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Abstract

We study the noncommutative geometry of some quantum homogeneous spaces associated

with the quantum group SUq(n). First we consider the quantum space SUq(n)/SUq(n − 1)

called the odd dimensional quantum spheres and denoted S2n−1
q . We consider two spectral

triples associated to the odd dimensional quantum spheres S2n−1
q . We show that the spectral

triples satisfy the hypothesis of the local index formula. A conceptual explanation is given

by considering a property which we call the weak heat kernel asymptotic expansion property

of spectral triples. We show that a spectral triple having the weak heat kernel asymptotic

expansion property satisfies the hypothesis of the local index formula. We also show that this

property is stable under quantum double suspension. Finally we compute the K-groups of the

quantum homogeneous space SUq(n)/SUq(n− 2).
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Chapter 1

Introduction

The theory of Noncommutative geometry initiated by Alain Connes has become an active area

of research in Mathematics with applications to Physics. The starting point of Noncommutative

topology can be traced back to the Gelfand Naimark theorem which gives an anti-equivalence

between the category of locally compact Hausdorff spaces and the category of commutative C∗

algebras. The correspondence is given by the map X 7→ C0(X) where C0(X) is the algebra of

continuous complex valued functions which vanish at infinity. This says that all the information

about a space is actually encoded in the algebra of continuous functions on it. Thus one

thinks of noncommutative C∗ algebras as noncommutative topological spaces and tries to apply

topological methods to understand them. K-theory and K-homology adapts well to study C∗

algebras. Elliot’s classification of AF algebras using K-theory is a famous instance of this.

Elements of K-homology are made of what are called Fredholm modules. An even Fredholm

module for a C∗ algebra A is a quadraple (π,H, F, γ) such that

• the map π : A→ L(H) is a ∗ representation,

• H is a Hilbert space with a Z2 grading γ,

• the operator F is a selfadjoint unitary which commutes with γ,

• the commutator [F, π(a)] is compact for every a ∈ A, and

• for every a ∈ A, π(a)γ = γπ(a).

If there is no grading present, one calls it an odd Fredholm module. There is a natural pair-

ing between K-theory and K-homology. If (A,H, F ) is a Fredholm module, the K-theory/K-

homology pairing is given by an index map IndF : K∗(A) → Z. In geometric examples,

Fredholm modules arise from unbounded operators like elliptic differential operators and the

unbounded Fredholm modules are called spectral triples .
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In geometry, the topological space one tries to understand will usually be a smooth manifold.

Connes proposed the following notion of spectral triples as the noncommutatative counterpart

of smooth manifolds. An even spectral triple for a ∗ algebra A is a triple (π,H,D) together

with a Z2 grading γ on H such that

1. the map π : A → L(H) is a ∗ representation such that π(a)γ = γπ(a) for every a ∈ A,

2. the operator D is an unbounded operator with compact resolvent such that Dγ = −γD,

and

3. the commutator [D,π(a)] is bounded for every a ∈ A.

If no grading is present one calls it an odd spectral triple. Usually A will be a dense subalgebra

of a C∗ algebra. If (A,H,D) is a spectral triple then (A,H, F ) is a Fredholm module where

F := sign(D). The reason for calling spectral triples as noncommutative manifolds is due

to the fact that the spectral triple (C∞(M), L2(M,S),D)[ [15] ] captures all the information

about the manifold M . Here

• M is a smooth Riemannian manifold,

• S → M is a spinor bundle and L2(M,S) denote the space of square integrable sections,

and

• The operator D is the Dirac operator associated to the Levi-Civita connection.

Also Connes in [1] proved that if (A,H,D) is a spectral triple which satisfies certain assump-

tions and if A is commutative then the spectral triple comes from a classical spectral triple

(C∞(M), L2(M,S),D) for some smooth manifold M . Thus it makes good sense to think of

spectral triples as non-commutative manifolds.

In [14], Connes constructed cyclic cohomology as the natural receipent of Chern character

from the K-theory. He defines the Chern character of a finitely summable Fredholm module

and calculates the index map as the pairing between K-theory and cyclic cohomology. But in

geometric examples coming from spectral triples, the Chern character is difficult to compute

as the sign of the operator D is difficult to compute. Thus one needs a manageable formula

completely in terms of D. The local index formula in [12] achieves this. The formula is given

in terms of residues of certain meromorphic functions associated with D. Let us briefly explain

the formula before we go further.

First let us recall the notion of regularity and dimension spectrum of spectral triples. Con-

sider an unbounded selfadjoint operator D. Let

H∞ : = ∩n=1Dom(|D|n),
OP 0 : = {T ∈ L(H) : T ∈ ∩nDom(δn)}

10



where δ := [|D|, .] is the unbounded derivation on L(H).

A spectral triple (A,H,D) is said to be regular if A + [D,A] ⊂ OP 0. Let (A,H,D) be

a regular spectral triple which is finitely summable. Assume that |D|−p is trace class. Let B
be the algebra generated by δn(A) and δn([D,A]) for n ≥ 0. We say that the spectral triple

(A,H,D) has discrete dimension spectrum Σ ⊂ C if Σ is discrete and for every b ∈ B, the
function Trace(b|D|−z) initially defined for Re(z) > p extends to a meromorphic function with

poles only in Σ. We say the dimension spectrum is simple if all the poles are simple.

Let (A,H,D) be an odd finitely summable spectral triple which is regular and has discrete

dimension spectrum. Let B be the algebra generated by δn(A) and δn([D,A]) in L(H). For

b ∈ B, we let b(1) := [D2, b] and b(k) := [D2, b(k−1)]. We denote the algebra generated by B and

|D|k, k ∈ N by D. Then for b ∈ D we let
∫
b := Resz=0Tr(b|D|−z).

For every odd n and a multiindex k = (k1, k2, · · · , kn), consider the n + 1 multilinear

functional φn,k on A defined as

φn,k(a0, a1, · · · , an) :=
∫
a0[D, a1]

(k1)[D, a2]
(k1) · · · [D, an](kn)|D|−n−2|k|

where |k| :=∑n
i=1 ki. Note that if |k|+ n > p then φn,k = 0. We let φn :=

∑
k cn,kφn,k where

the constants cn,k are given by

cn,k := (−1)|k|
√
2i

Γ(|k| + n
2 )∏

kj !
∏
(k1 + k2 + · · ·+ kj + j)

.

The local index formula states that the Chern character can be computed, upto a coboundary,

by the functionals φn. If we consider the Dirac operator associated to a closed Reimannian

spin manifold then the terms φn,k vanishes if |k| 6= 0. Thus most of the terms in the local

Chern character is visible only in the case of truly noncommutative situations and should be

interpreted as a signature of noncommutativity. To understand the local index formula better

one would like to have some examples of simple spectral triples which satisfy the assumptions

of the local index formula. Connes illustrated the local index formula for the equivariant

spectral triple on SUq(2) constructed in [5]. Similar computations were done in [19],[39],[29].

In this thesis, a similar computation for the SUq(n + 1) equivariant spectral triple on the odd

dimensional quantum spheres is carried out. We also develop a general method of verifying the

hypothesis of the local index formula.

All these examples come from quantum homogeneous spaces. The rich interplay between Lie

groups and differential geometry naturally raises the question of understanding the interaction

between quantum groups and noncommutative geometry. Papers [5],[39],[28] attempt to put

quantum groups within the framework of Connes’ noncommutativie geometry. Chakraborty

and Pal in [5] produced a satisfactory spectral triple on the quantum group SUq(2) which is

also equivariant. Connes made a detailed study of this spectral triple in [17] from the local

index formula point of view. The work of Tuset and Neshveyev in [28] is an attempt to produce
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equivariant spectral triples on compact quantum groups arising from the q deformation of

general simple lie algebras.

Let us recall a few basic notions regarding compact quantum groups before proceeding

further. The theory of quantum groups has its origin in finding a good duality theorem,

analogous to Pontraygin duality theorem, for general locally compact groups. If G is a compact

group then the group multiplication in G gives rise to the comultiplication map ∆ : C(G) →
C(G)⊗C(G) defined by ∆(f)(x, y) = f(xy). It can be shown that the group G can be recovered

from the pair (C(G),∆). A compact quantum group is roughly a unital C∗ algebra together

with a comultiplication ∆ : A→ A⊗A which is coassociative i.e. (1⊗∆)◦∆ = (∆⊗1)◦∆. In

late 1980’s, Woronowicz developed a general theory of compact quantum groups and developed

a Peter-Weyl theory for them in [41], [42],[43].

Let A be a unital C∗ algebra and G be a compact quantum group. An action of G on

A is a unital homomorphism τ : A → A ⊗ C(G) such that (1 ⊗ ∆G)τ = (τ ⊗ 1)τ where ∆G

is the comultiplication on C(G). We call the triple (A,G, τ) a C∗ dynamical system. If G is

a compact quantum group then G acts on C(G) by the comultiplication. If G is a compact

quantum group and H a quantum subgroup then G acts on the quotient C(G/H) by the

comultiplication ∆G. A representation of a compact quantum group G on a Hilbert space H is

a unitary element u in the multiplier algebra M(K(H)⊗C(G)) such that (id⊗∆)(u) = u12u13.

A covariant representation of a C∗ dynamical system (A, G, τ) consists of a pair (π, u) where

π is a representation of the C∗ algebra A on a Hilbert space H, u is a unitary representation

of G on H and they obey the condition

u(π(a) ⊗ 1)u∗ = (π ⊗ id)τ(a) for a ∈ A.

Let (A, G, τ) be a C∗ dynamical system. An odd G equivariant spectral triple is a quadru-

ple (π, u,D,H) such that

1. The pair (π, u) is a covariant representation of the dynamical system (A,G, τ) on the

Hilbert space H,

2. There exists a dense unital *subalgebra A ⊂ A such that the triple (A,H,D) is a spectral

triple, and

3. The operator D is G equivariant i.e. u(D ⊗ 1)u∗ = D.

Now we discuss the results obtained in this thesis. Let us recall the definition of the quantum

group SUq(n) due to Woronowicz. Throughout we assume that q ∈ (0, 1). Recall that the C∗

algebra C(SUq(n)) is the universal unital C∗ algebra generated by n2 elements uij satisfying

the following condition
n∑

k=1

uiku
∗
jk = δij ,

n∑

k=1

u∗kiukj = δij (1.0.1)

12



n∑

i1=1

n∑

i2=1

· · ·
n∑

in=1

Ei1i2···inuj1i1 · · · ujnin = Ej1j2···jn (1.0.2)

where

Ei1i2···in :=

{
0 if i1, i2, · · · in are not distinct,

(−q)ℓ(i1,i2,··· ,in)

where for a permutation σ on {1, 2, · · · , n}, ℓ(σ) denotes the number of inversions i.e. the

cardinality of the set {(i, j) : i < j, σ(i) > σ(j)}. The C∗ algebra C(SUq(n)) has a compact

quantum group structure. The comultiplication ∆ is given by

∆(uij) :=
∑

k

uik ⊗ ukj.

Call the generators of SUq(n −m) as vij for 1 ≤ m ≤ n − 1. The map φ : C(SUq(n)) →
C(SUq(n−m)) defined by

φ(uij) :=

{
vi−m,j−m if m+ 1 ≤ i, j ≤ n

δij otherwise
(1.0.3)

is a surjective unital C∗ algebra homomorphism such that ∆ ◦ φ = (φ ⊗ φ)∆. In this way the

quantum group SUq(n −m) is a subgroup of the quantum group SUq(n). The C∗ algebra of

the quotient SUq(n)/SUq(n−m) denoted by C(Sn,mq ) is defined by the equation

C(Sn,mq ) := {a ∈ C(SUq(n)) : (φ⊗ 1)∆(a) = 1⊗ a}.

The C∗ algebra C(Sn,1q ) is denoted by C(S2n−1
q ). The C∗ algebras C(Sn,mq ) are called the

quantum Steifel manifolds in [31] and the C∗ algebras C(S2n−1
q ) are called the odd dimensional

quantum spheres.

Let h be the Haar state on the quantum group SUq(n + 1) and let L2(SUq(n + 1)) be the

corresponding GNS space. We denote the closure of C(S2n+1
q ) in L2(SUq(n+1)) by L2(S2n+1

q ).

Then L2(S2n+1
q ) is invariant under the right regular representation of SUq(n+1). Thus we get a

covariant representation for the dynamical system (C(S2n+1
q ), SUq(n+1),∆). In [8], SUq(n+1)

equivariant spectral triples for this covariant representation were studied and a non-trivial one

was constructed. The Hilbert space L2(S2n+1
q ) is nothing but ℓ2(Nn × Z× N

n) upto a unitary

map. Then the selfadjoint operator Deq constructed in [8] is given on the orthonormal basis

{eγ : γ ∈ N
n × Z× N

n} by the formula Deq(eγ) := dγeγ where dγ is given by

dγ :=

{ ∑2n+1
i=1 |γi| if (γn+1, γn+2, · · · , γ2n+1) = 0 and γn+1 ≥ 0,

−∑2n+1
i=1 |γi| else .

In this thesis, we study the spectral triple (C(S2n+1
q ), L2(S2n+1

q ),Deq) from the local index

formula point of view. We show in particular that it satisfies the assumptions of the local index

formula namely regularity and discreteness of the dimension spectrum. In particular, we prove

the following theorem.
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Theorem A. There exists a unital dense *subalgebra C∞(S2n+1
q ) of the C∗ algebra C(S2n+1

q )

such that the triple (C∞(S2n+1
q ), L2(S2n+1

q ),Deq) is a regular spectral triple with simple and

discrete dimension spectrum. In particular the dimension spectrum is the set {1, 2, · · · , 2n+1}.
Moreover the dense subalgebra C∞(S2n+1

q ) is closed under holomorphic functional calculus.

Theorem A is the main result in [30]. But this computation and also the computations

carried out in [17], [39] and in [29] are case specific. There are not many results of general nature

which will imply regularity and discreteness of the dimension spectrum. To our knowledge, only

Higson’s results in [20] are in this direction. We need some functorial constructions on regular

spectral triples with discrete dimension spectrum such that the resulting spectral triple is also

regular and has discrete dimension spectrum.

We consider a property of spectral triples which we call the weak heat kernel asymptotic

expansion property and also the construction of the quantum double suspension of spectral

triples. We show that a spectral triple having the weak heat kernel expansion property is

regular and has simple dimension spectrum. We also show that the weak heat kernel expansion

property is stable under quantum double suspension. This gives a conceptual explanation for

Theorem A.

Now let us recall the definition of the quantum double suspension as in [22]. If A is a unital

C∗ algebra then its quantum double suspension denoted Σ2(A) is the C∗ algebra generated by

1⊗ S and A⊗ p where S is the left shift on ℓ2(N) and p := 1− S∗S. If (π,H,D) is a spectral

triple for A then (π ⊗ 1,H⊗ ℓ2(N),Σ2(D) := (F ⊗ 1)(|D| ⊗ 1 + 1⊗N)) is a spectral triple for

the algebra Σ2(A). Here F := sign(D) and N is the number operator on ℓ2(N) defined on the

standard orthonormal basis by Nen := nen.

Let (A,H,D) be a regular and finitely summable spectral triple. Let B be the algebra

generated by
⋃
n≥0 δ

n(A+[D,A]). We say that the spectral triple (A,H,D) has theweak heat

kernel asymptotic expansion property if the function Tr(be−t|D|) admits an asymptotic

expansion in t near 0 for every b ∈ B and we say that it has the heat kernel asymptotic

expansion property if Tr(be−tD
2
) has an asymptotic expansion property for every b ∈ B. We

prove the following theorem in this thesis.

Theorem B. Let (A,H,D) be a spectral triple which has the weak heat kernel asymptotic

expansion property. Then the spectral triple (A,H,D) has a finite simple dimension spectrum

contained in the set of positive integers. If the spectral triple (A,H,D) has the weak heat

kernel expansion then the spectral triple (Σ2(A),H ⊗ ℓ2(N),Σ2(D)) also has the weak heat

kernel asymptotic expansion property. Moreover if the dimension spectrum of (A,H,D) lies

inside {1, 2, · · · , n} then the dimension spectrum of its quantum double suspension lies inside

{1, 2, · · · , n+ 1}.

We compare the weak heat kernel expansion property with that of the classical heat kernel

expansion property. The following proposition is proved in the thesis.
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Proposition. If a spectral triple (A,H,D) has the heat kernel asymptotic expansion property

then (A,H,D) has the weak heat kernel expansion property.

Thus the standard spectral triple (C∞(M), L2(S),D) on a spin manifold, where S → M

is a spinor bundle and D is the Dirac operator associated with Levi-Civita connection, has

the weak heat kernel asymptotic expansion property. Thus quantum double suspending this

spectral triple recursively produces noncommutative examples of spectral triples which satisfies

the hypothesis of the local index formula.

The K-groups of the quantum group SUq(n) were computed by Gabriel Nagy using his

bivariant K theory in [27]. But one would like to obtain some explicit generators for the K-

groups to construct non-trivial spectral triples on them. The final chapter of the thesis achieves

this for the quantum Steifel manifolds C(Sn,2q ). The following theorem is proved in the thesis.

Theorem C. The K groups K0(C(Sn,2q )) and K1(C(Sn,2q )) are both isomorphic to Z
2.

We obtain explicit generators for the K-groups.

We complete the introduction by indicating the organisation of the thesis.

In the next Chapter, we collect the preliminaries that are required to understand this thesis.

We review the basics of K-theory. The definitions pertaining to spectral triples and quantum

groups are recalled in this chapter. The local index formula for spectral triples is recalled.

In Chapter 3 , we consider a spectral triple called the torus equivariant one on S2n+1
q and

show that it is regular and has discrete dimension spectrum.

In Chapter 4, we consider the SUq(n) equivariant spectral triple on S2n+1
q . Theorem A is

proved in this chapter.

Chapter 5 starts with a brief discussion on asymptotic expansions and Mellin transform.

We then consider quantum double suspension of C∗ algebras and that of spectral triples. We

prove Theorem B in this chapter.

In the final chapter, we compute the K-groups of the quantum Steifel manifold C(Sn,2q ).

The chapters are followed by an appendix. In the appendix, we discuss the results of

Larry B.Schweitzer on smooth subalgebras of operator algebras obtained in [33],[34]. We have

included the proofs of certain results for the sake of completeness.
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Chapter 2

Preliminaries

In this chapter, we collect the preliminaries which are essential for understanding this thesis.

In particular we review the K-theory of C∗ algebras, definitions pertaining to spectral triples

and the local index formula.

2.1 Topological K-theory

We start by recalling the definition of topological K-theory. Let X be a compact Hausdorff

space. We denote the set of isomorphism classes of vector bundles of finite rank over X by

V (X). The Whitney sum of vector bundles makes V (X) an abelian semigroup with an identity

element. The abelian group K(X) is defined to be the group obtained from V (X) by the

Grothendieck construction. The group K(X) is called the K-theory of X.

Let us recall the Grothendieck construction. Suppose (R,+) is an abelian semigroup with

identity. Define an equivalence relation ∼ on R×R as follows:

(a, b) ∼ (c, d) if there exists e ∈ R such that a+ d+ e = b+ c+ e.

We think of the equivalence class [(a, b)] as representing the difference a − b. The addition +

on R×R/ ∼ is defined as

[(a, b)] + [(c, d)] = [(a+ c, b+ d)].

Then + is well defined on R×R/ ∼ and (R×R/ ∼,+) is an abelian group with [(a, a)] as the

identity element for any a ∈ R and the inverse of [(a, b)] is [(b, a)].

The fact that allows one to adapt K-theory to noncommutative C∗ algebras is the Serre-

Swan theorem. Let π : E → X be a vector bundle over X. For x ∈ X, denotes its fibre over

x by Ex i.e Ex := π−1(x). A section of π : E → X is a map s : X → E such that s(x) ∈ Ex.

The set of all sections is denoted by Γ(E). Then Γ(E) is a left C(X) module where the module
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structure is given by

(f.s)(x) := f(x)s(x) for f ∈ C(X), s ∈ Γ(E).

We denote the isomorphism classes of finitely generated projective left modules over C(X)

by Projfin(C(X)). Then (Projfin(C(X)),+) is a semigroup with identiy.

Theorem 2.1.1 (Serre-Swan). For a vector bundle (E, π,X), the set of its sections Γ(E) is a

finitely generated projective module over C(X). Furthermore, the map

V ect(X) ∋ [E] → [Γ(E)] ∈ Projfin(C(X))

is a semigroup isomorphism.

Thus the abelian group K(X) can as well be obtained from the semigroup Projfin(C(X))

by the Grothendieck construction and K(X) depends only on the algebra C(X). We can now

replace C(X) by any noncommutative algebra and can obtain an invariant for it. In particular

K-theory adapts well to noncommutative C∗ algebras. For a more detailed account of the

topological K-theory, we refer to [26].

2.2 K-theory for C∗ algebras

In this section, we give a brief review of the K theory for C∗ algebras. We refer to [4] for

a detailed account of it. All the algebras that we consider in this thesis are over C. Let A
be an algebra over C. We denote the direct sum A⊕A⊕ · · · ⊕ A︸ ︷︷ ︸

ntimes

by An which is naturally a

A−Mn(A) bimodule.

Proposition 2.2.1. Let A be an algebra over the field of complex numbers C.

1. For an idempotent p ∈Mn(A), the left A module Anp is a finitely generated projective A
module. In fact, any finitely generated projective A module arises this way.

2. The modules Anp and Amq are isomorphic if and only if there exists matrices u ∈
Mn×m(A) and v ∈Mm×n(A) such that uv = p and vu = q.

For an algebra A, let E(A) := {e ∈ A : e2 = e} and E∞(A) :=
⋃
n E(Mn(A)). Define an

equivalence relation on E∞(A) as follows: Let p ∈Mm(A) and q ∈Mn(A).

p ∼ q ⇔ there exists u ∈Mm×n(A), v ∈Mn×m(A) such that uv = p and vu = q.

Then we have the following proposition.

Proposition 2.2.2. The operation ⊕ defined by [p]⊕[q] :=

[
p 0

0 q

]
is well defined on E∞(A)/ ∼.

Moreover, (E∞(A)/ ∼,⊕) is a commutative semigroup with identity.
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We define the K-group K̂0(A) to be the Grothendieck group of the abelian semigroup

(E∞(A),⊕). In C∗ algebras, we can replace the idempotents by projections and the equivalence

relation by Murray-von Neumann equivalence.

Let us first introduce some notations. Let A be a C∗ algebra. An element p ∈ A is said to

be a projection if p2 = p = p∗. Let

P (A) : = {p ∈ A : p is a projection},
Mn(A) : = the algebra of n× n matrices over A, and

P∞(A) :=
⋃

n≥1

P (Mn(A)).

Two projections p and q in a C∗ algebra A are said to be Murray-von Neumann equivalent

if there exists v ∈ A such that v∗v = p and vv∗ = q. It is easy to verify that Murray-von

Neumann equivalence is an equivalence relation.

Define an equivalence relation on P∞(A) as follows: Let p ∈ Mm(A) and q ∈ Mn(A) be

projections.

p ∼ q ⇔
[
p 0

0 0

]
and

[
q 0

0 0

]
are Murray-von Neumann equivalent in MN (A) for some N .

Then we have the following proposition.

Proposition 2.2.3. The operation ⊕ defined by [p]⊕[q] :=

[
p 0

0 q

]
is well defined on P∞(A)/ ∼.

Moreover (P∞(A)/ ∼,⊕) is a commutative semigroup with identity.

We define the K-group K̂0(A) to be the Grothendieck group of the abelian semigroup

(P∞(A),⊕). It can be shown that for a C∗ algebra A, K̂0(A) defined in terms of the projec-

tions coincide with the one defined in terms of idempotents. Note that if φ : A → B is a ∗
homomorphism then φ induces a map K̂0(φ) at the level of K̂0(A). Thus K̂0 is a functor from

the category of C∗ algebras to the category of abelian groups.

Let A be a C∗ algebra and let A+ denote the C∗ algebra obtained by adding an unit. More

precisely A+ := A ⊕ C and the multiplication is defined as (a, λ)(b, µ) = (ab + λb + µa, λµ).

One can show that A+ is a C∗ algebra with A as an ideal. We let ǫ be the map (a, λ) → λ.

Then one has the following exact sequence

0 −→ A −→ A+ ǫ−→ C −→ 0.

We define for a C∗ algebra A,

K0(A) := KerK̂0(ǫ).

Then K0 is a covariant functor from the category of C∗ algebras to the category of abelian

groups. For unital C∗ algebras, K0 and K̂0 are naturally isomorphic.
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Now we recall the definition of K1 for a C∗ algebra. Let A be a unital C∗ algebra. An

element u ∈ A is called a unitary element if u∗u = uu∗ = 1. We denote the set of unitaries in

Mn(A) by Un(A). Then the group Un(A) is a topological group and the connected component

containing 1 is denoted by U0
n(A). Then U0

n(A) is a normal subgroup of Un(A). We embedd

Un(A) in Un+1(A) by the inclusion u→
[
u 0

0 1

]
. Thus we get a directed system of groups

· · · → Un−1(A)/U
0
n−1(A) → Un(A)/U

0
n(A) → Un+1(A)/U

0
n+1(A) → · · ·

Define

K̂1(A) := lim
n→∞

Un(A)

U0
n(A)

Then one has the following proposition.

Proposition 2.2.4. Let A be a unital C∗ algebra.

1. For a unitary u ∈Mn(A), in K̂1(A) one has [u]=

[
u 0

0 1

]
=

[
1 0

0 u

]
.

2. The group operation on K̂1(A) is given by [u].[v] =

[
u 0

0 v

]
=

[
v 0

0 u

]
.

3. The group K̂1(A) is abelian.

For a C∗ algebra A, we let K1(A) := K̂1(A
+). Then K1 is a covariant functor from the

category of C∗ algebras to the category of abelian groups. For unital C∗ algebras the functors

K1 and K̂1 are naturally isomorphic.

2.2.1 The six term sequence in K theory

An important computational tool in K theory is the six term exact sequence. For an exact

sequence

0 −→ I
φ−→ A

π−→ B −→ 0,

one has the following six term exact sequence

K0(I)
K0(φ) // K0(A)

K0(π) // K0(B)

σ
��

K1(B)

∂

OO

K1(A)
K1(π)
oo K1(I)

K1(φ)
oo

The map ∂ is called the index map and σ is called the exponential map. Moreover the index and

the exponential maps are functorial. The proof of the six term sequence involves the following

• Half exactness of the K-groups i.e top and bottom rows are exact.
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• The construction of the index map.

• Bott periodicity and the construction of the exponential map.

For a detailed proof we refer to [4]. Here we just recall the construction of the index map.

Let u be a unitary in Mn(B
+). Then the unitary U :=

[
u 0

0 u∗

]
is connected to 12n. Let V

be a unitary lift in M2n(A
+) of U . Then ∂([u]) is defined as ∂([u]) = [V pnV

∗] − [pn] where

pn :=

[
1n 0

0 0

]
.

Lemma 2.2.5. Consider an exact sequence of C∗ algebras

0 −→ I
φ−→ A

π−→ B −→ 0.

Let u be a unitary in Mn(B
+). Suppose that there exists a partial isometry v ∈ Mn(A

+) such

that π(v) = u. Then ∂([u]) = [1− v∗v]− [1− vv∗].

Proof. Note that the unitary V :=

[
v 1− vv∗

1− v∗v v∗

]
is a lift of diag(u, u∗). We write

diag(a, b) to denote the matrix

[
a 0

0 b

]
. Hence ∂([u]) = [V pnV

∗]− [pn] = [diag(vv∗, 1− v∗v]−

[diag(1n, 0)]. Thus one has ∂([u]) = [1− v∗v]− [1− vv∗]. This completes the proof. 2

2.3 Cyclic cohomology

In this section, the periodic cyclic cohomology for an algebra defined in [14] is recalled. Let

A be a unital algebra over C. We denote the set of n + 1 linear functionals on A by Cn(A).

Consider the map b : Cn(A) → Cn+1(A) defined by

bφ(a0, a1, · · · , an+1) : =
n∑

i=0

(−1)iφ(a0, a1, · · · , ai−1, aiai+1, ai+2, · · · , an+1)

+ (−1)n+1φ(an+1a0, a1, · · · , an).

Then one can show that b2 = 0 and the cohomology of the complex (Cn(A), b)n≥0 is called

the Hochschild cohomology of A. An n + 1 linear functional φ on A is said to be cyclic if

φ(a1, a2, · · · , an, a0) = (−1)nφ(a0, a1, · · · , an) for every a0, a1, · · · , an ∈ A. Let Cnλ (A) be the

subspace of n+1 multilinear functionals on A which are cyclic. It is shown in [14] that b maps

the subspace Cnλ (A) to the subspace Cn+1
λ (A). This gives rise to a complex (Cnλ (A), b)n≥0 and

its cohomology is called the cyclic cohomology defined by

Hn
λ (A) :=

{τ ∈ Cnλ (A) : bτ = 0}
{bφ : φ ∈ Cn−1

λ (A)}
.
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Elements of Hn
λ (A) come from what are called cycles over A. Let us recall the following

definition from [14].

Definition 2.3.1. An n dimensional cycle is a triple (Ω, d,
∫
) where Ω := ⊕n

p=0Ωp is a graded

algebra, d is a graded derivation and
∫
: Ωn → C is a closed graded trace i.e.

1. For ω ∈ Ωn−1, the integral
∫
dω = 0.

2. If ω1 ∈ Ωp and ω2 ∈ Ωq then
∫
ω1ω2 = (−1)pq

∫
ω2ω1.

Let (Ω1, d1,
∫
) be an m dimensional cycle and (Ω2, d2,

∫
) be an n dimensional cycle. Then

the tensor product (Ω1 ⊗Ω2, d,
∫
) is an m+n dimensional cycle with d and

∫
being defined as

d(ω1 ⊗ ω2) = d1(ω1)⊗ ω2 + (−1)degω1ω1 ⊗ d2ω2, and∫
ω1 ⊗ ω2 =

∫
ω1

∫
ω2.

An n dimensional cycle for an algebra A is an n dimensional cycle (Ω, d,
∫
) together with

a homomorphism ρ : A → Ω0. Let (Ω, d,
∫
, ρ) be an n dimensional cycle for A. Then its

character is the n+ 1 linear functional τ on A defined by

τ(a0, a1, · · · , an) :=
∫
ρ(a0)d(ρ(a1))d(ρ(a2)) · · · d(ρ(an)).

Then it is shown in [14] that τ is a cyclic cocycle and any cyclic cocycle comes from a cycle.

Tensor products of cycles gives rise to the cup product # : Hn
λ (A)×Hm

λ (B) → Hn+m
λ (A⊗B) in

the cyclic cohomology . Let σ be the cyclic 2 cocycle on C defined by σ(1, 1, 1) = 1
2πi . Consider

the map S : Hn
λ (A) → Hn+2

λ (A) defined by S(φ) = φ#σ. The periodic cyclic cohomology

Hev
λ (A) and Hodd

λ (A) are defined as

Heven
λ (A) : = lim

n even
(Hn

λ (A), S), and

Hodd
λ (A) : = lim

n odd
(Hn

λ (A), S).

Now we present another picture of the periodic cyclic cohomology which is essential to explain

the local index formula. Recall that Cn(A) is the space of n+1 linear functionals on A. Define

the operator B : Cn+1(A) → Cn(A) as follows:

Bφ(a0, a1, · · · , an) =
n∑

j=0

(−1)njφ(1, aj , aj+1, · · · , aj−1) +

n∑

j=0

(−1)n(j−1)φ(aj , aj+1, · · · , aj−1, 1).

Then it can be shown that B2 = 0 and bB +Bb = 0. Consider an element φ = (φ0, φ2, · · · ) in
the direct sum ⊕n evenC

n(A). Then φ is called an even (b,B) cocycle if bφ2k + Bφ2k+2 = 0.

Similarly an element φ = (φ1, φ3, · · · , ) is called an odd (b,B) cocycle if bφ2k−1 +Bφ2k+1 = 0.

If τ is a cyclic n cocycle then (0, 0, · · · , τ, · · · ) is a (b,B) cocycle.
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Two even (b,B) cocycles φ and φ
′
are said to be cohomologous and written φ ∼coh φ

′
if there

exists ψ = (ψ1, ψ3, · · · , ) in the direct sum ⊕n oddC
n(A) such that φ2k−φ2k = bψ2k−1+Bψ2k+1.

Similarly one defines the relation of being cohomologous for odd (b,B) cocycles.

Definition 2.3.2. For a unital algebra A over C, the even( resp. odd) periodic cyclic coho-

mology PHeven
λ (A) (resp. PHodd

λ (A)) is the vector space of even( resp. odd) (b,B) cocycles

modulo the relation ∼coh.

It is proved in [14] that the (b,B) picture of the cyclic cohomology and that defined via

cyclic cocycles coincide. The map (upto a normalising constant)

Heven
λ (A) ∋ [τ ] → [(0, 0, · · · , τ, · · · , )] ∈ PHeven

λ (A)

is infact an isomorphism. A similar statment holds for odd periodic cyclic cohomology. Hence-

forth we use the same notation Heven
λ (A) to denote both the spaces Heven

λ (A) and PHeven
λ (A).

Similarly we denote the odd periodic cyclic cohomology by Hodd
λ (A).

2.3.1 Fredholm modules and the Chern character

The ’dual’ of K-theory called the K-homology theory is made up of Fredholm modules.

Definition 2.3.3. Let A be a unital C∗ algebra. An even Fredholm module is a triple

(π,H, F ) where

• the vector space H is a Z2 graded Hilbert space with a grading γ,

• the map π is a unital ∗ representation of A on H such that γπ(a)γ = π(a) for every

a ∈ A,

• the operator F is a selfadjoint unitary which anticommutes with γ, and

• the commutator [F, π(a)] is compact for every a ∈ A.

An odd Fredholm module for A is a triple (π,H, F ) where π is a unital ∗ representation of

A on H and F is a selfadjoint unitary such that [F, π(a)] is compact for every a ∈ A.

If (π,H, F ) is an odd Fredholm module for A then (πn := π⊗1,Hn := H⊗C
n, Fn := F ⊗1)

is an odd Fredholm module for Mn(A). A similar statement holds for even Fredolm modules.

We will simply write a for πn(a) if a ∈Mn(A). Let (π,H, F ) be an odd Fredholm module for a

unital C∗ algebra A. We denote the projection (1+Fn)
2 by Pn. If u is a unitary in Mn(A) then

PnuPn : PnHn → PnHn is Fredholm and hence has an index. This gives rise to a well defined

map IndF : K1(A) → Z defined by

IndF ([u]) := Index(PnuPn)
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Let (π,H, F, γ) be an even Fredholm module and we let γn = γ⊗1. We denote the eigen spaces

Ker(γn − 1) and Ker(γn + 1) by H+
n and H−

n respectively. If p is a projection in Mn(A) then

pFnp : pH+
n → pH−

n is Fredholm and has an index. Thus we obtain a map IndF : K0(A) → Z

defined by

IndF ([p]) := Index(pFnp).

The map IndF is called the analytical index and in [14], Connes explains this pairing as the

cyclic cohomology/K-theory pairing. Since we will be considering only odd Fredholm modules

and odd spectral triples, we will explain only the odd case.

Definition 2.3.4. An odd Fredholm module (π,H, F ) for a C∗ algebra is said to p summable

if the ∗algebra A∞ := {a ∈ A : [F, π(a)] ∈ Lp(H)} is dense in A where Lp(H) denotes the pth

Schatten ideal.

Let (π,H,F ) be a Fredholm module for a C∗ algebra A and let A∞ be as in Definition

2.3.4. For a ∈ A∞ let ||a|| := ||π(a)||op + ||[F, π(a)]||p where ||.||op denotes the operator norm

on L(H) and ||.||p denotes the norm on Lp(H). Then (A∞, ||.||) is a dense Frećhet algebra and

if a ∈ A∞ is invertible in A then a−1 ∈ A∞. Such an algebra is called a smooth subalgebra and

in the Appendix, some results related with smooth subalgebras of C∗ algebras are reviewed.

In particular if A∞ is a smooth subalgebra of a C∗ algebra then their K-groups coincide. If

(π,H, F ) is a p summable Fredholm module for A with p odd then its Chern character is the

p+ 1 linear functional ChF on A∞ defined by the formula

ChpF (a0, a1, · · · , ap) :=
Γ(p2 + 1)

2p!
Trace(π(a0)[F, π(a1)][F, π(a2)] · · · [F, π(ap)]).

Then ChF is a p cocycle. If (π,H, F ) is a p summable Fredholm module then (π,H, F ) is also
p + 2 summable. But it is shown in [14] that S(ChpF ) = Chp+2

F . Thus (ChpF ) gives a well

defined element in H∗(A∞) which we denote by ChF .

Next we explain the cyclic cohomology/K-theory pairing. The usual trace Tr :Mn(C) → C

is a 0 cocycle. If φ is a n cocyle for A then taking the cup product with Tr gives a n cocycle for

Mn(A) which we will denote by φ itself. Now let A∞ be a smooth subalgebra of a C∗ algebra

A. Then the pairing K1(A∞)×Hodd
λ (A∞) → C defined by

< [u], [τ ] >:= τ(u∗ − 1, u− 1, u∗ − 1, · · · , u∗ − 1, u− 1)

is called the cyclic cohomology/K-theory pairing. Since A∞ is smooth in A this pairing extends

to a pairing betweenK1(A) andH
odd
λ (A∞). Then Connes’ index theorem states that if (π,H, F )

is a finitely summable Fredholm module then for [u] ∈ K1(A)

IndF ([u]) =< [u], ChF > .

Remark 2.3.5. When we consider the cyclic cohomology of a smooth subalgebra A∞ of a C∗

algebra A, we consider only the multilinear functionals on A∞ that are continuous w.r.t to the

topology on A∞.
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2.3.2 Regular spectral triples and the local index formula

Let us recall the definition of an odd spectral triple.

Definition 2.3.6. Let A be a unital C∗ algebra. An odd spectral triple for A is a triple (π,H,D)

such that

1. the map π : A→ L(H) is a unital ∗ representation,

2. the operator D is an unbounded selfadjoint operator with compact resolvent, and

3. there exists a dense subalgebra A such that [D,π(a)] is bounded for every a ∈ A.

We sometime write (A,H,D) to denote a spectral triple for a C∗ algebra A and suppress

the representation π where A denotes a dense subalgebra for which the commutator [D,A] is

bounded.

Let H be a Hilbert space and D an unbounded selfadjoint operator on H with compact

resolvent. Let Hs be the domain of the operator |D|s for each s ≥ 0. Then Hs can be identified

with the graph of the operator |D|s and thus Hs acquires a Hilbert space structure. We denote

the intersection ∩sHs by H∞. Note that H∞ is infact a core for the operators |D|s for every

s ≥ 0.

An operator T : H∞ → H∞ is said to be have analytic order r if T extends to a bounded

operator from Hs+r to Hs for every s, s+ r ≥ 0.

Definition 2.3.7. An operator T : H∞ → H∞ is said to be smoothing if for every m,n ≥ 0

the operator |D|mT |D|n is bounded. The vector space of smoothing operators is denoted by

OP−∞.

