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Abstra
tFrom the 
ombinatorial 
hara
terizations of the right, left, and two-sided Kazhdan-Lusztig
ells of the symmetri
 group, `RSK bases' are 
onstru
ted for 
ertain quotients by two-sided ideals of the group ring and the He
ke algebra. Appli
ations to invariant theory, overvarious base rings, of the general linear group and representation theory, both ordinaryand modular, of the symmetri
 group are dis
ussed.
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Chapter 1Introdu
tionThe starting point of the work 
arried out in this thesis is a question in 
lassi
al invarianttheory. It leads naturally to questions about representations of the symmetri
 group overthe 
omplex numbers and over �elds of positive 
hara
teristi
, and in turn to the 
omputa-tion of the determinant of a 
ertain matrix en
oding the multipli
ation of Kazhdan-Lusztigbasis elements of the He
ke algebra, using whi
h one 
an re
over a well-known 
riterionfor the irredu
ibility of Spe
ht modules over �elds of positive 
hara
teristi
.Let n denote a �xed integer and Sn be the symmetri
 group on n letters. Let k denotea 
ommutative ring with unity and V a free module of �nite rank d over k.Consider the group of k-linear automorphisms of V , denoted GL(V ), a
ting diagonallyon the spa
e V ⊗n of n-tensors. The symmetri
 group Sn also a
ts on V ⊗n by permutingthe fa
tors: the a
tion of σ ∈ Sn on pure tensors is given by
(v1 ⊗ · · · ⊗ vn)σ := v1σ ⊗ · · · ⊗ vnσ,where iσ denotes the image of i under the a
tion of σ (whi
h we assume to a
t fromthe right). This a
tion 
ommutes with the GL(V )-a
tion and so, the map φn : kSn →EndkV

⊗n de�ning the a
tion of Sn on V ⊗n has image in EndGL(V )V
⊗n � the spa
e of

GL(V )-invariant endomorphisms of V ⊗n. A 
lassi
al result in invariant theory (see [dCP76,Theorems 4.1, 4.2℄) states that this map is a surje
tion onto EndGL(V )V
⊗n. The resultfurther states that, under a mild 
ondition on k (whi
h holds for example when k is anin�nite �eld), the kernel is equal to J(n, d) � the two-sided ideal generated by the element

yd :=
∑

τ∈Sd+1
sign(τ)τ where Sd+1 is the subgroup of Sn 
onsisting of the permutationsthat �x point-wise the elements d + 2, . . . , n; when n ≤ d, J(n, d) is de�ned to be 0.Thus, the quotient kSn/J(n, d) gets identi�ed with the algebra of GL(V )-endomorphismsof V ⊗n.It is, therefore, of invariant-theoreti
 interest to obtain a basis for the quotient kSn/J(n, d).Indeed our �rst main result provides su
h a basis (see Theorem 4.4.1):Theorem 1.0.1 Let k be an arbitrary 
ommutative ring with unity. With notations as1



above, the permutations σ of Sn su
h that the sequen
e 1σ, . . . , nσ has no de
reasingsubsequen
e of length more than d, form a basis for kSn/J(n, d). 2The proof of the theorem involves the He
ke algebra of the symmetri
 group and itsKazhdan-Lusztig C-basis (see �2.2 for de�nitions). The He
ke algebra of Sn over A, where
A is the Laurent polynomial ring Z[v, v−1], is a �deformation� of the group ring of Sn over
A. We denote it asH. For a 
ommutative ring k with unity and a an invertible element in k,we denote by Hk the k-algebra H⊗A k de�ned by the unique ring homomorphism A→ kgiven by v 7→ a. The He
ke algebra is a deformation of the group algebra of Sn in the sensethat the k-algebra Hk, de�ned by the map v 7→ 1, is isomorphi
 to the group algebra kSn.The main te
hni
al part of the proof of Theorem 1.0.1 is in des
ribing an A-basis foran appropriate two-sided ideal in H that spe
ializes, under the map v 7→ 1, to J(n, d) (seeLemma 4.4.2). The key ingredient, in turn, in proving this is the 
ombinatori
s asso
iatedto the Kazhdan-Lusztig 
ells (�2.2.2).If we take the base ring k in the above dis
ussion to be the �eld C of 
omplex numbers.Then the ideal J(n, d) as de�ned above has a representation theoreti
 realization namely, let
λ(n, d) be the unique partition of n with at most d parts that is smallest in the dominan
eorder (�2.3.1); 
onsider the linear representation of Sn on the free ve
tor spa
e CTλ(n,d)generated by tabloids of shape λ(n, d) (�3.2), the ideal J(n, d) is the kernel of the C-algebramap CSn → EndCCTλ(n,d) de�ning this representation.Repla
ing the spe
ial partition λ(n, d) above by an arbitrary partition of n, say λ, and
onsidering the C-algebra map ρλ : CSn → EndCCTλ de�ning the linear representationof Sn on the spa
e CTλ generated by tabloids of shape λ, we ask:Is there a natural set of permutations that form a C-basis for the group ring

CSn modulo the kernel of the map ρλ?This question is addressed by the following theorem (see Theorem 4.2.1):Theorem 1.0.2 Permutations of RSK-shape µ, as µ varies over partitions that domi-nate λ, form a C-basis of CSn modulo the kernel of ρλ : CSn → EndCTλ.The dominan
e order on partitions is the usual one (�2.3.1). The RSK-shape of a permu-tation is de�ned in terms of the RSK-
orresponden
e (�2.3.2). As follows readily from thede�nitions, the shape of a permutation σ dominates the partition λ(n, d) pre
isely when
1σ, . . . , nσ has no de
reasing sub-sequen
e of length ex
eeding d. Thus, in the 
ase whenthe base ring is the 
omplex �eld, Theorem 1.0.1 follows from Theorem 1.0.2.The observation mentioned in �4.1.2 plays a key role in proving the above theorem.The above result holds, as we observe in �4.2.2, even after extending s
alars to any �eldof 
hara
teristi
 0 essentially owing to the fa
t that su
h a �eld is �at over Z. Further, byan example (�4.2.3) we illustrate that these results are not true in general over �elds ofpositive 
hara
teristi
. 2



The question raised above 
an be modi�ed to one of a more intrinsi
 appeal whi
h, inturn, 
an be posed in a more general setting.Given a partition λ of n, 
onsider, instead of the a
tion of Sn on tabloids of shape λ,the Spe
ht module Sλ
C (�3.2). The Spe
ht modules are irredu
ible and every irredu
ible

CSn-module is isomorphi
 to Sµ
C for some µ ⊢ n (�3.3.5, �3.4).The irredu
ibility of Sλ

C implies, by a well-known result of Burnside (see, e.g., [Bou73,Chapter 8, �4, No. 3, Corollaire 1℄), that the de�ning C-algebra map CSn → EndCS
λ
C issurje
tive. The dimension of Sλ

C equals the number d(λ) of standard tableaux of shape λ(�2.3.1, �3.3.5). Thus there exist d(λ)2 elements of CSn (or even of Sn itself) whose imagesin EndCS
λ
C form a basis (for EndCS

λ
C). We ask:Is there a natural 
hoi
e of su
h elements of CSn, even of Sn?More generally, in the setting of the He
ke algebra we 
onsider the right 
ell modules(�3.3.5), denoted R(λ) for λ ⊢ n, as introdu
ed by Kazhdan-Lusztig [KL79℄. It is well-known ([MP05℄; see also Proposition 3.4.3) that these modules are isomorphi
 to the Spe
htmodules of H as de�ned by Dipper and James (�3.2). However, in this thesis, we 
hoose towork with the 
ell modules be
ause of their 
ombinatorial appeal whi
h is of signi�
an
e tous. When k is a �eld for whi
h the algebra Hk (�2.2) is semisimple the right 
ell modules

R(λ)k := R(λ)⊗ k, λ ⊢ n, are irredu
ible and as λ varies over all partitions of n they givea 
omplete set of irredu
ibles (Theorem 3.3.18). Then arguing as earlier we ask:Is there a natural 
hoi
e of elements of Hk whi
h form a basis for Endk(R(λ)k)?Our answer (see Proposition 5.1.1):Theorem 1.0.3 AssumeHk is semisimple. For λ a partition of n, the images in EndkR(λ)kof the Kazhdan-Lusztig basis elements Cx, RSK-shape(x) = λ form a basis (for EndkR(λ)k).The RSK-shape of a permutation is de�ned in terms of the RSK-
orresponden
e (�2.3.2).The right 
ell module R(λ)C in the sense of Kazhdan-Lusztig (�3.3.5), being equivalent (seeProposition 3.4.3; [GM88℄; [Nar89℄) to the Spe
ht module Sλ
C (�3.2), the above theoremalso answers the former question (about EndCS

λ
C).Theorem 1.0.3 shows in parti
ular that the Kazhdan-Lusztig C-basis behaves wellwith respe
t to irredu
ible representations. The more obvious 
andidate for a basis ofEndk(R(λ)k), namely that 
onsisting of Tw, RSK-shape(w)= λ (the analogues of groupelements 
orresponding to permutations of RSK-shape λ, in the group algebra of Sn, seeDe�nition 2.2.3), does not work. This is seen by an example in �5.1.1.The proof of the above theorem depends on the Wedderburn stru
ture theory. When

Hk is not semisimple the argument, of 
ourse, falls apart. So we deal with this 
ase by ahead-on approa
h whi
h involves the 
onstru
tion of a matrix, denoted as G(λ) (�5.2.1).From the very de�nition of G(λ), it will be obvious that if the determinant of G(λ) doesnot vanish, then the Cx's as in Theorem 1.0.3 will 
ontinue to be a basis for Endk(R(λ)k).3



Using this idea we explore 
onditions under whi
h the above theorem (Theorem 1.0.3) 
anbe extended to the non-semisimple 
ase. One su
h 
ondition is des
ribed below. Note thatthe irredu
ibility of R(λ)k is essential for the statement as in Theorem 1.0.3 to be true.Let k be a �eld and let A→ k be the unique homomorphism given by v 7→ a where a ∈ kis an invertible element. Let e be the smallest positive integer su
h that 1+a+· · ·+ae−1 = 0in k; if no su
h integer exists then e = ∞. When a = 1, the value of e is just the
hara
teristi
 of the �eld.A partition λ is 
alled e-regular if the number of parts of λ of any given length, is lessthan e. Then with the above notation, we haveTheorem 1.0.4 (see Theorem 5.1.3) For an e-regular partition λ su
h that R(λ)k is irre-du
ible, the Kazhdan-Lusztig basis elements Cw, w of RSK-shape λ, thought of as operatorson R(λ)k form a basis for EndkR(λ)k.When Hk is not semisimple the 
ell module R(λ)k is not ne
essarily irredu
ible. Anissue of wide interest in the modular representation theory of Sn (and of H) is to indi
atefor a given �eld k the partitions λ ⊢ n for whi
h R(λ)k is irredu
ible as a kSn-module1(resp. as an Hk-module). There is mu
h literature available addressing this issue (see forexample, [Mat99, Chapter 5, �4℄, [Fay05℄). We take an approa
h, whi
h is new to the bestof our knowledge, by pursuing the ideas alluded to earlier, via the matrix G(λ) (�5.2.1).The matrix G(λ) en
odes the a
tion of the C-basis elements of RSK-shape λ on the 
ellmodule R(λ) in a �ni
e� way and we noti
e thatTheorem 1.0.5 (see Theorem 5.3.1) If the determinant detG(λ)|v=a does not vanish in k,then R(λ)k is irredu
ible.It would be worthwhile, therefore to study the detG(λ) more 
losely. Towards this, wegive a 
ombinatorial formula for the determinant of the matrix G(λ). Though this formulais 
omputed over the ring A = Z[v, v−1], for the sake of simpli
ity we state it here only inthe spe
ial 
ase when v = 1. In this 
ase we have:Theorem 1.0.6 (Hook Formula) For a partition λ of n,
detG(λ)|v=1 =

∏
(
hac

hbc

)d(β1,...,βa+hbc,...,βb−hbc,...,βr) (1.1)with notation as above, where hab is the hook length of the node (a, b) in a tableau of shape
λ (the hook length of a node is the total number of nodes below it and to the right of it,in
luding itself), β1 > . . . > βr is the β-sequen
e of λ (see �6.2 for de�nition), and theprodu
t runs over {(a, b, c)|(a, c), (b, c) are nodes su
h that a < b}.1Note that R(λ)k := R(λ) ⊗ k with s
alars extended via the homomorphism given by v 7→ 1 is a
Hk

∼= kSn- module (see �2.2). 4



The formula is proved by showing that the matrix G(λ) is related to the matrix of a well-studied bilinear form on the Spe
ht module Sλ (of H) and then using known formulas forits determinant. All these 
al
ulations are 
arried out in the general setting of the He
kealgebra over the ring A (Theorem 6.2.1).Using the hook formula, we obtain a 
ombinatorial 
riterion for the irredu
ibility of
Sλ

k . We prove the following: Let p denote the smallest positive integer su
h that p = 0in k; if no su
h integer exists, then p = ∞. For an integer h, de�ne νp(h) as the largestpower of p (possibly 0) that divides h in 
ase p is positive, and as 0 otherwise. The integer
e is as de�ned prior to Theorem 1.0.4. For an integer h, de�ne

νe,p(h) :=

{

0 if e =∞ or e ∤ h

1 + νp(h/e) otherwiseThe (e, p)-power diagram of λ is the �lling up of the nodes of a tableau of shape λ(�2.3.1) by the νe,p's of the respe
tive hook lengths. The Hook formula and Theorem 5.3.1put together provides us with a new proof ofTheorem 1.0.7 ([Jam78℄, [JM97℄) If the (e, p)-power diagram of λ has either no 
olumnor no row 
ontaining di�erent numbers, then Sλ
k is irredu
ible.For the spe
ialization v 7→ 1, the above 
riterion turns out to be exa
tly the 
riterion
onje
tured by Carter whi
h gives a su�
ien
y 
ondition on λ for irredu
ibility of Sλ

k tohold. Thus, by means of our approa
h we are led to a new proof of the 
onje
ture whi
hwas proved by G. D. James in 1978 [Jam78℄.Organization of the thesisThe thesis 
onsists of �ve 
hapters with a spe
i�
 aspe
t being 
overed in ea
h. Theproofs of the main results, mentioned above, are 
overed in Chapters 4, 5 and 6. Chapters 2and 3 are intended to be introdu
tory and none of the results mentioned there are original.The �rst part of Chapter 2 introdu
es the 
on
ept of He
ke algebra and all the as-so
iated preliminaries like the K-L basis, 
ells et
. The se
ond part introdu
es all the
ombinatorial obje
ts that play an important role in the thesis. In parti
ular, the RSK
orresponden
e is des
ribed there (�2.3.2). Many 
ombinatorial results that are fundamen-tal to the arguments used in the thesis are also listed and proved there (�2.3.4). In �2.3.3the 
ombinatorial 
hara
terizations of left, right and two-sided 
ells and pre-orders, as in[Ge
06℄, are stated without proof. These 
ombinatorial 
hara
terizations play a key rolein most of the arguments in the thesis.The main goal of Chapter 3 is to introdu
e all the representation theoreti
 obje
tsthat are of importan
e in the thesis. The Spe
ht modules, 
ell modules, permutationmodules et
 are brie�y introdu
ed in �3.3. Also stated and proved there are many basi
results regarding them, whi
h are invoked in later 
hapters. In parti
ular, proved in this
hapter is the isomorphism of the Spe
ht module 
orresponding to a shape and the 
ell5



module 
orresponding to the same shape following the exposition as in [MP05℄ (�3.4). Thisresult enables us to use the 
ombinatori
s of 
ells to handle questions involving the Spe
htmodules (see for example, �4.2.1).The next three 
hapters present the main results of the thesis along with detailedproofs.In Chapter 4, we present the proof of Theorem 1.0.1 mentioned above. Apart froma des
ription of a basis of multilinear invariants for (EndV )×n that we obtain almostimmediately by rephrasing Theorem 1.0.1, it also enables us to:
• obtain a k-basis, 
losed under multipli
ation, for the subring of GL(V )-invariants ofthe tensor algebra of V (�4.4.2).
• when k is a �eld of 
hara
teristi
 0, to limit the permutations in the well-knowndes
ription ([Pro76℄, [Raz74℄) of a spanning set for polynomial GL(V )-invariantsof several matri
es (�4.4.3); or, more generally, to limit the permutations in the de-s
ription in [DKS03℄ of a spanning set by means of `pi
ture invariants' for polynomial
GL(V )-invariants of several tensors (�4.4.3).These are dis
ussed in detail through �4.4.Also stated and proved in Chapter 4 are Theorem 1.0.2 and the analogous statementobtained by 
hanging s
alars to an arbitrary �eld of 
hara
teristi
 0. An example giventhere illustrates the failure of the same to hold over �elds of positive 
hara
teristi
. Thefollowing formulation of the H-analogue of Theorem 1.0.2 with s
alars in A, is also provedin the same 
hapter:Theorem 1.0.8 (see Theorem 4.3.1) The elements Tw, RSK-shape(w) D λ, form a basisfor H modulo the kernel of the map H → EndHMλ de�ning the permutation module Mλas a right H-module.Here Mλ (�3.3.1) denotes the H-analogue of the tabloid representation 
orresponding to

λ ⊢ n.Chapter 5 fo
uses primarily on the 
ell modules (�3.3.5). Presented there is the RSKbases for the endomorphism ring of the 
ell module, EndkR(λ)k (where k denotes a �eld),for the 
ase when Hk is semisimple and when it is not. The matrix G(λ) is also de�nedand introdu
ed in this 
hapter as a means of proving Theorem 1.0.4 (stated above). Inthe 
ourse of the 
hapter a proof of Theorem 1.0.5 is also given. It is seen through Se
-tions 5.2.2, 5.2.3 that the matrix en
oding the a
tion of the C-basis elements 
orrespondingto permutations of shape λ is related to the matrix of a bilinear form on R(λ) (�5.2.3).This turns out to be the prin
ipal step in arriving at Theorems 1.0.4, 1.0.5 above.Finally, in Chapter 6, we prove the Hook Formula (6.2) for the determinant of G(λ) inthe general setting of the He
ke algebra H. As indi
ated earlier, we arrive at this formulaby using the fa
t that the bilinear form on R(λ) (mentioned above) is just the pull-ba
k viathe MP-isomorphism (�3.4) of the Dipper-James bilinear form (�3.2) on the Spe
ht module6



Sλ. Following [DJ87℄ we then 
ompute a pre
ise formula for the determinant of the Dipper-James bilinear form on Sλ. This formula 
an be further simpli�ed using a 
ombinatorialresult re
alled from [JM97℄. Finally we dedu
e the formula (6.2) for detG(λ) by using theexpli
it relation between detG(λ) and the determinant of the Dipper-James bilinear formon Sλ. In the same 
hapter, we use this Hook Formula to arrive at a proof of Theorem 1.0.7and as noted earlier, thus also arriving at a new proof for Carter's 
onje
ture [Jam78℄ aboutthe irredu
ibility of Sλ
k .Posts
riptAfter the initial submission of this thesis, it was learnt from John Graham and AndrewMathas (at an ICM-2010 satellite 
onferen
e held in Bangalore) that many of the resultsin Chapter 5 
an be dedu
ed from the fa
t that the Kazhdan - Lusztig basis of the He
kealgebra of the symmetri
 group is 
ellular in the sense of [GL96℄. In parti
ular, the de-s
ription of the matrix G(λ) given in �5.2.3 follows from the 
ellularity property of theKazhdan-Lusztig basis - a fa
t that we reprove using results of Ge
k [Ge
06℄.

7



Chapter 2Kazhdan-Lusztig 
ells and their
ombinatori
sIn this 
hapter we begin with some ba
kground material on Coxeter groups and He
kealgebras asso
iated to them. We soon spe
ialize to Sn and after introdu
ing the basi

ombinatorial obje
ts there, we des
ribe the RSK-
orresponden
e in �2.3.2. In �2.3.3, were
all 
ertain 
ombinatorial results whi
h play a signi�
ant role in the rest of the 
haptersand �nally in �2.3.4 we introdu
e some notations and dis
uss a few preliminary results thatwill be used repeatedly later.All the results mentioned in ��2.1-2.2 
an be found in [Lus03℄ or [Hum90℄. In �2.3 wegather together various preliminaries whi
h deal spe
i�
ally with the 
ombinatorial aspe
tsof Sn that play a key role in the thesis. The 
on
epts dis
ussed in ��2.3.1-2.3.2 are 
overedin greater detail in [Sag01℄. The last sub-se
tion is fairly self-
ontained, while the resultsmentioned in �2.3.3 forms the main theme of [Ge
06℄ and we do not undertake the task ofgoing through their proofs here.2.1 Coxeter System (W , S)Let W denote a group (written multipli
atively), with identity element denoted as 1, and
S be a set of generators for W . Then the pair (W, S) is a Coxeter system if there exists amatrix (m(s, s′))(s,s′)∈S×S with entries in N ∪ {∞} satisfying the 
onditions:i) m(s, s) = 1 for all s ∈ S andii) m(s, s′) = m(s′, s) ≥ 2 for all s 6= s′and su
h that the natural map from the free group generated by the set S to W has kernelthe normal subgroup generated pre
isely by the elements

(ss′)m(s,s′) where s, s′ ∈ S and m(s, s′) <∞.8



We assume familiarity with the basi
 notions regarding Coxeter systems. However, webrie�y re
all here the notions that we will use. (See [Bou02, Chapter 4℄ for more details).Ea
h w ∈ W 
an be written as a produ
t of a �nite sequen
e of elements of S. For agiven w, the smallest possible integer r ≥ 0 su
h that w is a produ
t of a sequen
e of relements from S is 
alled the length of w, denoted as l(w). Thus, l(1) = 0 and l(s) = 1for all s ∈ S (it is easily seen that 1 /∈ S). Let w = s1 · · · sr for some si (not ne
essarilydistin
t) in S. Then s1 · · · sr is said to be a redu
ed expression for w if r = l(w). Asubexpression of a given redu
ed expression s1 · · · sr is a produ
t of the form si1 · · · silwhere 1 ≤ i1 < · · · < il ≤ r. An element u ∈ W is a pre�x of w ∈ W if there is aredu
ed expression s1 · · · sr for w su
h that the subexpression s1 · · · sj for some j ≤ r givesa redu
ed expression for u.Bruhat order: For w, w′ ∈W , we write w ≤ w′ if w 
an be obtained as a subexpres-sion of some redu
ed expression for w′. This de�nes a partial ordering on W 
alled theBruhat order. We sometimes also write w′ ≥ w to mean w ≤ w′. By w < w′ or w′ > w,we mean w ≤ w′ and w 6= w′.Deletion 
ondition: ([Hum90, �5.8℄) Suppose w = s1 · · · sr, (si ∈ S), with l(w) < r.Then there exist indi
es i < j for whi
h w = s1 · · · ŝi · · · ŝj · · · sr, where ŝk means that skis omitted.Remark 2.1.1(a) For a given Coxeter system (W,S) where W is �nite, there is a unique element in Wwhi
h is of maximal length. (See [Lus03, �9.8℄, for example).(b) For J ⊂ S, let WJ denote the subgroup of W generated by J . Then (WJ , J) is aCoxeter system in its own right. Further, if we denote the length fun
tion on WJ as
lJ then lJ(w) = l(w) for all w ∈WJ . The subgroup WJ is 
alled a paraboli
 subgroupof W (with respe
t to S). (See [Hum90, �5.5℄, for example).2.2 He
ke Algebra 
orresponding to (W , S)Let R be a 
ommutative ring with unity. We begin with the de�nition of a generi
 Iwahori-He
ke algebra asso
iated to a Coxeter system. By the He
ke algebra, we shall mean aparti
ular 
ase of a generi
 Iwahori-He
ke algebra.De�nition 2.2.1 Let (W,S) be a Coxeter system. Let as, bs ∈ R (s ∈ S) be su
h that

as = at and bs = bt whenever s, t are 
onjugate under W . Then the generi
 Iwahori-He
ke algebra asso
iated with (W,S) over R with parameters {as, bs | s ∈ S} is the free
R-module E with basis {Tx | x ∈W} and multipli
ation given by

TsTw =

{

Tsw if l(sw) = l(w) + 1

asTw + bsTsw if l(sw) = l(w) − 1
(2.1)9



for s ∈ S, w ∈W , making it an asso
iative algebra with T1 as identity.That an algebra stru
ture on E as in the above de�nition, exists and that it is uniqueis guaranteed by the following result:Theorem 2.2.2 ([Hum90, p.146℄) Let (W,S) be a Coxeter system. Given as, bs ∈ R (s ∈

S) satisfying the 
onditions as in the above de�nition, there exists a unique stru
ture of anasso
iative algebra on the free R-module E with basis {Tx | x ∈ W} su
h that T1 a
ts asidentity and the 
onditions as in (2.1) are satis�ed. 2The group algebra ofW over R is an example of a generi
 Iwahori-He
ke algebra, wherethe parameters are 
hosen to be as = 0, bs = 1 for all s ∈ STo obtain the He
ke algebra asso
iated to (W,S), we take in De�nition 2.2.1 the ring Rto be Z[v, v−1], the ring of Laurent polynomials with 
oe�
ients in Z, and the parametersto be as = v − v−1, bs = 1 for all s ∈ S.Written expli
itly, we haveDe�nition 2.2.3 The He
ke algebra asso
iated to (W,S), denoted asH, is a free Z[v, v−1]-module with basis Tw, w ∈W , and multipli
ation being given by
TsTw =

{

Tsw if l(sw) = l(w) + 1

(v − v−1)Tw + Tsw if l(sw) = l(w)− 1
(2.2)for s ∈ S, w ∈W .The He
ke algebra asso
iated with the Coxeter system (W,S) is a �deformation� of thegroup algebra of W over Z: taking v = 1 in De�nition 2.2.3 we re
over the group algebraof W over Z. (See also Spe
ializations of the He
ke algebra below).In the next lemma we summarize a few basi
 fa
ts about H.Lemma 2.2.4 1. Let s1 · · · sr be a redu
ed expression for w ∈W . Then Tw = Ts1 · · ·Tsr .2. Let s ∈ S and w ∈W . Then,

