
A LOGICAL STUDY OF STRATEGIES IN GAMES

BySunil Easaw SimonThe Institute of Mathematial Sienes, Chennai.
A thesis submitted to theBoard of Studies in Mathematial SienesIn partial ful�llment of the requirementsFor the Degree ofDOCTOR OF PHILOSOPHYofHOMI BHABHA NATIONAL INSTITUTE

January 2010



Homi Bhabha National InstituteReommendations of the Viva Voe BoardAs members of the Viva Voe Board, we reommend that the dissertation preparedby Sunil Easaw Simon entitled �A Logial Study of Strategies in Games� maybe aepted as ful�lling the dissertation requirement for the Degree of Dotor ofPhilosophy. Date :Chairman : R. Ramanujam Date :Convener : R. Ramanujam Date :Member : Anil Seth Date :Member : Kamal Lodaya Date :Member : Meena Mahajan Date :Member : K. Narayan KumarFinal approval and aeptane of this dissertation is ontingent upon the andi-date's submission of the �nal opies of the dissertation to HBNI.I hereby ertify that I have read this dissertation prepared under my diretionand reommend that it may be aepted as ful�lling the dissertation requirement.Date :Guide : R. Ramanujam



3



DECLARATION
I, hereby delare that the investigation presented in the thesishas been arried out by me. The work is original and the workhas not been submitted earlier as a whole or in part for adegree/diploma at this or any other Institution or University.

Sunil Easaw Simon



ACKNOWLEDGEMENTSI am deeply grateful to my advisor, Dr. R. Ramanujam for his wonderful guid-ane and support all through my stay at Matsiene. It has taught me a lot overthe past six years. His insight into games and logi is re�eted in every aspet ofthis thesis and has brought fous and larity to this text. His enthusiasm, ability toome up with new ideas in takling problems and above all his immense potentialto juggle with so many duties and all this with a smile, will always remain a soureof inspiration to me.The omputer siene groups at IMS and CMI have been a great soure ofaademi enrihment for me. All that I have learnt of theoretial omputer siene,I owe it to them. I am deeply indebted to eah one of them - V. Arvind, KamalLodaya, Meena Mahajan, R. Ramanujam, Venkatesh Raman, C.R. Subramanian;Madhavan Mukund, K. Narayan Kumar and K.V. Subrahmanyam.My speial thanks to Soumya Paul, my olleague with whom part of the workreported here was done in ollaboration with. It was an absolute pleasure to workwith Soumya and his never ending enthusiasm for new ideas has always made ourresearh disussions a fun experiene. Many thanks to S.P. Suresh, who has helpedme so often in both tehnial and non-tehnial matters.I would like to thank the Diretor, Prof. R. Balasubramanian, for having enabledmy stay at this institute during whih all the work presented here has been arriedout. I also thank the institute for providing a wonderful environment to pursueresearh. Matsiene has also been instrumental in providing generous support formy various aademi visits. Thanks also to the library and administrative sta� ofthe institute, whose e�orts have made my stay here so fruitful and omfortable.Being at Matsiene wouldn't have been the same without the ompany andamaraderie of my aademi olleagues and friends here. I thank eah one of themfor having made my stay at Matsiene so memorable. All the good times thatI have had with T. Muthukumar and Piyush P. Kurur during my early days atMatsiene are still vivid in my mind. My a�etionate thanks to Jayalal Sarma andVed Prakash Gupta, for being ever willing to help me in myriad ways. Thanks toN. Narayanan whom I ould always bank on to lear all my Latex related doubts.He has graiously and patiently given me the bene�ts of his tehnial expertise.I am indebted to my family in ways far more than I an express, espeially tomy niees Rea and Amy; their vivaious sparkle and spontaneous reasoning havealways energised me.



AbstratThe main theme of this thesis is reasoning about strategies in games in a logi-al framework. Logial analyses of games typially onsider players' strategies asatomi objets and the reasoning is about existene of strategies, rather than aboutstrategies themselves. This works well with the underlying assumption that playersare rational and possess unbounded omputational ability. However, in many pra-tial situations players have limited omputational resoures. Thus a presriptivetheory whih provides advie to players needs to view strategies as relations on-straining players' moves rather than view them as omplete funtions. The entralidea is to formulate the notion of omposite strategies whih are onstruted in astrutural manner and to show how expliit reasoning of strategies an be ahieved.The �rst part of the thesis looks at a logial analysis of strategies. We start thisstudy by de�ning the notion of struturally spei�ed strategies in the frameworkof unbounded duration games on graphs. This enables us to reason about how aplayer's strategy may depend on assumptions about the opponent's strategy. Suhspei�ations give rise to partially spei�ed bounded memory strategies. We onsidera simple modal logi to reason about suh strutured strategies. We present aomplete axiomatization of this logi and show that the truth heking problem ofthe logi is deidable.We then look at how struturally spei�ed strategies an be adapted to the asewhere the game itself has ompositional struture. In this setting we suggest thatrather than performing strategi reasoning on the omposite game, one needs toompose game-strategy pairs. The advantage of imposing struture not merely ongames or on strategies but on game-strategy pairs, is that we an speak of a om-posite game g followed by g′ whereby if the opponent played a strategy π in g, theplayer responds with σ in g′ to ensure a ertain outome. In the presene of itera-tion, a player has signi�ant ability to strategize by taking into aount the expliitstruture of games. We onsider a propositional dynami logi whose programs areregular expressions over suh game-strategy pairs and present a omplete axiom-atization of the logi. We also show that the satis�ability problem of the logi isdeidable.In the seond part of the thesis, we look at an algorithmi analysis of games.We propose evaluation automata as a onvenient �nite state model to present thepreferene orderings of players in in�nite games. We look at the lassial solutiononept of Nash equilibrium in terms of funtional strategies and show that an



equilibrium pro�le always exists in in�nite duration games on (�nite) arenas wherethe preferene orderings of players are spei�ed in terms of evaluation automata.We also show that the best response veri�ation question is deidable with respetto strategy spei�ations and that synthesizing a best response strategy is possible.All the analysis mentioned above is arried out for games of perfet information.We �nally investigate multi-player games of imperfet information. It follows fromthe result of Peterson and Reif (1979) that in general the veri�ation question whihasks whether a subset of players have a distributed winning strategy is undeidable inthese games. The ruial element whih yields undeidability is the fat that playersare not allowed to ommuniate with eah other. We propose a framework to modelgames of imperfet information where ommuniation is expliitly represented. Herea player's information partition is generated in a strutural manner rather than beingpresented as part of the game formalism. We show that for the sublass of gameswhere ommuniation is restrited to publi announements the veri�ation questionis deidable. We also look at the non-zero sum version where players have prefereneorderings over outomes. In this setting we show that best response omputationan be performed and that one an verify whether a strategy pro�le onstitutes anequilibrium an be arried out.
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Chapter 1IntrodutionThe entral innovation introdued by game theory is its strategi dimension. Aplayer's environment is not neutral, and she expets that other players will try tooutguess her plans. Reasoning about suh expetations and strategizing one's ownresponse aordingly onstitutes the main logial hallenge of game theory. Gamesare de�ned by sets of rules that speify what moves are available to eah player,and aording to her own preferenes over the possible outomes, every player plansher strategy. If the game is rih enough, the player has aess to a wide range ofstrategies, and the hoie of what strategy to employ in a game situation dependsnot only on the player's understanding of how the game an proeed from then on,but also based on his expetation of what strategies other players are following.While this observation holds true for muh of game playing, game theory largelyonsists of reasoning about games rather than reasoning in games. It is assumed thatthe entire struture of the game is laid out in front of us, and we reason from above,prediting how rational players would play, and suh preditions are summarised intoassertions on existene of equilibria. In an ideal world where players have unboundedomputational abilities and where rationality is ommon knowledge, suh preditionswould be realisti. Players ould strategize based on all possible behaviours ofothers and if optimal strategies exist then they will always be able to dedue thesestrategies. However, in reality, players are bounded memory agents having limitedomputational abilities. Muh of the theory analysing solution onepts in gamesassumes that players are rational, have unbounded omputational resoures andtalks only about the existene of stable strategy pro�les.These omments hold true even for �nite duration games with perfet informa-tion. The lassi example of suh a game is the game of hess. Using the bakward1



indution algorithm, Zermelo [Zer13℄ argued that hess is determined, i.e. either thereexists a pure strategy for one of the two players (white or blak) guaranteeing thatshe will always win or eah one of the two players has a strategy guaranteeing atleast a draw. However, neither do we know whih of the three alternatives is theorret one, nor a winning strategy if it exists. For games like Hex, it is known thatthe �rst player an fore a win [Gal79℄ but nonetheless a winning strategy is notknown. Theoretially a �nite game like hess or hex is not very interesting sinethe winner an be determined in time linear in the size of the game tree using thebakward indution proedure.As is apparent, existene results are of not muh help in advising players on howto play. The situation gets worse in the ase of games with overlapping objetiveswhere solution onepts in general look for equilibrium strategy pro�les where noneof the players gain by unilaterally deviating. In general, suh games an have mul-tiple equilibrium pro�les and it is not lear whih equilibrium the players would tryto attain. An equilibrium seletion theory was proposed by Harsanyi and Seltenin [HS87℄ to deal with suh situations. The theory models the unertainty of eahplayer in terms of a belief hierarhy whih spei�es a player's beliefs about whatothers play, about what they believe she and others play and so on, ad in�nitum.The theory thus makes use of unbounded iteration of beliefs and it is hardly learwhether this mathes in any way the reasoning done by players when they atuallyplay a game.And yet, as Aumann and Dreze [AD05℄ point out, game theory started by try-ing to develop a presriptive theory for rational agents. The seminal work of vonNeumann and Morgenstern envisaged game theory as onstituting advie for playersin game situations, so that strategies may be synthesized aordingly. While thiswas summarily ahieved for two person zero sum games, advie funtions for multi-player games with overlapping objetives have been hard to ome by. [AD05℄ arguethat suh a presriptive game theory must aount for the beliefs and expetationseah player has about strategies followed by other players. The interative elementis ruial and a rational player should then play so as to maximize his utility, givenhow he thinks the others will play.We suggest that any presriptive theory whih takes into aount the limitedomputational abilities of players needs to onsider strategies as partial plans ratherthan omplete ones. Or in other words, strategies need to be onsidered as rela-tions onstraining players' moves, rather than funtions presribing them uniquely.2



Thus rather than viewing them as atomi objets, strategies need to be viewed asstrutured objets built in some ompositional fashion. This alls for a syntatigrammar for omposition of partial strategies and it also suggests that logial lan-guages designed to reason about omposition of programs ould provide valuableinsight in developing a similar framework for strategies.Logial analysis of games and strategiesVarious logial formalisms have been used to reason about games and strategies,and they an broadly be lassi�ed into three branhes.Modal and dynami logi: In the ase of �nite extensive form games, ationindexed modal logis are well suited for logial analysis. Utilities an be odedup in terms of speial propositions and the preferene ordering is then indued bythe impliation available in the logi. Game trees themselves are taken as modelsof the logi. Adopting this approah, a harateristi formula for the bakwardindution proedure is exhibited in [Bon01℄. In [Ben01, Ben02℄ van Benthem arguesthat extensive form games an be thought of as proess models along with speialannotations identifying player nodes. A dynami logi framework an then be usedto desribe omplete strategies of players as well as reasoning about outomes thatan be ensured. Instead of oding objetives of players in terms of propositions,there have been suggestions to inorporate elements of modal preferene languagesinto the logi.Expliit oding of omplete strategies works well in the ase of �nite exten-sive form games. However, this approah is not �generi�, and the desription ofstrategies depends on the partiular model under onsideration. The dynami logiformalism odes up the exat sequene of moves whih form a omplete strategy andthis ruially relies on having a spei� bound on the depth of the game tree. Butthen, this tehnique does not help in the analysis of unbounded duration games. Weoften ome aross games where players have the option to quit the game or ontinueplaying. If they ontinue, they an potentially earn a better payo� but there is alsothe downside of losing what they have earned. These are games where the plays are�nite but of unbounded duration; suh games an be easily modelled as games ongraphs.Temporal logi: Various temporal logis have also been employed to reason about3



games. Notable among these is the work on alternating temporal logi (ATL)[AHK02℄ whih onsiders seletive quanti�ation over paths that are possible out-omes of games in whih players and an environment alternate moves. ATL reasonsabout strutured games whih are games on graphs where eah node is assoiated witha single normal form game. In the initial formulation of ATL strategies themselvesould not be referred to in the logi. Various extensions of ATL where strategiesare allowed to be named and referred to in the formulas of the logi are proposedin [vdHJW05℄ and [WvdHW07℄. We will look at reasoning in games with ATL inmore detail in Setion 3.3.7.Game logi: Propositional game logi [Par85℄, the seminal work on logial aspetsof game theory, talks of existene of strategies but builds omposite struture intogames. [Gor03℄ looks at an algebrai haraterisation of games and presents a om-plete axiomatization of identities of the basi game algebra. Pauly [Pau01℄ has builton this to provide interesting relationships between programs and games, and todesribe oalitions to ahieve desired goals. Goranko [Gor01℄ relates Pauly's oali-tion logis with work done in alternating temporal logi. In this line of work, thegame itself is struturally built from atomi objets. However, the reasoning doneis about existene of strategies and strategies themselves do not �gure in the logialformalism.Thus existing work on logial analysis of games tend to fous on �existene ofstrategies� for players. Even when strategies are onsidered expliitly in the logialformalism they are taken to be omplete plans and mostly memoryless. To get abetter understanding of the logial foundations of game theory it is neessary tolook at formalisms whih take into aount the struture of strategies expliitly inthe logial language. In van Benthem's words, strategies are the �unsung heroes� ofgame theory [Ben07℄. A reent work in this diretion is that of Ghosh [Gho08℄ whihpresents a omplete axiomatisation of a logi desribing both games and strategiesin a dynami logi framework, but again the assertions are about unstruturedstrategies.In this thesis, we take up the issue of logial analysis of strategies in games. Morepreisely, we propose a syntati struture to speify bounded memory strategies interms of their observable properties and look at how reasoning in games an bee�etively done with respet to strategy spei�ations.
4



Game representations and solution oneptsA natural way of presenting games is by representing the individual moves of playersin an expliit manner. This is often alled the extensive form game representation,where the game is represented as a tree with nodes representing game positions andedges representing the moves of players. Sine the extensive form representationpreserves the struture of the game, it is an ideal representation to reason aboutstrategies whih are strutured in terms of its observable properties. In ontrast,the normal form representation, whih is widely used in game theoreti literatureprovides an abstrat representation of games in terms of outomes. This presentationis justi�ed under the standard assumption made in game theory that players arerational. If players are perfetly rational and they have unbounded omputationalresoures, then they ould in priniple oneive of strategies in full detail takinginto aount every possible move of the opponent and speifying their response.The important point being that this an be done even without playing the game.Thus the strategies of all players an be listed and the game ould be spei�ed interms of the outomes. The game is then played by eah of the players hoosing astrategy simultaneously.However, in this approah, optimal strategies or stable strategy pro�les of playersneed not exist. This brings us to one of the most important notions in game theory,that of mixed strategies. As opposed to deterministi strategies (also alled purestrategies) whih pik ations with absolute ertainty, mixed strategies assoiate aprobability distribution over the set of possible ations. We �nd mixed strategiesoften used in many of the hildren's games, for instane it is well known that thebest strategy to follow in the game of mathing pennies is for both players to pikheads or tail randomly [Str93℄. The seminal result of Nash [Nas50℄ showed thatevery �nite game has an equilibrium pro�le in mixed strategies.Even in ases where the set of pure strategies of players is �nite, the set of mixedstrategies need not be. Thus to reason in games, there is the natural question ofhow players implement suh strategies. One way is to think of players dynamiallyswithing between pure strategies based on the observed behaviour of other play-ers. In this ontext an interesting question would be to ask whether the behaviourof players stabilizes. In other words, do players eventually stop swithing betweenstrategies and stik to some pure strategy. A preliminary logial study of these is-sues were taken up in [PRS09a, PRS09b℄. A more realisti interpretation of playersimplementing mixed strategies would be: players typially begin with some expe-5



tation on the behaviour of other players and revise their expetations dependingon what they observe in the history of the play. Suh situations are extensivelystudied in lassial game theory literature where Bayesian revision of priors is astandard tehnique. Inorporating expetations of players into the logial frame-work for strategi reasoning is an interesting and hallenging task whih will alsomodel players' behaviour in a more realisti fashion. In this thesis however, we donot take up this issue.Sub-game perfet equilibrium: Sine extensive form games are represented interms of trees, the notion of sub-games an be de�ned in a natural manner. Givenan extensive form game T and a game position s the subtree rooted at s onstitutesa sub-game of the original game T . Sub-game perfet equilibrium is a re�nement ofstandard equilibrium notion where hoies whih involve any player making a movethat is not redible (beause it is not optimal) are eliminated. A strategy pro�le issaid to be a sub-game perfet equilibrium [Sel65℄ if it represents an equilibrium pro�lein every sub-game of the original game. In other words, sub-game perfetion looksat strategies whih are ompositionally onstruted from strategies in the varioussub-games of the original game. In the setting of �nite games, sub-game perfetionis justi�ed under the trembling hand assumption that players may hoose unintendedstrategies with negligible probability and thus all the game positions of the originalgame are reahable. In the ontext of unbounded duration non-zero sum games, itis no longer lear what the impliations of trembling hand assumptions are, in fateven oming up with appropriate notions of rationality whih justi�es the tremblinghand assumption is a hallenging task. However, the equilibrium notions an bemathematially well de�ned by extending de�nitions of �nite game strutures. Ifwe do not question the foundational issues involved, then the material developed inChapter 4 suggests a way of omposing strategies by taking into aount sub-gamestrutures.Struture of the thesisThe thesis looks at the logial and algorithmi analysis of strategies. Chapter 2provides a general introdution to extensive form and normal form games and thevarious well known solution onepts. We also give an overview on logial analysisof games in the literature. The �rst part of the thesis onsists of Chapters 3 and 4whih look at the logial analysis of strategies. In Chapter 3 we introdue strategy6



spei�ations and relate these spei�ations to partially de�ned bounded memorystrategies. A logi for reasoning about suh strutured strategies with respet toa single game is de�ned. A omplete axiomatization of the logi is presented andthe truth heking problem is shown to be deidable. Chapter 4 looks at howlogial analysis of strategies an be appropriately adapted in the ase when thegame itself is ompositional. We de�ne a logi whih expliitly takes into aountthe ompositional struture of games for strategi reasoning. We give a ompleteaxiomatization of the logi and show that the satis�ability problem for the logi isdeidable. Chapters 5 and 6 onstitute the seond part of the thesis whih looks atthe algorithmi analysis of strategies in games. In Chapter 5, we study the lassialsolution onept of Nash equilibrium with respet to non-zero sum in�nite games interms of funtional strategies. We also look at how strategy spei�ations help inthe algorithmi analysis of in�nite non-zero sum games. In Chapter 6, we look atgames of imperfet information and provide a model where ommuniation betweenplayers is expliitly represented. We show that the best response omputation anbe e�etively arried out in this setting. Chapter 7 ontains onluding remarks andomments on future work.

7



Chapter 2PreliminariesIn this hapter we provide a general introdution to the two main forms of gamerepresentation: the extensive form and the normal form representation. We intro-due well known solution onepts assoiated with games. We also give an overviewon logial analysis of games.Throughout the thesis, we will be working in the setting of non-ooperativegames. In Chapters 2,3,4 and 5, we will be dealing with games of perfet infor-mation. We therefore restrit our attention to two player games for onveniene ofpresentation. The tehniques developed an be extended to multi-player games aswell. We do not analyze the e�et of players forming oalitions even though it on-stitutes a very interesting branh of game theory. We do however look at imperfetinformation in Chapter 6 and analyse suh games expliitly in terms of multipleplayers.2.1 Extensive form gamesExtensive form games are a natural model for representing �nite games in an expliitmanner. In this model, the game is represented as a �nite tree where the nodes ofthe tree orresponds to the game positions and edges orrespond to moves of players.The leaf nodes are labelled with payo�s obtained by players. We present the formalde�nition below.Let N denote the set of players, we use i to range over this set. For tehnialonveniene, we restrit our attention to two player games, i.e. we take N = {1, 2}.We often use the notation i and ı to denote the players where ı = 2 when i = 1and ı = 1 when i = 2. Let Σ be a �nite set of ation symbols representing moves of8
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• • • • • • • • •Figure 2.1: Finite extensive form game.players, we let a, b range over Σ. For a set X and a �nite sequene ρ = x1x2 . . . xm ∈

X∗, let last(ρ) = xm denote the last element in this sequene.2.1.1 Game treesLet T = (S,⇒, s0) be a tree rooted at s0 on the set of verties S and⇒ : (S×Σ) → Sis a partial funtion speifying the edges of the tree. The tree T is said to be �niteif S is a �nite set. For a node s ∈ S, let →
s= {s′ ∈ S | s

a
⇒s′ for some a ∈ Σ}. Anode s is alled a leaf node (or terminal node) if →

s= ∅. Let frontier(T) denote theset of all leaf nodes of T.A �nite extensive form game tree is a pair T = (T, λ̂) where T = (S,⇒, s0) isa �nite tree. The set S denotes the set of game positions with s0 being the initialgame position. The edge funtion ⇒ spei�es the moves enabled at a game positionand the turn funtion λ̂ : S → N assoiates eah game position with a player.Tehnially, we need player labelling only at the non-leaf nodes. However, for thesake of uniform presentation, we do not distinguish between leaf nodes and non-leafnodes as far as player labelling is onerned. For i ∈ N , let Si = {s | λ̂(s) = i}.Figure 2.1 shows an example of a �nite extensive form game tree. The nodes arelabelled with the player labels and edges represent ations enabled for players.A play in the game T starts by plaing a token on s0 and proeeds as follows: atany stage if the token is at a position s and λ̂(s) = i then player i piks an ationwhih is enabled for her at s, and the token is moved to s′ where s a
⇒s′. Formallya play in T is simply a path ρ : s0a0s1 · · ·ak−1sk in T suh that for all 0 ≤ j < k

sj
aj

⇒sj+1 and sk ∈ frontier(T ). Note that eah leaf node t denotes a play of thegame whih is the unique path from the root node s0 to t. Let Plays(T ) denote theset of all plays in the game tree T . 9
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• •Figure 2.2: Strategy of player 1.2.1.2 StrategiesA strategy for player i is a funtion µi whih spei�es a move at every game positionof the player, i.e. µi : Si → Σ. For i ∈ N , we use the notation µi to denotestrategies of player i and τ ı to denote strategies of player ı. By abuse of notation,we will drop the supersripts when the ontext is lear and follow the onventionthat µ represents strategies of player i and τ represents strategies of ı. A strategy µan also be viewed as a subtree of T where for eah player i node, there is a uniqueoutgoing edge and for nodes belonging to player ı, every enabled move is inluded.Formally we de�ne the strategy tree as follows:De�nition 2.1.1 For i ∈ N and a player i strategy µ : Si → Σ the strategy tree
Tµ = (Sµ,⇒µ, s0, λ̂µ) assoiated with µ is the least subtree of T satisfying the fol-lowing property:

• s0 ∈ Sµ

• For any node s ∈ Sµ,� if λ̂(s) = i then there exists a unique s′ ∈ Sµ and ation a suh that
s
a
⇒µs

′.� if λ̂(s) 6= i then for all s′ suh that s a
⇒s′, we have s a

⇒µs
′.Figure 2.2 shows a strategy tree for player 1 in the �nite extensive form gametree given in Figure 2.1.Let Ωi(T ) denote the set of all strategies for player i in the extensive formgame tree T . A play ρ : s0a0s1 · · ·ak−1sk is said to be onsistent with µ if for all10



j : 0 ≤ j < k we have sj ∈ Si implies µ(sj) = aj . A strategy pro�le (µ, τ) onsistsof a pair of strategies, one for eah player.A play ρ is onsistent with a strategy pro�le (µ, τ) if ρ is onsistent with µ and
τ . It is easy to hek that given a strategy pro�le (µ, τ), there exists a unique playin T whih is onsistent with (µ, τ). This an be thought of as the play generatedby (µ, τ). We denote this play by ρ(µ,τ).2.1.3 Objetives of playersThe extensive form game tree merely de�nes the rules of the game, or how thegame progresses and terminates. More interesting are the objetives of playerswhih speify their preferenes over outomes of the game. This is aptured byassoiating a utility (or payo�) funtion ui : frontier(T ) → V with eah player
i ∈ N . Intuitively, for eah play ρ in the game tree T terminating at some frontiernode, the utility funtion of player i assoiates with ρ a value from the set V. Thepayo� set V needs to be an ordered set, and traditionally it is taken to be a linearlyordered set. The utility funtion then inherits the underlying ordering of V whihin turn indues a preferene ordering on the set of plays. In what follows, we usesubsets of natural numbers as the payo� set and the exat set under onsiderationwill be expliitly mentioned. We assume the standard ordering on natural numbers.A game is then spei�ed by a pair G = (T , {ui}i∈N ,V) where T is the extensiveform game tree, ui is the utility funtion of player i ∈ N and V is the payo� set.Zero sum objetivesIn the ase of two player games, the notion of �winning� arise in a natural way, wherethe objetives of players are stritly ompetitive. This is aptured by assoiatingeah player i ∈ {1, 2} with a utility funtion ui : frontier(T ) → {0, 1} whih satis�esthe ondition:(Z1) For all t ∈ frontier(T ) and for all i ∈ {1, 2}, ui(t) = 1 i� uı(t) = 0.It should be noted that in the literature, the range of the utility funtion for twoplayer zero sum games is usually taken to be {−1, 1}. The payo�s an always besaled to lie in the set {0, 1} and we hoose this set merely for onveniene.A play ρ ∈ Plays(T ) is said to be winning for player i i� ui(last(ρ)) = 1. Dueto the above restrition on the utility funtion, this also implies that for a play ρwhih is winning for player i, uı(last(ρ)) = 0. In other words, ρ is losing for player11



ı. The utility funtion ui indues a preferene ordering �i⊆ Plays(T ) × Plays(T )in the following manner. For ρ, ρ′ ∈ Plays(T ) we have
• ρ �i ρ′ i� ui(last(ρ)) ≤ ui(last(ρ

′)).Note that aording to the de�nition, �i for eah player i is a re�exive, transitiveand omplete binary relation. In other words �i is a total preorder on Plays(T ).A strategy µ of player i is a winning strategy if for all paths ρ ∈ Tµ, ui(last(ρ)) =

1. Player i wins the game G if there exists a winning strategy for i in the game G.We say a game G is determined if one of the players win G.Relevant problems: In the setting of two player zero sum games, the questions ofinterest inlude: Given a game G = (T , {ui}i∈N),1. is G determined?2. given i, determine if player i wins G and if so, ompute the winning strategy.The �rst question onerning determinay was settled by the following resultoften referred to as the Gale-Stewart theorem.Theorem 2.1.2 ([GS53℄) Every �nite two player zero sum game is determined.The seond question deals with the algorithmi issue of determining the winnerof a game and onstruting the winning strategy. The bakward indution algorithmdue to Zermelo ([Zer13℄) provides a solution to this question.Bakward indution algorithm[Jon80℄: The proedure BI (G, i) takes as inputa game G = (T , {ui}i∈{1,2}) and a player i ∈ {1, 2}. It deides whether player i hasa winning strategy in G and if so, omputes the winning strategy. The algorithmproeeds as follows: Initially all nodes are unlabelled.
• All leaf nodes t are labelled with ui(t).
• Repeat the following steps till the root node s0 is labelled: Choose a non-leafnode s whih is not labelled and all of whose suessors are labelled,� If λ̂(s) = i and there exists s′ suh that s a

⇒s′ where s′ is labelled 1 thenlabel s with 1 and mark the edge s a
⇒s′.� If λ̂(s) = ı and every suessor s′ is labelled 1 then label s with 1.12



The orretness of the proedure is asserted by the following proposition whihan be easily shown by an indutive argument.Proposition 2.1.3 Given a game G = (T , {ui}i∈{1,2}) and i ∈ {1, 2}, player i has awinning strategy in G i� the root node s0 is labelled with 1 by the bakward indutionproedure BI (G, i).The subtree of T onstituted by hoosing the marked edges for all game positionsof player i is the orresponding winning strategy.Overlapping objetivesThe �rst step in generalising from zero sum objetives would be to drop the require-ment that utilities of the players be antagonisti. That is, eah player is assoiatedwith a �win-loss� (or binary) objetive whih is spei�ed by the utility funtion
ui : frontier(T ) → {0, 1}. However, the utility funtion ui need not satisfy ondi-tion (Z1). Thus it is possible that there exists a leaf node t suh that ui(t) = uj(t)for players i and j with i 6= j. In other words, the objetives of players an possiblyoverlap. In general, non-zero sum games are games where the utility funtion is amap ui : frontier(T ) → N, where N denotes the set of natural numbers.Best response and equilibriumIn the ase of non-zero sum games, the role of determinay is replaed by one ofthe most important onepts in game theory, that of Nash equilibrium [Nas50℄. Weformally de�ne best response and Nash equilibrium below.De�nition 2.1.4 Given a strategy τ of player ı, the strategy µ of player i is thebest response for τ if ∀µ′ ∈ Ωi(T ), ui(ρ(µ′,τ)) ≤ ui(ρ(µ,τ)).De�nition 2.1.5 A strategy pro�le (µ, τ) onstitutes a Nash equilibrium if µ is thebest response for τ and τ is the best response for µ.Thus a pro�le of strategies, one for eah player, is said to be in Nash equilibriumif no player gains by unilaterally deviating from his strategy. In other words, a Nashequilibrium is a strategy pro�le in whih every player's strategy is optimal assumingthat the other players use their equilibrium strategies.For extensive form games, a more re�ned notion of stable strategy pro�le is thatof sub-game perfet equilibrium [Sel65℄. Observe that for an extensive form game13



T = (S,⇒, s0, λ̂), and a node s ∈ S, the subtree of T rooted at s also de�nes avalid extensive form game (we denote this game by Ts). A strategy pro�le (µ, τ)onstitutes a sub-game perfet equilibrium if for all nodes s ∈ S, the pro�le (µ, τ)onstitutes a Nash equilibrium for the game Ts.Relevant problems: In the ontext of non-zero sum games, the questions of in-terest inlude: given a game G = (T , {ui}i∈N),1. given a strategy τ of player ı, ompute the best response strategy of player ifor τ .2. determine if game G possesses a Nash equilibrium strategy pro�le.3. if Nash equilibrium exists then ompute the equilibrium pro�le.Below we show that for every non-zero sum �nite extensive form game, a Nashequilibrium strategy pro�le always exists. We also show that the omputation ofbest response and equilibrium pro�le is algorithmially solvable.Best response omputation: Given a game G = (T , {ui}i∈N) and a strategypro�le τ of player ı, onsider the strategy tree Tτ of τ . The tree Tτ satis�es theproperty that for all game positions of ı, there is a unique outgoing edge and allhoies of player i nodes are preserved. In other words, only player i has any strategihoie left. The best outome player i an ahieve is to reah a terminal node t suhthat ui(t) ≥ ui(t
′) for all t′ ∈ frontier(T ). Let ρts0 : s0a0 . . . sk = t denote theorresponding play. Consider any strategy µi whih satis�es the ondition that forall m : 0 ≤ m < k, µi(sm) = am. For i nodes not ourring in ρts0 the strategyis allowed to pik any enabled ation. It an be easily veri�ed that µi is the bestresponse of player i for τ .The above proedure an be implemented to run in time linear in the size of theextensive form game tree. We need to onsider the tree Tτ and �nd a path to theleaf node with maximum utility for player i. This path an be found using a depth�rst searh proedure whih runs in linear time and the strategy an be de�ned fromthis path.Equilibrium omputation: The bakward indution algorithm introdued earlieris our ore tehnique in equilibrium omputation. We modify the earlier mentionedproedure in order to deal with utilities.14



The proedure EQ(G) takes as input an n-player gameG and produes as outputa strategy pro�le (µ, τ). The proedure works as follows: Initially all nodes areunmarked.
• Label all leaf nodes t with the payo� tuple (u1(t),u2(t)), let this be denotedby u(t). The labelling is then extended to all nodes of the tree as follows.
• Fix an i ∈ N and repeat the following step till the root node s0 is labelled:Choose a non-leaf node s for whih u(s) is not de�ned and all of whose su-essors are labelled,� if λ̂(s) = i then let s′ ∈→

s be a node suh that ui(s
′) ≥ ui(s

′′) for all othersuessor nodes s′′ of s. De�ne u(s) = u(s′) and µ(s) = a where s a
⇒s′.� if λ̂(s) = ı then let s′ ∈→

s be a node suh that uı(s
′) ≥ uı(s

′′) for all othersuessor nodes s′′ of s. De�ne u(s) = u(s′) and set τ(s) = a where
s
a
⇒s′.Note that aording to the proedure, for all i ∈ N , for all nodes s, if λ̂(s) = ithen µ(t) is de�ned. Therefore the tuple (µ, τ) generated by the proedure on-stitutes a valid strategy pro�le. The following proposition an be shown by anindutive argument.Proposition 2.1.6 For a game G = (T , {ui}i∈N), if (µ, τ) is the strategy pro�leonstruted by the proedure EQ(G) then for all i ∈ N , µ is the best response for τand τ is the best response for µ.Corollary 2.1.7 For a game G = (T , {ui}i∈N), the strategy pro�le (µ, τ) on-struted by the proedure EQ(G) onstitutes a Nash equilibrium pro�le.2.2 Normal form gamesIn extensive form games, moves of players are expliitly presented and thereforestrategies are not abstrat atomi objets but have ertain struture assoiatedwith them. Another ommonly used representation for games is the normal form(or strategi form) representation. In ontrast to the extensive form representation,strategies are presented in normal form games in an abstrat manner. In this rep-resentation, strategies of players orresponds to hoosing an ation from the ationset. 15



We assume that the set of ations is partitioned into ation sets for eah player,i.e. Σ = Σ1 ∪Σ2. Let Σ̂ = Σ1 ×Σ2. A strategy pro�le is simply a pair of ations, onefor eah player. A play of the game orresponds to eah player hoosing an ationsimultaneously without knowledge of the ation piked by the other player. Thus astrategy pro�le onstitutes a play in the game. Eah play is assoiated with a pairof utilities, denoting the payo�s for the players.De�nition 2.2.1 Suppose |Σ1| = m and |Σ2| = k, then a strategi form game anbe represented as an m × k matrix A where the ations of player 1 onstitute therows of the matrix and that of player 2 the olumns. The matrix entries speify theoutome of the play for eah player.Example 2.2.2 A normal form game with m = k = 2 is shown in Figure 2.3. Here
Σ1 = {a1, b1} and Σ2 = {a2, b2}. The ation pro�le (a1, a2) where player 1 hoosesto play a1 and player 2 hooses a2, results in the utility u1

1 for player 1 and u1
2 forplayer 2.
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2For normal form games, the notion of best response and equilibrium an bede�ned as in the ase of extensive form games.Tree representation of normal form gamesA normal form game an be viewed as an extensive form game tree of depth onewhere the edges are labelled by pairs of ations, one for eah player. Formally thegame tree T = (S,⇒, s0, {ui}i∈N) where S is the set of states, s0 is the root of thetree. The transition funtion ⇒ : s0×Σ̂ → (S \{s0}) is a partial funtion also alledthe move funtion whih satis�es the ondition: for all s ∈ S \ {s0}, there exists16



a ∈ Σ̂ suh that s0
a
⇒s. The utility funtion ui : S → N. Let Σ̂T = {a ∈ Σ̂ | ∃s′ ∈

S where s0
a
⇒s′} denote the set of all strategy pro�les of T .
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2)(a) (b)Figure 2.4: Tree representation of a normal form gameThe game tree orresponding to the normal form game in Figure 2.3 is shownin Figure 2.4(a). A play is simply an edge in the tree, this orresponds to both theplayers piking an ation. A strategy for player i is the subtree of g where for player

i a unique ation is hosen and for player ı all the ations are taken into aount. Astrategy for player 1 in the game given in Figure 2.4(a) where he piks ation �a1�,is shown in Figure 2.4(b).2.3 Games on graphsExtensive form game trees provide a onvenient representation of �nite games. How-ever, we often ome aross games where plays are �nite but the number of moves (orthe depth of the game tree) is not �xed in advane. Typial examples of suh gamesare ones in whih at ertain positions, players are given the option of quitting thegame and walking away with a ertain payo� or ontinue playing the game. Theseare usually non-zero sum games and the ation of quitting the game omes with aost tradeo�. If the player stays on and ontinues with the game, he an potentiallyget a better payo� but there is also a downside of losing what he has earned sofar. If the game reahes a situation where all the players reognise that they annotimprove their payo�s any further then they an mutually agree to terminate thegame.For instane, onsider the game of hess played as part of a television game show.Two players are ompeting against eah other. However it is not a simple win-loss game. Players earn some spei�ed amount on being able to perform a ertainsequene of moves or on reahing some partiular board on�guration. At this point,17



the players also have the option to quit the game and leave with the amount theywon or to ontinue playing the game. If they ontinue, they an potentially earnmore but there is also the downside of losing what they have earned. As in any gameshow, the payo�s are not umulative, and they arise from a �nite set of divisions.The jakpot, of ourse, is when a player wins the game he gets paid 1 million dollars.If the game reahes a point where the board on�guration keeps repeating and theplayers realise that there is no way of improving their payo�s, they an mutuallyagree to terminate the game and disperse with what they earned so far 1.These are games of unbounded duration and the extensive form game represen-tation results in an in�nite tree. There are various possible options to present suhgames in a �nite fashion. One way is to speify the game struture in terms of a�nite set of game rules. In this thesis, we adopt a simpler approah based on graph-ial game models whih is to present the game in terms of a �nite game arena (�nitegraph). The assoiated in�nite extensive form game is obtained by the unfolding ofthis arena.2.3.1 Game arenaWe use games on graphs to model games of unbounded duration. We assume theexistene of a speial game position alled exit to model the termination of the gameand an ation quit whih orresponds to players hoosing to quit the game.De�nition 2.3.1 A game arena is a struture G = (W,→, w0, λ) where
• W is a �nite set of game positions.
• → : W × Σ → W is a partial funtion also alled the move funtion whihsatis�es the ondition� →

exit= ∅� w
quit
→w′ i� w′ = exit

• w0 ∈W is the initial game position.
• λ : W → N is the turn funtion whih assoiates eah game position with aplayer.1In fat one an onsider any perfet information game where there is an option of inreasingthe stakes or quitting and the possibility of the game ending in a draw.18