For T ∈ OP−∞, define ‖T‖m,n = ‖|D|mT |D|n‖ for m,n ≥ 0.

Lemma 2.3.8. The vector space OP−∞ is an involutive subalgebra of L(H) and equipped with

the family of seminorms ‖ · ‖m,n, it is a Fréchet algebra.

Let δ be the unbounded derivation [|D|, ·]. More precisely, Dom(δ) consists of all bounded

operators T which leaves Dom(|D|) invariant and for which δ(T ) := [|D|, T ] extends to a

bounded operator. The proofs of the next two lemmas are taken from [1]. We repeat it for our

convenience.

Lemma 2.3.9. The unbounded derivation δ is a closed derivation i.e. if Tn is a sequence in

Dom(δ) such that Tn → T and δ(Tn) → S then T ∈ Dom(δ) and δ(T ) = S.

Proof. Let Tn be a sequence in Dom(δ) such that Tn converges to T and δ(Tn) converges to

S. Consider a vector ξ ∈ Dom(|D|). Now note that Tnξ → Tξ and |D|Tnξ = δ(Tn)ξ + Tn|D|ξ
which converges to Sξ + T |D|ξ. Since |D| is a closed operator, it follows that Tξ ∈ Dom(|D|)
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and |D|Tξ = Sξ+T |D|ξ. Thus T leaves |D| invariant and δ(T ) = S. This completes the proof.

2

Define OP 0 := {T ∈ L(H) : T ∈ ∩nDom(δn)}. The following lemma says that elements of

OP 0 are operators on H∞.

Lemma 2.3.10. Let T be a bounded operator on H. Then the following are equivalent.

(1) The operator T ∈ OP 0.

(2) The operator T leaves H∞ invariant and δn(T ) : H∞ → H∞ is bounded for every n ∈ N.

Proof. First lets prove (2) implies (1). Let T be a bounded operator which leaves H∞

invariant and δn(T ) is bounded for every n ≥ 0. Let ξ be a vector in Dom(|D|). Since H∞

is a core for Dom(|D|), it follows that there exists a sequence ξn ∈ H∞ such that ξn → ξ

and |D|ξn → |D|ξ. On H∞, one has |D|T = δ(T ) + T |D|. Hence Tξn converges to Tξ and

|D|Tξn converges to δ(T )ξ + T |D|ξ. Since |D| is closed, it follows that Tξ ∈ Dom(|D|). As

δ(T ) : H∞ → H∞ is bounded, it follows that T ∈ Dom(δ). The same proof applied recursively

to δ(T ),δ2(T ) · · · shows that T ∈ ∩nDom(δn) = OP 0.

To prove (1) implies (2), we first prove the following claim.

Claim: For every m ≥ 1, if T ∈ OP 0 and ξ ∈ H∞ then Tξ ∈ Dom(|D|m) and

|D|mTξ :=
m∑

k=0

(
m

k

)
δk(T )|D|m−kξ.

The proof is by induction on m. Let T ∈ OP 0 and ξ ∈ H∞. Since T ∈ Dom(δ), by definition,

it follows that Tξ ∈ Dom(|D|) as ξ ∈ Dom(|D|) and the equation |D|Tξ = δ(T )ξ + T |D|ξ is

just the definition.

Now assume the claim for k ≤ m. Let T ∈ OP 0 and ξ ∈ H∞. By assumption Tξ ∈
Dom(|D|m) and

|D|mTξ :=
m∑

k=0

(
m

k

)
δk(T )|D|m−kξ.

As δk(T ) leaves Dom(|D|) invariant, it follows that each term δk(T )|D|m−kξ is in Dom(|D|)
and hence |D|mTξ ∈ Dom(|D|). Hence Tξ ∈ Dom(|D|m+1). Now

|D|m+1Tξ = |D|mδ(T )ξ + |D|mT |D|ξ

=

m∑

k=0

(
m

k

)
δk+1(T )|D|m−kξ +

m∑

k=0

(
m

k

)
δk|D|m+1−kξ

= (

m∑

j=1

(

(
m

j − 1

)
+

(
m

j

)
)δj |D|m+1−jξ) + T |D|m+1ξ + δm+1(T )ξ

=
m+1∑

j=0

(
m+ 1

j

)
δj(T )|D|m+1−jξ.
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This completes the proof of the claim and hence the proof. 2

It is easy to see from lemma 2.3.10 that OP 0 is a ∗ algebra and that OP−∞ is an ideal in

OP 0. To see this, let T ∈ OP 0 and S ∈ OP−∞. Now |D|mTS|D|n =
∑m

k=0

(m
k

)
δk(T )|D|m−kS|D|n.

Since for every k, |D|m−kS|D|n is bounded and hence |D|mTS|D|n is bounded for every

m,n ≥ 0. Similarly one can show that ST ∈ OP−∞.

Definition 2.3.11. Let (A,H,D) be a spectral triple. We say that (A,H,D) is regular if

A+ [D,A] ⊂ OP 0.

Let D be a selfadjoint operator with compact resolvent. Then |D| has finite dimensional

kernel and let P be the projection onto the kernel of |D|. Let D
′
= D + P . Then D

′
is

invertible. We denote |D′ |−z for Re(z) > 0 simply by |D|−z.

Definition 2.3.12. A spectral triple (A,H,D) is said to be p+summable if |D|−s is trace class

for Re(s) > p. A spectral triple is said to be finitely summable if it is p+summable for some

p > 0.

Let (A,H,D) be a regular spectral triple which is p+summable for some p. Let B be the

algebra generated by δn(A) and δn([D,A]). We say that the spectral triple (A,H,D) has

discrete dimension spectrum Σ ⊂ C if Σ is discrete and for every b ∈ B, the function

Trace(b|D|−z) initially defined for Re(z) > p extends to a meromorphic function with poles

only in Σ. We say the dimension spectrum is simple if all the poles are simple.

Proposition 2.3.13. Let (A,H,D) be a regular p+ summable spectral triple and let F :=

sign(D). Then the triple (A,H, F ) is a p+ 1 summable Fredholm module.

Proof. We denote the orthogonal projection onto the kernel of D by P and let D
′
:= D+P .

Then (A,H,D′
) is a regular p+ summable spectral triple and sign(D

′
) = sign(D). Thus,

without loss of generality, we can assume that (A,H,D) is a regular p+ summable spectral

triple with D invertible. Let a ∈ A. On H∞, we have

[F, a] = [D|D|−1, a]

= [D, a]|D|−1 +D[|D|−1, a]

= [D, a]|D|−1 −D|D|−1[|D|, a]|D|−1

= [D, a]|D|−1 − Fδ(a)|D|−1.

Since [D, a] and δ(a) are bounded and |D|−1 is in the (p + 1)th Schatten ideal, it follows that

[F, a] is in the (p + 1)th Schatten class. This completes the proof. 2

2.3.3 Topological tensor products

Apart from C∗-algebras and their tensor products, we will also deal with Fréchet algebras and

their tensor products. Suppose A1 and A2 are two Fréchet algebras with topologies coming
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from the families of seminorms (‖ · ‖λ)λ∈Λ and (‖ · ‖λ′)λ′∈Λ′ . For each pair (λ, λ′) ∈ Λ × Λ′,

one forms the projective cross norm ‖ · ‖λ,λ′ which is a seminorm on the algebraic tensor

product A1⊗algA2. The family (‖ · ‖λ,λ′)(λ,λ′)∈Λ×Λ′ then gives rise to a topology on A1⊗algA2.

Completion with respect to this is a Fréchet algebra and is called the projective tensor product

of A1 and A2. Let us recall the definition of the projective cross norm. If p1 is seminorm on A1

and p2 is a seminorm on A2 then the projective cross norm p1 ⊗ p2 on A1 ⊗alg A2 is defined as

(p1 ⊗ p2)(x) := inf{
∑

i

p1(xi)p2(yi) : x =
∑

i

xi ⊗ yi}.

While talking about tensor product of two Fréchet algebras, we will always mean their

projective tensor product and will denote it by A1 ⊗A2.

We will mainly be concerned with Fréchet algebras sitting inside some L(H) with Fréchet

topology finer than the norm topology. In other words, we will be dealing with Fréchet algebras

with faithful continuous representations on Hilbert spaces. Let A1, A2 be Fréchet algebras. If

ρi : Ai → L(Hi) are continuous representations for i = 0, 1 where Hi’s are Hilbert spaces,

then by the universality of the projective tensor product it follows that there exists a unique

continuous representation ρ1⊗ρ2 : A1⊗A2 → L(H1⊗H2) such that (ρ1⊗ρ2)(a1⊗a2) = ρ1(a1)⊗
ρ2(a2). If Ai’s are subalgebras of L(Hi) then we will call the tensor product representation of

A1 ⊗A2 on H1 ⊗H2 as the natural representation.

Lemma 2.3.14. Let (A1,H1,D1) and (A2,H2,D2) be regular spectral triples. Assume that the

following conditions hold.

1. The algebras A1 and A2 are Fréchet algebras represented faithfully on H1 and H2 respec-

tively.

2. The selfadjoint operators D1 and D2 are positive with compact resolvent.

3. For i = 0, 1, the unbounded derivations δi = [Di, .] leave Ai invariant and δi : Ai → Ai is

continuous.

Let D := D1 ⊗ 1 + 1 ⊗D2. Suppose that the natural representation of A1⊗A2 on H1 ⊗H2 is

faithful. Then the triple (A1⊗A2,H1 ⊗ H2,D) is a regular spectral triple. More precisely the

unbounded derivation δ := [D, .] leaves the algebra A1⊗A2 invariant and the map δ : A1⊗A2 →
A1⊗A2 is continuous.

Proof : Let δ′ = δ1 ⊗ 1 + 1 ⊗ δ2. Then δ′ is a continuous linear operator on A1⊗A2. Clearly

A1 ⊗alg A2 ⊂ Dom(δ) and δ = δ′ on A1 ⊗alg A2. Now let a ∈ A1⊗A2 be given. Choose a

sequence (an) ∈ A1⊗alg A2 such that an → a in A1⊗A2. Then an → a in L(H1⊗H2). Since δ
′

is continuous and because the inclusion A1⊗A2 ⊂ L(H1⊗H2) is continuous, it follows that the

sequence (δ′(an)) = (δ(an)) is cauchy in L(H1⊗H2). As δ is closed, it follows that a ∈ Dom(δ)

and δ(a) = δ′(a). Now the proposition follows. 2
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The above lemma can be extended to tensor product of finite number of spectral triples

with the appropriate assumptions.

2.3.4 The local index formula

Let (A,H,D) be a finitely summable spectral triple for a unital C∗ algebra A. Then the

Fredholm module (A,H, F ) is finitely summable where F := sign(D). The index map IndF can

be computed via the Chern character of F . But in geometric examples, this Chern character

is often difficult to compute and one needs an alternate formula which computes the index

completely in terms of D. This is acheived by Connes and Moscovici in [12]. The formula they

obtain is called the local index formula.

First let us fix some notations. Let (A,H,D) be a regular p+ summable spectral triple

with simple and discrete dimension spectrum. Let B be the algebra generated by δn(A) and

δn([D,A]) in L(H). For b ∈ B, we let b(1) := [D2, b] and b(k) := [D2, b(k−1)]. We denote the

algebra generated by B and |D|k, k ∈ N by D. For b ∈ D, let
∫
b := Resz=0Tr(b|D|−z).

For n odd and a multiindex k = (k1, k2, · · · , kn), consider the n + 1 multilinear functional

φn,k on A defined as

φn,k(a0, a1, · · · , an) :=
∫
a0[D, a1]

(k1)[D, a2]
(k1) · · · [D, an](kn)|D|−n−2|k|

where |k| :=∑n
i=1 ki. Note that if |k|+ n > p then φn,k = 0. We let φn :=

∑
k cn,kφn,k where

the constants cn,k are given by

cn,k := (−1)|k|
√
2i

Γ(|k| + n
2 )∏

kj !
∏
(k1 + k2 + · · ·+ kj + j)

.

Theorem 2.3.15 (Connes-Moscovici). Let (A,H,D) be a regular, finitely summable spectral

triple with discrete and simple dimension spectrum. Then

1. The sequence φ := (φ1, φ3, φ5, · · · ) is a (b,B) cocycle.

2. The cocycle φ is cohomologous to the Chern character ChF of the Fredholm module

(A,H, F ) where F := sign(D).

2.4 Compact Quantum groups

In this section, we recall the definition of quantum groups defined by Wornowicz in [43]. The

C∗ algebras that we consider are nuclear and so no problem arises with the tensor product.

Definition 2.4.1. A compact quantum group is a pair (A,∆) where A is a unital C∗ algebra

and ∆ : A→ A⊗A is a unital C∗ algebra homomorphism such that
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1. The homomorphism ∆ is coassociative i.e. (1⊗∆)∆ = (∆⊗ 1)∆.

2. The span of {(a⊗ 1)∆(b) : a, b ∈ A} and {(1 ⊗ a)∆(b) : a, b ∈ A} are dense in A⊗A.

We write C(G) for the algebra A and call G the compact quantum group.

If G is a compact group then C(G), the algebra of continuous complex valued functions on

G, is an example of a compact quantum group. The comultiplication ∆ : C(G) → C(G)⊗C(G)

is defined as ∆(f)(x, y) = f(xy). In fact, any compact quantum group G for which C(G) is

commutative arises this way.

The following examples of compact quantum groups due to Wornowicz and its homogeneous

spaces will occupy the major portion of this thesis. We let q ∈ (0, 1).

Example 2.4.2. The C∗ algebra C(SUq(2)) is defined as the universal unital C∗ algebra gen-

erated by two elements α and β such that

1. αβ = qβα, αβ∗ = qβ∗α,

2. The matrix

[
α −qβ
β∗ α∗

]
is unitary, and

3. The element β is normal.

The C∗ algebra C(SUq(2)) has a quantum group structure. The comultiplication ∆ is given by

∆(α) : = α⊗ α− qβ ⊗ β∗,

∆(β) : = β ⊗ α∗ + α⊗ β.

Example 2.4.3. Let n ≥ 3. The C∗ algebra C(SUq(n)) is the universal C∗ algebra generated

by n2 elements (uij) satisfying the following relations

n∑

k=1

uiku
∗
jk = δij ,

n∑

k=1

u∗kiukj = δij (2.4.1)

n∑

i1=1

n∑

i2=1

· · ·
n∑

in=1

Ei1i2···inuj1i1 · · · ujnin = Ej1j2···jn (2.4.2)

where

Ei1i2···in :=

{
0 if i1, i2, · · · in are not distinct

(−q)ℓ(i1,i2,··· ,in)

where for a permutation σ on {1, 2, · · · , n} ℓ(σ) denotes the number of inversions i.e. the

cardinality of the set {(i, j) : i < j, σ(i) > σ(j)}. The C∗ algebra C(SUq(n)) has a compact

quantum group structure with the comultiplication ∆ given by

∆(uij) :=
∑

k

uik ⊗ ukj.
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A subgroup of a compact quantum group (G,∆G) is a compact quantum group (H,∆H)

together with a surjection φ : C(G) → C(H) such that ∆H ◦φ = (φ⊗φ)∆G. If H is a subgroup

of G then one defines the right quotient G/H by

C(G/H) := {a ∈ C(G) : a ∈ C(G) : (φ⊗ 1)∆G(a) = 1⊗ a}.

Similarly the left quotient is defined by

C(H\G) := {a ∈ C(G) : a ∈ C(G) : (1⊗ φ)∆G(a) = a⊗ 1}.

In this thesis, only right quotients are considered.

Example 2.4.4. Let 1 ≤ m ≤ n− 1. Call the generators of C(SUq(n−m)) as vij . The map

φ : C(SUq(n)) → C(SUq(n−m)) defined by

φ(uij) :=

{
vi−m,j−m if m+ 1 ≤ i, j ≤ n,

δij otherwise
(2.4.3)

is a surjective unital C∗ algebra homomorphism such that ∆ ◦ φ = (φ ⊗ φ)∆. In this way the

quantum group SUq(n−m) is a subgroup of the quantum group SUq(n).

The C∗ algebra of the quotient SUq(n)/SUq(n−m) is denoted as C(Sn,mq ). The C∗ algebra

C(Sn,1q ) is denoted by C(S2n−1
q ). The C∗ algebras C(Sn,mq ) are called the quantum Steiffel

manifolds and the C∗ algebras C(S2n−1
q ) are called the odd dimensional quantum spheres. In

[31], it was proved that the C∗ algebra C(Sn,mq ) is generated by the first m rows of the matrix

(uij) of C(SUq(n)). Infact, the algebra C(Sn,mq ) is given by a presentation. In particular the

C∗ algebra of the odd dimensional quantum sphere S2n+1
q is the universal unital C∗ algebra

generated by z1, z2, · · · , zn+1 satisfying the following relations

zizj = qzjzi, 1 ≤ j < i ≤ n+ 1,

z∗i zj = qzjz
∗
i , 1 ≤ i 6= j ≤ n+ 1,

ziz
∗
i − z∗i zi + (1− q2)

∑

k>i

zkz
∗
k = 0, 1 ≤ i ≤ n+ 1,

n+1∑

i=1

ziz
∗
i = 1.

The map zi → q−i+1u∗i1 gives the desired isomorphism.
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Chapter 3

The torus equivariant spectral triple

For odd dimensional quantum spheres two families of spectral triples are studied. One is equiv-

ariant with the natural torus action and the other is equivariant with the quantum group action

of SUq(ℓ+1). In this chapter, we analyse the spectral triple equivariant under the torus action.

We introduce a smooth subalgebra of the C∗ algebra of odd dimensional quantum spheres. We

prove that the torus equivariant spectral triple is regular and has discrete dimension spectrum.

This computation forms the base case for the computation of the dimension spectrum of the

equivariant spectral triple.

3.1 Equivariant spectral triples

Let us recall a few basic definitions.

Definition 3.1.1. Let A be a unital C∗ algebra and G be a compact quantum group. An action

of G on A is a unital homomorphism τ : A→ A⊗ C(G) such that (1⊗∆G)τ = (τ ⊗ 1)τ . We

call the triple (A,G, τ) a C∗ dynamical system.

If G is a compact quantum group then G acts on C(G) by the comultiplication. If G is

a compact quantum group and H a subgroup then G acts on the quotient C(G/H) by the

comultiplication ∆G.

A representation of a compact quantum group G on a Hilbert spaceH is a unitary element u

in the multiplier algebra M(K(H)⊗C(G)) such that (id⊗∆)(u) = u12u13. Here K(H) denotes

the C∗ algebra of compact operators on H. A covariant representation of a C∗ dynamical

system (A, G, τ) consists of a pair (π, u) where π is a representation of the C∗ algebra A on a

Hilbert space H, u is a unitary representation of G on H and they obey the condition

u(π(a) ⊗ 1)u∗ = (π ⊗ id)τ(a) a ∈ A.

We need one more definition that of an equivariant spectral triple.
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Definition 3.1.2. Let (A, G, τ) be a C∗ dynamical system. An odd G equivariant spectral

triple is a quadruple (π, u,D,H) such that

1. The pair (π, u) is a covariant representation of the dynamical system (A,G, τ) on the

Hilbert space H.

2. There exists a dense unital *subalgebra A ⊂ A such that the triple (A,H,D) is a spectral

triple.

3. The operator D is G equivariant i.e. u(D ⊗ 1)u∗ = D.

One of the first examples of equivariant spectral triples on quantum groups is constructed

in [5]. Let G be a compact quantum group and h be the Haar state on G. The C∗ dynamical

system (C(G), G,∆) has a natural covariant representation on the GNS space L2(h). Now the

problem is to construct equivariant spectral triples for the dynamical system (C(G), G,∆) on

L2(h). This question is studied in [5] for G = SUq(2) and a non-trivial one is constructed. To

illustrate the idea behind the construction, let us explain the analysis involved when G = T.

The C∗ algebra C(T) is represented on the Hilbert space L2(T) by multiplication operators.

The algebra C(T) is generated by a single unitary z and we denote U to be the unitary on

L2(T). Let t → Vt be the right regular representation of the group T. W.r.t the standard

orthonormal basis {en}, the operators U and Vt are given by

Uen = en+1,

Vten = t−nen.

If D is an unbounded operator on L2(T) which is T equivariant then D has to keep the eigen

spaces of Vt invariant and thus D must diagonalise w.r.t the orthonormal basis {en}. Thus

Den = dnen for some sequence (dn). If (C(T), L2(T),D) is a spectral triple then the fact

that the commutator [D,U ] is bounded forces one to conclude that |dn+1 − dn| = O(1). Thus

dn = O(n). Taking dn = n gives the usual spectral triple on the circle which is non-trivial. Let

us denote the sign of the number operator N defined by Nen = nen by FN .

Proposition 3.1.3. Let (C(T), L2(T),D) be a T equivariant spectral triple. If F := sign(D)

then upto a compact perturbation F is either ±1 or ±FN .

Proof. Let D be given by Den = dnen. LetM be such that |dn+1−dn| ≤ 2M . Let k ≥ 1 be

such that |dn| > M if |n| ≥ k. We claim that dn’s are of the same sign if n ≥ k. Suppose not.

Then there exists ℓ ≥ k such that dℓ and dℓ+1 are of different signs. Then |dℓ+1 − dℓ| > 2M

which is a contradiction. Thus dn’s are of the same sign if n ≥ k. Similarly one can prove that

dn’s are of the same sign if n ≤ −k. Thus upto a finite perturbation, F is either ±1 or ±FN .
This completes the proof. 2
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The analysis carried out in [5], [7] and in [8] are exactly similar in spirit. In this chapter we

consider the torus equivariant spectral triple on S2ℓ+1
q constructed in [7] and analyse it from

the local index formula point of view. In particular, we prove that this spectral triple is regular

and has discrete dimension spectrum. This analysis is essential for the computation carried

out in the next chapter.

Notations Let us fix some notations. We denote the Hilbert space ℓ2(Nℓ × Z) by Hℓ. On

both ℓ2(N) and ℓ2(Z), we denote the left shift by S and is defined by Sen = en−1. We let

p0 := 1− S∗S.

Let T be the Toeplitz algebra, i.e. the C∗-subalgebra of L(ℓ2(N)) generated by S. For a

positive integer k, we will denote by Tk the k-fold tensor product of T , embedded in L(ℓ2(Nk)).
Denote by σ the symbol map from T to C(T) that sends S∗ to z and all compact operators to 0.

Let N be the number operator on ℓ2(N) defined on the orthonormal basis {en} by Nen := nen.

3.2 The spectral triple

In this section we recall the spectral triple for the odd dimensional quantum spheres given in

[7]. We begin with some known facts about odd dimensional quantum spheres. Let q ∈ [0, 1).

The C∗-algebra C(S2ℓ+1
q ) of the quantum sphere S2ℓ+1

q is the universal C∗-algebra generated

by elements z1, z2, . . . , zℓ+1 satisfying the following relations (see [22]):

zizj = qzjzi, 1 ≤ j < i ≤ ℓ+ 1,

z∗i zj = qzjz
∗
i , 1 ≤ i 6= j ≤ ℓ+ 1,

ziz
∗
i − z∗i zi + (1− q2)

∑

k>i

zkz
∗
k = 0, 1 ≤ i ≤ ℓ+ 1,

ℓ+1∑

i=1

ziz
∗
i = 1.

We will denote by A(S2ℓ+1
q ) the *-subalgebra of Aℓ generated by the zj ’s. Note that for ℓ = 0,

the C∗-algebra C(S2ℓ+1
q ) is the algebra of continuous functions C(T) on the torus and for ℓ = 1,

it is C(SUq(2)).

There is a natural torus group T
ℓ+1 action τ on C(S2ℓ+1

q ) as follows. For w = (w1, . . . , wℓ+1) ∈
T
ℓ+1, define an automorphism τw by τw(zi) = wizi. Let Yk,q be the following operators on Hℓ:

Yk,q =





qN ⊗ . . . ⊗ qN︸ ︷︷ ︸
k−1 copies

⊗
√
1− q2NS∗ ⊗ I ⊗ · · · ⊗ I︸ ︷︷ ︸

ℓ+1−k copies

, if 1 ≤ k ≤ ℓ,

qN ⊗ · · · ⊗ qN︸ ︷︷ ︸
ℓ copies

⊗S∗, if k = ℓ+ 1.

(3.2.1)
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Here for q = 0, qN stands for the rank one projection p0 = |e0〉〈e0|. Then πℓ : zk 7→ Yk,q gives

a faithful representation of C(S2ℓ+1
q ) on Hℓ for q ∈ [0, 1) (see lemma 4.1 and remark 4.5, [22]).

We will denote the image πℓ(C(S2ℓ+1
q )) by Aℓ(q) or by just Aℓ.

Let {eγ : γ ∈ ΓΣℓ
} be the standard orthonormal basis for Hℓ. For w = (w1, w2, · · · , wℓ+1) ∈

T
ℓ+1 we define the unitary Uw onHℓ by Uw(eγ) = wγ11 w

γ2
2 . . . w

γℓ+1

ℓ+1 eγ where γ = (γ1, γ2, · · · , γℓ+1) ∈
ΓΣℓ

. Then (πℓ, U) is a covariant representation of (C(S2ℓ+1
q ),Tℓ+1, τ). Note that Aℓ ⊂

Tℓ ⊗ C(T).

In [7] all spectral triples equivariant with respect to this covariant representation were

characterised and an optimal one was constructed. We recall the following theorem from [7].

Theorem 3.2.1 ([7]). Let Dℓ be the operator eγ → d(γ)eγ on Hℓ where the dγ’s are given by

d(γ) =

{
γ1 + γ2 + · · · γℓ + |γℓ+1| if γℓ+1 ≥ 0,

−(γ1 + γ2 + · · · γℓ + |γℓ+1|) if γℓ+1 < 0.

Then (A(S2ℓ+1
q ),Hℓ,Dℓ) is a non-trivial (ℓ + 1) summable spectral triple. Also Dℓ commutes

with Uw for every w ∈ T
ℓ+1.

The operator Dℓ is optimal i.e. if (A(S2ℓ+1
q ),Hℓ,D) is a spectral triple such that D commutes

with Uw for every w, then there exist positive reals a and b such that |D| ≤ a+ b|Dℓ|.

In this section, we will introduce a dense subalgebra A∞
ℓ of Aℓ(q) closed under its holomor-

phic function calculus and establish regularity of the spectral triple (A∞
ℓ ,Hℓ,Dℓ). We will also

compute its dimension spectrum.

3.3 The smooth function algebra A∞
ℓ

In this section, we associate a dense Fréchet ∗-subalgebra of Aℓ(q) = πℓ(C(S2ℓ+1
q )) which is

closed under holomorphic functional calculus. We will first show that the C∗-algebra Aℓ(q) is

independent of q.

Lemma 3.3.1. For any q ∈ (0, 1), one has Aℓ(0) = Aℓ(q).

Proof : Let us first show that Aℓ(q) ⊆ Aℓ(0). We denote the generators Yj,q of Aℓ(q) by Y
ℓ+1
j,q .

The inclusion is trivial for ℓ = 0. Note that for j ≥ 1, Y ℓ+1
j+1,0 = p0⊗Y ℓ

j,0. Hence by the induction

hypothesis, it follows that p0 ⊗ Y ℓ
j,q ∈ Aℓ(0). Now note that for j ≥ 1

Y ℓ+1
j+1,q =

∑

n∈N

qn(Y ℓ+1
1,0 )n(p0 ⊗ Y ℓ

j,q)(Y
ℓ+1
1,0 )∗n.

Hence Y ℓ+1
j,q ∈ Aℓ(0) for j ≥ 2. Observe that p0 ⊗ 1 = Y ∗

2,0Y2,0 and

qN ⊗ 1 =
∑

n

qn(Y ℓ+1
1,0 )n(p0 ⊗ 1)(Y ℓ+1

1,0 )∗n.
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Thus qN ⊗ 1 ∈ Aℓ(0). As Y
ℓ+1
1,q := (

√
1− q2N ⊗ 1)Y ℓ+1

1,0 , it follows that Y ℓ+1
1,q ∈ Aℓ(0).

For the other inclusion, we will use the following fact: if B denotes the C∗-subalgebra of

L(ℓ2(N)) generated by the operator X = (1 − q2N )
1
2S∗, then B contains the shift operator S.

This is because the operator |X| is invertible and S∗ = X|X|−1. Using this fact for the first

copy of ℓ2(N), since Y1,q ∈ Aℓ(q), one gets Y1,0 ∈ Aℓ(q). Next assume that Yi,0 ∈ Aℓ(q) for

1 ≤ i ≤ j − 1, where 2 ≤ j ≤ ℓ. Then Pj−1 := I −∑j−1
k=1 Yk,0Y

∗
k,0 ∈ Aℓ(q). Observe that

Pj−1Yj,q = p0 ⊗ · · · ⊗ p0︸ ︷︷ ︸
j−1

⊗X ⊗ I ⊗ · · · ⊗ I︸ ︷︷ ︸
ℓ+1−j

, Yj,0 = p0 ⊗ · · · ⊗ p0︸ ︷︷ ︸
j−1

⊗S∗ ⊗ I ⊗ · · · ⊗ I︸ ︷︷ ︸
ℓ+1−j

.

Therefore using the above fact for the jth copy of ℓ2(N), we get Yj,0 ∈ Aℓ(q). Finally, since

Yℓ+1,0 = Yℓ+1,q(I −
∑ℓ

k=1 Yk,0Y
∗
k,0), one has Yℓ+1,0 ∈ Aℓ(q). 2

Let us write αi for Y
∗
i,0. Note that the C∗-subalgebra of Aℓ generated by α2, · · · , αℓ+1 is

isomorphic to Aℓ−1 where the map a 7→ p0 ⊗ a gives the isomorphism. We define the Fréchet

subalgebras A∞
ℓ inductively as follows.

The algebra

A∞
0 :=

{
∑

n∈Z

anz
n : (an) is rapidly decreasing

}

is the algebra of smooth functions on T together with the increasing family of seminorms ‖ · ‖p
given by ‖(an)‖p =

∑
(1 + |n|)p|an|. Then A∞

0 is a dense ∗ Fréchet subalgebra of A0 = C(T).

Note that ‖a‖ ≤ ‖a‖0 for a ∈ A∞
0 . Now assume that (A∞

ℓ−1, ‖ · ‖m) be defined such that

1. the seminorms ‖ · ‖m are increasing and (A∞
ℓ−1, ‖ · ‖m) is a Fréchet algebra,

2. the subalgebra A∞
ℓ−1 is ∗ closed and dense in Aℓ−1. For every a ∈ A∞

ℓ−1, one has ‖a∗‖m =

‖a‖m,

3. for every a ∈ A∞
ℓ−1, one has ‖a‖ ≤ ‖a‖0 where ‖ · ‖ denotes the C∗ norm of Aℓ−1.

Now define

A∞
ℓ :=




∑

j,k∈N

α∗j
1 (p0 ⊗ ajk)α

k
1 +

∑

k≥0

λkα
k
1 +

∑

k>0

λ−kα
∗k
1 : ajk ∈ A∞

ℓ−1,

∑

j,k

(1 + j + k)n‖ajk‖m <∞, (λk) is rapidly decreasing



 . (3.3.2)

Let a :=
∑

j,k α
∗j
1 (p0 ⊗ ajk)α

k
1 +

∑
k≥0 λkα

k
1 +

∑
k>0 λ−kα

∗k
1 be an element of A∞

ℓ . Define for

m ∈ N, the seminorms ‖a‖m as follows:

‖a‖m = max
r,s≤m

(
∑

j,k

(1 + j + k)r‖ajk‖s) +
∑

k∈Z

(1 + |k|)m|λk|.
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Proposition 3.3.2. The pair (A∞
ℓ , ‖ · ‖m) has the following properties:

1. the seminorms ‖ · ‖m are increasing and (A∞
ℓ , ‖ · ‖m) is a Fréchet algebra,

2. the subalgebra A∞
ℓ is ∗ closed and dense in Aℓ. For every a ∈ A∞

ℓ , one has ‖a∗‖m = ‖a‖m,

3. for every a ∈ A∞
ℓ , one has ‖a‖ ≤ ‖a‖0 where ‖ · ‖ denotes the C∗ norm of Aℓ.

Proof : The proof is by induction on ℓ. Parts (2) and (3) and the fact that the seminorms ‖ ·‖m
are increasing follow from the definition and the induction hypothesis. One verifies directly

that (A∞
ℓ , ‖ · ‖m) is a Fréchet algebra using induction and the following relations.

α1α
∗
1 = 1,

α∗j
1 (p0 ⊗ ajk)α

k
1α

∗r
1 (p0 ⊗ ars)α

s
1 = δkrα

∗j
1 (p0 ⊗ ajkars)α

s
1,

α∗m
1 αn1 =




(α∗

1)
m−n −∑n−1

k=0(α
∗
1)
m−n+k(p0 ⊗ 1)αk1 if m ≥ n,

αn−m1 −∑m−1
k=0 α

∗k
1 (p0 ⊗ 1)αn−m+k

1 if m < n.

2

Denote the generators z1, z2, · · · zℓ+1 of C(S2ℓ+1
q ) by z

(ℓ+1)
1 , z

(ℓ+1)
2 , · · · , z(ℓ+1)

ℓ+1 . Let σℓ :

C(S2ℓ+1
q ) → C(S2ℓ−1

q ) be the homomorphism given by σℓ(z
(ℓ+1)
ℓ+1 ) = 0 and σℓ(z

(ℓ+1)
i ) = z

(ℓ)
i

for 1 ≤ i ≤ ℓ. Let us denote by the same symbol σℓ the induced homomorphism from Aℓ to

Aℓ−1. Observe that if one applies the map σ on the ℓth copy of T in Tℓ ⊗ C(T) followed by

evaluation at 1 in the (ℓ+1)th copy, then the restriction of the resulting map to Aℓ is precisely

σℓ.

Proposition 3.3.3. The dense Fréchet ∗-subalgebra A∞
ℓ of Aℓ is closed under holomorphic

functional calculus in Aℓ. Moreover, the algebra A∞
ℓ contains the generators Y

(ℓ+1)
1,q , · · · , Y (ℓ+1)

ℓ+1,q .

Proof : We prove this proposition by induction on ℓ. For ℓ = 0, by definition A∞
0 = C∞(T).

Hence the proposition is clear in this case. Now assume that the algebra A∞
ℓ−1 is closed under

holomorphic functional calculus in Aℓ−1 and contains Y
(ℓ)
1,q , · · · , Y

(ℓ)
ℓ,q . The homomorphism σℓ :

Aℓ → Aℓ−1 gives the following exact sequence

0 −→ K(ℓ2(N
ℓ))⊗ C(T) −→ Aℓ −→ Aℓ−1 −→ 0.

One also has at the smooth algebra level the “sub” extension

0 −→ S(ℓ2(Nℓ))⊗ C∞(T) −→ A∞
ℓ −→ A∞

ℓ−1 −→ 0.

Since S(ℓ2(Nℓ))⊗C∞(T) ⊂ K(ℓ2(N
ℓ))⊗C(T) and A∞

ℓ−1 ⊂ Aℓ−1 are closed under the respective

holomorphic functional calculus, it follows Lemma A.1.4 that A∞
ℓ is spectrally invariant in

Aℓ. Since ‖a‖ ≤ ‖a‖0 for all a ∈ A∞
ℓ , it follows that the Fréchet topology of A∞

ℓ is finer
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than the norm topology. Therefore A∞
ℓ is closed under holomorphic functional calculus in Aℓ.

Observe that for i ≥ 2, we have Y
(ℓ+1)
i,q =

∑
n≥0 q

nα∗n
1 (p0 ⊗ Y

(ℓ)
i−1,q)α

n
1 . Hence Y

(ℓ+1)
i,q ∈ A∞

ℓ

for i = 2, · · · , ℓ + 1. Also note that qN ⊗ I =
∑

n≥0 q
nα∗n

1 (p0 ⊗ 1)α1. Since A∞
ℓ is closed

under holomorphic functional calculus, it follows that
√

1− q2N+2 ⊗ I ∈ A∞
ℓ . As Y

(ℓ+1)
1,q =

α∗
1(
√

1− q2N+2 ⊗ I) it follows that Y
(ℓ+1)
1,q ∈ A∞

ℓ . This completes the proof. 2

Next we proceed to prove that the spectral triple (A∞
ℓ ,Hℓ,Dℓ) is regular and compute its

dimension spectrum. The proof is by induction. We start with the case ℓ = 0 to start the

induction.

3.3.1 The case ℓ = 0

For ℓ = 0, the spectral triple (A∞
0 ,H0,D0) is unitarily equivalent to the spectral triple

(C∞(T), L2(T),
1
i
d
dθ ). For f ∈ C∞(T), one has [D0, f ] = 1

i f
′. Let (ek) be the standard

orthonormal basis and let pk be the projection onto ek. Let F0 := sign(D0). Note that

[F0, z] = 2p0z and hence by induction [F0, z
n] = 2

∑n−1
k=0 pkz

npk−n for n ≥ 0. Thus [F0, z
n] is

smoothing for n ≥ 0. Also ‖|D0|r[F0, z
n]|D0|s‖ ≤ 2(1+n)r+s+1. Since [F0, z

−|n|]∗ = −[F0, z
|n|],

it follows that [F0, z
n] ∈ OP−∞ for every n. Also ‖[F0, z

n]‖r,s ≤ 2(1 + |n|)r+s+1. Hence we

observe that [F0, f ] ∈ OP−∞ and ‖[F0, f ]‖r,s ≤ 2‖f‖r+s+1. Let δ be the unbounded derivation

[|D0|, ·].

Lemma 3.3.4. Let B := {f0 + f1F0 +R : f0, f1 ∈ C∞(T), R ∈ OP−∞
D0

}. Then

1. If f0 + f1F0 is smoothing then f0 = f1 = 0. Hence B is isomorphic to the direct sum

C∞(T) ⊕ C∞(T) ⊕ OP−∞
D0

. We give B the Fréchet space structure coming from this

decomposition. This topology on B is generated by the seminorms (‖ · ‖m)m∈N which are

defined by ‖f0 + f1F0 +R‖m := ‖f0‖m + ‖f1‖m +
∑

r+s≤m ‖R‖r,s.

2. The vector space B is closed under δ and the derivation [D0, ·].

3. For every b ∈ B, [F0, b] ∈ OP−∞. Also the map b→ [F0, b] ∈ OP−∞ is continuous. The

derivations δ and [D0, ·] are continuous.

4. The vector space B is an algebra and contains C∞(T).

Proof : First observe that a bounded operator T on ℓ2(Z) is smoothing if and only if (〈Tem, en〉)m,n
is rapidly decreasing. Now suppose that R := f0 + f1F0 be smoothing. Fix an integer r. Ob-

serve that 〈R(en), er+n〉 converges to f̂0(r) + f̂1(r) as n→ +∞ and converges to f̂0(r)− f̂1(r)

as n→ −∞. But since R is smoothing it follows that f̂0(r) + f̂1(r) = 0 = f̂0(r)− f̂1(r). Hence

f̂0(r) = f̂1(r) = 0 for every integer r. Thus f0 = f1 = 0. This proves part (1).