TwTs =

{

Tws if l(ws) = l(w) + 1

(v − v−1)Tw + Tws if l(ws) = l(w)− 1
(2.3)3. For w ∈W , the element Tw is invertible in H with inverse T−1

w = T−1
sk
· · ·T−1

s1
where

s1 · · · sk is a redu
ed expression for w. For s ∈ S, the element T−1
s = Ts−(v−v−1)T1.4. In the 
ase1 when W = Sn and S is the set of simple transpositions (�2.3) we havefor x, y ∈ W , let TxTy =

∑

w∈W rwTw, rw ∈ Z[v, v−1]. Then rxy = 1; and rw 6= 0only if xy ≤ w. In parti
ular, r1 6= 0 i� x = y−1.1It 
an be veri�ed, in the light of Remark 2.1.1(b), that if W is a paraboli
 subgroup of Sn then thestatement still holds. In fa
t the statement 
an be proved more generally for any Coxeter system (see forexample, [Mat99, Exer
ise 1.15℄) 10



Proof: ([DJ86, Lemma 2.1℄; note the Remark on notation below)1. This is elementary using the relations in (2.2).2. This is proved easily by indu
ting on l(w). When l(w) ≤ 1 the relations in (2.3)are just those in (2.2). Also, by (1) we know that if w has a redu
ed expression ofthe form s1 · · · sr, then Ts1···sr = Ts1 · · ·Tsr . So, if ws > w for s ∈ S, we have therequired relation by (1). In the 
ase when ws < w, sin
e l(ws) < l(w), we applyindu
tion hypothesis to ws to get TwsTs = Tw. Now multiplying both sides of thisequation by Ts and using the expression for T 2
s , we obtain the required relation evenin this 
ase.3. By (2.2), we have T 2

s = (v− v−1)Ts + T1 whi
h immediately gives the se
ond part of(3). The �rst part now follows immediately from (1).4. A routine indu
tive argument on l(x) along with relations in (2.2) and (2) aboveproves (4). (The des
ription of the set S as the simple transpositions in Sn is used;See also [Mat99, �1.16℄)
2Hen
eforth, by A we mean the ring Z[v, v−1] and by H the He
ke algebraasso
iated to (W,S) as in De�nition 2.2.3.Notation 2.2.5 We repeatedly use the following short-hand notation:

• ǫw := (−1)l(w)

• vw := vl(w)Remark on notation: The notation that we use is as in [Lus03℄ (also in [Ge
06℄), while in[DJ86℄, [KL79℄, [MP05℄ (also [Hum90℄, [Shi86℄) the notation used is slightly di�erent. Topass from our notation to that of [DJ86℄, [KL79℄ or [MP05℄, we need to repla
e v by q1/2and Tw by q−l(w)/2Tw.Spe
ializations of the He
ke algebraLet k be a 
ommutative ring with unity and a an invertible element in k. There is a uniquering homomorphism A → k de�ned by v 7→ a. We denote by Hk the k-algebra H ⊗A kobtained by extending the s
alars to k via this homomorphism. We have a natural A-algebra homomorphism H → Hk given by h 7→ h ⊗ 1. By abuse of notation, we 
ontinueto use the same symbols for the images in Hk of the elements of H. If M is a (right)
H-module, M ⊗A k is naturally a (right) Hk-module.An important spe
ial 
ase is when we take a to be the unit element 1 of k. We thenhave a natural identi�
ation of Hk with the group ring kW , under whi
h Tw maps to theelement w in kW .Convention: When the value of a is not spe
i�ed, by the �spe
ialization of H to k�, wemean the algebra Hk de�ned via the map v 7→ 1.11



An involution on HWe introdu
e an involution (order 2 ring automorphism) on H de�ned as follows:
∑

awTw :=
∑

awT
−1
w−1 (2.4)where a 7→ a on A is de�ned by v 7→ v := v−1 extended Z-linearly to give an involution on

A. This is 
alled the bar involution.2.2.1 Kazhdan - Lusztig bases of HApart from the basis Tw, w ∈ W , there is another A-basis of H whi
h is of interest to us.It is determined uniquely by the 
onditions:
Cw = Cw and Cw ≡ Tw mod H>0 (‡)where H>0 :=

∑

w∈W A>0Tw, A>0 := vZ[v]. This is 
alled the C-basis of H.The existen
e and uniqueness of a basis as above follows from:Theorem 2.2.6 [KL79, Theorem 1.1℄ For ea
h w ∈ W there exists a unique element
Cw ∈ H having the following properties:1. Cw = Cw,2. Cw =

∑

y∈W, y≤w ǫyǫwpy,wTy where py,w ∈ v
−1Z[v−1] for y < w and pw,w = 1.The existen
e of these elements is proved by 
onstru
ting Cw by indu
tion on the lengthof w. Set C1 := T1. For w = su su
h that l(w) = l(u) + 1 de�ne

Cw := CsCu −
∑

z:sz<z<u

ν(z, u)Cz (2.5)where ν(z, u) is the 
oe�
ient of v−1 in pz,u and Cs := Ts−vT1. One then veri�es that theproperties (1) and (2) hold. That these elements form a basis follows then from property (2)above.Remark 2.2.7 As is veri�ed easily, the involutive anti-automorphism of the algebra Hgiven by h 7→ h∗, where (
∑
awTw)∗ :=

∑
awTw−1 , 
ommutes with the bar involution on

H. Therefore,i) it follows from the de�ning 
onditions (‡) that C∗
w = Cw−1 .ii) applying ∗ to the relation Cw = Tw+

∑

y∈W, y<w ǫyǫwpy,wTy (Theorem 2.2.6(2) above),we get Cw−1 = Tw−1 +
∑

y∈W, y<w ǫyǫwpy,wTy−1 (using (i)). Thus by the uniqueness
ondition in Theorem 2.2.6 we note that py,w = py−1,w−1 .12



Using the above remark it 
an be dedu
ed, by applying * to (2.5), that for w = us su
hthat l(w) = l(u) + 1 we have
Cw = CuCs −

∑

z:zs<z<u

µ(z, u)Cz (2.6)where µ(z, u) := ν(z−1, u−1).From the above equation we obtain the following basi
 result.Lemma 2.2.8 [KL79, � 2.3℄ Let s ∈ S and ws < w. Then CwTs = −v−1Cw.Proof: We indu
t on l(w). If w = s then inserting the expression Cs = Ts − vT1 in CsTsand simplifying it using (2.3), we get CsTs = −v−1Cs. Under indu
tion hypothesis assumethe statement for z su
h that l(z) < l(w) and zs < z. Repla
ing u by ws in (2.6) andusing the expression thus obtained we get
CwTs = Cws(CsTs)−

∑

zs<z<ws µ(z,ws)(CzTs)Applying the indu
tion hypothesis, we then have
CwTs = −v−1CwsCs +

∑

zs<z<ws v
−1µ(z,ws)Cz

= −v−1Cwas required. 2The above observation leads us to some useful properties of the polynomials px,w whi
happear in statement (2) of Theorem 2.2.6.Corollary 2.2.9 [KL79, �2.3℄ Let s ∈ S and x, w ∈W .1. If x < w, ws < w and xs > x then px,w = v−1pxs,w.2. Let w0 be the longest element of W . Then we have px,w0 = vl(x)−l(w0) for all x ∈W .Proof: By Lemma 2.2.8, we have the relation CwTs = −v−1Cw whenever ws < w.Inserting into it the expression for Cw given by Theorem 2.2.6(2) and then 
omparing the
oe�
ient of Txs on both sides of the relation thus obtained, we dedu
e that px,w + (v −

v−1)pxs,w = vpxs,w whi
h readily yields (1).For x ∈W , we 
an �nd a �nite sequen
e of elements s1, . . . , sr ∈ S su
h that x < xs1 <

. . . < xs1 · · · sr = w0. Sin
e the longest element w0 satis�es the 
ondition w0s < w0 for all
s ∈ S, we apply (1) repeatedly to get px,w0 = v−1pxs1,w0 = . . . = (v−1)rpxs1···sr,w0 = (v−1)r(by Theorem 2.2.6(2), pw0,w0 = 1). Note that r = l(w0)− l(x), proving (2) 2Kazhdan-Lusztig C ′-basisConsider the ring involution j : H → H, de�ned by

j(
∑

awTw) :=
∑

ǫwawTw13



where ǫw := (−1)l(w), and the element a ∈ A is as de�ned in (2.4). Then de�ne,
C ′

w := ǫwj(Cw) (2.7)Sin
e j is an involution on H, the elements C ′
w, w ∈W , also form a basis for H. It is 
alledthe C ′-basis. By Theorem 2.2.6 and the fa
t that the bar involution 
ommutes with theinvolution j de�ned above, it is 
lear that the elements C ′

w, w ∈ W , are also determineduniquely by the two properties
C ′

w = C ′
w and C ′

w ≡ Tw mod H<0All the other properties of the C-basis 
an also be 
arried over to the C ′-basis via theinvolution j. An instan
e of this, whi
h we shall use later, is the following:Lemma 2.2.10 Let s ∈ S and ws < w. Then C ′
wTs = vC ′

w.Proof: Applying the involution to both sides of the relation CwTs = −v−1Cw, we get therequired relation for C ′
w. 2Before ending this subse
tion, in the light of Corollary 2.2.9(2) and Theorem 2.2.6(2),we note that if w0 denotes the longest element in W , then

Cw0 = ǫw0vw0

∑

w∈W

ǫwv
−1
w Tw, C ′

w0
= v−1

w0

∑

w∈W

vwTw (2.8)The above expressions together with Lemma 2.2.8 and Lemma 2.2.10 gives
C2

w0
= (ǫw0v

−1
w0

∑

w∈W

v2
w) Cw0 (2.9)

C ′2
w0

= (vw0

∑

w∈W

v−2
w ) C ′

w0
(2.10)2.2.2 Kazhdan-Lusztig orders and 
ellsThe 
entral goal of introdu
ing the Kazhdan-Lusztig bases is to understand the representa-tions of the He
ke algebra H. The advantage of the C-basis (analogously C ′-basis) is thatit leads to a systemati
 
onstru
tion of 
ertain representations. This is done by de�ninga pre-order on W the equivalen
e 
lasses of whi
h gives a partition of W into 
ells (left,right, two-sided). Later in �3.3.5, we 
onstru
t representations of W asso
iated to these
ells. We now give the de�nition of these 
ells of W .Let y and w be elements in W . Write y←Lw if, for some element s in S, the 
o-e�
ient of Cy is non-zero in the expression of CsCw as an A-linear 
ombination of thebasis elements Cx. Repla
ing all o

urren
es of `C' by `C ′' in this de�nition would makeno di�eren
e. The Kazhdan-Lusztig left pre-order is de�ned by: y≤L w if there existsa 
hain y = y0←L · · ·←L yk = w; the left equivalen
e relation by: y∼Lw if y≤Lw and14



w≤L y. Left equivalen
e 
lasses are 
alled left 
ells. Note that by the above de�nition the
A-module ∑x≤L w ACx is a left ideal of H 
ontaining the left ideal HCw.Right pre-order, equivalen
e, and 
ells are de�ned similarly. The two sided pre-orderis de�ned by: y≤LRw if there exists a 
hain y = y0, . . . , yk = w su
h that, for 0 ≤ j < k,either yj ≤L yj+1 or yj ≤R yj+1. Two sided equivalen
e 
lasses are 
alled two sided 
ells.Remark 2.2.11 Sin
e Cs is de�ned as Ts−vT1, it may be easily seen that, if for y, w ∈Wwe set y←L

′ w whenever there exists an element s in S su
h that the 
oe�
ient of Cy isnon-zero in the expression of TsCw as a A-linear 
ombination of the C-basis elements, thenthe pre-order ≤L obtained from the relation ←L
′ is the same as the left pre-order de�nedabove (using the C-basis instead of T ).Lemma 2.2.12 Let w0 be the longest element in W . Then for elements w,w′ ∈ Wwe have, w≤L w

′ if and only if w0w
′≤Lw0w. Similarly for ≤R. Moreover, ν(w,w′) =

ν(w0w
′, w0w). (See [KL79, Corollary 3.2℄ for proof; [Shi86, Lemma 1.4.6(iii)℄) 2Remark 2.2.13 By Remark 2.2.7(ii), we have py,w = py−1,w−1 and hen
e ν(y,w) =

ν(y−1, w−1). By de�nition, the latter term is µ(y,w). Thus, by Lemma 2.2.12, we 
on
ludethat µ(w,w′) = µ(w0w
′, w0w) for w, w′ ∈W .For any y ∈W , we asso
iate to it two sets de�ned as follows:

R(y) := {s ∈ S| ys < y} L(y) := {s ∈ S| sy < y}Then we have,Lemma 2.2.14 Let w,w′ ∈W .1. If w≤Rw
′ then L(w′) ⊂ L(w).2. If w≤Lw
′ then R(w′) ⊂ R(w).(See [Lus03, Lemma 8.6℄ for a proof) 22.3 Combinatori
s of 
ells in SnFrom now on, we �x A to be the Laurent polynomial ring in one indeterminate Z[v, v−1].Let n be a �xed integer and Sn the symmetri
 group on n letters. Let S denote the subset
onsisting of simple transpositions (1, 2), (2, 3) . . . (n − 1, n). Then (Sn, S) is a Coxetersystem and its He
ke algebra de�ned over A is denoted as H.In Sn, there are 
ertain 
ombinatorial des
riptions for 
ells as de�ned in the earlierse
tion. Before beginning with this des
ription we introdu
e some basi
 de�nitions.
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2.3.1 Basi
 notionsPartitions and shapesBy a partition λ of n, written λ ⊢ n, is meant a sequen
e λ1 ≥ . . . ≥ λr of positive integerssu
h that λ1 + . . . + λr = n. The integer r is the number of parts in λ. We often write
λ = (λ1, . . . , λr); sometimes even λ = (λ1, λ2, . . .). When the latter notation is used, it isto be understood that λt = 0 for t > r.Partitions of n are in bije
tion with shapes of Young diagrams (or simply shapes) with
n boxes: the partition λ1 ≥ . . . ≥ λr 
orresponds to the shape with λ1 boxes in the �rstrow, λ2 in the se
ond row, and so on, the boxes being arranged left- and top-justi�ed.This diagram of boxes is sometimes also 
alled the Young diagram of shape λ denoted as
λ. Here for example is the shape 
orresponding to the partition (3, 3, 2) of 8:
Partitions are thus identi�ed with shapes and the two terms are used inter
hangeably.Dominan
e order on partitionsGiven partitions µ = (µ1, µ2, . . .) and λ = (λ1, λ2, . . .) of n, we say µ dominates λ, andwrite µ D λ, if

µ1 ≥ λ1, µ1 + µ2 ≥ λ1 + λ2, µ1 + µ2 + µ3 ≥ λ1 + λ2 + λ3, . . . .We write µ⊲λ if µ D λ and µ 6= λ. The partial order D on the set of partitions (or shapes)of n will be referred to as the dominan
e order .Tableaux and standard tableauxA Young tableau, or just tableau, of shape λ ⊢ n is an arrangement of the numbers 1, . . . ,
n in the boxes of shape λ. There are, evidently, n! tableaux of shape λ. A tableau is rowstandard (respe
tively, 
olumn standard) if in every row (respe
tively, 
olumn) the entriesare in
reasing left to right (respe
tively, top to bottom). A tableau is standard if it is bothrow standard and 
olumn standard. An example of a standard tableau of shape (3, 3, 2):

1 3 5

2 6 8

4 7The number of standard tableaux: The number of standard tableaux of a givenshape λ ⊢ n is denoted d(λ). There is a well-known `hook length formula' for it (see16



[Sag01, p.124℄; [FRT54℄): d(λ) = n!/
∏

β hβ , where β runs over all boxes of shape λ and hβis the hook length of the box β whi
h is de�ned as one more than the sum of the numberof boxes to the right of β and the number of boxes below β.The hook lengths for the shape (3, 3, 2) are shown below:
5 4 2

4 3 1

2 1Thus d(3, 3, 2) = 8!/(5.4.2.4.3.1.2.1) = 42.Row and Column stabilizers:Given a tableau T of shape λ ⊢ n, we obtain two 
olle
tions of subsets of the set {1, 2, . . . , n}:R : Ea
h subset 
onsists of numbers appearing along ea
h row of T .C : Ea
h subset 
onsists of numbers appearing along ea
h 
olumn of T .The row stabilizer of T is the subgroup of Sn whi
h leaves ea
h subset in the 
olle
tionR invariant. It is the set of permutations in Sn that permute the numbers appearing inea
h row of T among themselves. Similarly, the 
olumn stabilizer of T is the subgroup of
Sn whi
h leaves ea
h subset in the 
olle
tion C, invariant. It is the set of permutations in
Sn that permute the numbers in ea
h 
olumn of T among themselves.For example, let

T =

1 3

2 5

4Then the row stabilizer of T is the subgroup S{1,3}×S{2,5}×S{4} and its 
olumn stabilizeris S{1,2,4} ×S{3,5}.2.3.2 RSK-
orresponden
eWe re
all, in this subse
tion, the 
ombinatorial algorithm whi
h goes under the name ofRobinson-S
hensted-Knuth. It is a well-known pro
edure that sets up a bije
tion betweenthe symmetri
 group Sn and ordered pairs of standard tableaux of the same shape with
n boxes. The aim of the algorithm was to provide a purely 
ombinatorial proof that thenumber of elements in Sn is equal to the number of pairs of standard tableaux of the sameshape λ, as λ varies over all partitions of n,i.e.,

∑

λ⊢n

d(λ)2 = n!The genesis of the above relation lies in the representation theory of Sn over C: thepartitions, λ ⊢ n, parametrize all the non-isomorphi
 irredu
ible representations of CSn;17



the number d(λ) of standard tableaux of shape λ is the same as the dimension of theirredu
ible representation of CSn asso
iated to λ (see �3.2).In order to des
ribe the algorithm, whi
h sets up the bije
tion as mentioned earlier,we will need the insertion algorithm whi
h is des
ribed as follows: Let P be a tableau
onsisting of an arbitrary set of distin
t numbers. If all the numbers from 1 to n appearthen it is a tableau in the sense de�ned in �2.3.1. Let x be a number not appearing in P .Then the insertion algorithm to insert x in P , denoted as P ← x, is given as follows:I1 Set R to be the �rst row of P .I2 While x is less than some element in R, doI2a Let y be the smallest number in R greater than x and repla
e y by x.I2b Set x := y and R as the next row down.I3 Now x is greater than every element in R, so pla
e x at the end of the row and stop.The Robinson-S
hensted-Knuth 
orresponden
e (or RSK-
orresponden
e, for short) isa bije
tion between Sn and pairs of standard tableaux of the same shape with n boxes.The bije
tion is given by an algorithm that takes a permutation π and produ
es from it apair (P (π), Q(π)) of standard tableaux of a 
ertain shape. This is done as follows: Let πbe written in two-line notation as
π =

1 2 · · · n

x1 x2 · · · xnWe 
onstru
t Q(π) as
((. . . (( x1 ← x2)← x3) · · · )← xn−1)← xnThe tableaux P (π), 
alled the re
ording tableau, is obtained by simply pla
ing the integer

k in the box that is added at the k-th step of the 
onstru
tion of Q(π).Example 2.3.1 Consider the permutation (14253) ∈ S5, written in two-line notation as
(

1 2 3 4 5

4 5 1 2 3

)Applying the above algorithm, we get the pair
P =

1 2 5

3 4
Q =

1 2 3

4 5That the map de�ned by the above algorithm is a bije
tion is proved by reversing thealgorithm step by step to re
over the permutation asso
iated to a pair of standard tableaux.18



Denote by (Pk, Qk) the tableaux obtained at the k-th step. Then, to go from (Pk, Qk) to
(Pk−1, Qk−1) 
onsider the number appearing in Qk in the box whi
h 
ontains the largestnumber in Pk and apply the reverse row-insertion algorithm to Qk with this number. Theelement that is bumped out is the image of k under the resulting permutation. And thetableau obtained by removing the originating box in Qk is the tableau Qk−1. Removingthe largest number in Pk we get Pk−1.It should be noted that the algorithm presented above is slightly di�erent from thosegiven in standard texts ([Ful97℄, [Sag01℄). For reasons that will be explained later (seeRemark 2.3.8), we have modi�ed the pro
edure by asso
iating to a permutation the samepair of standard tableaux as obtained by the standard pro
edure but with their positionsinter
hanged, i.e., if (A(w), B(w)) is the pair asso
iated to w ∈ Sn by the algorithmas in [Ful97℄ or [Sag01℄, then by the RSK-
orresponden
e we mean the bije
tion thatasso
iates the pair (B(w), A(w)) to the permutation w. In the light of the following resultof S
hützenberger, the modi�
ation amounts to asso
iating the permutation w−1 to thepair (A(w), B(w)).Theorem 2.3.2 (S
hützenberger) (see [Sag01, Theorem 3.6.6℄) If w ∈ Sn then A(w−1) =

B(w) and B(w−1) = A(w). 2Notation 2.3.3 We write (P (w), Q(w)) for the ordered pair of standard Young tableauxasso
iated to the permutation w by the RSK-
orresponden
e. Call P (w) the P -symbol and
Q(w) the Q-symbol of w. It will be 
onvenient also to use (P (w), Q(w)) for the permuta-tion w, C(P (w),Q(w)) or C(P (w), Q(w)) for the Kazhdan-Lusztig C-basis element Cw.De�nition 2.3.4 The RSK shape of a permutation w is de�ned to be the shape of thetableau P (w) (whi
h is the same as that of Q(w)).An exampleThe permutation (1542)(36) (written as a produ
t of disjoint 
y
les) has RSK-shape
(3, 2, 1). Indeed it is mapped under the RSK 
orresponden
e in our sense to the orderedpair (A,B) of standard tableaux, where:

A =

1 3 5

2 4

6

B =

1 2 3

4 6

52.3.3 Cells and RSK-
orresponden
eWe now re
all the 
ombinatorial 
hara
terizations of left, right and two sided 
ells interms of the RSK 
orresponden
e and the dominan
e order on partitions (�2.3.1). Thesestatements are the foundation on whi
h most of our arguments rest.19



The following statement 
hara
terizes the relation ≤LR. (Also see 
omments in [Ge
06℄about [Ari00℄).Proposition 2.3.5 ([Ge
06, Theorem 5.1℄) Let w, w′ ∈ Sn. Then w≤LRw
′ if and onlyif RSK-shape(w) E RSK-shape(w′). 2The next statement establishes the �unrelatedness� of distin
t one-sided (left/right)
ells within a two-sided 
ell. Though stated only for ≤L and left 
ells, the analogousstatement is true also for ≤R and right 
ells.Proposition 2.3.6 ([Ge
06, Theorem 5.3℄) Let w, w′ ∈ Sn. If w≤Lw

′ and w∼LRw
′then w∼L w

′. (See also [Lus81, Lemma 4.1℄) 2Finally, the following proposition gives a 
ombinatorial 
hara
terization of the left,right and two-sided equivalen
e. Statements (1) and (2) of the Proposition 
an be foundalso in [KL79℄ or [Ari00℄.Proposition 2.3.7 ([Ge
06, Corollary 5.6℄) Let w, w′ ∈ Sn. Then the following hold:1. w∼Lw
′ ⇔ Q(w) = Q(w′).2. w∼Rw
′ ⇔ P (w) = P (w′).3. w∼LRw
′ ⇔ RSK-shape(w) = RSK-shape(w′). (This follows easily from Proposi-tion 2.3.5 and the de�nition of ∼LR). 2Remark 2.3.8 The proofs of the above statements 
an be found in [Ge
06℄. However, itshould be noted that in [Ge
06℄ permutations a
t from the left while for us permutations al-ways a
t from the right. Also, in [Ge
06℄, the RSK-algorithm as given in [Ful97℄ (or [Sag01℄)is used. So, in the light of Theorem 2.3.2, the statements of the above propositions holdverbatim even in our setup, under the assumption that the (modi�ed) RSK-
orresponden
eas des
ribed here is used to obtain the P , Q symbols of a permutation.2.3.4 Some notes and notationsFor λ a partition of n,

• λ′ denotes the transpose of λ whi
h is de�ned to be the shape obtained by taking thetranspose of the Young diagram of shape λ. E.g., λ′ = (3, 2, 2, 1) for λ = (4, 3, 1).
• tλ denotes the standard tableau of shape λ in whi
h the numbers 1, 2, . . . , n appearin order along su

essive rows; tλ is de�ned similarly, with `
olumns' repla
ing `rows'.E.g., for λ = (4, 3, 1), we have:

tλ =

1 2 3 4

5 6 7

8

tλ =

1 4 6 8

2 5 7

320



• Permutations in Sn a
t naturally on tableaux of shape λ ⊢ n by a
ting entry-wise.Denote by wλ the permutation in Sn su
h that tλwλ = tλ.The paraboli
 subgroup Wλ and its 
oset representativesLet Wλ denote the row stabilizer of tλ. It is a paraboli
 subgroup of Sn generated by
Wλ∩S. Let w0,λ denote the longest element ofWλ. E.g., for λ = (4, 3, 1), Wλ is isomorphi
to the produ
t S4 × S3 × S1. The longest element of Wλ is given by the sequen
e
(1w0,λ, . . . , nw0,λ) = (4, 3, 2, 1, 7, 6, 5, 8).Remark 2.3.9 The longest element w0,λ of Wλ has RSK-shape λ′; by the de�nition ofthe RSK-
orresponden
e it is obvious that w0,λ 
orresponds to the pair (tλ′ , tλ′).De�ne Dλ := {w ∈ Sn | t

λw is row standard}. Clearly, wλ as de�ned above, is anelement of Dλ. The next proposition lists out a few properties of the elements in Dλ.Proposition 2.3.10 ([DJ86, Lemma 1.1℄) For λ a partition of n,1. Dλ is a set of right 
oset representatives of Wλ in Sn.2. the element d ∈ Dλ is the unique element of minimal length in Wλd.3. l(wd) = l(w) + l(d), for w ∈Wλ and d ∈ Dλ.4. Dλ = {d ∈ Sn | l(sd) > l(d) for all s ∈Wλ ∩ S}.Proof: If for ea
h element w ∈ Sn we asso
iate the tableau tλw then under this asso
ia-tion the elements of the 
oset Wλd, d ∈ Dλ 
orrespond to the 
olle
tion of tableaux whi
hvary from ea
h other by a permutation of the row-wise entries. Now noting that d ∈ Dλ
orresponds, under the above asso
iation, to the unique tableaux in the 
olle
tion of tλw,
w ∈Wλd, whi
h is row-standard (i.e., in
reasing along rows but not ne
essarily in
reasingalong 
olumns), the bije
tion as in (1) is immediate.To prove (2) we use the fa
t that the length l 
ounts the number of inversions, so
l(d) = #{(i, j)|1 ≤ i < j ≤ n, i.d > j.d} (see [BB05, Proposition 1.5.2℄). Let s ∈ Wλsu
h that s = (i, i + 1). Let a, b appear in tλd in the positions where i, i + 1 appear in
tλ, then tλsd is obtained by inverting the positions of a and b in tλd. Also, sin
e tλd isrow-standard we have a < b. Thus, we see that the number of inversions in sd is > numberof inversions in d i.e., l(sd) > l(d). Sin
e this is true for all s ∈ Wλ ∩ S the uniqueness in(2) 
an be dedu
ed by method of 
ontradi
tion, as outlined in the proof of item (4) givenbelow.For w ∈ Wλ, d ∈ Dλ, we know that l(wd) ≤ l(w) + l(d). Suppose that l(wd) <

l(w) + l(d) then by the deletion 
ondition (see �2.1), we get w′ < w, d′ < d su
h that
w′d′ = wd. Hen
e we get d ∈ Wλd

′ = Wλd but l(d′) < l(d) whi
h 
ontradi
ts (2). Thus
l(wd) = l(w) + l(d), as 
laimed in (3). 21



For establishing the equality in (4), we �rst noti
e using (3) that Dλ is 
ontained in theset on the right-hand side of (4). To prove the other way in
lusion, suppose d ∈ Sn su
hthat l(sd) > l(d) for all s ∈ S ∩Wλ, we 
laim that d is of minimal length in the 
oset Wλd,whi
h then by (2) implies that d ∈ Dλ. We prove the 
laim by assuming the 
ontrary, asfollows:Suppose d is not of minimal length in the 
oset Wλd, then let x ∈ Wλd be one su
h. We
an express d as a produ
t of the form wx for some w ∈ Wλ so that l(d) ≤ l(w) + l(x). If
l(d) < l(w)+ l(x) then by deletion 
ondition, we �nd elements w′, x′ su
h that w′ < w and
x′ < x with d = w′x′, whi
h will 
ontradi
t the minimality of l(x) unless x′ = x. Thus, we
on
lude that l(d) = l(w) + l(x). Now sin
e x 6= d, we get w 6= 1, whi
h implies there is a
u ∈ S ∩Wλ su
h that uw < w, so that uwx < wx whi
h 
ontradi
ts the hypothesis that
sd > d for all s ∈Wλ ∩ S.

