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1. _PRELIMINARIES.Z L e /“t

DEFINITION 1.1. Let X be a non-empty set. b class %
of subsets of X is a topo;ogz on X if and only if
it satlsfies the following axiomss _

(1) X, ¢ bvelong to §J , wheve ¢ 1s %heempty set

(11) The union of any number of sets in O} belongs

to(’:j. ,/
(iii) The intersection of any two sets in fj belongs
to 9 .

“The sets belonglng to Y are called % -open sets
and the pair-(%, J ) is called a topological space. When

the underlying topology is understood we 31mply speak of
open se€ts' relative to that topology and denote the corres-

ponding topologlca; space by X.

EXAMPLES ‘1.2,

(i) The set of gall réal numbers denoted by IR s
together with the ustal” topology made up of all..
the:open intervals‘;s a topological space. The
'Etwo-dimensional space \R'l' ‘together with the |
torology constituted by all the. open discs is

-another tapologiCal space,

(11) Qonsioer X o= {a,b,c,d,e } . Define
‘le = {Xa Sba %_35? 4 {b} . &a?b'ci'g'

Yq o, fa) {ay0,d} {b,c,d,e}]
Ja ;-.; {X’ ¢, la} lllasbf 3 {aﬁc’d;-ﬁ {a,b,c,dgf

I



1 is not a topology, since {al Ufp} = 3, DYE T vhile
Jg fails to be a tonology as ja,c,d Y(ib,c,d,el =
fc,a¢¢ 3, . On the other hand, "15 is a topology.

(1ii) - If T 1s made up of all the subsets of X, then

is called the discrete topology, and X, together with ¥ , is

calied a discrete space.

(iv) If ¥ =4X,¢% , then it is called the trivial or

indiscrete topology and the corresponding fopological gpace
. is called an indiscrete snace, _

(v) If ¥ consists of ¢ and all those subsets of X

vhose compliments are finite, then ¥ is a topology and it is
- known as the co-finite:topology on X,

EXBERCISE 1.3, Glven X, is there a prescribed rule to
enumerate the numﬁer of possible tonologies that can be.defined
on it ¢

DEFINITION 1.4, Let X be a topological space, A point

+x € X ds g limit point of a subset A4 of ¥ if and only

it eVery open set G contalning ¥, contains a point of A

different from x, OSymbolically, ¢ open, x € G =
AN (G N $xt) #'<$ra The set of all limit points of A is
called the derived set of A and denoted by Ad.

Thus, the set of positive integers, denoted by N, does not
have any limit points, since for every real number a, there

exists a 8> 0 such that the open interval (a-8,a+8) contains no




noint of W ofher than a, In the case of a closed interval
(ay3b] , every point x € [a,b] is a limit point of the

semi~closed interval (a,b] . For the set of rationals and
the gset of irrationals, every real number'will be a limit point.l.'
For X = j aybye,dyel , I =X, & , {af , {a,b} , laye,df, .

ta,b,e,d 3}, if A is the subset of X defined by 1a,b,cl
tuen a € X 1s not a limit point of A, since one of the open sets
containing s, namely | tel , does not contain a voint of A _
different from e, On the other hand, b e X is a limit point of
A; as the open sets containing b are {a,bl , fa,b,c,d} and X,
each of which contains a point of A different from b, Likewise
c;dye are limit points, Thus A% = §b,c,d,e} . In the case of
the indiscrete space, X and cp are the only open subgets of
‘Ae Then X 1is the only onen set containing any noint x € X.
Hence x 1is an accumulation point of every subset ¢f X  except
the empty set ¢ and §x} Accordingly, the derived set of
any subset A of X is equal to ¢ if A= ¢, X - {x} ir
A= {xf and Z if A contains two or more noints.

EXZRCISE 1.5, Analyse the limit points of subsets of the
other topological spaces that we have listed in 1.2.
DEFINITION 1.6, In g tonological snace X, a subset A of

X ig a closed set if and only if its complement is open.

In 1.2, (11), 9, defined a topology. The closed sets are
glven by € = {e, X%, ib,c,dyel jc,dyep , ib,e} , {eff-
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Notice that X and b are bobh oven and closed and there ave
subsets such'as §{b,c} which are neither open nor closed, In
the case of the discrete space, evefy subgset of X Theing open,
its complement is always closeds Thus, all the subsets of X |
are bobh open and closed, The interval (a,bd 1is neither open

nor clased.

R Ay

DEFINITION 1,7, The glosureg of a subset A of X, ig the
intersection pf all closed supersets qontaining A and |
ig denoted by A,
Note that & = AU A%, Thus, for the rationals denoted
by Q,'é =T , In the case of the co-finlte topology, if A
is a finite subset, A=A , since A itself is closed, while 1f
A iz an infinite subset, X 1s the only closed superset~ of A

and so A = X.

Kuratouski Closure Axioms 1.8, (1) & =&, (ii) AC A&,

(111) AUB = AUB, (iv) (B) =K , where A and B are subsets
Of Xo
Proof. (i) and (iv) are true since P and A& are closed

s

sets and therefore equal to thelr closures.

(1) A = AU A% and hence ACI'K, Boguality holds only
when A is closed.

(1) ACHE, BCH, AUBC EUB, But AC AU B, BCAUB
implies AU B < AUB, Consider x 0 KE?%. Then x € AUB oz
X € (ALJB)d which implies that x € A o B, or every open seb

G containing x contains o point y(# x) € A UB which in tum




o

implies that x €A or B or y € Aor B, Thus x 1is a limit
point for A4 or B which gives x €A or B or y €4 or B,
Thus .x 18 a Llimit point for A or B which gives x ¢ & or

B and therefore x € AUB, Hence AU B C EUB, vhich together

with the nreceding inclusion gives A U B = AUB,
DEFINITION 1,9. Let A be a subset of a topological spaCe

Xe A point x € A is an interior point of A, if there

exlsts an open set G satisfying the condition p‘e G C A,

e

The set of all interior vwolnts of A ig called the interior

of A _ and denoted by A°, The exterior of A, written

ext.(A), is the interior of the complement A' of A, The

boundary of A, written bdy (A), is the set of noints which

do not belong to elther the interior or the exterior of A.

In example 1.2, (1i), the points a,b are interior points of
a subset fa,b,cf of X since a,p% is an open set contain--.
ing them whioh is also contalned in A, Notice that ¢ 4is not an
interlor point of A, since ¢ does not belong to any open set
contained in A. Hence A° = iaabf + The comvlement of 4 ig
{d,e! . Neither d nor ¢ is an interior polnt of A1, since
nelther belongs o any open subset of A . Hence (ANHC = ¢,
Thus, the boundary of A = f§ cydyef o In the case of the |
indiscrete space, X and ¢ belng the only open sets, the
boundary of any subset A of X is X ibgelf. Congidering
the rationals Q, since every open interval of TR contains both

N
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Yational and irrational'points; Q has no interior or exteriorn
points and therefore the boundary of Q is the. entire real line,
DEFINITION 1,10 Tet I, and ¥, be two topologies dofined
01; Zoe If each ’.‘Ii ~opent subset of X is also ":!2 -open; l.e.,
ir Y, < Y, then . 'Jy is coarser {smaller, weaker) than ¥, or |
’3‘2 is finer (largzer,stronger) than '3'1.
Remarl: 1,11. The intersection of two tonologies is a

re

topology, but their uiion need not be a topology', for, X, qb 6'3.1
end 3, and therefore to their intersection. Suppose G,H are
open sels in ‘Jin‘jz. Then, in pafticular, G,H € ’Z‘ii :cw,nd.

G,H e J,, Further, since Jy end Y, are topologies, G U H
and G} H belong to both Jy and ‘Ii_i and therefore to their
Intersectlon, which proves that ¥ 3, 1s a topology. This
result can be generalized to any number of topologies and thus

O'ji is also a topology on X, On the other hahd, if
1_ . »
X = {a,b,c} ’ ':‘:L": {X,(b y e} ¢ and 3'2"' {qu) ’ ib}}s
then Jg N7, = {%, &, {at {bt} which is not a topology
since {a} U{bt = {a,bt g B0,

DEFINITION 1,12, Let A be a non-empty subset of X, Every

set which is obtained as the intersection of A with the

/

" -open subsets of X is said to be open relative to A, and

the class _fonf all such sets is a topology called the

relative to:gglogy; on A, The corresponding topologlcal

~space (A, "JA) is called a subspace of (X, 3.
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Consider = fa,b, c% s 0 = {J{ ¢ ,icf » AP 4 Lo, by oA {a, bte
Then J = 1A 4),';a§ L- bé is the relative cooolo"y 1nuuc@d.
byA, - Consider the usvai topotogy ons R fand - the . ~° .-
relative tonology ? on the closed interval 4 = (3,20 , Now - .

£3,5) = (2,5) 0 A and thus [3,5) is onen in the relative
) ) ) i
topology on A but not in the usual tonology of the real linc,

4

Thus, a set may be open relative to a subsnace but be neither
open nor closed in the entire snacce, A relative topology is
therefore useful in that its scts.may be ooven without being
onen relative to the whole swace,
PEFINITION 1.13. A sequence {x;} € X is said to gonvor
to a point x € X if and only if for cach owen set ¢
containing x, there exists a vwositive integer n, such
that n > n, =p x € G, In other words, {x n} is con-

vergent to x 1 and only if G contains sll cxcept
finlte number of the terms of the seguence., We say

X —> X or lim x = x,
{‘h} n-~>-o:)n *

In the casc of a discrete space, ix,} converges to x

1f and only if the scguence is

I")

the form {X),Xgyeees,X  ,X,X,

1
eee }, Tor ovory point x € X is contained in the open get

ix} and ir 1%} —>x, then {x} wust contaln all bub a finlte
number of terms of ix,% « For the indiscrete shace, X is
the only open set containing any point x € X - and X containg

every term of §xn and hence {xn} converges to every x G X.

[



DEFINITION 1,14, A manning £: (X, Y, ) ~= (¥, . ), taking
A 5} 7 -4 b 27
into a topological Space (Y, %)

a topological space (X,U&%{is an open mapving if £(G) is

open in (Y,J, ) whenever G is open in (Fy¥de £ isa
continuous manning 17 f"l(G) 1s open in (X,J;) whenever
G 1s open in (¥, U, ). Any image T(X) of a topological

Fal

space X under a cortinuous ma~sing £ is called o

continuyous image of X.

DEFINTITION 1,15, A homeonornhism is a one~to-one, onen,
continuous mapwing of one bopological snace (K,'3i) onto
another townological snace (EQ‘XQ). Two topologieal spacoes
arce homeomorwhic 1f there exists a homecomorovhism of one
spoce onto the other,
- Thus, 4f (X, Jy) oand 'Y, J, ) ore homcomorphic, thelr voints
con be put into one-to-one ecorrcsnondente in such a way that their

open sets also corresnond to ecaeh other,

DEFIFITION 1,16, A tonological nroperty is one whieh re-

mailns invariant over all homeomorvwhic transformations of a
given topological space, Tovology as a subject, investigates

all the topological propertics of a tovological snace.

e COMPACT SPACES.

DEFJNITION 2,1. Let X be a topolozical snace, A class

o

{Gi§ of omnen subscts of X 4is an onen cover of ¥ if

each point in X TDbeiongs to at least one & In other

i!

vords, X< U Gyo A subclass of ‘an open cover, which is
il

1tsclf an open cover 1s called a subcover.




g a topologlcal space in

i

‘which cvery open cover has a Tinite subcover., A compaet

subsnage of a tewnological svace is a subsnace which is

compact ng o tonological épaco in 1ts own rlght,

Szamnle 2.3, Consider the clags 1 Dp: p€ZxZ¢§ y Where
’ s . . . ’-2.2 s " T . . -
Dp is an open disc in "I with centre » = (m,n) ond radiuvs 1
4 belng the sot of integers, Toon this class constitutes a cover

i

of WRQ.. On the other hand, the class of opeon discs with centre
p o and radiué~% will not cover W{QZ, gince there axist noints
like (%, %} which do not bolong to ony momber of the class,
THEOREM 2,4, Any closod subgnace of o comnnct space isg
compact,
Proof. Lot X be a compact svace and let ¥ be a
closed subgpace of X, We have to show that ¥ 1s compact,
Lot {Gﬁ} be an open cover of Y. Each Gy boing open in tho
relative tonology on Y, is obtalned as the interscetion of v °
with an owen subgoeb Hi of X, 8Since Y is closed, Y' is open
and  ¥Y' together with the Hi‘s conglitutes an onen cover of X%,
Brt X is comnact and thercfore this open cover admits of a finite
subcover, IT ¥' oceurs in this subcover, we omlt it and the ro-
moining scts constitute o finite subeloss -{Hil,Hi geeegtl 7
vhose union covers X, Taking the inborscetions ofgeach of these
Him:s vith ¥, we obtai§ a findte subcover ‘{Gil,Gig,...,Gimg
of the original cover jGi} of Y walch implics that ¥V is

comnact,
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Lal

Proofy, Lot £ X —> Y be o continuous mapning taking a
compact snace K into an afbitrary tovological space Y, TLet
the image of X under £ be f(X)i We must prove.that (X
is a compact'éubspaco of Y. Let fGi} be an onen cover of
£(3}+ .Then, cach Gy - %g obtained as the intercsection of
£(X) with an open subsect Hi_of‘Y. Slnece £ 1s continuous,
f“l(Hi) is onen in X, for each Hi‘ and {f-l(Hi)} forms an
open cover of X. By the coupactness of X, it yields a finite
subcover. The union of the corresponding H,'s, of which these
are lnverse images cloarly conmtains (X)) and therefore the
assoclated Gi’s 'Qonstitute a finlte subcover of the original
open cover of £(X), This implies that £(X) is compact as a
subsnace of' Y, - ' ' |

DEFINITION 2.6. A topological space is compact if and only

if every class of closed sets with empty inter zection

has a finite subclass with empty intersection.

This definltion is equivalent to the original onc, since
a class of owven sets will form an open cover 1f ond only if the
class of all their comploments ﬁas empfy intersection,

DEFINITION 2,7, A class of subsets of a nonempty sot is said

to have the finite intersection nronerty if every finite

--subclass has non-empty interscetion.



1L

Ta

Excrcise 2.8. Prove that a topological space is comnact

Pal

if and only if every class of closed sets which has the finite
intersection »roperty has o non-empty intersection.

DEFINITION 249, A subset A ol a topological space X 1s

seguentially comnact 1T and only if every sequence in 4

has a subsequence which convergeg to a voint in A4,

If A is a finlte subset of X, Then It 1s sequentially
compact., For, if {x § is a sequencec in A, then at least one
of the elements ®x € A must gopdar an infinite numbér of times
in the sequence. Thus {x,x, ese t 1s a subseguence Qf %xnl

and it converges to x € A, The open interval (0,1) is not

L 11
55T oeee ]

to 0 and so does every subsequence. But 0 ¢ (0,1).

seguentially compact, since the sequence { converges

DEFINITION 2,10, A subset A of a topological space X is

countably comnact 1€ and only if every iniinlte gubset B of

& contains a linmit woint beolongins to A.

Every closed and bounded interval is countably comnact,
For if B is an infinite subset of A = [a,b] , then B is also
bounded and hence contains a Limit point (by the Bolzano-
Weierstrass thoorem which states that every infinite bounded set
has at least one limit point) which belongs to A since A is
closed, The open interval (0,1) is not countably compact since
B = 'i%,%,%,...} has only one limit point, O, which docs not

belong to (0,1).
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THEOREM 2,11, Tet X bde a Tonological gnace, If % is

compact or sequentially compoct, then it is also chﬂtably

éompact.

Proof. We have to show that compact =% conntably compact

<= soéﬁentialLy coupact., IFirst, assume X is compact, Tet A

be a subset of X with no Limit noint belonging to X, Thon each
nolnt x € X belongs to an onen sect Gx wnich contains b most
one point of A, The class {G,} 1is an open cover of X and by

the compactness of X, there exists a Tinite subcover {GX yras G ¢
1 7

m
sueh that AC X & U G . But each G_  contains at most onc
1= i "j__ .n.i " .
point of A and honce A being a subset of G can contain

:.L:_L Xi

at most m points which in turn implies that A is finite, Thus,

every infinite subset of X will contain at least one Limit noint

~in X which »nroves that X is countably compact,

Suppose X is scequentially compact and let A be an infinite
subset of X, Then there exists a sequence {x,§ € A wita dis-

tinet terms and this containg g subsequence {xn t, alsowith
i

jar

lstinet torms. Thig subsequence converges to a point x € KXo
Hence, cvery onen set containing x, contalns an infinite number
of poirts of A. Accordingly, =z € X is o limitg point of A which
implies that X is countably compact,

Remaprk 2.12. The continucus inage of a sequentially

(countably) comnact sct is sehuentially (countably) compact.,
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DEFINITION 2,13, A subset K of a tonological space'K

is a neighbourhood of a »olnt x € X, if and only i¥ there

oxists an open get G guch that % € G ¢ N,

Hotice thet the relation W is a nelghbonrhood! of x!
' ‘
le the dinversce of the relation x ds an interior point of W',

Each closed interval [ x-8,x+871 is a neighbourhood of x € TK

since it containg the open interval (2~6,%x+8) which is centred

l_..l.
H

- 2 , .
on %, Similarly, x € R™, eovery closed disc with centre Xy

5

is o neighborhood of x, since 1t contains the onen disc with
cenire x.

Fxorciso 2,14. A set 18 open if and only if it contailns

a nclghbourhood of cach of its points.
The union lf of all open subsets of a set A ig an open
subset of A, If A contains a neighbourhood of each of 1its points,’

then cach point x € A bolongs to some open subsel of A which

lmplics x € U. On the other hand, if A is open, it contains a

neighbourhood (A 1tself) of cach of its points.

EFINITION 2,15, The class of all neighbourhoods of a

point x € X is called the nelghbourhood systom of x and

denotoed by _Jig .

TEEOREM 2,6, The following propertics characherize Jf;
(i) J(k ‘18 non-cnoty and x belongs to coch mcmber of ij'

(i1) The intoersccktion of any two members of Jﬁzbelongs to»M;e




14

(ii1) Bvery superset of o membor of M, belongs to J\f;b_:.

(iv) Eoch member I\I_ e J\f‘% is a supersct of a momber Ny S.J\{;:,
wvhere Ny 1s a nelghbourhood of eaéh of its noint, i o
N, € J\[‘y for cvery y € Ny.

