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o GHAMMEE OF DIRAC MATRICES

The confluence of relativity and quantum mechanics
was achieved when Dirac Just wrote down his famous equation‘ a
in 1928, This achlevement was made possible since he waé

able to construct four mutually anti-commuting matrices so
that the Hamiitonlan was consistent with the quadratic

relativistic relation: between energy momento and mase,

Barlier, in non-relgtivistic quantum mechanics three

. mutuglly anti-commuting matrices were found sufficlemt to
ineiude the concept of intrinsie spin. It'was immediately

noticed by Dirac that the quantum mechanical concept of spln

was also imbedded in his Hamiltonian. In the ysars of unine
terrupted triumph that followed the birth of felgfivistic
quantum mechanics, the study of the ﬁathematical significance
of the tfansition from Pouli to Dirac matrices was considered
quite academic gnd therefore ignored, Bﬁt it was obfious’
that ‘1t was still a liva 1l unsolved problem since immedistely
“fter Dirsc's femmuletion, Pauli attempted such a study gnd

{_as late as 1956, Feynmen himself raised the gquestion of the
relationship between Spin and relativity'in hie famous Caltech
dectures even after the totél triumph of his graphical foma-
lism in electro-dynamics.

We therefore set as cur objective the understanding of
the mathematical procezdure of obtsining Dirac matrices from
the basic Ppuli set. We though% it was Jjust the right time

now to take it up since the spirit of the hour demanded s
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re-e¢xamination of the whole structure from the point of view
of_mathﬁmatical rigpour and loglesl precisicon, To our Strgngé
surprise we found that the procedurc which Dirasc used was
of such generel cignificance that 1t could be extended into
a gramnay of snti.commuting matrices, the ramificstions of
which give us g better inslght into various branches of
theoretical phyelcs -~ relgtivity, covplementarity, propageator
formalism and the fundamentszl concepts of ¢pin and mese of
elementary particles. fven more surprising'waa the posgsibillty
of enlsrging the concept of anti-comrutation to ~&J-commutmt15n
where W ig a general rcot of unity,

This work was presented in s series of pepers most of

which were published in the "Journal of Mathemgtlcal Mnslysis

and fpplications®. Since they formed a connccted series, 1t
% 1s considered worth-while to publish them togetner under the

title,

WGerammar of Dirsc metrices!.

Alladi Ramgkrishnan
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'0f strange combinations out of common things!

: ~~ Shelley
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We shall give a method of generating a hierdrahy of square
tatrices Lmrh invoiving m indepandent continuous narameters

Al)'-* - A such that
a 2 )T
: Lﬂ}ﬁﬁ' = </\\ oo /\yw ) L (1)

as m takes values 2,3,¢.. o We shall show that the [; watrices

can heé expressed as a'llnear combination of m 'generator';matrices
Independent of the narameters., The Lw, matrices fall into one of
two classes, saturated or unsaturated according as m is odd or
even. |

One of the:most interesting features of this hierarchy is

that the Paull matrices are recognised to be the generator matrices
which saturate t‘lJ’ while the Dirac Hamiltonian 1s an unsaturated
L4_‘

We start by writing

- e T
Iy o Q J (2)

< c ol

!

Reod at the Sixth Anniverséry Symposium Jahuary 2:12, 1967
at the Institute of Mathematichl seilences, Madras,
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énd reguiring that

x L2 AT
= a4 hc (”"*‘Q /(“] = LR VAT emy
L:L (&+r(—)@ r"(.Q-P["'C o M (
LQJthen falls into canonical forms of two distipet types.
Type I~
. L. o A =tAp (4)
2 AHCA, o
Type II
L - )‘2 /\’
2
’ Ay -"“/\2__ (5)
2z 2 2 ‘ ,
Since the relation L2 = C§|-* )4~> I is symmetrie .} ,x[and )2
‘we can interchange A, and A, O replace ,A( or /X{hy — AI
or "‘AZ,’ but'these operations do not alter the tyve.
To generate L~3 » We cah adont thd same procedure ss we ald
to find 1*2' We can define
Ly o=, Nk (8)
3 Lo+0A2 O
or
. Az I Lo
:% aas
L. = AT (1)



= DI | 8
L3 I -, (®)

(2)

We notice that while in the Mirst three cases L% has double

LL y 1n the last case the dlmension of L
'remains the same as that of L,a .

he dimension of 3
In general Lm+t cah he
generated from Lm as follows

. - (19)
[_ _ G | Lm -\ /\m“l
™ ) ‘
Lm Tt /\Yﬂ't-\); o
L l/\ M+ I‘ Lt’*'\ Lh’) /\.mﬂl-.
o o
-t Loy "’"/\ et L r -

¥ ))“f\-f-l Llﬂf\ (ll)

" In all these three cases, the dimension of Lm-ﬂ 1s double

that of Lm - lowever, if Lm isl of the form

4

O Ly-q..—f’(’i\m

. (12)
Lm»{ “HA’”‘) ©
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then L_H%%\ cap be generated with the same dimension As [_Vﬂ
by defining‘
/\r“;'}-!—[ I L-rﬂ . - /\ ™

TR . (13)
meﬂ L\”(’ | *‘/\m ' ’m/\\’ﬂ‘r-l 1

Thus the most teconomical! way of building Lqﬂ,d is to
tsaturate! the Loy 17 L, is 'unsaturated', i.e., having rerss
onh the diagonal. Therefore, Lﬁﬂ is of tyne IT while L4ﬂ+1
1s saturated. We thus have the table connecting the numher of

parameters, dimension of the matrix and tyme.

Matrix Number of narameter Dimension Character
L, 1 1 Saturated
1”4 a ‘ 2 Unsaturated

) 3 2 Saturated
\ 4 9% = 4 Unsaturated
5 2% = 4 Saturated
L;ﬂ 2 28 Tnsaturated
[P 2n+1 on Saturated

Thus the saturated [_ matrices involve an odd number of varameters,
Llﬂﬁﬂ can be obtained from \rgﬂ—\ bg performing a O -ovaratiosn

oh 1t defined as

Lmﬂ-f = 7 ( Lg.n«r)



)Qﬂﬂ\I L‘?ﬂﬁ Mhénz

Lan~|+c%nl “‘/&nﬂz

L 204

(14)

The Oﬂ’*operation involves the addition of two vnarameters and the |

doubling of the dimension.

We shall study these matrices by writing

. (18)

2041
where Qﬁ

are (2n+1) t'generator matrices' indenendent Of‘Aﬁ'
Then 1f

2ra!

. ean 2nH
[ = 7 ik e

Var R
wy”9n+? 0 “[f .
. Iael { =0 2, ... an=
& ;{ h D J J (17)
‘ 7/
o o NI b - 'I 20 T )
gééﬂ B ﬁ Q%\ =
e ot I
fooe o 0 (18)
2pn 4!
Thus the G ~overation on

~an-t conslsts of generating )ﬁ’(

- 2N -1 o . :
from Q{- and adding two matrices ;f 2 and m? 20+ |
' { ERAL 2t |
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We now summarise the results we have obtained as-follows:
L. A saturated L matrix iavolves (2n+1), 1.e., an odd
number of parameters. Its dimension is 2. It can he expreqéed
as a linear comblnation of (2n+1) matrices (%ﬁ.qn+t i= 1,;.,(Qn+1)
with /N{ as their coeflficlents, respectively.
2. An L matrix inw lving 2n(even) parameters is unsaturated.
Tts dimension is 2" and it can be exuressed as a linear combination
of 2n matrices, i.e., a set obtalned by omitting one of the 2n+1l
matrices. |

There are (2“)2 independent matrices of dimension 27 and
‘f these can be generated either from the 2n+1 matrices which
satur ate L or the 2n matrices as follows:

The 2n+l matrices have the important feature that their

product is tidemnwotent'. More precisely,

i
)

1 L] .

y N > 2l (19)

O\( Z?‘:'!*f"f;(, 201k % A

Hence to generate all the independent matrices we form nroducts

of 2,3,...,n matrices. The product of (n+r) matrices is just

I equal to the product of (n-r+1) matrices and a numerical factor,
and so ho indépendent mabtrix can be generated by taking oroducts

of more than n matrices out‘of the 2n+l. The number of indenondent
matrices are

210 1 an -l (2m4|) _oan
)+ e )

0




The 2n+1 matrices anticommute wlith each other. The

dempotent proncrity implies that 2n+1 15 the maximum of anti-

ccommutling matrices in a sct of of indenendent matrices.

If on the other hand we had taken 2n matrices, we can form

products of 2,3,4...92n matriccs and we obtatin

2}1) 4,<2ﬂ e . (3\) AL
n 1 Clan) T L

indspe ndent matrices.

The following two properties of the T matrices
noticed

are immediately

1. If A 1s a nonsingular matrix then ara~t 1s also
cafl L matrix since

(ALY () < (n2)
= A AT A

= /\?*I (22)

2. If _A&Fis a dlagonal matrix with hal{ 1ts diagonal

lements equal to -+ A then the matrix
= L+AL (23)

satisfies the equation

’ LU UA
(24)

€y the columns of the matrix LJ are eigenvectors »f T with

genvalues d:) .



PAULT MATRICAS AND THZ DIRAC HAMILTONTI AN

Starting with Ll’ which 1s the number

L= A

(25)
Ly is obtalned by a G -operation as
A _— 2
) /\—1 A\m( /‘2‘ y , v
L . = == Z., /\( %\/{‘ '
E )\\”’ ‘/\2,. '“’/\;5’ L (26)

If ;732 | aﬁj f\yvh (2 are the Paull matrices defined as

— , . o~o=( ({
0o = 0L, = . O =
= A0 ! (/ (( O)J(L ‘)(27)
wa recoghise that
- \ \B ¢ - \/ 3 @ —— - 3
Ty = d(‘( ) YAz T ¢ ¢
Performing a G -operation on Iy we obtain

e =T A &7

LS .

(29)
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If C/W'“%j’oh%J Fgewe the Dirac matriecs and ?/

5 the product
of the four gamme matrices defined as

23) 0y (2F) e (25)

N

A

(30)
we-Trecognise that
Oé//{ = -fJT?()' ‘B{l: O‘Jy ) o{?:‘ C\/Z
\ /- : -
Oéf - 73'é ) "2/5 /‘3 .
(31)
Thus
= \.k._,S‘ VU = -+ \7(/
Lg?r -;(:__/(m[( LR
=1 (32)

1s an cigeavector equation for the saturated matrix Lg. From (24)
we ilmmediately write the [ matrix solutien for L as
,A*Fﬂg‘ o Ag“ﬂA4 'AV‘C48

O A pg ERRY: “43“(Ag
/\J'f{/\ff /{[“'L/S'/: - /\")5'

{33)
&

Af‘+€A2 ”%5 %iAH o . 'fA "Ag
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where each solamn is the elgenvector of
eigenvalue + A for the first tuo columns

two columns ang

Lgs corresponding to the

and ”ZA for the 1ast

A
A= (’\Ig"*/\;'“f"/\32“*/\‘}-247)52)/%

(34)

If we omit Ly and ,A;f and we obtain the enuation for an

\

uhsaturated L4.

. LJF?(J == (/\( '¥‘/l ~ }2 yz + )|5.¥3 - )\gf-§’€>?{1 )\(?é}))
If we write

where &%Cs rg, )ﬁ

" are the comvonent s of momenta,
anhd L the rper

m the mass

57, wB ohtain the elgenvalue eauation for the Dirac
 Hamiltoni an.

If on the other hand we omit L,

we obtain another unsaturated
guation

N /
Y J (37)

If the Dirac ¢quation can he written in the form

(1#(¢nm] )CLI,:“ (s | (38)
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then the other unsatuated equation can be written
as

(ﬁ{m m ) Uy =0

dth “

AR

(41)
S zquati
olving this equation, we can get the spinor solutions '2&
We shall now obtain the relation between U ‘and 7k/4
The two spinor solutions X 4 o

- p for wositive ¢hergy are given ei{her
Form I: I
=y
! " O
£ !
I‘ 1 . /b i E—f-y:o
Uy = == ‘ L /2"—{/07 42
ﬁ“+m \/%(.*/{-f’y m (42)
or
Form II:

£, p fo - Y

o £—m (43)
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Form II is obtalned by operating on Form I with (—{7% )
and replacing m by -m. TForm B is Mnsultable since in the rest
system, the normali zation factor 1./(£ﬂ,ﬁ7)yz becomes infinlte while
the spinor vanishes. On the other hand form B 1s sultable for

negative CRergy.

In a similar way, we get the two sodutions ?g4 Tor nositive
enérgy in
Form I
£ C
I g 0 L £
.

Y ;—:g__ 7 4;’“‘# ] JE\ fm“('/}
Fa Ty | “fo + ('

“ (44)

(45)
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We note th

at intcresting feature that hoth these formg

Tare sultable for tha rest system and have the same normalizatidn

factor. We slso notice that

i et e e

r
T £+ .
L .8 GBS (/ -+ 7/5) /¢ .
IR I 2 (46)
. | ‘
(}ffﬁ-)7(Lf 1s a solution of the other unsatursted
equation can be seen from the observation thatt
Y5 N/, = ' = -
_{jji o }, + v J_m____ (%%»/H{'ﬁm
r= ‘ / (47)

It should be noticed that ((475) [¢T

i 1s nonsingular
amihas (1v¥5>/

as 1ts inverse,

ekl it

! This argument 1s due to Santhanam,
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In a previeus contribution to thisg Journal(l), a hlerarchy

of matrices Loner (= 0,1,...) was generated through what

was defined by the author as a o~operation which takes Lgn-l

“to L2n+l as follows:

| Nan T LG#"')m:i,
L = Gﬂ'(L—2Y1w\> =

20+] VR A T

PRI antd

(1)

L2n+1 contains 2n+l1 parameters 31,...,m2n+l and is of di~-

mension 2%, The unit matrix I in (1) is of dimensioen

2, the same as that of Lo i+ The matrix L &

ondl has 2

indenendent elgenvectors, but only +wo eigenvalues :tlxzz

given by

( \
A=+ (004004 4 Dand, )12
23

2.

2 | 2
= 4 (A,,_,., + Ny 4 ﬂznﬂ>



Wwhere

2 AN
[\()—r‘ﬂ +C’/\{+“ﬁw —#—22&"}"1’)'&U (2)

+ [&n_l are the eigenvalues of the o° "+ dimensional matrix

L?n~l' and egually of the oR dimensional matrix
Loy O
(4
O Lon

Similarly we find a sequence of eilgenvalues

corresponding to the sequence of n n
n

atrices of the same
dimension 2

Llhﬂ 0 L5 (j

L'Z.'(H‘*l 1 L2 ; ; - = )
-

(6)




.L°m+1 occurring ol times on the diagonal. These n matrices
[

commute with each other and hence the o elgenvectors of the
2% dimensional matrix Lone1 can be obtained gs the simula

taneous eigenvectors of this sequence.
It is to be noted that though the sguare of [

on+ ia a
unit matrix with the sum of

(2n + 1) parameters as its

w

squares of

coefficient, the eigenvectors of L

ont1 %an be distinguisgheqd
by only n eigenvalues,

i_A—k:

Taking the particular Case of L3 and L, 5 3 we note that

the eigenvectors of Lg are dlstlngulshed by the eigenvalues
t zl1 and  + /X£ « In the case of the Dir
~identify that

1;2,+04n) defined in (9),

ac equation, we

(7
2 2_} -@)\/.Z
AV +(f’0c ”L’h’bf ’bﬁ

Setting A = m and Ay =0 in Lgsy we ildentify

LS( ,rf\b*; LU ;\;} = C') - H

(8)

(9)



the Diraec Hamiltonian. Thus _[XQ 1s identified to be the

energy, while

+ 13{ = helicity. /A (10)

since heliclty is the eigenvalue of the operator (G’p)//\q and
is equal to % 1. Hence, we find the helicity multiplied by a
positive numerical factor jﬁ1 and energy are members of the

same hierarchy of elgenvalues + _[Li, corresponding t0 Lgy.q

This limplies that we have interpreted helicity in the
light of the Cliffsrd algebralc structure of the I matrisss
as contrasted with the structure of a Lie algebra assoclated

with angular momentum,

APPENDIX

Lpili.and Dlrac Spinors as the Members of a Hierarehv of Aigen-

et

We now obtaln the eigenvectors of L2n+l in terms of those

of Lg.
Let u(2n+1)l be an cigenvector of L2n+1 with dimension
2™, We shall show thut u{2n+1l) can be written as
a Ulzn-n
Uzt = [ 0 ton-n) £(1)

by Just 'solving' for a and b . Substituting the abeve form

of u{2ntl) 4in the elygenvalue ecuation

L

In the case of the eigenvectors we do not indicate the nupber
of parameters Yy a suffix but only inside brackets so that there
will be no conf*sion with the usual practice of denoting the
Qomnonents‘oflp:;epvector-though a suffix.



.t Sy

» 1 Y i 2N+ "
'[",'z.'l');%f T (Z 4 f) e ':_L An U ( - ) ‘ A(2)
“We obtaln an eigenvalue equation for the two dimengienal vector

with components a, b

| L= + A (/g,
VAPV = Nant A3)
yielding two solutions
Q ?FA_,Z___, ~ ﬂzn_ - Ay ;\zm}-}
A T A0 Dang A AACT BV

Similarly we have twe more solutions if we replace ‘K1n~l by

ne1 I Ba.(3).

" We notice that we have obtalned the eigenvector of an

L3 matrix with hg replaced by l8n+1’ 31 by + ,[L1 and lg
by hzn' By iterating this nrocedure to obtain the eigenvectorg

of I L

on-1? on-a ¢+ @nd g, we determine the entire set of

2" eigenvectors of Lopt1 a8 the simultaneous eigenvector of

n matrices with a sequence of eigenvalues

N S DS




Gonsidering the particular case of Ly and Ly we have

‘as the eigenvectors of Loy

i ;\\ - ’i;l_a
U (3) = \ 4 A, A(5)
corresponding to the two eigenvélues t Jﬂ&1 with 1@,1 =
\ R
2 4 A 2 4 2 fé The four elgenvectors of L re
2\1 2 :}\3 . - 2 3 3 .a
C#Jﬁﬁ”iA%)fh+I%) (~A;—an)*aff3)
( '_t J\.Q—“ ,;\5‘ .)/l{-% (J) ( _‘t A__..{w‘db“) 1(:* (‘5)
Writing N = by Ny Copoe Ay = D, _/X1 = 7, we identify

Ll

_.}..
w(3) as the Paull spinors and setting ks = omy A, = 0,./\ o = B

we oObtaln the Dirac spinors as the simultaneous eigenstates of
energy and helicity.

This can be compared with the conventional methods of

obtaining these solutions for the Dirac emation

The procedure we have adopted to resolve the 'degeneracy’
in the elgenvectors of Lope amounts to generating the inde-
pendent eigenvectors of dimension 2n, starting from the two
independent eigenvectors of the two dimensiongl LS. Comple-
mentary to this methol of generating eigenvectors 'inside-&ut!

we can devise a method 'outside-in', starting from the most



7

_general -form of the eigenvector of Lope1  @nd requbiing 1t

to be the simultanecous gigenvector of LGnl’.LQn-B,"’ and Lo .

If w(2n-1) be an Arbitrary !vecter' of dimension'-Qnml
and w'(2n-1) 3 'vector! defined ag |
L;’)w! -—’i}\,zn'l
d{)f(‘lﬁ"}) - ' LO(.?Y)-”O
.Q“'%2h+4 A(7)
then the oF dimensional vector
N
W (2an-)
L2041 o
( ) Wlan-1) A(8)

is an elgenvector of L?n+l' This is not in general an eigen-

vector of Lone1 (2m+1), where

with L2m+l‘being‘répeated':QFfm times on the diagonal,

If we recuire this to be an elgenvector of Lgn"l

2n+1?
an elgen-vector of Loyq and
hence must be written as u(2n-1), where

o 2n=-1) must be chosen to be



. L) (an-23) ' Lpn -3 ann 2
a (20-0= Wlzn-3)) W (203) - (

, | Aoy -9

Jw(an- 3)
-]

A(10)

. n-2 .. .
Wy n  being an arbltrary vector of o2 dimensions, In such
o F Al W] .

& case we can replace the matrix L onel by its eigenvaluelq

The succesgive annllcation of this producedurs leads to the re-

solution of the degeneracies and we arrive at the same expression

for m{entl) obtained earlier,

nstead of taking «!2n-1) arbitrary ang defining o*(2on~1)

in terms of it, we,can as vell take ®'(2n~1) arbitrary and write

L2n~)+MiA25i

W 2n-0
An”}“Qzﬂ—H

W (2n-1)

ACLL)

As before 1if we wite wep for Lq and gset }4 =

¥

= m we recognlze the famous 'bispinor!' form of the salu-
5 g by

tlons of the Dirae equation within the larger framework of our

Lem-trix hierarchy.

If corres nondlnf to ‘the positive elgenvalues, + n? we

100se the arbitrary vector w'(2n-1) as any one of the set of



oh-1 basic vectors of dimension En-l .
1 0 0
¢
1 0
' o
' J 0 7 K 0
| ) ‘
I \
0 O .
1

A(l2
we obtain a set of Em_l independent eigenvectors of dimension
o, As regards the negative elgenvalues, "'jln’ if we choose
the vector w(2n-1) +o be one of the above set A(12), we obtain

n- . .
the other 2 L independent eigenvectors of dimension 2P

. . n
The two sets together arec recognized to be just the 9 columns

.

kS

of the magtrix

L.;;;rw:“%'[/\ﬁjir

Wwhere Lf\:] s a 25 dimensional diagonal matrix with the first

2n"1 terms on the diagonal belng equal to the eigenvalue + Ay

nn""l

and the rest of the ¢ terms being ggual to - j\n_ ; consis-

tent with s result established in an earlier paper(l).
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$oR R

The Dirae Hamiltohian was recognlsed to he the memhe »
of the Lematrix hlerarehy defined by the vreserintion

2 E z. -
) ot ’;\ e -+ ) ¥
. Lﬂzw*t (2 24 | ) - (1)
: /_ 0o = Lz Nk ( /] zay W ;}3:\4 'z "‘)
(2)
where the parameters ﬁr) s, I \Pn+,ar@ Pure real of imaglinary

and A pare the digenvalues of L—7n4\ . _Thewusuai renre -

sentatlon of the Dirse Hamiltonlan is abtatned by setttng in Ls

R T A N

’

- (3)
é:'it‘ld Ajl: E

Sinee L‘F 1s of dimension 4 x 4, 1t has faur Indencndent efgen-

otors though 1t has only twe clgenvalues . e WA
13 reselved by requiring the ¢lgenvector of L

.. TheAdegenaracy

. to be the simule.



2

:

where the 2 ¥ 2 matrix L\i occurs twice on the Aiagonal, The

eigenValues of the above matrix are

- “V' A 2 P % .
tA = (M2 e 2(R e mR)
+ |pl

= helielity x D

\

11

where  » 1s the modulus of the momentum, Thus we ebtats the
simeltaneous cigenvectors of gnergy and heltoity, . Lt

We now diseuss the possibllity of obtalning higher dimenslandT

Pirac Hamiltentans from the hicrarehy. | ’

The charactertstic feoaturc of the hierarchy 15 the relatiene

shin botwecn tho dimensian of the Lematriy and the n

tmbedded 1n 1t., If  2nrl

arametors
Darameters are to he Imbedded we

need the 2% .x 2 dimensional matrix  Lesnsy | However, 1f

2ntl ~m  parameters arc set equal to 7ero, we have a 20 x oft

dimensional matrix with m parameters.  This can obvisusly he

a hlghar dimensional renrcsentatiosn af an Lematrix with mn

parameters.,

Thus 1n Ly 1 we set

we obtain g Dirac Hamiltontan of dimension 8 » 8.

From Lematrix theory we know that the clgenveetsrs ot

ean he chosen to he the simultaneous elgenveectors of

L |
5“3 T (/K—S " (83
L 7 - b L / L-‘S = d.... 5 i




i

% 4,

where 1:3 s of dimension 2 x 2 and i,5 of dimension 4
;lﬁ_: '}5 =0 L_g-takes the nartieular form

In the case when

./ C L
Lso s )

In the notatisn of the Dirae Hamiltonian

s

Ls = TF s ARG P rn b e
a7, 7,03 being the Puull matrices. Thus the algenveetors
of 1*7 era chosen as the simultancous elgenveetors of the helielty
onerator and L{?

. To internret the Latter, we write

61 o o
7‘ . L{f 0 10 o o {_7 (7)
L5 - 0 "L = =
. 5

DO o
ey Jo

Thus the simultancous eigenveetors of [ﬂ;

ahd Lxg-mre recognlised
to be the simultanesus eigenvactors of [:?

ard the 'ehirality!
operator,

w1t Yo S [ 103 |
(YS © whore rt75 = ) T= (1{1) (8)
¢ -y 1o/ C

the /%; notation being used to facilitate eomnarisen with the

familiiar notatian in elementary narticle nhy

aics,
The elght indeneondent eigenvectors

can he exnltcitlvlwritten
as

Uz) (-t ha ) 24 T4y

' .+
¥ (iéﬁew %gﬂ)'Zli g £ wit/ o) (9)
fN =)
. - _12
m_i - n”l’ ‘



ﬂj, corresnond to the tws elgenvalucs of hMicitv, = Q’ ta the
elgenvalues of c'hlra'litv and U(—J—j to those of cnergy,
Thé oi;wnvﬂucs A A and A\ 510 tha Tomatrix notation

are ralated to the p.hys_f_cclly .I.nterest1ng atlgenvalues as follows:

4 “i‘g’lﬁ helictty \.A[’
ZJIA;\‘ ehirality ff\;l. (10)
= -energy
1 ,
A= A e b A = 4 (Fm) = e
It is interesting to note the i stinetion betweon the matriees
(& le)and (|_—_F~ L.\/S'ﬁ The matrix ( 1+ 7‘/.5“\* 14 non~singular
and transforms the elgenvector of an LE., matrix with r’\‘f = O
Mgz to an etgenveetor of an: Lg‘ natrix vl th )4: pL
/\5"’: 6 - The matrix ("i"d-b'} 1s singular and 1s A v)rojoc;ctﬂn
operator; overating on the eigenvector of 1 1t vields the
eigenvector of 75" which is the solufion of the secnnd order
Dirae equation and not of tha cquation of first oxrder,

We can construet any higher dimensional Dirae Homt 1toni an

from i_)_m“ by setting
- N o S ) R S,
P, o Py A by Oa D s

AR TS y.y\> A/\.'"‘}’?—li S0




The o8 dimensional eigenvector can be chosen to be the simul-

taneous elgenvector of the matrices of dimension o8 « of

lhzrntz ijmqr | Lj?n~!r Zw?”4f

U R

=Y ) ) } 2n = 2t}
where
3 et} -
L 2 | iy Z—-’--ﬂ'fl
/ Z_,Zy:-a.lf
L 274 ‘ Lp. -
2.nr‘-f\-! = | N (12)
N
< g
and
Loy U
I L.—?rr\..‘) (\ jth_f - <Y f
- - Y A
Zd“;_ rovd | L_} | ()/ J;?m-f o ( 2ra~]|
(13)
s m=-1 me-1
where ZLQr%”, s a unlt matrix of dimonsion 2 x 2 ,

Writing for ohvious reasons

o .7_ < - f.‘
CY;(Y‘(\) oty :*L-»,N', (J



&

we can - obtatn the elgenvectors of the hig@nr dimensional Hamile

tonlan tqiw%l* to be the simultancous elgenvectors of the
folldwing matrices

'

N (Y5 (1)

\ ) \ T

/«3 : ‘\ {16}

(1)

RGN G '>
o ovslw2) /).
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HLOETRY OPERATORS ON 4 HIERARCAY OF MATRICHS

Allsdi Ramakrishnans
MATSCIENCE, Institute of Mathematical Scicnoes
Madras-20, INDIA,

5

# o ok
INTRODUCTION
In a seqﬁence of contributiongti?s3) it was shown that
the Dirac Hamiltonian witn its four narameterg Prs Py, Pzg I
and elgenvaluegs XE, 1s just a member of a hierarchy orf /f/

matrices L(2n+l)’ cnaracterized by the following praperﬁiasﬂw~““"“

s
L2n+l involves  (en+1) perametors-

N . e . n
o s of dimension g% .
2 L2n+1 is di@}n31o1 and

g)
Lo
e

/

2, 2
l:r-/(?\lfr.,o. AT

'L.n+lJ 1

o L]

where I  ig & unit matrix ap dimension 2n
-. ,\p o )

: - + L] L) n L] L] L] + n
AZXn “ ' Sonel

4. The sot of n JHantitlies tAj\I, j;j@o gona,ag;i/xn
‘ L] .

are the eigenvalues of the n matrices L

3. The elgenvalues of LI are 4+ where
h ig &g '2.1"1"‘1 . n here

3') LSDoalo»o IJ‘.-)

r.,l'l‘?" 1
[ -

) . ) ¢LD.' - “ -

and alsc of the n matricaes Lﬁm+% (m = Lyooveatl)  wikh Lhe

. , ¢
same dimension o \\‘




I, 0
el L penkl -1
‘on+1 entl y  M2mel P
0 L2n»1
L - I'L
or1 amt1 one] 3
L = L L = L
v 2m-1, g e | 3,
L2m+l ? I’5:' '
(1;
. 2n+.l 5 e . - 1 >y L o - bl £ 'f' 1+ el
L2m+l is a matrix with L2m+l repeated (n-m)  times on tho

dlagonal,
‘ noo, . . : . .

5, L2n+l has 2 indenendent ergenvectors, aach O

which 1s a simultaneous elzenvector of the above set,

The Dirac Bamiltonian is identified to be Lo setting

xr B = Py

Operations on the Dirac equation deal with roverssl of these

Ay = P =P . A =0 and N\ = M. Since symmeby.:
1 3 7 4. 5 M

f

narameters and the eigenvalue g their generalization Lo the
hierarchy consists in studying the reversal of the paraneters

?\lgoucn LY ng:f\

Cerieany i_[&ﬂ

and the eigenvalues A AR

a1

SOMETRY OPERATIONS

Qur starting soint ig the reallration tha* the L”w+l

is exnressible as a linear combination of (en+1) matricos

PRtisc | ont1

P




\ o

. -
The condition that LY 4 multinle of the unit matrix imnlies

matrices anticomﬂq{i with one another,

matrix that anticommutes with &li\@f tham,

that tha u{ There 1a ne

L

Let u be an eigenvector-of the set defined by (l)%

corresponding to a particular choice\qf signs of the..eigenvalues
from the set + A

37 0 0 e e
2n+1
ol

Wa fiote that

U 1s an eigenvector

1

natrix in which Ki

1s reversed and corresnonds to a reversed eipenvalue. In

familiar language, we say that W
and +
and * /\n

elgenvalues reversed by

/ . o
reyor'ses the signs of ),
a ‘

Thus we tabulte the patrides and the parameters and

L P .
LB

Matrix.

j
naversgl of Rgversal of

parameters glionvalue
ent1 '

" -

4 Ao LAy

p'i l Yl" / T .!_
/

; ; g ‘1 ?j? Ny AL
} _

f C
Thug a product of an odd number of {8 reverses the s

he alsen-
values and an even mushar ~f

AL T

,,,,, 4 ' does not., T wiare inhtereskag
only in the reverasnl of tha elgenvnlue s snd Aot the parameters )
we tan zat

!




