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Abstract

The main theme of this thesis is reasoning about strategies in games in a logi-
cal framework. Logical analyses of games typically consider players’ strategies as
atomic objects and the reasoning is about existence of strategies, rather than about
strategies themselves. This works well with the underlying assumption that players
are rational and possess unbounded computational ability. However, in many prac-
tical situations players have limited computational resources. Thus a prescriptive
theory which provides advice to players needs to view strategies as relations con-
straining players’ moves rather than view them as complete functions. The central
idea is to formulate the notion of composite strategies which are constructed in a
structural manner and to show how explicit reasoning of strategies can be achieved.

The first part of the thesis looks at a logical analysis of strategies. We start this
study by defining the notion of structurally specified strategies in the framework
of unbounded duration games on graphs. This enables us to reason about how a
player’s strategy may depend on assumptions about the opponent’s strategy. Such
specifications give rise to partially specified bounded memory strategies. We consider
a simple modal logic to reason about such structured strategies. We present a
complete axiomatization of this logic and show that the truth checking problem of
the logic is decidable.

We then look at how structurally specified strategies can be adapted to the case
where the game itself has compositional structure. In this setting we suggest that
rather than performing strategic reasoning on the composite game, one needs to
compose game-strategy pairs. The advantage of imposing structure not merely on
games or on strategies but on game-strategy pairs, is that we can speak of a com-
posite game ¢ followed by ¢’ whereby if the opponent played a strategy 7 in g, the
player responds with o in ¢’ to ensure a certain outcome. In the presence of itera-
tion, a player has significant ability to strategize by taking into account the explicit
structure of games. We consider a propositional dynamic logic whose programs are
regular expressions over such game-strategy pairs and present a complete axiom-
atization of the logic. We also show that the satisfiability problem of the logic is
decidable.

In the second part of the thesis, we look at an algorithmic analysis of games.
We propose evaluation automata as a convenient finite state model to present the
preference orderings of players in infinite games. We look at the classical solution

concept of Nash equilibrium in terms of functional strategies and show that an



equilibrium profile always exists in infinite duration games on (finite) arenas where
the preference orderings of players are specified in terms of evaluation automata.
We also show that the best response verification question is decidable with respect
to strategy specifications and that synthesizing a best response strategy is possible.

All the analysis mentioned above is carried out for games of perfect information.
We finally investigate multi-player games of imperfect information. It follows from
the result of Peterson and Reif (1979) that in general the verification question which
asks whether a subset of players have a distributed winning strategy is undecidable in
these games. The crucial element which yields undecidability is the fact that players
are not allowed to communicate with each other. We propose a framework to model
games of imperfect information where communication is explicitly represented. Here
a player’s information partition is generated in a structural manner rather than being
presented as part of the game formalism. We show that for the subclass of games
where communication is restricted to public announcements the verification question
is decidable. We also look at the non-zero sum version where players have preference
orderings over outcomes. In this setting we show that best response computation
can be performed and that one can verify whether a strategy profile constitutes an

equilibrium can be carried out.
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Chapter 1
Introduction

The central innovation introduced by game theory is its strategic dimension. A
player’s environment is not neutral, and she expects that other players will try to
outguess her plans. Reasoning about such expectations and strategizing one’s own
response accordingly constitutes the main logical challenge of game theory. Games
are defined by sets of rules that specify what moves are available to each player,
and according to her own preferences over the possible outcomes, every player plans
her strategy. If the game is rich enough, the player has access to a wide range of
strategies, and the choice of what strategy to employ in a game situation depends
not only on the player’s understanding of how the game can proceed from then on,
but also based on his expectation of what strategies other players are following.

While this observation holds true for much of game playing, game theory largely
consists of reasoning about games rather than reasoning in games. It is assumed that
the entire structure of the game is laid out in front of us, and we reason from above,
predicting how rational players would play, and such predictions are summarised into
assertions on existence of equilibria. In an ideal world where players have unbounded
computational abilities and where rationality is common knowledge, such predictions
would be realistic. Players could strategize based on all possible behaviours of
others and if optimal strategies exist then they will always be able to deduce these
strategies. However, in reality, players are bounded memory agents having limited
computational abilities. Much of the theory analysing solution concepts in games
assumes that players are rational, have unbounded computational resources and
talks only about the existence of stable strategy profiles.

These comments hold true even for finite duration games with perfect informa-

tion. The classic example of such a game is the game of chess. Using the backward



induction algorithm, Zermelo |Zer13] argued that chess is determined, i.e. either there
exists a pure strategy for one of the two players (white or black) guaranteeing that
she will always win or each one of the two players has a strategy guaranteeing at
least a draw. However, neither do we know which of the three alternatives is the
correct one, nor a winning strategy if it exists. For games like Hex, it is known that
the first player can force a win [Gal79| but nonetheless a winning strategy is not
known. Theoretically a finite game like chess or hex is not very interesting since
the winner can be determined in time linear in the size of the game tree using the
backward induction procedure.

As is apparent, existence results are of not much help in advising players on how
to play. The situation gets worse in the case of games with overlapping objectives
where solution concepts in general look for equilibrium strategy profiles where none
of the players gain by unilaterally deviating. In general, such games can have mul-
tiple equilibrium profiles and it is not clear which equilibrium the players would try
to attain. An equilibrium selection theory was proposed by Harsanyi and Selten
in [HS87] to deal with such situations. The theory models the uncertainty of each
player in terms of a belief hierarchy which specifies a player’s beliefs about what
others play, about what they believe she and others play and so on, ad infinitum.
The theory thus makes use of unbounded iteration of beliefs and it is hardly clear
whether this matches in any way the reasoning done by players when they actually
play a game.

And yet, as Aumann and Dreze [ADO5| point out, game theory started by try-
ing to develop a prescriptive theory for rational agents. The seminal work of von
Neumann and Morgenstern envisaged game theory as constituting advice for players
in game situations, so that strategies may be synthesized accordingly. While this
was summarily achieved for two person zero sum games, advice functions for multi-
player games with overlapping objectives have been hard to come by. [AD05] argue
that such a prescriptive game theory must account for the beliefs and expectations
each player has about strategies followed by other players. The interactive element
is crucial and a rational player should then play so as to maximize his utility, given
how he thinks the others will play.

We suggest that any prescriptive theory which takes into account the limited
computational abilities of players needs to consider strategies as partial plans rather
than complete ones. Or in other words, strategies need to be considered as rela-

tions constraining players’ moves, rather than functions prescribing them uniquely.



Thus rather than viewing them as atomic objects, strategies need to be viewed as
structured objects built in some compositional fashion. This calls for a syntactic
grammar for composition of partial strategies and it also suggests that logical lan-
guages designed to reason about composition of programs could provide valuable

insight in developing a similar framework for strategies.

Logical analysis of games and strategies

Various logical formalisms have been used to reason about games and strategies,

and they can broadly be classified into three branches.

Modal and dynamic logic: In the case of finite extensive form games, action
indexed modal logics are well suited for logical analysis. Utilities can be coded
up in terms of special propositions and the preference ordering is then induced by
the implication available in the logic. Game trees themselves are taken as models
of the logic. Adopting this approach, a characteristic formula for the backward
induction procedure is exhibited in [Bon01|. In [Ben01, Ben02| van Benthem argues
that extensive form games can be thought of as process models along with special
annotations identifying player nodes. A dynamic logic framework can then be used
to describe complete strategies of players as well as reasoning about outcomes that
can be ensured. Instead of coding objectives of players in terms of propositions,
there have been suggestions to incorporate elements of modal preference languages
into the logic.

Explicit coding of complete strategies works well in the case of finite exten-
sive form games. However, this approach is not “generic”’, and the description of
strategies depends on the particular model under consideration. The dynamic logic
formalism codes up the exact sequence of moves which form a complete strategy and
this crucially relies on having a specific bound on the depth of the game tree. But
then, this technique does not help in the analysis of unbounded duration games. We
often come across games where players have the option to quit the game or continue
playing. If they continue, they can potentially earn a better payoff but there is also
the downside of losing what they have earned. These are games where the plays are
finite but of unbounded duration; such games can be easily modelled as games on

graphs.

Temporal logic: Various temporal logics have also been employed to reason about



games. Notable among these is the work on alternating temporal logic (ATL)
[AHKO02| which considers selective quantification over paths that are possible out-
comes of games in which players and an environment alternate moves. ATL reasons
about structured games which are games on graphs where each node is associated with
a single normal form game. In the initial formulation of ATL strategies themselves
could not be referred to in the logic. Various extensions of ATL where strategies
are allowed to be named and referred to in the formulas of the logic are proposed
in [vdHIJWO05| and [WvdHWO07|. We will look at reasoning in games with ATL in

more detail in Section 3.3.7.

Game logic: Propositional game logic [Par85|, the seminal work on logical aspects
of game theory, talks of existence of strategies but builds composite structure into
games. [Gor03] looks at an algebraic characterisation of games and presents a com-
plete axiomatization of identities of the basic game algebra. Pauly [Pau01| has built
on this to provide interesting relationships between programs and games, and to
describe coalitions to achieve desired goals. Goranko [Gor01] relates Pauly’s coali-
tion logics with work done in alternating temporal logic. In this line of work, the
game itself is structurally built from atomic objects. However, the reasoning done
is about existence of strategies and strategies themselves do not figure in the logical
formalism.

Thus existing work on logical analysis of games tend to focus on “existence of
strategies” for players. Even when strategies are considered explicitly in the logical
formalism they are taken to be complete plans and mostly memoryless. To get a
better understanding of the logical foundations of game theory it is necessary to
look at formalisms which take into account the structure of strategies explicitly in
the logical language. In van Benthem’s words, strategies are the “unsung heroes” of
game theory [Ben07|. A recent work in this direction is that of Ghosh [Gho08| which
presents a complete axiomatisation of a logic describing both games and strategies
in a dynamic logic framework, but again the assertions are about unstructured
strategies.

In this thesis, we take up the issue of logical analysis of strategies in games. More
precisely, we propose a syntactic structure to specify bounded memory strategies in
terms of their observable properties and look at how reasoning in games can be

effectively done with respect to strategy specifications.



Game representations and solution concepts

A natural way of presenting games is by representing the individual moves of players
in an explicit manner. This is often called the extensive form game representation,
where the game is represented as a tree with nodes representing game positions and
edges representing the moves of players. Since the extensive form representation
preserves the structure of the game, it is an ideal representation to reason about
strategies which are structured in terms of its observable properties. In contrast,
the normal form representation, which is widely used in game theoretic literature
provides an abstract representation of games in terms of outcomes. This presentation
is justified under the standard assumption made in game theory that players are
rational. If players are perfectly rational and they have unbounded computational
resources, then they could in principle conceive of strategies in full detail taking
into account every possible move of the opponent and specifying their response.
The important point being that this can be done even without playing the game.
Thus the strategies of all players can be listed and the game could be specified in
terms of the outcomes. The game is then played by each of the players choosing a
strategy simultaneously.

However, in this approach, optimal strategies or stable strategy profiles of players
need not exist. This brings us to one of the most important notions in game theory,
that of mixed strategies. As opposed to deterministic strategies (also called pure
strategies) which pick actions with absolute certainty, mixed strategies associate a
probability distribution over the set of possible actions. We find mixed strategies
often used in many of the children’s games, for instance it is well known that the
best strategy to follow in the game of matching pennies is for both players to pick
heads or tail randomly [Str93]. The seminal result of Nash [Nas50| showed that
every finite game has an equilibrium profile in mixed strategies.

Even in cases where the set of pure strategies of players is finite, the set of mixed
strategies need not be. Thus to reason in games, there is the natural question of
how players implement such strategies. One way is to think of players dynamically
switching between pure strategies based on the observed behaviour of other play-
ers. In this context an interesting question would be to ask whether the behaviour
of players stabilizes. In other words, do players eventually stop switching between
strategies and stick to some pure strategy. A preliminary logical study of these is-
sues were taken up in [PRS09a, PRS09b]. A more realistic interpretation of players

implementing mixed strategies would be: players typically begin with some expec-



tation on the behaviour of other players and revise their expectations depending
on what they observe in the history of the play. Such situations are extensively
studied in classical game theory literature where Bayesian revision of priors is a
standard technique. Incorporating expectations of players into the logical frame-
work for strategic reasoning is an interesting and challenging task which will also
model players’ behaviour in a more realistic fashion. In this thesis however, we do

not take up this issue.

Sub-game perfect equilibrium: Since extensive form games are represented in
terms of trees, the notion of sub-games can be defined in a natural manner. Given
an extensive form game T and a game position s the subtree rooted at s constitutes
a sub-game of the original game T. Sub-game perfect equilibrium is a refinement of
standard equilibrium notion where choices which involve any player making a move
that is not credible (because it is not optimal) are eliminated. A strategy profile is
said to be a sub-game perfect equilibrium [Sel65] if it represents an equilibrium profile
in every sub-game of the original game. In other words, sub-game perfection looks
at strategies which are compositionally constructed from strategies in the various
sub-games of the original game. In the setting of finite games, sub-game perfection
is justified under the trembling hand assumption that players may choose unintended
strategies with negligible probability and thus all the game positions of the original
game are reachable. In the context of unbounded duration non-zero sum games, it
is no longer clear what the implications of trembling hand assumptions are, in fact
even coming up with appropriate notions of rationality which justifies the trembling
hand assumption is a challenging task. However, the equilibrium notions can be
mathematically well defined by extending definitions of finite game structures. If
we do not question the foundational issues involved, then the material developed in
Chapter 4 suggests a way of composing strategies by taking into account sub-game

structures.

Structure of the thesis

The thesis looks at the logical and algorithmic analysis of strategies. Chapter 2
provides a general introduction to extensive form and normal form games and the
various well known solution concepts. We also give an overview on logical analysis
of games in the literature. The first part of the thesis consists of Chapters 3 and 4

which look at the logical analysis of strategies. In Chapter 3 we introduce strategy



specifications and relate these specifications to partially defined bounded memory
strategies. A logic for reasoning about such structured strategies with respect to
a single game is defined. A complete axiomatization of the logic is presented and
the truth checking problem is shown to be decidable. Chapter 4 looks at how
logical analysis of strategies can be appropriately adapted in the case when the
game itself is compositional. We define a logic which explicitly takes into account
the compositional structure of games for strategic reasoning. We give a complete
axiomatization of the logic and show that the satisfiability problem for the logic is
decidable. Chapters 5 and 6 constitute the second part of the thesis which looks at
the algorithmic analysis of strategies in games. In Chapter 5, we study the classical
solution concept of Nash equilibrium with respect to non-zero sum infinite games in
terms of functional strategies. We also look at how strategy specifications help in
the algorithmic analysis of infinite non-zero sum games. In Chapter 6, we look at
games of imperfect information and provide a model where communication between
players is explicitly represented. We show that the best response computation can
be effectively carried out in this setting. Chapter 7 contains concluding remarks and

comments on future work.



Chapter 2
Preliminaries

In this chapter we provide a general introduction to the two main forms of game
representation: the extensive form and the normal form representation. We intro-
duce well known solution concepts associated with games. We also give an overview
on logical analysis of games.

Throughout the thesis, we will be working in the setting of non-cooperative
games. In Chapters 2,3,4 and 5, we will be dealing with games of perfect infor-
mation. We therefore restrict our attention to two player games for convenience of
presentation. The techniques developed can be extended to multi-player games as
well. We do not analyze the effect of players forming coalitions even though it con-
stitutes a very interesting branch of game theory. We do however look at imperfect
information in Chapter 6 and analyse such games explicitly in terms of multiple

players.

2.1 Extensive form games

Extensive form games are a natural model for representing finite games in an explicit
manner. In this model, the game is represented as a finite tree where the nodes of
the tree corresponds to the game positions and edges correspond to moves of players.
The leaf nodes are labelled with payoffs obtained by players. We present the formal
definition below.

Let N denote the set of players, we use ¢ to range over this set. For technical
convenience, we restrict our attention to two player games, i.e. we take N = {1,2}.
We often use the notation ¢ and 7 to denote the players where 7 = 2 when ¢ = 1

and 7 =1 when ¢ = 2. Let X be a finite set of action symbols representing moves of
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Figure 2.1: Finite extensive form game.

players, we let a, b range over . For a set X and a finite sequence p = zy25 ..., €

X*, let last(p) = x,, denote the last element in this sequence.

2.1.1 Game trees

Let T = (S, =, s9) be a tree rooted at sy on the set of vertices S and = : (SxX) — S
is a partial function specifying the edges of the tree. The tree T is said to be finite
if S is a finite set. For anode s € S, let s= {s' € S | s=5' for some a € £}. A
node s is called a leaf node (or terminal node) if s= 0. Let frontier(T) denote the
set of all leaf nodes of T.

A finite extensive form game tree is a pair T = (']I‘,X) where T = (5,=,5¢) is
a finite tree. The set S denotes the set of game positions with sq being the initial
game position. The edge function = specifies the moves enabled at a game position
and the turn function A : S — N associates each game position with a player.
Technically, we need player labelling only at the non-leaf nodes. However, for the
sake of uniform presentation, we do not distinguish between leaf nodes and non-leaf
nodes as far as player labelling is concerned. For i € N, let S* = {s | /)\\(s) =i}

Figure 2.1 shows an example of a finite extensive form game tree. The nodes are
labelled with the player labels and edges represent actions enabled for players.

A play in the game T starts by placing a token on sy and proceeds as follows: at
any stage if the token is at a position s and X(s) = i then player 7 picks an action
which is enabled for her at s, and the token is moved to s’ where s=s’. Formally
a play in T is simply a path p : spags; - --ax_15, in T such that for all 0 < 5 < k
sjiﬁsjﬂ and s € frontier(T). Note that each leaf node ¢ denotes a play of the
game which is the unique path from the root node sy to t. Let Plays(T) denote the
set of all plays in the game tree T'.
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Figure 2.2: Strategy of player 1.

2.1.2 Strategies

A strategy for player i is a function y‘ which specifies a move at every game position
of the player, i.e. u' : S* — X. For i € N, we use the notation p' to denote
strategies of player 7 and 7 to denote strategies of player 7. By abuse of notation,
we will drop the superscripts when the context is clear and follow the convention
that p represents strategies of player ¢ and 7 represents strategies of 7. A strategy pu
can also be viewed as a subtree of T where for each player ¢ node, there is a unique
outgoing edge and for nodes belonging to player 7, every enabled move is included.

Formally we define the strategy tree as follows:

Definition 2.1.1 For i € N and a player i strateqy j : S* — X the strategy tree

~

T, = (Su, =y, 50, A\y) associated with pu is the least subtree of T satisfying the fol-
lowing property:

® 505,
e For any node s € S,,,

—if X(s) = i then there exists a unique s € S, and action a such that
555,58,

— if X(s) # i then for all s' such that s=s', we have s=,s’.

Figure 2.2 shows a strategy tree for player 1 in the finite extensive form game
tree given in Figure 2.1.
Let Q(T) denote the set of all strategies for player i in the extensive form

game tree T. A play p : spags;---ap_15; is said to be consistent with p if for all
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j:0<j <k wehave s; € S" implies pu(s;) = a;. A strategy profile (u, ) consists
of a pair of strategies, one for each player.

A play p is consistent with a strategy profile (u, 7) if p is consistent with p and
7. It is easy to check that given a strategy profile (u, 7), there exists a unique play
in T which is consistent with (u, 7). This can be thought of as the play generated
by (i, 7). We denote this play by p,.r).

2.1.3 Objectives of players

The extensive form game tree merely defines the rules of the game, or how the
game progresses and terminates. More interesting are the objectives of players
which specify their preferences over outcomes of the game. This is captured by
associating a utility (or payoff) function w; : frontier(T) — V with each player
1 € N. Intuitively, for each play p in the game tree T terminating at some frontier
node, the utility function of player i associates with p a value from the set V. The
payoff set V needs to be an ordered set, and traditionally it is taken to be a linearly
ordered set. The utility function then inherits the underlying ordering of V which
in turn induces a preference ordering on the set of plays. In what follows, we use
subsets of natural numbers as the payoff set and the exact set under consideration
will be explicitly mentioned. We assume the standard ordering on natural numbers.
A game is then specified by a pair G = (T, {u; }ien, V) where T is the extensive
form game tree, u; is the utility function of player + € N and V is the payoff set.

Zero sum objectives

In the case of two player games, the notion of “winning” arise in a natural way, where
the objectives of players are strictly competitive. This is captured by associating
each player i € {1,2} with a utility function u; : frontier(T) — {0, 1} which satisfies

the condition:
(Z1) For all t € frontier(T) and for all i € {1,2}, u;(t) = 1 iff uy(¢) = 0.

It should be noted that in the literature, the range of the utility function for two
player zero sum games is usually taken to be {—1,1}. The payoffs can always be
scaled to lie in the set {0,1} and we choose this set merely for convenience.

A play p € Plays(T) is said to be winning for player ¢ iff u;(last(p)) = 1. Due
to the above restriction on the utility function, this also implies that for a play p

which is winning for player i, u;(last(p)) = 0. In other words, p is losing for player
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7. The utility function w; induces a preference ordering <‘C Plays(T) x Plays(T)
in the following manner. For p, p/ € Plays(T) we have

o p =t iff wi(last(p)) < w(last(p')).

Note that according to the definition, <¢ for each player i is a reflexive, transitive

and complete binary relation. In other words <’ is a total preorder on Plays(T).
A strategy p of player i is a winning strategy if for all paths p € T, u;(last(p)) =

1. Player ¢ wins the game G if there exists a winning strategy for ¢ in the game G.

We say a game G is determined if one of the players win G.

Relevant problems: In the setting of two player zero sum games, the questions of

interest include: Given a game G = (T',{u;}ien),
1. is G determined?
2. given 7, determine if player ¢ wins GG and if so, compute the winning strategy.

The first question concerning determinacy was settled by the following result

often referred to as the Gale-Stewart theorem.

Theorem 2.1.2 ([GS53]) Ewvery finite two player zero sum game is determined.

The second question deals with the algorithmic issue of determining the winner
of a game and constructing the winning strategy. The backward induction algorithm

due to Zermelo ([Zer13]) provides a solution to this question.

Backward induction algorithm|[Jon80]: The procedure BI(G, ) takes as input
a game G = (T,{u;},cq1,9y) and a player 7 € {1,2}. It decides whether player ¢ has
a winning strategy in G and if so, computes the winning strategy. The algorithm

proceeds as follows: Initially all nodes are unlabelled.
e All leaf nodes t are labelled with u;(¢).

e Repeat the following steps till the root node sq is labelled: Choose a non-leaf

node s which is not labelled and all of whose successors are labelled,

— If /)\\(s) = i and there exists s’ such that s=s’ where s is labelled 1 then
label s with 1 and mark the edge s=s'.

- If X(s) =7 and every successor s is labelled 1 then label s with 1.

12



The correctness of the procedure is asserted by the following proposition which

can be easily shown by an inductive argument.

Proposition 2.1.3 Given a game G = (T,{Ww;}icq1,2y) andi € {1,2}, playeri has a
winning strategy in G iff the root node sg is labelled with 1 by the backward induction
procedure BI(G,1).

The subtree of T constituted by choosing the marked edges for all game positions

of player 7 is the corresponding winning strategy.

Overlapping objectives

The first step in generalising from zero sum objectives would be to drop the require-
ment that utilities of the players be antagonistic. That is, each player is associated
with a “win-loss” (or binary) objective which is specified by the utility function
u; : frontier(T) — {0,1}. However, the utility function u; need not satisfy condi-
tion (Z1). Thus it is possible that there exists a leaf node ¢ such that u;(t) = u;(¢)
for players ¢ and j with ¢ # j. In other words, the objectives of players can possibly
overlap. In general, non-zero sum games are games where the utility function is a

map u; : frontier(T) — N, where N denotes the set of natural numbers.

Best response and equilibrium

In the case of non-zero sum games, the role of determinacy is replaced by one of
the most important concepts in game theory, that of Nash equilibrium [Nas50]. We

formally define best response and Nash equilibrium below.

Definition 2.1.4 Given a strateqy T of player 7, the strategy p of player i is the
best response for T if V' € QU(T), wi(pw ) < Wi(pgun)-

Definition 2.1.5 A strategy profile (u, 7) constitutes a Nash equilibrium if yu is the

best response for T and T is the best response for .

Thus a profile of strategies, one for each player, is said to be in Nash equilibrium
if no player gains by unilaterally deviating from his strategy. In other words, a Nash
equilibrium is a strategy profile in which every player’s strategy is optimal assuming
that the other players use their equilibrium strategies.

For extensive form games, a more refined notion of stable strategy profile is that

of sub-game perfect equilibrium [Sel65]. Observe that for an extensive form game
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T = (S,=,50,A), and a node s € S, the subtree of T rooted at s also defines a
valid extensive form game (we denote this game by 7). A strategy profile (u, )
constitutes a sub-game perfect equilibrium if for all nodes s € S, the profile (u, 1)

constitutes a Nash equilibrium for the game Tj.

Relevant problems: In the context of non-zero sum games, the questions of in-

terest include: given a game G = (7', {u;}ien),

1. given a strategy 7 of player 7, compute the best response strategy of player ¢

for 7.
2. determine if game G possesses a Nash equilibrium strategy profile.

3. if Nash equilibrium exists then compute the equilibrium profile.

Below we show that for every non-zero sum finite extensive form game, a Nash
equilibrium strategy profile always exists. We also show that the computation of

best response and equilibrium profile is algorithmically solvable.

Best response computation: Given a game G = (7T, {u;};cn) and a strategy
profile 7 of player 7, consider the strategy tree T, of 7. The tree T, satisfies the
property that for all game positions of 7, there is a unique outgoing edge and all
choices of player i nodes are preserved. In other words, only player ¢ has any strategic
choice left. The best outcome player i can achieve is to reach a terminal node ¢ such
that u;(t) > w;(t') for all ' € frontier(T). Let p., : soag...sx = t denote the
corresponding play. Consider any strategy u‘ which satisfies the condition that for
all m : 0 < m < k, t'(Sm) = an. For i nodes not occurring in p! the strategy
is allowed to pick any enabled action. It can be easily verified that u’ is the best
response of player ¢ for 7.

