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AbstratIn this thesis we study the problem of ounting dyons in ertain supersymmetri stringtheory models and the in�nite dimensional Lie algebras that underlie the dyoni degen-eraies. The ounting of 1
4
-BPS states in N = 4 supersymmetri four-dimensional stringtheories an be arried out in a mathematially preise and rigorous fashion due to the fatthat the spetrum of these BPS states an be generated by genus-two modular forms[1, 2℄.The same modular form also ours in the ontext of Borherds-Ka-Moody (BKM) Liesuperalgebras[3, 4℄, in their denominator identities. This surprising mathematial strutureunderlying the spetrum of these states is the idea we develop in this thesis.The starting point in the problem of ounting dyoni states in N = 4 supersymmetrifour-dimensional string theories are two remarkable papers � one by Dijkgraaf, Verlindeand Verlinde (DVV)[1℄ and the other by Strominger and Vafa[5℄. Strominger and Vafaprovided a mirosopi desription of the entropy of supersymmetri blak holes, whih hasprovided enormous impetus to the ounting of BPS states in a variety of settings. DVV, in aremarkable leap of intuition, proposed that the degeneray of 1

4
-BPS states in the heterotistring ompati�ed on a six torus is generated by a genus-two Siegel modular form of weightten, Φ10(Z).Sine then, in a series of remarkable and important papers, Sen, Jatkar and David haveadvaned DVV's idea to a family of asymetri orbifolds of the heteroti string ompati�edon T 6 leading to heteroti ompati�ations that preserve N = 4 supersymmetry but withredued gauge symmetry known as the CHL ompati�ations[6℄. In partiular, they haveexpliitly shown the ounting of dyoni states in a speial lass of N = 4 supersymmetritheories. They have also studied the dyon spetrum in N = 4 supersymmetri type II stringtheories. Following this there has been enormous progress in studying and understandingthe various modular forms that generate the degeneraies of the 1
2
-BPS and 1

4
-BPS states inthese models. The modular forms in question have been generated in many di�erent wayseah being related to di�erent aspets of the theory. DVV also observed that the modularform proposed by them as the generating funtion for the degeneray of 1

4
-BPS states oursas the denominator identity of a BKM Lie superalgebra studied by Gritsenko and Nikulin.This idea gives a ompletely new dimension to the ounting of dyoni states whih ould nothave been antiipated at the level of the ation of the theory. This idea has been furtheredto the models onsidered by Jatkar and Sen in [7, 8, 9, 10℄. The BKM Lie superalgebras arerelated to the struture of the CHL model and it is expeted that understanding the originsof this algebrai struture might provide more insight into the physis of 1
4
-BPS states. 5



The ontributions of this author, along with his thesis supervisor, was to onstrut a newfamily of BKM Lie superalgebras orresponding to modular forms, Φk(Z) generating the R2orretions in the string e�etive ation[7℄, in addition to onstruting the modular formsgenerating the degeneray of 1
2
-BPS states and 1

4
-BPS states for the ase of non-prime N ofthe orbifolding group ZN in the CHL strings[9℄. Also, the modular forms Φ̃3(Z) and Φ3(Z)as well as the BKM Lie superalgebras orresponding to the modular forms were onstrutedand studied. In partiular, the relation between the walls of marginal stability of the 1

4
-BPSstates and the walls of the Weyl hamber have been found to be in agreement with preditionsin the literature. The onnetion between multipliative η-produts studied by Dummit, et.al. and the degeneray of eletrially harged 1

2
-BPS states has been found and the sameextends to all orbifolding groups, inluding produt groups suh as ZM × ZN . The author,along with ollaborators has shown that the modular forms generating the degeneray of the

1
2
-BPS states in the asymmetri orbifolds of the type II strings on T 6 appear as η-quotients.The modular forms that generate the degeneray of modular forms in the type II modelsan be written in terms of the modular forms that appear in the CHL models. We brie�ydisuss the BKM Lie superalgebras in the type II models.and studied the modular forms generating the degeneray of the 1

4
-BPS states in thetheory [10℄. Also proposals for BKM Lie superalgebras in these models have been disussed.List of publiations/preprints1. Suresh Govindarajan and K. Gopala Krishna. �Generalized Ka-Moody algebras fromCHL dyons,� JHEP 04 (2009) 032 [arXiv:hep-th/0807.4451℄2. Suresh Govindarajan and K. Gopala Krishna, �BKM Lie superalgebras from dyon spe-tra in ZN CHL orbifolds for omposite N , "IITM/PH/TH/2009/3; IMS/2009/04/06;[arXiv:hep-th/0907.1410℄3. Suresh Govindarajan, Dileep Jatkar and K. Gopala Krishna, �BKM Lie superalgebrasfrom ounting dyons inN = 4 supersymmetri type II ompati�ations" IITM/PH/TH/2009/4;IMS/2009/04/07 (work in progress)
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1String Theory
1.1 IntrodutionThe aim of this hapter is to understand some of the basis of string theory. However, aftera linear start, we will take a slightly di�erent road map and fous on some aspets that aremore natural to understand in the ontext of the problem that we are going to study in thefollowing hapters. In keeping with the `ounting' theme of the thesis, we will look at howsome of the well-known modular forms our in onnetion with ounting of states in stringtheory. The starting point of our road map is to, axiomatially, introdue a model in whihthe fundamental objets are strings instead of point partiles. A string is a one-dimensionalobjet � mathematially a urve. The idea, from a simple minded point of view, is to replaestrings in the plae of ordinary point partiles and see what physis studying these leadsto. We will take the theory through the same set of steps that one does to the theory ofordinary point partiles we are replaing it with. To onsistently do so, we should be ableto reover the quantum �eld theory desription of point partiles by taking a suitable limitorresponding to length sales of everyday life. There will, however, be remnants of thestringy nature of the original theory and it will be interesting to see what the impliations ofthese are. The original motivations for onsidering string theory as a theory of nature are, ofourse, more ompelling than what is suggested here, and that by itself is a very interestingand illuminating read and we refer the reader to many of the exellent texts in string theoryfor it. Some suggested referenes are [11, 12, 13℄(see also [14, 15℄).There an be two fundamental kinds of strings one an onsider � the open string, i.e. astring with free end points and of �nite length, and the losed string, i.e. a string whose endsare joined together to form a loop, topologially equivalent to a irle. The string sweeps1



Chapter 1. String Theoryout a two-dimensional surfae, known as the world-sheet, as it moves through spae-time.For an open string, the topology of the world-sheet is a two-dimensional sheet, while for thease of a losed string it is a ylinder.To make sense of it as a viable theory of nature, we also need to introdue interations intothe theory and to understand how one an generate the spetrum, ontaining the variouselementary partiles of nature, from it. Even though the basi objets of the theory areextended, the interations in the theory need to be loal in nature to preserve Lorentzovariane. Lorentz invariane of the interation also forbids that any point on the world-sheet be singled out as the interation point. Interations in string theory arise when stringsoverlap at the same point in spaetime. The interation results purely from the joining andsplitting of strings. Consisteny of the interations fore the existene of losed strings in anytheory whih has interating open strings. However, one an have a onsistent theory withonly losed strings. The various elementary partiles will be generated by the exitations ofthe string from its ground state. Just like the di�erent minimal notes of a vibrational stringorrespond to di�erent aousti modes, the di�erent vibrational modes of open and losedstrings will orrespond to di�erent elementary partiles. This is the model we will study insome detail below. We will �rst �nd an ation for the theory, and study it. Then we quantizethe theory in a suitable gauge and �nd its spetrum.Let us denote the (D + 1)-dimensional spae-time manifold by M(∼ R × Ms) (where
Ms is the spae manifold) and let gµν be the metri on M . The on�guration of an n-dimensional objet is parametrized by (n+ 1) parameters. Thus, the two-dimensional worldsheet, Σ, swept by the string, would be parametrized by two numbers ξa = {σ, τ}, where σ(normalized to lie between [0, l]) is a spae like oordinate and τ is timelike. Let γαβ be theintrinsi metri on Σ. We assume that Σ andM are di�erentiable manifolds. The trajetoryof the string in spae-time is given by a set of D + 1 funtions Xµ(σ, τ) whih embed theworld sheet Σ in the target spaetime M . The Xµ(σ, τ) are ontinuous maps from Σ to M .
Xµ(σ, τ) give the position of the point (σ, τ) of the string in the spae-time manifold. 1Like in any quantum �eld theory, what we want to ompute from the theory are fun-damental quantities like the transition amplitudes for sattering proesses et. to obtainphysial preditions from the theory. Transition amplitudes in the theory have to be eval-uated order by order in the loop expansion, whih, in the ase of a world-sheet, whih is1We use the Greek alphabets α, β, . . .et. for the omponents of the intrinsi metri γ whih take values
1, 2 , and Greek alphabets µ, ν . . .et. to denote spae-time omponents of the metri g whih run from
0, . . . , D. 2



Chapter 1. String Theorya Riemannian surfae, would be over varying genera. One assigns a relative weight to agiven on�guration and then sums over all possible on�gurations. In the ase of strings, theon�guration spae is the world-sheet of the string, and the path integral is over geometries.One has to sum over all possible topologies (spae of on�gurations) with a suitable weightto obtain the vauum to vauum amplitude.To eah on�guration one assoiates the weight
e−S[X,Σ,M ], S ∈ C ,and the transition amplitude at eah genus is obtained by summing over all possible metris

γ and all possible embeddings Xµ(σ, τ). The funtional S[X, γ,M ] is the ation for thestring world-sheet (we will skip the referene to the spaetime manifold from now on). Thesum over all topologies is equivalent to the sum over the genera.
Z =

∑

Σ

∑

X

e−S[X,Σ] =

∞∑

h=0

(gs)
2h−2

∫
DXDγe−S[X,γ] =

∞∑

h=0

Zh(gs)
2h−2 .

Z is given as the sum of the h-loop partition funtions Zh. Dγ and DX are the measuresonstruted out of di�eomorphism invariant L2 norms on Σ and M . We need to omputethem to evaluate the partition funtion exatly. First, however, we need to onstrut anation for the string to desribe the motion of the string in the spae-time manifold. Theation should be suh that all physial quantites we ompute from it (like sattering ampli-tudes, et.) would depend only on the embedding of the string in the spae-time manifold(that is the funtions Xµ(σ, τ)) and not on the hoie of parametrization, ξa, of the world-sheet. Consequently, the ation itself should depend only on the embedding in spae-timeand nothing else. It should also be onsistent with the symmetries of the world-sheet andthe spae-time. In addition we require it to be loal on its dependene on X, γ and g and berenormalizable as a QFT.A suitable andidate is the Nambu-Goto ation, whih is proportional to the area ofthe world-sheet. A reformulation (and more amenable to quantization) of the Nambu-Gotoation is the Polyakov ation
S = −κ

∫

Σ

dτdσ(−γ)1/2γαβ∂αX
µ∂βX

νgµν , (1.1)where κ is a proportionality onstant alled the string tension. For the ation to be adimensionless quantity the string tension should have dimensions (length)−2 = (mass)2 in3



Chapter 1. String Theorynatural units. It is taken to be κ = (4πα′)−1, where α′ is the Regge slope.This, however, is not the most general ation that satis�es the above mentioned riteria.There are other possible terms that one an add, like the anti-symmetri tensor �eld, ora dilaton �eld, or a tahyon �eld, but in this rather modestly aimed disussion we do notonsider suh terms.The Polyakov ation, by onstrution, has the symmetries of the world-sheet (the areaof the world-sheet is independent of the parametrization of the world-sheet used to measureit and depends only on the embedding) and the spae-time manifold (the tensor indies areproperly ontrated to make it Poinarë invariant) built into it. The spae-time manifoldis usually a pseudo-Riemannian spae, whih in our ase, we take to be the Minkowskispae-time, whose symmetries are the D-dimensional Poinaré invariane:
X ′µ(σ, τ) = Λµ

ν X
ν(σ, τ) + aµ ,

γ′αβ(σ, τ) = γαβ(σ, τ) , (1.2)where Λ ∈ SO(1, D), and aµ ∈ RD.The world-sheet is a two-dimensional manifold, and has in its group of symmetries thegroup of di�eomorphisms f : Σg → Σg of Σ. Let ξa → ξ
′a(ξ) be the oordinate expressionfor f . The new metri is the pullbak of the old one and is given by

γαβ → f ∗γαβ =
∂ξγ

∂ξ′α
∂ξδ

∂ξ′β
γγδ . (1.3)The embedding transforms as

X ′µ(σ′, τ ′)→ f ∗Xµ = Xµ(σ, τ) . (1.4)The metri γαβ is non-dynamial in the ation, and hene imposes onstraints on thesystem. Unless we an gauge away all the independent degress of the metri, we annot makea sensible interpretation of the physial theory. The symmetri tensor γαβ in two dimensionshas 3 independent omponents. The two-dimensional oordinate reparametrizations dependon two free funtions and we an eliminate two of the omponents using this. This leavesus with one independent parameter in the metri tensor to �x. It turns out, that just forthe ase of two dimensions, there ours one more loal symmetry � loal resalings of themetri � that is an invariane of the lassial ation. It is alled the Weyl invariane of the4



Chapter 1. String Theorymetri and is given by
γ′αβ(σ, τ) = e2ω(σ, τ)) γαβ(σ, τ) , (1.5)for arbitrary ω(σ, τ). Under a Weyl resaling of the metri, the ombination √γγαβ isinvariant in two spae-time dimensions, and thus, the ation remains invariant under it.One an use this freedom to �x γαβ (atleast loally) to be proportional to ηαβ . This is knownas the onformal gauge. The embedding of the string in M is not a�eted by this hangeas is re�eted by the transformation properties of the funtions Xµ(σ, τ) under the Weyltransformations

X ′µ(σ, τ) = Xµ(σ, τ) . (1.6)The Weyl invariane of the ation, in two spae-time dimensions, has very interesting andimportant onsequenes for the theory as we will disuss later.When we quantize the theory, we will require that these symmetries be preserved if thetheory is to be anomaly-free. In the onformal gauge, the ation redues to the free �eldation
S = −κ

∫
dσdτ ηµν η

αβ∂αX
µ∂βX

ν . (1.7)This hoie of gauge will have to be treated more arefully when quantizing the theory.The requirement of the theory to be anomaly free will impose ertain onsisteny onditionson the dimension of spae-time and on the mass of the ground state. For now we work withthe above ation. Having the ation, we an derive the equations of motion oming fromit and �nd general solutions to the funtions Xµ(τ, σ). The Euler-Lagrange equations ofmotion oming from this ation is just the two-dimensional linear wave equation
�Xµ ≡

( ∂2

∂τ 2
− ∂2

∂σ2

)
Xµ = 0 . (1.8)This must, of ourse, be supplemented with the onstraint equations. The onstraintequations in this ase are δS

δγαβ
= 0. The variation of the ation with respet to the metri

γab gives the (two-dimensional) energy-momentum tensor
Tαβ(σ, τ) = −(κ)−1(−γ)−1/2 δS

δγαβ
.

= ∂αX
µ∂βXµ −

1

2
γαβ ∂γX

µ∂γXµ . (1.9)Thus, the onstraint equation simply means that the energy-momentum tensor Tαβ = 0.The di�eomorphism invariane in two-dimensions implies the energy-momentum tensor is5



Chapter 1. String Theoryonserved. The Weyl invariane of the ation S, whih is just the statement of onformalinvariane of the theory implies that the energy-momentum tensor is traeless. This meansthe theory is sale invariant. In two-dimensions, the onformal group is in�nite-dimensional.We will get bak to this remark again after we �x the boundary onditions. We will also needto examine the possibility of an anomaly in the trae of Tαβ when quantizing the theory.If the world-sheet has a boundary, there is also a surfae term in the variation of theation. If we take the oordinate region to be
−∞ < τ <∞, 0 ≤ σ < l .Then, the variation of the ation with respet to Xµ will also have a boundary term givenby

− 1

2πα′

∫ ∞

−∞

dτ(−γ)1/2δXµ∂σXµ

∣∣∣
σ=l

σ=0
. (1.10)We need this term to vanish and there are di�erent ways in whih that an happen. Forlosed strings, one imposes a periodiity ondition on the �elds

Xµ(τ, l) = Xµ(τ, 0), ∂σXµ(τ, l) = ∂σXµ(τ, 0), γαβ(τ, l) = γαβ(τ, 0) . (1.11)For the ase of an open string there are two possible ways in whih the boundary termsan vanish. One an require that the omponent of the momentum normal to the boundaryof the world sheet vanish, that is,
∂σXµ(τ, 0) = ∂σXµ(τ, l) = 0 . (1.12)These are alled the Neumann boundary onditions on the funtions Xµ. The ends ofthe string move freely in spae-time. This hoie of boundary onditions means that nomomentum is �owing through the ends of the string and hene it respets D+1-dimensionalPoinaré invariane.Alternatively one an �x the two ends of the string so that δXµ = 0, and

Xµ
∣∣
σ=0

= Xµ
0 and Xµ

∣∣
σ=l

= Xµ
l , (1.13)where Xµ

0 and Xµ
l are onstants and µ = 0, . . . , D. This is known as the Dirihlet boundaryondition. Dirihlet boundary onditions break Poinaré invariane and hene we will not6



Chapter 1. String Theoryonsider them here. They, however, play a very important role in string theory in the studyof D-branes. One we have hosen a boundary ondition, we an look for solutions to theequations of motion.We will shift to the light-one oordinates on the world sheet whih are de�ned as follows
σ± = τ ± σ . (1.14)We also de�ne

∂± =
1

2
(∂τ ± ∂σ) . (1.15)With these de�nitions, the wave equation beomes

∂+∂−X
µ = 0 , (1.16)and the onstraints involving the energy-momentum tensor beome

T++ = ∂+X
µ∂+Xµ = 0 , (1.17)

T−− = ∂−X
µ∂−Xµ = 0 . (1.18)These are the Virasoro onstraints. The onservation of the energy-momentum tensor be-omes ∂−T++ + ∂+T−+ = 0 with a similar relation for − ↔ +. Now, sine T−+ = T+− = 0by Weyl invariane, the energy-momentum onservation equation redues to

∂−T++ = 0 . (1.19)The impliations of this statement are very deep. For any funtion f(X+) the above equationimplies that the urrent fT++ is onserved as well, sine ∂−(fT++) = 0. As f is arbitrary,this implies an in�nite set of onserved quantities. These onserved quantities orrespondto residual symmetries left over after we hoose the ovariant gauge. We will disuss moreabout this later.The general solution of the wave equations is
Xµ(σ, τ) = Xµ

R(τ − σ) +Xµ
L(τ + σ) (1.20)

7



Chapter 1. String TheoryFor a losed string satisfying periodi boundary onditions the general solution is given by
Xµ
R =

1

2
xµ +

1

2
l2pµ(τ − σ) +

i

2
l
∑

n 6=0

1

n
αµn exp

(−2πin(τ − σ)

ℓ

)
, (1.21)

Xµ
L =

1

2
xµ +

1

2
l2pµ(τ + σ) +

i

2
l
∑

n 6=0

1

n
α̃µn exp

(−2πin(τ + σ)

ℓ

)
. (1.22)while for an open string with Neumann boundary onditions the general solution is given by

Xµ = xµ + l2pµτ + il
∞∑

n=−∞,n 6=0

1

n
αµne

−inτos(nσ) , (1.23)where xµ is the enter-of-mass position and pµ is the total string momentum desribing thefree motion of the string enter of mass and the αµn are Fourier omponents, whih will beinterpreted as harmoni osillator oordinates. The parameter l is related to the Regge slopeand hene the string tension κ as l = (2α′)1/2 = (1/2πκ)1/2. The open string boundaryonditions fore the left and right moving modes to ombine into standing waves. The rightand left moving modes are independent in the losed string. The requirement that Xµ bereal funtions implies that αµ−n(resp. α̃µ−n) is the adjoint of αµn(resp. α̃µn).We take the Fourier transform of the energy momentum tensor Tαβ = 0 at τ = 0 to de�nethe Virasoro operators
Lm = κ

∫ l

0

e−2imσT−−dσ ,and
L̃m = κ

∫ l

0

e−2imσT++dσ .For open strings H = L0 and for losed strings H = L0 + L̃0. Clasially, the vanishing ofthe energy-momentum tensor translates into the vanishing of all Fourier oe�ients Lm and
L̃m. Imposing this onstraint on states leads to the mass shell ondition M2 = −pµpµ gives

M2 =
1

α′

∞∑

n=1

α−n · αn (1.24)for the open string, and
M2 =

2

α′

∞∑

n=1

(α−n · αn + α̃−n · α̃n) (1.25)8



Chapter 1. String Theoryfor losed strings. These determine the mass of a given string state in the quantum theory.Before we quantize the theory, there is one more important fat to mention. The Virasorogenerators Lm and L̃m satisfy an algebra amongst themselves alled the Virasoro algebragiven by
[Lm, Ln] = (m− n)Lm+n . (1.26)There will be a entral extension to this algebra from the quantum orretions. We willnot pursue this line further right now, but mention in passing that this algebra is part ofa family of algebras known as loop algebras that we will study in some detail when welearn about in�nite-dimensional Lie algebras. We now move on to quantizing the theoryand �nd its spetrum and see what physial states it gives. We are essentially looking forrepresentations of the Poinaré group whih are unitary. We will work this out in the light-one gauge sine it is manifestly ghost free and simpler to get to the spetrum. We de�nethe light-one oordinates in spae-time as follows.
X± = (X0 ±XD)/

√
2 . (1.27)The light-one gauge is obtained by setting

X+(σ, τ) = x+ + p+τ .In this gauge, X− is determined by the Virasoro onstraints. Thus, the only degrees offreedom are those given by diretion transverse to the light-one oordinates, X±. The light-one gauge expliitly breaks Lorentz ovariane as we are singling out two of the (D + 1)oordinates. It should, however, be Lorentz ovariant sine the underlying theory it isobtained by gauge �xing from is Lorentz invariant. The onditions for the theory to preserveLorentz invariane turn out to be idential to the onstraints (we spoke of earlier) on thedimension of the spae-time and the mass shell ondition for the theory to be anomaly-free.The onstraint equations at the lassial level require the vanishing of the omponentsof the energy-momentum tensor. These onstraints physially mean the vibrations of theembedding of the world sheet in the target spae-time tangent to the surfae, i.e. thelongitudinal degrees of freedom, are eliminated, leaving only the (D−1) transverse diretions.In hoosing the light-one gauge, we are, in e�et, eliminating the two longitudinal degreesof freedom and quantizing the remaining transverse degrees of freedom.The standard way to quantize the theory is to interpret the Xµ as quantum operators9



Chapter 1. String Theoryand replae the Poisson brakets by ommutators. The equal-time anonial ommutationrelations are then given by
[P µ
τ (σ, τ), Xν(σ′, τ)] = −iδ(σ − σ′)ηµν ,

[Xµ(σ, τ), Xν(σ′, τ)] = [P µ
τ (σ, τ), P ν

τ (σ′, τ)] = 0 . (1.28)These give, for the ommutation relations of the osillator modes the following ommutationrelations
[αµm, α

ν
n] = mδm+nη

µν

[αµm, α̃
µ
n] = 0 (1.29)

[α̃µm, α̃
ν
n] = mδm+nη

µνThe ground state |0; k〉, is de�ned to be annihilated by the lowering operators (is a highestweight state) and to be an eigenstate of the ernter-of-mass momenta,
P µ |0; k〉 = kµ |0; k〉 ,
αµm |0; k〉 = 0 m > 0 . (1.30)A general state in the Fok spae Fk an be built by ating on |0; k〉 with the raisingoperators.

|ǫ; k〉 = ǫ(k,m1, m2, . . . , mn) α
µ1
−m1
· · ·αµn

−mn
|0; k〉, (1.31)for all possible Lorentz polarization tensors ǫ(k,m1, m2, . . . , mn), n ∈ N and all possible

mi ∈ N.The enter-of-mass momenta are just the degrees of freedom of a point partile, while theosillators represent an in�nite number of internal degrees of freedom. The above equationforms the Hilbert spae of a single open string. The state |0; 0〉 is the ground state of asingle string with zero momentum, not the zero-string vauum state. The various operatorsappearing above all at within the spae of states of a single string.The open string Fok spae is a sum over the Fok spaes over all momenta k. For thelosed string it is a tensor produt of the left and right-moving Fok spaes. A very importantpoint to observe is that this Fok spae is not positive de�nite. The time omponents have aminus sign in their ommutation relations and therefore the Fok spae ontains states withnegative norm. The physial Fok spae will be a subspae of the full Fok spae. We need10



Chapter 1. String Theoryto use the Virasoro onstraints to �x an invariant subspae from the full Fok spae. TheVirasoro onstraints in the lassial theory amounted to the requirement that the omponentsof the energy-momentum tensor, T++ and T−−, vanish. We need to impose similar onditionsweakly on the quantum Fok spae. The Fourier oe�ients of the energy-momentum tensorwere given by
Lm =

1

2

∞∑

−∞

αm−n · αn , (1.32)and a similar expression for L̃m in the ase of losed strings, whih we required annihilateall the physial states. In the quantum theory the αm are operators, so one must resolvethe ordering ambiguities. Sine αm−n ommutes with αn unless m = 0, we need only worryabout the operator L0. We de�ne the L0 operator as
L0 = 1

2
α2

0 +

∞∑

n=1

α−n · αn , (1.33)and de�ne the physial state onditions with respet to L0 and L̃0 upto an undeterminedonstant as follows
|φ〉 ∈ Fphy if (Lm − aδm,0)|φ〉 = 0 m ∈ N ,

|φ〉 ∈ F̃phy if (L̃m − aδm,0)|φ〉 = 0 m ∈ N . (1.34)The onstant a is undetermined for now, and will be �xed using the ondition that thephysial Fok spae be of positive de�nite norm. The mass shell ondition will also undergoa modi�ation due to the onstant a as follows
M2 = −2a+ 2

∞∑

n=1

α−n · αn , (1.35)for open strings, so that the osillator ground state has mass squared −2a, and exitationshave mass squared larger than this by any multiple of 2. For losed strings the onditionbeomes (with α′ = 1/2)
M2 = −8a + 8

∞∑

n=1

α−n · αn = −8a+ 8

∞∑

n=1

α̃−n · α̃n . (1.36)
11



Chapter 1. String TheoryImposing the ondition (L0 − L̃0)|φ〉 = 0 we get
∞∑

n=1

α−n · αn =

∞∑

n=1

α̃−n · α̃n . (1.37)This is the only onstraint equation that ouples the left and right moving modes. Physialstates are found by hoosing independently the left-moving and right-moving states of osil-lation, subjet to the above onstraint. The other Lm and L̃m orrespond to terms of de�nitenon zero frequeny in T++ and T−−. The physial states are required to be annihilated bythe positive frequeny omponents
Lm|φ〉 = 0 m = 1, 2, . . . (1.38)We de�ne the number operators(or osillator level) as follows

N ≡
∞∑

n=1

α−n · αn , Ñ ≡
∞∑

n=1

α̃−n · α̃n . (1.39)They ount the number of operators α−n and α̃−n, n ≥ 1 with weight n, applied to theground state |0; k〉.Writing in terms of the number operators the Virasoro onstraints beomelosed (k2 +M2)|φ〉 = 0 M2 = 8N − 8a and N = Ñ |φ〉 = 0open (k2 +M2)|φ〉 = 0 M2 = 2N − 2a (1.40)It turns out (using the no-ghost theorem) that the theory is onsistent if and only if thespae-time dimension is 26 and the value of the onstant a = 1. We will not prove ormotivate the way this an be shown. However a fairly easy omputation to hek the normof states for low mass levels shows the need for these two onditions. The bosoni string in
D = 26 and a = 1 is alled the ritial bosoni string. Below we give the spetrum of theritial bosoni string.Open String:(i) For N = 0, orresponding to states of the form |0; k〉, M2 = −2, hene they aretahyons (partiles travelling faster than light), and Lorentz salars;(ii) For N = 1, orresponding to states of the form ǫ ·α−1|0; k〉, M2 = 0. These states have12



Chapter 1. String Theorythe degrees of freedom of a massless vetor partile.(iii) For N = 2 the �rst states with positive (mass)2 our. They are
αµ−2|0; k〉 and αµ−1α

ν
−1|0; k〉 , (1.41)with M2 = 2. These states have the degrees of freedom of a massive seond-ranktensor.(iv) For higher values of N there our various states with M2 > 0 whih transform underthe various tensor representations of the Lorentz group.Closed String: For losed strings there are two sets of modes orresponding to the left-and right-movers and there is the level mathing ondition relating the two.(i) States orresponding to |0; k〉 = |0; k〉L ⊗ |0; k〉R have M2 = −2, so they are tahyons,and Lorentz salars;(ii) For N = 1, there our states of the form ǫµνα

µ
−1α̃

ν
−1|0; k〉 have M2 = 0 orrespondingto the tensor produt of one left-moving and one right-moving massless vetor. Cor-responding to the trae part of ǫ there is a Lorentz salar, the dilaton, with positivenorm. The symmetri traeless part of ǫ gives the graviton. The antisymmetri partof ǫ gives a rank two antisymmetri tensor usually denoted by Bµν .(iii) For higher values of N there our various states with M2 > 0 whih transform underthe various tensor representations of the Lorentz group.1.2 η-produts from ounting osillator exitationsIn this thesis, we will have oasion to onsider the following trae over the open string (orleft-moving setor of the losed bosoni string) physial Fok spae Fk introdued earlier:TrFk

(
qL0−1

)
. (1.42)In the light-one gauge, the full Fok spae is generated by the ation of all ombinationof the osillator modes of the 24 transverse dimensions. Let P24(N) denote the number of13



Chapter 1. String Theoryosillator exitations at level N arising from the 24 transverse salars. Then, one hasTrFk

(
qL0−1

)
= qE0−1

∞∑

N=0

P24(N) qN , (1.43)where E0 is the L0 eigenvalue of the ground state, |0; k〉. One an show thatTrFk

(
qL0
)

= qE0

(
1∏∞

n=1(1− qn)

)24

= qE
0 1

η(τ)24
. (1.44)We thus see that modulo the ground state energy, the inverse of the produt of Dedekindeta funtions, η(τ)24 is the generating funtion of the osillator degeneray at various levels.We will also enounter a variant of the above omputation. Let g be an element oforder m of a disrete group that ats on the transverse salars and hene on their osillatormodes. The ation of g on the transverse salars an be represented by its yle shape:

γ = 1a12a2 · · ·mam with ∑m
i=1 iai = 24. Now onsider the twisted traeTrFk

(
g qL0−1

)
. (1.45)A simple omputation shows that the twisted trae (ignoring the ground state energy andrelated phases) is given byTrFk

(
g qL0−1) ∼ 1∏m

i=1 η(aiτ)
≡ 1

gγ(τ)
. (1.46)We see that the yle shape γ ompletely determines the generating funtion of degeneraiesof g-invariant states in the Fok spae. Thus, the untwisted result orresponds to the yleshape γ = 124. It turns out that preisely suh ounting problems arise in the ounting ofeletrially harged 1

2
-BPS states in ertain models.1.3 Organization of The ThesisThe organization of this thesis is as follows. After a brief introdution to string theory inthe introdution, in Chapter 2 we brie�y review the problem we wish to study in this thesis,namely, the mirosopi ounting of degeneraies of BPS states in two families of stringtheory � the CHL models and the type II models. We disuss the ounting of the 1

2
-BPSand 1

4
-BPS states in these theories and review the expliit ounting arried out by David14



Chapter 1. String Theoryand Sen [16℄ in a lass of N = 4 supersymmetri string theories. We end the hapter witha brief review of Sen's study of the walls of marginal stability of 1
4
-BPS states in the CHLmodels.In Chapter 3, is a self-ontained review of the subjet of Lie algebras. Starting with�nite-dimensional semi-simple Lie algebras, we gradually introdue a�ne Lie algebras and�nally the theory of BKM Lie superalgebras. We disuss the struture and representationtheory of Lie algebras, in partiular ideas like the Cartan subalgebra, root system, Weylgroup, denominator formula, et. are reviewed. We give a very brief introdution to thetheory of BKM Lie superalgebras neessary to understand the denominator identity of BKMLie superalgebras whih plays a entral role in this thesis. The material is presented keepinga reader with minimum mathematial bakground in mind.In Chapter 4, is a self-ontained introdution to the theory of modular forms. Modularforms are entral to the ounting problem as the generating funtions of the degeneraiesof the 1

2
- and 1

4
-BPS states are given by modular forms. Also, the R2 orretions to thestring e�etive ation are given by modular forms. These modular forms are the onnetinglink between the string models on the one side, and the family of BKM Lie superalgebrasorresponding to them, on the other.In Chapter 5, we study the onstrution and properties of all the modular forms thatour in this thesis. In partiular, we show how these modular forms are onstruted fromthe additive and multipliative lifts. We also disuss the onstrution of the produt form ofthese modular forms as both the sum and produt forms of the modular forms are importantin understanding them as the denominator identity of BKM Lie superalgebras. We alsodesribe the idea of yle shapes and frame shapes that lead to genus-one modular formsgenerating the degeneray of the eletrially harged 1

2
-BPS states.In Chapter 6, we make the onnetion to BKM Lie superalgebras. Given the modu-lar forms disussed in Chapter 5, we see how they are related to a family of BKM Liesuperalgebras. We review all the BKM Lie superalgebras ouring in onnetion with thesupersymmetri string theory models onsidered in this thesis. We disuss the onstrutionand properties of eah of the algebras. We also disuss the relation between the walls ofmarginal stability disussed in Chapter 2 and the walls of the fundamental Weyl hambersof the BKM Lie superalgebras as found in [17, 8, 9℄.In Chapter 7, a summary of the results obtained by the author of this thesis in workdone along with ollaborators is presented.Chapter 8 onludes the thesis with an overview of the work, and future diretions of15



Chapter 1. String Theoryresearh based on it.
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2Counting Dyons in String Theory
2.1 MotivationOur motivation to undertake the mirosopi ounting of blak hole states is an extensionof our interest in understanding lassial and quantum blak holes in greater detail. It hasbeen evident for quite some time now that blak hole solutions of general relativity arenot only physial, but also very important models in understanding quantum gravity. TheBekenstein-Hawking entropy of a blak hole is one of the important aspets of blak holesthat an be understood both marosopially and mirosopially, thus giving us lues tounderstand the quantum nature of blak holes. As we will see below, the ounting of blakhole mirostates gives a way to ompute the mirosopi aspets of the blak holes andompare it with the marosopi side. First we will sketh the problem of ounting blakhole states arising from blak hole thermodynamis, and then look at the spetrum from thestring theory side, before �nally expliitly ounting blak hole states in partiular models.2.2 Blak Hole ThermodynamisA blak hole in the quantum theory behaves, thermodynamially, like a blak body with a�nite temperature, alled its Hawking temperature. It was shown by Hawking that suh ablak hole would neessarily emit radiation known now as Hawking radiation . The blakhole system, from a thermodynamial point of view, behaves in all respets like a blakbodywith the given Hawking temperature would. In partiular, it has an entropy assoiated toit known as the Bekenstein-Hawking entropy , SBH . Whenever an objet falls into ablak hole, the entropy arried by the objet has to show up as the hange in entropy of the17



Chapter 2. Counting Dyons in String Theoryblak hole, if seond law of thermodynamis is to hold. It was shown by Bekenstein that theentropy of a blak hole is proportional to the area A of the event horizon as
SBH = A/(4GN), (2.1)where GN is the Newton's onstant. From a statistial point of view, however, we anunderstand the entropy as the logarithm of the number of mirostates assoiated to a givenmarostate at zero temperature. If Q labels the set of harges arried by a state, and d(Q)the degeneray of the states arrying this harge on�guration, then the statstial entropyat zero Hawking temperature is given by
Sstat(Q) = ln d(Q). (2.2)To ompute Sstat, as de�ned above, would require one to have the blak hole at zero Hawkingtemperature and also have a mirosopi desription of the blak hole states. Unfortunately,the mirosopi ounting annot be arried out for all blak holes. One needs to work inspeial lass of blak holes that admit a desription in terms of manageable parameters whereone an exploit the symmetry struture to make the dynamis more tratable. A lass ofblak holes known as extremal blak holes have zero Hawking temperature and a highdegree of tratability and so we will be looking at blak hole solutions that are extremal. Wewill now motivate suh a model. For a general introdution to blak hole thermodynamissee [18, 19℄2.2.1 The Reissner-Nordström Blak HoleWe start with the following 3 + 1-dimensional ation in the Einstein-Maxwell theory withterms upto two derivatives

S =

∫
d4
√−g

[ 1

16πGN
R− 1

4
FµνF

µν
]
. (2.3)We look for stati solutions having spherial symmetry. For a non-harged blak hole thisleads to the Shwarzshild blak hole solution. Looking for solutions whih have eletri andmagneti harges leads to the Reissner-Nordström blak hole solution

ds2 = −f(ρ)dτ 2 + f−1(ρ)dρ2 + ρ2dΩ2, 18



Chapter 2. Counting Dyons in String Theory
Fρτ =

qe
4πρ2

, Fθφ =
qm
4π

sinθ, (2.4)where dΩ2 = dθ2 + sin2θdφ2 is the metri on the two-sphere, and f(ρ) is given in terms ofthe the ADM mass and the harges (qm, qe) by
f(ρ) = 1− 2GNM

ρ
+

GN

4πρ2
(q2
e + q2

m) . (2.5)One an reognize the Shwarzshild blak hole in the above solution when qe = qm = 0.The solution (2.4) has a singularity at r = 0. The blak hole would be stable at the extremallimit orresponding to hoosing M2 = 1
4πGN

(q2
e + q2

m). In the extremal limit, the Hawkingtemperature of the blak hole is zero, and hene the blak hole no longer radiates. If itradiated, M2 would beome less than 1
4πGN

(q2
e + q2

m) and the ondition would no longerhold and produes a naked singularity. Thus, the blak hole solution in the extremal limitharaterizes a blak hole whih is the stable endpoint of Hawking evaporation. The entropyof the blak hole remains �nite and is given by
SBH = 1

4
(q2
e + q2

m) . (2.6)Following Sen [20℄ we de�ne
t = λτ/a2, r = λ−1(ρ− a), (2.7)where,

a =

√
GN

4π
(q2
e + q2

m) . (2.8)and λ is an arbitrary onstant, and taking the `near horizon' limit, λ→ 0, the solution (2.4)beomes
ds2 = a2

(
− r2dt2 +

dr2

r2

)
+ a2(dθ2 + sin2θdφ2),

Fr,t =
qe
4π
, Fθφ =

qm
4π

sinθ . (2.9)whih is a produt of two spaes. The spae labelled by (θ, φ) is the two-dimensional sphere
S2. The spae labelled by (r, t) is the two-dimensional AdS2 spae-time. The AdS2 spae-time is a solution of two-dimensional Einstein gravity with a negative osmologial onstant.The spherial symmetry of the blak hole solution manifests as an SO(3) isometry ating onthe S2. In addition there is also an SO(2, 1) isometry ating on the AdS2 that was not present19



Chapter 2. Counting Dyons in String Theoryin the full blak hole solution. All known extremal spherially symmetri blak hole solutionsin four-dimensions with non-singular horizon have near horizon geometry AdS2×S2 and anassoiated SO(2, 1) × SO(3) isometry. Now, when we onsider the ation beyond the twoderivative terms, we will postulate that the higher derivative terms we add in theation would not destroy the near horizon symmetries[20℄. For blak holes with largeurvature at the horizon the higher derivative terms are as important as the two derivativeterms we have onsidered here. Thus, we will assume that in any generally ovariant theoryof gravity oupled to matter �elds, the near horizon geometry of a spherially symmetriextremal blak hole in four-dimensions has the above mentioned SO(2, 1)×SO(3) isometry.Following Sen[20℄, we shall take this as the de�nition of a spherially symmetri extremalblak hole in four-dimensions.2.3 Blak Holes in String TheoryWe want to investigate the above ideas in the ontext of string theory. We look for solutionswhih are stati and have the SO(2, 1)× SO(3) isometry. Even with these symmetry on-straints the solutions are fairly ompliated with the salar �elds depending non-trivially onthe radial diretion and we need to �nd an analogue of the onditions that lead to extremalityto be able to �nd tratable solutions. The �rst smooth solutions were onstruted ompat-ifying the heteroti string on T 6[21, 22, 23℄. Charged solutions have the same struture asthe Reissner-Nordström solution. Often these blak holes are also invariant under ertainnumber of supersymmetry transformations and in that ase they are known as BPS blakholes, and the analogue of the onditions that led to extremality for the Reissner-Nordströmsolution in this ontext is the neessity of the saturation of the BPS bound1. The saturationof the bound implies that the blak hole preserves some fration of the supersymmetry ofthe vauum. We an thus obtain blak hole solutions with the two important properties �stability and symmetry � whih make the extremal Reissner-Nordström solution tratable.One an alulate the degeneray of suh states at weak oupling and hene the entropy,at weak oupling. Supersymmetry ensures that we an ontinue the result to the strongoupling regime where the system an be best desribed as a blak hole.Another reason extremal blak holes are partiularly suitable to work with is the soalled �attrator mehanism� as a result of whih, the entropy is independent of asymptoti1While it is not always true that the BPS bound oinides with the extremal limit, it will be true in allour onsiderations. 20



Chapter 2. Counting Dyons in String Theoryvalues of the moduli salar �elds[24, 25, 26℄. Thus the entropy of an extremal blak holedoes not hange as we hange the asymptoti values of the string oupling onstant from asu�iently large value where it has a blak hole desription to a muh smaller value wherethe mirosopi desription is valid.There are, however, two sides to the symmetry of the system. On the one side the highdegree of symmetry of the theory lets one dedue many features of the theory using symmetryarguments alone, and hene gives a way of understanding the system. On the other hand,sine our �nal aim is understanding general systems with no symmetry, studying systemswith suh high degree of symmetry an help us only so muh. However, as a �rst stepit is eduative to understand extremal solutions to test the validity of the proedure byomputing and omparing quantities of the blak hole system that an be omputed fromother methods. One suh important omputation is of the entropy of extremal blak holeswhih an be omputed from marosopi parameters as in eq. (2.1) and omparing it witha mirosopi ounting of the states of the blak hole.It, however, took a while before suh expliit omputations ould be realized. In 1995,Strominger and Vafa pioneered the idea of thinking of the blak hole as a bound state ofsolitons (D-branes) in string theory, and using the stability of the BPS states to ontinuethe solution to the weak oupling limit[5℄. Sine then many similar omputations have beenarried out for the ase of extremal and near-extremal blak holes[27, 28, 29℄. In the limitwhere the size of the blak hole is large, the Bekenstein-Hawking entropy SBH has beenfound to be the same as the statistial entropy of the same harge on�guration. i.e.
SBH(Q) = Sstat(Q). (2.10)The above omparisons between SBH and Sstat were initially arried out in the large hargelimit, where the horizon size is large so that the urvature and other �eld strengths at thehorizon are small and hene we an ignore them.Typially string theory ompati�ed to four-dimensions involves many more �elds thanappearing in the Einstein-Maxwell ation we onsidered above. Requiring N ≥ 2 supersym-metry in the solutions generially gives theories with abelian gauge �elds, massless salarsand their fermioni partners. We will primarily be interested in studying solutions in four-dimensional spae-time with N = 4 supersymmetry. In partiular, we will fous on twolasses of four-dimensional ompati�ations:(i) Asymmetri orbifolds of the heteroti string on T 6 � the CHL models, 21



Chapter 2. Counting Dyons in String Theory(ii) Asymmetri orbifolds of the type IIA string on T 6 � the type II models.Before desribing these models in greater detail we will disuss a proposal of Dijkgraaf,Verlinde, and Verlinde (DVV) of representing the generating funtion of degeneraies ofdyoni states by automorphi forms and its ompatibility with the marosopi entropy ofdyoni blak holes[1℄. This is the genesis of subsequent proposals by David, Jatkar and Senfor representing dyoni degeneraies in terms of automorphi forms for the two lasses ofmodels[30, 31, 32, 2, 33, 34, 35, 36℄.2.4 The DVV ProposalDVV onsidered the heteroti string ompati�ed on a six-torus. In this four-dimensionaltheory (whih is dual to type II theory on K3 × T 2), dyoni states arry 28 eletri and
28 magneti harges, denoted qe and qm, respetively, living on an even self dual lattie
Γ22,6. This theory has as its duality group SL(2,Z)×SO(22, 6,Z), where the SL(2,Z) is theeletri-magneti duality symmetry. The purely eletri states, whih arise perturbativelyas heteroti string states, an be ounted easily sine they preserve half of the superhargesand hene simply orrespond to the heteroti string states in the right-moving ground state2.Hene the number of suh states an be omputed if one spei�es the 28 eletri harges alongwith their oupation numbers, subjet to the level mathing ondition

1
2
q2
e +

∑

ℓ,I

ℓN I
ℓ = 1, (2.11)where the subsript ℓ denotes the world-sheet osillator number of the oordinate �eld xI ,and the salar produt on the lattie Γ22,6 is de�ned using the SO(22, 6,Z) invariant innerprodut. The number of suh states is

d(qe) =

∮
dσ

eiπσq
2
e

η(σ)24
, (2.12)where the ontour integral over σ is from 0 to 1 and η(σ) is the Dedekind η-funtion.The magneti harges do not arise perturbatively but as solitoni states. From theeletri-magneti duality, there should also exist a solitoni version of the heteroti stringthat arries pure magneti harge qm ∈ Γ22,6, and hene a similar formula that ounts the2We hoose the right-movers to be supersymmetri for the heteroti string. 22



Chapter 2. Counting Dyons in String Theorymagneti harges. Thus, we have a generating funtion for the degeneraies of the 1
2
-BPSstates given in terms of the Dedekind eta produts.The generi dyoni states, however, preserve only one-quarter of the supersymmetries andhene will be a bigger set whose degeneraies will be given by a more general formula. Theformula will be a generalization of (2.12) and should redue to it when the supersymmetry isrestored bak to half. DVV proposed a formula for the degeneraies of the 1

4
-BPS states onthe idea that the 1

4
-BPS states are a bound state of an eletri heteroti string with a dualmagneti heteroti string. It is atually an index in that it ounts the number of bosoniminus the fermioni BPS-multiplets for a given on�guration of eletri and magneti harge.2.4.1 The Degeneray FormulaFor onveniene, we ombine the eletri and magneti harge vetors into a single vetor as

q =

(
qe

qm

)
,and introdue the matrix

Z =

(
z1 z2

z2 z3

)
=

(
ρ ν

ν σ

)
, (2.13)generalizing the single modulus σ in (2.12). DVV proposed that the degeneray of the 1

4
-BPSstates is then given by

64d(qe,qm) =

∮
dZ

eiπq
T·Z·q

Φ10(Z)
. (2.14)The integrals over the moduli parameters σ, ρ and ν run over the domain from 0 to 1 andwe need to impose the level mathing ondition as before. The matrix Z is the periodmatrix of a genus-two Riemann surfae and the funtion Φ10(Z) is genus-two modular formwhih is the unique automorphi form of weight 10 of the modular group Sp(2,Z). The

SL(2,Z) duality transformations are identi�ed with the subgroup of Sp(2,Z) that leavethe genus-two modular form Φ10(Z) invariant. Thus, the degeneray formula is manifestlyduality symmetri. Φ10(Z) also has a representation in terms of the produt of genus-2 thetaonstants as 3
Φ10(Z) =

( 1

64

9∏

m=0

θm(Z)
)2

. (2.15)3The expression of Siegel modular forms as produts of even genus-two theta onstants is disussed inhapter 5. 23



Chapter 2. Counting Dyons in String TheoryAnother equivalent representation of Φ10(Z) is obtained as an in�nite produt representationfrom the Fourier oe�ients of the ellipti genus of K3

χK3(τ, z) = Tr(−1)FL+FRe2πi(τ(L0−
c
24

)+zFL), (2.16)with c = 6 for K3 and FL and FR are the spae-time fermion numbers whih an be identi�edwith the zero-modes of the left-moving and right-moving U(1) ⊂ SU(2) urrent algebras.The automorphi form Φ10(Z) is given as an in�nite produt by
Φ10(ρ, σ, ν) = e2πi(ρ+σ+ν)

∏

(k,l,m)>0

(
1− e2πi(kρ+lσ+mν)

)c(4kl−m2)

, (2.17)where (k, l,m) > 0 means that k, l ≥ 0 and m ∈ Z, m < 0 for k = l = 0, and the oe�ients
c(n) are de�ned by the expansion of the K3 ellipti genus as

χK3(τ, z) =
∑

h≥0,m∈Z

c(4h−m2) e2πi(hτ+mz), (2.18)where, up to normalization, χK3(τ, z) is the unique weak Jaobi form of index 1 and weight
0. Note that c(n) = 0 for n < −1.We will onlude our study of the DVV proposal with a few remarks on heking itsonsisteny. We will take the Fourier transform of (2.14) and write it as

64

Φ10(Z)
=
∑

k,ℓ,m

D(k, ℓ,m)e−2πi(kρ+ℓσ+mν), (2.19)with k, ℓ,m ∈ Z. The oe�ients D(k, ℓ,m) are all integers and are related to the degenera-ies (2.14) by
d(qe,qm) = D(1

2
q2
e,

1
2
q2
m,qe · qm) . (2.20)Now, as a �rst onsisteny hek, we want to see if one an obtain (2.12) as a limit of (2.14).The parameter ν ouples to the heliity m of the dyoni states, and thus the integral over

ν projets out dyons with heliity equal to zero. However, instead of integrating it out, onean also put it equal to a �xed value, like ν = 0. In the ν = 0 limit then, we will obtain theformula with a heliity trae (−1)m, whih will projet out the 1
4
-BPS states and will leaveonly the 1

2
-BPS states whose degeneray is given by (2.12). Taking the ν → 0 limit in (2.19)24



Chapter 2. Counting Dyons in String Theorywe get
lim
ν→0

eiπq·Z·q

Φ10(Z)
−→ 1

ν2

eiπρq
2
e

η(ρ)24

eiπσq
2
m

η(σ)24
. (2.21)The above formula shows that the genus-two surfae parametrized by Z fators into twoseparate genus-one surfaes with moduli ρ and σ whih orrespond to the 1

2
-BPS moduli.As another non-trivial hek for the degeneray formula, we an ompare the marosopiBekenstein-Hawking entropy of extremal four-dimensional blak holes with the asymptotibehaviour for large harges of (2.14). The degeneray formula (2.14) mathes the maro-sopi entropy results in the large harge limit.With this brief introdution into the DVV proposal, we now turn to the two models thatwe will study for the rest of this thesis � the CHL and type II models. We will derive aformula similar to the above one for the degeneraies of the 1

2
-BPS and 1

4
-BPS states forthe ase of CHL strings, and following David, Jatkar and Sen show how the modular formin question is generated by an expliit ounting of the blak hole mirostates in the model.We will also look at the modular forms generating the dyoni degeneraies in the type IImodels. We �rst start by desribing, brie�y, the CHL and type II models below, beforemoving on to understanding the expliit ounting of the dyoni degeneraies in a D = 4,

N = 4 supersymmetri model.2.5 The CHL ModelsThe heteroti string ompati�ed on T 6 and its asymmetri ZN orbifolds provide us withfour-dimensional ompati�ations with N = 4 supersymmetry. Writing T 6 as T 4× Ŝ1×S1,onsider the ZN orbifold given by the transformation orresponding to a 1/N unit of shiftin Ŝ1 and a simultaneous ZN involution of the Narain lattie of signature (4, 20) assoiatedwith the heteroti string ompati�ed on T 4. This leads to the CHL models that we willstudy[2℄. Starting from six-dimensional string-string duality, one sees that the heterotistring ompati�ed on T 4×S̃1×S1 is dual to the type IIA string ompati�ed onK3×S̃1×S1.The (4, 20) lattie gets mapped to H∗(K3,Z) in the type IIA theory and the orbifolding ZNis a Nikulin involution ombined with the 1/N shift of S̃1. There is a third desription thatis obtained by T-dualizing the Ŝ1 to S̃1 and following it by an S-duality � this is used toarry out the mirosopi ounting. Figure 2.1 summarizes the hain of dualities.The low-energy theory onsists of the following bosoni �elds:(i) the N = 4 supergravity multiplet with the graviton, a omplex salar, SH and six25



