). Since `1(K) can be much smaller than `(i), the bound in Lemma 6.6

is better. This is the fact that enables us to restrict exponential space complexity to K.
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The following lemma gives a recurrence relation for length of covering sequences made of

transitions in Tben(p).

Lemma 6.7. `1(0) ≤ 2a and `1(i+ 1) ≤ (W`1(i) +R)i+12a + `1(i).

Proof. (Following [82].) We will �rst prove the bound on `1(0). Let Q = C ∪ A and A ∩
Ben(p) = ∅ for some bu�er p. Suppose σ ∈ Tben(p)∗ is a Q-covering run from some vector

M . If any two intermediate vectors reached by walking σ at M are equal when restricted

to C, remove the subsequence between these two intermediate vectors. Since the removed

subsequence never added any tokens to any place in A, such removals will never decrease

tokens from places in A. Therefore, after all such removals, the sequence that is left is still

a Q-covering run from M . The length of this run is at most 2a.

Next, we will prove the bound on `1(i+ 1). Suppose that Q = Qi+1 = C ∪ A ∪ A′ where
|A′| = i + 1, with A ∩ Ben(p) = ∅ for some bu�er p. Suppose that there is a Qi+1-covering

run in Tben(p)∗ from some vector M .

Case 1 : There is a Qi+1-covering run from M that is W`1(i) +R-bounded for A′. Then,

as above, there is a Qi+1-covering run σ from M that is W`1(i) + R-bounded for A′ such

that no two intermediate vectors obtained from walking σ at M are equal when restricted to

Qi+1 \ A. The length of such a run is at most (W`1(i) +R)i+12a.

Case 2 : Otherwise, there is a Qi+1-covering run from M that is not W`1(i) +R-bounded

for A′. Then there exist sequences σ1 and σ2 such that σ1σ2 ∈ Tben(p)∗ is a Qi+1-covering

run from M , σ1 is W`1(i) + R-bounded for A′ and the �nal vector M ′ obtained by walking

σ1 at M has more than W`1(i) + R tokens at some place p′ ∈ A′. Let Qi = Qi+1 \ {p′}. As
in case 1, we can assume that length of σ1 is at most (W`1(i) +R)i+12a.

Now, σ2 ∈ Tben(p)∗ is a Qi-covering run from M ′. By de�nition, there is a Qi-covering

run σ′2 ∈ Tben(p)∗ from M ′ whose length is at most `1(i). Since M ′(p) ≥ W`1(i) + R and

each transition in σ′2 removes at most W tokens from p′, σ1σ
′
2 is a Qi+1-covering run from M

whose length is at most (W`1(i) +R)i+12a + `1(i).

It now only remains to solve the recurrence relations we have obtained and use them in

a nondeterministic algorithm that guesses covering sequences to get our �rst main theorem.

De�nition 6.8. Let W ′ = max{W, 2}, R′ = max{R, 2}. De�ne a growth function g : N→ N
as g(0) = W ′R′2a and g(i+ 1) = (g(i))3(i+1)2a.

Lemma 6.9. `(K + j) ≤ (K + j)(W`1(K) +R)K+j2a + j`1(K) + `(K).

Proof. By induction on j. The base case j = 0 is clear since RHS of the inequality is at least
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`(K).

`(K + j + 1) ≤ (W`1(K) +R)K+j+12a + `(K + j) + `1(K)

≤ (W`1(K) +R)K+j+12a

+ (K + j)(W`1(K) +R)K+j2a + j`1(K)

+ `(K) + `1(K)

≤ (K + j + 1)(W`1(K) +R)K+j+12a + (j + 1)`1(K)

+ `(K)

Lemma 6.10. `1(i) ≤ g(i), `(i) ≤ g(i), `(K + j) ≤ (K + j)(g(K))3(K+j)2a and g(i) ≤
(W ′R′)3ii!26ii!a.

Proof. Bounds on `1(i) and `(i) are by induction on i. For the base case i = 0, we have

`1(0) ≤ 2a ≤ g(0) and `(0) ≤ 2a ≤ g(0) (this bound on `(0) can be obtained by arguments

similar to those used for the bound on `1(0) in Lemma 6.7).

`1(i+ 1) ≤ (W`1(i) +R)i+12a + `1(i)

≤ (Wg(i) +R)i+12a + g(i)

≤ (W ′R′)i+1(g(i))i+12a + g(i)

≤ (g(i))2(i+1)2a + g(i)

≤ (g(i))3(i+1)2a

= g(i+ 1)

For the bound on `(i), we will use Racko�'s result from [82], which states that `(i + 1) ≤
(W`(i) +R)i+12a + `(i).

`(i+ 1) ≤ (W`(i) +R)i+12a + `(i)

≤ (Wg(i) +R)i+12a + g(i)

≤ (g(i))3(i+1)2a

= g(i+ 1)

Next, we will prove the bound on `(K + j).

`(K + j) ≤ (K + j)(Wg(K) +R)K+j2a + jg(K) + g(K)

≤ (K + j)(W ′R′)K+j(g(K))K+j2a + (j + 1)g(K)

≤ (K + j)(g(K))3(K+j)2a

Finally, the bound on g(i) is by induction i. For the base case i = 0, we have g(0) =
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(W ′R′)2a = (W ′R′)300!2600!a.

g(i+ 1) = (g(i))3(i+1)2a

≤
(

(W ′R′)3ii!26ii!a
)3(i+1)

2a

≤ (W ′R′)3i+1(i+1)!2(6ii!3(i+1)+1)a

≤ (W ′R′)3i+1(i+1)!2(6ii!3(i+1)2)a

= (W ′R′)3i+1(i+1)!26i+1(i+1)!a

Theorem 6.11. Let q(i) = (6K+2K!m2)i. Suppose a net under consideration has bene�t

depth K. There is a non-deterministic algorithm that decides if there is a �ring sequence

covering Mcov from M0 in space O(log |M0|+ log n+ q(1) logW ′ logR′m logm).

Proof. Since there are b bu�ers in the net, `(b) gives an upper bound on the length of the

shortest P -covering run. Therefore, there exists a P -covering run i� there is one of length at

most `(b). From Lemma 6.10 we get

`(b) ≤ b(g(K))3b2a ≤ m(g(K))3m2a ≤ m
(

(W ′R′)3KK!26KK!a
)3m

2a ≤ m
(

(W ′R′)6K+1K!a
)3m

2a

Hence `(b) ≤ m(W ′R′)6K+2K!m2
. A nondeterministic algorithm can guess a sequence of

transitions of this length and verify that it is P -covering from M0. The memory needed

is dominated by a counter to count up to maximum `(b) and the memory needed to store

intermediate markings. The memory needed for the counter is O(q(1) logm logW ′ logR′)

and to store markings we need O(log |M0|+ log n+ q(1)m logm logW ′ logR′).

Given a net, its bene�t depth K can be computed in polynomial time. Hence, the upper

bound on the memory requirement in the above theorem is space constructible and the well

known Savitch's theorem can be applied to determinize the above algorithm. The memory

required will still be polynomial in the size of the input net and this gives us the ParaPspace

algorithm.

6.3 Logics for Specifying Petri Net Properties

Let N = (P, T,Pre,Post) be a Petri net. Following is a logic of counting properties such

that its model checking can be reduced to coverability (κ) and boundedness (β) problems,
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but is designed to avoid expressing reachability. This is a fragment of counting CTL.

(Terms)τ ::= p ∈ P | τ1 + τ2 | cτ, c ∈ N
(Coverability)κ ::= τ ≥ c, c ∈ N | κ1 ∧ κ2 | κ1 ∨ κ2 | EFκ

(Boundedness)β ::= {τ1, . . . , τr} < ω | ¬β | β1 ∨ β2

φ ::= β | κ | φ1 ∧ φ2 | φ1 ∨ φ2

We use the formula {τ1, . . . , τr} = ω as an abbreviation for ¬{τ1, . . . , τr} < ω. Formally,

the semantics of the above logic is de�ned on the computation tree generated by a Petri net,

rooted at the initial marking. We give the semantics below in an equivalent format based on

the Petri net itself. The satisfaction of a formula φ by a Petri net N with initial marking

M0 (denoted as N ,M0 |= φ) is de�ned below. The Boolean operators work as usual. Note

that every term τ gives a function Lτ : P → N such that τ is syntactically equivalent to∑
p∈P Lτ (p)p. By �xing an order on the set of places P , we can treat any function Lτ and

marking M as a vector with |P | coordinates.

• N ,M0 |= τ ≥ c i� Lτ �M0 ≥ c, where � is the vector dot product as in the previous

chapter.

• N ,M0 |= EFκ i� there is a marking M reachable from M0 such that N ,M |= κ.

• N ,M0 |= {τ1, . . . , τr} < ω i� ∃c ∈ N such that for all markings M reachable from M0,

there is a j ∈ {1, . . . , r} such that
∑

p∈P Lτj(p)M(p) ≤ c.

With the example of Fig. 6.1, the formula EF(ob1 + ob2 ≥ 50 ∧ EF(pr1 + pr2 ≥ 30)) is

satis�ed if we can reach a marking M such that M(ob1) +M(ob2) ≥ 50 and from M , we can

reach a marking M ′ such that M ′(pr1) +M ′(pr2) ≥ 30.

6.4 Model Checking Logic of Counting Properties

Though the ParaPspace result for coverability can be extended to the boundedness prob-

lem, we consider the more general problem of checking whether a given net satis�es a given

formula φ of the logic de�ned in section 6.3. We show that this can be done in ParaPspace

with bene�t depth as the parameter, provided the nesting depth of EF modality in φ is a

�xed constant. Following is the main theorem of this section.

Theorem 6.12. There is a ParaPspace algorithm that checks whether a given net with an

initial marking satis�es a given formula φ, if the bene�t depth of the net is a parameter and

the nesting depth D of EF modality in the formula is treated as a constant.

First of all, we simplify the kind of formulas that our algorithm has to handle by non-

deterministically choosing a disjunct from a disjunctive sub-formula. We then end up with

φ a sequence of conjuncts β1, . . . , βc, κ, where each βi is of the form {τ1, · · · τr} < ω or

{τ1, · · · τr} = ω and κ consists of conjunctions of nested EF modalities over τ ≥ c formulas.
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Section 6.4.1 gives the details of model checking such nested κ formulas in ParaPspace

and section 6.4.2 gives the details of model checking formulas of the form {τ1, · · · τr} < ω or

{τ1, · · · τr} = ω. Combining these two will give us the required ParaPspace algorithm for

model checking formulas φ, completing the proof of Theorem 6.12.

6.4.1 Nested Coverability Properties

We �rst consider verifying the formulas κ, which are of the form γ ∧EF(κ1)∧ · · · ∧EF(κr),

with γ being a conjunction of τ ≥ c formulas. We call γ the content of κ and κ1, . . . , κr

as the children of κ. Each of the children may have their own content and children, thus

generating a tree with nodes Γ, with κ at the root of this tree. We will represent nodes of

this tree by sequences of natural numbers, 0 being the root.

The maximum length of sequences in Γ is one more than the nesting depth of the EF

modality in κ and we denote it by D. Let [D] = {0, 1, . . . , D − 1}. If α ∈ Γ is a tree node

that represents the formula κ(α) = γ ∧ EF(κ1) ∧ · · · ∧ EF(κr), content(α) = γ denotes

the content of the node α. Let ratio(τ ≥ c) = max{dc/Lτ (p)e | Lτ (p) 6= 0, p ∈ P}.
De�ning max(∅) = 0, we de�ne the maximum ratio at height i in the tree by ratio(i) =

max{ratio(τ ≥ c) | τ ≥ c appears as a conjunct in content(α) for some α ∈ Γ, |α| = i + 1}.
Recall from De�nition 6.3 that b is the number of bu�ers and `′(M) the length of the shortest

run covering M using all the bu�ers `(b,M).

De�nition 6.13. Given a formula κ and a net N with initial markingM0, the bound function

f : [D] × P → N is de�ned as follows. We use f(j) for the marking de�ned by f(j)(p) =

f(j, p).

• f(D − 1, p) = ratio(D − 1),

• f(D − i, p) = max{ratio(D − i),W`′(f(D − i+ 1)) + f(D − i+ 1, p)}, 1 < i < D,

• f(0, p) = M0(p).

A guess function h : Γ× P → N is any function that satis�es h(α, p) ≤ f(|α| − 1, p) for all

α ∈ Γ and p ∈ P . If h is a guess function, h(α) is the marking de�ned by h(α)(p) = h(α, p).

If a given system satis�es the formula κ = γ∧EF(κ1)∧· · ·∧EF(κr), then there exist �ring

sequences σ01, . . . , σ0r that are all enabled at the initial marking M0 such that M0
σ0i==⇒ M0i

and M0i satis�es κi. In general, if κ generates a tree with set of nodes Γ, then there is a set

of sequences {σα | α ∈ Γ \ {0}} and set of markings {Mα | α ∈ Γ} such that Mα
σαj

==⇒ Mαj

for all α, αj ∈ Γ and Mα satis�es content(α) for all α ∈ Γ.

Lemma 6.14. There exist sequences {µα | α ∈ Γ \ {0}} and markings {Mα | α ∈ Γ} such
that Mα

µαj
==⇒ Mαj for all α, αj ∈ Γ with Mα satisfying content(α) and |µα| ≤ `′(f(|α| − 1))

i� there exist sequences {σα | α ∈ Γ\{0}} and markings {M ′
α | α ∈ Γ} (with M ′

0 = M0) such

that M ′
α

σαj
==⇒M ′

αj for all α, αj ∈ Γ with M ′
α satisfying content(α).

100



Proof. (⇒) Since Mα satis�es content(α), we can take M ′
α = Mα and σα = µα.

(⇐) Consider the following guess function:

h(α, p) =


M0(p) if α = 0

M ′
α(p) if α 6= 0 and M ′

α(p) ≤ f(|α| − 1, p)

f(|α| − 1, p) otherwise

By de�nition, h(α) ≤ M ′
α and h(α) ≤ f(|α| − 1). Since σαj is a �ring sequence that covers

M ′
αj from M ′

α, there exist sequences µαj that cover h(αj) starting from M ′
α whose length is

at most `′(h(αj)) (and hence at most `′(f(|αj| − 1))). We claim that there exist markings

{Mα | α ∈ Γ} such that Mα
µαj

==⇒ Mαj for all α, αj ∈ Γ and that Mα satis�es content(α) for

all α ∈ Γ.

First, we claim that every µαj can be �red from Mα and that every place p will satisfy

at least one of the following two conditions:

1. Mαj(p) ≥M ′
αj(p)

2. Mαj(p) ≥ f(|αj| − 1, p)

We will prove this claim by induction on |α|.
Base case: |α| = 1. µ0j is a �ring sequence of length at most `′(h(0j)) that covers h(0j)

starting from M0. The claim is clear by the de�nition of h(0j).

Induction step: We want to prove that µαj can be �red at Mα and that Mαj satis�es the

stated claims. We will prove these for an arbitrary place p. By induction hypothesis, either

Mα(p) ≥M ′
α(p) or Mα(p) ≥ f(|α| − 1, p).

First, suppose that Mα(p) ≥M ′
α(p). Since µαj covers h(αj) starting from M ′

α, Mαj(p) ≥
h(αj)(p) and there are no intermediate markings between Mα and Mαj where p receives

negative number of tokens. Also, since Mαj(p) ≥ h(αj)(p), either Mαj(p) ≥ M ′
αj(p) or

M(αj)(p) ≥ f(|αj| − 1, p).

Second, suppose that Mα(p) ≥ f(|α| − 1, p). |µαj| ≤ `′(h(αj)) and h(αj) ≤ f(|αj| − 1)

by de�nition. Hence `′(h(αj)) ≤ `′(f(|αj| − 1)) and |µαj| ≤ `′(f(|αj| − 1)). By de�nition of

f(|α|−1, p), we getMα(p) ≥ W`′(f(|αj|−1))+f(|αj|−1, p). The sequence µαj will remove

at most W`′(f(|αj| − 1)) tokens from p and hence, at least f(|αj| − 1, p) tokens will be left

in place p at marking Mαj. Therefore, Mαj(p) ≥ f(|αj| − 1, p).

This completes the induction and hence the claim.

Now, we will prove that each Mα satis�es content(α). For each conjunct τ ≥ c in

content(α), we will prove that
∑

p∈P Lτ (p)Mα(p) ≥ c, where Lτ is the positive linear com-

bination represented by τ . If c = 0, then the required result can be obtained by just

observing that both Lτ (p) and Mα(p) are positive for all p ∈ P . So suppose that c 6= 0. Let

Qτ = {p ∈ P | Lτ (p) 6= 0}. We distinguish between two cases:

1. For some p ∈ Qτ , Mα(p) ≥ f(|α| − 1, p). In this case, Mα(p) ≥ f(|α| − 1, p) ≥ c
Lτ (p)

.

