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Abstract

From the combinatorial characterizations of the right, left, and two-sided Kazhdan-Lusztig
cells of the symmetric group, ‘RSK bases’ are constructed for certain quotients by two-
sided ideals of the group ring and the Hecke algebra. Applications to invariant theory, over
various base rings, of the general linear group and representation theory, both ordinary

and modular, of the symmetric group are discussed.
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Chapter 1

INTRODUCTION

The starting point of the work carried out in this thesis is a question in classical invariant
theory. It leads naturally to questions about representations of the symmetric group over
the complex numbers and over fields of positive characteristic, and in turn to the computa-
tion of the determinant of a certain matrix encoding the multiplication of Kazhdan-Lusztig
basis elements of the Hecke algebra, using which one can recover a well-known criterion
for the irreducibility of Specht modules over fields of positive characteristic.

Let n denote a fixed integer and &,, be the symmetric group on n letters. Let k denote
a commutative ring with unity and V a free module of finite rank d over k.

Consider the group of k-linear automorphisms of V', denoted GL(V), acting diagonally
on the space V®" of n-tensors. The symmetric group &, also acts on V®" by permuting

the factors: the action of o € G,, on pure tensors is given by
(V1@ Q)0 = V15 @+ ® Upg,

where io denotes the image of i under the action of o (which we assume to act from
the right). This action commutes with the GL(V)-action and so, the map ¢,, : k&, —
End;V®" defining the action of &,, on V®" has image in Endgy)V®" — the space of
GL(V)-invariant endomorphisms of V®". A classical result in invariant theory (see [ICP76),
Theorems 4.1, 4.2]) states that this map is a surjection onto EndGL(V)V®”. The result
further states that, under a mild condition on k (which holds for example when k is an
infinite field), the kernel is equal to J(n,d) — the two-sided ideal generated by the element
Yd = Zreed+1 sign(7)T where G441 is the subgroup of &,, consisting of the permutations
that fix point-wise the elements d + 2, ..., n; when n < d, J(n,d) is defined to be 0.
Thus, the quotient £&,,/J(n,d) gets identified with the algebra of GL(V)-endomorphisms
of V&,
It is, therefore, of invariant-theoretic interest to obtain a basis for the quotient k£&,,/.J(n, d).

Indeed our first main result provides such a basis (see Theorem EZT]):

Theorem 1.0.1 Let k be an arbitrary commutative ring with unity. With notations as



above, the permutations o of &, such that the sequence lo, ..., no has no decreasing

subsequence of length more than d, form a basis for k&, /J(n,d). a

The proof of the theorem involves the Hecke algebra of the symmetric group and its
Kazhdan-Lusztig C-basis (see §Z2 for definitions). The Hecke algebra of &,, over A, where
A is the Laurent polynomial ring Z[v, v, is a “deformation” of the group ring of &,, over
A. We denote it as H. For a commutative ring k with unity and a an invertible element in k,
we denote by Hj the k-algebra H ® 4 k defined by the unique ring homomorphism A — k
given by v +— a. The Hecke algebra is a deformation of the group algebra of &,, in the sense
that the k-algebra Hy, defined by the map v +— 1, is isomorphic to the group algebra k&,,.

The main technical part of the proof of Theorem [Tl is in describing an A-basis for
an appropriate two-sided ideal in H that specializes, under the map v — 1, to J(n,d) (see
Lemma EEZZ). The key ingredient, in turn, in proving this is the combinatorics associated
to the Kazhdan-Lusztig cells (§222).

If we take the base ring k in the above discussion to be the field C of complex numbers.
Then the ideal J(n, d) as defined above has a representation theoretic realization namely, let
A(n,d) be the unique partition of n with at most d parts that is smallest in the dominance
order (§Z3T); consider the linear representation of &,, on the free vector space CT\(n,a)
generated by tabloids of shape A(n,d) (§82), the ideal J(n, d) is the kernel of the C-algebra
map C&,, — EndcC7), 4 defining this representation.

Replacing the special partition A(n,d) above by an arbitrary partition of n, say A, and
considering the C-algebra map py : CS,, — EndcC7, defining the linear representation
of &, on the space CT, generated by tabloids of shape A, we ask:

Is there a natural set of permutations that form a C-basis for the group ring

CG,, modulo the kernel of the map p)?

This question is addressed by the following theorem (see Theorem EL2ZT]):

Theorem 1.0.2 Permutations of RSK-shape u, as p wvaries over partitions that domi-
nate X\, form a C-basis of CS,, modulo the kernel of p) : C&,, — EndC7,.

The dominance order on partitions is the usual one (§231]). The RSK-shape of a permu-
tation is defined in terms of the RSK-correspondence (§£32)). As follows readily from the
definitions, the shape of a permutation ¢ dominates the partition A(n,d) precisely when
lo, ..., no has no decreasing sub-sequence of length exceeding d. Thus, in the case when
the base ring is the complex field, Theorem [LOT] follows from Theorem [CT2

The observation mentioned in LT plays a key role in proving the above theorem.
The above result holds, as we observe in §£22 even after extending scalars to any field
of characteristic 0 essentially owing to the fact that such a field is flat over Z. Further, by
an example (§LZ3) we illustrate that these results are not true in general over fields of

positive characteristic.



The question raised above can be modified to one of a more intrinsic appeal which, in
turn, can be posed in a more general setting.

Given a partition A of n, consider, instead of the action of &,, on tabloids of shape A,
the Specht module S(é (§82). The Specht modules are irreducible and every irreducible
CS,,-module is isomorphic to Sg for some p b n (835, §8.4).

The irreducibility of S(é implies, by a well-known result of Burnside (see, e.g., [BouZ3,
Chapter 8, §4, No. 3, Corollaire 1|), that the defining C-algebra map C&,, — EndCS(é is
surjective. The dimension of S2 equals the number d()) of standard tableaux of shape A
(§Z3T1 §335). Thus there exist d(\)? elements of CS,, (or even of &, itself) whose images
in EndcS2 form a basis (for EndcS2). We ask:

Is there a natural choice of such elements of C&,,, even of &,,7

More generally, in the setting of the Hecke algebra we consider the right cell modules
(830, denoted R(A) for A F n, as introduced by Kazhdan-Lusztig [KL79]. It is well-
known ([MP05]; see also Proposition BZZ3) that these modules are isomorphic to the Specht
modules of H as defined by Dipper and James (§82)). However, in this thesis, we choose to
work with the cell modules because of their combinatorial appeal which is of significance to
us. When £k is a field for which the algebra Hj (§22) is semisimple the right cell modules
R(N)k := R(A\) ® k, A+ n, are irreducible and as A varies over all partitions of n they give

a complete set of irreducibles (Theorem B3I8). Then arguing as earlier we ask:
Is there a natural choice of elements of H, which form a basis for Endy (R(\)x)?

Our answer (see Proposition BIT)):

Theorem 1.0.3 Assume Hy, is semisimple. For A a partition of n, the images in EndgR(\)g
of the Kazhdan-Lusztig basis elements C,,, RSK-shape(x) = A form a basis (for EndgR(\)g ).

The RSK-shape of a permutation is defined in terms of the RSK-correspondence (§237).
The right cell module R(A)c in the sense of Kazhdan-Lusztig (§830), being equivalent (see
Proposition BZ3 [GMSS|; [Nar89]) to the Specht module S? (§82), the above theorem
also answers the former question (about EndcS).

Theorem shows in particular that the Kazhdan-Lusztig C-basis behaves well
with respect to irreducible representations. The more obvious candidate for a basis of
Endg(R(M)g), namely that consisting of T,,, RSK-shape(w)= A (the analogues of group
elements corresponding to permutations of RSK-shape A, in the group algebra of &,,, see
Definition 2223]), does not work. This is seen by an example in §o.T11

The proof of the above theorem depends on the Wedderburn structure theory. When
‘H}, is not semisimple the argument, of course, falls apart. So we deal with this case by a
head-on approach which involves the construction of a matrix, denoted as G(\) (§5ZT]).
From the very definition of G(\), it will be obvious that if the determinant of G(X\) does
not vanish, then the C,’s as in Theorem will continue to be a basis for Endy(R(\)g).



Using this idea we explore conditions under which the above theorem (Theorem [[IL3)) can
be extended to the non-semisimple case. One such condition is described below. Note that
the irreducibility of R(\)y is essential for the statement as in Theorem to be true.

Let k be a field and let A — k be the unique homomorphism given by v — a where a € k
is an invertible element. Let e be the smallest positive integer such that 1+a+---4a®"1 =0
in k; if no such integer exists then e = oco. When a = 1, the value of e is just the
characteristic of the field.

A partition A is called e-regular if the number of parts of A of any given length, is less

than e. Then with the above notation, we have

Theorem 1.0.4 (see Theorem BI3) For an e-reqular partition A such that R(\)y is irre-
ducible, the Kazhdan-Lusztig basis elements C,, w of RSK-shape A\, thought of as operators
on R(\)g form a basis for EndiR(\).

When Hj, is not semisimple the cell module R(\)y is not necessarily irreducible. An
issue of wide interest in the modular representation theory of &,, (and of H) is to indicate
for a given field k the partitions A - n for which R(\)y is irreducible as a k(‘-}n—moduleﬂ
(resp. as an Hi-module). There is much literature available addressing this issue (see for
example, [Mat99, Chapter 5, §4|, [Fay05]). We take an approach, which is new to the best
of our knowledge, by pursuing the ideas alluded to earlier, via the matrix G(\) (§5ZT]).
The matrix G(A) encodes the action of the C-basis elements of RSK-shape A on the cell

module R(\) in a “nice” way and we notice that

Theorem 1.0.5 (see Theorem B3 If the determinant det G(\)|y—, does not vanish in k,
then R(\)y is irreducible.

It would be worthwhile, therefore to study the det G(A) more closely. Towards this, we
give a combinatorial formula for the determinant of the matrix G(A). Though this formula
is computed over the ring A = Z[v,v~!], for the sake of simplicity we state it here only in

the special case when v = 1. In this case we have:

Theorem 1.0.6 (HOOK FORMULA) For a partition A of n,

d(B1,--sBa+hpes - Bb—hpes--0r)
> (1.1)

hac

det G(N) o1 = [ | (E

with notation as above, where hgyy is the hook length of the node (a,b) in a tableaw of shape
A (the hook length of a node is the total number of nodes below it and to the right of it,
including itself), 51 > ... > B, is the B-sequence of \ (see 6.4 for definition), and the

product runs over {(a,b,c)|(a,c), (b,c) are nodes such that a < b}.

'Note that R(\); := R()\) ® k with scalars extended via the homomorphism given by v +— 1 is a
Hi =2 kG- module (see §22).



The formula is proved by showing that the matrix G(\) is related to the matrix of a well-
studied bilinear form on the Specht module S* (of H) and then using known formulas for
its determinant. All these calculations are carried out in the general setting of the Hecke
algebra over the ring A (Theorem B27T).

Using the hook formula, we obtain a combinatorial criterion for the irreducibility of
S,i‘. We prove the following: Let p denote the smallest positive integer such that p = 0
in k; if no such integer exists, then p = co. For an integer h, define v,(h) as the largest
power of p (possibly 0) that divides h in case p is positive, and as 0 otherwise. The integer

e is as defined prior to Theorem [LL4l For an integer h, define

0 ife=o0oreth
Vep(h) := .
1+ vy(h/e) otherwise

The (e, p)-power diagram of X is the filling up of the nodes of a tableau of shape A
(§23T0) by the v ,,’s of the respective hook lengths. The Hook formula and Theorem B3

put together provides us with a new proof of

Theorem 1.0.7 ([Tam78|, [IM97|) If the (e, p)-power diagram of X has either no column

or no row containing different numbers, then S,i‘ 15 irreducible.

For the specialization v +— 1, the above criterion turns out to be exactly the criterion
conjectured by Carter which gives a sufficiency condition on A for irreducibility of S,i‘ to
hold. Thus, by means of our approach we are led to a new proof of the conjecture which
was proved by G. D. James in 1978 [JamT7§].

Organization of the thesis

The thesis consists of five chapters with a specific aspect being covered in each. The
proofs of the main results, mentioned above, are covered in Chapters 4, 5 and 6. Chapters 2
and 3 are intended to be introductory and none of the results mentioned there are original.

The first part of Chapter 2 introduces the concept of Hecke algebra and all the as-
sociated preliminaries like the K-L basis, cells etc. The second part introduces all the
combinatorial objects that play an important role in the thesis. In particular, the RSK
correspondence is described there (§232)). Many combinatorial results that are fundamen-
tal to the arguments used in the thesis are also listed and proved there (§37)). In §Z33
the combinatorial characterizations of left, right and two-sided cells and pre-orders, as in
[GecO6], are stated without proof. These combinatorial characterizations play a key role
in most of the arguments in the thesis.

The main goal of Chapter 3 is to introduce all the representation theoretic objects
that are of importance in the thesis. The Specht modules, cell modules, permutation
modules etc are briefly introduced in §83l Also stated and proved there are many basic
results regarding them, which are invoked in later chapters. In particular, proved in this

chapter is the isomorphism of the Specht module corresponding to a shape and the cell



module corresponding to the same shape following the exposition as in [MP05]| (§84). This
result enables us to use the combinatorics of cells to handle questions involving the Specht
modules (see for example, §L2T]).

The next three chapters present the main results of the thesis along with detailed
proofs.

In Chapter 4, we present the proof of Theorem [LILT mentioned above. Apart from
a description of a basis of multilinear invariants for (EndV)*™ that we obtain almost

immediately by rephrasing Theorem [LILT] it also enables us to:

e obtain a k-basis, closed under multiplication, for the subring of GL(V)-invariants of
the tensor algebra of V' (§L42).

e when £k is a field of characteristic 0, to limit the permutations in the well-known
description ([Pra76l, [Raz74]) of a spanning set for polynomial GL(V)-invariants
of several matrices (§EZ3J); or, more generally, to limit the permutations in the de-
scription in [DKS03] of a spanning set by means of ‘picture invariants’ for polynomial
GL(V)-invariants of several tensors (§LZA3]).

These are discussed in detail through §41

Also stated and proved in Chapter 4 are Theorem and the analogous statement
obtained by changing scalars to an arbitrary field of characteristic 0. An example given
there illustrates the failure of the same to hold over fields of positive characteristic. The
following formulation of the H-analogue of Theorem with scalars in A, is also proved

in the same chapter:

Theorem 1.0.8 (see Theorem EEZTN) The elements T,,, RSK-shape(w) > A, form a basis
for H modulo the kernel of the map H — EndyM? defining the permutation module M*
as a right H-module.

Here M* (§337)) denotes the H-analogue of the tabloid representation corresponding to
A n.

Chapter 5 focuses primarily on the cell modules (§830). Presented there is the RSK
bases for the endomorphism ring of the cell module, EndgR(\); (where k denotes a field),
for the case when Hj is semisimple and when it is not. The matrix G()) is also defined
and introduced in this chapter as a means of proving Theorem [T (stated above). In
the course of the chapter a proof of Theorem is also given. It is seen through Sec-
tions .22 B 23 that the matrix encoding the action of the C-basis elements corresponding
to permutations of shape A is related to the matrix of a bilinear form on R(X) (§5Z3).
This turns out to be the principal step in arriving at Theorems [LIL4] above.

Finally, in Chapter 6, we prove the Hook Formula (£2) for the determinant of G()\) in
the general setting of the Hecke algebra H. As indicated earlier, we arrive at this formula
by using the fact that the bilinear form on R(\) (mentioned above) is just the pull-back via
the MP-isomorphism (§84)) of the Dipper-James bilinear form (§82) on the Specht module



S*. Following [D.J87] we then compute a precise formula for the determinant of the Dipper-
James bilinear form on S*. This formula can be further simplified using a combinatorial
result recalled from [IM97]. Finally we deduce the formula (E2) for det G(\) by using the
explicit relation between det G(\) and the determinant of the Dipper-James bilinear form
on S*. In the same chapter, we use this Hook Formula to arrive at a proof of Theorem [CT.7]
and as noted earlier, thus also arriving at a new proof for Carter’s conjecture [Jam78] about
the irreducibility of Sl;\.

Postscript

After the initial submission of this thesis, it was learnt from John Graham and Andrew
Mathas (at an ICM-2010 satellite conference held in Bangalore) that many of the results
in Chapter 5 can be deduced from the fact that the Kazhdan - Lusztig basis of the Hecke
algebra of the symmetric group is cellular in the sense of [GL96]. In particular, the de-
scription of the matrix G(A) given in §. 23 follows from the cellularity property of the
Kazhdan-Lusztig basis - a fact that we reprove using results of Geck [GecO6].



Chapter 2

KAZHDAN-LUSZTIG CELLS AND THEIR
COMBINATORICS

In this chapter we begin with some background material on Coxeter groups and Hecke
algebras associated to them. We soon specialize to &,, and after introducing the basic
combinatorial objects there, we describe the RSK-correspondence in §32 In 33 we
recall certain combinatorial results which play a significant role in the rest of the chapters
and finally in §2.3.4 we introduce some notations and discuss a few preliminary results that
will be used repeatedly later.

All the results mentioned in §§ZIHZZ can be found in [Lus03] or [Hum90]. In §3] we
gather together various preliminaries which deal specifically with the combinatorial aspects
of &, that play a key role in the thesis. The concepts discussed in §§ZITHZI 2 are covered
in greater detail in [Sag0I]]. The last sub-section is fairly self-contained, while the results
mentioned in 33 forms the main theme of [Gec06] and we do not undertake the task of
going through their proofs here.

2.1 Coxeter System (W, S)

Let W denote a group (written multiplicatively), with identity element denoted as 1, and
S be a set of generators for W. Then the pair (W, S) is a Coxzeter system if there exists a

matrix (m(s,s’))(s,sesxs With entries in NU {oo} satisfying the conditions:
i) m(s,s) =1 for all s € S and
ii) m(s,s’) =m(s',s) > 2 for all s # 5

and such that the natural map from the free group generated by the set S to W has kernel

the normal subgroup generated precisely by the elements

(ss")™") where 5,5 € S and m(s,s') < cc.



We assume familiarity with the basic notions regarding Coxeter systems. However, we
briefly recall here the notions that we will use. (See [Bou(i2, Chapter 4| for more details).

Each w € W can be written as a product of a finite sequence of elements of S. For a
given w, the smallest possible integer » > 0 such that w is a product of a sequence of r
elements from S is called the length of w, denoted as [(w). Thus, I(1) = 0 and I(s) =1
for all s € S (it is easily seen that 1 ¢ S). Let w = s1---s, for some s; (not necessarily
distinct) in S. Then s;---s, is said to be a reduced expression for w if r = l[(w). A
subezpression of a given reduced expression si---s, is a product of the form s;, ---s;
where 1 < iy < -+ < 4 < r. An element v € W is a prefiz of w € W if there is a
reduced expression sp - - - s, for w such that the subexpression s - - - s; for some j < r gives
a reduced expression for u.

Bruhat order: For w, w' € W, we write w < w’ if w can be obtained as a subexpres-
sion of some reduced expression for w’. This defines a partial ordering on W called the
Bruhat order. We sometimes also write w’ > w to mean w < w'. By w < w’ or w’ > w,
we mean w < w’ and w # w'.

Deletion condition: ([Hum90l, §5.8]) Suppose w = s1---s;, (s; € S), with I(w) < r.
Then there exist indices ¢ < j for which w = s1---§;---;---s;, where s means that s

is omitted.

Remark 2.1.1

(a) For a given Coxeter system (W, S) where W is finite, there is a unique element in W
which is of maximal length. (See [Lus(3, §9.8], for example).

(b) For J C S, let W; denote the subgroup of W generated by J. Then (Wy,J) is a
Coxeter system in its own right. Further, if we denote the length function on W as

Iy then lj(w) = l(w) for all w € Wj. The subgroup W is called a parabolic subgroup
of W (with respect to S). (See [Hum90l, §5.5], for example).

2.2 Hecke Algebra corresponding to (W, S)

Let R be a commutative ring with unity. We begin with the definition of a generic Iwahori-
Hecke algebra associated to a Coxeter system. By the Hecke algebra, we shall mean a

particular case of a generic Iwahori-Hecke algebra.

Definition 2.2.1 Let (W, S) be a Coxeter system. Let as,bs € R (s € S) be such that
as = a; and by = b; whenever s, t are conjugate under W. Then the generic Iwahori-
Hecke algebra associated with (1, S) over R with parameters {as, bs | s € S} is the free
R-module £ with basis {T, | x € W} and multiplication given by

T, — { Tsw if I(sw) =1l(w) +1 (2.1)

asTy + bsTgy if l(sw) = l(w) — 1



for s € S, w € W, making it an associative algebra with 77 as identity.

That an algebra structure on £ as in the above definition, exists and that it is unique

is guaranteed by the following result:

Theorem 2.2.2 ([Hum90|, p.146]) Let (W, S) be a Cozeter system. Given as,bs € R (s €
S) satisfying the conditions as in the above definition, there exists a unique structure of an
associative algebra on the free R-module & with basis {T,, | © € W} such that Th acts as
identity and the conditions as in (Z11) are satisfied. 0

The group algebra of W over R is an example of a generic Iwahori-Hecke algebra, where
the parameters are chosen to be ag =0, by =1 for all s € S

To obtain the Hecke algebra associated to (W, S), we take in Definition 222l the ring R
to be Z[v,v~1], the ring of Laurent polynomials with coefficients in Z, and the parameters
tobeas=v—v"!, by=1forall s€S.
Written explicitly, we have

Definition 2.2.3 The Hecke algebra associated to (W, S), denoted as H, is a free Z[v, v~

module with basis T,,, w € W, and multiplication being given by

T, — { Tow if I(sw) =1l(w)+1 (2.9)

(v —v VT + Ty if l(sw) = 1(w) — 1
forse S, weW.