2We now prove a useful lemma that enables us to 
hara
terize elements xs, for x ∈ Dλand s ∈ S. The lemma is true more generally for �distinguished� 
oset representatives ofan arbitrary paraboli
 subgroup where the distinguished 
oset representatives are de�nedby property (4) in Proposition 2.3.10. The proof presented here holds true verbatim evenin this general setup.Lemma 2.3.11 (Deodhar's lemma) Let x ∈ Dλ, s ∈ S. Then either xs ∈ Dλ or xs = uxfor u ∈Wλ ∩ S.Proof: Suppose xs /∈ Dλ, then property (4) in Proposition 2.3.10 does not hold, i.e.,there exists an element u ∈ Wλ ∩ S su
h that l(uxs) < l(xs). On the other hand, x ∈ Dλimplies that l(ux) > l(x). Thus we have,
l(x) < l(ux) = l(uxs)± 1 ≤ l(xs)Let s1 · · · sr be a redu
ed expression for uxs. Then us1 · · · sr is a redu
ed expression for xssin
e l(uxs) + 1 = l(xs). As l(xs) > l(x), we should be able �nd a redu
ed expression for

x as a suitable subexpression of us1 · · · sr. If si is dropped then x = us1 · · · ŝi · · · sr leadingus to the 
ontradi
tion that ux < x. Hen
e x = s1 · · · sr so that xs = us1 · · · sr = ux, asrequired.
2The set Dλ 
an be des
ribed entirely based on just one element in it, namely the longest
oset representative. We have,Proposition 2.3.12 ([DJ86, Lemma 1.4℄) Let dλ be an element of maximal length in Dλ.Then,1. dλ is unique.2. Dλ is pre
isely the set of all the pre�xes of dλ.22



Proof: Let w0 be the longest element in Sn. Let x ∈ Dλ su
h that w0 ∈ Wλx. Thenby maximality of length and Proposition 2.3.10(3), we have w0 = w0,λx and x should beof maximal length in Dλ. By uniqueness of the longest element in Sn, we have w0,λx =

w0,λdλ, proving (1) above.For proving (2), �rst we observe that if y ∈ Dλ and s ∈ S su
h that ys < y then
ys ∈ Dλ. This follows immediately by Deodhar's lemma (Lemma 2.3.11), sin
e if ys /∈ Dλthen ys > y. Thus, all pre�xes of dλ are in Dλ. The other way in
lusion is proved byreverse indu
tion on l(y) where y ∈ Dλ. If l(y) is maximal then y = dλ. Assume y 6= dλ.For s ∈ S, if l(ys) > l(y) and ys ∈ Dλ then by indu
tion ys is a pre�x of dλ, so is y andwe are done. So, assume for every s ∈ S either ys /∈ Dλ or l(ys) < l(y). Suppose ys /∈ Dλwhere s ∈ S then by Deodhar's lemma ys = uy for some u ∈Wλ ∩ S. Then,

l(w0,λys) = l(w0,λuy) = l(w0,λ)− 1 + l(y) = l(w0,λy)− 1On the other hand, if l(ys) < l(y) and ys ∈ Dλ then
l(w0,λys) = l(w0,λ) + l(ys) = l(w0,λ) + l(y)− 1 = l(w0,λy)− 1Thus, we obtain that for all s ∈ S, we get w0,λys < w0,λy. This readily implies w0,λy = w0,a 
ontradi
tion to the assumption that y 6= dλ. Hen
e the proof is 
omplete.

2We had already seen that wλ is an element of Dλ. By the above proposition, it isa pre�x of dλ and every pre�x of wλ is also in Dλ. The next lemma 
hara
terizes thesepre�xes.Lemma 2.3.13 ([DJ86, Lemma 1.5℄) The set of w ∈ Sn su
h that tλw is a standardtableau is the same as the set of pre�xes of wλ.Proof: We begin with an observation. Suppose w ∈ Sn su
h that tλw is standard. If
l(w(i, i+ 1)) < l(w) then (i+ 1).w−1 < i.w−1, sin
e l 
ounts the number of inversions. So,if i o

urs in node (r, c) and (i + 1) o

urs in node (r′, c′) of tλw then r > r′ and c < c′(be
ause tλw is standard). Now it is obvious that tλw(i, i + 1) is also standard.The observation made in the last paragraph shows that for every pre�x w of wλ, tλwis also standard. Conversely, let tλw is standard and assume w 6= wλ. Then there exists
i, j, with j > i+ 1, o

urring in 
onse
utive boxes in some 
olumn of tλw. It 
an be seeneasily that there is a k, i ≤ k < j su
h that k o

urs in a node (a, b) and k + 1 o

ursin node (a′, b′) su
h that a < a′ and b > b′ of tλw . Then tλw(k, k + 1) is standard and
l(w(k, k + 1)) = l(w) + 1. By reverse indu
tion on l(w), w(k, k + 1) is a pre�x of wλ, andso is w. 2
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More on 
oset representativesAfter all this dis
ussion about the right 
oset representatives of Wλ, it is easy to verify thefollowing remark about the left 
oset representatives,Remark 2.3.14 The set D−1
λ is a set of minimal length left 
oset representatives of Wλin Sn. This set has similar properties as that of Dλ as listed in Proposition 2.3.10.Let λ, µ ⊢ n. We now des
ribe a set of double 
oset representatives for Wλ�Wµ in thefollowing lemma:Lemma 2.3.15 (see [GP00, Proposition 2.1.7℄ Let λ, µ ⊢ n. Then for ea
h element w ∈

Sn there is a u ∈Wλ, v ∈Wµ and a unique d ∈ Dλ ∩D−1
µ su
h that w = udv and l(w) =

l(u) + l(d) + l(v). In parti
ular, the set Dλ ∩D−1
µ is a set of double 
oset representativesof Wλ�Wµ.Proof: Let w ∈ Sn and write w = ux, where u ∈Wλ and x ∈ Dλ, and l(w) = l(u)+ l(x)by Proposition 2.3.10. Write x = dv where d ∈ D−1

µ and v ∈ Wµ and l(x) = l(d) + l(v).Sin
e d is a pre�x of x ∈ Dλ, we get d ∈ Dλ. Thus, w = udv with u ∈Wλ, d ∈ Dλ ∩D−1
µ ,

v ∈Wµ and l(w) = l(u)+ l(d)+ l(v), as required. The uniqueness follows by noting that d,as obtained above, is the unique element of minimal length in the double 
oset WλdWµ =

WλwWµ. 2The following observation turns out to be useful later,Lemma 2.3.16 (see [GP00, Theorem 2.1.12℄) Let λ, µ ⊢ n. Let d ∈ Dλ ∩D−1
µ . Then thesubgroup d−1Wλd ∩Wµ is generated by d−1Wλd ∩Wµ ∩ S.Proof: De�ne L := Wλ ∩ S, K := Wµ ∩ S and J := d−1Ld ∩ K. Clearly, WJ ⊂

d−1Wλd∩Wµ. It therefore, su�
es to prove that Wλd∩dWµ ⊂ dWJ . Let w ∈Wλd∩dWµ.Then w = ud = dv, where u ∈ Wλ and v ∈ Wµ and l(w) = l(u) + l(d) = l(d) + l(v). Inparti
ular, l(u) = l(v). Let v = v0 · · · vr, where vi ∈ K. Set d0 = d and de�ne di ∈ Dλusing Deodhar's Lemma, so that di−1vi = xidi where di ∈ Dλ and xi ∈ L � if di−1vi ∈ Dλthen xi = 1 otherwise di = di−1. Then we have ud = dv = x1 · · · xrdr where x1 · · · xr ∈Wλand dr ∈ Dλ. By uniqueness of the expression ud, we have u = x1 · · · xr and hen
e
r = l(u) = l(v). Therefore, xi 6= 1 for all i and so, di = d for all i. This means dvi = xidfor all i equivalently, vi ∈ J from whi
h we 
on
lude that w ∈ dWJ . 2Remark 2.3.17 Lemma 2.3.15, Lemma 2.3.16 and Remark 2.3.14 hold true more gen-erally for Wλ, Wµ repla
ed by any paraboli
 subgroups of Sn and Dλ, Dµ repla
ed bythe respe
tive sets of minimal length right 
oset representatives (de�ned as in Proposi-tion 2.3.10(4) whi
h implies it is the unique element of minimal length in the right 
oset
ontaining it). The proofs are verbatim those given above.
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Few more 
ombinatorial resultsWe now gather together a few 
ombinatorial results regarding the Kazhdan-Lusztig rela-tions, whi
h will be used in the sequel:Lemma 2.3.18 ([MP05, Lemma 3.3℄) Let λ ⊢ n. De�ne w = w0w0,λwλ. Then,1. w0,λDλ = {y ∈ Sn | y≤Rw0,λ}. Thus, y≤Rw0,λ if and only if for every row of tλythe entries are de
reasing to the right.2. {w0,λd | d a pre�x of wλ} = {y ∈ Sn | y∼Rw0,λ}.3. The element w, as de�ned above, is in the same left 
ell as w0,λ′ .4. w is a pre�x of every element in the right 
ell 
ontaining it.Proof: (1) By Proposition 2.3.10(3) and (2.6), it is easy to 
he
k that w0,λDλ ⊂ {y ∈

Sn | y≤Rw0,λ}. To prove the other way in
lusion, noti
e that if y≤Rw0,λ then byLemma 2.2.14 L(w0,λ) ⊂ L(y), so, sy < y for all s ∈ S ∩ Wλ. Expressing y as udwhere u ∈ Wλ, d ∈ Dλ we have for all s ∈ S ∩Wλ, sud < ud, as we just observed, and
sd > d, by Proposition 2.3.10(3). Therefore we 
on
lude that su < u for all s ∈ S ∩Wλand so, u = w0,λ. Hen
e y = w0,λd for some d ∈ Dλ, as required. The se
ond part nowfollows immediately, noti
ing also that by its de�nition w0,λ reverses the entries in ea
hrow of tλ.(2) By (1), we have w0,λd≤Rw0,λ. Further, using (2.6) it 
an be seen that for any pre�x
d of wλ, w0,λwλ≤Rw0,λd. However, an easy veri�
ation shows that w0,λwλ 
orrespondsunder the RSK-
orresponden
e to the pair (tλ′ , tλ

′
) (
ompare [MP05, Lemma 3.2℄) while,

w0,λ 
orresponds to (tλ′ , tλ′). By Proposition 2.3.7(2) this means w0,λwλ∼Rw0,λ. Thus,for ea
h pre�x d of wλ, we get, w0,λd∼Rw0,λ, thereby proving one-way in
lusion. Nowusing Lemma 2.3.13 and the 
hara
terisation of right 
ells given by Proposition 2.3.7, a
ounting argument proves the equality of the two sets.(3) Applying the RSK-
orresponden
e to w0,λwλ we get the pair (tλ′ , tλ
′
) (
ompare [MP05,Lemma 3.2℄). Noti
e that the pair 
orresponding under RSK to w0w0,λwλ is just the trans-pose of the tableaux 
orresponding to w0,λwλ . So, w = w0w0,λwλ 
orresponds to (tλ, tλ).Proposition 2.3.7 then proves (3), as the Q-symbols of both w and w0,λ′ are the same.(4) Putting together Lemma 2.2.12 and statement (2) above, we dedu
e that the right
ell 
ontaining w is given by {w0w0,λd | d is a pre�x of wλ}, whi
h 
an then be easilyidenti�ed with the set {wb | b is a pre�x of wλ′} sin
e w−1

λ = wλ′ . Also, l(w0) = l(w) +

l(w0,λ) + l(wλ′) � observe that l(w0w) = l(w0) − l(w). This fa
t along with the relation
w0 = wwλ′w0,λ, implies that l(wb) = l(w) + l(b) for all pre�xes b of wλ′ . Hen
e the 
laim.
2
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Chapter 3Spe
ht modules, Cell modules:An introdu
tionIn this 
hapter we introdu
e the basi
 representation theoreti
 obje
ts of interest to us andpresent some preliminary results about them to be used later.The tabloid representations and Spe
ht modules for Sn, introdu
ed in �3.2, are 
lassi
alobje
ts in its representation theory. These modules have analogues also in the setup of theHe
ke algebra, namely the permutation modules and Spe
ht modules forH. In �3.3, we givea short introdu
tion to these H-modules and by Proposition 3.3.12 provide justi�
ationto 
alling them as the analogues of their Sn 
ounterparts. There is one more modulewhi
h is of primary importan
e to our study � the 
ell module. As H-modules the 
ellmodules are not di�erent from the Spe
ht modules, the proof of whi
h forms the 
ontentof �3.4. Given there is an expli
it isomorphism between the 
ell module 
orresponding to apartition and the Spe
ht module 
orresponding to the same partition. In �3.5 we indi
atea relation between the Spe
ht modules 
orresponding to a partition and its transposepartition (refer �2.3.4), a fa
t that we will need later.Se
tion 3.2 is a very sket
hy introdu
tion to the Sn-modules that are of interest to us.More detailed introdu
tion 
an be found in [Sag01℄, for example. The 
ontent of �3.3 isgathered from [DJ86℄, [DJ87℄ and [MP05℄.We begin by re
alling some elementary results from the stru
ture theory of semisimplealgebras.3.1 A short re
ap of the stru
ture theory of semisimple alge-brasThe fa
ts re
alled here are all well known: see for example [Bou73℄, [GP00, pp. 218, 247℄.Let k denote a �eld. Let V be a simple (right) module for a semisimple algebra A of �nitedimension over k. Then the endomorphism ring EndAV is a division algebra (S
hur'sLemma), say EV . Being a subalgebra of EndkV , it is �nite dimensional as a ve
tor26



spa
e over k, and V is a �nite dimensional ve
tor spa
e over it. Set nV := dimEV
V .The ring EndEV

V of endomorphisms of V as a EV -ve
tor spa
e 
an be identi�ed (non-
anoni
ally, depending upon a 
hoi
e of basis) with the ringMnV
(DV ) of matri
es of size

nV × nV with entries in the opposite algebra DV of EV . The natural ring homomor-phism A→ EndEV
V is a surje
tion (density theorem).There is an isomorphism of algebras (Wedderburn's stru
ture theorem):

A ≃
∏

V

EndEV
V ≃

∏

V

MnV
(DV ), (3.1)where the produ
t is taken over all (isomorphism 
lasses of) simple modules. There is asingle isomorphism 
lass of simple modules for the simple algebra EndEV

V , namely thatof V itself, and its multipli
ity is nV in a dire
t sum de
omposition into simples of theright regular representation of EndEV
V . Thus nV is also the multipli
ity of V in the rightregular representation of A. And of 
ourse

dimk V = nV (dimk EV ) ≥ nV (3.2)The hypothesis of the following proposition admittedly appears 
ontrived at �rst sight,but it will soon be apparent (in �3.3.5) that it is tailor-made for our purpose.Proposition 3.1.1 Let W1, . . . , Ws be A-modules of respe
tive dimensions d1, . . . , dsover k. Suppose that the right regular representation of A has a �ltration in whi
h thequotients are pre
isely W⊕d1
1 , . . . , W⊕ds

s . Then1. EndAWi = k and Wi is absolutely irredu
ible, ∀ i, 1 ≤ i ≤ s.2. Wi is not isomorphi
 to Wj for i 6= j.3. Wi, 1 ≤ i ≤ s, are a 
omplete set of simple A-modules.4. A ≃
∏s

i=1 EndkWi.Proof: Let V be a simple submodule of Wi. Then dimk V ≤ di. The hypothesis aboutthe �ltration implies that the multipli
ity of V in the right regular representation is atleast di. From Eq. (3.2), we 
on
lude that di = nV and dimk EV = 1. So V = Wi is simpleand EV = k. If k denotes an algebrai
 
losure of k, thenEnd
A⊗kk(V ⊗k k) = (EndAV )⊗k k = k ⊗k k = k.So V is absolutely irredu
ible and (1) is proved.If Wi ≃ Wj for i 6= j, then the multipli
ity of Wi in the right regular representationwould ex
eed di 
ontradi
ting Eq. (3.2). This proves (2). Sin
e every simple module haspositive multipli
ity in the right regular representation, (3) is 
lear. Finally, (4) followsfrom (1) and Eq. (3.1). 227



3.2 Some Sn-modulesLet λ = (λ1, λ2, . . . λr) ⊢ n. A tabloid of shape λ is a partition of the set [n] := {1, . . . , n}into an ordered r-tuple of subsets, the �rst 
onsisting of λ1 elements, the se
ond of λ2elements, and so on. The members of the �rst subset are arranged in in
reasing order inthe �rst row, those of the se
ond subset in the se
ond row, and so on. Depi
ted below aretwo tabloids of shape (3, 3, 2):
1 3 5

7 8 9

4 6

3 5 8

1 6

2 7Notation 3.2.1 Given a Young tableau T of shape λ (�2.3.1), it determines, in the obviousway, a tabloid of shape λ denoted {T}: the �rst subset 
onsists of the elements in the �rstrow, the se
ond of those in the se
ond row, and so on.Tabloid representationsThe de�ning a
tion of Sn on [n] indu
es, in the obvious way, an a
tion on the set Tλ oftabloids of shape λ. The free Z-module ZTλ with Tλ as a Z-basis be
omes therefore alinear representation of Sn over Z. By base 
hange, we get su
h a representation over any
ommutative ring with unity k: kTλ := ZTλ ⊗Z k. We 
all it the tabloid representation
orresponding to the shape λ.Spe
ht modulesThe Spe
ht module 
orresponding to a partition λ ⊢ n is a 
ertain Sn-submodule of thetabloid representation ZTλ de�ned as follows:De�ne the elements eT in ZTλ for tableaux T of shape λ as:
eT :=

∑

ǫ(σ){Tσ}where the sum is taken over permutations σ of Sn in the 
olumn stabiliser of T , ǫ(σ)denotes the sign of σ, and {Tσ} denotes the tabloid 
orresponding to the tableau Tσ(refer Notation 3.2.1). The Spe
ht module Sλ is the linear span of the eT as T runs overall tableaux of shape λ. It is an Sn-submodule of ZTλ with Z-basis eT , as T varies overstandard tableaux ( [Sag01, Theorem 2.6.5℄). It is therefore a free Z-module of rank equalto the number d(λ) of standard tableaux of shape λ (�2.3.1). By base 
hange, we getthe Spe
ht module Sλ
k over any 
ommutative ring with identity k: Sλ

k := Sλ ⊗Z k, whi
hevidently is free over k .Over the �eld C, the Spe
ht modules are irredu
ible and in fa
t they are all the irre-du
ible modules of Sn (see for example, [Sag01, Theorem 2.4.6℄). Moreover, for the tabloid28



module CTλ, we have a de
omposition into irredu
ibles as stated below (see [Sag01, The-orem 2.11.2℄ for proof):Proposition 3.2.2 There are positive integers kµλ for µ D λ, su
h that CTλ ∼= ⊕µDλkµλS
µ
C.