Parts (2), (3) and (4) follow from the observations that [D0, f ] =
1
i f

′, [F0, f ] ∈ OP−∞,

‖[F0, f ]‖r,s ≤ 2‖f‖r+s+1 and δ(b) = [D0, b]F0 +D0[F0, b]. This completes the proof. 2
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In particular, it follows from parts (2) and (4) of the above lemma that the spectral triple

(A∞
0 ,H0,D0) is regular.

Let E be the C∗-subalgebra of L(ℓ2(Z)) generated by C(T) and F0. Note that the algebra

B plays the role of smooth function subalgebra for the C∗-algebra E . Therefore E∞ will stand

for the algebra B.

3.4 Regularity and the dimension spectrum

In this subsection we prove regularity and calculate the dimension spectrum for the spectral

triple (A∞
ℓ ,Hℓ,Dℓ). The proof is by induction on ℓ. Let us denote the derivation [|Dℓ|, ·] by δℓ

and let Fℓ stand for the sign of the operator Dℓ. Observe that Fℓ = 1⊗ℓ ⊗ F0 = 1⊗ Fℓ−1.

Proposition 3.4.1. Let Bℓ := {A0 +A1Fℓ +R : A0, A1 ∈ A∞
ℓ , R ∈ OP−∞}. Then

1. if A0 + A1Fℓ is smoothing then A0 = A1 = 0. Hence Bℓ is isomorphic to the direct

sum A∞
ℓ ⊕ A∞

ℓ ⊕ OP−∞. Equip Bℓ with the Fréchet space structure coming from this

decomposition. This topology on Bℓ is induced by the seminorms (‖ · ‖m)m∈N which are

defined by ‖A0 +A1Fℓ +R‖m := ‖A0‖m + ‖A1‖m +
∑

r+s≤m ‖R‖r,s.

2. For every b ∈ Bℓ, [Fℓ, b] ∈ OP−∞. Also the map b→ [Fℓ, b] ∈ OP−∞ is continuous.

3. The vector space Bℓ is closed under the derivations δℓ and [Dℓ, ·]. Moreover the derivations

δℓ and [Dℓ, ·] are continuous.

4. The vector space Bℓ is an algebra and contains A∞
ℓ .

Proof : The proof is by induction on ℓ. For ℓ = 0, the proposition is just lemma 3.3.4. Now

assume that the proposition is true for ℓ− 1. Suppose that A0 + A1Fℓ is smoothing for some

A0, A1 ∈ A∞
ℓ . Then A0 +A1Fℓ ∈ Tℓ ⊗ E and A0 +A1Fℓ is compact. Therefore (σ ⊗ id)(A0 +

A1Fℓ) = 0. Now let

Ai =
∑

j,k≥0

α∗j
1 (p0 ⊗ a

(i)
jk )α

k
1 +

∑

k≥0

λ
(i)
k α

k
1 +

∑

k>0

λ
(i)
−kα

∗k
1

for i = 0, 1. Let fi(z) =
∑

k∈Z λ
(i)
k z

k for i = 0, 1. Now (σ⊗ id)(A0+A1Fℓ) = f0⊗ I+f1⊗Fℓ−1.

So we have f0 ⊗ I + f1 ⊗ Fℓ−1 = 0. Writing Fℓ = 2Pℓ − I, it follows that (f0 + f1) ⊗ Pℓ−1 +

(f0 − f1) ⊗ (1 − Pℓ−1) = 0. Hence f0 = f1 = 0. This shows that λ
(i)
k = 0 for i = 0, 1. Let

bjk = a0jk+a
1
jkFℓ−1. Since R := A0+A1Fℓ is smoothing, it follows that for every j, k, the matrix

entries 〈e(j,γ), R(e(k,γ′))〉 are rapidly decreasing in (γ, γ′). Hence bjk is smoothing for every j, k.

By induction hypothesis a
(i)
jk = 0 for every j, k ≥ 0 and for i = 0, 1. Thus A0 = A1 = 0. This

proves part (1).

38



Observe that

δℓ(α1) = −α1, |Dℓ|rα∗k
1 = α∗k

1 (|Dℓ|+ k)r, αk1 |Dℓ|s = (|Dℓ|+ k)sαk1 .

Also Fℓ commutes with α1. To prove (2), it is enough to show that [Fℓ, a] is smoothing for

every a ∈ A∞
ℓ and the map a 7→ [Fℓ, a] is continuous. Let

a =
∑

m,n≥0

α∗m
1 (p0 ⊗ amn)α

n
1 +

∑

m≥0

λmα
m
1 +

∑

m>0

λ−mα
∗m
1

be an element inA∞
ℓ . Then [Fℓ, a] =

∑
m,n≥0 α

∗m
1 (p0⊗[Fℓ−1, amn])α

n
1 . By induction hypothesis,

it follows that p0 ⊗ [Fℓ−1, amn] is smoothing for every m,n ≥ 0. Since (OP−∞
Dℓ

, ‖ · ‖r,s) is a

Fréchet space, to show that [Fℓ, a] is smoothing it is enough to show that the infinite sum∑
m,n≥0 α

∗m
1 (p0 ⊗ [Fℓ−1, amn])α

n
1 converges absolutely in every seminorm ‖ · ‖r,s. Now observe

that

|Dℓ|rα∗m
1 (p0 ⊗ [Fℓ−1, amn])α

n
1 |Dℓ|s = α∗m

1 (|Dℓ|+m)r(p0 ⊗ [Fℓ−1, amn])(|Dℓ|+ n)sαn1 . (3.4.3)

Since the map a′ ∈ A∞
ℓ−1 7→ [Fℓ−1, a

′] ∈ OP−∞ is continuous, there exist p ∈ N and Cp > 0

such that ‖[Fℓ−1, a
′]‖i,j ≤ Cp‖a′‖p for every a′ ∈ A∞

ℓ−1 and for i, j ≤ max{r, s}. Hence by

equation (3.4.3), it follows that

∑

m,n

‖α∗m
1 (p0 ⊗ [Fℓ−1, amn])α

n
1‖r,s ≤

∑

m,n

r∑

i=0

s∑

j=0

(
r

i

)(
s

j

)
mr−ins−j‖[Fℓ−1, amn]‖i,j

≤
r∑

i=0

s∑

j=0

(
r

i

)(
s

j

)
Cp

(
∑

m,n

mrns‖amn‖p
)
.

This shows that [Fℓ, a] is smoothing and the above inequality also shows that for every r, s ≥ 0,

there exists t ≥ 0 and a Ct > 0 such that ‖[Fℓ, a]‖r,s ≤ Ct‖a‖t. Hence the map a 7→ [Fℓ, a] is

continuous. This proves (2).

To show (3), it is enough to show that the map a 7→ δℓ(a) from A∞
ℓ to Bℓ makes sense and

is continuous. We will use the fact that the unbounded derivation δℓ is a closed derivation. Let

a =
∑

m,n≥0 α
∗m
1 (p0 ⊗ amn)α

n
1 +

∑
m≥0 λmα

m
1 +

∑
m>0 λ−mα

∗m
1 be an element in A∞

ℓ . Since

α1 and p0 ⊗ amn ∈ Dom(δℓ) it follows that each of the terms in the infinite sum is an element

in Dom(δℓ). Hence in order to show a ∈ Dom(δℓ), it is enough to show that the sum

∑

m,n

δℓ(α
∗m
1 (p0 ⊗ amn)α

n
1 ) +

∑

m≥0

λmδℓ(α
m
1 ) +

∑

n>0

λ−nδℓ(α
∗n
1 )

converges. Observe that δℓ(α
∗m
1 ) = mα∗m

1 , δℓ(α
n
1 ) = −nαn1 , and

δℓ
(
α∗m
1 (p0 ⊗ amn)α

n
1

)
= (m− n)α∗m

1 (p0 ⊗ amn)α
n
1 + α∗m

1 (p0 ⊗ δℓ−1(amn))α
n
1 .
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Since δℓ−1 is continuous, it follows that ‖δℓ−1(amn)‖ is rapidly decreasing where ‖ · ‖ is the

operator norm. (Note that for b ∈ Bℓ, one has ‖b‖ ≤ ‖b‖0.) Hence the infinite sum

∑

m,n

δℓ
(
α∗m
1 (p0 ⊗ amn)α

n
1

)
+
∑

m≥0

λmδℓ(α
m
1 ) +

∑

n>0

λ−nδℓ(α
∗n
1 )

converges absolutely in the operator norm. Therefore a ∈ Dom(δℓ). Since δℓ−1 is continuous for

every r there exists p and Cp such that ‖δℓ−1(a
′)‖r ≤ Cp‖a′‖p. Write δℓ−1(amn) as δℓ−1(amn) =

a′mn + a′′mnFℓ +Rmn. Let

A0 =
∑

m,n

α∗m
1 (p0 ⊗ ((m− n)amn + a′mn))α

n
1 +

∑

m≥0

mλmα
m
1 +

∑

n>0

(−n)λ−nα∗n
1 ,

A1 =
∑

m,n

α∗m
1 (p0 ⊗ a′′mn)α

n
1 ,

R =
∑

m,n

α∗m
1 (p0 ⊗Rmn)α

n
1 .

Then δℓ(a) = A0+A1Fℓ+R. In every seminorm of A∞
ℓ−1 the double sequence (a′mn) and (a′′mn)

are rapidly decreasing. Also Rmn is rapidly decreasing in every seminorm of OP−∞
Dℓ

. Hence

A0, A1 ∈ A∞
ℓ and as in the proof of (2), it follows that R is smoothing and given r, s there

exists t and Ct such that ‖R‖r,s ≤ Ct‖a‖t. Fix an r ≥ 0 and choose t > 1 + r and Ct > 1 such

that ‖δℓ−1(a
′)‖r ≤ Ct‖a′‖t for every a′ ∈ A∞

ℓ−1. Now ‖A0‖r ≤ Ct‖a‖t and ‖A1‖r ≤ Ct‖a‖t.
This shows that the map a→ δℓ(a) ∈ Bℓ is continuous. Since [Dℓ, b] = δℓ(b)Fℓ+ |Dℓ|[Fℓ, b], the
second part of (3) follows as [Fℓ, b] is smoothing by (2). This proves (3).

Part (4) follows from (2) and (3). 2

We next prove a lemma that will be crucial in the computation of the dimension spectrum.

For an r tuple n = (n1, n2, · · · , nr) ∈ N
r, we will write |n| for

∑r
i=1 ni. For r = 0, we let

N
0 = {0}.

Lemma 3.4.2. Let r ≥ 0 and s ≥ 1 be integers. Let (a(n))n∈Nr be rapidly decreasing. Then

the function

ξ(z) :=
∑

n∈Nr ,m∈Ns

|n|+|m|≥1

a(n)

(|n|+ |m|)z

is meromorphic with simple poles at {1, 2, · · · , s} and Resz=sξ(z) =
1

(s−1)!

∑
n a(n).
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Proof : First observe that for Re z > r + s,

ξ(z) =
∑

N≥1

1

N z


 ∑

|n|+|m|=N

a(n)




=
∑

N≥1

1

N z


 ∑

|n|≤N

a(n)
∑

m:|m|=N−|n|

1




=
∑

N≥1

1

N z


 ∑

|n|≤N

a(n)

(
N − |n|+ s− 1

s− 1

)
 .

Note that for a function (b(n))n∈Nr of rapid decay, the sequence
(∑

|n|≥N b(n)
)
N∈N

is of rapid

decay. Now
(
N−|n|+s−1

s−1

)
=
∑s−1

k=0 gk(n)N
k where gk(n) is a polynomial in (n1, n2, . . . , nr) and

gs−1(n) =
1

(s−1)! . Hence modulo a holomorphic function ξ(z) =
∑s−1

k=0(
∑

n gk(n)a(n))ζ(z − k).

Now the result follows from the fact that ζ(z) is meromorphic with a simple pole at z = 1 with

residue 1. 2

We will next prove that the spectral triple (A∞
ℓ ,Hℓ,Dℓ) is regular and has discrete dimension

spectrum with simple poles at {1, 2, · · · , ℓ+ 1}.

Remark 3.4.3. Recall that the unitaries Uw for w = (w1, w2, · · · , wℓ+1) ∈ T
ℓ+1 are given

by Uweγ = wγ11 w
γ2
2 · · ·wγℓ+1

ℓ+1 eγ . A bounded operator T on Hℓ is said to be homogeneous of

degree (m1,m2, · · · ,mℓ+1) if UwTU
∗
w = wm1

1 wm2
2 · · ·wmℓ+1

ℓ+1 T . If T is homogeneous of degree

(m1,m2, · · · ,mℓ+1) 6= (0, . . . , 0) then Trace(T |D|−z) = 0 if Re(z) > ℓ+ 1 since Uw’s commute

with the operator |Dℓ|.

Proposition 3.4.4. The spectral triple (A∞
ℓ ,Hℓ,Dℓ) is regular and has {1, 2, · · · , ℓ+1} as the

dimension spectrum with only simple poles.

Proof : Regularity of the spectral triple follows from proposition 3.4.1. We now prove that for

b ∈ Bℓ, the function Trace(b|D|−z) is meromorphic with simple poles at {1, 2, · · · , ℓ+1}. Since
Trace (b|D|−z) is holomorphic for b ∈ OP−∞, we need only to show that for a ∈ A∞

ℓ , the func-

tions Trace(a|D|−z) and Trace(aFℓ|D|−z) extend to meromorphic functions with simple poles

at {1, 2, · · · , ℓ+1}. Now any element a ∈ A∞
ℓ can be written as a = a0+a1 where a0 is homoge-

neous of degree 0 and a1 is an infinite sum of homogeneous elements of non zero degrees. Hence

by remark 3.4.3, Trace(a|D|−z) = Trace(a0|D|−z) and Trace(aFℓ|D|−z) = Trace(a0Fℓ|D|−z).
Thus it is enough to consider the functions Trace(a|D|−z) and Trace(aFℓ|D|−z) where a is

homogeneous of degree 0.

It is easy to see that the set of homogeneous elements of degree 0 in A∞
ℓ is





ℓ∑

i=0


∑

n∈Ni

λin(pn1 ⊗ pn2 ⊗ · · · pni
⊗ 1)


 : (λin) is of rapid decay for all i




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where pk = S∗kp0S
k. Let a =

∑ℓ
i=0(

∑
n λ

i
n(pn1 ⊗ pn2 ⊗ · · · pni

⊗ 1) be a homogeneous element

of degree 0 in C∞(S2ℓ+1
q ). Then

Trace(a|D|−z) = 2

ℓ∑

i=0

∑

n∈Ni, t∈N
m∈Nℓ−i

λin
(|n|+ |m|+ t)z

+

ℓ∑

i=0

∑

n∈Ni

m∈Nℓ−i

λin
(|n|+ |m|)z .

Now
∑

n∈Nℓ
λℓn

(|n|)z is holomorphic and hence modulo a holomorphic function

Trace(a|D|−z) = 2

ℓ∑

i=0




∑

n∈Ni, t∈N
m∈Nℓ−i

λin
(|n|+ |m|+ t)z


+

ℓ−1∑

i=0



∑

n∈Ni

m∈Nℓ−i

λin
(|n|+ |m|)z


 .

It follows from lemma 3.4.2 that Trace(a|D|−z) is meromorphic with simple poles in the set

{1, 2, · · · , ℓ + 1}. Similarly one can show that Trace(aFℓ|D|−z) is meromorphic with simple

poles in {1, 2, · · · , ℓ}. Fix 0 ≤ i ≤ ℓ + 1. Let (λn)n∈Ni be such that
∑

n λn = 1. Let a =∑
n∈Ni λn(pn1 ⊗pn2 ⊗pni

⊗1). Then one has Resz=ℓ+1−iTrace(a|D|−z) = 2
(ℓ−i)! by lemma 3.4.2

and by the above equation. Hence every k ∈ {1, 2, · · · , ℓ + 1} is in the dimension spectrum.

This completes the proof. 2
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Chapter 4

The SUq(ℓ + 1) equivariant spectral

triple

In this chapter, the equivariant spectral triple on S2ℓ+1
q constructed in [8] is studied from the

local index formula point of view. We show that this spectral triple is regular and has finite

simple dimension spectrum. We first analyse the case q = 0. We show that for q = 0, the

spectral triple is nothing but the torus equivariant one upto a multiplication. For q 6= 0, we

approximate the equivariant spectral triple by the torus equivariant one and thereby deducing

the computation.

4.1 The quantum group SUq(n)

Let us recall the definition of the quantum group SUq(n) from [42]. The C∗ algebra C(SUq(n))

is defined as the universal unital C∗ algebra generated by n2 elements uij satisfying the following

condition
n∑

k=1

uiku
∗
jk = δij ,

n∑

k=1

u∗kiukj = δij , (4.1.1)

n∑

i1=1

n∑

i2=1

· · ·
n∑

in=1

Ei1i2···inuj1i1 · · · ujnin = Ej1j2···jn (4.1.2)

where

Ei1i2···in :=

{
0 if i1, i2, · · · in are not distinct,

(−q)ℓ(i1,i2,··· ,in).

Here for a permutation σ, ℓ(σ) denotes the number of inversed pairs i.e. the cardinality of the

set {(i, j) : i < j, σ(i) > σ(j)}.
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The C∗ algebra C(SUq(n)) has a compact quantum group structure with the comultiplica-

tion ∆ given by

∆(uij) :=
∑

k

uik ⊗ ukj.

Call the generators of SUq(n − 1) by vij. Then the map φ : C(SUq(n)) → C(SUq(n − 1))

defined as

φ(uij) :=

{
vi−1,j−1 if 2 ≤ i, j ≤ n

δij otherwise
(4.1.3)

is a surjective unital C∗ algebra homomorphism such that ∆ ◦ φ = (φ ⊗ φ)∆. In this way

the quantum group SUq(n − 1) is a subgroup of the quantum group SUq(n). The quantum

homogeneous space C(SUq(n)/SUq(n − 1)) is generated by the first row of the matrix (uij).

Moreover the map θ : C(S2n−1
q ) → C(SUq(n)/SUq(n − 1)) defined by θ(zi) := q−i+1u∗1i is an

isomorphism. In this way, we realise the quantum odd dimensional spheres S2n−1
q as a quantum

homogeneous space.

The map τ : C(S2n−1
q ) → C(S2n−1

q ) ⊗ C(SUq(n)) defined by τ(zi) :=
∑

k zk ⊗ u∗ki defines

an action of SUq(n) on S2n−1
q . Also one has ∆ ◦ θ = (θ ⊗ 1)τ . Let h be the Haar state on

SUq(n). We denote the closure of C(S2n−1
q ) in L2(SUq(n)) by L

2(S2n−1
q ). Then the right regular

representation of SUq(n) on L
2(SUq(n)) leaves the subspace L2(S2n−1

q ) invariant and thus one

obtains a covariant representation of (C(S2n−1
q ), SUq(n),∆) on L2(S2n−1

q ). Equivariant spectral

triples for this dynamical system on L2(S2n−1
q ) are investigated in [8] and the sign of those

operators D have been classified. In this chapter, we show that the spectral triple constructed

in [8] satisfies the hypothesis of the local index formula. Since the computation is involved, it

is better to fix some notations. We use the same notations as in [30].

Notations We will denote by Σ the set {1, 2, . . . , 2ℓ + 1} and by Σℓ and Σj,ℓ the subsets

{1, 2, . . . , ℓ+ 1} and {ℓ− j + 1, ℓ− j + 2, . . . , ℓ+ 1} respectively, where 0 ≤ j ≤ ℓ.

Let Γ ≡ ΓΣ denote the set of maps γ from Σ to Z such that γi ∈ N for all i ∈ Σ\{ℓ + 1},
i.e. ΓΣ = N

ℓ×Z×N
ℓ. For a subset A of Σ, we will denote by γA the restriction γ|A of γ to A.

Let ΓA denote the set {γA : γ ∈ Γ} and HA be the Hilbert space ℓ2(ΓA). We will denote HΣ

by just H, and HΣj,ℓ
by Hj. Thus

HΣ = ℓ2(N)⊗ · · · ⊗ ℓ2(N)︸ ︷︷ ︸
ℓ copies

⊗ℓ2(Z)⊗ ℓ2(N)⊗ · · · ⊗ ℓ2(N)︸ ︷︷ ︸
ℓ copies

, Hj = ℓ2(N)⊗ · · · ⊗ ℓ2(N)︸ ︷︷ ︸
j copies

⊗ℓ2(Z).

Note that Hj and H{j} are different.

Let A ⊆ Σ. We will denote by {eγ}γ the natural orthonormal basis for HA = ℓ2(ΓA) and

by pγ the rank one projection |eγ〉〈eγ |. For i ∈ A, we will denote by Ni the number operator

on the ith coordinate on HA, i.e.

Ni ≡
∑

γ

γipγ : eγ 7→ γieγ(defined on HA with i ∈ A).
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We will denote by |DA| the operator
∑

i∈A |Ni| on HA.

Let F0 be the following operator on ℓ2(Z):

F0ek =




ek if k ≥ 0,

−ek if k < 0.

For 1 ≤ j ≤ 2ℓ+ 1, let Vj be the operator on H{j} defined by

Vj :=




F0 if j = ℓ+ 1,

I otherwise.

Let FA denote the operator ⊗j∈AVj on HA and let DA = FA|DA|. Thus

DAeγ =




−
(∑

i∈A |γi|
)
eγ if ℓ+ 1 ∈ A and γℓ+1 < 0,

(∑
i∈A |γi|

)
eγ otherwise.

We will denote FΣj,ℓ
by Fj and DΣj,ℓ

by Dj .

Recall that H{j} is ℓ2(N) if j 6= ℓ+ 1 and is ℓ2(Z) if j = ℓ+ 1. Suppose for each j ∈ Σ, Fj
is a subspace of L(H{j}). For A ⊆ Σ, define

Fj,A =




Fj if j ∈ A,

C.I if j 6∈ A,

and FA to be the tensor product ⊗j∈ΣFj,A in L(HΣ) (the type of the tensor product will

depend on the specific Fj’s we look at). This tensor product will often be identified with

⊗j∈AFj ⊆ L(HA).

On both ℓ2(N) and ℓ2(Z), we will denote by N the number operator defined by Nen = nen

and by S the left shift defined by Sen = en−1. For k ∈ Z (for k ∈ N in case of ℓ2(N)), let pk

denote the projection |ek〉〈ek|. We will freely identify ℓ2(Z) with L2(T). Thus the right shift

on ℓ2(Z) will be multiplication by the function t 7→ t and will be denoted by z. Let T be the

Toeplitz algebra, i.e. the C∗-subalgebra of L(ℓ2(N)) generated by S. For a positive integer k,

we will denote by Tk the k-fold tensor product of T , embedded in L(ℓ2(Nk)). Denote by σ the

symbol map from T to C(T) that sends S∗ to z and all compact operators to 0.

4.2 Left multiplication operators

Let us recall from [8] some basic facts on representations of C(SUq(ℓ+1)) on L2(SUq(ℓ+1)) by

left multiplication. The Hilbert space L2(SUq(ℓ+ 1)) is the GNS space of C(SUq(ℓ+ 1)) with

respect to the Haar state on SUq(ℓ + 1). Irreducible unitary representations of the quantum

group SUq(ℓ + 1) are indexed by Young tableaux λ = (λ1, . . . , λℓ+1) where λi ∈ N and λ1 ≥
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λ2 ≥ · · · ≥ λℓ+1 = 0 (Theorem 1.5, [42]). Denote by uλ the irreducible unitary indexed by λ.

Basis elements of the Hilbert space Hλ on which uλ acts can be parametrized by arrays of the

form

r =




r11 r12 · · · r1,ℓ r1,ℓ+1

r21 r22 · · · r2,ℓ

· · ·
rℓ,1 rℓ,2

rℓ+1,1



,

where rij’s are integers satisfying r1j = λj for j = 1, . . . , ℓ + 1, rij ≥ ri+1,j ≥ ri,j+1 ≥ 0 for

all i, j, and the top row coincides with λ. These are known as Gelfand-Tsetlin tableaux, to

be abreviated as GT tableaux now onwards. Let {e(λ, r) : r is a GT tableaux with top row λ}
be an orthonormal basis for Hλ. Denote the matrix entries of uλ with respect to this basis by

uλ
r,s. Note that the generators uij of the C∗-algebra C(SUq(ℓ + 1)) are the matrix entries of

the irreducible 11 = (1, 0, . . . , 0). The collection {uλ
r,s : λ, r, s} form a complete orthogonal set

of vectors in L2(SUq(ℓ + 1)). Denote by eλ
r,s, or by er,s for short (as r and s specify λ), the

normalized uλ
r,s’s, i.e. er,s = ‖uλ

r,s‖−1uλ
r,s. Then {er,s : r, s} form a complete orthonormal basis

for L2(SUq(ℓ+ 1)).

Let ρ be the half-sum of positive roots of sl(ℓ + 1) and λ(r) is the weight of the weight

vector e(λ, r). Let Fλ be the unique intertwiner in Mor (uλ, (uλ)cc) with traceFλ = traceF−1
λ

(here for a representation u, its contragradient representation is denoted by uc; see [25] for

details). Then one has ‖uλ
rs
‖ = d

− 1
2

λ q−ψ(r), where

ψ(r) = (ρ, λ(r)) = − ℓ
2

ℓ+1∑

j=1

r1j +

ℓ+1∑

i=2

ℓ+2−i∑

j=1

rij , dλ = traceFλ =
∑

r:r1=λ

q2ψ(r). (4.2.4)

Write

κ(r,m) = d
1
2
λd

− 1
2

µ qψ(r)−ψ(m). (4.2.5)

From equation (4.19) in [8], we have

π(uij)e
λ
rs

=
∑

µ,m,n

Cq(11, λ, µ; i, r,m)Cq(11, λ, µ; j, s,n)κ(r,m)eµ
mn

, (4.2.6)

where Cq denote the Clebsch Gordon coefficients.

For our subsequent analysis, we will compute the quantities Cq(i, r, s) and κ(r,m) appearing

in the above formula. We will use the formulae given in ([25], pp. 220), keeping in mind that

for our case (i.e. for SUq(ℓ+ 1)), the top right entry of the GT tableaux is zero.

For a positive integer j with 1 ≤ j ≤ ℓ+ 1, let

Mj := {(m1,m2, . . . ,mj) ∈ N
j : 1 ≤ mi ≤ ℓ+ 2− i for 1 ≤ i ≤ j}. (4.2.7)
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For M = (m1,m2, . . . ,mi) ∈ Mi, denote by M(r) the tableaux s defined by

sjk =




rjk + 1 if k = mj , 1 ≤ j ≤ i,

rjk otherwise.
(4.2.8)

With this notation, observe now that Cq(i, r, s) will be zero unless s is M(r) for some M ∈ Mi.

(One has to keep in mind though that not all tableaux of the formM(r) is a valid GT tableaux)

From ([25], pp. 220), we have

Cq(i, r,M(r)) =

i−1∏

a=1

R(r, a,ma,ma+1)×R′(r, i,mi) (4.2.9)

where ek stands for a vector (in the appropriate space) whose kth coordinate is 1 and the rest

are all zero, and

R(r, a, j, k) = sign (k − j) q
1
2(−raj+ra+1,k−k+j)

×



ℓ+2−a∏

i=1
i6=j

[ra,i − ra+1,k − i+ k]q
[ra,i − ra,j − i+ j]q

ℓ+1−a∏

i=1
i6=k

[ra+1,i − ra,j − i+ j − 1]q
[ra+1,i − ra+1,k − i+ k − 1]q




1
2

(4.2.10)

R′(r, a, j) = q

1
2

(
1−j+

∑ℓ+1−a
i=1 ra+1,i−

∑ℓ+2−a
i=1
i6=j

ra,i

)

×



∏ℓ+1−a
i=1 [ra+1,i − raj − i+ j − 1]q∏ℓ+2−a

i=1
i6=j

[ra,i − raj − i+ j]q




1
2

, (4.2.11)

where for an integer n, [n]q denotes the q-number (qn − q−n)/(q − q−1) and sign (k − j) is 1 if

k ≥ j and is −1 if k < j.

Remark 4.2.1. Let us look at the denominators in the above expressions. The integers

ra,i − ra,j and j − i are of the same sign. Therefore for i 6= j, the quantity ra,i − ra,j − i + j

is nonzero. Similarly ra+1,i − ra+1,k and k − i are of the same sign. So if i 6= k, then ra+1,i −
ra+1,k − i + k − 1 can be zero only when ra+1,i = ra+1,k and k = i + 1. Now if r and M(r)

are GT tableaux, then M(r)a+1,ma+1 = ra+1,ma+1 + 1 and M(r)a+1,i = ra+1,i for i 6= ma+1.

Therefore if ma+1 = i+ 1, then ra+1,i − (ra+1,ma+1 + 1) ≥ 0, i.e. ra+1,i − ra+1,ma+1 ≥ 1. Hence

ra+1,i − ra+1,ma+1 − i + ma+1 − 1 ≥ 1. In other words, all the q-numbers appearing in the

denominator in equation (4.2.9) are nonzero. Thus no problem arises from division by zero.

Remark 4.2.2. This is essentially a repetition of remark 4.1 of [8]. The formulae (4.2.10)

and (4.2.11) are obtained from equations (45) and (46), page 220, [25] by replacing q with q−1.

Equation (45) is a special case of the more general formula (48), page 221, [25]. However, there

is a small error in equation (48) there. The correct form can be found in equations (3.1, 3.2a,

3.2b) in [2]. Here we have incorporated that correction in equations (4.2.10) and (4.2.11).
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We next compute the quantities R(r, a, j, k) and R′(r, a, j).

For a positive integer n, denote by Q(n) the number (1−q2n)1/2. Then for any two integers

m and n, one has ∣∣∣∣
[m]q
[n]q

∣∣∣∣ = q−|m|+|n|

(
Q(|m|)
Q(|n|)

)2

.

The next two lemmas are obtained from equations (4.2.10) and (4.2.11) using the above equality

repeatedly and the fact that ra,i ≥ ra+1,i ≥ ra,i+1 for all a and i.

Lemma 4.2.3. For a GT tableaux r = (rab), denote by Hab(r) and Vab(r) the following differ-

ences: Hab(r) := ra+1,b − ra,b+1 and Vab(r) := rab − ra+1,b. Then one has

R(r, a, j, k) = sign (k − j)qP (r,a,j,k)+S(r,a,j,k)L(r, a, j, k), (4.2.12)

where

P (r, a, j, k) =
∑

j∧k≤i<j∨k

Hai(r) + 2
∑

k<i<j

Vai(r), (4.2.13)

S(r, a, j, k) =




2(j − k − 1) + 1 if j > k,

0 if j ≤ k,
(4.2.14)

L(r, a, j, k) =

ℓ+2−a∏

i=1
i6=j

Q(|ra,i − ra+1,k − i+ k|)
Q(|ra,i − ra,j − i+ j|)

ℓ+1−a∏

i=1
i6=k

Q(|ra+1,i − ra,j − i+ j − 1|)
Q(|ra+1,i − ra+1,k − i+ k − 1|) .

(4.2.15)

Lemma 4.2.4. One has

R′(r, a, j) = qP
′(r,a,j)L′(r, a, j), (4.2.16)

where

P ′(r, a, j) =
∑

j≤i<ℓ+2−a

Hai(r), (4.2.17)

L′(r, a, j) =

∏ℓ+1−a
i=1 Q(|ra+1,i − ra,j − i+ j − 1|)
∏ℓ+2−a

i=1
i6=j

Q(|ra,i − ra,j − i+ j|)
. (4.2.18)

Combining lemmas 4.2.3 and 4.2.4, we get the following expression for the CG coefficient

Cq(i, r,M).

Lemma 4.2.5. For a move M ∈ Mi, let sign (M) denote the product
∏i−1
a=1 sign (ma+1 −ma).

Then one has

Cq(i, r,M) = sign (M)qB(M)+C(r,M)

(
i−1∏

a=1

L(r, a,ma,ma+1)

)
L′(r, i,mi), (4.2.19)
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where

B(M) =
∑

j:mj>mj+1

(2(mj −mj+1 − 1) + 1) , (4.2.20)

C(r,M) =

i−1∑

a=1


 ∑

ma∧ma+1≤b<ma∨ma+1

Hab(r) + 2
∑

ma+1<b<ma

Vab(r)


 +

∑

mi≤b<ℓ+2−i

Hib(r)

(4.2.21)

Lemma 4.2.6. (
i−1∏

a=1

L(r, a,ma,ma+1)

)
L′(r, i,mi) = 1 + o(q).

Proof : This is a consequence of the following two inequalities:

|1− (1− x)
1
2 | < x for 0 ≤ x ≤ 1,

and for 0 < r < 1,

|1− (1− x)−
1
2 | < cx for 0 ≤ x ≤ r,

where c is some fixed constant that depends on r. 2

Next we come to the computation of κ(r,m). Since Cq(i, r,m) is 0 unless m is of the form

M(r) for some move M = (m1, . . . ,mi), we need only to compute κ(r,M(r)) which we will

denote by κ(r,M).

Since

ψ(s) = − ℓ
2

ℓ+1∑

j=1

s1j +

ℓ+1∑

i=2

ℓ+2−i∑

j=1

sij,

we have

qψ(r)−ψ(M(r)) = q−
ℓ
2

∑ℓ+1
j=1 r1j+

∑ℓ+1
i=2

∑ℓ+2−i
j=1 rij+

ℓ
2
(
∑ℓ+1

j=1 r1j+1)−(
∑ℓ+1

i=2

∑ℓ+2−i
j=1 rij+i−1) = q

ℓ
2
−i+1.

Let λ = (λ1, . . . , λℓ, 0) be the top row of r. Then

min{ψ(s) : s1 = λ} = − ℓ
2

ℓ∑

1

λi +
ℓ∑

k=2

(k − 1)λk.

Hence

dλ =
∑

s:s1=λ

q2ψ(s) = q−ℓ
∑ℓ

1 λi+2
∑ℓ

k=2(k−1)λk(1 + q2φ(q2)),

where φ is a polynomial. Therefore

dλ = q−ℓ
∑ℓ

1 λi+2
∑ℓ

k=2(k−1)λk(1 + o(q)).
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It follows that (
dλ

dλ+em1

) 1
2

= q
ℓ
2
−m1+1(1 + o(q)).

Thus

κ(r,M(r)) = qℓ+2−i−m1(1 + o(q)). (4.2.22)

Next, observe that

B(M) + ℓ+ 2− i−m1

=
∑

j:mj>mj+1

(2(mj −mj+1 − 1) + 1)− (m1 −mi) + ℓ+ 2− i−mi

= 2
∑

j:mj>mj+1

(mj −mj+1)−
∑

j:mj>mj+1

1−
i−1∑

j=1

(mj −mj+1) + ℓ+ 2− i−mi

= 2
∑

j:mj>mj+1

(mj −mj+1)−
i−1∑

j=1

(mj −mj+1)−
∑

j:mj>mj+1

1 + ℓ+ 2− i−mi

=
∑

j:mj>mj+1

|mj −mj+1| −#{1 ≤ j ≤ i− 1 : mj > mj+1}+ ℓ+ 2− i−mi.

Thus if we write

A(M) =
∑

j:mj>mj+1

|mj −mj+1| −#{1 ≤ j ≤ i− 1 : mj > mj+1}, (4.2.23)

K(M) = ℓ+ 2− i−mi, (4.2.24)

then both A(M) and K(M) are nonnegative and B(M) + ℓ + 2 − i −m1 = A(M) + K(M).

Thus we have

π(uij)e
λ
rs

=
∑

M∈Mi
M′∈Mj

Cq(i, r,M(r))κ(r,M)Cq(j, s,M
′(s))eM(r),M ′(s) (4.2.25)

=
∑

M∈Mi
M′∈Mj

sign (M)sign (M ′)qA(M)+K(M)+C(r,M)+B(M ′)+C(s,M ′)(1 + o(q))eM(r),M ′(s).

(4.2.26)

4.3 The spectral triple

Let us briefly recall from [8] the description of the L2 space of the sphere denoted L2(S2ℓ+1
q )

sitting inside L2(SUq(ℓ+1)) i.e. the closure of C(SUq(ℓ+1)/SUq(ℓ)) in L2(SUq(ℓ+1)/SUq(ℓ)).

The following proposition shows that the “natural” representation of the dynamical sys-

tem (C(S2ℓ+1
q , SUq(ℓ + 1), τ) on L2(SUq(ℓ + 1) restricts to give a covariant representation on

L2(S2ℓ+1
q ). We refer to [8] for proofs.
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Proposition 4.3.1 ([8]). Assume ℓ > 1. The right regular representation u of G keeps the

subspace L2(SUq(ℓ + 1)\SUq(ℓ)) invariant, and the restriction of u to L2(SUq(ℓ+ 1)\SUq(ℓ))

decomposes as a direct sum of exactly one copy of each of the irreducibles given by the young

tableaux λn,k := (n + k, k, k, . . . , k, 0), with n, k ∈ N.

Proposition 4.3.2 ([8]). Let rnk denote the GT tableaux given by

rnkij =





n+ k if i = j = 1,

0 if i = 1, j = ℓ+ 1,

k otherwise,

where n, k ∈ N. Let G n,k
0 be the set of all GT tableaux with top row (n + k, k, . . . , k, 0). Then

the family of vectors

{e
r
nk,s : n, k ∈ N, s ∈ G n,k

0 }

form a complete orthonormal basis for L2(SUq(ℓ+ 1)\SUq(ℓ)).

We will denote ∪n,kG n,k
0 by G0. Since the top row of rnk determines rnk completely and

for e
r
nk,s, the top row of s equals the top row of rnk, one can index the orthonormal basis

e
r
nk,s just by s ∈ G0. It was shown in [8] that the restriction of the left multiplication to

C(SUq(ℓ + 1)\SUq(ℓ)) ∼= C(S2ℓ+1
q ) keeps L2(SUq(ℓ + 1)\SUq(ℓ)) ∼= L2(S

2ℓ+1
q ) invariant. We

will continue to denote this restriction by π. The operators π(zj) = q−j+1π(u∗1,j) will be

denoted by Zj,q. The C
∗-algebra π(C(S2ℓ+1

q )) will be denoted by Cℓ.

The following theorem gives a generic equivariant spectral triple for the spheres S2ℓ+1
q

constructed in [8].

Theorem 4.3.3 ([8]). Let Deq be the operator on L2(S
2ℓ+1
q ) given by:

Deqernk ,s =




ke

r
nk,s if n = 0,

−(n+ k)e
r
nk ,s if n > 0.

(4.3.27)

Then (A(S2ℓ+1
q ), L2(S

2ℓ+1
q ),Deq) is an equivariant nondegenerate (2ℓ+1)-summable odd spectral

triple.

Our main aim in the rest of the chapter is to precisely formulate the smooth function algebra

for this spectral triple, establish its regularity, and compute the dimension spectrum.