Let →(w, a) = w′, we often denote this by w a
→w′.For i ∈ N , let W i = {w ∈ W | λ(w) = i}. A play in G is either a �nite path

ρ = w0a0w1a1 . . . wk suh that wk = exit or an in�nite path ρ = w0a0w1a1 . . . suhthat for all j ≥ 0, wj aj

→wj+1. Let Plays(G) denote the set of all plays in G. The(in�nite) extensive form game tree TG assoiated with G is obtained by the treeunfolding of G whih we de�ne below.De�nition 2.3.2 Let G = (W,→, w0, λ) be a game arena. The tree unfolding of G isthe least tree struture TG = (S,⇒, s0, λ̂) where S ⊆ (W×Σ)∗W and ⇒ : S×Σ → Ssatis�es the ondition:
• w0 ∈ S.
• If s = (w0, a0) . . . wk ∈ S and wk a

→w′ then s′ = (w0, a0) . . . (wk, a)w
′ ∈ S and

s
a
⇒s′.Further, for a node s = (w0, a0) . . . wk ∈ S, λ̂(s) = λ(wk).
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2.3.2 StrategiesA strategy µ for player i spei�es for eah partial play ending in a game position ofplayer i whih ation to hoose. Thus µ is a map µ : (W × Σ)∗W i → Σ. As in thease of extensive form games (de�nition 2.1.1), a strategy an be viewed as a subtreeof the game tree TG where for every player i node there is a unique outgoing edgeand for an ı node, all outgoing edges are inluded. Sine TG is in�nite, a strategythus de�ned an in priniple depend on the omplete history of play and in generalit need not be omputable. For omputationally bounded players it is not possibleto implement or even hoose to play suh an arbitrarily de�ned strategy.Resoure limitations on strategies have been studied in the game theoreti frame-work. [FW94℄ looks at the situation where players are represented by polynomialtime turing mahines. This is motivated by the intuition that typially in the realworld, players are equipped with powerful omputers whih help them optimize theirstrategies. In this approah the standard omplexity measure notions on turing ma-hines an be adopted to lassify strategies. A weaker form of omputation whihis however extremely robust is represented by �nite state automata. Strategies de-�ned by �nite state automata have been studied in [Ney85, AR88, Ney98℄. Thetypial omplexity measure looked at here is the size of the minimal deterministiautomaton whih represents the strategy. Also of interest is the notion of �programequilibrium� [Ten04℄ whih looks at strategies whih are implementable as programsand reasons about players' abilities to refer to omputation done in parallel by otherprograms.In this thesis we stik to the weaker form of de�ning resoure limited strategies interms of �nite state automata. In this ontext, the following two types of strategiesare of partiular interest:
• Memoryless (positional) strategies: These are strategies for whih the nextmove depends only on the urrent game position and not on the history ofplay. Thus the map µ : W i → Σ presribes the same ation for all partial playsending at the same game position. That is, for all ρ, ρ′ suh that last(ρ) =

last(ρ′), µ(ρ) = µ(ρ′).
• Bounded memory strategies: These are strategies where the dependene of thenext move to the history of the play an be kept trak of by a �nite set ofstates. Suh strategies an be represented using �nite state mahines. Wethink of these as advie automata, in the sense that they onstitute an advie20



for the player to onsult at a game position.De�nition 2.3.3 Let G be a game arena, a deterministi advie automaton forplayer i is a tuple A = (Q, δ, o, q0) where
• Q is the set of states.
• δ : Q×W × Σ → Q is the deterministi transition funtion.
• o : Q×W i → Σ is the advie funtion.
• q0 ∈ Q is the initial state.For a partial play ρ : w0a0w1 . . . wk, the run of A on ρ is the sequene of states

q0q1 . . . qk suh that for all j where 0 ≤ j < k, qk+1 = δ(qk, wj, aj). The strategy µ ofplayer i generated by A is de�ned as follows. For any partial play ρ : w0a0w1 . . . wk,let q0q1 . . . qk be the run of A on ρ, then µ(ρ) = o(qk, wk). Sine A is a deterministiautomaton, it is easy to see that the strategy generated by A is unique.For tehnial purposes, we �nd it onvenient to de�ne the notion of the lan-guage aepted by an advie automaton. Let µ be a strategy of player i and Tµ =

(Sµ,⇒µ, s0) be the orresponding strategy tree. The run of A on Tµ is a Q labelledtree T = (Sµ,⇒µ, s0, f), where f maps eah tree node to a state in Q as follows:
f(s0) = q0, and for any sk where sk a

⇒µs
′
k, we have f(s′k) = δ(f(sk), last(sk), ak).A Q labelled tree T is aepted by A if for every tree node s ∈ Sµ where s ∈ Si,

s
a
⇒s′ implies o(f(s), last(s)) = a. We say a strategy µ is aepted by A or is in thelanguage of A (denoted Lang(A)) if the run of A on µ is aepting. For a state qand a tree node s, we often use the notation o(q, s) to denote o(q, last(s)).2.4 Logial analysis of gamesIn this setion we look at logial analysis of games in the literature. We fous onmodal and dynami logis whih onsiders the game struture to be atomi andwhere additional ompositional struture of the game representation itself is nottaken into aount. Finite extensive form games are partiularly suited for this typeof analysis. This was suggested in [Ben02, Ben01℄ and has also been explored invarious diretions. The ore idea used by the various logis adopting this style ofreasoning is the following:

• Finite extensive form game tree an be viewed as models of dynami logi.21



• Strategies of players in �nite extensive form games, an be enoded as pro-grams in dynami logi.Here we illustrate how dynami logi an be e�etively used to reason aboutgames and abilities of players to ensure ertain outomes. We �nd it instrutiveto �rst give a brief introdution to propositional dynami logi (PDL). A moreomprehensive treatment of PDL an be found in [HKT00℄.Propositional dynami logiDynami logi, a logi to reason about the behaviour of omposite nondeterminis-ti programs was originally proposed by Pratt [Pra76℄, where it was shown how toextend modal logi by onsidering a separate modality for every program. Proposi-tional reasoning about programs in terms of dynami logi was studied by Fisherand Ladner in [FL77, FL79℄.Syntax: Let P denote a ountable set of propositions. The formulas of PDL areonstruted using the following syntax:
P := a ∈ Σ | γ1; γ2 | γ1 ∪ γ2 | γ

∗ | α?

PDL := p ∈ P | ¬α | α1 ∨ α2 | 〈γ〉αwhere γ ∈ P and α ∈ PDL.Semantis: PDL formulas are interpreted over edge labelled Kripke strutures
M = (W,→, V ) whereW is the set of states, → ⊆W×Σ×W and V : W → 2P . Thesemantis of omposite programs is de�ned in terms of the relation RPDL ⊆W ×Was follows.

• RPDL
a = {(u, w) | u

a
→w}.

• RPDL
γ1;γ2 = {(u, w) | ∃v ∈W where (u, v) ∈ RPDL

γ1
and (v, w) ∈ RPDL

γ2
}.

• RPDL
γ1∪γ2 = RPDL

γ1
∪RPDL

γ2
.

• RPDL
γ∗ =

⋃
n≥0(R

PDL
γ )n, where (RPDL

γ )n denotes the n-fold relational omposi-tion.
• RPDL

α? = {(u, u) | M,u |= α}.The truth of a formula α in a model M at a state u (denoted M,u |= α) isde�ned indutively as follows: 22



• M,u |= p i� p ∈ V (u).
• M,u |= ¬α i� M,u 6|= α.
• M,u |= α1 ∨ α2 i� M,u |= α1 or M,u |= α2.
• M,u |= 〈γ〉α i� there exists (u, w) ∈ RPDL

γ suh that M,w |= α.Reasoning about games in PDLAn extensive form game tree T = (S,⇒, s0, λ̂) an be viewed as a Kripke struture
M = (S,⇒, V ) where V : S → 2P is a valuation funtion whih provides interpre-tation for the atomi propositions in P . The turn funtion λ̂ an be oded in termsof speial propositions turni for eah i ∈ N . It is also onvenient to represent thefrontier nodes of the tree in terms of a proposition leaf . Thus the valuation funtionsatis�es the following ondition: for all s ∈ S,

• ∀i ∈ N , turni ∈ V (s) i� λ̂(s) = i.
• leaf i ∈ V (s) i� s ∈ frontier(T ).
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s3 s4 s5 s6(a): Game tree (b): ModelFigure 2.6: Extensive form game tree and orresponding modelConsider the game tree given in Figure 2.6(a). The model orresponding to thegame tree is shown in Figure 2.6(b). Suppose the proposition p is true at states
s4 and s5, i.e. p ∈ V (s4) and p ∈ V (s5). Consider the following PDL formulainterpreted over the model given in Figure 2.6(b).

• [(turn1?; a) ∪ (turn1?; b)]〈(turn2?; c) ∪ (turn2?; d)〉(leaf ⊃ p).This says that no matter what move player 1 makes, player 2 has a move to ensurethe outome states satis�es p. In other words, player 2 has a �winning strategy� toensure the outome p. 23



In PDL one an talk about not just winning strategies but also about strategiresponse of players. Consider the formula
• [(turn1?; a); (turn2?; d)](leaf ⊃ p).The formula asserts that if player 1 plays �a� then player 2 an respond with �b� toahieve the outome p. In general if σ is the strategy of player 1 enoded as a PDLprogram and π that of player two then the following formula says that the statereahed when players employ the strategy σ and π against eah other satis�es theproperty p.
• [(turn1?; σ ∪ turn2?; π)∗]leaf ⊃ p.Enoding utilities in the model: The above examples illustrate how programsan be e�etively used to ode strategies in �nite extensive form games. Moreinteresting would be to reason about games with respet to the utilities of players.Utilities an again be oded in terms of propositions as illustrated in [Bon02℄. Let

V = {u1, u2, . . .} be a value set and for i ∈ N , let ui : frontier(T ) → V. Withoutloss of generality assume that u1 ≤ u2 ≤ . . .. Let Θ1 = {θ1
1, θ

2
1, . . .} be a set ofspeial propositions used to enode the utilities in the logi, i.e. θj1 orresponds tothe utility θj1. Likewise for player 2, we have the set of speial propositions Θ2. Thevaluation funtion satis�es the ondition:

• For all states s, for i ∈ N , {θ1
i , . . . , θ

j
i } ⊆ V (s) i� ui(s) = uj.The preferene ordering on the rewards for eah player is simply inherited fromthe impliation available in the logi. Thus strategy omparison with respet toutilities an be expressed in the logi as follows.

• ([(turn1?; σ1)
∗]leaf ⊃ θi) ⊃ ([(turn1?; σ

′
1)

∗]leaf ⊃ θi).Related work: There have been various studies whih build on this basi ideaof using dynami logi to reason about games. [HvdHMW03℄ suggests interpretingthe atomi ations in PDL in terms of strategy pro�les. This enables assertionsto be made regarding the resulting plays in the game. The authors ome up withharateristi formulas for Nash equilibrium and sub-game perfet equilibrium inthis setting.In the bakward indution proedure, the idea is to lift the preferene orderingover utilities to ordering over tree nodes. But as pointed out in [Ben06℄, when or-derings are interpreted over tree nodes, it does not merely represent what players24



prefer but what they expet to happen given the rationality assumptions about howother players will proeed. Instead of oding utilities diretly as propositions a moreelegant method would be to inorporate elements of a preferene language into thelogi. This was suggested in [BOR06℄ where the authors analyse the bakward in-dution proedure in terms of a preferene modality.Remarks: It should be noted that the above mentioned tehnique of oding strate-gies as programs in PDL works well sine we are dealing with �nite extensive formgames. The fat that the depth of the game tree is known in advane, is ruiallyused. In partiular, this approah would not work in the ase of unbounded durationgames where the length of plays is not determined in advane. To make assertionsabout existene of strategies one ould look at adding a �x-point operator to thelogi as done in µ-alulus [Koz83℄. In the ase of in�nite two player zero sum gameson �nite graphs, it is well known that winning regions of players an be expressed as
µ-alulus properties (see [GTW02℄, Chapter 10). However, it is hardly lear howto reason about strategies in the µ-alulus framework.
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Chapter 3Logial analysis of strategiesAs demonstrated in the previous hapter, game theoreti analysis typially involveoutome based analysis in terms of solution onepts. However, a presriptive the-ory needs to view strategies as partial funtions built in a ompositional manner.In this hapter we propose a programming language syntax for building partiallyspei�ed strategies in a ompositional framework. The framework is not dependenton any spei� bound on the length of the play and is therefore suited for analysisof unbounded duration games as well.3.1 Strategy spei�ationsWe �x the following notations. Let G = (W,→, w0, λ) denote the game arena. Let
P i = {pi0, p

i
1, . . .} be a ountable set of observables for i ∈ N .We oneive of strategies as being built up from atomi ones using some grammar.The atomi ase spei�es, for a player, what onditions she tests for before making amove. We an assoiate with the game arena a set of observables for eah player. Oneelegant method then, is to state the onditions to be heked as a past time formulaof a simple tense logi over the observables. The strutured strategy spei�ationsare then built from atomi ones using onnetives. We ruially use an impliationof the form: �if the opponent is apparently playing a strategy π then play σ�.Below, for any ountable set X, let Past(X) be sets of formulas given by thefollowing syntax:

ψ ∈ Past(X) := x ∈ X | ¬ψ | ψ1 ∨ ψ2 | 3-ψ.The past time formulas are interpreted over sequenes. Intuitively, the modality27



3-ψ asserts that sometime in the past the formula ψ holds. We also use Voc(ψ) todenote the subset of X whih is mentioned in ψ.3.1.1 SyntaxThe syntax of strategy spei�ations is given by:
Strat i(P i) := [ψ 7→ a]i | σ1 + σ2 | σ1 · σ2 | π ⇒ σ1where π ∈ Strat ı(P 1 ∩ P 2) and ψ ∈ Past(P i).The idea is to use the above onstruts to speify properties of strategies. Forinstane the interpretation of a player i spei�ation [p 7→ a]i where p ∈ P i is tohoose move �a� at every player i game position where p holds. At positions where

p does not hold, the strategy is allowed to hoose any enabled move. σ1 + σ2 saysthat the strategy of player i onforms to the spei�ation σ1 or σ2. The onstrut
σ1 · σ2 says that the strategy onforms to spei�ations σ1 and σ2.The spei�ation π ⇒ σ says, at any node player i stiks to the spei�ation givenby σ if on the history of the play, all moves made by ı onform to π. In strategies,this aptures the aspet of players' ations being responses to the opponent's moves.The opponent's omplete strategy may not be available, the player makes a hoietaking into aount the apparent behaviour of the opponent on the history of play.Let Σ = {a1, . . . , am}, we also make use of the following abbreviation.

• null i = [True 7→ a1] + · · ·+ [True 7→ am].It will be lear from the semantis (whih is de�ned shortly) that any strategy ofplayer i onforms to null i, or in other words this is an empty spei�ation. Theempty spei�ation is partiularly useful for assertions of the form �there exists astrategy� where the property of the strategy is not of any relevane.3.1.2 SemantisGiven any sequene ξ = t0t1 · · · tm, a map V : {t0, · · · , tm} → 2X , and an index
k suh that 0 ≤ k ≤ m, the truth of a past formula ψ ∈ Past(X) at k, denoted
ξ, k |= ψ an be de�ned as follows:

• ξ, k |= p i� p ∈ V (sk).
• ξ, k |= ¬ψ i� ξ, k 6|= ψ. 28



• ξ, k |= ψ1 ∨ ψ2 i� ξ, k |= ψ1 or ξ, k |= ψ2.
• ξ, k |= 3-ψ i� there exists a j : 0 ≤ j ≤ k suh that ξ, j |= ψ.Strategy spei�ations are interpreted on strategy trees of G. For this purpose,we onsider the game arena G = (W,→, w0, λ) along with a valuation funtion forthe observables V : W → 2P . We assume the presene of two speial propositions

turn1 and turn2 that spei�es whih player's turn it is to move, i.e. the valuationfuntion satis�es the property
• for all i ∈ N , turni ∈ V (w) i� λ(w) = i.The valuation funtion V is extended to the tree unfolding TG in the obviousmanner: for a node s we have V (s) = V (last(s)). Reall that a strategy µ ofplayer i is a subtree of TG. Given a strategy µ of player i and a node s ∈ µ, let

ρss0 : s0a0s1 · · · sm = s be the unique path in µ from the root node s0 to s. Fora strategy spei�ation σ ∈ Strat i(P i), we de�ne the notion of µ onforming to σ(denoted µ |=i σ) as follows:
• µ |=i σ i� for all player i nodes s ∈ µ, we have ρss0 , s |=i σ.where we de�ne ρss0 , sj |=i σ for any player i node sj in ρss0 as,
• ρss0 , sj |=i [ψ 7→ a]i i� ρs, sj |= ψ implies outρs

s0
(sj) = a.

• ρss0 , sj |=i σ1 + σ2 i� ρss0 , sj |=i σ1 or ρss0 , sj |=i σ2.
• ρss0 , sj |=i σ1 · σ2 i� ρss0 , sj |=i σ1 and ρss0, sj |=i σ2.
• ρss0 , sj |=i π ⇒ σ1 i� (if for all player ı nodes sk ∈ ρss0 suh that k ≤ j,
ρss0 , sk |=ı π) then ρss0 , sj |=i σ1.Above, π ∈ Strat ı(P 1 ∩ P 2), ψ ∈ Past(P i), and for all i : 0 ≤ i < m, outρs

s0
(si) = aiand outρs

s0
(s) is the unique outgoing edge in µ at s. Reall that s is a player i nodeand therefore by de�nition there is a unique outgoing edge at s.Given a game arena G, a player i ∈ N and a strategy spei�ation µ ∈ Strat i(P i)we de�ne the tree language T L(G, σ) as T L(G, σ) = {µ ∈ Ωi(G) | µ |=i σ}.

29



RemarksNote that we do not have negation in spei�ations. One reason is that the spei�-ations are partial, and hene the semantis is not immediate. If we were to onsidera spei�ation of the form π ⇒ σ, we ould interpret this as: if player has seen thatopponent has violated π in the past, then play σ. This seems rather unnatural,and hene, for the present, we are ontent to leave negation aside. Note that wedo have negation in tests in atomi spei�ations, and later we will embed thesespei�ations into a modal logi (with negation on formulas).
1

a

����
��

��
�

b

��=
==

==
==
p

2
x1

����
��
�� y1

��/
//

//
/r 2

x2

����
��
�� y2

��/
//

//
/r

• • • •

1
a

����
��

��
�

p

2
x1

����
��
�� y1

��/
//

//
/r

• •(a) (b)Figure 3.1: Game and strategy.Example 3.1.1 Consider the game given in �gure 3.1(a) and the spei�ation
[p 7→ a]1. The interpretation is to hoose move �a� for every 1 node where propo-sition p holds. Suppose p holds at the root, then the strategy depited in Figure3.1(b) onforms to the spei�ation [p 7→ a]1. 2Aording to the syntax it is possible to ome up with arbitrary strategy spei�-ations whih when interpreted on a game arena ould be inonsistent. For instane,onsider the game given in Figure 3.2(a) and the spei�ation σ = [p 7→ a]1 ·[p 7→ b]1.It is easy to see that no strategy of player 1 onforms to the spei�ation σ. Thusa natural question would be to ask:

• given an arena G, player i ∈ N and a spei�ation σ ∈ Strat i(G) is it deidableto hek whether T L(G, σ) = ∅?In what follows it will be lear that this question is deidable. The ruial fatwhih needs to be used is that strategy spei�ations lassify strategies whih are�regular�. Thus it is possible to build a �nite state automaton whih reognize suhstrategies. 30
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Figure 3.2: Game arenaExample 3.1.2 Consider the game shown in Fig. 3.2. Let the yle C0 : s1 → s1,
C1 : s2 → s3 → s2, C3 : s9 → s10 → s9 and C4 : s8 → s7 → s8. For a player i andyles C and C ′ we use the notation C �i C ′ to denote that plays whih settle downto the yle C ′ is preferred by player i to plays whih settle down to yle C. Letthe preferene ordering of player 2 rank {C0, C4} as the worst outomes and C3 asthe best outome with C1 �2 C3. Let the preferene ordering of player 1 be givenas C4 �1 C3 �1 C1 �1 C0. Its easy to see that equilibrium reasoning will end upin yle C3. However, for player 1 the utility di�erene between C3 and C4 mightbe negligible. So player 1 might deide to punish 2 by moving to C4 at position s9.Therefore it is in the ommon interest of both players to stik to yle C1.Let V (choice) = {s2, s6}, V (forgive) = {s4}, V (decide1) = {s5}, V (decide2) =

{s6}, V (punish) = {s8} and V (worst) = {s7}. A strategy spei�ation for player 1,whih forgives the �rst defetion of player 2, and punishes if 2 has always defetedso far in the play, an be written as:
σ = [decide1 7→ f ]1 · ([choice 7→ d]2 ⇒ [decide2 7→ p]1).A spei�ation of player 1 whih punishes at any defetion by player 2 but triesto re-oniliate one, an be given as:
σ = [decide1 7→ p]1 · [(¬3- forgive ∧ choice) 7→ d]2 ⇒ [worst 7→ r].Player 2 might deide to ooperate if he has been punished in the past, whihan be written as:
π = [3- punish ∧ choice 7→ c]2. 2
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3.1.3 Partial strategies and advie automataThe main objetive of developing a ompositional syntax for strategies is to an-alyze strategies in terms of their properties. Strategies are thus spei�ed as par-tial funtions whih onstrains moves of players rather than presribing uniquemoves. Given a game arena G, a partial strategy ν for player i is a partial fun-tion ν : (W × Σ)∗W i ⇀ Σ, with the interpretation that if ν is not de�ned forsome partial play ρ ∈ (W × Σ)∗W i, player i is allowed to play any available ationthere. Thus a partial strategy an equivalently be thought of as a set of ompletestrategies. This also motivates the de�nition of nondeterministi advie automata.We saw that bounded memory strategies an be represented in terms of determin-isti advie automata (De�nition 2.3.3). Sine partial strategies represent a set ofomplete strategies, bounded memory partial strategies an be represented in termsof nondeterministi advie automata whih we de�ne below.De�nition 3.1.3 For a game arena G, a nondeterministi advie automaton forplayer i is a tuple Ai = (Q, δ, o, I) where
• Q is the set of states,
• δ : (Q×W × Σ) → 2Q is a nondeterministi transition funtion,
• o : (Q×W i) → Σ is the output or advie funtion,
• I ⊆ Q is a set of initial states.We think of the language aepted by the automaton as a set of strategies ofplayer i. Let µ be a strategy of player i and Tµ = (Sµ,⇒µ, s0) be the orrespondingstrategy tree. A run of A on µ is a Q labelled tree R = (Sµ,⇒µ, s0, λ̂µ, l), where lmaps eah tree node to a state in Q as follows: l(s0) ∈ I, and for any s ∈ Sµ where

s
a
⇒µs

′, we have l(s′) ∈ δ(l(s), last(s), a).A run tree R is aepted by Ai if for every tree node s ∈ Sµ suh that s ∈ Siwe have s a
⇒s′ implies o(l(s), last(s)) = a. A strategy µ is aepted by A if thereexists an aepting run of A on µ. For a state q and a tree node s, we often use thenotation o(q, s) to denote o(q, last(s)).3.1.4 Strategy spei�ations to partial strategiesFrom the semantis, it is easy to see that eah strategy spei�ation de�nes a setof strategies. We now show that it is a regular set, reognizable by a �nite state32



devie. More preisely, we show that given any strategy spei�ation σ of player iwe an onstrut a nondeterministi advie automata Aσ suh that the language of
Aσ is the set of all strategies onforming to the spei�ation σ.For the rest of the thesis we use the term advie automata to refer to nondeter-ministi advie automata, if we are onsidering deterministi advie automata thenthis fat will be spei�ally mentioned.De�nition 3.1.4 For a formula ψ ∈ Past(P ) we de�ne the sub-formula losure of
ψ, denoted CL(ψ). Let CL′(ψ) be the least set of formulas suh that:

• ψ ∈ CL′(ψ).
• If ¬ψ1 ∈ CL′(ψ) then ψ1 ∈ CL′(ψ).
• If ψ1 ∨ ψ2 ∈ CL′(ψ) then ψ1, ψ2 ∈ CL′(ψ).
• If 3-ψ1 ∈ CL′(ψ) then ψ1 ∈ CL′(ψ).

CL(ψ) = CL′(ψ) ∪ {¬ψ1 | ψ1 ∈ CL′(ψ)} where we identify ¬¬ψ1 with ψ1.De�nition 3.1.5 A set t ⊆ CL(ψ) is alled an atom if
• for all ¬ψ1 ∈ CL(ψ), ¬ψ1 ∈ t i� ψ1 6∈ t.
• for all ψ1 ∨ ψ2 ∈ CL(ψ), ψ1 ∨ ψ2 ∈ t i� ψ1, ψ2 ∈ t.
• for all 3-ψ1 ∈ CL(ψ), if ψ1 ∈ t then 3-ψ1 ∈ t.In other words, a subset of formulas in the losure is alled an atom if it is proposi-tionally onsistent and omplete. For a formula ψ, let AT (ψ) denote the set of allatoms of ψ and let C0 = {t ∈ AT (ψ) | for all 3-ψ1 ∈ CL(ψ) if 3-ψ1 ∈ t then ψ1 ∈ t}.We de�ne a transition relation on AT (ψ) as: t→AT t′ i� for all 3-ψ1 ∈ CL(ψ) thefollowing onditions hold.
• if 3-ψ1 ∈ t then 3-ψ1 ∈ t′.
• if 3-ψ1 ∈ t′ and ψ1 /∈ t′ then 3-ψ1 ∈ t.We translate a strategy spei�ation to an advie automaton in an indutivemanner. For eah atomi spei�ation we �rst onstrut an advie automaton andthen ompose these automata. The following lemma illustrates the onstrution foratomi strategy spei�ations. 33



Lemma 3.1.6 Given an atomi strategy spei�ation σ = [ψ 7→ a]i of player i wean onstrut an advie automaton Aσ suh that for a game arena G = (W,→, w0, λ)and µ ∈ Ωi(G) we have µ ∈ Lang(Aσ) i� µ |=i σ.Proof: Intuitively, the onstruted automaton works as follows. Its states areatoms of ψ whih keep trak of the past formulas satis�ed along a play and ensurethat the valuations are onsistent. At a player i game position, if ψ is in the urrentatom then the automaton spei�es the output a as advie. We give the formalde�nition below. Let ♯ be a symbol not ourring in Σ. The advie automaton
Aσ = (Qσ, δσ, oσ, Iσ), where

• Qσ = AT (ψ) × Σ.
• Qσ = {(t, x) | t ∈ C0, x ∈ Σ}.
• δσ : (Qσ × W × Σ) → 2Qσ is de�ned as follows: for all (t, x) ∈ Qσ, for all
w ∈W and b ∈ Σ, we have (t′, y) ∈ δσ((t, x), w, b) i�� V (w) = t ∩ Voc(ψ).� t→AT t′.

• o((t, x), w) =





a if V (w) = t ∩ Voc(ψ) and ψ ∈ t

x if V (w) = t ∩ Voc(ψ) and ψ 6∈ t

♯ if V (w) 6= t ∩ Voc(ψ)For the automaton Aσ onstruted above, we show that µ ∈ Lang(Aσ) i� µ |=i σ.
(⇒) Suppose µ = (Sµ,⇒µ, s0, λ̂µ) ∈ Lang(Aσ). Let R = (Sµ,⇒µ, s0, λ̂µ, l) be aorresponding Q-labelled tree aepted by Aσ. We need to show that for all s ∈ Sµsuh that λ̂(s) = i, we have ρss0 , s |= ψ implies outρs

s0
(s) = a. Note that sine T isan aepting run, we have for all s, o(l(s), last(s)) 6= ♯.The following laim, asserts that the states of the automaton hek the pastrequirements orretly. Below we use the notation ψ ∈ (t, x) to mean ψ ∈ t.Claim : For all s ∈ Sµ, for all ψ′ ∈ CL(ψ), ψ′ ∈ l(s) i� ρs, s |= ψ′.The laim an be shown by indution on the struture of ψ.

(ψ = p ∈ P ) : We have p ∈ l(s) i� p ∈ V (s) (sine o(l(s), last(s)) 6= ♯) i� ρs, s |= p.Reall that V (s) = V (last(s)).When ψ is of the form ¬ψ1 and ψ1∨ψ2, the laim easily follows by applying indutionhypothesis. 34



(ψ = 3-ψ1): Let ρs = s0a0 . . . sk−1ak−1sk = s and the Q labelling on ρs be thesequene (t0, x0) . . . (tk−1, xk−1)(tk, xk) = (t, x). Suppose 3-ψ1 ∈ l(s). If ψ1 ∈ t thenthe laim follows by applying indution hypothesis. Otherwise, by the de�nition ofthe transition relation we have 3-ψ1 ∈ tk−1. Again if ψ1 ∈ tk−1 then we are done.By de�nition we have for all 3-ψ′ ∈ t0, ψ′ ∈ t0. Therefore by repeating the aboveargument, we get that there exists j : 0 ≤ j ≤ k suh that ψ1 ∈ tj. By indutionhypothesis, ρs, sj |= ψ1. By semantis we have ρs, s |= 3-ψ1.To see the onverse, suppose ρs, s |= 3-ψ1. By semantis, there exist j : 0 ≤ j ≤ ksuh that ρs, sj |= ψ1. By indution hypothesis, ψ1 ∈ tj and by de�nition of atom
3-ψ1 ∈ tj . If j = k we are done. Otherwise by de�nition of the transition relationwe get 3-ψ1 ∈ tj+1. By repeating the argument we get 3-ψ1 ∈ t. End of laimFrom the above laim, we have ρs, s |= ψ implies ψ ∈ l(s). By the de�nition ofthe output funtion o, we have o(l(s), s) = a.
(⇐) Suppose µ |=i [ψ 7→ a]i. From the semantis, we have ∀s ∈ Sµ suh that
λ̂(s) = i if ρss0 , s |= ψ then outρs

s0
(s) = a. We need to show that there exists a

Q-labelled tree aepted by Aσ. Consider the labelling funtion de�ned as follows.Fix any x0 ∈ Σ.
• For s ∈ Siµ, let l(s) = ({ψ′ ∈ CL(ψ) | ρs, s |= ψ′}, outρs

s0
(s)).

• For s ∈ Sıµ, let l(s) = ({ψ′ ∈ CL(ψ) | ρs, s |= ψ′}, x0).It is easy to hek that for all s ∈ Sµ, l(s) = (C, x) where C onstitutes an atomand the transition relation is respeted. What remains to be shown is the following:
• for all s ∈ Sµ suh that λ̂(s) = i we have o(l(s), last(s)) = outρs

s0
(s).Consider any s ∈ Sµ with λ̂(s) = i. If ρss0 |= ψ then by the above laim ψ ∈ l(s).By de�nition of the output funtion o(l(s, last(s)) = a. If ρss0 6|= ψ then by de�nitionof the labelling funtion we have l(s) = (t, y) where y = outρs

s0
(s). Thus by de�ni-tion of the output funtion of the automaton we get o(l(s, last(s)) = y = outρs

s0
(s).

2Lemma 3.1.7 Given a strategy spei�ation σ ∈ Strat i(P i) of player i, we anonstrut an advie automaton Aσ suh that for a game arena G = (W,→, w0, λ)and µ ∈ Ωi(G) we have µ ∈ Lang(Aσ) i� µ |=i σ.35



Proof: We proeed by indution on the struture of σ. The base ase when
σ = [ψ 7→ a]i follows from Lemma 3.1.6.
(σ = σ1 · σ2): By indution hypothesis there exist Aσ1

= (Qσ1
, δσ1

, oσ1
, Iσ1

) and
Aσ2

= (Qσ2
, δσ2

, oσ2
, Iσ2

) whih aept all strategies satisfying σ1 and σ2 respetively.To obtain an automaton whih aepts all strategies whih satisfy σ1 · σ2 we justneed to take the produt of Aσ1
and Aσ2

.
(σ = σ1 + σ2): Indutively we have automata Aσ1

and Aσ2
. The advie automatonfor Aσ simulates both Aσ1

and Aσ2
in parallel and at any player i game position,nondeterministially hooses to output the advie of either Aσ1

or Aσ2
.

(σ = π ⇒ σ′): By indution hypothesis we have Aπ = (Qπ, δπ, oπ, Iπ) whih aeptsall player ı strategies satisfying π and Aσ′ = (Qσ′ , δσ′ , oσ′, Iσ′) whih aepts allplayer i strategies satisfying σ′.The automaton Aσ has the produt states of Aπ and Aσ′ as its states alongwith a speial state qfree . The automaton keeps simulating both Aπ, Aσ′ and keepsheking if the path violates the advie given by Aπ, if so it moves into state qfreefrom whih point onwards it is �free� to produe any advie. Unless π is violated, itis fored to follow the transitions of Aσ′ .De�ne Aσ = (Q, δ, o, I) where Q = (Qπ × Qσ′) ∪ ({qfree} × Σ). The transitionfuntion is given as follows:
• For s ∈ Siµ, we have δ((qπ, qσ′), s, a) = {(q1, q2) | q1 ∈ δπ(qπ, s, a) and q2 ∈

δσ′(qσ′ , s, a)}.
• For s ∈ Sıµ, we have:� If oπ(qπ, s) 6= a, then δ((qπ, qσ′), s, a) = {(qfree , a) | a ∈ Σ}.� If oπ(qπ, s) = a, then δ((qπ, qσ′), s, a) = {(q1, q2) | q1 ∈ δπ(qπ, s, a) and

q2 ∈ δσ′(qσ′ , s, a)}.
• δ((qfree , x), s, a) = {(qfree , a)|a ∈ Σ}For s ∈ Siµ, the output funtion is de�ned as: o((qπ, qσ′), last(s)) = oσ′(qσ′ , last(s))and o((qfree , x), last(s)) = x. 2The following proposition an then be easily shown using Lemma 3.1.7.Proposition 3.1.8 Given a game arena G, player i ∈ N and a strategy spei�ation

σ ∈ Strat i(P i), we an onstrut an advie automaton Aσ suh that Lang(Aσ) ∩

Ωi(G) = T L(G, σ). 36



3.2 Remarks on strategy spei�ationsA relatively simple syntax for strategy spei�ations was introdued in Setion 3.1.1.The objetive was to illustrate the onept and it should be noted that the abovementioned results an be extended to any set of spei�ations that allows an e�e-tive automaton onstrution. However, operators are best added after a systematistudy of their algebrai properties. An extension of partiular interest is that ofmulti-stage games.Multi-stage games: So far we have viewed the game arena as representing asingle unbounded duration game. We an also reason about multi-stage gamesusing similar tehniques. To model suh games, we �x a �nite set of olours Coland assoiate the game positions with elements of this set. The idea being that thehange of olour indiates the swith from one stage to the next. For simpliity, wealso assume that eah stage has a unique start and end game position along with aunique ation switch suh that start
switch
−→ start . The set of strategy spei�ationsfor player i an be extended using the following onstruts.

• Yπ ⇒ σ - if in the previous stage player ı onforms to π then play aordingto σ.
• Pπ ⇒ σ - if there is a previous stage where the player ı played aording to πthen play σ.
• Hπ ⇒ σ - if player ı in all the previous stages has onformed to π then playaording to σIt is quite straight forward to give the formal semantis of the above onstrutsand therefore we do not take it up here. It is also relatively easy to verify thatthe onstruts an be ompiled into a �nite state automaton. Thus an equivalentof lemma 3.1.7 an be shown for the extended syntax as well. Below we show thatthis extended set of strategy spei�ations an be e�etively used to reason aboutmulti-stage games.Iterated prisoner's dilemma: Prisoner's dilemma [OR94℄ is the lassi exampleportraying the weakness of equilibrium notions. The unique equilibrium in this gameis where both prisoners defet, when ooperation would have resulted in a better37



payo� for both. This game illustrates the fat that equilibrium solutions need notalways give the most e�ient outomes for players.Axelrod was interested in �nding out more about the strategies whih were su-essful in playing prisoner's dilemma in pratie [Axe84℄. He onduted a tourna-ment where strategies were made to ompete against eah other. Note that this isa departure from the standard analysis in terms of solution onepts like equilib-rium, where the emphasis remains on trying to �gure out what happens if a playerunilaterally deviates. It turned out that the winner was a simple strategy alled�tit-for-tat� whih ooperates in the �rst round and in subsequent rounds mimiswhat the opponent did in the previous round.The iterated version of prisoner's dilemma an be easily modelled as a multistagegame. Let c, d orrespond to the ations �ooperate�, �defet� respetively and let
init be a proposition whih holds only at the �rst stage. We also use the abbreviation
play(i, a) = [True 7→ a]i for i ∈ N and a ∈ Σ. The strategy tit-for-tat an beexpressed in the extended strategy spei�ation syntax as follows.

