\/‘\

- MATSCIENCE REPORT No. 68

3

LECTURES ON)
| j

' ELEMENTS OF FORTRAN PROGRAMMING

- By - I o
K. SRINIVASA RAO |

S

THE INSTITUTE OF MATHEMATICAL SCIENCES, MADRAS-20 (INDIA)

MATSCIENCE KEFORT 68

THE INSTITUTE OF MATHEMATICAL SCIENCES
MADRLS -20 (INDIA)

LECTURES ON
2LEMENTS O FORTRAN -PROGLAMMING

L aes R
AT h
0T T TRINLE R

TR LI

2
]

_ By +
K. SHINIVESA R40

¢

*senior Research Fellow, MATSCIENCE, Madras-20, India.

e e e e e A8 e i e S o s o

(1)

PREFACE

_'Thie report is based on a series of le&tures
delivered at Mat501ence during April-May 196¢ to a group
of students who were keen to learn the elemerts of FOR!RAN
programming. These notes describe in detall the baoi'
FORTRAN larnguage (viz FORTRAN I1) which is acceptable not
only to the IBM1620 and IBM1130 computers now in Madras
but also to CDCBGOO in Bombay. The lecturer wishes to
express his deep sense of gratitude and thankfulness to

i
Profeeeor Alladi Ramgkrishnan for encoumagement and to

Miss P K Gestha for her help in the preparation of this report.

[

K.S.R.

(ii)
CONTENTS
54
Introduction - - -I - _ . - - - - e 1
Flow Charting - - - - - -« -+ « o < - 4
Elements of Fortran Stotements- - - - ~ - - 10
Frogram Punching - - - = - - - - - - 17
Foftraﬁ,ﬁtatements- - - - - - - - - - 20
Control Statements- - - « - « - - - - a7
Transfer of Control Statements- - - - - - -~ 40
Db and CUNTINUE Statements- - - - - - - .+ 50
Subscripted varighles - - - - - - - - ~ 57
Subprograms - - - - - - - - - - ~ 69
BQUIVALENCE stetement - - - . . - - . . 82
COMidN statement - - - - . . .L 87

COMMON with BQUIVALENCE stotement = o~ =« - « - 04

DATA statement = - - - - _. - - - - - 06
FORGY and FOR-TO-GO - - - .« - - - - - g8
FORTAMT-T - - = = = - - - - - . 101
References - - - - - - - - - - - - 102

Appendix.l.Library Tunctions avallable at
IBM 1130 instellstion - - - - - - 103

Aprendix.z.Worked out examples - - - - - - 104

T e

TN

SATLLE

Elements of E% ““mmh_,, 1 4
POITRAN _ PROGRAMMING '

Introduction: -

4 FROGAM is an orderved sequence of instructions
acceptable to a computer, Programming 1s the process of
writing up an ordered sequence of ihstruqtions in a language
which & computer will recognize snd accept. Of the many pro-
gramming langusges which have been developed, some of the well-
Known languages ave: FOATRAN, ALGOL, COBOL, CFL and PL/I.
Each language has many versions - for e.g. FCATRAN exists in
Marks I to IV and in vafieties such ags Hartran (in use at
Harwell, U.S.A.) znd as Madfran‘(in use at M, I.7., U.S.58.);
ALGOL has variations such as Smalgol (for “smell Algol') and
Balgol (for "Burroughs Algol"), Here,

FORTRANrstandS for FCamula TIANslation,

 ALGOL stands for ALGOTithmic Language,

COBOL stands for COmmon Busine¢ss Oriented Language,

CPL stands for Combined Programming Language, and

PL/I stands for Programming Language Nb.lJ
Currently, the most widely used form of Fortran i® FORTRAN II
developed,in 1962 by Rabincwitz for IBM machines, A great step
forward in Programming languages was madevwhen LLGOL 60 was
introduced in 1¢60 by Naur. A number of featurss of ALGOL are
included in FORTRAN IV. While FORTRAN and ALGOL are the most

widely accepted lghguages which use mathematical notation to

Y

express scientific &nd engineering problems, COBOL is probably
the mnst wi‘kly accepted nonmathsmati eal (business) lengusge.
Two of the more recent languages which are c¢ssentially improve-
ments over Fortrsn and ilgol are CFL and FL/I.

£11 statements thabt specify the problem~solving procedurs
constitute the Source Program, snd it is written in a source
language (like Tortren) whica is akin to our wiitten language.
when the Source Frogren is punched onto cards and fed into the
Computer, the Computer with the help ofthompiler” or Translator
analyzes aegch scurne stafement «nd cbnverfs it into a machine
langusge instruction. The computer thus translates the Source
Program into sn object Program which is in the mschine language.
The machine-oriented lenguage hgs little in common with the
procedure-oriented source language. This translation 18 abso-
lutely necessalry since each computer accents only one particular
lahguage for computation, viz, its own mzchine Language. It is
thus the Object Pragram which is executed by the Computer to
obtain results. The compiler, which is also called a processor
or translator, is itseif a largs nrogrem'of computer instructions
and it is'usually'suppliéd bv the Computer manufactursr. Thus,
it 1is intarestitg,tq hote that Computers are used for dual purpo-
ses of.‘translétion“and compvtation. |

A program written in FPORATRAN for ITM 15620, after minor

modifications, cen alsc be executed on other computers such as

IBM 1130, IBM 7080, IBii 1401, and many others. The writex of a

. Computer program must be thoroughly familiar with the basic

3

langusage units and with the grgmmer and punctuatlon of the
programming langucge acceptable by the Computer. A student who
has mastered the die lect of bcslc Fortran programming for IBY 1620
will have no diffirculties ln adapting himself to other dialects
appropriate for other machlnes. Therefore, in these lectures

I will describe in detail the basic Fortrdn (FORTRAN II) language
winich, incidentally, is acceptable not only to the IBM 1620 and
IBM 1130 Computers in Madras but also to the CDC 3600 Computer

in Bombay. -

Before nroceed*ng w1th basle Fortrsn elements, one should
be gware of how a Computer works. The Computer uses only the
four basic arithmetic opergtions Qf addition, subtraction, multi-
plication ahd,division for éolving =11 problems. ©So, after
choosing thé problem andvchoosing a general spproach to solve it,
the programmer must use his knowledge of numerical analysis to
_expreés trigonome?rie Tunctions, differential equations, integrals,
syuare rooﬁs, logarithms, etc., 1n tems of the basic arithmetic
operations, The numeri cel procedure must now be stated, using
a2 programming lanéuage, as a precisely defined set of Computer
operatlons. This programming is done in two parts. In the
first part the sequerce of- OpGTathHJ is written in graphical
form as a flow cha;t. Thla procedure is then elaborated into a
sequence.of statemsnts in s programning language, which is the
Source Progr*n

The conver31on of the source program into the object

progrém by the computer is called the process of Compllation,

4

sfter compilation, the computer starts executing the instruc-
tions contsined in the program. A schematic representation of
the complete.process of compiling «nd executing a Fortran program

is shown below:

Byecution of
Source Program

Compilation
of Source Progran

——— 7

Source Program
deck

Y Computer r
Compileg_ﬂ object object
progran pgogﬁam i , deck
: - dee

7 . 3

Sourcse fW output
Progrsm (Results)
listing .

Though the computer is only a calculating machine heving
no capacity to think, the gregt power of a digital computer is
derived from its ﬁigh speed - & single arithmetic statement

takes only & micro-seécond for execution,

FLOW CHARTING:

Flow charting is an important tool of programming., The
flow chart or block diagrsm gzllows the programmer to plan the
sequence of operations in & program before writing it in a

programming language. &4 flow chart is mzde up of a set of boxes

5

of different shapes along with conneeting lines and arrows, which
shows the 'flow of control" between the various operations.
Thus, a flow chart provides visuecl essistance for programming.

The flow chart contalns the following symbols:

{ |)} - An oval indicestes the beginning/end:point of a/

sourcE program.
{ B rectangle indicates any processing operation

except a decision.

"p trapezoid indicates szn input/output operation.

- A dismond indicsztes a dscision. The lines
lezving the box are labelled with the declsion
‘results that cause each path to be followed,

(::) ' _.p smsll circle indicates & connection between
_two points in a flow chart, where a connecting
line would be clumsy. This is called a remote
connection box and it contains a Greek letter to
indicate the first ending and the second beginn-
Iing of the flow chart.

_—*féh - Arrows indicate the direction of flow through the
\L flow charty every line connecting two boxes

should have an arrow on it.

It should be mentioned st the outset that there is no such thing

&s THE flow chgrt for a given computational problem;

-6

L]

Example 1: To 1llustrate flow charting we will now donsider a

simple example to evaluate'the polynomialse’

10
X o= 2 C’,&}jk
k-o
whe r:e C:R (0 < k < 10) are known constants, The problem, to be
solved by the computer, involves the following step by step

procedure;

1. Start preasding in all known vealues of Cy shd v.
2., et x

I

0, i.e. store zero in the location for X.

3, Set k = 0, i.e, store zero in the location for k.

4. Compute xj = Cpy*. Note that Xy hes its own
location.

5. Add =z, to x e¢nd store the sum in the location for X.
This sutcmatically erases the value of X.

6., Increase k by 1.

7. Check whether the present vglue of k is less than
or equal to 10, If k¥ £ 10, go to step 4j if k > 10,

the required snswer for X has been obtained.

8. Print out the answer snd stop the calculation,

The first Statement is en input stztement, while the second and
third are éalled "Tnitiglizetion" statements, The fourth, fifth
.nd sixth statements are erithmetlic operations while the seventh
i1s an arithmetic decision making statement and the eighthis an
output stetement. Having thus categorized all the statements
involved in the computation we are now in a positlon to drag the

following flow chart:

{ Stop)

Note that in step 5, x = x + x does not mean Xy = 0, as it

would in common .arithmetic langusge., It actually means tbat the
jnitial value of x is increaséd by the amount xj and tha sunm
x + xx 1s now placed in the location for x. Thus, in FORTRAN,
the eyuality sign is interpreted as "replaced by" tnd not &s

toqual to' . Similarly, statement 6, k = k+l, means that the

value of X is repleced by k+l. After executing statements 4,5,6

8

and 7, tﬂe valus of k is checked gnd 1f it is found to be less
than 10, then the seyusence 4,5,6,7 1s agaln repeated, ©Since
the-index k tekes the eleven vulues Ogl,Cy000,103 the sequence
of steps 4,5,6,7; 4,5,6,75... 18 repeated eleven times. In
other words the sequence of stztements 4,6,6,7 are in a LOOY,
which 1s executéd eleven times,

Notice thst step 7 is important in thet advantage has
been taken of the Computer's decision méking gbility by comparing
one guentity with snother, Based on this comparisdn, there are
two possible psths of subsequent operations, énd the ftwo arrows
coming out of the diamond shaped box Se€IvVe to indicaﬁe these twg

possibilities.

Exgmple 23 Let us now ccnsider the case:

500 b
v
x> = f’z Ch(J
T R=Zp -
L Ve
where Cy = k for 0 < k £ 260
and Gy = k€ for 951 < k £ 860G

The. Ck's can be generated in the_computer ginece their general
form is known. This process of generation 1s faster than reading
in numbers, And suppose we wish to evaluate the gbove polynomial
for n differentlyalues of y. Then, the modi fied flow chart

will be gs shown beldw:

N\PRINT /

. S
(5té"§")

In the flow chart we indicate our intentions of evaluating the

polyﬁomial:x for various values of v, by instructing the computer

10

to go to Read another value of y after printing the result for
the first read value of y. This process can be repeated n times,
The flow chart illustrates the existence of a Loop within a loop.

i extension to a system of msny loops is thus possible.

Bxercise.l Draw a flow chart to compute

n
=
o
i._l-
=
s
=
A
¢
O

given that Ay

"

e
w
l_J

o]

oo
=
N/
(]
O

and Bk:e .

ELEMENTS OF FORTRAN STATEMENTSS

The elements of Fortran Statements are:

(1) Constants,
(ii) Varizbles,
(1i1) Operation symbols, end

(iv) Expressions,

(1) Constents: Constants appear cither in Fortran statements in
the Source program oOr as ihput deta. They may be written in one
of two forms:

- Fixed-point consténts or integers; and

Floagting-point constants.

11

A fixedwpoint congtanf never has a decimal point associated with
it, while a flosting-point constant always hes & decimal point
associated with it, If the constent is to bé used in floating-
point E;lculations, it should be written in the floating-point
formy 1f it is to be involvsd in fixed-point calculations only,
it should be written in the fixed-point or integer fom. If a
constant is to be used in both fixed-point end floatinngoint

églculations, then 1% must sypeer in both forms.

Fixed-point constants may be posltive or negative. If positive,

'the sign 1s optional, but the sign must precede the constant if

it is negative.
Exgmpless 3743 9; 163 063 -17923 03 253 etc,

Flosting-point consbants may be written with or without gxponent,
The preceding plus sign is optional, while the preceding minus

sign is essentiel., The decimal point must be written.

Examples of flosting-polnt constants without exponent are:
3.14169265 ¢ +3600.0 3 -82.5 ; .007 5 6, 3 -0.038; etc.

In the case of fldéting-point constsnts with exponent, the mentiss

is followed by the letier E which is followed by a sign and a one

or two digi*t integsr., The exponent 1s a fixed-point constant

that signifies the power of 10 by which the mentissa is to be

multiplied. The positive sign of the exponent is optional, while

the negative sign is essential,

i2

Exgmples of floating-point constants with exponents are:

1.71E03 (1.71 x 10%) 5 -16,0B + 06 (-16.0 x 10%);

+397.025% (397.02 x 10%) 5 2.998B10 (£.998 x 1095

6.0E-03 (-6.0 x 1073); -132,6F+12 (-132.6 x 1042y ete.,

Note that the sexponent is restricted to the range -49 to +60,

(i1) Varisbles: Vardgbles, like constants, may bs fixed-point
or floating-point variables, depending on whether they are being
used to represent integral values or decimal values. Names are

assigned by the programmer for variables with the help of the

following chgradtersy

plphebets - A to Z (Cupitel letters only)
Numbers - 0 to © .
To distinguish between zero and O, it is customary to write the
letter O as ¥. The following &areé the rules to be followed by a

progrgmmer while giving names to veriables:

(a) Ths symbolic name mush be from cins to five alphabetic.
or numeric charsdters inlengtl.

(b) Special characters Viz. + « . , / $ " =) 4 should
not be used zs part of a varieble name. '

(¢) The first character of the variable name must be
alpheﬁeric. .

(d) The first character of a Fixed-point variable must be
one of the following: I,J,K,L,M or N.

" (&) The first character of a Floating-point variable must

be alphameric and other than I,d,K,L,M or M.

13

- Exomdbles
Fixed-polnt varisbies: I,7123,MA58,LUCK KING,KIN2Z,etc.
Flousting point variables: ALPS}ASS,GAS,F¢¢L,DELTA,H12,etc.

Veriable nemes not alicweds X4/B, 2Ll,Ar3,1-K,etc..

At present we are dsaling with only single variable names, later
we will introduce subscripted variabiee,

It is advisabls to ahoose namss with a high mnemoni ¢
content for varisbles, For eremple, 1T One wishes to compute
electric currsnt from Ohm's laws I = E/R, ths programuer nmight
choose to write the Foftran statement as CURR = VOLT/¢AM, if the
varigbles I,B and B teke floating point values or as LCURR =

IVOLT/I0HM if the variables take filzed-point or integer values.

(1i1) Operation Symbols;
There are only five basic operations associated with the
Fortran languege. Bach operstion is represented by a gpocific

symbol as follows:

Operg.ion Symbol Example
Addition + A+ B
Stbiracticu , - ¢ - D
Multinlication v A B
Divigion / _ ¢/ D
Fxporentistiion X % % %*B(25)

Besides these the "e. uals!" symbol is also evailleble. As
mentioned earlier it actuglly means, in Fortran langusge, Hpyapl:
by" and not "eyual to'. We will see 1zter how this symbol 1s u

only while writing a Fortran statement.

14

(iv) Expressions:

fn expression in Fortran is a sequence of oné or mord
constants and/or varizbles Jjoined by any one of the dperation
symbols (except the eyuals symbol) to indicate a quantity or
series of calculations to be performed,

Exgmples of simple Fortran gxpressions &reé:

A+B-C 3

b

A¥BAC 3 ILB/JACK 3 etc,

Rules for forming expressions:

(a) In an expression, no two operating symbols should appear
side by side. For example, the algebraic expression £{-B) shoulc
.be written in Fortran ss & %(-B), where use has been made of

parenthesis to separate the two operation symbols and - .