Proof.(1).1s obviouss To »nrove (ii), lot N, and N, be two

neighbourhoods of x. Then, there oxist opon scois G; and G, such

that x € ¢ Hyy x € G, C 1‘12‘. Hence x € Gy 1 G, < u, 0 N, and
since Gy 0 Gy is omon, Iy A N, € J\Cx. To .ostablish (1i1), let

N e ‘N\o( and SUNDOSC VNl 2 N, BSince N 1s a neighbourhood of Xy
there cxdsts an open set G such thot x € G N C.I‘--Il which
implios M, € J\Cx « %o show thot (iv) is {ruc, let ¥ € N, o Then,
x & GC N, IC Ny is chosen such that G < Ny C- M, then Hy € J\]‘x .
DEFII-IITIOE‘I.Q.l'?. A topological spaco 1s locally compact
if and only if every p.oint x & X has a compact neighbourhood,
Considor the real line TR , with its usual topology., Each
polnt x € TR is interior to the closed intorval (x~8,%x+68 7]
vhich is bounded and therefore compact (by the Heine-Boroel theorem
whilch guarantees that a closed and bounded subset of TR is
'c@npa;é;c'), Thus cach voint hag a compact nelghbourhood which
implies TR 1s locally compact. But TR is not a compact spacc
since the class 4 vy (=2,-1) »(~2,0), (-2,0),(-1,1),(0,2),(1,3) 5%
1s an open cover of ¢ which docs not contaln a finite subcover.
This shows that a locally compact spacc nced not be compact,
The converse however 1s true,

THEQLEM 2,18, Ivery compact snace 1s locally compact,
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Proofl, Let X be.a compact space., Since X is also o
pological space, 1t is a neighbourhood of cach of its wnolnts
which shows that X ig beally compact,
DEFIEITION 2,192, A topological svnace X is sald to be
mbodded in a topologieal smece, Y, if X 1s homecomorphilc
to o subspace of Y. Turther, iTf Y is compact, then it is

mowe as o comnactification of X,

Usually, the compactification of a topological sgnace X
ad301n1ng

/.

fining an copropriate topology on tho enlarged sct such thal the

1s accomplished by onc or morc noints to X and then de-
enlerged specc bocomes compact or contains X ags a subsnocce The
cxtonded real number systom TR_L}{—dw,Oofprovidos o compactifica~
tion for W .
- Gj o 4. . - . 5 K ) .
Lot denote the =x-y planc in TR” , the Buclidecan space
of dimension three. Lot S denote the svhere with centre (0,0,1)

a3

and unit radius. The line joining (0,0,2) € 8 and any »oint
p € Gj Intersccts 8 in cxactly one polnt »', distinct from
(0,0,2)s Ir £ \ -8 defined by f(p) = p', then £ is o homco-
morshism of @ , which is not compact, onto the subset 8\foo}
of' 8. But 8 is COJLUCb and hOﬂCO is a comoactification of ¢ .
DEFINITION £.20. Lot X?‘j Y be a tonological snaca,
Th. Aﬁu
denoted by (}C% s

ov_or_one=point comnactification of (X, J ) is

)y, where X4 = XU { oot . ioo(— being

o
called the point of infinity, which is distinet from cvery

other point in X and ’3q> consists of overy member of ¥ ag

well zg the comnloments in IKQ> of cvery closced andt compact

oor

subset of X,
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3 §EPABABLEASPACESe SOME SEPARATION AXTOMS,

DEFIITITION 5,1, A subset A of a tonological space X is
' oG _
Lverywhore dense or dense if, only if A = X,

Observe that the set of rationals Q is dense in W e In
the cagse of the indiscrete space, every non-empty subsel is
dense in X,
DEFINTTION 3.2, A subset A of a topological space X is
novhere dengg if the interior of the closure of A is empty,
ieee, (B)° = ¢,
It A= o<xcl,xeq},T=p0,1] , M° = (0,1)#7 .
Hence A is a set which 1s not nowhere dense in R, If

A = {%} y A = §o,_1,~1§,... ? and (}[)Ozg? Thus f-flf} is

novhiere dense in ® .

DEFINITION 3,2, A tonological space is goparable if it

containg a countcble dense subset.,

. The regl line TR wilth the usual tonology is senarable,
since the set Q is countable and dense in TR . On the other
hand, the real line together with the discrete tovpology is not
separable, since every subset of TR is both open and closed
relative to the topology and so the only dense subset of R is TR
1tself and 1t is not countable.

DEFINITION 3,4, A tovological space X is g T,-space if and
only if for every palr of distinet points x,y € X, therc
exlsts an onen set G containing-one of them but not the

o cheI'.
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Bvery subspace of a To-space 18 also a To—spacea For; if
Y is a subs?ace of a To—sﬁace X, for each pair x,y ¢ Y, there
exlsts an open set G containing % but not y, since %,y € X also,.
:G Y is an open set‘relative to (¥, QIY } which contains x bub
not y and hence ¥ is also a T rspate, with the relative topology
DEFINITION 3,5, A’fopoiogical space is a Tq-gpacg if\and
only if for every pair of distinct points x,y € X, each
belongs to an open set which does not contain the other,
Le€ey; X,y € X implies that there exist G,H which are onen
such that x € G, x HVH, y et, y £ G.
Every\subspace-of a Tl~space'is Tl’ for whchever Y is a
- subspace of a Ty-space ﬁ, xy €Y =2 xyeX, there exist
opent gets G,H such that x € G, x 2H, y € H, y 2 ¢ =» x€ GnY,
x iy, y €HN v, y £ GN Y = (¥, Jy)  is a Ty-space,

Exzample. 3.8, Consider X = {a,b,c} and define

(31_ i}:aq)a {afj'

Ja i%, b, fat , {vt, {CEJ{.@,»{;,{;;;},

Then (X,’ji ) 18 not a Tl~space, since b and ¢ belong only to

[t

1)

£ which also contains a, whereas (X,7,) 1is a T, ~space.
THEOREM 3,7. A topological space X is a Tl-space 1f and
Gni& if every singleton set is closed.
Proof. Let x,y € X, x f y, Since X is Ty, there exist

open sets G, such that x € G, y € H, x £ H, v £ G, As vy varies
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the union of all the corregpending. open sots'H 15 open aﬁd does
hot contain x. Clearly this unlon 1Is X- {x} and therefore

{x{ is closed, el ' ./

Conversely, ¢ §x¥ and {y} ave closed, X ~ fxi and X »3&{
are onen and contaln v and X respectively which lmplies that X
is o ”l~0n"cgﬂ

DIEFINITION 3.8. A topologlcal snace is o To~ghoce or a
r,..)

Hgg;norffﬁ:g&&n 10 and only 1f for erery nair of vnoints

X,y € X, there exlst open sets G,H such that x € G, ¥ & H,

¢ NHE = d.

Hotlece that over?.Tgvspace is also o Tl—space and oﬁory
subgvace of a T2~spacéi;gain o T2~space. To nrove the latter
statement, let Y Dbe a subsnoce of a To-space X, Let x, y € T,
Then x, ¥y € ¥ 2lso and since X is Tgy there exist open sets
G,I such that x € G, y € H, GNT =¢g, GAY, HNY are open in

3y and (GAY) AHNTD =¥ A(GND =YNE = &,
- Exercise 3.9. EBvery metric space is a Hausdorff spoca.

A metric space 1s a palr (X,d), where X 1s a nonempty
set and d is a re;l-valued function satlsfying the conditions
(1) Ax,y) 2 0 and il(x,y) = 0 Lf and only if x = v,

(11) d(x,y) = dly,x) .

111) Ca(x,y) < alx,z) + alz,y) where x,y,s € X,
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Let (X,d) Dbe o meteic snace and let X,y & (X,4), Consider
“wo open spheres G,H with cenvres x,y and radius /% + Since
x sand y are distinet points, d(x,y) = € > 0, Assume that

GCHH# g, Let z € GNH, Then dlx,x) < ¥z » d(y,z)--.é-;é/_s

and by the trisngular inequality d(x,y) < dlx,z) + dlgz,v) < % +$%:%§
vhich cointfadicts the Taet that d(x,y) = &, Hence CNH = ¢
or (X,d) is Hausdorff. |
THEOTE 2,104 Le? A De o compact subset of a Hausdofff
space, Let xx € X\A, Then open sets G and ¥ can be found
such that x € ¢, ACH, ¢ (i O = Z.
Proof. Suppose X 1is a Hagvsdorff space and let & be a
coimact subset of X, Let y €.« Since X 1s Hausdorff, there

exilst open gsets Gy end #, such that x € Gy ¥ € Hy, Gy NHy= 4,

As 'y varies over A, open sets HyyHyyeoo  can be found such thet
each y belongs to one of the Hi's and {Hi} constitubes an open
cover of A. 8ince A is compact, {I;} has a finite subcover

{Hi ’Hi y see 5 H, t + Corresnonding to these 1, , a finite

1 "2 I ~m
class  { G, ,0, ,...,G, } can be obteined such that x belongs to
1,771 i
L -2 m
* { ’ o
P f " m
each G, .+ Choose G = At G; and H= U #. . Then
il / ]= N =L 3

X6 G, ACH and GNH=H,
THEOREM 3elle In a Hausdorff space, every compact subset

1s cloged,
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gépng Let X be a Hausdorfr space and let A be a compact
subget of X, If x € X\ A, there exist open sets G.H such that
X € Gy ACH and GNH = ¥, Hence & NA = # which implies
X € GCXN\A, Thus, as x veries over X \4, we obtain a class
?{Gxg of open sets, each of which ig disfoint fromA, Hence
CENA is open which shows that A is closed,

THEOREM 3,12, - one~to-one, continuous napﬁing of a compact
space X onto a Hausdorff space ¥ 1s a homeomornhi.sm,

Proof, Let f be the one~to~dne, confinuous napping of
ex:‘onto . We have to ~rove that f is an onen mapping,
or that £(Q) is 6pen in ¥ whenever G is onen in X. It suffices
to show that f(F) ig closed in ¥ whenever T is closed in X. Since
F is a closed subset of the compact epace X, it lscomnact by
“heovem Re4s The ¢oatifmous image £(F) of the comnact F ig
compaet by Theorem 2.5, But £(F) ig comvact and a subsel of the

Hausdorff space Y, £(F) is therefore closed by Theorem 3,11,

4. QOMPLETELY REGULAR AND_NORMAL SPACES,

w

DESTHTTION 4,1, A tonological space ¥ ig regular if for
every closed subset P of X and Tor every x G Zy x 2 F,
there exist disjoint oven sebs G,H such that x € G, I 1,
Notice that every gubspace of a rerulap space is regular,
Suppose X = ja,byef L, 9 = 1%, ,] al s ib,ef f.
The ¢lass & of closed sets is given by € = jd,x, {p,c},
felf o (4,7F) is a regular space but 1t is not a T, ~space since

ibt ana § cl are not closed sots.
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DEFINITION 4,2, A regulsr snace which is also a lespace
is called a Tg—ﬁpggg.

TﬁEOREM “e™s  Bvery Tg-space.is a Tg-space.

Proof. Tet X be a T,-spcce. Since X is Ty, if x € X, fx}
is a closed gsets If vy # x, bv the regularity of X, there exist
omen sebs G,I1 guch thet y € ¢, 3{=3CH, GNH = ¢, whaich implies
that every pair x,y € X satisfies the criterion for a snace to

be Hausdorfi.

DEFINITION 4,4, A tovologlcal space X is completely regular

v an i Loy el

if and only if Tor every closed subset I of £ and ior
every x €¢ X, x £ F, there exists a continuous real-vealued

function f: X-— 10,17 such that f(x) = 0, £(F) = 1.

Remark 4,5, Every subsnhece of a comnletely repgular space

is comnletely regular, Let X be o comnletely regular space.

Let FcZ X be a closed set., Then XNT is T -oven and ¥ A (XF)
is  Jywonen, vhere Y is a subspace of ¥, This implies that
(TOAXDNF is UY~open vhiech shows that Y NF is Sy-open.
Assume that x € ¥, x £ F, Then x € X also. 8ince X dis
completely regular, there exlsts a continuoug real-valued func-
tlon £: X - (0,17 such that (%) = 0, £(F) = 1 and éince
EAAND G ¥ ’3Y~open, s fjY~closed which mroves that ¥ is also
comnletely regular,

THECREM 4,6, Every comnletely regular shace 1s regular,

Proof, TLet X be a completely regular snace. Let F be
a closed subset of ¥ and let x € X, x £ F, Then, therec exists a

real-valued continvous function f£:X-{0,1] such that £(x) = 0,

———
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= 1ls Since the real line ig Hausdorff, the subspace EO,l]
KX is also Hausdorff, Therefore, there exist open sets G,H
ieh that 0 € G, 1 € H, GAW=$L™I(C) and £75(H) are open in X,
nce f dg continuous and their intersection is empty., Further
xfﬁ £ ang FC:f"l(F). Hence X is a regular snace,

DEFIEIT 10N 4.7, A compnletely regular space which is also

Tl ig called a Tychonofi snaco.,
DEFINITION 4,8, Lot B = f£,Y be a class of functions

from any set ¥ to a set Y. Then F geparates pointg if and

only 1f every pair of disbinct points x,y € X, there exists
an f; € ¥ such that fi(ﬁ) # fi(y). |

If F= {sinzx sin 2x, sin 3x, +¢, $ is a class of
function defined on Tg , then £,(0) = f.0m = 0. Thus F does
not separate points of | .

THEOREM 4,9, The space € (X,TR ) of all continuous real-
valued functions cefined on a Tychonoff space ¥ separatbes

polnts,

Nl

froof, Let X be a Tychonoff space and let x,y € X, Since

X is Ty, $x}  and {y} are closed. Since X is completely
regular, there exists areal~valued continuous function £ : X—»@,l}
such that f£(x) = O,‘f( $vi ) = 1 which implies that f(x) # £(v).
Thus W(X,TR ) separates points of X,

DEFINITION 4,10, A tonological snace X is normal. 1f and

only if for every pair Fl, F2 of disjoint closed subsets

of X, there exist dlsjoint open sets G and H such that

Bl G and FBCL H.
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If X = Laybye by, S =460, sat , {0} , fa,b} # , then

€ =1¢,%, {v,c} s dcyal , fed b, o1Ip Fy and F, are dis-
~Joint closed subsets of X, one of them, say Fyy must necessarily
he ¢ +  Hence @ anté X are digjoint open sets and Flc:.é,
'FZ(: Xe Thus (X,T) 1s o normal svace. But it is not a T1~spdce
since { at  and {b} are neﬁ-dbsed; neither ig it regular since
a £ {¢t and the only open sot containing ¢ is ¥ itself, which
also contains a  Any space with the discrete tonology or the
frivial topology ‘g normal, for in the first case every subset isg
open and cloged while in the second, the only two subsets are X
aqg ¢, which are both open and closed,
© DHEOREM 4,11, Let X be a topological space. Then the

folloving are ecuivalent:

(1) X is normal

(i1) If H is an open superset of a closed seof F, there

exists an oven set ¢ such that F < ¢ € G < 1,

Proof, (i) = (i1). lLet FcH, vith F closed and H open.
Then the complement of H denoted by HI' ig elosed and F [} H! = ¢
By the normality of X, there exist oven sets Gl and Gz such that
Py, HlaGy and G n Gy = b o But 6 NGy = ¢ imlies
G =Gy and H'e o
closeds Therefore F C"Gl - ai - Gé . H.
(11) =3 (i), Let Fys ¥y Dbe disjoint, closed sets, Then

implies G, C H, In addition, Gy i

P, Fy and F, is open, By (11), there exists an open set G

such that Fy €. G- C G CF), But & r, implies F,C G' and
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. . e = o= I
P odmolies G (1 G'= ¢ . PFurthermore, G iz open, Thug

. G, F2 c ¢ with l'}r,.-(;:l being digjoint open zetss This -
ves that X is normal.

THEOREM -i,12, A compact Hausdorf{ .space 1s normal,

Proof. TLet X be a compact Hausdorff space and let Fl,FE'
two d Lsjoint closed subsets of X, Since X is compact,Fl and
are comnpact by Thegrem Bede Tebt x € Fl’ By Theorem 3,10,
rthere exist disjoint'open scty Gl’ Hl such that x € Gl,
;FBCZzﬁf As x varies over Fy, we obtain a class fe.y  &f
%open séts whose union contains Fl‘ Since Fl is compact, There

;is_a finite subcover {,Gil, Gig,...,Gim} wiich containg Fya
If {I-Iil,Hin,...,Hi ! is the corresponding finite subclass
- £

1l m m
of open’'sets containing F,, define G = () Gi g = NAR: P

| g J=4 3 NERS J’j

Taen FyC Gy F,C0 I and G H = ¢ which proves thot X is
nornal, |

DEFINITION 2,13, A normal space which is also a Tl-space

is a T,~space,

EXERCISE 4,14, BEvery Ty-space 1s also a Ty-space,

Let X be a Ty -spaces. "Te% x € X and let F be a cloged
subset of ﬁ digjoint from x, Since X is T1 s {xt is closed. By
normality, there cxist onen sets G,lI such that {x}C G, F i,

GNH =d which implies that X is a T,-space.

3 :
LEE#A (Uryseln) 4,15, Let X be a normel space, If FqyFy
are closed subspaces of X, there exists a real-valued con-

tinuous function £ X->[0,1) such that £(F) = 0,8(F,) =
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By virtue of Urysochnls lemms, a T,~space is Tychonoff,

nee a completely regular space ig alsgo regulary a Tychonoff

poce i1g a T.,-gpaco.
. )

Topologieak tpaces

o = Apaces

Ty - Spaces

To. - Apacesd

"Regular Apaced

Tz - fpaces

Tycherold Apacesd (_T?gl/,l" ALates)

Normad Apacesd
T - Apaces

Compack ‘

letn SO LS
Hoowsdors Apaces Meivie AfFaces }

5., C

e

HNECTED SPACES.

DEFINITION 5,1, Two subsets A znd B of a lopological space
X are geparsbed i¥ ard only if (i) A and B are disjoint
(i1) each conbtains no Limit point of the other,

xmmm,ﬁﬂﬁ - ¢.Mﬂ E(\B: ¢ ’

Iin other

Congider & = (2,2), B = (3,4), C = [4,5). Then A = (2,3]

« A and B are separated while B and
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DEFINTIION 5.2, A subset A of a tovological space X is
digcomected if there exilst oven subsets G, H of X such
that & NG and ANH are disjoint.non~empty sets whose

untton is 4, GUH 1g called a disconnectiton of A,

DEFINITIOH 5,2, A subset A which ig not digconnected ig
said to be comnectod.

Exanplie 544, Let A.C:ﬂé%defined by %(X,y)? x2~y2‘2 4% .
It 6= 5(:{,};)?1 x < % and H={ Goy): x > 1} , then
A ﬂ'_G and A N H are disjoint and nonempty, Further,

;(A NG Y (ANID =4 and GUH constitutes a disconnection of A,

EXERCISE 8,5, A subsct A of o topological snace is dis-
comnected LT and only if ANG # (}) y ANT ¥, ACGUE,
GNHC A,

For A to be disconnected, in addition to the first two
conditions, (ANG) U (ANH) = 4 and (ANG A (AnD = P. Bus
(AN U anm = AN@UHE), Thus 4f A = (ANG U (ANH), .
ACGUH and if ACGUH, &4 N(GURN = 4, Again, (AN N AN =
ANGNH), .";!?horeforo ANGNE = & limolies GNHCA and if

anirc A, anenm = ¢ .
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THEOREM 5,6, A set & is comnected if and only if it 1s not
the union of two nonempty separated setg,

Proof. We show equivalently that A is disconnected 17 and
j.only if 1% 1s the union of two nonemnty senarated sets. Sunpose
A ig disconnected and let GUH Be a disconnection of A, "hen
4 is the vnion of two nonw-empty sets ANC and AAH, which aro

!

also disjoint. BSupvose they are not seporated and let x be a
Limit point of ANG which belonzy o ANH, Thon x € I and H
being sn open set, contalns a point of ANG diffcrent from x,
~which implics that (ANGN H F . This gives a contradiction,
| since GUM Deing a dlgsconnection implies (ANGY N (&N ) = q) .
'ConVGrse}-y, let A = B U C, where B and C are noncmpty separated
Sets. Then BNC = ¢ , BNC = $d . Choose G = B' ana = C
Then ¢ and H are open and (B UC) NG=¢C, (BUC) N H=158 uare
noncmpty disjoint sets whose union is BUC, Thus GUYH is a dis-
conncection of A = B g C,

COROLIARY 5,7, If A and ¥ are connected sets which are not

separated, then AUDB 1is connected.