?\3 = ?\5 - oY e r 4 4 4 = ?\2n+l O cé)
el 2n+1 2n+1
In such a case, the n-matrices JC s df cerrninael
5 2n+1
1
teverse only the sign of the elgenvalues
i A 1" L] L] L] - b. L] L] - 3 :tA n
2n+ 1 ,
where is defined as \(
2mt+ 1 v
- 2mr+ 1
2m+ 1
. O<<2m+1
| em+ 1
en+1 . R
a1 ‘ o(2m+l N
*[ v omt1 _1
- (5)
- 2+ , .
df being reneated (n-m)  times on the diagonal,
. 2mt+ 1
\
y Thus when we sot ?\3 = ?\5 T e e .0 L, = ?\2n+l = 0
we find that the set of n matricos |
o( ent1 )(213-%1 9( on+l
N 8 ’ ’ F) © a [ . . PR " 1311+l
-are  ‘shify: Operntors which take an elienvector of L2n+1 to

another witk one algenvalue reversod, Slmilarly nroducts of two
- such OC matrices  'shift! one elgenvector to another with
two elgenvalues reversed,

P

Thus we havoe




[y

'.k)u-

n) r1> n o )
+ + # 8 % 0 0 0 4 oo - bt] -
1 (9_ ¥ (11 oy (6)

7

it

'shift' operators which take one elgenvector characterized by
a set of eigenvalues to another vector with another set of elgen-
values, Each set of cigenvalues belong to a set/pf cominuting
. . . /s
matrices hoving simultansous elgenvectors. T?Md there seems
to be a possibilsty of assoclating a Lie Algéira with these

commuting matrices and 'shift! on- Patorgh
Vi

APPLICATION TO THE DIRAC BGUATION
k, ' _
de also recognize that in ﬁge case of Dirac equation,

. .5 | .5 |
SR 5C 1 =~ :\/X’ c_?[ ) = =g ?rys O( 3 = “Bb/z
QLS Eo-B Y 5 :74 > = 8

setting

3

reversocs

5 5 :
aC_: 9< = qy Teverses P

—~

W]
PN
=

o
N

I
) - .
- lTaverges
S =

raverses

=<

.
W

tn
J
<
|
Ay
3
hY

&
JQ\ v
€ on
I
}
o
~

o( R {% reverses R ()
/ : L
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1. INIRODUCTION

In a recent notel (hereafter referred to as (R) by one
of us a hlersrehy of matriees L‘h1, m reoresenting the naumber
of parameters occuring 1in Z,ﬁnls Introdueed which oontainsltho
Dirac Hamiltonian as a narticular ease, These matrices can he
exvressed  as linear comblnations of mabtrix renresantations of
Clifford element32 satisfying anﬁicommutation relations the
tarameters being the eoefficients. .In obtaining the hlerarchy
of matriees ﬁlph‘,in a systematle way, a o woneration is
de fined corresnonding to the introductisn of two adfitisnal
varamaters,

In this‘waﬂer, we study the groun theoretieal slgniflcance
of the hierarehy of matriees ahd the -oneration by introducing
a groun ealled Mrae groun G(m). For that, given m C1i1fard
elements S\anj hereafter ealled Dirae onerators, augment {“Y;N}
by two more elements T and B .  Now making use of i}EJE'J {};m} j
as generating elements, we set un the groun3’5’677 G{m) whose

—

generating relations are lf 5; = “‘Idf'i"jlﬁﬁénd -~ 2
Now obviously the well known theory of group renresentge

fions can be used In setting un the matirliy renresenta-

tions of Clifford elements satlsfyling the usual antleommutation

relations through G(m), In nartiecular, we make use of the

* Published in Proecadings of Matselenso 'Symnosta on Thesraetical
Physies and Hathematics!, Vol.8, Plenum Press, New York, U,S.A,
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Mackey theory of induced representations in setting un the

Fepresentations of the Dirac group G(m). Zince the Dirac

skoup 1is SOlVabEeg, the Mackay theory reduces to the little

group technique and enazbles us to obtain directly all the

irreducible representations of the aroup in steps. The TwOnera-

Ction ig found to be ldentical with this process.

2. IHE ;Dmxc GROUP

4s in paper (K} let us introduce s hie

rareny of sguare
;matrices an 1nvolying m

independent continuous parameters
‘ : 2 .' | ]

_,-/1‘,_1,“‘.,.2 A .. such that ,\

!

¥ 'y'l_ e .‘ s : i

Lo = (N the e nn)I, (1)
Obviously, Z,rﬂ_ should be linear in each one of the ﬁarameterqi
and can be taken as '

| im:ﬂg// “*”IA""’““{

m

Ao (2)
fwhere df; are the 'senerator matriceg) indenenﬁent off tha

arameters. WNote that the dimension of the matricos Xf 1s not

yet snecified, Now imvosing the conditlon (1) we note that the

AC¢’ satisfy the antmcommutatlon relatlons

(“’if'/f 7“4j) 25,1;1

(3)

1
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From the nature of the relations (3) it 15 obvious that._lff-
can be locked unon as m Clifford slemonts L and from (1)
and (2) it is obvious thal we are considering their matrix
representations, If n = 4, t 6{? are known ag Dirae

| matrices, Hence, hereaftor, we call 5{/5 s in the general

i’
caso/'aiuo Dirac matrices, which when irreducible, are matrix

ot

representations of tho Clifford clements. [ﬁgpce Dirac matrices

abe.alnlx representation of the Cliffopg cléments Tor thoe

Cage  m o= é.jw To motivate the study of the Clifforg eleménts
in the ’Lnqul case when m # 4 we gpive another instance?
from nhysics where thev are of imaortance,

In quantum field theory one froguently encounters a

set of operators (, a, S < Y S &, such thot
Caisa),= 16,47, -
[al o 6_} j_*

b ! . . . - .
where < 4 and A 1 are calied annihilation and creation

(4)

operators. If we now fora the onerstors %Q': - /u and
d 3

ﬁ% :aa_/a,‘-‘é; ) - then we have

e =[ep] =20, "
T4 8L 5 |

Now, let fza - ,y;;w/ A 5-J/Jz- .. Then collectively
E‘JCJ; where '4‘:/J3,.q:/'221 satisfy the anticomﬂﬁtation Te-
latiohs (") Hence the study of the rppresentation theory of
Clifford elements satiéfying anti-ecmmutation relations is of

basie impnortance in physicy.



e

In the naper (lR ) the representation matrices of the
Clifford eloements arce obtained by matrix methods in a syét@matic
way by introducing a owoneration. Thls note ﬁas nmotivated
us to study in detail fhe mathematical significance of the

o=operation,.

Consider the set f Ziﬁg ~of m  Clifford elements
and augment thenyby E and T + Now define a group with the
generating elements i ?,,E, } Yﬁ} } satisfying the

following generating relations

Y. o EYLE
'Zb :.YJI = E __\’/J. :;_/‘t.'

Obviously, E 1is the identity element of G(m) and as the
order of each eleaent is 2, all the elements of the group are

o \} J ‘/a-.‘-, V‘w ’ i
dven by F U Y V.., v whers eaech J i1s either

zero or unity. Its order is 2™ . When m =4 ne
fIQQ(i}correspond to the Dirac mabrices when | = «l. We call
G(m) the Dirac group.

G(m) has /%~2rﬂ wvhen m 1s even, or £?¢-2”1 when m
is odd, eonjuzate clagses given by By, &, ¢ A,‘Ef?) for all
Ae Gim) ang A L £,Z when m is even and E,E,f.fzw)/

) E 3., )(A;;:ﬁ) for all /‘4‘5@/*“) and

. - phen mofs oy
A o+ E £, Q| £ §ﬂ¢'\x//f“respectively.

Further, we can establish the fallowing vrepertics
regarding G(m) very easily,
(1) Every subgroup of. G(m) different from [ contains

the normal subgroup Gy = ? E,E'f - and hence Coy is the minimal




purn 1 ostrL oy,
erf/:-) 1s the proper meximal narmal éii"\-gztiauf_g-.h%“

G P+1)  and Cf’/r”"*’"’)”'/(f(b) s a factor group of order 2,

Hence, consldering the compasition séries |

Glm) D G/"””f) Seve DG, O E where ecach factor

group  1s of order 2,it follows that G(m) is a solvable group,

L 4. HEPROSENTATIONS OF IWE DIRAC_ GROUP

B To set up the matrix ropresc,ntatiom of G{m) let us
apply‘ the Mackey technigue of induced representations to reduee
c-(m) with respeet to the normal subgroup Gy The oheedimensional

—

irreducible- representations of Gy Eare glven by /_ £ -5 %] when
specii'j,ed through the generating alement E of Gs. The orbits
of the representations of Gy relative ta G(m) are /. and /_
and tneir stability groups are the same and are given by G(m),
So the representcxtions of G(m) fall into two elasses those 1in
Wh]Ch - L and o - Z as the elemont B commutes
with all the el("monts of Gfm) and E7Y . .“‘»\E . f
Class 1\. Consider the 1ndueed rnpresentation r 7\Cr/m) 34 G(m)
induced from the representation /7. of Gy with respgct t0 ahy'
cosget decompasition of G(m) with respeet to Gg. From oquatiorr
(2) it followsg that every matrix corres mndirzg to an arbitrary
el-ment of G(m} commutég with all other m'ztribeﬂ rorrmspending

to other elements of it Hence / 7' (i/m) is COmplet@]y reduet -
ble, to one dima\nsional\Irepresentations in whiech, as the |
order of e¢ach }’: ls Jc}wo the matrlecs eorrespending to Y: are
given by ¥, » j,'/!"-. Thétse representations are 27 in number which
18 also the order "of'the factor group G(m)/Gq. Henee these

are the only possible represgentations of G(m)_\i‘c\which E — L=]»

j \



G
Class 2. As there are /[ +2™ (& .?m) conjugate clagses
oi‘\\d(m} when m is even (odd) there exists ope (two) more
non}uequivalent irreducinle repregentatlian {5) of C}’"/m)
of\g}imension- greater than one. When %1-2n (say) we designate
159 A7(2n) thereby Lndieating that 1n 1t & -7 .
Now hiaking use of the completeness relation we find that the
dimension of K’-Y(ij .is 2’,‘/.

When M -2nvifsay) Y, Ve Y o 3 commutes
witf; all the elements of (?(m) . Hence the matrix correse
pondiné to §m In an irreducible representatien of Ce/m )
iseit ‘v &7 - or -AI sinee S s BT and 4 i/f} |
if » 8 odd/even. ) Henee, only tws -mn-equi*:ralent irreducinile
represeritations of dimension-greater thanm onfac\Zé;cviS't and they
should f(eces‘sba'rily be of the same order, We designate them
by ifi; (2nst) thereby indieating that in them Epo = AT
and E P~ 4, Now making use of the completeness relation
we Tind that the dimension of .Cjﬁfé’*"’-’“/j is 2)2 .

By .'-fthek'Maclkey theory of indueed representations /_\: /Zrl)
or A~t[2n+r) should be obtained by redueing the induced
representatisn [7im )= VAR G-‘/m-) whase dimension 1s
same és .tLe order of G-/G:J and is given by 2"“ «  New,
obviausly, AN (2n)  ana A.t_,ﬁ (2n rx) are each contained
2" times in /i (2 f’l) and [/ /2n -H_) respeetively,

1




5. EXPLICIT FORMS OF /N /zn ) AND A, (2n+1 )

Consider ths compositisn series

Glm) DGima) Do e

[

terminating in (f . In general it 1s diffleult to reduse
/- /m) diréctly. Henee, we apply the Mackey in steps through
the eomposition series and obtain exnlieit forms of ﬁg(é’.‘.n.)
and [.l—;(‘;ZrL wH) ]
Now the orbits containing the representatiens {}:/f)
(' Z;:L (,)) of (i) when + 1s even (odd) |
yrelative to C—}(’Z‘,,) are glven ﬁy $ /.‘;:/t')f, (SN (6), A 1) 5)

-

Tor when ¢ is even,there exists only one nonequivalent

irreduci'ble representation of G-;’,) and

e NN

Y .., should
transform A (7] inta itself as 2/;,;., commutes with T.

when 7 1is odd Y{ y Sz, )”z-r/ - £ §-L- and 2, Ak 7

in [{i {2) , the two revresantations ;(,f/ ,,/f_t /<) are

transformed into each other by Y o

i

When ¢ 13 odd the dimension of the induced represanta-

- . N LS Ll
tion Zl¢ 2y, ’?’\(,;’.j/-z,u) is2f<¢? E whiech i3

algso the dimension of A‘/a’.';—/) « Further as V‘,‘H

commutes with E, in the indueed representation A‘} /i) ’f\[;/H;)

—_—

the - G 7 .+ lenece d‘f’f’i/ A Cf/fhw)

1s irreducible and must be equivalent to the representation

Ah /zlw) . Now maklng use of the coset decomposition

: '_G',/ vr) - (J/t) + /}1,, (j%/fz') the induced representation



‘whic.h 1s now 1dentified with N f) 1s glven by

srer: Y, oo, e

z ’,J"'_, -.f‘
Viet = I @ o (6)
/ 3 . Ty
whers rf“/ :7{ P ,,) and{\ Ty I ,L,-f) , and I 13 a unit
) E -1}/ ’ dng b
matrix of dimension 2. %, Note'the above representations

AT /4‘4»/) are speclfied by giving the mabtrix remre“sentations
of the generattng elements of G«'/.f;{;) . When 7 is even

from the above di scussioanithout loss of generality ,/.""[;_‘)
, L ‘

can he taken as ’ :
. C . N ’ |
AN /4) " m/),\w—n—?a(y@n“f Voo l,ver, ey
,2/ s L@ 7 (7)
v ‘,l .
when 52 . Since the ) 4 antieommute with each other

the transform cf ‘_/_}‘\_:'/4') sy f'ﬁ'” is gliven by

]/ Y A7) ,.}/z‘f / : 2/ v ﬁirég e )

(8)
Voo TRi-6),




-0

As f{',ﬂ commutes with E and there extists only one non-
equivalent irreducible revresentation of G/,’), with £ <>~ T

- - (. - oy
,j_’z‘“ At )]-z,a/ | must be equivalent to N/7)
Hence by Schur's lemma there exists a nonsingular matrix S sueh

that

I’

S KD Yo, K16)Y,, 8

Obvisusly, § should bhe of the form L & o and ¢  sheuld

anticommute with T and e Henee ’T\; ts given by

1 ( 10 “;) +  Now-# the two nonequivalent representations of

G(1+1) )

Yy o L

.5[/; - LW ﬁrﬁZ..

yJH/. “?f- Z & G:?: : (9)

/2 - _
are of dimensidn .2/ and in them £ -5 ~ 7 & 7.+ As
Gf 40 ]) when 4 1s even has only two non-equivalent
~ 3 4 v /o

irreduc ible renrescntatlions A+ [ *") of dimension 2

they must be equlvalent to the above and hence we tdentlfy

/Si Ty ) with them. To complete 1nduetion we note that
when < = O the relevant representation of (G, 1s given
by Z -> =/ anf when 7 = / the revresentations {yr//j
of (, eare given hy £ - A, Yyor o Not?a{}%%ly the representation
&;fT) : Y/ =/ need be consldered 1n setting up the

representations for different C}/m/,;i .
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Now obviously from (6) and (9) the renresentations

AYQA,),/Z};{)nm) are given by

)// = T 8T e &) < o ol

o

Ty 5 70®... @76 ~ &= - o - oL
N e e
4= /?Pf e P

~,

_%/2}’41 DT @ e s WL @D 70 s - AL 2+

—_—

with n terms in each product. When m is odd YM should he

taken with & signs to obtain /_&l (g,w,) .

6. THE ¢~ -OPERATION

.

Now we recover the ¢ -operation and fimd 1t identidal

with the above induetion procedure. TFor that we write
e

- ()
“/"M. = 2 O{’ ) 7

haty
3
e

when m 1s even and

- ™t .
(75 LA L 2,

hn ‘; . 7 ; -

when m 1s odd,




~1]l~-

: , : . / . :
Now when 2 1s odd multiplying AgA in (8) ny )wy and adding

we obbtaln "

- 3 . — e
Z..- L4 = E: J\ . 0[( > @ O‘"; o h Sa) L (3,/\ o L
Y=/ :

L@ o da 160,

Sinee 7 . is even from (9) &ddipg™) ~~°1 - + 1 T o
: 44T 3

to be above we obtaln

g

e )
L ‘49 = L[: @C'/ i CJ')( /\11'4-’ O”?_ #~ /]L_i_? f;r_z)

g

This 1s the abstract form for the T ioperatitm., dbviously,

s '
the form of Z—éqﬁ dependd on the matriees used for the 74
which anticommute with each other and the square of each 1s

ldentity. Tor example 1if we use the matrix representation

B (0’?) s U, -/’05)1 Ty / f() ;)

{11)
uéed in saetion 4 we obtatn —
, / 7 : (e = A, 4,0
L
i ) | ‘ .
Aﬁ.")‘?" ] (A’f} ?‘LI j]t."fz.)—?—- ""Z.-'



. -12. ‘ :
But 1f we use '
. VA ER 0 - : c S0
- : e ,
#7 K (,fd I P > Y3 1 [ o ~!/).

y

obtlained Trom (11)Y by a simple permutation of lcr”',a we obtain

1

taking o = 2n -/

, . . * |

Fa AR Y. A L Ah—y =8 /}m.j
/ P 2. + . .__ _

"Q'ﬂ"+! . L s 14 yizﬂl +~ /12}!.-'#/ I
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ON_THE BELATICN&H£° BEIWELN T9F L-MATEIX HINRARCHY
ANﬂ AHTAN SPINORS ;

Allaif Ramakriéhnan.

[y

In a series of papers the strusture of & hlierarshy of
Lemgtrices was stud1ed &y the zuthor through the eﬂgﬁg valles

i
ghd elgenvectors of pu¢h natrices cheracterised by the propsrty,

2 2, ﬂ , 2 -
Lf&,"\"l’1 ()\“1 -+ >\ o e ;)\‘Q‘;\,q.?) I = ’/\‘YL -[- v

o/
the A" A and /\ belng eltner puse real or pure ilmaginary,

and I a unit metrf of the same aigension asfan 41, The natrix

LQ¢L#4 involves {En+l) real parsmeters (since purely imaginary
: . 'u’;"

parameters ecyn b% written as 1 tlmes a real sarameter) and is

P § : .

r}

. ‘ g NN ™ o b . '
of dimemsing & X Qﬂ o WNE Now ohserve bhgtb tHWQ theorylus &

;
close relationsiifs to .. Cartan’s theory of spinors. Before
|

establic hing suei a relationshiyp it g negeasgry to understand

hy Cartan in pid celebrated formuletion did pot include elgenw

alues and elgCh"ector in deseriztion of She struciure. On the
ther hand, he ushd the condition of isotreny defined by

ST o S PN A

1
B . -l N . . 3
hd asgsociated withiench Icotropl- vector with compgnaents

A . .
xl,xg,qq.ﬁxn) tain nates 2%, CAas getumns of whish ure

o
|



-matrix theory and Cartan's theory of spinors eaen be establi-

Shed as soon as we reglize that the 18 “ropy conditioen sk be
- rewritten as

2 2 X 2
X‘f"“}"%z")'"“‘*“xin.;ﬁ- %27’1"‘"“

¢ odd, Welthen make the following {dentification

’11:\.)1 5 2’«'_-‘:32.;:"--9%2“:.;\2-,'1.

but ?\.'l’h-%-'i :: &

us in Cartan's lheory w’e are deallng with the case of

u{ated" L matmces, i. e»,l ohe

"uinsa-
of thé 3n+1 parameters of the L=

matx&ix ls set equai to zpro. The 21’1-4-( compenents of the veetor

are tnercforc the Ar} barameters and ‘LAW where An is an

\,
a c~wLue. To iden\:li‘y the X Matrix of Cartan composed of

Inors \w’re proeceed 3\4 folILOWSg We write as postulated in the
mat rix tﬂgory ‘; 5 .

N+ 1 1

_ | 1 )

‘ Cbangdy = Aol

s ) 2041
b=

3=

€ unsaturated Lin metrix 1s ebtained by setting Aaynyq = 0



fe. g s _ 0[1271-}*1-
le€. dropping the AN in the linegp c?mbi;nation. If L_

e
is at?tained by a " g -operation" on L;,M_, and defined as |

-

P A&nI " A T

+1
ofén “ T o
AN o -1

here 1 ds g unit matrix of dimensieon ;z'“"* X 2““1 In

carlier work, it was proved that the U .m,at;pix with its ~olumns

i+ a0 he written &g

~

: o am
U xg L‘!U‘Hrg + -/\n =0L

X 2p+f

® Ceften metrix X is then 1deptiffed to bes

4! ':ln rf 1
X ‘ An+T
_— 4
12 4 L R
= L-Q-n + 1

n 7

is 13 Just—the patrix obkained by Seelng X, vy LA
: . S ‘ L




!
: 4 ]
' |
] f
in tk'}e matrix

Lopes with the condition that
\ |
\ ;

.2 2 2,
n = Aq + A2 +."' “+ Ao

 ttn 1s the etgen

~ralue of an unsaturated magtrix with
AQTH\f : O . Thus khe Cartan theory of spinors is the theory
of unsafurated Lometrces,

s

the elgen-vectors being 1dentified gs

nd the par}ameters together with 1An, as the

Lt

Aciua,lly, an unsaturated matrix ean be defined more
nerally i¥ we reslize that the o

~operatien on L

opey can be
lone in ene &f three ways,

l.e., by raquiring that any ong of the
ree parametars Ay A2, Az » in the matmix

Ns Ag=12g
Lg; -

‘ M4ty =3
.

b

1
a.be replaced Wy the matrix I_‘“” ead the other twe parame-
) l-\._ . S ’ '
\1\5 Yerlabelled 88 Mg

and Any. 4 attashing the umit natrix
t 1
themy  Thus, thé matrix cC;: 4

. cgnh have pne of the
§ |

. © D I 0 i1
[d.f\-w?[ . {I oJ o
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The form of the eigenv ;'e;tor of L.M—M depends . “in way in
which the o ~operatiof is performed., If (y 4 wo arbitrazy
-

] ¢
vector of dimensien and\ W defined by

A
\

o

sz-—f ~ 1 Aan d

Ay = Dams

Q),

-
enls,.

d . l". .
Then' (w) 1s an eigenvector of L‘Qawi iglined by replacing

)l; by Lg?ﬁ”,, in L‘g « If on the other hang \we replace )\,3
\ ,»
by LQ,M in L3 y then w' should ve defined gg:

’ AQMI“ZLQw-#
o = - w1 W

_A;»r A2y +1
| , ' \ |
if an+1 18 obtained by raplacing )\5 by L’.Qnd in L3

!
then O should be dgefined by

/ Aan SR AL YPI
{u) x — A Y
Arﬁ T L27’7+1

A |
‘ = 1s the <uverse AnI =~ L .
on-+ 1
Aﬂ—r* LG,;.{ ‘

For the unsaturated g se c;f L3 we get

W o= A 1)\..5.'_w LYY

o

w2

———— e
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'
which 1s the femous rp

atio of the components of the Carten
‘spinors,

We also bbtain the more general result that if “1s

i /
ah eigenvector of L~Qﬂ~2 and then (ﬁi) 1s am eigenvector of

———

.szn if w' An'—%" i Aar

iy

Lo nyn

We shall now shcw th
veetors of L.

ti

An,_,"“ilzn
Jﬁnmi“#i'ifﬂ

at this struoture of the eigen-
an enables us to gss

oclate g Lie Algebra with a
set of mgtrices sultably buist eut of unsaturated I,

~matriceg
and thelr "saturgte pt

dC ~matrices,

A Saturasted L.metrix éxpressed in terms of the -mat -
Tices gs

a4 :

1
LGﬂ ":;1._._2, A oczn*f

tan be "desaturs

D(ZFH-?

an 31 in the linegr combination to obtain the unsaturated

tedt bywsetting A27%+1 = Q0 1l.e, by emitting

atrix LGi.e.

2n /
L=

2n+1

271
f\gbvious Teasons, we cgll
}

as the "sgtupptop™
N o




We ngy define a sequence of n unsaturated
‘ 7
natzices of dipension 27 x.2"

L(nj 8 Ltrhﬁﬂ — | , lLQ-n—-?. O
= vi 2 -
in “ " O 1__2}7_1

L
g O
L(f) _ L,
Lm - )
6
The &imaltaneaus eigenyeqtors of these n~operaters are
_eomplately determined through the Cartan ratio. %
A—fqu - >\2m
s dyn

Fhe Q,h
gat of &i&;!, .

S

* i“‘-ﬁ-,-'.:.l,,f;:-‘@;,ﬁ?i“ An-— R L R A

If we def e vie wmatrlces

;_ﬁaitan@aus eliganvecter 1s characterized by the

s

betwe@n the twg halves ©f the @igenvact@r off ln;vu(ﬁﬁﬁ'f)

k

¢ ﬂﬁ.‘i? 2N+ ‘
"1‘% = "[zru.i ?
P s
N1 Lomer O .
E_m = o(.,'l.n--1 (Of’?.n-{w;) ,
o 25~ 1
mo nsl 2m+2
ﬂw1= A 2m+ 3 O
Lyna o Ny
DFQWH{ £2m+3
ﬁ * 1
L 0 0 g,



Lma+ | 2y
PU - VWLt OC
ol | 1s repeated R times, T3
. ! LAV SV
ls repaated 2

times on the dlagonal. We observe
Yvw

that n_w“J

operating on an eigenveotor reverses /\ withomt
afPect,

ing the other parametars or eigenvalues.
. , | A
Products of ¥ of these || - matrices revergy” Y

elgenvalues in the elgenvector, Thus the total mﬁmbgﬁ_pf\shift

operators is equal te

! Y '}'Lc. . YR
-+ v,
1] Tl Tl

+

i

i

i

Thus there are n comwubting operaters L“zv i/
! ‘ /’ /

ey : :

and % ~ 1 shift operators in the Cartdn canonical form

7

of the Lie algebra.
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This leads to zn '"unprecedentedt 1nt€rpretatlon of (7“

g (32 25 the members of a Lie algebra in which 673 is_ a

shift operstor snd

i

MO+ Moy = L,

7
the matrix which hgs two elgenvectors
.y Ag— 22
) ! )l,g, and /\ f £ A2
s
orresponding to two elgen-values ﬁ'JAl whepe

2

¢ number of "commuting generators" is one, The number of

n
1ft operators is glso one, since 2 - -« 4 for p=1.

In the conventiongl stmicture of the Lie algebra of the

i spin matrices 0%, Uy, 67z 3 "the commuting generator!

L _ . : y
Of& while Cri:-~§.(tgt:tt(y%) are Hhe tw? shift operators,
ontrast to this we now Reve

‘onal Cﬁ% iz a

» Lie algebrs inm which the

shift operator while the single commuting
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enerator Léz is nSn,diaiinal and involves two continuous

1

‘pargmeters Ng  and Ny o

As regards L“4_ we have the four eigen vectors:

: M-t .
/i/&fl)‘zp ;/\1 A —ing /\;“‘At}\..z_

—+/\, A‘M1Al 9 —~ A\ AT”{AZ
2 v A 2 + A
e 1 —_— 1.

t is ¢o be noted that the operator whi

,
h reverses j\1 is‘a

and dC;4 . 473

\ -3 \
roduc }and two matrices ( Jg O

: -3
eversegkthe sign of ./L1 in ( A1_.£2K2_ while “ﬁS rever-
" v j: .z/\m 1

€g the sign of A4  and /lz which 18 equivalent to reversing

he sign of jX1 only in the term (i:l«“1~~f )ML) .

We now obgerve some s¢ 2y interesting features in the

tructyre of the Eigenwectors., If a and b are two arbitrary

a (/\1"{)\2_)
_umbers we note that i_[\q "1s an elgenvector
b (JK1—i§X1
‘ A
f the matrix L4, while M- ina ($)\is an eigen-
. B N
A ( b‘) ~

o+

ctor of ng (%) ¥ . This implics tha
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re¢ the simultaneous elgenvectors gf "I G@ L_g(?qjﬂgﬂﬁand
Lg (f{h Hﬂﬂ(u3) QD T + It is clear now that if we replace

,f*1gby zak1.and reilaboel “2 as ,%v$ and h4‘1 as f\z-.we
, _

btaib the simultaneous eigenvectors of 1 € L=

1

and Lm4_ .
| . i \
This implies that the elgen value J\d of fﬁz is telescoped

to the elgenvector of th_ , while in the cgse of 1~3 @3];

» the elgen values arc not "eoupled!,

We san now define an operator (Lq3C@ I+ Ifébl*B)
th eigen values f&14ﬂh419 =AMy N~ My y Ay - My
we Set ,"{1 :: X; R /\‘2 and M,] o A,] , then the
gen values reduces to O My, 0, C - 21k1 , leading to a

..... when the matrix I

suitably reduvces,

These considerations csn be cxtended for the higher
menslongl Lemetiicew,
| The eonseuuences of these methematical results will

~dlscussed in later contributions,
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A _GENPRALISITION 0% THE T-MATRIX HIERARCHY

Jf\ adi lu(,\.m(,l.l-‘”f‘{ '.'f‘]E;‘l,fb’
R.Vasudevan, N.R. Ranganat}an and P. 8. Chandrasekgran:

| ' 1) n
| Racently ohe of the authors (4.R.) devised a method

of bui&ding a lisrarchy of what he called lematricas which have

s i » k \ -
[j 2-' ‘f,_l = ( ‘f\’; ;-}L 1‘- _/\ 4. ‘4—' e /‘\ 2..3'\, *‘/} l
WL '

N
-]
N

shere the matrix L, eonvains “Cnell parapeisra A,;AlJ'°' Al

¥l I s a unis metrix of the rars aircpsion The

B B!

structure and the frnterveistions ancng Lhe elgonvectors of the

verarchy of matrizes were studied ip ad

C.'-

e l.-c ..LJ. ahd .:.t was pGl

t that “he Dirac Hamiiveafan 4 a mombor of Lhig nlepyaruhy.
If wa rall
‘}:g o

hes skowa in & roceny centrivulinsn that it - pessible

genraliue the CLifford coudivion

P ona the UHLE0Ues cond? ‘ticn,

s

Morris

wix the Lematrices by raquis

\. o R . .
g that m-th power oﬁ Uhee 0omooly ts a product of g urty matrix

d a number 1.a.

3

.:
[_m ) / N LA R LA !
g T \ 5‘\;\ + /\ . /'X{L'\ "y T =A " { 2

, . i b
8 dimension of the mateiy Tow, = L3y, M

1\r_g r]”ﬂ FOREIPS TP E VR H A .
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obtaining exvlicit forms for the matrices, their eigen values,
elgenvectors and studying their ihterrelations. The extension

to the case of general m follows directly, of course taking into

account the difference in the fwrms of L-matrices for even and

odd m as noted by Morris.
The primitive L matrix obeying (2) involving 3 varameters

combination
1s a linear/of three matrices derived by Morris and ean be written

a8

AS AFPQAL v
s e
A= © ) At @A +
e 2 (3)
. 2
/\\4-/\2 < u)/\g
Here @0 denotes the primitive cube root of unity. _
fen

The corresponding matrix for the usual Clifford condition

e, for m=2 is=

.

\ .

(4)
/\|+L/\2 '"'/\3

We do not bother to aitarh acditional labals to L-matrices
 for indicating the generslized Cliflord condition since tla

distinction between the varinus caseg wlll be obvious for the
eontext. o T e = !

- b
< Coof ity



]
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The higher dimenslonal L-matrices were obtained for m=2 by
prescription known as the G ~operation wh'oh consists in
replacing any one of the tiree parameters of the primitive L

by the matrix Lop.q and relebelling the other two parameters

as,ﬁznand /Xgn+|eﬂxie¢tgching unit matrices of the same dimen-~
sion as Lop.y to them. Thus starting with LB’ we geaerate Lo 4
by the G~ -operation.