(b) Psrenthesds sre used in expressions to indicate groupings
just &s in ordinary mathematical notation. For example, the
expression A¥X (B+C) would mean that the eddition is performed
bed re A 1is raised to the power (B+C); while Ax¥ B+C wouid
meagn AB+C. The most common progremming error involving the

omission of parenthesis is to write A/BxC for A (B¥%C).

The golden rule to follow is: WHEN 11 DOUBT PARENTHEST ZE.

(¢) In the zbsence of parenthesis the hiersrchy of operations

ig s follows:

Rank) Qperation Symbol

First Exponentiztion X *

Second Multiplication, * L,/
Division

Thi rd Addition,&uhtraction +, -

Thus, the Fortran expression A+B % % %D would be interpreted

tomegn A+ (B X CD) while AH(BXC)x %D would be interpreted

15

to mean A+(B X C)D. :

(d) When expressions contain a string of operation symbols of
equal rank, the order of operctions is taken from left to riht.
Thus, A ¥B ¥C/D ¥E/F mewns (((((A%B)*C) / D)% E) / F).

Note: Left-to-right rule does not apply to fixed-point multi-
plicuation and division. For example, the parenthesis in (L*M)/N
shoul d not be omitted.

(¢) Any expression may be reised to a power that is a positive
or negative integer quentity, but only a real expression can be
reised to a réal power. An exponent mgy itself be an gxpression
of floating-point or integer type. Thus X ¥%(I+2), L %%(B+2.0)

are gcceeptabls,
C

In ordinary mathemoticel notation the expression ABu is
meaningful, However, the correspronding Fortran expression
A X % B %*C is not allowed in the Fortrsn language. It should
be written ss A a» (B¥»*C) if ABG 1s meant or as (A% %xB)<*C
if (AB)C is meant. | For example note that (23)2 = 82 = 64

o
while o3 P 512,]

Exgsptions: (e€.1) A4 floasting point variabie may have a fixed
point exponent. Exesmple: Ax‘%I, Bx »x.2, stc.

(¢.2) 4n integer cznnot be raised to a floating-point
?ariable power, because, in genersl, the result would have a
fractionygl part end hence cannot be expressed in an integer

form., Thus I %8 is not permissible.

16

(f) Fixed and flosting-point variables and/or constants

must not be mixed in the same sxpression. In other words, all

the veariables and the constants in the same ekpression should be
in the szme mode, B few examples of incorrect and correct Fortran

expressions are given below:

Incorrect. : Correct
Hb+ 2%C A+ 2.0xC
I XJ + 2.0 I»J + 2
"M+ B -7 b+ B - AJ
(g) Unlike the ordinary rule of mathemesticel notation,

parentiesis in zn expression doés not imply multiplication.
Thus the expression (A+B)(C+D) is incorrect and it should be

written as (A+B) % (C+D).

(h) When zn integer is divided by another integer; tre
result is not usuaslly an integer, In Fortrsn, integer division

is arranged to truncate a quotient having a fractional part to

the next smallerrinteger, which means simply to igﬁore any
fractional part. Thus, the result of integer division (7/2) is
3 and not 3.5. If the floating-point result 3.6 is desired,
then the numerator znd denominator must be written as floating-

point constants (7.0/2.0)..

Occasionslly, these peculiarities of fixed-point
arithmetic cen be used to advantage. For instance, the expre-
ssion N-(N/2)# 2 has the value 0 or 1 according to whether

N is even or odd. This fact can be exploited for determining

the sign'of_the factor (-l)N. (see page 75).

17

: . 2 _K+2
Bxerelse 23 Write velid Fortren expressions for: XY, B R
A+B b A 2 . oy e
X y &t T , pa/rs, = + N, AX + BX+C, A end

, ¥
(b? - 4ac) V2 .

Before desling with the various tyres of allowed
Fortran Stutements, let us consider Bow a Fortran source pfogram

is to be punched onto cards using punching maciings.

PROGiaM PUNCHING.

As t¢lrezdy ststed, a Fortran source program is an

~ordered sequence of statements znd the program is normally given

to the computer as & deck of punched cards, each Fortran ststement
being punched on one (or, if necessary, more) cards. Normally,
sach puniched card corresponds to one Fortran stetement., A card
has 1¢ rows shd 80 columns., The rows are numbered from top to
bottom as (12,11)0,1,2,...,9 while the number of columns are
numbered from left to right as 1,2,....,80. The two punching
positions in a column are divided into two areas, numeric and
zong. The first nine punching positions from the bottom are
numeric punching positions «nd have an assigned value of

9.8,7,6,5,4,3,2 and 1, respectively., The remaining three

- positions 0,11 end 12 are the zone positions., The zero position

is considered to be both a.numeric end a zone position.

The numeric characters O through ¢ are represented by

a single punch in a vertical column. TFor example, O is repre-

“sented by a single punch in the zero zomne position of the column.

The numeric & 1s represented by a single punch at the 5 position

of the column,

18

The élphameric characters, 4 to 2 (Capital letters only),
are represented by two punches iq a single verticel column, one
zone punch sznd one numeric punch., The alphameric characters A
to I use the 12 zone punch and a numeric punch 1 to ¢, In this
way, the letter A is punched as ia—l, B e¢s 12-2,.., I as 12-9.
The alphemeric characters J to R use a 11 zone punch and a
numerie punch 1 to &, respectivelyy 1.e. J is punched as 11-1, ¥
as 11-2,..., R as 11-9, The alphameric characters § to Z use the
0 Zone punch :nd numeric characfers 2 to 9, respectively; i.e. S
is punched aé 0-2, T as 0-3,..., & as 0-9. @8pecial characters,
viz, + -, ()% § .\5- 4 - are represented by 6ne; two or
three punches in & single column of the card znd consist of purch

configurations not used for numeric or alphemeric characters.

The standard arrsngement of the infomation on &

Fortran stutement cazrd is zs follows:

Columns) to 5: These columns are used to assign statement numbers

to the Fortrsn statements, & statement number is a fixed point
eonstant. Actuzslly each stztement in the source program can be
assigned & statement number, but it is adviSﬁble to number only
those Fortran statements that-will be referred to in the mealn
progrzmn, Unnecessary, unreferred st stement numbers waste core
storage «nd delsy the compllation process. 4 statement number
cen run from 1 or 00COL to ©S9e¢ snd it can be written anywhere
in the field of the first five columns of the card. Thls only
means that.blanks;will be ignored. Stetement numbers nesd not

be assigned seyuentially since they serve only as identi fying

19

labels for the statements, Further, no two statements should be
assigned the same statement number . |
Colupn _6:; This 1s celled the continuation column., If a state-
ment cannot be punched on a single card, it cen be continued on
to the next cerd by punching any-character other than zero in the
sixth column. A muximum of nineg éontinuation cards are allcowed
for a statement, It is & good practice to punch 1,2,,.., in
column 6 of the first, secwnd,..., continustion card. Note that
a stctement number should not zprear on any of the continuation
cards, even if the initisl ststement card hes a stztement number.
It is not advisable to use too meny continuetion cards, unless
they &re necessary. If a stastement can be punched entirely on
one czrd, then column 6 should be left blank,

Columns 7 to 7%: These columns aire évailable for the TFortran
stutement proper. Blanks, if any, are ignored. The statement
need not necessaridy he started in column 7 itself., Blanks may

be used to improve ths readsbility of the statement on the card.,

Columns 73 to 80: These are called identification columns znd

they will be ignored by the Fortran compiler., These columns may
be used to punch the name of the program (e.g. EIGEN) followed
by a running number to identify the position of the card in the
progrsm. {e.g. EIGEN 001, EIGEN 00%Z,....,EIGEN 098,...).

p punched card illustrsting the combination of punches

for varicus chargcters is shown below:

20

_m}! .'::f . r.-i é.‘;?; [-l £ '_1

TN T e EEE

FORTRAN STATEMENT

§
1

(X {ﬂﬂﬁﬂﬁﬂﬂﬁ0000000000000000080Uﬂﬂﬂﬂﬂﬂﬂﬂﬂﬂﬁﬂﬂﬂ

10000000000, GO0

TE YWt aanssng l??ﬂ?lﬂ?]ll?i?u??tiﬂ.ﬂﬂ32113‘353‘)3?15“13“ NHBHTBIVHRBH 55555]585)505162‘:361555&“»'2’1 nan

RN N D R R A R R R R RN R R R R RRRRRRR R RRRREREEE

i 2207222220222272 222222222222203222222202222 22222222222272222222222

333ﬁ3333333333333f33333333333335333333333333'333333333333ﬁ33jsﬁ?as

44464
GO0,

4

-F-

$444 4444444444 44 % 84

C,AE D
555 55555

cr.‘]-a-.
/

it

5555545§J5555555 53503355 3555605555555%

ﬁsssas?sssssssasssssjussssseesssssﬁsssaasssssss,ﬁsﬁsaasssssnusssﬁﬁ

(ERR R BN EERERRREREEE] PIRIRIIIINONT TR RINNIAIIIT I 1011701007

OO

86688896 5888008833988 6605688888088 3833008888888 886888 181, .

~CDC 3600 are'available for comments,

9
?

Let us now discuss the various types of Fortran

statements which are allowed in a source program,

FORTRAN &T/TEMENTS

Comment Bta%ementg If the letter C is punched in the firs

column of a cgrd, then the Fortran

'instruct%pﬁ or statement on’' this card.

IEEREEE ¥

E

xummmme
Degoouun
BHRHE_™H NG Y

RERRRREL
120222221
33331433
55555555
66656663
IARREREE!

808880838

9934999¢%

BRBBENBNGD

t

compiler will ignore the
Such a card is'called

a Comment Card =nd is used by-the programmer for identification

purposes.,
If one card is not
cient,'more cerds can be used but eveg;comment card must

letter C in the first column., Comment cardsrare used 1o

Columns 4 through 72 on IBM 1620 and 2 through 80 on

suffi-
have the

provide

21

headings for the programs, Though the Fortren compller doeés
not process the inférmation on the card, it prints the infor-
mstion while "listing" the source program. Comments are parti-
cularly helpful to the programmer when he returns to g program
after a long time. Any number of commenf cards can be used in
a program, |

Arithmetic Stetements: Statements which specify the manner ing

which variables should be computed are called Arithmetic State 4
ments. An arithmetic statement in the Fortran language has the
form but not the meaning of a mathematical equation.. e.g.
4 = 2.0%B + 4,0 % Cx%2+ D, The left side of the equality
symbol in &n arithmetic stateﬁent is the name of & variable
which may be en unsigned fixed-point or flostingwpoint variable,
The right side of all arithmetic stzstements are expressions,
The arithmetic statement.instructs the computer to evaluste the
expression on the right side of the equals sign end place the
resultant valﬁe in the locstion for the variable whose name is
given on the left side of the equals symbol, In other words,
the equality sign in Fortren literaliy means, "to evaluate the
expression on the right side and assign the result to the
variable whose symbolic n:me is on the left side"., For example,
the grithmetic statement.

M = M+N
instructs the computer to increase the current value of M by
the current value of N, The arithmetic statement

A=2B

it i S

T

aa

causes the variable 5 to assume the value that the variable B
has at the time this statement is executed. The two sides of
an srithmstic statement need not both be fixed-point or floating-
point quentities., The st:tement

| A = K@
causes the present value cf b to be replaced by the floating-
point mode of the present value of K-Z, But the statement |

"Y = (K-2)x ¥X %% (K-3)

is not sdmissible because it violates the rule against the occcur-
rence of mixed expressions. It must be replaced by the two

statements

H

K-2

»
1

AR XL ¥ (K-3)
The zrithmetic stotement
L=4§+8B
causes the present value of the fixed-point variable L to we

replaced by the integral part of the present velue of the

floating-roint quentity A+B, the integral part of a number being

defined as the pesitive or negative integer thst is closest to the |

number without exceeding it in absclute valus, For example, the

iﬁtegral parts of 3,8 and -5.¢ zre 3 =nd -5, respectively,
Consider the qguadrstic equations

ax2 + bx + ¢ =¢C
b + A bE-dac
2a

whose rcots ere: x = If =5, b=6,3 end ¢ =-18,8

the Fortran prograsm that describes the computation is as follows:

23

A = 5.0 (or A = &)
B = 6.3 |
C = -18.9
RGOT 1 = (B + (Bx%%2 - 4.0%A%C))/(2.0x4)
E@M?z:(gB—(B%*Z—t&O%A%CVT&O*A)

0f course, the program could zlso hsve been written as:

ROGT 1
ROPT ¢

(6.3 + (6.3%x 2 - 4,0 %¥5.0% (-18.9)))/(2,0%8J0)
(6.5 - (6.3%%E - 4.0%5,0%(-18.9)))/(2.0%5.0)

1

Input/output stgtements:

If & problem is to be done only once, &ll éata can bhe
incorporated, in the program itself, in the form of constant
stutements. But, programs sie normally written to carry out the
computaticn for as meny sets of deta as desired, Hence, PrOgrans
are usually set up to read ths problem's date from cards at the
time the program is executed, and ccnstents are used for quanti-
ties which are recally constant throughout the computation for &1l
the data cards. One¢ of the most importsnt topics, yet difficult,
in Fortran programming is the hendling of a class of input/output
statements, The problem becomes complex when an array or matrix
1s involved. Let us first consider the input/output statements
al: licsble for single variables,

Of the many possible Input/Output statements in the

Fortraﬁ lénguage 1et us consider here only the ggsential Input/

output statements applicable to IBM 1620, IBM 1130 snd CDC 3600

computers.

24

The Input stcotement is o LEAD stotement, which contains

a stetement number and g List of variesbles., The List of varia-
bles cin contzin any number of fixed-znd/or floating-point

variables, each being separated from the other by & comma. The
stutement number in the IBEAD statement corresponds to a FORMAT

ststement which specifies the mode nd form in which the list of

varlables zre read. Table 1. below gives the general form and
some exemples of the HBEAD statement ¢s applicable to the three

computers mentioned above.

Table 1. E

IBM 1620 IBM 1130 2

CDC 3600 : |
Eenergl Forms Generaligorm: | |
LEAD n, List of variables READ (2,n) List of variables;where g
where n is the statement 2 in parenthesis 1s the designation é
b

number of the BORIAT stete- of the input unit that reads the

ment. data card and n the statement number?

3

of the FORMAT statement. %
Examples: Exgnpless
READ ¢, #, B, C, D, B, F READ (2,2) 4,B,C,D,E,F |

READ 444, ALPHA, BETA, GAMMA| TEAD (2,444) ALPHA, BETA, GAMMA
READ 45, 455, FOOL, KING READ (2, 45) 485, FHOL, KING

The uEAD ststement instructs the computer to resd numerical

data (or other materigl) from onebr more cards.

25

The output stsatement is a FUNCH, WRITE or a PRINT

statement, followed by a statement number and a List of variables.

The stetement number corresponds to & FOTMAT stetement which

specifies the mods end foma in which tae list of varlables are

to be punched, writfen or printed.

Toble 2. gives the general

form of the output stestement and scme examples, as applicuble

to the threce computers mertioned above,

IBi 1620

-

12

L™

Table

IBM 1130

CDC 3600

Generegl Form:
PUNCH n, List of

variables,where n
is the st:tement
number of the
FORMAT statement.

WRITE (3,n) List of varia

bleg ;where 3 in paren-
{hesis refers to the out-
it unit onto which the
variable values are to be
written end n is the

stetement number of the
FO:MET stetement,

PRINT n, List of

variablesg.where n
is the statement
nunber of the
FOLRMAT statement.

Examﬁles:
PUNCH 45,4,B,C,D,
E,F
PUNCH 555,ALP,Cids,
RESLT

WRITE(3,45)4,B,C,D,E,F

WRITE(3,5565)LLF ,Cids , XESLT

PRINT 45,4,B,C,D,E,F

PRINT 555,A8LPS,Cids, |
RESLT |

In the IBM 1620 instailation, &t the Pundamentsl Engineering

Research BEstiblishment, Guindy, *he »esults of the computation

-
<

come out as

an IBM Listing muchine. In the IBM 1130 installation, &t the

pdvenced Resesrch Centre for Fhysies, Guindy, the Computer l1ls

punched decx of cerds, which are leter listed on

26

coupled to an on-liné printer so that the output is in typewritten

form. In the CDC 3600 instzllation, at the Tata Instituts of
Fundgmental Resezrch, Bombay, the results are first obtained on

& Tupe which is then converted into a typewritten form by a

Listing machine.