Chapter 2. Counting Dyons in String TheoryType IIB on
K3×S1×S̃1Desription 3 S−−−→dual Type IIB on

K3×S1×S̃1

T dualize−−−−−→
eS1 to bS1

Type IIA on
K3×S1×Ŝ1Desription 1 str-stri−−−−→duality Heteroti on

T 4×S1× Ŝ1Desription 2Figure 2.1: The hain of dualities in the CHL model. The above hain is expeted to holdafter ZN -orbifolding of K3 × S1. The quantization of harges is spei�ed in Desription 2(asymmetri orbifolds of the heteroti string i.e., CHL strings) while mirosopi ounting isarried out in Desription 3.graviphotons; and(ii) m N = 4 vetor multiplets eah ontaining a gauge �eld and six salars4.In terms of the variables that appear in the heteroti desription, the bosoni part of thelow-energy e�etive ation (up to two derivatives) is[37, 21, 38℄
S =

∫
d4x
√−g

[
R− ∂µSH ∂µS̄H

2 Im(SH)2
+

1

8
Tr(∂µML ∂µML)

−1

4
Im(SH) FµνLML F µν +

1

4
Re(SH) FµνL F̃ µν

]
, (2.22)where L is a Lorentzian metri with signature (6, m),M is a (6+m)× (6+m) matrix valuedsalar �eld satisfying MT = M and MTLM = L and Fµν is a (6 + m)-dimensional vetor�eld strength of the (6 + m) abelian gauge �elds. The moduli spae of the salars is givenby

(
Γ1(N)× SO(6, m; Z)

)∖(SL(2)

U(1)
× SO(6, m)

SO(6)× SO(m)

) (2.23)
SO(6, m; Z) is the T-duality symmetry and Γ1(N) ⊂ SL(2,Z) is the S-duality symmetry thatis manifest in the equations of motion and is ompatible with the harge quantization[39℄.The �elds that appear at low-energy an be organized into multiplets of these various sym-metries.1. The heteroti dilaton ombines with the axion (obtained by dualizing the antisymmet-ri tensor) to form the omplex salar SH . Under S-duality, SH → (aSH+b)/(cSH+d).2. The (6+m) vetor �elds transform as a SO(6, m; Z) vetor. Thus, the eletri harges

qe (resp. magneti harges qm) assoiated with these vetor �elds are also vetors (resp.4When N = 1, 2, 3, 5, 7, m = ([48/(N + 1)]− 2) 26



Chapter 2. Counting Dyons in String Theoryo-vetors) of SO(6, m,Z). Further, the eletri and magneti harges transform as adoublet under the S-duality group, Γ1(N), where Γ1(N) is the sub-group of SL(2,Z)matries ( a bc d ) with a = d = 1 modN and c = 0 modN).One an form three T-duality invariant salars, q2
e, q2

m and qe·qm from the harge vetors.These transform as a triplet of the S-duality group. Equivalently, we an write the tripletas a symmetri matrix:
Q ≡

(
q2
e −qe · qm

−qe · qm q2
m

) (2.24)The S-duality transformation now is Q → A · Q · AT with A = ( a bc d ) ∈ Γ1(N). The hargesare quantized suh that Nq2
e, q2

m ∈ 2Z and qe · qm ∈ Z. There exist many more invariantsdue to the disrete nature of the T-duality group[40℄ for N = 1 and more appear when
N > 1.2.5.1 BPS MultipletsFour-dimensional ompati�ations with N = 4 supersymmetry admit two kinds of BPSstates: (i) 1

2
-BPS multiplets that preserve eight superharges (with 16 states in a multiplet)and (ii) 1

4
-BPS multiplets that preserve four superharges(with 64 states in a multiplet). Themasses of the 1

4
-BPS states are determined in terms of their harges by means of the BPSformula[21, 41, 38℄:

(
M2

±

)
1
4
−BPS =

1

SH − S̄H

[
(qe + SHqm)T (M + L)(qe + S̄Hqm)

± 1

2

√
(qTe (M + L)qe)(qTm(M + L)qm)− (qTe (M + L)qm)2

]
. (2.25)The square of the mass of a 1

4
-BPS state is max(M2

+,M
2
−). 1/2-BPS states appear when theeletri and magneti harges are parallel (or anti-parallel) i.e., qe ∝ qm. The BPS massformula for 1

2
-BPS states an be obtained as a speialization of the 1

4
-BPS mass formulagiven above. When qe ∝ qm, the terms inside the square root appearing in the 1

4
-BPS massformula vanish leading to the 1

2
-BPS formula

(
M2
)

1
2
−BPS =

1

SH − S̄H

[
(qe + SHqm)T (M + L)(qe + S̄Hqm)

]
. (2.26)
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Chapter 2. Counting Dyons in String Theory2.5.2 Counting 1
2-BPS StatesWe will now onsider the ounting of purely eletrially harged 1

2
-BPS states. Suh ele-trially harged states are in one to one orrespondene with the states of the CHL orbifoldof the heteroti string ompati�ed on T 4 × S1 × Ŝ1[39℄. Let d(n) denote the degenerayof heteroti string states arrying harge Nq2

e = 2n � the frational harges arise from thetwisted setors in the CHL orbifolding. Every 1
2
-BPS multiplet/heteroti string state hasdegeneray 16 = 28/2. Then the generating funtion of d(n) is[32, 42, 43℄ (for N = 1, 2, 3, 5, 7and k + 2 = 24/(N + 1))

∞∑

n=0

d(n) exp(2πinτ
N

) =
16

(i
√
N)−k−2 f (k)(τ/N)

, (2.27)where
f (k)(τ) ≡ η(Nτ)k+2 η(τ)k+2 . (2.28)The degeneray of purely magnetially harged states with harge qm = 2m is given by asimilar formula with f (k)(τ/N) replaed by f (k)(τ). These are level-N genus-one modularforms with weight (k + 2). For (N, k) = (1, 10), f (10)(τ) = η(τ)24.2.5.3 Counting 1

4-BPS StatesAs we saw earlier, 1
4
-BPS states are neessarily dyoni in harater with the eletri and mag-neti harge vetors being linearly independent. Jatkar and Sen generalized the DVV pro-posal to the ase of asymmetri ZN -orbifolds of the heteroti string on T 6 for N = 2, 3, 5, 7[2℄.They proposed that the egeneray of 1

4
-BPS dyons is generated by a Siegel modular form ofweight k = 24

N+1
− 2 and level N , Φ̃k(Z). They also provided an expliit onstrution of themodular form using the additive lift of a weak Jaobi form. The onstruted modular formhas the following properties:(i) It is invariant under the S-duality group Γ1(N) suitably embedded in the groupG1(N) ⊂

Sp(2,Z). (See Appendix D for notation)(ii) In the limit z2 → 0, it has the right fatorization property:
lim
z2→0

Φ̃k(Z) = (i
√
N)−k−2 (2πz2)

2 f (k)(z1/N) f (k)(z3) (2.29)Note that for (N, k) = (1, 10), this mathes the DVV formula (eq. (2.21)). 28



Chapter 2. Counting Dyons in String Theory(iii) It reprodues the entropy for large blakholes[2℄.(iv) For 1
2
-BPS blakholes, the formula leads to a predition for R2 (higher derivative)orretions to the low-energy e�etive ation given in Eq. (2.22). Suh orretionslead to a non-zero entropy using Wald's generalization of the BH entropy formula forEinstein gravity that agrees with the predition from the modular form[44, 45℄.With this brief introdution, we move on to the other model we will onsider in this work� the type II ompati�ations with N = 4 supersymmetry. These models are similar to theCHL models with the K3, appearing in the type IIA/B desription, being replaed by T 4.2.6 The Type II ModelsType II string theory ompati�ed on a six-torus has N = 8 supersymmetry in four-dimensions. We will onsider �xed-point free ZN (N = 1, 2, 3, 4, 5) orbifolds of the six-torus that preserve N = 4 supersymmetry. The orbifold proedure involves splitting T 6 =

T 4 × S1 × S̃1 and hoosing the ation of ZN suh that it has �xed points on T 4, but thisation is aompanied by a simultaneous 1/N shift along the irle S1. The total ation ofthe orbifold is free, i.e., it has no �xed points. It thus su�es to speify the ation of T 4.As we will be moving between several desriptions of the orbifold related by duality, wewill need to speify the duality frame. Desription one orresponds to type IIA string theoryon a six-torus with the following ZN ation.
N 6= 5 Let ω = exp(2πi/N) and (z1, z2) be omplex oordinates on T 4. The ZN ation isgenerated by (z1, z2)→ (ωz1, ω

−1z2).
N = 5 Let ω = exp(2πi/5) and T 4 = R4/ΓA4, where ΓA4 is the root lattie of Lie algebra A4.The Z5 generator has eigenvalues ωr with r = 1, 2, 3, 4 mod 5. This orresponds to aquasi-rystalline ompati�ation.Our onsiderations generalize the N = 2, 3 orbifolds onsidered in [31℄. Again a hain ofdualities (disussed later in this hapter) relates this to other type IIA/B ompati�ations.In partiular, the analog of the CHL string turns out to be the type IIA string � see Figure2.2.The two-derivative low-energy e�etive ation is onstrained by supersymmetry and thenumber of vetor multiplets and is idential to the one disussed for the CHL model (see eq.29



Chapter 2. Counting Dyons in String TheoryType IIB on
T 4×S1× S̃1Desription 3 S−−−→dual Type IIB on

T 4×S1× S̃1

T dualize−−−−−→
eS1 to bS1

Type IIA on
T 4×S1× Ŝ1Desription 1 str-stri−−−−→duality Type IIA on

T̂ 4×S1× Ŝ1Desription 2Figure 2.2: The hain of dualities in the type II models. The above hain is expeted tohold after ZN -orbifolding of T 4×S1. The quantization of harges is spei�ed in Desription2 (asymmetri orbifold of the type IIA string) while mirosopi ounting is arried out inDesription 3.(2.22)). Similarly, the mass formulae for 1
4
-BPS and 1

2
-BPS states given in the CHL modelalso hold here with SH being identi�ed with the dilaton in desription 2.2.6.1 ZN-Ation From the NS5-BraneUnder six-dimensional string-string duality, type IIA string on T 4 (desription 1) is dual totype IIA string on the T-dual torus T̂ 4 (desription 2). The dual type IIA string is a solitonobtained by wrapping the NS5-brane on T 4. We are interested in the situation where thisis ompati�ed to four-dimensions and there is a ZN orbifold ation as mentioned above.Vafa and Sen have obtained the orresponding orbifold ation (for N = 2, 3) in the dualdesription[46℄. We will obtain their result and its generalization for the N = 4, 5 orbifoldsby studying the ZN ation in e�etive 1+1-dimensional worldvolume theory of the NS5-braneon T 4 (see [47, 48℄ for a related disussion).The �elds in the worldvolume theory of a single NS5-brane onsist of �ve salars, aseond-rank antisymmetri tensor (with self-dual �eld strength) in the bosoni setor andfour hiral fermions. These are the omponents of a single (2, 0) tensor multiplet in 5 + 1-dimensions. We an dimensionally redue the �elds on T 4 to obtain the �elds on an e�etive

1 + 1-dimensional theory. Using string-string duality, this theory will be that of a type IIAGreen-Shwarz string in the light-one gauge [47, 48℄.Let us organize the �elds in terms of SO(4)×SO(4)R where the �rst SO(4) = SU(2)L×
SU(2)R is from the T 4 and the R-symmetry an be taken to be rotations about the fourtransverse diretions to the NS5-brane.1. Four salars, xm, are in the representation (1, 4v). These beome four non-hiral salarson dimensional redution on the four-torus.2. The �fth salar and the two-form antisymmetri gauge �eld an be ombined andwritten as Yαβ and Yα̇β̇ where α is a SU(2)L spin-half index and β̇ is a SU(2)R spin-30



Chapter 2. Counting Dyons in String Theoryhalf index. On dimensional redution on the four-torus, the Yαβ beome the fourleft-moving hiral bosons and the Yα̇β̇ beome four right-moving hiral bosons. Whenombined with the four non-hiral bosons, they beome the Green-Shwarz bosons inthe light-one gauge of the type IIA string.3. The fermions are ψAβ and ψAβ̇ where A is a spinor index of SO(4)R. These beomethe left- and right-moving fermions in the e�etive 1 + 1-dimensional theory � theseare the Green-Shwarz fermions in the light-one gauge of the type IIA string.In the above set up, the transformations under that the ZN subgroup of SU(2)L is given by
gα

β ≡
(
ω 0

0 ω−1

)
, (2.30)where ω = exp(2πi/N) for N = 2, 3, 4.One an see that the only �elds that transform under this ation are those that arry theindex α. Thus, we see that the hiral fermions all transform as

ψAα → gα
β ψAβ . (2.31)Thus we see that 4 of the fermions pik up the phase ω and the other four pik up the phase

ω−1. The �eld Yαβ transforms as
Yαβ → gα

γ gα
δ Yγδ . (2.32)Thus, two �elds are invariant under the ZN and the other two transform with phases ω2 and

ω−2. All other �elds are invariant under the ZN .In the dimensional redution of the the (2, 0) theory on T 4, the SU(2)L �elds get mappedto (say) left-movers and the SU(2)R �elds get mapped to (say) right-movers. Thus, we seethat the orbifold has a hiral ation. In partiular, the four bosons that arise from Yαβ giverise to four left-moving hiral bosons and the ψAα give rise to four left-moving hiralfermions.
31



Chapter 2. Counting Dyons in String Theory2.6.2 ZN Ation From the Poinaré PolynomialConsider the Poinaré polynomial for T 4 weighted by the phases under the ZN -ation for
N = 1, 2, 3, 4.
(1− ωx)2(1− ω−1x)2 = x4− 2x3ω− 2x3

ω
+ x2(ω2 + ω−2) +

x2

ω2
+ 4x2 − 2xω− 2x

ω
+ 1 (2.33)In the above expansion, we identify even powers of x with bosons in the 1 + 1-dimensionaltheory and odd powers with fermions. The oe�ient multiplying the term gives the orbifoldation. Thus six of the bosons are always periodi and the other two have frational modingdetermined by the phase.It appears that one an use the Poinaré polynomial to obtain the Z5 ation on the dualtype IIA string. However, that has to be written as a SO(4) ation rather than a SU(2)Lsubgroup. When N = 5, the Z5 ation is best seen by hoosing the T 4 to be given by

R4/ΓA4 . The eigenvalues of the generator of the Z5 are given by ωr, (r = 1, 2, 3, 4). Theorresponding Poinaré polynomial is
(1− ωx)(1− ω2x)(1− ω−1x)(1− ω−2x)

= 1 + 2x2 + x4 + (ω3 + ω + 1/ω + 1/ω3)x2

− x/ω − x/ω2 − ωx− ω2x− ω2x3 − ωx3 − x3/ω − x3/ω2 (2.34)We now present the details of the orbifold ation (on the left-movers) for the Green-Shwarz type IIA-superstring that we just derived.[N=2℄ ω = −1 implies that ω2 = 1. Thus, one has eight periodi bosons and eight anti-periodi fermions.[N=3℄ ω = exp(2πi/3) One has six periodi bosons and two bosons whih pik up phases ωand ω2. Four fermions go to ω times themselves and the other four go to ω−1 timesthemselves.[N=4℄ ω = exp(πi/2) One has six periodi bosons and two anti-periodi bosons. Four fermionsgo to ω times themselves and the other four go to ω−1 times themselves.[N=5℄ ω = exp(2πi/5) This is di�erent from the other three examples. One ends up withfour periodi bosons and the other four hange by a phase ωr (r = 1, 2, 3, 4). The eight32



Chapter 2. Counting Dyons in String Theoryfermions break up into two sets of four fermions. Within eah set, one fermion piksup a phase ωr (r = 1, 2, 3, 4).Thus, the seond desription gives rise to an asymmetri orbifold of the type IIA stringon T 6 and thus is analogous to CHL ompati�ations of the heteroti string. Reall thatthe heteroti string arises as the type IIA NS5-brane wraps K3 in the plae of T 4 that weonsidered.2.6.3 Type II Dyon Degeneray From Modular FormsAs mentioned in previous setion, omputing the dyon spetrum is non-trivial beause dyonsdo not appear in the perturbative spetrum of string theory. In fat, dyon ounting ne-essarily requires omputing the degrees of freedom oming from the solitoni setor of thetheory. The dyon degeneray formula an be obtained in two di�erent ways, giving rise toeither a additive formula or a multipliative one.As shown in [2℄, for the CHL models, there are two modular forms that one onstruts� one is the generating funtion of the dyon degeneraies (denoted by Φ̃k(Z)) and another(denoted by Φk(Z)) is the one related to R2-orretions in the CHL string. Let us all theorresponding modular forms in the type II models to be Ψ̃k(Z) and Ψk(Z). The weight kof the Siegel modular form for the type II models is given by
k + 2 =

12

N + 1
, (2.35)when N + 1|12 i.e., N = 2, 3, 5. For N = 4, one has k = 1.We will disuss the modular forms Ψ̃k(Z) and Ψk(Z) of the type II orbifolds in hapter 6where we disuss the onstrution of all modular forms appearing in the this work. Now weturn to the mirosopi ounting of dyoni states and sketh the omputation in the ase ofthe CHL and type II models as shown by David, Jatkar and Sen[16, 31℄.2.7 Counting Dyons in N = 4 Supersymmetri StringsIn the rest of this hapter, we will simultaneously disuss both models: the CHL and typeII. Consider desription 3 where one has type IIB string theory ompati�ed onM× S̃1×S1where M is either K3 or T 4. We then take an orbifold of this theory by a ZN symmetry.The ation of the symmetry group is generated by a transformation g whih involves a33



Chapter 2. Counting Dyons in String Theory
1/N unit shift along the irle S1 together with an order N transformation g̃ in M. Thetransformation g̃ is hosen suh that it ommutes with the N = 4 supersymmetry generatorsof the parent theory and hene preserves the N = 4 supersymmetry. Our disussion herelosely follows the review of Sen[20℄.Following the hain of dualities, we have seen that the transformation g̃ gets mapped, indesription 2, to a transformation ĝ that ats only as a shift on the right-moving degrees offreedom on the world-sheet and as a shift plus rotation on the left-moving degress of freedom.Desription 2 is obtained by taking an asymmetri orbifold of heteroti or type IIA stringtheory on T 4 × Ŝ × S1 by a 1/N unit of shift along S1 together with the transformation ĝ.All the supersymmetry omes from the right-moving setor of the world-sheet. The �eld SHis the axion-dilaton in the seond desription and to the omplex struture modulus of thetorus S̃1×S1 in the �rst desription.. The matrix valued salar �eldM enodes informationabout the shape and size of the ompati�ation spae M′ × Ŝ × S1. and the omponentsof the NSNS setor 2-form along it5. The gauge �elds Aµ are related to the ones omingfrom the dimensional redution of the ten-dimensional metri, NSNS anti-symmetri tensor�eld and gauge �elds, without any further eletri-magneti duality transformation. Theelementary string states arry eletri harge qe, and various solitons arry magneti harge
qm.2.7.1 Traking dyons through dualitiesReall, the 1

4
-BPS dyons possess harges whih are mutually non-loal and therefore theydo not appear in the perturbative spetrum of the theory. The eletri harge vetor qe andthe magneti harge vetor qm of a state are de�ned in the seond desription. We take theoordinate radii of S1/ZN and S̃1 to be 1. The radius of S1 before orbifolding is taken tobe N and the ZN orbifolding ation involves a 2π/N translation along S1. The momentumalong S1 is thus quantized in multiples of 1/N .We onsider the following dyoni on�guration in desription 3: Q5 D5-branes wrappedonM× S1, Q1 D1-branes wrapped on S1, a single Kaluza-Klein monopole assoiated withthe irle S̃1 with negative magneti harge, momentum −k/N along S1 and momentum Jalong S̃1. Also, sine a D5-brane wrapped on M arries, besides the D5-brane harge, −βunits of indued D1-brane harge, where β is given by the Euler harater ofM divided by

24, the net D1-brane harge of the system is (Q1 − βQ5). (β is zero when M = T 4 and 15In both the CHL and type II models, M′ is a four-torus. In the type II models, the four-torus,M′, isobtained by T-dualizing all irles onM = T 4 and we will denote it by T̂ 4. 34



Chapter 2. Counting Dyons in String TheorywhenM = K3.)Following the duality hain and using the sign onventions used in[20℄, one sees thatthe above on�guration in desription 3 leads to a di�erent on�guration in desription 1.Let us replae a (-1)-harged Kaluza-Klein monopole by a single NS5-brane wrapped on
M′×S1, Q5 NS5-branes by Q5 Kaluza-Klein monopoles along Ŝ1; J units of momenta along
S̃1 is replaed by −J fundamental strings winding Ŝ1, where Ŝ1 is the irle T-dual to S̃1.Further, the D1 harge beomes (−Q1 + βQ5) fundamental strings wrapping on S1. The
ZN orbifold ation involves ZN orbifold ofM′ and simultaneous 1/N unit of shift along S1.Sine the orbifolded irle is not partiipating in the T-duality transformation, the orbifoldation ommutes with the T-duality transformation.Finally, one arries out a string-string duality to arrive at the seond desription6. Underthis ation, all fundamental strings are replaed by NS5-branes and vie versa. Thus, in theend we have Q1 Kaluza-Klein monopoles along Ŝ1, (−Q1 +βQ5) NS5 wrapping M′ × S1,
−k/N units of momentum along S1, −J NS5 -branes wrapping M′ × Ŝ1, Q1 NS5-braneswrappingM′× S1, and a single fundamental string wrapping S1. The result is summarizedin Figure 2.3.

Q5 D5's wrappingM× S1

Q1 D1's wrapping S1momentum −k/N along S1momentum J along S̃1

−1 KK monopole for S̃1Desription 3 hain of dualities−−−−−−−−−→

Q5 KK monopole for Ŝ1

(−Q1+βQ5) NS5 wrappingM′×S1momentum −k/N along S1

−J NS5 wrappingM′ × Ŝ1one fund. string wrapping S1Desription 2Figure 2.3: Traking Dyon on�gurations. When M = K3, M′ = T 4 and β = 1. When
M = T 4, thenM′ = T̂ 4 and β = 0.The seond desription exlusively ontains desription in terms of fundamental strings,NS5-branes, Kaluza-Klein monopoles and momenta. If we denote momenta along S1× Ŝ1 by
~n, fundamental string winding harges along them by ~w and NS5-brane, and Kaluza-Kleinmonopole harges by ~N and ~W respetively then the T-duality invariants onstruted fromthese eletri and magneti harges are

q2
e = 2~n · ~w , q2

m = 2 ~N · ~W , qe · qm = ~n · ~N + ~w · ~W . (2.36)6We follow the onventions followed in [20℄ 35



Chapter 2. Counting Dyons in String TheoryIt is easy to hek that these T-duality invariants take the following values before the orbifoldation,
q2
e = 2k , q2

m = 2Q5(Q1 − βQ5) , qe · qm = J . (2.37)The ZN orbifold ation ommutes with the entire duality hain and is therefore well de�ned inany desription (`duality frame'). It is onvenient for us to disuss it in the seond desriptionso that we an easily read out its e�et on dyoni harges. The ZN orbifold ats by 1/Nshift along S1, whih results in reduing the irle radius by fator of N . Thus fundamentalunit of momentum along S1 is N and hene momentum along S1 in the orbifolded theorybeomes n/N . To maintain J NS5-branes transverse to S1 after the orbifold we need to startwith N opies of J NS5-branes symmetrially arranged on S1 before orbifold. The resultingon�guration has
1

2
q2
e = 2k/N ,

1

2
q2
m = Q1Q5 , qe · qm = J , (2.38)in the orbifolded theory.The S-duality symmetry of this theory in the seond desription is related to the T-duality symmetry in the original type IIB desription. The 1/N shift along S1 breaks theS-duality symmetry of the seond desription to Γ1(N).2.8 Mirosopi Counting of Dyoni StatesIn this subsetion, we will disuss the mirosopi ounting of dyon degeneraies arriedout by David and Sen[16℄. The dyoni on�guration orresponds to the BMPV blak holeat the enter of Taub-NUT spae[49℄.The main idea used by David-Sen is to use the 4D-5D orrespondene ombined with known dualities to map the ounting of states in thison�guration to the ounting of dyoni degeneraies in the CHL string.Let d(qe,qm) denote the number of bosoni minus fermioni 1

4
-BPS supermultiplets ar-rying a given set of harges (qe,qm) in the on�guration desribed in the previous setion.The dyoni harges of the on�guration when Q5 = 1 are given by

q2
e = 2k/N , q2

m = 2(Q1 − β) , qe · qm = J . (2.39)The quantum numbers k and J an arise from three di�erent soures:1. The exitations of the Kaluza-Klein monopole arrying momentum −l′0/N along S1. 36



Chapter 2. Counting Dyons in String Theory2. The overall motion of the D1-D5 system in the bakground of the Kaluza-Kleinmonopolearrying momentum −l0/N along S1 and j0 along S̃1.3. The motion of the Q1 D1-branes in the worldvolume of the D5-brane arrying momen-tum −L/N along S1 and J ′ along S̃1.Thus, we have
l′0 + l0 + L = k , j0 + J ′ = J . (2.40)So, in the weak oupling limit, one an ignore the interation between the three di�erentsets of degrees of freedom and obtain the generating funtion of dyoni degeneraies of thewhole system as a produt of the generating funtions of eah of the three separate piees.Let f(ρ̃, σ̃, ν̃) denote the generating funtion of the whole system:

f(ρ, σ, ν) =
∑

k,Q1,J

d(qe,qm) e2πi
[
σ(Q1−1)/N+ρk+νJ

]
. (2.41)Then, from the above argument it is given by

f (ρ̃, σ̃, ν̃) =
1

64
e−2πiσ/N

( ∑

Q1,L,J ′

(−1)J
′

dD1(Q1, L, J
′

) e2πi(σQ1/N+ρL+νJ ′)
)

(∑

l0,j0

(−1)j0dCM(l0, j0) e
2πil0ρ+2πij0ν

)(∑

l′0

dKK(l′0) e
2πil′0ρ

)
. (2.42)where dD1(Q1, L, J

′
) is the degeneray of the Q1 D1-branes moving in the plane of the D5-brane, dCM(l0, j0) is the degeneray assoiated with the overall motion of the D1-D5 systemin the bakground of the Kaluza-Klein monopole(i.e., its motion in Taub-NUT spae), and

dKK(l′0) is the degeneray assoiated with the exitations of the Kaluza-Klein monopole.The fator of 1/64 removes the degeneray of a single 1
4
-BPS supermultiplet. Let us write

f(ρ, σ, ν) as
f(ρ, σ, ν) =

[
ÊS∗(K3/ZN )(ρ, σ, ν)× ETN(ρ, ν)× g(ρ)

]−1
. (2.43)
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Chapter 2. Counting Dyons in String Theorywhere
[
ES∗(K3/ZN )(ρ, σ, ν)

]−1 ≡
∑

Q1,L,J ′

(−1)J
′

dD1(Q1, L, J
′

) e2πi(σQ1/N+ρL+νJ ′) ,

[
ETN(ρ, ν)

]−1 ≡ 1

4

∑

l0,j0

(−1)j0dCM(l0, j0) e
2πil0ρ+2πij0ν ,

[
g(ρ)

]−1 ≡ 1

16

∑

l′0

dKK(l′0) e
2πil′0ρ .Justin, Jatkar, and Sen arried out the expliit ounting of the above partition funtionsand found that the dyoni degeneraies are generated by an automorphi form whih for

N = 1 is the unique weight 10 automorphi form of the modular group Sp(2,Z) whih is thesame one obtained by DVV. For N > 1 of the orbifolding group ZN , however, they foundthe dyoni degeneraies are generated by other modular forms. The general form of theirresult for the generating funtion of the degeneraies of 1
4
-BPS states is

Φ̃(ρ̃, σ̃, ν̃) = exp(2πi(α̃ρ̃+ γ̃σ̃ + ν̃))

×
1∏

b=0

N−1∏

r=0

∏

k∈Z+ r
N
,

l∈Z,j∈2Z+b
k,l≥0,j<0 for k=l=0

[1− exp{2πi(σ̃k + ρ̃l + ν̃j)}]
PN−1

s=0 e−2πils/N c
(r,s)
b (4kl−j2) , (2.44)

where the oe�ients c(r,s)b are de�ned through the twisted ellipti genera as we will seebelow. We will shortly ompute the above equation expliitly by omputing eah of thepiees in (2.42).2.8.1 Counting States of the Kaluza Klein MonopoleWe �rst ount the degeneray of the half-BPS states assoiated with the exitations ofthe Kaluza-Klein monopole arrying momentum −l0/N along S1. Type IIB string theoryompati�ed onM× S̃1 × S1 in the presene of a Kaluza-Klein monopole an be desribedby type IIB string theory in the bakground M× TN × S1 where TN denotes Taub-NUTspae desribed by the metri
ds2 =

(
1 + R0

r

)(
dr2 + r2(dθ2 + sin2θdφ2)

)
+R2

0

(
1 + R0

r

)−1(
2dξ + cosθdφ

)2

, (2.45)38



Chapter 2. Counting Dyons in String Theorywhere R0 denotes the size of the Taub-NUT spae. We take a ZN orbifold of this theorygenerated by the transformation g. The Taub-NUT spae breaks eight of the sixteen super-symmetries in type IIB on K3 and quantization of its fermioni zero modes gives rise to amultipliative fator of 16 = 28/2. Following the hain of dualities, one sees that the Taub-NUT spae gets mapped to the heteroti string wrapped on a ZN -orbifold of the heterotistring. The degeneray dKK(l′0) orresponds to the degeneray of the heteroti string in atwisted setor. Thus, g(ρ/N) is the partition funtion of the heteroti string (in a twistedsetor) with the supersymmetri right-movers in their ground state. Hene, it an also beidenti�ed with the generating funtion of degeneraies of eletrially harged 1
2
-BPS states.The BPS ondition requires that the right-Fmoving osillators are in their ground state forbothM = K3 (the CHL models) andM = T 4 (the type II models).We are looking for the number of ways a total momentum −l0/N along S1 an be par-titioned into g-invariant modes. Part of this momentum omes from the momentum of theKaluza-Klein monopole vauum without any exitations and this is alulated by mappingthe Kaluza-Klein monopole to a fundamental string state in a dual desription of the theory.To ount the g-invariant modes, we have to �rst determine the spetrum of the massless�elds in the world volume theory of the Kaluza-Klein monopole solution, and the transfor-mations of the various �elds under the ation of the orbifold group generator g̃. From this,we an determine all the g-invariant modes on the Kaluza-Klein monopole, by noting that a�eld that piks up a g̃ phase e2πık/N must arry momentum n− k/N(n, k,∈ Z) along S1, sothat the phase obtained due to the translation along S1 anels the g̃ phase.We begin by analyzing the spetrum of the theory. First, we onentrate on the bosoni�elds. There are 8 non-hiral, right-moving masless salar �elds oming as follows: threeome from the osillations in the three transverse diretions of the Kaluza-Klein monopole.Two ome from the redution of the 2-form �eld of type IIB string theory along the harmoni

2-form of the Taub-NUT spae. Redution of the self-dual four form �eld of type IIB stringtheory along the tensor produt of the harmoni 2-form of the Taub-NUT spae and aharmoni 2-form onM gives rise to a hiral salar �eld on the world-volume. The hiralityof the salar �eld depends on whether the harmoni 2-form on M is self-dual or anti-self-dual. Thus, in the ase of T 4 we get 3 right moving salars, and 3 left moving salars. For
K3, we get three right-moving salars, and 19 left-moving salars.The fermioni �elds ome from the Goldstino fermions assoiated wth broken supersym-metry generators. For the ase of M = T 4 theory, there are 32 unbroken supersymmetryharges of whih 16 are broken in the presene of the Taub-NUT spae. Of the 16 remaining39



Chapter 2. Counting Dyons in String TheoryGoldstino fermions on the world-volume of the Kaluza-Klein monopole, 8 are right-movingand the remaining 8 are left-moving, sine type IIB string theory is non-hiral. For thease ofM = K3 theory, there are 16 unbroken supersymmetries, of whih 8 are broken inthe presene of the Taub-NUT spae. The remaining 8 Goldstino fermion �elds assoiatedwith the broken supersymmetry transformation are right-moving, sine aording to ouronvention the 8 unbroken supersymmetry transformation parameters on S1 are left-hiral.Putting it all together we see that the spetrum of the world-volume theory of the Kaluza-Klein monopole onsists of 8 bosoni and 8 fermioni right-moving massless �elds. In ad-dition, for M = T 4, it has 8 left-moving bosoni and 8 left-moving fermioni �elds, whilefor M = K3, the world-volume theory has 24 left-moving massless bosoni �elds and noleft-moving fermioni �elds.Next, we have to work out the g̃ transformation properties of the various modes. Theproblem of studying the g̃ transformation properties of the left-moving bosoni and fermionidegrees of freedom, it an be shown, redues to the problem of studying the ation of the
g̃ ation on the even and odd harmoni forms of K3. The net ation of the g̃ on the 8)left-handed salar �elds is given by the ation of g̃ on the 8 even degree harmoni formsof M, while its ation on the left-moving fermions an be represented by the ation of g̃on the 1- and 3−forms of M. The di�erene between the number of even and odd degreeharmoni forms, weighted by g̃, is equal to Q0,s. Thus, the number of left-handed bosonsminus fermions arrying a g̃ quantum number e2πıls/N is given by

nl = 1
N

N−1∑

s=0

e−2πıls/NQ0,s =
N−1∑

s=0

e−2πıls/N
(
c0,s0 (0) + 2c

(0,s)
1

) (2.46)where the last equality omes from the expression for Q0,s in terms of the oe�ients c(r,s)b .We must now determine the spetrum of the BPS exitations of the Kaluza-Kleinmonopole,whih is obtained by taking the tensor produt of the irreduible 16-dimensional super-multiplet with either fermioni or bosoni exitations involving the left-moving degrees offreedom on the world-volume of the Kaluza-Klein monopole. Let dKK denote the degener-ay of states assoiated with the left-moving osillator exitations arrying total momentum
−l′0/N , weighted by (−1)FL. To alulate dKK(l

′

0) we need to ount the number of ways thetotal momentum −l′0/N an be distributed among the di�erent osillators, there being nl
40



Chapter 2. Counting Dyons in String Theoryosillators arying momentum −l/N . This gives
∑

l
′
0

dKK(l
′

0)e
2πıeρl

′

0 = 16e2πıNCeρ
∞∏

l=1

(1− e2πıeρl)−nl, (2.47)where the fator of 16 omes from the fermioni zero modes. The onstant C represents the
−l′0/N quantum number of the vauum of the Kaluza-Klein monopole when all the osillatorsare in their ground state and is equal to

C = −α̃/N, (2.48)where α̃ is given in terms of Qr,s by
α̃ =

1

24N
Q0,0 −

1

2N

N−1∑

s=1

Q0,s
e2πıs/N

(1− e2πıs/N )2
. (2.49)Putting it all together, we get

g(ρ̃) ≡
∑

−l
′
0

dKK(−l′0)e2πıeρl
′

0 = 16e−2πıeαeρ
∞∏

l=1

(1− e2πıeρl)−
PN−1

s=0 e2πıls/N (c
(0,s)
0 (0)+c

(0,s)
1 (−1)) (2.50)2.8.2 Counting States Assoiated With the Relative Motion of theD1-D5 SystemTo ompute dD1, whih ounts the states assoiated with the motion of the D1-brane inthe plane of the D5-brane, we start by onsidering a single D1-brane moving inside a D5-brane. We analyze the world-volume theory of a single D1-brane inside a D5-brane. In theweak oupling limit the dynamis of the D1-brane inside a D5-brane is insensitive to thepresene of the Kaluza-Klein monopole, the two-dimensional theory desribing this systemhas a (4, 4) supersymmetry. Consider a D1-brane wrapping along the diretion in whih

S1/ZN has period 2π. Let σ denote the oordinate along the length of the D1-brane and wthe winding number of the D1-brane along S1/ZN , then σ hanges by 2πw when we traversethe whole length of the string, while the physial oordinate of the D1-brane shifts by 2πralong S1 where r and w are related as
r = w modN .‘ (2.51)41



Chapter 2. Counting Dyons in String TheoryIn the target spaeM under σ → σ+2πw the loation of the D1-brane gets transformed by
g̃r = g̃w. Thus the target spaeM is subjet to the above ondition and the states will betwisted by g̃r. Further, sine the supersymmetry generators are required to ommute with
g̃, the superurrents will satisfy periodi boundary ondition under σ → σ + 2πw. Sinethe D1-brane has oordinate length 2πw, the momentum along S1 an be identi�ed as the
(L̄0 − L0)/w eigenvalue of this state. And sine, the BPS ondition fores L̄0 to vanish, atotal momentum −l/N orresponds to a state with

L0 = lw/N, L̄0 = 0 . (2.52)In the presene of the Kaluza-Klein monopole bakground a transition ǫ along S1 mustbe aompanied by a rotation 2ǫ in U(1)L ⊂ SU(2)L. Let us denote by FL and FR, twie the
U(1)L ⊂ SU(2)L and U(1)R ⊂ SU(2)R generators respetively. FL is the world-sheet fermionnumber assoiated with the left-moving setor of the (4, 4) superonformal �eld theory, while
FR is the world-sheet fermion number assoiated with the right-moving setor. The totalworld-sheet fermion number FL + FR an be interpreted as the spae-time fermion numberfrom the point of view of a �ve-dimensional observer at the enter of Taub-NUT spae.The quantum number j is the FL eigenvalue of the state. The four and �ve-dimensionalstatistis di�er by a fator of (−1)j and hene, in ounting the total number of bosoniminus fermioni states weighted by (−1)j with a given set of harges, we must omputethe number of states weighted by (−1)FL+FR. And, �nally we must pik only states whihare ZN -invariant. Sine the total momentum along S1 is −l/N , the state piks up a phase
e−2πil/N under a 2π translation. Thus the projetion operator onto ZN invariant states isgiven by

1

N

N−1∑

s=0

e2πısl/N g̃s. (2.53)Putting it all together, we get for the total number of ZN invariant bosoni minusfermioni states weighted by (−1)j of the single D1-brane arrying quantum numbers w, l, jis given by
n(w, l, j) ≡ 1

N

N−1∑

s=0

e−2πısl/NTrRR,egr(g̃s(−1)FL+FRδNL0,lwδFL,j), r = w modN, (2.54)where the TrRR,egr denotes trae over the RR setor states twisted by g̃r in the superonformal
σ-model with target spae K3. 42



Chapter 2. Counting Dyons in String TheoryIn terms of the oe�ients c(r,s)b , n(w, l, j) is given by
n(w, l, j) =

N−1∑

s=0

e−2πısl/Nc
(r,s)
b (4lw/N − j2), r = w modN, b ≡ j mod2. (2.55)Using this result for a single D1-brane spetrum we need to �nd the spetrum of multipleD1-branes moving inside the D5-brane. Let the total D1-brane harge be W , and totalmomentum along S1 and S̃1 be −L/N and J ′ respetively. Let us denote by dD1(W,L, J

′
)the total number of bosoni minus fermioni states of the whole system, weighted by (−1)J
′whih represents the number of ways of distributing the quantum numbers W,L and J ′ intoindividual D1-branes arrying quantum numbers (Wi, li, ji) subjet to the onstraint

W =
∑

i

wi, L =
∑

i

li, J
′

=
∑

i

ji, wi, li, ji ∈ Z, wi ≥ 1, li ≥ 0. (2.56)A straightforward ombinatori analysis gives
∑

W,L,J ′

dD1(W,L, J
′

)(−1)J
′

e2πı(eσW/N+eρL+eνJ
′
) =

∏

w,l,j∈Z;w>0,l≥0

(1− e2πı(eσw/N+eρl+eνj))−n(w,l,j).(2.57)In terms of the oe�ients c(r,s)b this takes the form
∑

W,L,J ′

dD1(W,L, J
′

)(−1)J
′

e2πı(eσW/N+eρL+eνJ
′
)

=
N−1∏

r=0

N−1∏

b=0

∏

k
′
∈Z+ r

N
,l∈Z,

j∈2Z+b;k
′
>0,l≥0

(
1− e2πı(eσk

′
+eρl+eνj)

)−PN−1
s=0 e2πısl/N c

(r,s)
b (4lk

′
−j2) (2.58)This is the partition funtion for states assoiated with the motion of the D1-branes in theplane of the D5-brane.
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Chapter 2. Counting Dyons in String Theory2.8.3 Counting States Assoiated With the Overall Motion of theD1-D5 SystemThe overall motion of the D1-D5 system has two omponents � the enter of mass motion ofthe D1-D5 system along the Taub-NUT spae transverse to the plane of the D5-brane, andthe dynamis of the Wilson lines on the D5-brane alongM. Of these, the �rst omponentis independent of the hoie of M, while the seond exists only if M has non-ontratibleone yles, i.e. forM = T 4. We analyze eah in turn now starting with the enter of massmotion of the D1-D5 motion in Taub-NUT spae.Dynamis of the D1-D5 Motion in Taub-NUT SpaeThe ontribution from this is independent of the the hoie of M. When the transversespae is Taub-NUT, the low energy dynamis of the system an be desribed by a (1 + 1)-dimensional supersymmetri �eld theory. The world-volume theory is a sum of two mutuallynon-interating piees � a theory of free left-moving fermions and an interating theory ofsalars and right-moving fermions. From the point of view of a �ve-dimensional observersitting at the enter of Taub-NUT spae, the D1-D5 system in the Taub-NUT target spaeis desribed by a set of four free left-moving U(1)L invariant fermion �elds, together with aninterating theory of four bosons and four right-moving U(1)L non-invariant fermions. Thetwo bosons and two of the right-moving fermions arry a j0 quantum number 1, while theother two bosons and right-moving fermions arry a j0 quantum number of−1. The unbrokensupersymmetry transformations at only on the salars and the right-moving fermions. Allthe �elds arry integral momenta along S1.To ompute the partition funtion, �rst onsider the free left-moving fermions whiharry only l0 quantum numbers but no j0 quantum numbers. Their ontribution is given by
Zfree(ρ̃) ≡ Trfree left-moving fermions((−1)F (−1)j0e2πiρ̃l0e2πiν̃j0) = 4

∞∏

n=1

(1− e2πinNρ̃)4, (2.59)where F is the total ontribution to the spae-time fermion number, exept from the fermionzero-modes assoiated with the broken supersymmetry generators, from the point of viewof an asymptoti four-dimensional observer. The fator of 4 omes from the quantization ofthe free fermion zero modes.Next we ompute the partition funtion for the part that is interating. There are twoparts to this, the zero mode osillators and the non-zero modes. By taking the size R0 of44



Chapter 2. Counting Dyons in String Theorythe Taub-NUT spae to be large so that the metri is almost �at, and in a loal region ofthe Taub-NUT spae the world-volume theory of the D1-D5 system is almost free. Then wean ompute the ontribution due to the non-zero mode bosoni and fermioni osillatorsby plaing the D1-D5 system at the origin of the Taub-NUT spae and treating them asosillators of free �elds. Further, we need to examine only the left-moving bosoni osillatorsarrying momentum −l0/N along S1 and angular momentum j0, sine the right-movingbosoni and fermioni osillators are in their ground state. The ontribution to the partitionfuntion from these osillators is
Zos(ρ̃, ν̃) ≡ Trosillators((−1)F (−1)j0e2πiρ̃l0e2πiν̃j0)

=

∞∏

n=1

1

(1− e2πinNρ̃+2πiν̃)2(1− e2πinNρ̃−2πiν̃)2
, (2.60)where we use the fat that sine these osillators are bosoni from the �ve-dimensional pointof view, they have statistis (−1)F = (−1)j0 from the four-dimensional point of view.Finally we have to evaluate the partition funtion for the zero-mode osillators of theinterating part of the theory. Sine there are four bosoni and four fermioni �elds, wean think of it as the dynamis of a superpartile, with four bosoni and four fermionioordinates, whih transform in a pair of spinor representations, moving in the Taub-NUTspae. The partition funtion for these modes is give by

Zzero(ν̃) ≡ Trzero modes((−1)F (−1)j0e2πiν̃j0 = −
∞∑

j0=1

j0e
2πiν̃j0 = − e2πiν̃

(1− e2πiν̃)2
. (2.61)Putting together all the onstituent partition funtions, the partition funtion assoiateswith the enter of mass motion of the D1-D5 system in the Taub-NUT spae is given by

∑

l0,j0

dtransverse (l0, j0)(−1)j0e
2πil0ρ̃+2πij0ν̃ = Zfree(ρ̃)Zos(ρ̃ν̃)Zzero(ν̃)

= −4e2πiñu(1− e2πiν̃)−2

×
∞∏

n=1

{(1− e2πinNρ̃)4(1− e2πinNρ̃+2πiν̃)−2(1− e2πinNρ̃−2πiν̃)−2}, (2.62)
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Chapter 2. Counting Dyons in String Theory2.8.4 The Dynamis of Wilson Lines Along MWe now turn to the ontribution to the partition funtion from the dynamis of the Wilsonlines along M = T 4. We an ignore the presene of the Kaluza-Klein monopole and theD1-branes and onsider the dynamis of the D5-brane wrapped on T 4 × S1. However, theKaluza-Klein monopole will be used in the identi�ation between the angular momentumarried by the system from the point of view of the �ve-dimensional observer at the enterof the Taub-NUT spae and the momentum along the irle S1 from the point of view ofthe asymptoti four-dimensional observer. Taking the T 4 to have small size we an regardthe world-volume theory of the D5-brane as (1+1)-dimensional whih ontains eight salarsassoiated with four Wilson lines and four transverse oordinates and 16 massless fermionsof whih eight are left-moving and eight are right-moving. We have to onsidering only thesupersymmetry generators that ommute with g̃. The g̃ transformation mixes the salarsassoiated with the oordinates transverse to the D5-brane with the eight of the sixteenfermions on the D5-brane world-volume and mixes the salars assoiated with the Wilsonlines with the other eight fermions. We hve already ounted the ontribution to the partitionfuntion from the transverse oordinates and their superpartners in (2.62), hene here needonly onsider the world-volume �elds onsisting of the Wilson lines and their superpartners.Sine the g̃ invariant supersymmetry generators are non-hiral, so are the superpartners ofthe Wilson line. There are four left-moving and four right-moving fermioni suh �elds. Ofthese, only the left-moving osillators ontribute, sine the right-moving osillators are intheir ground state when we work in the bakground of the Kaluza-Klein monopole. Thus,there are only four bosoni and four fermioni left-moving modes. Invariane under g̃ requiresthat two of the four bosoni modes arrying momentum along S1 be of the form k+ 1
N
whilethe other two be of the form k − 1

N
. Neither has any momentum along S̃1. Similarly, twoof the fermioni modes arry momentum k + 1

N
along S1 while the other two arry k − 1

N
.These modes, however, arry ±1 units of momentum along S̃1. As before, the statistis ofthe osillators are altered by a fator of (−1)j0 as we ome down from four to �ve-dimensions.Thus, if dWilson(l0, j0) denotes the number of bosoni minus fermioni states assoiated with
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Chapter 2. Counting Dyons in String Theorythese modes arrying a total momentum l0/N along S1 and j0 along S̃1, then
∑

l0,j0

dWilson(l0, j0)(−1)j0e2πil0ρ̃+2πij0ν̃

=
∏

l∈NZ+1,l>0

(1− e2πilρ̃)−2
∏

l∈NZ−1,l>0

(1− e2πilρ̃)−2
∏

l∈NZ+1,l>0

(1− e2πilρ̃+2πiν̃)

∏

l∈NZ+1,l>0

(1− e2πilρ̃−2πiν̃)
∏

l∈NZ−1,l>0

(1− e2πilρ̃+2πiν̃)
∏

l∈NZ−1,l>0

(1− e2πilρ̃−2πiν̃) .(2.63)The full partition funtion of the overall dynamis of the D1-D5 system is given by theprodut of the partition funtions (2.62) and (2.63) of the dynamis of the transverse modesand (forM = T 4) of the Wilson lines along T 4. The �nal result an be written ompatlyusing the oe�ients c(r,s)b (u), and noting that
c
(0,s)
1 (−1) =

{
2
N

forM = K3

1
N

(2− e2πis/N − e−2πis/N) forM = T 4 .
(2.64)The produt of (2.62) and (forM = T 4) (2.63) an be written as

∑

l0,j0

dCM(l0, j0)(−1)j0e2πil0ρ̃+2πij0ν̃ = −4e−2πiν̃
∞∏

l=1

(1− e2πilρ̃)2
PN−1

s=0 e−2πils/N c
(0,s)
1

∞∏

l=1

(1− e2πilρ̃+2πiν̃)−
PN−1

s=0 e−2πils/N c
(0,s)
1

∞∏

l=1

(1− e2πilρ̃−2πiν̃)−
PN−1

s=0 e−2πils/N c
(0,s)
1 (2.65)for bothM = K3 andM = T 4.2.8.5 The Full Partition FuntionUsing (2.42), (2.50), (2.58) and (2.65) we put together the full partition funtion:

f (ρ̃, σ̃, ν̃) = e−2πi(eαeρ+eν)

1∏

b=0

N−1∏

r=0

∏

k∈Z+ r
N
,l∈Z,

j∈2Z+b
k,l≥0,

j<0 for k=l=0

(1− e2πi(eσk+eρl+eνj))−
PN−1

s=0 e−2πils/Nc
(r,s)
b (4kl−j2) .(2.66)

The multipliative fator e−2πi(eαeρ+eν) and the k = 0 term in the expression ome from theterms involving dCM(l0, j0) and dKK(l
′

0). Comparing with the expression for Φ̃ (ρ̃, σ̃, ν̃) in47



Chapter 2. Counting Dyons in String Theory(2.44) we an rewrite (2.66) as
f (ρ̃, σ̃, ν̃) =

e2πieγeσ

Φ̃(ρ̃, σ̃, ν̃
) . (2.67)The degeneray d(qe,qm) is given by

d(qe,qm) = (−1)qe·qm+1 1

N

∫

C

dρ̃dσ̃dν̃e−πi(Neρq2
e+eσq2

m/N+2eνqe·qm) 1

Φ̃ (ρ̃, σ̃, ν̃)
. (2.68)where C is a three real dimensional subspae of the three omplex dimensional spae labelledby (ρ̃, σ̃, ν̃), given by

ρ̃2 = M1, σ̃2 = M2 ν̃2 = −M3,

0 ≤ ρ̃1 ≤ 1, 0 ≤ σ̃1 ≤ N, 0 ≤ ν̃1 ≤ 1 .HereM1,M2 andM3 are large but �xed positive numbers withM3 << M1,M2. TheMi's aredetermined from the requirement that the Fourier expansion is onvergent in the region ofintegration. Thus, we have omputed the degeneray formula by expliitly ounting the blakhole mirostate. This ompletes the disussion on the ounting of the blak hole mirostates.2.9 Walls of Marginal StabilityWe onlude this hapter with a disussion on the walls of marginal stability. For a given setof harges, the moduli spae will be divided into onneted domains where the 1
4
-BPS statesare stable and the degeneray formula is valid[33℄. As one moves around in the moduli spae,there arises the possibility of some of the 1

4
-BPS states to deay into smaller onstitutents.In that ase the degeneray formula will not remain valid when we go into a region wheresome of the 1

4
-BPS states that were present earlier have deayed. The degeneray formulawill, obviously, hange to re�et this hange in the number of 1

4
-BPS states with the givenharges. The regions in moduli spae where the degeneray formula is valid are bounded byodimension one subspaes on whih the BPS state under onsideration beomes marginallystable and the spetrum hanges disontinuously aross these subspaes. These odimensionone subspaes in moduli spae are alled the walls of marginal stability . The jump indegeneray ours through a subtle dependene of the ontour on moduli[33℄.The walls of marginal stability in the axion-dilaton plane (modelled by the upper-half plane48



Chapter 2. Counting Dyons in String Theorywith oordinate λ) is the real odimension one subspae aross whih one 1
4
-BPS state deaysinto a pair of 1

2
-BPS states[33℄(see also[50, 51℄). Consider the following deay of a torsionone 1

4
-BPS dyon into two 1

2
-BPS dyons

(
qe

qm

)
−→

(
ad qe − bd qm

ca qe − cb qm

)
⊕
(
−bc qe + bd qm

−ac qe + ad qm

)
, (2.69)where the kinematis of the deay imply that the integers a, b, c, d are suh that[33℄1. ad− bc = 1.2. The equivalene relation (a, b, c, d) ∼ (aσ−1, bσ−1, cσ, dσ) with σ 6= 0.3. Exhanging the two deay produts implies the equivalene under:

(a, b, c, d)→ (c, d,−a,−b).4. Charge quantization requires ad, bd, bc ∈ Z and ac ∈ NZ.One an show that by suitable use of the equivalenes given above, one an always hoose(
a b

c d

)
∈ Γ1(N) for N = 2, 3, 4. In the upper-half plane, these walls are irular arsdetermined by the equation[33, 50℄

[Re(λ)− ad+bc
2ac

]2
+
[Im(λ) + E

2ac

]2
= 1+E2

4a2c2
, (2.70)where E is a real funtion of all other moduliM . It is easy to see that the ars interset thereal λ axis at the points b

a
and d

c
for any E . When E = 0, the ars are semi-irles entredon the real λ-axis with radius 1

2ac
. When E 6= 0, the enter of the irle moves into theinterior of the upper half plane with radius also inreasing � all this with the interepts onthe real axis remaining unhanged. When either a = 0 or c = 0, the irles beome straightlines perpendiular to the real axis for E = 0 and making a suitable angle for E 6= 0. Thesole e�et on non-zero E is to `deform' the semi-irles into irular ars, so we restrit thedisussion to the ase when E = 0.A fundamental domain is onstruted by �rst restriting the value of Re(λ) to the interval

[0, 1]. The straight lines Re(λ) = 0, 1 orrespond to two walls of marginal stability. Next,one looks for the largest semi-irle with one end at λ = 0 on the real axis that is ompatiblewith the quantization of harges. This semi-irle intersets the real axis at some point in49



Chapter 2. Counting Dyons in String Theorythe interval [0, 1] � this turns out to be at 1/N . The proedure is then (reursively) repeatedby looking for another semi-irle with one end at 1/N till one hits the mid-way point 1/2.A similar proedure is done starting with the largest semi-irle with one end on the point
λ = 1 on the real axis. One obtains the following set of points for N = 1, 2, 3:

(0
1
, 1

1
) , (0

1
, 1

2
, 1

1
) , (0

1
, 1

3
, 1

2
, 2

3
, 1

1
) . (2.71)A fundamental domain is then given by restriting to the region bounded by these semi-irles and the two walls onneting λ = 0, 1 to in�nity. The two straight lines may beinluded by adding the `points' −1

0
and 1

0
. The fundamental domains are given in Figure 2.4.

