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ABSTRACT

We study the noncommutative geometry of some quantum homogeneous spaces associated
with the quantum group SU,(n). First we consider the quantum space SUy(n)/SUy(n — 1)
called the odd dimensional quantum spheres and denoted Sg"_l. We consider two spectral
triples associated to the odd dimensional quantum spheres Sg"_l. We show that the spectral
triples satisfy the hypothesis of the local index formula. A conceptual explanation is given
by considering a property which we call the weak heat kernel asymptotic expansion property
of spectral triples. We show that a spectral triple having the weak heat kernel asymptotic
expansion property satisfies the hypothesis of the local index formula. We also show that this
property is stable under quantum double suspension. Finally we compute the K-groups of the

quantum homogeneous space SUy(n)/SUy(n — 2).
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Chapter 1

Introduction

The theory of Noncommutative geometry initiated by Alain Connes has become an active area
of research in Mathematics with applications to Physics. The starting point of Noncommutative
topology can be traced back to the Gelfand Naimark theorem which gives an anti-equivalence
between the category of locally compact Hausdorff spaces and the category of commutative C*
algebras. The correspondence is given by the map X — Cp(X) where Cyp(X) is the algebra of
continuous complex valued functions which vanish at infinity. This says that all the information
about a space is actually encoded in the algebra of continuous functions on it. Thus one
thinks of noncommutative C* algebras as noncommutative topological spaces and tries to apply
topological methods to understand them. K-theory and K-homology adapts well to study C*
algebras. Elliot’s classification of AF algebras using K-theory is a famous instance of this.
Elements of K-homology are made of what are called Fredholm modules. An even Fredholm

module for a C* algebra A is a quadraple (m,H, F,~) such that

e the map m: A — L(H) is a * representation,

‘H is a Hilbert space with a Zo grading -,

the operator F' is a selfadjoint unitary which commutes with =,

the commutator [F,m(a)] is compact for every a € A, and
e for every a € A, m(a)y = ym(a).

If there is no grading present, one calls it an odd Fredholm module. There is a natural pair-
ing between K-theory and K-homology. If (A, H, F') is a Fredholm module, the K-theory/K-
homology pairing is given by an index map Indp : K.(A) — Z. In geometric examples,
Fredholm modules arise from unbounded operators like elliptic differential operators and the

unbounded Fredholm modules are called spectral triples .



In geometry, the topological space one tries to understand will usually be a smooth manifold.
Connes proposed the following notion of spectral triples as the noncommutatative counterpart
of smooth manifolds. An even spectral triple for a * algebra A is a triple (7, H, D) together

with a Zs grading v on H such that
1. the map 7 : A — L(H) is a * representation such that 7(a)y = ym(a) for every a € A,

2. the operator D is an unbounded operator with compact resolvent such that Dy = —vD,

and
3. the commutator [D,7(a)] is bounded for every a € A.

If no grading is present one calls it an odd spectral triple. Usually A will be a dense subalgebra
of a C* algebra. If (A, H, D) is a spectral triple then (A, H, F) is a Fredholm module where
F := sign(D). The reason for calling spectral triples as noncommutative manifolds is due
to the fact that the spectral triple (C*°(M), L?(M,S), D)[ [15] ] captures all the information
about the manifold M. Here

e M is a smooth Riemannian manifold,

e S — M is a spinor bundle and L?(M, S) denote the space of square integrable sections,

and
e The operator D is the Dirac operator associated to the Levi-Civita connection.

Also Connes in [I] proved that if (A, H, D) is a spectral triple which satisfies certain assump-
tions and if A is commutative then the spectral triple comes from a classical spectral triple
(C>®(M), L*(M, S), D) for some smooth manifold M. Thus it makes good sense to think of
spectral triples as non-commutative manifolds.

In [I4], Connes constructed cyclic cohomology as the natural receipent of Chern character
from the K-theory. He defines the Chern character of a finitely summable Fredholm module
and calculates the index map as the pairing between K-theory and cyclic cohomology. But in
geometric examples coming from spectral triples, the Chern character is difficult to compute
as the sign of the operator D is difficult to compute. Thus one needs a manageable formula
completely in terms of D. The local index formula in [12] achieves this. The formula is given
in terms of residues of certain meromorphic functions associated with D. Let us briefly explain
the formula before we go further.

First let us recall the notion of regularity and dimension spectrum of spectral triples. Con-

sider an unbounded selfadjoint operator D. Let

Heoo : = Np=1Dom(|D|"),
OP’:={T e L(H):T € N,Dom(s")}
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where ¢ := [|D|,.] is the unbounded derivation on L(H).

A spectral triple (A, H, D) is said to be regular if A + [D, A] € OP°. Let (A,H,D) be
a regular spectral triple which is finitely summable. Assume that |D|™P is trace class. Let B
be the algebra generated by 0"(A) and 0" ([D, A]) for n > 0. We say that the spectral triple
(A, H, D) has discrete dimension spectrum X C C if ¥ is discrete and for every b € B, the
function Trace(b|D|~#) initially defined for Re(z) > p extends to a meromorphic function with
poles only in ¥. We say the dimension spectrum is simple if all the poles are simple.

Let (A, H, D) be an odd finitely summable spectral triple which is regular and has discrete
dimension spectrum. Let B be the algebra generated by §"(A) and §"([D,.A]) in L(H). For
b e B, welet bV := [D?,b] and b® := [D? b*—1)]. We denote the algebra generated by B and
|D|¥,k € N by D. Then for b € D we let [b:= Res,—oTr(b|D|~%).

For every odd n and a multiindex k = (k1,ko, - ,kp), consider the n + 1 multilinear

functional ¢y, , on A defined as
¢n,k(a07 ay,y - 7an) = /GO[Dv al](kl)[D7 a2](k1) e [Dv an](kn)|D|_n_2‘k|

where |k| := > | k;. Note that if |k| +n > p then ¢, = 0. We let ¢y, := >, ¢n 1 ¢n r Where

the constants ¢, , are given by

I([kl + %)

o = (—1) kv .
enk = )*/—anjln(k1+k2+---+kj+j)

The local index formula states that the Chern character can be computed, upto a coboundary,
by the functionals ¢,. If we consider the Dirac operator associated to a closed Reimannian
spin manifold then the terms ¢,, ; vanishes if |k| # 0. Thus most of the terms in the local
Chern character is visible only in the case of truly noncommutative situations and should be
interpreted as a signature of noncommutativity. To understand the local index formula better
one would like to have some examples of simple spectral triples which satisfy the assumptions
of the local index formula. Connes illustrated the local index formula for the equivariant
spectral triple on SU,(2) constructed in [5]. Similar computations were done in [19],[39],[29].
In this thesis, a similar computation for the SUy(n + 1) equivariant spectral triple on the odd
dimensional quantum spheres is carried out. We also develop a general method of verifying the
hypothesis of the local index formula.

All these examples come from quantum homogeneous spaces. The rich interplay between Lie
groups and differential geometry naturally raises the question of understanding the interaction
between quantum groups and noncommutative geometry. Papers [5],[39],[28] attempt to put
quantum groups within the framework of Connes’ noncommutativie geometry. Chakraborty
and Pal in [5] produced a satisfactory spectral triple on the quantum group SU,(2) which is
also equivariant. Connes made a detailed study of this spectral triple in [17] from the local

index formula point of view. The work of Tuset and Neshveyev in [28] is an attempt to produce
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equivariant spectral triples on compact quantum groups arising from the ¢ deformation of
general simple lie algebras.

Let us recall a few basic notions regarding compact quantum groups before proceeding
further. The theory of quantum groups has its origin in finding a good duality theorem,
analogous to Pontraygin duality theorem, for general locally compact groups. If G is a compact
group then the group multiplication in G gives rise to the comultiplication map A : C(G) —
C(G)®C(Q) defined by A(f)(z,y) = f(zy). It can be shown that the group G can be recovered
from the pair (C(G),A). A compact quantum group is roughly a unital C* algebra together
with a comultiplication A : A — A® A which is coassociative i.e. (1®A)oA =(A®1)oA. In
late 1980°s, Woronowicz developed a general theory of compact quantum groups and developed
a Peter-Weyl theory for them in [41], [42],[43].

Let A be a unital C* algebra and G be a compact quantum group. An action of G on
A is a unital homomorphism 7 : A — A ® C(G) such that (1 ® Ag)T = (7 ® 1)7 where Ag
is the comultiplication on C'(G). We call the triple (A, G, 7) a C* dynamical system. If G is
a compact quantum group then G acts on C(G) by the comultiplication. If G is a compact
quantum group and H a quantum subgroup then G acts on the quotient C'(G/H) by the
comultiplication Ag. A representation of a compact quantum group G on a Hilbert space H is
a unitary element u in the multiplier algebra M (K(H)® C(G)) such that (id® A)(u) = ujauys.
A covariant representation of a C* dynamical system (A, G, ) consists of a pair (m,u) where
7 is a representation of the C* algebra A on a Hilbert space H, u is a unitary representation
of G on H and they obey the condition

u(m(a) @ Du* = (r ®id)T(a) for a € A.

Let (A, G, 7) be a C* dynamical system. An odd G equivariant spectral triple is a quadru-
ple (m,u, D,H) such that

1. The pair (m,u) is a covariant representation of the dynamical system (A, G,7) on the
Hilbert space H,

2. There exists a dense unital *subalgebra A C A such that the triple (A, H, D) is a spectral
triple, and

3. The operator D is G equivariant i.e. u(D ® 1)u* = D.

Now we discuss the results obtained in this thesis. Let us recall the definition of the quantum
group SU,(n) due to Woronowicz. Throughout we assume that ¢ € (0,1). Recall that the C*
algebra C(SU,(n)) is the universal unital C* algebra generated by n? elements u;; satisfying

the following condition

n n
Zu,ku;k =0;ij Z u};iukj = 05 (1.0.1)
k=1 k=1
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n n n
DN D Biigintivia Wi = By (1.0.2)

i1=lis=1  in=1
where
0 if 41,19, i, are not distinct,
(_q)g(llﬂay 7ZTL)
where for a permutation o on {1,2,--- ,n}, (o) denotes the number of inversions i.e. the
cardinality of the set {(i,7) : i < j,0(i) > o(j)}. The C* algebra C(SU,(n)) has a compact

quantum group structure. The comultiplication A is given by
Alugy) = Z Uik @ Uk
k

Call the generators of SUy;(n —m) as v;; for 1 <m < n —1. The map ¢ : C(SUy(n)) —
C(SUy(n —m)) defined by

P (uij) (1.0.3)

Vi—m,j—m ifm+1<i,j<n
O;i otherwise

is a surjective unital C* algebra homomorphism such that Ao ¢ = (¢ ® ¢)A. In this way the
quantum group SU,(n —m) is a subgroup of the quantum group SU,(n). The C* algebra of
the quotient SU,(n)/SU,(n —m) denoted by C(Sg""™) is defined by the equation

C(Sg™) :=={a € C(SU,(n)) : (¢ ®1)A(a) =1®a}.

The C* algebra C(Si"') is denoted by C(52"71). The C* algebras C(S4"™) are called the
quantum Steifel manifolds in [31] and the C* algebras C' (Sg"_l) are called the odd dimensional
quantum spheres.

Let h be the Haar state on the quantum group SU,(n + 1) and let L?(SU,(n + 1)) be the
corresponding GN S space. We denote the closure of C(S7" 1) in L?(SU,(n+1)) by L?(S2"1).
Then L?(S2"*!) is invariant under the right regular representation of SUg(n+1). Thus we get a
covariant representation for the dynamical system (C(52"*1), SU,(n+1),A). In [8], SU,(n+1)
equivariant spectral triples for this covariant representation were studied and a non-trivial one
was constructed. The Hilbert space L2(S§”+1) is nothing but ¢2(N™ x Z x N") upto a unitary
map. Then the selfadjoint operator D, constructed in [§] is given on the orthonormal basis

{ey 17 € N" x Z x N"} by the formula Dey(e,) := dye, where d, is given by
d J— Z’lzzil—l |/71| lf (7n+177n+2, te 772n+1) =0 and Yn41 2 0’
Tl Xl else

In this thesis, we study the spectral triple (C(Sz"t1), L*(S2"*1), Deg) from the local index
formula point of view. We show in particular that it satisfies the assumptions of the local index
formula namely regularity and discreteness of the dimension spectrum. In particular, we prove

the following theorem:.

13



Theorem A. There exists a unital dense *subalgebra C™(S2"1) of the C* algebra C(Sz"+1)
such that the triple (C"X’(Sg"“),L2(S§"+1),Deq) s a regular spectral triple with simple and
discrete dimension spectrum. In particular the dimension spectrum is the set {1,2,--- ,2n+1}.

Moreover the dense subalgebra C‘X’(Sg”“) is closed under holomorphic functional calculus.

Theorem A is the main result in [30]. But this computation and also the computations
carried out in [I7], [39] and in [29] are case specific. There are not many results of general nature
which will imply regularity and discreteness of the dimension spectrum. To our knowledge, only
Higson’s results in [20] are in this direction. We need some functorial constructions on regular
spectral triples with discrete dimension spectrum such that the resulting spectral triple is also
regular and has discrete dimension spectrum.

We consider a property of spectral triples which we call the weak heat kernel asymptotic
expansion property and also the construction of the quantum double suspension of spectral
triples. We show that a spectral triple having the weak heat kernel expansion property is
regular and has simple dimension spectrum. We also show that the weak heat kernel expansion
property is stable under quantum double suspension. This gives a conceptual explanation for
Theorem A.

Now let us recall the definition of the quantum double suspension as in [22]. If A is a unital
C* algebra then its quantum double suspension denoted ¥.2(A) is the C* algebra generated by
1® S and A ® p where S is the left shift on £2(N) and p := 1 — S*S. If (m,H, D) is a spectral
triple for A then (7 ® 1,H ® ¢2(N),¥?(D) := (F®1)(|D| ® 1 + 1 ® N)) is a spectral triple for
the algebra ¥2(A). Here I := sign(D) and N is the number operator on £2(N) defined on the
standard orthonormal basis by Ne, := ne,,.

Let (A,#H,D) be a regular and finitely summable spectral triple. Let B be the algebra
generated by (J,,~, 0" (A+[D, A]). We say that the spectral triple (A, H, D) has the weak heat
kernel asympt;tic expansion property if the function T° r(be‘”D |) admits an asymptotic
expansion in ¢t near 0 for every b € B and we say that it has the heat kernel asymptotic
expansion property if Tr(be‘tD 2) has an asymptotic expansion property for every b € 3. We

prove the following theorem in this thesis.

Theorem B. Let (A, H,D) be a spectral triple which has the weak heat kernel asymptotic
expansion property. Then the spectral triple (A, H,D) has a finite simple dimension spectrum
contained in the set of positive integers. If the spectral triple (A, H,D) has the weak heat
kernel expansion then the spectral triple (X%(A),H ® £2(N),¥2(D)) also has the weak heat
kernel asymptotic expansion property. Moreover if the dimension spectrum of (A, H,D) lies
inside {1,2,--- ,n} then the dimension spectrum of its quantum double suspension lies inside
{1,2,--- ,n+1}.

We compare the weak heat kernel expansion property with that of the classical heat kernel

expansion property. The following proposition is proved in the thesis.
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Proposition. If a spectral triple (A, H, D) has the heat kernel asymptotic expansion property
then (A, H, D) has the weak heat kernel expansion property.

Thus the standard spectral triple (C*°(M), L%(S), D) on a spin manifold, where S — M
is a spinor bundle and D is the Dirac operator associated with Levi-Civita connection, has
the weak heat kernel asymptotic expansion property. Thus quantum double suspending this
spectral triple recursively produces noncommutative examples of spectral triples which satisfies
the hypothesis of the local index formula.

The K-groups of the quantum group SU,(n) were computed by Gabriel Nagy using his
bivariant K theory in [27]. But one would like to obtain some explicit generators for the K-
groups to construct non-trivial spectral triples on them. The final chapter of the thesis achieves

this for the quantum Steifel manifolds C'(Sy ’2). The following theorem is proved in the thesis.
Theorem C. The K groups Ko(C(Si?)) and K,(C(Si"%)) are both isomorphic to Z2.

We obtain explicit generators for the K-groups.

We complete the introduction by indicating the organisation of the thesis.

In the next Chapter, we collect the preliminaries that are required to understand this thesis.
We review the basics of K-theory. The definitions pertaining to spectral triples and quantum
groups are recalled in this chapter. The local index formula for spectral triples is recalled.

In Chapter 3 , we consider a spectral triple called the torus equivariant one on Sg"“ and
show that it is regular and has discrete dimension spectrum.

In Chapter 4, we consider the SU,(n) equivariant spectral triple on Sg"“. Theorem A is
proved in this chapter.

Chapter 5 starts with a brief discussion on asymptotic expansions and Mellin transform.
We then consider quantum double suspension of C* algebras and that of spectral triples. We
prove Theorem B in this chapter.

In the final chapter, we compute the K-groups of the quantum Steifel manifold C(Sg ’2).

The chapters are followed by an appendix. In the appendix, we discuss the results of
Larry B.Schweitzer on smooth subalgebras of operator algebras obtained in [33],[34]. We have

included the proofs of certain results for the sake of completeness.
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Chapter 2

Preliminaries

In this chapter, we collect the preliminaries which are essential for understanding this thesis.
In particular we review the K-theory of C* algebras, definitions pertaining to spectral triples

and the local index formula.

2.1 Topological K-theory

We start by recalling the definition of topological K-theory. Let X be a compact Hausdorff
space. We denote the set of isomorphism classes of vector bundles of finite rank over X by
V(X). The Whitney sum of vector bundles makes V(X) an abelian semigroup with an identity
element. The abelian group K(X) is defined to be the group obtained from V(X) by the
Grothendieck construction. The group K (X) is called the K-theory of X.

Let us recall the Grothendieck construction. Suppose (R, +) is an abelian semigroup with

identity. Define an equivalence relation ~ on R x R as follows:
(a,b) ~ (c,d) if there exists e € R such that a +d+e=b+c+e.

We think of the equivalence class [(a,b)] as representing the difference a — b. The addition +
on R x R/ ~ is defined as

[(a,b)] + [(¢,d)] = [(a + ¢, b+ d)].

Then + is well defined on R x R/ ~ and (R x R/ ~,+) is an abelian group with [(a, a)] as the
identity element for any a € R and the inverse of [(a,b)] is [(b, a)].

The fact that allows one to adapt K-theory to noncommutative C* algebras is the Serre-
Swan theorem. Let 7 : EF — X be a vector bundle over X. For z € X, denotes its fibre over
x by E, ie E, =7 !(x). A section of 7: £ — X is a map s : X — E such that s(x) € E,.
The set of all sections is denoted by I'(E). Then I'(E) is a left C'(X) module where the module
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structure is given by
(f.9)(z) := f(x)s(x) for fe C(X), seT'(E).

We denote the isomorphism classes of finitely generated projective left modules over C(X)
by Projfin(C(X)). Then (Projfin(C(X)),+) is a semigroup with identiy.

Theorem 2.1.1 (Serre-Swan). For a vector bundle (E,m, X), the set of its sections T'(E) is a
finitely generated projective module over C(X). Furthermore, the map

Vect(X) o [E] = [I'(E)] € Projsin(C(X))
is a semigroup isomorphism.

Thus the abelian group K (X) can as well be obtained from the semigroup Projs,(C (X))
by the Grothendieck construction and K (X) depends only on the algebra C(X). We can now
replace C'(X) by any noncommutative algebra and can obtain an invariant for it. In particular
K-theory adapts well to noncommutative C* algebras. For a more detailed account of the

topological K-theory, we refer to [26].

2.2 K-theory for C* algebras

In this section, we give a brief review of the K theory for C* algebras. We refer to [4] for
a detailed account of it. All the algebras that we consider in this thesis are over C. Let A
be an algebra over C. We denote the direct sum AP A D --- & A by A™ which is naturally a

ntimes

A — M, (A) bimodule.
Proposition 2.2.1. Let A be an algebra over the field of complex numbers C.

1. For an idempotent p € M, (A), the left A module A™p is a finitely generated projective A

module. In fact, any finitely generated projective A module arises this way.

2. The modules A™p and A™q are isomorphic if and only if there exists matrices u €
Myxm(A) and v € My, xn(A) such that uwv = p and vu = q.

For an algebra A, let E(A) := {e € A: €2 = e} and Ex(A) =, E(M,(A)). Define an
equivalence relation on Fo(.A) as follows: Let p € M,,,(A) and ¢ € M, (A).

p~ q < there exists u € My, xn(A),v € My xm(A) such that uv = p and vu = q.

Then we have the following proposition.

0
Proposition 2.2.2. The operation & defined by [p]®]q] = []5 ] is well defined on Ex(A)/ ~.
q

Moreover, (Ex(A)/ ~,®) is a commutative semigroup with identity.
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We define the K-group KO(A) to be the Grothendieck group of the abelian semigroup
(Exo(A),®). In C* algebras, we can replace the idempotents by projections and the equivalence
relation by Murray-von Neumann equivalence.

Let us first introduce some notations. Let A be a C* algebra. An element p € A is said to

be a projection if p? = p = p*. Let

P(A):={pe€ A: pisa projection},
M, (A) : = the algebra of n x n matrices over A, and
Poo(A) := | P(M,(4)).

n>1

Two projections p and ¢ in a C* algebra A are said to be Murray-von Neumann equivalent
if there exists v € A such that v*v = p and vv* = ¢q. It is easy to verify that Murray-von
Neumann equivalence is an equivalence relation.

Define an equivalence relation on Py (A) as follows: Let p € M,,(A) and ¢ € M,(A) be

projections.
p 0 q 0 : .
p~gs 0 0 and 0 0 are Murray-von Neumann equivalent in My (A) for some N .

Then we have the following proposition.

p

0
Proposition 2.2.3. The operation & defined by [p]®]q] = [O ] is well defined on P (A)/ ~.
q

Moreover (Px(A)/ ~,®) is a commutative semigroup with identity.

We define the K-group KO(A) to be the Grothendieck group of the abelian semigroup
(Px(A), ®). Tt can be shown that for a C* algebra A, Ko(A) defined in terms of the projec-
tions coincide with the one defined in terms of idempotents. Note that if ¢ : A — B is a x
homomorphism then ¢ induces a map Kg((ﬁ) at the level of KO(A). Thus Ky is a functor from
the category of C* algebras to the category of abelian groups.

Let A be a C* algebra and let A" denote the C* algebra obtained by adding an unit. More
precisely AT := A @ C and the multiplication is defined as (a, \)(b, ) = (ab + Ab + pa, A\p).
One can show that A" is a C* algebra with A as an ideal. We let € be the map (a,\) — .

Then one has the following exact sequence
0—A— AT 5 C—0.

We define for a C* algebra A,
Ko(A) == KerKy(e).

Then Ky is a covariant functor from the category of C* algebras to the category of abelian

groups. For unital C* algebras, Ky and K, are naturally isomorphic.
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Now we recall the definition of K for a C* algebra. Let A be a unital C* algebra. An
element u € A is called a unitary element if u*u = uu™ = 1. We denote the set of unitaries in
M, (A) by U, (A). Then the group U,(A) is a topological group and the connected component
containing 1 is denoted by U%(A). Then U2(A) is a normal subgroup of U,(A4). We embedd

0
Un(A) in Up41(A) by the inclusion v — g i Thus we get a directed system of groups

w = Un—1(A)/Un_1(A) = Un(A)/UR(A) = Up41(A)/Up g1 (4) = -+

Define

. o Un(4)
Kq(A) = nh_)n;o 00 (A)

Then one has the following proposition.

Proposition 2.2.4. Let A be a unital C* algebra.

- 0 1 0
1. For a unitary u € My (A), in Ki(A) one has [u]= [Z 1] = [O ] .
u

° 0 0
2. The group operation on Ki(A) is given by [u].[v] = [?(; ] - [g ] )
v U

3. The group K,(A) is abelian.

For a C* algebra A, we let Ki(A) := K;(A1). Then K is a covariant functor from the
category of C* algebras to the category of abelian groups. For unital C* algebras the functors

K, and K; are naturally isomorphic.

2.2.1 The six term sequence in K theory

An important computational tool in K theory is the six term exact sequence. For an exact
sequence
01478 0,

one has the following six term exact sequence

Ko(9) Ko(m)
Ko(I) == Ko(A) = Ko(B)

d |
Kl(B)mKl(A)mKl([)

The map 0 is called the index map and o is called the exponential map. Moreover the index and

the exponential maps are functorial. The proof of the six term sequence involves the following

e Half exactness of the K-groups i.e top and bottom rows are exact.
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e The construction of the index map.
e Bott periodicity and the construction of the exponential map.

For a detailed proof we refer to [4]. Here we just recall the construction of the index map.

Let u be a unitary in M, (B"). Then the unitary U := v

0
*] is connected to 1g,. Let V
U

be a unitary lift in Ma,(AT) of U. Then 9([u]) is defined as d([u]) = [Vp,V*] — [pn] where
|1, 0

Pr="10 o

Lemma 2.2.5. Consider an exact sequence of C* algebras

0-—I1-254"B_—>0.

Let u be a unitary in M, (B™). Suppose that there exists a partial isometry v € M, (A") such
that w(v) = u. Then O([u]) = [1 — v*v] — [1 — vv*].
v 1-—

Proof. Note that the unitary V :=
1—ov*v v*

v ] is a lift of diag(u,u*). We write

diag(a,b) to denote the matrix g 2 . Hence 9([u]) = [Vp,V*| — [pn] = [diag(vv*, 1 — v*v] —

[diag(1,,0)]. Thus one has 9([u]) = [1 — v*v] — [1 — vv*]. This completes the proof. O

2.3 Cyclic cohomology

In this section, the periodic cyclic cohomology for an algebra defined in [14] is recalled. Let
A be a unital algebra over C. We denote the set of n + 1 linear functionals on A by C™(A).
Consider the map b: C"(A) — C"1(A) defined by

n

bp(ao, a1, 1 ang1) = Y _(=1)'¢(a0, a1, + 1051, 0041, Qiga, Gng1)
i=0
+ (=1 pansra0, a1, s an).

Then one can show that ¥> = 0 and the cohomology of the complex (C™(A),b),>0 is called
the Hochschild cohomology of A. An n + 1 linear functional ¢ on A is said to be cyclic if
Plar,az, - ,an,a0) = (=1)"¢(ag,a1,- - ,a,) for every ag,ar,--- ,a, € A. Let C}(A) be the
subspace of n + 1 multilinear functionals on A which are cyclic. It is shown in [14] that b maps
the subspace C}(A) to the subspace C}™(A). This gives rise to a complex (C}(A),b),>0 and
its cohomology is called the cyclic cohomology defined by

_ {reCY(A): br =0}

A = ve )y
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Elements of H}(A) come from what are called cycles over A. Let us recall the following
definition from [I4].

Definition 2.3.1. An n dimensional cycle is a triple (Q,d, [) where Q := ®p_oflp 1s a graded
algebra, d is a graded derivation and [ : Q™ — C is a closed graded trace i.e.

1. For w € Q"7 the integral [ dw = 0.
2. If w1 € Qp and wy € Qq then [wiws = (—1)P7 [ wow;.

Let (1,d1, ) be an m dimensional cycle and (Q2,ds, [) be an n dimensional cycle. Then
the tensor product (€1 ® Q9,d, [) is an m +n dimensional cycle with d and [ being defined as

d(w1 ® LUQ = d1 w1 X wo + ( 1)degw1wl ® daws, and

/w1®w2 /wl/w2

An n dimensional cycle for an algebra A is an n dimensional cycle (2,d, [) together with
a homomorphism p : A — Q0. Let (Q,d, [,p) be an n dimensional cycle for A. Then its

character is the n + 1 linear functional 7 on A defined by

(ag, a1, - an) = /p(ao)d(p(al))d(p(@))"'d(p(an))-

Then it is shown in [I4] that 7 is a cyclic cocycle and any cyclic cocycle comes from a cycle.
Tensor products of cycles gives rise to the cup product # : HY(A) x H*(B) — H{"™(A®B) in
the cyclic cohomology . Let o be the cyclic 2 cocycle on C defined by o(1,1,1) = ﬁ Consider
the map S : HY(A) — H;”(A) defined by S(¢) = ¢#o0. The periodic cyclic cohomology
HY(A) and H{%(A) are defined as

H{""(A):= lim (HY(A),S), and

n even

nhgdld(HA ('A)7 S)

HOdd(.A)

Now we present another picture of the periodic cyclic cohomology which is essential to explain
the local index formula. Recall that C™(.A) is the space of n+1 linear functionals on .A. Define
the operator B : C"1(A) — C"(A) as follows:

n n

Bé(ag, a1, ,an) = Y (=) o(1,a5,a541,- ,a;-1) + Y _(=1)"VVo(aj,a541,- - ,a;-1,1).
j=0 Jj=0

Then it can be shown that B2 = 0 and bB + Bb = 0. Consider an element ¢ = (¢g, ¢2,---) in

the direct sum @y, ¢penC"(A). Then ¢ is called an even (b, B) cocycle if bpox + Bpogio = 0.

Similarly an element ¢ = (¢1, 3, -+ ,) is called an odd (b, B) cocycle if bgor_1 + Beopi1 = 0.

If 7 is a cyclic n cocycle then (0,0,--- ,7,---) is a (b, B) cocycle.
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Two even (b, B) cocycles ¢ and qﬁ/ are said to be cohomologous and written ¢ ~.p qﬁ/ if there
exists ¢ = (11,13, -+ ,) in the direct sum @, ,34C™(A) such that ¢o — Por = bihor_1+ Bihogy1.
Similarly one defines the relation of being cohomologous for odd (b, B) cocycles.

Definition 2.3.2. For a unital algebra A over C, the even( resp. odd) periodic cyclic coho-
mology PH$"(A) (resp. PH${(A)) is the vector space of even( resp. odd) (b, B) cocycles

modulo the relation ~op,.

It is proved in [I4] that the (b, B) picture of the cyclic cohomology and that defined via

cyclic cocycles coincide. The map (upto a normalising constant)
H*"(A) 3 [r] = [(0,0,--- ,7,--+ )] € PH{""(A)

is infact an isomorphism. A similar statment holds for odd periodic cyclic cohomology. Hence-
forth we use the same notation H5""(.A) to denote both the spaces H{"*"(A) and PHS""(A).
Similarly we denote the odd periodic cyclic cohomology by Hﬁdd(.A).

2.3.1 Fredholm modules and the Chern character

The ’dual’ of K-theory called the K-homology theory is made up of Fredholm modules.

Definition 2.3.3. Let A be a unital C* algebra. An even Fredholm module is a triple
(m,H, F) where

e the vector space H is a Zo graded Hilbert space with a grading -,

e the map 7 is a unital x representation of A on H such that yw(a)y = w(a) for every
a€A,

e the operator F' is a selfadjoint unitary which anticommutes with v, and
e the commutator [F,m(a)] is compact for every a € A.

An odd Fredholm module for A is a triple (7, H, F') where 7 is a unital x representation of

A on H and F is a selfadjoint unitary such that [F,7(a)] is compact for every a € A.

If (m,H, F) is an odd Fredholm module for A then (7, := 7®1,H,, := HRC", F,, := F®1)
is an odd Fredholm module for M, (A). A similar statement holds for even Fredolm modules.
We will simply write a for 7, (a) if a € M,,(A). Let (7, H, F') be an odd Fredholm module for a
unital C* algebra A. We denote the projection % by P,. If u is a unitary in M, (A) then
P.uP, : P,H, — P,H, is Fredholm and hence has an index. This gives rise to a well defined
map Indp : K1(A) — Z defined by

Indp([u]) := Index(P,uP,)
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Let (7, H, F,~) be an even Fredholm module and we let v,, = y® 1. We denote the eigen spaces
Ker(vy, — 1) and Ker(y, + 1) by H;7 and H,, respectively. If p is a projection in M, (A) then
pF.p : pH, — pH, is Fredholm and has an index. Thus we obtain a map Indp : Ko(A) — Z
defined by

Indp([p]) := Index(pF,p).