• σTFT = (Y play(2, d) ⇒ [¬init 7→ d]1) · (Y play(2, c) ⇒ [¬init 7→ c]1).
• Tit-for-tat: [init 7→ c]1 · σTFT.The strategy �grim� (also alled �trigger�) whih ooperates till the opponentdefets and then defets forever an be expressed as
• Grim: (H play(2, c) ⇒ play(1, c)) · (P play(2, d) ⇒ [¬init 7→ d]1).Note that tit-for-tat and grudge are examples of omplete strategies. On furtheranalysis, it was notied that the top soring strategies satis�ed ertain properties inommon. It turns out that the exat strategy is not partiularly important and anystrategy satisfying these properties would have performed well in the tournament.The properties identi�ed were as follows:
• Nieness: Is not the �rst to defet.
• Forgiveness: Does not hold a grudge one the opponent ooperates.
• Retaliatory: If the opponent defets, punishes him by defeting.The idea behind strategy spei�ation exatly orresponds to expressing suhproperties of strategies rather than omplete strategies. For prisoner's dilemma,this an be ahieved as follows: 38



• Nieness: [init 7→ c]1 · (H play(2, c) ⇒ [¬init 7→ c]1).
• Forgiveness: [init 7→ c]1 · (Y play(2, c) ⇒ [¬init 7→ c]1).
• Retaliatory: [init 7→ c]1 · (Y play(2, d) ⇒ [¬init 7→ d]1).3.3 A strategy logiWe now disuss how we may embed strutured strategies in a formal logi. Formulasof the logi (also referred to as game formulas) are built up using strutured strategyspei�ations (as de�ned in setion 3.1). Game formulas desribe the game arenain a standard modal logi, and in addition speify the result of a player followinga partiular strategy at a game position, to hoose a spei� move a. Using theseformulas one an speify how a strategy helps to eventually win (ensure) an outome

β.3.3.1 SyntaxThe syntax of the logi is given by:
Π := p ∈ P | (σ)i : c | ¬α | α1 ∨ α2 | 〈a〉α | 〈a〉α | 3-α | σ ;i βwhere a, c ∈ Σ, σ ∈ Strat i(P i), β ∈ Past(P i). The derived onnetives ∧, ⊃ and

[a]α are de�ned as usual. Let 2-α = ¬3-¬α, 〈N 〉α =
∨
a∈Σ 〈a〉α, [N ]α = ¬〈N〉¬α,

〈P〉α =
∨

a∈Σ

〈a〉α and [P] = ¬〈P〉¬α.The formula 〈a〉α talks about one step in the future. It asserts the existene of an
a edge after whih α holds. Note that future time assertions up to any bounded depthan be oded by iteration of this onstrut. 〈a〉α is the orresponding onstrut torefer to one step in the past. The formula 3-α makes assertion about the unboundedpast, it spei�es the transitive losure of the one step past operator. Sine a strategyspei�ation an base its advie on apparent behaviour of players in the past, thepast time modalities turn out to be useful in logial reasoning.The formula (σ)i : c asserts, at any game position, that the strategy spei�ation
σ for player i suggests that the move c an be played at that position. The formula
σ ;i β says that from this position, following the strategy σ for player i ensures theoutome β. These two modalities onstitute the main onstruts of our logi.39



3.3.2 SemantisModel: Models of the logi onsist of extensive form game trees along with avaluation funtion. A model M = (T , V ) where T = (S,⇒, s0, λ̂) is an extensiveform game tree and V : S → 2P is a valuation funtion. As mentioned earlier, werequire that the valuation funtion satis�es the ondition:
• For all s ∈ S and i ∈ N , turni ∈ V (s) i� λ̂(s) = i.For a node s ∈ S, let moves(s) = {a ∈ Σ | ∃s′ ∈ S with s a

⇒s′}. For the purposeof de�ning the logi it is onvenient to de�ne the notion of the set of moves enabledby a strategy spei�ation σ at a game position s (denoted σ(s)).De�nition 3.3.1 For a game tree T = (S,⇒, s0, λ̂) and a game position s, let ρss0 :

s0
a1⇒s1 · · ·

am⇒sm = s denote the unique path from s0 to s. For a strategy spei�ation
σ ∈ Strat i(P i) we de�ne σ(s) as follows:

• [ψ 7→ a]i(s) =

{
{a} if λ̂(s) = i and ρss0 , m |= ψ.

Σ otherwise.
• (σ1 + σ2)(s) = σ1(s) ∪ σ2(s).
• (σ1 · σ2)(s) = σ1(s) ∩ σ2(s).
• (π ⇒ σ)(s) =

{
σ(s) if ∀j : 0 ≤ j < m, aj ∈ π(sj).

Σ otherwise.We say that a path ρs
′
s : s = s1

a1⇒s2 · · ·
am−1

⇒ sm = s′ in T onforms to σ if
∀j : 1 ≤ j < m, aj ∈ σ(sj). When the path onstitutes a proper play, i.e. when
s = s0, we say that the play onforms to σ. The following proposition is easy to seefrom the de�nition.Proposition 3.3.2 Given a strategy µ = (Sµ,⇒µ, s0, λ̂µ) for player i along witha spei�ation σ, µ |=i σ (as de�ned in setion 3.1) i� for all s ∈ Sµ suh that
λ̂µ(s) = i we have outρs

s0
(s) ∈ σ(s).For a game tree T = (S,⇒, s0, λ̂) and a node s ∈ S, let Ts denote the treewhih onsists of the unique path ρss0 and the subtree rooted at s. For a strategyspei�ation σ ∈ Strat i(P i), we de�ne Ts |

\ σ = (Sσ,⇒σ, s0, λ̂σ) to be the leastsubtree of Ts whih ontains the unique path from s0 to s and satis�es the property:for every s1 ∈ Sσ, 40



• if λ̂σ(s1) = i then for all s2 with s1
a
⇒s2 and a ∈ σ(s1) we have s1

a
⇒σs2 and

λ̂σ(s2) = λ̂(s2).
• if λ̂σ(s1) = ı then for all s2 with s1

a
⇒s2 we have s1

a
⇒σs2 and λ̂σ(s2) = λ̂(s2).The truth of a formula α ∈ Π in a modelM and position s (denotedM, s |= α) isde�ned by indution on the struture of α, as usual. Let ρss0 be s0

a0⇒s1 · · ·
am−1

⇒ sm = s.
• M, s |= p i� p ∈ V (s).
• M, s |= ¬α i� M, s 6|= α.
• M, s |= α1 ∨ α2 i� M, s |= α1 or M, s |= α2.
• M, s |= 〈a〉α i� there exists s′ suh that s a

⇒s′ and M, s′ |= α.
• M, s |= 〈a〉α i� m > 0, a = am−1 and M, sm−1 |= α.
• M, s |= 3-α i� there exists j : 0 ≤ j ≤ m suh that M, sj |= α.
• M, s |= (σ)i : c i� c ∈ σ(s).
• M, s |= σ ;i β i� for all s′ suh that s⇒∗

σs
′ in Ts |

\ σ, we have M, s′ |=

β ∧ (turni ⊃ enabledσ).where enabledσ =
∨

a∈Σ

(〈a〉True ∧ (σ)i : a).
1
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Figure 3.3: Interpretation of σ ;i βFigure 3.3 illustrates the semantis of σ ;1 β. It says, for any 1 node β isensured by playing aording to σ; for a 2 node, all ations should ensure β.The notions of satis�ablility and validity an be de�ned in the standard way.A formula α is satis�able i� there exists a model M and s suh that M, s |= α.41



A formula α is said to be valid i� for all models M and for all nodes s, we have
M, s |= α.Consider the formula null i ;i β. This asserts that player i has a strategy toensure β no matter what player ı does. This makes no referene to how player imay ahieve this objetive and thus, is similar to assertions in most game logis.Now onsider the formula σ ;i β. This says something stronger: that there existsa strategy µ satisfying σ for player i suh that irrespetive of what player ı plays, βis guaranteed. Here, the mehanism µ used by player i to ensure β is spei�ed bythe property σ.
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RRFigure 3.4: Game arenaExample 3.3.3 Consider the game obtained by the unfolding of the arena shownin Figure 3.4. Players alternate moves with 1 starting at s0. There are two yles
C1 : s5 → s6 → s7 → s8 → s5, C2 : s1 → s2 → s3 → s4 → s1 and self loops onnodes t1 and t2. Let the preferene ordering of player 1 be t1 �1 t2 �1 C2 �1 C1.As far as player 2 is onerned t1 �2 C1 and he is indi�erent between C2 and t2.However, he prefers C2 or t2 over {C1, t1}. Equilibrium reasoning will advise player
1 to hoose the ation �b� at s0 sine at position s7 it is irrational for player 2 tomove x as it results in his worst outome. However the utility di�erene between C1and t1 for player 2 might be negligible ompared to the inentive of staying in the�left� path. Therefore player 2 might deide to punish player 1 for moving b whenplayer 1 knew that {C2, t2} was equally preferred by player 2. Even though t1 is42



the worst outome, at s7 player 2 an play x to implement the punishment. Let thevaluation satisfy the following onstraints:
• The proposition pj holds at states {s3, s7},
• pinit holds at state s0,
• pgood holds at states {s0, s1, s2, s3, s4}

• ppunish holds at states {s0, s5, s6, s7, t1}.The loal objetive of player 2 is to remain on the good path or to implementthe punishment. Player 2's strategy spei�ation an be written as
π = ([pinit 7→ b]1 ⇒ [pj 7→ x]2) · ([pinit 7→ a]1 ⇒ [pj 7→ y]2).We get that π ;2 (pgood ∨ ppunish). If player 1 knows player 2's strategy, she mightbe tempted to play �a� at s0 by whih the play ends up in C2. Let the propo-sition pworst hold at t1 whih is the worst outome for player 1. Then we have

[pinit 7→ a]1 ;1 ¬pworst . This says that if player 1 hooses a at the initial positionthen she an ensure that the worst outome is avoided. 2Example 3.3.4 Consider the formula null i ;i (π ;ı β). This says that player ihas a strategy suh that from all the outome states if player ı follows a strategyorresponding to π then β an be ensured. In other words this onstrut an beused to make the assertion: given that player ı stiks to the spei�ation π, there isa strategy for player i to make sure that the maximum ı an ahieve is β. In general,the assertion an be parameterized by a spei�ation of player i as well. This takesthe form σ ;i (π ;ı β). 23.3.3 Axiom systemWe now present our axiomatization of the valid formulas of the logi. We �nd thefollowing abbreviations useful:
• root = ¬〈P〉True de�nes the root node to be one that has no predeessors.
• δσi (a) = turni ∧ (σ)i : a denotes that move �a� is enabled by σ at an i node.
• invσi (a, β) = (turni ∧ (σ)i : a) ⊃ [a](σ ;i β) denotes the fat that after an �a�move by player i whih onforms to σ, σ ;i β ontinues to hold.43



• invσı (β) = turnı ⊃ [N ](σ ;i β) says that after any move of ı, σ ;i β ontin-ues to hold.
• conf π = 2- (〈a〉turnı ⊃ 〈a〉(π)ı : a) denotes that all opponent moves in the pastonform to π.The axiom shemes(A0) All the substitutional instanes of the tautologies of propositional alulus.(A1) (a) [a](α1 ⊃ α2) ⊃ ([a]α1 ⊃ [a]α2)(b) [a](α1 ⊃ α2) ⊃ ([a]α1 ⊃ [a]α2)(A2) (a) 〈a〉α ⊃ [a]α(b) 〈a〉α ⊃ [a]α() 〈a〉True ⊃ ¬〈b〉True for all b 6= a(A3) (a) α ⊃ [a]〈a〉α(b) α ⊃ [a]〈a〉α(A4) (a) 3- root(b) 2-α ≡ (α ∧ [P]2-α)(A5) (a) ([ψ 7→ a]i)i : a for all a ∈ Σ(b) turni ∧ ([ψ 7→ a]i)i : c ≡ ¬ψ for all a 6= c(A6) (a) (σ1 + σ2)i : c ≡ σ1 : c ∨ σ2 : c(b) (σ1 · σ2)i : c ≡ σ1 : c ∧ σ2 : c() (π ⇒ σ)i : c ≡ conf π ⊃ (σ)i : c(A7) σ ;i β ⊃ (β ∧ invσi (a, β) ∧ invσı (β) ∧ enabledσ)Inferene rules

(MP) α, α ⊃ β (NG) α (NG-) α

β [a]α [a]α

(Ind-past) α ⊃ [P ]α

α ⊃ 2-α
(Ind ;) α ∧ δσi (a) ⊃ [a]α, α ∧ turnı ⊃ [N ]α, α ⊃ β ∧ enabledσ

α ⊃ σ ;i β44



The axioms are mostly standard. After the Kripke axioms for the 〈a〉 modalities,we have axioms that ensure determinay of both 〈a〉 and 〈a〉 modalities, and anaxiom to assert the uniqueness of the latter. We then have axioms that relate theprevious and next modalities with eah other, as well as to assert that the pastmodality steps through the 〈a〉 modality. An axiom asserts the existene of the rootin the past. The rest of the axioms desribe the semantis of strategy spei�ations.The rule Ind-past is standard, while Ind ; illustrates the new kind of reasoningin the logi. It says that to infer that the formula σ ;i β holds in all reahablestates, β must hold at the asserted state and
• for a player i node after every move whih onforms to σ, β ontinues to hold.
• for a player ı node after every enabled move, β ontinues to hold.
• player i does not get stuk by playing σ.3.3.4 SoundnessThe validity of axioms (A1) to (A3b) and (A4b) an be shown using standardmodal tehniques. Axiom (A4a) is valid sine the formulas are interpreted over a�nite extensive game tree with a unique root. The validity axioms (A5) and (A6)an be easily veri�ed using the semantis of the logi.Proposition 3.3.5 Axiom (A7) is valid.Proof: Suppose axiom (A7) is not valid. Then there exists a node s suh that

M, s |= σ ;i β and one of the following holds:
• M, s 6|= β: In this ase, from semantis we get that M, s 6|= σ ;i β whih is aontradition.
• M, s 6|= invσi (a, β): In this ase, we have s ∈ W i, M, s |= (σ)i : a and
M, s′ 6|= σ ;i β where s a

⇒s′. This implies that there is a path ρsk

s′ whih on-forms to σ and either M, sk 6|= β or moves(sk) ∩ σ(sk) = ∅. But sine s a
⇒s′,we have ρsk

s onforms to σ as well. From whih it follows that M, s 6|= σ ;i βwhih is a ontradition.
• M, s 6|= invσı (β): We have a similar argument as above.
• M, s 6|= enabledσ: This means moves(s) ∩ σ(s) = ∅, by semantis we have
M, s 6|= σ ;i β whih is a ontradition.45



2Proposition 3.3.6 Rule Ind ; preserves validity.Proof: Suppose that the premise is valid and the onlusion is not. Then for somenode s we haveM, s |= α andM, s 6|= σ ;i β. i.e. there is a path ρsk
s whih onformsto σ suh that M, sk 6|= β or σ(sk) ∩ moves(sk) = ∅. Let ρsk

s be the shortest of suhpath.Suppose M, sk 6|= β, then we have the following two ases to onsider.
• sk−1 ∈ W i: By assumption on the path ρsk

s , we have M, sk−1 |= α ∧ δσi (ak−1).From validity of α ⊃ β (the premise), we have M, sk 6|= α, whih implies
M, sk−1 6|= [ak−1]α. Therefore we getM, sk−1 6|= (α∧δσi (ak−1)) ⊃ [ak−1]α, whihgives us a ontradition to the validity of a premise.

• sk−1 ∈ W ı: By assumption on the path ρsk
s , we have M, sk−1 |= α ∧ turnı.Using an argument similar to the previous ase we also getM, sk−1 6|= [ak−1]α.Therefore we have M, sk−1 6|= (α∧ turnı) ⊃ [N ]α, giving us a ontradition tothe validity of a premise.If σ(sk)∩moves(sk) = ∅ then we have M, sk |= α and M, sk 6|= enabledσ. There-fore M, sk 6|= (α ⊃ enabledσ), whih is the required ontradition. 23.3.5 CompletenessTo show ompleteness, we prove that every onsistent formula is satis�able. We usethe following de�nitions.De�nition 3.3.7 For a strategy spei�ation σ ∈ Strat i(P i) we de�ne the set ofpast time formulas ourring in σ, denoted P(σ) indutively as follows:

• P([ψ 7→ a]i) = {ψ} for a ∈ Σ.
• P(σ1 + σ2) = P(σ1) ∪ P(σ2).
• P(σ1 · σ2) = P(σ1) ∪ P(σ2).
• P(π ⇒ σ1) = P(π) ∪ P(σ1). 46



De�nition 3.3.8 For a formula α0 we de�ne the sub-formula losure of α0 denoted
CL(α0). Let CL′(α0) be the least set of formulas suh that:

• α0, 3- root ∈ CL′(α0).
• If ¬α ∈ CL′(α0) then α ∈ CL′(α0).
• If α1 ∨ α2 ∈ CL′(α0) then α1, α2 ∈ CL′(α0).
• For M of the form 〈a〉 or 〈ā〉 or 3- , if Mα ∈ CL′(α0) then α ∈ CL′(α0).
• If (σ)i : a ∈ CL′(α0) then P(σ) ⊆ CL′(α0).
• If σ ;i β ∈ CL′(α0) then β ∈ CL′(α0), invσi (a, β) ∈ CL′(α0), invσı (β) ∈

CL′(α0), enabledσ ∈ CL′(α0) and P(σ) ⊆ CL′(α0).
CL(α) = CL′(α0) ∪ {¬α | α ∈ CL′(α0)} where we identify ¬¬α with α.De�nition 3.3.9 A set t ⊆ CL(α0) is alled an atom if

• 3- root ∈ t.
• for all ¬α ∈ CL(α0), ¬α ∈ t i� α 6∈ t.
• for all α1 ∨ α2 ∈ CL(α0), α1 ∨ α2 ∈ t i� α1, α2 ∈ t.
• for all 3-α ∈ CL(α0), 3-α ∈ t i� α ∈ t or 〈P〉3-α ∈ t.
• for all σ ;i β ∈ CL(α0) if σ ;i β ∈ t then β ∈ t, invσi (a, β) ∈ t, invσı (β) ∈ tand enabledσ ∈ t.
• for all ¬(σ ;i β) ∈ CL(α0) if ¬(σ ;i β) ∈ t then ¬enabledσ ∈ t or ¬β ∈ t or

(〈N 〉¬(σ ;i β)) ∈ t.Let α0 be a onsistent formula, and let AT (α0) be the set of atoms of α0. Welet t, t′ range over AT (α0). Eah t ∈ AT (α0) is a �nite set of formulas, we denotethe onjuntion of all formulas in t by t̂. For a nonempty subset X ⊆ AT (α0), wedenote by X̃ the disjuntion of all t̂, t ∈ X. De�ne a transition relation on AT (α0)as follows: t
a
→AT t′ i� t̂∧ 〈a〉t̂′ is onsistent. Call an atom t a root atom if there doesnot exist any atom t′ suh that t′

a
→AT t for some a.The following lemmas an be shown using standard modal logi tehniques.Lemma 3.3.10 For all α ∈ CL(α0) and t ∈ AT (α0) we have the following:47



1. t̂ is onsistent.2. if 〈a〉α is onsistent then α is onsistent.3. for all R ⊆ AT (α0), and t ∈ AT (α0), if t ∈ R then ⊢ t̂ ⊃ R̃.4. if ⊢ α then α ∈ t.5. if ⊢ t̂ ⊃ α then t̂ ∧ α is onsistent.Lemma 3.3.11 For atoms t1 and t2, the following statements are equivalent.1. t̂1 ∧ 〈a〉t̂2 is onsistent.2. 〈a〉t̂1 ∧ t̂2 is onsistent.Lemma 3.3.12 There exist t1, . . . , tk ∈ AT (α0) and a1, . . . ak ∈ Σ (k ≥ 0) suhthat tk
ak→AT tk−1 . . .

a1→AT t0, where tk is a root atom.Proof: Consider the least set R ontaining t0 and losed under the following on-dition: if t1 ∈ R and for some a ∈ Σ there exists t2 suh that t2
a
→AT t1, then t2 ∈ R.Now, if there exists an atom t′ ∈ R suh that t′ is a root then we are done. Supposenot, then we have ⊢ R̃ ⊃ ¬root . But then, we an show that ⊢ R̃ ⊃ [P ]R̃. By rule

Ind -past and above we get ⊢ R̃ ⊃ 2-¬root . But then t0 ∈ R and hene ⊢ t̂0 ⊃ R̃ andtherefore we get ⊢ t̂0 ⊃ 2-¬root . Sine ¬3- root ∈ CL(α0) and from Lemma 3.3.10(5)we get ¬3- root ∈ t0. From axiom (A4a) and Lemma 3.3.10(4) we have 3- root ∈ t0whih ontradits the onsisteny of t0. 2Lemma 3.3.13 Consider the path tk
ak→AT tk−1 . . .

a1→AT t0 where tk is a root atom,1. For all j ∈ {0, . . . , k − 1}, if [a]α ∈ tj and tj+1
a
→AT tj then α ∈ tj+1.2. For all j ∈ {0, . . . , k−1}, if 〈a〉α ∈ tj and tj+1
b
→AT tj then b = a and α ∈ tj+1.3. For all j ∈ {0, . . . , k − 1}, if 3-α ∈ tj then there exists i : j ≤ i ≤ k suh that

α ∈ ti.Proof: (1) Sine tj+1
a
→AT tj , we have t̂j+1 ∧ 〈a〉t̂j is onsistent. By lemma 3.3.11,

t̂j ∧〈a〉t̂j+1 is onsistent, whih implies [a]α∧〈a〉t̂j+1 is onsistent (by omitting someonjunts). Therefore 〈a〉(α ∧ t̂j+1) is onsistent. Using (NG-) we get α ∧ t̂j+1 isonsistent and sine tj+1 is an atom, we have α ∈ tj+1.48



(2) Suppose tj+1
b
→AT tj , we �rst show that b = a. Suppose this is not true, sine

tj+1
b
→AT tj , we have t̂j∧〈b〉t̂j+1 is onsistent. And therefore t̂j∧〈b〉True is onsistent.From axiom (A2), t̂j∧[a]False is onsistent. If 〈a〉α ∈ tj , then we get 〈a〉α∧[a]Falseis onsistent. Therefore 〈a〉(α∧False) is onsistent. From (NG-) we have α∧Falseis onsistent, ontraditing the onsisteny of α (ensured by the fat that 〈a〉α ∈ tjis onsistent).To show α ∈ tj+1 observe that 〈a〉α ∈ tj implies [a]α ∈ tj (by axiom (A2b) andlosure ondition). By previous argument we get α ∈ tj+1.(3) Suppose 3-α ∈ tj and tj+1

a
→AT tj. If α ∈ tj then we are done. Else, by axiom(A4b) and the previous argument, we have 〈a〉3-α ∈ tj . From (2) we have 3-α ∈ tj+1.Continuing in this manner, we either get an i where α ∈ ti (in whih ase we aredone) or we get 3-α ∈ tk. Sine tk is the root atom, we have t̂k ∧ ¬〈P〉True isonsistent. Sine 3-α ∈ tk, we get t̂k ∧ (α∨ 〈P〉α) is onsistent. Thus we have t̂k ∧αis onsistent and therefore α ∈ tk. 2Lemma 3.3.14 For all t ∈ AT (α0) if σ ;i β 6∈ t then there exists a path ρtk

t : t =

t1
a1→AT t2 . . .

ak−1

→ AT tk whih onforms to σ suh that one of the following onditionshold.
• β 6∈ tk.
• moves(tk) ∩ σ(tk) = ∅.Proof: Consider the least set R ontaining t and losed under the following ondi-tion:
• if t1 ∈ R then for every transition t1

a
→AT t2 suh that a ∈ σ(t1) we have t2 ∈ R.If there exists an atom t′ ∈ R suh that β 6∈ t′ or if moves(t′) ∩ σ(t′) = ∅, then weare done. Suppose not, then we have ⊢ R̃ ⊃ β and ⊢ R̃ ⊃

∨

a∈Σ

(〈a〉True ∧ (σ)i : a).Claim : The following are derivable.1. ⊢ (R̃ ∧ turni ∧ (σ)i : a) ⊃ [a]R̃.2. ⊢ (turni ∧ R̃) ⊃ [N ]R̃.The laim an be veri�ed as follows. To prove 1, suppose the laim does not hold.We have that (R̃ ∧ turni ∧ (σ)i : a) ∧ 〈a〉¬R̃ is onsistent. Let R′ = AT (α0) \ R.49



If R′ = ∅ then R = AT (α0) in whih ase its easy to see that the laim holds. If
R′ 6= ∅, then we have (R̃ ∧ turni ∧ (σ)i : a) ∧ 〈a〉R̃′ is onsistent. Hene for some
t1 ∈ R and t2 ∈ R′, we have (t̂1∧turni∧(σ)i : a))∧〈a〉t̂2 is onsistent. Whih implies
t1

a
→AT t2 and this transition onforms to σ. By losure ondition on R, t2 ∈ R whihgives us the required ontradition. Proof of 2 is similar. End of laimFrom the above laim and applying (Ind ;) rule we get ⊢ R̃ ⊃ σ ;i β. But

t ∈ R and therefore ⊢ t̂ ⊃ σ ;i β, ontraditing the assumption that σ ;i β 6∈ t. 2Model onstrution in terms of atoms: Consider the tree struture TAT whihonsists of the path tk
ak→AT tk−1 . . .

a1→AT t0 and the tree unfolding of AT (α0) rooted at
t0. By Lemma 3.3.14, the struture TAT satis�es the property if there exists a node tsuh that σ ;i β 6∈ t then there exists a path t = t1

a1→AT . . .
am→AT tm suh that β 6∈ tmor moves(tm)∩σ(tm) = ∅. It would be easy if we ould build a model for α0 based onthe tree struture TAT . Sine the size of AT (α0) is exponential in the size of α0, thiswould immediately lead to the deidability of the satis�ability problem of the logias well. The trouble is that the struture (AT (α0),→AT ) need not be deterministi.There might exist atoms t1, t2, t3 suh that t1

a1→AT t2 and t1
a1→AT t3. Thus →AT doesnot de�ne a parital funtion and therefore extrating a deterministi model out ofthe struture (AT (α0),→AT ) is not straightforward.For the purpose of showing ompleteness, we an irumvent this problem byonstruting the anonial model in terms of maximal onsistent sets. We show howthis an be done below.Canonial model onstrution: Let M denote the set of all maximal onsistentsets (MCS). We use m,m′ to range over MCS's. Sine α0 is onsistent, there existsan MCS m0 suh that α0 ∈ m0. De�ne a transition relation on MCS's as follows:

m
a
→mm′ i� {〈a〉α | α ∈ m′} ⊆ m. It is easy to see that for any MCS m we have

m ∩ CL(α0) ∈ AT (α0).We de�ne the model M as follows. From Lemma 3.3.12 and Lemma 3.3.13 itis easy to see that there exist MCS's m1, . . . ,mk ∈ M and a1, . . . ak ∈ Σ (k ≥ 0)suh that mk
ak→mmk−1 . . .

a1→mm0, where mj ∩ CL(α0) = tj . Now this path de�nes a(�nite) tree T0 = (S0,⇒0, s0, λ̂) rooted at s0, where S0 = {s0, s1, . . . , sk}, and forall j ∈ {0, · · · , k}, sj is labelled by the MCS mk−j. The relation ⇒0 is de�ned in50



the obvious manner. From now we will simply say α ∈ s where s is the tree node,to mean that α ∈ m where m is the MCS assoiated with node s. The turn funtionis de�ned as expeted: λ̂(sj) = i if turni ∈ sj else λ̂(sj) = ı.Indutively assume that we have a tree Tk = (Sk,⇒k, s0, λ̂k) suh that thepast formulas at every node have �witnesses� as above. Pik a node s ∈ Sk suhthat 〈a〉True ∈ s but there is no s′ ∈ Sk suh that s a
⇒s′. Now, if m is the MCSassoiated with node s, there exists an MCS m′ suh that m

a
→mm′. Pik a newnode s′ /∈ Sk and de�ne Tk+1 = (Sk+1,⇒k+1, s0, λ̂k) where Sk+1 = Sk ∪ {s′} and

⇒k+1 = ⇒k ∪ {(s, a, s′)}, where m′ is the MCS assoiated with s′. It is easy to seethat every node in Tk+1 has witnesses for past formulas as well. The turn funtionis extended as de�ned earlier for the newly added nodes.Now onsider T = (S,⇒, s0, λ̂) de�ned by: S =
⋃
k≥0

Sk and ⇒ =
⋃
k≥0

⇒k. De�nethe model M = (T , V ) where V (s) = w ∩ P , where w is the MCS assoiated with
s. Let ⇒∗ denote the re�exive and transitive losure of ⇒ relation.Lemma 3.3.15 For any s ∈ S, we have the following properties.1. If [a]α ∈ s and s a

⇒s′ then α ∈ s′.2. If 〈a〉α ∈ s then there exists s′ suh that s a
⇒s′ and α ∈ s′.3. If [a]α ∈ s and s′ a⇒s then α ∈ s′.4. If 〈a〉α ∈ s then there exists s′ suh that s′ a⇒s and α ∈ s′.5. If 2-α ∈ s and s′⇒∗s then α ∈ s′.6. If 3-α ∈ s then there exists s′ suh that s′⇒∗s and α ∈ s′.Proof: Cases (1) to (5) an be shown using standard modal logi tehniques.(6) follows from the existense of a root atom (Lemma 3.3.12) and axiom (A4b). 2Lemma 3.3.16 For all ψ ∈ Past(P ), for all s ∈ S, ψ ∈ s i� ρss0, s |= ψ.Proof: This follows from Lemma 3.3.15 using an indutive argument. 2Lemma 3.3.17 For all i, for all σ ∈ Strat i(P i), for all c ∈ Σ, for all s ∈ S,

(σ)i : c ∈ s i� c ∈ σ(s). 51



Proof: The proof is by indution on the struture of σ.
σ = [ψ 7→ a]i: Suppose ([ψ 7→ a]i)i : c ∈ s. If c = a then the laim holds trivially. If
c 6= a then from (A5a) we get that ¬ψ ∈ s. From Lemma 3.3.16 we have ρss0 , s 6|= ψ.Therefore by de�nition we have [ψ 7→ a]i(s) = Σ and c ∈ σ(w).Conversely, suppose ([ψ 7→ a]i)i : c 6∈ s. From (A5a) we have a 6= c. From (A5b)we get ψ ∈ s. By Lemma 3.3.16 ρss0 , s |= ψ. Therefore c 6∈ σ(s) by de�nition.The ases when σ = (σ1 +σ2) and σ = (σ1 ·σ2) follow easily from indution hypoth-esis.
σ = π ⇒ σ′: Let ρss0 : s0

a0⇒· · ·
ak−1

⇒ sk = s be the unique path from the root to s.Suppose (π ⇒ σ′)i : c ∈ s. To show c ∈ (π ⇒ σ′)(s). Su�es to show that ρss0onforms to π implies c ∈ σ′(s). From (A6) we have conf π ⊃ (σ′)i : c ∈ s. Reallthat conf π = 2- (〈a〉turnı ⊃ 〈a〉(π)ı : a) denotes that all opponent moves in the pastonform to π. Thus we get 3- (〈a〉turnı ∧ [a](¬(π)ı : a)) ∨ (σ′)i : c ∈ s. We have twoases,
• if (σ′)i : c ∈ s then by indution hypothesis we get c ∈ σ′(s). Therefore byde�nition c ∈ (π ⇒ σ)(s).
• otherwise, we have 3- (〈a〉turnı ∧ [a](¬(π)ı : a)) ∈ s. From Lemma 3.3.15(6),there exists sl ∈ ρss0 suh that 〈a〉turnı ∧ [a](¬(π)ı : a) ∈ sl. By Lemma3.3.15(4) there exists sl−1 ∈ ρss0 suh that sl−1

a
⇒sl. From Lemma 3.3.15(3),

¬(π)ı : a ∈ sl−1. Sine sl−1 is an MCS, we have (π)ı : a 6∈ sl−1. By indutionhypothesis, a 6∈ π(sl−1), therefore we have that ρss0 does not onform to π.
(⇐) Conversely, suppose (π ⇒ σ′)i : c 6∈ s, to show c 6∈ (π ⇒ σ′)(s). It suf-�es to show that ρss0 onforms to π and c 6∈ σ′(s). From axiom (A6), we have
conf π ∧ ¬(σ)i : c ∈ s. Rewriting this we get (2- (〈a〉turnı ⊃ 〈a〉(π)ı : a)) ∧ (¬(σ)i :

c) ∈ s. From the �rst onjunt and using Lemma 3.3.15 we get ρss0 onforms to
π. The seond onjunt implies (σ)i : c 6∈ s and by indution hypothesis we get
c 6∈ σ′(s). Thus by de�nition c 6∈ (π ⇒ σ)(s). 2Lemma 3.3.18 For all α ∈ Π, for all s ∈ S, α ∈ s i� M, s |= α.Proof: The proof is by indution on the struture of α. The non-trivial ases areas follows.
α = (σ)i : c. From Lemma 3.3.17 we have (σ)i : c ∈ s i� c ∈ σ(s) i� by semantis
M, s |= (σ)i : c. 52



α = σ ;i β.
(⇒) We show the following:1. If σ ;i β ∈ s and there exists a transition s

a
⇒s′ suh that a ∈ σ(s), then

{β, σ ;i β} ⊆ s′. Suppose σ ;i β ∈ s, from (A7) we have β ∈ s. We havetwo ases to onsider.
• λ̂(s) = i: We have turni ∈ s. Sine a ∈ σ(s), by Lemma 3.3.17 we have

(σ)i : a ∈ s. From (A7) we get [a](σ ;i β) ∈ s. By Lemma 3.3.15(1) wehave σ ;i β ∈ s′.
• λ̂(s) = ı: We have turnı ∈ s. From (A7) we get [N ](σ ;i β) ∈ s, sine sis an MCS we have for every a ∈ Σ, [a](σ ;i β) ∈ s. By Lemma 3.3.15(1)we have σ ;i β ∈ s′.By applying (A7) at s′ we get β ∈ s′.2. If σ ;i β ∈ s then there exists s′ suh that s a

⇒s′ and a ∈ σ(s). From axiom(A7), ∨
a∈Σ(〈a〉True ∧ (σ)i : a) ∈ s. Sine s is an MCS, there exists an a suhthat 〈a〉True ∧ (σ)i : a ∈ s. By Lemma 3.3.15(2), there exists an s′ suh that

s
a
⇒s′ and by Lemma 3.3.17 a ∈ σ(s).(1) ensures that whenever σ ;i β ∈ s and there exists a path ρsk

s whih onformsto σ, then we have {β, σ ;i β} ⊆ sk. Sine β ∈ Past(P ), by Lemma 3.3.16 we have
M, sk |= β. (2) ensures that for all paths ρsk

s whih onforms to σ, moves(sk) ∩

σ(sk) 6= ∅. Therefore we get M, s |= σ ;i β.
(⇐) Conversely suppose σ ;i β 6∈ s, to show M, s 6|= σ ;i β. It su�es toshow that there exists a path ρsk

s that onforms to σ suh that M, sk 6|= β or
moves(sk) ∩ σ(sk) = ∅.Let t = s ∩ CL(α0), we have t ∈ AT (α0) and σ ;i β ∈ t. By Lemma 3.3.14,there exists a path in the atom graph t = t1

a1→AT t2 . . .
ak→AT tk suh that β 6∈ tk or

moves(tk)∩σ(tk) = ∅. t1 an be extended to the MCS s. Let t′2 = t2∪{α|[a1]α ∈ s}.Its easy to hek that t′2 is onsistent. Consider any MCS s2 extending t′2, we have
s
a1⇒s2. Continuing in this manner we get a path in s = s1

a1⇒s2 . . .
ak−1

⇒ sk in M whihonforms to σ where either β 6∈ sk or moves(sk) ∩ σ(sk) = ∅. 2This leads us to the following theorem whih asserts that the axiom system isomplete. 53



Theorem 3.3.19 For all formula α0, if α0 is onsistent then α0 is satis�able.Proof: Suppose α0 is a onsistent formula, then {α0} an be extended to a max-imal onsistent set m0. By the onstrution of the model M = (T , V ), there existsa node s in T suh that s is labelled with m0. By Lemma 3.3.18, M, s |= α0 andtherefore α0 is satis�able. 23.3.6 Truth ChekingThe truth heking problem for the logi is stated as: given a modelM and a formula
α0, determine whether M, s0 |= α0. In this setion we show that the truth hekingproblem for the logi is deidable. Models of the logi were de�ned to be extensiveform game trees extended with a valuation funtion.However for algorithmi analysis, we need to present the in�nite tree in some�nite fashion. As shown in the previous hapter we an think of the in�nite extensiveform game tree being generated by the tree unfolding of a �nite game arena. Thusa model M an be presented as a struture (W,→, w0, λ, V ) where (W,→, w0, λ)onstitutes a game arena and V : W → 2P