4.4 The case q = 0

The L2 spaces L2(S
2ℓ+1
q ) for different values of q can be identified by identifying the elements

of their canonical orthonormal bases which are parametrized by the same set. Thus we will
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assume we are woring with one single Hilbert space H with orthonormal basis given by e
r
n,k

s

where rn,k is as defined earlier and s is given by

s =




c1 = n+ k k k · · · k k d1 = 0

c2 k k · · · k d2

· · · · · ·
cℓ−1 k dℓ−1

cℓ dℓ

cℓ+1 = dℓ+1




(4.4.28)

where c1 ≥ c2 ≥ . . . ≥ cℓ ≥ k, d1 ≤ d2 ≤ . . . ≤ dℓ ≤ k and dℓ ≤ dℓ+1 ≤ cℓ. Since specifying the

GT tableaux s specifies rn,k also and thus completely specifies the basis element e
r
n,k

s
, we will

sometimes use just s in place of the basis element e
r
n,k

s
.

Let us denote by M
±
j the following subsets of Mj:

M
+
j = {(m1, . . . ,mj) ∈ Mj : mi ∈ {1, ℓ + 2− i} for 1 ≤ i ≤ j, m1 = 1},

M
−
j = {(m1, . . . ,mj) ∈ Mj : mi ∈ {1, ℓ + 2− i} for 1 ≤ i ≤ j, m1 = ℓ+ 1}.

Let us denote by Ni,j the following element of Mj:

Ni,j = (1, . . . , 1︸ ︷︷ ︸
i

, ℓ+ 1− i, ℓ− i, . . . , ℓ+ 2− j), 0 ≤ i ≤ j ≤ ℓ+ 1.

We will denote Ni,ℓ+1 by just Ni. Then from (4.2.26), we get

π(u1j)ern,k
s

=
∑

M∈M+
j

sign (M)qℓ+k+B(M)+C(s,M)(1 + o(q))e
r
n+1,k ,M(s)

+
∑

M∈M−
j

sign (M)qB(M)+C(s,M)(1 + o(q))e
r
n,k−1,M(s) (4.4.29)

Therefore

Z∗
j,qern,k

s
=

∑

M∈M+
j

sign (M)q−j+1+ℓ+k+B(M)+C(s,M)(1 + o(q))e
r
n+1,k ,M(s)

+
∑

M∈M−
j

sign (M)q−j+1+B(M)+C(s,M)(1 + o(q))e
r
n,k−1,M(s) (4.4.30)

Let us first look at the cases 1 ≤ j ≤ ℓ. In this case, the power of q in the first summation

is positive. Therefore none of the terms would survive for q = 0. For terms in the second

summation, assume M ∈ Mj with m1 = ℓ + 1 and mi = 1 for some i ≤ j. Let a = min{2 ≤
i ≤ j : mi = 1}. Then mi = ℓ+ 2− i for 1 ≤ i ≤ a− 1 so that

B(M) ≥
a−2∑

i=1

(2((ℓ+ 2− i)− (ℓ+ 1− i)− 1) + 1) + 2(ℓ+ 3− a− 1− 1) + 1

= a− 2 + 2(ℓ− a+ 1) + 1

= 2ℓ− a+ 1.
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Hence B(M)+ 1− j > 0 and so such terms will not survive for q = 0. Thus the only term that

will survive is the one corresponding to M = N0,j = (ℓ+ 1, ℓ, ℓ− 1, . . . , ℓ+ 2− j). In this case

we have B(M) = j − 1, C(s,M) = dj and sign (M) = (−1)j−1. Therefore

Z∗
j,0ern,k

s
=




(−1)j−1e

r
n,k−1,N0,j(s) if dj = 0,

0 if dj > 0.
(4.4.31)

Next let us look at the case j = ℓ + 1. Here the first sum will be over all M with m1 =

1 = mℓ+1. If mi 6= 1 for some i, then B(M) > 0 and therefore the power of q will be positive,

so that the term will not survive for q = 0. If mi = 1 for all i, i.e. if M = Nℓ, then we have

B(M) = 0 = C(s,M) and sign (M) = 1. Therefore for q = 0, the first summation will become

e
r
n+1,k,Nℓ(s)

provided k = 0.

The second sum is over all M with m1 = ℓ+1. Let a = min{2 ≤ i ≤ ℓ+1 : mi = 1}. Then
as before, B(M) ≥ 2ℓ− a+1. Therefore if a ≤ ℓ, then −ℓ+B(M) ≥ ℓ− a+1 > 0, so that the

term will not survive for q = 0. If a = ℓ+ 1, i.e. if M = N0, then B(M) = ℓ, C(s,M) = dℓ+1

and sign (M) = (−1)ℓ. So for q = 0, the second summation will become (−1)ℓe
r
n,k−1,N0(s) if

k > 0 and dℓ+1 = 0. Thus we have

Z∗
ℓ+1,0ern,k

s
=





e
r
n+1,k,Nℓ(s)

if k = 0,

(−1)ℓe
r
n,k−1,N0(s) if k > 0, dℓ+1 = 0,

0 if k > 0, dℓ+1 > 0.

(4.4.32)

Next we will establish a natural unitary map between L2(S
2ℓ+1
q ) and

HΣ ≡ ℓ2(N)⊗ · · · ⊗ ℓ2(N)︸ ︷︷ ︸
ℓ copies

⊗ℓ2(Z)⊗ ℓ2(N)⊗ · · · ⊗ ℓ2(N)︸ ︷︷ ︸
ℓ copies

.

For t ∈ R, let t+ denote the positive part max{t, 0} and let t− denote the negative part

max{(−t), 0} of t. Let us now observe that for any γ ∈ ΓΣ, the tableaux

s(γ) :=




∑2ℓ+1
1 |γi|

∑ℓ
1 γi + (γℓ+1)+ · · ·

∑ℓ
1 γi + (γℓ+1)+ 0∑2ℓ

1 |γi|
∑ℓ

1 γi + (γℓ+1)+ · · · γ1

· · · · · ·∑ℓ+3
1 |γi|

∑ℓ
1 γi + (γℓ+1)+

∑ℓ−2
1 γi∑ℓ+2

1 |γi|
∑ℓ−1

1 γi∑ℓ
1 γi + (γℓ+1)−




is in G0. Conversely, let s ∈ G n,k
0 for some n, k ∈ N so that e

r
n,k

s
is a basis element of L2(S

2ℓ+1
q ).

Note that s is of the form (4.4.28). Define γ ∈ ΓΣ as follows:
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1. if k > dℓ+1, then

γi = di+1 − di for 1 ≤ i ≤ ℓ− 1,

γi = c2ℓ+2−i − c2ℓ+3−i for ℓ+ 3 ≤ i ≤ 2ℓ+ 1,

γℓ = dℓ+1 − dℓ, γℓ+1 = k − dℓ+1, γℓ+2 = cℓ − k,

2. if k ≤ dℓ+1, then

γi = di+1 − di for 1 ≤ i ≤ ℓ− 1,

γi = c2ℓ+2−i − c2ℓ+3−i for ℓ+ 3 ≤ i ≤ 2ℓ+ 1,

γℓ = k − dℓ, γℓ+1 = k − dℓ+1, γℓ+2 = cℓ − dℓ+1.

Then s(γ) = s. Thus we have a bijective correspondence between G0 and ΓΣ. We will often

denote a basis element e
r
n,k

s
by ξγ using this bijective correspomdence.

Lemma 4.4.1. Let γ ∈ ΓΣ. For n ∈ Z, let

Z
(n)
ℓ+1,0 :=




Znℓ+1,0 if n ≥ 0,

(Z∗
ℓ+1,0)

−n if n < 0.

Define

ξ′γ := Zγ11,0 . . . Z
γℓ
ℓ,0Z

(γℓ+1)
ℓ+1,0




∑2ℓ+1
ℓ+2 γi 0 · · · 0 0∑2ℓ
ℓ+2 γi 0 · · · 0

· · ·
γℓ+2 0

0



.

Then {ξ′γ : γ ∈ ΓΣ} is an orthonormal basis for L2(S
2ℓ+1
q ).

Proof : It follows from equations (4.4.31) and (4.4.32) that the actions of Zj,0 for 1 ≤ j ≤ ℓ on
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the basis elements e
r
n,k

s
are as follows:

Zj,0 :




n+ k k · · · k k 0

c2 k · · · k 0

· · · · · ·
cj k · · · k 0

cj+1 k · · · dj+1

· · · · · ·
cℓ dℓ

dℓ+1




−→

(−1)j−1




1 + n+ k 1 + k · · · 1 + k 1 + k 0

1 + c2 1 + k · · · 1 + k 0

· · · · · ·
1 + cj 1 + k · · · 1 + k 0

1 + cj+1 1 + k · · · 1 + dj+1

· · · · · ·
1 + cℓ 1 + dℓ

1 + dℓ+1




and is 0 for s with dj > 0.

Similarly the action of Zℓ+1,0 on the basis elements are as follows:




n 0 · · · 0 0

c2 0 · · · 0

· · · · · ·
cℓ−1 0 0

cℓ 0

dℓ+1




−→




n− 1 0 · · · 0 0

c2 − 1 0 · · · 0

· · · · · ·
cℓ−1 − 1 0 0

cℓ − 1 0

dℓ+1 − 1




if dℓ+1 > 0, and




n+ k k · · · k 0

c2 k · · · 0

· · · · · ·
cℓ−1 k 0

cℓ 0

0




−→ (−1)ℓ




1 + n+ k 1 + k · · · 1 + k 0

1 + c2 1 + k · · · 0

· · · · · ·
1 + cℓ−1 1 + k 0

1 + cℓ 0

0



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if dℓ+1 = 0. Similarly the action of Z∗
ℓ+1,0 on the basis elements are as follows:




n 0 · · · 0 0

c2 0 · · · 0

· · · · · ·
cℓ−1 0 0

cℓ 0

dℓ+1




−→




1 + n 0 · · · 0 0

1 + c2 0 · · · 0

· · · · · ·
1 + cℓ−1 0 0

1 + cℓ 0

1 + dℓ+1




and for k > 0,




n+ k k · · · k 0

c2 k · · · 0

· · · · · ·
cℓ−1 k 0

cℓ 0

0




−→ (−1)ℓ




n+ k − 1 k − 1 · · · k − 1 0

c2 − 1 k − 1 · · · 0

· · · · · ·
cℓ−1 − 1 k − 1 0

cℓ − 1 0

0




Then it follows from the above that

Zγ11,0 . . . Z
γℓ
ℓ,0Z

(γℓ+1)
ℓ+1,0




∑2ℓ+1
ℓ+2 γi 0 · · · 0 0∑2ℓ
ℓ+2 γi 0 · · · 0

· · ·
γℓ+2 0

0




= (−1)η(γ)




∑2ℓ+1
1 |γi|

∑ℓ
1 γi + (γℓ+1)+ · · · ∑ℓ

1 γi + (γℓ+1)+ 0∑2ℓ
1 |γi|

∑ℓ
1 γi + (γℓ+1)+ · · · γ1

· · · · · ·∑ℓ+3
1 |γi|

∑ℓ
1 γi + (γℓ+1)+

∑ℓ−2
1 γi∑ℓ+2

1 |γi|
∑ℓ−1

1 γi∑ℓ
1 γi + (γℓ+1)−




,

(4.4.33)

where η(γ) :=
∑ℓ

i=1(i − 1)γi + ℓ(γℓ+1)+. Thus ξ′γ = (−1)η(γ)ξγ . Therefore it follows that

{ξ′γ : γ ∈ ΓΣ} is an orthonormal basis for L2(S
2ℓ+1
q ). 2

The map U : L2(S
2ℓ+1
q ) → HΣ given by Uξ′γ = eγ sets up a unitary isomorphism between

L2(S
2ℓ+1
q ) and HΣ. Let P denote the projection onto the span of e0 ⊗ · · · ⊗ e0 in ℓ2(N

ℓ). Then

we have

UZj,0U
∗ = Yj,0 ⊗ I = Yj,0 ⊗ P + Yj,0 ⊗ (I − P ), (4.4.34)
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and

UDeqU
∗ = Dℓ ⊗ P − |Dℓ| ⊗ (I − P )− I ⊗ Ñ, (4.4.35)

where Ñ is the operator em1 ⊗· · ·⊗emℓ
7→ (

∑
mi) em1 ⊗· · ·⊗emℓ

. In other words, with respect

to the decomposition

HΣ = Hℓ ⊕
(
Hℓ ⊗ ℓ2(N

ℓ\{0, . . . , 0})
)
,

one has

UZj,0U
∗ = Yj,0 ⊕ (Yj,0 ⊗ I),

and

UDeqU
∗ = Dℓ ⊕

(
−|Dℓ| ⊗ I − I ⊗ Ñ

)
.

Next we will define the smooth function algebra C∞
eq (S

2ℓ+1
0 ) and prove that the spectral

triple (C∞
eq (S

2ℓ+1
0 ),H,Deq) is regular with simple dimension spectrum {1, 2, . . . , 2ℓ+ 1}.

It follows from decomposition (4.4.34) that if we identify L2(S
2ℓ+1
q ) with HΣ, then the C∗-

algebra generated by the Zj,0’s is Aℓ ⊗ I, where Aℓ is the C
∗-algebra generated by the Yj’s in

L(Hℓ). In view of the decomposition (4.4.34–4.4.35), it is natural to define

C∞
eq (S

2ℓ+1
0 ) = {a⊗ I : a ∈ A∞

ℓ }. (4.4.36)

Theorem 4.4.2. The triple (C∞
eq (S

2ℓ+1
0 ),HΣ,Deq) is a regular spectral triple with simple di-

mension spectrum {1, 2, . . . , 2ℓ+ 1}.

Proof : Since A∞
ℓ is closed under holomorphic function calculus in Aℓ, it follows that C

∞
eq (S

2ℓ+1
0 )

is closed under holomorphic function calculus in C∗({Zj,0 : 1 ≤ j ≤ ℓ+ 1}) = Aℓ ⊗ I. In order

to show regularity, let us introduce the algebra

Beq := {a⊗ P + b⊗ (I − P ) : a, b ∈ Bℓ}. (4.4.37)

Clearly Beq contains C∞
eq (S

2ℓ+1
0 ). We will show that Beq is closed under derivations with both

|Deq| as well as Deq. This will prove regularity of the spectral triple (C∞
eq (S

2ℓ+1
0 ),H,Deq).

Note that |Deq| = |Dℓ| ⊗ I + I ⊗ Ñ . Since I ⊗ Ñ commutes with every element of Beq, we
get δ(a⊗ P + b⊗ (I −P )) = [|Dℓ|, a]⊗P + [|Dℓ|, b]⊗ (I −P ) and [Deq, a⊗ P + b⊗ (I −P )] =

[Dℓ, a]⊗P − [|Dℓ|, b]⊗ (I−P ). Since Bℓ is closed under derivations with |Dℓ| and Dℓ, it follows

that Beq is closed under derivations with |Deq| and Deq.

Next we compute the dimension spectrum of the spectral triple. For w ∈ T
ℓ+1, let Ũw :=

Uw ⊗ I. Then |Deq| commutes with Ũw. Hence again it is enough to consider homogeneous

elements of degree 0. Now by lemma 3.4.2 it follows that for b ∈ Beq with b homogeneous of

degree 0, the function Trace(b|Deq|−z) is meromorphic with simple poles and the poles lie in

{1, 2, · · · , 2ℓ+1}. To show that every point of {1, 2, · · · , 2ℓ+1} is in the dimension spectrum,

observe that

Trace(|Deq|−z) = Σ2ℓ
k=0(2c

2ℓ
k − c2ℓ−1

k )ζ(z − k) (4.4.38)
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where crk is defined as the coefficient of Nk in
(N+r

r

)
. Note that for 0 ≤ k ≤ r one has crk > 0.

Also note the recurrence rcrk = cr−1
k−1 + rcr−1

k . Hence crk ≥ cr−1
k . Now from equation (4.4.38) it

follows that Resz=k+1Trace(|Deq|−z) = 2c2ℓk − c2ℓ−1
k > 0 for 0 ≤ k ≤ 2ℓ. This proves that every

point of {1, 2, · · · , 2ℓ+ 1} is in the dimension spectrum. This completes the proof. 2

We will need the fact that Trace(|Deq|−z) is meromorphic with simple poles lying inside

{1, 2, · · · , 2ℓ+ 1} with non-zero residue and hence we state it as a separate lemma.

Lemma 4.4.3. The function Trace(|Deq|−z) is meromorphic with simple poles at {1, 2, · · · , 2ℓ+
1}. Also for k ∈ {1, 2, · · · , 2ℓ+ 1}, the residue Resz=kTrace(|Deq|−z) is non-zero.

4.5 Regularity and dimension spectrum for q 6= 0

Consider the smooth subalgebra of the Toeplitz algebra defined as:

T ∞ =




∑

j,k∈N

λjk S
∗jp0S

k +
∑

k≥0

λkS
k +

∑

k>0

λ−kS
∗k : λjk, (λk) are rapidly decreasing .





For a :=
∑

j,k∈N λjk S
∗jp0S

k +
∑

k≥0 λkS
k +

∑
k>0 λ−kS

∗k ∈ T ∞, define the seminorm ‖ · ‖m
by ‖a‖m :=

∑
(1 + |j|+ |k|)m|λkl|+

∑
(1+ |k|)m|λk|. Equipped with this family of seminorms,

T ∞ is a Fréchet algebra. We will denote by T ∞
k the k-fold tensor product of T ∞.

Lemma 4.5.1. The triple (T ∞, ℓ2(N), N) is a regular spectral triple. More precisely, T ∞ is

contained in Dom(δ) where δ is the unbounded derivation [N, .] and δ leaves the algebra T ∞

invariant. Also the map δ : T ∞ → T ∞ is continuous.

Proof : Note that [N,S] = −S and [N, p] = 0. Now the lemma follows from the fact that the

unbounded derivation δ is closed. 2

For α ∈ N
2 ∪ Z, let

Wα =





S∗mp0S
n if α = (m,n),

Sr if α = r ≥ 0,

S∗r if α = r < 0.

For α ∈ N
2 ∪ Z, define |α| to be |m| + |n| if α = (m,n) ∈ N

2 and the usual absolute value

|α| if α ∈ Z. For an ℓ tuple α = (α1, α2, · · · , αℓ) in (N2 ∪ Z)ℓ, let |α| = ∑ |αi| and Wα :=

Wα1 ⊗Wα2 ⊗ · · ·Wαℓ
. We need the following simple lemma whose proof we omit as it is easy

to prove.

Lemma 4.5.2. The natural tensor product representation of T ∞
ℓ on ℓ2(N)

⊗ℓ is injective. Thus

we identify T ∞
ℓ with it’s range which is {∑ xαWα :

∑
(1 + |α|)p|xα| <∞ for every p}.
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Remark 4.5.3. The tensor product representation of OP−∞
Dℓ

⊗T ∞
ℓ on L(HΣ) is injective since

OP−∞
Dℓ

:= S(Hℓ) and hence we identify OP−∞
Dℓ

⊗ T ∞
ℓ with its image.

For an operator T , let LT denote the left multiplication map X 7→ TX. Then for T ∈ OP 0
Dℓ

,

the map LT : OP−∞
Dℓ

→ OP−∞
Dℓ

is continuous. Note that if A is a Fréchet algebra and a ∈ A,

then La is a continuous linear operator.

Lemma 4.5.4. Let T ∈ OP 0
Dℓ

and a ∈ T ∞
ℓ . Then the map LT⊗a leaves the algebra OP−∞

Dℓ
⊗

T ∞
ℓ invariant. Moreover LT⊗a = LT ⊗ La on the algebra OP−∞

Dℓ
⊗ T ∞

ℓ .

Proof : Clearly LT⊗a = LT ⊗ La on the algebraic tensor product OP−∞
Dℓ

⊗alg T ∞
ℓ . Now let

a ∈ OP−∞
Dℓ

⊗T ∞
ℓ . Then there exists a sequence an ∈ OP−∞

Dℓ
⊗alg T ∞

ℓ which converges to a in

OP−∞
Dℓ

⊗ T ∞
ℓ . Also an converges to a in the operator norm. Now the result follows from the

continuity of LT⊗a and LT ⊗ La. 2

Proposition 4.5.5. Let

B := Beq +OP−∞
Dℓ

⊗ T ∞
ℓ (4.5.39)

Then one has the following.

1. The vector space B is an algebra.

2. The algebra B is invariant under the derivations δ := [|Deq|, .] and [Deq, .].

3. For b ∈ B, the commutator [Feq, b] ∈ OP−∞
Deq

.

4. For b ∈ B, the function Trace(b|Deq|−z) is meromorphic with only simple poles and the

poles lie in {1, 2, · · · , 2ℓ+ 1}.

Proof : Lemma 4.5.4 and the fact that Bℓ ⊂ OP 0 implies that B is an algebra. As seen in

Theorem 4.4.2, it follows that Beq is invariant under δ and [Deq, .]. Also (3) and (4) holds for

b ∈ Beq. Hence to complete the proof it is enough to consider (2), (3) and (4) for the algebra

OP−∞
Dℓ

⊗ T ∞
ℓ .

Lemma 2.3.14 and the decomposition |Deq| = |Dℓ| ⊗ 1 + 1 ⊗ Ñ implies that δ leaves the

algebra OP−∞
Dℓ

⊗ T ∞
ℓ invariant. Now note that P ∈ OP−∞

Ñ
, it follows that left and right

multiplication by Fℓ ⊗ P and 1 ⊗ P sends OP−∞
Dℓ

⊗ T ∞
ℓ to OP−∞

Deq
≡ OP−∞

Dℓ
⊗ OP−∞

Ñ
. Now

since Feq = Fℓ⊗P −I⊗(I−P ), it follows that [Feq, b] is smoothing for every b ∈ OP−∞
Dℓ

⊗T ∞.

Now the invariance of OP−∞
Dℓ

⊗T ∞
ℓ under [Deq, .] follows from the equation [Deq, b] = δ(b)Feq+

|Deq|[Feq, b] and the fact that OP−∞
Deq

:= OP−∞
Dℓ

⊗OP−∞
Ñ

is contained in OP−∞
Dℓ

⊗ T ∞
ℓ .

Now we will prove that for b ∈ OP−∞
Dℓ

⊗T ∞
ℓ , the function Trace(b|Deq|−z) is meromorphic

with simple poles and the poles lie in {1, 2, · · · , ℓ}. For w ∈ T
2ℓ+1, let Uw = Uw1 ⊗ Uw2 ⊗

· · ·Uw2ℓ+1
be the unitary operator on HΣ. Clearly Uw|Deq|U∗

w = |Deq| for w ∈ T
2ℓ+1. Hence it

is enough to consider Trace(b|Deq|−z) with b homogeneous of degree 0.
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An element b is homogeneous if and only if it commutes with the operators Uw for all w ∈
T
2ℓ+1. This implies b must be of the form eγ 7→ φ(γ)eγ for some function φ, i.e. b =

∑
γ φ(γ)pγ .

An operator of the form
∑

γ∈ΓΣℓ
φ(γ)pγ is in OP−∞

Dℓ
if and only if φ(γ) is rapidly decaying on

ΓΣℓ
. Also, using the description of T ∞, it follows that an operator of the form

∑
n∈N φ(n)pn

belongs to T ∞ if and only if φ(·)− limn→∞ φ(n) is rapidly decreasing. Thus combining these,

one can see that the operator
∑

γ φ(γ)pγ belongs to OP−∞
Dℓ

⊗ T ∞
ℓ if and only if φ is a linear

combination of φA with A varying over subsets of Σ containing Σℓ, where each φA(γ) depends

only on γA and φA(γA) is rapidly decreasing on ΓA. For an element b =
∑

γ φA(γ)pγ , one has

Trace(b|Deq|−z) =
∑

γ

φA(γ)

|γ|z =
∑

γ

φA(γA)

(|γA|+ |γΣ\A|)z
.

By lemma 3.4.2 it follows that Trace(b|Deq|−z) is meromorphic with simple poles and the poles

lie in {1, 2, · · · , |Σ\A|} ⊆ {1, 2, . . . , ℓ}. This completes the proof. 2

4.6 The smooth function algebra C∞(S2ℓ+1
q )

In this subsection, we will define a dense ∗ Fréchet algebra C∞(S2ℓ+1
q ) of Cℓ = π(C(S2ℓ+1

q ))

and show that it is closed under holomorphic functional calculus. Let Bℓ be the C∗ algebra

generated by Aℓ and Fℓ. Note that Bℓ contains K(ℓ2(N)
⊗ℓ ⊗ ℓ2(Z)). Recall that E denotes the

C∗ algebra generated by C(T) and F0.

Lemma 4.6.1. The C∗ algebra E contains K and E/K is isomorphic to the C∗ algebra C(T)⊕
C(T).

Proof : Let |em〉〈en| be the matrix units in K(ℓ2(Z)). Note that [F0, S
∗]S = 2|e0〉〈e0|. Hence

p0 ≡ |e0〉〈e0| ∈ E . Now S∗mp0S
n = |em〉〈en|. Hence K ⊂ E . Let P0 := 1+F0

2 . Then [P0, f ]

is compact for every f . Thus E/K is generated by C(T) and a projection P0 which is in the

center of E/K. Now consider the map

C(T)⊕ C(T) ∋ (f, g) 7→ fP0 + g(1− P0) (mod K) ∈ E/K.

We claim that this map is an isomorphism. To prove we need to show that if fP0 is compact

then f = 0 and if g(1 − P0) is compact then g = 0.

Assume that fP0 is compact for f ∈ C(T). Fix an r ∈ Z. Since fP0 is compact, it follows

that |〈fP0(en), en+r〉| = |f̂(r)| converges to 0 as n → +∞. Hence f̂(r) = 0 for every r. This

proves that f = 0. Similarly one can show that if g(1 − P0) is compact then g = 0. This

completes the proof. 2

Lemma 4.6.2. The C∗-algebra Bℓ contains K(Hℓ) and the map (a, b) 7→ aPℓ+b(1−Pℓ) mod K
from C(S2ℓ+1

q )⊕ C(S2ℓ+1
q ) to Bℓ/K(Hℓ) is an isomorphism.
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Proof : For ℓ = 0 this is just lemma 4.6.1. So let us prove the statement for ℓ ≥ 1. Since

Aℓ contains K(ℓ2(N
ℓ)) ⊗ C(T), it follows that Bℓ contains K(Hℓ). Observe that [Pℓ, αi] = 0

for 1 ≤ i ≤ ℓ and [Pℓ, αℓ+1] is compact. Therefore it follows that [Pℓ, a] is compact for every

a ∈ Aℓ. Hence the map (a, b) 7→ aPℓ + b(1 − Pℓ) mod K from Aℓ ⊕ Aℓ to Bℓ/K is a ∗ algebra

homomorphism onto Bℓ/K. We will show that the map is one-one. For that we have to show

if aPℓ is compact with a ∈ Aℓ then a = 0 and if b(1− Pℓ) is compact with b ∈ Aℓ then b = 0.

Suppose now that aPℓ is compact. Observe that Bℓ ⊂ Tℓ ⊗ E and aPℓ = a(I ⊗ P0). Since

aPℓ = 0, if we apply the symbol map σ on the ℓth copy of T , we get σℓ(a) ⊗ P0 = 0. Hence

a is in the ideal K(ℓ2(N)
⊗ℓ) ⊗ C(T). For m,n ∈ N

ℓ, let emn be the “matrix” units. Let

amn = (emm ⊗ 1)a(enn ⊗ 1). Then amn = emn ⊗ fmn for some fmn ∈ C(T). Since aPℓ is

compact, it follows that fmnP0 is compact as Pℓ = I⊗P0 commutes with enn⊗ I. By the ℓ = 0

case, it follows that fmn = 0 and hence amn = 0 for every m,n. Thus a = 0. Similarly one can

show that if b(1− Pℓ) is compact then b = 0. This completes the proof. 2

Let B be the C∗ algebra on HΣ generated by Aℓ⊗ I, Pℓ⊗1 and 1⊗P and J := K(Hℓ)⊗Tℓ.

Note that J is an ideal since Bℓ is contained in Tℓ ⊗ E ⊗ Tℓ. The next proposition identifies

the quotient B/J .

Proposition 4.6.3. Let ρ : Aℓ ⊕Aℓ ⊕Aℓ ⊕Aℓ → B/J be the map

(a1, a2, a3, a4) 7→ a1Pℓ ⊗ P + a2Pℓ ⊗ (1− P ) + a3(1− Pℓ)⊗ P + a4(1− Pℓ)⊗ (1− P )

from Aℓ⊕Aℓ⊕Aℓ⊕Aℓ into B composed with the canonical projection from B onto B/J . Then

ρ is an isomorphism.

Proof : First note that since [Pℓ, a] ∈ K for a ∈ Aℓ, it follows that Pℓ ⊗ I and I ⊗ P are in the

center of B/J . Hence the map ρ is an algebra homomorphism. By the definition of B it follows

that ρ is onto. Thus we have to show ρ is one-one.

Suppose that a = a1Pℓ ⊗ P + a2Pℓ ⊗ (1− P ) + a3(1− Pℓ)⊗ P + a4(1− Pℓ)⊗ (1− P ) ∈ J .

Let ǫ : T → C be the map ev1 ◦ σ, where ev1 is evaluation at the point 1. Now consider

the map id ⊗ ǫ⊗ℓ : Tℓ ⊗ E ⊗ Tℓ → Tℓ ⊗ E . Note that I ⊗ ǫ⊗ℓ sends J to K(Hℓ). Hence

(I ⊗ ǫ⊗ℓ)(a) = a2Pℓ + a4(1− Pℓ) ∈ K(Hℓ). Hence by lemma 4.6.2, it follows that a2 = 0 = a4.

Since left multiplication by I ⊗ P sends the ideal J to K(HΣ). It follows that (I ⊗ P )a =

a1Pℓ ⊗ P + a3(1 − Pℓ) ⊗ P is compact. Hence a1Pℓ + a3(1 − Pℓ) is compact. Thus again by

lemma 4.6.2, it follows that a1 = 0 = a3. This completes the proof. 2

Now we prove that B is closed under holomorphic functional calculus in B. Let J :=

OP−∞
Dℓ

⊗ T ∞
ℓ . Note that

B :={a1Pℓ ⊗ P + a2Pℓ ⊗ (1− P ) + a3(1− Pℓ)⊗ P + a4(1− Pℓ)⊗ (1− P ) +R :

a1, a2, a3, a4 ∈ A∞
ℓ , R ∈ J }
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Proposition 4.6.4. The algebra B has the following properties:

1. If a1Pℓ ⊗ P + a2Pℓ ⊗ (1 − P ) + a3(1− Pℓ) ⊗ P + a4(1 − Pℓ)⊗ (1− P ) ∈ J then ai = 0

for i = 1, 2, 3, 4. Hence B is isomorphic to the direct sum A∞
ℓ ⊕ A∞

ℓ ⊕ A∞
ℓ ⊕A∞

ℓ ⊕ J .

Equip B with the Fréchet space structure coming from this direct sum decomposition.

2. The algebra B is a ∗-Fréchet algebra contained in B. Moreover the inclusion B ⊂ B is

continuous.

3. The algebra B is closed under holomorphic functional calculus in B.

Proof : Proposition 4.6.3 implies (1). Parts (2) and (3) follows from proposition 3.4.1. Now by

proposition 4.6.3 one has the exact sequence

0 → J → B → Aℓ ⊕Aℓ ⊕Aℓ ⊕Aℓ → 0.

At the smooth algebra level we have the following exact sequence

0 → J → B
θ→ A∞

ℓ ⊕A∞
ℓ ⊕A∞

ℓ ⊕A∞
ℓ → 0.

Since J ⊂ J and A∞
ℓ ⊂ Aℓ are closed under holomorphic functional calculus, it follows from

Lemma A.1.4 that B is spectrally invariant in B. Since by part (2), the Fréchet topology of B

is finer than the norm topology, it follows that B is closed in the holomorphic function calculus

of B. 2

Remark 4.6.5. One can prove that OP−∞
Dℓ

⊗ T ∞
ℓ is closed under holomorphic functional

calculus in K(Hℓ)⊗Tℓ in the same manner by applying theorem 3.2, part 2, [34] and by using

the extension (after tensoring suitably)

0 → K → T → C(T) → 0

at the C∗ algebra level and the extension

0 → S(ℓ2(N)) → T ∞ → C∞(T) → 0

at the Fréchet algebra level.

Corollary 4.6.6. Define the smooth function algebra C∞(S2ℓ+1
q ) by

C∞(S2ℓ+1
q ) = {a ∈ B ∩ Cℓ : θ(a) ∈ ι(A∞

ℓ )},

where θ is as in the proof of proposition 4.6.4 and ι : Aℓ → Aℓ ⊕Aℓ ⊕Aℓ ⊕Aℓ is the inclusion

map a 7→ a ⊕ a ⊕ a ⊕ a. Then the algebra C∞(S2ℓ+1
q ) is closed in B and it is closed under

holomorphic functional calculus in Cℓ.
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Proof : Let j : B → L(HΣ) denote the inclusion map. Then by definition C∞(S2ℓ+1
q ) =

θ−1(ι(A∞
ℓ ))∩ j−1(Cℓ). Since θ and j are continuous and as ι(A∞

ℓ ) and Cℓ are closed, it follows

that C∞(S2ℓ+1
q ) is closed in B. Hence C∞(S2ℓ+1

q ) is a Fréchet algebra. Also C∞(S2ℓ+1
q )

is ∗-closed as ρ is ∗-preserving. Now let a ∈ C∞(S2ℓ+1
q ) be invertible in Cℓ. Then a is

invertible in L(HΣ). By proposition 4.6.4, it follows that a−1 ∈ B. By the closedness of

A∞
ℓ under holomorphic functional calculus, it follows that θ(a−1) ∈ ι(A∞

ℓ ). Thus one has

a−1 ∈ C∞(S2ℓ+1
q ). We have already seen that the Fréchet topology of B is finer than the

norm topology. Same is therefore true for the topology of C∞(S2ℓ+1
q ). Hence it is closed under

holomorphic functional calculus in Cℓ. 2

Proposition 4.6.7. The operators Zj,q ∈ C∞(S2ℓ+1
q ). Hence C∞(S2ℓ+1

q ) is a dense subalgebra

of Cℓ that contains π(A(S2ℓ+1
q )).

The proof of this proposition will be given in the next subsection.

We are now in a position to prove the main theorem.

Theorem 4.6.8. The triple (C∞(S2ℓ+1
q ),HΣ,Deq) is a regular spectral triple with simple di-

mension spectrum {1, 2, · · · , 2ℓ+ 1}.

Proof : Since C∞(S2ℓ+1
q ) ⊂ B the regularity of the spectral triple (C∞(S2ℓ+1

q ),HΣ,Deq) fol-

lows from the regularity of the spectral triple (B,HΣ,Deq) which is proved in proposition ??.

Proposition ?? also implies that the spectral triple has simple dimension spectrum which is a

subset of {1, 2, · · · , 2ℓ+ 1}. The fact that every point in {1, 2, · · · , 2ℓ+ 1} is in the dimension

spectrum follows from lemma 4.4.3. This completes the proof. 2

4.7 The operators Zj,q

We will give a proof of proposition 4.6.7 in this subsection. The main idea will be to exploit

the isomorphism between the Hilbert spaces L2(S
2ℓ+1
q ) and HΣ and a detailed analysis of the

operators Zj,q to show that certain parts of these operators can be ignored for the purpose of

establishing regularity and computing dimension spectrum. Deciding and establishing which

parts of these operators can be ignored is the key step here. It should be noted here that a

similar analysis has been done by D’Andrea in [18], where he embeds L2(S
2ℓ+1
q ) in a bigger

Hilbert space and proves certain approximations for the operators Zj,q. But the approximation

there is not strong enough to enable the computation of dimension spectrum. Here we prove

stronger versions of those approximations, which have made it possible to use them to compute

the dimension spectrum in the previous subsection.

We start with a few simple lemmas that we will use repeatedly during the computations in

this subsection.
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Lemma 4.7.1. Let A ⊆ B ⊆ Σ. Then one has OP−∞
DB

⊗ E∞
Σ\B ⊆ OP−∞

DA
⊗ E∞

Σ\A.

Proof : Since

OP−∞
DB

= S(HB) = S(HA)⊗ S(HB\A) = OP−∞
DA

⊗ S(HB\A),

and S(HB\A) ⊆ E∞
B\A, we have the required inclusion. 2

Let A ⊆ Σ. Let P be a polynomial in |A| variables and let T be the operator on HA given

by

Teγ = P({γi, i ∈ A})q|γA|eγ .

Since the function γ 7→ P({γi, i ∈ A})q|γA| is a rapid decay function on ΓA, it follows that

T ∈ OP−∞
DA

.

Lemma 4.7.2. Let A ⊆ Σ. Let T and T0 be the following operators on HA:

Teγ = qφ(γA)Q(ψ(γA))eγ , T0eγ = qφ(γA)eγ ,

where φ and ψ are some nonnegative functions. If φ(γA) + ψ(γA) > |γA|, then then T − T0 ∈
OP−∞

DA
.

Proof : This is a consequence of the inequality |1− (1− x)
1
2 | < x for 0 ≤ x ≤ 1. 2

Lemma 4.7.3. Let A ⊆ Σ. Let T and T0 be operators on HA given by:

Teγ = qφ(γA)Q(ψ(γA))
−1eγ , T0eγ = qφ(γA)eγ

for some nonnegative functions φ and ψ. If φ(γA) + ψ(γA) > |γA|, then T − T0 ∈ OP−∞
DA

.

Proof : For 0 < r < 1, one has

|1− (1− x)−
1
2 | < cx for 0 ≤ x ≤ r,

where c is some fixed constant that depends on r. Using this, it follows that the map γ 7→
qφ(γ)|1− (1− q2ψ(γ))−

1
2 | is a rapid decay function on ΓA. 2

For j ∈ Σ, we will denote by Ej the C∗-algebra T if j 6= ℓ + 1 and the C∗-algebra E if

j = ℓ+ 1. Thus E∞
j will be T ∞ for j 6= ℓ+ 1 and E∞ = B for j = ℓ+ 1. Thus E∞

Σ will stand

for the space T ∞
ℓ ⊗ E∞ ⊗ T ∞

ℓ . Note that for any subset A of Σ, one has OP−∞
DA

⊆ E∞
Σ .

Lemma 4.7.4. Let A ⊆ Σ, a, b,m, n ∈ N and n > 0. Let T1 and T2 be the operators on HΣ

given by

T1eγ = Q(|γA|+a(γℓ+1)++b(γℓ+1)−+m)eγ , T2eγ = Q(|γA|+a(γℓ+1)++b(γℓ+1)−+n)−1eγ .

Then T1 and T2 are in E∞
Σ .
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Proof : First note that if T ′
1 and T ′′

1 are operators given by

T ′
1eγ = Q(|γA|+ a|γℓ+1|+m)eγ , T ′′

1 eγ = Q(|γA|+ b|γℓ+1|+m)eγ ,

then T1 = PΣT
′
1 + (I − PΣ)T

′′
1 , where PΣ = I+FΣ

2 . By the two previous lemmas, I − T ′
1 and

I − T ′
2 are in OP−∞

DB
where B = A ∪ {ℓ+ 1}. Since OP−∞

DB
is contained in E∞

Σ , it follows that

T ′
1, T

′
2 ∈ E∞

Σ . Since PΣ ∈ E∞
Σ , we get T1 ∈ E∞

Σ .