FPORMAT statement and field specificstions:

The nume rical velues of the Input/Output varlables can
be specified in one of three ficld specifications. The labels
I,F znd E are used to distinguish these three notations., The

use of plus sign is optionel in these threc notations, I specci-

fication is used, if the value of theferiable is a fixed-point
censtant (or integer). T specificetion is used if the value of

the ¥ariable is a flloatingpdnt constaont without exponent., E

specification 1s used if the value of the variasble 1is & floating

polnt constent with exponent, These srpeclficgtlions when used

in FORMLT statements have the fcllowing general forms:

Tw
Fw.d
BEw.d
where w represents the width including sign (if sny) and decimsl
point (if any) of the data «nd d represents the number of places
toAfhe rignt of‘the deeimal point. Both w and d are fixed-point

constants.
4

When the variable is read in cne of the three speci-

fications mentiuned above, the computer convdrts the external i

a7

notation into an internal notation with the help of speclal

subroutines. The computer works with the intemal notation only.

Iw specificsticn: When uséd as en Input specificetion, the

computer's subroutine examines w columns for the input quantity,

If a positive or negative sign is present, it is included in the

count. The integer must be right-justified in the input field.

Examples:

Input date field specification
| in PORMAT statement

A81 | 13

1491 14

-l421 15

10 I2

5 I1

Ande ‘ 14

+67 13

(o is used to indicate o blank space)

When used as an output specificetion, w places are
reserved for the number. The space for the sign must also be
ineluded in the count w of the output field, The number is

right-justified in the output fisld.

Exagmples:
value of ocutrut Meld specification Print-out
variable | in FPIMAY statement
613 13 : 613
12 I3 PUR
S I3 PURY.
+13 I7 Aanastl3
8666 I3 666

-10 Lz -0

AR e

28

The last two examples, give a wrong print-out since the field

specification is fmemfficlent,

Fw,d specificaticn: Wnen used és an input speclfication, w
specelifies the number df places reserved for the iﬁput‘Variable: ;
including sign (if any) &nd declmsl point (if any). Because, |
the number of decimszl places are siceified in the d part of the
specification, the actual decimel point need not be punched on the
input dats card. The input guantity must be right-justified in
the input-field.

Exgmile: _ ‘ i
Input datew Fie¢ld specification ‘
in FORMAT statemént
125,456 F 7.3
-123.456 F 8.3
811.12123 F 12.7
3987 _ : F 4.2 (39.87)
1 F 1.0 (1.0)
315 F 3.2 (3.15)

When used es an output speecificaticn, w plazes are

reserved for the number. The speces for the decimal point &and
sign (if any) must zlso be included in the count w. If the

number of pleces reserved for the integer portion of the quantity |
is insufficient, the F specification 1s ignored and the number

is placed in the F 14.8 specificgtion,

Examples: .
| value of cutput Field specificetion Print-out
variable in F{EMAT stetement

32.1 F 8.4 32.1000
-0,9 F 5.2 -.90
-8.0 F 5.1 -8.0
-357,221 F 8.3 -397.221
41,6745 F 5,8 0.416745008+0¢

The last statement is an example of an insufficient field
speeification (F 6.2) for the vélue-of the vgriable to be printed.
The computer will point this ocut zs an érror while executing,

Eut it will &lsc print-cut the result in F14.8 specification.

Bw.d specificetiony_ When used as an input specification, w

specifies the field width including sign (if sny), decimal point
(1T =zny) and exponent, The d speclfies the number of decimal

placés. Becase of this, the actual decimsl point need not be

punched.

Bxamples:
Input dats FMield specification

in FORMAT stztement

200.674E+13 F 11.3
-2, 98E-16 F o.2
+100,648E-16 F 12.3
U8.E+16 14 F 7.0
101E+14 (10.1x1077) F 7.1

When used as an output specification, the field width
w includes four rlaces for the exponent, oneé space fcr the
decimal point and one space for the sign, Therefore, the diffes
rence between the integers w snd & must be, st least, six.

If the field specificaticn is insufficient, then the computer

automaﬁically prints the result in B 14.8 syecificaticen.

30

Examples:
Value of output Fiéld specification Print-out

variable in FORMAT steatement

-67.3211 T -.6732110E+02
g82. S E 1.3 9.820L+02
.C0000132 | ~ E 10.3 1.320E-06
-642,0068 o E11.4 -6, 4200E+02
12345678.0 E 10.0 1234.5+04

‘The generzl form of & FPRMAT statement is given below:

n FQMAT (specification for 1ist of varisbles
in 1/0) '

where n 1is the ststement number referenced by an Input/Output
(1/0) statemeﬁt, M exsmple of = READ--FORMAT comﬁihafion may
be s below:
aBAD 123, JK, XY

123 FRMAT (I6,I7,F6.3,E14.8)
The statement number (123) of the FORMAT stetement slso refe-
renced in the «BEAD statement, may be replaced by any other
integer of up to five digits that is not used anyvwhers elss in
the progranm. Assﬁming that the variables are HEAD from a card
input; the above combinaticn would instruct the computer to do
the following:- The guantity in columns 1 to 6 would be analyzed
according to 16 specification end assigned to the variable Jg
the quantity in columns 7 through 13 would be snslyzed according
to I7 specification «nd sssigned to ths Variable K3 the guantity

in c¢clumns 14 through 19 would be eansglyzed according to F6.35

31

specification and assigned to the variable X; and finglly the
quantity in card columns 20-through 33 would be anaglyzed accord-
ing to B 14.8 specification and assigned to the variable Y.

Abbrevigticns such as (2110,3E15.8) for (110,110,E15.8,

E15.8,E1558)‘are‘allowed in FORMAT statements. For example,
AEAD 60, K,L,R,S,T.E
80 FOLMAT (215, 4E15.8)

A F¢BMAT st:tement may set gside more space than is
required by the list cf variables in the [BAD statement, TFor
exanple,

ABAD 44, AL, A2, A3
44 TORMAT (5F14.8)
This feature often mzkee it posd ble to combine the FORMAT
statements for seversl input variables, &s ins
WELD 585, I, K, X, Y
(”’\\ JLAD 658, J, L, F, Q, R, S
565 FORMAT (2,5, 4El4,8)

FOIMAT statements can meke use of three more specifica-
tions in gddition to those menticned sbove., These are denoted

by the labels X,"H znd /.

X _specificetion:
The X-type specification is used elther to skip certain

number of columns whilse reading-in the input (from a card) or to

leave blank spaces while printing the output. The general fomm is%

wX

|

32

where w 1is an unsl gned fixed-point constant (intcger) indiesting |
the width of the field, or, the number of blanks to be provided

or theé number of columns to be skipped. When X-type specifica-

tion is used, it need nct be followed by & cCEma,

Exzuple:1l.
| 2BELD &, ALPHA, BETA, GAMMA
o FORMAT (F6.3, 2XF6.2, 4 X E12.6)

The corresionding data cerd from which the values of ALPHA, BETA
and GAMis are to be read should have the value of ALPHA punched
in columns 1 to 6 in 16.3 specificetiong while the values of

BETA in F6.3 specification nd GIMMA in Fl12.6 specification

should be punched only in card columns 9 to 14 &nd 16 to 30,
respectively. Hven if columns 7 to 8 and cclumns 15 to 18
contgd n chgrscters, they will be skipped (ignored) by the computerf

Examples 2.

PRINT 26, I1, Ig2, J1, J2 2
56 FOIMAT (I8,6578,6X16,5XI8),
According to these PRINT.F¢.#{AT statements, the computer will

print the four fiied roint integers in their respebtive Iw

specifications with five blanks between each one of them,

H snecificatioa:

H specification or Hollerith text is useful for giving
headings to the cutput to be'printed. The general form of the

specificetion is

wH followed by w charactexs

33

in a FORMAT ststement., If blanks are desired they are included
in.xhe.céumt,:.The field width w 1is an unsigned fixed point
constant (integer)., The Hollerith statement is also used to
intrcduce spacing between printed lines. The stacing specifi-
cation ccnsists of three charscters immediately fcllowing the
orening parenthesis of a FYRMAT statement. The first two of
: - two characters ars
these three characters are lHthdghnﬁe/followed by a blenk space,
0,1,2,3,4,5 or 6. Explicitly,
1H, will produce single stacing before printing,
1HO will produce double spacing before printing,
"1H1 will ecause skipping to the head of the next page,
102 will cause skipping of & half pege, '
1H3 will cause skipping of a thiirfhof a page,
1H4 will cause skipring of g fourth of g page,-
- 1HS will éause skipping of a fifth of s rage,
IH6 will cause skipping of g sixth of a Lage. .

Thus, the first character after H will serve &s an indication
of the spacing that is to occur before the rest of the line is
to be printea end this first- charzcter will not be printed.

The following is zn example of the use of the Hollerith
text to piovide a heading to the output. |

Example; 1.
| PRINT 11

11 FYRUAT (24H ARBSULTS , OF , FIRST, TRIAL.)
This PRINT-FORMAT combination will yield the printed message:

AESULTS ¢F FIAST TRIAL.

34

The PRINT statement which calle exclusively for the printing

of the Hollerith text contains only a reéference to the stztement

numbef of the following Format specificetion card. If a blank
were not left efter 24H in the Format stetement (i.e. if the
Hollerith text 1s punched immediately after 24H in the Formmat
ststement) then the output message will bes
ESULTS OF PIRLT THRIAL.

Therefore, while speci fying the fleld width for the Hollerith
text, the count for spacing indiecation and the count for the
.Hollerith text must be combined. |

Using the H specification ons cen READ in & card and
PRINT cut the same information., This can be accomplished by

the following three statementsg

Exgmule, &

AEAD 25 ‘
o6 POAIMET (BOHL ~==-- S0 blenk spaceS--=--=>)
FRINT 26 '

Assume that the cecrd to be read contained the following infor.
mation in columns 1 to 29

LEGENDWE~POLYNCMIAL GENERATOR
Then this infcmation would be printed in the output as such.
This is called us "BEcho print", .

The H =nd X specifications can be suitably mixed to

give the following printed output:

P = -15.213 Q = 256,867 o= 123.567 1J=133

by using the following two statements:(iixaxnph9-5)

35
Bxample,3; |
| PRINT 175, P,Q,R,IJ
176 B|RMAT(1HOXP=F7. 3,6X2HQ=F773,5X2HR=F7 . 3, 56X 3HIJ=13)

Slash or Solidus specification:

‘7 The slash or solidus (/)rmay be used in the Format
statement corresponding to an input or output statement. A
commg need not follow the slash when 1t is used in g Format
statement,

Exagmple,1:
READ 2, 4,B,I
2 FORMAT(F6,3/E14.8/13)
Thic READ-FORMAT combination makes the computer read the value
of A from the first data card, B from the second and C from the
third,
In general, k slashes in a Format statement will cause
k blank lines in the print-out if the slashes appear elther
before or after the last specification. But, k+1 slashes will
cause only k blank lines in the print-dut, if the slakhes are
between ény two OEE;;TTorms of Fomat specifications.
Examplé.E: |
PRINT 10, A,B,K,C
10 PORMAT (F10.3,E12,5/16,F6,3)
This Format specification will cause the first two variables
to be printed on the first line and the second twé variables

to be printed on the second line.

36

Exsmple., 3

PRINT 36
i

36 FPOARMAT (18H OSERIES SUMMATION.//)

5
|
r
+
1
i
¥
i

This Print-Format stztement combin:tion will cause the Hollerith -

text to be printed amd then two lines to be skipped.
If & set of virkbles are to be HEAD or PRINT&d in the i
seme specificstion, then we can mzke all the values be Read

| (Printed) from (on) the same card (liné) or mske each variable

be Rewd (Printed) from (on) e different card (line).

iEXkaLe.ég | |

RE4D 63, F,Q,R,S,T :

63 FORMAT (5F6.3) o |

will meke =11 the variables be read'f:om the seme cerd while
| 63 FOIMAT (F6,3)

willimake the computer reac each variable from ¢ different card.;

Exanple.S;: - _ §

| PRINT 25, X,Y,2,W

25F%MM‘ME3£)

will cause ell the veariasbles to be printed on the same line, whii

26 PO@iLT (EL3.6)
will cause each varisble to be printed on different line .
Notice thsat in the above examples the right paremthesis,é

like & single slesh or solidus

gresets the printer for a new wecoﬂ

37

CONTROL STATEMENTS s

PAUbE, STOF ¢nd END stctements are celled control stete-
méﬁts. 0f these the PAUSE znd STOF ststements take effeet only
when the object program is executed, i.6. they do not ceuse
théztenninaticn of compilation. When the computer encourt ers
thess statements while executing the objeet progrem, it comes to ?

a helt in the munual mode. If the comrutsr cemés to 2 helt in

the manuzl mode due to & PAULL stectement, then the operstor cen

by & manugl operation on the computer conscl(exrlicitly, by

pressing the STAUT switeh) resume the execcution of the program _ﬁ
from wheré the computer left off. But, if the halt is due to
a STQF statement then the execution of the pfogram cannot be
resumed by a mgnusl coperzticn on the computer conscl by the
operato r, |

The END stutement must be the lsst statement in the
Fortrsn source progrem. This stotement indicates to the compile#

that thére zre no more qutran stztements to be compiled in the

source Lrogram, :
While thére can be one cr more PAUSE and STEP statemgntsTE
'in aJSOurce progrem, there must be cne :nd cnly one END state-
ment in & source program. After the END cerd, the datc cards,
if &ny, shculd folloﬁ‘_
With these besic Injut/output and Format statements at

our command, we can write simple computer programs,

Program,.l:
Let us write & program to evcluate the roots of the
Guadratic equaticn: x4+ bx + ¢ = 0 for a,b and ¢ given in

F6.3 notaticn (sey).

1| |E£D 2, 4,B,C

o} |FOIMAT (2r8.3)

STEP 1 = (PX %2 = 4,0% 4 3¢C)x% 0.5
DENGH = 2.0% A

R$$T 1 = (-B + STEP 1)/DEN{H

ROCT ¢ = (-B - STEP 1)/LENCM
FRINT 8 , 4,B,C, iOT 1, RCHT ¢

un

81 |FORMAT (BH A=F6.3,2XoHB=F6. 3, 2XoRC=F6 3, 2XBHROOTIEEI 3.6,
1| 2X6HRAGTOETLS.6) |
STHP

END

e e e e T e

If A,B ¢nd C ¢ve punched in & cerd &s follows:

c.rd cclumns varisble name Fomm

1-6 B AIX XX
10-14 C XX
20-24 ~ ‘ 5 ' XX, XX

Whzt chenges should be made in the above progrem?

Progrem, gs
Given a,b @nd ¢ in 7.3 siecificaticn, write a program

to evaluste

39

and rrint the result in E 20.8 field specificaticn.

<EAD 25, 3,B,C

26| [FOMLT (3F7.3)
AN = 1,0 + 4
D1 = C+6.0

Dz = B/D1

DNii = 1,06 + Dg
F = ANE/DNR
PRINT &3, 4,B,C,¥F

83| |FORMAT (31 A=F7.3,2XgHB=F7, 3, 2XoHC=F7. 3,
1} 2X2HF=520.8"

STOP
END
Exercise ,-i;

Write a program to evaluate the value of:
R = (18.6 - x)"*
given that X is & floating toint varieble with a width of 10
znd that n is an integer with 2 field width 5. The outprut

should contein x,n «nd R.

Exercise.b: Write a program for eveluating:

r :kﬁil:Gxg(l- Ly 4p8(1- %)% 4 (1~ E5>V22
12 49 a. -

READ: a,b,e,x in F6.5 specificaticn.

PRINT: 4,8,¢,X,r with r-in Dw.d specificatien,

40

TRANSFER QOF CONTROL STATEMENTS

| : Normally, Fertran stateqents are executed by the
computer in the sequence“in which they occur in the source
progran, until the STOP ststement is encounte red. . But, o}ten
we mey wish to return to the beginning cf the program to execute
1t again with different data., Or, we mey wish to brench around
a section of the program deprending upon the values of intemedigte
cemputed results., . Statements which make the computer execute
source prograzm stetements in other than the normal che-gfter-the-
other sequénce, are czlled control or fRANSFER OF CONTROL or
brench stotements: There are two types of trasnsfer of control,
vig. unconditionsl and conditionsl transfer of eontrel, statements,
Iransfer of ecntrol should be made to sxeeutable statements only.
4 trensfer to g non-exgcutable statement will result in a program-

ming error,

Uncenditionsl Transfexr of Control Statements:

The simplest statement which interrupts the normal
sequential mode of execution is called the G¢ T¢'Statement. The
genersl form of this statement is:

Gfp ¢ n
where n is & statement number., The G¢ T n statement in s
source progrem directs the computer to unconditionslly go to
executs the statement bearing the statement number n, instead of
executing the next oneg in sequence in'the scurce program. . The

statement (with statement number n) referred to by the Go Td

41

stetement is gllowed to be gny executable statement in the

souree progrem, either before or after the GO T statement itself.ﬁ

(An exemple of o ncn-executable statemant,encountered so far,
is the FORMAT statement),

Exgmyle.

