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Abstract

Aim of this thesis is to show a bijection between the orbit spaces of unimodular
rows under the action of the elementary linear group and the orbit spaces of unimod-
ular rows under the action of the elementary symplectic group. We also establish
a relative version of it with respect to an ideal. We then generalise this result and
show that the orbit space of unimodular rows of a projective module under the ac-
tion of the group of elementary transvections is in bijection with the orbit space of
unimodular rows of a projective module under the action of the group of elementary
symplectic transvections with respect to an alternating form.

Let (@, (,)) be a symplectic module with hyperbolic rank > 1 (which means that
there is a summand H(R)). We use the above equalities to improve the injective
stability bound for K;Sp(R) and Sp(Q, (,))/ETransg,(Q, (,)).
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Chapter 1
Introduction

We always work over a commutative ring R with 1. I denotes an ideal of R. We use
the notation (P, (,)) to denote a symplectic R-module where P is a finitely generated
projective R-module of even rank and (,) : P x P — R is a non-degenerate (i.e,
P =~ P* by x+ — (x,)) alternating bilinear form. Also @ represents (R? L P)
with induced form on (H(R) L P) and Q[X] represents (R[X]? L P[X]) with
induced form on (H(R[X]) L P[X]). Here H(R) denotes (R @ R*), with a unique
non-degenerate bilinear form, namely ((aq,by), (ag,b2)) = a1bs — asb;.

Now we will make a chapter wise summary.

Chapter 2

In this chapter we recall the definitions of finitely presented module, extended
module, unimodular row, relative unimodular row with respect to an ideal, ele-
mentary groups (linear, symplectic, orthogonal), relative elementary groups (linear,
symplectic, orthogonal) with respect to an ideal and alternating matrix, commuta-
tor identities satisfied by the (standard) elementary generators of the elementary
groups. Here we also fix some notations and state our assumptions. Then we state

some well known results and give a proof of a few of them.

Chapter 3
In chapter 3 we first state D. Quillen’s famous Local Global principle which says

the following:
Quillen’s Local-Global Principle: ([24], Theorem 1)

Let M be a finitely presented module over R[X]. If My is extended Rn[X]|-module
for each maximal ideal m of R, then M 1is extended from R. U

We next state L.N. Vaserstein’s “action version” of Quillen’s Local Global prin-



ciple ([18], Chapter 3, Theorem 2.5) which says

Let n > 3 and v(X) € Um,(R[X]). If v(X) € v(0)GL,(Ru[X]), for all mazimal
ideals m of R, then v(X) € v(0)GL,(R[X]). O

and also state R.A. Rao’s similar result for the elementary linear group (|25], The-

orem 2.3) which says

Let v(X) € Um,(R[X]), n > 3. Suppose for all mazximal ideals m in R, v(X) €
V(0)E,(Ru[X]). Then v(X) € v(0)E,(R[X)). O

The aim of this chapter is to prove a relative (w.r.t. an extended ideal) elemen-
tary (linear and symplectic) action version of L.N. Vaserstein and R.A. Rao’s result,

which says

Theorem 1: (Local Global Principle w.r.t. an Extended Ideal:)
(see Theorem 3.2.3 )

Let n > 3. Let I be an ideal of R and v(X) € Um, (R[X], I[X]). If for all mazimal
(or even prime) ideals m of R, v(X)m € v(0)nE(n, In[X]), then

v(X) € v(0) E(n, R[X], I[X]).

U

This theorem plays a crucial role in the thesis. Also, we state and prove a

stronger version of the above theorem (see Theorem 3.3.5) in this chapter.

Chapter 4
L.N. Vaserstein showed in (|29], Lemma 5.5) that

For any natural number n and any alternating matriz ¢ from Gla,(R),

er (Exn(R)) = e (Ex(R) N Sp,(R)),

where Sp,(R) denotes the isotropy group of v, i.e.
Sp,(R) = {a € SLa.(R) | o oa = p}

t

In this chapter we concentrate on the special case when ¢ = 1),, the standard
alternating matrix. In this special case the proof is much easier to establish. In this

case following L.N. Vaserstein’s proof one observes that

2



For any natural number n > 2, e1Ey,(R) = e1ESp,,(R). O

The above lemma means that if v is the first row of an elementary matrix of even
size then it is also the first row of an elementary symplectic matrix. This led us to
query whether the orbit space of unimodular rows under the action of the elementary
subgroup is in bijective correspondence with the orbit space of unimodular rows
under the action of the elementary symplectic group. In this chapter, we prove that

this is so, and also establish the relative version. In particular,
Theorem 2(a): (see Theorem 4.1.1)

Let R be a commutative ring and let v € Umg,(R), then
v EQn(R) =0 ESpZn(R)7

forn > 2. O
Theorem 2(b): (see Theorem 4.2.2)
Let R be a commutative ring with R = 2R, and let I be an ideal of R. Let v €
Ums, (R, 1), then

v Eg, (R, I) = v ESp,, (R, 1),

forn > 3. U

Chapter 5

In this chapter we define the Elementary symplectic group with respect
to an alternating matrix following the lead of L.N. Vaserstein.

In ([29], Lemma 5.4) L.N. Vaserstein obtained the following:

Let n be a natural number and ¢ be an alternating matriz from GLs,(R). Let us

— d
Y = 0 ¢ and o~ = 0 ,
cd v —d"

where ¢,d € R*™ Y. For any v from R*' we have

assume

a = alp,v) = Iy +doy,
ﬁ = ﬁ(@,’l]) = [2n71_/ivtc-



It can be easily checked that

belong to Eg,(R) N Sp,(R). O

The above lemma emboldened us to set

o= & o= 1),

for v € R*!. We say that the subgroup of Sp,(R) generated by the elements
Ly(v), Ry(v), for v € R*! is the elementary symplectic group ESp,(R) with
respect to the alternating matrix .

Let I be an ideal of R. The relative elementary group ESp(I) is a subgroup of
ESp,(R) generated as a group by the elements L,(v), R,(v), where v € I**~!,

The relative elementary group ESp, (R, I) is the normal closure of ESp,(I) in

ESp,(R).
We established dilation principle, Local Global principle, action version of Local
Global principle for both ESp,g px) (12[X]) and relative group ESp,g pix) (R[X], I[X]).

Using action version of Local Global principle we show the following:
Theorem 3(a): (see Theorem 5.11.1)

Let ¢ be an alternating matriz of Pfaffian 1. Then the natural map
Umy, (R)/ESp,(R) — Umy,(R)/Ea,(R),

is bijective for n > 2. O
Theorem 3(b): (see Theorem 5.11.2)

Let R be a commutative ring with R = 2R, and let I be an ideal of R. Let ¢ be an
alternating matriz of Pfaffian 1 such that ¢ = 1, (mod I). Then the natural map

Umy, (R, I)/ESp, (R, 1) — Umg,(R,I)/Egn(R, 1)

is bijective for n > 3. U
We recall the definition of transvections, elementary transvections of a finitely

generated R-module, symplectic transvections, elementary symplectic transvections



of symplectic module due to H. Bass and study these subgroups of automorphisms

generated by them.

Let M be a finitely generated R-module. Let ¢ € M and 7 € M* = Hom(M, R),
with 7(q) = 0. Let m,(p) := 7(p)q. An automorphism of the form 1+ 7, is called a
transvection of M, if either ¢ € Um(M) or # € Um(M™*). Collection of transvec-
tions of M is denoted by Trans(M). This forms a subgroup of Aut(M).

Let M be a finitely generated R module. The automorphisms of N = (R L M)

of the form

(a,p) = (a,p+azx),
(a,p) = (a+7(p),p),

where x € M and 7 € M* are called elementary transvections of N.

Let I be an ideal of R. The group of relative transvections w.r.t. an ideal
is generated by the transvections of the form 1+ m,, where either ¢ € Um(/M), 7 €
Um(M*), or ¢ € Um(M),m € Um(IM*). The group of relative transvections is
denoted by Trans(M, IM).

Let I be an ideal of R. The elementary transvections of N = (R L M) of the

form

(a,p) = (a,p+ax),
(a,p) = (a+7(p)p),
where © € IM and 7 € (IM)* are called relative elementary transvections

w.r.t. an ideal 7, and the group generated by them is denoted by ETrans(/N). The
normal closure of ETrans(/N) in ETrans(/N) is denoted by ETrans(N, IN).

The group of isometries of (P, (,)) is denoted by Sp(P, (,)).
In [7] Bass has defined a symplectic transvection of a symplectic module

(P, {,)) to be an automorphism of the form

o(p) =p+ (u,p)v+ (v,p)u + au, p)u,

where o € R and u,v € P are fixed elements with (u,v) = 0.



The symplectic transvections of @) of the form

(a,b,p) = (a,b—(p,q) + aa,p+ aq),
((l,b,p) = (a+<p7q>_ab7bvp+bq)a

where a,b € R and p,q € P are called elementary symplectic transvections.
The subgroup of Sp(P, (,)) generated by the symplectic transvections is denoted
by Transg, (P, (,)), whereas the subgroup of Transg, (@), (,)) generated by elementary
symplectic transvections is denoted by ETransg, (@, (,)).
The group of relative symplectic transvections w.r.t. an ideal [ is generated by

the symplectic transvecions of the form

o(p) =p+ (u,p)v+ (v,p)u + au, p)u,

where av € [ and u € P, v € IP are fixed elements with (u,v) = 0.
The group generated by relative symplectic transvections, as above, is denoted
by Transs, (P, IP,(,)).

The elementary symplectic transvections of () of the form

(a’a bvp) = (a’ub_ <p7Q> +aa7p+aq>7
(a,b,p) — (a+(p.q) —Bbb,p+bg),

where o, 3 € I and q € IP are called relative elementary symplectic transvections
w.r.t. an ideal I.

The subgroup of ETransg,(Q, (,)) generated by relative elementary symplectic
transvections is denoted by ETransg, (1@, (,)). The relative group ETransg,(Q, 1@, (,))
is the normal closure of ETransg,(/(, (,)) in the group ETransg,(@, (,)).

For both the groups we establish dilation principle, Local Global principle and
action version of Local Global principle in absolute case and relative case.

Using these principles we get the main results of this chapter. They are the

following:
Theorem 4(a): (see Theorem 5.10.3)

Let (P, {(,),) be a symplectic R-module with P free R-module of rank 2n, n > 1. Let

(u,v) = upvt, where ¢ is an alternating matriz of Pfaffian 1. Then

ETranss, (Q, (,)y) = ESpy, 1 ,(R).
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Theorem 4(b): (see Theorem 5.10.4)

Let R be a commutative ring with R = 2R, and let I be an ideal of R. Let (P, (,),) be
a symplectic R-module with P free R-module of rank 2n, n > 2. Let (u,v) = upv?,
where ¢ is an alternating matriz of Pfaffian 1 such that ¢ =1, (mod I). Then

ETransg, (Q, [Q, (,),) = ESp,, (R, I).

O
Using dilation principle, Local Global principle and action version of Local Global

principle we deduce the global version of Theorem 2(a) and Theorem 2(b).
Theorem 5(a): (see Theorem 5.11.3)

Let (P, {(,)) be a symplectic R-module with P finitely generated projective module of
rank 2n, with n > 1 and v = (a,b,p) € Um(Q). Then

(a,b,p) ETrans(Q)) = (a,b,p) ETransg, (@, (,)).

Theorem 5(b): (see Theorem 5.11.4)

Let R be a commutative ring with R = 2R, and let I be an ideal of R. Let (P, {(,)) be
a symplectic R-module with P finitely generated projective module of rank 2n, with
n > 2. Let v = (a,b,p) € Um(Q, IQ). Then

(a,b,p) ETrans(Q, Q) = (a,b,p) ETransg,(Q, 1Q, (,)).

Here we also assume that of each maximal ideal m of R, the alternating form (,)
corresponds to the alternating matriz oy, where n = 1, (mod I), over the local

ring Ry. O

Remark: All the theorems appeared in this chapter can also be proved for invertible

alternating matriz need not be of Pfaffian 1. The details are left to the reader.
Chapter 6

In this chapter we recall W. van der Kallen’s definition of Excision ring in ([15],
(3.19)).

The Excision ring (Z & [): If I is an ideal in R, one can construct the ring Z & I

7



with multiplication defined by (n @ )(m @ j) = (nm @© nj +mi+ ij), for m,n € Z,
1,7 €1.
We also recall W. van der Kallen’s Excision theorem in the linear case.

Excision Theorem:([15], Theorem 3.21)

Let n > 3 and let I be an ideal in R. Then the natural maps

U, (Z® 1,0® 1) U, (R, I)
., mUbe)

E(Z® 1,00 1) E.(R.I)

Um,(Z® 1,0 1) Um,(Z® 1)

_) —’
E.(Z®I1,001) E.(Z®I)

are bijective. O

The goal of this chapter is to establish a symplectic analogue of W. van der

Kallen’s Excision theorem, which appears next.
Theorem 6: (see Theorem 6.3.2)

Let R be a commutative ring with R = 2R, ane let I be an ideal of R. Then the

natural maps
Umy, (Z[1/2] @ 1,0 1) Ums, (R, I)

"ESp,,(Z[1/2®1.001)  ESp,,(R,1)
CUmo,(Z[12) @ 1081)  Umy,(Z[1/2) & 1)
- ESp,y, (Z[1/2] @ 1,08 1) ESp,, (Z[1/2] © )’
are bijective for n > 3. O

Here, using the above theorem we recapture Theorem 2(b), which says that
vEon (R, I) = vESp,, (R, I), for an ideal I of R, when R = 2R.
We also establish the following Excision theorem for the group of elementary

symplectic transvections for a free (projective) module.

Definition: Let R be a commutative ring with R = 2R, and let I be an ideal of
R. Let us consider the excision ring Z[1/2] @ I. The standard alternating matrix of
size 2n over the ring Z[1/2] @ [ is defined inductively as

—~

,lvz)n = @E:Laa

where



Theorem 7: (see Theorem 6.6.3)

Let R be a commutative ring with R = 2R, and let I be an ideal of R. Let us
consider the excision ring Z[1/2] ® I. Let ((Z[1/2] ® 1)*"2,(,),+) be a symplectic
(Z[1/2] & I)-module, where p* be an alternating matriz over the ring Z[1/2] & I and
©* = @/)/n—\1 (mod 0 I). Then the natural maps

Umnon (Z[1/2] & 1,0 @ 1) s Uniion(R, I)
ETransg, ((Z[1/2] & 1)*, (0 & 1)?", (, )y+) ETransg, (R, I?", (, ) o)’
[
]

Umg, (Z[1/2| & 1,0 1) KN Ums, (Z[1/2] @ I)
ETranss, ((Z[1/2] ® I)?", (0® 1)?",(, ) ) ETransg, ((Z[1/2] & 1)?",(,),+)’
are bijective for n > 3. U

Chapter 7

Here we recall the definition of stable general linear group, stable special linear
group, stable range and stable dimension.

H. Bass, J. Milnor, J-P. Serre began the study of the stabilization for the linear
group GL,(R)/E,(R), for n > 3. In (|6], Corollary 11.3), they showed that:

Suppose that the mazimal spectrum of a commutative ring R is a Noetherian

space of dimension < d. Then the map

GLL(R) _ GLyu(R)
E, () B ()

s an wsomorphism of groups for all n > d + 3. U
n ([4], §11) Bass conjectured the following:

Conjecture due to Bass:
Let R be a commutative ring with 1 and Jacobson-Krull dimension of R is d. Then

the map

GLL(R) _ CLyu(R)

E.(R) En1(R)

is an isomorphism for n > d + 2.
In [34], L.N. Vaserstein proved the above conjecture.

After this in ([26]), R.A. Rao and W. van der Kallen began the study of whether
the stabilization bound above improves for special rings; and they could show (see
[26], Theorem 1)



Let A be a non-singular affine algebra of Krull dimension d > 2 over a perfect
Ci-field. Let o € SLg11(A) and (1 L o) € Eqi2(A). Then o is homotopic to identity,
i.e, there exists a p(X) € SLqy1(A[X]) such that p(1) = o and p(0) = Id. O

Then, as a consequence they showed that

If A is a non-singular affine algebra of Krull dimension d > 2 over a perfect
C1-field, then the natural map
SL,(A) SL,11(A)

—

En(A) En1(A)

is injective for n > d + 1. O

L.N. Vaserstein in [35] considered the symplectic, orthogonal and the unitary
K;-functors, and obtained stabilization theorems for them. In ([35], Theorem 3.3)
he showed that:

The natural map

Ot : Sp2n(R) _ Sp2n+2(R)
o Esp2n(R) Esp2n+2(R)

s an isomorphism for 2n > 2d + 4. Here d is the stable dimension of R. U
R. Basu and R.A. Rao showed, in ([9], Theorem 1), the following:

Let R be a non-singular affine algebra over a perfect Ci-field of odd Krull dimen-
sion d > 2. Let 0 € Sp,,(R) and (I, L o) € ESp,, 5(R). Then o is homotopic to
identity, i.e, there ezists p(X) € Spy,, (R[X]) such that p(1) = o and p(0) = Id. O

And as a consequence they showed (see [9], Theorem 2)

If R is a non-singular affine algebra over a perfect Ci-field of odd Krull dimension
d > 2, then the natural map

© e Sp2n(R) N Sp2n+2(R)
o Esp2n(R) Esp2n+2(R)

s an isomorphism for 2n > d + 1. O

Using Theorem 2(b) we can reprove this result. Moreover we show the following:
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Theorem 8: (see Theorem 7.1.15)

Let R be a finitely generated algebra of even Krull dimension d > 4 over K, where
K =7 or F or F and char(K)# 2. (Here F is a finite field and F is its algebraic
closure.) Let o € Spy(R) and (I, L o) € ESpy 5(R). Then o is (stably elementary
symplectic) homotopic to the identity. In fact, o = p(1), and p(0) = Id, for some

p(X) € Spy(R[X]) N ESpyys(RX]).

As a consequence of the above result we show that:
Theorem 9: (see Corollary 7.1.16)

Let R be a finitely generated non-singular algebra of even Krull dimension d > 4
over K, where K 1is either a finite field or the algebraic closure of a finite field
and char(K)# 2. Let 0 € Spy(R) and (I, L o) € ESpy,4(R). Then o belongs to
ESpy(R). In particular,

Sp2n(R) N Sp2n+2(R)
ESpZn(R) Esp2n+2(R)

is injective for 2n > d. O

We also show the following:
Theorem 10: (see Theorem 7.2.7)

Let R be a commutative ring of dimension d. Let us assume R = 2R. Let (P(,))

be a symplectic R-module with P finitely generated projective module of even rank

> maz{2,d—3}. Let Q = (R* L P), and Q = (R*> L Q). Let o € Sp(Q, (,)), and

(I, L o) € ETransg,(Q), (,)). Then o is (stably elementary symplectic) homotopic
to the identity. In fact, o = p(1), and p(0) = Id, for some

p(X) € Sp(Q[X],(,)) N ETranss,(Q[X], ().

Here we assume that over the local ring R, where m is a mazximal ideal of
R, the alternating form (,) corresponds to the alternating matriz ¢, where @, =
Yy, (mod I). O

The next theorem is a consequence of the above theorem. This gives an improve-

ment for Basu-Rao (see Theorem 7.1.8) estimate in the module case over finitely

11



generated rings.
Theorem 11: (see Corollary 7.2.9)

Let R be a finitely generated non-singular algebra of dimension d over K, where K
is either a finite field or the algebraic closure of a finite field. Let us assume R = 2R.
Let (P.(,)) be a symplectic R-module with P a finitely generated projective module
of even rank > maxz{2,d —3}. Let Q = (R* L P), and Q = (R L Q). Let o €
Sp(@, (,)) and (I L o) € ETransSp(CA), (,))- Then o belongs to ETransg, (@, (,)).

Here we assume that over the local ring R, where m is a mazimal ideal of

R, the alternating form (,) corresponds to the alternating matriz ¢, where @, =
¥y, (mod I). O

12



Chapter 2
Preliminaries

In this chapter we will recall a few definitions, fix some notations, state few known
results as well as state some preliminary results with their proofs, which will be used
throughout this thesis.

2.1 Definitions and Notations

Definition 2.1.1 An R-module M is said to be finitely presented if there is an

exact sequence
R" — R"— M — 0,

for suitable natural numbers n, m.

Definition 2.1.2 An R[X]-module M will be called extended from R if it is iso-
morphic to R[X]| ®g N for some R-module N.

Definition 2.1.3 A row v = (vy,...,v,) € R" is said to be unimodular (of length

n) if there is a row vector w = (wy,...,w,) from R" such that
(v,w) =v-w" =vyw, + -+ vaw, = 1.
Um,,(R) will denote the set of all unimodular rows v € R".

Definition 2.1.4 Let I be an ideal of R. A row is said to be relative unimodular

w.r.t. [ if it is unimodular and congruent to e; = (1,0, ...,0) modulo /.
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Um,, (R, I) will denote the set of all relative unimodular rows w.r.t. I of length
n. If I = R, then Um, (R, I) is Um,(R).

Definition 2.1.5 Let P be a finitely generated projective R-module of rank n.
An element v in P is said to be unimodular if for any maximal ideal m of R,
we have vy, € Um,(Ry,). The collection of unimodular elements of P is denoted
by Um(P). Note that Um(P, IP) denotes the collection of elements from Um(P)
such that vy, € Um,(Ry, I). The set Um(P, IP) is the collection of all relative

unimodular elements w.r.t. an ideal I of R.

Definition 2.1.6 The set of all n x n invertible matrices, whose entries come from
a ring R, is a group under matrix multiplication. This group is called General

Linear group of size n. (This group is denoted by GL,(R).)

Notation 2.1.7 The group GL,(R) of invertible matrices acts on R" in a natural
way: v — vo, if v € R", 0 € GL,(R). This map preserves Um, (R) (see Lemma
2.2.2). So GL,(R) acts on Um,(R). Note that any subgroup G of GL,(R) also acts
on Um,(R). Let v,w € Um,(R), we denote v ~g w or v € wqG, if thereisa g € G
such that v = wg.

Definition 2.1.8 Let R be a commutative ring with 1. The set of all n x n
invertible matrices, with determinant 1 is a group which is called Special Linear
group. (This is a subgroup of GL,,(R) and denoted by SL,(R).)

Definition 2.1.9 Let E, (R) denote the subgroup of SL, (R) consisting of all ele-
mentary matrices, i.e. those matrices which are a finite product of the (standard)

elementary generators
EZ]()\) == In+eij(>\), ]- S Z 7&] S n, )‘ € R7

where e;;(A) € M,,(R) has at most one non-zero entry A in its (7, j)-th position. The
group E,(R) is called Elementary Group.

In the thesis, if o denotes an m x n matrix, then we let o' denote its transpose
matrix. This is of course an n x m matrix. However, we will mostly be working
with square matrices, or rows and columns. Also in the sequel GL, (R, I) denotes
the kernel of the map GL,(R) — GL,(R/I) and SL,,(R, I) denotes the kernel of
the map SL,,(R) — SL,(R/I).
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Definition 2.1.10 Let I be an ideal of R. The relative elementary group E, (1)
is the subgroup of E, (R) generated as a group by the elements E;;(z), x € I,
1 <i# j <n. The relative elementary group E,(R, ) is the normal closure of
E,(I) in E,(R).

(Equivalently, E,, (R, I) denotes the smallest normal subgroup of E,,(R) contain-
ing the element Fy;(x), where x € I. Also E, (R, I) is generated as a group by the
elements E;;(a)E;;(z)E;j(—a), with e« € R, x € I, and 1 < ¢ # j < n, provided
n > 3 (see Lemma 2.2.29).)

Definition 2.1.11 E! (R, I) is the subgroup of E,(R) generated by the elements
Eyi(a), where a € R, and E;(z), where z € I, 2 <1 < n.

Definition 2.1.12 Symplectic Group Sps,(R): The group of all invertible 2n x

2n matrices
{a € GLoy(R) | ' = 9y},

where 1, is the alternating matrix > eg; 19, — Y _€9;9;—1 (corresponding to the stan-
i=1 i=1
dard symplectic form). By Sp,,, (R, I) we denote the kernel of the map Sp,, (R) —

Sp2n(R/[)'

Notation 2.1.13 Let o denote the permutation of the natural numbers given by
0(2i) =2i—1and o(2i — 1) = 2i.

