
STUDY OF EARLY UNIVERSE IN AN M

THEORETIC MODEL

BySamrat BhowmikThe Institute of Mathematial Sienes, Chennai.
A thesis submitted to theBoard of Studies in Physial SienesIn partial ful�llment of the requirementsFor the Degree ofDOCTOR OF PHILOSOPHYofHOMI BHABHA NATIONAL INSTITUTE

January 25, 2011



Homi Bhabha National InstituteReommendations of the Viva Voe BoardAs members of the Viva Voe Board, we reommend that the dissertation preparedby Samrat Bhowmik entitled �Study of Early Universe in an M TheoretiModel� may be aepted as ful�lling the dissertation requirement for the Degreeof Dotor of Philosophy. Date :Chairman : Chair of ommittee Date :Convener : Conv of Committee Date :Member : Member 1 of ommittee Date :Member : Member 2 of ommitteeFinal approval and aeptane of this dissertation is ontingent upon the an-didate's submission of the �nal opies of the dissertation to HBNI.I hereby ertify that I have read this dissertation prepared under my diretionand reommend that it may be aepted as ful�lling the dissertation requirement.Date :Guide : S Kalyana Rama



DECLARATION
I, hereby delare that the investigation presented in the thesishas been arried out by me. The work is original and thework has not been submitted earlier as a whole or in part fora degree/diploma at this or any other Institution or University.

Samrat Bhowmik



. . . . . . to my parents and to the nature . . . . . .



ACKNOWLEDGEMENTSFirst of all I would like to thank my advisor, Prof. S. Kalyana Rama forguidane as well as enouragement during this work, and for introduing me tosome interesting aspet of string theory and osmology.I would also like to thank Prof. Sanatan Digal for helping me in my work,spei�ally his advie enabled me to develop an understanding of various numerialtehnique. Besides my thank extends to all my teahers for helping me to developan understanding of physis. I also thank IMS string theory group inludingstudents, post dos and faulties, for various disussions.I o�er my speial regards to all my friends of IMS for their onstant moralsupport during my stay in IMS, whih made my life omfortable. Lastly I wouldlike to thank IMS for providing me �nanial support for whole period of stay here.



AbstratIn this thesis we study early universe in the frame work of M theory. We assumethat the early universe is homogeneous, anisotropi, and is dominated by the mu-tually BPS interseting branes of M theory. Certain lass of blak holes an bedesribed by string/M theory have similar struture of interseting BPS braneson�gurations. We are motivated by suh blak holes to make a similar model forearly universe.But due to the lak of knowledge of the exat brane dynamis, we use U dualitysymmetry of the M theory to get an equation of states. We also verify the equationsof states obtained by duality also hold for known ase like blak holes. Then wesolve Einstein equations to get evolution of early universe.In partiular We assume that the early universe is homogeneous, anisotropi,and is dominated by the mutually BPS 22′55′ interseting branes of M theory. Thespatial diretions are all taken to be toroidal. Using analytial and numerial meth-ods, we study the evolution of suh an universe. We �nd that, asymptotially, threespatial diretions expand to in�nity and the remaining spatial diretions reah sta-bilised values. From string theory perspetive, the dilaton is hene stabilised also.We give a physial desription of the stabilisation mehanism.Any stabilised values an be obtained by a �ne tuning of initial brane densities.The onstant sizes depend on ertain imbalane among initial values. One naturallyobtains M11 ≃ Ms ≃ M4 and gs ≃ 1 within a few orders of magnitude. Smallernumbers, for example Ms ≃ 10−16M4, are also possible but require �ne tuning.In some sense our 22′55′ on�guration is speial. We give some example ofother on�gurations for whih stabilisation an not be ahieved. We give theirasymptoti time evolution. We �nd only 22′55′ and its U dual on�guration anahieved stabilisation of 7 spaelike dimensions.Also, from the perspetive of four dimensional spaetime, the e�etive fourdimensional Newton's onstant G4 is now time varying. Its time dependene willfollow from expliit solutions. We �nd in the present ase that, asymptotially, G4exhibits harateristi log periodi osillations.
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1Introdution
1.1 BakgroundIn physis one of the problems, mankind has been wondering for all time is �howuniverse evolves?� In last entury advanement of physis gave us enormousamount of knowledge to address suh question in a sienti� framework. So thestudy of evolution of universe began, whih is known as osmology.It is understood that gravity plays main role in evolution of universe, beauseit is long ranged and unlike eletromagneti fore, it is only attrative. After thedisovery of general relativity people understand that, spaetime has a rih geo-metri struture and is dynami in nature. This dynamis is governed by Einsteinequation.It is assumed in osmology that spaetime is homogeneous and isotropi. On thebasis of this fat a well known model has been made after the work of Friedmann,Robertson and Walker. This is known as FRW model. In this model matter istaken as homogeneous and isotropi �uids distributed over the whole spae likesurfae. FRW model is very suessful to desribe universe for large interval oftime, exept very early universe, and possibly present day universe (late timeaeleration).Another striking disovery in physis of last entury is quantum mehanis.It desribes motion of atom and subatomi partile with extraordinary preision.Nevertheless GR, the theory of gravity is lassial. So a hallenge posed to physiistis to make a quantum theory of gravity. Toward the end of last entury string/Mtheory [1, 2, 3℄ emerges as the most promising andidate for quantum gravity. 1



Chapter 1. IntrodutionString/M -theory uni�es all the fores of the nature. In string theory funda-mental building bloks of nature are one or higher dimensional objets, (open andlosed string � 1 dimensional, Dp-branes � p dimensional, NS5-branes � 5 dimen-sional) instead of point like partile. In M-theory there are two types of objets
M2 brane and M5 branes whih are 2 and 5 dimensional objet respetively. Buta new problem appears in this new theory � spaetime now beome higher dimen-sional. In string theory spaetime is 9 + 1 dimensional and in M theory spaetimeis 10 + 1 dimensional. On the other hand the large spaetime we observe is 3 + 1.So other 7 dimensions of M theory must be urled up to a very tiny sale, beyondthe reah of present day experiment. So now osmology has to explain evolutionof all 10 spae like dimension and how dynamially 7 of them stabilised whereasother 3 ontinues to expand. We studied this problem in this thesis.1.2 PreliminariesM theory is a 11 dimensional theory whih onsists of M2 branes and M5 branes.Various string theories are various limits of M theory. Until very reently almostnothing was known about full quantum mehanis of M-branes. Even now we donot have any lear idea. But 11-dimensional supergravity whih is supposed to below energy limit of M theory is well understood.11 dim supergravity is basially a theory of gravity with super symmetry. It isgoverned by the ation

S =
1

16πG11

∫

d11x
√
−g
(

R− 1

2× 4!
F 2
4

)

+ SCS + Sf . (1.1)Where F4 is a 4 form �eld strength suh that, F4 = dC3. Sf is fermioni part of theation and SCS is Chern-Simon term. M2 brane and M5 brane are respetively,eletrially and magnetially harged under F4. This theory ontains blak holesolutions. Blak holes are made of staks of M2 or M5 branes or intersetingombination of them. These blak hole solutions of singleM2 branes orM5 branespreserve all dynamial supersymmetries, that is half of the supersymmetries of theation. For intersetion, if they follow ertain rules then they also preserve sameamount of supersymmetries. These on�gurations are alled BPS on�guration.2



Chapter 1. IntrodutionThis blak hole solutions are well known and will be disussed in some details inlater hapter. We are motivated by this blak hole set up to make a model forearly universe.Another novel feature of M theory is duality symmetries. For details of thisduality see for example [4, 2, 5℄. M theory, ompati�ed on one of the ten spaelike dimension gives type IIA string theory. In string theory there are S and Tduality whih onnet various string theories. For example T duality on type IIAtheory transforms it to a type IIB theory and vie versa.Unlike point partials losed string an wind aground ompat diretion. Sobeside momentum it has another quantum number alled winding number. Let
p and w be the momentum and winding of a losed string. It wraps a ompatdiretion of radius R. Then T duality is a symmetry where

p ←→ w

R ←→ α′

R
. (1.2)Where α′ is string length. In ase of open string T duality transforms a Dp brane

D(p− 1) or D(p + 1) depending on whether T duality is applied along the branediretion or normal to it respetively. In this ase also R←→ α′

R
.In type IIB string theory there is another symmetry alled S duality. This isa symmetry between strong oupling and weak oupling. That is under S dualityoupling onstant←→ (oupling onstant)−1.Those symmetries also hold in supergravity level, in some ases with a slightlylarger symmetry group. When 11 dimensional supergravity ompati�ed on an S1,it gives type IIA supergravity. Whih is governed by

SIIA =
1

16πG10

∫

d10x
√
−g
[

e−2φ

(

R + 4∂µφ∂
µφ− 1

2
H2

3

)

− 1

2
(F 2

2 + F̃ 2
4 )

]

+ SCS + Sf . (1.3)Where φ is dilaton, a salar �eld whih omes from ompati�ed dimension of Mtheory. H3(= dB2) is NS-NS 3-form �eld strength and Fp(= dAp−1)'s are R-R �eldstrength. F̃4 is
F̃4 = dA3 −A1 ∧ F3 . (1.4)3



Chapter 1. Introdution
SCS is Chern-Simons term, given by

SCS = − 1

2× 16πG10

∫

B2 ∧ F4 ∧ F4 . (1.5)
Sf is the ation for fermioni �elds.This theory ontains Dp branes with p even. They are harged under RR�elds, Fp+2. Under T duality IIA SuGra beomes IIB SuGra theory. IIB theoryalso ontains Dp branes with p odd. Again S duality is a symmetry of IIB theorywith symmetry group SL(2,R). Under these duality operations metri, NS-NSand R-R �elds hanges. In Appendix A we listed the rules for this hanges.1.3 Present WorkIn early universe, temperatures and densities reah Plankian sales. Its desriptionthen requires a quantum theory of gravity. A promising andidate for suh atheory is string/M theory. When the temperatures and densities reah string/Mtheory sales, the appropriate desription is expeted to be given in terms of highlyenergeti and highly interating string/M theory exitations [6, 7, 8, 9, 10, 11, 12,13, 14, 15℄. 1 In this ontext, it has been proposed in an earlier work an entropipriniple aording to whih the �nal spaetime on�guration that emerges fromsuh high temperature string/M theory phase is the one that has maximum entropyfor a given energy. This priniple implies, under ertain assumptions, that thenumber of large spaetime dimensions is 3 + 1 [15℄.High densities and high temperatures also arise near blak hole singularities. Instring theory blak holes are made of branes. These branes have their exitations.So in terms of this exitations blak holes have temperature. Sine branes staysnear singularity, high temperature of blak holes near singularity has meaning.Therefore, it is reasonable to expet that the string/M theory on�gurations whihdesribe suh regions of blak holes will desribe the early universe also.Consider the ase of blak holes. Various properties of a lass of blak holeshave been suessfully desribed using mutually BPS interseting on�gurations1 Only string theory is onsidered in these referenes. But their arguments an be extendedfor M theory also leading to similar onlusions. 4



Chapter 1. Introdutionof string/M theory branes. 2 Blak hole entropies are alulated from ount-ing exitations of suh on�gurations, and Hawking radiation is alulated frominterations between them.In the extremal limit, suh brane on�gurations onsist of only branes andno antibranes. In the near extremal limit, they onsist of a small number ofantibranes also. It is the interation between branes and antibranes whih give riseto Hawking radiation. String theory alulations are tratable and math those ofBekenstein and Hawking in the extremal and near extremal limits. But they arenot tratable in the far extremal limit where the numbers of branes and antibranesare omparable. However, even in the far extremal limit, blak hole dynamis isexpeted to be desribed by mutually BPS interseting brane on�gurations wherethey now onsist of branes, antibranes, and other exitations living on them, allat non zero temperature and in dynamial equilibrium with eah other [17, 18, 19,20, 21, 22, 23, 24, 25, 26℄. For the sake of brevity, we will refer to suh far extremalon�gurations also as brane on�gurations even though they may now onsist ofbranes and antibranes, left moving and right moving waves, and other exitations.The entropy S of N staks of mutually BPS interseting brane on�gurations,in the limit where S ≫ 1 , is expeted to be given by
S ∼

∏

I

√
nI + n̄I ∼ E

N
2 (1.6)where nI and n̄I , I = 1, · · · , N , denote the numbers of branes and antibranes of

I th type, E is the total energy, and the seond expression applies for the hargeneutral ase where nI = n̄I for all I . The proof for this expression is given byomparing it in various limits with the entropy of the orresponding blak holes[17, 18℄, see also [17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28℄. For N ≤ 4 and whenother alulable fators omitted here are restored, this expression mathes that forthe orresponding blak holes in the extremal and near extremal limit and, in themodels based on that of Danielsson et al [19℄, mathes upto a numerial fator in2 Mutually BPS interseting on�gurations means, for example, that in M theory two staksof 2 branes interset at a point; two staks of 5 branes interset along three ommon spatialdiretions; a stak of 2 branes interset a stak of 5 branes along one ommon spatial diretion;waves, if present, will be along a ommon intersetion diretion; and eah stak of branes issmeared uniformly along the other brane diretions. See [16℄ for more details and for other suhstring/M theory on�gurations. 5



Chapter 1. Introdutionthe far extremal limit [17℄ � [28℄ also. However, no suh proof exists for N > 4sine no analogous objet, blak hole or otherwise, is known whose entropy is ∝ E∗with ∗ > 2 .Note that, in the limit of large E , the entropy S(E) is ≪ E for radiation in a�nite volume and is ∼ E for strings in the Hagedorn regime. In omparison, theentropy given in (1.6) is muh larger when N > 2 . This is beause the branesin the mutually BPS interseting brane on�gurations form bound states, beomefrational, 3 and support very low energy exitations whih lead to a large entropy.Thus, for a given energy, suh brane on�gurations are highly entropi.Another novel onsequene of frational branes is the following. Aording tothe `fuzz ball' piture for blak holes [30℄, the frational branes arising from thebound states formed by interseting brane on�gurations have non trivial trans-verse spatial extensions due to quantum dynamis. The size of their transverseextent is of the order of Shwarzshild radius of the blak holes. Therefore, essen-tially, the region inside the `horizon' of the blak hole is not empty but is �lled withfuzz ball whose fuzz arise from the quantum dynamis of frational strings/branes.Chowdhury and Mathur have reently extended the fuzz ball piture to theearly universe [27, 28℄. They have argued that the early universe is �lled with fra-tional branes arising from the bound states of the interseting brane on�gurations,and that the brane on�gurations with highest N are entropially favourable, seeequation (1.6).However, as mentioned below equation (1.6) and noted also in [27, 28℄, theentropy expression in (1.6) is proved in various limits for N ≤ 4 only and no proofexists for N > 4. Also, we are not ertain of the existene of any system whoseentropy S(E) is parametrially larger than E2 for large E . See related disussionsin [31, 32℄. Therefore, in the following we will assume that N ≤ 4 . Then, ahomogeneous early universe in string/M theory may be taken to be dominated bythe maximum entropi N = 4 brane on�gurations distributed uniformly in theommon transverse spae.3Frationation of branes states is familiar phenomena in string theory [29℄, see also [30℄.Consider for example a string of length LT with an wave on it. it wraps a ompat diretion ntimes. Eah yle has a length say L, so LT = nL. Total momentum of the wave say np

L
. Thismomentum an be distributed all of these yles. So strings along eah of these yles behaveslike a frational string and total entropy, S ∝ √nnp. This is alled frationation. Similar thinghappens in branes also. 6



Chapter 1. IntrodutionSuh N = 4 mutually BPS interseting brane on�gurations in the early uni-verse may then provide a onrete realisation of the entropi priniple proposedearlier by one of us to determine the number (3+1) of large spaetime dimensions[15℄. Indeed, in further works [31, 32, 33, 34℄, using M theory symmetries and er-tain natural assumptions, it has been shown that these on�gurations lead to threespatial diretions expanding and the remaining seven spatial diretions stabilisingto onstant sizes.In this thesis, we assume that the early universe in M theory is homogeneousand anisotropi and that it is dominated by N = 4 mutually BPS intersetingbrane on�gurations. 4 In this ontext, it is natural to assume that all spatialdiretions are on equal footing to begin with. Therefore we assume that the tendimensional spae is toroidal. We then present a thorough analysis of the evolutionof suh an universe.The orresponding energy momentum tensor TAB has been alulated in [27℄under ertain assumptions. However, general relations among the omponents of
TAB may be obtained [32℄ using U duality symmetries of M theory whih are,therefore, valid more generally. We show in this thesis that these U duality rela-tions alone imply, under a tehnial assumption, that the N = 4 mutually BPSinterseting brane on�gurations with idential numbers of branes and antibraneswill asymptotially lead to an e�etive (3 + 1) dimensional expanding universe.In order to proeed further, and to obtain the details of the evolution, we makefurther assumptions about TAB . We then analyse the evolution equations in Ddimensions in general, and then speialise to the eleven dimensional ase of interesthere.We are unable to solve expliitly the relevant equations. However, applyingthe general analysis mentioned above, we desribe the qualitative features of theevolution of the N = 4 brane on�guration. In the asymptoti limit, three spatialdiretions expand as in the standard FRW universe and the remaining seven spatialdiretions reah onstant, stabilised values. These values depend on the initialonditions and an be obtained numerially. Also, we �nd that any stabilisedvalues may be obtained, but requires a �ne tuning of the initial brane densities.Using the analysis given here, we present a physial desription of the meh-4 There is an enormous amount of work on the study of early universe in string/M theory. Fora small, non exhaustive, sample of suh works, see [35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47℄.7



Chapter 1. Introdutionanism of stabilisation of the seven brane diretions. The stabilisation is due, inessene, to the relations among the omponents of TAB whih follow from U du-ality symmetries, and to eah of the brane diretions in the N = 4 on�gurationbeing wrapped by, and being transverse to, just the right number and kind ofbranes. This mehanism is very di�erent from the ones proposed in string theoryor in brane gas models [37℄ � [40℄ to obtain large 3+1 dimensional spaetime. (Seesetion I A below also.)In the asymptoti limit, the eleven dimensional universe being studied herean also be onsidered from the perspetive of four dimensional spaetime. Onethen obtains an e�etive four dimensional Newton's onstant G4 whih is nowtime varying. Its preise time dependene will follow from expliit solutions of theeleven dimensional evolution equations.We �nd that, in the ase of N = 4 brane on�guration, G4 has a harater-isti asymptoti time dependene : the frational deviation δG4 of G4 from itsasymptoti value exhibits log periodi osillations given by
δG4 ∝

1

tα
Sin(ω ln t+ φ) . (1.7)The proportionality onstant and the phase angle φ depend on initial onditionsand mathing details of the asymptotis, but the exponents α and ω dependonly on the on�guration parameters. Suh log periodi osillations seem to beubiquitous and our in a variety of physial systems [48, 49, 50℄. But, to ourknowledge, this is the �rst time it appears in a osmologial ontext. One expetssuh a behaviour to leave some novel imprint in the late time universe, but itsimpliations are not lear to us.Sine we are unable to solve the evolution equations expliitly, we analyse themusing numerial methods. We present the results of the numerial analysis of theevolution. We illustrate the typial evolution of the sale fators showing stabili-sation and the log periodi osillations mentioned above. By way of illustration,we hoose a few sets of initial values and present the resulting values for the sizesof the stabilised diretions and ratios of the string/M theory sales to the e�etivefour dimensional sale.We also disuss ritially the impliations of our assumptions. As we willexplain, many important dynamial questions must be answered before one un-8



Chapter 1. Introdutionderstands how our known 3 + 1 dimensional universe may emerge from M theory.Until these questions are answered and our assumptions justi�ed, our assumptionsare to be regarded onservatively as amounting to a hoie of initial onditionswhih are �ne tuned and may not arise naturally.1.4 Organisation of the ThesisThe organisation of this thesis is as follows:In hapter 2 we disuss various blak hole solution and their energy momentumtensor. Then we disuss U duality relations in M theory and string theory.In �rst part of hapter 2 (setions 2.1 to 2.4) we disuss some known resultof blak holes in M theory. In the seond part (setions 2.5 to 2.7) we disuss Uduality in M and string theory, and their appliations in blak hole solution.In hapter 3, evolution of early universe has been disussed. In setion 3.1, wepresent equations of motion fro our osmologial model. In setion 3.2, we disussonsequenes of U duality in our osmologial model, and onsequently in setion3.3 and 3.4, we give a general result and make our ansatz for TAB.In setion 3.5 to setion 3.7, we present �rst a general analysis ofD dimensionalevolution equations and then we speialise to eleven dimensional ase of N = 4interseting brane on�gurations and desribed various result mentioned above.In setion 3.8, we present mehanism of stabilisation in details and then insetion 3.9, we disuss stabilised values of the brane diretions, their ranges, andthe neessity of �ne tuning.In setion 3.10, we disuss onsequenes of some example of interseting on-�gurations whih are not 22′55′, and we showed in these ases stabilisation an notbe ahieved.In setion 3.11, we present the four dimensional perspetive and the timevariations of G4 . In setion 3.12, we present the results of numerial analysis. Insetion 3.13, we onlude by presenting a brief summary, a few omments on theassumptions made, and by mentioning a few issues whih may be studied further.
9



2Blak Holes and Duality inM-Theory and String Theory
U-duality is a symmetry of M-theory whih onsists of T-duality, S-duality ofstring theory and dimensional redution and dimension upliftment. In ertainases of supergravity solutions this symmetries an be used to get relations amongvarious metri omponent. Theses relations an be used to get relations amongvarious omponents of energy-momentum tensors. We will desribe the proedurein detail in this hapter. In our model for early universe we use these relations to�nd equations of states.We here disuss interseting M branes system. In this hapter we study blakholes made by mutually BPS interseting M-branes. In hapter 3 we disuss mu-tually BPS interseting M-branes dominated universe. To be spei�, we onsider
22′55′ on�gurations.5Suh system is ditated by a (10 + 1) dimensional e�etive ation given, in thestandard notation, by

S11 =
1

16πG11

∫

d11x
√
−g R + Sbr (2.1)where Sbr is the ation for the �elds orresponding to the branes. The orrespond-ing equations of motion are given, in the standard notation and in units where5 In our notation, 22′55′ denotes two staks eah of 2 branes and 5 branes, all intersetingeah other in a mutually BPS on�guration. Similarly for other on�gurations, e.g. 55′5′′Wdenotes three staks of 5 branes interseting in a mutually BPS on�guration with a wave alongthe ommon intersetion diretion. 10



Chapter 2. Blak Holes and Duality in M-Theory and String Theory
8πG11 = 1 , by 6

RAB −
1

2
gABR = TAB ,

∑

A

∇AT
A
B = 0 (2.2)where A = (0, i) with i = 1, 2, · · · , 10 and TAB is the energy momentum tensororresponding to the ation Sbr , de�ned by

δgSbr =
1

2

∫

d11x
√−g TAB δgAB , (2.3)where δg is the variation with respet to gravitational �elds gAB. Equations ofmotion for the brane �elds an be found varying the ation with respet to brane�elds.

