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Abstra
tThe main theme of this thesis is reasoning about strategies in games in a logi-
al framework. Logi
al analyses of games typi
ally 
onsider players' strategies asatomi
 obje
ts and the reasoning is about existen
e of strategies, rather than aboutstrategies themselves. This works well with the underlying assumption that playersare rational and possess unbounded 
omputational ability. However, in many pra
-ti
al situations players have limited 
omputational resour
es. Thus a pres
riptivetheory whi
h provides advi
e to players needs to view strategies as relations 
on-straining players' moves rather than view them as 
omplete fun
tions. The 
entralidea is to formulate the notion of 
omposite strategies whi
h are 
onstru
ted in astru
tural manner and to show how expli
it reasoning of strategies 
an be a
hieved.The �rst part of the thesis looks at a logi
al analysis of strategies. We start thisstudy by de�ning the notion of stru
turally spe
i�ed strategies in the frameworkof unbounded duration games on graphs. This enables us to reason about how aplayer's strategy may depend on assumptions about the opponent's strategy. Su
hspe
i�
ations give rise to partially spe
i�ed bounded memory strategies. We 
onsidera simple modal logi
 to reason about su
h stru
tured strategies. We present a
omplete axiomatization of this logi
 and show that the truth 
he
king problem ofthe logi
 is de
idable.We then look at how stru
turally spe
i�ed strategies 
an be adapted to the 
asewhere the game itself has 
ompositional stru
ture. In this setting we suggest thatrather than performing strategi
 reasoning on the 
omposite game, one needs to
ompose game-strategy pairs. The advantage of imposing stru
ture not merely ongames or on strategies but on game-strategy pairs, is that we 
an speak of a 
om-posite game g followed by g′ whereby if the opponent played a strategy π in g, theplayer responds with σ in g′ to ensure a 
ertain out
ome. In the presen
e of itera-tion, a player has signi�
ant ability to strategize by taking into a

ount the expli
itstru
ture of games. We 
onsider a propositional dynami
 logi
 whose programs areregular expressions over su
h game-strategy pairs and present a 
omplete axiom-atization of the logi
. We also show that the satis�ability problem of the logi
 isde
idable.In the se
ond part of the thesis, we look at an algorithmi
 analysis of games.We propose evaluation automata as a 
onvenient �nite state model to present thepreferen
e orderings of players in in�nite games. We look at the 
lassi
al solution
on
ept of Nash equilibrium in terms of fun
tional strategies and show that an



equilibrium pro�le always exists in in�nite duration games on (�nite) arenas wherethe preferen
e orderings of players are spe
i�ed in terms of evaluation automata.We also show that the best response veri�
ation question is de
idable with respe
tto strategy spe
i�
ations and that synthesizing a best response strategy is possible.All the analysis mentioned above is 
arried out for games of perfe
t information.We �nally investigate multi-player games of imperfe
t information. It follows fromthe result of Peterson and Reif (1979) that in general the veri�
ation question whi
hasks whether a subset of players have a distributed winning strategy is unde
idable inthese games. The 
ru
ial element whi
h yields unde
idability is the fa
t that playersare not allowed to 
ommuni
ate with ea
h other. We propose a framework to modelgames of imperfe
t information where 
ommuni
ation is expli
itly represented. Herea player's information partition is generated in a stru
tural manner rather than beingpresented as part of the game formalism. We show that for the sub
lass of gameswhere 
ommuni
ation is restri
ted to publi
 announ
ements the veri�
ation questionis de
idable. We also look at the non-zero sum version where players have preferen
eorderings over out
omes. In this setting we show that best response 
omputation
an be performed and that one 
an verify whether a strategy pro�le 
onstitutes anequilibrium 
an be 
arried out.
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Chapter 1Introdu
tionThe 
entral innovation introdu
ed by game theory is its strategi
 dimension. Aplayer's environment is not neutral, and she expe
ts that other players will try tooutguess her plans. Reasoning about su
h expe
tations and strategizing one's ownresponse a

ordingly 
onstitutes the main logi
al 
hallenge of game theory. Gamesare de�ned by sets of rules that spe
ify what moves are available to ea
h player,and a

ording to her own preferen
es over the possible out
omes, every player plansher strategy. If the game is ri
h enough, the player has a

ess to a wide range ofstrategies, and the 
hoi
e of what strategy to employ in a game situation dependsnot only on the player's understanding of how the game 
an pro
eed from then on,but also based on his expe
tation of what strategies other players are following.While this observation holds true for mu
h of game playing, game theory largely
onsists of reasoning about games rather than reasoning in games. It is assumed thatthe entire stru
ture of the game is laid out in front of us, and we reason from above,predi
ting how rational players would play, and su
h predi
tions are summarised intoassertions on existen
e of equilibria. In an ideal world where players have unbounded
omputational abilities and where rationality is 
ommon knowledge, su
h predi
tionswould be realisti
. Players 
ould strategize based on all possible behaviours ofothers and if optimal strategies exist then they will always be able to dedu
e thesestrategies. However, in reality, players are bounded memory agents having limited
omputational abilities. Mu
h of the theory analysing solution 
on
epts in gamesassumes that players are rational, have unbounded 
omputational resour
es andtalks only about the existen
e of stable strategy pro�les.These 
omments hold true even for �nite duration games with perfe
t informa-tion. The 
lassi
 example of su
h a game is the game of 
hess. Using the ba
kward1



indu
tion algorithm, Zermelo [Zer13℄ argued that 
hess is determined, i.e. either thereexists a pure strategy for one of the two players (white or bla
k) guaranteeing thatshe will always win or ea
h one of the two players has a strategy guaranteeing atleast a draw. However, neither do we know whi
h of the three alternatives is the
orre
t one, nor a winning strategy if it exists. For games like Hex, it is known thatthe �rst player 
an for
e a win [Gal79℄ but nonetheless a winning strategy is notknown. Theoreti
ally a �nite game like 
hess or hex is not very interesting sin
ethe winner 
an be determined in time linear in the size of the game tree using theba
kward indu
tion pro
edure.As is apparent, existen
e results are of not mu
h help in advising players on howto play. The situation gets worse in the 
ase of games with overlapping obje
tiveswhere solution 
on
epts in general look for equilibrium strategy pro�les where noneof the players gain by unilaterally deviating. In general, su
h games 
an have mul-tiple equilibrium pro�les and it is not 
lear whi
h equilibrium the players would tryto attain. An equilibrium sele
tion theory was proposed by Harsanyi and Seltenin [HS87℄ to deal with su
h situations. The theory models the un
ertainty of ea
hplayer in terms of a belief hierar
hy whi
h spe
i�es a player's beliefs about whatothers play, about what they believe she and others play and so on, ad in�nitum.The theory thus makes use of unbounded iteration of beliefs and it is hardly 
learwhether this mat
hes in any way the reasoning done by players when they a
tuallyplay a game.And yet, as Aumann and Dreze [AD05℄ point out, game theory started by try-ing to develop a pres
riptive theory for rational agents. The seminal work of vonNeumann and Morgenstern envisaged game theory as 
onstituting advi
e for playersin game situations, so that strategies may be synthesized a

ordingly. While thiswas summarily a
hieved for two person zero sum games, advi
e fun
tions for multi-player games with overlapping obje
tives have been hard to 
ome by. [AD05℄ arguethat su
h a pres
riptive game theory must a

ount for the beliefs and expe
tationsea
h player has about strategies followed by other players. The intera
tive elementis 
ru
ial and a rational player should then play so as to maximize his utility, givenhow he thinks the others will play.We suggest that any pres
riptive theory whi
h takes into a

ount the limited
omputational abilities of players needs to 
onsider strategies as partial plans ratherthan 
omplete ones. Or in other words, strategies need to be 
onsidered as rela-tions 
onstraining players' moves, rather than fun
tions pres
ribing them uniquely.2



Thus rather than viewing them as atomi
 obje
ts, strategies need to be viewed asstru
tured obje
ts built in some 
ompositional fashion. This 
alls for a synta
ti
grammar for 
omposition of partial strategies and it also suggests that logi
al lan-guages designed to reason about 
omposition of programs 
ould provide valuableinsight in developing a similar framework for strategies.Logi
al analysis of games and strategiesVarious logi
al formalisms have been used to reason about games and strategies,and they 
an broadly be 
lassi�ed into three bran
hes.Modal and dynami
 logi
: In the 
ase of �nite extensive form games, a
tionindexed modal logi
s are well suited for logi
al analysis. Utilities 
an be 
odedup in terms of spe
ial propositions and the preferen
e ordering is then indu
ed bythe impli
ation available in the logi
. Game trees themselves are taken as modelsof the logi
. Adopting this approa
h, a 
hara
teristi
 formula for the ba
kwardindu
tion pro
edure is exhibited in [Bon01℄. In [Ben01, Ben02℄ van Benthem arguesthat extensive form games 
an be thought of as pro
ess models along with spe
ialannotations identifying player nodes. A dynami
 logi
 framework 
an then be usedto des
ribe 
omplete strategies of players as well as reasoning about out
omes that
an be ensured. Instead of 
oding obje
tives of players in terms of propositions,there have been suggestions to in
orporate elements of modal preferen
e languagesinto the logi
.Expli
it 
oding of 
omplete strategies works well in the 
ase of �nite exten-sive form games. However, this approa
h is not �generi
�, and the des
ription ofstrategies depends on the parti
ular model under 
onsideration. The dynami
 logi
formalism 
odes up the exa
t sequen
e of moves whi
h form a 
omplete strategy andthis 
ru
ially relies on having a spe
i�
 bound on the depth of the game tree. Butthen, this te
hnique does not help in the analysis of unbounded duration games. Weoften 
ome a
ross games where players have the option to quit the game or 
ontinueplaying. If they 
ontinue, they 
an potentially earn a better payo� but there is alsothe downside of losing what they have earned. These are games where the plays are�nite but of unbounded duration; su
h games 
an be easily modelled as games ongraphs.Temporal logi
: Various temporal logi
s have also been employed to reason about3



games. Notable among these is the work on alternating temporal logi
 (ATL)[AHK02℄ whi
h 
onsiders sele
tive quanti�
ation over paths that are possible out-
omes of games in whi
h players and an environment alternate moves. ATL reasonsabout stru
tured games whi
h are games on graphs where ea
h node is asso
iated witha single normal form game. In the initial formulation of ATL strategies themselves
ould not be referred to in the logi
. Various extensions of ATL where strategiesare allowed to be named and referred to in the formulas of the logi
 are proposedin [vdHJW05℄ and [WvdHW07℄. We will look at reasoning in games with ATL inmore detail in Se
tion 3.3.7.Game logi
: Propositional game logi
 [Par85℄, the seminal work on logi
al aspe
tsof game theory, talks of existen
e of strategies but builds 
omposite stru
ture intogames. [Gor03℄ looks at an algebrai
 
hara
terisation of games and presents a 
om-plete axiomatization of identities of the basi
 game algebra. Pauly [Pau01℄ has builton this to provide interesting relationships between programs and games, and todes
ribe 
oalitions to a
hieve desired goals. Goranko [Gor01℄ relates Pauly's 
oali-tion logi
s with work done in alternating temporal logi
. In this line of work, thegame itself is stru
turally built from atomi
 obje
ts. However, the reasoning doneis about existen
e of strategies and strategies themselves do not �gure in the logi
alformalism.Thus existing work on logi
al analysis of games tend to fo
us on �existen
e ofstrategies� for players. Even when strategies are 
onsidered expli
itly in the logi
alformalism they are taken to be 
omplete plans and mostly memoryless. To get abetter understanding of the logi
al foundations of game theory it is ne
essary tolook at formalisms whi
h take into a

ount the stru
ture of strategies expli
itly inthe logi
al language. In van Benthem's words, strategies are the �unsung heroes� ofgame theory [Ben07℄. A re
ent work in this dire
tion is that of Ghosh [Gho08℄ whi
hpresents a 
omplete axiomatisation of a logi
 des
ribing both games and strategiesin a dynami
 logi
 framework, but again the assertions are about unstru
turedstrategies.In this thesis, we take up the issue of logi
al analysis of strategies in games. Morepre
isely, we propose a synta
ti
 stru
ture to spe
ify bounded memory strategies interms of their observable properties and look at how reasoning in games 
an bee�e
tively done with respe
t to strategy spe
i�
ations.
4



Game representations and solution 
on
eptsA natural way of presenting games is by representing the individual moves of playersin an expli
it manner. This is often 
alled the extensive form game representation,where the game is represented as a tree with nodes representing game positions andedges representing the moves of players. Sin
e the extensive form representationpreserves the stru
ture of the game, it is an ideal representation to reason aboutstrategies whi
h are stru
tured in terms of its observable properties. In 
ontrast,the normal form representation, whi
h is widely used in game theoreti
 literatureprovides an abstra
t representation of games in terms of out
omes. This presentationis justi�ed under the standard assumption made in game theory that players arerational. If players are perfe
tly rational and they have unbounded 
omputationalresour
es, then they 
ould in prin
iple 
on
eive of strategies in full detail takinginto a

ount every possible move of the opponent and spe
ifying their response.The important point being that this 
an be done even without playing the game.Thus the strategies of all players 
an be listed and the game 
ould be spe
i�ed interms of the out
omes. The game is then played by ea
h of the players 
hoosing astrategy simultaneously.However, in this approa
h, optimal strategies or stable strategy pro�les of playersneed not exist. This brings us to one of the most important notions in game theory,that of mixed strategies. As opposed to deterministi
 strategies (also 
alled purestrategies) whi
h pi
k a
tions with absolute 
ertainty, mixed strategies asso
iate aprobability distribution over the set of possible a
tions. We �nd mixed strategiesoften used in many of the 
hildren's games, for instan
e it is well known that thebest strategy to follow in the game of mat
hing pennies is for both players to pi
kheads or tail randomly [Str93℄. The seminal result of Nash [Nas50℄ showed thatevery �nite game has an equilibrium pro�le in mixed strategies.Even in 
ases where the set of pure strategies of players is �nite, the set of mixedstrategies need not be. Thus to reason in games, there is the natural question ofhow players implement su
h strategies. One way is to think of players dynami
allyswit
hing between pure strategies based on the observed behaviour of other play-ers. In this 
ontext an interesting question would be to ask whether the behaviourof players stabilizes. In other words, do players eventually stop swit
hing betweenstrategies and sti
k to some pure strategy. A preliminary logi
al study of these is-sues were taken up in [PRS09a, PRS09b℄. A more realisti
 interpretation of playersimplementing mixed strategies would be: players typi
ally begin with some expe
-5



tation on the behaviour of other players and revise their expe
tations dependingon what they observe in the history of the play. Su
h situations are extensivelystudied in 
lassi
al game theory literature where Bayesian revision of priors is astandard te
hnique. In
orporating expe
tations of players into the logi
al frame-work for strategi
 reasoning is an interesting and 
hallenging task whi
h will alsomodel players' behaviour in a more realisti
 fashion. In this thesis however, we donot take up this issue.Sub-game perfe
t equilibrium: Sin
e extensive form games are represented interms of trees, the notion of sub-games 
an be de�ned in a natural manner. Givenan extensive form game T and a game position s the subtree rooted at s 
onstitutesa sub-game of the original game T . Sub-game perfe
t equilibrium is a re�nement ofstandard equilibrium notion where 
hoi
es whi
h involve any player making a movethat is not 
redible (be
ause it is not optimal) are eliminated. A strategy pro�le issaid to be a sub-game perfe
t equilibrium [Sel65℄ if it represents an equilibrium pro�lein every sub-game of the original game. In other words, sub-game perfe
tion looksat strategies whi
h are 
ompositionally 
onstru
ted from strategies in the varioussub-games of the original game. In the setting of �nite games, sub-game perfe
tionis justi�ed under the trembling hand assumption that players may 
hoose unintendedstrategies with negligible probability and thus all the game positions of the originalgame are rea
hable. In the 
ontext of unbounded duration non-zero sum games, itis no longer 
lear what the impli
ations of trembling hand assumptions are, in fa
teven 
oming up with appropriate notions of rationality whi
h justi�es the tremblinghand assumption is a 
hallenging task. However, the equilibrium notions 
an bemathemati
ally well de�ned by extending de�nitions of �nite game stru
tures. Ifwe do not question the foundational issues involved, then the material developed inChapter 4 suggests a way of 
omposing strategies by taking into a

ount sub-gamestru
tures.Stru
ture of the thesisThe thesis looks at the logi
al and algorithmi
 analysis of strategies. Chapter 2provides a general introdu
tion to extensive form and normal form games and thevarious well known solution 
on
epts. We also give an overview on logi
al analysisof games in the literature. The �rst part of the thesis 
onsists of Chapters 3 and 4whi
h look at the logi
al analysis of strategies. In Chapter 3 we introdu
e strategy6



spe
i�
ations and relate these spe
i�
ations to partially de�ned bounded memorystrategies. A logi
 for reasoning about su
h stru
tured strategies with respe
t toa single game is de�ned. A 
omplete axiomatization of the logi
 is presented andthe truth 
he
king problem is shown to be de
idable. Chapter 4 looks at howlogi
al analysis of strategies 
an be appropriately adapted in the 
ase when thegame itself is 
ompositional. We de�ne a logi
 whi
h expli
itly takes into a

ountthe 
ompositional stru
ture of games for strategi
 reasoning. We give a 
ompleteaxiomatization of the logi
 and show that the satis�ability problem for the logi
 isde
idable. Chapters 5 and 6 
onstitute the se
ond part of the thesis whi
h looks atthe algorithmi
 analysis of strategies in games. In Chapter 5, we study the 
lassi
alsolution 
on
ept of Nash equilibrium with respe
t to non-zero sum in�nite games interms of fun
tional strategies. We also look at how strategy spe
i�
ations help inthe algorithmi
 analysis of in�nite non-zero sum games. In Chapter 6, we look atgames of imperfe
t information and provide a model where 
ommuni
ation betweenplayers is expli
itly represented. We show that the best response 
omputation 
anbe e�e
tively 
arried out in this setting. Chapter 7 
ontains 
on
luding remarks and
omments on future work.

7



Chapter 2PreliminariesIn this 
hapter we provide a general introdu
tion to the two main forms of gamerepresentation: the extensive form and the normal form representation. We intro-du
e well known solution 
on
epts asso
iated with games. We also give an overviewon logi
al analysis of games.Throughout the thesis, we will be working in the setting of non-
ooperativegames. In Chapters 2,3,4 and 5, we will be dealing with games of perfe
t infor-mation. We therefore restri
t our attention to two player games for 
onvenien
e ofpresentation. The te
hniques developed 
an be extended to multi-player games aswell. We do not analyze the e�e
t of players forming 
oalitions even though it 
on-stitutes a very interesting bran
h of game theory. We do however look at imperfe
tinformation in Chapter 6 and analyse su
h games expli
itly in terms of multipleplayers.2.1 Extensive form gamesExtensive form games are a natural model for representing �nite games in an expli
itmanner. In this model, the game is represented as a �nite tree where the nodes ofthe tree 
orresponds to the game positions and edges 
orrespond to moves of players.The leaf nodes are labelled with payo�s obtained by players. We present the formalde�nition below.Let N denote the set of players, we use i to range over this set. For te
hni
al
onvenien
e, we restri
t our attention to two player games, i.e. we take N = {1, 2}.We often use the notation i and ı to denote the players where ı = 2 when i = 1and ı = 1 when i = 2. Let Σ be a �nite set of a
tion symbols representing moves of8
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• • • • • • • • •Figure 2.1: Finite extensive form game.players, we let a, b range over Σ. For a set X and a �nite sequen
e ρ = x1x2 . . . xm ∈

X∗, let last(ρ) = xm denote the last element in this sequen
e.2.1.1 Game treesLet T = (S,⇒, s0) be a tree rooted at s0 on the set of verti
es S and⇒ : (S×Σ) → Sis a partial fun
tion spe
ifying the edges of the tree. The tree T is said to be �niteif S is a �nite set. For a node s ∈ S, let →
s= {s′ ∈ S | s

a
⇒s′ for some a ∈ Σ}. Anode s is 
alled a leaf node (or terminal node) if →

s= ∅. Let frontier(T) denote theset of all leaf nodes of T.A �nite extensive form game tree is a pair T = (T, λ̂) where T = (S,⇒, s0) isa �nite tree. The set S denotes the set of game positions with s0 being the initialgame position. The edge fun
tion ⇒ spe
i�es the moves enabled at a game positionand the turn fun
tion λ̂ : S → N asso
iates ea
h game position with a player.Te
hni
ally, we need player labelling only at the non-leaf nodes. However, for thesake of uniform presentation, we do not distinguish between leaf nodes and non-leafnodes as far as player labelling is 
on
erned. For i ∈ N , let Si = {s | λ̂(s) = i}.Figure 2.1 shows an example of a �nite extensive form game tree. The nodes arelabelled with the player labels and edges represent a
tions enabled for players.A play in the game T starts by pla
ing a token on s0 and pro
eeds as follows: atany stage if the token is at a position s and λ̂(s) = i then player i pi
ks an a
tionwhi
h is enabled for her at s, and the token is moved to s′ where s a
⇒s′. Formallya play in T is simply a path ρ : s0a0s1 · · ·ak−1sk in T su
h that for all 0 ≤ j < k

sj
aj

⇒sj+1 and sk ∈ frontier(T ). Note that ea
h leaf node t denotes a play of thegame whi
h is the unique path from the root node s0 to t. Let Plays(T ) denote theset of all plays in the game tree T . 9
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• •Figure 2.2: Strategy of player 1.2.1.2 StrategiesA strategy for player i is a fun
tion µi whi
h spe
i�es a move at every game positionof the player, i.e. µi : Si → Σ. For i ∈ N , we use the notation µi to denotestrategies of player i and τ ı to denote strategies of player ı. By abuse of notation,we will drop the supers
ripts when the 
ontext is 
lear and follow the 
onventionthat µ represents strategies of player i and τ represents strategies of ı. A strategy µ
an also be viewed as a subtree of T where for ea
h player i node, there is a uniqueoutgoing edge and for nodes belonging to player ı, every enabled move is in
luded.Formally we de�ne the strategy tree as follows:De�nition 2.1.1 For i ∈ N and a player i strategy µ : Si → Σ the strategy tree
Tµ = (Sµ,⇒µ, s0, λ̂µ) asso
iated with µ is the least subtree of T satisfying the fol-lowing property:

• s0 ∈ Sµ

• For any node s ∈ Sµ,� if λ̂(s) = i then there exists a unique s′ ∈ Sµ and a
tion a su
h that
s
a
⇒µs

′.� if λ̂(s) 6= i then for all s′ su
h that s a
⇒s′, we have s a

⇒µs
′.Figure 2.2 shows a strategy tree for player 1 in the �nite extensive form gametree given in Figure 2.1.Let Ωi(T ) denote the set of all strategies for player i in the extensive formgame tree T . A play ρ : s0a0s1 · · ·ak−1sk is said to be 
onsistent with µ if for all10



j : 0 ≤ j < k we have sj ∈ Si implies µ(sj) = aj . A strategy pro�le (µ, τ) 
onsistsof a pair of strategies, one for ea
h player.A play ρ is 
onsistent with a strategy pro�le (µ, τ) if ρ is 
onsistent with µ and
τ . It is easy to 
he
k that given a strategy pro�le (µ, τ), there exists a unique playin T whi
h is 
onsistent with (µ, τ). This 
an be thought of as the play generatedby (µ, τ). We denote this play by ρ(µ,τ).2.1.3 Obje
tives of playersThe extensive form game tree merely de�nes the rules of the game, or how thegame progresses and terminates. More interesting are the obje
tives of playerswhi
h spe
ify their preferen
es over out
omes of the game. This is 
aptured byasso
iating a utility (or payo�) fun
tion ui : frontier(T ) → V with ea
h player
i ∈ N . Intuitively, for ea
h play ρ in the game tree T terminating at some frontiernode, the utility fun
tion of player i asso
iates with ρ a value from the set V. Thepayo� set V needs to be an ordered set, and traditionally it is taken to be a linearlyordered set. The utility fun
tion then inherits the underlying ordering of V whi
hin turn indu
es a preferen
e ordering on the set of plays. In what follows, we usesubsets of natural numbers as the payo� set and the exa
t set under 
onsiderationwill be expli
itly mentioned. We assume the standard ordering on natural numbers.A game is then spe
i�ed by a pair G = (T , {ui}i∈N ,V) where T is the extensiveform game tree, ui is the utility fun
tion of player i ∈ N and V is the payo� set.Zero sum obje
tivesIn the 
ase of two player games, the notion of �winning� arise in a natural way, wherethe obje
tives of players are stri
tly 
ompetitive. This is 
aptured by asso
iatingea
h player i ∈ {1, 2} with a utility fun
tion ui : frontier(T ) → {0, 1} whi
h satis�esthe 
ondition:(Z1) For all t ∈ frontier(T ) and for all i ∈ {1, 2}, ui(t) = 1 i� uı(t) = 0.It should be noted that in the literature, the range of the utility fun
tion for twoplayer zero sum games is usually taken to be {−1, 1}. The payo�s 
an always bes
aled to lie in the set {0, 1} and we 
hoose this set merely for 
onvenien
e.A play ρ ∈ Plays(T ) is said to be winning for player i i� ui(last(ρ)) = 1. Dueto the above restri
tion on the utility fun
tion, this also implies that for a play ρwhi
h is winning for player i, uı(last(ρ)) = 0. In other words, ρ is losing for player11



ı. The utility fun
tion ui indu
es a preferen
e ordering �i⊆ Plays(T ) × Plays(T )in the following manner. For ρ, ρ′ ∈ Plays(T ) we have
• ρ �i ρ′ i� ui(last(ρ)) ≤ ui(last(ρ

′)).Note that a

ording to the de�nition, �i for ea
h player i is a re�exive, transitiveand 
omplete binary relation. In other words �i is a total preorder on Plays(T ).A strategy µ of player i is a winning strategy if for all paths ρ ∈ Tµ, ui(last(ρ)) =

1. Player i wins the game G if there exists a winning strategy for i in the game G.We say a game G is determined if one of the players win G.Relevant problems: In the setting of two player zero sum games, the questions ofinterest in
lude: Given a game G = (T , {ui}i∈N),1. is G determined?2. given i, determine if player i wins G and if so, 
ompute the winning strategy.The �rst question 
on
erning determina
y was settled by the following resultoften referred to as the Gale-Stewart theorem.Theorem 2.1.2 ([GS53℄) Every �nite two player zero sum game is determined.The se
ond question deals with the algorithmi
 issue of determining the winnerof a game and 
onstru
ting the winning strategy. The ba
kward indu
tion algorithmdue to Zermelo ([Zer13℄) provides a solution to this question.Ba
kward indu
tion algorithm[Jon80℄: The pro
edure BI (G, i) takes as inputa game G = (T , {ui}i∈{1,2}) and a player i ∈ {1, 2}. It de
ides whether player i hasa winning strategy in G and if so, 
omputes the winning strategy. The algorithmpro
eeds as follows: Initially all nodes are unlabelled.
• All leaf nodes t are labelled with ui(t).
• Repeat the following steps till the root node s0 is labelled: Choose a non-leafnode s whi
h is not labelled and all of whose su

essors are labelled,� If λ̂(s) = i and there exists s′ su
h that s a

⇒s′ where s′ is labelled 1 thenlabel s with 1 and mark the edge s a
⇒s′.� If λ̂(s) = ı and every su

essor s′ is labelled 1 then label s with 1.12



The 
orre
tness of the pro
edure is asserted by the following proposition whi
h
an be easily shown by an indu
tive argument.Proposition 2.1.3 Given a game G = (T , {ui}i∈{1,2}) and i ∈ {1, 2}, player i has awinning strategy in G i� the root node s0 is labelled with 1 by the ba
kward indu
tionpro
edure BI (G, i).The subtree of T 
onstituted by 
hoosing the marked edges for all game positionsof player i is the 
orresponding winning strategy.Overlapping obje
tivesThe �rst step in generalising from zero sum obje
tives would be to drop the require-ment that utilities of the players be antagonisti
. That is, ea
h player is asso
iatedwith a �win-loss� (or binary) obje
tive whi
h is spe
i�ed by the utility fun
tion
ui : frontier(T ) → {0, 1}. However, the utility fun
tion ui need not satisfy 
ondi-tion (Z1). Thus it is possible that there exists a leaf node t su
h that ui(t) = uj(t)for players i and j with i 6= j. In other words, the obje
tives of players 
an possiblyoverlap. In general, non-zero sum games are games where the utility fun
tion is amap ui : frontier(T ) → N, where N denotes the set of natural numbers.Best response and equilibriumIn the 
ase of non-zero sum games, the role of determina
y is repla
ed by one ofthe most important 
on
epts in game theory, that of Nash equilibrium [Nas50℄. Weformally de�ne best response and Nash equilibrium below.De�nition 2.1.4 Given a strategy τ of player ı, the strategy µ of player i is thebest response for τ if ∀µ′ ∈ Ωi(T ), ui(ρ(µ′,τ)) ≤ ui(ρ(µ,τ)).De�nition 2.1.5 A strategy pro�le (µ, τ) 
onstitutes a Nash equilibrium if µ is thebest response for τ and τ is the best response for µ.Thus a pro�le of strategies, one for ea
h player, is said to be in Nash equilibriumif no player gains by unilaterally deviating from his strategy. In other words, a Nashequilibrium is a strategy pro�le in whi
h every player's strategy is optimal assumingthat the other players use their equilibrium strategies.For extensive form games, a more re�ned notion of stable strategy pro�le is thatof sub-game perfe
t equilibrium [Sel65℄. Observe that for an extensive form game13



T = (S,⇒, s0, λ̂), and a node s ∈ S, the subtree of T rooted at s also de�nes avalid extensive form game (we denote this game by Ts). A strategy pro�le (µ, τ)
onstitutes a sub-game perfe
t equilibrium if for all nodes s ∈ S, the pro�le (µ, τ)
onstitutes a Nash equilibrium for the game Ts.Relevant problems: In the 
ontext of non-zero sum games, the questions of in-terest in
lude: given a game G = (T , {ui}i∈N),1. given a strategy τ of player ı, 
ompute the best response strategy of player ifor τ .2. determine if game G possesses a Nash equilibrium strategy pro�le.3. if Nash equilibrium exists then 
ompute the equilibrium pro�le.Below we show that for every non-zero sum �nite extensive form game, a Nashequilibrium strategy pro�le always exists. We also show that the 
omputation ofbest response and equilibrium pro�le is algorithmi
ally solvable.Best response 
omputation: Given a game G = (T , {ui}i∈N) and a strategypro�le τ of player ı, 
onsider the strategy tree Tτ of τ . The tree Tτ satis�es theproperty that for all game positions of ı, there is a unique outgoing edge and all
hoi
es of player i nodes are preserved. In other words, only player i has any strategi

hoi
e left. The best out
ome player i 
an a
hieve is to rea
h a terminal node t su
hthat ui(t) ≥ ui(t
′) for all t′ ∈ frontier(T ). Let ρts0 : s0a0 . . . sk = t denote the
orresponding play. Consider any strategy µi whi
h satis�es the 
ondition that forall m : 0 ≤ m < k, µi(sm) = am. For i nodes not o

urring in ρts0 the strategyis allowed to pi
k any enabled a
tion. It 
an be easily veri�ed that µi is the bestresponse of player i for τ .The above pro
edure 
an be implemented to run in time linear in the size of theextensive form game tree. We need to 
onsider the tree Tτ and �nd a path to theleaf node with maximum utility for player i. This path 
an be found using a depth�rst sear
h pro
edure whi
h runs in linear time and the strategy 
an be de�ned fromthis path.Equilibrium 
omputation: The ba
kward indu
tion algorithm introdu
ed earlieris our 
ore te
hnique in equilibrium 
omputation. We modify the earlier mentionedpro
edure in order to deal with utilities.14



The pro
edure EQ(G) takes as input an n-player gameG and produ
es as outputa strategy pro�le (µ, τ). The pro
edure works as follows: Initially all nodes areunmarked.
• Label all leaf nodes t with the payo� tuple (u1(t),u2(t)), let this be denotedby u(t). The labelling is then extended to all nodes of the tree as follows.
• Fix an i ∈ N and repeat the following step till the root node s0 is labelled:Choose a non-leaf node s for whi
h u(s) is not de�ned and all of whose su
-
essors are labelled,� if λ̂(s) = i then let s′ ∈→

s be a node su
h that ui(s
′) ≥ ui(s

′′) for all othersu

essor nodes s′′ of s. De�ne u(s) = u(s′) and µ(s) = a where s a
⇒s′.� if λ̂(s) = ı then let s′ ∈→

s be a node su
h that uı(s
′) ≥ uı(s

′′) for all othersu

essor nodes s′′ of s. De�ne u(s) = u(s′) and set τ(s) = a where
s
a
⇒s′.Note that a

ording to the pro
edure, for all i ∈ N , for all nodes s, if λ̂(s) = ithen µ(t) is de�ned. Therefore the tuple (µ, τ) generated by the pro
edure 
on-stitutes a valid strategy pro�le. The following proposition 
an be shown by anindu
tive argument.Proposition 2.1.6 For a game G = (T , {ui}i∈N), if (µ, τ) is the strategy pro�le
onstru
ted by the pro
edure EQ(G) then for all i ∈ N , µ is the best response for τand τ is the best response for µ.Corollary 2.1.7 For a game G = (T , {ui}i∈N), the strategy pro�le (µ, τ) 
on-stru
ted by the pro
edure EQ(G) 
onstitutes a Nash equilibrium pro�le.2.2 Normal form gamesIn extensive form games, moves of players are expli
itly presented and thereforestrategies are not abstra
t atomi
 obje
ts but have 
ertain stru
ture asso
iatedwith them. Another 
ommonly used representation for games is the normal form(or strategi
 form) representation. In 
ontrast to the extensive form representation,strategies are presented in normal form games in an abstra
t manner. In this rep-resentation, strategies of players 
orresponds to 
hoosing an a
tion from the a
tionset. 15



We assume that the set of a
tions is partitioned into a
tion sets for ea
h player,i.e. Σ = Σ1 ∪Σ2. Let Σ̂ = Σ1 ×Σ2. A strategy pro�le is simply a pair of a
tions, onefor ea
h player. A play of the game 
orresponds to ea
h player 
hoosing an a
tionsimultaneously without knowledge of the a
tion pi
ked by the other player. Thus astrategy pro�le 
onstitutes a play in the game. Ea
h play is asso
iated with a pairof utilities, denoting the payo�s for the players.De�nition 2.2.1 Suppose |Σ1| = m and |Σ2| = k, then a strategi
 form game 
anbe represented as an m × k matrix A where the a
tions of player 1 
onstitute therows of the matrix and that of player 2 the 
olumns. The matrix entries spe
ify theout
ome of the play for ea
h player.Example 2.2.2 A normal form game with m = k = 2 is shown in Figure 2.3. Here
Σ1 = {a1, b1} and Σ2 = {a2, b2}. The a
tion pro�le (a1, a2) where player 1 
hoosesto play a1 and player 2 
hooses a2, results in the utility u1

1 for player 1 and u1
2 forplayer 2.

a2 b2

a1 (u1
1, u

1
2) (u2

1, u
2
2)

b1 (u3
1, u

3
2) (u4

1, u
4
2)Figure 2.3: Normal form game

2For normal form games, the notion of best response and equilibrium 
an bede�ned as in the 
ase of extensive form games.Tree representation of normal form gamesA normal form game 
an be viewed as an extensive form game tree of depth onewhere the edges are labelled by pairs of a
tions, one for ea
h player. Formally thegame tree T = (S,⇒, s0, {ui}i∈N) where S is the set of states, s0 is the root of thetree. The transition fun
tion ⇒ : s0×Σ̂ → (S \{s0}) is a partial fun
tion also 
alledthe move fun
tion whi
h satis�es the 
ondition: for all s ∈ S \ {s0}, there exists16



a ∈ Σ̂ su
h that s0
a
⇒s. The utility fun
tion ui : S → N. Let Σ̂T = {a ∈ Σ̂ | ∃s′ ∈

S where s0
a
⇒s′} denote the set of all strategy pro�les of T .
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2)(a) (b)Figure 2.4: Tree representation of a normal form gameThe game tree 
orresponding to the normal form game in Figure 2.3 is shownin Figure 2.4(a). A play is simply an edge in the tree, this 
orresponds to both theplayers pi
king an a
tion. A strategy for player i is the subtree of g where for player

i a unique a
tion is 
hosen and for player ı all the a
tions are taken into a

ount. Astrategy for player 1 in the game given in Figure 2.4(a) where he pi
ks a
tion �a1�,is shown in Figure 2.4(b).2.3 Games on graphsExtensive form game trees provide a 
onvenient representation of �nite games. How-ever, we often 
ome a
ross games where plays are �nite but the number of moves (orthe depth of the game tree) is not �xed in advan
e. Typi
al examples of su
h gamesare ones in whi
h at 
ertain positions, players are given the option of quitting thegame and walking away with a 
ertain payo� or 
ontinue playing the game. Theseare usually non-zero sum games and the a
tion of quitting the game 
omes with a
ost tradeo�. If the player stays on and 
ontinues with the game, he 
an potentiallyget a better payo� but there is also a downside of losing what he has earned sofar. If the game rea
hes a situation where all the players re
ognise that they 
annotimprove their payo�s any further then they 
an mutually agree to terminate thegame.For instan
e, 
onsider the game of 
hess played as part of a television game show.Two players are 
ompeting against ea
h other. However it is not a simple win-loss game. Players earn some spe
i�ed amount on being able to perform a 
ertainsequen
e of moves or on rea
hing some parti
ular board 
on�guration. At this point,17



the players also have the option to quit the game and leave with the amount theywon or to 
ontinue playing the game. If they 
ontinue, they 
an potentially earnmore but there is also the downside of losing what they have earned. As in any gameshow, the payo�s are not 
umulative, and they arise from a �nite set of divisions.The ja
kpot, of 
ourse, is when a player wins the game he gets paid 1 million dollars.If the game rea
hes a point where the board 
on�guration keeps repeating and theplayers realise that there is no way of improving their payo�s, they 
an mutuallyagree to terminate the game and disperse with what they earned so far 1.These are games of unbounded duration and the extensive form game represen-tation results in an in�nite tree. There are various possible options to present su
hgames in a �nite fashion. One way is to spe
ify the game stru
ture in terms of a�nite set of game rules. In this thesis, we adopt a simpler approa
h based on graph-i
al game models whi
h is to present the game in terms of a �nite game arena (�nitegraph). The asso
iated in�nite extensive form game is obtained by the unfolding ofthis arena.2.3.1 Game arenaWe use games on graphs to model games of unbounded duration. We assume theexisten
e of a spe
ial game position 
alled exit to model the termination of the gameand an a
tion quit whi
h 
orresponds to players 
hoosing to quit the game.De�nition 2.3.1 A game arena is a stru
ture G = (W,→, w0, λ) where
• W is a �nite set of game positions.
• → : W × Σ → W is a partial fun
tion also 
alled the move fun
tion whi
hsatis�es the 
ondition� →

exit= ∅� w
quit
→w′ i� w′ = exit

• w0 ∈W is the initial game position.
• λ : W → N is the turn fun
tion whi
h asso
iates ea
h game position with aplayer.1In fa
t one 
an 
onsider any perfe
t information game where there is an option of in
reasingthe stakes or quitting and the possibility of the game ending in a draw.18



Let →(w, a) = w′, we often denote this by w a
→w′.For i ∈ N , let W i = {w ∈ W | λ(w) = i}. A play in G is either a �nite path

ρ = w0a0w1a1 . . . wk su
h that wk = exit or an in�nite path ρ = w0a0w1a1 . . . su
hthat for all j ≥ 0, wj aj

→wj+1. Let Plays(G) denote the set of all plays in G. The(in�nite) extensive form game tree TG asso
iated with G is obtained by the treeunfolding of G whi
h we de�ne below.De�nition 2.3.2 Let G = (W,→, w0, λ) be a game arena. The tree unfolding of G isthe least tree stru
ture TG = (S,⇒, s0, λ̂) where S ⊆ (W×Σ)∗W and ⇒ : S×Σ → Ssatis�es the 
ondition:
• w0 ∈ S.
• If s = (w0, a0) . . . wk ∈ S and wk a