Hence, Lτ (p)Mα(p) ≥ c.
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2. For all p ∈ Qτ , Mα(p) < f(|α| − 1, p). In this case, for all p ∈ Qτ , Mα(p) ≥
M ′

α(p). Since M ′
α satis�es content(α), we have

∑
p∈Qτ Lτ (p)M

′
α(p) ≥ c. Therefore,∑

p∈Qτ Lτ (p)Mα(p) ≥ c.

To derive an upper bound for f(i) to use in a nondeterministic algorithm, let R =

max{ratio(τ ≥ c) | τ ≥ c is a sub-formula of κ}, R′ = max{R, 2} and W ′ = max{W, 2}.
Recall that D − 1 is the nesting depth of EF and note that boundedness and coverability

can be expressed with D ≤ 2.

Lemma 6.15. For i ≥ 2, f(D − i, p) ≤ (i+ 1)R′W`′(f(D − i+ 1)).

Proof. By induction on i.

Base case: i = 2

f(D − 2, p) ≤ max{R,W`′(f(D − 1)) + f(D − 1, p)}
≤ R +W`′(f(D − 1)) + f(D − 1, p)

≤ R +W`′(f(D − 1)) +R

≤ 2R +W`′(f(D − 1))

≤ 2R′W`′(f(D − 1))

Induction step:

f(D − i− 1, p) ≤ max{R,W`′(f(D − i)) + f(D − i, p)}
≤ R +W`′(f(D − i)) + (i+ 1)R′W`′(f(D − i+ 1))

≤ R′W`′(f(D − i)) + (i+ 1)R′W`′(f(D − i))
= (i+ 2)R′W`′(f(D − i))

Lemma 6.16. Let q(i) = (6K+2K!m2)i represent the term in the space bound of Theo-

rem 6.11. Then

1. `′(f(D − 1)) ≤ m(W ′R′)q(1) and

2. `′(f(D − i)) ≤ m
∏D

j=D−i ((D − j + 1)W ′2R′m)
q(i+j+1−D)

.

Proof. The �rst result `′(f(D − 1)) ≤ m(W ′R′)q(1) is by Lemma 6.10. Next result is by

induction on i.

Base case: i = 2. Since f(D− 2, p) ≤ 2R′W`′(f(D− 1)) and `′(f(D− 2)) ≤ m(W ′r′)q(1)

where r′ = max{f(D − 2, p) | p ∈ P}, we get

`′(f(D − 2)) ≤ m(W ′2R′W`′(f(D − 1)))q(1)

≤ m(2W ′2R′m(W ′R′)q(1))q(1)

≤ m(2W ′2R′m)q(1)(W ′R′)q(2)
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Induction step: Since f(D − i− 1, p) ≤ (i+ 2)R′W ′`′(f(D − i)), we have

`′(f(D − i− 1)) ≤ m(W ′(i+ 2)R′W ′`′(f(D − i− 1)))q(1)

≤ m

(
(i+ 2)W ′2R′m

D∏
j=D−i

((D − j + 1)W ′2R′m)q(i+j+1−D)

)q(1)

= m
(
(i+ 2)W ′2R′m

)q(1)
D∏

j=D−i

(
(D − j + 1)W ′2R′m

)q(i+1+j+1−D)

= m

D∏
j=D−i−1

(
(D − j + 1)W ′2R′m

)q(i+1+j+1−D)

Theorem 6.17. There is a ParaPspace algorithm that checks if a given net satis�es a

given κ formula, provided the bene�t depth of the net is treated as a parameter and the

nesting depth D of EF modality in the formula is treated as a constant.

Proof. By Lemma 6.14, it is enough for a nondeterministic algorithm to guess sequences

σαj, αj ∈ Γ of lengths at most `′(f(|αj| − 1)) and verify that they satisfy the formula.

Using bounds given by Lemma 6.16 and an argument similar to the one in the proof of

Theorem 6.11, it can be shown that the space used is exponential in K and polynomial

in the size of the net and numeric constants in the formula. This gives the ParaPspace

algorithm.

Note that the size of the κ formula need not be a parameter, as long as the nesting depth

D of EF modality in the formula is treated as a constant. The space requirement of the

above algorithm will have terms like m2D and hence it will not be ParaPspace if D is

treated as a parameter instead of a constant.

6.4.2 Boundedness Properties

We will now look at model checking β formulas. We will adapt the concept of disjointness

sequence [18] to our notation. Let ∆[σ] be the total e�ect of walking the sequence of transi-

tions σ = t1 · · · tr so that for any place p, ∆[σ](p) =
∑r

i=1 Post(p, ti)−Pre(p, ti) is the change

in the number of tokens in p as a result of walking the sequence σ.

De�nition 6.18 ([18]). Let X ⊆ B be a non-empty subset of bu�ers. A �ring sequence

σ enabled at the initial marking M0 is said to be a X-pumping sequence if σ can be

decomposed into σ′1σ1σ
′
2σ2 · · ·σ′eσe such that

1. X ⊆ {p ∈ B | ∆[σρ](p) > 0, 1 ≤ ρ ≤ e}.

2. ∆[σ1](p) ≥ 0 for all places p ∈ P and for each ρ between 2 and e, for each p ∈ P ,

∆[σρ](p) < 0 implies there is a j ≤ ρ− 1 such that ∆[σj](p) > 0.
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3. For each ρ between 1 and e, each p ∈ C, ∆[σρ](p) = 0.

The subsequences σ1, σ2, . . . , σe are called pumping portions. They are underlined to dis-

tinguish them from other parts of the sequence.

Lemma 6.19 ([18]). N ,M0 |= {τ1, . . . , τr} = ω i� there exists a X-pumping sequence for

some X ⊆ P such that for every j ∈ {1, · · · , r}, there is a pj ∈ X with Lτj(pj) ≥ 1.

Proof. (⇐) Suppose there is aX-pumping sequence σ as given in the lemma. Let σ′1σ1 · · · σ′eσe
be the decomposition of σ as in De�nition 6.18. By repeating the pumping portions σ1, . . . , σe

arbitrarily many times (see [18, Lemma 3.1]), we can ensure that for all c ∈ N, ∃M ∈
R(N ,M0) such that for all j ∈ {1, . . . , r}, Σp∈PLτj(p)M(p) ≥ c.

(⇒) Suppose N ,M0 |= {τ1, . . . , τr} = ω. By semantics, we get ∀c ∈ N, ∃M ∈ R(N ,M0)

such that for all j ∈ {1, . . . , r}, ∑p∈P Lτj(p)M(p) > c. Hence, we can conclude that for all

c ∈ N, there are bu�ers pc1, pc2, . . . , pcr andM c ∈ R(N ,M0) such thatM
c(pcj) > c∧Lτj(pcj) ≥ 1

for all j ∈ {1, . . . , r}. For each c ∈ N, let Xc = {pc1, . . . , pcr}. Since the sequence X1, X2, . . .

is in�nite and there are only �nitely many subsets of B, at least one subset of B occurs

in�nitely often in this sequence. Let X be this subset. We will now prove that there is a

X-pumping sequence using some results about coverability trees [23, Section 4.6].

Recall [23] that in a coverability tree, markings M : P → N are extended to ω-markings

M : P → N ∪ {ω}, by mapping unbounded places to ω. We �rst claim that there is some

reachable ω-markingM in the coverability tree of (N ,M0) such that for all p ∈ X,M(p) = ω.

Suppose not. Then, for every reachable ω-marking M , there is some place p ∈ X such that

M(p) < ω. Let c be the maximum of such bounds. Then, by [23, Theorem 22], for every

marking M ∈ R(N ,M0), there exists p ∈ X such that M(p) ≤ c, a contradiction. Hence,

there is a reachable ω-marking M in the coverability tree of (N ,M0) such that for all p ∈ X,

M(p) = ω. Now, the required X-pumping sequence can be constructed (see [18, Lemma 3.1]

for details).

De�nition 6.20 ([18]). Let Q ⊆ P be a subset of places such that C ⊆ Q, X ⊆ B be a

non-empty subset of bu�ers and M a vector. A sequence of transitions σ is said to be a

M,Q-enabled X-pumping sequence if it can be decomposed into σ′1σ1σ
′
2σ2 · · ·σ′eσe such

that

1. X ⊆ {p ∈ B | ∆[σρ](p) > 0, 1 ≤ ρ ≤ e}.

2. ∆[σ1](p) ≥ 0 for all places p ∈ P and for each ρ between 1 and e, each p ∈ C,

∆[σρ](p) = 0.

3. For each ρ between 2 and e, for each p ∈ B, ∆[σρ](p) < 0 implies there is a j ≤ ρ− 1

such that ∆[σj](p) > 0.

4. For any intermediate vector M ′ occurring when walking σ from M and any p ∈ Q,

M ′(p) ≥ 0.
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As we did for coverability, we could try to bound the lengths ofM,Q-enabled X-pumping

sequences by induction on |Q|. However, reasoning about M,Q-enabled X-pumping se-

quences may involve high numbers. Instead, we will reason about another structure de�ned

below, whose existence will imply existence of M,Q-enabled X-pumping sequences.

De�nition 6.21 ([18]). Let Q ⊆ P be a subset of places such that C ⊆ Q, X, Y ⊆ B with

X non-empty. Let M be a vector and c ∈ N ∪ {ω}. A sequence of transitions σ is said to

be a Y -neglecting weakly M,Q, c-enabled X-pumping sequence if it can be decomposed

into σ′1σ1σ
′
2σ2 · · ·σ′eσe such that

1. X ⊆ {p ∈ B | ∆[σρ](p) > 0, 1 ≤ ρ ≤ e}.

2. For each ρ between 1 and e, for each p ∈ C, ∆[σρ](p) = 0.

3. For each ρ between 1 and e and any p ∈ B, ∆[σρ](p) < 0 implies (there is a j ≤ ρ− 1

such that ∆[σj](p) > 0 or p ∈ Y ).

4. For any intermediate vector M ′ occurring while walking σ from M and any p ∈ Q \C,
M ′(p) < c.

5. For any intermediate vector M ′ occurring while walking σ from M and any p ∈ Q,

M ′(p) < 0 implies (p ∈ Y or there is a j such that σj occurs before M
′ and ∆[σj](p) >

0).

Condition 5 above means that an intermediate vector M ′ may have negative number of

tokens in a place p belonging to Q only if that place is in Y (all places in Y are neglected)

or there is a way to pump up tokens in p before reaching M ′.

Lemma 6.22 ([18]). Let Q ⊆ P be a subset of places such that C ⊆ Q, X ⊆ B be a non-

empty subset of bu�ers and M a vector. Suppose σ is a ∅-neglecting weakly M,Q, ω-enabled

X-pumping sequence with decomposition σ′1σ1σ
′
2σ2 · · ·σ′eσe as in De�nition 6.21. There are

n1, n2, · · · , ne ∈ N such that σ′1σ
n1
1 σ

′
2σ

n2
2 · · ·σ′eσnee is a M,Q-enabled X-pumping sequence.

Proof. We de�ne ne, . . . , n1 in that order as follows:

• ne = 1.

• Suppose 1 ≤ ρ < e and nρ+1, . . . , ne have already been de�ned. De�ne nρ to be

(e− ρ)(|σ| − 1)W + Σj=e
j=ρ+1(|σ| − 1)Wnj.

Let

M
σ′1−−→M ′

1

σ
n1
1−−→M1

σ′2−−→M ′
2

σ
n2
2−−→M2 −−→ · · · σ′e−−→M ′

e

σnee−−→Me .

We will verify that each of the 4 conditions of De�nition 6.20 are satis�ed by the sequence

σ′1σ
n1
1 σ

′
2σ

n2
2 · · ·σ′eσnee .

1. This condition follows from condition 1 of De�nition 6.21.
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2. The condition for each ρ between 1 and e, for each p ∈ C, ∆[σ
nρ
ρ ](p) = 0 follows

from condition 2 of De�nition 6.21. Let us verify that ∆[σn1
1 ](p) ≥ 0 for all places

p ∈ P . If this is not the case, then σ1 decreases the number of tokens in some bu�er,

contradicting condition 3 of De�nition 6.21.

3. This follows from condition 3 of De�nition 6.21.

4. We will prove the following claim by induction on ρ: for any intermediate vector M ′

betweenM andMρ and any p ∈ Q,M ′(p) ≥ 0 and for any intermediate vectorM ′′ (that

can occur anywhere) and any p′ ∈ (Q ∩⋃j=ρ
j=1{p ∈ B | ∆[σ

nj
j ](p) > 0}), M ′′(p′) ≥ 0.

Base case ρ = 1: Let p ∈ Q. For any intermediate vector M ′ between M and M ′
1,

M ′(p) < 0 would imply a contradiction of condition 5 of De�nition 6.21. For any

intermediate marking M ′ between M ′
1 and M1, M

′(p) < 0 would imply a contradiction

of condition 3 or 5 of De�nition 6.21. Hence, M ′
1(p) ≥ 0 for any p ∈ Q ∩ {p′ ∈ B |

∆[σ1](p
′) > 0}. Hence, for any p ∈ Q∩{p′ ∈ B | ∆[σn1

1 ](p′) > 0},M1(p) ≥ (e−1)(|σ|−
1)W + Σj=e

j=2(|σ|−1)Wnj. After M1, what remains is σ′2, . . . , σ
′
e and σ

n2
2 , . . . , σ

ne
e . Their

lengths are bounded by (e − 1)(|σ| − 1) and Σj=e
j=2(|σ| − 1)nj respectively. Since no

transition can decrease more than W tokens at a time, it follows that no place in

Q ∩ {p′ ∈ B | ∆[σn1
1 ](p′) > 0} will ever have negative number of tokens after M1.

Induction step: Let p ∈ Q andM ′ be any intermediate marking betweenMρ andMρ+1.

Suppose M ′(p) < 0. By induction hypothesis, p ∈ Q \⋃j=ρ
j=1{p′ ∈ B | ∆[σj](p

′) > 0}.
We would then get a contradiction to conditions 3 and 5 of De�nition 6.21. This

means for any place p ∈ Q ∩ {p′ ∈ B | ∆[σρ+1](p
′) > 0}, M ′

ρ+1(p) ≥ 0. Hence, Mρ+1(p)

contains enough tokens to ensure that p will never have negative number of tokens in

any intermediate vector after Mρ+1.

Thanks to Lemma 6.22, it is su�cient to check the existence of ∅-neglecting weakly

M0, Q, ω-enabled X-pumping sequences. Any M,Q-enabled X-pumping sequence is a ∅-
neglecting weaklyM,Q, ω-enabled X-pumping sequence by de�nitions, so it is also necessary

to check the existence of ∅-neglecting weakly M0, Q, ω-enabled X-pumping sequences. We

will bound the lengths of such sequences by induction on |Q|.

De�nition 6.23. Let C ⊆ Q ⊆ P and p ∈ B be a bu�er. Let X, Y ⊆ B be sub-

sets of bu�ers with X non-empty and M be a vector. De�ne λp(Q,M,X, Y ) to be the

length of the shortest (Ind(p) ∪ Y )-neglecting weakly M,Q, ω-enabled X-pumping sequence

in Tben(p)∗. If there is no such sequence, de�ne λp(Q,M,X, Y ) to be 0. Let λ1(i) =

max{λp(Q,M,X, Y ) |M a vector, X, Y ⊆ B,X 6= ∅, |Q ∩ Ben(p) ∩ B| = i}. Also de-

�ne λ(Q,M,X, Y ) to be the length of the shortest Y -neglecting weakly M,Q, ω-enabled X-

pumping sequence and 0 if there is no such sequence. Let λ(i) = max{λ(Q,M,X, Y ) |
M a vector, |Q ∩B| = i,X, Y ⊆ B,X 6= ∅}.
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During the induction, we will need to split, rearrange and combine sequences to build

new sequences. The following proposition states that under certain conditions, two pumping

sequences can be combined to create one pumping sequence.

Proposition 6.24. Let Y,X1, X2 ⊆ B be subsets of bu�ers with X1 ∩X2 = ∅, X1, X2 6= ∅
and M a vector. Let C ⊆ Q ⊆ P be a subset of places. Let σ1 be a Y -neglecting weakly

M,Q, ω-enabled X1-pumping sequence, ending at some vector M1. Let M2 be any vector

such that for all p ∈ Q \ (Y ∪ X1), M2(p) = M1(p). Let σ2 be a Y ∪ X1-neglecting weakly

M2, Q, ω-enabled X2-pumping sequence. Then, σ1σ2 is a Y -neglecting weaklyM,Q, ω-enabled

(X1 ∪X2)-pumping sequence.