The map Indp is called the analytical index and in [I4], Connes explains this pairing as the
cyclic cohomology/K-theory pairing. Since we will be considering only odd Fredholm modules

and odd spectral triples, we will explain only the odd case.

Definition 2.3.4. An odd Fredholm module (7, H,F) for a C* algebra is said to p summable
if the xalgebra A® = {a € A: [F,n(a)] € LP(H)} is dense in A where LP(H) denotes the pth
Schatten ideal.

Let (m,H, F') be a Fredholm module for a C* algebra A and let A% be as in Definition
234l For a € A® let ||a|| := ||7(a)||op + ||[F;7(a)]||, where ||.||sp denotes the operator norm
on L£(H) and |||, denotes the norm on LP(#H). Then (A>,||.||) is a dense Fre¢het algebra and
if a € A is invertible in A then = € A. Such an algebra is called a smooth subalgebra and
in the Appendix, some results related with smooth subalgebras of C* algebras are reviewed.
In particular if A% is a smooth subalgebra of a C* algebra then their K-groups coincide. If
(m,H, F) is a p summable Fredholm module for A with p odd then its Chern character is the
p + 1 linear functional Chr on A defined by the formula
rE+1)

2p!
Then Chp is a p cocycle. If (7w, H, F') is a p summable Fredholm module then (7w, H, F') is also
p + 2 summable. But it is shown in [I4] that S(ChY) = C’h%”. Thus (Chh.) gives a well
defined element in H*(.A°°) which we denote by Chp.

Next we explain the cyclic cohomology/K-theory pairing. The usual trace Tr : M, (C) — C

C’h%(ao,al, CeeLap) = Trace(n(ao)[F,m(a1)][F,m(a2)] - - [F,m(ap)]).

is a 0 cocycle. If ¢ is a n cocyle for A then taking the cup product with T'r gives a n cocycle for
M,,(A) which we will denote by ¢ itself. Now let A be a smooth subalgebra of a C* algebra
A. Then the pairing K7 (A®) x H{%¥(A®) — C defined by

<[u],[r] >=7@w" —Lu—1u" —1,--- ju*—1,u—1)

is called the cyclic cohomology/K-theory pairing. Since A% is smooth in A this pairing extends
to a pairing between K1 (A) and H%(A>). Then Connes’ index theorem states that if (7, H, F)
is a finitely summable Fredholm module then for [u] € K;(A)

Indp([u)) =< [u], Chp > .

Remark 2.3.5. When we consider the cyclic cohomology of a smooth subalgebra A*° of a C*
algebra A, we consider only the multilinear functionals on A that are continuous w.r.t to the

topology on A>.
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2.3.2 Regular spectral triples and the local index formula

Let us recall the definition of an odd spectral triple.

Definition 2.3.6. Let A be a unital C* algebra. An odd spectral triple for A is a triple (7, H, D)
such that

1. the map w: A — L(H) is a unital x representation,
2. the operator D is an unbounded selfadjoint operator with compact resolvent, and
3. there exists a dense subalgebra A such that [D,m(a)] is bounded for every a € A.

We sometime write (A, H, D) to denote a spectral triple for a C* algebra A and suppress
the representation m where A denotes a dense subalgebra for which the commutator [D, A] is
bounded.

Let H be a Hilbert space and D an unbounded selfadjoint operator on H with compact
resolvent. Let H be the domain of the operator |D|* for each s > 0. Then H, can be identified
with the graph of the operator |D|* and thus H, acquires a Hilbert space structure. We denote
the intersection NyHs by Hoo. Note that Hoo is infact a core for the operators |D|* for every
s> 0.

An operator T : Hoo — Heo is said to be have analytic order r if T extends to a bounded
operator from Hy, to H for every s,s +r > 0.

Definition 2.3.7. An operator 7' : Hoo — Hoo is said to be smoothing if for every m,n > 0
the operator |D|™T'|D|™ is bounded. The vector space of smoothing operators is denoted by
OP~—°.

For '€ OP~*°, define ||T'||;mn = |||D|™T|D|"|| for m,n > 0.

Lemma 2.3.8. The vector space OP~™>° is an involutive subalgebra of L(H) and equipped with

the family of seminorms || - |lmn, it is a Fréchet algebra.

Let § be the unbounded derivation [|D|,-]. More precisely, Dom(¢) consists of all bounded
operators T' which leaves Dom/(|D|) invariant and for which §(7) := [|D|,T] extends to a
bounded operator. The proofs of the next two lemmas are taken from [I]. We repeat it for our

convenience.

Lemma 2.3.9. The unbounded derivation § is a closed derivation i.e. if T, is a sequence in
Dom(9) such that T,, — T and 6(T,,) — S then T € Dom(d) and §(T) = S.

Proof. Let T), be a sequence in Dom(§) such that T,, converges to T and §(T},) converges to
S. Consider a vector £ € Dom(|D]). Now note that T, — T¢ and |D|T,§ = 0(T,,)¢ + T,,| D|¢
which converges to S + T'|DI|€. Since |D] is a closed operator, it follows that T¢ € Dom(| D))
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and |D|T¢ = SE+T|D|E. Thus T leaves |D| invariant and §(7") = S. This completes the proof.
O
Define OPY := {T € L(H) : T € N,Dom(6™)}. The following lemma says that elements of

OPY are operators on Hoo.
Lemma 2.3.10. Let T be a bounded operator on H. Then the following are equivalent.
(1) The operator T € OP°.

(2) The operator T leaves Hoo invariant and 0™(T') : Hoo — Hoo 1S bounded for every n € N.

Proof. First lets prove (2) implies (1). Let T' be a bounded operator which leaves Ho
invariant and 0™ (7") is bounded for every n > 0. Let & be a vector in Dom(|D|). Since Hoo
is a core for Dom(|D|), it follows that there exists a sequence &, € Hoo such that &, — &
and |DI|&, — |D|. On Heo, one has |D|T = §(T') + T'|D|. Hence T¢,, converges to T'¢ and
|D|TE,, converges to 6(T)¢ + T|D|E. Since |D| is closed, it follows that T¢ € Dom(|D]). As
(T') : Hoo = Moo is bounded, it follows that 7" € Dom(d). The same proof applied recursively
to 6(T),0%(T) - - - shows that T € N, Dom(6") = OP°.

To prove (1) implies (2), we first prove the following claim.

Claim: For every m > 1,if T € OPY and ¢ € H, then T¢ € Dom(|D|™) and

prere =3 (7)ot iprte

k=0
The proof is by induction on m. Let T'€ OP° and ¢ € Ho. Since T € Dom(d), by definition,
it follows that T¢ € Dom(|D|) as £ € Dom(|D|) and the equation |D|T¢ = §(T)¢ + T|D|¢ is
just the definition.
Now assume the claim for £ < m. Let T € OP° and ¢ € Ho. By assumption T¢ €

Dom(|D|™) and

DI"T¢ = m)ak T)|D|™ ¢

pire= 3 () iim+e
As §%(T) leaves Dom(|D|) invariant, it follows that each term 6% (T)|D|™*¢ is in Dom(|D|)
and hence |D|™T¢ € Dom(|D|). Hence T¢ € Dom(|D|™+1). Now

[DI"ITE = |D[™S(T)E + |DI™T|Dlg
_ Z <7]7;> SEHL(T)|D|m ke + Z (z) 58| D|m+ ke
k=0 k=0

- é(( )+ ()i 4 i+ e g

m—+1
=> (mj 1)6J<T>1D\m+1—js.
7=0
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This completes the proof of the claim and hence the proof. O

It is easy to see from lemma 2.3.10] that OPY is a  algebra and that OP~° is an ideal in
OP°. Tosee this, let T € OP’ and S € OP~°. Now |D|™T'S|D|" = Y"1* ()6 (T)|D|™~*S|D|".
Since for every k, |D|™ *S|D|" is bounded and hence |D|™T'S|D|" is bounded for every
m,n > 0. Similarly one can show that ST € OP~°.

Definition 2.3.11. Let (A, H, D) be a spectral triple. We say that (A, H, D) is regular if
A+ [D, Al c OP°.
Let D be a selfadjoint operator with compact resolvent. Then |D| has finite dimensional

kernel and let P be the projection onto the kernel of |D|. Let D" = D + P. Then D is
invertible. We denote |D'|~* for Re(z) > 0 simply by |D|~2.

Definition 2.3.12. A spectral triple (A, H, D) is said to be p-+summable if |D|~° is trace class
for Re(s) > p. A spectral triple is said to be finitely summable if it is p+summable for some
p > 0.

Let (A, H, D) be a regular spectral triple which is p+summable for some p. Let B be the
algebra generated by ¢6"(A) and 0"([D,.A]). We say that the spectral triple (A, H, D) has
discrete dimension spectrum X C C if ¥ is discrete and for every b € B, the function
Trace(b|D|™*) initially defined for Re(z) > p extends to a meromorphic function with poles

only in . We say the dimension spectrum is simple if all the poles are simple.

Proposition 2.3.13. Let (A, H,D) be a regular p+ summable spectral triple and let F :=
sign(D). Then the triple (A, H,F) is a p+ 1 summable Fredholm module.

Proof. We denote the orthogonal projection onto the kernel of D by P and let D’ := D+ P.
Then (A,H,D') is a regular p+ summable spectral triple and sign(D’) = sign(D). Thus,
without loss of generality, we can assume that (A, H, D) is a regular p+ summable spectral
triple with D invertible. Let a € A. On Ho, we have

[F.a] = [D|D[™, d]

= [D,d)|DI™" + D[|D|™, d]

— [D,a)|D"* - DID|Y|D],a]| D]

— [D,)|D|"! — F§(a)|D| .

Since [D,a] and 6(a) are bounded and |D|~! is in the (p + 1) Schatten ideal, it follows that
[F,a] is in the (p + 1)** Schatten class. This completes the proof. O

2.3.3 Topological tensor products

Apart from C*-algebras and their tensor products, we will also deal with Fréchet algebras and

their tensor products. Suppose A; and A, are two Fréchet algebras with topologies coming
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from the families of seminorms (|| - |[x)aea and (|| - [|x)rear. For each pair (A, \) € A x A/,
one forms the projective cross norm || - ||y » which is a seminorm on the algebraic tensor
product A; ®gyy A2. The family (|| - [[x x)a,x)eaxas then gives rise to a topology on Aj ®qig Aa.
Completion with respect to this is a Fréchet algebra and is called the projective tensor product
of A1 and As. Let us recall the definition of the projective cross norm. If p; is seminorm on A;

and ps is a seminorm on Ap then the projective cross norm p; ® p2 on Ay ®q4 Az is defined as
(1 ®@pa)(x) = i pr(@)pa(yi) 12 = = @y}
i i

While talking about tensor product of two Fréchet algebras, we will always mean their
projective tensor product and will denote it by A; ® As.

We will mainly be concerned with Fréchet algebras sitting inside some £(H) with Fréchet
topology finer than the norm topology. In other words, we will be dealing with Fréchet algebras
with faithful continuous representations on Hilbert spaces. Let Aj, Ay be Fréchet algebras. If
pi + A;i — L(H;) are continuous representations for i = 0,1 where H;’s are Hilbert spaces,
then by the universality of the projective tensor product it follows that there exists a unique
continuous representation p1 ®pg : A1®As — L(H1®@H2) such that (p1 ®p2) (a1 ®az) = p1(a1)®
p2(az). If A;’s are subalgebras of £(H;) then we will call the tensor product representation of
A1 ® Ay on Hq ® Ho as the natural representation.

Lemma 2.3.14. Let (A1, H1,D1) and (Ag, Ha, Do) be regular spectral triples. Assume that the

following conditions hold.

1. The algebras Ay and Ay are Fréchet algebras represented faithfully on Hi and Ho respec-
tively.

2. The selfadjoint operators Dy and Dy are positive with compact resolvent.

3. For i = 0,1, the unbounded derivations 6; = [D;, .| leave A; invariant and 6; : A; — A; is

continuous.

Let D := D1 ®1+4+1® Dy. Suppose that the natural representation of A1®As on Hi ® Ho is
faithful. Then the triple (A1 @Az, H1 ® Ha, D) is a regular spectral triple. More precisely the
unbounded derivation 6 := [D,.] leaves the algebra A1® Ay invariant and the map § : A;®@Ay —

A1R®As is continuous.

Proof: Let ¢ =01 ®1+1® do. Then ¢’ is a continuous linear operator on A;®Ay. Clearly
Aj Qaig A2 C Dom(d) and § = ¢ on Ay ®q9 A2. Now let a € A1®A be given. Choose a
sequence (a,) € Ay ®q19 A2 such that a, — a in A;®As. Then a, — a in L(H1 @ Hsa). Since §’
is continuous and because the inclusion A;®Ay C L(H1 ® Hz) is continuous, it follows that the
sequence (&' (an)) = (0(ay)) is cauchy in L(H; ® Ha). As J is closed, it follows that a € Dom/(9)
and 6(a) = ¢’(a). Now the proposition follows. O
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The above lemma can be extended to tensor product of finite number of spectral triples

with the appropriate assumptions.

2.3.4 The local index formula

Let (A,H,D) be a finitely summable spectral triple for a unital C* algebra A. Then the
Fredholm module (A, H, F') is finitely summable where F' := sign(D). The index map Indp can
be computed via the Chern character of F'. But in geometric examples, this Chern character
is often difficult to compute and one needs an alternate formula which computes the index
completely in terms of D. This is acheived by Connes and Moscovici in [12]. The formula they
obtain is called the local index formula.

First let us fix some notations. Let (A,H, D) be a regular p+ summable spectral triple
with simple and discrete dimension spectrum. Let B be the algebra generated by 6" (A) and
6"([D, A]) in L(H). For b € B, we let b() := [D?,b] and b*) := [D? bk=1)]. We denote the
algebra generated by B and |D|*,k € N by D. For b € D, let [b:= Res,—oTr(b|D|™?).

For n odd and a multiindex k = (ki, ko, -+ , ky), consider the n + 1 multilinear functional
®n. on A defined as

¢n,k(a07 Ay, - 7an) = /GO[Dv al](kl)[D7 a2](k1) T [Dv an](kn)|D|_n_2‘k|

where |k| := "' | k;. Note that if |k| +n > p then ¢, = 0. We let ¢y, := >, cn k¢ Where

the constants ¢,  are given by

. L(kl +5)
k= (D)2 2 :
ene = (71) ‘/_anjln(k1+k2+---+kj+j)

Theorem 2.3.15 (Connes-Moscovici). Let (A, H, D) be a regular, finitely summable spectral

triple with discrete and simple dimension spectrum. Then
1. The sequence ¢ := (¢1, 3,05, ) is a (b, B) cocycle.
2. The cocycle ¢ is cohomologous to the Chern character Chr of the Fredholm module

(A, H,F) where F := sign(D).

2.4 Compact Quantum groups

In this section, we recall the definition of quantum groups defined by Wornowicz in [43]. The

C* algebras that we consider are nuclear and so no problem arises with the tensor product.

Definition 2.4.1. A compact quantum group is a pair (A, A) where A is a unital C* algebra
and A : A — A® A is a unital C* algebra homomorphism such that
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1. The homomorphism A is coassociative i.e. (1@ A)A = (A® 1)A.
2. The span of {(a ® 1)A(b) : a,b € A} and {(1 ® a)A(b) : a,b € A} are dense in A® A.
We write C(G) for the algebra A and call G the compact quantum group.

If G is a compact group then C(G), the algebra of continuous complex valued functions on
G, is an example of a compact quantum group. The comultiplication A : C(G) — C(G)@C(G)
is defined as A(f)(z,y) = f(zy). In fact, any compact quantum group G for which C(G) is
commutative arises this way.

The following examples of compact quantum groups due to Wornowicz and its homogeneous

spaces will occupy the major portion of this thesis. We let ¢ € (0,1).

Example 2.4.2. The C* algebra C(SU4(2)) is defined as the universal unital C* algebra gen-

erated by two elements o and B such that
1. aff = qBa, af* = qf*a,

—qp

*

2. The matrix @
p* o«

] s unitary, and

3. The element (3 is normal.

The C* algebra C(SU4(2)) has a quantum group structure. The comultiplication A is given by

A(a)::a(@a_qﬁ@ﬁ*v
AB):=@a"+a®p.

Example 2.4.3. Let n > 3. The C* algebra C(SUy(n)) is the universal C* algebra generated

by n? elements (uij) satisfying the following relations

n n
Z u,ku;k =0;j Z uziukj = 0;j (2.4.1)
k=1 k=1

n n n
Z Z a Z EiyigeinWiriy = Wi = Ejijoerjn (2.4.2)

i1=112=1 in=1

where

0 if 1,19, -1, are not distinct
Eilizvv'in

(_q)g(ilvi%'“ 7i7l)

where for a permutation o on {1,2,--- ,n} €(o) denotes the number of inversions i.e. the
cardinality of the set {(i,7) : i < j, (i) > o(j)}. The C* algebra C(SUy(n)) has a compact

quantum group structure with the comultiplication A given by

Augj) = Z Uik @ Uk
k
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A subgroup of a compact quantum group (G, Aq) is a compact quantum group (H, Ag)
together with a surjection ¢ : C(G) — C(H) such that Ago¢ = (¢®¢)Aq. If H is a subgroup
of G then one defines the right quotient G/H by

CG/H) ={acC(G): acC(Q): (¢®@1)Ag(a) =1®a}.
Similarly the left quotient is defined by

CH\G) ={acC(G): acC(Q): 1®¢)Ag(a)=a®1}.
In this thesis, only right quotients are considered.

Example 2.4.4. Let 1 <m < n — 1. Call the generators of C(SUy(n —m)) as vi;. The map
¢ : C(SUy(n)) = C(SU4(n —m)) defined by

i—m.i— ' 1<4,5<
Buy) = {wwwm s (24.3)

0ij otherwise

is a surjective unital C* algebra homomorphism such that Ao ¢ = (¢ @ ¢)A. In this way the
quantum group SUqz(n —m) is a subgroup of the quantum group SUg(n).

The C* algebra of the quotient SU,(n)/SU,(n —m) is denoted as C(Sg"™). The C* algebra
C(SM) is denoted by C’(Sg"_l). The C* algebras C(S;"™) are called the quantum Steiffel
manifolds and the C* algebras C (Sg"_l) are called the odd dimensional quantum spheres. In
[31], it was proved that the C* algebra C'(S;"™) is generated by the first m rows of the matrix
(uij) of C(SUy(n)). Infact, the algebra C'(Sg™™) is given by a presentation. In particular the

C* algebra of the odd dimensional quantum sphere Sg"“ is the universal unital C* algebra

generated by z1, 29, - , 2,41 satisfying the following relations
2izj = Qzj%, 1<i<i<n+1,
Gz o= azmE,  1<i#j<n+l,
ziz;k—zfzi—i—(l—qz)z,zkz}; = 0, 1<i<n+1,
k>i
n+1

E zizi = 1.
i=1

The map z; — q_”lufl gives the desired isomorphism.

30



Chapter 3

The torus equivariant spectral triple

For odd dimensional quantum spheres two families of spectral triples are studied. One is equiv-
ariant with the natural torus action and the other is equivariant with the quantum group action
of SU,(¢+1). In this chapter, we analyse the spectral triple equivariant under the torus action.
We introduce a smooth subalgebra of the C* algebra of odd dimensional quantum spheres. We
prove that the torus equivariant spectral triple is regular and has discrete dimension spectrum.
This computation forms the base case for the computation of the dimension spectrum of the

equivariant spectral triple.

3.1 Equivariant spectral triples

Let us recall a few basic definitions.

Definition 3.1.1. Let A be a unital C* algebra and G be a compact quantum group. An action
of G on A is a unital homomorphism 7: A — A® C(QG) such that (1 Ag)t = (Tt ®@1)r. We
call the triple (A,G,T) a C* dynamical system.

If G is a compact quantum group then G acts on C(G) by the comultiplication. If G is
a compact quantum group and H a subgroup then G acts on the quotient C'(G/H) by the
comultiplication Ag.

A representation of a compact quantum group G on a Hilbert space H is a unitary element u
in the multiplier algebra M (C(H)® C(G)) such that (id®@ A)(u) = uiouiz. Here K(H) denotes
the C* algebra of compact operators on H. A covariant representation of a C* dynamical
system (A, G, T) consists of a pair (m,u) where 7 is a representation of the C* algebra A on a

Hilbert space H, u is a unitary representation of G on H and they obey the condition
u(r(a) ® )u* = (r ®id)T(a) a€ A.

We need one more definition that of an equivariant spectral triple.
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Definition 3.1.2. Let (A,G,7) be a C* dynamical system. An odd G equivariant spectral
triple is a quadruple (w,u, D,H) such that

1. The pair (m,u) is a covariant representation of the dynamical system (A,G,T) on the
Hilbert space H.

2. There exists a dense unital *subalgebra A C A such that the triple (A, H, D) is a spectral
triple.

3. The operator D is G equivariant i.e. w(D ® 1)u* = D.

One of the first examples of equivariant spectral triples on quantum groups is constructed
in [5]. Let G be a compact quantum group and h be the Haar state on G. The C* dynamical
system (C(G),G,A) has a natural covariant representation on the GNS space L?(h). Now the
problem is to construct equivariant spectral triples for the dynamical system (C(G),G,A) on
L?(h). This question is studied in [5] for G = SU,(2) and a non-trivial one is constructed. To
illustrate the idea behind the construction, let us explain the analysis involved when G = T.

The C* algebra C(T) is represented on the Hilbert space L?(T) by multiplication operators.
The algebra C(T) is generated by a single unitary z and we denote U to be the unitary on
L?(T). Let t — V; be the right regular representation of the group T. W.r.t the standard

orthonormal basis {e, }, the operators U and V; are given by

Uen = €n+1,

Vie, =t "e,,.

If D is an unbounded operator on L?(T) which is T equivariant then D has to keep the eigen
spaces of V; invariant and thus D must diagonalise w.r.t the orthonormal basis {e,}. Thus
De,, = dye, for some sequence (d,,). If (C(T),L*(T), D) is a spectral triple then the fact
that the commutator [D, U] is bounded forces one to conclude that |d,,+1 — dyp| = O(1). Thus
d,, = O(n). Taking d,, = n gives the usual spectral triple on the circle which is non-trivial. Let

us denote the sign of the number operator N defined by Ne,, = ne, by Fy.

Proposition 3.1.3. Let (C(T), L*(T), D) be a T equivariant spectral triple. If F := sign(D)
then upto a compact perturbation F is either 1 or £F).

Proof. Let D be given by De,, = d,e,. Let M be such that |d,+1 —d,| < 2M. Let k > 1 be
such that |d,| > M if |n| > k. We claim that d,,’s are of the same sign if n > k. Suppose not.
Then there exists ¢ > k such that dy and dyq1 are of different signs. Then |dyp11 — d¢| > 2M
which is a contradiction. Thus d,,’s are of the same sign if n > k. Similarly one can prove that
dy,’s are of the same sign if n < —k. Thus upto a finite perturbation, F' is either £+1 or £Fy.
This completes the proof. O
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The analysis carried out in [5], [7] and in [8] are exactly similar in spirit. In this chapter we
consider the torus equivariant spectral triple on Sg”l constructed in [7] and analyse it from
the local index formula point of view. In particular, we prove that this spectral triple is regular
and has discrete dimension spectrum. This analysis is essential for the computation carried

out in the next chapter.

Notations Let us fix some notations. We denote the Hilbert space £2(N’ x Z) by H,. On
both ¢2(N) and ¢*(Z), we denote the left shift by S and is defined by Se, = e,_1. We let
Po = 1—5%5.

Let .7 be the Toeplitz algebra, i.e. the C*-subalgebra of L(¢5(N)) generated by S. For a
positive integer k, we will denote by .7}, the k-fold tensor product of .7, embedded in £(fo(NF)).
Denote by o the symbol map from .7 to C(T) that sends S* to z and all compact operators to 0.
Let N be the number operator on ¢?(N) defined on the orthonormal basis {e,} by Ne,, := ne,.

3.2 The spectral triple

In this section we recall the spectral triple for the odd dimensional quantum spheres given in
[7]. We begin with some known facts about odd dimensional quantum spheres. Let ¢ € [0,1).
The C*-algebra C (Sg“l) of the quantum sphere Sg“l is the universal C*-algebra generated

by elements z1, 29, ..., zp11 satisfying the following relations (see [22]):
2izj = qzjz, 1<j<i<l+1,
Gz o= qyE,  L<i#j<l+l
ziz] — Zzi + 1—q szzk = 0, 1<i<i+41,
k>i
/+1

E zizi = L
i=1

We will denote by .A(Sg“l) the *-subalgebra of A, generated by the z;’s. Note that for £ =0,
the C*-algebra C' (5354-1) is the algebra of continuous functions C'(T) on the torus and for £ = 1,
it is C(SU4(2)).

There is a natural torus group T*! action 7 on C’(Sg“l) as follows. For w = (wq,...,wpq1) €

T!*!, define an automorphism 7, by 7, (%) = w;z;. Let Y}, , be the following operators on H,:

N N 2N Qx* .
.. V31— S I -1 f1<k</

¢ RX...0q¢ ® q @IQ---®L, 11Kk

k—1 copies ¢+1—k copies

Yiq= (3.2.1)

@2 @S, if k=041
————
| ¢ copies
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Here for ¢ = 0, ¢V stands for the rank one projection py = |eg)(eo|. Then 7y : zj Yy 4 gives
a faithful representation of C(S2¢*!) on H, for ¢ € [0,1) (see lemma 4.1 and remark 4.5, [22]).
We will denote the image m(C/(S2°7)) by Ay(q) or by just Ay

Let {e5 : v € I's,, } be the standard orthonormal basis for H,. For w = (wy, wa, -+ ,wey1) €
T*+! we define the unitary Uy, on Hy by Uy (e) = w] wy? .. wajll ey wherey = (1,72, ,Ye41) €
I'y,,. Then (m,U) is a covariant representation of (C’(Sg”l), T*1,7). Note that Ay C

Ty @ C(T).
In [7] all spectral triples equivariant with respect to this covariant representation were

characterised and an optimal one was constructed. We recall the following theorem from [7].

Theorem 3.2.1 ([7]). Let D, be the operator e, — d(7y)e on H, where the d-’s are given by

() = T2+ v+ et if Ye41 > 0,
—(m A+ v+ vesal) i e <O0.

Then (A(Sg“l),?-lg,Dg) is a non-trivial (¢ + 1) summable spectral triple. Also Dy commutes
with Uy, for every w € T

The operator Dy is optimal i.e. if (A(Sg”l), He, D) is a spectral triple such that D commutes
with Uy, for every w, then there exist positive reals a and b such that |D| < a 4 b|Dy|.

In this section, we will introduce a dense subalgebra A7 of Ay(q) closed under its holomor-
phic function calculus and establish regularity of the spectral triple (A3°, H,, Dy). We will also

compute its dimension spectrum.

3.3 The smooth function algebra A}°

In this section, we associate a dense Fréchet *-subalgebra of Ay(q) = m¢(C(S2°")) which is
closed under holomorphic functional calculus. We will first show that the C*-algebra Ay(q) is
independent of q.

Lemma 3.3.1. For any q € (0,1), one has Ay(0) = Ay(q).

Proof: Let us first show that A,(q) C Ay(0). We denote the generators Y;, of A(q) by Yﬁ;l.
The inclusion is trivial for £ = 0. Note that for j > 1, Yﬁ-rllo po®Y]€0. Hence by the induction
hypothesis, it follows that pg ® qu € A(0). Now note that for j > 1

Yf:—rllq Zq YZH ®Y1€q)(ylz,3—l)*n

neN

Hence Yf;l € Ay(0) for 7 > 2. Observe that pp ® 1 = Y5 Y20 and

® 1 = Zq Y£+1 pO ® 1)(Y1€7—04-1)*n
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Thus ¢¥ ® 1 € Ag(0). As Y[ = (/1= ¢?N @ )Y, it follows that Y{'F' € 4,(0).

For the other inclusion, we will use the following fact: if B denotes the C*-subalgebra of
L(¢2(N)) generated by the operator X = (1 — qu)%S*, then B contains the shift operator S.
This is because the operator |X| is invertible and S* = X|X|~!. Using this fact for the first
copy of ¢3(N), since Y7, € Ay(q), one gets Y19 € Ar(q). Next assume that Y;o € Ay(q) for
1<i<j—1, where2 <j </ Then Pj_y:=1— Zi;ll Yy 0Yy o € Au(q). Observe that

P Y — e X@I® -1 Yig = e S RI®---@1.
i—1Yjq=P0X - QPRARXLI--- R 1, J0=P0R - RQPRS XL @
j—1 l+1—j Jj—1 1=y

Therefore using the above fact for the jth copy of ¢3(N), we get Y0 € Ay(g). Finally, since
Yos10 = Yepr,(I = Yhey YeoYio), one has Yoi10 € Ao(q). O

Let us write «; for Y;.’fo. Note that the C*-subalgebra of A, generated by ag,- - ,qpy1 is
isomorphic to A,_1 where the map a — pgy ® a gives the isomorphism. We define the Fréchet
subalgebras A7 inductively as follows.

The algebra

A’ = { Z apz" : (ap) is rapidly decreasing}

is the algebra of smooth functions on T together with the increasing family of seminorms || - ||,
given by ||(an)|lp = (1 +|n|)P|ay|. Then AF is a dense * Fréchet subalgebra of Ay = C(T).
Note that ||al| < [la|lo for a € AF°. Now assume that (A°, || - ||m) be defined such that

1. the seminorms || - ||, are increasing and (A7, | - ||m) is a Fréchet algebra,

2. the subalgebra A9°, is * closed and dense in A;_;. For every a € A9°,, one has ||a*||,, =

lallm,
3. for every a € A7°,, one has ||al| < ||a|lo where || - || denotes the C* norm of A;_;.
Now define
AP = 0> o po@agr)el + ) Mak + > A kait ¢ oap € AR
j,k€EN k>0 k>0
Z(l + 7+ k)"|ajkllm < 0o, (Ag) is rapidly decreasing p . (3.3.2)
j7k

Let a:= ), ai (po @ ajr)ak + X a0 Ak + 320 Akt be an element of A%, Define for

m € N, the seminorms ||al|,, as follows:

ol = e (5 2045 8" llegell) + 3501+ 1) el
J, €
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Proposition 3.3.2. The pair (A, | - ||m) has the following properties:
1. the seminorms || - ||;m are increasing and (A, || - ||lm) s a Fréchet algebra,
2. the subalgebra A} is x closed and dense in A;. For every a € A3°, one has ||a* || = ||a|m,
3. for every a € A3°, one has ||al| < |lallo where || - || denotes the C* norm of Ay.

Proof: The proof is by induction on ¢. Parts (2) and (3) and the fact that the seminorms || - ||,
are increasing follow from the definition and the induction hypothesis. One verifies directly

that (A9°, || - |lm) is a Fréchet algebra using induction and the following relations.

arja] =1,

o) (po ® a)af i (po @ ars)af = Spray? (po ® ajpars)as,

on o J @) = (@) (pg @ 1)af i m >,
Qg =
af ™™ — ZZL‘ol otk (py @ 1)af—m Tk if m <n.
O
Denote the generators zj,z9,---2zp41 of C’(Sg”l) by z§£+1),z§“1),--- ,zégtl). Let oy :
C(SH*) — C(52!) be the homomorphism given by ag(zéﬁl)) = 0 and ag(zi(“l)) = zz-(é)

for 1 < ¢ < £. Let us denote by the same symbol o; the induced homomorphism from A, to
Ay_q. Observe that if one applies the map o on the ¢th copy of .7 in .7 ® C(T) followed by
evaluation at 1 in the (¢ + 1)th copy, then the restriction of the resulting map to Ay is precisely

oy.