∂S

∂ (Brane �elds) = 0. (2.4)If we know brane �elds expliitly we an �nd equation of motion. For example inblak hole ases we show them in next setion.2.1 Blak Brane Energy Momentum Tensor andSolutionsFor blak hole ase, TAB is obtained from the ation for higher form gauge �elds.That is Sbr is known. With a suitable ansatz for the metri, equations of motion(2.2) an be solved to obtain blak hole solutions.To explain the proess onsider 11-dimensional supergravity ation. The bosonipart of the ation is
S =

1

16πG11

∫

d11x
√
−g
(

R − 1

2× 4!
F 2
4

)

, (2.5)6 In the following, the onvention of summing over repeated indies is not always appliable.Hene, we will always write the summation indies expliitly. Unless indiated otherwise, theindies A,B, · · · run from 0 to 10, the indies i, j, · · · from 1 to 10, and the indies I, J, · · · from
1 to N .

11



Chapter 2. Blak Holes and Duality in M-Theory and String Theorywhere F4 is a 4 form �eld, F4 = dC3. So Sbr is given by
Sbr =

1

16πG11

∫

d11x
√−g

(

− 1

2× 4!
F 2
4

)

. (2.6)The existene of 3-form gauge potential suggests that the theory ontains 2-braneswhih ouples to 3-form via
Q2

∫

d3ξ CMNL
∂xM

∂ξa
∂xN

∂ξb
∂xL

∂ξc
(2.7)where ξa are world volume oordinates of 2-brane. Equations of motion for F4 are

∇MFMNPQ = 0 , (2.8)where right hand side is set to zero beause fermioni urrents orresponding tobranes are set to zero. This 4-form �eld also satisfy Bianhi identity,
∇MFNPQL +∇LFMNPQ +∇QFLMNP +∇PFQLMN +∇NFPQLM = 0 . (2.9)The theory given by (2.5) ontains a 2 dimensional and a 5 dimensional objets

M2 and M5 brane. M2 branes are eletrially harged and M5 branes are mag-netially harged under F4. For this matter �eld, F4 energy-momentum tensor,
TAB is given by

TAB =
1

48

[

4FAMNP FB
MNP − 1

2
gAB F 2

4

]

. (2.10)Seond equation of equation (2.2),
∑

A

∇AT
A
B = 0 (2.11)now follows from equations (2.8), (2.9) and (2.10). to show this onsider

∑

A

∇AT
A
B = 4(∇AF

AMNP )FBMNP

+ 4FAMNP (∇AFBMNP )− gAB (∇AFMNPL)F
MNPL . 12



Chapter 2. Blak Holes and Duality in M-Theory and String TheoryFirst term is 0 by equation (2.8). Last two terms an be written as
−FMNPL (∇LFBMNP +∇PFLBMN +∇NFPLBM +∇MFNPLB +∇BFMNPL) ,whih is zero by equation (2.9).This theory ontains blak brane solution, whih are solutions with solitoniobjets. These blak holes are atually made of stak of M2 or M5 branes or BPSinterseting ombinations of them. With a suitable ansatz for metri and �eldsEinstein equation an be solved to obtain blak hole solutions. First we alulateenergy momentum tensor for various interseting brane on�gurations. To do thatwe make suitable ansatz for metri and justify it.2.2 General Blak Brane solutionsNow we are in a position to get blak hole solution for BPS on�guration. *[ref-erene℄ To get the solutions, let the spaetime oordinates be xA = (r, xα) where

xα = (x0, xi, θa) with x0 = t , i = 1, · · · , q , a = 1, · · · , m , and q +m = 9 . The
xi diretions may be taken to be toroidal, some or all of whih are wrapped bybranes, and θa are oordinates for an m dimensional spae of onstant urvaturegiven by ǫ = ±1 or 0 . The metri and brane �elds depend only on r oordinate,and de�ned by r2 =

∑q+m
α=q+1(x

α)2. We write the line element ds, in an obviousnotation, as
ds2 = −e2λ0dt2 +

∑

i

e2λ
i

(dxi)2 + e2λdr2 + e2σdΩ2
m,ǫ . (2.12)Blak hole solutions are given by ǫ = +1. But the analysis is true for any maximallysymmetri non-ompat spae.The independent non vanishing omponents of TA

B are given by T r
r = f and

T α
α = pα where α = (0, i, a) . These omponents an be alulated expliitly usingthe ation Sbr . For example, for an eletri p-brane along (x1, · · · , xp) diretions,they are given by (see equation (2.10))

p0 = p‖ = −p⊥ = −pa = f =
1

4
F01···pr F

01···pr (2.13)13



Chapter 2. Blak Holes and Duality in M-Theory and String Theorywhere p‖ = pi for i = 1, · · · , p , p⊥ = pi for i = p + 1, · · · , q , and note that fis negative. For mutually BPS N interseting brane on�gurations, it turns out[51, 52, 53, 54, 55, 56, 57, 58, 59, 60℄ that the respetive energy momentum tensors
TA

B and TA
B(I) obey onservation equations separately. We explained this pointin detail in previous setion.

TA
B =

∑

I

TA
B(I) ,

∑

A

∇AT
A
B(I) = 0 . (2.14)Equations of motion may now be obtained from equations (2.2) and (2.14).After some manipulations, they may be written as follows:

Λ2
r −

∑

α

(λα
r )

2 = 2 f + ǫ m(m− 1)e−2σ (2.15)
λα
rr + Λrλ

α
r = − pα +

1

9
(f +

∑

β

pβ)

+ ǫ (m− 1)e−2σ δαa (2.16)
fr + fΛr −

∑

α

pαλ
α
r = 0 (2.17)where Λ =

∑

α λ
α = λ0 +

∑

i λ
i +mσ and the subsripts r denote r-derivatives.One an see equation (2.17), whih is same as (2.11) in this ase is onsequeneof equations of motion for 4-form gauge �eld and de�nition of energy momentumtensor. In ase of interseting branes pα =

∑

I pα (I), f =
∑

I fI and equation(2.17) may be written as
fI r + fIΛr −

∑

α

pα (I)λ
α
r = 0 . (2.18)This is beause of, as we already laimed, TA
B (I) obey onservation equationseparately. See [59℄ partiularly, whose set up and the equations of motions arelosest to the present ones.The other equations of motion are the equations for 4-form �eld., whih is sameas equations (2.8) and (2.9). Equation (2.18) an be derived from equations (2.8)and (2.9).If we assume pα (I) = −(1 − uI

α) fI , then equation (2.18) an be solved. The14



Chapter 2. Blak Holes and Duality in M-Theory and String Theorysolution is found to be
fI = − el

I−2Λ , lI =
∑

α

uI
αλ

α + lI0 . (2.19)Now we de�ne the matries Gαβ and GIJ as
Gαβ = 1− δαβ , GIJ =

∑

α,β

Gαβ uI
α uJ

β , (2.20)where Gαβ is the inverse of Gαβ and is given by
Gαβ =

1

9
− δαβ . (2.21)If we de�ne a new oordinate τ by dτ = e−Λ dr, equation (2.16) beomes

e−2Λ λα
ττ = − pα +

1

9
(f +

∑

β

pβ) + ǫ (m− 1)e−2σ δαa . (2.22)If one multiplies both side by uα and take a sum over α and then use equation(2.19) in (2.22) one �nds
lIττ = −

∑

J

GIJ el
J

+
∑

a∈Ω
ua ǫ (m− 1) e2(Λ−σ) . (2.23)Spei� values of GIJ depend on interseting on�guration. In ase of blak holeswe an alulate them from expliit alulation of energy momentum tensor or byusing duality. In setion 2.6 we disuss this point in detail.If the omponents of energy momentum tensor follow a relation like

∑

α

cα

(

−pα +
1

9
(f +

∑

β

pβ)

)

= 0 (2.24)then this immediately implies a relation among metri omponents λα and σ. Wewill see, for various brane solutions from expliit alulation and also using dualitysame type of relations ome. For example, when α 6= a, then equations (2.22) and
15



Chapter 2. Blak Holes and Duality in M-Theory and String Theory(2.24) implies
∑

α

c′αλ
α = 0 . (2.25)Expliit interseting on�gurations give values of cα and c′α. We will see someexamples in the next setion.2.3 Energy-Momentum Tensor of Blak Brane So-lutionIn this setion we alulate Energy-Momentum Tensor for various blak braneon�gurations. First we alulate for M2 and M5 brane ase. Then we also giveenergy-momentum tensor of various interseting ombinations of them, both BPSand non-BPS.We show here that, for BPS interseting brane on�gurations, total energymomentum tensor is just sum of energy momentum tensors reated by individualset of branes. On the other hand we give an example of 2 sets of interseting

M2 branes on�guration, whih does not follow BPS rule, total energy momentumtensor is not just sum over that of individual brane solutions.In BPS ases we also notie, ertain relations hold among various omponentsof TA
B. In a later setion we will show that, these relations an be obtained byusing U duality without omputing expliit form of TA

B.2.3.1 M2 BranesConsider a stak of M2 branes along (x1, x2) diretions. x1 and x2 are taken tobe ompat. x3 and x4 are also taken to be ompat. In this ase the solution isknown, it is given by in extremal ase
ds2 = H

− 2
3

2

(

−dt2 +
2
∑

i=1

(dxi)2

)

+H
1
3
2

(

4
∑

i=3

(dxi)2 + dr2 + r2dΩ2
7

)

, (2.26)
16



Chapter 2. Blak Holes and Duality in M-Theory and String Theorywhere H2(r) = 1− 1
r4

and r2 =
∑10

i=5(x
i)2. In general line element of this solutionan be taken to be

ds2 = −e2λ0(r) dt2 +
4
∑

i=1

e2λ
i(r) (dxi)2 + e2λ(r)

(

dr2 + r2dΩ2
5

)

. (2.27)Ansatz for �eld, CMNP is
C012 = f(r) , (2.28)whih gives

F012r = f ′(r) = E(r) , (2.29)where ′ indiate derivative with respet to r. This atually means M2 branes areeletrially harged under the �eld F4. Energy momentum tensor is given by
T 0

0 = T ‖
‖ = −T⊥

⊥ = T r
r = −T a

a = −
1

4
e−2(λ0+λ1+λ2+λ)(E(r))2 , (2.30)where indies ‖ and ⊥ indiate parallel and perpendiular to the brane diretionsand a indiates diretions in Ω5 respetively.As we have shown in last setion that, onservation equation follows from equa-tions (2.8), (2.9) and (2.10) here also onservation equation ∑A∇AT

A
B = 0 issatis�ed.One an see from equations (2.30) and (2.16) that the onstraining relationamong sale fator, mentioned before turns out to be

λ0 = λ‖ = −2λ⊥ . (2.31)2.3.2 BPS Intersetion of 2 Sets of M2 BranesNow onsider 2 sets of interseting M2 branes along (x1, x2) and (x3, x4). wedenote �rst set by 2 and seond set by 2′. Blak brane solution of intersetingbranes was �rst identi�ed in [61℄, then many solutions were quikly onstrutedand governing rules of their existene were studied. For a review of intersetingbranes solution see book [5℄ and referene there in. This interseting on�gurationfollows BPS rules. BPS interseting solution the intersetion rules are disussed in
17



Chapter 2. Blak Holes and Duality in M-Theory and String TheoryAppendix C. For this on�guration our metri ansatz remains same as above.
ds2 = −e2λ0(r) dt2 +

4
∑

i=1

e2λ
i(r) (dxi)2 + e2λ(r)

(

dr2 + r2dΩ2
5

)

.Nevertheless, we have now two sets of eletrially harged branes, so our ansatzfor CMNP gets hanged. Now we have
C012 = f2(r)

C034 = f2′(r) . (2.32)So now non vanishing omponents are C012 and C034 and their yli permutations.Above potential gives �eld strength of the form
F012r = f ′

2(r) = E2(r)

F034r = f ′
2′(r) = E2′(r) . (2.33)Energy momentum tensors in this ase found to be

T 0
0 = −1

4
e−2(λ0+λ)

{

e−2(λ1+λ2)(E2(r))
2 + e−2(λ3+λ4)(E2′(r))

2
}

T 1
1 = T 2

2 = −1
4
e−2(λ0+λ)

{

e−2(λ1+λ2)(E2(r))
2 − e−2(λ3+λ4)(E2′(r))

2
}

T 3
3 = T 4

4 =
1

4
e−2(λ0+λ)

{

e−2(λ1+λ2)(E2(r))
2 − e−2(λ3+λ4)(E2′(r))

2
}

T r
r = −1

4
e−2(λ0+λ)

{

e−2(λ1+λ2)(E2(r))
2 + e−2(λ3+λ4)(E2′(r))

2
}

T a
a =

1

4
e−2(λ0+λ)

{

e−2(λ1+λ2)(E2(r))
2 + e−2(λ3+λ4)(E2′(r))

2
}

.(2.34)One an see easily from above equations, that total energy momentum tensorsare just the sum of individual brane on�gurations,
TA

B =
∑

I

TA
B (I) .From general analysis of setion 2.1 we an say that onservation equation∑A∇AT

A
B =

0 is satis�ed for total energy momentum tensor as well as individual energy mo-18



Chapter 2. Blak Holes and Duality in M-Theory and String Theorymentum tensors. Last onlusion is on�rmed by the fat that, onservation of
TA

B (I) is veri�ed in setion 2.3.1.Like in previous subsetion here also a relation among sale fators omes outusing equations (2.34) and equation of motion.
λ1 = λ2

λ3 = λ4

2λ1 + 2λ3 + λ0 = 0 . (2.35)2.3.3 M5 BranesIn ase of M5 brane, just like M2 brane ase metri ansatz is taken of the sameform, exept now 5 of the 10 spaelike dimensions (x1, x2, x3, x4, x5) are ompatand M5 branes wrap them. In general we may take some of the other diretionsare also ompat. In that ase they will be treated as diretions perpendiular tobranes and will be in same footing as diretions of Ω4. Metri ansatz is taken tobe
ds2 = −e2λ0(r)dt2 +

5
∑

i=1

eλ
i

(dxi)2 + e2λ(r)
(

dr2 + r2dΩ2
4

)

, (2.36)where now r2 =
∑10

i=6(x
i)2. M5 branes are magnetially harged under the gauge�eld F4. Its dual �eld is a 7-form �eld F7. It is eletrially harged under this7-form F7. F4 and F7 are related by

(F4)MNPQ =
√−g ǫ012345rMNPQ(F7)

01···r . (2.37)So one may take ansatz for for 3-form potential is of the form
CNPQ =

1

4
ǫ012345rMNPQf(r)x

M . (2.38)So F4 takes non zero value only when (MNPQ) ∈ {7, 8, 9, 10}. For omputationalsimpliity and to math with standard notations, we take f(r) as
f(r) =

√−g g00g11g22g33g44g55grrE(r) , (2.39)
19



Chapter 2. Blak Holes and Duality in M-Theory and String Theorywhere gAB is the metri, gAB is its inverse and g is its determinant. With thisansatz energy momentum tensor turns out to be
T 0

0 = T ‖
‖ = T r

r = −T a
a = −

1

4
e−2(λ0+λ1+λ2+λ3+λ4+λ5+λ)(E(r))2 , (2.40)where index ‖ indiates parallel to brane diretions and a indiates diretions in

Ω4 respetively.Here we have only one type of branes. Again general argument of setion 2.1is appliable. So
∑

A

∇AT
A
B = 0is true.Equations (2.40) and equations of motion imply relations among sale fators.These equations are same as (2.31).

2λ0 = 2λ‖ = −λ⊥ . (2.41)2.3.4 BPS Intersetion of M2 Branes and M5 BranesIn this subsetion we give an example of BPS interseting on�guration of a stakof M2 branes, strethed along (x1, x2) and that of M5 branes are strethed along
(x1, x3, x4, x5, x6). As before all these x1 · · ·x6 are ompat, and the system isloalised in ommon transverse spae x7 · · ·x10. Again ansatz for blak branemetri is similar to previous ases. It is taken of the form

ds2 = −e2λ0(r)dt2 +
6
∑

i=1

eλ
i

(dxi)2 + e2λ(r)
(

dr2 + r2dΩ2
3

)

. (2.42)Here r2 =∑10
i=7(x

i)2. Under 4-form gauge �eld M2 branes are eletrially hargedand M5 branes are harged magnetially. So we take an ansatz for our gaugepotential as
C012 = f2(r)

CNPQ =
1

4
ǫ013456rMNPQf5(r) x

M , (2.43)20



Chapter 2. Blak Holes and Duality in M-Theory and String Theorywhere again f5(r) is taken of the form
f5(r) =

√
−g g00g11g33g44g55g66grrE5(r) . (2.44)Note that, here {M,N, P,Q} an take value in x3 and Ω3, otherwise CMPQ willbe zero. Now the non-zero omponents of energy momentum tensor for this set of�elds are

T 0
0 = −1

4
e−2(λ0+λ1+λ)

{

e−2λ2

(E2(r))
2 + e−2(λ3+λ4+λ5+λ6)(E5(r))

2
}

T 1
1 = −1

4
e−2(λ0+λ1+λ)

{

e−2λ2

(E2(r))
2 + e−2(λ3+λ4+λ5+λ6)(E5(r))

2
}

T 2
2 = −1

4
e−2(λ0+λ1+λ)

{

e−2λ2

(E2(r))
2 − e−2(λ3+λ4+λ5+λ6)(E5(r))

2
}

T 3
3 = T 4

4 = T 5
5 = T 6

6

=
1

4
e−2(λ0+λ1+λ)

{

e−2λ2

(E2(r))
2 − e−2(λ3+λ4+λ5+λ6)(E5(r))

2
}

T r
r = −1

4
e−2(λ0+λ1+λ)

{

e−2λ2

(E2(r))
2 + e−2(λ3+λ4+λ5+λ6)(E5(r))

2
}

T a
a =

1

4
e−2(λ0+λ1+λ)

{

e−2λ2

(E2(r))
2 + e−2(λ3+λ4+λ5+λ6)(E5(r))

2
}

. (2.45)So it is again just the sum of individual TA
B reated by M2 branes and M5branes separately. Same argument of setion 2.1 goes through about onservationequation. Also and TA

B (I)'s are onserved separately as they are, for single M2brane and single M5 brane ase.Equations (2.45) and equation of motion imply onstraining relations, like be-fore, among sale fators.
λ0 = λ1

λ3 = λ4 = λ5 = λ6

λ2 + 2λ3 = 0 . (2.46)2.3.5 Non-BPS Intersetion of BranesNow we will onsider an almost similar on�guration of subsetion 2.3.2, exeptnow our on�guration is non-BPS. In this ase lets take two sets of 2 branes along
(x1, x2) and (x2, x3). It is a non-BPS intersetion of branes. We take x1, x2 and x321



Chapter 2. Blak Holes and Duality in M-Theory and String Theoryas ompat. Both set are eletrially harged. So the 3-form potential omponentsin this ase are
C012 = f2(r)

C023 = f2′(r) . (2.47)So orresponding �elds are
F012r = f ′

2(r) = E2(r)

F023r = f ′
2′(r) = E2′(r) . (2.48)For metri we may start with an ansatz like (2.42), but it turns out that this ansatzis inonsistent. The reason is explained below. Beause of the �rst term in theexpression of energy momentum tensor (equations (2.10)), T13 is non-zero,

T13 =
1

12
g00g22grrF102rF302r × 3! . (2.49)But sine the metri is diagonal, (R13 − 1

2
g13R) is zero. So obviously Einsteinequations are not satis�ed. Therefore one has to take a di�erent ansatz, simplestone is diagonal metri with only g13 non-zero. That is,

ds2 = −e2λ0(r) dt2+

3
∑

i=1

e2λ
i(r) (dxi)2+2 e2λ

c

dx1dx3++e2λ(r)
(

dr2 + r2dΩ2
6

)

. (2.50)With this ansatz it turns out non vanishing omponents of Einstein tensor are alldiagonal omponents and G13. So now we an equate GMN and TMN . So we willtake the above line element as our ansatz.