Definition 2.1.14 We define, for 1 <i # j <2n, z € R,

]_Qn + eij(z) lfl = O'(j),

seij(z) = -
Lop + €55(2) — (=1)esiyo@(2) i i # o(j) and i < j.

It is easy to check that all these generators belong to Spay,(R). We call them
the (standard) elementary symplectic matrices over R and the subgroup of Spy,(R)
generated by them is called the Elementary Symplectic group ESp,, (R).

Definition 2.1.15 Let [ be an ideal of R. The relative elementary group
ESp,, () is a subgroup of ESp,,(R) generated as a group by the elements se;;(z),
reland1<i# 75 < 2n.

The relative elementary group ESp,, (R, I) is the normal closure of ESp,,, (1)
in ESps, (R).
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(Equivalently, ESp,, (R, I) is the smallest normal subgroup of ESp,,, (R) contain-
ing the element sey(x), where z € I. Also ESp,,,(R, I) is generated as a group by
the elements se;;(a)se;i(x)se;;j(—a), with a € R, x € I, 1 < i # j < 2n, provided
n > 3 (see Lemma 2.2.29).)

Definition 2.1.16 ESp) (R, I) is the subgroup of ESp,,(R) generated by the ele-

ments sey;(a), where a € R, and se;;(x), where x € I, 2 <i < 2n.

Definition 2.1.17 Orthogonal Group O,(R): The group of all invertible 2n x

2n matrices

{a € GLo(R) | oY = 0},

where 1//;; is the symmetric matrix ) eg; 19, + ) €2;2;—1 (corresponding to the stan-
i=1 i=1
dard hyperbolic form). By Os, (R, I) we denote the kernel of the map O,,(R) —

Oan(R/1).

Definition 2.1.18 We define for 1 <i # j < 2n, z € R,
oeij(2) = lan+ei(2) — €nii)ow)(2), if i # o(j), and i < j.

It is easy to check that all these matrices belong to Os,(R). We call them
the (standard) elementary orthogonal matrices over R and the subgroup of Oy, (R)
generated by them is called the Elementary Orthogonal group EO,,(R).

Definition 2.1.19 Let [ be an ideal of R. The relative elementary group
EO,, (1) is a subgroup of EO,,(R) generated as a group by the elements oe;;(x),
x € I and 1 < i # j < 2n. The relative elementary group EO,,(R, ) is the
normal closure of EOy,(I) in EOq,(R). (Equivalently, EOy, (R, I) is generated as a
group by oe;j(a)oe;i(x)oe;j(—a), with a € R, x € I, i # j, provided n > 3.)

Definition 2.1.20 EO} (R, I) is the subgroup of EO,,(R) generated by the ele-

ments oey;(a), where a € R, and oe;;(x), where x € I, 3 <i < 2n.

Notation 2.1.21 We fix some notations.

e M(n, R) will denote the set of all n x n matrices.

e G(n,R) will denote either the linear group GL,(R), the symplectic group
SPsm (R), or the orthogonal group Os,,(R), for n = 2m.
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e Now onwards, E(n, R) will denote either of the elementary subgroups E,(R),
ESpy,,(R) or EOq,,(R). The standard elementary generators of E(n, R) are denoted
by geij(a), a € R.

e Let I be an ideal in R. Let G(n, R,I) denote the relative linear groups
GL,(R,I), SL,(R,I), the relative symplectic group Sp,,,(R, ), or the relative or-
thogonal group Ogp, (R, I).

e E(n, ) is a subgroup of E(n, R) generated as a group by the elements ge;;(x),
where x € I, and 1 <i # j < n.

e E(n, R, I) denotes the corresponding relative elementary subgroups E, (R, I),
ESpy,, (R, I), EOg, (R, I), respectively. These are the normal closures of the sub-
groups E(n, ) in E(n, R), which are also known to be generated by the elements
geij(a)geji(z)geij(—a), a € Ryx € I, and 1 <7 # j <n (see Lemma 2.2.29).

e E'(n, R, I) is a subgroup of E(n, R), generated by the elements gey;(a), where
a € R and ge;i(x), where x € I, 2 < i < n in the linear and symplectic case, and
3 < i < n in the orthogonal case.

e In the symplectic case we set v = vi),,, where 1, is the standard symplec-
tic form, and in the orthogonal case we set v = Ui;m, where {/;m is the standard
hyperbolic form.

e Let o € G(n, R) and € G(m, R), then by o L 3 we denote the matrix

a 0
(O ﬁ) € G(n+m,R).

e Let a,b be two elements of M(n, R). The symbol [a, b] represents the element
aba~'b~! and known as commutator of the elements a and b. Also we fix a notation

e = gba~".

In this thesis we shall have the
Blanket Assumption:

1. n > 3 in the linear case and n = 2m with m > 3 in the symplectic case and

in the orthogonal case.

Here we state few commutator identities for the standard elementary generators
of E(n, R).
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e For E,,(R), when n > 3:

[Eij(a), Ejx(D)] = Eu(ab) if i #k,
[Eij(a), By (b)] = id if 141, and j# k.

[sein(a), sex;(0)] = sei;(ab) if i # j,0(j),
[seir(a), sero(y(b)] = seiqnq)(2ab),

[se1;(a), sey(b)] = id if 1 #0(y),

[seij(a), sen(b)] = sena((—1)""12ab) if 1 =0(j),7 # 2,

[sei1(a), sex1(b)] = id if k= o(i),

[seq(a), sexi(D)] = sexn((—=1)2ab) if k= o(i),i # 2.

Definition 2.1.22 A matrix from M, (R) is said to be alternating if it has the

form v — v, where v € M,,(R). It follows that its diagonal elements are zeros.

2.2 Preliminary Results

The most useful property of the standard elementary generators of the classical

linear, symplectic and orthogonal groups is the following linear property:

Lemma 2.2.1 For all a,b € R, ge;;(a +b) = ge;j(a)ge;;(b).

Proof: Follows by an easy verification. O

Lemma 2.2.2 The natural action of GL,(R) on R" preserves Um,,(R).

Proof: Let v € Um,(R) and let g € GL,(R). We need to show vg is in Um,(R).
Let w € R"™ be such that (v,w) = 1. Therefore (vg,w(g~')!) = 1 and hence
vg € Um,(R). O

Lemma 2.2.3 Let o be in E(n, R). Then there exists a(X) € E(n, R[X]) such that
a(l) = a, and a(0) = Id.

18



Proof: Let a = [[,_, g€i,j, (ax), where a; € R. Let us define

aX) = [[geii(aX).

k=1

Clearly a(X) € E(n, R[X]). Note that a(1) = a, and «(0) = Id. O

Lemma 2.2.4 Let M be an R-module and let o(X),5(X) € Aut(M[X]), with
a(0) = Id, 5(0) = Id. Let a be a non-nilpotent element in R. Let a(X), = B(X),
in Aut(M,[X]). Then a(a™X) = B(a™ X) in Aut(M[X]), for N > 0.

Proof: Using a(0) — 5(0) = 0, we get a(X) — B(X) = Xv(X), for some v(X) €
Aut(M[X]). Also a(X), — 3(X), = 0 in Aut(M,[X]), ie, (a(X)—B(X)), =0, ie,
(X7(X)), = 0. Hence a" (X~(X)) = 0, in Aut(M[X]), for some N > 0. Therefore

a(@VX) - B X) = a" Xy X) = 0,
in Aut(M[X]), for N > 0. O

Lemma 2.2.5 ([31], Lemma 1.3): Let v = (v1,...,v,) € Um,(R) and let u =
(u1,...,u,) € R™ be such that Y  v;u; =1. Let p: R* — R be the map sending
e; — v; where ey, ... e, is the natural basis for R". Then, for w= (wy,...,w,) €

ker(¢p), wzziq a;j(vje; — viej), a;; € R.

See ([14], Page 18, Lemma 4.6) or (|20], Proposition 5.1.1) for an alternative
proof. O

Lemma 2.2.6 ([31], Corollary 1.2): Let n > 3 and I be an ideal of R. Let v € R"
and w € I™ be such that (w,v) = 0. If w; =0, for some 1 < i <n, then 1, +vTw €
E.(R, ). O

Lemma 2.2.7 (Suslin): (see [20], Corollary 5.1.3) Let n > 3. Let v,w € R™ be
such that v € Um,(R) and (w,v) = 0. Then 1, +v'w € E,(R). O

Lemma 2.2.8 Letn > 3 and I be an ideal of R. Let v € Um,(R) and w € I" such
that (w,v) = 0. Then I, + v'w € E,(R, I).
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Proof: Let v = (vq,...,v,) € R", and w = (wy,...,w,) € I
such that >  v;u; = 1. Using Lemma 2.2.5 we get

w o= Zwiei = Zvj(wiuj—wjui)ei

i

= ) (wiuy — wiw)(vye; — viey)
1<j

= Y ai(vjei —viey),
1<j

where a;; € I. Now

t t
I,+vw = I,+ E a;;v'(vje; — viej)
i<j

= H ([n + CLZ'jUt<Uj€Z' — viej)).

1<j

Let ©w € R™ be

Each term appeared in the above product is in E,(R,I) (see Lemma 2.2.6).

Hence we established the claim.

n

Lemma 2.2.9 ([36], Lemma 8) Let R be an associative ring with identity and let T
be a two sided ideal in R. Then E, (R, 1) = [E,(R),E,(I)], forn > 3. O

Corollary 2.2.10 ([31], Corollary 1.4) For n > 3, E,(R,I) is a normal subgroup

of GL,(R).

n

Lemma 2.2.11 ([29], Lemma 2.7(a)) Let R be an associative ring with 1. Then

E,(R) is generated by the matrices of the form
1
v and 1 0 ’
0 I vt T

Remark 2.2.12 Note that if v = (vy,...,v,_1) € R*1, we have

1 v 2
= H Ey; (’Uifl)u
<O I ) o

20
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1 0 <
= Eii(vi-1),
<vt I) g 1(vi-1)

and hence E,(R) is generated by the elements of the form Ey;(a), E;1(b), where
a,be R, and 2 <1 < n.

Lemma 2.2.13 (|29], Lemma 2.7(b)) Let R be an associative ring with 1, I be an
ideal of R, and n > 3 be a natural number. Then E,(R,I*) C E,(I), where I* is a

two sided ideal of R consisting of sums of elements of the form ab where a,b € I.

Proof: Let 3 = E;;(z) € E,(I?) and a = Ey(2') € E,(R). We need to show
afat € E,(I). If (i,5) # (I, k), then the matrix aBa~! splits in to product of
elementary matrices from E,(I). If (i, 7) = (I, k), we choose r < n different from i, j

and write 2z = a;by + - - - + asbs,. Now we can write

s

B = Eyz) = [[Ea) By,

t=1

and
afa”t = H[aEir(at)a_l,ozEtj(bt)a_l] e E,(I).
t=1
Hence the lemma is proved. O

Lemma 2.2.14 (|21], Lemma 2.5) (Whitehead’s Lemma):

(g u01> € Ey(R),

whenever u is a unit in R. Moreover

u 0
<O u1> S EZ(Ral)a

whenever u is unit in R and u =1 (mod I).
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Proof: To prove this lemma we need to consider the following equation:

0 u!

u 0
( ) = Egl(u_l — 1)E12(1)E21(u — 1)E12(—1)E12(1 — U_l),
and hence the proof follows. O

Lemma 2.2.15 Let (R, m) be a local ring. Then for any v € Um,(R), v € e1E,(R).

Proof. Let v = (v1,...,v,) € Um,(R). Since R is a local ring this forces
one of the v; to be unit in R. Therefore there exists £ € E,(R) such that vE =
0,...,0,v;,0,...,0). Note that

- a6 < e

and hence there exists £’ € E,(R) such that vEE" = (v;,0,...,0). Now

v;' 00
VEE'[ 0 v 0 | = (L0,...,0),
0 0 I,
and hence using Lemma 2.2.14 we get, v € e, E,(R). O

Lemma 2.2.16 Let (R,m) be a local ring. Then for any v € Umy,(R), v €
€1ESp2n<R>

Proof: Let v = (v1,...,v,) € Um,(R). Since R is a local ring this forces
one of the v; to be unit in R. Therefore there exists £ € ESp,,(R) such that
vE =(0,...,0,v;,0,...,0). Namely we choose

E = sep(—vvt). .. semn(—vlv;nl)sew(i)(*),
for a suitable element * € R. Note that

0,...,0,0;,0,...,0)se;1(1)ser;(—1) = (v;,0,...,0).
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Now

v;t 00
vE se;(L)se(—=1) | 0 v 0 = (1,0,...,0),
0 0 I,
and hence using Lemma 2.2.14 we get, v € e;ESp,,, (R). O

Lemma 2.2.17 Let I be an ideal in R. Let v = (1+ 1,29, ...,22,) € Umy, (R, I).
Let 1 + x; be a unit in R. Then there exists

g S ESpZn(R7I) (g E2n(R7]))

such that v = ey g.

Proof: Since 1+ x; = u is a unit in the ring R, it is easy to show as in the proof
of Lemma 2.2.16 that there exists ¢* € ESp,, (R, ) such that vg* = (u,0,...,0).
We have

u 0 0
(u7 Oa RS O) = e |0 u_l 0 € 61E8p2n(R7 I)a
0 0 [2n72

by Lemma 2.2.14. Let us take
g = Egl(uil — 1)E12(1)E21<U — 1)E12(—1)E12<1 — uil)(g*)fl.
Clearly g € ESp,,,(R,I) and v = e;g. O

Corollary 2.2.18 Let (R,m) be a local ring and I be a ideal of R. Let v €
Um, (R, I), then v € e1E, (R, I).

Corollary 2.2.19 Let (R,m) be a local ring and I be a ideal of R. Let v €
Umsy, (R, I), then v € e ESp,, (R, I).

Lemma 2.2.20 Let I be an ideal of R and let ¢ € E(n, R/I*, I1/I¥), for some
positive integer k > 1. Then there ezists €g € E(n, R, 1) (depending on k) such that

Zo = €. Here ‘bar’ means reduction modulo I*.
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Proof: Let ¢ = [[,_, 9€i.j. (@%)g€j.i. (Tk)g€ip . (—a%), where a, € R and zy, € I,
for 1 <k <r (see Lemma 2.2.29). Let us set

co = |[9eiiar)gej (@r)geis (—ar) € E(n, R, I).
k=1

Clearly gg = €. U

Lemma 2.2.21 Let I be an ideal of R and v € Umy,(R,1). Then there exists
ex € ESpy, (R, I) such that vey, € Umy, (R, I¥), for any positive integer k.

Proof: Let v = (]- + 'L.l,l.g, Ce ,’ign) and let
Vo= (T+El7527"'7{2n) S Uan(R/[k,[/[k>

Here ‘bar’ means reduction modulo I*. As i, is nilpotent in R/I* 1 + i is
a unit in R/I*. By Lemma 2.2.17, there exists e € ESp,, (R/I*, I/I*) such that
ve = (1,0,...,0) in (R/I*)*. Using Lemma 2.2.20 we get a €, € ESp,, (R, I) such
that g5 = ¢ and vg;, = (1,0,...,0) in (R/I*)?". So ve}, = (1+x1, 3, ..., Ta,), where
T1,...,Toy € IF, [

Lemma 2.2.22 ([16], Lemma 1.5) Let n > 2, and I be an ideal of R. Leta € I,v €
R* ora € R,v € I*". Then Iy, + av'v € ESp,, (R, I). O

Lemma 2.2.23 ([16], Lemma 1.10) Let n > 2, and I be an ideal of R. Let v € I*",
and w € Umy,(R) be such that vw' = 0. Then Iy, + v'w + w'v € ESp,,, (R, I). O

Lemma 2.2.24 ([16], Lemma 1.11) When n > 2, ESp,,,(R, I) is a normal subgroup

The following Lemma is proved in a similar way as Lemma 2.2.13. We include

the proof for completeness.

Lemma 2.2.25 Let I be an ideal of R. Assume that R = 2R. Then ESp,, (R, I?)
is a subset of ESp,,,(I), for n > 3.
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Proof: Let 2* = Y a;b, with a;,by € I. Let 8 = se;(2*) € ESpy,(I?) and
a = sey(2) € ESp,,,(R), for some z € R. Tt suffices to show that afa~! € ESp,,(I).
If (4,7) # (I, k) and (i, j) # (o(k), (1)), then the matrix aSa~! splits into a product
of elementary matrices from ESp,, (I).

When (7, 5) = (I, k) or (i,7) = (6(k),o(l)) we need to consider the following two
cases:

Case (1): In this case i # o(j). We can choose r < 2n different from i, j, o (i), o(j).

Now,

B = sey(z) = [[lseinlar), sen(br)]

t

and hence
Hozse”, (as)a™, ase,;(b)at] € ESp,,(I).
t

Case (2): In this case i = 0(j). We can choose r < 2n different from i and (7).
We have

B = seiqu(2) = H[Seir(at/Q)a56r0(i)<bt)]a

t

and hence
= [Jlasen(a/2)a™, aser(b)a™"] € ESpy, (D).
t

Therefore the claim is established. O

Remark 2.2.26 The calculation in Case 1 in the above proof says that we need to
choose an integer r, which is different from i, j,0(i),0(j), and hence these matrices
should have size at least 5. But these matrices are of even size. Therefore we need

to assume n > 3, where 2n is the size of the group ESp,,(R).

Lemma 2.2.27 Let a(X) € E(n, R[X]) and a(0) = Id. Then,

k=1

where vy, € E(n, R).

25



Proof: Let a(X) = [[,_; 9€ipji (fx(X)), where fi.(X) = fr(0) + Xhy(X), for
some hy(X) € R[X]. Therefore we have

a(X) = [] g€ (fr(0)gei, (Xhe(X))

= [ wgeis Xnu(X))v ",
k=1

where v, = Hﬁgzl g€, (f1(0)). -

Lemma 2.2.28 ([8|, Corollary 3.9): If ¢ = €1¢5...¢,, where each ¢; is a (standard)

elementary generator, then

k
596pq(X2rmY)5_1 = H 9pig (X" (X,Y)),

t=1

for h(X,Y) € R[X,Y]. O

Following lemma is due to L..N. Vaserstein. However our proof imitates W. van

der Kallen’s proof in the linear case (see [15], Lemma 2.2).

Lemma 2.2.29 (]|29], §2): Let n > 3 in the linear case and n > 6 in the symplectic
case. Let R be a commutative ring with R = 2R, and let I be an ideal of R.
Let E(n, R, I) be the smallest normal subgroup of E(n, R) containing the elements
geai(z), x € I. Then E(n, R, I) is generated by the elements ge;;(a)ge;i(x)ge;j(—a),
where a € R,z € [,and 1 <1 # j < n.

Proof: Let GG; denote the smallest normal subgroup of E(n, R) containing the
elements geq; (), with € I and G5 denote the subgroup which is generated by the
elements ge;;j(a)geji(z)ge;;(—a), with a € R,x € I, and 1 <7 # j < n. Let us set

the following notation:
Si; = {geij(a)geji(x)geij(—a) :a e Ryx € 1,1 <i#j<n}.

Note that Gy = (S;; : ¢ # j), subgroup of E(n, R) generated by all possible
Sij,i # j. Clearly Si2 € G;. Let us consider an element from Sy;,j # 1,2, of the
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form gey;(a)geji(x)ger;(—a). Now

gerj(a)geji(z)gerj(—a) = 999 ge;n(1), gen ()]
= [ @ge;5(1),99 geg (z)]
== [alaQZ]

_ -1 -1

where «p =9¢1(a) gejo(1) and oo =9¢13(0) geyi(2). Clearly ap € Gy, and hence
a1a2af1 € Gy, as Gy is a normal subgroup of E(n, R). Therefore S;; C Gy, for
2<7<n.

Let us now consider an element ge;;(a)gej;(z)gej(—a) € S;;, and 7,5 # 1. Note
that

geij(a)geji(x)gej(—a) = 9999 [ge;i(x), geri(1)]
= [Qeij(a)g€j1<*)7geij(a) ger;(1)]
= [B1,5] = BB By

where x is an element of the ideal I, 3; =% ge; (¥) and By =90 gey,;(1).
Clearly 3, € G and hence 3,03, '35 " € Gy, as Gy is a normal subgroup of E(n, R).
Therefore S;; C Gy, for 4,5 # 1.

Here we consider an element of the form ge;; (a)geq;(x)geii (—a) from S;; for i > 2.

Now

gea(a)gen(r)gen(—a) = 91 @lge;(1), geji(+)]
[ @ gen;(1),91@ geji(+)]
= [717/72]
_ —-1,_-1
= M7 72

where x is an element of the ideal I, v; =91 ge (1) and v, =91 ge(x).
Note that 75 € G; and hence 177! € Gy, as Gy is a normal subgroup of E(n, R).
Therefore S;; C Gy, for i > 2. All the above set inclusions give us (S;; : i # j) C G,
i.e, Go C G.
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Note that ges;(z) € Gy. For showing the other inclusion we need to show Gs is

a normal subgroup of E(n, R), i.e, we need to show
hgeij(a)geji@)geij(—a)h*l € Go,

for h € E(n, R). It suffices to show hge;;(a)ge;i(z)ge;;(—a)h™ € Gs, for standard
elementary generator h of the group E(n, R). Exploiting commutator identities we

get this inclusion and hence we have G| = Gs. O

Lemma 2.2.30 (see [15|, Lemma 2.2) Let n > 3 in the linear case and n > 6 in the
symplectic case. Let R be a commutative ring with R = 2R, and let I be an ideal of
R. Then the following sequence is exact
1— E(n,R 1) — E'(n,R,I) — E'(n, R/I,0) — 1.
Thus E(n, R, I) equals E*(n, R, 1) N G(n, R, I).

Proof: Let f: E'(n, R,I) — E'(n, R/I,0). Note that
ker(f) € E'(n,R,I)NG(n,R,I).

Let M = []geji(x;)geri(a;) € EX(n, R, I)NG(n, R, I). Note that M € G(n, R, I)
implies
M = ]gen(0)gew(a)

= ngli(di) = In,

i.e, M € ker(f). Therefore ker(f) = E'(n, R, I)NG(n,R,I).
Now we shall prove that ker(f) = E(n, R, I). Let

E = [l9eia(z)gen(ar) € ker(f).
k=1

Note that F can be written as ge;,1(71) [[oey V69€j,1 (%), ', Where 7; is equal to
Hﬁ:l geii, (ax) € E(n, R), and hence ker(f) C E(n, R, I). To establish the reverse
inclusion we need to show E(n, R, I) C E!(n, R, I). Tt suffices to show E'(n, R, I)
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contains the set

Sij = {geij(a)geji(x)geij(_a) ra € Rxel},

for all ¢, j, with ¢ # j. First we state the following identities

gh k] = (°[h, k))[g, k], (2.1)
g, hk] = [g,h]("[g,k]), (2.2)
I[h, k] = [h,9K], (2.3)

where 9h denotes ghg™' and [g,h] = ghg 'h~!. In the following computation we
show that E'(n, R, ) contains S;;, if it contains Sy, and S;;. We write * for some
element of I and of E!(n, R, I). Now

e @ges(x) = 99 [ges(1), geri(¥)]
= [*99ge;(1),%9) gera(+)]
= [geix(a)ge;r(1), geri(x)ger;(*)]
= 9 D]ge;(1), geri(x)gen; (¥))[gei(a), geri(+)ger;(+)]
_  gew(a) gesn (gezk(agem(* gejk(l) gekj(*)])
lgein(a), gem(*)]gekg(*)gew( )
= (0)7*D (gegs (%) gesi(+)[gesn(1), ger;(+)])
[geir(a), geri(*)](x)
= ()[ge(a), geri(x)](*)[ge;(1), ger;(+)](x)
[geir(a), geri(*)](*),

which lies in the group generated by E'(n, R, I), Sy, and Sj;. Similarly, if E'(n, R, I)
contains Si; and Sy; then it contains Sj;. Note that E'(n, R, I) contains Sia, Si3

and hence it contains Sss, S32, Sa1, S31, and so on. ]

Remark 2.2.31 In the above two lemmas (Lemma 2.2.29 and Lemma 2.2.30) we
require the assumption R = 2R when we prove the result for elementary symplectic
group, i.e, E(n,R, 1) = ESp,(R,I). We do not require this assumption for the

elementary linear group.