Proposition 3.3.3. The dense Fréchet x-subalgebra Ap° of Ay is closed under holomorphic
Y1(£+1) y (1)
7q

functional calculus in Ay. Moreover, the algebra A7° contains the generators v Yoy g

Proof: We prove this proposition by induction on ¢. For ¢ = 0, by definition AJ® = C*°(T).
Hence the proposition is clear in this case. Now assume that the algebra A7, is closed under

0 .. Yz(f)

holomorphic functional calculus in A,_; and contains Yl,q ) pe The homomorphism oy :

Ay — Ay_q gives the following exact sequence
0 — K(l2(N%) @ C(T) — Ay — Ay — 0.
One also has at the smooth algebra level the “sub” extension
0 — S(62(NY)) ® C(T) — AP — AZ; — 0.

Since S(£2(N%)) @ C>=(T) C K(£2(N%))®@C(T) and A°, C A,_; are closed under the respective
holomorphic functional calculus, it follows Lemma [A-T.4] that A?° is spectrally invariant in
Ay. Since ||al]| < |lallp for all a € A9°, it follows that the Fréchet topology of A9° is finer
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than the norm topology. Therefore Ap° is closed under holomorphic functional calculus in Ay.
Observe that for i > 2, we have Yiféﬂ) = n>09""(po ® Y;(_Z)Lq)a?. Hence Yiff;ﬂ) € AP
for i = 2,--- ,0+ 1. Also note that ¢¥ @ I = ano q" o™ (po ® 1)ay. Since AP is closed
under holomorphic functional calculus, it follows that /1 —¢?N*2 @ I € AP. As Yl(f;rl) =

af(y/1—¢?N*t2® 1) it follows that Yl(ffl) € A7°. This completes the proof. a

Next we proceed to prove that the spectral triple (A7, H¢, Dy) is regular and compute its
dimension spectrum. The proof is by induction. We start with the case £ = 0 to start the

induction.

3.3.1 The case /=0

For ¢ = 0, the spectral triple (AJ°,Ho, Do) is unitarily equivalent to the spectral triple
(C®(T), Ly(T), 1 L), For f € C(T), one has [Dy, f] = 1f". Let (e;) be the standard
orthonormal basis and let py be the projection onto ex. Let Fy := sign(Dy). Note that
[Fo, 2] = 2poz and hence by induction [Fpy,z"] = 222;8 prz"pr_n for n > 0. Thus [Fy,z"] is
smoothing for n > 0. Also ||| Do|"[Fo, 2"]|Do|*|| < 2(1+n)"+5F1. Since [Fy,z "]* = —[Fy, 2],
it follows that [Fp,z"] € OP~ for every n. Also ||[Fo,2"]|lrs < 2(1 + |n])""**1. Hence we

observe that [Fp, f] € OP~° and ||[Fo, f]llrs < 2| f|lr+s+1. Let 0 be the unbounded derivation
[1Dol, ]

Lemma 3.3.4. Let B:={fo+ fiFo+ R: fo,f1 € C°(T),R € OPD_(;)O} Then

1. If fo + fiFy is smoothing then fo = f1 = 0. Hence B is isomorphic to the direct sum
C=(T) & C=(T) ® OPp*. We give B the Fréchet space structure coming from this

decomposition. This topology on B is generated by the seminorms (|| - ||m)men which are
defined by | fo+ f1Fo + Rllm := [[follm + [[f1llm + 22 s<m [ Rllrs-

2. The vector space B is closed under 6 and the derivation [Dy, -].

3. For every b € B, [Fy,b] € OP~°. Also the map b — [Fy,b] € OP~>° is continuous. The

derivations 0 and [Dy,-| are continuous.
4. The vector space B is an algebra and contains C*°(T).

Proof : First observe that a bounded operator T" on ¢5(Z) is smoothing if and only if ((T'e;,, €5))m.n
is rapidly decreasing. Now suppose that R := fy + f1Fy be smoothing. Fix an integer r. Ob-
serve that (R(ey), e,1n) converges to fo(r) + f1(r) as n — +oo and converges to fo(r) — fi(r)
as n — —oo. But since R is smoothing it follows that fo(r) + f1(r) = 0 = fo(r) — fi(r). Hence
fo(r) = fi(r) = 0 for every integer r. Thus fo = f; = 0. This proves part (1).

Parts (2), (3) and (4) follow from the observations that [Dy, f] = %f’, [Fo, f] € OP™°,

I[Fo, flllrs < 2| fllr+s+1 and 6(b) = [Do, b]Fo + Do[Fp, b]. This completes the proof. O
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In particular, it follows from parts (2) and (4) of the above lemma that the spectral triple
(AG°, Ho, Do) is regular.

Let € be the C*-subalgebra of L£(¢2(Z)) generated by C(T) and Fy. Note that the algebra
B plays the role of smooth function subalgebra for the C*-algebra £. Therefore £ will stand
for the algebra B.

3.4 Regularity and the dimension spectrum

In this subsection we prove regularity and calculate the dimension spectrum for the spectral
triple (AZ°,H¢, D). The proof is by induction on £. Let us denote the derivation [|Dyl, -] by &,
and let F, stand for the sign of the operator Dy. Observe that F) = 19/ @ Fy =1 ® Fy_;.

Proposition 3.4.1. Let By :={Ag+ A1 F;+ R: Ap, A1 € A7°, R € OP™*°}. Then

1. if Ay + A1F; is smoothing then Ay = A1 = 0. Hence By is isomorphic to the direct
sum A ®© A @ OP~*°. Equip B; with the Fréchet space structure coming from this
decomposition. This topology on By is induced by the seminorms (|| - ||m)men which are
defined by |[Ao + A1Fy + Rllm = || Aollm + [[A1llm + 22,1 s<m 1 Rllrs-

2. For every b € By, [Fy,b] € OP~°. Also the map b — [Fy,b] € OP~° is continuous.

3. The vector space By is closed under the derivations §y and [Dy,-]. Moreover the derivations

d¢ and [Dy, ] are continuous.
4. The vector space By is an algebra and contains A7°.

Proof: The proof is by induction on £. For £ = 0, the proposition is just lemma 334l Now
assume that the proposition is true for £ — 1. Suppose that Ay + A1 F; is smoothing for some
Ag, A1 € A7°. Then Ag+ A1Fy € 7 ® € and Ag + A Fy is compact. Therefore (o ® id)(Ag +
Ang) = 0. Now let

A = Z o (pp ® agi,g)o/f + Z /\,(f)o/f + Z )\@gof{k

3,k>0 k>0 k>0
for i = 0,1. Let fi(2) = Ypeg A 2F for i = 0,1. Now (0 @id)(Ag+ A1 Fp) = fo@ I+ /L@ Fry.
So we have fo ® I + f1 ® Fy_1 = 0. Writing Fy = 2P, — I, it follows that (fo + f1) ® Pr—1 +
(fo— f1) ® (1 — P)—1) = 0. Hence fy = fi = 0. This shows that )\,(f) =0 for¢=0,1. Let
bjr = agk—l—a}kFg_l. Since R := Ag+ A1 Fy is smoothing, it follows that for every j, k, the matrix
entries (e(; 1), (e(k)) are rapidly decreasing in (7y,'). Hence bj is smoothing for every j, k.
By induction hypothesis ag-ik) = 0 for every j,k > 0 and for i = 0,1. Thus Ag = A; = 0. This
proves part (1).
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Observe that
Se(ar) = —o1,  |D 0" = aiF (1D + k), of|Dl® = (IDy| + k) af.

Also F; commutes with ay. To prove (2), it is enough to show that [Fp,a] is smoothing for

every a € A7° and the map a — [Fy,a] is continuous. Let

a= Z a1™(po ® amn)ay + Z Amat® + Z Amai™
m,n>0 m>0 m>0
be an element in Ap°. Then [Fy,a] = mezo ;"™ (po®[Fr—1, amn))af. By induction hypothesis,
it follows that po ® [Fy—1,ams] is smoothing for every m,n > 0. Since (OP,, [ - [|rs) is &
Fréchet space, to show that [Fy,a] is smoothing it is enough to show that the infinite sum
> mn>0 " (Po ® [Fr—1, amn])af converges absolutely in every seminorm || - || ;. Now observe
that

| Del"0q™ (po @ [Fy—1, amn)at [ Del* = o™ (|De] +m)" (o ® [Fr—1, amnl)(| De| + n)°af. (3.4.3)

Since the map o’ € A°, — [Fy_1,d'] € OP~* is continuous, there exist p € N and C}, > 0
such that ||[Fr—1,d][lij < Cplld||p for every o' € AP, and for i,j < maxz{r,s}. Hence by
equation (3.4.3)), it follows that

Z\Ial (o @ [Fe—1, amn))af [lrs < ZZZ< >< > =i I [Fyy, ] |li 5

m,n =0 j=0

T S r s .
< <Z-><~>Cp (E mn ”aman> .

This shows that [Fy, a] is smoothing and the above inequality also shows that for every r, s > 0,
there exists t > 0 and a Cy > 0 such that ||[Fy, a]|l,s < Cil|all;. Hence the map a +— [Fy,a] is
continuous. This proves (2).

To show (3), it is enough to show that the map a — dy(a) from A9° to B, makes sense and
is continuous. We will use the fact that the unbounded derivation d; is a closed derivation. Let
a =73 0" (P0 ® amn)at + 32,50 Amalt + 32,0 A-mai™ be an element in AZ°. Since
a1 and pg é amn € Dom(dy) it follows that each of the terms in the infinite sum is an element

in Dom(d,). Hence in order to show a € Dom(d,), it is enough to show that the sum

Z5g p0®amna1 —|—Z)\ 5@0&1 —1—2)\ 5@ )

m>0 n>0

converges. Observe that dy(af™) = maj™, 0¢(al) = —naf, and

3¢(0™ (po @ amn)) = (m —n)ai™ (po @ amn)} + ai™ (po @ Gg—1 (amn))ay.
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Since dp—1 is continuous, it follows that ||0g—1(amy)| is rapidly decreasing where || - || is the

operator norm. (Note that for b € By, one has ||b|| < ||b||o.) Hence the infinite sum

D 06(ai™ (po ® amn)al) + Y Amde(af") + Y Ande(ai™)

m,n m>0 n>0
converges absolutely in the operator norm. Therefore a € Dom(dy). Since dy_1 is continuous for
every r there exists p and C), such that ||6p—1(a’)||, < Cplld||p. Write dp—1(amn) as dp—1(amn) =
ay, +al Fo+ Ry Let

Ag = Z ai™(po @ (M — n)amp + a,,))af + Z mAma] + Z(—n))\_noﬁ{",

m,n m>0 n>0
*1M " n
A = Z Qg (pO ® amn)al7
m,n

R= Z 1" (po ® Rmn)at .
m,n
Then 6/(a) = A9+ A1 F;+ R. In every seminorm of A°, the double sequence (al,,) and (a],,,)
are rapidly decreasing. Also R,,, is rapidly decreasing in every seminorm of OPD_ZOO. Hence
Ag, A1 € A and as in the proof of (2), it follows that R is smoothing and given r,s there
exists ¢ and C; such that ||R||, s < C¢llalls. Fix an r > 0 and choose ¢t > 1 +r and C; > 1 such
that [|0,—1(a)|l, < Cyl|ld’||; for every o' € A°,. Now || Aol < Cillall; and ||A1]l, < Cilalls.
This shows that the map a — d¢(a) € By is continuous. Since [Dy, b] = §;(b)Fy + | Dy|[Fy, b, the
second part of (3) follows as [Fy, b] is smoothing by (2). This proves (3).

Part (4) follows from (2) and (3). O

We next prove a lemma that will be crucial in the computation of the dimension spectrum.
For an r tuple n = (ny,ng,--- ,n,) € N, we will write |n| for }_;_;n;. For r = 0, we let
N° = {0}.

Lemma 3.4.2. Let r > 0 and s > 1 be integers. Let (a(n))pene be rapidly decreasing. Then
the function

O D

z
v e Tl )
In|+|m|>1

is meromorphic with simple poles at {1,2,--- ,s} and Res,—s§(z) = ﬁ Yo a(n).
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Proof: First observe that for Rez > r + s,

=Y | X a
N>1 In|+|m|=N
1
= Z NF Z a(n) Z 1
N>1 [n|<N m:|m|=N—|n|
N —|n —
S PITCIGRE Y
N>1 In|<N

Note that for a function (b(n)),enr of rapid decay, the sequence (Z\NPN b(n)) Ve is of rapid
= €

decay. Now (N—|:_\-|1-s—1) = EZ;% gr(n)N* where gi(n) is a polynomial in (n1,ns,...,n,) and
gs—1(n) = ﬁ Hence modulo a holomorphic function £(z) = Z;g(zn gr(n)a(n))C(z — k).
Now the result follows from the fact that ((z) is meromorphic with a simple pole at z = 1 with

residue 1. O

We will next prove that the spectral triple (A%°, Hy, Dy) is regular and has discrete dimension
{4
spectrum with simple poles at {1,2,--- , ¢+ 1}.
Remark 3.4.3. Recall that the unitaries U, for w = (wq,wa, -+ ,wpy1) € T are given
by Upey, = w]'w]® - --wz_ﬁl ey. A bounded operator T' on H, is said to be homogeneous of
degree (my,ma,--- ,my) if UyTUS = wiwy™® - --w,*T. If T is homogeneous of degree
(mi,ma, -+ ,mps1) # (0,...,0) then Trace(T|D|~%) = 0 if Re(z) > ¢+ 1 since U,,’s commute
with the operator |Dy|.

Proposition 3.4.4. The spectral triple (A3°, He, Dy) is reqular and has {1,2,--- ,¢+1} as the

dimension spectrum with only simple poles.

Proof: Regularity of the spectral triple follows from proposition B.4.1l We now prove that for
b € By, the function T'race(b|D|~%) is meromorphic with simple poles at {1,2,--- ¢+ 1}. Since
Trace (b|D|~%) is holomorphic for b € OP~>°, we need only to show that for a € A7°, the func-
tions Trace(a|D|~%) and Trace(aFy|D|~*) extend to meromorphic functions with simple poles
at {1,2,--- ,£+1}. Now any element a € A7° can be written as a = a®+a' where a° is homoge-
neous of degree 0 and a! is an infinite sum of homogeneous elements of non zero degrees. Hence
by remark B.4.3] Trace(a|D|~?) = Trace(a’|D|~*) and Trace(aFy|D|~%) = Trace(a’ Fy|D|7?).
Thus it is enough to consider the functions T'race(a|D|™%) and Trace(aFy|D|™*) where a is
homogeneous of degree 0.

It is easy to see that the set of homogeneous elements of degree 0 in A7° is

¢

Z Z NPy @ Pry @ -, @ 1) | = (NY) is of rapid decay for all i
i=0 \neN’
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where py = S**poS*. Let a = Zf:o(zn A (Pry ® Py @ - P, ® 1) be a homogeneous element
of degree 0 in C*>°(S2t1). Then

Trace(a|D|™?) QZ Z (|n|+|m|+t +Z Z |n|—|—|m|

1=0 neN? teN =0 neN?
meNf i meN¢é—?

£
Now >, cnve Oi;# is holomorphic and hence modulo a holomorphic function

Trace(a|D|~ Z Z (In| + ]m\ + 1) * Z Z (Inl + Iml)?

i=0 \ neN? teN neN?
meNE—i meN—
It follows from lemma B.4.2] that T'race(a|D|™*) is meromorphic with simple poles in the set
{1,2,--- ,£ 4 1}. Similarly one can show that Trace(aF;|D|™%) is meromorphic with simple
poles in {1,2,--- ,¢}. Fix 0 < i < ¢+ 1. Let (A\y),eni be such that > A, = 1. Let a =
Y neni An(Pny @ Py @ pr; ®1). Then one has Res,—1_jTrace(a|D|™%) = ﬁ by lemma B.4.2]
and by the above equation. Hence every k € {1,2,--- £+ 1} is in the dimension spectrum.

This completes the proof. a
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Chapter 4

The SU,(¢ + 1) equivariant spectral
triple

In this chapter, the equivariant spectral triple on Sg“l constructed in [§] is studied from the
local index formula point of view. We show that this spectral triple is regular and has finite
simple dimension spectrum. We first analyse the case ¢ = 0. We show that for ¢ = 0, the
spectral triple is nothing but the torus equivariant one upto a multiplication. For g # 0, we
approximate the equivariant spectral triple by the torus equivariant one and thereby deducing

the computation.

4.1 The quantum group SU,(n)

Let us recall the definition of the quantum group SU,(n) from [42]. The C* algebra C'(SU,(n))

is defined as the universal unital C* algebra generated by n? elements u;; satisfying the following

condition . .
Z u,kujk =0;j , Z u};iukj = 05, (4.1.1)
k=1 k=1
n n n
Yod > BuieinWinis Winin = Ejijaaja (4.1.2)
i1=lig=1  ip=1
where

0 if 41,49, i, are not distinct,
Eiliz---in

(_q)é(h,iz,--- sin)

Here for a permutation o, (o) denotes the number of inversed pairs i.e. the cardinality of the

set {(4,7) 11 < j,0(i) >a(y)}.
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The C* algebra C(SU,(n)) has a compact quantum group structure with the comultiplica-
tion A given by

A(u”) = Z Uik & Ukj-
k
Call the generators of SUy(n — 1) by v;;. Then the map ¢ : C(SU,(n)) = C(SUy(n — 1))
defined as

vi—1,j—1 if2<4,5<n
Uii) = 4.1.3
¢lus) { 0ij otherwise ( )

is a surjective unital C* algebra homomorphism such that Ao ¢ = (¢ ® ¢)A. In this way
the quantum group SUy(n — 1) is a subgroup of the quantum group SUy(n). The quantum
homogeneous space C(SUy(n)/SUy(n — 1)) is generated by the first row of the matrix (u;).
Moreover the map 6 : C(S2"~') — C(SU,(n)/SUy(n — 1)) defined by 6(z;) := ¢~ 'uj; is an
isomorphism. In this way, we realise the quantum odd dimensional spheres Sg”_l as a quantum
homogeneous space.

The map 7 : C’(Sg"_l) — C’(Sg"_l) ®@ C(SUy(n)) defined by 7(z;) := > 2 ® uj,; defines
an action of SUy(n) on S2"~!. Also one has Ao = (§ ® 1)7. Let h be the Haar state on
SUq(n). We denote the closure of C'(S2"~1) in L*(SU,(n)) by L*(Sz"~1). Then the right regular
representation of SU,(n) on L?*(SU,(n)) leaves the subspace L?(S2"~!) invariant and thus one
obtains a covariant representation of (C (Sg"_l), SU,(n),A) on L2(Sgn_l). Equivariant spectral
triples for this dynamical system on L?*(S2"~!) are investigated in [8] and the sign of those
operators D have been classified. In this chapter, we show that the spectral triple constructed
in [8] satisfies the hypothesis of the local index formula. Since the computation is involved, it

is better to fix some notations. We use the same notations as in [30].

Notations We will denote by ¥ the set {1,2,...,2¢ + 1} and by ¥, and X, the subsets
{1,2,...0+1}and {{ —j+ 1,0 —j+2,...,£+ 1} respectively, where 0 < j < /.

Let I" = I'; denote the set of maps v from ¥ to Z such that ~; € N for all i € X\{¢ + 1},
i.e. Ty = N x Z x N*. For a subset A of &, we will denote by v4 the restriction v|4 of v to A.
Let T'4 denote the set {y4 : v € I'} and H 4 be the Hilbert space £2(I'4). We will denote Hy,
by just H, and Hy,; , by H;. Thus
Hy, = Lo(N) ® -+ ® La(N) @a(Z) ® £o(N) ® - - - ® £2(N), Hj=l(N)® - @ la(N) @0:(Z).

¢ copies ¢ copies j copies
Note that H; and Hy;) are different.
Let A C 3. We will denote by {e,}, the natural orthonormal basis for H4 = ¢2(I'4) and

by p, the rank one projection |e,)(ey|. For i € A, we will denote by N; the number operator

on the ith coordinate on H4, i.e.

N; = Zyip,y : ey > viey(defined on H4 with ¢ € A).
¥
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We will denote by |D 4| the operator ) ;. 4 |N;| on H4.
Let Fy be the following operator on ¢5(Z):

ek if £ >0,

—€k if £ <O.

Foey, =

For 1 <j <20+1, let V; be the operator on Hy;; defined by

Fy ifj=0+1,
V= 0 J
I otherwise.

Let F4 denote the operator ®;c4V; on H 4 and let Dy = F4|D4|. Thus

D — (Xicalvl) ey ifl+1€Aand vy <O,
A€~y =
! (ZieA |%|) €y otherwise.

We will denote Fy,;, by Fj and Dy, , by D;.
Recall that H;y is £2(N) if j # £ + 1 and is £2(Z) if j = £ + 1. Suppose for each j € ¥, F;
is a subspace of L(Hy;}). For A C ¥, define

F;  ifjeA,
C.I ifjéA,

Fia=
and F4 to be the tensor product ®;exFja in L(Hs) (the type of the tensor product will
depend on the specific F;’s we look at). This tensor product will often be identified with
®RjeaFj € L(Ha).

On both ¢5(N) and ¢2(Z), we will denote by N the number operator defined by Ne,, = ne,,
and by S the left shift defined by Se,, = e,—1. For k € Z (for k € N in case of ¢3(N)), let py
denote the projection |ey)(er|. We will freely identify ¢2(Z) with Lo(T). Thus the right shift
on ¢5(Z) will be multiplication by the function ¢ — ¢ and will be denoted by z. Let .7 be the
Toeplitz algebra, i.e. the C*-subalgebra of L(¢2(N)) generated by S. For a positive integer k,
we will denote by 7 the k-fold tensor product of .7, embedded in £(¢2(N¥)). Denote by o the
symbol map from 7 to C(T) that sends S* to z and all compact operators to 0.

4.2 Left multiplication operators

Let us recall from [8] some basic facts on representations of C'(SU,(¢+1)) on La(SU,(£+1)) by
left multiplication. The Hilbert space Lo(SU,(¢ + 1)) is the GNS space of C'(SU,(¢ + 1)) with
respect to the Haar state on SU,(¢ + 1). Irreducible unitary representations of the quantum
group SU,(¢ + 1) are indexed by Young tableaux A = (Ay,...,Ary1) where \; € N and A\; >
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A2 > -+ > Agp1 = 0 (Theorem 1.5, [42]). Denote by u* the irreducible unitary indexed by \.

Basis elements of the Hilbert space # on which u* acts can be parametrized by arrays of the

form
11 ri2 -0 Tig Tie+1
21 T2 - T2y
r= )
Te,1 Te,2
Te+1,1
where r;;’s are integers satisfying r1; = A\j for j = 1,..., 04+ 1, 7y > 7341 > 7541 > 0 for

all ¢, j, and the top row coincides with A\. These are known as Gelfand-Tsetlin tableaux, to
be abreviated as GT tableaux now onwards. Let {e(\,r) : r is a GT tableaux with top row A}
be an orthonormal basis for . Denote the matrix entries of u* with respect to this basis by
ui"s. Note that the generators u;; of the C*-algebra C'(SU,(¢ + 1)) are the matrix entries of
the irreducible 1 = (1,0,...,0). The collection {uf:s : A\, r,s} form a complete orthogonal set
of vectors in LQ(SU (¢ 4+ 1)). Denote by e s> Or by ers for short (as r and s specify A), the

’S. Then {eys : r,s} form a complete orthonormal basis

normalized u $'S, le epg = Hurs\

for Lo (SU, (L + 1)).

Let p be the half-sum of positive roots of sl(¢ + 1) and A(r) is the weight of the weight
vector e(\,r). Let Fy be the unique intertwiner in Mor (u*, (u*)*) with trace F) = trace F} *
(here for a representation w, its contragradient representation is denoted by u¢; see [25] for

1
details). Then one has ||lu| = d, 2¢~*®), where

Z—i—l 0+1 0+2—1
P(r) = (p, =—z ZTlJ + Z Z Tijs dy = trace F) = Z Nl (4.2.4)
1=2 j=1 riry=>\
Write o
,t<;(r7 m) — d; d;iqd’(r)—lﬁ(m)_ (4.2.5)

From equation (4.19) in [8], we have

(U’Z] Z C ]l A ,U,,Z,I‘ m)Cq(]l,)\,,u;j,s,n) (I‘ m)eﬁln7 (426)

s,mmn

where C; denote the Clebsch Gordon coefficients.

For our subsequent analysis, we will compute the quantities Cy(7,r,s) and £(r, m) appearing
in the above formula. We will use the formulae given in ([25], pp. 220), keeping in mind that
for our case (i.e. for SU,(¢ + 1)), the top right entry of the GT tableaux is zero.

For a positive integer j with 1 < j < /£+1, let

M = {(m1,ma,...,m;) €N/ : 1 <m; <l+2—ifor 1 <i<j}. (4.2.7)
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For M = (my,ma,...,m;) € M, denote by M (r) the tableaux s defined by

ri+1 ifk=m;1<j<q,
sip=14 " = (4.2.8)
Tk otherwise.
With this notation, observe now that Cy(i,r,s) will be zero unless s is M(r) for some M € M.
(One has to keep in mind though that not all tableaux of the form M (r) is a valid GT tableaux)
From ([25], pp. 220), we have
i—1
Cq(i,r,M(r)) = H R(r,a,mq,mqr1) x R (r,i,m;) (4.2.9)
a=1
where ey stands for a vector (in the appropriate space) whose kth coordinate is 1 and the rest

are all zero, and

R(r,a,j,k) = sign(k— j)q2(~restrarie—hti)
1
2
o2 . 0+1- L
X “Traj —ravik — i+ kg 17 lrarii—raj—i+j—1 4.2.10)
paley [Tai — Taj — 1+ Jlg paey [ra+1i — Tat1k — i+ k=1
i#j itk
) . %(1—j+25f11a Ta+1,i—Ze@i2fa T’a,z‘)
R (I',CL,]) = q i
1
04+1— S 2
L2y "lrav1i = 1oy —itj =g | (4.2.11)

H%l?_a[rmi —Taj — i+ g
i#j

where for an integer n, [n], denotes the g-number (¢" — ¢™")/(¢ — ¢~ ') and sign (k — j) is 1 if
k>jandis —1if k < j.

Remark 4.2.1. Let us look at the denominators in the above expressions. The integers
Tai — Tay; and j — 4 are of the same sign. Therefore for i # j, the quantity rq; — 74, — 7+
is nonzero. Similarly 7¢41; — rq41,% and k — i are of the same sign. So if ¢ # k, then 7,41, —
Tat1k — ¢+ k — 1 can be zero only when rqy1; = roy1, and k = i+ 1. Now if r and M(r)
are GT tableaux, then M(r)ot1masy = Tatl,mays + 1 and M(r)aq1; = Taq1,; for @ # mayq.
Therefore if mgq1 =i+ 1, then rop1; — (Tati,mers +1) 20, i o415 — Tag1,me, > 1. Hence
Tatli — Tatlmaers — o+ Mgy1 — 1 > 1. In other words, all the g-numbers appearing in the

denominator in equation (4.2.9) are nonzero. Thus no problem arises from division by zero.

Remark 4.2.2. This is essentially a repetition of remark 4.1 of [§]. The formulae (£2.10)
and (E2.I1)) are obtained from equations (45) and (46), page 220, [25] by replacing q with ¢~ !.
Equation (45) is a special case of the more general formula (48), page 221, [25]. However, there
is a small error in equation (48) there. The correct form can be found in equations (3.1, 3.2a,
3.2b) in [2]. Here we have incorporated that correction in equations (L.2.10]) and (A2.17]).
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We next compute the quantities R(r,a, j, k) and R/(r,a,j).

For a positive integer n, denote by Q(n) the number (1 —¢?*)'/2. Then for any two integers
m and n, one has
[m]q

_ ) tin| ( QUm[) ?
g |~ * <Q(Inl)>

The next two lemmas are obtained from equations (£2.10]) and (£.2I1)) using the above equality
repeatedly and the fact that rq; > 7441, > 7441 for all @ and 3.

Lemma 4.2.3. For a GT tableauz r = (r4), denote by Hap(r) and Vy(r) the following differ-
ences: Hop(r) := 7116 — Tapt1 and Vop(r) :=1ep — Ta1. Then one has

R(r,a,5, k) = sign (k — j)q"Cai k) +SCaib) (v q j k), (4.2.12)
where
P(r,a,j.k) = Y  Hur)+2 ) V() (4.2.13)
FAR<i<jVE k<i<j
20—k—=—1)4+1 ifj>k,
S(r,a,j,k) = J ) & (4.2.14)
0 if j <k,
(+2—a {+1—a . .
‘ Qra; — Tat1h — i+ K|) Qrat1i —raj —i+7—1|)
L(r,a,j3,k) = : - .
( J ) H Q’Taz_Ta,]_Z"i_]‘ H Q’Ta—i-lz Ta—l—l,k_l""k_l’)
z#] z#k:
(4.2.15)
Lemma 4.2.4. One has
R'(r,a,j) = ¢"' =)L/ (xr,a,j), (4.2.16)
where
P'(r,a,§) = Y.  Haulr), (4.2.17)
j<i<l+2—a
Z-l—l—a . .
; a i lTa,j — -1
L,(I‘, a,j) Hl 1 (|r +1, 7‘ 7.] ? +] |). (4.2.18)

1757 QIra — oy — i+ )

i#]

Combining lemmas [4.2.3] and 4.2.4] we get the following expression for the CG coeflicient
Cyli,x, M).

Lemma 4.2.5. For a move M € M;, let sign (M) denote the product Hfl;ll sign (Mgy1 — Myg).
Then one has

i—1

Cyli,x, M) = sign (M)gBM)+C@M) (H L(r,a,ma,ma+1)> L'(r,i,m;), (4.2.19)
a=1

48



B(M) = > (2(mj —mjp—1)+1), (4.2.20)
Jimg>mjqq
i—1

C(r,M) = > Hyp(r)+2 > Va@) |+ Y. Ha)

a=1 \mgAmg41<b<mqVmgi1 Maq+1<b<mg m; <b<f+42—1i
(4.2.21)

Lemma 4.2.6. -

i

<H L(r, a,ma,ma+1)) L'(r,i,m;) = 1+ o(q).

a=1

Proof: This is a consequence of the following two inequalities:
]1—(1—3;)%\<x for 0 <z <1,
and for 0 <r <1,
]1—(1—x)_%] <cr for0<z<r,

where ¢ is some fixed constant that depends on 7. O

Next we come to the computation of x(r,m). Since Cy(i,r,m) is 0 unless m is of the form

M (r) for some move M = (mq,...,m;), we need only to compute x(r, M(r)) which we will
denote by k(r, M).
Since
Z-i-l L+1 04-2—1
= ——Zsu IPIL
=2 j=1
we have

GPO-PMW) — —5 S r i T i s (S )~ (S S i) il

Let A = (\1,...,Ag,0) be the top row of r. Then

V4 4
min{e(s) : s1 = A} = _g S+ 30— D
1 k=2

Hence

dy= 3 0 = TN DN (1 4 2(¢2)),

S:S1=A\

where ¢ is a polynomial. Therefore

dy = ¢ EIN 2T (=DM (] 1 o(g)).
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It follows that

< 5 )2:q5_m1+1(1+0(q»-

Thus
k(r, M(r)) = ¢"P277™1 (1 4 o(q)). (4.2.22)

Next, observe that
BM)+(+2—i—my
= Z 2(mj —mjp1—1)+1)—(m1—m;) +L+2—i—m;

Jimg>mjq1

= 2 Z (mj —mjq1) — Z 1—2 —mjp1) +0+2—i—my

Jimg >mgqq Jimg>mgqq
i—1
=2 ) (my—min) =) (mj—myp)— Y 1HL+2—i—my
Jimg >mgqq 7j=1 7 >mgqq

= > my—myp| - #1<i<i—1imy > mipb+H0+2—i—m,

Jimg>mjq1

Thus if we write

AM) = Z Imj —mj| —#{1 <j<i—1:mj>mju1}, (4.2.23)
Jimi>mgqq
KM) = £+2—i—m;, (4.2.24)

then both A(M) and K (M) are nonnegative and B(M) + ¢+ 2 —i—m; = A(M) + K(M).