Proof. Busvose AUB is disennccted and let GUH be a
digconneetion of AUB, By 5.5, AUB < GUH, GNH C (4 UB),
Since A is a subsct of AUB, A< GUH and GNHCA., Thus, if
ANG and ANH are nonempty, then GUH d1s a disconnection of
A, But A ig connected, henco eithor ANG or ANH is cmpty-
which impliies thot clthed AGH .op BCG, Similarly, cither BEG

or B&H, Wow, if ACG, B (or ACH, BE&C) by Theorem 5.6,
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space

£(%)

UBYY ¢ = 4 and (AUB) RH

A= AUA

28

B  are gsenarated sets whleh

i

_nﬁradicts the hynothesis that A and B are not sevaralted, Hence
her AUBCG or AUBCH and so GUH fails to be a dise~

nncetion of A UB. Thus AUB isg conncched,

DEFLHITION 5,8, Lot X be a topological space. Then & is
disconneetod 1T and only if there exist nonemnty obon sets
¢ end I such thet X = GUH and GNOH = ¥, X is conngeted
19 and only if it camot be cxpressed ags the wnlon off two
dizjoint, nonempty oncn (or closct) sotg,

FXEACISE 5,9, 1n a connccted space X, the only subscts

which are both open and closed arc X and ¥,

If posgible, lct ACX be both open and closed, Then A i

—

also both onen and closcd. 4 = A and A= A and A NA= &N A
ﬁCb,'Kf\ﬁ = A NA"= (b which shows that A and A'are senarated.

t - B L b
and therefore not connccted since A, A are non-

empty separsted sets., This gives a contradiction,

IRt A/ e

Romgrk 5,10, A subsct of TR is connectod if and only if

-an interval,

TEEOREM 5,11 Any conlinuous image of a conneched swhace 1s
connected.

Proof, Letd ! X—=>Y be o continuous napning of a connectod

“r

X into an arbitrary tovological space ¥, We mugt show that

ls connected as a subspoace of ¥, Sunose (X} is dis-

v

connocted. Then, there cexist onen sets G, H of ¥ such that
£ S oelE, eSS (@), TEONG* ECONT ¢ . As

ot -1, ~1,. ' ]
3 continuous, f 1(&) and £ ~(H) are open sets of X and
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fhl(G) U f"l(H) X gives a disconnection of X, which contra-

dicts the connectedness of X, Thus

£(X) is conneeted ag a sub-
space of ¥,

THEORENM 6,18, A tonolegical svace ¥ 1s disconnectod if and
only if’ there exlshs a continuous manping £ of x onto

the discrete two-point space {0,1}

Proof% Suppose X is disconnccted, Then there oxist open

sebs Gy H sueh that X = (xN@) xNwE,

Define a mapping £
by f(x) =0 if x e x N G, f(x)

=lifxeXNH, ¢ is clearly
- onto and continuous since XNG and XNH
diSjOintu

ate nonempty, open and

ConVeréely, if there e

Xlsts such g continuous manping of X
onto 40,1}

y then X is disconnectod, For, 1f X were con-

nected, f being continuous, itg lmage {0 , 13

by Theorcm 5,11 and {O 1}
DEFINITION 5.12,

is certainly disconnected,

A maximgl connected subsnace of g topo-

logical space X ig Called g Lomponent,
It X is Connected, it hag only onhe component, namely it.

self In o discrete space, ever
' ’

¥ singleton is 3 component,
LE1A 5,14,

~
“

honempty class of connectod subspaces of X with ﬂ C, % ¢

h]
then ¢ = Uc ig

also a connected subsnace.

Prooft Sunpose ¢ is disconnected,

Then there exist open
ots G,H such thet <eng

and GNOH CC Bach of the C

eing connected will be contained either in G or in H, Since

should be connected

.

™~

Let X be g topological space, If {(3.§ is a \\\
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1¢, % P, all the ¢!

which fmplies that ¢ = U C; belongs completely to G or to i
1

and thus GUH fails to be a digconncction for Cs Thus C

ra
o

must boelong only to G or only to H,

1
n

connceted,

LEMMA 5,15, Let X Do o topological. snace and let A be o
comnectoed subspace of X, If 8 ig a subsnace of X such
thalt AZ CA. Lhen B is also o connccted subspace, In

particular, A is conncched,

Proofl, Asswic B 1g disconnccted, Then thore oexlst open
scbs G, of X such that 3 GUH, B Ne 4 ©, B0H £ O, anucy
Sinco A is connccted and ACH impllo AcGUH, A is contained
either in ¢ or In H and is digjoint from Tthe other, Assumo that
ANE =@ , Then ANH = ®and since B ¢k, BNH = & which
contradicts the fact that B is disconnected, Hence B is conmectod
In particular, sinco AEEK; A s connectaed.

THEOREM 5,15, Tet X be a topological space. Then the

following aro trues

(1) Bach point x € X is contained in oxactiy one comnonent
of X,

(1) Bach comicched subspacce I contained in a comnonent
of X.

(11i) If 4 is connected subspace of X which is both open and
cloged, then it is a comnonent of X.
(iv) Bach comvonent of ¥ is closcd,
Proof.(i) Let x € X, TLet '{Cif be the class of all

comnected subsvaces of X which contain Xe This clags is noncmpty,

since f}ci belongs to it and is connected, By Lemma'5.14, c={c,
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is a connected subspace of X which contalns x. Cloarly C'ls
maximal and the only component of X which contains x,

(i1) follows from (i) since a connected subspace of X is
contained in the component which contalns any one of its noints..

(111) Since 4 is a comnocted subspace of X, by (ii), Acc,
vhore € 1s a comvonent of X. But C = (CNA) U(C(\ﬁ), ANC #LQ%
Cf?Aj#Cb s & being both open and closed, A' is also both open
and closeds Honco C has a disconncchion which contradicts the
fact that it is a componont and thercforo connected, Thus A
cannot be contained in € and therefore A = C.

(1v)  Let C be a componont of X, If € ig not cloged, CC C.
By Demma 5,15, since ¢ is comected, T is also connected which
contradicts the maximality of € as a connected subspace of X,

Henee C is cloged,

6. IYPES OF CONUECTEDNESS,

DEFINITION 6,1, A topologicsl space X 1s locally connpochod

1f and only if for overy point x € X and every open sot ¢

containing X, thore exists an open connccted neighbourhood

of x which is contained in ¢,

In the case of a discrete shace, cach singleton sofb fx¢ is
an open connocted sot containing x which is contained in cvery

open set contalning x.




3

Examnle 6.2, A connoctoed space nced not be locally

connected., Lot 4 =. {(O,y): - 1< v < l} and B = {(x,y):

} .
4+ ~

v \\ g::%(ﬂli

Al |l o

i

Tora

> 0, ¥y = sin

} b
o 1

-1

.A ls an interval and therefore by 5.12 connected, B is the
contlnuons image of a comnectod set and honce connccted, A and
B arc not separatod, since covery volnt of A is a limit point of
B, Thus AUB 1s connhocted by 5,7, But AU B ig not locally
connceted, for if the poinﬁ (0,1) 1s considered, the open disc
with centre (O,l) and radins % docs not contain any connected
neighbourhood of (0,1).

Bxrample, 6,2, A locally comoected space need not be

connectod, If A :-gx A <X < b Eand B = {x e« x d } 5
AUDB is locelly connceted since A and B are locally conneected,
But AUB  is not connected by Theoronm 546, since A N §.=<b,
BNA = dD irplics that A and B arc senarated.

- TAROREY G.4e Lot X Do a locally connected space and let

¢ be a component of X, Then ¢ is opcn.
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froofs Lot x € C, Since X is locally connected, therc

exists ~t least onc owen connected neighbourhood ¥ of x¢ Sinco

C is a component, NEC, Thisg implics that C 18 a neighbourhood

of Xe But x being an arbltrary point of C, € is a neighbourhood of

each of its noints, Using 2¢l4, wc conclude that € is 0NeN,

Bxercise 6.5. Show that in o compact locally connccted

spacc, the nuuber of comnonents is finito.

Proof., Lot X be g locally conncetod space, which is also

..J
compact, Lot x € X. Thon x helongs to one and only one compo-

nent, say C.o Bach Cx 18 open by Theorom 6.4 and honco

U e = % is olso opon. Thus {C.} constibubos o cover for
XEX * - ' X
D

Xe By the compactness of Xy, this o

cn cover adnits of a fintte
subcovoer . However, the removal of any C.. from the class {st
£y, -+

implics that it is no longer a covwer, since o corresponding x € X

will e left outy Thus, {ka 1tsclf should be o finite cover
which provos that the number of components is Finito,

DEFINITION 6,6, Lot I be the closcd unit intorval [0,1]
‘Tet £ be an arbitrary topologicol space and let x,y € X, A

contimwus function £ I—>7% is called eon are (or »ngath) from

to y if (o)

i
Lt
7

and £{l) = y, ilerc x is called the initial

c Gor
LV
lotice that if T8YX->X ig an orc w

from x to ¥, ©: I-—>X

cfined by £(s) = £(1-s) is a path Trom vy to x.
DEFIFITION 6,7, For ay x € X, the constont function Oyt
I == defined by ¢.(8) = x is continuous and hence an ave

R |
known as the constant path at x,
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DIFINITION 6,8, 4 topological space X is arcyise

comnected 1f and only if for cach pair of points, x,y € X,

there exlsts an arc Joining » and v which nelongs to X,

DEFINITION 6,8, The mawimal arcwise connoctad 5uoso ;5 of

£ are cplled the arewisc comiected comtnonents of X,

[ Mgt *x Trn Tt

Obsorve that these srewise connceted components of X

constitute a partition of I,

THEORLEM 6,10. BEvery arcwisc conncctod sbace X 1g connceted.

Proof, Let x & X. TFor eact y € X, y ¥ x, define I

as the arc joining x and vy, Then, cach T ts the continuous

image of‘[b,l] and ig therefore connected, by 5,10 and

Thoorem 5,11, The dntersection of all the T 's isg nonempty

XY

‘gince x belongs to cach I, . Thus, U 1 is conncetod by

Xy yEx xy

- Lomma 5,14, which implies that X is connocted.

Example 8,11. Bvory connccted space neod not be arcwlse

x

comectoed, Lot A = i(x,y) D 0<x &1, y=5, 0 being

n ¢

an intogcr} < x < 1}.

is the seb of all points on *the Iine seghents joining (0,0)

he points of the Torm (l,%& where n is an imbeger. A ond B

eing arcwvisc comnected art. also connectoed, Furthermorc cach

o
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point x € B 1s a 1limit voint of A and hence A and B are not
arcwige conncctoed, because there oxists no arc jolning any noint
of & Lo ény point of B,

THEOREM 6,12, Arcwilse-connectedness is a topological

nroperty,

Proof. "Let X bo an arcwise connccted space and let h be
o homeomorphism of X onto an orbitrary topological snace ¥, We
have to prove that Y is also avcwise connccted. Since X ig
arcwlse connccted, there cxists a continuous function T : I—>X%

fo)=x,T(1)=y.Let a,h be the points of Y which correspond ‘to
such that if x,y € f, Xy © X under the homeomorphism h., Then

h(x) = oy h(y) = b, Define g = hf, Then clearly g 2 I—Y
~and glo) = h(£(o0)) = n(x) = a, g(l) =h (£(L)) = Wy) = b, g is

continuous, belng the product of two continuous functions and is
an arc joining a and b which implies that ¥ is arcwise connccted.
DEFILITION 6,13, A closed path is one for which the initial
and terminal points coincide and he path 1s then said to

be closed et that point,

In particulqr, the constant path ¢, 1s a closed path at x.
DEFINITION 6,14, Lot T tI=X, g1 I»X be two paths

with the same initial voint x € X and the game Teorminal
noint y € X. Then £ ig said to be homotopicto g if there

exists a .continuous function h ¢ Iz-—ev}{ such that

i

h(s,0) £(a) h(o,t) = x

hs,1) = g(s) h(1,%)

N
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as indicated in the figure bYelow
¥,

—

h 1s called a pomotopy from f to g.
Example 6.51l. Let X be the set of polnts between two
concentric circles, Then the paths f and g 1in the dlagram

below on the left are homotopic, whercas the paths £ and g

are not homotopic as scen on the right hand side.

DEFINITION 6,16, A closed path £ 3 I -—> X which igs homo-

topic to the constant path is said to be contractable to

a QOilj;L;a

DEFINITION 6,17, A tonologleal space X is siuply connccted

if and only if ecvery closed path in X 1ls contractable to a
point.
+ » 2 . . e S sl
Example 6,18. An open dise in TR is siwply connected,
whereas an ammlus is not, since there arc closged curves os

indicated in the figure on the right, which arc not contractablae
A ? :



gluply connceted not simply connccthed

DEF NTTION 6.192, 4 topological space X is totally dis-

gomneehod if for every palr of distinct points, x,y € X,

there exists a discomnection of Ke

The discrete space is the gimnlest example of o totally
digconnected space,

Eramnloe 8,20, The rationals ond the lrrationagls are

tatally disconncécted spaces, For if Xyy € @y thore oxists an

irrational munbor a such thet x < < ¥+ Choose G = {x ¢ Q ;3:<;@

H = { XeQ ix >a f + Then GUH is a disconnection of Q and
» € G, y € H, Thus R 1s totnlly disconnccted, Similarly, the

set of all lrrationals is slso totally disconnected

Consider the Cantor set P dofined as follows., Let Fy o= [Q;ﬂ’

Po= [0,83ULE, a2l r, = [0, LIulg, F1uLs LWL, 1

. 379
o0
and so on, Define F = Fna
n=4
E"""‘ ' t
_}
O 41
1 N !
O J 1/3 2/5 "{i

]
o % o Vs Ts W % 4
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+

The Cantor set is an outstanding example of a compact totally
. 2 o . i
disconnected subsnace of the real line Ik .

Renark .21, The components of a totally disconnected

space are 1tg points.

For, if X ig a totally disconnected space,.lt suffices
to show thet every subsnace ¥ of X which contalns more than one
nodlnt 1s disconnected, Let x, vy € Y, x4 y and lct X = cUII be

(xne) U (vN

i

disconnection of X with x € G, y € Hy Then ¥
ig obviously a disconnection of ¥, thus proving that every single-

ton is maximal connected and therefore a component.,

7. DBASES AND PRODUCT TOPOLOGIRS.

DEFINITION 7,%. Let X be a topological space. A class

of open gubgets of X 1s a basge for the topology 3 gefine

~
A

on X AT

and only if every open set G € J is the union
of members of 65 . In other words, ®C J is a base for ¥
if and only if for every noint x € ¥ which is contained in

an open set G 6 'Y , there exists B € & such that x € B &G,

Obsgerve "tHat @ = U{‘B}: » € ¥ ¢ and hence belongs to ¢ .

Ixcatinle 7,2, The oven intervals of T form a base for the

usuval tonology on TR, For if ¢ TR is open and x € G, there

exists an open interval (a,n) with x € {(2,b) C G, The open discs
form a base for the usual topology on H? v+ The open rectongles

Is)
. & - a . ' s 1
in R® 4, with their sides parsllel to the axes, also constitute

2 . —~2
a base ¥  for te usual tonology on TR™ « For, if G CIR™ is onen
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and x € G, There exists an opeh dige with centre x such that the
diac 1s contained in G, Any rect - gle B € ® whose vertices -
lie on the boundary of this disc will satisfy the condition
6 B G,
In the case of a discrete spece, ail the

singleton sets form a base for the corresponding discrcte teopology.

Glven any class (® of subscts of a set X, 1s 1t possible
for thig class to be arbase‘for some topology on X ? Since X is
open in every topology on X, the condition X = U {B sB € @‘f ls
necessary, In fact, if X = {a,b,c} and & =1 fa,b} fasch
then @ cannot be o base for any topology on X, since thelr inter-
section {a}  should be owen, as the members of a base are open
subsets of X, and  {a} is not the union of members of ® , We
can therefore formulate a set of neccssary and sufficient cohditions
for a class of subsebs of X to bera base for gome townology on X.

TUEOREM 7,3, Let ® be a class of subsets of a nonempty

set Lo Then B is o base for atopology on X if and only

)

!
¥

(1) Xx= U{B:Bec B

(ii1) for evory Bl’BZ € § and every x € B, 1 By, there
exlsts B € & such that x € B & By F\Bz, i.e.) the inter-
gection of any two members of B is also o union of wmembers

of (&




40

Proof, Ir Ggiﬁ a.bago for some topology on
neinbers of (3

s

Xy then the
are open sets and the intcroec lon of two open
sets belng open can be expressed
he contrary, supnose (D
Define ¥

as a unlon of members of & .
On % satigfies conditions (i) and
(11), to be the collection of all subschs of X

which are the unions of mombers of &

L 3
is a tonology

J is & union of meibers of @ , the union of any number of
members of

is
to J

We shall prove that <
1.1 (i) is obvious, Since,cach members of

on i,

a unlon of memberg

of & and therefore e longs
Thus 1,1 (ii) 1is verificed, To a.tablish 1,1 (iii), let
Gl’ G2 e ., If x ¢ Gl N Gg, then x € Gl and Gz.
definitdon of J G, and Gg

By the
are unions of members of B and

so bthere exist scts 17 € 6 such that x e Blc: Gl and
% e B?c: Gg. Since ¢
thaesis of the‘theorom,

alt x GBCBlﬂB2
Bat Bl(} Bzc: G f)Gg. “hus,

ve have showm that every point of
ﬁ Goye La contain nt

od in
in G (YGP. Thus G ﬂ @ "r
belongs %o N .

& Bl ( Boy by condition (ii) in the hypo-

there exists B € @& such tha

a onmbeor B 6 QB, vhich:ds Ledolf contained
iz the union of nenbers of ® and thercfore

L

¢ delinition of 2 base has been so chogen
ot 1.1 (41) is

automatically satisfiocd if we start with any
clasgs of 1nsets of X,

It is conscquently natural 4o a
is &

method off obtaining all the open sets of

ale

sk 1f there
T, vhich automati~
cally satisfy both axioms 1,1 (ii) and LeL(iii).