→w′ then s′ = (w0, a0) . . . (wk, a)w
′ ∈ S and

s
a
⇒s′.Further, for a node s = (w0, a0) . . . wk ∈ S, λ̂(s) = λ(wk).
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s = w0a0w1a1 . . . wk in TG denotes a �nite play in the arena, with last(s) = wk.Note that for any node s, last(s) ∈W .The obje
tives of players 
an be spe
i�ed as preferen
e orderings on the set ofplays, i.e. ea
h player is asso
iated with an ordering �i⊆ Plays(G) × Plays(G).19



2.3.2 StrategiesA strategy µ for player i spe
i�es for ea
h partial play ending in a game position ofplayer i whi
h a
tion to 
hoose. Thus µ is a map µ : (W × Σ)∗W i → Σ. As in the
ase of extensive form games (de�nition 2.1.1), a strategy 
an be viewed as a subtreeof the game tree TG where for every player i node there is a unique outgoing edgeand for an ı node, all outgoing edges are in
luded. Sin
e TG is in�nite, a strategythus de�ned 
an in prin
iple depend on the 
omplete history of play and in generalit need not be 
omputable. For 
omputationally bounded players it is not possibleto implement or even 
hoose to play su
h an arbitrarily de�ned strategy.Resour
e limitations on strategies have been studied in the game theoreti
 frame-work. [FW94℄ looks at the situation where players are represented by polynomialtime turing ma
hines. This is motivated by the intuition that typi
ally in the realworld, players are equipped with powerful 
omputers whi
h help them optimize theirstrategies. In this approa
h the standard 
omplexity measure notions on turing ma-
hines 
an be adopted to 
lassify strategies. A weaker form of 
omputation whi
his however extremely robust is represented by �nite state automata. Strategies de-�ned by �nite state automata have been studied in [Ney85, AR88, Ney98℄. Thetypi
al 
omplexity measure looked at here is the size of the minimal deterministi
automaton whi
h represents the strategy. Also of interest is the notion of �programequilibrium� [Ten04℄ whi
h looks at strategies whi
h are implementable as programsand reasons about players' abilities to refer to 
omputation done in parallel by otherprograms.In this thesis we sti
k to the weaker form of de�ning resour
e limited strategies interms of �nite state automata. In this 
ontext, the following two types of strategiesare of parti
ular interest:
• Memoryless (positional) strategies: These are strategies for whi
h the nextmove depends only on the 
urrent game position and not on the history ofplay. Thus the map µ : W i → Σ pres
ribes the same a
tion for all partial playsending at the same game position. That is, for all ρ, ρ′ su
h that last(ρ) =

last(ρ′), µ(ρ) = µ(ρ′).
• Bounded memory strategies: These are strategies where the dependen
e of thenext move to the history of the play 
an be kept tra
k of by a �nite set ofstates. Su
h strategies 
an be represented using �nite state ma
hines. Wethink of these as advi
e automata, in the sense that they 
onstitute an advi
e20



for the player to 
onsult at a game position.De�nition 2.3.3 Let G be a game arena, a deterministi
 advi
e automaton forplayer i is a tuple A = (Q, δ, o, q0) where
• Q is the set of states.
• δ : Q×W × Σ → Q is the deterministi
 transition fun
tion.
• o : Q×W i → Σ is the advi
e fun
tion.
• q0 ∈ Q is the initial state.For a partial play ρ : w0a0w1 . . . wk, the run of A on ρ is the sequen
e of states

q0q1 . . . qk su
h that for all j where 0 ≤ j < k, qk+1 = δ(qk, wj, aj). The strategy µ ofplayer i generated by A is de�ned as follows. For any partial play ρ : w0a0w1 . . . wk,let q0q1 . . . qk be the run of A on ρ, then µ(ρ) = o(qk, wk). Sin
e A is a deterministi
automaton, it is easy to see that the strategy generated by A is unique.For te
hni
al purposes, we �nd it 
onvenient to de�ne the notion of the lan-guage a

epted by an advi
e automaton. Let µ be a strategy of player i and Tµ =

(Sµ,⇒µ, s0) be the 
orresponding strategy tree. The run of A on Tµ is a Q labelledtree T = (Sµ,⇒µ, s0, f), where f maps ea
h tree node to a state in Q as follows:
f(s0) = q0, and for any sk where sk a

⇒µs
′
k, we have f(s′k) = δ(f(sk), last(sk), ak).A Q labelled tree T is a

epted by A if for every tree node s ∈ Sµ where s ∈ Si,

s
a
⇒s′ implies o(f(s), last(s)) = a. We say a strategy µ is a

epted by A or is in thelanguage of A (denoted Lang(A)) if the run of A on µ is a

epting. For a state qand a tree node s, we often use the notation o(q, s) to denote o(q, last(s)).2.4 Logi
al analysis of gamesIn this se
tion we look at logi
al analysis of games in the literature. We fo
us onmodal and dynami
 logi
s whi
h 
onsiders the game stru
ture to be atomi
 andwhere additional 
ompositional stru
ture of the game representation itself is nottaken into a

ount. Finite extensive form games are parti
ularly suited for this typeof analysis. This was suggested in [Ben02, Ben01℄ and has also been explored invarious dire
tions. The 
ore idea used by the various logi
s adopting this style ofreasoning is the following:

• Finite extensive form game tree 
an be viewed as models of dynami
 logi
.21



• Strategies of players in �nite extensive form games, 
an be en
oded as pro-grams in dynami
 logi
.Here we illustrate how dynami
 logi
 
an be e�e
tively used to reason aboutgames and abilities of players to ensure 
ertain out
omes. We �nd it instru
tiveto �rst give a brief introdu
tion to propositional dynami
 logi
 (PDL). A more
omprehensive treatment of PDL 
an be found in [HKT00℄.Propositional dynami
 logi
Dynami
 logi
, a logi
 to reason about the behaviour of 
omposite nondeterminis-ti
 programs was originally proposed by Pratt [Pra76℄, where it was shown how toextend modal logi
 by 
onsidering a separate modality for every program. Proposi-tional reasoning about programs in terms of dynami
 logi
 was studied by Fis
herand Ladner in [FL77, FL79℄.Syntax: Let P denote a 
ountable set of propositions. The formulas of PDL are
onstru
ted using the following syntax:
P := a ∈ Σ | γ1; γ2 | γ1 ∪ γ2 | γ

∗ | α?

PDL := p ∈ P | ¬α | α1 ∨ α2 | 〈γ〉αwhere γ ∈ P and α ∈ PDL.Semanti
s: PDL formulas are interpreted over edge labelled Kripke stru
tures
M = (W,→, V ) whereW is the set of states, → ⊆W×Σ×W and V : W → 2P . Thesemanti
s of 
omposite programs is de�ned in terms of the relation RPDL ⊆W ×Was follows.

• RPDL
a = {(u, w) | u

a
→w}.

• RPDL
γ1;γ2 = {(u, w) | ∃v ∈W where (u, v) ∈ RPDL

γ1
and (v, w) ∈ RPDL

γ2
}.

• RPDL
γ1∪γ2 = RPDL

γ1
∪RPDL

γ2
.

• RPDL
γ∗ =

⋃
n≥0(R

PDL
γ )n, where (RPDL

γ )n denotes the n-fold relational 
omposi-tion.
• RPDL

α? = {(u, u) | M,u |= α}.The truth of a formula α in a model M at a state u (denoted M,u |= α) isde�ned indu
tively as follows: 22



• M,u |= p i� p ∈ V (u).
• M,u |= ¬α i� M,u 6|= α.
• M,u |= α1 ∨ α2 i� M,u |= α1 or M,u |= α2.
• M,u |= 〈γ〉α i� there exists (u, w) ∈ RPDL

γ su
h that M,w |= α.Reasoning about games in PDLAn extensive form game tree T = (S,⇒, s0, λ̂) 
an be viewed as a Kripke stru
ture
M = (S,⇒, V ) where V : S → 2P is a valuation fun
tion whi
h provides interpre-tation for the atomi
 propositions in P . The turn fun
tion λ̂ 
an be 
oded in termsof spe
ial propositions turni for ea
h i ∈ N . It is also 
onvenient to represent thefrontier nodes of the tree in terms of a proposition leaf . Thus the valuation fun
tionsatis�es the following 
ondition: for all s ∈ S,

• ∀i ∈ N , turni ∈ V (s) i� λ̂(s) = i.
• leaf i ∈ V (s) i� s ∈ frontier(T ).
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orresponding modelConsider the game tree given in Figure 2.6(a). The model 
orresponding to thegame tree is shown in Figure 2.6(b). Suppose the proposition p is true at states
s4 and s5, i.e. p ∈ V (s4) and p ∈ V (s5). Consider the following PDL formulainterpreted over the model given in Figure 2.6(b).

• [(turn1?; a) ∪ (turn1?; b)]〈(turn2?; c) ∪ (turn2?; d)〉(leaf ⊃ p).This says that no matter what move player 1 makes, player 2 has a move to ensurethe out
ome states satis�es p. In other words, player 2 has a �winning strategy� toensure the out
ome p. 23



In PDL one 
an talk about not just winning strategies but also about strategi
response of players. Consider the formula
• [(turn1?; a); (turn2?; d)](leaf ⊃ p).The formula asserts that if player 1 plays �a� then player 2 
an respond with �b� toa
hieve the out
ome p. In general if σ is the strategy of player 1 en
oded as a PDLprogram and π that of player two then the following formula says that the staterea
hed when players employ the strategy σ and π against ea
h other satis�es theproperty p.
• [(turn1?; σ ∪ turn2?; π)∗]leaf ⊃ p.En
oding utilities in the model: The above examples illustrate how programs
an be e�e
tively used to 
ode strategies in �nite extensive form games. Moreinteresting would be to reason about games with respe
t to the utilities of players.Utilities 
an again be 
oded in terms of propositions as illustrated in [Bon02℄. Let

V = {u1, u2, . . .} be a value set and for i ∈ N , let ui : frontier(T ) → V. Withoutloss of generality assume that u1 ≤ u2 ≤ . . .. Let Θ1 = {θ1
1, θ

2
1, . . .} be a set ofspe
ial propositions used to en
ode the utilities in the logi
, i.e. θj1 
orresponds tothe utility θj1. Likewise for player 2, we have the set of spe
ial propositions Θ2. Thevaluation fun
tion satis�es the 
ondition:

• For all states s, for i ∈ N , {θ1
i , . . . , θ

j
i } ⊆ V (s) i� ui(s) = uj.The preferen
e ordering on the rewards for ea
h player is simply inherited fromthe impli
ation available in the logi
. Thus strategy 
omparison with respe
t toutilities 
an be expressed in the logi
 as follows.

• ([(turn1?; σ1)
∗]leaf ⊃ θi) ⊃ ([(turn1?; σ

′
1)

∗]leaf ⊃ θi).Related work: There have been various studies whi
h build on this basi
 ideaof using dynami
 logi
 to reason about games. [HvdHMW03℄ suggests interpretingthe atomi
 a
tions in PDL in terms of strategy pro�les. This enables assertionsto be made regarding the resulting plays in the game. The authors 
ome up with
hara
teristi
 formulas for Nash equilibrium and sub-game perfe
t equilibrium inthis setting.In the ba
kward indu
tion pro
edure, the idea is to lift the preferen
e orderingover utilities to ordering over tree nodes. But as pointed out in [Ben06℄, when or-derings are interpreted over tree nodes, it does not merely represent what players24



prefer but what they expe
t to happen given the rationality assumptions about howother players will pro
eed. Instead of 
oding utilities dire
tly as propositions a moreelegant method would be to in
orporate elements of a preferen
e language into thelogi
. This was suggested in [BOR06℄ where the authors analyse the ba
kward in-du
tion pro
edure in terms of a preferen
e modality.Remarks: It should be noted that the above mentioned te
hnique of 
oding strate-gies as programs in PDL works well sin
e we are dealing with �nite extensive formgames. The fa
t that the depth of the game tree is known in advan
e, is 
ru
iallyused. In parti
ular, this approa
h would not work in the 
ase of unbounded durationgames where the length of plays is not determined in advan
e. To make assertionsabout existen
e of strategies one 
ould look at adding a �x-point operator to thelogi
 as done in µ-
al
ulus [Koz83℄. In the 
ase of in�nite two player zero sum gameson �nite graphs, it is well known that winning regions of players 
an be expressed as
µ-
al
ulus properties (see [GTW02℄, Chapter 10). However, it is hardly 
lear howto reason about strategies in the µ-
al
ulus framework.
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Chapter 3Logi
al analysis of strategiesAs demonstrated in the previous 
hapter, game theoreti
 analysis typi
ally involveout
ome based analysis in terms of solution 
on
epts. However, a pres
riptive the-ory needs to view strategies as partial fun
tions built in a 
ompositional manner.In this 
hapter we propose a programming language syntax for building partiallyspe
i�ed strategies in a 
ompositional framework. The framework is not dependenton any spe
i�
 bound on the length of the play and is therefore suited for analysisof unbounded duration games as well.3.1 Strategy spe
i�
ationsWe �x the following notations. Let G = (W,→, w0, λ) denote the game arena. Let
P i = {pi0, p

i
1, . . .} be a 
ountable set of observables for i ∈ N .We 
on
eive of strategies as being built up from atomi
 ones using some grammar.The atomi
 
ase spe
i�es, for a player, what 
onditions she tests for before making amove. We 
an asso
iate with the game arena a set of observables for ea
h player. Oneelegant method then, is to state the 
onditions to be 
he
ked as a past time formulaof a simple tense logi
 over the observables. The stru
tured strategy spe
i�
ationsare then built from atomi
 ones using 
onne
tives. We 
ru
ially use an impli
ationof the form: �if the opponent is apparently playing a strategy π then play σ�.Below, for any 
ountable set X, let Past(X) be sets of formulas given by thefollowing syntax:

ψ ∈ Past(X) := x ∈ X | ¬ψ | ψ1 ∨ ψ2 | 3-ψ.The past time formulas are interpreted over sequen
es. Intuitively, the modality27



3-ψ asserts that sometime in the past the formula ψ holds. We also use Voc(ψ) todenote the subset of X whi
h is mentioned in ψ.3.1.1 SyntaxThe syntax of strategy spe
i�
ations is given by:
Strat i(P i) := [ψ 7→ a]i | σ1 + σ2 | σ1 · σ2 | π ⇒ σ1where π ∈ Strat ı(P 1 ∩ P 2) and ψ ∈ Past(P i).The idea is to use the above 
onstru
ts to spe
ify properties of strategies. Forinstan
e the interpretation of a player i spe
i�
ation [p 7→ a]i where p ∈ P i is to
hoose move �a� at every player i game position where p holds. At positions where

p does not hold, the strategy is allowed to 
hoose any enabled move. σ1 + σ2 saysthat the strategy of player i 
onforms to the spe
i�
ation σ1 or σ2. The 
onstru
t
σ1 · σ2 says that the strategy 
onforms to spe
i�
ations σ1 and σ2.The spe
i�
ation π ⇒ σ says, at any node player i sti
ks to the spe
i�
ation givenby σ if on the history of the play, all moves made by ı 
onform to π. In strategies,this 
aptures the aspe
t of players' a
tions being responses to the opponent's moves.The opponent's 
omplete strategy may not be available, the player makes a 
hoi
etaking into a

ount the apparent behaviour of the opponent on the history of play.Let Σ = {a1, . . . , am}, we also make use of the following abbreviation.

• null i = [True 7→ a1] + · · ·+ [True 7→ am].It will be 
lear from the semanti
s (whi
h is de�ned shortly) that any strategy ofplayer i 
onforms to null i, or in other words this is an empty spe
i�
ation. Theempty spe
i�
ation is parti
ularly useful for assertions of the form �there exists astrategy� where the property of the strategy is not of any relevan
e.3.1.2 Semanti
sGiven any sequen
e ξ = t0t1 · · · tm, a map V : {t0, · · · , tm} → 2X , and an index
k su
h that 0 ≤ k ≤ m, the truth of a past formula ψ ∈ Past(X) at k, denoted
ξ, k |= ψ 
an be de�ned as follows:

• ξ, k |= p i� p ∈ V (sk).
• ξ, k |= ¬ψ i� ξ, k 6|= ψ. 28



• ξ, k |= ψ1 ∨ ψ2 i� ξ, k |= ψ1 or ξ, k |= ψ2.
• ξ, k |= 3-ψ i� there exists a j : 0 ≤ j ≤ k su
h that ξ, j |= ψ.Strategy spe
i�
ations are interpreted on strategy trees of G. For this purpose,we 
onsider the game arena G = (W,→, w0, λ) along with a valuation fun
tion forthe observables V : W → 2P . We assume the presen
e of two spe
ial propositions

turn1 and turn2 that spe
i�es whi
h player's turn it is to move, i.e. the valuationfun
tion satis�es the property
• for all i ∈ N , turni ∈ V (w) i� λ(w) = i.The valuation fun
tion V is extended to the tree unfolding TG in the obviousmanner: for a node s we have V (s) = V (last(s)). Re
all that a strategy µ ofplayer i is a subtree of TG. Given a strategy µ of player i and a node s ∈ µ, let

ρss0 : s0a0s1 · · · sm = s be the unique path in µ from the root node s0 to s. Fora strategy spe
i�
ation σ ∈ Strat i(P i), we de�ne the notion of µ 
onforming to σ(denoted µ |=i σ) as follows:
• µ |=i σ i� for all player i nodes s ∈ µ, we have ρss0 , s |=i σ.where we de�ne ρss0 , sj |=i σ for any player i node sj in ρss0 as,
• ρss0 , sj |=i [ψ 7→ a]i i� ρs, sj |= ψ implies outρs

s0
(sj) = a.

• ρss0 , sj |=i σ1 + σ2 i� ρss0 , sj |=i σ1 or ρss0 , sj |=i σ2.
• ρss0 , sj |=i σ1 · σ2 i� ρss0 , sj |=i σ1 and ρss0, sj |=i σ2.
• ρss0 , sj |=i π ⇒ σ1 i� (if for all player ı nodes sk ∈ ρss0 su
h that k ≤ j,
ρss0 , sk |=ı π) then ρss0 , sj |=i σ1.Above, π ∈ Strat ı(P 1 ∩ P 2), ψ ∈ Past(P i), and for all i : 0 ≤ i < m, outρs

s0
(si) = aiand outρs

s0
(s) is the unique outgoing edge in µ at s. Re
all that s is a player i nodeand therefore by de�nition there is a unique outgoing edge at s.Given a game arena G, a player i ∈ N and a strategy spe
i�
ation µ ∈ Strat i(P i)we de�ne the tree language T L(G, σ) as T L(G, σ) = {µ ∈ Ωi(G) | µ |=i σ}.
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RemarksNote that we do not have negation in spe
i�
ations. One reason is that the spe
i�-
ations are partial, and hen
e the semanti
s is not immediate. If we were to 
onsidera spe
i�
ation of the form π ⇒ σ, we 
ould interpret this as: if player has seen thatopponent has violated π in the past, then play σ. This seems rather unnatural,and hen
e, for the present, we are 
ontent to leave negation aside. Note that wedo have negation in tests in atomi
 spe
i�
ations, and later we will embed thesespe
i�
ations into a modal logi
 (with negation on formulas).
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• •(a) (b)Figure 3.1: Game and strategy.Example 3.1.1 Consider the game given in �gure 3.1(a) and the spe
i�
ation
[p 7→ a]1. The interpretation is to 
hoose move �a� for every 1 node where propo-sition p holds. Suppose p holds at the root, then the strategy depi
ted in Figure3.1(b) 
onforms to the spe
i�
ation [p 7→ a]1. 2A

ording to the syntax it is possible to 
ome up with arbitrary strategy spe
i�-
ations whi
h when interpreted on a game arena 
ould be in
onsistent. For instan
e,
onsider the game given in Figure 3.2(a) and the spe
i�
ation σ = [p 7→ a]1 ·[p 7→ b]1.It is easy to see that no strategy of player 1 
onforms to the spe
i�
ation σ. Thusa natural question would be to ask:

• given an arena G, player i ∈ N and a spe
i�
ation σ ∈ Strat i(G) is it de
idableto 
he
k whether T L(G, σ) = ∅?In what follows it will be 
lear that this question is de
idable. The 
ru
ial fa
twhi
h needs to be used is that strategy spe
i�
ations 
lassify strategies whi
h are�regular�. Thus it is possible to build a �nite state automaton whi
h re
ognize su
hstrategies. 30
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Figure 3.2: Game arenaExample 3.1.2 Consider the game shown in Fig. 3.2. Let the 
y
le C0 : s1 → s1,
C1 : s2 → s3 → s2, C3 : s9 → s10 → s9 and C4 : s8 → s7 → s8. For a player i and
y
les C and C ′ we use the notation C �i C ′ to denote that plays whi
h settle downto the 
y
le C ′ is preferred by player i to plays whi
h settle down to 
y
le C. Letthe preferen
e ordering of player 2 rank {C0, C4} as the worst out
omes and C3 asthe best out
ome with C1 �2 C3. Let the preferen
e ordering of player 1 be givenas C4 �1 C3 �1 C1 �1 C0. Its easy to see that equilibrium reasoning will end upin 
y
le C3. However, for player 1 the utility di�eren
e between C3 and C4 mightbe negligible. So player 1 might de
ide to punish 2 by moving to C4 at position s9.Therefore it is in the 
ommon interest of both players to sti
k to 
y
le C1.Let V (choice) = {s2, s6}, V (forgive) = {s4}, V (decide1) = {s5}, V (decide2) =

{s6}, V (punish) = {s8} and V (worst) = {s7}. A strategy spe
i�
ation for player 1,whi
h forgives the �rst defe
tion of player 2, and punishes if 2 has always defe
tedso far in the play, 
an be written as:
σ = [decide1 7→ f ]1 · ([choice 7→ d]2 ⇒ [decide2 7→ p]1).A spe
i�
ation of player 1 whi
h punishes at any defe
tion by player 2 but triesto re-
on
iliate on
e, 
an be given as:
σ = [decide1 7→ p]1 · [(¬3- forgive ∧ choice) 7→ d]2 ⇒ [worst 7→ r].Player 2 might de
ide to 
ooperate if he has been punished in the past, whi
h
an be written as:
π = [3- punish ∧ choice 7→ c]2. 2
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3.1.3 Partial strategies and advi
e automataThe main obje
tive of developing a 
ompositional syntax for strategies is to an-alyze strategies in terms of their properties. Strategies are thus spe
i�ed as par-tial fun
tions whi
h 
onstrains moves of players rather than pres
ribing uniquemoves. Given a game arena G, a partial strategy ν for player i is a partial fun
-tion ν : (W × Σ)∗W i ⇀ Σ, with the interpretation that if ν is not de�ned forsome partial play ρ ∈ (W × Σ)∗W i, player i is allowed to play any available a
tionthere. Thus a partial strategy 
an equivalently be thought of as a set of 
ompletestrategies. This also motivates the de�nition of nondeterministi
 advi
e automata.We saw that bounded memory strategies 
an be represented in terms of determin-isti
 advi
e automata (De�nition 2.3.3). Sin
e partial strategies represent a set of
omplete strategies, bounded memory partial strategies 
an be represented in termsof nondeterministi
 advi
e automata whi
h we de�ne below.De�nition 3.1.3 For a game arena G, a nondeterministi
 advi
e automaton forplayer i is a tuple Ai = (Q, δ, o, I) where
• Q is the set of states,
• δ : (Q×W × Σ) → 2Q is a nondeterministi
 transition fun
tion,
• o : (Q×W i) → Σ is the output or advi
e fun
tion,
• I ⊆ Q is a set of initial states.We think of the language a

epted by the automaton as a set of strategies ofplayer i. Let µ be a strategy of player i and Tµ = (Sµ,⇒µ, s0) be the 
orrespondingstrategy tree. A run of A on µ is a Q labelled tree R = (Sµ,⇒µ, s0, λ̂µ, l), where lmaps ea
h tree node to a state in Q as follows: l(s0) ∈ I, and for any s ∈ Sµ where

s
a
⇒µs

′, we have l(s′) ∈ δ(l(s), last(s), a).A run tree R is a

epted by Ai if for every tree node s ∈ Sµ su
h that s ∈ Siwe have s a
⇒s′ implies o(l(s), last(s)) = a. A strategy µ is a

epted by A if thereexists an a

epting run of A on µ. For a state q and a tree node s, we often use thenotation o(q, s) to denote o(q, last(s)).3.1.4 Strategy spe
i�
ations to partial strategiesFrom the semanti
s, it is easy to see that ea
h strategy spe
i�
ation de�nes a setof strategies. We now show that it is a regular set, re
ognizable by a �nite state32



devi
e. More pre
isely, we show that given any strategy spe
i�
ation σ of player iwe 
an 
onstru
t a nondeterministi
 advi
e automata Aσ su
h that the language of
Aσ is the set of all strategies 
onforming to the spe
i�
ation σ.For the rest of the thesis we use the term advi
e automata to refer to nondeter-ministi
 advi
e automata, if we are 
onsidering deterministi
 advi
e automata thenthis fa
t will be spe
i�
ally mentioned.De�nition 3.1.4 For a formula ψ ∈ Past(P ) we de�ne the sub-formula 
losure of
ψ, denoted CL(ψ). Let CL′(ψ) be the least set of formulas su
h that:

• ψ ∈ CL′(ψ).
• If ¬ψ1 ∈ CL′(ψ) then ψ1 ∈ CL′(ψ).
• If ψ1 ∨ ψ2 ∈ CL′(ψ) then ψ1, ψ2 ∈ CL′(ψ).
• If 3-ψ1 ∈ CL′(ψ) then ψ1 ∈ CL′(ψ).

CL(ψ) = CL′(ψ) ∪ {¬ψ1 | ψ1 ∈ CL′(ψ)} where we identify ¬¬ψ1 with ψ1.De�nition 3.1.5 A set t ⊆ CL(ψ) is 
alled an atom if
• for all ¬ψ1 ∈ CL(ψ), ¬ψ1 ∈ t i� ψ1 6∈ t.
• for all ψ1 ∨ ψ2 ∈ CL(ψ), ψ1 ∨ ψ2 ∈ t i� ψ1, ψ2 ∈ t.
• for all 3-ψ1 ∈ CL(ψ), if ψ1 ∈ t then 3-ψ1 ∈ t.In other words, a subset of formulas in the 
losure is 
alled an atom if it is proposi-tionally 
onsistent and 
omplete. For a formula ψ, let AT (ψ) denote the set of allatoms of ψ and let C0 = {t ∈ AT (ψ) | for all 3-ψ1 ∈ CL(ψ) if 3-ψ1 ∈ t then ψ1 ∈ t}.We de�ne a transition relation on AT (ψ) as: t→AT t′ i� for all 3-ψ1 ∈ CL(ψ) thefollowing 
onditions hold.
• if 3-ψ1 ∈ t then 3-ψ1 ∈ t′.
• if 3-ψ1 ∈ t′ and ψ1 /∈ t′ then 3-ψ1 ∈ t.We translate a strategy spe
i�
ation to an advi
e automaton in an indu
tivemanner. For ea
h atomi
 spe
i�
ation we �rst 
onstru
t an advi
e automaton andthen 
ompose these automata. The following lemma illustrates the 
onstru
tion foratomi
 strategy spe
i�
ations. 33



Lemma 3.1.6 Given an atomi
 strategy spe
i�
ation σ = [ψ 7→ a]i of player i we
an 
onstru
t an advi
e automaton Aσ su
h that for a game arena G = (W,→, w0, λ)and µ ∈ Ωi(G) we have µ ∈ Lang(Aσ) i� µ |=i σ.Proof: Intuitively, the 
onstru
ted automaton works as follows. Its states areatoms of ψ whi
h keep tra
k of the past formulas satis�ed along a play and ensurethat the valuations are 
onsistent. At a player i game position, if ψ is in the 
urrentatom then the automaton spe
i�es the output a as advi
e. We give the formalde�nition below. Let ♯ be a symbol not o

urring in Σ. The advi
e automaton
Aσ = (Qσ, δσ, oσ, Iσ), where

• Qσ = AT (ψ) × Σ.
• Qσ = {(t, x) | t ∈ C0, x ∈ Σ}.
• δσ : (Qσ × W × Σ) → 2Qσ is de�ned as follows: for all (t, x) ∈ Qσ, for all
w ∈W and b ∈ Σ, we have (t′, y) ∈ δσ((t, x), w, b) i�� V (w) = t ∩ Voc(ψ).� t→AT t′.

• o((t, x), w) =





a if V (w) = t ∩ Voc(ψ) and ψ ∈ t

x if V (w) = t ∩ Voc(ψ) and ψ 6∈ t

♯ if V (w) 6= t ∩ Voc(ψ)For the automaton Aσ 
onstru
ted above, we show that µ ∈ Lang(Aσ) i� µ |=i σ.
(⇒) Suppose µ = (Sµ,⇒µ, s0, λ̂µ) ∈ Lang(Aσ). Let R = (Sµ,⇒µ, s0, λ̂µ, l) be a
orresponding Q-labelled tree a

epted by Aσ. We need to show that for all s ∈ Sµsu
h that λ̂(s) = i, we have ρss0 , s |= ψ implies outρs

s0
(s) = a. Note that sin
e T isan a

epting run, we have for all s, o(l(s), last(s)) 6= ♯.The following 
laim, asserts that the states of the automaton 
he
k the pastrequirements 
orre
tly. Below we use the notation ψ ∈ (t, x) to mean ψ ∈ t.Claim : For all s ∈ Sµ, for all ψ′ ∈ CL(ψ), ψ′ ∈ l(s) i� ρs, s |= ψ′.The 
laim 
an be shown by indu
tion on the stru
ture of ψ.

(ψ = p ∈ P ) : We have p ∈ l(s) i� p ∈ V (s) (sin
e o(l(s), last(s)) 6= ♯) i� ρs, s |= p.Re
all that V (s) = V (last(s)).When ψ is of the form ¬ψ1 and ψ1∨ψ2, the 
laim easily follows by applying indu
tionhypothesis. 34



(ψ = 3-ψ1): Let ρs = s0a0 . . . sk−1ak−1sk = s and the Q labelling on ρs be thesequen
e (t0, x0) . . . (tk−1, xk−1)(tk, xk) = (t, x). Suppose 3-ψ1 ∈ l(s). If ψ1 ∈ t thenthe 
laim follows by applying indu
tion hypothesis. Otherwise, by the de�nition ofthe transition relation we have 3-ψ1 ∈ tk−1. Again if ψ1 ∈ tk−1 then we are done.By de�nition we have for all 3-ψ′ ∈ t0, ψ′ ∈ t0. Therefore by repeating the aboveargument, we get that there exists j : 0 ≤ j ≤ k su
h that ψ1 ∈ tj. By indu
tionhypothesis, ρs, sj |= ψ1. By semanti
s we have ρs, s |= 3-ψ1.To see the 
onverse, suppose ρs, s |= 3-ψ1. By semanti
s, there exist j : 0 ≤ j ≤ ksu
h that ρs, sj |= ψ1. By indu
tion hypothesis, ψ1 ∈ tj and by de�nition of atom
3-ψ1 ∈ tj . If j = k we are done. Otherwise by de�nition of the transition relationwe get 3-ψ1 ∈ tj+1. By repeating the argument we get 3-ψ1 ∈ t. End of 
laimFrom the above 
laim, we have ρs, s |= ψ implies ψ ∈ l(s). By the de�nition ofthe output fun
tion o, we have o(l(s), s) = a.
(⇐) Suppose µ |=i [ψ 7→ a]i. From the semanti
s, we have ∀s ∈ Sµ su
h that
λ̂(s) = i if ρss0 , s |= ψ then outρs

s0
(s) = a. We need to show that there exists a

Q-labelled tree a

epted by Aσ. Consider the labelling fun
tion de�ned as follows.Fix any x0 ∈ Σ.
• For s ∈ Siµ, let l(s) = ({ψ′ ∈ CL(ψ) | ρs, s |= ψ′}, outρs

s0
(s)).

• For s ∈ Sıµ, let l(s) = ({ψ′ ∈ CL(ψ) | ρs, s |= ψ′}, x0).It is easy to 
he
k that for all s ∈ Sµ, l(s) = (C, x) where C 
onstitutes an atomand the transition relation is respe
ted. What remains to be shown is the following:
• for all s ∈ Sµ su
h that λ̂(s) = i we have o(l(s), last(s)) = outρs

s0
(s).Consider any s ∈ Sµ with λ̂(s) = i. If ρss0 |= ψ then by the above 
laim ψ ∈ l(s).By de�nition of the output fun
tion o(l(s, last(s)) = a. If ρss0 6|= ψ then by de�nitionof the labelling fun
tion we have l(s) = (t, y) where y = outρs

s0
(s). Thus by de�ni-tion of the output fun
tion of the automaton we get o(l(s, last(s)) = y = outρs

s0
(s).

2Lemma 3.1.7 Given a strategy spe
i�
ation σ ∈ Strat i(P i) of player i, we 
an
onstru
t an advi
e automaton Aσ su
h that for a game arena G = (W,→, w0, λ)and µ ∈ Ωi(G) we have µ ∈ Lang(Aσ) i� µ |=i σ.35



Proof: We pro
eed by indu
tion on the stru
ture of σ. The base 
ase when
σ = [ψ 7→ a]i follows from Lemma 3.1.6.
(σ = σ1 · σ2): By indu
tion hypothesis there exist Aσ1

= (Qσ1
, δσ1

, oσ1
, Iσ1

) and
Aσ2

= (Qσ2
, δσ2

, oσ2
, Iσ2

) whi
h a

ept all strategies satisfying σ1 and σ2 respe
tively.To obtain an automaton whi
h a

epts all strategies whi
h satisfy σ1 · σ2 we justneed to take the produ
t of Aσ1
and Aσ2

.
(σ = σ1 + σ2): Indu
tively we have automata Aσ1

and Aσ2
. The advi
e automatonfor Aσ simulates both Aσ1

and Aσ2
in parallel and at any player i game position,nondeterministi
ally 
hooses to output the advi
e of either Aσ1

or Aσ2
.

(σ = π ⇒ σ′): By indu
tion hypothesis we have Aπ = (Qπ, δπ, oπ, Iπ) whi
h a

eptsall player ı strategies satisfying π and Aσ′ = (Qσ′ , δσ′ , oσ′, Iσ′) whi
h a

epts allplayer i strategies satisfying σ′.The automaton Aσ has the produ
t states of Aπ and Aσ′ as its states alongwith a spe
ial state qfree . The automaton keeps simulating both Aπ, Aσ′ and keeps
he
king if the path violates the advi
e given by Aπ, if so it moves into state qfreefrom whi
h point onwards it is �free� to produ
e any advi
e. Unless π is violated, itis for
ed to follow the transitions of Aσ′ .De�ne Aσ = (Q, δ, o, I) where Q = (Qπ × Qσ′) ∪ ({qfree} × Σ). The transitionfun
tion is given as follows:
• For s ∈ Siµ, we have δ((qπ, qσ′), s, a) = {(q1, q2) | q1 ∈ δπ(qπ, s, a) and q2 ∈

δσ′(qσ′ , s, a)}.
• For s ∈ Sıµ, we have:� If oπ(qπ, s) 6= a, then δ((qπ, qσ′), s, a) = {(qfree , a) | a ∈ Σ}.� If oπ(qπ, s) = a, then δ((qπ, qσ′), s, a) = {(q1, q2) | q1 ∈ δπ(qπ, s, a) and

q2 ∈ δσ′(qσ′ , s, a)}.
• δ((qfree , x), s, a) = {(qfree , a)|a ∈ Σ}For s ∈ Siµ, the output fun
tion is de�ned as: o((qπ, qσ′), last(s)) = oσ′(qσ′ , last(s))and o((qfree , x), last(s)) = x. 2The following proposition 
an then be easily shown using Lemma 3.1.7.Proposition 3.1.8 Given a game arena G, player i ∈ N and a strategy spe
i�
ation

σ ∈ Strat i(P i), we 
an 
onstru
t an advi
e automaton Aσ su
h that Lang(Aσ) ∩

Ωi(G) = T L(G, σ). 36



3.2 Remarks on strategy spe
i�
ationsA relatively simple syntax for strategy spe
i�
ations was introdu
ed in Se
tion 3.1.1.The obje
tive was to illustrate the 
on
ept and it should be noted that the abovementioned results 
an be extended to any set of spe
i�
ations that allows an e�e
-tive automaton 
onstru
tion. However, operators are best added after a systemati
study of their algebrai
 properties. An extension of parti
ular interest is that ofmulti-stage games.Multi-stage games: So far we have viewed the game arena as representing asingle unbounded duration game. We 
an also reason about multi-stage gamesusing similar te
hniques. To model su
h games, we �x a �nite set of 
olours Coland asso
iate the game positions with elements of this set. The idea being that the
hange of 
olour indi
ates the swit
h from one stage to the next. For simpli
ity, wealso assume that ea
h stage has a unique start and end game position along with aunique a
tion switch su
h that start
switch
−→ start . The set of strategy spe
i�
ationsfor player i 
an be extended using the following 
onstru
ts.

• Yπ ⇒ σ - if in the previous stage player ı 
onforms to π then play a

ordingto σ.
• Pπ ⇒ σ - if there is a previous stage where the player ı played a

ording to πthen play σ.
• Hπ ⇒ σ - if player ı in all the previous stages has 
onformed to π then playa

ording to σIt is quite straight forward to give the formal semanti
s of the above 
onstru
tsand therefore we do not take it up here. It is also relatively easy to verify thatthe 
onstru
ts 
an be 
ompiled into a �nite state automaton. Thus an equivalentof lemma 3.1.7 
an be shown for the extended syntax as well. Below we show thatthis extended set of strategy spe
i�
ations 
an be e�e
tively used to reason aboutmulti-stage games.Iterated prisoner's dilemma: Prisoner's dilemma [OR94℄ is the 
lassi
 exampleportraying the weakness of equilibrium notions. The unique equilibrium in this gameis where both prisoners defe
t, when 
ooperation would have resulted in a better37



payo� for both. This game illustrates the fa
t that equilibrium solutions need notalways give the most e�
ient out
omes for players.Axelrod was interested in �nding out more about the strategies whi
h were su
-
essful in playing prisoner's dilemma in pra
ti
e [Axe84℄. He 
ondu
ted a tourna-ment where strategies were made to 
ompete against ea
h other. Note that this isa departure from the standard analysis in terms of solution 
on
epts like equilib-rium, where the emphasis remains on trying to �gure out what happens if a playerunilaterally deviates. It turned out that the winner was a simple strategy 
alled�tit-for-tat� whi
h 
ooperates in the �rst round and in subsequent rounds mimi
swhat the opponent did in the previous round.The iterated version of prisoner's dilemma 
an be easily modelled as a multistagegame. Let c, d 
orrespond to the a
tions �
ooperate�, �defe
t� respe
tively and let
init be a proposition whi
h holds only at the �rst stage. We also use the abbreviation
play(i, a) = [True 7→ a]i for i ∈ N and a ∈ Σ. The strategy tit-for-tat 
an beexpressed in the extended strategy spe
i�
ation syntax as follows.