Proof. According to De�nition 6.21, let the decomposition of σ1 be

M
δ′1−−→M ′

1

δ1−−→M1 −−→ · · · δ′e−−→M ′
e

δe−−→M1

and that of σ2 be

M2 η′1−−→M2′
1

η1−−→M2
1 −−→ · · ·

η′
e′−−→M2′

e′
ηe′−−→M3 .

Now consider the concatenated sequence

M
δ′1−−→M ′

1

δ1−−→M1 −−→ · · · δ′e−−→M ′
e

δe−−→M1 η′1−−→M3′
1

η1−−→M3
1 −−→ · · ·

η′
e′−−→M3′

e′
ηe′−−→M4 .

We will show that the above decomposition satis�es all the conditions of a Y -neglecting

weakly M,Q, ω-enabled (X1 ∪ X2)-pumping sequence. We will prove that each of the 5

conditions of De�nition 6.21 is true for the above decomposition.

1. This follows from the fact that σ1 and σ2 satisfy condition 1 of De�nition 6.21.

2. This follows from the fact that σ1 and σ2 satisfy condition 2 of De�nition 6.21.

3. For some ρ and p ∈ B, if ∆[δρ](p) < 0, then the fact that σ1 satis�es condition 3

of De�nition 6.21 su�ces. Suppose ∆[ηρ](p) < 0. From the fact that σ2 satis�es

condition 3 of De�nition 6.21, we get that either there is a j ≤ ρ−1 with p ∈ {p′ ∈ B |
∆[ηj](p

′) > 0} or p ∈ (Y ∪X1). In both cases, the new sequence will satisfy condition

3 of De�nition 6.21.

4. This condition follows since in this case c = ω.

5. If p ∈ Q \ (Y ∪ X1) and M ′ is any intermediate marking between M1 and M3
1 , then

M ′(p) ≥ 0 from the fact that σ2 satis�es condition 5 of De�nition 6.21 and that

M2(p) = M1(p). If M ′ is an intermediate marking after M3
1 and M ′(p) < 0, then we

will have some j such that ηj occurs before M
′ with p ∈ {p′ ∈ B | ∆[ηj](p

′) > 0} due
to the fact that σ2 satis�es condition 5 of De�nition 6.21.
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Pumping portions of weakly enabled pumping sequences can be repeated without losing

their property.

Lemma 6.25 ([18]). Suppose σ = σ′1σ1σ
′
2 · · ·σ′eσe is a Y -neglecting weakly M,Q, ω-enabled

X-pumping sequence. Then the sequence σ′ = σ′1σ
n1
1 σ1σ

n′1
1 σ

′
2 · · · σ′eσnee σe is also a Y -neglecting

weakly M,Q, ω-enabled X-pumping sequence for any n1, n
′
1, . . . , ne ∈ N (σρ is same as σρ,

except that σρ is not considered a pumping portion while σρ is considered a pumping portion).

Proof. We will prove that the new sequence satis�es all the conditions of De�nition 6.21.

Conditions 1,2 and 3 are satis�ed since the set of pumping portions of the new sequence is

equal to that of the old one and occurs in the same order. Condition 4 is trivially satis�ed

since in this case, c = ω. Suppose for some intermediate vector M ′ and some place p ∈
Q, M ′(p) < 0. Let j be the maximum number such that σj occurs before M

′. Suppose

M
σ′1σ

n1
1 σ1σ

n′1
1 σ′2···σ′jσ

nj
j σj−−−−−−−−−−−−−−→M ′′ and M ′′ η−−→M ′. If p ∈ Y or p ∈ ⋃j

j′=1{p′ ∈ P | ∆[σj′ ](p
′) > 0},

there is nothing else to prove. Otherwise, ∆[σj′ ](p) = 0 for every j′ between 1 and j. This

implies that if M
σ′1σ1σ′2···σ′jσj−−−−−−−−→ M2 and M2

η−−→ M3, then M3(p) < 0, contradicting the fact

that σ satis�es condition 5 of De�nition 6.21.

Now, we will prove a generalization of Lemma 5.17, which states that if there is a weakly

enabled pumping sequence in which the tokens in some subset Q of places always remains

less than some c ∈ N, then there is one such sequence that is not too long. The proof is

essentially an adaptation of the proof of [18, Lemma 4.2].

Lemma 6.26 ([18]). Let X, Y ⊆ B be subsets of bu�ers with X being non-empty. Let

C ⊆ Q ⊆ P be a subset of places, M a vector and c ∈ N a number. Suppose there is a Y -

neglecting weakly M,Q, c-enabled X-pumping sequence σ that decomposes into σ′1σ1 · · · , σ′eσe
as in De�nition 6.21. Then, there is a Y -neglecting weakly M,Q, ω-enabled X-pumping

sequence σ′ of length at most e(Wc2a)poly(m), where poly() is a polynomial whose degree does

not depend on m,W, e, a or c. In addition, if M
σ−−→ M ′, then σ′ will satisfy the property

that M
σ′−−→M ′′ and for all p ∈ Q \ (Y ∪X), M ′′(p) = M ′(p).

Proof. We will prove the result by induction on e. If e = 1, we have just the sequence

M
σ′1−−→M ′

1

σ1−−→M1. If any two intermediate vectors betweenM andM ′
1 is same with respect

to Q \ Y , the subsequence between them can be removed without violating the remaining

sequence's property. Repeating this as many times as needed, we can shorten σ′1 to be of

length at most (c2a)|Q|. Let a (Q \ Y )-loop be any subsequence of σ1 whose e�ect on all

places in Q \ Y is 0 such that no subsequence inside this loop satis�es the same property.

As is done in [86, Lemma 2.2], (Q \ Y )-loops can be carefully removed from σ1 without

a�ecting its X-pumping property such that the total length of shortened σ′1 and σ1 is at

most (Wc2a)poly(m). Since we only removed Q \ Y -loops from σ to obtain the new sequence

σ′, it satis�es the condition that M
σ′−−→M ′′ and for all p ∈ Q \ (Y ∪X), M ′′(p) = M1(p).

For the induction step, suppose σ decomposes as σ′1σ1 · · ·σ′e+1σe+1 and for 1 ≤ ρ ≤ e+ 1,

Xρ = {p ∈ B | ∆[σρ](p) > 0}. Let M
σ′1σ1−−−→ M1. We observe that σ′2σ2 · · ·σ′e+1σe+1
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is a (Y ∪ X1)-neglecting weakly M1, Q, c-enabled (X2 ∪ · · · ∪ Xe+1)-pumping sequence. By

induction hypothesis, there is a (Y ∪X1)-neglecting weaklyM1, Q, ω-enabled (X2∪· · ·∪Xe+1)-

pumping sequence δ of length at most e(Wc2a)poly(m). As is done in the base case, σ′1
and σ1 can be replaced by shorter δ′1 and δ1 respectively such that δ′1δ1 is a Y -neglecting

weakly M,Q, ω-enabled X1-pumping sequence of length at most (Wc2a)poly(m). Since the

change from σ′1σ1 to δ′1δ1 only involves removal of (Q \ Y )-loops, we have M
δ′1δ1−−→ M2 such

that for all p ∈ (Q \ Y ), M2(p) = M1(p). By Proposition 6.24, δ′1δ1δ is a Y -neglecting

weakly M,Q, ω-enabled X-pumping sequence. Its length is at most (e + 1)(Wc2a)poly(m).

If M1

σ′2σ2···σ′e+1σe+1−−−−−−−−−→ Me+1 and M1
δ−−→ M ′

e+1, we have by induction hypothesis that for all

p ∈ Q \ (Y ∪X2 ∪ · · · ∪Xe+1), M
′
e+1(p) = M(e + 1)(p). Combining this with the property

that for all p ∈ (Q \ Y ), M2(p) = M1(p), we conclude that M
δ′1δ1δ−−−→ M ′′

e+1 for some vector

M ′′
e+1 with M

′′
e+1(p) = Me+1(p) for all p ∈ Q \ (Y ∪X).

We are now ready to give the most important recurrence relation for λ(i), extending

Lemma 5.19. Recall that K denotes max{|Ben(p) ∩ B| − 1 | p ∈ B} and b denotes the

number of bu�ers.

Lemma 6.27. For 0 ≤ i < b, λ(i+ 1) ≤ m(W 2λ1(K)2a)poly(m) + λ(i) + λ1(K), where poly()

is a polynomial whose degree is a constant independent of m,W,K, a and i.

Proof. Let C ⊆ Q ⊆ P be a subset of places such that |Q ∩ B| = i + 1. Suppose σ is a Y -

neglecting weakly M,Q, ω-enabled X-pumping sequence for some vector M and X, Y ⊆ B,

X 6= ∅.
Case 1: σ is a Y -neglecting weakly M,Q,Wλ1(K)-enabled X-pumping sequence. By

Lemma 6.26, there is a Y -neglecting weakly M,Q, ω-enabled X-pumping sequence of length

at most m(W 2λ1(K)2a)poly(m).

Case 2: Suppose that according to De�nition 6.21, σ decomposes as

M
σ′1−−→M ′

1

σ1−−→M1 −−→ · · · σ′e−−→M ′
e

σe−−→Me

and there is some ρ ∈ {2, . . . , e} and an intermediate vector M ′ between Mρ−1 and strictly

before Mρ′ (or between M and strictly before M ′
1) such that for some bu�er p′ ∈ Q ∩ B,

M ′(p′) ≥ Wλ1(K). Let M ′ be the �rst such vector. For 1 ≤ j ≤ e, let Xj = {p ∈ B |
∆[σj](p) > 0}. If there is some ρ > 1 such that {p ∈ P | ∆[σρ](p) > 0} ⊆ ⋃ρ−1

j=1{p ∈
P | ∆[σj](p) > 0}, then σρ can be considered as a non-pumping portion and the resulting

sequence will still be a Y -neglecting weakly M,Q, ω-enabled X-pumping sequence. Hence,

without loss of generality, we can assume that e ≤ m.

Suppose Mρ−1

σ1′
ρ−−→M ′ σ2′

ρ−−→M ′
ρ. The sequence σ

′
1σ1 · · · σ′ρ−1σρ−1 is a Y -neglecting weakly

M,Q,Wλ1(K)-enabled (X1 ∪ · · ·Xρ−1)-pumping sequence. By Lemma 6.26, there is a Y -

neglecting weaklyM,Q, ω-enabled (X1∪· · ·Xρ−1)-pumping sequence δ of length at most (ρ−
1)(W 2λ1(K)2a)poly(m) such that M

δ−−→M ′′
ρ−1

σ1′
ρ−−→M ′′ where for all p ∈ (Q \ (Y ∪⋃ρ−1

j=1 Xj)),

M ′′(p) = M ′(p).
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The sequence σ2′
ρ σρσ

′
ρ+1 · · ·σe is a (Y ∪X1∪· · ·∪Xρ−1)-neglecting weaklyM

′, Q, ω-enabled

(Xρ ∪ · · · ∪Xe)-pumping sequence. By de�nition, there is a (Y ∪X1 ∪ · · · ∪Xρ−1)-neglecting

weakly M ′, Q \ {p′}, ω-enabled (Xρ ∪ · · · ∪Xe)-pumping sequence δ′ of length at most λ(ρ).

If the bu�er p′ belonged to Y ∪X1 ∪ · · · ∪Xρ−1, we could have combined δ′ with δσ1′
ρ using

Proposition 6.24 to conclude the required result. However, if p′ ∈ Q \⋃ρ−1
j=1 Xj, then at the

end of δσ1′
ρ , p

′ will only have Wλ1(K) tokens. If the sequence δ′ is appended to this, then

the number of tokens in p′ may become negative in some intermediate vector since δ′ is too

long. To overcome this, we will prove that δ′ can be replaced by another sequence where the

number of transitions capable of decreasing tokens from p′ (i.e., transitions in Tben(p′)) is at

most λ1(K).

Let δ′ decompose as δ′ρδρ · · · δ′eδe according to De�nition 6.21. For every j between ρ

and e, use exchange lemma repeatedly to rearrange δ′j into η′jπ
′
j and δj into ηjπj, where

η′j, ηj ∈ Tind(p′)∗ and π′j, πj ∈ Tben(p′)∗. The resulting sequence η′ρπ
′
ρηρπρ · · · η′eπ′eηeπe is still

a (Y ∪X1 ∪ · · · ∪Xρ−1)-neglecting weakly M ′, Q \ {p′}, ω-enabled (Xρ ∪ · · · ∪Xe)-pumping

sequence: conditions 1,2,3 and 5 of De�nition 6.21 are about the total e�ect of pumping

portions, which have not changed due to the change in positions of transitions. Condition 4

is trivial since in this case, c = ω.

For each j between ρ and e, we de�ne subset of bu�ers Y 1
j and Y 2

j as follows.

• Y 1
ρ = {p ∈ B | ∆[ηρ](p) > 0} \ ⋃ρ−1

l=1 Xl. Intuitively, Y 1
ρ consists of all those bu�ers

whose tokens are pumped up by ηρ except those bu�ers whose tokens have already

been pumped up earlier in δ. Similarly, Y 2
ρ = {p ∈ B | ∆[πρ](p) > 0} \⋃ρ−1

l=1 Xl \ Y 1
ρ .

• Suppose Y 1
l and Y 2

l have already been de�ned for all l between ρ and j. Y 1
j+1 = {p ∈

B | ∆[ηj+1](p) > 0}\⋃ρ−1
l=1 Xl \

⋃j
l=ρ(Y

1
l ∪Y 2

l ). Similarly, Y 2
j+1 = {p ∈ B | ∆[πj+1](p) >

0} \⋃ρ−1
l=1 Xl \

⋃j
l=ρ(Y

1
l ∪ Y 2

l ) \ Y 1
j+1.

Again use the exchange lemma repeatedly to get the sequence η′ρηρ · · · η′eηeπ′ρπρ · · · π′eπe.
We claim that δσ1′

ρ η
′
ρηρ · · · η′eηeπ′ρπρ · · · π′eπe is a Y -neglecting weakly M,Q \ {p′}, ω-enabled

X-pumping sequence. The sequence δ is already a Y -neglecting weakly M,Q \ {p′}, ω-
enabled (X1 ∪ · · · ∪ Xρ−1)-pumping sequence, such that M

δσ1′
ρ−−→ M ′′ with M ′′(p) = M ′(p)

for all p ∈ (Q \ (Y ∪ ⋃ρ−1
j=1 Xj)). Hence by Proposition 6.24, it is su�cient to prove

that η′ρηρ · · · η′eηeπ′ρπρ · · · π′eπe is a (Y ∪ X1 ∪ . . . Xρ−1)-neglecting weakly M ′, Q \ {p′}, ω-
enabled X \ (X1 ∪ . . . Xρ−1)-pumping sequence. By de�nition, X \ (X1 ∪ . . . Xρ−1) ⊆
(
⋃e
j=ρ Y

1
j ∪

⋃e
j=ρ Y

2
j ). Therefore, it is su�cient to prove that η′ρηρ · · · η′eηeπ′ρπρ · · · π′eπe is a

(Y ∪X1 ∪ . . . Xρ−1)-neglecting weakly M
′, Q \ {p′}, ω-enabled (

⋃e
j=ρ Y

1
j ∪

⋃e
j=ρ Y

2
j )-pumping

sequence. We will prove that each condition of De�nition 6.21 is satis�ed.

1. This condition is satis�ed since by de�nition, (
⋃e
j=ρ Y

1
j ∪

⋃e
j=ρ Y

2
j ) ⊆ {p ∈ B |

∆[ηj](p) > 0, ρ ≤ j ≤ e} ∪ {p ∈ B | ∆[πj](p) > 0, ρ ≤ j ≤ e}.

2. We will prove that for each p ∈ C, ∆[ηj](p) = ∆[πj](p) = 0 for each j between ρ and

e. Neither ∆[ηj](p) nor ∆[πj](p) can be greater than 0 since if it were so, ηj or πj can
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be repeated arbitrarily many times to increase the number of tokens in p beyond 1,

violating our assumption that for any initial marking, p remains 1-bounded. Suppose

∆[ηj](p) < 0. In order to maintain ∆[ηjπj](p) = 0, we should have ∆[πρ](p) > 0. This

is not possible as already shown above. We argue similarly if ∆[πj](p) < 0.

3. Suppose for some p ∈ B, ∆[ηj](p) < 0. Since ηj is in Tind(p
′)∗ that can not decrease

tokens in Ben(p′), p has to be in Ind(p′). Since πj is in Tben(p′)∗ that can not increase

tokens in Ind(p′), we have ∆[ηjπj](p) < 0. Since η′ρπ
′
ρηρπρ · · · η′eπ′eηeπe is a (Y ∪X1 ∪

· · ·∪Xρ−1)-neglecting weaklyM
′, Q, ω-enabled (Xρ∪· · ·∪Xe)-pumping sequence, either

p ∈ (Y ∪ X1 ∪ · · · ∪ Xρ−1) or there is some j′ ≤ j − 1 such that ∆[ηj′πj′ ](p) > 0. In

the latter case, ∆[ηj′ ](p) > 0 since πj′ ∈ Tben(p′)∗ can not increase tokens in Ind(p′).