This isg
answered by the following definition,
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DEFINITION 7,5, A class 8 of onen subsets of atonological

space X 1s a gubbsse Tor the corresnonding topology S oir

and only if the class of all finite intersections of

menbers of 8 forms a base fox i
Wote that I = (]{ S nNEe Y } and so auvtomatically

belongs to S,

‘

Bxamnle 7,8. The infinite open intervels of TR form a

subbase for the usual towology on 18 , since every open lnter=

val (a,b) = (a,oo) 1 (=c0, b) and the open intervals (a,b) Tforn

s pase Tor thet tonmology, Similarly, the infinite horizontal !

and vertical owven strips glve a subbase for‘the ugual tonology
on‘ﬁ%g, as the intorsection of o horizontal and a,VGrtiéal open
strip ig an open rcetnagle and these open rectsanglcs constitute a
base for this tonology.

Romerle 7.7, If A 15 any class of subsetg of a non-ompty

set X, it may not be o basec for a topology on X, but it will al-
ways be e subbase for a unique tonology 3 on X by Theorem 7.3,
Thus, if ¥ = $a,b,c,df and A =4{{a,nt , fa,ci, jasl, then .
finite, intorscetion of & givos rise to the elass @ ={{a,bt ,1a,cf,
gd}”iaﬁﬁgxﬁ;whero X e B since it is by definition the emply

intersection of memborg ol

of &i'loaﬂs to the clags ¥ = { {a,b} , §a,c§ ,§ ai‘, fa? s
53

¢ y Ky {“

- topology onn £ generated by e,

& . Forming the unions of members

n
~»
~n

)

ot :
P c"
-~

,,c,df ) {a,d{ R {a,b,c} % which is The

DEFLATITION 7,8, If Xy and X, are two nonemplty sets, thelr
[}

product X x X, is defimd to be the set of all ordercd

L

4 1% ~ ~r ~r r ~ . 4 R o T R S S | . -
pairs  (X,%55)y Xq € Xyy X5 € K50 Thils definibion con be
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exsvended to the case of n sets, for any positive intéger 1,

I Xlgxg,..,,xn are nonempty sets, then the%r broduct

Kl‘x X2 X ees X Xn is the get of all ordered n-tuples

(xl,xg,...,xn), where x, € X, for cach i

If the sots Xl and Xg have topologics associated with then,
Wwe can define a topology for their product ,as the followlng
theorem indicates.

- TAEOLERM 7,9, I 'Xli. Kg aretonalogical spaces, the
Classﬁof.gllfsoté*of'thg form Gi x‘Gg, with Gl open in

Kl and G2 open in Xp is & basce for a topology for XlXKp-

Proofs ‘he sot X x X 13 itself of the required form
and is thercefore the union of all the members of the class ﬁbr‘.
Thus (i) of Theorom 7.3 is satisfied, To verify (ii), let
(xl,gg) € (Vy x W) (Vg W), where V14V, are open in Xy,

wl,wg are onen in £ge  Then x = (xl?xgi also belongs to (Vlﬂ Vg)

X (Wif\wg) = (Vl x Wl) F)(Vg by wg), whero Viﬂ V2 is open in Xy
and wlﬂ W, is open in Zoe  Therefore x € BC B, NB, whoere
B, Bjy B, € 65 which proves that ® is a base for g topology
on Xl X Xga .

The product tonolosy for X = Xl,x Xg is obtalned by using

the base provided by Theovem 7.9,

DEFINITION 7,10, The brojectilons le and Py of the
product of two sets Xl and K2 ~are the mappings of
Xl X X2 onto Xl and Xg' respectively, defined by setting

le((xl,xz)) =X ?XP((KI,XS)) = Ko
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N

THEOREM 7,11, The nroicetions P, and P are con-
" -A.l X?)

tinuous and onen mappings and the product tonology is the
siiallest topology for which the nrojections are continuous,
Proof, It 4 ls an oven sot in X, then P;l (Gl)
Gl X Kg, widch is an onen set in £y X Xy Thercfore PKl is
“conwlnuous, Likewise PXG iz also continuous. To prove that le
ot

is open, if G is an onen subset of Kl X X, , ther it is the
et

. SR e 1y gy e r T4 - M = .
unton off the base eloments 4y x G,y for which Py (26, Gy

1

Thus, Py £G)  is the wion of the open schs G; ond hence an open
Ll .

Lanning as 1t tokes open scts to onen zobs, Finally, susnosc ©J
18 a topology Tfor Xy % X, in walch the nrojoctions aro continuous.
Then, for cach pair of opon seis Gi,&? in Xl and Xz respectively,
- - - ""l -.l
- N [ a3 - L s T by - D 1 Sk
the set Ul z G (Ll X AE) N (alaGg) le (Gl)n ;leGg) must

be open in S s since the nrojcetions arc continuous in § ,
Thus, cvery set which is oven relative to the product topology
is also open relative to 3 y wihich implics that the product
topology 1s the smallest tonology for which the projections are
continuoug,

The nceds of tonology insist on an extension of those idoeas
To an arbitrary clnss of nonemnty sotae, Wo adont the convention
that the nroduct ig anpty if any of the coordinata sets isg empty.
The notion of the a1roduct of an'arbitrary number of nonecmnty sote

Wwos dntroduced by Tychonoff. in 1935 and is known as the Iychonoff

Lopology.
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that cach projection Py
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Remark 7o

neccssarily follow that
in general posgsible to writ
soctions of sobs belonging to

is corteinly open,

neccessarily bhe

class of

]| i is

space Xj

14. Notice that 1f G,

3. Let I be an index set ond let X}

-onolo°1c L swaces, The product space X =

defincd as the scot of all functiong x defined

that the velue of x ot i € I, namely, x; belong

subbase,

x:iez§

its topology ls that gencrnoted by the

£
Jj_,

S, being the family of oven sebs of

1g the projeetion mapping of X onto the 1thoco-

l.

is open in Xi, it does not

T @, is open in ¥, sinco it is not

161, .
Lo :TT G. as o
1e] 4+

the subbasac,

finite inter-
T c.
&1 L

if T is an infinite set, this nced not

union of
£ T is finite,

but

the casge,




CHAPTER II

MEASURE AND INTEGRATION

1. PRELIMINARIES. '
DEFINITION 1.1, Let X be a set. A nonempty class ®
‘of subsets of X is a ring if it 1s ¢losed under _
finite unions and set theorertia di fferences, In other
words, if A,BE(R , then AUB <R ,-" pBER . In
partieular, if X € R , then (R, is an algebra.
Notice that & = 4.~ AER , A &B = (A-B)U(B-H) €eq,
AOE = (4 UB)-(AAB) ER. |
 DEFINITION 1.%. A nonempty class ¢ of subsets of X
is a O _-ring 1f it 18 closed under countable unions
nd set theoretic differences, Thus, 1T A,B, 3 A% €9
then sfi;sne S, MBED . If X €9, then & 1s .
called a O -slgebra,
As AUB = AUBUGUG U ..., 1t i{s clear that every
0 -ring i-s a ring., Conversely, any ring which is clqsed
under countable unions is a - G -ring. A o-ring is also

R
closed under countable intersections since Nh, E My -
4

00 4
U(py-h,). Observe that if $$3% 1s a family of C=Tings
4 .

of subsets of - X, the intersection of the $3 1s also a O-ring.

DEFINITION 1.3. lLet X eR , the set of all real numbers
and let £ be the class of all semi-closed intervals
[a,b). The Borel clags @ is the O -ring generated
vy & . The intervals (a,b71, (a,b), [ a,b’] can also

be used and the generated O =-ring is the same in each

cpse.
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DEFTNITION 1.4. A set function ¥ is a function defined

on a nonempty elass of sets'and its range is the exten-

ded real number system Tﬁx==ﬂ{[Jﬁt03}| .

DEFINITION 1.5, A measure Al is a set functlon defined
on. a ring f{ with the following propertiess
(1) J4 is nonnegstive. If B E€R , [ME)2 0.
(11) M is additive, If %, FER , BOF =9,
IW(EUT) = W(E) +M(P).
(111) W (9) = o.

(iv) If {Eng' is an inereasing saguence belonging

to d{ , whose union E is also in ® , then
H(E) = sup MU(E,).

PLOPERTIES 1.6,
(1) (is monotone, If E,FEEK , BCT, JAME) < J(F).
ginee T = (F-E)UE, M(F) = U(F-B) +WE) and [
being nomnegative, M(F) > [L(B), using the fact that ECT.
(11)  is conditionslly subtractive: fx(F-E) ZﬁL(F) -
[L(B), it B, FER, BCF, and [((B) is finite.
(id1i) U is finitely additive: If El’EZ""’EnTLare
mutuzlly disjolint sets in i . thenfl (U%) =
n i
%. }L(Ek).
(iv}{i is countably ad itive, If {En} is a seyuentce
of mutually disjoint sets in (Rwsuch that

<o .
&)Ené@,then A tf Ey) = % M(E)  in

the sense that the supremum of the increasing

n &)
sequence of partial sums 7 PL(ER) = }L( U &)
: 1 . 1



&%

. o

(v) f1s countably subadditive: U( {J B,)<
Q0 i

S /(L(En) if the condition of mutual dis-

1
jointness on  { B,y is relaxed,
DEFINITION 1.7. If E € and W(E) <® for every E,

then [bis a finite megsure, If, given B € 6{ -y there
a
exists s sequence {Eng € R such that EC gEn and

f(E,) <o for all n, then flis a O -finite measure.
A finite measure is called totally finite if its domain

of definition is an algebra of sets and a C-finite
megsure is totglly ¢ .finite 1f its domain of definition

is agsin an algebra of sets,

DEFINITION 1.8 If F is a fixed set in R |, the set
function [p defined by the formula /(,LF(E) = JA(FNT),
EE€ R 1s called the contraction of M by F.

Remark 1.9. /qu'; is a measure on R ., If H(F) <0
then /u,Fis a finite measure. '

DEFINITION 1.10. Let Jf be the class of gll scts A

which satisfy the eondition A C ﬁ B,y B, € ® . If

A -63’{ and BGA, BE ¥ .. For thiis reason, Gt is caglied

a hereditary class.

It is clear thaf $t 1s g ring and hence g g -ringi

Thus, we have the econcept of a hereditary O .xring. TFor any

set X, the class of all subsets of X 1is a hereditary O -ring
and since the intersection of any fam:_tly of_ hered’itary 0 -rings
1s & hereditary O -ring; it follows that given any ¢iass

of subsets of X, there is a smallest hereditary O -ring
containing E . This is denoted by F(¥)and is called the
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hereditary 6 -ring generated by E’.

4

DEFINITION 1.11. Let /L be a measure on a ring. B .
A wet functin W can be defined on H(R) by the
* < e
formila' [L'(8) = inf  § X (B)arC UB,HERY .
‘ 1

DEFIFITICN 1,12. JAn outer meggure is g set function
whose domain of definition is g hereditary 0 -ring

and it is positive, monotone asn? countably subadditive,
with U (¢) = o,

DEFINITION 1.13. 4 set B E FH is P -megsurable if
V(a) =Y(ANE) + V(ANE') for all AE H , where I’

denotes the complement of =,

The subeadditivity of U implies that . V(4) < V(LN E)
+W(ANE'") for any E({B{ and every AE H . Thus, in order
to establicsh the M -measurability of E, it suffiecs to prove

that V(4) > L{AOE) +VANE') for every A€ 3 .

THECEEM 1.14, If o is'an outer meagsure on a hereditary
O -ring 3£.,'the class L of all V-measurable sets is
a riﬁg. ' |
Proof, OSuppose E, F €M, . Then E and F split A
additively, for every A€H . Thus
VAN T+ (AN FT)
(1.1)

V) = V(AONE+V(ANTE), VY(8)

We have to prove that E-F and EUF are v -measurable. Notice
that B-F = EAF', (E-F)! = (EATF')' = E'"yF. .We heve to
establish thet

VA = VanE-r) [ +v an(z-r) ] (1.2)
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and

V) = vLanEUR) 1 + Y an(BUF)' ] | (1.3)

Since ANMN(E'YF) < 4, AN(E'UT) &€ X .Consider

I AMEF ] =wanEUR ] =2 anEURAF] +
' y[anEUF AT ]

=ulanrI +vanenr) ],

Thue, using the fact that ANF'C A, we have

?

VYIANGENT' Y+ v anENFYD'] = v anEnr) 1+
VANTF) + v an(sNF )]

=V{ANF) + YV(AAF") using (1.1)

whieh proves that B-FE€M .
Again, AN(EUF)E L and

ANEUDAT] + »nER ar ]

N

VI AM(EUF)

It

VANE) + 21 n(EnF) ]
which gives

Vs MENT ] + v AnEUM ] = v NF) +
SV anENFYY ] + VY CAN(E NFY "]

= VANF) + V(AAT') = V(h).,

Thus (1.3) is true,
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THEOREM 1.15. If 4 1is an outer measure defined on g
hereditary éTTring #H and M. 1s the class of all
V-measursble sets, then |
- (1) Mis a g -ring '
(11) If §B,} is a sequence of mutually disjoint
sets in M aghose union is E, then
V(ANE) = %-”D(AO E,) for every Agc#H .

(111) The restrietion of VU toM 4s a measure.

Proof. Define _
VNE) =V (aNE), 5 €3, peM.

It is easy to verirfy that 'UA is a measure on JVL . Suppose
{Eni is & sequence of mutually disjoint sets in M , whose
union is E gnd supyose =~ € # . We shall show éimultaneously
that ] is a & -ring and that (ii) holds,

Since the E,'s are disjoint, By 1E, = ¢ and hence

E'\AE = Eg. is Ey splits 4 ﬂ(Elu Eg) additively, we have

17 7
v[An(Elu?a:z)]

VLA OB UE) BT +YEA0(B UL E, ]

1

VANE) + V(ANE).

Thus 'UA(EIUEE) = V) (E) + UA(Eg), which shows that 1), is

additive, By & process of induetion, ’)_)Ais finitely zdditive.

3

De fine F o= ELJEK. Then, by Theorem 1,14, F EM , since M

is a ring and is therefore closed under finite uhions, Now
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i . t
VN (FY) = vAc U B) = 'Z ‘UA(UR) since F 4 E, F VB
and in partlcul r, Af\? 2 A{}E’ for every n. .

Since F.  1is Y -megsurable and W is monotone,

V() =P (ANFY + BAAE) 2 VNT) +2 (ANE),
o -
= Vp(F) + VOOED = ;2 Vy(B) + V(ANE")
A , (1.4)
A8 n is;arbitrary, tl 4) yields- N
V) 2 Z'quk) + fvumE') (1.5)
But, 2 V(E,) = T YONE) > Vv U Ar\En) by countable
tr = 1?(PF\E) subadditivitJ of U,

~

torr
" -Substituting in (1.5), wehave V(4) 2 Y(ANE) + VAN E'),"
which proves that E is 7 -megsurable, Thus, B €M and E

o0 .
being equal to 9 E,, M is closed under countable unions and

therefore a ¢ -ring.
From (1.5), i1t follows that

o o
V() > T U(E) + VONE) > VANE) +VCAN E Y=V (A),

Therefore ?J(A) = %g'Lg(E%) + IJ(AIWE') | | ‘(“'ﬁ:
In (1.6), replacing A‘.by A NE, we have |
'?MQE)= %1%%Q+’UMOEH 2ﬁhwl)+w(¢)*L1HQQ
In partieular, when A = E, (1.6) becomes
0 0
V(E) = >;_ V(B) + V(ENE') = %M-En)
which proves that ) is countably additive on M,. Therefore, the

restriction of Y to M is a measure,
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DEFINITIOF 1.16. If IW{n)=inf W(F). ACFE ©F ,then the
inner measure /u_;‘éis defined on ¥(3)by M%A):sup”&(l’*‘)',!b F‘é%l.

DEFINITIOE 1,17. If X is a set and § is a g~-ring of
subsets of X, then the pair (X, $) is called a measursble
spaccé. If Eé§§, E is sald to be mgasurable with respect

to P, or simply a megsurable set.

DEFINITION 1,18, Let X be a set. If A 1ls a subset of X,
it 1s loecally megsurable if A E is.measurable, for every
messurable set E. The class of all locally measurable sets
is denoted by 5?\ - |

DEFINITION 1.1¢. Let (X,P ) be a measurable space and let
f be g real-valued function defined on X, Let N(f) =
$xeXsf(x) A0} . b function f:X>TR is a measurable
funetion if M(T) N r-2(M) is = measurable set for-every
Borel set M. |

Jle emphasize that the concgapt of meagsurability is defined

herc only for the functions which have values inWR. If f 1s
allowed to take the values * ¢ , the sets f';gigqj) and £ 3 ~of)
should also be assumed to be measurable. T
DEFINITION 1.2C. TIf A4 is any subset of X, the gharacte-
ristic function of 4, denoted by % ,, is the furction
defined on X, whose values are 1 at the points belonging
to A and O at the points of X-A., Symbolically

1, XE M
%f\ :i . !
) ’ 0 9 Xe X-.‘ﬁo

G PROPERTIES‘OF MEASURABLEG FUNCTIONS AMD MEASURABLE SETC.

THEOREM 2.,1. A function i1 TR 1s measurable if and
only 1f
(i). ¥(f) is measurable
(i1) £7Y(M) is locally measurable, for every Borel
set M.




Eggéﬁ. Suppose f:X %?TR,'is meagsurable, Then
MY N f_l(M)' is g measurable set for every Borel set M.
Mow, TR 1is & Borel set gnd tL(R) = . Therefore
M{f) ﬂ f'l(ﬂg) = M(fY) ¥ is s measurable set, This implies
that M(f) 1s measurahle thus estellishing (i). To prove
that (ii) is necessary, suppose M 1is a Borei set and let
§0¢ € M, Then s Lons el(dol ) = [N(f)]' and
el - m(e) = elen e = L], 1e {of &
e lon C () and tRa0 (o) = £7H00 A )] |

S NONIHo 1 =6
In either case, £y - (£) 1s locally measurable. Since
£~L(1) NE(*) 1¢ a measurable set by hypothesis, it follows
that the set
e ran = Ceoron anee) JoDeton - 7o) ]
is locglly measurable, '

On the other hand, if (1) and (ii) are satisfied and
if M 1is a2 Borel set, by the definition of local measurabi-
ity, M(T) N £ (M) 1e 5 measurable set which implies that
f is a measursble function.

THEOREM 2.2, . If f:X—JR is a function such that

M(f) is measurable, then each of the following condi-

tione is necessary and sufficient for the function - f

to e measurable.
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(1) §x:f(x) < ¢ } 1s locally measurable, for cach real
number c.

(11} {X:f(x) < ¢ } 1 i "
(11i) {ng(X) > c_} no t "
(iv) {X:f(x) > ¢ % " i T

Proof. The sets specified in conditions (i)-(iv) are the

inverse images under £, of the sets of the form (- ® ,c), (- 0o ,cl,
(¢, 0 ) and ¢, 0 ). These are Borel sets since
o0
(-a0,c) = U Cenye)
n=1 ‘
| ©
(-0 ,e] = (-, U N [e, c+d)
n=1
o0
(C,OO) :U EC'{’J‘-’G-i-n)
n=1 :
o0
EC,CO)=U [ e, cin):
n=1

Using Theorem 2,1, we conclude that each of the conditions (i)
through (iv) is necessary for the measurgbility of f.