• σTFT = (Y play(2, d) ⇒ [¬init 7→ d]1) · (Y play(2, c) ⇒ [¬init 7→ c]1).
• Tit-for-tat: [init 7→ c]1 · σTFT.The strategy �grim� (also 
alled �trigger�) whi
h 
ooperates till the opponentdefe
ts and then defe
ts forever 
an be expressed as
• Grim: (H play(2, c) ⇒ play(1, c)) · (P play(2, d) ⇒ [¬init 7→ d]1).Note that tit-for-tat and grudge are examples of 
omplete strategies. On furtheranalysis, it was noti
ed that the top s
oring strategies satis�ed 
ertain properties in
ommon. It turns out that the exa
t strategy is not parti
ularly important and anystrategy satisfying these properties would have performed well in the tournament.The properties identi�ed were as follows:
• Ni
eness: Is not the �rst to defe
t.
• Forgiveness: Does not hold a grudge on
e the opponent 
ooperates.
• Retaliatory: If the opponent defe
ts, punishes him by defe
ting.The idea behind strategy spe
i�
ation exa
tly 
orresponds to expressing su
hproperties of strategies rather than 
omplete strategies. For prisoner's dilemma,this 
an be a
hieved as follows: 38



• Ni
eness: [init 7→ c]1 · (H play(2, c) ⇒ [¬init 7→ c]1).
• Forgiveness: [init 7→ c]1 · (Y play(2, c) ⇒ [¬init 7→ c]1).
• Retaliatory: [init 7→ c]1 · (Y play(2, d) ⇒ [¬init 7→ d]1).3.3 A strategy logi
We now dis
uss how we may embed stru
tured strategies in a formal logi
. Formulasof the logi
 (also referred to as game formulas) are built up using stru
tured strategyspe
i�
ations (as de�ned in se
tion 3.1). Game formulas des
ribe the game arenain a standard modal logi
, and in addition spe
ify the result of a player followinga parti
ular strategy at a game position, to 
hoose a spe
i�
 move a. Using theseformulas one 
an spe
ify how a strategy helps to eventually win (ensure) an out
ome

β.3.3.1 SyntaxThe syntax of the logi
 is given by:
Π := p ∈ P | (σ)i : c | ¬α | α1 ∨ α2 | 〈a〉α | 〈a〉α | 3-α | σ ;i βwhere a, c ∈ Σ, σ ∈ Strat i(P i), β ∈ Past(P i). The derived 
onne
tives ∧, ⊃ and

[a]α are de�ned as usual. Let 2-α = ¬3-¬α, 〈N 〉α =
∨
a∈Σ 〈a〉α, [N ]α = ¬〈N〉¬α,

〈P〉α =
∨

a∈Σ

〈a〉α and [P] = ¬〈P〉¬α.The formula 〈a〉α talks about one step in the future. It asserts the existen
e of an
a edge after whi
h α holds. Note that future time assertions up to any bounded depth
an be 
oded by iteration of this 
onstru
t. 〈a〉α is the 
orresponding 
onstru
t torefer to one step in the past. The formula 3-α makes assertion about the unboundedpast, it spe
i�es the transitive 
losure of the one step past operator. Sin
e a strategyspe
i�
ation 
an base its advi
e on apparent behaviour of players in the past, thepast time modalities turn out to be useful in logi
al reasoning.The formula (σ)i : c asserts, at any game position, that the strategy spe
i�
ation
σ for player i suggests that the move c 
an be played at that position. The formula
σ ;i β says that from this position, following the strategy σ for player i ensures theout
ome β. These two modalities 
onstitute the main 
onstru
ts of our logi
.39



3.3.2 Semanti
sModel: Models of the logi
 
onsist of extensive form game trees along with avaluation fun
tion. A model M = (T , V ) where T = (S,⇒, s0, λ̂) is an extensiveform game tree and V : S → 2P is a valuation fun
tion. As mentioned earlier, werequire that the valuation fun
tion satis�es the 
ondition:
• For all s ∈ S and i ∈ N , turni ∈ V (s) i� λ̂(s) = i.For a node s ∈ S, let moves(s) = {a ∈ Σ | ∃s′ ∈ S with s a

⇒s′}. For the purposeof de�ning the logi
 it is 
onvenient to de�ne the notion of the set of moves enabledby a strategy spe
i�
ation σ at a game position s (denoted σ(s)).De�nition 3.3.1 For a game tree T = (S,⇒, s0, λ̂) and a game position s, let ρss0 :

s0
a1⇒s1 · · ·

am⇒sm = s denote the unique path from s0 to s. For a strategy spe
i�
ation
σ ∈ Strat i(P i) we de�ne σ(s) as follows:

• [ψ 7→ a]i(s) =

{
{a} if λ̂(s) = i and ρss0 , m |= ψ.

Σ otherwise.
• (σ1 + σ2)(s) = σ1(s) ∪ σ2(s).
• (σ1 · σ2)(s) = σ1(s) ∩ σ2(s).
• (π ⇒ σ)(s) =

{
σ(s) if ∀j : 0 ≤ j < m, aj ∈ π(sj).

Σ otherwise.We say that a path ρs
′
s : s = s1

a1⇒s2 · · ·
am−1

⇒ sm = s′ in T 
onforms to σ if
∀j : 1 ≤ j < m, aj ∈ σ(sj). When the path 
onstitutes a proper play, i.e. when
s = s0, we say that the play 
onforms to σ. The following proposition is easy to seefrom the de�nition.Proposition 3.3.2 Given a strategy µ = (Sµ,⇒µ, s0, λ̂µ) for player i along witha spe
i�
ation σ, µ |=i σ (as de�ned in se
tion 3.1) i� for all s ∈ Sµ su
h that
λ̂µ(s) = i we have outρs

s0
(s) ∈ σ(s).For a game tree T = (S,⇒, s0, λ̂) and a node s ∈ S, let Ts denote the treewhi
h 
onsists of the unique path ρss0 and the subtree rooted at s. For a strategyspe
i�
ation σ ∈ Strat i(P i), we de�ne Ts |

\ σ = (Sσ,⇒σ, s0, λ̂σ) to be the leastsubtree of Ts whi
h 
ontains the unique path from s0 to s and satis�es the property:for every s1 ∈ Sσ, 40



• if λ̂σ(s1) = i then for all s2 with s1
a
⇒s2 and a ∈ σ(s1) we have s1

a
⇒σs2 and

λ̂σ(s2) = λ̂(s2).
• if λ̂σ(s1) = ı then for all s2 with s1

a
⇒s2 we have s1

a
⇒σs2 and λ̂σ(s2) = λ̂(s2).The truth of a formula α ∈ Π in a modelM and position s (denotedM, s |= α) isde�ned by indu
tion on the stru
ture of α, as usual. Let ρss0 be s0

a0⇒s1 · · ·
am−1

⇒ sm = s.
• M, s |= p i� p ∈ V (s).
• M, s |= ¬α i� M, s 6|= α.
• M, s |= α1 ∨ α2 i� M, s |= α1 or M, s |= α2.
• M, s |= 〈a〉α i� there exists s′ su
h that s a

⇒s′ and M, s′ |= α.
• M, s |= 〈a〉α i� m > 0, a = am−1 and M, sm−1 |= α.
• M, s |= 3-α i� there exists j : 0 ≤ j ≤ m su
h that M, sj |= α.
• M, s |= (σ)i : c i� c ∈ σ(s).
• M, s |= σ ;i β i� for all s′ su
h that s⇒∗

σs
′ in Ts |

\ σ, we have M, s′ |=

β ∧ (turni ⊃ enabledσ).where enabledσ =
∨

a∈Σ

(〈a〉True ∧ (σ)i : a).
1
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~~}}
}}

}}
}}

}

x

��

y

  A
AA

AA
AA

As

2
x

����
��

��
��
y

��

z

��@
@@

@@
@@

@β ¬β β

β β β

Figure 3.3: Interpretation of σ ;i βFigure 3.3 illustrates the semanti
s of σ ;1 β. It says, for any 1 node β isensured by playing a

ording to σ; for a 2 node, all a
tions should ensure β.The notions of satis�ablility and validity 
an be de�ned in the standard way.A formula α is satis�able i� there exists a model M and s su
h that M, s |= α.41



A formula α is said to be valid i� for all models M and for all nodes s, we have
M, s |= α.Consider the formula null i ;i β. This asserts that player i has a strategy toensure β no matter what player ı does. This makes no referen
e to how player imay a
hieve this obje
tive and thus, is similar to assertions in most game logi
s.Now 
onsider the formula σ ;i β. This says something stronger: that there existsa strategy µ satisfying σ for player i su
h that irrespe
tive of what player ı plays, βis guaranteed. Here, the me
hanism µ used by player i to ensure β is spe
i�ed bythe property σ.
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RRFigure 3.4: Game arenaExample 3.3.3 Consider the game obtained by the unfolding of the arena shownin Figure 3.4. Players alternate moves with 1 starting at s0. There are two 
y
les
C1 : s5 → s6 → s7 → s8 → s5, C2 : s1 → s2 → s3 → s4 → s1 and self loops onnodes t1 and t2. Let the preferen
e ordering of player 1 be t1 �1 t2 �1 C2 �1 C1.As far as player 2 is 
on
erned t1 �2 C1 and he is indi�erent between C2 and t2.However, he prefers C2 or t2 over {C1, t1}. Equilibrium reasoning will advise player
1 to 
hoose the a
tion �b� at s0 sin
e at position s7 it is irrational for player 2 tomove x as it results in his worst out
ome. However the utility di�eren
e between C1and t1 for player 2 might be negligible 
ompared to the in
entive of staying in the�left� path. Therefore player 2 might de
ide to punish player 1 for moving b whenplayer 1 knew that {C2, t2} was equally preferred by player 2. Even though t1 is42



the worst out
ome, at s7 player 2 
an play x to implement the punishment. Let thevaluation satisfy the following 
onstraints:
• The proposition pj holds at states {s3, s7},
• pinit holds at state s0,
• pgood holds at states {s0, s1, s2, s3, s4}

• ppunish holds at states {s0, s5, s6, s7, t1}.The lo
al obje
tive of player 2 is to remain on the good path or to implementthe punishment. Player 2's strategy spe
i�
ation 
an be written as
π = ([pinit 7→ b]1 ⇒ [pj 7→ x]2) · ([pinit 7→ a]1 ⇒ [pj 7→ y]2).We get that π ;2 (pgood ∨ ppunish). If player 1 knows player 2's strategy, she mightbe tempted to play �a� at s0 by whi
h the play ends up in C2. Let the propo-sition pworst hold at t1 whi
h is the worst out
ome for player 1. Then we have

[pinit 7→ a]1 ;1 ¬pworst . This says that if player 1 
hooses a at the initial positionthen she 
an ensure that the worst out
ome is avoided. 2Example 3.3.4 Consider the formula null i ;i (π ;ı β). This says that player ihas a strategy su
h that from all the out
ome states if player ı follows a strategy
orresponding to π then β 
an be ensured. In other words this 
onstru
t 
an beused to make the assertion: given that player ı sti
ks to the spe
i�
ation π, there isa strategy for player i to make sure that the maximum ı 
an a
hieve is β. In general,the assertion 
an be parameterized by a spe
i�
ation of player i as well. This takesthe form σ ;i (π ;ı β). 23.3.3 Axiom systemWe now present our axiomatization of the valid formulas of the logi
. We �nd thefollowing abbreviations useful:
• root = ¬〈P〉True de�nes the root node to be one that has no prede
essors.
• δσi (a) = turni ∧ (σ)i : a denotes that move �a� is enabled by σ at an i node.
• invσi (a, β) = (turni ∧ (σ)i : a) ⊃ [a](σ ;i β) denotes the fa
t that after an �a�move by player i whi
h 
onforms to σ, σ ;i β 
ontinues to hold.43



• invσı (β) = turnı ⊃ [N ](σ ;i β) says that after any move of ı, σ ;i β 
ontin-ues to hold.
• conf π = 2- (〈a〉turnı ⊃ 〈a〉(π)ı : a) denotes that all opponent moves in the past
onform to π.The axiom s
hemes(A0) All the substitutional instan
es of the tautologies of propositional 
al
ulus.(A1) (a) [a](α1 ⊃ α2) ⊃ ([a]α1 ⊃ [a]α2)(b) [a](α1 ⊃ α2) ⊃ ([a]α1 ⊃ [a]α2)(A2) (a) 〈a〉α ⊃ [a]α(b) 〈a〉α ⊃ [a]α(
) 〈a〉True ⊃ ¬〈b〉True for all b 6= a(A3) (a) α ⊃ [a]〈a〉α(b) α ⊃ [a]〈a〉α(A4) (a) 3- root(b) 2-α ≡ (α ∧ [P]2-α)(A5) (a) ([ψ 7→ a]i)i : a for all a ∈ Σ(b) turni ∧ ([ψ 7→ a]i)i : c ≡ ¬ψ for all a 6= c(A6) (a) (σ1 + σ2)i : c ≡ σ1 : c ∨ σ2 : c(b) (σ1 · σ2)i : c ≡ σ1 : c ∧ σ2 : c(
) (π ⇒ σ)i : c ≡ conf π ⊃ (σ)i : c(A7) σ ;i β ⊃ (β ∧ invσi (a, β) ∧ invσı (β) ∧ enabledσ)Inferen
e rules

(MP) α, α ⊃ β (NG) α (NG-) α

β [a]α [a]α

(Ind-past) α ⊃ [P ]α

α ⊃ 2-α
(Ind ;) α ∧ δσi (a) ⊃ [a]α, α ∧ turnı ⊃ [N ]α, α ⊃ β ∧ enabledσ

α ⊃ σ ;i β44



The axioms are mostly standard. After the Kripke axioms for the 〈a〉 modalities,we have axioms that ensure determina
y of both 〈a〉 and 〈a〉 modalities, and anaxiom to assert the uniqueness of the latter. We then have axioms that relate theprevious and next modalities with ea
h other, as well as to assert that the pastmodality steps through the 〈a〉 modality. An axiom asserts the existen
e of the rootin the past. The rest of the axioms des
ribe the semanti
s of strategy spe
i�
ations.The rule Ind-past is standard, while Ind ; illustrates the new kind of reasoningin the logi
. It says that to infer that the formula σ ;i β holds in all rea
hablestates, β must hold at the asserted state and
• for a player i node after every move whi
h 
onforms to σ, β 
ontinues to hold.
• for a player ı node after every enabled move, β 
ontinues to hold.
• player i does not get stu
k by playing σ.3.3.4 SoundnessThe validity of axioms (A1) to (A3b) and (A4b) 
an be shown using standardmodal te
hniques. Axiom (A4a) is valid sin
e the formulas are interpreted over a�nite extensive game tree with a unique root. The validity axioms (A5) and (A6)
an be easily veri�ed using the semanti
s of the logi
.Proposition 3.3.5 Axiom (A7) is valid.Proof: Suppose axiom (A7) is not valid. Then there exists a node s su
h that

M, s |= σ ;i β and one of the following holds:
• M, s 6|= β: In this 
ase, from semanti
s we get that M, s 6|= σ ;i β whi
h is a
ontradi
tion.
• M, s 6|= invσi (a, β): In this 
ase, we have s ∈ W i, M, s |= (σ)i : a and
M, s′ 6|= σ ;i β where s a

⇒s′. This implies that there is a path ρsk

s′ whi
h 
on-forms to σ and either M, sk 6|= β or moves(sk) ∩ σ(sk) = ∅. But sin
e s a
⇒s′,we have ρsk

s 
onforms to σ as well. From whi
h it follows that M, s 6|= σ ;i βwhi
h is a 
ontradi
tion.
• M, s 6|= invσı (β): We have a similar argument as above.
• M, s 6|= enabledσ: This means moves(s) ∩ σ(s) = ∅, by semanti
s we have
M, s 6|= σ ;i β whi
h is a 
ontradi
tion.45



2Proposition 3.3.6 Rule Ind ; preserves validity.Proof: Suppose that the premise is valid and the 
on
lusion is not. Then for somenode s we haveM, s |= α andM, s 6|= σ ;i β. i.e. there is a path ρsk
s whi
h 
onformsto σ su
h that M, sk 6|= β or σ(sk) ∩ moves(sk) = ∅. Let ρsk

s be the shortest of su
hpath.Suppose M, sk 6|= β, then we have the following two 
ases to 
onsider.
• sk−1 ∈ W i: By assumption on the path ρsk

s , we have M, sk−1 |= α ∧ δσi (ak−1).From validity of α ⊃ β (the premise), we have M, sk 6|= α, whi
h implies
M, sk−1 6|= [ak−1]α. Therefore we getM, sk−1 6|= (α∧δσi (ak−1)) ⊃ [ak−1]α, whi
hgives us a 
ontradi
tion to the validity of a premise.

• sk−1 ∈ W ı: By assumption on the path ρsk
s , we have M, sk−1 |= α ∧ turnı.Using an argument similar to the previous 
ase we also getM, sk−1 6|= [ak−1]α.Therefore we have M, sk−1 6|= (α∧ turnı) ⊃ [N ]α, giving us a 
ontradi
tion tothe validity of a premise.If σ(sk)∩moves(sk) = ∅ then we have M, sk |= α and M, sk 6|= enabledσ. There-fore M, sk 6|= (α ⊃ enabledσ), whi
h is the required 
ontradi
tion. 23.3.5 CompletenessTo show 
ompleteness, we prove that every 
onsistent formula is satis�able. We usethe following de�nitions.De�nition 3.3.7 For a strategy spe
i�
ation σ ∈ Strat i(P i) we de�ne the set ofpast time formulas o

urring in σ, denoted P(σ) indu
tively as follows:

• P([ψ 7→ a]i) = {ψ} for a ∈ Σ.
• P(σ1 + σ2) = P(σ1) ∪ P(σ2).
• P(σ1 · σ2) = P(σ1) ∪ P(σ2).
• P(π ⇒ σ1) = P(π) ∪ P(σ1). 46



De�nition 3.3.8 For a formula α0 we de�ne the sub-formula 
losure of α0 denoted
CL(α0). Let CL′(α0) be the least set of formulas su
h that:

• α0, 3- root ∈ CL′(α0).
• If ¬α ∈ CL′(α0) then α ∈ CL′(α0).
• If α1 ∨ α2 ∈ CL′(α0) then α1, α2 ∈ CL′(α0).
• For M of the form 〈a〉 or 〈ā〉 or 3- , if Mα ∈ CL′(α0) then α ∈ CL′(α0).
• If (σ)i : a ∈ CL′(α0) then P(σ) ⊆ CL′(α0).
• If σ ;i β ∈ CL′(α0) then β ∈ CL′(α0), invσi (a, β) ∈ CL′(α0), invσı (β) ∈

CL′(α0), enabledσ ∈ CL′(α0) and P(σ) ⊆ CL′(α0).
CL(α) = CL′(α0) ∪ {¬α | α ∈ CL′(α0)} where we identify ¬¬α with α.De�nition 3.3.9 A set t ⊆ CL(α0) is 
alled an atom if

• 3- root ∈ t.
• for all ¬α ∈ CL(α0), ¬α ∈ t i� α 6∈ t.
• for all α1 ∨ α2 ∈ CL(α0), α1 ∨ α2 ∈ t i� α1, α2 ∈ t.
• for all 3-α ∈ CL(α0), 3-α ∈ t i� α ∈ t or 〈P〉3-α ∈ t.
• for all σ ;i β ∈ CL(α0) if σ ;i β ∈ t then β ∈ t, invσi (a, β) ∈ t, invσı (β) ∈ tand enabledσ ∈ t.
• for all ¬(σ ;i β) ∈ CL(α0) if ¬(σ ;i β) ∈ t then ¬enabledσ ∈ t or ¬β ∈ t or

(〈N 〉¬(σ ;i β)) ∈ t.Let α0 be a 
onsistent formula, and let AT (α0) be the set of atoms of α0. Welet t, t′ range over AT (α0). Ea
h t ∈ AT (α0) is a �nite set of formulas, we denotethe 
onjun
tion of all formulas in t by t̂. For a nonempty subset X ⊆ AT (α0), wedenote by X̃ the disjun
tion of all t̂, t ∈ X. De�ne a transition relation on AT (α0)as follows: t
a
→AT t′ i� t̂∧ 〈a〉t̂′ is 
onsistent. Call an atom t a root atom if there doesnot exist any atom t′ su
h that t′

a
→AT t for some a.The following lemmas 
an be shown using standard modal logi
 te
hniques.Lemma 3.3.10 For all α ∈ CL(α0) and t ∈ AT (α0) we have the following:47



1. t̂ is 
onsistent.2. if 〈a〉α is 
onsistent then α is 
onsistent.3. for all R ⊆ AT (α0), and t ∈ AT (α0), if t ∈ R then ⊢ t̂ ⊃ R̃.4. if ⊢ α then α ∈ t.5. if ⊢ t̂ ⊃ α then t̂ ∧ α is 
onsistent.Lemma 3.3.11 For atoms t1 and t2, the following statements are equivalent.1. t̂1 ∧ 〈a〉t̂2 is 
onsistent.2. 〈a〉t̂1 ∧ t̂2 is 
onsistent.Lemma 3.3.12 There exist t1, . . . , tk ∈ AT (α0) and a1, . . . ak ∈ Σ (k ≥ 0) su
hthat tk
ak→AT tk−1 . . .

a1→AT t0, where tk is a root atom.Proof: Consider the least set R 
ontaining t0 and 
losed under the following 
on-dition: if t1 ∈ R and for some a ∈ Σ there exists t2 su
h that t2
a
→AT t1, then t2 ∈ R.Now, if there exists an atom t′ ∈ R su
h that t′ is a root then we are done. Supposenot, then we have ⊢ R̃ ⊃ ¬root . But then, we 
an show that ⊢ R̃ ⊃ [P ]R̃. By rule

Ind -past and above we get ⊢ R̃ ⊃ 2-¬root . But then t0 ∈ R and hen
e ⊢ t̂0 ⊃ R̃ andtherefore we get ⊢ t̂0 ⊃ 2-¬root . Sin
e ¬3- root ∈ CL(α0) and from Lemma 3.3.10(5)we get ¬3- root ∈ t0. From axiom (A4a) and Lemma 3.3.10(4) we have 3- root ∈ t0whi
h 
ontradi
ts the 
onsisten
y of t0. 2Lemma 3.3.13 Consider the path tk
ak→AT tk−1 . . .

a1→AT t0 where tk is a root atom,1. For all j ∈ {0, . . . , k − 1}, if [a]α ∈ tj and tj+1
a
→AT tj then α ∈ tj+1.2. For all j ∈ {0, . . . , k−1}, if 〈a〉α ∈ tj and tj+1
b
→AT tj then b = a and α ∈ tj+1.3. For all j ∈ {0, . . . , k − 1}, if 3-α ∈ tj then there exists i : j ≤ i ≤ k su
h that

α ∈ ti.Proof: (1) Sin
e tj+1
a
→AT tj , we have t̂j+1 ∧ 〈a〉t̂j is 
onsistent. By lemma 3.3.11,

t̂j ∧〈a〉t̂j+1 is 
onsistent, whi
h implies [a]α∧〈a〉t̂j+1 is 
onsistent (by omitting some
onjun
ts). Therefore 〈a〉(α ∧ t̂j+1) is 
onsistent. Using (NG-) we get α ∧ t̂j+1 is
onsistent and sin
e tj+1 is an atom, we have α ∈ tj+1.48



(2) Suppose tj+1
b
→AT tj , we �rst show that b = a. Suppose this is not true, sin
e

tj+1
b
→AT tj , we have t̂j∧〈b〉t̂j+1 is 
onsistent. And therefore t̂j∧〈b〉True is 
onsistent.From axiom (A2
), t̂j∧[a]False is 
onsistent. If 〈a〉α ∈ tj , then we get 〈a〉α∧[a]Falseis 
onsistent. Therefore 〈a〉(α∧False) is 
onsistent. From (NG-) we have α∧Falseis 
onsistent, 
ontradi
ting the 
onsisten
y of α (ensured by the fa
t that 〈a〉α ∈ tjis 
onsistent).To show α ∈ tj+1 observe that 〈a〉α ∈ tj implies [a]α ∈ tj (by axiom (A2b) and
losure 
ondition). By previous argument we get α ∈ tj+1.(3) Suppose 3-α ∈ tj and tj+1

a
→AT tj. If α ∈ tj then we are done. Else, by axiom(A4b) and the previous argument, we have 〈a〉3-α ∈ tj . From (2) we have 3-α ∈ tj+1.Continuing in this manner, we either get an i where α ∈ ti (in whi
h 
ase we aredone) or we get 3-α ∈ tk. Sin
e tk is the root atom, we have t̂k ∧ ¬〈P〉True is
onsistent. Sin
e 3-α ∈ tk, we get t̂k ∧ (α∨ 〈P〉α) is 
onsistent. Thus we have t̂k ∧αis 
onsistent and therefore α ∈ tk. 2Lemma 3.3.14 For all t ∈ AT (α0) if σ ;i β 6∈ t then there exists a path ρtk

t : t =

t1
a1→AT t2 . . .

ak−1

→ AT tk whi
h 
onforms to σ su
h that one of the following 
onditionshold.
• β 6∈ tk.
• moves(tk) ∩ σ(tk) = ∅.Proof: Consider the least set R 
ontaining t and 
losed under the following 
ondi-tion:
• if t1 ∈ R then for every transition t1

a
→AT t2 su
h that a ∈ σ(t1) we have t2 ∈ R.If there exists an atom t′ ∈ R su
h that β 6∈ t′ or if moves(t′) ∩ σ(t′) = ∅, then weare done. Suppose not, then we have ⊢ R̃ ⊃ β and ⊢ R̃ ⊃

∨

a∈Σ

(〈a〉True ∧ (σ)i : a).Claim : The following are derivable.1. ⊢ (R̃ ∧ turni ∧ (σ)i : a) ⊃ [a]R̃.2. ⊢ (turni ∧ R̃) ⊃ [N ]R̃.The 
laim 
an be veri�ed as follows. To prove 1, suppose the 
laim does not hold.We have that (R̃ ∧ turni ∧ (σ)i : a) ∧ 〈a〉¬R̃ is 
onsistent. Let R′ = AT (α0) \ R.49



If R′ = ∅ then R = AT (α0) in whi
h 
ase its easy to see that the 
laim holds. If
R′ 6= ∅, then we have (R̃ ∧ turni ∧ (σ)i : a) ∧ 〈a〉R̃′ is 
onsistent. Hen
e for some
t1 ∈ R and t2 ∈ R′, we have (t̂1∧turni∧(σ)i : a))∧〈a〉t̂2 is 
onsistent. Whi
h implies
t1

a
→AT t2 and this transition 
onforms to σ. By 
losure 
ondition on R, t2 ∈ R whi
hgives us the required 
ontradi
tion. Proof of 2 is similar. End of 
laimFrom the above 
laim and applying (Ind ;) rule we get ⊢ R̃ ⊃ σ ;i β. But

t ∈ R and therefore ⊢ t̂ ⊃ σ ;i β, 
ontradi
ting the assumption that σ ;i β 6∈ t. 2Model 
onstru
tion in terms of atoms: Consider the tree stru
ture TAT whi
h
onsists of the path tk
ak→AT tk−1 . . .

a1→AT t0 and the tree unfolding of AT (α0) rooted at
t0. By Lemma 3.3.14, the stru
ture TAT satis�es the property if there exists a node tsu
h that σ ;i β 6∈ t then there exists a path t = t1

a1→AT . . .
am→AT tm su
h that β 6∈ tmor moves(tm)∩σ(tm) = ∅. It would be easy if we 
ould build a model for α0 based onthe tree stru
ture TAT . Sin
e the size of AT (α0) is exponential in the size of α0, thiswould immediately lead to the de
idability of the satis�ability problem of the logi
as well. The trouble is that the stru
ture (AT (α0),→AT ) need not be deterministi
.There might exist atoms t1, t2, t3 su
h that t1

a1→AT t2 and t1
a1→AT t3. Thus →AT doesnot de�ne a parital fun
tion and therefore extra
ting a deterministi
 model out ofthe stru
ture (AT (α0),→AT ) is not straightforward.For the purpose of showing 
ompleteness, we 
an 
ir
umvent this problem by
onstru
ting the 
anoni
al model in terms of maximal 
onsistent sets. We show howthis 
an be done below.Canoni
al model 
onstru
tion: Let M denote the set of all maximal 
onsistentsets (MCS). We use m,m′ to range over MCS's. Sin
e α0 is 
onsistent, there existsan MCS m0 su
h that α0 ∈ m0. De�ne a transition relation on MCS's as follows:

m
a
→mm′ i� {〈a〉α | α ∈ m′} ⊆ m. It is easy to see that for any MCS m we have

m ∩ CL(α0) ∈ AT (α0).We de�ne the model M as follows. From Lemma 3.3.12 and Lemma 3.3.13 itis easy to see that there exist MCS's m1, . . . ,mk ∈ M and a1, . . . ak ∈ Σ (k ≥ 0)su
h that mk
ak→mmk−1 . . .

a1→mm0, where mj ∩ CL(α0) = tj . Now this path de�nes a(�nite) tree T0 = (S0,⇒0, s0, λ̂) rooted at s0, where S0 = {s0, s1, . . . , sk}, and forall j ∈ {0, · · · , k}, sj is labelled by the MCS mk−j. The relation ⇒0 is de�ned in50



the obvious manner. From now we will simply say α ∈ s where s is the tree node,to mean that α ∈ m where m is the MCS asso
iated with node s. The turn fun
tionis de�ned as expe
ted: λ̂(sj) = i if turni ∈ sj else λ̂(sj) = ı.Indu
tively assume that we have a tree Tk = (Sk,⇒k, s0, λ̂k) su
h that thepast formulas at every node have �witnesses� as above. Pi
k a node s ∈ Sk su
hthat 〈a〉True ∈ s but there is no s′ ∈ Sk su
h that s a
⇒s′. Now, if m is the MCSasso
iated with node s, there exists an MCS m′ su
h that m

a
→mm′. Pi
k a newnode s′ /∈ Sk and de�ne Tk+1 = (Sk+1,⇒k+1, s0, λ̂k) where Sk+1 = Sk ∪ {s′} and

⇒k+1 = ⇒k ∪ {(s, a, s′)}, where m′ is the MCS asso
iated with s′. It is easy to seethat every node in Tk+1 has witnesses for past formulas as well. The turn fun
tionis extended as de�ned earlier for the newly added nodes.Now 
onsider T = (S,⇒, s0, λ̂) de�ned by: S =
⋃
k≥0

Sk and ⇒ =
⋃
k≥0

⇒k. De�nethe model M = (T , V ) where V (s) = w ∩ P , where w is the MCS asso
iated with
s. Let ⇒∗ denote the re�exive and transitive 
losure of ⇒ relation.Lemma 3.3.15 For any s ∈ S, we have the following properties.1. If [a]α ∈ s and s a

⇒s′ then α ∈ s′.2. If 〈a〉α ∈ s then there exists s′ su
h that s a
⇒s′ and α ∈ s′.3. If [a]α ∈ s and s′ a⇒s then α ∈ s′.4. If 〈a〉α ∈ s then there exists s′ su
h that s′ a⇒s and α ∈ s′.5. If 2-α ∈ s and s′⇒∗s then α ∈ s′.6. If 3-α ∈ s then there exists s′ su
h that s′⇒∗s and α ∈ s′.Proof: Cases (1) to (5) 
an be shown using standard modal logi
 te
hniques.(6) follows from the existense of a root atom (Lemma 3.3.12) and axiom (A4b). 2Lemma 3.3.16 For all ψ ∈ Past(P ), for all s ∈ S, ψ ∈ s i� ρss0, s |= ψ.Proof: This follows from Lemma 3.3.15 using an indu
tive argument. 2Lemma 3.3.17 For all i, for all σ ∈ Strat i(P i), for all c ∈ Σ, for all s ∈ S,

(σ)i : c ∈ s i� c ∈ σ(s). 51



Proof: The proof is by indu
tion on the stru
ture of σ.
σ = [ψ 7→ a]i: Suppose ([ψ 7→ a]i)i : c ∈ s. If c = a then the 
laim holds trivially. If
c 6= a then from (A5a) we get that ¬ψ ∈ s. From Lemma 3.3.16 we have ρss0 , s 6|= ψ.Therefore by de�nition we have [ψ 7→ a]i(s) = Σ and c ∈ σ(w).Conversely, suppose ([ψ 7→ a]i)i : c 6∈ s. From (A5a) we have a 6= c. From (A5b)we get ψ ∈ s. By Lemma 3.3.16 ρss0 , s |= ψ. Therefore c 6∈ σ(s) by de�nition.The 
ases when σ = (σ1 +σ2) and σ = (σ1 ·σ2) follow easily from indu
tion hypoth-esis.
σ = π ⇒ σ′: Let ρss0 : s0

a0⇒· · ·
ak−1

⇒ sk = s be the unique path from the root to s.Suppose (π ⇒ σ′)i : c ∈ s. To show c ∈ (π ⇒ σ′)(s). Su�
es to show that ρss0
onforms to π implies c ∈ σ′(s). From (A6
) we have conf π ⊃ (σ′)i : c ∈ s. Re
allthat conf π = 2- (〈a〉turnı ⊃ 〈a〉(π)ı : a) denotes that all opponent moves in the past
onform to π. Thus we get 3- (〈a〉turnı ∧ [a](¬(π)ı : a)) ∨ (σ′)i : c ∈ s. We have two
ases,
• if (σ′)i : c ∈ s then by indu
tion hypothesis we get c ∈ σ′(s). Therefore byde�nition c ∈ (π ⇒ σ)(s).
• otherwise, we have 3- (〈a〉turnı ∧ [a](¬(π)ı : a)) ∈ s. From Lemma 3.3.15(6),there exists sl ∈ ρss0 su
h that 〈a〉turnı ∧ [a](¬(π)ı : a) ∈ sl. By Lemma3.3.15(4) there exists sl−1 ∈ ρss0 su
h that sl−1

a
⇒sl. From Lemma 3.3.15(3),

¬(π)ı : a ∈ sl−1. Sin
e sl−1 is an MCS, we have (π)ı : a 6∈ sl−1. By indu
tionhypothesis, a 6∈ π(sl−1), therefore we have that ρss0 does not 
onform to π.
(⇐) Conversely, suppose (π ⇒ σ′)i : c 6∈ s, to show c 6∈ (π ⇒ σ′)(s). It suf-�
es to show that ρss0 
onforms to π and c 6∈ σ′(s). From axiom (A6
), we have
conf π ∧ ¬(σ)i : c ∈ s. Rewriting this we get (2- (〈a〉turnı ⊃ 〈a〉(π)ı : a)) ∧ (¬(σ)i :

c) ∈ s. From the �rst 
onjun
t and using Lemma 3.3.15 we get ρss0 
onforms to
π. The se
ond 
onjun
t implies (σ)i : c 6∈ s and by indu
tion hypothesis we get
c 6∈ σ′(s). Thus by de�nition c 6∈ (π ⇒ σ)(s). 2Lemma 3.3.18 For all α ∈ Π, for all s ∈ S, α ∈ s i� M, s |= α.Proof: The proof is by indu
tion on the stru
ture of α. The non-trivial 
ases areas follows.
α = (σ)i : c. From Lemma 3.3.17 we have (σ)i : c ∈ s i� c ∈ σ(s) i� by semanti
s
M, s |= (σ)i : c. 52



α = σ ;i β.
(⇒) We show the following:1. If σ ;i β ∈ s and there exists a transition s

a
⇒s′ su
h that a ∈ σ(s), then

{β, σ ;i β} ⊆ s′. Suppose σ ;i β ∈ s, from (A7) we have β ∈ s. We havetwo 
ases to 
onsider.
• λ̂(s) = i: We have turni ∈ s. Sin
e a ∈ σ(s), by Lemma 3.3.17 we have

(σ)i : a ∈ s. From (A7) we get [a](σ ;i β) ∈ s. By Lemma 3.3.15(1) wehave σ ;i β ∈ s′.
• λ̂(s) = ı: We have turnı ∈ s. From (A7) we get [N ](σ ;i β) ∈ s, sin
e sis an MCS we have for every a ∈ Σ, [a](σ ;i β) ∈ s. By Lemma 3.3.15(1)we have σ ;i β ∈ s′.By applying (A7) at s′ we get β ∈ s′.2. If σ ;i β ∈ s then there exists s′ su
h that s a

⇒s′ and a ∈ σ(s). From axiom(A7), ∨
a∈Σ(〈a〉True ∧ (σ)i : a) ∈ s. Sin
e s is an MCS, there exists an a su
hthat 〈a〉True ∧ (σ)i : a ∈ s. By Lemma 3.3.15(2), there exists an s′ su
h that

s
a
⇒s′ and by Lemma 3.3.17 a ∈ σ(s).(1) ensures that whenever σ ;i β ∈ s and there exists a path ρsk

s whi
h 
onformsto σ, then we have {β, σ ;i β} ⊆ sk. Sin
e β ∈ Past(P ), by Lemma 3.3.16 we have
M, sk |= β. (2) ensures that for all paths ρsk

s whi
h 
onforms to σ, moves(sk) ∩

σ(sk) 6= ∅. Therefore we get M, s |= σ ;i β.
(⇐) Conversely suppose σ ;i β 6∈ s, to show M, s 6|= σ ;i β. It su�
es toshow that there exists a path ρsk

s that 
onforms to σ su
h that M, sk 6|= β or
moves(sk) ∩ σ(sk) = ∅.Let t = s ∩ CL(α0), we have t ∈ AT (α0) and σ ;i β ∈ t. By Lemma 3.3.14,there exists a path in the atom graph t = t1

a1→AT t2 . . .
ak→AT tk su
h that β 6∈ tk or

moves(tk)∩σ(tk) = ∅. t1 
an be extended to the MCS s. Let t′2 = t2∪{α|[a1]α ∈ s}.Its easy to 
he
k that t′2 is 
onsistent. Consider any MCS s2 extending t′2, we have
s
a1⇒s2. Continuing in this manner we get a path in s = s1

a1⇒s2 . . .
ak−1

⇒ sk in M whi
h
onforms to σ where either β 6∈ sk or moves(sk) ∩ σ(sk) = ∅. 2This leads us to the following theorem whi
h asserts that the axiom system is
omplete. 53



Theorem 3.3.19 For all formula α0, if α0 is 
onsistent then α0 is satis�able.Proof: Suppose α0 is a 
onsistent formula, then {α0} 
an be extended to a max-imal 
onsistent set m0. By the 
onstru
tion of the model M = (T , V ), there existsa node s in T su
h that s is labelled with m0. By Lemma 3.3.18, M, s |= α0 andtherefore α0 is satis�able. 23.3.6 Truth Che
kingThe truth 
he
king problem for the logi
 is stated as: given a modelM and a formula
α0, determine whether M, s0 |= α0. In this se
tion we show that the truth 
he
kingproblem for the logi
 is de
idable. Models of the logi
 were de�ned to be extensiveform game trees extended with a valuation fun
tion.However for algorithmi
 analysis, we need to present the in�nite tree in some�nite fashion. As shown in the previous 
hapter we 
an think of the in�nite extensiveform game tree being generated by the tree unfolding of a �nite game arena. Thusa model M 
an be presented as a stru
ture (W,→, w0, λ, V ) where (W,→, w0, λ)
onstitutes a game arena and V : W → 2P

′ is a valuation fun
tion where P ′ is a�nite subset of P . This 
an also be thought of as a Kripke stru
ture extended witha turn fun
tion λ. Formulas of the logi
 are then interpreted on the stru
ture TMwhi
h is the extensive form game tree resulting from the tree unfolding of M .We 
an now rephrase the truth 
he
king problem in the following manner:given a model in terms of a Kripke stru
ture M and a formula α0, determinewhether TM , s0 |= α0. The idea is to build a tree automaton whi
h a

epts TMi� TM , s0 |= α0. Sin
e TM is a possibly in�nite stru
ture, we need to 
onsiderautomata running over in�nite trees. Towards this obje
tive, we formally de�ne aBü
hi tree automaton below.Bü
hi tree automata: A tree T = (S,⇒, s0, λ̂) is said to be a k-ary tree if for all
s ∈ S, the out degree of s is k, i.e. | →

s | = k.De�nition 3.3.20 A Bü
hi tree automaton running over k-ary trees is a stru
ture
T = (Q,R, I,F) where

• Q is the set of states
• R ⊆ Q × S × Qk is the transition relation.54



• I ⊆ Q is the set of initial states.
• F ⊆ Q is the set of �good� states.A run of T on T is a Q labelled tree R = (S,⇒, s0, λ̂, l) where l : S → Q is thelabelling fun
tion de�ned as,
• l(s0) ∈ I.
• For any s we have (l(s), s, l(s1), . . . , l(sk)) ∈ R.For an in�nite sequen
e of states ϕ : q0q1 . . ., let Inf (ϕ) denote the set of stateso

uring in�nitely often in ϕ. For a path ρ = s0a0s1 . . ., let l(ρ) = l(s0)l(s1) . . .. Arun R is a

epted by T if for all paths ρ in R, Inf (l(ρ)) ∩ F 6= ∅.Proposition 3.3.21 ([VW86℄) The emptiness problem of Bü
hi tree automata 
anbe solved in polynomial time.We make use of the following de�nition and preliminary results for the 
onstru
-tion.De�nition 3.3.22 For a strategy spe
i�
ation σ ∈ Strat i(P i) let Aσ = (Qσ, δσ, oσ, Iσ)be the advi
e automaton 
orresponding to σ. We 
onstru
t a deterministi
 automa-ton Aσ as follows: Aσ = (Qσ, δσ, oσ, Iσ) where
• Qσ = 2Qσ .
• δσ(X,w, a) = {q′ | ∃q ∈ X with q′ ∈ δσ(q, w, a)}.
• oσ : Qσ×W → 2Σ whi
h satis�es the 
ondition: for all X = {q1, . . . , qk} ∈ Qσand all game positions w, oσ(X,w) = {oσ(q1, w), . . . , oσ(qk, w)}.
• Iσ = Iσ.The automatonAσ is 
onstru
ted by performing the standard subset 
onstru
tionon the underlying stru
ture of the advi
e automaton Aσ and in whi
h the outputsymbols are aggregated.The run ofAσ on a tree T = (S,⇒, s0, λ̂) is the Qσ labelled tree R = (S,⇒, s0, λ̂, l)where l : S → Qσ is the labelling fun
tion de�ned as,
• l(s0) = Iσ. 55



• For any sk where sk a
⇒s′k we have l(s′k) = δσ(l(sk), sk, a).For a deterministi
 automaton Aσ and tree T = (S,⇒, s0, λ̂), let R(Aσ, T ) =

(S,⇒, s0, λ̂, lAσ
) denote the run of Aσ on T . The following proposition, whi
h 
anbe easily veri�ed, asserts the 
orre
tness of the subset 
onstru
tion.Proposition 3.3.23 For all σ ∈ Strat i(P i), for all T = (S,⇒, s0, λ̂), for all s ∈ Sand for all q ∈ Qσ,

• q ∈ lAσ
(s) i� there exists a run R(Aσ, T ) = (S,⇒, s0, λ̂, lAσ

) of Aσ on T su
hthat lAσ
(s) = q.Lemma 3.3.24 For all σ ∈ Strat i(P i), for all T = (S,⇒, s0, λ̂), for all sk ∈ Ssu
h that λ̂(s) = i, we have σ(s) = oσ(lAσ

(s), last(s)).Proof: The proof is by indu
tion on the stru
ture of σ.
σ = [ψ 7→ a]i - If ρsk

s0
, sk |= ψ then for all runs R(Aσ, T ) = (S,⇒, s0, λ̂, lAσ

) of Aσ on
T we have oσ(lAσ

(sk), last(sk)) = a. By Proposition 3.3.23 we get for all q ∈ lAσ
(sk),

oσ(q, last(s)) = a and therefore we have oσ(lAσ
(s), last(s)) = {a}.If ρsk

s0
, sk 6|= ψ then for all b ∈ Σ, there exists a run R(Aσ, T ) = (S,⇒, s0, λ̂, lAσ

)of Aσ on T su
h that oσ(lAσ
(sk), last(sk)) = b. Again by applying Proposition 3.3.23we 
an dedu
e that oσ(lAσ

(sk), last(sk)) = Σ.For the 
ases when σ = σ1 + σ2 and σ = σ1 · σ2 the 
laim easily follows by the
onstru
tion of the advi
e automaton and the indu
tion hypothesis.
σ = π ⇒ σ1 - Suppose ρsk

s0
= s0a0 . . . ak−1sk 
onforms to π, i.e. for all j with

0 ≤ j < k, aj ∈ π(sj), then from the semanti
s we have (π ⇒ σ1)(sk) = (σ1)(sk).In this 
ase, the output of Aπ⇒σ1
at node sk is same as the output of Aσ1

at sk.Thus by 
onstru
tion of Aσ we have oπ⇒σ1
(lAσ

(sk), last(sk)) = oσ1
(lAσ

(sk), last(sk)).By indu
tion hypothesis we have oσ1
(lAσ

(sk), last(sk)) = σ1(sk). Thus we get
oπ⇒σ1

(lAσ
(sk), last(sk)) = σ1(sk) = (π ⇒ σ1)(sk).Suppose ρsk

s0
does not 
onform to π then by semanti
s (π ⇒ σ1)(s) = Σ. In this
ase, the advi
e automaton moves to a state qfree where it is free to produ
e any out-put. From the 
onstru
tion of Aσ we 
an dedu
e that oπ⇒σ1

(lAσ
(sk), last(sk)) = Σ.