Proof for T2 is exactly similar. 2

We next proceed with a detailed analysis of the operators Zj,q. First recall that

U∗eγ = ξ′γ = (−1)
∑ℓ

i=1(i−1)γi+ℓ(γℓ+1)+e
r
n,k,s, (4.7.40)

where s is given by

n =

2ℓ+1∑

i=ℓ+2

γi, k =

ℓ∑

i=1

γi + (γℓ+1)+, (4.7.41)

dm =
m−1∑

i=1

γi, cm =
ℓ∑

i=1

γi + |γℓ+1|+
2ℓ+2−m∑

i=ℓ+2

γi for 1 ≤ m ≤ ℓ. (4.7.42)

dℓ+1 = cℓ+1 =

ℓ∑

i=1

γi + (γℓ+1)−. (4.7.43)

We will use this correspondence between e
r
n,k,s and ξ′γ freely in what follows.

From equation (4.2.25), we get

π(u1j)ern,k
s

=
∑

M∈M+
j

Cq(1, r
n,k, N1,1)Cq(j, s,M)κ(rn,k , N1,1)ern+1,k ,M(s)

+
∑

M∈M−
j

Cq(1, r
n,k, N0,1)Cq(j, s,M)κ(rn,k , N0,1)ern,k−1,M(s).

Therefore

Z∗
j,qern,k

s
= q−j+1

∑

M∈M+
j

Cq(1, r
n,k, N1,1)Cq(j, s,M)κ(rn,k , N1,1)ern+1,k ,M(s)

+q−j+1
∑

M∈M−
j

Cq(1, r
n,k, N0,1)Cq(j, s,M)κ(rn,k , N0,1)ern,k−1,M(s).

Thus we have Z∗
j,q =

∑
M∈M+

j
S+
MT

+
M +

∑
M∈M−

j
S−
MT

−
M , where the operators S±

M and T±
M are

given by

S+
Mern,k

s
= e

r
n+1,k ,M(s), M ∈ M

+
j , (4.7.44)

S−
Mern,k

s
= e

r
n,k−1,M(s), M ∈ M

−
j , (4.7.45)

T+
Mern,k

s
= q−j+1Cq(1, r

n,k, N1,1)Cq(j, s,M)κ(rn,k , N1,1)ern,k
s
, M ∈ M

+
j , (4.7.46)

T−
Mern,k

s
= q−j+1Cq(1, r

n,k, N0,1)Cq(j, s,M)κ(rn,k , N0,1)ern,k
s
, M ∈ M

−
j . (4.7.47)
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Lemma 4.7.5. Let S±
M be as above. Then US±

MU
∗ ∈ E∞

Σ .

Proof : Let us first look at the case M ∈ M
±
j where 1 ≤ j ≤ ℓ. In this case, one has S±

Mξγ = ξγ′

where γ′ is given by

γ′i =





γi + 1 if




mi = 1 and mi+1 = ℓ+ 1− i,

m2ℓ+2−i = 1 and m2ℓ+3−i = ℓ+ 2− (2ℓ+ 3− i),

γi − 1 if





mi = ℓ+ 2− i and mi+1 = 1,

mi = ℓ+ 2− i and i = j,

m2ℓ+2−i = ℓ+ 2− (2ℓ+ 2− i) and m2ℓ+3−i = 1,

γi otherwise.

Note that since 1 ≤ j ≤ ℓ, we have γ′ℓ+1 = γℓ+1, and η(γ
′) − η(γ) depends just on M and not

on γ. Therefore US±
MU

∗ is a constant times simple tensor product of shift operators. Thus in

this case US±
MU

∗ ∈ T ∞
ℓ ⊗ I ⊗ T ∞

ℓ ⊆ E∞
Σ .

Next we look at the case M ∈ M
±
ℓ+1. In this case, define γ′ and γ′′ as follows:

γ′i =





γi + 1 if




mi = 1 and mi+1 = ℓ+ 1− i,

m2ℓ+2−i = 1 and m2ℓ+3−i = ℓ+ 2− (2ℓ+ 3− i),

γi − 1 if





mi = ℓ+ 2− i and mi+1 = 1,

m2ℓ+2−i = ℓ+ 2− (2ℓ+ 2− i) and m2ℓ+3−i = 1,

i = ℓ+ 1

γi otherwise.
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γ′′i =





γi + 1 if





mi = 1 and mi+1 = ℓ+ 1− i,

m2ℓ+2−i = 1 and m2ℓ+3−i = ℓ+ 2− (2ℓ+ 3− i),

i = ℓ,

γi − 1 if





mi = ℓ+ 2− i and mi+1 = 1,

m2ℓ+2−i = ℓ+ 2− (2ℓ+ 2− i) and m2ℓ+3−i = 1,

i = ℓ+ 1

γi otherwise.

Then one has

S±
Mξγ =




ξγ′ if γℓ+1 ≤ 0,

ξγ′′ if γℓ+1 > 0.

Therefore in this case, one will have US±
MU

∗ ∈ T ∞
ℓ ⊗ E∞ ⊗ T ∞

ℓ ⊆ E∞
Σ .

2

We will next take a closer look at the operators T±
M . For this, we will need to compute

the quantitites involved in equations (4.7.46) and (4.7.47) more precisely than we have done

earlier. We start with the computation of κ. From equation (4.2.4), we get

ψ(rn,k) = − ℓ
2
(n+ k + (ℓ− 1)k) +

ℓ(ℓ+ 1)

2
k

= − ℓ
2
(n− k).

Therefore

ψ(rn,k)− ψ(N1,1(r
n,k)) = ψ(rn,k)− ψ(rn+1,k) =

ℓ

2
, (4.7.48)

ψ(rn,k)− ψ(N0,1(r
n,k)) = ψ(rn,k)− ψ(rn,k−1) =

ℓ

2
. (4.7.49)

Let us write λ = (n + k, k, . . . , k, 0). We will next compute dλ, where dλ is given by (4.2.4).

One has dλ =
∑

s
q2ψ(s) where the sum is over all those s for which the top row is λ. Such an

s is of the form (4.4.28) and one has

ψ(s) = −1

2
ℓ(n+ ℓk) +

1

2
(ℓ− 1)(ℓ − 2)k +

ℓ∑

i=2

(ci + di) + dℓ+1.

Thus we have

dλ = q−ℓ(n+k)−2(ℓ−1)k
∑

k≤cℓ≤cℓ−1≤...≤c2≤n+k
0≤d2≤d3≤...≤dℓ≤k

dℓ≤dℓ+1≤cℓ

q2(
∑ℓ

i=2(ci+di)+dℓ+1)

67



Now for any x, we have

∑

k≤cℓ≤cℓ−1≤...≤c2≤n+k
0≤d2≤d3≤...≤dℓ≤k

dℓ≤dℓ+1≤cℓ

x(
∑ℓ

i=2(ci+di)+dℓ+1)

=


 ∑

k≤dℓ+1≤cℓ≤cℓ−1≤...≤c2≤n+k

x(
∑ℓ

i=2 ci+dℓ+1)




 ∑

0≤d2≤d3≤...≤dℓ≤k

x(
∑ℓ

i=2 di)




+


 ∑

k≤cℓ≤cℓ−1≤...≤c2≤n+k

x(
∑ℓ

i=2 ci)




 ∑

0≤d2≤d3≤...≤dℓ≤dℓ+1<k

x(
∑ℓ

i=2 di+dℓ+1)


 .(4.7.50)

If we now use the identity

∑

k≤t1≤t2≤...≤tj≤n

x(
∑j

i=1 ti) = xjk
j∏

i=1

(
1− xn−k+i

1− xi

)
,

we get

∑

k≤cℓ≤cℓ−1≤...≤c2≤n+k
0≤d2≤d3≤...≤dℓ≤k

dℓ≤dℓ+1≤cℓ

x(
∑ℓ

i=2(ci+di)+dℓ+1)

= xℓk
ℓ∏

i=1

(
1− xn+i

1− xi

) ℓ−1∏

i=1

(
1− xk+i

1− xi

)
+ x(ℓ−1)k

ℓ−1∏

i=1

(
1− xn+i

1− xi

) ℓ∏

i=1

(
1− xk−1+i

1− xi

)

= x(ℓ−1)k
ℓ−1∏

i=1

(
1− xn+i

1− xi

) ℓ−1∏

i=1

(
1− xk+i

1− xi

)
1

1− xi
1

1− xℓ

(
xk(1− xn+ℓ) + 1− xk

)

= x(ℓ−1)k
ℓ−1∏

i=1

(
1− xn+i

1− xi

) ℓ−1∏

i=1

(
1− xk+i

1− xi

)(
1− xn+k+ℓ

1− xℓ

)
.

Thus

d
1
2
λ = q−

ℓ(n+k)
2

ℓ−1∏

i=1

(
Q(n+ i)

Q(i)

Q(k + i)

Q(i)

)
Q(n+ k + ℓ)

Q(ℓ)
. (4.7.51)

Write

λ′ = (n+ 1 + k, k, . . . , k, 0), λ′′ = (n+ k − 1, k − 1, . . . , k − 1, 0).

Then one has

d
1
2
λd

− 1
2

λ′ = qℓ/2
Q(n+ 1)

Q(n+ ℓ)

Q(n+ k + ℓ)

Q(n+ k + ℓ+ 1)
,

d
1
2
λd

− 1
2

λ′′ = q−ℓ/2
Q(k + ℓ− 1)

Q(k)

Q(n+ k + ℓ)

Q(n+ k + ℓ− 1)
.
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Combining these with (4.7.48) and (4.7.49), we get

κ(rn,k, N1,1(r
n,k)) = qℓ

Q(n+ 1)

Q(n+ ℓ)

Q(n+ k + ℓ)

Q(n+ k + ℓ+ 1)
, (4.7.52)

κ(rn,k, N0,1(r
n,k)) =

Q(k + ℓ− 1)

Q(k)

Q(n+ k + ℓ)

Q(n+ k + ℓ− 1)
. (4.7.53)

Lemma 4.7.6. LetM ∈ M
+
j and T+

M be as in equation (4.7.46). Then UT+
MU

∗ ∈ OP−∞
Dℓ

⊗T ∞
ℓ

if j ≤ ℓ or if j = ℓ+ 1 and M 6= Nℓ.

Proof : From lemma 4.2.5 and equations (4.7.46) and 4.7.52 we get, for M = (m1, . . . ,mj) ∈
M

+
j ,

T+
Mern,k

s
= sign (M)qℓ−j+1+C(rn,k,N1,1)+B(N1,1)+C(s,M)+B(M)Q(n+ 1)

Q(n+ ℓ)

Q(n+ k + ℓ)

Q(n+ k + ℓ+ 1)

× L′(rn,k, 1, 1)

(
j−1∏

a=1

L(s, a,ma,ma+1)

)
L′(s, j,mj) ern,k

s
. (4.7.54)

Since C(rn,k, N1,1) = k and B(N1,1) = 0, we get

T+
Mern,k

s
= sign (M)qℓ−j+1+B(M)+k+C(s,M)φ(s,M)e

r
n,k

s
,

with φ(s,M) a product of terms of the form Q(ψ(γ))±1 where ψ(γ) = |γA|+ c(γℓ+1)± +m for

some subset A ⊆ Σ, c ∈ {0, 1} and some integer m that does not depend on s. Therefore

UT+
MU

∗eγ = sign (M)qℓ−j+1+B(M)+k+C(s,M)φ(s,M)eγ ,

where k and s are given by equations (4.7.41–4.7.43). Since φ(s,M) a product of terms of the

form Q(ψ(γ))±1, it follows from lemma 4.7.4 that the operator eγ 7→ φ(s,M)eγ is in E∞
Σ . Next

look at the operator eγ 7→ qk+C(s,M)eγ . Assume that there is some i ≤ j such that mi 6= 1. Let

p = min{2 ≤ i ≤ j : mi 6= 1}. Then C(s,M) ≥ Hp−1,1(s) ≥ (γℓ+1)−. Therefore

k +C(s,M) ≥ k + (γℓ+1)− =

ℓ∑

i=1

γi + |γℓ+1|.

Hence UT+
MU

∗ ∈ OP−∞
Dℓ

⊗T ∞
ℓ . Next assume that j ≤ ℓ and mi = 1 for all i ≤ j. In this case,

C(s,M) ≥ Hj,1(s) ≥ (γℓ+1)−. Therefore again we have

k +C(s,M) ≥ k + (γℓ+1)− =

ℓ∑

i=1

γi + |γℓ+1|.

and hence UT+
MU

∗ ∈ OP−∞
Dℓ

⊗T ∞
ℓ . Combining the two cases, we have the required result. 2

Lemma 4.7.7. LetM ∈ M
−
j and T−

M be as in equation (4.7.47). Then UT−
MU

∗ ∈ OP−∞
Dℓ

⊗T ∞
ℓ

if M 6= N0,j.
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Proof : From lemma 4.2.5 and equations (4.7.47) and (4.7.53), we get, for M = (m1, . . . ,mj) ∈
M

−
j ,

T−
Mern,k

s
= sign (M)q−j+1+C(rn,k ,N0,1)+B(N0,1)+C(s,M)+B(M)Q(k + ℓ− 1)

Q(k)

Q(n+ k + ℓ)

Q(n+ k + ℓ− 1)

× L′(rn,k, 1, ℓ+ 1)

(
j−1∏

a=1

L(s, a,ma,ma+1)

)
L′(s, j,mj)ern,k

s
. (4.7.55)

Since C(rn,k, N0,1) = 0 and B(N0,1) = 0, we get

T−
Mern,k

s
= sign (M)q−j+1+C(s,M)+B(M)φ(s,M)e

r
n,k

s
,

with φ(s,M) a product of terms of the form Q(ψ(γ))±1 where ψ(γ) = |γA|+ c(γℓ+1)± +m for

some subset A ⊆ Σ, c ∈ {0, 1} and some integer m that does not depend on s. Therefore

UT−
MU

∗eγ = sign (M)q−j+1+C(s,M)+B(M)φ(s,M)eγ ,

where k and s are given by equations (4.7.41–4.7.43). As in the proof of lemma 4.7.6, it is now

enough to prove that C(s,M) ≥ ∑ℓ
i=1 γi + |γℓ+1|. Now assume that mi = 1 for some i ≤ ℓ.

Let p = min{2 ≤ i ≤ j : mi = 1}. Then p ≤ ℓ. We then have

C(s,M) ≥
p−2∑

i=1

Hi,ℓ+1−i(s) +Hp−1,1(s) +Hp−1,ℓ+2−p(s) + Vp−1,ℓ+2−p(s)

≥
p−2∑

i=1

γi + (γℓ+1)− + γp−1 +

(
ℓ∑

i=1

γi + (γℓ+1)+ −
p−1∑

i=1

γi

)

=

ℓ∑

i=1

γi + |γℓ+1|.

So the result follows. 2

Remark 4.7.8. As mentioned in the beginning of this subsection, weaker versions of the two

lemmas above has been proved by D’Andrea in [18]. In our notation, he proves that the part of

Zj,q that be ignored is of the order qk = q
∑ℓ

i=1 γi+(γℓ+1)+ , whereas we prove here that one can

actually ignore terms of a slightly higher order, namely q
∑ℓ

i=1 γi+|γℓ+1|, which makes it possible

to compute Zj,q modulo the ideal OP−∞
Dℓ

⊗ T ∞
ℓ .

Lemma 4.7.9. Define operators Xj on L2(S
2ℓ+1
q ) by

e
r
n,k,s 7→




(−1)j−1qdjQ(dj+1 − dj)ern,k−1,N0,j(s) if 1 ≤ j ≤ ℓ− 1,

(−1)ℓ−1qdℓQ(dℓ+1 − dℓ)Q(k − dℓ)ern,k−1,N0,ℓ(s)
if j = ℓ.

(4.7.56)

Then one has

UZ∗
j,qU

∗ − UXjU
∗ ∈ OP−∞

Dℓ
⊗ T ∞

ℓ .
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Proof : In view of the two forgoing lemmas, it is enough to show that

US−
N0,j

T−
N0,j

U∗ − UXjU
∗ ∈ OP−∞

Dℓ
⊗ T ∞

ℓ , for 1 ≤ j ≤ ℓ, (4.7.57)

Let us first look at the case 1 ≤ j ≤ ℓ− 1. Observe that

sign (N0,j) = (−1)j−1, C(rn,k, N0,1) = 0 = B(N0,1), C(s, N0,j) = dj , B(N0,j) = j − 1.

Therefore from (4.7.55), we get

UT−
N0,j

U∗eγ = (−1)j−1qdj
Q(k + ℓ− 1)

Q(k)

Q(n+ k + ℓ)

Q(n+ k + ℓ− 1)
L′(rn,k, 1, ℓ+ 1)

×
(
j−1∏

a=1

L(s, a, ℓ + 2− a, ℓ+ 1− a)

)
L′(s, j, ℓ + 2− j) eγ . (4.7.58)

From (4.2.18), one gets

L′(rn,k, 1, ℓ+ 1) =

(
ℓ∏

i=2

Q(|k − 0− i+ ℓ+ 1− 1|)
Q(|k − 0− i+ ℓ+ 1|)

)
Q(|k − 0− 1 + ℓ+ 1− 1|)
Q(|n + k − 0− 1 + ℓ+ 1|)

=

(
ℓ∏

i=2

Q(k + ℓ− i)

Q(k + ℓ− i+ 1)

)
Q(k + ℓ− 1)

Q(n+ k + ℓ)

=
Q(k)

Q(n+ k + ℓ)
. (4.7.59)

Similarly, from (4.2.15) one gets, for 1 ≤ a ≤ ℓ− 1,

L(s, a, ℓ+ 2− a, ℓ+ 1− a)

=
ℓ+1−a∏

i=1

Q(|sa,i − sa+1,ℓ+1−a − i+ ℓ+ 1− a|)
Q(|sa,i − sa,ℓ+2−a − i+ ℓ+ 2− a|)

ℓ−a∏

i=1

Q(|sa+1,i − sa,ℓ+2−a − i+ ℓ+ 2− a− 1|)
Q(|sa+1,i − sa+1,ℓ+1−a − i+ ℓ+ 1− a− 1|)

=
Q(ca − da+1 + ℓ− a)

Q(ca − da + ℓ+ 1− a)

Q(ca+1 − da + ℓ− a)

Q(ca+1 − da+1 + ℓ− a− 1)

×
ℓ+1−a∏

i=2

Q(k − da+1 − i+ ℓ+ 1− a)

Q(k − da − i+ ℓ+ 2− a)

ℓ−a∏

i=2

Q(k − da − i+ ℓ+ 1− a)

Q(k − da+1 − i+ ℓ− a)

=
Q(ca − da+1 + ℓ− a)

Q(ca − da + ℓ+ 1− a)

Q(ca+1 − da + ℓ− a)

Q(ca+1 − da+1 + ℓ− a− 1)

×
ℓ−a∏

i=1

Q(k − da+1 − i+ ℓ− a)

Q(k − da − i+ ℓ+ 1− a)

ℓ−a∏

i=2

Q(k − da − i+ ℓ+ 1− a)

Q(k − da+1 − i+ ℓ− a)

=
Q(ca − da+1 + ℓ− a)

Q(ca − da + ℓ+ 1− a)

Q(ca+1 − da + ℓ− a)

Q(ca+1 − da+1 + ℓ− a− 1)

Q(k − da+1 + ℓ− a− 1)

Q(k − da + ℓ− a)
, (4.7.60)
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and from (4.2.18), for j ≤ ℓ− 1,

L′(s, j, ℓ + 2− j)

=

ℓ+1−j∏

i=1

Q(|sj+1,i − sj,ℓ+2−j − i+ ℓ+ 2− j − 1|)
Q(|sj,i − sj,ℓ+2−j − i+ ℓ+ 2− j|)

=
Q(cj+1 − dj + ℓ− j)

Q(cj − dj + ℓ+ 1− j)

(
ℓ−j∏

i=2

Q(k − dj + ℓ+ 1− j − i)

Q(k − dj + ℓ+ 2− j − i)

)
Q(dj+1 − dj)

Q(k − dj + 1)

=
Q(cj+1 − dj + ℓ− j)

Q(cj − dj + ℓ+ 1− j)

Q(dj+1 − dj)

Q(k − dj + ℓ− j)

From the above two equations, we get

(
j−1∏

a=1

L(s, a, ℓ + 2− a, ℓ+ 1− a)

)
L′(s, j, ℓ + 2− j)

=
Q(dj+1 − dj)

Q(k + ℓ− 1)

(
j−1∏

a=1

Q(ca − da+1 + ℓ− a)

Q(ca+1 − da+1 + ℓ− a− 1)

)(
j∏

a=1

Q(ca+1 − da + ℓ− a)

Q(ca − da + ℓ+ 1− a)

)
.

Now substituting all these in equation (4.7.58), we get

UT−
N0,j

U∗eγ = (−1)j−1qdj
Q(dj+1 − dj)

Q(n+ k + ℓ− 1)

(
j−1∏

a=1

Q(ca − da+1 + ℓ− a)

Q(ca+1 − da+1 + ℓ− a− 1)

)

×
(

j∏

a=1

Q(ca+1 − da + ℓ− a)

Q(ca − da + ℓ+ 1− a)

)
eγ . (4.7.61)

Now note that for 1 ≤ a ≤ j − 1,

dj + ca − da+1 + ℓ− a ≥
ℓ∑

i=1

γi + |γℓ+1|, dj + ca+1 − da+1 + ℓ− a− 1 ≥
ℓ∑

i=1

γi + |γℓ+1|,

and for 1 ≤ a ≤ j,

dj + ca+1 − da + ℓ− a ≥
ℓ∑

i=1

γi + |γℓ+1|, dj + ca − da + ℓ+ 1− a ≥
ℓ∑

i=1

γi + |γℓ+1|,

and dj + n+ k + ℓ− 1 ≥∑ℓ
i=1 γi + |γℓ+1|. Therefore by using lemmas 4.7.2 and 4.7.3, we can

write, modulo an operator in OP−∞
Dℓ

⊗ T ∞
ℓ ,

UT−
N0,j

U∗eγ = (−1)j−1qdjQ(dj+1 − dj) eγ .

Using equation (4.7.45), we get

US−
N0,j

U∗eγ = (−1)j−1eγ′ ,
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where

γ′i =




γi if i 6= j,

γi − 1 if i = j.

Observe also that

UXjU
∗eγ = qdjQ(dj+1 − dj) eγ′ ,

where γ′ is as above. Therefore we get (4.7.57) for j ≤ ℓ− 1.

In the case j = ℓ, one has

L′(s, ℓ, 2) =
Q(|sℓ+1,1 − sℓ,2|)
Q(|sℓ,1 − sℓ,2 + 1|) =

Q(dℓ+1 − dℓ)

Q(cℓ − dℓ + 1)
.

and as a result, one has

(
ℓ−1∏

a=1

L(s, a, ℓ+ 2− a, ℓ+ 1− a)

)
L′(s, ℓ, 2)

=
Q(k − dℓ)

Q(k + ℓ− 1)

(
ℓ−1∏

a=1

Q(ca − da+1 + ℓ− a)

Q(ca+1 − da+1 + ℓ− a− 1)

)(
ℓ∏

a=1

Q(ca+1 − da + ℓ− a)

Q(ca − da + ℓ+ 1− a)

)
.

As before, substituting all these in equation (4.7.58), one gets

UT−
N0,ℓ

U∗eγ = (−1)ℓ−1qdℓ
Q(k − dℓ)

Q(n+ k + ℓ− 1)

(
ℓ−1∏

a=1

Q(ca − da+1 + ℓ− a)

Q(ca+1 − da+1 + ℓ− a− 1)

)

×
(

ℓ∏

a=1

Q(ca+1 − da + ℓ− a)

Q(ca − da + ℓ+ 1− a)

)
eγ . (4.7.62)

Application of lemmas 4.7.2 and 4.7.3, now enable us to write the following equality modulo

an operator in OP−∞
Dℓ

⊗ T ∞
ℓ :

UT−
N0,ℓ

U∗eγ = (−1)ℓ−1qdℓQ(k − dℓ)Q(dℓ+1 − dℓ) eγ .

Using equation (4.7.45), we get

US−
N0,ℓ

U∗eγ = (−1)ℓ−1eγ′ ,

where

γ′i =




γi if i 6= ℓ,

γi − 1 if i = ℓ.

Observe also that

UXℓU
∗eγ = qdℓQ(k − dℓ)Q(dℓ+1 − dℓ) eγ′ ,

where γ′ is as above. Therefore we get (4.7.57) for j = ℓ. 2
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Lemma 4.7.10. Let Xj be as in lemma 4.7.9. Then for 1 ≤ j ≤ ℓ, one has UXjU
∗−Y ∗

j,q⊗I ∈
OP−∞

Dℓ
⊗ T ∞

ℓ .

Proof : It follows from equations (4.7.40–4.7.43) that for j ≤ ℓ − 1, one in fact has UXjU
∗ −

Y ∗
j,q ⊗ I = 0. For j = ℓ, one has

(
UXjU

∗ − Y ∗
j,q ⊗ I

)
eγ =

(
q
∑ℓ−1

i=1 γiQ (γℓ + (γℓ+1)−)Q (γℓ + (γℓ+1)+)
)
eγ̂ ,

where γ̂i = γi − 1 if i = ℓ and γ̂i = γi for all other i. Thus

∣∣UXjU
∗ − Y ∗

j,q ⊗ I
∣∣ ∈ OP−∞

Dℓ
⊗ T ∞

ℓ sign
(
UXjU

∗ − Y ∗
j,q ⊗ I

)
∈ E∞

Σ .

Therefore UXjU
∗ − Y ∗

j,q ⊗ I ∈ OP−∞
Dℓ

⊗ T ∞
ℓ . 2

From the two lemmas above (lemmas 4.7.9 and 4.7.10), it follows that for 1 ≤ j ≤ ℓ, one

has UZ∗
j,qU

∗ ∈ C∞(S2ℓ+1
q ). Thus we now need only to take care of the case j = ℓ+ 1.

Lemma 4.7.11. UZ∗
ℓ+1,qU

∗ ∈ C∞(S2ℓ+1
q ).

Proof : Using lemmas 4.7.6 and 4.7.7, it is enough to show that

U(S+
Nℓ
T+
Nℓ

+ S−
N0,ℓ+1

T−
N0,ℓ+1

)U∗ − UXℓ+1U
∗ ∈ C∞(S2ℓ+1

q ). (4.7.63)

From (4.7.54), we get

T+
Nℓ
e
r
n,k

s
= qk

Q(n+ 1)

Q(n+ ℓ)

Q(n+ k + ℓ)

Q(n+ k + ℓ+ 1)
L′(rn,k, 1, 1)

(
ℓ∏

a=1

L(s, a, 1, 1)

)
e
r
n,k

s
. (4.7.64)

From (4.2.15), we get for 1 ≤ a ≤ ℓ− 1,

L(s, a, 1, 1)

=

ℓ+2−a∏

i=2

Q(|sa,i − sa+1,1 − i+ 1|)
Q(|sa,i − sa,1 − i+ 1|)

ℓ+1−a∏

i=2

Q(|sa+1,i − sa,1 − i+ 1− 1|)
Q(|sa+1,i − sa+1,1 − i+ 1− 1|)

=

ℓ+1−a∏

i=2

Q(ca+1 − k + i− 1)

Q(ca − k + i− 1)

ℓ−a∏

i=2

Q(ca − k + i)

Q(ca+1 − k + i)

×Q(ca+1 − da + ℓ+ 1− a)

Q(ca − da + ℓ+ 1− a)

Q(ca − da+1 + ℓ+ 1− a)

Q(ca+1 − da+1 + ℓ+ 1− a)

=

ℓ−a∏

i=1

Q(ca+1 − k + i)

Q(ca − k + i)

ℓ−a∏

i=2

Q(ca − k + i)

Q(ca+1 − k + i)

×Q(ca+1 − da + ℓ+ 1− a)

Q(ca − da + ℓ+ 1− a)

Q(ca − da+1 + ℓ+ 1− a)

Q(ca+1 − da+1 + ℓ+ 1− a)

=
Q(ca+1 − k + 1)

Q(ca − k + 1)

Q(ca+1 − da + ℓ+ 1− a)

Q(ca − da + ℓ+ 1− a)

Q(ca − da+1 + ℓ+ 1− a)

Q(ca+1 − da+1 + ℓ+ 1− a)
,
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and for a = ℓ,

L(s, ℓ, 1, 1) =
Q(|sℓ,2 − sℓ+1,1 − 2 + 1|)
Q(|sℓ,2 − sℓ,1 − 2 + 1|) =

Q(dℓ+1 − dℓ + 1)

Q(cℓ − dℓ + 1)
.

Also from (4.2.18), we have

L′(rn,k, 1, 1) =

(∏ℓ
i=1Q(|k − n− k − i+ 1− 1|)
∏ℓ
i=2Q(|k − n− k − i+ 1|)

)
1

Q(|0− n− k − ℓ− 1 + 1|)

=

(
ℓ∏

i=2

Q(n+ i)

Q(n+ i− 1)

)
Q(n+ 1)

Q(n+ k + ℓ)

=
Q(n+ ℓ)

Q(n+ k + ℓ)
.

Plugging these in equation (4.7.64) and using (4.7.40), we get

UT+
Nℓ
U∗eγ = qk

Q(n+ 1)

Q(n+ ℓ)

Q(n+ k + ℓ)

Q(n+ k + ℓ+ 1)

Q(n+ ℓ)

Q(n+ k + ℓ)

×
(
ℓ−1∏

a=1

Q(ca+1 − k + 1)

Q(ca − k + 1)

Q(ca+1 − da + ℓ+ 1− a)

Q(ca − da + ℓ+ 1− a)

Q(ca − da+1 + ℓ+ 1− a)

Q(ca+1 − da+1 + ℓ+ 1− a)

)

×Q(dℓ+1 − dℓ + 1)

Q(cℓ − dℓ + 1)
eγ .

Thus as earlier, modulo an operator in OP−∞
Dℓ

⊗ T ∞
ℓ , we have the equality

UT+
Nℓ
U∗eγ = qkeγ . (4.7.65)

Next note that B(N0) = ℓ, C(s, N0) = dℓ+1 and sign (N0) = (−1)ℓ so that we get

from (4.7.55)

T−
N0
e
r
n,k

s
= (−1)ℓqdℓ+1

Q(k + ℓ− 1)

Q(k)

Q(n+ k + ℓ)

Q(n+ k + ℓ− 1)

× L′(rn,k, 1, ℓ + 1)

(
ℓ∏

a=1

L(s, a, ℓ + 2− a, ℓ+ 1− a)

)
e
r
n,k

s
. (4.7.66)

Now using (4.7.40), (4.7.59), (4.7.60) and the fact that

L(s, ℓ, 2, 1) =
Q(|sℓ,1 − sℓ+1,1 − 1 + ℓ+ 1− ℓ|)
Q(|sℓ,1 − sℓ,2 − 1 + ℓ+ 2− ℓ|) =

Q(cℓ − dℓ+1)

Q(cℓ − dℓ + 1)
,

we get

UT−
N0
U∗eγ = (−1)ℓqdℓ+1

Q(k + ℓ− 1)

Q(k)

Q(n+ k + ℓ)

Q(n+ k + ℓ− 1)

Q(k)

Q(n+ k + ℓ)

×
(
ℓ−1∏

a=1

Q(ca − da+1 + ℓ− a)

Q(ca − da + ℓ+ 1− a)

Q(ca+1 − da + ℓ− a)

Q(ca+1 − da+1 + ℓ− a− 1)

Q(k − da+1 + ℓ− a− 1)

Q(k − da + ℓ− a)

)

× Q(cℓ − dℓ+1)

Q(cℓ − dℓ + 1)
eγ .
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Thus modulo OP−∞
Dℓ

⊗ T ∞
ℓ , we have the equality

UT−
N0
U∗eγ = (−1)ℓqdℓ+1eγ . (4.7.67)

Define operators T± on L2(S
2ℓ+1
q ) by

T+ξγ = qkξγ , T−ξγ = (−1)ℓdℓ+1ξγ .

By equations (4.7.65) and (4.7.67), it is enough to look at the operators S+
Nℓ
T+ + S−

N0
T−.

Now observe that

S−
N0
ξγ =




ξγ′ if γℓ+1 > 0,

ξγ′′ if γℓ+1 ≤ 0,
S+
Nℓ
ξγ =




ξγ′′′ if γℓ+1 > 0,

ξγ′ if γℓ+1 ≤ 0,

where

γ′i =




γi − 1 if i = ℓ+ 1,

γi otherwise,
γ′′i =




γi − 1 if ℓ ≤ i ≤ ℓ+ 2,

γi otherwise.

and

γ′′′i =





γi + 1 if i = ℓ or i = ℓ+ 2,

γi − 1 if i = ℓ+ 1,

γi otherwise.

Therefore
(
S+
Nℓ
T+ + S−

N0
T−
)
ξγ =




qkξγ′′′ + (−1)ℓqdℓ+1ξγ′ if γℓ+1 > 0,

qkξγ′ + (−1)ℓqdℓ+1ξγ′′ if γℓ+1 ≤ 0.

So if we now define

Tξγ =




(−1)ℓq

∑ℓ
i=1 γiξγ′ if γℓ+1 > 0,

q
∑ℓ

i=1 γiξγ′ if γℓ+1 ≤ 0,

then one gets from the above equation that U
(
S+
Nℓ
T+ + S−

N0
T− − T

)
U∗ is in OP−∞

Dℓ
⊗ T ∞

ℓ .

Thus it is enough to show that UTU∗ ∈ C∞(S2ℓ+1
q ). Now note that

η(γ)− η(γ′) =




ℓ if γℓ+1 > 0,

0 if γℓ+1 ≤ 0.

Therefore it follows that UTU∗eγ = q
∑ℓ

i=1 γieγ′ , i.e. UTU
∗ = Y ∗

ℓ+1,q ⊗ I. Thus we get the

required result. 2

Putting together lemmas 4.7.9, 4.7.10 and 4.7.11, we get proposition 4.6.7.
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4.8 The Chern character of the equivariant spectral triple

We end this chapter by comparing the Chern character of the equivariant spectral triple with

that of the torus equivariant one. Consider a spectral triple (B,H,D) with the following

properties:

• The algebra B is invariant under δ := [|D|, .] and [D, .]. Assume that F := Sign(D) ∈ B.

• The dimension spectrum Σ is finite and simple and does not contain 0.

• For b ∈ B the commutator [F, b] is smoothing.

Then the Fredholm module (B,H, F ) is 1 summable. In this section, we associate a 1

dimensional cycle whose character is cohomologous to the character of the the Fredholm module

(B,H, F ). Let P := 1+F
2 . Define

τ(b0, b1) :=
1

2
Tr(b0[F, b1]),

ψ0(b) :=Tr(bP |D|−z)z=0,

ψ1(b0, b1) :=τ + bψ0.

We will describe a cycle for B whose character is ψ1.

Remark 4.8.1. The cochain ψ0 makes sense as Σ does not contain 0.

First we define the differential graded algebra. Define

Ω0 : = B,

Ω1 : =

∞∏

i=1

B,

Ω : = Ω0 ⊕ Ω1.

We will define a Ω0 bimodule structure on Ω1 such that the linear map d : Ω0 → Ω1 defined by

d(b) := (δ(b), δ2(b), δ3(b), · · · ) becomes a differential. The left multiplication is the usual one

inherited from the algebra multiplication of B. The right module structure is defined by

(b1, b2, b3, · · · ).b : = (b
′

1, b
′

2, b
′

3, · · · ) where b
′

rs are given by

b
′

r : = Σri=1

(
r

i

)
biδ

r−i(b).

Lemma 4.8.2. The vector space Ω1 is a Ω0 bimodule and (Ω, d) is a differential graded algebra.

The proof is by direct verification by using the fact that δ is derivation and the lebnitz rule.

δn(bc) = Σni=0

(
n

i

)
δi(b)δn−i(c).
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Define for r ∈ N+, the functional τr on B by τr(b) := Resz=rTr( bP |D|−z). Since the

dimension spectrum is finite it follows that there exists N such that the functionals τr vanishes

for r ≥ N . Note that the functionals τr are δ invariant i.e. τr(δ(b)) = 0. Now define a functional∫
: Ω1 → C by ∫

(b1, b2, b3, ....) := Σ∞
r=1

(−1)r+1

r
τr(br).

The functional
∫

makes sense as τr is zero for sufficiently large r.

Proposition 4.8.3. The triple (Ω, d,
∫
) is a 1-dimensional cycle for B whose character is ψ1

and hence is cohomologous to τ which is the character of the Fredholm module (B,H, F ).

Proof. First let us compute the coboundaries bτr. Note the asymptotic expansion ([17])

|D|−za ≈ Σ∞
i=0

(−z
i

)
δi(a)|D|−(i+z). (4.8.68)

From the above equation and the fact that [P, b] is smoothing it follows that

τr(bc− cb) = Σ∞
i=1(−1)i+1

(
r + i− 1

i

)
τr+i(bδ

i(c)).

Now we will show that
∫

is a closed graded trace. The fact that the functional
∫

is closed

follows from the invariance of τr under δ. Now let b ∈ Ω0 and ω := (b1, b2, b3, · · · ) ∈ Ω1. Let

bω − ωb := (b
′

1, b
′

2, b
′

3, · · · ). Then

b
′

r := bbr − brb− Σr−1
i=1

(
r

i

)
biδ

r−i(b).

Hence

∫
bω − ωb =Σr=1

(−1)r

r
τr(bbr − brb)− Σr=1

(−1)r

r
τr
(
Σr−1
i=1

(
r

i

)
biδ

r−i
)

=Σr=1

(
Σ∞
i=1

(−1)r+i

r
τr+i(brδ

i(b))

(
r + i− 1

i

))
− Σ∞

r=1

(−1)r

r

(
Σr−1
i=1 τr(biδ

r−i(b))

(
r

i

))

=I1 − I2

where I1 denote the first sum and I2 the second. After changing the order of the summation

in I2, it follows that

I2 = Σ∞
i=1

(
Σr>i

(−1)r

r
τr(biδ

r−i(b))

(
r

i

))

= Σm=1

(
Σ∞
n=1

(−1)n+m

n+m
τm+n(bmδ

n(b))

(
m+ n

m

))

=I1
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since 1
m+n

(m+n
m

)
= 1

m

(m+n−1
n

)
. This proves that

∫
is a trace. Thus (Ω, d,

∫
) is a 1-dimensional

cycle. Now we show that it’s character χ is ψ1 by explicit computation using the asymptotic

expansion 4.8.68. By the asymptotic expansion 4.8.68 one has

Tr(bP |D|−zc) ≈ Tr( bcP |D|−z) + Tr( b[P, c]|D|−z)

+ Σ∞
i=1

(−z
i

)(
Tr( bδi(c)P |D|−(i+z)) + Tr( b[P, δi(c)]|D|−(i+z)

)
.