23.3 Some H-modules: De�nitions and preliminariesLet λ ⊢ n be �xed. Re
all from �2.3.4 that λ′ denotes the transpose of λ; the per-mutation wλ takes tλ to tλ. Let Wλ be the row stabilizer of tλ. Then Dλ := {w ∈

Sn | t
λw is row standard} is a set of right 
oset representatives of Wλ in Sn (Proposi-tion 2.3.10(1)).We set,

xλ :=
∑

w∈Wλ

vwTw yλ :=
∑

w∈Wλ

ǫwv
−1
w Tw zλ := vwλ

xλTwλ
yλ′Using Corollary 2.2.9(2), we note that

xλ = vw0,λ
C ′

w0,λ
yλ = ǫw0,λ

v−1
w0,λ

Cw0,λ
(3.3)By means of these elements we de�ne 
ertain H-modules whi
h will be of importan
ein our study. Before we begin with the de�nitions of these modules, we make the following
ombinatorial observation that will see us through many proofs later:Lemma 3.3.1 [DJ86, Lemma 4.1℄) Let λ ⊢ n and w ∈ Sn su
h that xλTwyλ′ 6= 0. Then

xλTwyλ′ = ±vixλTwλ
yλ′ 6= 0 for some non-negative integer i.Proof: In view of Lemma 2.3.15, we may assume that w ∈ Dλ ∩ D−1

λ′ . Suppose that
w−1Wλw∩Wλ′ 6= (1), then by Lemma 2.3.16 there exists an element s ∈ w−1Wλw∩Wλ′∩S.Let D be a set of minimal length 
oset representatives of the subgroup {1, s} in Wλ′ . Then
yλ′ = (T1 − vTs)

∑

d∈D ǫdvdTd. Inserting this expression in xλTwyλ′ , we get
xλTwyλ′ = (xλTwT1 − v

−1xλTwTs)
∑

d∈D

ǫdv
−1
d TdSin
e s ∈ w−1Wλw ∩Wλ′ , there exists a u ∈ Wλ su
h that ws = uw, and hen
e u ∈ Sand TwTs = TuTw. Now using the fa
t that for u ∈ Wλ ∩ S, xλTu = vxλ we dedu
ethat (xλTwT1 − v−1xλTwTs) in the above expression is 0, leading to a 
ontradi
tion tothe hypothesis that xλTwyλ′ 6= 0. Hen
e we have w−1Wλw ∩Wλ′ = (1). Noti
ing that

w−1Wλw is the row stabilizer of the (row-standard) tableau tλw the last 
ondition holdsonly if every element in a 
olumn in tλ o

urs in di�erent rows of tλw. Now it is easy to
on
lude that this is possible if and only if tλw = tλ, so that w = wλ. Hen
e the 
laim. 229



Remark 3.3.2 Let µ = (µ1, . . . , µr) be a 
omposition of n, i.e., µi > 0 for all i = 1, . . . rand µ1 + · · ·+ µr = n. Then µ de�nes a subgroup Wµ of all permutations in Sn whi
h �xthe subsets S1, . . . , Sr of sizes µ1, µ2 . . . , µr respe
tively 
onsisting of numbers 1, . . . , µ1;
µ1 + 1, . . . , µ1 + µ2; . . . in that order. De�ne µ′i to be the number of subsets Sj havingatleast i elements. Clearly, (µ′1, µ

′
2, . . .) is a partition of n. Now, let yµ :=

∑

u∈Wµ
ǫuvuTuthen the proof of the above lemma 
an be imitated to show that if xλTwyµ 6= 0 then

w−1Wλw ∩Wµ = (1) ([DJ86, Lemma 4.1℄). This 
ondition means that the elements of Siare all in di�erent rows of the row-standard tableau tλw. Then, noti
ing that the numbersin Si are all smaller than the numbers in Si+1, we 
on
lude that µ′ D λ.Notation 3.3.3 It will be 
onvenient for us to �x the following notation. For a subset
S of Sn, denote by 〈Cy|y ∈ S〉A the A-span of {Cy|y ∈ S} in H. For an A-algebra k,denote by 〈Cy|y ∈ S〉k the k-span of {Cy|y ∈ S} in Hk. Similar meanings are atta
hed to
〈Ty|y ∈ S〉A and 〈Ty|y ∈ S〉k.Notation 3.3.4 Let k be a ring, a an invertible element in k. We already de�ned
Hk (�2.2). Also, for any H-module N , we denote by Nk the Hk-module N ⊗A k ob-tained by extending s
alars via the homomorphism A→ k given by v 7→ a. It will also be
onvenient to denote by n, the element n⊗ 1 ∈ Nk.3.3.1 Permutation modules MλFollowing [DJ86℄, we de�ne the permutation module Mλ to be the right ideal xλH. Thebasi
 properties of Mλ are presented in the following lemma ([DJ86, Lemma 3.2℄):Proposition 3.3.5 With notations as above,1. The module Mλ is a free A-module with basis {xλTd | d ∈ Dλ}.2. If d ∈ Dλ and s ∈ S, then

xλTwTs =







xλTws if l(ws) = l(w) + 1 and ws ∈ Dλ

(v − v−1)xλTw + xλTws if l(ws) = l(w)− 1 and ws ∈ Dλ

vsxλTw if ws /∈ Dλ

(3.4)Proof: Sin
e Tw, w ∈ Sn form a basis of H, it is obvious that the elements xλTw,
w ∈ Sn span the module xλH over A. On the other hand, every element w ∈ Sn 
an beexpressed uniquely as a produ
t ud where u ∈ Wλ, d ∈ Dλ su
h that l(ud) = l(u) + l(d)(Proposition 2.3.10). So, we have Tud = TuTd. By Lemma 2.2.10 we know that C ′

w0,λ
Ts =

vC ′
w0,λ

for s ∈ Wλ ∩ S. Putting all this together, justi�es the 
laim that the 
olle
tion
xλTd, d ∈ Dλ is enough to span xλH. Computing xλTd by inserting the expression for xλin it, we get xλTd =

∑

w∈Wλ
vwTwTd. Sin
e l(wd) = l(w) + l(d) for all w ∈ Wλ, we have

TwTd = Twd. The linear independen
e now follows from the linear independen
e of Tx,
x ∈ Sn and the fa
t that the 
osets Wλd, d ∈ Dλ are disjoint. This proves (1).30



By Deodhar's lemma and its proof, we know that for s ∈ S and d ∈ Dλ, the element
ds is either in Dλ or else ds > d and ds = s′d for some s′ ∈Wλ ∩ S. Statement (2) followsfrom these observation along with the multipli
ation rule given in (2.3). 2The bilinear form 〈 , 〉 on Mλ:As in [DJ86, page 34℄, de�ne a A-bilinear form 〈 , 〉 on Mλ by de�ning it on the A-basisdes
ribed by Proposition 3.3.5 as follows: set 〈xλTd, xλTe〉 equal to 1 or 0 a

ordingly aselements d, e of Dλ are equal or not. The form is evidently symmetri
.Re
all the A-linear, anti-automorphism of the algebra H: h 7→ h∗ given by Tw 7→ Tw−1(see Remark 2.2.7). We have,Lemma 3.3.6 Let m1, m2 ∈M

λ and h ∈ H. Then
〈m1h,m2〉 = 〈m1,m2h

∗〉 (3.5)Proof: We may assume that h = Ts for some s ∈ S and that m1 = xλTd, m2 = xλTe forsome d, e ∈ Dλ. Then we are redu
ed to showing that 〈xλTdTs, xλTe〉 = 〈xλTd, xλTeTs〉.By the de�nition of the bilinear form, both sides of this equation turns out to be 0 unless
e = d or e = ds. In the 
ase when e = d, the equation is valid owing to the symmetry ofthe bilinear form while if e = ds we 
an assume that d < ds. Then as ds = e ∈ Dλ we usethe appropriate relation in (3.4) to verify the validity of the equation. 23.3.2 Spe
ht modules SλThe Spe
ht module Sλ is de�ned to be the right ideal zλH. By Lemma 3.3.1 we know thatthis is a non-zero submodule of Mλ. It is a free A-module with basis given by,Theorem 3.3.7 The set {vdzλTd | t

λwλd is a standard tableau} forms an A basis for Sλ.(see [DJ86, Theorem 5.6℄ for proof)1 2The basis given by the above theorem is 
alled the standard basis of Sλ. The Spe
htmodules were �rst de�ned in the seminal work of Dipper and James [DJ86℄ where theyalso had proved that the above set forms a basis. Showing the linear independen
e over
A of this set is almost straight forward, given the Lemma 3.3.8 below. However, the proofthat these elements span the spa
e zλH is mu
h more involved and we don't give it here.Lemma 3.3.8 For d pre�x of wλ′ , the 
oe�
ient of xλTwλd in zλTd is a unit in A and theother terms xλTu, u ∈ Dλ, involved in zλTd satisfy l(u) > l(wλd).1This basis is exa
tly the same as that given in [DJ86℄. The leading s
alar fa
tor vd in the above basisappears due to the notational di�eren
e with [DJ86℄ (Refer �2.2, Remark on notation).
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Proof: Inserting the expression for yλ′ in zλ (see beginning of �3.3 for de�nition of yλ′),we get that
zλ = xλTwλ

+
∑

w∈Wλ′\{1}

ǫwv
−1
w xλTwλwSin
e wλ ∈ D−1

λ′ , we have l(wλw) = l(wλ) + l(w) for all w ∈Wλ′ (Proposition 2.3.10(3)).By Lemma 2.2.4(4) we know that the produ
t TwλwTd expressed in terms of the T -basis 
onsists only of terms Tu su
h that u ≥ wλwd. Note that, if x > y then everyredu
ed expression for x 
ontains a subexpression whi
h is redu
ed for y (see [Lus03,Proposition 2.4℄ for example). Using this and the properties of Dλ (Proposition 2.3.10) itis easy to see that, if x > y and x ∈Wλd
′, y ∈Wλd

′′ where d′, d′′ ∈ Dλ then l(d′) > l(d′′).Applying this observation to u su
h that Tu appears in the produ
t TwλwTd, it 
an bededu
ed that xλTwλwTd 
an be expressed as a linear 
ombination of xλTd′ , d′ ∈ Dλ su
hthat l(d′) ≥ l(wλw)− l(d) (noti
e that wλw ∈ Dλ for w ∈Wλ′). The fa
t that wλ′ = w−1
λ ,in turn implies that l(wλw) − l(d) = l(wλd) + l(w). Thus we 
on
lude that, by applying

Td to the relation for zλ obtained above, we get
zλTd = xλTwλd +

∑

l(u)>l(wλd)

ǫuv
−1
u xλTuas required. 2The bilinear form 〈 , 〉 on Sλ:Owing to the fa
t that Sλ is a submodule of Mλ, we 
an restri
t the bilinear form 〈, 〉de�ned on Mλ (�3.3.1) to the Spe
ht module. Moreover, we have the following remarkableproperty of this form, that goes under the name �The submodule theorem�.For a submodule U of Mλ, we de�ne U⊥ := {m ∈Mλ| 〈m,u〉 = 0 for all u ∈ U}.Theorem 3.3.9 (The Submodule Theorem) Let F be a �eld, a ∈ F be invertible. Let

HF be the spe
ialization of H via v 7→ a. Let U be a submodule of Mλ
F . Then Sλ

F ⊂ U or
U ⊂ Sλ⊥

F .Proof: Let m ∈ U ⊂Mλ. Then by Lemma 3.3.1, myλ′ = rzλ for some r ∈ F . Therefore,if myλ′ 6= 0 for some m ∈ U then zλ ∈ U and hen
e Sλ
F ⊂ U . If myλ′ = 0 for all m ∈ Uthen

〈zλh,m〉 = 〈xλTwλ
,mh∗y∗λ〉 = 〈xλTwλ

, 0〉 = 0for all h ∈ HF . Hen
e U ⊂ Sλ⊥

F . 2Corollary 3.3.10 Let F = Q(v). Then Sλ
F is irredu
ible for all partitions λ ⊢ n.Proof: We begin with the observation that Sλ

F ∩S
λ⊥

F is either Sλ
F or the unique maximalproper submodule of Sλ

F . Indeed, if U is a proper submodule of Sλ
F then applying theabove theorem to U we obtain that U ⊂ Sλ⊥

F hen
e in the interse
tion.32



In order to prove the irredu
ibility of Sλ
F it would therefore su�
e to show that Sλ

F ∩

Sλ⊥

F = (0). Suppose m ∈ Sλ
F ∩ S

λ⊥

F , so that 〈m,m〉 = 0. Sin
e m ∈ Mλ
F , we 
an write

m =
∑

d∈Dλ
rdxλTd, where rd ∈ Q(v) so by the de�nition of the form on Mλ

F , 〈m,m〉 =
∑

d∈Dλ
(rd)

2 = 0. Multiplying by a suitable polynomial in v to 
lear denominators, we 
anmodify m to assume that rd ∈ Q[v] so that ∑d∈Dλ
(rd)

2 ∈ Q[v]. By inserting v = a ∈ Q+we noti
e that the sum of positive rationals is 0. Hen
e ea
h rd(a) = 0 for all a ∈ Q+whi
h is possible only if the polynomials rd(v) (d ∈ Dλ) were identi
ally 0. Thus m = 0 ,as required. 2A 
riterion for 〈, 〉 to be non-zero on Sλ
FThe next proposition gives a 
riteria for the bilinear form on Sλ, de�ned above, to benon-zero over a �eld F . A shape λ is e-regular if for ea
h i ∈ N, the number of parts of λthat equal i is less than e.Proposition 3.3.11 ([DJ86, Theorem 6.3(i)℄) Let F be a �eld. Let a ∈ F be an invertibleelement. Denote by e the smallest integer su
h that 1 + a2 + · · · + a2(e−1) = 0. Let λ ⊢ nbe e-regular. Then there exist elements e1, e2 ∈ Sλ

F su
h that 〈e1, e2〉 6= 0. 2The proof of the above proposition involves the 
onstru
tion of elements e1, e2 ∈ Sλ
Fsu
h that the only terms xλTu (u ∈ Dλ) 
ommon to both e1 and e2, when expressed as alinear 
ombination of the basis of Mλ

F , are of the form xλTwλw where w ∈Wλ′ su
h that wpermutes the numbers appearing in rows of the same length in tλ among themselves. Thedetails of the 
onstru
tion 
an be found in [DJ86℄.3.3.3 Relating Mλ with ZTλBefore pro
eeding further, it would be appropriate to pause and note that the modules
Mλ and Sλ de�ned above are analogues of ZTλ and Sλ for Sn in the sense that, if wespe
ialize Mλ and Sλ to Z via the map given by v 7→ 1 (refer to �2.2 and Notation 3.3.4to re
all what we mean by spe
ialization) and denote the modules obtained thus by M̃λand S̃λ, then we have the following:Proposition 3.3.12 There exists an Sn-isomorphism between the modules M̃λ and ZTλ.Further, the restri
tion of this isomorphism to S̃λ gives an isomorphism of S̃λ with the
Sn-module Sλ.Proof: Let ρλ:=∑w∈Wλ

w and κλ:=∑w∈Wλ
ǫww. Under the identi�
ation of H ⊗A Zwith ZSn, the elements xλ ⊗ 1 7→ ρλ and yλ ⊗ 1 7→ κλ. So M̃λ is identi�ed with ρλZSn.Now de�ne

θ : ρλZSn → ZTλas the mapping ρλw 7→ {t
λ}w for w ∈ Sn. This is 
learly an Sn-isomorphism of the rightideal ρλZSn with ZTλ. This proves the �rst part of the Proposition.33



Suppose κt denotes the signed sum over the elements of the 
olumn stabilizer of atableau t. Then it is easy to see that for w ∈ Sn

κtw = w−1κtw (3.6)Therefore, κλ = κtλ = wλκtλwλ
w−1

λ , whi
h leads us to the relation ρλκλ = ρλwλκtλwλ
w−1

λ .Theorem 3.3.7 gives a basis for S̃λ, whi
h under its identi�
ation as a right ideal in ZSn isgiven by ρλwλκtλwλ
d where d is a pre�x of wλ′ . By (3.6) , we get ρλwλκtλwλ

d = ρλκtλwλd.The image of the latter element under the map θ is {tλ}κtλwλd whi
h by (3.6) 
an berewritten as {tλ}wλdκtλwλd = etλwλd. However, for ea
h pre�x d of wλ′ the element wλddenotes a pre�x of wλ. Hen
e by Lemma 2.3.18 the tableau tλwλd is a standard. Thus theimage of the standard basis elements of S̃λ is pre
isely the basis {et| t standard λ-tableau}of Sλ, as required. 23.3.4 Monomial moduleLet λ ⊢ n. The monomial module 
orresponding to λ is de�ned to be the right ideal yλH(see beginning of �3.3 for de�nition of yλ). By (3.3), it is obvious that this is the same asthe right ideal, Cw0,λ
H. This module again is free over A, as will be seen below. It has two

A-bases whi
h are of interest to us. The next two Propositions present for us these bases.Note that sin
e j(Cw0,λ
) = ǫw0,λ

C ′
w0,λ

, by Equation (3.3) we have j(Mλ) = j(xλ)H = yλH.Thus, Proposition 3.3.5 readily leads us to the T-basis of yλH, des
ribed expli
itly below:Proposition 3.3.13 The set {Cw0,λ
Td| d ∈ Dλ} forms a basis for Cw0,λ

H over A. It is
alled the T -basis of Cw0,λ
H. 2Considering the de�nition of the relation ≤R and Remark 2.2.11 given there, it is 
learthat CwH ⊂ 〈Cy|y≤Rw〉A. In 
ase of the longest element w0,λ of Wλ, in fa
t, equalityholds. This is done in the Proposition below and we 
all this basis the C-basis of Cw0,λ

H.Proposition 3.3.14 ([MP05, Lemma 2.11℄) The A-span 〈Cw|w≤Rw0,λ〉A of the elements
Cw, w≤Rw0,λ, equals the right ideal Cw0,λ

H.Proof: By the de�nition of ≤R, the in
lusion Cw0,λ
H ⊂ 〈Cw|w≤Rw0,λ〉A is immediate.To prove the reverse in
lusion we use Proposition 2.3.12 and Lemma 2.3.18 together todedu
e that the set {w| w≤Rw0,λ} = {w0,λd | d pre�x of dλ}, whi
h we denote as Cλ.Indu
ting on the l(d), we show that Cw0,λd ∈ 〈Cw|w≤Rw0,λ〉A for all pre�xes d of dλ asfollows:When d = 1 the 
laim is obvious. Assuming the indu
tion hypothesis for all d′ ∈ Cλsu
h that l(d′) < l(d), we 
onsider the element Cw0,λd for some pre�x d of dλ. Writing

d = es, where e is itself a pre�x of dλ and l(es) = l(e) + 1, we get from (2.6)
Cw0,λd = Cw0,λeCs −

∑

zs<z<w0,λe

µ(z,w0,λe)Cz34



Every z for whi
h Cz appears in the last term of the above expression has to satisfy
z≤Rw0,λe≤Rw0,λ and z < w0,λe. Sin
e l(e) < l(d), by using the indu
tion hypothesiswe 
on
lude that all terms in the right hand side of the above expression are in Cw0,λ

Himplying that Cw0,λd is also in Cw0,λ
H, as required. 2Order the elements of Dλ re�ning the partial order given by their lengths. This nat-urally indu
es an ordering on the C-,T -bases of H sin
e they are both indexed by Dλ.Then the proposition below shows that with respe
t to this ordering the two bases are inunitriangular relationship with ea
h other.Lemma 3.3.15 For ea
h e ∈ Dλ, Cw0,λ

Te =
∑

d∈Dλ,d≤e ge,dCw0,λd where ge,e = 1 and
ge,d = 0 if d � e.Proof: We on
e again use the des
ription of the set {w| w≤Rw0,λ} as the 
olle
tion ofelements w0,λd su
h that d ∈ Dλ.Pro
eed by indu
tion on the l(e), e ∈ Dλ. When e = 1 the 
laim is obvious. So, let
l(e) ≥ 1. Write e = ds su
h that d ∈ Dλ and l(ds) = l(d) + 1. Using the expression for
Cw0,λ

Td assumed by the indu
tion hypothesis we get that
Cw0,λ

Te = Cw0,λ
TdTs = Cw0,λd +

∑

d′∈Dλ,d′<d

gd,d′Cw0,λd′TsBy indu
tion hypothesis it is 
lear that the only term in the right-hand side of the aboverelation that 
ontributes to the 
oe�
ient of Cw0,λds is Cw0,λdTs. So, inserting the expres-sion Cw0,λds +Cw0,λd +
∑

zs<z<w0,λd µ(z,w0,λd)Cz in pla
e of Cw0,λdTs (see Equation (2.6))in the right-hand side of the above equation we 
on
lude that the 
oe�
ient of Cw0,λe in
Cw0,λ

Te is ge,e = gd,d = 1. The rest of the 
laim is obvious by length 
onsiderations. 23.3.5 Cell modulesIt follows from the de�nition of the pre-order ≤L that the A-span 〈Cy|y≤Lw〉A of {Cy|y≤Lw},for w in Sn �xed, is a left ideal of H; so is 〈Cy|y <Lw〉A. The quotient L(w) :=

〈Cy|y≤Lw〉A/〈Cy|y <Lw〉A is 
alled the left 
ell module asso
iated to w. It is a left H-module. Right 
ell modules R(w) and two sided 
ell modules are de�ned similarly. Theyare right modules and bimodules respe
tively. From the way these modules are de�ned, itis 
lear that the images of the elements Cy, y∼Lw (resp., Cy, y∼Rw) form a basis for L(w)(resp., R(w)), whi
h is 
alled the C-basis of the 
ell module. For notational 
onvenien
ewe shall 
ontinue to use Cy for the image of Cy, y∼Lw in L(w). Similarly in R(w).Remark 3.3.16 Alternatively, one may 
hoose to use the C ′-basis of H to de�ne the 
ellmodules. For w ∈ Sn, if we denote by L(w)⋄ the left C ′-
ell module de�ned analogouslyas above. Then by (2.7), it is immediate that L(w)⋄ is just the image of L(w) under themap indu
ed by the involution j. Similarly the image of R(w) under j is the right C ′-
ellmodule, denoted as R(w)⋄. It should be noted at this point that the involution j is not an35



A-algebra homomorphism, so it does not indu
e an H-isomorphism between the R(w) and
R(w)⋄. However, in due 
ourse we des
ribe an isomorphism between R(w) and R(w0w)⋄after extending s
alars to Q(v) (see Lemma 3.4.1 below).Let y and w be permutations of the same RSK-shape λ. The left 
ell modules L(y)and L(w) are then H-isomorphi
. In fa
t, the asso
iation C(P,Q(y)) ↔ C(P,Q(w)) gives anisomorphism: see [KL79, �5℄, [Ge
06, Corollary 5.8℄. The right 
ell modules R(y) and
R(w) are similarly isomorphi
, and we sometimes write R(λ) for R(y) ≃ R(w). Analogousstatements hold also for the left/right C ′-
ell modules and we write R(λ)⋄ for R(y)⋄ ≃

R(w)⋄.When a homomorphism from A to a 
ommutative ring k is spe
i�ed, su
h notation as
R(w)k and R(λ)k make sense: see �2.2, Notation 3.3.4.The `T -basis' of R(λ′) and its relationship to the C-basisWe have already seen that the right H-module Cw0,λ

H has two bases: the `C-basis' and`T -basis'. And in Lemma 3.3.15 we saw that after a suitable reordering they are in unitri-angular relationship with ea
h other. We use this to de�ne the T -basis for R(λ′)The elements w≤Rw0,λ are pre
isely w0,λd, d ∈ Dλ (Proposition 2.3.18 (1)). Let d1,. . . , dM be the elements of Dλ ordered so that i ≤ j if di ≤ dj in the Bruhat order.By Lemma 3.3.15 and its proof, the two bases above are related by a uni-triangular matrixwith respe
t to an ordering as above :






Cw0,λ
Td1...

Cw0,λ
TdM







=







1 0. . .
⋆ 1













Cw0,λd1...
Cw0,λdM





Let us now read this equation in the quotient R(w0,λ) of Cw0,λ
H. Let di1 , . . . , dim with

1 ≤ i1 < . . . < im ≤M be su
h that they are all the pre�xes of wλ�see Lemma 2.3.18 (2)�so that w0,λdi1 , . . . , w0,λdim are all the elements right equivalent to w0,λ. Writing e1, . . . ,
em in pla
e of di1 , . . . , dim , and noting that Cw0,λdj

vanishes in R(λ′) unless w0,λdj ∼Rw0,λ,we have: 





Cw0,λ
Te1...

Cw0,λ
Tem







=







1 0. . .
⋆ 1













Cw0,λe1...
Cw0,λem





We 
on
lude thatProposition 3.3.17 The elements Cw0,λ

Te1, . . . , Cw0,λ
Tem where e1, . . . , em are all thepre�xes of wλ form an A-basis for R(λ′). Further, if the ei's are ordered su
h that i ≤ jif ei ≤ ej (where ≤ denotes the Bruhat order) then it is in uni-triangular relationship withthe C-basis Cw0,λe1 , . . . , Cw0,λem of R(λ′). It is 
alled the T -basis of R(λ′) . 236



Irredu
ibility and other properties of the 
ell modulesLet k be a �eld su
h that Hk is semisimple. The proof of Theorem 3.3.18 below fol-lows [KL79, �5℄.Theorem 3.3.18 ([KL79, �5℄) Assume that Hk := H⊗A k is semisimple. Then1. EndHk
R(λ)k = k and R(λ)k is absolutely irredu
ible, for all λ ⊢ n.2. R(λ)k 6≃ R(µ)k for partitions λ 6= µ of n.3. R(λ)k, λ ⊢ n, are a 
omplete set of simple Hk-modules.4. Hk ≃
∏

λ⊢n EndkR(λ)k.Proof: By Proposition 3.1.1, it is enough to exhibit a �ltration of the right regularrepresentation of Hk in whi
h the quotients are pre
isely R(λ)
⊕d(λ)
k , λ ⊢ n, ea
h o

urringon
e. We will in fa
t exhibit a de
reasing �ltration F = {Fi} by right ideals (in fa
t, twosided ideals) of H in whi
h the quotients Fi/Fi+1 are pre
isely R(λ)⊕d(λ), λ ⊢ n, ea
ho

urring on
e. Sin
e R(λ) are free A-modules, it will follow that F ⊗A k is a �ltrationof Hk whose quotients are R(λ)

⊕d(λ)
k , and the proof will be done.Let � be a total order on partitions of n that re�nes the dominan
e partial order D.Let λ1 ≻ λ2 ≻ . . . be the full list of partitions arranged in de
reasing order with respe
tto �. Set Fi := 〈Cw|RSK-shape(w) � λi〉A. It is enough to prove the following:1. The Fi are right ideals in H (they are in fa
t two sided ideals).2. Fi/Fi+1 ≃ R(λi)

⊕d(λi).It follows from the de�nition in �2.2.2 of the relation ≤LR that, for any �xed permuta-tion w, 〈Cx|x≤LRw〉A is a two sided ideal ofH. But x≤LRw if and only if RSK-shape(x) ERSK-shape(w), by the 
hara
terization in Proposition 2.3.5. Thus, 〈Cx|RSK-shape(x) E

λ〉A is a two sided ideal, and Fi being equal to the sum ∑

j≥i〈Cx|RSK-shape(x) E λj〉A oftwo sided ideals is a two sided ideal. This proves (1).To prove (2), let S1, S2, . . . be the distin
t right 
ells 
ontained in the two sided 
ell
orresponding to shape λi. It follows from the assertions in Proposition 2.3.7 that thereare d(λi) of them and the 
ardinality of ea
h is d(λi). Fix a permutation w of shape
λi. Consider the right 
ell module R(w), whi
h by de�nition is the quotient of the rightideal 〈Cx|x≤Rw〉A by the right ideal 〈Cx|x�Rw〉A. If x≤Rw then evidently x≤LR w and(by Proposition 2.3.5) RSK-shape(x) E λi, so RSK-shape(x) � λi. Thus we have a mapindu
ed by the in
lusion: 〈Cx|x≤Rw〉A → Fi/Fi+1.We 
laim that the above map des
ends to an inje
tive map from the quotient R(λi). Itdes
ends be
ause x�Rw implies x�LRw: if x∼LRw, then x∼Rw by Proposition 2.3.6.To prove that the map from R(λi) is an inje
tion, let ∑x≤LR w axCx belong to Fi+1 with
ax ∈ A. Suppose that ax 6= 0 for some �xed x. Then, sin
e the Cy form an A-basis of H,37



we 
on
lude that RSK-shape(x) � λi+1, so RSK-shape(x) 6= λi, and (by Proposition 2.3.5)
x�LRw. But this means x6∼Rw, so x�Rw, and thus the image in R(λi) of∑x≤LR w axCxvanishes.The image of R(w) in Fi/Fi+1 is spanned by the 
lasses Cx, x∼Rw. Choosing w1 in
S1, w2 in S2, . . . we see that the images of R(w1), R(w2), . . . in Fi/Fi+1 form a dire
tsum (for the Cx are an A-basis of H). The R(wj) are all isomorphi
 to R(λ) (see �3.3.5).This 
ompletes the proof of (2) and also of the theorem. 23.4 M
Donough - Pallikaros IsomorphismThe aim of this se
tion is to prove that the Spe
ht module Sλ and the right 
ell module
R(λ) 
orresponding to a partition λ ⊢ n, are isomorphi
 ([MP05, Theorem 3.5℄). Wefollow the approa
h in [MP05℄, whi
h involves proving the existen
e of an isomorphismafter spe
ializing to F = Q(v), and using this we then prove the required isomorphismover H. For the �rst step, we will need the following lemma:Lemma 3.4.1 For w ∈ Sn, R(w)F and R(w0w)⋄F are isomorphi
 as HF -modules.Proof: Let C denote the right 
ell of w and C′ denote the right 
ell of w0w. Then fromLemma 2.2.12 we noti
e that w0C equals C′. Let β, β′ be the representations of H on R(w)and R(w0w)⋄ respe
tively. From the relation (2.6) and Lemma 2.2.8, we get