The Hecke algebra associated with the Coxeter system (W, .5) is a “deformation” of the
group algebra of W over Z: taking v = 1 in Definition we recover the group algebra
of W over Z. (See also Specializations of the Hecke algebra below).

In the next lemma we summarize a few basic facts about H.

Lemma 2.2.4 1. Letsy--- sy be a reduced expression forw € W. ThenT,, =Ts, --- T

2. Let s€ S and w € W. Then,
T T — Tws if {(ws) =l(w) +1 (2.3)
YTl (0= o YTy + T if Hws) = H(w) — 1 '

3. For w € W, the element T, is invertible in H with inverse T;' = Tszl e Ts_11 where

s1 -+ 8 is a reduced expression for w. For s € S, the element T; * = Ts— (v—v~HTy.

4. In the caseEI when W = &,, and S is the set of simple transpositions (§2.3) we have
forax, y e W, let T,T, =3 cw "wlw, Tw € Zv,v™Y. Then ryy = 1; and ry # 0

only if vy < w. In particular, r # 0 iff © =y~ L.

Tt can be verified, in the light of Remark EZTI(b), that if W is a parabolic subgroup of &,, then the
statement still holds. In fact the statement can be proved more generally for any Coxeter system (see for

example, [Maf09, Exercise 1.15])
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ProoF: (|D.J86, Lemma 2.1]; note the Remark on notation below)

1. This is elementary using the relations in (Z32).

2. This is proved easily by inducting on I(w). When I(w) < 1 the relations in 3
are just those in (22). Also, by (1) we know that if w has a reduced expression of
the form s;---s,, then Ty, ...s, = Ts, -+ Ts,. So, if ws > w for s € S, we have the
required relation by (1). In the case when ws < w, since l(ws) < l(w), we apply
induction hypothesis to ws to get T,sTs = Tp,. Now multiplying both sides of this
equation by Ty and using the expression for 722, we obtain the required relation even

in this case.

3. By ), we have T? = (v — v~ !)T,s + T} which immediately gives the second part of
(3). The first part now follows immediately from (1).

4. A routine inductive argument on [(x) along with relations in (Z2) and (2) above

proves (4). (The description of the set S as the simple transpositions in &,, is used;

See also [Maf99, §1.16])

d

Henceforth, by A we mean the ring Z[v,v"!] and by H the Hecke algebra
associated to (17, S) as in Definition

Notation 2.2.5 We repeatedly use the following short-hand notation:
® ¢, = (_1)[(111)
o Uy = plw)

Remark on notation: The notation that we use is as in [Lus03] (also in [Gec06]), while in

[D.186], [KL79)], [MP05] (also [Hum90], [Shi86]) the notation used is slightly different. To
pass from our notation to that of [J86], [KL79] or [MP0O5], we need to replace v by ¢!/
and T,, by ¢~‘)/2T,, .

Specializations of the Hecke algebra

Let k be a commutative ring with unity and a an invertible element in k. There is a unique
ring homomorphism A — k defined by v — a. We denote by Hj the k-algebra H ®4 k
obtained by extending the scalars to k via this homomorphism. We have a natural A-
algebra homomorphism H — Hj given by h — h ® 1. By abuse of notation, we continue
to use the same symbols for the images in Hj of the elements of H. If M is a (right)
H-module, M ® 4 k is naturally a (right) Hg-module.

An important special case is when we take a to be the unit element 1 of k. We then
have a natural identification of Hj with the group ring kW, under which T;, maps to the
element w in kW.

Convention: When the value of a is not specified, by the “specialization of H to k”, we

mean the algebra Hj defined via the map v — 1.
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An involution on H

We introduce an involution (order 2 ring automorphism) on H defined as follows:

> awTw =) @, (2.4)

where a — @ on A is defined by v +— T := v~! extended Z-linearly to give an involution on

A. This is called the bar involution.

2.2.1 Kazhdan - Lusztig bases of H

Apart from the basis T,,, w € W, there is another A-basis of H which is of interest to us.

It is determined uniquely by the conditions:

Cp=C, and C,=T, modHso (1)

where Huo := Y, cw A>0Tw, Aso := vZ[v]. This is called the C-basis of H.

The existence and uniqueness of a basis as above follows from:

Theorem 2.2.6 [KL.79, Theorem 1.1] For each w € W there ezists a unique element
Cw € 'H having the following properties:

1. Cp = Cy,
2. Cuw = yew, y<w Ey€uwPywly where py ., € v Z[wY for y < w and py, = 1.

The existence of these elements is proved by constructing C,, by induction on the length
of w. Set C; :=T). For w = su such that [(w) = [(u) + 1 define

Cywi=CsCy— Y v(zu)C, (2.5)

zisz<z<u
where v(z,u) is the coefficient of v™! in Pz and Cg := T —vT7. One then verifies that the
properties (1) and (2) hold. That these elements form a basis follows then from property (2)

above.

Remark 2.2.7 As is verified easily, the involutive anti-automorphism of the algebra H
given by h +— h*, where (> awTy)* := > ayT,-1, commutes with the bar involution on
‘H. Therefore,

i) it follows from the defining conditions (f) that C = C,-1.

ii) applying « to the relation Cy = T+, cw y<w Ey€wPywly (Theorem ZZTY2) above),
we get Cy—1 = Ty-1 + Dy cw, y<uw Ey€uwPywly—1 (using (i)). Thus by the uniqueness
condition in Theorem we note that py ., = py-1 -1

12



Using the above remark it can be deduced, by applying * to (Z3), that for w = wus such
that {(w) = l(u) + 1 we have

Cw = Cqu - Z M(Z,U)Cz (26)

z:zs<z<u

where p(z,u) :=v(z~Hu™t).

From the above equation we obtain the following basic result.

Lemma 2.2.8 [KL79, § 2.3] Let s € S and ws < w. Then CyTs = —v~1C,.

ProoF: We induct on [(w). If w = s then inserting the expression Cs = Ty — v} in CsTy
and simplifying it using (33, we get C;Ty = —v~'C,. Under induction hypothesis assume
the statement for z such that I(z) < l[(w) and zs < z. Replacing u by ws in (Z8) and

using the expression thus obtained we get

CuTs = Cus(CsTs) = ocrcrs (2, ws)(C.Ts)
Applying the induction hypothesis, we then have

CoTs = —v10uCs+ >
= —vlC,

vz, ws)C,

zs<z<ws

as required. O
The above observation leads us to some useful properties of the polynomials p, ,, which
appear in statement (2) of Theorem 2220l

Corollary 2.2.9 [KL79, §2.3] Let s € S and z, w € W.

1. If x <w, ws <w and s > x then pg ., = vflpxsvw.

2. Let wq be the longest element of W. Then we have py ., = ot @)=l wo) for gll x € W,

ProOF: By Lemma EZZ8 we have the relation C,Ts = —v~'C,, whenever ws < w.
Inserting into it the expression for C,, given by Theorem ZZ26l(2) and then comparing the
coefficient of T, on both sides of the relation thus obtained, we deduce that pg ., + (v —
V") Pusw = UPasaw which readily yields (1).

For x € W, we can find a finite sequence of elements s1,...,s, € S such that r < zs1 <

... <axs1--+ S = wp. Since the longest element wq satisfies the condition wgs < wq for all

s € S, we apply (1) repeatedly to get ps w, = vflpxshwo =...= (1)*1)”pgcsl...s,n’w0 = (v
(by Theorem EZZHBI(2), puyw, = 1). Note that r = l(wp) — {(x), proving (2) 0

Kazhdan-Lusztig C’-basis

Consider the ring involution j : H — H, defined by

](Z awTw) = Z €wy L
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where €, := (=1)"*) | and the element @ € A is as defined in (ZZ)). Then define,
Cl, = €,j(Cy) (2.7)

Since j is an involution on H, the elements C,, w € W, also form a basis for H. It is called
the C’-basis. By Theorem and the fact that the bar involution commutes with the

involution j defined above, it is clear that the elements C/,

v, W € W are also determined

uniquely by the two properties
Cl,=Cl and C) =T, modHg

All the other properties of the C-basis can also be carried over to the C’-basis via the

involution j. An instance of this, which we shall use later, is the following:

Lemma 2.2.10 Let s € S and ws < w. Then C],Ts = vC},.

PROOF: Applying the involution to both sides of the relation C,,Ty = —v~'C,,, we get the
required relation for C},. O
Before ending this subsection, in the light of Corollary ZZ2ZZ0(2) and Theorem 22.6](2),

we note that if wg denotes the longest element in W, then

-1 / -1
Cwo = €woVuwy Z €wly Lw, Cuwo = Vuy VT (2.8)
weW weWw

The above expressions together with Lemma 228 and Lemma ZZZT0 gives

01200 = (ewov;()l Z v%v) Cwo (2-9)
weW
= (vwy > v?) Cly (2.10)
weWw

2.2.2 Kazhdan-Lusztig orders and cells

The central goal of introducing the Kazhdan-Lusztig bases is to understand the representa-
tions of the Hecke algebra H. The advantage of the C-basis (analogously C’-basis) is that
it leads to a systematic construction of certain representations. This is done by defining
a pre-order on W the equivalence classes of which gives a partition of W into cells (left,
right, two-sided). Later in §830 we construct representations of W associated to these
cells. We now give the definition of these cells of W.

Let y and w be elements in W. Write y <+, w if, for some element s in S, the co-
efficient of C is non-zero in the expression of C;C, as an A-linear combination of the
basis elements C,,. Replacing all occurrences of ‘C” by ‘C” in this definition would make
no difference. The Kazhdan-Lusztig left pre-order is defined by: y <p, w if there exists

a chain y = yg <1, - - <L yr = w; the left equivalence relation by: y~rp w if y <y w and
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w <r,y. Left equivalence classes are called left cells. Note that by the above definition the
A-module ) AC is a left ideal of 'H containing the left ideal HC),.

Right pre-order, equivalence, and cells are defined similarly. The two sided pre-order

x <y, w

is defined by: y <pr w if there exists a chain y = yq, ..., yx = w such that, for 0 < j < k,

either y; <p, y;j41 or y; <ry;j+1. Two sided equivalence classes are called two sided cells.

Remark 2.2.11 Since Cj is defined as T —vT7, it may be easily seen that, if for y, w € W
we set y <1, w whenever there exists an element s in S such that the coefficient of C,, is
non-zero in the expression of TxC,, as a A-linear combination of the C-basis elements, then
the pre-order <j, obtained from the relation </ is the same as the left pre-order defined

above (using the C-basis instead of T').

Lemma 2.2.12 Let wy be the longest element in W. Then for elements w,w' € W
we have, w<p,w' if and only if wow' <y, wow. Similarly for <g. Moreover, v(w,w') =

v(wow', wow). (See [KLTY, Corollary 3.2] for proof; [Shi86l, Lemma 1.4.6(iii)]) O

Remark 2.2.13 By Remark EZZT(ii), we have py. = py-1,-1 and hence v(y,w) =
v(y~1,w™1). By definition, the latter term is u(y, w). Thus, by Lemma 22, we conclude
that p(w,w’) = p(wew’, wow) for w, w' € W.

For any y € W, we associate to it two sets defined as follows:

R(y) ={seSlys<y}t L) :={sesS|sy<y}
Then we have,
Lemma 2.2.14 Let w,w’ € W.
1. If w<gw' then £(w') C £(w).

2. If w<pw' then R(w') C R(w).
(See [Lus03, Lemma 8.6] for a proof) 0

2.3 Combinatorics of cells in G,,

From now on, we fix A to be the Laurent polynomial ring in one indeterminate Z[v,v™}].
Let n be a fixed integer and &,, the symmetric group on n letters. Let S denote the subset
consisting of simple transpositions (1,2),(2,3)...(n — 1,n). Then (&,,S) is a Coxeter
system and its Hecke algebra defined over A is denoted as H.

In &,,, there are certain combinatorial descriptions for cells as defined in the earlier

section. Before beginning with this description we introduce some basic definitions.
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2.3.1 Basic notions
Partitions and shapes

By a partition X of n, written A - n, is meant a sequence A\; > ... > \,. of positive integers
such that A\; + ... 4+ A\, = n. The integer r is the number of parts in \. We often write
A= (A1,...,\); sometimes even A = (A1, Ag,...). When the latter notation is used, it is
to be understood that \; = 0 for ¢t > r.

Partitions of n are in bijection with shapes of Young diagrams (or simply shapes) with
n boxes: the partition A\ > ... > A, corresponds to the shape with A\; boxes in the first
row, A9 in the second row, and so on, the boxes being arranged left- and top-justified.
This diagram of boxes is sometimes also called the Young diagram of shape \ denoted as

A. Here for example is the shape corresponding to the partition (3,3,2) of 8:

Partitions are thus identified with shapes and the two terms are used interchangeably.

Dominance order on partitions

Given partitions g = (u1, p2,...) and A = (A, Ag,...) of n, we say u dominates X\, and
write u > A, if

1> A1, p1 g2 > A+ Ao, g g+ pg > A+ Ag + Ag,

We write >\ if 4 > X and p # A. The partial order &> on the set of partitions (or shapes)

of n will be referred to as the dominance order.

Tableaux and standard tableaux

A Young tableau, or just tableau, of shape A F n is an arrangement of the numbers 1, ...,
n in the boxes of shape A. There are, evidently, n! tableaux of shape A. A tableau is row
standard (respectively, column standard) if in every row (respectively, column) the entries
are increasing left to right (respectively, top to bottom). A tableau is standard if it is both

row standard and column standard. An example of a standard tableau of shape (3,3,2):

The number of standard tableaux: The number of standard tableaux of a given

shape A  n is denoted d(\). There is a well-known ‘hook length formula’ for it (see
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[Sag01}, p.124]; [ERT54]): d(A) = n!/]]s hg, where 3 runs over all boxes of shape A and hg

is the hook length of the box 8 which is defined as one more than the sum of the number
of boxes to the right of § and the number of boxes below j.
The hook lengths for the shape (3,3,2) are shown below:

Thus d(3,3,2) = 8!/(5.4.2.4.3.1.2.1) = 42.

Row and Column stabilizers:

Given a tableau T of shape A - n, we obtain two collections of subsets of the set {1,2,...,n}:
R : Each subset consists of numbers appearing along each row of T.

C : Each subset consists of numbers appearing along each column of 7.

The row stabilizer of T' is the subgroup of &,, which leaves each subset in the collection
R invariant. It is the set of permutations in &,, that permute the numbers appearing in
each row of T" among themselves. Similarly, the column stabilizer of T is the subgroup of
&,, which leaves each subset in the collection C, invariant. It is the set of permutations in
&,, that permute the numbers in each column of 7" among themselves.

For example, let

~
I
BEE

Then the row stabilizer of T"is the subgroup &y 33 X G5 51 X G4 and its column stabilizer
is 6{1,274} X 6{3,5}.

2.3.2 RSK-correspondence

We recall, in this subsection, the combinatorial algorithm which goes under the name of
Robinson-Schensted-Knuth. 1t is a well-known procedure that sets up a bijection between
the symmetric group &, and ordered pairs of standard tableaux of the same shape with
n boxes. The aim of the algorithm was to provide a purely combinatorial proof that the
number of elements in G,, is equal to the number of pairs of standard tableaux of the same

shape A, as A varies over all partitions of n,i.e.,

> d(\)? =n
AFn
The genesis of the above relation lies in the representation theory of &, over C: the

partitions, A F n, parametrize all the non-isomorphic irreducible representations of C&,;
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the number d(\) of standard tableaux of shape A is the same as the dimension of the
irreducible representation of CS,, associated to A (see §8.2).

In order to describe the algorithm, which sets up the bijection as mentioned earlier,
we will need the insertion algorithm which is described as follows: Let P be a tableau
consisting of an arbitrary set of distinct numbers. If all the numbers from 1 to n appear
then it is a tableau in the sense defined in §&3T1 Let 2 be a number not appearing in P.

Then the insertion algorithm to insert x in P, denoted as P « z, is given as follows:
I1 Set R to be the first row of P.
I2 While z is less than some element in R, do

I2a Let y be the smallest number in R greater than x and replace y by =x.
I2b Set x := y and R as the next row down.

I3 Now x is greater than every element in R, so place x at the end of the row and stop.

The Robinson-Schensted-Knuth correspondence (or RSK-correspondence, for short) is
a bijection between &,, and pairs of standard tableaux of the same shape with n boxes.
The bijection is given by an algorithm that takes a permutation 7 and produces from it a
pair (P(m), Q(m)) of standard tableaux of a certain shape. This is done as follows: Let 7

be written in two-line notation as
We construct Q(m) as

(- (C —xp) e xy) ) e Tpy) Ty

The tableaux P(m), called the recording tableau, is obtained by simply placing the integer
k in the box that is added at the k-th step of the construction of Q(m).

Example 2.3.1 Consider the permutation (14253) € &5, written in two-line notation as

1 2 3 45
4 51 2 3

Applying the above algorithm, we get the pair

5| C1]2]3]
314 MNE

P:

That the map defined by the above algorithm is a bijection is proved by reversing the

algorithm step by step to recover the permutation associated to a pair of standard tableaux.

18



Denote by (Px, Q) the tableaux obtained at the k-th step. Then, to go from (P, Q) to
(Pi—1,Qk—1) consider the number appearing in Q)i in the box which contains the largest
number in P and apply the reverse row-insertion algorithm to Q; with this number. The
element that is bumped out is the image of k under the resulting permutation. And the
tableau obtained by removing the originating box in Q) is the tableau QJp_1. Removing
the largest number in P, we get Py_1.

It should be noted that the algorithm presented above is slightly different from those
given in standard texts ([Eul97), [Sag0I]). For reasons that will be explained later (see
Remark 2Z37F])), we have modified the procedure by associating to a permutation the same
pair of standard tableaux as obtained by the standard procedure but with their positions
interchanged, i.e., if (A(w), B(w)) is the pair associated to w € &,, by the algorithm
as in [Ful97] or [SagQI], then by the RSK-correspondence we mean the bijection that
associates the pair (B(w), A(w)) to the permutation w. In the light of the following result
of Schiitzenberger, the modification amounts to associating the permutation w™! to the
pair (A(w), B(w)).

Theorem 2.3.2 (Schiitzenberger) (see Theorem 3.6.6]) If w € &, then A(w™!) =
B(w) and B(w™1) = A(w). O

Notation 2.3.3 We write (P(w), Q(w)) for the ordered pair of standard Young tableaux
associated to the permutation w by the RSK-correspondence. Call P(w) the P-symbol and
Q(w) the Q-symbol of w. It will be convenient also to use (P(w), Q(w)) for the permuta-
tion w, C(p(w),Q)) or C(P(w),Q(w)) for the Kazhdan-Lusztig C-basis element C,,.

Definition 2.3.4 The RSK shape of a permutation w is defined to be the shape of the
tableau P(w) (which is the same as that of Q(w)).

An example

The permutation (1542)(36) (written as a product of disjoint cycles) has RSK-shape
(3,2,1). Indeed it is mapped under the RSK correspondence in our sense to the ordered

pair (A, B) of standard tableaux, where:

1]3]5] 1]2]3]
A=|2 B=\|4
16 0]

2.3.3 Cells and RSK-correspondence

We now recall the combinatorial characterizations of left, right and two sided cells in
terms of the RSK correspondence and the dominance order on partitions (§Z3.1I). These

statements are the foundation on which most of our arguments rest.
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The following statement characterizes the relation <jr. (Also see comments in [Gec(6]

about [Ari(0]).

Proposition 2.3.5 ([Gec(fl, Theorem 5.1]) Let w, w' € &,,. Then w <prw’ if and only
if RSK-shape(w) < RSK-shape(w’). O

The next statement establishes the “unrelatedness” of distinct one-sided (left/right)
cells within a two-sided cell. Though stated only for <p, and left cells, the analogous

statement is true also for < and right cells.

Proposition 2.3.6 ([Gec(6, Theorem 5.3]) Let w, v’ € &,,. If w<pw' and w~pgw
then w ~y1, w'. (See also [Lus81l Lemma 4.1]) O

Finally, the following proposition gives a combinatorial characterization of the left,

right and two-sided equivalence. Statements (1) and (2) of the Proposition can be found
also in [KL79] or [Ari00)].
Proposition 2.3.7 ([GecO6, Corollary 5.6]) Let w, w' € &,,. Then the following hold:

1. wrpw < Qw) = Qw').

2. w~pw < P(w) = Pw').

3. w~prw < RSK-shape(w) = RSK-shape(w’). (This follows easily from Proposi-

tion and the definition of ~1R). O

Remark 2.3.8 The proofs of the above statements can be found in [Gec(6]. However, it
should be noted that in [GecO6]| permutations act from the left while for us permutations al-
ways act from the right. Also, in [Gec06], the RSK-algorithm as given in [Eul97] (or [Sag0I])
is used. So, in the light of Theorem 32 the statements of the above propositions hold
verbatim even in our setup, under the assumption that the (modified) RSK-correspondence

as described here is used to obtain the P, () symbols of a permutation.