We now wish to poirt out that this vreseription can be

adopted even for I matrices obeving the Clifford cordition, For

L3 defined by (8)? we can obtalis Lo,.q by replacing any one of

the three parameters in L8 by Loy .1 «nd relabelling other para-

meters as /&Zﬂ and ,AQVL*‘, tn particular ws ecan define

; | 'y - "~ ‘\
L'ﬂ_;qw! (f""iv\,w‘b/\zmﬁ—l/} _L G

L
(/\QP1+/\ZFW+-I}I O - et

The matrlix L, giver by (3) has three elgenvaluos

J ant A 7oy whare
‘(! ) ) /f;-,‘,j (2) | 7 ,A\ , (‘_’)_ fx

2

N o (o Voo s
!U) = Ay A2 s AV RS VARG EESRATR L
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}

A

- “
txthe elgenvector corresponding to /\,(P 1ls
: r

- ) - V . la ‘
- : ; (7)

e third component of the eigenvector (7) Fan also be written

(A‘*'A2)<£,(()hﬂ;@iAJ);

i

Sirce we know how Lop.i 4o generated from Lo, we imme-
| * -

\
.ately recdgnise the structure of elgenvector of Lopp1s If
. 1 ° ’ )
an arbitrary vector of dimenslion BH"L,.then the vector of

mension 3% defined as

wxar' ; O
; /\ “)Jr L:uh-'
2 RCAN oY
_Jl,\ . Ao 0 Auyay
. L At A
) - J A
R A Tt L
\ N ey an-1

{8’
3 an slgenvector of Loy with.elgunvﬂlu%s /\mﬁi) Wisr e



Wl

~
Tt

3 3 C. Ly 3 Ry
D+ A Lt A sn4; T JVn  and /\n{"f“}"‘i‘swany"mzewof the
hree roots of /\7{9 .

It 1s to be noted that the rabrix Lon+1 has only 3

lgenvalues Am 3 (D Ax and W*Am bt has 3 elgenvectors.
s degeneracy amohg the elgenveators 1s obvious froun the
rbitrariness.of the gh-1 dimensicnal vector 1 1in (8). The

~matrix or the matrix of elLgenvectors can be expressed in an

Gant form as

o

. 4 3
Y= ( L‘;..rw{" LA NM) | %)

e ra

ld e L L) 1‘.)
| ./ \- P & J A i ’I‘: O
! £ W o L
Ll

\ (10)
or exemple the Uematrix ﬁr;fz‘ Ly Con ke written as |
L 2 Lo '\.r'.'s o ‘ y!

3 e ’\3A|+At (/}}‘1*" ‘)/\&, .f\b\)}'\r“") ‘\f‘\’) ‘G\f"{' LO/\-Z._) {’x:"‘i"(;) /Q) \
: ; '1- : i N 1 L \ w -

A ( M) (AT e, ) ke, (DA \)

,*AQ_) C/\ R tu,\}\w\: (/‘ | 4 A:‘: ) kf A e, A2> 1A ( /\\52‘,“%“ /-L,/\; A i9h

(113
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n .
The degeneracy among 3 elgenvectors can be resolved by

‘ B n
following the procedure as for m=2 ). We find that the 3
olgenvectors &f the matrix Lo,,q can be obtalned as the simul.
taneots eigenvectors of the n matrices of dimension 3"y,

_ L | -
[ | L :

a2n -]

LGﬂj Lono, poeoe e

L’ly\«-i i L
L

(12)
rresponding to the sequence of elgenvalues bf these matrices,

As in the case of m=2, we can obtain the ‘*unsatursted

the case of Ly when we set )g};; 0, the ¢igenvectors are

1
AL ) .\
/\;"-i-'l-b/\z_ / \

LOLA'{E)

A,

@,ma@)(ﬁrgmAJ

: (13) N

=9\ “wr‘it.e L3 = /\; 5@: + )‘zfzﬁ"*/\g-\o\éa
- C ‘

f



. B
where the matricesdﬁﬁﬁgigare given by )

f 01T 0 ‘ D @O _ L4 6 0
oo ;Il: o o owt |30 0w,
1o I o © > O

| (18)
hen we find\that;i% asts as shift operstor on the eigenvectors
iven by (13), le.lt takes an elgemvector with eigenvélues“.ﬂ, (1)
W Ay [} In the ease of the gquadratie €lifford condition,

he symmetry operations eonsist of reversing the parameters and

he eigenvalues. Here the cofresponding Operatidns Involve g
ultiplication by ,p .

The extension'of these conglderations to the case of any
eneral m can be made direetly and e.g. the U matrix corresponding

to L takes the Torm

!

=1 -2 Y -
U=L +0 A+ AT (16)

erea

AT

A AT -

A )T




8

and /\‘n}'))"'i /\xﬂ)are the m;th roots of /\:1 and I is
unit matrix of dimension m™~t.

However, important differences arise between the
quadxatic and more gencral Clifford condition since the anti-
commutation operatién involyss': the multiplication by a factor,

¢ ,orbymultiples of Lo and not Just by -1. The :
similarities end differences will be disucssed in a later

contrivution.
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L-MATRICES, QUATERNIONS AND PROPAGATORS

Alladd Ramakrishnan
MATSCIENCE, The Institute of Mathematical Seteneca,
Madras«20, (India)

H ok ok ok

Wo eantinue osur ITogramma of studving the sarreansndones

betweon the Lenztriens and other known systoms asaneiated with

*)
‘multiple algebras', In particular, we shall retate the

I-matrix theory 5 the coneents of quaterniong, thetir goanepatt

tions and to 'nronagators!,

LR
An Lematrix of dimension (2B x 2f)y "ovolves! 2n+t
metors % , ?]2 )r>3 vems Ag g (0lther nure ranl ap pupe

imaginary) and satisfles the econdition

NArA-

L,;Qﬁ*i ( .‘/\1) X.Z y - - Ty AJ;-‘H l) . (:Alz -]l }j“" | /;\ N )_T

RS
= ALT

(1)
n
LS has 27 indevcndent oig@nvmctgrs, 1t has only tun

igenvnloucs A AL« Inoa wrevions contribution we defiped g

CL’\‘ - LJ\"\J\ -t ;\_T
(2)

Multiple Algebras', first invented th the ninntesnth eontury,
note Tolzebras requiring more thon ane teorm fap tha snoel fen-
lon of the quantity'. Far the historteal srigin ~f multinle

obras, ser R.J. St~shenson, Am, T, Physg, 34, 194 (1966), A1 frad
ork, Am. J. Phys. 34, 202 (1966).



o
whoreo ;\ ls an arbitrary naramotern,

The Qematrix 14

Nonsinenlar
'__ZP .4’& LA It

OXCEPY far the enge 3 ean bo axnrsggeg

1ine sy combin twn singular matrice

a8 n

ation nf the

] L_zﬁ»ll :}‘ A J-
Ir”iS

=

- - ‘ A4 A )(f_ snay Ty j) o '
N ;[[/\ B
kR RN (- An) (L dndy - ) "TB,:} (8

It may e nsted that tpo clgenvestorg o Q

Are the game
those op 7,

L]
o2n+1r While ftg clgenvalung ape = N 4 /\) . We
als> sbhgorve that
2
/ / > S Az
(L:?mm - /\‘I)C!—znmq;\—{;) = A, /\ (4)
830 that
! . L;n414”kj
——W-.::—— 1“ = . _.._.A..v...‘_,.‘..;-_._...‘.-:——m'_' (’E‘\ )
Lam¢| A1 ANy - 2

Let us dofine thn transform o the

matrix 1/[__ 204, — AT with
AL set of Variahlos g

nd ‘% assuming that they are roal,

Cspeet to tho narti

Y 7‘2 3w = gm (W\@ZYHO
as*

TN
| f‘ ('k;q(l 4o + Ay\n %‘ﬂ'\.) . ( ”/16—
X ¢

. (6)
Y f";\\ c-"f’)‘, - /“}}W\ 51 /\

. - L +0\r
oy i) L ™ [

he definitinn of the

an af mimericnsl  faet

transgform has Bern made with
thn known formali gy

2rs and cqofficiﬁnts Tor casy

a suitahie
1ol ronagatarg,

Comoar! aon




Slnece the denominatsy has singularitiers at ,q‘

intrgral will dovnend on the
~variable jx .

\L > thf‘
nath of tntegrattian chogan for the
The sttnation ts id(‘ntic‘al with

of the oronagators corresnondtng to the retarted

the evaluatinp

advaneed apd
Feynman Kornels so well known in cleetrodynamtics, The Inkepratg

“eorresvonding to the three well known vathg of integratian are

¥ i . 3 2 kil ZAVI j‘ “\ - (15 )ﬁj A " ; IS f
™ -
{ ‘i;/\al(l /(k(')f”/}\ld))__,,})\v\ /7’/:\

(7}

Q/ o~ f o "’“f‘ﬁl‘? | (iz_w'!#—_/_]nf L"ﬁ!r /l”'T
ko= T(,{%) 2":/:,«. Z ;/TJ N +0& Ao "L(‘
ba

€ ( ?i,ﬂd%( @qué ffﬂrdhz‘_hfdAwdd%

(7)

N N ZMZ‘_AJ - /-jz 1 “"A’lwnf /
) (u (fn> ‘2/\"1 2" /1 il — é /)‘4' e w e & J

egrating with resnoet to the variahle g wo got

f (L ) _.{f”-_/lwf

- 7 4,2] £ -
- /A by J{ '71'
)77') é( £>(L_;n4{“— Ir}]) C(ﬂwé‘ (

/"‘/‘/\f /‘/ /)2 - ’-"'/;‘Yl
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W s N e lBat
e SN TS BN [-.mw+/1r6 - é —
.277> 20 C(- ) P ] ) NN
: (/ Mg "‘,.‘/&-r’\ I)(
AN d dy e A Nm
\ (11)
/! vy /S T - ol Lont
5 L 002 St da T

(\'Aﬁé 7
+ (Z.zmmw»zf\ﬁ;r)@ J

(‘/a{ f/l)tg_» S d’Awﬁ (

2-,.[ L L

12).

Wo then reesgnize that the narametnrs Q,) )g [ )f»-,.\ are

)
omentum-like !, /\, 'energyelike'while A is the fren paramater

bff-thewcnergy shell. ! The variables C-}’f L U, ,:(‘,m)f)f the

ansform are t'snace~1tke! and the varlahle ¢ asévci:ztod wiith \

e marsmetor ) (or equivalently with the rlgenvalies - A L)

"Wime~1tke'. Then 4/(1__-- Y Iii')can be traatad ag the nronagator

momentum snace eorresmonding to (;)}:, the mravagstar 1n

onfiguration ' snasc.

The Q-matrix frr the ense n = 1, 1.0,, evrresnanding to 3

e
)

3
recognlzed to be a quaterniosn,

LT are the algenveetsrs o7 T, corrasvonding to the afgen-
Tues 3;4_‘\_,1, we ean define a wave fupetisp ns

+ [ AT 2 (Lent
A '
gb (13)

$ waves funetion satisfTles the 'oquatinpg ~f motdnm?

(f' 3& “L) (>, 6) - o

(14)



while the kernel »r orovagator @ sqtisfies the Inhomogennang

equation

(5%{ WL)Q S ;\(6) (16)

In 'momentunm snece ', we sbtain

(NI~ = ¢ NN AT

iolding the solutinns

S T (17)

here (Z,#‘,ﬁywh7> are singular matrieng

colunns, snly half of thenm

and sut AT tha

Are indenendent,  Tha matrd s
vresenting the of indenendent solutions ean he
i Y

%nﬁﬁf) whare /) 1s the diap

onal matrix with half +i
- /,end the other half -/,

written ag

¢ numher

We are Now enesuraged tn diseusgs the Aistinetion hetwanp
(/‘[/," ( {
characteristics 7 the

and'ﬂ on the one hand |
’ A
Is equivealent tn

narsmeters 4

Qf‘on the other., This understanding tha

tinctinn between the characterisiics T 0 wave functinn ang

erncl of nronagator, A wave funetion 1s function of the
N

ce aml mass-Iike narmmeters and algn of Y. But we refor

1 Gs an amniitude in a sonee charactori ged by 5r!))3 V'“”’an

ime 1ike t . The mAss-11ke narameterg e fust ennstant s

;dd@d in the wave funetion, 1p we defins s sealar wrodnet



“of the weve function with 1ts

5218 1t renrasonts s A stribut 1an
in the space X

¥ *“'Vhﬁt t and {ts Thtegp
5 2) 4

al with resnnet ty
the SUHC@-—iikO s ormal gad to a g

"risbles csn he ol iealar far any

Value of £, Thus {n t he internretating Af the sc??ar, t 1o kang
eonstant, Hownver, the kernnt Ap t e DPomagator 1g 4 fuhetian
ot only of the interverg ol the snaéﬁwlika nnrmmmtmrs, hnt
also of tha rterval or the Eimo-11ike t. Hﬁmcn, It can he trang.

intorval of Snace-11ke

formed not Only with resnret 4o £ e

aramotﬂrs, but also fhe time~1ike naramrtar and this 1

why an
additional naramateor ,A

crennsg intn +pe “ronagator hut 1

ahsont
in the wave functian,

The necessity o

an addltiosnay Darameler yas reali-nd gt
e time when the quatérniong wers first invenpteq bv Hamilton in
¢ ninsternth century,  The erne T functiﬁn.hns qihgularitimg
the two values FA wof the TATAMCEers and thega are iust
he elgenvalung o f the Lematrix, The mymentum-11ke ang

masa-11kn
atrix with the

remeters oecyp in tha Top Samoe qutus, but +he
as

S transforn with resnmat te the
mentum-1 ke 8]

pAarameters apd 4 , the

rne’ Tuneting 1s fafinea

.timl set of mno

MAss-T1 e
AMELeTs ocourring botk In the Temgtysy NG AEs frans Py
The ralatinsn hetwoen 1)

10 Kornel sy the »p

ONAagator and +he
seussed in nead

& funetion wag 4df ABOZ1e Antain in tha anthortg

k on Wlement and Cosmie Rays, ' 1

STY Particies ut At that time
was no indication »r the Dossibllity ¢ TECnoralinatioag,
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A hierarcny of helicity opergtors in L.matrix
theory

Allgdi Ramakrd Shnan,
MATSCIENCE, Madrac.

Int he theory of L-matrices, we are concerned with the

N ERC " 3

. Y
the same dimension 2. x 2 defined asg

PR | M+ Lo O
2n 44 AnEl g Q Lo
- [ L + @ . 4 : * ,'
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2
L
e A

defined as Teollows,

L f>\')_m+lnr
wmey = 0 LLMMJ:
. lewf+i 3‘)_?1’\1:

-We now rescognise that the simultancous eigemvectors of this set

and 2w+ | 18 a matrix involving (gm+l) parameters CX|Jl1J--

am+{ .. . obtained from L~1m4 by a g -operation

are zlso the simultaneous eigenvectors of gnother set of n

— ———

L .
2n + | 30 O

Lmu (k«;)zfxaﬁ pvat LS(H

operators

3 (1)
L."s("t.)
2o e | 3 . —
L (A s = 302) 0
3{(2) b2y
O 1Y
2N+ | AN L. —L
J__ ( Mot r>\l,., A > = 30 O
3 () Lo SEICD

ere T L Lo ' C B

e p——



L*3( ) (AW“’ }Uﬁ}zn+ﬁ>:2 %xm+ﬁrmuf <A%“'"L}“;yzmq
™ 2 ,

(AP T -

T | L')T')—)-IIH‘W\-|

]

an "enlasrgegt L2 matrix, in which a unit matrix is attached

2 (m) 1s thus g function only of thres paraneters and is just

to each of the parameters. For obvious reasons, these can be

called the hellcity operators of varicus orders of which the

operator

is the first member.
We have seen egrlier Yhaat in our notation the Lirso
Hamiltouidn 1s an LS-‘ with >\L, = () . The simultaneous elgen-

vectors of Li§ and

Ly O
O Ly

mgy be recognised to te zlso the simultaneous eigenvectors of the

set.

@t
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2 -
LB(I)UDI;“"%,J?Z) am.dl. L \}9,0;,::5

2(2) "

where p 1is the medulus of +he momentun, ‘Ii‘ we write the

eight dimensionsl Dirac Hamiltonian L,7 s with Dy =0,

;\(J = O then the simultanecus eigenvectors of the set

e

. ' L_l 3
T L Lo O K - O
L L = ]__ - len
7 > o L 3 =
5 O L
Loy
are also the simultaneous eigenvectors of the set
7 : Ly
LS(H ’(lj") }j?)})z> - L3 O
Moy
O Ly )
7 -
( O T QO
5y (P,0,0) = }J I o 0
| o © o I
) o) Iy O
al’ld
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ON TH&a ALGEBRA OF L-MATRICRS

: Alladi Ramakrishnan
Director,MATSCIENCE, The Institute of Mathematical Seciences,

Madrss-20, (India)

A ok o R

"The end of method 1s nerspicuity "

¢ ¢ 1 06w

There is a singular apnronriateness in discussing the

'algebra_of L-matrices in this symnosium in whieh Professor
RH.Cood 1s one of nrincival marticinants. For 1t was a seminar
conducted almost twelve vesrs ago, in Madrag, on an interesting
~paver of Professor Good on the gamma matrices which started an
“investlgatlon that culminated in the oresent theory of T-matrices
- whtch include the gamda mutrices within their structure,

The fountalnhead of the theory of elementary narticles is
the Dirac equation which raosts on four Dirac matrices:

and which are of dimensicn 4 x 4 bhat obey the same anti-

communication relations as tle 2 x 2 Pauld matrices:

X (1 o 2 ‘\&i_ = ((‘ 0 >3 D -1

Four mutually anti-commuting matrices were needed since the Dirac

Hamilitonian, was postulatud o be a lincar combinatton of the Four

matrices with the four quantities % (ﬁy aé. and h] as their
- }

coafficlents, resrectively. We can cbeoaln anficommuting matrices




ats

of higher dimensions by defining the left and right Airect orodu

s

of Paull matrices with a unit matrix of arditrary dimension a

(o)

M

(®e)

(Ba)

it

(3h)

-m

(2




For obvious reasons we shall egll f%x, 511 and S??f a4

: T o { 2 3 i ; D
Pauli matrices enlarged by revetition and /%)/Eiand /E&,Jauli
matrices enlarged by dilation. Though the dimenston is inereased
by the direct-product operation, we obtain only sets of three
anticommuting matrices and not four as required.

In the case when [ 1s of dimension two, Dirae notlced that

the set of four matrieces

Loo = o S ”\{} @C% ) "X;i = ady s

wlll satisfy the requiremcnts for his relativistic wave eAuation.
The entire algebra of Dirac matrices was built out of the set of
four defined above, their products, sums and differences.
.waever} from an algebraic point of view the nrocedure
bf constructing the Dirac matrices from the Pauli matrices is only
part of a general method of constructing higher dimensional anti-
commuting matrices from a orimitive set of three (2 % 2) Pault

matrices. During the past year, a systematic study of this method

as becn made by the author which can be summarized as ah algebra

f L-matrices in the following manner.
We are aware that the only (2 x 2) matrix whleh commutes with

he three Pauli matrices 1s a multiole of the unit matrix, However,

t is a remarkable fact that if we build 'dilated:!

ﬂ() 7”7} /9;6/ , any matr;;c ;f the form
0 /4 (R}

Paull matrices



where A is ah arbitrary matrix of the same dimension as

the unit
matrix *T in

ﬁa [i/ and /23 commutes with all the three dilated

Pauli matrices. Thus, it is this commut ing matrix that corrésnonﬁq

to the multinle of unit matrix in two dimensions,

As 1n the case of Paull matrices we Can form a 'heliclty

matrixt through a linear combination of the *hree anticommuting

'dilated ' Pauli matrices

/1: ﬂ/f/’///\z/é ﬁg/

(8)

From now on we use the humerlical suffix 1,2 and 2 Instead of

X,y and z for the enlarged Pauli matrices with the exnlielit

‘understanding that any one of the set /?A)/Z)fg can denote /%%

- and another /Qf and the other 25 . This econvention will he

~adopted 1n the ensuling discussion to simnlify the notation and

rocedure.
For reasons

whidd will be anmarent oresently we shall eall

he ;)k hellcity matrix of mth order if /ﬁ f; and /9
m

are
" /,‘ w)) /?b’)) ( m)
X 2 and denote them hy J (; ,)/ﬂ

We can now form a set of five anﬁ_commutﬁn

{ the dimension @9

g matrices of
irension o x of N

« [
%ﬁﬁﬂ () (“‘ /G 4 (n) ”MQ /7 /; 3[ﬂ—-r)

) 2 (7)




e s e 2 s e Wt i

%3]

where (w_!)

i o

(n-1)
6 /,Z (8)

n
ﬁ{‘ (n-1) =

Considering I-matrices of (n = Vth order we note that they

commute with any one of the thres matrices of order Qn_1 X 2““1
//) Km-2)
< /%%nwz)
L g (9)

s

and, therefore, the nroduct of any one of the Paylt matrices of

order (n-1) with the above anticommutes with the other two.

Thus, we arrive at seven anticommuting matrices of Aimensions

2" x 2" / ()
’fa {1 =1 )
My ’
é’ @\(“.m,,) (1 = 1,2)
(o ) () ’
: - ' 1 -2
6 (m) £ (m=2) G =1,
and Py L) )
(; £ omn £ 2>
(10)
" ' ‘ /(rm..z,)
ere rj /“(mwz)
(i ’ - T (m-2)
fi (=) e plme
#

(11)




here

These are Pauli matrices enlarged both by dilation

conveniently arranged as (n -

This nrocedure can be continued until we arrive at the

(2n + 1) anticommuting matrices of dimension 2o which can be

1) sets of twn matrices and one get

of three matrices

(e |
P{‘ (1 = 17")
(m? /(W(m—*)
/s < -
Y (m o
Al [r =0y [ (me3)
(i = 139')
(ﬁﬂ'ﬁ ; (fm) . /ﬂ") c. 6‘7’)'\ i
]05 /3 (m#)é (mw)f{ (m-3) (1 = 1,2)
:
_ !
Q‘n') o i (m\ (’T‘) - -
5760 A fefn B
2 ) b N
@f’“ A T - > 00
()
f(‘ \
) \
/af (}1f7”> = \ (-7
\ [
(12)
Cn-7) v

/ﬁ is repeated Z times.
€

and renetition,




“

This step by step.procedure of obtaining (2n + 1) antt-

commuting matriceg can he exnressed through a single nrescérintion

called the ¢ ~operation by the author whieh can he Adescrined

as follows:

Taking the orimitive L-mabtrix of dimen

;B QV{A&

sion 2 x 2

(12)

-

M+ A - /]3

which 1s a linear combination of the three Pauli matrices with

ﬁ( 5 )z.and ﬂ;3 as thelr resnective coefflcients, we oht

n
a matrix of dimension (2

aln

rn s
X 7Y tnvolving (2n + 1) narameters

by kientlihg the following orocedure.

Renlace any one of the three parémeters_}%%&g_and ‘23 by

4 < i . n- - .
a matrix L_Qﬂ,q of dimension (2 : x oM l) and relabel the

" )
other two paramcters as Az and ;EJL+]3ttHChiﬂg unit

matrices
of dimension (?n-l X

2:‘1_1) to thm, Th.—,t ig 3 WE Qan d@f‘ine

L.’).ﬂ'?"‘l as | | .
. }L”_n~{~( I LQ-H"W - ( ,;]Zn J
Lzﬂ T G—(Llﬁ “’) - Qn__‘-}'f./&n:[ - 923’1»}»\ il (14)
o ' %zn+1 I; ,gzﬂj;ﬂ[ LLhH

ﬂzdl+dtgy%1 —M220+ﬁz

(15)




or

L2n4\ @20“6A2ﬂ+ﬁj

B (Azn + %L’M‘)I - Lany, (16)
This armunts to writing as
| > )
L ) f\ f '+ q | [ ('n')..](.. (ﬁ( L2¥’1'—| 0
andl T f.Z.Y1+] 3 Ao Ry 1 0 LG“ 17)

The first two are enlarged Pauli matrices, while the third is
Just the product of the tihird enlarged Paull matrix and a matriw
which commutes with all the three enlarged Pauli matrices. The

procedure for ann~! Is 1dentical with the sten hy sten nrocedure

eseribed in the definition of the 07 ~omeration, we can renlace

any ofie of the parameters by L~QXL4 . This feature is best
expressed through the use of numeral suffixes for the anlarged
aull matrices. Writing L_2Jn4i as

2o 2 Y

_ S a0,
LQm+!w L /Cxt

< ; (1%3)
A

¢ immediately notice that the T-matrices can he axnressed ag
roducts of /O *msirices of various crders as given in eruatlon (10).

he algebra of the Lematrices follows from the alzehra of the

f>~matrices as ex-emplified in equation (12). So we get the



product of (2m # 1) L-matrices ag

(ﬁwﬂw)* 'ij

20rdt ) (241 o =
Q%' ;21 T ‘%zrﬂ+l 7{
( (19)

b
lm1ﬂ44 1s & function of 2n + 1 narameters ﬂ:)gagnﬂ e

and

R B e )T = AR

(20)
The Dirac Hamiltonian was ldentified to he L with iﬂ( :ﬂﬁ%ﬁ,%zz:k

/qj:* Fr;} ﬂﬂr? O, Ag = and A-,g a

LB",Q\ - N (h(? " @2 + f%; )T W?T' (51)

where /%qﬂ) /%f) ﬁé@n are the three components of momenta, m the

ty

i

1

mass, and B the energy.

To establish closer contact with relativistioe transformation

we define
,_ -
. o ' — sl — 21 ¢ -~
o /(\ 1 [ _Wf"‘ = ;]2. y o ’ 2n . ; / oo 2‘”
/L,I - s ? 2 e -
A -+ (29)

~
Thé parameters j\fb A2y -~ }Zn can then be exoressed in terms

3 of ;)) '/v"r) — )/Lr—é.!f‘] as

A Daae A Vi
(\ = et * e . 2. \‘} - ...........—-——"‘"""‘"“"'
7 ToRee VT = 7%
e (23)
| \ | 0 L o |
with | e j\_m g Lo d e

SNE (24)
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A HIBAARCHY OF IDEMPOTENT MATRI CES
Alledi Ramckrishnan and R, Vasudevan,

MATSCIENCE, Madres-20. (Tndia)

We notice that any (3 x 3) antilsymmetric matrix

\ (1)
3 O =My
'--f\Q /\[ O
- _

he re Al) A As are pure real or pure imaginary para.

eters hag the very interesging property

3 \ \
/\ i = (/\! -+ )‘2 -+ /\» > A (2)

he determinant of A 1s zero. henee one of the three

igenvalues of 4 is 2eroy the other two being given by * Ay were

—————

Ays ‘f\/ TR P, | (8)
eigenvectors‘corresponding te the eigervalues + and 0 are:
LAAg 44 A A ham A Ay j
= \ " Vo l A As 4 ) A . /\\
l/!z/\? /\\A( > WL - 3 \\ ! | ) 1. - '(/\3 \
. 5 \ N e
u!‘(,\f-n\j\ ~C LN A, )/ Ay
\ /

(4)




2

b x AN

he matrix A" 4s non-diggonal, Though it 1s 2 5 x 3 matrix
it hes only twe cigenviiues + A, and 0, There are two

independent eilgenvectors which cen Lo oblained s

g lincear
combingstion of the two elgenvectors of 4 corresponding to the
ceigenvelue + Ay It ig to be notad thet while :n elgenvector

b is an elgenvector of ,AQ the converse ig not true singe

an elgenvector ¢f A~ corrcsponding to AT may be & linear

]

combination of/the eigenvector of A with 4ifferent elgenvalues
!

of + A and hence is not an eigenvector of 4,

Writing the egustion (2) s

ALA = ATAL (

v

93!

)

we immediptely regognise that the three golumns of 4 are just

, . . A , . .

the eigenvectors of A wrresponding o the elgenvalue /MQ i

Out of these columns only two sre independent since £ is singu-
1

i
lar, This ig zs it should be since “hese c¢igenvectors correge
2.

ﬁond only to the doubly degenerste elgenvalue /U

In the theory of L metrices, we started with the

primitvive(¢ x £) L-matrix, \_3 such thet

L .:2 w3 (/\ ‘,2 -+ /\;' - A—; ) :r o (G)

o

I

To obtein the metrix Le of dimension 2 heving (8n+l)
on+ 1 )

perameters we replace any one of the three pesramceters in (8)



3

by bgn.y end the other two by ( A, .\ )T nd A T where I

ig & unit metrix of the s:me dimension os Lf;_n 1
“n -

In the case of the 4 metrix we ¢an cdopt o similar
procedure if we recognise thnt the numeri¢al coefTicient of A
onthe right hend side of eq,{(5) is yuadratic in Al,,AZ and A _
. 4

» Inthe 4 matrix we can replace any one of the

parameterg by L?r 1 of dimension ghel end the other two

-

paremeters by A, 7 wnd 4, ., T 4. We thus obfein

sa

{ Loanm-y /\‘2!*4'11‘
Ainap = >
wlﬁﬂlf -'-L)_n—*l e — /\zw T
— Azt e ¢
: !
(72a)
or
¢ /\2\\%\" L"'ﬂd]
/‘lgw-i-] = T
- }\‘).f'-l\“' O — )‘:—i-ﬂ-
o Azwj' 0 (7}
OI‘ ]
( /\.aﬂﬂ T A*"' o
Ao iy Ao d e
- L:a.ﬂ"‘
- ;/\.z 0 I Z’ZY\ - a

(7¢)




4

1s to be emphasised that higher dimensional A mafrices aAre
tzined by imbedding an L matrix end not the A matrix,

The eigenvalues of heopq are % /)., end 0 whene

et e T i e -
e ket e et A

= : By T o2 3 2
Moo= R N T Bl 100 s VAT AT AL (8)

Possible Physicel Interpretations:

In the eccse of the L metrices we were gble to identify

he helicity matrix to be Ly with JAys ) ) d,op 0 A fy

nd the Dirac Hemiltoniwn with Lo with the reelientions:

O
o

/\\"‘ lﬁ)e(. P /\-2:‘ r‘-{} P /‘g: h’. ') A[}.: ¢ /\Y -m : (

he guestion now arﬁses.whether’a similar interpretation ean be
ftempted in the ease of the A mes¥rices which involwe one get of
richotomeus d¢igenviluss and the rest aré dichotomous sets,

In the casc of A, , there se¢enms to be & direct cognec-
tion with the polarizetion steotes of the photon., &ince the
perator /%4. vields only the square of energy os it meaningful

o0 speculcte that the psrticle and the antiperticle of the

hoton ore the same?

In the cesc of ":Afg, 1f we ehoose L., to be the mdleity

trix wiB A E b ALy Al f,  end AT sot hyur o flenm

7

‘ 45 the matrix connected withithe relativistic eigen-




gtates of an clementary pgpticle? In. this Cese 1t will still

represent & particle of spin \/& if L.j ig chogen to be the

If,AJ is to represent the squarce of emergy cre we

lealing only with perticles snd not antiperticles end does the

iriplet of ecigenvelues corresponding to A heve any connec-

on-with a fundementsl triplet of particles?

I
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L-MATRICEIS AND PROPAGATORS WITH IMAGINAR

Y_PARAMBTERS

Alladi Ramakrishnan
MATSCIENCE, Madras-20, (India)

LEE S

Introductien:

The study of Lematrices leads us naturally ts the
definition of the matrices

i

(}_ L - AT - ;1)

and

L
R= o7 -

where Q {5 'a 'quaterniom-1ike objeet and itg reeipracal R

§ the reselyent which can he intefﬁre#ed as the prepagator
assoclated with 1, 'lﬁdér "'sultable! eircﬁmétanceé._

The 'suitable' circumstances relate to the inﬁerpretatin&
f'$he 2n+1 parameters A;} Az_\ ,\6)m§nd A

[ 3
A I

mbedded in L. such that

LﬁL

I

2. 2 2 _

(j A} + /xg T+ «ADJW4%> RS
SR
= J§Xaﬂ 4

(3)



where -+ J“&;1are the two elgenvalues of the o' y of Aimensional
matrix and I 1s a unit matrix of the same dimension as that ofr I,
It was emphasiséd by the author thaﬁ these parameters are either
pure real or pure imaglnary which Implies that the elgenvalue

8ls0 1s pure real or pure imaginary,

The distinction between real and Irwginary, parameters”
and the corresponding sigenvalues becomes slgnifieant when we are
“Interested in the existence of g Fourier transform of T, wlth
‘respeet to the parameters. To understand t he consequences
which follow from the tntroduction of imaginary quantities, we -,
. ecall a very simple feature in the int@gration of an exvorential
function /QOUE over an infinite domain in T, from ~00 4o oo, -
ase 1) If a is real and negative, the lntegral 1s finite
ven when the uvper Iimit 1o 0w | The 1pwer limit shonld not
extend to-*@?» . Without loss of getterallty we can set the lower
imit to be zero. The integral 1sg

Do,

) (4)

ase 11) a is real and positive. DNow the lower 1imit can ba

ut the upper limit should not extend to <ﬁ~v » We have for the

(%)




Case 111) 4 14 Bure imaginary. The Inbegr

,
over the entire domain, I (-t
po

ation cam be performeq
y The Intesgral

T ke

¢ AT ~ ows d\/ﬂ
— e . (6)

whers E\ Is the Dirac-delta funetion,

The domaip o

53 ls positive op negative,
s given in (4) and (5).