To cstablish the sufficiency, suppose (i) holds, Since
[ a,b) = (- 00,b) - (- w,a), the intervals of the form (- ,c)
genérate a Borel class &5, which implies that f 1s meagsursble,

aQ
bgain, 1f (i1) holds, (- w ,c) = lJl(" % ,c - l:] and since the
: . n= ‘ n

intervals (- OO ,c) generate ® , the intervals (- co,c:] also
generate QB, thus yielding the measurability of f. As
fo)

Ca,o) = an (o = .11; , €0 ), the intervals (¢, @ ) gencrate @ .

Henece (1ii) implies that f' s measurable, TFinally, since

[ a,b) = Ca, ) - b, @), the intervals Ce,00 ) generate & ,

which shows that if (4v) 1s satisfied, then f 1s measurable,
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THEOREM 2.3, If f and g are measuragble functions

defined on YKand c¢ 1is any real number, then each of

thetollowing sets

(1) &= {x:£(x) < glx) + ¢}
(11) B = $x:0(x) ¢ g{x) + ¢}
(111) € = {x:0(x) = g(x) + ¢ §

is locally measurable.

Proof. ©Suppose x € X and r 1is a rational number,
Then,. the econdition f£(x) < g{x) + ¢, holds 1f and only if
f(x) < v and r< g{x) + ¢ or g{x)> r-c{ Now A can be
written as '

A = gi C {xef(x) < ey nixeo > r-ct J.
Sinee f and g are megsurable furetions znd ¢ is-any regzl

number, using Theorem 2.2, {x:7(x) < r} and {x:g(xDr-c} are

locglly measurable znd sc is thelr intersectlion, Thus A is
locally measursble. Interchanging the roles of f and g in

A and mgking use of the fact that the complement of the

locally measurable set A 18 also locally measurable, we have

{.x;g(x) > f(x) + ¢ f is locslly measurable which implies that

§x:f(x) ¢ g(x) - ¢} 1s locelly measurable, ¢ being any real

number, we conclude that P is locally megsurable, Finally,
C = B-A 1s loeally measurable,
DEFINITION 2.4, If ¢ 1s a resl number, the function
cf is defined by (cf){x) = ef(x). x€EX.

THEGREM 2.5, If f 1is megsurable and ¢ is a real

number, ther «f 1s measurable,




56

Eiggi. If .¢=0, then c¢fz0, in which case W(ef)=¢ -
which is certainly measursble. IF cA0, M(cf) = ¥(f) which
is a measurable set since £ 1s a measurable fum tion,
Thus, in cither case N(¢f) is measursble. Now, if ¢ > 0,

let e¢f=h. Then the set
{x:0(0) < a} = fxsef(x) < 2} = {x:f(x) < 2

is locally megsuregble, since f 1s measureble using Theorem

2.2 for f, If ¢« 0, the set
{:{gh(x) < af =94 xsef(x) < a} = {x:f(x) > .2.}

which is once agein loecally measurahle, since f is meagsurstle,
Thus the funetion c¢f satisfies the conditlons of Thedrem
2.2 and is therefore s measurable function.

DEFTHITION 2,6, If £ &nd g are measurable functicne,

their sum is defined by (f+g)(x) = f(x)+g(x).

THEGREM 2.7. If f and g are measurable functions,

then so 1s f+g.

Proof, Totice that N(f+g) ¢« M(f) U M(g). Since
-g = (-1).g, and ¢ is measurgble, by Theorem 2,5, -g is also
megsur able. Thus, the set

§X:f(X) talx)<ef = {xef(x) < cmg(x) §

1s locally measurable by Thcorem 2, 3. 1f, in particular,
¢=0, then f Xef(x) + g(x) = 0 } is locally measurable, which
implies thzt [:N(f+g):]f ig locally meagsursble, Therefore,

N(f+g) NE is measursble for every measurable E, since the
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complement of a locally measurable set is locally measurable.
in particulap,.N(f+g)r}[:N(f)L}N(g)f] = N(f+g) is megsurable,
Thus, f+g satisfles thé conditions of Theorem 2.2 and is |
conseyuently a measurable function.
REMARK 2,8, If f 1s a measurable function, its
positive and negative parts defined by ft—-maxié,-ﬁf,{ifrmwf‘io}
‘are also measurable. In perticular, [f] = Por T e

measurable.,

REMARE 2.9, If f and g are measurable functions,

H
1

max §{ 0(x), g(x)} = f(x)+g(x) ; | () g (x)}

(fUeg) (x)

_il(_x)-%g(x) | r(x)-g(x)|

(rng) (x)

min ff(x), g(x)}
are also measurzble functions.,

* THEGREM 2.10., If f eand g arc measurable functiens,

thelr product fg 1is also a measursble function, where

(fe)(x) = F(x)a(x).

Proof. ©Since f  1is measurable, M(f) i1s measurable and
N(fz) = M(f)} 15 also measureble, Likewise N(g?) is measuréble.
Consider N(fg){ﬂ{ x: L 2(x) > c‘}. If ¢=0, this set becomeés
NN g x:r%(x) 2 0}

§]

§ x:£%(x) > 0} . Tow

§x:0%x) > 0F = { x:£00) < ofUdxarto > 0}

and therefore locally measurable, since the funetion § 1is

t

measurable and M(f) 1s a megsurable set, If >0, N(fz)fﬁ
{x:fg(x) > c}~ is once agein locally measursble. If ¢ < O,
N(£2) nIxefP(x) > b= fxiff(x) > e} = {xmrx)> ek U
{X:f(){) < - c}
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and this implies that Jxsf(x) > ¢} is locally measur able.

Thus, £2 gatisfies the conditions of Theorem 2.2 and 1s

P

thercfore a measurgble function. Similerly, g” is a measurable

Tuncetion and

fg = (f+g)2 '_(_f-g)g
4

is o measurable function by Theorems 2+6 and 247+

DEFIRTTION £.11. A measure space 1s a triple (X, o, M)

where (X,§ } is o measurable spsce and ;i is g measure

defined on P .

DEFINITION 2.12. 4 megsure sbace is finite or o -finite

1f the corresponding meaSUIwa}Ljs finite or o -Tinite.

DEFINITION 2.13. If -{Eh% 1s ¢ sequence of scts, the

1imit supcrior of the sequence is the set of gll points

x such that x G Ej for infinitely many n. In other

words, lim sup B, = N U E,. The limit inferior
. n>lk>n

of the sequence is the sct of points X fbr which there

existe an index n such that x 6’5%, for 211 k 2 n.

Symbolically, lim inf B, = U n = .
‘ n>1l kz2n

REMARK 2,14. IFf {En} is n sequence of measurable sets,
then lim sup En and lim inf En are slso feasurazble.

THECREM 2.15. (Arz%la-Young). ir {En} is a seguence
of megsurable sets in & finlte measure space (X, 9, M)
with (B ) 2 ¢ for every n, wherc € 1s en arbltrary

positive number, then }L(lim sup En) > &
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Proof. Let B = lim sup B, and define T, = U E.
ko>n
Now FanE. Since U 1s a finite measure, }L(En)~bﬁi(E). But
F,, DE, and this yields [,L(Fn) > ,ll(En) > € for gll 1t . Hence
H(E) = inf WL(F) > £ .

3., TYPES OF COWVELRGENCE,

- DEFINITION 2.1. A sequencs gfn} of real-valued func-

tions defined on a measure space ‘X, P, M) converges

almost everywhere to the real-valued function f£(x)

if there exists a null set § such that x&¢ implies
that £ (x) converges to f(x). We use the abbrevia-

tion a.e. for falmost everywhere',

DEFINITION 3.2. A function f(x) defined on (X,é},}k) is

essentiglly bounded if {£| ¢ M a.¢., where M is ¢ positivs

constant.
DEFINITION 2,3. A sequence { fn}- of real-velued func-
tions is fundamental almost everywhere if there exists

s null set ¢ such thet )t&d) impljes.{fn% is a Cauchy

sequence ,
PROPFRTTES 3. 4.
(1) 1¢ {f_t —> f a.e., then £ is fundamental a.e.
(11) 1f {fb > £ ace..{f }-> g a.c., then f=¢ a.c.
(131) If {fnﬁ ~» f a.e. and g is a real-valued function

such thgt =g a.e then {f}é —» g a.€,

'
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(1v) If 45§ —>f ace., dg.} 1is a sequence of real-
velued functions such that £, = g, a.e, for
each n, then{gng—yf a.el

(v) If {f‘n%——as f ase., 8,4 ~>8 a.e., ¢ 1is a real
ndmber and 4 X, then | C
Cfn _”> Cf SeE

fn-i-gn._). fHe ae6.

‘fn| — If! B+€, -

t,.Ug, = fUg a.e,. and f g > fNeg e
£t a4 f =1

n B+Ee an n'? S46Ce

%Afnexj‘,f O.C -

DEFINITICN 3.5. Let {f | and f be measurable functions

defined on a finite measure space (X, 9 ,MH). f _converges
to £ in measure if, for each &> 0, U ({x:lfn(x) -
£(x)] > €}) 0 as n-»o . Briefly, {fn%-—‘s-f in@ .

'DEFINITION 3,6, A secquence -{fnf of measurable functions

defined on a finite measure space (J{,g, M) is fundamental

in measure i€, for cach € > 0, M ({x:|f(x)-fp(x) {2 )30
es n—> . Briefly, {f ¢ is fundemental in (.

THEOREM 2.7. Let {f ¢ and f be measursble functions

defined on a finite measure space (X, 9,M). Suppose

§€,} converges to £ a.e. Then, for each €> 0,

MY xale () - 2(x)] 2€F) >0 as n >
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Proof, Let B = -{k:lfn(x) -fx)f 2 €} . Mssume
that U(E,) 7&9 0 as n‘:}a);'-Then, there exists ©> 0 and
a subsequence D{Engg of E , such that [I(Enk) 255 for all k.

-Define T = lim sup E'k. Since H is fiﬁite; by Theérem 2,15,
H(E) > 5, Suppose T 1s not a null setf Since f ->1 a.e.,
1t is possible to find at least one point xE€E such that
£, (x) ~> f£(x). But, Ifnk(x) - f{x)| > €, for infinitely many
K, by the definition of T and this contradicts the fact that
£f.lx) —» f(x) for xGE, Thus; /L(En) must converge to O

as n >0 ,

THEOREM 3.8, If {fn} converges to £ in Qﬂb ’, then {fn%

is fundzmentel in Gﬁp B

Proof, Given €> 0, define Zo o= foxe

£,(x) - £, €8,
B, = Lxelr ()ar0)] > G b and B = §xelr, (x)-£0x)] 2 €40,
Then

.G - £ GOL < [e,(x) - 2] + 15,60 - £,
which implics that B B UR. Thus, (B ) < B
(B ) ~> 0 as myn —> @ . This shows that {f } is funda-
mental in measure.
EJ{ERCISE 3.8,
(1) If {fni is fundamental in CED , there exists a

measursble function f such that {fn3-~%pf in E&D .
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(i1) IF -{fnf— i in@ and ffn} - g in@ , then
f=g =z.c.
(111) If {f } —>£ in (W and g 1s a megsurable
function such that f=g s.e6., then {fni- —>»g in @
(iv) If -ifn§ —, f in@ and %gnf is a sequence of
measur eble functions such that £ =g  =.e.,
then g ¢ —> f in G ,
Lo 3,10, If {f } converges to £ in (W and
£, > 0 a.c., then 2 0 a.c.
Proef., f 2 O for all n, everywhere except for a set
of measure zero, By a suitable modification, f, 2 O everywhere,
Given €> 0, define & = {ng(x) g_-—&}-and En: {x:]fn(x)uf(x)|26}
By hypothesis, HU(E )-> 0, If x€5, f(x) < - & . Since
£(x) = [e(x) - £ ()] + £ (x) > £f(x) - £.(x), we conclude
that £(x) - £, (x) & -€ and hence If(x)_fn(x)l > €. Thus,
if x €E, x also belongs to E , which shows that ECH, for

all n . Therefore WU(E) = 0 and it follows thst
Jow)

§x:£(x) < 0 ¢ = Ul{X:f(x) < - %fis a null set, which proves
m=1 -

that £ > 0 a.c.

THEOREM 3,11, If {f_}, f and g are measursble functions,
{to} >t 4n @ and £ < g a.e, for all n, then

r<g a.c.
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Proof. We have g - £, % 0 a.e. and g « £~ g-f in (M .
Hence g-f > 0 z.e., by Lemms 3,10,.

COROLLARY 3.12.. If {f } , f and g are measurable,.

'{fni‘—%>I‘in (M and lfnl < lgl a.e. for all n,. then
] < legl ave..

Proof. Since If | = |f] in @, (£} < lg| a.ws. by

Theorem 32,11,
DEFINITION 2,13, A sequence {fn} of measurable fungtions

converges almost unifomly to a measurable fumection f,.

1f given &€ > 0,. o measurable set E can be found such
that M(E) < € zand {fnf-éonverges to £ unifomly on
XNEB. Briefly, {f_{->T a.u,.

THECREM 3.14.. (Egoroff), ' Let (X, S M) be a finite
messure space and let {fn} be a sequeénce of measurable
funetions converging slmost everywhere to a measurable

function f,. Then {fn} converges to f glmost unifomly.
Proof. We shall assume that ifn(x)} =>f(x) for all x,

wlithout any loss of generality =znd estzblish at the end that

this relexation is valid. For fixed m and n=1,2,..., define

mn

Ry = k}g n{ﬂxzifﬁ(x) - ) > % . Since each f).f is a

measurable function, the sets {Eﬂ% are measurable by Thecorem

m
2+3. Further, for fixed m, the seqguence {F}h} is decreasing.

. By our assumption, given any positive integer m gnd any

XEX, N (x) —> r(x) implies the existence of an index > such
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that |fk(x) ~ £(x)] < % whenever k > r, This, in turn,

‘ ' mo . U S .
implies that x §é F, and therefore x (f N Fn . Thus, for
. n=1

0]
m m

each fixed m, [} I 1is empty, which gives that },{(F Y40
" pn=l1 B n

as n ->0 , |Lbeing a finite measure, For ecach m,

m
ﬂ(l‘"n) ~>0 =sn ->0 . Hence there exists an index n(m)

_ )
es £ . _ m
such thsat H'(Fn(m)) < _Q—ﬁ‘ « Defining E —mgl Fn(m) , we have
‘ E is a measursble set and P(E) < mzle(Fn(m)) < &% 5 me:: e
| It remains to prove thst £ (x) = £(x) uriformly on

X - B. Glven €> 0, we should find an 1ndex r such thot
k> rimplies that [fi(x) - £(x)} < € for gll x& X-I, Now,

o , .
X-E = X - - N xrF - n _ N ){x:lfk(x).-f(x)!<%f

3
m=1 nm) nm) m % > n(n

i

ﬂ {xglfk(x)-f(x)l < X for all k > n(mb} .
m m

Choose m such that 1 < €, 8ince
m

X-B C x:] £y (x)-£(x)] <2 for all X 3 n(m) § .
we have £, (x)-f(x)| < € for all x €X-E, provided k > n(m).
Finally, consider the general case, where £ —>f a.¢,
Let ¢ be a null set on whose complement £ (x) —> r(x).
Definc g, = A, ¢ £, and ¢ = %x-«b f, We shall show that
gy and g are measurable. 1In generz:-ll,%AaC will be measurable
for every measurable funection £ and for every locglly measurable
set A, Assume h = X, f. Then, N(h) = PI(xA)nI\T(f):A(lN(f).

But 4 being loeglly measurable and N(f) being megsurable,




AAN(E) is mezsurable which proves that M(h) is megsurable,
Let M be g Borel set, By Theorem 2.1, f'l(M) is locally
measirable. If {0t & M, then W) = A f)”l(M) =
[:Af\f"l(M):]LJ(X-A) and 18 therefore locally measurable,
1r §0} @ M, then n7H(M) = 2 Ar-1(1) and once agsin locally
‘megsurable, Thus h satisfies the condlitions of Theorem
©,1 and is therefore a measurgble function,
Since g, and g arc of the same fomm as h,

X-0 being locglly measurable, g, and g are measurable and
gn(x) => g(x) for all x, Glven € >0, by the first part of
the proof, there exlsts a measurable set G such that

HM(G) < € and gn(x)f%>g(x) uni fomly on X-G. Defining

E = ¢ UG, we have, M(B) ¢ (0) + L{(G) < € . ©Since

%Xﬁ(bfn(xi) —%'{Xx}“(gx) unifomly for x€ %X-G and

XEE(X~¢)f\(X-G) implics ¥ € X-(OUG) = X.B, we have

fn(x) f;'f(x) uniformly on X-E.

4, INTEGRABLE STMPLE FUNCTIONS,

DEFINITICN 4,1. A rea17Valued function f defined
on s measurable spaee (X,P) is gimple if

(i) r ié measurable

(1i) the range of f 1is a finite set of rcal numbers.
The simplest example of a simple function is the

chgracteristic function of a measurable set.
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THEOREM 4,2, Let f be a real-valued function,
Then £ is simple 1f and only if there exist a
'finite sct of real numbers Cp,Cp,...,C  and a

finite number of measurdblF Qetu B oBoy ey

n
such that f = ZZ Oy A o

Proof: Suppose f is imple and let 01,02,...,Cn
bé the finite non-zero values of £, Define Ek = f'l({Ck} ).
Since  1s megsursble, f*l( {Ck} J 1s locally measurahle

and since Ekc:N(f), B, is measurable, Fvidently,
n n

= C :

r= 3 k}KEk . On the contrary, if f = k;t

;LER is measursble, C ,(Ek is measurable and thus f is

n
measurable; PFurther, f ecan take at most £ wvalues znd there.
fore f is a simple furetion.

Notice that the representation f = 2 Ck;tEk is not

unique. However, if the Ek‘s arc pairwisec disjoint and the

Ckfs are distinct, the representation becomes unique,
THEOREM 4,3, 3Ivery extended, real-valued measurable
furetion ie the limit of & sequence {fn} of simple
fune tions. In particulsr, if f > 0, then £, > 0

ahd fn mey be assumed to be increasing.

Proof. Suppose £y > 0. Then, for every x €4, define

1-1 i-1
ol ! oh
n , £(x) > n.

. n .
< f(x) < E%" ,i=1,2,...,2 %

£.(x) =
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Clearly, {fn} is an increasing sequence of non-negative

functions, which are simple, In the interval [:0, _lﬁw),'

e(x) - £ GOl < 5%— . Thus, we can choose n so that
) - £ (x)] < % as long as f(x) < © , If f(x)= ©
2 : - ?
then f (x) = @ , for each n. :
DEFINITION 4.4, A simple function f = Cy Ag
k=1 K
4

defined on a measure space (X,P , M) is sald to be

integrable, if‘}i(Ek) < o for every k for which
G, # 0. The integral of f donoted by §r(o)apx)
or {fapl 1is defined as [fap = 3 Oy MB
Obgerve that the definition of the integrai of a
simple function is independent of the mode of representation.
Briefly, ISF stends for an integrable simple func tion.,
PROFERTIES 4.5, % |
(i) If £ end g are ISF, C is & real number and A ?
is s locally measurable set, then cf, f+g, |fl,
fUg, fNe, 3{‘+, f7, X5f eand fg arve IST.
(1i) If f 1is an ISF and a,b €TR, then
j(af+bg)dFL= e Sfd}k + b fedfL .
(1i1) If f 4is an ISF and f 2 O z.e., then
§rap = o.
(iv) If £ and g =are ISF gnd f 2> g ‘a.e., then
Srapy fed b .
(v) If £ and g are ISF, then jlf+g1dug_
Stetap+ Slelap. |

(vi) If £ is an ISF, | Jrdpl < -5If]dpt .

il
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DEFTNITION 4.6. Tf f is an ISF and E is g

measur shle set, then %Ef is 2lso ISPF and the

integral of f w.r.t. E is defined as -.S‘fd,u =j;¥.Ef'd/u .
' B .