The above procedure can be implemented to run in time linear in the size of the
extensive form game tree. We need to consider the tree 7). and find a path to the
leaf node with maximum utility for player 7. This path can be found using a depth
first search procedure which runs in linear time and the strategy can be defined from
this path.

Equilibrium computation: The backward induction algorithm introduced earlier
is our core technique in equilibrium computation. We modify the earlier mentioned

procedure in order to deal with utilities.
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The procedure FQ(G) takes as input an n-player game G and produces as output
a strategy profile (u, 7). The procedure works as follows: Initially all nodes are

unmarked.

e Label all leaf nodes ¢ with the payoff tuple (u;(¢), uy(t)), let this be denoted
by u(t). The labelling is then extended to all nodes of the tree as follows.

e Fix an ¢ € N and repeat the following step till the root node sq is labelled:
Choose a non-leaf node s for which u(s) is not defined and all of whose suc-

cessors are labelled,

— if X(s) — i then let s’ €5 be a node such that u;(s') > u;(s”) for all other

successor nodes s” of s. Define u(s) = u(s') and u(s) = a where s=5'.

—if X(s) — 7 then let s €5 be a node such that u;(s') > u,(s”) for all other
successor nodes s” of s. Define u(s) = u(s’) and set 7(s) = a where
s=s5'.

Note that according to the procedure, for all ¢ € N, for all nodes s, if X(s) =1
then pu(t) is defined. Therefore the tuple (u,7) generated by the procedure con-
stitutes a valid strategy profile. The following proposition can be shown by an

inductive argument.

Proposition 2.1.6 For a game G = (T,{w;}ien), if (1, 7) is the strategy profile
constructed by the procedure EQ(G) then for all i € N, 1 is the best response for T

and T is the best response for .

Corollary 2.1.7 For a game G = (T,{u;}icn), the strategy profile (u,T) con-
structed by the procedure EQ(G) constitutes a Nash equilibrium profile.

2.2 Normal form games

In extensive form games, moves of players are explicitly presented and therefore
strategies are not abstract atomic objects but have certain structure associated
with them. Another commonly used representation for games is the normal form
(or strategic form) representation. In contrast to the extensive form representation,
strategies are presented in normal form games in an abstract manner. In this rep-
resentation, strategies of players corresponds to choosing an action from the action

set.
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We assume that the set of actions is partitioned into action sets for each player,
e, Y=Y, U Let =% x %y, A strategy profile is simply a pair of actions, one
for each player. A play of the game corresponds to each player choosing an action
simultaneously without knowledge of the action picked by the other player. Thus a
strategy profile constitutes a play in the game. Each play is associated with a pair

of utilities, denoting the payoffs for the players.

Definition 2.2.1 Suppose |31| = m and |%3| = k, then a strategic form game can
be represented as an m X k matriz A where the actions of player 1 constitute the
rows of the matrixz and that of player 2 the columns. The matrixz entries specify the

outcome of the play for each player.

Example 2.2.2 A normal form game with m = k = 2 is shown in Figure 2.3. Here
Y1 = {a1,b1} and 3y = {as, by}. The action profile (a1, as) where player 1 chooses

to play a; and player 2 chooses as, results in the utility u! for player 1 and wul for

player 2.
as by
ar | (uiuy)  (ufud)
by | (uf,u3)  (ufup)

Figure 2.3: Normal form game

For normal form games, the notion of best response and equilibrium can be

defined as in the case of extensive form games.

Tree representation of normal form games

A normal form game can be viewed as an extensive form game tree of depth one
where the edges are labelled by pairs of actions, one for each player. Formally the
game tree T = (S, =, so, {u; }icy) where S is the set of states, so is the root of the
tree. The transition function = : sgx 5 — (S\{so}) is a partial function also called

the move function which satisfies the condition: for all s € S\ {so}, there exists
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a € 3 such that so=s. The utility function u; : S — N. Let ST = {a € 5 | 3¢’ €
S where so=s'} denote the set of all strategy profiles of 7.

= )
TN Zz%z;:sg .

(ulud)  (udu) (Wud)  (udul) dy = (Wlud)  (u?ud)
(a) (b)

Figure 2.4: Tree representation of a normal form game

The game tree corresponding to the normal form game in Figure 2.3 is shown
in Figure 2.4(a). A play is simply an edge in the tree, this corresponds to both the
players picking an action. A strategy for player 7 is the subtree of g where for player
¢ a unique action is chosen and for player 7 all the actions are taken into account. A
strategy for player 1 in the game given in Figure 2.4(a) where he picks action “a,”,

is shown in Figure 2.4(b).

2.3 Games on graphs

Extensive form game trees provide a convenient representation of finite games. How-
ever, we often come across games where plays are finite but the number of moves (or
the depth of the game tree) is not fixed in advance. Typical examples of such games
are ones in which at certain positions, players are given the option of quitting the
game and walking away with a certain payoff or continue playing the game. These
are usually non-zero sum games and the action of quitting the game comes with a
cost tradeoff. If the player stays on and continues with the game, he can potentially
get a better payoff but there is also a downside of losing what he has earned so
far. If the game reaches a situation where all the players recognise that they cannot
improve their payoffs any further then they can mutually agree to terminate the
game.

For instance, consider the game of chess played as part of a television game show.
Two players are competing against each other. However it is not a simple win-
loss game. Players earn some specified amount on being able to perform a certain

sequence of moves or on reaching some particular board configuration. At this point,
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the players also have the option to quit the game and leave with the amount they
won or to continue playing the game. If they continue, they can potentially earn
more but there is also the downside of losing what they have earned. As in any game
show, the payoffs are not cumulative, and they arise from a finite set of divisions.
The jackpot, of course, is when a player wins the game he gets paid 1 million dollars.
If the game reaches a point where the board configuration keeps repeating and the
players realise that there is no way of improving their payoffs, they can mutually
agree to terminate the game and disperse with what they earned so far '.

These are games of unbounded duration and the extensive form game represen-
tation results in an infinite tree. There are various possible options to present such
games in a finite fashion. One way is to specify the game structure in terms of a
finite set of game rules. In this thesis, we adopt a simpler approach based on graph-
ical game models which is to present the game in terms of a finite game arena (finite
graph). The associated infinite extensive form game is obtained by the unfolding of

this arena.

2.3.1 Game arena

We use games on graphs to model games of unbounded duration. We assume the
existence of a special game position called ezit to model the termination of the game

and an action quit which corresponds to players choosing to quit the game.

Definition 2.3.1 A game arena is a structure G = (W, —,wp, \) where
o W is a finite set of game positions.

o — W xX — W is a partial function also called the move function which

satisfies the condition
—
— exit= ()
quit . .
— w—w iff w = exit

o wy € W is the initial game position.

e \: W — N is the turn function which associates each game position with a

player.

'In fact one can consider any perfect information game where there is an option of increasing
the stakes or quitting and the possibility of the game ending in a draw.
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Let —(w,a) = w', we often denote this by w-—>w’.

Fori € N,let Wi ={w € W | A(w) = i}. A play in G is either a finite path
p = woapwiay . ..wy such that wy = exit or an infinite path p = wyapwia; ... such
that for all j > 0, wjgwjﬂ. Let Plays(G) denote the set of all plays in G. The
(infinite) extensive form game tree Ty associated with G is obtained by the tree

unfolding of G which we define below.

Definition 2.3.2 Let G = (W, —,wo, A) be a game arena. The tree unfolding of G is

~

the least tree structure Tg = (S, =, so, A) where S C (W xX)*W and = : Sx¥ — S

satisfies the condition:
e wyES.

o If s = (wo,aq) ... wy € S and w—w' then s’ = (wo, ap) . .. (wg, a)w’ € S and
& o

S=S".

Further, for a node s = (wo, ag) ... wy € S, X(s) = Mwy).

So=wo

| T T

S1=woa1w2 S2=wWoa2w1

b1 wo . .
quit quit
C:l/ \1&2 % ! l lbx
S4

exit exit

s
W2 <— w1 3
bo y V{ l
by
quit
S5 S6 S7
exit quit utt a1 a2
b1 \L \ lN / \
S9 510 S11

58

Figure 2.5: Game arena and tree unfolding

Figure 2.5 illustrates a game arena and its tree unfolding.

It is easy to see that the edge relation in Ty defines a partial function. A node
s = woagwiay ... wg in Tg denotes a finite play in the arena, with last(s) = wy.
Note that for any node s, last(s) € W.

The objectives of players can be specified as preference orderings on the set of

plays, i.e. each player is associated with an ordering <'C Plays(G) x Plays(G).
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2.3.2 Strategies

A strategy u for player ¢ specifies for each partial play ending in a game position of
player i which action to choose. Thus p is a map p: (W x L)*W* — 3. As in the
case of extensive form games (definition 2.1.1), a strategy can be viewed as a subtree
of the game tree Ty where for every player ¢ node there is a unique outgoing edge
and for an 7 node, all outgoing edges are included. Since Tg is infinite, a strategy
thus defined can in principle depend on the complete history of play and in general
it need not be computable. For computationally bounded players it is not possible
to implement or even choose to play such an arbitrarily defined strategy.

Resource limitations on strategies have been studied in the game theoretic frame-
work. [FW94| looks at the situation where players are represented by polynomial
time turing machines. This is motivated by the intuition that typically in the real
world, players are equipped with powerful computers which help them optimize their
strategies. In this approach the standard complexity measure notions on turing ma-
chines can be adopted to classify strategies. A weaker form of computation which
is however extremely robust is represented by finite state automata. Strategies de-
fined by finite state automata have been studied in [Ney85, ARS8, Ney98]. The
typical complexity measure looked at here is the size of the minimal deterministic
automaton which represents the strategy. Also of interest is the notion of “program
equilibrium” [Ten04] which looks at strategies which are implementable as programs
and reasons about players’ abilities to refer to computation done in parallel by other
programs.

In this thesis we stick to the weaker form of defining resource limited strategies in
terms of finite state automata. In this context, the following two types of strategies

are of particular interest:

e Memoryless (positional) strategies: These are strategies for which the next
move depends only on the current game position and not on the history of
play. Thus the map ;. : W% — ¥ prescribes the same action for all partial plays
ending at the same game position. That is, for all p, p’ such that last(p) =

last(p'), pu(p) = (o).

e Bounded memory strategies: These are strategies where the dependence of the
next move to the history of the play can be kept track of by a finite set of
states. Such strategies can be represented using finite state machines. We

think of these as advice automata, in the sense that they constitute an advice
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for the player to consult at a game position.

Definition 2.3.3 Let G be a game arena, a deterministic advice automaton for

player i is a tuple A = (Q, 0,0, qy) where
e () is the set of states.
e 0:Q xW x X — (Q is the deterministic transition function.
e 0:Q x W'=Y is the advice function.
e gy € Q is the initial state.

For a partial play p : woaows ... wy, the run of A on p is the sequence of states
Qo - - - qx such that for all j where 0 < j < k, gx+1 = 0(qs, wj, a;). The strategy p of
player ¢ generated by A is defined as follows. For any partial play p : woaqws . . . wg,
let goqi - . . g be the run of A on p, then p(p) = o(qx, wy). Since A is a deterministic
automaton, it is easy to see that the strategy generated by A is unique.

For technical purposes, we find it convenient to define the notion of the lan-
guage accepted by an advice automaton. Let p be a strategy of player i and T, =
(Syu, =4, S0) be the corresponding strategy tree. The run of A on T, is a @ labelled
tree T = (S,, =, S0, f), where f maps each tree node to a state in () as follows:
f(s0) = qo, and for any s; where s,=> s}, we have f(s}) = 5(f(s1), last(sy), ax).

A @ labelled tree T is accepted by A if for every tree node s € S, where s € 57,
s=s' implies o(f(s), last(s)) = a. We say a strategy u is accepted by A or is in the
language of A (denoted Lang(A)) if the run of A on pu is accepting. For a state ¢

and a tree node s, we often use the notation o(g, s) to denote o(q, last(s)).

2.4 Logical analysis of games

In this section we look at logical analysis of games in the literature. We focus on
modal and dynamic logics which considers the game structure to be atomic and
where additional compositional structure of the game representation itself is not
taken into account. Finite extensive form games are particularly suited for this type
of analysis. This was suggested in [Ben02, Ben01| and has also been explored in
various directions. The core idea used by the various logics adopting this style of

reasoning is the following:
e Finite extensive form game tree can be viewed as models of dynamic logic.
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e Strategies of players in finite extensive form games, can be encoded as pro-

grams in dynamic logic.

Here we illustrate how dynamic logic can be effectively used to reason about
games and abilities of players to ensure certain outcomes. We find it instructive
to first give a brief introduction to propositional dynamic logic (PDL). A more
comprehensive treatment of PDL can be found in [HKT00].

Propositional dynamic logic

Dynamic logic, a logic to reason about the behaviour of composite nondeterminis-
tic programs was originally proposed by Pratt [Pra76|, where it was shown how to
extend modal logic by considering a separate modality for every program. Proposi-
tional reasoning about programs in terms of dynamic logic was studied by Fischer
and Ladner in [FL77, FL79).

Syntax: Let P denote a countable set of propositions. The formulas of PDL are

constructed using the following syntax:

Pi=aecX|[y%|nUry|[v"|a?
PDL:=pecP|-a|oVas| (Yo

where v € P and a € PDL.

Semantics: PDL formulas are interpreted over edge labelled Kripke structures
M = (W, —, V) where W is the set of states, — C WxXxW and V : W — 2F. The
semantics of composite programs is defined in terms of the relation RPPL C W x W

as follows.
o RPPL— {(u,w) | ubw).

o RIDE = {(u,w) | Jv € W where (u,v) € R)P*and (v,w) € RIP"}.

o RIDL = RIPEUREPE.

o REPE =, 5o(RYPF)", where (RIP")"™ denotes the n-fold relational composi-
tion.

o RFPL = {(u,u) | M,u = a}.

The truth of a formula a in a model M at a state u (denoted M,u | «) is

defined inductively as follows:
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M,ul=piff p e V(u).

M, u = —a iff M, u = a.

M,ulE a3 Vagiff Myu = oy or M,u = as.

M, u = ()« iff there exists (u,w) € RYP" such that M, w |= a.

Reasoning about games in PDL

-~

An extensive form game tree T = (S, =, 59, A\) can be viewed as a Kripke structure
M = (S,=,V) where V : S — 2% is a valuation function which provides interpre-
tation for the atomic propositions in P. The turn function X can be coded in terms
of special propositions turn; for each i € N. It is also convenient to represent the
frontier nodes of the tree in terms of a proposition leaf. Thus the valuation function

satisfies the following condition: for all s € S,
e Vi€ N, turn; € V(s) iff X(s) =i

e leaf; € V(s) iff s € frontier(T).

SN N
A A A
(a): Game tree (b): Model

Figure 2.6: Extensive form game tree and corresponding model

Consider the game tree given in Figure 2.6(a). The model corresponding to the
game tree is shown in Figure 2.6(b). Suppose the proposition p is true at states
sy and s5, i.e. p € V(sq) and p € V(s5). Consider the following PDL formula

interpreted over the model given in Figure 2.6(b).
e [(turn;?;a) U (turn;?;b)|{(turny?; c) U (turny?; d))(leaf > p).

This says that no matter what move player 1 makes, player 2 has a move to ensure
the outcome states satisfies p. In other words, player 2 has a “winning strategy” to

ensure the outcome p.

23



In PDL one can talk about not just winning strategies but also about strategic

response of players. Consider the formula
e [(turn;?;a); (turny?; d)|(leaf > p).

The formula asserts that if player 1 plays “a” then player 2 can respond with “b” to
achieve the outcome p. In general if o is the strategy of player 1 encoded as a PDL
program and 7 that of player two then the following formula says that the state

reached when players employ the strategy ¢ and 7 against each other satisfies the

property p.
e [(turn;?; 0 U turny?; 7)*|leaf > p.

Encoding utilities in the model: The above examples illustrate how programs
can be effectively used to code strategies in finite extensive form games. More
interesting would be to reason about games with respect to the utilities of players.
Utilities can again be coded in terms of propositions as illustrated in [Bon02|. Let
V = {u!,u? ...} be a value set and for i € N, let u; : frontier(T) — V. Without
loss of generality assume that u' < u? < ... Let ©; = {0}],60%, ...} be a set of
special propositions used to encode the utilities in the logic, i.e. 0{ corresponds to
the utility 0{. Likewise for player 2, we have the set of special propositions ©,. The

valuation function satisfies the condition:
e For all states s, for i € N, {6},...,67} C V(s) iff u;(s) = /.

The preference ordering on the rewards for each player is simply inherited from
the implication available in the logic. Thus strategy comparison with respect to

utilities can be expressed in the logic as follows.
e ([(turn;?;0q)*]leaf > 6;) > ([(turn;?; o})*|leaf > 6;).

Related work: There have been various studies which build on this basic idea
of using dynamic logic to reason about games. [HvdHMWO03] suggests interpreting
the atomic actions in PDL in terms of strategy profiles. This enables assertions
to be made regarding the resulting plays in the game. The authors come up with
characteristic formulas for Nash equilibrium and sub-game perfect equilibrium in
this setting.

In the backward induction procedure, the idea is to lift the preference ordering
over utilities to ordering over tree nodes. But as pointed out in [Ben06|, when or-

derings are interpreted over tree nodes, it does not merely represent what players

24



prefer but what they expect to happen given the rationality assumptions about how
other players will proceed. Instead of coding utilities directly as propositions a more
elegant method would be to incorporate elements of a preference language into the
logic. This was suggested in [BOR06| where the authors analyse the backward in-

duction procedure in terms of a preference modality.

Remarks: It should be noted that the above mentioned technique of coding strate-
gies as programs in PDL works well since we are dealing with finite extensive form
games. The fact that the depth of the game tree is known in advance, is crucially
used. In particular, this approach would not work in the case of unbounded duration
games where the length of plays is not determined in advance. To make assertions
about existence of strategies one could look at adding a fix-point operator to the
logic as done in p-calculus [Koz83|. In the case of infinite two player zero sum games
on finite graphs, it is well known that winning regions of players can be expressed as
p-calculus properties (see [GTWO02|, Chapter 10). However, it is hardly clear how

to reason about strategies in the p-calculus framework.
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Part 1

Logical analysis



Chapter 3
Logical analysis of strategies

As demonstrated in the previous chapter, game theoretic analysis typically involve
outcome based analysis in terms of solution concepts. However, a prescriptive the-
ory needs to view strategies as partial functions built in a compositional manner.
In this chapter we propose a programming language syntax for building partially
specified strategies in a compositional framework. The framework is not dependent
on any specific bound on the length of the play and is therefore suited for analysis

of unbounded duration games as well.

3.1 Strategy specifications

We fix the following notations. Let G = (W, —, wg, \) denote the game arena. Let
P ={pi,p.,...} be a countable set of observables for i € N.

We conceive of strategies as being built up from atomic ones using some grammar.
The atomic case specifies, for a player, what conditions she tests for before making a
move. We can associate with the game arena a set of observables for each player. One
elegant method then, is to state the conditions to be checked as a past time formula
of a simple tense logic over the observables. The structured strategy specifications
are then built from atomic ones using connectives. We crucially use an implication
of the form: “if the opponent is apparently playing a strategy 7 then play o”.

Below, for any countable set X, let Past(X) be sets of formulas given by the

following syntax:
Y € Past(X) =z € X | =) | ¢y Vby | €.

The past time formulas are interpreted over sequences. Intuitively, the modality
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1) asserts that sometime in the past the formula ¢ holds. We also use Voc(v) to

denote the subset of X which is mentioned in .

3.1.1 Syntax

The syntax of strategy specifications is given by:
Strat'(P?) := [ +— a]' | oy + 03 | 01 - 09 | T = 0y

where 7 € Strat’(P' N P?) and ¢ € Past(P?).

The idea is to use the above constructs to specify properties of strategies. For
instance the interpretation of a player i specification [p — a]’ where p € P is to
choose move “a” at every player ¢ game position where p holds. At positions where
p does not hold, the strategy is allowed to choose any enabled move. o, + 05 says
that the strategy of player ¢ conforms to the specification o; or g5. The construct
01 - 09 says that the strategy conforms to specifications o and o5.

The specification m = ¢ says, at any node player 7 sticks to the specification given
by o if on the history of the play, all moves made by 7 conform to 7. In strategies,
this captures the aspect of players’ actions being responses to the opponent’s moves.
The opponent’s complete strategy may not be available, the player makes a choice
taking into account the apparent behaviour of the opponent on the history of play.

Let ¥ ={ay,...,a,}, we also make use of the following abbreviation.
o null' = [True — a1 + - - - + [True — ay,].

It will be clear from the semantics (which is defined shortly) that any strategy of
player i conforms to null’, or in other words this is an empty specification. The
empty specification is particularly useful for assertions of the form “there exists a

strategy” where the property of the strategy is not of any relevance.

3.1.2 Semantics

Given any sequence & = toty - t,, amap V : {tg, -+ ,t,,} — 2%, and an index
k such that 0 < k < m, the truth of a past formula ¢ € Past(X) at k, denoted
¢,k =1 can be defined as follows:

o { kEpiff pe Vi(sy).
o (ki iff &k E .
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o LEEY Vi iff £k =1 or &k |= 1.

o £ k= o1 iff there exists a j: 0 < j < k such that &, j = 1.

Strategy specifications are interpreted on strategy trees of G. For this purpose,
we consider the game arena G = (W, —, wg, \) along with a valuation function for
the observables V : W — 2. We assume the presence of two special propositions
turn; and turn, that specifies which player’s turn it is to move, i.e. the valuation

function satisfies the property
e foralli € N, turn; € V(w) iff \N(w) = 1.

The valuation function V' is extended to the tree unfolding 7y in the obvious
manner: for a node s we have V(s) = V(last(s)). Recall that a strategy p of
player ¢ is a subtree of Tg. Given a strategy p of player ¢ and a node s € p, let
Ps, © So0@oS1- Sy, = $ be the unique path in p from the root node sy to s. For
a strategy specification o € Strat’(P?), we define the notion of x conforming to o

(denoted u |=; o) as follows:
e i |=; o iff for all player i nodes s € p, we have p ,s |=; 0.

S > 3 S
where we define p3 ,s; |=; o for any player i node s; in p  as,

Pio» S i [ = a]’ iff py, s; = v implies outpgo (s;) =a.

S 3 S S
Py 85 Fi o1+ oo iff pl 55 oy or pl s [ 0a.

S 3 S S
Pso» Si i 01 - 09 iff p5 ;85 =i o1 and pg 85 i 0.

Ps,:8; Fi m = oy iff (if for all player 7 nodes s, € pi such that k < j,
P35 Sk =7 ) then pl . s; = o1.

Above, m € Strat'(P' N P?), ¢ € Past(P"), and for all i : 0 < i <m, outy (s;) = a;
and out ps (s) is the unique outgoing edge in p at s. Recall that s is a player i node
and therefore by definition there is a unique outgoing edge at s.

Given a game arena G, a player i € N and a strategy specification u € Strat’(P?)
we define the tree language 7L(G,0) as TL(G,0) = {u € Q(G) | n i o}
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Remarks

Note that we do not have negation in specifications. One reason is that the specifi-
cations are partial, and hence the semantics is not immediate. If we were to consider
a specification of the form T = o, we could interpret this as: if player has seen that
opponent has violated 7 in the past, then play o. This seems rather unnatural,
and hence, for the present, we are content to leave negation aside. Note that we
do have negation in tests in atomic specifications, and later we will embed these

specifications into a modal logic (with negation on formulas).
1r
.2 2, .2
AN ATEA
[ ] [ ] L] ® L] (]

(a) (b)

Lp

Figure 3.1: Game and strategy.

Example 3.1.1 Consider the game given in figure 3.1(a) and the specification
[p — a]'. The interpretation is to choose move “a” for every 1 node where propo-
sition p holds. Suppose p holds at the root, then the strategy depicted in Figure
3.1(b) conforms to the specification [p — a]'. O

According to the syntax it is possible to come up with arbitrary strategy specifi-
cations which when interpreted on a game arena could be inconsistent. For instance,
consider the game given in Figure 3.2(a) and the specification o = [p +— a]'-[p — b]'.
It is easy to see that no strategy of player 1 conforms to the specification ¢. Thus

a natural question would be to ask:

e given an arena G, player i € N and a specification o € Strat’(G) is it decidable
to check whether 7L(G, o) = (7

In what follows it will be clear that this question is decidable. The crucial fact
which needs to be used is that strategy specifications classify strategies which are
“regular”. Thus it is possible to build a finite state automaton which recognize such

strategies.
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Figure 3.2: Game arena

Example 3.1.2 Consider the game shown in Fig. 3.2. Let the cycle Cj : 57 — s1,
Cl:89 — 83 — S, (3 : 89 — 819 — Sg and Cy : sg — sy — Sg. For a player i and
cycles C and C’ we use the notation C' <* C’ to denote that plays which settle down
to the cycle C” is preferred by player ¢ to plays which settle down to cycle C. Let
the preference ordering of player 2 rank {Cy, Cy} as the worst outcomes and C3 as
the best outcome with C; <? Cs. Let the preference ordering of player 1 be given
as Oy =t O3 =Y O) <! Cy. Its easy to see that equilibrium reasoning will end up
in cycle C'3. However, for player 1 the utility difference between C'3 and C; might
be negligible. So player 1 might decide to punish 2 by moving to Cy at position sg.
Therefore it is in the common interest of both players to stick to cycle Cf.

Let V(choice) = {sa,s6¢}, V(forgive) = {s4},V(decide;) = {s5}, V(decides) =
{s6}, V(punish) = {ss} and V(worst) = {s;}. A strategy specification for player 1,
which forgives the first defection of player 2, and punishes if 2 has always defected
so far in the play, can be written as:

o = [decide, — f]* - ([choice — d]? = [decides — p]*).

A specification of player 1 which punishes at any defection by player 2 but tries
to re-conciliate once, can be given as:

o = [decide; — p|' - [(=©forgive A choice) — d]? = [worst — 7).