2Let AT (α0) denote the set of all atoms of α0 (see De�nition 3.3.9). Let t0 = {t ∈

AT (α0) | 3-α ∈ t implies α ∈ t}. For t, t′ ∈ AT (α0), de�ne t
a

−→ t′ i� the following
onditions hold. 56



• For all [ā]α ∈ CL(α0), [ā]α ∈ t′ i� α ∈ t.
• For all [a]α ∈ CL(α0), if [a]α ∈ t then α ∈ t′.Tree automaton 
onstru
tion: Given a modelM and a formula α0, the obje
tiveis to 
onstru
t a Bü
hi tree automaton T (M,α0) running over k-ary trees for some�xed k ∈ N. However, the bran
hing degree of nodes in TM need not be uniform. We�rst observe that sin
e the automaton 
onstru
tion is parameterised by the model

M it is possible to always normalise the model to one where all nodes have the samebran
hing degree. Let b = maxw∈W |
→
w |, i.e. b denotes the maximum out degree ofpositions in W . We 
an �normalise� M by adding edges to dummy nodes so that allnodes are of out degree b. These newly added dummy nodes are sink nodes of thegraph, i.e. all the out going edges are self loops. A tree automaton running on su
ha normalised tree would enter an a

ept state on en
ountering a dummy node andremain in this state. Thus any path ending in a dummy node is disregarded by theautomaton and only paths whi
h were present in M are analysed for 
onsisten
yrequirements.Therefore without loss of generality we 
an assume that the model M satis�esthe 
ondition: for all w ∈W , | →

w | = b. Thus the tree TM is a b-ary tree.Let S(α0) = {σ1, . . . , σm} be the strategy spe
i�
ations appearing in α0 and for
1 ≤ j ≤ m and Aσj

= (Qσj
, δσj

, oσj
, Iσj

) be the deterministi
 automaton 
orrespond-ing to the advi
e automatonAσj
. Let Q = Qσ1

×. . .×Qσm
, we use X = (X1, . . . , Xm)to denote elements of Q.Intuitively the tree automaton works as follows: It keeps tra
k of the maximal
onsistent subsets (atoms) of α0 and simulates the advi
e automata Aσ1

, . . . ,Aσm
inparallel. At a game position s, for a subformula (σ)i : a in the atom, it ensures thatthe a
tion �a� is a possible output of the advi
e automaton Aµ. However, ¬(σ ;i β)is a requirement whi
h says that there exists a game position where enabledσ doesnot hold or β is false. We keep tra
k of su
h formulas in a �requirement set� U .When the tree automaton bran
hes, it guesses for ea
h bran
h whi
h requirementsneed to be satis�ed on that parti
ular bran
h. The Bü
hi a

eptan
e 
ondition issimply all those states where the �requirement set� U is empty.Formally we have T (M,α0) = (Q,R, I,F) where the set of states Q = (AT (α0)∪

{X,⋉}) × (2CL(α0))3 × Q satis�es the property: for all ((t, d), U, Z, Y,X) ∈ Q, if
d = X then

• for all 〈a〉α ∈ Z it is the 
ase that α ∈ t.57



• for all (σj)i : a ∈ CL(α0), (σj)i : a ∈ t i� a ∈ oσj
(Xj , last(s)).We also assume the existen
e of a spe
ial accept state in Q. The set of initialstates I satis�es the 
ondition: ((t,X), U, Z, Y,X0) ∈ I i�

• t ∈ t0, U = ∅ and Z = ∅.
• Y = {〈a〉α ∈ CL(α0) | 〈a〉α ∈ t}.
• X

0 = (X0
1 , . . . , X

0
m).The sets Z and Y are used to keep tra
k of the 〈a〉α formulas and ensure thatthe edge relation is 
onsistent with these formulas. For a game position s, let

last(s) = w and let →
w= {w1, . . . , wb} with w aj

→wj for 1 ≤ j ≤ b. The automatonat a state ((t, d), U, Z, Y,X) reading the game position s, guesses a partition of
U = U1∪ . . .∪Ub. Note that to be te
hni
ally pre
ise, it needs to be mentioned thatthe stru
ture M is also en
oded into the state spa
e of the automaton. However, toavoid 
luttering of the notations we do not expli
itly represent this. The transitionrelation R is de�ned as follows.
〈(((t1, d1), U

′
1, Z1, Y1,X

1), a1), . . . , (((tb, db), U
′
b
, Zb, Yb,X

k), ab)〉 ∈ R(((t, d), U, Z, Y,X), s)i� the following 
onditions hold.
• If d = ⋉ then dj = ⋉ for all j : 1 ≤ j ≤ b.
• For V (s) = t ∩ Voc(α0) and for all j : 1 ≤ j ≤ b, t

aj

−→ tj .
• Zj = {〈a〉α ∈ Y | a = aj} and Z1, . . . , Zb form a partition of Z.
• U ′

j =

{
{¬(σ ;i β) ∈ Uj | β, enabledσ ∈ Cj} if U 6= ∅

{¬(σ ;i β) ∈ Cj | β, enabledσ ∈ Cj} if U = ∅

• Yj = {〈a〉α | 〈a〉α ∈ Cj}.
• For 1 ≤ j ≤ b, 1 ≤ r ≤ m, Xj

r = δσr
(Xr, s, aj).The state with entry ⋉ 
orresponds to a reje
t state and on
e the automatonenters the reje
ts state it remains in that state for all transitions. The Bü
hi a

ep-tan
e 
ondition is, F = {((t,X), U, Z, Y,X) ∈ Q | U = ∅} ∪ {accept}.Theorem 3.3.25 Given a model M and a formula α0 we have TM , s0 |= α0 i�

Lang(T (M,α0)) 6= ∅. 58



Proof: (⇒): Suppose TM , s0 |= α, we show that there exists an a

epting runof T (M,α0) on TM . For a node s, let ts = {α ∈ CL(α0) | M, s |= α}. Wede�ne the labelling lT indu
tively as follows. lT (s0) = ((ts0 ,X), ∅, ∅, Y,X0) where
Y = {〈a〉α ∈ CL(α0) | 〈a〉α ∈ t} and X

0 = (X0
1 , . . . , X

0
m).Now 
onsider any node s su
h that lT (s) is de�ned and the labelling fun
tionis not de�ned on its su

essors. Let lT (s) = ((t,X), U, Z, Y,X) and let {s1, . . . , sb}be the su

essor nodes of s with s

aj

⇒sj for all j : 1 ≤ j ≤ b. If U 6= ∅, for ea
hformula ¬(σ ;i β) ∈ U we have TM , s |= ¬(σ ;i β). Thus there exists a path
s = s1s2 . . . sq su
h that TM , sq |= ¬β ∨ ¬enabledσ and for all intermediate node
sr, TM , sr |= β ∧ enabledσ. We also have s2 ∈ {s1, . . . , sb}. Set Uj to be the setof all formulas ¬(σ ;i β) ∈ U su
h that s2 = sj. Now for all j : 1 ≤ j ≤ b,
lT (sj) = ((tsj

,X), Uj , Zj, Yj,X
j) where

• Zj = {〈aj〉α ∈ CL(α0) | 〈aj〉α ∈ Y }.
• Yj = {〈a〉α ∈ CL(α0) | 〈a〉α ∈ tsj

}.
• For all r : 1 ≤ r ≤ m, Xj

r = δDr (Xr, s, aj).It is straight forward to verify that this de�nes a valid run of the automaton andthat it is a

epting.
(⇐): Suppose Lang(T (M,α0)) 6= ∅, let TM = (S,⇒, s0, λ̂) and R = (S,⇒, s0, λ̂, lT )be the a

epting run of T (M,α0) on TM . The labelling fun
tion lT labels nodes ofthe run tree with states of the automaton. Thus for a game position s, lT (s) is atuple ((t, d), U, Z, Y,X). We denote by lT (s)[j] the jth 
omponent of the tuple with
lT (s)[1] = (t, d). For a formula α, we also write α ∈ lT (s) to mean α ∈ t. We showthe following:

• for all α ∈ CL(α0) and for all s ∈ S, α ∈ lT (s) i� M, s |= α.The proof is by indu
tion on the stru
ture of α and the interesting 
ases are asfollows.
α = p - We have M, s |= p i� p ∈ V (s) i� p ∈ lT (s).
α = (σ)i : a - Re
all that S(α0) = {σ1, . . . , σm}. Let r be the index of σ in S(α0),i.e. σr = σ. Let lT (s) = ((t, d), U, Z, Y,X) where X = (X1, . . . , Xm). M, s |= (σ)i : ai� a ∈ σ(s) i� a ∈ oσr

(Xr, last(s)) (from lemma 3.3.24). Sin
e R is an a

eptingrun, we have d = X and by de�nition of the automaton we have a ∈ Oσr
(Xr, s) i�

(σ)i : a ∈ lT (s). 59



α = σ ;i β - Suppose σ ;i β ∈ lT (s) we need to show that TM , s |= σ ;i β.It su�
es to show that for every path ρsk
s whi
h 
onforms to σ, TM , sk |= β and

→
sk ∩σ(sk) 6= ∅. We show the following:1. If σ ;i β ∈ lT (s) and there exists an s′ su
h that s a

⇒s′ with a ∈ σ(s) then
{β, σ ;i β} ⊆ lT (s′). Let r be the index of σ in S(α0), i.e. σr = σ. Let
lT (s) = ((t, d), U, Z, Y,X) where X = (X1, . . . , Xm). Suppose σ ;i β ∈ lT (s)by de�nition of atom we have β ∈ lT (s). The following two 
ases arise.

• λ̂(s) = i: We have turni ∈ lT (s). Sin
e a ∈ σ(s), by lemma 3.3.24 wehave a ∈ oσr
(Xr, last(s)). By de�nition of state we have (σ)i : a ∈ lT (s).From de�nition of atom we have [a](σ ;i β) ∈ lT (s). By de�nition ofthe transition relation we have σ ;i β ∈ lT (s′) and by de�nition of atom

β ∈ lT (s′).
• λ̂(s) = ı: We have turnı ∈ lT (s). From de�nition of atom we get

[N ](σ ;i β) ∈ lT (s) and thus we have for every a ∈ Σ, [a](σ ;i β) ∈

lT (s). By de�nition of the transition relation we have σ ;i β ∈ lT (s′)and by de�nition of atom β ∈ lT (s′).2. If σ ;i β ∈ lT (s) then there exists s′ su
h that s a
⇒s′ and a ∈ σ(s). Suppose

σ ;i β ∈ lT (s), by de�nition of atom we have enabledσ ∈ lT (s). By expandinghe abbreviation we get ∨
a∈Σ(〈a〉True∧(σ)i : a) ∈ lT (s). By de�nition of atomwe get, there exists an a ∈ Σ su
h that 〈a〉True, (σ)i : a ∈ lT (s). Sin
e R isan a

epting run of T (M,α0), we have there exists an s′ su
h that s a

⇒s′ and
a ∈ Oσ(lT (s), s). By lemma 3.3.24 we have a ∈ σ(s).(1) ensures that whenever σ ;i β ∈ s and there exists a path ρsk

s whi
h 
onformsto σ, then we have {β, σ ;i β} ⊆ lT (sk). Applying indu
tion hypothesis we get
TM , sk |= β. (2) ensures that for all paths ρsk

s whi
h 
onforms to σ, →
sk ∩σ(sk) 6= ∅.It su�
es to show that for every path ρsk

s whi
h 
onforms to σ, TM , sk |= β and
→
sk ∩σ(sk) 6= ∅. From the semanti
s, we get TM , s |= σ ;i β.Conversely, suppose σ ;i β 6∈ lT (s). By de�nition of atom, ¬(σ ;i β) ∈ lT (s).We have the following 
ases:1. if β 6∈ lT (s) then applying indu
tion hypothesis we get TM , s 6|= β and fromsemanti
s we get TM , s 6|= σ ;i β.2. if enabledσ 6∈ lT (s) then by expanding the abbreviation we get ∨

a∈Σ(〈a〉True∧

(σ)i : a) 6∈ lT (s). Thus for every a ∈ Σ, either 〈a〉True 6∈ lT (s) or (σ)i : a 6∈ lT (s).60



Let Y = {a1, . . . , ak} ⊆ Σ su
h that ∀j : 0 ≤ j ≤ k, 〈aj〉True ∈ lT (s).Thus for all j, there exists sj su
h that s aj

⇒sj . Let r be the index of σin S(α0) and let lT (s) = ((t, d), U, Z, Y,X) where X = (X1, . . . , Xm). Forea
h aj ∈ Y , we have (σ)i : aj 6∈ lT (s) and thus by de�nition of lT (s),
aj 6∈ oσr

(Xr, last(s)). By lemma 3.3.24 we have aj 6∈ σr(s). Thus we 
andedu
e that moves(s) ∩ σ(s) = ∅. From semanti
s we have TM , s 6|= σ ;i β.3. if 〈N 〉¬(σ ;i β) ∈ lT (s) and β, enabledσ 6∈ lT (s) then we have the following
ases:
• suppose ¬(σ ;i β) ∈ lT (s)[2] (re
all that lT (s)[2] denotes the �require-ment set� of the tree automaton). Sin
e R is a

epting for all pathsstarting at s, eventually the requirement set be
omes empty. Thus weget a path s = s1s2 . . . sk su
h that ∀j : 1 ≤ j < k, ¬(σ ;i β) ∈ lT (sj)[2]and ¬(σ ;i β) 6∈ lT (sk)[2]. By de�nition of the transition relation of theautomaton either β 6∈ lT (sk) or enabledσ 6∈ lT (sk). Applying indu
tionhypothesis and using the semanti
s we 
an 
on
lude that TM , s 6|= σ ;i β.
• suppose ¬(σ ;i β) 6∈ lT (s)[2]. We show that there exists a path s =

s1s2 . . . sk su
h that for all j : 1 ≤ j ≤ k, ¬(σ ;i β) ∈ lT (sj) and one ofthe following holds:� β 6∈ lT (sk) or enabledσ 6∈ lT (sk).� ¬(σ ;i β) ∈ lT (sk)[2]Sin
e 〈N 〉¬(σ ;i β) ∈ lT (s), ∃s2 su
h that s a
⇒s2 and ¬(σ ;i β) ∈

lT (s2). If β or enabledσ ∈ lT (s2) or if ¬(σ ;i β) ∈ lT (sk)[2] then we aredone. Otherwise, by de�nition of atom we get 〈N 〉¬(σ ;i β) ∈ lT (s2).By repeating the argument there exists s3 su
h that ¬(σ ;i β) ∈ lT (s3).Sin
e R is an a

epting run, for every path starting at s the requirementset eventually be
omes empty. Thus we get a path s = s1s2 . . . sk−1sksu
h that lT (sk−1)[2] = ∅ and for all j : 1 ≤ j ≤ k, ¬(σ ;i β) ∈ lT (sj)and β, enabledσ 6∈ lT (sk). By de�nition of the transition fun
tion of theautomaton we have ¬(σ ;i β) ∈ lT (sk)[2].
2
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Complexity of truth 
he
king: For the given formula α0, let |α0| denote thesize of α0. The states of the tree automaton are the atoms of α0 and the states ofthe determinised versions of the advi
e automata. The model M is also hard-
odedinto the automaton stru
ture. Sin
e the number of strategy spe
i�
ations o

urringin α0 is bounded by |α0|, the size of the tree automaton is doubly exponential in
|α0| and linear in |M |. To solve the truth 
he
king problem, we need to 
he
k theemptiness of T (M,α0). Sin
e T (M,α0) is a Bü
hi tree automaton, this 
an be donein polynomial time (due to Proposition 3.3.21). Thus we get a total time 
omplexityof doubly exponential in |α0| and polynomial in the size of the model.3.3.7 Extension to joint a
tionsWe 
an also use strategy spe
i�
ations to reason about joint a
tions of players inthe setting of multi-player games. For this purpose, in this se
tion we assume thatthe set of players N = {1, . . . , n}. For ea
h player i ∈ N , let Σi be the set of a
tionsof player i and Σ =

⋃
i∈N Σi.For an a
tion a ∈ Σ, let loc(a) = {i ∈ N | a ∈ Σi}. Intuitively loc(a) denotes theset of all players for whi
h a is a joint a
tion. For a subset of players C ⊆ N , let Cdenote the set C = N \ C. Consider the following syntax for strategy spe
i�
ations:for ea
h C ⊆ N we have

StratC := [ψ 7→ a]C | σ1 + σ2 | σ1 · σ2 | π ⇒ σwhere loc(a) = C and π ∈ StratC.For the 
onstru
t [ψ 7→ a]C, the a
tion a needs to be a joint a
tion of the subsetof players C and it says that for all game positions where the 
ondition ψ holds, theplayers in C play the joint a
tion a. π ⇒ σ says that in the past if the observablebehaviour of the 
oalition C 
onforms to π then C sti
k to the spe
i�
ation σ. Thegame stru
tures under 
onsideration now need not be turn based and 
an allow
on
urrent moves by a subset of players. The notion of strategies of players 
an bede�ned appropriately. Embedding these strategy spe
i�
ations into a modal logi
as given in Se
tion 3.3 enables us to reason about the abilities of subsets of playersand me
hanisms by whi
h they 
an ensure spe
i�
 out
omes.However, note that what is done here is di�erent from the 
on
ept of 
oalitionsstudied in 
lassi
al game theory. Cooperative games [Jon80℄, whi
h is a widely studiedbran
h of game theory, reasons about the rational behaviour of 
olle
tions of players.62



Unlike non-
ooperative games (the kind of games we have looked at so far), in
ooperative games players have the freedom of pre-play 
ommuni
ation and to makebinding agreements. Very often the literature also talks about side payments whereplayers are allowed to transfer utility even before the game is played. In 
ontrast,in our setting players do not 
ommuni
ate and therefore negotiations of players arenever part of the model. Even though the assertions involve subsets of players, weare still reasoning about abilities of a subset C with respe
t to its 
ompliment set C.The alternating temporal logi
 (ATL) [AHK02℄ also reasons about joint strategiesof players and how they 
an ensure 
ertain out
omes. The main 
onstru
t in ATLhas the form 〈〈C〉〉α whi
h says that the subset of players in C has a strategy to ensure
α. ATL formulas are interpreted over 
on
urrent game stru
tures whi
h are game are-nas where 
on
urrent moves of players are enabled. In its original form, ATL talksabout �existen
e of strategies� of players. Naming fun
tional (memoryless) strategiesand in
luding them expli
itly into the logi
al language was suggested in [WvdHW07℄and [vdHJW05℄. ATL extended with the ability to spe
ify a
tions of players in theformulas was studied in [Ågo06℄ and [Bor07℄. Sin
e the unfolding of the game stru
-ture en
odes past information, the logi
 itself 
an be extended with past modalitiesas well as knowledge modalities in order to reason about the history informationand epistemi
 
onditions used in strategizing by players ([JvdH04℄,[vdHW02℄).Reasoning about abilities of 
oalitions as done in ATL 
an be a
hieved in ourframework by repla
ing ea
h joint a
tion a with loc(a), the subset of players whi
hshare the a
tion a. The interpretation would then be that the subset of players in
loc(a) have a joint a
tion to ensure a parti
ular out
ome. For a �nite game arena,memoryless strategies 
an be easily 
oded up in terms of strategy spe
i�
ations byusing spe
ial propositions to identify ea
h game position uniquely. Thus reasoningabout fun
tional (memoryless) strategies expli
itly in the framework 
an also bea
hieved. The modal logi
 whi
h embeds the spe
i�
ation language 
an always beextended with the past, future and knowledge modalities depending on the appli
a-tion in mind. However, in the 
ontext of spe
i�
ations to help build advi
e fun
tionsfor players, it is not 
lear what joint a
tions (without 
ommuni
ation) a
hieve in agame theoreti
 sense.3.3.8 Dis
ussionThe approa
h we adopted to spe
ify strategies is 
lose in spirit to reasoning aboutgames in the dynami
 logi
 framework. As mentioned earlier, the proposed logi
63




an talk about �existen
e of strategies� with the assertion of the form null i ;i β.However, it 
an make stronger assertions of the form σ ;i β whi
h also spe
i�es theme
hanism whi
h need to be used by player i in order to guarantee the out
ome β.Reasoning in �nite extensive form games: The logi
 
an also be used toperform out
ome based reasoning in �nite extensive form games. For i ∈ N , let Θidenote the set of propositions 
oding the utility of players. Consider the followingformula:
BT i(σ, σ′) =

∧

θi∈Θi

(σ′
;i (leaf ⊃ θi) ⊃ σ ;i (leaf ⊃ θi))This says that irrespe
tive of what player ı plays if there exists a strategy µ′satisfying σ′ su
h that θi is guaranteed, then there also exists a strategy µ satisfying

σ whi
h guarantees θi. In other words, for player i, the spe
i�
ation σ is better than
σ′. Given a �nite set of strategy spe
i�
ations Υi for player i, we say that σ is thebest strategy if the following holds:

Best i(σ) =
∧

σ′∈Υi

BT i(σ, σ′)Representing 
omplete strategies: Note that in the 
ase of �nite extensiveform games, we 
an 
ode up the game positions uniquely using propositions. Inthis 
ase, it is possible to represent 
omplete strategies in terms of strategy spe
-i�
ations as well. Suppose the proposition p1
i , . . . p

k
i uniquely identi�es all player igame positions, the spe
i�
ation representing a 
omplete strategy would have theform σ = [p1

i 7→ a1]
i · · · [pki 7→ ak]

i. In this parti
ular s
enario, the notion of strategy
omparison and best strategy redu
es to the 
lassi
al notions by taking the set Υito be the set of all strategies for player i.This also shows that dynami
 logi
 based reasoning about games as mentionedin Se
tion 2.4 is subsumed by the proposed logi
al framework. However, the mostimportant aspe
t in whi
h we deviate from dynami
 logi
 based reasoning is thatwe do not require that the logi
 
odes up 
omplete strategies of players. Thusformulas of the logi
 need not be parameterised by the spe
i�
 game stru
ture under
onsideration, in parti
ular it need not depend on the spe
i�
 bound on the lengthof plays. This also enables us to reason about more �generi
� games of unboundedduration. 64



Chapter 4Dynami
 logi
 on game 
ompositionIn the previous 
hapter we looked at logi
al analysis of strategies where the gamerepresentation itself is assumed to be atomi
. The emphasis was to reason aboutstrategies and develop a framework to build strategies in a 
ompositional manner asin the 
ase of programs. The logi
al formalism developed does not expli
itly di
tatethe stru
ture of the game arena and thus is 
loser in spirit to endogenously de�nedlogi
s.Game theoreti
 te
hniques have often been used in dealing with various issuesin logi
. In the latter half of the last 
entury, the language of games was extensivelyused to dis
uss questions in model theory, typi
ally in the 
ontext of model 
on-stru
tion and for 
omparing models or expressiveness of logi
al languages. This wasdemonstrated by the work of Hintikka [Hin68℄ whereby the meaning of quanti�erswas explained in game theoreti
 terms. In this approa
h, semanti
s of quanti�ed�rst order formulas is given in terms of a two player zero sum game. Logi
al notionslike satis�ability are redu
ed to existen
e of winning strategies for one of the play-ers. Games have also found useful appli
ations in model theory as illustrated by the
hara
terisation of elementary equivalen
e in terms of Ehrenfeu
ht-Fraisse games[Ehr61℄. The question here is whether two stru
tures are distinguishable with re-spe
t to �rst order formulas. This question 
an be translated into a game where thewinning strategy of a player 
orresponds to a separating formula.The notion of 
omposition is inherent to any logi
al formalism, thus games whi
hmodel logi
al properties 
an be thought of as being 
omposed in some stru
turalfashion. When games are themselves stru
tured, players strategi
 response re�e
tsthis stru
ture as well. For games of bounded length, an a
tion labelled modal logi
similar to the one presented in Se
tion 2.4 re�e
ts game and strategy stru
ture65



well, but when we 
onsider unbounded play as arising from unbounded repetition ofgames, the situation is di�erent. Propositional game logi
 [Par85℄, the seminal workon logi
al aspe
ts of game theory, builds 
omposite stru
ture into games. Gamelogi
 initiated the study of game stru
ture using algebrai
 properties. Pauly [Pau01℄has built on this to des
ribe abilities of 
oalitions to a
hieve desired goals and toprovide interesting relationships between programs and games.The strategies used by a player in su
h a 
omposite game would depend onnot just the out
ome spe
i�
ation but also what strategy was used, espe
ially byopponents, in the past. The history information 
an then be analysed by takinginto a

ount the underlying stru
ture of the 
omposite game. We suggest thatin reasoning about stru
tured games, it is useful for the strategies of players toalso re�e
t the stru
ture. Thus rather than reasoning about the strategies in the
omposed game, one should look at strategies in atomi
 games and 
ompose su
hatomi
 game strategy pairs.In this 
hapter, we look at a framework where both games and strategies arestru
turally built and where the stru
ture is expli
itly represented in the formulasof the logi
. In the 
ase of extensive form games, we suggest that 
onsidering game- strategy pairs is useful: suppose that we have a 2-stage game g1 followed by g2.Consider player 1 strategizing at the end of g1, when g2 is about to start; herplanning depends not only on how g2 is stru
tured, but also how her opponent hadplayed in g1. Thus her strategizing in the 
omposite game g1; g2 is best des
ribedas follows: 
onsider g1 in extensive form as a tree, and the subtree obtained byopponent employing π; when g2 starts from any of the leaf nodes of this subtree,play a

ording to σ. We en
ode this as (g1, π); (g2, σ), and see (g2, σ) as a responseto (g1, π). Thus the �programs� of this logi
 are game - strategy pairs of this kind.We 
onsider a propositional dynami
 logi
, the programs of whi
h are regularexpressions over atomi
 pairs of the form (g, σ) where g is a �nite game tree in ex-tensive form, and σ is a strategy spe
i�
ation, stru
tured synta
ti
ally. The 
entralsynta
ti
 devi
e 
onsists of intera
tive stru
ture in strategies and algebrai
 stru
-ture not only on games but on game - strategy pairs. While the te
hni
al resultis a 
omplete axiomatization and the de
idability of the satis�ability problem, wesee this 
ontribution as an advo
a
y of studying algebrai
 stru
ture on strategies,indu
ed by that on games.In 
ontrast, in normal form games strategies are presented in an abstra
t mannerand the reasoning in su
h games are driven by out
ome spe
i�
ations. A normal66



form game 
an be viewed as an extensive form game abstra
ted into a tree of depthone, where edges are labelled by a tuple of strategies, one for ea
h player. There isno past and future that strategies refer to, and we only speak of notions like rationalresponse, dominant strategies, equilibrium and so on. However, when we 
onsiderrepeated games, or games 
omposed of smaller games, the notion of strategi
 re-sponse of a player to other players' moves be
omes relevant, pretty mu
h in thesame way as it is used in extensive form games. History information, as well as epis-temi
 attitudes of players be
ome relevant. In this setting, we 
onsider 
ompositionof game play pairs, 
orresponding to the fa
t that the reasoning performed in singlestage is out
ome based. On the te
hni
al front, a 
omplete axiomatization of thelogi
 
an be provided as in the 
ase of extensive form games. However, the 
entralobje
tive is to highlight the logi
al di�eren
es between 
omposition of normal formgames and that of extensive form games, in terms of the reasoning involved.In the setting of 
ompositional games, to illustrate the di�eren
e between rea-soning about games and reasoning about strategies, we �nd it instru
tive to �rstreview propositional game logi
.4.1 Game logi
Propositional game logi
 [Par85℄ initiated the logi
al study of determined two personzero sum games in a 
ompositional framework.SyntaxLet the two players be denoted as player 1 and player 2. As in the 
ase of propo-sitional dynami
 logi
, the language of game logi
 
onsists of two sorts: games andpropositions. Let Γ0 be a set of atomi
 games and P a set of atomi
 propositions.The set of 
omposite games Γ and the set of formulas Φ is built from the followingsyntax:
Γ := g | γ1; γ2 | γ1 ∪ γ2 | γ

∗ | γd

Φ := p | ¬ϕ | ϕ1 ∧ ϕ2 | 〈γ〉ϕwhere p ∈ P and g ∈ Γ0. Let [γ]ϕ := ¬〈γ〉¬ϕ and γ1 ∩ γ2 := (γd1 ∪ γ
d
2)
d.The formula 〈γ〉ϕ asserts that player 1 has a strategy in game γ to ensure ϕand [γ]ϕ expresses that player 1 does not have a strategy to ensure ¬ϕ, whi
h by67



determina
y is equivalent to the assertion that player 2 has a strategy to ensure ϕ.The intuitive de�nition of 
omposite games is as follows: γ1; γ2 is the game where
γ1 is played �rst followed by γ2, γ1 ∪ γ2 is the game where player 1 moves �rst andde
ides whether to play γ1 or γ2 and then the 
hosen game is played. In the iteratedgame γ∗, player 1 
an 
hoose how often to play γ (possibly zero times). He neednot de
lare in advan
e how many times γ needs to be played, but is required toeventually stop. The dual game γd is the same as playing the game γ with the rolesinter
hanged.The semanti
s of the logi
 is de�ned in terms of neighbourhood relations. Atthe atomi
 level, the game stru
ture itself is not important sin
e the emphasis is onreasoning about powers of players. Thus 
omposition of games in e�e
t 
orrespondsto 
omposing abilities of players. The formal semanti
s is given below.Semanti
sA game model M = ((S, {Eg | g ∈ Γ0}), V ) where S is a set of states, V : P → 2Sis the valuation fun
tion and Eg : S → 22S is a 
olle
tion of e�e
tivity fun
tionswhi
h are monotoni
, i.e. X ∈ Eg(s) and X ⊆ X ′ imply X ′ ∈ Eg(s). The idea isthat X ∈ Eg(s) holds whenever player 1 has a strategy in game g to a
hieve X.The truth of a formula ϕ in a modelM at a state s (denotedM, s |= ϕ) is de�nedas follows:

M, s |= p i� s ∈ V (p)

M, s |= ¬ϕ i� M, s 6|= ϕ

M, s |= ϕ1 ∧ ϕ2 i� M, s |= ϕ1 or M, s |= ϕ2

M, s |= 〈γ〉ϕ i� ϕM ∈ Eγ(s)where ϕM = {s ∈ S | M, s |= ϕ}. The e�e
tivity fun
tion Eγ is de�ned indu
tivelyfor non-atomi
 games as follows. Let Eg(Y ) = {s ∈ S | Y ∈ Eg(s) for g ∈ Γ0}.Then
Eγ1;γ2(Y ) = Eγ1(Eγ2(Y ))

Eγ1∪γ2(Y ) = Eγ1(Y ) ∪ Eγ2(Y )

Eγd(Y ) = Eγ(Y )

Eγ∗(Y ) = µX.Y ∪ Eγ(X)where µ denotes the least �xpoint operator. It 
an be shown that the monotoni
-ity of Eγ is preserved under the game operations and therefore the least �xpoint68



µX.Y ∪Eγ(X) always exists.On the te
hni
al front, the following theorems state that the satis�ability prob-lem and model 
he
king problem for game logi
 is de
idable.Theorem 4.1.1 ([Par85, Pau01℄) The satis�ability problem for game logi
 isEXPTIME-
omplete.Theorem 4.1.2 ([Ber05℄) The model 
he
king problem for game logi
 over �nitestru
tures is in NP ∩ Co-NP.Expressive powerTo investigate the expressive power of game logi
 with respe
t to established for-malism, it is 
onvenient to interpret game logi
s on Kripke stru
tures. In this 
asethe atomi
 games are one player games and all the intera
tive aspe
t is 
ontrolledsynta
ti
ally using the dual operator. Over Kripke stru
tures, in the absen
e of dualoperator, game logi
 is nothing but propositional dynami
 logi
 (PDL). The abil-ity of PDL to express properties of programs is limited, for instan
e it well knownthat the property of well-foundedness or equivalently that of total 
orre
tness 
annotbe expressed in PDL. Several extensions of PDL have been proposed to get overthis limitation. These in
lude adding expli
it predi
ates like loop [HP78℄ and repeat[Str81℄. The dual operator in
reases the expressive power of game logi
 signi�
antly.The property of total 
orre
tness 
an be expressed by making use of the dual opera-tor and thus we get that game logi
 is stri
tly more powerful than PDL [Par85℄. Infa
t, it 
an be shown that game logi
 is stri
tly more powerful than the extensionof PDL with looping operator [Ber05℄.Propositional µ-
al
ulus [Koz83℄ was one of the most powerful logi
s proposedto deal with limitations of PDL. It was shown that game logi
 interpreted overKripke stru
tures 
an be embedded into the two variable fragment of propositional
µ-
al
ulus [Ber05℄. Sin
e the variable hierar
hy of µ-
al
ulus is stri
t [Ber05℄ we 
analso 
on
lude that µ-
al
ulus is stri
tly more powerful than game logi
. It is quite
on
eivable that the model 
he
king problem for game logi
 is easier than that of
µ-
al
ulus. However, Berwanger [Ber03℄ shows that this is not the 
ase.One of the main open problems in game logi
 is to give a 
omplete axiomatizationof valid formulas of the logi
. Parikh in [Par85℄ proposed an axiom system and
onje
tured it to be 
omplete, unfortunately no proof of this has been given so far.A 
omplete axiomatization for the dual free fragment of game logi
 is presented69



in [Par85℄. For the iteration free fragment, a 
omplete axiomatization is given in[Pau01℄.In game logi
, starting with simple atomi
 games, one 
an 
onstru
t large 
om-plex games using operators like 
omposition and union. Due to the Box-Diamondduality 〈γ〉ϕ = ¬[γ]¬ϕ, it is easy to see that by de�nition, the games 
onstru
tedremain determined. The 
ompositional syntax of game logi
 presents an algebra forgame 
onstru
tion. Rather than look at arbitrarily large games, this approa
h givesus a way of systemati
ally studying 
omplex games in a stru
tured manner and toalso look at their algebrai
 properties. One should however note that the reasoningperformed in game logi
s is based on �existen
e of strategies�.Reasoning in 
ompositional gamesGame logi
 makes assertions about 
omposing neighbourhoods or abilities of players.Players' abilities in a game arise due to the strategies they have a

ess to. Underthe assumption that players are perfe
tly rational, reasoning about existen
e ofstrategies su�
es sin
e su
h players will always be able to employ their best possible
hoi
e of a
tions. However, as noted earlier in the introdu
tion, in many pra
ti
alsituations players have limited 
omputational resour
es. In su
h 
ases, it makessense to expli
itly reason about the me
hanisms by whi
h these abilities arise ina logi
al framework. To reason about strategies in a 
ompositional framework, theabstra
t presentation of games is not su�
ient, the analysis will depend on the exa
trepresentation under 
onsideration. We 
onsider the two standard representations:extensive form games and normal form games and look at how a dynami
 logi
framework 
apable of reasoning about strategies 
an be developed.4.2 Extensive form gamesWe use the notion of �nite extensive form games as introdu
ed in Se
tion 2.1. Thelogi
al formalism (whi
h we introdu
e shortly) allows formulas to expli
itly refer tothe game tree under 
onsideration. We therefore need to provide a synta
ti
 repre-sentation of the (semanti
) game tree. A simple synta
ti
 stru
ture for spe
ifying�nite extensive form game trees is presented below.
70



4.2.1 Syntax for extensive form game treesLet Nodes be a 
ountable set. The syntax for spe
ifying �nite extensive form gametrees given by:
G(Nodes) := (i, x) | Σam∈J((i, x), am, tam

)where i ∈ N , x ∈ Nodes , J ⊆ Σ, and tam
∈ G(Nodes).De�nition 4.2.1 Given g ∈ G(Nodes) we de�ne the tree Tg generated by g indu
-tively as follows.