THECREM 4.7, If £ 1s an ISP, a,bETR and E 1is
a measurable set sueh thgt for x€B, a < flx) < b,
then a U(E) 5_5‘ fap < b LE).

Frogf. DNotice that the given condition implies that
& %'E < f %E < b/’ﬁE and hence on integfating and using

definition 4.6 we get the result,

DEFINITION 4.8. The indefinite integral of an ISF ¢
Is the finite valued st function W defined for every

measurable set E by WE) = § fdpu .
E

THEQOREM 4.9, If £ is gn ISF which is nonnegative a.e.,

then its indefinite integral is monotone.

broof. If SCR, X £ <X £ Theratore, (% raug

' S)( fdft which implies that S
F

rapg Srap . Thus,
o i3

WE) ¢ V(F), which proves that Vis monotone.

DEFIFITION 4.10, A finite valued set function
defined on the class of all measurable sets is said

to be absolutely continuous if, for every € > 0, there

exists O> 0 such that | V(E)| < € for every
measurable set E for which M(E) < &,
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THEOREM 4.11. The indefinite integral of an ISF 1s

Iabsolutely continuous.

Proof; ©Suppose C .is a positive number greater than

a1l the possible walues of |f]y Then | Jrapml < 3 Irlapuc
E . B

¢ § am= ¢ fE) which implies that | YW(E)| < © (E), Thus,
B

U(E) < o implies |V(E)| < ¢ S(E) for every measurable set E,

THEOREM 4;12. The indefinite integral of an ISF is
count agbly additive,

Proof. If f is the characteristie funetion of a
measursble set E of finife measure, then the assertion.of the
theorem is a consequence of fhe countable additivity of the
measure (L, Bvery simple function being a finite lineagr

combination of eharacteristic funetions, the countable
additivity of ®ToOllows in the ¢ase of an arbltrary integrable

simple function,
DEFINITION 4,13, The distance between the ISF T and
the ISF g 1s given by §(f,g) = fif<glap .

DEFINITICN 4.14. A sequence {fn} of ISF is fundemental

in the mean or mean fundamental if ?(fmffn)'_*'o as

m,n > 00 .
THEOREM 4.15. A-mean fundemental sequence {f % of ISF

is fundamental in megsure,




Y

Proof, Glven €> 0, define B = §x=1_fm(x) (i} 2 €

Then Q(f,f ) =jffm -t ldpy J |£,~f lap 2 &S dp =g w(E,)

Bon Enm

Since {fnf is meen fundamental, @(f ,f )—> 0 as mn — o,
which implies that M(E,) —> 0 as myn —>® , Therefore
£ % is fundamental in (M,

THEOREM 4,16, If {fn}-is a mean fundamental sequence

of ISF and if the indefinite integral of fn is

V., (n=1,2,....) then V(E) = lém‘Lg(E) exists for

evVEDY measuraﬁle set E and the set funection ¥V is finite

vgiued and countably additive,
Proof, Considering’l%(E) -})n(E), we find that since

{fn} 1s mean fundamental,
|V (B) - (B)] = '{; C £ 0-5,60Japl <
\]ngfm-fn]d H'—>O' as m,n — 00,

fram which the uniformity, existence and finiteness of the
1imit are clegr. Using the finite additivity of limits, we
‘conclude thet VY ig finitely additive. To show that U is
countably additive, consider a disjoint sequence {En} of
measurable sets, whose union is E. Then, for every pair of

positive integers n and j,
3 d
| V(E) - ;z_lv(Ei)i < ERE - (B + [0 (8) - Z ) (8)]
= i=1
2 ) - 5 )]
+ v () « = V(g
: i=1 n i=1 *
<:;EJ-|1£(E) fﬁilh(Ei)| for suffieiently

121 large n
< 3% for sufficiently large n and j,



7L

J 0
which proves that V (E) = lim ZI”LJ(Ei) = 2 Y(B)). Thus 2
J i= 1=1 :

1s countably additive,
DEFINITION 4,17, If §V,}is a sequence of Tinite
valued set functiocns defined on the class of all
measurable sets of a measurable space (X, D), then

the terms of the sequence are unifomly absolutdy

continuous 1f, given &> 0, there exists &> ¢ such
that I'Dn(E)I < £ for every measurable set E for

which'[L(E) <& and for every positive integer n.
THEOREM 4,18, If ﬁfnf is a mean fundamental sequenge
of ISF and 1f the indefinite integral of £ ig

VY, (n=1,2,..) then_the set functions V., oare

uni fermly absolutely continuous.

Proof., Let €> 0 and 1ét n_ be g positive integer

(8]
such that for myn > no, we have § 1,1 ldu< €4 et & be

a positive number sueh that SIfn!dfx < @42, n=1,2,...,n
B

b o’
for every measurable set E for which H(BE) < &. 1If
n<ng, [V (B)] = ISEfnd},LI < é!fn!dp <E,. If ny n,

IPl® < [ty vty e <fin -ty laps Sin, lapc £48 ¢ .

Thus, the set funetions 1)n are uriformly sbsolutely econtinuous.

9. INTEGRARLTE FUNCTICNS.

Let M = M(X,9) be the class of all measurable functions
*
from X -»TR and 1et M' = M+(X,§S) be the elass of g1l
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v

' S
non-negative measurable functione from X > "TK .

DEFINITION 5,1, Let f€M'. Then f 1s integrable
w.r.t.n 1f there exists a sequence §fn} of ISF
such that 0 ¢ £, Nf and Jf dpt is finite, The

intepgrsl of  w.r.t, ‘u. is defined by 5fd#= supgi‘nd[&k.
n

DEFINITION 5,2, TIf E 4s g megsurable Set, then
fXE6M+ and the integrﬂl'ofv f over E w.r.t.Ho
15 defined as Jrap = {£ X ap.

B B

+ “a
LEMMS 5.3. (i) If f,2 M and f ¢ g, then [fap

< 5gd{l . (11) If E,F are measurable sets and
E&F, then [rap < Jrap .
B r

Proofs Choose two simple functions ¢ and |/ such
that 0 ¢ < T <Y< og. Sinece @.’Hﬁ are simple functions
and 0 Wy fbap< fYap vhich implies that sup {¢dft <

- : ' +
sup j’tp dM . This gives ffd}lg_ fgdp. , as f,g M.

To prove (11), sinee BEF, £ X < £ % . Therefore,

E B

jf%Ed]u g\yf deH by (i). Thus, jfdug éfdp{ .

B
THEOREM 5.4, (Monotonec Convergence Theorem), If ffn}
15 g monotone increasing sequence of functions belonging

to M' and 1f 1.} converges to £, then (rdp= lim {£ dft.
im }1,

Proof. Since £ is the limit of a sequence of measurable

functions, £ is also measurable. As £, < Ty £ 1, 1t

follows that (£ dph < §r ;a0 ¢ [rap by Lemma 5.3, for
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all n, Therefore
Lin Jeap < frap. (5.1)
To establish the opposite inequality, let ¢ be a real number

such that 0 < €< 1 and let § be a simple function with

0O Let A= fx€x £,(x)3 e O(x) § . WNotice that

o
Ay & An+1 and X = LiJAn. Now
§n0®dp _<_A5 £aft < ffnd;u (5.2)
T

and

$afk = lim S‘nbd .
Joap = am { oo
n )
Taking limits as n-—=> o in (6.2) we get

¢.11m § bapg 1im fr ap
B ¢! An n

which implies that €, Joap < Lin J £ d] . This result holds
for any simple function ¢ satisfying thec condition 0 < ¢ < f.
Using the fact that C< 1, C [ ap < fdap < Lin {r ap

and s$p f¢d#& < lim g f dM which shows that
n

frap ¢ aam [ £ ap (5.3)
n n
Combining (5.1) and (5.3) we have ffdﬁl = lim jfndﬂh .
LEMIA 5.5, (Fatou). If {fn} is a sequence of functions

+
belonging to M , then

{iim ing £ )dfA < m ing ffndpc .
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Proof, Let g = inf {f,, f

ppreee ¢ SO that when

m<n, g < fn. Then {gm} is an incressing sequence and

jgmafi < jfndlL for m<n by Lemma 5,3, so that ngdp_g
lim inf jfnd}A . Since {gm} is inereasing and converges

to lim inf fn’ by Theorem 5.4, we have
Stlim inf fo)dh = 1im ‘fgmﬂ}L < 1lim inf ffndpt .

CORCLLARY 5.6. Suppose :f€bﬁl Then f£(x) = 0 a.e¢,
1f end only i [rap = o.

T,

Proof, Suppose Sfd;L: 0. Let E, = % x s Xef(x) > % }.
1 v oo ( 1 ( :
Then f> 2 . %En. Now O = Sfd|u._>_ = 5XEndL£?_% H(E ) > 0

implies [M(E,) 0. Hence, writing §x€ X:f(x) > 0§ = =

!
@]

Q0 @ o0 20

&JEn’ we have M ( g B.) < %f }i(En)r= 0. Thus MU( %?En) =
which establishes that f(x) = 0 a.e, Conversely, given
£(x) = 0 a.e., define E = § x €X:6(x) > 0 } . Then MLE)=0,

sinee f(x) = 0 a,e. Let £, = nA . Since f < lim infof,
using Lemna 5.5, [fdJl < [lim inf £,dft < 1m inf (£ i .
Thus 5fdpg 1im inf Snﬁ’, gl = lim inf [n., (B)]] = o.
o
+
Thus, as fEM , 0 ¢ Jfdpg © which implies that frdp = o,

REMARK 5,7, The Monotone Convergence theorem holds 1if

convergence 1s replaced by eonvergence a.c.

THEOREM 6.8, If ¢ < £ < g, where g is integrable and

f is measurablé, then £ 1s zlso integreble and

Jrapw < feap .
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_E;jg_g_f_. Let {gnf be a ‘scguence of IST such thaf
0 ¢ gnTg anhd j’gnd;vL is bgnunded. Let \fgndpm M<o o,
Let f, be a sequence of simple functions such that
0 < fnﬂ‘ f.  We have to prove that ffnd);\ is l?ounded; Let

h, = I ﬂgn. Then h, 1s a simple function and 0 < hy < g .

n

Further, N(hn) < N(gn). For an integrable simple function

F = %lck%gkﬂ P‘(Ek) < ® for every k for which ¢, # 0 by
4,4, This is equivelent to the condition /LL(N(F)) <00,
Thus, [L(N(kn)) < Mg, )) which 1s bounded by virtue of the
fact that g +1s integrable and {gnf is a sequence of simple

functions converging to g, whose integrals are bounded,

Therefore h, 1s an ISF, Also, fh-ndM < jgndM< M for

all n. Since 0 <€ hn = fn N gn' whi ch converg_es'to f g = T,
we find that f 1is integrable and {fdp = sup fnpd <
sup fepdj = fedf .
CONCLL ARY 5._9: If £> 0 is integrable and g > 0 is
measureble, then f (g 4s integrable.
Proof. 0 fflg ¢ f and f{lg 1is measurable. Using
Theorem 5.85 rflg 18 integrable,
THEOREM 5.10. If £ > 0 is integrable, then for each
€> 0, the set {x:f(x) > £}has finite measure, In

particular, M(f) is the union of & sequence of measurable

sets of finlte messure,
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Proof., Let ffnf be & sequence of ISF § and let
andp\ < M< o for sll n. Define E‘.n = {x:f (x) >€}and

E = ix{i"(x) > _Ef‘ . Then En’f‘E and hence ,L((En)’fp(E)
For each n, 8%E <,Y,;; £, < f, and hence SIU,(E ) <5f dj <

f£a 0 ubten 1s boundea for all n. Thus, U(E,) <M/€ for all
n, which implies that M(E) is f'ini te. In particular, ¥(f) =
U {X f{x) > l} end thus N(f) is the union of a sequence of

measurable sets of finite meagsure,

NOTATION 5.11. Let (P (}u,) be the elass of all functions

belonging to M+ and which are integ rakble,

DEFINITICN 5.12. A measurgble function f belonging to

M is 1ntegzraple w,r, k. M 1f there exist funetions

g.,nh € 0? such thst f=g-h, The integrsl of £ w,r.t.
ftis defined by frap = [gap- fnap

DEFINITION 5.18, If B 1s a measurable set, f?(,E

belongs to M and the integrsl of f over & w,r.t, (u is

defined by (fap = {2 rap ,
B Iy

NOTATION 5,14, ILet %i(ju)be the class of g1l functions
belonging to M and whieh are integrable, Then
2o Piow.

LEMMA 5,15, Ir £ ¢ BCi,

£2 0, then f G_G)i. Moreover, ¥
if g is measurable with g < f, then gel)ﬁi

frang frap
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Proof, The first part is vobvious from the definition
of @#‘. Using Theorem 5,8, since ¥ é?dﬁi, g 1s measurable
A _
and g < f, g & F and Sgdﬁig Sfd}k . To prove integrability

for the class'&?i, we hgve only to extend g to that larger

class.
LEMMA 65,16, If f,g € 93/1, G EMR and 4 1s a locally
measurable set, then | ¥
(1) er € ¥4 ona fetdp = ¢ {tapm .
(11) t+gg pt, and [eregdapm = frap+ eapm
(111) % r € xl.

Proof, The results follow €asily from the corresponding
, T .
ones in the ease of funetions belonging to Oji and an extension

is immediate,

THEOREM 6,17, If f 1is measurable, then the following

are equivalent, i
(W rexl
(11) lefe 2
(111) £, ¢ 51 ana | Sram] ¢ f]fldp .
Proof. (i) =3> (ii). 8inee fe;ei, f = g.h, g,h € (Pi
and sine¢ f 1s measurable, [f| is also measursble, Now
0% If] € g+h and thus Ifléléf1 by Lemma 5,15, To prove
that (i1) => (iii), since |f| ec;(:’i and 0 ¢ < |f],

- - + -
0< £ < I, we have £, ¢ cttas 1 . §  are measurable
by Lemmga 5,15, Turtner,

F Srapu = | Setarapl ¢ ) frtaud + l_(f'd;xl gijrdp-L
fff'dp: flfld/u .
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_ _ 7 . . |

To show that (1ii) = (1), let £ , £ & 581'.‘ Then, there
' 4 Coat S

exist functions, glfgg‘hl’ ?Eie;@> such that f = gl-gg’

) f

f = h,-h . Therefore f =
S1 et

(gl-gz) -.(hl-hg),-which jmplies that £ & gﬁi .

+ - -
~f can be sxpressed as

THEOREM 5,18. (Lebesgue Dominated Convergence Theorem),

If {fn} - gﬁisuch thet {fn} converges a.c. to a
measurable function f and 1if |fn| < g for all n,

where g € L3, then £ € 2% and §ram = 1im jfnd/u .
n

Proof. Without loss of generality, '{fn} may be assumed
. to converge to T everywhere by suitably defining thése
functions on a set of measure zero, By Lemma 5,15, £ € ;ﬁd .
Notice that g+fn 2 0, g_fn 2 0. Mn application of Lemmgs 5.16
and 6.5 yields
Jrapt fedp= f(ergdape [ 1im inf (gre)a < fed pt
f(lim inf £ )dm
< feap+ 1imant {rap .
Thus, [TdA, < lim inf ffnd)u . To obtain the opposite
inequality, using the same lemmas,
S(gu_f)d),t < flim inf (g-_fn)'d/u < Sgd))\ -
lim sup 5 fnd)k
< \fgd}L- lim sup ‘ffnd}k
wmich_gives lde}L > 1lim sup jkfnd}L . Thus

il

feap- frau

Jfap < 1im ine (a0 < 11m sup and},t < frap

which implies thet (fapu = lim {ran .
n
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COROLLARY £,19. (Lebesdue Bounded Convergence . Theorem).

If {fn} G:fisuch that {fni CONVETrges a.c. to a

‘measurable function f gand if |fn| < M for all n,

ot
where M is a positive constant, then f € 3 ang
frap = 1im \gfnqp, .

Proof, The proof is readily availsble by g direct

applicgtion of Theorem 5,18,

6, SIGNED MEASURES AND DECCMPOSITICKNS,

DEFINITION 6,1, A signed megsure defined on the class
of all measurable sets of a measurable space (X,gs) is
an extended, real-valued, countably additive set func-
tion /A such that }L(¢) = 0 and [t assumes st most

only one of the values + & and - @ ,

DEFINITION 6.2. A signed measure Wis finlte, G -finite,

totally finite or totzlly < -finite if the corresponding

conditiong in the cese of a measure are satisfied by I
with the restriction that ' [L(E)' 1s replaced by
| ;ﬁ(E)l, in definition 1.7,

THEOREM 6.5. 1If &, F are measursble sets with BCF
and 1f [t is o signed measure with | U(F)| < o
PIGIREE

then

b

Proof. Since ¥ = (F-E)UE, (A(F) = U(F-B) + [£(E) by @
virtue of the fact that F-E snd B gre disjoint. If one of }L(E) ]
: |

or [L(F—W) is infinite and the other 1s finite, then /A(F):(U
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which contradicts the fact that U,L(FH < @ . If both ((E)
and M (F-E) are infinite, since M can take at most only one
of the'values + @ and - 00 , their sum is infinite which
again gives a contradiction.‘ Therefore, the only possibility
1s that both M(E) and ML (F-E) are finite, Thus | M(E)| < o
whenever ECF and | W(F)| < @ , which shows that every

measurable subset of a set F of finitc signed measure hss finite

signed megsure,

THEOREM 6.4, If {En} is a sequence of disjoint measurshble

o0
sets with | L ( | B )l < @ , then the series
@ 1
%Ll }L(En)[ is convergent.

Proof. Construct :

+ {En 1f U(E)Y > 0

| 0 11 ,u(En)

- (B 1f (B <O
éo if  M(E,) > o.

0 4 © + ®© . s -
T%qen. pC Li) E) = %ﬁ(En) and M (Ug ) = %/“(E ). Suppose
m

0

A

o) 4 -
S (E ; (x5 5
1 /L t ) 1s divergent, Since }L(En) > 0, %, (E) =+w@ .