Hence, either p ∈ (Y ∪X1 ∪ · · · ∪Xρ−1) or there is a j
′ ≤ j− 1 such that ∆[ηj′ ](p) > 0.

Suppose for some place p ∈ B, ∆[πj](p) < 0. If ∆[ηjπj](p) ≥ 0, then ∆[ηj](p) > 0 and

we are done since ηj occurs before πj. If ∆[ηjπj](p) < 0, since η′ρπ
′
ρηρπρ · · · η′eπ′eηeπe is

a (Y ∪X1 ∪ · · · ∪Xρ−1)-neglecting weakly M ′, Q, ω-enabled (Xρ ∪ · · · ∪Xe)-pumping

sequence, either p ∈ (Y ∪X1∪· · ·∪Xρ−1) or there is a j
′ ≤ j−1 such that ∆[ηj′πj′ ](p) >

0. Hence, either p ∈ (Y ∪ X1 ∪ · · · ∪ Xρ−1 ∪ Y 1
j ) or there is a j′ ≤ j − 1 such that

∆[ηj′ ](p) > 0 or ∆[πj′ ](p) > 0.

4. This is trivial since in this case, c = ω.

5. Suppose for some intermediate markingM ′′′ and some place p ∈ Q\{p′},M ′′′(p) < 0. If

p ∈ Y ∪X1∪· · ·∪Xρ, then there is nothing else to prove. Otherwise, we haveM
′(p) ≥ 0.

Suppose M ′′′ occurs when walking η′ρηρ · · · η′eηe from M ′. Since η′ρηρ · · · η′eηe ∈ Tind(p′)∗
can not decrease tokens from Ben(p′) and M ′(p) ≥ 0, p ∈ Ind(p′). Suppose ηj is

the last pumping portion occurring before M ′′′ and η is the pre�x of η′j+1ηj+1 that

occurs before M ′′′ so that M ′ η′ρηρ···η′jηjη−−−−−−−→ M ′′′. Let M ′ η′ρπ′ρηρπρ···η′jπ′jηjπjη−−−−−−−−−−−−→ M ′′′
j . If

all intermediate vectors between M ′ and M ′′′
j have non-negative number of tokens

in p, then by exchange lemma, M ′′′(p) ≥ 0, a contradiction. Hence, there is some

intermediate marking between M ′ and M ′′′
j that has negative number of tokens in p.

Since η′ρπ
′
ρηρπρ · · · η′eπ′eηeπe is a Y ∪ X1 ∪ · · ·Xρ−1-neglecting weakly M ′, Q \ {p′}, ω-

enabled (
⋃e
j=ρ Y

1
j ∪

⋃e
j=ρ Y

2
j )-pumping sequence, there is some ρ ≤ j′ ≤ j such that

∆[ηj′πj′ ](p) > 0. Since p ∈ Ind(p′) and πj′ ∈ Tben(p′)∗ can not increase tokens in p, we

get ∆[ηj′ ](p) > 0.

On the other hand, suppose M ′′′ occurs after walking η′ρηρ · · · η′eηe from M ′ (i.e., when

walking π′ρπρ · · · π′eπe). First suppose that p ∈ Ind(p′). If all intermediate vectors occur-

ring when walking η′ρπ
′
ρηρπρ · · · η′eπ′eηeπe from M ′ have non-negative number of tokens

in p, then by exchange lemma, M ′′′(p) ≥ 0, a contradiction. Hence, there is some inter-

mediate marking that has negative number of tokens in p. Since η′ρπ
′
ρηρπρ · · · η′eπ′eηeπe

is a Y ∪X1 ∪ · · ·Xρ−1-neglecting weakly M ′, Q \ {p′}, ω-enabled (
⋃e
j=ρ Y

1
j ∪

⋃e
j=ρ Y

2
j )-

pumping sequence, there is some ρ ≤ j ≤ e such that ∆[ηjπj](p) > 0. Since p ∈ Ind(p′)
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and πj ∈ Tben(p′)∗ can not increase tokens in p, we get ∆[ηj](p) > 0. Next suppose

that p ∈ Ben(p′). Let πj be the last pumping portion occurring before M ′′′ and π

be the pre�x of π′j+1πj+1 occurring before M ′′′ so that M ′ η′ρηρ···η′eηeπ′ρπρ···π′jπjπ−−−−−−−−−−−−−→ M ′′′.

SinceM ′(p)+∆[η′ρηρ · · · η′eηeπ′ρπρ · · · π′jπjπ](p) < 0 and ηj+1η
′
j+2ηj+2 · · · η′eηe ∈ TInd(p′)∗

can not decrease tokens from p ∈ Ben(p′), M ′(p) + ∆[η′ρπ
′
ρηρπρ · · · ηjπjη′j+1π](p) < 0.

Therefore, there is an intermediate vector with negative number of tokens in p that

occurs while walking η′ρπ
′
ρηρπρ · · · ηjπjη′j+1π from M ′. Since η′ρπ

′
ρηρπρ · · · η′eπ′eηeπe is

a Y ∪ X1 ∪ · · ·Xρ−1-neglecting weakly M ′, Q \ {p′}, ω-enabled (
⋃e
j=ρ Y

1
j ∪

⋃e
j=ρ Y

2
j )-

pumping sequence, there is some ρ ≤ j′ ≤ j such that ∆[ηj′πj′ ](p) > 0. Therefore,

either ∆[ηj′ ](p) > 0 or ∆[πj′ ](p) > 0

If for some p ∈ Ind(p′), ∆[πj](p) < 0, then either p ∈ (X1 ∪ · · · ∪ Xρ−1) or there is a

j′ ≤ j − 1 such that ∆[ηj′ ](p) > 0 (it cannot be the case that there is some j′ ≤ j with

∆[πj′ ](p) > 0 since p ∈ Ind(p′) and πj′ ∈ Tben(p′)∗ cannot increase tokens in Ind(p′)). Hence,

π′ρπρ · · · π′eπe is a (Ind(p′) ∪ ⋃ρ−1
j=1 Xj ∪

⋃e
j=ρ Y

1
j )-neglecting weakly M3, Q \ {p′}, ω-enabled

(Y 2
ρ ∪· · ·∪Y 2

e )-pumping sequence in Tben(p′)∗, whereM
δσ1′
ρ η
′
ρηρ···η′eηe−−−−−−−−→M3. By de�nition, there

is a (Ind(p′)∪⋃ρ−1
j=1 Xj ∪

⋃e
j=ρ Y

1
j )-neglecting weakly M

3, Q\{p′}, ω-enabled (Y 2
ρ ∪ · · ·∪Y 2

e )-

pumping sequence π′ of length at most λ1(K) (since at most K bu�ers bene�t from p′).

As mentioned earlier, if p′ ∈ (Y ∪X1∪· · ·Xρ−1), then we can conclude the required result

by observing that δσ1′
ρ δ
′ is a ∅-neglecting weakly M,Q, ω-enabled X-pumping sequence of

the required length. Now, if p′ ∈ (Q \ (Y ∪ ⋃ρ−1
j=1 Xj)) and M

δσ1′
ρ−−→ M ′′, then M ′′(p′) ≥

Wλ1(K). Since η′ρηρ · · · η′eηe ∈ Tind(p
′)∗ can not decrease tokens in p′ and π′ can decrease

at most Wλ1(K) tokens from p′, δσ1′
ρ η
′
ρηρ · · · η′eηeπ′ is a ∅-neglecting weakly M,Q, ω-enabled

X-pumping sequence. The length of δ is at most (ρ − 1)(W 2λ(K)2a)poly(m). The length of

σ1′
ρ is at most (Wλ1(K))|Q|. The length of η′ρηρ · · · η′eηe is at most λ(i). The length of π′ is

at most λ1(K). The result follows.

Case 3: Suppose that according to De�nition 6.21, σ decomposes as

M
σ′1−−→M ′

1

σ1−−→M1 −−→ · · · σ′e−−→M ′
e

σe−−→Me

and there is some ρ ∈ {1, . . . , e} and an intermediate vectorM ′ betweenM ′
ρ andMρ such that

for some bu�er p′ ∈ Q∩B,M ′(p′) ≥ Wλ1(K). Consider the sequence σ′1σ1 · · · σ′ρσρσρ · · · σ′eσe
obtained by repeating σρ and treating only its second occurrence as pumping portion. By

Lemma 6.25, σ′1σ1 · · ·σ′ρσρσρ · · ·σ′eσe is a Y -neglecting weakly M,Q, ω-enabled X-pumping

sequence. Now, we are back in case 2.

Lemma 6.28. λ(0) ≤ m(W2a)poly(m) and for 1 ≤ i ≤ b, λ(i) ≤ im(W 2λ1(K)2a)poly(m) +

iλ1(K) +m(W2a)poly(m).

Proof. For λ(0), we do not care if any bu�er has negative number of tokens, so the problem

is an integer linear programming one where we have to simply check the existence of certain

combination of transitions satisfying some conditions. The result stated in the lemma can
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be obtained by substituting c = 1 in Lemma 6.26. The second result of the lemma is proved

by induction on i. The base case i = 1 is a direct consequence of Lemma 6.27 and the bound

on λ(0).

Induction step: By Lemma 6.27,

λ(i+ 1) ≤ m(W 2λ1(K)2a)poly(m) + λ(i) + λ1(K)

≤ m(W 2λ1(K)2a)poly(m) + im(W 2λ1(K)2a)poly(m)

+ iλ1(K) +m(W2a)poly(m) + λ1(K)

= (i+ 1)m(W 2λ1(K)2a)poly(m) + (i+ 1)λ1(K)

+m(W2a)poly(m)

Next, we will give a recurrence relation for bounding lengths of pumping sequences con-

sisting of transitions in Tben(p) for some place p.

Lemma 6.29. Let X, Y ⊆ B be subset of bu�ers with X being non-empty. Let C ⊆ Q ⊆ P

be a subset of places, M a vector, c ∈ N a number and p ∈ B a bu�er. Suppose there

is a (Ind(p) ∪ Y )-neglecting weakly M,Q, c-enabled X-pumping sequence σ ∈ Tben(p)∗ that

decomposes as σ′1σ1 · · ·σ′eσe as in De�nition 6.21. Then, there is a (Ind(p) ∪ Y )-neglecting

weakly M,Q, ω-enabled X-pumping sequence in Tben(p)∗ of length at most e(Wc2a)poly(K),

where poly() is a polynomial whose degree does not depend on m,K,W, e, a or c.

Proof. We will prove the result by induction on e. If e = 1, we have just the sequence

M
σ′1−−→M ′

1

σ1−−→M1. If any two intermediate vectors betweenM andM ′
1 is same with respect

to Q \ Y \ Ind(p), the subsequence between them can be removed without violating the

remaining sequence's property. Repeating this as many times as needed, we can shorten σ′1
to be of length at most (c2a)K . Let a (Q \ Y \ Ind(p))-loop be any subsequence of σ1 whose

e�ect on all places in (Q \Y \ Ind(p)) is 0 such that no subsequence inside this loop satis�es

the same property. As is done in [86, Lemma 2.2], (Q \ Y \ Ind(p))-loops can be carefully

removed from σ1 without a�ecting its X-pumping property such that the total length of

shortened σ′1 and σ1 is at most (Wc2a)poly(m). Since the sequence we are looking neglects all

places in Ind(p), the system of inequalities to be solved while carefully removing loops above

can neglect rows corresponding to Ind(p). Hence there are at most K rows and hence we

can in fact get a sequence of length at most (Wc2a)poly(K).

For the induction step, suppose σ decomposes as follows.

M
σ′1−−→M ′

1

σ1−−→M1

σ′2−−→M ′
2

σ2−−→M2 −−→ . . .
σ′e+1−−−→M ′

e+1

σe+1−−−→Me+1

For 1 ≤ ρ ≤ e+ 1, let Xρ = {p′ ∈ B | ∆[σρ](p
′) > 0}. We observe that σ′2σ2 · · ·σ′e+1σe+1 is a

(Y ∪ Ind(p)∪X1)-neglecting weakly M1, Q, c-enabled (X2∪ · · ·∪Xe+1)-pumping sequence in

Tben(p)∗. By induction hypothesis, there is a (Y ∪ Ind(p) ∪X1)-neglecting weakly M1, Q, ω-

enabled (X2 ∪ · · · ∪Xe+1)-pumping sequence δ ∈ Tben(p)∗ of length at most e(Wc2a)poly(K).
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As is done in the base case, σ′1 and σ1 can be replaced by shorter δ′1 and δ1 respectively

such that δ′1δ1 is a (Y ∪ Ind(p))-neglecting weakly M,Q, c-enabled X1-pumping sequence in

Tben(p)∗ of length at most (Wc2a)poly(K). Since the change from σ′1σ1 to δ′1δ1 only involves

removal of (Q\Y \ Ind(p))-loops, we have M
δ′1δ1−−→M2 such that for all p ∈ (Q\Y \ Ind(p)),

M2(p) = M1(p). By Proposition 6.24, δ′1δ1δ is a (Y ∪ Ind(p))-neglecting weakly M,Q, ω-

enabled X-pumping sequence in Tben(p)∗. Its length is at most (e+ 1)(Wc2a)poly(K).

Lemma 6.30. λ1(0) ≤ m(W2a)poly(K).

Proof. By Lemma 6.29, putting c = 1.

Lemma 6.31. For 0 ≤ i < K, λ1(i + 1) ≤ m(W 2λ1(i)2
a)poly(K) + λ1(i), where poly() is a

polynomial whose degree is a constant independent of m,K,W or a.

Proof. Let C ⊆ Q ⊆ P be a subset of places such that |Q∩Ben(p)∩B| = i+1 for some bu�er

p. Suppose σ ∈ Tben(p)∗ is a (Ind(p) ∪ Y )-neglecting weakly M,Q, ω-enabled X-pumping

sequence for some vector M and some subsets X, Y ⊆ B.

Case 1: σ is a (Ind(p)∪Y )-neglecting weaklyM,Q,Wλ1(i)-enabledX-pumping sequence.

By Lemma 6.29, there is a (Ind(p)∪Y )-neglecting weaklyM,Q,Wλ1(i)-enabled X-pumping

sequence of length at most m(W 2λ1(i)2
a)poly(K).

Case 2: Suppose that according to De�nition 6.21, σ decomposes as

M
σ′1−−→M ′

1

σ1−−→M1 −−→ · · · σ′e−−→M ′
e

σe−−→Me

and there is some ρ ∈ {2, . . . , e} and an intermediate vector M ′ between Mρ−1 and strictly

before Mρ′ (or between M and strictly before M ′
1) such that for some bu�er p′ ∈ Q ∩

Ben(p) ∩ B, M ′(p′) ≥ Wλ1(i). Let M ′ be the �rst such marking. For 1 ≤ ρ ≤ e, let

Xρ = {p′′ ∈ B | ∆[σρ](p
′′) > 0}.

Suppose Mρ−1

σ1′
ρ−−→ M ′ σ2′

ρ−−→ M ′
ρ. The sequence σ′1σ1 · · · σ′ρ−1σρ−1 is a (Ind(p) ∪ Y )-

neglecting weaklyM,Q,Wλ1(i)-enabled (X1∪· · ·Xρ−1)-pumping sequence. By Lemma 6.29,

there is a (Ind(p)∪Y )-neglecting weakly M,Q, ω-enabled (X1∪· · ·Xρ−1)-pumping sequence

δ of length at most (ρ − 1)(W 2λ1(i,X)2a)poly(K) such that M
δ−−→ M ′′

ρ−1

σ1′
ρ−−→ M ′′ where for

all p′′ ∈ (Q \⋃ρ−1
j=1 Xj \ Ind(p) \ Y ), M ′′(p′′) = M ′(p′′).