• g = (i, x): Tg = (Sg,⇒g, λ̂g, sx) where Sg = {sx}, λ̂g(sx) = i.
• g = ((i, x), a1, ta1) + · · · + ((i, x), ak, tak

): Indu
tively we have trees T1, . . .Tkwhere for j : 1 ≤ j ≤ k, Tj = (Sj ,⇒j , λ̂j, sj,0). De�ne Tg = (Sg,⇒g, λ̂g, sx)where� Sg = {sx} ∪ ST1
∪ . . . ∪ STk

.� λ̂g(sx) = i and for all j, for all s ∈ STj
, λ̂g(s) = λ̂j(s).� ⇒g =

⋃
j:1≤j≤k({(sx, aj , sj,0)} ∪⇒j).
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4.2.2 The logi
The logi
 is a simple dynami
 logi
 where we take regular expressions over game-strategy pairs as programs in the logi
. Atomi
 programs are of the form (g, σ)where g is a �nite extensive form game and σ is a strategy spe
i�
ation as de�nedin se
tion 3.1. Formulas of the logi
 
an be used to spe
ify the result of a playerfollowing a parti
ular strategy in a spe
i�ed game enabled at a game position.SyntaxThe syntax of the logi
 is given by:
Φ := p ∈ P | ¬α | α1 ∨ α2 | 〈ξ〉

∀αwhere ξ ∈ Γ, the set Γ 
onsists of game strategy pairs whi
h is de�ned below.The 
onstru
t ξ represents regular expressions over game-strategy pairs (g, σ).For the atomi
 
onstru
t (g, σ) the intuitive meaning of the formula 〈g, σ〉∀α is: ingame g player i has a strategy µ 
onforming to the spe
i�
ation σ su
h that α holdsat all leaf nodes rea
hed by following µ. In other words, the strategy µ ensures theout
ome α.Game strategy pairs: The syntax for 
omposition of game strategy spe
i�
ationpairs is given by,
Γ := (g, σ) | ξ1; ξ2 | ξ1 ∪ ξ2 | ξ∗where g ∈ G(Nodes), σ ∈ Strat i(P i).The atomi
 
onstru
t (g, σ) spe
i�es that in game g a strategy 
onforming tospe
i�
ation σ is employed. Game strategy pairs are then 
omposed using standarddynami
 logi
 
onne
tives. ξ1 + ξ2 would mean playing ξ1 or ξ2. Sequen
ing in oursetting does not mean the usual relational 
omposition of games. Rather, it is the
omposition of game strategy pairs of the form (g1, σ1); (g2, σ2). This is where theextensive form game tree interpretation makes the main di�eren
e. Sin
e the strat-egy spe
i�
ations are intended to be partial, a pair (g, σ) gives rise to a set of �nitetrees and therefore 
omposition over trees need to be performed. ξ∗ is the iterationof the `;' operator.Remark: We use the syntax for strategy spe
i�
ations given in Se
tion 3.1. How-ever, for te
hni
al 
onvenien
e, in the 
ase of atomi
 strategy spe
i�
ations we re-stri
t our attention to boolean pre
onditions rather than allowing past time tense72



logi
 formulas. The main te
hni
al result of this 
hapter is a 
omplete axiomatiza-tion of the logi
 presented above. It is easy to verify that this result 
an be extendedto the framework whi
h allows past time pre
onditions as well. The axiom systemneeds only to be enri
hed with the appropriate axioms for the past time modalities.The emphasis of this 
hapter is to show how 
ompositional stru
ture of games 
anbe e�e
tively used in strategizing and for this purpose boolean pre
onditions su�
e.For a 
ountable set of propositions P , the set of boolean formulas over P is givenby the syntax:
Ψ(P ) := p ∈ P | ¬ψ | ψ1 ∨ ψ2.Given a valuation fun
tion, the semanti
s is de�ned in the obvious manner. Inwhat follows we take atomi
 strategy spe
i�
ations to be of the form [ψ 7→ a]i where

ψ ∈ Ψ(P i).ModelThe formulas of the logi
 express properties about game trees and strategies whi
hare 
omposed using tree regular expressions. These formulas are interpreted ongame positions and they assert properties of the frontier nodes of the game tree.The stru
ture of the game tree itself is di
tated by the game strategy pairs. Thusmodels of the logi
 are game trees, but due to the presen
e of unbounded iteration,this 
an potentially be an in�nite set of �nite game trees. Alternatively, we 
anthink of these game trees as being obtained from unfoldings of a Kripke stru
ture.As we will see later, the logi
 
annot distinguish between these two. The logi
introdu
ed in Se
tion 3.3, 
onsidered the game arena as atomi
 and did not reasonabout 
ompositional stru
ture within the arena. Thus we required the model tobe deterministi
. In the dynami
 logi
 introdu
ed here, the language is allowedto di
tate the 
ompositional stru
ture of the game and the eventual game stru
tureunder 
onsideration is spe
i�ed by the formula. Therefore, we do not need to restri
tourselves to deterministi
 models.A modelM = (W,→, λ, V ) where W is the set of states (or game positions), therelation → ⊆ W × Σ ×W , the valuation fun
tion V : W → 2P and λ : W → Nis a player labelling fun
tion. Note that we do not require the transition relationitself to be deterministi
. However, we require that the move relation is 
onsistentwith respe
t to player labelling. Thus the turn fun
tion λ is required to satisfy theproperty: 73



• For all w ∈ W , if w a
→w′ and λ(w′) = i then for all w′′ su
h that w a

→w′′, wehave λ(w′′) = i.Semanti
sThe truth of a formula α ∈ Φ in a model M and a position w (denoted M,w |= α)is de�ned as follows:
• M,w |= p i� p ∈ V (w).
• M,w |= ¬α i� M,w 6|= α.
• M,w |= α1 ∨ α2 i� M,w |= α1 or M,w |= α2.
• M,w |= 〈ξ〉∀α i� ∃(w,X) ∈ Rξ su
h that ∀w′ ∈ X we have M,w′ |= α.A formula α is satis�able if there exists a model M and a state w su
h that

M,w |= α.For ξ ∈ Γ, we want Rξ ⊆ W × 2W . To de�ne the relation formally, let us �rstassume that R is de�ned for the atomi
 
ase, namely when ξ = (g, σ). The semanti
sfor 
omposite game strategy pairs is given as follows:
• Rξ1;ξ2 = {(u,X) | ∃Y ⊆ W su
h that (u, Y ) ∈ Rξ1 and ∀v ∈ Y there exists
Xv ⊆ X su
h that (v,Xv) ∈ Rξ2 and ⋃

v∈Y Xv = X}.
• Rξ1∪ξ2 = Rξ1 ∪ Rξ2 .
• Rξ∗ =

⋃
n≥0(Rξ)

n where (Rξ)
n denotes the n-fold relational 
omposition.In the atomi
 
ase when ξ = (g, σ) we want a pair (u,X) to be in Rξ if the game

g is enabled at state u and there is a strategy 
onforming to the spe
i�
ation σ su
hthat X is the set of leaf nodes of the strategy. In order to make this pre
ise, we willrequire the following notations and de�nitions.Restri
tion on trees: For w ∈W , let Tw denote the tree unfolding of M startingat w. We say the game g is enabled at a state w if the stru
ture g 
an be embeddedin Tw with respe
t to the enabled a
tions and player labelling. Sin
e M need not bedeterministi
, there 
ould be multiple embeddings, and therefore we work with themaximal embedding (denoted Tw |
\ g) and this is the game tree under 
onsideration.Formally this 
an be de�ned as follows: 74



Given a state w and g ∈ G(Nodes), let Tw = (SwM ,⇒M , λ̂M , sw) and Tg =

(Sg,⇒g, λ̂g, sg,0). The restri
tion of Tw with respe
t to the game g (denoted Tw |
\g) isthe subtree of Tw whi
h is generated by the stru
ture spe
i�ed by Tg. The restri
tionis de�ned indu
tively as follows: Tw |\g = (S,⇒, λ̂, s0, f) where f : S → Sg. Initially

S = {sw}, λ̂(sw) = λ̂M(sw), s0 = sw and f(sw) = sg,0.For any s ∈ S, let f(s) = t ∈ Sg. Let {a1, . . . , ak} be the outgoing edges of t, i.e.for all j : 1 ≤ j ≤ k, t aj

⇒gtj. For ea
h aj , let {s1
j , . . . , s

m
j } be the nodes in SwM su
hthat s aj

⇒Ms
l
j for all l : 1 ≤ l ≤ m. Add nodes s1

j , . . . , s
m
j to S and the edges s aj

⇒sljfor all l : 1 ≤ l ≤ m. Also set λ̂(slj) = λ̂M(slj) and f(slj) = tj .We say that a game g is enabled at w (denoted enabled(g, w)) if the tree Tw |
\g =

(S,⇒, λ̂, s0, f) satis�es the following property: for all s ∈ S,
•

→
s=

−→

f(s),
• if →

s 6= ∅ then λ̂(s) = λ̂g(f(s)).A strategy for player i on Tw |\ g 
an still be thought of as a subtree where atevery player i vertex, there is exa
tly one outgoing edge and for player ı verti
es, alloutgoing edges are in
luded. In the fun
tional notion, this 
orresponds to pi
kingnot just an a
tion but also a su

essor node on the a
tion.For a game tree T , let Ωi(T ) denote the set of strategies of player i on the gametree T and frontier(T ) denote the set of all leaf nodes of T .Atomi
 game-strategy pair: For an atomi
 game-strategy pair ξ = (g, σ) wede�ne Rξ as follows:Let g be the game with a single node g = (i, x)

• R(g,σ) = {(u, {u})} if enabled(g, u) holds, for all i ∈ N , for all σ ∈ Strat i(P i).For g = ((i, x), a1, ta1 + . . .+ (i, x), ak, tak
)

• R(g,σ) = {(u,X) | enabled(g, u) and ∃µ ∈ Ωi(Tu |
\ g) su
h that µ |=i σ and

frontier(µ) = X}.Example 4.2.3 Let the extensive form game g be the one given in Figure 4.2(a)and the Kripke stru
ture M be as shown in Figure 4.2(b). For the node u of thestru
ture the restri
tion Tu |\ g is shown in Figure 4.3. This is the maximal subtreeof Tu a

ording to the stru
ture di
tated by g. For instan
e at node v1 there are75
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tion of Tw to Tg at utwo x1 labelled edges present in M and therefore both have to be in
luded in Tu |\ gas well.Now 
onsider the player 1 strategy spe
i�
ation σ = null1. At node u, the 
hoi
e�a� 
an ensure player 1 the states {w1, w2, w3} and the 
hoi
e �b� 
an ensure thestates {w4, w5}. Therefore we have the relationR(g,σ) = {(u, {w1, w2, w3}), (u, {w4, w5}),

(v1, {w1, w2, w3}), (v2, {w4, w5})}.Suppose M,u |= p and 
onsider the spe
i�
ation σ = [p 7→ a]1. Sin
e p holds atthe root, player 1 is restri
ted to make the 
hoi
e �a� at u. Hen
e the relation inthis 
ase would be R(g,σ) = {(u, {w1, w2, w3}), (v1, {w1, w2, w3}), (v2, {w4, w5})}. 2Example 4.2.4 For a game g and a spe
i�
ation σ of player i, the formula 〈(g, σ)〉∀αasserts that the game g is enabled and player i has a strategy in g 
onforming to σto ensure α.The logi
 is also powerful enough to assert the non-existen
e of strategies for aplayer with respe
t to ensuring an out
ome α. For a game g, 
onsider the formula
• α′ = 〈(g, null i)〉

∀
True ∧ ¬〈(g, null i)〉

∀
α.The �rst 
onjun
t 〈(g, null i)〉

∀
True asserts the fa
t that game g is enabled. Giventhat g is enabled, the only way ¬〈(g, null i)〉

∀
α 
an be true is if player i does not76



have a strategy 
onforming to null i whi
h ensures α. Re
all that any strategy ofplayer i 
onforms to null i. Thus α′ holds at a state u i� player i does not have astrategy at u that ensures the obje
tive α. 2
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(g1) (g2)Figure 4.4: Composition of gamesExample 4.2.5 To illustrate 
ompositional reasoning in the logi
, 
onsider thegames g1 and g2 given in Fig. 4.4. Let u be a state of the model where g1 isenabled. Let g denote the game g1; g2, i.e. the game obtained by pasting g2 at ea
hof the leaf nodes of g1. We use the following notations:
• wa1 : denotes the state rea
hed after a
tion a1.
• wa1,b1: the state rea
hed on following a
tions a1 and b1.
• wa1,b1x1,y1

: the state rea
hed on the sequen
e of a
tions a1b1x1y1 where a1b1 area
tions in game g1 and x1y1 a
tions in game g2.Let win1, win2 and p be propositions whose valuations are given by V (win2) =

{wa1,b1, wa2,b2}, V (win1) = {wa1,b1x1,y1
, wa2,b2x1,y2

} and V (p) = {wa1}. Consider the followingspe
i�
ations:
• π = [p 7→ b1]

2 · [¬p 7→ b2]
2.

• σ = [True 7→ x1]
1.It is easy to see that 〈(g1, π)〉win2 holds at u. Player 1 does not have a strat-egy in the 
omposite game g to ensure win1. However, in the 
omposite pair

ξ = (g1, π); (g2, σ), it is easy to see that 〈ξ〉win1 holds. Assuming that in the game
g1 player 2 plays a

ording to π then in g2 by using a strategy whi
h 
onforms to σplayer 1 
an ensure win1. 277



In some sense the above example says that reasoning in the game g is di�erentfrom reasoning in g1 followed by g2. In the latter, the additional stru
tural informa-tion is available whi
h 
an be used for strategizing. For simple game stru
tures it isquite obvious that su
h reasoning 
an be done with a past modality. It is iterationwhi
h provides the a
tual expressive power. In the presen
e of iteration, the analysisasserts the fa
t that players 
an take into a

ount the stru
ture of the game and theopponent's strategy. In parti
ular while strategizing, a player 
an make use of thefa
t that the opponent is using a bounded memory strategy and that with the typeof strategy that is being used the opponent 
an be for
ed into a parti
ular region ofthe game graph.The above mentioned reasoning 
an also be thought of as players trying to attain
ertain lo
al goals. If player 2 plays to a
hieve the lo
al goal win2 then player 1 
anuse this information and respond with a strategy in g2 to a
hieve the obje
tive win1.Players 
an then try to a
hieve their global obje
tive by performing appropriate
omposition of the lo
al obje
tives.4.2.3 En
oding PDLIn this se
tion we show that the propositional dynami
 logi
 (PDL) (introdu
ed inSe
tion 2.4) 
an be en
oded into the dynami
 logi
 on 
ompositional games. Welook at the �test free� version of PDL. In Se
tion 4.2.6 we show how the test operator
an be added to the dynami
 logi
 on 
ompositional games. Thus it follows thatfull PDL 
an also be en
oded in the logi
.TranslationIn order to translate PDL formulas into formulas in our logi
, we make use of thefollowing games: gia = ((i, x), a, (j, y)) and gıa = ((ı, x), a, (j, y)). For a program
γ ∈ P, we translate γ into a 
omposite game-strategy pair ξ ∈ Γ indu
tively asfollows:

||a|| = (gia, [True 7→ a]i) ∪ (gıa, [True 7→ a]ı)

||γ1; γ2|| = ||γ1||; ||γ2||

||γ1 ∪ γ2|| = ||γ1|| ∪ ||γ2||

||γ∗1 || = ||γ1||∗Proposition 4.2.6 For all M and γ ∈ P if (u,X) ∈ R||γ|| then |X| = 1.78



Proof: The proposition 
an be easily veri�ed, the interesting 
ase is when we havean atomi
 program, i.e. γ = a ∈ Σ. In this 
ase we have ||a|| = (gia, [True 7→ a]i) ∪

(gıa, [True 7→ a]ı). Suppose (u,X) ∈ R||γ||, assume without loss of generality that
(u,X) ∈ R(gi

a,[True 7→a]i). From semanti
s we have that the game gia is enabled at uand there exists a strategy for player i whi
h 
onforms to [True 7→ a]i. Sin
e gia isenabled at u we have that λ(u) = i and player i's strategy needs to 
hoose a uniqueedge in the tree Tu |
\ gia, it follows that |X| = 1. 2For a pair (u, {w}), let map(u, {w}) = (u, w). We extend map to sets of su
hpairs as map(Y ) = {map(y) | y ∈ Y }. For γ ∈ P, due to proposition 4.2.6 it followsthat map(R||γ||) is well de�ned.Lemma 4.2.7 For all M , for all γ ∈ P, RPDL

γ = map(R||γ||).Proof: The proof is by indu
tion on the stru
ture of γ.
γ = a. Suppose (u, w) ∈ RPDL

γ . This implies that u a
→w in the Kripke stru
ture M .Without loss of generality assume that turn(u) = i, then we have gia is enabled at

u. Sin
e [True 7→ a]i is a player i spe
i�
ation and u a
→w we get (u, {w}) ∈ R||γ||.Conversely, suppose (u, {w}) ∈ R||γ||. Assume that turn(u) = i, from semanti
swe have (u, {w}) ∈ R(gi

a,[True 7→a]i). This implies that gia is enabled at u and thus
u
a
→w. Therefore we get (u, w) ∈ RPDL

γ .
γ = γ1 ∪ γ2. The 
laim easily follows from appli
ation of indu
tion hypothesis.
γ = γ1; γ2. Suppose (u, w) ∈ RPDL

γ , from semanti
s we have that there exists a
v su
h that (u, v) ∈ RPDL

γ1
and (v.w) ∈ RPDL

γ2
. By indu
tion hypothesis we have

(u, {v}) ∈ R||γ1|| and (v, {w}) ∈ R||γ2||. From semanti
s we get (u, {w}) ∈ R||γ||. Usinga similar argument we 
an show that if (u, {w}) ∈ R||γ|| then (u, w) ∈ RPDL
γ .

γ = γ∗1 . Suppose (u, w) ∈ RPDL
γ∗
1

, from semanti
s there exists a k su
h that (u, w) ∈

(RPDL
γ1

)k. By a se
ond indu
tion on k we 
an show that (u, {w}) ∈ (R||γ1||)
k,whi
h implies (u, {w}) ∈ (R||γ∗

1
||) as well. A similar argument also shows that if

(u, {w}) ∈ R||γ∗
1
|| then (u, w) ∈ RPDL

γ∗
1

. 2The translation fun
tion || · || 
an be extended to formulas of PDL in the obviousmanner where:
• ||〈γ〉α|| = 〈||γ||〉∀||α||.Theorem 4.2.8 then follows from Lemma 4.2.7 by an indu
tive argument.79
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M,w |= ||α||.4.2.4 Axiom systemWe now present an axiomatization of the valid formulas of the logi
. For a set
A = {a1, . . . , ak} ⊆ Σ, we will use the notation ℜ(i, x, A) to denote the game
((i, x), a1, ta1 + · · ·+ (i, x), ak, tak

).We also make use of the following abbreviations:
• Let gia = ((i, x), a, (j, y)) and gıa = ((ı, x), a, (j, y)),� 〈a〉α ≡ 〈(gia, [True 7→ a]i) ∪ (gıa, [True 7→ a]ı〉

∀
α.From Theorem 4.2.8, it follows that this results in the standard interpretationfor 〈a〉α, i.e. 〈a〉α holds at a state u i� there is a state w su
h that u a

→w and αholds at w.For game g, we use the formula g√ to denote that the game stru
ture g is enabled.This is de�ned as:
• For g = (i, x), let g√

= True.
• For g = ℜ(i, x, A), let� g

√
= turni ∧ (

∧
j=1,...,k(〈aj〉True ∧ [aj ]t

√

aj
)).Proposition 4.2.9 For α1, α2 ∈ Φ, the following holds:1. for ξ ∈ Γ, the formula 〈ξ〉∀(α1 ∨ α2) ⊃ 〈ξ〉∀α1 ∨ 〈ξ〉∀α2 is not valid.2. 〈a〉(α1 ∨ α2) ≡ 〈a〉α1 ∨ 〈a〉α2 is valid.80
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w3 w4 w5 w6(a): g1 (b): g2 (b): Model MFigure 4.6: Extensive form game tree and modelProof: (1): Let g be the game given in Figure 4.5(a) and the model M be asshown in Figure 4.5(b). Let propositions p ∈ V (u), q1 ∈ V (w3) and q2 ∈ V (w4).Let α1 = q1, α2 = q2 and σ = [p 7→ a]1. We have M,u |= 〈g, σ〉∀(q1 ∨ q2) sin
e thestrategy of player 1 whi
h 
hooses the move a at u ensures q1 ∨ q2. However sin
e
q1 6∈ V (w4) and q2 6∈ V (w3), we obtain M,u 6|= 〈g, σ〉∀q1 ∨ 〈g, σ〉∀q2.(2): We �rst show that 〈a〉(α1 ∨ α2) ⊃ 〈a〉α1 ∨ 〈a〉α2 is valid. Suppose this is nottrue; there exists a model M and a state u su
h that M,u |= 〈a〉(α1 ∨ α2) and
M,u 6|= 〈a〉α1 ∨ 〈a〉α2. This implies that M,u 6|= 〈a〉α1 and M,u 6|= 〈a〉α2. Thus forall states w su
h that u a

→w we have M,w 6|= α1 and M,w 6|= α2. From this we 
aninfer that M,u 6|= 〈a〉(α1 ∨ α2) 
ontradi
ting the assumption.The fa
t that 〈a〉α1 ∨ 〈a〉α2 ⊃ 〈a〉(α1 ∨ α2) is valid follows from a similar argu-ment. 2Proposition 4.2.10 For ξ1, ξ2 ∈ Γ, 
onsider the usual relation 
omposition seman-ti
s for Rξ1;ξ2, i.e. Rξ1;ξ2 = {(u,X) | ∃Y su
h that (u, Y ) ∈ Rξ1 and for all v ∈ Y ,
(v,X) ∈ Rξ2}. Under this interpretation, the formula 〈ξ1〉

∀〈ξ2〉
∀α ⊃ 〈ξ1; ξ2〉

∀α is notvalid.Proof: Let g1 and g2 be the games given in Figure 4.6(a) and (b) respe
tivelyand let the model M be given in Figure 4.6(
). Let the proposition p hold at states
w3, w4, w5 and w6 and α = p. Let ξ1 = (g1, null1) and ξ2 = (g2, null1), then wehave M,u |= 〈ξ1〉

∀〈ξ2〉
∀p. However, under the interpretation given in the state-ment of the proposition, for X = {w3, w4, w5, w6} we have (u,X) 6∈ Rξ1;ξ2. Thus

M,u 6|= 〈ξ1; ξ2〉
∀p. 2
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Proposition 4.2.11 The formula 〈ξ1; ξ2〉
∀α ≡ 〈ξ1〉

∀〈ξ2〉
∀α is valid.Proof: Suppose 〈ξ1; ξ2〉

∀α ⊃ 〈ξ1〉
∀〈ξ2〉

∀α is not valid. Then there exists M and
u su
h that M,u |= 〈ξ1; ξ2〉

∀α and M,u 6|= 〈ξ1〉
∀〈ξ2〉

∀α. Sin
e M,u |= 〈ξ1; ξ2〉
∀α,from semanti
s we have there exists (u,X) ∈ Rξ1;ξ2 su
h that ∀w ∈ X, M,w |= α.From de�nition of R, ∃Y = {v1, . . . , vk} su
h that (u, Y ) ∈ Rξ1 and ∀vj ∈ Y thereexists Xj ⊆ X su
h that (vj , Xj) ∈ Rξ2 and ⋃

j=1,...,kXj = X. Therefore we get
∀vk ∈ Y , M, vk |= 〈ξ2〉

∀α and hen
e from semanti
s, M,u |= 〈ξ1〉
∀〈ξ2〉

∀α. This givesthe required 
ontradi
tion.Suppose 〈ξ1〉
∀〈ξ2〉

∀α ⊃ 〈ξ1; ξ2〉
∀α is not valid. Then there exists M and u su
hthat M,u |= 〈ξ1〉

∀〈ξ2〉
∀α and M,u 6|= 〈ξ1; ξ2〉

∀α. We have M,u |= 〈ξ1〉
∀〈ξ2〉

∀α i�there exists (u, Y ) ∈ Rξ1 su
h that ∀vk ∈ Y , M, vk |= 〈ξ2〉
∀α. M, vk |= 〈ξ2〉

∀α i�there exists (vk, Xk) ∈ Rξ2 su
h that ∀wk ∈ Xk, M,wk |= α. Let X =
⋃
kXk, fromde�nition of R we get (u,X) ∈ Rξ1;ξ2. Hen
e from semanti
s M,u |= 〈ξ1; ξ2〉

∀α. 2The axiom s
hemes(A1) Propositional axioms:(a) All the substitutional instan
es of tautologies of PC.(b) turni ≡ ¬turnı.(A2) Axiom for single edge games:(a) 〈a〉(α1 ∨ α2) ≡ 〈a〉α1 ∨ 〈a〉α2.(b) 〈a〉turni ⊃ [a]turni.(A3) Dynami
 logi
 axioms:(a) 〈ξ1 ∪ ξ2〉
∀α ≡ 〈ξ1〉

∀α ∨ 〈ξ2〉
∀α.(b) 〈ξ1; ξ2〉

∀α ≡ 〈ξ1〉
∀〈ξ2〉

∀α.(
) 〈ξ∗〉∀α ≡ α ∨ 〈ξ〉∀〈ξ∗〉∀α.(A4) 〈g, σ〉∀α ≡ g
√
∧ push(g, σ, α).Inferen
e rules

(MP) α, α ⊃ β (NG) α

β [a]α

(IND) 〈ξ〉∀α ⊃ α

〈ξ∗〉∀α ⊃ α 82



De�nition of push:Axiom (A3) provides the redu
tion axioms for 
omposite game strategy pairs. How-ever, the atomi
 
ase (g, σ) still en
odes the stru
ture of the game tree g and thestrategy spe
i�
ation σ expli
itly. Thus we need to provide the redu
tion axiomsfor atomi
 game strategy pairs as well. This is done in axiom (A4). The intuitivemeaning of the 
onstru
t push(g, σ, α) is to say that player i has a strategy 
onform-ing to σ su
h that α holds at all the frontier nodes. As expe
ted this needs to bede�ned indu
tively on the stru
ture of σ and the game tree g. The 
ore idea in thede�nition is the following observation: For a strategy spe
i�
ation σ and a game g,
• if the root of the game tree g is an i node then by de�nition of a strategy,player i needs to 
hoose an edge `a' whi
h 
onforms to σ and the resultingsubtree ga needs to indu
tively satisfy 〈ga, σ〉

∀α.
• if the root is an ı node then all outgoing edges need to be 
onsidered (byde�nition of a strategy) and for ea
h edge `a', the requirement 〈ga, σ〉∀α needsto be pushed to the resulting subtree.The formal de�nition is given below. For i ∈ N let σ, σ1, σ2 ∈ Strat i(P i) and let

π ∈ Strat ı(P ı). Let g ∈ G(Nodes) and α ∈ Φ. For push(g, σ, α) we have various
ases depending on the stru
ture of g.The 
ase when g is an atomi
 game, i.e. g = (i, x), for all i ∈ N and σ ∈ Strat i(P i)we have,(C1) push(g, σ, α) = α.Suppose g = ℜ(i, x, A) for A = {a1, . . . , ak}, i.e. g is a tree with root being an inode. For ea
h am ∈ A let gam
= ((i, x), am, (jm, ym)), where (jm, ym) is the root of

tam
.(C2) push(g, [ψ 7→ a]i, α) =

(ψ ⊃ 〈a〉〈ta, [ψ 7→ a]i〉
∀
α) ∧ (¬ψ ⊃ (

∨
am∈A 〈am〉〈tam

, [ψ 7→ a]i〉
∀
α)).The root of g is a player i node and 
ase (C2) is a player i spe
i�
ation. This saysthat if ψ holds at the root, then there is a 
hoi
e a that player i 
an make su
h thatfor the subtree ta, 〈ta, [ψ 7→ a]i〉

∀
α holds. If ψ does not hold at the root then thereis some 
hoi
e am for player i su
h that the subtree tam

satis�es 〈tam
, [ψ 7→ a]i〉

∀
α.(C3) push(g, σ1 ·σ2, α) =

∨

am∈A

(〈gam
, σ1〉

∀〈tam
, σ1 · σ2〉

∀α∧〈gam
, σ2〉

∀〈tam
, σ1 · σ2〉

∀α).83



For (C3) the important point to note is the fa
t if an edge u a
→w satis�es aspe
i�
ation σ then all w′ with u a

→w′ satis�es σ. This is be
ause satisfa
tion of σdepends only on u and the a
tion a, it does not depend on the target node.(C4) push(g, σ1 + σ2, α) =
∨

am∈A

(〈gam , σ1〉
∀〈tam , σ1 + σ2〉

∀α ∨ 〈gam , σ2〉
∀〈tam , σ1 + σ2〉

∀α).(C5) push(g, π ⇒ σ, α) =
∨
am∈A(〈gam

, σ〉∀〈tam
, π ⇒ σ〉∀α).Suppose g = ℜ(ı, x, A) for A = {a1, . . . , ak}, i.e. g is a tree with root being an ınode. For ea
h am ∈ A let gam

= ((i, x), am, (jm, ym)), where (jm, ym) is the root of
tam

. For σ = [ψ 7→ a]i, σ1 + σ2, σ1 · σ2,(C6) push(g, σ, α) =
∧
am∈A [am]〈tam

, σ〉∀α.(C6) says that when the root node of g is an ı node and for a player i spe
i�
ationwhi
h is not of the form π ⇒ σ, if at all enabled edges am, the subtree tam
satis�es

〈tam
, σ〉∀α then 〈g, σ〉∀α holds.(C7) push(g, π ⇒ σ, α) =∧

am∈A

((〈gam , π〉∀True ⊃ [am]〈tam , π ⇒ σ〉∀α)∧(¬〈gam , π〉∀True ⊃ [am]〈tam ,null i〉
∀
α)).The interesting 
ase is when the root of g is an ı node and when the spe
i�
ationis of the form π ⇒ σ, this is spe
i�ed in (C7). For a strategy µ of player i to satisfy

π ⇒ σ on g, it should make sure of the following:
• for ea
h 
hoi
e am ∈ A, if the 
hoi
e 
onforms with π then the strategy on tamshould satisfy σ.
• for ea
h 
hoi
e am ∈ A, whi
h does not 
onform with π, player i is allowed toemploy any strategy on the game tam

.4.2.5 CompletenessTo show 
ompleteness, we prove that every 
onsistent formula is satis�able. Let α0be a 
onsistent formula, and CL(α0) denote the subformula 
losure of α0. In additionto the usual downward 
losure, we also require that 〈g, σ〉∀α ∈ CL(α0) implies that
g

√
, push(g, σ, α) ∈ CL(α0). Let AT (α0) be the set of all maximal 
onsistent subsetsof CL(α0), referred to as atoms. Ea
h t ∈ AT (α0) is a �nite set of formulas, we84



denote the 
onjun
tion of all formulas in t by t̂. For a nonempty subset X ⊆ AT , wedenote by X̃ the disjun
tion of all t̂, t ∈ X. De�ne a transition relation on AT (α0)as follows: t
a
→AT t′ i� t̂ ∧ 〈a〉t̂′ is 
onsistent. The model M = (W,→, λ, V ) where

W = AT (α0) and → = →AT . Note that ea
h w ∈ W is an atom and thus we usethe notation ŵ to denote the 
onjun
tion of all formulas in w. The valuation V isde�ned as V (w) = {p ∈ P | p ∈ w} and λ(w) = i i� turni ∈ w. On
e the Kripkestru
ture is de�ned, the game theoreti
 semanti
s given earlier de�nes the relation
R(g,σ) on W × 2W for g ∈ G(Nodes) and a strategy spe
i�
ation σ.The following lemma 
an be shown using standard modal logi
 te
hniques.Lemma 4.2.12 For all u ∈ W , for all α ∈ CL(α0), for all a ∈ Σ, if for all v su
hthat u a

→v we have v̂ ∧ α is 
onsistent then û ∧ [a]α is 
onsistent.Lemma 4.2.13 For all g ∈ G(Nodes), for all i ∈ N and σ ∈ Strat i(P i), for all
X ⊆W and for all u ∈W the following holds:(L1) if (u,X) ∈ R(g,σ) then û ∧ 〈g, σ〉∀X̃ is 
onsistent.(L2) if û∧〈g, σ〉∀X̃ is 
onsistent then there exists X ′ ⊆ X su
h that (u,X ′) ∈ R(g,σ).Proof: By indu
tion on the stru
ture of σ.
σ = [ψ 7→ a]i:(L1) Suppose (u,X) ∈ R(g,[ψ 7→a]i), we need to show that û ∧ 〈g, [ψ 7→ a]i〉

∀
X̃ is
onsistent. We do a se
ond indu
tion on the stru
ture of g. The base 
ase is when

g = (i, x), and the 
laim follows easily from axiom (A4) 
ase (C1).Let g = ℜ(i, x, A) where A = {a1, . . . , ak}. Suppose (u,X) ∈ R(g,[ψ 7→a]i), sin
e
enabled(g, u) holds we have there exist sets Y1, . . . , Yk su
h that for all j : 1 ≤ j ≤ k,for all wj ∈ Yj we have u aj

→wj. Sin
e u is an i node, any strategy of i will pi
k aunique edge at u. We have the following two 
ases:
• M,u |= ψ: From semanti
s, the strategy should 
hoose a wj su
h that aj = a,
u
aj

→wj and (wj, X) ∈ R(tj ,[ψ 7→a]i). By the se
ondary indu
tion hypothesis,we have ŵj ∧ 〈tj , [ψ 7→ a]i〉
∀
X̃ is 
onsistent. Hen
e û ∧ 〈a〉〈tj, [ψ 7→ a]i〉

∀
X̃ is
onsistent.

• M,u 6|= ψ: The strategy 
an 
hoose any wj su
h that u aj

→wj and (wj, X) ∈

R(tj ,[ψ 7→a]i). By the se
ondary indu
tion hypothesis, ŵj ∧ 〈tj, [ψ 7→ a]i〉
∀
X̃ is
onsistent. Hen
e û ∧ 〈aj〉〈tj, [ψ 7→ a]i〉

∀
X̃ is 
onsistent.85



From axiom (A4) 
ase (C2) we get û ∧ 〈g, [ψ 7→ a]i〉
∀
X̃ is 
onsistent.Let g = ℜ(ı, x, A) where A = {a1, . . . , ak}. Suppose (u,X) ∈ R(g,[ψ 7→a]i), sin
e

enabled(g, u) holds, we have there exist Y1, . . . , Yk su
h that for all j : 1 ≤ j ≤ k,for all wj ∈ Yj, u aj

→wj. Sin
e u is an ı node, any strategy µ of i 
onforming to
[ψ 7→ a]i will have all the bran
hes at u (by de�nition of strategy). Therefore weget for all wj with u

aj

→wj, there exists Xj ⊆ X su
h that (wj , Xj) ∈ R(tj ,π) and
X =

⋃
j=1,...,kXj. By se
ondary indu
tion hypothesis and the fa
t that Xj ⊆ X,we have ŵj ∧ 〈tj , [ψ 7→ a]i〉

∀
X̃ is 
onsistent. Hen
e from axiom (A4) 
ase (C6), we
on
lude that û ∧ 〈g, σ〉∀X̃ is 
onsistent.(L2) Suppose û ∧ 〈g, [ψ 7→ a]i〉

∀
X̃ is 
onsistent, we need to show that there exists

X ′ ⊆ X su
h that (u,X ′) ∈ R(g,[ψ 7→a]i). We do a se
ond indu
tion on the stru
tureof g. The base 
ase is when g = (i, x), and the 
laim follows easily from axiom (A4)
ase (C1).Let g = ℜ(i, x, A) where A = {a1, . . . , ak}. From axiom (A4) it follows that thereexist sets Y1, . . . , Yk su
h that for all j : 1 ≤ j ≤ k, for all wj ∈ Yj we have u aj

→wjand hen
e enabled(g, u) holds. Let X = {v1, . . . , vm}. We have the following two
ases:
• ifM,u |= ψ: then from 
ase (C2), û∧〈a〉〈ta, [ψ 7→ a]i〉

∀
X̃ is 
onsistent. Hen
ewe get there exists wa su
h that u a

→wa and ŵa ∧ 〈ta, [ψ 7→ a]i〉
∀
X̃ is 
onsis-tent. By the se
ondary indu
tion hypothesis there exists X ′ ⊆ X su
h that

(wa, X
′) ∈ R(ta,[ψ 7→a]i) and by de�nition of R we have (u,X ′) ∈ R(g,[ψ 7→a]i).

• if M,u 6|= ψ: then from 
ase (C2), û ∧
∨
aj∈A

〈aj〉〈tj, [ψ 7→ a]i〉
∀
X̃. There-fore there exists wj su
h that u aj

→wj and ŵj ∧ 〈tj , [ψ 7→ a]i〉
∀
X̃ is 
onsis-tent. By the se
ondary indu
tion hypothesis there exists X ′ ⊆ X su
h that

(wj, X
′) ∈ R(tj ,[ψ 7→a]i) and therefore we have (u,X ′) ∈ R(g,[ψ 7→a]i).For the 
ase when g = ℜ(ı, x, A) where A = {a1, . . . , ak} the 
laim 
an be shownusing Lemma 4.2.12 and axiom (A4) 
ase (C6).