Player 2 might decide to cooperate if he has been punished in the past, which
can be written as:

7 = [©punish A choice — c*. O
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3.1.3 Partial strategies and advice automata

The main objective of developing a compositional syntax for strategies is to an-
alyze strategies in terms of their properties. Strategies are thus specified as par-
tial functions which constrains moves of players rather than prescribing unique
moves. Given a game arena G, a partial strategy v for player i is a partial func-
tion v : (W x B)*W? — ¥, with the interpretation that if v is not defined for
some partial play p € (W x X)*W? player i is allowed to play any available action
there. Thus a partial strategy can equivalently be thought of as a set of complete
strategies. This also motivates the definition of nondeterministic advice automata.
We saw that bounded memory strategies can be represented in terms of determin-
istic advice automata (Definition 2.3.3). Since partial strategies represent a set of
complete strategies, bounded memory partial strategies can be represented in terms

of nondeterministic advice automata which we define below.

Definition 3.1.3 For a game arena G, a nondeterministic advice automaton for

player i is a tuple A; = (Q, 0,0, 1) where
e () is the set of states,
o §:(QxW xX)— 29 is a nondeterministic transition function,
e 0:(Q x W) — X is the output or advice function,

e [ C Qs a set of initial states.

We think of the language accepted by the automaton as a set of strategies of
player i. Let p be a strategy of player i and 7, = (S,, =, so) be the corresponding
strategy tree. A run of A on p is a @) labelled tree B = (S, =, SO,/)\\“, l), where [
maps each tree node to a state in @) as follows: [(sg) € I, and for any s € S, where
s=>,s', we have [(s') € 6(I(s), last(s), a).

A run tree R is accepted by A; if for every tree node s € S, such that s € S*
we have s=s' implies o(l(s), last(s)) = a. A strategy p is accepted by A if there
exists an accepting run of 4 on u. For a state ¢ and a tree node s, we often use the

notation o(q, s) to denote o(q, last(s)).

3.1.4 Strategy specifications to partial strategies

From the semantics, it is easy to see that each strategy specification defines a set

of strategies. We now show that it is a reqular set, recognizable by a finite state
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device. More precisely, we show that given any strategy specification o of player ¢
we can construct a nondeterministic advice automata A, such that the language of
A, is the set of all strategies conforming to the specification o.

For the rest of the thesis we use the term advice automata to refer to nondeter-
ministic advice automata, if we are considering deterministic advice automata then

this fact will be specifically mentioned.

Definition 3.1.4 For a formula ¢ € Past(P) we define the sub-formula closure of
Y, denoted CL(v)). Let CL'(v)) be the least set of formulas such that:

o )€ CL'(Y).

o If by € CL'()) then vy € CL(¥)).

o Ifthy Vahy € CL (1) then iy, s € CL' ().

o If &y € CL() then vy € CL'(¥).
CL(Y) = CL' () U {~y | ¥y € CL'(¥)} where we identify ——b, with ;.
Definition 3.1.5 A set t C CL(¢)) is called an atom if

o for all ~by € CL(Y), ~r € tiff 1 & t.
o for all ) Vs € CL(Y), Y1 V by € tiff 1,1 € t.
o for all ©y1 € CL(Y), if 11 € t then ©Yy € t.

In other words, a subset of formulas in the closure is called an atom if it is proposi-
tionally consistent and complete. For a formula v, let AT (1)) denote the set of all
atoms of ¢ and let Cy = {t € AT (¢) | for all Sy € CL() if ©1; € t then ¢y € t}.
We define a transition relation on AT () as: t— 47t iff for all &Yy € CL(y)) the

following conditions hold.
o if @@Z)l € t then @@Z)l c tl.
o if <>'¢1 €t and wl ¢ t' then <>’¢1 et

We translate a strategy specification to an advice automaton in an inductive
manner. For each atomic specification we first construct an advice automaton and
then compose these automata. The following lemma illustrates the construction for

atomic strategy specifications.
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Lemma 3.1.6 Given an atomic strategqy specification o = [ — al’ of player i we
can construct an advice automaton A, such that for a game arena G = (W, —, wo, A)
and p € Q(G) we have p € Lang(A,) iff u b= 0.

Proof: Intuitively, the constructed automaton works as follows. Its states are
atoms of ¢) which keep track of the past formulas satisfied along a play and ensure
that the valuations are consistent. At a player ¢ game position, if ¢ is in the current
atom then the automaton specifies the output a as advice. We give the formal
definition below. Let # be a symbol not occurring in . The advice automaton
A, = (Qs, 05,04, 1), where

o Qy = AT () x X.
i QOZ{(t,fL‘) | tECQ,l‘GZ}.

e 0, (Qy x W x X) — 29 is defined as follows: for all (t,z) € Q,, for all
we W and b € X, we have (¥, y) € 6,((t, z),w,b) iff

- V(w) =tn Voc(y).
- tHATt,.

a if V(w)=1tN Voc(¢)) and ¢ € t
o o((t,x),w) =q =z if V(w)=1tN Voc(y)) and ¢ & t
g if V(w) # tnN Voc(y)

For the automaton .4, constructed above, we show that p € Lang(A,) iff u |=; o.
(=) Suppose u = (SM,:>M,80,/>\\M) € Lang(A,). Let R = (Su,zm,so,XM,Z) be a
corresponding ()-labelled tree accepted by A,. We need to show that for all s € S,
such that X(s) =i, we have p ;s |= ¢ implies out,, (s) = a. Note that since T is
an accepting run, we have for all s, o(l(s), last(s)) # £.

The following claim, asserts that the states of the automaton check the past
requirements correctly. Below we use the notation ¢ € (t,x) to mean 1 € t.
Claim : Forall s € S, for all ' € CL(v), ¥ € I(s) iff ps,s = .

The claim can be shown by induction on the structure of ).

(v =p e P): We have p € I(s) iff p € V(s) (since o(l(s), last(s)) # §) iff ps, s = p.
Recall that V(s) = V (last(s)).

When 9 is of the form —); and ¥; Vi),, the claim easily follows by applying induction
hypothesis.
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(v = ) Let ps = spap...Sk_1ax-15x = s and the @ labelling on p, be the
sequence (to, o) - .. (ts—1, Tp—1) (s, xx) = (t, ). Suppose Sy € I(s). If Yy € t then
the claim follows by applying induction hypothesis. Otherwise, by the definition of
the transition relation we have ©¢y € t,_;. Again if ¢ € t,_; then we are done.
By definition we have for all ©¢' € ty, ¢' € t5. Therefore by repeating the above
argument, we get that there exists j : 0 < j < k such that ¢y € t;. By induction
hypothesis, p,, s; = 11. By semantics we have p;,, s = ©;.

To see the converse, suppose ps, s = ©1;. By semantics, there exist j: 0 < j <k
such that ps,s; = 9;. By induction hypothesis, ¢ € t; and by definition of atom
oYy € ;. If j = k we are done. Otherwise by definition of the transition relation
we get Oy € t; . By repeating the argument we get ©1; € t.

End of claim

From the above claim, we have pg, s = ¢ implies ¢ € [(s). By the definition of
the output function o, we have o(I(s), s) = a.
(<) Suppose p = [t — a]'. From the semantics, we have Vs € S, such that
X(s) = i if p3,s |= ¢ then out,: (s) = a. We need to show that there exists a
Q-labelled tree accepted by A,. Consider the labelling function defined as follows.
Fix any zy € X.

e Forse S, let I(s) = ({¢ € CL(¥) | ps,s =9’} outys (s))-

e Fors € ST, let U(s) = ({t/ € CL(Y) | pars b= '}, 20).
It is easy to check that for all s € S, I(s) = (C, ) where C constitutes an atom

and the transition relation is respected. What remains to be shown is the following:
e for all s € 5, such that A(s) = i we have o(l(s), last(s)) = out,s (s).
Consider any s € S, with A(s) = i. If pj = ¢ then by the above claim ¢ € I(s).

By definition of the output function o(l(s, last(s)) = a. If p, [~ ¢ then by definition

of the labelling function we have I(s) = (t,y) where y = out,; (s). Thus by defini-

tion of the output function of the automaton we get o(l(s, last(s)) =y = out,; (s).
]

Lemma 3.1.7 Given a strategy specification o € Strat'(P') of player i, we can
construct an advice automaton A, such that for a game arena G = (W, —, wp, A)
and p € Q(G) we have p € Lang(A,) iff u k=i o.
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Proof: We proceed by induction on the structure of ¢. The base case when
o = [t — a]’ follows from Lemma 3.1.6.

(0 = 01 - 09): By induction hypothesis there exist A,, = (Qo,,00,,00,, s ) and
Ay = (Qoy, 609, 00y, 15,) which accept all strategies satisfying oy and o5 respectively.
To obtain an automaton which accepts all strategies which satisfy o; - 05 we just
need to take the product of A,, and A,,.

(0 = 01 + 02): Inductively we have automata A,, and A,,. The advice automaton
for A, simulates both A,, and A,, in parallel and at any player i game position,
nondeterministically chooses to output the advice of either A,, or A,,.

(0 = m = ¢'): By induction hypothesis we have A, = (Qx, 0x, 0, I;) which accepts
all player 7 strategies satisfying 7 and Ay = (Qu, 0,04, I,7) which accepts all
player i strategies satisfying o’.

The automaton A, has the product states of A, and A, as its states along
with a special state ¢s.. The automaton keeps simulating both A, A, and keeps
checking if the path violates the advice given by A, if so it moves into state gfree
from which point onwards it is “free” to produce any advice. Unless 7 is violated, it
is forced to follow the transitions of A,.

Define A, = (Q,0,0,1) where Q = (Qr X Qy) U ({gfree} x X). The transition

function is given as follows:

e For s € SL, we have 0((¢r,qo),s,a) = {(¢1,42) | @1 € 0:(¢r,$,a) and ¢z €
50’(qo’757a)}'

e For s € S}, we have:

— If 07(¢x, 8) # @, then §((qr, Gor), 5, a) = {(¢pree, @) | @ € L}

- If OT((qTHS) = a, then 5((Q7T7QU’)757G) = {(Q1>QQ) | q1 S 57r(Q7raSaa) and
q2 < 50'(%/737@)}-

® 0((gfrec, ), 8, @) = {(free, @) @ € X}

For s € S, the output function is defined as: o((¢r, o), last(s)) = 0g/(qor, last(s))
and o((¢fre, ), last(s)) = . O

The following proposition can then be easily shown using Lemma 3.1.7.

Proposition 3.1.8 Given a game arena G, player i € N and a strateqy specification
o € Strat'(PY), we can construct an advice automaton A, such that Lang(A,) N

QNG)=TL(G,0).
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3.2 Remarks on strategy specifications

A relatively simple syntax for strategy specifications was introduced in Section 3.1.1.
The objective was to illustrate the concept and it should be noted that the above
mentioned results can be extended to any set of specifications that allows an effec-
tive automaton construction. However, operators are best added after a systematic
study of their algebraic properties. An extension of particular interest is that of

multi-stage games.

Multi-stage games: So far we have viewed the game arena as representing a
single unbounded duration game. We can also reason about multi-stage games
using similar techniques. To model such games, we fix a finite set of colours Col
and associate the game positions with elements of this set. The idea being that the
change of colour indicates the switch from one stage to the next. For simplicity, we
also assume that each stage has a unique start and end game position along with a
unique action switch such that start W start. The set of strategy specifications

for player 7 can be extended using the following constructs.

e Vm = o - if in the previous stage player 7 conforms to 7 then play according

to o.

e Pr = o - if there is a previous stage where the player 7 played according to 7

then play o.

e Hm = o - if player 7 in all the previous stages has conformed to 7 then play

according to o

It is quite straight forward to give the formal semantics of the above constructs
and therefore we do not take it up here. It is also relatively easy to verify that
the constructs can be compiled into a finite state automaton. Thus an equivalent
of lemma 3.1.7 can be shown for the extended syntax as well. Below we show that
this extended set of strategy specifications can be effectively used to reason about

multi-stage games.

Iterated prisoner’s dilemma: Prisoner’s dilemma [OR94] is the classic example
portraying the weakness of equilibrium notions. The unique equilibrium in this game

is where both prisoners defect, when cooperation would have resulted in a better
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payoff for both. This game illustrates the fact that equilibrium solutions need not
always give the most efficient outcomes for players.

Axelrod was interested in finding out more about the strategies which were suc-
cessful in playing prisoner’s dilemma in practice [Axe84]. He conducted a tourna-
ment where strategies were made to compete against each other. Note that this is
a departure from the standard analysis in terms of solution concepts like equilib-
rium, where the emphasis remains on trying to figure out what happens if a player
unilaterally deviates. It turned out that the winner was a simple strategy called
“tit-for-tat” which cooperates in the first round and in subsequent rounds mimics
what the opponent did in the previous round.

The iterated version of prisoner’s dilemma can be easily modelled as a multistage
game. Let ¢, d correspond to the actions “cooperate”, “defect” respectively and let
init be a proposition which holds only at the first stage. We also use the abbreviation
play(i,a) = [True — a]* for i € N and a € ¥. The strategy tit-for-tat can be

expressed in the extended strategy specification syntax as follows.
o orrr = (Y play(2,d) = [—init — d]Y) - (Y play(2,c) = [~init — ]).
o Tit-for-tat: [init — ]! - orpr.

The strategy “grim” (also called “trigger”) which cooperates till the opponent

defects and then defects forever can be expressed as
o Grim: (H play(2,c) = play(1,¢)) - (P play(2,d) = [—init — d]*).

Note that tit-for-tat and grudge are examples of complete strategies. On further
analysis, it was noticed that the top scoring strategies satisfied certain properties in
common. [t turns out that the exact strategy is not particularly important and any
strategy satisfying these properties would have performed well in the tournament.

The properties identified were as follows:
e Niceness: Is not the first to defect.
e Forgiveness: Does not hold a grudge once the opponent cooperates.
e Retaliatory: If the opponent defects, punishes him by defecting.

The idea behind strategy specification exactly corresponds to expressing such
properties of strategies rather than complete strategies. For prisoner’s dilemma,

this can be achieved as follows:

38



e Niceness: [init — c|' - (H play(2,c) = [~init — c]').
e Forgiveness: [init — c|' - (Y play(2,c) = [—init — c]').

e Retaliatory: [init — ]! - (Y play(2,d) = [—init — d]').

3.3 A strategy logic

We now discuss how we may embed structured strategies in a formal logic. Formulas
of the logic (also referred to as game formulas) are built up using structured strategy
specifications (as defined in section 3.1). Game formulas describe the game arena
in a standard modal logic, and in addition specify the result of a player following
a particular strategy at a game position, to choose a specific move a. Using these

formulas one can specify how a strategy helps to eventually win (ensure) an outcome

3.

3.3.1 Syntax

The syntax of the logic is given by:
M:=peP|(o)i:c|-alaVa|{a)a| (@a|Sa|o~;

where a,c € ¥, o € Strat'(P?), 3 € Past(P?). The derived connectives A, > and
[a]a are defined as usual. Let Ba = =9-a, (M)a =/ s (a)a, [N]a = ~(N)—a,
(PYa = \/ (@)a and [P] = =(P)—a.

a€l
The formula (a)« talks about one step in the future. It asserts the existence of an

a edge after which « holds. Note that future time assertions up to any bounded depth
can be coded by iteration of this construct. (@)« is the corresponding construct to
refer to one step in the past. The formula ©«a makes assertion about the unbounded
past, it specifies the transitive closure of the one step past operator. Since a strategy
specification can base its advice on apparent behaviour of players in the past, the
past time modalities turn out to be useful in logical reasoning.

The formula (¢); : ¢ asserts, at any game position, that the strategy specification
o for player i suggests that the move ¢ can be played at that position. The formula
0 ~»; [3 says that from this position, following the strategy o for player i ensures the

outcome 3. These two modalities constitute the main constructs of our logic.
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3.3.2 Semantics

Model: Models of the logic consist of extensive form game trees along with a
valuation function. A model M = (T,V) where T = (S,=, 80,/)\\) is an extensive
form game tree and V : S — 27 is a valuation function. As mentioned earlier, we

require that the valuation function satisfies the condition:
e Forall s € S and i € N, turn; € V(s) iff X(s) = 1.

For a node s € S, let moves(s) = {a € ¥ | 3s' € S with s=s'}. For the purpose
of defining the logic it is convenient to define the notion of the set of moves enabled
by a strategy specification o at a game position s (denoted o(s)).

-~

Definition 3.3.1 For a game tree T = (S, =>, 50, \) and a game position s, let pj :
So=sy -+ - 25, = s denote the unique path from sy to s. For a strategy specification
o € Strat'(P*) we define o(s) as follows:

{a} if Ms)=1i and p3,,m = .
b otherwise.

o [ al(s) = {

o (014 09)(s) = o1(s) Uaa(s).
o (01-09)(s) = o1(s) Noa(s).

o(s) if Vj:0<j<m,a;€mn(s;).

° (7T:>a)(s):{

h) otherwise.

We say that a path pj/ s = 51%32-~-aglsm = s in T conforms to o if
Vj:1<j<m,a; € o(sj). When the path constitutes a proper play, i.e. when
s = Sg, we say that the play conforms to o. The following proposition is easy to see

from the definition.

Proposition 3.3.2 Given a strateqy p = (Su>:>w50a/)\‘u) for player i along with
a specification o, p |=; o (as defined in section 3.1) iff for all s € S, such that

Au(s) =i we have out s (s) € o(s).

For a game tree T = (S,:>,50,X) and a node s € S, let T, denote the tree
which consists of the unique path pj and the subtree rooted at s. For a strategy
specification o € Strat'(P?), we define T, | ¢ = (SU,:>U,50,/):(,) to be the least
subtree of T, which contains the unique path from sy to s and satisfies the property:

for every s; € S,
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X (51) = 4 then for all s, with s;=>s, and a € o(s;) we have s;=>,5, and
o(s

2) = A(s2).

o if Xa(sl) =7 then for all s, with s;=>5, we have s;=,5, and /)\\0(82) = A(s2).

>> =
>>

The truth of a formula « € IT in a model M and position s (denoted M, s = «) is

Am—1

defined by induction on the structure of «, as usual. Let pj be S0Rsy - =S s, = S.
o M,skE=piff pe V(s).
o M,s | —aiff M, s}~ a.
o M,sEayVasiff M,s = aj or M, s = as.
e M, s |= (a)a iff there exists s’ such that s=>s" and M, s’ |= a.
o M,s=(a)aiff m >0, a=a,_1 and M, s, [ a.
o M, s |= ©a iff there exists j : 0 < j < m such that M, s; = a.
o M,slk=(0);:ciff cea(s).

e M,s |= o ~»; (3 iff for all s’ such that s=*s" in T, | o, we have M, s |=
B A (turn; > enabled,).

where enabled, = \/ ((a) True A (0); = a).

/\

B —

A

Figure 3.3: Interpretation of o ~»; (3

Figure 3.3 illustrates the semantics of o ~»; (. It says, for any 1 node [ is
ensured by playing according to o; for a 2 node, all actions should ensure (.

The notions of satisfiablility and validity can be defined in the standard way.
A formula « is satisfiable iff there exists a model M and s such that M,s = a.
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A formula « is said to be valid iff for all models M and for all nodes s, we have
M,s = a.

Consider the formula null’ ~»; 3. This asserts that player i has a strategy to
ensure ( no matter what player 7 does. This makes no reference to how player i
may achieve this objective and thus, is similar to assertions in most game logics.
Now consider the formula ¢ ~»; 3. This says something stronger: that there exists
a strategy u satisfying o for player ¢ such that irrespective of what player 7 plays, 3
is guaranteed. Here, the mechanism p used by player i to ensure (3 is specified by

/
\ \
Vs /

S3

H/\/

l

O

z

2
dﬁ
Figure 3.4: Game arena

Example 3.3.3 Consider the game obtained by the unfolding of the arena shown
in Figure 3.4. Players alternate moves with 1 starting at sg. There are two cycles
Ci:85 — 8¢ — S7 — Sg — 85, Uy 1 81 — S9 — 83 — 54 — s1 and self loops on
nodes t; and t,. Let the preference ordering of player 1 be t; <! t, <! Cy <! C].
As far as player 2 is concerned ¢; <2 C and he is indifferent between C5 and t,.
However, he prefers Cy or ty over {C,t;}. Equilibrium reasoning will advise player
1 to choose the action “0” at sg since at position s; it is irrational for player 2 to
move z as it results in his worst outcome. However the utility difference between C';
and t; for player 2 might be negligible compared to the incentive of staying in the
“left” path. Therefore player 2 might decide to punish player 1 for moving b when
player 1 knew that {Cs,t2} was equally preferred by player 2. Even though ¢; is
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the worst outcome, at s; player 2 can play x to implement the punishment. Let the

valuation satisfy the following constraints:
e The proposition p; holds at states {ss, sz},
e p..i: holds at state sq,
® Pyood holds at states {so, s1, S2, S3, S4}
® Dpunish holds at states {so, s5, Sg, 57, t1}-

The local objective of player 2 is to remain on the good path or to implement

the punishment. Player 2’s strategy specification can be written as
T = ([Pimir = B = [pj = 2]*) - ([pinis = a]' = [p;j = y]?).

We get that 7 ~>2 (Pgood V Dpunisn)- If player 1 knows player 2’s strategy, she might
be tempted to play “a” at sop by which the play ends up in Cs. Let the propo-
sition Puorst hold at t; which is the worst outcome for player 1. Then we have
[Dinit +— a]l ~>1 TPuworst- L his says that if player 1 chooses a at the initial position

then she can ensure that the worst outcome is avoided. O

Example 3.3.4 Consider the formula null’ ~»; (7 ~» ). This says that player i
has a strategy such that from all the outcome states if player 7 follows a strategy
corresponding to 7 then  can be ensured. In other words this construct can be
used to make the assertion: given that player 7 sticks to the specification 7, there is
a strategy for player ¢ to make sure that the maximum 7 can achieve is 5. In general,
the assertion can be parameterized by a specification of player ¢ as well. This takes

the form o ~; (7~ (). O

3.3.3 Axiom system

We now present our axiomatization of the valid formulas of the logic. We find the

following abbreviations useful:

e root = =(P) True defines the root node to be one that has no predecessors.

W "

e §7(a) = turn; A (0); : a denotes that move “a” is enabled by o at an ¢ node.

e nvi(a, ) = (turn; A (0); : a) > [a](c ~; B) denotes the fact that after an “a”

move by player ¢ which conforms to o, o ~»; 8 continues to hold.
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inv? (B) = turn; > [N](o ~; 3) says that after any move of 7, 0 ~»; 3 contin-
ues to hold.
conf . = B({(a)turn; > (a)(7); : a) denotes that all opponent moves in the past

conform to 7.

The axiom schemes

(A0)
(A1)

(A2)

(A7)

All the substitutional instances of the tautologies of propositional calculus.
a) [al(ag 2 ag) > ([a]ay > [a]ag)

b

[@](c1 > ag) > ([@loy > [@]ay)

(
(

b

(a) (a)a > [ala
(

(c
(a
(b

(
(@ya > [ala
(@) True > =(b) True for all b # a

(
(b) Ba = (a A [P]Ba)

(a) ([ —a]);:aforallae X
(b) turn; A ([t — a]'); : ¢ = — for all a # ¢

a) (o1 +09)i:c=01:¢cVoy:c

(
(b) (61-09)i:c=01:cNhog:c

)
)
)
)
)
)
)
a) © root
)
)
)
)
)
)

(¢) (m=0);:c=conf,>(0):c

o~ B2 (B A invi(a, ) A inv(F) A enabled,)

Inference rules

(MP) a, a>f (NG) « (NG-) «

B [a] [@)a

(Ind-past) «a > [Pla

a O Ha

(Ind ~) aAd(a) > [ala, aAturn; > [N]a, a > B A enabled,

a >0~ 3
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The axioms are mostly standard. After the Kripke axioms for the (a) modalities,
we have axioms that ensure determinacy of both (a) and (@) modalities, and an
axiom to assert the uniqueness of the latter. We then have axioms that relate the
previous and next modalities with each other, as well as to assert that the past
modality steps through the (@) modality. An axiom asserts the existence of the root
in the past. The rest of the axioms describe the semantics of strategy specifications.

The rule Ind-past is standard, while Ind ~» illustrates the new kind of reasoning
in the logic. It says that to infer that the formula ¢ ~»; 3 holds in all reachable

states,  must hold at the asserted state and

e for a player ¢ node after every move which conforms to o, # continues to hold.
e for a player 7 node after every enabled move,  continues to hold.

e player 7 does not get stuck by playing o.

3.3.4 Soundness

The validity of axioms (Al) to (A3b) and (A4b) can be shown using standard
modal techniques. Axiom (A4a) is valid since the formulas are interpreted over a
finite extensive game tree with a unique root. The validity axioms (A5) and (A6)

can be easily verified using the semantics of the logic.

Proposition 3.3.5 Aziom (A7) is valid.

Proof: Suppose axiom (A7) is not valid. Then there exists a node s such that
M, s = 0 ~;  and one of the following holds:

o M, s [~ (: In this case, from semantics we get that M, s & o ~»; 5 which is a

contradiction.

o M,s [~ invi(a,3): In this case, we have s € Wi M,s & (0); : a and
M, s' {0 ~+; 3 where s=>s'. This implies that there is a path p°f which con-
forms to o and either M, s [~ 3 or moves(s,) N o(s;) = (). But since s=s,
we have p%¢ conforms to o as well. From which it follows that M,s & o ~; 3

which is a contradiction.
o M, s = inv? (): We have a similar argument as above.

e M,s [~ enabled,: This means moves(s) N o(s) = @, by semantics we have

M, s [~ o ~; 3 which is a contradiction.
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Proposition 3.3.6 Rule Ind ~ preserves validity.

Proof: Suppose that the premise is valid and the conclusion is not. Then for some
node s we have M, s = aand M, s [~ 0 ~»; (3. i.e. there is a path p% which conforms
to o such that M, s, = 5 or o(si) N moves(sg) = 0. Let p* be the shortest of such
path.

Suppose M, s = (3, then we have the following two cases to consider.

e 5,1 € W' By assumption on the path pit, we have M, s, 1 = a A 67 (ap_1)-
From validity of o > 3 (the premise), we have M, s, [~ «, which implies
M, sk [~ [ag—1]ca. Therefore we get M, sp_1 = (aA07 (ag—1)) 2 [ag_1]a, which

gives us a contradiction to the validity of a premise.

e 51 € W" By assumption on the path pi*, we have M, sy = o A turn,.
Using an argument similar to the previous case we also get M, s;_1 [~ [ax_1]a.
Therefore we have M, s_1 [~ (e Aturn;) > [N]a, giving us a contradiction to

the validity of a premise.