Since [P, b] is smoothing, it follows that

bψ0(b, c) + Tr(b[P, c]) = Σ∞
i=1

(−1)i+1

i
τi(bδ

i(c)),

bψ0(b, c) + τ(b, c) = χ(b, c) (by the defn of χ).

Hence, by definition χ := ψ1 and is cohomologous to the Chern character of the Fredholm

module (B,H, F ). This completes the proof. 2

Now we show that the Chern character of both the equivariant and the torus equivariant

spectral triple coincide in Hodd(C∞(S2ℓ+1
q )). Let (πeq,H,D) be the equivariant spectral triple

and (πtorus,H,D) be the torus equivariant one with amplification. We have F := Fℓ ⊗ p− 1⊗
(1− p) where F := sign(D). Note that for a ∈ C∞(S2ℓ+1

q ) one has ρ(a) := πeq(a)−πtorus(a) ∈
OP−∞ ⊗ T ∞

ℓ .

Lemma 4.8.4. Let φ(a) := Tr(Pρ(a)) for a ∈ C∞(S2ℓ+1
q ) where P := 1+F

2 . Then one has

bφ = ch(πtorus,H, F )− ch(πeq,H, F ).

Proof. Since P ∈ OP 0 ⊗alg OP
−∞, it follows that Pρ(a) is smoothing for every a ∈

C∞(S2ℓ+1
q ) and hence trace class and thus the cochain φ makes sense. Now we compute the

coboundary bφ.

bφ(a, b) = φ(ab)− φ(ba)

= Tr(P (ρ(ab)− ρ(ba))).

Note that ρ(ab)− ρ(ba) = (πeq(a)ρ(b) + ρ(a)πtorus(b))− (ρ(b)πeq(a) + πtorus(b)ρ(a)). Hence

bφ(a, b) = Tr([P, πeq(a)]ρ(b)) + Tr([P, ρ(a)]πtorus(b)))

=
1

2
Tr([F, πeq(a)]πeq(b))−

1

2
Tr([F, πtorus(a)]πtorus(b)).

Hence bφ = ch(πtorus,H, F )− ch(πeq,H, F ). This completes the proof. 2

Remark 4.8.5. The above lemma also follows more easily from the following observation.

Consider the local cocyle ψ1 for the spectral triple (Beq,H,D). The functionals τi vanishes on

the ideal OP−∞ ⊗ T ∞
ℓ . Hence ψ1(b, c) vanishes if b or c is in OP−∞ ⊗ T ∞

ℓ which implies

ψtorus1 = ψeq1 . Therefore the Chern characters of the torus equivariant and the equivariant

spectral triples differ by the coboundary b(ψeq0 − ψtorus0 ). Observe that φ = ψeq0 − ψtorus0 .
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Remark 4.8.6. Let (πℓ,Hℓ,Dℓ) be the torus equivariant spectral triple. Since (πtorus,H, F )
is unitary equivalent to (πℓ ⊕ π

′
,Hℓ ⊕ H′

, Fℓ ⊕ −1) it follows that the Chern character of

(πtorus,H, F ) and that of (πℓ,Hℓ, Fℓ) coincide. The same is true of the local cocycle ψ1.

Remark 4.8.7. Thus to prove that the index map indD : K1(C(S2ℓ+1
q )) → Z is non-trivial for

the equivariant D it is enough to prove that the index map indDℓ
is non-trivial which we do by

using the local cocycle ψ1. Let U := p ⊗ S∗ + (1 − p) ⊗ 1. The local cocycle ψ1 on C∞(U) is

given by ψ1(f, g) :=
1
2π

∫ 2π
0 f(θ)g

′
(θ)dθ. Hence ψ1(U,U

−1) = −1.
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Chapter 5

The weak heat kernel expansion

The computations carried out in the last two chapters are by direct methods. But one can

offer an easier conceptual explanation for it. Observe that the Mellin transform of the function

Tr(be−t|D|) is Γ(s)Tr(b|D|−s). Thus if the function Tr(be−t|D|) has an asymptotic expansion

near 0, the meromorphic continuation of Tr(b|D|−s) would follow. We show that the spectral

triples considered in the earlier two chapters have this property.

We consider a property called the weak heat kernel expansion property and show that it is

stable under quantum double suspension. We also show that if a spectral triple has the weak

heat kernel expansion property then it is regular and has finite simple dimension spectrum

lying in the set of positive integers. Since the torus equivariant spectral triple is obtained by

quantum double suspending the standard spectral triple on the circle recursively, the result in

Chapter 3 follows. We also discuss some examples of spectral triples which have this property.

This gives a way to construct some more examples for which the local index formula holds.

We begin this chapter with a brief discussion about asymptotic expansions and the Mellin

transform. Then we consider the weak heat kernel expansion property and show its stability

under quantum double suspension.

5.1 Asymptotic expansions and the Mellin transform

Let φ : (0,∞) → C be a continuous function. We say that φ has an asymptotic power series

expansion near 0 if there exists a sequence (ar)
∞
r=0 of complex numbers such that given N there

exists ǫ,M > 0 such that if t ∈ (0, ǫ)

|φ(t) −
N∑

r=0

art
r| ≤MtN+1.

We write φ(t) ∼∑∞
0 art

r as t→ 0+. Note that the coefficients (ar) are unique. For,

aN = lim
t→0+

φ(t)−∑N−1
r=0 art

r

tN
. (5.1.1)
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If φ(t) ∼
∑∞

r=0 art
r as t→ 0+ then φ can be extended continuously to [0,∞) simply by letting

φ(0) := a0.

Let X be a topological space and F : [0,∞) ×X → C be a continuous function. Suppose

that for every x ∈ X, the function t→ F (t, x) has an asymptotic expansion near 0

F (t, x) ∼
∞∑

r=0

ar(x)t
r. (5.1.2)

Let x0 ∈ X. We say that Expansion 5.1.2 is uniform at x0 if given N there exists an open set

U containing x0, ǫ > 0 and an M > 0 such that for 0 < t < ǫ and x ∈ U , one has

|F (t, x) −
N∑

r=0

ar(x)t
r| ≤MtN+1.

We say that Expansion 5.1.2 is uniform if it is uniform at every point of X.

Proposition 5.1.1. Let X be a topological space and F : [0,∞) × X → C be a continuous

function. Suppose that F has a uniform asymptotic power series expansion, say

F (t, x) ∼
∞∑

r=0

ar(x)t
r.

Then for every r ≥ 0, the function ar is continuous.

Proof. It is enough to show that the function a0 is continuous. Let x0 ∈ X be given. Since

the expansion of F is uniform at x0, it follows that there exists an open set U containing x0

and δ,M > 0 such that

|F (t, x) − a0(x)| ≤Mt for t < δ and x ∈ U. (5.1.3)

Let Fn(x) := F ( 1n , x). Then Equation 5.1.3 says that Fn converges uniformly to a0 on U . Thus

a0 is continuous on U and hence at x0. This completes the proof. 2

The following two lemmas are easy to prove and we leave the proof to the reader.

Lemma 5.1.2. Let X,Y be topological spaces. Let F : [0,∞)×X → C and G : [0,∞)×Y → C

be continuous. Suppose that F and G have uniform asymptotic power series expansion. Then

the function H : [0,∞) × X × Y → C defined by H(t, x, y) := F (t, x)G(t, y) has a uniform

asymptotic power series expansion.

Moreover if

F (t, x) ∼
∞∑

r=0

ar(x)t
r, and G(t, y) ∼

∞∑

r=0

br(y)t
r

then

H(t, x, y) ∼
∞∑

r=0

cr(x, y)t
r
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where

cr(x, y) :=
∑

m+n=r

am(x)bn(y).

Lemma 5.1.3. Let φ : [1,∞) → C be a continuous function. Suppose that for every N ,

supt∈[1,∞) |tNφ(t)| <∞. Then the function s 7→
∫∞
1 φ(t)ts−1dt is entire.

5.1.1 The Mellin transform

In this section, we recall the definition of the Mellin transform of a function defined on (0,∞)

and analyse the relationship between the asymptotic expansion of a function and the mero-

morphic continuation of its Mellin transform. Let us introduce some notations. We say that a

function φ : (0,∞) → C is of rapid decay near infinity if for every N > 0, supt∈[1,∞) |tNφ(t)| is
finite. We let M∞ to be the set of continuous complex valued functions on (0,∞) which has

rapid decay near infinity. For p ∈ R, we let

Mp((0, 1]) : = {φ : (0, 1] → C : φ is continuous and sup
t∈(0,1]

tp|φ(t)| <∞},

Mp : = {φ ∈ M∞ : φ|(0,1] ∈ Mp((0, 1])}.

Note that if p ≤ q then Mp ⊂ Mq and Mp((0, 1]) ⊂Mq((0, 1]).

Definition 5.1.4. Let φ : (0,∞) → C be a continuous function. Suppose that φ ∈ Mp for

some p. Then the Mellin transform of φ, denoted Mφ, is defined as follows: For Re(s) > p,

Mφ(s) :=

∫ ∞

0
φ(t)ts−1dt.

One can show that if φ ∈ Mp then Mφ is analytic on the right half plane Re(s) > p + 2.

Also if φ ∈ Mp((0, 1]) then s 7→
∫ 1
0 φ(t)t

s−1 is analytic on Re(s) > p+ 2.

For a < b and K > 0, let Ha,b,K := {σ + it : a ≤ σ ≤ b, |t| > K}.

Definition 5.1.5. Let F be a meromorphic function on the entire complex plane with simple

poles lying inside the set of integers. We say that F has decay of order r ∈ N along the vertical

strips if the function s 7→ srF (s) is bounded on Ha,b,K for every a < b and K > 0. We say

that F is of rapid decay along the vertical strips if F has decay of order r for every r ∈ N.

Proposition 5.1.6. Let φ : (0,∞) → C be a continuous function of rapid decay. Assume that

φ(t) ∼∑∞
0 art

r as t→ 0+. Then

(1) The function φ ∈ M0,

(2) The Mellin transform Mφ of φ extends to a meromorphic function to the whole of complex

plane with simple poles in the set of negative integers. {0,−1,−2,−3, · · · },
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(3) The residue of Mφ at s = −r is given by Ress=−rMφ(s) = ar, and

(4) The meromorphic continuation of the Mellin transform Mφ has decay of order 0 along

the vertical strips.

Proof. By definition, it follows that φ ∈ M0. Since φ has rapid decay at infinity, by lemma

5.1.3, it follows that the function s 7→
∫∞
1 φ(t)ts−1dt is entire. Thus, modulo a holomorphic

function, Mφ(s) ≡
∫ 1
0 φ(t)t

s−1. For N ∈ N, let RN (t) := φ(t) −∑N
r=0 art

r. Thus modulo a

holomorphic function, we have

Mφ(s) ≡
∑

r=0

ar
s+ r

+

∫ 1

0
RN (t)t

s−1dt.

As RN ∈ M−(N+1)((0, 1]) the function s 7→
∫ 1
0 RN (t)t

s−1dt is holomorphic on Re(s) > −N+1.

Thus on Re(s) > −N + 1, modulo a holomorphic function, one has

Mφ(s) ≡
N∑

r=0

ar
s+ r

. (5.1.4)

This shows that Mφ admits a meromorphic continuation to the whole of complex plane and

has simple poles lying in the set of negative integers {0,−1,−2, · · · , }. Also (3) follows from

Equation 5.1.4.

Let a < b and K > 0 be given. Choose N ∈ N such that N + a > 0. Then one has

Mφ(s) =
N∑

r=0

ar
s+ r

+

∫ 1

0
RN (t)t

s−1dt+

∫ ∞

1
φ(t)ts−1dt.

As the function s 7→ 1
s+r is bounded for every r ≥ 0 on Ha,b,K , it is enough to show that the

functions ψ(s) :=
∫ 1
0 RN (t)t

s−1dt and χ(s) :=
∫∞
1 φ(t)ts−1dt are bounded on Ha,b,K.

Choose an M > 0 such that for t ∈ (0, 1], |RN (t)| ≤MtN+1. Hence for s := σ+ it ∈ Ha,b,K ,

|ψ(s)| ≤ M

σ +N + 1
≤ M

a+N + 1
≤M.

Thus ψ is bounded on Ha,b,K .

Now for s := σ + it ∈ Ha,b,K , we have

|χ(s)| ≤
∫ ∞

1
|φ(t)|tσ−1dt ≤

∫ ∞

1
|φ(t)|tb−1dt.

Since φ is of rapid decay, the integral
∫∞
1 |φ(t)|ta−1dt is finite. Thus χ is bounded on Ha,b,K .

This completes the proof. 2

Corollary 5.1.7. Let φ : (0,∞) 7→ C be a smooth function. Assume that for every n, the nth

derivative φ(n) has rapid decay at infinity and admits an asymptotic power series expansion

near 0.
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(1) For every n, the Mellin transform Mφ(n) of φ(n) extends to a meromorphic function to the

whole of complex plane with simple poles in the set of negative integers {0,−1,−2,−3, · · · }.

(2) The meromorphic continuation of the Mellin transform Mφ is of rapid decay along the

vertical strips.

Proof. (1) follows from Proposition 5.1.6. To prove (2), observe thatMφ
′
(s+1) = −sMφ(s).

For Re(s) ≫ 0,

Mφ
′

(s+ 1) : =

∫ ∞

0
φ

′

(t)tsdt

= −
∫ ∞

0
sφ(t)ts−1dt follows from integration by parts)

= −sMφ(s).

As Mφ
′
and Mφ are meromorphic, it follows that Mφ

′
(s + 1) = −sMφ(s). Now a repeated

application of this equation gives

Mφ(s) := (−1)n
Mφ(n)(s+ n)

s(s+ 1) · · · (s+ n− 1)
. (5.1.5)

Now let a < b,K > 0 and r ∈ N be given. Now (3) of Proposition 5.1.6 applied to φ(r), together

with Equation 5.1.5, implies that the function s 7→ srMφ(s) is bounded on Ha,b,K. This proves

(2) and the proof is complete. 2

The following proposition shows how to pass from the decay properties of the Mellin trans-

form of a function to the asymptotic expansion property of the function.

Proposition 5.1.8. Let φ ∈ Mp for some p. Assume that the Mellin transform Mφ is mero-

morphic on the entire complex plane with poles lying in the set of negative integers {0,−1,−2, · · · }.
Suppose that the meromorphic continuation of the Mellin transform Mφ is of rapid decay along

the vertical strips. Then the function φ has an asymptotic expansion near 0.

Moreover if ar := Ress=−rMφ(s) then φ(t) ∼
∑∞

r=0 art
r near 0.

Proof. The proof is a simple application of the inverse Mellin transform. Let M ≫ 0. Then,

by the inversion formula,

φ(t) =

∫ M+∞

M−i∞
Mφ(s)t−sds.

Define Ft(s) := Mφ(s)t−s. Suppose N ∈ N be given. Let σ ∈ (−N − 1,−N) be given. For

every A > 0, by Cauchy’s integral formula, we have

∫ M+iA

M−iA
Ft(s)ds+

∫ σ+iA

M+iA
Ft(s)ds +

∫ σ−iA

σ+iA
Ft(s)ds +

∫ M−iA

σ−iA
Ft(s)ds =

N∑

r=0

Ress=−rFt(s).

(5.1.6)

85



For a fixed t, Ft has rapid decay along the vertical strips. Thus, when A→ ∞, the second and

fourth integrals in Equation 5.1.6 vanishes and we obtain the following equation

φ(t)−
N∑

r=0

art
r =

∫ σ+i∞

σ−i∞
Mφ(s)t−sds. (5.1.7)

ButMφ(σ+it) has rapid decay in t. LetMσ :=
∫∞
−∞ |Mφ(σ+it)|. Then Equation 5.1.7 implies

that

|φ(t)−
N∑

r=0

art
r| ≤Mσt

−σ ≤Mσt
N for t ≤ 1.

Thus we have shown that for every N , RN (t) := φ(t)−∑N
r=0 art

r = O(tN ) as t→ 0 and hence

RN−1(t) = RN (t) + aN t
N = O(tN ) as t→ 0. This completes the proof. 2

5.2 The weak heat kernel expansion

Now, we consider a property of spectral triples which we call the weak heat kernel asymptotic

expansion property. We show that a spectral triple having the weak heat kernel asymptotic

expansion property is regular and has finite simple dimension spectrum lying in the set of

positive integers.

Definition 5.2.1. Let (A,H,D) be a p+ summable spectral triple for a C∗ algebra A where A
is a dense ∗ subalgebra of A. We say that the spectral triple (A,H,D) has the weak heat kernel

asymptotic expansion property if there exists a ∗ subalgebra B ⊂ B(H) such that

(1) the algebra B contains A,

(2) the unbounded derivations δ := [|D|, .] leaves B invariant. Also the unbounded derivation

d := [D, .] maps A into B,

(3) the algebra B is invariant under the left multiplication by F where F := sign(D), and

(4) for every b ∈ B, the function τp,b : (0,∞) 7→ C defined by τp,b(t) = tpTr(be−t|D|) has an

asymptotic power series expansion.

If the algebra A is unital and the representation of A on H is unital then (3) can be replaced

by the condition F ∈ B. The next proposition proves that an odd spectral triple that has the

heat kernel asymptotic expansion property is regular and has simple dimension spectrum.

Proposition 5.2.2. Let (A,H,D) be a p+ summable spectral triple which has the weak heat

kernel asymptotic expansion property. Then the spectral triple (A,H,D) is regular and has finite

simple dimension spectrum. Moreover the dimension spectrum is contained in {1, 2, · · · , p}.
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Proof. Let B ⊂ B(H) be a ∗ algebra for which (1)− (4) of Definition 5.2.1 is satisfied. The

fact that B satisfies (1) and (2) implies that the spectral triple (A,H,D) is regular. First we

assume that D is invertible. Let b ∈ B be given.

Since |D|−q is trace class for q > p, it follows that for every N > p there exists an M > 0

such that Tr(e−t|D|) ≤Mt−NTr(|D|−N ). Now for 1 ≤ t <∞ and N ≥ p one has

|Tr(be−t|D|)| ≤ ‖b‖Tr(e−t|D|)

≤ ‖b‖Mt−NTr(|D|−N )

Thus the function t 7→ Tr(be−t|D|) is of rapid decay near infinity. Now observe that for

Re(s) ≫ 0

Tr(b|D|−s) = 1

Γ(s)

∫ ∞

0
Tr(be−t|D|)ts−1dt. (5.2.8)

By assumption, the function φ(t) := tpTr(be−t|D|) has an asymptotic power series expansion

near 0. By Equation 5.2.8, it follows that Mφ(s) = Γ(s + p)Tr(b|D|−s−p). Now Proposition

5.1.6 implies that the function s 7→ Γ(s)Tr(b|D|−s) is meromorphic with simple poles lying

inside {n ∈ Z : n ≤ p}. As 1
Γ(s) is entire and has simple zeros at {k : k ≤ 0}, it follows that the

function s→ Tr(b|D|−s) is meromorphic and has simple poles with poles lying in {1, 2, · · · , p}.
Suppose D is not invertible. Let P denote the projection onto the kernel of D which is

finite dimensional. Let D
′
:= D + P and b be an element in B∞. Now note that

Tr(be−t|D
′
|) = Tr(PbP )e−t + Tr(be−t|D|).

Hence the function t → tpTr(be−t|D
′
|) has an asymptotic power series expansion. Thus the

function s→ Tr(b|D′ |−s) is meromorphic with simple poles lying in {1, 2, · · · , p}. Observe that

for Re(s) ≫ 0, Tr(b|D′ |−s) = Tr(b|D|−s). Hence the function s→ Tr(b|D|−s) is meromorphic

with simple poles lying in {1, 2, · · · , p}. This completes the proof. 2

Remark 5.2.3. If Tr(be−t|D|) ∼∑∞
r=−p ar(b)t

r then (3) of Proposition 5.1.6 implies that

Resz=kTr(b|D|−z) = 1

k!
a−k(b) for 1 ≤ k ≤ p,

T r(b|D|−z)z=0 = a0(b).

Remark 5.2.4. Let (A,H,D) be a spectral triple which has the weak heat kernel asymptotic

expansion property. Then the dimension spectrum Σ is finite and lies in the set of positive

integers. We call the greatest element in the dimension spectrum as the dimension of the

spectral triple (A,H,D). If Σ is empty, we set the dimension to be 0.

In the next proposition, we show that the usual heat kernel asymptotic expansion implies

the weak heat kernel asymptotic expansion.
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Proposition 5.2.5. Let (A,H,D) be a p+ summable spectral triple for a C∗ algebra A. Suppose

that B is a ∗ subalgebra of B(H) satisfying (1)− (4) of Definition 5.2.1. Assume that for every

b ∈ B, the function σp,b : (0,∞) → C defined by σp,b(t) := tpTr(be−t
2D2

) has an asymptotic

power series expansion.

Then for every b ∈ B, the function τp,b : t 7→ tpTr(be−t|D|) has an asymptotic power series

expansion.

Proof. It is enough to consider the case where D is invertible. Let b ∈ B be given. Let

ψ denotes the Mellin transform of the function t 7→ Tr(be−t
2D2

) and χ denote the Mellin

transform of the function t 7→ Tr(be−t|D|). Then a simple change of variables shows that

ψ(s) =
Γ( s

2
)

2 Tr(b|D|−s). But then χ(s) = Γ(s)Tr(b|D|−s). Thus we obtain the equation

χ(s) =
2Γ(s)

Γ( s2)
ψ(s).

But we have following duplication formula([40]) for the gamma function

Γ(s)Γ(s+
1

2
) = 21−2s√πΓ(2s).

Hence one has

χ(s) =
1√
π
2sΓ(

s+ 1

2
)ψ(s).

Now Proposition 5.1.6 implies that ψ has decay of order 0 along the vertical strips and has

simple poles lying inside {n ∈ Z : n ≤ p}. Since the gamma function has rapid decay along the

vertical strips, it follows that χ has rapid decay along the vertical strips and has poles lying in

{n ∈ Z : n ≤ p}. If χ̃ denotes the Mellin transform of τp,b then χ̃(s) = χ(s + p). Hence χ̃ has

rapid decay along the vertical strips and has poles lying in the set of negative integers. Now

Proposition 5.1.8 implies that the map τp,b has an asymptotic power series expansion near 0.

This completes the proof. 2

5.3 Stability of the weak heat kernel expansion and the quan-

tum double suspension

Let us recall the definition of the quantum double suspension of a unital C∗ algebra . The

quantum double suspension is first defined in [22] and our equivalent definition is as in [23].

Let us fix some notations. We denote the left shift on ℓ2(N) by S which is defined on the

standard orthonormal basis (en) as Sen = en−1 and p denote the projection |e0〉〈e0|. The

number operator on ℓ2(N) is denoted by N and defined as Nen := nen. We denote the C∗

algebra generated by S in B(ℓ2(N)) by T which is the Toeplitz algebra. Note that SS∗ = 1

and p = 1 − S∗S. Let σ : T → C(T) be the symbol map which sends S to the generating

unitary z. Then one has the following exact sequence

0 → K → T
σ→ C(T) → 0.
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Definition 5.3.1. Let A be a unital C∗ algebra. Then the quantum double suspension of A

denoted Σ2(A) is the C∗ algebra generated by A⊗ p and 1⊗ S in A⊗ T .

Let A be a unital C∗ algebra. One has the following exact sequence.

0 → A⊗K(ℓ2(N)) → Σ2(A)
ρ→ C(T) → 0.

where ρ is just the restriction of 1⊗ σ to Σ2(A).

Remark 5.3.2. It can be easily shown that Σ2(C(T)) = C(SUq(2)) and more generally one

can show that Σ2(C(S2n−1
q )) = C(S2n+1

q ). We refer to [22] or Lemma 3.3.1 of Chapter 3 for

the proof. Thus the odd dimensional quantum spheres can be obtained from the circle T by

applying the quantum double suspension recursively.

Let A be a dense ∗ subalgebra of a C∗ algebra A. Define

Σ2
alg(A) := span{a⊗ k, 1 ⊗ Sn, 1⊗ S∗m : a ∈ A, k ∈ S(ℓ2(N)), n,m ≥ 0}

where S(ℓ2(N)) := {(amn) :
∑

m,n(1 +m+ n)p|amn| <∞ for every p}.
Then Σ2

alg(A) is just the ∗ algebra generated by A⊗alg S(ℓ2(N) and 1⊗S. Clearly Σ2
alg(A)

is a dense subalgebra of Σ2(A).

Definition 5.3.3. Let (A,H,D) be a spectral triple and denote the sign of the operator D by

F . Then the spectral triple (Σ2
alg(A),H⊗ ℓ2(N),Σ2(D) := ((F ⊗ 1)(|D| ⊗ 1 + 1⊗N)) is called

the quantum double suspension of the spectral triple (A,H,D).

Remark 5.3.4. Note that the torus equivariant spectral triple on S2ℓ+1
q is obtained from the

spectral (C∞(T), L2(T), 1i
d
dθ ) by applying the double suspension recursively.

5.3.1 Stability of the weak heat kernel expansion

We consider the stability of the weak heat kernel expansion under quantum double suspension.

First observe that the following are easily verifiable.

(1) The spectral triple (S(ℓ2(N)), ℓ2(N), N) has the weak heat kernel asymptotic expansion

with dimension 0.

(2) Let (Ai,Hi,Di) be a spectral triple with the weak heat kernel asymptotic expansion prop-

erty with dimension pi for 1 ≤ i ≤ n. Then the spectral triple (⊕n
i=1Ai,⊕n

i=1Hi,⊕n
i=1Di)

has the weak heat kernel expansion property with dimension p := max{pi : 1 ≤ i ≤ n}.

(3) If (A,H,D) is a spectral triple with the weak heat kernel asymptotic expansion property

and has dimension p then (A,H, |D|) also has the weak heat kernel asymptotic expansion

with dimension p.
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(4) Let (A,H,D) be a spectral triple with the weak heat kernel asymptotic expansion prop-

erty with dimension p. Then the amplification (A⊗ 1,H ⊗ ℓ2(N), |D| ⊗ 1 + 1 ⊗N) also

has the asymptotic expansion property with dimension p+ 1.

We start by proving the stability of the weak heat kernel expansion under tensoring by

compacts.

Proposition 5.3.5. Let (A,H,D) be a spectral triple with the weak heat kernel asymptotic

expansion property of dimension p. Then (A⊗alg S(ℓ2(N)),H⊗ ℓ2(N),D0 := (F ⊗ 1)(|D| ⊗ 1+

1⊗N)) also has the weak heat kernel asymptotic expansion property with dimension p.

Proof. Let B ⊂ B(H) be a ∗ subalgebra for which (1)− (4) of Definition 5.2.1 are satisfied.

We denote B⊗algS(ℓ2(N)) by B0. We show that B0 satisfies (1)−(4) of Definition 5.2.1. Clearly

(1) holds.

We denote the unbounded derivation [|D0|, .],[|D|, .] and [N, .] by δD0 , δD and δN respec-

tively. By assumption δD leaves B invariant. Clearly B⊗algS(ℓ2(N)) is contained in the domain

of δD0 and δD0 = δD⊗1+1⊗δN on B⊗algS(ℓ2(N)). Similarly one can show that the unbounded

derivation [D0, .] maps A⊗alg S(ℓ
2(N)) into B0 invariant.

As F0 := sign(D0) = F⊗1, (3) is clear. Now (4) follows from Lemma 5.1.2 and the equality

tpTr((b⊗ k)e−t|D0| = tpTr(be−t|D|)Tr(ke−tN ). This completes the proof. 2

Now we consider the stability of the heat kernel asymptotic expansion under the double

suspension.

Proposition 5.3.6. Let (A,H,D) be a spectral triple with the weak heat kernel asymptotic

expansion property of dimension p. Assume that the algebra A is unital and the representation

on H is unital. Then the spectral triple (Σ2
alg(A),H ⊗ ℓ2(N),Σ2(D)) also has the weak heat

kernel asymptotic expansion property with dimension p+ 1.

Proof. We denote Σ2(D) by D0. Let B be a ∗ subalgebra of B(H) for which (1) − (4)

of Definition 5.2.1 are satisfied. For f =
∑

n λnz
n ∈ C∞(T), let σ(f) :=

∑
n≥0 λnS

n +∑
n>0 λ−nS

∗n. We denote the projection 1+F
2 by P . We let B0 to denote the algebra B ⊗alg

S(ℓ2(N)) as in Proposition 5.3.5. As in Proposition 5.3.5, we let δD0 , δD, δN to denote the

unbounded derivations [|D0|, .], [|D|, .] and [N, .] respectively. Define

B̃ := {b+ P ⊗ σ(f) + (1− P )⊗ σ(g) : b ∈ B0, f, g ∈ C∞(T)}.

Now it is clear that B̃ satisfies (1) of Definition 5.2.1.
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We have already shown in Proposition 5.3.5 that B0 is closed under δD0 and d0 := [D0, .]

maps A⊗ S(ℓ2(N)) into B0. Now note that

δD0(P ⊗ σ(f)) = P ⊗ σ(if
′

),

δD0((1− P )⊗ σ(g)) = (1− P )⊗ σ(ig
′

),

[D0, P ⊗ σ(f)] = P ⊗ σ(if
′

),

[D0, (1− P )⊗ σ(g)] = −(1− P )⊗ σ(ig
′

).

Thus it follows that δD0 leaves B̃ invariant and d0 := [D0, .] maps Σ2(A) into B̃.
Since F0 := sign(D0) = F ⊗ 1, it follows from definition that F0 ∈ B̃. Now we show that B̃

satisfies (4).

We have already shown in Proposition 5.3.5 that given b ∈ B0, the function τp,b(t) =

tpTr(be−t|D0|) has an asymptotic expansion. Hence the function τp+1,b has an asymptotic

expansion for every b ∈ B0. Now note that

τp+1,P⊗σ(f)(t) = (

∫
f(θ)dθ)tpTr(Pe−t|D|)tT r(e−tN ), (5.3.9)

τp+1,(1−P )⊗σ(g)(t) = (

∫
g(θ)dθ)tpTr((1− P )e−t|D|)tT r(e−tN )). (5.3.10)

We have assumed that A is unital and hence P ∈ B. Hence tpTr(xe−t|D|) has an asymptotic

power series expansion for x ∈ {P, 1 − P}. Also tT r(e−tN ) has an asymptotic power series

expansion. From Equation 5.3.9, Equation 5.3.10 and from the earlier observation that τp+1,b

has an asymptotic power series expansion for b ∈ B0, it follows that for every b ∈ B̃, the function
τp+1,b has an asymptotic power series expansion. This completes the proof. 2

5.3.2 Higson’s differential pair and the heat kernel expansion

Now we discuss some examples of spectral triples which satisfy the weak heat kernel asymptotic

expansion property. In particular we discuss the spectral triple associated to noncommutative

torus and the classical spectral triple associated to a spin manifold. Let us recall Higson’s

notion of a differential pair as defined in [21].

Consider a Hilbert space H and a positive, selfadjoint and an unbounded operator ∆ on H.

We assume that ∆ has compact resolvent. For k ∈ N, let Hk be the domain of the operator

∆
k
2 . The vector space Hk is given a Hilbert space structure by identifying Hk with the graph

of the operator ∆
k
2 . Denote the intersection

⋂
kHk by H∞. An operator T : H∞ → H∞ is said

to be of analytic order ≤ m where m ∈ Z if T extends to a bounded operator from Hk+m → Hk

for every k. We say an operator T on H∞ has analytic order −∞ if T has analytic order less

than −m for every m > 0. The following definition is due to Higson. ( [21])
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Definition 5.3.7. Let ∆ be a positive, unbounded, selfadjoint operator on a Hilbert space H
with compact resolvent. Suppose that D :=

⋃
p≥0Dq is a filtered algebra of operators on H∞.

The pair (D,∆) is called a differential pair if the following conditions hold.

1. The algebra D is invariant under the derivation T → [∆, T ].

2. If X ∈ Dq, then [∆,X] ∈ Dq+1.

3. If X ∈ Dq, then the analytic order of X ≤ q.

Now let us recall Higson’s definition of pseudodifferential operators.

Definition 5.3.8. Let (D,∆) be a differential pair. We denote the orthogonal projection onto

the kernel of ∆ by P . Then P is of finite rank as ∆ has compact resolvent. Let ∆1 := ∆ + P .

Then ∆1 is invertible.

A linear operator T on H∞ is called a basic pseudodifferential operator of order ≤ k if for

every ℓ ≥ 0 there exists m and X ∈ Dm+k such that

T = X∆
−m

2
1 +R

where R has analytic order less than or equal to ℓ.

A finite linear combinations of basic pseudodifferential operators of order ≤ k is called a

pseudodifferential operator of order ≤ k.

We denote the set of pseudodifferential operators of order ≤ 0 by Ψ0(D,∆). It is proved

in [21] that the pseudodifferential operators of order ≤ 0 is in fact an algebra. We need the

following proposition due to Higson. Denote the derivation T 7→ [∆
1
2 , T ] by δ.

Proposition 5.3.9. Let (D,∆) be a differential pair. The derivation δ leaves the algebra

Ψ0(D,∆) invariant.

Let (D,∆) be a differential pair. Assume that ∆− r
2 is trace class for some r > 0. We say

that the analytic dimension of (D,∆) is p if

p := inf{q > 0 : ∆
−r
2 is trace class for every r > q}.

Let us make the following definition of the heat kernel expansion for a differential pair.

Definition 5.3.10. Let (D,∆) be a differential pair of analytic dimension p. We say that

(D,∆) has a heat kernel expansion if for X ∈ Dm, the function t 7→ tp+mTr(Xe−t
2∆) has an

asymptotic expansion near 0.

Now we show that if (D,∆) has the heat kernel expansion then the algebra Ψ0(D,∆) has

the weak heat kernel expansion.
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Proposition 5.3.11. Let (D,∆) be a differential pair of analytic dimension p having the heat

kernel expansion. Denote the operator ∆
1
2 by |D|. Then for every b ∈ Ψ0(D,∆), the function

t 7→ tpTr(be−t|D|) has an asymptotic power series expansion.

Proof. First observe that if R : H∞ → H∞ is an operator of analytic order < −p − n − 1

then R|D|n+1 is trace class and hence by Taylor’s series

Tr(Re−t|D|) =

n∑

k=0

(−1)kTr(R|D|k)
k!

tk +O(tn+1)

for t near 0. Thus it is enough to show the result when b = X∆
−m

2
1 . For an operator T on H∞,

let ζT (s) := Tr(T |D|−s). Then ζb(s) := ζX(s+m). As in Proposition 5.2.5, one can show that

Γ(s)ζX(s) has rapid decay along the vertical strips. Now

Γ(s)ζb(s) =
Γ(s)

Γ(s+m)
Γ(s+m)ζX(s+m).

Hence Γ(s)ζb(s) has rapid decay along the vertical strips. But Γ(s)ζb(s) is the Mellin transform

of Tr(be−t|D|). Hence by Proposition 5.1.8, it follows that tpTr(be−t|D|) has an asymptotic

power series expansion. This completes the proof. 2

We make use of the following proposition to prove that the spectral triple associated to the

NC torus and that of a spin manifold posses the weak heat kernel expansion property.

Proposition 5.3.12. Let (A,H,D) be a finitely summable spectral triple and ∆ := D2. Sup-

pose that there exists an algebra of operators D :=
⋃
p≥0Dp such that (D,∆) is a differential

pair of analytic dimension p. Assume that (D,∆) satisfies the following

1. The algebra D0 contains A and [D,A].

2. The differential pair (D,∆) has the heat kernel expansion property.

3. The operator D ∈ D1.

Then the spectral triple (A,H,D) has the weak heat kernel asymptotic expansion property.

Proof. Without loss of generality, we can assume that D is invertible. We let B be the

algebra of pseudodifferential operators of order 0 associated to (D,∆) . Now Proposition 5.3.9

together with the fact that D0 ⊂ B shows that B contains A and [D,A] and is invariant under

δ := [|D|, .]. Since D ∈ D1, it follows that F := D∆
−1
2 ∈ B. Now (4) of Definition 5.2.1 follows

from Proposition 5.3.11. This completes the proof. 2
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5.3.3 Examples

Now we discuss some examples of spectral triples which satisfy the weak heat kernel asymptotic

expansion. We start with the classical example.

Let M be a Riemannian spin manifold and S → M be a spinor bundle. We denote the

Hilbert space of square integrable sections L2(M,S) by H. We represent C∞(M) on H by

multiplication operators. Let D be the Dirac operator associated with the Levi-Civita con-

nection. Then the triple (C∞(M),H,D) is a spectral triple. Also the operator D2 is then

a generalised Laplacian ( [3]). Let D denote the usual algebra of differential operators on S.

Then (D,∆) is a differential pair. Moreover Proposition 2.4.6 in [3] implies that (D,∆) has the

heat kernel expansion. Also D ∈ D1. Now Proposition 5.3.12 implies that the spectral triple

(C∞(M),H,D) has the weak heat kernel asymptotic expansion.

The spectral triple associated to the NC torus

Let us recall the definition of the noncommutative torus which we abbreviate as NC torus.

Throughout we assume that θ ∈ [0, 2π).

Definition 5.3.13. The C∗ algebra Aθ is defined as the universal C∗ algebra generated by two

unitaries u and v such that uv = eiθvu.

Define the operators U and V on ℓ2(Z2) as follows:

Uem,n := em+1,n,

V em,n := e−inθem,n+1,

where {em,n} denotes the standard orthonormal basis on ℓ2(Z2). Then it is well known that

u→ U and v → V gives a faithful representation of the C∗ algebra Aθ.

Consider the positive selfadjoint operator ∆ on H := ℓ2(Z2) defined on the orthonormal

basis {em,n} by ∆(em,n) = (m2 + n2)em,n. For a polynomial P = p(m,n), define the operator

TP on H∞ by TP (em,n) := p(m,n)em,n. The group Z
2 acts on the algebra of polynomials as

follows. For x := (a, b) ∈ Z
2 and P := p(m,n), define x.P := p(m− a, n− b). We denote (1, 0)

by e1 and (0, 1) by e2.

Note that if P is a polynomial of degree ≤ k, then TP∆
− k

2 is bounded on Ker(∆)⊥. Thus

it follows that if P is a polynomial of degree ≤ k then TP has analytic order ≤ k.

Also note that

∆
k
2
1 U∆

−k
2

1 em,n :=
((m+ 1)2 + n2)

k
2

(m2 + n2)
k
2

em+1,n if (m,n) 6= 0.

Thus it follows that U is of analytic order ≤ 0. Similary one can show that V is of analytic
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order ≤ 0. Now note the following commutation relationship

UTP : = Te1.PU, (5.3.11)

V TP : = Te1.PV. (5.3.12)

Thus it follows that [∆, UαV β] = TQU
αV β for some degree 1 polynomial Q.

Let us define Dp := span{TPα,β
UαV β : deg(Pα,β) ≤ k} and let D :=

⋃
pDp. The above

observations can be rephrased into the following proposition.

Proposition 5.3.14. The pair (D,∆) is a differential pair of analytic dimension 2.

Now we show that the differential pair (D,∆) has the heat kernel expansion.