1} |AEAD 2, 4,1,7,K,B

% ?¢RMA? (r6.3,31%,F7.3)

) '

1 '
' '

Gd T 1
g5 |sTOPR
END

In the above example, the unconditicnal Gd 70 1 strotement

before the STF statement mrkes the computer READ 2 new set of
data (from data Cards Placed =fter the END card) and then re-
€xceute the prograsm with the new values of the variables A,J,d,K
and B« Due to the unconditional nature of the Gd TP 1 statement,
the computer will hever encounter the STPP statement. But, the
computer, after executing all the dats ecurds will print an error
statement (indic;ting the incorrect teminstion of fhe Frogram)
«nd then it will automatics11ly come to a stop. Note that g
st;tement.number, 45, hes been given to the STOP statement, This
is essential in fhe case of some ccmputers.(If the stetement
following the G¢ TO statoment does not have g statement number,

then this will be indicated &s zn errop by the oomputer.)

42

Conditionzl Trensfer of Control Statementss

We will consider here two of the e nditiomal trasnsfer
cf control statements whieh ore essenticl in eny typical yrogram,
These are the computed G $¢ and arithmetic IF statemsnts,
The general form of the computed G. T¢ statement is:
Gh TO (ny, ng,...ny), i
where nj, ng, voe Ny are stetement numbers and 1 is an

unsigned fixed point (integer) varisble with 1 < i < k. The
computed GO T statement provides = many-wey brench based on the
value of zn integer varisble., If the vslue of the integer
Variable i, &t the time of execution of the computed GO TP
ststement is j, then control is transferred to the statement

with statement number nys For example, the statement

Gt TO (15, <4, 23), I
means that 1f the value of the integer verizble I is 1, then
control will be trensferred to statement number 155 if it is 2,
to statement 44y end if it is 3, tc statement 23,
Exemiule.l:
We are required at & certsin point in a progrem to compute%
the vilue of one of the first five Legendre pclynomials, defined

&53

Po(x) = 1

Pl(x) = X

Pg(x) :%_ x2 - “;:
Pa(x)' = % x5 -%x

Py(x) = %—ag’dxé -ifxz + %

43

Let us assume that X has been previcusly computed snd that =n
integer varicble L tekes the vzlues 6 to 4, It is the value
of L which détermines which of the five Legendre pclyncmials
must be computed, f.e. if L=0, we are to computs Po(x); if L=l
wé are to compute P1(Xx) and sc cn. We cannct use the compute!
GO Td stotement straightaway, becsuse of the restriction that'tnn
'value of the integer varisble must not be less than one. Sc,

we must first define a new varisble which tekes the range 1 ic &
instead of O to 4. Let this new varlablé be L1, The flow cvrr'
for this prcblem is:

Ll=1 L1=2 Ll=4*~_ Ll1=6
_ ! fey { 5.5 3 35 4 47 o 4]
P= E-X _ \P {P—--—ixo“ “i)j}} ipﬂ-b X ——‘_’;L (i
L/ A/ ¥ \I/ ! T
J
The scquence of Fortrin statements which agchieve this are:
L1 = L+l
Gp T¢ (1g,14,16,18,20),11
12j{PF = 1,0 '
GO Td =1
141 |P = %
G¢ ¢ 21
161iP = 1.5%X%%2 - 0.5
16 1O 21
181iP = 25%&#%8-215*
Ghp ¢ 21
2001P = 4,376 % X%x4 - 3,75%x X% %2 + 0.375
21 LR B IR B N NN N NI)

44

P is the value of whichever Legendre polynomial is conputed.

The general form of the Arithmetic IF stetement is:

IF(4) ny,ng,ng

where A is any fixed or floating-point variable or expression

and nl,nz,nn are three stutement numbers. The Arithmetic IF
o

statement 18 a conditi-ngl transfer of oontrcl statement ceusing

trensfer to stectement numbe ny,N¢ Or n derending on whether

3

the sign of the diseriminant of A is negative, zero or positive,
Yespecfiuetg-

Example, o
In a problem it is necessary to select the value of Q

for 4 grest th=n, equal tc, or less thin serc
Q= =-9/2 fcr 4 <0
= 0 fer £ = 0
= /2 fer 4> 0

The flow chart for this 1is.

.]px = 3.14159265

The following are the Fortran statements in'sequence for doing t *

thiss

45

PI = 3,14159265
IF(4) 4,6,8
411Q = -FI/2,0

G ¢ 9
6/{Q = 0.0

Gd T o
8{|Q = FPI/2.0
1 1 IR

The agbcve is an exemple for g three-way transfer of control
using «n IF statement. The fellowing example illusfretes the
use of an IF ststement gs g twe-way branch statement.
Exgmile, 3:

' Let us draw a flow chart end a progrem segment for

-eumputing .

IF(K-4) 16,156,17
A:kz'*?- A_‘::'?\ 15{ (A = K¥x2 + 2
> & ~ G¢ T¢ 18
{ - 170]s =K
18 LEE B I N IS

Occasionzlly use is made of the following statements:

IF (SENSE SWITCH i) ny,n,

46

where n; and n, are statement numbers end 1 is 1,2,3 cv <
in the cese of IBM 1620, This ststement causes contrcl trens-
ferred to statement n; or ng derpending cn whether the couscle

rrogram switeh i is on cr off. ¥or example,

IF(SENSTE SWITCH 3) 65,26
| (cn) (off)
With the transfer of contrcl ststements at our digpownt
we can stert writing reclistie programs.
Erogram,o:
Let us write & yprogram tc compute the sums of the “irvot

20,40,60,80 and 1CC terms of the infinite series:

5:1-%+%-_‘7+....
The fleow chgrt for this prosram is: Gg)
, J ;
@ | SUM = SUM + P/Q f
SUM=0,0 P = _F ;
P=1.0 Tl oa=q+ 2o '
9=1.0 - I =1 +1 ;
I=1 \

N=20 - <
T

47

The rrogram for this problem can be written with or without

o3

<

AEAD ststement. Let us write beth the pregrems,

¢ PROGEAM & USING .EAD ST TEMENT
1{{READ 2,N .
2| [F¢MAT (I3)
SUM = 0,0
P=1.0
Q@ = 1.¢
I =1
7| |SUM = 5UM + B/Q
P = _p
Q@ = Q+2.0
I = I+41
JIT(I-N)7,7,12
12| [PRINT 13, N sUM
13| | FO 4T (2K2HN =153 2XéﬂuUM‘E20v8)
Gd ¢ 1
154 [S TP
END

The values of N which are read cre 20, 40, 60, 80 :nd 100

runched on five different dats cards, the number being right

dustffied in the first three cclumns of the gazrpd,

FROGRAH 5 WRITTEN WITHGUT READ STATEHMENT,

C
, N -
SUM
P

Q=
I

P
Q

If

UM =

I

i n

20
= 0,0
= 1.0

1.0

1

SUM + P/Q
-p

Q+2.0 -
I+1

IF(I-N}5,5,10

PRINT 11, I, SUM

FORMAT (zxadm;1%~2X4HsUM,E20,8)
N=N+20

IF(N-100)5,5

STOP
EMD

10
11

13

48

Notice that the former program is morg generzsl then the latter
since in the case ¢f the former program we can get the sum of
any number of terms in the series by heving suitable datsa cards
whiie in the case of the latter meny Fortran stotements will
have to be chenged if the required results are not for sums of

a0, 4C, 60, 80 &nd 100 terms of the series.

Exerciss.G: Write a pregram for
500
X = Z Ckyk-
k=0

whe re Cp = k fer 0 € k¥ < 250

and Cx = 3k2 for 261 < k € 500, whieh ¢an be computed for

various velues of y given in F10.5 formsat,

Exercise,7:. Write a program for finding the sum of the first
26, 50, 75 and 100 terms of the seriess

2 3
S:l-%'i' :—1—9--__,2;“_* s =
3 5 72

without using a oEAD statement,

Frogragm.4: To illustrate thefise of the computed G T¢
statement let us write a progrsm for comjuting the feollowing:

0 4 1.0 o 10 4
SuMlL = o kT, SUM2 = 3 (2k)7, SUM3 = S (3k) .
k=1 k=1 k=1

1

11

49

OTAKT OF PROGRAM <4, NOTE THAT Ak IS SUMMATION INDEX AND

SUM1= 0.0 FOT K.
SUM 2 = 0.0

SUM & = 0,0

K =20

AR = K+1

SUM 1 = SUM 1 + AK%%3 _

GUM 2 = SUM 2 + (2,0 %/K) %xg

SUM 3 = SUM 3 + (3.0 %4b) x4

K = K+1

Gh 1¢ (5,5,0,6,5,5,5,5 ,5,11),K

PRINT 12, k, SUM 1, SUM 2, SUM. 3

FOiMAT (3HAKEIS 2X;H§UMIGEL8;6;¢KSHSUM £5E13.64: -
ax{aHSUMBHE.’LWGJL VG

STHP

END

The fcllowing 1s en altemeative way of writing the gbove program,

(Mo a o

1z
13

START OF PROGRAM 4B. ALTEANATIVE FORM OF PadGRaM 4.
NGTE THAT K IS SUMMATICN, INDEX HZRE, AND MOTEL THE
POSITION OF THE Gf T¢ STATEMINT 26 CEMPARED T TH
ABOVE VE.SION.

ISUML = ¢
ISUMe = O
ISUM3 = 0
K=1

GO T¢ (6,6,6,6,6,6,6,6,6,6,12),K

ISUML = ISUM1 + KX 3

ISUME = ISUMZ + (SxK)%% 3

ISUM3 = ISUM3 + (S %K)xx4

K = K+1

G T 5

FRINT 15, K, ISUML, ISUMg, ISUM3

FOEMAT (23H K=16, _KSHSUMI E12.6,2X5HSUM2=F13.6,
2XGHEIMIHELS @]L.»)

STHP

I

1|

JEND v

50

It is cbvious frem the zheve exXample that use of the
computed G¢ T statement for indices which take large number
of Valﬁes {(say 100) will be qumbersome. Further, ccmputed
G¢ TO is not always used to perform a loop in the jrogram. TFor
execution of 2 look, use is made cf D§ and CONTINUE statements.

Let us consider these stetements in detsil.,

DO ond CONTINUE Statementss

The D statement marks the beginning of a locyp and the
C¢NTINUE statement usually marks the end cf the loep. The gene-
‘rzl form of the D steotement ise

Db ni = fyy Mg, Mg

where n is the statement number cf the statement ending the DJ
loop (ususlly it is the statement number of the CONTINUE
stétement); 1 is an unsigned fixed-peint varizble end My Mg ,m g
ar¢ eusch either unsigned fixed-point constants or fixed-point
varlebles,

The D§ stutement is a ccrmend to repeatedly ekecute the
stetements immediately following the D stetement upto and |
including the statemeﬁt with statement number n, fcr velues of
the fixsd point varigble i sterting from my to m, in sters
of m3.h if m3 is not specified, it is t:ken to be 1 by the
compb €r. Alsc, 0 < my < my. The B loop will not be executed
1if initislly either ml,> mg or my = 0. The flow chsrt for

execution of Db loop by the compiler is as shown below,

Y 7 A}Cit
~ D¢
sgtisfied

Execute stetements in
loop inecluding thet
AN with ststement number

Exsmples of DO stutements ares

'
L]

(1) Dy 16 K = 1, 10
'
'

1501 coNTINUE

(i1) || ™ 26 IDBAL = MIN, MAX, ISTEP
t

26l = i e e e a e oo

Now let us rewrite progrsm 4, using the D§ statement:

k c PROGAAM <4 KEWRITTEN USING D¢ LOCP
I SUM1 = 0O

| SUMZ = 0O

1 |8UM3 = 0

i p 11 X = 1,10

[BK = K

] SUML = SUML + AK %3

SUMZ = SUMZ2 + (2.0 % 5K Jxx2

| SUM3 = SUM3 + (3.0 % 4K Jxxd

11} |CeNTINUE

PRINT 13, SUML, SUMZ, SUM3

1s FO$MAT (8HASUMY=E13.6 , BXEHSUMRLEL 3.6 , 2XOHSUMB=EL 3,6)
STHF T

| |END

02

The set of statements immediately following a DO stete-
- ment upto and including the corresionding CONTINUE statement

1s called the renge of the D§, When the index of a D§ has
assumed all the specified values, the D is said to be satisfied
~end the next statement tc be execeuted is the first statement
fcllowing the renge of the D§. This kind of exit from a D¢ loop
is called nomgl exit., When g ncormsl exit occurs the main value
of the index (1) is lost 2nd it mzy not be used snywhere else

in the source program. However, the looring process specified
by the DY may be curtsiled by & transfer ocut of the range of the
D} before it is sztisfied. The exit now is cslled exit by
transfer., If the exit-occurs by a transfer which is in the range
of severcsl D¢ ststements, the current values of all the indices

controlled by them ure preserved for any subsequent use.

Nested D lcops:

When & D lcop contains‘ancther D locp, the grouping is
called & DO nest. The last statement of a nested DY loor must
cither be the same &s the last stetement of the outer DO loop

cr oceur before it, The allowed ncets ores

Example,l: ?¢ 1 I=1,20,2 , Schematically:
tooe D0 ny
Dp 2 J =1,5
' Y "‘“"'"—"D(b n
tor 2
Pd) 8 F,-‘-. 2,48 oy n.
I : 3
3t Je¢NTIHNUE
I n
21 | CONTINUE [3
Mog L3l :
! ! 1 D{b n
CONTINUE 4
¥

-

1| CONTINUE

S ¢

53

Exgmple.c:
D¢ 100 I = MIN, MaX Sehematiceallys
! [4 ¥
] [1 D¢ I’ll :
D 105 J = 1,5 , DY n, |
' ' ' D¢! n.
Dy 110 X = 5,25,5 |
1 L] '
1 ' ' g
110| |CONTINUE n
' 1 2
' 1 ’
105 | | CONTINUE n,
1 1 B
t 1
1GO! I CONTINUE
Example, 3: | Schematicallys
D 54 I =1,5 ~——D¢ n I=1,5
! t T
' 1 ' -——-—-—-_D(b n le,lO
;b4 J = 1,10 ;
bl v DY n K=J,16
' t]
p¢ s? K=J,15
1 1] ’
' ? ?
54 | CONTINUE L 5

It is important to ncte thet o nest of D) loops may have a
ecummen ending yoint (s in example 3) but that the inner loop
cznnot end «fter the outer locps. The following example shows

incerreetly ended locrss

— D ny
b n,

Incorreet locpss

54
The CONTINUE statement is a dumﬁﬁ statement, most
frequently used to tefminate the D¢ loop. If CONTINUE is used
anywhere élse in the source program, it acts as & do-ncthing
instructicn and ccntrol passes cn tc the next sequential
stetement in tne procgram,.

Rules governing the use of the D§ statement:

1. The first statement in the raznge of the D§ statement
must be an executible stotement i.e. the flrst statement after
the D stetement must nct be o CONTINUE, FORMAT, smép, END,

. (EQUIVALENCE, C¢M4¢N or DIMENSIPN) statement.

2. If the range of g D{ stetement contasins another DY
statement, then the entire range of the inner D stetement must
be part of the range of the cuter D statement. In no case
should the range of an inncr Dy extend pzst the range of en
outer DP.

3. The last statement in the rsnge of o DY must not be g
control «r transfer of controi statement., In other words; the
last statement inrthe renge of & DG must nct be a 8T®P, FAUST,
END, 4§ T, IF or = Db statement.

4. The range of s D must be entered only through the D
statement. Trensfer inte the range of a DO by an IF or GO T3,
statement outside this range 1s nct pemitted, In the cgse of
nested DY loops, this rule prohibits a trensfer from the ranse

of en cuter DY into the ringe of an inner Df, but 1t does

85

noct prohibit & treznsfer from the [
range of en inner D§ into the <o
renge of an cuter DY, This ' [:::;
stetement 1s 1llustrzted in — 3
Fig.l, where'z, 2 and 4 dencts r_&_ﬂ 4
allocwed trensfers whlle 1,5 :nd S 5

6 dencte trensfers which are i if:)é

I renibited.

Fig.&

An exceptlion to this rule is thet of trensferring cut of g nested%
D(bnl i

—— D¢ ng J

D§ loop to execute some state-
ments (outside the renge of the

nested DO locps) «nd then retur-

‘}.._._
ning back tc the nest., In Fig.2 _ <£%§5§)
oy

YExtr.' represents a porticn of

the program outside the D) nest, | e < %

.and since the range of 1 inclu- "1

des the renge of j, a trensfer Fle.2

out of J «nd then z return into

the range of elther i or j is , i
permitted.