22



Chapter 2. Blak Holes and Duality in M-Theory and String TheoryWe alulate here TM
N . The non-zero omponents of them turn out to be

T 0
0 =

1

4

(

g00g11g22grrF012rF012r + g00g22g33grrF023rF023r + g00g13g22grrF012rF032r

)

T 1
1 =

1

4

(

g00g11g22grrF012rF
012r − g00g22g33grrF023rF023r + g00g13g22grrF012rF032r

)

T 2
2 =

1

4

(

g00g11g22grrF012rF
012r + g00g22g33grrF023rF023r + g00g13g22grrF012rF032r

)

T 3
3 =

1

4

(

−g00g11g22grrF012rF012r + g00g22g33grrF023rF023r + g00g13g22grrF012rF032r

)

T r
r =

1

4

(

g00g11g22grrF012rF012r + g00g22g33grrF023rF023r + g00g13g22grrF012rF032r

)

T a
a = −1

4

(

g00g11g22grrF012rF012r + g00g22g33grrF023rF023r + g00g13g22grrF012rF032r

)

,(2.51)where index a denotes oordinates in Ω6. There is another omponent T13. Nowbeause of T 1
3 = g11T13 + g13T33 and T 3

1 = g33T13 + g13T11, T 1
3 and T 3

1 are notsymmetri. They turned out to be various ombination of F012r and F023r, and arenon-zero. From above equations one an see learly that, total energy momentumtensor is not just the sum of individual energy momentum tensors reated by eahsets of branes separately. For example in equations (2.51) �rst two terms in eahequation give energy momentum tensor for individual brane on�guration, but thethird term is extra. Also T13 is a new omponent, whih was not in ase of single
M2 brane system. So we may onlude that, for non-BPS intersetion equation(2.14) is not satis�ed.2.4 22′55′ Blak HolesBPS intersetion of multiple branes desribes multiharge extremal blak holes.We will now disuss of 2 M2 branes and 2 M5 branes interseting on�guration.This 22′55′ on�guration is the matter of our osmologial model. Here we take x1to x7 are ompat. First set of M2 branes wrap (x1, x2) diretions, seond set of
M2 branes wrap (x3, x4), �rst M5 branes wrap (x1, x3, x5, x6, x7) and seond M5branes wrap (x2, x4, x5, x6, x7). M2 branes are eletrially harged and M5 branesare magnetially harged under F4. Let Q2, Q2′ , Q5, Q5′ are the 4 parameterwhih determine mass and harges of the extremal blak hole solution we get. So23



Chapter 2. Blak Holes and Duality in M-Theory and String Theorythe omponents of the gauge �eld potential are
C012 = H−1

2 (r)− 1 (2.52)
C034 = H−1

2′ (r)− 1 (2.53)
CLMN =

1

4
ǫ013567rPLMNf5(r) x

P (2.54)
CABC =

1

4
ǫ024567rPABCf5′(r) x

P ; (2.55)where
f5(r) =

√−g g00g11g33g55g66g77grrH−2
5 (r) (2.56)

f5′(r) =
√−g g00g22g44g55g66g77grrH−2

5′ (r) . (2.57)
HI are the harmoni funtion, and given by HI = 1 + QI

r
. For this on�gurationgeometry turns out to be

ds2 = (H2H2′)
−2/3(H5H5′)

−1/3[−dt2 +H2′H5′(dx
1)2 +H2′H5(dx

2)2 +

H2H5′(dx
3)2 +H2H5(dx

4)2 +H2H2′
{

(dx5)2 + (dx6)2 + (dx7)2
}

+H2H2′H5H5′
(

dr2 + r2dΩ2
2

)

] (2.58)Here one an alulate energy momentum tensor for eah type of branes sepa-rately using equation (2.10). They are
T 0

0 (2) = T 1
1 (2) = T 2

2 (2) = −T 3
3 (2) = · · · = −T 8

8 (2)

= T r
r (2) = −T a

a (2) = −1
4

(H′
2/H2)2

(H2H2′ )
1/3(H5H5′ )

2/3 (2.59)
T 0

0 (2′) = T 3
3 (2′) = T 4

4 (2′) = −T 1
1 (2′) = · · · = −T 8

8 (2′)

= T r
r (2′) = −T a

a (2′) = −1
4

(H′
2′
/H2′ )

2

(H2H2′ )
1/3(H5H5′ )

2/3 (2.60)
T 0

0 (5) = T 1
1 (5) = T 3

3 (5) = T 5
5 (5) = · · · = T 7

7 (5) =

−T 2
2 (5) = −T 4

4 (5) = T r
r (5) = −T a

a (5) = −1
4

(H′
5/H5)2

(H2H2′ )
1/3(H5H5′ )

2/3 (2.61)
24



Chapter 2. Blak Holes and Duality in M-Theory and String Theory
T 0

0 (5′) = T 2
2 (5′) = T 4

4 (5′) = T 5
5 (5′) = · · · = T 7

7 (5′) =

−T 1
1 (5′) = −T 3

3 (5′) = T r
r (5′) = −T a

a (5′) = −1
4

(H′
5′
/H5′ )

2

(H2H2′ )
1/3(H5H5′ )

2/3 (2.62)Then one an see they satisfy onservation equation separately. Total TA
B is justsum of individual ontributions as we have seen in previous examples.

TA
B =

∑

I

TA
B (I) . (2.63)2.5 U Duality Relations In M TheoryWe now desribe the relations whih follow from U duality symmetries, involvinghains of dimensional redution and uplifting and T and S dualities of string theory.See [32℄. To explain the onept let us onsider a solution of the form

ds211 = −e2λ
0

dt2 +
10
∑

µ=1

e2λ
µ

(dxµ)2 , (2.64)where we assume for µ = i, j, k xi are ompat and metri does not depends onthem. That is λµ = λµ(t, X), where X inludes spae like oordinates exept
xi, xj and xk. Let ↓k and ↑k denote dimensional redution and uplifting along kthdiretion between M theory and type IIA string theory. We are applying operation
↓k. To do that we write ds11 as

ds211 = e−
2
3
φ ds210 + e

4
3
φ (dxk)2 , (2.65)where ds10 is 10 dimensional line element of type IIA theory. Type IIA stringtheory metri is given by

ds210 = −e2λ
′0

dt2 +
∑

µ6=k

e2λ
′µ

(dxµ)2 . (2.66)
φ is dilaton and is independent of xi, xj and xk. It is funtion of (t, X) only. Ifwe integrate over xk with above metri we will get type IIA super gravity ation.Here omparing equations (2.64), (2.65) and (2.66) one an see φ and λ′µ are given25



Chapter 2. Blak Holes and Duality in M-Theory and String Theoryby
φ =

3

2
λk

λ′µ = λµ +
1

3
φ = λµ +

1

2
λk (2.67)Now in string theory one an perform T duality along a ompat diretion.It onverts type IIA theory to type IIB theory and bak. It also onverts a Dpbrane to D(p− 1) or D(p + 1) branes depending on whether T duality is appliedalong brane or perpendiular to brane respetively. This is a symmetry of theIIA/IIB string theory. A solution, for example, (2.66) breaks it. So applying thistransformation generates new solution. We denote T duality operation along ithdiretion by Ti. S duality is a symmetry of type IIB theory. This is asymmetrybetween oupling onstant ↔ (oupling onstant)−1. Rules for the these dualitytransformations are listed in Appendix A.Applying a T duality along say, xj whih we denote by Tj , generates a newsolution, given by (see equation (A.2) and (A.7))

ds′
2
10 = −e2λ′0

dt2 +
∑

µ6={j,k}
e2λ

′µ

(dxµ)2 + e−2λ′j

(dxj)2 ,

φ′ = φ− λ′j = λk − λj , (2.68)where equation (2.67) has been used. Note that metri along xj , gjj goes to (gjj)
−1aording to equation (A.2). This solution is of type IIB theory. Again appliationof Ti generate a new solution of IIA theory.

ds′′
2
10 = −e2λ′0

dt2 +
∑

µ6={i,j,k}
e2λ

′µ

(dxµ)2 + e−2λ′j

(dxj)2 + e−2λ′i

(dxi)2

φ′′ = φ− λ′i − λ′j =
1

2
λk − λi − λj . (2.69)Again gii goes to (gii)

−1 aording to equation (A.2).Now dimensional upliftment to 11 dimensional theory an be done via
ds′211 = e−

2
3
φ′′

ds′′
2
10 + e

4
3
φ′′

(dxk)2 . (2.70)
26



Chapter 2. Blak Holes and Duality in M-Theory and String TheoryUsing equation (2.69) in (2.70) one gets
ds′211 = −e2λ

′′0

dt2 +

10
∑

µ=1

e2λ
′′µ

(dxµ)2 , (2.71)where these λ′′i's are given in terms of λi's by (using equation (2.67)),
λ′′i = λj − 2

3
(λi + λj + λk)

λ′′j = λi − 2

3
(λi + λj + λk)

λ′′k = λk − 2

3
(λi + λj + λk)

λ′′l = λl +
1

3
(λi + λj + λk) ∀ l 6= {i, j, k} (2.72)In general, simplifying notation, we an write, appliation of U duality ↑k TiTj ↓kin (2.64),transforms the λis in the sale fators to λ′is given by

λ′i = λj − 2λ , λ′j = λi − 2λ , λ′k = λk − 2λ

λ′l = λl + λ , l 6= {i, j, k} , λ =
λi + λj + λk

3
. (2.73)2.6 Appliation of U duality relations in Blak HolesNote that, as an be seen from the above steps, the U duality relations follow as longas the diretions involved in the U duality operations are isometry diretions. Sinenone of the ommon transverse diretions are involved in obtaining the relationsabove, it follows that they are valid even if the ommon transverse diretions arenot ompat. Thus the U duality relations are appliable in suh ases also.Similarly, the time dependene of λis played no role in obtaining the U dualityrelations here. Hene, these relations may be expeted to arise for the blak holease also. We will desribe this ase in detail in this setion.Consider blak holes inm+2 dimensional spaetime desribed by mutually BPSinterseting brane on�gurations in M theory. The brane ation Sbr in equation(2.1) is the standard one for higher form gauge �elds and given by equation (2.6).Corresponding blak hole solutions are given in setion 2.3. So here we only27



Chapter 2. Blak Holes and Duality in M-Theory and String Theoryhighlight the points related to U duality symmetries. Also, for illustration, weonsider only 2 branes and 5 branes.As mentioned in setion 2.5, the method of U duality symmetries applies herealso and leads to the same relations between λi . They are best seen in the extremalase. (The non extremal ase requires further analysis and is more involved.)The eleven dimensional line element ds for 2 brane is
ds2 = H

− 2
3

2

(

−dt2 +
2
∑

i=1

(dxi)2

)

+H
1
3
2

(

dr2 + r2dΩ2
7

)

. (2.74)For M5 brane ds is
ds2 = H

−1/3
5

(

−dt2 +
5
∑

i=1

(dxi)2

)

+H
2/3
5

(

dr2 + r2dΩ2
4

)

, (2.75)where H2 and H5 are harmoni funtion and funtion of r.In general line element for 2 or 5 brane an be written in the form
ds2 = −e2λ0

dt2 +
∑

i

e2λ
i

(dxi)2 (2.76)where (λ0, λi) depend on r, the radial oordinate of them+1 dimensional transversespae. For 2 branes and 5 branes, as an be seen from, equation (2.74) and (2.75),the λis may be written as
λ1 = λ2 = −2h̃

6
, λ3 = · · · = λ10 =

h̃

6
(2.77)

λ1 = · · · = λ5 = − h̃
6

, λ6 = · · · = λ10 =
2h̃

6
(2.78)where eh̃ = H = 1 + Q

rm−1 is the orresponding harmoni funtion and Q is theharge. See, for example, [62℄ for more detail.We see now relations among λ's [equations (2.77) or (2.78)℄ follow from U dual-ity relations. Consider a solution of M2 brane along (x1, x2). Also take (x3, x4, x5)as ompat and are isometry diretion. An obvious symmetry implies
λ1 = λ2 . (2.79)28



Chapter 2. Blak Holes and Duality in M-Theory and String TheoryIt also implies
λ3 = λ4 = λ5 . (2.80)Diretions xa (∈ {Ω4 and r}) are also transverse to brane diretions. So we mayassume

λ3 = λ4 = λ5 = λ6 = λ7 = λ8 = λ9 = λ10 . (2.81)Now apply U duality operations ↓5 T3T4 ↑5. It transforms M2 brane to M5 brane.
M2(12)

↓5
// D2(12)

T4
// D3(124)

T3
// D4(1234)

↑5
// M5(12345) .This new solution is M5 branes may be given by

ds′211 = −dt̂2 +
10
∑

i=1

e2λ
′i(t̂)(dxi)2 . (2.82)Where using equations (2.73) we �nd these λ′i's are given in terms of λi's by

λ′3 = λ4 − 2

3
(λ3 + λ4 + λ5)

λ′4 = λ3 − 2

3
(λ3 + λ4 + λ5)

λ′5 = λ5 − 2

3
(λ3 + λ4 + λ5)

λ′i = λi +
1

3
(λ3 + λ4 + λ5) ∀ i 6= {3, 4, 5} . (2.83)There are also obvious symmetry relation for M5 brane.

λ′1 = λ′2 = λ′3 = λ′4 = λ′5 , λ′6 = λ′7 = λ′8 = λ′9 = λ′10 . (2.84)So now one an see equations (2.77) and (2.78) are satis�ed by the metri om-ponents of blak hole solutions. in short we an write the relations among λ'sas
λ‖ + 2λ⊥ = 0, 2λ′‖ + λ′⊥ = 0 . (2.85)where the supersripts ‖ and ⊥ denote spatial diretions along and transverseto the branes respetively. Note that, to �nd these relation we have use dualityrelations only. Expliit form of h̃ an only be known by solving equations of motion29



Chapter 2. Blak Holes and Duality in M-Theory and String Theoryand putting proper boundary onditions, like asymptoti �atness.For the extremal 22′55′ on�guration (12, 34, 13567, 24567) , the transversespae is three dimensional and the λis may be written as [62℄ (see equation 2.58),
λ1 =

1

6
(−2h̃1 + h̃2 − h̃3 + 2h̃4)

λ2 =
1

6
(−2h̃1 + h̃2 + 2h̃3 − h̃4)

λ3 =
1

6
(h̃1 − 2h̃2 − h̃3 + 2h̃4)

λ4 =
1

6
(h̃1 − 2h̃2 + 2h̃3 − h̃4)

λ5 = λ6 = λ7 =
1

6
(h̃1 + h̃2 − h̃3 − h̃4)

λ8 = λ9 = λ10 =
1

6
(h̃1 + h̃2 + 2h̃3 + 2h̃4) (2.86)where eh̃I = HI = 1 + QI

r
are the orresponding harmoni funtions and QIs arethe harges. Furthermore, if 2 and 2′ branes are idential then h̃1 = h̃2 and we get

λ1 = λ3 , and similarly other relations when di�erent sets of branes are idential.Note that obvious symmetry relations for 22′55′ blak hole are
λ5 = λ6 = λ7 , λ8 = λ9 = λ10 , (2.87)and the U duality relation omes out following above steps are
λ1 + λ4 + λ5 = λ2 + λ3 + λ5 = 0 . (2.88)These equations (2.87) and (2.88) lead to equation (2.86).We further illustrate the U duality methods by interpreting a U duality relation

∑

i ciλ
i = 0 as implying a relation among the omponents of the energy momentumtensor TAB . The relations thus obtained are indeed obeyed by the omponents of

TAB alulated expliitly using the orresponding higher form gauge �eld ation
Sbr in setion 2.3.Consider now the ase of 2 branes or 5 branes. We assume that pa = p⊥whih is natural sine θa diretions are transverse to the branes. Applying the Uduality relations in equation (2.85) then implies, for both 2 branes and 5 branes,30



Chapter 2. Blak Holes and Duality in M-Theory and String Theorythe relation
p‖ = p0 + p⊥ + f (2.89)among the omponents of their energy momentum tensors. See equations (2.30)and (2.40). Note that it is also natural to take p0 = p‖ sine x0 = t is one of theworldvolume oordinates and may naturally be taken to be on the same footingas the other ones (x1, · · · , xp) . Equation (2.89) then implies that p⊥ = −f . Therelation between p‖ and f is to be spei�ed by an equation of state whih, in theblak hole ase, is that given in equations (2.30) and (2.40).For now, however, we take p0 and p‖ to be di�erent. Keeping in mind that fis negative, we assume the equations of state to be of the form pαI = −(1−uI

α) fIwhere α = (0, i, a) , I = 1, · · · , N , and uI
α are onstants, mentioned in setion2.2. Here we give expliitly uα's for 2 and 5 blak brane solution.

2 : uα = ( u0, u‖, u‖, u⊥, u⊥, u⊥, u⊥, u⊥, u⊥, u⊥)

5 : uα = ( u0, u‖, u‖, u‖, u‖, u‖, u⊥, u⊥, u⊥, u⊥) (2.90)where the I supersripts have been omitted here and u‖ = u0 + u⊥ whih followsfrom equation (2.89). Note that u⊥ = 0 and u0 = u‖ = 2 in the blak hole asegiven in equation (2.13) or spei�ally for 2 brane and 5 brane in equations (2.30)and (2.40).Using de�nition of GIJ , lI and τ equation (2.23) now beomes
lIττ = −

∑

J

GIJ el
J

+ u⊥ ǫ m(m− 1) e2(Λ−σ) . (2.91)We will see that same type of equation will appear in osmologial ase. Sinenow we know uα's, using equations (2.90) and (2.20), it is now straightforward toalulate GIJ for N interseting brane on�gurations. les �rst alulate GIJ for 2brane using (2.20).
GIJ = 2u0 (u⊥ − u0δ

IJ) . (2.92)Same expression omes for 5 brane. It turns out, for any BPS interseting on�g-uration that, GIJ is of the same form, namely
GIJ = 2u0 (u⊥ − u0δ

IJ) . (2.93)31



Chapter 2. Blak Holes and Duality in M-Theory and String TheoryThe orresponding GIJ is given by
GIJ =

1

2u2
0

(
u⊥

Nu⊥ − u0

− δIJ) . (2.94)Now take p0 = p‖ . Then equation (2.89) gives p⊥ + f = 0 . In terms of uα , wenow have u0 = u‖ and u⊥ = 0 . Clearly, then GIJ ∝ δIJ and equations (2.91)an be solved for lI(τ). See [59℄ for suh solutions, with u0 = 2 as follows fromequation (2.13), and their analysis.2.7 S and T Dualities in String TheoryString theory has S and T duality symmetries. T duality transforms type IIAtheory to type IIB and bak. So it is a symmetry of IIA and IIB theory ombinedtogether. S duality is a symmetry of type IIB theory whih transform ouplingonstant to (oupling onstant)−1. Just like M-theory ase, for ertain supergravitysolutions these symmetries an be used to get relations among various metriomponents and dilaton, and hene relations among energy-momentum tensors.To illustrate this, we onsider a general solution of string theory (type IIA or IIBsupergravity). Line element dsDp in Einstein frame is
ds2Dp = −e2λ

0
pZdt2 +

p
∑

i=1

e2λ
‖
p(dxi)2 +

q
∑

i=p+1

e2λ
⊥
p (dxi)2 + e2σ

(

dr2

Z
+ r2dΩ2

n+1,ǫ

)(2.95)and dilaton, φp = φp(t, r). here we assume x1, · · · , xq are ompat and are isom-etry diretion, and i = 1, · · · , p are diretions parallel to Dp-branes. Obvioussymmetries ensure us to take all λi parallel to branes are equal and we denotethem as before by λ
‖
p, similarly for λ⊥

p . Here all λs, Z and σ are funtion of r.
dΩn+1,ǫ is metri of onstant urvature n + 1-dimensional spae. In fat we don'teven need non-ompat diretions in above form. It an be any urved geometry.Here to illustrate duality relation we onsider blak p-brane solution and thisis of the form given in equation (2.95). The subsript Dp indiate metri is for
Dp-branes. This metri is a of general blak p-brane solution. q is the totalnumber of ompat diretions, and q + n = 7. This system physially desribesgeometry reated by D-brane loalised in spae. Tehnially relations we will get32



Chapter 2. Blak Holes and Duality in M-Theory and String Theoryin this setion an be used when λ's are funtion of t only. So if we onsider nononompat diretion and Z = 1 we an as well desribe osmologial ase.This solution is in Einstein frame. To apply duality rules we �rst onvert it instring frame. String frame metri is
ds2s,Dp = −e2λ0

p+
φp
2 Zdt2 +

p
∑

i=1

e2λ
‖
p+

φp
2 (dxi)2 +

q
∑

i=p+1

e2λ
⊥
p +

φp
2 (dxi)2

+ e2σ+
φp
2

(

dr2

Z
+ r2dΩ2

n+1,ǫ

) (2.96)Now if we perform a T-duality along pth diretion we get D (p−1) branes solution.
ds2s,Dp−1 = −e2λ0

p+
φp
2 Zdt2 +

p−1
∑

i=1

e2λ
‖
p+

φp
2 (dxi)2 + e−(2λ

‖
p+

φp
2
)(dxp)2

+

q
∑

i=p+1

e2λ
⊥
p +

φp
2 (dxi)2 + e2σ+

φp
2

(

dr2

Z
+ r2dΩ2

n+1,ǫ

) (2.97)
φp−1 = φp −

1

2
ln(e2λ

‖
p+

φp
2 ) =

3φp

4
− λ‖

p . (2.98)Note that in pth diretion metri omponent hanges sign aording to equation(A.2). Equation (2.98) an be found using equation (A.7).The Einstein frame metri for D(p − 1) solution an be found by multiplying
e−φp−1/2 to ds2s,Dp−1.

ds2Dp−1 = e−φp−1/2ds2s,Dp−1

= −e2λ0
p−1Zdt2 +

p−1
∑

i=1

e
5λ

‖
p

2
+

φp
8 (dxi)2 + e−

3λ
‖
p

2
− 7φp

8
)(dxp)2

+

q
∑

i=p+1

e2λ
⊥
p +

λ
‖
p
2

φp
8 (dxi)2 + ds2⊥ , (2.99)where ds2⊥ is metri for transverse spae. Equations (2.97) and (2.98 have beenused to get above expression. This line element an be written as

ds2Dp−1 = −e2λ0Zdt2 +

p−1
∑

i=1

e2λ
‖
p−1(dxi)2 +

q
∑

i=p

e2λ
⊥
p−1(dxi)2 + ds2⊥ , (2.100)33



Chapter 2. Blak Holes and Duality in M-Theory and String Theorywhere λp an be given in terms of λp−1 by
2λ

‖
p−1 =

5λ
‖
p

2
+

φp

8
(2.101)

2λ⊥
p−1 = −3

2
λ‖
p −

7

8
φp = 2λ⊥

p +
λ
‖
p

2
+

φp

8
(2.102)and

φp−1 =
3φp

2
− λ‖

p . (2.103)Simpli�ation of equation (2.102) shows that,
λ⊥
p + λ‖

p +
φp

2
= 0 . (2.104)Now onsider a D3 brane, S-duality of D3 brane gives D3 brane. So S duality rule(A.14) gives φ3 = −φ3, whih implies φ3 = 0. Consider D2 brane solution now,

φ2 = −λ‖
3, (using equation (2.103)). Equation (2.104) gives λ‖

3 = −λ⊥
3 . Denoting

λ⊥
3 by λ, one �nd

λ⊥
p = λ , λ‖

p = −λ , φp = 0× λ. (2.105)In general using indution it is easy to show that,
λ⊥
p =

p+ 1

4
λ , λ‖

p = −
7− p

4
λ , φp = (3− p)λ , (2.106)where λ is now the only parameter determining full line element. If one usesdi�erent set of duality operations one an also �nd similar relations for F1-stringor NS5-brane. In general

λ⊥
p =

p+ 1

4
λ , λ‖

p = −
7− p

4
λ , φp = z(3− p)λ, (2.107)where z = 1 for Dp-brane and z = −1 for F1-string or NS5-brane.Just like before we take energy-momentum tensors has only diagonal ompo-nent.