Thus we have

ﬂ-(uij)ex)-\s = Z Cq(iyraM(r))’{(rv M)Oq(jv SyM/(S))eM(r),M’(s) (4225)
MeM;
M’ eM;
_ Z sign (M)sign (M/)qA(M)+K(M)+C(r,M)+B(M’)+C(s,M’)(1 + O(Q))eM(r),M’(s)'
MeM;
M eM;
(4.2.26)

4.3 The spectral triple

Let us briefly recall from [8] the description of the Ly space of the sphere denoted LQ(SEZH)
sitting inside Lo(SU,(¢+1)) i.e. the closure of C'(SU,(¢+1)/SU4(¢)) in La(SU,(0+1)/SU,(¥)).

The following proposition shows that the “natural” representation of the dynamical sys-
tem (C(S2F1, SU,(0 4 1),7) on L2(SU,({ + 1) restricts to give a covariant representation on
L2(S2+1). We refer to [8] for proofs.
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Proposition 4.3.1 ([8]). Assume £ > 1. The right regular representation u of G keeps the
subspace Lo(SU4(€ 4+ 1)\SU,(0)) invariant, and the restriction of u to Lo(SU,(£ + 1)\SU,(¥))
decomposes as a direct sum of exactly one copy of each of the irreducibles given by the young
tableaur A, i, := (n + k. k,k,...,k,0), with n,k € N.

Proposition 4.3.2 ([§]). Let r"* denote the GT tableaux given by

n+k ifi=j=1,
=140 ifi=1,5=10+1,

k otherwise,

where n,k € N. Let Gfg’k be the set of all GT tableaux with top row (n+ k,k,...,k,0). Then
the family of vectors
{epnrg i,k €N, s € %"k}

form a complete orthonormal basis for La(SUq(¢ 4+ 1)\SU,(?)).

We will denote Uy, 14" ok by %. Since the top row of r"* determines r™*

completely and
for epnk g, the top row of s equals the top row of r"* one can index the orthonormal basis
epnk s just by s € 9. It was shown in [§] that the restriction of the left multiplication to
C(SUL(L + 1)\SU,(€)) = C(S21) keeps La(SUy (¢ + 1)\SU,(¢)) = Ly(S2) invariant. We
will continue to denote this restriction by m. The operators m(z;) = q‘j“ﬂ(u’{’j) will be
denoted by Z; ;. The C*-algebra m(C(S2™)) will be denoted by Cj.

The following theorem gives a generic equivariant spectral triple for the spheres Sg“l

constructed in [8].

Theorem 4.3.3 ([8]). Let Deq be the operator on La(SZHY) given by:

kepnk if n =0,

Degeyni g = (4.3.27)

—(n + kf)ernk’s an > 0

Then (A(S2), Ly(S2), Deg) is an equivariant nondegenerate (20+1)-summable odd spectral

triple.

Our main aim in the rest of the chapter is to precisely formulate the smooth function algebra

for this spectral triple, establish its regularity, and compute the dimension spectrum.

4.4 The case ¢ =0

The Lo spaces Lg(Sgé“) for different values of ¢ can be identified by identifying the elements

of their canonical orthonormal bases which are parametrized by the same set. Thus we will
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assume we are woring with one single Hilbert space H with orthonormal basis given by e,n,kg

where r™* is as defined earlier and s is given by
61:n+k k k -k Kk d1:0
Co k k ek d2
s = o o (4.4.28)
co—1 ko dyyq
Cy dg
Cor1 = dpy

where c; > o> ... 2 ¢y >k, dy <dp <...<dy <k and dy < dpy1 < ¢g. Since specifying the
GT tableaux s specifies r™* also and thus completely specifies the basis element €pnkg, We will
sometimes use just s in place of the basis element e nkg.

Let us denote by M}t the following subsets of M;:

M;r = {(m1,...,mj) eM; :m; € {1,0+2—i} for 1 <i<j, m =1},
M; = {(mi,...,my) € M;:m; € {1,0+2—i} for 1 <i<j, mg=L+1}
Let us denote by IV; ; the following element of M:
Nij=@1,....00+1—d,0—1i,...,04+2—7j), 0<i<j<{i+1.
W—/
(3
We will denote N; ¢41 by just N;. Then from ([£220), we get
7T(ulj)er"vks = Z sign (M)q£+k+B(M)+C(S7M)(1 + O(Q))Q‘"*”&M(s)
MeMf
+ Z sign (M)gBM)+C M) (1 + 0(q))epnk—1 pi(s) (4.4.29)
MeM;
J
Therefore
73 fernks = Z sign (M)q_j+1+é+k+B(M)+C(S’M)(1 + O(Q))ern+1,k’M(s)
MeM;
+ Y sign (M)g I HFBADFCEM) (1 4 o(g))epni1 prs)  (44.30)
MEM;

Let us first look at the cases 1 < j < /. In this case, the power of ¢ in the first summation
is positive. Therefore none of the terms would survive for ¢ = 0. For terms in the second
summation, assume M € M; with m; = ¢+ 1 and m; = 1 for some ¢ < j. Let a = min{2 <
i<j:m;=1}. Thenm; =¢+2—ifor 1 <i<a-—1so that

a—2
B(M) > > ((+2-i)—(+1—i)-1)+1)+20¢+3-a—1-1)+1
=1
= a—2+20—a+1)+1
= 20—a+1.
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Hence B(M)+1—j > 0 and so such terms will not survive for ¢ = 0. Thus the only term that
will survive is the one corresponding to M = Ny ; = ({+1,4,£ —1,...,£+2 — j). In this case
we have B(M) = j — 1, C(s, M) = d; and sign (M) = (—1)’~. Therefore

L L (1.431)
0 if d; > 0.

Next let us look at the case j = £ 4+ 1. Here the first sum will be over all M with m; =
1 =mysq. If m; # 1 for some i, then B(M) > 0 and therefore the power of ¢ will be positive,
so that the term will not survive for ¢ = 0. If m; = 1 for all 4, i.e. if M = Ny, then we have
B(M)=0=C(s,M) and sign (M) = 1. Therefore for ¢ = 0, the first summation will become
epntik N, (s) Provided k = 0.

The second sum is over all M with m; = ¢+ 1. Let a = min{2 <i¢ < /¢+1:m; = 1}. Then
as before, B(M) > 2¢ —a+ 1. Therefore if a < ¢, then —¢+ B(M) > {—a+1 > 0, so that the
term will not survive for ¢ = 0. If a = £+ 1, i.e. if M = Ny, then B(M) = ¢, C(s, M) = dyy1
and sign (M) = (-1)%. So for ¢ = 0, the second summation will become (—1)€€rn,k71’N0(s) if
k > 0 and dy41 = 0. Thus we have

Epn+1k N, (s) if k=0,
Zi10eenks = (=1 epni-t ny) i k>0, deyy =0, (4.4.32)
0 if k>0, dpyq > 0.

Next we will establish a natural unitary map between LQ(S(?ZH) and

7‘[2 = EQ(N) K- ® EQ(N) ®€2(Z) ® gQ(N) R Q gQ(N) .

¢ copies { copies

For t € R, let t; denote the positive part max{t,0} and let ¢{_ denote the negative part
max{(—t),0} of t. Let us now observe that for any v € I'y;, the tableaux

2041 ¢ ¢
Tl Yo%+ (Ver1)+ e Y%+ (ves1)+ O
2 ¢
221 il Yo%+ (vesrr)+ e gt
s(v) = é' 3 ¢ -2
Tl Yot (er)+ 21 v
¢ —
1+2 ”Yi’ 1 ! Yi

VA
Yo%+ (ver1) -

is in ¢. Conversely, let s € %"’k for some n, k € N so that e, is a basis element of L2(S§Z+1).
Note that s is of the form ([A.4.28]). Define v € I's; as follows:
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1. if k > dpy1, then

Vi = diy1 — d; for1<i<(—1,
Vi = Cop42—i — C2043— for 0 +3<i<20+1,
Ye=dpy1 —de, Vo1 =k —dpy1, Vey2 =co—k,

2. if k < dyyq, then

Vi = diy1 — d; for1<i</(—1,
Vi = Copt2—i — C2043— for 0 +3<i<20+1,
Ye=k—do, Y1 =k —dpr1, Yoo =ce— dpga.

Then s(y) = s. Thus we have a bijective correspondence between ¢4 and I's. We will often

denote a basis element e nkg by &, using this bijective correspomdence.

Lemma 4.4.1. Let y € 'y. Forn € Z, let

g Zi10 if n >0,
41,0 *= . em
(Zi10) if n <0.
Define
Ml 0 0
Govi 0 e 0
& = Zlh. . 2320

Ve+2 0
0

Then {&, : v € T} is an orthonormal basis for L2(5§£+1)'

Proof: Tt follows from equations ([£4.31]) and ([@.4.32]) that the actions of Z; for 1 < j < £ on

54



the basis elements epn kg

n+k

C2

¢

Cj+1

Ce

dgyq

are as follows:

k

k

k kK 0
k dj+1
dy

1+n+k 14k
1+co 1+k
1+Cj 1+k
1+Cj+1 1+k
1+ ¢ 1+dp
1+ de

and is 0 for s with d; > 0.
Similarly the action of Zy1 1 on the basis elements are as follows:

n

C2 0

Cy—1 0 0
co 0

dpt1

if dg1q > 0, and

n+k k
(&) k
Co_1 k 0
Cy 0
0

k kO
kE 0
—
1+k 14+k O
14k 0
1+%k O
1+dj.:,_1

0 0 n—1 0
0 co—1 0
—
Cg_l—l 0 0
co—1 0
dpp1—1
k0 1+n+k 14k
0 1+co 1+k&
— (-1
1+Cg_1 1+ k
1+c¢ 0
0
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if dgy1 = 0. Similarly the action of Z; 11,0 OD the basis elements are as follows:

n 0 0 1+4n O 00
ca 0 0 14+¢c 0 0
—
c¢—1 0 0 14+¢c-1 0 O
cy 0 14+¢ 0
dot1 1+ dpiq
and for k > 0,
n+k k k 0 n+k—-1 k-1 k—1 0
C9 k 0 Cy — 1 k—1 0
— (—=1)f
Co—1 k 0 Cp—1 — 1 k—1 0
Cy 0 Cp — 1 0
0 0
Then it follows from the above that
?.‘le v 0 0 0
o) Zz+2 i 0 0
ZTo - 200241
Ve+2 0
0
Tl i O+ S0t (e)s 0
21 il Zi Yi + (Yer1)+ M
= (_1)77(7) z+3 1 -2 )
il Dot (ver)+ 2 v
£+2 -1
|%| 1 Y
S0+ (o) -
(4.4.33)
where n(y) = Zle(i — )i + €(ve41)+. Thus & = (—=1)"¢, . Therefore it follows that

{¢/ : v € Ts} is an orthonormal basis for Ly(S2).

d

The map U : L2(S§Z+1) — Hyx, given by U fﬁ, = e, sets up a unitary isomorphism between

LQ(S§Z+1) and Hy. Let P denote the projection onto the span of eq

we have

UZjoU* =

JO®I

Yio®@ P+Yjo® (- P),
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and
UDegU* =Dy @ P —|Dg| @ (I —P)—I®N, (4.4.35)

where N is the operator ep, @ --® em, — (D_m;) em, ®- - Rep,. In other words, with respect

to the decomposition
My = He® (He® N0, 0)

one has
UZjgU*=Y0® (Yjo®I),

and
UDeU* = Dy @ (<D @1~ T @ N).

Next we will define the smooth function algebra ng(sg“l) and prove that the spectral
triple (Og;(sg"“), M, Deg) is regular with simple dimension spectrum {1,2,...,2¢ + 1}.

It follows from decomposition (£.4.34]) that if we identify L2(S§Z+1) with Hy, then the C*-
algebra generated by the Z;’s is Ay ® I, where A, is the C*-algebra generated by the Y;’s in
L(Hy). In view of the decomposition (A.4.34HA.4.35), it is natural to define

CR(SF ) ={a®I:aec AF}. (4.4.36)

Theorem 4.4.2. The triple (Cg;(Sg“l),Hz,Deq) is a reqular spectral triple with simple di-
mension spectrum {1,2,...,20 + 1}.

Proof: Since A° is closed under holomorphic function calculus in Ay, it follows that C’g;’(Sg“l)
is closed under holomorphic function calculus in C*({Z;0:1<j </¢+1}) = Ay ® I. In order

to show regularity, let us introduce the algebra
Beg:={a®@P+b® (I —P):a,bec B} (4.4.37)

Clearly B, contains Cg;(sg“l). We will show that B, is closed under derivations with both
|Deg| as well as Deq. This will prove regularity of the spectral triple (ng(sg“l), H,Deg).

Note that [Dey| = | D¢l @ I +1® N. Since I ® N commutes with every element of B, we
get 6(a®@P+b® (I —P)) =|[|Dy|,a] ® P+ [|Dy],b] ® (I — P) and [Deg,a @ P+b® (I — P)] =
[Dy,a]®@ P —[|Dy|,b]® (I — P). Since By is closed under derivations with |Dy| and Dy, it follows
that Be, is closed under derivations with |De,| and Deg.

Next we compute the dimension spectrum of the spectral triple. For w € T, let U,, =
Uy ® I. Then |D4| commutes with U,. Hence again it is enough to consider homogeneous
elements of degree 0. Now by lemma it follows that for b € B., with b homogeneous of
degree 0, the function Trace(b|D¢q|™*) is meromorphic with simple poles and the poles lie in
{1,2,---,2¢+1}. To show that every point of {1,2,--- ,2¢+ 1} is in the dimension spectrum,
observe that

Trace(|Deg| ) = 2320(2¢2° — 271 ¢(2 — k) (4.4.38)

o7



where ¢, is defined as the coefficient of N kin (N:f T). Note that for 0 < k < r one has ¢}, > 0.
Also note the recurrence rcj = ¢~ +rcj ' Hence ¢ > ¢;~'. Now from equation [LZA38) it
follows that Res,—j1Trace(|Deg| ™) = 2¢2° — cig_l > 0 for 0 < k < 2¢. This proves that every
point of {1,2,--- ,2¢ 4+ 1} is in the dimension spectrum. This completes the proof. O

We will need the fact that Trace(|Dey|~*) is meromorphic with simple poles lying inside

{1,2,--+ ,2¢ + 1} with non-zero residue and hence we state it as a separate lemma.

Lemma 4.4.3. The function Trace(|Deq|™%) is meromorphic with simple poles at {1,2,--- , 20+
1}. Also for k € {1,2,--- ,20+ 1}, the residue Res,—Trace(|Deg|™?) is non-zero.

4.5 Regularity and dimension spectrum for ¢ # 0

Consider the smooth subalgebra of the Toeplitz algebra defined as:

T>® = Z Njk S*IpoSk + Z)\kSk + Z A_pS*E Ajk, (M) are rapidly decreasing .
JkeN k>0 k>0

For a:= 3} cnAjk S*ipoS* + > k>0 PYNCLE Y k0 A_pS*F € 7, define the seminorm || - ||,n

by ||allm = D21+ 7]+ [ED)™ Akl + D2 (1 + |k|)™|Ag|- Equipped with this family of seminorms,
> is a Fréchet algebra. We will denote by .7, the k-fold tensor product of 7.

Lemma 4.5.1. The triple (7°°,05(N), N) is a reqular spectral triple. More precisely, T is
contained in Dom(0) where 0 is the unbounded derivation [N,.| and & leaves the algebra T

imvariant. Also the map 0 : T — T is continuous.

Proof: Note that [N, S] = —S and [N,p] = 0. Now the lemma follows from the fact that the

unbounded derivation 9§ is closed. O

For a € N2 UZ, let

S*¥MpeS™ if  a = (m,n),
W, = ST if a=r>0,
S*T if a=r<Q0.

For o € N2 U Z, define |a| to be |m|+ |n| if & = (m,n) € N? and the usual absolute value
la| if @ € Z. For an ¢ tuple a = (a1, az,---,ap) in (N2UZ)!, let || = > |ay| and W, =
Wo, @ Wo, ® --- Wy, We need the following simple lemma whose proof we omit as it is easy

to prove.

Lemma 4.5.2. The natural tensor product representation of 7,>° on { (N)®* is injective. Thus
we identify J,>° with it’s range which is {d  xoWo : > (1 4 |a])P|za| < 00 for every p}.
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Remark 4.5.3. The tensor product representation of OPp ™ ® 7,> on L(Hy) is injective since
OPp := S(H,) and hence we identify OPp ™ ® 7, with its image.

For an operator T, let Lt denote the left multiplication map X — T X. Then for T € OPI%Z7
the map Ly : OPB;O — OPB;O is continuous. Note that if A is a Fréchet algebra and a € A,

then L, is a continuous linear operator.

Lemma 4.5.4. Let T € OPBZ and a € J,°. Then the map Lrg, leaves the algebra OPD_;o ®
T, invariant. Moreover Lpg, = LT ® L, on the algebra OPB;X’ ® T>°.

Proof: Clearly Lrgq, = LT ® L, on the algebraic tensor product OPD_ZC>O ®Ratg Z,°. Now let
a € OPD_ZC>O ® 7,°. Then there exists a sequence a,, € OPD_ZC>O ®aig Z,°° which converges to a in
OPB;O ® Z,°. Also a, converges to a in the operator norm. Now the result follows from the

continuity of Lrg, and L1 ® L,. O

Proposition 4.5.5. Let
B = Beg + OPD_ZC>O ® I, (4.5.39)

Then one has the following.
1. The vector space % is an algebra.
2. The algebra A is invariant under the derivations § := [|Deg|,.] and [Deg, .].
3. For b € A, the commutator [F,q,b] € OPp>.

4. For b e A, the function Trace(b|Dey|™%) is meromorphic with only simple poles and the
poles lie in {1,2,--- 20+ 1}.

Proof: Lemma E5.4 and the fact that B, ¢ OP° implies that % is an algebra. As seen in
Theorem {.4.2] it follows that B, is invariant under 6 and [Deg,.]. Also (3) and (4) holds for
b € Bey. Hence to complete the proof it is enough to consider (2), (3) and (4) for the algebra
0P, @ T,

Lemma [23T14] and the decomposition |Deq| = |Dy| ® 1 +1 ® N implies that ¢ leaves the
algebra OPp™ ® 7> invariant. Now note that P € OPJEOO , it follows that left and right
multiplication by Fy ® P and 1 ® P sends OPB;O ® J,>° to OPB:;’ = OPB;O ® OPJ%OO. Now
since Feg = Fy@ P—1® (I —P), it follows that [Feq, b] is smoothing for every b € OPp ™ ® 7.
Now the invariance of OPp, > ®.7,> under [Dg, .| follows from the equation [Deg, b] = 0(b) Feq +
[ Deq|[Feq, b] and the fact that OPp> := OPp* @ OP™ is contained in OP,™ ® 7.

Now we will prove that for b € OPp,> ® 7>, the function Trace(b|Deg| ™) is meromorphic
with simple poles and the poles lie in {1,2,---,¢}. For w € T?>*! let U, = Uy, ® Uy, ®
U, be the unitary operator on Hy,. Clearly Uy|Deq|Us = |Deg| for w € T2+, Hence it

W20+1
is enough to consider Trace(b|D¢q|™*) with b homogeneous of degree 0.
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An element b is homogeneous if and only if it commutes with the operators U, for all w €
T2+1. This implies b must be of the form e., — ¢()e., for some function ¢, i.e. b = > 9(V)py
An operator of the form Z“{GF{) é(y)py is in OPB;X’ if and only if ¢(y) is rapidly decaying on

I's,. Also, using the descrlptlon of 7°°, it follows that an operator of the form ) .y &(n)p,
belongs to 7 if and only if ¢(-) — lim,,_,o ¢(n) is rapidly decreasing. Thus combining these,
one can see that the operator Zv ®(y)py belongs to OPB;O ® 7, if and only if ¢ is a linear
combination of ¢4 with A varying over subsets of ¥ containing 3,, where each ¢4(v) depends

only on v4 and ¢4(v4) is rapidly decreasing on I'4. For an element b = 27 ®»4(Y)py, one has

. dal Pa(ya)
Trace(b| D = '
recelDal ) = L = 3 B

By lemma it follows that T'race(b|D¢q|™*) is meromorphic with simple poles and the poles
lie in {1,2,--- |2\ A|} C {1,2,...,¢}. This completes the proof. O

4.6 The smooth function algebra C“(Sg”l)

In this subsection, we will define a dense x Fréchet algebra C*°(S21) of Cp = 7(C/(S21))
and show that it is closed under holomorphic functional calculus. Let By be the C* algebra
generated by A, and F,. Note that B, contains K(f2(N)®* @ f5(Z)). Recall that £ denotes the
C* algebra generated by C(T) and Fy.

Lemma 4.6.1. The C* algebra € contains K and E/K is isomorphic to the C* algebra C(T) ®
C(T).

Proof: Let |ep)(en| be the matrix units in K(¢2(Z)). Note that [Fy, S*]S = 2|eg)(eo|. Hence
po = leo)(eo| € €. Now S*"peS™ = |ey){(en|. Hence K C E. Let Py := # Then [Py, f]
is compact for every f. Thus £/K is generated by C(T) and a projection Py which is in the

center of £/K. Now consider the map
C(T)yeC(T) > (f,g9) = fPo+9(1—F) (mod K)e&/K.

We claim that this map is an isomorphism. To prove we need to show that if fPy is compact
then f =0 and if g(1 — Pp) is compact then g = 0.

Assume that fPy is compact for f € C(T). Fix an r € Z. Since f Py is compact, it follows
that |(fPo(en), engr)| = |f(r)| converges to 0 as n — +oo. Hence f(r) = 0 for every r. This
proves that f = 0. Similarly one can show that if g(1 — Pp) is compact then g = 0. This
completes the proof. O

Lemma 4.6.2. The C*-algebra By contains K(Hg) and the map (a,b) — aPp+b(1— Pp) mod K
from C(Sg“l) @ C(Sg“l) to By/KC(Hy) is an isomorphism.

60



Proof: For ¢ = 0 this is just lemma [£.6.0l So let us prove the statement for ¢ > 1. Since
Ay contains K(f5(N%)) ® C(T), it follows that B, contains K(H,). Observe that [Py, a5] = 0
for 1 < i < ¢ and [Py, apyq] is compact. Therefore it follows that [Py, a] is compact for every
a € Ay. Hence the map (a,b) — aP; + b(1 — P;) mod K from Ay @ Ay to By/K is a * algebra
homomorphism onto By/KC. We will show that the map is one-one. For that we have to show
if aP; is compact with a € Ay then a = 0 and if b(1 — Fy) is compact with b € Ay then b = 0.
Suppose now that aPy is compact. Observe that B, C 7 ® € and aPy = a(I ® Fy). Since
aP, = 0, if we apply the symbol map ¢ on the /th copy of .7, we get o¢(a) ® Py = 0. Hence
a is in the ideal K(f2(N)®) ® C(T). For m,n € N let en, be the “matrix” units. Let
Amn = (€mm @ Da(en, @ 1). Then apy = emn @ finn for some fp,, € C(T). Since aPy is
compact, it follows that f,,, Py is compact as P, = I ® Py commutes with e, ® I. By the £ =0
case, it follows that f,,, = 0 and hence a,,, = 0 for every m,n. Thus a = 0. Similarly one can
show that if b(1 — F,) is compact then b = 0. This completes the proof. O

Let B be the C* algebra on Hsy, generated by Ay® I, P,®1 and 1® P and J := K(H;) ® 7.
Note that J is an ideal since B, is contained in 7, ® £ ® J;. The next proposition identifies
the quotient B/.J.

Proposition 4.6.3. Let p: Ay ® Ay ® Ay ® Ay — B/J be the map
(al,ag,ag,a4) = a1 Py ® P4 asPy ® (1 — P) + CL3(1 —P)®P+ a4(1 — Pg) X (1 - P)

from Ay @ Ay @ Ap® Ay into B composed with the canonical projection from B onto B/J. Then

p s an isomorphism.

Proof: First note that since [Py, a] € K for a € Ay, it follows that P, ® I and I ® P are in the
center of B/J. Hence the map p is an algebra homomorphism. By the definition of B it follows
that p is onto. Thus we have to show p is one-one.

Suppose that a = a1 Py @ P+ a2 Py @ (1 —P)+a3(1 —P) @ P+ as(1—P) @ (1 —P) e J.
Let € : 7 — C be the map evy o o, where evy is evaluation at the point 1. Now consider
the map id ® ¢® : F, @€ ® .7 — F ®E. Note that I ® ¢®¢ sends J to IC(Hy). Hence
(I ®€®))(a) = asPy + as(1 — Py) € K(H,). Hence by lemma 6.2] it follows that as = 0 = ay.
Since left multiplication by I ® P sends the ideal J to K(Hy). It follows that (I ® P)a =
a1P; ® P+ a3(1 — Py) ® P is compact. Hence a1 Py + a3z(1 — Py) is compact. Thus again by
lemma [£.6.2] it follows that a; = 0 = a3. This completes the proof. a

Now we prove that % is closed under holomorphic functional calculus in B. Let ¢ :=
OPp* ® 7. Note that

#={aP@P+aP@(1—-P)+a3(1-P)@P+a(1-PFP)@(1—-P)+R:
ai,az,a3, a4 € A, Re 7}
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Proposition 4.6.4. The algebra % has the following properties:

1. Ifa1Pg®P+a2Pz®(1—P)—l—ag(l—Pg)®P+CL4(1—Pz)®(1—P) € / then a; =0
fori=1,2,3,4. Hence & is isomorphic to the direct sum A} © A7 © AP @ AF & 7.

Equip B with the Fréchet space structure coming from this direct sum decomposition.

2. The algebra A is a x-Fréchet algebra contained in B. Moreover the inclusion 8 C B is

continuous.
3. The algebra A is closed under holomorphic functional calculus in B.

Proof: Proposition 6.3 implies (1). Parts (2) and (3) follows from proposition B.Z1l Now by

proposition [.6.3] one has the exact sequence
0=>J—=>Bo>A @A A& Ay — 0.
At the smooth algebra level we have the following exact sequence
0= 7B AP 0 AP G AP © AP 0.

Since ¢ C J and A7° C Ay are closed under holomorphic functional calculus, it follows from
Lemma [AT4] that £ is spectrally invariant in B. Since by part (2), the Fréchet topology of %
is finer than the norm topology, it follows that £ is closed in the holomorphic function calculus
of B. a

Remark 4.6.5. One can prove that OPE;X’ ® J,> is closed under holomorphic functional
calculus in C(Hy) ® ; in the same manner by applying theorem 3.2, part 2, [34] and by using

the extension (after tensoring suitably)
0-K—-7—-C(T)—0
at the C'* algebra level and the extension
0—S((N) =T = CT)—0
at the Fréchet algebra level.
Corollary 4.6.6. Define the smooth function algebra C’OO(S(?ZH) by
C>(S ) ={a € ZNCy:0(a) € L(AX)},

where 0 is as in the proof of proposition and v : Ay — Ay ® Ay ® Ay ® Ay is the inclusion
map a — a®a®a®da. Then the algebra C‘X’(Sg“l) is closed in % and it is closed under

holomorphic functional calculus in Cy.
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Proof: Let j : # — L(Hsx) denote the inclusion map. Then by definition C>(S52H!) =
071(L(A3®)) Nj~1(Cy). Since 6 and j are continuous and as t(AS°) and Cy are closed, it follows
that C°°(S2t1) is closed in . Hence C™(S2*1) is a Fréchet algebra. Also C>(S2t1)
is #-closed as p is #-preserving. Now let a € COO(S(?ZH) be invertible in Cy. Then a is
invertible in £(Hyx). By proposition @6.4] it follows that a~! € 2. By the closedness of
A%° under holomorphic functional calculus, it follows that @(a™') € «(A%°). Thus one has
al e COO(S?H). We have already seen that the Fréchet topology of & is finer than the
norm topology. Same is therefore true for the topology of C‘X’(Sg“’l). Hence it is closed under

holomorphic functional calculus in CY. O

Proposition 4.6.7. The operators Z; , € C’OO(S[?ZH). Hence C’OO(S[?ZH) is a dense subalgebra
of Cy that contains w(A(S2)).

The proof of this proposition will be given in the next subsection.

We are now in a position to prove the main theorem.

Theorem 4.6.8. The triple (COO(S(?ZH),’HZ,DE(I) is a regular spectral triple with simple di-
mension spectrum {1,2,--+ 20+ 1}.

Proof: Since C>(S2+1) C % the regularity of the spectral triple (C>(S2*1), Hx, Deg) fol-
lows from the regularity of the spectral triple (4, Hy, D¢q) which is proved in proposition ?7.
Proposition 7?7 also implies that the spectral triple has simple dimension spectrum which is a
subset of {1,2,---,2¢+ 1}. The fact that every point in {1,2,--- ,2¢ + 1} is in the dimension
spectrum follows from lemma .43l This completes the proof. O

4.7 The operators Z;,

We will give a proof of proposition [£.6.7] in this subsection. The main idea will be to exploit
the isomorphism between the Hilbert spaces LQ(SEZH) and Hyx and a detailed analysis of the
operators Z; , to show that certain parts of these operators can be ignored for the purpose of
establishing regularity and computing dimension spectrum. Deciding and establishing which
parts of these operators can be ignored is the key step here. It should be noted here that a
similar analysis has been done by D’Andrea in [I8], where he embeds Ly(S2"!) in a bigger
Hilbert space and proves certain approximations for the operators Z; ,. But the approximation
there is not strong enough to enable the computation of dimension spectrum. Here we prove
stronger versions of those approximations, which have made it possible to use them to compute
the dimension spectrum in the previous subsection.

We start with a few simple lemmas that we will use repeatedly during the computations in

this subsection.
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Lemma 4.7.1. Let AC B CX¥. Then one has OP, > ® EXp C OPL* @ Ra-
Proof: Since

and S(Hp\a) C 5%0\ 4> We have the required inclusion. O

Let A C X. Let P be a polynomial in |A| variables and let T' be the operator on Hy4 given
by
Te, = P({vi,i € A})q"le,.

Since the function vy — P({7;,i € A})gl"4l is a rapid decay function on I'y, it follows that
T eOPy "

Lemma 4.7.2. Let ACX. Let T and Ty be the following operators on Ha:
Te, = q¢(VA)Q(1/J(’YA))€w Toe, = q¢('YA)e_y7

where ¢ and ¥ are some nonnegative functions. If ¢(ya) +1¥(ya) > |yal, then then T — Ty €
OP,.

Proof: This is a consequence of the inequality |1 — (1 — x)%] <zfor0<z<1. O
Lemma 4.7.3. Let A C Y. Let T and Ty be operators on H given by:
Te, = q¢>(“fA)Q(¢(7A))—1e% Toe, = q¢(’YA)eﬁ{
for some nonnegative functions ¢ and 1. If p(va) +¥(ya) > |val, then T — Ty € OPD_;’O.
Proof: For 0 < r < 1, one has
]1—(1—x)_%] <cr for0<z<r,

where ¢ is some fixed constant that depends on r. Using this, it follows that the map v —

g®M|1 — (1 - q2w(7))_%| is a rapid decay function on I'4. O

For j € ¥, we will denote by &; the C*-algebra 7 if j # ¢ + 1 and the C*-algebra & if
Jj=~{+1. Thus £ will be T for j#L+1and £ = B for j = £+ 1. Thus £ will stand
for the space 7,° ® £ ® 7,°°. Note that for any subset A of 3, one has OPB;O C&x.