σ = σ1 + σ2:Again we do a se
ond indu
tion on the stru
ture of g. The base 
ase when
g = (i, x) follows easily from axiom (A4) 
ase (C1).Let g = ℜ(i, x, A) where A = {a1, . . . , ak}. Suppose (u,X) ∈ R(g,σ1+σ2), sin
e
enabled(g, u) holds we have there exist sets Y1, . . . , Yk su
h that for all j : 1 ≤ j ≤ k,86



for all wj ∈ Yj we have u aj

→wj. Sin
e u is an i node, from semanti
s we have thereexists a wj su
h that (u, {wj}) ∈ R(gaj
,σ1) or (u, {wj}) ∈ R(gaj

,σ2) and (wj, X) ∈

R(taj
,σ1+σ2). By the main indu
tion hypothesis, we get û ∧ 〈gj, σ1〉

∀ŵj is 
onsistentor û ∧ 〈gj, σ2〉
∀ŵj is 
onsistent. By se
ondary indu
tion hypothesis we get ŵj ∧

〈tj , σ1 + σ2〉
∀X̃ is 
onsistent. From axiom (A4) 
ase (C4) we get û ∧ 〈g, σ1 + σ2〉

∀X̃is 
onsistent.The 
ase when g = ℜ(ı, x, A) where A = {a1, . . . , ak} follows from a similarargument making use of axiom (A4) 
ase (C6). (L1) 
an also be shown by makinguse of axioms (A4) 
ases (C4) and (C6) and appli
ation of the indu
tion hypothesis.For σ = σ1 ·σ2, the result follows from axiom (A4) 
ases (C3) and (C6) using similararguments.
σ = π ⇒ σ1:The 
ases when g is of the form (i, x) and g = ℜ(i, x, A) for A = {a1, . . . , ak}follows from axiom (A4) 
ases (C1) and (C5) respe
tively. The interesting 
ase iswhen g = ℜ(ı, x, A) for A = {a1, . . . , ak}.Suppose (u,X) ∈ R(g,π⇒σ), sin
e enabled(g, u) holds, it is easy to show that
û ∧ g

√ is 
onsistent. We also get that there exist sets Y1, . . . , Yk su
h that for all
j : 1 ≤ j ≤ k, for all wrj ∈ Yj we have u aj

→wrj . Sin
e u is an ı node, from semanti
swe get (u,X) ∈ R(g,π⇒σ) i� for all aj ∈ A for all wrj ∈ Yj, there exists Xr
j su
h thatone of the following 
onditions hold.P1: if (u, wrj ) ∈ R(gj ,π) then (wrj , X

r
j ) ∈ R(trj ,σ⇒π).P1: if (u, wrj ) 6∈ R(gj ,π) then (wrj , X
r
j ) ∈ R(tr

j
,null i).We also have that X =

⋃
j=1,...,k

⋃
r=1,...,|Yj |

Xr
j .Note that from the semanti
s it follows that for any aj ∈ A and wj ∈ Yj, if

(u, wj) ∈ R(gj ,π) then for all wrj ∈ Yj, (u, wrj) ∈ R(gj ,π). Thus if P1 holds for
aj then by main indu
tion hypothesis we get û ∧ 〈(gj, π)〉∀ŵrj is 
onsistent for all
wrj ∈ Y j and thus û ∧ 〈gj, π〉

∀
True is 
onsistent. By se
ondary indu
tion hypoth-esis and the fa
t that Xr

j ⊆ X we have ŵrj ∧ 〈(tj, σ ⇒ π)〉∀X̃ is 
onsistent for all
wrj ∈ Yj. From Lemma 4.2.12 we have û∧ [aj ]〈tj , σ ⇒ π〉∀X̃ is 
onsistent and there-fore 〈gj, π〉

∀
True ⊃ [aj ]〈tj , σ ⇒ π〉∀X̃ is 
onsistent.If P2 holds for aj then by main indu
tion hypothesis of (L2) we 
an dedu
ethat û ∧ ¬〈gj, π〉

∀ŵrj is 
onsistent. By se
ondary indu
tion hypothesis we have
ŵrj ∧ 〈taj

, null i〉
∀
X̃ is 
onsistent.From axiom (A4) 
ase (C7) we get that û ∧ 〈g, π ⇒ σ1〉

∀X̃ is 
onsistent.87



(L1) 
an also be shown by making use of axioms (A4) 
ases (C5) and (C7). 2Lemma 4.2.14 For all ξ ∈ Γ, for all X ⊆W and u ∈ W , if û∧〈ξ〉∀X̃ is 
onsistentthen there exists X ′ ⊆ X su
h that (u,X ′) ∈ Rξ.Proof: By indu
tion on the stru
ture of ξ.
• ξ = (g, σ): Suppose û ∧ 〈g, σ〉∀X̃ is 
onsistent. From Lemma 4.2.13 item 2, itfollows that there exists X ′ ⊆ X su
h that (u,X ′) ∈ Rξ.
• ξ = ξ1∪ξ2: By axiom (A3a) we get û∧〈ξ1〉∀X̃ is 
onsistent or û∧〈ξ2〉∀X̃ is 
on-sistent. By indu
tion hypothesis there exists X1 ⊆ X su
h that (u,X1) ∈ Rξ1or there existsX2 ⊆ X su
h that (u,X2) ∈ Rξ2 . Hen
e we have (u,X1) ∈ Rξ1∪ξ2or (u,X2) ∈ Rξ1∪ξ2 .
• ξ = ξ1; ξ2: By axiom (A3b), û∧〈ξ1〉∀〈ξ2〉∀X̃ is 
onsistent. Hen
e û∧〈ξ1〉∀(∨(ŵ∧

〈ξ2〉
∀X̃)) is 
onsistent, where the join is taken over all w ∈ Y = {w | w ∧

〈ξ2〉
∀X̃ is 
onsistent}. So û ∧ 〈ξ1〉

∀Ỹ is 
onsistent. By indu
tion hypothesison ξ1, there exists Y ′ ⊆ Y su
h that (u, Y ′) ∈ Rξ1 . We also have that forall w ∈ Y , ŵ ∧ 〈ξ2〉
∀X̃ is 
onsistent. Therefore we get for all wj ∈ Y ′ =

{w1, . . . , wk}, ŵj ∧ 〈ξ2〉
∀X̃ is 
onsistent. By indu
tion hypothesis on ξ2, thereexists Xj ⊆ X su
h that (wj, Xj) ∈ Rξ2 . Let X ′ =

⋃
j=1,...,kXj ⊆ X, we get

(u,X ′) ∈ Rξ1;ξ2.
• ξ = ξ∗1 : Let Z be the least set 
ontaining X and 
losed under the 
ondition:for all w, if ŵ ∧ 〈ξ1〉

∀Z̃ is 
onsistent, then w ∈ Z. By de�nition of Z andindu
tion hypothesis, we get for all w ∈ Z, there exists Xw ⊆ X su
h that
(w,Xw) ∈ Rξ∗

1
.Claim : ⊢ 〈ξ1〉

∀Z̃ ⊃ Z̃.To see the 
laim, suppose it is not true. Then 〈ξ1〉
∀Z̃ ∧ ¬Ẑ is 
onsistent. Let

Z ′ = AT (α0) \ Z. We have 〈ξ1〉
∀Z̃ ∧ Z̃ ′ is 
onsistent. Therefore there exists

w′ ∈ Z ′ su
h that 〈ξ1〉
∀Z̃ ∧ ŵ′ is 
onsistent. But then w′ would have beenadded into the set Z during 
onstru
tion. End of 
laim
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Applying the indu
tion rule (IND), we have ⊢ 〈ξ∗1〉
∀Z̃ ⊃ Z̃. By assumption,

û∧〈ξ∗1〉
∀X̃ is 
onsistent. So û∧〈ξ∗1〉

∀Z̃ is 
onsistent. Hen
e û∧ Z̃ is 
onsistentand therefore u ∈ Z. Thus we have (u,X ′) ∈ Rξ∗
1
for some X ′ ⊆ X.

2Lemma 4.2.15 For all 〈ξ〉∀α ∈ CL(α0), for all u ∈ W , û ∧ 〈ξ〉∀α is 
onsistent i�there exists (u,X) ∈ Rξ su
h that ∀w ∈ X, α ∈ w.Proof: (⇒) Suppose û ∧ 〈ξ〉∀α is 
onsistent. Let Xα = {w ∈ W | α ∈ w}. It iseasy to see that ⊢ α ⊃ X̃α. Therefore we have û∧〈ξ〉∀X̃α is 
onsistent (by de�nition
∀w ∈ X̃α, α ∈ w). By Lemma 4.2.14, there exists X ′ ⊆ Xα su
h that (u,X ′) ∈ Rξ.Sin
e X ′ ⊆ Xα, we have α ∈ w for all w ∈ X ′.(⇐) Suppose ∃(u,X) ∈ Rξ su
h that ∀w ∈ X, α ∈ w. We need to show that
û ∧ 〈ξ〉∀α is 
onsistent, this is done by indu
tion on the stru
ture of ξ.

• The 
ase when ξ = (g, σ) follows easily from Lemma 4.2.13 and ξ = ξ1 ∪ ξ2follows from the indu
tion hypothesis and axiom (A3a).
• ξ = ξ1; ξ2: Sin
e (u,X) ∈ Rξ1;ξ2, there exist Y = {v1, . . . , vk} and sets
X1, . . . , Xk ⊆ X su
h that ⋃

j=1,...,kXj = X, for all j : 1 ≤ j ≤ k, (vj , Xj) ∈ Rξ2and (u, Y ) ∈ Rξ1 . By indu
tion hypothesis, for all j, v̂j ∧ 〈ξ2〉
∀α is 
onsistent.Sin
e vj is an atom and 〈ξ2〉

∀α ∈ CL(α0), we get 〈ξ2〉∀α ∈ vj. Again by indu
-tion hypothesis we have û ∧ 〈ξ1〉
∀〈ξ2〉

∀α is 
onsistent. Hen
e from (A3b) wehave û ∧ 〈ξ1; ξ2〉
∀α is 
onsistent.

• ξ = ξ∗1 : If u ∈ X then ⊢ û ⊃ X̃. We have ⊢ X̃ ⊃ α and hen
e we get û ∧ α is
onsistent. From axiom (A3
) we have û ∧ 〈ξ∗1〉
∀α is 
onsistent.Else we have (u,X) ∈ Rξ1;ξ∗1 . Let Z0 = X and Zn+1 = Zn ∪ {w | (w,Z ′) ∈

Rξ1 , Z
′ ⊆ Zn}. Take the least m su
h that u ∈ Zm. We have for all

w ∈ Zm−1, ⊢ ŵ ⊃ 〈ξ∗1〉
∀X̃ ′ for some X ′ ⊆ X. We also have (u, Z ′

m) ∈ Rξ1 forsome Z ′
m = {v1, . . . , vk} ⊆ Zm. Let X1, . . . , Xk ⊆ X su
h that ∀j : 1 ≤ j ≤ k,we have (vj , Xj) ∈ Rξ∗

1
and X ′ =

⋃
j=1,...,kXj. By an argument similar to theprevious 
ase we 
an show that û ∧ 〈ξ1〉

∀〈ξ∗1〉
∀X̃ ′ is 
onsistent. Hen
e we get

û∧ 〈ξ1; ξ∗1〉
∀α is 
onsistent. Therefore from axiom (A3
) we have û∧ 〈ξ∗1〉

∀α is
onsistent. 89



2We thus get the following theorem whi
h implies the 
ompleteness of the axiomsystem.Theorem 4.2.16 For all β ∈ CL(α0), for all u ∈W , M,u |= β i� β ∈ u.Proof: Follows from Lemma 4.2.15 by a routine indu
tive argument. 2De
idability: Sin
e the size of the a
tion set |Σ| is 
onstant, the size of CL(α0)is linear in |α0|. Atoms are maximal 
onsistent subsets of CL(α0), hen
e |AT (α0)|is exponential in the size of α0. From the 
ompleteness theorem we get that for aformula α0, if α0 is satis�able then it has a model of exponential size, i.e. |W | =

O(2|α0|). For all game strategy pairs ξ o

urring in α0, the relation Rξ 
an be
omputed in time exponential in the size of the model. Therefore it follows that thelogi
 is de
idable in nondeterministi
 double exponential time.4.2.6 ExtensionsCon
urren
y as introdu
ed in game logi
 [BGL07℄ 
an be represented in our frame-work with the addition of the operator ξ1 × ξ2 in the syntax of game strategy pairs.For instan
e, (g1, σ1)×(g2, σ2) would mean that the game g1 is played with a strategy
onforming to σ1 and 
on
urrently, the game g2 is played with a strategy 
onformingto σ2. The semanti
s 
an be de�ned in the usual manner:
• Rξ1×ξ2 = {(u,X) | X = X1 ∪X2 su
h that (u,X1) ∈ Rξ1 and (u,X2) ∈ Rξ2}.It is easy to see that the 
ompleteness theorem also follows with the addition of thefollowing axiom.
• 〈ξ1 × ξ2〉α ≡ 〈ξ1〉α ∧ 〈ξ2〉α.Test operatorThe test operator as in dynami
 logi
 
an also be added into the syntax of gamestrategy pairs. For β ∈ Φ, the interpretation of β? ∈ Γ would be to test whether

β holds at the parti
ular state and if yes, 
ontinue else fail. The semanti
s 
an begiven as: 90



• Rβ? = {(u, {u}) |M,u |= β}.The test operator gives the ability of 
he
king for 
ertain 
onditions and thende
iding whi
h game to pro
eed with. This 
onstru
t is parti
ularly interesting inour framework, sin
e unlike programs we have players in the game. For instan
e, let
π denote the strategy spe
i�
ation of player 2 and σ the spe
i�
ation of player 1.The formula (g1, π); win2?; (g2, σ) says that in g1 if player 2 by employing a strategy
onforming to π 
an ensure win2 then pro
eed with the game g2 where player 1plays σ. Note that if the test fails then g2 is not played. This is in 
ontrast to thetests performed in a strategy spe
i�
ation. In a spe
i�
ation if the test fails thenthe player is free to 
hoose any a
tion.With the addition of the following axiom, the 
ompleteness theorem goes through.

• 〈β?〉α ≡ β ∧ α4.3 Normal form gamesAs opposed to extensive form games where the game stru
ture is expli
it, normalform games are spe
i�ed by the set of abstra
t strategies and out
omes. Logi
alanalysis in the 
ase of a single normal form game is thus out
ome based. Howeverwhen we 
onsider games built in a 
ompositional manner, the notion of strategi
response of a player to other players' moves be
ome relevant, pretty mu
h in thesame way as it is used in extensive form games.In this se
tion we look at how the dynami
 logi
 framework developed to reasonabout extensive form games 
an be adapted to deal with normal form games as well.We 
onsider 
omposition of game play pairs in normal form games, 
orrespondingto the fa
t that the reasoning performed in single stage is mostly out
ome based.If we restri
t the reasoning to bounded repetition of games or to multistage gameswhere the number of stages are bounded, then we do not need to look at 
ompositionof game play pairs. In the presen
e of unbounded iteration of games, we need tointrodu
e a dynami
 stru
ture on game play pairs.4.3.1 Syntax for normal form gamesNormal form games were introdu
ed in Se
tion 2.2 and we 
onsider the tree repre-sentation for normal form games. Re
all that for ea
h i ∈ N , Σi denotes the a
tions91



of player i and Σ̂ = Σ1 × Σ2. Let Nodes be a 
ountable set, the normal form gametree is spe
i�ed using the syntax:
G(Nodes) := Σam∈J(x, am, ym).where x, ym ∈ Nodes , J ⊆ Σ̂.Given g ∈ G(Nodes) we de�ne the tree Tg generated by g indu
tively as follows.Let g = (x, a1, y1) + . . .+ (x, ak, yk), Tg = (Sg,⇒g, λ̂g, sx) where

• Sg = {sx, sy1, . . . , syk
}.

• For 1 ≤ j ≤ k we have sx aj

⇒gsyj
.For g ∈ G(Nodes), we also use Σ̂g to denote the set of all strategy pro�les in g.4.3.2 Dynami
 logi
 on normal form gamesFor the sake of 
larity, in this se
tion we 
on
entrate on the stru
ture of the game

g with respe
t to the moves of the players and disregard the utilities asso
iated inthe game stru
ture. As shown in Se
tion 2.4 utilities 
an be 
oded as propositionsin the logi
 and thus out
ome based reasoning 
an be done.Syntax: The syntax of the logi
 is given by,
Φ := p ∈ P | ¬α | α1 ∨ α2 | 〈ξ〉

∀αwhere ξ ∈ Γ. The syntax of game play pairs is given as
Γ := (g, η) | ξ1; ξ2 | ξ1 ∪ ξ2 | ξ

∗ | α?where g ∈ G(Nodes), η ⊆ Σg and α ∈ Φ.Semanti
s: Models for the logi
 are Kripke stru
tures M = (W,→, V ). Note thatunlike in the 
ase of extensive form games, the turn fun
tion is not required.The truth of a formula α ∈ Φ in the modelM at a position w (denotedM,w |= α)is de�ned as follows:
• M,w |= p i� p ∈ V (w).
• M,w |= ¬α i� M,w 6|= α. 92



• M,w |= α1 ∨ α2 i� M,w |= α1 or M,w |= α2.
• M,u |= 〈ξ〉∀α i� ∃(u,X) ∈ Rξ su
h that ∀w ∈ X we have M,w |= α.For ξ ∈ Γ the de�nition of relation Rξ ⊆ W × 2W is similar to what we saw inthe 
ase of extensive form games. For the atomi
 
ase we have,
• R(g,σ) = {(u,X) | enabled(g, u) and X = tail(Tu |

\ g, η)}where enabled(g, w) denotes that the stru
ture g 
an be embedded at state w of themodel, with respe
t to 
ompatibility with the a
tion labels. tail(Tu |
\ g, η) is the setof nodes of the resulting embedded tree when restri
ted to plays in η.Thus M,w |= 〈g, η〉∀α says that �rstly g 
an be embedded at u and if X is theset of all states resulting from the plays spe
i�ed in η, then the formula α holds inall w ∈ X. The dual [g, η]∃α says: if g 
an be embedded at the state u then thereexists a state w resulting from the plays spe
i�ed in η su
h that α holds at w.The semanti
s for 
omposite game play pairs is given as follows:

• Rξ1;ξ2 = {(u,X) | ∃Y ⊆ W su
h that (u, Y ) ∈ Rξ1 and ∀v ∈ Y there exists
Xv ⊆ X su
h that (v,Xv) ∈ Rξ2 and ⋃

v∈Y Xv = X}.
• Rξ1∪ξ2 = Rξ1 ∪ Rξ2 .
• Rξ∗ =

⋃
n≥0(Rξ)

n.
• Rβ? = {(u, {u}) |M,u |= β}.Example 4.3.1 The formulas of the logi
 
an not only make assertions aboutstrategies of players but also about the game stru
ture itself. Thus states of theKripke stru
ture 
an be viewed as being asso
iated with a set of atomi
 normalform games. The restri
tion operation identi�es the spe
i�
 game under 
onsidera-tion, whi
h in turn is determined by the assertions made by formulas of the logi
.Consider the following formula:
• 〈(g, η2); (g

′, η1)〉
∀
win1 where η2 is a strategy for player 2 in game g and η1 astrategy of player 1 in g′.This says that assuming in game g, player 2 plays a

ording to strategy η2 thenin g′, player 1 
an follow η1 and ensure win1. Note that this is not same as sayingplayer 1 
an ensure win1 in the 
omposed game g = g; g′. The fa
t that player 2employed strategy η2 in game g is used in strategizing by player 1. 293



4.3.3 Logi
al reasoning in normal form gamesModels of alternating temporal logi
 
an also be thought of as games on graphswhere ea
h node is asso
iated with a normal form game. Thus spe
i�
ations whi
hinvolve only bounded levels of strategi
 response (as shown in the previous example),
an be expressed in a temporal logi
 framework. Consider the following assertion.
• ((g1, η1); ((g2, η2) ∪ (g3, η3)))

∗; win2?; (g, η)where η1, η2 and η3 are player 2 strategies in games g1, g2 and g3 respe
tivelyand η is a player 1 strategy in game g.This says that if player 2 
an ensure win2 by iterating the stru
ture g1 followed by
g2 or g3 and employing strategies η1 followed by η2 or η3 then player 1 plays a
-
ording to η in game g. Here not only does player 1 assert that player 2 
an ensure
win2 but also makes assertions about the spe
i�
 game stru
ture that is enabledand the atomi
 strategies that player 2 employs. Iteration performed here does not
orrespond to the assertion that a property holds through out the history. Thisalso motivates the need to shift from a temporal logi
 framework to a dynami
 logi
framework.Strategy 
omparison: We now show that the logi
 is powerful enough to expressthe various strategizing notions in
luding strategy 
omparison for reasoning abouta single normal form game. For the game g, let Σ̂g = {a1, . . . , ak} be the strategypro�les o

urring in g. For i ∈ N , let Σg

i = {a1[i], . . . , ak[i]} and for b ∈ Σg
i , let

Σ̂g(b) = {a ∈ Σ̂g | a[i] = b and a[ı] ∈ Σg
ı }. Σ̂g(b) thus 
onsists of all the strategypro�les where player i's strategy is �xed to b. Consider the formula:

ensures i(g, γ) =
∨

b∈bΣg
i

〈g, Σ̂g(b)〉
∀
γ.

ensuresi(g, γ) says that given that the opponent 
hooses an a
tion from the set
Σg
ı , there is a strategy for player i to a
hieve γ no matter what 
hoi
e player ı makes.In the 
ase of γ ∈ Θi (where Θi denote the set of spe
ial propositions 
oding theutilities of players), this 
orresponds to the utility that player i 
an ensure. If player

i expe
ts that ı will 
hoose only a
tions from the set Σ′ ⊆ Σg
ı , then the restri
tionof ensures i(g, γ) to Σ′ spe
i�es what player i 
an ensure in terms of his expe
tation.A player during the phase of strategizing might take into 
onsideration what he94




an ensure given his expe
tation about the strategies of the opponent. The related
on
ept of weakly dominating strategies 
an be de�ned as follows:
DOM i(b, b′) =

∧

x∈Σg
ı

∧

θi∈Θi

(
〈g, (b′, x)〉∀θi ⊃ 〈g, (b, x)〉∀θi

)
.This says that whatever reward that 
an be ensured using the strategy b′ 
analso be ensured with the strategy b. In other words, this says that for player i, thestrategy b weakly dominates b′.Given a strategy x of player ı we 
an express the fa
t that the strategy b is betterthan b′ for player i as response to x using the formula:

Better ix(b, b
′) =

∧
θi∈Θi

(〈g, (b′, x)〉∀θi ⊃ 〈g, (b, x)〉∀θi)We 
an then express the fa
t that b is the best response of player i for x as
BRi

x(b) =
∧
b′∈Σg

i
Better ix(b, b

′). Having de�ned best response, the assertion that astrategy pro�le (b, x) 
onstitutes an equilibrium 
an be expressed as: EQ(b, x) =

BRi
x(b) ∧ BRı

b(x).Capturing 
omplete strategies: Typi
ally temporal logi
s whi
h allow strategiesto be named and referred to in the logi
 restri
t attention to memoryless strategiesand 
onsider them to be atomi
 and unstru
tured. The reasoning performed isin terms of out
ome based analysis. If we restri
t our attention to memorylessstrategies, then 
omplete strategies of players 
an be 
oded up in terms of strategyspe
i�
ations. We need to only use spe
ial propositions to distinguish ea
h stateof the arena. Thus the 
ore reasoning done in su
h temporal logi
s is subsumedby the dynami
 logi
 on normal form games. In addition to out
ome based analy-sis, the logi
 proposed here expli
ates strategi
 response of players in terms of theme
hanisms whi
h need to be employed.4.3.4 Axiom system and 
ompletenessIn this se
tion we show that the axiom system presented in Se
tion 4.2.4 for extensiveform games 
an be easily adapted for normal form games. The axioms whi
h needto be modi�ed are the ones dealing with the atomi
 
ase whi
h re�e
t the 
hange inthe underlying game representation. At the 
ompositional level, the axioms remainthe same. 95



As in the 
ase of extensive form games, the �rst step is to show that for a ∈ Σ̂,the standard modal logi
 formula 〈a〉α 
an be en
oded in the logi
. For a ∈ Σ̂, let
ga denote the normal form game with the unique strategy pro�le a, we de�ne 〈a〉αas:

• 〈a〉α = 〈ga, {a}〉
∀
True ∧ [ga, {a}]∃α.The following proposition 
an be easily veri�ed.Proposition 4.3.2 For all models M , state w and formula α, M,w |= 〈a〉α i�there is a state u su
h that w a

→u and M,u |= α.For a game g = (x, a1, y1) + . . .+ (x, ak, yk), the formula g√ denotes that the gamestru
ture g is enabled. This is de�ned as:
• g

√
=

∧
j=1,...,k 〈aj〉True.The axiom s
hemes(A1) Propositional axioms:(a) All the substitutional instan
es of tautologies of PC.(A2) Axiom for single edge games:(a) 〈a〉(α1 ∨ α2) ≡ 〈a〉α1 ∨ 〈a〉α2.(A3) Dynami
 logi
 axioms:(a) 〈ξ1 ∪ ξ2〉

∀α ≡ 〈ξ1〉
∀α ∨ 〈ξ2〉

∀α.(b) 〈ξ1; ξ2〉
∀α ≡ 〈ξ1〉

∀〈ξ2〉
∀α.(
) 〈ξ∗〉∀α ≡ α ∨ 〈ξ〉∀〈ξ∗〉∀α.(d) 〈β?〉∀α ≡ β ∧ α.For g = (x, a1, y1) + . . .+ (x, an, yn) and η ⊆ Σ̂g,(A4) 〈g, η〉∀α ≡ g

√
∧ (

∧
a∈η[a]α).Inferen
e rules

(MP) α, α ⊃ β (NG) α

β [a]α

(IND) 〈ξ〉∀α ⊃ α

〈ξ∗〉∀α ⊃ α 96



The soundness of the axiom system and inferen
e rules 
an be veri�ed quiteeasily. Using arguments very similar to those presented in Se
tion 4.2.5 it 
an beshown that given a 
onsistent formula α0 we 
an 
onstru
t a modelM = (W,→, V )where W 
onsists of atoms of α0 su
h that the following holds:Theorem 4.3.3 For all β ∈ CL(α0), for all u ∈W , M,u |= β i� β ∈ u.Completeness of the axiom system 
an in turn be derived from Theorem 4.3.3.4.4 Dis
ussionBy 
onsidering game play pairs in the 
ase of stru
tured normal form games, we areable to reason about restri
tions of the game tree and thereby express game theoreti
notions like a player's best response for an opponent's strategy and equilibrium. In
ontrast, the approa
h taken in the 
ase of extensive form games is 
loser to thestyle of game logi
s: the reasoning is about what a player 
an ensure by following a
ertain strategy spe
i�
ation where all possible strategies of the opponent is takeninto a

ount. However, at the 
ompositional level, the axiom system remains thesame. This shows that the framework being 
onsidered is quite general, and is notdependent on the exa
t game representation. For a spe
i�
 game representation,only the axioms spe
ifying the stru
ture of the representation need be 
hanged.
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Part IIAlgorithmi
 analysis



Chapter 5In�nite gamesConsider the game played between two players, Player 1 and Player 2, who taketurns to 
hoose binary digits. Player 1 makes the �rst 
hoi
e and then their turnsstri
tly alternate. Let X be a subset of the real open interval (0, 1). A play inthe game is a sequen
e x1, y1, x2, y2, . . . where for all j ≥ 0, xj , yj ∈ {0, 1} and let
n = x1

2
+ y1

22 + x2

23 + · · · . We say player 1 wins if n ∈ X and player 2 wins if n 6∈ X.It is easy to see that this de�nes an in�nite two player turn based game of perfe
tinformation. This game was �rst de�ned in The S
ottish Book [Mau81℄ by Ulam. A
losely related variant of this game is 
alled the Bana
h-Mazur game (see [Mau81℄ forthe original variant) where players are allowed to 
hoose intervals on the real line.These games have been extensively studied in des
riptive set theory [Ke
95℄ andtopology [Tel87℄. In general, given an alphabet set A and a set X ⊆ Aω of in�nitewords on A we 
an de�ne a two player zero sum game G(X) where players alternatein 
hoosing elements from A 
onstru
ting an in�nite sequen
e n. Player 1 wins ifthe resulting sequen
e n ∈ X and player 2 wins if n 6∈ X. The obvious questionof interest then is to ask whether su
h in�nite games are determined. It turns outthat determina
y depends 
ru
ially on the topologi
al properties of the winning set
X. Under topologi
al 
lassi�
ations, one of the simplest games to 
onsider would beopen games (a game is said to be open if the winning set has the form X = UAω). In1953, Gale and Stewart [GS53℄ showed that any open game is determined. Variousstudies extended this result to larger 
lasses of in�nite games. However, it wasnot until 1975 that determina
y was shown for a very general 
lass of games; the
elebrated Martin's theorem [Mar75℄ showed that all Borel games are determined.In�nite games have been long used in various aspe
ts of 
omputer s
ien
e (see[GTW02, Grä08℄ for an overview). It has been widely used in automata theory99



to show the 
losure under 
omplementation for various 
lasses of automata as wellas in de
iding the emptiness problem. For instan
e, for a nondeterministi
 treeautomaton working on in�nite trees, there is a natural two player zero sum gameof perfe
t information asso
iated with it. In the game, the automaton pi
ks anenabled transition, and the opponent 
hooses a bran
h to pursue on the input tree.Then the 
omplementation problem for this 
lass of automata is solved by usingdetermina
y of the asso
iated games. In�nite games are often used in the veri�
ationand synthesis of open systems. For instan
e, Chur
h's problem [Chu63℄ whi
h askswhether it is possible to synthesize 
ir
uits against spe
i�
ations stated in restri
tedse
ond-order arithmeti
 
an be easily translated into the determina
y question foran in�nite game.Typi
ally, in�nite games whi
h arise in 
omputer s
ien
e are games played on�nite graphs with regular obje
tives. These obje
tives fall in the se
ond level of theBorel hierar
hy [PP04℄ and thus determina
y for su
h games follows from Martin'stheorem. However, Martin's result does not make any assertion on whether it ispossible to determine who the winner is or how �
omplex� the winning strategy is.This turns out to be the 
ore question in solving veri�
ation and synthesis questionsas well.Apart from the logi
al analysis, another bran
h of game theory whi
h is of par-ti
ular interest in the 
ontext of 
omputer s
ien
e is the algorithmi
 analysis of gamesand strategies. This en
ompasses issues mentioned above in
luding,
• being able to determine the winner and synthesizing the winning strategy inthe 
ase of two player zero sum games, and
• synthesis of equilibrium strategy pro�le in non-zero sum games.Algorithmi
 analysis for �nite extensive form games, was brie�y looked at inChapter 2 where we presented the ba
kward indu
tion algorithm. The algorithmshowed that winning strategy synthesis and equilibrium strategy pro�le synthesis
an be a
hieved in time linear in the size of the game tree. In the 
ase of twoplayer in�nite games with regular obje
tives, being able to determine the winneras well as 
omputing the winning strategy also turn out to be the 
ore questionsin solving the veri�
ation and synthesis problems. However, sin
e the ba
kwardindu
tion algorithm is designed to work on �nite extensive form game trees, thispro
edure 
annot be dire
tly applied in the analysis of in�nite duration games. Aseminal result due to Bü
hi and Landweber [BL69℄ says that for two player zero100



sum games played on �nite graphs where players' obje
tives are presented as Muller
onditions, the winner 
an be determined and that the winning strategy 
an bee�e
tively synthesised in �nite memory strategies.In the 
ontext of non-zero sum in�nite duration games, it is natural to ask ifequilibrium strategies exist and whether it is possible to synthesize an equilibriumpro�le if it exists. We show that in the 
ase where preferen
e orderings of players areover regular sets of plays, the ba
kward indu
tion pro
edure 
an still be employedto show the existen
e of equilibrium and to synthesize an equilibrium pro�le. Wealso look at how strategy spe
i�
ations help in the algorithmi
 analysis of non-zerosum in�nite duration games.5.1 Game modelIn this 
hapter we 
onsider in�nite turn based games with perfe
t information playedon �nite graphs. We use game arenas (introdu
ed in se
tion 2.3.1) to representsu
h games. For te
hni
al 
onvenien
e we also assume that for a game arena G =

(W,→, w0, λ) for all game positions w ∈ W , we have →
w 6= ∅. Strategies of players
an be de�ned as given in se
tion 2.3.2.5.1.1 Obje
tives of playersTwo player zero sum gamesFor two player zero sum games, the obje
tives of players are stri
tly 
omplemen-tary. Thus the set of plays need to be partitioned into sets Φ1 and Φ2 with theinterpretation that a play ρ is winning for player i i� ρ ∈ Φi. Sin
e the game isstri
tly 
omplementary, this also means that ρ is losing for player ı. A strategy µ iswinning for player i if for all paths ρ ∈ Tµ, ρ ∈ Φi. A game G is then spe
i�ed asa tuple (G,Φ1) where G is an arena and Φ1 denotes the winning 
ondition of one ofthe players (say player 1). For i ∈ {1, 2} we say player i wins the game G if i has awinning strategy in G. The game G is said to be determined if there exists i ∈ {1, 2}su
h that i wins G.For two player zero sum in�nite games played on �nite graphs, the algorithmi
questions of interest in
lude given a game G = (G,Φ1)1. is G determined? 101



2. given i, determine if player i wins G and if so 
ompute the winning strategy.However, for algorithmi
 analysis to be possible, we need to present the winning
onditions of players in a �nite fashion. Sin
e the obje
tives of players is an in�niteset it is not 
lear how this 
an be done in general. Most often in�nite games whi
harise in 
omputer s
ien
e turn out to be two player zero sum games with regularobje
tives. In su
h games, the winning 
onditions of players 
an be presented ina �nite manner in terms of omega automata. Below we illustrate how this 
an bea
hieved.De�nition 5.1.1 A �nite deterministi
 omega automaton over the input alphabet
W × Σ is a tuple A = (R,∆, r0,Acc) where

• R is the set of states.
• ∆ : R×W × Σ → R is the transition fun
tion.
• r0 ∈ R is the initial state.
• Acc spe
i�es the a

eptan
e 
ondition.The run of A on an in�nite sequen
e ρ : w0a0w1 . . . is a sequen
e of states

ϕρ : r0r1 . . . su
h that for all j ≥ 0, rj+1 = ∆(rj , wj, aj). Let Inf (ϕρ) denote theset of states o

urring in�nitely often in ϕ. The most 
ommonly used a

eptan
e
onditions are the following requirements on Inf (ϕ):
• Bü
hi 
ondition [Bü
62℄: for a set of �good states� B ⊆ R, Inf (ϕρ)∩B 6= ∅. Inother words, some �nal state o

urs in�nitely often in the run ϕρ.
• Muller 
ondition [Mul63℄: for a family F ⊆ 2R, ∨

F∈F Inf (ϕρ) = F . Thisrequires that the set of states o

urring in�nitely often in the run ϕρ forms aset in F .
• Rabin 
ondition [Rab69℄: For a set of pairs {(Ej , Fj)}j=1,...,m where Ej , Fj ⊆ R,we have ∨m

j=1(Inf (ϕρ))∩Ej = ∅∧ Inf (ϕρ))∩Fj 6= ∅. It requires that for some
j, all states of Ej are visited only �nitely often in ϕρ but some state of Fj isvisited in�nitely often.Deterministi
 Muller automata are known to be 
omplete for omega regular 
on-ditions and therefore we assume that winning 
onditions of players are presented in102



this manner. We use the notation M = (R,∆, r0,F) to denote a Muller automatonand always work with deterministi
 automata unless otherwise mentioned.A two player zero sum game with omega regular obje
tives 
an thus be presentedas a pair G = (G,M1) where M1 spe
i�es the winning 
ondition for player 1.Overlapping obje
tivesFor non-zero sum games, ea
h player has a preferen
e ordering �i⊆ (Plays(G) ×

Plays(G)) over plays in the arena. The most natural way of spe
ifying the prefer-en
e ordering is in terms of utilities as we did in the 
ase of �nite extensive formgames. However, sin
e plays in the arena are in�nite obje
ts, the utility fun
tionneeds to map in�nite plays to payo�s. If we restri
t our attention to 
lassifying reg-ular plays and in 
ases where the utilities arise out of a �nite set, players' obje
tives
an be presented in terms of a �generalised Muller automaton� whi
h we term asevaluation automata.Evaluation automata: These are basi
ally Muller automata where instead ofinterpreting the Muller table as de�ning a

epting runs we in
orporate preferen
eorderings over the sets in the Muller table. The ordering on plays indu
ed by theutility fun
tion 
an be dire
tly 
aptured in this manner. The formal de�nition isgiven below.De�nition 5.1.2 An evaluation automaton E = (M, {�i}i∈N) whereM is a Mullerautomaton given by M = (R,∆, r0,F) and for ea
h player i ∈ N , �
i ⊆ (F ×F) isa re�exive, transitive and 
omplete relation over F denoting the preferen
e ordering.Sin
e we want the evaluation automaton to indu
e a preferen
e ordering onall plays, it is 
onvenient to use a �
omplete� automaton. Every evaluation au-tomaton 
an be 
onverted into a 
omplete automaton by the following transforma-tion. For the Muller automaton M = (R,∆, r0,F) we 
onstru
t the automaton

M′ = (R,∆, r0,F
′) where F ′ = 2R \ ∅. The newly added �nal states are set to bethe least preferred by ea
h player i in the preferen
e ordering �

i. Therefore withoutloss of generality we assume that all evaluation automata are 
omplete.The run of E on a play ρ (denoted ϕρ) is de�ned as in the 
ase of a Mullerautomaton. The evaluation automaton E indu
es a preferen
e ordering on Plays(G)in the following manner. Let ρ = w0a0w1a1 . . . and ρ′ : w0a
′
0w

′
1a

′
1 . . . be two plays.For player i ∈ N , we have ρ �i ρ′ i� Inf (ϕρ) �

i Inf (ϕρ′).103



We shall also be interested in the spe
ial 
ase of binary evaluation automatawhi
h spe
ify least out
omes for player i. Su
h an automaton is given by E iF , where
F ∈ F : for every F ′ ∈ F , if F �

i F ′, it is taken to be �winning� for player i, andevery F ′′ 6= F su
h that F ′′
�
i F is taken to be �losing�. Su
h an automaton 
he
ksif i 
an ensure an out
ome whi
h is at least as preferred as F . Note that the ter-minology of win-loss is only to indi
ate a binary preferen
e for player i, and applieseven in the 
ontext of non-zero sum games.Nash equilibrium: The de�nitions of best response strategy and equilibrium pro-�le 
an be appropriately modi�ed to deal with in�nite duration games on graphs inthe following manner.