If o(si) N moves(sy) = () then we have M, s, |= « and M, s, (= enabled,. There-

fore M, sy, [~ (« > enabled,), which is the required contradiction. O

3.3.5 Completeness

To show completeness, we prove that every consistent formula is satisfiable. We use

the following definitions.

Definition 3.3.7 For a strategy specification o € Strat'(P?) we define the set of

past time formulas occurring in o, denoted P(o) inductively as follows:
o P([ = af') = {¢} foraeX.
o P(oy +03) =P(o1) UP(03).
o P(o;y-09) =P(o1) UP(09).
o P(r = 01) =P(n) UP(0y).
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Definition 3.3.8 For a formula oy we define the sub-formula closure of oy denoted
CL(vw). Let CL'(ap) be the least set of formulas such that:

e oy, ©root € CL(ap).

If ~a € CL'(ay) then o € CL (avp).

If a1 V ag € CL' () then ay,as € CL (ap).

For M of the form {a) or (a) or ©, if Ma € CL'(ay) then o € CL'(avp).

If (0); : a € CL(ayp) then P(0) C CL ().

If 0 ~; B € CL(ap) then f € CL (), nvd(a,B) € CL(ag), mvZ(B) €
CL (ap), enabled, € CL'(ag) and P(o) C CL' ().

CL(a) = CL(ap) U{=a | a € CL'(ag)} where we identify =—a with «.
Definition 3.3.9 A set t C CL(«) is called an atom if

e ©root € t.

o for all ~a € CL(w), ~a € tiff a & t.

o for all oy V as € CL(ap), a1 V as € tiff ag,as € t.

o for all ©a € CL(ty), ©a € tiffa €t or (P)©a € t.

e for all o ~; B € CL(a) if 0 ~; B € t then B € t, invi(a,B) € t, invZ(F) € t
and enabled, € t.

e for all =(0 ~; B) € CL() if =(0 ~; 3) € t then —enabled, € t or =3 € t or
(N)=(o~i B)) € t.

Let o be a consistent formula, and let AT () be the set of atoms of ay. We
let t, ¢ range over AT (ap). Each t € AT (ay) is a finite set of formulas, we denote
the conjunction of all formulas in t by t. For a nonempty subset X C AT (), we
denote by X the disjunction of all £, t € X. Define a transition relation on AT (ay)
as follows: t-5 4pt iff tA (aﬁ7 is consistent. Call an atom t a root atom if there does
not exist any atom ¢ such that ¢ 4t for some a.

The following lemmas can be shown using standard modal logic techniques.
Lemma 3.3.10 For all « € CL(cy) and t € AT (ag) we have the following:
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1. tis consistent.

2. if (a)a is consistent then « is consistent.

3. for all R C AT (o), and t € AT (), if t € R then -t > R.
4. if F«a then a € t.

d. ifl—?a o then t A« is consistent.

Lemma 3.3.11 For atoms t; and ta, the following statements are equivalent.
1. 4 A {a)ty is consistent.
2. (@ Aty is consistent.

Lemma 3.3.12 There exist t1,...,4 € AT (ap) and a1,...a; € ¥ (k > 0) such

a, a .
that t,=5 grte_1 ... = arty, where t, is a root atom.

Proof: Consider the least set R containing t; and closed under the following con-
dition: if t; € R and for some a € ¥ there exists t, such that t;— 474, then t, € R.
Now, if there exists an atom t' € R such that t’ is a root then we are done. Suppose
not, then we have - R > —root. But then, we can show that - R > [P]ﬁ By rule
Ind-past and above we get R > B-root. But then to € R and hence ’E(\) > R and
therefore we get - t, > B-root. Since ~©root € CL(ay) and from Lemma 3.3.10(5)
we get =©root € ty. From axiom (A4a) and Lemma 3.3.10(4) we have ©root € ty

which contradicts the consistency of t,. O

Lemma 3.3.13 Consider the path L 4 arto where t; is a root atom,
1. Forall j € {0,...,k—1}, if [ala € t; and tj 1> art; then a € ;1.
2. Forallje{0,....k—1}, if @a € t; and tj+li>Ath thenb=a and o € tj44.

3. Forall j € {0,...,k — 1}, if ©a € t; then there exists i : j < i < k such that
o € tl

Proof: (1) Since t;11->47t;, we have ’;:1 A {a)t; is consistent. By lemma 3.3.11,
t; A (@)t; 4, is consistent, which implies [@o A (@)t;4; is consistent (by omitting some
conjuncts). Therefore (a@)(a A g;) is consistent. Using (NG-) we get a A ’;; is

consistent and since t;;; is an atom, we have o € t; ;.
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(2) Suppose tj+1i>Ath, we first show that b = a. Suppose this is not true, since
tj+1—b>Ath, we have t; A (l_)>’g; is consistent. And therefore §; A (b) True is consistent.
From axiom (A2c), {; A[@] False is consistent. If (@)a € t;, then we get (@) A [a] False
is consistent. Therefore (a)(a A False) is consistent. From (NG-) we have a A False
is consistent, contradicting the consistency of a (ensured by the fact that (a)a € t;
is consistent).

To show « € ;1 observe that (@)a € t; implies [ala € t; (by axiom (A2b) and
closure condition). By previous argument we get a € ;1.
(3) Suppose ©a € t; and t;;—art;. If @ € t; then we are done. Else, by axiom
(A4b) and the previous argument, we have (@)©a € t;. From (2) we have ©a € t;4;.
Continuing in this manner, we either get an i where o € t; (in which case we are
done) or we get ©a € t,. Since t; is the root atom, we have &, A =(P)True is
consistent. Since ©a € t;, we get t, A (v (P)a) is consistent. Thus we have &, A o

is consistent and therefore o € t,. O

Lemma 3.3.14 For all t € AT (ay) if 0 ~»; 3 & t then there exists a path py* : t =

45 4ty .ak—?lATtk which conforms to o such that one of the following conditions
hold.
o 3¢t

e moves(t) No(ty) = 0.

Proof: Consider the least set R containing t and closed under the following condi-

tion:
e if t; € R then for every transition t;-% 47ty such that a € o(t;) we have t, € R.

If there exists an atom t' € R such that § & ¥ or if moves(t) No(t) = ), then we

are done. Suppose not, then we have - R > 3 and F R > \/ ({(a) True A (0); : a).

acd
Claim : The following are derivable.

1. F (RAturn; A (0); : a) > [d]R.
2. F (turn; A R) > [NV]R.
The claim can be verified as follows. To prove 1, suppose the claim does not hold.

We have that (R A turn; A (0); : a) A (a)=R is consistent. Let R = AT () \ R.
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If R = 0 then R = AT(ap) in which case its easy to see that the claim holds. If
R' # 0, then we have (R Aturn; A (¢); : a) A (a)R’ is consistent. Hence for some
t; € Rand t, € R, we have (§ Aturn;A(o); : a))A(a)t; is consistent. Which implies
t,— 47t, and this transition conforms to o. By closure condition on R, t, € R which
gives us the required contradiction. Proof of 2 is similar.

End of claim

From the above claim and applying (Ind ~) rule we get Roo ~»; 3. But
t € R and therefore - t > o ~»; 3, contradicting the assumption that o ~»; 3 € t. O

Model construction in terms of atoms: Consider the tree structure 747 which
consists of the path t,=5 4pt,_1 ... 2 4pt and the tree unfolding of AT () rooted at
to. By Lemma 3.3.14, the structure Ty satisfies the property if there exists a node t
such that o ~»; 8 & t then there exists a path t = S a7 .. Bt such that 8 Zt,
or moves(t,,)No(t,) = 0. It would be easy if we could build a model for a based on
the tree structure T4r. Since the size of AT («y) is exponential in the size of ayg, this
would immediately lead to the decidability of the satisfiability problem of the logic
as well. The trouble is that the structure (AT («p), — a7) need not be deterministic.
There might exist atoms t;, {5, t3 such that 65 47ty and 5 47ts. Thus — 4 does
not define a parital function and therefore extracting a deterministic model out of
the structure (AT (ap), — ar) is not straightforward.

For the purpose of showing completeness, we can circumvent this problem by
constructing the canonical model in terms of maximal consistent sets. We show how

this can be done below.

Canonical model construction: Let 9 denote the set of all maximal consistent
sets (MCS). We use m, m’ to range over MCS’s. Since ay is consistent, there exists
an MCS mg such that ag € mg. Define a transition relation on MCS’s as follows:
mSm’ iff {{a)a | o € m'} € m. Tt is easy to see that for any MCS m we have
mN CL(ayg) € AT (o).

We define the model M as follows. From Lemma 3.3.12 and Lemma 3.3.13 it
is easy to see that there exist MCS’s my,...,my € 9 and a4,...a; € X (K > 0)
such that mu5 amy_; ... S.me, where m; N CL(o) = t;. Now this path defines a

(finite) tree Ty = (So, =0, S0, A) rooted at so, where Sy = {so, s1,..., sk}, and for
all j € {0,---,k}, s; is labelled by the MCS my,_;. The relation = is defined in
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the obvious manner. From now we will simply say a € s where s is the tree node,
to mean that a € m where m is the MCS associated with node s. The turn function
is defined as expected: X(sj) =1 if turn; € s; else /)\\(sj) =1

Inductively assume that we have a tree T}, = (Sk,:>k,so,xk) such that the
past formulas at every node have “witnesses” as above. Pick a node s € S, such
that (a) True € s but there is no s’ € S, such that s=s’. Now, if m is the MCS
associated with node s, there exists an MCS m’ such that m—>,m’. Pick a new
node s’ ¢ Sy and define Ty, = (Sk+1,:>k+1,so,xk) where Sy = Sk U {s'} and
=1 = = U{(s,a,s)}, where m’ is the MCS associated with s'. Tt is easy to see
that every node in T, has witnesses for past formulas as well. The turn function

is extended as defined earlier for the newly added nodes.

-~

Now consider T' = (5, =, 59, A) defined by: S = |J Sy and = = |J =. Define
k>0 k>0
the model M = (T,V) where V(s) = w N P, where w is the MCS associated with

s. Let =™ denote the reflexive and transitive closure of = relation.

Lemma 3.3.15 For any s € S, we have the following properties.
1. If [dJa € s and s=s' then a € §'.
2. If {(a)a € s then there exists s' such that s=s' and o € .
3. If [ala € s and s'=s then a € 5.
4. If (@a € s then there exists s such that s'=s and o € s'.
5. If Ba € s and s'="s then a € .
6. If ©a € s then there exists s’ such that $'="s and o € §'.

Proof: Cases (1) to (5) can be shown using standard modal logic techniques.

(6) follows from the existense of a root atom (Lemma 3.3.12) and axiom (A4b). O

Lemma 3.3.16 For all ¢ € Past(P), for all s € S, ¢ € s iff p3 ,s = .

Proof: This follows from Lemma 3.3.15 using an inductive argument. O

Lemma 3.3.17 For all i, for all ¢ € Strat'(P?), for all ¢ € %, for all s € S,
(0); :cesiffceal(s).
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Proof: The proof is by induction on the structure of o.
o = [t — a]’: Suppose ([ — a]'); : ¢ € s. If ¢ = a then the claim holds trivially. If
¢ # a then from (A5a) we get that —¢) € 5. From Lemma 3.3.16 we have pJ ,s [~ 1.
Therefore by definition we have [¢) — a]’(s) = ¥ and ¢ € o(w).

Conversely, suppose ([¢) — a]’); : ¢ € s. From (A5a) we have a # c¢. From (A5b)
we get ¢ € 5. By Lemma 3.3.16 p; , s = . Therefore ¢ € o(s) by definition.
The cases when o = (01 4+ 09) and 0 = (07 - 03) follow easily from induction hypoth-
esis.
o=m= 0" Let p; : So=2 - - -aglsk = s be the unique path from the root to s.
Suppose (m = 0'); : ¢ € s. To show ¢ € (7 = 0')(s). Suffices to show that p7
conforms to 7 implies ¢ € ¢/(s). From (A6c) we have conf_ > (0'); : ¢ € s. Recall
that conf, = B((a)turn; > (a)(7); : a) denotes that all opponent moves in the past
conform to w. Thus we get ©((a)turn; A [a](—(7); : a)) V (¢'); : ¢ € s. We have two

cases,

e if (¢); : ¢ € s then by induction hypothesis we get ¢ € o'(s). Therefore by
definition ¢ € (7 = o)(s).

e otherwise, we have ©((a)turn; A [a](—(7); : a)) € s. From Lemma 3.3.15(6),
there exists s; € pg, such that (@)turn; A [@](=(7); : a) € s;. By Lemma
3.3.15(4) there exists s;_; € pg, such that s;_1=>s;. From Lemma 3.3.15(3),
—(m); : a € s;_1. Since s;_1 is an MCS, we have (7); : a € ;1. By induction

hypothesis, a ¢ 7(s;_1), therefore we have that p does not conform to 7.

(<) Conversely, suppose (71 = ¢'); : ¢ € s, to show ¢ & (7 = o')(s). It suf-
fices to show that p; conforms to 7 and ¢ ¢ o'(s). From axiom (A6c), we have
conf. A —(0); : ¢ € s. Rewriting this we get (B((a@)turn; > (@)(7); : a)) A (—(0); :
c) € s. From the first conjunct and using Lemma 3.3.15 we get p; conforms to
7. The second conjunct implies (¢); : ¢ € s and by induction hypothesis we get
¢ ¢ 0'(s). Thus by definition ¢ & (7 = 0)(s). O

Lemma 3.3.18 For alla €11, for alls € S, a € s iff M, s | a.

Proof: The proof is by induction on the structure of . The non-trivial cases are
as follows.

a = (0); : ¢. From Lemma 3.3.17 we have (0); : ¢ € s iff ¢ € o(s) iff by semantics
M,s = (0);:c.
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a =0~ [

(=) We show the following:

1. If 0 ~»; B € s and there exists a transition s=>s’ such that a € o(s), then
{B,0 ~; B} C &. Suppose o ~; § € s, from (A7) we have § € s. We have

two cases to consider.

. /):(3) = i: We have turn; € s. Since a € o(s), by Lemma 3.3.17 we have
(0); : a € s. From (A7) we get [a](o ~; () € s. By Lemma 3.3.15(1) we

have o ~»; 3 € §'.

e \(s) =7 We have turn; € s. From (A7) we get [NV](0 ~; 3) € s, since s
is an MCS we have for every a € %, [a](c ~; ) € s. By Lemma 3.3.15(1)

we have o ~»; 3 € 5.
By applying (A7) at s’ we get 3 € 5.

2. If 0 ~»; 3 € s then there exists s’ such that s=s' and a € o(s). From axiom
(A7), Vaes((a) True A (0); : a) € s. Since s is an MCS, there exists an a such
that (a) True A (0); : a € s. By Lemma 3.3.15(2), there exists an s’ such that
s=s" and by Lemma 3.3.17 a € o(s).

(1) ensures that whenever o ~; § € s and there exists a path p** which conforms

to o, then we have {(3,0 ~»; B} C s;. Since € Past(P), by Lemma 3.3.16 we have
M, s, = (. (2) ensures that for all paths p% which conforms to o, moves(sg) N
o(sk) # (. Therefore we get M, s = o ~; .

(<) Conversely suppose o ~»; 3 & s, to show M,s £~ o ~,; (. It suffices to
show that there exists a path p®* that conforms to o such that M, s, £~ [ or
moves(si) N o(s) = 0.

Let t = s N CL(ay), we have t € AT (o) and 0 ~; B € t. By Lemma 3.3.14,
there exists a path in the atom graph t = TR ﬂ)ATtk such that 5 & t; or
moves(t;) No(ty) = 0. ; can be extended to the MCS s. Let t, = t, U{«|[a;1]a € s}.
Its easy to check that t, is consistent. Consider any MCS s, extending t,, we have
s 5,. Continuing in this manner we get a path in s = $12 5, .. .aglsk in M which

conforms to o where either 3 & s; or moves(s;) No(sg) = 0. O

This leads us to the following theorem which asserts that the axiom system is

complete.
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Theorem 3.3.19 For all formula o, if ag is consistent then oy is satisfiable.

Proof: Suppose aq is a consistent formula, then {cg} can be extended to a max-
imal consistent set my. By the construction of the model M = (T, V), there exists
a node s in 7T such that s is labelled with my. By Lemma 3.3.18, M, s = «ag and

therefore oy is satisfiable. O

3.3.6 Truth Checking

The truth checking problem for the logic is stated as: given a model M and a formula
ap, determine whether M, sy = ap. In this section we show that the truth checking
problem for the logic is decidable. Models of the logic were defined to be extensive
form game trees extended with a valuation function.

However for algorithmic analysis, we need to present the infinite tree in some
finite fashion. As shown in the previous chapter we can think of the infinite extensive
form game tree being generated by the tree unfolding of a finite game arena. Thus
a model M can be presented as a structure (W, —, wg, A, V') where (W, —, wg, \)
constitutes a game arena and V : W — 27" is a valuation function where P’ is a
finite subset of P. This can also be thought of as a Kripke structure extended with
a turn function A. Formulas of the logic are then interpreted on the structure T,
which is the extensive form game tree resulting from the tree unfolding of M.

We can now rephrase the truth checking problem in the following manner:
given a model in terms of a Kripke structure M and a formula oy, determine
whether Ty, so = ap. The idea is to build a tree automaton which accepts Ty,
iff Ty, s0 E ap. Since Ty is a possibly infinite structure, we need to consider
automata running over infinite trees. Towards this objective, we formally define a
Biichi tree automaton below.

Biichi tree automata: A tree 7' = (S, =, so, /)\\) is said to be a k-ary tree if for all
s € S, the out degree of s is k, i.e. | s | = k.

Definition 3.3.20 A Biichi tree automaton running over k-ary trees is a structure

T = (Q,R,I,F) where
o Q is the set of states

e RC QxS xQF is the transition relation.
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o [ C Q is the set of initial states.
o F C Q s the set of “good” states.

A run of 7 on T is a Q labelled tree ;R = (S, :>,50,X,l) where [ : S — Q is the

labelling function defined as,

[ l(So> el

e For any s we have (I(s),s,1(s1),...,l(sx)) € R.

For an infinite sequence of states ¢ : qoq; . . ., let Inf(p) denote the set of states
occuring infinitely often in . For a path p = spaps; ..., let I(p) = l(so)l(s1).... A
run fR is accepted by 7 if for all paths p in R, Inf(I(p)) NF # (.

Proposition 3.3.21 ([VW86]) The emptiness problem of Biichi tree automata can

be solved in polynomial time.

We make use of the following definition and preliminary results for the construc-

tion.

Definition 3.3.22 For a strategy specification o € Strat'(P?) let A, = (Qy, 0y, 05, 1)
be the advice automaton corresponding to o. We construct a deterministic automa-
ton A, as follows: A, = (Qy, 04, 0,,T,) where

o ), =29,
o 6,(X,w.a) = {q' | 30 € X with ¢ € 5,(qw,a)}.

o 0, : Q, x W — 2% which satisfies the condition: for all X = {q,...,q} € Qo

and all game positions w, 0,(X,w) = {0,(q1,w), ..., 0,(qr, w)}.
o J,=1,.

The automaton 2, is constructed by performing the standard subset construction
on the underlying structure of the advice automaton A, and in which the output
symbols are aggregated.

The run of A, on a tree T = (S, =, so, X) is the 9, labelled tree R = (.5, =, s, X, l)
where [ : S — £, is the labelling function defined as,

o l(So> = ja.
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e For any s;, where s,=>s, we have [(s}) = 8,(I(sy), sk, a).

-~

For a deterministic automaton 2, and tree T = (S, =50, \), let R(A,,T) =
(S, =, sO,X, lg, ) denote the run of 2, on 7. The following proposition, which can

be easily verified, asserts the correctness of the subset construction.

Proposition 3.3.23 For all o € Strat'(P?), for all T = (S, =, 80,/)\\), for all s € S
and for all g € Q,,

o g € ly,(s) iff there exists a run R(A,,T) = (S, =, 80,/)\\, la,) of Ay on T such
that 14, (s) = q.

Lemma 3.3.24 For all o € Strat'(P?), for all T = (S,:>,50,/):), for all s, € S
such that /)\\(s) =1, we have o(s) = 0,(ly, (5), last(s)).

Proof: The proof is by induction on the structure of o.

o= [ — a]" -If pk, s, |= ¢ then for all runs R(A,,T) = (S, =, S0, A, l4,) of A, on
T we have o, (4, (sk), last(sx)) = a. By Proposition 3.3.23 we get for all ¢ € Iy, (sy),
05(q, last(s)) = a and therefore we have o0, (ly, (s), last(s)) = {a}.

If p3k, si [~ 1 then for all b € ¥, there exists a run R(A,, T) = (S, =, sO,X, la,)
of A, on T such that o,(l4,(sk), last(sr)) = b. Again by applying Proposition 3.3.23
we can deduce that o, (ly, (Sk), last(sg)) = 2.

For the cases when ¢ = 01 + 09 and ¢ = 07 - 05 the claim easily follows by the
construction of the advice automaton and the induction hypothesis.

o = 7 = 01 - Suppose p;k = s0qq...ax_15; conforms to w, i.e. for all j with
0 <j <k, aj €m(sj), then from the semantics we have (7 = 01)(sx) = (01)(sk)-
In this case, the output of A,—,, at node s; is same as the output of A,, at sg.
Thus by construction of 2, we have 0,5, (la, (sk), last(sk)) = 0o, (la, (Sk), last(sg)).
By induction hypothesis we have o, (la, (sk), last(sg)) = o1(sk). Thus we get
Onmsoy (Lo, (Sk), last(s)) = o1(sg) = (1 = 01)(Sk)-

Suppose pgk does not conform to 7 then by semantics (7 = o1)(s) = X. In this
case, the advice automaton moves to a state gp.. where it is free to produce any out-
put. From the construction of 2, we can deduce that 0, (la, (k) last(sg)) = 2.

O

Let AT () denote the set of all atoms of «q (see Definition 3.3.9). Let tg = {t €
AT (ap) | ©a € timplies a € t}. For t,t' € AT (ag), define t = t iff the following

conditions hold.
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e For all [a]a € CL(ayp), [ala € ¥ iff a € t.
e For all [a)la € CL(ap), if [a]a € t then a € ¥.

Tree automaton construction: Given a model M and a formula oy, the objective
is to construct a Biichi tree automaton 7 (M, o) running over k-ary trees for some
fixed k € N. However, the branching degree of nodes in T; need not be uniform. We
first observe that since the automaton construction is parameterised by the model
M it is possible to always normalise the model to one where all nodes have the same
branching degree. Let b = max,cw | w |, i.e. b denotes the maximum out degree of
positions in W. We can “normalise” M by adding edges to dummy nodes so that all
nodes are of out degree b. These newly added dummy nodes are sink nodes of the
graph, i.e. all the out going edges are self loops. A tree automaton running on such
a normalised tree would enter an accept state on encountering a dummy node and
remain in this state. Thus any path ending in a dummy node is disregarded by the
automaton and only paths which were present in M are analysed for consistency
requirements.

Therefore without loss of generality we can assume that the model M satisfies
the condition: for all w € W, | w | = b. Thus the tree T)y is a b-ary tree.

Let S(ag) = {01, ...,0n} be the strategy specifications appearing in ag and for
1 <j<mand®,, = (Qo,,0ds,,00;,s,) be the deterministic automaton correspond-
ing to the advice automaton Ao, Let Q = Qo) x. .. xQ,,, weuse X = (Xi,..., Xp)
to denote elements of Q.

Intuitively the tree automaton works as follows: It keeps track of the maximal
in

consistent subsets (atoms) of o and simulates the advice automata 2,,, ..., 2

Om

parallel. At a game position s, for a subformula (¢); : a in the atom, it ensures that

14 77

the action is a possible output of the advice automaton A,,. However, (o ~; [3)
is a requirement which says that there exists a game position where enabled, does
not hold or 3 is false. We keep track of such formulas in a “requirement set” U.
When the tree automaton branches, it guesses for each branch which requirements
need to be satisfied on that particular branch. The Biichi acceptance condition is
simply all those states where the “requirement set” U is empty.

Formally we have 7 (M, ap) = (Q, R, I, F) where the set of states Q = (AT (cg) U
{v,x}) x (2CH@0))3 x Q satisfies the property: for all ((t,d),U,Z,Y,X) € Q, if
d = v then

e for all (a)a € Z it is the case that a € t.
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o for all (0;); : a € CL(aw), (0j); : a € tiff a € 0,, (X, last(s)).

We also assume the existence of a special accept state in Q. The set of initial
states T satisfies the condition: ((t,v),U, Z,Y,X°) € T iff

etcty, U=0and Z = 0.
o YV ={(a)a € CL(ay) | (a)a € t}.
o X0 = (X?,..., X0).

The sets Z and Y are used to keep track of the (a)a formulas and ensure that
the edge relation is consistent with these formulas. For a game position s, let
last(s) = w and let w= {wy, ..., wy} with wgwj for 1 < j < b. The automaton
at a state ((t,d),U, Z,Y,X) reading the game position s, guesses a partition of
U =U,U...UU,. Note that to be technically precise, it needs to be mentioned that
the structure M is also encoded into the state space of the automaton. However, to
avoid cluttering of the notations we do not explicitly represent this. The transition
relation R is defined as follows.

((((tr,d1), U, Z1,Y1,XY),a1), -5 (((to, do), U, Zo, Yo, XF), ap)) € R(((td), U, Z,Y,X), )
iff the following conditions hold.

o Ifd=xthend; =x forall j:1<j<b.

e For V(s) = tN Voc(ap) and for all j : 1< j < b, t — t;.

Zij={(a)a €Y |a=ua;} and Zy,...,Z, form a partition of Z.

U —

J

{=(c ~; B) € U; | B, enabled, € C;} if U #0
{=(c~; B) € C; | B, enabled, € C;} if U=10

Y; = {{a)a | (a)a € C;}.

For1<j<b,1<r<m, X! =24, (X,s,a;).