Lemma 4.7.4. Let A C X, a,b,m,n € N andn > 0. Let Ty and T be the operators on Hx
given by

Trey = Q([val+alyes1)+ +b(ver1)— +m)ey, Trey = Q(val+a(yet1)+ +b(ver1)—+n) ey

Then Ty and Ty are in E°.
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Proof: First note that if 7] and T} are operators given by
Tiey = Q(al + alyers| + mley,  Ti'ey = Q(|7al + blvers| + m)es,

then 71 = PyT| + (I — Py)TY}, where Py = % By the two previous lemmas, I — T} and
I —T; are in OP° where B = AU {{+ 1}. Since OP},° is contained in £g°, it follows that
T],T) € EX. Since Py, € £, we get T} € E.

Proof for T3 is exactly similar. a

We next proceed with a detailed analysis of the operators Z;,. First recall that

Ue, = g; — (—1)25:1(i_l)WM(W“)*ern,k,s, (4.7.40)
where s is given by
20+1
n= Z Vi, k= Z% ’7€+1 (4‘7‘41)
i=0+2
m— 20+2—m
dn=) %  Ctm= Z% +henl+ > v forl<m<t (4.742)
; i=0+2
dey1 = Cq1 = Z% (Ver1)- (4.7.43)

We will use this correspondence between epnk g and fﬁ/ freely in what follows.
From equation ({.2:25]), we get

W(ulj)ern,ks = Z Cq(l,rn’k,NLl)Cq(j,S,M)H(I‘n’k,N171)€rn+1,k’M(s)
MeM}f
+ Z Cq(l,r"’k,N071)C’q(j,S,M)/{(r"’k,N071)ern,k71,M(s).
MeM;
J
Therefore
Z;,qel‘”’ks = q_j+1 Z C‘](lvrn’kvN171)CQ(jvs7M)H(rn’kvN171)er”+1”“7M(S)
MeMf
+qg It Z (1, 2% Ny 1)Cy (4, s, M)K,(I‘n’k,N()71)€rn,k—1’M(S).
MeM;

Thus we have Z7 = ZMeM; ST+ ZMeM; Sy, Tyy» where the operators Sy; and T;; are
given by

Siternks = emniii i), M €M, (4.7.44)
Sprernks = €pnk-1as), M €M, (4.7.45)
Tiewmis = q 7T Co(1,x™ N1 1)Cy(j,s, M)k(x™* Ny 1)epnrs, M €M, (4.7.46)
Tyrepnks = g ITC, (1, No1)Cy(4, 8, M)k(r™* No1)epnig, M € M. (4.7.47)
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Lemma 4.7.5. Let S]“\—L/[ be as above. Then USEU* €&y

Proof: Let us first look at the case M € M;-—L where 1 < j < /. In this case, one has S]“\—L/[&Y =&y
where 7/ is given by
(
1 i m; =1 and myy =0+ 1 —14,
Mogro—; = 1 and mopys—; =0+ 2 — (204 3 — 1),

m; =0 +2—1iand mjy =1,
vi—1 if $m;=¢+2—iandi=j
moy4+2—; 25—1—2—(25—#2—’0 and mog43—; = 1,

i otherwise.

Note that since 1 < j < £, we have vy, = Y41, and n(y’) — n(y) depends just on M and not
on . Therefore U Szj\}U * is a constant times simple tensor product of shift operators. Thus in
this case US]\i/[U* €ETXRIR I CEX.

Next we look at the case M € MEEH. In this case, define 7/ and 7" as follows:

m; =1and mjp1 =0+ 1—1,
%‘—Fl if 7 141
Mopyo_; =1 and mopyg; =0 +2— (20 4+ 3 — 1),

m; =042 —17and m;y1 =1,

/
Vi = )
' vi—1 if Smopo ;=0+2—(20+2—1i) and magpi3_; = 1,
=041
Vi otherwise.
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m; =1and mjy =0+ 1—1,

Yi+1 it §mogo s =1 and mopz_; = €42 — (20 + 3 — i),
1=/,

(

" __ ( .

Vi = m; =0 +2—14and mjy =1,

vi—1 if Smope i =0+2—(20+2—1i) and mop3_; = 1,

i=0+1

Yi otherwise.

Then one has
g’y’ if Yet1 <0,
&y if vy > 0.

Therefore in this case, one will have U S?QU eI REC® TS CEX.

S]:\Elg’Y =

d

We will next take a closer look at the operators Tj\i/[. For this, we will need to compute

the quantitites involved in equations (£.7.46]) and (47.47]) more precisely than we have done

earlier. We start with the computation of k. From equation (£.2.4]), we get

P(r™h) = —g (n+k+(£—1k)+ W; o
i
= —5(71 — k)
Therefore '
P(r™E) = (N (0") = () — () = 2, (4.7.48)
D) = (N (7)) = () — ) = 2 (4.7.49)

Let us write A = (n + k,k,...,k,0). We will next compute dy, where dy is given by (Z24]).
One has dy = >, ¢?¥®) where the sum is over all those s for which the top row is A. Such an
s is of the form (4.428]) and one has

14
W(s) = —%K(n k) + %(e S =2k + (6 + di) + dosa
=2

Thus we have

dy = g~ LR =21k Z qz(zfﬁ(cﬁdi)mm)

k<ci<cp1<...<co<n+k
0<d2<d3<...<dy<k
dy<dp1<cy
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Now for any x, we have

Z x(Zf:g(Ci-i-di)-i-dzH)

k<cg<cy1<...<ca<ntk
0<d2<d3<...<d;<k

de<dgy1<cy
0 ¢
= E 2(Zizs citdera) E 2(Ziea i)
k<dgi1<cy<cg_1<...<ca<n+k 0<d2<d3<...<dy<k
0 0
+ E x(zi:Z ci) E x(z’iﬂ ditdyi1) (4.7.50)
k<cy<cp1<...<c2<n+k 0<d2<d3<...<dy<dpy1<k

If we now use the identity

Z Z lt _xij< 1_71:1;2164-1)7

we get

Z :E(Zfzg(ci-i-di)-l-dul)

k<cy<cp_1<...Zco<n+k
0<d2<d3<...<d;<k
dl<d(+1 <cp

-1 ; /-1 ; l 14
_ Zk H 1-— 33‘ H 1-— :Ek-‘H + Jj(z_l)k H 1-— ﬂfn—'H H 1-— IEk ‘1+2
11— 1—a Pl 1—at 1—2a

i=1 =1
. ki
1—=x 1 1
_ Z 1k k n+t k
B H<1—:EZ>H<1—xi>1—:pi1—xf<x(1_$ )—l—l—a:)
>— <1_$k+z’> (1_gjn+k+£>
— — .
paley 1—at 1—=x

L e 1 (Qn+1) QUE +14) Qnt ki +0)
a5 =4 H(@@ @@) O

Thus

(4.7.51)

Write
N=m+1+kk,. .. k0), N=m+k—-1,k—1,...,k—1,0).

Lot pQntl) Qntk+1)
Qin+0)Qn+k+(+1)
q_mQ(/He—n Qntk+0)

Q(k) Qn+k+£-1)

1 1
did,? =
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Combining these with (£7.48]) and (4.7.49]), we get

r(eWE Ny (eF)) = qegEZiBQgiZigfl)’ (4.7.52)
QUh+0—1) Qn+k+10)

Q(k) Qn+k+0-1)

Lemma 4.7.6. Let M € M and Ty; be as in equation ({.746). Then UTj;U* € OPp>®.9,°
ifj<Lorifj=0+1 and M # N,.

r(r™E N1 (r™F)) (4.7.53)

Proof: From lemma .2.5] and equations (A7.46]) and 4.7.52 we get, for M = (my,...,m;) €
MF
] )

) i " 1) Qn+k+79)
Tre i = M)t —i+1HCE™F N1 )+ B(N1,1)+C(s,M)+B(M) Q(n +
prernks = sign (Mg Qn+0)Qntk+0+1)
7j—1
x  L'(xr™k 1,1) (H L(s,a,ma,ma+1)> L'(s,5,m;) €pn ks (4.7.54)
a=1

Since C(r™* Ny 1) =k and B(Ny1) = 0, we get

T]\—Zer”)ks = sign (M)qé—j—i-l—i-B(M)—Hf—i-C(s,M)¢(S7 M)

ern,ks,

with ¢(s, M) a product of terms of the form Q(v)(7))*' where ¥(v) = |ya| + ¢(ye41)+ + m for

some subset A C X, ¢ € {0,1} and some integer m that does not depend on s. Therefore
UTJ—\ZU*G'\/ — Sign (M)qg—j-‘rl-‘rB(M)-Fk-i—C(S,M)qb(s’ M)e,\/,

where k and s are given by equations (L.7.4THAT7.43]). Since ¢(s, M) a product of terms of the

form Q((v))*!, it follows from lemma E7.4] that the operator e, — ¢(s, M)e, is in £, Next

look at the operator e, gk tCesM )ey. Assume that there is some i < j such that m; # 1. Let

p=min{2 <i<j:m; #1}. Then C(s, M) > H,_1,1(s) > (Ve+1)—. Therefore

k4 C(s, M) >k + (1) Zwmm

Hence UT,,U* € OPpL> ® 7,°. Next assume that j < ¢ and m; = 1 for all i < j. In this case,
C(s,M) > H;1(s) > (V¢+1)—. Therefore again we have

k+C(s, M) >k + (1) Zwmm

and hence U T]\”;U *e OPD_ZC>O ® 7,°°. Combining the two cases, we have the required result. O

Lemma 4.7.7. Let M € M and Ty, be as in equation ({.7.47). Then UT,U* € OPp>*® 7>
if M # Noj.
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Proof: From lemma [£.2.5] and equations (A.7.47)) and (4.7.53)), we get, for M = (m1,...,m;) €

M,

L4 CEmE No )+ B(Noy )+ Cs M) +Bn QE+L—1)  Q(n+k+1)

Tyrepnig = sign(M)q D) Otk l=1)
j—1
x L™k 1,04 1) (H L(s,a,myg, ma+1)) L'(s, j,m;)epm k. (4.7.55)
a=1

Since C(r"™* Np1) =0 and B(No1) = 0, we get
Typepnivs = sign (M)g I HHCEMTBAD) 4 Me i,

with ¢(s, M) a product of terms of the form Q(1(v))*" where 1(7) = |ya| + c(Yeg1)+ +m for

some subset A C X, ¢ € {0,1} and some integer m that does not depend on s. Therefore
UT,;U"e, = sign (Mg I HIFCEM+BIM) (g M)e,,

where k and s are given by equations (A.7.4THA7.43]). As in the proof of lemma [4.7.6] it is now
enough to prove that C(s, M) > Zle vi + |ve+1|- Now assume that m; = 1 for some i < /.
Let p=min{2 <i < j:m; =1}. Then p < /¢. We then have

p—2
Cls,M) > > Hipp1-i(s) + Hy-1,1(8) + Hy-1,042- () + Vpo1.042-5(s)
=1

p—2 4 p—1
D v+ () + o+ (Z Vi + (Yes1)+ — Z%)
i=1 i=1

v

1=1

¢
= > %+ el
i=1
So the result follows. O

Remark 4.7.8. As mentioned in the beginning of this subsection, weaker versions of the two
lemmas above has been proved by D’Andrea in [18]. In our notation, he proves that the part of
Zj q that be ignored is of the order ¢ = qu=1 7i+(e+1)+ whereas we prove here that one can
actually ignore terms of a slightly higher order, namely qu:I vitheril which makes it possible
to compute Z; , modulo the ideal OPB;O ® T,°.

Lemma 4.7.9. Define operators X; on LQ(S(?ZH) by

(=174 Q(dj 1 — dj)exni-i ny y(s) fl<j<i—1,

iy o (4.7.56)
(—1) q ZQ(dg_H - dg)Q(k - d[)ern,kflJvoye(S) ’lfj =/

el‘"vk,s —>

Then one has
UZ;QU* -UX;U" € OPE,;O ® I,>.

70



Proof: In view of the two forgoing lemmas, it is enough to show that
US;,O’J_T];OJU* -UX,;U" € OPB;X’ ® 7>, forl<j</{, (4.7.57)
Let us first look at the case 1 < j < /£ — 1. Observe that
sign (No;) = (=171, C(x™* No1) = 0= B(Nos), C(s,Noj) =d;, B(Noj)=j— 1.

Therefore from ([4.7.55]), we get

j—1qde(k+€—1) Qn+k+10)

ULy, U'er = (21) Q) Qntk+l—1)

L'(r™F 1,0+1)

7j—1
<H L(s,a,l+2—al+1— a)> L(s,5,0+2—j) e,  (47.58)

a=1

From (4.2.18]), one gets

@™  1,0+1) = < Q(|k‘—0—i+f+1—1l)> Qk—0—14£+1-1))

QUk—0—i+e+1) ) Qn+k—0—1+0+1))

s.
~ | ~
I\

( QUk + £ —1) > Qlk+¢—1)

Qi+ =it ) Qntk+0)

Q(k)
= GehTD (4.7.59)

Similarly, from (€.2.15]) one gets, for 1 <a < ¢ —1,

L(s,a,l+2—a,{+1—a)

0+1 _ .
haQ|sal_sa+lé+la i+{+1—al) H Q|sa+1,i — Sap+2-a — i+ L +2—a—1])

|Sa2 3a,€+2—a_2+€+2_a| |5a+ll_3a+1€+l a—i+Ll+1—a—1])

Q(ca—da+1 +/{¢—a) Q(ca+1 —da+€—a)
Qecg —do+l+1—0a)Q(car1 —dgy1 +€—a—1)

”ﬁ”@k das1 — Z+€+1—aHQk do—it+1—a)

—dy—i+L0+2—a) Qk—dyy1 —i+0—a)
Q(ca—da+1+€—a) Q(ca+1 —da+€—a)
Q(ca—d +€+1—a)Q(ca+1—da+1+€—a—1)

Qk —dey1—i+l—a) 4 Qk—d,—i+L+1—a)
XHQk: do—itl+1—a) H O —dorr —i+ 0 —a)

o Q(ca_da-i-l""e_a) Q(ca-i-l_da""e_a) Q(k_da-i-l"‘e_a_l) (4760)
Qg —da+l+1—0a)Q(car1 —dor1 +4—a—1) Qk—dy,+l—a) o
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and from [@218]), for j < ¢ —1,

L/(s 5 l+2—7)
/+1
HJQ |SJ+12_8M+2 ]_Z+€+2_J_1|)

Q(lsji — SJ5+2—]_Z+€+2_]’)
Qejt1 —dj + L0~ H Qk—dj+L+1—3j—1)\ Qdj+1 —dj)
Qlc; — dj +£+1—j LQUk—dj+0+2—j—1) ) Qlk—d; + 1)

Qlej+1—dj +1—)) Q(da+1 —d;)
Q(Cj—dj—|—f+1—j)Q(k‘—dj+f—j)

From the above two equations, we get

j—1
(HL(s,a,£+2—a,£+1—a)> L'(s,j,0+2—§)

a=1
Qdj+1 — d;) ﬁ Q(ca — day1 +1£ —a) ﬁ Q(Cat1 —da + L —a)
Qk+¢—-1) Q(cgr1 —dgr1 +€—a—1) Q(cag—dg+0+1—a) ]

a=1 a=1

Now substituting all these in equation (L7.58]), we get

_ L dirq — (ca —dgy1+ € —a)
Noj = € (=1 Q(n—l-k‘—l-ﬁ—l HQ%H doy1+0—a—1)
Car1 —dg + 0 —a)
. 4.7.61
(HQCa—d +€—|—1—a)> Ey ( )
Now note that for 1 <a <j—1,
¢ ¢
dj+co—dap1 +0—a>Y it enl,  dj+capr —dari +0—a =12 %+ |yl
i=1 1=1

and for 1 <a <j,

¢ ¢
dj+corr —datl—a>2) yitlusl,  ditca—datl+l—a>) %+ e,
i=1 =1

anddj +n+k+/0—-12> Zle vi + |e+1]- Therefore by using lemmas €.7.2] and 7.3 we can

write, modulo an operator in OPD_ZC>O ® I,
— * i1 d
UTNOJ-U €y = (—1)] 1(] JQ(dj_H — dj) €.
Using equation ([A7.45]), we get
— * j—1
USNOJ‘U 67 = (_1)j e'Y’?
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where
Vi if i # 7,
v —1 ifi=j.

%=
Observe also that
UX;U%, =q JQ( i1 —dj) ey,

where 7/ is as above. Therefore we get (£T.57) for j < ¢ — 1.

In the case j = ¥, one has

/  Qsep11 —se2l)  Q(dey1 — dy)
(5.62) = Qsen —se2+1]) Qe —de+1)

and as a result, one has

/—1
(H L(s,a,l+2—a,l+1 —a)) L'(s,4,2)
a=1
QU —dy) ﬁ Ca — a1 + € — a) H Q(cay1 —do + £ — a)
Qk:+€—1 Qca+1 dgr1+0—a—1) Qca—d +l+1—a) )
As before, substituting all these in equation (£7.58]), one gets
_ _ k — dy) - +/0—a)
T * — _1 /-1 dg Q( Z a a+1
UNWU&/ (=) Qn+k+0¢-1) HQCCL_H doy1+0—a—1)

Car1 —dg + 0 —a)
(HQ . +€+1—a)> ey (4.7.62)

Application of lemmas [£.7.2] and 7.3l now enable us to write the following equality modulo

an operator in OP,> ®@ 7,
UTy, Uy = (-1 QUk — d)QUdrsr i)
Using equation (L.7.45]), we get
USy, Utey = (1) ey,

where
i if i # ¢,
vi—1 ifi=~

v =

Observe also that
UXU ey = q"Q(k — do)Q(dgs1 — di) e,
where 7/ is as above. Therefore we get (£T.57)) for j = /. O
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Lemma 4.7.10. Let X; be as in lemmal{. 7.9 Then for1 < j </{, one has UX;U*—Y ®1 €
OPp™ ® J,.

Proof: It follows from equations (4.7.40HA.7.43]) that for j < ¢ — 1, one in fact has UX;U* —
Y/, ®I=0. For j =/, one has

-1

(UX;U" =Y, @1) ey = (qzizl 7Q (ve + (Ver1)-) Q (e + (W+1)+)) es,
where 4; =; — 1 if ¢ = £ and 4; = ~; for all other ¢. Thus

|UX U*— ®I‘EOP5 ® I,> sign (UX]-U*—ijq®I)€5§°.

Therefore UX;U* — Yj’fq QI ¢c OPD_ ® J,>. O

From the two lemmas above (lemmas [£.7.9] and A.7.10)), it follows that for 1 < j < ¢, one
has UZ} U™ € C’OO(S[?ZH). Thus we now need only to take care of the case j = ¢+ 1.

Lemma 4.7.11. UZ;,, ,U* € C=(S31).

Proof: Using lemmas [L7.0] and .77 it is enough to show that

U (S},{Tj\;l + 85

Nooir TN 1 )U* = UXen U™ € Co(S2H). (4.7.63)
From (L7.54]), we get

b Q) QA+l o, :
Ty exnig = q oD Q(n+k+£+1)L(r 1,1) (H L(s,a,1,1)> epnkg.  (4.7.64)

a=1

From ([£.2.15]), we get for 1 <a < /¢ -1,

L(s,a,1,1)
{4+2—a l+1—a

H Q|3az Sa+1,1 — Z+1| H |Sa+12 Sal_i+1—1|)
Q(

|Sa2_3a1_z+1| 3a+lz_3a+11_l+1_1|)

B ZJﬁanaH kE+i—1) 1:[ (ca — k+1)
N (ca —k+i—1) P Qc k+1i)

a+1 —

Q(ca+1—da+€+l—a) Qcg —dg1 +0+1—a)
Q(ca—da+€+1—a) Qcgy1 —dgr1 +0+1—a)

B HQCQH k+1) H Qcqg — k +1)

N (ca — k +1) Qcor1 — k+1)
Q(ca+1—da+€—|—1—a) Qg —dgr1+0+1—a)
Q(Ca_da‘i’é“‘l_a) Q(Ca+1—da+1+€+1—a)

Q(Ca—l—l_k+1)Q(Ca+1_da+£+1_a) Q(Ca_da—l—l“‘g"i'l_a)
Qlca—k+1) Qca—da+l+1—a) Q(car1 —day1 +0+1—a)’
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and for a =/,

Q([se2 — se411 — 2+ 1)) _ Q(dpy1 —de + 1)
Q(|se2 —se1 —2+1)) Qleg —dp+1)

L(S7 é’ 17 1) =
Also from (4.2.18]), we have

k1 1y~ (dz@Uk—n—k—i+1-1) 1
D11 = < [T, Qk—n—k—i+1)) )Q(IO—n—k‘—ﬁ—Hll)

n-+1i Qn+1)
<HQn+z—1 > Qn+k+Y)
Q(n+1)
Qin+k+10)

Plugging these in equation (£.7.64]) and using (4.7.40), we get
Qn+1) Qn+k+1) Q(n+1)
Q(n+€) Qn+k+0+1)Q(n+k+10)
H Qa1 —k+1)Qcgy1 —da+l+1—a) Qlcg—doy1+0+1—a)
Qleca —k+1) Qleca—da+l+1—a) Q(car1 —dar1+€+1—a)
Q(dé-i-l —det1)
Qleg—de+1) "

Thus as earlier, modulo an operator in OPD ® Z,°, we have the equality

UT]J\?ZU*eV

UTJJ\FZU*&Y = ¢, (4.7.65)

Next note that B(Ny) = ¢, C(s,Ng) = dgy1 and sign (Ng) = (—1)° so that we get

from (755

T]Qoel‘"vks = (_1)qul+1

Qk+4—-1) Qn+k+Y)
Q(k) Qn+k+¢-1)

)4
x  L'(x™k 1,04 1) (H L(s,a,l+2—a,l+1— a)> epnkg.  (4.7.66)
a=1

Now using (L7740, ({759), (A 760) and the fact that

QUsen —serin —14L41-4])  Qlep — dey)
Qlser —seo—14+04+2—4)  Qeg—dy+1)’

L(s,0,2,1) =

we get

e QA=) Qutkt) QW)
ULy,Ute; = (=Da QR Qi ki l-DQn+ki0)

(H (Co—dap1+0—a)  Qcor1 —da+€—a) Q(k—da+1+€—a—1)>
Q(

x (ca—dot 041 —a)Qcars —dor1 +l—a—1) QU —da+l—a)
Q(ce — dpy1)

X —6
Qlce —dg+1)
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Thus modulo OPp™ ® 7>, we have the equality
UTy Utey = (—1)'q% e, (4.7.67)
Define operators T on LQ(S(?Z‘H) by

Tre =4, T7& = (—1)'dea&,.

By equations ([7.65) and ([7.67), it is enough to look at the operators S]J{,ZTJr + Sy, T

Now observe that

v if e >0, i e > 0,

Snbr = Sy =
0 5,\{// if Ye+1 S 0, ¢ gfy’ if Ye+1 S 07
where
;-1 =t g )—1 e <i<i+2,
Vi = . Vi = '
Vi otherwise, Vi otherwise.
and
vi+1 ifi=~fori=0+42,
U= y—1 ifi=041,
i otherwise.
Therefore

k ¢ d :

_ q"&m + (=1)°q% &y if yp41 > 0,
+ 7+ - — v v

@Mr+%g)g_ ) . _

&y + (=1)°q% 18 if 40 < 0.

So if we now define
£ .
(—1)fqxmr%E, i yppq > 0,

T&'y = ¢
quzl Vg if vp11 <0,

then one gets from the above equation that U (SX}ZTJr + S5, T — T) U* is in OP,> @ 7.
Thus it is enough to show that UTU* € 000(53“1). Now note that

¢ if Ye+1 > 0,
0 if vy <0.

n(y) —n(y') =
Therefore it follows that UTU"e, = quzl Tiey, ie. UTU* =Y/,  ®I. Thus we get the

required result. O

Putting together lemmas 7.9] 7710 and 7T we get proposition EG.71
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4.8 The Chern character of the equivariant spectral triple

We end this chapter by comparing the Chern character of the equivariant spectral triple with
that of the torus equivariant one. Consider a spectral triple (B,H,D) with the following

properties:
e The algebra B is invariant under ¢ := [|D|,.] and [D,.]. Assume that F' := Sign(D) € B.
e The dimension spectrum X is finite and simple and does not contain 0.
e For b € B the commutator [F,b] is smoothing.

Then the Fredholm module (B,H,F) is 1 summable. In this section, we associate a 1

dimensional cycle whose character is cohomologous to the character of the the Fredholm module
(B,H,F). Let P := # Define

7(bo, b1) ::%Tr(bo[F, b1]),
Yo (b) :=Tr(bP|D|™%).=0,
Y1(bo, b1) =T + bifo.
We will describe a cycle for B whose character is ;.
Remark 4.8.1. The cochain 1y makes sense as X does not contain 0.

First we define the differential graded algebra. Define

Q0. =

lean,
=1

Q: =0 Q!

We will define a Q° bimodule structure on Q' such that the linear map d : Q° — Q! defined by
d(b) := (6(b),6%(b),63(b), - --) becomes a differential. The left multiplication is the usual one
inherited from the algebra multiplication of B. The right module structure is defined by

(b1,ba,bs, -+ ).b:= (by,by,by,---) where b.s are given by
b= s ()0
Lemma 4.8.2. The vector space Q' is a Q0 bimodule and (2, d) is a differential graded algebra.

The proof is by direct verification by using the fact that § is derivation and the lebnitz rule.
n . .
(00) = 5o ()80 o)
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Define for r € Ny, the functional 7 on B by 7,(b) := Res,—,Tr( bP|D|™*). Since the
dimension spectrum is finite it follows that there exists IV such that the functionals 7, vanishes
for r > N. Note that the functionals 7, are ¢ invariant i.e. 7,(6(b)) = 0. Now define a functional
IE Ol - C by
(_1)r+1

,

/(bl,bg,b3,....) = E?il Tr(br).

The functional [ makes sense as 7, is zero for sufficiently large 7.

Proposition 4.8.3. The triple (Q.,d, [) is a 1-dimensional cycle for B whose character is 1

and hence is cohomologous to T which is the character of the Fredholm module (B, H, F).
Proof. First let us compute the coboundaries br,. Note the asymptotic expansion ([17])
gy (7)) 4 —(i+2)
|D|"%a =~ X572, ; 0" (a)|D| . (4.8.68)

From the above equation and the fact that [P, b] is smoothing it follows that

7 (be — cb) = £, (~1)i*! ( e 1) 1 (b67(0)).

Now we will show that [ is a closed graded trace. The fact that the functional [ is closed
follows from the invariance of 7, under 6. Now let b € QY and w := (b1, bo, b3,---) € QL. Let
bw — wb := (by, by, by, ---). Then

b, := bb, — bb — X} <T> bi6" " (b).
1

Hence

/ bw — wb :2721(_—1)77(%,1 —byb) — Ty =) ™ (Zi5) <:> b;" ")

r r

s (o oo (7)) o S (s ()

]

=0 -1

where I7 denote the first sum and Is the second. After changing the order of the summation
in I, it follows that

B =X, (zmi(‘%)rn(bmr—i(b)) ())

S <zzilﬂfm+n<bm5"<b>> (" "))

n—+m m

=0
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since m—ll—n (m:r;”) = %(mt?_l). This proves that [ is a trace. Thus (2,d, [) is a 1-dimensional

cycle. Now we show that it’s character x is 11 by explicit computation using the asymptotic
expansion .8.68l By the asymptotic expansion [4.8.68] one has

Tr(bP|D| *c) = Tr( beP|D|™*) + Tr( blP,c]|D|™*)

+ 532, <_ZZ> (7r( b6 (c) PIDI=2)) + Tr (0[P, & ()] D ~+2)).

Since [P, b] is smoothing, it follows that

[e%S) (_1)i+1 %
bipo (b, ) + Tr(b[P, o) = XZy ~———i(b3"(c)),

i
bpo(b,c) + 7(b,c) = x(b,c) (by the defn of x).

Hence, by definition x := 7 and is cohomologous to the Chern character of the Fredholm
module (B,H, F). This completes the proof. O
Now we show that the Chern character of both the equivariant and the torus equivariant
spectral triple coincide in H Odd(C"X’(S[?”l)). Let (meq, H, D) be the equivariant spectral triple
and (7yorus, H, D) be the torus equivariant one with amplification. We have F':= F; @ p—1®
(1—p) where F := sign(D). Note that for a € C°(S2*!) one has p(a) := Teq(a) — Tiorus(a) €
OP~> ® 7.
Lemma 4.8.4. Let ¢(a) := Tr(Pp(a)) for a € C®(S2*1) where P := HE - Then one has
b = ch(Torus, H, F') — ch(meq, H, F).

Proof. Since P € OP° ®4, OP~°, it follows that Pp(a) is smoothing for every a €
COO(SEZH) and hence trace class and thus the cochain ¢ makes sense. Now we compute the

coboundary bg.
bd(a,b) = d(ab) — ¢(ba)
= Tr(P(p(ab) — p(ba))).
Note that p(ab) — p(ba) = (meq(a)p(b) + p(a)Ttorus(b)) — (p(b)Teq(a) + Tiorus(b)p(a)). Hence
bd(a,b) = Tr([P,meq(a)lp(b)) + Tr([P, p(a)]miorus (b))

= ST(E Teg @)]eq (D) — 5T, oo (@) toras (5):

Hence b¢ = ch(miorus, H, F') — ch(meq, H, F'). This completes the proof. O

Remark 4.8.5. The above lemma also follows more easily from the following observation.
Consider the local cocyle Y for the spectral triple (Beq, ", D). The functionals T; vanishes on
the ideal OP~*° @ Z,°°. Hence (b, c) vanishes if b or ¢ is in OP™>° ® ,°° which implies
Pplorus = 1. Therefore the Chern characters of the torus equivariant and the equivariant

spectral triples differ by the coboundary b(yg? — ™). Observe that ¢ = 5T — s,
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Remark 4.8.6. Let (my, Hy, Dy) be the torus equivariant spectral triple. Since (Tiopys, H, F)
is unitary equivalent to (mp @ T He ®H ,F @ —1) it follows that the Chern character of
(Ttorus, H, F') and that of (e, He, Fy) coincide. The same is true of the local cocycle 1)y .

Remark 4.8.7. Thus to prove that the index map indp : Kl(C’(Sg“l)) — Z is non-trivial for
the equivariant D it is enough to prove that the index map indp, is non-trivial which we do by
using the local cocycle 1. Let U :=p® S* 4+ (1 —p) @ 1. The local cocycle 1 on C*(U) is
given by ¥1(f,g) := % 027T f(0)g'(0)do. Hence (U, U = —1.
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Chapter 5

The weak heat kernel expansion

The computations carried out in the last two chapters are by direct methods. But one can
offer an easier conceptual explanation for it. Observe that the Mellin transform of the function
Tr(be="Pl) is T'(s)Tr(b|D|~%). Thus if the function Tr(be *P!) has an asymptotic expansion
near 0, the meromorphic continuation of 7'r(b|D|~*) would follow. We show that the spectral
triples considered in the earlier two chapters have this property.

We consider a property called the weak heat kernel expansion property and show that it is
stable under quantum double suspension. We also show that if a spectral triple has the weak
heat kernel expansion property then it is regular and has finite simple dimension spectrum
lying in the set of positive integers. Since the torus equivariant spectral triple is obtained by
quantum double suspending the standard spectral triple on the circle recursively, the result in
Chapter 3 follows. We also discuss some examples of spectral triples which have this property.
This gives a way to construct some more examples for which the local index formula holds.
We begin this chapter with a brief discussion about asymptotic expansions and the Mellin
transform. Then we consider the weak heat kernel expansion property and show its stability

under quantum double suspension.