CxTs =







Cx + Cxs +
∑

ys<y<x µ(y, x)Cy, if xs > x

−v−1Cx, if xs < xApplying j to the above relations we get the 
orresponding relations for the C ′-basis.Also, note that µ(x, y) = µ(w0y,w0x) for all x, y ∈ W (see Remark 2.2.13). With theseobservations and the fa
t that y < x if and only w0x < w0y (Lemma 2.2.12) it 
an bededu
ed that, after a suitable re-ordering of the bases of R(w) and R(w0w)⋄, the matri
esof β(Ts) (with respe
t to the C-basis of R(w)), and β′(Ts) (with respe
t to the C ′-basisof R(w0w)⋄) are transposes of ea
h other. From this it follows that β(Tw) = β′(Tw−1)
tfor all w ∈ Sn. Hen
e, if χβ and χβ′ are the 
hara
ters of β and β′ respe
tively then

χβ(Tw) = χβ′(Tw−1) for all w ∈ Sn. Extending s
alars to Q via v 7→ 1, we get that
χ1

β(w) = χ1
β′(w−1) where χ1

β (resp. χ1
β′) denotes the 
hara
ter of the representation β(resp. β′) of HQ (∼= QSn) obtained by spe
ializing. Sin
e w−1 is 
onjugate to w in

Sn we in fa
t have, χ1
β(w) = χ1

β′(w) for all w ∈ Sn. Thus, R(w)Q and R(w0w)⋄Q are
HQ-isomorphi
.Let F = Q(v). By Theorem 3.3.18 we know that the 
olle
tion R(λ)F , λ ⊢ n, areall the non-isomorphi
 irredu
ibles for HF , and by an analogous argument, so is alsothe 
olle
tion R(λ)⋄F , λ ⊢ n. Suppose that R(w)F ≇ R(w0w)⋄F then we get that forsome µ 6= λ′ = RSK-shape(w0w), R(µ)⋄F has to be isomorphi
 to R(λ)F (observe thatRSK-shape(w)=λ). In parti
ular, this would mean that the 
hara
ters asso
iated to the38



representations R(µ)⋄F and R(λ)F have to be equal. However, these 
hara
ters evaluatedon H (⊂ HF ) take values in A and in fa
t 
oin
ide with the 
hara
ters of R(µ)⋄ and
R(λ), respe
tively. This means that on spe
ializing H to Q the 
hara
ters asso
iated tothe representations R(µ)⋄ and R(λ) are equal. On the other hand, from the previousparagraph we have R(λ)Q

∼= R(λ′)⋄Q. So we have R(µ)⋄Q
∼= R(λ′)⋄Q, thereby leading toin
ompatibility in the number of irredu
ibles R(λ)⋄Q sin
e µ 6= λ′ (Theorem 3.3.18 for right

C ′-
ell modules). Therefore, we 
on
lude that R(w)F ∼= R(w0w)⋄F . 2Now we are ready to prove the �rst step. The idea is to show that the R(λ)F is a
omposition fa
tor for both xλHF and yλHF . Then, showing that Sλ
F is the only 
ompo-sition fa
tor 
ommon to these modules we dedu
e the required isomorphism. The detailsare outlined in the following proposition.Proposition 3.4.2 Let λ ⊢ n and w0,λ be the longest element in Wλ. Then the right 
ellmodule 
orresponding to w0,λ, R(w0,λ)F , is isomorphi
 to Sλ′

F as an HF -module.Proof: We have seen in Lemma 2.3.18(4) that w = w0w0,λwλ is a pre�x of every elementin the right 
ell 
ontaining it. Using this fa
t, an indu
tive argument on l(y) where y∼Rwshows that C ′
y ∈ C

′
wH for all y∼Rw. We thus note that C ′

wHF has a 
omposition fa
torisomorphi
 to R(w)⋄F . On
e again in Lemma 2.3.18(3), we have seen that w∼Lw0,λ′ sothat C ′
w ∈ HC

′
w0,λ′

(by analogue of Proposition 3.3.14 for ≤L), whi
h immediately produ
esfor us an element h ∈ H su
h that multipli
ation by h on the left gives a surje
tion from
xλ′HF to C ′

wHF . Thus, R(w)⋄F be
omes a 
omposition fa
tor also of xλ′HF . On the otherhand, by Proposition 3.3.14, the module R(w0,λ) is a 
omposition fa
tor of yλHF . But aswas seen in Lemma 2.3.18(2), w0w = w0,λwλ∼Rw0,λ. So we have by the de�nition of theright 
ell module that R(w0,λ)F = R(w0w)F , whi
h by Lemma 3.4.1 above, is isomorphi
to R(w)⋄F . Thus R(w0,λ)F is a 
ommon 
omposition fa
tor of both xλ′HF and yλHF .However, using Lemma 3.3.1 we 
an dedu
e that the only fa
tor 
ommon to these twomodules is the Spe
ht module Sλ′

F . Indeed, if any irredu
ible module is 
ommon to xλ′HFand yλHF then it should o

ur in the produ
t xλ′HF yλHF , whi
h by Lemma 3.3.1 is equalto xλ′Twλ
yλHF = Sλ′

F . Thus, R(w0,λ)F is isomorphi
 to Sλ′

F (note that R(w0,λ)F and Sλ′

Fare irredu
ible; see Theorem 3.3.18, Corollary 3.3.10). 2We 
an now establish the isomorphism, whi
h we shall refer to as the �MP-isomorphism�between Sλ and R(λ).Proposition 3.4.3 ([MP05, Theorem 3.5℄) Let λ ⊢ n. Then Sλ ∼=H R(λ).Proof: Let Nw0,λ′ be the module 〈Cy|y≤Rw0,λ′〉A and N̂w0,λ′ denote its submodule
〈Cy|y <Rw0,λ′〉A. We have seen already in Proposition 3.3.14 that Nw0,λ′ is the sameas the right ideal Cw0,λ′H. De�ne a map

θ : Nw0,λ′ −→ Sλ

m 7→ xλTwλ
m

(3.7)39



Using Proposition 3.3.13 we 
an immediately dedu
e the surje
tivity of the above map.We now 
laim that the ker θ = N̂w0,λ′ . First of all, suppose that N̂w0,λ′ * ker θ, thenextending s
alars to F = Q(v) we still have N̂w0,λ′
F

* ker θF . This in turn implies that
θF is non-zero on N̂w0,λ′

F
. So by the irredu
ibility of Sλ

F (Corollary 3.3.10) we dedu
e that
Sλ

F is a 
omposition fa
tor of N̂w0,λ′
F
. This 
ontradi
ts the fa
t that the multipli
ity of

R(λ)F in Nw0,λ′
F

= yλHF is 1 (a fa
t that 
an be veri�ed as in the last part of the proofof Proposition 3.3.18). We thus have N̂w0,λ′ ⊆ ker θ. Counting the rank over A of thequotient Nw0,λ′/N̂w0,λ′ (= R(w0,λ′)), we then dedu
e that the map indu
ed on the quotientis an isomorphism. As the RSK-shape(w0,λ′) is λ we have the required isomorphism. 23.5 Interplay between Sλ and Sλ′The aim of this se
tion is to display the identi
al behaviour of Sλ and Sλ′ with respe
tto irredu
ibility, over a �eld k. In other words, Sλ
k is irredu
ible if and only if Sλ′

k is so([DJ87, Theorem 3.5℄; [Mur95, Theorem 5.2℄). This is a
hieved by giving an isomorphismbetween Sλ and the dual of an A-isomorphi
 
opy of Sλ′ whi
h re�e
ts the behaviour of
Sλ′ in terms of irredu
ibility (Proposition 3.5.3).It would be 
onvenient to use the following two notations, in order to des
ribe theisomorphism that we seek:Notation 3.5.1 For a (right)H-moduleM , denote byM † theH-module whose underlying
Z-module is M but with H-a
tion given by m.h:=mj(h) where j is the involution on Hgiven by ∑w awTw 7→

∑

w ǫwawTw.Notation 3.5.2 For a (left) H-module M , we denote by M∗ the (right) H-module whoseunderlying A-module is the same as that of M and with the a
tion of H being given by
mh := h∗m where m ∈ M , h ∈ H and h 7→ h∗ is the involutive anti-automorphism givenby Tw 7→ Tw−1 .In parti
ular, for a (right) H-module M , the dual Mdual := HomA(M,A) is naturallya left H-module: (m)(hφ) := (mh)φ, for φ ∈Mdual, m ∈M, h ∈ H. In the notation givenabove, Mdual∗ is a right H-module: (m)(φh) := (mh∗)φ, for φ ∈Mdual, m ∈M, h ∈ H.With the above notation, we haveProposition 3.5.3 There is an H-isomorphism, (Sλ′†

)dual ∗ ∼= Sλ. In parti
ular, for a�eld k, Sλ
k is irredu
ible if and only if Sλ′

k is so.To prove the above isomorphism, we pro
eed as follows:Let Nw0,λ′ be the (right)H-module 〈Cy|y≤Rw0,λ′〉A, whi
h is the same as the monomialmodule yλ′H (see Proposition 3.3.14; Eq. (3.3)).We de�ne a A-bilinear form on Nw0,λ′ in the same way as was done forMλ (�3.3.1): onthe basis {yλ′Td | d ∈ Dλ′} (see Proposition 3.3.13) of Nw0,λ′ the form is de�ned by setting40



〈yλ′Td, yλ′Te〉 equal to 1 or 0 a

ordingly as the elements d, e of Dλ′ are equal or not. Theform is evidently symmetri
. Also, as was done in �3.3.1 for n1, n2 ∈ Nw0,λ′ ,
〈n1h, n2〉 = 〈n1, n2h

∗〉 (3.8)where ∗ is the A-linear, anti-automorphism of the algebra H given by Tw 7→ Tw−1 .Sin
e Nw0,λ′ is A-free and the bilinear form 〈, 〉 on Nw0,λ′ is non-degenerate, we havean isomorphism α : Nw0,λ′ → Nw0,λ′
dual∗ indu
ed by 〈, 〉. By (3.8), α is in fa
t an H-isomorphism.Let S̃λ′ be the H-submodule of Nw0,λ′ given by z̃λ′H where z̃λ′ := yλ′Twλ′xλ. Note that

j(zλ′) = z̃λ′ (by the de�nition of the involution j, and Equations (3.3), (2.7)).With the notation as des
ribed above, it follows that the involution j of H indu
es anisomorphism between Sλ′† and the H-module S̃λ′ . It 
an hen
e be easily seen that S̃λ′ hassimilar properties as the Spe
ht module Sλ′ . Listed below are some of the properties thatwe would need:1. (see, Theorem 3.3.7) The set {z̃λ′Td| t
λ′
wλ′d is a standard tableau} forms an A-basisfor S̃λ′ : apply the involution j to the standard basis of Sλ′ as given by Theorem 3.3.7.2. (see, Theorem 3.3.9) Let U be a submodule of Nw0,λ′ , we de�ne U⊥ := {n ∈

Nw0,λ′ | 〈n, u〉 = 0 for all u ∈ U}. Let F be a �eld, a ∈ F be invertible. Let HFbe the spe
ialization of H via v 7→ a. Then S̃λ′

F ⊂ U or U ⊂ S̃λ′⊥
F . (see also [DJ87,�3.1(vi)℄).From Lemma 3.3.8 it follows that S̃λ′ has an A-
omplement in Nw0,λ′ . So, the in
lusion

S̃λ′
⊂ Nw0,λ′ yields a surje
tion from Nw0,λ′

dual∗ → (S̃λ′
)dual∗ . Composing this with theisomorphism α : Nw0,λ′ → Nw0,λ′

dual∗ , we get a H-module homomorphism from Nw0,λ′ onto
(S̃λ′

)dual∗ , whose kernel is obviously S̃λ′⊥. Thus,
Nw0,λ′/S̃

λ′⊥ ∼
−→ (S̃λ′

)dual∗ (3.9)Proposition 3.5.4 ([DJ87, Theorem 3.5℄) The kernel of the map θ de�ned in (3.7) is
S̃λ′⊥. So, we have an H-isomorphism, (S̃λ′

)dual∗ ∼= Sλ.Proof: By de�nition of θ, z̃λ′ 7→ xλTwλ
z̃λ′ . Let

a = 〈xλTwλ
yλ′Twλ′xλ, xλ〉 = 〈xλTwλ

yλ′Twλ′ , xλxλ〉 = fλ〈xλTwλ
yλ′Twλ′ , xλ〉where 0 6= fλ ∈ A su
h that x2

λ = fλxλ (using Eq.(2.9)). By Lemma 3.3.8 we thereforeget that 0 6= a ∈ A. Hen
e z̃λ′ /∈ ker θ and so, S̃λ′
* ker θ. Then, by extending s
alarsto F = Q(v) and using property (2) we have that ker θF ⊂ S̃λ′⊥

F . This implies that
ker θ ⊂ S̃λ′⊥. Comparing dimensions we obtain our 
on
lusion. 2Combining the above proposition with the observation that Sλ† is H-isomorphi
 (via
j) to S̃λ, proves Proposition 3.5.3. 241



Chapter 4RSK bases for 
ertain quotientsof the group ringIn this 
hapter, we look �rst at the tabloid representation of Sn. Fix a partition λ of n.As seen earlier (�3.2), CTλ de�nes a representation of Sn. Let ρλ : CSn → EndCCTλ bethe de�ning map. We seek a basis for the image of CSn under ρλ or equivalently, for thequotient of CSn by the kernel of ρλ. This is dis
ussed in �4.2.1 where we present the RSKbasis for this quotient spa
e. The question in 
onsideration may well be posed over any�eld (not ne
essarily C). This is addressed through the remainder of �4.2. Also dis
ussedin �4.3 is a He
ke analogue of �4.2.2 with a proof.In �4.4, we shift our fo
us to a representation of Sn whi
h is of invariant theoreti
interest, namely the spa
e V ⊗n where V is a �nite dimensional ve
tor spa
e over C. Usinga 
lassi
al result in invariant theory, we then noti
e in Proposition 4.4.3 that the imageof CSn in the endomorphism ring of V ⊗n is identi�ed with the quotient CSn/ker ρλfor a parti
ular λ, where ρλ is the map dis
ussed in the previous paragraph. Thus, weobtain a basis for the image of CSn in EndCV
⊗n, using results in �4.2.1 for the tabloidrepresentation over C.The image of CSn in EndCV

⊗n has a 
ertain invariant theoreti
 appeal whi
h is ex-plained in greater detail in �4.4. Inspired by this appeal, we extend the result dis
ussedabove whi
h presents a basis for the image of kSn in EndkV
⊗n when k = C, to the
ase when k is an arbitrary 
ommutative ring with unity, satisfying some mild 
onditions.This is done in Theorem 4.4.1. The rest of �4.4 is devoted to presenting bases for 
er-tain other rings of invariants through se
tions �4.4.1, �4.4.2, �4.4.3, as a 
onsequen
e ofTheorem 4.4.1.We begin this 
hapter with a 
ouple of observations whi
h play a key role in theapproa
h we take to produ
e bases for the endomorphism rings under 
onsideration.
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4.1 Key observationsThe �rst observation that we make in this se
tion is a simple one whi
h will enable usto move from the C-basis to T -basis of 
ertain quotients by two-sided ideals of the He
kealgebra. The se
ond observation is 
ru
ial for many of the results that we dis
uss here.It partially justi�es our 
hoi
e of the 
ell modules over the Spe
ht modules to realize theirredu
ible representations of Sn and its He
ke algebra.4.1.1 Moving from C-basis to T -basis of 
ertain quotientsFrom Theorem2.2.6(2), we get Tw ≡ Cw mod 〈Tx|x < w〉A. From this in turn we get, byindu
tion on the Bruhat-Chevalley order, the following: for a subset S of Sn, the (imagesof) elements Tw, w ∈ Sn \S, form a basis for the A-module H/〈Cx|x ∈ S〉A. The samething holds also in spe
ializations Hk ofH (�2.2): the (images of) elements Tw, w ∈ Sn\S,form a basis for the k-module Hk/〈Cx|x ∈ S〉k.4.1.2 Images of the C-basis elements in EndR(λ)The image of Cy in EndR(λ) vanishes unless λ E RSK-shape(y), for, if Cz o

urs with non-zero 
oe�
ient in CxCy (when expressed as an A-linear 
ombinations of the C-basis), whereRSK-shape(x) = λ, and λ 6E RSK-shape(y), then z≤L y (by de�nition), so RSK-shape(z) ERSK-shape(y) (Proposition 2.3.5), whi
h means that RSK-shape(z) 6= λ, so z 6∼R x (Propo-sition 2.3.7).4.2 Tabloid representations of SnLet k be an arbitrary �eld. Let λ be a partition of n and ρλ : kSn → EndkkTλ be themap de�ning the tabloid representation as des
ribed in �3.2. This is a morphism of k-algebras. Thus, obtaining a basis for the image of ρλ 
an be redu
ed to obtaining one forthe quotient kSn/ker ρλ. As the set of permutations in Sn gives a generating set for thequotient kSn/ker ρλ, we hope to �nd a suitable subset of permutations that a
tually forma basis for it.We deal with this issue assuming initially that k = C (�4.2.1) where the de
omposition,into irredu
ibles, of CTλ as in Proposition 3.2.2 is known. In this 
ase, the observationsmade in �4.1.2, �4.1.1 above leads us almost immediately to a basis of CSn/ker ρλ 
on-sisting of permutations. Using this, we then prove the analogous statement with the basering taken to be Z. Finally owing to the fa
t that a �eld of 
hara
teristi
 0 is �at over Z,we readily have the result even over su
h a �eld. In the 
ase when the 
hara
teristi
 of kis positive, the statement fails to be true, in general. Se
tion 4.2.3, illustrates this by anexample.
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4.2.1 Results over CWe �rst 
onsider the 
ase when k = C. We have the RSK-basis for the tabloid representa-tion given by the following theorem:Theorem 4.2.1 Permutations with RSK-shapes µ su
h that µ D λ form a C basis of
CSn modulo the kernel of ρλ : CSn → EndCCTλ.Proof: The tabloid representation of Sn (de�ned over C) has a de
omposition intoirredu
ibles given by ⊕µDλ(Sµ

C)m(µ), m(µ) > 0 (see Proposition 3.2.2). Sin
e the multi-pli
ities m(µ) in the de
omposition are positive, the kernel of ρλ is the same as that of themap ρ′λ : CSn → EndC(⊕µDλS
µ
C). The image of ρ′λ is 
learly 
ontained in ⊕µDλEndCS

µ
C.Sin
e the Sµ

C are non-isomorphi
 for distin
t µ and are irredu
ible,1 it follows from a den-sity argument (see for example [Bou73, Chapter 8, �4, No. 3, Corollaire 2℄) that ρ′λ mapsonto ⊕µDλEndCS
µ
C. Sin
e dimSµ

C = d(µ), where d(µ) is the number of standard tableauxof shape µ, and the Sµ
C as µ varies over all partitions of n are a 
omplete set of irredu
iblerepresentations,2 we obtain, by 
ounting dimensions:

dim ker ρ′λ = dimCSn − dim (⊕µDλEndCS
µ
C) =

∑

µ⊢n

d(µ)2 −
∑

µDλ

d(µ)2 =
∑

µ6Dλ

d(µ)2Now 
onsider CSn as the spe
ialization of the He
ke algebra H as follows (�2.2):
CSn ≃ H ⊗A C, where C is an A-algebra via the map A → C de�ned by v 7→ 1. Bythe observation �4.1.2, the images Cw ⊗ 1 in H⊗A C ≃ CSn of the Kazhdan-Lusztig basiselements Cw of H belong to the kernel of ρ′λ if RSK-shape(w) 6D λ. The number of su
h wbeing equal to ∑µ6Dλ d(µ)2, whi
h as observed above equals dim ker ρ′λ, we 
on
lude that

ker ρλ = ker ρ′λ = 〈Cw ⊗ 1|RSK-shape(w) 6D λ〉C. (4.1)By observation �4.1.1, the images of Tw ⊗ 1, RSK-shape(w) D λ, form a basis for
H⊗A C/〈Cx ⊗ 1|RSK-shape(w) 6D λ〉C ≃ CSn/ ker ρ′λ. But the image in CSn of Tw ⊗ 1 isthe permutation w. This 
ompletes the proof of Theorem 4.2.1. 24.2.2 Results over ZWe now prove Theorem 4.2.1 with Z 
oe�
ients in pla
e of C 
oe�
ients.Let ρλ,Z be the map ZSn → EndZZTλ de�ning the tabloid representation. We 
laimthat Eq. (4.1) holds over Z:

ker ρλ,Z = 〈Cw ⊗ 1|RSK-shape(w) 6D λ〉Z (4.2)1 It follows from the isomorphism in (Proposition 3.4.3) and the 
orresponding fa
t for 
ell modulesproved in �3.3.5.2Same 
omment as in footnote 1 applies to both assertions.44



On
e this is proved, the rest of the argument is the same as in the 
omplex 
ase: namely,use observation �4.1.1.We �rst show the 
ontainment ⊇. We have (Cw ⊗ 1)CTλ = (Cw ⊗ 1)ZTλ ⊗Z C (by�atness of C over Z). Sin
e (Cw ⊗ 1)ZTλ is a submodule of the free module ZTλ, it is free.By Eq. (4.1), (Cw ⊗ 1)CTλ = 0 if RSK-shape(w) 6D λ, so ⊇ holds.To show the other 
ontainment, set m = 〈Cw ⊗ 1|RSK-shape(w) 6D λ〉Z, and 
on-sider ker ρλ,Z/m. Sin
e ZSn/m is free, so is its submodule ker ρλ,Z/m, and we have
ker ρλ,Z

m
⊗Z C =

ker ρλ,Z ⊗Z C

m⊗Z C
=

ker ρλ,Z ⊗Z C

〈Cw ⊗ 1|RSK-shape(w) 6D λ〉C
.By the �atness of C over Z, we have ker ρλ,Z ⊗Z C = ker ρλ. The last term in the abovedisplay vanishes by Eq. (4.1), and so ⊆ holds (sin
e ker ρλ,Z/m is free). The proof ofTheorem 4.2.1 over Z is 
omplete.Remark 4.2.2 Let k be a �eld of 
hara
teristi
 0 and ρλ,k the map kSn → EndkkTλde�ning the representation on tabloids of shape λ. The analogue of Eqs. (4.1) and (4.2)holds over k, sin
e, by the �atness of k over Z, we have ker ρλ,k = ker ρλ,Z ⊗Z k. Now one
an use observation �4.1.1 as in the earlier 
ases to �nish the proof of Theorem 4.2.1 evenover k.4.2.3 Failure over �elds of positive 
hara
teristi
Theorem 4.2.1 does not hold in general over a �eld k of positive 
hara
teristi
. We give anexample of a non-trivial linear 
ombination of permutations of RSK-shape dominating λthat a
ts trivially on the tabloid representation kTλ. Let k be a �eld of 
hara
teristi
 2.Let n = 4 and λ = (2, 2). Let us denote a permutation in S4 by writing down in sequen
ethe images under it of 1 through 4: e.g., 1243 denotes the permutation σ de�ned by 1σ = 1,

2σ = 2, 3σ = 4, and 4σ = 3. It is readily seen that the eight permutations in the displaybelow are all of shape (3, 1).
2134, 2341, 2314, 1342, 3124, 1243, 4123, 1423.Noti
e that shape (3, 1) D (2, 2) and that the sum of the above eight permutations a
tstrivially on kTλ.4.3 Remarks on the He
ke Analogue of �4.2.2The tabloid module having an analogue in the setup of the He
ke algebra of Sn, we areled to asking whether Theorem 4.2.1, with Z-
oe�
ients in pla
e of C-
oe�
ients, has anatural H-analogue. We state and prove this here.
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Theorem 4.3.1 The elements Tw, RSK-shape(w) D λ, form a basis for H modulo thekernel of the map H → EndHMλ de�ning Mλ as a right H-module.Proof: We will show that the Cw, RSK-shape(w) 6D λ, form a basis for the kernel. By theobservation in �4.1.1, this will su�
e. The longest step in the proof is to show that su
h Cwbelong to the kernel. Assuming for the moment this to be the 
ase, let us �nish the rest ofthe proof. Suppose that the kernel is stri
tly larger than 〈Cw|RSK-shape(w) 6D λ〉A. Thenthere exists a non-trivial linear 
ombination of Cw, RSK-shape(w) D λ, in the kernel. Sin
e
Mλ is torsion-free (it is free over A), we may assume that not all 
oe�
ients vanish at v = 1.But then su
h a linear 
ombination would not vanish in HC (where HC := H⊗A C = CSn,
C being the the spe
ialization via v 7→ 1), 
ontradi
ting Theorem 4.2.1, and we're done.We now show that the Cw, RSK-shape(w) 6D λ, annihilate Mλ = xλH. Let µ =RSK-shape(w) and assume µ 6D λ. Pro
eed by indu
tion on the domination order E,and assume that Cy kills Mλ for RSK-shape(y) ⊳ µ. First suppose that w is the longestelement of shape µ, that is, w = w0,µ′�the base 
ase of the indu
tion is also proved bythe argument in this 
ase. By Remark 3.3.2, xλHyµ′ = 0; but yµ′ equals Cw0,µ′ (see (3.3)above) up to a fa
tor of sign and a power of v. Thus MλCw0,µ′ = 0.Next suppose that w≤Rw0,µ′ . Then, by Proposition 3.3.14, Cw belongs to Cw0,µ′H, sothat MλCw ⊆M