N=1

0 1/3 1/2 2/3 1

N=2

N=3Figure 2.4: Fundamental domains for the N = 1, 2, 3 CHL models. We will later see thatthe same region appears as the Weyl hamber of a BKM Lie superalgebra in eah ase.For N > 3, this piture does not terminate � one needs an in�nite number of semi-irlesto obtain a losed domain. For N = 4, the following sequene is obtained on (using Sen'smethod)
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3
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5
, . . . , −2n+1

−4n
, −n
−2n−1

, . . . , 1
2
, . . . , n+1

2n+1
, 2n+1

4n
. . . , 3

5
, 5

8
, 2

3
, 3

4
, 1

1
) . (2.72)Let αn denote the semi-irle with interepts (2n−1

4n
, n

2n+1

) and βn the semi-irle with inter-epts ( n+1
2n+1

, 2n+1
4n

) for all n ∈ Z. Note that α0 and β0 represent the two straight lines atRe(λ) = 0, 1 respetively. The fundamental domain orresponding to the above sequene isdepited in Figure 2.5. It may be thought of as a regular polygon with in�nite edges with thein�nite-dimensional dihedral group as its symmetry group, D∞ = Z ⋊ Z2. D(1)
∞ is generated50



Chapter 2. Counting Dyons in String Theoryby two generators: a re�etion y and a shift γ given by:
y : αn → α−n , βn → β−n−1 and γ : αn → αn+1 , βn → βn−1 , (2.73)satisfying the relations y2 = 1 and y ·γ ·y = γ−1. There is a seond Z2 generated by δ de�nedas follows:

δ : αn ←→ βn . (2.74)The transformations (γ, δ) generate another dihedral symmetry D(2)
∞ .

Weyl chamber for

1 β1

β−1 α −1

β0
α 0

0 1/3 1/2 2/3 11/4 3/4
3/8 5/8

N = 4

αFigure 2.5: The fundamental domain forN = 4 CHL model is bounded by an in�nite numberof semi-irles as the BKM Lie superalgebra has in�nite real simple roots. Eah of the semi-irles indiated represent real simple roots that appear with multipliity one in the sumside of the denominator formula. Note that the diameter of the semi-irle is reduing asone gets loser to 1
2
. The point 1

2
is approahed as a limit point of the in�nite sequene ofsemi-irles. We will later see that the same region appears as the Weyl hamber of a BKMLie superalgebra that we onstrut.This ompletes our disussion of the walls of marginal stability of the CHL orbifolds.Later, when we study BKM Lie superalgebras related to the CHL models, we will see that thewalls of marginal stability are related to the walls of the Weyl hamber of the orrespondingBKM Lie superalgebras.
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Chapter 2. Counting Dyons in String Theory2.10 Conlusion and RemarksIn this hapter we have looked at the problem of ounting dyons in N = 4 supersymmetristring theories. The degeneray of the dyoni states are generated by modular forms. Wewill explore the struture of these modular forms in later hapters. We will onstrut thesemodular forms by di�erent methods in hapter 5 and study their algebrai side in hapter 6.We also studied the walls of marginal stability for the 1
4
-BPS states. We will later see howthese are related to the algebrai struture oming from the modular forms.
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3BKM Lie Algebras
3.1 IntrodutionThe starting point, both historially and pedagogially, for this hapter is the theory of �nite-dimensional semi-simple Lie algebras lassi�ed by Cartan and Killing. The lassi�ation letsone study Lie algebras generially, rather than on a ase by ase basis. It also gives anoverview, and hene suggestive diretions for generalizations in both the internal strutureof Lie algebras and the theory of �nite-dimensional semi-simple Lie algebras in general.However, in our study of �nite-dimensional semi-simple Lie algebras, their lassi�ation isnot our primary interest � generalization to in�nite-dimensional Lie algebras is.Our main appliation, in this thesis is the subjet of Borherds-Ka-Moody (BKM) Liesuperalgebras whih our in the degeneray formula of 1

4
-BPS dyons in the CHL models.These are obtained via generalizations of �nite-dimensional semi-simple Lie algebras to theirin�nite-dimensional ounterparts. Our aim in this hapter will be to give a quik and modestintrodution to BKM Lie superalgebras, for whih we start with a brief exposition of �nite-dimensional semi-simple Lie algebras with a veiw towards understanding the generalizationsthat give BKM Lie superalgebras. It is with this skewed perspetive that we will hooseand disuss the topis in this hapter. After introduing the theory of �nite-dimensionalsemi-simple Lie algebras, we treat BKM Lie superalgebras as the generalization of the �nite-dimensional algebras and inlude a�ne and Ka-Moody Lie algebras as speial ases ofthem. We will use examples to bridge the gap in theory and intuition inurred by this leapin pedagogy.The hapter is organized as follows. We start with the basi de�nitions of omplex semi-simple Lie algebras and study their representation theory to introdue the notions of the53



Chapter 3. BKM Lie AlgebrasCartan subalgebra, roots, weights, the Weyl group et. and understand what role these playin the struture of the Lie algebras and how one an lassify all the �nite-dimensional semi-simple Lie algebras from the knowledge of these notions. The main idea is to get an intuitivefeeling of these ideas in the ontext of examples whih are easier to understand. It will notbe possible to introdue all the onstrutions needed to rigorously de�ne the same notions inthe in�nite-dimensional ase, and hene it is simpler to understand them by extending theintiution built in the ontext of the simpler �nite-dimensional ases. Although we disussthe representation theory of general semi-simple Lie algebras, we relegate the disussion onthe denominator identities to the end of the hapter sine this is the most important idea forus. The disussion on the denominator identities of all lasses of Lie algebras, both �nite andin�nite-dimensional, is given in one plae so that it is easier to understand eah in relationto the other and also note the important di�erenes amongst them. Next we disuss theinfnite-dimensional Lie algebras building on the ideas introdued in the �nite-dimensionalsetting.For the ase of BKM Lie superalgebras, given how muh generality the lass of Liealgebras enompass, it would take a lot more tehnial setting to rigorously introdue thenotions mentioned above. We do not make suh an attempt here. Most of the de�nitionsare given as an extension to the intuition developed in the �nite-dimensional and a�nesettings. Introduing any more struture would be more onfusing than illuminating. Theexample of the fake monster Lie algebra is disussed to help understand the onepts (likeroots, imaginary simple roots, multipliities, the denominator identity, et.) developed inthe ontext of BKM Lie superalgebras.It must be mentioned at the very outset, that it is beyond the sope of this work togive even a semi-omplete disussion of BKM Lie superalgebras for the subjet is both vast,and intriate. As mentioned above, there are ertain ideas (the denominator identity) thatwe need a lot in the problem we address in the next hapters, and it is these ideas thatwe will try to motivate and understand. Rather than motivate these ideas preisely andpedantially, we will try to understand their origins intuitively starting from their analogs inthe �nite-dimensional semi-simple Lie algebras and ending with an example of a BKM Liesuperalgebra. This hapter is based mostly on [52, 53, 54, 55, 3, 4, 56℄. The reader is alsoenouraged to see [57, 58, 59, 60, 61, 62, 63, 64℄ for BKM Lie superalgebras in relation tostring theory.
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Chapter 3. BKM Lie Algebras3.2 De�nition and PropertiesA Lie algebra an be understood in relation to a Lie group, whose algebra it is (as thealgebra of left-invariant smooth vetor �elds on the group), or just as an algebra over a �eldsatisfying ertain additional axioms. Both the notions ultimately desribe the same objet,they only appear motivated from di�erent points of view. From the narrow point of view ofthis hapter, to digress into the theory of Lie groups and understand Lie algebras from themwould serve us no purpose, so we just de�ne a Lie algebra as an algebra over a �eld.De�nition 3.2.1 An algebra is a vetor spae over a �eld K (whih is C for all our pur-poses) endowed with a produt [., .] : g×g→ g that is distributive over addition and ompatiblewith salar multipliation by elements of K. It is a Lie algebra if, in addition, it also hasthe following properties(i) [., .] is bilinear,(i) Antisymmetry :
[x, x] = 0, ∀x ∈ g ( and hene [x, y] = −[y, x], ∀x, y ∈ g), (3.1)(ii) Jaobi identity :

[[x, y], z] + [[y, z], x] + [[z, x], y] = 0, ∀x, y, z ∈ g . (3.2)Examples of Lie algebras in physis should be familiar from the study of the theory ofangular momentum. All the �nite-dimensional Lie algebras we will study will be matrix Liealgebras, that is, they an be understood as a subalgebra of gl(n,C), whih is the assoiativealgebra of all (n× n) matries over C.The more interesting Lie algebras, and the ones we will be dealing with, are a sub-lassof the above de�nition alled semi-simple Lie algebras whose de�nition we next motivateDe�nition 3.2.2 A Lie subalgebra a of g is a subspae satisfying [a, a] ⊆ a.It is also a Lie algebra. A Lie subalgebra a is alled abelian if [a, a] = 0. One suhsubalgebra, alled the Cartan subalgebra, will play an important role in understanding thestruture of semi-simple Lie algabras. 55



Chapter 3. BKM Lie AlgebrasDe�nition 3.2.3 A subspae a of g is alled an ideal if it satis�es [a, g] ⊆ a.An ideal, by its de�nition, is also a Lie subalgebra. If a and b are ideals in a Lie algebra,then so are a + b, a ∩ b and [a, b].De�nition 3.2.4 A �nite-dimensional Lie algebra g is said to be simple if it is non-abelian(i.e. [g, g] 6= 0) and g has no proper non-zero ideals ( i.e. its only ideals are g and 0). A�nite-dimensional Lie algebra g is said to be semi-simple if g is isomorphi to a diret sumof simple Lie algebras.One an also de�ne a semi-simple Lie algebra, equivalently, through its Killing form.The Killing form is a symmetri bilinear form on g. There is also a third, and equivalent,de�nition of semi-simple Lie algebras in terms of the Chevalley-Serre relations. It is via thisde�nition that it is simplest to pass to the in�nite-dimensional ase from �nite-dimensionalsemi-simple Lie algabras. We will introdue the Chevalley generators, and the Chevalley-Serre relations they satisfy, at the appropriate junture. Here we give the de�nition ofsemi-simpliity through the Killing form.For any Lie algebra we an de�ne a linear map ad: g → EndCg, alled the adjointmapping, given by adx(y) = [x, y] , (3.3)where EndCg is the spae of all C-linear maps from g to g.We an now de�ne the Killing form on g. Given two elements x and y in g, we ande�ne a linear transformation (adxady) from g to itself. The Killing form of g is given by
B(x, y) = Tr(adx ady) . (3.4)The Killing form is invariant in the sense that
B([x, y], z) = B(x, [y, z]) .We an now de�ne an equivalent de�nition of a �nite-dimensional semi-simple Lie algebraalled Cartan's riterion for semi-simpliity.Theorem 3.2.5 A Lie algebra g is semi-simple if and only if the Killing form on g is non-degenerate.The reason for the multiple de�nitions is that when we pass from �nite-dimensionalsemi-simple Lie algebras to more general Lie algebras, some of the de�nitions are more56



Chapter 3. BKM Lie Algebrassuitable generalizations than others, and hene it is helpful to understand the de�nitionfrom di�erent points of view. We give some examples of Lie algebras, before moving on tothe idea of representations.3.2.1 ExamplesThe most familiar example of a group from physis is the three-dimensional rotation group
SO(3). It is the group of all rotations about the origin on the three-dimensional Eulideanspae, R3, with omposition as the group operation. It represents the symmetries of a sphere.As a matrix group, it is the group of 3×3 real matries A suh that ATA = I, and detA = 1.The Lie algebra assoiated to this is the spae of 3×3 omplex matries satisfyingXT = −X,denoted by so(3), where the supersript T denotes the transpose of a matrix.It is a spei� example of a more general lass of Lie algebra so(n,C), known as thespeial orthogonal Lie algebra, whih is the spae of all n× n omplex matries satisfying
XT = −X.Another familiar example is the speial linear Lie algebra, denoted sl(n,C). It is thespae of all n× n omplex traeless matries over C. The algebra sl(2,C) is the algebra of
2× 2 traeless matries over C. We had earlier mentioned the Virasoro algebra satis�ed bythe Fourier modes Lm of the energy momentum tensor Tαβ . We will see in the ourse of thishapter that the Virasoro algebra is related to the algebra sl(2,C) as its �loop algebra�.Another example is the sympleti algebra sp(n). It is the spae of 2n × 2n omplexmatries X suh that JXTJ = X, where J =

(
0 In

−In 0

). We will see that the sympletigroup plays a very important role in the theory of Siegel modular forms that our in thedyon degeneray formulae.All the above matrix algebras are subalgebras of the Lie algebra gl(n,C), known as thegeneral linear algebra, whih is the spae of all n× n omplex matries. They are all simpleLie algebras as well.3.3 RepresentationsWe will now study representations of Lie algebras. We start by explaining the idea ofrepresenting a group or algebra on a vetor spae. The simplest example is of the just itedrotation group SO(3) whih ats on the three-dimensional Eulidean spae R3. If one wantedto realize an ation of the group on a di�erent spae, say a vetor spae V of dimension d,57



Chapter 3. BKM Lie Algebrasone annot obviously use the 3×3 matries to at on this spae. We need linear operators ofthe right dimension to de�ne a sensible ation on the spae V . We also need their ation on
V to be suh that the group ation of SO(3) is faithfully aptured on V . Thus, what we needis a map from SO(3) to the spae of invertible linear operators that are of the appropriatedimension to at on the spae V and are suh that they represent the ation of SO(3) on
V . This is the idea of a representation of a group. Let us now make this idea more preisestarting with a formal de�nition of the representation of a Lie algebra.De�nition 3.3.1 Let V be a vetor spae over a �eld C, and let g be a Lie algebra. A�nite-dimensional representation of g on V is a ontinuous homomorphism ρ of Liealgebras ρ : g→ EndKV . ρ has to be C-linear and has to satisfy

ρ([x, y]) = ρ(x)ρ(y)− ρ(y)ρ(x) for all x, y ∈ g . (3.5)We will (as do most authors) all V the representation when we mean the representation
ρ : g → EndKV . A subspae W of V is alled invariant if ρ(g)w ∈ W for all w ∈ W andall g ∈ g. A representation with no non-trivial invariant subspaes is alled irreduible. Thedimension of the representation is de�ned to be the dimension of the vetor spae V .The best way to understand the theory of representations of a group or algebra is bylooking at some examples. We will study the representations of the Lie algebras sl(2,C) and
sl(3,C) in detail shortly, but before that we an ite a few examples whih exist for any Liealgebra.We have already seen impliitly an example of a representation in eq.(3.3) � that of theadjoint mapping. Reall that it was de�ned as the mapad : g→ EndCg . (3.6)given by the formula adx(y) = [x, y] . (3.7)Comparing (3.6) with (3.3), we see that `ad' is a representation where the spae V is takento be g. `ad' is a Lie algebra homomorphism and is, therefore a representation of g, alledthe adjoint representation . It is the representation of the Lie algebra g ating on itself.Another representation that exists for all Lie algebras is the trivial representation. If gis a Lie algebra of n × n matries over C then the trivial representation ρ : g → gl(1,C) is58



Chapter 3. BKM Lie Algebrasgiven by
ρ(x) = 0 ,for all x ∈ g. This is (obviously) an irreduible representation.3.3.1 The Irreduible RepresentationsThe irreduible representations of sl(2,C), apart from their well known relevane to physis,are very illuminating in understanding the origins of various ideas that we will study tounderstand general semi-simple Lie algebras. It will also help in understanding the idea, ofrepresenting a Lie algebra on an arbitrary vetor spae, introdued above, in a onrete way.It is also the simplest non-trivial example of a semi-simple Lie algebra, yet a very importantone. From a physis point of view, sl(2,C) is the omplexi�ation of su(2) and every �nite-dimensional omplex representation of su(2) extends to a omplex linear representationof sl(2,C). Also sine su(2) ∼= so(3), the study of whose representation are of physialsigni�ane, the study of the representations of sl(2,C) also have a physial motivation.Our purpose in studying the representations of sl(2,C) and sl(3,C) will be, besides givingexamples of representations, to use them to illustrate important aspets of representationtheory of semisimple Lie algebras in general. To that end, we will study the irreduible rep-resentations of sl(2,C) illustrating the expliit onstrution of linear operators representingthe algebra on an arbitrary vetor spae, the ation of the operators on the representationspae, the idea of raising and lowering operators, and the idea of the highest weight, whihwill later develop into the highest weight theorem for general semi-simple Lie algebras. Also,general omplex semi-simple Lie algebras are built out of many opies of sl(2,C), and study-ing sl(2,C) is preliminary to understanding the representations of semi-simple Lie algebrasin general.In studying the Lie algebra sl(3,C) we will onentrate more on learning about rootsystems of semi-simple Lie algabras. From this we will also learn about Cartan matries,Dynkin diagrams and the lassi�ation of �nite-dimensional semi-simple Lie algebras. Wewill introdue the representation theory of sl(3,C) with a view towards using it to generalizethe notions from sl(2,C) to general semi-simple Lie algabras, via sl(3,C). We will also useit to understand the Weyl group, the harater and denominator formulae of Lie algebras.
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Chapter 3. BKM Lie Algebras3.3.2 The Irreduible Representations of sl(2,C)We �x the following basis for sl(2,C)

h =

(
1 0

0 −1

)
, e =

(
0 1

0 0

)
, f =

(
0 0

1 0

)
. (3.8)whih have the ommutation relations1

[h, e] = 2e , [h, f ] = −2f , [e, f ] = h . (3.9)Now, if V is a �nite-dimensional omplex vetor spae and A,B and C are operators on Vsatisfying
[A,B] = 2B , [A,C] = −2C , [B,C] = A , (3.10)then, beause of the skew symmetry and bilinearity of brakets, the linear map ρ : sl(2,C)→

gl(V ) satisfying
ρ(h) = A , ρ(e) = B , ρ(f) = Cwill be a representation of sl(2,C) on V . The operators A,B and C whih are of suitabledimension to at on the vetor spae V , represent sl(2,C).To onstrut the irreduible representations of sl(2,C) onsider the (m+ 1)-dimensionalvetor spae Vm of homogeneous polynomials in two omplex variables with total degree

m(m ≥ 0). Vm is the spae of funtions of the form
f(z1, z2) = a0z

m
1 + a1z

m−1
1 z2 + a2z

m−2
1 z2

2 + . . .+ amz
m
2 , (3.11)with z1, z2 ∈ C and the ai's arbitrary omplex onstants.For any x ∈ g onsider the ation on Vm given as follows

ρm(x)f = −(x11z1 + x12z2)
∂f

∂z1
− (x21z1 − x11)

∂f

∂z2
, (3.12)whih maps Vm to Vm. It is also easy to see that ρm(x)ρm(y)f = ρm(xy)f , where the produt

(xy) is the usual multipliation of matries. This is a representation of sl(2,C) on the vetor1The Lie braket beomes the ommutator in any representation
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Chapter 3. BKM Lie Algebrasspae Vm. In terms of the basis (3.8) the above formula beomes
(ρm(h)f)(z) = −z1

∂f

∂z1
+ z2

∂f

∂z2
.Thus,

ρm(h) = −z1
∂

∂z1
+ z2

∂

∂z2
. (3.13)The ation of ρm(h) on a basis element zk1zm−k

2 is ρm(h) zk1z
m−k
2 = (m−2k)zk1 z

m−k
2 . Thus, wesee that zk1zm−k

2 is an eigenvetor for ρm(h) with eigenvalue (m− 2k). In partiular, ρm(h)is diagonalizable.Corresponding to the elements x and y we have the following operators
ρm(x) = −z2

∂

∂z1
, ρm(y) = −z1

∂

∂z2
,so that

ρm(x)zk1z
m−k
2 = −k zk−1

1 zm−k+1
2 ,

ρm(y)zk1z
m−k
2 = (k −m) zk+1

1 zm−k−1
2 . (3.14)Notie that, sine all the basis vetors zk1zm−k

2 are eigenvetors of ρ(h), knowing the ation of
ρ(h) on the basis vetors gives Vm as the diret sum of its weight spaes. The representation
ρm is an irreduible representation of sl(2,C) and there is one suh for eah integer m ≥ 0.The representation ρm has dimension m+ 1. Any two irreduible representations of sl(2,C)with the same dimension are equivalent.Given the ommutation relations between the elements h, x and y as given above, it iseasy to see that the orresponding operators at on an eigenvetor u of ρ(h) as follows

ρ(h)ρ(x)u = (α + 2)ρ(x)u ,

ρ(h)ρ(y)u = (α− 2)ρ(y)u . (3.15)Sine we are working over an algebraially losed �eld, C, the above equation says that givenan eigenvetor u of ρ(h), either ρ(x)u = 0 ( resp. ρ(y)u = 0) or ρ(x)u (resp. ρ(y)u) is an
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Chapter 3. BKM Lie Algebraseigenvetor for ρ(h) with eigenvalue α+ 2 (resp. α− 2). More generally
ρ(h)ρ(x)nu = (α + 2n)ρ(x)nu ,

ρ(h)ρ(y)nu = (α− 2n)ρ(y)nu . (3.16)The operators ρ(x) and ρ(y) are alled the raising and lowering operators respetively,sine they have the e�et of, respetively, raising and lowering the eigenvalue of ρ(h) by 2.The operator ρ(x) operating on a �nite-dimensional vetor spae an have only �nitely manydistint eigenvalues, the operation of raising the eigenvalue by applying the ρ(x) operatorannot be repeated inde�nitely and must terminate after a �nite number of operations. Thusthere will exist some integer N ≥ 0 suh that
ρ(x)Nu 6= 0 ,but
ρ(x)N+1u = 0 .De�ning u0 = ρ(x)Nu and v = α + 2N , the above equations an be written as

ρ(h)u0 = v u0 ,

ρ(x)u0 = 0 . (3.17)
v is the highest eigenvalue of ρ(h) in the given representation, and any further operation by
ρ(x) gives 0. To the vetor u0 one an apply the operator ρ(y) to lower its eigenvalue by 2.De�ning uk = ρ(y)ku0, for k ≥ 0 we have

ρ(h)uk = (v − 2k)uk ,

ρ(x)uk = [kv − k(k − 1)]uk−1 . (3.18)Again, the operation of lowering annot be repeated inde�nitely, and the uk's annot all benon-zero. There must, therefore, exist a non-negative integer m suh that
uk = ρ(y)ku0 6= 0 ,for all k ≤ m, but

um+1 = ρ(y)m+1u0 = 0 . 62



Chapter 3. BKM Lie AlgebrasThat is, the eigenvalues of ρ(h) are bounded both from above and below. Now, if um+1 = 0,then ρ(x)um+1 = 0. Therefore, we have
0 = ρ(x)um+1 = [(m+ 1)v −m(m+ 1)]um = (m+ 1)(v −m)um .Sine um 6= 0 and m+ 1 6= 0, we must have v = m, where m is a non-negative integer.Thus, any �nite-dimensional irreduible representation of sl(2,C) ating on a spae V ,will be of the following form

ρ(h)uk = (m− 2k)uk ,

ρ(y)uk = uk+1 ,

ρ(y)um = 0 ,

ρ(x)uk = [km− k(k − 1)]uk−1 ,

ρ(x)u0 = 0 . (3.19)and vie versa. The vetors u0, . . . , um will be independent, sine they are eigenvetors of
ρ(h) with distint eigenvalues.Any omplex-linear representation of sl(2,C) on a �nite-dimensional omplex vetorspae V is ompletely reduible in the sense that there exist invariant subspaes U1, . . . , Urof V suh that V = U1⊕ · · ·⊕Ur and suh that the restrition of the representation to eah
Ui is irreduible.In general the irreduible representations of a Lie algebra g need not be so onspiu-ously simple. Two representations may be isomorphi, but the isomorphism may not beimmediately apparent. We need to have an invariant property assoiated to a representationthat an save us the need of expliitly veryfying the equivalene/inequivalene of two givenrepresentations by writing down the expliit desription of the representations in terms ofmatries. This leads us to the onept of the harater of a representation whih we willstudy after we look at the representations of sl(3,C).Before we move on and study the Lie algebra sl(3,C) and its representations, and gener-alize further to any general semi-simple Lie algebra, we will note down some of the importanttake-away points whih will be important in traing the origins of the generalizations. Wewill label them by roman letters and will refer to them wherever this property is involvedlater in the hapter in onnetion with sl(3,C) or general semi-simple Lie algebras. 63



Chapter 3. BKM Lie Algebras(A) The element h plays a speial role, in that representations are labelled by the eigen-values of ρ(h), alled weights. Every irreduible representation is the diret sum of itsweight spaes.(B) Every eigenvalue of ρ(h) is an integer.(C) The eigenvalues are bounded from above and below and the smallest eigenvalue is thenegative of the largest. For eah weight m, there is a orresponding vetor with weight
−m.(D) The multipliity of an eigenvalue k equals the multipliity of −k.(E) The operators ρ(x) and ρ(y), respetively, raise and lower the eigenvalues of ρ(h) by 2.(F) If there exists a non-zero element w of V suh that ρ(x)w = 0 and ρ(h)w = µw, thenthere is a non-negative integerm suh that µ = m and the vetors w, ρ(y)w, . . . , ρ(y)mware linearly independent and their span is an irreduible invariant subspae of dimen-sion m+ 1.(G) If ρ is an (m + 1)-dimensional irreduible representation of sl(2,C), then the highesteigenvalue m of ρ is an integer.(H) Going the other way, for every non-negative integer m there exists an irreduible rep-resentation of sl(2,C).(I) Any two irreduible representations of sl(2,C) of dimension (m+ 1) are equivalent.We will see how eah of the above ideas ontains the germs whose generalizations will giveus important insights into the theory of semi-simple Lie algebras in general.3.3.3 The Irreduible Representations of sl(3,C)We will study the general representation theory of semi-simple Lie algebras taking the ex-ample of sl(3,C) and taking eah idea to its natural generalization to obtain the analogousnotions for the ase of general semi-simple Lie algebras. Sine sl(3,C) is a simple example, itwill be easy to see the struture while at the same time not getting bogged down in abstratgeneral theory. Before going to the representation theory of sl(3,C), however, we will study

sl(3,C) (and via generalization any semi-simple Lie algebra) in some detail, getting someidea of the struture of the Lie algebras. 64



Chapter 3. BKM Lie AlgebrasWe start by hoosing a basis for sl(3,C) as follows
h1 =




1 0 0

0 −1 0

0 0 0


 , h2 =




0 0 0

0 1 0

0 0 −1


 ,

e1 =




0 1 0

0 0 0

0 0 0


 , e2 =




0 0 0

0 0 1

0 0 0


 , e3 =




0 0 1

0 0 0

0 0 0


 ,

f1 =




0 0 0

1 0 0

0 0 0


 , f2 =




0 0 0

0 0 0

0 1 0


 , f3 =




0 0 0

0 0 0

1 0 0


 , (3.20)Working out the ommutation relations between the various elements, one sees that thespan of {h1, e1, f1} is a subalgebra of sl(3,C) whih is isomorphi to sl(2,C) as is the spanof {h2, e2, f2}. We had earlier mentioned, in motivating the study of representations of

sl(2,C), that omplex semi-simple Lie algebras are made out of many opies of sl(2,C).All semi-simple Lie algebras are made up of opies of sl(2,C) like the opies of sl(2,C) in
sl(3,C) above. This idea holds, with suitable modi�ations, even for in�nite-dimensional Liealgebras. Also note that the elements h1 and h2 ommute with eah other, that is [h1, h2] = 0.We will get bak to the ommutation relations between the other elements in a while,after we introdue the onept of roots and weights. The idea is to get some ontrol overthe struture of the Lie algebra.The broad idea of the programme is as follows. The Cartan subalgebra, as de�nedabove, is abelian and the adjoint ation of the Cartan subalgebra on the given semisimpleLie algebra leads to a root-spae deomposition of the Lie algebra. The Lie algebras an bestudied and lassi�ed through their root systems. Using an ordered basis of simple roots,one an onstrut the Cartan matrix or the equivalent Dynkin diagram whih enode thestruture of the semi-simple Lie algebra in them. The Weyl group aptures the fat thatthe Cartan matrix and the Dynkin diagram are independent of the hoie and ordering ofsimple roots. Every Cartan matrix arises from a redued abstrat root system, and there is aone-to-one orrespondene (upto isomorphism) between the two. This leads to a one-to-oneorrespondene (upto isomorphism) between omplex semi-simple Lie algebras and reduedabstrat root systems.We will use the semisimple Lie algebra sl(3,C) to study and illustrate, and subsequently65



Chapter 3. BKM Lie Algebrasgeneralize to general semi-simple Lie algebras, the above notions. We will also study therepresentation theory of sl(3,C).3.3.4 Cartan subalgebra, Roots and WeightsDe�nition 3.3.2 Given a representation (ρ, V ) of sl(3,C), an ordered pair µ = (m1, m2) ∈
C2 is alled a weight for ρ if there exists a vetor v 6= 0 in V suh that

ρ(h1)v = m1v ,

ρ(h2)v = m2v . (3.21)A non-zero vetor v satisfying the above equation is alled a weight vetor orrespondingto the weight µ.The spae of all vetors satisfying the above onditions (inluding the zero vetor) is alledthe weight spae orresponding to the weight µ. The dimension of the weight spae is alledthe multipliity of the weight. This is generalization of the point (A), from the take-awaynotes at the end of the last setion, where the weights were de�ned as the eigenvalues of
ρ(h). Generalizing the notion to a general semi-simple Lie algebra, one de�nes a weightas a olletion of simultaneous eigenvalues of the ρ(hi)'s whih are the set of maximallyommuting elements in the Lie algebra. Every representation has atleast one weight, andequivalent representations have the same weights and multipliities. We will ome bak tothe de�nition of weights for a general semi-simple Lie algebra later in this setion. For now,we ontinue with sl(3,C).For sl(3,C), all the weights are of the form µ = (m1, m2) with m1, m2 being integers. Theweight vetors of the adjoint representation are alled root vetors. That is, for a vetor zsatisfying

[h1, z] = a1z , [h2, z] = a2z ,the pair α ≡ (a1, a2) ∈ C2 is alled a root and the element z is alled the root vetororresponding to the root α.The roots (and weights) are de�ned as the simultaneous eigenvalues of adhi
(ρ(hi)), wherethe hi are the set of maximally ommuting elements in the Lie algebra. This set plays aentral role in the study of the struture of semi-simple Lie algebras. It is alled the Cartansubalgebra of the Lie algebra. It is de�ned as follows 66



Chapter 3. BKM Lie AlgebrasDe�nition 3.3.3 The Cartan subalgebra of a omplex semi-simple Lie algebra g is theomplex subspae h of g with the following properties(i) For all h1 and h2 in h, [h1, h2] = 0 ,(ii) For all x ∈ g, if [h, x] = 0 for all h ∈ h, then x ∈ h ,(iii) For all h ∈ h, adh is diagonalizable .Condition (i) says that h is a ommutative subalgebra of g, and ondition (ii) says that itis maximally ommutative. It is thus, the normalizer Ng(h) = {x ∈ g|[x, h] ⊆ h} of h in g.Condition (iii) says eah adh is diagonalizable, and sine all the h ∈ h ommute, the adh'salso ommute, and thus they are also diagonalizable simultaneously. For the ase of sl(2,C)there was only one element, h.The rank of a omplex semi-simple Lie algebra g is de�ned to be the dimension of itsCartan subalgebra. With the above general de�nition of the Cartan subalgebra, the rootsand root spaes an be de�ned as followsDe�nition 3.3.4 A root of a semi-simple Lie algebra g (with respet to the Cartan sub-algebra h) is a non-zero linear funtional α ∈ h∗ suh that there exists a non-zero element
x ∈ g with

[h, x] = α(h)x ,for all h ∈ h.So, a root is just a (non-zero) olletion of simultaneous eigenvalues for the adh's. The set ofall roots is denoted L. The root spae gα is the spae of all x ∈ g for whih [h, x] = α(h)xfor all h ∈ h. An element of gα is alled a root vetor (for the root α).Going bak to the basis elements of sl(3,C) and working out the various ommutationrelations between the elements, we an now express the same information, using the oneptof root vetors, as follows. The vetors xi and yi are eigenvetors for h1 and h2, and theolletion of the eigenvalues are the roots for sl(3,C). Giving the various roots is enough tospeify the various ommutation relations, whih we do below. Here, α denotes the root and
Z the orresponding root vetor.
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Chapter 3. BKM Lie Algebras
α Z

(2,−1) x1

(−1, 2) x2

(1, 1) x3 (3.22)
(−2, 1) y1

(1,−2) y2

(−1,−1) y3 .These six roots form a root system onventionally alled A2. We will later ome to thevarious root systems, when we have studied their theory a little more. To arry informationabout all the roots is redundant, and it is su�ient to only work with two roots from theabove six, as the others an be writen in terms of these two. We single out the roots
α1 = (2,−1) (3.23)
α2 = (−1, 2) ,and express the other four roots in terms of them. The hoie of the labels 1 and 2 isarbitrary, and is equivalent to labelling them the other way. The two roots are alled thepositive simple roots and usually denoted Π. The positive simple roots have the propertythat all the roots an be expressed as linear ombinations of the positive simple roots withinteger oe�ients, suh that the oe�ients are all positive or all negative. More generally,a semisimple Lie algebra of rank r will have r positive simple roots. The positive simpleroots are suh that for any α ∈ L, we have

α = n1α1 + n2α2 + · · ·+ nrαr , (3.24)where the nj's are integers and either all greater than or equal to zero or all less than orequal to zero (but not all zero simultaneously). One we �x a set of simple roots, the α's forwhih nj ≥ 0 are alled the positive roots (w.r.t the hosen Π), denoted L+, and the α'swith nj ≤ 0 are alled the negative roots, denoted L−. Note that all the elements of Π arein L+, and are thus alled the set of positive simple roots.For the ase of sl(3,C) all the roots an be expressed in terms of α1 and α2 as follows 68



Chapter 3. BKM Lie Algebras
(2,−1) = α1

(−1, 2) = α2

(1, 1) = α1 + α2 (3.25)
(−2, 1) = −α1

(1,−2) = −α2

(−1,−1) = −α1 − α2 .The hoie of piking out α1 and α2 is, of ourse, arbitrary. Any other pair whih satis�esthe above riteria is equally suitable.Considering the elements of h as those belonging to the root spae g0, we see that theadjoint ation of the hi ∈ h gives a deomposition of the Lie algebra g as a diret sum ofroot spaes(ompare with (A)), sine all the hi are simultaneously diagonalizable. The Liealgebra g an be deomposed as a diret sum as follows
g =

⊕

α∈L

gα =
⊕

α∈L−

gα
⊕

h
⊕

α∈L+

gα . (3.26)This means that every element of g an be written uniquely as a sum of an element of h andone element from eah root spae gα. This is the �rst sign of emergene of some method towhat we have been doing. Now, we begin to see how the deomposition of the Lie algebraas eigenvetors of the adh's gives us ontrol over the struture of the Lie algabra. As vetorspaes g = N+ ⊕ h ⊕ N−, where N+/N− are the vetor spaes generated by the elementswith positive and negative eigenvalues w.r.t the Cartan subalgebra h respetively.The set of simple roots Π of the Lie algebra has all the information of the Lie algebra init, and as we will see, we an redue the essene of the problem even further when we relatethem to abstrat root systems where the whole Lie algebra is aptured by a matrix, or anequivalent diagram. These abstrat root systems, not just desribe for us the Lie algebrawhose root systems they are isomorphi to, but in fat will allow us to lassify all the possiblesemisimple Lie algebras into a �nite number of lasses.We will look root systems brie�y to omplete the study we have started with the exampleof sl(3,C), after we study the Weyl group and Weyl re�etions of the root system. Firstly,however, we reord some of the properties of the roots, without proof, below. 69



Chapter 3. BKM Lie Algebras(i) For any α and β in h∗, [gα, gβ] ⊂ gα+β ,(ii) If α ∈ h∗ is a root, then so is −α (ompare with (C)),(iii) The roots span h∗ ,(iv) If α is a root of g, then the only multiples of α that are roots are α and −α (omparewith (C) and (D)),(v) If α and β are roots, the quantity 2 〈α,β〉
〈α,α〉

is an integer, where the inner produt 〈., .〉 isde�ned as in (3.27).(vi) For all roots α, the root spaes gα are one-dimensional ,(vii) For eah root α, we an �nd non-zero elements xα ∈ gα, yα ∈ g−a and hα ∈ h suhthat xα, y−α and hα span a subalgebra of g isomorphi to sl(2,C) .Having studied the roots and their properties, one an go ahead and onsider root systemsindependent of their origins in semi-simple Lie algebras. This makes sense beause, many ofthe results about root systems involve only the root systems and not the Lie algebras fromwhih they ome. Therefore, one an study the theory of root systems on their own. We havealready quoted the important results about roots, and digressing into abstrat root systemswill not serve us any new purpose to devote spae to studying them. However, we mentionabstrat root systems beause there is a point to take away from the above study. Givena omplex semi-simple Lie algebra, one an assoiate to it an abstrat redued root systemand vie-versa. One an use the lassi�ation of the abstrat root systems and translateit to lassifying semi-simple Lie algebras. The basis of this assoiation is the hoie of theCartan subalgebra, whose simultaneous eigenvalues the roots are. Later when we onstrutthe Cartan matries for these redued root systems we will need a partiular ordering ofthe roots (viz. the labelling of α1 and α2 mentioned above) and subjet to that, there is anisomorphism between abstrat root systems and Cartan matries. We have already seen thishappen in the example of sl(3,C), where we singled out two roots as the simple roots, andwritten the other roots in terms of them and said the ordering of the positive simple rootsdoes not matter. We had also mentioned that the hoie of the two roots is arbitrary, and anyother set of simple roots that satisfy the proper riteria are equally good andidates. Also,any two Cartan subalgebras of g are onjugate to eah other. Thus, to make the assoiationbetween omplex semi-simple Lie algebras and Cartan matries, via root systems, useful we70



Chapter 3. BKM Lie Algebrasneed to examine the independene of the above isomorphisms of the hoie of the orderingof the roots.3.3.5 The Weyl GroupWe will study the idea of the Weyl group of g now, and in doing so, try to use it to addressthe above question of the independene of the hoie of ordering of simple roots in assoiatingCartan matries to omplex semi-simple Lie algebras. Before we motivate the idea of theWeyl group, we need a hermitian inner produt on g whih is de�ned as follows. For matries
x and y, we de�ne an inner produt on g as

〈x, y〉 = Tr(xy∗) (3.27)Consider the set of roots L of a semi-simple Lie algebra g and a set, Π, of simple rootsthat generate L. In the theory of abstrat root systems, the set of simple roots is alled abase. Let the vetor spae generated by Π be E. E is just the r-dimensional Eulideanvetor spae of linear ombination of all roots α ∈ L. Note the di�erene between E and
L. Eah element α ∈ L is suh that it an be expressed as a linear ombination of theelements of Π with integer oe�ients and in suh a way that the oe�ients are either allnon-negative or all non-positive, whereas E is just the vetor spae generated by Π withoutany suh restritions.For any two roots α, β ∈ L, onsider the following linear transformation of E

wα · β = β − 2
〈α, β〉
〈α, α〉α, β ∈ E , (3.28)known as a re�etion, beause geometrially, it is one in the spae E as we will explainbelow. For now, we note the property that w2
α = 1, ∀ α ∈ L. For all α, β ∈ E, the re�etedelement wα · β is also a root. The set of all suh re�etions will thus at as a permutationon the set of roots and taking L to itself. Also, eah re�etion possesses an inverse (itself),and the omposition or re�etions is again a re�etion (alled a `word'). Thus, the subgroupof the orthogonal group on E generated by all the re�etions wα for α ∈ L forms a groupalled the Weyl group of L and eah re�etion is known as a Weyl re�etion . Sine therank r of g is �nite, the Weyl group generated as re�etions w.r.t the set of positive roots isa �nite group. Note that upto this point there has been no mention of the relation to theunderlying Lie algebra. In the ase when the root system originates from a Lie algebra g71



Chapter 3. BKM Lie Algebraswith Cartan subalgebra h, the Weyl group is denoted by W(g, h). We will simply all it Wand the arguments are understood.Next, we de�ne a quantity known as the Weyl vetor ρ of L as
ρ = 1

2

∑

α∈L+

α . (3.29)The Weyl vetor will play a very important role later when we study the harater anddenominator formulae of Lie algebras, both �nite and in�nite-dimensional. Now, looking atthe above equation, we notie that the way the Weyl vetor is de�ned, as a sum over theset of roots, may not be suitable for generalization to the ase of in�nite-dimensional Liealgebras sine the root system of in�nite-dimensional Lie algebras is not �nite. There is analternate de�nition whih lends itself to generalization to the in�nite ase without involvingin�nite sums and we de�ne it below.De�nition 3.3.5 The Weyl vetor , ρ, of a root system L is de�ned to be the vetor whihsatis�es
〈ρ, αi〉 = 1, for all αi ∈ Π (3.30)Eq. (3.30) de�nes the Weyl vetor even for in�nite-dimensional Lie algebras and it is thisde�nition that we will use from here on.We an also develop a geometrial piture of the above ideas in the spae E. Let V bea hyperplane through the origin in E suh that V does not ontain any root. Consider anelement α whih is perpendiular to this hyperplane. Thus, V will be the set of elements µin E suh that 〈α, µ〉 = 0, and either side of V will be elements that satisfy the inequality

〈α, µ〉 > 0 or 〈α, µ〉 < 0.Given the root system (L,E), the hyperplane V partitions the spae E into two sides.For any vetor α in the one-dimensional orthogonal omplement of V , let us denote the sidessatisfying 〈α, µ〉 > 0 and 〈α, µ〉 < 0 by L+ and L− respetively. Any element α of L+ isalled deomposable if there exist β and γ suh that α = β + γ. An element whih is notdeomposable is alled indeomposable. The set of all indeomposable elements in L+ isa base for L. Now we an make the onnetion to what we learnt above, if we identify thebase form L with the base Π of positive simple roots of the Lie algebra g. Then, the sets L+and L−, as de�ned in the spae E, are exatly the sets of positive and negative roots of theroot system of g (hene the notation to all them L+ and L−).Geometrially, the re�etions, wα, that generate the Weyl group are re�etions with72



Chapter 3. BKM Lie Algebrasrespet to the hyperplane in E perpendiular to the root α. wα(β) would be the vetorobtained by re�eting the root β, with respet to the hyperplane perpendiular to α, in E.Eah positive simple root α will partition E into two halves suh that either 〈α, µ〉 < 0 or
〈α, µ〉 > 0. Given Π, we onsider the intersetion of the sets 〈αi, H〉 > 0, where αi are all theelements of Π. This set is alled the open fundamental Weyl hamber in E (relative to
Π). The losed fundamental Weyl hamber in E (relative to Π) is the set of all H ∈ Esuh that 〈αi, H〉 ≥ 0 for all αi ∈ Π. One might wonder what do the elements of the losedand open Weyl hambers signify for the Lie algebra g? These elements are important inthe representation theory of semi-simple Lie algebras and are alled the dominant integralelements. We will talk about them when we disuss the representation theory of sl(3,C).The Weyl hamber depends on the base Π and a di�erent, but equivalent, base will givea di�erent Weyl hamber. For eah open Weyl hamber C, there exists a unique base ΠC for
L suh that C is the open fundamental Weyl hamber assoiated to ΠC and the other wayround. So, there is a one-to-one orrespondene between Weyl hambers and bases, or setof positive simple roots. The Weyl group ats simply and transitively on the set of positivesimple roots and also on the set of Weyl hambers.We onlude our disussion of the Weyl group with a few properties of W1. The Weyl group is the set of linear transformations of h∗ that leave the set of weightsof any representation of g invariant.2. Salar produts are invariant under W.