′ is a valuation funtion where P ′ is a�nite subset of P . This an also be thought of as a Kripke struture extended witha turn funtion λ. Formulas of the logi are then interpreted on the struture TMwhih is the extensive form game tree resulting from the tree unfolding of M .We an now rephrase the truth heking problem in the following manner:given a model in terms of a Kripke struture M and a formula α0, determinewhether TM , s0 |= α0. The idea is to build a tree automaton whih aepts TMi� TM , s0 |= α0. Sine TM is a possibly in�nite struture, we need to onsiderautomata running over in�nite trees. Towards this objetive, we formally de�ne aBühi tree automaton below.Bühi tree automata: A tree T = (S,⇒, s0, λ̂) is said to be a k-ary tree if for all
s ∈ S, the out degree of s is k, i.e. | →

s | = k.De�nition 3.3.20 A Bühi tree automaton running over k-ary trees is a struture
T = (Q,R, I,F) where

• Q is the set of states
• R ⊆ Q × S × Qk is the transition relation.54



• I ⊆ Q is the set of initial states.
• F ⊆ Q is the set of �good� states.A run of T on T is a Q labelled tree R = (S,⇒, s0, λ̂, l) where l : S → Q is thelabelling funtion de�ned as,
• l(s0) ∈ I.
• For any s we have (l(s), s, l(s1), . . . , l(sk)) ∈ R.For an in�nite sequene of states ϕ : q0q1 . . ., let Inf (ϕ) denote the set of statesouring in�nitely often in ϕ. For a path ρ = s0a0s1 . . ., let l(ρ) = l(s0)l(s1) . . .. Arun R is aepted by T if for all paths ρ in R, Inf (l(ρ)) ∩ F 6= ∅.Proposition 3.3.21 ([VW86℄) The emptiness problem of Bühi tree automata anbe solved in polynomial time.We make use of the following de�nition and preliminary results for the onstru-tion.De�nition 3.3.22 For a strategy spei�ation σ ∈ Strat i(P i) let Aσ = (Qσ, δσ, oσ, Iσ)be the advie automaton orresponding to σ. We onstrut a deterministi automa-ton Aσ as follows: Aσ = (Qσ, δσ, oσ, Iσ) where
• Qσ = 2Qσ .
• δσ(X,w, a) = {q′ | ∃q ∈ X with q′ ∈ δσ(q, w, a)}.
• oσ : Qσ×W → 2Σ whih satis�es the ondition: for all X = {q1, . . . , qk} ∈ Qσand all game positions w, oσ(X,w) = {oσ(q1, w), . . . , oσ(qk, w)}.
• Iσ = Iσ.The automatonAσ is onstruted by performing the standard subset onstrutionon the underlying struture of the advie automaton Aσ and in whih the outputsymbols are aggregated.The run ofAσ on a tree T = (S,⇒, s0, λ̂) is the Qσ labelled tree R = (S,⇒, s0, λ̂, l)where l : S → Qσ is the labelling funtion de�ned as,
• l(s0) = Iσ. 55



• For any sk where sk a
⇒s′k we have l(s′k) = δσ(l(sk), sk, a).For a deterministi automaton Aσ and tree T = (S,⇒, s0, λ̂), let R(Aσ, T ) =

(S,⇒, s0, λ̂, lAσ
) denote the run of Aσ on T . The following proposition, whih anbe easily veri�ed, asserts the orretness of the subset onstrution.Proposition 3.3.23 For all σ ∈ Strat i(P i), for all T = (S,⇒, s0, λ̂), for all s ∈ Sand for all q ∈ Qσ,

• q ∈ lAσ
(s) i� there exists a run R(Aσ, T ) = (S,⇒, s0, λ̂, lAσ

) of Aσ on T suhthat lAσ
(s) = q.Lemma 3.3.24 For all σ ∈ Strat i(P i), for all T = (S,⇒, s0, λ̂), for all sk ∈ Ssuh that λ̂(s) = i, we have σ(s) = oσ(lAσ

(s), last(s)).Proof: The proof is by indution on the struture of σ.
σ = [ψ 7→ a]i - If ρsk

s0
, sk |= ψ then for all runs R(Aσ, T ) = (S,⇒, s0, λ̂, lAσ

) of Aσ on
T we have oσ(lAσ

(sk), last(sk)) = a. By Proposition 3.3.23 we get for all q ∈ lAσ
(sk),

oσ(q, last(s)) = a and therefore we have oσ(lAσ
(s), last(s)) = {a}.If ρsk

s0
, sk 6|= ψ then for all b ∈ Σ, there exists a run R(Aσ, T ) = (S,⇒, s0, λ̂, lAσ

)of Aσ on T suh that oσ(lAσ
(sk), last(sk)) = b. Again by applying Proposition 3.3.23we an dedue that oσ(lAσ

(sk), last(sk)) = Σ.For the ases when σ = σ1 + σ2 and σ = σ1 · σ2 the laim easily follows by theonstrution of the advie automaton and the indution hypothesis.
σ = π ⇒ σ1 - Suppose ρsk

s0
= s0a0 . . . ak−1sk onforms to π, i.e. for all j with

0 ≤ j < k, aj ∈ π(sj), then from the semantis we have (π ⇒ σ1)(sk) = (σ1)(sk).In this ase, the output of Aπ⇒σ1
at node sk is same as the output of Aσ1

at sk.Thus by onstrution of Aσ we have oπ⇒σ1
(lAσ

(sk), last(sk)) = oσ1
(lAσ

(sk), last(sk)).By indution hypothesis we have oσ1
(lAσ

(sk), last(sk)) = σ1(sk). Thus we get
oπ⇒σ1

(lAσ
(sk), last(sk)) = σ1(sk) = (π ⇒ σ1)(sk).Suppose ρsk

s0
does not onform to π then by semantis (π ⇒ σ1)(s) = Σ. In thisase, the advie automaton moves to a state qfree where it is free to produe any out-put. From the onstrution of Aσ we an dedue that oπ⇒σ1

(lAσ
(sk), last(sk)) = Σ.

2Let AT (α0) denote the set of all atoms of α0 (see De�nition 3.3.9). Let t0 = {t ∈

AT (α0) | 3-α ∈ t implies α ∈ t}. For t, t′ ∈ AT (α0), de�ne t
a

−→ t′ i� the followingonditions hold. 56



• For all [ā]α ∈ CL(α0), [ā]α ∈ t′ i� α ∈ t.
• For all [a]α ∈ CL(α0), if [a]α ∈ t then α ∈ t′.Tree automaton onstrution: Given a modelM and a formula α0, the objetiveis to onstrut a Bühi tree automaton T (M,α0) running over k-ary trees for some�xed k ∈ N. However, the branhing degree of nodes in TM need not be uniform. We�rst observe that sine the automaton onstrution is parameterised by the model

M it is possible to always normalise the model to one where all nodes have the samebranhing degree. Let b = maxw∈W |
→
w |, i.e. b denotes the maximum out degree ofpositions in W . We an �normalise� M by adding edges to dummy nodes so that allnodes are of out degree b. These newly added dummy nodes are sink nodes of thegraph, i.e. all the out going edges are self loops. A tree automaton running on suha normalised tree would enter an aept state on enountering a dummy node andremain in this state. Thus any path ending in a dummy node is disregarded by theautomaton and only paths whih were present in M are analysed for onsistenyrequirements.Therefore without loss of generality we an assume that the model M satis�esthe ondition: for all w ∈W , | →

w | = b. Thus the tree TM is a b-ary tree.Let S(α0) = {σ1, . . . , σm} be the strategy spei�ations appearing in α0 and for
1 ≤ j ≤ m and Aσj

= (Qσj
, δσj

, oσj
, Iσj

) be the deterministi automaton orrespond-ing to the advie automatonAσj
. Let Q = Qσ1

×. . .×Qσm
, we use X = (X1, . . . , Xm)to denote elements of Q.Intuitively the tree automaton works as follows: It keeps trak of the maximalonsistent subsets (atoms) of α0 and simulates the advie automata Aσ1

, . . . ,Aσm
inparallel. At a game position s, for a subformula (σ)i : a in the atom, it ensures thatthe ation �a� is a possible output of the advie automaton Aµ. However, ¬(σ ;i β)is a requirement whih says that there exists a game position where enabledσ doesnot hold or β is false. We keep trak of suh formulas in a �requirement set� U .When the tree automaton branhes, it guesses for eah branh whih requirementsneed to be satis�ed on that partiular branh. The Bühi aeptane ondition issimply all those states where the �requirement set� U is empty.Formally we have T (M,α0) = (Q,R, I,F) where the set of states Q = (AT (α0)∪

{X,⋉}) × (2CL(α0))3 × Q satis�es the property: for all ((t, d), U, Z, Y,X) ∈ Q, if
d = X then

• for all 〈a〉α ∈ Z it is the ase that α ∈ t.57



• for all (σj)i : a ∈ CL(α0), (σj)i : a ∈ t i� a ∈ oσj
(Xj , last(s)).We also assume the existene of a speial accept state in Q. The set of initialstates I satis�es the ondition: ((t,X), U, Z, Y,X0) ∈ I i�

• t ∈ t0, U = ∅ and Z = ∅.
• Y = {〈a〉α ∈ CL(α0) | 〈a〉α ∈ t}.
• X

0 = (X0
1 , . . . , X

0
m).The sets Z and Y are used to keep trak of the 〈a〉α formulas and ensure thatthe edge relation is onsistent with these formulas. For a game position s, let

last(s) = w and let →
w= {w1, . . . , wb} with w aj

→wj for 1 ≤ j ≤ b. The automatonat a state ((t, d), U, Z, Y,X) reading the game position s, guesses a partition of
U = U1∪ . . .∪Ub. Note that to be tehnially preise, it needs to be mentioned thatthe struture M is also enoded into the state spae of the automaton. However, toavoid luttering of the notations we do not expliitly represent this. The transitionrelation R is de�ned as follows.
〈(((t1, d1), U

′
1, Z1, Y1,X

1), a1), . . . , (((tb, db), U
′
b
, Zb, Yb,X

k), ab)〉 ∈ R(((t, d), U, Z, Y,X), s)i� the following onditions hold.
• If d = ⋉ then dj = ⋉ for all j : 1 ≤ j ≤ b.
• For V (s) = t ∩ Voc(α0) and for all j : 1 ≤ j ≤ b, t

aj

−→ tj .
• Zj = {〈a〉α ∈ Y | a = aj} and Z1, . . . , Zb form a partition of Z.
• U ′

j =

{
{¬(σ ;i β) ∈ Uj | β, enabledσ ∈ Cj} if U 6= ∅

{¬(σ ;i β) ∈ Cj | β, enabledσ ∈ Cj} if U = ∅

• Yj = {〈a〉α | 〈a〉α ∈ Cj}.
• For 1 ≤ j ≤ b, 1 ≤ r ≤ m, Xj

r = δσr
(Xr, s, aj).The state with entry ⋉ orresponds to a rejet state and one the automatonenters the rejets state it remains in that state for all transitions. The Bühi aep-tane ondition is, F = {((t,X), U, Z, Y,X) ∈ Q | U = ∅} ∪ {accept}.Theorem 3.3.25 Given a model M and a formula α0 we have TM , s0 |= α0 i�

Lang(T (M,α0)) 6= ∅. 58



Proof: (⇒): Suppose TM , s0 |= α, we show that there exists an aepting runof T (M,α0) on TM . For a node s, let ts = {α ∈ CL(α0) | M, s |= α}. Wede�ne the labelling lT indutively as follows. lT (s0) = ((ts0 ,X), ∅, ∅, Y,X0) where
Y = {〈a〉α ∈ CL(α0) | 〈a〉α ∈ t} and X

0 = (X0
1 , . . . , X

0
m).Now onsider any node s suh that lT (s) is de�ned and the labelling funtionis not de�ned on its suessors. Let lT (s) = ((t,X), U, Z, Y,X) and let {s1, . . . , sb}be the suessor nodes of s with s

aj

⇒sj for all j : 1 ≤ j ≤ b. If U 6= ∅, for eahformula ¬(σ ;i β) ∈ U we have TM , s |= ¬(σ ;i β). Thus there exists a path
s = s1s2 . . . sq suh that TM , sq |= ¬β ∨ ¬enabledσ and for all intermediate node
sr, TM , sr |= β ∧ enabledσ. We also have s2 ∈ {s1, . . . , sb}. Set Uj to be the setof all formulas ¬(σ ;i β) ∈ U suh that s2 = sj. Now for all j : 1 ≤ j ≤ b,
lT (sj) = ((tsj

,X), Uj , Zj, Yj,X
j) where

• Zj = {〈aj〉α ∈ CL(α0) | 〈aj〉α ∈ Y }.
• Yj = {〈a〉α ∈ CL(α0) | 〈a〉α ∈ tsj

}.
• For all r : 1 ≤ r ≤ m, Xj

r = δDr (Xr, s, aj).It is straight forward to verify that this de�nes a valid run of the automaton andthat it is aepting.
(⇐): Suppose Lang(T (M,α0)) 6= ∅, let TM = (S,⇒, s0, λ̂) and R = (S,⇒, s0, λ̂, lT )be the aepting run of T (M,α0) on TM . The labelling funtion lT labels nodes ofthe run tree with states of the automaton. Thus for a game position s, lT (s) is atuple ((t, d), U, Z, Y,X). We denote by lT (s)[j] the jth omponent of the tuple with
lT (s)[1] = (t, d). For a formula α, we also write α ∈ lT (s) to mean α ∈ t. We showthe following:

• for all α ∈ CL(α0) and for all s ∈ S, α ∈ lT (s) i� M, s |= α.The proof is by indution on the struture of α and the interesting ases are asfollows.
α = p - We have M, s |= p i� p ∈ V (s) i� p ∈ lT (s).
α = (σ)i : a - Reall that S(α0) = {σ1, . . . , σm}. Let r be the index of σ in S(α0),i.e. σr = σ. Let lT (s) = ((t, d), U, Z, Y,X) where X = (X1, . . . , Xm). M, s |= (σ)i : ai� a ∈ σ(s) i� a ∈ oσr

(Xr, last(s)) (from lemma 3.3.24). Sine R is an aeptingrun, we have d = X and by de�nition of the automaton we have a ∈ Oσr
(Xr, s) i�

(σ)i : a ∈ lT (s). 59



α = σ ;i β - Suppose σ ;i β ∈ lT (s) we need to show that TM , s |= σ ;i β.It su�es to show that for every path ρsk
s whih onforms to σ, TM , sk |= β and

→
sk ∩σ(sk) 6= ∅. We show the following:1. If σ ;i β ∈ lT (s) and there exists an s′ suh that s a

⇒s′ with a ∈ σ(s) then
{β, σ ;i β} ⊆ lT (s′). Let r be the index of σ in S(α0), i.e. σr = σ. Let
lT (s) = ((t, d), U, Z, Y,X) where X = (X1, . . . , Xm). Suppose σ ;i β ∈ lT (s)by de�nition of atom we have β ∈ lT (s). The following two ases arise.

• λ̂(s) = i: We have turni ∈ lT (s). Sine a ∈ σ(s), by lemma 3.3.24 wehave a ∈ oσr
(Xr, last(s)). By de�nition of state we have (σ)i : a ∈ lT (s).From de�nition of atom we have [a](σ ;i β) ∈ lT (s). By de�nition ofthe transition relation we have σ ;i β ∈ lT (s′) and by de�nition of atom

β ∈ lT (s′).
• λ̂(s) = ı: We have turnı ∈ lT (s). From de�nition of atom we get

[N ](σ ;i β) ∈ lT (s) and thus we have for every a ∈ Σ, [a](σ ;i β) ∈

lT (s). By de�nition of the transition relation we have σ ;i β ∈ lT (s′)and by de�nition of atom β ∈ lT (s′).2. If σ ;i β ∈ lT (s) then there exists s′ suh that s a
⇒s′ and a ∈ σ(s). Suppose

σ ;i β ∈ lT (s), by de�nition of atom we have enabledσ ∈ lT (s). By expandinghe abbreviation we get ∨
a∈Σ(〈a〉True∧(σ)i : a) ∈ lT (s). By de�nition of atomwe get, there exists an a ∈ Σ suh that 〈a〉True, (σ)i : a ∈ lT (s). Sine R isan aepting run of T (M,α0), we have there exists an s′ suh that s a

⇒s′ and
a ∈ Oσ(lT (s), s). By lemma 3.3.24 we have a ∈ σ(s).(1) ensures that whenever σ ;i β ∈ s and there exists a path ρsk

s whih onformsto σ, then we have {β, σ ;i β} ⊆ lT (sk). Applying indution hypothesis we get
TM , sk |= β. (2) ensures that for all paths ρsk

s whih onforms to σ, →
sk ∩σ(sk) 6= ∅.It su�es to show that for every path ρsk

s whih onforms to σ, TM , sk |= β and
→
sk ∩σ(sk) 6= ∅. From the semantis, we get TM , s |= σ ;i β.Conversely, suppose σ ;i β 6∈ lT (s). By de�nition of atom, ¬(σ ;i β) ∈ lT (s).We have the following ases:1. if β 6∈ lT (s) then applying indution hypothesis we get TM , s 6|= β and fromsemantis we get TM , s 6|= σ ;i β.2. if enabledσ 6∈ lT (s) then by expanding the abbreviation we get ∨

a∈Σ(〈a〉True∧

(σ)i : a) 6∈ lT (s). Thus for every a ∈ Σ, either 〈a〉True 6∈ lT (s) or (σ)i : a 6∈ lT (s).60



Let Y = {a1, . . . , ak} ⊆ Σ suh that ∀j : 0 ≤ j ≤ k, 〈aj〉True ∈ lT (s).Thus for all j, there exists sj suh that s aj

⇒sj . Let r be the index of σin S(α0) and let lT (s) = ((t, d), U, Z, Y,X) where X = (X1, . . . , Xm). Foreah aj ∈ Y , we have (σ)i : aj 6∈ lT (s) and thus by de�nition of lT (s),
aj 6∈ oσr

(Xr, last(s)). By lemma 3.3.24 we have aj 6∈ σr(s). Thus we andedue that moves(s) ∩ σ(s) = ∅. From semantis we have TM , s 6|= σ ;i β.3. if 〈N 〉¬(σ ;i β) ∈ lT (s) and β, enabledσ 6∈ lT (s) then we have the followingases:
• suppose ¬(σ ;i β) ∈ lT (s)[2] (reall that lT (s)[2] denotes the �require-ment set� of the tree automaton). Sine R is aepting for all pathsstarting at s, eventually the requirement set beomes empty. Thus weget a path s = s1s2 . . . sk suh that ∀j : 1 ≤ j < k, ¬(σ ;i β) ∈ lT (sj)[2]and ¬(σ ;i β) 6∈ lT (sk)[2]. By de�nition of the transition relation of theautomaton either β 6∈ lT (sk) or enabledσ 6∈ lT (sk). Applying indutionhypothesis and using the semantis we an onlude that TM , s 6|= σ ;i β.
• suppose ¬(σ ;i β) 6∈ lT (s)[2]. We show that there exists a path s =

s1s2 . . . sk suh that for all j : 1 ≤ j ≤ k, ¬(σ ;i β) ∈ lT (sj) and one ofthe following holds:� β 6∈ lT (sk) or enabledσ 6∈ lT (sk).� ¬(σ ;i β) ∈ lT (sk)[2]Sine 〈N 〉¬(σ ;i β) ∈ lT (s), ∃s2 suh that s a
⇒s2 and ¬(σ ;i β) ∈

lT (s2). If β or enabledσ ∈ lT (s2) or if ¬(σ ;i β) ∈ lT (sk)[2] then we aredone. Otherwise, by de�nition of atom we get 〈N 〉¬(σ ;i β) ∈ lT (s2).By repeating the argument there exists s3 suh that ¬(σ ;i β) ∈ lT (s3).Sine R is an aepting run, for every path starting at s the requirementset eventually beomes empty. Thus we get a path s = s1s2 . . . sk−1sksuh that lT (sk−1)[2] = ∅ and for all j : 1 ≤ j ≤ k, ¬(σ ;i β) ∈ lT (sj)and β, enabledσ 6∈ lT (sk). By de�nition of the transition funtion of theautomaton we have ¬(σ ;i β) ∈ lT (sk)[2].
2
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Complexity of truth heking: For the given formula α0, let |α0| denote thesize of α0. The states of the tree automaton are the atoms of α0 and the states ofthe determinised versions of the advie automata. The model M is also hard-odedinto the automaton struture. Sine the number of strategy spei�ations ourringin α0 is bounded by |α0|, the size of the tree automaton is doubly exponential in
|α0| and linear in |M |. To solve the truth heking problem, we need to hek theemptiness of T (M,α0). Sine T (M,α0) is a Bühi tree automaton, this an be donein polynomial time (due to Proposition 3.3.21). Thus we get a total time omplexityof doubly exponential in |α0| and polynomial in the size of the model.3.3.7 Extension to joint ationsWe an also use strategy spei�ations to reason about joint ations of players inthe setting of multi-player games. For this purpose, in this setion we assume thatthe set of players N = {1, . . . , n}. For eah player i ∈ N , let Σi be the set of ationsof player i and Σ =

⋃
i∈N Σi.For an ation a ∈ Σ, let loc(a) = {i ∈ N | a ∈ Σi}. Intuitively loc(a) denotes theset of all players for whih a is a joint ation. For a subset of players C ⊆ N , let Cdenote the set C = N \ C. Consider the following syntax for strategy spei�ations:for eah C ⊆ N we have

StratC := [ψ 7→ a]C | σ1 + σ2 | σ1 · σ2 | π ⇒ σwhere loc(a) = C and π ∈ StratC.For the onstrut [ψ 7→ a]C, the ation a needs to be a joint ation of the subsetof players C and it says that for all game positions where the ondition ψ holds, theplayers in C play the joint ation a. π ⇒ σ says that in the past if the observablebehaviour of the oalition C onforms to π then C stik to the spei�ation σ. Thegame strutures under onsideration now need not be turn based and an allowonurrent moves by a subset of players. The notion of strategies of players an bede�ned appropriately. Embedding these strategy spei�ations into a modal logias given in Setion 3.3 enables us to reason about the abilities of subsets of playersand mehanisms by whih they an ensure spei� outomes.However, note that what is done here is di�erent from the onept of oalitionsstudied in lassial game theory. Cooperative games [Jon80℄, whih is a widely studiedbranh of game theory, reasons about the rational behaviour of olletions of players.62



Unlike non-ooperative games (the kind of games we have looked at so far), inooperative games players have the freedom of pre-play ommuniation and to makebinding agreements. Very often the literature also talks about side payments whereplayers are allowed to transfer utility even before the game is played. In ontrast,in our setting players do not ommuniate and therefore negotiations of players arenever part of the model. Even though the assertions involve subsets of players, weare still reasoning about abilities of a subset C with respet to its ompliment set C.The alternating temporal logi (ATL) [AHK02℄ also reasons about joint strategiesof players and how they an ensure ertain outomes. The main onstrut in ATLhas the form 〈〈C〉〉α whih says that the subset of players in C has a strategy to ensure
α. ATL formulas are interpreted over onurrent game strutures whih are game are-nas where onurrent moves of players are enabled. In its original form, ATL talksabout �existene of strategies� of players. Naming funtional (memoryless) strategiesand inluding them expliitly into the logial language was suggested in [WvdHW07℄and [vdHJW05℄. ATL extended with the ability to speify ations of players in theformulas was studied in [Ågo06℄ and [Bor07℄. Sine the unfolding of the game stru-ture enodes past information, the logi itself an be extended with past modalitiesas well as knowledge modalities in order to reason about the history informationand epistemi onditions used in strategizing by players ([JvdH04℄,[vdHW02℄).Reasoning about abilities of oalitions as done in ATL an be ahieved in ourframework by replaing eah joint ation a with loc(a), the subset of players whihshare the ation a. The interpretation would then be that the subset of players in
loc(a) have a joint ation to ensure a partiular outome. For a �nite game arena,memoryless strategies an be easily oded up in terms of strategy spei�ations byusing speial propositions to identify eah game position uniquely. Thus reasoningabout funtional (memoryless) strategies expliitly in the framework an also beahieved. The modal logi whih embeds the spei�ation language an always beextended with the past, future and knowledge modalities depending on the applia-tion in mind. However, in the ontext of spei�ations to help build advie funtionsfor players, it is not lear what joint ations (without ommuniation) ahieve in agame theoreti sense.3.3.8 DisussionThe approah we adopted to speify strategies is lose in spirit to reasoning aboutgames in the dynami logi framework. As mentioned earlier, the proposed logi63



an talk about �existene of strategies� with the assertion of the form null i ;i β.However, it an make stronger assertions of the form σ ;i β whih also spei�es themehanism whih need to be used by player i in order to guarantee the outome β.Reasoning in �nite extensive form games: The logi an also be used toperform outome based reasoning in �nite extensive form games. For i ∈ N , let Θidenote the set of propositions oding the utility of players. Consider the followingformula:
BT i(σ, σ′) =

∧

θi∈Θi

(σ′
;i (leaf ⊃ θi) ⊃ σ ;i (leaf ⊃ θi))This says that irrespetive of what player ı plays if there exists a strategy µ′satisfying σ′ suh that θi is guaranteed, then there also exists a strategy µ satisfying

σ whih guarantees θi. In other words, for player i, the spei�ation σ is better than
σ′. Given a �nite set of strategy spei�ations Υi for player i, we say that σ is thebest strategy if the following holds:

Best i(σ) =
∧

σ′∈Υi

BT i(σ, σ′)Representing omplete strategies: Note that in the ase of �nite extensiveform games, we an ode up the game positions uniquely using propositions. Inthis ase, it is possible to represent omplete strategies in terms of strategy spe-i�ations as well. Suppose the proposition p1
i , . . . p

k
i uniquely identi�es all player igame positions, the spei�ation representing a omplete strategy would have theform σ = [p1

i 7→ a1]
i · · · [pki 7→ ak]

i. In this partiular senario, the notion of strategyomparison and best strategy redues to the lassial notions by taking the set Υito be the set of all strategies for player i.This also shows that dynami logi based reasoning about games as mentionedin Setion 2.4 is subsumed by the proposed logial framework. However, the mostimportant aspet in whih we deviate from dynami logi based reasoning is thatwe do not require that the logi odes up omplete strategies of players. Thusformulas of the logi need not be parameterised by the spei� game struture underonsideration, in partiular it need not depend on the spei� bound on the lengthof plays. This also enables us to reason about more �generi� games of unboundedduration. 64



Chapter 4Dynami logi on game ompositionIn the previous hapter we looked at logial analysis of strategies where the gamerepresentation itself is assumed to be atomi. The emphasis was to reason aboutstrategies and develop a framework to build strategies in a ompositional manner asin the ase of programs. The logial formalism developed does not expliitly ditatethe struture of the game arena and thus is loser in spirit to endogenously de�nedlogis.Game theoreti tehniques have often been used in dealing with various issuesin logi. In the latter half of the last entury, the language of games was extensivelyused to disuss questions in model theory, typially in the ontext of model on-strution and for omparing models or expressiveness of logial languages. This wasdemonstrated by the work of Hintikka [Hin68℄ whereby the meaning of quanti�erswas explained in game theoreti terms. In this approah, semantis of quanti�ed�rst order formulas is given in terms of a two player zero sum game. Logial notionslike satis�ability are redued to existene of winning strategies for one of the play-ers. Games have also found useful appliations in model theory as illustrated by theharaterisation of elementary equivalene in terms of Ehrenfeuht-Fraisse games[Ehr61℄. The question here is whether two strutures are distinguishable with re-spet to �rst order formulas. This question an be translated into a game where thewinning strategy of a player orresponds to a separating formula.The notion of omposition is inherent to any logial formalism, thus games whihmodel logial properties an be thought of as being omposed in some struturalfashion. When games are themselves strutured, players strategi response re�etsthis struture as well. For games of bounded length, an ation labelled modal logisimilar to the one presented in Setion 2.4 re�ets game and strategy struture65



well, but when we onsider unbounded play as arising from unbounded repetition ofgames, the situation is di�erent. Propositional game logi [Par85℄, the seminal workon logial aspets of game theory, builds omposite struture into games. Gamelogi initiated the study of game struture using algebrai properties. Pauly [Pau01℄has built on this to desribe abilities of oalitions to ahieve desired goals and toprovide interesting relationships between programs and games.The strategies used by a player in suh a omposite game would depend onnot just the outome spei�ation but also what strategy was used, espeially byopponents, in the past. The history information an then be analysed by takinginto aount the underlying struture of the omposite game. We suggest thatin reasoning about strutured games, it is useful for the strategies of players toalso re�et the struture. Thus rather than reasoning about the strategies in theomposed game, one should look at strategies in atomi games and ompose suhatomi game strategy pairs.In this hapter, we look at a framework where both games and strategies arestruturally built and where the struture is expliitly represented in the formulasof the logi. In the ase of extensive form games, we suggest that onsidering game- strategy pairs is useful: suppose that we have a 2-stage game g1 followed by g2.Consider player 1 strategizing at the end of g1, when g2 is about to start; herplanning depends not only on how g2 is strutured, but also how her opponent hadplayed in g1. Thus her strategizing in the omposite game g1; g2 is best desribedas follows: onsider g1 in extensive form as a tree, and the subtree obtained byopponent employing π; when g2 starts from any of the leaf nodes of this subtree,play aording to σ. We enode this as (g1, π); (g2, σ), and see (g2, σ) as a responseto (g1, π). Thus the �programs� of this logi are game - strategy pairs of this kind.We onsider a propositional dynami logi, the programs of whih are regularexpressions over atomi pairs of the form (g, σ) where g is a �nite game tree in ex-tensive form, and σ is a strategy spei�ation, strutured syntatially. The entralsyntati devie onsists of interative struture in strategies and algebrai stru-ture not only on games but on game - strategy pairs. While the tehnial resultis a omplete axiomatization and the deidability of the satis�ability problem, wesee this ontribution as an advoay of studying algebrai struture on strategies,indued by that on games.In ontrast, in normal form games strategies are presented in an abstrat mannerand the reasoning in suh games are driven by outome spei�ations. A normal66



form game an be viewed as an extensive form game abstrated into a tree of depthone, where edges are labelled by a tuple of strategies, one for eah player. There isno past and future that strategies refer to, and we only speak of notions like rationalresponse, dominant strategies, equilibrium and so on. However, when we onsiderrepeated games, or games omposed of smaller games, the notion of strategi re-sponse of a player to other players' moves beomes relevant, pretty muh in thesame way as it is used in extensive form games. History information, as well as epis-temi attitudes of players beome relevant. In this setting, we onsider ompositionof game play pairs, orresponding to the fat that the reasoning performed in singlestage is outome based. On the tehnial front, a omplete axiomatization of thelogi an be provided as in the ase of extensive form games. However, the entralobjetive is to highlight the logial di�erenes between omposition of normal formgames and that of extensive form games, in terms of the reasoning involved.In the setting of ompositional games, to illustrate the di�erene between rea-soning about games and reasoning about strategies, we �nd it instrutive to �rstreview propositional game logi.4.1 Game logiPropositional game logi [Par85℄ initiated the logial study of determined two personzero sum games in a ompositional framework.SyntaxLet the two players be denoted as player 1 and player 2. As in the ase of propo-sitional dynami logi, the language of game logi onsists of two sorts: games andpropositions. Let Γ0 be a set of atomi games and P a set of atomi propositions.The set of omposite games Γ and the set of formulas Φ is built from the followingsyntax:
Γ := g | γ1; γ2 | γ1 ∪ γ2 | γ

∗ | γd

Φ := p | ¬ϕ | ϕ1 ∧ ϕ2 | 〈γ〉ϕwhere p ∈ P and g ∈ Γ0. Let [γ]ϕ := ¬〈γ〉¬ϕ and γ1 ∩ γ2 := (γd1 ∪ γ
d
2)
d.The formula 〈γ〉ϕ asserts that player 1 has a strategy in game γ to ensure ϕand [γ]ϕ expresses that player 1 does not have a strategy to ensure ¬ϕ, whih by67



determinay is equivalent to the assertion that player 2 has a strategy to ensure ϕ.The intuitive de�nition of omposite games is as follows: γ1; γ2 is the game where
γ1 is played �rst followed by γ2, γ1 ∪ γ2 is the game where player 1 moves �rst anddeides whether to play γ1 or γ2 and then the hosen game is played. In the iteratedgame γ∗, player 1 an hoose how often to play γ (possibly zero times). He neednot delare in advane how many times γ needs to be played, but is required toeventually stop. The dual game γd is the same as playing the game γ with the rolesinterhanged.The semantis of the logi is de�ned in terms of neighbourhood relations. Atthe atomi level, the game struture itself is not important sine the emphasis is onreasoning about powers of players. Thus omposition of games in e�et orrespondsto omposing abilities of players. The formal semantis is given below.SemantisA game model M = ((S, {Eg | g ∈ Γ0}), V ) where S is a set of states, V : P → 2Sis the valuation funtion and Eg : S → 22S is a olletion of e�etivity funtionswhih are monotoni, i.e. X ∈ Eg(s) and X ⊆ X ′ imply X ′ ∈ Eg(s). The idea isthat X ∈ Eg(s) holds whenever player 1 has a strategy in game g to ahieve X.The truth of a formula ϕ in a modelM at a state s (denotedM, s |= ϕ) is de�nedas follows:

M, s |= p i� s ∈ V (p)

M, s |= ¬ϕ i� M, s 6|= ϕ

M, s |= ϕ1 ∧ ϕ2 i� M, s |= ϕ1 or M, s |= ϕ2

M, s |= 〈γ〉ϕ i� ϕM ∈ Eγ(s)where ϕM = {s ∈ S | M, s |= ϕ}. The e�etivity funtion Eγ is de�ned indutivelyfor non-atomi games as follows. Let Eg(Y ) = {s ∈ S | Y ∈ Eg(s) for g ∈ Γ0}.Then
Eγ1;γ2(Y ) = Eγ1(Eγ2(Y ))

Eγ1∪γ2(Y ) = Eγ1(Y ) ∪ Eγ2(Y )

Eγd(Y ) = Eγ(Y )

Eγ∗(Y ) = µX.Y ∪ Eγ(X)where µ denotes the least �xpoint operator. It an be shown that the monotoni-ity of Eγ is preserved under the game operations and therefore the least �xpoint68



µX.Y ∪Eγ(X) always exists.On the tehnial front, the following theorems state that the satis�ability prob-lem and model heking problem for game logi is deidable.Theorem 4.1.1 ([Par85, Pau01℄) The satis�ability problem for game logi isEXPTIME-omplete.Theorem 4.1.2 ([Ber05℄) The model heking problem for game logi over �nitestrutures is in NP ∩ Co-NP.Expressive powerTo investigate the expressive power of game logi with respet to established for-malism, it is onvenient to interpret game logis on Kripke strutures. In this asethe atomi games are one player games and all the interative aspet is ontrolledsyntatially using the dual operator. Over Kripke strutures, in the absene of dualoperator, game logi is nothing but propositional dynami logi (PDL). The abil-ity of PDL to express properties of programs is limited, for instane it well knownthat the property of well-foundedness or equivalently that of total orretness annotbe expressed in PDL. Several extensions of PDL have been proposed to get overthis limitation. These inlude adding expliit prediates like loop [HP78℄ and repeat[Str81℄. The dual operator inreases the expressive power of game logi signi�antly.The property of total orretness an be expressed by making use of the dual opera-tor and thus we get that game logi is stritly more powerful than PDL [Par85℄. Infat, it an be shown that game logi is stritly more powerful than the extensionof PDL with looping operator [Ber05℄.Propositional µ-alulus [Koz83℄ was one of the most powerful logis proposedto deal with limitations of PDL. It was shown that game logi interpreted overKripke strutures an be embedded into the two variable fragment of propositional
µ-alulus [Ber05℄. Sine the variable hierarhy of µ-alulus is strit [Ber05℄ we analso onlude that µ-alulus is stritly more powerful than game logi. It is quiteoneivable that the model heking problem for game logi is easier than that of
µ-alulus. However, Berwanger [Ber03℄ shows that this is not the ase.One of the main open problems in game logi is to give a omplete axiomatizationof valid formulas of the logi. Parikh in [Par85℄ proposed an axiom system andonjetured it to be omplete, unfortunately no proof of this has been given so far.A omplete axiomatization for the dual free fragment of game logi is presented69



in [Par85℄. For the iteration free fragment, a omplete axiomatization is given in[Pau01℄.In game logi, starting with simple atomi games, one an onstrut large om-plex games using operators like omposition and union. Due to the Box-Diamondduality 〈γ〉ϕ = ¬[γ]¬ϕ, it is easy to see that by de�nition, the games onstrutedremain determined. The ompositional syntax of game logi presents an algebra forgame onstrution. Rather than look at arbitrarily large games, this approah givesus a way of systematially studying omplex games in a strutured manner and toalso look at their algebrai properties. One should however note that the reasoningperformed in game logis is based on �existene of strategies�.Reasoning in ompositional gamesGame logi makes assertions about omposing neighbourhoods or abilities of players.Players' abilities in a game arise due to the strategies they have aess to. Underthe assumption that players are perfetly rational, reasoning about existene ofstrategies su�es sine suh players will always be able to employ their best possiblehoie of ations. However, as noted earlier in the introdution, in many pratialsituations players have limited omputational resoures. In suh ases, it makessense to expliitly reason about the mehanisms by whih these abilities arise ina logial framework. To reason about strategies in a ompositional framework, theabstrat presentation of games is not su�ient, the analysis will depend on the exatrepresentation under onsideration. We onsider the two standard representations:extensive form games and normal form games and look at how a dynami logiframework apable of reasoning about strategies an be developed.4.2 Extensive form gamesWe use the notion of �nite extensive form games as introdued in Setion 2.1. Thelogial formalism (whih we introdue shortly) allows formulas to expliitly refer tothe game tree under onsideration. We therefore need to provide a syntati repre-sentation of the (semanti) game tree. A simple syntati struture for speifying�nite extensive form game trees is presented below.
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4.2.1 Syntax for extensive form game treesLet Nodes be a ountable set. The syntax for speifying �nite extensive form gametrees given by:
G(Nodes) := (i, x) | Σam∈J((i, x), am, tam

)where i ∈ N , x ∈ Nodes , J ⊆ Σ, and tam
∈ G(Nodes).De�nition 4.2.1 Given g ∈ G(Nodes) we de�ne the tree Tg generated by g indu-tively as follows.