II. Fourier .7y

ansforms of the Resolvent

We now define the Fourter t;ansform of the resolvent with

[-’)nn. ;\’3 ] FOI‘
asons of convenience, we relabel the othep Parametarg

_/(’\fw—w )..,,F/\‘Qnﬂ AR I hlnrfx%
fine

espect to a partia] set of v

ariables’]

Iet us

h%;f X?ﬁni;+ ..,4»A% 7y

2% 2 " =
M e "Mt e o ml"n~}:>4f

(8)




. o p
Thus. lfk.ﬂ - f3_+¢V}1. We call the Parameterg A,> .
moment like ', since the pp

) “X o

S Hﬁfined with
respect to them, the oarameters ™,

"')YY%‘T*b*?'mas like t
sinee they are kept & nst

ant in the Fouriep transfbrmation.

4ﬂ.n isf4anergy like t sinoe dt is elgenvalye.”

The Variables
ated with /\
while-the Variable +

fyse oy X f of the trdnofgrm assogi

> "ty Ab
are ealjeq "space liket assoed ated with
free parameter A is callsg time like

) faCilitate the dlscusoion on varimus types a1 particles‘

later 1pn thig Paper, we pow introduce 'Veloeity 1ie: narameters

Vie oo 7 s s Ay

A’ / A”"‘ gt
We ean BXPress the oarineters ﬁl;>.. ﬂf:)im terms ¢ fV},Q,q}J
and M ag 1
_ (\/1,1(| ; : /\/}f
;]I Qﬁi:wz ) AR A)’ - m——
9 |~y &
; (10}

th

: 17\
/ .




| We shall now classify 'particlest' as follows makling the postulate
~that the‘integ‘rati‘nn over the narameters is from ~ 00 to o,

' 2 : 2 .
Case 1) PD*?O , MT>0 and hence /N ., T O The

:dénominator hag singularities at jl-/Bﬂa on the real axis.
The integral wlll depend upon the vath of lntegration chosen
sultably. The situation is identieal to the definitiom of
pﬁapégatorﬂ oorresnonding to the advanced, retarded "and Feynman
keinels o well known in Quantum Bleetrodynamics, Thé infégralﬁ

corresponding to the well known paths of intégration are:

Ax L Lona FAST

A - A-'ﬂ 4'1'?
" Ly gy f\~7Il>
| (12)

:L /\ AL T .
¢ (,\'{wi AR /\d__)"(P )'—7 )(L‘

. x\"'f&w]*‘?? /\"’f’[&n‘*!'?'?

..f»
Do X (\M%M'“w}\wp) -2 N (13

'Y

L

L - ‘J!’-AH:\, -

< - CJ ,\‘..- fif\ij "{)\ '-}-— g 20 — LZZ.Y)-f | “»/\)‘)'j-

. LHm )\“",Arn m?? . .
/\’J(/\n - L€

(14)




Integrating with respect to Variargle f/\ we ahtaln

o beo
- VAN
QF = 5‘!"'/-"\‘“ @((:3(“1—))'\.}.' *}».d“j) ¢ o+ ‘A t—
-t @C“'t)[L‘zn-M *-Z\«w-;f)eq' ™ d,\{-«(l%
| (15)
. (0
- -?:.A}({:_'
Qe | 2 B0 [Cansy#anD e
T T A b
— o 1 h ([-—2!’)-{-; "“‘i\..yl;'r )Q C‘\ )\1"' fl/\/,_)
(1)
M .
. N - A)—\t
{ , (gzm-ﬂ{’j\“j‘ ) € -~
QA:: 2“‘_-/1 @(VL\ ’I:Aﬂ(.' (i,\ . [\L)\
" = bpna AT ) e 1A :
— B _
(17)

age 11) Assume 5\12< 0. As Ai - PQ'}’MQ ', Am, 1s real
en [O??,P/]z , while AL will be imaginary when Prepm¥
Phus the integral splits into twﬁx partses corresponding te’ ‘97'7/!”12
g pp< M2, For the region, l':Dl;"’/}\fj?—, the abave exoresaions
r advanced, retarded and Feynman kernels will still hold good.
qweVer, when p2< HZ 1s pure imaginary the exponential e(iA"“L—

nvolves a real exponent and hence eorrespmnds to a ravidly

écreasing 3r inereasing funetion of t.




s T

All thege features can he imbedded in the
brovided we reguire N

above kernels

to be pure Posltive re

a2l or pure
€8ative imaginary, ip the cage or imagin

Ary mass and use the

game expressions for tihe kernels,

tse 111) ILet yus assume [92<O.

Now the Integration with
és eet 1o space like v

ariableg has to be sD

PL1t up 1ints two
@3, This divisian looks artifiei

al and hence there {g
B leulty 1n understanding its gigni

a

ficance, However, 1n the

g of g ‘radial? distributions we ¢

an integr
semi 1nf1nit@_range D teo

ate in Svace evar

&, The physlical me

aming will be
plalned presently,

From the above disoussion, 1t is elear that

it 1s possible
ary values for g parti

ave imagin al set of pPanameters in the
ded the domains of Space like and time 1like

ables are divided dichatomously into vesitive and negative
nS.* ‘

trix provi

such case it 1g called Fpurie

T-tarlemsn transfnﬁnationzf
amiliar in the Theory of Fourie

T Transforms.

S

AR

e e e s

e

e



ITI. Physical Intergretation
f

'

|
To discuss the relevance of the above considerations

physical problems we now set the oq;r'smet@rs 1n Ls as follmws:

h this choice we can cla ssify vartieles accorading to the

Iswing prescrint isp. . ?

rdinary Free Particles: ‘

R
M 7o PPro s ET#0

.
4
':

this case, there exists a rest sy‘stem (p=0) for the particle

i 2 - >0 . Howewer, when M v O theys is no rewt systems-

in the case for rhotons or neutr-ons.

= 1ima ginary, [? <p + Two classes canh now be

ngul s{le d: | "\:\
\
1) £ >O01.e. 1 15 real and ‘

2 \
1) £°<UF 15 imaginary BN




anaka has considered thisg Guestion tn gre

at detail hy assuming
he m

ass to he imaginary 1n the Dir

ac equation andg vostulating
siperlight partieleg:

with the velpeq:;
¢ see fwom equations (12),

e prop

€8s greater than of light.

(13) anc (14) *hat the exnression for
agators in configurar on Shace with imagin nary energies
decaying functic . of tim

als for these funections exist fo*

volves an @Xvonential

e, However, the
tegr

time Integration from n
wave functions.of

>, If we consider the

nding to this, it decays almost insc

a particle corres-

antaneously 1. e, it is

—————— o

ahescent ', Particleg wils make g conftribution

However suech

the momentum transform o f the resc vent, This mennsg that
ugh we cannot have ineldent or emergent n

vartieles with imaginary
rey, they can stiin cohtribute to th energy denominate re,

aginary velmciticg,

at particles of Imaginary MASs must have re

8¢ partieles have im Sutarshan et g1 have
umed th

al energy hut
Propagators formalism nocessifateg the inelusion »f evanesocent

icles of imaginary cne SrgYy_and velocity when censidering '

ary mass, '

:icles of imagin

. 2 . .
Pz <05 M >0 with f:') ‘Z'< A

Thls ange
sponds to hound particleg,

L
If we wish to mike a spaee "
ration from 0 to oo,

Hence bhound particles h

SVE_A8 Mmuch extension in spaece in %
fon to the universs 4z gvencscent rartieles have existence L

e in relation

to eternity. Further Just

A% hound varticles

e i o



s

R

ST

10

wlth imaginary momentum are expected tm play a role in the
scattering of resl particles, the evanescent partiales should

play a simblar,role tn the-interaationsg-of varticles-whth imaainhary
mass, It is exwected that these considerations will he important
In postulating the nossible existence of faster than 11ght
particles and examining the consistency of such a nostulate

with the Iorents £roun.
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GENERALISED HELICITY MATRICES
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In the theory of Le-matrices developed by the authoer,
a metnod was described for generating a matrix L?n+l of

~

2
2 - 2 2 2
Domel = (M + A5+ (avuy + Aopey) T = An I? (1)

/

yhere I is a unit matrix of the same dimensien as L2n+l‘

The matrix LPn+l can be written as a linear combination

of (2n+l) mutually ancitommufing c)@ ~matriees as

241
‘ on+l
Lonet % 7‘1@‘@ 1 (2)
with
(o%f‘i)g = l‘ (i = 1,2,o'o,n)3 (8)

the superseript (2n+l) en o Aenoting that the ,k:matrices
"belong' to L2n+l and are of %imension o ¢ o, The.'set
of these (2n+l) mutually agticoémuting éﬁ §n+l i= 1,240,
(2rtl), satisfy the preduect property

1
L
4
!
i
i




gl

S

i

-2 - o
jf,?
|

_ |

. on+l or+ 1 C;z92n+l 5 .
L B - i II (4’) .

AT ontl | .

i st

This implies that only 2n out of the (2n+l) matrices are

independent.,
It was also pointed out that 1f A 1is any non-singular
matrix, then

L'= 41 o™t (5)

i3 alse an Le-matrix i.e. it satisfies ()e This in turn
impiies that

Z'= agat (&)

is alse an Y ematrix i.,e. square of each &fi it unity;
the 2?1 anticommute with ene another and satisfy the produet
relation (4)+° We shall now demonstrate that from the 5et

;51) sz"‘f} §€2n+l we can obtalin n sets of 'éeﬁéﬁéi&zed

Payuli i | i
matrices' , cach set H consisting of three mutually
/ ) .

ancieommuting matriees

. : L

[ ‘ ) -i. :l,g,ooo,n . (7)

(Hy 5 Hp,y ED)

i

Sy LY

e S

Not only is the square of aach matrix egual to unity but their

product is a multiple &f unity

o




S, R §

H1 Hg HB

i
e
—

3 - (8)

lses only two out of the set of three are indevendent and since
there are n sets, we have 72n independent anticdmmuting
matrices in conformity with the pronerty of Af-matrices.

We now define

S G
iy = i on+1’
fy = Ly ©
noopnon . "Beneralized
The aet Hiy Hey HB_} has the required properties of

Paulicitl matrices™. Let us write
: - n
Lopg = B &, W,

' - n
y Lopmg = 1 & anep (1),

no

RS
i

B &Ly (1) (20)

men Lo g Dy Eop o)y oo (D form a set of (sn-1)

mutually anticommuting matrices with the product preperty,




C Loy W L (D K, (D =1P 1 (11)

lee, ‘(En'-z) of these 029(1) matrices are independent, These

o\f(l) matrices. are not oXmatrlces in the striet sense
though their dimension is *the same as that of the lematrices
There 'are only (2n-2) indevendent *f(l) matriees in
contrast with the 2n indevendent ogmatrices. .

We nest proceed to define

N=l,

Hy = Of211«-], (1) & on-2 (1),

n~1 _ ;
Hy & = "%21'1—1 (1)

n-l _ 5y
Hy ™= s (D). (19)
el n-1, n-1 .
The set {Hl ) H2 y Hq again has the propertics of
‘generaiized Pauli ' Tl

gt matriees. We now faetor out H8 frem "ZJBn-—S\(D’
Xm.ﬂq (1)yeee and 081 (1) and write
Long (1 = L.
08211-4 = Hi"l Ly, (2 ‘
Hi"l {l (2). (19)

i

A
fu
~
=
1




Then ‘CQ?QnFB (2), ;Zgnhg (2),.,L kil (2) ﬁorm a. set of

(2n«3)

mutually anticommuting'matyices with the produst
property.

Lons (D Lo (2., L) = "1,

i.e, only (2n-4) ef these &f(Z) ratrices are iﬁdependent.

This procedure ean be 1terated till we arrive at the

set i
i = o (el o (neD) ' '
' Hl = 1 N 2,1‘1— s )
1 ‘
_E Hy =, (nel),
» Bos ¥ (nel) " | 4 |
3 1 P | (14) |

Any member of +the set {Hij commutes with any member ef

another set {Hjj » L1 # 3y If we new defime the nelicity . E
_ . i
hatrix gt ag.the linear combination of the nempers of the |

i
set Hi ~and choose in particulap !

b1

il

] - » L'y - L] [ - ) » §

1 1 i i !

B0% o B b Mgy Hy v AN w] - 18

1 1 1 1
1 m}\3H3+?\2H2+?\1H1,

s




it follows that ™

2 2 R o ) 2
SHn) B 1\”n o= ne1 * 2 on+1) |
.\ " \\
=) N 2 N AR 2 2
(EY 7 = z\.i T = i«~i~1 + Ny * AN T

(18)

Since Hi commutes with HY for ] ?fi, we\fiﬁd it 1g possible

to obtaln elgenvectors of 2n+l whlch\are simultaneous elgen-

" )
veoﬁors of the helicity® eigen values [&n, [\nﬂl’ coen [\1
respectively. ‘E\ \

If we obtain the particular representation bf~ L2ﬁ¥l

by the ,iteration procedure known as the ﬂ-apcration defined

\,

prev1ously as ' N 'u‘ \. xn
: : ] \\
: Moy T Lopoy =t Ny T )
LG"“l = O—(L91’l~l) ‘
Lopay * 1 2onl = Popeql |
with | !
i J
L}B = S T.N
' k1+112 - }3

where a's are the three Pauli matriees then the set { j

can be identlfied to be
!




. -
r‘rk®I

where akcg I; the direct product of 0, and the unit matrix

oof dimension 2t x ol yg popenreq p(meD) o

along;the diagonal,

“
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In g Previoyg contribution )

to this Journal, one of
the zuthors {4 R) n

as shown thgt to & set of (on+1) mutuglly

et x on ; (= lLyg,...,
n+1 ) Satisfying the Clifferg conditionsg

e i = - 4 oL, > <ifé)m
(o> }2L::. I |

16 T'e correspond n

mnicommuting Matrices of dimengion

}& i=1.¢.5.
SEts of thpee matrices Hi ‘ *T
‘ : FF ls25¥-°9n
h the ﬂollowing Propertiesg,
(1) Gach set cheys the €lifforg cenditions,
(2)

ANy memheyp of one set com

rutes with
Dy other set,

any membe r

For obvious easons th

€ triplets of these Metrices gre
€d the Eenersiiceag Fauli hatriceg, A linegr combinstion
this triplet of Matlrices 4

[u}

Called the Beneralised helicity
X :




-
_ Our ¢bject now is to vrove that such helieity
matrieces can bhe @efined corresponding to (2n+l1)

.

matricesg
. no...n
3 of dimension m™ X.m

which obey the generalised Clifford
sonditions pres¢cribed by A.O.Morrisgj

Q\Ci LJ “-'-":\: W ELJ (L

i

1 | (2)

where o is the primitive

m-th root of unity., We notice
that for these relations thefe is a symmetr

Y prineiple that
: |
~the-Clifford conditions are-

unaltered if any [ is replaced
4
by W L ‘Q\“‘ .

|

‘ !
If we now define \

.,

i
\ .
] gn _ N n -m.—
o 3 HB = (Hl) Hg {3)
, !
where

Wi = L= £

l for ma odd

7:‘ - CD1/2 |

\
fora m even,

jo-3
®
L&}
B
<t
iy
o
Py
LN
.
[
i

1,2,3) =sa%isfies the required Clifferd

Hg is not a member of the set J:if It

we have to attaeh the factor ml/z to the

eonditionsy though

is to be noted tkat




~3

member of the triplet forp the case of even m te satialy the

. 1 . |
.8econd Clifforg condition (Hg) =T, In a commletely ama)ogeus
way to the senstruction of the helicity matrices sbeying the

Quadratic Clifford conditionsl) ve defina

m-1 : .
Ly = @) L, (1= 2,00, o2m1) (g

v
¥
2

‘ Me :
Lte€s  wWe factor out (Hg) for each Xf the remaining natriees
of the set 4:1' Then 4:3(1),..., J:2n+l (1) form 1 get of

(2rwl) matriees which obey the generalised Clifford conditions,

We next proceed to define,

n-1 _
HY = OCB(M

Hg"l = Lé(l) (5)

1

e
=7 (1)~

n=-1
3 (Hg ).

This sht {Hi"l, ot Hg”"l} again satisfies the generalised

Clifforgd conditions,

We now facter out (Hg"l) from the sst af Zn=l1

atrices &C i(l) (i = Syene, Zn+l)  and write

me-l ' : B
oEi(l) = (g™ (2 | (1= 5, ev,2m1) (g




Then 0[.5(2)3 OCG(B)’ 0[17(2)’,009‘,' ’Q"

MN=3 matrices which again s

conditions, This
1
=
1
) Hg =
L
- \\\\ \ l
., . \ H =
~ \\ 3
\
S

Aty member bf*the

set {H‘ii \

the linear combinatlon of the msmbers of the set {

chioose in Dartlcular

)

v

= ko, (1)

J;gn (n=1)

me1

1
Hg .

set f “} commutes with any member of the

i # j‘H If we now define the helieity matrix as

-.‘ i
. }

I o n n
HY = My HY + 2 ¥\, H
i BN i i
B = ayp B + Doy Hy A, s
e _ "-.\
1 Lo s ol 1 \

v
L “

/!
i

m , |
Aznhl) \

form a gset of R

atisly the generalised @1iffopd

procedure can be Iterated till we arrive at

(7

Hl } and

()

T

|
!

g




— e

)

- B ‘ L il - m -
'and thd\ m ‘\‘ro-ots of (}\1.,..3,—_‘. ?\2+;.. + ?\2n+l); are, A:ﬁ, ,

.. \-_ ',_ o T
AL @y, A o™ 1t follows that.
N\ f §
oy G m
(ﬁn> B 1\11

]

=
]

m m
m n-l v ?\En + ?‘2n+l) 1,

e Eo

U
S
B

i

it

2

U m .

(}% ) , ' (A i-1 + ?\2

I ‘

(Hl\‘) m - ./\- m . :; ( ?\m + ?\m " ,\m) T
i l \,; 1 2 A 8 ..

Since {}ﬂ'} commutes with gfﬂﬁg for 1¥J, we find
_tbaﬁ\it is possible to:dbtain the elgenvectors of

I
o Pnﬁl

\ L2n+1 l ?\ oc

L\ 2 (11)

A

\ B
which Q&e the simultaneous eigenveetors of the " helieity!'
A . ,
: 2 1, /
s H 3 e ey H ¥ . ' ‘,‘
It is

a r@marhable fact that the root of f

am=-th

‘l'l\ .
unity entoﬁ& in the dcflnitlon of H3 for m even, althouﬂp

we are deallﬂg with the m»?n_ root of the unit matrix.

the spaclgl cﬁse of m= 2 éna n =1, we have
R ¥

v

\\ ‘\ ‘ ' f

\'g = 1, o2 oy, (12)

by \ 4
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APPENDIX

o

We nrove the following Theorem:

If 4 and B are two matrices satisfying the

generalised Clifford conditions: ’

AB = e« BA | (4 1)

and A" = B = 7T
where ® 1s the primitive neth root of unity then

(r o+ uBd? = By P

*

PROOF: Condition (4 2) implies that A and B

care nan~-singular and so the matrieces Ahl and B“l

exist,
Now
; (M A+ uBY = B BT {1 4 C1 (B"l A + C? (B"'l A)B
n
n"‘l ] "l
| b €y B~ 45+ C, (BT W) .
i
whe?e E
1] \ ‘\V‘
\
1 Nnel
Cl L\ - -ff z‘: (Di
; 0
‘l‘« | .
\ L
:

i

R e

/"
e




"2 n=1 i i
T AN 1 2 .. .
CQ T e :::: @ o © (11 # QL)
u” o .
|
._ N
-
L]
L ]
Y~ . .
l-,l_--l o il 3
N = A L Med , .
Cpag® e %* @7 eaew (3 2y oy # Tneo)
n-1, i '
and Crl = .11 W -
-
1

Since o ig the n~th root of unity Clg...cn_l

vanlsh and Cn = ] .,

Hence we hove

T N L

using condition (4,2),

giere

it
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During the past two years one of the autﬁors (AR)
has developed z theory of L-matrices which amounts to a
generélization of the Pauli and Dirac matrices to higher
dimensions(l). It was shown that there were two methods of
generating higher dimensional matrices with the requisite
properties of a Clifford Algebra starting with a primitive set
of Paull matrices. The first method is traced to the famous
derlvation of the Y matbiees by Dirac(g) in 1928, The
second method due to one of the authors (A.R.) 13 known as
the ' (G~ -operation'. The two methods have been shown to be
equivalent by d@monstratinglthat In the first method we compose
elements of Cliffsrd Algebra to arrive at suitable linear
cémbinations while in the second method we obtain a suitable
matrix and then degcomnrse ié into matrices whiech are elements

of a Clifford Algebra, 0

* To be published in the series 'Matscience Symposia in
Theoretical Physics and Mathematies', ?lenum Press,
New York, U.S5. A.
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Examining the literature we find that a third and
distinet method has been desecribed by Rasevskiica) using
the fundamental theorém in spinor analysis, To understand
the method of Rasevskii we shall first summarise the two
methods of generalising Paull matrices.

Méthod L: We can obtaln sets of three anticommuting
matrices of higher dimensions by deflning their left and

right direet products of Pauli matrices with a unit matrix

of arbitrary dimension:
IO =6 T @O =5, I®G =S

TH®I

11

fo b TGRT = fy; B @T=f, (D

Taklng T to be a 2 x 2 unit matrix, we note that any member
of the set 53r,§q,5% commutes with any member of the
set fipjfy) f% » Therefore the set of five matrices
Ko = foSxidy s Sy iy s, o 4, for (o)
ahtlcommute with one anothenr.
Dirae chose only four of them since he was COhCerned

only with a linear combinatiocn of matrices with only four

coefficients: f; Py ’[Jfg and ¥ where /z;( ) /:7 mgﬁf)’}_

are the components of a three-momentum veectsr and 971 the

mass, The same procedure has been uscd by one of the authorsg

{(A.R.) to generate {(2n+1) mutually ant leommuting matrices of



ER s

dimenston 2" x 20, If we denote these anticommuting matrices .

by
‘ 2n1
an-H 2n-l c. z
Dé ) xﬂ_ " > n+ |
they~posseés.the product property:
Zozn+f ’\C)Lnﬁ /Z,Qvfﬂ : é“"’l"
[ 2 b an+t © 0T (2)
,anq-if we define ‘““Lw+4 ag

- R e
LGﬂ - Z‘ M {4y

where the ,A/A are scalar numbers, from the anticommuﬁing

property of the above (2n+1) matrices, we have

A % o
Lonet = (ALHAS + 0 Jann )T o

Method II: In this method we f! :st obtaln the matrix
L~zn+l and then express 1t as a linear combination of |
(2n+1) mutually anticommuting matrices. We start with the
primitive matrix
/\3 /\t "C./\zm
[“3

MAtAz - A (6)

jp




L,Zypfﬁ can be obtalned from [,3 by a 'g-operation®
whiech is defined as follows:

. |
Replace any one of the parameters i.e. )\5 in (5) hy

{’1n4 and relabel the other two as,A:n'.and ,&gﬂ;f;.- and
attach a unit matrix of dimension szJ % 2”"* . For
gxample,

) /\2HHI. L.?_n__[ -1 /\2.,,} I

L2n+1 =

LonaiFT donT = Aansy T (7)

Since we have assumed the form of Lg y the above reeurrenee
relation defines L.,,44 . From the form of | .4y 1t
1s clear that 1t can be expressed as the limear combination of

(2n+1) mutually antiecommuting 2fx2ll  patpiees.

Method TIIT: This method described in great detail by
Rasevskii makes use ol the fundumental theorem of spinor
analysis. To facllitate the understanding of this method 1n
comparison with the previously discussed Dirac procedure and
the ¢~ -operation we shall deseribe it in a language as close
as possible to the theory of L-matrices.

The ¢lifford algebra C}m eonsists of the p-fold

., produets (p = 2,1,....,m) of mutually anticommuting elements £y

@ ;))2>"‘k“) :

{g ?“} giéj , P{Qjek R €8, 0 €,

\’é{)) ({(JQ k) (&)



If m = 2n, in the language of L-matrices, the basic elements

corresnond to
PRI

(

the (2n+1)th element being obtained from the product relatien
2+t AN+ p 2N /th‘l_
e <, x5 Loy = 2 X

An aggrezate A of C}m is written as a 1incar comhing-

tion of thege of ¢lement g

A= to FA6a + A Ll G of By @60 8m
@<)) ‘ (9)

n

Ap + A
(rm

where %10 consists of the even oroduets only and Al those

of odd products only.

Denoting the representation matrices of the 2n basie

C ol
elements of “am as L ; the first m basie cloments

are obtalned as being iscmorphie to the mapping.

A
-‘44?' ,
A _"‘:; 7‘\6\’{ (?':: f_),..)n])
(11)
A A A Co
50 that f=¢ gj ﬁ"’éﬁ Er Vet ), Ly je Cyemeym)
(12)
AR
and E?‘ = L

(13)

o
55

3
N

S

G

R L
T P R e

PR,

i e



A
The next m elements é?n%+£ (i = 1,..0,m) are obtalned as

heing'isomorphic to the mappling

é? ‘ \
fx Ji; Jgi(An—w4J

(14)

The faetsr § m.,/h, i1s introduced so that

A 2
Vo a4 YTl
Cgm-é-'i) = L o =Tty (15}

It 1s easily cheeked that the 92m basie elements so obtéined
are mutually anttcommuting. All the elements so obtained by
taking p-fold products (p = 0,1,...,2m) of éfl. (1 =1,...,%m)
glve representation of the Clifford Algebra

To fix our ideas, we demonstratc the above method for

the case 2m = 4 i.e; we obtaln the representation of the

Clifford Algebra CTQ_’ eonsidering (:l as the veetor svace

and transformations of (fi sueh that it maps onto itself.
The Clifford Algebra C;i generated by two basie

elements & , €, has four elements

Iy €1, 8ay @, (16)
An aggregate of (jz is

T

g

RO

S

N SRR

T SN
N e O s St

PEEoY

e

e oleat ey

b




where o, = ¢¢,. The algebra (O, maps onto itself when
we multinly by Iy €(, o or €2« Bubt we consider the
mapnlngs obtalned by ¢, , e, only,
A LY
Let £, be defined by
A
£ 0
A - A € | (18)
A

The £ mapoing takes ( o, Rty o, @pp Y to

( (:L( 5 Chp )T g 52 ) and in a matrix formof

A ¢ f o
s to o0 '
| = occ o-=!
oo -0 (19)
P
Q 1s defined by the mapping
.- A
£ g
Z .
A > N, o
A
£ rt A A
such that (Qg}a':)al)al;) W>Ca2)‘*2) ey )
A
and  Fa has thus the form
\ E/} 0 6 ! DI
" - o OO
= ) o o v |
o 0D 0.




A
Ej is obtalped through the manping
A

(ﬁf)'f +‘Q(Q( -1‘-(12624@[26’2_) f_‘a__:-/. é{((‘ﬁo—rt\QJZ

‘ ~ta, -ty (22)

A
A Ja \
FQ Cﬁc)a,\, al«’)a:‘é‘_) 2y (———m( , 7, )za;_?)._(‘qa)

Therciosre

6 —4 0 ©

E L]

= o o
3 7z » . ‘

8 o o 7 ' (23)
o0 -'l- 0

A

Similarly Fg 1s glven by the mapping

A
(Qozg Ayl -+ Qa8 j“‘liz@u) fi» e, (;{ao 0 By, Y€
- By €s (24)

A
' Qo , %, %z 5 2 & o ‘ : :
2 ) ) > ) —> (._ aazfl.a-u)tdo)mﬂ
Therefore, | N

coe —~U 0
A .
E' ~ A 0 o -1
4 ¢ 0 o 0

5 ¢ O 0 (259




\

The proecedure described above yields a representation

of Cy, from Cp i.e. starting from L we get CTQD(ﬁk.,.etc,
This is equlvalent to generating {*grL+L from L~1L4ﬁ 1.e.
starting from [_3 we get Le , [o Liw s Lyg 7;;..‘etc.
But to obtain Lﬂ7, L“ v Ly3 ete., we have to consider
ete.

for
Dren/these algebras Raseviskli has shown that the ahove

procedure ls applicable by writing formally

C\3 = CQ_ @CQ f’!}\

and in general

C;;_m—Jr; = Czm @sz

(26)
The algebra Cﬂampﬁw has twice as many elements as Cﬁyq .
| However, it looks as 1f by taklng n elements out of
2n-1) antleommuting basic-elements nf L*2n~| and generating

n

27 elements by the p-fold produets {(p=l,s..n) of the n elements

we can obtain the representation of the basic elements »T [“27T+/

ence the entire hierarchy LJ L etc. ean he easily
2

5)L7 e
enerated, using Rasevskii's method., The validity of the above

suggestion has to be examined.

e e

R R e S A R
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i
;
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ol

| - - 1)
It has hesn shown by one of the authors (/e R)
there are (2n+1) anticommuting m

that
atriecs of dimengion 9 4 oN
satlsfying the two Clifford conditiong

I ‘zikk - &9'2?
. 2 _ (;: by Qn+}> (1)
IT: Jf = L

If we form pwfold produets (p = 0,1

/

matriqes constituting the elomentg
i

.‘ N 2 .
on* Out of these 2 n elements, only

£ satisfy both the Clifford conditiong

obtaln an aggregate of 22n
of the Clifford algebra

the (2n+1) base elements

¢y only the second Cl:iifarg
+ In conformity with the mathematic

al literature
we denote the 22“ c¢lements of an by

I3 €0, 8505 Gkgjé%
(

‘ / Ay J) (P] 92‘ cas Q,Qﬂ (2)
(<y) (1<) <k)




It has been pointed autz) that there are three methods
of generating the (2n+1) base elements wileh cuh be reoresénted
as matrices of dimension 2% x 2% of Cy; the first being traced
to the primary derivation of the CX’ -matrices by Dirac, the
second one known as the ' (G Loperation, formulated in detall
in reference 1) and the third one is due to Rasevskiis). while
the first two methods which have been shown to be equtvalent%)
generate the 2n independent base matrices of Co, of dimension
2 x 8 from the (2n-2) independent hase matrices of Cp of

. n-%
dimension 2A=lxof™t y in the third method of Rasevskit?)

the 2m inpdependent base e¢lements of Copn ar# generated as a

mapping on vectors constructed sut of the complete set of 2n

elements of cn.

L]

Reeently A.0.Morrish) has obtained explieit representatisns

of the Gememalized Clifford Algebra (G.C.A.)

f(t'é)‘f - LD “e\,/;—p’z‘ /?{:’)‘: ‘?‘:‘j:‘: /)'-ll)l'z'ﬁ’

¥, —
!