5.1 Asymptotic expansions and the Mellin transform

Let ¢ : (0,00) — C be a continuous function. We say that ¢ has an asymptotic power series
expansion near 0 if there exists a sequence (a, )2, of complex numbers such that given N there
exists €, M > 0 such that if ¢ € (0, ¢)

N

6(t) = > apt"| < MtVFL

r=0
We write ¢(t) ~ > g° art” as t — 0+. Note that the coefficients (a,) are unique. For,

o(t) — Xy art”

(5.1.1)
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If ¢(t) ~ > 2 gart” ast — 0+ then ¢ can be extended continuously to [0, 00) simply by letting
¢(0) := ao.
Let X be a topological space and F : [0,00) x X — C be a continuous function. Suppose

that for every x € X, the function t — F(¢,z) has an asymptotic expansion near 0

x) ~ Z ar(x)t". (5.1.2)
r=0

Let zg € X. We say that Expansion [5.1.2] is uniform at zq if given N there exists an open set
U containing xg, € > 0 and an M > 0 such that for 0 <t < € and x € U, one has

Zar W< ML

We say that Expansion [B.1.2] is uniform if it is uniform at every point of X.

Proposition 5.1.1. Let X be a topological space and F : [0,00) x X — C be a continuous

function. Suppose that F has a uniform asymptotic power series expansion, say

x) ~ Z ar(z)t"
r=0

Then for every r > 0, the function a, is continuous.

Proof. Tt is enough to show that the function ag is continuous. Let xg € X be given. Since
the expansion of F' is uniform at xg, it follows that there exists an open set U containing xg
and §, M > 0 such that

|F(t,x) — ap(z)] < Mt for t < § and x € U. (5.1.3)

Let F,(z) := F(%,z). Then Equation 513 says that F,, converges uniformly to ag on U. Thus
ap is continuous on U and hence at xy. This completes the proof. O

The following two lemmas are easy to prove and we leave the proof to the reader.

Lemma 5.1.2. Let X,Y be topological spaces. Let F : [0,00) x X — C and G : [0,00) xY — C
be continuous. Suppose that F and G have uniform asymptotic power series expansion. Then
the function H : [0,00) x X XY — C defined by H(t,z,y) := F(t,z)G(t,y) has a uniform
asymptotic power series erpansion.

Moreover if

:E)Niar( t", and G(t,y) ~ Zb
r=0
then

H(t,x,y) ~ Zcrxy
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where

cr(m,y) = Z am(2)bn (y)-

m-+n=r

Lemma 5.1.3. Let ¢ : [1l,00) — C be a continuous function. Suppose that for every N,
SUPye(1,00) [tN¢(t)| < oco. Then the function s — [° ¢(t)t*~1dt is entire.

5.1.1 The Mellin transform

In this section, we recall the definition of the Mellin transform of a function defined on (0, c0)
and analyse the relationship between the asymptotic expansion of a function and the mero-
morphic continuation of its Mellin transform. Let us introduce some notations. We say that a
function ¢ : (0,00) — C is of rapid decay near infinity if for every N > 0, supc[i o) [tNp(t)| is
finite. We let M, to be the set of continuous complex valued functions on (0, 00) which has

rapid decay near infinity. For p € R, we let

Mp((0,1]) : ={¢: (0,1] = C: ¢ is continuous and sup tP|p(t)| < oo},
te(0,1]

My i ={¢ € Moo : ¢l(0,1) € Mp((0,1])}.
Note that if p < ¢ then M, C M, and M,((0,1]) C M4((0,1]).

Definition 5.1.4. Let ¢ : (0,00) — C be a continuous function. Suppose that ¢ € M, for
some p. Then the Mellin transform of ¢, denoted M ¢, is defined as follows: For Re(s) > p,

Mo(s) = /OOO p(t)t*Ldt.

One can show that if ¢ € M, then M¢ is analytic on the right half plane Re(s) > p + 2.
Also if ¢ € Mp((0,1]) then s+ fol $(t)t5~1 is analytic on Re(s) > p + 2.
Fora<band K >0,let Hyp g :={c+it: a<o <D, [t| > K}.

Definition 5.1.5. Let F' be a meromorphic function on the entire complex plane with simple
poles lying inside the set of integers. We say that F' has decay of order r € N along the vertical
strips if the function s — s"F(s) is bounded on H,p ¢ for every a < b and K > 0. We say
that F is of rapid decay along the vertical strips if F' has decay of order v for every r € N.

Proposition 5.1.6. Let ¢ : (0,00) — C be a continuous function of rapid decay. Assume that
(t) ~ > art” ast — 0+. Then

(1) The function ¢ € My,
(2) The Mellin transform Me of ¢ extends to a meromorphic function to the whole of complex

plane with simple poles in the set of negative integers. {0,—1,—2,—-3,---},

83



(3) The residue of M¢ at s = —r is given by Ress—_ M ¢p(s) = a,, and

(4) The meromorphic continuation of the Mellin transform M¢ has decay of order 0 along

the vertical strips.

Proof. By definition, it follows that ¢ € M. Since ¢ has rapid decay at infinity, by lemma
E1.3 it follows that the function s — [~ ¢(¢)t*~dt is entire. Thus, modulo a holomorphic
function, M¢(s fo (t)t*~1. For N € N, let Ry (t) := o(t) — Zivzo a,t". Thus modulo a

holomorphic functlon, we have

a 1
Mg(s)=> —" +/0 Ry ()5 Ldt.

As Ry € M_(n41)((0,1]) the function s — fol Ry (t)t*~dt is holomorphic on Re(s) > —N +1.
Thus on Re(s) > —N + 1, modulo a holomorphic function, one has

_ (5.1.4)
r= 0

This shows that M¢ admits a meromorphic continuation to the whole of complex plane and

has simple poles lying in the set of negative integers {0, —1,—2,--- ,}. Also (3) follows from
Equation (.1.4]
Let a < b and K > 0 be given. Choose N € N such that NV 4+ a > 0. Then one has

/RN )5~ 1dt+/ p(t)t°Ldt.
s+r

As the function s — % is bounded for every r >0 on Hgyyp i, it is enough to show that the

M¢(s) =

functions (s fo Ry (t)t5~ Ldt and X(s fl ts_ldt are bounded on H,j k.
Choose an M > 0 such that for ¢t € (0, ], | Ry (t )| < MtN*L Hence for s := o +it € Hyp k,
M M
()| < < < M.

c+N+1"a+N+1"
Thus v is bounded on Hgp, k-
Now for s := o + it € Hgyp i, we have

x(s)] < /1 o)l de < /1 ey

Since ¢ is of rapid decay, the integral fl )[t2~tdt is finite. Thus x is bounded on Hy,p k.
This completes the proof. a

Corollary 5.1.7. Let ¢ : (0,00) + C be a smooth function. Assume that for every n, the n
derivative ¢™ has rapid decay at infinity and admits an asymptotic power series expansion

near 0.

84



(1) For every n, the Mellin transform Me™ of o™ extends to a meromorphic function to the

whole of complex plane with simple poles in the set of negative integers {0, —1,—2,—-3,--- }.

(2) The meromorphic continuation of the Mellin transform M is of rapid decay along the

vertical strips.

Proof. (1) follows from Proposition[5.1.6l To prove (2), observe that M¢ (s+1) = —sMa(s).
For Re(s) > 0,

(s+1) / ¢ (t)t*dt
=— / s¢(t)t*~Ldt follows from integration by parts)
0
= —sM¢(s).

As M¢ and M@ are meromorphic, it follows that M¢ (s + 1) = —sM@(s). Now a repeated

application of this equation gives

() (s +n
M) i= (-1

s(s+1)---(s+n—1) (5.1.5)

Now let @ < b, K > 0 and r € N be given. Now (3) of Proposition [5.L.6 applied to ¢("), together
with Equation GI5] implies that the function s — s"M¢(s) is bounded on H,p, ir. This proves
(2) and the proof is complete. O

The following proposition shows how to pass from the decay properties of the Mellin trans-

form of a function to the asymptotic expansion property of the function.

Proposition 5.1.8. Let ¢ € M, for some p. Assume that the Mellin transform M¢ is mero-
morphic on the entire complex plane with poles lying in the set of negative integers {0, —1,—2,--- }.
Suppose that the meromorphic continuation of the Mellin transform M ¢ is of rapid decay along
the vertical strips. Then the function ¢ has an asymptotic expansion near 0.

Moreover if a, := Resg—_,M®(s) then ¢(t) ~ > 72 a,t" near 0.

Proof. The proof is a simple application of the inverse Mellin transform. Let M > 0. Then,

by the inversion formula,
M+o00

6(t) = / M (s)t~ds.
M —ioco
Define Fy(s) := Mo(s)t™*. Suppose N € N be given. Let 0 € (—N — 1,—N) be given. For

every A > 0, by Cauchy’s integral formula, we have

M+iA o+iA o—iA M—iA N
/ Fy(s)ds + / Fy(s)ds + / Fy(s)ds + / Fi(s)ds = Z Ress—_, Fi(s).
o o—iA

M—iA M+iA +iA ' e
(5.1.6)
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For a fixed t, F} has rapid decay along the vertical strips. Thus, when A — oo, the second and
fourth integrals in Equation [5.1.6] vanishes and we obtain the following equation

N o+i00
B(t) = apt” = / Mp(s)t*ds. (5.1.7)
r—0 o—100

But M ¢(o +it) has rapid decay in t. Let M, := [*°_|[M¢(o+it)|. Then Equation 5.7 implies
that

N
6(t) = > apt"| < Myt~ < Myt" for t < 1.
r=0
Thus we have shown that for every N, Ry (t) := ¢(t) — ZT],VZO a,t” = O(t") as t — 0 and hence
Ry_1(t) = Ry (t) + ant™ = O(t") as t — 0. This completes the proof. O

5.2 The weak heat kernel expansion

Now, we consider a property of spectral triples which we call the weak heat kernel asymptotic
expansion property. We show that a spectral triple having the weak heat kernel asymptotic
expansion property is regular and has finite simple dimension spectrum lying in the set of

positive integers.

Definition 5.2.1. Let (A, H, D) be a p+ summable spectral triple for a C* algebra A where A
is a dense x subalgebra of A. We say that the spectral triple (A, H, D) has the weak heat kernel
asymptotic expansion property if there exists a * subalgebra B C B(H) such that

(1) the algebra B contains A,

(2) the unbounded derivations § := [|D],.] leaves B invariant. Also the unbounded derivation
d:=[D,.] maps A into B,

(8) the algebra B is invariant under the left multiplication by F where F := sign(D), and

(4) for every b € B, the function T, : (0,00) = C defined by 7,4(t) = tPTr(be ™ P1) has an

asymptotic power series erpansion.

If the algebra A is unital and the representation of .4 on H is unital then (3) can be replaced
by the condition F' € B. The next proposition proves that an odd spectral triple that has the

heat kernel asymptotic expansion property is regular and has simple dimension spectrum.

Proposition 5.2.2. Let (A, H,D) be a p+ summable spectral triple which has the weak heat
kernel asymptotic expansion property. Then the spectral triple (A, H, D) is reqular and has finite

simple dimension spectrum. Moreover the dimension spectrum is contained in {1,2,--- p}.
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Proof. Let B C B(H) be a * algebra for which (1) — (4) of Definition [5.2.1] is satisfied. The
fact that B satisfies (1) and (2) implies that the spectral triple (A, #H, D) is regular. First we
assume that D is invertible. Let b € B be given.

Since |D| ™1 is trace class for g > p, it follows that for every N > p there exists an M > 0
such that Tr(e” 1Pl < Mt=NTr(|D|=N). Now for 1 <t < co and N > p one has

[ Tr(ve” 1P < |Bl|Tr (e~
< |l Mt NTr(IDITY)

Thus the function t — Tr(be P} is of rapid decay near infinity. Now observe that for
Re(s) >0
Tr(b|D|~*) = 1 /OO Tr(be” 1Pt~ at (5.2.8)
I'(s) Jo ' o
By assumption, the function ¢(t) := tpTr(be_t‘D ‘) has an asymptotic power series expansion
near 0. By Equation 528 it follows that M¢(s) = I'(s + p)Tr(b|D|~*"P). Now Proposition
implies that the function s — I'(s)Tr(b|D|™®) is meromorphic with simple poles lying
inside {n € Z: n < p}. As ﬁ is entire and has simple zeros at {k : k < 0}, it follows that the
function s — T'r(b|D|~*) is meromorphic and has simple poles with poles lying in {1,2,--- | p}.
Suppose D is not invertible. Let P denote the projection onto the kernel of D which is
finite dimensional. Let D’ := D + P and b be an element in 8. Now note that

Tr(be~10'l) = Tr(PbP)e™t + Tr(be~!1P)).

Hence the function ¢ — tpTr(be_t‘Dl|) has an asymptotic power series expansion. Thus the
function s — Tr(b|D’|~*) is meromorphic with simple poles lying in {1,2,--- ,p}. Observe that
for Re(s) > 0, Tr(b|D'|~*) = Tr(b|D|~*). Hence the function s — Tr(b|D|~*) is meromorphic
with simple poles lying in {1,2,--- ,p}. This completes the proof. O

Remark 5.2.3. If Tr(be 1P ~ > re_par(b)t" then (3) of Proposition [5.1.6] implies that

T

1
Res.iTr(b|D|™%) = 2 4(b) for 1 < k < p,

Tr(b|D|™%).=0 = ao(b).

Remark 5.2.4. Let (A,H,D) be a spectral triple which has the weak heat kernel asymptotic
expansion property. Then the dimension spectrum X is finite and lies in the set of positive
integers. We call the greatest element in the dimension spectrum as the dimension of the

spectral triple (A, H, D). If 3 is empty, we set the dimension to be 0.

In the next proposition, we show that the usual heat kernel asymptotic expansion implies

the weak heat kernel asymptotic expansion.
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Proposition 5.2.5. Let (A, H, D) be a p+ summable spectral triple for a C* algebra A. Suppose
that B is a x subalgebra of B(H) satisfying (1) — (4) of Definition[5.2.l Assume that for every
b € B, the function o,y : (0,00) = C defined by op(t) = t*Tr(be*P*) has an asymptotic
power series erpansion.

Then for every b € B, the function 7,4 : t tpTr(be_”D') has an asymptotic power series

exTpansion.

Proof. 1t is enough to consider the case where D is invertible. Let b € B be given. Let

1 denotes the Mellin transform of the function t — Tr(be_tQDz) and x denote the Mellin

—t\D\).

transform of the function ¢ — T'r(be Then a simple change of variables shows that

P(s) = F(Z%)Tr(b]D\_s). But then x(s) = I'(s)Tr(b|D|~*). Thus we obtain the equation
2I(s)
X\s) = 5

2

P(s).
But we have following duplication formula([40]) for the gamma function
1
L(s)T(s + 5) = 21725 /7 (25).

Hence one has ) .
X(s) = Z=2T(—=)0()

Now Proposition B.1.6] implies that ¢ has decay of order 0 along the vertical strips and has

simple poles lying inside {n € Z : n < p}. Since the gamma function has rapid decay along the
vertical strips, it follows that y has rapid decay along the vertical strips and has poles lying in
{n € Z : n < p}. If x denotes the Mellin transform of 7, then x(s) = x(s + p). Hence X has
rapid decay along the vertical strips and has poles lying in the set of negative integers. Now
Proposition B.1.8 implies that the map 7,; has an asymptotic power series expansion near 0.

This completes the proof. a

5.3 Stability of the weak heat kernel expansion and the quan-

tum double suspension

Let us recall the definition of the quantum double suspension of a unital C* algebra . The
quantum double suspension is first defined in [22] and our equivalent definition is as in [23].
Let us fix some notations. We denote the left shift on ¢2(N) by S which is defined on the
standard orthonormal basis (e,) as Se, = e,—1 and p denote the projection |ep){eg|. The
number operator on ¢?(N) is denoted by N and defined as Ne, := ne,. We denote the C*
algebra generated by S in B(¢?(N)) by .7 which is the Toeplitz algebra. Note that SS* = 1
and p =1—5*S. Let 0 : 7 — C(T) be the symbol map which sends S to the generating

unitary z. Then one has the following exact sequence

0-K—735%C(T)—o0.
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Definition 5.3.1. Let A be a unital C* algebra. Then the quantum double suspension of A
denoted ¥?(A) is the C* algebra generated by AQp and 1® S in A® 7.

Let A be a unital C* algebra. One has the following exact sequence.
0— A®K(?(N)) = 2%(4) & o(T) — 0.
where p is just the restriction of 1 ® o to X2(A).

Remark 5.3.2. It can be easily shown that X2(C(T)) = C(SU,(2)) and more generally one
can show that $(C(S2"1)) = C(S2"*1). We refer to [22] or Lemma[Z.31 of Chapter 3 for
the proof. Thus the odd dimensional quantum spheres can be obtained from the circle T by

applying the quantum double suspension recursively.

Let A be a dense * subalgebra of a C* algebra A. Define

Sog(A) = span{a® k,1© 5", 1® $*™ : a € Ak € S(*(N)),n,m > 0}

where S((2(N)) := {(amn) : YL+ m+n)Plam,| < oo for every p}.
Then Ezlg(.A) is just the x algebra generated by A ®,, S(¢*(N) and 1® S. Clearly Ezlg(.A)

is a dense subalgebra of ¥.2(A).

Definition 5.3.3. Let (A, H, D) be a spectral triple and denote the sign of the operator D by
F. Then the spectral triple (Eglg(A),”H ®2(N),¥%(D):= ((F®1)(|D|®1+1® N)) is called
the quantum double suspension of the spectral triple (A, H, D).

Remark 5.3.4. Note that the torus equivariant spectral triple on Sg“l is obtained from the

spectral (C>(T), L*(T), %d%) by applying the double suspension recursively.

5.3.1 Stability of the weak heat kernel expansion

We consider the stability of the weak heat kernel expansion under quantum double suspension.

First observe that the following are easily verifiable.

(1) The spectral triple (S(¢£2(N)), £2(N), N) has the weak heat kernel asymptotic expansion

with dimension 0.

(2) Let (A;, Hi, D;) be a spectral triple with the weak heat kernel asymptotic expansion prop-
erty with dimension p; for 1 < i < n. Then the spectral triple (&7, A;, & Hi, D1 D;)

has the weak heat kernel expansion property with dimension p := max{p; : 1 <i < n}.

(3) If (A, H, D) is a spectral triple with the weak heat kernel asymptotic expansion property
and has dimension p then (A, H,|D|) also has the weak heat kernel asymptotic expansion

with dimension p.
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(4) Let (A, H, D) be a spectral triple with the weak heat kernel asymptotic expansion prop-
erty with dimension p. Then the amplification (A ® 1,H ® £2(N),|D|® 1+ 1® N) also

has the asymptotic expansion property with dimension p + 1.

We start by proving the stability of the weak heat kernel expansion under tensoring by

compacts.

Proposition 5.3.5. Let (A,H,D) be a spectral triple with the weak heat kernel asymptotic
expansion property of dimension p. Then (A®qy S(C2(N)), H® (*(N), Dy := (F®1)(|D|®@ 1+

1® N)) also has the weak heat kernel asymptotic expansion property with dimension p.

Proof. Let B C B(H) be a * subalgebra for which (1) — (4) of Definition [£.2.T] are satisfied.
We denote B®g,S(¢?(N)) by By. We show that By satisfies (1) — (4) of Definition 5.2.11 Clearly
(1) holds.

We denote the unbounded derivation [|Dyl,.],[|D|,.] and [N,.] by dp,,dp and dn respec-
tively. By assumption 0p leaves B invariant. Clearly B®,,S(¢?(N)) is contained in the domain
of 6p, and 6p, = dp®@1+1@36x on B4, S(P?(N)). Similarly one can show that the unbounded
derivation [Dy,.] maps A ®q, S(¢*(N)) into By invariant.

As Fy := sign(Dy) = F®1, (3) is clear. Now (4) follows from Lemma[5.1.21and the equality
tPTr((b @ k)e1Pol = tPTr(be=UPN)Tr(ke=tY). This completes the proof. O

Now we consider the stability of the heat kernel asymptotic expansion under the double

suspension.

Proposition 5.3.6. Let (A, H,D) be a spectral triple with the weak heat kernel asymptotic
expansion property of dimension p. Assume that the algebra A is unital and the representation
(A),H ® (*(N),%%(D)) also has the weak heat

kernel asymptotic expansion property with dimension p + 1.

on H is unital. Then the spectral triple (E?ng

Proof. We denote ¥2(D) by Dy. Let B be a x subalgebra of B(#) for which (1) — (4)
of Definition B.2] are satisfied. For f = Y A,z € C®(T), let o(f) = > 50 S" +
Y ns0 A-nS*". We denote the projection # by P. We let By to denote the algel;ra B ®alg
S(#?3(N)) as in Proposition As in Proposition (3.5 we let dp,,dp,dn to denote the
unbounded derivations [| Dy, .],[|D],.] and [N, .] respectively. Define

B:={b+Pxo(f)+(1-P)®0c(g): be By, f,geC>T)}.

Now it is clear that B satisfies (1) of Definition [5.2.11
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We have already shown in Proposition that By is closed under dp, and dy := [Dy,.]
maps A ® S(F?(N)) into By. Now note that

Spo(P@o(f)) =Paalif),

0p((1=P)@a(g)) = (1- P)&alig),
[Do, P& o(f)] = P@alif),

[Do, (1 - P)®0o(g)] = —(1- P) @alig).

Thus it follows that ép, leaves B invariant and dg := [Dy,.] maps $2(A) into B.

Since Fpy := sign(Dgy) = F &1, it follows from definition that Fy € B. Now we show that B
satisfies (4).

We have already shown in Proposition that given b € By, the function 7,4(t) =
tf”Tr(be_“DO') has an asymptotic expansion. Hence the function 7,,;; has an asymptotic

expansion for every b € By. Now note that
Tpersan(®) = ([ HOETHP )T ), (5.8.9)

Teromeetn® = ([ 9OPTH(L= PP Y). (530

We have assumed that A is unital and hence P € B. Hence tPT'r(ze YIP!) has an asymptotic
power series expansion for z € {P,1 — P}. Also tTT(e_tN ) has an asymptotic power series
expansion. From Equation [5.3.9, Equation [5.3.10] and from the earlier observation that 7,11
has an asymptotic power series expansion for b € By, it follows that for every b € B, the function

Tp+1,p has an asymptotic power series expansion. This completes the proof. O

5.3.2 Higson’s differential pair and the heat kernel expansion

Now we discuss some examples of spectral triples which satisfy the weak heat kernel asymptotic
expansion property. In particular we discuss the spectral triple associated to noncommutative
torus and the classical spectral triple associated to a spin manifold. Let us recall Higson’s
notion of a differential pair as defined in [21].

Consider a Hilbert space H and a positive, selfadjoint and an unbounded operator A on H.
We assume that A has compact resolvent. For k € N, let Hj, be the domain of the operator
A% . The vector space Hy is given a Hilbert space structure by identifying Hj with the graph
of the operator A%. Denote the intersection i "k by Hoo. An operator T : Hoo — Hoo is said
to be of analytic order < m where m € Z if T extends to a bounded operator from Hy1,, — Hy,
for every k. We say an operator T on H has analytic order —oo if T" has analytic order less

than —m for every m > 0. The following definition is due to Higson. ( [21])
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Definition 5.3.7. Let A be a positive, unbounded, selfadjoint operator on a Hilbert space H
with compact resolvent. Suppose that D = Upzo D, is a filtered algebra of operators on Heo.
The pair (D, A) is called a differential pair if the following conditions hold.

1. The algebra D is invariant under the derivation T — [A,T].

2. If X € Dy, then [A, X] € Dygy1.

3. If X € Dy, then the analytic order of X < gq.

Now let us recall Higson’s definition of pseudodifferential operators.

Definition 5.3.8. Let (D, A) be a differential pair. We denote the orthogonal projection onto
the kernel of A by P. Then P is of finite rank as A has compact resolvent. Let Ay := A+ P.
Then A1 1is invertible.

A linear operator T' on Hy is called a basic pseudodifferential operator of order < k if for

every £ > 0 there exists m and X € Dy, such that
T=XA? +R

where R has analytic order less than or equal to £.
A finite linear combinations of basic pseudodifferential operators of order < k is called a

pseudodifferential operator of order < k.

We denote the set of pseudodifferential operators of order < 0 by ¥o(D,A). It is proved
in [21] that the pseudodifferential operators of order < 0 is in fact an algebra. We need the
following proposition due to Higson. Denote the derivation T + [A%,T | by 4.

Proposition 5.3.9. Let (D,A) be a differential pair. The derivation 0 leaves the algebra
Uo(D, A) invariant.

Let (D,A) be a differential pair. Assume that A™% is trace class for some r > 0. We say
that the analytic dimension of (D, A) is p if

p:=inf{g>0: A7 s trace class for every r > q}.
Let us make the following definition of the heat kernel expansion for a differential pair.

Definition 5.3.10. Let (D,A) be a differential pair of analytic dimension p. We say that
(D, A) has a heat kernel expansion, if for X € Dy, the function t — tPY"Tr(Xe *2) has an

asymptotic expansion near Q.

Now we show that if (D, A) has the heat kernel expansion then the algebra ¥o(D, A) has

the weak heat kernel expansion.
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Proposition 5.3.11. Let (D, A) be a differential pair of analytic dimension p having the heat
kernel expansion. Denote the operator A3 by |D|. Then for every b € ¥o(D,A), the function

t— tpTr(be_ﬂD') has an asymptotic power series erpansion.

Proof. First observe that if R : Ho — Hoo is an operator of analytic order < —p —n — 1
then R|D|"*! is trace class and hence by Taylor’s series

Tr(Re 1P) = Zn: (_UkT;,(R’D‘k)tk +Oo("th

k=0

for t near 0. Thus it is enough to show the result when b = X Al_%. For an operator T' on Hyo,
let {7 (s) :=Tr(T|D|~*). Then (4(s) := (x(s+m). As in Proposition [5.2.5] one can show that
I'(s)(x(s) has rapid decay along the vertical strips. Now

I'(s)

L(s)C(s) = m

(s +m)(x(s+m).

Hence T'(s)(p(s) has rapid decay along the vertical strips. But I'(s)(p(s) is the Mellin transform
of Tr(bePl). Hence by Proposition F.L8, it follows that t?Tr(be !P) has an asymptotic
power series expansion. This completes the proof. O

We make use of the following proposition to prove that the spectral triple associated to the

NC torus and that of a spin manifold posses the weak heat kernel expansion property.

Proposition 5.3.12. Let (A, H, D) be a finitely summable spectral triple and A := D?. Sup-
pose that there exists an algebra of operators D := Upzo D, such that (D,A) is a differential
pair of analytic dimension p. Assume that (D, A) satisfies the following

1. The algebra Dy contains A and [D, Al.
2. The differential pair (D, A) has the heat kernel expansion property.
3. The operator D € D;.
Then the spectral triple (A, H, D) has the weak heat kernel asymptotic expansion property.

Proof. Without loss of generality, we can assume that D is invertible. We let B be the
algebra of pseudodifferential operators of order 0 associated to (D, A) . Now Proposition
together with the fact that Dy C B shows that B contains A and [D,.A] and is invariant under
0 :=[|D],.]. Since D € Dy, it follows that F' := DA7= € B. Now (4) of Definition [5.2.1] follows
from Proposition 5311l This completes the proof. O
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5.3.3 Examples

Now we discuss some examples of spectral triples which satisfy the weak heat kernel asymptotic
expansion. We start with the classical example.

Let M be a Riemannian spin manifold and S — M be a spinor bundle. We denote the
Hilbert space of square integrable sections L?*(M,S) by H. We represent C°°(M) on H by
multiplication operators. Let D be the Dirac operator associated with the Levi-Civita con-
nection. Then the triple (C*°(M),H, D) is a spectral triple. Also the operator D? is then
a generalised Laplacian ( [3]). Let D denote the usual algebra of differential operators on S.
Then (D, A) is a differential pair. Moreover Proposition 2.4.6 in [3] implies that (D, A) has the
heat kernel expansion. Also D € D;. Now Proposition implies that the spectral triple
(C*®(M),H, D) has the weak heat kernel asymptotic expansion.

The spectral triple associated to the NC torus

Let us recall the definition of the noncommutative torus which we abbreviate as NC torus.
Throughout we assume that 6 € [0, 27).

Definition 5.3.13. The C* algebra Ay is defined as the universal C* algebra generated by two

unitaries u and v such that uv = e“vu.

Define the operators U and V on ¢?(Z?) as follows:

Uem,n = €m+1,n,

inf

. —in
Venn =e em,n+1,

where {em.n} denotes the standard orthonormal basis on ¢2(Z?). Then it is well known that
u — U and v — V gives a faithful representation of the C* algebra Ay.

Consider the positive selfadjoint operator A on H := ¢?(Z?) defined on the orthonormal
basis {em.n} by A(emn) = (m? + n?)emn. For a polynomial P = p(m,n), define the operator
Tp on Heo by Tr(emyn) := p(m,n)emn. The group Z? acts on the algebra of polynomials as
follows. For x := (a,b) € Z? and P := p(m,n), define z.P := p(m — a,n — b). We denote (1,0)
by e; and (0,1) by es.

Note that if P is a polynomial of degree < k, then TpA_g is bounded on Ker(A)*. Thus
it follows that if P is a polynomial of degree < k then T has analytic order < k.

Also note that

(m+1)%2+ n2)%

(m? + nz)%

E =k
ATUAP? emp = em+1,n if (m,n) # 0.

Thus it follows that U is of analytic order < 0. Similary one can show that V is of analytic
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order < 0. Now note the following commutation relationship

UTp : =T, pU, (5.3.11)
VIp: =T, pV. (5.3.12)

Thus it follows that [A, U*VP] = ToU*V? for some degree 1 polynomial Q.
Let us define D, := span{Tp, ,UV? : deg(Pap) < k} and let D := U, Dp. The above

observations can be rephrased into the following proposition.
Proposition 5.3.14. The pair (D, A) is a differential pair of analytic dimension 2.

Now we show that the differential pair (D, A) has the heat kernel expansion.
Proposition 5.3.15. The differential pair (D,A) has the heat kernel expansion property.

Proof. Let X € D, be given. It is enough to consider the case when X := TpU*VP. First
note that Tr(Xe™**) = 0 unless (o, 3) = 0. Now let X := Tp. Again it is enough to consider

the case when P is a monomial. Let P = p(m,n) = m*1n*2. Now
Ty Tpe—tA Z mkl e—tm E nkg e—tn
meEZL nez

Now the asymptotic expansion follows from applying Proposition 2.4.6 in [3] to the standard

Laplacian on the circle. This completes the proof. a
Let Ay be the * algebra generated by U and V. We consider the direct sum representation of
0 Tr—i A0
Ag on HHH. Define D := "7 Then D is selfadjoint on HGH and D? = .
m+in 0 A

It is well known that (Ag, H @ H, D) is a 2+ summable spectral triple.

Proposition 5.3.16. The spectral triple (Ag, H @& H, D) has the weak heat kernel asymptotic
expansion property.

Proof. Let (D,A) be the differential pair considered in Proposition [£.3.14] Then the
amplification (D' := My(D), D?) is a differential pair. Note that D € D). Clearly Ay C D,.

Note the commutation relations

[Tm:l:iny U] - U,
[Tintin, V] = £iV.

This implies that [D, Ag] C Dy. Since (D,A) has the heat kernel expansion, it follows
that the differential pair (My(D), D?) also has the heat kernel expansion. Now Proposition
implies that the spectral triple (Ag, H @ H, D) has the weak heat kernel expansion. This
completes the proof. O

But to deduce that the spectral triple (A(SgéJrl),Hg,Dg) satisfies the weak heat kernel
asymptotic expansion, we need a topological version of Definition 5.2.1] and Proposition

We do this in the next section.
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5.4 Smooth subalgebras and the weak heat kernel asymptotic

expansion

First we recall the definition of smooth subalgebras of C* algebras. For an algebra A (possibly
non-unital), we denote the algebra obtained by adjoining a unit to A by A*.