〈w(α), w(β)〉 = 〈α, β〉, (3.31)for any w ∈ W.3. The Weyl group ats simply and transitively on the set of positive simple roots andalso on the set of Weyl hambers. For any basis Π of simple roots, and for any w ∈ W,the image w(Π) is again a basis of simple roots.4. The set Π of simple roots generates the whole root system as its image under the Weylgroup. For any root α,W(α) spans the whole root spae. This point will be useful laterwhen we reonstrut the BKM Lie superalgebras from their denominator identities.5. The re�etion with respet to a simple root α takes it to its negative, and permutesthe rest of the positive roots. 73



Chapter 3. BKM Lie Algebras6. W not only permutes the roots, but the weights of any other highest weight module.7. Sine the Weyl group is generated by the fundamental re�etions with respet to thesimple roots αi, any element w ∈ W an be written as a `word' in the fundamentalre�etions. A given w ∈ W may be expressed by di�erent words, and the minimumpossible suh re�etions that generate w is alled the length l(w) of w. An expressionin the minimum number of re�etions is alled a redued expression.8. The length l obeys l(w) = l(w−1)9. From the de�nition of the Weyl vetor as the sum of all the positive roots, the re�etionof ρ with respet to a simple root αi just takes αi to −αi while permuting all the otherroots among themselves. Thus, re�etion with respet to αi just subtrats αi from theWeyl vetor.
wαi

(ρ) = ρ− αi . (3.32)10. The Weyl vetor ρ always lies in the open (and hene losed) Weyl hamber.11. Eah orbit of the Weyl group ontains exatly one point in the losed Weyl hamber.12. The Weyl groups are Coxeter groups. One has
(
wαi

wαj

)2+|aij |2 = 1 when |aij | = 0, 1 and i 6= j . (3.33)Further, when |aij | ≥ 2, there are no relations. The elements aij are onstants relatedto the roots αi and αj .This onludes our study of the Weyl group for now. We will get bak to using it toompute the harater of highest weight modules of g and its harater and denominatoridentities. It also plays a very important role in onstruting the BKM Lie superalgebrasfrom their denominator identities. Next, we ome to the idea of lassi�ation of �nite-dimensional semi-simple Lie algebras and in the proess learning about Cartan matries andDynkin diagrams.
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Chapter 3. BKM Lie Algebras3.3.6 Cartan Matries, Dynkin Diagrams and Classi�ation of �nite-dimensional semi-simple Lie algebrasOne we have �xed a set, Π, of simple roots of g, we an assoiate to it a matrix, of innerproduts of the positive simple roots α ∈ Π, alled the Cartan matrix . One an lassifythe �nite-dimensional semi-simple Lie algebras over C using the Cartan matrix assoiatedto its root system. Enumerating Π as Π = {α1, α2, . . . , αr}, where r is the dimension of E,and hene, of the underlying semi-simple Lie algebra g, the Cartan matrix A(g) of thesemi-simple Lie algebra g is the r × r matrix with elements
aij = 2

〈αi, αj〉
〈αj, αj〉

. (3.34)The elements aij are the same ones that appear in the de�niton of the Weyl group as aCoxeter group above. Beause the positive simple roots form a basis of the root spae, theCartan matrix is non-degenerate, and sine the quantity 2 〈α,β〉
〈α,α〉

is an integer, all the elementsof the Cartan matrix are integers. The Cartan matrix depends on the enumeration of Π anddi�erent enumerations lead to di�erent Cartan matries that are onjugate to one anotherby a permutation matrix.To every semi-simple Lie algebra, we an assoiate a Cartan matrix as de�ned above.Conversely, a �nite-dimensional semi-simple Lie algebra an be de�ned through its Cartanmatrix. Given a real, indeomposable, (r × r) symmetri matrix2 A = (aij), i, j ∈ I =

{1, 2, . . . , r} of rank r satisfying the following onditions:(i) aij ∈ Z for all i and j ,(ii) aii = 2 for all i ,(iii) aij = 0⇔ aji = 0 ,(iv) aij ∈ Z≤0 for i 6= j ,(v) det A > 0 ,2The symmetri ondition an be extended to inlude symmetrizable matries. A matrix A is said to besymmetrizable if there exists a non-degenerate diagonal matrix D suh that A = DB where B is a symmetrimatrix.
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Chapter 3. BKM Lie Algebrasone de�nes a Lie algebra g(A) generated by the generators ei, fi, and hi, for i = {1, 2, . . . , r},satisfying the following onditions for i, j ∈ I :
[hi, hj ] = 0 ; [ei, fj] = δijhj ;

[hi, ej ] = aijej ; [hi, fj] = −aijfj ;

[ei, ej ] = [fi, fj] = 0 if Aij = 0

(ad ei)1−aijej = (ad fi)1−aijfj = 0 for i 6= j . (3.35)The above equations may seem a little strange when presented without the neessarymotivation, so let us onsider what eah of the equations above says about the Lie algebraand the roots. (i) says all the entries of the Cartan matrix are integers, whih is easy tounderstand if we note that the quantity 2 〈α,β〉
〈α,α〉

is an integer, whose genesis goes bak all theway to (B). (ii) is just the hoie of a onvenient normalization one hooses for the innerprodut whih also goes all the way bak to the representations of sl(2,C). Condition (iii)re�ets the symmetry of the salar produt in root spae. For the meaning of ondition (iv),onsider the following onditions that one an show on the inner produts for any two roots
α and β

(α, β) > 0 ⇒ α− β ∈ L
(α, β) < 0 ⇒ α + β ∈ L . (3.36)Now, the simple roots were de�ned as those positive roots whih were indeomposable, andhene the di�erene of any two simple roots is never a root, and so it follows that (αi, αj) ≤ 0,and hene the matrix elements aij ≤ 0.The Cartan matrix, A, uniquely de�nes the Lie algebra whih we all g(A). The relations(3.35) are known as the Chevalley-Serre relations. We had earlier de�ned general semi-simple Lie algebras as ones whih are obtained as diret sums of simple Lie algebras, andalso through their Killing form. The Chevalley-Serre relations de�ning a semi-simple Liealgebra are very useful from the point of view of our �nal aim of graduating to in�nite-dimensional Lie algebras. It is this ondition whose generalization is the simplest way tomove from �nite-dimensional omplex semi-simple Lie algebras to in�nite-dimensional BKMLie superalgebras as we will see when we de�ne BKM Lie superalgebras shortly.Let us look at the entries of the Cartan matrix more losely, and see what we an sayabout them. First, by the triangle inequality (αi, αj)

2 ≤ (αi, αi)(αj, αj), and using (ii) we76



Chapter 3. BKM Lie Algebrasget the inequality aij , aji ≤ 4 with equality holding for i = j and aij ∈ {0, 1, 2, 3} for i 6= j.Now, using (iii) amd (iv) we see the possibilities for aij to be
aij = aji = 0 or (3.37)
aij = aji = −1 or
aij = −1, aji = −2 or
aij = −1, aji = −3 .The elements αij give the angle between the positive simple roots of the root system. If allthe elements of a root system are multiplied by a non-zero onstant, one gets another rootsystem that is equivalent to the original root system. The quantity 2

〈αi,αj〉

〈αj ,αj〉
is unhanged ifboth α and β are multiplied by the same non-zero onstant. So, the atual lengths of rootsare not important, but only their ratios. The elements αij enode information about theangles between the positive simple roots in the root spae E as follows. For two roots α and

β, where α is not a multiple of β, and 〈α, α〉 ≥ 〈β, β〉, there are the following possibilities:(i) 〈α, β〉 = 0 ,(ii) 〈α, α〉 = 〈β, β〉, and the angle between α and β is 60°or 120°,(iii) 〈α, α〉 = 2〈β, β〉, and the angle between α and β is 45°or 135°,(iv) 〈α, α〉 = 3〈β, β〉, (3.38)and the angle between α and β is 30° or 150° .So, if the two roots are not multiples of eah other and are not perpendiular to eah other,then the ratio of their lengths must be either 1,
√

2, or √3. If two roots are perpendiularthen there are no onstraints on the ratios of their lengths. If the angle between two roots
α and β is stritly obtuse, then α+ β is a root, and if the angle between α and β is stritlyaute, then α− β and β − α are also roots. Compare this with the ondition (iii) of (3.3.6).Now we ome to the idea of Dynkin diagrams and lassi�ation, upto equivalene, ofsemi-simple Lie algebras. One an lassify the root systems, and hene the orrespondingsemi-simple Lie algebra g, in terms of the Cartan matries, or an objet alled the Dynkindiagram.To see the motivation, onsider the idea of the root spae deomposition of the Liealgebra. We onsider the maximal abelian subalgebra of g and this ats semi-simply on77



Chapter 3. BKM Lie Algebras
g giving the Lie algebra as a diret sum of root spaes. The Lie algebra is broken up intoeigenvetors for the elements of the Cartan subalgebra. Thus, lassifying Cartan subalgebrasan be extended via the root spae deomposition to the lassi�ation of Lie algebras. Theinformation of the Cartan subalgebra, and hene of g, is ontained in the set of positivesimple roots Π, and hene in the Cartan matrix or Dynkin diagram orresponding to Π.Thus, in lassifying the various �nite-dimensional semi-simple Lie algebras we are reduedto studying the various lasses of Cartan matries or Dynkin diagrams. We state this in theform of a lassi�ation theorem (without proof) towards the end of this setion where thevarious root systems, their orresponding Dynkin diagrams are listed along with the semi-simple Lie algebras they desribe. Below we give how one onstruts the Dynkin diagramgiven a root system.To the set Π or simple roots we an also assoiate a graph, onsisting of verties and linesonneting them, known as a Dynkin diagram . To eah element αi of Π we assoiate avertex vi. Two verties vi and vj are joined by edges depending upon the angle between thesimple roots αi and αj . If two roots αi and αj are orthogonal then we put no edge betweenthe orresponding verties vi and vj . We put one edge between vi and vj if αi and αj havethe same length, two edges if the longer of αi and αj is √2 times the shorter, and threeedges if the longer of αi and αj is √3 times the shorter. In addition, if αi and αj are notorthogonal or of the same length, we deorate the edge between vi and vj with an arrowpointing from the vertex assoiated to the longer root toward the verted assoiated to theshorter root. Looking at (3.38) we see that there are only three possible lenght ratios andthree possible angles between the roots.Two Dynkin diagrams are said to be equivalent if there is a one-to-one, and onto mapof the verties of one to the verties of the other that preserves the number of bonds andthe diretion of the arrows. Sine any two bases Π for the same root system are equivalentbeause of the ation of the Weyl group on them, the equivalene lass of Dynkin diagram isindependent of the hoie of the base Π. Two root systems with equivalent Dynkin diagramsare equivalent. A root system is irreduible if its Dynkin diagram is onneted. We nowlist all the Dynkin diagrams of the lassial semi-simple Lie algebras.1. An : The root system An is the root system of the Lie algebra sl(n + 1,C). It is ofrank n.2. Bn : The root system Bn is the root system of the Lie algebra so(2n + 1,C). It is ofrank n. 78



Chapter 3. BKM Lie Algebras3. Cn : The root system Cn is the root system of the Lie algebra sp(n,C). It is of rank n.4. Dn : The root system Dn is the root system of the Lie algebra so(2n,C). It is of rank
n.The Dynkin diagrams assoiated with the above root systems are given in Fig. (3.1).We note a few interesting points about the above root systems that happen in low rank.In rank one, there is only one possble Dynkin diagram, re�eting that there is only oneisomorphism lass of omplex semi-simple Lie algebras in rank one. The Lie algebra so(2,C)is not semi-simple, and the remaining three Lie algebras sl(2,C), so(3,C) and sp(1,C) areisomorphi. In rank two, the Dynkin diagram D2 is disonneted, re�eting the fat that

so(4,C) ∼= sl(2,C)⊕sl(2,C). Also, the Dynkin diagramsB2 and C2 are isomorphi, re�etingthe fat that so(5,C) ∼= sp(2,C). In rank three, the Dynkin diagrams A3 and D3 areisomorphi, re�eting the fat that sl(4,C) ∼= so(6,C). In addition to the root systemsassoiated to the lassial Lie algebras, there are �ve exeptional irreduible root systems,denoted G2, F4, E6, E7 and E8.Now we state the lassi�ation theorem, without proof below.Theorem 3.3.6 Every irreduible root system is isomorphi to preisely one root systemfrom the following list.1. The lassial root systems An, n ≥ 1.2. The lassial root systems Bn, n ≥ 23. The lassial root systems Cn, n ≥ 34. The lassial root systems Dn, n ≥ 45. The exeptional root systems G2, F4, E6, E7 and E8.Sine every root system an be uniquely deomposed as a diret sum of irreduible rootssytems, the lassi�ation of irreduible root systems leads to the lassi�ation of all rootsystems. As argued before, lassi�ation of root systems leads to the lassi�ation of semi-simple Lie algebras and lassi�ation of the irreduible root systems leads to the lassi�ationof the simple Lie algebras whih we state in the form of a theorem below.Theorem 3.3.7 Every omplex simple Lie algebra is isomorphi to preisely one algebrafrom the following list: 79



Chapter 3. BKM Lie Algebras1. sl(n+ 1,C), n ≥ 1,2. so(2n+ 1,C), n ≥ 2,3. sp(n,C), n ≥ 3,4. so(2n,C), n ≥ 4,5. The exeptional Lie algebras G2, F4, E6, E7 and E8.A semi-simple algebra is a diret sum of simple algebras, and is uniquely determined upto isomorphism by speifying whih simple summands our and how many times eah oneours in the diret sum.Thus, we have lassi�ed the various semi-simple Lie algebras, and their root systems.We have also seen that to eah root system one an assoiate a graph alled the Dynkindiagram whih pitorially aptures all the information about the root system and hene theLie algebra it orresponds to.
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Figure 3.1: The Dynkin diagrams for the lassial semi-simple Lie algebras3.3.7 Representation Theory of Semi-Simple Lie AlgebrasAfter studying the general struture of Lie algebras, we now ome to the representationtheory of �nite-dimensional semi-simple Lie algebras with the example of sl(3,C) as thepartiular ase we work it out expliitly for.We will still be working with the basis (3.20). Let α = (a1, a2) be a root of sl(3,C) and
Zα the orresponding root vetor. We have already seen the onstrution of a representation80



Chapter 3. BKM Lie Algebrasfor sl(2,C). We will use some of what we learnt there and see what modi�ations our forLie algebras of rank r > 1.The starting point in looking for a struture is to �nd the generalization of (A). Wehave de�ned roots and weights as the eigenvalues of ρ(h). The suitable generalization is toobserve that in any �nite-dimensional representation the Cartan subalgebra h ats ompletelyreduibly. The set of operators ρ(h) for all h ∈ h are simultaneously diagonalizable in every�nite-dimensional representation, and hene, every �nite-dimensional representation (ρ, V ) isthe diret sum of its weight spaes. The simultaneous eigenvalues of ρ(h) are alled weights.For sl(3,C), the weights are of the form µ = (m1, m2), where m1 and m2 are integers. Fora �nite-dimensional representation ρ of g on a vetor spae V with Cartan subalgebra h, anelement µ ∈ h∗ is alled a weight for ρ if there exists a non-zero vetor v in V suh that
ρ(h)vµ = 〈µ, h〉vµ , (3.39)for all h ∈ h. A non-zero vetor v satisfying the above equation is alled a weight vetorfor the weight µ, and the set of all vetors satisfying (3.39) is alled the weight spaewith weight µ. The dimension of the weight spae is alled the multipliity of the weight.For any �nite-dimensional representation ρ of g, the weights of ρ and their multipliity areinvariant uinder the ation of the Weyl group.The generalization of (B) is the idea of dominant integral elements. An ordered pair

(m1, m2) with m1 and m2 being non-negative integers is alled a dominant integral ele-ment of sl(3,C). Just like the integersm oured as the highest eigenvalues of the irreduiblerepresentations of sl(2,C), we will see that the highest weight of eah irreduible representa-tion of sl(3,C) is a dominant integral element and, onversely, that every dominant integralelement ours as the highest weight of some irreduible representation. More generally, fora general semi-simple Lie algebra, an element µ ∈ h is alled an integral element if 2 〈µ,α〉
〈α,α〉

isan integer for eah positive simple root α and dominant integral if it is non-negative. Eahweight is an integral element. The set of integral elements is invariant under the ation of theWeyl group. It is preisely these elements that are ontained in the losed fundamental Weylhamber. This is the generalization of (F) and (G) to general semi-simple Lie algebras.The signi�ane of the roots for the representation theory of semi-simple Lie algebraslies in the generalization of (E). The operators ρ(x) and ρ(y) of sl(2,C) raise and lower,respetively, the eigenvalues of ρ(h). Let α = (a1, a2) be a root of sl(3,C) and let Zα be aorresponding root vetor. Let ρ be a representation of sl(3,C), and µ(m1, m2) a weight for81



Chapter 3. BKM Lie Algebras
ρ and v the orresponding weight vetor. Then,

ρ(h1)ρ(zα)v = (m1 + a1)ρ(Zα)v ,

ρ(h2)ρ(zα)v = (m2 + a2)ρ(Zα)v . (3.40)Thus, either ρ(Zα)v = 0 or ρ(Zα)v is a new weight vetor with weight
µ+ α = (m1 + a1, m2 + a2) . (3.41)For a general semi-simple Lie algebra, let v be a weight vetor with weight µ and suppose

xα is an element of gα. Then, for all h ∈ Fh we have
ρ(h)ρ(xα)v = (〈µ, h〉+ 〈α, h〉)ρ(xα)v . (3.42)The above equation says that ρ(xα)v is either zero or is a weight vetor with weight µ+ α.For the ase of sl(2,C) the weights were integers m and the notion of omparing twoweights was just the omparision of the integers, but for a general semi-simple Lie algebrathe weight is a olletion of the simultaneous eigenvalues of all the ρ(hi) and we need tolarify what it means to say a weight is higher than another. We will illustrate it for thease of sl(3,C). Given the two positive simple roots α1 and α2 (eq. (3.23)), and two weights

µ1 and µ2, we say that µ1 is higher than µ2 (denoted µ1 � µ2) if µ1 − µ2 an be written inthe form
µ1 − µ2 = aα1 + bα2 , (3.43)with a ≥ 0 and b ≥ 0. Analogous to the largest eigenvalue in eah representation of sl(2,C),there exists a weight µ0 in eah representation of sl(3,C) suh that µ0 � µ, for all weights

µ. This is alled the highest weight of ρ.Now we have enough ideas to put together the generalizations of (C), (F)-(I) to sl(3,C),and any general semi-simple Lie algebra, in the form of a theorem below. In the ase of
sl(2,C) eah irreduible representation ρ(h) is diagonalizable, and there is a largest eigen-value of ρ(h). The essene of (C), (F)-(I) is that any two irreduible representations of
sl(2,C) with the same largest eigenvalue are equivalent. The highest eigenvalue is alwaysa non-negative integer, and, onversely, for every non-negative integer m, there is an irre-duible representation with hightest eigenvalue m. Now we state the theorem of highestweight for sl(3,C) and generalize it to any �nite-dimensional semi-simple Lie algebra. 82



Chapter 3. BKM Lie AlgebrasTheorem 3.3.8 1. Every irreduible representation ρ of sl(3,C) is the diret sum ofits weight spaes; that is, ρ(h1) and ρ(h2) are simultaneously diagonalizable in everyirreduible representation. More generally, in every �nite-dimensional representationirreduible representation (ρ, V ) is the diret sum of its weight spaes.2. All the weights, µ, are integral elements.3. Every irreduible representation of sl(3,C) has a unique highest weight µ0, and twoequivalent irreduible representations have the same highest weight. And any two irre-duible reesentations of sl(3,C) with the same highest weight are equivalent. The sameis true for any general semi-simple Lie algebra.4. Two irreduible representations with the same highest weight are equivalent.5. If π is an irreduible representation of sl(3,C), then the highest weight µ0 of π is ofthe form
µ0 = (m1, m2)with m1 and m2 being non-negative integers. The suitable generalization is the state-ment that the highest weight of every irreduible representation is a dominant integralelement.6. If m1 and m2 are non-negative integers, then there exists an irreduible representa-tion ρ of sl(3,C) with highest weight µ0 = (m1, m2). For a general semi-simple Liealgebra, every dominant integral element ours as the highest weight of an irreduiblerepresentation.The trivial representation is an irreduible representation with highest weight (0, 0). For

sl(2,C) an irreduible representation with highest weight m was of dimension (m+ 1). For
sl(3,C), the dimension of the irreduible representation with highest weight (m1, m2) is

1
2
(m1 + 1)(m2 + 1)(m1 +m2 + 2) .We will ome bak to the representation theory of �nite-dimensional Lie algebras brie�ytowards the end of the hapter when we disuss the denominator identity of Lie algebras. Fornow, we just reapitulate what we have learnt about �nite-dimensional Lie algebras, beforewe move on to the topi of in�nite-dimensional Lie algebras. 83



Chapter 3. BKM Lie Algebras(a) Generalizing (A) we see that there exists a maximal abelian subalgebra, alled theCartan subalgebra, of g whih ats semi-simply on g and every irreduible representa-tion is given as the diret sum of weight spaes with respet to the Cartan subalgebra.The eigenvalues are the roots and weights of the Lie algebra.(b) The multipliity of every root is one.() Generalizing (B), all the weights are integral elements.(d) Every irreduible representation of g has a unique highest weight whih is a dominantintegral element and two equivalent irreduible representations have the same highestweight. See point (C), (H), (I)(e) Every dominant integral element is the highest weight of an irreduible representations.See (G)(f) The set of roots an be divided into positive and negative roots with respet to a basisof positive simple roots. The hoie of simple roots is not unique, nor is their ordering.(g) The Lie algebra splits as a diret sum
g =

⊕

α∈L

gα =
⊕

α∈L−

gα
⊕

h
⊕

α∈L+

gα, (3.44)and all the root spaes are one-dimensional.(h) There is a group of permutations of the set of positive simple roots, whih is generatedby re�etions with respet to the set of positive roots in the root spae, known as theWeyl group. The set of fundamental refeltions generate the Weyl group.(i) The Weyl group is �nite-dimensional. It breaks up the root spae into hambers knownas the Weyl hambers.(j) There exists a vetor ρ alled the Weyl vetor whih always lies in the losed Weylhamber.(k) The set of positive simple roots apture all the information of the Lie algebra g. Theinner produt matrix onstruted from the inner produts of the various positive simpleroots in the root spae is alled the Cartan matrix. It ontains all the information aboutthe Lie algebra g. 84



Chapter 3. BKM Lie Algebras(l) Another equivalent desription of the Lie algbra g is through its Dynkin diagram whihontains the same information as the Cartan matrix.(m) The semi-simple Lie algebra g an be desribed equivalently through its bilinear formor through its Chevalley-Serre relations.(n) There are four lasses of lassial root systems, namely, An (n ≥ 1), Bn (n ≥ 2), Cn (n ≥
3), and Dn (n ≥ 4) and �ve exeptional root systems, namely, G2, F4, E6, E7 and E8.Every irreduible root system is isomorphi preisely one root system from the abovelist.(o) Every simple Lie algebra is isomorphi preisely to one algebra from amongst sl(n +

1,C), n ≥ 1, so(2n + 1,C), n ≥ 2, sp(n,C), n ≥ 3, so(2n,C), n ≥ 4, and theexeptional Lie algebras G2, F4, E6, E7 and E8.(p) There is a one-to-one orrespondene between the lasses of simple Lie algebras androot systems.3.4 In�nite Dimensional Lie AlgebrasWe start with the theory of in�nite-dimensional Lie algebras now. One thing working for usis we know whih diretions to look in and what roughly to expet in pursuing them. Toexplore the struture, we should start by trying to �nd a Cartan subalgebra, (or whateverthe generalization of that ould be in the in�nite-dimensional ase) and �nd simultaneouseigenvetors and the orresponding eigenvalues of all its elements. This should give us theroot struture, and root spae deomposition of the Lie algebra. Then, we �nd a base ofpositive simple roots for the set of roots, and from this onstrut the Cartan matrix and, if itexists, the Dynkin diagram orresponding to the Lie algebra. There will be the generalizationof the Weyl group, harater and denominator formulae also as we will see.Before we proeed with the study of BKM Lie superalgebras, we should mention thatalthough BKM Lie superalgebras are generalizations of �nite-dimensional Lie algebras, thissimplisti way of studying them is useful only to overome the initial bridge in intuitionneessary to appreiate their abstrat theory, but one should let go of the ruth at theearliest to ompletely appreiate the theory of BKM Lie superalgebras by itself. For onething, the various other branhes like vertex algebras, vetor valued modular forms, et.85



Chapter 3. BKM Lie Algebrasplay a rih role in the theory of BKM Lie superalgebras whih gives it a lot of struture thana mere extrapolation from �nite-dimensional Lie algebras would suggest.Sadly, the sope of the introdution we will give, given the spae available to introdue it,will rely heavily on borrowing intuition from the �nite-dimensional ase to seek motivationand justi�ation of the various onstruts in BKM Lie superalgebras. We will use examplesto bridge the gaps in intuition.It is interesting to go bak to the origin of �nite-dimensional Lie algebras and note thatthey were originally onstruted to study Lie groups, while for the ase of in�nite-dimensionalLie algebras it was the Lie algebras that were onstruted �rst, and for the ase of BKM Liesuperalgebras the orresponding group struture is far from being fully understood. As thedegree of generalization inreases, the group struture beomes less lear.Ordering them in an inreasing sequene of omplexity, one obtains a�ne Lie algebrasas the simplest generalization of �nite-dimensional Lie algebras by entral extension of loopalgebras. The enter of a �nite-dimensional semi-simple Lie algebra is trivial. One anform a �rst generalization by onstruting what is known as the `loop algebra' of a �nite-dimensional semi-simple Lie algebra. To make it onsistent one needs to add a derivationto its enter and this algebra is the orresponding a�ne Lie algebra. A�ne Lie algebras area sub-lass of the lass of in�nite-dimensional Lie algebras known as Ka-Moody algebras.Borherds-Ka-Moody Lie algebras were onstruted by Borherds as a generalization ofKa-Moody Lie algebras and are the most general lass of Lie algebras.3.4.1 Loop Algebras and Central ExtensionsWe start our study of in�nite-dimensional Lie algebras with the simplest lass of in�nite-dimensional Lie algebras, namely a�ne Lie algebras. The general onstrution of a�neLie algebras is along the lines we will desribe for general BKM Lie superalgebras, but herewe study them in a way that illustrates the transition from �nite-dimensional Lie algebrasto their in�nite-dimensional outerparts. We will onstrut them as loop algebras of �nite-dimensional Lie algebras.We will desribe here a �rst example of an in�nite-dimensional Lie algebra, that of a�neLie algebras as entral extensions of loop algebras. The advantage of this onstrution isthat it is realized entirely in terms of an underlying simple �nite-dimensional Lie algebra,known as its derived algebra.The enter of a �nite-dimensional semi-simple Lie algebra is trivial. The existene of86



Chapter 3. BKM Lie Algebrasa entral element, as we will see, is a feature that we will �nd in all in�nite-dimensionalLie algebras. Given a �nite-dimensional Lie algebra g, we an try and onstrut an (l-dimensional) entral extension to it by simply adding l entral generators, ki, to the algebraand imposing
[tα, ki] = 0 for i = 1, . . . , l, α = 1, . . . , r . (3.45)This will modify the brakets between the original generators to inlude the entral generatorsas follows

[tα, tβ] = fαβγ t
γ + fαβi k

i, (3.46)where fαβγ are the struture onstans of g. The new struture onstants fαβi have to satisfythe Jaobi identity and thus annot be ompletly arbitrary. The number of solutions tothe above equation subjet to the Jaobi identity onstraint is the number of independententral extensions one an write down for g. Finding the ki from the above equation shows,for �nite-dimensional Lie algebras, that the trivial solution fαβi = 0 is the only possiblesolution. Hene, the enter of a �nite-dimensional semi-simple Lie algebra is trivial. Thus,to entrally extend the Lie algebra g, we need to alter its struture to allow for the extension.This leads to the idea of the loop algebra of a �nite-dimensional Lie algebra.Let g be a simple Lie algebra, and onsider the spae of analyti maps from the irle
S1 to g. As before, let {tα|α = 1, . . . , r} be a basis of g, and S1 be the unit irle in theomplex plane with oordinate z. Then a basis for the above vetor spae of analyti mapsfrom S1 to g will be of the form {tαn|α = 1, . . . , r; n ∈ Z}, where tαn = tα ⊗ zn. This spaeinherits a natural braket operation from the Lie algebra g as

[tαm, t
β
n] ≡ [tα ⊗ zm, tβ ⊗ zn] = [tα, tβ]⊗ (zm · zn), (3.47)and thus,
[tαm, t

β
n] = fαβγ t

γ ⊗ zm+n = fαβγ t
γ
m+n, (3.48)where fαβγ are struture onstants of g. With the above braket this spae beomes a Liealgebra alled the loop algebra , denoted gloop. Note that the subalgebra of gloop generatedby the generators tα0 is just the subalgebra g. Note that, the algebra gloop has an in�nitenumber of generators.Now, we an look for a entral extension to gloop in the same way as we did for g. We

87



Chapter 3. BKM Lie Algebrastry the most general ansatz for the braket of the generators as
[tαm, t

β
n] = fαβγ t

γ ⊗ zm+n + (fαβi )mnk
i . (3.49)We impose the onstraints oming from the Jaobi identity and the fat that the algebra gis a subalgebra of gloop, and hene the struture onstants (fαβi )00 and (fαβi )m0 an be putto zero. Now, for a �xed value of n, the generators tαn transform just like the generators tα(that is, in the adjoint) and hene the struture onstants should from an invariant tensorof the adjoint representation of g with respet to the indies α, β. It turns out there is aunique suh tensor for g, and that is the Killing form of g. Thus, the entral extension isonly one-dimensional, and is proportional to the Killing form B of g. For onveniene, wean hoose a basis suh that the Killing form in that basis is equal to δαβ . This gives thefollowing brakets for gloop

[tαm, t
β
n] = fαβγ t

γ ⊗ zm+n − mkδαβδm+n,0,

[k, tαn] = 0 . (3.50)The in�nite-dimensional loop algebra, is usually written in the following way. Let L =

C[z, z−1] be the algebra of Laurent polynomials in z. Then the loop algebra is then given by
gloop = L ⊗C g = C[z, z−1]⊗C g. (3.51)We need to add one more generator, d, to this entrally extended in�nite-dimensional algebra,known as the derivation whih has the following brakets with the other generators [65, 66℄

[d, tαm] = −[tα, d] = mtαm; [d, k] = 0 . (3.52)The above onstrution is then̂
g = C[z, z−1]⊗C g.⊕ Ck ⊕ Cd . (3.53)The generators tα0 have vanishing brakets with the derivation, and the subalgebra generatedby them is just the Lie algebra g known as the horizontal subalgebra of the a�ne Liealgebra ĝ.
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Chapter 3. BKM Lie Algebras3.4.2 The Root SystemWe �rst determine the maximal abelian subalgebra. This will ertainly ontain the Cartansubalgebra of the horizontal subalgebra g, generated by hi ∈ H i = 1, . . . , r. It will alsoontain the entral element k and d. Thus, the Cartan subalgebra is
Ĥ = span{k, d, hi0| i = 1, . . . , r} (3.54)The roots with respet to Ĥ an be found by observing the following relations

[hi0, e
j
n] = (hi0, h

0
j)e

j
n, [k, ejn] = 0, [d, ejn] = nejn (3.55)and

[hi0, h
j
n] = [k, hjn] = 0, [d, hjn] = nhjn . (3.56)Writing the roots α̂ suggestively as a triplet of eigenvalues under the generators (hi0, k, d),the set of roots is

α̂in = (αi, 0, n), α ∈ L(g), n ∈ Z, (3.57)and
α̂0
n = (0, 0, n), n ∈ Z\{0}, (3.58)orresponding to the generators ein and hjn, n 6= 0, respetively. The root αi is a root of thehorizontal subalgebra g. Eah of the roots α̂in of (3.57) has multipliity one, while the root

α̂0
n has multipliity r, sine it does not depend on the label j of the hj0 generators and is aneigenvalue of eah hj0 with the eigenvalue 0 and there are r suh generators.Here we an understand the neessity to inlude the generator d in the Cartan subalgebra.Without the generator d to distinguish the level n of the root, all the roots are in�nitelydegenerate. The generator d thus `grades' the algebra ĝ aording to the level n and only thenare the roots α̂in of (3.57) are non-degenerate. We annot, however, remove the degenerayof the root α̂0

n in (3.58).The set of roots of ĝ is denoted by L̂, and the root system of the horizontal subalgebra
g is just the subset α̂i0 = (αi, 0, 0), denoted L as before.So far the root systems of g and ĝ are very muh similar and onstruted along the samelines. The roots are just the olletion of simultaneous eigenvalues of the elements of theCartan subalgebra. However, the Cartan subalgebra in this ase is entrally extended toinlude two more generators and the roots also ontain the eigenvalues of these generators.89



Chapter 3. BKM Lie AlgebrasAll the simple roots have multipliity one as before. There is, however, one major di�ereneoming from the in�nite-dimensional nature of the algebra. It is the appearane of a root
α̂0
n with multipliity r.Like with the �nite-dimensional semi-simple ase, we �nd a set of simple roots, anddeompose the set of roots into positive and negative roots, with respet to the set of positivesimple roots. We identify the set of positive simple roots as

α̂i0 = (αi, 0, 0) = αi for i = 1, . . . , r, (3.59)and
α̂0

1 = (−µ, 0, i) = δ − µ . (3.60)Here µ is the highest root of ĝ and δ = (0, 0, 1). With this, the degenerate roots (3.58) arejust α̂0
n = n·δ, n 6= 0. The root α̂0

1 is alled an imaginary root. It is not a simple root in thesense that it is deomposable. Later we will see, in the ontext of BKM Lie superalgebrasimaginary roots that are also simple. However, we inlude α̂0
n in our basis of simple roots.With this identi�ation of positive simple roots, the set of positive roots is

L̂+ = {α̂ = (α, 0, n) ∈ L̂| n > 0 or (n = 0, α ∈ L)}, (3.61)and the set of negative roots is L̂− = L̂\L̂+. Denoting the subalgebras generated by the pos-itive and negative roots by ĝ+ and ĝ− respetively, we again have a triangular deompositionof the Lie algebra ĝ as
ĝ = ĝ+ ⊕ Ĥ ⊕ ĝ− . (3.62)3.4.3 Weyl GroupIn analogy with simple Lie algebras, one de�nes the Weyl group of re�etions of the weightlattie of an a�ne Lie algebra. First, we de�ne a re�etion as follows.

wα · β = β − 2
〈α, β〉
〈α, α〉α . (3.63)Note that all the α above are the real roots, beause the denominator of the RHS wouldnot make sense for an imaginary root. Beause of the above form of the re�etion, manyproperties of the a�ne Weyl group are analogous to those of the Weyl group of simpleLie algebras. There are, however, also new features whih are relatied to the existene of90



Chapter 3. BKM Lie Algebrasimaginary roots. In partiular, note that 〈α, δ〉 = 0 for any real root α, and hene one has
wα · β = δ, (3.64)and hene any Weyl re�etion ats as the identity on the set L̂im = {nδ| n 6= 0} of imaginaryroots,

wα| L̂im = id
bLim

. (3.65)Sine any re�etion is an automorphism of the root lattie, this also means that the Weylgroup maps the set L̂r of real roots onto itself.
Ŵ is the semidiret produt of the Weyl group of g and the group of translations in theoroot lattie.

Ŵ =W ⋉ T . (3.66)The roots, however, now have additional eigenvalues in them and this would show up inthe various omputations of the Weyl group, and we will see that now. Let α̂in = (αi, 0, n)and β̂im = (βi, 0, m) be two real roots. Then, the re�etion w
bαi

n
· β̂im is given by

w
bαi

n
· β̂jm = β̂jm −

2

〈α̂in, α̂in〉
[〈αi, βj〉+ 0 ·m+ n · 0]α̂in . (3.67)The re�etion an be expressed, again, as a triplet like the roots α̂in as (here we onsider ageneral weight µ̂jm = (µj, k,m), and denote the quantity 2

〈bαi
n,bα

i
n〉

by αi∨).
w

bαi
n
· µ̂jm =

(
wαi · (µj + nkαi∨), k,m+

1

2k
[〈µj, µj〉 − 〈µj + nkαi∨, µj + nkαi∨〉]

)
. (3.68)This is the expression for the re�etion of a weight µ̂jm with respet to a real root α̂in. Wean get a very intuitive piture of the struture of the Weyl group if we arry out one moreomputation that allows us to reast the above re�etion in a very suggestive form. De�ningfor any root βj ∈ L, the translation T iα as

T iα : µ̂jm = (µj, k,m) 7→
(
µj + kαi, k,m+

1

2k
[〈µj, µj〉 − 〈µj + kαi, µj + kαi〉]

)
. (3.69)Using this we an write (3.68) as

w
bαi

n
= wiα ◦ (Tαi∨)n, (3.70)91



Chapter 3. BKM Lie Algebraswhere wiα is the ordinary Weyl re�etion whih ats on the �rst omponent of the triplet ofthe root µim and as the identity on the last two omponents. Thus, we see that any Weylre�etion of the a�ne Weyl group an be written of the form
w

bαi
n

= wiα ◦ T jβ (3.71)for some βj. Also Twi
α

= w ◦ Twi
α
◦w−1 for all w ∈ Ŵ . The abelian group of translations is anormal subgroup of Ŵ with W ∩ T = {id}. Thus, the a�ne Weyl group Ŵ is a semidiretprodut of the Weyl group of the horizontal subalgebra and a group of translations T ,

Ŵ =W ⋉ T . (3.72)An important property of the translations group is that it is generated by the highest rootappearing in the de�nition of the zero root in (3.58)as
w

bα0
1
· µ = (wθ · µi + kθ∨, k,m+ 〈µi, θ∨〉 − k∨) . (3.73)As a onsequene, all possible translations are obtained by re�etion with respet to the root

α0
1, and ombinations of this re�etion with elements ofW. Thus, we see that after reastingthe a�ne Weyl re�etion in the above form the Weyl group of the horizontal subalgebragenerates the re�etions, while the imaginary root generates translations. Thus, the a�neWeyl group is generated by

wi ≡ w
bαi , i = 1, . . . , r . (3.74)The a�ne Weyl group is in�nite-dimensional as against the �nite-dimensional Weyl groupWwhih is �nite-dimensional. The a�ne Weyl group also permutes transitively and freely thea�ne Weyl hambers whih are those open subsets of the weight spae whih are obtainedby removing all the hyperplanes whih are left invariant by some Weyl re�etion. Similarly,we also de�ne the dominant a�ne Weyl hamber

P+
k

{ r∑

i=0

µiµi| µi ≥ 0
}
. (3.75)The algebra also admits a Weyl vetor whih is de�ned as follows:
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Chapter 3. BKM Lie AlgebrasDe�nition 3.4.1 A Weyl vetor is de�ned to be a vetor ρ satisfying
(ρ, αi) = 1

2
(αi, αi), (3.76)for all real simple roots αi. We will see that the above de�nition also extends to the moregeneral in�nite-dimensional Lie algebras.3.4.4 Classi�ation of A�ne Lie AlgebrasJust like for the ase of �nite-dimensional semi-simple Lie algebras, one an also lassify thevarious lasses of a�ne Lie algebras via their root systems and equivalently through theirDynkin diagrams[67, 68℄. There are four in�nite lasses of root systems alled Ar, Br, Cr and

Dr. In addition, there are �ve exeptional a�ne Lie algebras alled E6, E7, E8, F4 and G2.Below, we list the Dynkin diagrams for these lasses of a�ne Lie algebras.
E8

F4

G2

E7

E6

C n

D n

Bn

A n

A1

Figure 3.2: The Dynkin diagrams for the a�ne Lie algebrasThis onludes our disussion of a�ne Lie algebras. We will ome bak to them laterwhen we disuss the Weyl denominator formula for Lie algebras. We will now give a briefintrodution to the theory of super-algebras before going to disuss BKM Lie superalgebras.
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Chapter 3. BKM Lie Algebras3.5 A Brief Introdution to BKM Lie superalgebras3.5.1 SuperalgebrasLet us start with the notion of a super vetor spae. A super vetor spae is a vetorspae over a �eld that is Z2-graded, i.e. has the deomposition
V = V0 ⊕ V1, 0, 1 ∈ Z2 = Z/2Z , (3.77)and in general an M-graded vetor spae has the deomposition

V =
⊕

α∈M

Vα . (3.78)An element of Vα is said to be homogeneous of degree α. For a vetor spae V , itstensor algebra T (V ), symmetri algebra S(V ), and the exterior algebra ∧V are examplesof graded vetor spaes. A superalgebra is a Z2-graded algebra, A = A0 ⊕ A1, for whih
AαAβ ⊆ Aα+β. The grading an be more general as above for vetor spaes, but we willmainly be onsidering Z2-gradings.A sub-algebra of a superalgebra is also a superalgebra, and a sub-super algebra I of g isalled an ideal if [I, g] ⊆ I. A Lie superalgebra is de�ned similar to a regular Lie algebra,but now one has to keep in mind the onsisteny imposed by the grading.De�nition 3.5.1 A Lie superalgebra is a Z2 graded algebra g = g0 ⊕ g1 with a Lie braketsatisfying

[x, y] = −(−1)deg(x)deg(y)[y, x] (3.79)and
[x[y, z]] = [[x, y]z] + (−1)d(x)d(y)[[x, z]y] , (3.80)where for any homogeneous element g ∈ gn, n = 0, 1, deg(g) = n. The subspaes g0 and g1are alled the even and odd parts of g.A Lie superalgebra is not a Lie algebra the way one understands semi-simple Lie algebras.

g0 is an ordinary Lie algebra, while g1 is a g0 module. Consider the assoiative algebra
94



Chapter 3. BKM Lie Algebrasendomorphisms gl(V ) of the supervetor spae V . It has a natural Z2 grading as follows
gl(V )0 = {f ∈ gl(V ) : f(Vn) ⊆ Vn, n ∈ Z2} ,

gl(V )1 = {f ∈ gl(V ) : f(Vn) ⊆ Vn+1, n ∈ Z2} . (3.81)The Lie braket is de�ned as follows
[x, y] =

{
xy − yx, if x or y ∈ gl(V )0 ,

xyyx, if x, y ∈ gl(V )1 .
(3.82)A good referene for Lie superalgebras is [69, 70℄3.5.2 BKM Lie superalgebrasDue to onstraints of spae and sope, our introdution of BKM Lie superalgebras willbe top-down (mostly following [55℄). The milestone approah by whih we studied �nite-dimensional Lie algebras is not possible here and the only way one an atually understandor apperiate the subjet is by undertaking a detailed study of it. Short of that, we use theideas already onstruted in the ontext of �nite-dimensional semi-simple Lie algebras anda�ne Lie algebras to motivate and make the results in this setion look plausible.Our main interest in BKM Lie superalgebras from the point of view of the problem ofounting dyons is in the Weyl-Ka-Borherds (WKB) denominator formula. Our introdu-tion of BKM Lie superalgebras is given with the very narrow aim of understanding the WKBdenominator formula. We will learn only so muh as will allow us to state and understandthe denominator identity. For more on the subjet the reader is refered to the literature onthe subjet.In what follows we will use the following notation. We will use G to denote a BKMLie superalgebra. We will use the set I to index the set of generators of the BKM Liesuperalgebra. It will either be the set {1, . . . , n} or a ountably in�nite set in whih ase itis identi�ed with N. We will use the set S ⊆ I to index the odd generators. We ontinueusing ei, hi, and fi for the generators of the Lie algebra. The Cartan subalgebra of G will bedenoted H.We will �rst de�ne BKM Lie superalgebras through their Chevalley-Serre relations. Theadvantage of this is that it gives us an understanding of the struture of the BKM Lie su-peralgebra in terms of the generators right at the very beginning. We will pursue alternate95



Chapter 3. BKM Lie Algebrasharaterizations to augment this point of view later on. We have already seen the develop-ment and de�nition of the Chevalley-Serre relations for the �nite-dimensional ase. The keyto the de�nition was the root spae deomposition of the Lie algebras made possible by thesemi-simple ation3 of the Cartan subalgebra on the Lie algebra. To be able to arry outthe same proedure for in�nite-dimensional Lie algebras, we �rst need to de�ne the abelianLie algebra that will be the Cartan subalgebra whih we do now.Let HR be a real vetor spae with a non-degenerate symmetri real valued bilinear form
(., .) and elements hi, i ∈ I. suh that(i) (hi, hj) ≤ 0 if i 6= j ,(ii) If (hi, hi) > 0, then 2(hi,hj)

(hi,hi)
∈ Z for all j ∈ I ,(iii) If (hi, hi) > 0 and ı ∈ S, then (hi,hj)

(hi,hi)
∈ Z for all j ∈ I.Let H = HR ⊗R C. The above de�nition seems too ad ho, unmotivated and unomfortableto aept, so let us try to onvine ourselves that it indeed has the properties we have ometo expet a Cartan sub-algebra to have from our study of �nite-dimensional semi-simple Liealgebras and a�ne Lie algebras. Comparing (i) above with the de�nition 3.3.3 we see thatwith the addition of the requirement that inner produt an be less than 0, (i) essentially isa generalization of 3.3.3. Comparing (ii) and (iii) above with the onditions on the Cartanmatrix in setion 3.3.6 and eq. (3.34) to see where the motivations and generalizations omefrom. Having de�ned the Cartan subalgebra, we an now de�ne a BKM Lie superalgebra viaits ation on it. These will be the Chevalley-Serre relations for the BKM Lie superalgebra.Before looking at the Chevalley-Serre relations for the BKM Lie superalgebra, reall therelations (3.9) and (3.35). With those in mind we now de�ne the following:De�nition 3.5.2 A Borherds-Ka-Moody Lie superalgebra G = (A,H, S) assoiated to theCartan matrix A, with the abelian Lie algebra H as its Cartan subalgebra, is the Lie super-algebra generated by hi ∈ H and elements ei, fi with i ∈ I satisfying the following de�ningrelations:(i) [ei, fj ] = δijhi(ii) [h, ei] = (h, hi)ei, [h, fj] = −(h, hj)fj,3A linear operator on a �nite-dimensional vetor spae is said to at semi-simply if the omplement ofevery invariant subspae of the operator is also an invariant subspae. An important result for suh a linearoperators on a �nite-dimensional vetor spae over an algebraially losed �eld is that it is diagonalizable. 96



Chapter 3. BKM Lie Algebras(iii) deg ei = 0 = deg fi if i /∈ S, deg ei = 1 = deg fi if i ∈ S,(iv) (ad ei)1−
2aij
aii ej = (ad fi)1−

2aij
aii fj = 0 if aii > 0 and i 6= j .(v) (ad ei)1−

aij
aii ej = (ad fi)1−

aij
aii fj = 0 if i ∈ S, aii > 0 and i 6= j .(vi) [ei, ej ] = 0 = [fi, fj ] if aij = 0.Let us understand the above de�nition. Looking at (3.35) we an understand the originof the relations (i), (ii), (iv) and (v) above. The ondition (iii) is expeted of a super Liealgebra where we will need to distinguish between the even and odd elements of the Liealgebra (see also (3.81)). As expeted, when S = ∅, we have a Lie algebra and ondition

(iii) is redundant. The enter of the BKM Lie superalgebra is ontained in the Cartansubalgabra H. Reall that �nite-dimensional semi-simple Lie algebras have a trivial enter,while in onstruting a�ne Lie algebras we had to add a entral extension and a derivationto the enter to make the algebra onsistent and hene the enter was not trivial. BKMLie superalgebras also have a non-trivial enter. The Cartan subalgebra H ats semisimplyon the BKM Lie superalgebra G via the adjoint ations (whih was the whole point ofonstruting it).The matrix A, we reognize, is the generalized symmetri Cartan matrix of the Liesuperalgebra G. The sublass of �nite-dimensional Lie algebras are those whih have S = ∅,and aii > 0 for all i ∈ I. The Cartan matrix is positive-de�nite, i.e. det(A) > 0 for the�nite-dimensional semi-simple Lie algebras. If aii > 0 for all ı ∈ I, but the Cartan matrix ispositive semi-de�nite, then it is a Ka Moody Lie superalgebra. For a BKM Lie superalgebrathe Cartan matrix is not restrited to be positive or positive semi-de�nite.The span of eah triplet of the form {ei, hi, fi}, we saw in the ase of �nite-dimensionalsemi-simple Lie algebras, was isomorphi to an sl(2,C) algebra. Eah element hi of the Car-tan subalgebra, and hene eah node in the Dynkin diagram, and eah diagonal entry of theCartan matrix orrespond to one suh sub-algebra. We will now give a similar deompositionfor the ase of BKM Lie superalgebras.Proposition 1 (i) If i ∈ I S, and aii 6= 0, then the Lie superalgebra Si = Cfi⊕Chi⊕Ceiof the BKM Lie superalgebra G is isomorphi to sl(2,C).(ii) If i ∈ S, then the Lie sub-superalgebra Si = C[fi, fi] ⊕ Cfi ⊕ Chi ⊕ C[ei, ei] ⊕ Cei isisomorphi to sl(0, 1). 97



Chapter 3. BKM Lie Algebras(iii) If aii = 0, then the Lie sub-(super) algebra Si = Cfi ⊕ Chi ⊕ Cei is isomorphi to thethree-dimensional Heisenberg algebra (resp. superalgebra) if i ∈ I S(resp i ∈ SHene, the BKM Lie superalgebra is generated, like the �nite-dimensional Lie algebras westudied in the previous setion, by opies of the 3-dimensional Lie algebra sl(2,C), for eaheven simple root, and of the 5-dimensional Lie superalgebra sl(0, 1), for eah odd simpleroot. As before, the adjoint ation of eah of these sl(2,C) and sl(0, 1) on G deomposesinto �nite-dimensional represenations. Like before, as a vetor spae, G breaks up into thediret sum G = N+ ⊕ H ⊕ N−, where N+/N− are the sub-superalgebras generated by theelements ei/fi respetively.3.5.3 The Root systemThe generalized Cartan subalgebra H ats semi-simply on the BKM Lie superalgebra G viathe adjoint ation. This will give us an eigenspae deomposition of G. We used this idea tounderstand the struture of the �nite-dimensional semi-simple Lie algebras. To understandthe struture of G we will look for the eigenvalues and eigenspaes of H. This will give usthe root spae deomposition of G, and its root system.De�nition 3.5.3 The formal root lattie Q is de�ned to be the free abelian group generatedby the elements αi, i ∈ I with a real valued bilinear form given by (αi, αj) = aij. Theelements αi, i ∈ I are alled the simple roots.No surprises there. The set of simple roots are de�ned in a manner very similar to the �nite-dimensional Lie algebras. Only, though not apparent, in this ase the elements aij ∈ Z, unlikein the semi-simple ase where they were always equal to 2. There is one more importantaspet whih makes the root system of a BKM Lie superalgebra very di�erent from that ofthe other Lie algebras. This is the notion of imaginary simple roots[71℄. Let us understandthis idea arefully.For the ase of �nite-dimensional Lie algebrs, the set of positive roots was �nite and allthe roots were real (positive de�nite norm wrt. an inner produt de�ned in the root spae).For in�nite-dimensional Lie algebras, we saw that there appear a new kind of roots knownas imaginary roots. However, the simple roots were still all real. For the ase of BKM Liesuperalgebras Borherds found that one needs to have imaginary simple roots. This makesthe root system of a BKM Lie superalgebra markedly di�erent from the other lass of Liealgebras, �nite or in�nite. We will see how this property alters the denominator identity ofBKM Lie superalgebras. 98



Chapter 3. BKM Lie Algebras
Q, in the general ase, may not be an integral lattie, sine in general the indexing set

I is ountably in�nite in whih ase the rank of Q is not �nite. Now we ome to the rootspaes de�ned by the above root vetors.De�nition 3.5.4 For α =
∑j

k=1 _ik ∈ Q, the root spae Gα (resp. G−α) is the subspae of
G generated by the elements [eij [. . . [ei2 , ei1]]] (resp. [fij [. . . [fi2 , fi1]]]). A non-zero element αof the formal root lattie Q is said to be a root of G if the subspae Gα is non-trivial. Thedimension of the root spae Gα is alled the multipliity of the root α.To understand this, ompare with the last relation in (3.35). All the root spaes for i ∈ Iare given as Gαi

= Cei and G−αi
= Cfi. In partiular, and as before, the root spaes Gαi

and
G−αi

for the simple roots are one-dimensional. Also, as before all the roots α ∈ Q an beexpressed as a sum of simple roots. The root spae Gα is either ontained in the even part
G0 or the odd part G1 of G. There is also the onept of a positive and negative root.De�nition 3.5.5 1. A root = a is said to be a postive (resp. negative) if α (resp. −α)is a sum of simple roots.2. A root α is said to be even (resp. odd) if Gα ≤ G0 (resp. G1). We then write d(α) = 0(resp. d(α) = 1).3. The height of a root α =

∑
ki
αi is de�ned to be ∑ ki and is written ht(α).4. The support of α is the set {i ∈ I : ki 6= 0} and is written supp(α).5. A base of the set of roots L is a linearly independent subset Π suh that for any α ∈

L, α =
∑

β∈Π kββ, where for all β ∈ Π, either all the salars kβ ∈ Z+ or all kβ ∈ Z−.We reognize the above statements in the ontext of �nite-dimensional semi-simple Lie al-gebras, but keeping in mind that now we also have imaginary simple roots in the algebra.For any root α ∈ L., mult(α) = mult(−α), and a root α is positive if and only if the root
−α is negative. This gives us a deomposition of the set of roots into positive and negativeones. The set of roots L deomposes into L = L+ ∪ L−. As before, this allows us to realizethe Cartan deompose on the BKM Lie superalgebra G as a diret sum of root spaes as

G = (⊕α∈L+)Gα ⊕H⊕ (⊕α∈L−Gα) . (3.83)Let α ∈ L and hα ∈ H be suh that for all x ∈ Gα and h ∈ Mh, [h, x] = (hα, h)x. Then, forall y ∈ G−α, [x, y] = (x, y)hα. 99



Chapter 3. BKM Lie AlgebrasBefore we disuss the WKB denominator formula for BKM Lie superalgebras we will, forthe sake of ompleteness give another haraterization of BKM Lie superalgebras given byBorherds. It is usually very hard to apply the De�nition 3.5.2 in terms of the generators andrelations to a given Lie algebra to �nd whether it is a BKM Lie superalgebra or not. Hene itis useful to have di�erent haraterizations of BKM Lie superalgebras. The de�nition belowis mainly presented for ompleteness of our disussion of BKM Lie superalgebras and theneed to onstrut suh haraterizations may not immediately appear natural. However,systematially following the development of BKM Lie superalgebras will make the readerappreiate the need for suh a haraterization. It would also be inomplete, however briefa review one onstruts, to omit some of the results that helped shape the study of BKMLie superalgebras. Below we give a haraterization of BKM Lie superalgebras.For a BKM Lie superalgebra the Cartan subalgebra H is self-entralizing. This propertyshould not appear very surprising from our onstrution of the Cartan subalgebra for the�nite-dimensional semi-simple Lie algebras. An additional property for H is the existene ofa regular element. This is an element h in H suh that the entralizer4 of h in G is H. i.e.
CG(h) = H . The existene of a regular element an be used to obtain a bound on the normsof the roots of G. Now, we de�ne a BKM Lie superalgebra in terms of the non-degeneratesymmetri bilinear form as follows[72, 73℄:De�nition 3.5.6 Any Lie superalgebra G satisfying the following onditions is a BKM Liesuperalgebra.1. G has a self entralizing even subalgebra H with the property that G is the diret sumof eigenspaes of H, and all the eigenspaes are �nite-dimensional.2. There is a non-degenerate invariant supersymmetri bilinear form (., .) de�ned on G3. Ther is an element h ∈ Mh suh that CG(h) = H. If there are only �nitely manyindies i ∈ I suh that aii > 0, then the norms of the roots of G are bounded fromabove. For a given r ∈ R, there exist only �nitely many roots α of G with |α(h)|< r.If α(h) > 0 (resp. α(h) < 0), α is alled a positive (resp. negative) root.4. Let α and β be both positive or both negative roots of non-positive norm. Then (α, β) ≤

0. Moreover, if (α, β) = 0 and if a ∈ Hα and [x,Gβ] = 0.4The entralizer of an element a of a group G, denoted CG(a) is the set of elements of G whih ommutewith a. CG(a) = {x ∈ G| xa = ax} 100



Chapter 3. BKM Lie AlgebrasThis ompletes our disussion on the introdution to BKM Lie superalgebras. We stillhave one important idea to disuss, though. We will now disuss the Weyl-Ka-Borherdsdenominator formula for BKM Lie superalgebras. Considering the importane of this idea tothis thesis, we have saved the disussion on the denominator formula till after we have all theideas required to onstrut it. The denominator identity ours in the representation theoryof Lie algebras as the speial ase of the Weyl harater formula. We start with a disussionon the harater theory of Lie algebras to motivate the harater and denominator formulas.3.6 Denominator Identities3.6.1 Charaters Of Irreduible RepresentationsWe start with the �nite-dimensional semi-simple Lie algebras and then graduate to thein�nite dimensional ones to give the reader a better understanding of the various aspets ofthe denominator identity and how they get modi�ed as one onsiders the more non-triviallass of Lie algebras. We go bak to the representations of sl(2,C) and sl(3,C) in thatwe studied earler to study the onept haraters of representations. One of the o�shootsof this is the denominator identity, whih will be very ruial to our problem of ountingBPS states in string theory. The motivation for harater theory is as follows. Given tworepresentations, V and V ′ (that is, ρ : g → gl(V ) and ρ′ : g → gl(V ′)) of a Lie algebra g,we say that V is isomorphi or equivalent to V ′, if there is an isomorphism of vetor spaes
T : V → V ′ whih is ompatible with the operation of g :

ρ′gT (v) = T (ρg(v)), (3.84)for all v ∈ V and all g ∈ g.A given representation usually has a ompliated desription in terms of matries, andit is not always apparently obvious if two given representations are isomorphi to eah otheror not. It would be useful to have a way of determining suh relationships between repre-sentations without having to go into the details of the representations. Suppose we ouldonstrut a quantity, say a funtion, that aptures some intrinsi quality of the represen-tation and is su�ient to determine whether or not two representations are isomorphi toeah other just by omparing the value of the funtion on the given representation. Speakingmathematially, we need a lass funtion (A funtion that is invariant over a onjugay lass,101



Chapter 3. BKM Lie Algebraswhih in our ase, are the isomorphism lasses of irreduible representations) that hara-terizes isomorphi representations. This leads to the idea of the harater of an irreduiblerepresentation of a semi-simple Lie algebra g whih we study now.De�nition 3.6.1 The harater χµ of a �nite-dimensional irreduible representation, withhighest weight µ, is de�ned as the map from h→ C given by
χµ(x) : h 7→ χµ(h) = Tr exp(ρ(x)) . (3.85)The harater of a �nite-dimensional representation determines the represenation up toequivalene. The funtion depends only on the equivalene lass of ρ and satis�es

χµ(gxg
−1) = χµ (3.86)Here, we have de�ned the harater to be a map from h to C. We ould also onsider weights,

µ, in plae of h ∈ h as arguments of χµ. From eq (3.39) we see that ρ(h) · vµ = 〈µ, h〉vµ forall weight vetors vµ ∈ V and we an rewrite the harater χµ for a weight µ as
χµ(h) =

∑

µ

mult(µ) exp(〈µ, h〉), (3.87)where the sum is over the set of all weights in V .The operator ρ(0) is a dV × dV matrix with all entries equal to zero, where dV is thedimension of the representation V . The harater χµ(0) evaluated on the zero weight givesthe dimension on the representation
χµ(0) = dV .The harater for the diret sum of two representations is equal to the sum of the haratersof the onstituent representations. Similarly, the harater of a quotient of representationsis obtained by subtrating the harater of the submodule whih is quotiented out from theharater of the original representation.We an use the ation of the Weyl group on the set of weights to express the harater ofa highest weight module (representation) of g. It is alled the Weyl harater formula .Let V be an irreduible �nite-dimensional representation of the omplex semi-simple Lie
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Chapter 3. BKM Lie Algebrasalgebra g with highest weight µ. Then
χµ(h) =

∑
w∈W(−1)l(w)exp[〈w(µ+ ρ), h〉]∑
w∈W(−1)l(w)exp[〈w(ρ), h〉] , (3.88)where ρ is the Weyl vetor as de�ned in (3.29) or (3.30), and the sum is over the full Weylgroup. Thus, one an ompute the harater of an irreduible �nite-dimensional representa-tion from the knowledge of the ation of the Weyl group on the elements. Now we disussthe denominator identity.3.6.2 The Denominator IdentityConsider the denominator of eq. (3.88)

∑

w∈W

(−1)l(w)exp[〈w(ρ), h〉] =
∏

α∈L+

[exp(1
2
〈α, h〉)− exp(−1

2
〈α, h〉)

]

= exp(〈ρ, h〉)
∏

α∈L+

[
1− exp(−〈ρ, h〉)

]
. (3.89)This is known as the denominator identity . The Weyl denominator formula is a spe-ialisation of the Weyl harater formula to the trivial representation. Conventionally, thedenominator formula is written as (3.89), but for our purpose of generalizing it to in�nite-dimensional Lie algebras, we reast it into a form better suited for the generalization.