Ly = I
and (3)

where (3 1s the p fh primitive root of unity. - Tt 1is to

be noted that although the dimsnsion of the hase matrices 1is

n? x mn, yet there are only (2n+1) base matrices as in the case
of ordinary Clifford algebra, the last one obtalned as the

produet of the first 2n base matrices. The ecomplete set of moD




X £

‘ i?‘?%

)

&

5

|

‘t%

’

™ !

elements of ( ls construeted as the product s i

, wl . iy

i

i

k{ kz rkzn %

et L, w

. E

()S kl) k‘g\’ Ve k}!n gm—\ ;gg

The usual Clifford algebra, Za. (1) 1s obtalned as a speeial ease ?
when m = 2,

S

TN

S

The most striking feature »f the G.C, A, 1is that 1t has

alogous to_the tsual Clifford

T
e e

propertiesg closely an

algebra with
sultable modifications to lneorporate that () 1s the m°h rost
of unity.

T

The iepresentation of the (.C,A, hag been egarlier
he

obtained using/Tirst tws methods5)

We nesw use the method of Ragevskii to

i
8@t the renresentation |
m : .
of the G.c. 4. szn + We can write an arbitrary element of
m as ‘
271
| | ¢ 1 T
: . . vt 21
A= a4+ Q1 Ceeylen € €T -
(_\ s (3!3’2'2 J‘tl) ?Q;/] S‘ﬁ’]—-:}_ (F:)

ere - weg have used the summation ‘eonvention of repeated indiecs.

We now divifle the poi elements into sets as

AELA0+AI$‘h“ﬁAMH
fere Ay contains terms of degree.

tmed o, gach having
2he1 )

elements,



We now construct"aftdr'Raseveskii, the representation of

. M
the 2n Dbase elements of GoTu As C:n obeying

E?’(J‘j e LD-'QJ'-’«??' /?</: Z./‘/:!J-‘.);)}?

Rl -
62:'_

¥l

2n are obtalned as the manning

A
oy
fq —is A €;
| : | ‘ (7)

The other n elements are obtained as

The ‘first o elements of

A ‘ .
Ej . . .
| A1 e ) M2 A fvet) e A .']
A g /514??. o Ao AW A, M-
(%)
where
2; = f\w ¥ a(/KL
1[QL§ %y Wi el
‘ A A :
The affinors E}, ey ) f;n ean he shown to furpish a repre-

' i
semtation of the generalized C1ifford algebrs Cpp..
(aed For the first n elements, E}) E;, h‘.')E}lthe proof is
obvious since PN
£ GJ

A — A @?—éj\ (9)




A A
-/\['\1‘ ' F
But A s A o 3T ALE
| . ]
o {E‘E)_ = £ F
Ei o By (o boma) A (10)
and m"mm,_mm+; A eyl ke =
(rm kémro)

(11)

Therefore by eq.(9), (10), (11) it follows that &3

s N . obhay t ' o L
(2 5 , N 5 he algebra C P
Casg 2.
A

N K r
To prowe that E\nfq also obey the algehsa C-zi
we proceed as follows: |

A
A E’H}? éé;[@mprrﬁ\o -t me le e the 1"4“‘*'}-'('12)

Notiee that the degree of the terms has becn increased by ®ne.

Henee

/\
FYH = ik .
J gm - - A - -
/A‘ 6'/ Q} [ S az‘irc- ~ r.-Dl " &A, R ;’\m—fj
(13)
A N .
Fn+2 En.f/ ) Lt -3 -
‘--—-> [;- F?I 4(:/\ [-l,() A-} "*f i 1--—;— [,0 Am - (14)

A A S A
E nyi Eﬂ—f—j = f;1f/'En+?v



1t is then not hard to prove that

(1‘ "o
[: H--H') =L
A A _
Case 3: wo shall prove ncw, that é?i and {Qt/ ohey the
algebra . \ ‘
A A ) T 0
£iFnvj e " 4 A -‘J ;
2 Envy %f-j[Q Ao -t A+ F A
(15)
ald
fﬁ CF oy -l - - N
. Tt ? . ) . J \.t\v-f-‘“) . 7
__{.—2; Z)/_‘J[M) /%"'ft' A["f‘ Aml(}ls)
From (15) and (16) 1t is clear that
N A
AA,
\ - 0 l} E . E{
£ By ') i) (1)
Thus Lq.(7) and (8) yield a Tepresentation of the 2p basie
4]
glements of ZN . )
We shall demonstrate the above procedure for the egge
m=3idn = 4. i.e. to obtain the representation of Teom .
We start with two basic eloments €, &, or C\j
obeyling the ¢.r. A, The cemplete set of 9 elements o f (wg is

glven hy

2 h 2 . 2
)<y €y 07, ST S Q(QQ?' €l e L,




a
An arbitrary element of: Cz

./\'—':Qo""f‘ Qe —f 150 -+ ﬂ”@| fa, €k,
-+ ﬂaz.e,zz 4 oG, ¢y ',(‘f{_ -+ (U, €4
Now A = Ao +AT+A L
where Ap = Qo -t a2 Q!'ZGZI -+ L2 e
Ay = ey —} ilzéo_ ~4 a{lll‘éil
A, = g 0f A% Gk Ros &y

A

‘The mapping A =l A Qt yields the matrix:

cCco (ce oocp
Lot 00U po oo
o110 Cow
E..ﬁ = O ok C e o\
AN oo ) AN )
: OO oo
O oM D 0bO

O n oW

1s therefore written as

_/(>z€(/

(18)

(19)
L4

(20)




A
£,
The mapping A Iy A€,

boo oo
oo ol o}
toc )
A OO oop
E - Coco
- 2. ore
oYl
ey
O O
oo0
A
EB

T}Ee lmapping /\ o

oCo
tb?"(‘f" o
A O ,C.)

EJ = oW o

2 ored
e

)

s

The mapplng A s

last matrix

OO0
00 o
0Ow
OO0
oo
oc)tb

O

EL(.:

%

yields the matrix:

ceo
cre

coe
¢l
oo
(AN ate
oo
ey O
(0o

o0 o©co
PCO 0Co
CO6 WD
6 ¢
O oo
O(‘ Ly
6 (0 oo
&oof o0 o
uloYs) A0 o

5, [uﬁqm+ O Ay i ;f\uj

S ¥ale

nov
OO o
oo0 e D0
O I @dbah
o0nn
n oo
Lo 4‘\0 OO
c¥0 aee
o0 oo

(21)

fé@, [ WA Y WO A~k llﬂz_j'gives the

matrix {Here 4 = 1 since m = 3)

(22)

glves the

(23)

i
i

I ———

s



'y is iMportant to note that 1n contrast to the other two methods,
rthe methods due to Rasevskii does not require the explieclt form

¢ f the matrices of (“,n to construct the remresentation of (-Zﬂ'
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THE GENZRALISED CLIFFORD ALGEBRA AND THE UNTTARY GROUP

Alladi Ramakrishnan, P.S.Chandrasekara
1.5, 8anth
MATSCILNCE, The Insti

n and NiR
anam and N,R.Ranganathap

:Ranganathap,
tute of Mathemstical S¢lences,
Madrag«20. (India)
h\_ oK K A
Duging the p@gf two years foilowinguthe fir
of Lemabrix theory™’

st formulatien

the Matscience group has heen econecerned
with thdhgeneral;sed Clifferd algebra of matrices which arg the
m~th rooﬁs of uéity. The generalised algebra was d1i scovered
by Yamazaﬁig) ?n 1964 and the matrix representatimns in the

‘\lowmst dimensibn were Iirst given by Morris 1n 19673). We

Epw present sgme new results on the subjeet and point out

:s£kprising and unexpected conneetion with the

theﬁﬁpecial ﬁnttafy group. |
\xIt ha

X} ¥

, J
s been established that there are (2m+1) matrices
A)f.‘ PN S

shall

a
generators-of

’ &flﬂ*'#‘ of dimension m® x w? obeying
the tw§ geperalised Clifford conditions:

o?[}{O{J = [b Dz:f ‘f{‘)iﬂ(‘j‘)i“}:l)%n.)ww)‘
o |

(1)




where () 1is the primitive m-th root of unity.,

The (2n+1)
matrlcesobey the produet rule:

&,/,’ o 0( DXYHZ " Oflﬂ X.z.nIM

-
| = o T

i

(2)

It follows therefore that in the lowest dimension (n = 1)

there are only three matrices égtisfying the twe Clifford
conditions.

The ezse m =

2 corresponds to the usual C11fford
algedbra. |

The representations of the three matriees P, ¢ and R of

dlmension m ¥ m sdtisfying the two €¢1ifferd econditions have heen
given by Morriss)

a3
| od o O OB Ty 0
et vy O OO(DQ tY Yy
¢ 1 - i
P- 1 Re |
] i
L : -y
0 e { T
100 s o | B A 0
-

(8)
The third matfix R is eonnectad to

5

Py Q By the relation

(}3 =~ g FpmﬂQ (4)




Sy
1

1 for m odd _ :

il

éby'Lfo:r' m even

The method of obtaining 2n«1xmatrices of dimeasion m? x m

from these two matrices hasg Been deseribed in a previons paper4).

This 1s through the generalisaﬁlpn of @ -operation defiﬁed in

the first formulation of the Lematrix theoryl>.

Through the work of RasevskiiS) on the ordinary 01ifford

algebra, we realised that cven for the generalised ecase 1f we

form all possible linearly independent produets from the basié

en elements satisfying the two Clifford conditionsﬁ)

b4

5 K : /Q;_ 0{ l\qi’ﬂ
‘Z‘f 'y‘;_ red an
0 N i 3 2) 1y 3 2. \ (5)
we obtain meh matriees constituting the algahra . While

all these elements satisfy the Clifford condition IT only the

~

m hase elaments satisly both the (11 fford conditions, We sbtain

‘the following rule:

The total number of n

;mn % mﬂ

atrix roots of unity of dimension
1s equal to the order of the root raised to the power

f the number of independent base clements: loe, m©n,

i
i
|
&
{




.

™m
it 1s important to hote that the algehra Cﬁgm has a
symmetry princinple inherent in it

it 1s unaffeeteq 1f we multliply
the matrices by an m~th ropt of unity.

We now consider the case m=3; n=1, and now is

a primitive cube root of unity. If we form all rossible

products of P and Q we obtain c¢ight matrices
i . 2 2
rPQ 'PQ—C\-&,' P)Qi) PQ: PQ)PQ
’ )

-
or equlvalently

P) pz}O\JQ&; RJ RR : PQ )QQ /

4

(6)

With the unit matrix they form the elements of the

generalised
Clifford algebra (

2 L]
We now 1ist belew explicitly these matrice

3
P = o O | ' P° = o o0
) ) ol 0
oW o 0 o |
QA = & o Wt : ‘. 2
p) Q“’ D R N &)
1o 0 © W o
o o
_ . 2. 0o o
R Obfbg ) R: 6 D* o
o o O & W




2 D% o

D

_—
o
&

-3
A
3
o
B
]
{!
&)
Ex\:
A

2B

o
‘CJI
<

1o O

£7)

The set of elght matrieeg consists of four sets of two commuting

matrices in waich one set, P’a. ana Pa* 1s diagonal. Tach

set of commuting matriceg congists of a matrix and 1ts square.

We now observe the rémarkahle faet th
generators o f S(/3 , 'AS and

at the twe conmut ing

Ag Lo the Sell-Mann notation?),

can be expressed as a linear combination of Just the diagonal

matriees of the above sgt.

1 e DO 2 2
)\3: o 1o - o Pa - pPq
0 0o D (1-D)

[ { O O
A = = s,

S

= mié_(po\2_+u)P2Q>
6o ~2 '

(8)

B s

B s T D e 2



For the sake of completeness we express the other
in terms of the

’

six matrices
base matrices P and Q. |

A= ?’3“{ (P4 wal+ra) + (F’*Q'*"Dpz‘zz)f |

Ay = (P40 AP - (Pras /)
/’."

i
;

Ays ‘\%{(P%Q@@PQ) + (P**’Qf@ffal)} |

/

f
4

/

+

'
!
i

a

/\5 = & | (Pa-g -+ ) = Pratod PQ‘)}

I
i

i

.f;

A = J,),{( P ot Pa?) o (PR @t 407 P2y

i

'/\7—ﬁ i ({3‘9‘4u)?‘&?~+®2‘?6{)--:-(P+u)0\+%32£{‘“)} -

!

H
i

j

(9)




In the last few years, attempts have been made8’ to classify

the various elementary particles by assumjng that they are

compssed of t hree §undamental objects called quarks (i.e. ,

triplet) which are simultaneous eigenstates of

*A.B and /*g
il.e.

the ooerators corresponding to the third compohent of

isotopic spin Ifz_ and hypercharge )V . Silnece :ZZ; and >/

. 2
can be expressed in terms of F}CL and F%l% only, we wish to

sugge st thét the states of the triplets can bhe considered ag

2
the simultaneous elgenstates of P Cl and PGK

P?0_ and WP
and we give

1 /{A_g g

quark triplet and/A‘

Relabelling for conVenience of notation,
as Ml and MP and their eigenvalues as

below a table of the quantum humbers of the

.and /L K

_ IZM v o /{1! /ﬁz
A '/ /3 1 !
B = Yy 2l




Further we have

{10}

I 7 = "_!'2" /A’f ﬂux\/kz
? [ (11)
(12)

8lnea ‘/45 ls the square of /ﬁ_ ‘eonservationt 5r /ﬂ% does
not imply teonservation of /a and 0 we have to psstulate
separate conservation laws for /& and /2 Lo just the same way
as we postulate sepsrate conservation laws for (2 and }/ or

equivalently () and TZ or I?l and Y

The above consideraulcns cah be carried over to ohtain the
generators of SU(s) from the two base elements p and ¢, the
(m=1) commuting matrices in this case being

?)k)f O\}?g
with
k’;’"‘f“}‘?,‘ = M

In sueh a ease there are {(m+l) sets of (m=-1) commuti ng
matrices, the unit matrix commuting with all of thepm, Members
in a given set can be expressed asvowers of one of its elements
say B l.e. any set can be written as B, Bg, cevees, B

If we add the unit el@ment we get a eyelic group of srder m.




9 '

We point out that 1t A A 4. |
/ < 9 )/, are 'guantum

l b} L, - {
numbers! ywhere ,ﬂ% can take any cne of the n values of the n-th
root of unity and |

| 5 3 : o
/&2:/&4 / %3‘2-%4 bt 3/%1-4:/;%4

then we can.ascri“e to any multiplet orf SU(nY,

nanbers, A 4, .
of /hl as follews:

ey /‘4 t fe T +/L;x~-4 E :/u'r +/K’Q+ ~f~/u1ﬁ4
.\‘

L %

n 'scalar! gquantum

", An  which can be exhressead in teopms

D
[ N
i

O
N
1

¥
Y

L § ) () S ™)

N

.
.}
1

{

- . ] y
!

= 2 L) A S

(13)

_\ (14)
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10

We can also deflne vector uantim numbers

C&f*~éww>/£

(17)

anf henée we have

, (16)
533uming for J ;k-nth4’, q;His 5} itself,

It is enough to e@stablish the above relations for the

basic multiplets of SU(n). Since the . A7 and V3 ave linear

eq, (158) 1s propagated for the higher representations alse .. 1f

Se = ?i Ay
M. /h k)
L =
(17)
v ZW(

where the superseript .denotes the !quark‘ components of the

particles' eorresponding to the higher re

The relation between S}, and }*4 can he @xorosqed through (12)
by Just replacing Ae by S¢ /h¢ hy .

O The - " cttAn
generalised Gell-Manp- Nishijima relation can be_written similar
to (16).

Y

'eomposite nresentation,

(18)
In the partieular case of Sﬁs

S
Sz = i
= —-Q+)

are charge and hypercharge respaetively and

wWe ¢can set

here Q and Y

v




s0 that

The sable for +he values of £, A«

11
3 < Iz,} Z comnonent of Isospin
Vo oV, v spin
¥% :f‘sz e svin
1, - o - O/”&)/Z
Q = 14V

2_) -GOJ .d'?’l'

the bagie¢ multinlet SU(n) oark 341)/A2).v~_JA3715
. X,! Az /{5 ok /""1.
B ~%
R n ) n
/4.2 "’-,.'}\—‘ '71_:1_. . .}n w-"}fb
¢ - it ‘
’ ® ; n .
! A : n -1
Amn "’%ﬁ L -k e

Similarly the table for s

presentation is given as:

v, vy .
Ay Lo
Az ~:% é“
5 6~z ’

for the hasic re-

-
Wl

for

e S e
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In an carlier contributionl) we nainted oput that 1inear

eomblinations af matriecs whieh satisfy the condition

m

v =T 8

can be s& defined as to obtain the elements of a Tie algehra

and in marticular SU(m) ia their self-renresontatian. The

colleetion of &6 -matrices satisfying eqn.(1) form the clements

of a generaligzed Clifford algebra. The connéetisn hetween the

Lie and the C1ifford algebras seemed st that time extremely
surprising, but we shall now show that it is a patural conseaquenes
of the wroperties of the matrix &i + We ean chosse a linear

eomblin tion of an ;f matrix and 1ts vpowers to define a matrix

A such that

&M= Aif m 1s odd
)
5 | (»)

4

= AT 1fm 1s even

Since the elements of the seilf regnresentation of SU{(m) ean he
renresented by A-matrices, it hecomes elear why there exists sz
eonneetion bhetweon the elements of the Idie and generalized

Ciifford algebras.
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Lot us define the matrix A as
i’

A= L '(;~®f<‘) z’k- | 5

L
/\5 b ’[
whars gC) is the primitive m'h root of untty.

It can be verified that A has the strikingiy interesting

proverty

3

2% = h, 0241 | (4)

for any n. It follews immediately that

A% = A when m is odd
= 12 yhen m is even - (R)
AZ can he exvoressed elegantly as a linear combinatiosm af
and 1ts vowers as
-7
| AT = ? [~ 09 N »
& =0

The linear ecombimation (3) is suggested by the generalized
Gell-Mann~Nishljima relation we have reeently obtainedl) hatween
“the veetor duantum numbers and the saalar quantum numbers of
SU(m). The veetor quantum number is just the rigepnvalue of the

matrix A while the scalar quantum numbers are linmear esmbinastion

of the roots of unity.
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1, Introduction

™~

OQur earlier studiesl’g’d) on the generalised ARB RV s
algebra (G.0.A.) formulated by K. Yqu;a<i4) led us to g surori@ing
conneetion between the generalised Clifford algebra and the
unitary graups whieh deseribe the internal symmetry of 2lemantary
varticles., We shall now show that 1t 1s nossible to obtaln the
matrices of the Duffin~Kemmer-Petiéu5> (L.K. D, ) algebra whien
enter the spase-time descriotioh of vartieles having spin zere -
or one through a wave'equation, known in literature as the Nk, ™,
coguation. Bueh a derivation of DK, P, alge%ra from the
generalised Clifford algebra leads us automatically to a methed
of eonstructing the alements of the algabra of onthﬁ gonal grouns
8150

L \q
v
2, The | -matricqg_gﬁmpuffinnKemmer—“etiau

m
The generalised Clifford algebra Cp has n Wasie elements

)
&. & sueh that
1

B
it
,__\_.

R

€l = gy (7<)t zi e, o)

where LD 1s the nrimitive m-th ront of unity.
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In the following we shall be meking use of the (;

,7
N

algebra for derivating the elements of K(r) whose gseperators

%J ;5 (i=1,...,7) obey

V ‘ 2 W ’ N s
f?k S ng] o i My S, (2 (200

RN ) [

From the above we are T d to the

? . /A 3 {— ﬁ,‘\wz :‘f"“ " = /{? ( /( q’ 1y ) A 'lrQ

(2,2)

It will be important for us to note that thd algehrs ¥(r)

has always an irredueible representation of dimensism r+1, 7o

obtain the basie =» generators of K(r), congider the olement
Y AN
of |

: ~ . r
2+ et us now deling entities, L U A whieh are

< YA
linear combinations, of the elements of C P as,

vt -
£j.f - L= A A/ ?~‘) ¢ %/G,L/”4)
Y Y4 f v 4/ 2
7/” 5

(».1)
These entities vpossess an important oronerty as sh

A0 Morris!’ N

é‘._\:/' z(‘/\{ o= [ (’f CPJ}\

own by

(2.5)
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Let us now pick ocut of the éf,;;J , 1L elements %
ol ! LA .-'L'. %%
/ { ) (‘/ - / } () ;
! ]
A
and define RV, ‘fg such that L
£ . . ) . . E,i:
. _ g
; _ 3 _ i
We assert that the Y, constitute the 1 hasie elements

of the algebra K¢r). This would he true 17 we can show that

.@€>Sobey the fundamental relations {(242) af this algehra,

Using (®.5) and ¢2,8) it ig aaslly cheeked that

/?. .,’2’ e ? - /\ (‘_) r\ ) /t
NN e L . ’@ o (Zt,, o = " FUE IS W " o
/ q | l\: \.:*( "?L { L ; )\ '._\ 7 ( g } 7 { :'K( e

a

3 A7 .
anf henee ﬂ~ - f{ etc.  The {rredueible ranresentsation of
{

is of dimension (r+1) and hence we have obtained one renresenta-

I
tion &f the Kemmer algebra K(r) of (r+1) dimension, since /Z; A
Y o1

constructed from the elements of (j @ are of (r+1) dimenstion.

In particular for r=4, we obtain the 5 dimensiomal revresenta-

tion of the Xemmer matrices relating to snin zero narticies,

3. Lie_algehra af arthogonal ersuns

an eonstruet from the alements
i ’
2 (of n basie elemants ) the

It is well known that one &
of the ordinary €1ifford algehry (?

Iie algebra of the rotatiosn gr

8.

oun in (n+l) dimensions (fr sxamnle:

see H.Boerner In this naner we are interested ip construsting




the elements of the algebra of prover orthogonal groun from the

VY ek
generalised Clifford elements C‘ . « To achleve this
~

o a !
de fine :7w1ﬂ S as

, let us

. _ ,Z f“‘,? 2 ‘;’) j
S = (/ ﬁ?n [ ~‘ﬂﬁ\§$ /Wn%n\ (7.1)

hadl

7 J
where ﬂ?; A& are the r basle elements of the X(r) as defined

) - S i Y
in (2.8). These gilve vﬁﬂy\ swhiech are (;2) in pumbar. Also

deflne r guantities ;ﬂ;c 5 (m£132,,.,r) given by

. -~ \ ), -
\7’!‘()0 = (GY.'} \ég o ﬁ)c, 'Luf‘h>

Cad
gy
*
v

Semser’

with NER

e £;7+f)744

(3.2)

E144)-7¢,f being defined as in (2.4),

Hence the total number of Ljvnm fd construeted as above

will be

’};) 4y . V(Y‘*')/Z (3.4)

. ) hood
It is easy check, by substituting E:&/ ‘S for /%; Lin (2.1)
and (2.2) that I»ﬂ % reduce t0 (A ymy - Fawa). With 1ittle

effort one can nlsc derive the commutator relationshin of the

j;nm !,15 given by

- . o T ;T (g\ T
[ ]Y‘n-ﬂ 7\/ MJM;J = Z » M m I)I ! il ¥ |
- C&Wv)ﬂmﬂ / j;-} a7 J\-n-ﬂ" J })')‘!‘7"’ /
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dence we conelude that the /... A which are W’(Y4‘)/2 in

number satisfying (3.5) are the generators of ths Tie algehra

of the orthogonal grous in (r+1) dimension;

Qinee we know the exullielt renresentation of the hasie

. ’.-’}‘ -1
element s "CW and 62 of 2 s WE are now in vossession sf

(r+#1) dimensional representation of K(r) and that »¢ the rotation

grouv 1n (r+l) dimensions.

It has been pointed put by CuRyan and E,C‘G.SUﬂquhan6)

that the revresentatinn of th

¢ parafermi rings of srdery p=2

coincide with the irreducible renresentation of N, x, », algehra,

‘Blements of the varafermi rings also nrovide a method of

eonstrueting the algebrs of orthogonal grouns., Tt will he the

future orogramme of the authors to arrive at the algehra of

‘parafermi rings of any order starting from the generalised

lifford elements,
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The Pageant of Modern Physics
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¥k

The dawn of modern nhysies hurst on the physical worild
at the beginning of this fantury with the Aiscovery “v Max
Planck of the quantun (particle) nature of lizht. This received
spectacular confirmation in the successful intervretation of
atomic snéctra by Niels Bohr, through his atom model 18 which
the radiant energy was aseribed to transitions between the
discrete enesrgy levels of the electronsg.

The tﬁeory of these nhysiecal nhenomena 1s known as

relativistic cuantum mechanics, whiteh takes into aceaunt the

constancy of the velooity of light, the Aualism of narticles
and waves and the discrete nature of the energy levels of atomic
and nuclear matter. The growth of relativistic .uantum meoharing
has heen characterised hy six maijor develonments.
(1) the formulation of theory of Relativity by Tiinstein
(1925), (1e15),
(11) the invention »F nop-relativistie quantum mechanies
(1926-30) by Ae Broglie, Schradipger and Meisenberg,
(111) the introcduction of conecent of intrinsic anin hy
Pauli (1326),
(iv) the fusion of relativity and guantum mechanics by

Dirac (1923),




(v) the prdpagator formalism of Feynman (19409),
(vi) the inclusion of Loternal quantum numbers ip the
descrintion of elementary varticles by Gell-iann (1954.88),
These digtinet discoveries are wel] sevarated in tims
and are the indenencent nroducts of the inventive genius of
their creators. 3ince all thege theories are mathemratical

Creations to exnlain various asodects of the same whvsical

ahenomens, the coltigsions of elementary narticles, we are
tempted to sose the f2110owing question:

Is there a comuon thread which runs through this fahpie
of modern vhysics? Can we discern g nattern in thig nageant

of discoverisg®

Very recent tovestigations aof Matscience {ndicata that

there exists & mathematical structure which can serve as g

comnon hasis for these six discoveries. This claim, which may

seom almost utonian, has a reasohedle basis since the nrincinal

foatures of this structure were already known to mathematicians
for over a centnry,

We shall briefly deseribe these major develovments in
relativistic quantum mechanics and exsress their essentigl
features through symholic aquationg, These ecquations are
recognised to be 4iffarent faccts of the zame mathematinal

strueture,




L. The Treory of Relativity

Lo contrast with later develonments, the

thenary of
relativity stands anart as the ereation of a single mind, that

of Hinstein ant consists of the transfomation laws 1T Aynamical

varisbles relating to cnordinaie systems moving relstive to ane
another with unilorm velocity. In cssence this ftrsnsformation
Ae invarigncee of the lenzth of g four vector leading

to the quadratic relsticn:

where I, o and m are thne 2nergy, lipesr momentum an? the rest
mass 210 the nariic’e rasaective’y., The ramificatisng »f this
funfamental reiation commrise tha theory of ralativity,

2. Quantum Mechanics

Quantum mschanics 1s Ma2sad on the »rincinle »f comple-
mentarity which states thet o descrivtion of the micrsaconic
world is »osaible either in tems o7 swace variahles or momentunm
variables bhut not in terms of both simultaneonsly. Mathematically
thig imnlies that the wave functinn in momentum snmace P(n) is

obtalned throuzh a Fouri:r transformation of the wave Tunction In




ey

coordinate space Y(xjx). Symbolically we can write:

D) = w(x)elpxdx TT

From this fundamental relestion flows tha de Brogliie nrineinle

of dualigm of wnarticles and wave s, the uncertalinty vwrinaivle of

T
]

Helsenberg and the allanarvasiTe senrodinger eauation., The
discrete nature cf the energy levels of an electron moving round
the nucleus 1n an atom 1s understood as the manifestatidn af the
diserete nature of the gigenvalues in the solutions of the

Schrodinger cquation.

A, Intrinsiec Snin

In such a deserintion of matter 1t was found necossary
to attribute an intrinsic and fndestructible snin to the elemantary
narticles. Thkis was achieved through the use of the famouns Pauli

matrices:

Fas

|
Tz vy oy TTT
j

which have the nrecessary characteristics ol the three comnonents

of angular momenitun.

Sy
S

i

SRS

o

s



4. The Dirac Bquation

* -

The econfluence »f relativity and quantum mechanics was
acnieved by Dirac in 1923 when he just wrote down his relativistic
eguation for =zlectron. This enuation involves the ganeralisation

of Paull matrices and can be symbolically renresented hy

*415\‘@%- ¥ .
ey Ho o= op o+ amp IV

where the < and ® are the Dirac matrices. This gensralization
of Pauli matrices is a mathematical overation which achievad the
simultaneous inclugion of reletivity and svnin into the wave
eguation. Ope of the »rofound results of this fusion i3 the
:emergence of the concenwt of antinarticlie as a necessarv mathema-
tical consequence of the quadratic relation batween encrgy and

omentum.

. feyvnman "ormallsm

The triumphant carcer of Dirac's theory for two decades
as erowned with the elegant formulation by Feynman of the
rooagatér formalism which enabled the study of any Mndamental
rocess 'at one stroke! whera 'many! were needed in the original

form of Dirac theory. The assence of thig Tormalism 1s symholicalls

i
i
i




expressed through the two-~noint »ronagator functhion:

. Internal Svmmetry

In the early fiftles, relativistic guantum mechanics

met with an unnrecedented challenge with the »roliferation of
new tynmes of narticles in high energy acceleratorg. It was
ssaible to undarstand the nhenomenas relating to these stranes
narticles only after the introduction of 'interpal! aquantunm
numbers like iLsotonlc snin and gstranzenoss o hyvperchoarpge., The
new era of nhenomensir«ical nhysics was ushersd in by tne

Gell-Mann-Nishijima relation corrocting the internal symmetiy

guantum numbers:

PR
wr
. i -
L - I. o 4 [ P
i i -

Investigators 1n tne Last [decade accented without ¢ue-ticn
‘the opninion that the »roblems of internal symmetry should to
keot dlgtinct from those rel.ting to the dynamics of the syvstom,

Swaradic attemnts to ad - a unilicd aunroach met with 1ittlie

SUCCeRSs3.




= 7. A Common Thread?

We now wish to =oint sut thst there exists g mathematical

structurs whlech ssem to nrovide a common basis forp all these

six develonments. This mathematical structure cap he traced
to the Pauli matrices and their variad generallzations., In our

tnvestigatlion we are concerned with two elasses of matrices T j

ant A which okey the relations:

A\-’ - A ) VI I

When we consider the case n = 2, we are led to the Pauli and
Dirac matrices and & quatratic relation between the cligenvalues
and varameters. We ard able to relate the Fouricr transforms of
L-matrices to the nronagator Tormali sm of Feynman., The manner in ;
which we take ths Tourier ftransform is an exnression »f the

srineinie of covvnlementarity in quantum mechanics.

If we consider the case »f n = 3, we are lgd £ the
relations betwann the internal guantum numhers which dominates

the aresent Gell-Mannic era o7 elementary narticie whysics.

The study of these tun classes of matricas hag heen madae

possihle through the classic contributisng of Gals

Sy A11 1 ford

—

Lie and wore racantly of Yamuzaki. wWe have reached a stage when
we have a right to howne that the hithorts unohserved connectinn
hetween the Lis .nd the 011 fford algebras will lead to new

results and a dee-<er understanding »f natural nhenomen a.
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Kok e e

Recently it was shown that suit

linegr omhinations
bisfy the condition

able

of ¥ -matrices which sa

. . | _ LNy (1<} )
z/ ) - T ’~‘>/\' y}. = o O/J &4 \ J

~

can be 5o defincg as to obtain the €lements of 5 Iie algebra and
1n particular those of

This

SU(n) in theiy sel

Af~repr@sentationl>.
Connection seems unexnected andrsurprising but we shali now
derive a unitar

t

Y generalization of Paull matriceg inam

anner g
o make this connectiop quite nersmicuoys,*

3

We start with observation that g nartial gnit matrix i.e.

matrix which has unity gt (k,k),(f,f‘,
and zero elsewhere i.e, h

a dlagonal

seeeey (mym)
as the fo1llowing interesting oronerty,

5 right hy a matrix By, it annlhilates the
row of B 1f there {g a zero at (r,r)

in the partianl unit
tatrix and 1t annihilates the rth

column of B when 1t 14 multi-

lied by R oh its left. Hence the following result which may

It ig interesting i

& L0 compare this with ti
Gell-Mann2)

e original derivation
and subsequent treatment o lke that of Sopgre, 3)




A"}

seem trivial emerges as a natural cohseauence. If & vartial
unit matrix has unity at (k,k), ¢ G)Z,), (mym)..., and sero

elsewhere then it behaves like unit matrix regarding matrices

which have zeros niong kth column and kth row, TOW
and coiumn. Thus 1f we have matrices which abary (1) then

can dilate them into hizher dimensional matrices hy adding

i

columns and rows with zero such that the new matricrs A ohey

the nroperty

AT = A (1)

fee. by wosition (j,k) 1s meant the lntersection of the jth

row and KkEth coluamn, ‘We shall now aponly these corislderatlons

v

to Paull matrices.