• The strategy µ of player i is a best response for strategy τ (of ı) if ∀µ′ ∈ Ωi,
ρ(µ′,τ) �

i ρ(µ,τ).
• A strategy pro�le (µ, τ) is said to be in equilibrium if µ is the best responsefor τ and τ is the best response for µ.Equilibrium in win-loss obje
tivesIn the 
ontext of equilibrium 
omputation for in�nite games, instead of looking atgeneral preferen
e orderings over out
omes, one 
ould look at the situation wherethe obje
tive of ea
h player is spe
i�ed as an omega regular win-loss obje
tive.These sets may overlap and hen
e the players need not be antagonisti
. In otherwords, these are non-zero sum games where ea
h player has a binary obje
tive. Theexisten
e of Nash equilibrium for su
h games follows from the result of [CJM04℄.The main idea here is the e�e
tive use of threat strategies whereby a player deviatingfrom the equilibrium pro�le is punished by others to re
eive the out
ome whi
h she
an guarantee on her own. The existen
e of sub-game perfe
t equilibrium [Sel65℄for games with binary obje
tives was shown in [Umm05℄. Threat strategies arisenaturally in the 
ase of games with win-loss obje
tives. However, in the 
ase ofin�nite games where players have non-zero sum obje
tives, it is no longer 
lear whatare the rationality assumptions whi
h justify equilibrium pro�les that may involveempty threats. In this 
ontext, even 
oming up with rationality assumptions whi
hgeneralise well-known solution 
on
epts in games of �nite duration to that of non-zero sum in�nite duration games is a 
hallenging task. [Ber07℄ takes up the task oflooking at the rationality assumptions involved in generalising the notion of iterated104



admissibility [LR57℄ whi
h is well studied in the theory of �nite games to in�nitegames.However, the equilibrium notions are mathemati
ally well de�ned and deservesattention in their own right. What we do here is rather than delve into issues 
on-
erning rationality, attempted to investigate equilibrium notions in the 
ontext ofin�nite games. In the next se
tion we show that the standard te
hnique of ba
k-ward indu
tion 
an be appropriately modi�ed to 
ompute equilibrium pro�le ingeneralised Muller games.5.2 Equilibrium 
omputationGiven a game arena and an evaluation automaton, their produ
t gives rise to aMuller game where ea
h player has a preferen
e ordering over the 
onne
ted 
ompo-nents over the produ
t stru
ture. We 
all these generalised Muller games (the formalde�nition is presented shortly). A natural question then, would be to ask whetheran equilibrium pro�le always exists for this 
lass of games. In this se
tion we showthe following results:
• Nash equilibrium always exists in generalised Muller games.
• An equilibrium pro�le 
an be e�e
tively synthesized.A generalised Muller game is a tuple G = (G, {⊑i}i∈N) where G is a game arenawith the set of game positions W and for ea
h player i ∈ N , ⊑i⊆ (2W × 2W ) is apreferen
e ordering over subsets of game positions for ea
h player.To simplify notation, we disregard the a
tion labels on edges of the arena. Thusplayers' strategies 
hoose game positions instead of a
tions. We further assumethat the turn fun
tion is impli
itly presented by a partition of the game positions.Thus an arena is simply a graph G = (W,E,w0) where W =

⋃
i∈N W

i is the setof game positions partitioned into |N | sets. The move relation E ⊆ W ×W . Let
wE = {w′ | (w,w′) ∈ E}.5.2.1 Nash equilibrium in generalised Muller gamesFor �nite extensive form games, our main tool for algorithmi
 analysis was the ba
k-ward indu
tion pro
edure. Here we show that the ba
kward indu
tion pro
edure 
an105



be e�e
tively used to show existen
e of equilibrium and to synthesize an equilibriumstrategy pro�le for generalised Muller games as well.The key idea of the 
onstru
tion is as follows. The ba
kward indu
tion algorithmis designed to work on �nite extensive form game trees. However, the tree unfoldingof G whi
h is the game under 
onsideration is an in�nite stru
ture. The obje
tiveis therefore to 
onstru
t a �nite tree stru
ture whi
h preserves the equilibrium be-haviour of players in G. The 
ore problem in 
onstru
ting su
h a stru
ture is toidentify the Muller set that ea
h play settles down to without a
tually performingthe in�nite tree unfolding. In the 
ontext of omega automata, the data stru
turewhi
h 
ombines the latest appearan
e re
ord [GH82℄ along with a hit position wasproposed by Bü
hi [Bü
83℄ with exa
tly this purpose in mind. We show that byperforming a 
areful unfolding of G while keeping tra
k of the permutation of statesin terms of the latest appearan
e re
ord, one 
an 
onstru
t a �nite tree stru
ture
T (G) whi
h 
aptures the equilibrium behaviour of players in the original game G.The ba
kward indu
tion pro
edure synthesizes a memoryless equilibrium pro�le onthe tree stru
ture T (G) whi
h is then translated into a �nite memory equilibriumpro�le in G.Latest appearan
e re
ordThe idea is to keep a re
ord of states in the order of their �last visit� along with ahit position (denoted by the symbol ♯) whi
h re
ords the position of the last 
hange.We introdu
e the data stru
ture by an example, the formal de�nition is presentedsubsequently.Example 5.2.1 Suppose W = {1, 2, 3, 4}, 
onsider the in�nite sequen
e 1 4 2 3 12 1 2 2 1 . . . over W whi
h �nally loops in the set {1, 2}. We start with a ve
torwhose last state is 1 say 234♯1 indi
ating that the sequen
e begins with 1. The nextve
tor is obtained by shifting the new state of W to the right and setting the hit tothe position from where the previous ve
tor this state was taken. Thus we obtain,starting from (234♯1) the ve
tors (23♯14), (♯3142), (♯1423), (♯4231), (4♯312), (43♯21)and so on. It is easy to see that in this example, where from some point onwardsonly states 1,2 are visited, these states remain at the positions of the ve
tor afterthe ♯ symbol. 2
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Formally, given a �nite set W whi
h is well ordered, we de�ne LAR(W ) asfollows:
LAR(W ) = {x ∈ (W ∪ {♯})∗ | ∀v ∈W ∪ {♯}, |x|v = 1}where |x|v denotes the number of o

urren
e of v in x. For x♯yw ∈ LAR(W ), wede�ne end(x♯yw) = w. We de�ne the fun
tion next as,

next(x♯y, w) =





x′♯x′′yw i� x♯y = x′wx′′♯y

xy′♯y′′w i� x♯y = x♯y′wy′′

x♯y i� x♯y = x♯y′wFor a sequen
e ρ = w0w1 . . . ∈W ω, we de�ne LAR(ρ) = x0♯y0, x1♯y1, . . . where
• x0♯y0 = x♯w0 where x 
onsists of elements in W \ {w0} ordered a

ording tothe well ordering on W .
• for all j > 0, xj♯yj = next(xj−1♯yj−1, wj).For a �nite sequen
e ρ, the sequen
e LAR(ρ) is �nite and we denote the lastLAR re
ord in the sequen
e by last(LAR(ρ)).One of the main appli
ations of the LAR data stru
ture in automata theoryis to translate a Muller automaton to an equivalent Rabin automaton. The mainproperty of the data stru
ture, whi
h is also 
ru
ially used to show the 
orre
tnessof the translation, is stated in the following lemma.Lemma 5.2.2 ([Tho97, Far02℄) Let ρ be an in�nite sequen
e w0w1 . . . ∈W ω andlet LAR(ρ) = x0♯y0, x1♯y1, . . .. Then Inf (ρ) = F with |F | = k i� the following
onditions hold:
• for only �nitely many j we have |yj| > k (and hen
e |xj | ≤ |W | − k).
• for in�nitely many j we have |yj| = k (and hen
e |xj | = |W | − k) and F =

{w ∈W | w o

urs in yj}.The LAR treeLet G = (G, {⊑i}i∈N) where G = (W,E,w0) is the game arena. We assume that Wis well ordered and let LAR(G) = LAR(W ).107



De�nition 5.2.3 For an arena G = (W,E,w0) the (�nite) LAR tree TLAR(G) isde�ned as follows: TLAR(G) = (S,⇒, s0) where
• S = LAR(W ).
• s0 = x♯w0 where x denotes the sequen
e of elements of W \ {w0} a

ording tothe well ordering.
• ⇒ ⊆ S × S satis�es the 
ondition: for all x♯yw ∈ S, x♯yw⇒x′♯y′w′ i�� w′ ∈ wE.� x′♯y′w′ = next(x♯yw, w′)� 
onsider the unique path from the root to x′♯y′w, either there is no nodein this path with the same LAR or x′♯y′w is the �rst node to repeat in thepath.The tree TLAR(G) is well de�ned sin
e the fun
tion next is well de�ned. The fa
tthat TLAR(G) is �nite 
an be veri�ed by noting that along any sequen
e of elementsof LAR of length (|W |+1)!+1, at least one element is bound to repeat by pigeonholeprin
iple. Let frontier(TLAR(G)) denote the set of all leaf nodes of TLAR(G). Wede�ne a labelling fun
tion lab : frontier(TLAR(G)) → 2W as follows.For a node x′♯y′ ∈ frontier(TLAR(G)), let ̺ be the unique path from the root

x♯w0 to x′♯y′. Let ̺′ be the least su�x of ̺ su
h that first(̺′) = last(̺′) = x′♯y′.Let lmax = max{|y| | x♯y o

urs in ̺′)} and let L̺ = {x♯y | |y| = lmax}. Observethat, by the property of the LAR 
onstru
tion y = y′ for all x♯y, x′♯y′ ∈ L̺. Let
Y = {y} su
h that x♯y ∈ L̺ we set lab(x′♯y′) = Y .LAR tree as a �nite extensive form game: It is easy to see that TLAR(G)
onstitutes a �nite extensive form game tree where for any i ∈ N the set of i nodesof the tree Si = {x♯yw ∈ S | w ∈ W i}. We use ν and η to denote the strategiesof players i and ı respe
tively in TLAR(G). For i ∈ N , let Ωi(TLAR(G)) denote theset of all strategies of player i in TLAR(G). Note that all strategies in Ωi(TLAR(G))are memoryless. We use ̺ to denote plays in TLAR(G). Given a pro�le of strategies
(ν, η) in TLAR(G) let ̺(ν,η) denote the unique resulting play.Every strategy ν ∈ Ωi(TLAR(G)) 
an be translated into a bounded memorystrategy µ ∈ Ωi(G). In other words, it 
an be represented as a deterministi
 ad-vi
e automaton Aµ = (Qµ, δµ, oµ, q0) with state spa
e Qµ the transition fun
tion
δµ : Qµ ×W → Qµ and the output fun
tion oµ : Qµ ×W → W .108



We de�ne the translation fun
tion f : Ωi(TLAR(G)) → Ωi(G) as follows.De�nition 5.2.4 For a strategy ν, f(ν) = µ where µ is the strategy represented bythe deterministi
 advi
e automaton Aµ = (Qµ, δµ, oµ, q0) with
• Qµ = LAR(G).
• δµ(x♯y, w) = next(x♯y, w).
• oµ(x♯y, w) = ν(x♯y).
• q0 = x♯w0.We say a strategy µ ∈ Ωi(G) is LAR implementable if µ 
an be representedby an advi
e automaton whose state spa
e is LAR(G) and whose transition fun
-tion respe
ts the next fun
tion. Let Ωi

LAR
(G) denote the set of all strategies in

Ωi(G) whi
h is LAR implementable. The translation fun
tion f is thus a map
f : Ωi(TLAR(G)) → Ωi

LAR
(G).We extend the translation fun
tions to strategy pro�les as follows: For a pair ofstrategies (µ, τ) let g(µ, τ) = (g(µ), g(τ)).The following lemmas show the relationship between the game arena and theLAR tree, it also makes 
lear our motivation in de�ning the LAR tree.Lemma 5.2.5 For any strategy pro�le (ν, η) in TLAR(G) if lab(last(̺(ν,η))) = F then

Inf (ρ(µ,τ)) = F where (µ, τ) = f(ν, η).Proof: Consider any pro�le of strategies (ν, η) in TLAR(G) and suppose we have
lab(last(̺(ν,η))) = F . Let ̺(ν,η) = x0♯w0, x1♯y1, . . . , xk♯yk. By 
onstru
tion of theLAR tree there exists j : 0 ≤ j < k su
h that xj♯yj = xk♯yk = x♯y. Let (µ, τ) =

f(ν, η) and let ρ(µ,τ) be the resulting play in G. Let the LAR sequen
e of this playbe LAR(ρ(µ,τ)) = x0♯w0, x1♯y1, . . .. By 
onstru
tion of the strategies µ and τ we havefor all r : 0 ≤ r ≤ k, xr♯yr = xr♯yr. Thus, in parti
ular, we have xj♯yj = xj♯yj = x♯y.In other words, 
onsider the pre�x ρ1 = w0w1 . . . wj and ρ2 = w0w1 . . . wj . . . wk of
ρ(µ,τ), we have last(LAR(ρ1)) = last(LAR(ρ2)) = x♯y. For strategy µ, the memorystate at the end of the pre�x ρ1 is last(LAR(ρ1)) = x♯y. Suppose wj ∈ W i, i.e.
wj is a player i node. The 
hoi
e of µ on the sequen
e ρ1 is di
tated by the out-put fun
tion oµ(last(LAR(ρ1)), wj) but sin
e last(LAR(ρ1)) = last(LAR(ρ2)) (hen
ealso wj = wk) we have µ(ρ1) = µ(ρ2). Sin
e τ is also a bounded memory strategybased on the LAR set LAR(G), we have that the play ρ(µ,τ) settles down in the109




y
le x♯y, xj+1♯yj+1, . . . , xk−1♯yk−1, x♯y. By de�nition of the labelling fun
tion lab,there exists p : j ≤ p ≤ k su
h that {yp} = F . Therefore in LAR(ρ(µ,τ)) there existin�nitely many indi
es m su
h that ym = |F | and {ym} = {ym} = F . From Lemma5.2.2 we get Inf (ρ(µ,τ)) = F . 2Ba
kward indu
tion algorithmThe LAR tree TLAR(G) has its frontier nodes labelled with subsets of W . We usethe ba
kward indu
tion algorithm to extend the labelling to interior nodes of thetree as well. The pro
edure is as follows:Pro
edure 1
• Initially, all interior nodes of TLAR(G) are unlabelled.
• Repeat the following steps till lab(x0♯w0) is de�ned, i.e. the labelling fun
tionis de�ned on the root node.� Choose any node x♯y su
h that lab(x0♯w0) is not de�ned and all of whosesu

essors are labelled.� if x♯y ∈ Si then let x1♯y1 be a su

essor node su
h that lab(x2♯y2) ⊑i

lab(x1♯y1) for all other su

essor nodes x2♯y2 of x♯y. Let lab(x♯y) =

lab(x1♯y1) and ν(x♯y) = x1♯y1.� if x♯y ∈ Sı then we 
hoose a su

essor x1♯y1 su
h that lab(x2♯y2) ⊑ı

lab(x1♯y1) for all other su

essor nodes x2♯y2 and set lab(x♯y) = lab(x1♯y1)and η(x♯y) = x1♯y1.Consider the pro�le of strategies (ν, η) generated by the above pro
edure. Fromproposition 2.1.6 it follows that (ν, η) 
onstitutes an equilibrium pro�le in TLAR(G).We show that f(ν, η) 
onstitutes an equilibrium pro�le in the arena G. Before pre-senting the proof, we �nd it instru
tive to explain how the pro
edure works in the
ase of zero-sum games. In su
h games, we have a set F whi
h spe
i�es the winning
ondition of player i and F = {F | F 6∈ F} spe
i�es the winning 
ondition for player
ı. The preferen
e ordering is de�ned in the obvious manner: for player i, all setsin F are equally preferred and sets in F is stri
tly more preferred than those in F .110



The preferen
e ordering for player ı is stri
tly 
omplementary. The following lemmashows that for a player i, as far as ensuring an out
ome F in the game arena G is
on
erned it su�
es to analyse strategies generated from the LAR tree TLAR(G).Lemma 5.2.6 Given an arena G along with a Muller 
ondition F for player i ∈ N ,if there exists a strategy ν ∈ Ωi(TLAR(G)) su
h that ν ensures F in TLAR(G) then
µ = f(ν) ensures F in G.Proof: Suppose not, suppose player i 
an ensure F in TLAR(G) by ν but 
annotensure F in G using the strategy µ = f(ν). Then there exists a play ρ in G 
onformingto µ su
h that it settles down to a Muller set F ′ /∈ F . There are two 
ases to 
onsider.The �rst 
ase is when there exists w ∈ F ′ su
h that w /∈ F for any F ∈ F .Let j be the �rst index su
h that ρ(j) = w and ρ(j − 1) ∈ W ı. Let ̺ be the(�nite) path in TLAR(G) 
orresponding to ρ. The index j must be greater than |̺|;otherwise ρ 
ouldn't have been labelled F and hen
e µ 
ouldn't have ensured F . Let
x′♯y′ = LAR(ρj−1). By the 
onstru
tion of TLAR(G) there exists a node x′♯y′ ∈ ̺.But this means that player ı had the option of playing w at the node x′♯y′ and hen
ethe root to be labelled with a set in F̄ . But this would 
ontradi
t the fa
t that νiensure F in TLAR(G).The other 
ase is when there exists F ∈ F su
h that w ∈ F and w 6∈ F ′. Let ̺be the (�nite) path in TLAR(G) 
orresponding to ρ. Let l be the biggest index su
hthat ρ(l) = w but l < |̺|. Suppose ρ(l− 1) ∈W i. Then for all indi
es l1, l2, . . . su
hthat l < l1 < l2 < . . . and LAR(ρl1) = LAR(ρl2) = . . . = LAR(ρl−1), player i has toplay w as it is pres
ribed by the strategy ν, and hen
e in turn by the 
orrespondingbounded memory strategy µ. But this 
ontradi
ts the fa
t that the ρ settles downto F ′.Finally, suppose ρ(l − 1) ∈ W ı. Then player ı has the option of playing w at
ρ(l − 1) and at all indi
es l1, l2, . . . su
h that l < l1 < l2 < . . . and LAR(ρl1) =

LAR(ρl2) = . . . = LAR(ρl−1). Hen
e ν 
ould not have ensured F in TLAR(G) as theleaf node of ̺ wouldn't have been labelled with a set in F and hen
e neither theroot. 2Lemma 5.2.7 Given an arena G along with a Muller 
ondition F for player i ∈ N ,if there exists a strategy µ ∈ Ωi(G) su
h that µ ensures F in G then there existsstrategy ν ∈ Ωi(TLAR(G)) su
h that ν ensures F in TLAR(G).111



Proof: Suppose player i does not have a strategy ν to ensure F in TLAR(G) then
TLAR(G) being a �nite tree (and hen
e a �nite extensive form game) it follows thatplayers ı has a strategy η to ensure F in TLAR(G), sin
e �nite games are determined.Then by Lemma 5.2.6, player ı has a bounded memory strategy τ = f(η) to ensure
F in G as well. But this 
ontradi
ts the assumption that players i has a strategy toensure F in G. 2Theorem 5.2.8 then follows from Lemmas 5.2.6 and 5.2.7.Theorem 5.2.8 Given an arena G and along with Muller 
ondition F for player
i ∈ N there exists a strategy µ for player i to ensure F in G i� player i has a strategyin TLAR(G) to ensure F .Theorem 5.2.9 Every generalised Muller game has a Nash equilibrium.Proof: Let G = (G, {⊑i}i∈N) be a generalised Muller game. Consider the strat-egy pro�le (ν, µ) generated by the ba
kward indu
tion pro
edure on the LAR tree
TLAR(G). We show that the strategy tuple (µ, τ) = f(ν, η) 
onstitutes an equilibriumpro�le in G. The proof is similar to that of Theorem 5.2.8: we show that for i ∈ N ,player i has an in
entive to deviate from µ in G i� she has an in
entive to deviatefrom µ in the LAR tree TLAR(G).Suppose player i deviates to strategy µ′. Let ρ be the run 
orresponding to
(µ′, τ) with Inf (ρ) = F ′ and X = {w ∈ F ′ | w 6∈ F}. Suppose X 6= ∅, let j be the�rst index su
h that ρ(j) ∈ X and let LAR(ρ(j − 1)) = x′♯y′. By the 
onstru
tion,there exists a node x′♯y′ in the LAR tree. Sin
e player ı plays a

ording to theLAR strategy τ derived from the strategy η, it 
an be seen that the node x′♯y′ isrea
hable in the LAR tree by player i's deviation. But then we have that player ihas a option of playing w at x′♯y′ and sin
e the LAR is the same, she 
an 
hoose apath in TLAR(G) whi
h is labelled with F ′.Let Y = {w ∈ F | w 6∈ F ′}. If Y 6= ∅, then let j be the last index su
h that
ρ(j) ∈ Y and let LAR(ρ(j)) = x′♯y′. As a result of the deviation, player i ensuresthat elements in Y are visited only �nitely many times. By 
onstru
tion we havethat x′♯y′ is present in the LAR tree. As earlier it 
an be seen that x′♯y′ is rea
hableby the deviation of player i. From ρ(j), player i ensures that elements of the set
X are never visited. But sin
e we have the same LAR and sin
e player ı uses theLAR strategy τ derived from η this means that from x′♯y′, player i 
an play in su
ha way that the resulting path is labelled with F ′.112



2Note that sin
e the translation fun
tion f is e�e
tive, we also get that the equi-librium pro�le for any generalised Muller game 
an be synthesized in �nite memorystrategies.Complexity: Let the number of verti
es in the arena G be m. The size of the LARmemory is O(m!). As there are O(mm!) paths in the LAR tree TLAR(G) and theba
kward indu
tion pro
edure runs in time linear in the size of the LAR tree, therunning time is O(mm!).5.3 Partial strategies and best response 
omputa-tionIn the previous se
tion we looked at equilibrium 
omputation in non-zero sum in�nitegames with respe
t to fun
tional strategies whi
h depi
t 
omplete plans. A naturalquestion would be to ask whether strategy spe
i�
ations help in the analysis of su
hgames. In order to analyse spe
i�
ations in terms of solution 
on
epts, we needto �rst de�ne on what basis spe
i�
ations 
an be 
ompared with ea
h other. Inthe 
ase of 
omplete strategies, given a strategy τ of player ı, 
omparison betweentwo strategies µ and µ′ of player i was de�ned in terms of the unique out
omewhi
h is a
hieved. However, this de�nition is not suitable in the 
ase of strategyspe
i�
ations sin
e we are dealing with a set of strategies. Thus in the 
ontext ofstrategy spe
i�
ations basi
 notions like strategy 
omparison and best response needto be revisited.Given a game arena G = (G, E) and a strategy spe
i�
ation π for player ı, we
an have di�erent notions as to when a spe
i�
ation for player i is �better� thananother.
• Better 1(σ, σ

′): For some F ∈ 2R, if (∃µ′ with µ′ |=i σ
′ su
h that ∀τ with

τ |=ı π, ρτµ′ is winning with respe
t to E iF ) then (∃µ with µ |=i σ su
h that ∀τwith τ |=ı π, ρτµ is winning with respe
t to E iF ).The predi
ate Better 1(σ, σ
′) says that, for some (binary) out
ome F , if thereis a strategy 
onforming to the spe
i�
ation σ′ whi
h ensures winning E iF thenthere also exists a strategy 
onforming to σ whi
h ensures winning E iF as well.113



• Better 2(σ, σ
′): For some F ∈ 2R, if (for all strategies µ′ with µ′ |=i σ

′ and ∀τwith τ |=ı π, ρτµ′ is winning with respe
t to E iF ) then (∀µ with µ |=i σ and ∀τwith τ |=ı π, ρτµ is winning with respe
t to E iF ).This notion is best understood 
ontrapositively: for some (binary) out
ome
F , whenever there is a strategy 
onforming to σ whi
h is not winning for E iF ,there also exists a strategy 
onforming to σ′ whi
h is not winning for E iF . This
an be thought of as a soundness 
ondition. A risk averse player might preferthis notion of 
omparison.The two above are just a few of the various possibilities for strategy 
omparison,whose a
tual 
hoi
e might depend on the kind of appli
ation in mind. Having 
hosenthe appropriate notion, we say that σ is the best response to π, if for all σ′, we have

σ is better (a

ording to that notion) than σ′. A strategy pair (σ, π) is said to bein equilibrium if σ is the best response to π and π is the best response to σ.To algorithmi
ally 
ompare strategies, we �rst need to be able to de
ide thefollowing questions. Let σ and π be strategy spe
i�
ations for player i and player ıand E iF a binary evaluation automaton for player i.
• Does player i have a strategy 
onforming to σ whi
h is winning for i with re-spe
t to E iF , against all strategies of player ı whi
h 
onforms to π (abbreviatedas ∃σ, ∀π : E iF )?
• Is it the 
ase that for all strategies of player i 
onforming to σ, as long asplayer ı is playing a strategy 
onforming to π, the result will be a valid playwhi
h is winning for i with respe
t to E iF (abbreviated as ∀σ, ∀π : E iF )?We 
all this the veri�
ation question. The synthesis question is given π and E iF to
onstru
t a deterministi
 advi
e automaton A for player i su
h that A, ∀π : E iFholds.On
e we 
an show that the veri�
ation question is de
idable and synthesis pos-sible, the game theoreti
 questions of interest in
lude: For a game G = (G, E),
• Given strategy spe
i�
ations σ and π, 
he
k if σ is a best response to π.
• Given a strategy spe
i�
ation pro�le 〈σ, π〉, 
he
k if it is a Nash equilibrium.
• Given a strategy spe
i�
ation π for ı, synthesize a deterministi
 advi
e au-tomaton A for player i su
h that A is the best response to π.114



De�nition 5.3.1 Let G = (W,→, w0, λ) be an arena and Aσ = (Q, δ, o, I) be theadvi
e automaton 
orresponding to a strategy spe
i�
ation σ of player i. The re-stri
tion of G with respe
t to Aσ is the stru
ture G |\ Aσ = (Wσ,→σ, w
σ
0 , λσ) where

• Wσ = W × 2Q is the set of game positions.
• (w,X)

a
→σ(w

′, Y ) i� Y = {q′ | ∃q ∈ X with q′ ∈ δ(q, w, a)}.
• wσ0 = (w0, Iσ).
• λσ(w,X) = λ(w).It is easy to see that the arena Aσ is deterministi
 and satis�es the property:(R1) for all (w,X) ∈ Wσ, for all a ∈ Σ su
h that w a

→w′, there exists a unique Ysu
h that (w,X)
a
→σ(w

′, Y ).Every strategy ν ∈ Ωi(G |\ Aσ) is also a strategy in Ωi(G) where the additionalmemory required is 2Q. Given a strategy ν = (Sν ,⇒ν , s
ν
0, λ̂ν) let st(ν) be thestrategy tree obtained by simply proje
ting out the 2Q 
omponent from the gamepositions of ν. Due to property (R1) this de�nes a valid strategy in Ωi(G). Lemma5.3.2 follows from the de�nition of the restri
tion operation.Lemma 5.3.2 For all ν ∈ Ωi(G |\ Aσ), st(ν) ∈ Lang(Aσ).Lemma 5.3.3 For all µ ∈ Ωi(G) su
h that µ ∈ Lang(Aσ), there exists ν ∈ Ωi(G|\Aσ)su
h that st(ν) = µ.Proof: Consider any µ ∈ Ωi(G) su
h that µ ∈ Lang(Aσ). Let T = (Sµ,⇒µ, s

µ
0 , λ̂µ, l)be Q labelled tree a

epted by Aσ. We de�ne the strategy ν = (Sν ,⇒ν , s

ν
0, λ̂ν) in-du
tively. Let ν0 be the tree 
ontaining the single node (w0, I). The 
onstru
tionmaintains the following invariant property:(Inv1) for all t ∈ ν, where t[1] = s and last(t) = (w,X), if l(s) = q then q ∈ X.Sin
e l(s0) ∈ I, for the tree ν0, property 1 is satis�ed. Assume indu
tively wehave 
onstru
ted the tree νk = (Sν ,⇒ν , s

ν
0, λ̂ν). Pi
k any node t ∈ Sν where t[1] = sand last(t) = (w,X). We have the following two 
ases:1. If λ̂ν(t) = i then let a = oσ(l(s), w). By de�nition, there exists a uniqueoutgoing edge in µ su
h that s a

⇒s′, let w′ = last(s′). By property 1, we get
l(s) ∈ X. By 
onstru
tion of G |\ Aσ, there exists a unique node (w′, Y ) su
h115



that (w,X)
a
→σ(w

′, Y ). Sin
e T is an a

epting run, l(s′) ∈ δ(l(s), w, a) andby de�nition of G |\ Aσ we have l(s′) ∈ Y . Thus the invariant property 
an bemaintained by extending the tree with the node t′ = t · (w′, Y ).De�ne the tree νk+1 = (Sνk+1
,⇒νk+1

, s
νk+1

0 , λ̂νk+1
) where Sνk+1

= Sνk
∪ {t′} and

⇒νk+1
= ⇒νk

∪ {t
a
⇒t′}.2. If λ̂ν(t) = ı let {s1, . . . , sm} be the set of all nodes in µ su
h that s aj

⇒sj for all
j : 1 ≤ j ≤ m. Let last(sj) = wj and qj = l(sj). By 
onstru
tion of G |\ Aσ,for all j we have (w,X)

a
→σ(wj, Yj) and qj ∈ Yj. Let tj = t · (wj, Yj).De�ne the tree νk+1 = (Sνk+1

,⇒νk+1
, s
νk+1

0 , λ̂νk+1
) where Sνk+1

= Sνk
∪{t1, . . . , tm}and ⇒νk+1

= ⇒νk
∪ {t

a1⇒t1, . . . , t
am⇒tm}.The strategy ν = (Sν ,⇒ν , s

ν
0, λ̂ν) de�ned by Sν =

⋃
k≥0 Sνk

and⇒ν =
⋃
k≥0 ⇒νk

.From the 
onstru
tion it follows that ν ∈ Ωi(G |\ Aσ) and it is also easy to see that
st(ν) = µ. 2Lemma 5.3.4 For every strategy µ ∈ Ωi(G), for all i ∈ N and for all σ ∈ Strat i(P i),there exists µ′ ∈ Ωi(G |\ Aσ) su
h that st(µ′) = µ i� µ |=i σ.Proof: Follows from Lemmas 5.3.2, 5.3.3 and 3.1.7. 2In other words, Lemma 5.3.4 states that strategies of player i in the restri
tedarena G |\ Aσ are pre
isely those strategies of i in G whi
h 
onform to σ. Therestri
tion operation 
an be applied iteratively. For instan
e, given advi
e automata
Aσ and Aπ of players i and ı respe
tively, the stru
ture (G |\ Aσ) |

\Aπ 
onsists of allpaths whi
h 
onform to the spe
i�
ations σ and π. It is also easy to 
he
k that theorder of restri
tion is irrelevant. That is (G |\ Aσ) |
\ Aπ = (G |\ Aπ) |

\ AσTheorem 5.3.5 Given a game G = (G, E) and a strategy spe
i�
ation π for player
ı, 1. The veri�
ation problem of 
he
king whether for a player i a strategy spe
i�-
ation σ and a binary evaluation automaton E iF , 
he
king whether ∃σ, ∀π : E iFor ∀σ, ∀π : E iF holds in G is de
idable.2. For a binary evaluation automaton E iF , it is possible to synthesize (when oneexists), a deterministi
 advi
e automaton Ai su
h that Ai, ∀π : E iF holds.116



Proof: The assertion ∃σ, ∀π : E iF holds in the arena G i� there exists strategy µfor player i whi
h 
onforms to σ su
h that for all strategies τ of player ı 
onformingto π, the resulting play ρ(µ,τ) is �winning� for player i with respe
t to the win-loss
ondition given by E iF . We make use of the restri
tion operation given in de�nition5.3.1 to de
ide the veri�
ation question. Let the advi
e automata 
orrespondingto σ and π be Aσ and Aπ respe
tively. Consider the arena G |\ Aπ; by Lemma5.3.4 strategies of player ı in the restri
ted arena are pre
isely the strategies whi
h
onform to π in G. Thus to 
he
k if ∃σ, ∀π : E iF holds it su�
es to 
he
k if thereexists a strategy for player i 
onforming to σ in G |\ Aπ whi
h is winning for theobje
tive given by E iF .We 
onstru
t a nondeterministi
 tree automaton T whi
h 
he
ks this property.Intuitively, the automaton works as follows: it simulates both Aσ and E iF and runson T
G |\ Aπ

. Thus the states of the tree automaton are tuples of the form (q, r) andthe initial state is (q0, r0) where q0 ∈ I. At any position s of T
G |\ Aπ

where the stateof the automaton is (q, r), the automaton pro
eeds as follows:
• if s is a player i game position then let a be the a
tion di
tated by the outputfun
tion o of Aσ on state q and position s. The automaton guesses a new state
q′ ∈ δ(q, s, a) and pro
eeds down the a edge on the state q′. Formally, thismeans that on all outgoing edges of s labelled by b 6= a the automaton entersa default a

ept state and stays in this a

ept state.

• if s is a player ı game position then let {b1, . . . , bk} be the outgoing edges at
s. For ea
h a
tion bj player i guesses a state qj ∈ δ(q, s, a) and bran
hes onall the outgoing edges.In other words, the automaton T guesses a strategy µ of player i in G |\ Aπ whi
h
onforms to σ. T a

epts this strategy if all paths of µ are a

epted by the Mullerautomaton E iF .Formally, the tree automaton is given by: T = (Q,R, I) where Q = (Qσ × R)and I = Iσ × r0. For T in a state q, reading node t, R(q, t) = 〈(q1, a1), . . . , (qm, am)〉means that the automaton will bran
h out: on the a1 su

essor it goes into state

q1, a2 su

essor it goes to state q2 and so on. The transition relation is de�ned asfollows: for a node t ∈ Sπ, let {a1, . . . , am} be the outgoing edges.
• If λ̂π(t) = i then R((q, r), t) = {〈(accept , a1), . . . , ((qj , rj), aj), . . . , (accept , am)〉 |

oσ(qj , t) = aj , qj ∈ δσ(q, t, aj) and rj = ∆(r, t, aj)}.117



• If λ̂π(t) = ı then R((q, r), t) = {〈((q1, r1), a1), . . . , ((qj , rj), aj), . . . , ((qm, rm), am)〉 |

qj ∈ δσ(q, t, aj) and rj = ∆(r, t, aj) for all j : 0 ≤ j ≤ m}.The tree automaton T a

epts a tree i� for all paths either the Muller 
onditionspe
i�ed by the win-loss automaton E iF is satis�ed or the state accept o

urs in�nitelyoften.To 
he
k if ∀σ, ∀π : E iF holds, it su�
es to 
he
k if all plays in (G |\ Aπ) |
\ Aσ arewinning for i with respe
t to E iF . This 
an be done easily.(2) We want to synthesize a bounded memory strategy µ for player i su
h thatfor all strategies τ of player ı 
onforming to π, the resulting play ρ(µ,τ) is winningfor player i with respe
t to E iF . By the observation made in the previous part, weneed to synthesize a bounded memory winning strategy for player i (if it exists)in the restri
ted game G |\ Aπ. Consider the game (G |\ Aπ, E iF ), this 
onstitutes a
lassi
al win-loss Muller game where the arena is G |\ Aπ and the winning 
onditionof player i is given by E iF . We know that if player i has a winning strategy in thegame (G |\ Aπ, E

i
F ) then i has a bounded memory winning strategy µ whi
h 
an besynthesized e�e
tively. The advi
e automaton Ai is taken to be the automaton rep-resenting the bounded memory winning strategy µ. 2Theorem 5.3.6 Given a game G = (G, E) and a strategy spe
i�
ation π for player ı,1. For a spe
i�
ation σ for player i, 
he
king if σ is the best response to π isde
idable.2. It is possible to synthesize a deterministi
 advi
e automaton Ai su
h that Aiis the best response to π.Proof: (1): Given σ and π to 
he
k if σ is the best response to π, we use thetree automaton 
onstru
tion in Theorem 5.3.5 with a slight modi�
ation. We enu-merate the sets F ∈ F in su
h a way that those higher in �

i appear earlier in theenumeration. For ea
h F , we 
onstru
t a tree automaton as in Theorem 5.3.5, theonly di�eren
e being that the guesses made by T at player i game positions are notrestri
ted by σ. T runs E iF in parallel to 
he
k if player i 
an ensure F for all 
hoi
esof ı whi
h 
onform to π. Sin
e the evaluation automaton is �
omplete�, the playeventually settles down in one of the sets F ′ ∈ F . Therefore, as we try elementsof F in order, the tree automaton su

eeds for some E iF ′. This gives us the �best�out
ome whi
h player i 
an guarantee. We then use the veri�
ation pro
edure givenin theorem 5.3.5 to 
he
k if ∃σ, ∀π : E iF ′ holds in G.118



This also implies that given a strategy pro�le (presented as advi
e automata),we 
an verify whether the pro�le 
onstitutes a Nash equilibrium.For (2) we enumerate F and �nd the �best� out
ome F that 
an be a
hieved.Using the synthesis pro
edure given in theorem 5.3.5, we then synthesize an advi
eautomaton for F . 2
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Chapter 6Games with imperfe
t informationSo far in this thesis we have looked at games of perfe
t information. Games whi
h
apture more realisti
 situations of so
ial intera
tion are ones where players do nothave 
omplete information on the past moves of other players. These are gamesof imperfe
t information. The typi
al way of modelling imperfe
t information ingames is in terms of information partitions for players. In this view, ea
h player
i is asso
iated with an equivalen
e relation ∼i over the set of game positions. Fortwo game positions w and w′ if w ∼i w′ it means that player i 
annot distinguishwhether the 
urrent game position is w or w′. The equivalen
e relation is part of thegame de�nition and it is assumed to be presented along with the game stru
ture.Now 
onsider the following n player game with players 0, . . . , n− 1. Ea
h playerhas a lo
al arena (graph). The global arena is 
onstru
ted by taking the produ
t ofthe lo
al arenas su
h that it satis�es the 
ondition: player 0 has a

ess to the globalgame positions whereas players 1 to n 
an view only their lo
al graph stru
tures.For i ∈ {1, . . . , n}, the view of player i is the history of the play restri
ted to i'slo
al game stru
ture. Imperfe
t information arises from the fa
t that player i is notaware of the exa
t global state but only his lo
al 
omponent of the global state. Theinformation sets of player i 
onstitute the global game positions where his views arethe same. A lo
al strategy of player i di
tates his 
hoi
e based on his view. Theobje
tive 
an be taken to be a regular win-loss 
ondition. We 
an now ask thefollowing veri�
ation question:

• does there exist a tuple of winning lo
al strategies for players {1, . . . , n} in G?It follows from the result by Peterson and Reif [PR79℄ that this question is unde-
idable. Thus the veri�
ation question is unde
idable for the general 
lass of multi-player games with imperfe
t information. The global game arena has its stru
ture120



derived from the lo
al game graph. However, there is no information passed betweenplayers about their lo
al game stru
ture.A 
losely related question is the synthesis question whi
h asks whether it is possi-ble to synthesize lo
al winning strategies when they exist. This has been extensivelystudied in the 
ontrol theory literature where the synthesis of distributed 
ontrol
an be modelled as a game where n players playing against a global environment.Pnueli and Rosner show that even for a two site distributed ar
hite
ture wherethere is no possible 
ommuni
ation between the sites, the synthesis question is un-de
idable [PR90℄. There has been various work in this 
ontext whi
h investigates
onditions required to attain de
idability of synthesis (see [Mad01℄, [KV01℄ for anoverview). [MW03℄ proposes a model for distributed games in order to formalizeand solve distributed synthesis problems.In this 
hapter we propose a model for imperfe
t information games, where theinformation partitions are generated expli
itly by players' behaviour. Communi-
ation between players is part of the game model and thus imperfe
t informationdepends on the exa
t me
hanism of 
ommuni
ation adopted by players. We showthat in the 
ase when players 
ommuni
ate by means of publi
 announ
ements, theveri�
ation question is indeed de
idable. This also suggests that the real problemlies not in the fa
t that there is imperfe
t information but rather in the way it arises.If un
ertainty is introdu
ed through some stru
tural means then it may be possibleto resolve it using 
ommuni
ation.6.1 The game modelSin
e we are looking at games of imperfe
t information, we deal with multiple playersexpli
itly. Let N = {1, . . . , n} be the set of players. We want to make 
ommuni
a-tion between players expli
it in the model. For this purpose we asso
iate with ea
hplayer i ∈ N a �nite set Γi whi
h represents the set of symbols whi
h player i 
anemploy for 
ommuni
ation. Let Γ̃ = Γ1 × · · · × Γn.6.1.1 Game arenaLo
al arena: For a player i ∈ N , the lo
al game arena for player i is given by
Gi = (W i,→i, w

i
0, χ

i) where
• W i is a �nite set of lo
al game positions.121



• wi0 is the initial game position.
• χi : W i → Γi asso
iates with ea
h lo
al game position of player i an elementof Γi.
• →i : W i×Γ̃ → 2W

i is the move fun
tion whi
h satis�es the following 
ondition:for all wi, vi ∈ W i, if wi γ→iv
i then γ(i) = χi(wi).The lo
al game arena di
tates the rules of the game for ea
h player i. For ea
hlo
al game position wi, the fun
tion χi spe
i�es what player i 
ommuni
ates withthe other players. The transition fun
tion takes into a

ount the 
urrent game posi-tion and the 
ommuni
ation re
eived from other players to spe
ify the set of possiblemoves enabled for player i. Note that 
ommuni
ation in this model is by means ofpubli
 announ
ements sin
e for any state wi, the value of χi(wi) is 
ommuni
ated toall players. A game stru
ture G is de�ned in terms of a set of lo
al game arenas forea
h player, G = {Gi}i∈N .Global arena: Given a game stru
ture G = {Gi}i∈N , the resulting global gamearena G = (W,→,w0) is 
onstru
ted as follows: the set of global game positionsW =

W 1×· · ·×W n and w0 = (w1
0, . . . , w

n
0 ). We de�ne the fun
tion χ : W → Γ̃ as χ(w) =

(χ1(w1), . . . , χn(wn)) whi
h asso
iates with ea
h global state, the announ
ements ofplayers. The move relation → ⊆W ×W satis�es the property: for all w,v ∈W wehave w→v i�
• ∀i ∈ enabled(w), wi γ→iv

i or wi = vi, where γ = χ(w).
• ∀i ∈ N \ enabled(w), vi = wi.where enabled(w) = {i ∈ N | ∃vi ∈W i with wi γ→iv

i where γ = χ(w)}.Note that a

ording to the global transition relation, for a player i at a globalstate w, even if a move of player i is enabled at w the player has the option ofremaining in the same state and 
hoosing not to move.Example 6.1.1 Let the players be N = {1, 2} and the 
ommuni
ation alphabets be
Γ1 = {γ1

0 , . . . , γ
1
5} and Γ2 = {γ2

0 , . . . , γ
2
6}. Consider the lo
al game arenas G1 of player

1 given in Figure 6.1(a). The nodes of the graph 
orresponds to the lo
al game posi-tions, the announ
ements made by player 1 at ea
h lo
al state is marked along withthe lo
al states. For instan
e, χ1(w1
0) = γ1

0 , χ1(w1
1) = χ1(w1

2) = γ1
1 and so on. Theself loop on states without any announ
ement annotation means that irrespe
tive of122
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al game arenasthe announ
ement made by the other player, the lo
al state remains the same. Thelo
al arena G2 for player 2 is given in Figure 6.1(b). The derived global game graphis shown in Figure 6.2. We have not shown the possibilities of players delaying movesin the global arena. In the global game graph, players 1 and 2 alternate moves tillthe game rea
hes one of the global sink nodes {(w1

3, w
2
3), (w

1
4, w

2
4), (w

1
5, w

2
5), (w

1
6, w

2
6)}.Player 2 
annot distinguish between the global states (w1

1, w
2
0) and (w1

2, w
2
0) sin
e

view2((w1
0, w

2
0)(w

1
1, w

2
0)) = view2((w1

0, w
2
0)(w

1
2, w

2
0)).The model does allow players to resolve imperfe
t information as the play pro-gresses. For instan
e at the global state (w1

3, w
2
3) player 2 knows that the play passedthrough the position (w1

1, w
2
0) and not through (w1

2, w
2
0). 2Sin
e the global game arena is derived from the lo
al arenas it is possible thatthere exist global game positions where moves of none of the players are enabled. Inother words, these are game positions where no progress 
an be made any further.For 
onvenien
e, we think of su
h terminal game positions as sink nodes with a selfloop. Thus a play in G is an in�nite path ρ = w0w1 . . . su
h that for all j > 0, wehave wj−1→wj . We denote the set of all plays in G by Plays(G). We also use thenotation P(G) to denote the set of all �nite partial plays in G. For a partial play ̺,we let enabled(̺) = enabled(last(̺)).The (in�nite) extensive form game tree TG asso
iated with G is obtained bythe tree unfolding of G. In the tree unfolding, in addition to keeping tra
k of thesequen
e of game positions, (a

ording to De�nition 2.3.2) we also keep tra
k of thesequen
e of announ
ements made by players. Formally the tree unfolding is de�nedas follows: 123
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WWFigure 6.2: Global game arenaDe�nition 6.1.2 Let G = (W,→,w0) be a global game arena. The tree unfoldingof G is the stru
ture TG = (S,⇒, s0) where S ⊆ (W × Γ̃)+ and ⇒ ⊆ S × S are theleast sets satisfying:
• (w0, χ(w0)) ∈ S.
• If s = (w0, γ0) . . . (wk, γk) ∈ S and wk→w

′ then s′ = (w0, γ0) . . . (wk, γk)(w
′, χ(w′)) ∈

S and s⇒s′.6.1.2 StrategiesViews of players: For i ∈ N and w ∈ W , player i's view of w is de�ned as
view i(w) = (wi, χ(w)). For a sequen
e ρ : w0w1 . . ., we de�ne player i's view of ρas view i(ρ) = view i(w0)view

i(w1) . . .. Let Plays i(G) = {view i(ρ) | ρ ∈ Plays(G)}.Note that a sequen
e in Plays i(G) need not ne
essarily be a path in Gi.Strategies of players: A strategy for player i, is a fun
tion µi : W ∗ → W i whi
hsatis�es the following 
onditions:(S1) µi(ǫ) = wi0.(S2) for all �nite partial plays ̺ ∈ P(G), if µi(̺) = wi then there exists v su
h that
last(̺)→v and vi = wi. This says that the strategy must 
hoose only moveswhi
h are enabled. 124



(S3) For all ̺, ̺′ ∈ P(G), if view i(̺) = view i(̺′) then µi(̺) = µi(̺′). This says thatthe strategy needs to respe
t the information partition.We say that a play ρ : w0w1 . . . is 
onsistent with strategy µi if ∀j > 0, wij =

µi(view i(w0 . . .wj−1)).As we saw earlier (in Se
tion 2.1.2) with a strategy µi of player i, we 
an asso
iatea strategy tree. Rather than viewing the strategy tree as a subtree of TG, in this
hapter we represent it in terms of a labelling fun
tion on nodes of TG.De�nition 6.1.3 Given a game tree TG and a strategy µi of player i, the strategytree tµi = (TG, l) where l : S → W i is de�ned as l(s) = µi(s).It is easy to see that a strategy pro�le µ = (µ1, . . . , µn) generates a unique path in
G, we denote this by ρµ.Joint and distributed strategies: The de�nition of view 
an be extended to asubset of players in the natural manner. For C = {i1, . . . , ik} ⊆ N and a position
w ∈ W , we have viewC(w) = (wC, χ(w)) where wC = (wi1 , . . . , wik). For a play ρ :

w0w1 . . . we have viewC(ρ) = viewC(w0)view
C(w1) . . .. Let PlaysC(G) = {viewC(ρ) |

ρ ∈ Plays(G)}.For a subset of players C = {i1, . . . , ik} ⊆ N , a joint C-strategy is a fun
tion
τC : W ∗ →W C whi
h satis�es the following 
onditions:

• τC(ǫ) = (wi10 , . . . , w
ik
0 ).