The state with entry x corresponds to a reject state and once the automaton
enters the rejects state it remains in that state for all transitions. The Biichi accep-
tance condition is, F = {((t,v),U, Z,Y,X) € Q | U = 0} U {accept}.

Theorem 3.3.25 Given a model M and a formula oy we have Ty, s0 = o iff
Lang(T (M, a)) # 0.
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Proof: (=): Suppose Ty, S0 = «, we show that there exists an accepting run
of T(M,ap) on Ty For a node s, let t; = {a € CL(aw) | M,s E a}. We
define the labelling I7 inductively as follows. Ir(sg) = ((ts,,v'),0,0,Y,X°) where
Y = {{a)a € CL(aw) | {(a)a € t} and X° = (X7,..., XD).

Now consider any node s such that [7(s) is defined and the labelling function
is not defined on its successors. Let I7(s) = ((t,v"),U, Z,Y,X) and let {s;,...,sp}
be the successor nodes of s with s%sj forall 7 : 1 <j <b. If U# (), for each
formula —(o ~; ) € U we have Ty, s | —(0 ~; (). Thus there exists a path
s = §189...5, such that Ty, s, = =03 V —enabled, and for all intermediate node
s., T, s, = B A enabled,. We also have s; € {s1,...,s5}. Set U; to be the set
of all formulas =(oc ~»; ) € U such that s, = s;. Now for all j : 1 < j < b,
I7(s;) = ((t,,v),U;, Z;,Y;, X7) where

o 7= {{as)a € Cl{as) | {a)a € Y},
o V= {{a)a € CL(a) | (a)a € tg, }.
e Forallr:1<r<m, X/ =0P(X,,s,a;).

It is straight forward to verify that this defines a valid run of the automaton and
that it is accepting.

(«<): Suppose Lang(7T (M, ap)) # 0, let Tpy = (S, =, SO,/)\\) and R = (5, =, SO,/)\\, lr)
be the accepting run of 7 (M, ag) on Tyy. The labelling function I7 labels nodes of
the run tree with states of the automaton. Thus for a game position s, I7(s) is a
tuple ((t,d), U, Z,Y, X). We denote by I7(s)[j] the jth component of the tuple with
l7(s)[1] = (t,d). For a formula «, we also write a € I (s) to mean « € t. We show

the following:
e for all @ € CL(ap) and for all s € S, a € I (s) iff M, s = a.

The proof is by induction on the structure of o and the interesting cases are as
follows.
a=p-Wehave M,s =piff pe V(s) iff p € Ir(s).
a = (0); : a - Recall that S(ag) = {o1,...,0,}. Let r be the index of o in &(wy),
ie.o, =o0. Let Ir(s) = ((t,d), U, Z,Y,X) where X = (X1,...,X). M,s=(0);:a
iff a € o(s) iff a € 0,,(X,, last(s)) (from lemma 3.3.24). Since R is an accepting

run, we have d = v' and by definition of the automaton we have a € Oy, (X,, s) iff
(0)i :a €lr(s).
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a = 0~ 3 - Suppose 0 ~; 3 € Ir(s) we need to show that Ty, s | o ~; (.
It suffices to show that for every path p®* which conforms to o, Ty, sx = [ and
sk No(s,) # 0. We show the following:

1. If 0 ~»; B € I7(s) and there exists an s’ such that s=s' with a € o(s) then
{B,0 ~; B} C lr(s"). Let r be the index of o in &(wy), i.e. 0, = 0. Let
lr(s) = ((t,d),U, Z,Y,X) where X = (Xy,...,X,,). Suppose o ~»; 3 € l7(s)

by definition of atom we have § € I (s). The following two cases arise.

. /)\\(s) = i: We have turn; € I7(s). Since a € o(s), by lemma 3.3.24 we
have a € 0,,(X,, last(s)). By definition of state we have (0); : a € I7(s).
From definition of atom we have [a](c ~»; () € I7(s). By definition of
the transition relation we have o ~»; 3 € I7(s’) and by definition of atom
B elr(s).

. X(s) = 7. We have turn; € I7(s). From definition of atom we get
N](o ~; ) € lr(s) and thus we have for every a € X, [a](o ~; () €
l7(s). By definition of the transition relation we have o ~»; 5 € I (s')
and by definition of atom 3 € I (s').

2. If 0 ~+; 3 € I7(s) then there exists s such that s=s' and a € o(s). Suppose
o ~»; B € l7(s), by definition of atom we have enabled, € l7(s). By expanding
he abbreviation we get \/ . ({a) True A (c); : a) € l7(s). By definition of atom
we get, there exists an a € ¥ such that (a) True, (¢); : a € l7(s). Since R is
an accepting run of 7 (M, ay), we have there exists an s’ such that s=s’ and
a € O,(l7(s),s). By lemma 3.3.24 we have a € o(s).

(1) ensures that whenever o ~; § € s and there exists a path p** which conforms
to o, then we have {,0 ~; #} C lr(sx). Applying induction hypothesis we get
Tar, se = 3. (2) ensures that for all paths p®* which conforms to o, s, No(s;) # 0.
It suffices to show that for every path p?* which conforms to o, Ty, sp = (8 and
sk No(s,) # 0. From the semantics, we get Ty, s = 0 ~; (3.

Conversely, suppose o ~; 3 & l7(s). By definition of atom, (o ~; 3) € l7(s).

We have the following cases:

1. if B & l7(s) then applying induction hypothesis we get Ty, s ¥~ [ and from

semantics we get Ty, s [~ 0 ~; (.

2. if enabled, & l7(s) then by expanding the abbreviation we get \/ .. ({a) TrueA
(0); : a) € l7(s). Thus forevery a € X, either (a) True & lr(s) or (¢); : a & l7(s).
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Let Y = {ay,...,ax,} € ¥ such that Vj : 0 < j < Kk, (a;)True € Ilr(s).
Thus for all j, there exists s; such that sgsj. Let r be the index of o
in (o) and let I7(s) = ((t,d),U, Z,Y,X) where X = (Xy,...,X,,). For
each a; € Y, we have (0); : a; ¢ lr(s) and thus by definition of I7(s),
a; € 0,,.(X;,last(s)). By lemma 3.3.24 we have a; ¢ o,(s). Thus we can

deduce that moves(s) No(s) = (). From semantics we have Ty, s £ o~ (.

At (M= (0 ~; B) € I7(s) and 3, enabled, ¢ l7(s) then we have the following

cases:

e suppose —(o ~; 3) € l7(s)[2] (recall that I7(s)[2] denotes the “require-
ment set” of the tree automaton). Since PR is accepting for all paths
starting at s, eventually the requirement set becomes empty. Thus we
get a path s = s189... 8, such that Vj : 1 < j <k, =(0 ~; 3) € l7(s;)[2]
and —(o ~; 3) € lr(sk)[2]. By definition of the transition relation of the
automaton either 8 & l7(sy) or enabled, ¢ l7(sx). Applying induction

hypothesis and using the semantics we can conclude that Ty, s = 0 ~; [.

e suppose —(0 ~; ) & l7(s)[2]. We show that there exists a path s =
$15g ..., such that for all j: 1 < j <k, =(0 ~; ) € lr(s;) and one of
the following holds:

— 0 & lr(s) or enabled, & l7(sy).

= (o~ B) € Iz (sp)[2]
Since (N)=(0 ~; () € Ir(s), Isy such that s=>sy and =(c ~; B) €
I7(s2). If B or enabled, € l7(s3) or if =(0 ~»; B) € Ir(s)[2] then we are
done. Otherwise, by definition of atom we get (N)—(o ~; ) € Ir(s2).
By repeating the argument there exists s3 such that —(o ~»; ) € Ir(s3).
Since fR is an accepting run, for every path starting at s the requirement
set, eventually becomes empty. Thus we get a path s = s155...5;_15%
such that I7(sx—1)[2] =0 and for all j : 1 < j < k, =(0 ~; B) € l7(s)
and 3, enabled, & l7(sy). By definition of the transition function of the

automaton we have —=(o ~; ) € lr(sx)[2].
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Complexity of truth checking: For the given formula «y, let |ag| denote the
size of ag. The states of the tree automaton are the atoms of g and the states of
the determinised versions of the advice automata. The model M is also hard-coded
into the automaton structure. Since the number of strategy specifications occurring
in g is bounded by |y, the size of the tree automaton is doubly exponential in
|| and linear in |M|. To solve the truth checking problem, we need to check the
emptiness of 7 (M, ay). Since 7 (M, o) is a Biichi tree automaton, this can be done
in polynomial time (due to Proposition 3.3.21). Thus we get a total time complexity

of doubly exponential in |ag| and polynomial in the size of the model.

3.3.7 Extension to joint actions

We can also use strategy specifications to reason about joint actions of players in
the setting of multi-player games. For this purpose, in this section we assume that
the set of players N = {1,...,n}. For each player : € N, let ¥; be the set of actions
of player i and 3 = J, v %i-

For an action a € ¥, let loc(a) = {i € N | a € ¥;}. Intuitively loc(a) denotes the
set of all players for which a is a joint action. For a subset of players C C N, let C
denote the set C = N \ C. Consider the following syntax for strategy specifications:
for each C C N we have

Strat® =) — al’ | o1+ 05|01 00 | T =0

where loc(a) = C and 7 € StratC.

For the construct [¢) — a]¢, the action a needs to be a joint action of the subset
of players C and it says that for all game positions where the condition ¢ holds, the
players in C play the joint action a. m = o says that in the past if the observable
behaviour of the coalition C conforms to 7 then C stick to the specification o. The
game structures under consideration now need not be turn based and can allow
concurrent moves by a subset of players. The notion of strategies of players can be
defined appropriately. Embedding these strategy specifications into a modal logic
as given in Section 3.3 enables us to reason about the abilities of subsets of players
and mechanisms by which they can ensure specific outcomes.

However, note that what is done here is different from the concept of coalitions
studied in classical game theory. Cooperative games [Jon80|, which is a widely studied

branch of game theory, reasons about the rational behaviour of collections of players.
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Unlike non-cooperative games (the kind of games we have looked at so far), in
cooperative games players have the freedom of pre-play communication and to make
binding agreements. Very often the literature also talks about side payments where
players are allowed to transfer utility even before the game is played. In contrast,
in our setting players do not communicate and therefore negotiations of players are
never part of the model. Even though the assertions involve subsets of players, we
are still reasoning about abilities of a subset C with respect to its compliment set C.
The alternating temporal logic (ATL) [AHKO02] also reasons about joint strategies
of players and how they can ensure certain outcomes. The main construct in ATL
has the form ((C))« which says that the subset of players in C has a strategy to ensure
a. ATL formulas are interpreted over concurrent game structures which are game are-
nas where concurrent moves of players are enabled. In its original form, ATL talks
about “existence of strategies” of players. Naming functional (memoryless) strategies
and including them explicitly into the logical language was suggested in [WvdHWO07]
and [vdHJWO05|. ATL extended with the ability to specify actions of players in the
formulas was studied in [Ago06] and [Bor07]. Since the unfolding of the game struc-
ture encodes past information, the logic itself can be extended with past modalities
as well as knowledge modalities in order to reason about the history information
and epistemic conditions used in strategizing by players ([JvdHO04|,[vdHWO02]).
Reasoning about abilities of coalitions as done in ATL can be achieved in our
framework by replacing each joint action a with loc(a), the subset of players which
share the action a. The interpretation would then be that the subset of players in
loc(a) have a joint action to ensure a particular outcome. For a finite game arena,
memoryless strategies can be easily coded up in terms of strategy specifications by
using special propositions to identify each game position uniquely. Thus reasoning
about functional (memoryless) strategies explicitly in the framework can also be
achieved. The modal logic which embeds the specification language can always be
extended with the past, future and knowledge modalities depending on the applica-
tion in mind. However, in the context of specifications to help build advice functions
for players, it is not clear what joint actions (without communication) achieve in a

game theoretic sense.

3.3.8 Discussion

The approach we adopted to specify strategies is close in spirit to reasoning about

games in the dynamic logic framework. As mentioned earlier, the proposed logic
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can talk about “existence of strategies” with the assertion of the form null’ ~»; 3.
However, it can make stronger assertions of the form o ~+; 3 which also specifies the

mechanism which need to be used by player i in order to guarantee the outcome (.

Reasoning in finite extensive form games: The logic can also be used to
perform outcome based reasoning in finite extensive form games. For ¢+ € N, let ©;
denote the set of propositions coding the utility of players. Consider the following

formula:

BT (0,0') = /\ (0’ ~; (leaf > 0;) > 0 ~»; (leaf > 0;))
0;,€0;

This says that irrespective of what player 7 plays if there exists a strategy u’
satisfying ¢’ such that 6; is guaranteed, then there also exists a strategy u satisfying
o which guarantees 6;. In other words, for player ¢, the specification o is better than
o'

Given a finite set of strategy specifications Y for player i, we say that o is the

best strategy if the following holds:

Best'(c) = /\ BT'(0,0")
o'et

Representing complete strategies: Note that in the case of finite extensive
form games, we can code up the game positions uniquely using propositions. In
this case, it is possible to represent complete strategies in terms of strategy spec-
ifications as well. Suppose the proposition p!,...pF uniquely identifies all player i
game positions, the specification representing a complete strategy would have the
form o = [p! — a1]'- - [p¥ — ai]’. In this particular scenario, the notion of strategy
comparison and best strategy reduces to the classical notions by taking the set Y?
to be the set of all strategies for player 1.

This also shows that dynamic logic based reasoning about games as mentioned
in Section 2.4 is subsumed by the proposed logical framework. However, the most
important aspect in which we deviate from dynamic logic based reasoning is that
we do not require that the logic codes up complete strategies of players. Thus
formulas of the logic need not be parameterised by the specific game structure under
consideration, in particular it need not depend on the specific bound on the length
of plays. This also enables us to reason about more “generic” games of unbounded

duration.
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Chapter 4
Dynamic logic on game composition

In the previous chapter we looked at logical analysis of strategies where the game
representation itself is assumed to be atomic. The emphasis was to reason about
strategies and develop a framework to build strategies in a compositional manner as
in the case of programs. The logical formalism developed does not explicitly dictate
the structure of the game arena and thus is closer in spirit to endogenously defined
logics.

Game theoretic techniques have often been used in dealing with various issues
in logic. In the latter half of the last century, the language of games was extensively
used to discuss questions in model theory, typically in the context of model con-
struction and for comparing models or expressiveness of logical languages. This was
demonstrated by the work of Hintikka [Hin68| whereby the meaning of quantifiers
was explained in game theoretic terms. In this approach, semantics of quantified
first order formulas is given in terms of a two player zero sum game. Logical notions
like satisfiability are reduced to existence of winning strategies for one of the play-
ers. Games have also found useful applications in model theory as illustrated by the
characterisation of elementary equivalence in terms of Ehrenfeucht-Fraisse games
[Ehr61]. The question here is whether two structures are distinguishable with re-
spect to first order formulas. This question can be translated into a game where the
winning strategy of a player corresponds to a separating formula.

The notion of composition is inherent to any logical formalism, thus games which
model logical properties can be thought of as being composed in some structural
fashion. When games are themselves structured, players strategic response reflects
this structure as well. For games of bounded length, an action labelled modal logic

similar to the one presented in Section 2.4 reflects game and strategy structure
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well, but when we consider unbounded play as arising from unbounded repetition of
games, the situation is different. Propositional game logic [Par85], the seminal work
on logical aspects of game theory, builds composite structure into games. Game
logic initiated the study of game structure using algebraic properties. Pauly [Pau01]
has built on this to describe abilities of coalitions to achieve desired goals and to
provide interesting relationships between programs and games.

The strategies used by a player in such a composite game would depend on
not just the outcome specification but also what strategy was used, especially by
opponents, in the past. The history information can then be analysed by taking
into account the underlying structure of the composite game. We suggest that
in reasoning about structured games, it is useful for the strategies of players to
also reflect the structure. Thus rather than reasoning about the strategies in the
composed game, one should look at strategies in atomic games and compose such
atomic game strategy pairs.

In this chapter, we look at a framework where both games and strategies are
structurally built and where the structure is explicitly represented in the formulas
of the logic. In the case of extensive form games, we suggest that considering game
- strategy pairs is useful: suppose that we have a 2-stage game g; followed by g-.
Consider player 1 strategizing at the end of g;, when gy is about to start; her
planning depends not only on how g5 is structured, but also how her opponent had
played in g;. Thus her strategizing in the composite game g;; g is best described
as follows: consider g; in extensive form as a tree, and the subtree obtained by
opponent employing 7; when ¢, starts from any of the leaf nodes of this subtree,
play according to 0. We encode this as (g1, 7); (g2,7), and see (g2,0) as a response
to (g1, 7). Thus the “programs” of this logic are game - strategy pairs of this kind.

We consider a propositional dynamic logic, the programs of which are regular
expressions over atomic pairs of the form (g, o) where g is a finite game tree in ex-
tensive form, and o is a strategy specification, structured syntactically. The central
syntactic device consists of interactive structure in strategies and algebraic struc-
ture not only on games but on game - strategy pairs. While the technical result
is a complete axiomatization and the decidability of the satisfiability problem, we
see this contribution as an advocacy of studying algebraic structure on strategies,
induced by that on games.

In contrast, in normal form games strategies are presented in an abstract manner

and the reasoning in such games are driven by outcome specifications. A normal
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form game can be viewed as an extensive form game abstracted into a tree of depth
one, where edges are labelled by a tuple of strategies, one for each player. There is
no past and future that strategies refer to, and we only speak of notions like rational
response, dominant strategies, equilibrium and so on. However, when we consider
repeated games, or games composed of smaller games, the notion of strategic re-
sponse of a player to other players’ moves becomes relevant, pretty much in the
same way as it is used in extensive form games. History information, as well as epis-
temic attitudes of players become relevant. In this setting, we consider composition
of game play pairs, corresponding to the fact that the reasoning performed in single
stage is outcome based. On the technical front, a complete axiomatization of the
logic can be provided as in the case of extensive form games. However, the central
objective is to highlight the logical differences between composition of normal form
games and that of extensive form games, in terms of the reasoning involved.

In the setting of compositional games, to illustrate the difference between rea-
soning about games and reasoning about strategies, we find it instructive to first

review propositional game logic.

4.1 Game logic

Propositional game logic [Par85| initiated the logical study of determined two person

zero sum games in a compositional framework.

Syntax

Let the two players be denoted as player 1 and player 2. As in the case of propo-
sitional dynamic logic, the language of game logic consists of two sorts: games and
propositions. Let I'y be a set of atomic games and P a set of atomic propositions.
The set of composite games I' and the set of formulas ® is built from the following

syntax:

L = gl lnuUrly |y
= ploeleiApa| (1)

where p € P and g € Tg. Let [y]p := = {(y)—¢ and v, Ny 1= (v U~
The formula (7)p asserts that player 1 has a strategy in game 7 to ensure ¢
and [y]p expresses that player 1 does not have a strategy to ensure —, which by
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determinacy is equivalent to the assertion that player 2 has a strategy to ensure .
The intuitive definition of composite games is as follows: 7;;7, is the game where
~1 is played first followed by 9, 71 U 75 is the game where player 1 moves first and
decides whether to play v, or 45 and then the chosen game is played. In the iterated
game v*, player 1 can choose how often to play + (possibly zero times). He need
not declare in advance how many times v needs to be played, but is required to
eventually stop. The dual game 7¢ is the same as playing the game v with the roles
interchanged.

The semantics of the logic is defined in terms of neighbourhood relations. At
the atomic level, the game structure itself is not important since the emphasis is on
reasoning about powers of players. Thus composition of games in effect corresponds

to composing abilities of players. The formal semantics is given below.

Semantics

A game model M = ((S,{E, | g € To}),V) where S is a set of states, V : P — 2°
is the valuation function and E, : S — 22° is a collection of effectivity functions
which are monotonic, i.e. X € E (s) and X C X' imply X' € E,(s). The idea is
that X € E,(s) holds whenever player 1 has a strategy in game ¢ to achieve X.
The truth of a formula ¢ in a model M at a state s (denoted M, s = ) is defined

as follows:

M,skEp iff se€V(p)

M, s = —p iff M,s -

M,sk=pi Npy iff M,s =@ or M,s = 9

Msk= (e iff oM e B (s)
where oM = {s € S| M, s = ¢}. The effectivity function F, is defined inductively
for non-atomic games as follows. Let E,(Y) = {s € S | Y € Ey(s) for g € T's}.
Then

(YY) = By (B, (Y))
E%U“/z (Y) - Evl (Y) U Ew (Y)

Ea(Y) = E(Y)

E.(Y) = pXYUE/(X)

where 1 denotes the least fixpoint operator. It can be shown that the monotonic-

ity of I, is preserved under the game operations and therefore the least fixpoint
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pX.Y UE,(X) always exists.
On the technical front, the following theorems state that the satisfiability prob-

lem and model checking problem for game logic is decidable.

Theorem 4.1.1 ([Par85, Pau01]|) The satisfiability problem for game logic is
EXPTIME-complete.

Theorem 4.1.2 ([Ber05]) The model checking problem for game logic over finite
structures is in NP N Co-NP.

Expressive power

To investigate the expressive power of game logic with respect to established for-
malism, it is convenient to interpret game logics on Kripke structures. In this case
the atomic games are one player games and all the interactive aspect is controlled
syntactically using the dual operator. Over Kripke structures, in the absence of dual
operator, game logic is nothing but propositional dynamic logic (PDL). The abil-
ity of PDL to express properties of programs is limited, for instance it well known
that the property of well-foundedness or equivalently that of total correctness cannot
be expressed in PDL. Several extensions of PDL have been proposed to get over
this limitation. These include adding explicit predicates like loop [HP78| and repeat
[Str81]. The dual operator increases the expressive power of game logic significantly.
The property of total correctness can be expressed by making use of the dual opera-
tor and thus we get that game logic is strictly more powerful than PDL [Par85]. In
fact, it can be shown that game logic is strictly more powerful than the extension
of PDL with looping operator [Ber05].

Propositional p-calculus [Koz83] was one of the most powerful logics proposed
to deal with limitations of PDL. It was shown that game logic interpreted over
Kripke structures can be embedded into the two variable fragment of propositional
p-calculus [Ber05]. Since the variable hierarchy of p-calculus is strict [Ber05] we can
also conclude that p-calculus is strictly more powerful than game logic. It is quite
conceivable that the model checking problem for game logic is easier than that of
p-calculus. However, Berwanger [Ber03| shows that this is not the case.

One of the main open problems in game logic is to give a complete axiomatization
of valid formulas of the logic. Parikh in [Par85| proposed an axiom system and
conjectured it to be complete, unfortunately no proof of this has been given so far.

A complete axiomatization for the dual free fragment of game logic is presented
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in [Par85|. For the iteration free fragment, a complete axiomatization is given in
[Pau01].

In game logic, starting with simple atomic games, one can construct large com-
plex games using operators like composition and union. Due to the Box-Diamond
duality (v)¢ = —[y]7, it is easy to see that by definition, the games constructed
remain determined. The compositional syntax of game logic presents an algebra for
game construction. Rather than look at arbitrarily large games, this approach gives
us a way of systematically studying complex games in a structured manner and to
also look at their algebraic properties. One should however note that the reasoning

performed in game logics is based on “existence of strategies”.

Reasoning in compositional games

Game logic makes assertions about composing neighbourhoods or abilities of players.
Players’ abilities in a game arise due to the strategies they have access to. Under
the assumption that players are perfectly rational, reasoning about existence of
strategies suffices since such players will always be able to employ their best possible
choice of actions. However, as noted earlier in the introduction, in many practical
situations players have limited computational resources. In such cases, it makes
sense to explicitly reason about the mechanisms by which these abilities arise in
a logical framework. To reason about strategies in a compositional framework, the
abstract presentation of games is not sufficient, the analysis will depend on the exact
representation under consideration. We consider the two standard representations:
extensive form games and normal form games and look at how a dynamic logic

framework capable of reasoning about strategies can be developed.

4.2 Extensive form games

We use the notion of finite extensive form games as introduced in Section 2.1. The
logical formalism (which we introduce shortly) allows formulas to explicitly refer to
the game tree under consideration. We therefore need to provide a syntactic repre-
sentation of the (semantic) game tree. A simple syntactic structure for specifying

finite extensive form game trees is presented below.

70



4.2.1 Syntax for extensive form game trees

Let Nodes be a countable set. The syntax for specifying finite extensive form game

trees given by:
G(Nodes) := (i,x) | 3Xa,,es((i,2), am, ta,,)
where i € N, € Nodes, J C 3, and t,, € G(Nodes).
Definition 4.2.1 Given g € G(Nodes) we define the tree T, generated by g induc-
tively as follows.

o g=(i,x): T, = (S,, :>g,/)\\g, sz) where Sy = {s,}, /)\\g(sx) = 1.

o g=((i,x),a1,te,) + -+ ((4,2), ax, ta,): Inductively we have trees Ty,... Ty
where for j 1 < j <k, T; = (Sj,:>j,/):j,sj70). Define T, = (Sg,:>g,/)\\g,sx)
where

- Sg:{sx}USTIU...USTk.
— /):g(sx) =i and for all j, for all s € St,, /):g(s) = /):j(s).

T =g = Uj:lgjgk({(sma aj, j0) U =>;).

1 @o
/ \
x1 2 2z
C/ Yj Ci/ Yj
Y1 Y2 ys ya
Figure 4.1: Extensive form game tree

Example 4.2.2 Consider the extensive form game tree shown in figure 4.1. The
nodes are labelled with turns of players and edges with the actions. The syntactic

representation of this tree can be given as follows:

e g=((1,20),a,t1)+ ((1,z¢), b, t3) where

— b= ((27 xl)v C1, (27 yl)) + ((27'r1>7 d17 (27 y2)) and
—ty = ((2’ xQ)’ C2, (2’ y3)) + ((27$2)7 da, (2’ y4))'
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4.2.2 The logic

The logic is a simple dynamic logic where we take regular expressions over game-
strategy pairs as programs in the logic. Atomic programs are of the form (g, o)
where ¢ is a finite extensive form game and ¢ is a strategy specification as defined
in section 3.1. Formulas of the logic can be used to specify the result of a player

following a particular strategy in a specified game enabled at a game position.