∏

α∈L+

(1− exp (−〈α, h〉)) =
∑

w∈W

det(w) exp (w(〈ρ, h〉)− 〈ρ, h〉) , (3.90)where w(ρ) is the image of ρ under the ation of the element w of the Weyl group. Theimportane of the above formula, from both the general and the point of view of our problem,annot be overstated. It is at the heart of the relation between the spetrum of 1
4
-BPS statesand BKM Lie superalgebras. Let us look at eq. (3.89) more losely and see what it ontainsthat makes it so important. Given the RHS of eq. (3.89), we have knowledge of all thepositive roots of g and their respetive multipliities and given the LHS we have knowledgeof the Weyl group of g and its ation on all the roots. Thus, the denominator identityontains all the essential information about the Lie algebra g and given the denominatoridentity, one an onstrut g ompletely from it. In the theory of BKM Lie superalgebras itplays a entral role not only beause it ontains the information of G in it, but also beause103



Chapter 3. BKM Lie Algebrasit provides the link with automorphi forms.Let us start by omputing the denominator identity of sl(3,C). As disussed before,
sl(3,C) has two simple roots α1 and α2. The set of positive roots, L+, is given by α1, α2and α3 = α1 + α2. The multipliity of eah positive root is one. The Weyl group is givenby the permutation group of three elements, S3. The elements are the re�etions r1 and r2, with respet to the two simple roots. The ation of the re�etions on the roots is given by

wαi
(αi) = −αi ,

wαi
(αj) = (αi + αj)

(3.91)The elements of S3, generated by wα1 and wα2 are given by
(1, wα1 , wα2, wα1 · wα2, wα2 · wα1 , wα1 · wα2 · wα1) (3.92)The ation of the six elements on ρ is (ρ,−α1,−α2,−ρ, α1, α2). Putting it all together intoeq (3.89) the Weyl denominator formula for sl(3,C) is given by
∏

φ∈L+

(1− e(−φ)) =
∑

w∈W

(−1)l(w)e(w(ρ)− ρ). (3.93)where ρ is the Weyl vetor, and w is an element of the Weyl group W . Denoting u = e(−α1)and v = e(−α2), we getLHS = (1− u)(1− v)(1− uv) =
[
1− u− v + u2 · v + u · v2 − u2 · v2

] (3.94)Now onsider the RHS.RHS =
[
1 + u2 · v + u · v2 − u2 · v2 − u− v

] (3.95)where l(w) = +1 for w = 1, x, x2 and −1 otherwise. The equality is obvious.This ompletes our disussion of the denominator formula for �nite-dimensional semi-simple Lie algebras. We now look at the denominator identity of a�ne Lie algebras. Wedisussed the Weyl group of a�ne Lie algebras when in Setion 3.4.3. As in the �nite-dimensional ase, one of the main appliations of the Weyl group is the alulation of har-aters of highest weight modules, and the denominator formula whih is an o�shoot of the
104



Chapter 3. BKM Lie AlgebrasWeyl harater formula. As before, the haraters χµ are de�ned as
χµ =

∑

λ

mult(µ) eλ, (3.96)where we have de�ned the exp〈λ, h〉 = eλ as formal exponenials. The Weyl-Ka haraterformula [3℄
χµ(h) =

∑
w∈cW(−1)l(w)ew(µ+ρ)

∑
w∈cW(−1)l(w)ew(ρ)

, (3.97)where ρ is the Weyl vetor de�ned as before.The denominator identity for the ase of a�ne Lie algebras beomes
∑

w∈cW

(−1)l(w)ew(ρ) = eρ ∏
bα∈bL+

(1− e−bα)mult(bα) . (3.98)The multipliities of all the roots in the �nite-dimensional ase were 1, and the term on theright hand side, therefore, did not have the multipliity fator.An alternate de�nition is given by Lepowsky and Milne whih is tailored to writing thesum side of the denominator formula. The key observation (due to MaDonald) is that
[w(ρ) − ρ] behaves better than either of the terms. Reall that an element of the Weylgroup ats as a permutation of all roots (not neessarily positive). Thus, [w(ρ)− ρ] obtainsontribution, only when a positive root gets mapped to a non-positive root. So one de�nesthe set Φw for all w ∈ Ŵ ,

Φ̂w = w(L̂−) ∩ L̂+ =
{
α̂ ∈ L̂+

∣∣∣ w−1(α̂) ∈ L̂−

}
. (3.99)Using this de�nition, we an see that

ρ− w(ρ) =
1

2

∑

α̂∈bL+

[α̂− w(α̂)] ∼ 〈Φ̂w〉 , (3.100)where 〈Φ̂w〉 is the sum of elements of the set Φ̂w. Note that −L̂− = L̂+, whih explains thehalf disappearing in the RHS of the above formula. Imaginary roots do not appear in the set
Φ̂w for a�ne Lie algebras as the imaginary roots turn out to be Weyl invariant and heneanel out in the above equation.The denominator formula that works for a�ne Ka-Moody algebras, after inluding the105



Chapter 3. BKM Lie Algebrasimaginary roots in L̂+, is the Weyl-Ka denominator formula
∏

α̂∈L+

(
1− e−α̂

)mult(α̂)
=
∑

w∈Ŵ

det(w) e−〈Φ̂w〉 , (3.101)We now onsider the example of an a�ne Lie algebra, ̂sl(n,C), given by the root system
(A

(1)
l , l = n − 1). We derive the general expressions for A(1)

l , then speialize them to thease ofA(1)
1 and A(1)

2 for the sake of illustration. The set of simple roots of A(1)
l are given bythe simple roots of the horizontal subalgebra, Al, together with the root δ − µ, where δ isthe smallest imaginary root, and µ is the highest root of Al (see eq (3.60).The set of roots is given by funtionals of the form jδ + µ, where j ∈ Z and µ ∈ L̂. Theimaginary roots are given by funtionals of the form jδ, where j ∈ Z, j 6= 0. We de�ne theset of positive roots as the union of the set of positive roots of the horizontal subalgebra L̂,with the set of roots in L̂ whih have positive eigenvalues w.r.t d. Thus the set of positiveroots of A(1)

l are given by,
L̂+ = {(s−1)·δ+α̂i+...α̂i+k−1, s·δ−(α̂i+...α̂i+k−1), s·δ | 1 ≤ k ≤ l; s ∈ Z+−{0}}. (3.102)The real roots have multipliity 1 and the imaginary roots have multipliity l. The denomi-nator formula is given by:

∏

α̂∈L̂+

(1− e(−α̂))mult(α̂) =
∑

w∈cW

(−1)l(w)e(w(ρ)− ρ) . (3.103)Reasting it as eq. (3.101) we have
∏

α̂∈L̂+

(1− e(−α̂))mult(α̂) =
∑

w∈cW

(−1)l(w)e(−〈Φ̂w〉) (3.104)where Φ̂w = L̂+ ∩ L̂− , and 〈Φ̂〉 is the sum of all elements of Φ̂. We know the simple andpositive roots of the Lie algbra. We now need to evaluate the sets Φ̂w and the Weyl groupto ompute the denominator formula. To determine the set Φ̂, we reall the ation of theelements of the Weyl group on the set of roots.
Ŵ (L̂R) = L̂R Ŵ (L̂I) = L̂I , (3.105)
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Chapter 3. BKM Lie Algebrasand
Ŵ (L̂I ∩ l̂+) = (L̂I ∩ L̂+) (3.106). The set Φ̂w is the set of all roots {α̂ ∈ L̂+ | w−1α ∈ L̂−}. Thus, Φ̂w onsists of elements ofthe form

{β, β + n.δ},where, β ∈ L̂+ and m ∈ Z+ (3.107)or
{β + n.δ}where, β ∈ L̂− and n ∈ Z+ − {0} . (3.108)3.6.3 Denominator Identity for ̂sl(2,C)For the a�ne Ka-Moody algebra, Â(1)

1 , from the above de�nition of the set of positive roots,we havê
L+ =

(
n(α̂1 + α̂0), nα̂1 + (n− 1)α̂0, (n− 1)α̂1 + nα̂0

∣∣∣ n = 1, 2, 3, . . .
)
, (3.109)and the Weyl group is isomorphi to Z2 ⋉ Z. Putting it all together into the denominatoridentity gives

∏

n≥1

(1− e−nα0e−nα1)(1− e−(n−1)α0e−nα1)(1− e−nα0e−(n−1)α1)

=
∑

n∈Z

e−n(2n−1)α0e−n(2n+1)α1 −
∑

n∈Z

e−(n+1)(2n+1)α0e−n(2n+1)α1 (3.110)Setting e−α0 = r and e−α1 = qr−1, the above identity is equivalent to the Jaobi tripleidentity involving the theta funtion ϑ1(τ, z):
−iϑ1(τ, z) = q1/8r−1/2

∞∏

n=1

(1− qn)
(
1− qn−1r

) (
1− qnr−1

)

=
∑

n∈Z

(−1)n q
(n−1/2)2

2 rn−1/2 . (3.111)3.6.4 Denominator Formula for ̂sl(3,C).We apply the above ideas to the ase of ̂sl(3,C) (A
(1)
2 ) as an example and write down thedenominator identity for it[74, 75, 76, 77℄ . 107



Chapter 3. BKM Lie AlgebrasThe horizontal algebra for ̂sl(3,C) is sl(3,C). There are two elements in the Cartansubalgebra, α̂1, and α̂2. The Weyl group of sl(3,C) is S3, generated by two elements. Itis generated by the re�etions with respet to the two simple roots α̂1, and α̂2 (all there�etions w
bα1 and wbα2 respetively). The simple roots of the a�ne Lie algebra ̂sl(3,C) aregiven by the simple roots of the horizontal algebra, together with α̂0 = δ− (α̂1 + α̂2), where

δ is the smallest positive imaginary root of A(1)
2 .The Weyl group of ̂sl(3,C) is the semi diret produt of the Weyl group of sl(3,C) andan abelian group, T , of translations generated by two elements (∼= Z2).Let t(m,n) ∈ T be an allowed translation whose ation on α̂1 and α̂2 is given by:

tα̂1 = α̂1 +mδ

tα̂2 = α̂2 + nδ (3.112)It follows that
tα̂0 = α̂0 + qδ, (3.113)suh that (m+n+ q) = 0. The elements of the Weyl group are of the form w

bα = wα.t where
wα ∈ S3 and t(m,n) ∈ T . Let Ŵt be the subgroup of Ŵ genrated by t(m,n) (written as tfor brevity hene forth). Thus,
Ŵ = ŴL∪wbα1 ·ŴL∪wbα2 ·ŴL∪wbα1 ·wbα2 ·ŴL∪wbα2 ·wbα1 ·ŴL∪ŵα̂1 ·ŵα̂2 ·ŵα̂1 cot ŴL, (3.114)for w

bα1 , wbα2 ∈ S3 and t ∈ T .Now, to ompute the denominator formula, we need to determine the ation of the Weylgroup on 〈Φ̂t〉. From the de�nition of Φ̂, and the ation of the elements of the Weyl groupon the set of roots, we have,
Φ̂t = {α̂1+iδ, α̂2+jδ, α̂1+α̂2+kδ | 0 ≤ i ≤ (m−1), 0 ≤ j ≤ (n−1), 0 ≤ k ≤ (q−1)} . (3.115)Thus,

〈Φ̂t〉 = (m+ k)α̂1 + (n+ k)α̂2 +
[m(m− 1) + n(n− 1) + k(k − 1)]

2
δ (3.116)
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Chapter 3. BKM Lie AlgebrasPutting all the above together in the denominator formula, we have:
∏

s≥1

(1− us0.us1.us2)2(1− us−1
0 .us1.u

s−1
2 )(1− us−1

0 .us−1
1 .us2)

× (1− us−1
0 .us1.u

s
2)(1− us0.us−1

1 .us2)(1− us0.us1.us−1
2 )

=
∑

rj≡0(mod 3)

u
1
6
(r1(r1−2)+r22+r3(r3+2))

0 u
1
6
(r21+r2(r2+2)+r3(r3−2))

1 u
1
6
(r1(r1+2)+r2(r2−2)+r23)

2

−
∑

r1=1,r2=0,r3=2(mod 3)

u
1
6
(r1(r1+2)+r22+r3(r3−2))

0 u
1
6
(r1(r1−2)+r2(r2+2)+r23)

1 u
1
6
(r21+r2(r2−2)+r3(r3+2))

2

+
∑

rj≡1(mod 3)

u
1
6
(r1(r1+2)+r2(r2−2)+r23)

0 u
1
6
(r1(r1−2)+r22+r3(r3+2))

1 u
1
6
(r21+r2(r2+2)+r3(r3−2))

2

−
∑

r1=0,r2=2,r3=1(mod 3)

u
1
6
(r1(r1−2)+r2(r2+2)+r23)

0 u
1
6
(r21+r2(r2−2)+r3(r3+2))

1 u
1
6
(r1(r1+2)+r22+r3(r3−2))

2

+
∑

rj≡2(mod 3)

u
1
6
(r21+r2(r2+2)+r3(r3−2))

0 u
1
6
(r1(r1+2)+r2(r2−2)+r23)

1 u
1
6
(r1(r1−2)+r22+r3(r3+2))

2

−
∑

r1=2,r2=1,r3=0(mod 3)

u
1
6
(r21+r2(r2−2)+r3(r3+2))

0 u
1
6
(r1(r1+2)+r22+r3(r3−2))

1 u
1
6
(r1(r1−2)+r2(r2+2)+r23)

2 ,where r1, r2, r3 ∈ Z, and m = 1
3
(r2 − r3) ; n = 1

3
(r1 − r2) ; q = 1

3
(r3 − r1) That ompletesour study of the denominator identity for a�ne Lie algebras. We see how the modi�ationsthat our due to the presene of the imaginary root. We next study the denominatoridentity for BKM Lie superalgebras. This was �rst onstruted by Borherds. We will statethe denominator identity and the super-denominator identity for BKM Lie superalgebrasand explain how it is obtained as a generalization of the denominator identity for a�ne Liealgebras. Disussing examples of BKM Lie superalgebras is beyond the sope of this workand the reader is refered to the literature.To de�ne the Weyl-Ka-Borherds denominator formula we �rst need to de�ne the (even)Weyl group of a BKM Lie superalgebra. As before, we de�ne the re�etion wα along ahyperplane perpendiular to α when α is an even (resp. odd) root of non-zero norm. For allweights β ∈ H r C⊗Z Q

wα(β) =

{
β − 2(β,α)

(α,α)
if deg(α) = 0 ,

β − 2(β,α)
(α,α)

if deg(α) = 1 .
(3.117)Here for the above formula to hold the roots α are also required to satisfy athe additional109



Chapter 3. BKM Lie Algebrasondition that for any x ∈ Gα, y ∈ G, there is a non-negative integer n depending on x and
y suh that (adx)ny = 0. The Weyl group WE is de�ned as followsDe�nition 3.6.2 The even Weyl group WE is de�ned to be the group generated by there�etions wαi

, i ∈ I suh that aii > 0[3℄. The Weyl groupW is generated by all the re�etions
wαi

where αi ∈ L+ and satis�es (3.117) and is of non-zero norm.For all in�nite dimensional BKM Lie superalgebras the groups WE and W are the same.The Weyl vetor for BKM Lie superalgebras is de�ned as follows:De�nition 3.6.3 A Weyl vetor is de�ned to be a vetor ρ either in the dual spae C⊗Z Qor in H or in its dual H∗ satisfying
(ρ, αi) = 1

2
(αi, αi) for all i ∈ I (3.118)We �rst need to �nd and expression for the dimensions of the weight spaes of the superalgebra to be able to di�erentiate the odd and even weight spaes. We thus, require to �nd theharater and super-harater for the super-algebra. For this, we need to work with formalexponentials eλ. We de�ne the harater and superharater using formal exponentials asfollows:De�nition 3.6.4 Let ε be the ommutative assoiative algebra of formal series
∑

λ∈H

xλe
λfor whih there exist �nitely many elements λi ∈ H, i = 1, . . . , m suh that the oe�ients xλare non-trivial only if λ ≤ λi for some 1 ≤ i ≤ m. Multipliation is de�ned by eλeµ = eλ+µ.The harater and super-harater of the H-module V = V0 ⊕ V1 ∈ O are the elements ofthe algebra ε de�ned respetively to be the formal sums:h V =

∑

λ∈H

dim Vλe
λ) and sh V =

∑

λ∈H

(dim V0λ
− dim V1λ

)eλ . (3.119)where V (Λ) ∈ O is a highest weight module of highest weight Λ, it is assumed that deg(Λ) = 0.Now we write the denominator identities that the above harater and super-haraterformulae lead to. For µ =
∑

i∈I kiαi, let us all ∑i∈I\S ki as ht0(µ), and ∑i∈I ki as ht(µ).110



Chapter 3. BKM Lie AlgebrasWe de�ne the following
TΛ = e(Λ + ρ)

∑
ǫ(µ)e−µ and T ′

Λ = eΛ+ρ
∑

ǫ′(µ)e−µ, (3.120)where
ǫ(µ) = (−1)ht(µ) and ǫ′(µ) = (−1)ht0(µ) . (3.121)In terms of the above de�nitions, we de�ne the denominator and super-denominator formulafor any BKM Lie superalgebra.De�nition 3.6.5 For any BKM Lie superalgebra G,
∏

α∈L+
0
(1− e−α)mult0(α)

∏
α∈L+

1
(1 + e−α)mult1(α)

= e−ρ
∑

w∈W

det(w) w(T ), (3.122)and ∏
α∈L+

0
(1− e−α)mult0(α)

∏
α∈L+

1
(1− e−α)mult1(α)

= e−ρ
∑

w∈W

det(w) w(T ′) (3.123)are respetively the denominator formula and the super-denominator formula.That ompletes our de�nition of the denominator and super-denominator formulae forthe ase of BKM Lie superalgebras.3.6.5 The Fake Monster Lie AlgebraAs an example of the above formula in the setting of a BKM Lie superalgebra, we will brie�ydisuss the example of the fake monster Lie algabra [61, 57℄ whih is a BKM Lie algebradesribing the physial states of a bosoni string on a torus. Its root lattie is a 26 dimensionaleven unimodular Lorentzian lattie5 denoted II25,1 = Λ⊕ II1,1 where Λ is the Leeh lattiewith elements α = (λ,m, n) (λ ∈ Λ and (m,n) ∈ II1,1) with norm α2 = λ2 − 2mn (it isthe unique positive de�nite lattie of rank 24 with no norm 2 vetors [78℄). and II1,1 is theunique even unimodular Lorentzian lattie of rank 2.The roots of II25,1 are the non-zero vetors α with α2 ≤ 2. Their multipliity is given by
p24(1 − α2/2), where p24(n) is the number of partitions of n into parts of 24 olors. Thus,5An integral lattie L is said to be even if for all v ∈ L, (v, v) ≡ 0 (mod2). Else it is said to be odd. Thedimension and signature of L are the dimension and signature, respetively, of the real vetor spae L⊗Z Rwith the bilinear form indued from L. A lattie is alled Lorentzian if it has signature (m, 1) or (1, m). Alattie is a unimodular one if L = L∗, where L∗ is the dual of L. 111



Chapter 3. BKM Lie Algebrasthe multipliities of the roots are given by
∑

n

p24(1 + n)qn = 1/∆(q) = q−1
∏

n>0

(1− qn)−24 = q−1 + 24 + 324q + 3200q + . . . . (3.124)The real simple roots are the norm 2 vetors α in II25,1, whih are in bijetive orrespon-dene with points
(λ, 1, λ

2

2
− 1), λ ∈ Λ (3.125)in the Leeh lattie. They all satisfy (ρ, α) = 1 for the Weyl vetor ρ = (0, 0,−1). Theimaginary simple roots are of the form

(0, 0, n), n ∈ N (3.126)and they all have multipliity p24(1) = 24. These satisfy (ρ, α) = 0 for their inner produtwith the Weyl vetor.The set of positive roots are given by the set of roots α = (λ,m, n) suh that m > 0 or
α = (0, 0, n). Thus, the positive roots are

α ∈ L+ = {α ∈ II25,1|(α, ρ) > 0 or α = (0, 0, n)} (3.127)The Weyl group of the algebra is generated by the real simple roots with norm 2, andthus the Weyl group of II25,1 is isomorphi to the re�etion group of the Leeh lattie.Now we an write down the denominator identity of the fake monster Lie algebra from theabove information as follows. Given the set of positive roots (3.127) and the fat that theyall have multipliity p24(1− α2/2), we an write down the produt side of the denominatoridentity as ∏

α∈L+

(1− e−α)p24(1−α2/2) . (3.128)The Weyl group is known and hene we an form the sum side of the denominator identityuning the fat that all the imaginary simple roots have norm 0 and are mutually orthogonal.The sum side is given by
∑

n1,n2,...

(−1)n1+n2+...en1ρ

(
24

n1

)
en2ρ

(
24

n2

)
. . .

= (1− eρ)24(1− e2ρ)24 . . . . (3.129)112



Chapter 3. BKM Lie AlgebrasPutting the above two equations together gives
eρ
∏

α∈L+

(1− e−α)p24(1−α2/2) =
∑

w∈W
n∈Z

det(w)w
(
eρ
∏

n>0

(1− enρ)24
)
. (3.130)For further examples the reader is referred to the mathematial literature[71, 79, 80℄. Wewill see other examples of BKM Lie superalgebras in Chapter 6 when we onstrut the BKMLie superalgebras orresponding to the modular forms ouring in the CHL strings.3.7 ConlusionIn this hapter we have studied the theory of Lie algebras overing �nite-dimensional semi-simple Lie algebras, a�ne Lie algebras, and BKM Lie superalgebras. We have seen howstarting from the �nite-dimensional Lie algebras the various onstrutions are modi�ed andgeneralized to �nally get BKM Lie superalgebras. The presene of imaginary roots dif-ferentiates the in�nite-dimensional Lie algebras from the �nite-dimensional ones, while thepresene of imaginary simple roots is a haratersti of the BKM Lie superalgebras. We willput these ideas to use later in the problem of ounting blak hole mirostates.
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4Modular Forms
4.1 Preliminary De�nitions:1. Holomorphi Funtion: The onept of a holomorphi funtion (also known as ananalyti funtion) extends the onept of real funtions of real variables to omplexfuntions of omplex variables. Let z0 be a point in C and f a funtion on C. We saythat f is omplex-di�erentiable at the point z0, if the limit

f ′(z0) = lim
z→z0

f(z)− f(z0)

z − z0
(4.1)exists. For a omplex valued funtion, this is equivalent to the Cauhy-Riemann on-ditions on the real and imaginary parts of the omplex funtion.Now, let U be an open subset of C. A funtion f : U→ C is said to be holomorphiif f takes values in C, and is omplex-di�erentiable at every point in U.The sum and produt of two holomorphi funtions is again a holomorphi funtion.The same is true of the quotient of two holomorphi funtions whenever the denomi-nator is non-vanishing. The derivative of a holomorphi funtion is itself holomorphi.Thus, holomorphi funtions are in�nitely di�erentiable and an be desribed by theirTaylor series.Some readers may be be familiar with the de�nition of holomorphi funtions as fun-tions that depend on the variable z alone, and are independent of z̄. The funtionsde�ned above, when written in terms of z and z̄, an be seen to be dependent only onthe variable z and thus represent the same thing. 114



Chapter 4. Modular Forms2. Meromorphi Funtion: The quotient of two holomorphi funtions, we said, isagain a holomorphi funtion. Suh a funtion will be holomorphi whenever thedenominator is non vanishing. This leads to the notion of a meromorphi funtion.A funtion f , on an open subset U of the omplex plane, is said to be meromorphiif it is holomorphi on U exept at a disrete set of points in U whih are the polesof the funtion. The poles are just the set of points where the denominator vanishes.The poles of a meromorphi funtion are isolated. The sum, produt and the ratio oftwo meromorphi funtions is again a meromorphi funtion.3. SL(N,F) (Speial Linear Group): It is the set of all N × N matries with entriesin the �eld F, and determinant 1. It is a simple Lie group. It is a subgroup of thegeneral linear group over the �eld F, whih is the group of all n×n invertible matries,with entries from F, together with the operation of matrix multipliation. We willmostly study the Lie group SL(2,Z), whih is over the �eld of integers, and some ofits disrete subgroups
SL(2,Z) =

{( a b

c d

)
: a, b, c, d ∈ F and ad− bc = 1

}
. (4.2)4. Upper Half Plane: The upper half plane, H , is the set of omplex numbers withpositive imaginary parts. i.e.

H = {x+ iy | y > 0; x, y ∈ R} . (4.3)It is a Riemannian manifold with the isometry group the Lie group SL(2; R). Thestudy of the ation of the isometry group on H is one of the important ideas we willunderstand while studying modular forms.5. Fundamental Domain: The idea of a fundamental domain, or fundamental regionarises as follows. Given a topologial spae, and the ation of a symmetry group onit, the fundamental domain is the smallest possible region whih an generate thewhole spae by the ation of the group on it. It has one and only one point from eahorbit of the group ation in its interior. We will give a more omplete de�nition of thefundamental domain of the ation of the modular group on the upper half plane, butwhat we desribe here is the intuitive piture that the notion of a fundamental domainattempts to apture. For the theory of modular forms, the spae we have in mind is115



Chapter 4. Modular Formsthe upper half plane, H, and the symmetry groups are SL(2,Z) and its ongruenesubgroups.4.2 Towards Modular FuntionsFrom a mathematial point of view, our problem is one of ounting. We are interested inounting the partitions of a given entity, say an integer or a vetor, as a sum of its onstituentstaken from some given set S. Restriting at �rst to just numbers, we ask if a given numberan be expressed as a sum of elements of S and, if so, in how many ways an this be done.It is this question that we will hie�y be onerned with in the following hapters, and wewill see how the notions we introdue here �t into the idea in a natural way.Let p(n) denote the number of ways n, an integer, an be written as a sum of elementsof S. We ask for the various properties of p(n), say for example, its asymptoti behaviourfor large n. We will learn more about the above problem in the ourse of our study of theDedekind's eta funtion and related ideas. For now, we look for a way to motivate the studyof modular funtions. The partition funtion p(n) and other funtions of additive numbertheory are intimately related to a lass of funtions in omplex analysis alled ellipti modularfuntions. So, it is around this idea that we start our study of modular forms. This hapteris based mostly on [81, 82, 83, 84℄4.2.1 Doubly periodi funtionsA funtion f is said to be an ellipti funtion if1. f is doubly periodi.2. f is meromorphi.We already know what a meromorphi funtion is, so we start with the doubly periodiondition. We will see that doubly periodi funtions will lead us to the set of latties in C,and the set of latties in C are very losely related to modular forms, whih we will ome toshortly. On the whole, we will �nd that ellipti funtions, latties in C, and modular formsare related to eah other very losely.A funtion f over C is alled periodi, with period ω, if
f(z + ω) = f(z) (4.4)116



Chapter 4. Modular Formswhenever z and z + ω are in the domain of f . An example of suh a funtion would be theexponential funtion ez, z ∈ C with period 2πi.A funtion f is alled doubly periodi if it has two periods ω1 and ω2 suh that the ratio
ω1/ω2 is not real.1 If ω1 and ω2 are periods of f , then so is any ombination (mω1 + nω2)for any m,n ∈ Z. The pair (ω1, ω2) is alled a fundamental pair. The set of all linearombinations mω1 + nω2 is denoted Ω(ω1, ω2). This is alled the lattie generated by ω1and ω2. We will see examples of suh funtions when we onsider some of the examples ofmodular forms later in this hapter.Let M denote the set of pairs (ω1, ω2) of elements of C∗, and L be the set of all lattiesof C. The manifold C/L(ω1, ω2) is obtained by identifying the points z1, z2 ∈ C suh that
z1 − z2 = ω1m + ω2n for some m,n ∈ Z. Now, given M , the set of all pairs (ω1, ω2), wewould like to ask when do two suh pairs {ω1, ω2} and {ω′

1, ω
′
2} ofM orrespond to the samelattie in L? The neessary and su�ient ondition for two elements of M to orrespond tothe same lattie in L turns out that they should be ongruent modlulo SL(2,Z).The pair (ω′

1, ω
′
2) is equivalent to the pair (ω1, ω2) if we an write (ω′

1 and ω′
2) as

ω′
2 = aω2 + bω1 and ω′

1 = cω2 + dω1, (4.5)where a, b, c, d ∈ Z suh that ad− bc = 1.Writing it in a slightly di�erent form leads us to the notion of unimodular transformationsand the modular group. Let τ = ω1

ω2
, and τ ′ =

ω′
1

ω′
2
. Then, the above equation in terms of the

τ variables is
τ ′ =

aτ + b

cτ + d
. (4.6)The transformation

f(z) =
az + b

cz + d
(4.7)is alled a Möbius transformation. In studying modular forms we will onentrate on suhtransformations and study funtions whih are invariant, or have spei� transformationproperties, under unimodular transformations.1If the ratio of the periods is real and rational, it an be shown that both ω1 and ω2 are integer multiplesof the same period, and if the ratio is real and irrational, it an be shown that f has arbitrarily small periodsand hene is onstant on every open onneted set on whih it is analyti.
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Chapter 4. Modular Forms4.2.2 Möbius TransformationsThe set of Möbius transformations, as de�ned above, will be important to us when we de�nethe ation of the modular group on the upper half plane. So far, we have just de�ned whatare doubly periodi funtions, and how the period of the funtion in two di�erent diretionsgenerates a parellogram whih de�nes a lattie as funtions of the periods. In seeking tohareterize the distint pairs of suh periods whih de�ne the same lattie in C, we ame toonsider unimodular transformations whih relate equivalent sets of pairs or periods. Thesetransformations form a group, as we will see now, but before that we need to extend thedomain of de�nition of the transformations to the extended omplex plane C̃ ≡ C ∪ {∞}(i.e. C together with the point at ∞. C̃ is also alled the Riemann sphere). To do so, wehave to extend the de�nition to the points z = −d
c
and z =∞. We de�ne the value of f atthese points as follows

f(−d
c

) =∞ and f(∞) =
a

c
, (4.8)with the usual onvention that z/0 =∞ if z 6=.A Möbius transformation remains unhanged if we multiply all the oe�ients a, b, c, dby the same nonzero onstant. Thus, we lose no generality in assuming ad − bc = 1. Now,let us assoiate with eah Möbius transformation (4.7), a 2× 2 matrix

A =

(
a b

c d

)
. (4.9)Also sine we have assumed ad − bc = 1, detA = 1. Then, the omposition of two suhtransformations, it is easy to verify, is given by the matrix produt of the matries assoiatedto the transformations, and is also a Möbius transformation. The identity matrix I =(

1 0

0 1

) orresponds to the identity transformation
f(z) =

1z + 0

0z + 1
. (4.10)Inverting (4.7), and solving for z in terms of f(z)

z =
df(z)− b
−cf(z) + a

, (4.11)
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Chapter 4. Modular Formsshows that f maps C̃ to C̃. Thus, the inverse of f is also a Möbius transformation and theinverse matrix
A−1 =

(
d −b
−c a

) (4.12)orresponds to f−1(z). Thus, we see that the set of all Möbius transformations with ad−bc =

1 forms a group. This is no surprise as the matries A as de�ned above are just the subgroupof SL(2,Z) with detA = 1. In studying modular forms we study an important subgroupof this group, where all the oe�ients a, b, c, d are taken to be integers. It is alled themodular group.4.3 The Modular Group and Fundamental DomainThe set of all Möbius transformations of the form
z′ =

az + b

cz + d
, (4.13)with a, b, c, d integers, and ad− bc = 1, and eah matrix A identi�ed with its negative, −A,is alled the modular group, denoted Γ(1) (The argument 1 beomes lear later, when wedisuss ongruent subgroups). From its de�nitions we an see that this is just the group

PSL(2,Z) 2. The group gets its name from the fat that the points of the quotient spae
Γ(1) \ H are moduli for the isomorphism lasses of ellipti urves over C. It is the simplestexample of a moduli spae.Let H be the upper half plane. We understand the ation of SL(2,Z) on C̃ as follows. Let
g ≡

(
a b

c d

)
∈ SL(2,Z) be any element of SL(2,Z) and let z ∈ C̃ be any point in C̃.Then, the ation of g on z is given by

g · z ≡ az + b

cz + d
. (4.14)We are representing the transformation by the matrix assoiated with it. We note the2Some books all the group SL(2, Z) the modular group. We are moding out the enter of the group,

±
(

1 0
0 1

), from it sine it ats trivially on H.
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Chapter 4. Modular Formsfollowing about the ation of SL(2,Z) on C̃.Im(g · z) =
Im(z)

|cz + d|2 , (4.15)showing that the imaginary part of g · z is greater than zero, if the imaginary part of z is.So, g.z ∈ H if z ∈ H. Thus, H is stable under the ation of SL(2,Z). Γ(1) is generated bythe two elements S and T given by
S ≡

(
0 −1

1 0

)
; T ≡

(
1 1

0 1

) (4.16)with the following relations between them:
S2 = (ST )3 = ±1. (4.17)

Γ(1) is generated as the free produt of the yli group of order 2 generated by S and theyli group of order 3 generated by ST .The ation of the generators on any z ∈ H is given by
S · z = −1

z
; T · z = z + 1. (4.18)Two points z and z′ in the upper half plane are said to be equivalent under Γ(1) if z′ = Azfor some A ∈ Γ(1). Sine Γ(1) is a group, this is an equivalene relation. This equivalenerelation divides the upper half plane into disjoint orbits of the group ation and it su�esto onsider one point from eah orbit to know the ation of the whole group on the upperhalf plane. This set � the union of the representative points of eah orbit � is alled thefundamental set of Γ(1). For sets that have a topologial struture, it beomes even nierto onsider the topologial properties to study the group generating it. This is the notionof a fundamental domain . This is in keeping with our earlier de�nition of the notionwhere we said it aptures the symmetry struture of the ation of a group on a topologialspae by homeomorphisms. Typially, the fundamental domain always onsists of an openset together with a set of few addition points (of measure zero).For an open set to be the fundamental region of a group it has to have the two followingproperties1. No two points of the fundamental domain are equivalent under the group ation. 120



Chapter 4. Modular Forms2. For any z ∈ H there is a point z′ in the losure of the fundamental domain suh that
z′ is equivalent to z under the group ation.Typially we require it to be onneted with some restrition on its boundary. However, itneed not neessarily be onneted.The fundamental domain for the ation of the modular group on H, denoted D, isgiven by all z ∈ H suh that
{|Re(z)| < 1

2
, |z| > 1} ∪ {|z| ≥ 1,Re(z) = −1

2
} ∪ {|z| = 1,−1

2
< Re(z) < 0}, (4.19)where the �rst part is the open set, and the two other terms are the boundaries one on theleft, and the other an ar at the bottom, respetively. Let us denote by O(z) = {g : g ∈

Γ(1), gz = z} the stabilizer of the point z ∈ D in Γ(1). That is, the set of elements of Γ(1)whose ation leaves a given element of D invariant. For all the points in D, exept the abovementioned three points, the stabilizer is just the identity of Γ(1). That is, O(z) = {1} forall z ∈ D exept for the following three points1. z = i, in whih ase O(z) is the group of order 2 generated by S;2. z = e2πi/3, in whih ase O(z) is the group of order 3 generated by ST3. z = eπi/3, in whih ase O(z) is the group of order 3 generated by TS.With the idea of the modular group, its ation on H, and the fundamental domain, weare now ready to de�ne and study modular funtions and modular forms.4.4 Modular Funtions and Modular FormsModular funtions are meromorphi funtions on the upper half plane whih are invariantunder the modular group. That would orrespond to any of the following equivalent objets1. A funtion from Γ(1)\H to C,2. A funtion f : H → C satisfying the transformation equation f(γz) = f(z) for all
z ∈ H,3. A funtion assigning, to every ellipti urve E over C, a omplex number dependingonly on the isomorphism type of E, or 121



Chapter 4. Modular Forms4. A funtion on latties in C satisfying F (λL) = F (L) for all latties L and all λ ∈ C∗.Generally, however, the term �modular funtion� is used only for meromorphi modularfuntions satisfying ertain growth properties. For k ∈ Z , a funtion f is said to be weaklymodular of weight k, if f is a meromorphi funtion on H suh that for all g ∈ Γ(1) and
z ∈ H

f(z) = (cz + d)−kf(g · z) . (4.20)From the above de�nition we see that the onstant funtions are modular funtions of weightzero. They are invariant under the ation of the modular group. The produt of two weaklymodular funtions of weights k1 and k2 is a weakly modular funtion of weight k1+k2. Thereare no modular funtions of odd weight. For even k, the above equation is same as
f(g · z)(d(g · z))k/2 = f(z)(dz)k/2 . (4.21)In words, the di�erential form of weight k, f(z)(dz)k/2, is invariant under the ation of Γ(1).Sine we know that Γ(1) is generated by S and T , to know the transformation of a weaklymodular funtion, we just need the transformation properties of the meromorphi funtion

f under S and T . A meromorphi funtion f on H is said to be weakly modular of weight
k if it transforms under S and T in the following way:

f(−1
z
) = zk f(z) (4.22)

f(z + 1) = f(z) . (4.23)4.4.1 q-Expansion:The map z 7→ e2πiz de�nes a holomorphi map from H to the puntured unit dis D′ (i.e.open unit dis |q| < 1 with the origin removed). Thus, we an Fourier expand f(z) as afuntion of q(z) = e2πiz as f(z) =
∑∞

−N anq
n. Then, sine f(z+1) = f(z), onsider the spae

H/T , that is the quotient spae of H modulo translation by integers (a ylinder). q induesan isomorphism between H/T and the puntured dis. Thus, a meromorphi funtion f on
H whih satis�es the ondition (4.23) above (invariane under T ), indues a meromorphifuntion, f∞, on the puntured dis suh that f∞(q(z)) = f(z). If the meromorphiity(holomorphiity) of f∞ extends to 0, we say that f is meromorphi (holomorphi) at in�nity.A neessary and su�ient ondition that f∞ is also meromorphi at 0 is that there exists122



Chapter 4. Modular Formssome positive integer N suh that f∞(q)qN is bounded near 0. f∞ then admits a Laurentexpansion in the neighborhood of the origin.
f∞(q) =

∞∑

−N

anq
n . (4.24)The above is alled the q-expansion of f about ∞. The oe�ients an are the Fourieroe�ients of f .De�nition. A weakly modular funtion of weight k is alled a modular funtion if itis meromorphi at ∞.If f is holomorphi at ∞, we set f(∞) = f∞(0). This is the value of f at ∞.De�nition. A modular funtion whih is holomorphi everywhere on H and at ∞ isalled a modular form of weight k (and level 1).If f is a modular form, then there are numbers an suh that for all z ∈ H, f is given bya series

f(z) =

∞∑

n=0

anq
n (4.25)whih onverges for |q| < 1 (i.e. z ∈ H). A modular form of weight k is alled a usp formof weight k (and level 1) if f(∞) = 0, i.e., a0 = 0. We will use the following notation forthe ation of the modular group on f .

f [α]k = f(αz)(cz + d)−k(detα)k/2 . (4.26)4.5 Congruene SubgroupsAs the name suggests, ongruene subgroups, of a matrix group, are subgroups de�ned byongruene ondition on the entries of the matrix. The matrix group we are interested in is
PSL(2,Z). The ongruene subgroups of PSL(2,Z) arise in the following way. Given thegroup PSL(2,Z), we an restrit the entries to be in Z/NZ, obtaining the homomorphism

PSL(2,Z)→ PSL(2; Z/NZ) (4.27)between the two groups. The kernel (i.e. the inverse image of the identity e) of this map isan example of a ongruene subgroup and is alled the prinipal ongruene subgroupof level n ,Γ(N). It is given by a ≡ d ≡ ±1, b ≡ c ≡ 0 (mod N) (Now we see where the123



Chapter 4. Modular Forms
1 in Γ(1) for the full modular group omes from). Γ(N) is, in fat, a normal subgroup of
Γ(1), as an be easily veri�ed by seeing that A−1BA ∈ Γ(1) for any two matries A ∈ Γ(1)and B ∈ Γ(N). The index of Γ(N) in Γ(1) is the number of equivalene lasses of matriesmodulo N . We an take the inverse image of any subgroup (not just the identity e) and thatgives other ongruene subgroups. The ones we will be studying in relation to ounting ofBPS states are the following subgroups of Γ(1)

Γ1(N) =
{( a b

c d

)
∈ SL(2,Z) :

(
a b

c d

)
≡
(

1 ∗
0 1

)
( mod N)

} (4.28)
Γ0(N) =

{( a b

c d

)
∈ SL(2,Z) :

(
a b

c d

)
≡
(
∗ ∗
0 ∗

)
( mod N)

}
, (4.29)

Γ0(N) =
{( a b

c d

)
∈ SL(2,Z) :

(
a b

c d

)
≡
(
∗ 0

∗ ∗

)
( mod N)

}
, (4.30)where * means any element. The number N is alled the level of Γ. We an de�ne modularfuntions for the ongruene subgroups just as in the ase of the full modular group.4.6 LattiesWe earlier said one of the ways in whih the modular group arises is by onsidering the setof all latties in C. Latties in C are losely related to modular forms de�ned above. We willsee that, upto ertain transformations, the quotient H/Γ(1) an be identi�ed with a lattieof C. Most of the disussion will not be too formal, but we give the formal de�nitions ofkey ideas for the sake of ompleteness. We �rst de�ne what we mean by a lattie in the realvetor spae V. There are several ways of de�ning a lattie in a vetor spae, we give onethat is easiest to understand below.A lattie in a real vetor spae V of �nite dimension is a disrete subgroup, L, of Vsuh that V/L is ompat. Similarly, one an de�ne a lattie in a omplex vetor spae.Spei�ally, onsider C. Given two non-vanishing omplex numbers ω1 and ω2 suh that

ω1/ω2 /∈ R, we an assoiate a lattie, L(ω1, ω2), to ω1 and ω2 by L(ω1, ω2) ≡ {Zω1 + Zω2}.We assume Im(ω2/ω1) > 0. {ω1, ω2} is the basis of L. Let M denote the set of pairs (ω1, ω2)of elements of C∗, and let L be the set of all latties of C. The manifold C/L(ω1, ω2) is124



Chapter 4. Modular Formsobtained by identifying the points z1, z2 ∈ C suh that z1 − z2 = ω1m + ω2n for some
m,n ∈ Z.Now, given M , the set of all pairs (ω1, ω2), we would like to ask when do two suh pairs
{ω1, ω2} and {ω′

1, ω
′
2} ofM orrespond to the same lattie in L? The neessary and su�ientondition for two elements of M to orrespond to the same lattie in L turns out that theyshould be ongruent modlulo SL(2,Z). Thus, we see that we an identify the set L of lattiesof C with the quotient of M by the ation of SL(2,Z).Also, sine it is only the ratio that determines the lattie, we an at by C∗ on anyelement (ω1, ω2) of M (respetively L ) as follows
(ω1, ω2) 7→ (λω1, λω2), ( resp. L 7→ λL), λ ∈ C∗, (4.31)without hanging the ratio. Thus, we an identify the quotient M/C∗ with H by (ω1, ω2) 7→

z = ω1/ω2, and thus, this identi�ation transforms the ation of SL(2,Z) on M into thatof Γ(1) on H. We make this idea preie below, where we explain what we said in thebeginning about the identi�ation of a lattie of C with the quotient H/Γ(1). The map
(ω1, ω2) 7→ ω1/ω2 gives a bijetion of L/C∗ onto Γ(1)\H. Thus, we an identify an elementof Γ(1)\H with a lattie of C upto a homothety (dilation).For k ∈ Z, we say that a omplex valued funtion, F , on L is of weight k if

F (λL) = λ−kF (L) (4.32)for all latties L ∈ L and all λ ∈ C∗. Let us denote by F (ω1, ω2) the value of F on the lattie
L(ω1, ω2). Then the above formula is just

F (λω1, λω2) = λ−kF (ω1, ω2) . (4.33)We note in the above formula that the produt ω−k
2 F (ω1, ω2) depends only on z = ω1/ω2.Thus, we an always �nd a funtion, f , on H suh that

F (ω1, ω2) = ω−k
2 f(ω1/ω2) (4.34)Also, sine F (ω1, ω2) is invariant under an SL(2,Z) ation on M , we see that f satis�es the
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Chapter 4. Modular Formsfollowing identity:
f(z) = (cz + d)−kf(

az + b

cz + d
) for all ( a b

c d

)
∈ SL(2,Z) (4.35)Conversely, if f veri�es the above formula, then we an assoiates it to a funtion F on Lwhih is of weight k. We thus get a orrespondene between modular funtions of weight kand lattie funtions of weight k.4.7 Examples of Modular FormsWe are now ready to see some examples of modular forms and all the theory we learnt beingput to use. We will learn suh examples that we will have oasion to use later in studyingthe main problem of this thesis. We will look at the following examples:1. Eisenstein series, whih will be used in onstruting the twisted ellipti genera of the

K3 manifold.2. Seigel modular forms, whih give the degeneray of the dyons in ertain models ofstring theory that we will onsider, and are at the heart of this thesis.3. Jaobi forms - the theta funtions, and the Fourier oe�ients of the Siegel modularforms onsidered above.There are many more important and illustrative examples of modular forms like the Jfuntion, the ∆ funtion (whih ourred as the generating funtion of the multipliities ofthe roots of the fake monster algebra (3.124) ), Weierstrass ℘ funtion, and many more,but we will not disuss them here. The above three examples are not only very importantexamples of modular forms, but they also play a very important role in the onstrution ofthe dyon degeneray partition funtion. Of the three, we will spend onsiderable time onSiegel modular forms given their importane from the point of view of this work. We startwith the Eisenstein series.
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Chapter 4. Modular Forms4.7.1 Eisenstein Series:Let L be a lattie in C. Consider the series∑γ∈L 1/|γ|σ. This series is onvergent for σ > 2,where the ∑ runs over the nonzero elements of Γ. Thus, the series
G2k(L) =

∑

γ∈Γ

1/γ2k (4.36)will be absolutely onvergent for any integer k > 1. It is alled the (non-normalized) Eisen-stein series of index 2k. Writing G2k as a funtion on M we get
G2k(ω1, ω2) =

′∑

m,n

1

(mω1 + nω2)2k
(4.37)where the summation is over all pairs of integers (m,n) 6= (0, 0) whih we indiate by aprime in the supersript. From the preeding setion, the funtion on H orresponding to

G2k(ω1, ω2) is given by
G2k(z) =

∑

m,n

1

(mz + n)2k
(4.38)where again the summation is over pairs of integers m,n suh that (m,n) 6= (0, 0). Let ussee how the T and S transformations at on the form Gk(z). Under a T transformation,

z 7→ z + 1, therefore G2k(z) 7→ G2k(z + 1) as follows
G2k(z + 1) =

′∑

m,n

1

(m(z + 1) + n)2k
=

′∑

m,n

1

(mz + (n+m))2k
=

′∑

m,n

1

(mz + n′)2k
= G2k(z).(4.39)Under an S transformation z 7→ −1

z
, thus G2k(z) 7→ G2k(−1

z
) as follows

G2k(−1
z
) =

∑

m,n

1

(−m/z + n)2k
=
∑

m,n

z2k

(−m+ nz)2k
= z2k

∑

m,n

1

(m′z + n′)2k
= zkG2k(z).(4.40)Thus, we see that G2k(z) (and hene, G2k(L) and G2k(ω1, ω2)) is a modular form of weight

2k with the value at ∞ given by G2k(∞) = 2ζ(2k), where ζ is the Riemann zeta funtion.Often, the Eisenstein series is rede�ned, so that the onstant term is 1, by dividing it by
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Chapter 4. Modular Forms
2ζ(2k). This is alled the normalized Eisenstein series

E2k(z) =
G2k(z)

2ζ(2k)
. (4.41)As before, we an also onsider Eisenstein series with respet to a subgroup Γ(N) of Γ(1),instead of the whole modular group. This gives Eisenstein series at level N . Below we givesome expliit expansions of some of the Eisenstein series at various levels.4.7.2 Fourier Expansions of Eisenstein Series:As a modular form the Eisenstein series will admit a q-expansion as formal power series interms of q(z) = e2πiτ . Here we give the Fourier expansion of the Eisenstein series Gk(z) interms of Bernoulli numbers Bn and the sigma funtion whih we de�ne below.De�nition 4.7.1 Sigma Funtion: For an integer r ≥ 0 and any positive integer n, thesigma funtion is de�ned as the sum of the r-th powers of the positive divisors of n. i.e.