Proposition 5.3.15. The differential pair (D,∆) has the heat kernel expansion property.

Proof. Let X ∈ Dq be given. It is enough to consider the case when X := TPU
αV β. First

note that Tr(Xe−t∆) = 0 unless (α, β) = 0. Now let X := TP . Again it is enough to consider

the case when P is a monomial. Let P = p(m,n) = mk1nk2 . Now

Tr(TP e
−t∆) = (

∑

m∈Z

mk1e−tm
2
)(
∑

n∈Z

nk2e−tn
2
).

Now the asymptotic expansion follows from applying Proposition 2.4.6 in [3] to the standard

Laplacian on the circle. This completes the proof. 2

Let Aθ be the ∗ algebra generated by U and V . We consider the direct sum representation of

Aθ onH⊕H. DefineD :=

[
0 Tm−in

Tm+in 0

]
. ThenD is selfadjoint onH⊕H andD2 =

[
∆ 0

0 ∆

]
.

It is well known that (Aθ,H⊕H,D) is a 2+ summable spectral triple.

Proposition 5.3.16. The spectral triple (Aθ,H ⊕H,D) has the weak heat kernel asymptotic

expansion property.

Proof. Let (D,∆) be the differential pair considered in Proposition 5.3.14. Then the

amplification (D′
:= M2(D),D2) is a differential pair. Note that D ∈ D′

1. Clearly Aθ ⊂ D′

0.

Note the commutation relations

[Tm±in, U ] = U,

[Tm±in, V ] = ±iV.

This implies that [D,Aθ] ⊂ D′

0. Since (D,∆) has the heat kernel expansion, it follows

that the differential pair (M2(D),D2) also has the heat kernel expansion. Now Proposition

5.3.12 implies that the spectral triple (Aθ,H⊕H,D) has the weak heat kernel expansion. This

completes the proof. 2

But to deduce that the spectral triple (A(S2ℓ+1
q ),Hℓ,Dℓ) satisfies the weak heat kernel

asymptotic expansion, we need a topological version of Definition 5.2.1 and Proposition 5.3.6.

We do this in the next section.
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5.4 Smooth subalgebras and the weak heat kernel asymptotic

expansion

First we recall the definition of smooth subalgebras of C∗ algebras. For an algebra A (possibly

non-unital), we denote the algebra obtained by adjoining a unit to A by A+.

Definition 5.4.1. Let A be a unital C∗ algebra. A dense unital ∗ subalgebra A∞ is called a

smooth subalgebra of A if

1. The algebra A∞ is a Fréchet ∗ algebra.

2. The unital inclusion A∞ ⊂ A is continuous.

3. The algebra A∞ is spectrally invariant in A i.e. if an element a ∈ A∞ is invertible in A

then a−1 ∈ A∞.

Suppose A is a non-unital C∗ algebra. A dense Fréchet ∗ subalgebra A∞ is said to be smooth

in A if (A∞)+ is smooth in A+.

We also assume that our smooth subalgebras satisfy the condition that if A∞ ⊂ A is

smooth then A∞⊗̂πS(ℓ2(Nk)) ⊂ A ⊗ K(ℓ2(Nk)) is smooth. Here ⊗̂π denotes the projective

tensor product.

Let A be a unital C∗ algebra and A∞ be a smooth unital ∗ subalgebra of A. Assume that

the topology on A∞ is given by a countable family of seminorms (‖ · ‖p). Let us denote the

operator 1⊗ S by α. Define the smooth quantum double suspension of A∞ as follows

Σ2
smooth(A∞) :=




∑

j,k∈N

α∗j(ajk ⊗ p)αk +
∑

k≥0

λkα
k +

∑

k>0

λ−kα
∗k : ajk ∈ A∞,

∑

j,k

(1 + j + k)n‖ajk‖p <∞, (λk) is rapidly decreasing



 ..(5.4.13)

Now let us topologize Σ2
smooth(A∞) by defining a seminorm ‖ ‖n,p for every n, p ≥ 0. For an

element

a :=
∑

j,k∈N

α∗j(ajk ⊗ p)αk +
∑

k≥0

λkα
k +

∑

k>0

λ−kα
∗k

in Σ2
smooth(A∞), define ‖a‖n,p by

‖a‖n,p :=
∑

j,k∈N

(1 + |j|+ |k|)n‖ajk‖p +
∑

k∈Z

(1 + |k|)n|λk|.

It is easily verifiable that

1. The subspace Σ2
smooth(A∞) is a dense ∗ subalgebra of Σ2(A).
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2. The topology on Σ2
smooth(A∞) induced by the seminorms (‖ ‖n,p) makes Σ2

smooth(A∞) a

Fréchet ∗ algebra.

3. The unital inclusion Σ2
smooth(A∞) ⊂ Σ2(A) is continuous.

The next proposition proves that the Fréchet algebra Σ2
smooth(A∞) is in fact smooth in Σ2(A).

Proposition 5.4.2. Let A be a unital C∗ algebra and let A∞ ⊂ A be a unital smooth subalgebra

such that A∞⊗̂πS(ℓ2(Nk)) ⊂ A ⊗ K(ℓ2(Nk)) is smooth for every k ∈ N. Then the algebra

Σ2
smooth(A∞)⊗̂πS(ℓ2(Nk)) is smooth in Σ2(A)⊗K(ℓ2(Nk)) for every k ≥ 0.

Proof. Let us denote the restriction of 1⊗σ to Σ2(A) by ρ. Recall the σ : T → C(T) is the

symbol map sending S to the generating unitary. Then one has the following exact sequence

at the C∗ algebra level

0 → A⊗K(ℓ2(N)) → Σ2(A)
ρ→ C(T) → 0.

At the subalgebra level one has the following “sub” exact sequence

0 → A∞⊗̂πS(ℓ2(N)) → Σ2
smooth(A∞)

ρ→ C∞(T) → 0.

Since A∞⊗̂πS(ℓ2(N)) ⊂ A⊗K(ℓ2(N)) and C∞(T) ⊂ C(T) are smooth, it follows from Lemma

A.1.4 that Σ2
smooth(A∞) is smooth in Σ2(A). Similarly one can show along the same lines first by

tensoring the C∗ algebra exact sequence by K(ℓ2(Nk)) and then by tensoring the Fréchet algebra

exact sequence by S(ℓ2(Nk)) that Σ2
smooth(A∞)⊗̂πS(ℓ2(Nk)) is smooth in Σ2(A) ⊗ K(ℓ2(Nk))

for every k > 0. This completes the proof. 2

5.4.1 The topological weak heat kernel expansion

We need the following version of the weak heat kernel expansion.

Definition 5.4.3. Let (A∞,H,D) be a p+ summable spectral triple for a C∗ algebra A where

A∞ is smooth in A. We say that the spectral triple (A∞,H,D) has the topological weak heat

kernel asymptotic expansion property if there exists a ∗ subalgebra B∞ ⊂ B(H) such that

(1) The algebra B∞ has a Fréchet space structure and endowed with it it is a Fréchet ∗
algebra,

(2) The algebra B∞ contains A∞,

(3) The inclusion B∞ ⊂ B(H) is continuous,

(4) The unbounded derivations δ := [|D|, .] leaves B∞ invariant and is continuous. Also the

unbounded derivation d := [D, .] maps A∞ into B∞ in a continuous fashion,
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(5) The left multiplication by the operator F := sign(D) denoted LF leaves B∞ invariant and

is continuous, and

(6) The function τp : (0,∞) × B∞ → C defined by τp(t, b) = tpTr(be−t|D|) has a uniform

asymptotic power series expansion.

We need an analog of Proposition 5.3.5 and Proposition 5.3.6. First we need the following

two lemmas.

Lemma 5.4.4. Let E be a Fréchet space and F ⊂ E be a dense subspace. Let φ : (0,∞)×E →
C be a continuous function which is linear in the second variable. Suppose that φ : (0,∞)×F →
C has a uniform asymptotic power series expansion then φ : (0,∞) × E → C has a uniform

asymptotic power series expansion.

Proof. Suppose that φ(t, f) ∼ ∑∞
r=0 ar(f)t

r. Then ar : F → C is linear and is continuous

for every r ∈ N. Since F is dense in E, for every r ∈ N, the function ar admits a continuous

extension to the whole of E which we still denote by ar. Now fix N ∈ N. Then there exists a

neighbourhood U of E containing 0 and ǫ,M > 0 such that

|φ(t, f)−
N∑

r=0

ar(f)t
r| ≤MtN+1 for 0 < t < ǫ, f ∈ U ∩ F. (5.4.14)

Since φ(t, .) and ar(.) are continuous and as F is dense in E, Equation 5.4.14 continues to hold

for every f ∈ U . This completes the proof. 2

Lemma 5.4.5. Let E1, E2 be Fréchet spaces and let Fi : (0,∞) × Ei → C be continuous and

linear in the second variable for i = 1, 2. Consider the function F : (0,∞) × E1⊗̂πE2 → C

defined by F (t, e1 ⊗ e2) = F1(t, e1)F (t, e2). Assume that F is continuous. If F1 and F2 has

uniform asymptotic expansions then F has a uniform asymptotic power series expansion.

Proof. By Lemma 5.4.4, it is enough to show that F : (0,∞)×E1⊗algE2 → C has a uniform

asymptotic power series expansion. Let θ : E1 × E2 → E1 ⊗alg E2 be defined by θ(e1, e2) =

e1 ⊗ e2. Consider the map G : (0,∞)×E1 ×E2 → C defined by G(t, e1, e2) := F (t, θ((e1, e2))).

By Lemma 5.1.2, it follows that G has a uniform asymptotic power series expansion say

G(t, e) ∼
∞∑

r=0

ar(e)t
r.

The maps ar : E1 × E2 → C are continuous bilinear. We let ãr : E1⊗̂πE2 → C be the linear

maps such that ãr ◦ θ := ar. Let N ∈ N be given. Then there exists ǫ,M > 0 and open sets

U1, U2 containing 0 in E1, E2 such that

|G(t, e) −
N∑

r=0

ar(e)t
r| ≤MtN+1 for 0 < t < ǫ, e ∈ U1 × U2. (5.4.15)
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Without loss of generality, we can assume that Ui := {x ∈ Ei : pi(x) < 1} for a seminorm pi

of Ei. Now Equation (5.4.15) implies that

|F (t, θ(e)) −
N∑

r=0

ãr(θ(e))t
r| ≤MtN+1 for 0 < t < ǫ, e ∈ U1 × U2. (5.4.16)

Hence for t ∈ (0, ǫ) and x ∈ θ(U1 × U2),

|F (t, x) −
N∑

r=0

ãr(x)t
r| ≤MtN+1. (5.4.17)

Since ãr is linear and F is linear in the second variable, it follows that Equation 5.4.17 continues

to hold for x in the convex hull of θ(U1×U2) which is nothing but the unit ball determined by

the seminorm p1 ⊗ p2 in E1 ⊗alg E2. This completes the proof. 2

In the next proposition, we consider the stability of the weak heat kernel asymptotic ex-

pansion property for tensoring by smooth compacts.

Proposition 5.4.6. Let (A∞,H,D) be a spectral triple where the algebra A∞ is a smooth

subalgebra of C∗ algebra. Assume that (A∞,H,D) has the topological weak heat kernel expan-

sion property with dimension p. Then the spectral triple (A∞⊗̂πS(ℓ2(N)),H ⊗ ℓ2(N),D0 :=

(F ⊗ 1)(|D| ⊗ 1 + 1 ⊗ N)) also has the weak heat kernel asymptotic expansion property with

dimension p where F := sign(D).

Proof. Let B∞ ⊂ B(H) be a ∗ subalgebra for which (1)−(6) of Definition 5.4.3 are satisfied.

We denote B∞⊗̂πS(ℓ2(N)) by B∞
0 . We show that B∞

0 satisfies (1)−(6) of Definition 5.4.3. First

note that the natural representation of B∞
0 in H ⊗ ℓ2(N) is injective. Thus (3) is clear. Also

(1) and (2) are obvious. Let us now prove (4).

We denote the unbounded derivation [|D0|, .],[|D|, .] and [N, .] by δD0 , δD and δN respec-

tively. By assumption δD leaves B invariant and is continuous. It is also easy to see that

δN leaves S(ℓ2(N)) invariant and is continuous. Let δ
′
:= δD ⊗ 1 + 1 ⊗ δN . Then δ

′
:

B∞
0 → B∞

0 is continuous. Clearly B∞ ⊗alg S(ℓ2(N)) is contained in the domain of δ and

δ = δ
′
on B∞ ⊗alg S(ℓ2(N)). Now let a ∈ B∞

0 be given. Then there exists a sequence (an) in

B∞ ⊗π S(ℓ2(N)) such that (an) converges to a in B∞
0 . Since δ

′
is continuous on B∞

0 and the

inclusion B∞
0 ⊂ B(H) is continuous, it follows that δD0(an) = δ

′
(an) converges to δ

′
(a). As δD0

is a closed derivation, it follows that a ∈ Dom(δD0) and δD0(a) = δ
′
(a). Hence we have shown

that δD0 leaves B∞
0 invariant and is continuous. Similarly one can show that the unbounded

derivation d0 := [D0, .] maps A⊗̂πS(ℓ
2(N)) into B∞

0 invariant in a continuous manner.

As F0 := sign(D0) = F ⊗ 1, (5) is clear. Consider the function τp : (0,∞) × B∞
0 → C

defined by τp(t, b) := tpTr(be−t|D0|). Then τp(t, b⊗k) = τp(t, b)τ0(t, k). Hence by Lemma 5.4.5,

it follows that τp has a uniform asymptotic power series expansion. This completes the proof.

2
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Now we consider the stability of the weak heat kernel asymptotic expansion under the

double suspension.

Proposition 5.4.7. Let (A∞,H,D) be a spectral triple with the topological weak heat kernel

asymptotic expansion property of dimension p. Assume that the algebra A∞ is unital and the

representation of A∞ on H is unital. Then the spectral triple (Σ2
smooth(A∞),H⊗ ℓ2(N),Σ2(D))

also has the topological weak heat kernel asymptotic expansion property with dimension p+ 1.

Proof. We denote the operator Σ2(D) by D0. Let B∞ be a ∗ subalgebra of B(H) for

which (1) − (6) of Definition 5.4.3 are satisfied. For f =
∑

n∈Z λnz
n ∈ C∞(T), let σ(f) :=∑

n≥0 λnS
n +

∑
n>0 λ−nS

∗n. We denote the projection 1+F
2 by P . We assume here that

P 6= ±1 as the case P = ±1 is similar. We let B∞
0 to denote the algebra B∞⊗̂πS(ℓ2(N))

as in Proposition 5.4.6. As in Proposition 5.4.6, we let δD0 , δD, δN to denote the unbounded

derivations [|D0|, .], [|D|, .] and [N, .] respectively. Define

B̃∞ := {b+ P ⊗ σ(f) + (1− P )⊗ σ(g) : b ∈ B∞
0 , f, g ∈ C∞(T)}.

Then B̃∞ is isomorphic to the direct sum B∞
0 ⊕C∞(T)⊕C∞(T). We give B̃∞ the Fréchet space

structure coming from this decomposition. It is easy to see that B̃∞ is a Fréchet ∗ subalgebra

of B(H ⊗ ℓ2(N)). Clearly (π ⊗ 1)(Σ2(A∞)) ⊂ B̃∞. Thus we have shown that (1) and (2) of

Definition 5.4.3 are satisfied. Since B∞
0 is represented injectively on H⊗ ℓ2(N), it follows that

B̃ satisfies (3).

We have already shown in Proposition 5.4.6 that B∞
0 is closed under δD0 and is continuous.

Also we have shown that d0 := [D0, .] maps A⊗̂πS(ℓ
2(N)) into B∞

0 continuously. Now note

that

δD0(P ⊗ σ(f)) = P ⊗ σ(if
′

),

δD0((1− P )⊗ σ(g)) = (1− P )⊗ σ(ig
′

),

[D0, P ⊗ σ(f)] = P ⊗ σ(if
′

),

[D0, (1− P )⊗ σ(g)] = −(1− P )⊗ σ(ig
′

).

Thus it follows that δD0 leaves B̃∞ invariant and is continuous. Also, it follows that d0 := [D0, .]

maps Σ2(A∞) into B̃ in a continuous manner.

Since F0 := sign(D0) = F ⊗ 1, it follows from definition that F0 ∈ B̃∞. Now we show that

B̃∞ satisfies (6).

We have already shown in Proposition 5.4.6 that the function τp : (0,∞)⊗B∞
0 → C defined

by τp(t, b) := tpTr(be−t|D0|) has a uniform asymptotic power series expansion. Hence τp+1

restricted to B∞
0 has a uniform asymptotic power series expansion. Now note that

τp+1(P ⊗ σ(f)) = (

∫
f(θ)dθ)tpTr(Pe−t|D|)tT r(e−tN ), (5.4.18)

τp+1((1 − P )⊗ σ(g)) = (

∫
g(θ)dθ)tpTr((1− P )e−t|D|)tT r(e−tN )). (5.4.19)
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We have assumed that A∞ is unital and hence P ∈ B∞. Thus tpTr(xe−t|D|) has an asymptotic

power series expansion for x ∈ {P, 1 − P}. Also tT r(e−tN ) has an asymptotic power series

expansion. Now Equation 5.4.18 and Equation 5.4.19, together with the earlier observation

that τp+1 restricted to B∞
0 has a uniform asymptotic power series expansion, imply that the

function τp+1 : (0,∞) × B̃∞ → C has a uniform asymptotic power series expansion. This

completes the proof. 2

Remark 5.4.8. If we start with the canonical spectral triple (C∞(T), L2(T), 1i
d
dθ ) on the circle

and apply the double suspension recursively one obtains the torus equivariant spectral triple for

the odd dimensional quantum spheres studied in Chapter 3. Now Theorem 5.4.7 implies that

the torus equivariant spectral triple on S2ℓ+1
q satisfies the weak heat kernel expansion. Also

Theorem 5.4.7, along with Theorem 5.2.2, gives a proof of Proposition 3.4.4

We end this chapter by showing that the equivariant spectral triple considered in Chapter

4 has the topological weak heat kernel expansion.

Proposition 5.4.9. The equivariant spectral triple (C∞(S2ℓ+1
q ),H,Deq) has the topological

weak heat kernel expansion.

Proof. Let J := OP−∞
Dℓ

⊗̂T ∞
ℓ . Recall the definition of the algebra B considered in Propo-

sition 4.6.4.

B :={a1Pℓ ⊗ P + a2Pℓ ⊗ (1− P ) + a3(1− Pℓ)⊗ P + a4(1− Pℓ)⊗ (1− P ) +R :

a1, a2, a3, a4 ∈ A∞
ℓ , R ∈ J }

The algbera B is isomorphic to A∞
ℓ ⊕ A∞

ℓ ⊕ A∞
ℓ ⊕ A∞

ℓ ⊕ J . We give B the Fréchet space

structure coming from this decomposition. Proposition 4.6.4 and 4.6.5 implies that B contains

C∞(S2ℓ+1
q ) and is closed under δ := [|Deq|, .] and d := [D, .]. Moreover it is shown that δ and

d are continuous on B. Note that Feq := Fℓ ⊗ P − 1 ⊗ (1 − P ). Hence by definition Feq ∈ B.
Now note that the torus equivariant spectral triple (A∞

ℓ ,Hℓ,Dℓ) has the topological weak heat

kernel asymptotic expansion. Thus it is enough to show that the map τ2ℓ+1 : (0,∞) × J → C

defined by τ2ℓ+1(t, b) := t2ℓ+1Tr(be−t|Deq |) has uniform asymptotic expansion.

But this follows from the fact that (OP−∞
Dℓ

,Hℓ,Dℓ) and (T ∞, ℓ2(N), N) have the topological

weak heat kernel expansion and by using Lemma 5.4.5. This completes the proof. 2

Remark 5.4.10. The method in Chapter 4 can be applied to show that the equivariant spectral

triple on the quantum SU(2) constructed in [5] has the weak heat kernel asymptotic expansion

property with dimension 3 and hence deducing the dimension spectrum computed in [17]. It has

been shown in [6] that the isospectral triple studied in [39] differs from the equivariant one (with

multiplicity 2) constructed in [5] only be a smooth perturbation. As a result it will follow that

(Since the extension B∞ for the equivariant spectral triple satisfying Definition 5.4.3 contains
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the algebra of smoothing operators) the isospectral spectral triple also has the weak heat kernel

expansion with dimension 3.
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Chapter 6

The K-groups of the quantum

Steifel manifold SUq(n)/SUq(n− 2)

In the final chapter of this thesis, we compute theK−groups of the quantum homogeneous space

SUq(n)/SUq(n − 2). The K-groups of the quantum group SUq(n) were computed by Nagy in

[27] by using his bivariant K-theory. To construct non-trivial spectral triples on these quantum

homogeneous spaces, an explicit knowledge of the generators is essential. In this chapter,

we compute the K-groups of the space SUq(n)/SUq(n − 2). We make use of the irreducible

representations of the C∗ algebra C(SUq(n)/SUq(n−2)) obtained in [31]. We construct certain

exact sequences as in [35]. Then we perform the six term sequence computation to obtain the

K-groups.

6.1 The quantum Steifel manifold Sn,mq

First let us recall the definition of the quantum Steifel manifold Sn,mq as defined in [31].

Let 1 ≤ m ≤ n − 1. Call the generators of SUq(n) as uij and that of SUq(n −m) as vij .

The map φ : C(SUq(n)) → C(SUq(n−m)) defined by

φ(uij) :=

{
vij if 1 ≤ i, j ≤ n−m,

δij otherwise
(6.1.1)

is a surjective unital C∗ algebra homomorphism such that ∆ ◦ φ = (φ ⊗ φ)∆. In this way the

quantum group SUq(n −m) is a subgroup of the quantum group SUq(n). The C∗ algebra of

the quotient SUq(n)/SUq(n−m) is defined as

C(SUq(n)/SUq(n−m)) := {a ∈ C(SUq(n)) : (φ⊗ 1)∆(a) = 1⊗ a}

We refer to [31] for the proof of the following proposition.
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Proposition 6.1.1. The C∗ algebra C(SUq(n)/SUq(n −m)) is generated by the last m rows

of the matrix (uij) i.e. by the set {uij : n−m+ 1 ≤ i ≤ n}.

In [31], the quotient space SUq(n)/SUq(n−m) is called the quantum Steifel manifold and is

denoted by Sn,mq . We will also use the same notation from now on. In Chapter 3, we have used

a different embedding of SUq(n−1) inside SUq(n). We first show that for both the embeddings

the C∗ algebras of the quotient are isomorphic.

Let σ be the permutation on {1, 2, · · · , n} defined by σ(i) := n− i+1. Thus σ just reverses

the order. Recall the for a permutation τ ∈ Sn, ℓ(τ) denotes the number of inversed pairs i.e.

the cardinality of the set {(i, j) : i < j, τ(i) > τ(j)}. Note that for a permutation τ ∈ Sn, one

has

ℓ(τσ) + ℓ(τ) =
n(n− 1)

2
,

ℓ(στ) + ℓ(τ) =
n(n− 1)

2
.

In this section, we prove that there exists a unique quantum group isomorphism φ : C(SUq(n)) →
C(SUq(n)) such that φ(uij) = qj−iu∗σ(i),σ(j)

Let us make the following definition which will help to state a few proposition in a neat

fashion.

Definition 6.1.2. Let A be a ∗ algebra. An element u = (uij) in Mn(A) is called a q−matrix

if it satisfies the relation

n∑

i1=1

n∑

i2=1

· · ·
n∑

in=1

E(q, i1, i2, · · · in)uj1i1 · · · ujnin = E(q, j1, j2, · · · jn) (6.1.2)

where

E(q, i1, i2, · · · in) :=

{
0 if i1, i2, · · · in are not distinct,

(−q)ℓ(i1,i2,··· ,in)else.

Here for a permutation τ , ℓ(τ) denotes the number of inversed pairs i.e. the cardinality of the

set {(i, j) : i < j, σ(i) > σ(j)}.

For a matrix u = (uij) ∈ Mn(A), let us denote the matrix (u∗ij) by ū, (uji) by ut and

(uσ(i)σ(j)) by u
σ. We need the following proposition.

Proposition 6.1.3. Let A be a ∗ algebra and u = (uij) be a q-matrix. Then

(1) The matrix ū is a q−1-matrix.

(2) The matrix uσ is a q−1-matrix.
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(3) The matrix v = (qj−iuij) is a q-matrix.

Proof. First note that for a permutation J , E(q, J) = (−q)
n(n−1)

2 E(q−1, Jσ). Let u be a

q-matrix with entries in A.

∑

I

E(q−1, I)ūj1i1 ūj2i2 · · · ūjnin =
∑

I

E(q−1, I)u∗j1i1u
∗
j2i2 · · · u

∗
jnin

= (
∑

I

E(q−1, I)ujninujn−1in−1 · · · uj1i1)∗

= (
∑

I

(−q−1)
n(n−1)

2 E(q, Iσ)ujninujn−1in−1 · · · uj1i1)∗

= (−q−1)
n(n−1)

2 E(q, Iσ)

= (−q−1)
n(n−1)

2 (−q)
n(n−1)

2 E(q−1, I).

This proves (1). The proof of (2) and (3) are similar. 2

We need one more fact. The proof can be found in [38]. We repeat the proof here for our

convenience.

Proposition 6.1.4. Let A be a compact quantum group and let h be its Haar state. Consider a

finite dimensional irreducible representation u of A. Define E := (1⊗h)(utū). Then E = utEū.

Also the matrix E is positive, invertible and the matrix
√
Eū

√
E−1 is unitary.

Proof. Let ∆ be the comultiplication on A. Recall the h is a Haar state implies that

(h⊗ 1) ◦∆(a) = h(a)1. Now observe that

Eij = h((utū)ij)

= h(
∑

k

ukiu
∗
kj)

=
∑

k

h(ukiu
∗
kj)

=
∑

k

(h⊗ 1)∆(ukiu
∗
kj)

=
∑

k,r,s

(h⊗ 1)(ukr ⊗ uri)(u
∗
ks ⊗ u∗sj)

=
∑

r,s

uri(
∑

k

h(ukru
∗
ks))u

∗
ks

=
∑

r,s

utirErsūsj .

Hence E = utEū.

Since u is a finite dimensional irreducible representation of A it follows that ut is invertibe

[[43]]. Also ut∗ = ū. Thus utū is positive and invertibe. Hence utū ≥ δ for some δ > 0 and
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thus E is positive and invertible. Let v :=
√
Eū

√
E−1. Now observe that

vv∗ =
√
EūE−ū∗

√
E

=
√
EūE−ut

√
E

=
√
EE−1(ut)−1ut

√
E

=
√
EE−1

√
E

= 1

Similarly one can show that v∗v = 1. This completes the proof. 2.

Now we compute E for the fundamental representation u corresponding to the Young

tableau (1, 0, 0, · · · , 0) of SUq(ℓ+ 1). We make use of the notations in Section 4.2 of Chapter

4. Let us denote the Young tableau (0, 0, · · · , 0) by 0 itself and there is only one GT-tableau

with 0 as its top row which we again denote by 0. Then the basis vector e00,0 represents the

vector 1 ∈ C(SUq(ℓ+ 1)) in L2(SUq(ℓ+ 1)). For 1 ≤ i ≤ ℓ+ 1, Define the GT tableau r(i) as

r
(i)
ab :=

{
0 if 1 ≤ a ≤ i, b = ℓ+ 2− a,

1 otherwise.

Let r be a GT tableau and M := (m1,m2, · · · ,mi). Observe that M(r) = 0 if and only if

r = r(i) and M := (ℓ+ 1, ℓ, · · · , ℓ+ 2− i). Let us now compute the action of u∗ij on e
0
0,0. Note

that

< π(u∗ij)e
0
00|eλrs > =< e000|π(uij)eλrs >

=
∑

µ,m,n

Cq(i, r,m)Cq(j, s, n)κ(r,m) < e000|eµmn >

= Cq(i, r, 0)Cq(j, s, 0)κ(r, 0).

Thus π(u∗ij)e
0
00 = Cq(i, r

(i), 0)Cq(j, r
(j), 0)κ(r(i), 0)er(i)r(j) .

Now we compute Cq(i, r
(i), 0). Let M := (ℓ+1, ℓ, · · · , ℓ+2− i). We omit the superscript i

from r(i) and simply denote it by r. We use Lemma 4.2.5 in Chapter 4. Clearly

sign(M) = (−1)i−1,

B(M) = i− 1,

C(r,M) = 0.
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For 1 ≤ a ≤ i− 1, one has

L(r, a,ma,ma+1) =

ℓ+2−a∏

i=1
i6=ma

Q(|ra,i − ra+1,ma+1 − i+ma+1|)
Q(|ra,i − ra,ma − i+ma|)

ℓ+1−a∏

i=1
i6=ma+1

Q(|ra+1,i − ra,ma − i+ma − 1|)
Q(|ra+1,i − ra+1,ma+1 − i+ma+1 − 1|)

=

ma+1∏

i=1

Q(|1− 0− i+ma − 1|)
Q(|1− 0− i+ma|)

ma+2∏

i=1

Q(|1− 0− i+ma − 1|)
Q(|1− 0− i+ma+1 − 1|)

=

ma+1∏

i=1

Q(ma − i)

Q(ma − i+ 1)

ma+2∏

i=1

Q(ma+1 − i+ 1)

Q(ma+1 − i)

=
Q(ma+1)

Q(ma)
.

Now let us compute L
′
(r, i,mi).

L′(r, i,mi) =

∏ℓ+1−i
j=1 Q(|ri+1,j − ri,mi

− j +mi − 1|)
∏ℓ+2−i

j=1
j 6=mi

Q(|ri,j − ri,mi
− j +mi|)

.

=

∏ℓ+1−i
j=1 Q(|1− 0− j +mi − 1|)
∏ℓ+1−i
j=1 Q(|1− 0− j +mi|)

=
1

Q(mi)
.

Thus from 4.2.5, we get Cq(i, r
(i), 0) = (−q)i−1 1

Q(ℓ+1) . Now we compute the matrix E for

the fundamental representation u of C(SUq(ℓ+ 1)).

Proposition 6.1.5. Let u be the fundamental unitary defining the C∗ algebra C(SUq(ℓ+ 1)).

Let E := (1 ⊗ h)(utū). Then E is a diagonal matrix. Moreover there exists a constant C

depending only on q such that Eii = Cq2i.

Proof. By definition

Eij =
∑

k

h(ukiu
∗
kj)

=
∑

k

< π(u∗ki)e
0
00|π(u∗kje000 >

=
∑

k

Cq(k, r
(k), 0)2Cq(i, r

(i), 0)Cq(j, r
(j), 0)κ(r(k), 0)0 < er(k)r(i) |er(k)r(j) > .

Thus E is a diagonal matrix and Eii := Cq2i where C := q−2
∑

k Cq(k, r
(k), 0)2κ(r(k), 0)2. This

completes the proof. 2

We prove the following theorem which is the main point of this section.
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Theorem 6.1.6. There exists a unique quantum group isomorphism θ : C(SUq(n)) → C(SUq(n))

such that θ(uij) = qj−iu∗n−i+1,n−j+1.

Proof. Let σ be the permutation on {1, 2, · · · , n} such that σ(i) = n − i. By Propo-

sition 6.1.3, it follows that (qi−ju∗ij) is a q−1-matrix. Hence, again by Proposition 6.1.3,

(qσ(i)−σ(j)u∗σ(i),σ(j)) is a q matrix.

It follows from Proposition 6.1.4 that the matrix E
1
2 ūE

−1
2 is a unitary where E is the

matrix considered in Proposition 6.1.5. Thus the matrix (qi−ju∗ij) is a unitary matrix. Hence

(qσ(i)−σ(j)u∗σ(i)σ(j)) is a unitary q matrix. Thus there exists a C∗ algebra homomorphism θ :

C(SUq(n)) → C(SUq(n)) such that θ(uij) = qj−iu∗n−i,n−j. Since θ2 = 1, it follows that θ is a

C∗ algebra isomorphism.

Now we check that θ is a quantum group homomorphism. For,

∆ ◦ θ(uij) = qj−i
∑

k

u∗σ(i)k ⊗ u∗kσ(j)

=
∑

k

qk−iu∗σ(i)σ(k) ⊗ qj−ku∗σ(k)σ(j)

= (θ ⊗ θ) ◦∆(uij).

Thus we have θ is a quantum group isomorphism. This completes the proof. 2

Let us denote the isomorphism on C(SUq(n)) by θ
n. Let φm and ψm be the embeddings of

SUq(n−m) in SUq(n) defined as follows:

φm(uij) :=

{
vij if 1 ≤ i, j ≤ n−m,

δij otherwise.
(6.1.3)

ψm(uij) :=

{
vi−m,j−m if m+ 1 ≤ i, j ≤ n,

δij otherwise.
(6.1.4)

Then the following commutative diagram is clear.

C(SUq(n))

θn

��

φm // C(SUq(n−m))

θn−m

��
C(SUq(n))

ψm

// C(SUq(n−m))

Thus the quotient with respect to the embeddings φm and ψm are isomorphic. In this chapter

we consider the embedding φm.

6.2 Irreducible representations of C(Sn,mq )

In this section, we recall the irreducible representations of the C∗ algebra C(Sn,mq ) as described

in [31]. First we recall the irreducible representations of C(SUq(n)) as in [37]. The one dimen-

sional representations of C(SUq(n)) are paramatrised by the torus Tn−1. We consider Tn−1 as
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a subset of Tn under the inclusion (t1, t2, · · · tn−1) → (t1, t2, · · · , tn−1, tn) where tn :=
∏n−1
i=1 t̄i.

For t := (t1, t2, · · · , tn) ∈ T
n−1, let τt : C(SUq(n)) → C be defined as τt(uij) := tn−i+1δij . Then

τt is a ∗ algebra homomorphism. Moreover the set {τt : t ∈ T
n−1} forms a complete set of

mutually inequivalent one dimensional representations of C(SUq(n)).

Let us denote the transposition (i, i + 1) by si. The map πsi : C(SUq(n)) → B(ℓ2(N))

defined on the generators urs as follows

πsi(urs) :=





√
1− q2N+2S if r = i, s = i,

−qN+1 if r = i, s = i+ 1,

qN if r = i+ 1, s = i,

S∗
√

1− q2N+2 if r = i+ 1, s = i+ 1,

δij otherwise.

is a ∗ algebra homomorphism. For any two representations φ and ξ of C(SUq(n)), let φ ∗ ξ :=
(φ ⊗ ξ)∆. For ω ∈ Sn, let ω = si1si2 · · · sik be a reduced expression. Then the representation

πω := πsi1 ∗ πsi2 ∗ · · · ∗ πsik is an irreducible representation and upto unitary equivalence the

representation πω is independent of the reduced expression. For t ∈ T
n−1 and ω ∈ Sn let

πt,ω := τt ∗ πω. We refer to [37] for the proof of the following theorem.

Theorem 6.2.1. The set {πt,ω : t ∈ T
n−1, ω ∈ Sn} forms a complete set of mutually inequiva-

lent irreducible representations of C(SUq(n)).

In [31] the irreducible representations of C(Sn,mq ) were studied and we recall them here. We

embedd T
m into T

n−1 via the map t = (t1, t2, · · · , tm) → (t1, t2, · · · , tm, 1, 1, · · · , 1, tn) where

tn :=
∏m
i=1 t̄i. For a permutation ω ∈ Sn, let ω

s be the permutation in the coset Sn−mω with

the least possible length. We denote the restriction of the representation πt,ω to the subalgbera

C(Sn,mq ) by πt,ω itself. Then we have the following theorem whose proof can be found in [31]

Theorem 6.2.2. The set {πt,ωs : t ∈ T
m, ω ∈ Sn} forms a complete set of mutually inequivalent

irreducible representations of C(Sn,mq ).

Before we proceed further, let us recall some notations which we have used in the earlier

chapters. Let T denote the Toeplitz algebra and σ : T → C(T) be the symbol map which sends

the generating isometry to the generating unitary. Define ǫ := ev1 ◦ σ where ev1 : C(T) → C is

the evaluation map at ’1’.

6.3 Composition sequences

In this section, we derive certain exact sequences analogous to that of Theorem 4 in [35]. We

then apply the six term sequence in K-theory to compute the K-groups of C(Sn,2q ). We begin

with the following lemma.

109



Lemma 6.3.1. Let t ∈ T
m and ω := sn−1sn−2 · · · sn−k. Then πt,ω(C(Sn,mq )) contains the

algebra of compact operators K(ℓ2(Nk)).

Proof. Since πt,ω(C(Sn,mq )) = πω(C(Sn,mq )), it is enough to show thatK(ℓ2(Nk)) ⊂ πω(C(Sn,mq )).

We prove this result by induction on n. Since πω(unn) := S∗
√
1− q2N+2 ⊗ 1, it follows that

S⊗1 ∈ πω(C(Sn,mq ). Hence K(ℓ2(N))⊗1 ⊂ πw(C(Sn,mq ). Thus the result is true if n = 2. Next

observe that for 1 ≤ i ≤ n− 1, (p⊗ 1)πω(un,i) := p⊗ πω′ (vn−1,i) where ω
′
:= sn−2sn−3 · · · sn−k

and (vij) denotes the generators of C(SUq(n − 1)). Hence πω(C(Sn,mq )) contains the alge-

bra p ⊗ πω′ (C(Sn−1,m
q )). Now by induction hypothesis, it follows that πω(C(Sn,mq )) contains

p⊗K(ℓ2(Nk−1)). Since πω(C(Sn,mq )) contains K(ℓ2(N))⊗1 and p⊗K(ℓ2(Nk−1)), it follows that

πω(C(Sn,mq )) contains the algebra of compact operators. This completes the proof. 2

Let w be a word on s1, s2, · · · sn say w := si1si2 · · · sin (not necessarily a reduced expression).

Define ψw := πsi1 ∗ πsi2 ∗ · · · πsir and for t ∈ T
n, let ψt,w := τt ∗ ψw. Observe that the image of

ψt,w is contained in T ⊗r. We prove that if w
′
is a ’subword’ of w then ψt,w′ factors through

ψt,w.

Proposition 6.3.2. Let w = w1skw2 be a word on s1, s2, · · · sn. Denote the word w1w2 by w
′
.

Let t ∈ T
m be given. Then there exists a * homomorphism ǫ̃ : ψt,w(C(Sn,mq )) → ψt,w′ (C(Sn,mq ))

such that ψt,w′ = ǫ̃ ◦ ψt,w.

Proof. For a word u on s1, s2, · · · , sn, let ℓ(u) denote it’s length. Then ψt,w(C(Sn,mq )) is

contained in T ⊗ℓ(w1)⊗T ⊗T ⊗ℓ(w2). Let ǫ̃ denote the restriction of 1⊗ ǫ⊗ 1 to ψt,w(C(Sn,mq ))

where σ : T → C is the homomorphism for which ǫ(S) = 1.

ψt,w(urs) =
∑

j1,j2

ψt,w1(urj1)⊗ πsk(uj1j2)⊗ ψw2(uj2s).