T µ
ν = diag(P0, P‖, P⊥, Pr, Pa), (2.108)where P‖ for i = 1, 2, · · · , p; P⊥ for i = p + 1, · · · , q; T r

r = Pr and T θa
θa = Pa. It34



Chapter 2. Blak Holes and Duality in M-Theory and String Theoryis natural to assume P⊥ = Pa beause all of them are transverse to brane diretionbut for the time being we keep this notation. We also have another omponent,
Tφ oming from φ-variation of ation

δφS =

∫

d10x
√
−g Tφ δφ , (2.109)where δφ denote variation with respet to φ. Equation of motions are now Einsteinequations (2.2) together with

∇2φ = −Tφ . (2.110)The equations of motion for the blak brane ase (metri given by (2.95)) turnsout to be
λ′′i + L′λ′i =

1

Z
e2σ (P − Pi) (2.111)

φ′′ + L′φ′ = − 1

Z
e2σ Tφ (2.112)where L = Z′

Z
+ n+1

r
+ nσ + λ0 + Λ and P = 1

8
(P0 +

∑

Pi + Pr + (n+ 1)Pa).Using equation (2.107) in equation (2.111) one �nds
− p+ 1

7− p
=

P − P⊥
P − P‖

, (2.113)whih on simpli�ation gives
P‖ + (7− q)P⊥ = P0 + Pr + (n + 1)Pa . (2.114)Similarly use of equation (2.107) in equation (2.112) gives

Tφ = −3− p

2
z (P0 + Pr + (n+ 1)Pa)− (8− q)P⊥) (2.115)Just like blak brane in M-theory ase taking P⊥ = Pa, one an do the samealulation to solve for blak D-brane or blak string solution. Also note that inosmologial ase there is no transverse metri and q = 9. Then above relation

35



Chapter 2. Blak Holes and Duality in M-Theory and String Theorywill translate to
ρ+ P‖ − 2P⊥ = 0 (2.116)
Tφ = −3 − p

2
z (−ρ+ P⊥) , (2.117)where P0 is taken as (−ρ). Then again same analysis an be done as in bothosmologial ase and blak hole ase of M-theory to get same onlusions.
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3Evolution of Early Universe
In this hapter we disuss evolution of early universe made of mutually BPS inter-setingM2 andM5 branes. To be spei�, we onsider 22′55′ on�gurations. To dothis we use duality relations disuss in previous hapter. Before going into detailsanalysis we give a general onsequenes U duality in our osmologial ontext.3.1 Equations of Motion for Our Cosmologial ModelFor osmologial ase, TAB is often determined using equations of state of thedominant onstituent of the universe. Suh equations of state may be obtained ifthe underlying physis is known; or, one may assume a general ansatz for themand proeed. 7

TAB for interseting branes in the early universe has been alulated in [27℄assuming that the branes and antibranes in the interseting brane on�gurationsare non interating and that their numbers are all equal, i.e. nI = n̄I for I =

1, 2, · · · , N and n1 = · · · = nN . However, general relations among the omponentsof TAB may be obtained [32℄ using U duality symmetries of M theory, involvinghains of dimensional redution and uplifting and T and S dualities of string theory,using whih 2 branes and 5 branes or 22′55′ and 55′5′′W on�gurations an beinterhanged. Suh relations are valid more generally, for example even when nIand n̄I are all di�erent.7 This is similar to the FRW ase. Equation of state p = ρ
3

for radiation, or p = 0 forpressureless dust, may be obtained from the physis of radiation or of massive partiles; or, onemay assume a general ansatz p = wρ and proeed. 37



Chapter 3. Evolution of Early UniverseThese general relations on the equations of state are su�ient to show, undera tehnial assumption, that the N = 4 mutually BPS interseting brane on�gu-rations with idential numbers of branes and antibranes, i.e. with n1 = · · · = n4and n̄1 = · · · = n̄4 , will asymptotially lead to an e�etive (3+1) dimensional ex-panding universe. To obtain the details of the evolution, however, we need furtherassumptions and an ansatz of the type p = wρ [32, 33, 34℄.We now present the details. Let the line element ds be given by
ds2 = −dt2 +

∑

i

e2λ
i

(dxi)2 (3.1)where eλi are sale fators and, due to homogeneity, λi are funtions of the physialtime t only. (Parametrising the sale fators as eλi turns out to be onvenient forour purposes.) It then follows that TAB depends on t only and that it is of theform
TA

B = diag(−ρ, pi) . (3.2)We assume that ρ > 0 . From equations (2.2) one now obtains
Λ2

t −
∑

i

(λi
t)

2 = 2 ρ (3.3)
λi
tt + Λtλ

i
t = pi +

1

9
(ρ−

∑

j

pj) (3.4)
ρt + ρΛt +

∑

i

piλ
i
t = 0 (3.5)where Λ =

∑

i λ
i and the subsripts t denote time derivatives. Note, from equation(3.3), that Λt annot vanish. Hene, if Λt > 0 at an initial time t0 then it followsthat eΛ inreases monotonially for t > t0 . We assume the evolution to be suhthat eΛ →∞ eventually.In the ontext of early universe in M theory, it is natural to assume that allspatial diretions are on equal footing to begin with. Therefore we assume that theten dimensional spae is toroidal. Further, we assume that the early universe ishomogeneous and is dominated by the 22′55′ on�guration where, with no loss ofgenerality, we take two staks eah of 2 branes and 5 branes to be along (x1, x2) ,

(x3, x4) , (x1, x3, x5, x6, x7) , and (x2, x4, x5, x6, x7) diretions respetively, and take38



Chapter 3. Evolution of Early Universethese interseting branes to be distributed uniformly along the ommon transversespae diretions (x8, x9, x10) . Note that the total brane harges must vanish, i.e.
nI = n̄I for all I , sine the ommon transverse spae is ompat. We denotethis 22′55′ on�guration as (12, 34, 13567, 24567) . The meaning of this notation islear and, below, suh a notation will be used to denote other on�gurations also.3.2 Equations of States as Consequene of U Du-alityAppliation of suh U duality operations generate new solution from old one. Wedisuss this tehnique in setion 2.6, but for we repeat the steps sine here theyare our main tools to �nd equations of states. Lets take an example of M2 branealong (x1, x2). We onsider osmologial solution of the form,

ds211 = −dt2 +
10
∑

i=1

e2λ
i(t)(dxi)2 , (3.6)where we assume all the speial diretions are ompat and toroidal. Here obvioussymmetry implies

λ1 = λ2, λ3 = λ4 = λ5 = λ6 = λ7 = λ8 = λ9 . (3.7)If we apply a hain of operations ↓5 T3T4 ↑5 in the way mentioned in previoussetion, 2.5, we an generate a M5 brane solution.
M2(12)

↓5
// D2(12)

T4
// D3(124)

T3
// D4(1234)

↑5
// M5(12345) .This new solution is M5 branes may be given by

ds′211 = −dt̂2 +
10
∑

i=1

e2λ
′i(t̂)(dxi)2 . (3.8)
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Chapter 3. Evolution of Early UniverseWhere using equations (2.73) we �nd these λ′i's are given in terms of λi's by
λ′3 = λ4 − 2

3
(λ3 + λ4 + λ5)

λ′4 = λ3 − 2

3
(λ3 + λ4 + λ5)

λ′5 = λ5 − 2

3
(λ3 + λ4 + λ5)

λ′i = λi +
1

3
(λ3 + λ4 + λ5) ∀ i 6= {3, 4, 5} . (3.9)Note that in ase of our osmologial solution we an always rede�ne our timeoordinate to go to omoving frame, as we have rede�ne time as t̂ here.Obvious symmetry of M5 brane solution demands

λ′1 = λ′2 = λ′3 = λ′4 = λ′5 , λ′6 = λ′7 = λ′8 = λ′9 = λ′10 . (3.10)So using equations (3.7), (3.10) and the relations among λ′i and λi one an showthat
λ‖ + 2λ⊥ = 0, 2λ′‖ + λ′⊥ = 0 . (3.11)where the supersripts ‖ and ⊥ denote spatial diretions along and transverse tothe branes respetively.Putting bak these relations in the equation of motion (3.4) one an show

p‖ = 2p⊥ − ρ . (3.12)In general M2 brane or M5 brane or wave above relation turns out to be
p‖ = z(ρ− p⊥) + p⊥ , (3.13)where z = −1 for 2 and 5 branes and = +1 for waves.Similarly one an go through all suh operations in interseting brane on�gura-tion to generate new solutions. In ase of our 22′55′ on�guration (12, 34, 13567, 24567)the obvious symmetry relations are

22′55′ : λ5 = λ6 = λ7 , λ8 = λ9 = λ10 . (3.14)40



Chapter 3. Evolution of Early UniverseProeeding as in the ase of 2 and 5 branes above, and using the U duality ↑5
T1T2 ↓5 whih relates the 22′55′ and W55′5′′ on�gurations, one obtains two morerelations given by [32℄

λ1 + λ4 + λ5 = λ2 + λ3 + λ5 = 0 . (3.15)Clearly, the U duality relations in equations (2.87) and (2.88) are valid here also.Then again like before, use of equation (3.4) yields relations among various om-ponents of energy momentum tensor.
p5 = p6 = p7 (3.16)
p8 = p9 = p10 (3.17)

p1 + p4 + p5 = p2 + p3 + p5 = 0 (3.18)In general, for an N interseting brane on�guration, the U duality symmetrieswill lead to 10−N relations among the λis, leaving only N of them independent.These relations are of the form∑i ciλ
i = 0 where ci are onstants. Clearly, suh arelation an be violated by onstant saling of xi oordinates. Hene, we interpretit as implying a relation among the omponents of TAB . In view of equation (3.4),we interpret a U duality relation∑i ciλ

i = 0 as implying that
∑

i

cif
i = 0 , f i = pi +

1

9
(ρ−

∑

j

pj) . (3.19)Substituting equation (3.19) in equation (3.4), it follows upon an integration that
∑

i

ciλ
i
t = c e−Λ (3.20)where c is an integration onstant. If ∑i ciλ

i
t = 0 initially at t = t0 then c = 0 .In suh ases then ∑i ciλ

i
t = 0 for all t and, hene, ∑i ciλ

i = v where v isanother integration onstant.In general∑i ciλ
i
t 6= 0 initially at t = t0 and, hene, c 6= 0 . Let the evolutionbe suh that eΛ ∼ tβ → ∞ in the limit t → ∞ . Then it follows from equation(3.20) that∑i ciλ

i
t → 0 in this limit. If, furthermore, β > 1 then equation (3.20)41



Chapter 3. Evolution of Early Universealso gives
∑

i

ciλ
i = v +O(t1−β)→ v (3.21)where v is an integration onstant. If β ≤ 1 then ∑i ciλ

i is a funtion of t . Wewill see later that, in the solutions we obtain with further assumptions, β turnsout to be > 1 for N > 1 .Note that, in previous hapter, for blak hole ase we showed that U dualityrelations hold by alulating TAB expliitly. On the other hand here we use Uduality to get equations of states.3.3 A General ResultWe now onsider a general result for the 22′55′ on�guration that follows from theU duality relations alone [32℄. The λis for this on�guration obey the relationsgiven in equations (3.14) and (3.15). Note that a suitable U duality, for example
↑6 T4T5 ↓6 , an transform 2 branes and 5 branes into eah other. Hene, we willrefer to two types of branes as being idential if they have idential numbers ofbranes and antibranes, i.e. I th type is idential to J th type if nI = nJ and n̄I = n̄J .Consider the ase when 2 and 2′ branes in the 22′55′ on�gurations are idential.This will enhane the obvious symmetry relations. It is easy to see that we nowhave one more independent relation λ1 = λ3 . If, instead, 5 and 5′ branes areidential, then the extra independent relation is λ1 = λ2 . Similarly, if 2 and
5′ branes are idential then, after a few steps involving U duality ↑6 T4T5 ↓6whih interhanges 2 and 5′ branes, it follows that the extra independent relationis λ2 = λ5 .Now if all the four types of branes in the 22′55′ on�guration are idential, i.e.if n1 = · · · = n4 and n̄1 = · · · = n̄4 , then, we have three extra independentrelations

λ1 = λ2 = λ3 = λ5 . (3.22)Combined with equations (3.14) and (3.15), we get λ1 = · · · = λ7 = 0 whih isto be interpreted as f 1 = · · · = f 7 = 0 , see equation (3.19). Hene, as desribedearlier, it follows for i = 1, · · · , 7 that if λi
t = 0 initially at t = t0 then λi

t = 0and λi = vi for all t where vi are onstants. Or, if eΛ ∼ tβ → ∞ in the limit42



Chapter 3. Evolution of Early Universe
t→∞ with β > 1 , it then follows for i = 1, · · · , 7 that λi

t → 0 and λi → vi inthis limit. Obtaining the values of the asymptoti onstants vi , however, requiresknowing the details of evolution. It also follows similarly that eλi ∼ e
Λ
3 →∞ for

i = 8, 9, 10 . It is straightforward to show that same results are obtained for theequivalent 55′5′′W on�guration also.Thus, assuming either that λ1
t = · · · = λ7

t = 0 initially at t = t0 or that
eΛ ∼ tβ → ∞ in the limit t → ∞ with β > 1 , we obtain that the N = 4mutually BPS interseting brane on�gurations with idential numbers of branesand antibranes, i.e. with n1 = · · · = n4 and n̄1 = · · · = n̄4 , will asymptotiallylead to an e�etive (3+1) dimensional expanding universe with the remaining sevenspatial diretions reahing onstant sizes. This result follows as a onsequene ofU duality symmetries alone, whih imply relations of the type given in equation(3.19) among the omponents of the energy momentum tensor TAB . This resultis otherwise independent of the details of the equations of state, and also of theansatzes for TAB we make in the following in order to proeed further.3.4 Ansatz for TABThe dynamis underlying the general result given above may be understood in moredetail, and the asymptoti onstants vi an be obtained, if an expliit solution forthe evolution is available. In the following, we will make a few assumptions whihenable us to obtain suh details.Consider now the ase of 2 branes or 5 branes only. From the U duality rela-tions, it follows from equation (3.12), that p‖ = −ρ+ 2p⊥ . For the ase of waves,the relation is given by equation (3.13). A similar relation for blak hole is derivedin equation (2.89). In general, ρ , p‖ , and p⊥ are funtions of the numbers n and
n̄ of branes and antibranes, satisfying the U duality relations (3.13). If n = n̄then p‖ and p⊥ may be thought of as funtions of ρ satisfying equation (3.13) [32℄.Consider now mutually BPS N interseting brane on�guration. In the blakhole ase, following the disussion of setion 2.1 and 2.6, it turns out that theenergy momentum tensors TA

B(I) of the I th type of branes are mutually non
43



Chapter 3. Evolution of Early Universeinterating and separately onserved [51℄ � [60℄. That is,
TA

B =
∑

I

TA
B(I) ,

∑

A

∇AT
A
B(I) = 0 . (3.23)We assume that this is the ase in the ontext of early universe also where TA

B =

diag(−ρ, pi) , TA
B(I) = diag(−ρI , piI) , ρI > 0 , and (ρI , piI) satisfy the Uduality relations in (3.13) for all I . Equations (2.14) now give

ρ =
∑

I

ρI , pi =
∑

I

piI (3.24)
(ρI)t + ρIΛt +

∑

i

piIλ
i
t = 0 . (3.25)We have veri�ed expliitly for a variety of mutually BPS N interseting brane on-�gurations that equations (3.13) and (3.24) are su�ient to satisfy all the relationsof the type∑i cif

i = 0 implied by U duality symmetries. See [32℄ for more details.To solve the evolution equations (3.3), (3.4), (3.24), and (3.25), we need thefuntions ρI , p‖I , and p⊥I . To proeed further, we assume that nI = n̄I forall I . This is neessary if, as is the ase here, the ommon transverse diretionsare ompat and hene the net harges must vanish. Then p‖I and p⊥I may bethought of as funtions of ρI satisfying equation (3.13).It is natural to expet that p⊥I(ρI) is the same funtion for waves, 2 branes, and5 branes sine they an all be transformed into eah other by U duality operationswhih do not involve the transverse diretions. We assume that this is the ase.We further assume that this funtion p⊥(ρ) is given by
p⊥ = (1− u) ρ (3.26)where u is a onstant. Suh a parametrisation of the equation of state, insteadof the usual one p = wρ , leads to elegant expressions as will beome lear in thefollowing, see [41, 42℄ also. The results of [27℄ orrespond to the ase where u = 1 .Here, we assume only that 0 < u < 2 . The onstant u is arbitrary otherwise.It now follows that piI in equation (3.24) are of the form piI = (1−uI

i ) ρI andthat the onstants uI
i an be obtained in terms of u using equations (3.13) and(3.26). Thus, for 2 branes, 5 branes, and waves, we have u⊥ = u , u‖ = (1− z) u ,44



Chapter 3. Evolution of Early Universeand hene
2 : ui = ( 2, 2, 1, 1, 1, 1, 1, 1, 1, 1) u

5 : ui = ( 2, 2, 2, 2, 2, 1, 1, 1, 1, 1) u

W : ui = ( 0, 1, 1, 1, 1, 1, 1, 1, 1, 1) u (3.27)where the I supersripts have been omitted sine N = 1 . Similarly, uI
i for the

22′55′ on�guration are given by
2 : u1

i = ( 2, 2, 1, 1, 1, 1, 1, 1, 1, 1) u

2′ : u2
i = ( 1, 1, 2, 2, 1, 1, 1, 1, 1, 1) u

5 : u3
i = ( 2, 1, 2, 1, 2, 2, 2, 1, 1, 1) u

5′ : u4
i = ( 1, 2, 1, 2, 2, 2, 2, 1, 1, 1) u . (3.28)This ompletes our ansatz for the energy momentum tensor TAB for the intersetingbrane on�gurations in the early universe.3.5 General Analysis of Evolution EquationsThe evolution of the universe an now be analysed. In this setion, we �rst presentthe analysis in a general form whih is appliable to aD dimensional homogeneous,anisotropi universe. We speialise to the interseting brane on�gurations in thenext setion.The D dimensional line element ds is given by equation (3.1), now with i =

1, 2, · · · , D − 1 . The total energy momentum tensor TAB of the dominant on-stituents of the universe is given by equation (3.2). The equations of motion forthe evolution of the universe is given, in units where 8πGD = 1 , by equations(3.3) � (3.5) with 9 in equation (3.4) now replaed by D − 2 . De�ning
Gij = 1− δij , Gij =

1

D − 2
− δij , (3.29)the equations (3.3) and (3.4), with 9 replaed by D−2 , may be written ompatly
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Chapter 3. Evolution of Early Universeas
∑

i,j

Gijλ
i
t λ

j
t = 2 ρ (3.30)

λi
tt + Λtλ

i
t =

∑

j

Gij (ρ− pj) (3.31)where i, j, · · · run from 1 to D − 1 .Let the universe be dominated by N types of mutually non interating andseparately onserved matter labelled by I = 1, · · · , N . Then the orrespond-ing energy momentum tensors TAB(I) and their omponents ρI and piI satisfyequations (3.23) � (3.25).Further, let the equations of state be given by piI = (1− uI
i ) ρI where uI

i areonstants. Equations (3.25), (3.30), and (3.31) may now be simpli�ed and ast invarious useful forms as follow.Using piI = (1− uI
i ) ρI , equation (3.25) an be integrated to give