- . Q -
But M(E,) < O which implies that § p{E%) cannot be divergent,
i

~

sinece p can take at most only one of the values + @ .and - .
o0 o
+ -
Thus, only one of the series Eﬁ}l(En), 2 M(E,) can be divergent.
_ < |

Q) + o -
Suppose . EL%}(EH) is divergent, Since %é LL(En) is convergent

1 0 0 4 +
to -M sey, where M > ¢ 5 (BE) > 5 M(E) - M which implies
_ g M T ﬁl n
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: 20
thet  Z (E) —> + 20 , Therefore, | I UE ) o= |‘Zu(E )}
i.‘

converges to + @ which contradicts the hypothesls. Thue,
¥5)

both the series :LfA(E ) and E:FK*‘) should be convergent
and therefore 2_[ P(‘? YYo= E’ fL(E Yy + }_IL((E } is also
convergent,

DEFINITIOMN 6,5, A complex measure on the class of all

measurable sets of a measursble space (X, $) is a set

funetion fi such that, for every measurable set I,
MCEB) = U(E) + 1 (1(EB), where [1g, {,are signed

megasures,

DEFINITION 6,6, Let H,be a signed measure, §H set E

is said to be positive w.r.t. ﬁL if for every megsurable
set ¥, B AT 1is measurable and WH(E(F) > 0. A set E

i1s negative w.r.t. [ 1if for every measurable set F,

ENF is measurable and }L(EfTF) < 0.
~ HABN DECOMPOSITION 6,7. If {{1is a signed meosure, there
exist two disjoint sets & and B whose union is ¥, such

that 4 1s positive and B is negative w.r,t.}LJ ANB is
called the Hahn décomposition of X%,

REMARK 6.8. A ﬁahn decomposition of X is not unique

snd therefore necessitates & modification, Let = AlU By,
= AELng be two Hahn decompositions of X, We shall

prove that, for every measurable set B, M(BAA) =

|U~ (B ﬂﬂz) and M(EnBl) = H(E ﬂBz), Consider E N (Al..‘;dz),
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This 1s eclearly contained in EN A . Since 4y 1s
positive w.ret, )L, M(EMAy) 2 0 and thus
MLENC2-850 T 2 0. Mgein, B (M =8,) CENBy and
since B2 is negative wyr,t., M, }LEE NCHy - !‘52)]< 0.
Combining these two results, we find that

p_E ﬂ(!‘sl-—fsz)j = 0, By symmetry,

WEENG,-4) ] = 0. Thus MCEOAy) =
pl= nagu ho) J= IME N4,), sinee

pCE A Ys) T = uWEEN( -2 )T + pLE n(fsa:.Al)j +

.p[E n(Al msg-) ]

DEFINITION 6,9. If E 1is g measurable set, the upper
variation of {4 is defined as }I’"(E) = M(Ef}d) and the

\ ~ -4 < N T = - "
101.’61\” varigtion of# ie M(E) p.( f13). The set
function I}J.I defined by |M[(E) = +(D) (U (BE) 1is

celled the total variation of [ -

JORDAN DECOMFOSITION 6,10, The upper, lower and total
varlations of a slgned measure [t being measures, the

Jordan decomposition of M is given by WMU(E) = }ﬂtE)

J(B), for every measurable set E. If L 1is totally

finite or totally O -finite, ,u and ,u are also totally

finite or totaliy G -finlte gnd at least one of the

meagsures }.L+ and ;L— is always finite.
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DEFINITION 6,11, If (X,$) 1s a measurable space
- and B,V are signed measures defined on @ s Vis

. sald to be gbsolutely eontinuous w.ro b, A, written

symbolically as Y < <M , 1f W(E) = 0 for every’
measurable set E for which |M] (B) = 0,

THEOREM 6.12. 1If 4,V are signed measureis, then the
following nre equivalent, |
RELA RN
C(11) V<< pend DT <
(i1) ol << | uf,

Progf. To prove fhel (1) <ax {44}, te# B be g
mopewreble set and let U,V be signed megsurss with ‘ll-fw*
Then Y (E) = 0 whenever | L] €B) = 0. ILet X = AUB be a |
Hahn decomposition w.r.t, (0, Now 0 < ] (Ens) [ I(E)=0
and 0 ¢ |[M] (ENB) ¢ [U] (B) < 0 “and sinee ENA snd
ENB arc mcasurable, this implics that Y (ENA) = ¥HE) = o
and ~V{(ENB) = Y7 (E) = 0 wheneuver I § (E) = 0,

The faets (11) == (11i) end (i11) implies (1) follow
from the Irelations v ] (B) = v*(E) + Yy (E) and 0 < | w(E)]
< v (B respectively,

DEFINITION 6.13. If (X,$) is a measurable space and
M.V are signed measures defined on S then v 1s

sald to be mutually singular W.r.t. M 5 symbolically

VLMo, if there exist two disjoint sets A and B sush

that for every measurable set E, ANB and BAE are
megsureble and | MI(ANE) = |V [(4NE) = O,
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NOTATION 6i14. . We say that f = g[y] 1r
{ xef(x) £ g(x) } 15 a measurable set of measure

26 TO woer.t, !KL|.

THEOREM 6.15 (RadoneFNikodym). If (X,S,W) is a

totally 0‘-f1nite measure space and 1f v is g
g -finite signed measure defined on § which is
absolutely continuous w.r.t..p4.then there exists g

finite-valued megsurgble funetion _defined on X

such that V(E) = j fd}i , for every measurable set E,

For a proof, see P.R,Halmos, "Measure Theory',

THEOREM 6,16. (Lebésgdue Decomposition Theorem). If
(X,P ) is a measurable space and U» are totally ‘.

O -finite, signed measures on  , ihere'exist two
uniguely determined totally 0“-finite signed megsures

Y, and V; whose sum 1s p , sugch that Vol M and ¥, < <UL

2;992 Since X is a countable digjoint union of
measurable sets on whieh both Moand Y gre finite, there is
no loess of generzlity in assuming that M and YV are finite,
Since V;(1=0,1) will be absolutely ¢ontinuous or singular
w.r,t. according as it 1is absolﬁtely continuous or singular
wyret. ||, we may rssume that AL is a measure., As W ond v
can be treated seperately, we may also assume that M ig a
megsure, Observing thet Y < < V4 M, there exists o measurghle

funetion £ such that VY(4) = j fd}l + j‘fdll for every
_ L , ;
measurable set E, by Theorem 6,156, Since 0 < V(E) < fL(E)+?)(E),
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we have 0¢ £<1 [p+3] and therefore 0 £ 1 (],
using 6.14, Defining 4 = {x:‘“(x) =1} and B =x:0 ¢ Flx)<1y,
we have V(4) = jd)i.+ dez MDY+ V() end therefore,

A A
since VM is finite, WU(A)= 0. If (E) = p(EN A) and

———

UL(E) = V(EfIB) for every measurable set E, then clsarly
VoLl . To prove thet Uy < <f , if U(E) = o,

fdfp = V(ENB) = 5 fd¥Y and therefore S (1-r)avV= o,
ENB ENB ENB

Since 1-f > 0[], it follows that Vi(E) = w(ENB) = 0,
Thus, the existence of VY, and Uy has been established.. To
prove the uniqueness, 1if ’1):.’1)9-;-7)1. and P - 'po'-l,-vi -are two
Lebesque decompositions of , fhen vo.:v,:,’ =“V:f/_~v1 Since

Yy — 'vo’ is singular and ‘2)5_-—'))1 is absolutely continuous

w.r.t. /JWG have 'Do:.'l)c:’ vizyi .

7. PRODUCT MEASURES AKD PRODUCT SPACES .

DEFINITION 7.1. If X and Y are any two sets,
not necessarily subsets of the sgme space, the

Cartesian product of the two sets 1s the set of gl1

ordered pai res (x,v), where x€&X and VEY =and is

denoted by X x Y,

DEFINITION 7.2, If ACX, BCY, then E= 4 x B is
a subset of X x Y and is called & rectangle, The
component sets A and B gre referred to as the sldes of

the rectangle.
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REMARKS 7,3,

(1) & rectangle is empty 1if and only if one of .
its sides is empty.

(11) If 8 = 4 x By and By = A, x B, are
nonepty rectansles, then ElCEg 1f and
only 1if Alc: A2 and BJ_CBQ'

(1i1) If By znd E. are nonempty rectangles and

1 z
Eq = E2 , then M = A2 and Bl = B2.

EXERCISE 7.4, If Rqand R, =re rings of subsets of
X end ¥ respectively, then the class (] of all finite,

P s o YT PR
- e e b, - —

disjoint unions of rectangles of the form A x B,

where A €R, and B 6‘6.,1 is also g ring.
1 o

In order to ¢stablish that R is 2 ring, it should

be proved that 0?, is closed under finitc unions and set-

theoretic differences, Tt is obv1ouslj closed under finite
unions of disjoint sets. We shall prove that it is closed
under the formation of differences, If El = M ox Bl,
By = 4y x B, ond (x,y)€ B, Fy, then XEAlﬂA2 and

v €B,1) B,y 50 that El.ﬂEzc(AlnEg) x (B1(\ B,)e On the i
other hend, by 7.3 (i1), (A ﬂAg) x (ByN Bg)(:E1 and
(Alnisz) X (BlﬂBz)C‘Eg and therefore (ApN Ag) x (ByNB,)
CE N Ez-. The two inclusions combine to ghow that |

B 0By = (0 N1ay) x (B;NB,). But, MNBERY , BINBLR,

since '021, @Q are rings. Thus, it follows that R is closed ;
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under the formation of finite intersections, Now,

(hy % By) - (hg x Bp) = [ZCay Nay) x (By-By) U [Xay-,)xBy ]
' n

: m n m _ !
and sinee, U F_ - |J B, = U () (Fr-Bp) and R is closed
r=1 r=1 r=1 r=1

under finite -intersections 1t follows that (R is closed under
differences of elements belonging to. R . Further, if
MMa e R, MU M, = (My-Mg) U (Mg-by ) U (9N M,), a disjoint
union of members of K . Thus g-finite union of members of
R belongs to ® . Hence R 1s g ring.
DEFINITION 7.5. If X,Y are any two sets ond 77
are two ¢7-rings of subsets of X and ¥ respectively,

then %X‘j_is the @ -ring of subsets of X x Y generated

by the class of all sets of the fomm A x B, where
bES,BET,

DEFINITION 7.6, If (X,9) and (Y, ) are mecasurable
spaces, then (X x ¥, $x Y ) 1s » measurable space

called the Cartesilan product of the two given measursble

8 €5. A rectangle A x B in this Cartesian product

1s a measurable rectangle 1f * € Sand B € 7,

DEFINITION 7.7, The class of megsurable sets in the

Cartesian product of two measurabls spaces (%,%) end
(Y, 3 ) is the O"-ring generated by the elass of a1l

Measurable rectangles.

DEFINITION 7.8. Let (X,P) and (Y,<) be measurable
Spaces and let (X x Y, $xT) be their Cartesian product.
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If B 1s any subset of X x ¥ and x 1s any point

of X, the set E_ = {yg(x,y)EIﬂj is called gn X-section

of B_or g section of B determined by x. Similarly,

for any point y€Y, the set E, = fx:(x,y) €8} is

called g Y-section of E or a sectlon of 7 determined by y.

REMARK 7.9. 4 section of & set in the product space
1s not a set in that space, but a subset of one of the

components.,

DEFINITION 7,10, If f is eny function defined on E

and x€X, the function fx defined on the secetion

By by £,{y) = £f(x,y) is called an X-section of f or

g.section of f determined by x. Dually, the function

fy, defined -on the section Ey determined by any

vEY and given by fy(x) = f(x,y) is called g Y-section

of £ or a section of f determined by v.

EXERCISE 7.11. BEvery section of g measurable set is

measurable,

In other words, we have to prove that if B € Sx7T,

then E, € J and Eye $ , for every x€X, yEY. PFix

x€X and define g.Y =X x Y by gly) = (x,¥). Then,
g'l(F) = Fx’ for a1l TFcX x Y; The class'g = { FCX x Y.
g'l(F)E ‘J'E 1s clearly a ¢-ring, If AE$S and B €7
then g'l(A‘x B) = 1 or ¢. In elther case, g=(n x B) £ .

Thus, EZ is a o -ring containing every messurable rectangle,
and therefore PXYCE. In particular, B € g, that is,
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4

By, € O .. simllarly, every Y-sectlion of g measurable set

is megsurable.

'EXERCISE 7.12. Eve ry section of g measurable function

is a"ri‘ieasurable function.”

Let | £ be a meagsurable lfun_c'tion defined Aon X x X aﬁd.
let 'fx “be an X-secf:‘.on of £, Now fy will be a measurable
function 1€ N(f}‘c) ﬂ,f};l(M) is a measurable set, for every

Borel set M, Obvicﬁ‘usly N(fx) = (I\T(f))X and if M 1is any Borel

-1 : -
D = {yin(ent = §yeranEn} = fyiy e etang
! - -]
- (f (M:))Xo |
The result is now 'immed‘iate on using 7.11 znd the fact that f

1s a measurable function. In s similar menner, every Y.section

of £ 1s also a measurable function,

DEFINITION 7,13, If E & 5;,("3’, the functlons
i‘E: X -—‘:a»']R’* and gE:Y — ']R* are defiped by
fFg(x) = V(B) and g (y) = HCE ).

‘If the component spaces of a Cartesian product are measure

spaces, we have the notion of a productimeasure.

DEFINITION 7.14, If (X, $,[t) and (¥, J, 1) are finite
measure spaces, there exists s uni'due megsure A on Sx’:f

such that >»(A4 x B) = ,u(A) V(B) for every measurable

rectangle A x B and this is called the product of /Aandv .
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REMARK 7,16. 7N\ 1s finite and A(E) = ffEd)U- = ngdv

for every E € Sx Y . . I

§ DEFINITION 7,16, If (X,$.p) and (¥, ,V) are measure
i spaces, their Cartesian product is the measure space

(X xY, xF, prxu),

We shall now indicate the relations between integrals

on a product space gnd integrals on the component spaces. ne

DEFINITION 7,17, Let (X, D, M) and (¥,7, ) be
o--finite measure spaces and let )\ be the product i
measure fAxvon P X T . If a function h on X x Y i
has its integral defined, then the integral 1s denoted
by S h(x,y) d X (x,y) or fh(x,y) a( xv) (x,y) and

is called the double integral of h, If hX is such that

J 0 (y)av (y) = £(x) 15 defined ana 3f  frajl is also i
defined, then |

Jrap = [fnGy)av (mapx) = faquix) Snlx,yav (y).
Similarly, if hy s such that J‘hy(x)d,u(x) = g(y) is
defined and if [gd¥ 1is also defined, then

Jeaw = [fntopapeoavy) = fauy) (nlx,yap).

The interrals f{ hdpldv  and  ff hdVdu  are called the

itergted integrsls of h,

LEMMp 7.18. A measurable subset E of X x Y has meagsure
zero if and only 1f almost every X-section (or almost every 1{

Y-section) has measure zero, - ' ﬁ{
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Proof. By remark 7.15, '
NE) = Sedap = fedv .

'.If.}\(E) = 0, the two integrals are in particular finite and
henece by Corollary 5.6 their non-negativé integrands must
vanish a.¢. On the other hand, 1f elther of the integrands
vanishes a.c., %&E)'z 0.

LEMAA 7.19, If h 1s a non-negative, measurable function

on ¥ x ¥, then [hd(pxw) = “hdlud‘l) = f{havau .

Proof, If h 15 the characterisfic furction of a
measurable set B, then ;Yh(x,y)dv (y) = V(B,) and 5h(x,y)q}L(X)
:}J(Ey) and the result is immediate. In genersl, we can find
an increasing sequence 1 by} of nonnegative simple functions
' converging to h everywherc, by Theorenm 4,3, Since s simple
funetion can be expressed as a Finite linear combination of
chargcteristiec functions, the theqrem follows for every hp

which 1s substituted instead of h. Now, lim (b dr= fhdx .
i
1r £ (x) = h,(x,y)dv (), then it follows that {fp} 1s en

increasing sequence of nonnegative measurable functions

convergihg to f(x) = ‘fh(x,y)dlj(y) for every x. Henee f is

megsurable and is obviously nonnegative; Thus lim 5f ap = jfdp .
. : _ n n

Thig proves the equality of the double integral and one of the

iterated integrals, The other part follows in a similar way.
THEOREM (Fubini) 7.20., If h is an integfable function
on X x Y, then almost every section of h “is integrable.

If theffunctions f and g are defined by
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£(x) = fh(X,y)dv (y) and g(y) = fh('x,y)dp (x),

then £ and g are integrabls and

Jpauxvy = frap = fgav (7.1)
Proof. 4 real-valued funetion < 1is integrgble if
and only if et and £ are integrable, Henee, it suffices
to consider nonnega%ive funections h. The eqﬁality (7.1) is
then obvious using Lemma 7.19, Since f and & are non-
negative, measurable and have finite integrals, they are also

Integrable, Finally, since this implies f and g are finite

valued almost everywhere, the sections of h have the desired

properties.
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CHAPTER T1T

FOURTER TRANSFQRMQ,

1. THE CLASSICAL APPROACH,

In this sectlon, the definition and properties of

Fourier transforms on the real line will be investigatem

from the point of view of classical analysis.

A complex.valued JLunetion ¢ 1g

megsuratke, if its real and imaginary parts are

DEFINITION 1.1,

Séparately measurable,

DEFINITION 1,2, Let 1 < p < oo .. The class of all

complex valued, measurable functions f, defined on [R

is s~id to be g -gower integrable or fELp(w‘C;O,VOé')
is Slf(x)l dx < 00, I1fp feLp(- 0, 20), the 1P nom

of OI? is defined as ”f” (Slf(x)[ d}g /P

We sh

.

all only consider the Fourier transforms for the -

clﬁss L (- 00, 00'), Tor esch f{IL (- 00, 00 ), the integral

S i‘}{tf'('l:)dt exlsts for gll x ¢ R .

DEFTNITION 1,3,  The Fourler transform £ of

fGLl(- od, oo ) is defined by the relation
00 .

N 1 ’
f(x) = 5 elth(t)dt, for =z e R ,
—

PROPERTIES 1,4,

(1) £ 1s continuous on (. CO, %), For, 1§ x

and h
are any two regl numbers,
p A~ e~ 2 ixt, int
| £(x4n)F(x)| = | geiXt(eiht-l)f(t)dt[ < § 1™ alht g,
-0

£(t)|at,
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| .The integrand on the extreme right is bounded by

2|f(t)l and tendsto zero as h — 0., An applica..
'ltion of the Lebesgue Dominated Convergence Theo_rem .

shows. that the integral on the extreme r'j.vght |
'convergeis to zero as' h —» 0, Consequently, the
exlﬁressic;m on the extreme left alse tends to gero .
as, h —> 0, which establi'Shss the continuif.{ o%‘
7 at X. - (For further details regarding the dominated

convergence theorem refer to E JMcFhane),

i ' . (ii)slnce f.‘ is eontinuous, it 1s necessarily bounded
on (- 00 , 00 )} gnd its actual upper boumd is given.

by the 1nequality

o0
|f<x>| < gieixtrmrat x S leCt) lat = o) .
1
-0 -0

The right hand side being lIfl]; 1s a value, independent

of x and thersfore sup . |f(x)| ¢ |7
| - 00< % < 00 T
o0

- 1
REMARK 1.6, If £ L (-o00, ® ), lim g [ £(x+t)-£(x) ] ax=0,
‘ t=0 -,

LEMMA 1,6. (Riémann-Lebesgue) Ir fre LL(- 0, @ ), then

A
C lim f(x) = 0,
X3t o0 '

E w
Proof, By Definitlon 1 3, f(x) S eith(t)dt and
o0

; Jt
therefore, -I'(x) g ixt j'11'1“(*1:)611: = g elx“: +3f)f(t)dt -
0o ' B ) '
= \ e £t ~—5{-)dt, by changing t- to t + fo_ and noting that

-0
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1 1s a constent as faﬁxﬁs this integration is concerned,

X , |
Thus, we, have of(x) = S ith () - £t -.—-):]dt
o0
subtraction, snd this in tum yields 2|f(x)l j‘if(t) f(t—fi»){dt.
-~ 00
Using remark 1.5, we conclude that 1im g}f(t) £(t- )]dt“O

X— + 00

This proves that f(x)-*e G as X - 1 oo,
; ' o

LEMMA 1,7, If felL (-0 ,00), lim gf(t) sin xt dt =o,
| o x-»to0 I ‘ -
1im f(t) cos xt dt = 0,

Xy ie

Rroof. This lemma follows from Lemms 1.6 and the identitics

ixt o-ixt o1 _
sin xt = 2 , c¢os xt = Kty -ixt .
21 o
Question 1; » We have observed that 11 feiLl(- 0o, o0 ),
A "
then F 1is continuous on (~ 0o, ™) and 1im f(x) = 0. Is
X = + 00

i

every functlon which is continuous on (- co, ® ) and which
vanishes at + oo , the Fourler transform of some function
belonging to Ll(~ 00 400 )?