The Pauli matricesqﬁj;, Iﬁiﬂ ard (™,  not only ohey ant{_
commut ation relations characteriétic of the Clifford algebra hut
also commutation relationg among themselves which yleld the

SU(2) algebra. Till now we were concerned with the generaliszag-
tions of Pauli matrices, so as to wreserve the snticommutation
relations. We shall now generalize the Pauli matrices in such a
way that their commutations yield the algebra of SU(n). We shall
‘term this as unitary seneralizations of Paull matrices. A genera-

1lized Gell-Mann-Nishiiima relation will emerge as a natural

cohgequence of thia derivatiom4).




Defining ags usual

G - L e e
(}/:-” - ( J ‘ ol R ¢ (2)

re e i §

2 “
we lmmediately 1ind that ﬁ:"Jg“ and g7, obey the commutation
pl P

relations of the SU(2) algebra.

- = e R — - o ‘3
L Jz’ O"':i,w} o= O’;\" X ngﬁ, o \} ey B (f} e _} SR ‘( )

Let us now define (n x n) diagonal matrices, such “hat
the only two nonvanishing elements ecual to + 1 ococur along
the diagonal at (k,k) and ( ﬁ,ﬁ.). The rest of the elerents
along the diagonal and off diagonal are zero. e shaldl denote

]

such a gencralized O . matrix Dby zi% (e §y © It 45 elenr that
4 A
we have ni{n-1) cuch matriccs out of which n(n-1)/2 matrices

are just the hegative of the other n(n-1)/2.

%,

We can now construct non-diagonal (n x.0) mabrices which

W/.';"

are the generalized &5 and 7 matrices L.e. Awﬁ([ﬁ)f) and

‘

Cal = ‘ L _ e b3 e e e
li(y (g)k). 4;9((h‘)ﬁ) has only two non-vanishlng elements

{
i

L

CRE 7} v a x
equal to 1 occurring at the ~osition (k,f ) and (Kf,k). Similarly
— 1
Zﬂ)(h) ﬁ) has -+ at (&, £ ad 1 at ( f,k). obviovsly we nave

- - . = !
q total of n(n-1) nondiagonal /JK(I(JJE and =y {‘&'P{S

matrices.

- v s s nmm

This implic s that there arc a(n-1)/2 senctalized 03 matrices

denoteéaﬂ} 7 (4itend nin-1)/2 gepgralized 0= -matrices  Irnoted
Sy gens




by Efl_(w)(). Zi"# [ky ﬁ) will have only one non~-vanishing
element -.equal to 1 at (kﬁfi) while 2?;_(K)f)w111 have nne at
(L, Just like the 0% and - | Lo (b, L) ena T (k, ()
‘matrices will act as shift ovperators on the elgenvectors of

We observe that the¢£_(k,,ﬂ) matrices ohey the Ldamnotent

n contrast to

To build the (ng—l) generators of SU(n) from these

atrices we note that the n(n-1) non-diagonal 5. metrices are

art of this set. The other n-1 matrices have to he obtained
from the nin-1)/2 diagonal éfz'matrimes. Tor reasons, which

will be annarent presently we exnress these /2 matrices as the

ifferences of a get of n matrices 81,89,....,Sn as follows.

We write
L0, L) =5 - g ()

ihere Sj s = diagonal matrix with {n-1)/n oceurring at the

sition (3,3) and the rest of the (n-1) elemaent g along the Alagonal

¢ egual to ~%3 il.e.




_ (5)
j - -
n
1
1

If we now 2dd to the qollection of n(n-1) non-dlagonal zfac
andziéznatric@s, one of the ¢Z;matrices and (n=-2) af the
matrices, then this collection of (n2~1) matrices turn nut to
° generators of 8U(n). We are now confronted with the

nexpected reaiisation that cquation (4) bet

ween Ei&_anﬂ Sj 1s
nly a generalized Gell-Mano-Nishiiim

a relation (G-N relation).

-

n interesting feature of the G-N relatiop is that 1t mstablishes

L connection between two scal ar

and one vector numhers or in case
SU(2) and between one veetor and (n-1) scalar numbers in the
seof SU(n). In order to exaress (4) in the similar form we

e the conditisn that

- 3 (6)




6
If we wrlte
—_— LS
]Z. — ()2 Zz_{k')/(>

then we have

Sk::'fZ .._ZM \SL‘
(Hx el

These remarks will become apparent when we consider the case SU(2)

and then make the generalization to 8U(n).
Following the above vprocedurs we obtaln the followling

3 x 3 matrices.

Disgonal mabtrices
400
o o G 2 Uy = T (2,3)
_ e z = /L )
: Q) < \ ecoo ’ z
21, = [
- -1 00
. — i ‘ 5 o= o e ol
2Nz -7 (5 oo
o o
Non-diagonal zgcdnd Z}U
O 10 /"(\f“( O
7 ¢ ¢ , {" ek X OO ,
ooev vt | 1o
p-t 0 60 vov
leo0 | co-to] © 00
- (O { =» @

o
R

\‘\

]

(7)

(8)

n o0
n Tt
n¢-1

ot




7

The three diagonal Zf" matrices can be recognized to he
the 21, 2U, and 27V, while the non-disgonal J + and Zoy

matrices are the non-~diagonal ;\ matrices of Gell—Mann.S)

. " ; o)
2/5 0 (s /32 o - '/3 {f} N
. —_— L, D . . N
S A ; S,= 10 5 ‘ Y 5 /é'p
6t -Ys : Do —73 0 o

We immediately find that

Zi‘ Cr,2) < k:\“‘ga
z .
§2L<2>£): 5;V53

=T . 5.9
42.(“%") e (9)

Let us consider the quark model, now all too fami'iar in
elementary particie physics, consisting of triplet, A,B,C having
charges Q = 2/3, -1/3, -1/3. If we denote the elgenvalues

3 3 [+ . - d + : Z :
;of Sl,bg,bs a8 ql,sg an 53 respectively we can recognire

them to be identical to the quantum numbers Qy¥=Q and -Y 1,6,
87 = Q3 sy = Y-Qj 54 = ~Y (10)
The eigenvalues of I, 1is

1
SIS and 0, we have because of

equation (9)

I, = 5 | (11a)




8
oimilarly
_ 82 fond 8 ] ~ Sr‘ - Bl
Up = 25— 7, = A5 | (11Db)

These can be recognlsed to be the coupled generalirzed Qell-Manpn-

Nishijima relations between the vector guantum numbers I,, U,, Ve,

and the scalar quantum numbers 819 S and 84+ We now observe

that along with the generalized z?;l j?q} matrices, {f we take
2 .

'IZ and ,—%; S3 we have the 8 generators of SU(2), given by
3

ithe matrices of Gell-Mann.

Finally we note that the scalar vector guantum numb@rs satisfy

*

s, + 8o + Sy = O
I, + U, + V, -= 0 (12)
sing this we can rewrite (11a) as e
. = T - °3 | (13)
1 % )

hich 1s the conventional G-N-relation.
We can easily generalize the above considerations to the
ase of SU(n). Qssentially as in SU(ZY we introduce n scalar

:uantum numbers 815853+« + 98y for the SU(n) multiplet Ayhgyeeey AL

S e A

e ot

T

i

e e S

i s

e

S




These are given below in the table

Bcalar auantum numbers of SU(A) multinlet

< Aa Lo A

74 [ Y\_j - L [} t ' -—-:..}._‘
e o "
A 2 —-*—-L"‘ n- *_‘ b . | - ‘__
[ " 7
¢ L] ] ¢ ! i -
L
[ 3 v A Y I
a t s . * )
m— -I"" ' Il ﬂ.——t ’
Ay ", Y 4 —
JL oy

We can define the vector quantum numbers ij for the SU(n)

multiplet as

ij_ = 2] ;_...El.{ (14)

As argued earlier, we need take only ohe vector ruantum number

and n-2 scalar numbers to arrive at the generators of SU(nY. As
1n 5U{(n) the scalar and vector quantum numbers satlsfy the

relation

n
2 8y =0 o v = 0 (15)

We shall now establish a hitherto wnobserved and also
urprising connection by exprossing these scalar cuantum numbers
n terms of the cigeavalues of the (n-1) commuting matrices in

he generalized Clifford algebra of the order né). Lei/klv/;,..n/

A
-1

e the eigenvalues of the (n-~1) commuting matrices in the generalized

RcmmT sy

PR

AN A S e
e e e T S A

s
e A

e

R
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Ciifford aslgebra of ordcr n  where /}% can take any one of the

n values of nff root of unity and

¥ -4

/%‘: /5 /2 | /ﬂv‘ /1 (1)

then the scalar quantum numbers 51, Sg""’sn cah be expressed

in terms of /Q A as follows
L

Ay o= %‘—{E /(L/{*F B 7L"/{l?n~-‘3

B J{l { ‘ & . ) Yy -4

= gy /A +f Y

I Nt | =g 0
% ‘52 oo 2 /{}V( T ) /( 4

RN

: 3 o Vo L) A
A= BR O

We wish to emphasize that the derivation of the generallzed

G.N. relation is not just of academic or formal interest. These

have many speculative attempts bowsrds generalizing the G-N relation

of SU(3) to other groups like SU{4) etc. TFor examnle Amati et als)

have considered the relations of the type

k = I + :?- + 2.. 4
? z ¥ 5 s &

RS b=

(18)

which, 1n the light of our discussion, is without any 16gical

foundation. ALl the scalar quantum numbers occuring in the G-K

relation should have & egual status.




1)

2)
3)

4)

n
R

il
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GENER ALTSED CLIFFOAD BASIS AND INFINITESIMAL GENERATORS

QF UNITARY GROUPS

Alladl Ramakrishnan and I.V.V,Raghavacharyulu,
MATSCIENCE, The Institute of Mathematical Sciences,

Madras~20, INDIA,
K ok ok

It is suggested In some récent papersl’g) that there
exists an invimate connection between the irreducible renresen-
tation of a generalised Clifford algebra cé“) and the infini-
tegimal gensrators of U(n) and 8U(n) groups and their
direct products. In this paper we bring cut explicitly this
aspect which 1s not very well recognised in Mathematical
as well as Theoretical. Physics literature especially particle

physics.

It is very well known that a certain algebra Cén)

called generalised Clifford algebra, may be defined as polyno-

AT

mial algebra generated over the field X by a set

{ 81185 rre g em‘j of elements subject to the generalised

Clifford conditions,

\
i
i
i
|
]

if n is odd, K is a field which contains ® and if n 1is
even, K is a field which contains £ , where o 1is a primitive

n-th root of unity and ¥ a primitive 2n-th root of unity such




that E° = , where n > 2, When n is %, (1) reduces to
the well known Clifford algebra.

In thig vwaper the following thearem will be proved
which establishes the relation between the irreduclible represern-
tation of Céﬁ) and the unitary basis of U(n) and sU(n).
Then i% will be generalised to the case of Cég) which will be
used to obtain the basis for the grouns u(n) @D T(n) . @QU(nB
and  sukn) (B SU(n) ... B SU(n) where each product contains

m factord.

Now Cén)‘ is the K-algebra with K-basis,
{’ei e% i, = 19?9...3n.§ . Defin?
. n-1 .
noo= p(i-1) m -1 o
By 5 1i/n DEO a0 ey €5 (2)
: (1) (2) -
Set ?("L) w P (1) - 1 1 —
}3 (Bij + R i}’ Fj = i (Fij Fji) (3)
(3 ¢
: A1) o (p.. - R -
and bj = (Bii ij) for 1< 7
and
(3) 1 o (3 (1) (3) (2) (R) ( )
. o= L : (2 . 1)

Now we state the mailn




[VS]

Theoromt  Given CL%  over the K-algebra then

(1) ¥., are the infinitesimal basis of U(n) in
terms of the valsing end lowering operations,

(1)

(= (2) /- (?) i
(2 Fg">$ 1«“%"'3 and Fél) for 1 £ § and

I =% E'i ara the infinitesimal basis of U8n) in terms ol
1]
the Pauli spiu orazrators bounded by zeros, and
(1) (5
(2) at

J ,
mal generators of AU(n) in ferms of the Paull spin operators

(2 - (R)
) T oand Gj from the infinitesi~

bounded by zeil 08,

PAGOF, The nroof of the above theorem will be immedlate

are linearly ind:nendent and satisfy

iT we esgtahliish that Ei‘
J

the generating proporty

v

. Q
By By T Tig O (5)

o

n®  in mumber we Lmmediately note that an iso-

jeh]
[
{D

Then &8 B, .
1]

morphism of L., with the n-th order matrices Iij having

¢

unity in  i-t row and  ~-th column snd zeros in other wlaces,
eviata as the _aser form a linarly indencndent basis and satigfly
(), Tt is very well known that tre raising and lowering onera-

tions ‘Iij form the infinitesimal basis of U(n).




Relation (85) can be established very easily by consi-

L3

3
dering the nroduct Eii Ek_Q ~as was done in detail by Morris )

1,

Then we obtain

N . N B . l’l-l
i . n(i-1) p i~ )( qlk-1) o
By By TP 4 ((“ ‘ 1)(_ o . o e
n=0" q:O
e~k
1 }_'l_—-l I"L--l . ) , . Q .
= (p+) (1-D)+qll~3) vrg  j+ K -i<k
- o S Z o @ %o
n® \ 520 g=0 &
(6)
Now the coefficient of e%+q eg+ L omik in (6) is n mr(i—l)

if k= J and zero otherwise which leads to relation (5) as

=

required,

To nrove the indenendence of | we vroceed s Morris

1]
did and concider sets
8, = i Eiﬁ/ j-1 = v (med n), r = Oyvevy, n=-1 ,} . (7)
n-1
Then Sy, e I Z, (r #£t) and set 8 = 8.+ Since o is
=0

a primitive un-th root of unity

det[: m(iﬁl) m(jnl) = 7 (mi . S (8)

I
£
[l
S
.
O




&

Thus gach set 8., (r = O,400,n=1) is linearly iﬁdependent‘
over K and hence & is a linearly independent set. The
second part of the theorem ig imnediate when®ie fHote that in
the matrix representation of Eij by Iij which follows by the

L4
isomorphism between their generating relations (5), the matrix

() 4
representation of Fj is given by
(L, {1, (2) /. (2) (.
(i) A1) 2 i . (1) (1)
(3) (3)
(i) {1 _ \

for i .. 3 which for a pair of values of =1 and J corregnond

' . 1 : 3 :
to a set of Paull o-matrices o , 2 and ¢ Dbounded by zero

olements., In Tact we can verify directly that

GO () ,. . () .y (BY ..
1) L) . i, (1) (1)
Fj 9 F!]‘ . = 2 60(;5 Ij and b j ) F j
()
‘ Bri T : (10)
where I% e a2 matrix having unit in i-th and j-th d%ago?a%
. 2 i
positions and zeros elsewhere and o f,r = 1,2,2. A4s J(i)

are not linearly independent, such an indevendent basis that 1is




5]

(1)

used in S (n) theory Ls deflined by G(gg with Fél)
(2 (1)
and Fj ©ouhere
(3) . () RN (3) (o (3)
I A LD ( D, .1 (1)
Gi "'_'9‘ J{i i 'L [ (2) + 2 X r% s o8 ‘ Tl“l"l)

(11)
This establishes the theovem comniutely.
In view of the fact that

4 n - y Tr . % e
G M (X) OB C)k b (K

21

L
as 1s ecstabliz-=d by MOPTlSd), +ha abovae theorem immediately can

be evtended dirscily 5o obtain the basls of the direct nroducts,

U @ ... x )| j SU’nJ ) e x) a{n) }

6f U(n) | SU(n) | with itself m-times.
The <Hudy of the importance of this connection hetween
the generalised Clifford algebras and the unitary groups will be

the subject matter of gore more napers.
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1. LNTRODUCTION i

amne was initigted to arr
representstions of di fferent

Hegently a progr ive at the
types of algsebrg
Benergli seq Clifford algsbr

s from the ¢lementsg
&« As g first step(l) the

It is wel: known that Kemmn

€r algehrg torresponds to pgps.
atistics of order p=o,

We are now eneourgged to carry

ermi gt

gln represen

NES Oflggx_ggggg_gy relating to any nuy

nber of Oberators v, e
1erefore outline the relationg defining the opers

tations of Parg-fermi

tors Occuring
Parawfe mi rings, e extend the results of reference (1) tq
¢in the next higher Tépresentation of K(n

). We then obteain
Tepresentations for

2ny numbher or these opel"ators, for any

tics ang deduce the dimensionsg of
€sentations.

av QPEAATC.S o LA -FE T LAEQRY

The theory or Eeneraliseqd statistices

including the Bose
I'e rmi statisties

3 speeizl egses has been studied by 4 numbe r




(2),(3).(4) | |
. wWe here attempt to give son exrlictt

of authors

representation of the pars-feimi operstors for any order p of

the parz-ferml statistics. .

- , e +
Let a(i(o<: 1,2,0..,v) ¢nd their zdjoints aok

operators »f the pars-ferml rings setisfying commutation relstions

[ﬁ;m ) aq;};]jf g?y@gﬁ
( ,\,/u,ﬂ = 1"""”. (2.1)

[}lA’ % [:ﬁ/k’ QQJ;]i 0 (2,2)

and 1f the order of the para-fermi statisties is P,

he the

@
>
-~
AR

pti j :
-(ao«) = 0 3 dO(}’fO for Jj < p (2.3)

Thé aperstors %d «nd aZk are 1dentified in physics as the

création and snnihil:tion cperators, Green(ﬁ) hed noticed that

£

. = S b(r)

y - P (Se4)
r=

will yield the pars~fermi ring zs defined in (2.1 to 2,8) if bifJ

«re commuiing Femi-Dirae operstors. This gives a TedUbibl@‘repre_
; PV
sentstion of dimension £PY

Let ue define 2v  hermitian operators(¢54)
-+ q +
p{\ =_];(a + a ) 3 : :.l_(a -a )
Gh-1 & A o R S
(ot = 1,0.0.w) (2.5)

R o

L T

et




3

obeying the commutation relations:

) _ 0 . |
5,\ )[F/L)ﬁ)] ‘:S* = (a)}{u ('5,9“._ CQ)\?)!@/& (2.6)

The condition (g,3) is equivalent to

ptl J
- i = 0 3 ( - i ﬁ 0
FEM -1 qu ' g -1 e

for j < p. (e.7)

. 3
It is known( ) that one can generate the algebra of the rota-

tion group in (Zv+l) dimensions, 1i,e. ()(2v+l) Trom the (3 o

For the case p=Z these (%?aare the Kemmer elements of
K{2v) and representations of the lowest dimension for K{&v) using

Clifford elements have been constructed egriierll),

We will now deseribe g method by Which we obtain the next

hlgher representation of the Kemmer algebrs. The lowest IEPre-

sentation of the Qs is of dimersion (2v+l). We csn show that

the next representstion 1s of dimension

No=2v+ TC (2.8)
o
To obtain this, we tzke g13 commutators [fh, ﬂﬁ] = Jyn of the
v ' -
genersting elements, 02 in number, If we add the oy gENnE -

rators, ﬂ%_: Jom to the above we get & closed set under commuy -

tation. . Let us take an aggregate A of the resulting set, say,

A:Zamn Jon 3 (m%n@ lm,n:O,l,...,Ev)- {(2,9)

R




A
Let us now define Mapplings Ei's such that

A
E. _ .
A 50" = (s, Joi)_3 (1 =1,,..,2v) (2.10)
. A
It is verified that the Ei’s obey
A - A A - (\\ A {‘\ M
[AE)\, LE/L, Eq)]_._:]._:: ()/“)E'l) - r_‘;/\.l\E/“
A A
snd Y =

for all  k, A gnd 9 . (2.11)

Thus we heve the répresent

tetion of the generztors of the
Kemmer slgebry K({zv) which 1

of dimension v + 6"’02 . Tt is to
e noted that we need not know the actuel metrix repregent

atlon of
s
the {Q,Athemselves to obtain Ey metrices,

3. BEPHUESENTATIONS FOR ANY ORDER

This seetion desls with s method of obtrining represente-

tions of the /G/Sgiven by (E.S)land (2.6) for
para-fermi ring.

any order p  of the

To be specific we define @fp), { oL running from

L to 2v) us the generators of the ring belonging to the ocrder

P
of the statisties, Let /3(P> be constructed s
7 A
Vh (p-1
(fp) =T ® 1+ 1@ AP s s s kel (2.1)
A “ <
where jg; jare the elements of the (lifford algebr52 Cgv, whe re

the'square of ¢ach of the ov generstors 1s the identity, the geneg-

rators obeying the enticommutsticon relations, Starting from Pauli

¢an be obtained by the ¢
detailed by one of the authors(5) (4.

- . A .
matrices generators off 7 cperation

R.).  The dimension offi {,Cf
£,




1e 2. If we sturt with p=3, we heve

[3(3% —7{—_/5 ® 1+ 1@ f) (2.2)
O{ <

(2) . . .
ﬂ* “ £ K(&v) which for the basic representstion hes the dimen.

sion (Zv+tl). Tt ¢c:n be seen that /?O((J) obeEys the triple commutcw

tion relation (£.5). Equations (2.7) for any & is also seen to

2 . cy ..
be satlsfied noting thut (7//“__. 1/ D=0 end (@Ea)_i ﬁ(d))jzo

o

‘ ek
for j = & onlys for j < 3 it is non-zero. Similarly defining
(4) | 2?5 @1+ 1@ B (3.3)

it is verified that a2ll the rel

¢tions for para-femmi statistics
for order p:4. &ré obeyed. In general (3.1) is found to be velid

for &11 p. Starting wi th .the (2v+l) x (2v+1) dimensionzl repreE -

sentetion of F(C’) y the matrices ﬁ’ (p) hes the dimension
o S

_ -2) (p-2)
Nx N = [E;V(p X (25v+l)j X [EV e X (2v+1)] 5

(p = 2,4,...). (3.4)
Starting with Kemmer matrices - representation of lower dimension

Y alsoye

/if&m) ) /é(m @1 ¢ 1 @fi{(m) (3.52)

can be obtzined by compounding the ﬁpin the following we

- end

ﬁ(zm-%l): _Z/?}_ @1 + 1@ ﬁ(gm) (m=1,2,..). (3.5b)
o 2 o .

ﬂo{(mﬂdefined by (3.5) satisfy the equations (2.6) snd (¢.7)




This representstion of the pars-fermi ring of order p is of
dimensions

o4 mﬁn‘ SFla -1
NXN= (:(2v+l)°n . X 2(p “ h’:] X [j(2v+l)¢n ! X E(p'd v (3.6)

where n 1s the meximum power of 2 such thyt P 1s less thzn
Pe If we use for fg(z)higher representationscG), N will naturally

'be altered, However?’it is to be noted that if we had begun w1th/0f2)
given by ~w§ @B 1+ 1 ® -~ » and proceeded further according
to the Equd‘tlon (2.1) we would have obtzired 2™ Qimensional
'represent tlon for /Blp) hich is the same as that of Green(2)
The representﬁtzons u;ﬁlVCd at in this section are &lso not
ilrreducible, .

In the above, represuntmtlrns of pars-fermi rings are
ohtained by | ddlng )Qtfvof sulteble dimension to the parz-fermi
operators of smmlleJ order, On rcferrlng to the literature of the
theory of relativie stic weve equmtlons( 18, %) there secems to be
grounds for hoping that higaer values of F mey be relzted to
higher spin. Henca'succes sive additions of hslf spin fields may
be thought of &5 & method of obt: :dAning representstions for nigher

P corresponding to those given here,
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ALGSBRAS DLRIVED FROM POLYNOMI AL CONDITTONS
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AR

spbroduction

The ecssential feature of T-matrix theory 1lntroduced by
ane of the authors (A.R.)lj consists }n realising that the
multinle solﬁtions of & polynomial matrix ecuation form an
algebra under suitable conditions, This polynomial condition
must be more.restrictive than the characteristie ecuation
which any matrix satisfies according to the Caylev—Hémilton
theorem: The simplest and"perhaps the most imwortant to
physles in the class of matrix solutions which satisfy I % b
The dimension of the matrix resresentation 1s related to the
number of elements and they nossess the antlcommuting pronertv,
The next polynomizl condition which was investigated was
AR # 1 ylelding the generalised Clifférd algebra. We now
investigate other polvnomials which yieid lnteresting

: 4

P o f b
algebras®®) wivh 2% = 05 2% = 4 4% = 4B 4% - 4% L1gng

-ky ]

with the condition that linear ¢qmbinations of these alsd obey

, o b
corresponding equations. lore general conditions such as J}.ﬁA N
(ﬂ)ﬂ’)) are also sgstudied.

Section 2.

t '

(L) We deal herein with types of matrices obeying the

conditions
o /(_I/ﬁ

L / «

PR



It 1is wverified that the matrices Ahfoanticommute among themselves

and the renrescntation for such matrices will be

91
/4)—(_: OQ;L(I—T(%V tbte O(/,L: X A xen (K RA K e T (mt(_,’,w\})
, = \AH%M(J\
Otd ﬁ) = Tx K 'K/\’J)Cffx-w){{ ( Y Y
v (R pac) (2.2)
Also
| _ . . e
w?:[.o{)@]‘“”o* ) (33‘“' [o‘/)‘“‘e jw
Q. 2 ‘ o4
A= T =0y o= [oo .
(2.3)

This structure is nothing new but that given by Jordan and

T-.'.-’:‘Lgncar(U for the renressntation of ordinary ferml operators.

11) Sxplolting similar methods we can obtaln other tynes
of relations like
2
R 2 2
/{)‘L 0 B%:D Qe (A)L+BJL) = 4 (2.4)
This can be satisfied if A, 's» are those given ahove and [gikfc
are their resnective adjoints: /xﬂ+ = Bn Also 1t is seen
that
/"“" o —2,
Ba )%= g
(L A= ZBn ) = |
(2.5)
where ‘1/ 15 the number of adjoint palrs that occur inside the

brackel in equation (2.5)




B

i11) Matrices satisfying 2

N

by the construction

/5/): A 4AT

e

. + .
2 Tz
where A and aF are the same as shove.

section 3.

We now loock far the matrices satisfying the relationshins

= fu 2 (2 Aoy Y= (ZX0) (Z09Bouny

The solutions are the well-known Fammer matrices satisfving the

commutation relations

[F/wf[%) N e - Dirfl (3.2)

If one goes further and oprescribes relations

.0479‘: Of (Y:r‘,‘..)yﬂ and (7;0{),)1;_ C_Z OW)Q

(3.3)




Ihe followling types of matrices satisfy the recriirements
completely. They are '
% - o ' ' :
A e :L 7%(*’31“\'L7/@F~f“.]
\ - . (804) ‘
where ‘7/u are Lie generalised Riac matrices and /§P ‘nere the
well known Kemmer matrices and r)/ 1s the product of 311 the
Dirac matrices. These arc the elements of the Chandra ring5).
We can also give the following construction satisfying eruation
(3.3):

D<Y\ = CY)@T—H&’@@()if pumber of ‘elements 1sg odd,

A
h that
sue a a— 4‘ i O?- 2
Yo Ty (3.5)
’YL. f'\/ 1
I's # I®; - p

and ')’] = TT /"‘(" where 77-\ - Zﬁ,'/ - / and ﬂﬂr‘ //0 are the

=t

usual Kemmer matrices. o and J‘ satisfy the condition that

Lirear nombination of them also behave accordingiy.

We now ask the more genersl guestion: What are the erndltinns

to be satisfied by the élemcnts /\ N 0 such that

/We Afr'é-"? s (Z Ay A”Qf" Z /\%f (Z/\’Y’A”D

(4.1)
4% recognise that
- AL s )\Au./\A)
(L /\#Ay) GZchfC /(&4 g /% /U’E (4.2)
L £ N




Hence if we nreseribe the conditlion

i h s G =y 00 ] =0

/% (4.3)
Ly,

the matrices 7$y L satisfy the cauation (4.1). T¢ 18 relevant

to point out that such eonditions for matfices fbr relativistic
higher spin equations were derived hy Umezéwa and Viscontiég.
However, 1t has not been exwlicitly mentioned in 1iterature that
?they satlsfy the eecond part of the equation (4.1\;

In a similar way,we can take matrices satlsfving relations

1‘4(},_/? = 74n( A (Z )\YA'\/) /(; (,Z ,\f.ﬂl)[?_”y)ﬁﬁ}/‘%'w

and  arrive at the necess dry condition as

&

f@‘@ )4 ((‘//u;?é /(’ / % “0(4.5)
/'l,('rrﬂ

The generalization of the s“wove relationships for the polynomtal
| | ~A
tondition of the form /‘} L = A'(e (/S:‘ fy ey /g"f) cah he

¢aslly obtaiﬁed. For /fz,g'; A‘gz:jj and the condition is

F P Ty ) =0

'or the general case ffZ;,AX?

(4.6)

the ihecessary re~uirement 1s

\ ot
;Q/,em /“4 /4/% - (d e e %%;. %>(4,7)

= O,
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QN_THE COMPOSITION OF GLNIRALIZLD HELICITY MATRIAD

o Alledl Ramakrishnan
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K ok K

In develoving the theory of Lematriecas the conCﬁot of
helielty wag g“nora}izedl) to mean the_eiganvaluc of a lineasw
comblnation of threc o gnlarged Pauli'matrices. Starting.from a
primitive sct of the three Pauly matriecs, n sots of enlarged

Paull matrieccs

/[/L V-v /&,z 1,2,‘---,1‘1)
H (
2 ! 2= 1,2,3

4
¥y

of dinenston 2% x 2% con b obtaincg itk the following
prbperties:' B
1) caeh sot consists of thTC“ anticommuting matrices,
11) the members of sne ot commute with the memhops of
ahother, o

Initially, a method known as the cf”-boerationg) was
degeribed following the originélrderivation of Dirae tn ohtatn
2n+1'anticommuting matricos of diéension 2“ x of from the
basie Pauli matrices. Sccondly, n helicity sverators cach of
which is:a lincar combination of thrce enlarged'matriccs;?wore
obtainedl? with the above mentioned-proo@rtiés-i'ahﬁ fi).

We now show that the q‘—oporation-definedwprnviou31V°cﬂﬁ

be.. generalized furthor 1nto a Yenon and mortice " *methayd:
S SO T T < . o ) 2]

1)

of one plees (tenon) is put into a cavity (morticg) of anoth

A

This'is a simple technique used 1n 1 carventry where the adge

er.