ρI = el
I−2Λ , lI =

∑

i

uI
iλ

i + lI0 (3.32)where lI0 are integration onstants. Further using equations (3.24) and (3.32),equations (3.30) and (3.31) beome
∑

i,j

Gijλ
i
t λ

j
t = 2

∑

J

el
J−2Λ (3.33)

λi
tt + Λtλ

i
t =

∑

J

uiJ el
J−2Λ (3.34)where uiJ =

∑

j G
ij uJ

j . Let the initial onditions at an initial time t0 be given,with no loss of generality, by
(

λi, λi
t, l

I , lIt , ρI
)

t=t0
=
(

0, ki, lI0, K
I , ρI0

) (3.35)where
ρI0 = el

I
0 , KI =

∑

i

uI
ik

i ,
∑

i,j

Gijk
ikj = 2

∑

J

el
J
0 . (3.36)Equations (3.33) and (3.34) may now be solved for the D − 1 variables λi with46



Chapter 3. Evolution of Early Universethe above initial onditions. Or, instead, these equations may be manipulated sothat one needs to solve for N variables lI only, see equations (3.37), (3.41), (3.44),and (3.46) below. We now perform these manipulations.First de�ne a variable τ(t) as follows:
dτ = e−Λ dt , τ(t0) = 0 . (3.37)Then, for λi(t) or equivalently λi(τ(t)) , we have

λi
t = e−Λ λi

τ , λi
tt + Λtλ

i
t = e−2Λ λi

ττ (3.38)where the subsripts τ denote τ�derivatives. Note that the initial values at τ(t0) =
0 remain unhanged sine Λ = 0 , and hene λi

t = λi
τ at t = t0 . Equations (3.33)and (3.34) now beome

∑

i,j

Gijλ
i
τ λj

τ = 2
∑

J

el
J (3.39)

λi
ττ =

∑

J

uiJ el
J

. (3.40)Also, from lI =
∑

i u
I
iλ

i + lI0 , it follows that
lIττ =

∑

J

GIJ el
J (3.41)where

GIJ =
∑

i

uI
i u

iJ =
∑

i,j

Gij uI
i u

J
j . (3.42)We assume that GIJ exists suh that ∑J GIJ GJK = δ K
I , i.e. that the matrix Gformed by GIJ is invertible. 8 Then, from equation (3.41), we have

∑

J

GIJ lJττ = el
I

. (3.43)Note that equation (3.41) is of the form equation (2.91). But here we an not8This is not always the ase. For example, uI
i = uI for all i in the isotropi ase. Then

GIJ ∝ uIuJ and G is not invertible. This is not a problem, it just means that the set of variables
lI an be redued to a smaller independent set; one then proeeds with the smaller set. 47



Chapter 3. Evolution of Early Universealulate GIJ expliitly beause we do not know expliit form of TA
B (I) now. Butusing equation of states and duality relations we will be able to alulate it, itturns out GIJ is not diagonal in this ase. Substituting this expression for elI intoequation (3.40), then integrating it twie and inorporating the initial onditionsgiven in equation (3.35), we get

λi =
∑

I

ui
I (l

I − lI0) + Li τ , ui
I =

∑

j,J

GIJ Gij uJ
j (3.44)where Li are integration onstants. It follows from λi

τ (0) that Li are related toinitial values ki and KI by ki =
∑

I u
i
I KI + Li . Using this expression for ki inthe relation KI =

∑

i u
I
ik

i , or substituting the expression for λi given in equation(3.44) into the equation (3.32) for lI , leads to the following N onstraints on Li :
∑

i

uI
iL

i = 0 , I = 1, 2, · · · , N . (3.45)Now, using equations (3.44) and (3.45), equation (3.39) may be written in termsof lI as follows:
∑

I,J

GIJ lIτ lJτ = 2 (E +
∑

I

el
I

) , 2E = −
∑

i,j

GijL
iLj . (3.46)One may now solve equations (3.41) and (3.46) for N variables lI(τ) . Then λi(τ)are obtained from equation (3.44) and t(τ) from equation (3.37). Inverting t(τ)then gives τ(t) , and thereby λi(t) .3.5.1 N = 1 CaseConsider the N = 1 ase. Note that we are still onsidering the general Ddimensional universe, not the eleven dimensional one. We assume here that G11 =

G > 0 . Now, as shown in Appendix C, it follows in general that if ∑i uiL
i = 0and∑i,j G

ijuiuj > 0 then E ≥ 0 and E vanishes if and only if Li all vanish. Sine
∑

i u
1
iL

i = 0 , see equation (3.45), and we assume that G11 =
∑

i,j G
iju1

iu
1
j > 0 ,we have E ≥ 0 . We further assume that E > 0 , equivalently that Lis do not allvanish. 48



Chapter 3. Evolution of Early UniverseOmitting the I labels, equations (3.41) and (3.46) for l(τ) beome
lττ = G el , (lτ )

2 = 2 G (E + el) . (3.47)The initial values are l0 = l(0) and K = lτ (0) obeying K2 = 2 G (E + el0) . Wetake K > 0 with no loss of generality. Then the solution for l(τ) is given by
el =

E

Sinh2 α(τ∞ − τ)
(3.48)where

2α2 = GE , Sinh2 ατ∞ = E e−l0 , K = 2α Coth ατ∞ . (3.49)The sign of α is immaterial but, just to be de�nite, we take it to be positive. Thesign of τ∞ is same as that of K , hene τ∞ > 0 . Also, λi(τ) and t(τ) may nowbe obtained but are not needed here for our purposes.Note that el → 4E e2α(τ−τ∞) and vanishes in the limit τ → −∞ , whereas
el → 2

G (τ∞ − τ)−2 and diverges in the limit τ → τ∞ . The value of τ∞ dependson the initial values l0 and K, or equivalently E , as given in equations (3.49).It is �nite and an be evaluated exatly. However, if el0 ≪ E then τ∞ may beapproximated in a way that will be useful later on.From the exat solution given above, we have Sinh2 ατ∞ = E e−l0 and
K = 2α Coth ατ∞ . In the limit el0 ≪ E , we then have e2ατ∞ ≃ 4 E e−l0 and
K ≃ 2α . It, therefore, follows that

τ∞ ≃
1

K
(ln E − l0 + ln 4) . (3.50)In the limit el0 ≪ E , the evolution of l(τ) may also be thought of as follows.Consider E to be �xed and el0 to be very small so that el0 ≪ E . It thenfollows from equations (3.47) that, at initial times, lττ is very small and that

lτ ≃
√
2GE = 2α is independent of el . Hene, l(τ) evolves as if there is no `fore',i.e. l(τ) ≃ l0+Kτ where K = lτ (0) > 0 is the initial `veloity'. One el beomesof O(E) then it a�ets lτ . But, from then on, el evolves quikly and divergessoon after.This suggests that one may well approximate τ∞ by the time τa required for49



Chapter 3. Evolution of Early Universe
l , whih starts from l0 with a veloity K and evolves freely with no fore, toreah ln E � namely, to reah a value where el = el0+Kτa = E . In other words, if
el0 ≪ E then

τ∞ ≃ τa =
1

K
(ln E − l0) . (3.51)A omparison with equation (3.50) shows that the exat τ∞ whih follows fromsolving the evolution equations is indeed well approximated by τa in equation(3.51) in the limit el0 ≪ E . Note that τa is alulated using only the initialvalues, requiring no knowledge of the exat solution.3.5.2 N > 1 CaseWhen N > 1 , the equations of motion an be solved if GIJ are of ertain form[41℄ � [47℄. For example, if GIJ ∝ δIJ then the solutions are similar to those in the

N = 1 ase desribed above. For general forms of GIJ , we are unable to obtainexpliit solutions. Nevertheless, the general evolution an still be analysed if oneassumes suitable asymptoti forms for the sale fators eλi .It follows from equations (3.29) and (3.30) that Λt annot vanish. With no lossof generality, let Λt > 0 initially at t = t0 . Then eΛ dereases monotonially for
t < t0 , equivalently τ < 0 , and inreases monotonially for t > t0 , equivalently
τ > 0 . Further features of the evolution depend on the struture of GIJ and uI

i .In the ases of interest here, it turns out that eΛ and also all elI vanish in thelimit τ → −∞ , and diverge in the limit τ → τ∞ where τ∞ is �nite. We assumesuh a behaviour and analyse the asymptoti solutions.3.5.2.1 Asymptoti evolution: eΛ → 0We assume that (eΛ, elI )→ 0 in the limit τ → −∞ . Then, equations (3.40) and(3.41) an be solved sine their right hand sides depend only on el
I s whih nowvanish. Hene, in the limit τ → −∞ , we write

el
I

= ec̃
Iτ = tb̃

I

, eλ
i

= ec̃
iτ = tb̃

i (3.52)whih are valid up to multipliative onstants and where (c̃I , c̃i, b̃I , b̃i) areonstants. Also, the equalities in the asymptoti expressions here and in the fol-lowing are valid only up to the leading order. Equation (3.44) now implies that50



Chapter 3. Evolution of Early Universe
c̃i =

∑

I u
i
I c̃

I + Li . Also, eΛ = ec̃τ where c̃ =
∑

i c̃
i . Then it follows fromequation (3.37) that t ∼ ec̃τ . Hene,

b̃I =
c̃I

c̃
, b̃i =

c̃i

c̃
,
∑

i

b̃i = 1 . (3.53)Furthermore, equation (3.39) implies that (
∑

i b̃
i)2 − ∑i(b̃

i)2 = 0 . Thus theevolution is of Kasner type in the limit τ → −∞ . The onstants c̃Is in equations(3.52) must be suh that the resulting ∑i b̃
i =

∑

i(b̃
i)2 = 1 , but are otherwisearbitrary. In an atual evolution, however, c̃Is an be determined in terms of theinitial values lI0 and KI with no arbitrariness, but this requires omplete solutionfor lI(τ) .3.5.2.2 Asymptoti evolution: eΛ →∞We assume that eΛ → ∞ in the limit τ → τ∞ where τ∞ is �nite. Whether thislimit is reahed at a �nite or in�nite physial time t depends on the values of uI

i ,see below. Λ(τ) may be obtained in terms of lI(τ) using equation (3.44). Hene,in the limit eΛ →∞ , some or all of the elI s diverge. Consider the following ansatzin the limit τ → τ∞ :
el

I

= ec
I

(τ∞ − τ)−2γI

, eλ
i

= ec
i

(τ∞ − τ)−2γi

, (3.54)where cI and γI are onstants, and some or all of the γIs must be > 0 so thatsome or all of the el
I s diverge. Equation (3.44) now implies that

γi =
∑

I

ui
I γ

I , ci =
∑

I

ui
I (c

I − lI0) + Li τ∞ . (3.55)Also, eΛ = ec (τ∞ − τ)−2γ where c =
∑

i c
i and γ =

∑

i γ
i . For the ansatz inequations (3.54) to be onsistent, it is neessary that γ > 0 so that eΛ → ∞ inthe limit τ → τ∞ . Now t(τ) follows from equation (3.37) and is given by

t− ts =
1

2γ − 1
ec (τ∞ − τ)−(2γ−1) , γ =

∑

i,I

ui
I γ

I (3.56)
51



Chapter 3. Evolution of Early Universewhere ts is a �nite onstant. If 2γ < 1 then t → ts whih means that eΛ → ∞at a �nite physial time ts . If 2γ > 1 then t→∞ in the limit eΛ →∞. Whihase is realised, i.e. whether 2γ < 1 or > 1 , depends on the values of uI
i .Using equation (3.56), the asymptoti behaviour of elI and eλ

i an be obtainedin terms of t. For example, let 2γ > 1 and
el

I

= eb
I+2b tβ

I

, eλ
i

= eb
i

tβ
i

, eΛ = eb tβ (3.57)in the limit t→∞ . It then follows that
βI =

2 γI

2γ − 1
, βi =

2 γi

2γ − 1
, β =

2 γ

2γ − 1
. (3.58)Note that, in this ase, we have eΛ ∼ tβ in the limit t→∞ with β > 1 . See thedisussion below equation (3.19) for the relevane of this feature.To obtain the values of γI , and thereby γi , in equation (3.54), onsiderequation (3.43) from whih it follows that

2
∑

J

GIJ γJ = ec
I

(τ∞ − τ)2(1−γI ) . (3.59)The left hand side in the above equation is a onstant but the right hand sidedepends on τ . This is onsistent if γI = 1 in whih ase the right hand sidebeomes a positive onstant, or if γI < 1 in whih ase the right hand sidevanishes in the limit τ → τ∞ . Thus, there are two possibilities:
(i) γI = 1 =⇒ 2

∑

J

GIJ γJ = ec
I

> 0 (3.60)
(ii) γI 6= 1 =⇒

∑

J

GIJ γJ = 0 , γI < 1 . (3.61)For a given GIJ , the possible onsistent solutions for (γI , ec
I
) are to be obtainedas follows. Assume that some I's are of type (i) and the remaining ones are oftype (ii). Then solve equations (3.60) and (3.61) for ecI in type (i) and for γI intype (ii). Suh a solution is onsistent if the resulting (ec

I
, γI) satisfy ec

I
> 0 for

Is in type (i) and γI < 1 for Is in type (ii). Also, some or all of the γIs mustbe > 0 as required in equation (3.54). (It is further neessary that the resulting52



Chapter 3. Evolution of Early Universe
γ > 0 so that eΛ →∞ , but alulating γ requires uI

i .)Consider an example, whih will be useful later, where GIJ and GIJ are givenby
GIJ = a (b− δIJ) , GIJ =

1

a
(

b

Nb− 1
− δIJ) (3.62)with a > 0 and Nb > 1 . It is then easy to show that the only possibility is theone given in (i). Also ∑J GIJ = 1

a(Nb−1)
> 0 , and thus γI = 1 for all I is aonsistent solution as required by equation (3.60). In the N = 1 ase, we get

G11 = G = a (b− 1) > 0 , and el in the limit τ → τ∞ obtained as desribed aboveagrees with that obtained from the expliit solution, see below equation (3.49).Thus ec
I and γI , and thereby γi =

∑

I u
i
I γI and γ =

∑

i,I u
i
I γI , are alldetermined ultimately by uI

i . The onstants ci are given by equation (3.55) andthey depend on uI
i , on the initial values lI0 and Li , and also on τ∞ . Butdetermining τ∞ , and hene determining ci when Li do not all vanish, requiresomplete solution for lI(τ) .3.5.3 Deviations from el

I →∞ AsymptotisWe onsider the deviations of lI(τ) from its asymptoti behaviour given in equation(3.54), whih will turn out to be of interest. Let the deviations sI(τ) for I =

1, 2, · · · , N be de�ned, in the limit τ → τ∞ , by
el

I

= ec
I

(τ∞ − τ)−2γI

es
I(τ) (3.63)where cI and γI are determined as desribed earlier. For the purpose of illustration,and also for later use, we now assume that all the Is are of type (i), namely that

γI = 1 and ec
I
= 2

∑

J GIJ > 0 for all I . It then follows straightforwardly fromequation (3.41) that
(τ∞ − τ)2 sIττ = 2

∑

K,L

GIK GKL (es
K − 1) . (3.64)Consider the example of GIJ given in equation (3.62). Then∑J GIJ = 1

a(Nb−1)

53



Chapter 3. Evolution of Early Universeand, for any σK , one has
∑

K,L

GIK GKL σK = − 1

Nb − 1
(σI − b

∑

K

σK) . (3.65)In equation (3.64), σK = 2 (es
K − 1) . It now follows easily that, up to the leadingorder in {sK} , the di�erene sI − sJ obeys the equation

(τ∞ − τ)2 (sI − sJ)ττ +
2

Nb− 1
(sI − sJ) = 0 . (3.66)The solutions to these equations are of the form

(sI − sJ) ∼ (τ∞ − τ)
1
2
(1±

√
∆) , ∆ = 1− 8

Nb− 1
. (3.67)Note that sI − sJ = lI − lJ sine γI and cI are same for all I , see equation (3.63).Hene, equations (3.66) and (3.67) an be used to understand in more detail thebehaviour of lIs as they all diverge in the limit τ → τ∞ as given in equation (3.54).We will disuss these features in next two setions.3.6 Interseting BranesWe now analyse the evolution of the universe dominated by mutually BPS Ninterseting brane on�gurations of M theory. The number of spaetime dimensions

D = 11 . We desribe general ase �rst, then we speialise on 22′55′ on�guration.The equations of state are assumed to be given by piI = (1 − uI
i ) ρI where, as aonsequene of U duality symmetries, uI

i are parametrised in terms of one onstant
u . The indies i, j, · · · run from 1 to 10 and the indies I, J, · · · from 1 to N .For 2 branes, 5 branes, and waves, N = 1 and the orresponding uI

i are given inequations (3.27). For 22′55′ on�guration, N = 4 and the orresponding uI
i aregiven in equations (3.7).
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Chapter 3. Evolution of Early Universe3.6.1 Evolution EquationsThe evolution of λi desribing the sale fators is given by the equations desribedearlier whih, for ease of referene, we summarise below:
λi
ττ =

∑

J

uiJ el
J (3.68)

lIττ =
∑

J

GIJ el
J (3.69)

λi =
∑

J

ui
J (lJ − lJ0 ) + Li τ (3.70)where

uiI =
∑

j

Gij uI
j , GIJ =

∑

i,j

Gij uI
i u

J
j , ui

I =
∑

j,J

GIJ Gij uJ
j (3.71)with Gij and GIJ as de�ned earlier, and Li are arbitrary onstants satisfying theonstraints ∑i u

I
iL

i = 0 for all I . Also, lIτ obey the onstraint
∑

I,J

GIJ lIτ l
J
τ = 2 (E +

∑

J

el
J

) (3.72)where 2E = −
∑

i,j GijL
iLj . Equations (3.69) and (3.72) are to be solved for

lI(τ) with initial onditions lI(0) = lI0 = ln ρI0 and lIτ (0) = KI where ρI0 areinitial densities and
∑

I,J

GIJ KI KJ = 2 (E +
∑

J

el
J
0 ) . (3.73)Then λi(τ) follow from equation (3.70) and the physial time t(τ) from dt =

eΛ dτ . Inverting t(τ) then gives τ(t) , and thereby λi(t) .We an now alulate GIJ for the mutually BPS interseting brane on�gura-tions. As explained in footnote 2, in the BPS on�gurations two staks of 2 branesinterset at a point; two staks of 5 branes interset along three ommon spatialdiretions; a stak of 2 branes intersets a stak of 5 branes along one ommonspatial diretion; and, waves, if present, will be along a ommon intersetion di-retion. With these rules given, it is now straightforward to alulate GIJ using55



Chapter 3. Evolution of Early Universeequations (3.27) and (3.71). It turns out beause of the BPS intersetion rulesthat the resulting GIJ are given by
GIJ = 2u2 (1− δIJ) . (3.74)The orresponding GIJ exists for N > 1 , and is given by

GIJ =
1

2u2
(

1

N − 1
− δIJ) . (3.75)Note that, for N > 1 , the above GIJ is a speial ase of the example onsideredearlier in equation (3.62), now with a = 2u2 and b = 1 ,3.6.2 22′55′ CaseIt is also straightforward to alulate uiI and ui
I for the 22′55′ on�guration usingthe de�nitions in equation (3.71) and the uI

i in equation (3.7). They are given by
2 : ui1 ∝ (−2,−2, 1, 1, 1, 1, 1, 1, 1, 1)

2′ : ui2 ∝ ( 1, 1,−2,−2, 1, 1, 1, 1, 1, 1)

5 : ui3 ∝ (−1, 2,−1, 2,−1,−1,−1, 2, 2, 2)

5′ : ui4 ∝ ( 2,−1, 2,−1,−1,−1,−1, 2, 2, 2) (3.76)where the proportionality onstant is u
3
, and by

2 : ui
1 ∝ ( 2, 2,−1,−1,−1,−1,−1, 1, 1, 1)

2′ : ui
2 ∝ (−1,−1, 2, 2,−1,−1,−1, 1, 1, 1)

5 : ui
3 ∝ ( 1,−2, 1,−2, 1, 1, 1, 0, 0, 0)

5′ : ui
4 ∝ (−2, 1,−2, 1, 1, 1, 1, 0, 0, 0) (3.77)where the proportionality onstant is 1

6u
.We are unable to solve equations (3.69), (3.72), and (3.74) for N > 1 .9 How-9 In the ase of blak holes, the equations of motion for the orresponding harmoni funtions

HI = 1 + QI

r
≡ eh̃I an also be written in a form similar to that of equation (3.69). The mainsteps are indiated in Appendix 2.6. The analogous GIJ in the blak hole ase turns out to be

∝ δIJ , and the equations an then be solved. 56



Chapter 3. Evolution of Early Universeever, applying the general analysis desribed in setion 3.5 and making further useof the expliit forms of uI
i and GIJ given in equations (3.7) and (3.74), one anunderstand the qualitative features of the evolution of the 22′55′ on�guration.We �rst make several remarks whih will lead to an immediate understandingof the evolution of this on�guration.(1) Let ui =

∑

I u
I
i . It an then be heked that ∑i,j G

ijuiuj > 0 . Also,
∑

i uiL
i = 0 sine ∑i u

I
iL

i = 0 for all I . Hene, as shown in Appendix C, itfollows that E given in equation (3.72) is ≥ 0 and that it vanishes if and only if
Li all vanish.(2) The onstraints ∑i u

I
iL

i = 0 imply that
L1 − L4 = L2 − L3 = L5 + L6 + L7 = 0

L8 + L9 + L10 = −3 (L1 + L2) . (3.78)Thus, for example, we may take (L1, L2, L6, L7, L8, L9) to be independent. Theremaining Lis are then determined by the above equations. Also, we have
L ≡