2.3.4 Some notes and notations
For A a partition of n,

e )\ denotes the transpose of A which is defined to be the shape obtained by taking the
transpose of the Young diagram of shape A. E.g., N =(3,2,2,1) for A = (4,3,1).

e t* denotes the standard tableau of shape A in which the numbers 1, 2, ..., n appear
in order along successive rows; t) is defined similarly, with ‘columns’ replacing ‘rows’.
E.g., for A = (4,3,1), we have:

t)\_

5%

(o] ]~

I
[e]w]=
(@)
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e Permutations in &,, act naturally on tableaux of shape A - n by acting entry-wise.

Denote by w) the permutation in &,, such that trwy, = ty.

The parabolic subgroup W) and its coset representatives

Let Wy denote the row stabilizer of t*. It is a parabolic subgroup of &,, generated by
WxNS. Let wg x denote the longest element of W)y. E.g., for A = (4,3, 1), W) is isomorphic
to the product 64 x &3 x 61. The longest element of W) is given by the sequence
(lwox, - .., nwo ) = (4,3,2,1,7,6,5,8).

Remark 2.3.9 The longest element wox of Wy has RSK-shape X'; by the definition of
the RSK-correspondence it is obvious that wo x corresponds to the pair (ty,ty).

Define Dy, := {w € &, | t*w is row standard}. Clearly, wy as defined above, is an

element of ©). The next proposition lists out a few properties of the elements in .

Proposition 2.3.10 ([D.I86, Lemma 1.1]) For X\ a partition of n,
1. ©y is a set of right coset representatives of Wy in G,,.
2. the element d € ®© ), is the unique element of minimal length in Wyd.
3. l(wd) = l(w) +U(d), for w e Wy and d € D).
4. Oy={de &, | l(sd)>1(d) for all s € W\NS}.

PROOF: If for each element w € &,, we associate the tableau t*w then under this associa-
tion the elements of the coset Wid, d € D) correspond to the collection of tableaux which
vary from each other by a permutation of the row-wise entries. Now noting that d € Dy
corresponds, under the above association, to the unique tableaux in the collection of t*w,
w € Wid, which is row-standard (i.e., increasing along rows but not necessarily increasing
along columns), the bijection as in ([l is immediate.

To prove (2) we use the fact that the length [ counts the number of inversions, so
(d) = #{(i,)|1 <i < j<mn, id > jd} (see [BBOS, Proposition 1.5.2]). Let s € W)
such that s = (i,i + 1). Let a, b appear in t*d in the positions where i, i + 1 appear in
t*, then t*sd is obtained by inverting the positions of a and b in t*d. Also, since t*d is
row-standard we have a < b. Thus, we see that the number of inversions in sd is > number
of inversions in d i.e., I(sd) > I(d). Since this is true for all s € W) N S the uniqueness in
@) can be deduced by method of contradiction, as outlined in the proof of item (@) given
below.

For w € Wy, d € D), we know that l(wd) < I(w) + l(d). Suppose that [(wd) <
l(w) + I(d) then by the deletion condition (see §ZTI), we get w’ < w, d’ < d such that
w'd’ = wd. Hence we get d € Wxd' = Wid but I(d') < I(d) which contradicts (). Thus
l(wd) = l(w) +1(d), as claimed in (@]).
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For establishing the equality in (), we first notice using (Bl that ©) is contained in the
set on the right-hand side of (@). To prove the other way inclusion, suppose d € &,, such
that I(sd) > l(d) for all s € SNW,, we claim that d is of minimal length in the coset Wyd,
which then by (B)) implies that d € ©,. We prove the claim by assuming the contrary, as
follows:

Suppose d is not of minimal length in the coset Wid, then let x € Wyd be one such. We
can express d as a product of the form wz for some w € W), so that I(d) < l[(w) + l(z). If
I(d) < l(w)+1(x) then by deletion condition, we find elements w’, 2’ such that v’ < w and
x' < x with d = w'2’, which will contradict the minimality of [(x) unless 2’ = z. Thus, we
conclude that [(d) = I(w) + I(z). Now since x # d, we get w # 1, which implies there is a
u € SN Wy such that vw < w, so that vwzr < wx which contradicts the hypothesis that
sd>dforall se W,ynNS§S.

O

We now prove a useful lemma that enables us to characterize elements xs, for z € D)
and s € S. The lemma is true more generally for “distinguished” coset representatives of
an arbitrary parabolic subgroup where the distinguished coset representatives are defined
by property () in Proposition ZZ3T0 The proof presented here holds true verbatim even

in this general setup.

Lemma 2.3.11 (Deodhar’s lemma) Let x € D), s € S. Then either xs € D) or xs = ux
forue Wyny§s.

PROOF: Suppose xs ¢ D), then property (H) in Proposition does not hold, i.e.,
there exists an element u € W) NS such that I(uxs) < I(zs). On the other hand, z € D)
implies that [(uz) > {(x). Thus we have,

l(z) < luz) = l(uxs) £1 < (xs)

Let s1--- s, be a reduced expression for uxs. Then us;g - - - s, is a reduced expression for xs

since l(uzs) + 1 = l(xs). As l(xs) > I(z), we should be able find a reduced expression for

x as a suitable subexpression of usy - - - s,-. If s; is dropped then z = usy --- §; - - - s, leading

us to the contradiction that ux < z. Hence x = s1--- s, so that xs = usy---s, = ux, as
required.

O

The set D can be described entirely based on just one element in it, namely the longest

coset representative. We have,

Proposition 2.3.12 ([D.J86, Lemma 1.4]) Let dy be an element of mazimal length in D).
Then,

1. dy 1s unique.

2. ©y is precisely the set of all the prefizes of dy.
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PROOF: Let wgy be the longest element in &,. Let x € ) such that wyg € Wyz. Then
by maximality of length and Proposition EZZT0(3), we have wg = wp rx and x should be
of maximal length in ©). By uniqueness of the longest element in &,,, we have wg o =
wo,Ady, proving (1) above.

For proving (2), first we observe that if y € ©, and s € S such that ys < y then
ys € ©,. This follows immediately by Deodhar’s lemma (Lemma Z3TT]), since if ys ¢ D
then ys > y. Thus, all prefixes of dy are in ©,. The other way inclusion is proved by
reverse induction on [(y) where y € ©,. If [(y) is maximal then y = d). Assume y # d.
For s € S, if [(ys) > l(y) and ys € @) then by induction ys is a prefix of dy, so is y and
we are done. So, assume for every s € S either ys ¢ D or l(ys) < l(y). Suppose ys ¢ Dy
where s € S then by Deodhar’s lemma ys = uy for some u € W, N S. Then,

l(worys) = lworuy) = l(won) — 1+ 1(y) = Hwory) — 1

On the other hand, if I(ys) < l(y) and ys € D) then

Hwonys) = l(wox) +1(ys) = L(wo ) +1(y) — 1 = Lwony) — 1

Thus, we obtain that for all s € .S, we get wg \ys < wp y. This readily implies wo xy = wpo,
a contradiction to the assumption that y # dy. Hence the proof is complete.

(]

We had already seen that wy is an element of ®,. By the above proposition, it is

a prefix of dy and every prefix of w) is also in ©). The next lemma characterizes these

prefixes.

Lemma 2.3.13 ([DJ86, Lemma 1.5]) The set of w € &, such that t*w is a standard

tableau is the same as the set of prefixes of wy.

PRrROOF: We begin with an observation. Suppose w € &,, such that t*w is standard. If
l(w(i,i+1)) < I(w) then (i+1).w™! < i.w™?!, since [ counts the number of inversions. So,
if 4 occurs in node (r,¢) and (i + 1) occurs in node (r',¢') of t*w then r > ¢/ and ¢ < ¢
(because t*w is standard). Now it is obvious that t*w(i,i + 1) is also standard.

The observation made in the last paragraph shows that for every prefix w of wy, t*w
is also standard. Conversely, let t*w is standard and assume w # wy. Then there exists
i, j, with j > i+ 1, occurring in consecutive boxes in some column of t*w. It can be seen
easily that there is a k, i < k < j such that k occurs in a node (a,b) and k + 1 occurs
in node (a/,b') such that a < a’ and b > b of t*w . Then t*w(k,k + 1) is standard and
l(w(k,k+1)) = l(w) + 1. By reverse induction on l(w), w(k,k + 1) is a prefix of w), and

SO 1S w. O
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More on coset representatives

After all this discussion about the right coset representatives of W), it is easy to verify the

following remark about the left coset representatives,

Remark 2.3.14 The set @;1 1s a set of minimal length left coset representatives of Wy
i &,,. This set has similar properties as that of © as listed in Proposition [Z-3 110

Let A, u = n. We now describe a set of double coset representatives for W,-W,, in the

following lemma:

Lemma 2.3.15 (see [GP0O(, Proposition 2.1.7| Let A, u b n. Then for each element w €
S, there is a uw € Wy, v € W, and a unique d € D) ﬂ’D;l such that w = udv and l(w) =
l(u) +U(d) + l(v). In particular, the set ®y N @;1 is a set of double coset representatives
of Wx-W,.

PROOF: Let w € &,, and write w = uz, where u € Wy and = € ®), and l(w) = l(u) + ()
by Proposition Z3T0. Write 2 = dv where d € ’D;l and v € W, and l(z) = I(d) + (v).
Since d is a prefix of x € Dy, we get d € D). Thus, w = udv with u € W), d € ©, ﬂ@;l,
v e W, and l(w) = l(u) +1(d) +(v), as required. The uniqueness follows by noting that d,
as obtained above, is the unique element of minimal length in the double coset WydW, =
WixwW,,. O

The following observation turns out to be useful later,

Lemma 2.3.16 (see [GPO0, Theorem 2.1.12]) Let A, utn. Let d € DxND,;'. Then the
subgroup d=—1Wyd N W, is generated by d='Wydn w,nS§s.

ProoOF: Define L := Wy NS, K := W, NS and J := d~'Ld N K. Clearly, W; C
d_lWAdﬂWH. It therefore, suffices to prove that WxdNdW, C dW;. Let w € WxdNndW,.
Then w = ud = dv, where v € W) and v € W, and l(w) = (u) + I(d) = I(d) + I(v). In
particular, I[(u) = l(v). Let v = vg---v,, where v; € K. Set dy = d and define d; € D
using Deodhar’s Lemma, so that d;_1v; = x;d; where d; € ®y and x; € L —if d;_q1v; € D
then z; = 1 otherwise d; = d;_1. Then we have ud = dv = =7 - - - x,d, where x1---x, € W),
and d, € ©). By uniqueness of the expression ud, we have u = xz1---x, and hence
r = I(u) = l(v). Therefore, x; # 1 for all ¢ and so, d; = d for all 4. This means dv; = x;d
for all ¢ equivalently, v; € J from which we conclude that w € dWj. a

Remark 2.3.17 Lemma E3T0 Lemma and Remark 22314 hold true more gen-
erally for Wy, W, replaced by any parabolic subgroups of &,, and ©,, ©, replaced by
the respective sets of minimal length right coset representatives (defined as in Proposi-
tion ZZ3TONE) which implies it is the unique element of minimal length in the right coset

containing it). The proofs are verbatim those given above.
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Few more combinatorial results

We now gather together a few combinatorial results regarding the Kazhdan-Lusztig rela-

tions, which will be used in the sequel:

Lemma 2.3.18 ([MP05, Lemma 3.3|) Let A = n. Define w = wowp  wy. Then,

1. wo D= {y €6, | y<rwonr}. Thus, y<rwo if and only if for every row of My

the entries are decreasing to the right.
2. {word | d aprefix of wy} = {y €&, | y~rwor}
3. The element w, as defined above, is in the same left cell as wq y .
4. w is a prefiz of every element in the right cell containing it.

ProoF: (1) By Proposition EZZTOB) and (EZH), it is easy to check that wo Dy C {y €
Sn | y<rwor}. To prove the other way inclusion, notice that if y <gwp then by
Lemma EZZTA £(wp ) C £(y), so, sy < y for all s € SN W,. Expressing y as ud
where u € Wy, d € D, we have for all s € SN W), sud < ud, as we just observed, and
sd > d, by Proposition EZZXTO[)). Therefore we conclude that su < u for all s € SN W,
and so, u = wp ». Hence y = wp rd for some d € D), as required. The second part now
follows immediately, noticing also that by its definition wp ) reverses the entries in each
row of t*.

(2) By (1), we have wg xd <g wp_x. Further, using ([28) it can be seen that for any prefix
d of wy, wo wy <rwod. However, an easy verification shows that wg ywy corresponds
under the RSK-correspondence to the pair (¢, t)‘/) (compare [MP(O5, Lemma 3.2]) while,
wp, corresponds to (ty,ty). By Proposition EZ37(2) this means wg  wy ~r wo x. Thus,
for each prefix d of wy, we get, wg d~grwp )y, thereby proving one-way inclusion. Now
using Lemma and the characterisation of right cells given by Proposition Z37 a
counting argument proves the equality of the two sets.

(3) Applying the RSK-correspondence to wy ywy we get the pair (¢, t) (compare [MP05,
Lemma 3.2]). Notice that the pair corresponding under RSK to wowp ywy is just the trans-
pose of the tableaux corresponding to wp ywy . So, w = wowp ywy corresponds to (tA, ty).
Proposition EZ371 then proves (3), as the Q-symbols of both w and wyg y are the same.

(4) Putting together Lemma and statement (2) above, we deduce that the right
cell containing w is given by {wowpd | dis a prefix of wy}, which can then be easily
identified with the set {wb | b is a prefix of wy } since w;1 = wy. Also, l(wy) = l(w) +
l(wo,n) + l(wy) — observe that [(wow) = l(wy) — l(w). This fact along with the relation
wo = wwywo y, implies that [(wb) = [(w) + 1(b) for all prefixes b of wy,. Hence the claim.
(]
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Chapter 3

SPECHT MODULES, CELL MODULES:
AN INTRODUCTION

In this chapter we introduce the basic representation theoretic objects of interest to us and
present some preliminary results about them to be used later.

The tabloid representations and Specht modules for G,,, introduced in §82 are classical
objects in its representation theory. These modules have analogues also in the setup of the
Hecke algebra, namely the permutation modules and Specht modules for H. In 883, we give
a short introduction to these H-modules and by Proposition provide justification
to calling them as the analogues of their &,, counterparts. There is one more module
which is of primary importance to our study — the cell module. As H-modules the cell
modules are not different from the Specht modules, the proof of which forms the content
of 841 Given there is an explicit isomorphism between the cell module corresponding to a
partition and the Specht module corresponding to the same partition. In §8.0 we indicate
a relation between the Specht modules corresponding to a partition and its transpose
partition (refer §34), a fact that we will need later.

Section is a very sketchy introduction to the &,-modules that are of interest to us.
More detailed introduction can be found in [Sag0I], for example. The content of §83 is
gathered from [[D.J86], [D.I87)] and [MP0O5].

We begin by recalling some elementary results from the structure theory of semisimple

algebras.

3.1 A short recap of the structure theory of semisimple alge-
bras

The facts recalled here are all well known: see for example [Bou73|, [GPO0, pp. 218, 247].

Let k denote a field. Let V' be a simple (right) module for a semisimple algebra 2 of finite

dimension over k. Then the endomorphism ring EndgV is a division algebra (Schur’s

Lemma), say Ey. Being a subalgebra of End;V, it is finite dimensional as a vector

26



space over k, and V' is a finite dimensional vector space over it. Set ny := dimpg, V.
The ring Endg, V' of endomorphisms of V' as a Ey-vector space can be identified (non-
canonically, depending upon a choice of basis) with the ring M, (Dy ) of matrices of size
ny X ny with entries in the opposite algebra Dy of Ey. The natural ring homomor-
phism 20 — Endg, V is a surjection (density theorem).

There is an isomorphism of algebras (Wedderburn’s structure theorem):
A~ [[Endp, V ~ [ Mn, (Dv), (3.1)
|4 |4

where the product is taken over all (isomorphism classes of) simple modules. There is a
single isomorphism class of simple modules for the simple algebra Endg, V', namely that
of V itself, and its multiplicity is ny in a direct sum decomposition into simples of the
right regular representation of Endg, V. Thus ny is also the multiplicity of V' in the right

regular representation of 2. And of course

The hypothesis of the following proposition admittedly appears contrived at first sight,
but it will soon be apparent (in §830) that it is tailor-made for our purpose.

Proposition 3.1.1 Let Wy, ..., W, be A-modules of respective dimensions dy, ..., ds
over k. Suppose that the right regular representation of U has a filtration in which the
quotients are precisely Wdel, ., W&s . Then

1. EndgW,; = k and W; is absolutely irreducible, ¥V i, 1 <1 < s.
2. W; is not isomorphic to W; for i # j.

3. W;, 1 <i<s, are a complete set of simple A-modules.

4. A~ T, End,W;.

ProOF: Let V be a simple submodule of W;. Then dimg V' < d;. The hypothesis about
the filtration implies that the multiplicity of V' in the right regular representation is at
least d;. From Eq. (B32), we conclude that d; = ny and dimg Ey = 1. So V = W is simple
and By = k. If k denotes an algebraic closure of k, then

Endyg 7(V @ k) = (EndaV) @,k = k@4 k =F.

So V' is absolutely irreducible and (1) is proved.

If W; ~ W for i # j, then the multiplicity of W; in the right regular representation
would exceed d; contradicting Eq. (B2). This proves (2). Since every simple module has
positive multiplicity in the right regular representation, (3) is clear. Finally, (4) follows
from (1) and Eq. (81I). O
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3.2 Some &,-modules

Let A = (A1, A2,... Ar) - n. A tabloid of shape A is a partition of the set [n] := {1,...,n}
into an ordered r-tuple of subsets, the first consisting of A\; elements, the second of Ao
elements, and so on. The members of the first subset are arranged in increasing order in
the first row, those of the second subset in the second row, and so on. Depicted below are
two tabloids of shape (3,3, 2):

3 5 8
1 6
27

NG I
o | oo | w
©o | o

Notation 3.2.1 Given a Young tableau T of shape A (§231]), it determines, in the obvious
way, a tabloid of shape A denoted {T'}: the first subset consists of the elements in the first

row, the second of those in the second row, and so on.

Tabloid representations

The defining action of &,, on [n] induces, in the obvious way, an action on the set 7 of
tabloids of shape A. The free Z-module Z7, with 7, as a Z-basis becomes therefore a
linear representation of &,, over Z. By base change, we get such a representation over any
commutative ring with unity k: k7, := Z7), ®z k. We call it the tabloid representation
corresponding to the shape .

Specht modules

The Specht module corresponding to a partition A - n is a certain &,-submodule of the
tabloid representation Z7, defined as follows:
Define the elements ep in Z7) for tableaux T of shape \ as:

er = Z e(o){To}

where the sum is taken over permutations o of &, in the column stabiliser of T, ¢(o)
denotes the sign of o, and {T'o} denotes the tabloid corresponding to the tableau To
(refer Notation B2ZTl). The Specht module S is the linear span of the er as T runs over
all tableaux of shape A. It is an &,-submodule of Z7, with Z-basis ey, as T varies over
standard tableaux ( [Sag0I], Theorem 2.6.5]). It is therefore a free Z-module of rank equal
to the number d(\) of standard tableaux of shape A\ (§Z31]). By base change, we get
the Specht module S,? over any commutative ring with identity k: S,? = 8" ®z k, which
evidently is free over k .

Over the field C, the Specht modules are irreducible and in fact they are all the irre-
ducible modules of &,, (see for example, [Sag01}, Theorem 2.4.6]). Moreover, for the tabloid
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module C7), we have a decomposition into irreducibles as stated below (see The-
orem 2.11.2] for proof):

Proposition 3.2.2 There are positive integers k,y for i > X, such that CT), = ®MEAkuAS€'
(]

3.3 Some H-modules: Definitions and preliminaries

Let A = n be fixed. Recall from §Z3A that )\ denotes the transpose of \; the per-
mutation wy takes t* to ty. Let W) be the row stabilizer of t*. Then D) := {w €
G, | t*w is row standard} is a set of right coset representatives of Wy in &,, (Proposi-
tion 2ZZ3TON1)).

We set,

-1
Ty = Z VL Yy = Z €wly Loy 2 = Uy DAL, Y
weWy weWy

Using Corollary ZZZ9(2), we note that

_ ! _ —1
Tx = vwo,)\cwo,,\ Yx = Ewo,)\vaACwo,)\ (33)

By means of these elements we define certain H-modules which will be of importance
in our study. Before we begin with the definitions of these modules, we make the following

combinatorial observation that will see us through many proofs later:

Lemma 3.3.1 [D.J86, Lemma 4.1]) Let A+ n and w € &,, such that x\Tyyyn # 0. Then

eATwyy = iviw,\TwAyX # 0 for some non-negative integer i.