Definition 5.4.1. Let A be a unital C* algebra. A dense unital * subalgebra A% is called a
smooth subalgebra of A if

1. The algebra A is a Fréchet * algebra.
2. The unital inclusion A C A is continuous.

3. The algebra A is spectrally invariant in A i.e. if an element a € A% is invertible in A
then a=' € A>.

Suppose A is a non-unital C* algebra. A dense Fréchet x subalgebra A% is said to be smooth
in A if (A>)T is smooth in AT.

We also assume that our smooth subalgebras satisfy the condition that if A C A is
smooth then A®®,S(F2(NF)) c A ® KC(¢?(NF)) is smooth. Here &, denotes the projective
tensor product.

Let A be a unital C* algebra and A be a smooth unital x subalgebra of A. Assume that
the topology on A is given by a countable family of seminorms (|| - ||,). Let us denote the

operator 1 ® S by «. Define the smooth quantum double suspension of A as follows

Egrn,ooth(‘/éloo) = Z a*j(ajk b2y p)ak + Z )\kak + Z )‘—ka*k Dok € AOO7
7,keN k>0 k>0

Z(l + 7+ E)"|lajrllp < oo, (Ag) is rapidly decreasing »(5.4.13)
4.k

2
smooth

a = Z a*j(ajk ® p)ak + Z e + Z A gk

j,keN k>0 k>0

(A>), define ||alnp by

lallnp =Y (L4 Ll + 1ED" llagilly + > (1 + [K)"|Axl:

4,kEN keZ

Now let us topologize X (A>) by defining a seminorm || ||, for every n,p > 0. For an

element

: 2
m 2smooth

It is easily verifiable that

1. The subspace X2 (A%) is a dense * subalgebra of ¥2(A).

smooth
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2
smooth

(A) a

(A>) induced by the seminorms (|| ||, ) makes ¥2

2. The topology on %
Fréchet x algebra.

3. The unital inclusion ¥2 . (A>) C £?(A) is continuous.

The next proposition proves that the Fréchet algebra X2 (A>) is in fact smooth in ¥2(A).

smooth

Proposition 5.4.2. Let A be a unital C* algebra and let A C A be a unital smooth subalgebra
such that A&, S(2(NF)) ¢ A ® K((?(NF)) is smooth for every k € N. Then the algebra
2 (AR S(F2(NF)) is smooth in $2(A) @ K(¢2(N¥)) for every k > 0.

Proof. Let us denote the restriction of 1® o to X2(A) by p. Recall the o : 7 — C(T) is the
symbol map sending S to the generating unitary. Then one has the following exact sequence
at the C* algebra level

0— A®K(*(N)) - 22(4) 5 o(T) — 0.
At the subalgebra level one has the following “sub” exact sequence
0 — A®@,S(AN)) — %2 (A®) B C>(T) — 0.

Since AX®,S(F2(N)) C A® K(£?(N)) and C=(T) c C(T) are smooth, it follows from Lemma
AT A that ¥2 (A>) is smooth in ¥2(A). Similarly one can show along the same lines first by

smooth

tensoring the C* algebra exact sequence by K(¢?(N¥)) and then by tensoring the Fréchet algebra
exact sequence by S(¢2(N¥)) that ¥2 . (A®)®.S(¢?(N¥)) is smooth in ¥2(A) ® K(£%(N*))
for every k£ > 0. This completes the proof. O

5.4.1 The topological weak heat kernel expansion

We need the following version of the weak heat kernel expansion.

Definition 5.4.3. Let (A, H, D) be a p+ summable spectral triple for a C* algebra A where
A is smooth in A. We say that the spectral triple (A, H, D) has the topological weak heat
kernel asymptotic expansion property if there exists a * subalgebra B> C B(H) such that

(1) The algebra B> has a Fréchet space structure and endowed with it it is a Fréchet x

algebra,
(2) The algebra B> contains A,
(3) The inclusion B> C B(H) is continuous,
(4) The unbounded derivations § := [|D|,.] leaves B invariant and is continuous. Also the

unbounded derivation d := [D,.] maps A into B> in a continuous fashion,
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(5) The left multiplication by the operator F' := sign(D) denoted L leaves B> invariant and

s continuous, and

(6) The function 7, : (0,00) x B® — C defined by 1,(t,b) = tPTr(be""Pl) has a uniform

asymptotic power series erpansion.

We need an analog of Proposition (.3.5] and Proposition £.3.61 First we need the following

two lemmas.

Lemma 5.4.4. Let E be a Fréchet space and F C E be a dense subspace. Let ¢ : (0,00) X E —
C be a continuous function which is linear in the second variable. Suppose that ¢ : (0,00) x F' —
C has a uniform asymptotic power series expansion then ¢ : (0,00) x E — C has a uniform

asymptotic power Series erpansion.

Proof. Suppose that ¢(t, f) ~ > 2 a,(f)t". Then a, : F — C is linear and is continuous
for every r € N. Since F' is dense in F, for every r € N, the function a, admits a continuous
extension to the whole of ' which we still denote by a,. Now fix N € N. Then there exists a
neighbourhood U of E containing 0 and €, M > 0 such that

N
6(t, /) =D ar (/)] < MV for0<t<e, feUNF. (5.4.14)
r=0

Since ¢(t,.) and a,(.) are continuous and as F is dense in F, Equation [5.Z.14] continues to hold

for every f € U. This completes the proof. a

Lemma 5.4.5. Let Ey, E5 be Fréchet spaces and let F; : (0,00) X E; — C be continuous and
linear in the second variable for i = 1,2. Consider the function F : (0,00) X E1®@,Ey — C
defined by F(t,e1 ® e2) = Fi(t,e1)F(t,es). Assume that F is continuous. If Fy and Fy has

uniform asymptotic expansions then F has a uniform asymptotic power series erpansion.

Proof. By Lemmal[5.4.4] it is enough to show that F' : (0,00) X E{ ®g1q 2 — C has a uniform
asymptotic power series expansion. Let 6 : By x Ey — Ej ®q4 Eo be defined by 6(e1,e2) =
e1 ® eg. Consider the map G : (0,00) x Ey x Ey — C defined by G(t,e1,e3) := F(t,60((e1,€2))).

By Lemma [5.1.2] it follows that G has a uniform asymptotic power series expansion say
o0
G(t,e) ~ Z ar(e)t".
r=0

The maps a, : E; x E5 — C are continuous bilinear. We let @, : E1®,Fy — C be the linear
maps such that @, o := a,. Let N € N be given. Then there exists ¢, M > 0 and open sets
U1, Us containing 0 in E7, F5 such that

N

|G(t,e) — Zar(e)tr\ < MtV for 0 <t < ee € Uy x Uy. (5.4.15)
r=0
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Without loss of generality, we can assume that U; := {z € E; : p;(x) < 1} for a seminorm p;
of E;. Now Equation (5.4.15]) implies that

N
[F(t,0(e)) = > ar(0(e)t"| < MtVH! for 0 <t <ee €Uy x Un. (5.4.16)
r=0
Hence for t € (0,¢) and x € §(Uy x Us),
N
|F(tx) =) ar(x)t"| < MtV (5.4.17)
r=0

Since @, is linear and F' is linear in the second variable, it follows that Equation [5.4.17] continues
to hold for = in the convex hull of 8(U; x Us) which is nothing but the unit ball determined by
the seminorm p; ® pg in By ®qy F2. This completes the proof. O

In the next proposition, we consider the stability of the weak heat kernel asymptotic ex-

pansion property for tensoring by smooth compacts.

Proposition 5.4.6. Let (A, H,D) be a spectral triple where the algebra A> is a smooth
subalgebra of C* algebra. Assume that (A, H, D) has the topological weak heat kernel expan-
sion property with dimension p. Then the spectral triple (A*®,S((*(N)),H ® (2(N), Dy =
(F1)(|D|®1+1® N)) also has the weak heat kernel asymptotic expansion property with

dimension p where F := sign(D).

Proof. Let B> C B(H) be a % subalgebra for which (1) — (6) of Definition [5.4.3] are satisfied.
We denote B*®,S(¢?(N)) by Bg°. We show that B5° satisfies (1) — (6) of Definition .43 First
note that the natural representation of B5° in H ® ¢?(N) is injective. Thus (3) is clear. Also
(1) and (2) are obvious. Let us now prove (4).

We denote the unbounded derivation [|Dyl,.],[|D|,.] and [N,.] by dp,,dp and dn respec-
tively. By assumption dp leaves B invariant and is continuous. It is also easy to see that
on leaves S(¢2(N)) invariant and is continuous. Let § := 0p ® 1 + 1 ® dy. Then § :
B — B is continuous. Clearly B>® ®g4, S(¢*(N)) is contained in the domain of § and
§ =0 on B® @4, S(3(N)). Now let a € BF® be given. Then there exists a sequence (a,) in
B> @, S(f3(N)) such that (a,) converges to a in Bg°. Since ¢ is continuous on B§° and the
inclusion B3° C B(H) is continuous, it follows that dp,(a,) = & (a,) converges to § (a). As dp,
is a closed derivation, it follows that a € Dom(dp,) and dp,(a) = & (a). Hence we have shown
that dp, leaves B3° invariant and is continuous. Similarly one can show that the unbounded
derivation dy := [Dy,.] maps A®,S(¢%(N)) into B5° invariant in a continuous manner.

As Fy := sign(Dp) = F ® 1, (5) is clear. Consider the function 7, : (0,00) x Bg® — C
defined by 7,(t,b) := tPTr(be1Pol). Then 7,(t,b® k) = 1,(t,b)70(t, k). Hence by Lemma [5.4.5]
it follows that 7, has a uniform asymptotic power series expansion. This completes the proof.
(]
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Now we consider the stability of the weak heat kernel asymptotic expansion under the

double suspension.

Proposition 5.4.7. Let (A, H, D) be a spectral triple with the topological weak heat kernel
asymptotic expansion property of dimension p. Assume that the algebra A is unital and the
A%), H®(*(N),2*(D))

also has the topological weak heat kernel asymptotic expansion property with dimension p + 1.

representation of A% on H is unital. Then the spectral triple (% smooth(

Proof. We denote the operator ¥2(D) by Dy. Let B™® be a * subalgebra of B(H) for
which (1) — (6) of Definition £.4.3] are satisfied. For f = Y _, A,2" € C(T), let o(f) :=
Yons0 S + D50 A—nS™". We denote the projection # by P. We assume here that
P 72 +1 as the case P = +1 is similar. We let B to denote the algebra B*&,S(¢*(N))
as in Proposition As in Proposition (.46 we let dp,,dp,dn to denote the unbounded
derivations [|Dyl,.],[|D],.] and [N,.] respectively. Define

B :={b+Pxo(f)+(1-P)®0c(g): be BF, f gec C®T)}.

Then B is isomorphic to the direct sum B§e @ C>(T)@®C>®(T). We give B> the Fréchet space
structure coming from this decomposition. It is easy to see that B> is a Fréchet * subalgebra
of B(H ® (3(N)). Clearly (m ® 1)(X2(A%)) € B>®. Thus we have shown that (1) and (2) of
Definition (.4.3] are satisfied. Since Bg° is represented injectively on H @ ¢2(N), it follows that
B satisfies (3).

We have already shown in Proposition [5.4.6 that Bf° is closed under dp, and is continuous.
Also we have shown that dy := [Dy,.] maps A®,S(¢?(N)) into B§° continuously. Now note
that

dpy(P@o(f)) = P@olif),
Spy((1 = P)® () = (1 - P)®alig),
[Do, P& o(f)] = P@o(if),
[Do, (1= P)@o(g)] = —(1 - P)@o(ig).
Thus it follows that dp, leaves B°° invariant and is continuous. Also, it follows that dg := [Do, .]

maps ¥2(A>) into B in a continuous manner.

Since Fy := sign(Dy) = F ® 1, it follows from definition that Fy € B>. Now we show that
B> satisfies (6).

We have already shown in Proposition [5.4.6] that the function 7, : (0, 00) ® B§® — C defined
by 7p(t,b) := tPTr(be~tP0l) has a uniform asymptotic power series expansion. Hence 7,41

restricted to Bj® has a uniform asymptotic power series expansion. Now note that
ra(Poolf) = / F(0)d0)PTr(Pe=P )Ty (eN), (5.4.18)

i1((1=P)®a(g) = ( / g(0)dO)tPTr((1 — P)e 1PHeTr(e7 ™). (5.4.19)
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We have assumed that A> is unital and hence P € B>®. Thus tPT'r(ze "P!) has an asymptotic
power series expansion for x € {P,1 — P}. Also tTr(e™*N) has an asymptotic power series
expansion. Now Equation [.4.18 and Equation B.4T9], together with the earlier observation
that 7,41 restricted to B3° has a uniform asymptotic power series expansion, imply that the
function 7541 : (0,00) x B>* — C has a uniform asymptotic power series expansion. This

completes the proof. O

Remark 5.4.8. If we start with the canonical spectral triple (C*(T), L*(T), %d%) on the circle
and apply the double suspension recursively one obtains the torus equivariant spectral triple for
the odd dimensional quantum spheres studied in Chapter 3. Now Theorem [5.4.7] implies that
the torus equivariant spectral triple on Sg“l satisfies the weak heat kernel expansion. Also

Theorem [5.4.7, along with Theorem[5.2.2, gives a proof of Proposition [3.4.]

We end this chapter by showing that the equivariant spectral triple considered in Chapter

4 has the topological weak heat kernel expansion.

Proposition 5.4.9. The equivariant spectral triple (C’OO(S(?ZH),’H,Deq) has the topological

weak heat kernel expansion.

Proof. Let J := OPEZOO@%‘X’. Recall the definition of the algebra % considered in Propo-
sition 6.4

#={aP@P+aP@(1—-P)+a3(1-P)@P+a(1-PFP)@(1—-P)+R:
a1, a2,a3,a4 € A?O7R€ j}

The algbera # is isomorphic to A}° © A @ A° @ A° © J. We give & the Fréchet space
structure coming from this decomposition. Proposition d.6.4] and 4.6.5 implies that 4 contains
C“(Sgé“) and is closed under ¢ := [|Deg|,.] and d := [D,.]. Moreover it is shown that ¢ and
d are continuous on #. Note that F,, := F; ® P —1® (1 — P). Hence by definition F, € B.
Now note that the torus equivariant spectral triple (A7, H,, Dy) has the topological weak heat
kernel asymptotic expansion. Thus it is enough to show that the map 75441 : (0,00) x J — C
defined by 7911 (t,b) := t2*T1Tr(be~!IPeal) has uniform asymptotic expansion.

But this follows from the fact that (OPp,*, He, Dy) and (7, ¢%(N), N) have the topological
weak heat kernel expansion and by using Lemma This completes the proof. O

Remark 5.4.10. The method in Chapter 4 can be applied to show that the equivariant spectral
triple on the quantum SU(2) constructed in [5] has the weak heat kernel asymptotic expansion
property with dimension 3 and hence deducing the dimension spectrum computed in [17]. It has
been shown in [6] that the isospectral triple studied in [39] differs from the equivariant one (with
multiplicity 2) constructed in [5] only be a smooth perturbation. As a result it will follow that

(Since the extension B for the equivariant spectral triple satisfying Definition [5.7.3 contains
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the algebra of smoothing operators) the isospectral spectral triple also has the weak heat kernel

expansion with dimension 3.

102



Chapter 6

The K-groups of the quantum
Steifel manifold SU,(n)/SUy(n — 2)

In the final chapter of this thesis, we compute the K —groups of the quantum homogeneous space
SU,4(n)/SUqy(n —2). The K-groups of the quantum group SU,(n) were computed by Nagy in
[27] by using his bivariant K-theory. To construct non-trivial spectral triples on these quantum
homogeneous spaces, an explicit knowledge of the generators is essential. In this chapter,
we compute the K-groups of the space SU,(n)/SU,(n — 2). We make use of the irreducible
representations of the C* algebra C(SU,(n)/SU,(n—2)) obtained in [3I]. We construct certain
exact sequences as in [35]. Then we perform the six term sequence computation to obtain the

K-groups.

6.1 The quantum Steifel manifold S,

First let us recall the definition of the quantum Steifel manifold S;"™ as defined in [31].
Let 1 < m < n — 1. Call the generators of SUy(n) as u;; and that of SU,(n —m) as vy.
The map ¢ : C(SUy(n)) = C(SUy(n —m)) defined by

vy if1<i,j5<n—m,
0;; otherwise

is a surjective unital C* algebra homomorphism such that Ao ¢ = (¢ ® ¢)A. In this way the
quantum group SU,(n —m) is a subgroup of the quantum group SU,(n). The C* algebra of
the quotient SU,(n)/SUy(n —m) is defined as

C(SU4(n)/SUqg(n —m)) :={a € C(SUy(n)) : (¢ ®1)A(a) =1®a}

We refer to [31]] for the proof of the following proposition.
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Proposition 6.1.1. The C* algebra C(SUy(n)/SUy(n —m)) is generated by the last m rows
of the matriz (u;;) i.e. by the set {u;; :n—m+1<i<n}.

In [31], the quotient space SUy(n)/SU,;(n—m) is called the quantum Steifel manifold and is
denoted by S;"™. We will also use the same notation from now on. In Chapter 3, we have used
a different embedding of SU,(n—1) inside SU,(n). We first show that for both the embeddings
the C* algebras of the quotient are isomorphic.

Let o be the permutation on {1,2,--- ,n} defined by o(i) := n—i+ 1. Thus o just reverses
the order. Recall the for a permutation 7 € S,,, £(7) denotes the number of inversed pairs i.e.
the cardinality of the set {(i,7) : i < j,7(i) > 7(j)}. Note that for a permutation 7 € S,,, one
has
n(n—1)

o
n(n—1)
—

Uro) + (1) =

loT)+ (1) =

In this section, we prove that there exists a unique quantum group isomorphism ¢ : C(SU,(n)) —
C(SUy(n)) such that ¢(u;;) = qj_iufr(i)ﬁ(j)
Let us make the following definition which will help to state a few proposition in a neat

fashion.

Definition 6.1.2. Let A be a * algebra. An element v = (u;;) in M, (A) is called a g—matriz

if it satisfies the relation

n n n
Z Z T Z E(Q7i17i27 o Zn)ujlll Ui, = E(q7j17j27' : jn) (612)

i1=112=1 in=1

where

. . 0 if iy,d9,- iy are not distinct,
E(q7117127"'2n) =

(_q)g(i17i27"'7in) else_
Here for a permutation 7, ¢(T) denotes the number of inversed pairs i.e. the cardinality of the
set {(i,7) 11 < j,o(i) > o(j)}-

For a matrix u = (us;) € My,(A), let us denote the matrix (uj;) by @, (uj;) by v and
(Uo(i)o(j)) by u?. We need the following proposition.
Proposition 6.1.3. Let A be a * algebra and v = (u;;) be a g-matriz. Then

1

(1) The matriz @ is a ¢~ -matriz.

1

2) The matriz u° s a ¢ -matrix.
( q

104



(3) The matriz v = (¢’ "u;;) is a g-matriz.

n(n—1)
2

Proof. First note that for a permutation J, E(q,J) = (—q)

g-matrix with entries in A.

E(q Y, Jo). Let u be a

-1 — — — _ —1 * * *
E E(q ) I)uj1i1 WUjgin = " Wjnin — E : E(q ) I)uj1i1 Ujoin " Ui,
I I

= (Z E(q_l7 I)ujninujnflinfl e ujlil)*
1

_q\rn=1) %
= (= )T B¢, I0) Ui, Wi iy i)
I
_ n(n—1)
=(=¢ ") 7 E(g10)

1 n(n271) n(n—1)

(_Q) 2 E(q_17[)’

= (—q

This proves (1). The proof of (2) and (3) are similar. O
We need one more fact. The proof can be found in [38]. We repeat the proof here for our

convenience.

Proposition 6.1.4. Let A be a compact quantum group and let h be its Haar state. Consider a
finite dimensional irreducible representation u of A. Define E := (1&h)(u'u). Then E = u'Fu.
Also the matriz E is positive, invertible and the matriz vV EuVE~! is unitary.

Proof. Let A be the comultiplication on A. Recall the h is a Haar state implies that
(h®1)oA(a) = h(a)l. Now observe that

(h @ 1) (ugr @ uri)(ups @ ug;)

= Z um(z h(ukruzs))UZS
k

t —
U By slg .

<
»

)

Hence E = u'Fa.
Since u is a finite dimensional irreducible representation of A it follows that u! is invertibe

[[43]]. Also u* = 4. Thus u'a is positive and invertibe. Hence u'ti > § for some § > 0 and
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thus F is positive and invertible. Let v := VEuVE-1. Now observe that

w* = VEuE @*VE
=VEWE uW'WE
= VEE (u')""!VE
=VEE"WE
=1

Similarly one can show that v*v = 1. This completes the proof. a.
Now we compute E for the fundamental representation u corresponding to the Young
tableau (1,0,0,---,0) of SU,(¢ + 1). We make use of the notations in Section 4.2 of Chapter
4. Let us denote the Young tableau (0,0,---,0) by 0 itself and there is only one GT-tableau
with 0 as its top row which we again denote by 0. Then the basis vector 68’0 represents the
vector 1 € C(SU,(¢ + 1)) in Lo(SU, (£ +1)). For 1 <i < £+ 1, Define the GT tableau r(¥) as

-
ab 1 otherwise.

0o {0ﬁ1§a§@bz€+2—m
Let r be a GT tableau and M := (mq,ma,--- ,m;). Observe that M(r) = 0 if and only if
r=r® and M = (L+1,0,--- ,£+2—1). Let us now compute the action of u;; on 6870. Note

that

A A
< ﬂ-(u?j)egders > =< 680|7T(uij)ers >
= Z Cy(i,7,m)Cy (4, 5,n)k(r,m) < edolett,, >
m,m,n

= Cl](i7 T, O)Cq (]7 S, 0)’{(7‘7 0)

Thus ﬂ(ufj)ego = Cq(i,r(i),O)Cq(j,r(j),O)n(r(i),O)eru)r(j).
Now we compute Cy(i, r@,0). Let M := (¢ +1,¢,--- ,£+2—1i). We omit the superscript i
from (" and simply denote it by . We use Lemma in Chapter 4. Clearly

sign(M) = (~1)~1,
B(M)=i—1,
C(r,M)=0
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For 1 <a <i—1, one has

{+2—a (+1—a ‘
Tai — T 1+m _ 1
L(I‘,a,ma,ma_H) = H (‘Qa{‘ ' a+1l,mat1 = a+1’ H ‘TQ_H i~ Tamg — 0 —|— Mg, D
i=1 Tai = Tamq — it ma’ Q ’Ta-i-l i~ Tatlmayr — + Mat+1 — 1’)
i#ma 1¢ma+1
_mﬁl@\l— —i+m 1)) mH Q1= 0—i+ma—1))
QUL —0—1i+myg|) QU1 —-0—1i+mge1 —1])
_mﬁl ma,—Z mﬁ2Qma+1—Z—|—1)
Qma—l+1 (ma+1—z)
Q(ma—i-l)
Q(mq)

Now let us compute L’ (ryi,m;).

[ QUriscr; — rim, — J +mi — 1))

L'(r,i,m;) =
Z szjl "QUrig = rigm, =+ mi)
J7F=my
IS QU -0 - +mi - 1)
[ QUL —0— 5 +m)
_ 1
Q(m;)
Thus from 125 we get Cq(i,r(i),O) = (—q)i_lQ(glﬂ). Now we compute the matrix E for

the fundamental representation u of C'(SU,(¢ + 1)).

Proposition 6.1.5. Let u be the fundamental unitary defining the C* algebra C(SU, (£ + 1)).
Let E := (1 ® h)(u'u). Then E is a diagonal matriz. Moreover there exists a constant C
depending only on q such that E; = Cq?.

Proof. By definition
k
_ * 3\ 0 * 0
= Z < 7 (uk;)eoo|m(ug €00 >

= ZCq(/%T(k)70)20q(iyT(i)yo)Cq(jyT(j)yo)ﬁ(r(k)yo)o < k) () € k) () > -
%

Thus E is a diagonal matrix and Fj; := C¢® where C := ¢, Cy(k, 7 0)2k(r*),0)2. This
completes the proof. O

We prove the following theorem which is the main point of this section.
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Theorem 6.1.6. There ezists a unique quantum group isomorphism 6 : C(SUy(n)) — C(SUy(n))
such that 0(ui;) = ¢/ ~"u}\ i1 i1

Proof. Let o be the permutation on {1,2,--- ,n} such that o(i) = n —i. By Propo-
sition [6.1.3] it follows that (qi_jufj) is a ¢ '-matrix. Hence, again by Proposition [G.1.3]
(qg(i)_"(j)u:(i) U(j)) is a ¢ matrix.

It follows from Proposition B6.1.4] that the matrix E:aE7 is a unitary where FE is the
matrix considered in Proposition G.1.5l Thus the matrix (¢~ uj;) is a unitary matrix. Hence
(q"(i)_a(j)u;(i)o(j)) is a unitary ¢ matrix. Thus there exists a C* algebra homomorphism 6 :
C(SUy(n)) — C(SUq(n)) such that §(u;j) = qj_iu;_m_j. Since 2 = 1, it follows that 6 is a

C* algebra isomorphism.

Now we check that 6 is a quantum group homomorphism. For,

Aof(uy) =¢ " Z Uiyl @ Uko(j)

k
=>4 0w © U e
k

Thus we have 6 is a quantum group isomorphism. This completes the proof. O
Let us denote the isomorphism on C'(SU,(n)) by 0". Let ¢ and ¢ be the embeddings of
SUqs(n —m) in SU,(n) defined as follows:

vij f1<4,j<n—-m
i ’ , ) 6.1.3
¢ (uiz) { 6i; otherwise. o
o if 1<i4,j<
iy o [ vemaen AmALS LIS (6.4
5ij otherwise.

Then the following commutative diagram is clear.

C(SU(n)) —2= C(SU(n — m))

07L \L gnfm l

C(SU,(n)) —22 C(SU,(n — m))

Thus the quotient with respect to the embeddings ¢™ and ™ are isomorphic. In this chapter

we consider the embedding ¢™.

6.2 Irreducible representations of C'(S;"™)

In this section, we recall the irreducible representations of the C* algebra C'(Sq"™) as described
in [31]. First we recall the irreducible representations of C'(SUy(n)) as in [37]. The one dimen-

sional representations of C'(SU,(n)) are paramatrised by the torus T"~!. We consider T"! as
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a subset of T" under the inclusion (t1,t9, - tn—1) — (t1,t2, -+ ,tn_1,t,) where t, := H?;ll t;.
For t := (t1,ta, -+ ,t,) € T" 1 let 74 : C(SU,(n)) — C be defined as 7¢(u;j) := t,—i+16;;. Then
74 is a * algebra homomorphism. Moreover the set {r; : t € T"1} forms a complete set of
mutually inequivalent one dimensional representations of C'(SU,(n)).

Let us denote the transposition (i,i + 1) by s;. The map s, : C(SU,(n)) — B(¢£3(N))

defined on the generators u,s as follows

V1I—@N12S  if r=i,s =1,

—gN 1 if r=di,s=i+1,
s, (Urs) 1= gV if r=i+1,s=1,

S /1—@2N+2 if r=i4+1,s=i+1,

Oii otherwise.

is a * algebra homomorphism. For any two representations ¢ and & of C(SUy(n)), let ¢ * £ :=
(p®EA. For w e Sy, let w = s;,8i, -5, be areduced expression. Then the representation

Ty 1= T, * T,

12

ook T, IS an irreducible representation and upto unitary equivalence the
representation 7, is independent of the reduced expression. For t € T ! and w € S, let

Ttw = Tt * . We refer to [37] for the proof of the following theorem.

Theorem 6.2.1. The set {m,, :t € T" 1w € S,} forms a complete set of mutually inequiva-

lent irreducible representations of C(SUy(n)).

In [31] the irreducible representations of C'(Sg""™) were studied and we recall them here. We
embedd T™ into T"~! via the map t = (t1,to, -+ ,tm) — (t1,t2,- -+ ,tm,1,1,--- ,1,¢,) where
t, = HZI t;. For a permutation w € S, let w® be the permutation in the coset S, _w with
the least possible length. We denote the restriction of the representation 7, to the subalgbera

C(Sg"™) by m,, itself. Then we have the following theorem whose proof can be found in [31]

Theorem 6.2.2. The set {m s : t € T w € S, } forms a complete set of mutually inequivalent

irreducible representations of C(Sg"™).

Before we proceed further, let us recall some notations which we have used in the earlier
chapters. Let .7 denote the Toeplitz algebra and o : 7 — C(T) be the symbol map which sends
the generating isometry to the generating unitary. Define € := ev; o o where ev; : C(T) — C is

the evaluation map at ’1’.

6.3 Composition sequences

In this section, we derive certain exact sequences analogous to that of Theorem 4 in [35]. We
then apply the six term sequence in K-theory to compute the K-groups of C(Sg ’2). We begin

with the following lemma.
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Lemma 6.3.1. Let t € T™ and w = Sp_1Sp—2 - Sn—k. Then . ,(C(Sg™)) contains the

algebra of compact operators KC(¢%(NF)).

Proof. Since 7, ,(C(Sq™)) = 7,(C(Sg™™)), it is enough to show that KC(¢2(N¥)) C 7, (C(Sg™
We prove this result by induction on n. Since m,(unn) = S*v/1 — ¢2N+2 ® 1, it follows that
S®1 € m,(C(Sq™). Hence K(F2(N))®1 C 7, (C(Sg"™). Thus the result is true if n = 2. Next
observe that for 1 <i<n—1, (p® 1), (upn;) := p@ 7, (Vy—1,) Where W = Sp_95n-3 " Sn_k
and (v;;) denotes the generators of C(SUy(n — 1)). Hence 7, (C(Sg"™)) contains the alge-
bra p @ 7 (C(S§~""™)). Now by induction hypothesis, it follows that 7, (C(S5"™)) contains
p@K(2(NF-1)). Since 7, (C(Sq"™)) contains K(¢2(N)) @1 and p® K(£2(NF~1)), it follows that
7w(C(Sg"™)) contains the algebra of compact operators. This completes the proof. 0

Let w be a word on s1, S92, - - S, say W := S;, S;, - - - 4, (not necessarily a reduced expression).
Define v, := sy, * Mgy %0 T, and for t € T, let 4y, := 74 * 1), Observe that the image of
Yt 1s contained in 7. We prove that if w' is a ’subword’ of w then ¢t,w’ factors through

Tpt,w-

Proposition 6.3.2. Let w = wyspwo be a word on s1, S, -+ S,. Denote the word wiws by w'.
Let t € T™ be given. Then there exists a * homomorphism € : Yy, (C(Sq"™)) = ¥, ., (C(Sg™™))
such that v, ,» = €0 Pt 4.

Proof. For a word w on s1, 82, , Sp, let £(u) denote it’s length. Then 1 ,,(C(Sq"™)) is
contained in 7@/ @ 7 @ F7®Uw2) Let € denote the restriction of 1®e® 1 to ¥y, (C(Sg™))
where 0 : .7 — C is the homomorphism for which €(5) = 1.

Yt (Urs) = Z Yty (Urj;) @ Ty (W1 jn) @ Yy (Ugs)-

J1,J2

Since €(7s, (Uj,4,)) = 0j, 4., it follows that

€0 wt,w(urs) = Z wt,wl (ur’j) & 7/}1112 (ujs) = ¢t7w’ (UT’S)’
J

This completes the proof. a
Let w be a word on s1,89,+--8,. Thenforn—m+1<i<nand 1 < j < n, the map
n,m

T™ : t = pw(uiy) € T ®Lw) is continuous. Thus we get a homomorphism Y, : C(Sy") —
C(T™) @ T2 such that x.,(a)(t) = Y (a) for all a € C(Sy™).