5. The range of a DY must not contsin statements that

chenge the values of the index or the value of the increment
or the value cof the upper bound. In other words, within the

range of & DY loop, e.g. Dd n 1 = My, change of the
. o

56

value of 1, my, m_ or Mo is not permitted, . %

e

6. Tae current value of the index of & D 1s aveileble
for use in statements outside the range of the DO if and cnly
if there:has been zn exit by trensfer out of the locr.

Pregram,.O:
we can rewrite program .2 using DO loops es fcllows:

SUM = 0.0
F =1.0"
Q = 1.0

DG 12 N = 20,100,20
Dhp ¢ I = 1,20
SUM = SUM + F/Q

P = <P
Q=Q+ 2.0
9! |CYNTINUE

FRINT 11, I, SUM

12| | CONTINUE

11| |FORMAT (2X2HN=I5; oX{HSUN=ELS.7)"
STGF

END

Program,6: The following is ancther example cf the use of D

lccps. - Compute

40 M N | ;
= 7 Z [RC HB-1)+A_]
R AN

where A,B,C are constants and N is specified,.

o7

READ 2, A,B,C,N
2| |FORMAT (3F10,4,12)

|suHI = 0.0
SUMT = 0.0
SUMK = 0.0
Dp 5 T = 1,11
FI = I-1
5{{SUMI = SUMI - FI
NFl = N+1
p 10 J = 1, NFL
FJ = J-1

10| |SUMI = SUMJ + A%%FJ
Dp 15 K = 1,N
FK = K .
15| |SUMK = SUMK + C ¥FK

1BIGMA = SUMK + B - SUMI + SUMJ
FRINT 16, #,B,C,N, SIGHA -
16} |F$MAT (3(F10.4, 2x), I2, E20.8)
STOF -
BND

SUBSCRIPTED VARIABLEG:

In meny methematicsl problems we find curselves meking
use of errays or mgtrices. In methematical notaticn the
elemsents of the array are subscripted. fcr egse of notetiong e.g:
&9 4 bjk’ etc, Tortran provides for subscripting of variables,
which mekes it possible to refer tc a complete array of data by
one geometric name. Subscripted veariables are useful in them-
selves but they have an added power when used in conjunction
with the D stetement,

Any verisble (fixed cr floating-point) with a

subseript in psrenthesis after the name is celled a subscripted

LY

58

varizble, An unsigned fixed-point censtant which is different
from zerc, cr an unsigned unsubscripted fixed-point variable
are the most cokmon forms of subscripts. The complete set of
quantities is calleq an agrragy and the individual quantities
ere called glements. A subscripted veriable in FORTRAN may
hive one, two or three subseripts, and it then represents a
ocne-, two-, c¢r three - dimensionsl array. (Nocte that here

. dimensicn refers.to the number of subseripts only). Scme
versicns of Fertran allcw more than three subscripts, seven
being the number permitted in advenced computers like IBM 70¢0,
IBM 7094, TBM 360 H-level, Univac 1107, cte.

The one-dimensicnal array xj, Xg, xs,...;xéo, is written

in Fortren subseript notatiocn as:

(1), X(2), X(3),...,K(20) ’
The ¢lements must alweys be numericsl censecutively, starting
with 1. An array of two rcws end three cclumns might be written
In

in methematical notation s 8110 f1g9 8199 Eg10 B50 8ot

Fortran subscript notaticn the elements would be written ass
A(1,1), A(1,2), A(1,3), a(e,1), £(2,2), #(2,3)
We note that the subscripts are seprarasted by ccmmas,
The most.gengral edmissible form of & subscript is the
sum of two tems, the first is the yproduct of an unsigned fixed-
roint eonstent by an unsigned unsubscripted fixed-point variable.

while the second is & positive or negative . fixed.point constant.

59

The . followi-ng are examples of zllcwed subseript variable formss
| X(20), £(2,3), RADV(1,2,3);
ALPHA(NU), BETA(I), GAMA(MON), BETA(MU,NU);
I(K+4) KAPFA(S5 % I+3),; B(7 %K), DELTA(S ¥L-8),
: Q2 % M+3,N-1)
Note that the use cf subscripts such ss 5% L-8 1s only legitimete
if the velue of the subscript is pesitive for all values that
L .ssumes in the course of computaticn. This restriction to
positivé-subscripts in Fertran cften requires gll the subscripts
in a formulsa to he increased by the same positive integer before
it is programnmed.
Note that quentities such asy
0, -3, -5 L, M(N); K% 3+2, M+N, 4.7, 0.5, 2/3, R
cannot be used es subhscripts in Fertran. Sc thet, a = bCyup

must be evalusted only in two sters, as:

M L+M

f1

pil B* C(N)

8

A subseripted variable cennct be reprresented by a symbol
that is used for a non-subscripted variable in the same program.
Thus, while XXy is unobjeeticnable in a formula, the Fortren
eompilér will not ecorrectly interpret the expressicn X-X(J).
Examrle,ls |

Suppose we have itwo rcints in srace, represented in
" eoordinate form by (X19X29X3) and (yl,yg,yB) snd we are required
to compute the distznce between them, which is given by:

- d = [:(xl-yl)g + (x2~y2)2 + (xs—ys)zill/g

“the two pcints.,

60

To prograzm this, we g6t up a one-dimensicnal array called X,

the three elements of which are the coordingtes of K, and
ancther similarly fer Y. Then

D= ((X(1) - Y(L))xxe + (X(2) - Y(2))xx2H{X(B0=Y(3)VE2) 2,
- *= % 0,0

is the Fortran statement that computes the distance between

Exalee.g; 20
> e
SUMSQ = <~ x4
i=1
We set up the 20 numbers, Xy to‘xgo, as the elements cf & cne-

dimensiongl srrazy X, WNow, any of the 20 numbers can be referred

by the neme X(I), where I takes the valuss from 1 to £0.

SUMSQ = 0.0

n

D 25 I = 1,20
SUMSQ

il

SUMSQ + X(I)*#%2
o5 CONTINUE

If, instead of ﬁsing the zrray, we hed given 20 different names
as X1, X2,...,X20, then we could not have made use of the I¢
loop to find the sum of their squsres. This example cleerly
reveals the rower of the use of the subscripted variable in

conjunction with the D stetement,

Tk DIMENSTON STATEMENT:

When subscripted variebles agre used in g program,ﬂmifdhmﬁr%

informagticn gbout them must be supplied to the Fortren compiler:

61

1. Which vgriable is subscripted? :

2« How many subscfigts are there for each subs-
cripted varighle?

« What is the maximum size of each subscript?

¥y}

Thespuestions are answered by the DIMENSION statement, Every
subseripted varizble in a program must be menti-ned in a
DIMENSI{N statement, and this statement must sppear befcre the
first cceurrence of the varliable in the pregrem. A common
rractics 1s to deciare the DIMENSI¢N infermaticn for all subs—
cripted variables st the beginning of the Lrogram, The general

ferm of this sfatement iss

DIMENSI¢N v, Voy Ve

where vl,vz,vg,.;. stand for fixed cr flopting.point varieble
names -fcllowed by rarenthesis enclesing cne,two,or three
unsigned integer cocnstants that give the maximum sizs of each
subscript., When the Fortrzn compiler procesces a DIMENSI(N
statement, 1t sets aside encugh stcrage locations to conteain

arragys specified by the infomeaticn in the statenménts.,

Bxgmpless

DIMENSIGN X(20), £(3,20), K(2,2,5)
The com?iler will assign 20 storage lccaticns tc the one-
dimensiinal zrray nemed Xy 60(=3 x 20) storege locatiocns to the
twou-dimensionel arrey A; and 20(=2 x 2 x 5) stcrage locaticns

tc the three-dimensiongl srray K. u nﬁt: N
v ‘ ¢ ’:”‘-‘c-;,.

: N
. ‘J f ‘ i \
e R

i
L i
{\“‘;‘, £ igr&.- trseitmemtea /o ” !
«}g?\ ﬁaj,
N s u i
Ny iZ o s

62

Rules to be observeds; In the DIMENSICN statement:

(1) subscripts must never be smaller than 1,
6ii) zere :nd negative subscripts sre not allcwed:
(1i1) subseripts cof veriebles must be unsigned fixed-

point constants znd not variebles.,

The DIMENSI(Y stztement is szid to be ncn-executable,
i.e. it provides infornaticn only te the FPortran compller cnd
dves not result in the erecticn of any instructions in the
object progrem. Th.ugh ¢ non-executeble statement mey occur
almocst anywhere in the source program, as alfeady peinted cut,
the DIMANSION statement must not be the first statement in
the renge of a D) st:tement and must appear before the variable
(+)

neme 1s used in the scurce program,

Exsmple.l: Two one-dimensicngl arrays A end B each ccntein 30
=0 o
clements. Compute D = 2 (4, - By)
| i=1

Let us write the prcegram segment only:

DIMENSION 4(3C), B(30)

D = 0.0.
'Df 5 I = 1,20
TEM(I) = (4(1) - B(I))¥k*%k2

D= D+ TEM(L)
5 CONTINUE

Exgmrle.2: Given two (2 x 2) matrices. ‘A =nd B write state-

ments to ccmpute the elements of the preduet matrix £B = C.

t0ften the DIMENSIQN statement is required to be the first
Fortran statement in z program. '

63

We know thet

C11 = 837 P1p * 2y by

Crg = a11 byg + 3¢ Bog
Cop = agy Py +oagp Doy
Cop = gy byg + 8y oo

Hence the progrem segment iss

DIMENSIGN 4#(2,2), B(2,2), C(2,2)

C(1,1) = a(1,1)%B(1,1) + A(1,2)%B(2,1)
C{l52)== A(1,1)%*B(1,2) + A(1;2)%B(2,2)
c(z2,1) = A(2,1) #B(1,1) + 4(2,2)%B(2,1)
C(2,2) = A(2,1)%B(2,2) + 4(2,2)% B(2,2)

Inrut/Output st:tements for subscripted varisgbles.

If subsceripted varicsbles are to be listed fcr input
or cutput, the subscripts must be unsigned fixel-point constants
or variables only. Thus A(2%J+5), while admissible in an
arithmetic stetemehf, cannct be used in a list, In a GBAD
stutement, the elements cf arrays can be exylicitly written,
In sueh a case the orier cf the elements is nct specified. A1l
that has to be ensured is that the data be punched in the dets

caerdsin the seme crder in which they are Read.

Pregram 7: Consider the problem of sclving two simulteneous

equations in twc unknownsg

Cll J{l + Clz A F bl |

The sclution using Cramer's rule is:

xq El ng - bpr Clz__
11 G2z - Y2 fa

!

b, C

¢ %11 -8 G

zl

-1

<

The problem czn be conveniently sclved by setting up two one-
dimensicnal srreys, of two elements egch, fcr b end x, end a
twewdimensiongl wrrey of four elements for €., A simyple program

for this problem would be =s fcllowss

DIMENSION B(2), X(2), €(2,2)
dEAD 2, C(1,1), C(1,2), C(2,1), ¢(2,2), B(1), B(2)
POMAT (6F 10.4) |
DEFOM = C(1,1)%C(g,2) - C(1,2)% ¢(2,1)
X(1) = (B(1) %C(2,2) - B(g)* C(1,2))/DENH
X(g) = (B(2)*C(1,1) - B(1)%C(2,1))/DENGY
PRINT 6, X(1), X(2)
6| FORM:LT (6H X(I)3EXAI75645H8(2)<R¥4:7)
STHP '
LED

n

" The elements of an arrsy nced nct alwasys be listed
individually as in the abcve simple example, They cen clways
be specified bodth in Input and cutput statements by indexing,

Bxgniles below show the sllowed forms of list specificaticns.,

65

Exgmple,.l: The list gy &7y B11y 816y 819y 8.4 CED be
specified by
(4(I), T = 3,22,4)

\\
where the three integers fcllowing the equality sign indicate
the initiel value, final value end the ccnstent difference

between consecutive values, respectively, of the subseript I,

Bxample.g: The list aq, 8oy Boyeeydyg is specified by:

(A(J), 0 = 1,10)
where the third ihtegér whi ch indicetes the eeonstant di fferencs

between successive values of J isg cmitted, since it is 1(ss

in the case of the D§ stetement),
Example,3: The range of the subscript can be given in terms
cf unsigned fixed-point verlables, provided the values of
variabies heve besn previcusly resd or comyuted, Thus,

(B(K), K = MIN, MAX, ISTEF)
represents By, o, Byyp o Istepsesr+9By,x Wwhere MIN, MAX &nd
ISTEP must have been read cr computed before this 1lst is
enccuntered. Needless tu say, the szbbreviation 1s meaningful
C4if and only if 0 < MIN < MAX.
Example.4: The list ay, bl, CP bg,...,ago, bgo may be
speclfied by: .

(A(I), B(I), I = 1,20)

which indicztes that & single indiceticn ef the renge of a

subscriﬁt is &iiliceble to more than cne veriable with this

66

subscript.

BExample.Os T?e liet M4, Moy Msp, Mpg, Moo, M52, M a9 MBB’ e,

ié specified bys
((M(1,J), T =121,56,2),J = 1,3)
Netice that for easch value of the cuter subseript, the complete
renge of the inner subscript is cocvered.
Let us now congider en exemple of Kead wnd Format
stétements used in conjunctioen for a2 subsceripted variable.

Exemyle. 6

sEAD 28, K, (A(1),I = 1,K)

28 FORMAT (I5/(4E15.8))
This qombinztion cazuses the vaiue cf K tc be wead from a first
deta eard, =nd the values cof A(1l) thrcugh A(K) from as meny
subsequent data cards.as necessary, each card contsining four
valuecs with the exception of the lzst card, which may contein
less than four velues,

Similarly, en example for a2 Print-Fomat combinaticn

1s the fullcewing.,

Exgmg;e.7;

PRINT 148, (I, #(I), I = 1,560)
146 PQUMAT (1H 4(I5, B14.7))

o

wiich weuld yield = yrint cut of twelve lines each ccntaihing
fcur sests cf Valueé cf I and the ccrrespending A(I) end g lrax

line which contoins the last two sets of velues of I and A(I).

67
Examile,8: If we require en (N x) matrix t¢ be printed cut,
(fcr N-g,S), this czn bs aqhieved by the statement s¢
| PRINT 46, ((MAT.L (I,3), J=1,N), I=1,N)
45 FQRMAT (8F1C.4) |
Or eyuivelently by

D 44 I
Dy 4« J

1t

1,
1,N

{

4¢ PLINT 45, MATAX (I,J)

45 FORMAT (8F10.4)
Progrem.8: The following is &n example cf o Fortren Program
te do matrix multiplication for matrices of & maximum size cf
16 x 15, assuming that the elements are punched(cne per card)
by rows,. |

Given o matrix 4 with dimensicns (N x L) and the matrix

B with dimensicn (L x M), the resultant preduct matrix € will

be of dimensicn (N x M),
Tc ecmpute zny ¢lement cij? select the ith row cf
4 ¢nd the jth colum of B, and sum the prcducts of their

cerreéspending elements, using the general fcrmula:s

1

2.

k=1

Ciy = M By

The computer program is s followss

68

c MATEIX MULTIPLICLTION
DIMENSION 4(15,15), B(15,15), €(15,15)
nEAD g, L, N,M
FOIMAT (312)

Dh 5 I =1.1

oh &5 T =1,1L

5|{uEAD 6, A(L,J)

61 | FORMAT (F5.2)

D ¢ I =1,1

Db o J=1,M

9| |LEAD 6, B(I,J)

[n]

I

D 15 I = 1,N
Dh 15 J = 1,M
C(I,J) = 0.0
Db 14 x=1,L

1411C(1,d) = ¢(1,7) + A(I,K)% B(K,J)
16| [FRINT 16, I, J, C(I,J) |
161 | FORMAT (214 ,2KF8.B3.

5TOP

END

Exercise,8: Gilven z -ne.-dimensiinsl array nemed Y with 50

elements, &nd numbers U :nd I, writ ¢ a stctement to compute:

%i-ﬂr"—%é—i

< . . 2
vl + 5080 -2y)

This is called Sterling's interpclation formuls through seccnd

differences.

Exercise,9: Glven twe one-dimensicnal arrays A end B,. cf seven
clements ezch, each element being in F8.4 stecification, with
the seven elements «f 4 punched cn cne card =nd the seven
¢lements of B junched on snother cerd, write a program to Read

the cards znd then to¢ computs

69

7
s = 3 57 °

and print ANQLM in E20.8 field specificetion,

SUBPLIWGRLMS

In & program, if the ssme group of statements are found
repcated meny times, we can write & Subprogram for that grcup
of statements, There are two kinds of Subprograms:

| 1, FUNCTI@N subpropram
2, SUBKPUTINE subprogram
The main advantages of subprogrzms sre three in number:

(z) Subprograms eveld unnecessary duplication of effert in
first writing znd then ypunching the same greup of stetements
in the scuree program, as well as wastage of storage space in

the ccomputer memcry,
(b) Sinee the szme subprogrezm can be used in many different
mein } regrams, they evidd & durpliceticn »f effort,
{c) Sub?rograﬁé can be separately checked fcr errcrs, since
they éan be compiled independently ~f the main program cf which
they «re a part.