Qf’fastcning halteity matrices. Suech a method demonstrates the

mower and scape of the L-matrix .ap-roach in a stvikinPTY direct

manner. For this we proce@d as followsa:
;Frrst we reeall that there

are two metheds of enl
the Paull m

arging
matriecs to higheor dimensions,

(1) by dilatation

" (5] 5o () g a1

~I
(11) hy repstition

. (k = 1,2,3)
. O (2)

wherc the notation of the orevious naperl) is used whereby the

Or §y or z, 2 for
two and 3 for the last ono., T

suffix 1 stands for any of tha remaining

is the 1dentity matrix of

arbitrary dimonsion called the unit matrix of dllatatisn 1n (i),

‘ i+
Let 4, (113) denote the matrix of dimension o j+% o oltirl
sueh that
B Al =1, % 6 x 1 (k = 1,2,2) (3)

The suffix i dsnotes the number of times 6;; i1s roveated
. i
nthe Homabrix and 27 x 2l is the dimension of the unit

X Ty and 29 x 23 the dlmension of tne matrix I

IE

b)




In the coge of o x b Alminstnp-® woiae (L I A

ﬂk(oinnl), e ey Egi(u-l]o) (4)

o) dofine‘a linear combinstion of the three matrioces

q (1) (k= 1,2,3) a5 & heliclity matrix

H@H):,Aﬁﬂﬂj)+ﬁﬁéﬂj)+)y%ulﬂ (5)

wir 'fastent the helicity matriecs by the 'tensn apg mortice

method %0 obtain L9n+l whieh 15 5 linegr combination of (Zn+e 1)

«itlcommuting matrices, e chosses QBL set H(119)  and a1l 1t

for reasons whilch will be obvions bresently as Hn and dcfing

-H; . ;< 2n+l

2n+1
n 2m+ )
Hy = (6)
2 Og on .

fow we fastep Hgﬁpthe third member pr Hn, by multinlication,

-1 n
b tATCO members of any sot Y other than H . on

g n 0 n-1
muitlplieation tey Hé we obtain three matriceg H 1 )
i a  Ho ogh-l . de °
% o ah z By . We now Gf1ne
no n-1 2n+1
iy H = 2
> 1 2n=~1
h n-1 an+1
" - . (7)
HB Hz Jf

an-2




. n hHel N2 ‘
Now fastening the third matrix H8 H to o we define
n ne~l n-2 2me 1
H,J H.., H = (/S\O, :
s [ _1 20‘8
B -l nes onv1
I ol dq =
{8 3 2 £ ohed (8)

'Contindimglthis proecss of fastening the third remaining matriy

to the next sct wo riach

)
I
T
—
]

1L 2.1

T , -

1{8 .»13 HS Hl ag .

n n<l 2 1 20+l
: H “aa - F =

Hy H f }g ,

and

N n-=1 2 1 2n+1
HB H8 .o HS HB = 0%

(2)
Thus we obtain (2n+1) anticomnuting matriecs and define T,
2n+ 1
. ' 2n+1
~as the linear combination of the Ozf (1 = Iye ooy 2n+1) matricos.
, i =

W& recognize that the above Aroeedure is eruivalent to the

. followlng method. Writing

n n n n
i = /\, g+ )\9 R, o+ /\8 A

T R




: n-1 :
we replace A by H and relabel the other two naramcters
3

so that we get a matrix with five anticommuting clements, Agaln
starting with' Hn we can ronlace /\3 by tha five »narameter
mabtrix ennstructed as befor: which has no common matrieces with
Hn to get a linear combination of seven antitommuting matrices.
The proccdurs is reneated till we get a linear comhinatisn of

2n+l anticommuting matrieccs which is deflined as L9n+1'

It 1s ohgerved that out of the (2n+1) matrices two are
mainbers of a helicity matriz. There arc n«2 sets of two matriecs
whieh are m fold vroducts of the members of helicity matriees
{mn = 2,,..,n-1). There 1s only one set with three elements whieh
n-fold products of the members of the heliclty matrices., We

have thus demonstrated the irrelevance of the ehoice of the

helieity matrices and relevance of the sequence in which they

are chosen to obtain (2n+1) anticommuting matrieces.™

Earliera), the anticommuting matrliees were obtalned from
heliclty matrices but the irrelevance of the cholce of helicity

matrices were not realized at that time,

¥ It was a surprise to fiad that the (2n+l) higher dimensional
anticommuting matrices were derived by Kestelmané) as ecarly as
fl96l by a recurrence method which can he shown to he tdentical
with the -aperation., However, the concepts of generalired

heliclty matrices their elgenvalues ané eigenveectors did not

aengage his attention.




If we now attach darametersg /\(ﬁto these antieommuting
2+ 1
matrices &f’ » WE merceive g 'shell strustyre ! in whiah there
are three matrices in the first shell, tyo matrices 1in eaeh o

the othep (n=1) shelis,: Thus we have 4 telesconing or algenvalyey
defined ag
2 2 -

: | 2,2
VAW A+ /\21 + /\21+

o
Lo s Z&d 1.1

1

1

H

A2+~.+A;4

1

the eigenvalye Aj being the charaeterigtyo of the j‘n‘s'hell,.
We ean glso Visualige the 2n+1 dimensional Sgace of the
larameters ag being deeomposad Into & Sequence of a gngee of
three dimensiaong each, The elgenvalye of a helieity oneratow
corresnonds to the length 1n suen & space with the Imnort ant
additional'feature that 1t takes dichotamoug values v9si{tive
and negativae., The 1ength in sne snace i then imhaddag {nte

the other snaec as one of the Parameterg,

It 1ls to ha noted that A (i = 1,2,.,.,%) are the pigp}n_
i
values of the helielty onnrators

n n-1 1

T, 0 ..., x

and also of the N=onerastors

L2n+1 » s 5 I ® L21+1 sy T L




While the slmultaneous elgenvector of the complete sat p heltetty
overators 1s also the simultaneous elgenvaetors of tha L-oneratorg
1t does not 1mply that the elgenveetor of 1, 1s an etigen.

veetor of H . This is obvious from tne form of the' efgenveston

L2n+l given in the originagl ormulation of‘Irmatfik theory,
The tenon and mortice method ye have describhed s onty
a4 generalization of the G -operation formulateq earlierg).
Thi s generalization aan be equally applieg to the helletty
matricesﬁ} of the BCheralizeqd Clifford algabraa) defined by

the (o ~commutation relation

AB = ) BA

» hn

R
n

) = ¥

where ¢0 1s the primitive nth a0t of unity, Thisi$s*p335ible
since as 1n the ease of Pauli matrices thope are osnty- three

matriecs in the lowe st dimension obey is the M>-C§mmutation

relations,
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ARBPENTD IX

(To the pvaver 'On the composition of generaliseq Helieity

. Ratrices!'y

There is 4 particular and Interesting case when the
eigenvalueg 'Ai (1 = 1,,,0,0) are get equal to zero, This
implies that

A2 " 2

A =0,
21 21+1 Q

The linear combinations of the two members of g helizity

matrix with coefficlents Agi and 321+l can be interpreted
as the annihilation and creation operaters ag recognised
¢arlier by the ayther and his collaborators(7) and also by
Raghavacharyulu(gj.

REFERENCES (to be added)

(7 A«Ramakrishnan, R.Vasudevan, P.5.Chandrasekaran and
'.R.Ranganathan, [Kemmer algebra from generalised
Clifford elemenfs » J« Math, Amal. Appl. (7In press).

(8) I.V.V.Haghavacharyulu, 'Algebraie generalisation of
annihilagtion and creation operators spin and para-
field alpebras', (Paper to be presented at the
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PP.18, 5,9.69,
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SHOUU)u&:RLVIbE OURNQYWﬂmi ABOUT SPIN AND PAR Ty IN H”L

Lo ’llladi Ramakrishnan .
MATSCIBNCE Tho Institute of Mathnmatical Sctnncps

Madras 20, (India)
o

«n!’-| 3

o

We Shall show by'bﬁréiy.mathmmntical nrgumﬂnts that theps

1s a nncessity to re-oxamine tbe convontional coneepts of .3nin
and parity in relativistic quantum mechanies, These arguments.
are. based on:the theory of L-matric@s dovnlonod recently by the
author in a serics of contributions whﬁroin it was demanstratad
that the Dirac-Hﬁmiltohi“n is just 4 mombvr of a hiecrachy of
matrices with well d@fidhd hlgobraic nronortins. ‘
~.This ovaper 1a dividrd into two socttons.‘ .The ftrs+ dnals
with the 0roof of +bo oxistnnco of a hlerachy of B8AnerEAly pad
‘thelicity opnrnta?s' and 'holicitv eigmnvaluos’ Thn seoond. dma75
with the fundamental problem of imbrdding snin into a rnTn+1vistto
JHamiitdhiah;

In the thnorv of L»matricos we are. concernnd with the .

simultannous Oignnvﬁctors of tho set of n ometFiaRs

Co ¥ | !
LTM‘ 5 L e ey LM

2+ LR 3
of the samc dimenstion oh 4 Bnlﬂnfinmd a8

N T el
N4 ;hfl CEE L L'l“" .

o . o
L T - e

L A - T

e .
v —
——r

am=t

G

e » PO T TV




. N
where .
L - A 2 /\\ —1 /\.2 i

N ' /\{'3‘"[)2 ““/\3
“\:; ) \-.\.\‘ )
and. o

.,

a4+l 1S a matrix involving (2m+1) parameters A; ;AA)

/45 ,.;.5m«%2ﬁn+( y obtained from LmLﬁ7M¥ by a
0~operatisn defined as follows.

L

= OM( )‘:’:
Lzm-M Zra=)

L.anm—ﬁ '{4\«11“ M/\AMN I

We mow reesgnize that- the simultandsys.

-algemvestors of . this. .
‘\-.._,\

set are also the simult aneous elgenvectors of another sot of

n Operators '

5ot LJCU
L‘3C4) - LSCﬂ)'
Lsiay
204 L-a(‘.’_)
Lsc )(A"')’\‘H}‘S) = Laczs
2. ‘ A
. . C Lacay
gﬂﬂ s Do 3 ) _ Lawy ©
3cm) (Aot Pany done 6 Lawm)




-

T - T
\ ' ’\..?mﬂ ey | ("{\‘mﬂ /“”Y‘)J oy

.\LS(N(‘AM—” /&m) /\,zmﬂ) - (A m__l...}-fi %»W})l—;ﬂ“’ - ,\m“Imﬂi

L~3(ﬁ0 is thus a\function only of three parameters and tg
Just an tenlarged! Lé matrix, in which 5 unit matrix {s
attached to each of the-parameters. ' For obvipug reasans,

thege can be called the heiicity operators of varimus orders

of which the operator

is the firgt member,
We have gseen earlier that in our notatian the hirac
Hamiltonian 1s an LS- with A‘;:.O . The simultaneous

‘elgenvectors of L-S and




where }gj 1s the modulus of the momentun. I we write the

» with Ny Ay = yep
then the simultaneops eigenvectors of the gt

eight dimensionsl Dirae Hamiltoni an i,y

- "l -
" 7 Le o ) T 3
L T, LS = L 3 Lﬁ B L3
0 & L,
L3
are alse the simultaneous elgemrectors of the seot
L
i 3
- {
13(4)(”}'7)%) ] 3L5 |
LB y
ﬁ T o o
5 {
L (ﬁJOJD) = ﬁ Ty o o o
3C2)
B [ O r\.O " ‘a"\ . I{’i)
- W a4
apd Wﬁjbz) F>312)




2. Some_ Tundamental Questiong

The identification of simultaneous eigenvecto: of the
hierarohy of heliclty onverators clearly reveals the mapnerp
in which the paramefers and elgenvalues are imbedded 1n “he
elgenvectors of the'Lhmatrices. This facilitates the study

of transformations which reverse the signs of the p

arameters
and elgenvalues. Writing
oantl
. 2 +1
L = Z f\é ft S
20+ o=t (1) -
."I /
and defining / ,//
ant 2 / C
02?_ F o vt (K | ) = [/ an-t4q ;
o (2)

v

v i

we note that L' ecan he ﬁbtained from I by revqfs{ng the

! ' _ ) .
signs of all A6 except that of Aj . If u /and ut are
the elgemvectors of L and 1!, |

L r)/\ = .Am L -."{‘

i

-

2.7+ (3)
and :
b - / — [\ cul
[ on u-o= o
(4)
where ;: ([wznww *'1 )by,$ )LD
([\Y}"”, /\2n1~I>I L (5)




[

) betng an arbitrary veotor of half the dimension of .,
u' is obtalned from u by reversing the signs of all the
' pérameters except /\é in the eigenvectop u but leavimz ()

uggﬁﬁecfgd. Therefore, even 1T we ohoose tﬁ to »e the
eligenveotor of [HQ“*1 and imbed the parameters

/\J > )\?__.
/\b 5 Aér’ A 99 Agn~q in it, these parsmeters,
and lﬂxﬁ.ﬂ Ip O are unaffected by the overator &? 20 +1

- L

{
To [ix our ideas, we applv these considerations to the Dirac

equation. The Dirac Hamiltonlan i8 given by Ly with

Mbe s Asby s ds sty Agzo g e

ITn the eigenvectors of L5 occur two eigenvelues oxplicit}

pne of L5 with the abowe identification of pvarameters and the
other of |

{

Lg
3 B o T r
or, equlvalently of the ‘wo nellcity overators 3(@):and 3(2)

Ihe value of spin as such does not oceur exolicit?y 1n the

8lgenvector and nas to,be‘obtained from a khowledge of the

helieity and the d%reption of momentum. This featitre which 13

revealed only by the recognition of the Dirse spinors as the

elgenveetors of helicity cperators is far from trivialy; on the

contrary it raises a deep and fundamental question:

LT . i )
bpeuld we rew-evs i e the conventlornal conenpts of

spln and parfty iR relativistio quantum meshanics?




Phe eigenvector of Ly (with /\4 = O) is given by
L?J W

o= f\;m W

where L,D ls an arvTerary vector with tv}o Components, We

can reverse “the signs of ’3 ) ]7% )’,[’f? in L&’ leaving oy

untouched by sperating £5 whiech is the £  matrix

attached to the pargmeter m, If D is an elgenveetor of L53

?

ity
g

!.-
A
the operater Ozﬁ wil}_‘: st11l leave the parameters /ﬂ,:()

: ; & djoé/
An W unchanged., !

)
A

If we wish to reverse the barameters f& R PE} ) ,19,}
keeping 'the dirsction of spin' unehanged such anh oneration
ig" identical with reversing hoth }n and the etg genvalue ,5
occurrlng in . This amounts to multinlying & ny {(-1})
and "this does not alter the eigenvulue of [_ « Therefore
1t is ot possible to reverse f) and helicity {n the eigen-

vector of (_5 . This diffioulty.arises because af the

sqturated eharaseter of L in the sense defined in an aarlier

contribution.



A way out qf this gi.ﬁficulty is to congider a caze in

which LS, L W fu;, are ung

atgrated, the parametars belng
1dentiﬁ,ed as ®

A

)\f:bx--) )\ztr)ﬂj; /\5'_:.})03’) }7 W) bd()é o
1)
For suech unsaturated matrices“the eigenvalue
are defined aa

T
8

‘ (P’){Q"" hﬁl')y.Q
Az = (Wlahf )
CA = (R )

{18)
These are._ al%%%emmm&»f tire. helicity opcratsrs

/

LZM,(MM LT (A,)o)d;) Lm( o)

(19)
'.t‘he eigemwtﬁr a gf L “ean ®e written as
@ LL; Q i n
Aum W (20)
wherg a) 18 an brbitmary g,,ousg c@mmnenﬂt Veeton.
The matrix . . '
o T - {21)
I s
74

~T(4) |

.—" i “ ' i

hi s cage has obvqiouaiy‘;%;_ be diggin .
Fwhich hae baen d;}#ﬁcus ;_'r-bcf@re.

guishad frem an Ly with
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.

where L @)is the 4 x4 untt |
si@dof_Afmd 1 or hx; b

?)jé} in L+ leaving
untouched. ‘

If O is an elgenvector of L5 then

D - S
A R

|

where u is an arbitrary veetor with o components,

jg T 2y
5 ~IC2)

\ .

will reverse ﬁ%- and [\haleaving u  untouched,

IT u 1s ap elgenveetor of L3 then

px'ih?.

@( = A]

the matrix_

will reverse fa‘ and f in .

natrix, will reverse the

)

the matrix
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Thus we find H%

of I, L

at 1 2¢ , V7 ang L are elgenvectors

bs d k kA — w—- .
5 A% L, the matrix product with ,\3 - /\.Ur < =0

(- e s a7
0('7 S Yj (26)

will reverse

»A!) A2'>)S‘ and,[¥zleavimg Z\

4and.z\3untouched.
This 1s Just what we Peguire the p

arity operator to verforn
M =Py Aaafy s A so o, e 2\

Pe ) 2 I? > S PRV SN (fﬁpﬁfw ) -
>\L*'-'-C):S )/S_ /')2 ),}\g:d Jl AZ: b

if we set

Nz M W [:: = }";,aﬁ ),',Li_}},,i
J 1 ; 7 ( 4]7”23)\/2
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ok ok
From the study of the algebra of matricesl’g) which are
the ntheroots of the unit matrix, it was clear that we could
start with two n x n dimensional base matrices A and B

defined for the case n odd as

0100, .., 0] Ow00.,.0 |
0010...c0 00 w0, .0
T 5 B= i ...

.OOOOnoul .OOOOL..‘.wn-;
1Lo000... ] 1000., .0

oo

[]

Where o 4s the primitive nth-root of unity and form all possible

products
x X
A B y (k,l = O,l,...al’l-l)

Tevresenting the ng—l non~trivial roots of the unit matrix, the

trivial being the unit matrix itgelf. Among these, we can choose
n~1
the matrix € = & B such that AyB and C  obey the commuta-

tion relations

~

AR = mBA\
AC = aC4a
BC = CB

For the case when n is even we define B with an extra faetor

W and € gas




We now point out an extraordinarlly interesting pronerty
of this collection of ng roots of the unit matrix,

Any matrix R in this collection operating on the eigen-
vector of any other matrix g corresponding to gn elgenvalue M
Yields another eigenvector of 3 Corresponding to another eigen-

valye N' where M ang are roots of unity, provided R 1g

b

not expressible ag Sk, k= 1,2,04.,n~1,
and 8 are the products of the powers of the matrices A and B
they obey the relation
RS = ¢ &R
where €  is 5 reot orf unity, We can rewrite the above equation

as
RR™E = g,

If 1w dis an eligenvector of § corresponding te the eigenvalue

N then
u' = Ry

is an eigenvector of RSR-l = € 3 corresponding to the sane eigenw-

value 0, Therefore Ry is an eigenvecter of S corresponding

to the eigenvalue % =N,

It is very interesting to observe that from thig Clifford

algebraic point of view any one af the Pault matrices ﬁk,ﬂ&,wz

acts as a shift onerator on the eigenvectors of gny other operator,




IR S fen

at = £ 5 as the shirt overators on

the eigenvectors

of the diagonal matpix o

Once this property is realized, we can generate the matrix

L from B aor B from A and therefore the set of n2

matrices
can be generated from any one root of the unit matrix,
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ON GENLRALIGED IDEMEFOTENT MATHICES
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- e .

1. Intrcductions

Study of matrices representing the elements of the
generslised Clifford algebra :nd G"-operationsl) on them have
been extensively made in oz series of contributi ons to this
Journal. This work collectively called the L-matrix theory
reluted to matrices which satisfied the generalised Clifford
condition An = 1, the cas¢ n=2 represénting the simplest but
perhaps the most significent to elementary particle physics.
Byuslly importsent is the study of matrices of the type AB = A,
or An = A or in generél An = pP p<n. In this note we study
such matrices and establish a theorem that such matrices can
be decomposed into products of other types of idempotent matrices.

In section 2 we first define generaglised ldempotency
and give a method of constructing matrices obeylng conditions
like A" = Ap, p € ny we also examine how linear sums of such
matrices cgrry over the property of idempotency., In section 3,
we describs a method cof extending the dimsnsions of such®matrices
preserving their generglised idempotent property. In section 4,
we give a theorem relzsting a singular matrix having generaliged
idempotent property to & product of idempotent matrices i.e.

matrices whose square is the matrix itself.
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2. Generslised idempotent matrlces:

Before taking up the general method of constructing

meatrices An = 4, wé consider the simplest case 1% = A, which

can €asily be obtgined from matrices satisfying the relation
5% = 1. Let

froomblon-

r~d A — A
A .

it

(2.1)

%ﬁ;

NB ~
It is easy to check that 4 ¥ =4 which is nothing but the

anti-symmetric matrices of the type

~ o 4 -1 0 Ly -1 \
2 2 ] )
A=l-10o 1 O [-a" & W ; woed (2.2)
4-1 0 -t D

{

whiech were studied earlierg).

In passing we may remark thet the matrices representing

the genéralised Clifford szlgebraic elements are speclal cases

nf circulantsg) which play an important role in many physical

situations. The circulants gre NxN matrices of the form
CD C\ - - (Nu‘
\ c C &
= - Co ==~ -
C: N o Mo for a given X (2.3)
‘I
Cy Co - -~ Cyp

The eigenvectors znd eigensolutions of these zre obtszined from




. N .
the scalar equetion v = , and the elgenvalues of the

1
Co | _ . C,r £ c N-1
matrix are 7&A= ’yéw Cot Cuity o+ wme 4 (o /U0 - - et Tl

where Jir is one of the N roots of unity. Hence if only one
_ (}3 is non-zero and is equal to unity and all the other (}fﬂo
are zero, 1t is easy to observe that = 1, since ell the

elgenvalues obey

N

T?A =4 | (2.4)

To find representations of polynomizsl conditions on

n X n matrices we tum to the well-known matrix cslled the

companion matriXB).

( o410 - Sl
cot - 0

Moz ' (2.5)

-
L.}

OO D o 1
1 . bt a,r

_-"am—@uwl”[)lvz )
This has the cheracteristic equation
W é\ =l n . O
R T - (2.8)
end by the Cayley Hamllton theorem, the matrix M satisfies the

eguation

(2.7)
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e
If =11 th§ & Qi.e., Chf)a2) .-, (ly ale& 2ero M = 0y if all
the a's except &y are zero mnd if a = (-1) we call the

metrix M as A satisfying &% = 1, If a1 = {-1) and all the

~

: o . X ~ n
rest zero, the M = A4 matrix obeys the condition A = A

We will call this as the generalised idempotency_condition. By

choosing the elements properly we can arrive at a matrix obeying

any given polynomigl condition. As pointed out one ean gonstruct

matrices obeying conditions like say M = CM+1l and the

COTTES -
ponding matrix will be given by

010 -~ 060

~C 1t - - 00

M = \ _ n
\ sueh that M = CM+1
o Cc ¢ --} -
1C © - - 060

For the generalised idempotency we can easily obtain the (n x n)

mgtrix
(t¢40 - -- (O
oC 4 e e OO
~ |
A= |
/ ‘ (2.8)
oo - - - o 4
o4 - - - © o

: no_ e |
which obeys the equation D= 3 there ecan be other matrices
o~

of the type B such that for n odd




‘cw o0 - - - 00
E§ WU AR - R I &
| NE (2.9)
! 7 v = B
S T o N o W ) o
cf{fop - - 0D
For n even
- | o o
{ e
...
g_w ce gl , o wiere ;2& W o, the (2,1C)
' \ nt rogt of wity.
I 2D
A
_t.'..‘éi""”'iﬂ> e e 0 C N
g : ~oN L 5
It can be easily checked thet B~z (2.11)

k]

It is ¢lso €58y to see that g linerr addition of matrices
™)

_ ~
of type A5 und type B, will zlso obey the generalised 1dema
potency condition similar to eyuations (2.11) with an appropriate

multiplying factor., For example if we toke the linear sum

~ o~
D= AATLE (2.12)

where ;\(and j\ieiﬁ perameters ¢nd 4 and B are (n X n)

. (\Jn ~ ~ vy ~
matrices such thsat A = A end 13 3 ) for n

~2dd.  Then we deduce thgt

e

n
AB = wd BA
(2.13)
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where () is the nth root of unity and ,f is5 g matrix of

dimension (n x n) given by

100 --- 00

( ofT o --- 00 -
AT oot - 00 (2.14)
i
op - 70
~J

Similerls ~ A~ " 2,15
v ‘,4 A B ( )

[g A - LJ&-

where & is a (n % n) matrix given by

100 --- 00
c7Te -- - 00

We also deduce that, for n  odd,

-
O ]Z\J~k-f\gg> " (M +22) (A .7 B D Y 22)
{ . .

{ (2.16)

(/\\';?\J 4+ ,\2% (2.17)

~

8imilarly for n even B matrix is of the type given by (2.1C)

and the linear sum obeys the rule

~ - 3 / ,V'}
DAt hB) = (N2 8" oo Dit A 3 (N

L 3)

(2.18)




3.

Increpsing the dimensicns of the generalised idempotent
matrices.

"

2)

In 2 previcus contribution the authors extended the

~3 T
dimension of & 3 x & matrix which hes the property A = A

by & g ~operction 1.6, by replacing the elements of & matrix

by L metrices &t suiteble places, This ddea can be €aslly

extended to matrices which obey

~ oV ~n
Ani‘-ﬂ, or B = B

(3:1)
conditicns «nd thereby introducing pasrametrisation in the same
sense s was done for the L matricesl); Moreover the genergli -
sation of this scheme¢ 1s such that the condition (8.1) is
preserved sfter addition of these matrices,

~
Let us take matrices Ciétﬁadefined by

0 TO --- 00
e \
| ood-... 00
O%{' - ‘ { (3-2)
1
c oo -0 &
- oy -n 0

; ~ o
(&d@{ matrices cre obtained by enlargement from A Beop

mzirices by replacing matrices Qﬁ‘ for unity in all the rows i
! ' . M-
gxcept the first rgw. 5{; are matrices which ohey the Qf( ::Iff
n- ,

condition c;? v T | They ere of minimum dimension (n-l)
L ~

x (n-1). Herice the dimension of (3£Q{ next higher to n x n
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~

18 [(nx (n-1) ] x Un x (n-1) J. The dimensions of CQ}E are

determined by the number of psramsters we went to use in the
~

lineer sum of Q;ﬁkfmatrices. This is also the usuzl J -opera-
tion and hss been elegeantly fomalised for matrices representing
generaliséd Ciifford algebra by Morriéé). becording to him if
P and Q@ are (linesrly independent) (n-1) x (n-1) square the

metrices, such that

' c10 - -- co DWW -~ 0O
: A
Y\““ s 00 06 ) — = 0
P o= vt Tna O LT
o l‘ - C,-/( = —and C( o CC o - L LDH ‘3;3;"1’1-1
s foo---0 (29
400 - -- 00|

then if we cre in need of constructing r elements such that

Y]..\ 0
o\/(' = I na L L= w Erin & we write

-t PTOHI Q- &I
2 % 28 & - &
; Qé/:(o . P CL C» P . (Z,—Q ‘&-,-W_fjﬂ’?

D
(3:4)
. . Q/ . r
The dimensions cof 4‘ is (n-1) . Hence the dimension of

v
is (n-1)" x n. (Qi /A could also be constructed by the use of

@ instead of the P's., If (n-1) is even the construction goes

4)

through with suitable modifications ™., The linegr sddition of
— 1 A 4 e
N = O - { i
E%Qﬁ( A glven by A thAC (ﬁéﬁpt will be given by

&
L_-




0 ZNI o - - -
" l
— o O - T =T
/6\ - {
\
{
O O O - - -
o L 0o -~

A~
Ineh €¢lement of the matrix A

dimensions &s that of the L matrix occurring in it,

matrices being &

obeys the condition

n-"

L

We then arrive szt the

i1

A
result thst &

the\condition

A =\ - A
i n Zﬂ/\( ) A
(=1

O

4
NS
N~

One cen egslily extend tne swume procedure to the

. . ~J
end obtain the following result, If B 1is properly enlarged

in 1ts dimensions such thgt for n odd

A SN, 6 - - -
A [ o ZﬁAﬁD
= 2
B o €2 o L -
]
{
1
o », 0 - -

~
B type matrices

(3-5)

given below is of the same

These L

linear eoddition of generalised Clifford elements

(34)

obeys

(37)
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where LM“ \;( 7 /A{n ‘ ) T , then
(=1
(. A
e Lz N ) B
B = ) é;} ¢
For n even, .
g (\Z”/\(); 0o \
o s
3
. &L - 0
S L A
b | on-3
o ¢ o  --- & L
A=)
; O I 0
{o 7 L | ]
and .
" v~ N\

YL = '
% = "'"L’ {Z‘ /\o B

~J

[
Similerly we can construct matrices of types A and
~ - ~n 2,
obey conditions 4 ° = }ﬂbn 2, end B = eonstant x B

making use of the companion matrix of equation (2.5),

o
matrices

matrices by zltering the lsst row ss below

[/ A S

% 4
A=]ro0 1 --- 0
!
coo -1

(30

& 10)

(31

R

B which

n-g

by

Such

B

'E; sre obtained from the usual generalised Clifford
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This automutically lesds to

N A
X ;3“Q
A=A
X
5imilarly B metrices are given by
~, Do -- 0
B - Q G‘ tD -— - O
!
oo 1 - 0
snd
AS C'(;/ D - - O
Y,
B =1 opt? . D
20 % |
01y
R 2 : -
o { - "
Loy v
L. th
whe re jg =10 1s the n root of unity.
n cud «nd for n even,

for n odd

for n even

N

B =

To extend the dimensions of these matrices

paramatrisction in their lincar sum
o

we

method of constructing £ 0 - /g

v T o0 -0

) oc Lo b

such that

LAl

(3:13)

(314

N2
15 for
snd to put

adort the now familiar
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L
any given number of them wre obtsined from generalised Clifford

. \
where ;ﬁ.are matrices obeying uf' = L 4 such matrices for
(

4
e¢lements «s shown by Morris ) and ss detsiled above, DNow 1t is

\ 2 . -
casy t0 see that we csn form mstrices A by linear =ddition

with paremeters

VRS2 AT
=1
. By L --- 0
Y T |
. o o o - ..lw L
Lo o L o- - 0
gnd L's obey.the condition 6}J7)

(3.1%)

We can cobtzin then

S
—
-t
{\
ST
i~

-2
/\(‘ A C? Nf)

Thus zny polynomial econdition like A= Ap P < n can be obtained.
from the companion matrix 4 znd its dimensicn ewn be extended

by inserting in the place of unity L metrices having the

I

o .
property L P constent in &ll rows of A except the flrst row.

A similar construction werks equally well for the B type matrices.
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4. Decgompesition of generslised idempotent matrices,

In this brief section we give an interesting theorem
relating & generclised idempotent matrix such as those which
obey A = L, or 1n generzl A = A7 to g product of regular
idempotent matrices which obey the condition that the square

of €ach metrix equels the origingl matrix.

-~
Theorem: The n x n mgtrix 4 , which is given by

.. DC N
~ 01 o .
A=jcod - -- 0F

\ 0 j |
co v -7 :
: 40 ;
. X . . v ~no ﬁ
is & singulor matrix cbeying the conditicn 4 = A . This can ?
‘ V(1) i
be decomposed as a preduct of n idempetent matrices ,{ ?
~ .
(1) o NN ) ~ [l . Y {1} N +' .
obeying </Cn ) - A;L where x = A A 01‘} ; g
and A& 1s a matrix represcnting the generalised Clifford elementsf?
obeying A= I, 1i.e. i
~J i
-1 N() iy (n
o T 1 4 R 4
A= TTA =4 A A w2
[t 0
/{ e ).
(4
The matrix ﬁ( is given by
- e
e ¢ -~ = 00 3;
(/r.\ O "] D . — C L) /;;
/( ’ : i
10 S i
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The proof is cbvious if cne remembers the fact that

/6 QA)A; /aj and ((M\)Q: /({41)

4 similur thecrem cun be stated fer the B

itself,

type of matrices,

say for n  cdd

Y-
(D

&2

(4.4

N
QP ! [ can be decomposed into preduct idempotent of matrices

4509 --- 00

/fﬂ = B A/’ (R“) where /S = 1\
| cop - - 10
Ttoo--- 00

is & (n x n) metrix,

It cen be shoewn that

Y\f\
1

o

B @)

- o
1)
- } /d)(_
o

R
JL

This thecrem cen be egsily extended to singulsr metrices cbeying

the condition An = Ap

4 Db -

(2)

suitably chlianging /g .