Remark 6.3.3. Clearly for a word w on s1, s2,--- s, the representations 1y ,, factors through
Yw. One can also prove as in lemma 632 that if w is a ‘subword’ of w then X, factors

through X -

Let us introduce some notations. Denote the permutation sjs;j_1---s; by wj; for j > 4. If

j>itwelet wj; =1 For 1 <k <, let wy := Wp—m 1Wn—m+1,1" " Wn—1n—k+1-

110

))-



Theorem 6.3.4. The homomorphism X, : C(Sy"™) — C(T™) @ T2 s faithful.

Proof. If wy € S, then w{( the representative in S,,_,,wp with the shortest length) is a
‘subword’ of wy,. Hence by remark every irreducible representation of C(S;"™) factors
through x.,,. Thus it follows that ¥, is faithful. This completes the proof. O

For 1 < k < n, Let C(Sp™") := xu, (C(S™)). Then C(S7™%) c C(Sp™) @ gek-1),
For 2 < k < n, let 0}, denote the restriction of (1 ® 19*=2) @ ¢) to C(S7"™"). Then the image
of o is C(Sq ’m’k_l). We determine the kernel of o4 in the next proposition. We need the

following two lemmas.

Lemma 6.3.5. The algebra Xwnfl’nfk(C(Sg’l)) contains C*(t1) ® K(£2(NF)) which is isomor-
phic to C(T) @ K(£2(NF)).

Proof. Note that xw,_,, ,(Unn) = t1 ® S*\/l—qw ® 1. Hence it follows that the
operator 1 ® /1 — @2V 2® 1 = Xwn 1.0 (Unntnn) lies in the algebra X%il’nik(C(Sg’l)). As
Jl—qﬁJr2 is invertible, one has t; ® S*®1 € Xwnfl’nfk(C(SZ;’l)). Thus the projection 1@p®1
is in the algebra C’(S;L’l’kﬂ). Now observe that for 1 < s <n — 1, one has

(1 P& ]‘)Xwnfl,nfk(uns) = ®p® anfz,nfk(vn—lﬁ) (6’3’5)

where (v;;) are the generators of C(SUy(n —1)). If n = 2 then k£ = 1 and what we have shown
is that C(S2"?) contains t; ® S* and t; ® p. Hence one has C*(t1) ® K is contained in the
algebra C(S21?).

Now we can complete the proof by induction on n. Equation shows that C*(t1) @ p®
K&(# =1 is contained in the algebra C(S5**1) and we also have t; ® S* ® 1 € C(SiHF ),
Hence it follows that C*(t1) ® K®F is contained in the algebra C(Si"*™™). This completes the
proof. O

Lemma 6.3.6. Given 1 < s < n, there exists compact operators xs,ys such that

xsﬂ'wnan—k(Ujg)ys = 5]5(]) X P R X® p)
where p :=1— S*S.
Proof. Let 1 < s < n be given. Note that the operator wy,_1 ,—k(uss) = 21 ® 22 @ - - 25,

where z; € {1,y/1 — ¢®?N125,5*\/1 — ¢®?N+2}. Define x;,y; as follows

P if z =1,
T = P if 2z =+/1—¢2N+25,
(1—q2)_%p5 if z; =8%/1—¢2N+2,

D if z;=1,

yii= { (1—g2)728%p if 2 =1/T— g2,
P if 2;=8*/1—¢?N+2,



Then z;z;y; =pfor 1 <i<k. Now let 25 := 21 Q2o ® -+ - a1 and ys := y1 @ yo ® - - yr. Then

xszn,Ln,k(uss) =pRp®---@p. Let j # s be given. Then x,,_,,_, (ujs) = a1 ®@a2®@---Ray
ktimes

where a; € {1,1/1 — ¢2N+28, 8% /1 — @2N+2 —¢N+1 N1 Since j # s, there exists an 4 such

that a; € {¢V, —¢"V*1}. Let r be the largest integer for which a, € {¢"V, —¢¥*!}. Then z, # 1.

Hence z,a,y, = 0. Thus ﬂstwn,1,7l,k(Ujs)ys = 0. This completes the proof. O

Proposition 6.3.7. Let 2 < k < n. Then C’(Sg’m’l) ® K(2(N)2ED s contained in
the algebra C(Sp"™"). Moreover the kernel of the homomorphism oy, is ezactly C(Si™) @
K(2(N))®* =1 Thus we have the exact sequence

0 — C(Spm™h) @ KEW=1 — ¢(spmk) 25 o (SpmEt) — 0.
q q q

Proof. First we prove that C(S2"™") @ K®*~1 is contained in the algebra C(Sp"™"). For
a€ C’(Sg’l) one has xw, (@) == 1 ® Xw,_; ,_ss, (@), it follows from lemma that C’(Sg’m’k)
contains 1 ®@ K(£2(NF~1)). Let n —m +1 <r <mand 1 < s < n be given. Then note that

n
Xwg, (urs) = Z Xwi (ur’j) O w1k (ujs)'
j=1

Hence by lemma [6.3.6], there exists x,ys € C’(S;L’m’k) such that xsXw, (Urs)Ys = Xuw, (Urs) @
p®F=1) where p?* =1 .= pRp®- - -®p. Thus we have shown that C(Sg’m’k) contains 1@K®K*-1)
and C(SI™) @ p®*=1)_ Hence C(SI™F) contains C(S5™") @ KOK-1),

Clearly oy vanishes on C(Sy ’m’l) ® K®*=1)_ Let 7 be an irreducible representation of
C(S5"™*) which vanishes on the ideal C(S;"™ )@ K®* =1, Then woy,, is an irreducible repre-
sentation of C(Sg"™). Hence mox,,, = . for some w of the form wy_m iy Wn—m+1,is * * * Wn—1,ip_m
and t € T™. Since 7 o Xw, (Unn—k+1) = 0, it follows that m ,(wp n—k+1) = 0. But one has
T w(Unn—k+1) = tn(1 @ Tw, 4, (Unn—k+1)). Hence in_, >n —k+ 1. In other words w is
a subword of wy_1. Thus 7o x,, factors through x., ,. In other words there exists a repre-
sentation p of C(Sg’m’k_l) such that 70 xw, = PO Xw,_,- SINCE Xy, = Ok © Xuwy, it follows
that m = p o oy Thus we have shown that every irreducible representation of C(Sg mk) which
vanishes on the ideal C(Sg ’m’l) @ K®k=1) factors through 0. Hence the kernel of o, is exactly

the ideal C(S5"™") @ K®*=1_ This completes the proof. O
We apply the six term exact sequence in K-theory to the exact sequence in proposition [6.3.7]

to compute the K-groups of C(Sy ’2’k) for 1 <k < n. In the next section we briefly recall the

product operation in K-theory.

112



6.4 The operation P

Let A and B be C* algebras. (All the C* algebras that we consider are nuclear. Thus no

problem arises with the tensor product.) We have the following product maps.

Ko(A) ® Ko(B) — Ko(A® B),
Ki(A) ® Ko(B) (A® B)
Ky(A) ® K1(B) (A® B)
K1 (A) ® K1(B) — Ko(A® B).

— K

9

—>K1

9

The first map is defined as [p] ® [¢] — [p ® ¢]. The second one is defined as [u] @ [p] —
[u®@p+1—1®p]. The third map is defined in the same manner and the fourth one is defined
using Bott periodicity and using the first product. In fact we have the following formula for
the last product. We refer to the appendix of [11].
Let h: T2 — P(C) := {p € Proj(Ms(C) : trace(p) = 1} be a degree one map. Then given
unitaries u € My,(A) and v € M,(B) the product [u] ® [v] is given by [h(u,v)] — [eg] where
1 0

ey = 0 0 € My(Mpy(A® B)) and h(u,v) is the matrix with entries h;j(u ® 1,1 ® v).

We denote the image of [x] ® [y] by [z] ® [y] itself. Now let A be a unital commutative C*
algebra. Then the multiplication m : A® A — A is a C* algebra homomorphism. Hence we
get a map at the K-theory level from K;(A) ® K1(A) — Ko(A).

Suppose U and V are two commuting unitaries in a C* algebra B. Let A := C*(U,V).

Then A is commutative. Define
P(U,V) = Ko(m)([U] ® [V])

which is an element in Ky(A) which we can think of as an element in Ky(B) by composing with
the inclusion map. From the formula that we just recalled from [I1] the following properties

are clear

1. If U and V are commuting unitaries in A and p is a rank one projection in K we have
PU®p+1-1®p,Vep+1-1®p):=PUV)2)p

2. If U and V are commuting unitaries and p is a projection that commutes with U and V'
then P(U,Vp+1—p)=PUp+1—p,Vp+1—p).

3. If ¢ : A — B is a unital homomorphism and if U and V are commuting unitaries in A

then Ko(¢)(P(U,V)) = P(¢(U), p(V))-

4. If U is a unitary in A then P(U,U) = 0. For P;(C) is simply connected, it follows that the
matrix h(U, U) is path connected to a rank one projection in My(C). Hence P(U,U) = 0.
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We need the following lemma in the six term computation. Let z; ® 1 and 1 ® 25 be the
generating unitaries of C(T) ® C(T). Then Ko(C(T?)) is isomorphic to Z? and is generated by
1,P(z1 ®1,1® 23).

Lemma 6.4.1. Consider the exact sequence
0 —CToeoKk—CTeT —C(T)eC(T) —0

and the sixz term sequence in K theory.

Ko(C(T) ® K) Ko(C(T) ® T) — Ko(C(T) © O(T)) .

d |

K1(C(T) @ C(T)) =— K1 (C(T) ® 7) K1(C(T) @ K)

Then the subgroup generated by §(P(z1 ® 1,1 ® 29)) coincides with the group generated by
21®@p+1—1®p which is K1(C(T) ® K) = Z.

Proof. The Toeplitz map o : 7 — C(T) induces isomorphism at the Ky level. Thus by
Kunneth theorem, it follows that the image of Ky(1® o) is Ko(C(T)) ® Ko(C(T)) which is the
subgroup generated by [1]. Now the inclusion 0 — K — 7 induces the zero map at the K|
level and hence again by Kunneth theorem the inclusion 0 — C(T) ® K — C(T) ® 7 induces
zero map at the K level. Hence the image of § is K;(C(T) ® .77). This completes the proof.

Corollary 6.4.2. Let
0—I-—4-25B-—0

be a short exact sequence of C* algebras. Consider the siz term sequence in K theory.

Ko(I) —— Ko(A) 29 1y (B) .

d |

K1(B) mKl(A) ~— Ki(I)

Suppose that U and V are two commuting unitaries in B such that there exists a unitary X
and an isometry Y such that ¢(X) =U and ¢(Y) =V . Also assume that X and Y commute.
Then the subgroup generated by 6(P(U,V')) coincides with the subgroup generated by the unitary
X(1-YY*)+YY* in Ki(I).

Proof. Since C(T) is the universal C* algebra generated by a unitary and .7 is the universal
C* algebra generated by an isometry, there exists homomorphisms ¢ : C(T) ® . — A and
U : C(T) ® C(T) — B such that

P(z1®1) := X,
P(1®S*):=Y,
U(zy®1):=U,
U(1®z):=V.



Hence we have the following commutative diagram

0—CMTeKk—CT) e —C(T)®C(T)—0.

I oo,

0 1 A B 0

Now by the functoriality of § and P, it follows that 6(P(U,V)) = K1(®)(0(P(z1 ® 1,1 ® 22))).
Hence by lemma [6.4.1] it follows that the subgroup generated by 6(P(U,V)) is the subgroup
generated by ®(z1 @p+1—1®p) in K1(I). Note that ®(z; @p+1—1®p) = X(1-YY*)+YY™
This completes the proof. 0.

6.5 K-groups of C(S;"*") for k <n

In this section, we compute the K —groups of 0(52;72”“) for 1 < k < n by applying the six

term sequence in K —theory to the exact sequence in 6.3.7 Let us fix some notations. If ¢ is
a projection in ¢2(N) then ¢, denotes the projection ¢ ® ¢ ® --- ¢ in £2(N"). Let us define the
—_——

r times
unitaries Uy, Vi, ug, vi. as follows.

U= t1®1,2@0pp1+1-1® 1,9 ® pr—_1,
Vii= t0@pn—0o®lp1+1—-10p_—2®1;_1,
Up = 11 Opn12@pr—1+1—-1p,—2& pi_1,
V= 2Q®pp2@®pr-1+1—-1Qpp_2®@pg_1.

First let us note that the operators Uy, Vi, ug, vi lies in the algebra C’(S;L’Zk). For,

Up = 1{1} (un,n—k—klu;,n_jﬁ_l)un,n—k—i—l +1-— 1{1}(“"’”—k+1u2,n—k+1)7

Vi= Lay(un-11up_g1)un—11+ 1= 1y (up—11u5_q 1),

U = 1{1} (un,n—k—i-lu;,n_lﬂ_lUn—l,lu;kz—171)un,n—k+1 +1- 1{1}(un,n_lﬁ.lu;n_k_i_lun_l,lu;_l’l),
vy =l (un7n—k+1u;7n_k;+1un—l,luz_Ll)un—l,l +1—-1my (un7n—k+1u;7n_k+1un_Llu;{L_Ll).

Note that the unitaries Uy, uy,, v, lies in the algebra C'(Sy 2") We start with the computation
of the K groups of C(Sp">").

Lemma 6.5.1. The K-groups Ko(C(Sy*")) and K1(C(Si*")) are both isomorphic to Z2. In
fact, [U1] and [Vi] form a Z basis for K1(C(Si"*")) and [1] and P(uy,v1) form a Z basis for
Ko(C(55™).

Proof. First note that C’(S;L’Zl) is generated by t; ® 1, 2 and t2 ® 7y, _,, (un—1,7) Where
1 <j <n-—1 Butthe C* algebra generated by {to ® 7w, ,,(un-14): 1 <j <n—1}is
isomorphic to C'(S2"~3). Hence C(Si*1) is isomorphic to C(T)®@C(S2"?). Also Ko(C(S2"?)
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and K1(C(S2"~3)) are both isomorphic to Z with [1] generating Ko(C(Sz"~?)) and [t2 @ pp—2+
1 — 1 ® pn—2] generating K1 (C/(S2"73)).

Now by the Kunneth theorem for tensor product of C* algebras(See [4]), it follows that
C(Si*") has both K, and K isomorphic to Z2 with [U;] and [V;] generating K, (C(S5*")) and

[1] and P(t; @ Ly_g,ta @pn_g+1—1&pp_2) generating Ko(C(Si*1)). Note that the projection

1®pn—2 = 11y (Xwn—24 (un_Llu,’;_Ll)) isin C’(S;L’2’1) and commutes with the unitaries t; ®1,,_»

and to @ pp_o+ 1 —1® p,_o. Hence
Pt1 ®@1p—2,t2 @ pn—2+1—1&py_2) = P(ui,v1).
This completes the proof. O

Proposition 6.5.2. Let 1 < k < n be given. Then the K-groups KO(C(S;L’2’k)) and Kl(C’(SZ;’z’k))
are both isomorphic to Z2. In particular, [Uy] and [V}] form a Z basis for Kl(C’(Sg’z’k)) and
[1] and P(ug,vi) form a Z basis for KO(C(S;L’Z]C)).

Proof. We prove this result by induction on k. The case k = 1 is just lemma [6.5.71 Now

assume the result to be true for k. From proposition [6.3.7]1 we have the short exact sequence
0 — C(SP3) @ KH) — C(Sm2H+1) 74 o523k — 0
which gives rise to the following six term sequence in K-theory.

n n Ko(o ) n
Ko(C (S5 @ K&F) — Ko (OS5 1)) = Ko (C(S5*F))

d |

K1(C(Sg™") K1 (C(S2F ) =—— Ky (OS5 @ k&)

Ki1(og+1)

We determine ¢ and O to compute the six term sequence. As opi1(Vir1) = Vi, it follows
that O([Vi]) = 0. Since C(S2"***1) contains the algebra C(S5>) @ K®*, it follows that the
operator X ==t @ 1, 2 @ ¢" @ ¢V @--- ¢ ®S* is in the algebra C(Sg”z’l) as the difference
(k—1)times
X — Xupyr (Unn—tt1) lies in the ideal C(S5>") @ K2F. Let X = 17y (X* X)X +1— 17y (X*X).
Then X is an isometry such that o;11(X) = Ug. Hence O([Ux]) = [1 — X*X] — [1 — XX¥].
Thus O([Us]) = —[1® 1,_2 ® pg]. Thus the image of  is the subgroup of Ko(C(Si"*") @ K@*)
generated by [1 ® 1,,_2 ® px] and the kernel is [Vj].
Next we compute 0. Since oj11(1) = 1, it follows that §([1]) = 0. Let

YV i=(10ph2®@ 1)1 @1, 2@pp 1 @ DX +1-1Q@ppo@pp_1 ® 1.

Since 1 @ p,_o @1 = 1{1}(ka (u;—l,lun—Ll) and 1® 1, 9 @ pr_1 = 1{1}(5(*5() it follows that
the operator Y € C’(S;L’Zkﬂ). Also

Y:tl ®pn—2 ®pk—1®5*+1— 1®pn—2 ®pk—1®1.
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Note that Y is an isometry such that og41(Y) = ug. One has op11(vgs1) = vg. Note that YV
and vpyq commute. Hence by corollary [6.4.1] it follows that the image of ¢ is the subgroup
generated by [vp41(1 = YY*)+YY*| = [Vi@p+1—1®pgl

Thus the above computation with the six term sequence implies that Ko(C'(Sq ’2’k+1)) is
isomorphic to Z? and is generated by P(u1,v1)®py = P(ug,vs) and [1] and Kl(C’(S;L’2’k+1)) is
isomorphic to Z? and is generated by [Vi11] and [U; @ pp +1 —1®pg] = [Ugs1]. This completes
the proof. O

6.6 K-groups of C(S]?)

In this section, we compute the K-groups of C(Sy ’2). We start with a few observations.
Lemma 6.6.1. In the permutation group S, one has wy—21Wp—1,1 = Wp—1,1Wn—1,2-

Proof. First note that s;s;115; = Sit15:5i+1 and s;s; = s;s; if |[i — j| > 2. Hence one has
Wn—1,kWn—1,1 = Wp—1,k+1Wn—1,15k+1. Now the result follows by induction on k. a

We denote the representation Xuw, _;; * Tw,_;, DY Xw,- Since wp_11w,p-12 is a reduced
expression for w,, it follows that the representations Y., and x., are equivalent. Let U be a
unitary such that Uy, ()U* = X, (.). It is clear that Y., (C(Si"%)) € C(T™)®.F @. T wn-1),
Let 6, denote the restriction of 1 ® o ® 1822 to v, (C(S5?)). Since Tn(Xwn (uij)) =
Xewn_1 (uij), one has the following commutative diagram

U()U*
Xwn Sn ? Xwn Sn 2 )

S

n2n 1

Lemma 6.6.2. There exists a coisometry X € xw, (C(Si?) such that op,(X) = Vp_1 and
XX =111y (Xwn (up1tin1))-

Proof. By the above commutative diagram, it is enough to show that there exists a coisom-
etry X € Xu, (C(S5?)) such that o,(X) = V,,_; and X*X =1 — L1y (Xen (451 un1). Now note
that X, (u:_171un_1,1) — q2un1un1) =1®1 ®q2N X q2N Q.- q2N ®1,_o. Hence the projection

(n—2)times
101®pn—2®@1n—2 = 1113 (Xew, (U1 1Un—1,1—q*u  Un1)) is in the algebra X, (C(517%)). Now let
Y = (1019py2®159)Xw, (Un_1.1). Then Y :=to®+/1 — 2N+25®p, _o®1,_o. Hence the
operator Z 1=ty @ S ® pp—2 ® 1,_9 is in the algebra Xwn(C’(S"’2)). Now let X := Z 41— ZZ*.
Then X is a coisometry such that an(X) = V,_1 and X*X=1-1® Pn_1 ® 1,_o which is
1 — 1113 (Xwn (up1un1)). This completes the proof. O
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Observe that the operator Z = t;®1,_10¢" ® ¢" @ --- ¢~ ®5* lies in the algebra C(S;L’Zn)

(n—2)times
since the difference Z — x,, (un 2) lies in the ideal C(Si*h @ KOm=1), Let Z := 1{1}(2*2)2
and Y, = Z+1—Z*Z. Then
Zn = t1®@1, 2®@py2®57, (6.6.6)
Y, = 101, 200p,2®@5"+1-101, 2@p,—2® 1. (6.6.7)
Hence Y is an isometry and YY™ = 1 —1(13 (Xw, (45,1 un1)). Let X be a coisometry in C(Si*™)

such that 0,(X) = vp—1 and X*X := 1 — 1113 (Xw, (45,1 un1)). The existence of such an X was
shown in lemma Then XY is a unitary.

Proposition 6.6.3. The K-groups KO(C(Sg’z) and Kl(C(Sg”z) are both isomorphic to Z*. In
particular we have the following.

1. The projections [1] and P(uy,vy) generate Ko(C(S572)).

2. The unitaries U, and XY, generate K1(C(S;"%)) where X is a coisometry in C(Si"?)

such that 0, (X) = Vo1 and X*X =1 — 14y (up, un1) and Yy, is as in equation [6.0.77,
Proof. By proposition [6.3.7, we have the following exact sequence.
n,2,1 ®(n—1 n,2,n\ n n,2,n—1
0 — C(SPh) @ K21 — (s T C(S! ) —0

which gives rise to the following six term sequence in K-theory.

Ko(on)

Ko(C(S7™h) @ Ko 1) —— Ko(O(S7*")) Ko(C(sp™))

d |

K1(C(Sg>" ) K1(C(Sg*™)) =— K1(C(Sg™") @ k&)

Kl(Un)

Now we compute 0 and 4 to compute the six term sequence. First note that since [U,_1] and
[V,_1] generate K1 (C(Sg>™ 1)), it follows that [U,,_1] and [V;,_1U,_1] generate K1 (C(S5>""1)).
As XY, is a unitary for which 0, (XY,,) = V,,_1U,_1, it follows that d([V,,—1U,—1]) = 0. Next
Y,, is an isometry for which 0,(Y,,) = U,—1. Hence O([Up—1]) = [1 = Y*Y] —[1 — YY™]|. Thus
IN[Un-1]) = ~[1® 1,_2 @ pp_1].

Now we compute §. Since o,(1) = 1, it follows that §([1]) = 0. Now one observes that
P2 ® S*my, 1, (uj1) = 0if j > 1. Hence Z, Xy, (Un—1,1) = tit2 @ pp2 @ pp_2 ® Jl—qﬁJr2
where Z,, is as defined in Thus the operator R,, := t1to @ pp—2 @ pn_s ® 1 lies in the
algebra C(S;*™) as the difference R, — ZyXw, (Un_1,1) lies in the ideal C(T2) @ K&@=3)),
Hence projection 1 ® p,_2 ® pr_2 ® 1 lies in the algebra C’(S;L’Z"). Now define

S, i= Ry 41— RuR?,
T, = (1 R Pn—2 Q Pp—2 & 1)Zn +1-1 R Pn—2@Pr—2® 1.
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Then S, is a unitary and T, is an isometry such that 0, (S,) = up—1v,—1 and o, (T},) = Up—1.
Moreover S,, and T,, commute. Now note that P(u,—1,vp—1) = P(tp—1,Up—10n—1). Hence by
corollary [6.4.T] it follows that the image of § is the subgroup generated by S, (1 -1, 1)+ 1, T
in K,(C(Sp*") @ K21, Now

Sn(l - TnT;:) + TnT:; =11t @ Pp—2 ® pp—1 + 1-1 & Pp—2 @ Pp—1.

Since 1 ® p,—2 is a trivial in KO(C(S(?"_?’)) it follows that the unitary t1 @ p,_o+1—1Q pp_9
is trivial in K;(C(Si*1) = K1(C(T) @ C’(Sg"_?’). Hence one has [S,(1 — T,,)1;)) + T,,T}] =
Vi ® po1+ 1 — 1@ pyu_i1] in Ky(C(Sg?) @ KEM-D),

Thus the above computation with the exactness of the six term sequence completes the

proof. O

6.7 K-groups of C(SU,(3))

In this section, we show that for n = 3 the unitary XY, in proposition [6.6.3] can be replaced
by the fundamental 3 x 3 matrix (u;;) of C(SU,(3)). First note that for n = 3 we have
c(si?) = C(SUy(3)). The algebra C(S&*1) is denoted C(Uq(2)) in [35]. Then C(Uy(2)) =
C(T) ® C(SU4(2)). Let ev; : C(T) — C be the evaluation at the point '1’. Then ¢ =
(ev1 ® 1)og03 where ¢ : C(SU,(3)) — C(SU,(2)) is the subgroup homomorphism defined in
equation [6.1.41

Proposition 6.7.1. The K-group K1(C(SU,(3)) is isomorphic to Z* generated by the unitary
Us:=t1 @p®@p+1—-1R0p&®p and the fundamental unitary U = (u;;) .

Proof. By proposition (6.3, we know that K;(C(SU,(3)) is isomorphic to Z? and is
generated by [Us] and [XY3] where X is a coisometry such that o3(X) = V5 and X*X =
1 — 1113 (Xws (u31u31)). Now observe that ¢(X) = t2 ®@p+1—1®p and ¢(Y3) = 1. Hence

u

0
H(XY3) =ta®@p+1—1®p. Also note that ¢(Us) = 0 and ¢(U) = 0 1 where u denote

the fundamental unitary of C'(SU,(2)). Since K;(C(SUy(2)) is isomorphic to Z the proof is
complete if we show that t,®@p+1—1®p and [u] represents the same element in K;(C(SU,(2))
which we do in the next lemma. O

We denote the 2 x 2 fundamental unitary u = (u;;) of C(SU4(2)) by ug. Consider the
representation s, : C(SU,(2)) — B(£*(Z) ® £*(N)). We let the unitary ¢ act on ¢*(Z) as the
right shift i.e te,, = ept1. Let {enm : n € Z,m € N} be the standard orthonormal basis for
the Hilbert space £2(Z) ® ¢2(N). For an integer k, denote the orthogonal projection onto the
closed subspace spanned by {e; m, : n +m < k} by P, and set Fy, := 2P, — 1. Note that Fy, is

a selfadjoint unitary.
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Proposition 6.7.2. For any integer k, the triple (xs,,*(Z) @ £*(N), F},) is an odd Fredholm
module for C'(SU4(2)) and we have the pairing

1. <[uq]7Fk> = _1;
2. t@p+1—-1®p, Fr) = —1 where p=1— 5*S.

Proof. By lemma B3] it follows that C'(SU,(2)) is generated by t ® S and t ® p. Now
it is easy to see that [t ® S, Py] = 0 and [t ® p, Py] is a finite rank operator. Hence the triple
(X515 2(Z)@%(N), F},) is an odd Fredholm module for C(SU,(2)). Since C(SU,(2)) is generated
by t® S and t®p, it follows that u, € C(SU4(2)) for every p > 0. Also as p — 0, u, approaches

L [tes o
o top tos* |’

Hence [uy] = [u] in K;(C(SU4(2))). It is easy to check the following

to uw in norm where u is given by

([u], Fr) = —1,
(tep+1-1@p], ) =—1.

This completes the proof. a
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Appendix A

Smooth subalgebras

In this appendix, we discuss the results in [33] and [34]. We have made use of these results to
show that some subalgebras of the C* algebra of odd dimensional quantum spheres are closed
under holomorphic functional calculus. We have reproduced the proofs here for the sake of

completeness.

A.1 Spectral invariance

Definition A.1.1. Let A C A be a unital inclusion of algebras. We say that A is spectrally

invariant in A if given a € A with a invertible in A then a™' € A.

Now let A be a sublagebra of A. We say that A is spectrally invariant in A if A" is
spectrally invariant in AT where AT is the algebra with an unit adjoined to A. It is easy to
see that in the case of unital inclusion of algebras the two definitions coincide. Let us make a

definition which will help in stating the results in an easier fashion.

Definition A.1.2. Let A be a * subalgebra of a C* algebra A. We say that the pair A C A is
admissible if for every irreducible representation p of A there exists an irreducible representation

7 of A on a Hilbert space H and an A invariant subspace V' such that p is equivalent to (w,V)

Lemma A.1.3. Let A C A be an unital inclusion of algebras where A is a C* algebra. The

following are equivalent.
1. The pair A C A is admissible.
2. The algebra A is spectrally invariant in A.

Proof. First we prove (1) implies (2). Let a € A be an element invertible in A. Suppose
assume that ¢! is not in A. First observe that the admissibility of the pair A C A implies
that for every irreducible representation p of A, kerp(a) = {0}
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Now a is not left invertible in A. Hence Aa is a proper left ideal of A which contains a.
Choose a maximal left ideal N which contains a. Then A/N is an irreducible representation
of A where A acts on A/N by left multiplication. In this irreducible representation ker(a) is
non-trivial as a(1+ N) = a+ N = N which is a contradiction. Hence a=! € A. This completes
the proof of (1) implies (2).

Now suppose that A is spectrally invariant in A. Let p be an irreducible representation
of A acting on a vector space V. Let v be a non-zero vector in V. Since the representation
is irreducible, it follows that the map a — p(a)v is onto. Let N be it’s kernel. Then V' is
isomorphic as an A module to A/N. Since A/N is irreducible, it follows that N is a maximal
left ideal. Now N is a proper left ideal in A. If not, then there exists a € N close to 1 such
that a is invertible in A. Hence a is invertible in A which then implies N = A. Hence N is
a proper left ideal in A. Let M be a maximal left ideal such that N ¢ M. By corollary 1
and theorem 2 of [24], it follows that A/M can be given a Hilbert space structure such that
the left multiplication representation of A on A/M is an irreducible * representation. Since
MnNA = N, it follows that the natural map A/N — A/M is one-one. This completes the
proof of (2) implies (1). O

Lemma A.1.4. Let 0 - I - A — B — 0 be an exact sequence of C* algebras and 0 — T —
A — B be a subexact sequence of x algebras. If T C I and B C B are admissible then A C A

is admissible.

Proof. Let us denote the map A — B by o. Let p be an irreducible representation of
A on V,. Suppose that p vanishes on Z. Then p factors through B to give an irreducible
representation which we denote by p. Since B C B is admissible, it follows that there exists
an irreducible representation 7 of B on a Hilbert space H and a B invariant subspace V such
that p is equivalent to (m, V). Then p is equivalent to (7 oo, V). Now suppose that p does not
vanish on Z. We claim that p|7 is irreducible. Note that since 7 is a two sided ideal, it follows
that (o7 Kerp(x) is A invariant. Since p does not vanish on Z, it follows that given a non
zero vector v there exists x € Z such that p(x)v # 0. Now let W be a nonzero Z invariant
subspace. Then ZW C W is an A invariant non-zero subspace and hence W = V,,. Hence pz
is irreducible.

Now the admissibility of the pair Z C I implies that there exists an irreducible represen-
tation 7 of I on a Hilbert space H and an Z invariant subspace V' such that pz is equivalent
to (m, V). Let F': V, = V be an interwiner. Now 7 can be extended to an irreducible repre-
sentation of A. As IV =V, it follows that V is A invariant. Since ZV =V and IV, =V, it
follows that F' interwines p and (m, V). This completes the proof. O

Proposition A.1.5. Let A be a * subalgebra of a C* algebra A. Then the following are

equivalent

1. The pair A C A is admissible
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2. The subalgebra A is spectrally invariant in A.

Proof. First we prove (1) implies (2). Observe that the map (a,\) — A gives the exact
sequence 0 -+ A — AT — C — 0. By Lemma [A. 1.4 it follows that AT C AT is admissible.
Hence by Lemma [A.1.3] it follows that A is spectral invariant in A if A C A is admissible.

Now assume that A is spectrally invariant in A. Then by Lemma [A.T.3] it follows that
AT C AT is admissible. It is easy to show that A C A is admissible. a
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