The following lemma is due to L.N. Vaserstein. We include the proof for com-

pleteness.
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Lemma 2.2.32 (|29], Lemma 5.4) Let n > 2 be a natural number and ¢ be an

alternating matriz from GLa,(R). Then for any v from R*"~! there exists a, 3 in

Eon_1(R) such that
1 0 1 v
avt o) \0 B

belong to Ey,(R) N Sp,(R), where Spy(R) denotes the isotropy group of ¢, i.e,
Sp,(R) = {a € SLg,(R) | adloa = @}

Proof: We write

where ¢,d € R?**71. From the equality pp=! = 1 we see that cd' = 1, vd® = 0,
cpp=0and d'c + pv = I,_;. Let

a = a(p,v) = Iy +doy,
B = Bp,v) = Ly —m'e

Notice that a@ € Eg, 1(R) since vv - d* = 0 and d € Umgy, 1(R). Similarly
[ € Eg,—1(R) since ¢ - pv' = 0 and ¢ € Umy,_1(R) (see Lemma 2.2.7). We have

L) = ( g) _ (; g) ( )
= () = 03) 6 i)
B 0 58)\0 I,

Now (1 L «),(1 L 3) € E,(R) and

10 1
, ") €E.(R)
'Ut In—l 0 In—l
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in view of Lemma 2.2.11. And hence L, (v), R,(v) € E,(R). The inclusions

1 0 1 v
, € Sp,(R
(owt a) (0 ﬁ) p,(R)
are verified immediately. O

Lemma 2.2.33 Let n > 2 and ¢ € Es,(R). Then there exists p € Eg,_1(R) such
that (1 L p)e € ESp,,,(R).

Proof: Let ¢ = ¢, ...e1, where each ¢; is of the form

1
v and 1 0 ’
0 I vt T

where v = (ay,..., a9, 1) € R* ! (see Lemma 2.2.11). We prove the result using
induction on r. If r = 0 there is nothing to prove. Let » > 1. Let us assume the
result is true for r — 1, i.e, when € = ¢,_1...1, then there exists a 6 € Ey, 1(R)

such that (1 L §)e € ESp,,(R). Now we prove the result when number of generator

1 oy/1 o0 2

Ly,(v) = (0 a) <Ut I 1) = Hseﬂ(ai,l),
1 0\ (1 il

By (v) = (0 ﬂ) <o 12U1> = Ilsentoc)

Note that a = a1y, v), 8 = B(¥n,v) € Eg,_1(R). Let us set 7 equal to either «

or 3 depending on the form of £;. Now,

10
< )51 € Esp2n(R)a

0 ~

1 0 1 0
L)

of ¢ is . Now,

and each

31



is of the form

Now we have

1 0 10
g = (0 /y1>ﬁr...ﬁ2 <O /y){:‘l.

By induction hypothesis (1 L §)53,...02 € ESp,, (R), for some 6 € Eq,_1(R).
Hence (1 L p)e € ESp,, (R), where p = §"'v € Eg,_1(R). O

Lemma 2.2.34 (|29], Lemma 5.5) For any natural number n > 2 and any alter-
nating matriz ¢ from Gla,(R), e1(Ez,(R)) = e1(Ean(R) N Sp,(R)). O

We will only use Lemma 2.2.34 in the special case when ¢ = 1,,. In this special
case the proof is much easier to establish. In this case following L..N. Vaserstein’s

proof one can show that

Lemma 2.2.35 For any natural number n > 2, e1Ey,(R) = e1ESp,,(R).

Proof: One way inclusion is obvious. To show e;Ey,(R) C e;ESp,,,(R) let us

choose v € e1Ey,(R) such that v = eje,... .21, where €,...&; € Ey,(R) and each ¢;

1 Vi 1 0
or ,
0 Ipp—1 Uf Iy,—1

where v; € R*!(see Lemma 2.2.11). By induction on r we will show that v €

is of the form

e1ESp,,,(R). If » = 0 we have nothing to prove. Let » > 1. Let us assume the
result is true for r—1, i.e, e1,_1...€1 € e1ESp,,,(R). Now we prove the result when

v = e1&...€7. By Lemma 2.2.33, we get 7y in Es,_;(R) such that

1 0
< )51 € ESan(R)a

0 ~

and

1 0
v = €1ﬁr---52( )517
0 ~
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where each

10 1 0
)

Note that each (; is of the form

1 ) 1 0
or .
0 Iop1 v Iypg

By induction hypothesis we have e;3,....0s € e;ESp,,(R) and hence v is in
€1ESp2n<R> ]

Lemma 2.2.36 Let n > 2 and let I be an ideal of R. Let ¢ € EX (R, I). Then
there exists a p such that pt € EY (R, 1) and (1 L p)e € ESps, (R, I).

Proof: Let ¢ = ¢,...e1, where each ¢; is of the form

1 ) 1 0
or ,
0 Iy, (UL P

where v = (ai1,...,a9,-1) € R* 1 and w = (by,...,bon_1) € I*"! (see Lemma
2.2.11). We prove the result using induction on r. If r = 0 there is nothing to prove.
Let » > 1. Let us assume the result is true for » — 1, i.e, when ¢ = ¢,_1...¢1, then
there exists a § such that 6* € E} (R, 1) and (1 L &)e € ESp,, (R, I). Now we

prove the result when number of generators of ¢ is r. Let

a=a(p,w) = Iy 1+ (—e)w (8 ¢f1>

= Ea(bs)E13(—b2) ... Eian—1(—ban_2),

and

0 g
= E21(a3)E31(_a2) cee Ezn—n(—azn—Q)-

ﬁ = ﬁ<wnvv> = Iy1 — (O 0 )Ut<_€1)
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Note that of, 3* € Ei, (R, ). Also note that

1 o\[1 0 2n
(0 a)( ¢ [> = Hsez‘l(bi—l) € ESpén(R,I),

w =2

1 0 1 v 2n 1
0 3 0 I = QSeli(ail) c ESan(R7[)_

We can set v to be a or 3 depending on the form of €; such that 7% € E3 (R, 1)

and

1 0
( )51 € ESp%n(R,I)
0 ~

1 0 1 0
€ = (0 7_1>ﬁr---ﬁ2 <O 7)*31,
1 0 1 0
B = (o 7) & (o 7‘1> € B, (R, ).

By induction hypothesis there exists ¢ such that ¢ € Ei _,(R,I) and (1 L
8)B....B, € ESpy, (R, I). Let us set p = 6 'y. Clearly p! € E} (R,I) and
(1 L p)e € ESps, (R, ). O

Therefore we have,

where each

Lemma 2.2.37 Let n > 2 and let I be an ideal of R. Let € € Ey,(R, 1), n > 2.
Then there ezists p € Eo,—1(R, I) such that (1 L p)e € ESp,,, (R, I).

Proof: We have ¢ € E,(R,I) = Ei (R, I) N GLy,(R,I) (see Lemma 2.2.30).
Using Lemma 2.2.36 we get a p such that p' € E}, (R, I) and (1 L p)e = «, where
o € ESpy, (R, I). We have,

g = (1Lp'a

1 0 0 1 %9 %3
= [0 1 0 0 1 0

0 *1 Igpo 0 *3 Iyp_o
= Iy, (mod I).
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Here ‘bar’ means reduction modulo /. Comparing the entries we get, %, %o, %3
are zero modulo /. Hence p € GLg,_1(R, ) and a € Sp,, (R, I). We get, via Lemma
2.2.30,

a € ESpy,(R, 1) NSpy, (R, I) = ESpy,(R, 1),
pt € By ((R,I)NGLy 1(R, 1) = Egn 1(R, ).

and hence p € Eg,_1(R, I). Therefore
(1 Lpe = a € ESpy,(R,I).

0

We use this to prove the next Lemma, which is a relative version of a special

case of an (as yet) unpublished result of R.A. Rao and R.G. Swan.

Corollary 2.2.38 (Rao-Swan): Let n > 2 and ¢ € Ey, (R, I). Then

elhpe = (1 Leg)n(l L &),

for some €y € Eo,_1(R, I).

Proof: Note that 7! € Ey, (R, I). Using Lemma 2.2.37 we get gy € Eo, (R, 1)
such that (1 L g9)e~! € ESp,,(R, I), and hence

5_1t(1 Leg) i, (1 Leg)e™ = .
Therefore we have

epe = ¢ {5_1t(1 Leg)} ¢ {(1 Leg)e '} e
= (]_ 1 Eo)t’ll)n(l 1 Eo).
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Chapter 3

Quillen’s Local-Global Principle

We begin this chapter with D. Quillen’s famous Local-Global principle (see Theorem
3.1.2). Quillen proved it using his Splitting lemma (see Lemma 3.1.1) for invertible
elements in the fibre of X = 0. Before stating the Splitting Lemma, let us fix a
notation.

Let (14 X R[X])* denotes the group of invertible elements in the polynomial ring
R[X] which are congruent to 1 modulo X.

3.1 Splitting Lemma and Related Results

Lemma 3.1.1 Quillen’s Splitting Lemma: ([24|, Lemma 1)

Let A be an algebra over R, let f € R, and let 0 € (1 + XA;[X])*. Then there
exists an integer k > 0 such that for any g1, 9> € R, with g, — g2 € f*R, there exists
P(X) € (1+ XA[X])* such that ¥(X); = 0(g1X)0(g2X) 7" O

Theorem 3.1.2 Quillen’s Local-Global Principle: ([24], Theorem 1)
Let M be a finitely presented module over R[X]. If My is extended Rn[X]|-module
for each maximal ideal m of R, then M 1is extended from R. O

In [31] A. Suslin stated and proved an analogue for the elementary matrices of
the above theorem of Quillen. Suslin’s proof was inspired by the ideas in the proof
of Quillen. To prove his Local-Global result Suslin first proved a lemma, which is
similar to the above Splitting lemma, for elementary matrices. Here we state the
lemma as well as Suslin’s elementary matrices analogue of Quillen’s Local-Global

principle.
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Lemma 3.1.3 Splitting Lemma for Elementary Matrices: ([31], Lemma 3.4)
Let a(X) € GL,(R[X]), and let «(0) = Id, n > 3. Let a € R be non-nilpotent and
also assume a(X), € E,(R,[X]). Then there exists a natural number m such that

a(eX)a(dX)™ € E,(R[X]) for ¢c=d (mod a™). O

Theorem 3.1.4 Local-Global Principle for Elementary Matrices: ([31], The-
orem 3.1)

Let a(X)is in GL,(R[X]), with «(0) = Id, n > 3. Then «(X) lies in E,(R[X])
if and only if for each mazimal ideal m of R the canonical image of a(X) in

GL,(Ru[X]) lies in E,(Ru[X]). O

After Suslin, in [16] V.I. Kopeiko stated and proved an elementary symplec-
tic matrices analogue of Quillen’s Local-Global principle. Here we state Kopeiko’s

result.

Theorem 3.1.5 Local-Global Principle for Elementary Symplectic Matri-
ces: ([16], Theorem 3.6)

Let a(X) € Sp,,, (R[X]), with «(0) = Id, n > 2. Then a(X) € ESp,, (R[X]) if and
only if for any mazimal ideal m of R, the canonical image of a(X) in Spy, (Rm[X])
lies in ESp,, (Rm[X]). O

Now we talk about the action version of Quillen’s Local Global Principle due
to L.N. Vaserstein.
In a letter to H. Bass, L.N. Vaserstein gave a short proof of an “action version”

of Quillen’s well known Local Global Principle (see Theorem 3.1.6),

Theorem 3.1.6 (L.N. Vaserstein) (18|, Chapter 3, Theorem 2.5)
Let n > 3 and v(X) € Um,(R[X]). If v(X) € v(0)GL,(Ru[X]), for all mazimal
ideals m of R, then v(X) € v(0)GL, R([X]). O

R.A. Rao proved similar result as above for the elementary linear group.
Theorem 3.1.7 (R.A. Rao) (|25], Theorem 2.3)

Let v(X) € Um,(R[X]), n > 3. Suppose for all mazimal ideals m in R, v(X) €
V(0)En(Ru[X]). Then v(X) € v(0)E,(R[X]). 0
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3.2 Local Global Principle

We prove a relative (w.r.t. an extended ideal) elementary (linear, symplectic) action
version of Theorem 3.1.7 below. We first state and prove the essential steps of L.N.
Vaserstein’s Local Global principle for action on Um,,(R[X]), and a few preliminary
lemmas.

Note that in this and the next section we establish results for elemen-
tary linear and elementary symplectic groups, but not for elementary

orthogonal group (though the results are also true in this case, as shown

in [1]).

Lemma 3.2.1 Let n > 3. Let I be an ideal of R and S be a multiplicatively closed
set in R. Let o(X) € E(n,Is[X]), with «(0) = Id. Then there exists o*(X) €
E(n, R[X], I[X]) such that o*(X) localises to a(sX), for some s € S, with o*(0) =
Id.

Proof: Since there are only finitely many denominators involved, there exists
t € S such that a(X) € E(n, ,[X]). Let

a(X) - H geikjk(hk(X))a
k=1

where hy(X) = h(0) + X f1(X). Given that (0) = Id. Using Lemma 2.2.27 we
get,

aX) = J[w gein(XH(X)/8) vt

where v, = HLZI géi.j. (he(0)) € E(n, I) and fi,(X) € I[X].
Case (A): Linear case, i.e, when E(n, I[X]) = E,(I[X]).
Let vfk be the i;-th column of v; and w;, be the j,-th row of %—1' Therefore,

alX) = H (In + X fr(X) /50! w;, ).
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Here v;,,w;, € R'. Let us set v;, = (1/t%)v}

Fowy, = (1/t°)wj , for some s > 0,

with v} ,w; € R". We can write,

T

o(X) = [T+ X AlX)/85(0]) w3,

k=1
Let us take N = 3s and define,

T

o' (X) = [ @+ XfltNX) (] ) ws,)).
k=1

Clearly o*(X) € E,(R[X],I[X]), as fr(t"X) € I[X] (see Lemma 2.2.8), and
localises to a(tV X).

Case (B): Symplectic case, i.e, when E(n, I[X]) = ESp,,, (I[X]).

Let o be the permutation defined before Definition 2.1.14. For any row vector
v we define v = vy),. Let v and v,
respectively. Then v;, and ¥,(;,) are the o(i)-th and j-th rows of fy,;l respectively.
If i) = o(ji) then,

be the ip-th and o(ji)-th columns of 74

Wi (X fu(X) /)9t = Lo + (X fu(X)/1)0}, 05 € ESDy, (1[X]).
If i, # o (ji) and i < ji then, yseq, o (X fo(X) /)7
= Lo + (X fr(X) /)05 (0 O, + (X Fe(X) /)07, Vo) € ESDyy (L[X]).
If v € R?™, then v = (1/t%)v*, for some s > 0, with v* € R*™. Let us define,

" Tom 4+ (X fo(X) /t3*)oilr , if iy, = o (),
k pr—

1o, otherwise.
Lo + (X f(X) /8203, Ui+
by = (ka(X)/t?’S)v;‘ﬁj(jk), if i, # o(J), ik < Jks

Iy, otherwise.

Note that a(X) = Hakbk. Let us take N = 3s and define,
k=1
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~ Lom + (X fe (N X))oilor i iy, = o (i),
k p—

I, otherwise.

[2m + (XfIC(tNX))U;t(Jk)f’l\J?k—'—
by = (ka(tNX))U;kIf’ﬁ;(Jk), if 1k 7é O'(jk),’Lk < jk,

Io, otherwise.

Define
k=1

It is easy to see a*(X) € ESp,,,(R[X], I[X]), as fr(t"X) € I[X] (see Lemma
2.2.22 and Lemma 2.2.23). o*(X) localises to a(t"V X). O

The following argument of L.N. Vaserstein is standard (see [18], Chapter III, Propo-
sition 2.3):

Lemma 3.2.2 Let n > 3. Let I be an ideal of R and S be a multiplicatively closed
set in R. Let v(X) € Um,(R[X]) and let v(X) € v(0)E(n, Is[X]). Then there is an
s in S such that for any a in R,

v(X +asT) € o(X)E(n, R[X,T], 1[X,T]).
Proof: Let a(X) € E(n, Is[X]) such that v(X)a(X) = v(0). Let
BX,T) = a(X+T)a(X)' € E(n,Is[X,T]).
Then

V(X +T)8(X,T) = v(X+T)a(X +T)a(X)™?
= v(0)a(X)™!
= U(X) in RS[X, T]Qn

Since 5(X,0) = Id, we can find 8*(X,T) € E(n, R[X,T], I|X,T]) which localises
to G(X, sT) for some s € S with 3*(X,0) = Id (see Lemma 3.2.1). Then in R[X,T]"

we have,
'U(X + ST)ﬁ*(Xa T) - 'U(X) = T’UJ(X, T)a
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for some w(X,T") which localises to 0. Thus for some s* € S, and for all a € R, we

get,
V(X +ass*"T)B"(X,as'T) —v(X) = Tasw(X,as*T) = 0.

U

Now we prove our main theorem of this section, which plays a crucial role in this

thesis.

Theorem 3.2.3 Local Global Principle w.r.t. an Extended Ideal: Letn > 3.
Let I be an ideal of R and v(X) € Um,(R[X], I[X]). If for all mazimal (or even
prime) ideals m of R, v(X)m € v(0)mE(n, In[X]), then

o(X) € v(0) E(n, R[X], I[X)).

Proof: By assumption v(X )y, € v(0)nE(n, I[X]), for all maximal (or all prime)
ideals m of R. Using Lemma 3.2.2 it follows that, for each maximal ideal m of R,
there exists s, € R\ m such that for all a € R,

v(X 4+ asyT) € v(X) E(n, R[X,T|,1[X,T)). (3.1)

Note that the ideal generated by s;'s is the whole ring R. Therefore there exists
Skys-- -5 Sk, such that a;sg, + -+ a8k, = 1 where a; € R, for 1 < i < r.

In equation (3.1) replacing X by assp, X + - -+ a5, X and asyT by a5, X we
get,

v(X) = v(ars X + agsp, X + -+ - + a5, X)
€ v(agsk, X + -+ a,5,X) E(n, RIX], I[X]).

Again in equation (3.1) replacing X by azsp, X+ - -+a,sx, X and as, T by assg, X

we get,

v(ags, X + -+ apsp, X) € v(agsg, X + -+ a.s5,X) E(n, R[X], I[X]).
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Continuing in this way we get, v(a,s;, X +0) € v(0)E(n, R[X], I[X]). Combining

all these we get,
v(X) € v(0) E(n, RIX], I[X]),
and hence the result is proved. O

Remark 3.2.4 The above Theorem is sufficient to prove Theorem 4.2.2, our main
result in the free case. However to prove Theorem 5.11.4, a projective module
analogue of Theorem 4.2.2, we need a stronger version of Theorem 3.2.3. This
version was independently observed earlier in [1] by using Suslin’s theory of special
forms being elementary. Here we use commutator laws to prove those result. We

state and prove the theorems in the next section.

3.3 Local Global Principle: A Stronger Version

Lemma 3.3.1 Let R be a commutative ring with R = 2R, and let I be an ideal of
R. Let n > 3 in the linear case and n > 6 in the symplectic case. Let € = ¢1...¢,

be an element in E'(n, R, I), where each €, is a (standard) elementary generator.
Also ge;j(X f(X)) is a standard elementary generator of E'(n, R[X], I|X]). Then

e gey(YYXFYY X)) et = []geis (Yh(X,Y)),
t=1

where either iy = 1 or j; = 1 and hy(X,Y) € R[X,Y], when iy = 1; hy(X,Y) €
I[X,Y] when j; = 1.

Proof: Given that ge;;(X f(X)) € EY(n, R[X], I|X]). First assume ¢ = 1 and
f(X) € R[X]. We prove the result using induction on r, the number of generators
ofe. Let r = 1 and € = geyy(a). Note that whenp =1,a € R, and wheng =1,a € I.

Case (1): Let (p,q) = (1,7)). In this case

gerja) gey(Y'X f(Y'X)) gerj(—a) = gey;(Y'Xf(Y'X)).
Case (2): Let (p,q) = (1,k)), k # 7. In this case

gew(a) gey;(YIX f(YIX)) gen(—a) = gey; (VX f(Y'X)).
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Case (3): Let (p,q) = (k,1)),k # 7. In this case

ger(a) gei;(YAX f(Y*X)) geri(—a)
= ge(xY'Xf(Y'X)) gey; (Y X f(VIX))
= [gen (xY?), gey;(Y?X f(Y1X))] ger; (Y X f(YX)),

where * is an element of I.
Case (4): Let (p,q) = (j,1)). Let us choose k # 1,2, j,0(j). In this case

geji(a) ger;(YAX f(Y1X)) geji(—a)
= gej(a) [genn(Y2X F(Y1X)), ger;(Y?)] geji(—a)

= [geu(Y2X # f(Y'X)) genn(Y2X f(YX)), ger(=Y?)
ger; (V)]

= gen(Y?X * f(Y*X)) gern(Y? X f(Y*X)) gera (=Y ?%) ger; (Y?)
gen (Y2 X f(Y1X)) gej(=Y?X * f(Y1X)) gey;(—Y?)
ger (Y2x)

= gen(Y?X * f(Y'X)) genn(Y? X f(Y*X)) gerr (=Y ?%) gex; (Y?)
gew (=YX f(Y*X)) [geji (=Y %), gern(Y X f(Y1X))] ger;(—Y?)
ger (Y2)

= gep(Y2X x f(Y2X)) gern(Y2Y f(Y*X)) ger (=Y ?x) gep;(Y?)
gen (=YX f(Y'X)) gerj(=Y?) gex;(Y?)
lge1 (=Y %), ge(YX f(Y*X))] gerj(=Y?) gera (Y?%)

= [gen(Y*), genn(YXF(YAX))] gern(Y2X (VX)) gep (=Y )
gewn(=Y X f(YAX)) ger;(YAX (VX)) [gers (=Y %)
gein(=Y), gerj (=Y X f(Y'X)) genn(YX f(YX))] gera (Y?5),

where * is an element of I.
Hence the result is true when » = 1. We show the case j = 1 by carrying out

similar calculations. Let us assume the result is true when the number of generators
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isr—1, i.e,

a6 ge(YYT X F(YY (X)) et et

T

- H::l 9Cije (Yht(X’ Y))>

where either i, = 1 or j; = 1. Note that h(X,Y) € R[X,Y], when ¢, = 1 and
ht(X, Y) € I[X, Y], when jt =1.

Now we prove the result when the number of generators is . We have

g1 89...6 gei(YYXF(YY(X)) et g5t et

= &1 (T geus V(X V) ) &7
= Hle €1 geitjt(Y4ht(X7 Y)) gfl'

We now repeat the calculation under Cases 1, 2, 3, 4 to conclude that

egeu (YU XYY X)) = [[geun(Yh(X,Y)),
t=1
where either i; = 1 or j; = 1. Here h(X,Y) € R[X,Y], when i, = 1 and iy(X,Y) €
I[X,Y], when j, = 1. O

Theorem 3.3.2 Let R be a commutative ring with R = 2R, and let I be an ideal
of R. Let n > 3 in the linear case and n > 6 in the symplectic case. Let a be a
non-nilpotent element in R and a(X) be in E'(n, R,[X], [,[X]), with (0) = Id.
Then there exists a*(X) € EY(n, R[X], I[X]) such that o*(X) localises to a(bX),
for some b € (aV), N > 0, with o*(0) = Id.