PrOOF: In view of Lemma B3 TH we may assume that w € Dy N ’D;,l. Suppose that
wWywnWy # (1), then by Lemma 2316l there exists an element s € w™ W \wNWyNS.
Let D be a set of minimal length coset representatives of the subgroup {1, s} in W)y,. Then
yy = (Th — vTs) Y gep €avdTy. Inserting this expression in z)Th,yx, we get

exTwyn = (2 TWTi — v ' 2T Ts) Y | equy ' T,
deD

Since s € w ' Wyw N W)y, there exists a u € W) such that ws = uww, and hence u € S
and T, 7s = T, T,,. Now using the fact that for u € W) NS, x)\T,, = vx) we deduce
that (zAT,T1 — v~ 1x)\T,Ty) in the above expression is 0, leading to a contradiction to
the hypothesis that z)T,yy # 0. Hence we have w™'Wyw N Wy = (1). Noticing that
w ' Wyw is the row stabilizer of the (row-standard) tableau t*w the last condition holds
only if every element in a column in ¢y occurs in different rows of t*w. Now it is easy to

conclude that this is possible if and only if t*w = ¢, so that w = wy. Hence the claim. O
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Remark 3.3.2 Let u= (u1,..., 1) be a composition of n, i.e., u; >0 foralli=1,...r
and g1 + -+ pr = n. Then p defines a subgroup W), of all permutations in &,, which fix
the subsets S1,...,.5, of sizes p1, s ..., i, respectively consisting of numbers 1,..., u1;
p1+ 1,..., 1 + po;... in that order. Define p} to be the number of subsets S; having
atleast ¢ elements. Clearly, (1}, u5,...) is a partition of n. Now, let y, := Zuewﬂ euu Ty
then the proof of the above lemma can be imitated to show that if x)\T,y, # 0 then
w W \w N W, = (1) (JDJ86, Lemma 4.1]). This condition means that the elements of .S;
are all in different rows of the row-standard tableau t*w. Then, noticing that the numbers

in S; are all smaller than the numbers in S;, 1, we conclude that p' > A.

Notation 3.3.3 It will be convenient for us to fix the following notation. For a subset
S of &, denote by (Cyly € &)4 the A-span of {Cyly € &} in H. For an A-algebra k,
denote by (Cyly € &), the k-span of {Cy|y € &} in Hj,. Similar meanings are attached to
(Tyly € 6)4 and (Tyly € G).

Notation 3.3.4 Let k be a ring, a an invertible element in k. We already defined
Hy (§22). Also, for any H-module N, we denote by Ny the Hi-module N ®4 k ob-
tained by extending scalars via the homomorphism A — k given by v — a. It will also be
convenient to denote by n, the element n ® 1 € N.

3.3.1 Permutation modules M*

Following [D.J86], we define the permutation module M* to be the right ideal zyH. The
basic properties of M* are presented in the following lemma, ([D.J86, Lemma 3.2]):

Proposition 3.3.5 With notations as above,

1. The module M is a free A-module with basis {x)\Ty | d € D,}.

2. Ifde D)y and s € S, then

AT if [(ws) =l(w) + 1 and ws € D)
o TyTs = ¢ (v—v V2T + 2)\Ts  if l(ws) = l(w) — 1 and ws € D)y, (3.4)
Vs ALy if ws ¢ D

ProoOF: Since T,,, w € &, form a basis of H, it is obvious that the elements x)T,,
w € &, span the module ) H over A. On the other hand, every element w € &,, can be
expressed uniquely as a product ud where u € Wy, d € ©) such that [(ud) = l(u) + I(d)
(Proposition ZZTM). So, we have Tyq = T, Ty. By Lemma ZZT0 we know that C;, T =
vC’{UO’A for s € Wy N S. Putting all this together, justifies the claim that the coliection
x)\Ty, d € ®y is enough to span xyH. Computing x,Ty by inserting the expression for x
in it, we get z\Ty = >, ey, VwTwly. Since l(wd) = l(w) +I(d) for all w € W), we have
TwTly = Tywq. The linear independence now follows from the linear independence of T,
x € 6, and the fact that the cosets Wyd, d € ©, are disjoint. This proves (1).
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By Deodhar’s lemma and its proof, we know that for s € S and d € ©,, the element
ds is either in @ or else ds > d and ds = s'd for some s’ € W, N S. Statement (2) follows

from these observation along with the multiplication rule given in (Z3]). O

The bilinear form (, ) on M*:

As in [DJ86, page 34|, define a A-bilinear form ( , ) on M> by defining it on the A-basis
described by Proposition as follows: set (z) Ty, x2\T) equal to 1 or 0 accordingly as
elements d, e of ®) are equal or not. The form is evidently symmetric.

Recall the A-linear, anti-automorphism of the algebra H: h — h* given by T, — T,,—1
(see Remark ZZZT). We have,

Lemma 3.3.6 Let mq, mo € M> and h € H. Then
(m1h,ma) = (m1,mah") (3.5)

PrROOF: We may assume that h = T for some s € S and that mi = z)\Ty, mo = x)T1; for
some d,e € ©y. Then we are reduced to showing that (x\TyTs, z)\Te) = (22Ty, x2TeTs).
By the definition of the bilinear form, both sides of this equation turns out to be 0 unless
e =d or e = ds. In the case when e = d, the equation is valid owing to the symmetry of
the bilinear form while if e = ds we can assume that d < ds. Then as ds = e € ©) we use

the appropriate relation in ([B3]) to verify the validity of the equation. O

3.3.2 Specht modules S*

The Specht module S* is defined to be the right ideal zyH. By Lemma B3] we know that

this is a non-zero submodule of M?*. It is a free A-module with basis given by,

Theorem 3.3.7 The set {vg2)Ty | t*wyd is a standard tableau} forms an A basis for S
(see [D.IRE, Theorem 5.6] for proof ) O

The basis given by the above theorem is called the standard basis of S*. The Specht
modules were first defined in the seminal work of Dipper and James [D.J86] where they
also had proved that the above set forms a basis. Showing the linear independence over
A of this set is almost straight forward, given the Lemma below. However, the proof

that these elements span the space z)\’H is much more involved and we don’t give it here.

Lemma 3.3.8 For d prefiz of wy, the coefficient of x Ty, q in 22Ty is a unit in A and the
other terms x)\T),, u € Dy, involved in z\Ty satisfy [(u) > l(wyd).

!This basis is exactly the same as that given in [D.J86]. The leading scalar factor vy in the above basis
appears due to the notational difference with [D.I86] (Refer §£2 Remark on notation).
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PROOF: Inserting the expression for yy in z) (see beginning of §83 for definition of yy/),
we get that
2y = 22Ty, + Z ewvl_ulx)\TwAw
weW,\{1}

Since wy € D3}, we have l(wyw) = l(wy) + I(w) for all w € Wy (Proposition ZZ3ITK3)).

By Lemma EZ24)(4) we know that the product Ty, .,y expressed in terms of the T-
basis consists only of terms T, such that u > wywd. Note that, if z > y then every
reduced expression for z contains a subexpression which is reduced for y (see [Lus(3),
Proposition 2.4| for example). Using this and the properties of D) (Proposition ZZZI0) it
is easy to see that, if x > y and z € W)d', y € W)d” where d’,d" € D) then I(d') > I(d").
Applying this observation to w such that T, appears in the product T,,.,Tq, it can be
deduced that x)Ty,, Ty can be expressed as a linear combination of )Ty, d’ € ®) such
that I(d’) > l(wyw) — I(d) (notice that wyw € D for w € Wy/). The fact that wy = wy !,
in turn implies that {(wyw) — I(d) = l(wxd) + I(w). Thus we conclude that, by applying

T, to the relation for z), obtained above, we get

DTy = 22Ty + Z euvy  o\Ty
I(u)>l(wyrd)

as required. a

The bilinear form (, ) on S*:

Owing to the fact that S* is a submodule of M?*, we can restrict the bilinear form (,)
defined on M* (§823T)) to the Specht module. Moreover, we have the following remarkable
property of this form, that goes under the name “The submodule theorem”.

For a submodule U of M?*, we define Ut := {m € M?*| (m,u) =0 for all u € U}.

Theorem 3.3.9 (The Submodule Theorem) Let F' be a field, a € F be invertible. Let
Hr be the specialization of H via v — a. Let U be a submodule of le: Then Sf‘; cU or
UcsSy.

PROOF: Let m € U C M*. Then by Lemma B3l myy = rz) for some r € F. Therefore,
if myy # 0 for some m € U then zy € U and hence Sy C U. If myy = 0 for all m € U
then

(zah,m) = (AT, ,mh*yy) = (x2\Tyy,,0) =0

for all h € Hp. Hence U C S} O

Corollary 3.3.10 Let F = Q(v). Then Sy is irreducible for all partitions \ I n.

PRrROOF: We begin with the observation that Sj\; N Sl);l is either Sj\; or the unique maximal
proper submodule of S}. Indeed, if U is a proper submodule of Sfa then applying the

above theorem to U we obtain that U C Sj\f hence in the intersection.
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In order to prove the irreducibility of Six it would therefore suffice to show that Six N
Sl’\; = (0). Suppose m € SpN S’\L, so that (m,m) = 0. Since m € M}, we can write
m = Zdeﬁk rqx Ty, where r4 € Q(v) so by the definition of the form on Mlé, (m,m) =
> de, (r4)> = 0. Multiplying by a suitable polynomial in v to clear denominators, we can
modify m to assume that rq € Q[v] so that >, 5, (r4)? € Q[v]. By inserting v =a € QT
we notice that the sum of positive rationals is 0. Hence each rg(a) = 0 for all a € QF
which is possible only if the polynomials r4(v) (d € D)) were identically 0. Thus m =0,

as required. O

A criterion for (,) to be non-zero on Sy

The next proposition gives a criteria for the bilinear form on S*, defined above, to be
non-zero over a field F. A shape ) is e-reqular if for each ¢ € N, the number of parts of A

that equal 7 is less than e.

Proposition 3.3.11 ([D.I86, Theorem 6.3(i)]) Let F' be a field. Let a € F be an invertible
element. Denote by e the smallest integer such that 1 +a®+ --- +a*€ ) =0. Let A+ n

be e-reqular. Then there exist elements e1, eq € Sf} such that {(eq,es) # 0. O

The proof of the above proposition involves the construction of elements ey, ey € Sf}
such that the only terms z)T), (u € ©,) common to both e; and es, when expressed as a
linear combination of the basis of M3, are of the form x AT, w Where w € Wy, such that w
permutes the numbers appearing in rows of the same length in ¢, among themselves. The
details of the construction can be found in [[D.I86].

3.3.3 Relating M* with ZT,

Before proceeding further, it would be appropriate to pause and note that the modules
M?* and S* defined above are analogues of Z7, and S* for &,, in the sense that, if we
specialize M* and S* to Z via the map given by v — 1 (refer to §2 and Notation B34
to recall what we mean by specialization) and denote the modules obtained thus by M>

and S*, then we have the following:

Proposition 3.3.12 There exists an &, -isomorphism between the modules M>* and ZTy.
Further, the restriction of this isomorphism to S* gives an isomorphism of S» with the

S,,-module S*.

PROOF: Let px:=>_,cw, w and k=3, cy, €ww. Under the identification of H ®4 Z
with Z&,,, the elements )y ® 1 — py and yy ® 1 — k). So M* is identified with p\Z&,,.
Now define

0 : 2GS, — ZTy

as the mapping pyw — {t*}w for w € &,,. This is clearly an &,-isomorphism of the right
ideal p)\Z&,, with Z7T,. This proves the first part of the Proposition.
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Suppose k¢ denotes the signed sum over the elements of the column stabilizer of a

tableau t. Then it is easy to see that for w € &,
Kiw = W L kyw (3.6)

Therefore, k) = kp = wAlﬁstAwAw)fl, which leads us to the relation p k) = pAw)\h;tAwAw;l.
Theorem B3 gives a basis for S*, which under its identification as a right ideal in Z&,, is
given by paxwxrx,,, d where d is a prefix of wy,. By [B8) , we get pxwakipn,, d = parpwad.
The image of the latter element under the map 6 is {t*}xpwyd which by ([BB) can be
rewritten as {tA}’LU)\dK,tAwAd = ¢, q- However, for each prefix d of wy the element wyd
denotes a prefix of wy. Hence by Lemma, the tableau t*wyd is a standard. Thus the
image of the standard basis elements of SHis precisely the basis {e;| t standard A-tableau}
of 8*, as required. a

3.3.4 Monomial module

Let A F n. The monomial module corresponding to A is defined to be the right ideal y\H
(see beginning of §83 for definition of yy). By [B3), it is obvious that this is the same as
the right ideal, C

wo - This module again is free over A, as will be seen below. It has two

A-bases which are of interest to us. The next two Propositions present for us these bases.
Note that since j(Cuyg ) = €wy, Clog 5 by Bquation (B3) we have j(M*) = j(za)H = yaH.

Thus, Proposition readily leads us to the T-basis of yy\H, described explicitly below:

Proposition 3.3.13 The set {Cy, ,Tu|l d € Dy} forms a basis for Cy, \H over A. It is

called the T-basis of Cy, \H. O

Considering the definition of the relation <g and Remark 22Tl given there, it is clear
that C,wH C (Cyly <rw)a. In case of the longest element wq y of W), in fact, equality
holds. This is done in the Proposition below and we call this basis the C-basis of Cy, ,'H.

Proposition 3.3.14 ([MP05, Lemma 2.11]) The A-span (Cy|w <g wo ) of the elements
Cw, w<gpwo,, equals the right ideal Cyy ,'H.

PROOF: By the definition of <g, the inclusion Cy, \H C (Cy|w <g wp,x)4 is immediate.
To prove the reverse inclusion we use Proposition and Lemma, together to
deduce that the set {w| w<gwor} = {wod | d prefix of dy}, which we denote as €.
Inducting on the [(d), we show that Cugrd € (Cwlw <gwor)a for all prefixes d of dy as
follows:

When d = 1 the claim is obvious. Assuming the induction hypothesis for all d’ € €
such that I(d’) < I(d), we consider the element Cy,

d = es, where e is itself a prefix of d) and l(es) = I(e) + 1, we get from (EZH)

4 for some prefix d of dy. Writing

Cwo,xd = Cwo,,\GCS - Z ,u(z, wO,)\e)Cz

zs<z<wg,\€
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Every z for which C, appears in the last term of the above expression has to satisfy
z<pwore <pwoy and z < wpre. Since l(e) < I(d), by using the induction hypothesis
we conclude that all terms in the right hand side of the above expression are in Cy, ,'H

implying that Cy, ,4 1s also in Cy, ,'H, as required. O

wo,\

Order the elements of ©) refining the partial order given by their lengths. This nat-
urally induces an ordering on the C-,T-bases of H since they are both indexed by ©,.
Then the proposition below shows that with respect to this ordering the two bases are in

unitriangular relationship with each other.

Lemma 3.3.15 For each e € D), Cy,Te = Zdeih dgege,dcwo,xd where gee = 1 and
Gea=0ifd £ e.

ProOF: We once again use the description of the set {w| w <gwp } as the collection of
elements wg yd such that d € D,.

Proceed by induction on the l(e), e € ©,. When e = 1 the claim is obvious. So, let
l(e) > 1. Write e = ds such that d € ©y and I(ds) = [(d) + 1. Using the expression for
C

W, A

T, assumed by the induction hypothesis we get that

CwO’ATe = Cwoy)\Tde = CwO’Ad + Z gd,d’CwO’Ad’Ts
d'e®,,d'<d

By induction hypothesis it is clear that the only term in the right-hand side of the above

relation that contributes to the coefficient of C,, ,4s is Cy, ,aTs. So, inserting the expres-

wo, N
sion Cyg yds + Cuwg rd + Zzs<z<w0’Adu(z, wo,\d)C in place of Cy, ,4Ts (see Equation (ZZH))
in the right-hand side of the above equation we conclude that the coefficient of wae in

C

worle 18 gee = Gd,d = 1- The rest of the claim is obvious by length considerations. O

3.3.5 Cell modules

It follows from the definition of the pre-order <y, that the A-span (Cyly <1, w)a of {Cy|y <1, w},
for w in &, fixed, is a left ideal of H; so is (Cyly <pw)a. The quotient L(w) :=
(Cyly <r,w)a/(Cyly <1,w) 4 is called the left cell module associated to w. It is a left H-
module. Right cell modules R(w) and two sided cell modules are defined similarly. They
are right modules and bimodules respectively. From the way these modules are defined, it
is clear that the images of the elements Cy, y ~r, w (resp., Cy, y ~r w) form a basis for L(w)
(resp., R(w)), which is called the C-basis of the cell module. For notational convenience

we shall continue to use Cy for the image of Cy, y ~, w in L(w). Similarly in R(w).

Remark 3.3.16 Alternatively, one may choose to use the C’-basis of H to define the cell
modules. For w € &, if we denote by L(w)® the left C’-cell module defined analogously
as above. Then by (1), it is immediate that L(w)® is just the image of L(w) under the
map induced by the involution j. Similarly the image of R(w) under j is the right C’-cell

module, denoted as R(w)®. It should be noted at this point that the involution j is not an
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A-algebra homomorphism, so it does not induce an H-isomorphism between the R(w) and
R(w)®. However, in due course we describe an isomorphism between R(w) and R(wow)®

after extending scalars to Q(v) (see Lemma BTl below).

Let y and w be permutations of the same RSK-shape A. The left cell modules L(y)
and L(w) are then H-isomorphic. In fact, the association Craw) < Crow)) gives an
isomorphism: see [KL79, §5|, [Gec(if, Corollary 5.8]. The right cell modules R(y) and
R(w) are similarly isomorphic, and we sometimes write R(\) for R(y) ~ R(w). Analogous
statements hold also for the left/right C’-cell modules and we write R(A\)® for R(y)® ~
R(w)°.

When a homomorphism from A to a commutative ring k is specified, such notation as
R(w) and R(\)g make sense: see §&2, Notation B34l

The “T-basis’ of R(\') and its relationship to the C-basis

We have already seen that the right H-module Cy,,’H has two bases: the ‘C-basis’ and
“I'-basis’. And in Lemma we saw that after a suitable reordering they are in unitri-
angular relationship with each other. We use this to define the T-basis for R()\)

The elements w <g wy ) are precisely wod, d € D, (Proposition (1)). Let dy,
..., dy be the elements of D) ordered so that i < j if d; < d; in the Bruhat order.
By Lemma B3 TH and its proof, the two bases above are related by a uni-triangular matrix

with respect to an ordering as above :

Cun T, 1 0 Cu

wo, A 0,Ad1
Cwo,)\TdM * 1 C"UO,)\dM
Let us now read this equation in the quotient R(wo ) of Cy, ,H. Let d;,, ..., d;, with
1 <14y <...<'ipy < M besuch that they are all the prefixes of wy—see LemmaZ3 T8 (2)—
so that wg rd;,, ..., wo rd;, are all the elements right equivalent to wg x. Writing eq, ...,
em in place of d;,, ..., d;,,, and noting that Cy, ,4, vanishes in R(X') unless wg xdj ~r wo A,
we have:
CwO,ATel 1 0 Cwo,)ﬁl
CwO,ATem * 1 Cwo,xem
We conclude that
Proposition 3.3.17 The elements CwMTel, ey Cwo,x e, Where ey, ... e, are all the

prefizes of wy form an A-basis for R(N'). Further, if the e;’s are ordered such that i < j
if e; < ej (where < denotes the Bruhat order) then it is in uni-triangular relationship with

the C-basis Cuwgserr - - Cuwgrem 0f R(N'). Tt is called the T-basis of R(N') . O
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Irreducibility and other properties of the cell modules

Let k be a field such that Hj is semisimple. The proof of Theorem below fol-

lows [KL79, §5].
Theorem 3.3.18 ([KL79, §5|) Assume that Hy := H ®a4 k is semisimple. Then

1. Endy, R(N)i = k and R(\)y is absolutely irreducible, for all A F n.

2. R(\)g % R(u)g for partitions X\ # p of n.

3. R(N)g, A n, are a complete set of simple Hy-modules.

4. Hi ~ [y, Ende R\

Proor: By Proposition BTl it is enough to exhibit a filtration of the right regular
representation of Hj in which the quotients are precisely R(A)fd()‘), A F n, each occurring
once. We will in fact exhibit a decreasing filtration § = {F;} by right ideals (in fact, two
sided ideals) of H in which the quotients Fj/Fj 1 are precisely R(A)®4X X F n, each
occurring once. Since R(\) are free A-modules, it will follow that § ®4 k is a filtration
of H;. whose quotients are R(A)?do‘), and the proof will be done.

Let = be a total order on partitions of n that refines the dominance partial order .
Let Ay = Ao > ... be the full list of partitions arranged in decreasing order with respect

to =. Set F; := (Cy|RSK-shape(w) < A\;) 4. It is enough to prove the following:
1. The F; are right ideals in H (they are in fact two sided ideals).
2. Fy/Fyiq ~ R(\)®4N),

It follows from the definition in §22Z2 of the relation <pg that, for any fixed permuta-
tion w, (Cy|r <rr w) 4 is a two sided ideal of H. But z <yr w if and only if RSK-shape(z) <
RSK-shape(w), by the characterization in Proposition Thus, (C,|RSK-shape(z) <
A)a is a two sided ideal, and F; being equal to the sum -, (Cy|RSK-shape(z) < Aj)4 of
two sided ideals is a two sided ideal. This proves (1).

To prove (2), let Sy, So, ... be the distinct right cells contained in the two sided cell
corresponding to shape A;. It follows from the assertions in Proposition 237 that there
are d(A;) of them and the cardinality of each is d();). Fix a permutation w of shape
Ai. Consider the right cell module R(w), which by definition is the quotient of the right
ideal (Cy|xr <g w)a by the right ideal (Cy|z <pw)a. If  <g w then evidently x <pr w and
(by Proposition Z3H) RSK-shape(xz) < A;, so RSK-shape(z) < \;. Thus we have a map
induced by the inclusion: (Cp|z <gw)s — F;/Fii1.