• g = (i, x): Tg = (Sg,⇒g, λ̂g, sx) where Sg = {sx}, λ̂g(sx) = i.
• g = ((i, x), a1, ta1) + · · · + ((i, x), ak, tak

): Indutively we have trees T1, . . .Tkwhere for j : 1 ≤ j ≤ k, Tj = (Sj ,⇒j , λ̂j, sj,0). De�ne Tg = (Sg,⇒g, λ̂g, sx)where� Sg = {sx} ∪ ST1
∪ . . . ∪ STk

.� λ̂g(sx) = i and for all j, for all s ∈ STj
, λ̂g(s) = λ̂j(s).� ⇒g =

⋃
j:1≤j≤k({(sx, aj , sj,0)} ∪⇒j).
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4.2.2 The logiThe logi is a simple dynami logi where we take regular expressions over game-strategy pairs as programs in the logi. Atomi programs are of the form (g, σ)where g is a �nite extensive form game and σ is a strategy spei�ation as de�nedin setion 3.1. Formulas of the logi an be used to speify the result of a playerfollowing a partiular strategy in a spei�ed game enabled at a game position.SyntaxThe syntax of the logi is given by:
Φ := p ∈ P | ¬α | α1 ∨ α2 | 〈ξ〉

∀αwhere ξ ∈ Γ, the set Γ onsists of game strategy pairs whih is de�ned below.The onstrut ξ represents regular expressions over game-strategy pairs (g, σ).For the atomi onstrut (g, σ) the intuitive meaning of the formula 〈g, σ〉∀α is: ingame g player i has a strategy µ onforming to the spei�ation σ suh that α holdsat all leaf nodes reahed by following µ. In other words, the strategy µ ensures theoutome α.Game strategy pairs: The syntax for omposition of game strategy spei�ationpairs is given by,
Γ := (g, σ) | ξ1; ξ2 | ξ1 ∪ ξ2 | ξ∗where g ∈ G(Nodes), σ ∈ Strat i(P i).The atomi onstrut (g, σ) spei�es that in game g a strategy onforming tospei�ation σ is employed. Game strategy pairs are then omposed using standarddynami logi onnetives. ξ1 + ξ2 would mean playing ξ1 or ξ2. Sequening in oursetting does not mean the usual relational omposition of games. Rather, it is theomposition of game strategy pairs of the form (g1, σ1); (g2, σ2). This is where theextensive form game tree interpretation makes the main di�erene. Sine the strat-egy spei�ations are intended to be partial, a pair (g, σ) gives rise to a set of �nitetrees and therefore omposition over trees need to be performed. ξ∗ is the iterationof the `;' operator.Remark: We use the syntax for strategy spei�ations given in Setion 3.1. How-ever, for tehnial onveniene, in the ase of atomi strategy spei�ations we re-strit our attention to boolean preonditions rather than allowing past time tense72



logi formulas. The main tehnial result of this hapter is a omplete axiomatiza-tion of the logi presented above. It is easy to verify that this result an be extendedto the framework whih allows past time preonditions as well. The axiom systemneeds only to be enrihed with the appropriate axioms for the past time modalities.The emphasis of this hapter is to show how ompositional struture of games anbe e�etively used in strategizing and for this purpose boolean preonditions su�e.For a ountable set of propositions P , the set of boolean formulas over P is givenby the syntax:
Ψ(P ) := p ∈ P | ¬ψ | ψ1 ∨ ψ2.Given a valuation funtion, the semantis is de�ned in the obvious manner. Inwhat follows we take atomi strategy spei�ations to be of the form [ψ 7→ a]i where

ψ ∈ Ψ(P i).ModelThe formulas of the logi express properties about game trees and strategies whihare omposed using tree regular expressions. These formulas are interpreted ongame positions and they assert properties of the frontier nodes of the game tree.The struture of the game tree itself is ditated by the game strategy pairs. Thusmodels of the logi are game trees, but due to the presene of unbounded iteration,this an potentially be an in�nite set of �nite game trees. Alternatively, we anthink of these game trees as being obtained from unfoldings of a Kripke struture.As we will see later, the logi annot distinguish between these two. The logiintrodued in Setion 3.3, onsidered the game arena as atomi and did not reasonabout ompositional struture within the arena. Thus we required the model tobe deterministi. In the dynami logi introdued here, the language is allowedto ditate the ompositional struture of the game and the eventual game strutureunder onsideration is spei�ed by the formula. Therefore, we do not need to restritourselves to deterministi models.A modelM = (W,→, λ, V ) where W is the set of states (or game positions), therelation → ⊆ W × Σ ×W , the valuation funtion V : W → 2P and λ : W → Nis a player labelling funtion. Note that we do not require the transition relationitself to be deterministi. However, we require that the move relation is onsistentwith respet to player labelling. Thus the turn funtion λ is required to satisfy theproperty: 73



• For all w ∈ W , if w a
→w′ and λ(w′) = i then for all w′′ suh that w a

→w′′, wehave λ(w′′) = i.SemantisThe truth of a formula α ∈ Φ in a model M and a position w (denoted M,w |= α)is de�ned as follows:
• M,w |= p i� p ∈ V (w).
• M,w |= ¬α i� M,w 6|= α.
• M,w |= α1 ∨ α2 i� M,w |= α1 or M,w |= α2.
• M,w |= 〈ξ〉∀α i� ∃(w,X) ∈ Rξ suh that ∀w′ ∈ X we have M,w′ |= α.A formula α is satis�able if there exists a model M and a state w suh that

M,w |= α.For ξ ∈ Γ, we want Rξ ⊆ W × 2W . To de�ne the relation formally, let us �rstassume that R is de�ned for the atomi ase, namely when ξ = (g, σ). The semantisfor omposite game strategy pairs is given as follows:
• Rξ1;ξ2 = {(u,X) | ∃Y ⊆ W suh that (u, Y ) ∈ Rξ1 and ∀v ∈ Y there exists
Xv ⊆ X suh that (v,Xv) ∈ Rξ2 and ⋃

v∈Y Xv = X}.
• Rξ1∪ξ2 = Rξ1 ∪ Rξ2 .
• Rξ∗ =

⋃
n≥0(Rξ)

n where (Rξ)
n denotes the n-fold relational omposition.In the atomi ase when ξ = (g, σ) we want a pair (u,X) to be in Rξ if the game

g is enabled at state u and there is a strategy onforming to the spei�ation σ suhthat X is the set of leaf nodes of the strategy. In order to make this preise, we willrequire the following notations and de�nitions.Restrition on trees: For w ∈W , let Tw denote the tree unfolding of M startingat w. We say the game g is enabled at a state w if the struture g an be embeddedin Tw with respet to the enabled ations and player labelling. Sine M need not bedeterministi, there ould be multiple embeddings, and therefore we work with themaximal embedding (denoted Tw |
\ g) and this is the game tree under onsideration.Formally this an be de�ned as follows: 74



Given a state w and g ∈ G(Nodes), let Tw = (SwM ,⇒M , λ̂M , sw) and Tg =

(Sg,⇒g, λ̂g, sg,0). The restrition of Tw with respet to the game g (denoted Tw |
\g) isthe subtree of Tw whih is generated by the struture spei�ed by Tg. The restritionis de�ned indutively as follows: Tw |\g = (S,⇒, λ̂, s0, f) where f : S → Sg. Initially

S = {sw}, λ̂(sw) = λ̂M(sw), s0 = sw and f(sw) = sg,0.For any s ∈ S, let f(s) = t ∈ Sg. Let {a1, . . . , ak} be the outgoing edges of t, i.e.for all j : 1 ≤ j ≤ k, t aj

⇒gtj. For eah aj , let {s1
j , . . . , s

m
j } be the nodes in SwM suhthat s aj

⇒Ms
l
j for all l : 1 ≤ l ≤ m. Add nodes s1

j , . . . , s
m
j to S and the edges s aj

⇒sljfor all l : 1 ≤ l ≤ m. Also set λ̂(slj) = λ̂M(slj) and f(slj) = tj .We say that a game g is enabled at w (denoted enabled(g, w)) if the tree Tw |
\g =

(S,⇒, λ̂, s0, f) satis�es the following property: for all s ∈ S,
•

→
s=

−→

f(s),
• if →

s 6= ∅ then λ̂(s) = λ̂g(f(s)).A strategy for player i on Tw |\ g an still be thought of as a subtree where atevery player i vertex, there is exatly one outgoing edge and for player ı verties, alloutgoing edges are inluded. In the funtional notion, this orresponds to pikingnot just an ation but also a suessor node on the ation.For a game tree T , let Ωi(T ) denote the set of strategies of player i on the gametree T and frontier(T ) denote the set of all leaf nodes of T .Atomi game-strategy pair: For an atomi game-strategy pair ξ = (g, σ) wede�ne Rξ as follows:Let g be the game with a single node g = (i, x)

• R(g,σ) = {(u, {u})} if enabled(g, u) holds, for all i ∈ N , for all σ ∈ Strat i(P i).For g = ((i, x), a1, ta1 + . . .+ (i, x), ak, tak
)

• R(g,σ) = {(u,X) | enabled(g, u) and ∃µ ∈ Ωi(Tu |
\ g) suh that µ |=i σ and

frontier(µ) = X}.Example 4.2.3 Let the extensive form game g be the one given in Figure 4.2(a)and the Kripke struture M be as shown in Figure 4.2(b). For the node u of thestruture the restrition Tu |\ g is shown in Figure 4.3. This is the maximal subtreeof Tu aording to the struture ditated by g. For instane at node v1 there are75
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(v1, {w1, w2, w3}), (v2, {w4, w5})}.Suppose M,u |= p and onsider the spei�ation σ = [p 7→ a]1. Sine p holds atthe root, player 1 is restrited to make the hoie �a� at u. Hene the relation inthis ase would be R(g,σ) = {(u, {w1, w2, w3}), (v1, {w1, w2, w3}), (v2, {w4, w5})}. 2Example 4.2.4 For a game g and a spei�ation σ of player i, the formula 〈(g, σ)〉∀αasserts that the game g is enabled and player i has a strategy in g onforming to σto ensure α.The logi is also powerful enough to assert the non-existene of strategies for aplayer with respet to ensuring an outome α. For a game g, onsider the formula
• α′ = 〈(g, null i)〉

∀
True ∧ ¬〈(g, null i)〉

∀
α.The �rst onjunt 〈(g, null i)〉

∀
True asserts the fat that game g is enabled. Giventhat g is enabled, the only way ¬〈(g, null i)〉

∀
α an be true is if player i does not76



have a strategy onforming to null i whih ensures α. Reall that any strategy ofplayer i onforms to null i. Thus α′ holds at a state u i� player i does not have astrategy at u that ensures the objetive α. 2
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(g1) (g2)Figure 4.4: Composition of gamesExample 4.2.5 To illustrate ompositional reasoning in the logi, onsider thegames g1 and g2 given in Fig. 4.4. Let u be a state of the model where g1 isenabled. Let g denote the game g1; g2, i.e. the game obtained by pasting g2 at eahof the leaf nodes of g1. We use the following notations:
• wa1 : denotes the state reahed after ation a1.
• wa1,b1: the state reahed on following ations a1 and b1.
• wa1,b1x1,y1

: the state reahed on the sequene of ations a1b1x1y1 where a1b1 areations in game g1 and x1y1 ations in game g2.Let win1, win2 and p be propositions whose valuations are given by V (win2) =

{wa1,b1, wa2,b2}, V (win1) = {wa1,b1x1,y1
, wa2,b2x1,y2

} and V (p) = {wa1}. Consider the followingspei�ations:
• π = [p 7→ b1]

2 · [¬p 7→ b2]
2.

• σ = [True 7→ x1]
1.It is easy to see that 〈(g1, π)〉win2 holds at u. Player 1 does not have a strat-egy in the omposite game g to ensure win1. However, in the omposite pair

ξ = (g1, π); (g2, σ), it is easy to see that 〈ξ〉win1 holds. Assuming that in the game
g1 player 2 plays aording to π then in g2 by using a strategy whih onforms to σplayer 1 an ensure win1. 277



In some sense the above example says that reasoning in the game g is di�erentfrom reasoning in g1 followed by g2. In the latter, the additional strutural informa-tion is available whih an be used for strategizing. For simple game strutures it isquite obvious that suh reasoning an be done with a past modality. It is iterationwhih provides the atual expressive power. In the presene of iteration, the analysisasserts the fat that players an take into aount the struture of the game and theopponent's strategy. In partiular while strategizing, a player an make use of thefat that the opponent is using a bounded memory strategy and that with the typeof strategy that is being used the opponent an be fored into a partiular region ofthe game graph.The above mentioned reasoning an also be thought of as players trying to attainertain loal goals. If player 2 plays to ahieve the loal goal win2 then player 1 anuse this information and respond with a strategy in g2 to ahieve the objetive win1.Players an then try to ahieve their global objetive by performing appropriateomposition of the loal objetives.4.2.3 Enoding PDLIn this setion we show that the propositional dynami logi (PDL) (introdued inSetion 2.4) an be enoded into the dynami logi on ompositional games. Welook at the �test free� version of PDL. In Setion 4.2.6 we show how the test operatoran be added to the dynami logi on ompositional games. Thus it follows thatfull PDL an also be enoded in the logi.TranslationIn order to translate PDL formulas into formulas in our logi, we make use of thefollowing games: gia = ((i, x), a, (j, y)) and gıa = ((ı, x), a, (j, y)). For a program
γ ∈ P, we translate γ into a omposite game-strategy pair ξ ∈ Γ indutively asfollows:

||a|| = (gia, [True 7→ a]i) ∪ (gıa, [True 7→ a]ı)

||γ1; γ2|| = ||γ1||; ||γ2||

||γ1 ∪ γ2|| = ||γ1|| ∪ ||γ2||

||γ∗1 || = ||γ1||∗Proposition 4.2.6 For all M and γ ∈ P if (u,X) ∈ R||γ|| then |X| = 1.78



Proof: The proposition an be easily veri�ed, the interesting ase is when we havean atomi program, i.e. γ = a ∈ Σ. In this ase we have ||a|| = (gia, [True 7→ a]i) ∪

(gıa, [True 7→ a]ı). Suppose (u,X) ∈ R||γ||, assume without loss of generality that
(u,X) ∈ R(gi

a,[True 7→a]i). From semantis we have that the game gia is enabled at uand there exists a strategy for player i whih onforms to [True 7→ a]i. Sine gia isenabled at u we have that λ(u) = i and player i's strategy needs to hoose a uniqueedge in the tree Tu |
\ gia, it follows that |X| = 1. 2For a pair (u, {w}), let map(u, {w}) = (u, w). We extend map to sets of suhpairs as map(Y ) = {map(y) | y ∈ Y }. For γ ∈ P, due to proposition 4.2.6 it followsthat map(R||γ||) is well de�ned.Lemma 4.2.7 For all M , for all γ ∈ P, RPDL

γ = map(R||γ||).Proof: The proof is by indution on the struture of γ.
γ = a. Suppose (u, w) ∈ RPDL

γ . This implies that u a
→w in the Kripke struture M .Without loss of generality assume that turn(u) = i, then we have gia is enabled at

u. Sine [True 7→ a]i is a player i spei�ation and u a
→w we get (u, {w}) ∈ R||γ||.Conversely, suppose (u, {w}) ∈ R||γ||. Assume that turn(u) = i, from semantiswe have (u, {w}) ∈ R(gi

a,[True 7→a]i). This implies that gia is enabled at u and thus
u
a
→w. Therefore we get (u, w) ∈ RPDL

γ .
γ = γ1 ∪ γ2. The laim easily follows from appliation of indution hypothesis.
γ = γ1; γ2. Suppose (u, w) ∈ RPDL

γ , from semantis we have that there exists a
v suh that (u, v) ∈ RPDL

γ1
and (v.w) ∈ RPDL

γ2
. By indution hypothesis we have

(u, {v}) ∈ R||γ1|| and (v, {w}) ∈ R||γ2||. From semantis we get (u, {w}) ∈ R||γ||. Usinga similar argument we an show that if (u, {w}) ∈ R||γ|| then (u, w) ∈ RPDL
γ .

γ = γ∗1 . Suppose (u, w) ∈ RPDL
γ∗
1

, from semantis there exists a k suh that (u, w) ∈

(RPDL
γ1

)k. By a seond indution on k we an show that (u, {w}) ∈ (R||γ1||)
k,whih implies (u, {w}) ∈ (R||γ∗

1
||) as well. A similar argument also shows that if

(u, {w}) ∈ R||γ∗
1
|| then (u, w) ∈ RPDL

γ∗
1

. 2The translation funtion || · || an be extended to formulas of PDL in the obviousmanner where:
• ||〈γ〉α|| = 〈||γ||〉∀||α||.Theorem 4.2.8 then follows from Lemma 4.2.7 by an indutive argument.79
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w3 w4 w5 w6(a): Game g (b): Model MFigure 4.5: Extensive form game tree and modelTheorem 4.2.8 For all M , for states w ∈ W and for all α ∈ PDL, M,w |= α i�
M,w |= ||α||.4.2.4 Axiom systemWe now present an axiomatization of the valid formulas of the logi. For a set
A = {a1, . . . , ak} ⊆ Σ, we will use the notation ℜ(i, x, A) to denote the game
((i, x), a1, ta1 + · · ·+ (i, x), ak, tak

).We also make use of the following abbreviations:
• Let gia = ((i, x), a, (j, y)) and gıa = ((ı, x), a, (j, y)),� 〈a〉α ≡ 〈(gia, [True 7→ a]i) ∪ (gıa, [True 7→ a]ı〉

∀
α.From Theorem 4.2.8, it follows that this results in the standard interpretationfor 〈a〉α, i.e. 〈a〉α holds at a state u i� there is a state w suh that u a

→w and αholds at w.For game g, we use the formula g√ to denote that the game struture g is enabled.This is de�ned as:
• For g = (i, x), let g√

= True.
• For g = ℜ(i, x, A), let� g

√
= turni ∧ (

∧
j=1,...,k(〈aj〉True ∧ [aj ]t

√

aj
)).Proposition 4.2.9 For α1, α2 ∈ Φ, the following holds:1. for ξ ∈ Γ, the formula 〈ξ〉∀(α1 ∨ α2) ⊃ 〈ξ〉∀α1 ∨ 〈ξ〉∀α2 is not valid.2. 〈a〉(α1 ∨ α2) ≡ 〈a〉α1 ∨ 〈a〉α2 is valid.80
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w3 w4 w5 w6(a): g1 (b): g2 (b): Model MFigure 4.6: Extensive form game tree and modelProof: (1): Let g be the game given in Figure 4.5(a) and the model M be asshown in Figure 4.5(b). Let propositions p ∈ V (u), q1 ∈ V (w3) and q2 ∈ V (w4).Let α1 = q1, α2 = q2 and σ = [p 7→ a]1. We have M,u |= 〈g, σ〉∀(q1 ∨ q2) sine thestrategy of player 1 whih hooses the move a at u ensures q1 ∨ q2. However sine
q1 6∈ V (w4) and q2 6∈ V (w3), we obtain M,u 6|= 〈g, σ〉∀q1 ∨ 〈g, σ〉∀q2.(2): We �rst show that 〈a〉(α1 ∨ α2) ⊃ 〈a〉α1 ∨ 〈a〉α2 is valid. Suppose this is nottrue; there exists a model M and a state u suh that M,u |= 〈a〉(α1 ∨ α2) and
M,u 6|= 〈a〉α1 ∨ 〈a〉α2. This implies that M,u 6|= 〈a〉α1 and M,u 6|= 〈a〉α2. Thus forall states w suh that u a

→w we have M,w 6|= α1 and M,w 6|= α2. From this we aninfer that M,u 6|= 〈a〉(α1 ∨ α2) ontraditing the assumption.The fat that 〈a〉α1 ∨ 〈a〉α2 ⊃ 〈a〉(α1 ∨ α2) is valid follows from a similar argu-ment. 2Proposition 4.2.10 For ξ1, ξ2 ∈ Γ, onsider the usual relation omposition seman-tis for Rξ1;ξ2, i.e. Rξ1;ξ2 = {(u,X) | ∃Y suh that (u, Y ) ∈ Rξ1 and for all v ∈ Y ,
(v,X) ∈ Rξ2}. Under this interpretation, the formula 〈ξ1〉

∀〈ξ2〉
∀α ⊃ 〈ξ1; ξ2〉

∀α is notvalid.Proof: Let g1 and g2 be the games given in Figure 4.6(a) and (b) respetivelyand let the model M be given in Figure 4.6(). Let the proposition p hold at states
w3, w4, w5 and w6 and α = p. Let ξ1 = (g1, null1) and ξ2 = (g2, null1), then wehave M,u |= 〈ξ1〉

∀〈ξ2〉
∀p. However, under the interpretation given in the state-ment of the proposition, for X = {w3, w4, w5, w6} we have (u,X) 6∈ Rξ1;ξ2. Thus

M,u 6|= 〈ξ1; ξ2〉
∀p. 2

81



Proposition 4.2.11 The formula 〈ξ1; ξ2〉
∀α ≡ 〈ξ1〉

∀〈ξ2〉
∀α is valid.Proof: Suppose 〈ξ1; ξ2〉

∀α ⊃ 〈ξ1〉
∀〈ξ2〉

∀α is not valid. Then there exists M and
u suh that M,u |= 〈ξ1; ξ2〉

∀α and M,u 6|= 〈ξ1〉
∀〈ξ2〉

∀α. Sine M,u |= 〈ξ1; ξ2〉
∀α,from semantis we have there exists (u,X) ∈ Rξ1;ξ2 suh that ∀w ∈ X, M,w |= α.From de�nition of R, ∃Y = {v1, . . . , vk} suh that (u, Y ) ∈ Rξ1 and ∀vj ∈ Y thereexists Xj ⊆ X suh that (vj , Xj) ∈ Rξ2 and ⋃

j=1,...,kXj = X. Therefore we get
∀vk ∈ Y , M, vk |= 〈ξ2〉

∀α and hene from semantis, M,u |= 〈ξ1〉
∀〈ξ2〉

∀α. This givesthe required ontradition.Suppose 〈ξ1〉
∀〈ξ2〉

∀α ⊃ 〈ξ1; ξ2〉
∀α is not valid. Then there exists M and u suhthat M,u |= 〈ξ1〉

∀〈ξ2〉
∀α and M,u 6|= 〈ξ1; ξ2〉

∀α. We have M,u |= 〈ξ1〉
∀〈ξ2〉

∀α i�there exists (u, Y ) ∈ Rξ1 suh that ∀vk ∈ Y , M, vk |= 〈ξ2〉
∀α. M, vk |= 〈ξ2〉

∀α i�there exists (vk, Xk) ∈ Rξ2 suh that ∀wk ∈ Xk, M,wk |= α. Let X =
⋃
kXk, fromde�nition of R we get (u,X) ∈ Rξ1;ξ2. Hene from semantis M,u |= 〈ξ1; ξ2〉

∀α. 2The axiom shemes(A1) Propositional axioms:(a) All the substitutional instanes of tautologies of PC.(b) turni ≡ ¬turnı.(A2) Axiom for single edge games:(a) 〈a〉(α1 ∨ α2) ≡ 〈a〉α1 ∨ 〈a〉α2.(b) 〈a〉turni ⊃ [a]turni.(A3) Dynami logi axioms:(a) 〈ξ1 ∪ ξ2〉
∀α ≡ 〈ξ1〉

∀α ∨ 〈ξ2〉
∀α.(b) 〈ξ1; ξ2〉

∀α ≡ 〈ξ1〉
∀〈ξ2〉

∀α.() 〈ξ∗〉∀α ≡ α ∨ 〈ξ〉∀〈ξ∗〉∀α.(A4) 〈g, σ〉∀α ≡ g
√
∧ push(g, σ, α).Inferene rules

(MP) α, α ⊃ β (NG) α

β [a]α

(IND) 〈ξ〉∀α ⊃ α

〈ξ∗〉∀α ⊃ α 82



De�nition of push:Axiom (A3) provides the redution axioms for omposite game strategy pairs. How-ever, the atomi ase (g, σ) still enodes the struture of the game tree g and thestrategy spei�ation σ expliitly. Thus we need to provide the redution axiomsfor atomi game strategy pairs as well. This is done in axiom (A4). The intuitivemeaning of the onstrut push(g, σ, α) is to say that player i has a strategy onform-ing to σ suh that α holds at all the frontier nodes. As expeted this needs to bede�ned indutively on the struture of σ and the game tree g. The ore idea in thede�nition is the following observation: For a strategy spei�ation σ and a game g,
• if the root of the game tree g is an i node then by de�nition of a strategy,player i needs to hoose an edge `a' whih onforms to σ and the resultingsubtree ga needs to indutively satisfy 〈ga, σ〉

∀α.
• if the root is an ı node then all outgoing edges need to be onsidered (byde�nition of a strategy) and for eah edge `a', the requirement 〈ga, σ〉∀α needsto be pushed to the resulting subtree.The formal de�nition is given below. For i ∈ N let σ, σ1, σ2 ∈ Strat i(P i) and let

π ∈ Strat ı(P ı). Let g ∈ G(Nodes) and α ∈ Φ. For push(g, σ, α) we have variousases depending on the struture of g.The ase when g is an atomi game, i.e. g = (i, x), for all i ∈ N and σ ∈ Strat i(P i)we have,(C1) push(g, σ, α) = α.Suppose g = ℜ(i, x, A) for A = {a1, . . . , ak}, i.e. g is a tree with root being an inode. For eah am ∈ A let gam
= ((i, x), am, (jm, ym)), where (jm, ym) is the root of

tam
.(C2) push(g, [ψ 7→ a]i, α) =

(ψ ⊃ 〈a〉〈ta, [ψ 7→ a]i〉
∀
α) ∧ (¬ψ ⊃ (

∨
am∈A 〈am〉〈tam

, [ψ 7→ a]i〉
∀
α)).The root of g is a player i node and ase (C2) is a player i spei�ation. This saysthat if ψ holds at the root, then there is a hoie a that player i an make suh thatfor the subtree ta, 〈ta, [ψ 7→ a]i〉

∀
α holds. If ψ does not hold at the root then thereis some hoie am for player i suh that the subtree tam

satis�es 〈tam
, [ψ 7→ a]i〉

∀
α.(C3) push(g, σ1 ·σ2, α) =

∨

am∈A

(〈gam
, σ1〉

∀〈tam
, σ1 · σ2〉

∀α∧〈gam
, σ2〉

∀〈tam
, σ1 · σ2〉

∀α).83



For (C3) the important point to note is the fat if an edge u a
→w satis�es aspei�ation σ then all w′ with u a

→w′ satis�es σ. This is beause satisfation of σdepends only on u and the ation a, it does not depend on the target node.(C4) push(g, σ1 + σ2, α) =
∨

am∈A

(〈gam , σ1〉
∀〈tam , σ1 + σ2〉

∀α ∨ 〈gam , σ2〉
∀〈tam , σ1 + σ2〉

∀α).(C5) push(g, π ⇒ σ, α) =
∨
am∈A(〈gam

, σ〉∀〈tam
, π ⇒ σ〉∀α).Suppose g = ℜ(ı, x, A) for A = {a1, . . . , ak}, i.e. g is a tree with root being an ınode. For eah am ∈ A let gam

= ((i, x), am, (jm, ym)), where (jm, ym) is the root of
tam

. For σ = [ψ 7→ a]i, σ1 + σ2, σ1 · σ2,(C6) push(g, σ, α) =
∧
am∈A [am]〈tam

, σ〉∀α.(C6) says that when the root node of g is an ı node and for a player i spei�ationwhih is not of the form π ⇒ σ, if at all enabled edges am, the subtree tam
satis�es

〈tam
, σ〉∀α then 〈g, σ〉∀α holds.(C7) push(g, π ⇒ σ, α) =∧

am∈A

((〈gam , π〉∀True ⊃ [am]〈tam , π ⇒ σ〉∀α)∧(¬〈gam , π〉∀True ⊃ [am]〈tam ,null i〉
∀
α)).The interesting ase is when the root of g is an ı node and when the spei�ationis of the form π ⇒ σ, this is spei�ed in (C7). For a strategy µ of player i to satisfy

π ⇒ σ on g, it should make sure of the following:
• for eah hoie am ∈ A, if the hoie onforms with π then the strategy on tamshould satisfy σ.
• for eah hoie am ∈ A, whih does not onform with π, player i is allowed toemploy any strategy on the game tam

.4.2.5 CompletenessTo show ompleteness, we prove that every onsistent formula is satis�able. Let α0be a onsistent formula, and CL(α0) denote the subformula losure of α0. In additionto the usual downward losure, we also require that 〈g, σ〉∀α ∈ CL(α0) implies that
g

√
, push(g, σ, α) ∈ CL(α0). Let AT (α0) be the set of all maximal onsistent subsetsof CL(α0), referred to as atoms. Eah t ∈ AT (α0) is a �nite set of formulas, we84



denote the onjuntion of all formulas in t by t̂. For a nonempty subset X ⊆ AT , wedenote by X̃ the disjuntion of all t̂, t ∈ X. De�ne a transition relation on AT (α0)as follows: t
a
→AT t′ i� t̂ ∧ 〈a〉t̂′ is onsistent. The model M = (W,→, λ, V ) where

W = AT (α0) and → = →AT . Note that eah w ∈ W is an atom and thus we usethe notation ŵ to denote the onjuntion of all formulas in w. The valuation V isde�ned as V (w) = {p ∈ P | p ∈ w} and λ(w) = i i� turni ∈ w. One the Kripkestruture is de�ned, the game theoreti semantis given earlier de�nes the relation
R(g,σ) on W × 2W for g ∈ G(Nodes) and a strategy spei�ation σ.The following lemma an be shown using standard modal logi tehniques.Lemma 4.2.12 For all u ∈ W , for all α ∈ CL(α0), for all a ∈ Σ, if for all v suhthat u a

→v we have v̂ ∧ α is onsistent then û ∧ [a]α is onsistent.Lemma 4.2.13 For all g ∈ G(Nodes), for all i ∈ N and σ ∈ Strat i(P i), for all
X ⊆W and for all u ∈W the following holds:(L1) if (u,X) ∈ R(g,σ) then û ∧ 〈g, σ〉∀X̃ is onsistent.(L2) if û∧〈g, σ〉∀X̃ is onsistent then there exists X ′ ⊆ X suh that (u,X ′) ∈ R(g,σ).Proof: By indution on the struture of σ.
σ = [ψ 7→ a]i:(L1) Suppose (u,X) ∈ R(g,[ψ 7→a]i), we need to show that û ∧ 〈g, [ψ 7→ a]i〉

∀
X̃ isonsistent. We do a seond indution on the struture of g. The base ase is when

g = (i, x), and the laim follows easily from axiom (A4) ase (C1).Let g = ℜ(i, x, A) where A = {a1, . . . , ak}. Suppose (u,X) ∈ R(g,[ψ 7→a]i), sine
enabled(g, u) holds we have there exist sets Y1, . . . , Yk suh that for all j : 1 ≤ j ≤ k,for all wj ∈ Yj we have u aj

→wj. Sine u is an i node, any strategy of i will pik aunique edge at u. We have the following two ases:
• M,u |= ψ: From semantis, the strategy should hoose a wj suh that aj = a,
u
aj

→wj and (wj, X) ∈ R(tj ,[ψ 7→a]i). By the seondary indution hypothesis,we have ŵj ∧ 〈tj , [ψ 7→ a]i〉
∀
X̃ is onsistent. Hene û ∧ 〈a〉〈tj, [ψ 7→ a]i〉

∀
X̃ isonsistent.

• M,u 6|= ψ: The strategy an hoose any wj suh that u aj

→wj and (wj, X) ∈

R(tj ,[ψ 7→a]i). By the seondary indution hypothesis, ŵj ∧ 〈tj, [ψ 7→ a]i〉
∀
X̃ isonsistent. Hene û ∧ 〈aj〉〈tj, [ψ 7→ a]i〉

∀
X̃ is onsistent.85



From axiom (A4) ase (C2) we get û ∧ 〈g, [ψ 7→ a]i〉
∀
X̃ is onsistent.Let g = ℜ(ı, x, A) where A = {a1, . . . , ak}. Suppose (u,X) ∈ R(g,[ψ 7→a]i), sine

enabled(g, u) holds, we have there exist Y1, . . . , Yk suh that for all j : 1 ≤ j ≤ k,for all wj ∈ Yj, u aj

→wj. Sine u is an ı node, any strategy µ of i onforming to
[ψ 7→ a]i will have all the branhes at u (by de�nition of strategy). Therefore weget for all wj with u

aj

→wj, there exists Xj ⊆ X suh that (wj , Xj) ∈ R(tj ,π) and
X =

⋃
j=1,...,kXj. By seondary indution hypothesis and the fat that Xj ⊆ X,we have ŵj ∧ 〈tj , [ψ 7→ a]i〉

∀
X̃ is onsistent. Hene from axiom (A4) ase (C6), weonlude that û ∧ 〈g, σ〉∀X̃ is onsistent.(L2) Suppose û ∧ 〈g, [ψ 7→ a]i〉

∀
X̃ is onsistent, we need to show that there exists

X ′ ⊆ X suh that (u,X ′) ∈ R(g,[ψ 7→a]i). We do a seond indution on the strutureof g. The base ase is when g = (i, x), and the laim follows easily from axiom (A4)ase (C1).Let g = ℜ(i, x, A) where A = {a1, . . . , ak}. From axiom (A4) it follows that thereexist sets Y1, . . . , Yk suh that for all j : 1 ≤ j ≤ k, for all wj ∈ Yj we have u aj

→wjand hene enabled(g, u) holds. Let X = {v1, . . . , vm}. We have the following twoases:
• ifM,u |= ψ: then from ase (C2), û∧〈a〉〈ta, [ψ 7→ a]i〉

∀
X̃ is onsistent. Henewe get there exists wa suh that u a

→wa and ŵa ∧ 〈ta, [ψ 7→ a]i〉
∀
X̃ is onsis-tent. By the seondary indution hypothesis there exists X ′ ⊆ X suh that

(wa, X
′) ∈ R(ta,[ψ 7→a]i) and by de�nition of R we have (u,X ′) ∈ R(g,[ψ 7→a]i).

• if M,u 6|= ψ: then from ase (C2), û ∧
∨
aj∈A

〈aj〉〈tj, [ψ 7→ a]i〉
∀
X̃. There-fore there exists wj suh that u aj

→wj and ŵj ∧ 〈tj , [ψ 7→ a]i〉
∀
X̃ is onsis-tent. By the seondary indution hypothesis there exists X ′ ⊆ X suh that

(wj, X
′) ∈ R(tj ,[ψ 7→a]i) and therefore we have (u,X ′) ∈ R(g,[ψ 7→a]i).For the ase when g = ℜ(ı, x, A) where A = {a1, . . . , ak} the laim an be shownusing Lemma 4.2.12 and axiom (A4) ase (C6).