Proof: Let a(X) = [[;_, g€, (fx(X)) is in E'(n, R,[X], I,[X]), and f(X) =
f1(0) + X gi(X). Using Lemma 2.2.27 we get

a(X) = H% i (X gr(X)) 7
k=1

where v, = []4_, gei i, (fx(0)) € EX(n, Ry, I,). Using Lemma 3.3.1 we can say that

o) = [T (TToesn (MY )a)),
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where either i, = 1 or j; = 1. Note that h(X,Y) € R[X,Y], when ¢, = 1 and
h(X,Y) € I[X,Y], when j; = 1, and m is a natural number. Let us choose
N =m+ N’ and define

T S

aH(X,Y) = H(ngitjt(aN'Yht(X,aNY))>.

k=1 t=1

Clearly o*(X,Y) € E}(n, R[X,Y],I[X,Y]) and
a((d"V)X) = of(X,Y).

Substituting Y = 1, we get a(bX) = a*(X), for b € (aV), N > 0. Note that
a*(X) € El(n, R[X], I[X]), with o*(0) = Id. O

Theorem 3.3.3 Let R be a commutative ring with R = 2R, and let I be an ideal
of R. Let n > 3 in the linear case and n > 6 in the symplectic case. Let a be
a non-nilpotent element in R and a(X) be in E(n, R,[X], [,[X]), with «(0) = Id.
Then there exists o*(X) € E(n, R[X], I[X]) such that o*(X) localises to a(bX), for
some b € (a™), N > 0, with o*(0) = Id.

Proof: Follows from the previous theorem and Lemma 2.2.30, which says that
E(n,R,I)=EYn,R,I)NG(n,R,I). O

Theorem 3.3.4 Let R be a commutative ring with R = 2R, and let I be an ideal
of R. Let n > 3 in the linear case and n > 6 in the symplectic case. Let a(X) €
G(n, R[X], I|X]), with a(0) = Id. If a(X)w belongs to E(n, Rn|X], In[X]), for all
mazimal ideals m of R then, a(X) € E(n, R[X], I[X]).

Proof: One can suitably choose an element a,, from R\ m such that a(X),, €
E(n, R, [X], L., [X]). Let us define

BX,Y) = a(X +Y)aalY);
Clearly

B(X,Y) € E(n,Rq,[X,Y] L, [X,Y]),

and (3(0,Y) = Id. Therefore 3(bxX,Y) € E(n, R[X,Y], I[X,Y]), where b, € (al)),
for some N > 0 (see Theorem 3.3.3). The ideal generated by by’s is the whole ring
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R. Therefore we have ¢1by, + -+ + cibym, = 1, where ¢; € R, for 1 <1 < k. Note
that 5(c;bm, X,Y) € E(n, R[X, Y], I[X,Y]), for 1 <4i < k. Hence

k
a(X) = []B(cibm X . T))B(ckbm,.0) € E(n, R[X],I[X]),

i=1
where T; = ¢jp1bm, X + -+ - + by, X. O
Theorem 3.3.5 Let R be a commutative ring with R = 2R, and let I be an ideal
of R. Let n > 3 in the linear case and n > 6 in the symplectic case. Let v(X) €

Um, (R[X], I[X]). If for all mazimal ideal m of R, v(X)m € v(0)nE(n, Ru[X], In[X]),
then

v(X) € v(0)E(n, R[X], I[X]).

Proof: For each maximal ideal m of R, we get am)(X) € E(n, Ru[X], In[X])
such that

Let us define
BX,T) = amX+T) am(X)™".

Clearly B(X,T) € E(n, Ra[X,T], In[X,T]). Note that there are only finitely
many denominators involved, and hence there exists a, € R\ m such that 5(X,T)
is in E(n, Ry [X,T], I, [X,T]). Also B(X,0) = Id. This implies 8(X,bnT) €
E(n, R[X,T], I|X,T)) for suitable by, € (aX), N > 0 (see Theorem 3.3.3). Now,

V(X 4 buT) B(X,b0T) = (X +buT) () (X + buT) t(umy(X) 7"
= 0(0) agm(X)™
= v(X).

Note that the ideal generated by by’s is the whole ring R. Therefore ciby, +
4 cpbm, = 1, where ¢; € R, for 1 <17 < k. In the above equation replacing by,
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by ¢1bm, X and X by coby, X + -+ + cpbm, X we get,

v(X) = v(bmX + by X + -+ + by, X)
€ V(bmX + -+ b, X) E(n, R[X], I[X]).

Again in the above equation replacing X by by, X +- - -+ by, X and by, T by by, X

we get,
V(bmyX + -+ b X) € 0(bpy X + -+ + by, X) E(n, RIX], I[X]).
Continuing in this way we get
(b, X +0) € v(0) E(n, R[X], I[X]).
Combining all these we get

o(X) € v(0) E(n, R[X], I[X]).
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Chapter 4

Equality of Orbits

L.N. Vaserstein showed in [29] that if v is the first row of an elementary matrix
of even size then it is also the first row of an elementary symplectic matrix (see
Lemma 2.2.34). This led us to query whether the orbit space of unimodular rows
under the action of the elementary subgroup is in bijective correspondence with
the orbit space of unimodular rows under the action of the elementary symplectic
group. In this chapter, we prove that this is so, and also establish the relative
version, vEq, (R, I) = vESp,, (R, I), for an ideal I of R, when R = 2R.

4.1 The absolute case

In this section we prove that the set of orbits of the action of the elementary sym-
plectic group on all unimodular rows is the same as the set of orbits of the action

of the elementary linear group on all unimodular rows.

Theorem 4.1.1 Let R be a commutative ring and let v € Umg,(R), then vEq,(R) =
vESpa,(R), forn > 2.

Proof: Let v;(X) = vE;;(X). Let m be a maximal ideal of R. Using Lemma
2.2.15 we get, vy, = e1 E, for some E € Eg,(Ry,). Using Lemma 2.2.35 we get,

where E € ESp,,(Ry). Also
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U* (X)m = 'UmEij(X)m = GlEEij(X)m = 61F(X),

ij
where F(X) € ESp,,,(Rn[X]) (see Lemma 2.2.35). Therefore,

V(X )m = Ul (X)m
= e FE;(X)m
= e F(X)
_ e BER(X)
= v, B71F(X)
€ U;j(o)mESp2n<Rm[X])'
Hence, v};(X)m € v};(0)mESpy, (Rn[X]), for all maximal ideal m of R. By Theo-

rem 3.2.3 (when [ = R)(or see the main theorem in [8]), v;;(X) € v;(0)ESp,, (R[X]);
whence also to v};(A), for any A € R. Hence the result follows. O

Theorem 4.1.2 The natural map

ESpy,(R)  Es(R)

is bijective for n > 2.

Proof: The proof follows from Theorem 4.1.1 O

4.2 The Relative Case

In this section we prove a relative version (see Theorem 4.2.2), with respect to an
ideal I in R, of the above Theorem 4.1.1. Vaserstein’s Lemma (Lemma 2.2.37)
and Local Global principle w.r.t. an extended ideal (see Theorem 3.2.3) will play
a crucial role in the proof of the relative version. Local Global principle w.r.t. an
extended ideal will be used to prove the Lemma 4.2.1. Vaserstein’s Lemma and

Lemma 4.2.1 will be employed to prove Theorem 4.2.2.

Lemma 4.2.1 Letn > 3. Let R be a commutative ring with R = 2R, and let I be an
ideal of R. Letv € Umg, (R, I?). If p € Egn 1(R,I), thenv (1 L p) € v ESp,, (R, I).
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Proof: Let p(X) € Eq,_1(R[X], I[X]), with p(1) = p and p(0) = Id (see Lemma
2.2.3). Let v = (14 ay,as,...,as,), with a; € I?, for 1 < i < 2n. Let us assume
V(X)=wv(1 L p(X)). Note that e;V(X) =1+ a;. Let m be a maximal ideal of R.

If I C m, then (1 + a1)y is unit in Ry,. Using Lemma 2.2.17 we get g(m)(X) €
ESpy, (Ru[X], Im[X]?) such that V(X)y, = e;g(m)(X).

If I ¢ m, then either (14 a;)n is a unit or for some ig, 1 < ip < 2n, a;, ¢ m. In

either case, since I, = Ry, by Lemma 2.2.15 and Lemma 2.2.35 we have,

V(X)m € e1Eo(RulX))
61E8p2n(Rm[X])
= e ESp,, (RulX], I.[X]?).

Therefore V(X)m € €1ESpy,(Rm[X], In[X]?), for each maximal ideal m of R.
Also, we will have g(m)o from ESp,,(Rm, I2) such that V(0),g(m)y = e;. Therefore
V(X)m € V(0)mg(m)oESpy, (Ru[X], [.[X]?), for each maximal ideal m of R. Using
Lemma 2.2.25 we get, V(X)n € V(0)uESps,(Im[X]), for each maximal ideal m of
R.

Using Theorem 3.2.3, we get V(X)) € V(0)ESp,, (R[X], I[X]). Substituting X =
1 we get v(1 L p) € vESp,, (R, I). O

Theorem 4.2.2 Let R be a commutative ring with R = 2R, and let I be an ideal
of R. Let v € Umy, (R, 1), then v Eg, (R, I) = v ESp,,,(R, 1), for n > 3.

Proof: It suffices to show the left hand side is contained in the right hand side.
The reverse inclusion is obvious. Let ¢ € Ey, (R, I). Using Lemma 2.2.21 we get &
from ESp,, (R, I) such that vee; € Umy, (R, I?). Using Lemma 2.2.37 we get p in
Eon—1(R,I) with ee;(1 L p) € ESp,,, (R, ). Now

ve = weey (1 Lp) (1 Lp)tel
We have vee (1 L p) is in Umy, (R, I?). Hence by Lemma 4.2.1,
[vee1(1 L p)] (1 Lp)™' € v ESp,, (R, I)
Let

veer(l1 Lp) (1 Lp)™" = op,
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where 3 is in ESp,, (R, I). Therefore ve = vBe;! € vESp,, (R, I). O

Now we are in a position to give a proof of relative version of Theorem 4.1.2

using the above lemmas.

Theorem 4.2.3 Let R be a commutative ring with R = 2R, and let I be an ideal
of R. Then the natural map

Umg(R.D)  Umga(R.1)
ESp,, (R, 1) Eon (R, 1)

is bijective for n > 3.

Proof: It is easy to show that the above map is surjective. To show the map
is injective let us consider v, w from Umsy, (R, ) and ¢ from Eo,(R, ), such that
vg = w. We need to show w is in the ESp,, (R, I)-orbit of v. Using Theorem 4.2.2
we get h from ESp,,, (R, I), such that vg = vh and hence w = vh. O
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Chapter 5

Equality of Orbits: A Global Version

Symplectic transvections were defined by H. Bass in 1964 in [4], and L.N. Vaserstein
defined certain symplectic transvections of a free module in 1974 in [29]|. In this
chapter we will relate these two objects.

Here we define Elementary Symplectic group with respect to an alternating ma-
trix of Pfaffian 1, following the lead of L.N. Vaserstein. We then prove a Local-
Global principle for this group. We also recall the definition of the group of ele-
mentary transvections and the group of elementary symplectic transvections with
respect to an alternating form, due to H. Bass and prove Local-Global principle
for these groups. Our main theorem is that the Elementary Symplectic group of
Vaserstein and the group of elementary symplectic transvections of Bass are the
same when we are dealing with the free case. Thus, the group of elementary sym-
plectic transvections of H. Bass may be regarded as the globalization of the L.N.
Vaserstein’s elementary symplectic group.

As a consequence of the Local Global principles established, we generalise the
theorems of previous chapters and show that the orbit space of unimodular rows
of a projective module under the action of the group of elementary transvections is
in bijection with the orbit space of unimodular rows of a projective module under
the action of the group of elementary symplectic transvections with respect to an

alternating form.
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5.1 Elementary Symplectic Group ESp,(R)

Definition 5.1.1 The group of all invertible 2n x 2n matrices
{o € GLan(R) | a'pa = o},

where ¢ is an alternating matrix of Pfaffian 1 is called Symplectic Group Sp,(R)
With Respect To An Invertible Alternating Matrix ¢.

Definition 5.1.2 Let v € R*!. Following Lemma 2.2.32 we can define

L,(v) = <1t O) = <1t O) and
1 v
Ry(v) = <0 ﬁ)

Here ¢ is an invertible alternating matrix of the form

0 —c 0 d
= , and o ! = ,
’ (Ct v ) ’ <_dt “)
where ¢,d € R?>*~!, and

a = alp,v) = Iy_1+dvy,
= Be,v) = Iy — w'e

By Lemma 2.2.32 it follows that all these matrices belong to Sp,(R). The sub-
group of Sp,,(R) generated by L,(v) and R, (v), for v € R**~" is called the elemen-
tary symplectic group ESp (R) with respect to the alternating matrix ¢
of Pfaffian 1 . This definition is due to L.N. Vaserstein.

Definition 5.1.3 Let I be an ideal of R. The relative elementary group ESp,, (/)
is a subgroup of ESp,,(R) generated as a group by the elements L(v) and R(v), where
ve I’

The relative elementary group ESp (R, I) is the normal closure of ESp,, (/)
in ESp,(R).

Definition 5.1.4 Let I be an ideal in R. The relative group ESp}O(R, I)is a
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subgroup of ESp,(R) generated by the elements of the form R(v) and L(w), where

ve R and w e > 1,

Lemma 5.1.5 For the standard alternating matriz 1,

ESpy, (R) = ESpy,(R),
ESpwn (R, 1) = ESpy,(
Equlpn (Rv I) = Esp%n( ) )7

forn > 3.

Proof: In the proof of Lemma 2.2.33 we have seen

Ry, (v) = (é g) <(1) 1_;) = Hseli(ai—1)>
Ly, (v) = <; 2) (1,115 ?) = Hseil(ai—1)7

where v = (ay, ..., as,_1) € R*"~1. Therefore we have

Note that sey;(a), sej1(b) € ESp,, (R). For i, j # 1,

seij(a) = [sen(x), sey(1) ]
= [ L¢n(*6i—1)7 R¢1(6j—1) ]
€ ESp,, (R),

where * is an element of R, and hence ESp,,(R) C ESp,, (R). Therefore the first

equality is established.

To show the second equality let us first show ESp,, (R,I) C ESp,,(R,I). It is
enough to show that an element of the form Ty, (v) Sy, (w) Ty, (v) "' is in ESp,,, (R, I),
forv € R* ! and w € I*"'. Here Ty, and Sy, are Ly, or Ry, . Using the definition

of ESp,, (R, I) and equations (5.1), (5.2) we get
Ty, (v) Sy, (w) Ty, (v)™" € ESp,, (R, 1),
and hence ESp,, (R, I) C ESp,,(R,I).
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To show the other inclusion we recall the equivalent definition of the relative
group which says that ESp,, (R, I) is the smallest normal subgroup of ESp,, (R)

containing sey; (z), where x € I (see Lemma 2.2.29). We need to show
g sen(z) g1 € ESpy, (R,),

where g € ESp,, (R) = ESp,, (R). Hence g sey;(x) g~' € ESp,, (R, I) and
ESp,,(R,I) € ESp, (R,I).

Therefore the second equality is established.

Generators of ESp,, (R, I) is of the form Ry, (v), Ly, (w), where v € R?"~! and
w € I*"~1. By equations (5.1) and (5.2) we have Ry, (v), Ly, (w) are in ESpy, (R, I),
hence ESpfpn(R, I) C ESpy,(R,I). On the other hand generators of the group
ESp),, (R, I) are of the form sey;(a), seji(z), where a € R and z € I. Using equa-
tions (5.1) and (5.2) we get sey;(a) = Ry, (ae;_1), and seji(z) = Ly, (ze;_1), hence
ESpy, (R, 1) C ESp}pn(R, I). Therefore the third equality is established. O

Lemma 5.1.6 Let ¢ and @* be two alternating matrices of Pfaffian 1 such that
e=(1Le) ¢* (1 Le), for some e € Eg,_1(R). Then we have

Sp,(R) = (1Le)™" Sp.(R) (1 Le),
ESp,(R) = (1Le) " ESp,.(R) (1Le).

Proof: First we will show (1 L &)~ Sp_.(R) (1 L&) C Sp,(R). Let p € Sp,-(R)

i.e, p'*p = ¢* (by definition of symplectic group w.r.t. an alternating matrix). Now

(TLe)pt(1Le)Yo@Le)pdLe)

= (QLe)yp QL) {1Le) e 1Le)} (X Le)y pdLe)
(1Le) ¢*(1Le)

)

and hence (1 Le)~" Sp,.(R) (1 Le) € Sp,(R). Similarly we will be able to show
(1 Le)Sp,(R) (1 Le)™" C Sp,.(R). Therefore

Sp,(R) = (1Le) 'Sp,.(R)(1Le).
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We also have

(1Le) Ly(v) (1 Le)™ = Ly«(ve'), 5.3
(1Le) Ro(v) (1 Le) ™t = Ry(ve™), (5.4)
and hence ESp(R) = (1 L e)"! ESp,.(R) (1 L ¢). O

Lemma 5.1.7 Let ¢ and ¢* be two alternating matrices of Pfaffian 1 such that
e=(1Le) ¢* (1 Le), for somee € Eg,_1(R,I). Then we have

ESp,(R,I) = (1Le) " ESp,.(R,I) (1 Le),
ESp,(R,I) = (1Le)" ESp..(R,1) (1 Le).

Proof: To prove the above equalities we use definitions of ESp,, (R, I), ESp}o(R, I)
and the equations (5.3), (5.4). O

Lemma 5.1.8 Let (R,m) be a local ring and I be an ideal of R. Let ¢ be an
alternating matriz of Pfaffian 1 over R, and ¢ = 1, (mod I). Then ¢ is of the

form
(1 Le) a, (1 Le),

for some € € g, 1(R, I).

Proof: We will prove the result using induction on n. When ¢ is of size 2 x 2,
the result is true. Let us assume the result is true for alternating matrix of size
2(n—1) x 2(n—1), i.e, for an alternating matrix ¢* of size 2(n — 1) x 2(n — 1), we
have 7 from Es,, _3(R, I) such that

" = (1 Ln) ¢ (1Ln).

We will prove the result for alternating matrix ¢ of size 2n x 2n. Let

o = <°t ) = Y (mod 1),
—a

«

where a € Umsy,,_1(R, ) and « is alternating matrix of size (2n—1) x (2n—1). Note
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that

(o 0
= (O 1/1,11) (mod I).

As R is local ring we have a = e;3, where 3 € Ey,_1(R, I) (see Corollary 2.2.18).
Hence

QL) e Lp™ = <O 61>,

t
—€r 7

where v = (3%)™! a 37!. Note that ~ is an alternating matrix. Therefore v can
be written as (_%: % ). Note that 7 = (Fﬁ)_laﬁfl = (04, )(mod I), and hence
be I* 2 and ¢* = 1,_; (mod I). Now

0 1 0 0
bt (ALB) e (LB 01 —ber!
I5,_o 0 0 Iz

0 1 0
=|-10 0
0 0

Let us call the matrix

0 0
(s L))" [0 1 —bprt | 1LY =(1Le) )"
00 [2n72

Note that ¢ € Ey, (R, I). Using induction hypothesis we get

(TLe)™) p(Lle)

0 1 0
= (s L)) (=10 0| (L)
0 0
= Un,
and hence ¢ = (1 L €)', (1 L €). Therefore the result is established. O
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Remark 5.1.9 As a particular case of the previous lemma we get that when (R, m)
s a local ring and ¢ is an alternating matriz of Pfaffian 1 over R, then there exists

e € Eg,_1(R) such that
o = (1Le) vy, (1Le).

Remark 5.1.10 The condition that the alternating matrices, in this thesis, are of
Pfaffian one can be extended to all invertible alternating matrices by observing that
an invertible alternating matriz over a local ring which is congruent tow Y, L 1,4
(mod I), where u = Pfaffian ¢, is of the form E'(uiy L 1, 1)E, for some relative
elementary matriz E. Only slight modifications in the proofs given below are needed,

which is an easy exercise.

Remark 5.1.11 Let ¢ be an alternating matriz of Pfaffian 1, over R. Let us con-
sider the local ring Ry, where m be a mazimal ideal of R. We will get e(m) €
Eon_1(Rw) such that over Ry we have

p = (LLem)) ¢, (1Le(m))

(see remark 5.1.9). Let a be the product of denominators of all the entries of (m).

Clearly a is not in m. Hence we get € from Eo,_1(R,) such that
o = (1Le) v, (1 Le).

Also, when dealing with relative case w.r.t. an ideal I of R, we will
always assume that the alternating matrix ¢ of Pfaffian 1 is congruent to

Yn(mod I). Therefore over the local ring R, we have

p = (LLem) ¥, (1Le(m)),

for some ¢(m) € Eg,_1(Ru, In) (see Lemma 5.1.8). Since there are only finitely

many denominators, we can find a not in m such that
o = (1Le) ¢, (1Le),

where ¢ € Ey, 1(R,,1,). We will constantly use this fact without even

referring to it !
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Lemma 5.1.12 Let ¢ be an alternating matriz of Pfaffian 1 of the form (1 L
e) i, (1 Leg), for somee € Egp_1(R,I). Then

ESp,(R,I) = ESpy(R,I) N Sp,(R.I),

forn > 3.

Proof:

ESpw(R, I =

= ESpL(R,I) N Sp,(R,I).

The third equality follows from Lemma 2.2.30. U

5.2 Dilation Principle for ESp(R)

Lemma 5.2.1 Let n > 2. Let ¢ be an alternating matriz of Pfaffian 1. Let a € R
be non-nilpotent and ¢ = (1 L €)' ¢, (1 L &), for some ¢ € Eg, 1(R,) over
the ring R,. Let a(X) € ESp,gp, x(Ra[X]), with a(0) = Id. Then there ezists
a*(X) € ESpgppx (RIX]) such that a*(X) localises to a(bX), for some b € (a™),
N> 0 and o*(0) = Id.

Proof: «(X) can be written as [[;_, T,,(¢:(X)), where T, is L, or R,, and
g:(X) € (R,[X])* 1. Having ¢ = (1 L &) v, (1 L ¢), with some € € Ey,_1(R,),

will allow us to write

o(X) = JIA L) T (fi(X)) (1 Le)



where f,(X) = g/(X) &', if T, = L,, and fi(X) = g(X) e}, if T, = R,, and
n(X) € ESp,, (R.[X]) (see Lemma 5.1.5 and Lemma 5.1.6). Note that n(0) = Id,
as «(0) = Id. Therefore,

n(X) = ] seis(Xhe(X)/a®) 7%,

where v € ESps,(R,) and hi(X) € R[X] (see Lemma 2.2.27). Now,

ortl or+1

n(Y X) = H’yk Sezkjk(YTMHth(Y

k=1

l
= H S€piqe (Y2ut<X7 Y)/as)
t=1

X)/a*) vt

l
= H[Septl(y)v 361Qt<Yut(X7 Y)/G’S)]v
t=1
where u;(X,Y) € R[X,Y]. The second equality above follows from Lemma 2.2.28.
Let us take N = M2T+1, where M = M’ + s be a natural number. We define

o (X.Y) = [[ILp(@"Yepor(e) ™), Rol@'Yuy(X, a"Y)ey 1))

t=1

where a*(X,Y) € ESp g px,y)(R[X,Y]), for N > 0. Note that

(@ XY™ = a((d™Y)¥X)
= (1 L) n((@™Y)

= (1Le)! H[septl(aMY), seiq, (MY uy (X, aVY) /a)]

t=1

2'r+1

X)(1Le)

(1 Le)

= H[L¢(&MY€pt—1 (N, Ro(a™Yu (X, a™Y)e, 1¢)).

t=1

Substituting Y = 1 we get a*(X) = a(bX), for b € (aV), N > 0 (see Lemma
2.2.4). Observe that a*(X) € ESp,gpix(R[X]), and a*(0) = Id. O

Now we prove dilation principle for ESp ¢ gix) (R[X], I[X]).