Since ǫ(πsk(uj1j2)) = δj1j2 , it follows that

ǫ̃ ◦ ψt,w(urs) =
∑

j

ψt,w1(urj)⊗ ψw2(ujs) = ψt,w′ (urs).

This completes the proof. 2

Let w be a word on s1, s2, · · · sn. Then for n − m + 1 ≤ i ≤ n and 1 ≤ j ≤ n, the map

T
m : t → ψt,w(uij) ∈ T ⊗ℓ(w) is continuous. Thus we get a homomorphism χw : C(Sn,mq ) →

C(Tm)⊗ T ⊗ℓ(w) such that χw(a)(t) = ψt,w(a) for all a ∈ C(Sn,mq ).

Remark 6.3.3. Clearly for a word w on s1, s2, · · · sn the representations ψt,w factors through

χw. One can also prove as in lemma 6.3.2 that if w
′
is a ’subword’ of w then χw′ factors

through χw.

Let us introduce some notations. Denote the permutation sjsj−1 · · · si by ωj,i for j ≥ i. If

j > i we let ωj,i := 1. For 1 ≤ k ≤ n, let ωk := ωn−m,1ωn−m+1,1 · · ·ωn−1,n−k+1.
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Theorem 6.3.4. The homomorphism χωn : C(Sn,mq ) → C(Tm)⊗ T ⊗ℓ(ωn) is faithful.

Proof. If ω0 ∈ Sn then ωs0( the representative in Sn−mω0 with the shortest length) is a

’subword’ of ωn. Hence by remark 6.3.3 every irreducible representation of C(Sn,mq ) factors

through χωn . Thus it follows that χωn is faithful. This completes the proof. 2

For 1 ≤ k ≤ n, Let C(Sn,m,kq ) := χωk
(C(Sn,mq )). Then C(Sn,m,kq ) ⊂ C(Sn,m,1q ) ⊗ T ⊗(k−1).

For 2 ≤ k ≤ n, let σk denote the restriction of (1⊗ 1⊗(k−2) ⊗ ǫ) to C(Sn,m,kq ). Then the image

of σk is C(Sn,m,k−1
q ). We determine the kernel of σk in the next proposition. We need the

following two lemmas.

Lemma 6.3.5. The algebra χωn−1,n−k
(C(Sn,1q )) contains C∗(t1)⊗K(ℓ2(Nk)) which is isomor-

phic to C(T)⊗K(ℓ2(Nk)).

Proof. Note that χωn−1,n−k
(unn) = t1 ⊗ S∗

√
1− q2N+2 ⊗ 1. Hence it follows that the

operator 1 ⊗
√

1− q2N+2 ⊗ 1 = χωn−1,n−k
(u∗nnunn) lies in the algebra χωn−1,n−k

(C(Sn,1q )). As√
1− q2N+2 is invertible, one has t1⊗S∗⊗1 ∈ χωn−1,n−k

(C(Sn,1q )). Thus the projection 1⊗p⊗1

is in the algebra C(Sn,1,k+1
q ). Now observe that for 1 ≤ s ≤ n− 1, one has

(1⊗ p⊗ 1)χωn−1,n−k
(uns) = t1 ⊗ p⊗ πωn−2,n−k

(vn−1,s) (6.3.5)

where (vij) are the generators of C(SUq(n− 1)). If n = 2 then k = 1 and what we have shown

is that C(S2,1,2
q ) contains t1 ⊗ S∗ and t1 ⊗ p. Hence one has C∗(t1) ⊗ K is contained in the

algebra C(S2,1,2
q ).

Now we can complete the proof by induction on n. Equation 6.3.5 shows that C∗(t1)⊗ p⊗
K⊗(k−1) is contained in the algebra C(Sn,1,k+1

q ) and we also have t1 ⊗ S∗ ⊗ 1 ∈ C(Sn,1,k+1
q ).

Hence it follows that C∗(t1)⊗K⊗k is contained in the algebra C(Sn,1,k+1
q ). This completes the

proof. 2

Lemma 6.3.6. Given 1 ≤ s ≤ n, there exists compact operators xs, ys such that

xsπωn−1,n−k
(ujs)ys = δjs(p⊗ p⊗ · · · ⊗ p)

where p := 1− S∗S.

Proof. Let 1 ≤ s ≤ n be given. Note that the operator ωn−1,n−k(uss) = z1 ⊗ z2 ⊗ · · · zk
where zi ∈ {1,

√
1− q2N+2S, S∗

√
1− q2N+2}. Define xi, yi as follows

xi :=





p if zi = 1,

p if zi =
√
1− q2N+2S,

(1− q2)−
1
2pS if zi = S∗

√
1− q2N+2.

yi :=





p if zi = 1,

(1− q2)−
1
2S∗p if zi =

√
1− q2N+2S,

p if zi = S∗
√

1− q2N+2.
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Then xiziyi = p for 1 ≤ i ≤ k. Now let xs := x1 ⊗ x2 ⊗ · · · xk and ys := y1 ⊗ y2 ⊗ · · · yk. Then
xsχωn−1,n−k

(uss) = p⊗ p⊗ · · · ⊗ p︸ ︷︷ ︸
ktimes

. Let j 6= s be given. Then χωn−1,n−k
(ujs) = a1⊗a2⊗· · ·⊗ak

where ai ∈ {1,
√

1− q2N+2S, S∗
√

1− q2N+2,−qN+1, qN}. Since j 6= s, there exists an i such

that ai ∈ {qN ,−qN+1}. Let r be the largest integer for which ar ∈ {qN ,−qN+1}. Then zr 6= 1.

Hence xraryr = 0. Thus xsχωn−1,n−k
(ujs)ys = 0. This completes the proof. 2

Proposition 6.3.7. Let 2 ≤ k ≤ n. Then C(Sn,m,1q ) ⊗ K(ℓ2(N))⊗(k−1) is contained in

the algebra C(Sn,m,kq ). Moreover the kernel of the homomorphism σk is exactly C(Sn,m,1q ) ⊗
K(ℓ2(N))⊗(k−1). Thus we have the exact sequence

0 −→ C(Sn,m,1q )⊗K⊗(k−1) −→ C(Sn,m,kq )
σk−→ C(Sn,m,k−1

q ) −→ 0.

Proof. First we prove that C(Sn,m,1q )⊗K⊗(k−1) is contained in the algebra C(Sn,m,kq ). For

a ∈ C(Sn,1q ) one has χωk
(a) := 1 ⊗ χωn−1,n−k+1

(a), it follows from lemma 6.3.5 that C(Sn,m,kq )

contains 1⊗K(ℓ2(Nk−1)). Let n−m+ 1 ≤ r ≤ m and 1 ≤ s ≤ n be given. Then note that

χωk
(urs) =

n∑

j=1

χω1(urj)⊗ πωn−1,n−k+1
(ujs).

Hence by lemma 6.3.6, there exists xs, ys ∈ C(Sn,m,kq ) such that xsχωk
(urs)ys := χω1(urs) ⊗

p⊗(k−1) where p⊗(k−1) := p⊗p⊗· · ·⊗p. Thus we have shown that C(Sn,m,kq ) contains 1⊗K⊗(k−1)

and C(Sn,m,1q )⊗ p⊗(k−1). Hence C(Sn,m,kq ) contains C(Sn,m,1q )⊗K⊗(k−1).

Clearly σk vanishes on C(Sn,m,1q ) ⊗ K⊗(k−1). Let π be an irreducible representation of

C(Sn,m,kq ) which vanishes on the ideal C(Sn,m,1q )⊗K⊗(k−1). Then π◦χωk
is an irreducible repre-

sentation of C(Sn,mq ). Hence π◦χωk
= πt,ω for some ω of the form ωn−m,i1ωn−m+1,i2 · · ·ωn−1,in−m

and t ∈ T
m. Since π ◦ χωk

(un,n−k+1) = 0, it follows that πt,w(un,n−k+1) = 0. But one has

πt,ω(un,n−k+1) = tn(1 ⊗ πωn−1,in−m
(un,n−k+1)). Hence in−m > n − k + 1. In other words ω is

a subword of ωk−1. Thus π ◦ χωk
factors through χωk−1

. In other words there exists a repre-

sentation ρ of C(Sn,m,k−1
q ) such that π ◦ χωk

= ρ ◦ χωk−1
. Since χωk−1

= σk ◦ χωk
, it follows

that π = ρ ◦ σk. Thus we have shown that every irreducible representation of C(Sn,m,kq ) which

vanishes on the ideal C(Sn,m,1q )⊗K⊗(k−1) factors through σk. Hence the kernel of σk is exactly

the ideal C(Sn,m,1q )⊗K⊗(k−1). This completes the proof. 2

We apply the six term exact sequence in K-theory to the exact sequence in proposition 6.3.7

to compute the K-groups of C(Sn,2,kq ) for 1 ≤ k ≤ n. In the next section we briefly recall the

product operation in K-theory.
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6.4 The operation P

Let A and B be C∗ algebras. (All the C∗ algebras that we consider are nuclear. Thus no

problem arises with the tensor product.) We have the following product maps.

K0(A)⊗K0(B) → K0(A⊗B),

K1(A)⊗K0(B) → K1(A⊗B),

K0(A)⊗K1(B) → K1(A⊗B),

K1(A)⊗K1(B) → K0(A⊗B).

The first map is defined as [p] ⊗ [q] → [p ⊗ q]. The second one is defined as [u] ⊗ [p] →
[u⊗ p+1− 1⊗ p]. The third map is defined in the same manner and the fourth one is defined

using Bott periodicity and using the first product. In fact we have the following formula for

the last product. We refer to the appendix of [11].

Let h : T2 → P1(C) := {p ∈ Proj(M2(C) : trace(p) = 1} be a degree one map. Then given

unitaries u ∈ Mp(A) and v ∈ Mq(B) the product [u] ⊗ [v] is given by [h(u, v)] − [e0] where

e0 =

(
1 0

0 0

)
∈M2(Mpq(A⊗B)) and h(u, v) is the matrix with entries hij(u⊗ 1, 1⊗ v).

We denote the image of [x] ⊗ [y] by [x] ⊗ [y] itself. Now let A be a unital commutative C∗

algebra. Then the multiplication m : A ⊗ A → A is a C∗ algebra homomorphism. Hence we

get a map at the K-theory level from K1(A)⊗K1(A) → K0(A).

Suppose U and V are two commuting unitaries in a C∗ algebra B. Let A := C∗(U, V ).

Then A is commutative. Define

P (U, V ) := K0(m)([U ]⊗ [V ])

which is an element in K0(A) which we can think of as an element in K0(B) by composing with

the inclusion map. From the formula that we just recalled from [11] the following properties

are clear

1. If U and V are commuting unitaries in A and p is a rank one projection in K we have

P (U ⊗ p+ 1− 1⊗ p, V ⊗ p+ 1− 1⊗ p) := P (U, V )⊗ p

2. If U and V are commuting unitaries and p is a projection that commutes with U and V

then P (U, V p+ 1− p) = P (Up+ 1− p, V p+ 1− p).

3. If φ : A → B is a unital homomorphism and if U and V are commuting unitaries in A

then K0(φ)(P (U, V )) = P (φ(U), φ(V )).

4. If U is a unitary in A then P (U,U) = 0. For P1(C) is simply connected, it follows that the

matrix h(U,U) is path connected to a rank one projection in M2(C). Hence P (U,U) = 0.
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We need the following lemma in the six term computation. Let z1 ⊗ 1 and 1 ⊗ z2 be the

generating unitaries of C(T)⊗C(T). Then K0(C(T2)) is isomorphic to Z
2 and is generated by

1, P (z1 ⊗ 1, 1 ⊗ z2).

Lemma 6.4.1. Consider the exact sequence

0 −→ C(T)⊗K −→ C(T)⊗ T −→ C(T)⊗ C(T) −→ 0

and the six term sequence in K theory.

K0(C(T)⊗K) // K0(C(T)⊗ T ) // K0(C(T)⊗C(T))

δ
��

K1(C(T)⊗ C(T))

∂

OO

K1(C(T)⊗ T )oo K1(C(T)⊗K)oo

.

Then the subgroup generated by δ(P (z1 ⊗ 1, 1 ⊗ z2)) coincides with the group generated by

z1 ⊗ p+ 1− 1⊗ p which is K1(C(T)⊗K) ∼= Z.

Proof. The Toeplitz map σ : T → C(T) induces isomorphism at the K0 level. Thus by

Kunneth theorem, it follows that the image of K0(1⊗σ) is K0(C(T))⊗K0(C(T)) which is the

subgroup generated by [1]. Now the inclusion 0 → K → T induces the zero map at the K0

level and hence again by Kunneth theorem the inclusion 0 → C(T)⊗ K → C(T)⊗ T induces

zero map at the K1 level. Hence the image of δ is K1(C(T)⊗ T ). This completes the proof.

Corollary 6.4.2. Let

0 −→ I −→ A
φ−→ B −→ 0

be a short exact sequence of C∗ algebras. Consider the six term sequence in K theory.

K0(I) // K0(A)
K0(φ) // K0(B)

δ
��

K1(B)

∂

OO

K1(A)
K1(φ)
oo K1(I)oo

.

Suppose that U and V are two commuting unitaries in B such that there exists a unitary X

and an isometry Y such that φ(X) = U and φ(Y ) = V . Also assume that X and Y commute.

Then the subgroup generated by δ(P (U, V )) coincides with the subgroup generated by the unitary

X(1 − Y Y ∗) + Y Y ∗ in K1(I).

Proof. Since C(T) is the universal C∗ algebra generated by a unitary and T is the universal

C∗ algebra generated by an isometry, there exists homomorphisms Φ : C(T) ⊗ T → A and

Ψ : C(T)⊗C(T) → B such that

Φ(z1 ⊗ 1) := X,

Φ(1⊗ S∗) := Y,

Ψ(z1 ⊗ 1) := U,

Ψ(1⊗ z2) := V.
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Hence we have the following commutative diagram

0 // C(T)⊗K
Φ

��

// C(T)⊗ T

Φ
��

// C(T)⊗ C(T)

Ψ
��

// 0

0 // I // A
φ // B // 0

.

Now by the functoriality of δ and P , it follows that δ(P (U, V )) = K1(Φ)(δ(P (z1 ⊗ 1, 1⊗ z2))).

Hence by lemma 6.4.1, it follows that the subgroup generated by δ(P (U, V )) is the subgroup

generated by Φ(z1⊗p+1−1⊗p) in K1(I). Note that Φ(z1⊗p+1−1⊗p) = X(1−Y Y ∗)+Y Y ∗.

This completes the proof. 2.

6.5 K-groups of C(Sn,2,kq ) for k < n

In this section, we compute the K−groups of C(Sn,2,kq ) for 1 ≤ k < n by applying the six

term sequence in K−theory to the exact sequence in 6.3.7. Let us fix some notations. If q is

a projection in ℓ2(N) then qr denotes the projection q ⊗ q ⊗ · · · q︸ ︷︷ ︸
r times

in ℓ2(Nr). Let us define the

unitaries Uk, Vk, uk, vk as follows.

Uk := t1 ⊗ 1n−2 ⊗ pk−1 + 1− 1⊗ 1n−2 ⊗ pk−1,

Vk := t2 ⊗ pn−2 ⊗ 1k−1 + 1− 1⊗ pn−2 ⊗ 1k−1,

uk := t1 ⊗ pn−2 ⊗ pk−1 + 1− 1⊗ pn−2 ⊗ pk−1,

vk := t2 ⊗ pn−2 ⊗ pk−1 + 1− 1⊗ pn−2 ⊗ pk−1.

First let us note that the operators Uk, Vk, uk, vk lies in the algebra C(Sn,2,kq ). For,

Uk = 1{1}(un,n−k+1u
∗
n,n−k+1)un,n−k+1 + 1− 1{1}(un,n−k+1u

∗
n,n−k+1),

Vk = 1{1}(un−1,1u
∗
n−1,1)un−1,1 + 1− 1{1}(un−1,1u

∗
n−1,1),

uk = 1{1}(un,n−k+1u
∗
n,n−k+1un−1,1u

∗
n−1,1)un,n−k+1 + 1− 1{1}(un,n−k+1u

∗
n,n−k+1un−1,1u

∗
n−1,1),

vk = 1{1}(un,n−k+1u
∗
n,n−k+1un−1,1u

∗
n−1,1)un−1,1 + 1− 1{1}(un,n−k+1u

∗
n,n−k+1un−1,1u

∗
n−1,1).

Note that the unitaries Un, un, vn lies in the algebra C(Sn,2,nq ). We start with the computation

of the K groups of C(Sn,2,1q ).

Lemma 6.5.1. The K-groups K0(C(Sn,2,1q )) and K1(C(Sn,2,1q )) are both isomorphic to Z
2. In

fact, [U1] and [V1] form a Z basis for K1(C(Sn,2,1q )) and [1] and P (u1, v1) form a Z basis for

K0(C(Sn,2,1q )).

Proof. First note that C(Sn,2,1q ) is generated by t1 ⊗ 1n−2 and t2 ⊗ πωn−2,1(un−1,j) where

1 ≤ j ≤ n − 1. But the C∗ algebra generated by {t2 ⊗ πωn−2,1(un−1,j) : 1 ≤ j ≤ n − 1} is

isomorphic to C(S2n−3
q ). Hence C(Sn,2,1q ) is isomorphic to C(T)⊗C(S2n−3

q ). Also K0(C(S2n−3
q )
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and K1(C(S2n−3
q )) are both isomorphic to Z with [1] generating K0(C(S2n−3

q )) and [t2⊗pn−2+

1− 1⊗ pn−2] generating K1(C(S2n−3
q )).

Now by the Kunneth theorem for tensor product of C∗ algebras(See [4]), it follows that

C(Sn,2,1q ) has bothK1 and K0 isomorphic to Z
2 with [U1] and [V1] generating K1(C(Sn,2,1q )) and

[1] and P (t1⊗1n−2, t2⊗pn−2+1−1⊗pn−2) generating K0(C(Sn,2,1q )). Note that the projection

1⊗pn−2 = 1{1}(χωn−2,1(un−1,1u
∗
n−1,1)) is in C(Sn,2,1q ) and commutes with the unitaries t1⊗1n−2

and t2 ⊗ pn−2 + 1− 1⊗ pn−2. Hence

P (t1 ⊗ 1n−2, t2 ⊗ pn−2 + 1− 1⊗ pn−2) = P (u1, v1).

This completes the proof. 2

Proposition 6.5.2. Let 1 ≤ k < n be given. Then the K-groups K0(C(Sn,2,kq )) and K1(C(Sn,2,kq ))

are both isomorphic to Z
2. In particular, [Uk] and [Vk] form a Z basis for K1(C(Sn,2,kq )) and

[1] and P (uk, vk) form a Z basis for K0(C(Sn,2,kq )).

Proof. We prove this result by induction on k. The case k = 1 is just lemma 6.5.1. Now

assume the result to be true for k. From proposition 6.3.7 we have the short exact sequence

0 −→ C(Sn,2,1q )⊗K⊗(k) −→ C(Sn,2,k+1
q )

σk+1−→ C(Sn,2,kq ) −→ 0

which gives rise to the following six term sequence in K-theory.

K0(C(Sn,2,1q )⊗K⊗k) // K0(C(Sn,2,k+1
q ))

K0(σk+1) // K0(C(Sn,2,kq ))

δ
��

K1(C(Sn,2,kq )

∂

OO

K1(C(Sn,2,k+1
q ))

K1(σk+1)
oo K1(C(Sn,2,1q )⊗K⊗k)oo

We determine δ and ∂ to compute the six term sequence. As σk+1(Vk+1) = Vk, it follows

that ∂([Vk]) = 0. Since C(Sn,2,k+1
q ) contains the algebra C(Sn,2,1q ) ⊗ K⊗k, it follows that the

operator X̃ := t1 ⊗ 1n−2 ⊗ qN ⊗ qN ⊗ · · · qN︸ ︷︷ ︸
(k−1)times

⊗S∗ is in the algebra C(Sn,2,1q ) as the difference

X−χωk+1
(un,n−k+1) lies in the ideal C(Sn,2,1q )⊗K⊗k. Let X := 1{1}(X̃

∗X̃)X̃+1−1{1}(X̃
∗X̃).

Then X is an isometry such that σk+1(X) = Uk. Hence ∂([Uk]) = [1 − X∗X] − [1 − XX∗].

Thus ∂([Uk]) = −[1⊗ 1n−2 ⊗ pk]. Thus the image of ∂ is the subgroup of K0(C(Sn,2,1q )⊗K⊗k)

generated by [1⊗ 1n−2 ⊗ pk] and the kernel is [Vk].

Next we compute δ. Since σk+1(1) = 1, it follows that δ([1]) = 0. Let

Y := (1⊗ pn−2 ⊗ 1k)(1⊗ 1n−2 ⊗ pk−1 ⊗ 1)X̃ + 1− 1⊗ pn−2 ⊗ pk−1 ⊗ 1.

Since 1⊗ pn−2 ⊗ 1 = 1{1}(χωk
(u∗n−1,1un−1,1) and 1⊗ 1n−2 ⊗ pk−1 = 1{1}(X̃

∗X̃) it follows that

the operator Y ∈ C(Sn,2,k+1
q ). Also

Y = t1 ⊗ pn−2 ⊗ pk−1 ⊗ S∗ + 1− 1⊗ pn−2 ⊗ pk−1 ⊗ 1.
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Note that Y is an isometry such that σk+1(Y ) = uk. One has σk+1(vk+1) = vk. Note that Y

and vk+1 commute. Hence by corollary 6.4.1, it follows that the image of δ is the subgroup

generated by [vk+1(1− Y Y ∗) + Y Y ∗] = [V1 ⊗ pk + 1− 1⊗ pk].

Thus the above computation with the six term sequence implies that K0(C(Sn,2,k+1
q )) is

isomorphic to Z
2 and is generated by P (u1, v1)⊗pk = P (uk, vk) and [1] and K1(C(Sn,2,k+1

q )) is

isomorphic to Z
2 and is generated by [Vk+1] and [U1⊗pk+1−1⊗pk] = [Uk+1]. This completes

the proof. 2

6.6 K-groups of C(Sn,2q )

In this section, we compute the K-groups of C(Sn,2q ). We start with a few observations.

Lemma 6.6.1. In the permutation group Sn one has ωn−2,1ωn−1,1 = ωn−1,1ωn−1,2.

Proof. First note that sisi+1si = si+1sisi+1 and sisj = sjsi if |i − j| ≥ 2. Hence one has

ωn−1,kωn−1,1 = ωn−1,k+1ωn−1,1sk+1. Now the result follows by induction on k. 2

We denote the representation χωn−1,1 ∗ πωn−1,2 by χ̃ωn . Since ωn−1,1ωn−1,2 is a reduced

expression for ωn it follows that the representations χ̃ωn and χωn are equivalent. Let U be a

unitary such that Uχωn(.)U
∗ = χ̃ωn(.). It is clear that χ̃ωn(C(Sn,2q )) ⊂ C(Tm)⊗T ⊗T ⊗ℓ(ωn−1).

Let σ̃n denote the restriction of 1 ⊗ σ ⊗ 1⊗(2(n−2) to χ̃ωn(C(Sn,2q )). Since σ̃n(χ̃ωn(uij)) =

χωn−1(uij), one has the following commutative diagram

χωn(C(Sn,2q )) χ̃ωn(C(Sn,2q ))

C(Sn,2,n−1
q )

U(.)U∗

σn σ̃n

Lemma 6.6.2. There exists a coisometry X ∈ χωn(C(Sn,2q )) such that σn(X) = Vn−1 and

X∗X = 1− 1{1}(χωn(u
∗
n1un1)).

Proof. By the above commutative diagram, it is enough to show that there exists a coisom-

etry X̃ ∈ χ̃ωn(C(Sn,2q )) such that σ̃n(X) = Vn−1 and X∗X = 1− 1{1}(χ̃ωn(u
∗
n1un1). Now note

that χ̃ωn(u
∗
n−1,1un−1,1)− q2un1un1) = 1⊗ 1⊗ q2N ⊗ q2N ⊗ · · · q2N︸ ︷︷ ︸

(n−2)times

⊗1n−2. Hence the projection

1⊗1⊗pn−2⊗1n−2 = 1{1}(χ̃ωn(u
∗
n−1,1un−1,1−q2u∗n1un1)) is in the algebra χ̃ωn(C(Sn,2q )). Now let

Y := (1⊗1⊗pn−2⊗1n−2)χ̃ωn(un−1,1). Then Y := t2⊗
√
1− q2N+2S⊗pn−2⊗1n−2. Hence the

operator Z := t2⊗S⊗ pn−2⊗ 1n−2 is in the algebra χ̃ωn(C(Sn,2q )). Now let X̃ := Z +1−ZZ∗.

Then X̃ is a coisometry such that σ̃n(X̃) = Vn−1 and X̃∗X̃ = 1 − 1 ⊗ pn−1 ⊗ 1n−2 which is

1− 1{1}(χ̃ωn(u
∗
n1un1)). This completes the proof. 2
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Observe that the operator Z̃ := t1⊗1n−1⊗qN ⊗ qN ⊗ · · · qN︸ ︷︷ ︸
(n−2)times

⊗S∗ lies in the algebra C(Sn,2,nq )

since the difference Z̃ − χωn(un,2) lies in the ideal C(Sn,2,1q )⊗K⊗(n−1)). Let Z := 1{1}(Z̃
∗Z̃)Z̃

and Yn := Z + 1− Z∗Z. Then

Zn = t1 ⊗ 1n−2 ⊗ pn−2 ⊗ S∗, (6.6.6)

Yn = t1 ⊗ 1n−2 ⊗ pn−2 ⊗ S∗ + 1− 1⊗ 1n−2 ⊗ pn−2 ⊗ 1. (6.6.7)

Hence Y is an isometry and Y Y ∗ = 1− 1{1}(χωn(u
∗
n1un1)). Let X be a coisometry in C(Sn,2,nq )

such that σn(X) = vn−1 and X∗X := 1− 1{1}(χωn(u
∗
n1un1)). The existence of such an X was

shown in lemma 6.6.2. Then XY is a unitary.

Proposition 6.6.3. The K-groups K0(C(Sn,2q ) and K1(C(Sn,2q ) are both isomorphic to Z
2. In

particular we have the following.

1. The projections [1] and P (un, vn) generate K0(C(Sn,2q )).

2. The unitaries Un and XYn generate K1(C(Sn,2q )) where X is a coisometry in C(Sn,2q )

such that σn(X) = Vn−1 and X∗X = 1− 1{1}(u
∗
n1un1) and Yn is as in equation 6.6.7.

Proof. By proposition 6.3.7, we have the following exact sequence.

0 −→ C(Sn,2,1q )⊗K⊗(n−1) −→ C(Sn,2,nq )
σn−→ C(Sn,2,n−1

q ) −→ 0

which gives rise to the following six term sequence in K-theory.

K0(C(Sn,2,1q )⊗K⊗n−1) // K0(C(Sn,2,nq ))
K0(σn) // K0(C(Sn,2,kq ))

δ
��

K1(C(Sn,2,n−1
q ))

∂

OO

K1(C(Sn,2,nq ))
K1(σn)

oo K1(C(Sn,2,1q )⊗K⊗n−1)oo

Now we compute ∂ and δ to compute the six term sequence. First note that since [Un−1] and

[Vn−1] generateK1(C(Sn,2,n−1
q )), it follows that [Un−1] and [Vn−1Un−1] generateK1(C(Sn,2,n−1

q )).

As XYn is a unitary for which σn(XYn) = Vn−1Un−1, it follows that ∂([Vn−1Un−1]) = 0. Next

Yn is an isometry for which σn(Yn) = Un−1. Hence ∂([Un−1]) = [1 − Y ∗Y ] − [1− Y Y ∗]. Thus

∂([Un−1]) = −[1⊗ 1n−2 ⊗ pn−1].

Now we compute δ. Since σn(1) = 1, it follows that δ([1]) = 0. Now one observes that

pn−2 ⊗ S∗πωn−1,1(uj1) = 0 if j > 1. Hence Znχωn(un−1,1) = t1t2 ⊗ pn−2 ⊗ pn−2 ⊗
√

1− q2N+2

where Zn is as defined in 6.6.6. Thus the operator Rn := t1t2 ⊗ pn−2 ⊗ pn−2 ⊗ 1 lies in the

algebra C(Sn,2,nq ) as the difference Rn − Znχωn(un−1,1) lies in the ideal C(T2) ⊗ K⊗(2n−3)).

Hence projection 1⊗ pn−2 ⊗ pn−2 ⊗ 1 lies in the algebra C(Sn,2,nq ). Now define

Sn := Rn + 1−RnR
∗
n,

Tn := (1⊗ pn−2 ⊗ pn−2 ⊗ 1)Zn + 1− 1⊗ pn−2 ⊗ pn−2 ⊗ 1.
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Then Sn is a unitary and Tn is an isometry such that σn(Sn) = un−1vn−1 and σn(Tn) = un−1.

Moreover Sn and Tn commute. Now note that P (un−1, vn−1) = P (un−1, un−1vn−1). Hence by

corollary 6.4.1, it follows that the image of δ is the subgroup generated by Sn(1−TnT ∗
n)+TnT

∗
n

in K1(C(Sn,2,1q )⊗K⊗(n−1)). Now

Sn(1− TnT
∗
n) + TnT

∗
n = t1t2 ⊗ pn−2 ⊗ pn−1 + 1− 1⊗ pn−2 ⊗ pn−1.

Since 1⊗ pn−2 is a trivial in K0(C(S2n−3
q )) it follows that the unitary t1 ⊗ pn−2 +1− 1⊗ pn−2

is trivial in K1(C(Sn,2,1q )) = K1(C(T) ⊗ C(S2n−3
q ). Hence one has [Sn(1 − TnT

∗
n) + TnT

∗
n ] =

[V1 ⊗ pn−1 + 1− 1⊗ pn−1] in K1(C(Sn,2,1q )⊗K⊗(n−1)).

Thus the above computation with the exactness of the six term sequence completes the

proof. 2

6.7 K-groups of C(SUq(3))

In this section, we show that for n = 3 the unitary XYn in proposition 6.6.3 can be replaced

by the fundamental 3 × 3 matrix (uij) of C(SUq(3)). First note that for n = 3 we have

C(Sn,2q ) = C(SUq(3)). The algebra C(S3,2,1
q ) is denoted C(Uq(2)) in [35]. Then C(Uq(2)) =

C(T) ⊗ C(SUq(2)). Let ev1 : C(T) → C be the evaluation at the point ’1’. Then φ =

(ev1 ⊗ 1)σ2σ3 where φ : C(SUq(3)) → C(SUq(2)) is the subgroup homomorphism defined in

equation 6.1.4.

Proposition 6.7.1. The K-group K1(C(SUq(3)) is isomorphic to Z
2 generated by the unitary

U3 := t1 ⊗ p⊗ p+ 1− 1⊗ p⊗ p and the fundamental unitary U = (uij) .

Proof. By proposition 6.6.3, we know that K1(C(SUq(3)) is isomorphic to Z
2 and is

generated by [U3] and [XY3] where X is a coisometry such that σ3(X) = V2 and X∗X =

1 − 1{1}(χω3(u
∗
31u31)). Now observe that φ(X) = t2 ⊗ p + 1 − 1 ⊗ p and φ(Y3) = 1. Hence

φ(XY3) = t2 ⊗ p + 1 − 1 ⊗ p. Also note that φ(U3) = 0 and φ(U) =

[
u 0

0 1

]
where u denote

the fundamental unitary of C(SUq(2)). Since K1(C(SUq(2)) is isomorphic to Z the proof is

complete if we show that t2⊗p+1−1⊗p and [u] represents the same element in K1(C(SUq(2))

which we do in the next lemma. 2

We denote the 2 × 2 fundamental unitary u = (uij) of C(SUq(2)) by uq. Consider the

representation χs1 : C(SUq(2)) → B(ℓ2(Z) ⊗ ℓ2(N)). We let the unitary t act on ℓ2(Z) as the

right shift i.e ten = en+1. Let {en,m : n ∈ Z,m ∈ N} be the standard orthonormal basis for

the Hilbert space ℓ2(Z) ⊗ ℓ2(N). For an integer k, denote the orthogonal projection onto the

closed subspace spanned by {en,m : n +m ≤ k} by Pk and set Fk := 2Pk − 1. Note that Fk is

a selfadjoint unitary.
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Proposition 6.7.2. For any integer k, the triple (χs1 , ℓ
2(Z) ⊗ ℓ2(N), Fk) is an odd Fredholm

module for C(SUq(2)) and we have the pairing

1. 〈[uq], Fk〉 = −1,

2. 〈t⊗ p+ 1− 1⊗ p, Fk〉 = −1 where p = 1− S∗S.

Proof. By lemma 3.3.1, it follows that C(SUq(2)) is generated by t ⊗ S and t ⊗ p. Now

it is easy to see that [t ⊗ S,Pk] = 0 and [t ⊗ p, Pk] is a finite rank operator. Hence the triple

(χs1 , ℓ
2(Z)⊗ℓ2(N), Fk) is an odd Fredholm module for C(SUq(2)). Since C(SUq(2)) is generated

by t⊗S and t⊗p, it follows that up ∈ C(SUq(2)) for every p > 0. Also as p→ 0, up approaches

to u in norm where u is given by

u :=

(
t⊗ S 0

t̄⊗ p t̄⊗ S∗

)
.

Hence [uq] = [u] in K1(C(SUq(2))). It is easy to check the following

〈[u], Fk〉 = −1,

〈[t⊗ p+ 1− 1⊗ p], Fk〉 = −1.

This completes the proof. 2
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Appendix A

Smooth subalgebras

In this appendix, we discuss the results in [33] and [34]. We have made use of these results to

show that some subalgebras of the C∗ algebra of odd dimensional quantum spheres are closed

under holomorphic functional calculus. We have reproduced the proofs here for the sake of

completeness.

A.1 Spectral invariance

Definition A.1.1. Let A ⊂ A be a unital inclusion of algebras. We say that A is spectrally

invariant in A if given a ∈ A with a invertible in A then a−1 ∈ A.

Now let A be a sublagebra of A. We say that A is spectrally invariant in A if A+ is

spectrally invariant in A+ where A+ is the algebra with an unit adjoined to A. It is easy to

see that in the case of unital inclusion of algebras the two definitions coincide. Let us make a

definition which will help in stating the results in an easier fashion.

Definition A.1.2. Let A be a ∗ subalgebra of a C∗ algebra A. We say that the pair A ⊂ A is

admissible if for every irreducible representation ρ of A there exists an irreducible representation

π of A on a Hilbert space H and an A invariant subspace V such that ρ is equivalent to (π, V )

Lemma A.1.3. Let A ⊂ A be an unital inclusion of algebras where A is a C∗ algebra. The

following are equivalent.

1. The pair A ⊂ A is admissible.

2. The algebra A is spectrally invariant in A.

Proof. First we prove (1) implies (2). Let a ∈ A be an element invertible in A. Suppose

assume that a−1 is not in A. First observe that the admissibility of the pair A ⊂ A implies

that for every irreducible representation ρ of A, kerρ(a) = {0}
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Now a is not left invertible in A. Hence Aa is a proper left ideal of A which contains a.

Choose a maximal left ideal N which contains a. Then A/N is an irreducible representation

of A where A acts on A/N by left multiplication. In this irreducible representation ker(a) is

non-trivial as a(1+N) = a+N = N which is a contradiction. Hence a−1 ∈ A. This completes

the proof of (1) implies (2).

Now suppose that A is spectrally invariant in A. Let ρ be an irreducible representation

of A acting on a vector space V . Let v be a non-zero vector in V . Since the representation

is irreducible, it follows that the map a → ρ(a)v is onto. Let N be it’s kernel. Then V is

isomorphic as an A module to A/N . Since A/N is irreducible, it follows that N is a maximal

left ideal. Now N̄ is a proper left ideal in A. If not, then there exists a ∈ N close to 1 such

that a is invertible in A. Hence a is invertible in A which then implies N = A. Hence N̄ is

a proper left ideal in A. Let M be a maximal left ideal such that N̄ ⊂ M . By corollary 1

and theorem 2 of [24], it follows that A/M can be given a Hilbert space structure such that

the left multiplication representation of A on A/M is an irreducible ∗ representation. Since

M ∩ A = N , it follows that the natural map A/N → A/M is one-one. This completes the

proof of (2) implies (1). 2

Lemma A.1.4. Let 0 → I → A → B → 0 be an exact sequence of C∗ algebras and 0 → I →
A → B be a subexact sequence of ∗ algebras. If I ⊂ I and B ⊂ B are admissible then A ⊂ A

is admissible.

Proof. Let us denote the map A → B by σ. Let ρ be an irreducible representation of

A on Vρ. Suppose that ρ vanishes on I. Then ρ factors through B to give an irreducible

representation which we denote by ρ̃. Since B ⊂ B is admissible, it follows that there exists

an irreducible representation π of B on a Hilbert space H and a B invariant subspace V such

that ρ̃ is equivalent to (π, V ). Then ρ is equivalent to (π ◦ σ, V ). Now suppose that ρ does not

vanish on I. We claim that ρ|I is irreducible. Note that since I is a two sided ideal, it follows

that
⋂
x∈I Kerρ(x) is A invariant. Since ρ does not vanish on I, it follows that given a non

zero vector v there exists x ∈ I such that ρ(x)v 6= 0. Now let W be a nonzero I invariant

subspace. Then IW ⊂ W is an A invariant non-zero subspace and hence W = Vρ. Hence ρ|I

is irreducible.

Now the admissibility of the pair I ⊂ I implies that there exists an irreducible represen-

tation π of I on a Hilbert space H and an I invariant subspace V such that ρ|I is equivalent

to (π, V ). Let F : Vρ → V be an interwiner. Now π can be extended to an irreducible repre-

sentation of A. As IV = V , it follows that V is A invariant. Since IV = V and IVρ = Vρ, it

follows that F interwines ρ and (π, V ). This completes the proof. 2

Proposition A.1.5. Let A be a ∗ subalgebra of a C∗ algebra A. Then the following are

equivalent

1. The pair A ⊂ A is admissible
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2. The subalgebra A is spectrally invariant in A.

Proof. First we prove (1) implies (2). Observe that the map (a, λ) → λ gives the exact

sequence 0 → A → A+ → C → 0. By Lemma A.1.4, it follows that A+ ⊂ A+ is admissible.

Hence by Lemma A.1.3, it follows that A is spectral invariant in A if A ⊂ A is admissible.

Now assume that A is spectrally invariant in A. Then by Lemma A.1.3, it follows that

A+ ⊂ A+ is admissible. It is easy to show that A ⊂ A is admissible. 2
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J. Math., 3(4):581–589, 1992.

[34] Larry B. Schweitzer. Spectral invariance of dense subalgebras of operator algebras. Inter-

nat. J. Math., 4(2):289–317, 1993.

[35] Albert J.L. Sheu. Compact quantum groups and groupoid C∗ algebras. Journal of Func-

tional Analysis, 144:371–393, 1997.

[36] V. S. Sunder. Functional analysis. Birkhäuser Advanced Texts: Basler Lehrbücher.
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