σr(n) =
∑

1≤d|n

dr. (4.42)We also set σ0(n) = d(n) for the number of positive divisors of n and σ(n) = σ1(n).De�nition 4.7.2 Bernoulli Numbers: For n 6= 0 the Bernoulli numbers, Bn, are de�ned bythe following equality of formal power series:
x

ex − 1
=

∞∑

n=0

Bn
xn

n!
. (4.43)Using the above two de�nitions, we an write the Fourier expansion of the normalized Eisen-stein series E2k as 3

E2k = 1− 4k

B2k

∞∑

n=1

σ2k−1(n)qn. (4.44)For Eisenstein series of higher level, we have to ompute their expliit form using variousrelations between the E2ks. A disussion of Eisenstein series at level N and their expansionsabout di�erent usps is disussed in Appendix B. Below, as an example, we give the Fourier3E2 as de�ned below is not a modular forms of weight two due to onvergene. A losely related non-holomorphi form E∗

2 =
(
E2 − 3Imz

) has weight two (See Appendix B) 128



Chapter 4. Modular Formsexpansion for E(2)
2 , E

(3)
2 , E

(4)
2 and E(5)

2 .
E

(2)
2 (τ) = 1 + 24q + 24q2 + 96q3 + 24q4 + 144q5 + 96q6 + 192q7 + 24q8 + 312q9 + · · ·

E
(3)
2 (τ) = 1 + 12q + 36q2 + 12q3 + 84q4 + 72q5 + 36q6 + 96q7 + 180q8 + 12q9 + · · ·

E
(4)
2 (τ) = 1 + 8q + 24q2 + 32q3 + 24q4 + 48q5 + · · · (4.45)

E
(5)
2 (τ) = 1 + 6q + 18q2 + 24q3 + 42q4 + 6q5 + 72q6 + 48q7 + 90q8 + 78q9 + · · · (4.46)The Eisenstein series are very important in the theory of automorphi forms and our in anumber of plaes. Here we have listed only the very basi fats about them and the interestedreader is refered to any of the referenes for a more omplete disussion.4.7.3 Jaobi FormsIn this setion we study another important example � that of Jaobi forms. We will studytwo examples of Jaobi forms - the Theta series in this setion, and the Fourier-Jaobidevelopment of Siegel modular forms when we study Siegel modular forms in the next setion.Jaobi forms are a ross between ellipti funtions and modular forms in one variable in thatone of the variable it takes is from C, while the other is restrited to H.A Jaobi form on SL(2,Z) is a holomorphi funtion

φ : H×C→ C (4.47)satisfying the two transformation equations
φ
(az + b

cz + d
,

τ

cz + d

)
= (cz + d)2ke

2πimcτ
cz+d

φ(z,τ) (4.48)
φ(z, τ + λz + µ) = e−2πim(λ2z+2λτ)φ(z, τ) λ, µ ∈ Z2) . (4.49)These two sets of transformations de�ne the Jaobi group (See Appendix D). φ(z, τ) has aFourier expansion of the form

φ(z, τ) =

∞∑

n=0

∑

r∈Z,r2≤4mn

c(n, r)e2πi(nz+rτ) (4.50)where k,m ∈ N are alled the weight and index of φ, respetively, and the Fourier oe�ients,
c(n, r) = 0, unless n ≥ 0 and 4mn − r2 ≥ 0. Note that the funtion φ(z, 0) is an ordinary129



Chapter 4. Modular Formsmodular form of weight 2k. If m = 0, then φ is independent of τ and the de�nition reduesto the usual notion of modular forms in one variable.For weak Jaobi forms, the oe�ients c(n, r) are non-vanishing only when n ≥ 0 relaxingthe ondition involving (4nt− ℓ2). Jaobi forms of integer index were onsidered by Eihlerand Zagier[83℄ and extended to half-integral indies by Gritsenko [85℄.The ellipti genus of Calabi-Yau manifolds are weak Jaobi forms. Examples inlude:
φ−2,1(z1, z2) = Est×T 2(z1, z2) =

(
iϑ1(z1, z2)

η3(z1)

)2

φ0,1(z1, z2) = EK3(z1, z2) = 8

4∑

i=2

(
ϑi(z1, z2)

ϑi(z1, 0)

)2 (4.51)We will see the appearane of weight zero Jaobi forms of the group Γ0(N)J in writingprodut representations for the modular form Φk(Z).
φ

(N)
0,1 (τ, z) =

2N

N + 1
α(N)(τ) φ−2,1(τ, z) +

1

N + 1
φ0,1(τ, z) , (4.52)with α(N)(τ) = 12i

π(N−1)
∂τ
[
ln η(τ)− ln η(Nτ)

] is the Eisenstein series for Γ0(N). The Fourierexpansion for φ(N)
0,1 at the usp at i∞
φ

(2)
0,1(τ, z) =

(
2r + 4 +

2

r

)
+

(
4r2 − 8 +

4

r2

)
q +O

(
q2
)

φ
(3)
0,1(τ, z) =

(
2r + 2 +

2

r

)
+

(
2r2 − 2r − 2

r
+

2

r2

)
q +O

(
q2
) (4.53)

φ
(5)
0,1(τ, z) =

(
2r +

2

r

)
+

(
2r − 4 +

2

r

)
q +O

(
q2
)
.
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Chapter 4. Modular Formsand about the usp at 0 is
φ

(2)
0,1 =8 +

(
−16

r
+ 32− 16r

)
q1/2 +

(
8

r2
− 64

r
+ 112− 64r + 8r2

)
q +O

(
q3/2
)

φ
(3)
0,1 =6 +

(
−6

r
+ 12− 6r

)
q1/3 +

(
−18

r
+ 36− 18r

)
q2/3

+

(
6

r2
− 42

r
+ 72− 42r + 6r2

)
q +O

(
q4/3
) (4.54)

φ
(5)
0,1 =4 +

(
−2

r
+ 4− 2r

)
q1/3 +

(
−6

r
+ 12− 6r

)
q2/5 +

(
−8

r
+ 16− 8r

)
q3/5

+

(
−14

r
+ 28− 14r

)
q4/5 +

(
4

r2
− 26

r
+ 44− 26r + 4r2

)
q +O

(
q6/5
)
.Theta FuntionsThe Jaobi theta funtion is a funtion of two variable τ and z, where τ ∈ H, Imτ > 0and z inC de�ned by

ϑ(z, τ) =
∑

n∈Z

e(πin
2τ+2πinz) . (4.55)One an look at it as a Fourier series for a funtion in z whih is periodi with respet to

z 7→ z + 1 by writing it as
ϑ(z, τ) =

∑

n∈Z

an(τ)e
2πinz), where an(τ) = eπin

2τ (4.56)from where the ϑ(z, τ) = ϑ(z + 1, τ) part is obvious.4.8 Siegel Modular FormsIn studying Siegel modular forms we will generalize ellipti modular forms on SL(2,Z) to amore general lass of modular forms known as vetor valued modular forms. Viewed fromthis point of view it beomes easier to motivate intuitively the onstrution of Siegel modularforms along the lines of ellipti modular forms by suitably generalizing eah notion involvedin the de�nition. The modular forms we have studied so far are holomorphi maps fromthe omplex upper half plane H to C. For more general ontexts, we would like to studymodular forms more general than ones with values in C. Vetor valued modular forms mapthe Siegel upper half plane (a generalization of the omplex upper half plane) to a vetor131



Chapter 4. Modular Formsspae V . We de�ne all the relevant ideas as we go along and put together the de�nition ofSiegel modular forms, but before that we reollet some basi de�nitions.The sympleti group plays an important role in the theory of Siegel modular forms andwe start by realling its de�nition.De�nition 4.8.1 Sympleti Matrix: A 2g× 2g matrix M is said to be a sympleti matrixif it satis�es the following ondition
MTΩM = Ω, (4.57)where MT denotes the transpose of M and Ω is the �xed nonsingular, skew-symmetri blokmatrix generally taken to be

Ω =

(
0 In

−In 0

)
, (4.58)where Ig is the g × g identity matrix.The above ondition on sympleti matries an also be expressed equivalently as follows.Let the 2g × 2g matrix M be a blok matrix given by

M =

(
A B

C D

) (4.59)where eah of A,B,C and D are g× g matries. Then the above ondition is equivivalent to
ABT = BAT , CDT = DCT , and ADT −BCT = 1g. (4.60)There is more than one way of expressing the above relations and any one su�es. Ω hasdeterminant +1 and its inverse is given by Ω−1 = ΩT = −Ω..Every sympleti matrix is invertible with the inverse given by

M−1 = Ω−1MTΩ. (4.61)Further, the produt of two sympleti matries is, again, a sympleti matrix. Thus, we seethat the set of all sympleti matries has the struture of a group. This group is known asthe sympleti group.De�nition 4.8.2 Sympleti group: The sympleti group of degree 2g over a �eld F, de-noted Sp(g,F), is the group of 2g×2g matries with entries in F, and with the group operation132



Chapter 4. Modular Formsas matrix multipliation.More generally, it is the set of linear transformations of a 2g-dimensional sympleti vetorspae (a vetor spae with a nondegenerate, skew-symmetri bilinear form known as thesympleti form) over F . For our purposes, we will only be working with Sp(g,Z). Sineevery sympleti matrix has determinant +1, Sp(2,Z) is a subgroup of SL(2,Z) and is adisrete subgroup of Sp(g,R) just as SL(2,Z) is of SL(2,R).We now start our study of Siegel modular forms. We said they generalize the notion ofordinary modular forms to vetor valued modular forms, so let us understand their onstru-tion by generalizing ordinary modular forms. To de�ne an ellipti modular form we neededthe onept of a holomorphi funtion on C, the upper half plane H, the group SL(2,Z)and its ation on H (or rather, of the quotient, the modular group Γ(1)) and the fator ofautomorphy (cz+ d)k. To generalize the de�nition to vetor valued modular forms, we needto suitably generalize eah of the notions in the de�nition.4.8.1 The group.The group SL(2,Z) is the automorphism group of the Z2 lattie with the standard alternatingform4 〈, 〉 with
〈(a, b), (c, d)〉 = ad− bc. (4.62)We onsider a more general lattie Z2g

5 of rank 2g, g ∈ Z≥1, equiped with a sympletiform 〈, 〉 ating on the basis vetors ei, . . . , eg, f1, . . . , fg as follows
〈ei, ej〉 = 0, 〈fi, fj〉 = 0, and 〈ei, fj〉 = δij , (4.63)with δij is the Kroneker delta. From the de�nition of a sympleti group above, the auto-morphism group of this lattie will be the sympleti group Sp(g,Z). In the present ontextit is alled the Siegel modular group often denoted Γg. Thus, the generalization of themodular group, for ordinary modular forms, is the Siegel modular group.4An alternating form is a bilinear form B on a vetor spae V suh that for all v ∈ V , B(v, v) = 0. Bythis property it is automatially skew-symmetri, as it should be for a sympleti vetor spae.5for �nite-dimensional sympleti vetor spaes, the dimension is neessarily even sine the determinantof an odd dimensional skew-symmetri matrix vanishes.
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Chapter 4. Modular Forms4.8.2 The Upper Half Spae.Next we have to aordingly generalize the upper half spae, on whih the modular groupats, to a suitable spae on whih the Siegel modular group ats. Modular funtions werelinear transformations, with ertain presribed transformation properties, of the omplexupper half plane, whih onsists of elements in the omplex plane with positive de�niteimaginary part. Sine now we are looking at linear transformations of Z2g, the spae we arelooking for will be a spae of matries. The apropriate generalization to the upper half spae,known as the Siegel upper half spae is the set of g× g omplex symmetri matries witha positive de�nite imaginary part (obtained by taking the imaginary part of every individualmatrix entry).De�nition 4.8.3 The Siegel upper half spae, denoted Hg is de�ned as
Hg = {τ ∈MC(g, g) : τ t = τ, Im(τ) > 0}, (4.64)where MC(g, g) is the set of g × g matries over C.Justifying the word `generalization', we get bak H as H1 when g = 1.We must now de�ne the ation of the Siegel modular group on Hg, whih is done asfollows. The ation of γ =

(
A B

C D

)
∈ Sp(2,Z) on τ ∈ Hg is given by

τ 7→ γ(τ) = (Aτ +B)(Cτ +D)−1. (4.65)This ation is well de�ned, in partiular (Cτ +D) is invertible, and γ(τ) is symmetri. Alsothe imaginary part of the transformed matrix, Im(γ(τ)), is positive de�nite, as it should be,and is again in Hg.Given this ation, it is natural, as before, to look for the fundamental domain for theation of the group on Γg. Siegel onstruted a fundamental domain for g ≥ 2 but they arenot as easy to work with as was with the ase of ordinary modular forms, and are of limitedhelp in understanding the group ation. We will not have to say muh about fundamentaldomains in this setion.
134



Chapter 4. Modular Forms4.8.3 The Automorphy FatorWe now need to only generalize the automorphy fator (Cτ + D)k to the ase of Siegelmodular forms. This an be easily done noting that C and D are matries and we know themodular form takes values in a vetor spae, say V , so we need it to be a map from a spaeof matries to a vetor spae. Thus, we need to onsider a representation of GL(g,C) in V .Consider the representation
ρ : GL(g,C)→ GL(V ) (4.66)where V is a �nite-dimensional vetor spae over C provided with a hermitian metri.Now, we are ready to de�ne a Siegel modular form.De�nition 4.8.4 Siegel Modular Form of Weight ρ A holomorphi map f : Hg → V isalled a Siegel modular form of weight ρ if

f(γ(τ)) = ρ(Cτ +D)f(τ) (4.67)for all γ =

(
A B

C D

)
∈ Sp(2,Z) and all τ ∈ Hg. For g = 1, we require that f is holomorphiat ∞.Modular forms of weight ρ form a C- vetor spaeMρ = Mρ(Γg), and all theMρ are �nitedimensional. If ρ is a diret sum of two representations ρ = ρ1 ⊕ ρ2, then Mρ is isomorphito the diret sum Mρ1 ⊕Mρ2 and so we an restrit ourselves to onsidering Mρ for only theirreduible representations of GL(g,C).We also de�ne salar-valued Seigel modular forms of weight k, known as lassial Seigelmodular forms, below.De�nition 4.8.5 Classial Siegel modular form: A lassial Siegel modular form of weight

k and degree g is a holomorphi funtion f : Hg → C suh that
f(γ(τ)) = det(cτ + d)kf(τ) (4.68)for all γ = (a, b; c, d) ∈ Sp(g,Z) (with for g = 1 the usual holomorphiity requirements at

∞).We denote by Mk = Mk(Γg) the vetor spae of lassial Siegel modular forms of weight
k. These spaes form a graded ring M cl := ⊕Mk of M of lassial Siegel modular forms.When g = 1, this simply redues to the usual modular forms on SL(2,Z). 135



Chapter 4. Modular Forms4.8.4 Fourier ExpansionsAnalogous to the ellipti modular forms on SL(2,Z), we an expand the vetor valuedmodular forms in a Fourier series. In fat, the Siegel modular forms an be onstruted andexpressed in more than one ways. We will study two of these, using the theta series, and theFourier-Jaobi development, sine not only are both important ways of onstruting Siegelmodular forms in general, but both onstrutions are important to us partiularly for ourstudy of the Siegel modular forms ouring in ounting 1
4
-BPS states in string theory. Inonstruting the partition funtion for the degeneray of 1

4
-BPS states in the string models weare interested in, we will make use of both the approahes. Below we disuss the q-expansionof Siegel modular forms before studying the above mentioned expansions.For every symmetri g × g matrix n ∈ GL(g,Q), suh that 2n is an integral matrix, wean de�ne a linear form with integral oe�ients in the oordinates τij of the Siegel upperhalf spae Hg as follows Tr(nτ) =

g∑

i=1

niiτii + 2
∑

1≤i≤j≤g

nijτij . (4.69)Also, every integral ombination of the oordinates is of this form. The matrix n is alleda half-integral matrix. Now, a funtion f : Hg → C that is periodi in the sense that
f(τ + s) = f(τ) for all symmetrix g × g matries s admits a Fourier expansion

f(τ) =
∑

n half integral a(n)e2πiTr(nτ) (4.70)with a(n) ∈ C given by the Fourier transform of f(τ) as
a(n) =

∫

x mod 1

f(τ)e−2πiTr(nτ)dx, (4.71)where dx is the Eulidean volume of the spae of x-oordinates and the integral runs over
−1

2
≤ xij ≤ 1

2
. This series is uniformly onvergent on ompat subsets.For the ase of vetor-valued modular forms in in Mρ we have a similiar Fourier serieswhere the oe�ients a(n) will take values in the vetor spae instead of C as in the ase ofperiodi funtions de�ned above and satisfy

a(uTnu) = ρ(uT)a(n) for all u ∈ GL(g,Z) . (4.72)136



Chapter 4. Modular FormsLike before we write qn = e2πiTr(nτ) and write (4.70) as
f(τ) =

∑

nhalf-integral a(n)qn . (4.73)A modular form f =
∑

n a(n)e2πiTr(nr) ∈Mk(Γg) is alled singular if a(n) 6= 0 implies that nis a singular matrix (i.e. det(n) = 0).With this general introdution on the Fourier expansion of a Siegel modular form, alongthe lines of the g = 1 ase, we move on to study other developments that exist for g > 1that provide more information about the Siegel modular forms.4.8.5 The Fourier-Jaobi development of a Siegel modular form.For g = 1, we saw there exists a Fourier expansion for the Siegel modular forms. For
g > 1, there are other developments of Siegel modular forms whih are more general thanthe Fourier expansion. We will examine the Fourier-Jaobi epansion of a Siegel modularform here. Though the Fourier-Jaobi development is valid and extremely useful for anygeneral g > 1, we will in keeping with the sope of this work, restrit ourselves to the aseof g = 2.Consider (4.70), where the funtion f(τ) : Hg → C, whih is periodi in the parameter
τ , is expanded as a Fourier series in terms of the e2πiTr(nτ) with the oe�ients a(n) ∈ C.Here τ ∈ Hg. Now, suppose we wanted to isolate the periodiity of a Siegel modular form
f(τ), of weight k on Γg, under τ ′ ∈ H1, as against τ ∈ Hg, and Fourier expand f(τ) in termsof e2πiTr(nτ ′). The analog of the oe�ients a(n) would now orrespond to funtions whihtake values from Hg−1. Speializing to our ase of g = 2, we an Fourier expand the Siegelmodular form in terms of one of the variable and obtain what is alled the Fourier-Jaobidevelopment of the Siegel modular form. Let us write the matrix Z =

(
z1 z2

z2 z3

)
∈ H2(notation in keeping with the additive lifts of Siegel modular forms to be studied in Chatter

5), then the Fourier expansion an be written as
f(Z) =

∞∑

m=0

φm(z1, z2)e
2πimz3 . (4.74)where the funtion φm(z1, z2) is now a Jaobi form of weight k and index m (reall f(τ) wasa Siegel modular form of weight k). This means φm satis�es 137



Chapter 4. Modular Forms1. φm((az1 + b)/(cz1 + d), z2/(cz1 + d)) = (cz1 + d)ke2πimcz
2
2/(cz1+d)φm(z1, z2),2. φm(z1, z2 + λz1 + µ) = e−2πim(λ2z1+2λz2)φm(z1, z2)3. φm has a Fourier expansion of the form

φm =

∞∑

n=0

∑

r∈Z,r2≤4mn

c(n, r)e2π(nz1+rz2) . (4.75)This gives a relation between Siegel modular forms for genus 2 and Jaobi forms and we willuse this orrespondene later in deriving the degeneray of 1
4
-BPS states from the degenerayof 1

2
-BPS states.4.8.6 Theta SeriesWe de�ne the genus-two theta onstants as follows[86℄:

θ
[a
b

]
(Z) =

∑

(l1,l2)∈Z2

q
1
2
(l1+

a1
2

)2 r(l1+
a1
2

)(l2+
a2
2

) s
1
2
(l2+

a2
2

)2 eiπ(l1b1+l2b2) , (4.76)where a =

(
a1

a2

), b =

(
b1

b2

), and Z =

(
z1 z2

z2 z3

)
∈ H2. Further, we have de�ned q =

exp(2πiz1), r = exp(2πiz2) and s = exp(2πiz3). The onstants (a1, a2, b1, b2) take values
(0, 1). For evenaTb, it yields the so alled even theta onstants. Thus there are sixteengenus-two theta onstants. There are ten suh theta onstants for whih we list the valuesof a and b:

m 0 1 2 3 4 5 6 7 8 9(
a

b

) (
0
0
0
0

) (
0
1
0
0

) (
1
0
0
0

) (
1
1
0
0

) (
0
0
0
1

) (
1
0
0
1

) (
0
0
1
0

) (
0
1
1
0

) (
0
0
1
1

) (
1
1
1
1

)We will refer to the above ten theta onstants as θm(Z) with m = 0, 1, . . . , 9 representingthe ten values of a and b as de�ned in the above table. These are modular forms on alevel 2 ongruene subgroup of Sp(g,Z) of weight 1/2. One an onstrut Siegel modularforms on Sp(g,Z) using the even theta onstants. For example, for g = 2 the produt of thesquares of the ten even theta onstants gives a usp form of weight 10 of Sp(2,Z) whih wewill enounter in the degeneray formula for 1
4
-BPS states. We will look at examples of theabove proedure in onstruting Siegel modular forms in hapter 5. 138



Chapter 4. Modular Forms4.9 ConlusionIn this hapter we have learnt preliminary ideas about modular forms. Modular forms will bevery important to us in studying the ounting of dyons in supersymmetri string theories asthe degeneray of the 1
2
-BPS and 1

4
-BPS states are generated by modular forms. In partiularthe degeneray of 1

4
-BPS states are generated by genus-two Siegel modular forms. They alsoform the link between the CHL strings and the family of BKM Lie superalgebras related tothe CHL models via the denominator identity of the BKM Lie superalgebras.Here we have learnt the basi fats and de�nitions of the theory of modular forms. Wehave seen funtions with ertain restrited transformation properties under the generatorsof PSL(2,Z) and how this leads to the idea of modular forms. We have also studied theirFourier expansions. We then graduated to more involved modular forms � the Siegel modularforms whih are in a sense generalizations of ordinary modular forms. We studied the Fourierexpansions of Siegel modular forms, besides disussing methods of onstruting them. Wewill put these ideas to use in hapter 5 in onstruting the various modular forms ouringin the ounting of dyoni states.
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5Construting the Modular Forms
5.1 IntrodutionIn hapter 2, we undertook an expliit ounting of BPS dyoni blak hole mirostates in twolasses of four-dimensional N = 4 supersymmetri string theories � the CHL models and thetype II models. Both models are obtained as asymmetri ZN -orbifolds of a parent theory �the heteroti string ompati�ed on a six-torus (for CHL models) and the type IIA stringompati�ed on a six-torus. The degeneray of 1

4
-BPS states was shown by David, Jatkarand Sen to be be generated by a genus-two Siegel modular form generalizing the proposalof DVV. Their results were restrited to prime values of N . In this hapter, we extend theirproposal to all allowed values of N , not neessarily prime.Consider a 1

4
-BPS dyoni state with eletri harges qe and qm. Quantization of hargesimply that (for the ZN -orbifold)

1
2
q2
e = n

N
, 1

2
qe · qm = ℓ and 1

2
q2
m = m ,for three integers (n, ℓ,m). Let d(n, ℓ,m) denote the degeneray of suh dyoni states. Then,the degeneray d(n, ℓ,m) of dyons in the CHL models with these harges is generated by agenus-two Siegel modular form, Φ̃k(Z), at weight k and level N . One has

64

Φ̃k(Z)
=
∑

n,ℓ,m

d(n, ℓ,m) qn/Nrℓsm , (5.1)where fator of 64 in the numerator aounts for the degeneray of a single 1
4
-multiplet.When N is prime and N + 1|24, one has (k + 2) = 24/(N + 1) and these were the modular140



Chapter 5. Construting the Modular Formsforms onstruted by Jatkar and Sen[2℄. We list below all the possible values of (N, k) thatappear in the CHL models: For the type II models, one has another Siegel modular form
N 1 2 3 4 5 6 7 8 11
k 10 6 4 3 2 2 1 1 0Table 5.1: (N, k) values for the CHL modelswhih we denote by Ψ̃k(Z), at weight k and level N . The degeneray of 1

4
-BPS dyons in thetype II models are generated by

64

Ψ̃k(Z)
=
∑

n,ℓ,m

d(n, ℓ,m) qn/Nrℓsm , (5.2)where fator of 64 in the numerator aounts for the degeneray of a single 1
4
-multiplet.When N is prime and N + 1|12, one has (k + 2) = 12/(N + 1) and the modular forms wereonstruted by David, Jatkar and Sen for N = 2, 3[31℄. We list below all the possible valuesof (N, k) that appear in the type II models:

N 1 2 3 4 5
k 4 2 1 1 0

(5.3)Table 5.2: (N, k) values for the typeII modelsWe show that the type II modular forms Ψ̃k(Z) an be written in terms ratios of theCHL modular forms Φ̃k(Z).We also onstrut another losely related modular form from the two aforementionedmodular forms. Let
Φk(Z) ∼ z−k1 Φ̃k(Z̃) and
Ψk(Z) ∼ z−k1 Ψ̃k(Z̃) , (5.4)with

z̃1 = −1/z1 , z̃2 = z2/z1 , z̃3 = z3 − z2
2/z1 .In the CHL models, the genus-two Siegel modular forms Φk(Z) are related to the R2 or-retions in the string e�etive ation[2℄. We thus have two modular forms for eah lass ofmodels. 141



Chapter 5. Construting the Modular FormsWe will also need to study the `square roots' of the modular forms Φ̃k(Z) and Φk(Z),denoted ∆̃k/2(Z) and ∆k/2(Z) respetively, in order to understand the algebra strutureunderlying the degeneray of the 1
4
-BPS states. We will obtain ∆̃k/2(Z) and ∆k/2(Z), whihthemselves are also modular forms, in the form of an in�nite sum and an in�nite produtalong the lines of the onstrution of the modular forms Φ̃k(Z) and Φk(Z). These modularforms arise as the denominator formulae of BKM Lie superalgebras as we will study in thenext hapter, and hene, to interpret them as the sum and produt side of a denominatoridentity, one has to prove their modular properties whih we will show in this hapter.5.2 Modular forms via the additive lift5.2.1 Additive lift of Jaobi forms with integer indexNow we ome to the onstrution of the modular forms Φ̃k(Z) and Φk(Z) from the weakJaobi forms onstruted as mentioned in the previous setion. Given a Jaobi form ofweight k and index 1, Maaÿ onstruted a Siegel modular form of weight k leading to anexpliit formula[87℄ using the oe�ients of the Fourier expansion of the Jaobi form. Thisproedure is known as the arithmeti or additive lift of the Jaobi form. It is known thatthe ring of Siegel modular forms is generated by four modular forms with weights 4, 6, 10and 12. For instane, the weight 10 modular form, Φ10(Z), is generated by the Jaobi formof weight 10 and index 1

φ10,1(z1, z2) = θ1(z1, z2)
2 η(z1)

18 . (5.5)More generally, onsider a weak Jaobi form of weight k, index 1 and level N as
φk,1(z1, z2) =

ϑ1(z1, z2)
2

η(z1)6
gρ(z1) =

∑

n,ℓ

a(n, ℓ) qnrℓ , (5.6)where gρ(z1) is a genus-one modular form of weight (k + 2) at level N possibly with har-ater. We will refer to the weak Jaobi form as the additive seed. The Maaÿ onstrution(generalized to higher levels and modular forms with harater by Jatkar and Sen[2℄) leadsto the following formula for weight k modular form given by the Fourier oe�ients, a(n, ℓ),of the additive seed
Φk(Z) ≡

∑

(n,ℓ,m)>0

∑

d|(n,ℓ,m)

χ(d) dk−1 a
(
nm
d2
, ℓ
d

)
qnrℓsm , (5.7)142



Chapter 5. Construting the Modular Formswhere
(n, ℓ,m) > 0 implies n,m ∈ Z+ , ℓ ∈ Z and (4nm− ℓ2) > 0and χ(d) is a real Dirihlet harater[88℄ modulo N . The weight k and the harater χ aredetermined by the modular form gρ(z1).When χ(d) is trivial, i.e.,

χ(d) =

{
0 if (d,N) 6= 1

1 otherwise , (5.8)we obtain a level N Siegel modular form. When the Jaobi form is one with harater, onesees the appearane of a non-trivial Dirihlet harater and the Siegel modular form obtainedfrom the additive lift is one with harater.5.2.2 Additive lift of Jaobi forms with half-integer indexWe have just onsidered modular forms obtained from the additive lift of Jaobi forms withintegral index. We will now study examples with half-integral index, as they appear in thedenominator formulae for the the BKM Lie superalgebras GN and G̃N . that we onsider inthe next hapter. The simplest example of a modular form with half-integral index is givenby the Jaobi theta funtion, ϑ1(z1, z2). It is a holomorphi Jaobi form of weight 1/2 andindex 1/2 with harater. This Jaobi form appears as the denominator formula of the a�neKa-Moody algebra, Â(1)
1 . Further, we will see that the modular forms ∆̃k/2(Z) and ∆k/2(Z)an also be obtained as the additive lift of a Jaobi usp form of Γ1(N) of weight k/2 andindex 1/2 ψk/2,1/2(z1, z2). The Fourier expansion of suh a Jaobi form with half-integralindex is of the form:
ψk/2,1/2(z1, z2) =

∑

n,ℓ≡1 mod 2

g(n, ℓ) qn/2rℓ/2 , (5.9)with q = exp(2πiz1) and r = exp(2πiz2) and s = exp(2πiz3). The modular form ∆k/2(Z) isde�ned by the additive lift[7, see appendix C℄:
∆k/2(Z) ≡

∑

(n,ℓ,m)>0

∑

d|(n,ℓ,m)

χ(d) d
k−2
2 g

(
nm
d2
, ℓ
d

)
qn/2rℓ/2sm/2 , (5.10)where χ(d) is the harater assoiated with the additive seed. 143



Chapter 5. Construting the Modular FormsAs an example, the Jaobi form of weight 5 and index 1/2

ψ5,1/2(z1, z2) = ϑ1(z1, z2) η(z1)
9 , (5.11)generates the Siegel modular form with harater, ∆5(Z) via the additive lift. The Fourierexpansion of the Jaobi form now involves half-integral exponents. One has

ψ5,1/2(z1, z2) =
∑

n,ℓ=1 mod 2

g(n, ℓ) qn/2rℓ/2 , (5.12)with g(n, ℓ) = 0 unless 4n−ℓ2 ≥ 0. The modular form ∆5(Z) has the following expansion[89℄
∆5(Z) =

∑

(n,ℓ,m)>0

∑

d|(n,ℓ,m)

dk−1 g
(
nm
d2
, ℓ
d

)
qn/2rℓ/2sm/2 . (5.13)Notie the similarity with the Maaÿ formula given in Eq. (5.7) with half-integral powers of q,

r and s appearing where integral powers appeared. Gritsenko and Nikulin have shown thatthis modular form appears as the denominator formula of a BKM Lie superalgebra. ∆5(Z)is a modular form with harater under the full modular group, Sp(2,Z). It transforms as
∆5(M · Z) = vΓ(M) (CZ +D)5 ∆5(Z) , (5.14)where vΓ(M) is the unique non-trivial real linear harater of Sp(2,Z)[90℄ andM = ( A B

C D ) ∈
Sp(2,Z). An expliit expression for vΓ(M) is[89℄

vΓ

(
0 −I2
I2 0

)
= 1 , vΓ

(
I2 B

0 I2

)
= (−1)b1+b2+b , (5.15)

vΓ

(
UT 0

0 U 1

)
= (−1)(1+u0+u2)(1+u1+u3)+u0u2 , (5.16)where I2 is the 2× 2 identity matrix, B =
(
b1 b
b b2

) and U = ( u0 u3
u1 u2 ) is a uni-modular matrix.5.3 The additive seed for CHL modelsIn hapter 2, we ounted the states of the blak hole expliitly to obtain the full partitionfuntion of the 1

4
-BPS states. We saw that the ounting, and hene the partition funtion,144



Chapter 5. Construting the Modular Formsan be split into three independent omponents � the degeneray of the exitations of theKaluza-Klein monopole, the degeneray of the exitations of the overall motion of the D1-D5 system moving in the bakground of the Kaluza-Klein monopole, and the degeneray ofthe relative motion of the D1-D5 system. The produt of these three omponents gave thefull partition funtion whih was proportional to the modular form Φ̃k(Z). The produt oftwo of the ontributions, namely the degeneray of the exitations due to the Kaluza-Kleinmonopole and the D1-D5 system ombine to give a weak Jaobi form of weight k, index 1and level N . This Jaobi form serves as the additive seed that generates the modular form
Φ̃k(Z). This an be ompared with the disussion on the Fourier-Jaobi development of aSiegel modular form at the end of hapter 4 where the orresponding Siegel modular formwas broken up into a periodi piee and a Jaobi form. To generate the modular forms fromthe orresponding weak Jaobi form, we �rst need to obtain the generating funtion of thedegeneray of eletrially harged 1

2
-BPS states whih we denoted by gρ(z1) in eq. (5.6).It turns out that the genus-one form gρ itself has a very nie struture whih an beunderstood in terms of `yle shapes' of produts of Dedekind's eta funtions obtained fromthe set of sympleti automorphisms of a K3 surfae[9℄. The allowed yle shapes satisfyertain onditions on the form of their exponents that depends on the orbifolding group ZN .This is a very interesting result that gives beautiful insight into the form of the degeneray ofthe 1

2
-BPS states and we spend some time now understanding the degeneray of the 1

2
-BPSstates �rst before proving this result. It also provides us with the required information toonstrut the modular forms for the values of N not onsidered by Jatkar and Sen[2℄.5.3.1 Counting 1

2
-BPS states in CHL modelsThe ounting of the degeneray of 1

2
-BPS states of a given eletri harge is mapped to theounting of states of the heteroti string with the right-movers1 in the ground state[35, 43, 42℄.While this is oneptually easy to ompute, for orbifolds, the ontributions from the di�erentsetors to the degeneray need to be added up. Up to exponentially suppressed terms (forlarge harges), the leading ontribution arises from the twisted setors and the asymptotiexpansion takes a simple form (given in Eq. (5.20) below)[35℄. This asymptoti expansionis onsistent with a produt of η-funtions alled η-produts. Let us, brie�y reall the aseof 1

2
-BPS states.1we take the onvention that right movers are taken to be supersymmetri and left movers are bosoni inthe heteroti string. 145



Chapter 5. Construting the Modular FormsHeteroti string on T 6(Eletri) 1
2
-BPS exitations of the heteroti string arrying harge N ≡ 1

2
q2
e are obtainedby hoosing the supersymmetri (right-moving) setor to be in the ground state. The levelmathing ondition beomes

−1

2
q2
e +NL = 1 , (5.17)where qe ∈ Γ22,6 and NL is the osillator ontribution to L0 in the bosoni (left-moving)setor. Thus, we see that

n = 1
2
q2
e = NL − 1 .Let d(n) represent the number of on�gurations of the heteroti string with eletri hargesuh that 1

2
q2
e = n. The level mathing ondition implies that we need to ount the numberof states with total osillator number NL = (n+ 1). The generating funtion for this is

16

η(z1)24
=

∞∑

n=−1

d(n) qn , (5.18)where the fator of 16 aounts for the degeneray of a 1
2
-BPS multiplet � this is the degen-eray of the Ramond ground state in the right-moving setor.The CHL orbifold of the heteroti string on T 6In the CHL orbifold, the eletri harge takes values in a lattie Γ⊥ ⊂ Γ22,6 of signature

(22 − 2k̂, 6) = (2k + 2, 6) that is not self-dual. Here Γ⊥ is the sub-lattie of Γ22,6 that isinvariant under the ation of the orbifold group. Let vol⊥ be the volume of the unit ell in
Γ⊥. De�ne the generating funtion of the degeneraies d(n) of 1

2
-BPS states as follows:

16

gρ(z1/N)
≡

∞∑

n=−1

d(n) qn/N , (5.19)for the ZN CHL orbifold taking into aount that the eletri harge is quantized suh that
Nq2

e ∈ 2Z. Setting z1 = iµ/2π, and in the limit µ→ 0, one has[35℄
lim
µ→0

1

gρ(iµ/2πN)
= 16 e4π

2/µ
( µ

2π

)(k+2)/2

(vol⊥)1/2 + · · · (5.20)
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Chapter 5. Construting the Modular Formswhere the ellipsis indiates exponentially suppressed terms. Making an ansatz for gρ(z1) inthe form of an η-produt
gρ(z1) =

N∏

r=1

η(rz1)
ar = η(z1)

a1η(2z1)
a2 · · ·η(Nz1)aN , (5.21)we an identify the above η-produt with the `yle shape' ρ = 1a12a2 · · ·NaN . The η-produthas to satisfy the following onditions:1. The asymptoti behaviour of gρ(z1) given in Eq. (5.20) requires

(
Na1 +N a2

2
+ · · ·+ aN

)
= 24 ,

a1 + a2 + · · ·+ aN = 2(k + 2) , (5.22)
(
1a12a2 · · ·NaN

)−1
= vol⊥ .The last ondition involving the volume of the unit ell is exatly what one expets foran orbifold ation on the basis vetors of the self-dual lattie Γ20,4 ⊂ Γ22,4 orrespondingto the yle shape ρ.2. Considering ZN as a yli permutation, one sees that the only permitted yles areof length r suh that r|N . One therefore imposes ar = 0 unless r|N . Thus, when N isprime, only a1 and aN are non-zero and the ondition simpli�es onsiderably.3. We will see later that the ondition for a yle to be a balaned one implies that

a1 = aN among other things. It also implies that the �rst equation in Eq. (5.22) anbe rewritten as
a1 + 2a2 + · · ·+NaN = 24 . (5.23)These onditions uniquely �x the form of gρ(z1). When N is prime, one sees that a1 = aN =

24
N+1

.5.3.2 Sympleti Automorphisms of K3 and M24To understand the yle shapes that appear in the 1
2
-BPS state ounting better, let usonsider the dual desription of the CHL orbifold as supersymmetri orbifold of type IIstring theory on K3 × T 2. The orbifold group ats on the K3 as a sympleti (Nikulin)involution � it ats trivially on the nowhere vanishing (2, 0) holomorphi form. It was shown147



Chapter 5. Construting the Modular Formsby Mukai that any �nite group of sympleti automorphisms of a K3 surfae is a subgroupof the Mathieu group, M23[91℄.To better understand this result, onsider a sympleti automorphism of K3, σ, of �niteorder, n (it is known that n ≤ 8). The number of �xed points, ε(n) (whih depends only onthe order of σ) is given by
ε(n) =

24

n
∏

p|n(1 + 1
p
)
,and happens to math the number of �xed points for a similar element of the Mathieu group,

M23. The Mathieu group M24 an be represented as a permutation group ating on a setwith 24 elements. Then, M23 is the subgroup of M24 that preserves one element of the set.Mukai the showed that if G is a �nite group of sympleti automorphisms of K3, then(i) G ats as a permutation on H∗(K3,Z) and an be embedded as a subgroup of M23.(ii) G neessarily has at least �ve �xed points, one arising from H0,0(K3), H2,0(K3),
H1,1(K3), H0,2(K3) and H2,2(K3). The only non-trivial part is that there is at leastone �xed point in H1,1(K3).The embedding of G into M23 ⊂ M24 enables one to use known properties of M23. Inpartiular, it was shown by Conway and Norton that any element of M24 has a balanedyle shape[92℄. Reall that any permutation (of order n) may be represented by its yleshape:

ρ ≡ 1a12a2 · · ·nan . (5.24)A yle shape, ρ, is said to be balaned if there exists a positive integer M suh that(
M
1

)a1(M
2

)a2 · · ·
(
M
n

)an is the same as ρ. Sine dim(H∗(K3)) = 24, one also has the ondition
∑

i

i ai = 24 . (5.25)As an example, the yle shape 142244 is balaned with M = 4 and satis�es the aboveondition. Now given a balaned yle shape, ρ, onsider the funtion gρ(z1) de�ned by thefollowing produt of η-funtions:
ρ 7−→ gρ(z1) ≡ η(z1)

a1η(2z1)
a2 · · · η(nz1)an . (5.26)Note that when the ondition (5.25) is satis�ed, gρ(z1) has no frational exponents in its148



Chapter 5. Construting the Modular FormsFourier expansion about the usp at in�nity. One has
gρ(z1) =

∞∑

m=1

am qm , with a1 = 1 , (5.27)where q = exp(2πiz1). One more ondition we require of the funtions is that of multiplia-tivity. A funtion g(z1) =
∑

n anq
n is multipliative if anm = anam when gd(n,m) = 1. Ofthe 1575 partitions of 24 (this is equivalent to all solutions of Eq.(5.25)), Dummit et. al. haveshown there exist a set of thirty multipliative η-produts eah assoiated with a yle thatis balaned[93, 94℄. Conluding the disussion on the degeneray of 1

2
-BPS states, we list inTable 5.3, the various yle shapes(restriting to shapes with M ≤ 16), the orrespondingweight of the genus-two modular form generating the degeneraies of the 1

4
-BPS states inthe CHL model it orresponds to, and the disrete group G that is an automorphism of K3whih orresponds to the yle shape ρ[9℄. The groups have been identi�ed by extratingthe yle shape from the disussion in Chaudhuri and Lowe[95℄ (see also proposition 5.1 in[96℄). It is interesting to note that all yle shapes that appear in Table 5.3 arise from theation of Nikulin involutions on H∗(K3) � this inludes produt groups suh as Z2 × Z2. Inexamples involving produt groups, the η-produts are atually of level N < M and the truelevel N is indiated in a separate olumn.5.3.3 Formulae for Φk(Z) and Φ̃k(Z)We an use the expressions for gρ(z1) and harater χ(d) from Table 5.3 to determine theadditive seed and hene onstrut the modular form Φk(Z) for N = 1, 2, 3, 4, 5, 6, 7, 8, 11using eq. (5.7). For prime N this reprodues the result of Jatkar and Sen[2℄.As disussed by Jatkar and Sen[2℄, the generating funtion of dyoni degeneraies, Φ̃k(Z),is given by expansion of the modular form, Φk(Z), about another inequivalent usp. Let

Φ̃k(Z) ≡ (vol⊥)1/2 z−k1 Φk(Z̃) , (5.28)with
z̃1 = −1/z1 , z̃2 = z2/z1 , z̃3 = z3 − z2

2/z1 .We have hosen a normalization for Φ̃k(Z) that di�ers from the one used in [2℄ but agrees withthe one used in [30℄. Consider 1
4
-BPS dyons with harges qe and qm suh that 2n = Nq2

e,
2m = q2

m and ℓ = qe · qm. Then, the degeneray d(n, ℓ,m) of dyons with these harges is149



Chapter 5. Construting the Modular FormsCyle shape ρ (k + 2) χ( a bc d ) M N G

124 12 1 1
1828 8 2 2 Z2

1636 6 3 3 Z3

212 6 4 2 Z2 × Z2

142244 5
(
−1
d

)
4 4 Z4

1454 4 5 5 Z5

12223262 4 6 6 Z6

2444 4 8 4 Z2 × Z4

38 4 9 3 Z3 × Z3

1373 3
(
−7
d

)
7 7 Z7

12214182 3
(
−2
d

)
8 8 Z8

2363 3
(
−3
d

)
12 6 Z2 × Z6

46 3
(
−1
d

)
16 4 Z4 × Z4

12113 2 11 11 Z11Table 5.3: The funtion gρ(z1) is a modular form of weight (k + 2), generalized level M(true level N and harater χ). Only non-trivial haraters are indiated in olumn 3. The
N = 11 example is not a sympleti involution of K3.generated by

64

Φ̃k(Z)
=
∑

n,ℓ,m

d(n, ℓ,m) qn/Nrℓsm . (5.29)A similar additive lift for Φ̃k(Z) is given by the following seed:
φ̃k,1(z1, z2) =

ϑ1(z1, z2)
2

η(z1)6
gρ(z1/N) . (5.30)We now provide detailed expressions for the genus-two modular forms Φk(Z) for the CHL

ZN orbifolds.
N = 1, 2, 3, 5For prime N and N + 1|24, the additive seed is given by (k + 2 = 24/(N + 1)

φk,1(z1, z2) = ϑ1(z1, z2)
2η(z1)

k−4 η(Nz1)
k+2 =

∑

n,ℓ

a(n, ℓ) qnrℓ . (5.31)150



Chapter 5. Construting the Modular FormsThe additive lift is (a(n, ℓ) is as de�ned by the above equation)
Φk(Z) ≡

∑

(n,ℓ,m)>0

∑

d|(n,ℓ,m)

(
−1
d

)
dk−1 a

(
nm
d2
, ℓ
d

)
qnrℓsm . (5.32)This result is originally due to Jatkar and Sen[2℄

N = 4From Table 5.3, we see that k = 3 for N = 4. The seed for the additive lift is
φ3,1(z1, z2) =

ϑ1(z1, z2)
2

η(z1)2
η(2z1)

2η(4z1)
4 =

∑

n,ℓ

a(n, ℓ) qnrℓ . (5.33)The additive lift is (a(n, ℓ) is as de�ned by the above equation)
Φ3(Z) ≡

∑

(n,ℓ,m)>0

∑

d|(n,ℓ,m)

(
−1
d

)
dk−1 a

(
nm
d2
, ℓ
d

)
qnrℓsm , (5.34)where the Jaobi symbol (−1

d

) is +1 when d = 1 mod 4; −1 when d = 3 mod 4 and 0otherwise. This a Siegel modular form with level four and harater ψ4(γ) where
ψ4(γ) =

( −1

detD

) for γ =

(
A B

C D

)
∈ G0(4) , (5.35)where G0(4) is the level four subgroup of Sp(2,Z)[97℄.

N = 6From Table 5.3, we see that k = 2 for N = 6. The seed for the additive lift is
φ2,1(z1, z2) =

ϑ1(z1, z2)
2

η(z1)4
η(2z1)

2η(3z1)
2η(6z1)

2 =
∑

n,ℓ

a(n, ℓ) qnrℓ . (5.36)The additive lift is then (a(n, ℓ) is as de�ned by the above equation)
Φ2(Z) ≡

∑

(n,ℓ,m)>0

∑

d|(n,ℓ,m)
d=1,5 mod 6

dk−1 a
(
nm
d2
, ℓ
d

)
qnrℓsm . (5.37)
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Chapter 5. Construting the Modular Forms
N = 8From Table 5.3, we see that k = 1 for N = 8. The seed for the additive lift is

φ1,1(z1, z2) =
ϑ1(z1, z2)

2

η(z1)4
η(2z1)η(4z1)η(8z1)

2 =
∑

n,ℓ

a(n, ℓ) qnrℓ . (5.38)The additive lift is then (a(n, ℓ) is as de�ned by the above equation)
Φ1(Z) ≡

∑

(n,ℓ,m)>0

∑

d|(n,ℓ,m)

(
−2
d

)
dk−1 a

(
nm
d2
, ℓ
d

)
qnrℓsm , (5.39)where the Jaobi symbol (−2

d

) is +1 when d = 1, 3 mod 8; −1 when d = 5, 7 mod 8 and 0otherwise. This is also a Siegel modular form at level eight and harater ( −2
detD

).5.3.4 Construting the modular form ∆k/2(Z)The square-root works only for N = 1, 2, 3, 4, 5. For other values of N , we �nd non-integralFourier expansions arising from taking the `square-root' of Φk(Z). In these ases, the additiveseed for the modular form ∆k/2(Z) is
ψk/2,1/2(z1, z2) =

θ1(z1, z2)

η(z1)3

√
gρ(z1) , (5.40)where gρ(z1) are the η-produts obtained from Table 5.3. This happens to be the squareroot of the Jaobi form that generates Φk(Z). Similarly, the modular form ∆̃k/2(Z) is givenby the lift of the additive seed2 :

ψ̃k/2,1/2(z1, z2) =
θ1(z1, z2)

η(z1)3

√
gρ(z1/N) . (5.41)We have already seen the ase of N = 1. For N = 2, 5, the harater χ(d) is the trivialone (see Eq. (5.8)) and the orresponding modular form is got by taking the appropriate2The Fourier expansion of the Jaobi form here has powers of q1/N Thus one has nN ∈ Z in eq. (5.10).
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Chapter 5. Construting the Modular Formsvalues of k and m. For N = 3, we need a non-trivial harater χψ(d) =
(
−3
d

) i.e.,
χψ(d) =





0 d = 0 mod 3 ,

1 d = 1 mod 3 ,

−1 d = 2 mod 3 .