Lemma 5.2.2 Let n > 3. Let R be a commutative ring with R = 2R, and let 1
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be an ideal of R. Let ¢ be an alternating matriz of Pfaffian 1. Let a € R be a
non-nilpotent element, and ¢ = (1 L &) ¢, (1 L ), for some ¢ € Eg,_1(Rq, 1)
over the ring R,. Let a(X) € ESpgp,(x(RalX], [a[X]), with a(0) = Id. Then
there exists & (X) € ESp,gpix)(R[X], [[X]) such that a*(X) localises to a(bX), for
some b € (aV), N >0, and o*(0) = Id.

Proof: We have o(X) = (1 L ¢)7! n(X) (1 L &), where n(X) belongs to
ESpy, (Ra[X], I,[X]) (see Lemma 5.1.5 and Lemma 5.1.7). Note that n(0) = Id, as
a(0) = Id. Using dilation principle for ESp,, (R[X], I[X]) (see Theorem 3.3.3), we
get an n*(X) € ESp,, (R[X], I[X]) such that n*(X) localises to n(¥' X), for &/ € (a”),
N > 0, with n*(0) = Id, and n(t’ X) € ESp,,(R[X], I[X]). Let o*(X) be an element
of ESp e ppx) (R[X], I[X]) such that

a'(X)a = (1Le) n"(X)a (L Le)
= (1Le) ' nt'X) (1 Le)
= a(b'X),

over R,. Using Lemma 2.2.4 we can say o*(X) localises to a(bX), for b € (a”),
N > 0, and o*(0) = Id. O

5.3 Local Global Principle for ESp(R)

Lemma 5.3.1 Let ¢ be an alternating matriz of Pfaffian 1, of size at least 4, over
R. Let a(X) € Spygpx)(R[X]) and a(0) = Id. If for each mazimal ideal m of R,
(X)m € ESpugr,, (x](Fu[X]), then a(X) € ESp g pix(R[X]). O

We now state and prove a relative version of Lemma 5.3.1. The above lemma is
a particular case of Lemma 5.3.2 when I[X] = R[X].

Lemma 5.3.2 Let R be a commutative ring with R = 2R, and let I be an ideal
of R. Let ¢ be an alternating matriz of Pfaffian 1, of size at least 6, over R and
let ¢ = ¢, (mod I). Let a(X) € Spugpx(R[X], [[X]), with a(0) = Id. If for
each mazimal ideal m of R, a(X)w € ESp,gp, x](Bm[X], In[X]), then a(X) €
ESpygrix] (R[X], I[X]).

Proof: For each maximal ideal m of R one can suitably choose an element a.,
from R\ m such that a(X)., € ESpysr,, x](Raw[X], 14, [X]) and also ¢ = (1 L
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e)t 1, (1 L e), for some € € Eg,,_1(Ra,,, La, ). Let us define

BX,Y) = a(X+Y),, aY) L

am

It is clear that

ﬁ(Xa Y) € ESpgp@Ram [X,Y] (Ram [Xa Y]’ I, [X’ Y])

m

and 3(0,Y) = Id. Therefore 8(bnX,Y) € ESpugrixy)(R[X,Y],I[X,Y]), where
b € (aX) for N > 0 (see Lemma 5.2.2). The ideal generated by by’s is the whole
ring R. Hence we have ¢iby, + -+ + cibm, = 1, where ¢; € R, for 1 <17 < k. Note
that ﬁ(clme, Y) c ESP¢®R[X,Y](R[X, Y], [[X, Y]), for 1 S ) S k. NOW,

k

i=1
where T; = ¢jp1bm, X + - + by, X. O

Now we prove a action version of above Local Global principle.

Theorem 5.3.3 Let n > 2 and v(X) € Umy,(R[X]). Let ¢ be an alternat-
ing matriz of Pfaffian 1 over R. If for each mazimal ideal m of R, v(X) €
v(0)ESp,g g, 1x](Bm[X]), then

v(X) € v(0)ESp,gpx)(R[X]).
U

We establish a relative version of Theorem 5.3.3 below. The above theorem can
be treated as a particular case of Theorem 5.3.4 when I[X] = R[X].

Theorem 5.3.4 Let R be a commutative ring with R = 2R, and let I be an ideal
of R. Letn > 3 and v(X) € Umy,(R[X],I[X]). Let ¢ be an alternating matriz
of Pfaffian 1 over R, and let ¢ = 1, (mod I). If for each mazimal ideal m of R,
v(X) € v(0)ESp, g r,, 1x) (Bm[X], Im[X]), then

v(X) € v(0)ESp,gpx)(RIX], I[X]).
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Proof: For each maximal ideal m of R, we get am)(X) € ESp g g, (x)(Bm[X], Im[X])
such that

Let us define
ﬁ(X, T) = a(m)(X —|—T) O{(m)(X)il.

Clearly 5(X,T) is in ESpygr,x,1m(Ru[X,T], In[X,T]). Since there are only
finitely many denominators involved, there exists a,, € R\ m such that 5(X,T) is in
ESpys i, (X1 (Raw [X; T, 14, [ X, T1). Also 5(X,0) = Id. This implies 3(X,b,T) €
ESpuerixr(R[X,T),I[X,T)), for suitable by, € (al), N > 0 (see Lemma 5.2.2).

Now,

U(X + me) ﬁ(X, me) = U(X + me) Oz(m)<X + me) Oz(m)<X)71
= 0(0) am(X)™
= v(X).

Note that the ideal generated by by’s is the whole ring R. Therefore by, +
-+ by, = 1, where ¢; € R, for 1 < ¢ < k. In the above equation replacing X by
Cobm, X + -+ - 4 by, X and by T' by ¢1bm, X we get,

v(X) = v(bmX + by X + -+ + by, X)
€ V(bmX + -+ by X) ESpg,@R[X](R[X], I[X]).

Again in the above equation replacing X by by, X +- - -+ by, X and byT' by by, X

we get,
U(bm2X +oee bka) € 'U(bm3X +oet bka) ESpgo@R[X](R[X]a I[X])
Continuing in this way we get

V(b X +0) € v(0) ESpygpyx(R[X], I[X]).
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Combining all these we get

v(X) € w(0) ESpygpix (RIX], I[X]).

5.4 Transvection Group

Following H.Bass one can define transvections of a finitely generated R-module as

follows:

Definition 5.4.1 Let M be a finitely generated R-module. Let ¢ € M and 7 €
M* = Hom(M, R), with 7(¢) = 0. Let m,(p) := m(p)g. An automorphism of the
form 1 + 7w, is called a transvection of M, if either ¢ € Um(M) or 7 € Um(M™).

Collection of transvections of M is denoted by Trans(M). This forms a subgroup of
Aut(M).

Definition 5.4.2 Let M be a finitely generated R module. The automorphisms of
N = (R L M) of the form

(a,p) = (a,p+azx),
(a,p) = (a+7(p)p),

where v € M and 7 € M* are called elementary transvections of N. Let us
denote the first automorphism by E, and the second one by E*. It can be verified
that these are transvecions of N. Let us consider 7(¢,y) =t and ¢ = (0, ) to get
E,.. Next we can consider 7(a,p) = 7(p), where 7 € M* and ¢ = (1,0) to get
E*. The subgroup of Trans(N) generated by elementary transvections is denoted
by ETrans(N).

Definition 5.4.3 Let [ be an ideal of R. The group of relative transvections
w.r.t. an ideal I is generated by the transvections of the form 1 + m,, where either
g € Um(IM),m € Um(M*), or ¢ € Um(M),m € Um(IM*). The group of relative
transvections is denoted by Trans(M, IM).

Definition 5.4.4 Let [ be an ideal of R. The elementary transvections of N =
(R L M) of the form E,, E, where x € IM and 7 € (IM)* are called relative
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elementary transvections w.r.t. an ideal I, and the group generated by them
is denoted by ETrans(/N). The normal closure of ETrans(/N) in ETrans(N) is
denoted by ETrans(N, IN).

Lemma 5.4.5 Let M be a free R module of rank n >3, and N = (R L M). Then

Trans(M) = E,(R),
ETrans(N) = Trans(N) = E,.1(R).

Proof: Let M = R". Note that 7, : R* — R — R", and hence 1 + 7, =
I, + v'w, for some v,w € R™, with either v or w unimodular and (v,w) = 0.
Therefore Trans(M) C E,(R) (see Lemma 2.2.7).

A standard elementary generator of the group E,(R) can be expressed as I,, +
actej, where 1 < i # j <n, and a € R. Hence E,(R) C Trans(R), which implies
Trans(R) = E,(R).

One can observe that when M = R", the matrices correspond to the elementary
transvections E, and EF of N = (R L M) are of the form

1 =z 1 0
0 I,) \y L)’

respectively, where x,y € R", and hence ETrans(N) C E,,1(R). Note that E,1(R)
is generated by the matrices of the form(g /), (ylt ) (see Lemma 2.2.11), and
hence E,+1(R) C ETrans(/V). Therefore E,,1(R) = ETrans(V). Also ETrans(/V) C
Trans(NN) and hence

E,+1(R) = ETrans(N) C Trans(N) = E,.11(R).

Therefore we have the second equality. O

Lemma 5.4.6 Let I be an ideal of R and M be a free R module of rankn > 2, and
N=(R L M). Then

ETrans(N, IN) = Trans(N,IN) = E, 11 (R, I).
Proof: Note that when M is a free R module, an element of Trans(N, /N) looks

like I,,,1 +vtw, for some v,w € R"*!, with either v or w unimodular and belongs to
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" (C R™). Also (v, w) = 0. Therefore Trans(N, IN) C E, (R, I) (see Lemma
2.2.8).
For a free R-module M, the elements of ETrans(N, IN) are of the form

-1
1 a 1 0 1 a
o 1,)]\zt 1,/ \o 1,]
1o\ /1 y\[1 o\
v 1,)\o 1,]\ot 1,]

where a,b € M = R", and z,y € I"(C R"). Hence ETrans(N,IN) C E,,1(R, I).
By Lemma 2.2.11 and Lemma 2.2.29 we have E,. (R, I) C ETrans(/N, IN), hence
ETrans(N,IN) = E,1(R, ). We have

En1(R,I) = ETrans(N, IN) C Trans(N,IN) C E, 11 (R, ),

and hence the result follows. O

5.5 Dilation for Elementary Transvections

Lemma 5.5.1 ([2]|, Proposition 3.1) Let M be a finitely generated module of R and
a be non-nilpotent element of R such that M, be free R,-module of rank at least
2. Let N = (R L M). Let a(X) € ETrans(N,[X]), with a(0) = Id. Then there
exists a*(X) € ETrans(N[X]) such that o*(X) localises to a(bX) for some b € (a™),
N >0 and o*(0) = Id. O

Next we will establish a relative version of the above dilation principle (Lemma
5.5.1).

Lemma 5.5.2 Let I be an ideal of R and let M be a finitely generated module of R.
Let a be non-nilpotent element of R such that M, be free R,-module of rank at least
2. Let N = (R L M). Let a(X) € ETrans(N,[X], IN,[X]), with «(0) = Id. Then
there ezists a*(X) € ETrans(N[X], IN[X]) such that o*(X) localises to a(bX) for
some b € (aV), N >0 and o*(0) = Id.

Proof: Given that M, is a free R,-module. Using Lemma 5.4.6 we get that
ETrans(N,[X], IN,[X]) = En11(Ra[X], [.[X]). Now we use dilation principle for
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the group E,1(R[X], I[X]) (see Theorem 3.3.3) to get *(X) € E,1(R[X], I[[X])
such that 3*(X), = a(b'X), for some V' € (a), N > 0.

Let us choose a*(X) from ETrans(N[X], IN[X]) such that o*(X), = £*(X)a,
over the ring R,[X]. Using Lemma 2.2.4 we can say that a*(X) localises to a(bX)
for some b € (aV), N > 0 and a*(0) = Id. O

5.6 Local Global Principle for Elementary Transvections

Lemma 5.6.1 ([2|, Proposition 3.6) Let M be a finitely generated projective R-
module of rank n > 2, and N = (R 1L M). Let a(X) € Aut(N[X]), with «(0) =
Id. If for each mazimal ideal m of R, a(X)y is in ETrans(Ny[X]), then a(X) €
ETrans(N[X]). O

We state and prove a relative version of above Local Global principle. Local
Global principle in the absolute case (Lemma 5.6.1) is a particular case of the Local
Global principle in the relative case (Lemma 5.6.2) when I[X| = R[X].

Lemma 5.6.2 Let I be an ideal of R and let M be a finitely generated projective
R-module of rank n > 2. Let N = (R L M). Let a(X) € Aut(N[X]), with
a(0) = Id. If for each mazimal ideal m of R, a(X)n € ETrans(Nuy[X], I Ny[X]),
then o(X) € ETrans(N[X], IN[X]).

Proof: One can suitably choose an element a,, from R\ m such that a(X),, €
ETrans(N,,, [X], I N,, [X]). Let us define

BX,Y) = a(X+Y),, aY) L

Am

Clearly

B(X,Y) € ETrans(N,,[X,Y],IN,, [X,Y]),

m

and 3(0,Y) = Id. Therefore 5(b,X,Y) € ETrans(N[X,Y], IN[X,Y]), where b, €
(aX), for some N > 0 (see Lemma 5.5.2). The ideal generated by by’s is the whole
ring R. Therefore we have ¢1by, + -+ + ctbm, = 1, where ¢; € R, for 1 <1 < k.
Note that 3(c;by, X,Y) € ETrans(N[X, Y], IN[X,Y]), for 1 <i < k. Hence

a(X) = []B(cibm X, Ti) Blckbm,,0) € ETrans(N[X], IN[X]),

i=1
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where T; = ¢jp1bm,, X + -+ - + cpbm, X. O

Now we prove action version of above Local Global principle.

Theorem 5.6.3 Let M be a finitely generated projective R-module of rank n > 2,
and N = (R L M). Let ¢(X) = (a(X),p(X)) € Un(N[X]). If for each mazimal
ideal m of R, q(X) € q(0)ETrans(Nw[X]), then

q(X) € q(0) ETrans(N[X]).
U

Here we establish a relative version of the above theorem. Theorem 5.6.3 is a
particular case of Theorem 5.6.4 when [[X]| = R[X].

Theorem 5.6.4 Let I be an ideal of R and let M be a finitely generated projec-
tive R-module of rank n > 2. Let N = (R L M). If for each mazimal ideal
m of R, q(X) € q(0)ETrans(Nuy[X], INL[X]), where ¢(X) = (a(X),p(X)) is in
Um(N[X],IN[X]), then

q(X) € ¢q(0) ETrans(N[X], IN[X]).

Proof: For each maximal ideal m of R, we get cv(m)(X) € ETrans(Ny[X], I N[ X])
such that

Let us define
ﬁ(X, T) = a(m)(X —|—T) O{(m)(X)il.

Clearly 5(X,T) is in ETrans(Nuy[X, T], I N[ X, T]). Since there are only finitely
many denominators involved, there exists a, € R \ m such that 5(X,7T) is in
ETrans(N,, [X,T], IN,,[X,T]). Also §(X,0) = Id. This implies 5(X,bn1T) €
ETrans(N[X, T], IN[X, T)]) for suitable by, € (aX), N > 0 (see Lemma 5.5.2). Now,

QX +0nT) B(X,bT) = q(X 4+ bnT") o) (X + b T) Oz(m)(X)’l
= q(0) aymy(X) ™
= q(X).
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Note that the ideal generated by by’s is the whole ring R. Therefore c¢iby,, +
-+ + by, = 1, where ¢; € R, for 1 < ¢ < k. In the above equation replacing X by
Cobmy X 4 -+ - 4 b, X and by T' by ¢1bm, X we get,

q<X> == q(ble + meX + -+ bka)
€ q(bmX + -+ by, X) ETrans(N[X], IN[X]).

Again in the above equation replacing X by by, X +- - -+ by, X and by T by by, X

we get,
Qb X + -+ b, X) € q(bymy X + -+ + by, X)) ETrans(N[X], IN[X]).
Continuing in this way we get
q(bm, X +0) € ¢(0) ETrans(N[X], IN[X]).
Combining all these we get
q(X) € ¢q(0) ETrans(N[X], IN[X]).
O

Proposition 5.6.5 Let M be a finitely generated projective R-module of rank at
least 2, and N = (R L M). Then

Trans(N) = ETrans(N).

Proof: Note that ETrans(N) C Trans(/N). Let us consider an element o €
Trans(N). There exists a(X) € Trans(N[X]) such that a(1) = a and «a(0) = Id.
Let m be a maximal ideal of R. We have a(X), € Trans(Ny[X]) = ETrans(Ny[X])
(see Lemma 5.4.5). This is true for all maximal ideal m of R and hence by Lemma
5.6.1 we have a(X) is in ETrans(N[X]). Substituting X = 1 we get o € ETrans(V),
and hence Trans(N) C ETrans(N). O

Similarly we can prove the following:

Proposition 5.6.6 Let I be an ideal of R. Let M be a finitely generated projective
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R-module of rank at least 2, and N = (R L M). Then
Trans(N,IN) = ETrans(N,IN).

Proof: Note that ETrans(N,/N) C Trans(N,IN). Let us consider an ele-
ment « € Trans(N,IN). There exists a(X) € Trans(N[X],IN[X]) such that
a(l) = a and a(0) = Id. Let m be a maximal ideal of R. We have o(X), €
Trans(Np[X], I Nu[X]) = ETrans(Nw[X], I Nw[X]) (see Lemma 5.4.6). This is true
for all maximal ideal m of R and hence by Lemma 5.6.2 we have a(X) is in
ETrans(N[X], IN[X]). Substituting X = 1 we get a € ETrans(N, IN), and hence
Trans(N, IN) C ETrans(N, IN). O

5.7 Symplectic Modules and Symplectic Transvections

Definition 5.7.1 A symplectic R-module is a pair (P, (,)), where P is a finitely
generated projective R-module of even rank and (,) : P x P — R is a non-

degenerate (i.e, P = P* by + — (x,)) alternating bilinear form.

Definition 5.7.2 Let (P, (,)1) and (P, (,)2) be two symplectic R-modules. Their
orthogonal sum is the pair (P, (,)), where P = P; @ P, and the inner product is

defined by ((p1,p2), (¢1,92)) = (1, 1)1 + (P2, @2)2-
There is a unique non-degenerate bilinear form (,) on the R-module H(R) =

R @D R*, namely <(a1, bl), (CLQ, b2)> = CleQ — CLle.

Now onwards () will denote (R* L P) with induced form on (H(R) L P),
and Q[X] will denote (R[X]* L P[X]) with induced form on (H(R[X]) L P[X]).

Definition 5.7.3 An isometry of a symplectic module (P, (, ) is an automorphism

of P which fixes the bilinear form. The group of isometries of (P, (,)) is denoted by
Sp(P, (,))-

Definition 5.7.4 In [7] Bass has defined a symplectic transvection of a sym-

plectic module P to be an automorphism of the form

o(p) = p+ (u,p)v+ (v,p)u+ alu,p)u,

where @ € R and u,v € P are fixed elements with (u,v) = 0. It is easy to check
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that (o(p),o(q)) = (p,q) and o has an inverse

T(p) = p—(u,p)v—(v,p)u— alu,p)u.

The subgroup of Sp(P, (,)) generated by the symplectic transvections is denoted
by Transg, (P, (,)) (see [33], Page 35).

Definition 5.7.5 The symplectic transvections of Q = (R? L P) of the form

(a,b,p) +— (a,b—(p,q) + aa,p+ aq),
(a,b,p) +— (a+ (p,q) —Bb,b,p+bq),

where «, 5 € R and ¢ € P, are called elementary symplectic transvections.
The elementary symplectic transvections are symplectic transvections on ().
Take (u,v) = ((0,1,0),(0,0,¢)) and (u,v) = ((—1,0,0),(0,0,q)) respectively to
get the above two transvections of ().
The subgroup of Transg,(@, (,)) generated by elementary symplectic transvec-
tions is denoted by ETranss,(Q, (,))-

Definition 5.7.6 Let [ be an ideal of R. The group of relative symplectic
transvections w.r.t. an ideal I is generated by the symplectic transvecions of

the form

a(p) = p+(u,p)v+(v,pu+aluphu,

where av € [ and u € P, v € IP are fixed elements with (u,v) = 0.

The group generated by relative symplectic transvections is denoted by
Transs, (P, [P, (,)).

Definition 5.7.7 The elementary symplectic transvections of () of the form

(a’a bvp) = (a’ub_ <p7Q> +aa7p+aq>7

(a’7b7p) = (a+<p7Q>_ﬁb7bap+bq)7
where o, 3 € I and q € I P are called relative elementary symplectic transvec-
tions w.r.t. an ideal [.

The subgroup of ETransg,(Q, (,)) generated by relative elementary symplectic
transvections is denoted by ETransg,(/@), (,)). The normal closure of ETransg, (/@) (,))
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in ETransg,(Q, (,)) is denoted by ETransg,(Q, IQ,(,)) -

Definition 5.7.8 The subgroup of ETransg,(Q, (,)) generated by

(a’a bvp) = (a’ub_ <p7® —l—oza,p—i—a(D,
(a’a bvp) = (a’ + <p7 Q> - Oéb, bap + bQ)u

with ¢ € I P, is denoted by ETransép(Q, 1Q,(,)).

Remark 5.7.9 Let P be a free R-module and (p,q) = ppq', where ¢ be an alter-
nating matrix with Pfaffian 1.

In this case the symplectic transvection
o(p) = p+ (u,p)v+ (v,p)u+afu,pju
corresponds to the following matriz:
(Ip, — v'up — u'vp)(Iy, — auluyp);

and the group generated by them is denoted by Transg,(P, (,),).
Also in this case ETranss,(Q, (,),) will be generated by the matrices of the form

10 0
pe(d,) = |a 1 qp|,
qt 0 I,
L =0 —qp
pe(g,8) = [0 1 0
0 qt I,

Note that for ¢ = (q,...,qn) € R*™, and for the standard alternating matriz

Un, we have

2n+2

p¢(Q7a) = 8621((1) H Seil(qi—Q)a (55)
2n+2

(g, 8) = sei(B) H 561i(<_1>iQU(i—2))- (5.6)

=3
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Lemma 5.7.10 Let R be a commutative ring with R = 2R, and let I be an ideal
of R. Let P be a free R-module of rank 2n, n > 2. Let ¢ = 1,, the standard

alternating matriz, then

ETransg,(Q, (,)y,) = ESps,iao(R),
ETransg,(Q, IQ, (,)y,) = ESpa, o
ETransép(Q, 1Q, () )y,) = ESp%nJrz( ).

Proof: From equations (5.5) and (5.6) it follows that

ETI'&HSSP(Q, <7 >1/1n) g ESp2n+2(R)

Using the commutator identities for the (standard) elementary generators of
the group ESp,, ,(R) it follows that ESp,,,,(R) is generated by the elements
seyi(a), seji(b), 1 <i# j <2n,a,b€ R,and hence ESp,, ,,(R) C ETransg,(Q, (, )y,)-
Therefore the first equality holds.

To show the second equality let us first show ETransg,(Q, Q. (, )y, ) is a subset
of ESp,,,.o(R, I). It is enough to show that an element of the form

twn (qla a) Sipn, (QQ, ﬁ) twn (qla a)_l

is in ESp,, (R, I), for ¢1 € R*", o € I’", « € R and 8 € I. Here t,, and sy, are
P, OF fly,. Using the definition of ESp,, (R, I) and equations (5.5), (5.6) we get

twn (Ch, a) Sepm, (qQa ﬁ) twn (q17 a)_l € ESan(Rv I)

and hence

ETranss, (@, 1Q, (,)y,) < ESp,,(R,I).

To show the other inclusion we recall the equivalent definition of the relative
group which says that ESp,, (R, I) is the smallest normal subgroup of ESp,, (R)

containing sey; (z), where x € I (see Lemma 2.2.29). We need to show

g sea(w) g=' € ETranssy(Q,1Q,(,)y,),
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where g € ESp,,(R) = ETransg,(Q, (,)y,). Therefore g sex(z) g~ belongs to
ETransg, (Q, IQ, (, )y, ) and

ESp2n<R7I) g ETI'&HSSP(Q,[Q, <7>1/1n)7

and hence the second equality is established.