We claim that the above map descends to an injective map from the quotient R()\;). It
descends because z < w implies x <pr w: if x ~p g w, then x ~g w by Proposition 3.0l

To prove that the map from R();) is an injection, let a,Cy belong to Fjy1 with

T <LRW

a, € A. Suppose that a, # 0 for some fixed x. Then, since the Cy form an A-basis of H,
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we conclude that RSK-shape(x) < A;y1, so RSK-shape(z) # A;, and (by Proposition 2231
x <prw. But this means x4 zw, so © <g w, and thus the image in R(\;) of > < nw2Cs
vanishes.

The image of R(w) in F;/F;y1 is spanned by the classes Cy,  ~gr w. Choosing w; in

Sy, wg in So, ... we see that the images of R(w1), R(ws), ... in F;/F;y; form a direct
sum (for the C, are an A-basis of H). The R(w;) are all isomorphic to R(\) (see §830).
This completes the proof of (2) and also of the theorem. O

3.4 McDonough - Pallikaros Isomorphism

The aim of this section is to prove that the Specht module S* and the right cell module
R()\) corresponding to a partition A - n, are isomorphic ([MP0O3, Theorem 3.5]). We
follow the approach in [MP05], which involves proving the existence of an isomorphism
after specializing to F' = Q(v), and using this we then prove the required isomorphism

over ‘H. For the first step, we will need the following lemma:

Lemma 3.4.1 For w € 6,,, R(w)r and R(wow)$ are isomorphic as Hp-modules.

PROOF: Let € denote the right cell of w and € denote the right cell of wyw. Then from
Lemma ZZZT2 we notice that wo€ equals €. Let 3, 3’ be the representations of H on R(w)
and R(wow)® respectively. From the relation (Z0]) and Lemma ZZZ8 we get

C:B + C:DS + Zy5<y<x lu’(y’ ':L‘)Cy’ lf xrs > X

—v 0y, ifes<uz

CyTs =

Applying j to the above relations we get the corresponding relations for the C’-basis.
Also, note that u(x,y) = p(woey, wox) for all x,y € W (see Remark ZZZTH). With these
observations and the fact that y < x if and only wox < wpy (Lemma ZZ2ZT2) it can be
deduced that, after a suitable re-ordering of the bases of R(w) and R(wow)®, the matrices
of B(Ts) (with respect to the C-basis of R(w)), and §'(Ts) (with respect to the C’-basis
of R(wow)®) are transposes of each other. From this it follows that 8(T,) = B'(T,-1)
for all w € &,. Hence, if x3 and xg are the characters of § and (' respectively then
x3(Tw) = xpg(Ty-1) for all w € &,. Extending scalars to Q via v — 1, we get that
X%(w) = Xé,(wfl) where Xé (resp. Xé,) denotes the character of the representation (3

(resp. (') of Hg (& Q&,,) obtained by specializing. Since w™!

is conjugate to w in
S, we in fact have, Xé(w) = Xé,(w) for all w € &,. Thus, R(w)g and R(wow)g are
‘Hg-isomorphic.

Let F' = Q(v). By Theorem we know that the collection R(\)r, A F n, are
all the non-isomorphic irreducibles for Hg, and by an analogous argument, so is also
the collection R(A)%, A F n. Suppose that R(w)r 2 R(wow)$ then we get that for
some p # N = RSK-shape(wow), R(11)% has to be isomorphic to R(A)r (observe that

RSK-shape(w)=A\). In particular, this would mean that the characters associated to the
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representations R(u)% and R(A)r have to be equal. However, these characters evaluated

¢ and

on H (C Hp) take values in A and in fact coincide with the characters of R(u)
R(\), respectively. This means that on specializing H to Q the characters associated to
the representations R(u)® and R(A) are equal. On the other hand, from the previous
paragraph we have R(\)g = R(N)g. So we have R(u)g = R(N)g, thereby leading to
incompatibility in the number of irreducibles R(A)é since i # N (Theorem B3R for right
C’-cell modules). Therefore, we conclude that R(w)p = R(wow)%. O

Now we are ready to prove the first step. The idea is to show that the R(A)r is a
composition factor for both z)\Hr and yxHpr. Then, showing that Six is the only compo-
sition factor common to these modules we deduce the required isomorphism. The details

are outlined in the following proposition.

Proposition 3.4.2 Let A= n and wq \ be the longest element in Wy. Then the right cell

module corresponding to wo , R(wo \)F, is isomorphic to 51)5, as an Hp-module.

PRrROOF: We have seen in Lemma EZ3T8(4) that w = wowp \wy is a prefix of every element
in the right cell containing it. Using this fact, an inductive argument on I(y) where y ~g w
shows that C) € C},/H for all y ~g w. We thus note that C;,Hr has a composition factor
isomorphic to R(w)$%. Once again in Lemma EZ3T8(3), we have seen that w ~p, wp x so
that C}, € HC{UO,/\/ (by analogue of Proposition B3 T4 for <y,), which immediately produces
for us an element h € H such that multiplication by h on the left gives a surjection from
zyHp to ClyHp. Thus, R(w)$ becomes a composition factor also of xyHp. On the other
hand, by Proposition B34, the module R(wy ) is a composition factor of yyHp. But as
was seen in Lemma ZZ3TR(2), wow = wp xwx ~Rr wo x. So we have by the definition of the
right cell module that R(wo ))r = R(wow)r, which by Lemma BZTl above, is isomorphic
to R(w)%. Thus R(wpx)r is a common composition factor of both zyHp and yyHp.
However, using Lemma B3Tl we can deduce that the only factor common to these two
modules is the Specht module Sﬁl. Indeed, if any irreducible module is common to xxHpr
and yyHp then it should occur in the product zy Hpy \Hr, which by Lemma B3l is equal
to xx Ty, Ya Hr = Sﬁl. Thus, R(wp \)r is isomorphic to Sfa' (note that R(wp )r and SI)}/
are irreducible; see Theorem B3I8, Corollary B3IM). O

We can now establish the isomorphism, which we shall refer to as the “MP-isomorphism”

between S* and R(\).

Proposition 3.4.3 ([MP05, Theorem 3.5]) Let A+ n. Then S* =3, R(\).

PrRoOF: Let N,

W,z

(Cyly <rwo)a. We have seen already in Proposition B34 that N, ,, is the same
as the right ideal C,

be the module (Cyly <rwo)a and Nwo .+ denote its submodule

‘H. Define a map

0,\

Ny, ., SA
ox T (3.7)

m = oLy, m
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Using Proposition we can immediately deduce the surjectivity of the above map.
We now claim that the ker = Nwo N o € ker 6, then
extending scalars to F' = Q(v) we still have Nwo g ¢ ker fp. This in turn implies that
o g 50 b}i the irreducibility of S (Corollary BZ3I0) we deduce that
Sj\; is a composition factor of N, N This contradicts the fact that the multiplicity of

First of all, suppose that N,
0 is non-zero on Ny,

R(A)F in Ny, vp = WWHp s 1 (a fact that can be verified as in the last part of the proof
of Proposition B3 T8). We thus have ]\Afwo’k, C ker 6. Counting the rank over A of the
quotient Ny, ,,/Nuw, ,, (= R(wo,x)), we then deduce that the map induced on the quotient

is an isomorphism. As the RSK-shape(wg y) is A we have the required isomorphism. O

3.5 Interplay between S* and SV

The aim of this section is to display the identical behaviour of S* and S* with respect
to irreducibility, over a field k. In other words, Sl? is irreducible if and only if S,i" is so
([D.J8T, Theorem 3.5]; [Mur95, Theorem 5.2]). This is achieved by giving an isomorphism
between S* and the dual of an A-isomorphic copy of S* which reflects the behaviour of
S in terms of irreducibility (Proposition B53).

It would be convenient to use the following two notations, in order to describe the

isomorphism that we seek:

Notation 3.5.1 For a (right) H-module M, denote by M the H-module whose underlying
Z-module is M but with H-action given by m.h:=mj(h) where j is the involution on H

given by > awTy — Y, €wlwly-

Notation 3.5.2 For a (left) H-module M, we denote by M* the (right) H-module whose
underlying A-module is the same as that of M and with the action of H being given by
mh := h*m where m € M, h € H and h — h* is the involutive anti-automorphism given
by Ty — Tyy-1.

In particular, for a (right) H-module M, the dual M .= Hom4(M, A) is naturally
a left H-module: (m)(he) := (mh)o, for ¢ € M3 m € M, h € H. In the notation given
above, M is a right H-module: (m)(¢h) := (mh*)¢, for ¢ € M2l m e M, h € H.

With the above notation, we have

Proposition 3.5.3 There is an H-isomorphism, (,Sw‘lf)d‘“’“1 "= §) In particular, for a
field k, Sﬁ is irreducible if and only if Sli‘l is S0.

To prove the above isomorphism, we proceed as follows:
Let Ny, ,, be the (right) H-module (Cy|y <gr wo, ') 4, which is the same as the monomial
module y;ﬂ% (see Proposition B3 T4 Eq. B3)).
We define a A-bilinear form on Ny, ,, in the same way as was done for M A (823D on

the basis {ynTy | d € Dy} (see Proposition B3TH) of N, ,, the form is defined by setting
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(ynTy, ynTe) equal to 1 or 0 accordingly as the elements d, e of D), are equal or not. The

form is evidently symmetric. Also, as was done in §E3.Tl for ny, n2 € Ny, ,,,

<n1h,n2> = (nl,ngh*> (3.8)

where * is the A-linear, anti-automorphism of the algebra H given by Ty, — T),-1.

Since Ny, ,, is A-free and the bilinear form (,) on Ny, ,, is non-degenerate, we have
an isomorphism a : Ny, — Ny, A,dual induced by (,). By B3H), « is in fact an H-
isomorphism.

Let S be the H-submodule of Nwo,x/ given by Zy'H where Zy := yxTy,, 1. Note that
j(zyx) = Zy (by the definition of the involution j, and Equations (B3), 1)).

With the notation as described above, it follows that the involution j of H induces an
1somorphism between SN and the H-module S*'. Tt can hence be easily seen that S* has
similar properties as the Specht module S*. Listed below are some of the properties that

we would need:

1. (see, Theorem BZ1) The set {ZyTy| t* wyd is a standard tableau} forms an A-basis
for SN': apply the involution j to the standard basis of S as given by Theorem BE31

2. (see, Theorem EZ) Let U be a submodule of N, ,, we define U+ := {n €
Ny, | (n,u) = 0forallu € U}. Let F be a field, a € F be invertible. Let Hp

be the specialization of H via v — a. Then Sp C U or U C Sp*t. (see also [DJIST,
§3.1(vi)]).
From Lemma B3R it follows that S* has an A-complement in Ny, ,,- So, the inclusion
dual® _, (§A")dual” " Composing this with the

, we get a H-module homomorphism from Ny, ,, onto

SN ¢ Ny, ,, vields a surjection from Ny,
dual*

0,7

isomorphism « : Ny, ,, — Ny, ,,

(5)‘/)‘1“31*, whose kernel is obviously S't. Thus,
Nwo,y/g/\ll L (G ydual” (3.9)

Proposition 3.5.4 ([D.87, Theorem 3.5|) The kernel of the map 6 defined in (Z7) is
SNL. So, we have an H-isomorphism, (SN )dual” = g,

Proor: By definition of 0, Zy/ — x)\T,, Zy. Let
a = (@\Tw\ YnTw, 22, 2) = (EATw YN Ty s TATA) = (@A Ty yn Ty, , TA)

where 0 # f) € A such that 23 = fiz) (using Eq.@3)). By Lemma we therefore
get that 0 # a € A. Hence Zy ¢ kerf and so, SV ¢ kerf. Then, by extending scalars
to FF = Q(v) and using property () we have that kerfp C 5‘1)5”- . This implies that
ker ¢ SN+, Comparing dimensions we obtain our conclusion. a

Combining the above proposition with the observation that S s H-isomorphic (via
4) to §*, proves Proposition B3 O
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Chapter 4

RSK BASES FOR CERTAIN QUOTIENTS
OF THE GROUP RING

In this chapter, we look first at the tabloid representation of &,. Fix a partition A of n.
As seen earlier (§82), C7) defines a representation of &,. Let py : CS,, — EndcC7, be
the defining map. We seek a basis for the image of CS,, under p) or equivalently, for the
quotient of C&,, by the kernel of py. This is discussed in §£ZT] where we present the RSK
basis for this quotient space. The question in consideration may well be posed over any
field (not necessarily C). This is addressed through the remainder of §£2 Also discussed
in §3is a Hecke analogue of §£22 with a proof.

In 4 we shift our focus to a representation of &,, which is of invariant theoretic
interest, namely the space V®" where V is a finite dimensional vector space over C. Using
a classical result in invariant theory, we then notice in Proposition that the image
of C&,, in the endomorphism ring of V®" is identified with the quotient C&, /ker py
for a particular A, where py is the map discussed in the previous paragraph. Thus, we
obtain a basis for the image of C&,, in EndcV®", using results in §E2Z1] for the tabloid
representation over C.

The image of C&,, in EndcV®" has a certain invariant theoretic appeal which is ex-
plained in greater detail in §&4 Inspired by this appeal, we extend the result discussed
above which presents a basis for the image of £&,, in End,V®" when k = C, to the
case when k is an arbitrary commutative ring with unity, satisfying some mild conditions.
This is done in Theorem EEZLTl The rest of €4 is devoted to presenting bases for cer-
tain other rings of invariants through sections §EAT], LI LI I as a consequence of
Theorem EEZAT1

We begin this chapter with a couple of observations which play a key role in the

approach we take to produce bases for the endomorphism rings under consideration.
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4.1 Key observations

The first observation that we make in this section is a simple one which will enable us
to move from the C-basis to T-basis of certain quotients by two-sided ideals of the Hecke
algebra. The second observation is crucial for many of the results that we discuss here.
It partially justifies our choice of the cell modules over the Specht modules to realize the

irreducible representations of &,, and its Hecke algebra.

4.1.1 Moving from C-basis to T-basis of certain quotients

From TheoremZ20)(2), we get Tp, = Cy, mod (T,|z < w)4. From this in turn we get, by
induction on the Bruhat-Chevalley order, the following: for a subset & of &,,, the (images
of) elements T,,, w € &,, \ &, form a basis for the A-module H/(C,|x € &)4. The same
thing holds also in specializations Hy, of H (§Z2): the (images of) elements Ty, w € 6,,\ S,
form a basis for the k-module Hy/(Cy|z € G)y.

4.1.2 TImages of the C-basis elements in EndR(\)

The image of Cy in EndR(\) vanishes unless A < RSK-shape(y), for, if C, occurs with non-
zero coefficient in C;C, (when expressed as an A-linear combinations of the C-basis), where
RSK-shape(z) = A, and A € RSK-shape(y), then z <, y (by definition), so RSK-shape(z) <
RSK-shape(y) (Proposition Z30), which means that RSK-shape(z) # A, so z # g x (Propo-
sition ZZ31).

4.2 Tabloid representations of S,

Let k be an arbitrary field. Let A be a partition of n and py : k&, — Endpk7, be the
map defining the tabloid representation as described in §82 This is a morphism of k-
algebras. Thus, obtaining a basis for the image of p) can be reduced to obtaining one for
the quotient k&, /ker p). As the set of permutations in &,, gives a generating set for the
quotient kS, /ker py, we hope to find a suitable subset of permutations that actually form
a basis for it.

We deal with this issue assuming initially that & = C (§£21I) where the decomposition,
into irreducibles, of C7, as in Proposition is known. In this case, the observations
made in §T2 §LTTl above leads us almost immediately to a basis of CS,,/ker p) con-
sisting of permutations. Using this, we then prove the analogous statement with the base
ring taken to be Z. Finally owing to the fact that a field of characteristic 0 is flat over Z,
we readily have the result even over such a field. In the case when the characteristic of k
is positive, the statement fails to be true, in general. Section EE23] illustrates this by an

example.

43



4.2.1 Results over C

We first consider the case when & = C. We have the RSK-basis for the tabloid representa-

tion given by the following theorem:

Theorem 4.2.1 Permutations with RSK-shapes u such that p > A form a C basis of
C6&,, modulo the kernel of py : C&,, — EndcC7,.

PROOF: The tabloid representation of &,, (defined over C) has a decomposition into
irreducibles given by @, (SE)™™, m(u) > 0 (see Proposition B2ZZZ). Since the multi-
plicities m(u) in the decomposition are positive, the kernel of p is the same as that of the
map p) : CS,, — Endc(®,=1SE). The image of p) is clearly contained in &,-yEndcSE.
Since the S{ are non-isomorphic for distinct ;4 and are irreducibleﬂ it follows from a den-
sity argument (see for example [Bon73, Chapter 8, §4, No. 3, Corollaire 2|) that p), maps
onto @, EndcSE. Since dim Sf = d(p), where d(u) is the number of standard tableaux
of shape p, and the Sfc‘ as p varies over all partitions of n are a complete set of irreducible

representationsﬁ we obtain, by counting dimensions:

dimker p) = dimC&,, — dim (,pAEndeSE) =Y " d(p)* = > d(w)* = d(p)’
pn KA REA
Now consider C&,, as the specialization of the Hecke algebra H as follows (§22):
C6,, ~ H®4 C, where C is an A-algebra via the map A — C defined by v — 1. By
the observation §LT.2 the images C\,, ® 1 in H®4 C ~ CG,, of the Kazhdan-Lusztig basis
elements C,, of H belong to the kernel of p) if RSK-shape(w) ¥ A. The number of such w
being equal to > UPA d(u)?, which as observed above equals dim ker p’, we conclude that

ker py = ker p\ = (C,, @ 1|RSK-shape(w) # A)c. (4.1)

By observation §LTT] the images of T, ® 1, RSK-shape(w) > A, form a basis for
H®aC/{Cy ® 1|RSK-shape(w) ¥ A\)c ~ C&,,/ ker p\. But the image in C&,, of T, ® 1 is
the permutation w. This completes the proof of Theorem E2.T O

4.2.2 Results over Z

We now prove Theorem EE2ZT]l with Z coefficients in place of C coefficients.
Let pyz be the map Z&,, — EndzZ7, defining the tabloid representation. We claim
that Eq. (E) holds over Z:

ker py 7 = (Cyw ® 1|RSK-shape(w) ¥ \)z (4.2)

! Tt follows from the isomorphism in (Proposition [Z3) and the corresponding fact for cell modules

proved in §301

2Same comment as in footnote [ applies to both assertions.
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Once this is proved, the rest of the argument is the same as in the complex case: namely,
use observation §LT.T1

We first show the containment O. We have (Cy, ® 1)C7, = (Cy,, ® 1)Z7, ®7 C (by
flatness of C over Z). Since (Cy, ® 1)Z7, is a submodule of the free module Z7), it is free.
By Eq. 1)), (Cy ® 1)CT) = 0 if RSK-shape(w) # A, so D holds.

To show the other containment, set m = (Cy, ® 1|RSK-shape(w) ¥ A)z, and con-
sider ker py z/m. Since Z&,,/m is free, so is its submodule ker py 7/m, and we have

ker py 7 ker py 7z ®7 C ker py 7z ®7 C
o ®Z (C — g .
m m®yzC (Cw ® 1|RSK-shape(w) B \)c

By the flatness of C over Z, we have ker py 7 ®z C = ker py. The last term in the above
display vanishes by Eq. (], and so C holds (since ker pyz/m is free). The proof of
Theorem EE2 Tl over Z is complete.

Remark 4.2.2 Let k£ be a field of characteristic 0 and py ; the map £&,, — Endik7,
defining the representation on tabloids of shape A. The analogue of Egs. ([1l) and (#2)
holds over k, since, by the flatness of k over Z, we have ker py 1, = ker p) 7 ®z k. Now one
can use observation §LT.T] as in the earlier cases to finish the proof of Theorem EEZT] even

over k.

4.2.3 Failure over fields of positive characteristic

Theorem EEZT] does not hold in general over a field k of positive characteristic. We give an
example of a non-trivial linear combination of permutations of RSK-shape dominating A
that acts trivially on the tabloid representation k7). Let k be a field of characteristic 2.
Let n =4 and A = (2,2). Let us denote a permutation in &4 by writing down in sequence
the images under it of 1 through 4: e.g., 1243 denotes the permutation ¢ defined by 1o = 1,
20 =2, 30 = 4, and 40 = 3. It is readily seen that the eight permutations in the display
below are all of shape (3,1).

2134, 2341, 2314, 1342, 3124, 1243, 4123, 1423.

Notice that shape (3,1) > (2,2) and that the sum of the above eight permutations acts
trivially on k7).

4.3 Remarks on the Hecke Analogue of §4.2.2

The tabloid module having an analogue in the setup of the Hecke algebra of &,,, we are
led to asking whether Theorem EEZT], with Z-coefficients in place of C-coefficients, has a

natural H-analogue. We state and prove this here.
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Theorem 4.3.1 The elements T,,, RSK-shape(w) > A, form a basis for H modulo the
kernel of the map H — EndyM? defining M> as a right H-module.

Proor: We will show that the C\,, RSK-shape(w) [? A, form a basis for the kernel. By the
observation in §ETT] this will suffice. The longest step in the proof is to show that such C,
belong to the kernel. Assuming for the moment this to be the case, let us finish the rest of
the proof. Suppose that the kernel is strictly larger than (C,,|RSK-shape(w) # A\) 4. Then
there exists a non-trivial linear combination of Cy,, RSK-shape(w) > A, in the kernel. Since
M is torsion-free (it is free over A), we may assume that not all coefficients vanish at v = 1.
But then such a linear combination would not vanish in H¢ (where He := H®4C = CS,,
C being the the specialization via v — 1), contradicting Theorem EEZT], and we’re done.