σ = σ1 + σ2:Again we do a seond indution on the struture of g. The base ase when
g = (i, x) follows easily from axiom (A4) ase (C1).Let g = ℜ(i, x, A) where A = {a1, . . . , ak}. Suppose (u,X) ∈ R(g,σ1+σ2), sine
enabled(g, u) holds we have there exist sets Y1, . . . , Yk suh that for all j : 1 ≤ j ≤ k,86



for all wj ∈ Yj we have u aj

→wj. Sine u is an i node, from semantis we have thereexists a wj suh that (u, {wj}) ∈ R(gaj
,σ1) or (u, {wj}) ∈ R(gaj

,σ2) and (wj, X) ∈

R(taj
,σ1+σ2). By the main indution hypothesis, we get û ∧ 〈gj, σ1〉

∀ŵj is onsistentor û ∧ 〈gj, σ2〉
∀ŵj is onsistent. By seondary indution hypothesis we get ŵj ∧

〈tj , σ1 + σ2〉
∀X̃ is onsistent. From axiom (A4) ase (C4) we get û ∧ 〈g, σ1 + σ2〉

∀X̃is onsistent.The ase when g = ℜ(ı, x, A) where A = {a1, . . . , ak} follows from a similarargument making use of axiom (A4) ase (C6). (L1) an also be shown by makinguse of axioms (A4) ases (C4) and (C6) and appliation of the indution hypothesis.For σ = σ1 ·σ2, the result follows from axiom (A4) ases (C3) and (C6) using similararguments.
σ = π ⇒ σ1:The ases when g is of the form (i, x) and g = ℜ(i, x, A) for A = {a1, . . . , ak}follows from axiom (A4) ases (C1) and (C5) respetively. The interesting ase iswhen g = ℜ(ı, x, A) for A = {a1, . . . , ak}.Suppose (u,X) ∈ R(g,π⇒σ), sine enabled(g, u) holds, it is easy to show that
û ∧ g

√ is onsistent. We also get that there exist sets Y1, . . . , Yk suh that for all
j : 1 ≤ j ≤ k, for all wrj ∈ Yj we have u aj

→wrj . Sine u is an ı node, from semantiswe get (u,X) ∈ R(g,π⇒σ) i� for all aj ∈ A for all wrj ∈ Yj, there exists Xr
j suh thatone of the following onditions hold.P1: if (u, wrj ) ∈ R(gj ,π) then (wrj , X

r
j ) ∈ R(trj ,σ⇒π).P1: if (u, wrj ) 6∈ R(gj ,π) then (wrj , X
r
j ) ∈ R(tr

j
,null i).We also have that X =

⋃
j=1,...,k

⋃
r=1,...,|Yj |

Xr
j .Note that from the semantis it follows that for any aj ∈ A and wj ∈ Yj, if

(u, wj) ∈ R(gj ,π) then for all wrj ∈ Yj, (u, wrj) ∈ R(gj ,π). Thus if P1 holds for
aj then by main indution hypothesis we get û ∧ 〈(gj, π)〉∀ŵrj is onsistent for all
wrj ∈ Y j and thus û ∧ 〈gj, π〉

∀
True is onsistent. By seondary indution hypoth-esis and the fat that Xr

j ⊆ X we have ŵrj ∧ 〈(tj, σ ⇒ π)〉∀X̃ is onsistent for all
wrj ∈ Yj. From Lemma 4.2.12 we have û∧ [aj ]〈tj , σ ⇒ π〉∀X̃ is onsistent and there-fore 〈gj, π〉

∀
True ⊃ [aj ]〈tj , σ ⇒ π〉∀X̃ is onsistent.If P2 holds for aj then by main indution hypothesis of (L2) we an deduethat û ∧ ¬〈gj, π〉

∀ŵrj is onsistent. By seondary indution hypothesis we have
ŵrj ∧ 〈taj

, null i〉
∀
X̃ is onsistent.From axiom (A4) ase (C7) we get that û ∧ 〈g, π ⇒ σ1〉

∀X̃ is onsistent.87



(L1) an also be shown by making use of axioms (A4) ases (C5) and (C7). 2Lemma 4.2.14 For all ξ ∈ Γ, for all X ⊆W and u ∈ W , if û∧〈ξ〉∀X̃ is onsistentthen there exists X ′ ⊆ X suh that (u,X ′) ∈ Rξ.Proof: By indution on the struture of ξ.
• ξ = (g, σ): Suppose û ∧ 〈g, σ〉∀X̃ is onsistent. From Lemma 4.2.13 item 2, itfollows that there exists X ′ ⊆ X suh that (u,X ′) ∈ Rξ.
• ξ = ξ1∪ξ2: By axiom (A3a) we get û∧〈ξ1〉∀X̃ is onsistent or û∧〈ξ2〉∀X̃ is on-sistent. By indution hypothesis there exists X1 ⊆ X suh that (u,X1) ∈ Rξ1or there existsX2 ⊆ X suh that (u,X2) ∈ Rξ2 . Hene we have (u,X1) ∈ Rξ1∪ξ2or (u,X2) ∈ Rξ1∪ξ2 .
• ξ = ξ1; ξ2: By axiom (A3b), û∧〈ξ1〉∀〈ξ2〉∀X̃ is onsistent. Hene û∧〈ξ1〉∀(∨(ŵ∧

〈ξ2〉
∀X̃)) is onsistent, where the join is taken over all w ∈ Y = {w | w ∧

〈ξ2〉
∀X̃ is onsistent}. So û ∧ 〈ξ1〉

∀Ỹ is onsistent. By indution hypothesison ξ1, there exists Y ′ ⊆ Y suh that (u, Y ′) ∈ Rξ1 . We also have that forall w ∈ Y , ŵ ∧ 〈ξ2〉
∀X̃ is onsistent. Therefore we get for all wj ∈ Y ′ =

{w1, . . . , wk}, ŵj ∧ 〈ξ2〉
∀X̃ is onsistent. By indution hypothesis on ξ2, thereexists Xj ⊆ X suh that (wj, Xj) ∈ Rξ2 . Let X ′ =

⋃
j=1,...,kXj ⊆ X, we get

(u,X ′) ∈ Rξ1;ξ2.
• ξ = ξ∗1 : Let Z be the least set ontaining X and losed under the ondition:for all w, if ŵ ∧ 〈ξ1〉

∀Z̃ is onsistent, then w ∈ Z. By de�nition of Z andindution hypothesis, we get for all w ∈ Z, there exists Xw ⊆ X suh that
(w,Xw) ∈ Rξ∗

1
.Claim : ⊢ 〈ξ1〉

∀Z̃ ⊃ Z̃.To see the laim, suppose it is not true. Then 〈ξ1〉
∀Z̃ ∧ ¬Ẑ is onsistent. Let

Z ′ = AT (α0) \ Z. We have 〈ξ1〉
∀Z̃ ∧ Z̃ ′ is onsistent. Therefore there exists

w′ ∈ Z ′ suh that 〈ξ1〉
∀Z̃ ∧ ŵ′ is onsistent. But then w′ would have beenadded into the set Z during onstrution. End of laim
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Applying the indution rule (IND), we have ⊢ 〈ξ∗1〉
∀Z̃ ⊃ Z̃. By assumption,

û∧〈ξ∗1〉
∀X̃ is onsistent. So û∧〈ξ∗1〉

∀Z̃ is onsistent. Hene û∧ Z̃ is onsistentand therefore u ∈ Z. Thus we have (u,X ′) ∈ Rξ∗
1
for some X ′ ⊆ X.

2Lemma 4.2.15 For all 〈ξ〉∀α ∈ CL(α0), for all u ∈ W , û ∧ 〈ξ〉∀α is onsistent i�there exists (u,X) ∈ Rξ suh that ∀w ∈ X, α ∈ w.Proof: (⇒) Suppose û ∧ 〈ξ〉∀α is onsistent. Let Xα = {w ∈ W | α ∈ w}. It iseasy to see that ⊢ α ⊃ X̃α. Therefore we have û∧〈ξ〉∀X̃α is onsistent (by de�nition
∀w ∈ X̃α, α ∈ w). By Lemma 4.2.14, there exists X ′ ⊆ Xα suh that (u,X ′) ∈ Rξ.Sine X ′ ⊆ Xα, we have α ∈ w for all w ∈ X ′.(⇐) Suppose ∃(u,X) ∈ Rξ suh that ∀w ∈ X, α ∈ w. We need to show that
û ∧ 〈ξ〉∀α is onsistent, this is done by indution on the struture of ξ.

• The ase when ξ = (g, σ) follows easily from Lemma 4.2.13 and ξ = ξ1 ∪ ξ2follows from the indution hypothesis and axiom (A3a).
• ξ = ξ1; ξ2: Sine (u,X) ∈ Rξ1;ξ2, there exist Y = {v1, . . . , vk} and sets
X1, . . . , Xk ⊆ X suh that ⋃

j=1,...,kXj = X, for all j : 1 ≤ j ≤ k, (vj , Xj) ∈ Rξ2and (u, Y ) ∈ Rξ1 . By indution hypothesis, for all j, v̂j ∧ 〈ξ2〉
∀α is onsistent.Sine vj is an atom and 〈ξ2〉

∀α ∈ CL(α0), we get 〈ξ2〉∀α ∈ vj. Again by indu-tion hypothesis we have û ∧ 〈ξ1〉
∀〈ξ2〉

∀α is onsistent. Hene from (A3b) wehave û ∧ 〈ξ1; ξ2〉
∀α is onsistent.

• ξ = ξ∗1 : If u ∈ X then ⊢ û ⊃ X̃. We have ⊢ X̃ ⊃ α and hene we get û ∧ α isonsistent. From axiom (A3) we have û ∧ 〈ξ∗1〉
∀α is onsistent.Else we have (u,X) ∈ Rξ1;ξ∗1 . Let Z0 = X and Zn+1 = Zn ∪ {w | (w,Z ′) ∈

Rξ1 , Z
′ ⊆ Zn}. Take the least m suh that u ∈ Zm. We have for all

w ∈ Zm−1, ⊢ ŵ ⊃ 〈ξ∗1〉
∀X̃ ′ for some X ′ ⊆ X. We also have (u, Z ′

m) ∈ Rξ1 forsome Z ′
m = {v1, . . . , vk} ⊆ Zm. Let X1, . . . , Xk ⊆ X suh that ∀j : 1 ≤ j ≤ k,we have (vj , Xj) ∈ Rξ∗

1
and X ′ =

⋃
j=1,...,kXj. By an argument similar to theprevious ase we an show that û ∧ 〈ξ1〉

∀〈ξ∗1〉
∀X̃ ′ is onsistent. Hene we get

û∧ 〈ξ1; ξ∗1〉
∀α is onsistent. Therefore from axiom (A3) we have û∧ 〈ξ∗1〉

∀α isonsistent. 89



2We thus get the following theorem whih implies the ompleteness of the axiomsystem.Theorem 4.2.16 For all β ∈ CL(α0), for all u ∈W , M,u |= β i� β ∈ u.Proof: Follows from Lemma 4.2.15 by a routine indutive argument. 2Deidability: Sine the size of the ation set |Σ| is onstant, the size of CL(α0)is linear in |α0|. Atoms are maximal onsistent subsets of CL(α0), hene |AT (α0)|is exponential in the size of α0. From the ompleteness theorem we get that for aformula α0, if α0 is satis�able then it has a model of exponential size, i.e. |W | =

O(2|α0|). For all game strategy pairs ξ ourring in α0, the relation Rξ an beomputed in time exponential in the size of the model. Therefore it follows that thelogi is deidable in nondeterministi double exponential time.4.2.6 ExtensionsConurreny as introdued in game logi [BGL07℄ an be represented in our frame-work with the addition of the operator ξ1 × ξ2 in the syntax of game strategy pairs.For instane, (g1, σ1)×(g2, σ2) would mean that the game g1 is played with a strategyonforming to σ1 and onurrently, the game g2 is played with a strategy onformingto σ2. The semantis an be de�ned in the usual manner:
• Rξ1×ξ2 = {(u,X) | X = X1 ∪X2 suh that (u,X1) ∈ Rξ1 and (u,X2) ∈ Rξ2}.It is easy to see that the ompleteness theorem also follows with the addition of thefollowing axiom.
• 〈ξ1 × ξ2〉α ≡ 〈ξ1〉α ∧ 〈ξ2〉α.Test operatorThe test operator as in dynami logi an also be added into the syntax of gamestrategy pairs. For β ∈ Φ, the interpretation of β? ∈ Γ would be to test whether

β holds at the partiular state and if yes, ontinue else fail. The semantis an begiven as: 90



• Rβ? = {(u, {u}) |M,u |= β}.The test operator gives the ability of heking for ertain onditions and thendeiding whih game to proeed with. This onstrut is partiularly interesting inour framework, sine unlike programs we have players in the game. For instane, let
π denote the strategy spei�ation of player 2 and σ the spei�ation of player 1.The formula (g1, π); win2?; (g2, σ) says that in g1 if player 2 by employing a strategyonforming to π an ensure win2 then proeed with the game g2 where player 1plays σ. Note that if the test fails then g2 is not played. This is in ontrast to thetests performed in a strategy spei�ation. In a spei�ation if the test fails thenthe player is free to hoose any ation.With the addition of the following axiom, the ompleteness theorem goes through.

• 〈β?〉α ≡ β ∧ α4.3 Normal form gamesAs opposed to extensive form games where the game struture is expliit, normalform games are spei�ed by the set of abstrat strategies and outomes. Logialanalysis in the ase of a single normal form game is thus outome based. Howeverwhen we onsider games built in a ompositional manner, the notion of strategiresponse of a player to other players' moves beome relevant, pretty muh in thesame way as it is used in extensive form games.In this setion we look at how the dynami logi framework developed to reasonabout extensive form games an be adapted to deal with normal form games as well.We onsider omposition of game play pairs in normal form games, orrespondingto the fat that the reasoning performed in single stage is mostly outome based.If we restrit the reasoning to bounded repetition of games or to multistage gameswhere the number of stages are bounded, then we do not need to look at ompositionof game play pairs. In the presene of unbounded iteration of games, we need tointrodue a dynami struture on game play pairs.4.3.1 Syntax for normal form gamesNormal form games were introdued in Setion 2.2 and we onsider the tree repre-sentation for normal form games. Reall that for eah i ∈ N , Σi denotes the ations91



of player i and Σ̂ = Σ1 × Σ2. Let Nodes be a ountable set, the normal form gametree is spei�ed using the syntax:
G(Nodes) := Σam∈J(x, am, ym).where x, ym ∈ Nodes , J ⊆ Σ̂.Given g ∈ G(Nodes) we de�ne the tree Tg generated by g indutively as follows.Let g = (x, a1, y1) + . . .+ (x, ak, yk), Tg = (Sg,⇒g, λ̂g, sx) where

• Sg = {sx, sy1, . . . , syk
}.

• For 1 ≤ j ≤ k we have sx aj

⇒gsyj
.For g ∈ G(Nodes), we also use Σ̂g to denote the set of all strategy pro�les in g.4.3.2 Dynami logi on normal form gamesFor the sake of larity, in this setion we onentrate on the struture of the game

g with respet to the moves of the players and disregard the utilities assoiated inthe game struture. As shown in Setion 2.4 utilities an be oded as propositionsin the logi and thus outome based reasoning an be done.Syntax: The syntax of the logi is given by,
Φ := p ∈ P | ¬α | α1 ∨ α2 | 〈ξ〉

∀αwhere ξ ∈ Γ. The syntax of game play pairs is given as
Γ := (g, η) | ξ1; ξ2 | ξ1 ∪ ξ2 | ξ

∗ | α?where g ∈ G(Nodes), η ⊆ Σg and α ∈ Φ.Semantis: Models for the logi are Kripke strutures M = (W,→, V ). Note thatunlike in the ase of extensive form games, the turn funtion is not required.The truth of a formula α ∈ Φ in the modelM at a position w (denotedM,w |= α)is de�ned as follows:
• M,w |= p i� p ∈ V (w).
• M,w |= ¬α i� M,w 6|= α. 92



• M,w |= α1 ∨ α2 i� M,w |= α1 or M,w |= α2.
• M,u |= 〈ξ〉∀α i� ∃(u,X) ∈ Rξ suh that ∀w ∈ X we have M,w |= α.For ξ ∈ Γ the de�nition of relation Rξ ⊆ W × 2W is similar to what we saw inthe ase of extensive form games. For the atomi ase we have,
• R(g,σ) = {(u,X) | enabled(g, u) and X = tail(Tu |

\ g, η)}where enabled(g, w) denotes that the struture g an be embedded at state w of themodel, with respet to ompatibility with the ation labels. tail(Tu |
\ g, η) is the setof nodes of the resulting embedded tree when restrited to plays in η.Thus M,w |= 〈g, η〉∀α says that �rstly g an be embedded at u and if X is theset of all states resulting from the plays spei�ed in η, then the formula α holds inall w ∈ X. The dual [g, η]∃α says: if g an be embedded at the state u then thereexists a state w resulting from the plays spei�ed in η suh that α holds at w.The semantis for omposite game play pairs is given as follows:

• Rξ1;ξ2 = {(u,X) | ∃Y ⊆ W suh that (u, Y ) ∈ Rξ1 and ∀v ∈ Y there exists
Xv ⊆ X suh that (v,Xv) ∈ Rξ2 and ⋃

v∈Y Xv = X}.
• Rξ1∪ξ2 = Rξ1 ∪ Rξ2 .
• Rξ∗ =

⋃
n≥0(Rξ)

n.
• Rβ? = {(u, {u}) |M,u |= β}.Example 4.3.1 The formulas of the logi an not only make assertions aboutstrategies of players but also about the game struture itself. Thus states of theKripke struture an be viewed as being assoiated with a set of atomi normalform games. The restrition operation identi�es the spei� game under onsidera-tion, whih in turn is determined by the assertions made by formulas of the logi.Consider the following formula:
• 〈(g, η2); (g

′, η1)〉
∀
win1 where η2 is a strategy for player 2 in game g and η1 astrategy of player 1 in g′.This says that assuming in game g, player 2 plays aording to strategy η2 thenin g′, player 1 an follow η1 and ensure win1. Note that this is not same as sayingplayer 1 an ensure win1 in the omposed game g = g; g′. The fat that player 2employed strategy η2 in game g is used in strategizing by player 1. 293



4.3.3 Logial reasoning in normal form gamesModels of alternating temporal logi an also be thought of as games on graphswhere eah node is assoiated with a normal form game. Thus spei�ations whihinvolve only bounded levels of strategi response (as shown in the previous example),an be expressed in a temporal logi framework. Consider the following assertion.
• ((g1, η1); ((g2, η2) ∪ (g3, η3)))

∗; win2?; (g, η)where η1, η2 and η3 are player 2 strategies in games g1, g2 and g3 respetivelyand η is a player 1 strategy in game g.This says that if player 2 an ensure win2 by iterating the struture g1 followed by
g2 or g3 and employing strategies η1 followed by η2 or η3 then player 1 plays a-ording to η in game g. Here not only does player 1 assert that player 2 an ensure
win2 but also makes assertions about the spei� game struture that is enabledand the atomi strategies that player 2 employs. Iteration performed here does notorrespond to the assertion that a property holds through out the history. Thisalso motivates the need to shift from a temporal logi framework to a dynami logiframework.Strategy omparison: We now show that the logi is powerful enough to expressthe various strategizing notions inluding strategy omparison for reasoning abouta single normal form game. For the game g, let Σ̂g = {a1, . . . , ak} be the strategypro�les ourring in g. For i ∈ N , let Σg

i = {a1[i], . . . , ak[i]} and for b ∈ Σg
i , let

Σ̂g(b) = {a ∈ Σ̂g | a[i] = b and a[ı] ∈ Σg
ı }. Σ̂g(b) thus onsists of all the strategypro�les where player i's strategy is �xed to b. Consider the formula:

ensures i(g, γ) =
∨

b∈bΣg
i

〈g, Σ̂g(b)〉
∀
γ.

ensuresi(g, γ) says that given that the opponent hooses an ation from the set
Σg
ı , there is a strategy for player i to ahieve γ no matter what hoie player ı makes.In the ase of γ ∈ Θi (where Θi denote the set of speial propositions oding theutilities of players), this orresponds to the utility that player i an ensure. If player

i expets that ı will hoose only ations from the set Σ′ ⊆ Σg
ı , then the restritionof ensures i(g, γ) to Σ′ spei�es what player i an ensure in terms of his expetation.A player during the phase of strategizing might take into onsideration what he94



an ensure given his expetation about the strategies of the opponent. The relatedonept of weakly dominating strategies an be de�ned as follows:
DOM i(b, b′) =

∧

x∈Σg
ı

∧

θi∈Θi

(
〈g, (b′, x)〉∀θi ⊃ 〈g, (b, x)〉∀θi

)
.This says that whatever reward that an be ensured using the strategy b′ analso be ensured with the strategy b. In other words, this says that for player i, thestrategy b weakly dominates b′.Given a strategy x of player ı we an express the fat that the strategy b is betterthan b′ for player i as response to x using the formula:

Better ix(b, b
′) =

∧
θi∈Θi

(〈g, (b′, x)〉∀θi ⊃ 〈g, (b, x)〉∀θi)We an then express the fat that b is the best response of player i for x as
BRi

x(b) =
∧
b′∈Σg

i
Better ix(b, b

′). Having de�ned best response, the assertion that astrategy pro�le (b, x) onstitutes an equilibrium an be expressed as: EQ(b, x) =

BRi
x(b) ∧ BRı

b(x).Capturing omplete strategies: Typially temporal logis whih allow strategiesto be named and referred to in the logi restrit attention to memoryless strategiesand onsider them to be atomi and unstrutured. The reasoning performed isin terms of outome based analysis. If we restrit our attention to memorylessstrategies, then omplete strategies of players an be oded up in terms of strategyspei�ations. We need to only use speial propositions to distinguish eah stateof the arena. Thus the ore reasoning done in suh temporal logis is subsumedby the dynami logi on normal form games. In addition to outome based analy-sis, the logi proposed here expliates strategi response of players in terms of themehanisms whih need to be employed.4.3.4 Axiom system and ompletenessIn this setion we show that the axiom system presented in Setion 4.2.4 for extensiveform games an be easily adapted for normal form games. The axioms whih needto be modi�ed are the ones dealing with the atomi ase whih re�et the hange inthe underlying game representation. At the ompositional level, the axioms remainthe same. 95



As in the ase of extensive form games, the �rst step is to show that for a ∈ Σ̂,the standard modal logi formula 〈a〉α an be enoded in the logi. For a ∈ Σ̂, let
ga denote the normal form game with the unique strategy pro�le a, we de�ne 〈a〉αas:

• 〈a〉α = 〈ga, {a}〉
∀
True ∧ [ga, {a}]∃α.The following proposition an be easily veri�ed.Proposition 4.3.2 For all models M , state w and formula α, M,w |= 〈a〉α i�there is a state u suh that w a

→u and M,u |= α.For a game g = (x, a1, y1) + . . .+ (x, ak, yk), the formula g√ denotes that the gamestruture g is enabled. This is de�ned as:
• g

√
=

∧
j=1,...,k 〈aj〉True.The axiom shemes(A1) Propositional axioms:(a) All the substitutional instanes of tautologies of PC.(A2) Axiom for single edge games:(a) 〈a〉(α1 ∨ α2) ≡ 〈a〉α1 ∨ 〈a〉α2.(A3) Dynami logi axioms:(a) 〈ξ1 ∪ ξ2〉

∀α ≡ 〈ξ1〉
∀α ∨ 〈ξ2〉

∀α.(b) 〈ξ1; ξ2〉
∀α ≡ 〈ξ1〉

∀〈ξ2〉
∀α.() 〈ξ∗〉∀α ≡ α ∨ 〈ξ〉∀〈ξ∗〉∀α.(d) 〈β?〉∀α ≡ β ∧ α.For g = (x, a1, y1) + . . .+ (x, an, yn) and η ⊆ Σ̂g,(A4) 〈g, η〉∀α ≡ g

√
∧ (

∧
a∈η[a]α).Inferene rules

(MP) α, α ⊃ β (NG) α

β [a]α

(IND) 〈ξ〉∀α ⊃ α

〈ξ∗〉∀α ⊃ α 96



The soundness of the axiom system and inferene rules an be veri�ed quiteeasily. Using arguments very similar to those presented in Setion 4.2.5 it an beshown that given a onsistent formula α0 we an onstrut a modelM = (W,→, V )where W onsists of atoms of α0 suh that the following holds:Theorem 4.3.3 For all β ∈ CL(α0), for all u ∈W , M,u |= β i� β ∈ u.Completeness of the axiom system an in turn be derived from Theorem 4.3.3.4.4 DisussionBy onsidering game play pairs in the ase of strutured normal form games, we areable to reason about restritions of the game tree and thereby express game theoretinotions like a player's best response for an opponent's strategy and equilibrium. Inontrast, the approah taken in the ase of extensive form games is loser to thestyle of game logis: the reasoning is about what a player an ensure by following aertain strategy spei�ation where all possible strategies of the opponent is takeninto aount. However, at the ompositional level, the axiom system remains thesame. This shows that the framework being onsidered is quite general, and is notdependent on the exat game representation. For a spei� game representation,only the axioms speifying the struture of the representation need be hanged.
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Part IIAlgorithmi analysis



Chapter 5In�nite gamesConsider the game played between two players, Player 1 and Player 2, who taketurns to hoose binary digits. Player 1 makes the �rst hoie and then their turnsstritly alternate. Let X be a subset of the real open interval (0, 1). A play inthe game is a sequene x1, y1, x2, y2, . . . where for all j ≥ 0, xj , yj ∈ {0, 1} and let
n = x1

2
+ y1

22 + x2

23 + · · · . We say player 1 wins if n ∈ X and player 2 wins if n 6∈ X.It is easy to see that this de�nes an in�nite two player turn based game of perfetinformation. This game was �rst de�ned in The Sottish Book [Mau81℄ by Ulam. Alosely related variant of this game is alled the Banah-Mazur game (see [Mau81℄ forthe original variant) where players are allowed to hoose intervals on the real line.These games have been extensively studied in desriptive set theory [Ke95℄ andtopology [Tel87℄. In general, given an alphabet set A and a set X ⊆ Aω of in�nitewords on A we an de�ne a two player zero sum game G(X) where players alternatein hoosing elements from A onstruting an in�nite sequene n. Player 1 wins ifthe resulting sequene n ∈ X and player 2 wins if n 6∈ X. The obvious questionof interest then is to ask whether suh in�nite games are determined. It turns outthat determinay depends ruially on the topologial properties of the winning set
X. Under topologial lassi�ations, one of the simplest games to onsider would beopen games (a game is said to be open if the winning set has the form X = UAω). In1953, Gale and Stewart [GS53℄ showed that any open game is determined. Variousstudies extended this result to larger lasses of in�nite games. However, it wasnot until 1975 that determinay was shown for a very general lass of games; theelebrated Martin's theorem [Mar75℄ showed that all Borel games are determined.In�nite games have been long used in various aspets of omputer siene (see[GTW02, Grä08℄ for an overview). It has been widely used in automata theory99



to show the losure under omplementation for various lasses of automata as wellas in deiding the emptiness problem. For instane, for a nondeterministi treeautomaton working on in�nite trees, there is a natural two player zero sum gameof perfet information assoiated with it. In the game, the automaton piks anenabled transition, and the opponent hooses a branh to pursue on the input tree.Then the omplementation problem for this lass of automata is solved by usingdeterminay of the assoiated games. In�nite games are often used in the veri�ationand synthesis of open systems. For instane, Churh's problem [Chu63℄ whih askswhether it is possible to synthesize iruits against spei�ations stated in restritedseond-order arithmeti an be easily translated into the determinay question foran in�nite game.Typially, in�nite games whih arise in omputer siene are games played on�nite graphs with regular objetives. These objetives fall in the seond level of theBorel hierarhy [PP04℄ and thus determinay for suh games follows from Martin'stheorem. However, Martin's result does not make any assertion on whether it ispossible to determine who the winner is or how �omplex� the winning strategy is.This turns out to be the ore question in solving veri�ation and synthesis questionsas well.Apart from the logial analysis, another branh of game theory whih is of par-tiular interest in the ontext of omputer siene is the algorithmi analysis of gamesand strategies. This enompasses issues mentioned above inluding,
• being able to determine the winner and synthesizing the winning strategy inthe ase of two player zero sum games, and
• synthesis of equilibrium strategy pro�le in non-zero sum games.Algorithmi analysis for �nite extensive form games, was brie�y looked at inChapter 2 where we presented the bakward indution algorithm. The algorithmshowed that winning strategy synthesis and equilibrium strategy pro�le synthesisan be ahieved in time linear in the size of the game tree. In the ase of twoplayer in�nite games with regular objetives, being able to determine the winneras well as omputing the winning strategy also turn out to be the ore questionsin solving the veri�ation and synthesis problems. However, sine the bakwardindution algorithm is designed to work on �nite extensive form game trees, thisproedure annot be diretly applied in the analysis of in�nite duration games. Aseminal result due to Bühi and Landweber [BL69℄ says that for two player zero100



sum games played on �nite graphs where players' objetives are presented as Mulleronditions, the winner an be determined and that the winning strategy an bee�etively synthesised in �nite memory strategies.In the ontext of non-zero sum in�nite duration games, it is natural to ask ifequilibrium strategies exist and whether it is possible to synthesize an equilibriumpro�le if it exists. We show that in the ase where preferene orderings of players areover regular sets of plays, the bakward indution proedure an still be employedto show the existene of equilibrium and to synthesize an equilibrium pro�le. Wealso look at how strategy spei�ations help in the algorithmi analysis of non-zerosum in�nite duration games.5.1 Game modelIn this hapter we onsider in�nite turn based games with perfet information playedon �nite graphs. We use game arenas (introdued in setion 2.3.1) to representsuh games. For tehnial onveniene we also assume that for a game arena G =

(W,→, w0, λ) for all game positions w ∈ W , we have →
w 6= ∅. Strategies of playersan be de�ned as given in setion 2.3.2.5.1.1 Objetives of playersTwo player zero sum gamesFor two player zero sum games, the objetives of players are stritly omplemen-tary. Thus the set of plays need to be partitioned into sets Φ1 and Φ2 with theinterpretation that a play ρ is winning for player i i� ρ ∈ Φi. Sine the game isstritly omplementary, this also means that ρ is losing for player ı. A strategy µ iswinning for player i if for all paths ρ ∈ Tµ, ρ ∈ Φi. A game G is then spei�ed asa tuple (G,Φ1) where G is an arena and Φ1 denotes the winning ondition of one ofthe players (say player 1). For i ∈ {1, 2} we say player i wins the game G if i has awinning strategy in G. The game G is said to be determined if there exists i ∈ {1, 2}suh that i wins G.For two player zero sum in�nite games played on �nite graphs, the algorithmiquestions of interest inlude given a game G = (G,Φ1)1. is G determined? 101



2. given i, determine if player i wins G and if so ompute the winning strategy.However, for algorithmi analysis to be possible, we need to present the winningonditions of players in a �nite fashion. Sine the objetives of players is an in�niteset it is not lear how this an be done in general. Most often in�nite games whiharise in omputer siene turn out to be two player zero sum games with regularobjetives. In suh games, the winning onditions of players an be presented ina �nite manner in terms of omega automata. Below we illustrate how this an beahieved.De�nition 5.1.1 A �nite deterministi omega automaton over the input alphabet
W × Σ is a tuple A = (R,∆, r0,Acc) where

• R is the set of states.
• ∆ : R×W × Σ → R is the transition funtion.
• r0 ∈ R is the initial state.
• Acc spei�es the aeptane ondition.The run of A on an in�nite sequene ρ : w0a0w1 . . . is a sequene of states

ϕρ : r0r1 . . . suh that for all j ≥ 0, rj+1 = ∆(rj , wj, aj). Let Inf (ϕρ) denote theset of states ourring in�nitely often in ϕ. The most ommonly used aeptaneonditions are the following requirements on Inf (ϕ):
• Bühi ondition [Bü62℄: for a set of �good states� B ⊆ R, Inf (ϕρ)∩B 6= ∅. Inother words, some �nal state ours in�nitely often in the run ϕρ.
• Muller ondition [Mul63℄: for a family F ⊆ 2R, ∨

F∈F Inf (ϕρ) = F . Thisrequires that the set of states ourring in�nitely often in the run ϕρ forms aset in F .
• Rabin ondition [Rab69℄: For a set of pairs {(Ej , Fj)}j=1,...,m where Ej , Fj ⊆ R,we have ∨m

j=1(Inf (ϕρ))∩Ej = ∅∧ Inf (ϕρ))∩Fj 6= ∅. It requires that for some
j, all states of Ej are visited only �nitely often in ϕρ but some state of Fj isvisited in�nitely often.Deterministi Muller automata are known to be omplete for omega regular on-ditions and therefore we assume that winning onditions of players are presented in102



this manner. We use the notation M = (R,∆, r0,F) to denote a Muller automatonand always work with deterministi automata unless otherwise mentioned.A two player zero sum game with omega regular objetives an thus be presentedas a pair G = (G,M1) where M1 spei�es the winning ondition for player 1.Overlapping objetivesFor non-zero sum games, eah player has a preferene ordering �i⊆ (Plays(G) ×

Plays(G)) over plays in the arena. The most natural way of speifying the prefer-ene ordering is in terms of utilities as we did in the ase of �nite extensive formgames. However, sine plays in the arena are in�nite objets, the utility funtionneeds to map in�nite plays to payo�s. If we restrit our attention to lassifying reg-ular plays and in ases where the utilities arise out of a �nite set, players' objetivesan be presented in terms of a �generalised Muller automaton� whih we term asevaluation automata.Evaluation automata: These are basially Muller automata where instead ofinterpreting the Muller table as de�ning aepting runs we inorporate prefereneorderings over the sets in the Muller table. The ordering on plays indued by theutility funtion an be diretly aptured in this manner. The formal de�nition isgiven below.De�nition 5.1.2 An evaluation automaton E = (M, {�i}i∈N) whereM is a Mullerautomaton given by M = (R,∆, r0,F) and for eah player i ∈ N , �
i ⊆ (F ×F) isa re�exive, transitive and omplete relation over F denoting the preferene ordering.Sine we want the evaluation automaton to indue a preferene ordering onall plays, it is onvenient to use a �omplete� automaton. Every evaluation au-tomaton an be onverted into a omplete automaton by the following transforma-tion. For the Muller automaton M = (R,∆, r0,F) we onstrut the automaton

M′ = (R,∆, r0,F
′) where F ′ = 2R \ ∅. The newly added �nal states are set to bethe least preferred by eah player i in the preferene ordering �

i. Therefore withoutloss of generality we assume that all evaluation automata are omplete.The run of E on a play ρ (denoted ϕρ) is de�ned as in the ase of a Mullerautomaton. The evaluation automaton E indues a preferene ordering on Plays(G)in the following manner. Let ρ = w0a0w1a1 . . . and ρ′ : w0a
′
0w

′
1a

′
1 . . . be two plays.For player i ∈ N , we have ρ �i ρ′ i� Inf (ϕρ) �

i Inf (ϕρ′).103



We shall also be interested in the speial ase of binary evaluation automatawhih speify least outomes for player i. Suh an automaton is given by E iF , where
F ∈ F : for every F ′ ∈ F , if F �

i F ′, it is taken to be �winning� for player i, andevery F ′′ 6= F suh that F ′′
�
i F is taken to be �losing�. Suh an automaton heksif i an ensure an outome whih is at least as preferred as F . Note that the ter-minology of win-loss is only to indiate a binary preferene for player i, and applieseven in the ontext of non-zero sum games.Nash equilibrium: The de�nitions of best response strategy and equilibrium pro-�le an be appropriately modi�ed to deal with in�nite duration games on graphs inthe following manner.