Whatevef>be the motivaticn for thelr use, subprogrems

are a powerful feature cf the pregramming language.

70
FUNCTIPNS

Three tyﬁss of functicns zre used in Fortran., They are:
(1) Librery Functicns
(ii) Arithmetic stztement Functicns

(iii) Functicn subprcgranms,

1(i), LIBiiAnY FUNCGTI{NS:

 Frequently in programs it beccmes necessary to caleu-
lete trigoncmetric fuﬁctions, logarithms, absclute values and
expenentiation (raisé € tc a power). Most Fortran systems
provide these ccmmenly required functicns. The exact list of
available librery functiins depend not cnly cn the ccmputef and
the version of Fertran used but on the particular instellati-n.
In his cwn interest, each progrsmmer should acquire a list of
library functi ns available et his installatisn.

Generesl Form;

The ngmes of the library funectiocns are estigblished and
hence the j rogrsmmer must use them exactly gs speeified, The
name of the functicon must be fellewed by the grgument enclcesed
in parenthesis., The argument may be an exiressicn end, 1f
desired, may ccintain another functicn., The g rgument can be
even & subscripted variable,

We will give here only the list of library functicns
availuble &t the IBM 1620 instellaticn, at the Fundamenteal

Engineering Keseurch Establishment, Guindy:

1
)
'{Z
|

A R

e

71

Neme of FUL CTIGN Explanation
SINF(X) cr SIN(X) Sine «f x.(x in radisans)
COSF(X) or CPS(X) Cesine cof x.(x in radians)
ATANF(X) or ATAN(X)) prctangent of x{(zngle in

radians)

SQATI(X) «r SQRT(X) Square roct cf x
LOGF(X) or LOG(X) Nuturel logerithmtf x
EXPF(X) or 3XP(X) Exponentisl of x,viz.e".
LBSF(A) cr ABS(X) Mbsclute velue of x.

Fcr each of these functions, there exists & subroutine within
the Fcrtrah system that computes the functicn cf the argument 7
enclosed in parenthegis. These subrcutines will be ccmpiled intc
the object pregram cut meaticszlly, when the function is encoun- |
tered in any Fortren statement, (See Appendix 1. fcr a 1list cf
library functicns svellable at the IBM 1130 installaticn, £.Cv
College of Technology, Madras-256.7)
Exegmples:

bz-eac can be written as SQRT (Bxx2 - é.Oﬁeﬁﬁ-C)

eax+b csn be written zs LEXP(A %X + B)

Sin(bi+2) can be written as SIN(B(I) + 2.0}

1(ii), ARITHMETIC STATEMENT FUNCTIGNS:
~ If a simple computstion recurs in the same progrem, =2
single srithmetic stutement Functicn cean be set up tc cerry it

cut. The nzme cf the Funetiun 1s cheosen by the programmer

72

following the rules that apprly to & variable neme, The neme,
c¢f ccurse, must nct be the same as that of & librery functicn,
The mame c¢f the function is follewed by perenthesis enclesing
the argumeﬂt(s), which must be separated by cocmmas, 1f there is
more than wne., Neither the argument ncr the exprescicn con the
right h:nd side of the definition stetement shculd invelve a
subscripted veriasble,

These are cnly definiticns of the funeticns and they

do net eause eny computaticon to take place and henece these

must &, 1€ar before the first executible statement of the rrogram. -
Examzleflg Supircse that in a certeln progrem it is frequenfly
necessary tc compute the twe reots of tﬁe quadratic equation,
ax2 + bx + ¢ = 0, piven the values of a,b and ¢. Twc arith-

metic stotement functions can bé defined to czrry out this

computation. They cre;

a¢T 1(4,B,C)
2G0T 2(4,B,C)

H

(-B + SQRI(BX* 2 - 4,0% 4%C))/ (2,0 &)

(-B ~ SQLT(BXXE - 4,0%L%C))/(2.03¢4)

Examrle,2: It is known thet
§(x) = XS - ox+7 3 O(y) = 33’2-14}

and Q(x,y,2) = 20(x) o O(y) - 2.42°

The following arithmetic statements can be set up for this:

FHI(X) X¥%x2 - 2,0%X + 7.0
THETA(Y) 3:0%Y%x2 ~ 14.0

Q(X,Y,%) = 3.0% FHI(X)¥% SQRT(THETA(Y)) - 2.4% Za%2

1]

Note: Arithmetic statement functions should come only after the
DIMENSION statements, 1f a program contslns both statements,

73
The following gg;gg are tc be adhered tc by the

programmer while setting up srithmetlc statement functicns:
(a) The nzme may have cne tu six characters, thefirst

character being glrhemeric, Functions to be compﬁted

as fixed;point numbe rs must begin with I,J,K,L M cr N,
(b) The c.rithmetic statement funétion must 1 recede the first

exceutsble statement in the scurce prcgram,
(c) The arguments in perenthesis must nct be subseripted.

(d) Baeh funetion is defined as a single arithmetic statement,
which can be continued cn the follcwing card. (Note thet

the number of eccntinuatiun cards should ncot exeeed nine).

1(i11).FUNCTIQN sub}rcgrams.

The limitsaticns of the arithmetic statement funetion
are that it sllows cnly tne ststement znd it cen compute only
cne value. ‘One of these ligitesticns, viz. restricticn tc one
Fortren stztement, does nct exist in the czse of a Functicn
subprogrgm; 5 Functicn subpregrem can hsve many Fcrtran
statements but it is limited tc¢ computing cnly cne value. The
computaticon desired in a FUNCTIQN subpreogrem is defined.by
writing the necessary statements in a segment., The first
statement ¢f the Functiocn Subpregrem hss the genersl form:

FUNCTION neme (arguments)
The mame is cne tc six characters in lengthy the first charzcier
being alphumeric and chesen accocrding to the naming ccnventicn

for varisbles. The neme of the Puneticn subprogrsm is fellowed

74

by parentheéis enclosing the arugument(s), w@ich are sepsarated
by commas, 1f there is more then cne, The name of the Functicn
subpfggram is assveisated with z velue and therefore it must
appesr at least cnce in the subpregrem s o variable on the
left hand side of sn assignment statement, The arguments in
the subpregrem definition are dummy variables end must be
distincet unsubscriptedvarigbles cr zrray names, Within the
subpregram, hewever, subseripted veriables may be freely used,
IT subseripted varis bles are used in the subprogram, they must
bpe declared in a DIMENSI(N ststement., The Function subprogram
must contain at least one SETULN statement. The:e must be chne
and only cne END statement, to srecify the end of Fcrtran state-
ments which belcng to the Functicn subpregram to the compiler,
Therefore, a Functicn subprcgram inveriably centeins the

following ststements:

FUNCTIQN name (arguments)

DI:IVIENS‘I'(I)N ATAPTIEY

NaMe = ..

RETURN

[}
L]

END
Tc use a Function subprogrem, it is necessary only to
write the name of the function where its velue is desired,
with suitable srguments.
The mechanism of the cpreraticn of the cbject pragrem

is as follows: the Functicn subprogram is ccmplled as a set of

75

mpchine instructicns in .ne place in storage, snd whenever the
ngme « f the functicn apyesrs in the source pregram, a2 transfer
te the subprcgram is set up in the cbjeet program, When the
cemputation of the subprogrem has beep ccmpleted, a transfer
1s masde to the section of the progrem thet brocught the sup-
program inte getion. The LGETURN stotement(s) in & subprogranm
signifies the cunclusion of a computaticn znd a transfer cf the
result of the computation (vig, the velue of the function) oncek
te the place in the maln program frem whiceh the subprogram weas

refetrred,

Pregram.o: A Functicn subprogrem which evsluates the valus of

(-—l)n is given here:

. FUNCTION PHASE(N)

C VICOMPUTES THE VALUE §F (-1)x+K.

M= (N/2)%2 '
IF(N-M) &5, 3, 6

3| {FHASE = 1.0

RETULH

5| |PHASE = -1,0

RETURN

END

2. SUBROUTINE SUBPLOGRAMS,

The Functicn subprogrems whiech we have discussed so
far, are, in a sense, smaller veérsicns of SUBRPUTINE subprcgrams.
A SUBRQUTINE subprogram cen be used tc compute ss many results
as desired, The general fom cf ¢ subroutine subprogram is:

SUBRQUTINE hneme (erguments)
Fortrun steatements

KETURN

END

76

where "name! is the nzme of the subyreogrem c«nd the arguments
used must be nun-subscripted varizble ngme, erray name, or
subprcgral neme (excert the nezme of zn crithmetic steatement
functimn).

Since the SUBR¢UTINE‘15 & separste program, the
verkbles wnd stotement numbers do ncot relate to any other
proegram (except the dummy argument variables), The subrcoutine
subprcgram may use cne or mere c¢f its argumenté tc return values
tc the main scuree preogram which cells it, Any arguments so
used must cipear on the left side of @ Fortran statement cor in
an input 1list within the subprogrim. When the argument is an
array nsme, sn appreprizte DIMENSIGN stetemsnt must appear in the
subroutine subprogram.

A SUBROUTINE can be CALLed by a main pregram or emother
subprugram. The arpguments in z SUBLYUTINE may be ccnsidered
as dummy variable names which zre replaced at the tims cof
egscuticn by the getuzl zrguments suipplied in the CALL ststemert .
The cectusl arguments in the CALL stetement must correspond in
numEer, crder and mode tc the dummy arguments of t he SUBRQUTINE
subprogrem,

The'general ferm ¢f the CALL stotement iss

CALL neme (arguments)

where 'npme'! is the name of the Subrecutine subprogram and the
arguments'arg the actugl arguMGnts being supplied to the

SUBLUTINE subprogram,

77

The CALL steatement is a transfer of contrcl statement,
It transfers contrcl to the SUBK(UTINE subprcgram and replaces
the dummny variables with the values ¢f the getual arguments that
arpear in the CALL statement, The grguments in & CALL statement
can be any of the fcllewing: any type of censtint, any type of
subscripted or unsubscripted variable, an arithmetlc expression,
¢l & subpregrem nsme (execept that they may nct be nemes of
arithmetic stztement functions)., The arguments in a CALL stete-
ment must agree in number, order, mude and array slze with the
corresponding arguments in a SUBRQUTINE subprogram.

4 SUBRQUTINE cannot CALL itself, is. If Subrcutine A
cglls subrcutine B, then Subroutine B sihculd nct call subrcutine

PRGGi.AM. 10

Yo eveluate the rcots of the Quadratic equaticn
ax2+bx+crz 0, we can write the fcllowing SUBRQUTINE subprograms
SUBRPUTINE QUADL(A,B,C, X1, X2)

DISCR = BRAB « £.,0% 4%C
IF (DISCR) 4, 6, 8

4| |PRINT 5 |
5 |POKMAT (21H ROOTS £LRE IMAGINARY.)

RETURN
61141 = -B/(2.0% A)

L2 = X1

RETURN

81[¥1 = (-B + SQRT(DISCR)/(2.0% &)
X2 = (=B . SQIT(DISCL))/(2,0% £)
HRETURN

END

78

The fcllowing is a valid CALL stetement to the subrcutine:
CALL QU&DA(P,Q,R, r$dT 1, 400T 2)

The following cre invalid CALL st:tements tc the subroutines
CALL QU&dR(I,J,K,X1,X2)
CALL QUADA(P,Q,R,X11X2,Z)

’ because, the furmer contesins arguments which do nct agree in

mode with those ¢f the SUBAOUTINE arguments and the laetter

centains six arguments while the SUBAMUTINE has only five

sreuments.

FaGRAM.11: T illustrate the different nstures of FUNCTION

and bUBﬁ¢UTINE subrregrams, let us write pregrams to evaluete:
o7 /2 2]
1= 1 1=
where Cq, Dy, Ej, Fj are cne-dimensi-nal zrrays, using a
subprcgram tc comyute 3 AyBy.
. i=1
Case (1 Using a FUNCTI¢N Subprograms

| |[FUNCTI{N SUM (4,P,K)
DIMENSION 4(20), B(20)

SUM = 0.0
D 4 I=1,K

41 |oUM = SUM + A(T) 3%B(I)
RETURN

END

79

~

The maln program will then bes

C MLIN FLEGRAM FOR CALE (1) :

DIMENSI¢N C(20), D(20), E(15), F(15)

AEAD Z, (C(I), (1), I=1,17)

nBAD g, (B(I), F(I), I = 1,15)

Fo.MAT (10F7.3)

ALFHA = $94T (1,0 + SUM(C,D,17)) + SUM(E,F,15)
PRINT 5, ALFHA |

6{| FORIAT (7H , ALPHA = EC.8)

STHP

END

o0

Aecording to the first .EAD statement, the 34 values of Ci and

Dy will be read in the sequencs 013D1902’D27"'$057D5 from the
first data cardy then C6sD6$07’D73““9C103D10 will be read from

the second dete cardy the value Cyq,. Cigs D

Dll‘ a? 12""’015’D15

will be iead from the third data card and the last fcour values

Ci163 Dygyr Cqy Dyp will be read from the fourth data card.

Aecording to the seecnd READ stetement, the values cof By, Fqy0

BgyFg will be read from the fifth data card; E ,F

X 67"'93105F10
from the sixth dete card ¢nd the values E119F1190 009 F5,F15 from

the seventh end last duta card. This is so, since each data

card contgins 10 numericel values in F7.3 specification.

Case(2). Using s SUBR®UTINE'subrrcgramg

SUBRYUTINE SUMd (4,B,K,SUM)
DIMENSI(N 4(z0), B(20)

SUM = 0.0

B 4 I =1,K

4116UM = SUM + £(I)%B(I)
GETURN

| END

80

The corresponding mein yregram will now bes

¢ MAIN FROGIM FOR CBSE(2),
DIMENSI(N €(20), D(20), B(20), F(20)
WEAD 2, (C(I), D(I), I = 1,20)
READ 2, (B(I), P(I), I = 1,15)
F¢iM4T (10F7.3)
CALL . SUMM(C, D,17 ,SUML)
C4{LL SUMM(E,F,15,5UM2)
LLPHEL = SQRT(1,0 + SUML1) + SUM2
FRINT 5, ALPHA
5{\FOIMAT (7H , ALFHSH = E20.8)

STGP '
END

0o

In this exXgmpls, if we hed not written e subprogram; we would

, 1
hgve written the P loors for doing Z? Ci Di snd for‘gping

156 =1

E.F,, which repetition hss now been avoided.
C J? .
J:

The essenticl festures cf the four types of subyrograms,
viz, library functions, arithmetic statement functicns, Functicn
subprograms and subroutine subprograms are summarized in

Table.3 belows

_ Teble.3
Librery- srithmetic FUNCTI{K | SUBRQUTING
Functicn Stetement subpro- subprogram
Function gram

—+ —

Neming Supplied |1 to 6 charac-{1 to 6 chersct 1 to 6 charac.

with the jters, first ters, first ters, flrst
ccinpiler {being zlyha- being alyha- being alrha-
{(by menu-|meric, meric meric,
facturer)
Type Implied Implied by Implied by Ng srecifiasli -

“{by first |first charac- [the first in the subro..
chagrzeter| ter of the cheracter of |tine neme.,

{cf the naine the neme

nome

81

B Library ATithmetic FONCTION | SUBROUTING
Functicn Stetement subpro- subprogran
Y, Funcetion gram
Definiticn - One grithmetic|iny number of} Any number cf
stetement be- |stztements stetements gf-
fore fifst usct after FUNC- |ter SUBR®UTINE
ge of functicn|TIQN stete- |statement.
ment,
Calling By writing|By writing ngwd By writing By & CALL
name of of functicn name ¢f func-iststement
function ticn
Arguments |On¢ cr One or more ss{Cne or mcre § Any number,
mere s defined as defined including ncone.
defined as defined
Output One value |One vglue i¢sscd One velue fny number,:cs
essceigtedicliated with associcgted specified in
with the the name of |with the name| the zrguments.
name of thqgof the functimm|of the fune-
function. l ticn,

 Bxcreisc.l0:

P

&
X

Defins

+{ T+ex+3x® ¢nd then use

w

T Y

a strtement function to compute

It

&

6,
s

N

Sin y

+1'1+2y+3y2

E.17 + Zé

-

¥+

l+2y2+3y&

;

0o

Z

1

+ 4/ 14224327

the funecticn tc compute:

}

— e, —

Singy +,JZ+25kny+83in2y

Exercise,1l: Write & FUNCTI¢N subprogrem to compute:

y({x) =

1 +4Jl+x2)

0 3

1 - 1ex7 ,

<0
o

X

X

x>0

82

and then write stétements to evaluete the following:

il

f =2+ y(atz)

o = YExQOT + Y x(k+1) 7]
— 2

v(Cos opx) +.‘l+y(2nx)

h

i

BEQUIVALENCE statement:

When & program cchntazins seversl subscripted variabks
whose subseripts sssume many values, s DIMEFSI(N statement
including =ll these verigbles may cecury = large part of the
evallable memory space or sterage lecations, leaving inadequate
spaée for the rest cof the program, thereby preventing the machine
to cocntinue the executlin due tc cverflow of memory. In such g
case, the programmer may try to overcome the difficulty (cf
overflow of memcry) by essligning the same storage locations to

several variables which are not needed at the same time in the

same Lroprzm. Thus, instead of asslgning unique stcrage lodations

for 11 the variables and arrays in a program, two or more cf
the varigbles or arrays of the ssme size can be made te share
the same storage locaticns,
The zenersl form of an EQUIVALENCE statement is:

EQUIVALENCE (a1ya0,.04,4,), (01,bgyereyd Yoo
where al,,az.,...,an,bl,bg,...,bm are either subdseripted cor
nen-subseripted variables, This ststement will eause the
variables alqazf;JJdan to share une storage locaticn and

varighles bl?bZ"‘“*bm to share gncther storsge locaticn, Each

83

Lalr of parenthesis in the EQUIVALENCE ststement encloses t#c_
cr more variable names that refer tc the same storare leoeetion
during the executicn of the cbject program. £ny number of
variables mgy be listed in a single EQUIVALENCE statement., We
‘éi#e herc scme examples to explicitly illustrate the usage of
the EQUIVALENCE statement:
Exemple.l: 4 programmer might reslise sfter writing a long
program thet he has inadvertently (cr, even wantonly!) named
the same vegrisble as £, X1 &nd BST, Inste:sd of trying tc
correct his errcr, he can.introduce the following statements
BQUIVALENCE (X, X1, LsT) |
Example.2: If in a certain program variables IPL, I1ISC, MATS
and 1IT occur only cnee in different porticns cof the same
}regram, then instead ¢f gllowlng these to ceeury four storage
locations, we may assign gll the four varisbles to cne lccation

by writing:

EQUIVALENCE (NPL, II5C, MATS, IIT)

Example.3: In & LFrogrem, suprose thzt o set of coefficients
Cyy CgyevyCqpp &¥e Tead from cards and that once their values
have antered the computaticn no further reference will be made
to any but the first 20 of them, At a later stage, a set of
Intermediste results Rl,.Rg,.,.,RGO may be generated, which in
furn finally produce the results 83, S,,...,8.q. By the time

the first of these final results is cbtained, if even the

84

coefficlents Ci’CZ’f"’C20 are nc longer need;d} then the

DIMENSI¢N stetement

DIMENSI{N C(1€0), R(60), C(30C)

¢

may be surilemented by the EQUIVALENCE stetement:

EQUIVALENCE (C(31), R(1)), (C(l),é(l))

which aséigns (in the intemmediate stage) to Ry through Rgo
the same locuticns as to Cgy thrcugh Cgp and alsc assigns (in
the finegl stage) tc Sy through Sgy the same lccaticns as €y
thfoﬁgh CBO‘ Ncte that in the BQUIVALENCE ststement abcve
(R(1), €(31)) and (S(1), C(1)) cculd have been used instead of
(C(Bl);R(l)) and (C(1), 8(1)). 1In this exagmple, the locaticns
assigned-to Cgl_to C1pp are not shered by any other varisbles.
Thus, it is not necessary for the arrays made equivalent tc
have the same number of elements,

In writing an Bquivalence statement, the programmesr
must note that even two-znd three-dimensirnal arrays actually
alrear in storage as s one-dimensicmal sequence of core locaticns,
We dc know that srrays sre stored in such a way that the first
subscript varies mest rapidly snd the t the last varies least
rapidly. To detemine in a twi-cr three-dimensicnel array which

€lement 1s the nth, a simple glement sucgesscr or rule is

emploged. If A, B énd C are meximum values ¢f subseripts given
by & DIMENSIQN statement and a,b ¢nd c ale values of the subs-
cript expressionsy then Table.4 below gives the needed inferma-
tion shout ccnversicn from wmultiple subscriptstdi%ingle subs -

eriptey |

85

T.ble.«, Blement Successcr Inle

Maximum subscrijt Multiyle subs- Corresiond-
Dimensicnelity value(given in eript (in ing single
DIMENSIPN stete- exrression) subscript
ment) value
1 ' (8) (&) a
2 (4,B) (a,b) ath,(b-1) |
3 (£,B,C) (a,b,c) a+f.(b-1)+/A B

Ixemple.ls

Fcr instance 1f the array X is declared in the
DIMENSIN statement as X(3,12), then as per table sbcve, . A=3,
end B=12. The 36 ¢lements of array aré crranfed in a linear
sequence. Where will X(2,9) occur in this cne-dimensicnal |
sequence? The answer from the table (for a=g, b=9) is 2+3:(9;l)=26G
Thus, 1f the element X(1,1) is in the locaticn X(1), then the ?

element X(2,9) is in the locaticn X(26).

Exsmile,2:
If A 4is a three-dimensirnel varisgble declsared as:

DIMENSION A(2,3,4)

and further if A(1,1,1) is in the lccaticn A(1), then the
.element H(1,1,2) is in the loesticn 5(7).
Bxample,3: »

In an array dimensicned A(3,3,3) the fecurth element
of the array can be referred as £(1,2,1) ar as A(4).
bxamplesdi The stotements
DIMENSI{N 4(3,3), B(2,2), ¢(2)
EQIIVALENCE (4(5), R(2),C(1))

86

sets up en equivalence among the elements of cach srrey as

folléws-

A(1,1) ,M2,19, A(S,l),A(l 2) A2,20,/(8,2) M1, 38), 8L 28) , (3, 3)

B(1509,B(142), B2, 10(B(2))
C(.&Qu’g-cﬁ?)c

The possibility of redefining a two-dimensicnszl erray
as & cne-dimensicnszl array by meceans of an EQUIVALENCE statement
may ensble a programmer to substitute a cne-dimensicnal adiress

computaticn for the slower one in two-dimensicns.

Bxgmple.5: To find a principel diagcnal element of a square
array, A(k,K), with, say, DIMENSI(Y A(éo 40), Fertran uses the
element snceesscr rule to pilck the €lement frem the cerresponding
- cgll of the string cof cells assigned to the array 4. The
statement s a

DIMERSI(N A(40,4C), B(1600)

EQUIVALENCE (£(1), B(1))
engbles us te speed up the evgluaticn cof the sum § of the
eiements along the princijsl diagenal of the two-dimensicneal
array b, by replecing the progrem sepments

5 = 0.0

DO 55 K=1,40 . "
55118 = & + a(K,K)

by the faster program scgment
ls = 0.0

D 55 L = 1,1600,41
55{18 = & + B(L)

87

The fcllowing are the Rules to be adhered to while
Asking use cof the EQUIVALENCE stotement:

(1) EQUIVLLENCE is a ncn-executable sﬁatement and
must precede the first executable statement in
£he progfam or subprcgrem.

(1i) If DIMENSION end EQUIVALENCE sypear tcgether,
the corder among these is immsterisal,
(1i1) Ncne of the dummy arguments may arrear in an
EQUIVALENGCE stetement in a Subrcutine subprogram,

(iv) The variebles may be with or withcut subscripts.

Exercgise.l2:

Sketch the storage laycout that would result from the
following:
(a) DIMENSION A(3), B(4)
EQUIVALENCE *(2) , B(1))
(b) DIMENSI (N 0(2,35, D(3,2)
EQUIVALENCE (C(é), D(1))

COMMIQN stetements

| We have alreedy noted that mzin and subprograms have
their cwn ¥arizble nemes. Variables (or arrays) that arrear
in the main precgram nil & subprogram, cr in twe subprograms,
can be mapde to share the same stcrsée lceaticns by use of the
C{MiidN stutement (provided they sre of the szme length), In

other words, the COMM{N statemert assigns veriables in different

subprogrems cr in o mein program cnd g subyrogram tc the same

88

stoerage locati-ns, while gn,&?UIVALENCE stetement assigns
- 1

varizbles within s main {Irogram or within a subrrogrem to the
 same storage locaticn. ' |
H There are four kinds of CEMMON statements which are
referred to as:
(a) simple CEMMON
(b) dimensicned C¢MM¢N'
(¢) labelled CEMiQN

(d) numbered COMAPN

(1) Simple COMAYN stetement:

Genersgl form:

COMiN 2,b,c¢,,..,n

1

whe re a,b,é,‘..,n are fixed end/cr fleating-pcint ¥ariables,

Exemile,l: If cne pregr:m contzins the statement
COMAON T4B

and & second program cnteing the statement
chMipn T
then the cempiler will assign the twe variables tc the same
storage locatinon., |
BExemyle, 2: SuLpése the main pregrem contains the ststement
o CUMMON X, YT
and a subprcgram ccntains the statement
| . ohmdr £,B,0
Then X Hnd 4 sre assigned to cne.storage lccation, Y and B gre

assigned_to antther storage location, while I :nd J are assigned

s

89

tc a third storage lccation.

Bxample.3: Dummy vgriables cen be used in a CPMMON statement

to esteblish shared locaticns, fer varisbles that woul 4 ctherwise

ceeupy different locaticns. Thus while the m_in pregram has:
comipN X,Y,%

the subprcgrem can bes

chmidN Q,R,
wnere Q@ tnd R .re dummy names that gre not used in the sul-
progrem, while variasble S used in the subyprogram is assigned

the same locaticn as variable Z.

(1i) Dimensicn.l COMMEN steotement:

Genergl fcrm.
COMION a(ky),b(ky),e(kg), ... nlk)

where a,b,¢,i.i,n are array nemes and

kl,k kB,..;,k are each cumposed of 1,2 cr 3 unsigned,

29
integer ccnstents that siecify the dimension of the array{

n

‘This form cf the C¢MMON statement rerfoms not only the functicn

of the simple CHIMPN statement but d sc performs the additional
functicn cf specifying the size of the arrays. A vearisble that
1s written with subscripts in = CPMM{N ststement must not be
menticned in a DIMENSIQN stetement. But, if a variable is
dimensicned in s DIMENSICN statement, it is rermissible to use
the variable name zlcne in the C¢MM¢N statement, without.subs—

eripting information.

80

Exymile,l: A main program contzins the following statement:_
COMMY 4(10), B(5,5,5), C(5,5,5)
while the subprogram containsé
COMA$N X(<0), ¥(10,10), 2(120)
This means that the mein program contains 10 elements of A,
125 elements of B cnd 125 slements of C. The same 980 loca-
tions would also contein the 40 elements of X, the 100 elements
of ¥ and the 120 elements of Z, The overlagp céused by the six
grrays involved would cause the compiler no diffieculty - indeed
the wmpiler would never really consider the situation!
Bxanple.2: A single COMMON statement may contain variable
names, array names snd dimensioned array names. Thus, the
following are vglid statements,
DIMENOSION B(5,15)
CeMMON 4,B,C(9,9,9)
Or, equivalently: DIMENSI¢N B(5,15), €(9,8,9)
EQUIVALENCE 4,B,C

(iii) Labelled CoMudN stateméntss '

The simple and dimensioned COMMON statements mentione d
above set apart only one "CHHQN block" of storsge locations
end the compiler never knows at a time more than one COMIGN
statement, We can estzblish as many distinet blocks of COMMON
storage as we please by labelling the COMMON statement. The
COMMQN statements (sigple and dimensioned) which we discussed

above are czlled alsc as Blznk COMMN statements.

General form:
COMAON/Ident 1/List 1/Ident g/Lists...

where 'Ident 1', 'Ident 2' are the identifiers of the CEMMON
blocks of storage locations being set apart for the list of
vari bles *'List 1', "List 2' ete. The identifier name should
arpear between two sleshes and like s variable neme must start
with an slphamerice charactsr.

The same name should be used in g subprogram, if a
list of variables bélénging fo the subpregram are to be assigned

to the same CPMMON block of storage locations.

Exgalle,l: The C{MMON declaration in a main progrem is:
COMiQN/BLK/4(10,10), B(10,10), €(10,10)

The numbér of locations for the COMIGN bloek named BLK is 300.

In other words the COMMPN block is 300 "words" long.

If a'subroutine, say, a matrix multirlication routins,
can use the seme common block to multiply two 10 x 10 matricss
A end B and put the result in C, then the Subroutine fncluding
the C(MMON declaration is as follows:

SUBRQUTINE MAT

COMAGN/BLK/X(10,1C), ¥(10,1C), 2(10,10)
D) 5 I = 1,10

o) 55 = 1,10
Z(1,J) = 0.0
DO 5K = 1,10
S112(1,3) = Z(I,J) + X(I,k)%¥(K,J)
RETULN

END -

22

Example.2: If a single COMAQN statement includes labelled and
biank COMMPN statements, the blank COMMON portion may either
be written first without z name, as we have done so far, or the
name may be omitted between slashes:

i.6. COMAON X,¥,2/BLK/F,Q

&nd CoibN X,Y,Z/BLK/P,Q
mean the same to the Compiler, viz, £,Y,Z helong to blank COMMON
and T,Q belong to the COMION block BIK.
Exgmile.3: Suprose the statément in the mgin program is:

| CorMoN R,5T/B1L/U,V/Bg/F(20),6(2,5)
end the stectemert in the subprogram is;
COMPN R,87/Bl/U,V/B2/X(10),¥(10,2)

Here blank COMMON would assign #,B end C, in that order, in the
Main program to three locations znd assign R,5 snd T in the
subprogram to the same storage locaetions. The COMMON block
lebelled Bl would establish D «nd U in the same location and E
end V to another location in the seme block Bl., The Common block
lebelled BZ contains in the main program 20 elements of F snd 10
elements of G whilé in the subprogram the same 20 locaticns would
contain the 10 elements of X and 20 slements of Y. As stated
€arlier, the overlap between the four arrays involved would

cause the compiler no difficulty.

(iv) Numbered COMION statement,

The neme of the labelled CYMMON statement can be g
nunber, Tor a numbsred COMMPN statement, the fl rst letter gs

/

well as the other characters, if any, of the name must be

nuneric, Leading zerces in numeric identifiers are ignored. Zero

by itself is an wsceeprtable nupber as a COMMON block identifier.
Exgmple; - CfHi¢N/140/8,B/1226/C(10),D(1C,10)

Fules to be followed while using COMMEN statement:

1. C{MMON is & noh-executable steatement and must precede the
first execcutable statement in the program. Any number of :
CiMudN statements may arpear in = Lrogram scetion.

2. If DIMENSI¢N, EQUIVALENCE =nd/or C¢MM$NIappeer together,
their order is immaterial. '

3. Labelled COMMGN block identifiers aré used only for block
ldentification within the compiler; they may be used elsewhere
in the program, However, cne may not chocse to do so. i

4, MAn identifier in one C¢MM¢N block may not appear in another ;
COMMON block. If it does the identifier will be doubly
identified.

5. The order of arreys in a COMMON block are determined by the

COMAQN statement.. A1l items in COMM(N are stored in descend-
ing storage locétions.

6. Dummy arguments for SUBR{UTING or FUNCTION statements cannot
ayrear in COMIQN statements.,-

7. A varlable thst is written with subserirting infommation in .T
a CUMMON statement must not be mentioned in a DIMENSION]

statement,

o4

COMHON with EQULVALENCE stitement:

When an zrrsy is named in an EQUIVALENCE stztement and
in a C¢MM¢N stetement, the LQUIVALENCE 1s catablished in the same
general way cs deseribed esrlier. However EQUIVALENCE statement
mey inerease the size of the C{MMON block of storage locations
and thus change the correspondences between the CEMMON blocek
described and some other C{MMON bloek in another program.