The sequence σ2′
ρ σρσ

′
ρ+1 · · ·σe is a (Ind(p)∪Y ∪X1∪· · ·∪Xρ−1)-neglecting weaklyM

′, Q, ω-

enabled (Xρ ∪ · · · ∪Xe)-pumping sequence. By de�nition, there is a (Ind(p)∪Y ∪X1 ∪ · · · ∪
Xρ−1)-neglecting weaklyM

′, Q\{p′}, ω-enabled (Xρ∪· · ·∪Xe)-pumping sequence δ′ of length

at most λ1(ρ). By Proposition 6.24, δσ1′
ρ δ
′ is a Ind(p) ∪ Y -neglecting weakly M,Q \ {p′}, ω-

enabled X-pumping sequence in Tben(p)∗ of length at most m(W 2λ1(i)2
a)poly(K) + λ1(i). If

the bu�er p′ belonged to Y ∪X1 ∪ · · · ∪Xρ−1, δσ
1′
ρ δ
′ is also a Ind(p) ∪ Y -neglecting weakly

M,Q, ω-enabled X-pumping sequence in Tben(p)∗. Otherwise, M ′′(p′) ≥ Wλ1(i) and δ
′ will

remove at most Wλ1(i) tokens from p′. Hence, again δσ1′
ρ δ
′ is a (Ind(p) ∪ Y )-neglecting

weakly M,Q, ω-enabled X-pumping sequence in Tben(p)∗.
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Case 3: Suppose that according to De�nition 6.21, σ decomposes as

M
σ′1−−→M ′

1

σ1−−→M1 −−→ · · · σ′e−−→M ′
e

σe−−→Me

and there is some ρ ∈ {1, . . . , e} and an intermediate vector M ′ between M ′
ρ and Mρ such

that for some bu�er p′ ∈ Q ∩ Ben(p) ∩ B, M ′(p′) ≥ Wλ1(ρ). Consider the sequence

σ′1σ1 · · ·σ′ρσρσρ · · ·σ′eσe obtained by repeating σρ and treating only its second occurrence

as pumping portion. It is routine to verify that σ′1σ1 · · ·σ′ρσρσρ · · ·σ′eσe is a (Ind(p) ∪ Y )-

neglecting weakly M,Q, ω-enabled X-pumping sequence in Tben(p)∗. Now, we are back in

case 2.

Lemma 6.32. For 0 ≤ i ≤ K, λ1(i) ≤ 2m(2mW 22a)(i+1)poly(K)i+1
.

Proof. By induction on i. The base case i = 0 is clear from Lemma 6.30.

Induction step: by Lemma 6.31

λ1(i+ 1) ≤ m(W 2λ1(i)2
a)poly(K) + λ1(i)

≤ 2m(W 2λ1(i)2
a)poly(K)

≤ 2m(W 22m(2mW 22a)(i+1)poly(K)i+1

2a)poly(K)

≤ 2m(2mW 22a)poly(K)(2mW 22a)(i+1)poly(K)i+2

≤ 2m(2mW 22a)(i+2)poly(K)i+2

Theorem 6.33. With the bene�t depth K as parameter, model checking β formulas is in

ParaPspace.

Proof. As mentioned earlier, disjunctions are resolved by non-deterministically choosing a

disjunct so that we are left with checking a conjunction of atomic β formulas. By Lemma 6.19,

it is enough to guess a subset X of bu�ers and check if there is a X-pumping sequence. By

Lemma 6.22, it is su�cient and necessary to verify the existence of a ∅-enabled weakly

M0, P, ω-enabled X-pumping sequence. If there is such a sequence, there is one of length at

most λ(b) (where b is the number of bu�ers), by De�nition 6.23. Let |M0| be the maximum

of the range of the initial marking M0. A non-deterministic Turing machine can check the

existence of such a sequence by guessing and verifying a sequence of length at most λ(b). By

combining the results of Lemma 6.28 and Lemma 6.32 and using m as an upper bound for b,

we conclude that the memory needed by such a machine is O(m log |M0|+ logm+ logW +

(poly(m) +poly(K)K+1)(logm+ logW +a)). An application of Savitch's theorem then gives

us the required ParaPspace algorithm.
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Chapter 7

Graph Structure and Vertex Cover for

Petri Nets

The Expspace-hardness proof in [65] uses Petri nets that simulate deeply nested loops that

manipulate counters with high values. The minimum number of nodes needed to remove all

loops (called feedback vertex set number) is high for this structure. As a step towards studying

parameterized complexity with respect to feedback vertex set number as a parameter, we

obtain a weaker result in this chapter, by considering a stronger parameter called vertex

cover number. Vertex cover number is the minimum number of nodes needed to remove

all edges. We will show ParaPspace algorithms for coverability, boundedness and model

checking the logic of counting properties de�ned in section 6.3.

The main idea behind these results is that if a Petri net has a small vertex cover, rest

of the net can be grouped into a small number of parts, each consisting of places sharing

similar properties. We can then reason about each part as a whole instead of reasoning about

individual places. This kind of reasoning can again be used for a �ner analysis of Racko�'s

recurrence relations [82]. Similar strategy has been used to design e�cient algorithms for

graph problems that are hard with treewidth as parameter, or whose parameterized com-

plexity with respect to treewidth is not known [32].

One-counter automata are closely related to Petri nets. Precise complexity of reachability

and many other problems of this model have been recently obtained in [43, 39]. We have

adapted some of the techniques used in [43, 39], in particular the use of [60, Lemma 42].

7.1 Vertex Cover for Petri Nets

As is done in Chapter 4, we consider the �ow graph G(N ) of a Petri net N and look at

the smallest vertex cover. Figure 7.1 shows an example of a Petri net with vertex cover

{p1, . . . , p4}.
Suppose VC is a vertex cover for some graph G. If v1, v2 /∈ VC are two vertices not

in VC that have the same set of neighbours (neighbours of a vertex v are vertices that

have an edge connecting them to v), v1 and v2 have similar properties. This fact is used to
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Figure 7.1: A Petri net with vertex cover {p1, . . . , p4}

obtain Fpt algorithms for many hard problems, e.g., see [32]. The same phenomenon leads

to ParaPspace algorithms for Petri net coverability and boundedness. In the rest of this

section, we will de�ne the formalisms needed to prove these results.

De�nition 7.1. Let the places of a Petri net N be p1, p2, . . . , pm. Suppose there is a vertex

cover VC consisting of places p1, . . . , pk. We say that two transitions t1 and t2 have the same

VC -neighbourhood if Pre(pi, t1) = Pre(pi, t2) and Post(pi, t1) = Post(pi, t2) for all i between

1 and k.

In Fig. 7.1, transitions t1 and t5 have the same VC -neighbourhood. Intuitively, two

transitions with the same VC -neighbourhood behave similarly as far as places in the vertex

cover are concerned. Since there can be 2k arcs between a transition and places in VC

and each arc can have weight between 0 and W , there can be at most (W + 1)2k di�erent

VC -neighbourhoods of transitions.

Let p be a place not in the vertex cover VC . Suppose there are l ≤ (W + 1)2k VC -

neighbourhoods of transitions. Place p can have one incoming arc from or one outgoing arc

to each transition of the net (it cannot have both an incoming and an outgoing arc since in

that case, p would have a self loop and would be in VC ). If p′ is another place not in VC ,

then no transition can have arcs to both p and p′, since otherwise, there would haven been

an edge between p and p′ in G(N ) and one of the places p and p′ would have been in VC .

Hence, places not in VC cannot interact with each other directly. Places not in VC can only

interact with places in VC through transitions and there are at most l VC -neighbourhoods

of transitions. Suppose p and p′ have the following property: for every transition t that has

an arc to/from p with weight w, there is a transition t′ of the same VC -neighbourhood as

t that has an arc to/from p′ with weight w. Then, p and p′ interact with VC in the same

way in the following sense: whenever a transition involving p �res, an �equivalent� transition

can be �red that involves p′ instead of p, provided there are enough tokens in p′. In Fig. 7.1,

places p5 and p6 satisfy the property stated above. Transition t5 can be �red instead of t1,

t6 can be �red instead of t2 etc.
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De�nition 7.2. Suppose N is a Petri net with vertex cover VC and l VC -neighbourhoods

of transitions. Let p /∈ VC be a place not in the vertex cover. The VC -interface I[p] of p

is de�ned as the function I[p] : {1, . . . , l} → 2{−W,...,W}\{0}, where for every j between 1 and

l and every w 6= 0 between −W and W , there is a transition tj of VC -neighbourhood j such

that w = −Pre(p, tj) + Post(p, tj) i� w ∈ I[p](j). We denote VC -interfaces of places by I,

I ′ etc.

In the above de�nition, since p /∈ VC , at most one among Pre(p, tj) and Post(p, tj) will

be non-zero.

The fact that transitions can be exchanged between two places of the same VC -interface

can be used to obtain better bounds on the length of �ring sequences. For example, suppose

a �ring sequence σ is �red in the Petri net of Fig. 7.1, with an initial marking that has no

tokens in p5 and p6. Let c be the maximum number of tokens in any place in any intermediate

marking during the �ring of σ. Since there are 6 places and each intermediate marking has

at most c tokens in every place, the number of possible distinct intermediate markings is

(c + 1)6. This is also an upper bound on the length of σ (if two intermediate markings are

equal, then the subsequence between those two markings can be removed without a�ecting

the �nal marking reached). Now, suppose that in the �nal marking reached, p5 and p6 do

not have any tokens and we replace all occurrences of t5, t6, t7 and t8 in σ by t1, t2, t3 and

t4 respectively. After this replacement, the �nal marking reached will be same as the one

reached after �ring σ. Number of tokens in p5 will be at most 2c in any intermediate marking

and there will be no tokens at all in p6. Variation in the number of tokens in p1, p2, p3 and p4

do not change (since as far as these places are concerned, transitions t5, t6, t7 and t8 behave

in the same way as do t1, t2, t3 and t4 respectively). Hence, in any intermediate marking,

each of the places p1, p2, p3 and p4 will still have at most c tokens. When we exchange the

transitions as mentioned above, there might be some intermediate markings that are same,

so that we can get a shorter �ring sequence achieving the same e�ect as the original one.

These duplicate markings signify the �redundancy� that was present in the original �ring

sequence σ, but was not apparent due to the distribution of tokens among places. After

removing such redundancies, the new upper bound on the length of the �ring sequence is

(2c+ 1).(c+ 1)4, which is asymptotically smaller than the previous bound (c+ 1)6. A careful

observation of the e�ect of this phenomenon on Racko�'s induction strategy in [82] leads us

to the main results of this chapter.

De�nition 7.3. Let p1 and p2 be two places of the same VC -interface. Let σ be a �ring

sequence. A sequence of transitions σ′ = t1 . . . tr is said to be a sub-word of σ if there

are positions i1 < · · · < ir in σ such that for each j between 1 and r, ij
th transition of σ

is tj. Suppose σ′ is a sub-word of σ made up of transitions that have an arc to/from p1.

Transferring σ′ from p1 to p2 means replacing every transition t of σ′ (which has an arc

to/from p1 with some weight w) with another transition t′ of the same VC -neighbourhood as

t which has an arc to/from p2 with weight w. The sub-word σ′ is said to be safe for transfer

from p1 if for every pre�x σ′′ of σ′, the e�ect of σ′′ on p1 (i.e., the change in the number of
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tokens in p1 as a result of �ring all transitions in σ′′) is greater than or equal to 0.

Intuitively, if some sub-word σ′ is safe for transfer from p1, it never removes more tokens

from p1 than it has already added to p1. So if we transfer σ
′ from p1 to p2, the new transitions

will always add tokens to p2 before removing them from p2, so there is no chance of number

of tokens in p2 becoming negative due to the transfer. However, the number of tokens in

p1 may become negative due to some old transitions remaining back in the �untransferred�

portion of the original �ring sequence σ. The following lemma says that if some intermediate

marking has very high number of tokens in some place, then a suitable sub-word can be

safely transfered without a�ecting the �nal marking reached or introducing negative number

of tokens in any place, but reducing the maximum number of tokens accumulated in any

intermediate marking. The proof is a simple consequence of [60, Lemma 42], which is about

one-counter automata. An one-counter automaton is an automaton with a counter that can

store natural numbers. Apart from changing its state, the automaton can increment the

counter, test it for zero and decrement it when not zero. It is proven in [60, Lemma 42] that

if a one-counter automaton can reach from one of its con�guration to another, it can do so

without increasing the intermediate values of the counter by large numbers.

Lemma 7.4 (Truncation lemma, [60]). Let p1 and p2 be places of the same VC -interface.

Let c ∈ N be any number and σ be a �ring sequence. Suppose during the �ring of σ, there are

intermediate markings M1 and M3 such that M1(p1) = c and M3(p1) ≤ c. Suppose M2 is an

intermediate marking between M1 and M3 such that M2(p1) ≥ c+W 2 +W 3 is the maximum

number of tokens in p1 at any intermediate marking between M1 and M3. Then, there is a

sub-word σ′ of σ that is safe for transfer from p1 to p2 such that

1. The total e�ect of σ′ on p1 is 0.

2. After transferring σ′ to p2, the number of tokens in p1 at M2 is strictly less than the

number of tokens in p1 at M2 before the transfer.

3. No intermediate marking will have negative number of tokens in p1 after the transfer.

Proof. Let M ′
1 be the last intermediate marking before M2 such that M ′

1(p1) ≤ c+W 2 (see

Fig. 7.2). Let M ′
3 be the �rst intermediate marking after M2 such that M ′

3(p1) ≤ c + W 2.

We will call the subsequence between M ′
1 and M2 as ascent and the subsequence between

M2 and M
′
3 as descent. During ascent, the number of tokens in p1 increases by at least W 3.

Since each transition can add at most W tokens to p1, there are at least W 2 transitions

adding tokens to p1 during ascent. There must be at least one number 1 ≤ w1 ≤ W such

that among theseW 2 transitions, there are at leastW transitions that add exactly w1 tokens

to p1. Similarly, there is a number 1 ≤ w2 ≤ W such that at least W transitions remove

exactly w2 tokens from p1 during descent. The sub-word σ′ we need consists of w2 �adding�

transitions from ascent and w1 �removing� transitions from descent. The total e�ect of σ′

on p1 is 0 and it is safe for transfer from p1 to p2 by construction. Since the �rst part of

σ′ removes w1w2 > 0 tokens from p1, the number of tokens M2(p1) after transferring σ′
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Figure 7.2: Illustration for proof of Lemma 7.4

to p2 is strictly less than the number of tokens before the transfer. Before transfer, every

intermediate marking between M ′
1 and M

′
3 had at least c+W 2 tokens. Since the transfer of

σ′ causes w1w2 ≤ W 2 fewer tokens, all intermediate markings between M ′
1 and M

′
3 will have

at least c ≥ 0 tokens in p1 after transfer. Intermediate markings before M ′
1 and after M ′

3 do

not change.

There can be at most (22W )l ≤ 22W (W+1)2k VC -interfaces of places that are not in the

vertex cover VC , if the number of places in the vertex cover is k. For each VC -interface I,

we designate one of the places having I as its VC -interface as special, and use pI to denote

it. We will call S = VC ∪{pI | I is the VC -interface of a place not in VC} the set of special
places. We will denote the set P \ S using I and call the places in I independent places.

We will use k′ for the cardinality of S and note that k′ ≤ k + 22W (W+1)2k . If k and W are

parameters, then k′ is a function of the parameters only. Hence, in the rest of this chapter,

we will treat k′ as the parameter.

7.2 ParaPspace Algorithm for the Coverability Problem

In this section, we will show that for a Petri net N with a vertex cover of size k and maxi-

mum arc weight W , the coverability problem can be solved in space O(ef (k,W )poly(|N | +
log |Mcov|)). Here, ef is some computable function exponential in k and W while poly(|N |+
log |Mcov|) is some polynomial in the size of the net and the marking to be covered.

Recall vectors and Q-runs from section 5.4. For a transition t and vectorsM,M ′ : P → Z,
we writeM

t−−→
Q

M ′ ifM ′(p) = M(p)−Pre(p, t)+Post(p, t) for all p ∈ P andM(q),M ′(q) ≥ 0

for all q ∈ Q. The following is a re�nement of De�nition 5.14 to Petri nets with vertex cover

VC .

De�nition 7.5. Let Q ⊆ P be some subset of places such that I ⊆ Q. For a vector M :

P → Z, let lencov(Q,M,Mcov) be the length of the shortest Q-covering run from M . De�ne

lencov(Q,M,Mcov) to be 0 if there is no such run. De�ne `(i) = max{lencov(Q,M,Mcov) |
I ⊆ Q ⊆ P, |Q \ I| = i,M : P → Z}.
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Let R be the maximum of the range of Mcov, the marking to be covered. We will denote

R+W +W 2 +W 3 by R′. Recall that m is the number of places in the given Petri net. The

following lemmas give an upper bound on `(k′), extending Lemma 5.15.

Lemma 7.6. `(0) ≤ mR.

Proof. `(0) is the length of the shortest I-covering run. Recall that all places in I are

independent of each other, so if a transition has an arc to one of the places in I, it does not

have arcs to any other place in I. Since an I-covering run does not care about places in S,

it only has to worry about adding tokens to places in I. If a transition adds a token to some

place p in I, it does not remove tokens from any other place in I. Hence, this transition can

be repeated R times to add at least R tokens to the place p, which is all that is needed for

p. Arguing similarly for other places in I, a total of mR transitions are enough to add all

required tokens to all places in I, since there are less than m places in I.

Lemma 7.7. `(i+ 1) ≤ R′m(W`(i) +R)i+1 + `(i).