S0

Cio —\'*C"D

: and
pco - - TG G)
ato - - - 0

¥l =

(4:7)

N
-
%3
\_{
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(P

n . :
where 5 = 1. 'In.general for eny p, the corresponding /6 has
unity slong its diagonsl ones :nd zero everywhere for the first

n-l rcws. The lest row contains zero everywhere exeept for the

positicn correspending tc the pthL cclumn, ‘The generalisztion
Y|

. i “,o)

for the B type metrices ie¢ immediate: (a facteor) x B = f] VY
=0

) N b) ’ .
where ,4(I):: I3 /§A(BK> T end B% = I; and ,50) contalins

unitﬁ zlong its diagonal cnly upto n-l the row, Corresponding

w~F

to the.pth cclumn in the last cne we have a term W for

odd n. The extension to ¢ven velues of n is elsco obvicus. The

existence uf such relaticns for singular matricses was indicated

earlierS)u
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"Hathematical seience 1s ap indivisible wihi e, s

A oorganism whose vitality denends unan 1ta - i
connections betwean 1ty nerts.,  Advancement in ¢
Mathematics i« made by simnlification ~f nethods, ?

the disennearancs 10 ~14 nrocedures which hayve :
lost their usefulness nnd the unificatisp sf §

fields until then Toreign.t s
-~ dihert (19n0) §

Today thesretical nhysics ocounies a ﬁrivileqed wsitisg
among the fundamental sciénees. It 1is closely related to
exveriment:l shvsics anpd dravg ity strensth from the exﬁensive
use of methemnaticel metipds, In the under%twwﬂing >f the universge
around us, the affsrts +f phe investigator g suhject to tyn
types of rigornug test:

(1) Cxperiment »1 abservation, whereby the nradictiosng are
to he verifieg in the lohoratory and the Dbservatory.

(i1) Theltheory must equally satisfy the demands nf logie

and mathemstianl eonsistency,

Thig Das Meen the shary 2T the growth o7 modern vhysics and

of the most recent develonments nfter the diseovery, in high

energy nhysics labaratories, of ney elementary narticles as the

Constitueiahs af the fobber,




og

This coliection of marticles was Called the sub-nuclear
zoo'by Oppenheimer and the energles nf exverimenters all aver
the world were directed towards nroducing more accurate data
about these narticles. This 5n1y inereased the comnlexity
of the problem and 1t was the systematio attemnt o uhderstand
‘the plan behind this maze through mathematicnl methsds that
ushered ian the Gell-Mannic ern ~°f modern wohysies., Tt started
with t he =ostulste of the famous G611~Mann~-Nish1jim“ relation
in 1964 and the next tep years were devoted to understanding
the mathemgtical significance »f this relation. Again 1t was
glven to Gell-Mann %o postulate the wnrincinle of unitary symmetry
by which he was able t5 classify the known alementary nartioles
and prediect the existence of the Omega mimus whieh was dlgeavered
at Brookheven g fr'aw_' Yerars later, The triumph of GelT-Mann 1g
an outstanding instance oF the triumnh o f mathematicoal logle
as a gulde to nhy~ieal thought.

Investigations at Matselence during the mast fow vears
enenurage us to believe in the existence of g methamatical
structure which not only dncludes unitary symmetry nhut heog tn t+
imbedded the fundamentsal vrinciples o quantum mechani s as
Caveloped through the entire veriod 1900-1970 fron Planck to
Gell-Mann.

We shall first sutline the famous develonments 1p modarn
physics and than indicate how a eomman mathematical scheme unites

these 1ndenendent discoveriest




Thé'ﬁawn ol modern physics burst on the physical
world at tho begining of this century with the discovery
by Max Planck of the guantun (particle) nature of light,
This recelved spectacular confirmation in the succesaful
interpretation of atomic spectra hy Niels Sohrg through his
atom model in which the radiant enerpgy was ascribed to
transitions between the discrete energy levels of the
electrons,

The theory of these physicel odhenomona is known A%

relativistic guantum mechanics, which takes into account

the constancy of the velocity of light, the dualism of
particles and waveé and the discrete nature of the enery
1evelslof atomic and nuclear matber. The growtn of relati-
vistic quantum mechanics has been cilaracterised by gix
major develonmente,

(1) the formulation of theory of delativity Ly
Bilustein (1708),  (1705) .

(i) the invention of non-reletivistic quantum
mechanics (1725-30) by de Broglie, Schrodinger and
Heigenberg,

(131} ‘the introduction of concent of intrinsic
spin by Paunii (1° 26)

(iv)  the fusion of relativity and gquantum mechaﬁlcg

by Dirac (1%93),




iy
(v) the nropagator formalism of Feynman (1940),
(vi) the inclusion of Internal quantum humbers in the
descrintion of elementary narticles by Gell-dann (1954-88).
These distinct discoveries are well senarated in tipge
and are the indevendent »roducts of the Lnventive genius of
their creators. Since ali these theories are mathematical
creations to explain various asnects of the same nhvastical

phenomena, the collisions of elementary varticles, we are

tempted to nase the f21lowing question:

Is there a common thread which runs through this fahric
of modern physics? Can we discere a nattern in this nageant
of discoveries?

Very recent investigations at HMatseience indicate that
there exists a mathematiecal structure which ¢ an 3@Tve As g
comnon hasis for these six discoveries. This claim, which may
seem almost utownian, has a reasonahle basls since the nrincinal
fuatures of this structure were already known to mathematic Clahs
for over s century,

We shall briefly describe thege maJor developments in
relatiV1stlc Guantum mechanics and exrress their essentinl
features through symholic equations., These equations are
recognised to be diffarent facgts of the gsame mathematiecal

structure,




L
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1. The Theory of Relativity

L

In contrast with later developments, the theory of
; ‘
relativily stands apart as the creation of a single mind, that
of Binstein and cpﬁsists of the transformation laws ~f Ayhamical

/ ) : .
variebles relating to coordinate systems moving relative to ope

apnother with uni@orm velocity. In essence this transformation

exnresses the invariance of the length of a four vector leading

/
to the quadratic relatidn:

i

where B, pand m are the cnergy, linesr momentum and the rest

mass of thy nartiecle resnectively. The ramifications of this

| . . R
fundament4l relation comnrise the thsory of ralativity,
L

2. Quantum Mechanics

Quantum mechanics 1s hased on the arincinle of comple-

i ' . . '
mentariyy which states that a descriotion of the miecrosconic

world is possible either in te-ms of snace variabies or momentum
variabies but not in terms of hoth simultanesusly. HMathematicallv

this {mnlies that the wave function in momentum snace Mn) is

|
obtaiped through a Tourier transformation of the wave funetioc- in
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coordinate space (P(xjx). Symbolically we can write:

d(p) = Iu-(x)elpxdx IT

From this fundamental relation flows the de Broglie nrineioile

of dualism of vnarticles and waves, the uncertainty ovrin~inle of
Helgenberg and é?e all-nervasive Schrodinger aauation, The
discrete nature of the energy levels of an electrﬁn moving round
ﬁhe nucieus in an atom is understond as the mani festatidn of the
digcrete nature of‘The elgenvalues in the solutions of the

Sehrodinger equatioh.

A, Intrinsic 8nin

In sucn a descrintion of matter 1t was found neccysary
to attribute ah intrinsic and #adestructible snin to the elementary
)
I

particles. This was achieved through the use of the famous Pauli

matrices:

x v Yy Og I1T

which have thé necessary characteristics of the three csmoonents

of angular momentunm.
{
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4. The Dirse Cguation

WAS

achieved by Dirac in 192 when he just wrote down hisg relativistie

€quation for electron, This equatiop 1nvolves the generalisation

of Pauli matriceg and can be symbolically revresented hy

H o= oy 4 Bm Iv

where the « gang P are the NDirae matrices, This generalization
of Pauli matrices {s g mathematicg] overation whioch achievad the

simultaneous inclusion of.relatiVity and snin into the wave
( .

@guation. Cne gf the orefound resylts of this fusion 15 the

emergence of the concent of antinarticle as A necessarv mathema-

! .
tical consequence of the Quadratic relation hetween 2nergy and

momentun, !

8. Feynman ormalism

The triumvhant carcar of Diras'g theory for two decades
was crowned with tﬁo elegant formulation by Peynman of the
propagstor formalisb whnich enabled thg study of any fundamental
process 'at one stroke! where 'many ¢ were needed in the original

form of Dirsac theorwx Thi essencae of this formaliam s symhotically
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expressed through the two-noint provagator function:

K(%y,%,) = : DCREMEN v

6. Internal Symmat ry | '

In the early fifties, relativistic quantun mechanias
met with an unnrecedented chailenge with the vroliferation of
new types of marticles in high energy accelerators, It was
possible to understand the ohenomena relating to thege strange

particles only after the Introduction of 'interpal! auantum

numbers like lsotonic snwip and strangeness nf‘hypercharge. The
new era of vhenomenologieal rhysics was ushéred in by the -~ -

Gell~Mann~Nishijima'relation conheeting the internal symmetry

quantum numbers:

Q@ = L.+ % VI

Investigators 1in the last deseade accented without questign
the opinion that the nroblems of intepnal symmetry should he
kent distinct from those relating to the dynamics of the system.

Sporadic attempts to adont g unified approsach met with 1littie

success,




7. A Common Thresd®

We now wish to woint out that there exlsts a mathematical
structure which seem to orovide a common bhasig Tor w1l these
six develonmments. This mathematical,structure can he traced
to the Paull matrices and their varisd generalizations. Tn pur
investigation we are concerned with two clagsas of matrices T,

and A which obey the relations:

Ln = >I, AS = A VI

When we consider the case n = 2y we are léd o the Pauli and
Dirac matrices and a quatratic relatisn between the eleenvalues

and parameters, we are able to relate the Fouriar transforms ¢

A

L-matrices t5 the Provagator formali sm of Feynman, The mahnher in

which we take the Fourier transform is an exwvression o7 the
prineiole if comonlementarity in quantum mechanicg,

If we consider the case of n = 3, we are ied to the

relations betweenr the internal quantum numbers whieh Aominates

the nresent Gell-Mannie era 5f elenentary narticle «hvgics,
The studv of these tyo clasaes of matrices has haen mada
possihle through the classic contributions s ¢ Galols, f1iffopa

Lie and wmore recently of Yamssaki, i

1

we have a rightito hone that the hitherts unobserve:

have reached gz stage when

connecting

between the Tie and the C1ifford algebras will leag to new

results and a deener understanding of natural vhenomena,
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It 1s a puzzling fact of scientific history thet SEVEN
Major developments in the triumphant carecer of yuantum mechg~
tics have been the result of discoveries whigh stand independent
of one another., The relativistic quadratic relation, the
principle of complementarity, the Pauli matrices, the Dirge
algebra, the Feynman formalism, the concept of isotoric spin
and the Gell-MannnNishijima relation were formulasted by their
creators to meet g series of challenges well separated in time
durd ng the psst six decades, It looks slmoct incredible thg
it i1s now possille to asgert that a common thread runs through
them in the fom of mathenatl cal generzlisations of the Pguli
matrices. We shall now summsrige how these seven developments
imply some particular aspeét of the generalisations.
The starting point of investigating such a common thread
1s the rezlisation that the Pauli matrieces sétisfy two distinet

Clifford conditionss

-2 2
i) 3——5(2 Lot 0“({ -:mozﬂ :’“1
and cyclically whieh gre

i1) U709y = ”‘rg T

capable of independent generalisations,
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We study the following modes of generalisations of the 'é
above conditions. |
(I) Construction of matrices of higher dimensions which
satisfy elther of the conditions or both,
(IT) Study of matricec A which obey the relation 2P = T,
(III) Investieation of matiices A such that A= p,
(IV) Study of the :lgebra of such matrices with the
addition of idertity m:trix to the collection.

(V) Definition of Fourier transferm of linesr ecombing-

tions of such matrices.
We shall show that (I) vields us the relatiuistic yua -

drgtic relation and the famous matrices of Dirae, (II) gives

us a generalisation of comnutation relations ihvolving the
higher roote of unity, (II1) generates the slgebra of uhi{ary
matriceé znd lesds to a'g;neralised Gell-Mann-Nishijims relation,
(IV) deals Wl th the propagator Formslism and finally (V) implies

the principle of complementarity and z new interpretation of

mass in the relativistic quadratic relation involving momentum

and energy.,

(L) Clifford sigebraic generglisation of the Fauli metrices.

In order to build higher dimensional matrices which ;

obey elther of the Clifford conditions or both, we start with

a linear combinstion of the Faull mgtrices:
Ag -A!#(AL

L_} - 0’7;\ = ‘
/\\+1/\Z M/\S




Satisfying

Lj*’* (A /\ )1

/ _
where A 0are pure resl or dimsginary bParameters, To obtgin
higher dimensiongl matrices Loye1 we define 4 "o T-operation™
as follows: We rerlace any ane of the three parametears in L

by LG 1 1tself and relabel the other two as /ﬁni‘und /&n+l y

where I 1 of the same dimension gs LG 19 €8,

i

L2n+l - UM(LZn-l)

1

)\2n+1 I L., l_i):zn]:

Pl g
, Lkh-ﬁi/\zr@ - )\zml I

It esn be seen thet the dimensfion of L. on+1 ig ¢ x 4 and (2n+1)

berameters zre imbedded in it, If we now wrlte L4L+l as
ﬂ+1
Q c5¢2y1+i 2_ T
L2;n+l - P Lbopey = qul
( *)
3
2 i
L. ( +/\ \)

where Jflyl'“ A\ L <N

2+
We immediately recognize OZZ (izl,.o.,2n+l) a5 the set of

C2n+l) enticommuting matrices of dimension 2™ x 2%, By taking

pP-fold products (p = 091,2,.,,92n), We obtain the entire Cilifford




2
algebrs Cj?(t' The well-known Dirac metrices c¢an be ldentified
with the particular case of Ly and 1f we choose /N,: pX;/Lazpy;
/\azpz;{Aé = 0y )&; m  znd Z%Q:E we obtain the relativistic
2

-
relagtion Ee

i

perm®,

IT. Generalised Clifford slegebrs,

de shall consider the representation of matrices, A,B
obeying two distinet generalised Clifford

i) "

conditions:

1t

B -7

()B4,

where Q)is the math root of unity.

1i) 4B

i

These -relations sre
charzcterising the generalised Clifford algebra first formulated

by Yamazaki. The sbove relstions imply that
' ™
il ™
(Aagpe)t= A7)

If we obtain the reprecentstions in lowest dimension, then there

ate only three independent matrigés wilch obey both the ZENE -

ralised Clifford conditions &8¢ 1¢ true also for the usual Clifford

conditions. In the case of =3, we have

010 00O af 100 j

A 2. . ]

&Ol’r'OOngz: 00} o= ono
100 100 00 W

The higher dimensiongl representations for any m can he gene -

rated by means of the ¢ -operation on these three matricecs,




Thus we can obtain all the on+1 elements which cbey both the

generalised Clifford conditions for any m. In order to obtgin

the remsining elements of Cj:uLwhich obey only the fipst

condition, we consider z11 elements of the form

Qﬁ k(’\ D\( }?2_ )\(\ }QZY)
] { 7 1 .2n
with
O_g_kla.,..,kgngm-l

An interesting aspect of the generszliseg Clifford algebrs

ie that it hgs properties anslogous to the dsuel Clifford algebrs

with the necessary modifications to incorporate CJ , the primi.
tive m-th root of unity. The most striking feature lies in the
faet that when we consider matrices =1 for even m, the gm-th
root of unity enter in the definition of such matrices, TFor
the speeiagl ease of m=g we have'the Pguli mgtrices and

contains "i' which is the fourth root of unity,

ITT. Ihe unitary matricec and pencralised Gell -Mann-NMishiiime

relations,
"'*“""""D'-—w—-—-—...—......_.___

There exists a rsther unexpeeted snd surprising connec-
tion between the elements of generglised Clifford glgebra and

the elements of L[ie algebra of the Special unt tary group. In

particulur we have fourd that = suitgble linear combinatdcn

of the L-mgtrices obeying

L= T Xy = wdy e (1))

T
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can be used to obtain the elements of SU(m) dgebra in the

self representation, We can mgke the connection quite pers-

Picuous by g unitery generalisatiqn of Paull matrices which

satisfy slso the SUZ «lgebra. A generglised Gell-Mann-Mishi jime
relatikns will emerge zs o natural consequence of this derivg-
tlon., We define (m £ m) generalised Oz‘matrices, ;Z%(k,fl)
such the t the only two nen-veni shing elements equal to + 1
occur along the diagonsl at the (LK) wnd (f)f, Jth position.
Tie rest of the élements wlong dl woonel wnd off dizgonal are
ze€ro. Ih o similar way we Can constiruct generglised G?i,and
GT; matrices, EZ; (x, /) :ng Z?T (%, £ ). To build the m2.1
generators of HU(m) from these -matrices, we note that the
m(m-1) non-diasgonal ZZ;, and ff%} ale part of this set, To
obtain the other m-] WE express the;z;g metrices as the diffe-

rences of m matrices 51450y40.,8, such that
5 e — < Z

whe re &j is & disgonal Matrix of dimension (m x m) with nﬂ“V¢n
occurring at the (j,i)th position and the rest of the (m-1)
elaments zlong the diagonel sre equal to C. The collection of
m(n-1) non-dlagonel 7 snd Zy 5 one of the 7 matrices
and (m-2) of the & Matrices comprise the mé_1 genergtors of
SU{m)., We are now confronted with the unexpected réallsation

that the reletion between Ly (k, £ ), 5, and 85 1s the
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generalised Gell-Man~-Nishijim: relation between the vector
and seazlar Quantum numbers, The most importanf result ls that
the sczlar quaﬁtum numheré can be eipressed in terms of the
.eigenvalues of the (m-1) commuting mgtrices in the generalised
Clifford algebra or in other words they can be identified with
the linear.combination of the roots of urity. The vector
quantum numbhers are the eéigenvalues of matrices A such that

Al’l

H

A, n pdd

= qu n even
The striking feagture is thst it is possible to express A as
linesr combinagtion of &n element from generalised Clifford

algebra and its powers sas -t o .
- yk) LR
Lz (==
A:“ "yl

k=

whe re

=1

IV. Feynmsn propsgator through the L-matrix formulation.

If we define the matrix

Q:L3H1+AI

whe re /A 1s en arbitrary barameter, it is interesting to note
that Q 1s singular for A = ¢”lewhere Ayis the eigenvalues
of Lon+y. The nonesingular @ cen be expressed as the linear

combinetion of singular matrices as



1 CMDR) CLgpyq + /\I)Z
L + I =

an+],
=G (g, - )T

Since
22
, ’A -/Xu,“'/l 2,
L2n+1 AL m = WA )R i R = resolvent,

Lz " IM/\I'

where the vhes. can be fecognised to he the Feynman Propagator
in momen tun SPace, we yre legd Naturally to the faet that the
best way to understand the €4uivalence of n! diagrams of

field theory to g single Feynman Al agram Ihrough an intennediaig
Stage of 2" digprams. (Tont1 + AT gan be identipieg to be g

genergliseq Yuaternion),

V. 4 new interpretati on for Mgss,

We define the Fourier transfom of the resolvent
i

R = = with respect tq @ Bartisl set of Yarigbles
L= AL {
Ay ,A# out of (2n+1) A«é For reasons of convenience,

We relabel the other Paraneters p+19"'9,x2n+l as

ml""’man—p+1' Let us define
. T4 )4
pa el /\\ —'+ }’:
s _ & b
I\I - ml + v o o4 mgn*p_*_l
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2 c
Thus l&w_z P< 4 M, We c:z11 the Parsmeters 77H ) ngﬂ.,F+l

"momen tum like", since the Fourier transformati on 1s defineq

with respect to them3 the parameters ml""?mgn-p+l are

'mass like! since they are kept constant in _the Fourier

transfonmati@g, Ny is 'energy like" since it ig eigenvalue,
The varisbies X1y9eeey4, 07 the transfomm assoclated with

,A Py vty A#o € gpll=r Yspoee like', Hiie the Varigble t
asso¢lated with free bParameter is ¢alled time like,

We now infroduce fveﬁocity like' parameters
AN wp = Ak
“ﬂxl ﬂ/ﬁ-n ™
We can €Xpress the pariamete rs /AI)- "1JA f> in termg ofd

,1'"’, )o-') {\;}«) al‘l(:‘ I'f as

[ M
/\l = :_““‘*—"'j- ) P /\’b = mm—:_—;_:
\/ | - % | }ﬁfv’—

with
n Z

/b_'zi_“j\, n M 2 .2

— I ‘J_,: ~ e -+ T /L;\

.//\- it

In the formaluyticn orf Lematrix theory, the connection

between the characteristics of the parsmeters t and X on the
one hsznd ang on the other beeomes very perspicuous., 4

wave function is g fanction of the Space and mags like
S2des LlKe
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baraemeters end 4lso of to It is an amplitude in 5 space at
time ¥, The Ngss like parametefs are just constants imbeddeq

in the wave function, 71t wWe define g sCalar product of the

o)

wave function with itself, it & RE€bresents , distributi en

in space gt + end its integrgl Wel.t, space-like Varishles

cen be normglized to ¢ scaler for gny value of t.  Thug, -t
is kept fixed, However, the propagator 1s & funetion or not
only of the intervgls of e spece-like parameters, but glso
of the intervel in the time-like t, Hence, it can be tians-

. fomed not only Welot, space-like Parsmeter but szlso time-like
Parameters snd thus an additiongl Paremeter (off mass-shell
barameter) ereevs into the pfopagator, but is sbsent in the
wave function, The Propagator @ = g,

cn+1 tA T ean be recogni zed
to be the Quatermion rirst invented by Hamilton, The momentum-
like zndg Mass~like bPalameters oeeoyr with the game status in

the anatrix_theory, but t%f,gernel function is defineq as a
transform w.r.t. the ﬁartial set of momentum 1ike Peramete rs
and t, the masc-like Parameters cocurring both in L and its

transforms, In this formulation {he Maes like parameters

aequire g new interpretstion in that they are the Variables

which sre kept Pixed in taking the fourier transforn of the

resolvent,
L5204 VENT
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THE WEAK INTERACTION HAMILTONIAN IN L-MATRIX THEORY

Alladi Ramakrishnan
Matscience, Madras, India

1. INTRODUCTION

During the past three years the author and his col-
laborators have made a systematic study of matrices A and

B which satisfy the Clifford conditions

(1) A" = B® =1

It was demonstrated that there is a "shell structure" in
the anticommuting matrices and a consequent telescoping

of eigenvalues of an L-matrix which is a linear combination
of anticommuting matriées. We now observe that the form

of the weak interaction Hamiltonian in elementary particle
physics is an interesting manifestation of the shell

structure,

*Any views expressed in this paper are those of the
author. They should not be interpreted as reflecting the
views of The RAND Corporation or the official opinion or
policy of any of its governmental or private research
sponsors. Papers are reproduced by The RAND Corporation
as a courtesy to members of its staff.

Dr. Ramakrishnan is a consultant to The RAND Corporation.
This work was presented at a series of seminars while on a
visit to The RAND Corporation.
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2. SHELL STRUCTURE OF AN L-MATRIX

Starting with the three fundamental mutually anti-
commuting (Pauli) matrices 01, Oy, Og of dimension 2 x 2
we can form n sets of three matrices each of dimension

27 x f by forming direct products of the ¢ matrices with

:

p unit matrices of the same dimension to the right and

n—-l-p to the left (p = 0, 1, ..., n-1). We denote any one ;
set by {Hl}, any other by {HZ} and the last remaining as é
(1™} E
1, _ .1 1. .1 g
{H } = Hl: Hz: H3 3
2, _ 42 2 2 é
{n“} = HY, Hj, Hj ;

n, _ 0 .0 N

[H } = Hl" Hz, H3

@

Members of any set anticommute with one another and commute

with the members of any other set.

We can form 2nt+l mutually anticommuting matrices in

the following way.

. n n
Lonr Tone1 = Hy» Hg

IR o TP, T | n—1
fon2r fopp ¥ Hy(Hy 7, Hy )

-yt yn—l 3l 2
S s TS, B § 2,1 1 1
Sl, £2, £3 = Hl H}_ [ Hl(Hl, ].'12, HB)




—3--

We recognize a shell structure in £ matrices with

{Hl} in the first shell, {Hz} in the second shell and
{H"} in the outermost n—th shell.
'We can form n commuting matrices as follows:
2n+1
£ 5 A, &£
2o+l i=1 i 7i’
¥ 2n-—-1 n
Yon1 = 2 M Hp I
LS B e nl
3 g i 71 1 17
i=1
. ¥ ¥*
The eigenvalues of L2n+l’ L2n—1’ e L3 are % An’
+ Ay s +-vs A3, respectively, where
2 2 2 2
A = ha1 A0 T Ank

This implies a telescoping of eigenvalues corresponding
to the 'shells". We can specify the simultaneous eigen-
vectors of the n commuting operators by specifying the signs
of the eigenvalues.

On the other hand, we can form n commuting "helicity"
matrices, with only three anticommuting matrices in each

helicity matrix.




ST | 1 1

[H(Kl, o x3)} = Hy Ay + Hy A, + Hy x3,
_ 42 2 2

{H(A L, Ny xs)] = H] Ay + Hy A, + Hy Ag,

_ 0 n n

UH(A g0 Agns Pone1)d = B Ap g+ Hy App 4 Hy Ay

These operators have eigenvalues = Ay & hoy ooy & An,
respectively.

Thus there is a duality in setting up the eigenstates

gr ey B AL

However, we notice an ambiguity in the case of the

corresponding to the eigenvalues #+ Aps £ A

helicity matrices which is not present in the L matrices
as regards the eigenvector corresponding to the eigenvalues.

For any helicity matrix, say

(B Mogrs Aoger?d o

we can replace AK by —AK, without altering its eigenvalue

* AK+1' This replacement has no relation whatsoever to the
choice of the eigenvalues = AK for H(Ale’ KZK—B’ k2K—3)'
This feature is not present if we require the simultaneous

vectors of the n commuting L-matrices since the eigenvalues

do not occur inside the matrices.




1f we take "unsaturated" L matrices, i.e., if we

assume XZK =0, K=1, ..., n, then we note that reversing
the sign of Ay in H(AK, 0, K2K+1) without requiring a
change of sign of the eigenvalue of H(AK_l, 0, Log_1) is
'equivalent to reversing the sign of h2K+l' This is done

by operating the product

L K
Hy Hj

A

on the eigenvector and in the case of 4 x 4 matrices this

is just the gamma matrix Yo which reverses the sign of m.

If we require the eigenstate corresponding to a

particular choice of signs for the eigenvalues of Ay and

s R gt

Ay in the helicity formalism we can use the eigenvector
U or Yg u where u is the simultaneous eigenvector of L5
and L;. Thus (1 + Ys)u is a valid choice and this is the

basis of the theory of weak interactions.

REFERENCES
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contributions to the Journal of Mathematical Analysis and
Applications (Academic Press) during the period 1967-1970.
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In a series of econtributions to this Journal, methods
were studled for genérating 2ntl mutually antiecommuting
matrices of dimension 2" x 2" y the square of each heing
the unit matrix, starting from three mutually anticommuting
Pauli matrices of dimensisns 2 x 2.1) The Tematrix was
defined as the linsar combination of these 2ptl matrices
with the parameters A, Nz .. N,u, as the coefficionts

of these matrices. The L-matrix has only two eigenvalues, + A,

where
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The very method of derivation of the (2n+1) anticommuting

e e e

matrices ylelded n-1 matrices

+* x
IS L

2n-3 ) > _-j;f

E3
whieh commute with one another and with T .l
2n+1 o+ 1
a linear combinatiosn of 2k+1 mutually antlcommut ing matrices

is

with 2k+1 parameters ),) }2) .. \A\Qﬁﬁlas the conefficlents.

*
L2k+l has two elgenvalues - Jlk;where
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This implies a shell structure in the elgenvalues with the

narameters ./\Q'ﬂ_,, //\gn_\,\ , 1n the outermost 7 fh shell,

. I
G\Qﬂ*\a r}))QwQ in the (n-1)-th shell and finally J1 ,
- 2)

Aﬁ’ )3 1o the inoermost or the first shell.
We shall now deal with the {nverse problem of starting
with (2n+1) antieommuting matrices, identifying the commuting
matrices and discerning the shell-strueture,

Given a set E X13?n4ﬁ of (2n+1) antiecommuting matriees
the square of each being the identity, and a set of on+1
parameters f\t) {)QJ_-«>ﬁA)n+| we can form an Lematrix which
s & llnear comblnation of the &fiﬂ with “%fA‘ as coeféicionts-
In dolng so we are at liberty to ehoose TXZrﬁ+| as the |
coefficlent of any matrix in the set %ﬂ;f 32§q+; and  A2n
as that of any other and so an and :11 as the ecoefficient
of the last remaining matrix. Without loss of generality we
can denote the matrixz for which Aﬁ» 15 chosen as the coefficliant
to he &?%;. We now define, for reasons which will be apnarent

‘presently, . ,
H3 = &lzﬂ-?‘u

Yt !
Ffz = ;{zn
: vl T L
and Mo T 2

This implies that

~ 2 w2
IR ) - (HZ) = (H3)
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We note that Fli anticommutes with ng'and H;‘ but commutes
with all o, (Ro= 1,2, . 2n),

gl
We now factor out F(1 from the remaining (2n-1) matrices

2@@ (MK-:'JQ) ~-T) 2n-) . This 1s dane by vremultinlying

' - M
the Xh.(k<z’)2J“i12”’4) by MY stnee ¥4? 1s 1ts own

inverse. We then wrlte

2n-

1
L;¥' - 7 A HY &

VAC | - E_::.;

B
and note that LG*l commutes with L°n+l' We then nraeacd to

g% define

! A L\

Hs = H7 &%

i n-t Y

Hig = 1 Ko

} N e

; ) : N HID

; an 5 .
. L an-3 = 2. Hy Hoy &
A .

3 L=l

Continuingrthe above orocess we get finally

R _ it N~ ’2\
Hy = HA R kil

1 vl ! o2
H :H’JH-’I"“_H”IOYQ_

1 o ne
Ha = Hq W - - 12
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The ¢igenvalues of ‘L2v1+4, L an-1 o " 3L'3 are

+ A, y 4 anw‘ , == 5 1&1 respectively where

2 2 2. /\r’?. ("" ‘Q)
No= Do+ el + Aain (e
“ - .

The ‘PJQ? whleh have been defined are reecognised to be the

eomponents of hellelty matriees, in the sense of the zarlier
contfibutionésj, the helicity matrix i Hlj being a linear
combination of ' ( ¢ defined as

\ 1 HJZ)H\?

4
L]

‘ N , { ‘ L
H((fﬂﬂ!>xzh(kﬂ+0 = JKL\H1'+AQEH2+HHMH3

| - S o,
with Jﬁ; = Jﬁ{h|~F Asi )2£4l‘ &"Ug)“uﬂ)i

Any component of the helietty matrix E%{ij comnutes with any

component of any other helleity matrix 5 HJJ , (%) . There

are n sueh commuting helicity matrices'but remhers of sne set

anticommute with one anothef, The eigenvalues of fff?zarei/\ .
In the earlier paners the commonents of the helicity matriees

were ohtalned as the right and left direct nroduets of the

Paull matrices with 2 x 2 unit matrices, The eonsiderations

here are quite general and this 1s as 1t should be sinee 1t 1s

obvious that starting with the heliecity matrices obtalined as

direct »raduets of Panli matiices and the nait matrices, we ean

]
make simllprity transformations to ohtaln another senuence of

helicity matrices.



In the case of the Dirae equationl) we set ﬂ,: f& ,

‘/\2 - Pj’ >\3 = f’f; ) ’A/% =0 and ?\5 =7 such that m g
in the second shell whereas P%) P%} R? are 1n tha first
shell, It will he Interesting to Investigate the acgge whett m is
assigned to the first shell and one ortwo of the components of
momenta are im the second shell, It ig howed fhe recognition
of the shell structure will throw light on the preblem of
telescoplng one eigenvalue into the other Iike helictty belng

telescoped into encrgy as in the Dirage eguatisn,
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