• ∀̺ ∈ P(G) if τC(̺) = wC then there exists v su
h that last(̺)→v and vC = wC.
• For all ̺, ̺′ ∈ P(G), if viewC(̺) = viewC(̺′) then τC(̺) = τC(̺′).A distributed C-strategy is a tuple of strategies µC = (µi1 , . . . , µik). A distributed

C-strategy µ de�nes a joint C-strategy as follows: for all partial plays ̺ ∈ P(G),
τC(̺) = (µi1(̺), . . . , µik(̺)).When C 
onsists of a single player i, a strategy µi for player i 
onstitutes a joint
C-strategy as well as a distributed C-strategy.6.1.3 Obje
tives of playersThe game arena de�nes the rules of the game, we �rst look at the situation wherewith ea
h player is asso
iated a win-loss obje
tive. That is, the obje
tive of ea
h125



player is spe
i�ed in terms of a set Φi ⊆ Plays i(G). We say a play ρ ∈ Plays(G)is winning for player i if view i(ρ) ∈ Φi. We are interested in analyzing regularobje
tives of players and therefore assume that Φi for ea
h player i 
an be presentedin terms of a deterministi
 Muller automaton Mi.For a subset of players C ⊆ N , a joint C-obje
tive ΦC ⊆ PlaysC(G). When C = N ,the set of all players, the obje
tive ΦC is simply a subset of Plays(G).Given a joint C-obje
tive for a subset of players C, we say that a joint C-strategy
τC ensures ΦC i� for all paths ρ 
onsistent with τC , we have viewC(ρ) ∈ ΦC. Adistributed C-strategy µC ensures ΦC if the joint C-strategy τC indu
ed by µC ensures
ΦC . The 
ase when C 
onstitutes a single player i, this amounts to saying that forall paths ρ 
onsistent with µi, we have view i(ρ) ∈ Φi. Or in other words, µi is awinning strategy for obje
tive Φi.For two player games, we say the pair (Φ1,Φ2) de�nes a zero sum obje
tive if theset X = {ρ ∈ Plays(G) | view1(ρ) ∈ Φ1} and Y = {ρ ∈ Plays(G) | view2(ρ) ∈ Φ2}satis�es the 
ondition that Y = Plays(G) \ X. The 
lass of two player zero sumgames de�ned in terms of lo
al game arenas with publi
 announ
ements need notbe determined as illustrated by the following example.Example 6.1.4 Consider the global game arena given in Figure 6.2. Let the ob-je
tives of players be as follows:

• Φ1 is the set of all paths in Plays1(G) whi
h 
y
les in the lo
al state w1
3 or w1

6of player 1.
• Φ2 is the set of all paths in Plays2(G) whi
h 
y
les in the lo
al state w2

4 or w2
5of player 2.It 
an be easily seen that the pair (Φ1,Φ2) de�nes a zero sum obje
tive. Player1 does not have a winning strategy for Φ1. To see this, suppose player 1 
hooses

w1
1 at the game position (w1

0, w
2
0) then there is a path where player 2 
hooses w2

2whi
h does not satisfy Φ1. If player 1 
hooses w1
2 at (w1

0, w
2
0) then the 
hoi
e w2

1of player 2 leads to a path whi
h does not satisfy Φ2. Similarly player 2 does nothave a strategy to ensure Φ2 either, sin
e she 
annot distinguish between the globalstates (w1
1, w

2
0) and (w1

2, w
2
0). In other words, the game is not determined.
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6.2 The veri�
ation questionGiven a game stru
ture G = {Gi}i∈N , a subset of players C ⊆ N and a regularwin-loss C-obje
tive ΦC , the veri�
ation question asks:
• does there exists a distributed strategy µC su
h that µC ensures ΦC?In this se
tion we show that the veri�
ation question is de
idable in the proposedgame model where players 
ommuni
ate by means of publi
 announ
ements. When

C 
onsists of a single player i, the veri�
ation question asks whether there existsa strategy for player i to ensure out
ome Φi. We �rst show that this question isde
idable.Te
hniques adopted for 
omputing winning strategies in games of perfe
t in-formation 
annot be dire
tly applied in this 
ontext. To see why, 
onsider theveri�
ation question for a single player i in the perfe
t information setting. Let Mibe the deterministi
 Muller automaton representing the regular obje
tive Φi. Tosolve the veri�
ation question we 
onsider the tree unfolding TG of the global gamearena G. We 
an build a tree automaton whi
h at every node of player i guesses a
hoi
e and bran
hes out on 
hoi
es of nodes not belonging to i. TG also runs Mi inparallel and veri�es that all runs 
onform to the spe
i�
ation. An a

epting run ofthis automaton would be the strategy for player i to ensure obje
tive Φi.In the 
ase of in
omplete information note that the guesses made by the treeautomaton at various i nodes need to preserve the 
onsisten
y requirement of thestrategy (S3). As noted by [KV99℄ this 
ondition is non-regular and thus 
annot bedire
tly maintained by an automaton. [KV99℄ suggests a te
hnique to 
ir
umventthis problem in terms of a 
onstru
tion using alternating tree automata. Here weshow that the 
onstru
tion used in [KV99℄ 
an be appropriately modi�ed to solvethe veri�
ation question.Alternating tree automata: For a �nite set Υ of dire
tions, a Υ-tree is a set
T ⊆ Υ∗ su
h that the following 
ondition holds:

• if s · u ∈ T where s ∈ Υ∗ and u ∈ Υ then s ∈ T as wellGiven a set Σ, a Σ labelled Υ tree is a pair (T , l) where T is a Υ tree and l : T → Σ,i.e. ea
h node of T is labelled with an element in Σ.Alternating tree automata generalize nondeterministi
 tree automata and were�rst introdu
ed in [MS87℄. While a nondeterministi
 automaton 
an guess a set of127



su

essor states and send one 
opy of itself along the subtrees rooted at its 
hildren,an alternating automaton 
an propagate several 
opies to a single 
hild.For a set X let B+(X) denote the set of positive boolean formulas formed fromthe elements in X. That is, B+(X) := True | False | x ∈ X | α1 ∨ α2 | α1 ∧ α2. Fora formula α ∈ B+(X) and a subset Y ⊆ X, we say Y satis�es α i� assigning Trueto elements in Y and False to elements in X \ Y makes α true.An alternating tree automaton over Σ-labelled Υ tree is T = (Q, δ, q0, F ) where
Q is a �nite set of states, q0 is the initial state, F de�nes the a

eptan
e 
ondition(a 
ondition that de�nes a subset of Qω). The transition relation δ is a map δ :

Q × Σ × 2Υ → B+(Q × Υ) whi
h satis�es the 
ondition: if q ∈ Q, a ∈ Σ, C ⊆ Υthen δ(q, a, C) is a boolean formula in B+(Q× C).Let (T , l) be a Σ-labelled tree, a run of the automaton T over (T , l) is a (T ×Q)labelled tree (Tr, r) in whi
h the root is labelled by q0 and a label of a node u in Trbeing (s, q) represents that the run at that node is reading the node s of the tree Tand is in state q. Formally, (Tr, r) satis�es the following 
onditions:
• for the root node y0, r(y0) = (ǫ, q0)

• Let y ∈ Tr and r(y) = (s, q). Let C be the su

essor dire
tions of the node sand δ(q, l(x), C) = θ where θ is a formula in B+(Q × C). Let Y ⊆ Q × C bethe set of all (q′, c′) su
h that there is a 
hild y′ of y with r(y′) = (q′, x · c′).Then we require that Y satis�es the formula θ.A path ρ of the run is said to be a

epting if the sequen
e of Q-
omponents ofthe labels of ρ satis�es the a

eptan
e 
ondition. The run (Tr, r) is a

epting if allpaths in it are a

epting.Solving the veri�
ation question: Given a game stru
ture G = {Gi}i∈N , let
G = (W,→,w0) be the indu
ed global arena. For a player i ∈ N , we use the notation
W−i to denote the set W 1 × . . .×W i−1 ×W i+1 × . . .×W n. For w ∈W , we use w

−ito denote the tuple w
−i = (w1, . . . , wi−1, wi+1, . . . , wn). For the global arena G, thetree unfolding TG (as given in De�nition 6.1.2) 
an be viewed as a W i ×W−i × Γ̃tree. A strategy tree tµi for player i is then a W i labelledW i×W−i× Γ̃ tree (TG, l).De�nition 6.2.1 For a global arena G = (W,→,w0) we de�ne Proj (G,W−i) =

(U,→P , u0) where U = W i×Γ̃ and u0 = view i(w0). The move relation →P ⊆ U×Uis de�ned as: 128



• u→Pu
′ i� there exists w,v ∈ W su
h that view i(w) = u, view i(v) = u′ and

w→vIt 
an be easily veri�ed that for all paths ρ in G, view i(ρ) is a path in Proj (G,W−i).
Proj (G,W−i) is an arena obtained by proje
ting out from G the 
omponents whi
hgive rise to imperfe
t information for player i in G. A strategy πi of player i in
Proj (G,W−i) is therefore a fun
tion πi : (W i × Γ̃)∗ → W i su
h that πi(ǫ) = wi0.A strategy πi in Proj (G,W−i) generates a strategy µi in G as follows: for all par-tial plays ̺ ∈ P(G), µi(̺) = πi(view(̺)). By de�nition, the generated strategy µisatis�es the 
ondition (S3).Let G′ = Proj (G,W−i). Given a W i labelled W i× Γ̃ strategy tree tπi = (TG′, l′),we de�ne wideG,W−i(tπi) as the W i labelled W i ×W−i × Γ̃ tree t = (TG, l) whi
hsatis�es the 
ondition:

• for every node s in TG we have l(s) = l′(view i(s)).Thus a strategy tree tπi in Proj (G,W−i) generates a strategy tree tµi in G by thetransformation tµi = wideG,W−i(tπi).
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Example 6.2.2 To illustrate the widening operator, 
onsider the game arena Ggiven in Figure 6.3(a). Let tπ1 be the stru
ture shown in Figure 6.3(b) where
l′(w1

0, γ0) = w1
0, l′(w1

0, γ1) = w1
1. The stru
ture wideG,W−i(tπi) is shown in Figure 6.4.Sin
e view1(w1

0, w
2
1, γ1) = view1(w1

0, w
2
2, γ1) we have l(w1

0, w
2
1, γ1) = l(w1

0, w
2
2, γ1) =

w1
1. 2De�nition 6.2.3 For a global arena G, a 
hoi
e fun
tion of player i, is a map

ci : W ∗ → W i whi
h satis�es the following 
onditions:
• ci(ǫ) = wi0.
• for all �nite partial plays ̺ ∈ P(G), if ci(̺) = wi then there exists v su
h that

last(̺)→v and vi = wi.In other words, a 
hoi
e fun
tion for player i is similar to a strategy ex
ept thatthe 
ondition (S3) need not hold. A 
hoi
e fun
tion whi
h is 
onsistent with theinformation partition for player i 
onstitutes a strategy for the player. A 
hoi
e treefor player i is de�ned in a manner similar to that of strategy tree, i.e. it is a W ilabelled W i ×W−i × Γ̃ tree.Lemma 6.2.4 Given a global game arena G, a player i ∈ N and obje
tive Φi, we
an 
onstru
t an alternating tree automaton TΦi a

epting the set of all 
hoi
e treesfor player i in G whi
h ensure Φi.Proof: Let Mi denote the Muller automaton 
orresponding to Φi. The automaton
TΦi ensures that the stru
ture t 
onstitutes the unfolding of the game arena G. Thelabelling fun
tion asso
iated with t spe
i�es the 
hoi
e fun
tion of player i. The au-tomaton also runs Mi in parallel and ensures that all the paths whi
h is 
onsistentwith the labelling is a

epted by Mi. 2Lemma 6.2.5 Given an alternating tree automaton T over W i labelledW i×W−i×

Γ trees, we 
an 
onstru
t an alternating tree automaton T ′ over W i labelled W i×Γtrees su
h that T ′ a

epts a labelled tree t′ i� T a

epts wide(G,W−i)(t
′).Proof: Let T = (Q, δ, q0, F ). We de�ne T ′ = (Q ×W−i, δ′, 〈q0, w
−i
0 〉, F ×W−i).The transition δ′(〈q, w−i〉, ui) is obtained from δ(q, ui) by repla
ing ea
h element

((ui, u−i, γ′), q′) by the element ((ui, γ′), 〈q′, u−i〉). We show that for all W i labelled
W i × Γ̃ trees t′ = (T ′

G, l
′) we have t′ ∈ Lang(T ′) i� wide(G,W−i)(t

′) ∈ Lang(T ).130



(⇐): Suppose wide(G,W−i)(t
′) ∈ Lang(T ), let (Tr, r) be an a

epting run of T . Wehave r : Tr → ((W i×W−i× Γ̃)∗×Q). Consider the tree (Tr, r

′) where for all u ∈ Trwith r(u) = (s, q) and w = last(s) we have r′(u) = (view i(s), (q, w−i)). (Tr, r
′) isan a

epting run of T ′ on t′.

(⇒): Suppose t′ ∈ Lang(T ′), let (Tr, r
′) be an a

epting run of T ′. We have

r′ : Tr → (W i × Γ̃)∗ × (Q × W−i). Consider the tree (Tr, r) where r is a map
r : Tr → (W i ×W−i × Γ̃)∗ ×Q is de�ned as:

• r(ǫ) = r′(ǫ)

• For u · d ∈ Tr with r(u) = (s, q′) and r′(u · d) = (s′ · (wi, γ), 〈q, w−i〉), we have
r(u · d) = (s · 〈wi, w−i, γ〉, q).

(Tr, r) is an a

epting run of T on wide(G,W−i)(t
′). 2Let the automaton 
onstru
ted in Lemma 6.2.5 be denoted as narrow (G,W−i)(T ).Lemma 6.2.6 Given a global arena G, a player i ∈ N and obje
tive Φi, there existsa strategy for player i to ensure Φi i� narrow (G,W−i)(TΦi) 6= ∅.Proof:

(⇒): Suppose there exists a strategy πi whi
h ensures Φi, from Lemma 6.2.4 we have
wide(G,W−i)(tπi) ∈ Lang(TΦi). From Lemma 6.2.5 we get tπi ∈ Lang(narrow (G,W−i)(TΦi)).
(⇐): Suppose Lang(narrow (G,W−i)(TΦi)) is not empty. Then there exists a tree tπi ∈

Lang(narrow (G,W−i)(TΦi)). By Lemma 6.2.5 we have wide(G,W−i)(tπi) ∈ Lang(TΦi).From Lemma 6.2.4 we get there exists a strategy for player i to ensure Φi. 2Proposition 6.2.7 then follows from Lemma 6.2.6.Proposition 6.2.7 Given a game stru
ture G = {Gi}i∈N , a player i ∈ N and anobje
tive Φi, it is de
idable to 
he
k if there exists a strategy µi for player i su
h that
µi ensures Φi.In the above 
onstru
tion, the use of alternating tree automata is mainly for
onvenien
e. One 
ould presumably work with nondeterministi
 automata as well.However, su
h a 
onstru
tion would typi
ally involve the size of the resulting au-tomaton to be exponential. In 
ontrast, alternation provides a helpful me
hanismwhereby the des
ription of the automaton itself is very simple and all the 
ombina-torial di�
ulty is shifted to the non-emptiness test.131



Theorem 6.2.8 Given a game stru
ture G = {Gi}i∈N , a subset of players C andan obje
tive ΦC, it is de
idable to 
he
k whether there exists a distributed strategy µCsu
h that µC ensures ΦC.Proof: From Proposition 6.2.7 it follows that it is de
idable to 
he
k whether C hasa joint strategy τC whi
h ensures ΦC . We show that the existen
e of a joint strategyimplies the existen
e of a distributed strategy. Sin
e existen
e of a distributedstrategy trivially implies the existen
e of a joint strategy, the theorem then follows.Claim : For all joint C strategies τC , for all ̺, ̺′ ∈ P(G) 
onsistent with τC where
C ∩ enabled(̺) 6= ∅, viewC(̺) 6= viewC(̺′) implies ∀i ∈ C su
h that i ∈ enabled(̺) wehave view i(̺) 6= view i(̺′).The 
laim 
an be veri�ed as follows. Suppose it is not true, then there exists aplayer i ∈ C and sequen
es ̺ and ̺′ su
h that view i(̺) = view i(̺′). If ̺ = ̺′ then the
laim follows easily. It 
annot be the 
ase that ̺ is a stri
t pre�x of ̺′ or vi
e-versa.Let ̺1 be the maximum 
ommon pre�x of ̺ and ̺′. Let ̺ = ̺1 ·w2 ·w3 · · ·wm and
̺′ = ̺1 · v2 · v3 · · ·vm. Sin
e view i(̺) = view i(̺′), it follows that view i(̺1 · w2) =

view i(̺1 · v2). Sin
e announ
ements are publi
, χ(w2) = χ(v2) = γ. Sin
e ̺ and ̺′are 
onsistent with τC, we have wC
2 = vC2 . Sin
e announ
ements are publi
 we have

viewC(̺1 · w2) = viewC(̺1) · (w
C
2 , γ) = viewC(̺1) · (v

C
1 , γ) = viewC(̺1 · v2). We havethe following two 
ases.

• C ∩ enabled(̺1 · w2) = ∅: Sin
e announ
ements are publi
, we get viewC(̺1 ·

w2 ·w3) = viewC(̺1 · v2 · v3).
• C ∩ enabled(̺1 · w2) 6= ∅: This also implies that C ∩ enabled(̺1 · v2) 6= ∅ and
τC(̺1 · w2) = τC(̺1 · v2). Again sin
e announ
ements are publi
 we get that
viewC(̺1 · w2 · w3) = viewC(̺1 · v2 · v3).Pro
eeding in this manner we get viewC(̺) = viewC(̺′) whi
h is a 
ontradi
tion.End of 
laimFrom the above 
laim it follows that for any partial play ̺ ∈ P(G), for anyplayer i whose move is enabled at ̺, given view i(̺), player i 
an make exa
tly thesame move that is di
tated by the joint strategy. In this way we de�ne all the lo
alstrategies. 2
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6.3 Games with private 
ommuni
ationIn the game model introdu
ed above all 
ommuni
ation between players are due topubli
 announ
ements. Communi
ation through private 
hannels between players
an be 
aptured by modifying the stru
ture of the announ
ement alphabet.For ea
h player i we have a set of 
ommuni
ation alphabets {Γij}j∈N with theinterpretation that Γij is the set of symbols whi
h player i 
an announ
e to player j.Let Γ =
⋃
i,j∈N Γij. Let Θi

put = {νi : N → Γ | ∀j ∈ N, νi(j) ∈ Γij} and Θi
get = {ηi :

N → Γ | ∀j ∈ N, ηi(j) ∈ Γji}. The fun
tion νi spe
i�es the announ
ements madeby player i and ηi spe
i�es the announ
ements re
eived by player i.The lo
al game arena for player i is then given by Gi = (W i,→i, w
i
0) where W i isthe set of lo
al game positions, wi0 is the initial game position and χi : W i → Θi

put .The move relation →i : W i × Θi
get → 2W

i satis�es the following 
ondition: for all
wi, vi ∈W i

• wi
ηi

→vi implies ηi(i) = χ(wi)(i).The global game arena G = (W,→,w0) is derived from the lo
al arenas asin the earlier 
ase. The global game positions are W = W 1 × · · · ×W n and w0 =

(w1
0, . . . , w

n
0 ). The move relation→ ⊆ W ×W whi
h satis�es the following property:

w→v i� for all i, j ∈ N

• for all i ∈ enabled(w), wi ηi

→iv
i where ηi(j) = χj(wj)(i) or wi = vi.

• for all i 6∈ enabled(w), wi = vi.6.3.1 Unde
idability of the veri�
ation questionIn this se
tion we show that if we look at the 
lass of imperfe
t information gameswhere private 
ommuni
ation between players are allowed then the veri�
ation ques-tion be
omes unde
idable. The interesting fa
t is that even for simple rea
habilityobje
tives, the problem remains unde
idable. We prove unde
idability by giving aredu
tion to the Post's 
orresponden
e problem. The proof pro
eeds along the linesof the one presented in [Ber06℄ whi
h shows that distributed strategy synthesis isunde
idable for the distributed games model introdu
ed in [MW03℄ with rea
habil-ity obje
tives.
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Post's 
orresponden
e problem: An instan
e of Post's 
orresponden
e problem(PCP) 
onsists of two lists, A = x1, . . . , xk and B = y1, . . . , yk of strings over some�nite alphabet set Z. This instan
e of PCP has a solution if there is any sequen
e ofintegers j1, j2, . . . , jm with m ≥ 1 su
h that xj1 , xj2, . . . , xjm = yj1, yj2, . . . , yjm. Thesequen
e j1, j2, . . . , jm is said to be a solution to this instan
e of PCP.List A List B
j xj yj1 1 1112 10111 103 10 0Figure 6.5: A PCP instan
eExample 6.3.1 Let Z = {0, 1}, let A and B be the list of strings as given in Fig-ure 6.5. Consider the indi
es j1 = 2, j2 = 1, j3 = 1 and j4 = 3. Then we have

x2x1x1x3 = y2y1y1y3 = 101111110. Thus the sequen
e of indi
es mentioned above isa solution. 2Theorem 6.3.2 ([HU79℄) PCP is unde
idable.Rea
hability obje
tive: Given a game G = {Gi}i∈N , to model rea
hability ob-je
tives, we assume that for ea
h player i ∈ N , there is a state reachi su
h thatfor all j ∈ N , χi(reachi)(j) = reachi. That is, on
e a player enters reachi then sheannoun
es this fa
t to all the other players. The rea
h state is also a sink statefor players and on
e entered, the player remains in this state. The rea
hability ob-je
tive Φi of player i 
an then be given as Φi = {(wi0, γ0)(w
i
1, γ1) . . . ∈ Plays i(G) |

∃j with wij = reachi}.Theorem 6.3.3 The veri�
ation question is unde
idable for rea
hability games withprivate 
ommuni
ation.Proof: Given an instan
e of PCP, we 
onstru
t a game su
h that this instan
eof PCP has a solution i� the veri�
ation question is de
idable for the 
onstru
tedgame. Let the instan
e of the PCP be given by the list of strings A = x1, . . . , xkand B = y1, . . . , yk over the set of alphabets Z. We assume that the state spa
eof the players is ri
h enough to 
ode up the PCP instan
e. That is, for ea
h index134



j ∈ {1, . . . , k} there is a state whi
h represents the index, for ea
h alphabet in Z,there is a state whi
h identi�es the alphabet and the lists A and B are also 
odedinto the state spa
e. We 
onstru
t a game 
onsisting of four players where ea
h ofthe players' fun
tions are as follows:
• Player 0 has perfe
t information about the game. That is, Players 1, 2 and 3
onvey their exa
t lo
al states to Player 0 through the private 
ommuni
ation
hannel. Player 0 makes the 
hoi
e of the list (either A or B) and also s
hedulesthe moves of other players.
• Player 1, whenever her move is enabled, 
hooses indi
es j ∈ {1, . . . , k}. Atany point she 
an also 
hoose to enter the quit1 state indi
ating the end of the
hoi
e of indi
es.
• Player 2 
hooses letters from the alphabet Z. At any point Player 2 
an also
hoose to enter the quit2 state indi
ating the end of 
hoi
e of strings generated.
• Player 3 is a deterministi
 program whose fun
tion is to mat
h the index j
hosen by Player 1 with the letters generated by Player 2 and make sure thatit is in fa
t the jth string in the list 
hosen by Player 0.The game pro
eeds as follows: initially Player 0 moves, 
hooses one of the list(either A or B) and 
ommuni
ates the 
hoi
e to Player 3 through the private 
om-muni
ation 
hannel. The 
hoi
e of list is not revealed to Players 1 and 2. NextPlayer 1 is s
heduled to move, she 
hooses an index j ∈ {1, . . . , k} and 
ommuni-
ates the 
hoi
e to both Player 0 and 3. Player 2 is unaware of the 
hoi
e madeby Player 1. Player 2 now 
hooses letters from Z and 
ommuni
ates the 
hoi
e toPlayers 0 and 3. Player 1 is unaware of the 
hoi
e of Player 2. Player 3 mat
hes thestring generated by Player 2 and ensures that it mat
hes the jth string in the list
hosen by Player 0. If it does not mat
h then Player 3 enters a reje
t state. Notethat Player 3 need not keep tra
k of the entire string in order to do this. The lists

A and B are en
oded in the state spa
e of Player 3 and she just needs to mat
hthe sequen
e of alphabets 
hosen by Player 2 with the jth string in the appropriatelist. This 
an be a
hieved with �nite memory. On
e Player 3 enters the reje
t statethen the game stays in a sink state and does not pro
eed any further. If the stringmat
hes then Player 1 
hooses another index and the game goes on as des
ribedabove. 135



Players 1 and 2 
an 
hoose to enter their quit states at any time when theyare s
heduled. Sin
e quit states are intended to 
apture the end of the sequen
eof indi
es or strings, Players 1 and 2 are required to enter their quit states in theirsu

essive moves. If at any round Player 1 enters its quit state and Player 2 
ontinuesto 
hoose letters from Z then Player 3 enters its reje
t state. Similarly if Player 2enters its quit state while Player 1 has not yet 
hosen to quit then Player 3 entersits reje
t state. Player 3 also ensures that Players 1 and 2 do not 
hoose quit statesin their initial moves. If both Player 1 and Player 2 enter their respe
tive quit statesin su

ession, then Player 3 enters an a

ept state whi
h is then 
ommuni
ated toall the players. If Player 3 ever enters its a

ept state then both Players 1 and 2move to states reach1 and reach2 respe
tively.Now 
onsider the subset of players C = {1, 2} and the joint C obje
tive ΦC bethe rea
hability obje
tive where both players enter the states reach1 and reach2respe
tively. We 
laim that for a distributed strategy (µ1, µ2) to exist whi
h ensures
ΦC , the PCP instan
e needs to have a solution. To see this, suppose the PCP instan
edoes not have a solution, then Player 0 
an appropriately 
hoose the lists A or B sothat the resulting run does not ensure obje
tive ΦC. For instan
e, suppose Player1 generates the sequen
e of indi
es j1, . . . , jm and then enters the state quit1 andPlayer 2 generates the string xj1xj2 . . . xjm and enters the state quit2. Now 
onsiderthe run where Player 0 
hooses the list B. Sin
e the PCP instan
e does not havea solution, xj1xj2 . . . xjm 6= yj1yj2 . . . yjm. Let p be the �rst index where the stringsdi�er and let p o

ur in the substring yil. Now 
onsider what happens in round
il: Player 1 
hooses the index il, however, sin
e xp 6= yp, the string of alphabetsgenerated by Player 2 in round il does not mat
h with yil. Player 3 therefore entersthe reje
t state and thus the obje
tive ΦC is not satis�ed.If the instan
e of PCP has a solution, then let the indi
es j1, j2, . . . , jm be thesolution. Consider the strategies where Player 1 
hooses indi
es j1, j2, . . . , jm andenters quit1, Player 2 generates the string xj1xj2 . . . xjm and enters quit2. Sin
e
xj1xj2 . . . xjm = yj1yj2 . . . yjm, irrespe
tive of whether Player 0 
hooses the list A or
B, Player 3 eventually enters the a

ept state. It then follows that the subset ofplayers C = {1, 2} has a distributed strategy to ensure obje
tive ΦC for the abovementioned games i� the instan
e of PCP has a solution. 2

136



6.4 Games with overlapping obje
tivesIn the previous se
tions we looked at games where players have win-loss obje
tives.In general, players' obje
tives are spe
i�ed in terms of a preferen
e ordering �i⊆

Plays i(G)×Plays i(G). On
e the preferen
e orderings of players are de�ned, we 
anlook at notions like best response and equilibrium as de�ned in Se
tion 2.1.3. Forthe purpose of algorithmi
 analysis, the preferen
e ordering of ea
h player i 
an bepresented in a �nite fashion in terms of an evaluation automaton E i = (Mi,�i)where Mi = (Ri,∆i, ri0,F
i) is the underlying Muller automaton (see De�nition5.1.2). Sin
e we want the evaluation automaton to indu
e a preferen
e orderingover paths in Plays i(G) we take the transition fun
tion ∆i : Ri ×W i × Γ̃ → Ri.Bounded memory strategies of players 
an also be presented in terms of determin-isti
 advi
e automata (De�nition 2.3.3) by appropriately modifying the transitionfun
tion to take into a

ount the views of players.In the 
ontext of non-zero sum games, we show that the best response 
ompu-tation 
an be e�e
tively performed.Theorem 6.4.1 Given a game stru
ture G = {Gi}i∈N , preferen
e orderings {�i}i∈Nof players and a strategy pro�le µ−i in terms of advi
e automata, the best responsefor player i 
an be e�e
tively 
omputed.Proof: Let the strategy pro�le µ−i be presented as advi
e automata A−i =

(A1, . . . ,Ai−1,Ai+1, . . . ,An). Let the evaluation automaton for player i be E i =

(Mi,�i) where Mi = (Ri,∆i, ri0,F
i). For ea
h F ∈ F i, we 
an 
onstru
t a nonde-terministi
 automaton AF whi
h explores paths of G as follows. It 
onsults A−i topi
k moves of players j ∈ N \ {i} and simply guesses i's moves. Sin
e strategies ofother players are deterministi
 and the initial game position is unique, this de�nesa unique path in the arena. Automaton AF runs the win-loss evaluation automaton

E iF for player i in parallel and 
he
ks if the run is winning for player i. Now, we 
anenumerate the F ∈ F in su
h a way that those higher in �
i appear earlier in theenumeration. We try automata AF in this order. 2We then have the following 
orollary.Corollary 6.4.2 Given a game stru
ture G = {Gi}i∈N , preferen
e orderings {�i}i∈Nof players and a strategy pro�le µ in terms of advi
e automata it is possible to 
he
kwhether the strategy pro�le 
onstitutes a Nash equilibrium.137



6.5 Dis
ussionIn the 
ontext of non-zero sum games of imperfe
t information, we showed that thebest response 
omputation 
an be done and it is possible to verify whether a givenstrategy pro�le 
onstitutes a Nash equilibrium. It turns out that Nash equilibriumneed not always exist in su
h games. In fa
t, a game similar to the one given inExample 6.1.4 
an be used to show this fa
t. A natural question therefore wouldbe to ask: given a game stru
ture G = {Gi}i∈N along with preferen
e orderings
{�i}i∈N of players,

• is it de
idable to 
he
k if Nash equilibrium exists in G?An obvious approa
h would be to try using te
hniques similar to the LAR tree
onstru
tion developed in Chapter 5 to ta
kle this question. Unfortunately the �nitetree unfolding 
onstru
tion does not solve the problem, sin
e in general, the strate-gies 
onstru
ted need not respe
t the information partition of players. However, the
ore idea of the LAR 
onstru
tion is to transform the game stru
ture G into a biggerstru
ture G′ whi
h satis�es the property:
• there exists an equilibrium pro�le in G i� there exists an equilibrium pro�le inmemoryless strategies in G′.We believe that using this approa
h one 
an show that the above mentionedquestion is de
idable for imperfe
t information games where players 
ommuni
atethrough publi
 announ
ements. However, we do not have a proof of this fa
t yet.
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Chapter 7Con
lusionIn 
on
lusion, the main topi
 of this thesis has been the analysis of strategies ingames. We have fo
ussed our attention on two main aspe
ts: the algorithmi
 analy-sis and the logi
al analysis of strategies. Algorithmi
 analysis of strategies in
ludedissues like,
• synthesis of winning strategies for two player zero sum games, and
• best response 
omputation and synthesis of equilibrium pro�les for non-zerosum games.For �nite extensive form games, our main tool for algorithmi
 analysis was theba
kward indu
tion algorithm. For in�nite duration games, on the other hand, evenpresenting the strategies and obje
tives of players in a �nite fashion is a non-trivialissue. We proposed evaluation automata as a 
onvenient �nite state model to presentthe preferen
e orderings of players in an in�nite duration game. We showed that inthe 
ase when preferen
e orderings of players are presented in terms of evaluationautomata, the ba
kward indu
tion pro
edure 
an be e�e
tively adapted to synthesizean equilibrium strategy pro�le.Algorithmi
 analysis as mentioned above, analyses fun
tional strategies of play-ers. However, fun
tional strategy synthesis even though theoreti
ally possible, maynot ne
essarily be a pra
ti
al tool in terms of a pres
riptive theory for players. Inthis 
ontext, we suggested that it makes sense to look at strategies as partially de-�ned obje
ts and proposed a logi
al syntax to represent strategies in terms of theirobservable properties. Thus strategy spe
i�
ations formed our basis of logi
al anal-ysis of strategies. We showed how strategy spe
i�
ations 
an be embedded into asimple modal logi
 to reason about games. On the te
hni
al front, we showed that139



the logi
 admits a 
omplete axiomatization and that the model 
he
king problem forthe logi
 is de
idable. We also 
onsidered how the logi
al analysis 
an be adaptedin the situation where the game itself has 
ompositional stru
ture. We proposed alogi
 whi
h expli
itly takes into a

ount the 
ompositional stru
ture of games forstrategi
 reasoning. We showed that the logi
 admits a 
omplete axiomatizationand that its satis�ability problem is de
idable.As mentioned in the introdu
tion, we do not 
onsider the very important 
on
eptof mixed strategies in the logi
al analysis. Thus one of the natural extensions tostrategy spe
i�
ations is to in
orporate the notion of expe
tations of players. To
ome up with pres
riptive me
hanisms whi
h provide advi
e to players on how toplay, it is essential to be able to represent a player's expe
tations about the be-haviour of the opponent. The expe
tations need not ne
essarily be represented ina probabilisti
 manner and 
ould also be based on abstra
t notions like �likelihood�[HR87℄. Introdu
ing expe
tations of players is parti
ularly interesting in the frame-work of unbounded game 
omposition as it allows players to learn from the pastinformation, revise their expe
tations and a

ordingly make use of it to generatesophisti
ated plans. Enri
hing the framework to be able to represent expe
tationsof players is thus a 
hallenging exer
ise. A related work in this 
ontext is that of[AB95℄ whi
h looks at the epistemi
 
onditions of players in terms of equilibriumnotions.All the above 
omments were regarding games of perfe
t information. For gamesof imperfe
t information, algorithmi
 as well as logi
al analysis remains in its earlystages of development and most of the work whi
h exists in the literature providenegative results. In the 
ontext of algorithmi
 analysis, even in �nite extensiveform games, the te
hniques developed for perfe
t information do not easily extendto games of imperfe
t information. For instan
e, our 
ore te
hnique of ba
kwardindu
tion 
ru
ially relies on the fa
t that players have perfe
t information in makingassumptions on how a rational opponent would play. For �nite extensive formgames, however, sin
e the set of deterministi
 strategies of players is �nite, one
ould enumerate all the strategies and de
ide on the existen
e of winning strategiesas well as synthesis of equilibrium pro�les.The situation is less 
lear in the 
ase of imperfe
t information games sin
e ingeneral stable strategy pro�les in these games require memory; providing bounds onmemory is a 
hallenging task. In the 
ase of two player zero sum games, it is possibleto transform a game of imperfe
t information into a game of perfe
t information via140



the subset 
onstru
tion su
h that the existen
e of winning strategies for at least oneplayer is preserved. This 
onstru
tion was originally suggested by Reif in [Rei84℄.Thus 
he
king for existen
e of winning strategies in su
h games is de
idable. Formulti-player non-zero sum games, in general, even the question of 
he
king whetheran equilibrium pro�le exists turns out to be unde
idable. A proof of this runs alongthe lines of the unde
idability proof presented in Se
tion 6.3.As far as the logi
al analysis is 
on
erned, for �nite extensive form games, themodal and dynami
 logi
 framework 
an be extended to reason about games withimperfe
t information. [Ben01℄ looks at reasoning about su
h games with respe
t toan epistemi
 modal language.For unbounded duration games, there are hardly any de
idable logi
s to reasonabout games with imperfe
t information. The ability of ATL to reason about gameswith imperfe
t information has been studied in the literature. The results are mostlynegative; in [AHK02℄, the authors show that the ATL model 
he
king problem formultiple players with imperfe
t information is unde
idable. [S
h04℄ and [JvdH04℄look at extensions of ATL whi
h 
ombine in
omplete information and imperfe
tre
all. [ÅW09℄ proposes an extension of ATL where bounded memory and boundedre
all are expli
itly taken into a

ount in the logi
al language.The notion of partial strategies makes sense in the 
ontext of a pres
riptivetheory for imperfe
t information games as well. Strategy spe
i�
ations as introdu
edin Chapter 3 
an be utilised to spe
ify partial strategies in imperfe
t informationgames. As noted in [Ben07℄, imperfe
t information games en
ompass two intuitivelydi�erent senses of un
ertainty.
• �Future un
ertainty�: the un
ertainty of players whi
h arises from their la
kof knowledge of what other players are going to do in the future.
• �Observation un
ertainty�: the un
ertainty arising due to players not beingable to observe events in the past.Strategy spe
i�
ations already in
orporate the notion of future un
ertainty ofplayers. However, 
oming up with an appropriate logi
al language whi
h embedsthese spe
i�
ations and 
an e�e
tively reason about games with imperfe
t infor-mation is a 
hallenging task. For it to be realisti
, su
h a language also needs toin
orporate epistemi
 attitudes and beliefs of players [HFMV95℄.
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