Proof. Suppose I ⊆ Q ⊆ P and |Q \ I| = i + 1. Suppose there is a sequence σ that is

Q-covering from some vector M0. Let p be any place in I of some VC -interface I. Let M

be the �rst intermediate vector such that M(p) ≥ Mcov(p). We have M(p) ≤ R + W . We

distinguish two cases:

1. For all intermediate vectors M ′ after M , M ′(p) ≥ M(p). This means the number of

tokens in p never goes belowM(p) after the vectorM . Let σ′ be the sub-word of σ that

consists of all transition occurrences after M that has an arc to/from p. The sub-word

σ′ is safe for transfer from p to pI . We transfer σ′ from p to pI and note that in the

�nal vector reached after the transfer, p still hasM(p) tokens, which is enough to cover

Mcov.

2. Let M ′ be the last intermediate vector such that M ′(p) < M(p). We invoke the

truncation lemma by setting c = M(p) ≤ R+W , M1 = M andM3 = M ′. We can then

transfer the sub-word σ′ identi�ed by the truncation lemma to pI to reduce the number

of tokens in p in some intermediate vectors betweenM andM ′. We repeat this process

until there are no more than R′ tokens in p in any intermediate vector between M

and M ′. Let M ′′ be the �rst intermediate vector after M ′ such that M ′′(p) ≥Mcov(p).

Again,M ′′(p) ≤ R+W . If no intermediate vectorM ′′
3 afterM ′′ hasM ′′

3 (p) < M ′′(p), we

can transfer all transitions with an arc to/from p occurring after M ′′ to pI . Otherwise,

we can invoke truncation lemma again to ensure that p has at most R′ tokens in any

intermediate vector after M ′′.

Repeating the above case analysis for every independent place p ∈ I, we get a �ring sequence
π that is Q-covering from M0 such that in all intermediate vectors, every independent place

p has at most R′ tokens. If this sequence happens to be (W`(i) + R)-bounded for Q, then

R′m(W`(i)+R)i+1 is an upper bound on its length (since all independent places have at most
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R′ tokens and the i+ 1 places in Q \ I have at most (W`(i) +R) tokens in all intermediate

vectors) and we are done.

Otherwise, suppose there is some place q ∈ Q \ I and some intermediate vector M such

that M(q) ≥ W`(i) +R. Let M be the �rst such vector and call the pre�x of π up to M as

π1 and the rest of π as π2. The length of π1 is at most R′m(W`(i) + R)i+1. The sequence

π2 is a (Q \ {q})-covering sequence from M . By de�nition, there is such a sequence π′2 of

length at most `(i). The sequence π1π
′
2 is a (Q \ {q})-covering sequence from M0. Since

M(q) ≥ W`(i) +R and π′2 removes at most W`(i) tokens from q, π1π
′
2 is in fact a Q-covering

sequence from M0. Its length is bounded by R′m(W`(i) +R)i+1 + `(i).

The following lemma gives an upper bound on `(i) using the recurrence relation obtained

above.

Lemma 7.8. `(i) ≤ (2mWRR′)m(i+1)!.

Proof. By induction on i. For i = 0, `(0) ≤ mR ≤ (2mWRR′)m1!.

i = 1:

`(1) ≤ R′m(W`(0) +R) + `(0)

≤ R′m(WmR +R) +mR

≤ (WRR′)mmR +mR

≤ (mWRR′)2m +mR

≤ 2(mWRR′)2m

≤ (2mWRR′)m2!

i ≥ 2:

`(i+ 1) ≤ R′m(W`(i) +R)i+1 + `(i)

≤ R′m(W (2mWRR′)m(i+1)! +R)i+1 + (2mWRR′)m(i+1)!

≤ (WRR′)m(i+1)(2mWRR′)m(i+1)!(i+1) + (2mWRR′)m(i+1)!

≤ (2mWRR′)m(i+1)(2mWRR′)m(i+1)!(i+1) + (2mWRR′)m(i+1)!

≤ (2mWRR′)m(i+1)((i+1)!+1) + (2mWRR′)m(i+1)!

≤ 2(2mWRR′)m(i+1)((i+1)!+1)

≤ (2mWRR′)m(i+1)((i+1)!+2)

≤ (2mWRR′)m(i+2)!
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The last step follows since

i ≥ 2⇒ i! ≥ 2

⇒ (i+ 1)i! ≥ 2(i+ 1)

⇒ (i+ 1)! ≥ 2(i+ 1)

⇒ (i+ 1)(i+ 1)! + (i+ 1)! ≥ (i+ 1)(i+ 1)! + 2(i+ 1)

⇒ (i+ 2)(i+ 1)! ≥ (i+ 1)((i+ 1)! + 2)

⇒ (i+ 2)! ≥ (i+ 1)((i+ 1)! + 2)

Theorem 7.9. With the vertex cover number k and maximum arc weight W as parameters,

the Petri net coverability problem can be solved in ParaPspace.

Proof. From the Lemma 7.8, we get `(k′) ≤ (2mWRR′)m(k′+1)!. To guess and verify a

covering sequence of length at most `(k′), a non-deterministic Turing machine needs to

maintain a counter and intermediate markings, which can be done using memory size

O(m(k′ + 1)!(m log |M0| + logm + logW + logR + logR′)). An application of Savitch's

theorem then gives us the ParaPspace algorithm.

7.3 Model Checking Logic of Counting Properties

The ParaPspace algorithm of the previous section can be extended to the boundedness

problem. We however consider the more general problem of model checking the logic of Petri

net counting properties de�ned in section 6.3, which can express boundedness, coverability

and some extensions. Following is the main theorem of this section.

Theorem 7.10. There is a ParaPspace algorithm that checks whether a given net with an

initial marking satis�es a given formula φ, if the vertex cover number k and the maximum

arc weight W of the net are treated as parameters and the nesting depth D of EF modality

in the formula is treated as a constant.

The details of model checking κ formulas is given in Sub-section 7.3.1. Sub-section 7.3.2

gives the details of a ParaPspace algorithm for model checking β formulas. The main ideas

and de�nitions used are same as the ones in the previous chapter, but are repeated here since

there are subtle di�erences due to partitioning the set of places into component places and

bu�ers in the last chapter.

7.3.1 Nested Coverability Properties

As in section 6.4.1, we consider κ formulas of the form γ ∧ EF(κ1) ∧ · · · ∧ EF(κr), with γ

being a conjunction of τ ≥ c formulas. The tree generated by such a formula with set of

nodes Γ and ratio(i) are as de�ned in the beginning of section 6.4.1. Recalling De�nition 7.5,
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let `′(Mcov) = max{lencov(P,M,Mcov) | M : P → Z}. The de�nition of bound function f

and guess function h are the same as in De�nition 6.13.

To derive an upper bound for f(i) to use in a nondeterministic algorithm, let R =

max{ratio(τ ≥ c) | τ ≥ c is a subformula of κ}, R′ = R + W + W 2 + W 3 and W ′ =

max{W, 2}. The following lemma uses the result from Lemma 6.15 for the upper bound on

f(D − i− 1, p).

Lemma 7.11. Let q(i) = (2m(k′ + 1)!)i. Then `′(f(D − 1)) ≤ (2mW ′R′)q(1) and also

`′(f(D − i)) ≤∏D−1
j=D−i ((D − j + 1)2mW ′8R′)q(i+j+1−D)

.

Proof. `′(f(D − 1)) ≤ (2mW ′R′)q(1) is by Lemma 7.8. Next result is by induction on i.

Base case: i = 2. Since f(D− 2, p) ≤ 3R′W`′(f(D− 1)) and `′(f(D− 2)) ≤ (2mWr′)q(1)

where r′ = max{f(D − 2, p) | p ∈ P}+W +W 2 +W 3, we get

`′(f(D − 2)) ≤ (2mW (3R′W`′(f(D − 1)) +W +W 2 +W 3))q(1)

≤ (3 ∗ 2mW ′8R′)q(1)(2mW ′R′)q(2)

Induction step: Since f(D − i− 1, p) ≤ (i+ 2)R′W ′`′(f(D − i)), we have

`′(f(D − i− 1)) ≤ (2mW ((i+ 2)R′W ′`′(f(D − i)) +W +W 2 +W 3))q(1)

≤
(

(i+ 2)2mW ′8R′
D−1∏
j=D−i

((D − j + 1)2mW ′8R′)q(i+j+1−D)

)q(1)

=
(
(i+ 2)2mW ′8R′

)q(1)
D−1∏
j=D−i

(
(D − j + 1)2mW ′8R′

)q(i+1+j+1−D)

=
D−1∏

j=D−i−1

(
(D − j + 1)2mW ′8R′

)q(i+1+j+1−D)

Theorem 7.12. There is a ParaPspace algorithm that checks whether a given Petri net

satis�es a given κ formula, if the vertex cover number of the Petri net k and the maximum arc

weight W are treated as parameters and the nesting depth D of EF modality in the formula

is treated as a constant.

Proof. First reduce φ to the form γ ∧ EF(κ1) ∧ · · · ∧ EF(κr), with γ being a conjunction

of τ ≥ c formulas by nondeterministically choosing disjuncts from subformulas of φ. By

Lemma 6.14, it is enough for a nondeterministic algorithm to guess sequences σαj, αj ∈ Γ

of lengths at most `′(f(|αj| − 1)) and verify that they satisfy the formula. Using bounds

given by Lemma 7.11 and an argument similar to the one in the proof of Theorem 7.9, it can

be shown that the space used is exponential in k′ and polynomial in the size of the net and

numeric constants in the formula. This gives the ParaPspace algorithm.
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The space requirement of the above algorithm will have terms like m2D and hence it will

not be ParaPspace if D is treated as a parameter instead of a constant.

7.3.2 Boundedness Properties

In order to check the truth of β formulas, we adapt the concept of disjointness sequence

introduced in [18] to our notation, as done in the previous chapter.

De�nition 7.13 ([18]). Let X ⊆ P be a non-empty subset of places. If σ = t1 · · · tr is a

sequence of transitions and p is a place, ∆[σ](p) denotes the total e�ect of σ on p: ∆[σ](p) =∑r
i=1 Post(p, ti)− Pre(p, ti). A �ring sequence σ enabled at an initial marking M0 : P → N

is said to be a X-pumping sequence if σ can be decomposed as σ′1σ1σ
′
2σ2 · · · σ′eσe such that

1. For each p ∈ P , ∆[σ1](p) ≥ 0 and for each ρ between 2 and e, ∆[σρ](p) < 0 implies

there is a j ≤ ρ− 1 such that ∆[σj](p) > 0 and

2. X ⊆ ⋃e
ρ=1{p ∈ P | ∆[σρ](p) > 0}.

The subsequences σ1, . . . , σe are called pumping portions of the pumping sequence. They are

underlined to distinguish them from non-pumping portions of the sequence.

As shown in Lemma 6.19 in the previous chapter, checking N ,M0 |= {τ1, . . . , τr} = ω is

equivalent to checking the existence of a X-pumping sequence for some X ⊆ P such that for

every j ∈ {1, · · · , r}, there is a pj ∈ X with Lτj(pj) ≥ 1.

Lemma 7.14 ([18]). N ,M0 |= {τ1, . . . , τr} = ω i� there exists a X-pumping sequence for

some X ⊆ P such that for every j ∈ {1, · · · , r}, there is a pj ∈ X with Lτj(pj) ≥ 1.

Proof. Same as proof of Lemma 6.19.

Model checking β formulas thus reduces to detecting the presence of certain X-pumping

sequences. The following de�nition adapted from [18] is a generalization of Q-enabled se-

quences.

De�nition 7.15 ([18]). Let I ⊆ Q ⊆ P be a subset of places that contains all independent

places, Y ⊆ P a possibly empty subset of places and X ⊆ P a non-empty subset of places. Let

M : P → Z and c ∈ N∪{ω}. A sequence of transitions is said to be a Y -neglecting weakly

M,Q, c-enabled X-pumping sequence if it can be decomposed as σ′1σ1σ
′
2σ2 · · ·σ′eσe such

that

1. For each 1 ≤ ρ ≤ e, for each p ∈ P , ∆[σρ](p) < 0 implies (there is a 1 ≤ j ≤ ρ − 1

such that ∆[σj](p) > 0 or p ∈ Y ).

2. X ⊆ ⋃e
ρ=1{p ∈ P | ∆[σρ(p)] > 0} \ Y .

3. For any intermediate vector M ′ and any place p ∈ Q \ I, M ′(Q) < c.
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4. For any intermediate vector M ′ and any place p ∈ Q, M ′(p) < 0 implies (there is a σj

occurring before M ′ such that ∆[σj](p) > 0 or p ∈ Y ).

Intuitively, a Y -neglecting weakly M,Q, c-enabled X-pumping sequence maintains the

number of tokens between 0 and c in all places in Q while in other places, it can become

less than 0 or more than c. If a place p ∈ Q has already been pumped up by some pumping

portion σj, p may have negative number of tokens in intermediate vectors that occur after

σj. The following lemma implies that for detecting the presence of pumping sequences, it is

enough to detect certain weakly enabled pumping sequences.

Lemma 7.16 ([18]). Let X ⊆ P be a non-empty subset of places and M0 : P → N be the

initial marking. Suppose that σ = σ′1σ1σ
′
2σ2 · · ·σ′eσe is a ∅-neglecting weakly M0, P, ω-enabled

X-pumping sequence. Then, there are n1, n2, . . . , ne ∈ N such that σ′1σ1
n1σ′2σ2

n2 · · ·σ′eσene is
a X-pumping sequence enabled at M0.

Proof. We de�ne ne, . . . , n1 in that order as follows:

• ne = 1.

• Suppose 1 ≤ ρ < e and nρ+1, . . . , ne have already been de�ned. De�ne nρ to be

(e− ρ)(|σ| − 1)W +
∑e

j=ρ+1(|σ| − 1)Wnj.

We will prove that σ′ = σ′1σ1
n1σ′2σ2

n2 · · ·σ′eσene satis�es all conditions of De�nition 7.13 and

that it is enabled at M0. Condition 2 follows by the fact that σ satis�es condition 2 of

De�nition 7.15 and that Y = ∅. Condition 1 of De�nition 7.13 follows by the fact that σ

satis�es condition 1 of De�nition 7.15 and that Y = ∅. For proving that σ′ is enabled at

M0, we will prove the following claim by induction on ρ: for any intermediate marking M ′

occurring when �ring σ′1σ1
n1 · · ·σ′ρσρnρ from M0 and any p ∈ P , M ′(p) ≥ 0; and for any

intermediate marking M ′′ occurring while �ring σ′ from M0 and any p′ ∈ ⋃ρ
j=1{p ∈ P |

∆[σj](p) > 0}, M ′′(p) ≥ 0.

Base case ρ = 1: Since Y = ∅ and σ satis�es condition 4 of De�nition 7.15, for any

intermediate marking M ′ occurring when �ring σ′1σ1 from M0 and any place p ∈ P , M ′(p) ≥
0. Since σ satis�es condition 1 of De�nition 7.15 and Y = ∅, ∆[σ1](p) ≥ 0 for any place p ∈ P .
Hence, for any intermediate markingM ′ occurring when �ring σ′1σ1

n1 fromM0 and any place

p ∈ P , M ′(p) ≥ 0. Since |σ′2 · · ·σ′e| ≤ (e − 1)(|σ| − 1) and |σ2
n2 · · ·σene| ≤

∑e
j=2(|σ| − 1)nj,

σ′2σ2
n2 · · · σ′eσene can decrease at most (e − 1)(|σ| − 1)W +

∑e
j=2(|σ| − 1)Wnj tokens from

any place. If M0

σ1σ1
n1

====⇒ M1 and ∆[σ1](p) > 0 for any place p, then M1(p) ≥ (e − 1)(|σ| −
1)W +

∑e
j=2(|σ| − 1)Wnj. Hence, the second part of the claim follows.

Induction step: Assume that M0

σ′1σ1
n1 ···σ′ρσρnρ

==========⇒ Mρ. Suppose for some place p′ and

some intermediate marking M ′ that occurs while �ring σ′ρ+1σρ+1 from Mρ, M
′(p) < 0. By

induction hypothesis, p′ /∈ ⋃ρ
j=1{p ∈ P | ∆[σj](p) > 0}, which contradicts the fact that

σ satis�es conditions 1 and 4 of De�nition 7.15. Also from condition 1 of De�nition 7.15,

∆[σρ+1](p) ≥ 0 for any p /∈ ⋃ρ
j=1{p ∈ P | ∆[σj](p) > 0}. Hence, for all p ∈ P and any
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intermediate markingM ′ that occurs while �ring σ′ρ+1σρ+1
nρ+1 fromMρ,M

′(p) ≥ 0. Suppose

ρ+2 ≤ e. Since |σ′ρ+2 · · ·σ′e| ≤ (e−ρ−1)(|σ|−1) and |σρ+2
nρ+2 · · · σene| ≤

∑e
j=ρ+2(|σ|−1)nj,

σ′ρ+2σρ+2
nρ+2 · · · σ′eσene can decrease at most (e − ρ − 1)(|σ| − 1)W +

∑e
j=ρ+2(|σ| − 1)Wnj

tokens from any place. If Mρ

σ′ρ+1σρ+1
nρ+1

========⇒ Mρ+1 and ∆[σρ+1](p) > 0 for any place p, then

Mρ+1(p) ≥ (e − ρ − 1)(|σ| − 1)W +
∑e

j=ρ+2(|σ| − 1)Wnj. Hence, second part of the claim

follows.