λCw0,µ′H = 0. If w≤Lw0,µ′ , then (again by Proposition 3.3.14, left-sidedversion) Cw belongs to HCw0,µ′ , so that MλCw ⊆M
λHCw0,µ′ = MλCw0,µ′ = 0.Now suppose that w of RSK-shape µ is not left or right equivalent to w0,µ′ . Theasso
iation C(P,Q(w))↔ C(P, tµ) gives an H-isomorphism between the left 
ell modules

L(w) and L(P, tµ) (�3.3.5), and as seen in the previous paragraph xλHC(P, tµ) = 0 sin
e
(P, tµ) is left equivalent to w0,µ′ = (tµ, tµ) (Remark 2.3.9). These two together imply that
xλHCw = 0 in the quotient L(w). Equivalently, xλHCw ⊆ 〈Cy|y�Lw〉A.By Eq. (2.10), (

∑

x∈Wλ
v−2
x )xλHCw = x2

λHCw ⊆ xλ〈Cy|y�Lw〉A. On the other hand,by Proposition 2.3.6 and Proposition 2.3.5, the y appearing on the right hand side of thelast 
ontainment are su
h that RSK-shape(y) ⊳ µ. By indu
tion xλHCy = 0 for su
h y.Thus (
∑

x∈Wλ
v−2
x )xλHCw = 0. But ∑x∈Wλ

v−2
x being a non-zero s
alar, and Mλ beingtorsion-free A-module (it is a free A-module) we 
on
lude that xλHCw = 0. This �nishesthe proof that the Cw, RSK-shape(w) 6D λ belong to the kernel. 24.4 Certain rings of invariantsLet k denote a 
ommutative ring with unity. Let V be a free k-module of �nite rank d over

k. Then there is a natural a
tion of the group of automorphism of V , denoted as GL(V ),on the k-module V .Let n ∈ N be �xed. Consider the symmetri
 group Sn a
ting on the spa
e of n-tensors
V ⊗n by permuting the fa
tors. The a
tion of σ ∈ Sn on pure tensors is given as:

(v1 ⊗ · · · ⊗ vn)σ := v1σ ⊗ · · · ⊗ vnσ46



This a
tion 
ommutes with the natural diagonal a
tion of GL(V ) on V ⊗n. This impliesthat the map φn : kSn → EndkV
⊗n de�ning the a
tion of Sn on V ⊗n has image lyinginside EndGL(V )V

⊗n � the spa
e of GL(V )-invariant endomorphism on V ⊗n. The followingfundamental theorem (see [dCP76, Theorems 4.1, 4.2℄) in 
lassi
al invariant theory statesthat this map is a surje
tion onto EndGL(V )V
⊗n:Assume that no non-zero polynomial of degree n with 
oe�
ients in k van-ishes on k. (This holds for example when k is an in�nite �eld, no matterwhat n is.) Then the k-algebra map φn maps onto EndGL(V )V

⊗n and its ker-nel is the two-sided ideal J(n, d) � the two-sided ideal generated by the element
yd :=

∑

τ∈Sd+1
ǫ(τ)τ , where Sd+1 is the subgroup of Sn 
onsisting of the per-mutations that �x point-wise the elements d + 2, . . . , n; when n ≤ d, J(n, d)is de�ned to be 0.With the assumption on k as in the above statement, the quotient kSn/J(n, d) 
anhen
e be identi�ed with the spa
e of GL(V )-invariant endomorphism on V ⊗n. By thisidenti�
ation, des
ribing a basis for the quotient will provide us also with a des
ription ofa basis for EndGL(V )V
⊗n. A basis for the quotient is indeed given by the next theorem.Theorem 4.4.1 Let k be a 
ommutative ring with unity. For n, d ∈ N, let J(n, d) be thetwo-sided ideal de�ned as above. Then the permutations σ of Sn su
h that the sequen
e 1σ,. . . , nσ has no de
reasing subsequen
e of length more than d form a basis for kSn/J(n, d).The main ingredient in the proof is Lemma 4.4.2 below. It is a two-sided analogue ofProposition 3.3.14.Lemma 4.4.2 Let ζ(d) denote the partition (d + 1, 1, . . . , 1) of n. The two-sided ideal

Cw0,ζ(d)
is a free A-submodule of H with basis Cx, RSK-shape(x) has more than d rows(or, equivalently, RSK-shape(x) E ζ(d)′).Proof: Sin
e w0,ζ(d) has shape ζ(d)′ (see Remark 2.3.9), it follows from the 
ombinatorialdes
ription of ≤LR in Proposition 2.3.5 that x≤LRw0,ζ(d) if and only if RSK-shape(x) E

ζ(d)′. So it is 
lear from the de�nition of the relation ≤LR (�2.2.2) that the two-sided ideal
HCw0,ζ(d)

H is 
ontained in 〈Cx|RSK-shape(x) E ζ(d)′〉A. To show the reverse 
ontain-ment, we �rst observe that if x = w0,µ′ , the longest element of its shape then Cx belongsto the right ideal Cw0,ζ(d)
H whenever µ = RSK-shape(x) E ζ(d)′: it is enough, by Proposi-tion 3.3.14, to show that x≤Rw0,ζ(d); on the other hand, by Lemma 2.3.18(1), x≤Rw0,ζ(d)is equivalent to x(1) > x(2) > . . . > x(d + 1), whi
h 
learly holds for the elements x thatwe are 
onsidering.Now suppose that x is a general element of RSK-shape µ E ζ(d)′. Pro
eed by indu
tionon the domination order of µ. The base 
ase is proved by the argument in the previousparagraph. Assume Cy ∈ HCw0,λ

H for y su
h that RSK-shape(y) ⊳ µ. Let x ↔ (P,Q)under RSK-
orresponden
e. Then, on the one hand, the asso
iation C(P,Q) ↔ C(tµ, Q)47



gives an H-isomorphism between the right 
ell modules R(x) and R(v), where v is thepermutation 
orresponding under RSK to (tµ, Q) (�3.3.5); on the other, sin
e v ↔ (tµ, Q)is right equivalent to w0,µ′ ↔ (tµ, tµ), there exists, by Proposition 3.3.14, an element hin H su
h that Cv = Cw0,µ′h; so that, by the de�nition of right 
ell modules and theisomorphism between R(w0,µ′) and R(u) where u↔ (P, tµ) under RSK,
Cx ≡ Cuh (mod 〈Cy|y�R u〉A).Now, y�R u implies, by Propositions 2.3.6, 2.3.5, RSK-shape(y) ⊳ µ E ζ(d)′; and, by theindu
tion hypothesis, Cy ∈ HCw0,ζ(d)

H. As to C(P, tµ), being left equivalent to C(tµ, tµ),it belongs, on
e again by Proposition 3.3.14, to the left ideal HCw0,µ′ , whi
h as shown inthe previous paragraph is 
ontained in HCw0,ζ(d)
H. Thus Cx = C(P,Q) ∈ HCw0,ζ(d)

H, andwe are done. 2Proof of Theorem 4.4.1 given Lemma 4.4.2 As seen in �2.2, kSn is the spe
ializationof the He
ke algebra H: kSn ≃ Hk := H ⊗A k, where k is an A-algebra via the naturalring homomorphism A → k de�ned by v 7→ 1. Under the map H → H ⊗A k given by
x 7→ x ⊗ 1, the image of Cw0,ζ(d)

is Cw0,ζ(d)
⊗ 1 = yd, by Eq. (3.3). Denoting by J̃ thetwo-sided ideal of H generated by Cw0,ζ(d)

, we thus have H/J̃ ⊗A k ≃ kSn/J(n, d).On the other hand, 
ombining Lemma 4.4.2 with the observation in �4.1.1, we see that
H/J̃ is a free A-module with basis Tx, as x varies over permutations of whose RSK-shapeshave at most d rows. The image of Tx in kSn/J(n, d) being the residue 
lass of the
orresponding permutation x, the theorem is proved following the easy observation thatthe permutations σ of Sn su
h that RSK-shape(σ) has atmost d rows is just the set ofpermutations σ of Sn su
h that the sequen
e 1σ, . . . , nσ has no de
reasing subsequen
eof length more than d. 2An alternative proof of Theorem 4.4.1 in the spe
ial 
ase of k = CIn order to pla
e this dis
ussion in its proper perspe
tive, we use Theorem 4.2.1 for tabloidrepresentations to arrive at a di�erent proof of Theorem 4.4.1 in the 
ase when k = C. Wedo this by establishing that the kernel of the map ρλ as in Theorem 4.2.1 for a suitable λturns out to be the ideal J(n, d) as de�ned in the beginning of this se
tion.Given positive integers n and d it is easy to see that there exists a unique parti-tion λ(n, d) ⊢ n that has at most d parts and is smallest in the dominan
e order amongthose with at most d parts. For example, λ(8, 2) = (4, 4). Then we have,Proposition 4.4.3 Consider the linear representation of Sn on the free ve
tor spa
e
CTλ(n,d) generated by tabloids of shape λ(n, d) (de�ned above). The ideal J(n, d) (as de-s
ribed above with 
oe�
ients in C) is the kernel of the C-algebra map CSn → EndCCTλ(n,d)de�ning this representation.Proof: On the one hand, it is easily seen that the generator yd of the two sided ideal J(n, d)48



(de�ned above) belongs to ker ρλ(n,d). Indeed, given a tabloid {T} of shape λ(n, d), thereevidently exist integers a and b, with 1 ≤ a, b ≤ d + 1, that appear in the same rowof T . This implies that the transposition (a, b) �xes {T}. Writing Sd+1 as a disjoint union
S ∪ S(a, b) (for a suitable 
hoi
e of a subset S), we have yd{T} =

∑

σ∈Sd+1
ǫ(σ)σ{T} =

∑

σ∈S ǫ(σ)(σ − σ(a, b)){T} = 0.On the other hand, as 
omputed in the proof of Theorem 4.2.1 above, ker ρλ(n,d) as a
C-ve
tor spa
e has dimension ∑µ6Dλ(n,d) d(µ)2. It su�
es therefore to show that J(n, d)too has this same dimension. Sin
e yd = Cw0,ζ(d)

|v=1 (see Equation (2.8)), it follows fromLemma 4.4.2 below, that the ideal J(n, d) has dimension∑µEζ(d)′ d(µ)2, where ζ(d) is thepartition of (d + 1, 1, . . . , 1) of n and ζ(d)′ denotes its transpose. But µ 6D λ(n, d) if andonly if µ has more than d rows if and only if µ E ζ(d)′. 2In view of the above proposition and Theorem 4.2.1, we immediately arrive at thefollowing des
ription of a basis for the above quotient:Theorem 4.4.4 Let k = C. Then those permutations σ of Sn su
h that RSK-shape(σ)has atmost d rows form a basis for kSn/J(n, d). 2It is easy to see from the de�nition of the RSK-
orresponden
e that the permutationsdes
ribed above are pre
isely those permutations σ in Sn su
h that the sequen
e 1σ, . . . ,
nσ has no de
reasing subsequen
e of length more than d, thus arriving at Theorem 4.4.1when k = C.4.4.1 Multilinear invariantsAs earlier, let k denote a 
ommutative ring with unity and V be a free k-module of �niterank d. Let n be a �xed positive integer. Consider the spa
e of multilinear fun
tionson the n-fold produ
t (EndkV )×n. There is a natural a
tion of GL(V ) on this spa
eindu
ed from the a
tion of GL(V ) on (EndkV )×n by simultaneous 
onjugation. By theuniversal property of tensor produ
t, one 
an identify the spa
e of multilinear fun
tions on
(EndkV )×n with the spa
e of linear fun
tions on (EndkV )⊗n. Also, sin
e this identi�
ationis 
ompatible with the GL(V ) a
tions naturally indu
ed on both these spa
es, we 
anrestri
t this identi�
ation to the level of their respe
tive subspa
es of GL(V )-invariantfun
tions. In other words, the spa
e of multilinear invariant fun
tions on (EndkV )×n isidenti�ed with the linear invariant fun
tions on (EndkV )⊗n. We 
an take this identi�
ationone step further via the GL(V )-equivariant isomorphism V ∗ ⊗ V ∼= EndkV given by (α⊗

u)(v) := α(v)u. We have the following GL(V )-isomorphisms (and thus, for the k-duals):
(EndkV )⊗n ∼= (V ∗ ⊗ V )⊗n ∼= (V ∗)⊗n ⊗ V ⊗nOn the other hand, we have the identi�
ation (V ∗ ⊗ V )∗ ∼= EndkV given by the usual

GL(V )-equivariant pairing (A,α⊗ u) 7→ α(Au) leading us to the GL(V )-isomorphism
((V ∗)⊗n ⊗ V ⊗n)∗ ∼= Endk(V

⊗n)49



Thus, the spa
e of multilinear invariant fun
tions on (EndkV )×n is naturally identi�edwith the spa
e Endk(V
⊗n)GL(V ). We have seen in the beginning of �4.4 that (with thehypothesis on k as required) the latter spa
e, Endk(V

⊗n)GL(V ), o

urs as the image ofthe map φn mentioned there. As was also observed there, the image of the map φn isisomorphi
 to the quotient kSn/J(n, d) for whi
h the permutations σ of Sn su
h that thesequen
e 1σ, . . . , nσ has no de
reasing subsequen
e of length more than d form a basis(Theorem 4.4.1). So, going through φn followed by the above isomorphism, we observethat the image of φn(σ) in ((V ∗)⊗n⊗ V ⊗n)∗ is the GL(V )-invariant linear fun
tion, 
all it
ψσ, given by

α1 ⊗ · · · ⊗ αn ⊗ u1 ⊗ · · · ⊗ un 7→ (α1 ⊗ · · · ⊗ αn)(u1σ ⊗ · · · ⊗ unσ)Note that, if we denote by α⊗v also the matrix of the asso
iated endomorphism under theidenti�
ation of V ∗⊗V with EndkV then α⊗v . β⊗u = α⊗β(v)u and Tra
e(α⊗v) = α(v).Now it 
an be easily seen that the linear invariant ψσ on (V ∗)⊗n⊗V ⊗n 
omposed with theisomorphism (EndkV )⊗n ∼= (V ∗)⊗n ⊗ V ⊗n, des
ribed above, produ
es the linear GL(V )-invariant fun
tion on (EndkV )⊗n given by
A1 ⊗ · · · ⊗An 7→ Tra
e(Ai1Ai2 · · · ) · · ·Tra
e(AipAip+1 · · · )where σ = (i1, i2, . . .) . . . (ip, ip+1, . . .) and Ai denotes the matrix of the endomorphism

αi ⊗ ui ∈ EndkV , with respe
t to a �xed basis of V . Sin
e endomorphisms of the form
α⊗ u span EndkV , we have seen thatTheorem 4.4.5 Let k be a 
ommutative ring with unity. Assume that no non-zero poly-nomial, in one variable, of degree n with 
oe�
ients in k vanishes identi
ally on k. Let Tσbe the multilinear fun
tion on (EndkV )×n de�ned by:

(A1, . . . , An) 7→ Tra
e(Ai1Ai2 · · · )· · ·Tra
e(AipAip+1 · · · )where σ = (i1, i2, . . .) . . . (ip, ip+1, . . .). Then the fun
tions Tσ where σ varies over permu-tations in Sn having no de
reasing subsequen
e of length more than d, form a basis for thespa
e of multilinear invariants on (EndkV )×n. 24.4.2 A monomial basis for the tensor algebraLet T denote the tensor algebra ⊕i≥0(EndkV )⊗i. This is a graded algebra with (EndkV )⊗ias the i-th graded k-subspa
e and the multipli
ation on its homogeneous elements is givenby u.v := u⊗ v.The group GL(V ) a
ts on (EndkV )⊗n for ea
h n and hen
e on T . This a
tion preservesthe algebra stru
ture of T , so the ring of GL(V )-invariants is in fa
t a sub-algebra. So
TGL(V ) ∼= ⊕n((EndkV )⊗n)GL(V ) ∼= ⊕n(EndGL(V )V

⊗n)By the 
lassi
al theorem quoted in the beginning of �4.4, the map φn is an isomorphism50



between the quotient kSn/J(n, d) and EndGL(V )V
⊗n, with the 
ondition on k as requiredthere. Theorem 4.4.1 therefore gives a basis of EndGL(V )V

⊗n for ea
h n. By just takingthe disjoint union of these bases, for n ≥ 0 , we obtain a basis for TGL(V ), denote it as B.Theorem 4.4.6 The basis B as des
ribed above is monomial, i.e. 
losed under produ
ts.Proof: We obtain a des
ription of the k-algebra TGL(V ) as follows: Consider the spa
e
S := ⊕n≥0kSn with the following multipli
ation: for π in Sm and σ in Sn, π · σ is thepermutation in Sm+n that, as a self-map of [m+ n], is given by

π · σ(i) :=

{

π(i) if i ≤ m
σ(i−m) +m if i ≥ m+ 1For ea
h n, 
onsider the subspa
e Pn of kSn spanned by permutations that have node
reasing subsequen
e of length more than d (equivalently, the k-span of permutationwith RSK-shape having atmost d rows). The dire
t sum P := ⊕n≥0Pn is a sub-algebraof S.The restri
tion to Pn of the 
anoni
al map kSn → kSn/J(n, d) is a ve
tor spa
eisomorphism (Theorem 4.4.1). Let Θn be the isomorphism

Θn : kSn/J(n, d) ≃ EndGL(V )(V
⊗n)indu
ed by φn. Thus ⊕n≥0Θn is a ve
tor spa
e isomorphism of the algebra P onto TGL(V ).It is evidently also an algebra isomorphism. In parti
ular, B is 
losed under produ
ts asrequired. 24.4.3 Rings of polynomial invariantsIn this subse
tion, k denotes a �eld of 
hara
teristi
 0. We �rst re
all the notion of polyno-mial invariants and then des
ribe the well-known pro
ess of obtaining them from suitablemultilinear invariants. We then use this to obtain a generating set for the polynomialinvariants of (EndkV )×n, as a 
onsequen
e of results mentioned in the earlier se
tions.Let W be a ve
tor spa
e over k of dimension m. A fun
tion f : W → k is 
alledpolynomial if it is given by a polynomial in the 
o-ordinates with respe
t to a basis of

W . Let k[W ] denote the set of polynomial fun
tions on W , whi
h forms a ring. Apolynomial fun
tion is 
alled homogeneous of degree d if f(tw) = tdw for all t ∈ k,w ∈W .Every polynomial fun
tion is in a unique way the sum of homogeneous fun
tions, 
alledits homogeneous 
omponents. Thus k[W ] = ⊕k[W ]d where k[W ]d is the set of polynomialfun
tions that are homogeneous of degree d.LetW1, . . .,Wr be �nite dimensional ve
tor spa
es su
h thatW = ⊕iWi. Then, a fun
-tion f ∈ k[W ] is said to bemulti-homogeneous of degree h = (h1, . . . , hr) if f(t1v1, . . . , trvr) =

th1
1 · · · t

hr
r f(v1, . . . , vr) for all t1, . . . , tr ∈ k and vi ∈ Wi. We have a de
omposition given51



by k[W ] = ⊕h∈Nrk[W ]h, where k[W ]h is the set of polynomial fun
tions that are multi-homogeneous of degree h.The group GL(W ) of automorphisms of W , a
ts on k[W ] where the a
tion is indu
edfrom the left a
tion on W . If we 
onsider W as a linear representation of a group G i.e.,there is a homomorphism ρ : G→ GL(W ), then G a
ts onW and hen
e on k[W ] via ρ. Wede�ne a polynomial G-invariant to be a polynomial fun
tion whi
h is 
onstant on the G-orbits of W . Denote by k[W ]G the set of polynomial G-invariants. It is a subring of k[W ].Also, sin
e the GL(W )-a
tion on k[W ] preserves the degree of a homogeneous polynomial,we have k[W ]G = ⊕d∈Nk[W ]Gd . Similarly, whenW = ⊕iWi we have k[W ]G = ⊕h∈Nrk[W ]Gh .Polarisation, Restitution and their generalizationsPolarisation: Let f ∈ k[W ] be a homogeneous fun
tion of degree d. Let v1, . . . vd bearbitrary d ve
tors inW . For t1, . . . , td ∈ k, we obtain an expression for f(t1v1 + · · ·+ tdvd)of the form
f(t1v1 + · · ·+ tdvd) =

∑

s1+···+sd=d

ts1
1 . . . tsd

d fs1,...,sd
(v1, . . . , vd) (4.3)where fs1,...,sd

is a multi-homogeneous fun
tion on W⊕d of degree (s1, . . . , sd). Then thepolarisation of f , denoted as Pf , is the multilinear fun
tion f1,...,1 in the above expression.Restitution: This is the inverse operator (upto a s
alar) to polarisation, by whi
hwe obtain a homogeneous polynomial from a multilinear fun
tion. Let F be multilinearfun
tion on W⊕d. The restitution of F is the homogeneous polynomial of degree d in k[W ]de�ned by RF (u) := F (u, . . . , u).Remark 4.4.7 The operators
P : k[W ]d → k[W⊕d](1,...,1) and R : k[W⊕d](1,...,1) → k[W ]dare GL(W )-equivariant. In fa
t, if we 
onsider W as a linear representation of a group G,then these operators are G-equivariant under the G-a
tion indu
ed on k[W ].Proposition 4.4.8 Assume 
har k = 0 and let W be a �nite dimensional representationof a group G. Then every homogeneous polynomial G-invariant f ∈ k[W ]G of degree d isobtained by the restitution of a multilinear G-invariant on W⊕d.Proof: This follows from Remark 4.4.7 and the observation that RPf = d!f . Indeed, bysetting vi = v for all i = 1, . . . , d, in (4.3) and 
omparing it with the relation,

f((
∑

i

ti)v) = (
∑

i

ti)
df(v) = (td1 + · · ·+ d!t1 · · · td)f(v)we get that f is the restitution of 1

d!Pf , whi
h is a G-multilinear invariant whenever f isa homogeneous G-invariant. 252



Generalizing to several 
opies: For the appli
ation we have in mind, we try to slightlygeneralize the above notions.Let f ∈ k[W⊕r] be a multi-homogeneous polynomial of degree h = (h1, . . . , hr). Let
Pi denote the polarisation with respe
t to the i-th variable. Then the polarisation of f isde�ned as

Pf := PrPr−1 · · · P1f ∈ k[W
⊕h1 ⊕ · · · ⊕W⊕hr ]It is a multilinear polynomial sin
e it is linear in ea
h variable, by 
onstru
tion. As earlier,we de�ne the restitution RF of a multilinear fun
tion F ∈ k[W⊕h1 ⊕ · · · ⊕W⊕hr ] by

RF (v1, . . . , vr) = F (v1, . . . , v1
︸ ︷︷ ︸

h1

, · · · , vr, . . . , vr
︸ ︷︷ ︸

hr

)If we 
onsider the GL(W )-a
tion on W d a
ting diagonally then the operators P, R are
GL(W )-equivariant. And as before, we have the followingProposition 4.4.9 Assume 
har k = 0. Let W be a �nite dimensional representation of agroup G. Let n ≥ 0 be �xed. Then for ea
h h = (h1, . . . , hr) ∈ Nr su
h that h1 + · · ·+hr =

n the restitution of a multilinear invariant on W h1 ⊕ · · · ⊕ W hr gives a homogeneouspolynomial invariant on W⊕r of degree n. Further, as h varies, these elements linearlyspan k[W⊕r]Gn .Proof: The �rst part of the statement just follows from the de�nition of the operator
R along with the observation that a multi-homogeneous invariant of degree (h1, . . . , hr) ishomogeneous of degree h1 + · · ·+hr = n. For obtaining the se
ond part, we noti
e that if gis a multi-homogeneous fun
tion of degree h = (h1, . . . , hr) then RPg = h1! · · · hr!g. Nowuse the de
omposition of f ∈ k[W r]n as a sum of multi-homogeneous fun
tions given by

f(v1, . . . , vr) =
∑

s1+···+sd=n

fs1,...,sd
(v1, . . . , vd)

2Invariants of n× n matri
esWith all the preliminaries in pla
e, we �nally 
ome to the aim of this subse
tion whi
h isto des
ribe a basis for ring of polynomial invariants of (EndkV )×n.For a �xed integer m ≥ 0, given a permutation σ of m elements and a map ν of [m] to
[n] (we use the notation [m] to denote {1, . . . ,m}), 
onsider the fun
tion f(σ, ν) de�ned on
(EndkV )×n as follows: writing σ as a produ
t (i1i2 · · · ) · · · (ip+1ip+2 · · · ) of disjoint 
y
les,

f(σ, ν)(A1, . . . , An) := Tra
e(Aν(i1)Aν(i2) · · · ) · · ·Tra
e(Aν(ip+1)Aν(ip+2) · · · )The f(σ, ν) are 
learly GL(V )-invariant polynomials of degree m. We obtain,53