Exgmple.l: Consider a progr:m contsining the following statements:
DIMENSI(N A(4), B(4)
COMUQN 4,C
BQUIVALENCE (A(3),B(1))

K \

Without the EQUIVALENCE statement , the COMMON block would contsin

five stourage loeations in the sequence.
ACL), 8(2), K(3), A(4),C
With the EQUIVALENCE statement, the array is brought into

COMIPN, so to speek, end requires the followlng sequence of

storege locations:

ALY, a(2), A(3), £(4), €
(i), B(EY, B(8Y, B(B), B(4)

so that the COMUON is now six storage locstions long, COMMON
may be lengthened this way,

- 8ince arrays are stored in descending ordsr of storage

locaticns, a variable may not be mede Equivalent tc an element

of an arrsy in such z manner as to cause the array te extend beyond

28

the beginning of the CMMN area, In other wcrds, the beginning

of & COMQN block must never be shifted by an EQUIVALENCE stete-
ment, In example.l considered above, the following Equivalence

statement isrilhégalz

EQUIVALENCE (4(1),B(2))

For, in such a case, the storage essignment in COMMON would be:

A1), A(2), #(3), A(L),C ;
B(1), B(2}, B(8), B(4), B(<)

Since B is not mentiomd in the COMMON steztement, but is brought

into CMi¢N by the Equi¥slence statement,‘the first element of B

precedes the start of.the COMMON block which is not pemmitted.

Exsanple,Z: Within en EQUIVALENCE list, there shculd be no more

than one varigble which has been previéusly placed in an |

EQUIVALENCE or COMAN stetement. If this is not sstisfied there

will be & contradiction, .

Supzoée we had the combinstion of statements:

CoidN 4,B,C D ;
EQULVALENCE (4,B) :

Then, the C{MMON assigns the four variables £,B,C,D in separate ?
locztiins in g specisl ares of stcrage, while the EQUIVLILENCE |
stutes that A =«nd B zre to be assigned to the same location. Hence,;
the net effect of the above two statements is a contradiction. .

For the reason stated zbove, the following sequence of
statements wre invelid: |

chmdy D f
EQUIVALENCE (%,B,C),(X,Y,2),(4,8),(D.X,P)

i

O e P S e DA Bl

o6
while the following sequence 1s vglids

COMidN D
BQUIVALENCE (D,X,FP), (4,B,C,X), (4,Y,2)

DATA stztement:

The programmer may assigh constent values to varlables
4in theé sourec Lrcgram by using the DATA statemenf ¢ither by
itself or with & JIHENSION stztement, The DATA statement

* gssigns values to st:tements «t the time of ccompiletion, not

&t the time of execution of the object progrem. o 17 iu;

Genersl Forms
(1) DATA Listl/dy,dg,...,d/, List &/dy,dgyeee,dy/ye us
where 'List 1', 'List 2',.. contains the names of varizbles to

recelve the values znd d's :re the values, If dy is repeated,

say, k times, then in the list this is indicated as k¥ dg where

k 1s en inﬁeger.

Exemple.l: DATA A,B,Q/lé.?, 62.1, 1.5E-20/
Thisrstatement would assign the value 14.7 to A, 62,1 to B and
1.5 x 10729 to C.

Exgmple . The‘foilowing statements have the szme effect:
| ' DATA 1/67.87/, B/54.78/, C/5.0/ |
and DATS4 4,B,C/67.87, 54.72, 5.0/
The hoice is a matter of perscnal ;referenée.
Exoinple, 3 The‘following statement assigns the value 2l.7 to
ail the six veariables r,s,t,u,v wnd wy

DAT4 R,$,T,U,V,W/6%21.7/

97

In some Instzllaticns (for eigs CDC 360041608 2t TiI.F. 4..
Bombcj) the following general form of the DATE stotement is in
 vogues

DATA (Vy = List 1), (V5 = List 2),...

where Vy, V represent simple veriable nsme, arrsy name,

8,0...
or z varieble with integer constant or integer variable subs-

cripts «nd List 1, List 2,... rerresent constants only =znd

these hesve the general formg
Eil,{.itg,‘.‘...,k (bl?bgguoo), 01’02,‘0'0

Where &1ségyerryPysboyeea,01,Cp, .00 are simple fixed or

”_'floating-point constents end k 1s a constant repetition fagctor
:f_that causes the parenthetical list following it to be rereated
© k times, k is slweys an integer, 1f 1t 1s used.

%% . | ;Rules to be ﬁ)llowed while using the DATA stotement:

| i; DATA is & non-exeeutoble stétement and must precede the
fifst executgble statement in any program or subprogram in
whichlit aLpeérs, !

2. When DATA appesrs with DIMENSIQN, EQUIVALENCE or COMMON
étatemants, the order in which these statements appecr,

before the first executeble statement, 1s immaterial.

3. DP-loop-implying notation is rermissible with the restriction
£hat the third indéxing.parameter, Mg, cannot appear.

Exzsmpls:

g‘ DsT4 (GIB(I), I=1,10)/1.0,2.0,3.0,7x (4£.32)/

2 or DATS ((GIB(I), I=1,10) = 1,0, 2.0,3.0,7(4.32))

e e e =
B e o T T MY S e

4. There mﬁst be ¢ one-to-cne correspondsnce between the list
of varlebls s end their values specificd in a DAT/ stetoment.
S.. A DATH stetement may contein Hellerith text;
Example;l DATS D¢T, X, BLNAK/lH., 1HX, 1H [/
or DATA4 ()T = 1H.), (X = 1HK), (BLAMK=1d) -

Bepmple.C.

DIMENGCION MESGE(3)
DATA (MESGE(I), I=3,3)/3HWH(, SHIS, 3HOUL/
or DATA (MESGE = 3HWH, 2HIS, SHSHE)

FORGY and FOR-TO G

Sc far we have been di scussing the various features
of thq%rogremming lénguage called FOATRAN-II, In this seotion
we would like tc discuss two simplific .l versiuns of FOATRAN - 1T,
usuelly taught tc beginners in FOLRTRAN [rogramming,

FO.G) was written primarily to serve as an educetionil
Frogramming system t¢ tesgch undergradugte engineering students
the jrinciples of pregramuing and incidentally to 'debug' research
brograms before they are run on a computer larger than IBM1620.
The system checks for almost 211 possible errors and all errcrs
arc referred bszck to the only lengusge the students are expected
to understend - PORTAAN, The system is strictly card oriented,
but a control dipgit will pemit the typewriter to be useq for
demonstration (urposes,

FOAGh and PE5-70-GO are very dosely related yrogrsmming
lenguszges. The mejor difference between them is that both the

152%)

comyiler znd Suhrcutines iemgin in memery et all times with
F¢AG®, thus leaving less rcom (i.e. storzge 1ocati0ns) fer the
complled progream, while the compiler is overwritten by the
Subroutines.in FOR-TO-GO, thus permitting much larger room
for cumriled pregrems., Quentitstively this mesns the follgwing:
The memory for IBMI620 is <CK(esch word tskes 10 core
locetions). The comyiler (including subroutines) tskes up 35K
(or 35,000 ccre loestions). Hence cnly 5K is svailecble for the
source progrem, In FO3-70-GO the Compiler is in two rarts, each
of 20K, Part A translstes the scurce language into mszchine
language. Then Fart B, which contains 1ibrary functicns, rerlaces
the core cceuried earlier by part A. Hence 20K is zveileble fer
the source program. |
The following pcints are nétewurthy for FORGO cnd FOR-TH-
GO in comparison with FORTRAN.II;

1. The first card ¢f a program must be a card called Control Cgrd.
It has & € punched in eclumns 1 and 4 and any other information

in cclumns 7 thrcugh 80, EB.ch yroprim has cneé and cnly ons

control card. (Note that a Comment Card has ' C' punched in
Column 1 only and that therc may be zs many ccomment cards as

desired),

Z. ©Statement numbers may be funched in columns 2 to 5 of the

source program csrds,
3. FQRMAT stztements are cptional., In the absence of a FOAMAT
statement for input variables, the values of the variables runched

on datu cards must be separated by commes,

-

100

4. The full Fcortran expressions are allowed, excert thet in
raising & floating-pcint quantity to a fixed«yoint power, The
yower may be either a single variable cor a censtant, but may
net invelve & fized-point operation, i.e, (M+B)*I 1s

permissible but neot A*¥(I+J).

5. In PORG) operation, nc continuaticn cards are allowed. Hence,

column 6, must be left blank in 11l FORGH scurce statements:
In FOR-T¢-GO onc continuaticn card is allowed end the

first card of the Lair must have a blank in column 6 while the

seccnd card of the palr must have 1 junched in colﬁmﬁ-6.

6. Subscripted variables may be either che-cr-twe-dimensicnal

end a subscript may be of the form I %J + K

.4+ The following library functicns aznd srellings are availsblec,

SIN(X) , SINF(X)
COs(x) , ChsF(X)

ATAN(X) , ATANF(X)Q
ATN(X) , ATNF(X) §

Sine ¢f x (x in radiansg)

ot

Cosine of x(x in radians)

oo

-l

Arctangent of x(angle in radians) .

BAF(X) , EXPR(X)

LI}

Exyonentisl of x
LOG(K) , LOGA(K) . 7 tvrel legarithm of x.
o GRT L) sQnTF(K)8

: Square root of x
5Qi(X) R SRIM(X) 0

5BS(X) , ABSF(X) Ahsclute value of x.

o

Note that the last character is now. required tc be F,

8.

end FOR-TO-ub s

101

The fcllowing stetements are neot allowed in beth FORGO

+

I¥(SERSE SWITCH 1) nl,n2 ‘

T AUSE

PRINT
FUNCTIQN
SUBRQUTINE
CALL

KETURN
EQUIVLLENCE
COHigN

DATA

FOUTRAR«I: Tn FORTRAN-I the following restrieticns exist:

l.

2'

3 L)

“a

54

The librery functicn ABSF(X) is not availesble.
Multiple Fermat specificaticng such as 518, is not allowed,
Maximum Hellerith épecificaticn is 49H.
Maximum X speeification is 49X,
The following Fortran statements are nct gllowsd:
SUBKUTINE
FUNCTI (W
CaLL
RETURE
EQUIVALENCE
Cqrpd

DATA,

102

defercnees

"Besic Programming Ccncep{s and the IBM 1620 Ccmputer”, -
by D.N.Leescn end DiL.Dimitry, Hclt, Rinehart and Winstcn,

Inec,; ,(1962);

MNumericel Methcds end Computers"

by §:8.Kuo, Addiscn-Wesley (1965).

"Intrcduction to Bgsic Fortran Programming and Numerical Methoeds",

by WiPrager, Blaisdell Publishing Cc., (1965).

"4 gulde to FOLTRAN IV Programming!
bﬁ D.D.McCracken; Jechn Wiley and Sons, Inc:; {1¢66)

"3600 Comyutsr System Fortran",

Centrcel Date Corporgtion (1964), rreliminary reference manual.

n3600 FOATHAN" (User's Menual)
by K.S.Kene &nd C.N,Kum, T.I,F.K, Report.

103

AFPENDIX, 1

Library Functicns zvailable ot IBM 1130 instellsation:s -

Neme Funetizn verformed Nosof arguggnts
SIN Trfgonometric Sine 1
cos Trigenometric Cesine 1
ATAN tretengent 1
ATANH Hyperbolic tengent 1
ALG Natural logarithm 1
EXP : Argument power of e(i,e..e”) 1
SQRT Square roct 1
ABS Absclute value 1
. : 1ABS Integer Absolute walue 1
FLOAT ' Convert fiked point argument
to fleating point argument 1
IFIX Convert flcating point argu-
ment t¢ fixed yoint argument 1
SIGN Trensfer of sign
(8ign of Argpument 2 times
Argument 1) o
ISIGN Integer transfer of sign
(Sign of Arg.2 times Argumentl) g
|

Exil

104

APEENDIX 2

WOSKED GUT EXAMILES

(Start) é

Bx: 2

AxYxx2 3 Bx¥(K+2) 5 Xwx(M4B) 3

A+ B/(C + E/F),

A*E xx 2+ B*¥X + C 3 fxx (X + 2,0)3

(B% %2 - 4.0%A%C)% %0.,5,

P# Q/(R%8)y A/B + Ny

r e 2
X HEw]

106

In Progrem 1, the READ-FORMAT combination should

be changed tos

Fﬁ
”N
o

Ex,6:

1 READ g, B, C, A
2 FORMAT (F6.2, 3AF6.1, 5XF5.2)

LEAD 2, X, N

2! | PG AT (F10.4, 15)

N1 = N+4

R = (13.6 - X)%%N1

PRINT 6, X,N,R

6| [FORMAT (3H X=F20y4; X HN=I6), 2XPHR2E20.8)
STOP C :

END

LEAD 10, A,B,C,X
10| {FORMAT(4F6.3)

TERML = 6.0% AL % X% » g

TERM2 = (B A1)x¥2

TERME = C¥%Z %A1 %#3% 0,56

K = B¢ C» (TERML + TERM2 + TERMS3)/12.0

PRINT 156, 4,B,C, X,R
1| 2X2HR=E20,8)
ST¢P

END

The flow chart for this exercise is similar to that

dfawn for Bx.l.

C

1START CF PHOGRAM FOR EXERCISE 6
10| [READ 12, ¥ '
12| IFGRMAT (F10.5)

X = 0,0
K =0
15] |4k = K

IF(K-250) 16,16,18

“i

16} | FORMAT (3H A=F6,3;XKCHBER6; 312X cHCaEEHC , 2XpHY 6. 3,

16}

18
19

5

10
11

13

n

106

CR™ = AK+#%0.5

6o 10 19

CK = 3.0 %AK %%2.0

X = X + CK# Yx»K

K = K+1

IF(K-500)156,15,¢82

PRINT 23, Y, X _

FORMAT (23 Y2F10,BG2XgHE=ELE.9) . .7}
Gd 7¢ 10
STOP
END

1

PROGKAM FOR EXERCISE 7
N = 25

I =1

P =1.0

Q =.1.0.

S = 0.0

S =8+ B/Q

P = -2.0%F

Q= (Q+ 2.0)x%2

I = T+1 '
IF(I-N)5,5,10

PRINT 11, I, SUM

FORMAT (cA{HN=E6;2XoHS4BL5:8]Y.
N = N+2b

IF(N-100)5,5,13

STHP '

END

PROGEAM F¢3 BXERCISE 8. STERLING'S FORMILA.

DIMENSION Y(50)
READ 2, U, I
¥O AT (F10.4, I5)
= A(£,Y(T) ,
B = Us(¥(I+1) - ¥(I-1))/2.0
C

it

(U %%8) % (Y(I+1) - 2.0 %Y(I)+¥(I-1))/2.0

10

BX. 2.

—_—e e

I\

o

10

107

S = MBHC

PRINT 10, U,I,S

FORMAT(3 U=F10.4,2H1=15,2H5=E14.7)
STOV

JEND

PaHGRAM FQR EXBRCISE €.
DIMENSTON A7), B(7)
ABAD £, (A(I), I=1,7)
FORMAT(7FS . 4)

WBAD &, (B(I), I=1,7)
SUM = 0.0

Dy 51 =1,7

SUM = SUM+A(I) % B(I)
ANORM = SUM%x(2,0/3.0)
PRINT 8, ANQIM
FORMAT(7H ANQEM=E20.8)
STOHP '

END

PROGEAM FdR LAGHCISE 10,

AF(X) = X%#g + SQRT(L.0+2.0 % X + 3.0 wX #x%2)
wEAD 2, Y,Z

FOEMAT(2FL0 . 4)

LLPHA = (6,9+Y)/AF(Y)

BETA = (2,132 + Z%»d4)/4F(Z)

GAMA = SIM(Y)/AF(Y%x2)

DELTA = 1.0/4F(SIN(Y))

PRINT 10, Y,%,ALFHA, BETA, GAHA, DELTA
FORMAT(SH ¥=F1C,4,2HZ=F10.4//61ALPHA=EL3.6,
SHBET4=E13,6,5HGAMA=EL1 5.6 ,6HDELTA=EL5.6)
STHP

END

o
Ex, L)
C
Ex.le:
(&)
(b)

108

FUNCTION Y(X)

IF(X)2,4,6

Y = 1.0 + SQiT(1.0 + X%*2)
KETURN

Y = 0.0

RETURN

Y = 1.0 - SGRT (1.0 - X+*%2)
RETURN

| 5D

MATN FROGRAM FOR BZERCISE 11,

T = 2,04Y(AtZ)

G = (Y(X(K)) + Y(X(K+1)))/2.0

PI = 3.14159265 '

H = Y(COS(2.0% FI%X)) + SQET(1.0 + ¥(2.0% PIx 1))

ALY, A(2), 6(3)
B(1), B(2), B(3), B(4)

C(1,1),0(1,2),C(1,3),6(2,1),6(2,8),0(2,3) -,
PR '59(13&):D(1,2)ZD(2:1):D(zzz),D(3,1)Jﬁ§a

ﬂ-,§§?“ﬁﬁﬁﬁ§ﬁ;%m
faSsET R K
P ' SO
(5(LIBRARY G
BB Py’
EAR iR, aetomaumaszive é’{\
x&%;\~ RA
S s b
%,-_:;:_‘_‘_Fc £ - W