As is done in section 7.2, we will bound the length of weakly enabled pumping sequences

by induction on |Q|. The rest of this sub-section is more technical than section 7.2. Here,

we try to give an intuitive explanation of the purpose of each lemma in the rest of this

section. If we want to check for unboundedness in a speci�c set of places, the �pumping

up� of tokens may happen in several stages, captured by De�nition 7.13. See [18, Sub-

section 3.1] for examples of scenarios where several stages are needed. Lemma 7.17 and

Lemma 7.18 provide some basic tools to manipulate pumping sequences, such as repeating

certain portions and combining two sequences. In Lemma 7.21, we show how loops can be

carefully removed (using linear algebraic techniques) separately from the di�erent stages of a

pumping sequence. Lemma 7.22 and Lemma 7.23 give a recurrence relation for the length of

a shortest pumping sequence, using the tools we developed earlier for manipulating pumping

sequences. Lemma 7.24 gives an upper bound for the recurrence relation. Lemma 7.25

shows how to use the truncation lemma so that the upper bound obtained in Lemma 7.24 is

asymptotically smaller.

Lemma 7.17 ([18]). Suppose σ = σ′1σ1σ
′
2 · · ·σ′eσe is a Y -neglecting weakly M,Q, ω-enabled

X-pumping sequence. Then the sequence σ′ = σ′1σ
n1
1 σ1σ

n′1
1 σ

′
2 · · · σ′eσnee σe is also a Y -neglecting

weakly M,Q, ω-enabled X-pumping sequence for any n1, n
′
1, . . . , ne ∈ N (σρ is same as σρ,

except that σρ is not considered a pumping portion while σρ is considered a pumping portion).

Proof. We will prove that the new sequence satis�es all the conditions of De�nition 7.15.

Conditions 1 and 2 are satis�ed since the set of pumping portions of the new sequence is

equal to that of the old one and occurs in the same order. Condition 3 is trivially satis�ed

since in this case, c = ω. Suppose for some intermediate vector M ′ and some place p ∈
Q, M ′(p) < 0. Let j be the maximum number such that σj occurs before M

′. Suppose

M
σ′1σ

n1
1 σ1σ

n′1
1 σ′2···σ′jσ

nj
j σj−−−−−−−−−−−−−−→M ′′ and M ′′ η−−→M ′. If p ∈ Y or p ∈ ⋃j

j′=1{p′ ∈ P | ∆[σj′ ](p
′) > 0},

there is nothing else to prove. Otherwise, ∆[σj′ ](p) = 0 for every j′ between 1 and j. This

implies that if M
σ′1σ1σ′2···σ′jσj−−−−−−−−→ M2 and M2

η−−→ M3, then M3(p) < 0, contradicting the fact

that σ satis�es condition 4 of De�nition 7.15.

Lemma 7.18. Suppose σ = σ′1σ1 · · ·σ′eσe is a Y -neglecting weakly M,Q, ω-enabled X1-

pumping sequence and δ = δ′1δ1 · · · δ′e′δe′ is a Y1-neglecting weakly M1, Q, ω-enabled X2-

pumping sequence. If Y1 = Y ∪ {p ∈ P | ∆[σρ](p) > 0, 1 ≤ ρ ≤ e}, M σ−−→ M2 and for

all p ∈ Q \ Y1, M2(p) = M1(p), then σδ = σ′1σ1 · · ·σ′eσeδ′1δ1 · · · δ′e′δe′ is a Y -neglecting weakly

M,Q, ω-enabled (X1 ∪X2)-pumping sequence.

127



Proof. We will prove that the combined sequence satis�es all conditions of De�nition 7.15.

1. This follows since σ and δ individually satisfy condition 1 of De�nition 7.15 and Y1 =

Y ∪ {p ∈ P | ∆[σρ](p) > 0, 1 ≤ ρ ≤ e}.

2. This follows from the fact that X1 and X2 individually satisfy condition 2 of De�ni-

tion 7.15.

3. This is trivially satis�ed since in this case, c = ω.

4. Suppose M ′ is some intermediate vector that occurs while �ring δ from M2 with

M ′(p) < 0 for some p ∈ Q. If p ∈ Y1 or there is some δρ′ occurring before M
′ such that

∆[δρ′ ](p) > 0, there is nothing more to prove. Otherwise, the fact that p ∈ Q \ Y1 and

M2(p) = M1(p) contradicts the fact that δ is a Y1-neglecting weakly M1, Q, ω-enabled

X2-pumping sequence, that should have satis�ed condition 4 of De�nition 7.15.

De�nition 7.19. Let Q,X, Y ⊆ P be subsets of places such that I ⊆ Q and X is non-empty.

Suppose σ = σ′1σ1 · · ·σ′eσe is a Y -neglecting weakly M,Q, ω-enabled X-pumping sequence for

some M : P → Z. For some independent place p ∈ I, if there is a j such that ∆[σj] > 0,

we do not care if p has negative number of tokens in some intermediate vector that occurs

after σj, even if p /∈ Y . For each p ∈ I \ Y , let j[p] be the minimum number such that

∆[σj[p]](p) > 0. If M
σ′1σ1···σ′j[p]σj[p]−−−−−−−−−→ M1, then the set of all intermediate vectors occurring

between M and M1 (including M and M1) is called the caring zone of p. If there is no σj

such that ∆[σj](p) > 0, then the caring zone of p is the set of all intermediate vectors.

De�nition 7.20. Let U ′ ∈ N be some �xed number. For j ∈ N, Q,X, Y ⊆ P with I ⊆ Q

and X non-empty and a function M : P → Z, λ(Q, j,M,X, Y ) is the length of the shortest

Y -neglecting weakly M,Q, ω-enabled X-pumping sequence from M if there is a Y -neglecting

weakly M,Q, ω-enabled X-pumping sequence from M in which every independent place p ∈
I \Y has at most U ′+jW tokens in all intermediate vectors belonging to the caring zone of p.

Let λ(Q, j,M,X, Y ) be 0 if there is no such sequence. Let `2(i, j) = max{λ(Q, j,M,X, Y ) |
I ⊆ Q ⊆ P, |Q \ I| = i,M : P → Z, X, Y ⊆ P,X 6= ∅}.

Lemma 7.21. Let Q,X, Y ⊆ P be subsets of places such that I ⊆ Q and X is non-

empty and let U ′ ∈ N. Let c ∈ N. Suppose there is a Y -neglecting weakly M,Q, c-

enabled X-pumping sequence σ = σ′1σ1 · · ·σ′eσe for some M : P → Z such that every place

p ∈ I \ Y has at most U ′ tokens in all intermediate vectors belonging to the caring zone of p.

Then, there is a Y -neglecting weakly M,Q, ω-enabled X-pumping sequence of length at most

8ek′(2c)c
′k′3(U ′W )c

′m4
for some constant c′.

Proof. By induction on e.

Base case e = 1: In this case, σ = σ′1σ1. All intermediate vectors occurring as a result of

�ring σ from M belong to the caring zone of each place p ∈ I \ Y . If any two intermediate
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vectors occurring when σ′1 is �red from M agree on all places in Q \Y , then the subsequence

between them can be removed. Hence, we can assume without loss of generality that |σ′1| ≤
U ′mck

′
.

As in Racko�'s proof of Lemma 4.5 in [82], remove Q \ Y -loops from σ1 carefully until

what remains behind is a sequence σ′′1 of length at most (U ′mck
′
+ 1)2. Let b ∈ N|S\Y | be

the vector containing a 1 in each coordinate corresponding to a special place in S \ Y whose

number of tokens is increased by σ1 and 0 in all other coordinates. If π is a Q \ Y -loop, its
loop value is the vector in Z|S\Y |, which contains in each coordinate the total e�ect of π on

the corresponding special place in S \ Y . Let L ⊆ Z|S\Y | be the set of loop values that were

removed from σ1. Let B be the matrix with |S \Y | rows, whose columns are the members of

L. For any sequence π, let ef(π) be the vector in Z|S\Y |, which contains in each coordinate

the total e�ect of π on the corresponding special place in S \ Y . By de�nition, ef(σ1) ≥ b.

The e�ect of σ1 can be split into the e�ect of σ′′1 and the e�ect of Q \ Y -loops that were
removed from σ1. If x(i) is the number of Q \ Y -loops removed from σ1 whose loop value is

equal to the ith column of B, then we have Bx ≥ b− ef(σ′′1).

A loop value is just the e�ect of at most ck
′
U ′m transitions, and hence each entry of B is

of absolute value at most ck
′
U ′mW . The matrix B has therefore at most (2ck

′
U ′mW + 1)k

′

columns. Each entry of b− ef(σ′′1) is of absolute value at most W (ck
′
U ′m + 1)2 + 1. Letting

d1 = k′ and d = max{(2ck′U ′mW + 1)k
′
, ck

′
U ′mW,W (ck

′
U ′m + 1)2 + 1} ≤ (2c)3k′(U ′W )3m2

,

we can apply Lemma 4.4 of [82]. The result is that there is a vector y ∈ N|L| such that the

sum of entries of y is equal to l1 ≤ d((2c)3k′(U ′W )3m2
)ck
′
for some constant c. Let c′ be a

constant such that l1 ≤ k′(2c)c
′k′2(U ′W )c

′m3
.

Now, we will put back l1 Q\Y -loops back to σ′′1 , which was of length at most (ck
′
U ′m+1)2.

Since the length of each Q\Y -loop is at most ck
′
U ′m, the total length of the newly constructed

pumping portion is at most (ck
′
U ′m + 1)2 + k′(2c)c

′k′3(U ′W )c
′m4

. Together with σ1, whose

length is at most ck
′
U ′m, we get a Y -neglecting weaklyM,Q, ω-enabled X-pumping sequence

of length at most 2(ck
′
U ′m + 1)2 + k′(2c)c

′k′3(U ′W )c
′m4 ≤ 8k′(2c)c

′k′3(U ′W )c
′m4

.

Induction step: Suppose σ = σ′1σ1 · · ·σ′e+1σe+1. Let X1 = {p ∈ P | ∆[σ1](p) > 0}.
The sequence σ′1σ1 is a Y -neglecting weakly M,Q, c-enabled X1-pumping sequence. Let

M
σ′1σ1−−−→M1. As is done in the base case, we can replace σ

′
1σ1 by another Y -neglecting weakly

M,Q, ω-enabled X1-pumping sequence σ′ of length at most 8k′(2c)c
′k′3(U ′W )c

′m4
ending at

some vector M2 such that for all p ∈ Q \ Y , M2(p) = M1(p) (this is because we only remove

Q \ Y loops from σ′1σ1 to obtain the shorter sequence σ′).

The sequence σ′2σ2 · · ·σ′e+1σe+1 is a (Y ∪X1)-neglecting weaklyM1, Q, c-enabled (X \X1)-

pumping sequence. By induction hypothesis, there is another (Y ∪ X1)-neglecting weakly

M1, Q, ω-enabled (X \ X1)-pumping sequence σ′′ of length at most 8k′e(2c)c
′k′3(U ′W )c

′m4
.

Lemma 7.18 implies that σ′σ′′ is a Y -neglecting weakly M,Q, ω-enabled (X \ X1) ∪ X1-

pumping sequence. The length of σ′σ′′ is at most 8k′(e+ 1)(2c)c
′k′3(U ′W )c

′m4
.

Using the technical lemmas proved above, we will now obtain a recurrence relation for `2.

Lemma 7.22. `2(0, j) ≤ 8mk′(2W (U ′ + jW ))c
′m4

.
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Proof. By Lemma 7.21 after setting c = 1 and substituting U ′ by U ′ + jW .

Lemma 7.23. `2(i+ 1, j) ≤ 10mk′(2W`2(i, j + 1))c
′k′3((U ′ + jW )W )c

′m4
.

Proof. Let Q,X, Y ⊆ P be subsets of places such that I ⊆ Q, |Q \ I| = i + 1 and X

is non-empty. Let M : P → Z be some vector. Suppose there is a Y -neglecting weakly

M,Q, ω-enabled X-pumping sequence σ such that every independent place p ∈ I \ Y has at

most U ′ + jW tokens in any intermediate vector belonging to the caring zone of p. We will

prove that there is a Y -neglecting weakly M,Q, ω-enabled X-pumping sequence of length at

most 10mk′(2W`2(i, j + 1))c
′k′3((U + jW )W )c

′m4
.

Case 1: The sequence σ is a Y -neglecting weaklyM,Q,W`2(i, j+1)-enabled X-pumping

sequence. The required result is a consequence of Lemma 7.21, after substituting U ′ + jW

for U ′.

Case 2: The sequence σ decomposes into σ = σ′1σ1 · · ·σ′eσe such that for some 2 ≤ ρ ≤ e,

M
σ′1σ1···σρ−1−−−−−−→ M1

σ′ρ−−→ M2 and there is some intermediate vector M ′ between M1 and M2

and a place q ∈ Q \ Y with M ′(q) ≥ W`2(i, j + 1). Let M ′ be the earliest such intermediate

vector occurring outside of pumping portions. If there is some ρ > 1 such that {p ∈ P |
∆[σρ](p) > 0} ⊆ ⋃ρ−1

j=1{p ∈ P | ∆[σj](p) > 0}, then σρ can be considered as a non-pumping

portion and the resulting sequence will still be a Y -neglecting weakly M,Q, ω-enabled X-

pumping sequence. Hence, without loss of generality, we can assume that e ≤ m. Let

M1

σ1′
ρ−−→ M ′ σ2′

ρ−−→ M2. Let X1 =
⋃ρ−1
j=1{p ∈ P | ∆[σj](p) > 0}. The sequence σ′1σ1 · · ·σρ−1 is a

Y -neglecting weakly M,Q,W`2(i, j + 1)-enabled X1-pumping sequence in which every place

p ∈ Q\Y has at most U ′+jW tokens in all intermediate vectors belonging to the caring zone

of p. By Lemma 7.21, there is a Y -neglecting weakly M,Q, ω-enabled X1-pumping sequence

δ1 of length at most 8(ρ − 1)k′(2W`2(i, j + 1))c
′k′3((U ′ + jW )W )c

′m4
. We can remove all

(Q \ Y \X1)-loops from σ1′
ρ to obtain δ1′

ρ of length at most (W`2(i, j + 1))k
′
(U ′ + jW )m. If

M
δ1−−→M ′

1

δ1′ρ−−→M ′′ σ2′
ρ−−→M ′

2, we will have M
′′(p) = M ′(p) for all p ∈ (Q \ Y \X1).

The sequence σ2′
ρ σρ · · ·σ′eσe is a (Y ∪ X1)-neglecting weakly M ′, Q, ω-enabled (X \ X1)-

pumping sequence such that every independent place p ∈ I \ (Y ∪X1) has at most U ′ + jW

tokens in all intermediate vectors belonging to the caring zone of p. By de�nition, there is a

(Y ∪X1)-neglecting weaklyM
′, Q\{q}, ω-enabled (X \X1)-pumping sequence δ2 of length at

most `2(i, j). If q ∈ X1, then δ2 is also a (Y ∪X1)-neglecting weaklyM
′, Q, ω-enabled (X\X1)-

pumping sequence. Otherwise, M ′′(q) = M ′(q) ≥ W`2(i, j) and δ2 can decrease at most

W`2(i, j) tokens from q, so again δ2 is a (Y ∪X1)-neglecting weaklyM
′, Q, ω-enabled (X\X1)-

pumping sequence. In either case, Lemma 7.18 implies that δ1δ
1′
ρ δ2 is a Y -neglecting weakly

M,Q, ω-enabled X-pumping sequence. Its length is at most 8ek′(2W`2(i, j + 1))c
′k′3((U ′ +

jW )W )c
′m4

+ (W`2(i, j + 1))k
′
(U ′ + jW )m + `2(i, j).

Case 3: The sequence σ decomposes into σ = σ′1σ1 · · ·σ′eσe such that for some intermediate

vector M ′ occurring while �ring σ′1 from M , there is some place q ∈ Q \ Y such that

M ′(q) ≥ W`2(i, j). Let M ′ be the �rst such intermediate vector. Let M
σ1′
1−−→ M ′ σ2′

1−−→ M1.