∑

i

Li = −(L1 + L2) . (3.79)Using equations (3.78), (3.79), and the Shwarz inequality (C.1) in AppendixC, we write E as
2E =

∑

i

(Li)2 − (
∑

i

Li)2

= 3(L)2 +
7
∑

i=5

(Li)2 + 2σ2
2 + σ2

3

= 3(L1)2 + (L1 + 2L2)2 +
7
∑

i=5

(Li)2 + σ2
3 (3.80)where the �rst line is the de�nition of E , σ2 = 0 if and only if L1 = L2 , andAlso, note that if Li = 0 for all i then λi in equation (3.70) here may be written asin equation (2.86) in Appendix 2.6. The role of h̃I there is played by the funtions 2uhI =

2u
∑

J GIJ (lJ− lJ
0
) here. Suh a similarity is present for other interseting brane on�gurationsalso. 57



Chapter 3. Evolution of Early Universe
σ3 = 0 if and only if L8 = L9 = L10 . See the Shwarz inequality given in equation(C.1). It is easy to show that the above expressions for E imply that (Li)2 forall i are bounded above by E as follows: E ≥ ci(L

i)2 ≥ 0 where ci are onstantsof O(1) . In partiular, note the inequality 2E ≥ 3(L)2 whih is required inAppendix D.(3) It follows from equations (3.70), (3.77), and (3.79) that
Λτ =

∑

i

λi
τ =

1

6u
(2l1τ + 2l2τ + l3τ + l4τ ) + L . (3.81)Using the expliit form of GIJ given in equation (3.75) with N = 4 , equation(3.72) beomes

(
∑

I

lIτ )
2 − 3

∑

I

(lIτ )
2 = 12u2 (E +

∑

I

el
I

) > 0 (3.82)where the inequality follows sine E ≥ 0 and el
I
> 0 . We show in Appendix Dthat this inequality implies that none of (Λτ , l

I
τ ) may vanish, and that they mustall have same sign. Hene, for all τ throughout the evolution, (Λτ , lIτ ) must allbe non vanishing, and be all positive or all negative.3.7 Asymptoti EvolutionWith no loss of generality, let Λt > 0 initially at t = t0 . Then it follows fromthe above result that (Λτ , lIτ ) must all be positive and non vanishing for all τ .Hene, (Λ, lI) are all monotonially inreasing funtions for all τ throughout theevolution.Equation (3.69) may be written, using equation (3.74), as

lIττ = 2u2
∑

J 6=I

el
J

. (3.83)In the past, τ and all lI derease ontinuously. Hene, the right hand side inequation (3.83) beomes more and more negligible. The asymptoti solution in thelimit τ → −∞ is then given by lI = c̃Iτ + d̃I where c̃I > 0 . Thus elI → 0 in this58



Chapter 3. Evolution of Early Universelimit.Similarly, in the future, τ and all lI inrease ontinuously. However, the righthand side in equation (3.83) inreases exponentially now. It is then obvious thatall elI → ∞ within a �nite interval of τ , i.e. at a �nite value τ∞ of τ . Inthis ontext, see equations (3.47) and (3.48), and the general analysis given inasymptoti evolution in setion 3.5.2.2.We now analyse the orresponding asymptoti solutions.3.7.1 Asymptoti Evolution: eΛ → 0It follows from the above disussion that eΛ → 0 in the limit τ → −∞ . Also, inthis limit, we have
el

I

= ec̃
Iτ = tb̃

I

, eλ
i

= ec̃
iτ = tb̃

i (3.84)up to multipliative onstants where (c̃I , c̃i, b̃I , b̃i) are onstants. The evolutionis then of Kasner type and is similar to that desribed in setion 3.5.2.1. Theonstants c̃Is are determined by the initial values lI0 and KI , but obtaining theexat dependene in the general ase requires omplete solution for lI(τ) . However,if the initial values lI0 are large and negative then we have el
I ≪ 1 for all τ < 0and, hene, c̃I = KI to a good approximation.3.7.2 Asymptoti Evolution: eΛ →∞It follows from the above disussion that eΛ →∞ in the limit τ → τ∞ where τ∞is �nite. Also, elI →∞ in this limit and τ∞ depends on the initial values lI0 and

KI .Although solutions for lI(τ) are not known, their asymptoti forms in the limit
τ → τ∞ , and hene those of λi(τ) , may be obtained following the analysis givenin setion 3.5.2.2. GIJ in equation (3.74) is a speial ase of the example (3.62)where, now, N = 4 , a = 2u2 , and b = 1 . Hene, it an be shown to orrespondto the possibility (i) given in equation (3.60). Therefore, we have γI = 1 and
ec

I
= 2

∑

J GIJ = 1
3u2 .It then follows from equation (3.54) that el

I and eλ
i are given in the limit59



Chapter 3. Evolution of Early Universe
τ → τ∞ by

el
I

=
1

3u2

1

(τ∞ − τ)2
(3.85)

eλ
i

= ev
i

(

1

3u2

1

(τ∞ − τ)2

)

∑
I u

i
I (3.86)where, sine ρI0 = el

I
0 , we have

vi = −
∑

J

ui
J lJ0 + Li τ∞ , ev

i

= eL
i τ∞

∏

J

(ρJ0)
−ui

J . (3.87)Also, sine γ =
∑

i,I u
i
I =

1
u
, we have from equation (3.56) that the physial time

t is given in this limit by
t− ts = A (τ∞ − τ)−

2−u
u (3.88)where ts and A are �nite onstants. Clearly, t→∞ in the limit τ → τ∞ sine itis assumed that 0 < u < 2 . In this limit, the sale fators eλi may be written interms of t as

eλ
i

= ev
i

(B t)β
i (3.89)where B is a onstant and βi = 2u

2−u

∑

J u
i
J . Using equation (3.77) for ui

I , theexponents βi are given by
βi ∝ (0, 0, 0, 0, 0, 0, 0, 1, 1, 1) (3.90)where the proportionality onstant is 2

3(2−u)
. Note that β =

∑

i β
i = 2

2−u
> 1 .Hene, we have eΛ ∼ tβ in the limit t→∞ with β > 1 . See the disussion belowequation (3.19) for the relevane of this feature.Thus, asymptotially in the limit t → ∞ , we obtain that eλ

i → t
2

3(2−u) forthe ommon transverse diretions i = 8, 9, 10 . Hene, these diretions ontinueto expand, their expansion being preisely that of a (3 + 1) � dimensional homo-geneous, isotropi universe ontaining a perfet �uid whose equation of state is
p = (1 − u) ρ . Also, eλ

i → ev
i for the brane diretions i = 1, · · · , 7 . Hene,these diretions ease to expand or ontrat. Their sizes are thus stabilised and aregiven by ev

i . Note that this result is in aord with the general result desribed60



Chapter 3. Evolution of Early Universein setion 3.3 sine, in the limit τ → τ∞ , the brane densities ρI ∝ el
I all beomeequal and hene the four types of branes all beome idential; and, t → ∞ and

eΛ ∼ tβ →∞ with β > 1 .3.8 Mehanism of StabilisationUsing the asymptoti solutions, we an now give a physial interpretation of thedynamial mehanism underlying the stabilisation of the brane diretions seenabove for the 22′55′ on�guration.We �rst study the stabilisation proess. Consider equation (3.68) for λ1
ττ , forexample. Using the values of uiI given in equation (3.76), we have

λ1
ττ ∝ (−2el1 + el

2 − el
3

+ 2el
4

) . (3.91)In the 22′55′ on�guration, x1 diretion is wrapped by 2 branes and 5 branesand is transverse to 2′ branes and 5′ branes. Thus, from the above equation for
λ1 and from similar equations for λ2, · · · , λ7 , we see that 2 brane and 5 branediretions `ontrat with a fore' proportional to 2ρ(2) and ρ(5) respetively,whereas the diretions transverse to them `expand with a fore' proportional to
ρ(2) and 2ρ(5) respetively, where ρ(∗) ∝ el

(∗) are the time dependent densities ofthe orresponding branes.When ρI ∝ el
I all beome equal, the fores of expansion anel the foresof ontration resulting in vanishing net fore for the x1 diretion. Then, usingequation (3.38), one has

λ1
ττ = e2Λ (λ1

tt + Λtλ
1
t ) = 0 . (3.92)Now, as desribed earlier in the ontext of equations (3.20) and (3.21), the transient`veloity' λ1

t is damped and λ1 reahes a onstant value in the expanding universehere sine we have eΛ ∼ tβ in the limit t → ∞ with β > 1 . The result is thestabilisation of the x1 diretion.The stabilised size ev
1 of x1 diretion is given by
ev

1

= eL
1 τ∞

(

ρ20 ρ
2
40

ρ30 ρ
2
10

)
1
6u

, (3.93)61



Chapter 3. Evolution of Early Universesee equation (3.87). Note that ev
1 an be interpreted as arising from the im-balane among the initial brane densities ρI0 , and from the parts L1 of λ1

t (0)whih indiate the transients. The above analysis an be similarly applied to thestabilisation of other brane diretions (x2, · · · , x7) in the 22′55′ on�guration.Thus, three onditions need to be satis�ed for stabilisation: (1) the time de-pendent brane densities ρI ∝ el
I all beome equal; (2) the fores of expansionand ontration for eah of the brane diretions be just right so that the net forevanishes; (3) the universe be expanding as eΛ ∼ tβ in the limit t → ∞ with

β > 1 so that the transient veloities are damped and the orresponding salefators reah onstant values.For any mutually BPS N > 1 interseting brane on�gurations with the equa-tions of state as assumed here, it is straightforward to show using the earlieranalysis that the evolution equations ensure that elI all beome equal asymptot-ially even if they were unequal initially, and that eΛ ∼ tβ in the limit t → ∞with β > 1 . Thus onditions (1) and (3) are satis�ed. Condition (2) requiresthe brane on�guration to be suh that eah of the brane diretions is wrappedby, and is transverse to, just the right number and kind of branes. This onditionis satis�ed for the N = 4 on�gurations 22′55′ and 55′5′′W , both of whih resultin the stabilisation of seven brane diretions and the expansion of the remainingthree spatial diretions. To our knowledge, the only other on�gurations whihsatisfy the ondition (2) are the N = 3 on�gurations 22′2′′ and 25W , both ofwhih result in the stabilisation of six brane diretions and the expansion of theremaining four spatial diretions [32℄. However it is the N = 4 on�gurations thatare entropially favourable, see equation (1.6).Note that, as desribed in setion 3.3 and up to ertain tehnial assumptionsregarding the equality of brane densities and the asymptoti behaviour of eΛ ,the stabilisation here follows essentially as a onsequene of U duality symmetries.In partiular, it is independent of the ansatz for energy momentum tensors, orof the assumptions about equations of state, as long as the omponents of theenergy momentum tensors obey the U duality onstraints of the type given inequation (3.19). Obtaining the details of the stabilisation, however, requires furtherassumptions e.g. of the type made here.Note also that the present mehanism of stabilisation of seven brane diretions,and the onsequent emergene of three large spatial diretions, is very di�erent62



Chapter 3. Evolution of Early Universefrom the ones proposed in string theory or in brane gas models [37, 38, 39, 40℄.3.9 Stabilised Sizes of Brane DiretionsWe thus see for the 22′55′ on�guration that, asymptotially in the limit eΛ →∞ ,the initial (10+1) � dimensional universe e�etively beomes (3+1) � dimensional.Also, if vs = min{v1, · · · , v7} then a dimensional redution of the (10 + 1) �dimensional M theory along the orresponding xs diretion gives type IIA stringtheory with its dilaton now stabilised. Using the standard relations, one an obtainthe string oupling onstant gs , the string sale Ms , and the four dimensionalPlank sale M4 in terms of the M theory sale M11 and the stabilised values
ev

i . De�ning vc =
∑7

i=1 v
i and assuming, with no loss of generality, that theoordinate sizes of all spatial diretions are of O(M−1

11 ) , we obtain
g2s = e3v

s

, M2
4 = ev

c−vs M2
s = ev

c

M2
11 (3.94)where the equalities are valid up to numerial fators of O(1) only and

ev
c

= eL
c τ∞

(

ρ10 ρ20

ρ30 ρ40

)
1
6u

, Lc =
7
∑

i=1

Li (3.95)as follows from equations (3.77), (3.87), and ρI0 = el
I
0 . Also, note that gs =

( Ms

M11
)3 .Sine we have an asymptotially 3 + 1 dimensional universe evolving from a

10 + 1 dimensional one, it is of interest to study the resulting ratios M11

M4
and Ms

M4
,and study their dependene on the initial values (lI0, K

I , Li) . In partiular, onemay like to know the generi values of these ratios and to know whether arbitrarilysmall values are possible. Setting M4 = 1019 GeV , one then knows the generisales of M11 and Ms and, for example, whether M11 = 10−15 M4 = 10 TeV ispossible.In view of the relations between (M11,Ms,M4) given in equation (3.94), thisrequires studying the stabilised values ev
c and ev

c−vs , their dependene on
(lI0, K

I , Li) , and knowing whether they an be arbitrarily large. Note that if
Li = 0 for all i then vi are all determined in terms of lI0 only, see equation63



Chapter 3. Evolution of Early Universe(3.87). It is then obvious from equations (3.87) and (3.95) that any values for evcand ev
c−vs , no matter how large, may be obtained by �ne tuning ρI0 orrespond-ingly. 10This statement remains true even when Lis do not all vanish. In this ase,however, one may question the neessity of �ne tuning sine, for example, therelation ev

c ∝ eL
cτ∞ suggests that large values suh as 1030 ∼ e70 may be obtainedby tuning Lis, or τ∞ , or both to within a ouple of orders of magnitude only. Itturns out, as we explain below, that �ne tuning is still neessary to obtain suhlarge values.Consider �rst the possibility of tuning Li . Note that equations (3.69) and(3.72) are invariant under the saling

(E, el
I

, τ) −→ (σ2E, σ2el
I

,
τ

σ
) (3.96)where σ is a positive onstant. The initial values sale orrespondingly as

(el
I
0 , KI , Li) −→ (σ2el

I
0 , σKI , σLi) . (3.97)It then follows from equation (3.70) that λi, and hene ev

i , remain invariant.11This saling property merely re�ets the hoie of a sale for time. For example,using this saling, one may set ∑J e
lJ0 = 1 or, when E > 0 as is the ase here,set E = 1 . The orresponding σ then provides a natural time sale for evolution.We set E = 1 using the above saling.With E = 1 , the value of τ∞ now depends only on lI0 and KI . Sine

2E =
∑

i(L
i)2− (

∑

i L
i)2 , it is still plausible to have a range of non zero measurewhere Li are large and E = 1 , and thereby obtain large values for ev

c and
ev

c−vs . However, Lis are further onstrained by ∑i u
I
iL

i = 0 , I = 1, · · · , 4 ,and onsequently their magnitudes are all bounded from above. For example, with
E = 1 , we obtain (Lc)2 ≤ 8

3
. See remark (2) in setion 3.6.1. Thus, large valuesof evi annot be obtained by tuning Li alone.10 It follows from equation (3.73) and the de�nition of E that the generi ranges of the initialvalues may be taken to be given by |Li| ≃ KI ≃

√
E ≃ √ρI0 within a ouple of orders ofmagnitude. If the initial values lie way beyond suh a range then we onsider it as �ne tuning.11 This invariane is equivalent to that of equations (3.30) and (3.31) under the saling

(λi, ρ, pi, t)→ (λi, σ2ρ, σ2pi,
t
σ
) . 64



Chapter 3. Evolution of Early UniverseConsider now the possibility of tuning τ∞ . Obtaining the dependene of τ∞on (lI0, K
I) requires expliit solutions whih are not available. Hene, we obtain

τ∞ numerially. We will present the numerial results in the next setion. Here wepoint out that an approximate expression for τ∞ an be given in the limit when
el

I
0 ≪ E for all I . The reasoning involved is analogous to that used in obtaining

τa in equation (3.51). Using similar reasoning and setting E = 1 now, we havethat if elI0 ≪ 1 for all I then
τ∞ ≃ τa = min {τI} , τI = −

lI0
KI

. (3.98)Note that τa an be alulated easily and requires no knowledge of expliit solu-tions. Our numerial results show that τa given above indeed provides a goodapproximation to τ∞ when el
I
0 ≪ 1 for all I .Note also that KI must satisfy equation (3.73) with E = 1 . It then followsfrom an analysis similar to that given in Appendix D that KI are all positive,annot be too small, and are of O(1) generially. Hene, in the limit elI0 ≪ 1 forall I, τa in equation (3.98) are of O(min{−lI0}) . This indiates that large valuesof τ∞ , and hene of evi , annot be obtained by tuning KI alone; a tuning of lI0 ,whih translates to �ne tuning of ρI0 = el

I
0 , is required. Our numerial analysisalso supports this onlusion.We thus �nd that, even when Lis do not all vanish, a �ne tuning of ρI0 = el

I
0is neessary to obtain large values for evc−vs and ev

c . We will see some examplein setion 3.12.3.10 Disussion with Other Interseting Con�gu-rationsIn this setion we will disuss some interseting on�guration whih are not 22′55′distributed in said way. We mentioned all our assumption in last setion. There wesay our 22′55′ is atually a �ne tuned initial ondition, and how this on�gurationomes out naturally form M theory is not understood. To disuss this point wehere give some example on�guration where stabilisation of 7 diretions is notahieved. 65



Chapter 3. Evolution of Early UniverseEven 22′55′ branes interseting in some other way following BPS intersetionrule may not produes required stabilisation. As an example onsider followingon�guration:
2 : −,−,−,−,−,−,×,×,−,−
2′ : ×,×,−,−,−,−,−,−,−,−
5 : ×,−,×,×,×,−,−,×,−,−
5′ : −,×,×,×,−,×,−,×,−,−where × denotes brane diretion and − diretion are perpendiular to brane. Forthis on�guration general analysis of setion 3.5 gives

βi =
1

6− 3u
{0, 0, 0, 0, 1, 1, 1,−1, 2, 2} . (3.99)So one an see here only x1, x2, x3 and x4 get stabilised. This on�guration isdi�erent from ours. Here stabilisation is ahieved only in the diretions whereexatly two branes are presents. But in our 22′55′ ase exatly 2 sets of branes arepresent in all 7 diretions. Similarly we an also do the analysis for N > 4 ase.None of these ases stabilisation of 7 diretions ours. As disussed in setion3.5, using equations (3.58), (3.60), (3.61) and (3.62) one an �nd general formulafor βi. In our ase all γI = 1. So in this ase if we de�ne
x =

∑

i,I

ui
I ,then βi will be given by

βi =
2

2x− 1

∑

I

ui
I , (3.100)where ui

I are de�ned in equation (3.44). uI
i 's depend on partiular intersetion.For our ansatz of: TAB, mentioned in setion 3.4, uI

i 's are given by equation (3.27).All possible on�gurations are given for example in [63℄. In Table 3.2, 3.3,3.4, 3.5 and 3.6 we list a few interseting M brane on�gurations and their orre-sponding late time evolution. We use notation of [63℄, whih is following: in squarebraket numbers of eah type of branes are indiated. For example [2n, 5m] means66



Chapter 3. Evolution of Early Universe
n number of 2 branes and m number of 5 branes. In urly braket how manybranes are there in eah diretion is indiated. Position of the number indiatesnumber of branes and orresponding number indiates number of diretions. Forexample {p, q, r, s, . . .} means there is only 1 brane in p diretions, there are 2branes presents in q diretions and so on. For example take ([22, 52], {3, 4, 1, 0}).This is the on�guration we disuss in last page. This means 2 sets of 2 branes and2 sets of 5 branes. Then {3, 4, 1, 0}) denotes following: 1)there are 1 brane in 3diretions, in this ase x5, x6 and x7. 2) There are 2 branes in 4 diretions, namely
x1, x2, x3 and x4. 3) There are 3 branes in 1 diretion, namely x8. 4) And thereis no diretion whih is populated by 4 branes. We also list the on�gurationsexpliitly for the shake of reader's onveniene.We �rst give some example for N ≤ 3 ase in Table 3.1 and 3.2. Next we givesome example for N = 4 in Table 3.3. Finally we give example of N > 4 in table3.4, 3.5 and 3.6.Type of intersetion βi

[22], {4, 0} 1
8−3u
{−1,−1,−1,−1, 2, 2, 2, 2, 2, 2}

[21, 51], {5, 1} 1
3−u

, {−1, 0, 0, 0, 0, 0, 1, 1, 1, 1}
[52], {4, 3} 2

10−3u
{−2,−2,−2, 1, 1, 1, 1, 4, 4, 4}Table 3.1: Table for various type of intersetion vs βi, for N = 2.The expliit on�guration mentioned in above table, 3.1 given below:

[22], {4, 0}
2 : ×,×,−,−,−,−,−,−,−,−
2′ : −,−,×,×,−,−,−,−,−,−

[21, 51], {5, 1}
2 : ×,×,−,−,−,−,−,−,−,−
5 : ×,−,×,×,×,×,−,−,−,−
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Chapter 3. Evolution of Early Universe
[52], {4, 3}

5 : ×,×,×,×,×,−,−,−,−,−
5′ : ×,×,×,−,−,×,×,−,−,−Type of intersetion βi

[53], {0, 6, 1} 1
5−2u
{−1, 0, 0, 0, 0, 0, 0, 2, 2, 2}

[53], {6, 0, 3} 1
5−2u
{1, 1, 1, 1, 1, 1, 1, 1, 1, 2}

[21, 52], {5, 2, 1} 5
14−6u

{−4, 2,−2,−2, 2, 2, 2, 2, 5, 5}
[21, 52], {2, 5, 0} 1

14−6u
{−1,−1,−1,−1,−1, 2, 2, 5, 5, 5}

[23], {6, 0, 0} 1
4−2u
{0, 0, 0, 0, 0, 0, 1, 1, 1, 1}Table 3.2: Table for various type of intersetion vs βi, for N = 3.The expliit on�guration mention in above table, 3.2 given below:

[53], {0, 6, 1}
5 : ×,×,×,×,×,−,−,−,−,−
5′ : ×,×,×,−,−,×,×,−,−,−
5′′ : ×,−,−,×,×,×,×,−,−,−

[53], {6, 0, 3}
5 : ×,×,×,×,×,−,−,−,−,−
5′ : −,−,×,×,×,×,×,−,−,−
5′′ : −,−,×,×,×,−,−,×,×,−

[21, 52], {5, 2, 1}
2 : ×,×,−,−,−,−,−,−,−,−
5′ : ×,−,×,×,×,×,−,−,−,−
5′′ : ×,−,×,×,−,−,×,×,−,−
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[21, 52], {2, 5, 0}

2 : ×,×,−,−,−,−,−,−,−,−
5′ : ×,−,×,×,×,×,−,−,−,−
5′′ : −,×,×,×,×,−,×,−,−,−

[23], {6, 0, 0}
2 : ×,×,−,−,−,−,−,−,−,−
2′ : −,−,×,×,−,−,−,−,−,−
2′′ : −,−,−,−,×,×,−,−,−,−Type of intersetion βi

[54], {3, 3, 1, 2} 1
20−9u

{−1,−4,−4, 2, 5, 2, 5, 2, 5, 8}
[54], {4, 0, 4, 1} 1

20−9u
{−4,−1,−1,−1, 5,−1, 5, 5, 5, 8}

[54], {0, 6, 0, 2} 2
20−9u

{−2,−2, 1, 1, 1, 1, 1, 1, 4, 4}
[21, 53], {2, 3, 3, 0} 1

19−9u
{−2, 1,−2,−2, 1, 4, 1, 4, 7, 7}

[22, 52], {0, 7, 0, 0} 2
6−3u
{0, 0, 0, 0, 0, 0, 0, 1, 1, 1}

[22, 52], {3, 4, 1, 0} 1
6−3u
{ 1
6−3u
{0, 0, 0, 0, 1, 1, 1,−1, 2, 2}

[22, 52], {6, 1, 2, 0} 1
6−3u
{−1, 1,−1, 1, 0, 1, 1, 1, 1, 2}Table 3.3: Table for various type of intersetion vs βi, for N = 4.The expliit on�guration mentioned in above table, 3.3 given below:

[54], {3, 3, 1, 2}
5 : ×,×,×,×,×,−,−,−,−,−
5′ : ×,×,×,−,−,×,×,−,−,−
5′′ : ×,×,×,−,−,−,−,×,×,−
5′′′ : −,×,×,×,−,×,−,×,−,−
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[54], {4, 0, 4, 1}

5 : ×,×,×,×,×,−,−,−,−,−
5′ : ×,×,×,−,−,×,×,−,−,−
5′′ : ×,−,×,×,−,×,−,×,−,−
5′′′ : ×,×,−,×,−,×,−,−,×,−

[54], {0, 6, 0, 2}
5 : ×,×,×,×,×,−,−,−,−,−
5′ : ×,×,×,−,−,×,×,−,−,−
5′′ : ×,×,−,×,−,×,−,×,−,−
5′′′ : ×,×,−,−,×,−,×,×,−,−

[21, 53], {2, 3, 3, 0}
2 : ×,×,−,−,−,−,−,−,−,−
5 : ×,−,×,×,×,×,−,−,−,−
5′ : −,×,×,×,×,−,×,−,−,−
5′ : ×,−,×,×,−,−,×,×,−,−

[22, 52], {0, 7, 0, 0} 12
2 : ×,×,−,−,−,−,−,−,−,−
2′ : −,−,×,×,−,−,−,−,−,−
5 : ×,−,×,−,×,×,×,−,−,−
5′ : −,×,−,×,×,×,×,−,−,−12This on�guration is our on�guration.
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[22, 52], {3, 4, 1, 0}

2 : −,−,−,−,−,−,×,×,−,−
2′ : ×,×,−,−,−,−,−,−,−,−
5 : ×,−,×,×,×,−,−,×,−,−
5′ : −,×,×,×,−,×,−,×,−,−

[22, 52], {6, 1, 2, 0}
2 : ×,×,−,−,−,−,−,−,−,−
2′ : −,−,×,×,−,−,−,−,−,−
5 : ×,−,×,−,×,×,×,−,−,−
5′ : ×,−,×,−,×,−,−,×,×,−Type of intersetion βi

[55], {0, 2, 4, 1, 1} 1
25−12u

{−5,−2, 1, 4, 1, 1, 4, 1, 10, 10}
[21, 54], {0, 4, 2, 2, 0} 3

8−4u
{0, 0,−1,−1, 1, 1, 1, 1, 3, 3}

[22, 53], {1, 3, 4, 0, 0} 1
23−12u

{−1, 2, 2,−1,−1,−1, 2, 5, 8, 8}
[23, 52], {4, 3, 2, 0, 0} 1

22−12u
{−2,−4,−2, 4, 1, 1, 1, 4, 4, 7}Table 3.4: Table for various type of intersetion vs βi, for N = 5.The expliit on�guration mentioned in above table, 3.4 given below:

[55], {0, 2, 4, 1, 1}
5 : ×,×,×,×,×,−,−,−,−,−
5′ : ×,×,×,−,−,×,×,−,−,−
5′′ : ×,×,−,×,−,×,−,×,−,−
5′′′ : ×,×,−,−,×,−,×,×,−,−
5′′′′ : ×,−,×,−,×,×,−,×,−,− 71
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[21, 54], {0, 4, 2, 2, 0}

2 : ×,×,−,−,−,−,−,−,−,−
5 : ×,−,×,×,×,×,−,−,−,−
5′ : −,×,×,×,×,−,×,−,−,−
5′′ : ×,−,×,×,−,−,×,×,−,−
5′′′ : −,×,×,×,−,×,−,×,−,−

[22, 53], {1, 3, 4, 0, 0}
2 : ×,×,−,−,−,−,−,−,−,−
2′ : −,−,×,×,−,−,−,−,−,−
5 : ×,−,×,−,×,×,×,−,−,−
5′ : −,×,−,×,×,×,×,−,−,−
5′′ : ×,−,−,×,×,×,−,×,−,−

[23, 52], {4, 3, 2, 0, 0}
2 : ×,×,−,−,−,−,−,−,−,−
2′ : −,−,×,×,−,−,−,−,−,−
2′′ : −,−,−,−,×,×,−,−,−,−
5 : ×,−,×,−,×,−,×,×,−,−
5′ : ×,−,×,−,−,×,×,−,×,−

Type of intersetion βi

[56], {0, 3, 4, 0, 0, 2} 1
10−5u

{−2,−2, 1, 1, 1, 1, 2, 2, 2, 4}
[21, 55], {1, 2, 4, 1, 0, 1} 1

29−15u
{−7,−1, 2, 5, 2, 2, 5, 2, 8, 11}

[22, 54], {0, 2, 4, 2, 0, 0} 1
28−15u

{1, 1, 1, 1,−2,−2, 4, 4, 10, 10}
[23, 53], {2, 3, 3, 1, 0, 0} 1

9−5u
{−1, 2, 1, 0, 0, 1, 0, 1, 2, 3}Table 3.5: Table for various type of intersetion vs βi, for N = 6. 72



Chapter 3. Evolution of Early UniverseThe expliit on�guration mention in above table, 3.5 given below:
[56], {0, 0, 4, 3, 0, 1}

5 : ×,×,×,×,×,−,−,−,−,−
5′ : ×,×,×,−,−,×,×,−,−,−
5′′ : ×,×,−,×,−,×,−,×,−,−
5′′′ : ×,×,−,−,×,−,×,×,−,−
5′′′′ : ×,−,×,−,×,×,−,×,−,−
5′′′′′ : ×,−,−,×,×,×,×,−,−,−

[21, 55], {1, 2, 4, 1, 0, 1}
2 : ×,−,−,−,−,−,−,−,×,−
5 : ×,×,×,×,×,−,−,−,−,−
5′ : ×,×,×,−,−,×,×,−,−,−
5′′ : ×,×,−,×,−,×,−,×,−,−
5′′′ : ×,×,−,−,×,−,×,×,−,−
5′′′′ : ×,−,×,−,×,×,−,×,−,−

[22, 54], {0, 2, 4, 2, 0, 0}
2 : ×,×,−,−,−,−,−,−,−,−
2′ : −,−,×,×,−,−,−,−,−,−
5 : ×,−,×,−,×,×,×,−,−,−
5′ : −,×,−,×,×,×,×,−,−,−
5′′ : ×,−,−,×,×,×,−,×,−,−
5′′′ : −,×,×,−,×,×,−,×,−,−
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Chapter 3. Evolution of Early Universe
[23, 53], {2, 3, 3, 1, 0, 0}

2 : ×,×,−,−,−,−,−,−,−,−
2′ : −,−,×,×,−,−,−,−,−,−
2′′ : −,−,−,−,×,×,−,−,−,−
5 : ×,−,×,−,×,−,×,×,−,−
5′ : ×,−,−,×,−,×,×,×,−,−
5′′ : ×,−,−,×,×,−,×,−,×,−Type of intersetion βi

[57], {0, 0, 0, 7, 0, 0, 1} 1
35−18u

{−7, 2, 2, 2, 2, 2, 2, 2, 14, 14}
[23, 54], {0, 0, 6, 2, 0, 0, 0} 1

32−18u
{2, 2, 2, 2,−1,−1, 2, 2, 2, 11, 11}Table 3.6: Table for various type of intersetion vs βi, for N = 7.The expliit on�guration mentioned in above table, 3.6 given below:

[57], {0, 0, 0, 7, 0, 0, 1}
5 : ×,×,×,×,×,−,−,−,−,−
5′ : ×,−,−,×,×,×,×,−,−,−
5′′ : ×,×,×,−,−,×,×,−,−,−
5′′′ : ×,−,×,×,−,×,−,×,−,−
5′′′′ : ×,×,−,−,×,×,−,×,−,−
5′′′′′ : ×,×,−,×,−,−,×,×,−,−
5′′′′′′ : ×,−,×,−,×,−,×,×,−,−
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Chapter 3. Evolution of Early Universe
[23, 54], {0, 0, 6, 2, 0, 0, 0}

2 : ×,×,−,−,−,−,−,−,−,−
2′ : −,−,×,×,−,−,−,−,−,−
2′′ : −,−,−,−,−,−,×,×,−,−
5 : ×,−,×,−,×,×,×,−,−,−
5′ : −,×,−,×,×,×,×,−,−,−
5′′ : ×,−,−,×,×,×,−,×,−,−
5′′′ : −,×,×,−,×,×,−,×,−,−3.11 Time Varying Newton's ConstantThe evolution of the eleven dimensional early universe whih is dominated by the

22′55′ on�guration desribed here an also be onsidered from the perspetiveof four dimensional spaetime. Indeed, in general, let the eleven dimensional lineelement ds be given by
ds2 = gµν dxµdxν +

7
∑

i=1

e2λ
i

(dxi)2 (3.101)where xµ = (x0, x8, x9, x10), with x0 = t, desribes the four dimensional spaetime,and the �elds gµν and λi , i = 1, · · · , 7, depend on xµ only. Also, let Λc =
∑7

i=1 λ
i . It is then straightforward to show that the gravitational part of theeleven dimensional ation S11 given in equation (2.1) beomes

S4 =
V7

16πG11

∫

d4x
√

−g(4) eΛ
c { R(4) + (∇(4)Λ

c)2 −
7
∑

i=1

(∇(4)λ
i)2 } (3.102)where V7 is the oordinate volume of the seven dimensional spae and the sub-sripts (4) indiate that the orresponding quantities are with respet to the fourdimensional metri gµν . The ation S4 desribes four dimensional spaetime inwhih the e�etive Newton's onstant G4 is spaetime dependent and is given by

G4(x
µ) = e−Λc(xµ) G11

V7

. (3.103)75



Chapter 3. Evolution of Early UniverseIn the ase of early universe, the �elds gµν and λi depend on t only. Then G4 istime dependent and we have, for G4 and its frational time derivative,
G4(t) = e−Λc(t) G11

V7

,
(G4)t
G4

= − Λc
t . (3.104)For the four dimensional spaetime arising from the 22′55′ on�guration, the

gµν �elds are just the sale fators (eλ8
, eλ

9
, eλ

10
) for (x8, x9, x10) diretions, andall λi(τ) are given in equation (3.70) in terms of lI(τ) , I = 1, · · · , 4 . Then, usingequation (3.77) and the de�nitions of Λc , Lc , and vc , we have

Λc = − 1

6u
(l1 + l2 − l3 − l4)− Lc(τ∞ − τ) + vc . (3.105)In the limit t → ∞ , we have from the results given earlier that τ → τ∞ andthe �elds lI all beome equal. Then Λc → vc where ev

c is given in equation(3.95), and the three dimensional sale fators evolve as in the standard FRWase, namely eλ
8
= eλ

9
= eλ

10 ∼ t
2

3(2−u) as given in equations (3.89) and (3.90).It thus follows that the e�etive Newton's onstant G4 varies with time in theearly universe and, in the ase of 22′55′ on�guration, approahes a onstant value
= e−vc G11

V7
as the four dimensional universe expands to large size. The preisetime dependene of G4 will follow from expliit solutions to equations (3.69) and(3.72). The onsequenes of a suh a time dependent G4 are learly interesting,and are likely to be important too. But their study is beyond the sope of thepresent thesis.However, we like to point out here a harateristi feature of the time de-pendene of G4 whih arises in the ase of 22′55′ on�guration. Consider thebehaviour of the di�erenes lI − lJ in the limit τ → τ∞ whih, in our ase, vanishto the leading order. These quantities have been analysed in setion 3.5.3 and,for the example of the GIJ given in equation (3.62), they are given by equations(3.66) and (3.67) to the non trivial leading order. The ase of 22′55′ on�gurationorresponds to N = 4 , a = 2u2 , and b = 1 . Noting that sI − sJ = lI − lJ andthat ∆ < 0 in our ase, equation (3.67) now gives

(lI − lJ) ∼ (τ∞ − τ)
1
2
(1 ± i

√
5
3
) (3.106)76



Chapter 3. Evolution of Early Universeto the leading order. Clearly, Λc(τ) given in equation (3.105) will also have thesame form as above to the non trivial leading order. Thus, taking the real partand writing in terms of t using equation (3.88), we have
Λc = vc +

b

tα
Sin(ω ln t+ φ) (3.107)to the non trivial leading order in the limit t → ∞ where b and φ are onstants,

α = u
2(2−u)

, and ω =
√

5
3

u
2(2−u)

. Correspondingly, the time varying Newton'sonstant is given by
G4 ∝ e−Λc

= e−vc (1− b

tα
Sin(ω ln t+ φ) ) (3.108)to the leading order in the limit t→∞ . Note that the onstants b and φ dependon the details of mathing. The onstants α and ω arise as real and imaginaryparts of an exponent on time variable, see equation (3.106). They do not depend onthe initial values (lI0, KI , Li) and thus are independent of the details of evolution,but depend only on the on�guration parameters N and u .The amplitude of time variation of G4 is ditated by α , and it vanishes in thelimit t → ∞ . Hene, the time variation of G4 in equation (3.108) is unlikely toontradit any late time observations. The time variation of G4 has log periodiosillations also: G4 has an osillatory behaviour where the nth and (n + 1)thnodes our at times tn and tn+1 whih are related by ln tn+1 = π

ω
+ ln tn , i.e.by tn+1 = e

π
ω tn . The harateristi signatures and observational onsequenes ofsuh log periodi variations of G4 are not lear to us.Log periodi behaviour ours in many physial systems with `disrete self sim-ilarity' or `disrete sale symmetry': for example, in quantum mehanial systemswith strongly attrative 1

r2
potentials near zero energy [48℄; in Choptuik sal-ing and brane � blak hole merger transitions [49℄; and in a variety of dynamialsystems [50℄. Algebraially, the log periodiity arises when an exponent on an in-dependent variable beomes omplex for ertain values of system parameters. Therelevant equations and solutions an often be ast in a form given in equations(3.66) and (3.67). But we are not aware of a physial reason whih explains theubiquity of the log periodiity.To our knowledge, this is the �rst time a log periodi behaviour appears in a77



Chapter 3. Evolution of Early Universeosmologial ontext. One expets suh a behaviour to leave some novel imprint inthe universe. But it is not lear to us whih e�ets to look for, or whih observablesare sensitive to the log periodi variations of G4 .3.12 Numerial ResultsWe are unable to solve expliitly the equations (3.69) � (3.72) desribing the earlyuniverse evolution. Hene, we have analysed these equations numerially. In thissetion, we brie�y desribe our proedure and present a few illustrative results. Wehave analysed both the u = 2
3

and u = 1 ases whih would orrespond to fourdimensional universe dominated by radiation and pressureless dust respetively.The results are qualitatively the same and, hene, we take u = 2
3
in the following.Note that ω in equation (3.108) is then determined and, for u = 2
3
, the nth and

(n + 1)th nodes in the log periodi osillations our at times tn and tn+1 relatedby ln( tn+1

tn
) = 4π

√

3
5
≃ 9.734 .We proeed as follows. We start at an initial time τ = 0 and hoose a set ofinitial values lI0 = ln ρI0 . For eah set of lI0 , we further hoose numerous arbitrarysets of (KI , Li) suh that KI > 0 , E = 1 , and equations (3.73) and (3.78)are satis�ed. 13 For eah set of initial values (lI0, K

I , Li) , we then numeriallyanalyse the evolution for τ > 0 and obtain the value of τ∞ ; the evolution of lI ,
(λ1, · · · , λ10), and t ; the stabilised values (v1, · · · , v7) ; and the resulting valuesfor (gs, M11

M4
, Ms

M4
) . For a few sets of initial values, we have analysed the evolutionfor τ < 0 also.We �nd that the numerial results we have obtained on�rm the asymptotifeatures desribed in this thesis:(1) eλi and lI all vanish in the limit τ → −∞ . In this limit, the evolution ofthe sale fators eλi is of Kasner type.(2) lI and the physial time t all diverge in the limit τ → τ∞ where τ∞ is�nite. In this limit, the sale fators (eλ8

, eλ
9
, eλ

10
) evolve as in the standard FRWase and (eλ

1
, · · · , eλ7

) reah onstant values.13 There are two speial hoies for the set of KI . One is where K1 = · · · = K4 and anotheris the one whih maximises the approximation τa given in equation (3.98). The later set maybe determined by the algorithm given in Appendix E. 78



Chapter 3. Evolution of Early Universe(3) τa given in equation (3.98) provides a good approximation to τ∞ when
el

I
0 ≪ 1 for all I .(4) Any values for the ratios M11

M4
and Ms

M4
an be obtained, but a orresponding�ne tuning of ρI0 = el

I
0 is neessary.(5) The log periodi osillations of lI − lJ , equivalently of (λ1, · · · , λ7) , analso be seen in the limit τ → τ∞ . They an be mathed to solutions of the typegiven in equation (3.106).To illustrate the values of τ∞ and the ratios (M11

M4
, Ms

M4
) one obtains, and to givean idea of their dependene on the initial values lI0 , we tabulate these quantities inTable 3.7 for a few sets of initial values (lI0, KI , Li) . We have also tabulated thevalues of τa as given by equation (3.98). The value of gs follows from gs = ( Ms

M11
)3and, hene, is not tabulated.
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Chapter 3. Evolution of Early Universe
− (l10, l

2
0, l

3
0, l

4
0) τa τ∞

M11

M4

Ms

M4(1) (2, 5, 8, 8) 1.88 3.21 5.77 ∗ 10−2 2.86 ∗ 10−2(2) (5, 4, 6, 9) 2.96 4.16 4.56 ∗ 10−2 1.93 ∗ 10−2(3) (15, 12, 10, 16) 4.88 6.61 5.95 ∗ 10−2 1.96 ∗ 10−2(4) (25, 26, 27, 28) 22.00 22.59 1.99 ∗ 10−7 7.30 ∗ 10−10(5) (41, 30, 50, 43) 25.80 28.30 1.87 ∗ 10−10 2.92 ∗ 10−11(6) (44.5, 34, 49, 49.5) 34.82 36.20 2.59 ∗ 10−14 3.80 ∗ 10−15Table 3.7: The initial values − (l10, l
2
0, l

3
0, l

4
0) and the resulting values of τa , τ∞ ,

M11

M4
, and Ms

M4
. The values in the last four olumns have been rounded o� to twodeimal plaes.In Table 3.8, the orresponding initial values (KI , Li), i = 1, 2, 6, 7, 8, 9, aretabulated up to overall positive onstants. The remaining Lis are given by equa-tions (3.78) and the overall positive onstants are determined by E = 1 andequation (3.73). All the sets of initial values (lI0, K

I , Li) are hosen arbitrarilywith no partiular pattern and are presented here to give an idea of the typialresults.
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Chapter 3. Evolution of Early Universe
(K1, K2, K3, K4) ∝ (L1, L2, L6, L7, L8, L9) ∝(1) (4.65, 9.14, 4.57, 6.87) (0.60, 0.62, 0.76, 0.72,−0.94,−0.26)(2) (8.86, 8.26, 6.01, 6.62) −(0.08,−0.93, 0.08,−0.72, 0.54, 0.63)(3) (1.61, 2.65, 0.69, 2.1) −(0.2,−0.68,−0.14, 0.3, 0.08, 0.19)(4) (1.03, 1.18, 1.17, 1.27) (0.08, 0.58, 0.27, 0.27,−0.66,−0.66)(5) (5.24, 4.83, 4.30, 4.96) (0.74, 0.02, 0.24,−0.22,−0.61,−0.75)(6) (33.79, 24.23, 35.4, 32.29) (11.72, 9.31, 4.59,−6.46,−21.02,−21.02)Table 3.8: The initial values of (KI , Li) for the data shown in Table 3.7, tabu-lated here up to overall positive onstants. These onstants and the remaining Lisare to be �xed as explained in the text.We �nd, by analysing numerous sets of initial values, that hanging the valuesof (KI , Li) for a given set of lI0 hanges the values of M11