(5.42)Thus, when N = 3, the weight of the modular form is even as k = 2. However, the seedJaobi form, ψ2,1/2(z1, z), transforms with harater wγwψ thus evading the restrition on kbeing odd. Taking into aount the additional harater, wψ, one obtains:
∆2(Z) =

∑

(n,ℓ,m)>0

∑

α|(n, ℓ, m)

α > 0

χψ(α) αk−1 g
(
nm
α2 ,

ℓ
α

)
qn/2rℓ/2sm/2 , (5.43)with χψ(α) as de�ned in Eq. (5.42) replaing χ(α). For N = 1, 2, 4, we will see that ∆k/2(Z)as well as ∆̃k/2(Z) an be de�ned as the produt of k even genus-two theta onstants andthe additive lift is not neessary.5.3.5 Expressions in terms of genus-two theta onstantsIn hapter 4 we saw that Siegel modular forms an be expressed in terms of produts of evengenus-two theta onstants. Some of the Siegel modular forms ouring in our study alsoadmit suh an expression and we give it here. We mentioned earlier that the Siegel modularform for N = 1, Φ10(Z) an be written as the squared produt of all the even genus-twotheta onstants

Φ10(Z) =
( 1

64

9∏

m=0

θm(Z)
)2

≡ [∆5(Z)]2 . (5.44)Similarly, for N = 2 one an write the modular form Φ6(Z) as produts of even genus-twotheta onstans as follows
Φ6(Z) =

( 1

64
θ2(Z)

∏

m=1 mod 2

θm(Z)
)2

≡ [∆3(Z)]2 . (5.45)while for Φ̃6(Z) the expression is given by
Φ̃6(Z) =

( 1

16
θ1(Z) θ3(Z) θ6(Z) θ7(Z) θ8(Z) θ9(Z)

)2

≡
[
∆̃3(Z)

]2
, (5.46)153



Chapter 5. Construting the Modular FormsSimilarly, the Siegel modular forms for the N = 4 example we just onsidered are alsoexpressible as produts of even genus-two theta funtions
Φ3(Z) =

(
1

8
θ5 (2Z) θ7 (2Z) θ9 (2Z)

)2

≡
[
∆3/2(Z)

]2
. (5.47)and

Φ̃3(Z) =

(
1

4
θ8 (Z′) θ3 (Z′) θ9 (Z′)

)2

≡
[
∆̃3/2(Z)

]2
. (5.48)where Z′ =

(
1
2
z1 z2

z2 2z3

).It is pleasing to note that the formulae for Φk(Z) and Φ̃k(Z) are squares of produtsof even genus-two theta onstants � this provides an independent way to see that theirsquare-roots are well-de�ned for N = 1, 2, 4. We have veri�ed these formulae by omparingthe expansions from the additive lift to the one given in terms of even genus-two thetaonstants to a fairly high power. The representation of the modular forms in terms of theeven genus-two modular forms gives us yet another way to obtain the modular forms.5.4 Produt formulae for Φk(Z) and Φ̃k(Z)Next we ome to the produt form of the modular forms Φ̃k(Z) and Φk(Z). The produtformulae for Φk(Z) as well as Φ̃k(Z) an be given in terms of the oe�ients of the Fourierexpansion of the twisted ellipti genera[32℄. The twisted ellipti genus for a ZN -orbifold of
K3 is de�ned as3:

Fm,n(z1, z2) =
1

N
TrRR,gm

(
(−)FL+FRgnqL0 q̄L̄0e2πızFL

)
, 0 ≤ m,n ≤ (N − 1) , (5.49)where g generates ZN and q = exp(2πız1). The twisted ellipti genera are weak Jaobi formsof weight zero, index one and level N [32℄.We will need to ompute the Fm,n(z1, z2) by use of their transformation properties underthe modular group. Let γ = ( a bc d ) ∈ SL(2,Z). Then, one has

Fm,n(z1, z2)
∣∣∣
γ

= F am+cn,bm+dn(z1, z2) . (5.50)3The origin of these twisted ellipti genera are in threshold orretions in string theory [98, 99, 100, 101,102℄ 154



Chapter 5. Construting the Modular FormsIn partiular, under T : z1 → z1 + 1 and S : z1 → −1/z1, one has
F 0,n(z1, z2)

∣∣∣
T

= F 0,n(z1, z2) , F 0,n(z1, z2)
∣∣∣
S

= F n,0(z1, z2) . (5.51)More generally, the F r,s(z1, z2) are weak Jaobi forms of weight zero and index one at level
N . Using their transformation properties under the modular group we an study their orbitsunder the ation of the generators T and S of the modular group and these give onstraintson the form of the Fm,n(z1, z2).Consider the Fourier expansion

F a,b(z1, z2) =

1∑

m=0

∑

ℓ∈2Z+m,n∈Z/N

ca,bm (4n− ℓ2) qnrℓ , (5.52)where q = exp(2πiz1) and r = exp(2πiz2). We will also write ca,b(n, ℓ) for the Fourieroe�ient ca,bm (4n− ℓ2). David, Jatkar and Sen provide the following produt formulae usingthe Fourier oe�ients, ca,b(4n− ℓ2) twisted ellipti genera[32℄. One has 4
Φ̃k(q, r, s) =(q1/Nrs)×

N−1∏

m=0

∏

l,b∈Z,k∈Z+ r
N

k,l,b>0

(
1− qkrbsl

)1
2

PN−1
n=0 e−2πiln/N c(m,n)(kl,b)

×
N−1∏

m=0

∏

l,b∈Z,k∈Z− r
N

k,l,b>0

(
1− qkrbsl

)1
2

PN−1
n=0 e

2πiln/N c(m,n)(kl,b)

, (5.53)and
Φk(q, r, s) =(qrs)×

N−1∏

m,n=0

∏

(k,l,b)∈Z

(k,l,b)>0

{
1− e2πim/Nqkrbsl

}1
2
c(m,n)(kl,b)

×
N−1∏

m,n=0

∏

(k,l,b)∈Z

(k,l,b)>0

{
1− e−2πim/Nqkrbsl

}1
2
c(m,n)(kl,b)

. (5.54)4The produt formula for Φ̃k has already been obtained from the mirosopi ounting onsidered inhapter 2.
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Chapter 5. Construting the Modular Forms5.4.1 Determining the twisted ellipti generaRather than arry out an expliit omputation, we determine the twisted ellipti genera usingonsisteny onditions based on their modular properties. When N is prime, these ondi-tions uniquely �x the twisted ellipti genera. For omposite N , there remain undeterminedparameters. These parameters are �xed by imposing the ondition that the produt formulais ompatible with the produt form of the seed for the additive lift given in Eq. (5.6).Wewill illustrate the proedure for omposite N taking the example of Φ3(Z) and Φ̃3(Z), andskething the idea of the general ase from it.Forming T-orbitsThe ation of T on the F r,s(z1, z2) break them up into orbits.� We have already seen that F 0,s(z1, z2 are T -invariant i.e., they form orbits of lengthone.� When gd(r,N) = 1, all the F r,s(z1, z2) form a single orbit of length N (under repeatedation of T ).� When gd(r,N) = m, then the F r,s(z1, z2) break up into m distint orbits of length
N/m.We will use these results to impose onstraints on the form of the F r,s(z1, z2).Along with the F r,s(z1, z2) obtained from the ation of the T generator, it su�es to workout F 0,s(z1, z2) and the other F r,s(z1, z2) an be obtained by the ation of suitable SL(2,Z)operations.Let us write the most general F 0,s(z1, z2). For a weak Jaobi forms of ΓJ0 (N), F 0,s(z1, z2)an be written as follows[97℄:

F 0,0(z1, z2) = 8
N
A(z1, z2) , (5.55)

F 0,s(z1, z2) = a A(z1, z2) + αN (z1) B(z1, z2) , s 6= 0 , (5.56)where αN(z1) is a weight-two modular form of Γ0(N) and
A(z1, z2) =

4∑

i=2

(
ϑi(z1, z2)

ϑi(z1, 0)

)2

, B(z1, z2) =

(
ϑ1(z1, z2)

η3(z1)

)2

. (5.57)156



Chapter 5. Construting the Modular FormsWhen N is omposite, the dimension of modular forms at weight two is greater than one.We list the possibilities for N = 4, 6, 8.
α4(z1) = b1 E2(z1) + b2 E4(z1) , (5.58)
α6(z1) = b1 E2(z1) + b2 E3(z1) + b3 E6(z1) , (5.59)
α8(z1) = b1 E2(z1) + b2 E4(z1) + b3 E8(z1) , (5.60)where EN(z1) is the Eisenstein series of weight-two and level N :
EN (z1) = 12i

π(N−1)
∂z1
[
ln η(z1)− ln η(Nz1)

]
,normalized so that its onstant oe�ient is one (See Appendix B) .Next we use the S transformation on the ansatz for F 0,s(z1, z2) and follow its transfor-mation under powers of T and make the ansatz for αN (z1) ompatible with its orbit size.� When (s,N) = 1, there are no obvious onstraints.� When (s,N) = m > 1, then there will be onstraints.� When N = 4 and s = 2, then b2 = 0 as we need to have an orbit of size two.� When N = 6 and s = 2, 4, then b1 = b3 = 0 so that it is onsistent with an orbitsize of three.� When N = 6 and s = 3, then b2 = b3 = 0 so that it is onsistent with an orbitsize of two.� When N = 8 and s = 2, 6, then b3 = 0 so that it is onsistent with an orbit sizeof four.� When N = 8 and s = 4, then b2 = b3 = 0 so that it is onsistent with an orbitsize of two.Further simpli�ation our from symmetry onsiderations. F r,s(z1, z2) = F−r,−s(z1, z2). Itimplies that we have the equivalene F 0,s(z1, z2) = F 0,N−s(z1, z2).� For N = 4, we need to only work out F 0,0(z1, z2), F 0,1(z1, z2) and F 0,2(z1, z2).� ForN = 6, we need to only work out F 0,0(z1, z2), F 0,1(z1, z2), F 0,2(z1, z2) and F 0,3(z1, z2).157



Chapter 5. Construting the Modular Forms� For N = 8, we need to only work out F 0,0(z1, z2), F 0,1(z1, z2), F 0,2(z1, z2), F 0,3(z1, z2)and F 0,4(z1, z2).We now need to �x the undetermined onstants whih is done by looking at the onditionson the Fourier oe�ients, c0,sb (−1) and c0,sb (0) of F 0,s(z1, z2). These two sets of numbers arerelated to topologial objets on K3 and hene an be determined by studying the ation ofthe group on H∗(K3,Z)[31℄. Let Q0,s be the number of gs-invariant elements of H∗(K3,Z)(where g generates ZN ). Also
Q0,s = Nc0,s0 (0) + 2Nc0,s1 (−1) . (5.61)

Nc0,s1 (−1) ounts the number of gs invariant (0, 0) and (0, 2) forms on K3. For sympletiinvolutions, these forms are invariant and hene Nc0,s1 (−1) = 2. We thus obtain the relation
Nc0,s0 (0) = Q0,s − 4 . (5.62)Given the yle shape one an ompute the Q0,s as follows:� For prime N : The yle shape is 1k+2Nk+2. When, s = 0, all forms ontribute andhene Q0,0 = 24. For any s 6= 0, one has Q0,s = k+ 2. This implies that Nc0,00 (0) = 20and Nc0,s0 (0) = k − 2 for s 6= 0� N = 4: The yle shape is 142244. This implies that Q0,1 = Q0,3 = 4 and Q0,2 = 8. Wethus obtain 4c0,s0 (0) = 0 for s = 1, 3 while 4c0,20 (0) = 4.� N = 6: The yle shape is 12223262. This implies that Q0,1 = Q0,5 = 2 and Q0,2 =

Q0,4 = 6 and Q0,3 = 8. Thus one has 6c0,s0 (0) = −2 for s = 1, 5, 6c0,30 (0) = 4 and
6c0,s0 (0) = 2 for s = 2, 4.� N = 8: The yle shape is 12214182. This implies that Q0,1 = Q0,3 = Q0,5 = Q0,7 = 2and Q0,2 = Q0,6 = 4 and Q0,4 = 8. Thus one has 8c0,s0 (0) = −2 for s = 1, 3, 5, 7,
8c0,s0 (0) = 0 for s = 2, 6 and 8c0,40 (0) = 4.Further, one has

c0,00 (0) = 20
N

, c0,s1 (−1) = 2
N

(5.63)Also, as a onsisteny hek on the c0,s0 (0) one has k = 1
2

∑N−1
s=0 c0,s0 (0). For prime N all theoe�ients are �xed by the above onditions and one �nds the F r,s(z1, z2) for prime N are158



Chapter 5. Construting the Modular Formsgiven by
F 0,0(z1, z2) =

8

N
A(z1, z2)

F 0,s(z1, z2) =
8

N(N + 1)
A(z1, z2)−

2

N + 1
B(z1, z2)EN(z1) (5.64)

F r,rk(z1, z2) =
8

N(N + 1)
A(z1, z2) +

2

N(N + 1)
B(z1, z2)EN (

z1 + k

N
)For omposite N , however, one needs more onditions to ompute the F r,s(z1, z2). For

N = 4, there is one undetermined parameter in F 0,1(z1, z2). For N = 6, there are twoundetermined parameters and for N = 8, there are �ve undetermined parameters. Thesewill have to be dealt with on a ase by ase basis. Let us hoose the example of N = 4 andillustrate the proedure for omputing the F r,s(z1, z2) and from them the produt form ofthe orresponding modular forms Φ̃3(Z) and Φ3(Z).5.4.2 Produt form of Φ3(Z)We start by de�ning
F̂ a(z1, z2) =

3∑

b=0

F a,b(z1, z2) , (5.65)and let ĉa(n, ℓ) be its Fourier oe�ients. The produt form rewritten using the abovede�nition as[32℄
Φ3(Z) = qrs

∏

(n,ℓ,m)

(
1− qnrℓsm

)ĉ0−ĉ2
×
(
1−

(
qnrℓsm

)2)ĉ2−ĉ1×
(
1−

(
qnrℓsm

)4)ĉ1 (5.66)where we have omitted the argument of ĉa � it is (nm, ℓ) in all ourrenes above to reduethe length of the equation.Speializing the general formulae above to the ase of N = 4, we obtain
F̂ 0(z1, z2) = 10

3
A(z1, z2) + (2b+ 1

3
)E2(z1)B(z1, z2) + (5

6
− 2b)E4(z1)B(z1, z2)

F̂ 1(z1, z2) = 4
3
A(z1, z2)− 2bE2(z1)B(z1, z2)− ( 5

12
− b)E4(z1)B(z1, z2) (5.67)

F̂ 2(z1, z2) = 2A(z1, z2) + 1
2
E2(z1)B(z1, z2)− (5

6
− 2b)E4(z1)B(z1, z2) ,where A(z1, z2) and B(z1, z2) are as de�ned in Eq. (5.57). This leads to formulae for the159



Chapter 5. Construting the Modular Forms�rst two Fourier oe�ients:
ĉ0(−1) = 5

6
+ 1

3
+ 5

6
= 2 , ĉ0(0) = 25

3
− 7

3
= 6

ĉ1(−1) = 1
3
− 5

12
− b = −b− 1

12
, ĉ1(0) = 25

6
+ 2b (5.68)

ĉ2(−1) = 1
2

+ 1
2
− 5

6
+ 2b = 2b+ 1

6
, ĉ2(0) = 17

3
− 4bWe need ĉ1(−1) = ĉ2(−1) = 0 else we will have terms of the type (1 − r2) and (1 − r4) inthe produt expansion for Φ3(Z). This �xes the un�xed onstant b = −1/12. We an nowwrite out all the terms with m = 0 in the produt formulae as we now have determined that

ĉ1(0) = 4 and ĉ2(0) = 6. These give rise to terms of the form
∞∏

n=1

(1− qn)0(1− q2n)2(1− q4n)4 .This agrees with the (in�nite set of) terms that appear from the produt expansion of theadditive seed:
φ3,1(z1, z2) =

ϑ2
1(z1, z2)

η(z1)6
η(z1)

4η(2z1)
2η(4z1)

4 .Sine we have �xed the onstant b, we an now write exat expressions for the F a,b(z1, z2).
F 0,0(z1, z2) = 2A(z1, z2)

F 0,1(z1, z2) = F 0,3(z1, z2) = 1
3
A(z1, z2) +

[
− 1

12
E2(z1) + 1

2
E4(z1)

]
B(z1, z2)

F 0,2(z1, z2) = 2
3
A(z1, z2) + 1

3
E2(z1)B(z1, z2) (5.69)

F 1,k(z1, z2) = F 3,3k(z1, z2) = 1
3
A(z1, z2) +

[
− 1

24
E2

(
z1+k

2

)
+ 1

8
E4

(
z1+k

4

)]
B(z1, z2)

F 2,2k(z1, z2) = 2
3
A(z1, z2)− 1

6
E2

(
z1+k

2

)
B(z1, z2)

F 2,2k+1(z1, z2) = 1
3
A(z1, z2) +

[
5
12
E2(z1)− 1

2
E4(z1)

]
B(z1, z2)and

F̂ 0(z1, z2) = 10
3
A(z1, z2) + 1

6
E2(z1)B(z1, z2) + E4(z1)B(z1, z2)

F̂ 1(z1, z2) = 4
3
A(z1, z2) + 1

6
E2(z1)B(z1, z2)− 1

2
E4(z1)B(z1, z2) (5.70)

F̂ 2(z1, z2) = 2A(z1, z2) + 1
2
E2(z1)B(z1, z2)− E4(z1)B(z1, z2)
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Chapter 5. Construting the Modular Forms5.4.3 Produt Formula for Φ̃3(Z)The produt formula for Φ̃3(Z) is
Φ̃3(Z) = q1/4rs

3∏

a

∏

ℓ,m∈Z,

n∈Z+
a
4

(
1− qnrℓsm

)P3
b=0 ω

−bmc(a,b)(4nm−ℓ2) (5.71)where ω = exp(2πı
3

) is a ube root of unity, c(a,b)(4nm− ℓ2) are the Fourier oe�ients of thetwisted ellipti genera, F (a,b)(z1, z2). One an also prove that all the exponents that appearin the produt formulae for Φ3(Z) and Φ̃3(Z) are all even integers. One an show that thefollowing expressions
[4A(z1, z2)− B(z1, z2)] /12 , [E2(z1)− 1]/24 and [E4(z1)− 1]/8all have integral Fourier oe�ients[8, see appendix A℄. A straightforward but tedious om-putation then shows that all exponents are even integers. This will be important to us whenwe onstrut the produt forms of the modular forms ∆̃k/2(Z) and ∆k/2(Z) as `square roots'of the modular forms Φ̃k(Z) and Φk(Z) and need the exponents to be even integers for theoperation of taking square roots to be valid.On the sum side, the integrality of oe�ients in the Fourier expansion follows from theintegrality properties of the genus-two theta onstants.5.5 The additive seed for type II modelsWe will now onstrut the modular forms, Ψk(Z) and Ψk(Z), for the type II models via theadditive lift. The basi idea is similar to what was done for the CHL models. We �rst obtainthe generating funtion for eletrially harged 1

2
-BPS states � all it gρ(z1) as before. Thenthe additive seed is as in the CHL models (eq. (5.6)). We will see that the multipliative

η-produts that appeared in the CHL model get replaed by η-quotients. This re�ets thefat that eletrially harged states in the type II model arise from bosoni left-movers ofthe type IIA string (See also the disussion in 2.6.1).
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Chapter 5. Construting the Modular Forms5.5.1 Counting eletrially harged 1
2-BPS statesAs mentioned earlier, we will de�ne our harge in the seond desription. In this ase,eletrially harged states appear as exitations of the type IIA string. In partiular, thedegeneray is dominated by the ontribution from the twisted setor states. We will omputethe eletrially harged states in a twisted setor. 1
2
-BPS states arise when the right-moversare in the ground state and we allow all exitations that are onsistent with level mathing.

N = 1As a warm-up, onsider the left-movers of the type IIA string on T 6. In the Ramondsetor and in the light-one gauge, one has eight periodi bosons and periodi fermions. Allosillators, bosoni and fermioni, have integer moding and the Witten index is given by theprodut of the bosoni (indiated by WB )and fermioni ontributions (indiated by WF ):
WB ×WF =

(
1∏

n(1− qn)

)8

×
(∏

n

(1− qn)
)8

= 1 . (5.72)Note that we have not onsidered the zero-modes. This is expeted as there is a perfetanellation of bosoni and fermioni ontributions in the Witten index. Of ourse, theosillator partition funtion is not unity and equals
ZB ×ZF =

(
1∏

n(1− qn)

)8

×
(∏

n

(1 + qn)

)8

=
η(2τ)8

η(τ)16
. (5.73)Interestingly, this is quotient of η-funtions at level 2 (This appears in the onstrution ofthe fake Monster Lie superalgebra [79℄)

N = 2The eight periodi bosons have integer moding and eah ontribute a fator of η(τ)−1 tothe Witten index while the eight anti-periodi fermions eah have half-integer moding and
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Chapter 5. Construting the Modular Formsontribute η(τ/2)/η(τ). One has
WB ×WF =

(
1∏

n(1− qn)

)8

×
(∏

n

(1− qn+1/2)

)8

=
η(τ/2)8

η(τ)16
=

1

gρ̃(τ/2)
, (5.74)where the frame shape ρ̃ = 1−8216.Reall that yle shapes represent onjugay lasses of a permutation. Frame shapesgeneralize this notion to onjugay lasses of elements of arbitrary disrete groups. In ourexample, the disrete group turns out to be the Conway group Co1 [103℄ as we disuss later.

N = 3The six periodi bosons have integer moding and eah ontribute a fator of η(τ)−1 to theWitten index. While the two other bosons have moding frational moding of ±1/3. Thefermions eah have frational moding of ±1/3 and ontribute η(τ/2)/η(τ). One has
WB ×WF =

1∏
n(1− qn)6(1− qn+1/3)(1− qn−1/3)

×
∏

n

(1− qn+1/3)4(1− qn−1/3)4

=
η(τ/3)3

η(τ)9
=

1

gρ̃(τ/3)
, (5.75)where the frame shape ρ̃ = 1−339.

N = 4The six periodi bosons have integer moding and eah ontribute a fator of η(τ)−1 to theWitten index. While the two other bosons are antiperiodi and have moding frationalhalf-integral moding. The fermions eah have frational moding of ±1/4 and ontribute
η(τ/2)/η(τ). One has

WB ×WF =
1∏

n(1− qn)6(1− qn+1/2)2
×
∏

n

(1− qn+1/4)4(1− qn−1/4)4

=
η(τ/4)4

η(τ)4η(τ/2)6
=

1

gρ̃(τ/4)
, (5.76)where the frame shape ρ̃ = 1−42644. 163



Chapter 5. Construting the Modular Forms
N = 5Four bosons have integer moding while the other four have frational moding of r/5 with
r = 1, 2, 3, 4. The fermions appear with frational moding of r/5 with r = 1, 2, 3, 4 ourringin pairs. One has

WB ×WF =
1∏

n(1− qn)4
∏4

r=1(1− qn+r/5)
× (
∏

n

4∏

r=1

(1− qn+r/5))2

=
η(τ/5)

η(τ)5
=

1

gρ̃(τ/5)
, (5.77)where the frame shape ρ̃ = 1−155.Multipliative η-quotientsThe ounting of 1

2
-BPS states is given by η-quotients that are assoiated with the frameshapes ρ̃ given in Table 5.4. This niely generalizes the orresponding result for CHL stringswhere the generating funtions were given by η-produts orresponding to yle shapes.The appearane of the η-quotients and frame shapes may be understood as follows. It isknown that the Conway group Co1 arise as the group of automorphisms of algebra of hiralvertex operators in the NS setor of superstring[104℄. Any symmetry of �nite order of thehiral superstring must thus be an element of Co1. It is known that the onjugay lassesof Co1 are given by frame shapes.Multipliative η-quotients have been studied by Martin[105℄ and he has provided a listof 71 suh quotients � almost all appear to be assoiated to onjugay lasses. Table 5.4is a subset of this list exluding the ones N = 2. The η-quotients for N = 2 violate themultipliative ondition of Martin � he requires them to be eigenforms of all Heke operators.The one's for N = 2 are not eigenforms for T2 as an be easily heked5 It appears possiblethat the ondition imposed by Martin might be too strong and hene we may need to lookfor a weaker ondition.The η-quotients for N = 2, 3 have been derived in [31℄ and our results agree with theexpressions given there.5We thank Martin for useful orrespondene whih lari�ed this point.

164



Chapter 5. Construting the Modular Forms
k ρ̃ ρ χ ( a bc d ) N G

2 1−8216 1162−8 2 Z2

1 1−339 193−3
(
−3
d

)
3 Z3

1 1−42644 14264−4
(
−1
d

)
4 Z4

0 1−155 155−1 5 Z5Table 5.4: η-quotients with N ≤ 5: ρ is the frame shape, k+2 is the weight of the η-quotient.5.5.2 Produt Formulae for the type II modelsDavid, Jatkar and Sen have provided produt formulae for the N = 2, 3 type II models[31℄.As for the CHL models, there are given in terms of the twisted ellipti genus for T 4. Theprodut formulae for Ψk(Z) and Ψ̃k(Z) are idential to those appearing in the CHL models� eq. (5.53) and (5.54) � the oe�ients used are however those from the type II twistedellipti genus. For N = 2, 3, F (r,s)(τ, z), David, Jatkar and Sen �nd
F (0,0)(τ, z) = 0

F (0,s)(τ, z) =
16

N
sin4

(πs
N

) ϑ1

(
τ, z + s

N

)
ϑ1

(
τ,−z + s

N

)

ϑ1

(
s
N

)2for 1 ≤ s ≤ N − 1 ,

F (r,s)(τ, z) =
4N

(N − 1)2

ϑ1

(
τ, z + s

N
+ r

N
τ
)
ϑ1

(
τ,−z + s

N
+ r

N
τ
)

ϑ1

(
s
N

+ r
N
τ
)2 ,for 1 ≤ r ≤ N − 1, 0 ≤ s ≤ N − 1 . (5.78)The twisted ellipti genera for type II models an be rewritten in terms of the ellipti generathat appear in the CHL models. For the Z2 orbifold of the type II model, F (r,s)(τ, z) an bewritten as

F
(r,s)
II (τ, z) = 2F

(r,s)
N=2 CHL(τ, z)− F

(r,s)
N=1 Het.(τ, z), (5.79)and for the Z3 orbifold of the type II model, they an be written as

F
(r,s)
II (τ, z) =

3

2
F

(r,s)
N=3 CHL(τ, z)−

1

2
F

(r,s)
N=1 Het.(τ, z). (5.80)This implies that the type II modular forms for N = 2, 3 an be written in terms of theSiegel modular forms for the CHL models. In order to see this, we rewrite the η-quotients165



Chapter 5. Construting the Modular Formsthat appear for N = 2 in a suggestive manner as follows
g4(τ) =

η16(2τ)

η8(τ)
=
η16(2τ)η16(τ)

η24(τ)
,

g3(τ) =
η9(3τ)

η3(τ)
=
η9(3τ)η9(τ)

η12(τ)
. (5.81)In this form it is evident that the modular form g4 is a ratio of two modular forms, withthe numerator orresponding to the square of the usp form whih ounts half BPS statesin the Z2 CHL model and the denominator is a usp form whih ounts half BPS states inthe heteroti string theory. This naturally suggest that the Siegel modular form for type II

Z2 model is a ratio of Siegel modular forms,
Ψ2(Z) =

Φ6(Z)2

Φ10(Z)
. (5.82)In the Z3 ase, we �nd that g3 is again a ratio, suggesting the relation

Ψ1(Z) =
∆2(Z)3

∆5(Z)
, (5.83)One an easily see that both these identities follow from the produt formulae using therelation between type II and CHL twisted ellipti genera given in eq. (5.79) and (5.80).Further, it also follows that a similar relationship holds for the other modular forms.

Ψ̃2(Z) =
Φ̃6(Z)2

Φ10(Z)

Ψ̃1(Z) =
∆̃2(Z)3

∆5(Z)
(5.84)We onlude this setion with onjetural formulae for the N = 4 type II model:

Ψ̃1(Z) =
∆3(Z)∆3/2(Z)2

∆5(Z)
and Ψ1(Z) =

∆̃3(Z)∆̃3/2(Z)2

∆5(Z)
. (5.85)5.6 ConlusionIn this hapter we have studied the various modular forms that appear in the outing ofdyoni states in N = 4 string theories that we are studying in this thesis. The degeneray166



Chapter 5. Construting the Modular Formsof the eletrially harged 1
4
-BPS states are generated by a produt of η-funtions that areassoiated with yle shapes. Their generalization, given by η-quotients that are assoiatedto the frame shapes give the generating funtion of the degneraies of the 1

4
-BPS states inthe type II models. The η-produts give a nie way of relating the degeneray of the 1

4
-BPSstates to the sympleti automorphisms of the K3 surfae. Similarly, the η-quotients arerelated to the onjugay lasses of Co1, whih are given by frame shapes.The degeneray of the 1

4
-BPS states are given by genus-two Siegel modular forms Φ̃k(Z).Also, the string R2 orretions are given by another modular form, denoted Φk(Z). In thishapter we have studied the onstrution of these modular forms in more than one ways. Theadditive lift gives the modular forms as an in�nite sum. The onstrution of the genus-twoSiegel modular forms from an additive lift was disussed as the Fourier-Jaobi developmentof Siegel modular forms in hapter 4. The modular forms are onstruted from a seedwhih is a weak Jaobi form of the same weight and index 1 and level N . The weak Jaobiform is obtained from the yle shape ρ is ϑ1(z1,z2)2

η(z1)6
grho(z1). The modular forms were alsoonstruted as an in�nite produt with exponents related to the twisted ellipti genera of

K3. We have also seen expressions for the modular forms as produts of even genus-twotheta onstants in some ases.The same proedure was used to obtain the modular forms ∆̃k(Z) and ∆k(Z) whih arethe `square roots' of the modular forms Φ̃k(Z) and Φk(Z) respetively. They were onstrutedas the additive lifts of weak Jaobi forms with half-integer indies. The fat that all theexponents of the produt form of Φ̃k(Z) and Φk(Z) are even integers immediately yieldsthe produt form of ∆̃k(Z) and ∆k(Z). In addition, some of the modular forms have beenobtained as produts of even genus-two theta onstants.It is important to obtain the modular forms in the sum and produt forms separately.This is useful when we relate them to the denominator identity of BKM Lie superalgebras.We will study this idea in the next hapter where we understand the relation between theCHL strings and the family of BKM Lie superalgebras that are related to them with themodular forms being the bridge between the two.
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6BKM Lie superalgebras From Dyon Spetra
6.1 IntrodutionIn this hapter we fous on the algebrai side of the degeneray of 1

4
-BPS states. As men-tioned previously, there is an algebrai struture underlying the degeneray of the 1

4
-BPSstates, given by a family of BKM Lie superalgebras. These BKM Lie superalgebra are re-lated to the dyoni degeneraies via the modular forms generating the degeneraies of the

1
4
-BPS states and R2 orretions to the string ation. These modular forms our as thedenominator formulae of the various BKM Lie superalgebras. We will explore this idea inthis hapter, studying the BKM Lie superalgebras orresponding to the various CHL models.The disovery of new BKM Lie superalgebras has been one of the main results of the workpresented in this thesis.6.2 The Algebra of 1

4
-BPS StatesThere has emerged a promising new diretion by studying the algebra satis�ed by the de-generay of the 1

4
-BPS states. The `square roots' of the genus-two modular forms generatingthe degeneraies have been found to be related to a general lass of in�nite-dimensional Liealgebras known as Borherds-Ka-Moody (BKM) Lie superalgebras and this endows the de-generay of the 1

4
-BPS states with an underlying BKM Lie superalgebra struture[17, 7, 8℄.Following this insight, physial ideas of the theory suh as the struture of the walls ofmarginal stability[33℄ have been understood from an algebrai point of view as the walls ofthe fundamental Weyl hamber[17, 8℄.It was observed by DVV that the Siegel modular form onstruted by them, that gen-168



Chapter 6. BKM Lie superalgebras From Dyon Spetraerated the degeneray of 1
4
-BPS states, was also studied by Gritsenko and Nikulin in theontext of an in�nite-dimensional BKM Lie superalgebra[86℄. More preisely, the modularform Φ10(Z) is the denominator identity of the BKM Lie superalgebra that Gritsenko andNikulin studied. When Sen and Jatkar onstruted the modular forms that generate thedegeneray of 1

4
-BPS states in CHL models, it was natural to look for an underlying alge-brai struture along the lines of the N = 1 models. This was studied in [17, 7, 8, 9℄. Wesummarize the results below.6.3 The BKM Lie superalgebra G1The BKM Lie superalgebra orresponding to the CHL model without any orbifolding withits denominator identity given by the square root of the modular form Φ10(Z) was studiedby Gritsenko and Nikulin[86℄. We denote it by G1, where the subsript denotes the N of theorbifolding group ZN . The Cartan matrix of G1 is given by

A1,II ≡




2 −2 −2

−2 2 −2

−2 −2 2


 . (6.1)It is a rank 3 hyperboli matrix, as one of the eigenvlaues of the Cartan matrix is negative.The algebra G1 has three real simple roots, all them δ1, δ2 and δ3 whose Gram matrix(matrix of inner produts) is A1,II . The three real simple roots de�ne the root lattie

MII = Zδ1 ⊕ Zδ2 ⊕ Zδ3 and a fundamental polyhedron, MII , whih is given by the regionbounded by the spaes orthogonal to the real simple roots.
R+MII = {x ∈MII ⊗R | (x, δi) ≤ 0, i = 1, 2, 3}. (6.2)Let us write the roots in terms of a basis (f2, f3, f−2) whih are related to the δi in thefollowing way:

δ1 = 2f2 − f3, δ2 = f3, δ3 = 2f−2 − f3 . (6.3)The non-vanishing inner produts among the elements fi are:
(f2, f−2) = −1, (f3, f3) = 2 . (6.4)

169



Chapter 6. BKM Lie superalgebras From Dyon SpetraThus, (f2, f3, f−2) provide a basis for Minkowski spae R2,1. Consider the time-like region
V = {x ∈ R2,1 | (x, x) < 0} ,in R2,1. Let V + denote the future light-one in the spae and
Z = z3f2 + z2f3 + z1f−2 , (6.5)be suh that Z ∈ R2,1 + iV +. This is equivalent to Z ∈ H2, the Siegel upper-half spae[86℄.In addition to the three real simple roots, there are three primitive light-like vetors, i.e.

(η, η) = 0 : 2f2, 2f−2 and (2f−2 − 2f3 + 2f2) eah with multipliity 9 and two primitivevetors satisfying (η, η) < 0 : (2f−2 + 2f2) and (2f−2− f3 + 2f2). These roots are imaginarysine their norm is not positive de�nite, i.e. (η, η) ≤ 0. The imaginary light-like roots aregenerated by the formula
1−

∑

t∈N

m(tη0)q
t =

∏

k∈N

(1− qk)9 =

√
f (10)(τ)

η(τ)3
. (6.6)Negative value of multipliity implies that the root is fermioni. For instane, one has

m(2η0) = −27. Thus, suh roots are fermioni and hene we have a superalgebra. Theimaginary simple roots belong to the spae MII ∩R+MII . Let us look at the Weyl group ofthe BKM Lie superalgebra G1.6.3.1 The Weyl Group W(A1,II)Given the three real simple roots (δ1, δ2, δ3), whose Gram matrixis given by the matrix
A1,II , the Weyl group, W(A1,II), is the group generated by the three elementary re�etions,
(w1, w2, w3), with respet to the three real simple roots. The Weyl group W(A1,II) an bewritten as a normal subgroup of PGL(2,Z). Reall that PGL(2,Z) is given by the integralmatries ( a bc d ) with ad− bc = ±1. One has[86℄ (see also [106, 17℄)

PGL(2,Z) =W(A1,II) ⋊ S3 , (6.7)where S3 is the group of permutations of the three real simple roots. Also, the lattie MIIhas a lattie Weyl vetor whih is an element ρ ∈MII ⊗Q suh that all the real simple roots170



Chapter 6. BKM Lie superalgebras From Dyon Spetrasatisfy1
(ρ, δi) = −(δi, δi)

2
= −1 . (6.8)One has ρ = (δ1 +δ2 +δ3)/2 i.e., it is one-half of the sum over real simple roots. The positivereal roots are then given by

Lre
+ =

(
W(δ1, δ2, δ3) ∩M+

II

)
, (6.9)where W refers to the Weyl group W(A1,II) and M+

II = Z+δ1 ⊕ Z+δ2 ⊕ Z+δ3.Choosing a set of matries for the basis f2, f3, f−2, we an make the ation of the Weylgroup expliit. Consider the following identi�ation:
f−2 ↔

(
1 0

0 0

)
, f3 ↔

(
0 1

1 0

)
, f2 ↔

(
0 0

0 1

)
. (6.10)With the above identi�ation, the root vetors are given by the matries

δ1 =

(
2 1

1 0

)
, δ2 =

(
0 −1

−1 0

)
, δ3 =

(
0 1

1 2

)
. (6.11)One also has ρ(4) =

(
1/4 1/2

1/2 1

) in agreement with the general formula given in ref. [8,see Eq. 5.2℄. In terms of the variables q, r, s these real simple roots are r−1, qr and srrespetively. The norm of a matrix N ∈ M1,0 is then given by −2detN . The Weyl grouphas the following ation:
N → A ·N · AT , A ∈ PGL(2,Z) and N ∈M1,0 . (6.12)The S3 mentioned in Eq. (6.7) is generated by

r−1 =

(
0 1

1 0

)
, r0 =

(
1 1

0 −1

)
. (6.13)satisfying r2

−1 = r2
0 = (r−1r0)

3 = 1. The three elementary re�etions that generate W(A1,II)1The standard onvention is to de�ne ρ through the ondition (ρ, δi) = (δi, δi)/2 for all real simple roots
δi. However, we reprodue the notation of Gritsenko and Nikulin [86℄ (whih di�ers by a sign) here. 171



Chapter 6. BKM Lie superalgebras From Dyon Spetraare given by the following PGL(2,Z) matries:
wδ1 =

(
−1 0

2 1

)
, wδ2 =

(
1 0

0 −1

)
, wδ3 =

(
1 2

0 −1

)
. (6.14)6.3.2 The Weyl Chambers

G1 is an ellipti BKM Lie superalgebra. This means that the volume of the fundamental Weylhamber is �nite. This is an important property and ensures many nie properties for theBKM Lie superalgebra. Gritsenko and Nikulin have lassi�ed rank-three hyperboli BKMLie superalgebra admitting a lattie Weyl vetor with �nite volume of the fundamental Weylhamber[107℄(see also [108, 109℄). Reall from the disussion about the Weyl hambers of Liealgebras in Chapter 3 that the hoie of the basis of simple roots determine the fundamentalWeyl hamber. A di�erent, but equivalent, basis of simple roots will give a di�erent Weylhamber whih is related to the �rst Weyl hamber through Weyl re�etions. The Weylgroup ats simply and transitively on the set of Weyl hambers. Cheng and Verlinde havestudied the walls of the Weyl hamber in relation to the moduli spae of the CHL string andfound that the walls of the Weyl hamber of the BKM Lie superalgebra an be identi�ed withdomains in the moduli spae, spei�ally, they oinide with the walls of marginal stabilityof the 1
4
-BPS states of the theory [17℄. We will now summarize their arguments and give aorrespondene between the walls of the Weyl hambers of the BKM Lie superalgebras andthe walls of marginal stability.Cheng and Verlinde[17℄ and Cheng and Dabholkar[8℄ have shown the for N = 1, 2, 3CHL models, the fundamental domains are the Weyl hambers of a family of rank-threeBKM Lie superalgebras. This was extended to the N = 4 ase in [9℄. Eah wall (edge) ofthe fundamental domain is identi�ed with a real simple root of the BKM Lie superalgebra.Reall that we saw in hapter 2 that eah wall orresponds to a pair of rational numbers

( b
a
, d
c
). This is related to a real simple root α of the BKM Lie superalgebra as follows:

( b
a
, d
c
)↔

(
a b

c d

)
↔ α =

(
2bd ad+ bc

ad+ bc 2ac

)
, (6.15)with ac ∈ NZ and ad, bc, bd ∈ Z. The norm of the root is[17℄

−2det(α) = 2(ad− bc)2 = 2 . 172



Chapter 6. BKM Lie superalgebras From Dyon SpetraThe Cartan matrix, A(N), is generated by the matrix of inner produts among all real simpleroots. For instane, A(1) = A1,II de�ned in Eq. (7.2).The `square root' of the modular form Φ̃k(Z) that generates dyon degeneraies, ∆̃k/2(Z),is related to the Weyl-Ka-Borherds denominator formula via its additive and multipliativelifts. Finally, the extended S-duality group is given by2
W(A(N)) ⋊DN , (6.16)where W(A(N)) is the Weyl group generated by Weyl re�etions of all the simple real roots3and DN is the dihedral group that is the symmetry group of the polygon orresponding tothe Weyl hamber.6.3.3 The Denominator FormulaNow we ome to the most important part of the onnetion between the CHL strings andthe BKM Lie superalgebras. The onnetion to the CHL strings of the BKM Lie super-algebra omes from the denominator formula. Gritsenko and Nikulin have shown that thedenominator formula of the GKM Lie superalgebra G1 is related to the modular form ∆5(Z),of Sp(2,Z), that transforms with harater[86℄. The modular form, Φ10(Z), that generatesthe degeneray of 1

4
-BPS states is equal to ∆5(Z)2. The Weyl-Ka-Borherds (WKB) de-nominator formula is a speial ase of the more general WKB harater formula for Liealgebras whih gives the haraters of integrable highest weight representations of BKM Liesuperalgebras[55℄. The WKB harater formula applied to the trivial representation givesthe WKB denominator formula. Let G be a BKM Lie superalgebra and W its Weyl group.Let L+ denote the set of positive roots of the BKM Lie superalgebra and ρ the Weyl vetor.Then, the WKB denominator identity for the BKM Lie superalgebra[71℄ G is

∏

α∈L+

(1− e−α)mult(α) = e−ρ
∑

w∈W

(detw) w(eρ
∑

α∈L+

ǫ(α)eα) , (6.17)where mult(α) is the multipliity of a root α ∈ L+[4, 71, 110, 111℄. In the above equation,det(w) is de�ned to be ±1 depending on whether w is the produt of an even or odd numberof re�etions and ǫ(α) is de�ned to be (−1)n if α is the sum of n pairwise independent,2The extended S-duality group is de�ned by inluding a Z2 parity operation to the S-duality group Γ1(N).For N = 1, this is the group PGL(2, Z)[17℄.3This is equivalent to the Coxeter group generated by the Cartan matrix A(N). 173



Chapter 6. BKM Lie superalgebras From Dyon Spetraorthogonal imainary simple roots, and 0 otherwise. In the ase of BKM Lie superalgebrasthe roots appear with graded multipliity � fermioni roots appear with negative multipliitywhile bosoni roots appear with positive multipliity. Following the ideas of Borherds [4, 71℄,Gritsenko and Nikulin onstruted a superalgebra, G1 by adding imaginary simple roots� some bosoni and others fermioni. Let us write the Weyl-Ka-Borherds denominatorformula separating it into two parts one of whih involves the imaginary simple roots andthe other whih doesn't, as follows 4
e−πı(ρ,z)

∏

α∈L+

(
1− e−πı(α,z)

)mult(α)

=


∑

w∈W

det(w)



e

−πı(w(ρ),z) −
∑

η∈MII∩R+MII

m(η) e−πı(w(ρ+η),z)






 (6.18)where the element Z = z3f2 +z2f3 +z1f−2 belongs to the subspae R2,1 + ıV + ∼ H2 obtainedupon omplexi�ation of the one V +. Of the two terms in the sum side, one arises from thereal simple roots (η = 0) and the other arising from the imaginary simple roots (η 6= 0). The�rst term thus arises as the sum side of the Lie algebra with no imaginary simple roots. Theseond term is spei� to BKM Lie superalgebras due to the presene of imaginary simpleroots with `multipliities' m(η) ∈ Z. These multipliities are determined by the onnetionwith the automorphi form ∆5(Z) viz. (6.6). One ompares the sum side of the denominatorformula to the sum form of the modular form obtained from the additive lift and adds enoughimaginary simple roots suh that the automorphi properties are attained.The LHS of (6.17) is identi�ed with the produt formula for ∆5(Z), and this determinesthe positive roots L+ along with their multipliities� again fermioni roots appear withnegative multipliity in the exponent. However, there is a subtle issue in extrating themultipliities from the exponent in the produt formula � the produt formula gives onlythe di�erene between the multipliities of the bosoni and fermioni generators and heneis more like a Witten index. 4Comparing with the denominator identity (6.18), the ommonfator q1/2r1/2s1/2 an be identi�ed with exp(−πı(ρ, z)) giving us the Weyl vetor ρ.Given the modular form ∆5(Z), one an systematially onstrut the BKM Lie super-algebra G1 from it. We will illustrate this proedure for the ase of the algebra G1 and thesame is used to onstrut the other algebras that our in this hapter. Before we summarize4Written here in the notation of Gritsenko and Nikulin, where in partiular, one needs to replae ρ by

−ρ in Eq. (6.17) (See also setion 6.3.1). 174



Chapter 6. BKM Lie superalgebras From Dyon Spetrathe proedure to reognize the algebra, given the denominator identity, it will be useful tolist some of the observations that an be made about the expansions of the modular form
∆5(Z).6.3.4 Analyzing the Modular Forms1. Using the expressions for the real simple roots, (δ1, δ2, δ3) and their inner produt with

Z, one sees that
e−πi(δ1,Z) = qr , e−πi(δ2,Z) = r−1 and e−πi(δ3,Z) = sr .(Reall that q = exp(2πiz1), r = exp(2πiz2) and s = exp(2πiz3).) Thus, one has

exp(−πi(ρ,Z)) = q1/2r1/2s1/2. Further, one has the identi�ation relating the root
α[n, ℓ,m] to qnrℓsm:

qnrℓsm = e−πi(α[n,ℓ,m],Z) ,where the root α[n, ℓ,m] = nδ1 +(−l+m+n)δ2 +mδ3 has norm (2ℓ2−8nm). The realsimple roots are (α[1, 1, 0], α[0,−1, 0], α[0, 1, 1]) and the Weyl vetor is ρ = α[1
2
, 1

2
, 1

2
]in this notation.2. In the expansion for ∆5(Z), all terms (in the expansion given in the Appendix) thatarise with oe�ient ±1 arise by the ation of all elements of the Weyl group generatedby the three real simple roots. They do not involve the imaginary simple roots of theBKM Lie superalgebra. For instane, the terms arising fromWeyl re�etions assoiatedwith the simple real roots of G1 are

(q3/2r3/2s1/2, q1/2r−1/2s1/2, q1/2r3/2s3/2) = q1/2r1/2s1/2(qr, r−1, sr) .Note that we need to pull out an overall fator of q1/2r1/2s1/2 in the sum side of thedenominator formula to extrat the roots.3. The BKM Lie superalgebra G1 has an outer S3 symmetry whih permutes the threereal simple roots. It is easy to see only the δ1 ↔ δ3 (or equivalently the q ↔ s)symmetry in the ∆5(Z). A formal proof an be given by following Gritsenko andNikulin's argument for G1[86, see Prop. 2.1℄. Their proof makes use of the non-trivialharater vΓ appearing in the modular transform ∆5(Z) (see eq. (5.14). 175



Chapter 6. BKM Lie superalgebras From Dyon Spetra4. A pratial hek of the outer S3 needs us to verify the δ1 ↔ δ2 invariane of ∆5(Z).One an show that under this exhange
α[n, ℓ,m]↔ α[−ℓ+m+ n,−ℓ+ 2m,m] .For instane, the light-like root α[0, 0, 1] is mapped to another light-like root α[1, 2, 1].This relates the term q1/2r1/2s3/2 to q3/2r5/2s3/2 � both have multipliity −9 in ∆5(Z).Having identi�ed the two sides of the denominator identity with the sum and produtrepresentations of the modular form, one an identify the BKM Lie superalgebra that orre-sponding to the partiular modular form as follows. Starting with the produt representationof the modular form, and omparing with the above equation, gives us the set of positiveroots α of the BKM Lie superalgebra, together with their multipliities. All multipliities inthe produt side are integral as the multipliities in the produt formulae are even integersas disussed earlier. Also, expanding the modular form, we equate the expansion to the sumside (R.H.S) of the denominator formula where eah term is thought as oming from theWeyl re�etion of a positive root with respet to an element of the Weyl group of the BKMLie superalgebra. Thus, interpreting the modular form as the denominator formula, we anextrat the positive roots and orresponding multipliities, the set of simple roots, the Weylgroup, the Weyl vetor and from the above information, the Cartan matrix of the BKM Liesuperalgebra.Before onluding our disussion of G1, we just emphasize two points: 1)Though it is themodular form Φ10(Z) that generates the degeneraies of the 1

4
-BPS states, it is the modularform ∆5(Z) = (Φ10(Z))1/2 that ours as the denominator of the BKM Lie superalgebra G1,and 2) One needs both the sum and produt representations of the modular forms to ompareit with the denominator identity of a BKM Lie superalgebra and reonstrut the algebra fromthe denominator identity. This onludes our disussion for the BKM Lie superalgebra G1oming as the denominator identity of the modular form ∆5(Z). Next we look at the ase ofthe families obtained by taking a ZN -orbifold of the theory giving the various CHL strings.6.4 The BKM Lie superalgebras GN and G̃NAs mentioned in the previous hapter, only for the ase of the unorbifolded theory themodular form generating the degeneray of the 1

4
-BPS states and that generating the R2orretions to the e�etive ation are the same. For all the CHL strings generated by taking176



Chapter 6. BKM Lie superalgebras From Dyon Spetraa ZN orbifold, the modular forms Φ̃k(Z) and Φk(Z), are related as in eq. (5.4), but di�erent.We will �rst look at the BKM Lie superalgebras G̃N orresponding to the modular formsgenerating the degeneray of 1
4
-BPS states, i.e. the modular forms Φ̃k(Z), before goingto the BKM Lie superalgebras GN related to the modular forms Φk(Z). The method foronstruting the BKM Lie superalgebra from the modular forms is along the same lines asdisussed for the ase of Φ10(Z). We will now disuss eah of the BKM Lie superalgebra G̃Nand GN below.6.4.1 The BKM Lie superalgebra G̃2The BKM Lie superalgebra G̃2 was onstruted by Gritsenko and Nikulin, Cheng and Dab-holkar observed that it is the BKM Lie superalgebra orresponding to the modular form

∆̃3(Z)[8℄ whih is the square root of the modular form Φ̃6(Z) generating the degeneraiesof the 1
4
-BPS states in the Z2 orbifolded theory. ∆̃3(Z) is also a level 2 modular form withharater. The BKM Lie superalgebra G̃2 is given by the Cartan matrix

A2,II ≡




2 −2 −6 −2

−2 2 −2 −6

−6 −2 2 −2

−2 −6 −2 2




. (6.19)As before, the Cartan matrix is hyperboli with one negative eigenvalue and rank three. Ithas four roots whih, in the onvention introdued above for G1, are given by the followingmatries
δ1 ≡

(
0 −1

−1 0

)
, δ2 ≡

(
2 1

1 0

)
, δ3 ≡

(
2 3

3 4

)
, δ4 ≡

(
0 1

1 4

)
. (6.20)This an be understood as follows: When one takes the orbifold beause of the quantizationof the T-duality invariants, due to the presene of the twisted states, not all the splits of theharges in (2.69) are allowed. Instead one has to restrit oneself to the ongruene subgroupof PGL(2,Z)

Γ0(N) =
{(a b

c d

)
| ad− bc = ±1, c = 0 modN

}
/{±1} . (6.21)
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Chapter 6. BKM Lie superalgebras From Dyon SpetraUsing the relation between the split of harges, the set of positive real roots relevant for thewall rossing for the ZN orbifolded theory are of the form
α(N) =

(
2n ℓ

ℓ 2m

)
, (α, α) = 2, (n,m, ℓ) > 0, m modN . (6.22)From this, one sees that the two roots α(N)

1 = δ1 and α(N)
2 = δ2 our for all N . In termsof the variables q, r, s these roots are r−1, qr, qr3s2 and s2r. The extended S-duality group isgiven by

Γ1(2) =W(A2,II) ⋊D2 , (6.23)where W(A(2)) is the Weyl group generated by Weyl re�etions of all the real simple roots(6.20) and D2 is the dihedral group that is the symmetry group of the polygon orrespondingto the Weyl hamber.The Weyl vetor is given by ρ =

(
1/2 1/2

1/2 1

) and is spae-like.6.4.2 The BKM Lie superalgebra G̃3The BKM Lie superalgebra G̃3 is onstruted from the square root of the modular form
Φ̃4(Z), denoted ∆̃2(Z)[8℄.The BKM Lie superalgebra G̃3 is given by the Cartan matrix

A3,II ≡




2 −2 −10 −14 −10 −2

−2 2 −2 −10 −14 −10

−10 −2 2 −2 −10 −14

−14 −10 −2 2 −2 −10

−10 −14 −10 −2 2 −2

−2 −10 −14 −10 −2 2




. (6.24)
In addition to the two real simple roots δ1 and δ2, it has 4 other real simple roots whih aregiven by

δ3 ≡
(

4 5

5 6

)
, δ4 ≡

(
4 7

7 12

)
, δ5 ≡

(
2 5

5 12

)
, δ6 ≡

(
0 1

1 6

)
. (6.25)
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Chapter 6. BKM Lie superalgebras From Dyon SpetraIn terms of the variables q, r, s the six roots are r−1, qr, q2r5s3, q2r7s6, qr5s6 and s3r.Theextended S-duality group in this ase is given by
Γ1(3) =W(A3,II) ⋊D3 . (6.26)The Weyl vetor is given by ρ =

(
1/3 1/2

1/2 1

) and is spae-like.6.4.3 The BKM Lie superalgebra G̃4The ase of the Z4 orbifolding is a very interesting one. This is the �rst example wherethe N of the orbifolding group is not prime. As we saw in the previous hapter, when weonstruted the modular forms Φ̃k(Z) and Φk(Z) expliitly, the onstrution of the modularforms for prime N is relatively simpler beause the balaned yle shape onditions give
a1 = aN = 24

N+1
and all other ar = 0, leaving no undetermined oe�ients. For the ase ofnon-prime N , however, there remain ar whih are not ompletely �xed by the yle shapeonditions alone and one needs to use other onsisteny onditions to �x them. The BKMLie superalgebra G̃4 for N = 4 is generated by the modular form (∆̃3/2(Z))2 = Φ̃3(Z) whihwas onstruted in Chapter 5. Even the BKM Lie superalgebra for the N = 4 model is verydi�erent in nature to the ones for N = 1, 2 and 3. We saw that the BKM Lie superalgebrasfor N = 1, 2, 3 were all of ellipti type with �nite volume of the Weyl hambers and had

3, 4 and 6 real simple roots respetively. The BKM Lie superalgebra G̃4 is of parabolitype with in�nite number of real simple roots whih is markedly distint from the N = 1, 2and 3 ases. To write the Cartan matrix of G̃4, let us order the real simple roots into anin�nite-dimensional vetor as
X = (. . . , x−2, x−1, x0, x1, x2, x3, . . .) = (. . . , α1, β−1, α0, β0, α−1, β1, . . .) .Equivalently, let

xm =

{
α−m/2 , m ∈ 2Z

β(m−1)/2 , m ∈ 2Z + 1 .
(6.27)The Cartan matrix is given by the matrix of inner produts amn ≡ 〈xn, xm〉 and is given bythe in�nite-dimensional matrix:

A(4) = (anm) where anm = 2− 4(n−m)2 , (6.28)179



Chapter 6. BKM Lie superalgebras From Dyon Spetrawith m,n ∈ Z. It is easy to show that the following family of vetors are eigenvetors of theCartan matrix with zero eigenvalue. 