Syntax

The syntax of the logic is given by:
b:=peP|-alaVal)a

where £ € T, the set I' consists of game strategy pairs which is defined below.

The construct & represents regular expressions over game-strategy pairs (g, o).
For the atomic construct (g, o) the intuitive meaning of the formula (g, o)« is: in
game g player ¢ has a strategy p conforming to the specification o such that o holds
at all leaf nodes reached by following p. In other words, the strategy u ensures the
outcome .

Game strategy pairs: The syntax for composition of game strategy specification

pairs is given by,

['i=(g,0) [ ;& & U& [
where g € G(Nodes), o € Strat'(P?).

The atomic construct (g, o) specifies that in game g a strategy conforming to
specification ¢ is employed. Game strategy pairs are then composed using standard
dynamic logic connectives. & + & would mean playing & or &. Sequencing in our
setting does not mean the usual relational composition of games. Rather, it is the
composition of game strategy pairs of the form (g1,01); (g2, 02). This is where the
extensive form game tree interpretation makes the main difference. Since the strat-
egy specifications are intended to be partial, a pair (g, o) gives rise to a set of finite
trees and therefore composition over trees need to be performed. £* is the iteration

of the ‘;” operator.

Remark: We use the syntax for strategy specifications given in Section 3.1. How-
ever, for technical convenience, in the case of atomic strategy specifications we re-

strict our attention to boolean preconditions rather than allowing past time tense
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logic formulas. The main technical result of this chapter is a complete axiomatiza-
tion of the logic presented above. It is easy to verify that this result can be extended
to the framework which allows past time preconditions as well. The axiom system
needs only to be enriched with the appropriate axioms for the past time modalities.
The emphasis of this chapter is to show how compositional structure of games can
be effectively used in strategizing and for this purpose boolean preconditions suffice.

For a countable set of propositions P, the set of boolean formulas over P is given

by the syntax:

U(P):=pe P[]V

Given a valuation function, the semantics is defined in the obvious manner. In
what follows we take atomic strategy specifications to be of the form [¢) +— a]’ where
Vv € U(PY).

Model

The formulas of the logic express properties about game trees and strategies which
are composed using tree regular expressions. These formulas are interpreted on
game positions and they assert properties of the frontier nodes of the game tree.
The structure of the game tree itself is dictated by the game strategy pairs. Thus
models of the logic are game trees, but due to the presence of unbounded iteration,
this can potentially be an infinite set of finite game trees. Alternatively, we can
think of these game trees as being obtained from unfoldings of a Kripke structure.
As we will see later, the logic cannot distinguish between these two. The logic
introduced in Section 3.3, considered the game arena as atomic and did not reason
about compositional structure within the arena. Thus we required the model to
be deterministic. In the dynamic logic introduced here, the language is allowed
to dictate the compositional structure of the game and the eventual game structure
under consideration is specified by the formula. Therefore, we do not need to restrict
ourselves to deterministic models.

A model M = (W, —, A\, V') where W is the set of states (or game positions), the
relation — C W x ¥ x W, the valuation function V : W — 2P and A\ : W — N
is a player labelling function. Note that we do not require the transition relation
itself to be deterministic. However, we require that the move relation is consistent

with respect to player labelling. Thus the turn function X is required to satisfy the
property:
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e For all w € W, if w=w' and A(w') = i then for all w” such that w-—>w", we

have A(w") = 4.

Semantics

The truth of a formula o € ® in a model M and a position w (denoted M, w |= «)

is defined as follows:
o M,wEpiff pe V(w).
o M wlE —aiff M,w = a.
o M,wE oy Vayiff Myw = a; or Mw | as.
o M,w k= (€)aiff I(w, X) € Re such that Yu' € X we have M, w' |= o

A formula « is satisfiable if there exists a model M and a state w such that
M, w = a.

For £ € T', we want B¢ C W x 2. To define the relation formally, let us first
assume that R is defined for the atomic case, namely when £ = (g, ). The semantics

for composite game strategy pairs is given as follows:

® Ree, = {(u,X) | Y C W such that (u,Y) € R, and Vv € Y there exists
X, € X such that (v, X,) € Re, and |,y X, = X }.

veY v

[ ] R&U& = R& U R&.
® Rew = Unzo(Rﬁ)n where (R¢)" denotes the n-fold relational composition.

In the atomic case when £ = (g, o) we want a pair (u, X) to be in R, if the game
g is enabled at state u and there is a strategy conforming to the specification o such
that X is the set of leaf nodes of the strategy. In order to make this precise, we will

require the following notations and definitions.

Restriction on trees: For w € W, let T, denote the tree unfolding of M starting
at w. We say the game g is enabled at a state w if the structure g can be embedded
in T,, with respect to the enabled actions and player labelling. Since M need not be
deterministic, there could be multiple embeddings, and therefore we work with the
maximal embedding (denoted T, |'g) and this is the game tree under consideration.

Formally this can be defined as follows:
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Given a state w and g € G(Nodes), let T, = (S, =, Aty sw) and T, =
(Sg, =>4, Xg, sg0)- The restriction of T, with respect to the game g (denoted T,,'g) is
the subtree of T, which is generated by the structure specified by 7,. The restriction
is defined inductively as follows: T, ['g = (.5, :>,X, o, f) where f: S — S,. Initially
S = {su}, X(sw) = XM(sw), So = Sy and f(Su) = Sg.0-

For any s € S, let f(s) =t € S,. Let {ay,...,a;} be the outgoing edges of ¢, i.e.
forall j : 1 <j <k, tiﬁgtj. For each a;, let {sjl-, ..., 87} be the nodes in Sy such
that ngsz- foralll:1 <[] <m. Add nodes sjl-, o, 8T t0 S and the edges sgsé
forall [: 1 <1 <m. Also set X(sé) = /):M(sé) and f(sh) = t;.

We say that a game g is enabled at w (denoted enabled(g,w)) if the tree T, 'g =
(S, :>,X, So, f) satisfies the following property: for all s € S,

L S:f<8)7
o if 55 () then A(s) = A (f(s)).

A strategy for player i on T, | g can still be thought of as a subtree where at
every player ¢ vertex, there is exactly one outgoing edge and for player 7 vertices, all
outgoing edges are included. In the functional notion, this corresponds to picking
not just an action but also a successor node on the action.

For a game tree T, let Q'(T) denote the set of strategies of player 7 on the game
tree T" and frontier(T) denote the set of all leaf nodes of T

Atomic game-strategy pair: For an atomic game-strategy pair £ = (g,0) we
define R, as follows:
Let g be the game with a single node g = (i, x)

o R0 = {(u,{u})} if enabled(g,u) holds, for all i € N, for all o € Strat’(P*).
For g = ((4,2),a1,te, + ...+ (4,2), ak, ta,)

o R0 = {(u,X) | enabled(g,u) and 3u € Q(T, | g) such that p |=; o and
frontier(pu) = X}.

Example 4.2.3 Let the extensive form game g be the one given in Figure 4.2(a)
and the Kripke structure M be as shown in Figure 4.2(b). For the node u of the
structure the restriction T}, |\ g is shown in Figure 4.3. This is the maximal subtree

of T,, according to the structure dictated by ¢g. For instance at node v; there are
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VN YN VNN
(2): Ty (b): Ty

u 1
/ \
v 2 2 vy
I/lxl n xy Y/\Q
w1 w2 w3 w4 ws

Figure 4.3: Restriction of T}, to Ty at u

two x; labelled edges present in M and therefore both have to be included in T}, |\ ¢
as well.

Now consider the player 1 strategy specification o = null'. At node u, the choice
“a” can ensure player 1 the states {w;,ws, w3} and the choice “b” can ensure the
states {wy, ws}. Therefore we have the relation R, ) = {(u, {w1,ws, ws}), (u, {ws, ws}),
(v1, {wr, w2, w3}), (v2, {wa, ws})}-

Suppose M, u = p and consider the specification o = [p — a]'. Since p holds at
the root, player 1 is restricted to make the choice “a” at u. Hence the relation in

this case would be R(g,a) = {(u, {wy, wa, ws}), (v1, {wr, we,ws}), (va, {wy, ws})}. O

Example 4.2.4 For a game g and a specification o of player i, the formula ((g, 0)>v0z

asserts that the game g is enabled and player ¢ has a strategy in g conforming to o
to ensure «.
The logic is also powerful enough to assert the non-existence of strategies for a

player with respect to ensuring an outcome «. For a game g, consider the formula
/ i Y i Y
o o/ = ((g,null")) True A —={(g, null")) «.

The first conjunct ((g, nulli))vTrue asserts the fact that game g is enabled. Given
that ¢ is enabled, the only way —((g, nulli)>va can be true is if player ¢ does not

76



have a strategy conforming to null’ which ensures .. Recall that any strategy of
player i conforms to null’. Thus o holds at a state u iff player i does not have a

strategy at u that ensures the objective a. O

2N |
N YN N

(91) (92)

Figure 4.4: Composition of games

Example 4.2.5 To illustrate compositional reasoning in the logic, consider the
games ¢, and g9 given in Fig. 4.4. Let u be a state of the model where ¢; is
enabled. Let g denote the game g; g5, i.e. the game obtained by pasting g, at each

of the leaf nodes of g;. We use the following notations:

e w®: denotes the state reached after action a;.
e w1 the state reached on following actions a; and b;.

° wal,b1 .

o the state reached on the sequence of actions aibyx1y; where a,b; are

actions in game ¢; and x;y; actions in game gs.

Let winy, winy and p be propositions whose valuations are given by V (winy) =
{202}V (wing) = {w? w22} and V(p) = {w* }. Consider the following

T1,Y17 T x1,Y2

specifications:
o T=[p— b]? [-pr b
o 0 =[True — z;]".

It is easy to see that ((gi,7))winy holds at u. Player 1 does not have a strat-
egy in the composite game ¢ to ensure win;. However, in the composite pair
¢ = (g1,7); (g2, 0), it is easy to see that ({)wing holds. Assuming that in the game
g1 player 2 plays according to 7 then in g, by using a strategy which conforms to o

player 1 can ensure win. O
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In some sense the above example says that reasoning in the game g is different
from reasoning in g; followed by go. In the latter, the additional structural informa-
tion is available which can be used for strategizing. For simple game structures it is
quite obvious that such reasoning can be done with a past modality. It is iteration
which provides the actual expressive power. In the presence of iteration, the analysis
asserts the fact that players can take into account the structure of the game and the
opponent’s strategy. In particular while strategizing, a player can make use of the
fact that the opponent is using a bounded memory strategy and that with the type
of strategy that is being used the opponent can be forced into a particular region of
the game graph.

The above mentioned reasoning can also be thought of as players trying to attain
certain local goals. If player 2 plays to achieve the local goal wins then player 1 can
use this information and respond with a strategy in g, to achieve the objective win;.
Players can then try to achieve their global objective by performing appropriate

composition of the local objectives.

4.2.3 Encoding PDL

In this section we show that the propositional dynamic logic (PDL) (introduced in
Section 2.4) can be encoded into the dynamic logic on compositional games. We
look at the “test free” version of PDL. In Section 4.2.6 we show how the test operator
can be added to the dynamic logic on compositional games. Thus it follows that

full PDL can also be encoded in the logic.

Translation

In order to translate PDL formulas into formulas in our logic, we make use of the
following games: g = ((i,),a,(j.y)) and g, = ((7,x),a, (j,y)). For a program

v € P, we translate v into a composite game-strategy pair & € I' inductively as

follows:
lal = (g}, [True — a]') U (g%, [True — a]")
Ivi; 2l = Il el
MUyl = |nlulel
il = Inl

Proposition 4.2.6 For all M and v € P if (u, X) € Ry, then | X|=1.
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Proof: The proposition can be easily verified, the interesting case is when we have
an atomic program, i.e. ¥ = a € X. In this case we have |a| = (g%, [True — a]’) U
(gL, [True — a)"). Suppose (u,X) € R}, assume without loss of generality that
(u, X) € Rigi [Truea)iy- From semantics we have that the game g is enabled at u
and there exists a strategy for player ¢ which conforms to [True — al’. Since g¢ is
enabled at u we have that A(u) =i and player i’s strategy needs to choose a unique
edge in the tree T, [' g, it follows that |X| = 1. O

For a pair (u, {w}), let map(u,{w}) = (u,w). We extend map to sets of such
pairs as map(Y) = {map(y) | y € Y}. For v € P, due to proposition 4.2.6 it follows
that map(R},)) is well defined.

Lemma 4.2.7 For all M, for all v € P, RfDL = map(R},).

Proof: The proof is by induction on the structure of ~.

v = a. Suppose (u,w) € RIPL. This implies that u-—w in the Kripke structure M.

Without loss of generality assume that turn(u) = 4, then we have g’ is enabled at

u. Since [True — a]’ is a player i specification and u->w we get (u,{w}) € R},|.
Conversely, suppose (u, {w}) € Rj,. Assume that turn(u) = i, from semantics

we have (u, {w}) € R4 [True—a)i)- This implies that g’ is enabled at u and thus

u->w. Therefore we get (u, w) € RPPE.

v =71 U~s. The claim easily follows from application of induction hypothesis.

Y = 71;72. Suppose (u,w) € RFP", from semantics we have that there exists a

v such that (u,v) € RFPY and (v.w) € REP. By induction hypothesis we have

(u,{v}) € Ry, and (v, {w}) € R},|. From semantics we get (u, {w}) € R},. Using

a similar argument we can show that if (u,{w}) € Ry, then (u,w) € RJP".

7 =77. Suppose (u,w) € RIPF, from semantics there exists a k such that (u,w) €

(RIPF)*. By a second induction on k we can show that (u,{w}) € (R},))",

which implies (u,{w}) € (R},:|) as well. A similar argument also shows that if

(u, {w}) € Ry then (u,w) € RIPE. 0

The translation function |- | can be extended to formulas of PDL in the obvious

manner where:

o I{mal = D) lal.

Theorem 4.2.8 then follows from Lemma 4.2.7 by an inductive argument.

79



1 1 u
N RN
2 2 wy 2 2wy
ABATEANAS
. . . . w3 w4 ws We
(a): Game g (b): Model M
Figure 4.5: Extensive form game tree and model

Theorem 4.2.8 For all M, for states w € W and for all « € PDL, M,w = a iff
M, w = |af.

4.2.4 Axiom system

We now present an axiomatization of the valid formulas of the logic. For a set

A = {ay,...,aqx} € %, we will use the notation R(i,z, A) to denote the game
((Zv .T), ay, ta1 + -+ (Z7 .T), ag, tak)-
We also make use of the following abbreviations:

o Let g(iz = ((4,2),a,(j,y)) and QZ = ((%,2), a, (5,9)),
— (a)a = (¢}, [ True — a]f) U (¢%, [ True — a]") a.

From Theorem 4.2.8, it follows that this results in the standard interpretation
for (a)a, i.e. {a)a holds at a state u iff there is a state w such that u->w and «
holds at w.

For game g, we use the formula ¢v to denote that the game structure ¢ is enabled.
This is defined as:

e For g = (i,2), let g¥ = True.
e For g =R(i,z, A), let

— gV =turm; A (A, x((ay) True A [a;]ty)).

Proposition 4.2.9 For ai,ay € @, the following holds:
1. for & €T, the formula ()7 (a; V as) > () ay V (€Y ay is not valid.
2. {a)(oq V ag) = (a)ay V (a)ay is valid.
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Figure 4.6: Extensive form game tree and model

Proof: (1): Let g be the game given in Figure 4.5(a) and the model M be as
shown in Figure 4.5(b). Let propositions p € V(u), ¢1 € V(ws) and ¢ € V(wy).
Let a1 = q1, ap = @2 and 0 = [p — a]'. We have M, u = <g,a>v(q1 V @o) since the
strategy of player 1 which chooses the move a at u ensures ¢; V ¢o. However since
¢ & V(wy) and g & V(ws), we obtain M, u £ (g,0) g1 V (g,0) .

(2): We first show that (a)(a; V ag) > (a)ay V (a)as is valid. Suppose this is not
true; there exists a model M and a state u such that M,u = (a)(a; V as) and
M, u - (a)aq V (a)as. This implies that M, u }~ (a)ag and M, u }= (a)ay. Thus for
all states w such that u->w we have M, w [~ a; and M, w [~ ay. From this we can
infer that M, u = (a)(a;1 V az) contradicting the assumption.

The fact that (a)ay V (a)as o (a)(aq V ag) is valid follows from a similar argu-

ment. O

Proposition 4.2.10 For&,& € I, consider the usual relation composition seman-
tics for Re,.¢,, i.e. Re e, = {(u, X) | Y such that (u,Y) € Re, and for allv € Y,
(v, X) € Re,}. Under this interpretation, the formula (&) (&) a > (&1; &) a is not

valid.

Proof: Let g; and g, be the games given in Figure 4.6(a) and (b) respectively
and let the model M be given in Figure 4.6(c). Let the proposition p hold at states
ws, wy, ws and wg and a = p. Let & = (g1, null') and & = (go, null'), then we
have M,u = (£)7(&)"p. However, under the interpretation given in the state-
ment of the proposition, for X = {ws, wy, ws, we} we have (u, X) & Re ¢,. Thus

M, u b= (&156)p. O
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Proposition 4.2.11 The formula (&;&) a = (6)7(&) a is valid.

Proof: Suppose (&1;6) a > (6)7(&) a is not valid. Then there exists M and
u such that M,u = (£1:&) « and M, u = (6)7(&) a. Since M,u = (€1;6) a,
from semantics we have there exists (u, X) € Ry, ¢, such that Vw € X, M,w = a.
From definition of R, 3Y = {vy,...,v;} such that (u,Y) € Re, and Vv; € Y there
exists X; C X such that (v;, X;) € R, and U;,_, , X; = X. Therefore we get

.....

Yop € Y, M, v, = (&) o and hence from semantics, M, u = (&)7 (&) a. This gives
the required contradiction.

Suppose (£1)7 (&) a 5 (€1;&) v is not valid. Then there exists M and u such
that M,u = (&)7(&) o and M, u b~ (€1:&) . We have M, u |= (£,)7(&) a iff
there exists (u,Y) € Re, such that Vo, € Y, M, v, | (&) a. M, v, = (&) a iff
there exists (vy, Xi) € Re, such that Vwy, € Xy, M, wy, = a. Let X = J, X, from
definition of R we get (u, X) € Re,.,. Hence from semantics M, u = (£1;&) a. O

The axiom schemes

(A1) Propositional axioms:
(a) All the substitutional instances of tautologies of PC.
(b) turn; = —turn;.

(A2) Axiom for single edge games:
(a) {a)(c1 V az) = (a)on V (a)as.
(b) {a)turn; > [a]turn;.

(A3) Dynamic logic axioms:
() (GU&)a= (&) aV (&) a
(b) (&) a = (€) (&) o
(€) () a=av(E'E) o

(A1) (g,0)"a = gV A push(g, 0, ).

Inference rules

(MP) o, a>p (NG) «
B [a]or
(IND) (6)a > «

<§*>Va o«
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Definition of push:

Axiom (A3) provides the reduction axioms for composite game strategy pairs. How-
ever, the atomic case (g, o) still encodes the structure of the game tree g and the
strategy specification o explicitly. Thus we need to provide the reduction axioms
for atomic game strategy pairs as well. This is done in axiom (A4). The intuitive
meaning of the construct push(g, o, «) is to say that player ¢ has a strategy conform-
ing to o such that « holds at all the frontier nodes. As expected this needs to be
defined inductively on the structure of o and the game tree g. The core idea in the

definition is the following observation: For a strategy specification o and a game g,

e if the root of the game tree g is an i node then by definition of a strategy,
player ¢ needs to choose an edge ‘a’ which conforms to ¢ and the resulting

subtree g, needs to inductively satisfy (g,, cr)voz.

e if the root is an 7 node then all outgoing edges need to be considered (by
definition of a strategy) and for each edge ‘a’, the requirement (g,, a)va needs

to be pushed to the resulting subtree.

The formal definition is given below. For i € N let 0,0,,09 € Strat'(P?) and let
7 € Strat’(P?). Let g € G(Nodes) and o € ®. For push(g,0,a) we have various
cases depending on the structure of g.

The case when g is an atomic game, i.e. g = (i,2), foralli € N and o € Strat'(P?)

we have,
(C1) push(g,o,a) = a.

Suppose g = R(i,z, A) for A = {ay,...,ax}, i.e. g is a tree with root being an i
node. For each a,, € A let g,, = ((i,x), am, (Jm, Ym)), where (Jm, ym) is the root of

ta,, -

(C2) push(g, [¢ — a]',a) =
Y iV
(¥ > {a)(te, [ — al') @) A (= > (V, en (am) ta,,, [ — a]') a)).
The root of g is a player i node and case (C2) is a player i specification. This says
that if ¢) holds at the root, then there is a choice a that player ¢ can make such that
for the subtree t,, (t., [t — a]') a holds. If 1) does not hold at the root then there

is some choice a,, for player i such that the subtree ¢, satisfies (¢, ,[® — a]i>va.

(03) pUSh(g, 0102, a) = \/ ((gam7 Ul>v<tama 01 0-2>VO[ A <gam7 0-2>v<tama 01 0-2>va)‘
am€EA
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For (C3) the important point to note is the fact if an edge u-——w satisfies a
specification o then all w’ with u—w’ satisfies 0. This is because satisfaction of o

depends only on u and the action a, it does not depend on the target node.

v

(C4) push(g,o1 +02,0) = \/ ((Gam> 1) (tan 01+ 02)" AV (Gayn 02) (tar, 01 + 02) ).

am€EA

v

(C5) push(g,m = 0,0) =V, cs({Gam> 0) (tan, ™ = 0)"a1).

Suppose g = R(z,z, A) for A ={ay,...,ax}, i.e. g is a tree with root being an 7
node. For each a,, € A let g,, = ((i,2), am, (Jm, Ym)), where (jm, ym) is the root of

te,. For o =[¢ — a]', 0y + 09,01 - 09,

(06) pU’Sh(g7 g, Q{) = /\ameA [a’m] <tam7 O->va

(C6) says that when the root node of g is an 7 node and for a player i specification
which is not of the form m = o, if at all enabled edges a,,, the subtree ¢,  satisfies
(ta,., o) a then (g, o) o holds.

(CT) push(g,m = o,a) =
/\ ((<9am,7r>v True > [am]{ta,,, ™ = 0>voz)/\(—|<gam,71')V True > [am]{ta,, , nulli>vo¢)).
am€EA
The interesting case is when the root of ¢ is an 7 node and when the specification
is of the form 7 = o, this is specified in (C7). For a strategy u of player i to satisfy

m = o on g, it should make sure of the following:

e for each choice a,, € A, if the choice conforms with 7 then the strategy on t,

should satisfy o.

e for each choice a,, € A, which does not conform with 7, player 7 is allowed to

employ any strategy on the game ¢, _ .

4.2.5 Completeness

To show completeness, we prove that every consistent formula is satisfiable. Let ag
be a consistent formula, and CL(«y) denote the subformula closure of ag. In addition
to the usual downward closure, we also require that (g,0) a € CL(cy) implies that
g¥,push(g,o,a) € CL(cy). Let AT (ap) be the set of all maximal consistent subsets

of CL(ay), referred to as atoms. Each t € AT («) is a finite set of formulas, we
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denote the conjunction of all formulas in t by t. For a nonempty subset X C AT, we
denote by X the disjunction of all £, t € X. Define a transition relation on AT (ay)
as follows: t-% 47t iff £ A (a)¥ is consistent. The model M = (W, —, \, V) where
W = AT(ap) and — = — 4. Note that each w € W is an atom and thus we use
the notation w to denote the conjunction of all formulas in w. The valuation V is
defined as V(w) = {p € P | p € w} and A(w) = i iff turn; € w. Once the Kripke
structure is defined, the game theoretic semantics given earlier defines the relation
Rgs) on W x 2V for g € G(Nodes) and a strategy specification o.

The following lemma can be shown using standard modal logic techniques.

Lemma 4.2.12 For allu € W, for all « € CL(«ay), for all a € X, if for all v such

that u->v we have U A a is consistent then U A [a]a is consistent.

Lemma 4.2.13 For all g € G(Nodes), for all i € N and o € Strat'(P?), for all
X CW and for all u € W the following holds:

(L1) if (u, X) € Ry0) then uA (g, o)" X is consistent.
(L2) if iNlg,o)" X is consistent then there exists X' C X such that (u, X') € Rigo)-

Proof: By induction on the structure of o.
o = [ al'

(L£1) Suppose (u, X) € Ry pajiy, We need to show that u A (g, [¢) — al)"X is
consistent. We do a second induction on the structure of g. The base case is when

g = (i,x), and the claim follows easily from axiom (A4) case (C1).

Let g = R(i,xr, A) where A = {ai1,...,ar}. Suppose (u,X) € Ry a)i), since
enabled(g,u) holds we have there exist sets Y7, ..., Y, such that forall j: 1 < j <k,
for all w; € Y; we have ugwj. Since u is an ¢ node, any strategy of ¢ will pick a

unique edge at u. We have the following two cases:

o M, u = 1: From semantics, the strategy should choose a w; such that a; = a,
ugwj and (wj, X) € R, ya))- By the secondary induction hypothesis,
we have w; A (t;, [t — a’)"X is consistent. Hence @ A (a) (t;, Y — a))" X is

consistent.

o M, u = 9: The strategy can choose any w,; such that uzwj and (w;, X) €
R, jp—a)i)- By the secondary induction hypothesis, w; A (t;, [t — a]i>v)? is

consistent. Hence @ A (a;)(t;, [t — a]i>v)? is consistent.
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From axiom (A4) case (C2) we get @ A (g, [t — a]’)" X is consistent.

Let g = R(7,2,A) where A = {ay,...,ax}. Suppose (u,X) € Ry pa)i), since
enabled(g,w) holds, we have there exist Y7, ..., Yy such that for all 7 : 1 < j <k,
for all w; € Y], uﬁwj. Since u is an 7 node, any strategy p of ¢ conforming to
[¢) — a]® will have all the branches at u (by definition of strategy). Therefore we
get for all w; with ugwj, there exists X; C X such that (wj, X;) € Ry, ) and
X = szl _____ x X;- By secondary induction hypothesis and the fact that X; C X,
we have w; A (tj, [ — a]’}v)? is consistent. Hence from axiom (A4) case (C6), we

conclude that @ A (g, o) X is consistent.