Theorem 4.4.10 For m ∈ Z≥0 �xed, the invariant fun
tions f(σ, ν), where σ variesover permutations of {1, . . . ,m} that do not have any de
reasing subsequen
e of lengthex
eeding d; ν varies over all maps from [m] to [n], form a k-linear spanning set for thering of GL(V )-invariant polynomial fun
tions on (EndkV )×n of degree m.Proof: By Proposition 4.4.9, we know that the restitution, with respe
t to variouspossible multi-degrees h = (h1, . . . , hr) ∈ Nr su
h that h1 + · · · + hr = n, of multilin-ear invariants on (EndkV )×m gives a spanning set for the ring of polynomial invariantson (EndkV )×n. However, Theorem 4.4.5 gives a sub-
olle
tion of multilinear invariants
{Tσ | σ ∈ Sm; σ has no de
reasing subsequen
e of length ex
eeding d} that forms a basisfor the ring of multilinear invariant fun
tions on (EndkV )×m. Sin
e R is a linear operator,the images of these Tσ's under the restitution R would su�
e to span the ring of poly-nomial invariants. The statement now follows by observing that the the restitution of Tσwith respe
t to a multi-degree (h1, . . . , hr) whose sum is m, gives the map

(A1, . . . , Ar) 7→ Tσ(A1, . . . , A1
︸ ︷︷ ︸

h1

, · · · , Ar, . . . , Ar
︸ ︷︷ ︸

hr

)whi
h is just f(σ, ν) for a suitable ν. 2Pi
ture invariantsFor non-negative integers t and b, set V t
b := V ∗⊗b ⊗ V ⊗t. Given non-negative integers

ti, bi, for i = 1, . . . , s, we wish to des
ribe a generating set for the ring of polynomialGLk(V )-invariant fun
tions on the spa
e W = V t1
b1
× · · · × V ts

bs
of several tensors.In [DKS03, �3℄, the notion of a `pi
ture invariant' is introdu
ed, generalizing the fun
-tions f(σ, ν) de�ned above. Pi
ture invariants span the spa
e of invariant polynomialfun
tions ([DKS03, Proposition 7℄) on W .We re
all from [DKS03℄ the de�nition of pi
ture invariants. Choose a basis v1, . . . , vdfor V and let v1, . . . , vd be the dual basis of V ∗. Let T u1···ub

l1···lt
be the 
o-ordinate fun
tionon V t

b that is 1 on the basis element vu1 ⊗ · · · ⊗ vut ⊗ v
l1 ⊗ · · · ⊗ vlb ∈ V t

b and 0 on theother basis elements. The ring of polynomial fun
tions on the spa
e V t
b 
an be identi�edwith k[T u1···ub

l1···lt
] in dt+b variables. More generally, for W (as de�ned above) the 
o-ordinatering 
an be identi�ed with the polynomial ring k[T (i)

u1···ubi

l1···lti
] in ∑s

i=1 d
ti+bi variables. Fornon-negative integers m1, . . . ,ms su
h that ∑s

i=1miti =
∑s

i=1mibi = N and σ ∈ SN , bythe asso
iated pi
ture invariant on W , we mean the following element of k[W ]:
∑

(r1,...,rN )∈[d]N

s∏

i=1





mi∏

j=1

T (i)
rσ(

P

p<i mpbp+(j−1)bi+1),··· ,rσ(
P

p<i mpbp+jbi)

r(
P

p<i mpbp+(j−1)bi+1),···r(
P

p<i mpbp+jbi)



Example 4.4.11 Let W = V 1
2 ⊕ V

2
1 ⊕ V

1
0 and m1 = 2, m2 = 1, m3 = 1. The pi
tureinvariant 
orresponding to the permutation (123)(45) is∑T (1)r2

r1r2
T (1)r3

r3r4
T (2)r1r5

r5
T (3)r4 .54



Note that k[W ] 
an be identi�ed with
Symk(W

∗) = ⊕j≥0Sym
j
k(W

∗) = ⊕j≥0 ⊕{(m1,··· ,ms):
P

mi=j} ⊗
s
i=1Sym

mi

k ((V ti
bi

)∗).The natural map from ⊗k
i=1((V

ti
bi

)∗)⊗mi → ⊗s
i=1Sym

mi

k ((V ti
bi

)∗) leads to a surje
tion fromthe spa
e of GL(V )-invariants V N
M to the spa
e (⊗s

i=1Sym
mi

k ((V ti
bi

)∗))GL(V ), where M =
∑
miti, N =

∑
mibi. This followed by the observation that non-zero GL(V )-invariantsexist only if N = M , and in that 
ase, V N

N
∼= End(V ⊗N ) enables us to use Theo-rem 4.4.1. So we get that the spa
e of GL(V )-invariants of V N

N is spanned by the el-ements ∑(r1,...,rN ) vr1 ⊗ · · · ⊗ vrN
⊗ vrσ(1) ⊗ · · · ⊗ vrσ(N) as σ varies over SN with node
reasing sub-sequen
e of length ex
eeding d and hen
e, we also obtain a spanning setfor (⊗s

i=1Sym
mi

k ((V ti
bi

)∗))GL(V ) (by the surje
tion above). Chasing through the above iso-morphisms, it 
an be seen that these elements are pre
isely the pi
ture invariants. Thus,Theorem 4.4.12 (Compare [DKS03, Proposition 7℄) Only those pi
ture invariants withunderlying permutations having no de
reasing sub-sequen
es of length ex
eeding d su�
e tospan as a k-ve
tor spa
e the ring of GLk(V )-invariant polynomial fun
tions on the spa
e
V t1

b1
× · · · × V ts

bs
of several tensors. 2
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Chapter 5Cell modules: RSK basis,irredu
ibilityWe have seen in the previous 
hapter that the image of CSn in the endomorphism ringof the tabloid representation permits a basis 
onsisting of permutations. Over C, as theSpe
ht module (asso
iated to a partition of n) is an irredu
ible module for CSn a morenatural question to ask is whether the endomorphism ring of the Spe
ht module permitssu
h a basis.By the RSK-
orresponden
e we know that the number of permutations of RSK-shape λis the same as the dimension of EndCS
λ, so an obvious 
hoi
e for a basis as above wouldbe the 
olle
tion of all permutations of RSK-shape λ. However, this 
hoi
e fails to form abasis in general as is illustrated by the example in �5.1.1. Failing to �nd a suitable 
hoi
eof permutations that form a basis for EndCS

λ, we look for possible 
andidates in the groupalgebra CSn.Going through the proof of Theorem 4.2.1, one immediately noti
es that the Kazhdan-Lusztig basis elements parametrized by the permutations of RSK-shape λ suggest them-selves to form a basis that we seek. In Theorem 5.1.1 we make the pre
ise statement andprove it using the same ideas as in Theorem 4.2.1. More generally, we prove in Theo-rem 5.1.2 that for any �nite-dimensional representation U of CSn, we obtain a basis forthe image of CSn in the endomorphism ring EndC(U). All these statements are presentedand proved in the set-up of the He
ke algebra Hk and its right 
ell modules R(λ)k, where
k is a �eld over whi
h Hk is semisimple. Re
alling that the 
ell module R(λ) is isomorphi
to Sλ (�3.4), we note that the same statements are true also for the Spe
ht modules of Hk.The proof of Theorem 5.1.1 relies on the semisimpli
ity of Hk whi
h is not true ingeneral. As was indi
ated also in the introdu
tion, we deal with the 
ase when Hk is notsemisimple by a head-on approa
h via the matrix G(λ) de�ned in �5.2.1. The matrix G(λ)en
odes the a
tion of H on R(λ) in a systemati
 way, des
ribed in �5.2.2. The determinantof this matrix turns out to be related to the determinant of a bilinear form de�ned on
R(λ). This is done in �5.2.3. This also turns out to be the key step in arriving at a56



bases for EndR(λ)k in the non-semisimple 
ase giving analogues of Theorem 5.1.1 under
ertain additional 
onditions. In �5.1.3, these analogues are formulated but their proofsare deferred to �5.4, after all the ground work required for it is done.It is easy to see that if the module R(λ)k is not irredu
ible then a basis for EndR(λ)kas in Theorem 5.1.1 is not possible. We pursue this idea to obtain a 
riterion for the irre-du
ibility of R(λ)k in terms of the determinant of G(λ), stated pre
isely in Theorem 5.3.1.5.1 RSK Bases for EndR(λ)kLet k be an arbitrary �eld and a ∈ k be invertible. Let Hk denote the spe
ialization of Hvia v 7→ a (refer �2.2).In this se
tion, we fo
us on presenting a basis for the endomorphism ring of the right
ell module R(λ)k 
orresponding to a partition λ ⊢ n. The 
ase when Hk is semisimpleis treated di�erently from the 
ase when it is not. In the semisimple 
ase we use theWedderburn theory that we had dis
ussed in �3.3.5. The non-semisimple 
ase is more
ompli
ated and the result is proved with a hypothesis on the partition λ, namely that itis e-regular (see �5.1.3).Before we pro
eed further, it is good to note that under the isomorphism given inProposition 3.4.3, all the dis
ussion in this se
tion extends verbatim to the endomorphismring of the 
orresponding Spe
ht module.5.1.1 An illustrative exampleThe purpose of this example is to show that images in EndCR(λ)C of permutations ofRSK-shape λ do not in general form a basis of EndCR(λ)C.Let n = 4 and λ = (2, 2). Then R(λ)C is the unique 2 dimensional 
omplex irre-du
ible representation of S4. Consider the a
tion of S4 on partitions of {1, 2, 3, 4} intotwo sets of two elements ea
h. There being three su
h partitions, we get a map S4 → S3,whi
h is surje
tive and has kernel {identity, (12)(34), (13)(24), (14)(23)}. Pulling ba
kthe 2-dimensional 
omplex irredu
ible representation of S3 via the above map, we get anirredu
ible 2-dimensional representation of S4, whi
h therefore has to be R(λ)C. Thus theelements in the kernel of S4 → S3 are also in the kernel of S4 → EndCR(λ)C. In S4,the permutations of RSK-shape λ are (13)(24), (1342), (1243) and (12)(34). The �rst andlast of these are in the kernel of S4 → EndCR(λ)C so they are in fa
t mapped to the sameelement in EndCR(λ)C.5.1.2 The 
ase of semisimple HkIn this subse
tion, we assume that Hk is semisimple. From [DJ86, Theorem 4.3℄ we re
allthat Hk is semisimple ex
ept pre
isely when
• either a2 = 1 and the 
hara
teristi
 of k ≤ n57



• or a2 6= 1 is a primitive rth root of unity for some 2 ≤ r ≤ n.Theorem 5.1.1 For λ a partition of n, the images in EndkR(λ)k of the Kazhdan-Lusztigbasis elements Cx, RSK-shape(x) = λ form a basis (for EndkR(λ)k).Proof: By Theorem 3.3.18(4), Hk ≃ ⊕λ⊢nEndR(λ)k. The proje
tions to EndR(ν)k of
Cx, RSK-shape(x) E λ, vanish if ν 6E λ (�4.1.2). Therefore the proje
tions of the sameelements to ⊕µEλEndR(µ)k form a basis: note that the number of su
h elements equals
∑

µEλ dimEndkR(µ)k. Again by �4.1.2, the proje
tions of Cx, RSK-shape(x)⊳λ, vanish inEndR(λ)k. This implies that the proje
tions of Cx, RSK-shape(x) = λ, in EndR(λ)k forma spanning set. Sin
e the number of su
h Cx equals dimEndR(λ)k, the theorem follows.2Theorem 5.1.2 Let U be a �nite dimensional representation of Hk and S the subset ofpartitions λ of n su
h that R(λ)k appears in a de
omposition of U into irredu
ibles. Thenthe images in EndkU of Cx, x ∈ Sn su
h that RSK-shape(x) ∈ S form a basis for theimage of Hk (under the map Hk → EndkU de�ning U).Proof: It is enough to prove the assertion assuming U = ⊕λ∈SR(λ)k. The image of Hk inEndkU is ⊕λ∈SEndkR(λ)k (Theorem 3.3.18 (1), density theorem, and [Bou73, Corollaire 2,page 39℄). Pro
eed by indu
tion on the 
ardinality of S. It is enough to show that therelevant images in EndkU are linearly independent, for their number equals the dimensionof ⊕λ∈SEndkR(λ)k. Suppose that a linear 
ombination of the images vanishes. Choose λ ∈
S su
h that there is no µ ∈ S with λ ⊳ µ. Proje
tions to EndkR(λ)k of all Cx, λ 6=RSK-shape(x) ∈ S, vanish (�4.1.2). So proje
ting the linear 
ombination to EndkR(λ)kand using Theorem 5.1.1, we 
on
lude that the 
oe�
ients of Cx, RSK-shape(x) = λ, areall zero. The indu
tion hypothesis applied to S \ {λ} now �nishes the proof. 25.1.3 The 
ase of arbitrary HkThe results in this se
tion are true for arbitrary Hk.Let a ∈ k be su
h that Hk is the spe
ialization of H via v 7→ a. We denote by e thesmallest positive integer su
h that 1 + a2 + · · · + a2(e−1) = 0; if there is no su
h integer,then e = ∞. Re
all that, a shape λ is 
alled e-regular if the number of rows in it of anygiven length is less than e.Theorem 5.1.3 For an e-regular shape λ su
h that R(λ)k is irredu
ible, the Kazhdan-Lusztig basis elements Cw, w of RSK-shape λ, thought of as operators on R(λ)k form abasis for EndkR(λ)k.(Proof deferred until �5.4).Theorem 5.1.4 Suppose that λ′, the transpose shape of λ, is e-regular and that R(λ)k isirredu
ible. Then the elements C ′

w, RSK-shape(w) = λ′, as operators on R(λ)k form abasis for EndkR(λ)k. 58



(Proof deferred until �5.4)Theorem 5.1.5 Let S be the set of e-regular shapes λ su
h that the Spe
ht module R(λ)kis irredu
ible. Let U be a �nite dimensional semisimple Hk-module, every irredu
ible 
om-ponent of whi
h is of the form R(λ)k, λ ∈ S. Let T be the subset of S 
onsisting of thoseshapes λ su
h that R(λ)k appears as a 
omponent of U . Then the images in EndkU of Cx,
x ∈ Sn su
h that RSK-shape(x) belongs to T, form a basis for the image of Hk in EndkU(under the map Hk → EndkU de�ning U).Proof: The proof is similar to that of Theorem 5.1.2. 2Remark 5.1.6 Note that Theorems 5.1.3, 5.1.5 are generalizations of Theorems 5.1.1, 5.1.2respe
tively to the 
ase of arbitrary Hk.5.2 The matrix G(λ) and its determinantLet λ be a �xed partition of n. Our goal in this se
tion is to study the a
tion of theelements Cw, RSK-shape(w) = λ, on the right 
ell module R(λ). The motivation for doingthis is to prove Theorem 5.1.3.We observe in �5.2.2 that all information about the a
tion 
an 
onveniently be gatheredtogether into a matrix G(λ) whi
h breaks up ni
ely into blo
ks of the same size (Propo-sition 5.2.3). The non-zero blo
ks all lie along the diagonal and are all equal to a 
ertainmatrix G(λ) de�ned in �5.2.1. This matrix en
odes the multipli
ation table modulo lower
ells of the Cw of RSK-shape λ. In �5.2.3, we show that this relates to the matrix of abilinear form on R(λ).5.2.1 De�nition of the matrix G(λ)Let P1, . . . , Pm be the 
omplete list of standard tableaux of shape λ.Lemma 5.2.1 For i, j, k, l ∈ {1, . . . ,m} we have,
C(Pi, Pj) · C(Pk, Pl) = gk

jC(Pi, Pl) mod

〈Cy|RSK-shape(y) ⊳ λ, y�L(Pk, Pl), y�R(Pi, Pj)〉A (5.1)Proof: To prove the above relation, 
onsider the expression of the left hand side as alinear 
ombination of the C-basis elements. For any Cy o

urring with non-zero 
oe�-
ient in this expression, we have y≤R(Pi, Pj) and y≤L(Pk, Pl), by the de�nition of thepre-orders (�2.2.2). By Proposition 2.3.5, RSK-shape(y) E λ; and if RSK-shape(y) 6= λ,then y�R(Pi, Pj) and y�L(Pk, Pl). If RSK-shape(y) = λ, then, by Proposition 2.3.7,
y∼LR(Pk, Pl); by Proposition 2.3.6, y∼L(Pk, Pl); so, the Q-symbol of y is Pl; and, analo-gously, the P -symbol of y is Pi. That gk

j depends only on the indi
es i and l follows from59



the des
ription of the H-isomorphisms between one sided 
ells of the same RSK-shape asre
alled in �3.3.5, and (5.1) is proved. 2De�nition 5.2.2 With gk
j , 1 ≤ j, k ≤ m given by the above lemma, we de�ne the matrix

G(λ) := (gk
j )1≤j,k≤m5.2.2 Relating the matrix G(λ) to the a
tion on R(λ)Enumerate as P1, . . . , Pm all the standard Young tableaux of shape λ. Let us write C(k, l)for the C-basis element C(Pk, Pl). Consider the ordered basis C(1, 1), C(1, 2), . . . , C(1,m)of R(λ). Denote by e

j
i the element of EndR(λ) that sends C(1, i) to C(1, j) and kills theother basis elements. Any element EndR(λ) 
an be written uniquely as ∑αj

i e
j
i , for some

αj
i ∈ A. Arrange the 
oe�
ients as a row matrix like this:

(

α1
1 α1

2 . . . α1
m | α

2
1 α2

2 . . . α2
m | . . . | αm

1 αm
2 . . . αm

m

)Now 
onsider su
h row matri
es for ρλ(C(k, l)), where ρλ : H → EndR(λ) is the mapde�ning the representation of H on R(λ) . Arrange them one below the other, the �rst row
orresponding to the value (1, 1) of (k, l), the se
ond to (2, 1), . . . , the mth row to (m, 1),the (m+ 1)th row to (1, 2), . . . , and the last to (m,m). We thus get a matrix�denote it
G(λ)�of size d(λ)2 × d(λ)2, where d(λ) := dimR(λ).Let us 
ompute G(λ) in the light of (5.1). Setting αj

i (k, l) := αj
i (ρλ(C(k, l))), we have(mind the abuse of notation: this equation holds in R(λ), not in H):

C(1, i)ρλC(k, l) =
∑

j

αj
i (k, l)C(1, j).The left hand side is just C(1, i).C(k, l), so applying (5.1) to it and reading the result asan equation in R(λ), we see that it equals gk

i C(1, l). Thus
αj

i (k, l) =

{

gk
i if j = l

0 otherwisewhi
h means the following:Proposition 5.2.3 The matrix G(λ) (de�ned earlier in this se
tion) is of blo
k diagonalform, with uniform blo
k size d(λ) × d(λ), and ea
h diagonal blo
k equal to the matrix
G(λ) = (gk

i ) of �5.2.1, where the row index is k and the 
olumn index i. 25.2.3 The Dipper-James bilinear form on R(λ)Pulling ba
k via the isomorphism θ of �3.4 (see (3.7) for de�nition of θ) the restri
tionto Sλ of the bilinear form on Mλ de�ned in �3.3.1, we get a bilinear form on R(λ) (whi
hwe 
ontinue to denote by 〈, 〉). Let us 
ompute the matrix of this form with respe
t to60



the basis C(1, 1), . . . , C(1,m), where, as in �5.2.2, P1, . . . , Pm is an enumeration of allstandard tableaux of shape λ, and C(k, l) is short hand notation for C(Pk, Pl). We furtherassume that P1 = tλ, so that the right 
ell with P -symbol P1 is the one 
ontaining w0,λ′(whi
h under RSK 
orresponds to the pair (P1, P1)�see Remark 2.3.9Proposition 5.2.4 The (i, j)-th entry in the matrix of the bilinear form 〈, 〉 on R(λ) isgiven by,
〈C(1, i), C(1, j)〉 = ǫw0,λ′vw0,λ′v

2
wλ
gi
jProof: The explanations for the steps in the following 
al
ulation appear below:

〈C(1, i), C(1, j)〉 = 〈C(1, i)θ,C(1, j)θ〉 = 〈xλTwλ
vwλ

C(1, i), xλTwλ
vwλ

C(1, j)〉

= v2
wλ
〈xλTwλ

, xλTwλ
C(1, j)C(1, i)∗〉 = v2

wλ
〈xλTwλ

, xλTwλ
C(1, j)C(i, 1)〉

= v2
wλ
〈xλTwλ

, xλTwλ
gi
jC(1, 1)〉 = v2

wλ
gi
j 〈xλTwλ

, xλTwλ
ǫw0,λ′vw0,λ′yλ′〉

= ǫw0,λ′vw0,λ′v
2
wλ
gi
j

∑

w∈Wλ′

ǫwv
−1
w 〈xλTwλ

, xλTwλ
Tw〉 = ǫw0,λ′vw0,λ′v

2
wλ
gi
jThe �rst equality follows from de�nition of the form on R(λ); the se
ond from the de�nitionof θ; the third from (3.5); the fourth from the relation C∗

w = Cw−1 (by de�nition, T ∗
w =

Tw−1 , so the 
hara
terisation Cw ≡ Tw mod H>0 implies that C∗
w = Cw−1). For the�fth, substitute for C(1, j)C(i, 1) using (5.1) and observe that the `smaller terms' on theright hand side belong to the kernel of θ (�3.4). The sixth follows by substituting for

C(1, 1) = Cw0,λ′ from (3.3); the seventh from the de�nition of yλ′ ; and the �nal equality by
ombining the de�nition of the form and Remark 2.3.14: observe that Twλ
Tw = Twλw sin
e

l(wλ) + l(w) = l(wλw) (similar to Proposition 2.3.10(3)) and that wλw belongs to Dλ.
2Having 
ome thus far, we immediately get a formula relating the determinant of theform 〈, 〉 with the determinant of the matrix G(λ).Corollary 5.2.5 The determinant of the matrix of the form 〈, 〉 on R(λ) with respe
t tothe basis C(1, 1), . . . , C(1,m) equals

ǫd(λ)
w0,λ′

vd(λ)
w0,λ′

v2d(λ)
wλ

detG(λ) (5.2)
2The above 
orollary plays a key role for plugging the seemingly extraneous 
ondition of

e-regularity in Theorem 5.1.3 (see Proposition 5.4.1).5.3 A 
riterion for irredu
ibility of R(λ)kLet a ∈ k be invertible. We 
onsider the spe
ialization Hk via v 7→ a. Sin
e the dimensionof EndkR(λ)k is d(λ)2 we observe that if the Kazhdan-Lusztig basis elements Cw, w of61



RSK-shape λ, thought of as operators on R(λ)k, are linearly independent then they in fa
tform a basis for EndkR(λ)k. In su
h a 
ase, the module R(λ)k has to be irredu
ible. Inview of this observation, we have the following:Theorem 5.3.1 If detG(λ)|v=a does not vanish in k, then R(λ)k is irredu
ible.Proof: Suppose that detG(λ)|v=a does not vanish in k. Then, by Proposition 5.2.3, thematrix G(λ) is invertible (in k, after spe
ializing to v = a). Thus the elements Cw, w ofRSK-shape λ, are linearly independent (and so form a basis) as operators on R(λ)k. Inparti
ular, R(λ)k is irredu
ible, and the assertion is proved. 25.4 Proofs of Theorems 5.1.3, 5.1.4Proposition 5.4.1 If λ is e-regular, the bilinear form 〈, 〉k on R(λ)k is non-zero.Proof: This 
an be readily seen by using Proposition 3.3.11: for e1, e2 ∈ Sλ
k givenby Proposition 3.3.11, we have by the de�nition of the bilinear form on R(λ)k that

〈θ(e1), θ(e2)〉 = 〈e1, e2〉 6= 0, as required. 2Proof of Theorem 5.1.3: By (3.5), the radi
al of the form 〈, 〉k on R(λ)k is a Hk-submodule. Sin
e R(λ)k is assumed irredu
ible, the form is either identi
ally zero or non-degenerate. But, as shown in Proposition 5.4.1 above, it is non-zero under the assumptionof e-regularity of λ. Thus its matrix with respe
t to any basis of R(λ)k has non-zerodeterminant. By (5.2), detG(λ)|v=a is su
h a determinant (up to a sign and power of a),so it is non-zero. It now follows from Proposition 5.2.3 that the operators Cw, w of RSK-shape λ, form a basis for EndR(λ)k. 2Proof of Theorem 5.1.4: By Theorem 5.1.3, the Cw, RSK-shape(w) = λ′, as operatorson R(λ′)k form a basis for EndR(λ′)k (note that R(λ′)k is irredu
ible by Proposition 3.5.3;re
all R(λ′) ∼= Sλ′). By Proposition 3.5.3 we have an isomorphism R(λ)k ≃ (R(λ′)†k)
dual ∗the Cw, RSK-shape(w) = λ′, as operators on (R(λ′)†k)

dual ∗ form a basis. By our notations(refer �3.5), we know that the Cw a
tion on the latter spa
e is given by j(C∗
w) = ǫwC

′
w−1(sin
e C∗

w = Cw−1 , Remark 2.2.7(i)). The result now follows by observing that the RSK-shapes of w and w−1 are the same. 25.4.1 Condition of e-regularity in Theorem 5.1.3The 
ondition of e-regularity assumed in Theorem 5.1.3 is ne
essary. In other words, foran arbitrary shape λ it is possible that the module R(λ)k is irredu
ible, however, theKazhdan-Lusztig basis elements Cw, w of RSK-shape λ, thought of as operators on R(λ)k,do not form a basis for EndkR(λ)k. We illustrate this in the following example.Let H be the He
ke algebra 
orresponding to S4. Let λ = (2, 2), k a �eld and Hk thespe
ialization given by v 7→ 1 (see �2.2, p.11). Consider the right 
ell module R(λ)k. Forsimpli
ity of 
al
ulations we work with the Spe
ht module asso
iated to λ instead of R(λ)k62



both of whi
h are isomorphi
 (Proposition 3.4.3). Re
all from �3.2 that the standard basisof the Spe
ht module is given by
eT :=

∑

ǫ(σ){Tσ}where T is a standard tableau of shape λ; the sum is taken over permutations σ in the
olumn stabiliser of T ; and {Tσ} denotes the tabloid 
orresponding to the tableau Tσ.Hen
e the following two elements form the standard basis for Sλ
k :

e1 =
1 2

3 4
−

2 3

1 4
−

1 4

2 3
+

3 4

1 2
e2 =

1 3

2 4
−

2 3

1 4
−

1 4

2 3
+

2 4

1 3With respe
t to the above basis, the elements T(1,2), T(2,3), T(3,4) in Hk
∼= kS4 a
t on Sλ

kas (

1 0

−1 −1

)