• The strategy µ of player i is a best response for strategy τ (of ı) if ∀µ′ ∈ Ωi,
ρ(µ′,τ) �

i ρ(µ,τ).
• A strategy pro�le (µ, τ) is said to be in equilibrium if µ is the best responsefor τ and τ is the best response for µ.Equilibrium in win-loss objetivesIn the ontext of equilibrium omputation for in�nite games, instead of looking atgeneral preferene orderings over outomes, one ould look at the situation wherethe objetive of eah player is spei�ed as an omega regular win-loss objetive.These sets may overlap and hene the players need not be antagonisti. In otherwords, these are non-zero sum games where eah player has a binary objetive. Theexistene of Nash equilibrium for suh games follows from the result of [CJM04℄.The main idea here is the e�etive use of threat strategies whereby a player deviatingfrom the equilibrium pro�le is punished by others to reeive the outome whih shean guarantee on her own. The existene of sub-game perfet equilibrium [Sel65℄for games with binary objetives was shown in [Umm05℄. Threat strategies arisenaturally in the ase of games with win-loss objetives. However, in the ase ofin�nite games where players have non-zero sum objetives, it is no longer lear whatare the rationality assumptions whih justify equilibrium pro�les that may involveempty threats. In this ontext, even oming up with rationality assumptions whihgeneralise well-known solution onepts in games of �nite duration to that of non-zero sum in�nite duration games is a hallenging task. [Ber07℄ takes up the task oflooking at the rationality assumptions involved in generalising the notion of iterated104



admissibility [LR57℄ whih is well studied in the theory of �nite games to in�nitegames.However, the equilibrium notions are mathematially well de�ned and deservesattention in their own right. What we do here is rather than delve into issues on-erning rationality, attempted to investigate equilibrium notions in the ontext ofin�nite games. In the next setion we show that the standard tehnique of bak-ward indution an be appropriately modi�ed to ompute equilibrium pro�le ingeneralised Muller games.5.2 Equilibrium omputationGiven a game arena and an evaluation automaton, their produt gives rise to aMuller game where eah player has a preferene ordering over the onneted ompo-nents over the produt struture. We all these generalised Muller games (the formalde�nition is presented shortly). A natural question then, would be to ask whetheran equilibrium pro�le always exists for this lass of games. In this setion we showthe following results:
• Nash equilibrium always exists in generalised Muller games.
• An equilibrium pro�le an be e�etively synthesized.A generalised Muller game is a tuple G = (G, {⊑i}i∈N) where G is a game arenawith the set of game positions W and for eah player i ∈ N , ⊑i⊆ (2W × 2W ) is apreferene ordering over subsets of game positions for eah player.To simplify notation, we disregard the ation labels on edges of the arena. Thusplayers' strategies hoose game positions instead of ations. We further assumethat the turn funtion is impliitly presented by a partition of the game positions.Thus an arena is simply a graph G = (W,E,w0) where W =

⋃
i∈N W

i is the setof game positions partitioned into |N | sets. The move relation E ⊆ W ×W . Let
wE = {w′ | (w,w′) ∈ E}.5.2.1 Nash equilibrium in generalised Muller gamesFor �nite extensive form games, our main tool for algorithmi analysis was the bak-ward indution proedure. Here we show that the bakward indution proedure an105



be e�etively used to show existene of equilibrium and to synthesize an equilibriumstrategy pro�le for generalised Muller games as well.The key idea of the onstrution is as follows. The bakward indution algorithmis designed to work on �nite extensive form game trees. However, the tree unfoldingof G whih is the game under onsideration is an in�nite struture. The objetiveis therefore to onstrut a �nite tree struture whih preserves the equilibrium be-haviour of players in G. The ore problem in onstruting suh a struture is toidentify the Muller set that eah play settles down to without atually performingthe in�nite tree unfolding. In the ontext of omega automata, the data struturewhih ombines the latest appearane reord [GH82℄ along with a hit position wasproposed by Bühi [Bü83℄ with exatly this purpose in mind. We show that byperforming a areful unfolding of G while keeping trak of the permutation of statesin terms of the latest appearane reord, one an onstrut a �nite tree struture
T (G) whih aptures the equilibrium behaviour of players in the original game G.The bakward indution proedure synthesizes a memoryless equilibrium pro�le onthe tree struture T (G) whih is then translated into a �nite memory equilibriumpro�le in G.Latest appearane reordThe idea is to keep a reord of states in the order of their �last visit� along with ahit position (denoted by the symbol ♯) whih reords the position of the last hange.We introdue the data struture by an example, the formal de�nition is presentedsubsequently.Example 5.2.1 Suppose W = {1, 2, 3, 4}, onsider the in�nite sequene 1 4 2 3 12 1 2 2 1 . . . over W whih �nally loops in the set {1, 2}. We start with a vetorwhose last state is 1 say 234♯1 indiating that the sequene begins with 1. The nextvetor is obtained by shifting the new state of W to the right and setting the hit tothe position from where the previous vetor this state was taken. Thus we obtain,starting from (234♯1) the vetors (23♯14), (♯3142), (♯1423), (♯4231), (4♯312), (43♯21)and so on. It is easy to see that in this example, where from some point onwardsonly states 1,2 are visited, these states remain at the positions of the vetor afterthe ♯ symbol. 2

106



Formally, given a �nite set W whih is well ordered, we de�ne LAR(W ) asfollows:
LAR(W ) = {x ∈ (W ∪ {♯})∗ | ∀v ∈W ∪ {♯}, |x|v = 1}where |x|v denotes the number of ourrene of v in x. For x♯yw ∈ LAR(W ), wede�ne end(x♯yw) = w. We de�ne the funtion next as,

next(x♯y, w) =





x′♯x′′yw i� x♯y = x′wx′′♯y

xy′♯y′′w i� x♯y = x♯y′wy′′

x♯y i� x♯y = x♯y′wFor a sequene ρ = w0w1 . . . ∈W ω, we de�ne LAR(ρ) = x0♯y0, x1♯y1, . . . where
• x0♯y0 = x♯w0 where x onsists of elements in W \ {w0} ordered aording tothe well ordering on W .
• for all j > 0, xj♯yj = next(xj−1♯yj−1, wj).For a �nite sequene ρ, the sequene LAR(ρ) is �nite and we denote the lastLAR reord in the sequene by last(LAR(ρ)).One of the main appliations of the LAR data struture in automata theoryis to translate a Muller automaton to an equivalent Rabin automaton. The mainproperty of the data struture, whih is also ruially used to show the orretnessof the translation, is stated in the following lemma.Lemma 5.2.2 ([Tho97, Far02℄) Let ρ be an in�nite sequene w0w1 . . . ∈W ω andlet LAR(ρ) = x0♯y0, x1♯y1, . . .. Then Inf (ρ) = F with |F | = k i� the followingonditions hold:
• for only �nitely many j we have |yj| > k (and hene |xj | ≤ |W | − k).
• for in�nitely many j we have |yj| = k (and hene |xj | = |W | − k) and F =

{w ∈W | w ours in yj}.The LAR treeLet G = (G, {⊑i}i∈N) where G = (W,E,w0) is the game arena. We assume that Wis well ordered and let LAR(G) = LAR(W ).107



De�nition 5.2.3 For an arena G = (W,E,w0) the (�nite) LAR tree TLAR(G) isde�ned as follows: TLAR(G) = (S,⇒, s0) where
• S = LAR(W ).
• s0 = x♯w0 where x denotes the sequene of elements of W \ {w0} aording tothe well ordering.
• ⇒ ⊆ S × S satis�es the ondition: for all x♯yw ∈ S, x♯yw⇒x′♯y′w′ i�� w′ ∈ wE.� x′♯y′w′ = next(x♯yw, w′)� onsider the unique path from the root to x′♯y′w, either there is no nodein this path with the same LAR or x′♯y′w is the �rst node to repeat in thepath.The tree TLAR(G) is well de�ned sine the funtion next is well de�ned. The fatthat TLAR(G) is �nite an be veri�ed by noting that along any sequene of elementsof LAR of length (|W |+1)!+1, at least one element is bound to repeat by pigeonholepriniple. Let frontier(TLAR(G)) denote the set of all leaf nodes of TLAR(G). Wede�ne a labelling funtion lab : frontier(TLAR(G)) → 2W as follows.For a node x′♯y′ ∈ frontier(TLAR(G)), let ̺ be the unique path from the root

x♯w0 to x′♯y′. Let ̺′ be the least su�x of ̺ suh that first(̺′) = last(̺′) = x′♯y′.Let lmax = max{|y| | x♯y ours in ̺′)} and let L̺ = {x♯y | |y| = lmax}. Observethat, by the property of the LAR onstrution y = y′ for all x♯y, x′♯y′ ∈ L̺. Let
Y = {y} suh that x♯y ∈ L̺ we set lab(x′♯y′) = Y .LAR tree as a �nite extensive form game: It is easy to see that TLAR(G)onstitutes a �nite extensive form game tree where for any i ∈ N the set of i nodesof the tree Si = {x♯yw ∈ S | w ∈ W i}. We use ν and η to denote the strategiesof players i and ı respetively in TLAR(G). For i ∈ N , let Ωi(TLAR(G)) denote theset of all strategies of player i in TLAR(G). Note that all strategies in Ωi(TLAR(G))are memoryless. We use ̺ to denote plays in TLAR(G). Given a pro�le of strategies
(ν, η) in TLAR(G) let ̺(ν,η) denote the unique resulting play.Every strategy ν ∈ Ωi(TLAR(G)) an be translated into a bounded memorystrategy µ ∈ Ωi(G). In other words, it an be represented as a deterministi ad-vie automaton Aµ = (Qµ, δµ, oµ, q0) with state spae Qµ the transition funtion
δµ : Qµ ×W → Qµ and the output funtion oµ : Qµ ×W → W .108



We de�ne the translation funtion f : Ωi(TLAR(G)) → Ωi(G) as follows.De�nition 5.2.4 For a strategy ν, f(ν) = µ where µ is the strategy represented bythe deterministi advie automaton Aµ = (Qµ, δµ, oµ, q0) with
• Qµ = LAR(G).
• δµ(x♯y, w) = next(x♯y, w).
• oµ(x♯y, w) = ν(x♯y).
• q0 = x♯w0.We say a strategy µ ∈ Ωi(G) is LAR implementable if µ an be representedby an advie automaton whose state spae is LAR(G) and whose transition fun-tion respets the next funtion. Let Ωi

LAR
(G) denote the set of all strategies in

Ωi(G) whih is LAR implementable. The translation funtion f is thus a map
f : Ωi(TLAR(G)) → Ωi

LAR
(G).We extend the translation funtions to strategy pro�les as follows: For a pair ofstrategies (µ, τ) let g(µ, τ) = (g(µ), g(τ)).The following lemmas show the relationship between the game arena and theLAR tree, it also makes lear our motivation in de�ning the LAR tree.Lemma 5.2.5 For any strategy pro�le (ν, η) in TLAR(G) if lab(last(̺(ν,η))) = F then

Inf (ρ(µ,τ)) = F where (µ, τ) = f(ν, η).Proof: Consider any pro�le of strategies (ν, η) in TLAR(G) and suppose we have
lab(last(̺(ν,η))) = F . Let ̺(ν,η) = x0♯w0, x1♯y1, . . . , xk♯yk. By onstrution of theLAR tree there exists j : 0 ≤ j < k suh that xj♯yj = xk♯yk = x♯y. Let (µ, τ) =

f(ν, η) and let ρ(µ,τ) be the resulting play in G. Let the LAR sequene of this playbe LAR(ρ(µ,τ)) = x0♯w0, x1♯y1, . . .. By onstrution of the strategies µ and τ we havefor all r : 0 ≤ r ≤ k, xr♯yr = xr♯yr. Thus, in partiular, we have xj♯yj = xj♯yj = x♯y.In other words, onsider the pre�x ρ1 = w0w1 . . . wj and ρ2 = w0w1 . . . wj . . . wk of
ρ(µ,τ), we have last(LAR(ρ1)) = last(LAR(ρ2)) = x♯y. For strategy µ, the memorystate at the end of the pre�x ρ1 is last(LAR(ρ1)) = x♯y. Suppose wj ∈ W i, i.e.
wj is a player i node. The hoie of µ on the sequene ρ1 is ditated by the out-put funtion oµ(last(LAR(ρ1)), wj) but sine last(LAR(ρ1)) = last(LAR(ρ2)) (henealso wj = wk) we have µ(ρ1) = µ(ρ2). Sine τ is also a bounded memory strategybased on the LAR set LAR(G), we have that the play ρ(µ,τ) settles down in the109



yle x♯y, xj+1♯yj+1, . . . , xk−1♯yk−1, x♯y. By de�nition of the labelling funtion lab,there exists p : j ≤ p ≤ k suh that {yp} = F . Therefore in LAR(ρ(µ,τ)) there existin�nitely many indies m suh that ym = |F | and {ym} = {ym} = F . From Lemma5.2.2 we get Inf (ρ(µ,τ)) = F . 2Bakward indution algorithmThe LAR tree TLAR(G) has its frontier nodes labelled with subsets of W . We usethe bakward indution algorithm to extend the labelling to interior nodes of thetree as well. The proedure is as follows:Proedure 1
• Initially, all interior nodes of TLAR(G) are unlabelled.
• Repeat the following steps till lab(x0♯w0) is de�ned, i.e. the labelling funtionis de�ned on the root node.� Choose any node x♯y suh that lab(x0♯w0) is not de�ned and all of whosesuessors are labelled.� if x♯y ∈ Si then let x1♯y1 be a suessor node suh that lab(x2♯y2) ⊑i

lab(x1♯y1) for all other suessor nodes x2♯y2 of x♯y. Let lab(x♯y) =

lab(x1♯y1) and ν(x♯y) = x1♯y1.� if x♯y ∈ Sı then we hoose a suessor x1♯y1 suh that lab(x2♯y2) ⊑ı

lab(x1♯y1) for all other suessor nodes x2♯y2 and set lab(x♯y) = lab(x1♯y1)and η(x♯y) = x1♯y1.Consider the pro�le of strategies (ν, η) generated by the above proedure. Fromproposition 2.1.6 it follows that (ν, η) onstitutes an equilibrium pro�le in TLAR(G).We show that f(ν, η) onstitutes an equilibrium pro�le in the arena G. Before pre-senting the proof, we �nd it instrutive to explain how the proedure works in thease of zero-sum games. In suh games, we have a set F whih spei�es the winningondition of player i and F = {F | F 6∈ F} spei�es the winning ondition for player
ı. The preferene ordering is de�ned in the obvious manner: for player i, all setsin F are equally preferred and sets in F is stritly more preferred than those in F .110



The preferene ordering for player ı is stritly omplementary. The following lemmashows that for a player i, as far as ensuring an outome F in the game arena G isonerned it su�es to analyse strategies generated from the LAR tree TLAR(G).Lemma 5.2.6 Given an arena G along with a Muller ondition F for player i ∈ N ,if there exists a strategy ν ∈ Ωi(TLAR(G)) suh that ν ensures F in TLAR(G) then
µ = f(ν) ensures F in G.Proof: Suppose not, suppose player i an ensure F in TLAR(G) by ν but annotensure F in G using the strategy µ = f(ν). Then there exists a play ρ in G onformingto µ suh that it settles down to a Muller set F ′ /∈ F . There are two ases to onsider.The �rst ase is when there exists w ∈ F ′ suh that w /∈ F for any F ∈ F .Let j be the �rst index suh that ρ(j) = w and ρ(j − 1) ∈ W ı. Let ̺ be the(�nite) path in TLAR(G) orresponding to ρ. The index j must be greater than |̺|;otherwise ρ ouldn't have been labelled F and hene µ ouldn't have ensured F . Let
x′♯y′ = LAR(ρj−1). By the onstrution of TLAR(G) there exists a node x′♯y′ ∈ ̺.But this means that player ı had the option of playing w at the node x′♯y′ and henethe root to be labelled with a set in F̄ . But this would ontradit the fat that νiensure F in TLAR(G).The other ase is when there exists F ∈ F suh that w ∈ F and w 6∈ F ′. Let ̺be the (�nite) path in TLAR(G) orresponding to ρ. Let l be the biggest index suhthat ρ(l) = w but l < |̺|. Suppose ρ(l− 1) ∈W i. Then for all indies l1, l2, . . . suhthat l < l1 < l2 < . . . and LAR(ρl1) = LAR(ρl2) = . . . = LAR(ρl−1), player i has toplay w as it is presribed by the strategy ν, and hene in turn by the orrespondingbounded memory strategy µ. But this ontradits the fat that the ρ settles downto F ′.Finally, suppose ρ(l − 1) ∈ W ı. Then player ı has the option of playing w at
ρ(l − 1) and at all indies l1, l2, . . . suh that l < l1 < l2 < . . . and LAR(ρl1) =

LAR(ρl2) = . . . = LAR(ρl−1). Hene ν ould not have ensured F in TLAR(G) as theleaf node of ̺ wouldn't have been labelled with a set in F and hene neither theroot. 2Lemma 5.2.7 Given an arena G along with a Muller ondition F for player i ∈ N ,if there exists a strategy µ ∈ Ωi(G) suh that µ ensures F in G then there existsstrategy ν ∈ Ωi(TLAR(G)) suh that ν ensures F in TLAR(G).111



Proof: Suppose player i does not have a strategy ν to ensure F in TLAR(G) then
TLAR(G) being a �nite tree (and hene a �nite extensive form game) it follows thatplayers ı has a strategy η to ensure F in TLAR(G), sine �nite games are determined.Then by Lemma 5.2.6, player ı has a bounded memory strategy τ = f(η) to ensure
F in G as well. But this ontradits the assumption that players i has a strategy toensure F in G. 2Theorem 5.2.8 then follows from Lemmas 5.2.6 and 5.2.7.Theorem 5.2.8 Given an arena G and along with Muller ondition F for player
i ∈ N there exists a strategy µ for player i to ensure F in G i� player i has a strategyin TLAR(G) to ensure F .Theorem 5.2.9 Every generalised Muller game has a Nash equilibrium.Proof: Let G = (G, {⊑i}i∈N) be a generalised Muller game. Consider the strat-egy pro�le (ν, µ) generated by the bakward indution proedure on the LAR tree
TLAR(G). We show that the strategy tuple (µ, τ) = f(ν, η) onstitutes an equilibriumpro�le in G. The proof is similar to that of Theorem 5.2.8: we show that for i ∈ N ,player i has an inentive to deviate from µ in G i� she has an inentive to deviatefrom µ in the LAR tree TLAR(G).Suppose player i deviates to strategy µ′. Let ρ be the run orresponding to
(µ′, τ) with Inf (ρ) = F ′ and X = {w ∈ F ′ | w 6∈ F}. Suppose X 6= ∅, let j be the�rst index suh that ρ(j) ∈ X and let LAR(ρ(j − 1)) = x′♯y′. By the onstrution,there exists a node x′♯y′ in the LAR tree. Sine player ı plays aording to theLAR strategy τ derived from the strategy η, it an be seen that the node x′♯y′ isreahable in the LAR tree by player i's deviation. But then we have that player ihas a option of playing w at x′♯y′ and sine the LAR is the same, she an hoose apath in TLAR(G) whih is labelled with F ′.Let Y = {w ∈ F | w 6∈ F ′}. If Y 6= ∅, then let j be the last index suh that
ρ(j) ∈ Y and let LAR(ρ(j)) = x′♯y′. As a result of the deviation, player i ensuresthat elements in Y are visited only �nitely many times. By onstrution we havethat x′♯y′ is present in the LAR tree. As earlier it an be seen that x′♯y′ is reahableby the deviation of player i. From ρ(j), player i ensures that elements of the set
X are never visited. But sine we have the same LAR and sine player ı uses theLAR strategy τ derived from η this means that from x′♯y′, player i an play in suha way that the resulting path is labelled with F ′.112



2Note that sine the translation funtion f is e�etive, we also get that the equi-librium pro�le for any generalised Muller game an be synthesized in �nite memorystrategies.Complexity: Let the number of verties in the arena G be m. The size of the LARmemory is O(m!). As there are O(mm!) paths in the LAR tree TLAR(G) and thebakward indution proedure runs in time linear in the size of the LAR tree, therunning time is O(mm!).5.3 Partial strategies and best response omputa-tionIn the previous setion we looked at equilibrium omputation in non-zero sum in�nitegames with respet to funtional strategies whih depit omplete plans. A naturalquestion would be to ask whether strategy spei�ations help in the analysis of suhgames. In order to analyse spei�ations in terms of solution onepts, we needto �rst de�ne on what basis spei�ations an be ompared with eah other. Inthe ase of omplete strategies, given a strategy τ of player ı, omparison betweentwo strategies µ and µ′ of player i was de�ned in terms of the unique outomewhih is ahieved. However, this de�nition is not suitable in the ase of strategyspei�ations sine we are dealing with a set of strategies. Thus in the ontext ofstrategy spei�ations basi notions like strategy omparison and best response needto be revisited.Given a game arena G = (G, E) and a strategy spei�ation π for player ı, wean have di�erent notions as to when a spei�ation for player i is �better� thananother.
• Better 1(σ, σ

′): For some F ∈ 2R, if (∃µ′ with µ′ |=i σ
′ suh that ∀τ with

τ |=ı π, ρτµ′ is winning with respet to E iF ) then (∃µ with µ |=i σ suh that ∀τwith τ |=ı π, ρτµ is winning with respet to E iF ).The prediate Better 1(σ, σ
′) says that, for some (binary) outome F , if thereis a strategy onforming to the spei�ation σ′ whih ensures winning E iF thenthere also exists a strategy onforming to σ whih ensures winning E iF as well.113



• Better 2(σ, σ
′): For some F ∈ 2R, if (for all strategies µ′ with µ′ |=i σ

′ and ∀τwith τ |=ı π, ρτµ′ is winning with respet to E iF ) then (∀µ with µ |=i σ and ∀τwith τ |=ı π, ρτµ is winning with respet to E iF ).This notion is best understood ontrapositively: for some (binary) outome
F , whenever there is a strategy onforming to σ whih is not winning for E iF ,there also exists a strategy onforming to σ′ whih is not winning for E iF . Thisan be thought of as a soundness ondition. A risk averse player might preferthis notion of omparison.The two above are just a few of the various possibilities for strategy omparison,whose atual hoie might depend on the kind of appliation in mind. Having hosenthe appropriate notion, we say that σ is the best response to π, if for all σ′, we have

σ is better (aording to that notion) than σ′. A strategy pair (σ, π) is said to bein equilibrium if σ is the best response to π and π is the best response to σ.To algorithmially ompare strategies, we �rst need to be able to deide thefollowing questions. Let σ and π be strategy spei�ations for player i and player ıand E iF a binary evaluation automaton for player i.
• Does player i have a strategy onforming to σ whih is winning for i with re-spet to E iF , against all strategies of player ı whih onforms to π (abbreviatedas ∃σ, ∀π : E iF )?
• Is it the ase that for all strategies of player i onforming to σ, as long asplayer ı is playing a strategy onforming to π, the result will be a valid playwhih is winning for i with respet to E iF (abbreviated as ∀σ, ∀π : E iF )?We all this the veri�ation question. The synthesis question is given π and E iF toonstrut a deterministi advie automaton A for player i suh that A, ∀π : E iFholds.One we an show that the veri�ation question is deidable and synthesis pos-sible, the game theoreti questions of interest inlude: For a game G = (G, E),
• Given strategy spei�ations σ and π, hek if σ is a best response to π.
• Given a strategy spei�ation pro�le 〈σ, π〉, hek if it is a Nash equilibrium.
• Given a strategy spei�ation π for ı, synthesize a deterministi advie au-tomaton A for player i suh that A is the best response to π.114



De�nition 5.3.1 Let G = (W,→, w0, λ) be an arena and Aσ = (Q, δ, o, I) be theadvie automaton orresponding to a strategy spei�ation σ of player i. The re-strition of G with respet to Aσ is the struture G |\ Aσ = (Wσ,→σ, w
σ
0 , λσ) where

• Wσ = W × 2Q is the set of game positions.
• (w,X)

a
→σ(w

′, Y ) i� Y = {q′ | ∃q ∈ X with q′ ∈ δ(q, w, a)}.
• wσ0 = (w0, Iσ).
• λσ(w,X) = λ(w).It is easy to see that the arena Aσ is deterministi and satis�es the property:(R1) for all (w,X) ∈ Wσ, for all a ∈ Σ suh that w a

→w′, there exists a unique Ysuh that (w,X)
a
→σ(w

′, Y ).Every strategy ν ∈ Ωi(G |\ Aσ) is also a strategy in Ωi(G) where the additionalmemory required is 2Q. Given a strategy ν = (Sν ,⇒ν , s
ν
0, λ̂ν) let st(ν) be thestrategy tree obtained by simply projeting out the 2Q omponent from the gamepositions of ν. Due to property (R1) this de�nes a valid strategy in Ωi(G). Lemma5.3.2 follows from the de�nition of the restrition operation.Lemma 5.3.2 For all ν ∈ Ωi(G |\ Aσ), st(ν) ∈ Lang(Aσ).Lemma 5.3.3 For all µ ∈ Ωi(G) suh that µ ∈ Lang(Aσ), there exists ν ∈ Ωi(G|\Aσ)suh that st(ν) = µ.Proof: Consider any µ ∈ Ωi(G) suh that µ ∈ Lang(Aσ). Let T = (Sµ,⇒µ, s

µ
0 , λ̂µ, l)be Q labelled tree aepted by Aσ. We de�ne the strategy ν = (Sν ,⇒ν , s

ν
0, λ̂ν) in-dutively. Let ν0 be the tree ontaining the single node (w0, I). The onstrutionmaintains the following invariant property:(Inv1) for all t ∈ ν, where t[1] = s and last(t) = (w,X), if l(s) = q then q ∈ X.Sine l(s0) ∈ I, for the tree ν0, property 1 is satis�ed. Assume indutively wehave onstruted the tree νk = (Sν ,⇒ν , s

ν
0, λ̂ν). Pik any node t ∈ Sν where t[1] = sand last(t) = (w,X). We have the following two ases:1. If λ̂ν(t) = i then let a = oσ(l(s), w). By de�nition, there exists a uniqueoutgoing edge in µ suh that s a

⇒s′, let w′ = last(s′). By property 1, we get
l(s) ∈ X. By onstrution of G |\ Aσ, there exists a unique node (w′, Y ) suh115



that (w,X)
a
→σ(w

′, Y ). Sine T is an aepting run, l(s′) ∈ δ(l(s), w, a) andby de�nition of G |\ Aσ we have l(s′) ∈ Y . Thus the invariant property an bemaintained by extending the tree with the node t′ = t · (w′, Y ).De�ne the tree νk+1 = (Sνk+1
,⇒νk+1

, s
νk+1

0 , λ̂νk+1
) where Sνk+1

= Sνk
∪ {t′} and

⇒νk+1
= ⇒νk

∪ {t
a
⇒t′}.2. If λ̂ν(t) = ı let {s1, . . . , sm} be the set of all nodes in µ suh that s aj

⇒sj for all
j : 1 ≤ j ≤ m. Let last(sj) = wj and qj = l(sj). By onstrution of G |\ Aσ,for all j we have (w,X)

a
→σ(wj, Yj) and qj ∈ Yj. Let tj = t · (wj, Yj).De�ne the tree νk+1 = (Sνk+1

,⇒νk+1
, s
νk+1

0 , λ̂νk+1
) where Sνk+1

= Sνk
∪{t1, . . . , tm}and ⇒νk+1

= ⇒νk
∪ {t

a1⇒t1, . . . , t
am⇒tm}.The strategy ν = (Sν ,⇒ν , s

ν
0, λ̂ν) de�ned by Sν =

⋃
k≥0 Sνk

and⇒ν =
⋃
k≥0 ⇒νk

.From the onstrution it follows that ν ∈ Ωi(G |\ Aσ) and it is also easy to see that
st(ν) = µ. 2Lemma 5.3.4 For every strategy µ ∈ Ωi(G), for all i ∈ N and for all σ ∈ Strat i(P i),there exists µ′ ∈ Ωi(G |\ Aσ) suh that st(µ′) = µ i� µ |=i σ.Proof: Follows from Lemmas 5.3.2, 5.3.3 and 3.1.7. 2In other words, Lemma 5.3.4 states that strategies of player i in the restritedarena G |\ Aσ are preisely those strategies of i in G whih onform to σ. Therestrition operation an be applied iteratively. For instane, given advie automata
Aσ and Aπ of players i and ı respetively, the struture (G |\ Aσ) |

\Aπ onsists of allpaths whih onform to the spei�ations σ and π. It is also easy to hek that theorder of restrition is irrelevant. That is (G |\ Aσ) |
\ Aπ = (G |\ Aπ) |

\ AσTheorem 5.3.5 Given a game G = (G, E) and a strategy spei�ation π for player
ı, 1. The veri�ation problem of heking whether for a player i a strategy spei�-ation σ and a binary evaluation automaton E iF , heking whether ∃σ, ∀π : E iFor ∀σ, ∀π : E iF holds in G is deidable.2. For a binary evaluation automaton E iF , it is possible to synthesize (when oneexists), a deterministi advie automaton Ai suh that Ai, ∀π : E iF holds.116



Proof: The assertion ∃σ, ∀π : E iF holds in the arena G i� there exists strategy µfor player i whih onforms to σ suh that for all strategies τ of player ı onformingto π, the resulting play ρ(µ,τ) is �winning� for player i with respet to the win-lossondition given by E iF . We make use of the restrition operation given in de�nition5.3.1 to deide the veri�ation question. Let the advie automata orrespondingto σ and π be Aσ and Aπ respetively. Consider the arena G |\ Aπ; by Lemma5.3.4 strategies of player ı in the restrited arena are preisely the strategies whihonform to π in G. Thus to hek if ∃σ, ∀π : E iF holds it su�es to hek if thereexists a strategy for player i onforming to σ in G |\ Aπ whih is winning for theobjetive given by E iF .We onstrut a nondeterministi tree automaton T whih heks this property.Intuitively, the automaton works as follows: it simulates both Aσ and E iF and runson T
G |\ Aπ

. Thus the states of the tree automaton are tuples of the form (q, r) andthe initial state is (q0, r0) where q0 ∈ I. At any position s of T
G |\ Aπ

where the stateof the automaton is (q, r), the automaton proeeds as follows:
• if s is a player i game position then let a be the ation ditated by the outputfuntion o of Aσ on state q and position s. The automaton guesses a new state
q′ ∈ δ(q, s, a) and proeeds down the a edge on the state q′. Formally, thismeans that on all outgoing edges of s labelled by b 6= a the automaton entersa default aept state and stays in this aept state.

• if s is a player ı game position then let {b1, . . . , bk} be the outgoing edges at
s. For eah ation bj player i guesses a state qj ∈ δ(q, s, a) and branhes onall the outgoing edges.In other words, the automaton T guesses a strategy µ of player i in G |\ Aπ whihonforms to σ. T aepts this strategy if all paths of µ are aepted by the Mullerautomaton E iF .Formally, the tree automaton is given by: T = (Q,R, I) where Q = (Qσ × R)and I = Iσ × r0. For T in a state q, reading node t, R(q, t) = 〈(q1, a1), . . . , (qm, am)〉means that the automaton will branh out: on the a1 suessor it goes into state

q1, a2 suessor it goes to state q2 and so on. The transition relation is de�ned asfollows: for a node t ∈ Sπ, let {a1, . . . , am} be the outgoing edges.
• If λ̂π(t) = i then R((q, r), t) = {〈(accept , a1), . . . , ((qj , rj), aj), . . . , (accept , am)〉 |

oσ(qj , t) = aj , qj ∈ δσ(q, t, aj) and rj = ∆(r, t, aj)}.117



• If λ̂π(t) = ı then R((q, r), t) = {〈((q1, r1), a1), . . . , ((qj , rj), aj), . . . , ((qm, rm), am)〉 |

qj ∈ δσ(q, t, aj) and rj = ∆(r, t, aj) for all j : 0 ≤ j ≤ m}.The tree automaton T aepts a tree i� for all paths either the Muller onditionspei�ed by the win-loss automaton E iF is satis�ed or the state accept ours in�nitelyoften.To hek if ∀σ, ∀π : E iF holds, it su�es to hek if all plays in (G |\ Aπ) |
\ Aσ arewinning for i with respet to E iF . This an be done easily.(2) We want to synthesize a bounded memory strategy µ for player i suh thatfor all strategies τ of player ı onforming to π, the resulting play ρ(µ,τ) is winningfor player i with respet to E iF . By the observation made in the previous part, weneed to synthesize a bounded memory winning strategy for player i (if it exists)in the restrited game G |\ Aπ. Consider the game (G |\ Aπ, E iF ), this onstitutes alassial win-loss Muller game where the arena is G |\ Aπ and the winning onditionof player i is given by E iF . We know that if player i has a winning strategy in thegame (G |\ Aπ, E

i
F ) then i has a bounded memory winning strategy µ whih an besynthesized e�etively. The advie automaton Ai is taken to be the automaton rep-resenting the bounded memory winning strategy µ. 2Theorem 5.3.6 Given a game G = (G, E) and a strategy spei�ation π for player ı,1. For a spei�ation σ for player i, heking if σ is the best response to π isdeidable.2. It is possible to synthesize a deterministi advie automaton Ai suh that Aiis the best response to π.Proof: (1): Given σ and π to hek if σ is the best response to π, we use thetree automaton onstrution in Theorem 5.3.5 with a slight modi�ation. We enu-merate the sets F ∈ F in suh a way that those higher in �

i appear earlier in theenumeration. For eah F , we onstrut a tree automaton as in Theorem 5.3.5, theonly di�erene being that the guesses made by T at player i game positions are notrestrited by σ. T runs E iF in parallel to hek if player i an ensure F for all hoiesof ı whih onform to π. Sine the evaluation automaton is �omplete�, the playeventually settles down in one of the sets F ′ ∈ F . Therefore, as we try elementsof F in order, the tree automaton sueeds for some E iF ′. This gives us the �best�outome whih player i an guarantee. We then use the veri�ation proedure givenin theorem 5.3.5 to hek if ∃σ, ∀π : E iF ′ holds in G.118



This also implies that given a strategy pro�le (presented as advie automata),we an verify whether the pro�le onstitutes a Nash equilibrium.For (2) we enumerate F and �nd the �best� outome F that an be ahieved.Using the synthesis proedure given in theorem 5.3.5, we then synthesize an advieautomaton for F . 2
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Chapter 6Games with imperfet informationSo far in this thesis we have looked at games of perfet information. Games whihapture more realisti situations of soial interation are ones where players do nothave omplete information on the past moves of other players. These are gamesof imperfet information. The typial way of modelling imperfet information ingames is in terms of information partitions for players. In this view, eah player
i is assoiated with an equivalene relation ∼i over the set of game positions. Fortwo game positions w and w′ if w ∼i w′ it means that player i annot distinguishwhether the urrent game position is w or w′. The equivalene relation is part of thegame de�nition and it is assumed to be presented along with the game struture.Now onsider the following n player game with players 0, . . . , n− 1. Eah playerhas a loal arena (graph). The global arena is onstruted by taking the produt ofthe loal arenas suh that it satis�es the ondition: player 0 has aess to the globalgame positions whereas players 1 to n an view only their loal graph strutures.For i ∈ {1, . . . , n}, the view of player i is the history of the play restrited to i'sloal game struture. Imperfet information arises from the fat that player i is notaware of the exat global state but only his loal omponent of the global state. Theinformation sets of player i onstitute the global game positions where his views arethe same. A loal strategy of player i ditates his hoie based on his view. Theobjetive an be taken to be a regular win-loss ondition. We an now ask thefollowing veri�ation question:

• does there exist a tuple of winning loal strategies for players {1, . . . , n} in G?It follows from the result by Peterson and Reif [PR79℄ that this question is unde-idable. Thus the veri�ation question is undeidable for the general lass of multi-player games with imperfet information. The global game arena has its struture120



derived from the loal game graph. However, there is no information passed betweenplayers about their loal game struture.A losely related question is the synthesis question whih asks whether it is possi-ble to synthesize loal winning strategies when they exist. This has been extensivelystudied in the ontrol theory literature where the synthesis of distributed ontrolan be modelled as a game where n players playing against a global environment.Pnueli and Rosner show that even for a two site distributed arhiteture wherethere is no possible ommuniation between the sites, the synthesis question is un-deidable [PR90℄. There has been various work in this ontext whih investigatesonditions required to attain deidability of synthesis (see [Mad01℄, [KV01℄ for anoverview). [MW03℄ proposes a model for distributed games in order to formalizeand solve distributed synthesis problems.In this hapter we propose a model for imperfet information games, where theinformation partitions are generated expliitly by players' behaviour. Communi-ation between players is part of the game model and thus imperfet informationdepends on the exat mehanism of ommuniation adopted by players. We showthat in the ase when players ommuniate by means of publi announements, theveri�ation question is indeed deidable. This also suggests that the real problemlies not in the fat that there is imperfet information but rather in the way it arises.If unertainty is introdued through some strutural means then it may be possibleto resolve it using ommuniation.6.1 The game modelSine we are looking at games of imperfet information, we deal with multiple playersexpliitly. Let N = {1, . . . , n} be the set of players. We want to make ommunia-tion between players expliit in the model. For this purpose we assoiate with eahplayer i ∈ N a �nite set Γi whih represents the set of symbols whih player i anemploy for ommuniation. Let Γ̃ = Γ1 × · · · × Γn.6.1.1 Game arenaLoal arena: For a player i ∈ N , the loal game arena for player i is given by
Gi = (W i,→i, w

i
0, χ

i) where
• W i is a �nite set of loal game positions.121



• wi0 is the initial game position.
• χi : W i → Γi assoiates with eah loal game position of player i an elementof Γi.
• →i : W i×Γ̃ → 2W

i is the move funtion whih satis�es the following ondition:for all wi, vi ∈ W i, if wi γ→iv
i then γ(i) = χi(wi).The loal game arena ditates the rules of the game for eah player i. For eahloal game position wi, the funtion χi spei�es what player i ommuniates withthe other players. The transition funtion takes into aount the urrent game posi-tion and the ommuniation reeived from other players to speify the set of possiblemoves enabled for player i. Note that ommuniation in this model is by means ofpubli announements sine for any state wi, the value of χi(wi) is ommuniated toall players. A game struture G is de�ned in terms of a set of loal game arenas foreah player, G = {Gi}i∈N .Global arena: Given a game struture G = {Gi}i∈N , the resulting global gamearena G = (W,→,w0) is onstruted as follows: the set of global game positionsW =

W 1×· · ·×W n and w0 = (w1
0, . . . , w

n
0 ). We de�ne the funtion χ : W → Γ̃ as χ(w) =

(χ1(w1), . . . , χn(wn)) whih assoiates with eah global state, the announements ofplayers. The move relation → ⊆W ×W satis�es the property: for all w,v ∈W wehave w→v i�
• ∀i ∈ enabled(w), wi γ→iv

i or wi = vi, where γ = χ(w).
• ∀i ∈ N \ enabled(w), vi = wi.where enabled(w) = {i ∈ N | ∃vi ∈W i with wi γ→iv

i where γ = χ(w)}.Note that aording to the global transition relation, for a player i at a globalstate w, even if a move of player i is enabled at w the player has the option ofremaining in the same state and hoosing not to move.Example 6.1.1 Let the players be N = {1, 2} and the ommuniation alphabets be
Γ1 = {γ1

0 , . . . , γ
1
5} and Γ2 = {γ2

0 , . . . , γ
2
6}. Consider the loal game arenas G1 of player

1 given in Figure 6.1(a). The nodes of the graph orresponds to the loal game posi-tions, the announements made by player 1 at eah loal state is marked along withthe loal states. For instane, χ1(w1
0) = γ1

0 , χ1(w1
1) = χ1(w1

2) = γ1
1 and so on. Theself loop on states without any announement annotation means that irrespetive of122
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3, w
2
3), (w

1
4, w

2
4), (w

1
5, w

2
5), (w

1
6, w

2
6)}.Player 2 annot distinguish between the global states (w1

1, w
2
0) and (w1

2, w
2
0) sine

view2((w1
0, w

2
0)(w

1
1, w

2
0)) = view2((w1

0, w
2
0)(w

1
2, w

2
0)).The model does allow players to resolve imperfet information as the play pro-gresses. For instane at the global state (w1

3, w
2
3) player 2 knows that the play passedthrough the position (w1

1, w
2
0) and not through (w1

2, w
2
0). 2Sine the global game arena is derived from the loal arenas it is possible thatthere exist global game positions where moves of none of the players are enabled. Inother words, these are game positions where no progress an be made any further.For onveniene, we think of suh terminal game positions as sink nodes with a selfloop. Thus a play in G is an in�nite path ρ = w0w1 . . . suh that for all j > 0, wehave wj−1→wj . We denote the set of all plays in G by Plays(G). We also use thenotation P(G) to denote the set of all �nite partial plays in G. For a partial play ̺,we let enabled(̺) = enabled(last(̺)).The (in�nite) extensive form game tree TG assoiated with G is obtained bythe tree unfolding of G. In the tree unfolding, in addition to keeping trak of thesequene of game positions, (aording to De�nition 2.3.2) we also keep trak of thesequene of announements made by players. Formally the tree unfolding is de�nedas follows: 123
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WWFigure 6.2: Global game arenaDe�nition 6.1.2 Let G = (W,→,w0) be a global game arena. The tree unfoldingof G is the struture TG = (S,⇒, s0) where S ⊆ (W × Γ̃)+ and ⇒ ⊆ S × S are theleast sets satisfying:
• (w0, χ(w0)) ∈ S.
• If s = (w0, γ0) . . . (wk, γk) ∈ S and wk→w

′ then s′ = (w0, γ0) . . . (wk, γk)(w
′, χ(w′)) ∈

S and s⇒s′.6.1.2 StrategiesViews of players: For i ∈ N and w ∈ W , player i's view of w is de�ned as
view i(w) = (wi, χ(w)). For a sequene ρ : w0w1 . . ., we de�ne player i's view of ρas view i(ρ) = view i(w0)view

i(w1) . . .. Let Plays i(G) = {view i(ρ) | ρ ∈ Plays(G)}.Note that a sequene in Plays i(G) need not neessarily be a path in Gi.Strategies of players: A strategy for player i, is a funtion µi : W ∗ → W i whihsatis�es the following onditions:(S1) µi(ǫ) = wi0.(S2) for all �nite partial plays ̺ ∈ P(G), if µi(̺) = wi then there exists v suh that
last(̺)→v and vi = wi. This says that the strategy must hoose only moveswhih are enabled. 124



(S3) For all ̺, ̺′ ∈ P(G), if view i(̺) = view i(̺′) then µi(̺) = µi(̺′). This says thatthe strategy needs to respet the information partition.We say that a play ρ : w0w1 . . . is onsistent with strategy µi if ∀j > 0, wij =

µi(view i(w0 . . .wj−1)).As we saw earlier (in Setion 2.1.2) with a strategy µi of player i, we an assoiatea strategy tree. Rather than viewing the strategy tree as a subtree of TG, in thishapter we represent it in terms of a labelling funtion on nodes of TG.De�nition 6.1.3 Given a game tree TG and a strategy µi of player i, the strategytree tµi = (TG, l) where l : S → W i is de�ned as l(s) = µi(s).It is easy to see that a strategy pro�le µ = (µ1, . . . , µn) generates a unique path in
G, we denote this by ρµ.Joint and distributed strategies: The de�nition of view an be extended to asubset of players in the natural manner. For C = {i1, . . . , ik} ⊆ N and a position
w ∈ W , we have viewC(w) = (wC, χ(w)) where wC = (wi1 , . . . , wik). For a play ρ :

w0w1 . . . we have viewC(ρ) = viewC(w0)view
C(w1) . . .. Let PlaysC(G) = {viewC(ρ) |

ρ ∈ Plays(G)}.For a subset of players C = {i1, . . . , ik} ⊆ N , a joint C-strategy is a funtion
τC : W ∗ →W C whih satis�es the following onditions:

• τC(ǫ) = (wi10 , . . . , w
ik
0 ).