(£2) Suppose u A (g, [t — a]i)v)? is consistent, we need to show that there exists
X' C X such that (u, X') € Ry pq7)- We do a second induction on the structure
of g. The base case is when g = (i, ), and the claim follows easily from axiom (A4)
case (C1).

Let g = R(i, 2, A) where A = {ay,...,a;}. From axiom (A4) it follows that there
exist sets Y7,..., Y, such that for all j: 1 < j <k, for all w; € Y; we have uzwj
and hence enabled(g,u) holds. Let X = {vy,...,v,}. We have the following two

cases:

o if M,u |= 1: then from case (C2), uA {(a)(t,, [ — a]i)v)? is consistent. Hence
we get there exists w, such that u-Sw, and @, A (te, [t — a])" X is consis-
tent. By the secondary induction hypothesis there exists X’ C X such that
(wa, X') € Ry, jproa)iy and by definition of R we have (u, X') € Ry [yq]i)-

o if M,u [~ v then from case (C2), u A \/ajeA (a;)(t;, [Y — a)’)"X. There-
fore there exists w; such that u—sw; and @; A (t;,[¢) — al’)"X is consis-
tent. By the secondary induction hypothesis there exists X’ C X such that
(wj, X') € R, jyra)) and therefore we have (u, X') € Ry (pq]i)-

For the case when g = R(7,z, A) where A = {a4, ..., a;} the claim can be shown
using Lemma 4.2.12 and axiom (A4) case (C6).
0 =01+ 09:

Again we do a second induction on the structure of g. The base case when
g = (i, z) follows easily from axiom (A4) case (C1).
Let g = R(i,z,A) where A = {ay,...,ar}. Suppose (u,X) € R(go,40,), since
enabled(g,u) holds we have there exist sets Y7, ..., Y, such that forall j: 1 < j <k,
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for all w; € Y; we have uﬁwj. Since u is an ¢ node, from semantics we have there
exists a w; such that (u,{w;}) € Rig, .01) OF (u, {w;}) € Rg, .0,) and (w;, X) €
R(taj o1+00)- By the main induction hypothesis, we get @ A (g;, al)vfu; is consistent
or @ A (g;,0,)"w; is consistent. By secondary induction hypothesis we get w; A
(tj, o1+ 05)" X is consistent. From axiom (A4) case (C4) we get G A (g,01 + 02)" X
is consistent.

The case when g = R(7, 2, A) where A = {ay,...,ax} follows from a similar
argument making use of axiom (A4) case (C6). (£1) can also be shown by making
use of axioms (A4) cases (C4) and (C6) and application of the induction hypothesis.
For o = 0y - 09, the result follows from axiom (A4) cases (C3) and (C6) using similar
arguments.

0O =T = 01:

The cases when g is of the form (i,z) and g = R(i,z, A) for A = {aq,..., a1}
follows from axiom (A4) cases (C1l) and (C5) respectively. The interesting case is
when g = R(z,x, A) for A = {ay,...,a}.

Suppose (u,X) € Rgr=0), since enabled(g,u) holds, it is easy to show that
u A gV is consistent. We also get that there exist sets Yi,..., Y, such that for all
J:1<j <k, forall w; €Y; we have ugw; Since u is an 7 node, from semantics
we get (u, X) € R =0 iff for all a; € A for all w} € Y}, there exists X7 such that

one of the following conditions hold.
P1: if (u,w]) € Ry, x then (w}, X7) € R omm)-
P1: if (u,w]) & Ry, x then (v}, X7) € Rys nuttiy-

We also have that X = J,_, UT:L___,‘Yj| X7

Note that from the semantics it follows that for any a; € A and w; € Y], if
(u,wj) € Ry, x then for all w}i € V), (u,w]) € R, . Thus if P1 holds for
a; then by main induction hypothesis we get u A ((gj,ﬂ))vzfu? is consistent for all
wj € Y7 and thus u A (gj, 7)Y True is consistent. By secondary induction hypoth-
esis and the fact that X7 C X we have wAJT A{(t;, 0= )X is consistent for all
w} € Yj. From Lemma 4.2.12 we have u A [a;](t;, 0 = 7)"X is consistent and there-
fore (g;, )" True > [a;](t;, 0 = 7)Y X is consistent.

If P2 holds for a; then by main induction hypothesis of (£2) we can deduce
that u A _|<gj,7T>V1/1-}§ is consistent. By secondary induction hypothesis we have
fv? A (ta;, nulli)v)} is consistent.

From axiom (A4) case (C7) we get that @ A (g, 7 = 01)" X is consistent.
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(L1) can also be shown by making use of axioms (A4) cases (C5) and (C7). O

Lemma 4.2.14 For all{ €T, for all X CW andu € W, if u A <€>v5€ is consistent
then there exists X' C X such that (u, X') € Re.

Proof: By induction on the structure of &.

e £ =(g,0): Suppose u A (g, a>v)} is consistent. From Lemma 4.2.13 item 2, it
follows that there exists X’ C X such that (u, X') € Re.

o £ =& UE&: By axiom (A3a) we get WA (&)X is consistent or GA (£5)" X is con-
sistent. By induction hypothesis there exists X; C X such that (u, X;) € R,
or there exists Xy C X such that (u, X3) € Re,. Hence we have (u, X;) € R, v,
or (u, X2) € Re,ug,-

o £ =¢&5;&: By axiom (A3b), GA(&)7 (&)Y X is consistent. Hence GA (&) (\/ (@A
(£&)7X)) is consistent, where the join is taken over all w € Y = {w | w A
(&,)"X is consistent}. So @ A (£,)7Y is consistent. By induction hypothesis
on &, there exists Y/ C Y such that (u,Y’) € Re. We also have that for
all weY, @A (&)X is consistent. Therefore we get for all w; € Y =
{wy, ..., wp}, W; A <§2>V)? is consistent. By induction hypothesis on &, there

.....

(u, XI) € R§1;§2-

o & =& Let Z be the least set containing X and closed under the condition:
for all w, if @ A (€,)7Z is consistent, then w € Z. By definition of Z and
induction hypothesis, we get for all w € Z, there exists X,, C X such that
(w, Xw) S Rff
Claim : +(&)7Z > Z.

To see the claim, suppose it is not true. Then <§1>VZ A —Z is consistent. Let
Z' = AT(ap) \ Z. We have (£,)"Z A Z' is consistent. Therefore there exists
w' € Z' such that (6)7Z A w' is consistent. But then w’ would have been

added into the set Z during construction.

End of claim
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Applying the induction rule (IND), we have <§>{)VZ > Z. By assumption,
A (€)X is consistent. So WA (€177 is consistent. Hence WA Z is consistent

and therefore v € Z. Thus we have (u, X') € Rg; for some X' C X.

Lemma 4.2.15 For all (€)"a € CL(ay), for allu € W, G A (€) a is consistent iff
there exists (u, X) € Re such that Vw € X, a € w.

Proof: (=) Suppose @ A ()7« is consistent. Let X, = {w € W | a € w}. It is
easy to see that - o > X,. Therefore we have G A (€)Y X, is consistent, (by definition
Vw € X,, @ € w). By Lemma 4.2.14, there exists X’ C X, such that (u, X') € Re.
Since X’ C X,,, we have o € w for all w € X".

(<) Suppose 3(u, X) € Re such that Vw € X, a € w. We need to show that

A (€)a is consistent, this is done by induction on the structure of €.

e The case when £ = (g,0) follows easily from Lemma 4.2.13 and £ = & U &

follows from the induction hypothesis and axiom (A3a).

o { = ;& Since (u,X) € Rg.g,, there exist Y = {vy,...,v;} and sets
and (u,Y’) € Re,. By induction hypothesis, for all j, 0; A (&) v is consistent.
Since v; is an atom and (&)"a € CL(ag), we get (&) a € v;. Again by induc-
tion hypothesis we have @ A (£1)7(&) a is consistent. Hence from (A3b) we

have @ A (£1; &) @ is consistent.

o £ =1 If u € X then -7 > X. WehaveI—)?Daandhencewegetﬂ/\ais

consistent. From axiom (A3c) we have @ A (€7)" v is consistent.

Else we have (u, X) € Reer. Let Zp = X and Z,41 = Z, U{w | (v, Z') €
Re,, 7' C Z,}. Take the least m such that v € Z,. We have for all
W E Zm_1, F @ > (€1)"X’ for some X' C X. We also have (u, Z!)) € Ry, for
some Z/ = {vy,..., v} C Z,,. Let Xy,..., X} C X such that Vj : 1 < j <k,
previous case we can show that u A <§;>9(§T>V)z’ is consistent. Hence we get
UA (€1;€) o is consistent. Therefore from axiom (A3c) we have 1 A (€7) o is

consistent.
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We thus get the following theorem which implies the completeness of the axiom

system.

Theorem 4.2.16 For all § € CL(ay), for allu € W, M,u |= B iff § € u.

Proof: Follows from Lemma 4.2.15 by a routine inductive argument. O

Decidability: Since the size of the action set |X| is constant, the size of CL(«p)
is linear in |ap|. Atoms are maximal consistent subsets of CL(ayp), hence |AT (a)l
is exponential in the size of ay. From the completeness theorem we get that for a
formula «y, if «q is satisfiable then it has a model of exponential size, i.e. |W| =
O(2ll). For all game strategy pairs ¢ occurring in ap, the relation Re can be
computed in time exponential in the size of the model. Therefore it follows that the

logic is decidable in nondeterministic double exponential time.

4.2.6 Extensions

Concurrency as introduced in game logic [BGLO07| can be represented in our frame-
work with the addition of the operator & X & in the syntax of game strategy pairs.
For instance, (g1, 01) X (g2, 02) would mean that the game g; is played with a strategy
conforming to o; and concurrently, the game g5 is played with a strategy conforming

to 09. The semantics can be defined in the usual manner:
) R&ng = {(U,X) | X=XjUX, such that (U,Xl) € R§1 and (’LL,XQ) c R&}.

It is easy to see that the completeness theorem also follows with the addition of the

following axiom.
o (& x L)a=(G)an (&)a

Test operator

The test operator as in dynamic logic can also be added into the syntax of game
strategy pairs. For § € &, the interpretation of 37 € I' would be to test whether
0 holds at the particular state and if yes, continue else fail. The semantics can be

given as:
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o Ry = {(u,{u}) | M,u = 3}.

The test operator gives the ability of checking for certain conditions and then
deciding which game to proceed with. This construct is particularly interesting in
our framework, since unlike programs we have players in the game. For instance, let
7 denote the strategy specification of player 2 and o the specification of player 1.
The formula (g1, 7); wins?; (go, o) says that in g if player 2 by employing a strategy
conforming to 7 can ensure wins then proceed with the game g, where player 1
plays o. Note that if the test fails then g, is not played. This is in contrast to the
tests performed in a strategy specification. In a specification if the test fails then
the player is free to choose any action.

With the addition of the following axiom, the completeness theorem goes through.

o (ANha=0FNa

4.3 Normal form games

As opposed to extensive form games where the game structure is explicit, normal
form games are specified by the set of abstract strategies and outcomes. Logical
analysis in the case of a single normal form game is thus outcome based. However
when we consider games built in a compositional manner, the notion of strategic
response of a player to other players’ moves become relevant, pretty much in the
same way as it is used in extensive form games.

In this section we look at how the dynamic logic framework developed to reason
about extensive form games can be adapted to deal with normal form games as well.
We consider composition of game play pairs in normal form games, corresponding
to the fact that the reasoning performed in single stage is mostly outcome based.
If we restrict the reasoning to bounded repetition of games or to multistage games
where the number of stages are bounded, then we do not need to look at composition
of game play pairs. In the presence of unbounded iteration of games, we need to

introduce a dynamic structure on game play pairs.

4.3.1 Syntax for normal form games

Normal form games were introduced in Section 2.2 and we consider the tree repre-

sentation for normal form games. Recall that for each i € N, ¥ denotes the actions
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of player 7 and S = ! x ¥2. Let Nodes be a countable set, the normal form game

tree is specified using the syntax:
G(Nodes) := %, c1(x, Gmy Ym)-

where x,y,, € Nodes, J C 5.
Given g € G(Nodes) we define the tree T, generated by g inductively as follows.
Let g = (SU, ai, yl) +.o..+ (SU, a’lmyk)) Tg = <597 :>g7/):g7 SI) where

Sy ={5u,8y1,---:5y.}-
e For 1 < j <k we have sx%gsyj.

For g € G(Nodes), we also use 59 to denote the set of all strategy profiles in g.

4.3.2 Dynamic logic on normal form games

For the sake of clarity, in this section we concentrate on the structure of the game
g with respect to the moves of the players and disregard the utilities associated in
the game structure. As shown in Section 2.4 utilities can be coded as propositions

in the logic and thus outcome based reasoning can be done.
Syntax: The syntax of the logic is given by,

b:=peP|-alaVayl|()a

where £ € I'. The syntax of game play pairs is given as

Ii=(g,n)&:& | &UEL|E | a?

where g € G(Nodes), n C ¥9 and o € P.

Semantics: Models for the logic are Kripke structures M = (W, —, V). Note that
unlike in the case of extensive form games, the turn function is not required.
The truth of a formula o € ® in the model M at a position w (denoted M, w | «)

is defined as follows:
o M,wEpiff pe V(w).

o M wlE —aiff M,w = a.
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o M,wE ayVayiff Myw = ay or Mw | as.
o M,u k= (€)aiff I(u, X) € Re such that Yw € X we have M, w |= o

For ¢ € T the definition of relation R C W x 2V is similar to what we saw in

the case of extensive form games. For the atomic case we have,
o R0 = {(u,X) | enabled(g,u) and X = tail(T, | g,n)}

where enabled(g, w) denotes that the structure g can be embedded at state w of the
model, with respect to compatibility with the action labels. tail(T, [' g,n) is the set
of nodes of the resulting embedded tree when restricted to plays in 7.

Thus M, w [ (g, n)va says that firstly ¢ can be embedded at u and if X is the
set of all states resulting from the plays specified in 7, then the formula o holds in
all w € X. The dual [g,n]?a says: if g can be embedded at the state u then there
exists a state w resulting from the plays specified in 7 such that « holds at w.

The semantics for composite game play pairs is given as follows:

Re e, = {(u, X) | Y C W such that (u,Y) € Re, and Vv € Y there exists
X, € X such that (v, X,) € Re, and |,y X, = X}

veY v

R£1U£2 — R51 U R£2
RE* = Unzo(Ré)n-

R/37 = {(uv {u}) | Mvu ): ﬁ}

Example 4.3.1 The formulas of the logic can not only make assertions about

strategies of players but also about the game structure itself. Thus states of the
Kripke structure can be viewed as being associated with a set of atomic normal
form games. The restriction operation identifies the specific game under considera-
tion, which in turn is determined by the assertions made by formulas of the logic.

Consider the following formula:

o ((g.m); (¢, )V winy where n, is a strategy for player 2 in game g and 7 a
strategy of player 1 in ¢'.

This says that assuming in game g, player 2 plays according to strategy 7, then
in ¢’, player 1 can follow 7; and ensure win,. Note that this is not same as saying
player 1 can ensure win; in the composed game g = ¢;¢’. The fact that player 2

employed strategy 7y in game ¢ is used in strategizing by player 1. O
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4.3.3 Logical reasoning in normal form games

Models of alternating temporal logic can also be thought of as games on graphs
where each node is associated with a normal form game. Thus specifications which
involve only bounded levels of strategic response (as shown in the previous example),

can be expressed in a temporal logic framework. Consider the following assertion.

o ((g1.m); ((g2:m2) U (g3, m3)))"; wina7; (g, 1)
where 11,7, and 73 are player 2 strategies in games g;, go and g3 respectively

and 7 is a player 1 strategy in game g.

This says that if player 2 can ensure wins by iterating the structure g; followed by
go or g3 and employing strategies n; followed by 7, or n3 then player 1 plays ac-
cording to n in game g. Here not only does player 1 assert that player 2 can ensure
wing but also makes assertions about the specific game structure that is enabled
and the atomic strategies that player 2 employs. Iteration performed here does not
correspond to the assertion that a property holds through out the history. This
also motivates the need to shift from a temporal logic framework to a dynamic logic

framework.

Strategy comparison: We now show that the logic is powerful enough to express
the various strategizing notions including strategy comparison for reasoning about
a single normal form game. For the game g, let S99 = {ai,...,a;} be the strategy
profiles occurring in g. For i € N, let X = {ay[i],...,ax[i]} and for b € XY, let
f]g(b) = {a € 29 | ali] = band afi] € ¢}. fg(b) thus consists of all the strategy
profiles where player ¢’s strategy is fixed to b. Consider the formula:
ensures'(g,7) = \/ (9. S,(0)) 7.
besy

ensures’(g,y) says that given that the opponent chooses an action from the set
Y2 there is a strategy for player i to achieve v no matter what choice player 7 makes.
In the case of v € ©; (where ©; denote the set of special propositions coding the
utilities of players), this corresponds to the utility that player i can ensure. If player
i expects that 7 will choose only actions from the set X' C 3¢, then the restriction
of ensures’(g,v) to ¥ specifies what player i can ensure in terms of his expectation.

A player during the phase of strategizing might take into consideration what he
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can ensure given his expectation about the strategies of the opponent. The related

concept of weakly dominating strategies can be defined as follows:

pomib vy = N N\ ( V6, > (g, (b, x)>\’0>
zexd 0;€0;

This says that whatever reward that can be ensured using the strategy b’ can
also be ensured with the strategy b. In other words, this says that for player ¢, the
strategy b weakly dominates b'.

Given a strategy x of player 7 we can express the fact that the strategy b is better

than b for player 7 as response to z using the formula:

Betterl(b,V') = Ny, co, ({9 (¥, 2))70; > (g, (b,x))"0;)

We can then express the fact that b is the best response of player ¢ for x as
BR.(b) = \yeso Betterl(b,V'). Having defined best response, the assertion that a
strategy profile z(b, x) constitutes an equilibrium can be expressed as: EQ(b,z) =
BR'(b) A\ BR}(x).

Capturing complete strategies: Typically temporal logics which allow strategies
to be named and referred to in the logic restrict attention to memoryless strategies
and consider them to be atomic and unstructured. The reasoning performed is
in terms of outcome based analysis. If we restrict our attention to memoryless
strategies, then complete strategies of players can be coded up in terms of strategy
specifications. We need to only use special propositions to distinguish each state
of the arena. Thus the core reasoning done in such temporal logics is subsumed
by the dynamic logic on normal form games. In addition to outcome based analy-
sis, the logic proposed here explicates strategic response of players in terms of the

mechanisms which need to be employed.

4.3.4 Axiom system and completeness

In this section we show that the axiom system presented in Section 4.2.4 for extensive
form games can be easily adapted for normal form games. The axioms which need
to be modified are the ones dealing with the atomic case which reflect the change in
the underlying game representation. At the compositional level, the axioms remain

the same.
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As in the case of extensive form games, the first step is to show that for a € f],
the standard modal logic formula (a)a can be encoded in the logic. For a € i, let
ga denote the normal form game with the unique strategy profile a, we define (a)«a

o (@)a = (g, {a})" True A [g,. {a} e

The following proposition can be easily verified.

Proposition 4.3.2 For all models M, state w and formula o, M,w = {(a)a iff

there is a state u such that w->u and M, u |= o.

For a game g = (x,a1,y1) + ... + (x, a, yx), the formula gv denotes that the game
structure g is enabled. This is defined as:

The axiom schemes
(A1) Propositional axioms:

(a) All the substitutional instances of tautologies of PC.
(A2) Axiom for single edge games:

(a) {a)(c1 Vaz) = (a)on V (a)as.
(A3) Dynamic logic axioms:
(G U&) a= (&) aV (&) a
(615 6) = () (&) o
(
(

For g = (z,a1,11) + ...+ (2, an,yn) and n C S,

(A1) (g,m)'a = g A (Ayeylale).

Inference rules

(MP) o, a>p (NG) «
B [a]or
(IND) (6)a > «

<§*>Va o«
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The soundness of the axiom system and inference rules can be verified quite
easily. Using arguments very similar to those presented in Section 4.2.5 it can be
shown that given a consistent formula oy we can construct a model M = (W, —, V)

where W consists of atoms of g such that the following holds:

Theorem 4.3.3 For all § € CL(w), for allu e W, M,u |= 3 iff B € u.

Completeness of the axiom system can in turn be derived from Theorem 4.3.3.

4.4 Discussion

By considering game play pairs in the case of structured normal form games, we are
able to reason about restrictions of the game tree and thereby express game theoretic
notions like a player’s best response for an opponent’s strategy and equilibrium. In
contrast, the approach taken in the case of extensive form games is closer to the
style of game logics: the reasoning is about what a player can ensure by following a
certain strategy specification where all possible strategies of the opponent is taken
into account. However, at the compositional level, the axiom system remains the
same. This shows that the framework being considered is quite general, and is not
dependent on the exact game representation. For a specific game representation,

only the axioms specifying the structure of the representation need be changed.
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Part 11

Algorithmic analysis



Chapter 5
Infinite games

Consider the game played between two players, Player 1 and Player 2, who take
turns to choose binary digits. Player 1 makes the first choice and then their turns
strictly alternate. Let X be a subset of the real open interval (0,1). A play in
the game is a sequence x1, Y1, 23, Y2, ... where for all j > 0, z;,y; € {0,1} and let
n=%+5%+ 3% +---. Wesay player 1 wins if n € X and player 2 wins if n ¢ X.
It is easy to see that this defines an infinite two player turn based game of perfect
information. This game was first defined in The Scottish Book [Mau81| by Ulam. A
closely related variant of this game is called the Banach-Mazur game (see [Mau81| for
the original variant) where players are allowed to choose intervals on the real line.
These games have been extensively studied in descriptive set theory [Kec95] and
topology [Tel87|. In general, given an alphabet set A and a set X C A“ of infinite
words on A we can define a two player zero sum game G(X) where players alternate
in choosing elements from A constructing an infinite sequence n. Player 1 wins if
the resulting sequence n € X and player 2 wins if n ¢ X. The obvious question
of interest then is to ask whether such infinite games are determined. It turns out
that determinacy depends crucially on the topological properties of the winning set
X. Under topological classifications, one of the simplest games to consider would be
open games (a game is said to be open if the winning set has the form X = UAY). In
1953, Gale and Stewart [GS53] showed that any open game is determined. Various
studies extended this result to larger classes of infinite games. However, it was
not until 1975 that determinacy was shown for a very general class of games; the
celebrated Martin’s theorem [Mar75] showed that all Borel games are determined.
Infinite games have been long used in various aspects of computer science (see

[GTWO02, Gria08| for an overview). It has been widely used in automata theory

99



to show the closure under complementation for various classes of automata as well
as in deciding the emptiness problem. For instance, for a nondeterministic tree
automaton working on infinite trees, there is a natural two player zero sum game
of perfect information associated with it. In the game, the automaton picks an
enabled transition, and the opponent chooses a branch to pursue on the input tree.
Then the complementation problem for this class of automata is solved by using
determinacy of the associated games. Infinite games are often used in the verification
and synthesis of open systems. For instance, Church’s problem [Chu63] which asks
whether it is possible to synthesize circuits against specifications stated in restricted
second-order arithmetic can be easily translated into the determinacy question for
an infinite game.

Typically, infinite games which arise in computer science are games played on
finite graphs with regular objectives. These objectives fall in the second level of the
Borel hierarchy [PP04| and thus determinacy for such games follows from Martin’s
theorem. However, Martin’s result does not make any assertion on whether it is
possible to determine who the winner is or how “complex” the winning strategy is.
This turns out to be the core question in solving verification and synthesis questions
as well.

Apart from the logical analysis, another branch of game theory which is of par-
ticular interest in the context of computer science is the algorithmic analysis of games

and strategies. This encompasses issues mentioned above including,

e being able to determine the winner and synthesizing the winning strategy in

the case of two player zero sum games, and
e synthesis of equilibrium strategy profile in non-zero sum games.

Algorithmic analysis for finite extensive form games, was briefly looked at in
Chapter 2 where we presented the backward induction algorithm. The algorithm
showed that winning strategy synthesis and equilibrium strategy profile synthesis
can be achieved in time linear in the size of the game tree. In the case of two
player infinite games with regular objectives, being able to determine the winner
as well as computing the winning strategy also turn out to be the core questions
in solving the verification and synthesis problems. However, since the backward
induction algorithm is designed to work on finite extensive form game trees, this
procedure cannot be directly applied in the analysis of infinite duration games. A

seminal result due to Biichi and Landweber [BL69| says that for two player zero

100



sum games played on finite graphs where players’ objectives are presented as Muller
conditions, the winner can be determined and that the winning strategy can be
effectively synthesised in finite memory strategies.

In the context of non-zero sum infinite duration games, it is natural to ask if
equilibrium strategies exist and whether it is possible to synthesize an equilibrium
profile if it exists. We show that in the case where preference orderings of players are
over regular sets of plays, the backward induction procedure can still be employed
to show the existence of equilibrium and to synthesize an equilibrium profile. We
also look at how strategy specifications help in the algorithmic analysis of non-zero

sum infinite duration games.

5.1 Game model

In this chapter we consider infinite turn based games with perfect information played
on finite graphs. We use game arenas (introduced in section 2.3.1) to represent
such games. For technical convenience we also assume that for a game arena G =
(W, —,wp, A) for all game positions w € W, we have 237& (). Strategies of players

can be defined as given in section 2.3.2.

5.1.1 Objectives of players

Two player zero sum games

For two player zero sum games, the objectives of players are strictly complemen-
tary. Thus the set of plays need to be partitioned into sets ®; and ®, with the
interpretation that a play p is winning for player ¢ iff p € ®;. Since the game is
strictly complementary, this also means that p is losing for player 7. A strategy p is
winning for player i if for all paths p € T),, p € ®;. A game G is then specified as
a tuple (G, ®1) where G is an arena and ®; denotes the winning condition of one of
the players (say player 1). For ¢ € {1,2} we say player i wins the game G if i has a
winning strategy in GG. The game G is said to be determined if there exists i € {1, 2}
such that ¢ wins G.