...
1

−3

3

−1...



(6.29)
with ... indiating a semi-in�nite sequene of zeros. One an show that A has rank three. Asusual, the Weyl vetor ρ satis�es

〈ρ, xm〉 = −1 , ∀m . (6.30)The Weyl vetor is given by ρ =

(
1/4 1/2

1/2 1

) and is light-like. Reall that the Weyl vetorsfor the N = 1, 2 and 3 theories were spae-like.Let us expliitly write the �rst eight roots of the in�nite number of real simple roots of
G̃4 in terms of PGL(2,Z) matries

α0 ≡
(

0 −1

−1 0

)
, β0 ≡

(
2 1

1 0

)
, β−1 ≡

(
0 1

1 8

)
,

α1 ≡
(

2 7

7 24

)
, β−2 ≡

(
6 17

17 48

)
, α−1 ≡

(
6 7

7 8

)
, (6.31)

β1 ≡
(

12 17

17 24

)
, α−2 ≡

(
20 31

31 48

)
.In terms of the variables q, r, s these roots are given by

r−1 , qr , rs4 , qr7s12 , q3r17s24 , q3r7s4 , q6r17s12 , q10r31s24 . (6.32)These results are ompatible with expetations based on the walls of marginal stability forthe Z4-orbifold based on Sen's arguments, as we will see below. Before that, however, let usverify that the BKM Lie superalgebra has ∆̃3/2(Z) as its denominator formula. 180



Chapter 6. BKM Lie superalgebras From Dyon Spetra
D

(2)
∞ -Invariane of ∆̃3/2(Z)Let us see if ∆̃3/2(Z) gives rise to the denominator identity for this BKM Lie superalgebra.We will �rst show that it ontains all the real simple roots that one expets from the studyof the walls of marginal stability. Using the de�nition of the even genus-two theta onstants,one an easily prove the following two identities about ∆̃3/2(Z).1. Let Z′ =

(
z1 −z2
−z2 z3

). Then,
∆̃3/2(Z

′) = −∆̃3/2(Z) . (6.33)This implies that the modular form is an odd funtion under r → r−1.2. ∆̃3/2(Z) is invariant under the exhange z1 ↔ 4z3. This implies that the modular formis an odd funtion under the exhange q ↔ s4.Next, the D(2)
∞ -generators γ and δ at on the roots xm written as a 2×2 matrix as follows:

γ : xm −→
(

1 −1

4 −3

)
· xm ·

(
1 −1

4 −3

)T
, (6.34)

δ : xm −→
(
−1 1

0 1

)
· xm ·

(
−1 1

0 1

)T
. (6.35)The matrix γ is denoted by γ(4) in [8℄. ∆̃3/2(Z) is invariant under the symmetry generatedby the embedding of γ and δ into G0(4) ∈ Sp(2,Z). This implies that under the ation of γand δ,

∆̃3/2(Z)→ ± ∆̃3/2(Z) .One an show that the sign must be +1 by observing that any pair of terms in the Fourierexpansion of ∆̃3/2(Z) related by the ation of γ (δ resp.) appear with the same Fourieroe�ient. For instane, the terms assoiated with the two simple roots α0 and β0 relatedby the ation of δ appear with oe�ient +1. Similarly, the terms assoiated with the realsimple roots β0 and β−1 related by a γ-translation also appear with oe�ient +1. Thus, wesee that ∆̃3/2(Z) is invariant under the full dihedral group D(2)
∞ . This provides an all-ordersproof that the in�nite real simple roots given by the vetor X all appear in the Fourierexpansion of ∆̃3/2(Z). 181



Chapter 6. BKM Lie superalgebras From Dyon SpetraThe q → s4 symmetry of the modular form is equivalent to the symmetry generated bythe dihedral generator, y, as de�ned in Eq. (2.73).Weyl Transformation of ∆̃3/2(Z)The transformation r → r−1 is the Weyl re�etion about the root α0 and as disussed earlier(see Eq. (6.33)), the modular form is odd under the Weyl re�etion. One has
wα0 · Z =

(
1 0

0 −1

)T
· Z ·

(
1 0

0 −1

)
. (6.36)The re�etion due to any other elementary Weyl re�etion will also have the same sign. Werepeat an argument from the appendix A of [8℄ to show this. First, the re�etion due to

α0 is represented by the matrix w0 ≡
(

1 0

0 −1

). The ation on Z is equivalent to Sp(2,Z)ation by the matrix[86℄
M =

(
(w−1

0 )T 0

0 w0

)
,The minus sign due to the Weyl re�etion implies that the harater, v(M), assoiated withthe modular form ∆̃3/2(Z) is suh that v(M) = −1. Next, any other elementary Weylre�etion, w, must be onjugate to w0 � this is a onsequene of dihedral symmetry, D(2)

∞ .Hene, one has w = s · w0 · s−1 for some invertible matrix s. It follows that the haraterassoiated with the Weyl re�etion w is the same as that for w0. In others, ∆̃3/2(Z) is oddunder all elementary re�etions. Hene one has
∆̃3/2(w · Z) = det(w) ∆̃3/2(Z) . (6.37)We thus see that the extended S-duality group for N = 4 is given by5

W(A(4)) ⋊D(2)
∞ , (6.38)where W(A(4)) is the Coxeter group generated by the re�etions by all real simple roots xmand D(2)

∞ is the in�nite-dimensional dihedral group generated by γ and δ.Although the struture of the BKM Lie superalgebra G̃4 is more ompliated as ompared5The generator y is not realized as an element of a level 4 subgroup of PGL(2, Z) and thus is not anelement of the extended S-duality group. This is similar to what happens for N = 2, 3[8℄. 182



Chapter 6. BKM Lie superalgebras From Dyon Spetrato G̃1, G̃2, G̃3, the orrespondene between the walls of the Weyl hambers and the walls ofmarginal stability whih was present in the N = 1, 2, 3 theories ontinues to hold even for
N = 4 and is in aordane with Sen's expetations.This onludes our study of the modular forms Φ̃k(Z) and the orresponding BKM Liesuperalgebras G̃N . We now study the modular forms Φk(Z) and the BKM Lie superalgebras
GN orresponding to them.6.4.4 The Family of BKM Lie superalgebras GNThe lass of BKM Lie superalgebras GN arise from the modular forms Φk(Z). It was �rstshown in [7℄ that the modular forms ∆k/2(Z) are indeed given by the denominator formulafor BKM Lie superalgebra GN , that are losely related to the BKM Lie superalgebra G1onstruted by Gritsenko and Nikulin from the modular form ∆5(Z). In partiular, it wasshown that1. All the algebras arise as (di�erent) automorphi orretions to the Lie algebra assoi-ated with the rank three Cartan matrix A1,II , from whih G1 is also onstruted.2. The real simple roots (and hene the Cartan matrix A1,II) for the GN are idential tothe real roots of g(A1,II). This implies that the Weyl group is idential as well. Thisis in ontrast to the ase for the BKM Lie superalgebras G̃N where the root system,Cartan matrix, and hene also the Weyl group was di�erent for di�erent N . However,this is onsistent beause for N > 1, this Weyl group is no longer the symmetry groupof the lattie of dyoni harges as it was for N = 1. The reason is that the lattie ofdyoni harges is not generated by 1/Φk(Z), but instead by 1/Φ̃k(Z).3. The multipliities of the imaginary simple roots are, however, di�erent. For instane,imaginary roots of the form tη0, where η0 is a primitive light-like simple root, have amultipliity m(tη0) given by the formula:

1−
∑

t∈N

m(tη0) q
n =

∏

n∈N

(1− qn)
k−4
2 (1− qNn)

k+2
2Note that this formula orretly reprodues the multipliities of the imaginary rootsfor G1 as found by Gritsenko and Nikulin[86℄.4. There are also other imaginary simple roots whih are not light-like whose multipliitiesare determined impliitly by the modular form ∆k/2(Z). 183



Chapter 6. BKM Lie superalgebras From Dyon SpetraThis ompletes our disussion of the BKM Lie superalgebras assoiated to the modularforms Φ̃k(Z) and Φk(Z). We onlude with a few omments.6.5 ConlusionWe have seen that the square root of the modular forms that generate the dyoni degeneraiesand the R2 orretions to the string e�etive ation are related to BKM Lie superalgebras.This is a very interesting result, for the origin of the underlying BKM Lie superalgebrastruture to the theory is not immediately apparent. That the degeneray of BPS statesshould be given by modular forms, is itself a very remarkable result, for there is no obviousreason that it should have turned out to be so. In partiular, the degeneray of the 1
4
-BPSstates are given by Siegel modular forms and it is very remarkable that the degeneraiesshould be suh that they add up exatly to be given by a Siegel modular form.Another important aspet to note is the dependene of the modular properties on thesupersymmetry. The degeneray of 1

2
-BPS states are given by produts of η-funtions, whilethe degeneraies of the 1

4
-BPS states are given by more non-trivial modular forms whosetransformation properties are more involved thatn the η funtions. Inreased amount ofsupersymmetry seems to play a ruial role in the kind of modular forms that generate thedegeneray of states preserving the supersymmetry.Also, that the modular forms should be related to BKM Lie superalgebras is an equallynon-trivial and remarkable. Again, supersymmetry seems to play an important role in thekind of algebras that are related to the struture. For example the in�nite-dimensional Liealgebras related to the genus-one modular forms are the a�ne Ka-Moody Lie algebras.Requiring N = 4 supersymmetry graduates this to BKM Lie superalgebras whih have afar more involved struture than the a�ne Ka-Moody Lie algebras. The appearane ofthe BKM Lie superalgebras appears not merely to be inidental, as an be seen from theorrespondene between the walls of the Weyl hambers of the BKM Lie superalgebras andthe walls of marginal stability of the 1

4
-BPS states, and seem to ontain information aboutthe CHL theory they ome from. It will be interesting to explore this diretion further tounearth more onnetions between the family of BKM Lie superalgebras and the CHL strings.Also, one an ask if suh strutures exist for other models. These are all new and interestingdiretions in whih one an look at. Harvey and Moore have onsidered the algebra of BPSstates [112, 113℄. It is of interest to ask whether the BKM Lie superalgebrathat we havefound have any relation to the algebra of BPS states. 184



7Results of the Thesis
In this hapter we list the set of results in this thesis that are due to the author of thethesis, obtained as part of work done with ollaborators. These results have been presentedin [7, 9, 10℄. We list the results along with the ontext in whih they were worked.
• In [7℄ the existene of a family of BKM Lie superalgebras, GN , were shownwhose Weyl-Ka-Borherds denominator formula gives rise to a genus-twomodular form at level N , ∆k/2(Z), for (N, k) = (1, 10), (2, 6), (3, 4), (4, 3

2
) and

(5, 2).Let us brie�y reall, from the previous hapters, the ontext of the above result. Start-ing with the work of Dijkgraaf, Verlinde, and Verlinde[1℄ it was found by Jatkar andSen that the generating funtion of the degeneraies of 1
4
-BPS states in a lass of N = 4supersymmetri string theories in four spae-time dimensions[6℄, was given by genus-two Siegel modular forms, denoted Φ̃k(Z)[2℄. It was also observed by DVV that the`square root' of the modular form in question appears as the denominator identity ofa BKM Lie superalgebra. In [7℄ this idea was extended to the family of modular formsonstruted by Jatkar and Sen. A family of BKM Lie superalgebras were onstruted,along the lines of the work by Gritsenko and Nikulin[86℄, whose denominator identitieswere given by square roots, ∆k/2(Z), of the genus-two modular forms Φk(Z) generatingthe R2-orretions to the string e�etive ation. All the BKM Lie superalgebras aregiven by the Cartan matrix

A1,II ≡




2 −2 −2

−2 2 −2

−2 −2 2


 . (7.1)185



Chapter 7. Results of the ThesisThe algebras, denoted GN , have three real simple roots given by the following PGL(2,Z)matries
δ1 =

(
2 1

1 0

)
, δ2 =

(
0 −1

−1 0

)
, δ3 =

(
0 1

1 2

)
. (7.2)The Weyl group is generated by the three elementary re�etions, (w1, w2, w3), withrespet to the three real simple roots. It is given by[86℄ (see also [106, 17℄)

PGL(2,Z) =W(A1,II) ⋊ S3 , (7.3)where S3 is the group of permutations of the three real simple roots. The GN also havea lattie Weyl vetor that satis�es
(ρ, δi) = −(δi, δi)

2
= −1 (7.4)with all the real simple roots.The Cartan matrixA1,II , the set of real simple roots, δ1, δ2, δ3, the Weyl groupW(A1,II),the fundamental Weyl hambers and the lattie Weyl vetor ρ of the BKM Lie super-algebras GN do not hange with the orbifolding group ZN . All the algebras arise as(di�erent) automorphi orretions to the Lie algebra assoiated with the rank threeCartan matrix A1,II with real simple roots given in (7.2). The BKM Lie superalgebras

GN also have imaginary roots whose norm, with respet to a given inner produt in theroot spae, is not positive de�nite, i.e. the norm (η, η) ≤ 0. The set of imaginary rootsof the BKM Lie superalgebras GN also do not hange with N . Their multipliities,however, hange with N . We disuss this point next.
• It was shown in [7℄ that the multipliities of the imaginary simple roots forthe BKM Lie superalgebras GN are di�erent for di�erent N . The primitivelight-like simple roots tη0 have a multipliity m(tη0) given by the formula:

1−
∑

t∈N

m(tη0) q
n =

√
gρ(τ)

η(τ)3As mentioned above, the Cartan matrix, Weyl group, and the set of real and imagi-nary simple roots for the GN remain the same for all values of N . The modular formsleading to these algebras, and hene the denominator identities of the algebras, how-186



Chapter 7. Results of the Thesisever, are di�erent from eah other. The di�erene in the denominator identities is inthe oe�ients of the terms ourring in the expansion, whereas the terms themselvesundergo no hange. The generating funtions of the multipliity fators of the variousmultiples of the form tη, of the light-like simple roots η, for di�erent values of N aregiven in terms of a single formula
θ1(τ, z)

(
1−

∑

t∈N

m(tη0) q
t

)
= ψk/2,1/2(τ, z) . (7.5)From the above we see the pattern in the progression of the m(η0) as the orbifoldinggroup ZN varies. For example, for N = 1 the formula reprodues the result obtainedby Gritsenko and Nikulin[86℄

1−
∑

t∈N

m(tη0)q
t =

∏

k∈N

(1− qk)9 =

√
f (10)(τ)

η(τ)3
(7.6)where the multipliity of the light-like roots is 9, while for N = 2, it gives

1−
∑

t∈N

m(tη0) q
t =

∏

k∈N

(1− qk)(1− q2k)4 =

√
f (6)(τ)

η(τ)3
(7.7)with the multipliity of the light-like roots being 4.This is similar to with the twisted denominator formula of Niemann[80℄ where thesub-algebras are obtained by the orbifolding ation on the fake Monster Lie algebra.

• In [7℄ the modular properties of the modular forms ∆k(Z) generating theBKM Lie superalgebras GN of the ZN orbifolded CHL strings.The modular forms Φ̃k(Z) and Φk(Z) generate, respetively, the degeneray of the 1
4
-BPS states and the R2 orretions to the string e�etive ation in the CHL orbifolds.As explained in the pervious hapter, its the modular forms ∆k(Z) and ∆̃k(Z), that arethe `square roots' of the modular forms Φk(Z) and Φ̃k(Z) respetively, that our asthe denominator identities of BKM Lie superalgebras. The modular form ∆5(Z) wasfound to be the denominator identity of the BKM Lie superalgebra G1 by Gritsenkoand Nikulin. In [7℄ the modular forms that our as the denominator identities of thefamily of BKM Lie superalgebras GN were onstruted. However, one needs to hekthe modular properties of the ∆k(Z) before interpreting them as the denominator of187



Chapter 7. Results of the Thesisa BKM Lie superalgebra. In [7℄ the modular properties of the modular forms ∆k(Z)were shown, and the modular forms onstruted from additive lifts of Jaobi formswith half-integer index. Some of the modular forms ∆k(Z) were also given as produtsof even genus-two theta onstants.
• In [9℄ the proedure to onstrut the modular forms Φ̃k(Z) and Φk(Z) forthe ase of general non-prime N , of the orbifolding group ZN , of the CHLstring was given. In partiular, the modular forms Φ̃3(Z) generating thedegeneray of 1

4
-BPS states, and Φ3(Z) generating the string R2 orretionsin the Z4 orbifolded CHL theory were expliitly onstruted, in the sumand produt forms, and studied.Jatkar and Sen had onstruted the modular forms Φ̃k(Z) and Φk(Z) for the ase ofprime N for the orbifolding group ZN [2℄. For the ase of omposite N , however, onlythe general behavior was subsequently studied[30℄. In [9℄ the modular forms Φ̃3(Z)and Φ3(Z) were expliitly onstruted in the sum form via the additive lift. Further,the systematis of the produt formulae were worked out and expliitly omputed forthe ase of N = 4. Also, the general proedure to onstrut the modular forms Φ̃k(Z)and Φk(Z) for the ase of general non-prime N was given, thereby ompleting theonstrution of the genus-two Siegel modular forms for all ZN orbifolds of the CHLstrings.The produt form of Φ3(Z) is given by[32℄

Φ3(Z) = qrs
∏

(n,ℓ,m)

(
1− qnrℓsm

)ĉ0−ĉ2
×
(
1−

(
qnrℓsm

)2)ĉ2−ĉ1×
(
1−

(
qnrℓsm

)4)ĉ1
. (7.8)The ĉa(n, ℓ) are given as the Fourier oe�ients of

F̂ a(z1, z2) =
3∑

b=0

F a,b(z1, z2) , (7.9)where F (a,b)(z1, z2) are the twisted ellipti genera for a ZN -orbifold of K3 given as:
F r,s(z1, z2) = 1

N
TrRR,gr

(
(−)FL+FRgsqL0 q̄L̄0e2πızFL

)
, 0 ≤ r, s ≤ (N − 1) (7.10)and g generates ZN and q = exp(2πız1). For N = 4, the various twisted ellipti genera188



Chapter 7. Results of the Thesisare given [9℄by
F 0,0(z1, z2) = 2A(z1, z2)

F 0,1(z1, z2) = F 0,3(z1, z2) = 1
3
A(z1, z2) +

[
− 1

12
E2(z1) + 1

2
E4(z1)

]
B(z1, z2)

F 0,2(z1, z2) = 2
3
A(z1, z2) + 1

3
E2(z1)B(z1, z2) (7.11)

F 1,k(z1, z2) = F 3,3k(z1, z2) = 1
3
A(z1, z2) +

[
− 1

24
E2

(
z1+k

2

)
+ 1

8
E4

(
z1+k

4

)]
B(z1, z2)

F 2,2k(z1, z2) = 2
3
A(z1, z2)− 1

6
E2

(
z1+k

2

)
B(z1, z2)

F 2,2k+1(z1, z2) = 1
3
A(z1, z2) +

[
5
12
E2(z1)− 1

2
E4(z1)

]
B(z1, z2)and

F̂ 0(z1, z2) = 10
3
A(z1, z2) + 1

6
E2(z1)B(z1, z2) + E4(z1)B(z1, z2)

F̂ 1(z1, z2) = 4
3
A(z1, z2) + 1

6
E2(z1)B(z1, z2)− 1

2
E4(z1)B(z1, z2) (7.12)

F̂ 2(z1, z2) = 2A(z1, z2) + 1
2
E2(z1)B(z1, z2)− E4(z1)B(z1, z2) .The produt formula for Φ̃3(Z) is

Φ̃3(Z) = q1/4rs

3∏

a

∏

ℓ,m∈Z,

n∈Z+
a
4

(
1− qnrℓsm

)P3
b=0 ω

−bmc(a,b)(4nm−ℓ2) (7.13)where ω = exp(2πı
3

) is a ube root of unity, and c(a,b)(4nm− ℓ2) are the Fourier oe�-ients of the twisted ellipti genera, F (a,b)(z1, z2).It has also been shown in [9℄ that the N = 4 modular forms an be written as thesquare of the produt of three even genus-two theta onstants. One has for Φ3(Z):
Φ3(Z) =

(
1

8
θ

[
1
0
0
1

]
(2Z) θ

[
0
1
1
0

]
(2Z) θ

[
1
1
1
1

]
(2Z)

)2

≡
[
∆3/2(Z)

]2
. (7.14)This is a known modular form with harater of weight three at level four. For instane,see Aoki-Ibukiyama[97℄, where this is alled f3. For the ase of Φ̃3(Z) one has:

Φ̃3(Z) =

(
1

4
θ

[
0
0
1
1

]
(Z′) θ

[
1
1
0
0

]
(Z′) θ

[
1
1
1
1

]
(Z′)

)2

≡
[
∆̃3/2(Z)

]2
. (7.15)
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Chapter 7. Results of the Thesiswhere Z′ =

(
1
2
z1 z2

z2 2z3

).We disuss the additive lift for the modular forms Φ̃3(Z) and Φ3(Z) in the next pointwhere the η-produts are disussed.
• The generating funtion of 1

2
-BPS states is given by multipliative η-produts.In [9℄ the η-produts for all groups that arise as sympleti involutions of

K3 were given extending results due to Dummit, Kisilevsky and MKay[93℄as well as Mason[94℄. In addition, the onjeture for onstruting the addi-tive lift leading to the Siegel modular forms Φk(Z) and Φ̃k(Z) when G = ZNfor all N , in terms of the multipliative η-produts, was proposed and themodular forms Φ3(Z) and Φ̃3(Z) onstruted from it.The generating funtion for the degeneraies d(n) of 1
2
-BPS states for the ZN CHLorbifold, taking into aount that the eletri harge is quantized suh that Nq2

e ∈ 2Z,is given as:
16

gρ(τ/N)
≡

∞∑

n=−1

d(n) qn/N . (7.16)It was shown that an ansatz for gρ(τ) in the form of an η-produt
gρ(τ) =

N∏

r=1

η(rτ)ar = η(τ)a1η(2τ)a2 · · ·η(Nτ)aN . (7.17)with balaned yle shapes satisfying ertain additional onditions gives the orretdegeneray for the 1
2
-BPS states in all CHL models where the yle shapes arise fromthe ation of Nikulin involutions onH∗(K3) (in the dual desription of the CHL orbifoldas asupersymmetri orbifold of type II string theory on K3 × T 2), inluding produtgroups suh as ZM × ZN .The modular form gρ(τ), of weight (k + 2), satis�es the following onditions:1. The oe�ients ar satisfy

(
Na1 +N a2

2
+ · · ·+ aN

)
= 24 ,

a1 + a2 + · · ·+ aN = 2(k + 2) , (7.18)
(
1a12a2 · · ·NaN

)−1
= vol⊥ , 190



Chapter 7. Results of the Thesiswhere vol⊥ be the volume of the unit ell in Γ⊥.2. The only permitted yles are of length r suh that r|N , and hene ar = 0 unless
r|N . Thus, when N is prime, only a1 and aN are non-zero whih agrees withknown results.3. The requirement that the yle be balaned implies that a1 = aN among otherthings. It also implies that the �rst equation in Eq. (5.22) an be rewritten as

a1 + 2a2 + · · ·+NaN = 24 (7.19)This onnets to the results of Dummit, Kisilevsky and MKay[93℄ on the multipliativebalaned yle shapes of elements of M24[92℄.Also, it was onjetured in [9℄ that the Jaobi form of weight k, index 1 and level Nthat is the seed for the additive (Maaÿ) lift leading to the Siegel modular form Φk(Z)when G = ZN for all N is given by ϑ1(z1,z2)2

η(z1)6
gρ(z1). The additive lift giving the modularforms Φk(Z) as an in�nite sum is given as

φk,1(z1, z2) =
ϑ1(z1, z2)

2

η(z1)6
gρ(z1) =

∑

n,ℓ

a(n, ℓ) qnrℓ . (7.20)A similar additive lift for Φ̃k(Z) is given by the following additive seed:
φ̃k,1(z1, z2) =

ϑ1(z1, z2)
2

η(z1)6
gρ(z1/N) . (7.21)

• The BKM Lie superalgebra for ∆3/2(Z) is shown to be similar to the onesappearing in [7℄. The Cartan matrix, Weyl vetor and Weyl group remainunhanged by the orbifolding. However, the multipliities of the imaginarysimple root do depend on the orbifolding.The BKM Lie superalgebra for
∆̃3/2(Z) is of paraboli type with in�nite real simple roots (labelled by aninteger) with Cartan matrix

A(4) = (anm) where anm = 2− 4(n−m)2 , (6.28)and a light-like Weyl vetor. The walls of marginal stability for the N = 4model get mapped to the walls of the fundamental Weyl hamber of the191



Chapter 7. Results of the ThesisBKM Lie superalgebra.We looked at the BKM Lie superalgebras underlying the degeneray of the 1
4
-BPS statesin the family of CHL strings in the previous hapters. The BKM Lie superalgebra, G1,for the N = 1 ase was onstruted by Gritsenko and Nikulin [86℄ and was extendedto other values of N in [7℄ and [8℄. As mentioned above the BKM Lie superalgebras

GN orresponding to the modular forms Φk(Z) for N = 2, 3 and 5 were onstruted in[7℄, while the BKM Lie superalgebras G̃N orresponding to the modular forms Φ̃k(Z)for N = 2, 3 were onstruted by Gritsenko and Nikulin [108℄ [109℄ and their relationto the degeneraies of 1
4
-BPS states of the CHL models for N = 2, 3 was pointed outby Cheng and Dabholkar [8℄.It was predited in [8℄ that the BKM Lie superalgebra for N > 3 CHL models maynot exist but sine the modular forms Φ3(Z) and Φ̃3(Z) orresponding to the N = 4model had not been expliitly onstruted before [7℄ it ould not be veri�ed. In [7℄ theBKM Lie superalgebra underlying the degeneray of the 1

4
-BPS states in the N = 4CHL model was shown to exist, and was onstruted from the orresponding modularforms.The BKM Lie superalgebra G̃4 forN = 4 is generated by the modular form (∆̃3/2(Z))2 =

Φ̃3(Z). The BKM Lie superalgebra algebra G̃4 is of paraboli type with in�nite numberof real simple roots. To write the Cartan matrix of G̃4, let us order the real simpleroots into an in�nite-dimensional vetor as
X = (. . . , x−2, x−1, x0, x1, x2, x3, . . .) = (. . . , α1, β−1, α0, β0, α−1, β1, . . .) .Equivalently, let

xm =

{
α−m/2 , m ∈ 2Z

β(m−1)/2 , m ∈ 2Z + 1 .
(7.22)The Cartan matrix is given by the matrix of inner produts amn ≡ 〈xn, xm〉 and isgiven by the in�nite-dimensional matrix:

A(4) = (anm) where anm = 2− 4(n−m)2 , (7.23)with m,n ∈ Z. It is easy to show that the following family of vetors are eigenvetors
192



Chapter 7. Results of the Thesisof the Cartan matrix with zero eigenvalue.



...
1

−3

3

−1...



(7.24)
with ... indiating a semi-in�nite sequene of zeros. One an show that A has rank three.As usual, the Weyl vetor ρ satis�es

〈ρ, xm〉 = −1 , ∀m . (7.25)The Weyl vetor is given by ρ =

(
1/4 1/2

1/2 1

) and is light-like.The extended S-duality group for N = 4 is given by
W(A(4)) ⋊D(2)

∞ , (7.26)whereW(A(4)) is the Coxeter group generated by the re�etions by all real simple roots
xm and D(2)

∞ is the in�nite-dimensional dihedral group generated by γ and δ whih aton the roots xm written as a 2× 2 matrix as follows:
γ : xm −→

(
1 −1

4 −3

)
· xm ·

(
1 −1

4 −3

)T
, (7.27)

δ : xm −→
(
−1 1

0 1

)
· xm ·

(
−1 1

0 1

)T
. (7.28)Also, the walls of the Weyl hamber of the BKM Lie superalgebra G̃4 was studiedand found to be ompatible with Sen's expetations. The fundamental domain/Weylhamber for N = 4 is bounded by an in�nite number of semi-irles as the BKM Liesuperalgebra has in�nite real simple roots. Eah of the semi-irles represents a realsimple root. The point 1

2
is approahed as a limit point of the in�nite sequene ofsemi-irles. 193



Chapter 7. Results of the ThesisStarting from the produt expansion for ∆3/2(Z) the BKM Lie superalgebra, G4 or-responding to it was also onstruted in [9℄. The Weyl vetor ρ is the same as for thealgebras GN for N = 1, 2, 3, 5 for prime N . Also the three real simple roots remainunhanged as before[7℄. The imaginary roots remain unhanged as well, but their mul-tipliities are hanged by the orbifolding. For ∆k/2(Z) = (Φk(Z))1/2 for prime N , wereall that the BKM Lie superalgebras GN were all given by the same Cartan matrix,and had the same set of real simple roots, Weyl group, Weyl vetor, and imaginaryroots. The orbifolding only hanged the multipliities of the imaginary roots for dif-ferent values of N . It was seen that the same pattern ontinues to hold for the BKMLie superalgebra even when N is non-prime for ∆3/2(Z).
• In [10℄ it has been shown that the ounting of 1

2
-BPS states is given bymultipliative η-quotients that are assoiated with the frame shapes ρ̃ givenin Table 5.4, generalizing the orresponding result for CHL strings wherethe generating funtions for the 1

2
-BPS states were given by multipliative

η-produts orresponding to yle shapes.It was shown in [9℄ that the degeneray of the eletrially harged 1
2
-BPS states aregiven by multipliative η-produts. The idea was extended to the type II models wherethe degeneray of the eletrially harged 1

2
-BPS states were shown to be given by mul-tipliative η-quotients determined by the frame shapes assoiated with the onjugaylasses of Co1. Using the modular forms generating the degeneray of the 1

2
-BPS states,the additive lift for the modular forms generating the degeneray of the 1

4
-BPS statesare onstruted for N = 2, 3 and a onjeture is provided for N = 4.

• In [10℄ the modular forms generating the degeneray of 1
4
-BPS states in thetype II models have been found in terms of the modular forms generatingthe degeneray of 1

4
-BPS states in the CHL models. A similar relation hasalso been found for the modular forms generating the string R2 orretionsDavid, Jatkar and Sen have provided produt formulae for the N = 2, 3 type IImodels[31℄ in terms of the twisted ellipti genus for T 4. In [10℄ these modular formshave been expressed in terms of the various Siegel modular forms ouring in the CHLmodels. The modular forms in the CHL models have been well studied and have beeninterpreted as the denominator identities of BKM Lie superalgebras. Expressing themodular forms of the type II models in terms of the ones ouring in the CHL modelsshould help in studying the underlying BKM Lie superalgebra struture, if any. 194



Chapter 7. Results of the Thesis
• In [10℄ a general disussion on the BKM Lie superalgebras orrespondingto the the type II models is presented. Though the BKM Lie superalgebrasfor these models have not been onstruted in [10℄, based on the propertiesthat are expeted of these algebras, general diretions for �nding thesealgebras, if they exist, has been disussed.The CHL models have been found to have an underlying BKM Lie superalgebra stru-ture to the degeneray of the 1

4
-BPS states. A natural question to onsider would beif suh an algebrai struture exists even for the type II models. The modular formsapearing in the type II models seem to have a ompliated struture, whih does notimmediately have the interpretation of a BKM Lie superalgebra. However, sine thesemodular forms an be expressed in terms of the modular forms of the CHL models,whih have a BKM Lie superalgebra interpretation, one an guess the properties thata BKM Lie superalgebra, if it exits, is expeted to have. A disussion on the same isprovided in [10℄.
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8Conlusion and Future Diretions
In this thesis we have studied the various aspets of the ounting of dyoni states in stringtheory. The problem of ounting has been of muh interest beause of the rih mathematialstruture underlying it. The degeneray of the dyoni states are given by modular forms andthis strongly suggests the presene of a deeper mathematial struture to the theory. In thewords of Barry Mazur, �Modular forms are funtions on the omplex plane that are inordi-nately symmetri. They satisfy so many internal symmetries that their mere existene seemlike aidents. But they do exist�. That the degeneray of dyoni states should be suh as tobe given by suh speial funtions that have very restrited transformation properties andare sensitive to the smallest of perturbations to their struture, seems to be extraordinary.Equally extrodinary is the appearane of BKM Lie superalgebras related to the modularforms. BKM Lie superalgebras are in�nite-dimensional Lie algebras whih are very ompli-ated and rih generalizations of lassial semi-simple Lie algebras. That they should appearas an underlying symmetry of the degeneray of the dyoni states is very remarkable. Also,as was mentioned previously, the relation to supersymmetry is another intriguing aspet.The degeneray of states preserving higher degree of supersymmetry are given by more om-pliated modular forms and have more involved in�nite-dimensional Lie algebra strutureunderlying them. This seems to indiate an important role for supersymmetry in leading tothe modular struture of the generating funtions of dyoni degeneraies. A omplete un-derstanding of the whole struture, however, is far from apparent at this point. The originof the various mathematial strutures, their signi�ane and impliation to the theory areareas that will be very interesting to understand and unearth.As we have seen, the BKM Lie superalgebra struture undergoes a distint hange ingoing from N = 3 to N = 4 in the CHL models. The BKM Lie superalgebra struture for196



Chapter 8. Conlusion and Future Diretionsthe N = 4 ase was a paraboli algebra and previously not onstruted. It has an in�nitenumber of real simple roots. The BKM Lie superalgebra struture for CHL models with
N > 4, if they exist, ould be muh more ompliated.Other areas of future interest are obtaining a better understanding of the BKM Liesuperalgebras related to the type II models, and more generally models whih ome fromframe shapes rather than yle shapes. Also understanding the models with produt groupsof the form ZN × ZM , starting from the yle shapes and generating the modular formsgenerating the dyoni degeneray will go towards ompleting the onstrution of degenerayformulas for all orbifoldings of the CHL strings (see [114℄). Sen et.al. have onstruted thepartition funtions for torsion > 1 dyons in heteroti string theory on T 6. Seeing if a BKMLie superalgebra struture exists for these models will extend the onstrution of [7, 9, 8℄.Also, the idea of understanding the degeneray of 1

2
-BPS states from the sympleti au-tomorphisms of the K3 surfae (for the ase of CHL strings) or from the onjugay lassesof Co1 (for the ase of type II models) is an interesting result whih gives a geometriunderstanding to the origin of these degeneraies. Garbagnati and Sarti have studied sym-pleti (Nikulin) involutions of K3 manifolds[115, 96℄. In partiular, they have expliitlyonstruted ellipti K3s whose automorphism groups are the Nikulin involutions. Further,they have provided an expliit desription of the invariant lattie and its omplementarylattie. We antiipate that these results might be relevant in improving our physial under-standing the role of the roots of the BKM Lie superalgebras. The Jatkar-Sen onstrutionholds for N = 11 as well and it leads to a modular funtion (i.e., one of weight k = 0) Φ0(Z)and it is believed that a CHL string may exist. In the type IIA piture, the Z11 is no longera sympleti Nikulin involution, it ats non-trivially on H∗(K3) and not on H1,1(K3) alone.It is of interest to study aspets of the ZN orbifold both from the physial and mathematialpoint of view.As we have seen, for a�ne Ka-Moody algebras, the presene of light-like imaginary rootsin L+ leads to powers of the Dedekind eta funtion appearing in the produt form of theWeyl-Ka denominator formula. As is well known, q1/24/η(τ) is the generating funtion ofpartitions of n (equivalently, Young diagrams with n boxes). An interesting generalisationis the generating funtion of plane partitions (or 3D Young diagrams) has a nie produtrepresentation η3D ∼

∏
n(1−qn)n (due to MaMahon). This funtion appears in the ountingof D0-branes in the work of Gopakumar-Vafa[116, 117℄. Is there an algebrai interpretationfor this? The addition of D2-branes to this enrihes this story and leads to interestingformulae[118℄. 197



Chapter 8. Conlusion and Future DiretionsOne an also arry out a similar programme for models with N = 2 supersymmetry[119,120, 121℄. As mentioned before, the high degree of supersymmetry makes all the beautifulmathematial struture highly symmetry spei�. Our ultimate aim is to understand themirosopi desription of general blak holes. For this it is neessary to understand theabove ideas when the degree of symmetry of the system is redued. Starting with N = 2models is a good way to �nally graduating to the general ase.
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ATheta funtions
A.1 Genus-one theta funtionsThe genus-one theta funtions are de�ned by

θ
[a
b

]
(z1, z2) =

∑

l∈Z

q
1
2
(l+ a

2
)2 r(l+ a

2
) eiπlb , (A.1)where a.b ∈ (0, 1) mod 2. One has ϑ1 (z1, z2) ≡ θ

[
1
1

]
(z1, z2), ϑ2 (z1, z2) ≡ θ

[
1
0

]
(z1, z2),

ϑ3 (z1, z2) ≡ θ
[

0
0

]
(z1, z2) and ϑ4 (z1, z2) ≡ θ

[
0
1

]
(z1, z2).The transformations of ϑ1(τ, z) under modular transformations is given by

T : ϑ1(τ + 1, z) = eiπ/4 ϑ1(τ, z) ,

S : ϑ1(−1/τ,−z/τ) = − 1

q1/2r
eπiz

2/τ ϑ1(τ, z) , (A.2)with q = exp(2πiτ) and r = exp(2πiz).The Dedekind eta funtion η(τ) is de�ned by
η(τ) = e2πiτ/24

∞∏

n=1

(1− qn) . (A.3)The transformation of the Dedekind eta funtion under the modular group is given by
T : η(τ + 1) = eπi/12 η(τ) ,

S : η(−1/τ) = e−πi/4 (τ)1/2 η(τ) . (A.4)199



Appendix A. Theta funtionsThe transformation of η(Nτ) is given by
T : η(Nτ +N) = eNπi/12 η(τ) ,

S : η(−1/τ) =
e−πi/4√
N

(τ)1/2 η(τ/N) . (A.5)One an see that η(Nτ) transforms into η(τ/N) under the S transformation. η(Nτ) getsmapped to itself only under the subgroup, Γ0(N) of SL(2,Z). Following Niemann[80℄, let
ψj(τ) ≡ η

(
τ+j
N

+ j
)
, j = 0, 1, . . . , N − 1 modN . (A.6)Both S and T no longer have a diagonal ation on the ψj(τ). One has

T : ψj(τ + 1) = eπi/12 ψj+1(τ) (A.7)
S : ψj(−1/τ) = e(j+j

′)πi/12 (τ)1/2 χ(G) ψ−j′(τ) , (A.8)where jj′ = 1 modN and the harater χ(G) has to be alulated on a ase by ase basis(see hapter 2 of [80℄ for details).The transformations of the eta related funtions show us that the funtions fk(τ) andits square root an transform with non-trivial harater. In partiular, one an show thatfor N = 7, f (1)(τ) and for N = 3, √f (4)(τ) transform with harater. As these two fun-tions enter the weak Jaobi forms that are used to onstrut the Siegel modular forms
Φ1(Z) and ∆2(Z) respetively, these two Siegel modular forms will transform with non-trivialharater[83℄. This is the basis for our laim that ∆2(Z) must transform with non-trivialharater and is onsistent with the observation of Jatkar-Sen regarding Φ1(Z).
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BEisenstein Series at level N
B.1 Prime NLet E∗

2(τ) denote the weight two non-holomorphi modular form of SL(2,Z). It is given by
E∗

2(τ) = 1− 24
∞∑

n=1

σ1(n) qn +
3

π Imτ , (B.1)where σℓ(n) =
∑

1≤d|n d
ℓ. The ombination

EN (τ) =
1

N − 1

(
NE∗

2(Nτ)− E∗
2(τ)

)
= 12i

π(N−1)
∂τ
[
ln η(τ)− ln η(Nτ)

] (B.2)is a weight two holomorphi modular form of Γ0(N) with onstant oe�ient equal to 1[122,Theorem 5.8℄. Note the anellation of the non-holomorphi piees. Thus, at level N > 1,the Eisenstein series produes a weight two modular form. For example1,
E2(τ) = 1 + 24q + 24q2 + 96q3 + 24q4 + 144q5 + 96q6 + · · · (B.3)is the weight-two Eisenstein series at level 2. At levels 3 and 5, one has
E3(τ) = 1 + 12q + 36q2 + 12q3 + 84q4 + 72q5 + 36q6 + · · ·
E5(τ) = 1 + 6q + 18q2 + 24q3 + 42q4 + 6q5 + 72q6 + · · · (B.4)1All expansions for the Eisenstein series given here have been obtained using the mathematis softwareSAGE[123℄. We are grateful to the authors of SAGE for making their software freely available. It was easyfor us to verify Eq. (B.10) using SAGE to the desired order. 201



Appendix B. Eisenstein Series at level NB.2 Composite NSupposeM |N , then one has Γ0(N) ⊂ Γ0(M). Thus, for ompositeN , the Eisenstein series atlevel M is also a modular form at level N . For instane at level four, one has two Eisensteinseries: E2(τ) and
E4(τ) = 1 + 8q + 24q2 + 32q3 + 24q4 + 48q5 + · · · (B.5)At level six, one has three Eisenstein series: E2(τ), E3(τ) and
Ê6(τ) = 5/24 + q + 3q2 + 4q3 + 7q4 + 6q5 + · · · (B.6)At level eight, one has three Eisenstein series: E2(τ), E4(τ) and
Ê8(τ) = 7/24 + q + 3q2 + 4q3 + 7q4 + 6q5 + · · · (B.7)

ÊN(τ) refer to Eisenstein series normalized suh that the oe�ient of q is +1. It is knownthat all Eisenstein series in this normalization have integral oe�ients exept for the on-stant term[122℄.B.3 Fourier transform about the usp at 0The modular transformation, S, under whih τ → −1/τ maps the usp at 0 to the usp at
i∞. When N is prime, Γ0(N) has only these two usps. One may wish to obtain the Fourierexpansion about the usp at 0 � this is done by mapping 0 to i∞ using the S transform. Toobtain the transform of the Eisenstein series, �rst onsider
E∗

2(Nτ)
∣∣
S

= (τ)−2 E∗
2(NS · τ)

= (τ)−2 E∗
2(−N/τ) = (τ)−2(τ/N)2E∗

2(τ/N) =
1

N2
E∗

2

(
τ
N

)
. (B.8)Using this result, it is easy to see that2

EN(τ)
∣∣
S

= − 1

N
EN
(
τ
N

)
. (B.9)2We aution the reader that the subsript N denotes the level and not the weight of the Eisenstein series.All Eisenstein series onsidered in this appendix are of weight two. 202



Appendix B. Eisenstein Series at level NNote that τ = 0 in the LHS orresponds to τ = i∞ in the RHS of the above equation. Thus,given the Fourier expansion at i∞, we an obtain the Fourier expansion about 0. Notie theappearane of frational powers of q, q1/N to be preise, at this usp. This is expeted asthe width of the usp at 0 is N . Also, note that the above formula is valid for all N , notneessarily prime.Another useful addition formula for the Eisenstein series is the following:
E4(τ) + E4(τ + 1

2
) = 2 E2(2τ) . (B.10)This formula was experimentally obtained by us and its veraity has been heked to aroundtwenty orders in the Fourier expansion.B.4 Fourier transform about other uspsThe same method an be used to obtain the expansion about other usps. Again we will needto map the usp to i∞ and then trak the transformation of the non-holomorphi Eisensteinseries. Let us do a spei� example that is of interest in this paper. Let N = 4 and onsiderthe usp at 1/2. γ =

(
1 −1
2 −1

) maps 1/2 to i∞.
E4(τ)

∣∣
ST 2S

= −1

4
E4(

τ
4
)
∣∣
ST 2 = −1

4
E4(

τ
4

+ 1
2
)
∣∣
S

= −1

4

(
2E2(

τ
2
)
∣∣
S
−E4(

τ
4
)
∣∣
S

)
= (E2(τ)−E4(τ)) (B.11)In the penultimate step, we made use of Eq. (B.10) in order to write E4(

τ
4

+ 1
2
) in termsof objets with known S-transformations. The �nal answer is in terms of Eisenstein serieswhose Fourier oe�ients are known thus giving us the expansion of E4(τ) about the uspat 1/2.For the CHL models with N = 6 and N = 8, it appears that there are no standardmethods to determined the Fourier expansion of E6(τ) and E8(τ) about all the usps � thisis a minor tehnial hurdle that needs to be surmounted to omplete the omputation ofthe twisted ellipti genus in the orresponding CHL models. It would be helpful if one anobtain identities similar to the one given in Eq. (B.10).
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CExpliit formulae for ∆k/2(Z)

We note that ∆k/2(Z) is symmetri under the exhange z1 ↔ z3 and is anti-symmetri under
z2 → −z2 for all values of k.
∆5 =

(
− 1√

r
+
√
r

) √
q
√
s+

(
9

r
5
2

− 93

r
3
2

+
90√
r
− 90

√
r + 93 r

3
2 − 9 r

5
2

)
q

3
2 s

3
2

+

(
r−

3
2 +

9√
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r − r 3

2

) (
q

3
2
√
s+
√
q s

3
2

)
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(−9
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3
2

− 27√
r

+ 27
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r + 9 r

3
2

) (
q

5
2
√
s+
√
q s

5
2
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(
−r− 5

2 +
27

r
3
2

+
12√
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2 + r

5
2

) (
q
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2
√
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√
q s

7
2
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9
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5
2
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3
2

+
90√
r
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r + 12 r
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2

) (
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2
√
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√
q s
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2
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Appendix C. Expliit formulae for ∆k/2(Z)

∆3 =

(
− 1√
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r
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q
√
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Appendix C. Expliit formulae for ∆k/2(Z)
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Appendix C. Expliit formulae for ∆k/2(Z)

∆̃3/2 =

(
− 1√

r
+
√
r

) √
s
√
qh +

(
2r3/2 − 2

√
r +

2√
r
− 2

r3/2

)
s3/2qh

3/2

+

(
2√
r
− 2
√
r

) (√
qhs

3
2 +
√
sqh

3
2

)
+

(
2√
r
− 2
√
r

)(√
qhs

5
2 +
√
sqh

5
2

)

+

(−4√
r

+ 4
√
r

)(√
qhs

7
2 +
√
sqh

7
2

)

+

(
r−

3
2 − 2√

r
+ 2
√
r − r 3

2

)(√
qhs

9
2 +
√
sqh

9
2

)

+

(−2

r
3
2

+ 2 r
3
2

)(√
qhs

11
2 +
√
sqh

11
2

)

+

(−2

r
3
2

+
4√
r
− 4
√
r + 2 r

3
2

)(√
qhs

13
2 +
√
sqh

13
2

)
+ . . . ,where qh ≡ q1/4. The expression is symmetri under the exhange q ↔ s4 and antisymmetriunder r → r−1. An all-orders proof follows from the properties of the even genus-two thetaonstants.
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DThe Jaobi and the genus-two modular groups
The group Sp(2,Z) is the set of 4 × 4 matries written in terms of four 2 × 2 matries
A, B, C, D as1

M =

(
A B

C D

)satisfying ABT = BAT , CDT = DCT and ADT − BCT = I. The ongruene subgroup
Ĝ0(N) of Sp(2,Z) is given by the set of matries suh that C = 0 modN . This group atsnaturally on the Siegel upper half spae, H2, as

Z =

(
z1 z2

z2 z3

)
7−→M · Z ≡ (AZ +B)(CZ +D)−1 . (D.1)The Jaobi group ΓJ = SL(2,Z) ⋉H(Z) is the sub-group of Sp(2,Z) that preserves theone-dimensional usp z3 = i∞. The SL(2,Z) is generated by the embedding of ( a bc d ) ∈

SL(2,Z) in Sp(2,Z)

g1(a, b; c, d) ≡




a 0 b 0

0 1 0 0

c 0 d 0

0 0 0 1




. (D.2)The above matrix ats on H2 as
(z1, z2, z3) −→

(
az1 + b

cz1 + d
,

z2
cz1 + d

, z3 −
cz2

2

cz1 + d

)
, (D.3)1This setion is based on the book by Eihler and Zagier[83℄. 208



Appendix D. The Jaobi and the genus-two modular groupswith det(CZ + D) = (cz1 + d). The Heisenberg group, H(Z), is generated by Sp(2,Z)matries of the form
g2(λ, µ, κ) ≡




1 0 0 µ

λ 1 µ κ

0 0 1 −λ
0 0 0 1




with λ, µ, κ ∈ Z (D.4)The above matrix ats on H2 as
(z1, z2, z3) −→

(
z1, λz1 + z2 + µ, z3 + λ2z1 + 2λz2 + λµ

)
, (D.5)with det(CZ + D) = 1. It is easy to see that ΓJ preserves the one-dimensional usp atIm(z3) =∞.The full group Sp(2,Z) is generated by adding the exhange element to the group ΓJ .

g3 ≡




0 1 0 0

1 0 0 0

0 0 0 1

0 0 1 0




. (D.6)
This ats on H2 exhanging z1 ↔ z3. The subgroup Ĝ0(N) is generated by onsidering thesame three sets of matries with the additional ondition that ( a bc d ) ∈ Γ0(N) i.e., c = 0 modNin Eq. (D.2). Further, we will all the orresponding Jaobi group Γ0(N)J .
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