This need not be the case, as the following example

revegls,

EXMPLE 1.9, Let g(x) be a function defined as

lo; x *2e
B) = 4 A 0¢xge
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g is clearlj continuous on (- 00400 ) and Vanishes
at ¥ co . However, it is nLt the I’ourier transform of
aﬁy function belonging to L (- oo, ms) and this can

*

be easily provéd by contradiction.

DEFINITION 1:10, The convolution of two fumetions

fg L (- o0,00) is defined by (f*g)(x) =\ fx-t)g(t)at,
We shall denote (f»g)(x) by h(x) whenever the integral

exlsts and the convolution is defined.
We now state two theorems, which are constantly used,

The proofs are omitted.
THEOREM 1,11. (Fubini). If the double integral
(e 4]

%)
g g.f(x,y)dx dy 1is absolutely gonvergent, then

o0~ 00 .00
S f(x,y)dy exists for almost gll x and is an integrable
~ o0 o Lo
function of x. Moreover, g dx g f(x,y)dy =
Qo DD .A:' s o>
0 :
g g f(x,y)dzdy = )§2y ghf(x,y)dx.
—_c0 —00 .-—-OO - 00
THEOREM 1.12,(Tonelli.Hobgon). If elther of the repeated

oQ o 09
integrals §ndx: S f(x,y)dy or g dy g r(x,y)dx 1is
) 00 b0

absolutely converéént then the corresponding double
integral ig¢ also absolutely convergent and all the three
integrals are equal.,

THEQREM 1.12. b(x) exists for almost all x and is an
integrable function of x. Morcover, HhHl < Hle ”g”l

and ﬁ,: f}g.
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. ] o0 o)
Proof. For every t, S Ie(x-t)fax = g‘ [e(w){duc <o
) o0 oo @ oo oo

and therefore g dt g [ rexet)g(t)|dx = j lg(t)]at S | £(w) g oo,
X7 o0 : on ; .

—

since f gf?L (00 cg/)bo'Using Theorem 1.12, we conclude that
the double integral .g gé f(x-t)g(t)dx dt 1s:absolutely
convergent, It follgszﬁgﬁat y f(x-t)g(t)dt exists .for glmest
all x and is an integrable fu;zzion of x by virtue of Theorem
1.11, In other words, herl(- o, co ), whenever the integral
1s defined., |

Further,
o0

Il = g la(x)ax ¢ i?q glf(xft)g(t)ldt = glg-(t)ld‘t S?o|f(x-tjdx

— 00 — 0

= llely el
the change in the order of integration being justified by
Thearem 1.12, since we have already proved that he.Ll(- o, o),

hgaln, we have
galn, we ha 00

A
h(x) = gﬂ eiXth(t)dt = g eiXtdt g- f(te u)glu)du
Y - I e
= S\g(u)du g eith(t-u)dt by Theorem l.12,
— 00 ~po . GO
= ("%(w)du S?ﬂeix(t*U)f(t)dt jg(u)elxudug ith(t)dt
-0 = 00 —- X}
= g(x)1(x).

REMARK 1.14, Convolution is commutative and assoclative,
The commutativity is imme dlate from the definition of
econvolution, by merely effecting a change of variable.

Te associgtivity mgkes use of the fact that h € Ll(-foo,CW).
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LEMMA 1.16. If féLY(- oo, 00) and if T is the

transformgtion which assoclates with each £, its

Fourier transform ?, fhen; for any real number g
) T Crttra) ] = e ¥ E(x)

(11) T e 8 ety T = Fxrad,

ou oo

Proofa (i) T{C £(t+a)l= gertf(t-ba)dt = geix(t“a)f(t)dt
..0_0 n -l
- e&laxf(x);
o . : o0 .
(13) T e*ete(e) ] = Sei"t[eiatf(t)jdf = (el(x¥adtecy)ar
~ a0 N - :
= f(x+a):

LEMEA 116, If asay & R , £, f'leLl(; ®J %) and T

is the transformation defined as before, then

(1) TCaf + agfy ] = alTf) + ay (7))

(%

a

2

(11) 1Ceat) ] = &

(111) T r(t)T] = T(-x); where the bar denotes the complex

eonjugate of f,
Proof., (1) follows €aslily, on aprlying the definition.
Since |af + alfll < lar) + [al‘fl[,- (af+a1f1)6L1(.'.' 0, o )

and T af + alfl:[ 1s given by

0 < oo
geiXtE(af +af () Jdt = a geix*f(t)dt + 8y f M *tr (t)at
-0 - -G
=a(Tf) + a;(Tfy).
> 2 ix ‘ A
(11) [ e(at) ] = g ¢ *Ce(at)at = % g e Ta £(t)at -.—% 7).

i
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(131) as |7} = [, T+ 11 (e o0 , @ ) and 1ts Fourter transfomm i

1s well defined, Let f£(%) = f1(t) + 1£,(t), where fy,

1 —
fo6 L (-00,00), Then, £(t) = £;(t) »if(t) and

‘ o
T Ft) ] = g e (011, (0) Jat = S ithl(t)dt
‘ -0

(S "“%(t)dt) +

- 00 et g o e .
:(Sm“ln‘[ i‘l(t)+if2(tﬂ;j

— 0

1]
i
&
e
o“fﬂjg
LA
[4))
i
ke
>
o
H)
/_\
c*-
L
u
o+
N
H

A .
= f(-x) .
LEMMA 1.17. If a segunénce of funetions {fn§ eonverges
to f in Ll—norm, then the sequence of thelr Fourier
AT A
transforms {fn§ converges uniformly to f in the

interval (- ¢, 0© ).

b

Proof. If {f,} , C&L', by hypothesis, le,-ell, =
oo ’ ‘
g!fn-ﬂdt —7 0. Now,
~ 00 > 00 ;
N .
18,0860 = 1§ e idae - f S rcnat] = ;
o o0 y
- | X ¥t e (t)- f(t)]dt] ;
- %)

< lfe)-rofat = 0, x 6 (w0, @)

. A sl
Thus, the sequence {fn§ converges uniformly to f for

all }{e.(_OO?OO),
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THEOREM 1.18.(1i) If f¢ 1. oo y o) and itf C'L1<- 0, @),
/ Al

then T (x) exlsts anhd .T[:itﬁ:jz f (x), where the

dash denotes differentiation.

(11) If feI’ and f'e L°, then T £7(t) ] = -ixP(x).

' A
Proof, (i) Consider ?(x+h).f(x). By Lemmas 1.15 and
n .

' , ith,
1.16, this is equal to T r(t) =27 = o[ F(n,t) T,say.

Now; F(h,t) converges to itf(t) at every point t as h —> 0
and |F(h,t)] = [£(t)] |9-i-;3=li ~ 8] 1) e tH(- 00, 00 ),
Thus, F(h,t) converges to 1tf(t).in 1t onom, Using Lemma
1.17, TLP(h,t) ] — T[itf('t)_fl uni formly as h —» 0, Hence,
the derivative of ?(x) exists at every point x and %Ex) =
TC1tr]]

({ii) Since f'é-Ll, its Fourter transfom exists and
using Lemmas 1.15 end 1,16, |

~ - £(teh)-£(+) o -ihx 1 A
Thorr(ey 1 = 7l 14 = N
_ 1 . - 7] :éi_r;ao[( — .) £(x7]

A
= ixf(x).

Thus, the theorem shows the relationship between the
function f, its Fourter transform, and thelr derivatives.
’ Ay
QUESTION 1.19. Suprose f¢ 1}~ oo ) and f is
1ts Fourler transform, ean the function f be determined
A
from known vglues f{x) of £ o

This cannot always be done, but under suitable condltiens,

such an inversion is possible. The following theorems provide

such conditions, under which the inversion will be permissible.
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- 1
THEOREM 1.20, If f, f€L (-0 ,00) gnd 1f £ 1s

continuous at a point t, then

w0
£(t) = 2o g e ¥t Bix)ax.
er e _

For a proof, refer to R.R,Goldberg,

§ THEOREM 1,21, (Riemann Localization Theorsm), If
1 ' : 1 e -ixt A '
| fel (e 0, ), s (t) =3 S g f(x)dx

—AR.’
+v )+ -
gt(v) £t V; f(t-ZA - £(t), then for sufficiently small

3
S >0 g [ ig‘té"‘:‘?“

and

dv = M < 0 .implies lim g (t)=r(t).

Proof, For fixed t,

- ixu
Sp(t) =5 g ”1Xt fx)dx === S e 1xtg g f(u)du
- dw P ;
' ‘ a} 13 o0
]_' ixv
R € f{t+v)dvdx by Theorem 1,12
Zar ) N
[ —o0o =R 2
o0 o0
' sin R
! =5 S £(t+v)dv g eV ax =.1-1;~ j = L f(tev)dv
- <R o
‘i 1 L { SR o (thy)ay + S §—i§ﬁ-‘i f(t+v)dv]
| w
L ,
] >0
| : .
| _1 [;gﬂ SIDRY. £(puy)dv + g sinRy f(t+v)dvt]
1 Tr 0 v V .
5 P
00 - -
‘a _ 2 g sinRv L £(t+v) + f(t—v)]
T v 9 o
o (o8]
( Ly : Rv
; Then, S_(t)-f(t) = 2 S sin

(e -
R
L f s1nRy g, (v)dv +g sinRy gt(v)va—Il+Ig,say.

)

]
ﬁm
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1%
By hypqthqsis, sincs S , §ié21 ldv = M, integrating Iy by
- :

parts, we find that I.—~> 0a4as § — o, Using Lemmg 1 7,

Io — 0 asR —5 o5 | Thus, 1im [:s (£)-£(£)7] = 0, which

shows that 1im Sp(t) = £(¢t),
’ R — oo

Iheorems 1.20 and 1.21 indicate that the convergence of

S (t) to £(t) at s voint depends only on the ‘behaviour of £(t)

in a neighbourhood of that point

CBAAMPLE 1,22, If f£(t) = -t for t> 0 and 0 for t <0,
o0

then 1ts Fourier transfornm f is g eiXt e_tdt =
t(lx—l) , ©
dt and this integral is convergent for
(ix-l) <0 and its value 1s 1 « But ? do&s not
L-1x

belong to Ll(-oo y00 ), Therefore, the inversion is not valig

2, THE ABSTRACT HARMONIC ANALYSTS APPROACH,

We now pass on to g generalization of the concepts of
saction L, by cmploylng the notion of 4 locally compact abelign

group, which is fundamental to the theory of abstract harmoniec

anglysis.,

DEFINITION 2,1, 4 locally comgpact abelian group G, is

an abelign group, which 1s glso a loeally ecompact Hausdorff
Space, such thgt the group operations gre continuous.

In otherp words if gddition ig the group operatlon then
the mappings x ~» =X of G onto ¢ gng (X,y7) — x+y
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of G x G onto G are both continuous.. If multiplication

is the group operation, the mappings x —» 1 or¢ onto G
X

and (x,y) —» xy of G x G onto G are both continuous.

We shall use the abbreviation LCAG for a locally compact

abelian group.

EXAIIPLEsz 2. o -

| (1) My abelian group G is essentially -an LCAG when'
endowed with the discrete topology. s

(11) The group [R of real numbers, with adaition as the

; group operation and with tﬁe usual topology 1s an

| LCAG,

(111) The group £ of all integers O, + 1, + 2,..., with
addition as the group‘operation is én LCAG if a |
topology is defined by specifying that every set of
integers should be open. '

(iv) The‘ciféle group T of all complex numbers with
absolute value unlty and with multiplication gs the
group operation 1s an LCAG, whose topology is the
relagtive topologﬁ induced by fhe usual topology of
H{z. As T is in 11 correspondence-with.the set
of all points in [:O,Ew:}; T can slso be looked
upon as the group of resl numbers belonging to
L 0,2r ) with the group operation given by addition
modulo 2r. _ .

(v) If Gy and Gg are two locally compact sbelian groups, .

thelr sum G1+G2 is also an LCAG, with the correspond-
ing product topology.
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REMARK 2.3, A diserete gronp is an LCAG in which every
set is opeh, WNotige that Z. i1s discrete and T ig

compact. [R 1s neither discrtte nor compact.

DEFINITION 2,4, If G 1is an LCAG, a chargeter of G is
-a continuous homomorphism of G into the group T. In
other words, § is a character of G if‘-

(1) % is a continuous function on G
(ii) Q(x+y) = Q(X)Q(y) for all x,y & G 1f addition is
the group operstion and Q(xy) = Q(X)Q(y) if
multiplicgtion is the gfoup operation.

(1i1) 1%x)] = 1 for all xE€G.

N
The set of all characters of G will be denoted by G and

is called the character group of G or the dugl group of G.

X . AN A . NOA N A
REMARK 2ﬁ5. If Xp,%, € G, define x;X,(x) = X3 (x)x,(x)

N

for all x€G, Then G 1is g group with respect to this

N
multiplication., A& topology can be defined for G by
choosing as a ﬁasis, the c¢lagss of gll open sets

A M
O(X,, & ,K) such that 0(x,, & ,K) = {3’& e |R(x)-%,(x) < £,

A A
x&K, xoe G .ﬁ > 0 and K being a compact subset of G,

~ .
With this topology, G becomes an LCAG. This topology is

called the topology of uniform convergence on compact subsets.

EXAMPLES 2.8,
—iQx
(1) For G = R, the mapping x — e where

M
X, X 6§R, is a character since 1t 1s continuous
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' u ) 1%x
being an cxponential function, [¢™ 7| =1

A o A'l .
and e~1X(x¥y) _ o -AXX -IXY gy 15 5 4t

correspondence between the elements of TR and
A A
the chargeter group R . In fact }R-= m o,
~ixx
(ii) For G = Z , the mapping x — ¢ where
. N :
x € Z and 0 < % < 2r 1s g character and Z =7,

~
(111) When G = T, G = Z .

REMARK 2.7. Trom example 2,6, we notlce that the character

group of a discrete group is a compact group and conversely

the ehgracter grOup‘of a compact group is discrete,

DEFINITION 2,8. If G is an LCAG with dual group G,
then each x € G defines an element éf @ and the
vglue of % at % is equal to the valus of x at Q.
This duality enables us to use the symbol < x X > to

denote this common value.

A striking result is due to Pontrysgin and is knawn after

A
THEOREM 2,9, (Pontryagin Duglity Theorem)., If G is the
Fal

dval group of an LCAG G, then G = a .

For g proof, refer to W,Rudin.

DEFINITION 2,10, The Borel subsets of z set X are the

members of the smallest ¢ -ring of subsets of X which

contgins every compaect set, If X 1is a lqcally compact

Hansdorff spacé, a positive Borel measure on X is a
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furnetion ﬁ@ which assigns to every Borsl subset of

X a non-ncfative rezl number or + O such that

o &0 :
ﬂ/(ﬁtlﬂn) = 2%1 /4 () whenever Mohgsses 15 a

sequence of palrwise disjolnt Borel sets in X,

DEFINITION 2:i1l, A Borel measure m is regular if for

each Borel set A, /L(A) = inf f”(Un)a where the

infimum is taken over all the open sets {U } containing 4.

DEFINITION 2.12. Let G be an LCAG, A Haar megsure on G

1s a positive, regular Borel measure m wifh m(E) < o0
if'E 1s compact and m(E+x) = m(B) for svery meagsurable
set ECG and every x6& G,

REMARK 2.13, Vdn Newmann has established that the Haar
measure m is unigue tupto multiplication by a positive

constant and it is finite if and only if G is compact.

r

EXAMPLES 2,14,

(1) IT G = R , for every integrable function t, the
'Lebesque measure dx defined on R is the
“invariant measure and S f{x+a)dx = S f(x)dx,ac R,

(11) Ifr G = Z , the invarignt measure 1s that which
asslgns as measure to gny set, the number of
elements in thst set,

(11i)If G = T, the invartant megsure is the Lebesque
measure defined on the eircle and it is normali zed

to have the value unity,
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(iv) IfT G = G1+G the Haar megsure of G is the

29

product measure of the Haar measures of Gy and Ggi

DEFINITION 2.15, The class Ll(G) is made up of all the
functions which are integrable with fespect to the
invariant measure m, The norm of félLl(G) is defined

by fiefly = § Iecedlamce).
G
DEFINITION 2.16. If G 1is an LCAG with dual group G

the Fourier transform F oor f<SL1(G) {s given by
T e : .
T(x) = S < x,x > f(x) dm(x) for x&Gy 9{818.
G _
REMARK 2.17. Notice that the Definition 2:16 provides

a generalization of 1.3 apart from a constant factor.

, oo .
If G= Z Ll(QZ.) is the set of all sequences {an}

[ =) ) =-'DO
such that | |an| < % and the Fourier transform of

Nn= .o
o
b} o

- T
such a sequence is ,
' n=. &

the Fourier tra%?form‘of a funetion f in Ll(T) is the
73

sequence 7%; g‘ g “LIE f(x)dx, n € Z , of'Fourier
A :

coefficients of f.

A ,
< x £ 2rés When G=T,

REMARK 2.18. As observed in 1.4 and Lemma 1.6; we have
. A% N
a generglization here and zf i1s g econtinuous funetion

on G, which vanishes at infinity 1f G is not compact.

DEFINITION 2,19. The convolution of f,g¢LY(G) is defined

as (fxg) (x) = g f{x-y)g(y)dm{y) 1f addition is the
g .
group operation in G end as (fxg)(x) =§f(xy,'l)g(y)dm(y)
' G
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1f multiplication is the group operation,
. AN AN
Certainly, HIfxglly < fl£lly llell, and fxg = 14,
Thus, the theory of abstract harmonic analysis sheds
a great degl of light on the corregponding elassical theory
setting and extensive studies_have been made to effect good

genexrallzations of the 1atter; For detatled comparisons,

eonsult L,H,Loomis or W.Rudin,
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