• ∀̺ ∈ P(G) if τC(̺) = wC then there exists v suh that last(̺)→v and vC = wC.
• For all ̺, ̺′ ∈ P(G), if viewC(̺) = viewC(̺′) then τC(̺) = τC(̺′).A distributed C-strategy is a tuple of strategies µC = (µi1 , . . . , µik). A distributed

C-strategy µ de�nes a joint C-strategy as follows: for all partial plays ̺ ∈ P(G),
τC(̺) = (µi1(̺), . . . , µik(̺)).When C onsists of a single player i, a strategy µi for player i onstitutes a joint
C-strategy as well as a distributed C-strategy.6.1.3 Objetives of playersThe game arena de�nes the rules of the game, we �rst look at the situation wherewith eah player is assoiated a win-loss objetive. That is, the objetive of eah125



player is spei�ed in terms of a set Φi ⊆ Plays i(G). We say a play ρ ∈ Plays(G)is winning for player i if view i(ρ) ∈ Φi. We are interested in analyzing regularobjetives of players and therefore assume that Φi for eah player i an be presentedin terms of a deterministi Muller automaton Mi.For a subset of players C ⊆ N , a joint C-objetive ΦC ⊆ PlaysC(G). When C = N ,the set of all players, the objetive ΦC is simply a subset of Plays(G).Given a joint C-objetive for a subset of players C, we say that a joint C-strategy
τC ensures ΦC i� for all paths ρ onsistent with τC , we have viewC(ρ) ∈ ΦC. Adistributed C-strategy µC ensures ΦC if the joint C-strategy τC indued by µC ensures
ΦC . The ase when C onstitutes a single player i, this amounts to saying that forall paths ρ onsistent with µi, we have view i(ρ) ∈ Φi. Or in other words, µi is awinning strategy for objetive Φi.For two player games, we say the pair (Φ1,Φ2) de�nes a zero sum objetive if theset X = {ρ ∈ Plays(G) | view1(ρ) ∈ Φ1} and Y = {ρ ∈ Plays(G) | view2(ρ) ∈ Φ2}satis�es the ondition that Y = Plays(G) \ X. The lass of two player zero sumgames de�ned in terms of loal game arenas with publi announements need notbe determined as illustrated by the following example.Example 6.1.4 Consider the global game arena given in Figure 6.2. Let the ob-jetives of players be as follows:

• Φ1 is the set of all paths in Plays1(G) whih yles in the loal state w1
3 or w1

6of player 1.
• Φ2 is the set of all paths in Plays2(G) whih yles in the loal state w2

4 or w2
5of player 2.It an be easily seen that the pair (Φ1,Φ2) de�nes a zero sum objetive. Player1 does not have a winning strategy for Φ1. To see this, suppose player 1 hooses

w1
1 at the game position (w1

0, w
2
0) then there is a path where player 2 hooses w2

2whih does not satisfy Φ1. If player 1 hooses w1
2 at (w1

0, w
2
0) then the hoie w2

1of player 2 leads to a path whih does not satisfy Φ2. Similarly player 2 does nothave a strategy to ensure Φ2 either, sine she annot distinguish between the globalstates (w1
1, w

2
0) and (w1

2, w
2
0). In other words, the game is not determined.
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6.2 The veri�ation questionGiven a game struture G = {Gi}i∈N , a subset of players C ⊆ N and a regularwin-loss C-objetive ΦC , the veri�ation question asks:
• does there exists a distributed strategy µC suh that µC ensures ΦC?In this setion we show that the veri�ation question is deidable in the proposedgame model where players ommuniate by means of publi announements. When

C onsists of a single player i, the veri�ation question asks whether there existsa strategy for player i to ensure outome Φi. We �rst show that this question isdeidable.Tehniques adopted for omputing winning strategies in games of perfet in-formation annot be diretly applied in this ontext. To see why, onsider theveri�ation question for a single player i in the perfet information setting. Let Mibe the deterministi Muller automaton representing the regular objetive Φi. Tosolve the veri�ation question we onsider the tree unfolding TG of the global gamearena G. We an build a tree automaton whih at every node of player i guesses ahoie and branhes out on hoies of nodes not belonging to i. TG also runs Mi inparallel and veri�es that all runs onform to the spei�ation. An aepting run ofthis automaton would be the strategy for player i to ensure objetive Φi.In the ase of inomplete information note that the guesses made by the treeautomaton at various i nodes need to preserve the onsisteny requirement of thestrategy (S3). As noted by [KV99℄ this ondition is non-regular and thus annot bediretly maintained by an automaton. [KV99℄ suggests a tehnique to irumventthis problem in terms of a onstrution using alternating tree automata. Here weshow that the onstrution used in [KV99℄ an be appropriately modi�ed to solvethe veri�ation question.Alternating tree automata: For a �nite set Υ of diretions, a Υ-tree is a set
T ⊆ Υ∗ suh that the following ondition holds:

• if s · u ∈ T where s ∈ Υ∗ and u ∈ Υ then s ∈ T as wellGiven a set Σ, a Σ labelled Υ tree is a pair (T , l) where T is a Υ tree and l : T → Σ,i.e. eah node of T is labelled with an element in Σ.Alternating tree automata generalize nondeterministi tree automata and were�rst introdued in [MS87℄. While a nondeterministi automaton an guess a set of127



suessor states and send one opy of itself along the subtrees rooted at its hildren,an alternating automaton an propagate several opies to a single hild.For a set X let B+(X) denote the set of positive boolean formulas formed fromthe elements in X. That is, B+(X) := True | False | x ∈ X | α1 ∨ α2 | α1 ∧ α2. Fora formula α ∈ B+(X) and a subset Y ⊆ X, we say Y satis�es α i� assigning Trueto elements in Y and False to elements in X \ Y makes α true.An alternating tree automaton over Σ-labelled Υ tree is T = (Q, δ, q0, F ) where
Q is a �nite set of states, q0 is the initial state, F de�nes the aeptane ondition(a ondition that de�nes a subset of Qω). The transition relation δ is a map δ :

Q × Σ × 2Υ → B+(Q × Υ) whih satis�es the ondition: if q ∈ Q, a ∈ Σ, C ⊆ Υthen δ(q, a, C) is a boolean formula in B+(Q× C).Let (T , l) be a Σ-labelled tree, a run of the automaton T over (T , l) is a (T ×Q)labelled tree (Tr, r) in whih the root is labelled by q0 and a label of a node u in Trbeing (s, q) represents that the run at that node is reading the node s of the tree Tand is in state q. Formally, (Tr, r) satis�es the following onditions:
• for the root node y0, r(y0) = (ǫ, q0)

• Let y ∈ Tr and r(y) = (s, q). Let C be the suessor diretions of the node sand δ(q, l(x), C) = θ where θ is a formula in B+(Q × C). Let Y ⊆ Q × C bethe set of all (q′, c′) suh that there is a hild y′ of y with r(y′) = (q′, x · c′).Then we require that Y satis�es the formula θ.A path ρ of the run is said to be aepting if the sequene of Q-omponents ofthe labels of ρ satis�es the aeptane ondition. The run (Tr, r) is aepting if allpaths in it are aepting.Solving the veri�ation question: Given a game struture G = {Gi}i∈N , let
G = (W,→,w0) be the indued global arena. For a player i ∈ N , we use the notation
W−i to denote the set W 1 × . . .×W i−1 ×W i+1 × . . .×W n. For w ∈W , we use w

−ito denote the tuple w
−i = (w1, . . . , wi−1, wi+1, . . . , wn). For the global arena G, thetree unfolding TG (as given in De�nition 6.1.2) an be viewed as a W i ×W−i × Γ̃tree. A strategy tree tµi for player i is then a W i labelledW i×W−i× Γ̃ tree (TG, l).De�nition 6.2.1 For a global arena G = (W,→,w0) we de�ne Proj (G,W−i) =

(U,→P , u0) where U = W i×Γ̃ and u0 = view i(w0). The move relation →P ⊆ U×Uis de�ned as: 128



• u→Pu
′ i� there exists w,v ∈ W suh that view i(w) = u, view i(v) = u′ and

w→vIt an be easily veri�ed that for all paths ρ in G, view i(ρ) is a path in Proj (G,W−i).
Proj (G,W−i) is an arena obtained by projeting out from G the omponents whihgive rise to imperfet information for player i in G. A strategy πi of player i in
Proj (G,W−i) is therefore a funtion πi : (W i × Γ̃)∗ → W i suh that πi(ǫ) = wi0.A strategy πi in Proj (G,W−i) generates a strategy µi in G as follows: for all par-tial plays ̺ ∈ P(G), µi(̺) = πi(view(̺)). By de�nition, the generated strategy µisatis�es the ondition (S3).Let G′ = Proj (G,W−i). Given a W i labelled W i× Γ̃ strategy tree tπi = (TG′, l′),we de�ne wideG,W−i(tπi) as the W i labelled W i ×W−i × Γ̃ tree t = (TG, l) whihsatis�es the ondition:

• for every node s in TG we have l(s) = l′(view i(s)).Thus a strategy tree tπi in Proj (G,W−i) generates a strategy tree tµi in G by thetransformation tµi = wideG,W−i(tπi).
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Example 6.2.2 To illustrate the widening operator, onsider the game arena Ggiven in Figure 6.3(a). Let tπ1 be the struture shown in Figure 6.3(b) where
l′(w1

0, γ0) = w1
0, l′(w1

0, γ1) = w1
1. The struture wideG,W−i(tπi) is shown in Figure 6.4.Sine view1(w1

0, w
2
1, γ1) = view1(w1

0, w
2
2, γ1) we have l(w1

0, w
2
1, γ1) = l(w1

0, w
2
2, γ1) =

w1
1. 2De�nition 6.2.3 For a global arena G, a hoie funtion of player i, is a map

ci : W ∗ → W i whih satis�es the following onditions:
• ci(ǫ) = wi0.
• for all �nite partial plays ̺ ∈ P(G), if ci(̺) = wi then there exists v suh that

last(̺)→v and vi = wi.In other words, a hoie funtion for player i is similar to a strategy exept thatthe ondition (S3) need not hold. A hoie funtion whih is onsistent with theinformation partition for player i onstitutes a strategy for the player. A hoie treefor player i is de�ned in a manner similar to that of strategy tree, i.e. it is a W ilabelled W i ×W−i × Γ̃ tree.Lemma 6.2.4 Given a global game arena G, a player i ∈ N and objetive Φi, wean onstrut an alternating tree automaton TΦi aepting the set of all hoie treesfor player i in G whih ensure Φi.Proof: Let Mi denote the Muller automaton orresponding to Φi. The automaton
TΦi ensures that the struture t onstitutes the unfolding of the game arena G. Thelabelling funtion assoiated with t spei�es the hoie funtion of player i. The au-tomaton also runs Mi in parallel and ensures that all the paths whih is onsistentwith the labelling is aepted by Mi. 2Lemma 6.2.5 Given an alternating tree automaton T over W i labelledW i×W−i×

Γ trees, we an onstrut an alternating tree automaton T ′ over W i labelled W i×Γtrees suh that T ′ aepts a labelled tree t′ i� T aepts wide(G,W−i)(t
′).Proof: Let T = (Q, δ, q0, F ). We de�ne T ′ = (Q ×W−i, δ′, 〈q0, w
−i
0 〉, F ×W−i).The transition δ′(〈q, w−i〉, ui) is obtained from δ(q, ui) by replaing eah element

((ui, u−i, γ′), q′) by the element ((ui, γ′), 〈q′, u−i〉). We show that for all W i labelled
W i × Γ̃ trees t′ = (T ′

G, l
′) we have t′ ∈ Lang(T ′) i� wide(G,W−i)(t

′) ∈ Lang(T ).130



(⇐): Suppose wide(G,W−i)(t
′) ∈ Lang(T ), let (Tr, r) be an aepting run of T . Wehave r : Tr → ((W i×W−i× Γ̃)∗×Q). Consider the tree (Tr, r

′) where for all u ∈ Trwith r(u) = (s, q) and w = last(s) we have r′(u) = (view i(s), (q, w−i)). (Tr, r
′) isan aepting run of T ′ on t′.

(⇒): Suppose t′ ∈ Lang(T ′), let (Tr, r
′) be an aepting run of T ′. We have

r′ : Tr → (W i × Γ̃)∗ × (Q × W−i). Consider the tree (Tr, r) where r is a map
r : Tr → (W i ×W−i × Γ̃)∗ ×Q is de�ned as:

• r(ǫ) = r′(ǫ)

• For u · d ∈ Tr with r(u) = (s, q′) and r′(u · d) = (s′ · (wi, γ), 〈q, w−i〉), we have
r(u · d) = (s · 〈wi, w−i, γ〉, q).

(Tr, r) is an aepting run of T on wide(G,W−i)(t
′). 2Let the automaton onstruted in Lemma 6.2.5 be denoted as narrow (G,W−i)(T ).Lemma 6.2.6 Given a global arena G, a player i ∈ N and objetive Φi, there existsa strategy for player i to ensure Φi i� narrow (G,W−i)(TΦi) 6= ∅.Proof:

(⇒): Suppose there exists a strategy πi whih ensures Φi, from Lemma 6.2.4 we have
wide(G,W−i)(tπi) ∈ Lang(TΦi). From Lemma 6.2.5 we get tπi ∈ Lang(narrow (G,W−i)(TΦi)).
(⇐): Suppose Lang(narrow (G,W−i)(TΦi)) is not empty. Then there exists a tree tπi ∈

Lang(narrow (G,W−i)(TΦi)). By Lemma 6.2.5 we have wide(G,W−i)(tπi) ∈ Lang(TΦi).From Lemma 6.2.4 we get there exists a strategy for player i to ensure Φi. 2Proposition 6.2.7 then follows from Lemma 6.2.6.Proposition 6.2.7 Given a game struture G = {Gi}i∈N , a player i ∈ N and anobjetive Φi, it is deidable to hek if there exists a strategy µi for player i suh that
µi ensures Φi.In the above onstrution, the use of alternating tree automata is mainly foronveniene. One ould presumably work with nondeterministi automata as well.However, suh a onstrution would typially involve the size of the resulting au-tomaton to be exponential. In ontrast, alternation provides a helpful mehanismwhereby the desription of the automaton itself is very simple and all the ombina-torial di�ulty is shifted to the non-emptiness test.131



Theorem 6.2.8 Given a game struture G = {Gi}i∈N , a subset of players C andan objetive ΦC, it is deidable to hek whether there exists a distributed strategy µCsuh that µC ensures ΦC.Proof: From Proposition 6.2.7 it follows that it is deidable to hek whether C hasa joint strategy τC whih ensures ΦC . We show that the existene of a joint strategyimplies the existene of a distributed strategy. Sine existene of a distributedstrategy trivially implies the existene of a joint strategy, the theorem then follows.Claim : For all joint C strategies τC , for all ̺, ̺′ ∈ P(G) onsistent with τC where
C ∩ enabled(̺) 6= ∅, viewC(̺) 6= viewC(̺′) implies ∀i ∈ C suh that i ∈ enabled(̺) wehave view i(̺) 6= view i(̺′).The laim an be veri�ed as follows. Suppose it is not true, then there exists aplayer i ∈ C and sequenes ̺ and ̺′ suh that view i(̺) = view i(̺′). If ̺ = ̺′ then thelaim follows easily. It annot be the ase that ̺ is a strit pre�x of ̺′ or vie-versa.Let ̺1 be the maximum ommon pre�x of ̺ and ̺′. Let ̺ = ̺1 ·w2 ·w3 · · ·wm and
̺′ = ̺1 · v2 · v3 · · ·vm. Sine view i(̺) = view i(̺′), it follows that view i(̺1 · w2) =

view i(̺1 · v2). Sine announements are publi, χ(w2) = χ(v2) = γ. Sine ̺ and ̺′are onsistent with τC, we have wC
2 = vC2 . Sine announements are publi we have

viewC(̺1 · w2) = viewC(̺1) · (w
C
2 , γ) = viewC(̺1) · (v

C
1 , γ) = viewC(̺1 · v2). We havethe following two ases.

• C ∩ enabled(̺1 · w2) = ∅: Sine announements are publi, we get viewC(̺1 ·

w2 ·w3) = viewC(̺1 · v2 · v3).
• C ∩ enabled(̺1 · w2) 6= ∅: This also implies that C ∩ enabled(̺1 · v2) 6= ∅ and
τC(̺1 · w2) = τC(̺1 · v2). Again sine announements are publi we get that
viewC(̺1 · w2 · w3) = viewC(̺1 · v2 · v3).Proeeding in this manner we get viewC(̺) = viewC(̺′) whih is a ontradition.End of laimFrom the above laim it follows that for any partial play ̺ ∈ P(G), for anyplayer i whose move is enabled at ̺, given view i(̺), player i an make exatly thesame move that is ditated by the joint strategy. In this way we de�ne all the loalstrategies. 2
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6.3 Games with private ommuniationIn the game model introdued above all ommuniation between players are due topubli announements. Communiation through private hannels between playersan be aptured by modifying the struture of the announement alphabet.For eah player i we have a set of ommuniation alphabets {Γij}j∈N with theinterpretation that Γij is the set of symbols whih player i an announe to player j.Let Γ =
⋃
i,j∈N Γij. Let Θi

put = {νi : N → Γ | ∀j ∈ N, νi(j) ∈ Γij} and Θi
get = {ηi :

N → Γ | ∀j ∈ N, ηi(j) ∈ Γji}. The funtion νi spei�es the announements madeby player i and ηi spei�es the announements reeived by player i.The loal game arena for player i is then given by Gi = (W i,→i, w
i
0) where W i isthe set of loal game positions, wi0 is the initial game position and χi : W i → Θi

put .The move relation →i : W i × Θi
get → 2W

i satis�es the following ondition: for all
wi, vi ∈W i

• wi
ηi

→vi implies ηi(i) = χ(wi)(i).The global game arena G = (W,→,w0) is derived from the loal arenas asin the earlier ase. The global game positions are W = W 1 × · · · ×W n and w0 =

(w1
0, . . . , w

n
0 ). The move relation→ ⊆ W ×W whih satis�es the following property:

w→v i� for all i, j ∈ N

• for all i ∈ enabled(w), wi ηi

→iv
i where ηi(j) = χj(wj)(i) or wi = vi.

• for all i 6∈ enabled(w), wi = vi.6.3.1 Undeidability of the veri�ation questionIn this setion we show that if we look at the lass of imperfet information gameswhere private ommuniation between players are allowed then the veri�ation ques-tion beomes undeidable. The interesting fat is that even for simple reahabilityobjetives, the problem remains undeidable. We prove undeidability by giving aredution to the Post's orrespondene problem. The proof proeeds along the linesof the one presented in [Ber06℄ whih shows that distributed strategy synthesis isundeidable for the distributed games model introdued in [MW03℄ with reahabil-ity objetives.
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Post's orrespondene problem: An instane of Post's orrespondene problem(PCP) onsists of two lists, A = x1, . . . , xk and B = y1, . . . , yk of strings over some�nite alphabet set Z. This instane of PCP has a solution if there is any sequene ofintegers j1, j2, . . . , jm with m ≥ 1 suh that xj1 , xj2, . . . , xjm = yj1, yj2, . . . , yjm. Thesequene j1, j2, . . . , jm is said to be a solution to this instane of PCP.List A List B
j xj yj1 1 1112 10111 103 10 0Figure 6.5: A PCP instaneExample 6.3.1 Let Z = {0, 1}, let A and B be the list of strings as given in Fig-ure 6.5. Consider the indies j1 = 2, j2 = 1, j3 = 1 and j4 = 3. Then we have

x2x1x1x3 = y2y1y1y3 = 101111110. Thus the sequene of indies mentioned above isa solution. 2Theorem 6.3.2 ([HU79℄) PCP is undeidable.Reahability objetive: Given a game G = {Gi}i∈N , to model reahability ob-jetives, we assume that for eah player i ∈ N , there is a state reachi suh thatfor all j ∈ N , χi(reachi)(j) = reachi. That is, one a player enters reachi then sheannounes this fat to all the other players. The reah state is also a sink statefor players and one entered, the player remains in this state. The reahability ob-jetive Φi of player i an then be given as Φi = {(wi0, γ0)(w
i
1, γ1) . . . ∈ Plays i(G) |

∃j with wij = reachi}.Theorem 6.3.3 The veri�ation question is undeidable for reahability games withprivate ommuniation.Proof: Given an instane of PCP, we onstrut a game suh that this instaneof PCP has a solution i� the veri�ation question is deidable for the onstrutedgame. Let the instane of the PCP be given by the list of strings A = x1, . . . , xkand B = y1, . . . , yk over the set of alphabets Z. We assume that the state spaeof the players is rih enough to ode up the PCP instane. That is, for eah index134



j ∈ {1, . . . , k} there is a state whih represents the index, for eah alphabet in Z,there is a state whih identi�es the alphabet and the lists A and B are also odedinto the state spae. We onstrut a game onsisting of four players where eah ofthe players' funtions are as follows:
• Player 0 has perfet information about the game. That is, Players 1, 2 and 3onvey their exat loal states to Player 0 through the private ommuniationhannel. Player 0 makes the hoie of the list (either A or B) and also shedulesthe moves of other players.
• Player 1, whenever her move is enabled, hooses indies j ∈ {1, . . . , k}. Atany point she an also hoose to enter the quit1 state indiating the end of thehoie of indies.
• Player 2 hooses letters from the alphabet Z. At any point Player 2 an alsohoose to enter the quit2 state indiating the end of hoie of strings generated.
• Player 3 is a deterministi program whose funtion is to math the index jhosen by Player 1 with the letters generated by Player 2 and make sure thatit is in fat the jth string in the list hosen by Player 0.The game proeeds as follows: initially Player 0 moves, hooses one of the list(either A or B) and ommuniates the hoie to Player 3 through the private om-muniation hannel. The hoie of list is not revealed to Players 1 and 2. NextPlayer 1 is sheduled to move, she hooses an index j ∈ {1, . . . , k} and ommuni-ates the hoie to both Player 0 and 3. Player 2 is unaware of the hoie madeby Player 1. Player 2 now hooses letters from Z and ommuniates the hoie toPlayers 0 and 3. Player 1 is unaware of the hoie of Player 2. Player 3 mathes thestring generated by Player 2 and ensures that it mathes the jth string in the listhosen by Player 0. If it does not math then Player 3 enters a rejet state. Notethat Player 3 need not keep trak of the entire string in order to do this. The lists

A and B are enoded in the state spae of Player 3 and she just needs to maththe sequene of alphabets hosen by Player 2 with the jth string in the appropriatelist. This an be ahieved with �nite memory. One Player 3 enters the rejet statethen the game stays in a sink state and does not proeed any further. If the stringmathes then Player 1 hooses another index and the game goes on as desribedabove. 135



Players 1 and 2 an hoose to enter their quit states at any time when theyare sheduled. Sine quit states are intended to apture the end of the sequeneof indies or strings, Players 1 and 2 are required to enter their quit states in theirsuessive moves. If at any round Player 1 enters its quit state and Player 2 ontinuesto hoose letters from Z then Player 3 enters its rejet state. Similarly if Player 2enters its quit state while Player 1 has not yet hosen to quit then Player 3 entersits rejet state. Player 3 also ensures that Players 1 and 2 do not hoose quit statesin their initial moves. If both Player 1 and Player 2 enter their respetive quit statesin suession, then Player 3 enters an aept state whih is then ommuniated toall the players. If Player 3 ever enters its aept state then both Players 1 and 2move to states reach1 and reach2 respetively.Now onsider the subset of players C = {1, 2} and the joint C objetive ΦC bethe reahability objetive where both players enter the states reach1 and reach2respetively. We laim that for a distributed strategy (µ1, µ2) to exist whih ensures
ΦC , the PCP instane needs to have a solution. To see this, suppose the PCP instanedoes not have a solution, then Player 0 an appropriately hoose the lists A or B sothat the resulting run does not ensure objetive ΦC. For instane, suppose Player1 generates the sequene of indies j1, . . . , jm and then enters the state quit1 andPlayer 2 generates the string xj1xj2 . . . xjm and enters the state quit2. Now onsiderthe run where Player 0 hooses the list B. Sine the PCP instane does not havea solution, xj1xj2 . . . xjm 6= yj1yj2 . . . yjm. Let p be the �rst index where the stringsdi�er and let p our in the substring yil. Now onsider what happens in round
il: Player 1 hooses the index il, however, sine xp 6= yp, the string of alphabetsgenerated by Player 2 in round il does not math with yil. Player 3 therefore entersthe rejet state and thus the objetive ΦC is not satis�ed.If the instane of PCP has a solution, then let the indies j1, j2, . . . , jm be thesolution. Consider the strategies where Player 1 hooses indies j1, j2, . . . , jm andenters quit1, Player 2 generates the string xj1xj2 . . . xjm and enters quit2. Sine
xj1xj2 . . . xjm = yj1yj2 . . . yjm, irrespetive of whether Player 0 hooses the list A or
B, Player 3 eventually enters the aept state. It then follows that the subset ofplayers C = {1, 2} has a distributed strategy to ensure objetive ΦC for the abovementioned games i� the instane of PCP has a solution. 2
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6.4 Games with overlapping objetivesIn the previous setions we looked at games where players have win-loss objetives.In general, players' objetives are spei�ed in terms of a preferene ordering �i⊆

Plays i(G)×Plays i(G). One the preferene orderings of players are de�ned, we anlook at notions like best response and equilibrium as de�ned in Setion 2.1.3. Forthe purpose of algorithmi analysis, the preferene ordering of eah player i an bepresented in a �nite fashion in terms of an evaluation automaton E i = (Mi,�i)where Mi = (Ri,∆i, ri0,F
i) is the underlying Muller automaton (see De�nition5.1.2). Sine we want the evaluation automaton to indue a preferene orderingover paths in Plays i(G) we take the transition funtion ∆i : Ri ×W i × Γ̃ → Ri.Bounded memory strategies of players an also be presented in terms of determin-isti advie automata (De�nition 2.3.3) by appropriately modifying the transitionfuntion to take into aount the views of players.In the ontext of non-zero sum games, we show that the best response ompu-tation an be e�etively performed.Theorem 6.4.1 Given a game struture G = {Gi}i∈N , preferene orderings {�i}i∈Nof players and a strategy pro�le µ−i in terms of advie automata, the best responsefor player i an be e�etively omputed.Proof: Let the strategy pro�le µ−i be presented as advie automata A−i =

(A1, . . . ,Ai−1,Ai+1, . . . ,An). Let the evaluation automaton for player i be E i =

(Mi,�i) where Mi = (Ri,∆i, ri0,F
i). For eah F ∈ F i, we an onstrut a nonde-terministi automaton AF whih explores paths of G as follows. It onsults A−i topik moves of players j ∈ N \ {i} and simply guesses i's moves. Sine strategies ofother players are deterministi and the initial game position is unique, this de�nesa unique path in the arena. Automaton AF runs the win-loss evaluation automaton

E iF for player i in parallel and heks if the run is winning for player i. Now, we anenumerate the F ∈ F in suh a way that those higher in �
i appear earlier in theenumeration. We try automata AF in this order. 2We then have the following orollary.Corollary 6.4.2 Given a game struture G = {Gi}i∈N , preferene orderings {�i}i∈Nof players and a strategy pro�le µ in terms of advie automata it is possible to hekwhether the strategy pro�le onstitutes a Nash equilibrium.137



6.5 DisussionIn the ontext of non-zero sum games of imperfet information, we showed that thebest response omputation an be done and it is possible to verify whether a givenstrategy pro�le onstitutes a Nash equilibrium. It turns out that Nash equilibriumneed not always exist in suh games. In fat, a game similar to the one given inExample 6.1.4 an be used to show this fat. A natural question therefore wouldbe to ask: given a game struture G = {Gi}i∈N along with preferene orderings
{�i}i∈N of players,

• is it deidable to hek if Nash equilibrium exists in G?An obvious approah would be to try using tehniques similar to the LAR treeonstrution developed in Chapter 5 to takle this question. Unfortunately the �nitetree unfolding onstrution does not solve the problem, sine in general, the strate-gies onstruted need not respet the information partition of players. However, theore idea of the LAR onstrution is to transform the game struture G into a biggerstruture G′ whih satis�es the property:
• there exists an equilibrium pro�le in G i� there exists an equilibrium pro�le inmemoryless strategies in G′.We believe that using this approah one an show that the above mentionedquestion is deidable for imperfet information games where players ommuniatethrough publi announements. However, we do not have a proof of this fat yet.
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Chapter 7ConlusionIn onlusion, the main topi of this thesis has been the analysis of strategies ingames. We have foussed our attention on two main aspets: the algorithmi analy-sis and the logial analysis of strategies. Algorithmi analysis of strategies inludedissues like,
• synthesis of winning strategies for two player zero sum games, and
• best response omputation and synthesis of equilibrium pro�les for non-zerosum games.For �nite extensive form games, our main tool for algorithmi analysis was thebakward indution algorithm. For in�nite duration games, on the other hand, evenpresenting the strategies and objetives of players in a �nite fashion is a non-trivialissue. We proposed evaluation automata as a onvenient �nite state model to presentthe preferene orderings of players in an in�nite duration game. We showed that inthe ase when preferene orderings of players are presented in terms of evaluationautomata, the bakward indution proedure an be e�etively adapted to synthesizean equilibrium strategy pro�le.Algorithmi analysis as mentioned above, analyses funtional strategies of play-ers. However, funtional strategy synthesis even though theoretially possible, maynot neessarily be a pratial tool in terms of a presriptive theory for players. Inthis ontext, we suggested that it makes sense to look at strategies as partially de-�ned objets and proposed a logial syntax to represent strategies in terms of theirobservable properties. Thus strategy spei�ations formed our basis of logial anal-ysis of strategies. We showed how strategy spei�ations an be embedded into asimple modal logi to reason about games. On the tehnial front, we showed that139



the logi admits a omplete axiomatization and that the model heking problem forthe logi is deidable. We also onsidered how the logial analysis an be adaptedin the situation where the game itself has ompositional struture. We proposed alogi whih expliitly takes into aount the ompositional struture of games forstrategi reasoning. We showed that the logi admits a omplete axiomatizationand that its satis�ability problem is deidable.As mentioned in the introdution, we do not onsider the very important oneptof mixed strategies in the logial analysis. Thus one of the natural extensions tostrategy spei�ations is to inorporate the notion of expetations of players. Toome up with presriptive mehanisms whih provide advie to players on how toplay, it is essential to be able to represent a player's expetations about the be-haviour of the opponent. The expetations need not neessarily be represented ina probabilisti manner and ould also be based on abstrat notions like �likelihood�[HR87℄. Introduing expetations of players is partiularly interesting in the frame-work of unbounded game omposition as it allows players to learn from the pastinformation, revise their expetations and aordingly make use of it to generatesophistiated plans. Enrihing the framework to be able to represent expetationsof players is thus a hallenging exerise. A related work in this ontext is that of[AB95℄ whih looks at the epistemi onditions of players in terms of equilibriumnotions.All the above omments were regarding games of perfet information. For gamesof imperfet information, algorithmi as well as logial analysis remains in its earlystages of development and most of the work whih exists in the literature providenegative results. In the ontext of algorithmi analysis, even in �nite extensiveform games, the tehniques developed for perfet information do not easily extendto games of imperfet information. For instane, our ore tehnique of bakwardindution ruially relies on the fat that players have perfet information in makingassumptions on how a rational opponent would play. For �nite extensive formgames, however, sine the set of deterministi strategies of players is �nite, oneould enumerate all the strategies and deide on the existene of winning strategiesas well as synthesis of equilibrium pro�les.The situation is less lear in the ase of imperfet information games sine ingeneral stable strategy pro�les in these games require memory; providing bounds onmemory is a hallenging task. In the ase of two player zero sum games, it is possibleto transform a game of imperfet information into a game of perfet information via140



the subset onstrution suh that the existene of winning strategies for at least oneplayer is preserved. This onstrution was originally suggested by Reif in [Rei84℄.Thus heking for existene of winning strategies in suh games is deidable. Formulti-player non-zero sum games, in general, even the question of heking whetheran equilibrium pro�le exists turns out to be undeidable. A proof of this runs alongthe lines of the undeidability proof presented in Setion 6.3.As far as the logial analysis is onerned, for �nite extensive form games, themodal and dynami logi framework an be extended to reason about games withimperfet information. [Ben01℄ looks at reasoning about suh games with respet toan epistemi modal language.For unbounded duration games, there are hardly any deidable logis to reasonabout games with imperfet information. The ability of ATL to reason about gameswith imperfet information has been studied in the literature. The results are mostlynegative; in [AHK02℄, the authors show that the ATL model heking problem formultiple players with imperfet information is undeidable. [Sh04℄ and [JvdH04℄look at extensions of ATL whih ombine inomplete information and imperfetreall. [ÅW09℄ proposes an extension of ATL where bounded memory and boundedreall are expliitly taken into aount in the logial language.The notion of partial strategies makes sense in the ontext of a presriptivetheory for imperfet information games as well. Strategy spei�ations as introduedin Chapter 3 an be utilised to speify partial strategies in imperfet informationgames. As noted in [Ben07℄, imperfet information games enompass two intuitivelydi�erent senses of unertainty.
• �Future unertainty�: the unertainty of players whih arises from their lakof knowledge of what other players are going to do in the future.
• �Observation unertainty�: the unertainty arising due to players not beingable to observe events in the past.Strategy spei�ations already inorporate the notion of future unertainty ofplayers. However, oming up with an appropriate logial language whih embedsthese spei�ations and an e�etively reason about games with imperfet infor-mation is a hallenging task. For it to be realisti, suh a language also needs toinorporate epistemi attitudes and beliefs of players [HFMV95℄.
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