We now show that the C,, RSK-shape(w) ¥ A, annihilate M* = zyH. Let p =
RSK-shape(w) and assume p B A. Proceed by induction on the domination order <,
and assume that Cy kills M A for RSK-shape(y) < . First suppose that w is the longest
element of shape p, that is, w = wg ,,—the base case of the induction is also proved by
the argument in this case. By Remark B332 z\Hy,, = 0; but y,, equals Cwo,,,w (see B3)
above) up to a factor of sign and a power of v. Thus MAC’wO’M, =0.

Next suppose that w <g wg ,s. Then, by Proposition B3.T4, C,, belongs to Cwo,,,uH’ S0
that M*C,, C M)\Cwo,H/H = 0. If w <y, wp v, then (again by Proposition BZ3T4, left-sided
version) Cy, belongs to cho,,w so that M*C,, C M)\cho,,/ = MACwO’M/ =0.

Now suppose that w of RSK-shape p is not left or right equivalent to wg,. The
association C'(P, Q(w)) « C(P,t,) gives an H-isomorphism between the left cell modules
L(w) and L(P,t,) (§833)), and as seen in the previous paragraph xyHC(P,t,) = 0 since
(P,t,) is left equivalent to wo v = (t,,t,) (Remark EZ3M). These two together imply that
zy\HC, = 0 in the quotient L(w). Equivalently, 2\HC\, C (Cyly <1, w)a.

By Eq. IO, (3_,cw, vy D)2 HCy = 23HCy C 22(Cyly <1, w)a. On the other hand,
by Proposition and Proposition B33, the y appearing on the right hand side of the
last containment are such that RSK-shape(y) < . By induction xyHC, = 0 for such y.
Thus (3_,c, vy 2)z\HC,, = 0. But D wew, vy 2 being a non-zero scalar, and M* being
torsion-free A-module (it is a free A-module) we conclude that x\HC,, = 0. This finishes
the proof that the Cy,, RSK-shape(w) ! A belong to the kernel. O

4.4 Certain rings of invariants

Let k denote a commutative ring with unity. Let V be a free k-module of finite rank d over
k. Then there is a natural action of the group of automorphism of V', denoted as GL(V),
on the k-module V.

Let n € N be fixed. Consider the symmetric group &,, acting on the space of n-tensors

V®" by permuting the factors. The action of ¢ € &,, on pure tensors is given as:

(VM ® - QU)o =01 ® @ Upgy

46



This action commutes with the natural diagonal action of GL(V') on V®™. This implies
that the map ¢, : k&, — EndpV®" defining the action of G, on V®" has image lying
inside Endgp(1)V®" — the space of GL(V )-invariant endomorphism on V", The following
fundamental theorem (see [dCP76, Theorems 4.1, 4.2]) in classical invariant theory states
that this map is a surjection onto Endg ) V®™:

Assume that no non-zero polynomial of degree n with coefficients in k van-
ishes on k. (This holds for example when k is an infinite field, no matter
what n is.) Then the k-algebra map ¢, maps onto Endg L(V)V®" and its ker-
nel is the two-sided ideal J(n,d) — the two-sided ideal generated by the element
Yd = ZT€6d+1 e(1)7T, where G441 is the subgroup of &,, consisting of the per-
mutations that fix point-wise the elements d + 2, ..., n; when n < d, J(n,d)
is defined to be 0.

With the assumption on k as in the above statement, the quotient £&,,/J(n,d) can
hence be identified with the space of GL(V)-invariant endomorphism on V®". By this
identification, describing a basis for the quotient will provide us also with a description of

a basis for Endg L(V)V®". A basis for the quotient is indeed given by the next theorem.

Theorem 4.4.1 Let k be a commutative ring with unity. For n, d € N, let J(n,d) be the
two-sided ideal defined as above. Then the permutations o of &, such that the sequence 1o,

..., no has no decreasing subsequence of length more than d form a basis for kS, /J(n,d).

The main ingredient in the proof is Lemma below. It is a two-sided analogue of
Proposition B3T14

Lemma 4.4.2 Let ((d) denote the partition (d + 1,1,...,1) of n. The two-sided ideal
C is a free A-submodule of H with basis C,, RSK-shape(z) has more than d rows

Wo,¢(d)

(or, equivalently, RSK-shape(z) < ((d)’).

PROOF: Since wg ¢(q) has shape ((d)" (see Remark Z3), it follows from the combinatorial
description of <i,r in Proposition that © <pr wp ¢(q) if and only if RSK-shape(x) <
¢(d)'. So it is clear from the definition of the relation <pr (§Z2Z2) that the two-sided ideal
HCu, .oy is contained in (Cy|RSK-shape(z) < ((d)’)a. To show the reverse contain-
ment, we first observe that if z = wg,/, the longest element of its shape then C, belongs
to the right ideal Cly, ., whenever p = RSK-shape(x) < {(d)': it is enough, by Proposi-
tion BT to show that x <gr wg ¢(q); on the other hand, by Lemma ZITR(1), x <gr wo ¢(q)
is equivalent to z(1) > x(2) > ... > z(d + 1), which clearly holds for the elements x that
we are considering.

Now suppose that x is a general element of RSK-shape p < {(d)". Proceed by induction
on the domination order of u. The base case is proved by the argument in the previous
paragraph. Assume C, € HCy, ,H for y such that RSK-shape(y) <pu. Let x « (P,Q)
under RSK-correspondence. Then, on the one hand, the association C(P,Q) < C(t,,Q)
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gives an H-isomorphism between the right cell modules R(x) and R(v), where v is the
permutation corresponding under RSK to (t,,Q) (§833); on the other, since v < (t,,Q)
is right equivalent to wg s < (tu,t,), there exists, by Proposition B3T4, an element h
in ‘H such that C, = Cw(),u/h; so that, by the definition of right cell modules and the
isomorphism between R(wp,/) and R(u) where u < (P,t,) under RSK,

Cpy = Cyh (mod (Cyly <ru)a).

Now, y <g u implies, by Propositions 2230, 230, RSK-shape(y) < < ¢(d)’; and, by the
induction hypothesis, Cy € HCly, ., H. As to C(P,t,), being left equivalent to C(t,,t,),
it belongs, once again by Proposition B3.T4 to the left ideal HC, e which as shown in
o.cay - Thus Cp = C(P,Q) € HCuwq ()", and

we are done. O

the previous paragraph is contained in HC,,

PrOOF OF THEOREM LTI GIVEN LEMMA EEZ 2] As seen in §2 kG, is the specialization
of the Hecke algebra H: kS, ~ Hjp := H ®4 k, where k is an A-algebra via the natural
ring homomorphism A — k defined by v — 1. Under the map H — H ®4 k given by
z — z ® 1, the image of Cly, ., I8 Cwo,g(d) ®1 = yq, by ENq B3). Denoting by J the
two-sided ideal of H generated by Cy, ., , we thus have H/J @4 k ~ k&, /J(n,d).

On the other hand, combining Lemma, with the observation in §ETT1 we see that
H/ J is a free A-module with basis T}, as z varies over permutations of whose RSK-shapes
have at most d rows. The image of T, in k&,,/J(n,d) being the residue class of the
corresponding permutation x, the theorem is proved following the easy observation that
the permutations o of &,, such that RSK-shape(o) has atmost d rows is just the set of
permutations ¢ of G,, such that the sequence 1o, ..., no has no decreasing subsequence

of length more than d. a

An alternative proof of Theorem in the special case of k = C

In order to place this discussion in its proper perspective, we use Theorem B2l for tabloid
representations to arrive at a different proof of Theorem EEZTlin the case when k = C. We
do this by establishing that the kernel of the map py as in Theorem EZT] for a suitable A
turns out to be the ideal J(n,d) as defined in the beginning of this section.

Given positive integers n and d it is easy to see that there exists a unique parti-
tion A(n,d) - n that has at most d parts and is smallest in the dominance order among
those with at most d parts. For example, \(8,2) = (4,4). Then we have,

Proposition 4.4.3 Consider the linear representation of &, on the free vector space
CT\(n,q) generated by tabloids of shape A\(n,d) (defined above). The ideal J(n,d) (as de-

scribed above with coefficients in C) is the kernel of the C-algebra map C&,, — EndcCTy, q)

defining this representation.

PROOF: On the one hand, it is easily seen that the generator y4 of the two sided ideal J(n, d)
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(defined above) belongs to ker py(, 4)- Indeed, given a tabloid {1} of shape A(n,d), there
evidently exist integers a and b, with 1 < a,b < d 4 1, that appear in the same row
of T'. This implies that the transposition (a, b) fixes {T'}. Writing G441 as a disjoint union
S'U S(a,b) (for a suitable choice of a subset S), we have ya{T'} = >, cg,., €(0)o{T} =
5 es €(0)(0 — ola, )T} =0,

On the other hand, as computed in the proof of Theorem ELZTl above, ker py(, 4y as a
C-vector space has dimension 3 5\, 9) d(u)?. Tt suffices therefore to show that J(n,d)
too has this same dimension. Since yq = Cuy ., =1 (see Equation ([8)), it follows from
Lemma EEZ2 below, that the ideal J(n,d) has dimension }_ 4 (q) d(u)?, where ¢(d) is the
partition of (d+ 1,1,...,1) of n and ((d)" denotes its transpose. But u ¥ A(n,d) if and
only if 4 has more than d rows if and only if u < ((d)’. O

In view of the above proposition and Theorem EEZT, we immediately arrive at the

following description of a basis for the above quotient:

Theorem 4.4.4 Let k = C. Then those permutations o of &,, such that RSK-shape(o)
has atmost d rows form a basis for kS, /J(n,d). O

It is easy to see from the definition of the RSK-correspondence that the permutations
described above are precisely those permutations ¢ in &,, such that the sequence 1o, ...,
no has no decreasing subsequence of length more than d, thus arriving at Theorem EZT]
when k = C.

4.4.1 Multilinear invariants

As earlier, let k denote a commutative ring with unity and V be a free k-module of finite
rank d. Let n be a fixed positive integer. Consider the space of multilinear functions
on the n-fold product (End;V)*™. There is a natural action of GL(V') on this space
induced from the action of GL(V') on (End;V)*™ by simultaneous conjugation. By the
universal property of tensor product, one can identify the space of multilinear functions on
(EndgV)*™ with the space of linear functions on (End;V)®". Also, since this identification
is compatible with the GL(V') actions naturally induced on both these spaces, we can
restrict this identification to the level of their respective subspaces of GL(V)-invariant
functions. In other words, the space of multilinear invariant functions on (End;V)*" is
identified with the linear invariant functions on (End;V)®". We can take this identification
one step further via the GL(V)-equivariant isomorphism V* ® V = End;V given by (a ®
u)(v) := a(v)u. We have the following GL(V')-isomorphisms (and thus, for the k-duals):

(End,V)¥" = (V¥ @ V)®" = (VH)®" @ V&

On the other hand, we have the identification (V* ® V)* = End;V given by the usual
GL(V)-equivariant pairing (A, @ ® u) — «(Au) leading us to the GL(V)-isomorphism

(V*)®" @ VE")* 2 End,, (V")
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Thus, the space of multilinear invariant functions on (End;V)*™ is naturally identified
with the space Endy(V®")@LV) We have seen in the beginning of &4 that (with the
hypothesis on k as required) the latter space, End(V®)“E(V) | occurs as the image of
the map ¢, mentioned there. As was also observed there, the image of the map ¢, is
isomorphic to the quotient k£S,,/J(n,d) for which the permutations o of &,, such that the
sequence lo, ..., no has no decreasing subsequence of length more than d form a basis
(Theorem EEZT]). So, going through ¢,, followed by the above isomorphism, we observe
that the image of ¢, (c) in (V*)®" @ VE")* is the GL(V )-invariant linear function, call it
Vs, given by

R Qe Qui @ Qup = (A1 @ @ an)(Uie @+ © Ung)

Note that, if we denote by a® v also the matrix of the associated endomorphism under the
identification of V*®V with End;V then a®v . f@u = a®[(v)u and Trace(a®v) = a(v).
Now it can be easily seen that the linear invariant 1, on (V*)®" @ V®" composed with the
isomorphism (End;V)®" = (V*)®" @ V& described above, produces the linear GL(V)-
invariant function on (EndgV)®" given by
AT Q- R A, — Tra,ce(AilAm ce ) ce Trace(AipAipH .- )

where 0 = (i1,%2,...)... (ip,ipt1,...) and A; denotes the matrix of the endomorphism
a; ® u; € End V', with respect to a fixed basis of V. Since endomorphisms of the form

a ® u span End V', we have seen that

Theorem 4.4.5 Let k be a commutative ring with unity. Assume that no non-zero poly-
nomial, in one variable, of degree n with coefficients in k vanishes identically on k. Let T,
be the multilinear function on (EndiV)*™ defined by:

(A1,...,An) = Trace(Ay Aiy - -+ )--- Trace(A;, Agyyy - -)
where o = (i1,12,...) ... (ip,ip41,...). Then the functions T, where o varies over permu-
tations in &, having no decreasing subsequence of length more than d, form a basis for the

space of multilinear invariants on (EndgV)*". O

4.4.2 A monomial basis for the tensor algebra

Let T denote the tensor algebra @;>o(End,V)®?. This is a graded algebra with (End;V)®*
as the i-th graded k-subspace and the multiplication on its homogeneous elements is given
by u.v i =u® v.

The group GL(V) acts on (End;V)®" for each n and hence on T'. This action preserves

the algebra structure of T, so the ring of GL(V')-invariants is in fact a sub-algebra. So
T¢HV) = @, ((EndpV)®™) V) = @, (Endgr ) V")
By the classical theorem quoted in the beginning of §£4l the map ¢, is an isomorphism
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between the quotient kS,,/J(n,d) and Endg L(V)V®", with the condition on k as required
there. Theorem EZT] therefore gives a basis of EndGL(V)V®” for each n. By just taking

the disjoint union of these bases, for n > 0 , we obtain a basis for T¢X(V) denote it as B.

Theorem 4.4.6 The basis B as described above is monomial, i.e. closed under products.

PROOF:  We obtain a description of the k-algebra T¢L(V) as follows: Consider the space
6 = ®p>0k6,, with the following multiplication: for 7 in &,, and ¢ in &, 7 - o is the

permutation in &,,4,, that, as a self-map of [m + n], is given by

(1) ifi<m
{ oi—m)+m ifi>m+1
For each n, consider the subspace 3,, of kS, spanned by permutations that have no
decreasing subsequence of length more than d (equivalently, the k-span of permutation
with RSK-shape having atmost d rows). The direct sum P := ©,>¢P,, is a sub-algebra
of 6.

The restriction to 9, of the canonical map kS, — k&, /J(n,d) is a vector space
isomorphism (Theorem EEAT]). Let ©,, be the isomorphism

On: kG,/J(n,d) ~Endgr)(VE")

induced by ¢,,. Thus ©,>00,, is a vector space isomorphism of the algebra ‘P onto TGLV),
It is evidently also an algebra isomorphism. In particular, B is closed under products as

required. a

4.4.3 Rings of polynomial invariants

In this subsection, k denotes a field of characteristic 0. We first recall the notion of polyno-
mial invariants and then describe the well-known process of obtaining them from suitable
multilinear invariants. We then use this to obtain a generating set for the polynomial
invariants of (End;V)*™, as a consequence of results mentioned in the earlier sections.

Let W be a vector space over k of dimension m. A function f: W — k is called
polynomial if it is given by a polynomial in the co-ordinates with respect to a basis of
W. Let k[W] denote the set of polynomial functions on W, which forms a ring. A
polynomial function is called homogeneous of degree d if f(tw) = t%w for all t € k,w € W.
Every polynomial function is in a unique way the sum of homogeneous functions, called
its homogeneous components. Thus k[W]| = @k[W]; where k[W], is the set of polynomial
functions that are homogeneous of degree d.

Let W1, ..., W, be finite dimensional vector spaces such that W = @;W;. Then, a func-
tion f € k[W] is said to be multi-homogeneous of degree h = (h, ..., h,) if f(tiv1,...,t,v,) =
ti“ cothr vy, ... v) for all ty,...,t, € k and v; € W;. We have a decomposition given
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by k[W] = @renrk[W]p, where k[W];, is the set of polynomial functions that are multi-
homogeneous of degree h.

The group GL(W) of automorphisms of W, acts on k[W] where the action is induced
from the left action on W. If we consider W as a linear representation of a group G i.e.,
there is a homomorphism p : G — GL(W), then G acts on W and hence on k[W] via p. We
define a polynomial G-invariant to be a polynomial function which is constant on the G-
orbits of . Denote by k[W]% the set of polynomial G-invariants. It is a subring of k[W].
Also, since the GL(W)-action on k[W] preserves the degree of a homogeneous polynomial,
we have k[W]% = @4enk[W]S. Similarly, when W = @;W; we have k[W]¢ = @penrk[W]S.

Polarisation, Restitution and their generalizations

POLARISATION: Let f € k[W] be a homogeneous function of degree d. Let vq,...v4 be

arbitrary d vectors in W. For t1,...,ty € k, we obtain an expression for f(tjv1+---+1tqvq)
of the form
flion+ o+t = 3 B B e 0) (4.3)
S1+-+sq=d
where f,, s, is a multi-homogeneous function on Wed of degree (s1,...,84). Then the

polarisation of f, denoted as Pf, is the multilinear function f; . in the above expression.
RESTITUTION: This is the inverse operator (upto a scalar) to polarisation, by which
we obtain a homogeneous polynomial from a multilinear function. Let F' be multilinear
function on W®<. The restitution of F is the homogeneous polynomial of degree d in k[WV]
defined by RF (u) := F(u,...,u).

Remark 4.4.7 The operators
PkWla — kW™ 1) and  R:kWq, 1y — kW]

are GL(W)-equivariant. In fact, if we consider W as a linear representation of a group G,

then these operators are G-equivariant under the G-action induced on k[W].

Proposition 4.4.8 Assume char k = 0 and let W be a finite dimensional representation
of a group G. Then every homogeneous polynomial G-invariant f € k[W|E of degree d is

obtained by the restitution of a multilinear G-invariant on W%,

ProOOF: This follows from Remark EEZ7 and the observation that RPf = d!f. Indeed, by
setting v; = v for all t = 1,...,d, in (@3] and comparing it with the relation,

FQ_tw) = Q_t) f(v) = (1 + -+ ditr - ta) f(v)

we get that f is the restitution of %P f, which is a G-multilinear invariant whenever f is

a homogeneous G-invariant. O
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Generalizing to several copies: For the application we have in mind, we try to slightly
generalize the above notions.
Let f € k[W®"] be a multi-homogeneous polynomial of degree h = (h1,...,h,). Let
P; denote the polarisation with respect to the i-th variable. Then the polarisation of f is
defined as
Pf:=PPr1--Pif CkWE @ ... W]

It is a multilinear polynomial since it is linear in each variable, by construction. As earlier,
we define the restitution RF of a multilinear function F' € k[W®" @ ... @ W®h] by

RFE(vi,...,vp) = F(v1,...,01, ,Upy...,0p)
——

h1 hr

If we consider the GL(W)-action on W¢ acting diagonally then the operators P, R are
GL(W)-equivariant. And as before, we have the following

Proposition 4.4.9 Assume char k = 0. Let W be a finite dimensional representation of a
group G. Let n > 0 be fized. Then for each h = (hy,...,h,;) € N" such that hy+---+h, =
n the restitution of a multilinear invariant on WM @ ... @ Wh gives a homogeneous
polynomial invariant on W of degree m. Further, as h varies, these elements linearly
span k[WeC.

PRrROOF: The first part of the statement just follows from the definition of the operator
R along with the observation that a multi-homogeneous invariant of degree (hq,...,h,) is
homogeneous of degree hy +- - -+ h, = n. For obtaining the second part, we notice that if g
is a multi-homogeneous function of degree h = (hq,...,h,) then RPg = hq!--- h,!lg. Now

use the decomposition of f € k[W"],, as a sum of multi-homogeneous functions given by

flo, ... 0p) = Z Jot,sg(U15. .., vq)

S1+-+sq=n

Invariants of n X n matrices

With all the preliminaries in place, we finally come to the aim of this subsection which is
to describe a basis for ring of polynomial invariants of (EndgV')*™.

For a fixed integer m > 0, given a permutation o of m elements and a map v of [m] to

[n] (we use the notation [m] to denote {1,...,m}), consider the function f(o,r) defined on

(EndiV')*™ as follows: writing o as a product (ijig---)--- (ipy1ipt2---) of disjoint cycles,

flo,v)(A1, ..., Ap) = Trace(Ay ;) Ay - -+ ) - Trace(A, Ay

ipy1) v (ipr2) T )

The f(o,v) are clearly GL(V)-invariant polynomials of degree m. We obtain,
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Theorem 4.4.10 For m € Z2° fived, the invariant functions f(o,v), where o varies
over permutations of {1,...,m} that do not have any decreasing subsequence of length
exceeding d; v varies over all maps from [m] to [n], form a k-linear spanning set for the

xXn

ring of GL(V')-invariant polynomial functions on (EndV)*™ of degree m.