Remove all Q \Y -loops from σ1′
1 to get δ1′

1 of length at most (W`2(i, j+ 1))k
′
(U ′+ jW )m. In
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addition,M
δ1′1−−→M ′′ such thatM ′′(p) = M ′(p) for all p ∈ Q\Y . The sequence σ2′

1 σ1 · · ·σe is a
Y -neglecting weaklyM ′, Q\{q}, ω-enabledX-pumping sequence such that every independent

place p ∈ I \Y has at most U ′+jW tokens in any intermediate vector belonging to the caring

zone of p. By de�nition, there is a Y -neglecting weakly M ′, Q \ {q}, ω-enabled X-pumping

sequence δ of length at most `2(i, j). Since δ can decrease at mostW`2(i, j) tokens from q and

M ′(q) = M ′′(q) ≥ W`2(i, j), δ is also a Y -neglecting weakly M ′, Q, ω-enabled X-pumping

sequence. Hence, σ1′
1 δ is a Y -neglecting weakly M,Q, ω-enabled X-pumping sequence.

Case 4: The sequence σ decomposes into σ = σ′1σ1 · · ·σ′eσe such that for some 1 ≤ ρ ≤ e,

M
σ′1σ1···σ′ρ−−−−−→ M1

σρ−−→ M2 and there is some intermediate vector M ′ between M1 and M2 and

a place q ∈ Q \ Y with M ′(q) ≥ W`2(i, j + 1). For every independent place p ∈ I \ Y , if
∆[σρ](p) > W , transfer to pI the last transition in σρ that adds tokens to p, where I is the

VC -interface of p. Repeat this until for every p ∈ I \ Y with ∆[σρ](p) > 0, no more than

W and no less than 1 tokens are added by the new pumping portion after the transfers.

By Lemma 7.17, σ′1σ1 · · ·σ′ρσρσρ · · · σe (obtained by repeating σρ once and treating only the

second occurrence as pumping portion) is a Y -neglecting weaklyM,Q, ω-enabledX-pumping

sequence such that every independent place p ∈ I \ Y has at most U ′ + (j + 1)W tokens in

any intermediate vector belonging to the caring zone of p. Now, we are back to case 2 or

case 3 with (j + 1) replacing j.

We will denote c′k′3 by h.

Lemma 7.24. `2(i, j) ≤ (10mk′)(1+h)i(2W )poly1(hi)(U ′+(j+i)W )poly2(hi) where poly1(h
i) and

poly2(h
i) are polynomials in hi, c′, k′ and m.

Proof. By induction on i. `2(0, j) ≤ 8mk′(2(U ′+jW )W )c
′m4

. We will choose poly1 and poly2

such that 8mk′(2(U ′ + jW )W )c
′m4 ≤ 10mk′(2W )poly1(1)(U ′ + jW )poly2(1).

`2(i+ 1, j) ≤ 10mk′(2W`2(i, j + 1))h((U ′ + jW )W )c
′m4

≤ 10mk′
[
2W (10mk′)(1+h)i(2W )poly1(hi)(U ′ + (j + 1 + i)W )poly2(hi)

]h
((U ′ + jW )W )c

′m4

≤ (10mk′)1+h(1+h)i(2W )(1+poly1(hi))h+c′m4

(U ′ + (j + i+ 1)W )poly2(hi)h+c′m4

It is now enough to choose poly1 and poly2 such that poly1(h
0) ≥ c′m4, poly1(h

i+1) ≥ (1 +

poly1(h
i))h + c′m4, poly2(h

0) ≥ c′m4 and poly2(h
i+1) ≥ poly2(h

i)h + c′m4. These conditions

are met by poly1(h
i) = hic′m4 + (h + c′m4)(hi − 1) and poly2(h

i) = hic′m4 + c′m4(hi − 1),

assuming h ≥ 2.

For the upper bound obtained in Lemma 7.24 to be useful, we should have a pumping

sequence in which independent places have controlled number of tokens in intermediate

markings (i.e., U ′ and j are bounded). The following lemma establishes this with the help

of truncation lemma.
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Lemma 7.25. Let Q,X, Y ⊆ P be subsets of places such that I ⊆ Q and X is non-empty.

For some M : P → Z, suppose σ is a Y -neglecting weakly M,Q, ω-enabled X-pumping

sequence. Let U be the maximum of the range of M and let U ′ = U +W +W 2 +W 3. There

is a Y -neglecting weakly M,Q, ω-enabled X-pumping sequence in which every independent

place p ∈ I \Y has at most U ′ tokens in all intermediate vectors belonging to the caring zone

of p.

Proof. Suppose σ is of the form σ = σ′1σ1σ
′
2σ2 · · ·σ′eσe. Ensure that for every independent

place p ∈ I \ Y and 1 ≤ ρ ≤ e, if ∆[σρ](p) > 0, then ∆[σρ](p) ≥ 2W . If this is not the case,

we can repeat σρ 2W times.

By Lemma 7.17, σ′1σ1σ1σ1σ
′
2σ2σ2σ2 · · ·σ′eσeσe is also a Y -neglecting weakly M,Q, ω-

enabled X-pumping sequence. Consider some 1 ≤ ρ ≤ e and an independent place p ∈ I \ Y
such that ∆[σρ](p) = 0 and σρ occurs within the caring zone of p. Let M

σ′1σ1σ1σ1···σ′ρ−1−−−−−−−−−→
M1

σρ−−→ M3

σρ−−→ M4
σρ−−→ M6. Let c1 = min{M ′(p) | M ′ occurs between M1 and M3} be

the minimum number of tokens in p among all intermediate vectors occurring between

M1 and M3. Let M2 be the �rst intermediate vector between M1 and M3 such that

M2(p) = c1 (see Fig. 7.3). Similarly, let c2 = min{M ′(p) | M ′ occurs between M4 and M6}

Steps of �ring sequence

N
o
.
o
f
to
k
en

s
in
p

M1 M3 M4 M6

c1 = c2

M2 M5

σρ σρ σρ

Figure 7.3: Illustration for proof of Lemma 7.25

be the minimum number of tokens in p among all intermediate vectors occurring be-

tween M4 and M6. Let M5 be the last intermediate vector occurring between M4 and

M6 such that M5(p) = c2. Note that since ∆[σρ](p) = ∆[σρ](p) = 0, c1 = c2. Let

M1

σ1
ρ−−→ M2

σ2
ρ−−→ M3

σρ−−→ M4

σ3
ρ−−→ M5

σ4
ρ−−→ M6. Let δρ be the sub-word of σ2

ρσρσ
3
ρ consisting

of all the transition occurrences having an arc to/from p. Since M2(p) = c1 = c2 = M5(p)

is the minimum number of tokens in p among all intermediate vectors occurring between

M2 and M5, ∆[δρ](p) = 0 and δρ is safe for transfer. Transfer δρ from p to pI , where I is

the VC -interface of p. Perform similar transfers for all 1 ≤ ρ ≤ e and independent places
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p ∈ I \ Y such that ∆[σρ](p) = 0 and σρ occurs within the caring zone of p.

Consider some 1 ≤ ρ ≤ e and an independent place p ∈ I \Y such that ∆[σρ](p) > 0 and

σρ occurs within the caring zone of p. Let M
σ′1σ1σ1σ1···σ′ρ−1−−−−−−−−−→ M1

σρ−−→ M3

σρ−−→ M4. Let c1 =

min{M ′(p) |M ′ occurs between M1 and M3} be the minimum number of tokens in p among

all intermediate vectors occurring between M1 and M3. Let M2 be the �rst intermediate

vector between M1 and M3 such that M2(p) = c1. Let M1

σ1
ρ−−→ M2

σ2
ρ−−→ M3

σρ−−→ M4. Let δρ

be the sub-word of σ2
ρσρ consisting of all transition occurrences having an arc to/from p. Since

M2(p) = c1 is the minimum number of tokens in p among all intermediate vectors betweenM1

and M4, δρ is safe for transfer. Transfer δρ to pI . To ensure that after this transfer, number

of tokens in p is pumped up during the pumping portion under consideration, identify the

last transition in δρ that adds tokens to p and transfer it back to p. Since ∆[σρ](p) ≥ 2W ,

this last back transfer will not violate any property of the pumping sequence. Perform this

transfer and back transfer for all 1 ≤ ρ ≤ e and independent places p ∈ I \ Y such that

∆[σρ](p) > 0 and σρ occurs within the caring zone of p.

Now, we have a Y -neglecting weakly M,Q, ω-enabled X-pumping sequence with the

following properties:

1. For all 1 ≤ ρ ≤ e and independent places p ∈ I \ Y such that ∆[σρ](p) = 0 and σρ

occurs within the caring zone of p, no transition in σρ has an arc to/from p.

2. For all 1 ≤ ρ ≤ e and independent places p ∈ I \ Y such that ∆[σρ](p) > 0 and σρ

occurs within the caring zone of p, there is only one transition in σρ that has an arc

to/from p and this transition adds some tokens to p.

Consider an independent place p ∈ I \ Y of some VC -interface I. Let M ′ be the last

intermediate vector in the caring zone of p such that M ′(p) is the minimum number of

tokens in p among all intermediate vectors in the caring zone of p.

Case 1: M ′(p) ≥ M(p). In this case, the number of tokens in p does not come below

M(p) at all. Let δp be the sub-word of the pumping sequence consisting of all transitions

occurrences within the caring zone of p that have an arc to/from p, except the last such

transition. Transfer δp to pv.

Case 2: M ′(p) < M(p). Invoking truncation lemma with c = M(p) + W , we identify

sub-words between M and M ′ and transfer them to pI so that in any intermediate vector

within the caring zone of p, p has at most U +W +W 2 +W 3 tokens. Note that none of the

sub-words transferred will involve any transition in pumping portions due to the property

we have ensured above.

Due to the property we have ensured above, if for some place p ∈ I \ Y , there is some

σj occurring within the caring zone of p with ∆[σj](p) > 0, it remains so after any of the

transfers above. For every independent place p ∈ I \ Y , we identify and transfer sub-words

to pI based on one of the above two cases. Finally, we end up with a Y -neglecting weakly

M,Q, ω-enabled X-pumping sequence such that every independent place p ∈ I \ Y has at

most U ′ tokens in all intermediate vectors belonging to the caring zone of p.
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We will now combine results of previous lemmas to give a ParaPspace upper bound for

model checking β formulas.

Theorem 7.26. With the vertex cover number k and maximum arc weight W as parame-

ters, β formulas of the logic given in the beginning of this section can be model checked in

ParaPspace.

Proof. From Lemma 7.14, model checking β formulas is equivalent to checking the presence of

X-pumping sequences for some X. The choice of X can be done non-deterministically in the

algorithm. From Lemma 7.16, checking the presence of X-pumping sequences is equivalent to

checking the presence of ∅-neglecting weaklyM0, P, ω-enabledX-pumping sequences. Setting

U ′ = U + W 2 + W 3 in De�nition 7.20, Lemma 7.25 implies that if there is a ∅-neglecting
weakly M0, P, ω-enabled X-pumping sequence, there is one of length at most `2(k

′, 1).

A non-deterministic Turing machine can test for the presence of a weakly enabled

pumping sequence by guessing and verifying a sequence of length at most `2(k
′, 1). By

Lemma 7.24, the memory needed by such a Turing machine is O(m log |M0|+m+ logW +

(1+c′k′3)k
′
log k′ logm+poly1(c

′k′k′3k
′
) logW+poly2(c

′k′k′3k
′
) log(U ′k′W )), or O(m log |M0|+

m+ poly(c′3k
′
k′3k

′
) log(U ′k′mW )) for some polynomial poly . An application of Savitch's the-

orem now gives us the required ParaPspace algorithm.

7.4 Open Problems

As mentioned in the beginning of this chapter, feedback vertex set is a set of vertices whose

removal from a graph removes all cycles. Every vertex cover is a feedback vertex set but the

converse is not true. The parameterized complexity of problems studied in this chapter with

the size of the minimum feedback vertex set is open.
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Chapter 8

Conclusion

Following is a list of parameterized complexity results obtained for problems with classical

exponential time algorithms (the problems are either Pspace-complete, Np-complete or

exponential time-complete). The entries marked ? are open and for those marked as Not

Applicable, the parameter is not well de�ned for the problem.

Treewidth Treewidth and

modality depth

Vertex cover num-

ber

Reachability, cov-

erability in 1-safe

nets

W[1]-hard Not Applicable ?

LTL model checking

on 1-safe Petri nets

W[1]-hard, even

when formula size

is constant

Not Applicable Fpt with formula

size as additional

parameter

CTL model checking

on 1-safe Petri nets

W[1]-hard, even

when formula size

is constant

Not Applicable ?

LTL and CTL CNF

satis�ability

W[1]-hard W[1]-hard ?

Modal CNF satis�-

ability in transitive

models

W[1]-hard W[1]-hard ?

Modal CNF satis�a-

bility in general mod-

els

Not Fpt unless

Ptime = Pspace

Fpt ?

Modal CNF satis�-

ability in Euclidean

models

Fpt Fpt Fpt

Following is a list of the parameterized complexity results for Expspace-complete prob-

lems, obtained in this thesis.
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Bene�t depth Vertex cover number

Coverability ParaPspace ParaPspace

Boundedness ParaPspace ParaPspace

Model checking logic of

counting properties (sec-

tion 6.3)

ParaPspace with nesting

depth of EF as constant

ParaPspace with nesting

depth of EF as constant
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Appendix A

Brief Introduction to Parameterized

Complexity

Let Σ be a �nite alphabet in which instances I ∈ Σ∗ of a problem are speci�ed. A problem

is speci�ed through its set Π ⊆ Σ∗ of Yes instances, with all other instances assumed to be

No instances. The complexity of a problem is stated in terms of the amount of resources�

space, time�needed by any algorithm solving it, measured as a function of the size |I| of
the problem instance. In parameterized complexity, introduced by Downey and Fellows [25],

the dependence of resources needed is also measured in terms of a parameter κ(I) of the

input, which is usually less than the input size |I|. A parameterized problem is said to be

�xed parameter tractable (Fpt) if it can be solved by an algorithm with running time

f(κ(I))poly(|I|) where f is some computable function and poly is a polynomial. (Similarly,

a ParaPspace algorithm [35] is one that runs in space f(κ(I))poly(|I|).)
For example, consider the following p-Automaton-Model-Check problem:

p-Automaton-Model-Check

Instance: A �nite state automaton A and a MSO sentence φ.

Parameter: The size |φ| of φ.
Problem: Decide whether all strings accepted by A satisfy φ.

This problem is Fpt, by Büchi, Elgot, Trakhtenbrot theorem [11].

There is a parameterized complexity classW[1], lowest in a hierarchy of intractable classes

called the W-hierarchy [25] (similar to the polynomial time hierarchy). A parameterized

problem complete for W[1] is to decide if there is an accepting computation of at most k

steps in a given non-deterministic Turing machine, where the parameter is k [25]. It is widely

believed that parameterized problems hard for W[1] are not Fpt. To prove that a problem

is hard for a parameterized complexity class, we have to give a parameterized reduction

from a problem already known to be hard to our problem. A parameterized reduction from

(Π, κ) to (Π′, κ′) is an algorithm A that maps problem instances in (resp. outside) Π to

problem instances in (resp. outside) Π′. There must be computable functions f and g and

a polynomial p such that the algorithm A on input I terminates in time f(κ(I))p(|I|) and
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κ′(A(I)) ≤ g(κ(I)), where A(I) is the problem instance output by A. There are many other

classes in the intractability hierarchy, the ones used in this thesis are mentioned below.

Fpt ⊆ W[1] ⊆ W[2] ⊆ · · · ⊆ AW[1] ⊆ AW[SAT] ⊆ AW[P] ⊆ XP

The class XP contains all problems that can be solved by algorithms with running time

O(|I|f(κ(I))) for some function f . The inclusion between Fpt and XP is known to be strict,

while strictness of other inclusions are not known.

From the De�nition 1.1, it is clear that pathwidth is at least as large as treewidth and any

problem that isW[1]-hard with pathwidth as parameter is alsoW[1]-hard with treewidth as

parameter. An intuitive way to understand the role of treewidth on complexity of problems

is through its relation to grids. A grid is a graph of the form shown below.

A large grid has large treewidth. A graph of small treewidth can not have a large grid

embedded within it (formally, the graph can not have large grid minors; see [25, Section

7.1] for details). Recall that Np-complete problems can be reduced to coloring problems

on grids. A fundamental result by Courcelle [15] shows that graphs of small treewidth are

easier to handle algorithmically: checking whether a graph satis�es a MSO sentence is Fpt

if the graph's treewidth and the MSO sentence's length are parameters. In the context of

Chapter 4, the state space of a concurrent system can be considered a graph. However,

due to the state explosion problem, the state space can be very large. Instead, we impose

treewidth restriction on a compact representation of the large state space � a 1-safe Petri

net. Note also that we are not model checking the state space itself but only the language

of words generated by the Petri net.
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