,

(

0 1

1 0

)

,

(

1 0

−1 −1

)

.If 
har(k) is 2 then e = 2. Note that in this 
ase λ is not e-regular (nor is λ′ e-regular).Also, by the above 
al
ulation it 
an be easily seen that when the 
hara
teristi
 of k is 2the Spe
ht module Sλ
k is irredu
ible.The permutations w su
h that RSK-shape(w) = (2, 2) are 3142, 2413, 2143, 3412(where 3142 denotes the permutation given by 1 7→ 3, 2 7→ 1, 3 7→ 4, 4 7→ 2). Us-ing the notation T (i1, . . . , ij) := T(i1,i1+1) · · ·T(ij ,ij+1), the KL-basis elements Cw ∈ Hk
orresponding to the above four permutations are given by:

C2132 = −T (1)− T (3) + T (1, 2) + T (1, 3) + T (2, 1) + T (2, 3) + T (3, 2) +

− T (1, 2, 1) − T (1, 3, 2) − T (2, 1, 3) − T (2, 3, 2) + T (2, 1, 3, 2),

C2413 = −id + T (1) + T (2) + T (3)− T (1, 3) − T (2, 1) − T (2, 3) + T (2, 1, 3),

C3142 = −id + T (1) + T (2) + T (3)− T (1, 2) − T (1, 3) − T (3, 2) + T (1, 3, 2),

C2143 = id− T (1) − T (3) + T (1, 3).By the earlier 
al
ulations, we note that T(1,2) (= T (1)) and T(3,4) (= T (3)) a
t identi
allyon Sλ
k . Also, T (i)2 = id and T (1, 2, 1) = T (2, 1, 2) in kS4. Hen
e it 
an be easily veri�edthat the above Cw's a
ts trivially on Sλ

k (sin
e 
har k = 2). 2
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Chapter 6A formula for det G(λ) and anappli
ationWe begin this 
hapter by investigating more 
losely the matrix G(λ) introdu
ed in �5.2.1.This matrix was seen, in �5.2.3, to be related to the matrix of the Dipper-James bilinearform on R(λ) (w.r.t the C-basis). In �6.1, we des
ribe the relation between the lattermatrix and the matrix of the bilinear form on the Spe
ht module Sλ whi
h was de�nedin �3.3.2 (w.r.t the standard basis) and thus naturally leading us to an expli
it relationbetween the matrix G(λ) and the matrix of the bilinear form on Sλ (w.r.t the standardbasis).The main result of this 
hapter is a 
ombinatorial formula for the determinant of G(λ)dedu
ed from the above relation. As an appli
ation of this formula we give, in �6.3, a newproof of the Carter 
onje
ture ([Jam78℄) regarding irredu
ibility of the Spe
ht module.The formula is stated in �6.2, while we work through its proof only in �6.4, assuming someknown results re
alled in �6.4.1.6.1 Relating det G(λ) and the Gram determinantThe Gram matrix of Sλ is the matrix of the restri
tion to the Spe
ht module Sλ of thebilinear form 〈, 〉 on Mλ (de�ned in �3.3.1), with respe
t to its `standard basis' as given inTheorem 3.3.7. The determinant of this matrix is 
alled the Gram determinant, denotedas det(λ).Our goal in this se
tion is to relate G(λ) to the Gram matrix. Towards this, let us
ompute the image under the map θ of the T -basis elements of R(λ). Given a pre�x e of
wλ′ , we have

Cw0,λ′Teθ = vwλ
xλTwλ

Cw0,λ′Te (by the de�nition of θ in (3.7))
= ǫw0,λ′vw0,λ′ (vwλ

xλTwλ
yλ′)Te (by (3.3))

= ǫw0,λ′vw0,λ′zλTe (by the de�nition of zλ in �3.3)
= ǫw0,λ′vw0,λ′v

−1
e (vezλTe)64



From the above 
al
ulation, we have for pre�xes e, e′ of wλ:
〈Cw0,λ′Teθ,Cw0,λ′Te′θ〉 = v2

w0,λ′
v−1
e v−1

e′ 〈vezλTe, ve′zλTe′〉Note that vezλTe is a standard basis element of Sλ. Hen
e the right hand side of the aboverelation is v2
w0,λ′

v−1
e v−1

e′ times the (e, e′)-th entry of the Gram matrix. On the other hand,we had de�ned the bilinear form on R(λ) in su
h a way that,
〈Cw0,λ′Teθ,Cw0,λ′Te′θ〉 = 〈Cw0,λ′Te, Cw0,λ′Te′〉Thus we 
on
lude that the determinant of the matrix of the bilinear form 〈, 〉 on R(λ)with respe
t to the T -basis equals v2d(λ)

w0,λ′ (
∏

e ve)
−2det(λ). Combining this with Proposi-tion 3.3.17, whi
h relates the C-basis of R(λ) with its T -basis, and Corollary 5.2.5, we getthe following:Proposition 6.1.1 The determinant of the matrix G(λ) is given by,

detG(λ) = (ǫw0,λ′vw0,λ′v
−2
wλ

)d(λ)(
∏

e

ve)
−2det(λ) (6.1)where the produ
t is taken over all pre�xes e of wλ′ .6.2 Hook Formula for the determinant of G(λ)We now give a formula for the determinant of the matrix G(λ). We set the followingnotation:

• [λ]:= the set of nodes in the Young diagram of shape λ;
• hab:= hook length of the node (a, b) ∈ [λ] (see �2.3.1).
• For a positive integer m,

[m]v := v1−m + v3−m + · · · + vm−3 + vm−1

[m]q := 1 + v2 + v4 + · · · + v2(m−1)Assuming λ has r rows, we 
an asso
iate to λ a de
reasing sequen
e�
alled the β-sequen
e�of positive integers, the hook lengths of the nodes in the �rst 
olumn of λ. Theshape 
an be re
overed from the sequen
e, so the asso
iation gives a bije
tion betweenshapes and de
reasing sequen
es of positive integers. Given su
h a sequen
e β1 > . . . > βr,write d(β1, . . . , βr) for the number d(λ) of standard tableaux of shape λ (�2.3.1). Extendthe de�nition of d(β1, . . . , βr) to an arbitrary sequen
e of β1, . . . , βr of non-negative integersat most one of whi
h is zero as follows: if the integers are not all distin
t, then it is 0; if theintegers are all distin
t and positive, then it is sign(w) d(βw(1), . . . , βw(r)) where w is the65



permutation of the symmetri
 group Sr su
h that βw(1) > . . . > βw(r); if the integers aredistin
t and one of them�say βk�is zero, then it is d(β1 − 1, β2 − 1, . . . , βk−1 − 1, βk+1 −

1, . . . , βr − 1), whi
h is de�ned by indu
tion on r.Theorem 6.2.1 (Hook Formula) For a partition λ of n,
detG(λ) = ǫd(λ)

wo,λ′

∏
(

[hac]v
[hbc]v

)d(β1,...,βa+hbc,...,βb−hbc,...,βr) (6.2)with notation as above, where β1 > . . . > βr is the β-sequen
e of λ and the produ
t runsover {(a, b, c)|(a, c), (b, c) ∈ [λ] and a < b}.The proof of the above theorem is deferred until �6.4.6.3 A new proof for Carter's 
onje
tureIn this se
tion, as an immediate 
orollary of the above theorem, we present a new proof ofa 
onje
ture of Carter (proved in [Jam78℄).Let p denote the smallest positive integer su
h that p = 0 in k; if no su
h integer exists,then p = ∞. For an integer h, de�ne νp(h) as the largest power of p (possibly 0) thatdivides h in 
ase p is positive, and as 0 otherwise. Let e be the smallest positive integersu
h that 1 + a2 + · · · + a2(e−1) = 0; if there is no su
h integer, then e = ∞. For aninteger h, de�ne
νe,p(h) :=

{

0 if e =∞ or e ∤ h

1 + νp(h/e) otherwiseThe (e, p)-power diagram of shape λ is the �lling up of the nodes of the shape λ by the
νe,p's of the respe
tive hook lengths.Observe that e = p if a = 1. Then the (e, p)-power diagram is just the p-power diagramof Carter [Jam78℄.Corollary 6.3.1 [Jam78, JM97℄ If the (e, p)-power diagram of λ has either no 
olumn orno row 
ontaining di�erent numbers, then Sλ

k is irredu
ible.Proof: It is enough to do the 
ase when no 
olumn of the (e, p)-power diagram hasdi�erent numbers: if the 
ondition is met on rows and not on 
olumns, we 
an pass to λ′and use the observation (Proposition 3.5.3) that Sλ
k is irredu
ible if and only if Sλ′

k is.So assume that in every 
olumn of the (e, p)-power diagram the numbers are all thesame. We 
laim that ea
h of the fa
tors [hac]v/[hbc]v on the right hand side of (6.2)makes sense as an element of k and is non-zero. Combining the 
laim with Theorems 6.2.1and 5.3.1 yields the assertion.To prove the 
laim, we need the following elementary observations, where h denotes apositive integer:
• [h]v vanishes in k if and only if e is �nite and divides h.66



• if e is �nite and divides h, then [h]v = ([h/e]v) |v=ve [e]v.
• a2e = 1 if e is �nite.If either e = ∞ or e does not divide any of the hook lengths in shape λ, then the 
laimfollows from the the �rst of the above observations. So now suppose that e is �nite anddivides either hac or hbc. By our hypothesis, e then divides both hac and hbc; moreoverboth hac/e and hbc/e are divisible by p to the same extent. Using the se
ond and thirdobservations above, we 
on
lude that the image in k of [hac]v/[hbc]v is the same as that ofthe rational number hac/hbc (written in redu
ed form), and so is non-zero. 26.4 Proof of the hook formulaIn this se
tion we establish the formula (6.2) given in �6.2. Throughout this se
tion, welet F denote the �eld Q(v), the �eld of fra
tions of A.6.4.1 PreliminariesWe begin by re
alling some preliminary results from [DJ87℄, [JM97℄, that we will use.An orthogonal basis for the Spe
ht module1Fix a partition λ ⊢ n. Theorem 3.3.7 presents the standard basis for Spe
ht module

Sλ
F . As Sλ

F is equipped with a bilinear form (�3.2) we may also look for a basis that isorthogonal with respe
t to this bilinear form. We are interested in su
h an orthogonalbasis as a means of simplifying the 
omputation of the determinant of the Dipper-Jamesbilinear form on Sλ
F .Following the exposition as in [DJ87℄ (re
all di�eren
e in notations �2.2) for 
onstru
t-ing this basis for Sλ
F , we �rst de�ne the Ju
ys-Murphy elements of H as follows: L1 := T1and

Lk := v−1(T(k−1,k) + T(k−2,k) + · · · + T(1,k)) for k = 2, . . . , n.Let {d ∈ Sn | d is a pre�x of wλ′} = {d1, . . . , dm} (m = dimAS
λ) ordered in su
h away that i < j, if l(di) < l(dj). Then ei := vdi

zλTdi
, i = 1, . . . ,m is the standard basis of

Sλ
F .For notational 
onvenien
e we set q := v2. For a Young diagram of shape λ, we de�nethe residue of the (i, j)-node to be 1+q+· · ·+q(j−i−1), if j ≥ i and−q−1−q−2−· · ·−q−(i−j) if
i > j. For 1 ≤ k ≤ n, de�ne ri(k) to be the residue of the node 
ontaining k in Si := tλwλdi.We de�ne operators Ei ∈ HF (1 ≤ i ≤ m) via the Murphy operators as follows:

Ei :=
n∏

k=1

m∏

j=1
ri(k)6=rj(k)

Lk − rj(k)

ri(k)− rj(k)1A more detailed exposition 
an be found at http://www.ims
.res.in/�preena/Appendix.pdf67



De�ne elements fi ∈ S
λ
F by setting fi := eiE

m
i for i = 1, . . . ,m.In the next lemma, we list out the properties satis�ed by the elements fi ∈ S

λ
F . Thatthey form an orthogonal basis will follow from these properties.Lemma 6.4.1 [DJ87, Lemma 4.6℄ Let 1 ≤ i ≤ m. Then,1. for 1 ≤ j ≤ i− 1, ejEm

i = 0 ;2. for 1 ≤ m ≤ n, fiLm = ri(m)fi;3. if 1 ≤ j ≤ d, i 6= j then 〈fi, fj〉 = 0;4. 〈fi, ei〉 = 〈fi, fi〉 and 〈fi, ei〉 = 0 for 1 ≤ j ≤ i− 1.5. fi = ei+ a linear 
ombination of ej , j < i. 2We do not in
lude the proofs1 of the above properties whi
h 
an be dedu
ed from 
ertainGarnir relations satis�ed by zλ.A 
ombinatorial resultWe now re
all (without proof) a 
ombinatorial result from [JM97℄.Let λ ⊢ n be a �xed partition. Following the notation as in [JM97, �2.16, p247℄ wede�ne ∆µ(λ) in the spe
ial 
ase of µ = 1n. In this 
ase, T0(λ, µ) denotes the set of standardtableaux of shape λ. For ea
h s ∈ T0(λ, µ) and (i, j) ∈ [λ], let
Γs(i, j) = {(k, l) ∈ [λ] : l < j, skl < sij, and sk′l > sij for all k′ > k}where skl denotes the entry in the (k, l)-th node of s. Note, Γs(i, j) is the set of nodes

(k, l) su
h that the l-th 
olumn of s lies to the left of the j-th 
olumn and skl is the largestentry in the l-th 
olumn whi
h is less that sij. Set
γs =

∏

(i,j)∈[λ]

∏

(k,l)∈Γs(i,j)

[j − i+ k − l + 1]q
[j − i+ k − l]q

.The 
ontribution to γs from the node (k, l) ∈ Γs(i, j) is pre
isely [ρ + 1]q/[ρ]q where ρ isthe axial distan
e from (k, l) to (i, j) de�ned to be (k − i) + (j − l) if k ≥ i and j ≥ l.Finally, we de�ne ∆µ(λ) =
∏

s∈T0(λ,µ) γs. We have the following 
ombinatorial resultfrom [JM97℄ (also see [Mat99, Theorem 5.2.7℄):Lemma 6.4.2 ([JM97℄, Corollary 2.30) With notations as above and let α1 > α2 > . . . >

αr ≥ 0 be the β-numbers for λ′. Then
∆µ(λ) =

∏
(

[hab]q
[hac]q

)d(α1,...,αb+hac,...,αc−hac,αr)where this produ
t is over {a, b, c | b < c, (a, b) and (a, c) ∈ [λ]}. 268



6.4.2 Computing the Gram determinant det(λ)Re
all notations as in �6.4.1. Let d1, . . . , dm be the pre�xes of wλ′ ordered so that i < j if
l(di) < l(dj). Let ei := vdi

zλTdi
, 1 ≤ i ≤ m be the standard basis of Sλ (see Theorem 3.3.7).Let fi, 1 ≤ i ≤ m be the orthogonal basis of Sλ

F as de�ned in �6.4.1 (see also [DJ87,Theorem 4.7℄). The basis fi is in unitriangular relationship with the ei (Lemma 6.4.1).Thus we have, det(λ) =
∏m

i=1〈fi, fi〉.We would like to give a more expli
it formula for the Gram determinant. For this weset some notation. Let S1, . . . , Sm be an enumeration of all the standard tableaux ofshape λ su
h that Si = tλdi. For i, u su
h that 1 ≤ i ≤ m, 1 ≤ u ≤ n, let Su
i denotethe standard tableau obtained from Si by deleting all nodes with entries ex
eeding u; set

γui :=
∏a−1

j=1 [hjb]q/[hjb − 1]q where (a, b) is the position of the node in Su
i 
ontaining u, hjbis the hook length in Su

i of the node in position (j, b), and [s]q := 1+ v2 + v4 + · · ·+ v2(s−1)for a positive integer s.With this notation, we getLemma 6.4.3 (
ompare [DJ87, Lemma 4.10℄) For 1 ≤ i ≤ n, 〈fi, fi〉 = v2ri
∏n

u=1 γuiwhere the exponents are given by,
r1 = l(wλ)− l(w0,λ′) and
ri = rj + 1 where 1 ≤ j < i su
h that ei = vejT(k−1,k).For outlining a proof of the above lemma we will need to re
all a result from [DJ87,Theorem 4.9℄. The proof of the following result involves properties of the basis fi listedin Lemma 6.4.1 and some 
ombinatorial observations regarding residues (see �6.4.1 forde�nition). Being fairly 
omputational we do not in
lude it here.Theorem 6.4.4 ([DJ87, Theorem 4.9(ii)℄) Let λ ⊢ n, m = dim Sλ

F . Let 1 ≤ i ≤ m and
2 ≤ k ≤ n. Denote by ρ the axial distan
e between the nodes o

upied by k and k − 1 in
ti, where the axial distan
e between the nodes (a, b) and (a′, b′) su
h that a ≥ a′, b′ ≥ b isde�ned to be (a− a′) + (b′ − b). Let q = v2. If ti(k − 1, k) = tj for some j then

fiT(k,k−1) =

{
qρ

[ρ]q
fi + fj if i < j,

− 1
[ρ]q

fi +
q[ρ−1]q[ρ+1]q

[ρ]2q
fj if i > j

(6.3)
2Proof of Lemma 6.4.3: Pro
eed by indu
tion on i.

i = 1: In this 
ase, we have f1 = e1 = zλ. Substituting for zλ and in turn for yλ fromtheir de�nitions in �3.3, we get
〈f1, f1〉 = 〈zλ, zλ〉

= 〈vwλ
xλTwλ

yλ′ , vwλ
xλTwλ

yλ′〉

= v2
wλ

∑

u,u′∈Wλ′
ǫuǫu′v−1

u v−1
u′ 〈xλTwλ

Tu, xλTwλ
Tu′〉69



Using in order (3.5), Lemma 2.2.4(4), Remark 2.3.14 and the de�nition of 〈, 〉, we get:
〈xλTwλ

Tu, xλTwλ
Tu′〉 = 〈xλTwλ

, xλTwλ
Tu′Tu−1〉

= 〈xλTwλ
, xλTwλ

(Tu′u−1 +
∑

w∈Wλ′ ;w>u′u−1 cwTw)〉

= 〈xλTwλ
, xλTwλu′u−1 +

∑

w∈Wλ′ ;w>u′u−1 cwTwλw〉

=

{

1 if u = u′

0 otherwiseso that
〈f1, f1〉 = v2

wλ

∑

u∈Wλ′

v−2
u = v2

wλ
v−2
w0,λ′

∑

u∈Wλ′

v2
w0,λ′

v−2
u = v2

wλ
v−2
w0,λ′

∑

u∈Wλ′

v2
uRoutine 
al
ulations show:

∑

u∈Sn

v2
u = [n]!q and ∑

u∈Wλ′

v2
u = [λ′1]

!
q · · · [λ

′
r]

!
qwhere [n]!q := [n]q[n − 1]q · · · [1]q and λ′ = (λ′1, . . . , λ

′
r). Finally, a pleasant veri�
ation,given the fa
t that S1 = tλ, shows:

[λ′1]
!
q · · · [λ

′
r]

!
q =

n∏

u=1

γu1

i > 1: For i > 1 we have, ei = ejT(m−1,m) for some 2 ≤ m ≤ n and 1 ≤ j < i. Usingthis and the properties of fi listed in Lemma 6.4.1, we get the following equalities:
〈fi, fi〉 = 〈fi, ei〉 = 〈fi, ejT(m−1,m)〉 = 〈fiT(m−1,m), ej〉

= 〈cifi + cjfj, ej〉 (by Equation (6.3))
= cj〈fj , fj〉,where cj =

q[ρ−1]q[ρ+1]q
[ρ]2q

, ρ is the axial distan
e between m and m− 1 in ti.Note that the length of the hook joiningm−1 andm in Sm
i (as well as Sm

j ) is ρ+1. Sin
e
Si = Sj(m − 1,m) is standard and l(wλdi) < l(wλdj) an argument as in Lemma 2.3.13shows that the row-index of m is stri
tly bigger than that of m − 1 in Si. With thisobservation, it 
an be easily seen that for 1 ≤ u ≤ n, u 6= m − 1, m we have γui = γujand γm−1,i = γmj . Further, the term γmi di�ers from γm−1,j only in one fa
tor � theformer has a fa
tor [h]q/[h − 1]q , while the latter has in its pla
e [h − 1]q/[h − 2]q (owingto the node 
ontaining m being removed in Sm

j − 1). This immediately leads us to therelation γmi = q−1cjγk−1,j. Putting together the 
on
lusion of the last paragraph with therelations we just obtained along with the indu
tion hypothesis, we arrive at the requiredstatement for the index i in the lemma. Therefore, by indu
tion we are done. 2Putting together Lemma 6.4.3 and the observation made in the beginning of this sub-70



se
tion about the relation between the standard basis ei and the orthogonal basis fi, wearrive at the following formula (
ompare[DJ87, Theorem 4.11℄):Lemma 6.4.5 The determinant of the Gram matrix of the bilinear form 〈, 〉 on Sλ
F isgiven by, det(λ) = v2r

m∏

i=1

n∏

u=1

γui (6.4)where, the integer r = d(λ)
(
l(wλ)− l(w0,λ′)

)
+
∑m

i=1 l(di). 2Finally, in the next lemma, we use the 
ombinatorial result Lemma 6.4.2 to des
ribethe produ
t on the right side of Equation (6.4) in a simpler way.Lemma 6.4.6 For a partition λ and with notations as des
ribed above,
m∏

i=1

n∏

u=1

γum =
∏
(

[hac]q
[hbc]q

)d(β1,...,βa+hbc,...,βb−hbc,...,βr) (6.5)where β1 > . . . > βr is the β-sequen
e of λ and the produ
t runs over {(a, b, c)|(a, c), (b, c) ∈
[λ] and a < b}.Proof: The relation follows by observing that both sides of Equation (6.5) equals ∆(1n)(λ

′).We shall explain this in detail below:By de�nition, T0(λ′, (1n)) is the 
olle
tion of standard tableaux of shape λ′. For ea
h
s ∈ T0(λ

′, (1n)) the set
Γs(i, j) = {(k, l) ∈ [λ′] : l < j, skl < sij, and sk′l > sij for all k′ > k}is just the set of nodes (k, l) that appear in the last row of su (refer to notation in �6.4.1)where u = sij and so the value j − l+ k− i+ 1 is the hook length of the node (i, l) in su .In parti
ular also for s = S′

r� the transpose of Sr, where Sr is a standard tableau of shape
λ. On the other hand the value j − l+ k − i+ 1 is also the hook length of the node (k, j)in Su

r whi
h we denote as hkj. With this observation, we get
∏

(k,l)∈Γs(i,j)

[j − i+ k − l + 1]q
[j − i+ k − l]q

=
∏

k:1≤k<j

[hkj ]q
[hkj − 1]q

.The right-hand side of this equation is just γum where u = sij = Sr(j, i), the entry inthe (j, i)-th node of Sr. This along with the de�nition of γs leads us to the relation,
γs =

∏n
u=1 γum. Thus, by the de�nition of ∆(1n)(λ

′) we get that it equals the left-handside of (6.5) i.e.,
∆(1n)(λ

′) =
∏

s∈T0(λ′,(1n))

γs =
d∏

m=1

n∏

u=1

γumThat the right-hand side of (6.5) is ∆(1n)(λ
′) follows immediately from the relation71



in Lemma 6.4.2 and re-indexing the produ
t on the right-hand side of that relation overnodes of [λ] rather than that of [λ′]. 2Thus, Lemma 6.4.5 and Lemma 6.4.6 together allows us to 
on
lude thatLemma 6.4.7 With notations as above, we have ,det(λ) = v2r
∏
(

[hac]q
[hbc]q

)d(β1,...,βa+hbc,...,βb−hbc,...,βr) (6.6)where β1 > . . . > βr is the β-sequen
e of λ, r = d(λ)
(
l(wλ)− l(w0,λ′)

)
+
∑m

i=1 l(di) andthe produ
t runs over {(a, b, c)|(a, c), (b, c) ∈ [λ] and a < b}. 26.4.3 Proof of Theorem 6.2.1Both sides of Equation (6.2) are elements of A. To prove they are equal, we may pass tothe quotient �eld F := Q(v) of A.Combining Equations (6.1) and (6.6), we get
ǫd(λ)
w0,λ′

vd(λ)
w0,λ′

detG(λ) =
∏
(

[hac]q
[hbc]q

)d(β1,...,βa+hbc,...,βb−hbc,...,βr) (6.7)The left hand side is an element of A. As to the right hand side, it is regular with value 1at v = 0, sin
e the same is true for [s]q for every positive integer s. Thus both sides of theequation belong to 1 + vZ[v] and
detG(λ) = ǫd(λ)

w0,λ′
v−d(λ)
w0,λ′

+ higher degree terms.The `bar-invarian
e' of the C-basis elements (Theorem 2.2.6(1)) means that:
gk
j = gk

j for gk
j as in (5.1) and so also detG(λ) = detG(λ).Thus detG(λ) has the form:
ǫd(λ)
w0,λ′

v−d(λ)
w0,λ′

+ · · ·+ ǫd(λ)
w0,λ′

vd(λ)
w0,λ′the terms represented by · · · being of v-degree stri
tly between −d(λ)l(w0,λ′) and d(λ)l(w0,λ′).Equating the v-degrees on both sides of (6.7) gives

d(λ)l(w0,λ′) =
∑

d(β1, . . . , βa + hbc, . . . , βb − hbc, . . . , βr) (hac − hbc) .Using this and substituting vhac[hac]v, vhbc [hbc]v, respe
tively for [hac]q, [hbc]q into (6.7),we arrive at the theorem. 2
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