Proor: By Proposition EL£3, we know that the restitution, with respect to various
possible multi-degrees h = (hi,...,h,) € N" such that hy + --- + h, = n, of multilin-
ear invariants on (EndyV)*™ gives a spanning set for the ring of polynomial invariants
on (EndiV)*™. However, Theorem gives a sub-collection of multilinear invariants
{T, | 0 € G; o has no decreasing subsequence of length exceeding d} that forms a basis
for the ring of multilinear invariant functions on (EndgV)*™. Since R is a linear operator,
the images of these T, ’s under the restitution R would suffice to span the ring of poly-
nomial invariants. The statement now follows by observing that the the restitution of T,

with respect to a multi-degree (hq,...,h,) whose sum is m, gives the map

(Al,...,Ar)l—) To(Al,...,Al,--- ,Ar,...,Ar)

hi hy
which is just f(o,v) for a suitable v. O
Picture invariants
For non-negative integers ¢ and b, set Vi := V*® @ YV Given non-negative integers
t;, by, for i« = 1,...,s, we wish to describe a generating set for the ring of polynomial

GLg(V)-invariant functions on the space W = Vbtl1 X e X Vbtss of several tensors.

In [DKS03, §3], the notion of a ‘picture invariant’ is introduced, generalizing the func-
tions f(o,v) defined above. Picture invariants span the space of invariant polynomial
functions ([DKS03l, Proposition 7]) on W.

We recall from [DKS03| the definition of picture invariants. Choose a basis vy, ..., vq
for V and let v',...,v% be the dual basis of V*. Let T;';" be the co-ordinate function
on V' that is 1 on the basis element vy, ® -+ ® vy, ® @@l e V} and 0 on the
other basis elements. The ring of polynomial functions on the space Vi! can be identified
with k[T)"1 %] in d'? variables. More generally, for W (as defined above) the co-ordinate
ring can be identified with the polynomial ring k[T(z)lesz] in >°7_, d'+% variables. For
non-negative integers my, ..., ms such that > >, m;t; = > 7 m;bj = N and 0 € &y, by

the associated picture invariant on W, we mean the following element of k[W]:
s m;
> I HT(z’)r(’(zmmpbpwfl)biﬂw'"vra@mmpbwbn
T(Xp<i mpbp+E—1)b;+1)"" T (< mpbp+ib;)
(r1ye.orn)E[dN =1 \j=1

Example 4.4.11 Let W = V21 @ V12 P VO1 and m; = 2, mo = 1, mg = 1. The picture
invariant corresponding to the permutation (123)(45) is > 7'(1)72,,T(1)72,,T(2)71"5T(3)"™.

172 T3T4
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Note that k[WW] can be identified with
Symi(W*) = &;208ymi (W) = @550 D(my, me) 5 mimi} Oim1 Symig (V7))

The natural map from ®f:1((vbiz‘)*)®mi N ®f:15ym2ni((vbii)*) leads to a surjection from
the space of GL(V)-invariants V] to the space ( leSymzni((VZi)*))GL(V), where M =
> - mgt;, N = > my;b;. This followed by the observation that non-zero GL(V')-invariants
exist only if N = M, and in that case, V& = End(V®Y) enables us to use Theo-
rem EEZIl So we get that the space of GL(V)-invariants of Vi is spanned by the el-
ements » .. Uy @0 @ Upy ® VW @ - @ v as o varies over Sy with no
decreasing sub-sequence of length exceeding d and hence, we also obtain a spanning set
for ( leSym;ni((V;i)*))GL(V) (by the surjection above). Chasing through the above iso-

morphisms, it can be seen that these elements are precisely the picture invariants. Thus,

Theorem 4.4.12 (Compare [DKS03|, Proposition 7]) Only those picture invariants with
underlying permutations having no decreasing sub-sequences of length exceeding d suffice to
span as a k-vector space the ring of GLy(V')-invariant polynomial functions on the space

VI oo x Vit of several tensors. O
b1 bs
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Chapter 5

CELL MODULES: RSK BASIS,
IRREDUCIBILITY

We have seen in the previous chapter that the image of C&,, in the endomorphism ring
of the tabloid representation permits a basis consisting of permutations. Over C, as the
Specht module (associated to a partition of n) is an irreducible module for CS,, a more
natural question to ask is whether the endomorphism ring of the Specht module permits
such a basis.

By the RSK-correspondence we know that the number of permutations of RSK-shape A
is the same as the dimension of EndcS?, so an obvious choice for a basis as above would
be the collection of all permutations of RSK-shape A. However, this choice fails to form a
basis in general as is illustrated by the example in §o.T.11 Failing to find a suitable choice
of permutations that form a basis for EndcS?, we look for possible candidates in the group
algebra CG&,,.

Going through the proof of Theorem EE2] one immediately notices that the Kazhdan-
Lusztig basis elements parametrized by the permutations of RSK-shape A suggest them-
selves to form a basis that we seek. In Theorem BTl we make the precise statement and
prove it using the same ideas as in Theorem EEZTl More generally, we prove in Theo-
rem that for any finite-dimensional representation U of C&,,, we obtain a basis for
the image of C&,, in the endomorphism ring Endc(U). All these statements are presented
and proved in the set-up of the Hecke algebra Hj, and its right cell modules R(\)g, where
k is a field over which Hjy, is semisimple. Recalling that the cell module R()) is isomorphic
to S* (§84), we note that the same statements are true also for the Specht modules of Hj,.

The proof of Theorem BTl relies on the semisimplicity of H; which is not true in
general. As was indicated also in the introduction, we deal with the case when Hj is not
semisimple by a head-on approach via the matrix G(\) defined in §5ZT1 The matrix G(A)
encodes the action of H on R()\) in a systematic way, described in §8221 The determinant
of this matrix turns out to be related to the determinant of a bilinear form defined on
R(A). This is done in §623 This also turns out to be the key step in arriving at a
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bases for EndR(\)y in the non-semisimple case giving analogues of Theorem BTl under
certain additional conditions. In §8 T3 these analogues are formulated but their proofs
are deferred to §5.41 after all the ground work required for it is done.

It is easy to see that if the module R(\)y is not irreducible then a basis for End R(\)y
as in Theorem BTTlis not possible. We pursue this idea to obtain a criterion for the irre-
ducibility of R(\)g in terms of the determinant of G()), stated precisely in Theorem B3l

5.1 RSK Bases for EndR(\);

Let k£ be an arbitrary field and a € k be invertible. Let Hj denote the specialization of H
via v +— a (refer §27)).

In this section, we focus on presenting a basis for the endomorphism ring of the right
cell module R(\)j corresponding to a partition A = n. The case when Hj is semisimple
is treated differently from the case when it is not. In the semisimple case we use the
Wedderburn theory that we had discussed in 833 The non-semisimple case is more
complicated and the result is proved with a hypothesis on the partition A, namely that it
is e-regular (see §5.1T.3)).

Before we proceed further, it is good to note that under the isomorphism given in
Proposition B2Z3], all the discussion in this section extends verbatim to the endomorphism

ring of the corresponding Specht module.

5.1.1 An illustrative example

The purpose of this example is to show that images in EndcR(\)c of permutations of
RSK-shape A do not in general form a basis of EndcR(\)c.

Let n = 4 and A = (2,2). Then R(MA)c is the unique 2 dimensional complex irre-
ducible representation of &4. Consider the action of &4 on partitions of {1,2,3,4} into
two sets of two elements each. There being three such partitions, we get a map &4 — Gs,
which is surjective and has kernel {identity, (12)(34), (13)(24), (14)(23)}. Pulling back
the 2-dimensional complex irreducible representation of &3 via the above map, we get an
irreducible 2-dimensional representation of &4, which therefore has to be R(A)c. Thus the
elements in the kernel of &4 — &3 are also in the kernel of &4 — EndcR(\)c. In &y,
the permutations of RSK-shape A are (13)(24), (1342), (1243) and (12)(34). The first and
last of these are in the kernel of 64 — EndcR(\)c so they are in fact mapped to the same
element in EndcR(\)c.

5.1.2 The case of semisimple H;

In this subsection, we assume that Hj is semisimple. From [D.J86, Theorem 4.3] we recall

that Hj, is semisimple except precisely when

e cither a2 = 1 and the characteristic of k <n
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e or a’ # 1 is a primitive r*" root of unity for some 2 < r < n.

Theorem 5.1.1 For A a partition of n, the images in EndyR(\)x of the Kazhdan-Lusztig
basis elements C,, RSK-shape(x) = X form a basis (for EndR(\)g).

ProoFr: By Theorem B3T8(4), Hi ~ ®x—rnEndR(\);. The projections to EndR(v)y of
C,, RSK-shape(z) < A, vanish if v € A (§E£I2). Therefore the projections of the same
elements to ®,<)\EndR(yu);, form a basis: note that the number of such elements equals
>y dim Endg R(p)y. Again by §ET2 the projections of Cy, RSK-shape(z) <A, vanish in
EndR(\)g. This implies that the projections of C, RSK-shape(z) = A, in EndR(\); form
a spanning set. Since the number of such C, equals dim EndR(\), the theorem follows.O

Theorem 5.1.2 Let U be a finite dimensional representation of Hy and S the subset of
partitions \ of n such that R(\)g appears in a decomposition of U into irreducibles. Then
the images in EndiyU of Cp, © € &, such that RSK-shape(xz) € S form a basis for the
image of Hy (under the map Hy — EndpU defining U ).

PROOF: It is enough to prove the assertion assuming U = @ csR(A)k. The image of Hy, in
EndU is @esEndg R(A\)x (Theorem B3I (1), density theorem, and [Bou73l, Corollaire 2,
page 39]). Proceed by induction on the cardinality of S. It is enough to show that the
relevant images in EndgU are linearly independent, for their number equals the dimension
of @resEndgR(A)g. Suppose that a linear combination of the images vanishes. Choose A €
S such that there is no p € S with A < pu. Projections to EndgyR(\)g of all Cpy A #
RSK-shape(z) € S, vanish (§£I2). So projecting the linear combination to End;R(\)j
and using Theorem BTl we conclude that the coefficients of C,, RSK-shape(z) = A, are
all zero. The induction hypothesis applied to S\ {\} now finishes the proof. O

5.1.3 The case of arbitrary H,

The results in this section are true for arbitrary Hj.

Let a € k be such that Hj, is the specialization of H via v +— a. We denote by e the
smallest positive integer such that 1 + a2 + --- 4+ a21) = 0; if there is no such integer,
then e = co. Recall that, a shape X is called e-regular if the number of rows in it of any

given length is less than e.

Theorem 5.1.3 For an e-reqular shape A\ such that R(\)y is irreducible, the Kazhdan-
Lusztig basis elements Cy,, w of RSK-shape A, thought of as operators on R(\) form a
basis for EndgR(\).

(Proof deferred until §5.7).

Theorem 5.1.4 Suppose that N, the transpose shape of A, is e-reqular and that R(\)y is
irreducible. Then the elements C!,, RSK-shape(w) = X, as operators on R(\)x form a
basis for EndgR(\)g.
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(Proof deferred until §5.7))

Theorem 5.1.5 Let S be the set of e-reqular shapes \ such that the Specht module R(\)y
15 wrreducible. Let U be a finite dimensional semisimple Hy-module, every irreducible com-
ponent of which is of the form R(A)k, A € S. Let X be the subset of S consisting of those
shapes A such that R(\)x appears as a component of U. Then the images in Endi U of C,,
x € &,, such that RSK-shape(x) belongs to X, form a basis for the image of Hy. in EndxU
(under the map Hy — EndiU defining U ).

PROOF: The proof is similar to that of Theorem O

Remark 5.1.6 Note that TheoremsBET3] are generalizations of Theorems BTl

respectively to the case of arbitrary Hy.

5.2 The matrix G(\) and its determinant

Let A be a fixed partition of n. Our goal in this section is to study the action of the
elements C,, RSK-shape(w) = A, on the right cell module R(\). The motivation for doing
this is to prove Theorem

We observe in §8. 22 that all information about the action can conveniently be gathered
together into a matrix G(\) which breaks up nicely into blocks of the same size (Propo-
sition E2Z3)). The non-zero blocks all lie along the diagonal and are all equal to a certain
matrix G(A) defined in §6ZT1 This matrix encodes the multiplication table modulo lower
cells of the C,, of RSK-shape A. In §8 23 we show that this relates to the matrix of a
bilinear form on R(A).

5.2.1 Definition of the matrix G(\)

Let Py, ..., Py, be the complete list of standard tableaux of shape A.

Lemma 5.2.1 Fori, j, k, 1 € {1,...,m} we have,

C(P,, P;) - C(Py, P) = gfC(P;, ) mod
(Cy|RSK-shape(y) <A, y <iL(Pr, P1), y<r(Pi, Pj))a (5.1)

ProoF: To prove the above relation, consider the expression of the left hand side as a
linear combination of the C-basis elements. For any () occurring with non-zero coeffi-
cient in this expression, we have y <g(F;, P;) and y <r,(P, F;), by the definition of the
pre-orders (§Z2Z72). By Proposition 230, RSK-shape(y) < A; and if RSK-shape(y) # A,
then y <gr(P;, P;) and y <1,(Py, P,). If RSK-shape(y) = A, then, by Proposition EZ31,
y ~1LRr(Px, P); by Proposition 230 y ~1,(Py, P); so, the @-symbol of y is P;; and, analo-
gously, the P-symbol of y is P;. That g;? depends only on the indices ¢ and [ follows from
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the description of the H-isomorphisms between one sided cells of the same RSK-shape as
recalled in §830 and (BT) is proved. O

Definition 5.2.2 With g;?, 1 < 4,k < m given by the above lemma, we define the matrix
G(N) = (g} )1<jh<m

5.2.2 Relating the matrix G(\) to the action on R(\)

Enumerate as Py, ..., P, all the standard Young tableaux of shape . Let us write C'(k,1)
for the C-basis element C(Py, P;). Consider the ordered basis C(1,1), C(1,2), ..., C(1,m)
of R(\). Denote by eg the element of EndR(\) that sends C(1,4) to C(1,75) and kills the
other basis elements. Any element EndR(\) can be written uniquely as ) ozg eg , for some

ag € A. Arrange the coefficients as a row matrix like this:

1 2 2 |

1 1 2 m
(al ay ..ol | o ai ... a

| o ot ... aﬁ)

Now consider such row matrices for p)(C(k,l)), where py : H — EndR()) is the map
defining the representation of H on R(\) . Arrange them one below the other, the first row
corresponding to the value (1,1) of (k,1), the second to (2,1), ..., the m*" row to (m, 1),
the (m + 1)™ row to (1,2), ..., and the last to (m,m). We thus get a matrix—denote it
G(M\)—of size d(\)? x d(A\)?, where d()\) := dim R()\).

Let us compute G(X) in the light of (B)). Setting of (k,1) := of (pr(C(k,1))), we have
(mind the abuse of notation: this equation holds in R(\), not in H):

C(1,i)pAC(k,1) = Zag(k,z)cu,j).

The left hand side is just C(1,7).C(k,1), so applying ([&J) to it and reading the result as
an equation in R()), we see that it equals g¥C(1,1). Thus

, kit j=1
Ak =4 % "I
0 otherwise

which means the following:

Proposition 5.2.3 The matriz G(\) (defined earlier in this section) is of block diagonal
form, with uniform block size d(\) x d(X\), and each diagonal block equal to the matriz
G(\) = (gF) of §EZD, where the row index is k and the column indez i. O

5.2.3 The Dipper-James bilinear form on R(\)

Pulling back via the isomorphism 6 of §84 (see ([B) for definition of 6) the restriction
to S* of the bilinear form on M?* defined in §8311 we get a bilinear form on R()) (which

we continue to denote by (,)). Let us compute the matrix of this form with respect to
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the basis C(1,1), ..., C(1,m), where, as in §.2Z2 Py, ..., P, is an enumeration of all
standard tableaux of shape A, and C'(k, ) is short hand notation for C (P, P;). We further
assume that P = t), so that the right cell with P-symbol P; is the one containing wq y
(which under RSK corresponds to the pair (P;, P;)—see Remark

Proposition 5.2.4 The (i,7)-th entry in the matriz of the bilinear form (,) on R(\) is
given by,
<C(1’i)’ C(laj» = EQUO’A/UWO’A/’UEUAQ;'

PRrROOF: The explanations for the steps in the following calculation appear below:

(C(1,1),C(1, 1)) = (C(1,0)0,C(1, 1)8) = (22T vy C(1,1), 23Toyvun C(1, )
= vpy (22T, 22T, C(1,5)C(1,4)*) = vl (@2 Ty, 22T, C(1,5)C(i, 1))
= vﬁu <x)\TwA,x)\TwAg§C(1, 1)) = vikgﬁi (@ATowy, 2Ty €wy y Vwg 0 YN )
= ewo’k,vwo’k,vikgﬁi Z ewv;1<ﬂ:)\TwA,x>\TwATw> = ewO’A/va’A/v?ﬂAg;
weW,,

The first equality follows from definition of the form on R(\); the second from the definition
of 6; the third from (BH); the fourth from the relation C}, = C,-1 (by definition, T} =
T,-1, so the characterisation C,, = T,, mod H~¢ implies that C} = C,-1). For the
fifth, substitute for C'(1,7)C(i,1) using (BJ]) and observe that the ‘smaller terms’ on the
right hand side belong to the kernel of # (§84]). The sixth follows by substituting for
C(1,1) = Cy, ,, from ([3)); the seventh from the definition of yy/; and the final equality by
combining thé definition of the form and Remark 314k observe that T, Tty = Ty, w since
l(wy) + l(w) = l(wyw) (similar to Proposition Z3I0(3)) and that wyw belongs to Dj.
O
Having come thus far, we immediately get a formula relating the determinant of the

form (,) with the determinant of the matrix G(\).

Corollary 5.2.5 The determinant of the matriz of the form (,) on R(X\) with respect to
the basis C(1,1), ..., C(1,m) equals

it VsV det GA) (5.2)

d

The above corollary plays a key role for plugging the seemingly extraneous condition of
e-regularity in Theorem (see Proposition BAT]).

5.3 A criterion for irreducibility of R()\);

Let a € k be invertible. We consider the specialization Hj, via v — a. Since the dimension
of EndiR(\)y is d(\)? we observe that if the Kazhdan-Lusztig basis elements C,, w of
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RSK-shape A, thought of as operators on R(\), are linearly independent then they in fact
form a basis for EndgR(\)g. In such a case, the module R(\) has to be irreducible. In

view of this observation, we have the following:

Theorem 5.3.1 If det G(\)|y—q does not vanish in k, then R(\)y is irreducible.

PROOF: Suppose that det G(\)|,—, does not vanish in k. Then, by Proposition (2Z3] the
matrix G(A) is invertible (in k, after specializing to v = a). Thus the elements Cy,, w of
RSK-shape A, are linearly independent (and so form a basis) as operators on R(\)g. In

particular, R(\)y is irreducible, and the assertion is proved. O

5.4 Proofs of Theorems B.1.3, 5. T.4

Proposition 5.4.1 If X is e-regular, the bilinear form (,); on R(\)y is non-zero.

ProOF: This can be readily seen by using Proposition B3TIF for eq, eq € S,? given
by Proposition B3], we have by the definition of the bilinear form on R()\); that
(0(e1),0(e2)) = (e1,e2) # 0, as required. O

Proof of Theorem By (B3), the radical of the form (,)x on R(A) is a Hy-
submodule. Since R(\)j is assumed irreducible, the form is either identically zero or non-
degenerate. But, as shown in Proposition B.ZT] above, it is non-zero under the assumption
of e-regularity of A. Thus its matrix with respect to any basis of R(\); has non-zero
determinant. By (&32), det G(\)|y=q is such a determinant (up to a sign and power of a),
0 it is non-zero. It now follows from Proposition that the operators Cy,, w of RSK-
shape A, form a basis for EndR(\). O

Proof of Theorem B.T.4t By Theorem BI3) the Cy,, RSK-shape(w) = X, as operators
on R(XN)y form a basis for EndR(\)y (note that R()\)y is irreducible by Proposition B53},
recall R(X) = SN'). By Proposition we have an isomorphism R(\)g ~ (R(X)L)dual )
the C,,, RSK-shape(w) = X', as operators on (R()\’)L)d“al " form a basis. By our notations
(refer §8.3), we know that the Cy, action on the latter space is given by j(Cy) = €,C!
(since C} = Cy,—1, Remark ZZ7(i)). The result now follows by observing that the RSK-

shapes of w and w™! are the same. O

5.4.1 Condition of e-regularity in Theorem

The condition of e-regularity assumed in Theorem is necessary. In other words, for
an arbitrary shape A it is possible that the module R(\)g is irreducible, however, the
Kazhdan-Lusztig basis elements C,,, w of RSK-shape A, thought of as operators on R(\),
do not form a basis for End;R(\);. We illustrate this in the following example.

Let H be the Hecke algebra corresponding to &4. Let A = (2,2), k a field and Hy, the
specialization given by v +— 1 (see §£2 plIl). Consider the right cell module R(\)y. For

simplicity of calculations we work with the Specht module associated to A instead of R(\)g
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both of which are isomorphic (Proposition BZ3]). Recall from §82 that the standard basis
of the Specht module is given by

e 1= Z e(o){To}

where T is a standard tableau of shape A; the sum is taken over permutations ¢ in the
column stabiliser of T'; and {T¢} denotes the tabloid corresponding to the tableau To.