Generators of ETransg, (Q, 1Q, (, )y, ) is of the form py, (q1, @), fty, (g2, 3), where
@ €™ ael ¢ e R and 3 € R. By equations (5.5) and (5.6) we have
P (01, @), s, (a2, B) € ESpy, (R, T), and hence

ETransg, (Q,1Q, (,)y,) S ESpy, (R, ).

On the other hand generators of ESp), (R, I) are of the form sey;(a), seji(w),
where a € R and x € I. Using equations (5.5) and (5.6) we get sey;(a), seji(z) €
ETransd, (Q,1Q, (,)y,), and hence ESpy, (R, 1) C ETransg,(Q,1Q, (,)y,). There-
fore the third equality is established. O

Lemma 5.7.11 Let R be a commutative ring with R = 2R, and let I be an ideal
of R. Let P be a free R-module of rank 2n, n > 2. Let ¢ = 1,, the standard

alternating matriz, then

TranSSp(Qa <’ >¢1lwn) - ETranSSp(Q’ <7 >¢n) = Esp2n+2(R)>
Transg, (Q, 1Q, (; )yi19,) = ETransg,(Q,1Q,(,)y,) = ESps, (R, 1),

Proof: Using Lemma 2.2.22 and Lemma 2.2.23 it follows that

N

ESanH(R),
Esp2n+2 (Ra I) .

Transg, (@, (; )¢ 1vn)
Transg, (Q, 1Q, (; )y Lyy)

N

Also

ETI‘aIlSSp(Q, <, >¢n) C TranSSp(Qa <’ >¢1lwn)’
ETransSp(Q, 10Q), <, >¢n) - Transsp(Q, 1Q, <7 >¢1J_wn)'

Therefore using previous lemma we have

ESpoyi2(R) = ETranssy(Q, (,)y,) © Transsy(Q, ( )yire,) S ESpaia(R),
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and hence the first sequence of equalities follow. The second sequence of equalities

follow similarly. O

Lemma 5.7.12 Let P be a free R-module of rank 2n. Let (P, (,),) and (P, (,)~)
be two symplectic R-modules with p = (1 L e)t ¢* (1 L ), for some ¢ € Ey,,_1(R).
Then

Transs, (P, (,),) = (1 Le)™" Transs,(P, (,)y+) (1 Lg),
ETranss,(Q, (,),) = (I3 Le) ' ETranss,(Q, (,)y+) (I3 L €)).

Proof: In the free case for symplectic transvections we have

(I, — v'up — u'vp) (Is, — aulup)
= (1 Le) ™! (Iy, — d'ap* — @'0p*) (Iy, — ad'ie®) (1 Le),

where & = u(1 L €)® and ¥ = v(1 L €)*. Hence the first equality follows.

For elementary symplectic transvections we have

(I L (1Le) ' ppr(ga)(la L (1 Le))
= (Ig 1 E) w(q,a)([;; 1 5)
= Py (q(lj_g) 17&)’
and
(I L (1 L&) g (q, B)(I2 L (1 Le))
= (Is L o) (g, B)(I5 L €)
= ppa(1 L)),
and hence the second equality follows. O

Lemma 5.7.13 Let [ be an ideal of R and P be a free R-module of rank 2n. Let
(P, {,)y) and (P, {,),) be two symplectic R-modules with ¢ = (1 L €)* ¢* (1 L ¢),
for some € € Eg,,_1(R,I). Then

Transs, (P, IP,{,),) = (1 Le)™! Transg, (P, IP,{,),) (1 Le¢),
ETranss,(Q,1Q,(,),) = (I3 Le) ! ETranss,(Q,1Q, {,),) (I3 L &),
ETransép(Q, 1Q,(,),) = (3L g)~? ETransép(Q, 1Q, (,)p+) (I3 Le).
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Proof: Using the three equations appear in the proof of Lemma 5.7.12, we get
these equalities. O

Proposition 5.7.14 Let (P, (,),) be a symplectic R-module with P free of rank 2n.
Let o = (1 Le) ¢, (1 Le), for some e € Eg,_1(R). Then

TranSSP<Q7 <7>¢1J-<P> = ETranSSp<Q7 <7><P) = ESpmJ_go(R)'

Proof: Using Lemma 5.1.5, Lemma 5.1.6, Lemma 5.7.10 and Lemma 5.7.12 we

get,
TranSSP(Qv <7 >1/11J-<P> = <[3 1L 8)71 Transsp(Q, <7 >1/11J-¢n> <[3 1 8)

= (I3 Le)! ESpyy0.(R) (I3 L €)
= (I3 Le) " ESpy, .1y, (R) (I3 Le)

and

ETranss, (@, (,),) = (I3 L)™' ETransg,(Q, (, )y,) (I3 L&)

= (Iz L &)™ ESpyip,(R) (I3 Le)
= (I L) ESpy, 14, (R) (I L €))
= Esple_Lp(R),

and hence the sequence of equalities are established. O

Now we state and prove a relative version of the above proposition.

Proposition 5.7.15 Let R be a commutative ring with R = 2R, and let I be an
ideal of R. Let (P, (,),) be a symplectic R-module with P free of rank 2n, n > 2.
Let p = (1 Le) b, (1 Le), for some e € Eg,,_1(R,I). Then

Transg, (@, 1Q, (, )y 1) = ETranss,(Q,1Q,(,),) = ESpwle(R,[).

Proof: Using Lemma 5.1.5, Lemma 5.1.7, Lemma 5.7.10 and Lemma 5.7.13 we
get,
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Transsy(Q, 1Q, (, )y, 1) = (I3 Le)™! Transg,(Q, 1Q, (, )y, 1y,) (Is L €)
= (I3 L&) ' ESpyo,(R, ) (I3 L¢)
= (I3 Le) " ESpy, 1y, (R1) (I3 Le)
= ESple_go<R7 [)7

and
ETranss,(Q, 1Q, {,),) = (I3 L&) ETranss,(Q,1Q, {,)y,.) (I3 L )
= (I3 Le)™ ESpyyo,(R.1) (I; Le)
= ([3 1 8)71 Espwlen<R, I) ([3 1 5))
= EspleJP(R’ I),
and hence the sequence of equalities are established. O

Remark 5.7.16 In view of above two lemmas, for any symplectic module (P, (,),)

over a local ring (R, m), we have

TI‘aIlSsp<Q, <7 >¢1J-90) = ETI‘aIlSsp(Q, <7 >90> = ESpw1J_go<R>7
Transsp(Q, IQ) <7 >¢1l<p) = ETranSSp(Qa IQ, <7 ><,0) = ESPwlm(Ra I)

Here I is an ideal of the ring R.

5.8 Dilation for Elementary Symplectic Transvections

Proposition 5.8.1 Let (P, (,)) be a symplectic R-module with P finitely generated
projective R-module of rank 2n, n > 1. Let a € R be non-nilpotent and (P,, (,),) be
a symplectic module with P, be a free Ry,-module. Also let ¢ = (1 L )" ¢, (1 Leg),
for some € € Eg,_1(R,) over the ring R,. Let a(X) € ETranss,(Q.[X], (,),), with
a(0) = Id. Then there exists o*(X) € ETranss,(Q[X], (,)) such that a*(X) localises
to a(bX) for some b € (a’), N >0, and a*(0) = Id.

Proof: Let a(X) = [[;_; to(a:(X), (X)), where ¢, is either p, or p, and g;(X) €
(R.[X])*, ay(X) € R,[X]). Having ¢ = (1 L &)t 4, (1 L ¢), with some ¢ €
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Eon_1(R,), will allow us to write

s

o(X) = J[s L o)t (H(X), (X)L Le)

=1

= (I3 Le) (Htwfl (X)) (s L <)

= (I Le) n(X)(I5 Le),

where fi(X) = g/(X)(1 L &%), and n(X) € ESp,, (R4[X]) (see Lemma 5.7.10 and
Lemma 5.7.12). Note that n(0) = Id, as a(0) = Id. Therefore,

U(X) = nyk‘ Seikjk(th‘(X)) 7/;17
k=1

where fi(X) = f(0) + Xhy(X) and v, € ESpa,12(R,) (see Lemma 2.2.27). Now,

21"+1

X) = awsin ¥ Xho(Y> " X)),
k=1
[
= H S€pig: <Y2ut (X, Y)
t=1
[
= TTlsepi(¥), se1q(Yus(X, V)],

t=1

ny

where u;(X,Y) € R,[X,Y]. The second equality above follows from Lemma 2.2.28.
Taking N = M2 we get,
a(a"XY?") = a((@Y)?'X
= (s Lo (@YX (I L)

= (I3 Le) 1H sep,1(aMY), seqq, (a™Yu (X, Y))](I5 L e).

t=1

Note that

Pipr, (07 CLMY) if Pt = 2,

septl(aMY) =
Pipn, (aMyept—Qa O) if 2 Z 37
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and

fp, (0, aMY u (X, Y)) if ¢, =2,

selqt(aMYut(X, Y)) =
Mooy, (a’MYut(X7 Y)ea(qt—Z)a O) if qt > 3.

Also
([3 1 8)_1)p¢n(0, GMY)<[3 1 5)
= plp<07a’MY)7
(Is L &)™ )py, (a™Yep,—2,0)(I3 L €)
— pp(aMY ey a(1 L £)71),0),
and

(I3 L &)™y, (0,aMYu (X, Y)) (I3 L )
= 11,(0, ™Y1, (X, Y)),
(Is L&) ™)y, (@MY u (X, Y )eq(g,—2),0) (I3 Le)
= po (@Y u (X, Y )eg(q-2) (1 L) 7).

Let us fix some notations here.

_ p(0,aMY) if p, = 2,
plpe) = y _
po(@VV e, (1 L2)),0) ifp >3,
and
(q) 1 (0, aYu (X,Y)) if ¢; = 2,
m\qe) =
po (MY u (XY )ep(g_ny(1 L €9)71),0)  if ¢ > 3.
Note that
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Let a*(X) € ETransg,(Q[X], (,)) be such that

S

o (X)e = [ mlq))-
t=1
Using Lemma 2.2.4 we can claim that a*(X) localises to «(bX), for some b €
(a™), N> 0, and o*(0) = Id. O

Next we state and prove a relative version of Proposition 5.8.1. We can prove
Proposition 5.8.1 in the way we prove Proposition 5.8.2, without involving commu-

tator identities.

Proposition 5.8.2 Let R be a commutative ring with R = 2R, and let I be an ideal
of R. Let (P,(,)) be a symplectic R-module with P finitely generated projective R-
module of rank 2n, n > 2. Let a € R be non-nilpotent and (P, (,),) be a symplectic
module with P, be a free R,-module. Also let ¢ = (1 L &)t b, (1 L &), for some
e € Eg1(Ry, 1) over the ring R,. Let o(X) € ETranss,(Q.[X], 1Q.[X], (,)s),
with a(0) = Id. Then there erists a*(X) € ETransg,(Q[X], IQ[X], (,)) such that
a*(X) localises to a(bX), for some b € (aVV), N > 0, and o*(0) = Id.

Proof: By Lemma 5.7.15 we have

ETranSSp(Qa[X]alQa[X]a<’>90) = Espwlicp(Ra[X]ala[X])?

and using dilation principle for ESp,, , (R[X], I[[X]) (see Lemma 5.2.2) we get a
B(X) € ESpy, , ,(R[X], I[X]) such that 3(X), = a(bX), for some b € (a"). Now
we choose a o*(X) from ETranss,(Q[X], IQ[X],(,)) such that o*(X), = 5(X),.
Using Lemma 2.2.4 we claim that o*(X) localises to a(bX), for some b € (a®)
N >0, and a*(0) = Id. O

Y

5.9 Local Global principle for ETransg,(Q)

Lemma 5.9.1 Let (P, (,)) be a symplectic R-module with P finitely generated pro-
jective module of rank 2n, n > 1. Let a(X) € Sp(Q[X],(.)), with a(0) = Id. If
for each mazimal ideal m of R, (X )m € ETranss,(Qu[X], (,)pn), then a(X) €
ETransg, (Q[X], (,))- O

Next we state and prove a relative version of the above lemma. Lemma 5.9.1

can be treated as a particular case of Lemma 5.9.2, when I[X]| = R[X].
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Lemma 5.9.2 Let R be a commutative ring with R = 2R, and let I be an ideal of
R. Let (P,(,)) be a symplectic R-module with P finitely generated projective module
of rank 2n, n > 2. Let a(X) € Sp(Q[X],(.)), with «(0) = Id. If for each mazimal
ideal m of R, a(X)n € ETransg, (Qum[X], [Qu[X], (,)pn), where ¢m = 1, (mod I),
then

a(X) € ETranss,(Q[X], IQ[X], (,)).

Proof: Let m be a maximal ideal of R. One can suitably choose an element a,,
from R\ m such that «a(X),, € ETransg,(Qq, [X], [Qayn [X], (,)¢a,, ), Where ¢, is
the alternating matrix with Pfaffian 1 corresponding to the alternating form (, ), .
Also o= (1 L&) ¢, (1 Le), for some € € Eg,,_1(R,,,, L4, ). Let us define

BX,Y) = a(X+Y),, aY),

am

Clearly
B(Xa Y) € ETranSSp(Qam [X7 Y]a IQam [X7 Y]’ <7 ><Pam )7

and 3(0,Y) = Id. Therefore B(bnX,Y) € ETransg,(Q[X,Y],IQ[X,Y],(,)), where
b € (aX) for N > 0 (see Proposition 5.8.2). The ideal generated by by’s is the
whole ring R. Therefore we have ¢1by, +- - -+ cxbm, = 1, where ¢; € R, for 1 <1i < k.
Note that 3(c;bm, X,Y) € ETransg,(Q[X, Y], IQ[X,Y],(,)), for 1 <i < k. Now,

k

a(X) = []80wX.T) B(bw,.0) € ETranss,(Q[X], IQ[X].(.))

i=1
where T; = ¢jp1bm, X + -+ - + by, X. O

Here we state and prove action version of above Local Global principle.

Theorem 5.9.3 Let (P, (,)) be a symplectic R-module with P finitely generated
projective module of rank 2n, n > 1. Let ¢(X) = (a(X),b(X),p(X)) € Um(Q[X]).
If for each mazimal ideal m of R, q(X) € q(0)ETransg, (Qu[X], (, )yn), then

¢(X) € q(0) ETranss, (Q[X], (,))-
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Next we state and prove a relative version of the above theorem. Theorem 5.9.3
can be treated as a particular case of Theorem 5.9.4, when [[X]| = R[X].

Theorem 5.9.4 Let R be a commutative ring with R = 2R, and let I be an ideal of
R. Let (P, (,)) be a symplectic R-module with P finitely generated projective module
of rank 2n, n > 2. Let q¢(X) = (a(X),b(X),p(X)) is in Um(Q[X], IQ[X]). If for
each mazimal ideal m of R, we have ¢(X) € q(0)ETranss,(Qm[X], IQwm[X], (, )on)s
where o = 1, (mod I), then

q(X) € q(0) ETranss,(Q[X], 1Q[X], (. )).

Proof: For each maximal ideal m of R, we will find an element a(w)(X) from
ETransgy (Qm[X], IQm[X], (, )pora(x]) such that

9(X) am(X) = q(0).

Let us define
ﬁ(X, T) = a(m)(X —|—T) O{(m)(X)il.

Clearly (X, T) is in ETransg,(Qw[X,T], IQu[X,T],(,)s.). Since there are
only finitely many denominators, there exists a, € R\ m such that G(X,T) is in
ETranss, (Qan [X, T), IQw[X, T, (, ) 4a,, )- Also B(X,0) = Id. This implies 5(X, bn1")
is in ETransgs, (Q[X, T], IQ[X, T, {,)), for suitable by, € (ak) (see Proposition 5.8.2).
Now,

(X +bT) B(X,00T) = (X +buT) o) (X + bT) Oz(m)(X)’l
= q(0) apm(X)™
= q(X)

Note that the ideal generated by by’s is the whole ring R. Therefore c¢i1by,, +
-+ cpbm, = 1, where ¢; € R, for 1 <4 < k. In the above equation replacing b7’
by ¢1bm, X and X by coby, X + -+ + cpbm, X we get,

¢(X) = qlerbm X + -+ crbm, X)
€ q(CgmeX + o+ Ckbka> ETI'&HSSP<Q[X, T]7 [Q[X7 T]7 <7 >)
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In the above equation replacing b1 by c2bm, X and X by c3bm, X + - - - 4 cxbm, X

we get

q(cobm, X + -+ - + Cbm, X)
€ Q<C3bm3X +oeet Ckbka) ETI'&HSSP(Q[X, T]7 [Q[Xu T]7 <7 >)

Continuing in this way we get

q(X) € q(0) ETranss, (Q[X], IQ[X], (,)).

5.10 Equality of Transg,(Q, (,)) , ETransg,(Q, (,)) and ESp(R)

In this section we establish equality of the above mentioned groups.

Theorem 5.10.1 Let (P, {(,)) be a symplectic R-module with P finitely generated

projective module of rank 2n, n > 1. Then

Transg,(Q, (,)) = ETranss, (@, (,)).

Proof: By definition ETransg,(Q,(,)) € Transg,(Q,(,)). We need to show
Transs, (@, (,)) € ETranss, (@, (,)). Let o € Transg,(Q,(,)). There exists a(X)
in Transs,(Q[X], (,)earrx]) such that a(l) = o and a(0) = Id. For each maximal
ideal m of R, one has

Transs, (Qm|X], (, )1 1on) = ETranss,(Qu[X], (,)en)

(see Remark 5.7.16). Hence a(X)m € ETransg,(Qm[X], (;)en), for each maximal
ideal m of R. Using Lemma 5.9.1 we get a(X) is in ETranss,(Q[X], (,)) and hence
substituting X = 1 we get a € ETranss,(Q, (,))- O

Theorem 5.10.2 Let R be a commutative ring with R = 2R, and let I be an ideal of
R. Let (P, (,)) be a symplectic R-module with P finitely generated projective module
of rank 2n, n > 2. Also assume for any mazximal ideal m of R, the alternating form

(,) corresponds to the alternating matric Qm, where o = 1, (mod I), over the ring
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R... Then

Transg,(Q, IQ, (,)) = ETransg,(Q,1Q,(,)).

Proof: We have ETransg,(Q, IQ, (,)) C Transs,(Q,1Q, (,)). We need to show
Transg, (@, 1Q, (,)) C ETransg,(Q,1Q,(,)). Let a € Transg,(Q,1Q,(,)). There
exists a(X) in Transg, (Q[X], IQ[X](,)perix]) such that a(1) = o and a(0) = Id.

For each maximal ideal m of R, one has

TransSp(Qm[X]alQm[XL<’>som) = ETranSSp(Qm[X]’IQm[X]a<’>50m)

(see Remark 5.7.16). Hence o(X)n € ETransgy(Qm[X], /Qu[X], (,)para(x]), for
each maximal ideal m of R. Therefore from Lemma 5.9.2 it follows that a/(X) is in
ETransg, (Q[X], IQ[X], (,)) and hence substituting X = 1 we get the result. O

We now come to main theorems of this chapter.

Theorem 5.10.3 Let (P,(,),) be a symplectic R-module with P free of rank 2n,
n > 1. Let {(u,v) = upv®, where ¢ is an alternating matriz of Pfaffian 1. Then

ETranss, (Q, ()p) = ESpy, 1,(R).
Proof: Let § € ETransg,(Q, (,),). There exists a
0(X) € ETranss,(Q[X],(;)y)
such that §(1) = ¢ and §(0) = Id. For any maximal ideal m in R,
0(X)m € ETranss,(QulX], ()on) = ESpy, 1o(RulX])
(see Remark 5.7.16). By Lemma 5.3.1 it follows that
0(X) € ESpy, 1, (R[X]),

and hence § € ESp,, | ,(R).
Let w € ESpy, ,,(R). There exists w(X) € ESp,, | ,(R[X]) such that w(1) = w
and w(0) = Id. For any maximal ideal m in R,

Ww(X)m € ESP¢1L¢(Rm[X]) = ETranss,(Qm[X]; (, )pn)
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(see Remark 5.7.16). By Lemma 5.9.1 it follows that
W(X) € ETranSSp(Q[X]7 <a >90)a

and hence w € ETransg, (@, (,),)- O

Arguing exactly in the similar way we establish a relative version of the above

theorem. We state the relative version of Theorem 5.10.3 below.

Theorem 5.10.4 Let R be a commutative ring with R = 2R, and let I be an ideal
of R. Let (P,{(,),) be a symplectic R-module with P free R-module of rank 2n,

n > 2. Let (u,v) = upv', where ¢ is an alternating matriz of Pfaffian 1 such that
@ =1, (mod I). Then

ETranSSp(Qa IQ7 <a >30) = Espwlicp(Ra I)
O

Remark 5.10.5 Let (P,(,),) be a symplectic R-module with P free R-module of
rank 2n, n > 1. Let {u,v) = upv', where ¢ is an alternating matriz of Pfaffian 1.
Then

TranSSP<Q7 <7>¢1J-<P> = ETranSSp<Q7 <7><P) = ESpmJ_go(R)'

Moreover, let us assume R = 2R, and I be an ideal of R. Let P free R-module
of rank 2n, n > 2, and let ¢ =1, (mod I). Then

Transg, (Q,1Q, (,),) = ETransg,(Q,1Q,(,),) = ESpwle(R,I).

5.11 Equality of orbits

In this section we establish main result of the thesis regarding equality of orbits.

Theorem 5.11.1 Let ¢ be an alternating matriz of Pfaffian 1. Then the natural

map
Uy, (R)/ESp,(R) — Umi,(R)/Ean(R),

s bijective for n > 2. O
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Now we establish a relative version of the above theorem. Theorem 5.11.1 can

be treated as a particular case of Theorem 5.11.2, when [ = R.

Theorem 5.11.2 Let R be a commutative ring with R = 2R, and let I be an ideal
of R. Let ¢ be an alternating matriz of Pfaffian 1 such that ¢ = 1, (mod I). Then

the natural map
Umy, (R, I)/ESp,(R, 1) — Umy,(R,I)/Ey(R,T)

is bijective for n > 3.

Proof: It is easy to show that the map is surjective. To show injectivity the map
we need to consider v,w € Umy,(R,I) and g € Ey,(R,I) such that vg = w. We
have to show w is in the same ESp (R, I)-orbit of v. Let g(X) be in Ey, (R[X], I[X])
such that g(1) = g, and ¢g(0) = Id (see Lemma 2.2.3). Let us define

V(X) = vg(X).

For each maximal ideal m of R we have ¢ = (1 L e(m))* ¢, (1 L e(m)), for some
e(m) € Eg,_1(Rm, I), over the ring R,. We define

VI(X) = v gm(X) (1 Le(m)™
Note that V(™ (0) = v (1 L e(m))~%. We have
V(X) € V™(0) Egn(Ru[X], Im[ X))
Using Theorem 4.2.2 we can say
V(X)) e V™(0) ESpy, (Rul[X], In[X]).
Therefore there exists h(X) € ESpy, (Rm|[X], Im[X]) such that
V(X)) h(X) = V™(0).
This implies vg,(X)(1 L e(m))'A(X) = v(1 L e(m))~!, which means

Vi(X) = Vi(0) (1 Le(m))™ A(X)™" (1 Le(m)),
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i.e, Vn(X) € Vin(0) ESp, (Rm[X], [ X]) for each maximal ideal m in R (see Lemma
5.1.5 and Lemma 5.1.7). Using Theorem 5.3.4 we get an a(X) € ESp,(R[X], I[X])
such that V(X) = V(0)a(X). Substituting X = 1 we get vg = va(l) where
a(1) € ESp, (R, I). Hence w is in the same ESp (R, I) orbit of v. O

Theorem 5.11.3 Let (P, (,)) be a symplectic R-module with P finitely generated
projective module of rank 2n, n > 1 and v = (a,b,p) € Um(Q). Then

(a,b,p) ETrans(Q)) = (a,b,p) ETransg, (@, (,)).

g

Here we state and prove a relative version of the above theorem. Theorem 5.11.3

can be treated as a particular case of Theorem 5.11.4, when I = R.