M4
and Ms

M4
only up toabout four orders of magnitude. Any bigger hange requires hanging el

I
0 to asimilar order, on�rming that any values for M11

M4
and Ms

M4
an be obtained butonly by �ne tuning ρI0 = el

I
0 .We illustrate the evolution of the universe for the data set (3) given in Tables3.7 and 3.8 where many features an be seen learly. The evolution with respetto τ of lI is shown in Figures 3.1, 3.2 a, and 3.2 b. For negative values of τ not81



Chapter 3. Evolution of Early Universe
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Figure 3.1: The plots of lI with respet to τ . The lines ontinue with no furtherrossings for negative values of τ not shown in the �gure. All lI diverge at
τ∞ ≃ 6.612 . All �gures in this thesis are for the data set (3) given in Tables 3.7and 3.8.shown in Figure 3.1, all lI evolve along straight lines with no further rossings andtheir evolution is of Kasner type. Also, all lI diverge at a �nite value τ∞ ≃ 6.612of τ . The magni�ed plots in Figures 3.2 a and 3.2 b for τ > 6.40 and for
τ > 6.55 respetively show the ontinually riss-rossing evolution of lI whih,near τ∞ , represent the log periodi osillations and are well desribed by equation(3.106).The evolution with respet to ln t of (λ1, · · · , λ7) is shown in Figure 3.3.It an be seen that (λ1, · · · , λ7) , and hene the sale fators (eλ1

, · · · , eλ7
) of thebrane diretions, all stabilise to onstant values as t→∞ .
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(b)Figure 3.2: (a), (b) The magni�ed plots of lI with respet to τ for τ > 6.40and for τ > 6.55 showing the ontinually riss-rossing evolution of lI . Near
τ∞ ≃ 6.612 , these rossings are well desribed by equation (3.106).
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Figure 3.3: The plots of (λ1, · · · , λ7) with respet to ln t . The lines, from top tobottom at the right most end, orrespond to (λ2, λ3, λ5, λ6, λ4, λ7, λ1) . (λ1, · · · , λ7)all stabilise to onstant values as t→∞ . 83



Chapter 3. Evolution of Early UniverseThe evolution with respet to ln t of (λ8, λ9, λ10) and Λc =
∑7

i=1 λ
i is shown inFigure 3.4. Note that the seven dimensional volume of the brane diretions ∝ eΛ

cand that it stabilises to a onstant value ev
c as t → ∞ . We have also veri�edthat the evolution of (λ8, λ9, λ10) as t→∞ is same as that of the orrespondingones in a four dimensional radiation dominated FRW universe.
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Figure 3.4: The plots of (λ8, λ9, λ10,Λc) with respet to ln t . The seven di-mensional volume of the brane diretions ∝ eΛ
c . The evolution of (λ8, λ9, λ10) as

t→∞ is same as that of the orresponding ones in a four dimensional radiationdominated FRW universe.The log periodi osillations of Λc are illustrated in Figures 3.5 a and 3.5 bby magnifying the plots of (Λc − vc) with respet to ln t for ln t > 20 and for
ln t > 30 . The internode separations an be seen in these �gures, and they maththe value ≃ 9.734 obtained in equation (3.107) from the asymptoti analysis.
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(b)Figure 3.5: (a), (b) The magni�ed plots of (Λc − vc) with respet to ln t for
ln t > 20 and for ln t > 30 showing log periodi osillations and the internodeseparation whih is ≃ 9.734.In all the ases we have analysed, the evolutions of (lI , λi) are qualitativelysimilar to the ones shown in the �gures above. The details, suh as the rise and fallof λi in the initial times or the value of τ∞ or the stabilised values of the branediretions, depend on the initial values but the asymptoti features desribed inthe beginning of this setion are all the same. Hene, we have presented the plotsfor one illustrative set of initial values only.3.13 Summary and ConlusionsWe summarise the main results of this thesis. We assume that the early universe inM theory is homogeneous, anisotropi, and is dominated by N = 4 mutually BPS
22′55′ interseting brane on�gurations whih are assumed to be the most entropiones. Also, the ten dimensional spae is assumed to be toroidal. We furtherassumed that the brane antibrane annihilation e�ets are negligible during theevolution of the universe at least until the brane diretions are stabilised resultingin an e�etive 3 + 1 dimensional universe.We then present a thorough analysis of the evolution of suh an universe. Weobtain general relations among the omponents of the energy momentum tensor85



Chapter 3. Evolution of Early Universe
TAB using U duality symmetries of M theory and show that these relations aloneimply, under a tehnial assumption, that the N = 4 mutually BPS 22′55′ inter-seting brane on�gurations with idential numbers of branes and antibranes willasymptotially lead to an e�etive (3 + 1) dimensional expanding universe.To obtain further details of the evolution, we make further assumptions about
TAB . We then analyse the evolution equations in D dimensions in general, and thenspeialise to the eleven dimensional ase of interest here. Sine expliit solutionsare not available, we apply the general analysis and desribe the qualitative featuresof the evolution of the N = 4 brane on�guration : In the asymptoti limit, threespatial diretions expand as in the standard FRW universe and the remainingseven spatial diretions reah onstant, stabilised values. These values depend onthe initial onditions and an be obtained numerially. Also, any stabilised valuesmay be obtained but it requires a �ne tuning of the initial brane densities.We also present a physial desription of the mehanism of stabilisation of theseven brane diretions. The stabilisation is due, in essene, to the relations amongthe omponents of TAB whih follow from U duality symmetries, and to eah ofthe brane diretions in the N = 4 on�guration being wrapped by, and beingtransverse to, just the right number and kind of branes. This mehanism is verydi�erent from the ones proposed in string theory or in brane gas models.In the asymptoti limit, from the perspetive of four dimensional spaetime,we obtain an e�etive four dimensional Newton's onstant G4 whih is now timevarying. Its preise time dependene will follow from expliit solutions of the elevendimensional evolution equations. We �nd that, in the ase of N = 4 brane on-�guration, G4 has harateristi log periodi osillations. The osillation `period'depends only on the on�guration parameters.Using numerial analysis, we have on�rmed the qualitative features mentionedabove.We now make a few omments on the assumptions made in this thesis. Notethat the assumptions mentioned above in the �rst paragraph of this setion pulla rug over many important dynamial questions that must be answered in a �nalanalysis. Some of these questions, 14 in the ontext of M theory, are:* Starting from the highly energeti and highly interating M theory exita-14Many of the questions listed below have been raised by the referee also. 86



Chapter 3. Evolution of Early Universetions, whih are expeted to desribe the high temperature state of the universe,how does a eleven dimensional spaetime emerge?* What determines the topology of the ten dimensional spae? Here, we as-sumed it to be toroidal. How does the universe evolve if its spatial topology is nottoroidal?* From what stage onwards, is the eleven dimensional `low energy' e�etiveation a good desription of further evolution?* What are the relevant `low energy' on�gurations of M theory? Here, basedon the blak hole studies, we have assumed that the N = 4 mutually BPS 22′55′interseting brane on�gurations are the most entropi ones and, hene, that theyare the dominant on�gurations in the early universe studied here.This raises further questions: Are the 22′55′ , and not some other mutually BPS
N ≥ 4 or some other non BPS, on�gurations really the most entropi and thedominant ones? Even assuming that mutually BPS N = 4 is the answer, are thereother N = 4 on�gurations beside the 22′55′ ones and, if so, how do they a�et theevolution desribed here? What are the e�ets of the sub-dominant on�gurations?In partiular, will the e�ets of other brane on�gurations mentioned above undothe stabilisation of seven diretions presented here?Note that unless these questions are answered and, furthermore, it is shownthat other brane on�gurations mentioned above do not undo the stabilisationpresented here, our assumption that the evolution of the universe is ditated by the
22′55′ on�guration amounts to a �ne tuning: The 22′55′ on�guration assumedhere, where the sets of 2 branes and 5 branes wrap the diretions (x1, · · · , x7)homogeneously everywhere in the mutually transverse three dimensional spae,may not arise generially. Also, the impliitly required absene of other braneon�gurations is not natural in the ontext of early universe. Then the problemof the emergene of an e�etive 3 + 1 dimensional universe, a solution for whihis presented here, gets shifted to answering how the required, �nely tuned, initialonditions may arise naturally from M theory.* What is the time sale of brane antibrane annihilations in the 22′55′ on�g-uration studied here? Is it long enough for the brane diretions to be stabilised asdesribed in this thesis? Here, based on the blak hole studies, we have assumed87



Chapter 3. Evolution of Early Universeit to be long enough.* A related question, but appliable after stabilisation of brane diretions, is thefollowing: If all the branes and antibranes will eventually deay, as seems natural,then what are the deay produts? How an one obtain the known onstituents ofour present universe?Although one of us have presented a priniple in [15℄ that may be of help,the fat is that we do not know even where to begin in answering these questionsquantitatively, muh less know the answers. Nevertheless we present the abovelist of questions, unlikely to be omplete, in order to emphasise the further workrequired to understand how our known 3 + 1 dimensional universe may emergefrom M theory.In the present work, with many attendant assumptions, we onsidered the 22′55′on�gurations and explained a mehanism by whih seven diretions stabilise andan e�etive 3 + 1 dimensional universe results. Clearly, it is important to answerthe questions listed above and thereby determine the relevane of this mehanism.Within the present framework, there are many other issues that may be studiedfurther. We onlude by mentioning a sample of them. We have shown here thata large stabilised seven dimensional volume an be obtained but it requires aorresponding �ne tuning of initial brane densities. This is within the ontext ofour ansatzes for TAB and the equations of state. It will be of interest to prove ordisprove the neessity of suh a �ne tuning in more general ontexts.The N = 4 interseting brane on�guration studied here is the entropiallyfavourable one and, as proposed in [15℄, may be thought of as emerging from thehigh temperature phase of M theory in the early universe. Suh an emergenesuggests that there may be novel solutions to the horizon problem and to theprimordial density �utuations, perhaps similar to those explored reently in theHagedorn phase of string theory by Nayeri et al [64℄ (see also [65℄). Note that thisinvolves answering many of the questions listed above.It may be of interest to study further the onsequenes of time varying Newton'sonstant whih appears here, in partiular possible imprints of its asymptoti logperiodi osillations.In the ase of a lass of blak holes, the brane on�gurations desribe well theirentropy and Hawking radiation. In the present desription of a four dimensional88



Chapter 3. Evolution of Early Universeearly universe in terms ofN = 4 interseting branes, it is not lear whih quantitiesto alulate whih, analogously to entropy or Hawking radiation in the blak holease, may provide further validation. It is important to study this further.
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AT and S duality rules
A.1 T duality rules for bakground �eldsLets take a solution of type II supergravity in string frame

ds2 = gµν dxµdxν (A.1)where µ, ν vary from 0 to 9. For simpliity assume all speial dimensions areompat. NS setor �elds Bµν and dilaton φ are swithed on. Consider a metrisuh that it does not depend on x9. we denote x9 by z. Now µ, ν run over
(0, · · · , 8). Under T duality bakground �elds transform to a new set of �elds.Rule for this transformation is known as Busher's rules. See for more details[4, 5, 2℄ for example. Aording to these set of rules �elds goes like following:

gzz → g′zz =
1

gzz
(A.2)

gµz → g′µz =
Bµz

gzz
(A.3)

gµν → g′µν = gµν −
gµzgνz −BµzBνz

gzz
(A.4)

Bµz → B′
µz =

gµz

gzz
(A.5)

Bµν → B′
µν = Bµν +

2g[µ|z|Bν]z

gzz
(A.6)

φ → φ′ = φ− 1

2
ln(gzz) (A.7)
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Appendix A. T and S duality rulesWhen R-R �elds are swithed on they also transform under T-duality. AsT duality transform IIA theory to IIB theory and vie versa, it transform oddform �elds to even form and even to odd. If we start with a type IIA theory,transformation rules are given by [2℄
Cz → C (A.8)

Cµ , Cµνz → Cµz , Cµν (A.9)
Cµνλ → Cµνλz (A.10)So we see the theory goes to type IIB theory.A.2 S duality rules for bakground �eldsS duality is a duality of type IIB theory. This duality relates strongly oupledtheory to weakly oupled theory. Assuming solution of the form equation (A.1)in string frame rules for transformation of bakground �elds under S duality arefollowing:

gµν → g′µν = e−φ gµν (A.11)
Bµν → B′

µν = Bµν , (BNS
µν ↔ BR

µν)
15 (A.12)

Dµνλσ → D′
µνλσ = Dµνλσ (A.13)

φ → φ′ = −φ (A.14)So we see it transform D1 brane to F1 string and D5 brane to NS5 brane. D3brane remains unhanged and oupling onstant goes to (oupling onstant)−1.

15This notation means S duality transform NS-NS 2-form potential to R-R 2-form, and bak.91



BBPS Intersetion Rules
In general a single p-brane solutions break half of the supersymmetries present inthe theory. If we add another set of q-branes interseting the �rst set, the newsolution breaks another half of the supersymmetries. But it is possible to addseond set in suh a way that, it breaks the same supersymmetries as the �rst setdoes. Then we have a solution whih preserves half of the total supersymmetries.We all, this partiular way of adding more sets of branes, BPS intersetion rules.A ompat form of these rules an be found in [5℄, [See also referene given in [5℄.℄We list a few of these rules hare. We give for both 10-dimensional and 11-dimensional theory.

F1 ‖ NS5, F1 ⊥ Dp (0),
NS5 ⊥ NS5 (1), NS5 ⊥ NS5 (3), NS5 ⊥ Dp (p− 1) (p > 1),

Dp ⊥ Dq (m) : p+ q = 4 + 2m,
W ‖ F1, W ‖ NS5, W ‖ Dp,

KK6 ⊥ Dp (p− 2)Table B.1: BPS intersetions in 10 dimensions.
M2 ⊥M2 (0), M2 ⊥M5 (1), M5 ⊥M5 (1), M2 ⊥ M2 (3),

W ‖M2, W ‖M5,
KK7M ‖M2, KK7M ⊥M2 (0), KK7M ‖M5, KK7M ⊥M5 (1), KK7M ⊥M5 (3)

W ‖ KK, W ⊥ KK7M (2), W ⊥ KK7M (4)Table B.2: BPS intersetions in 11 dimensions. 92



Appendix B. BPS Intersetion RulesThe notation of the above tables is follows:
Xp ‖ Y q means X and Y type branes are onsidered. X brane is p dimensionaland Y brane is q dimensional. ‖ indiates all of the worldvolume diretions of

Xp and Y q are parallel. Xp ⊥ Y q (m) means Xp and Y q branes worldvolumeintersets only in m diretions.
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CTo Show E ≥ 0

Let ~1 = (1, 1, · · · , 1) and ~v = (v1, v2, · · · , vn) be the standard n � omponentvetors with the standard vetor produt. Let θn be the angle between them.Then ~1 ·~1 = n , ~v ·~v =
∑

a v
2
a , (~1 ·~v)2 = (

∑

a va)
2 = n cos2θn

∑

a v
2
a , and we havethe Shwarz inequality in the form

n

n
∑

a=1

v2a − (
n
∑

a=1

va)
2 = n σ2

n ≥ 0 (C.1)where σ2
n = sin2θn

∑n
a=1 v

2
a . The equality is valid, i.e. σn = 0 , if and only if

sin θn = 0 , equivalently v1 = · · · = vn .We now show the following:Let Gij and Gij be given by equation (3.29). If ui and Li satisfy the relations
∑

i uiL
i = 0 and ∑ij G

ijuiuj > 0 then 2E = −
∑

ij GijL
iLj ≥ 0 . E vanishes ifand only if Li all vanish.Proof : It is lear that E vanishes if Li all vanish. Now, let ~1 = (1, 1, · · · , 1) ,

~u = (u1, · · · , uD−1) , and θ be the angle between them. Then (
∑

i ui)
2 =

(D − 1) cos2θ
∑

i u
2
i . Hene, ∑ij G

ijuiuj =
1

D−2
(
∑

i ui)
2 −∑i u

2
i > 0 impliesthat

1− (D − 1) sin2θ > 0 . (C.2)
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Appendix C. To Show E ≥ 0The vetor ~L = (L1, · · · , LD−1) is perpendiular to ~u sine ∑i uiL
i = 0 . Let

~L = ~L⊥ + ~L‖ where ~L⊥ is perpendiular to the plane de�ned by ~1 and ~u , and ~L‖lies in it. Then ∑i(L
i)2 = L2

⊥ +L2
‖ where L2

⊥ = ~L⊥ · ~L⊥ and L2
‖ =

~L‖ · ~L‖ . Sine
~L and ~u are perpendiular and ~L‖ lies in the plane de�ned by ~1 and ~u , it followsthat ~L‖ is perpendiular to ~u, and that the angle between the vetors ~1 and ~L‖ is
π
2
± θ . We then have

2E = −
∑

ij

GijL
iLj =

∑

i

(Li)2 − (
∑

i

Li)2

= L2
⊥ + L2

‖ − (D − 1) L2
‖ sin

2θ ≥ 0where the inequality follows from equation (C.2). The equality holds, and hene Evanishes, only when L2
⊥ = L2

‖ = 0 , i.e. only when Li all vanish. This ompletesthe proof.
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DSigns and non vanishing of (Λτ , lIτ )
Here, we show that the inequality in equation (3.82) implies that none of (Λτ , l

I
τ )may vanish, and that they must all have same sign.Setting xI = lIτ , equation (3.82) beomes X = 12u2 (E +

∑

I e
lI ) > 0 wherethe polynomial X = (x1 + x2 + x3 + x4)

2 − 3(x2
1 + x2

2 + x3
3 + x2

4) . Now, if any ofthe xI vanishes then X ≤ 0 , see the Shwarz inequality given in equation (C.1).Hene, none of the xI may vanish. Rewrite X as
X =

{

(x1 + x2 + x3)
2 − 3(x2

1 + x2
2 + x3

3)
}

− 2x2
4 + 2x4 (x1 + x2 + x3)

=
{

(x1 + x2)
2 − 2(x2

1 + x2
2)
}

+
{

(x3 + x4)
2 − 2(x2

3 + x2
4)
}

−(x2
1 + x2

2 + x3
3 + x2

4) + 2(x1 + x2) (x3 + x4)and note that {· · · } ≤ 0 for eah urly braket, see equation (C.1). Hene, theneessary onditions for X > 0 are
x4 (x1 + x2 + x3) > 0 , (x1 + x2) (x3 + x4) > 0 .Let one of the xI , e.g. x4 , be negative and the other three positive. This violatesthe �rst inequality above and, hene, is not possible. Let two of the xI , e.g. x3and x4 , be negative and the other two positive. This violates the seond inequalityabove and, hene, is not possible. Similarly, three of the xI being negative andone positive is also not possible. Thus, the only possibility is that all xI have samesign. Thus we have that none of the lIτ may vanish, and that they must all havesame sign. 96



Appendix D. Signs and non vanishing of (Λτ , l
I
τ )With lIτ denoted as xI , equation (3.81) for Λτ beomes

6u Λτ = 2x1 + 2x2 + x3 + x4 + 6u L .Note that u > 0 . If L = 0 then it follows that Λτ does not vanish and has thesame sign as xI . Consider now the ase where L 6= 0 . Using equation (C.1) toeliminate∑I x
2
I in the polynomial X , we obtain

X =
1

4
(x1 + x2 + x3 + x4)

2 − 3σ2
4 = 12u2 (E +

∑

I

el
I

) .Using the inequality 2E > 3(L)2 , see equation (3.80), it follows that (x1 + x2 +

x3 + x4)
2 > 72u2(L)2 . Combined with the earlier result on lIτ , this inequalityimplies that (x1+x2+x3+x4+6uL) , and hene Λτ given above, may not vanishand must have the same sign as xI = lIτ , irrespetive of whether L is positive ornegative. This ompletes the proof.
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ESet of KI whih maximises τa
With no loss of generality, let 0 < −l10 ≤ · · · ≤ −l40 . The orresponding set of KIwhih satis�es equation (3.73), with E = 1 , and whih maximises τa = min{τI} ,where τI = − lI0

KI , may be obtained by the following algorithm. The requiredanalysis is straightforward but a little tedious and, hene, is omitted.
• Let K1 = −l10 K . It will turn out that τa = τ1 =

1
K
.

• Choose K2 = −l20 K . Then τ2 = τ1 .
• If −l10 − l20 ≤ −l30 then hoose K3 = K4 = −(l10 + l20) K . Then τ4 ≥ τ3 ≥
τ2 = τ1 .
• If −l10 − l20 > −l30 then hoose K3 = −l30 K . Then τ3 = τ2 = τ1 .
• If −l10 − l20 > −l30 and if −l10 − l20 − l30 ≤ −2l40 then hoose K4 = −1

2
(l10 +

l20 + l30) K . Then τ4 ≥ τ3 = τ2 = τ1 .
• If −l10 − l20 > −l30 and if −l10 − l20 − l30 > −2l40 then hoose K4 = −l40 K .Then τ4 = · · · = τ1 .
• KI are all thus determined in terms of K . Equation (3.73), with E = 1 ,will now determine K .
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