Hence the following two elements form the standard basis for S,i‘:

1 2 2 3 1 4 3 4 1 3 2 3 1 4 2 4
61: —_ —_ + 62: —_ —_ +
3 4 1 4 2 3 1 2 2 4 1 4 2 3 1

With respect to the above basis, the elements Ty 3, T(23), T(3.4) in Hy = k&4 act on S,i‘

(35) () (50)

If char(k) is 2 then e = 2. Note that in this case ) is not e-regular (nor is )’ e-regular).
Also, by the above calculation it can be easily seen that when the characteristic of k is 2
the Specht module S,i‘ is irreducible.

The permutations w such that RSK-shape(w) = (2,2) are 3142, 2413, 2143, 3412
(where 3142 denotes the permutation given by 1 +— 3, 2 +— 1, 3 — 4, 4 — 2). Us-
ing the notation T'(i1,...,4;) = T(;; 4;41) " ++T(4;,i;41), the KL-basis elements C, € Hy,

corresponding to the above four permutations are given by:

Coza = —T(1)=T3)+T(1,2) +T(1,3) +T(2,1) +T(2,3) + T(3,2) +
—T(1,2,1) — T(1,3,2) = T(2,1,3) — T(2,3,2) + T(2,1,3,2),

Cons = —id+T(1)+T(2)+T(3)—T(1,3) —T(2,1) — T(2,3) + T(2,1,3),
Caiz = —id+T(1) +T(2)+T(3) - T(1,2) — T(1,3) — T(3,2) + T(1,3,2),
Cous = id—T(1) = T(3) +T(1,3).

By the earlier calculations, we note that 71 oy (= T'(1)) and T34y (= T'(3)) act identically
on Sp. Also, T(i)? = id and T(1,2,1) = T(2,1,2) in k&4. Hence it can be easily verified
that the above Cy,’s acts trivially on S (since char k = 2). O
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Chapter 6

A FORMULA FOR det G(\) AND AN
APPLICATION

We begin this chapter by investigating more closely the matrix G(\) introduced in §5211
This matrix was seen, in §§. 23 to be related to the matrix of the Dipper-James bilinear
form on R(A) (w.r.t the C-basis). In §6.0], we describe the relation between the latter
matrix and the matrix of the bilinear form on the Specht module S* which was defined
in 832 (w.r.t the standard basis) and thus naturally leading us to an explicit relation
between the matrix G(\) and the matrix of the bilinear form on S* (w.r.t the standard
basis).

The main result of this chapter is a combinatorial formula for the determinant of G(\)
deduced from the above relation. As an application of this formula we give, in §§3 a new
proof of the Carter conjecture ([Jam78]) regarding irreducibility of the Specht module.
The formula is stated in §&2 while we work through its proof only in §6.41 assuming some
known results recalled in §6.4.T1

6.1 Relating det G()\) and the Gram determinant

The Gram matriz of S* is the matrix of the restriction to the Specht module S* of the
bilinear form (,) on M?* (defined in §8311), with respect to its ‘standard basis’ as given in
Theorem B3 The determinant of this matrix is called the Gram determinant, denoted
as det(A).

Our goal in this section is to relate G(\) to the Gram matrix. Towards this, let us
compute the image under the map 6 of the T-basis elements of R(\). Given a prefix e of

w)ys, we have

CugpTel = v, @xTw,Cuy , Te (by the definition of 6 in (B1))
- ewo’vaoykl (Uwa)\TwAyX) Te (by (m))
= €wy Vw2 Te (by the definition of z in §33)

— -1
= Cwy 1 Vuwg \r Ve ('Ue Z)\Te)
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From the above calculation, we have for prefixes e, €’ of wy:

(«c

W, \/

T.0,Cy ., T0) =02 v v Y (wenaT,, v 2xTw)

0,\ ’IUO’)\/ e e

Note that v.2)T. is a standard basis element of S*. Hence the right hand side of the above

2 -1
wo»\/ve

we had defined the bilinear form on R(A) in such a way that,

relation is v ve_,l times the (e, €’)-th entry of the Gram matrix. On the other hand,

<Cw0’>\/T69, C Tel>

Wo, \/

To8) = (Cu, ,, Te, C

W, A/

Thus we conclude that the determinant of the matrix of the bilinear form (,) on R(X)
with respect to the T-basis equals v?;é(A)(He ve)"2det(A). Combining this with Proposi-

Py

tion B3T17 which relates the C-basis of R(\) with its T-basis, and Corollary B2ZH, we get
the following:

Proposition 6.1.1 The determinant of the matriz G(\) is given by,
det G(A) = (€wg y Vg 50 Vi)™ ([ [ ve) ~*det(N) (6.1)

where the product is taken over all prefizes e of wy.

6.2 Hook Formula for the determinant of G(\)

We now give a formula for the determinant of the matrix G(A\). We set the following

notation:

e [\]:= the set of nodes in the Young diagram of shape A;
o hgp:= hook length of the node (a,b) € [A\] (see §Z3T).

e For a positive integer m,

[m]v . vl—m + US—m R vm—S + Um—l

[m]y == 1+0? +o! 4o p2mD)

Assuming A has r rows, we can associate to A a decreasing sequence—called the (-
sequence—of positive integers, the hook lengths of the nodes in the first column of A\. The
shape can be recovered from the sequence, so the association gives a bijection between
shapes and decreasing sequences of positive integers. Given such a sequence 81 > ... > .,
write d(f01, ..., ) for the number d(\) of standard tableaux of shape A (§Z31). Extend
the definition of d((1,. .., §,) to an arbitrary sequence of 31, . .., 8, of non-negative integers
at most one of which is zero as follows: if the integers are not all distinct, then it is 0; if the

integers are all distinct and positive, then it is sign(w) d(By(1), - - - > Bw(r)) Where w is the
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permutation of the symmetric group &, such that Sy,1) > ... > By); if the integers are
distinct and one of them—say (y—is zero, then it is d(61 — 1,02 —1,..., Bk—1 — 1, Bk+1 —
1,..., 8, — 1), which is defined by induction on r.

Theorem 6.2.1 (HOoOK FORMULA) For a partition A of n,

) (hac] d(B15--sBathocy-,Bb—hbey--,0r)

det G(A) = €, (—acv> 6.2
W= 11 Ty (6.2)
with notation as above, where B1 > ... > [, is the B-sequence of A and the product runs

over {(a,b,c)|(a,c), (b,c) € [\] and a < b}.

The proof of the above theorem is deferred until §6.41

6.3 A new proof for Carter’s conjecture

In this section, as an immediate corollary of the above theorem, we present a new proof of
a conjecture of Carter (proved in [JTam78]).

Let p denote the smallest positive integer such that p = 0 in k; if no such integer exists,
then p = oco. For an integer h, define v,(h) as the largest power of p (possibly 0) that
divides h in case p is positive, and as 0 otherwise. Let e be the smallest positive integer

such that 1+ a2 4 - + a2~ = 0; if there is no such integer, then e = co. For an

0 ife=o0orefh
Vep(h) := 1 .
+vp(h/e) otherwise

integer h, define

The (e, p)-power diagram of shape A is the filling up of the nodes of the shape A by the
Ve,p's of the respective hook lengths.

Observe that e = p if @ = 1. Then the (e, p)-power diagram is just the p-power diagram

of Carter [TamT78].

Corollary 6.3.1 [Jam78, [UNM97| If the (e, p)-power diagram of \ has either no column or

no row containing different numbers, then Sli‘ 15 irreducible.

PRrROOF: It is enough to do the case when no column of the (e,p)-power diagram has
different numbers: if the condition is met on rows and not on columns, we can pass to \
and use the observation (Proposition BA3) that Sp is irreducible if and only if S,i‘/ is.

So assume that in every column of the (e, p)-power diagram the numbers are all the
same. We claim that each of the factors [hgc|y/[hpe] on the right hand side of (E2)
makes sense as an element of k£ and is non-zero. Combining the claim with Theorems
and B3] yields the assertion.

To prove the claim, we need the following elementary observations, where h denotes a

positive integer:

e [h], vanishes in k if and only if e is finite and divides h.
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e if ¢ is finite and divides A, then [h], = ([h/€]y) |v=ve [€]v-
e a%¢ = 1if e is finite.

If either ¢ = oo or e does not divide any of the hook lengths in shape A, then the claim
follows from the the first of the above observations. So now suppose that e is finite and
divides either hg. or hy.. By our hypothesis, e then divides both h,. and hy.; moreover
both hy./e and hy./e are divisible by p to the same extent. Using the second and third
observations above, we conclude that the image in k of [hgcly/[hpe]y 1 the same as that of

the rational number hg./hp. (written in reduced form), and so is non-zero. O

6.4 Proof of the hook formula

In this section we establish the formula (B2) given in §62 Throughout this section, we
let F' denote the field Q(v), the field of fractions of A.

6.4.1 Preliminaries

We begin by recalling some preliminary results from [D.I87], [IM97], that we will use.

An orthogonal basis for the Specht moduleEI

Fix a partition A - n. Theorem B3 presents the standard basis for Specht module
Sx. As Sy is equipped with a bilinear form (§52) we may also look for a basis that is
orthogonal with respect to this bilinear form. We are interested in such an orthogonal
basis as a means of simplifying the computation of the determinant of the Dipper-James
bilinear form on S}.

Following the exposition as in [[D.I87] (recall difference in notations §22)) for construct-
ing this basis for S}, we first define the Jucys-Murphy elements of ‘H as follows: Li := 1T}
and

Ly = v_l(T(k_Lk) +Tip—opy + + T for k=2,...,n.

Let {d € &, | dis a prefix of wy'} = {di,...,dn} (m = dim4S*) ordered in such a
way that i < j, if [(d;) < I(d;). Then e; := vg,2\Ty,, i = 1,...,m is the standard basis of
).

For notational convenience we set ¢ := v?. For a Young diagram of shape ), we define
the residue of the (i, j)-node to be 14q+- - +¢qU ="V if j > iand —q~'—q2—- - -—q~ 0= if
i > j. For 1 < k < n, define r;(k) to be the residue of the node containing k in S; := t*wyd;.

We define operators F; € Hp (1 <i < m) via the Murphy operators as follows:

11 10 Le—rik)
el L =

LA more detailed exposition can be found at http://www.imsc.res.in/"preena/Appendix.pdf



Define elements f; € Sj\; by setting f; == e; ;" fori=1,...,m.
In the next lemma, we list out the properties satisfied by the elements f; € Sf}. That

they form an orthogonal basis will follow from these properties.

Lemma 6.4.1 [D.IR7, Lemma 4.6] Let 1 <i < m. Then,
1. for1<j<i—1,¢eE"=0;
2. for 1 <m <mn, fiLy =ry(m)f;;
3. if1 <j<d,i#j then (f;, fj) =0,
4. (fivei) = (fi, i) and (fi,e;) =0 for 1 <j <i—1.
5. fi = e;+ a linear combination of ej, j < i. a

We do not include the proof@ of the above properties which can be deduced from certain

Garnir relations satisfied by z).
A combinatorial result

We now recall (without proof) a combinatorial result from [IM97].

Let A - n be a fixed partition. Following the notation as in [IM97, §2.16, p247] we
define A, () in the special case of p = 1™. In this case, To(A, 1) denotes the set of standard
tableaux of shape A. For each s € To(\, 1) and (7,7) € [A], let

Ds(i,5) = {(k,1) € [\] : 1 < J, s < 845, and sy > s;5 for all k' > k}

where si; denotes the entry in the (k,l)-th node of s. Note, I's(7,7) is the set of nodes
(k,1) such that the I-th column of s lies to the left of the j-th column and sg; is the largest

entry in the [-th column which is less that s;;. Set

j—i+k—1+1
w= 11 11 [[j—i+k—l] b
(i.5)€[N (k,))ETs(i,5) 1

The contribution to vs from the node (k,l) € I's(4, ) is precisely [p + 1]4/[p]; where p is
the azial distance from (k,l) to (i,7) defined to be (k — i)+ (j —1) if k> ¢ and 57 > .
Finally, we define A, (A) = [[e7(r ) Vs- We have the following combinatorial result

from [IM97] (also see [Maf99, Theorem 5.2.7]):

Lemma 6.4.2 ([IM97], Corollary 2.30) With notations as above and let a; > ag > ... >
a, > 0 be the B-numbers for N'. Then

=T (2

where this product is over {a,b,c | b < ¢, (a,b) and (a,c) € [A]}. 0

> d(a’l7---7ab+ha07---7ac_haa@é'r)
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6.4.2 Computing the Gram determinant det(\)

Recall notations as in 8411 Let dy,...,d,, be the prefixes of wy ordered so that ¢ < j if
I(d;) < 1(d;). Let e; := vg,2xTy,, 1 < i < m be the standard basis of S* (see Theorem B3.7).
Let f;, 1 < i < m be the orthogonal basis of Sp as defined in §5A1l (see also [D.IRT,
Theorem 4.7]). The basis f; is in unitriangular relationship with the e; (Lemma BZT]).
Thus we have, det(\) = [~ (fi, fi)-

We would like to give a more explicit formula for the Gram determinant. For this we
set some notation. Let Si, ..., S, be an enumeration of all the standard tableaux of
shape A such that S; = t\d;. For 7, uw such that 1 < ¢ < m, 1 < u < n, let S} denote
the standard tableau obtained from S; by deleting all nodes with entries exceeding u; set
Vi 1= H?;% [hjblq/[hjb — 1]q where (a,b) is the position of the node in S}* containing u, h;y,
is the hook length in S¥ of the node in position (j,b), and [s], := 14+ v +v* 4 - 267D
for a positive integer s.

With this notation, we get

Lemma 6.4.3 (compare [D.J87, Lemma 4.10]) For 1 < i < n, (f;, f;) = o™ [[0_; Yui

where the exponents are given by,

r1 = l(wy) —I(wg ) and
ri = 7;+ 1 where 1 < j <isuch that e; = ve;T(}_1 ).

For outlining a proof of the above lemma we will need to recall a result from [[D.I87,
Theorem 4.9]. The proof of the following result involves properties of the basis f; listed
in Lemma and some combinatorial observations regarding residues (see §6.4.1] for

definition). Being fairly computational we do not include it here.

Theorem 6.4.4 (J[.I87, Theorem 4.9(ii)]) Let A - n, m = dim Sp. Let 1 <i < m and
2 < k < n. Denote by p the axial distance between the nodes occupied by k and k — 1 in
ti, where the azial distance between the nodes (a,b) and (a',b") such that a > a', b’ > b is
defined to be (a —a') + (V' —b). Let g =2 Ift;(k—1,k) =t; for some j then
A fi+ f; ifi<j
i j Js
JiTek—1) = { lela

— i+ gy it >

Proor oF LEMMA 43 Proceed by induction on 3.
¢ = 1: In this case, we have f; = e; = z). Substituting for z) and in turn for y, from
their definitions in §831 we get

<f1’f1> = <Z)\’Z)\>
= <Uw>\ .%')\ka YN 5 Uy, .%')\ka y)\'>

2 -1,,—1
Vi Zu,u’EWA/ €u€u Uy Uy (XX Towy Ty €2 Ty Tor)
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Using in order (B3]), Lemma Z2Z4(4), Remark EZ3T4 and the definition of (,), we get:

(@ATw\ Ty, AT Ty = (2T, 23Ty T Ty-1)
= (@xTwy, 2ATw, (Tyry—1 + ZweWA/ wsuu—1 Cwlw))
= (zy wx,x)\ wywu-1 + Zwewy wsuu—1 Cwlwyw)
if u =1

0 otherwise

so that

_ .2 2:—2_2—2 2:2 -2 _ .2 -2 §:2
<f15f1>_vw>\ Uy, _’Uw)\vwo’y vwo’yvu _vwkvwo’y Uy

uEWA/ uEWA/ UEW)\/

Routine calculations show:
S 2 = @, and ST2 = LN

where [n];

given the fact that S; = ¢, shows:

[)‘, H Yul

i >1: For i > 1 we have, €; = ;T (;;,_1,,) for some 2 <m <nand 1 <j <i. Using

= [n]gln — 1]g---[1]g and X = (N},...,A}). Finally, a pleasant verification,

this and the properties of f; listed in Lemma B4l we get the following equalities:

<f17f2> = (fi7ei>:<fiaejT(m—1,m)> = <f2 (m—1,m)>» €j>

= (afi+cifie) (by Equation (B3))
= ¢{fj fi)
where ¢; = %, p is the axial distance between m and m — 1 in ¢;.
q

Note that the length of the hook joining m—1and m in S;" (as well as S7") is p+1. Since
S; = Sj(m — 1,m) is standard and I(wyd;) < l(wxd;) an argument as in Lemma
shows that the row-index of m is strictly bigger than that of m — 1 in S;. With this
observation, it can be easily seen that for 1 < u < n, u # m — 1, m we have v, = Yu;
and 1, = Ymj. Further, the term -,,; differs from ~,,_1; only in one factor — the
former has a factor [h],/[h — 1|4, while the latter has in its place [h — 1],/[h — 2], (owing
to the node containing m being removed in S]m — 1). This immediately leads us to the
relation v,; = q_lcjyk_lvj. Putting together the conclusion of the last paragraph with the
relations we just obtained along with the induction hypothesis, we arrive at the required

statement for the index 7 in the lemma. Therefore, by induction we are done. O

Putting together Lemma and the observation made in the beginning of this sub-

70



section about the relation between the standard basis e; and the orthogonal basis f;, we
arrive at the following formula (compare[D.J87, Theorem 4.11]):

Lemma 6.4.5 The determinant of the Gram matriz of the bilinear form (,) on Six 1S

given by,
det(\) = v [T ] v (6.4)
i=1u=1
where, the integer r = d(X) (1(wy) — l(won)) + Yo Ud;)- O

Finally, in the next lemma, we use the combinatorial result Lemma, to describe

the product on the right side of Equation (&4 in a simpler way.

Lemma 6.4.6 For a partition \ and with notations as described above,
m n
[haclq
T =TI (
i=1u=1 [aclq

where B > ... > 0B, is the B-sequence of A and the product runs over {(a, b, c)|(a,c), (b,c) €
[A] and a < b}.

d(B1,-sBa+hpes-sB6—hpes-0r)
) (6.5)

PROOF: The relation follows by observing that both sides of Equation ([f.3) equals A(jny ().
We shall explain this in detail below:

By definition, 7o()\, (1™)) is the collection of standard tableaux of shape A'. For each
s € To(N, (1™)) the set

Fs(i,j) = {(/{?,l) S [)\/] 2l < g, s < Sij, and sp > Sij for all & > k}

is just the set of nodes (k,) that appear in the last row of s* (refer to notation in §6.Z.TI)
where u = s;; and so the value j — [+ k — i+ 1 is the hook length of the node (7,1) in s* .
In particular also for s = S/— the transpose of S,, where S, is a standard tableau of shape
A. On the other hand the value j — 1+ k — i+ 1 is also the hook length of the node (k, j)

in S}' which we denote as hy;. With this observation, we get

J—ithk—1+1]; [hkjlq
H j—i+k—1, hig —1lg

(k,1)ETs (i,7) ki1<k<j [

The right-hand side of this equation is just 7y, where u = s;; = S,(j,7), the entry in
the (j,i)-th node of S,. This along with the definition of ~s leads us to the relation,
v¥s = [y Yum. Thus, by the definition of Any(X') we get that it equals the left-hand

side of (E3) i.e.,
d n
A(1")()‘/) = H Vs = H H Yum

s€To(N,(1™)) m=1u=1

That the right-hand side of [@3)) is A(ny(A') follows immediately from the relation
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in Lemma and re-indexing the product on the right-hand side of that relation over
nodes of [A] rather than that of [\]. O
Thus, Lemma and Lemma together allows us to conclude that

Lemma 6.4.7 With notations as above, we have ,

d(ﬁl 7---76a+hbcy---76b7hbcy---767‘)
) (6.6)

2r haclq
det(\) =wv H <ﬁ

where By > ... > [, is the 3-sequence of X\, r = d()\) (l(wA) - l(wow)) + >, U(d;) and
the product runs over {(a,b,c)|(a,c), (b,c) € [A] and a < b}. O
6.4.3 Proof of Theorem

Both sides of Equation (G2)) are elements of A. To prove they are equal, we may pass to
the quotient field F' := Q(v) of A.
Combining Equations (B.1]) and (E8), we get

d(B1,--sBa+hpes - Bb—hpes--0r)
) (6.7)

[hac]
A i), aer g = [ (el

The left hand side is an element of A. As to the right hand side, it is regular with value 1
at v = 0, since the same is true for [s], for every positive integer s. Thus both sides of the

equation belong to 1 + vZ[v] and

detG(\) = ei(o)‘) v;j(y + higher degree terms.

oY
The ‘bar-invariance’ of the C-basis elements (Theorem ZZ0(1)) means that:
g_;? = gf for g;? as in (BJ) and so also det G(A) = det G(\).
Thus det G(\) has the form:

dA) ,=dN) Lo AN ,d(N)
ewo’k/vwo’k/ + +€w0’/\/vw0’y

the terms represented by - - - being of v-degree strictly between —d(\)l(wo x) and d(A)l(wo x ).
Equating the v-degrees on both sides of (1) gives

AN (won) =Y d(Brs -, Ba+ hoes - By — hoes -+ Br) (hae — hie) -

Using this and substituting va¢[hae]y, v [hpcly, respectively for [Racly, [Piclq into (B1),

we arrive at the theorem. O
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