Theorem 5.11.4 Let R be a commutative ring with R = 2R, and let I be an ideal of
R. Let (P, (,)) be a symplectic R-module with P finitely generated projective module
of rank 2n, n > 2. Let v = (a,b,p) € Um(Q, IQ). Then

(a,b,p) ETrans(Q, Q) = (a,b,p) ETransg,(Q, 1Q, (,)).

Here we also assume that of each maximal ideal m of R, the alternating form (,)
corresponds to the alternating matriz vy, where n = ¥, (mod I), over the local

ring Ry.

Proof: Let a € ETrans(Q, IQ). Let us choose o(X) from ETrans(Q[X], IQ[X])
such that a(1l) = a and «(0) = Id. Let us define V(X) = (a,b, p)a(X). Note that
V(0) = (a,b,p), and

V(X) € V(0) ETrans(Q[X], IQ[X]).

Let m be a maximal ideal of R. Over Ry, we have ¢, = (1 L e(m))" v, (1 L
e(m)), where e(m) € Eg,(Ry, Iw). Let us define W(X) = V(X) (1 L e(m))~t. We

have

W(X) € W(0) Egpyo(Ru[X], Im[X])
= W(O) ESp2n+2(Rm[X]a Im[X])
= W(O) ETranssp(Qm[X], IQm[X])’ <7 >¢n)’
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and hence

V(X) € V(0) (1 Le(m))™" ETranssy(Qu[X], IQu[X], {, )u,) (1 L e(m))
= V/(0) ETranss, (Quw[X], IQwm[X], (, You)-

This is true for all maximal ideal m of R, and hence by Theorem 5.9.4 we get
V(X) € V(0) ETransg,(Q[X], I[X], (,)). Substituting X =1 we get

(a,b,p) @ € (a,b,p) ETranss,(Q,1Q,(,)).

Now we consider 3 from ETranss,(Q,/Q,(,)). Let S(X) be an element of
ETransg,(Q[X], IQ[X], (,)) such that 5(1) = § and 3(0) = Id. We define V(X) =
(a,b,p)B(X). Note that

V(X) € V(0) ETranss,(Q[X], IQ[X], ().

Let m be a maximal ideal of R. Over the local ring Ry, we define W (X) =
V(X) (1 Le(m))~t. We have

W(X) € W(0) (1L e(m)) ETranss,(QulX], IQu[X], (;)p,) (1 L g(m))™
(O) Qm[X]alQm[X]a <’ >¢n)
= W(0) ESpyy, o(Ru[X], in[X])
(0) ]

= W(0) Egpio(Run[ X, I[X]),

[
=

ETransg,
E

and hence

V(X) € V(0) Eznia(Ru[X], In[X])
= V(0) ETrans(Qm[X], IQum[X]).

This is true for all maximal ideal m of R, and hence by Theorem 5.6.4 we have
V(X) € V(0)ETrans(Q[X], IQ[X]). Substituting X = 1, we get

(a,b,p) B € (a,b,p) ETrans(Q, IQ).
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Chapter 6
Excision Theorem

In this chapter we first recall the Excision Theorem of W. van der Kallen (see
Theorem 6.1.1). We also recall the definition of the Excision ring in the linear case
and its properties. We shall then prove similar results (see Theorem 6.3.2), following
the lead of van der Kallen in Theorem 6.1.1, for the relative elementary symplectic
groups. We also prove Excision theorem for the elementary symplectic transvection
group in the free case.

The Excision theorem (Theorem 6.1.1) of van der Kallen enables one to transform

a problem on unimodular rows from the relative case (I # R) to the absolute case.

6.1 Excision Ring and Excision Theorem

The Excision ring (Z @ I): If I is an ideal in R, one can then construct the ring
Z @ I with multiplication defined by (n @ i)(m @ j) = (nm @& nj + mi + ij), for
m,n € Z, 1,7 € I. The maximal spectrum of the ring Z @ I is Noetherian, being the
union of finitely many subspaces of dimension < dim(R). There is also a natural

homomorphism ¢ : Z® [ — R given by (m @ i) — m+1i € R.

Theorem 6.1.1 (W. van der Kallen) ([15], Theorem 3.21)
Let I be an ideal in R. Then the natural maps

U, (Z® 1,0® 1) U, (R, I)

., b
E(Z® 1,00 1) E.(R.I)
Um,(Z® 1,0 1) Um,(Z® 1)

% —’
E.(Z®I1,001) E.(Z®I)
are bijective for n > 3. U
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6.2 Discussion on The Excision Theorem

The critical input in W. van der Kallen’s proof of Excision theorem is that if v =
(1+ay,as,...,a,) € Um,(R,I),n > 3, then he observed that

v Eii(t) = v Eyj(ait) Eij(—ait), for 2 <i#j <n,
v En(t) = v Eij(t) Eq(l) Eij(—t) Ej(—1).
Using these formulae he was able to transform a problem on elementary orbit to
a problem on relative elementary orbit.
We first tried this direct approach in the case of elementary symplectic orbits.
One can make similar observations with se;;(t), in very special cases (of the short

roots). First we will discuss it.
Let v = (14+aq,as,...,as,) € Ung,(R,I),n > 2. Let i be an odd integer. Then,

v se;r1(t) = v seppr(ait + ayait) sej o (—2a1t — a%t) 5612(—a?t).

Proof:
v
se1it1(a;t+aia;t)
(1+ay,ap +a?t +aa?t, ..., a;q + ait + 2aa;t + alagt, . . ., ag,)
seiit1(—2a1t—a?t)
(1+ay,as + a2t + a1a?t,...,a; 1 + ait, ..., as,)

se12 (—a%t)

(1+a1,a2,...,ai+1+az~t,...,a2n).

[
Again let v = (1+ay, as, ..., a,) € Umy,(R,I),n > 2. Let i be an even integer.
Then,

v se;_1(t) = v sey_1(a;t + ayait) sey_1(—2a1t — a%t) selg(a?t).
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Proof:

v
se1i—1(astt+aia;t)
(1+ay,ay — a2t —aya?t,...,a; 1 + a;it + 2a1a;t + atagt, . .., as,)
seii,1(72a1tfa%t)
(1+ ay,ay — a?t — ayat, ..., a; 1 +ait, ..., as,)
selz(a%t)

(1+a1,a2,...,ai_1+az~t,...,a2n).

O
However we were unable to get direct proofs as above in other cases (of the long

roots).

6.3 Symplectic Analogue of The Excision Theorem

Here we will see again that the Local Global principle w.r.t. an extended ideal
(Theorem 3.2.3) plays an important role in the proof of symplectic analogue of the
Excision Theorem. Theorem 3.2.3 along with Lemma 2.2.17, Lemma 2.2.21 and

Lemma 2.2.25 will be employed to prove the following lemma.

Lemma 6.3.1 Let n > 3. Let R be a commutative ring with R = 2R, and let I be
an ideal of R. Let v € Umy, (R, I). Then fort € R,

v se;i(t) € v ESpy, (R, 1),

when i # 1,7 # 2.

Proof: Using Lemma 2.2.21 we get ¢y from ESp,, (R, I) such that vey = (1 +
T1,T,...,To,), Where x1, ..., T, € I'. Let v* = vegy. For any maximal ideal m of R
there exists F(m) € ESp,, (R, [) such that v}, = e;E(m) by Lemma 2.2.17. (Note
here that when I* ¢ m, the relative group ESp,, (R, Is) = ESp,,(Ru). So one can
either appeal to L.N. Vaserstein’s lemma, or infer it independently as in the proof
of Lemma 2.2.17). Using Lemma 2.2.25 we get ESp,,(Rm, I) C E(n, I2). Let us
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define V(Y') = v*se;;(tY’). Note that V(0) = v*. We have,

vy se; (1Y) = e E(m) se;(tY)
= ey se;(tY) se;;(—tY) E(m) se;;(tY)
= ey se;(—tY) E(m) se;;(tY)
= i E(m)7! sey(—tY) E(m) se;;(tY).

Let us fix a notation E(m)™! se;(—tY) E(m) se;(tY) = E. Note that F €
ESps,, (Ru[Y], I[Y]?). By Lemma 2.2.25 we have ESp,, (Ru[Y], In[Y]?) is a subset
of ESp,,,(I[Y]). Therefore V(Y ) € V(0)m ESp,,(In[Y]). By Theorem 3.2.3, there
exists Eq(Y) € ESp,,(R[Y], I[Y]) such that V(Y) = V(0)Eo(Y). Put Y =1, to get
v*se;;(t) = v*Eg(1), where Eo(1) € ESp,, (R, ), i.e. vegse;;(t) = vegEg(1l). Hence
vse;;(t) € vESp,, (R, I). O

Theorem 6.3.2 which appears next, is a symplectic analogue of W. van der

Kallen’s Excision theorem. We now prove the following theorem.

Theorem 6.3.2 Let R be a commutative ring with R = 2R, and let I be an ideal
of R. Then the natural maps

. U @/2©1,000) Uy (R1)
" ESp,,(Z[1/2] ® 1,0 I) ESp,, (R, 1)’

T Umy,(Z[1/2] & 1,0 I) . Umy, (Z[1/2] ® I)
ESpy,(Z[1/2] ® 1,0 1) ESp,, (Z[1/2] & 1)’

are bijective for n > 3.

Proof: The map @ is surjective because of the same reason for which the first
map in Theorem 6.1.1 is surjective; we sketch the proof for completeness.

We have to show that given [v] € Umy, (R, I)/ESp,, (R, I), there exists a [w] €
Umy, (Z[1/2] © 1,0 @ I)/ESp,,,(Z[1/2] ® 1,0 ® I) such that [w] maps to [v] by
the natural map. We can think of v as a vector from (Z[1/2] ® I)*". Note that
v=-e; (mod 0@ I). We will try to show v € Umy,(Z[1/2] ® I,0® I). For this we
need to show there exists y € (Z[1/2] ® I)*" such that (v,y) = 1.

(Note that (by, by, ..., ba,) € Umy,(R) and hence (by,b3,...,03,) is in Umy, (R).
Because if (by,03,...,03,) ¢ Umy,(R), then ideal generated by

{b17b§7"'7b3n} g Mg,
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for some maximal ideal of R. But b7 € mp implies b; € mp since mp, is prime ideal.
Therefore {b1, by, ..., by, } C mp, a contradiction.)
Let v = (1 + &1, 29, ...,29,) € Umy, (R, I). Take

w=(14z,23,...,23) € Umy,(R,I).

Then @ = (1,0,...,0) € (R/I)*". Here ‘bar’ means reduction modulo I. Now
u € Umy, (R, I) implies there exists w = (wy, ws, ..., ws,) € R* such that (u,w) =
1. Now (u,w) = 1 implies (e;,w) = 1 and hence w; = 1. So w; = 1 + y;, where

y1 € I, and (u,w) = 1 implies
(1 + $1)<1 + y1) + :cgwg + -4 x%nw% =1.

Let us take y = (14yy, Tows, . . ., Topwsy,). Thisy € (Z[1/2]®1)*" and (v,y) = 1.
Therefore v € Umo,(Z[1/2] ® 1,0 I).

To show U is surjective we need to show for any v € Umy, (Z[1/2]®1), there exists
g € ESp,, (Z[1/2]®I) such that vg € Umy, (Z[1/2]® I,0® I). From the surjectivity
of the second map in Theorem 6.1.1 it follows that, for any v € Umy,(Z[1/2] ® I),
there exists ¢ € Eq,(Z[1/2] @ I) such that

vg € Umg, (Z[1/2] & 1,08 1).

Now from Theorem 4.1.1 it follows that, there exists g € ESp,,, (Z[1/2]®I), such
that vg = vg. Hence ¥ is surjective.

To show U is injective we need to consider v, w € Umsy,(Z[1/2] ® 1,0 ® I) and
g € ESp,,(Z[1/2]®1) such that vg = w. We have to show w is in the ESp,,, (Z[1/2]®
1,0 & I)-orbit of v. Let

T

g = ]Iscislar®a)
k=1

= H se€; . (0D i) se;, ;, (ar, B 0)

T

= SC€ij (O b $1) H Tk SCijy, (0 D xk)71;1 ( H SCiyjk (ak b 0))
k=2 k=1

= 0192,
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where v, = [T, se;,j, (ax © 0) and hence 7, € ESp,, (Z[1/2] @ 0). Note that here

g = sey; (00 x) H’Vk sein (0@ zk) 7
k=2

g2 = H sei i (ar @ 0).
k=1
Clearly g1 € ESp,,(Z[1/2] ® I,0 ® I) and ¢go € ESp,, (Z[1/2]). We also have
vg = w. Here ‘bar’ means modulo the ideal 0 @ I. Therefore we have vg;g, = w, i.e,

€192 = €1 = e1go. Hence we have

1 0 0 10 0 1 00
g=|1*% 1 x|=1x% 1 * 01 0],
¥ 0 « ¥ 0 Ign_g 0 0 «

where « is in Sp,,_5(Z[1/2]) = ESp,,_5(Z[1/2]). To see that v and w are in the
same ESp,, (Z[1/2] @ I,0® I) orbit we use Lemma 6.3.1, replacing R by Z[1/2] ® I.

To see the map P is injective we now consider the following commutative diagram

of the orbit spaces and the natural maps between them:

Umy, (Z[1/2] @ [,0® 1) v  Umy,(Z[1/2]® )
ESp,, (Z[1/2] ® I,0 1) ESp,, (Z[1/2] & I)
Ums,(Z[1/2|® 1,00 1) w, Umg,(Z[1/2]® )
Eon(Z[1/2] © 1,05 1) Eon(Z[1/2] @ 1)
Clearly W; o W = W3 0 U,. Note that we have proved that U is injective. The

injectivity of Wy follows from Theorem 4.1.1. Therefore we have ¥, o U is injective.

This implies W3 o U, is injective and hence Wy is injective.

We now consider another commutative diagram:

Umsy, (Z[1/2]| ® 1,00 1) &  Umy,(R,I)
ESp,,(Z[1/2] ® I,0® 1) ESp,, (R, I)
l% lq’l
Umsy, (Z[1/2| 1,08 1) o, Umg,(R,I)
Eon(Z[1/2) ® 1,08 1) Es, (R, I)
We have ¢, o & = &3 0 $,. Note that &, = U, and hence P, is injective. The

injectivity of ®3 follows from Theorem 6.1.1. Therefore &3 o @, is injective. This

94



implies ®; o ® is injective and hence ® is injective. U

6.4 Equality of Orbits and Excision

We can recapture Theorem 4.2.3 which is a relative version of Theorem 4.1.2, as an
application of symplectic analogue of the Excision Theorem. Here we establish our

claim.

Theorem 6.4.1 Let R be a commutative ring with R = 2R, and let I be an ideal
of R. Then the natural map

Umgn(R, [) Um2n<R, I)
ESp2n<R7 I) E2n<R7 I)

is bijective for n > 3.
Proof: Consider the following commutative diagram:

Ums, (Z[1/2] B 1) o Umg,(R,I)
ESp,, (Z[1/2] & I) ESpy, (R, 1)

Q3 J/QQ
Umgn(Z[l/Q] D I) Q4 Umgn(R, ])
Egn(Z[l/Q] @I) Egn(R, ]) .

The bijectivity of ; and 3 follows from Theorem 6.3.2 and Theorem 4.1.2
respectively. Further, the bijectivity of {24 is immediate from Theorem 6.1.1. These

three bijections together implies that the map €25 is bijective. O

6.5 Suresh linear relation property for a group G

Let G be a functor from commutative rings R (in which 2 is invertible) to groups.
A group G(R) is said to satisfy Suresh linear relation property if it has a set of

generators x,(b), for o in some indexing set, b € R and
Tola+b) = x4(a/2) x4(b) xo(a/2),

for all a,b € R.
In [27], Amit Roy generalized Eichler’s construction in [11] (over fields) by defin-

ing orthogonal transformations of a quadratic module with a hyperbolic summand.
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In (|28], Lemma 1.2, Lemma 1.3) V. Suresh showed that the Eichler orthogonal
transformations defined by A. Roy satisfied this linear property.

Here we show that generators of the elementary symplectic group ETransg,(Q, (,),),

where Q = R? 1 P, also satisfies similar linear relations as above when P is a free
R module of rank 2n. Let vy, v € R?" and oy, ay € R. Then

and

Pe(v1/2,01/2) py(v2, a2) py(v1/2,01/2)

1 0 0 1 0 0 1 0 0
a1/2 1 (v1/2)p as 1 w9 a1/2 1 (v1/2)p
vi/2 0 Iy, vh 0 I, vi/2 0 Iy,
1 0 0 1 0 0
ar/2+ax+ (v1/2)pvs 1 (v1/2)p+vp | | /2 1 (v1/2)p
vl /2 + 0k 0 I, vi/2 0 Iy,
1 0 0
a2+ +a1/2 1 (v1/2)p + v+ (v1/2)¢
vi/2+0k4+0t/2 0 Loy,
1 0 0
ar+az 1 vip+vmp
vi+ol 0 L,

po(v1 +v2, 00 + a2),

Ho(v1/2, a1/2) pp(va, o) pp(v1/2, 00/2)

1
0
0
1
0
0
1
0
0

—a1/2 (v1/2)¢ 1 —ay v 1 —a1/2 (v1/2)¢
1 0 0 1 0 0 1 0
vh/2 I, 0 vt I, 0 vi/2 I,
—a1/2 —ay + (v1/2)pvs (v1/2)p F v\ (1 —a1/2 (v1/2)p
1 0 0 1 0
’Ui/Q -+ Vg [2n 0 U€/2 [2n
—a1/2 —ay — a1 /2 (v1/2)p 4+ v + (v1/2)p
1 0
vl /2 + vy + 0t /2 I,

fo (V1 + V2, a1 + ).
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6.6 Excision Theorem for Symplectic Transvection Group

Now we are ready to prove Excision theorem for elementary symplectic transvection

group. Before that we state a preliminary lemma which will be required in the proof.

Lemma 6.6.1 Let R be a commutative ring with R = 2R, and let I be an ideal of R.
Let v € Umy, (R, I). Let a € ETransg,(R*", (,),) such that ey = 1. Here ¢ is the

alternating matriz corresponding to the alternating form (,) and ¢ = ¢, 1 (mod I).
Then

e = vETranssp(RQ",fzn, (:)e);

forn > 3.

Proof: Let us choose a(X) from ETranss,(R[X]*", (,),), with a(1) = «, and
a(0) = Id (see Lemma 2.2.3). Let us set V(X) = va(X). Note that V(0) = v, and
hence V(X) € V(0) ETranss,(R[X]*", (,),). Let m be a maximal ideal of R. Over

the local ring R,,, we have
V(X) € V(0) ETransg,(RmX], (,)on )

and o, = (1 L e(m))" ¢,—1 (1 L e(m)), for some e(m) € Ey,_3(Rm, Im) (see Lemma
5.1.8). Note that by Lemma 5.7.12 we have

ETranss, (Ru[X " () pn)
= (I3 L e(m))~" ETranss,(Ru[X]*", (, )y, ) (Iz L e(m)),

and hence

V(X) € V(0) (I3 Le(m))™" ETranss,(Ru[X]*", (, )y, ,) (I3 L g(m))
= V(0) (1 Le(m)))™" ESpy, (Ru[X]) (1 L e(m)))

(see Lemma 5.7.10). Let us set 8(X) = (I3 L e(m)) a(X)n (I3 L (m))~! and define

W(X)=V(X) (I3 L e(m))~'. Note that W(0)y 3(X) = W(X)n, where 5(X) is
in ESp,, (Ru[X]) and e;5(X) = e;. By Lemma 6.3.1 we get that W (0),, 5(X) €
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W (0) e ESpop(Ren[X], Im[X]), hence W (X )y € W (0)m ESpay, (R X], In[X]), i.e,
vam(X) (I Lem))™ € v (Is Le(m))™" ESpy, (Ru[X], In[X]),
and hence
vom(X) € v (I3 Le(m))™! ESpy,(Ru[X], In[X]) (5 L g(m)),

ie, V(X)m € V(0)mETranss, (Ru[X]*", Iu[X]*", {, )4 ). This is true for all maximal
ideal m of R. Using Theorem 5.9.4 we get

V(X) € V(0) ETranss,(R[X]*", I[X]*",(,),)-
Substituting X = 1 we get var € v ETransg, (R*", I*", (,),). O

Definition 6.6.2 Let R be a commutative ring with R = 2R, and let I be an ideal
of R. Let us consider the excision ring Z[1/2] @ I. The standard alternating matriz
of size 2n over the ring Z[1/2] & I is defined inductively as

—

wn = @LE,

—~ (0,0) (1,0)
Y = ((—1,0) (0,0))'

Theorem 6.6.3 Excision Theorem for the Group of Elementary Symplec-

where

tic Transvections:

Let R be a commutative ring with R = 2R, and let I be an ideal of R. Let us
consider the excision ring Z[1/2) ® I. Let ((Z[1/2] ® 1)**72,(,)+) be a symplectic
(Z[1/2) ® I)-module, where * be an alternating matriz over the ring Z[1/2] ® I and
p* = @ (mod 0@ I). Then the natural maps

Umy, (Z[1/2] @ 1,08 T
ETransg, ((Z[1/2] ® I)>", (0 & I
[
]

~—
3

Umy, (R, I)

n () >¢*) 7 ETransg, (R?", I?", (, )o+)’

KN Umy,(Z[1/2] ® I)

2 () er) ETranssp((Z[l/Q] @), >e0*) ’

~—

Umoy, (Z[1/2) @ 1,0 1
ETransg, ((Z[1/2] ® I)>", (0 & I

~—
(=9

~—

are bijective for n > 3.
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Proof: Clearly n is surjective (follows from the surjectivity of the first map in
Theorem 6.3.2). To show § is sucjective we need to show for v € Umy,(Z[1/2] @ I)
there exists a g € ETransg, ((Z[1/2] @ I)*", (,),+) such that vg € Ums,(Z[1/2] @
I,0®1). From the Excision theorem in the linear case (see Theorem 6.1.1) it follows
that there exists g* € E,,(Z[1/2] & I) such that vg* € Umy,(Z[1/2] & I,0 & I).
By Theorem 5.10.3 and Theorem 5.11.1 we have v Ey,(R) = v ESpg; | .(R) =
v ETransg,(R*, (,),+) and hence there exists a g € ETranss, ((Z[1/2] ® 1)*", () )
such that vg = vg* € Umy, (Z[1/2] ® 1,0 ® I).

To show 0 is injective we need to consider v,w € Umy,(Z[1/2] ® I,0 ® I) and
g € ETransg, ((Z[1/2] © I)*", {,)4+) such that vg = w. We have to show w is in the
ETransg, ((Z[1/2] ® I)**,0 ® I)?", (, )4+ )-orbit of v. Let

g = Ht¢*<ak ® g, oy D Br)

k=1

= Ht¢*(0@xk/270@ﬁk/2) tw(ak @0, ay @O) t¢*(0@l‘k/2,0@ﬁk/2)
k=1

= 1 (0@ 21/2,0 © 24/2) [ [0 e (0 © /2,0  14/2) 7,

k=2
(H Lo (ak ®0,a, P 0))
k=1
= g1 92,

where t,« iS py« Or pi+, and v, = Hi:l tor(ap @ 0, @ 0). Therefore v is in
ETransg, ((Z[1/2] ® 0)*", (,),+). Note that here

g1 = te (0@ /2,09 8/2) [ ter (0 21/2,0 8 Bi/2) 7,7,
k=2

g2 = Htso*(ak ®0,a;®0).
k=1
Clearly g; is in the relative group ETransg, ((Z[1/2] & I)*", (0@ I)*", {,),+) and
g2 is in ETransg, ((Z[1/2])*", (,),+). We also have 1g = w. Here ‘bar’ means modulo
the ideal (0 @ I). Therefore we have v ¢; go = w, i.e, e1gs = e = €1 go, and
hence v gi go € v ETransg, ((Z[1/2] ® I)*", (0 ® I)*", (,),+) (see Lemma 6.6.1), i.e,
w € v ETransg, ((Z[1/2] ® 1)*, (0 ® 1)*", (, ) ) -
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To see the map 7 is injective we now consider the following commutative diagrams

of the orbit spaces and the natural maps between them:

ETranssp((Z[l/Q] e N2 (0 1), |, >q,*) ETransSp((Z[1/2] @I >e0*)
- o
Ui, (Z[1/2] ® 1,05 1) a Umon(Z[1/2] & I)
Eon(Z[1/2] ® 1,0 1) Eon(Z[1/2] ® 1) -

Clearly 6, 0 6 = 03 0 . Note that we have proved that ¢§ is injective. The
injectivity of &; follows from Theorem 5.10.3 and Theorem 5.11.1. Therefore we

have d; o J is injective. This implies d3 o &5 is injective and hence d, is injective.

We now consider another commutative diagram:

Umy, (Z[1/2] ® 1,0 1) n Umo, (R, I)
ETransg, ((Z[1/2] ® 1)?, (0 @ 1)?", (, )y+) ETransg, (R, 1?7, (,)p+))
Umy, (Z[1/2] & 1,0 1) - Umy, (R, I)
Bon(Z[1/2] © 1,06 1) - Eon(R.1)

We have 1 o = n3 o ny. Note that 17, = d5 and hence 7, is injective. The
injectivity of 73 follows from W.van der Kallen’s Excision theorem (see Theorem
6.1.1). Therefore 13 o 1y is injective. This implies 1y o i is injective and hence 7 is

injective. O
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Chapter 7

Injective Stability

7.1 Decrease in injective stability for K;Sp(R)

In this chapter first we would like to recall the definition of K;(R). Given o € M,,(R)
and § € M,,,(R), then

alf = (g‘ g) € Myim(R).

Using the above definition one has a natural inclusion
GL,(R) C GL,.1(R) C

defined by a € GL,,(R) goes to (1 L a) € GL,,+1(R). Stable linear group GL(R) is
defined as |J,, GL,,(R). In an obvious and unique way a group structure is defined
on GL(R) which coincides with the group structures on GL, (R) when restricted to
GL,(R), for all n. We also recall definitions of the subgroups

E(R) = (JEu(R),

SL(R) = |JSLa(R),

of GL(R).
By Lemma 2.2.9 we have E(R) = [E(R), E(R)] = [GL(R), GL(R)]. In particular,
E(R) is a normal subgroup of GL(R).
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Definition 7.1.1

Kl(R) = (;EI(J;}?’
SK\(R) = %@.

H. Bass, J. Milnor, J-P. Serre began the study of the stabilization for the linear
group GL,(R)/E,(R), for n > 3, where R is a commutative ring with identity. In
[6], they showed the following:

Corollary 7.1.2 (|6], Corollary 11.3) Suppose that the mazximal spectrum of a com-

mutative ring R is Noetherian space of dimension < d. Then the map

GL(R)
K{(R
s an wsomorphism of groups for all n > d + 3. U

Bass-Milnor-Serre also showed that K;(R) = GL3(R)/E3(R), when d = 1. So
the natural question of improving the stability bound arises. In ([4], §11) Bass
conjectured the following:

The dimension of the maximal spectrum under the Zariski topology is called the

Jacobson-Krull dimension.

Conjecture of Bass:
Let R be a commutative ring with 1 and Jacobson-Krull dimension of R is d. Then

the map

GL,(R) GLy1(R)
E.(R)  E.u(R)

is an isomorphism for n > d + 2.

In [34], L.N. Vaserstein proved the above conjecture for an algebra A, which
is finite as a module over a commutative ring R, and whose spectrum of maximal
ideals is a Noetherian space of dim d.

In [26], R.A. Rao and W. van der Kallen began the study of whether the sta-
bilization bound above improves in the case of finitely generated algebras A over a
field k. Such rings A are called affine algebras. Note that by Hilbert’s Nullstellen-
satz, for such rings the Krull dimension and the Jacobson-Krull dimension (i.e. the

dimension of the maximal ideal spectrum under the Zariski topology) coincide.
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An affine algebra A will be called non-singular if A, is a regular local ring,
for every prime ideal p of A. The well-known Jacobian criterion gives an effective
method to determine whether a given ideal I = (fy,..., f.) of k[Xy,...,X,] gives
rise to a non-singular algebra k[X,,..., X,]/I.

Definition 7.1.3 C-field:
A field F is called o Cy field if for any homogeneous polynomial f(xy,...,x,) in
Flzy,...,x,] of degree d (d is any positive integer), where n > d has a nontrivial

zero in F™.

Example of ('-field due to Tsen-Lang: If I is an algebraically closed field and

E' is a function field in one variable over F', then E is a C-field.
For more examples of C-field one can see [12].

R.A. Rao and W. van der Kallen showed the following:

Theorem 7.1.4 ([26], Theorem 1)

Let A be a non-singular affine algebra of Krull dimension d > 2 over a perfect C-
field. Let o € SLgi1(A) and (1 L o) € Eqy2(A). Then o is homotopic to identity,
i.e, there ezists a p(X) € SLgy1(A[X]) such that p(1) = o and p(0) = Id. O

As a consequence of the above result they showed the following:

Theorem 7.1.5 ([26], Theorem 1)
If A is a non-singular affine algebra of Krull dimension d > 2 over a perfect C-field,

then the natural map

SLu(4)  SLyi(4)
E.(A) Eri(4)

s injective for n > d + 1. O

Thus, the set of all non-singular affine algebras over a perfect C;-field, of Krull
dimension d, became an important subclass of the set of all commutative rings of
Jacobson-Krull dimension d, over which one could seek improvement in Ky and Ky
results. (The famous theorems of Suslin in [30], [32] first showed that stabilization
results of H. Bass for Ky improved over such rings. This is the key why one expect

to hope for improvement for K; for this class of rings.)
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L.N. Vaserstein in [35] considered the symplectic, orthogonal and the unitary
K;-functors, and obtained stabilization theorems for them. These results have been
sharpened and extended to other groups in [3].

We restrict ourselves to the symplectic case here.

Theorem 7.1.6 ([35], Theorem 3.3)

The natural map

© L Sp2n<R> SN Sp2n+2(R)
et ESp2n<R) ESp2n+2<R>

is an isomorphism for 2n > 2d + 4. Here d is the stable dimension of R. O

R. Basu and R.A. Rao showed, in particular, the following:

Theorem 7.1.7 ([9], Theorem 1)

Let R be a non-singular affine algebra over a perfect Cy-field of odd Krull dimension
d > 2. Let 0 € Spy,(R) and (I, L o) € ESpy,,»(R). Then o is homotopic to
identity, i.e, there exists p(X) € Sps,(R[X]) such that p(1) = o and p(0) = Id. O

As a consequence they showed that

Theorem 7.1.8 ([9], Theorem 2)
If R is a non-singular affine algebra over a perfect Ci-field of odd Krull dimension
d > 2, then the natural map

© L Sp2n<R> SN Sp2n+2(R)
e ESp2n<R> ESp2n+2<R>

s an isomorphism for 2n > d + 1. O

In this section we are going to reprove this result. Moreover via our main result
we show that there is a further decrease in the injective stabilization bound (for the
symplectic K;) of a non-singular affine algebra over a finite field of characteristic
not equal to 2 (or its algebraic closure). We show that if the field is a finite field of
characteristic not equal to 2 (or its algebraic closure) then the bound improves to
2n > d, provided d is even > 4.

We would like to recall the surjective stability estimates first. We begin with a

definition:
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Definition 7.1.9 Stable Range: Let R be a commutative ring. The following
concept was introduced by H. Bass:

(Ry,) for every (ay,...,an) € Um,(R), there are x; € R, for 1 <i < m —1,
such that (a1 + 10, . . ., @p-1+Tm_10m) € Umy,_1(R). The condition (R,,) implies
(Rimy1), for every m > 0. Moreover, for any n > m, the condition (R,,) implies
(Ry,), with x; = 0, for i > m. By stable range st(R) of a ring R we mean the least
n such that (R,,) holds.

Definition 7.1.10 Stable Dimension: The stable dimension of a ring R is the
integer one less than the stable range. It is denoted by sdim(R). If R is a Noetherian
ring of Krull dimension d, then sdim(R) < d + 1.

The following is well-known:

Lemma 7.1.11 Let I be an ideal of R and st(R) <t. Let us assume t > 2. Then
Um, (R, I) = e1E, (R, 1), forn > t.

Proof: Let v = (ay,...,an_1,a,) € Um,(R,I), then w = (ay,...,a, 1,a2) is in
Um, (R, I). Since sr(R) < t, there exists b; € R such that

w* = (a1 -+ blai, R ¢ o | + bn,lai) € Umn,1<R, I)

There exists Fy € E,(R, I) such that vE, = (w*, a,). Let us consider (w*, a,) €
Um,(Z & I), with w* € Um,_1(Z & I). Clearly there exists an elementary matrix
Ey € E,(Z @ I) such that (w*,a,)Ey; = e;. By W. van der Kallen’s Excision
theorem (see Theorem 6.1.1) we get an E3 € E, (R, ) such that (w*,a,)FEs; = e;.
Hence vE  E3 = e, where F1FE3 € E, (R, I). O

Proposition 7.1.12 Let R be a Noetherian commutative ring of odd Krull dimen-
sion d > 3. Assume R =2R. Let 0 € Spy,1(R) and (Iy L 0) € ESpy,5(R). Then o
is (stably elementary symplectic) homotopic to the identity, i.e. there exists a p(X)
in Spy (R[X]), such that o = p(1), and p(0) = Id.

Proof: Let a(X) € ESpy, 3(R[X]) be such that (/; L o) = a(1) and «(0) = Id
(see Lemma 2.2.3). Let e;a(X) = v(X). Therefore

v(X) € Umgs(R[X], (X? - X)).
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The Krull dimension of R[X] is d + 1. Note that R[X] is Noetherian and hence
sdim(R[X]) < d + 2. This implies sr(R[X]) < d + 3. Therefore,

Umg.s(RIX], (X2~ X)) = eEaa(R[X], (X2 - X))
= elESpd-i-S(R[X]v (X2 - X))

(First equality follows form Lemma 7.1.11 and second equality follows from Theorem
4.2.3.) Let

e(X) € ESpus(RX] (X* - X))

be such that v(X) = e;e(X).
Let us define (X)) = a(X)e(X) L. Clearly e;3(X) = €7 and 5(X) € ESp, 5(R[X]).
This implies 5(X) is of the form

1 0 0
* 1 * ,
« 0 B°(X)

where §*(X) € Spy,(R[X]). Now (I L o) = a(l) = (1) since £(1) = I4s.
Therefore *(1) = o0,4*(0) = Id; and hence o is (stably elementary symplectic)
homotopic to the identity. O

The next result is proven in the linear case in ([37], Theorem 3.3), using H.
Lindel’s insight in [19], when R is a localization of an affine algebra over a field K
at a non-singular point. This can be extended to any regular ring (R, m) containing
a field, or if characteristic R/m ¢ m,? using the deep approximation theorem of
D. Popescu in [22]. (Also see [23]|, Corollary 4.4.) The argument imitated in the

symplectic case is outlined in [9] and asserts:

Theorem 7.1.13 (9], Theorem 3.8) Let (R,m) be a regular local ring. Assume
that R contains a field, or characteristic R/m ¢ m.2 Then

Spy, (R[X]) = ESpy, (RIX]),
forn > 2. O

Corollary 7.1.14 Let R be a non-singular affine algebra of odd Krull dimension
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d > 5 over a field K. Also assume R = 2R. Then

Spd+1 (R) N ESpd+3(R) = ESpd_H (R)

Proof: It suffices to show that the left hand side is contained in the right
hand side. The reverse inclusion is obvious. Let ¢ € Spy,,(R) N ESp,,4(R). By
Proposition 7.1.12, ¢ is stably elementary symplectic homotopic to the identity,
i.e, there exists a(X) € Spy,;(R[X]) such that a(l) = ¢ and a(0) = Id. Now
am(X) € Spyiq(Rw[X]), for all maximal ideals m in R. By Theorem 7.1.13 we
have Spy,;(Rw[X]) = ESpyyi(Rw[X]), for all maximal ideals m of R . Therefore
a(X)m € ESpyyi(Rn[X]), for all maximal ideals m in R. Theorem 3.1.5 implies
a(X) € ESpyy1 (R[X]). We have 0 = a(1) € ESp,y,,(R). O

Theorem 7.1.15 Let R be a finitely generated algebra of even Krull dimension
d >4 over K, where K =7 or F or F and char(K)# 2. (Here F is a finite field
and F is its algebraic closure.) Let o € Spy(R) and (Iy L o) € ESpy,o(R). Then o
is (stably elementary symplectic) homotopic to the identity. In fact, o0 = p(1), and
p(0) = Id, for some

p(X) € Spy(R[X]) N ESp,,(R[X]).

Proof: Let a(X) € ESp,,,(R[X]) be such that (I, L o) = «(1), and «(0) = Id.
Let e;a(X) = v(X). Therefore

v(X) € Umgp(R[X],(X* - X)).
By ([29], Corollary 20.4),

Umgpo(R[X], (X? = X)) = eiEaya(R[X], (X* ~ X))
= €1ESpd+2(R[X]>(X2_X))-

(The last equality follows from Theorem 4.2.2.) Let
e(X) € ESpy(R(X),(X*- X))

be such that v(X) = e;e(X).
Let us define §(X) = a(X)e(X) ™1 Clearly e;3(X) = e; and 3(X) € ESp,,,(R[X]).
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This implies 5(X) is of the form

1 0 0
* 1 * ,
« 0 p(X)

where 3*(X) € Spu(R[X]). Now (I L o) = a(l) = f(1) since &(1) = Iyo.
Therefore *(1) = o0,4*(0) = Id; and hence o is (stably elementary symplectic)
homotopic to identity. O

Corollary 7.1.16 Let R be a finitely generated non-singular algebra of even Krull
dimension d > 4 over K, where K 1is either a finite field or the algebraic closure of
a finite field and char(K)# 2. Let o € Spy(R) and (Iz L o) € ESp,,o(R). Then o
belongs to ESp,(R).

Proof: From the proof of Theorem 7.1.15 it follows that o = 3*(1) for some
[*(X) € Spy(R[X]), with 5*(0) = Id. We know Sp,(Ru[X]) = ESp,(Rm[X]), for all
maximal ideals m of R (see Theorem 7.1.13). This implies 5*(X) € ESp,(Ru[X]),
for all maximal ideals m in R. By Theorem 3.1.5, 3*(X) € ESp,(R[X]). Hence
o = *(1) belongs to ESp,(R). O

7.2 Decrease in injective stability for Sp(Q, (,))/ETranss,(Q, {,))

Final goal of this section is to give an improvement for Basu-Rao (see Theorem
7.1.8) estimate in the module case over finitely generated rings. For this purpose
we state and prove a few preliminary results. While dealing with the results in the
relative case w.r.t. an ideal I of a ring R, we will always assume that over the local
ring Ry, where m is a maximal ideal, the alternating form (,) corresponds to the

alternating matrix ¢, where ¢, = ¢, (mod I).

Theorem 7.2.1 ([5], Theorem 3.4, Page 183) Let R be a commutative ring of dim d.
Let I be an ideal of R and P be a projective module of rank > d+1. Let Q = R L P.
Let vy, vy € Um(Q) and vy = vy (mod IQ). Then there ezists § € ETrans(Q, 1Q)
such that v = vs. O

Lemma 7.2.2 Let R be commutative ring of dimension d, and let I be an ideal of
R. Let us assume R = 2R. Let (P, {(,)) be a symplectic R-module with P finitely
generated projective module of even rank > max{4,d — 1}, and let Q = R* L P.
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Let v1,v9 € Um(Q) and vy = vy (mod 1Q). Then there exists § € ETransg,(Q, IQ)
such that v = vs.

Proof: Follows from Theorem 7.2.1 and Theorem 5.11.4. ]

Let us recall the property P.(R, I) introduced in ([17]). Let R be a commutative
ring and [ be an ideal of R. Let P be a projective module of rank > r and let
Q =R L P. We say P,(R,I) holds if ETrans(Q, IQ) acts transitively on the set of
unimodular elements (a,z) € Um(Q) with the property (a,z) = (1,0) (mod IQ).
We can similarly introduce P,(R, I) for the group of elementary symplectic transvec-

tions ETransg,. In the next two lemmas ‘bar’ will denote modulo the ideal nil(R).

Lemma 7.2.3 ([17], Remark 2.3): P.(R,I) implies P,(R,I).

Proof: Let (a,p) € Um(Q) with the property (a,p) = (1,0) (mod 1Q). We have
(@,p) € Um(Q) and (@,p) = (1,0) (mod IQ). Given that P,(R,T) holds and hence

there exists a € ETrans(Q,E) such that (a,7)a = (1,0). We know the map
ETrans(Q,1Q) — ETrans(é,@)

is surjective. Therefore there exists o € ETrans(Q,IQ) such that ag = « and
we have (@,p)ag = (1,0). Hence (a,p)ap = (1,0) (mod nil(R)). We may assume
(a,p) = (1,0) (mod nil(R)). Therefore we have (a,p) = (1,0) (mod nil(R) N IQ).
Let (a,p) = (1 +d’,p), where o' € nil(R) NI and p € (ml(R)Q N IQ) We define
v(X) = (1 4+ ¢X,pX). For any maximal ideal m of R, P, will be a free Ry-
module and v(X )y € Um, (Ru[X], In[X]), where n > r 4+ 1. Note that a’ € nil(R)
and hence 1+ ¢’X is a unit in R[X]. Therefore by Lemma 2.2.17 we get 5(X) €
En(Rm[X], In[X]) such that v(X)F(X) = (1,0) = v(0). We have

En(Ru[X], In[X]) = ETrans(Qu[X], IQu[X])
(see Lemma 5.4.6 ). Therefore
v(X) € v(0) ETrans(Qu[X], IQu[X]),

and this is true for all maximal ideal m of R. Hence using Theorem 5.6.4 we claim

v(X) € v(0) ETrans(Q[X], IQ[X]).
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Substituting X = 1 we get the result. U

Lemma 7.2.4 P,(R,1) for ETranss, implies P.(R,I) for ETransg,.

Proof: Follows from Lemma 7.2.3 and Theorem 5.11.4. O

Theorem 7.2.5 ([17], Theorem 2.4): Let R be a finitely generated ring of dimension
d > 2, and I be an ideal of R. Let P be a projective module of rank > d, and
Q=R L P. Let (a,z) € Um(Q) with the property (a,z) = (1,0) (mod IQ). Then
there exists o € ETrans(Q, IQ) such that (a,z)a = (1,0).

Proof: Let m be a maximal ideal of R. Consider the free module P, of R,. Also
(G, Tm) € Umy, (R, I), where n > d+1. By Corollary 2.2.18 we get 3 € E,,( Ry, I1n)
such that (am,zm)B = (1,0). Let us choose G(X) from E, (Ru[X], I[X]) such that
B(1) = g and B(0) = Id (see Lemma 2.2.3). Let us define v(X) = (am, xm)3(X).
Note that v(1) = (1,0) and v(0) = (a,z) and

v(X) € v(0) En(Rual[X], In[X]).

We have E,, (Ru[X], In[X]) = ETrans(Qu[X], IQum[X]) (see Lemma 5.4.6). There-

fore
v(X) € v(0) ETrans(Qm[X],IQm[X]),

and this is true for all maximal ideal m of R. Hence using Theorem 5.6.4 we claim

v(X) € v(0) ETrans(Q[X], IQ[X]).
Substituting X = 1 we get the result. U

Theorem 7.2.6 Let R be a finitely generated ring of dimension d > 2, and let I be
an ideal of R. Let us assume R =2R. Let (P, (,)) be a symplectic R-module with P
finitely generated projective module of even rank > max{4,d—1}, and Q = R*> 1 P.
Let (a,x) € Um(Q) with the property (a,z) = (1,0) (mod IQ). Then there exists
a € ETransg, (Q, IQ) such that (a,z)a = (1,0).

Proof: Follows from Theorem 7.2.5 and Theorem 5.11.4. O

Theorem 7.2.7 Let R be a commutative ring of dimension d. Let us assume R =

2R. Let (P(,)) be a symplectic R-module with P finitely generated projective module
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of even rank > max{2,d — 3}. Let Q = (R L P), and let Q = (R* L Q). Let
o€ Sp(Q,(,)) and (I L o) € ETransSp(@\), (,)). Then o is (stably elementary
symplectic) homotopic to the identity. In fact, o = p(1), and p(0) = Id, for some

p(X) € Sp(QIX](,)) N ETranss,(Q[X], ().

Proof: Let us choose «a(X) from ETransSp(@[X], (,)), such that (1) = I, L
o, and a(0) = Id. TLet eloz(X) = v(X) € Um(Q[X], (X2 — X)Q[X]). Also

= (1,0,0) € Um(Q[X], ( ) Q[X]). Therefore by Lemma 7.2.2, we have
B(X) € ETransSp(@\[X] (X2 = X)Q[X],(,)), such that v(X)B3(X) = (1,0,0), i.e,
era(X)B(X) = e;. Let us call the product «o(X)G(X) = 6(X). Since 6(X) €
ETranssp(@[X], (,)), we have (e10(X), e20(X)) = (e1,e2) = 1, and hence ey 6(X) =
(a(X),1,q(X)) = u(X) (say). Note that 6(0) = Id, hence u(0) = (0,1,0). Also
§(1) = Id, hence u(1) = (0,1,0), i.e, u(X) = (0,1,0) (mod (X2 — X)). Let m be a
maximal ideal of R and ¢, be the alternating matrix over R, which corresponds

to the alternating bilinear form (, ). Let us choose an element

1 0 0
(X)) = —a(X) 1 —q(X)
enla(X) 0 T

= ple(X)py' —a(X))

from ETransSp(@m[X], (X2=X)Qu[X], (,)), such that e; v(X) = e; and u(X) v(X) =
e; = u(0). This is true for all maximal ideals m of R. By Theorem 5.9.4 there
is a (X) € ETranss,(Q[X], (X% — X)Q[X],(,)) such that e; (X) = e and
u(X)7(X) = eg. Let us call 6(X)7(X) = n(X). Clearly n(X) € ETransSp(Q[X] (),
and e; n(X) = ey;ee N(X) = ey. Let n(X) = I, L p(X), where p(X) = n(X)|gx]-
Note that p(X) € Sp(Q[X], (,)), and

I Lp(l) = »n1) = 6(1)7(1)

and p(0) = Id. O
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Theorem 7.2.8 ([9], Theorem 3.13) Let (R, m) be a regular local ring. Assume that
R contains a field, or characteristic of R\ m ¢ m?. Then

Sp(R[X]2n+2, <7 ><Pm) = ETranSSp(R[X]2n+27 <7 ><Pm)7
for m > 1, where py, is the associated matriz of the alternating bilinear form (,). O

The next corollary improves Basu-Rao (see Theorem 7.1.8 ) estimate in the

module case over finitely generated rings.

Corollary 7.2.9 Let R be a finitely generated non-singular algebra of dimension d
over K, where K 1is either a finite field or the algebraic closure of a finite field. Let
us assume R =2R. Let (P.(,)) be a symplectic R-module with P finitely generated
projective module of even rank > maz{2,d — 3}. Let Q = (R* L P), and Q =

~

(R* L Q). Let 0 € Sp(Q, (,)) and (I, L o) € ETranss,(Q, (,)). Then o belongs to
ETransgs, (@, (,))-

Proof: From the proof of Theorem 7.2.7 it follows that o = p(1) for some p(X) €
Sp(Q[X], (,)), with p(0) = Id. Using Theorem 7.2.8 we get that Sp(Ru[X]*"*2, (, )on)
= ETranssy(Rm[X]*"*%, (, )y ), for all maximal ideals m of R. This implies p(X) €
ETranss, (Rum[X]*" ™2, (, )pu ), for all maximal ideals m in R. By Lemma 5.9.1, p(X) €
ETranss, (R[X], (,)). Hence o = p(1) belongs to ETransg, (R, (,)). O

Remark 7.2.10 We believe that Corollary 7.2.9 should also hold for finitely gener-

ated rings of dimension > 2 in view of results in [13].
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