For two player zero sum infinite games played on finite graphs, the algorithmic

questions of interest include given a game G = (G, ®,)

1. is G determined?
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2. given i, determine if player ¢ wins GG and if so compute the winning strategy.

However, for algorithmic analysis to be possible, we need to present the winning
conditions of players in a finite fashion. Since the objectives of players is an infinite
set it is not clear how this can be done in general. Most often infinite games which
arise in computer science turn out to be two player zero sum games with regular
objectives. In such games, the winning conditions of players can be presented in
a finite manner in terms of omega automata. Below we illustrate how this can be

achieved.

Definition 5.1.1 A finite deterministic omega automaton over the input alphabet
W x ¥ is a tuple A = (R, A, rq, Acc) where

R is the set of states.
e A: Rx W x X — R is the transition function.

ro € R s the initial state.

Acc specifies the acceptance condition.

The run of A on an infinite sequence p : wyapw; ... is a sequence of states
@, : Tor1 ... such that for all j > 0, r;11 = A(rj,w;,a;). Let Inf(p,) denote the
set of states occurring infinitely often in ¢. The most commonly used acceptance

conditions are the following requirements on Inf(y):

e Biichi condition [Biic62]: for a set of “good states” B C R, Inf(p,) N B # (. In

other words, some final state occurs infinitely often in the run ¢,.

e Muller condition [Mul63]: for a family F C 2%, \/._-Inf(¢,) = F. This
requires that the set of states occurring infinitely often in the run ¢, forms a
set in F.

e Rabin condition [Rab69|: For a set of pairs {(E}, F;)};=1,..m where E;, F; C R,
we have \/7_, (Inf (p,)) N Ej = O A Inf(p,)) N Fj # (. It requires that for some
J, all states of E; are visited only finitely often in ¢, but some state of F} is

visited infinitely often.

Deterministic Muller automata are known to be complete for omega regular con-

ditions and therefore we assume that winning conditions of players are presented in
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this manner. We use the notation M = (R, A, 19, F) to denote a Muller automaton
and always work with deterministic automata unless otherwise mentioned.
A two player zero sum game with omega regular objectives can thus be presented

as a pair G = (G, M) where M specifies the winning condition for player 1.

Overlapping objectives

For non-zero sum games, each player has a preference ordering <‘C (Plays(G) x
Plays(G)) over plays in the arena. The most natural way of specifying the prefer-
ence ordering is in terms of utilities as we did in the case of finite extensive form
games. However, since plays in the arena are infinite objects, the utility function
needs to map infinite plays to payoffs. If we restrict our attention to classifying reg-
ular plays and in cases where the utilities arise out of a finite set, players’ objectives
can be presented in terms of a “generalised Muller automaton” which we term as

evaluation automata.

Evaluation automata: These are basically Muller automata where instead of
interpreting the Muller table as defining accepting runs we incorporate preference
orderings over the sets in the Muller table. The ordering on plays induced by the
utility function can be directly captured in this manner. The formal definition is

given below.

Definition 5.1.2 An evaluation automaton & = (M, {<t'}icn) where M is a Muller
automaton given by M = (R, A,ry, F) and for each player i € N, <* C (F x F) is

a reflexive, transitive and complete relation over F denoting the preference ordering.

Since we want the evaluation automaton to induce a preference ordering on
all plays, it is convenient to use a “complete” automaton. Every evaluation au-
tomaton can be converted into a complete automaton by the following transforma-
tion. For the Muller automaton M = (R, A, 1y, F) we construct the automaton
M = (R, A, ry, F') where F' = 2%\ (). The newly added final states are set to be
the least preferred by each player i in the preference ordering <. Therefore without
loss of generality we assume that all evaluation automata are complete.

The run of £ on a play p (denoted ¢,) is defined as in the case of a Muller
automaton. The evaluation automaton £ induces a preference ordering on Plays(G)
in the following manner. Let p = woapwia, ... and p' : woagwia) ... be two plays.

For player i € N, we have p <' o/ iff Inf(p,) <* Inf (o).
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We shall also be interested in the special case of binary evaluation automata
which specify least outcomes for player 7. Such an automaton is given by %, where
F € F: for every F' € F,if F <' F’, it is taken to be “winning” for player 4, and
every I # F such that F” < I is taken to be “losing”. Such an automaton checks
if ¢ can ensure an outcome which is at least as preferred as F'. Note that the ter-
minology of win-loss is only to indicate a binary preference for player i, and applies

even in the context of non-zero sum games.

Nash equilibrium: The definitions of best response strategy and equilibrium pro-
file can be appropriately modified to deal with infinite duration games on graphs in

the following manner.

e The strategy u of player i is a best response for strategy 7 (of 7) if V' € QF,
Pu7) X Plur)-

e A strategy profile (i, 7) is said to be in equilibrium if p is the best response

for 7 and 7 is the best response for p.

Equilibrium in win-loss objectives

In the context of equilibrium computation for infinite games, instead of looking at
general preference orderings over outcomes, one could look at the situation where
the objective of each player is specified as an omega regular win-loss objective.
These sets may overlap and hence the players need not be antagonistic. In other
words, these are non-zero sum games where each player has a binary objective. The
existence of Nash equilibrium for such games follows from the result of [CIJMO4].
The main idea here is the effective use of threat strategies whereby a player deviating
from the equilibrium profile is punished by others to receive the outcome which she
can guarantee on her own. The existence of sub-game perfect equilibrium [Sel65]
for games with binary objectives was shown in [UmmO05|. Threat strategies arise
naturally in the case of games with win-loss objectives. However, in the case of
infinite games where players have non-zero sum objectives, it is no longer clear what
are the rationality assumptions which justify equilibrium profiles that may involve
empty threats. In this context, even coming up with rationality assumptions which
generalise well-known solution concepts in games of finite duration to that of non-
zero sum infinite duration games is a challenging task. [Ber07| takes up the task of

looking at the rationality assumptions involved in generalising the notion of iterated
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admissibility [LR57] which is well studied in the theory of finite games to infinite
games.

However, the equilibrium notions are mathematically well defined and deserves
attention in their own right. What we do here is rather than delve into issues con-
cerning rationality, attempted to investigate equilibrium notions in the context of
infinite games. In the next section we show that the standard technique of back-
ward induction can be appropriately modified to compute equilibrium profile in

generalised Muller games.

5.2 Equilibrium computation

Given a game arena and an evaluation automaton, their product gives rise to a
Muller game where each player has a preference ordering over the connected compo-
nents over the product structure. We call these generalised Muller games (the formal
definition is presented shortly). A natural question then, would be to ask whether
an equilibrium profile always exists for this class of games. In this section we show

the following results:

e Nash equilibrium always exists in generalised Muller games.

e An equilibrium profile can be effectively synthesized.

A generalised Muller game is a tuple G = (G, {C'};en) where G is a game arena
with the set of game positions W and for each player i € N, C'C (2" x 2W) is a
preference ordering over subsets of game positions for each player.

To simplify notation, we disregard the action labels on edges of the arena. Thus
players’ strategies choose game positions instead of actions. We further assume
that the turn function is implicitly presented by a partition of the game positions.
Thus an arena is simply a graph G = (W, E,w) where W = J,., W' is the set
of game positions partitioned into |N| sets. The move relation £ C W x W. Let
wkE = {w | (w,w') € E}.

5.2.1 Nash equilibrium in generalised Muller games

For finite extensive form games, our main tool for algorithmic analysis was the back-

ward induction procedure. Here we show that the backward induction procedure can
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be effectively used to show existence of equilibrium and to synthesize an equilibrium
strategy profile for generalised Muller games as well.

The key idea of the construction is as follows. The backward induction algorithm
is designed to work on finite extensive form game trees. However, the tree unfolding
of G which is the game under consideration is an infinite structure. The objective
is therefore to construct a finite tree structure which preserves the equilibrium be-
haviour of players in G. The core problem in constructing such a structure is to
identify the Muller set that each play settles down to without actually performing
the infinite tree unfolding. In the context of omega automata, the data structure
which combines the latest appearance record [GH82| along with a hit position was
proposed by Biichi [Biic83| with exactly this purpose in mind. We show that by
performing a careful unfolding of G while keeping track of the permutation of states
in terms of the latest appearance record, one can construct a finite tree structure
T(G) which captures the equilibrium behaviour of players in the original game G.
The backward induction procedure synthesizes a memoryless equilibrium profile on
the tree structure 7'(G) which is then translated into a finite memory equilibrium

profile in G.

Latest appearance record

The idea is to keep a record of states in the order of their “last visit” along with a
hit position (denoted by the symbol £) which records the position of the last change.
We introduce the data structure by an example, the formal definition is presented

subsequently.

Example 5.2.1 Suppose W = {1,2,3,4}, consider the infinite sequence 1 4 2 3 1
21221 ...over W which finally loops in the set {1,2}. We start with a vector
whose last state is 1 say 23441 indicating that the sequence begins with 1. The next
vector is obtained by shifting the new state of W to the right and setting the hit to
the position from where the previous vector this state was taken. Thus we obtain,
starting from (234£1) the vectors (23£14), (£3142), (§1423), (§4231), (44312), (43421)
and so on. It is easy to see that in this example, where from some point onwards
only states 1,2 are visited, these states remain at the positions of the vector after
the § symbol. O
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Formally, given a finite set W which is well ordered, we define LAR(W) as

follows:

LAR(W) = {z € W U{t})" | Vv e WU {1}, |2, = 1}

where |z|, denotes the number of occurrence of v in z. For zfyw € LAR(W), we

define end(zfyw) = w. We define the function nezt as,

" yw  iff xfty = dwaty
next(zhy, w) = ¢ zy'fy"w iff 2ty = xiy'wy”
xfy iff zty = xfy'w
For a sequence p = wowy ... € W¥, we define LAR(p) = xofiyo, z18y1, . . . where

o xoflyo = xfwy where x consists of elements in W \ {wp} ordered according to

the well ordering on V.
o forall j >0, z;8y; = next(z;_18y;_1, w;).

For a finite sequence p, the sequence LAR(p) is finite and we denote the last
LAR record in the sequence by last(LAR(p)).

One of the main applications of the LAR data structure in automata theory
is to translate a Muller automaton to an equivalent Rabin automaton. The main
property of the data structure, which is also crucially used to show the correctness

of the translation, is stated in the following lemma.

Lemma 5.2.2 ([Tho97, Far02]) Let p be an infinite sequence wow; ... € W* and
let LAR(p) = xofyo, x1fy1,.... Then Inf(p) = F with |F| = k iff the following

conditions hold:
o for only finitely many j we have |y;| > k (and hence |z;| < |W|—k).

e for infinitely many j we have |y;| = k (and hence |z;| = |W|—k) and F =

{w e W | w occurs in y;}.

The LAR tree

Let G = (G, {C'}ieny) where G = (W, E, wy) is the game arena. We assume that W
is well ordered and let LAR(G) = LAR(W).
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Definition 5.2.3 For an arena G = (W, E,wy) the (finite) LAR tree Tpagr(G) is
defined as follows: Tyar(G) = (S, =, so) where

o S =LAR(W).

o 5o = xfwg where x denotes the sequence of elements of W \ {wo} according to

the well ordering.
e = C S x S satisfies the condition: for all xfyw € S, xiyw=-2"ty'w’ iff

- w ewk.
— 2'ty'w’ = next(ztyw, w'’)
— consider the unique path from the root to x'ty'w, either there is no node

in this path with the same LAR or x'fy’w is the first node to repeat in the
path.

The tree Tpar(G) is well defined since the function nezt is well defined. The fact
that Tpar(G) is finite can be verified by noting that along any sequence of elements
of LAR of length (|]/W|+1)!+1, at least one element is bound to repeat by pigeonhole
principle. Let frontier(Tpar(G)) denote the set of all leaf nodes of Tpr(G). We
define a labelling function lab : frontier( TLar(G)) — 2" as follows.

For a node 2'ty’ € frontier(Tiar(G)), let o be the unique path from the root
xhwy to z'ty’. Let ¢ be the least suffix of p such that first(o') = last(o') = 2'ty’.
Let lpee = maz{|y| | xfy occurs in ¢')} and let L, = {zfy | |y| = ljas}- Observe
that, by the property of the LAR construction y = ¢’ for all zfy, «'ty’ € L,. Let
Y = {y} such that =ty € L, we set lab(z'ty’) =Y.

LAR tree as a finite extensive form game: It is easy to see that Tyar(G)
constitutes a finite extensive form game tree where for any ¢ € N the set of ¢ nodes
of the tree S* = {xfyw € S | w € W'}. We use v and n to denote the strategies
of players i and 7 respectively in Tpar(G). For i € N, let Q(Tpar(G)) denote the
set of all strategies of player i in Tpar(G). Note that all strategies in Q'( Tpar(G))
are memoryless. We use g to denote plays in Tp,r(G). Given a profile of strategies
(v,n) in Tpar(G) let o, denote the unique resulting play.

Every strategy v € Q'(Tpar(G)) can be translated into a bounded memory
strategy p € QY(G). In other words, it can be represented as a deterministic ad-
vice automaton A, = (Q,,d,,0,,q) with state space @, the transition function
0u 1 Qu x W — @, and the output function o, : Q, x W — W.
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We define the translation function f: Q'(Tpar(G)) — Q(G) as follows.

Definition 5.2.4 For a strategy v, f(v) = u where p is the strategy represented by

the deterministic advice automaton A, = (Q, 6., 0p, Qo) with
o , =LAR(G).
o 0, (xfly,w) = next(zty, w).
o ou(aty, w) = v(zfy).
o g = stup.

We say a strategy u € QY(G) is LAR implementable if ;4 can be represented
by an advice automaton whose state space is LAR(G) and whose transition func-
tion respects the next function. Let Qf ,z(G) denote the set of all strategies in
Q(G) which is LAR implementable. The translation function § is thus a map
frQ(TLar(9)) — Qar(9)-

We extend the translation functions to strategy profiles as follows: For a pair of
strategies (11, 7) let g(u, 7) = (a(n), 8(7)).

The following lemmas show the relationship between the game arena and the

LAR tree, it also makes clear our motivation in defining the LAR tree.

Lemma 5.2.5 For any strategy profile (v,n) in Trar(G) if lab(last(ow.y)) = F then
Inf(p(u,r)) = F where (p, 7) = (v, n).

Proof: Consider any profile of strategies (v,7) in Tpar(G) and suppose we have
lab(last(ow,y)) = F. Let 0wy = xofwo, 218y1, - .., 2kiys. By construction of the
LAR tree there exists j : 0 < j < k such that x;#y; = xpflyy = 2fy. Let (p,7) =
f(v,m) and let p(, ) be the resulting play in G. Let the LAR sequence of this play
be LAR(p(u,)) = tofiwo, 11891, . . .. By construction of the strategies  and 7 we have
forallr: 0 <r <k, r,89, = z,8y,. Thus, in particular, we have r;fin; = x;iy, = zfy.
In other words, consider the prefix p; = wow; ... w; and py = wow; ... w;...wy of
Pu,r)> we have last(LAR(p1)) = last(LAR(p2)) = xfy. For strategy u, the memory
state at the end of the prefix p; is last(LAR(p1)) = zfy. Suppose w; € W' i.e.
w; is a player ¢ node. The choice of ;1 on the sequence p; is dictated by the out-
put function o, (last(LAR(p1)), w;) but since last(LAR(p1)) = last(LAR(p2)) (hence
also w; = wy,) we have u(p1) = p(p2). Since 7 is also a bounded memory strategy
based on the LAR set LAR(G), we have that the play p(, . settles down in the

109



cycle zfy, £ 118y 41, - - -, Te—18Yk—1, o8y. By definition of the labelling function lab,
there exists p : j < p < k such that {y,} = F. Therefore in LAR(p(,,)) there exist
infinitely many indices m such that vy,, = |F| and {9,,} = {y;n} = F. From Lemma
5.2.2 we get Inf(pu,r) = F. O

Backward induction algorithm

The LAR tree Tp,r(G) has its frontier nodes labelled with subsets of W. We use
the backward induction algorithm to extend the labelling to interior nodes of the

tree as well. The procedure is as follows:

Procedure 1

e Initially, all interior nodes of Ty sr(G) are unlabelled.

e Repeat the following steps till lab(zofwy) is defined, i.e. the labelling function

is defined on the root node.

— Choose any node xfly such that lab(zofwy) is not defined and all of whose

successors are labelled.

— if zfly € S? then let x18y; be a successor node such that lab(zafy,) C°
lab(x18yy) for all other successor nodes zofys of xfly. Let lab(xfy) =
lab(x18y1) and v(zfy) = x18y;.

— if xfy € S” then we choose a successor z1fy; such that lab(zafiyz) T
lab(x14yy) for all other successor nodes xoflys and set lab(xfy) = lab(z18y;)
and n(zfy) = z14y1.

Consider the profile of strategies (v, 1) generated by the above procedure. From
proposition 2.1.6 it follows that (v, n) constitutes an equilibrium profile in Tpr(G).
We show that f(v,7n) constitutes an equilibrium profile in the arena G. Before pre-
senting the proof, we find it instructive to explain how the procedure works in the
case of zero-sum games. In such games, we have a set F which specifies the winning
condition of player i and F = {F | F € F} specifies the winning condition for player
7. The preference ordering is defined in the obvious manner: for player i, all sets

in F are equally preferred and sets in F is strictly more preferred than those in F.
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The preference ordering for player 7 is strictly complementary. The following lemma,
shows that for a player ¢, as far as ensuring an outcome F in the game arena G is

concerned it suffices to analyse strategies generated from the LAR tree Ty gr(G).

Lemma 5.2.6 Given an arena G along with a Muller condition F for playeri € N,
if there exists a strategy v € Q'(Tuar(G)) such that v ensures F in Trar(G) then
= f(v) ensures F in G.

Proof: Suppose not, suppose player i can ensure F in Tp,r(G) by v but cannot
ensure F in G using the strategy u = f(v). Then there exists a play p in G conforming
to p such that it settles down to a Muller set F” ¢ F. There are two cases to consider.

The first case is when there exists w € F’ such that w ¢ F for any F' € F.
Let j be the first index such that p(j) = w and p(j — 1) € W". Let o be the
(finite) path in Tpar(G) corresponding to p. The index j must be greater than |g|;
otherwise p couldn’t have been labelled F and hence i couldn’t have ensured F. Let
2’8y’ = LAR(p;_1). By the construction of Tp,r(G) there exists a node 2'fy’ € .
But this means that player 7 had the option of playing w at the node z’fiyy’ and hence
the root to be labelled with a set in F. But this would contradict the fact that v;
ensure F in Tpagr(G).

The other case is when there exists /' € F such that w € F and w ¢ F'. Let o
be the (finite) path in Tpagr(G) corresponding to p. Let [ be the biggest index such
that p(l) = w but I < |g|. Suppose p(l —1) € W*. Then for all indices [y, ls, ... such
that [ <l; <ly <...and LAR(p,) = LAR(pi,) = ... = LAR(p;_1), player i has to
play w as it is prescribed by the strategy v, and hence in turn by the corresponding
bounded memory strategy p. But this contradicts the fact that the p settles down
to F.

Finally, suppose p(l — 1) € W". Then player 7 has the option of playing w at
p(l — 1) and at all indices ly,[s,... such that | < |} < ly < ... and LAR(p,) =
LAR(p,) = ... = LAR(p;—1). Hence v could not have ensured F in Tp,r(G) as the
leaf node of p wouldn’t have been labelled with a set in F and hence neither the

root. O

Lemma 5.2.7 Given an arena G along with a Muller condition F for playeri € N,
if there exists a strategy pu € QY(G) such that u ensures F in G then there exists
strateqy v € Q(TLar(G)) such that v ensures F in Tiar(G).
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Proof: Suppose player i does not have a strategy v to ensure F in Tpar(G) then
Trar(G) being a finite tree (and hence a finite extensive form game) it follows that
players 7 has a strategy 71 to ensure F in Tpar(G), since finite games are determined.
Then by Lemma 5.2.6, player 7 has a bounded memory strategy 7 = (1) to ensure
F in G as well. But this contradicts the assumption that players ¢ has a strategy to
ensure F in G. O

Theorem 5.2.8 then follows from Lemmas 5.2.6 and 5.2.7.

Theorem 5.2.8 Given an arena G and along with Muller condition F for player
t € N there exists a strategy i for player i to ensure F in G iff player i has a strategy

in Toar(G) to ensure F.

Theorem 5.2.9 FEvery generalised Muller game has a Nash equilibrium.

Proof: Let G = (G,{C'}icn) be a generalised Muller game. Consider the strat-
egy profile (v, u) generated by the backward induction procedure on the LAR tree
Trar(G). We show that the strategy tuple (i, 7) = f(v, n) constitutes an equilibrium
profile in G. The proof is similar to that of Theorem 5.2.8: we show that for i € IV,
player i has an incentive to deviate from p in G iff she has an incentive to deviate
from p in the LAR tree Tpagr(G).

Suppose player ¢ deviates to strategy u'. Let p be the run corresponding to
(@', 7) with Inf(p) = F' and X = {w € F' | w & F}. Suppose X # (), let j be the
first index such that p(j) € X and let LAR(p(j — 1)) = 2’fy/. By the construction,
there exists a node 2’y in the LAR tree. Since player 7 plays according to the
LAR strategy 7 derived from the strategy 7, it can be seen that the node x'fy’ is
reachable in the LAR tree by player i’s deviation. But then we have that player ¢
has a option of playing w at z’ffyy’ and since the LAR is the same, she can choose a
path in Tp,r(G) which is labelled with F.

Let Y ={w € F|w ¢ F'}. fY # (), then let j be the last index such that
p(7) € Y and let LAR(p(j)) = «'fy’. As a result of the deviation, player ¢ ensures
that elements in Y are visited only finitely many times. By construction we have
that x'fy’ is present in the LAR tree. As earlier it can be seen that iy’ is reachable
by the deviation of player i. From p(j), player i ensures that elements of the set
X are never visited. But since we have the same LAR and since player 7 uses the
LAR strategy 7 derived from 7 this means that from x'ty/, player ¢ can play in such
a way that the resulting path is labelled with F’.
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Note that since the translation function f is effective, we also get that the equi-
librium profile for any generalised Muller game can be synthesized in finite memory
strategies.

Complexity: Let the number of vertices in the arena G be m. The size of the LAR
memory is O(m!). As there are O(m™) paths in the LAR tree Tisr(G) and the
backward induction procedure runs in time linear in the size of the LAR tree, the

running time is O(m™).

5.3 Partial strategies and best response computa-
tion

In the previous section we looked at equilibrium computation in non-zero sum infinite
games with respect to functional strategies which depict complete plans. A natural
question would be to ask whether strategy specifications help in the analysis of such
games. In order to analyse specifications in terms of solution concepts, we need
to first define on what basis specifications can be compared with each other. In
the case of complete strategies, given a strategy 7 of player 7, comparison between
two strategies p and u' of player i was defined in terms of the unique outcome
which is achieved. However, this definition is not suitable in the case of strategy
specifications since we are dealing with a set of strategies. Thus in the context of
strategy specifications basic notions like strategy comparison and best response need
to be revisited.

Given a game arena G = (G, &) and a strategy specification 7 for player 7, we
can have different notions as to when a specification for player i is “better” than

another.

e Belter (o,0’): For some F € 28 if (3u’ with 4/ |=; o’ such that V7 with
T |2 7, pj, is winning with respect to £;) then (3u with 4 |=; ¢ such that Vr
with 7 |=; 7, p7, is winning with respect to £f).

The predicate Better;(o,0’) says that, for some (binary) outcome F, if there
is a strategy conforming to the specification ¢’ which ensures winning £ then

there also exists a strategy conforming to o which ensures winning £% as well.
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e Beltery(o,0’): For some F € 27 if (for all strategies ' with y/ =; 0’ and V1
with 7 |=; m, p7, is winning with respect to £;) then (Vu with u |=; o and V7
with 7 |=; 7, p7, is winning with respect to ;).

This notion is best understood contrapositively: for some (binary) outcome
F, whenever there is a strategy conforming to o which is not winning for &%,
there also exists a strategy conforming to ¢’ which is not winning for £%. This
can be thought of as a soundness condition. A risk averse player might prefer

this notion of comparison.

The two above are just a few of the various possibilities for strategy comparison,
whose actual choice might depend on the kind of application in mind. Having chosen
the appropriate notion, we say that o is the best response to =, if for all o/, we have
o is better (according to that notion) than o’. A strategy pair (o, 7) is said to be
in equilibrium if ¢ is the best response to m and 7 is the best response to o.

To algorithmically compare strategies, we first need to be able to decide the
following questions. Let ¢ and 7 be strategy specifications for player i and player 7

and £% a binary evaluation automaton for player 1.

e Does player 7 have a strategy conforming to ¢ which is winning for ¢ with re-
spect to £L, against all strategies of player 7 which conforms to 7 (abbreviated
as Jdo,Vr : E)?

e Is it the case that for all strategies of player ¢ conforming to o, as long as
player 7 is playing a strategy conforming to 7, the result will be a valid play

which is winning for 7 with respect to €& (abbreviated as Vo, V7 : £%)?

We call this the verification question. The synthesis question is given 7 and E% to
construct a deterministic advice automaton A for player 7 such that A,Vr : %
holds.

Once we can show that the verification question is decidable and synthesis pos-

sible, the game theoretic questions of interest include: For a game G = (G, ),
e Given strategy specifications o and m, check if o is a best response to 7.
e Given a strategy specification profile (o, 7), check if it is a Nash equilibrium.

e Given a strategy specification 7 for 7, synthesize a deterministic advice au-

tomaton A for player i such that A is the best response to .
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Definition 5.3.1 Let G = (W, —,wo, A) be an arena and A, = (Q,d,0,1) be the
advice automaton corresponding to a strateqy specification o of player i. The re-
striction of G with respect to A, is the structure G |\ Ay, = (Wy, =4, wg, \y) where

o W, =W x 29 is the set of game positions.

o (w, X) S, (W,Y)iff Y ={¢ | Ig € X with ¢ € 6(q,w,a)}.

o wi = (wo, I,).

o N\ (w,X)=Aw).

It is easy to see that the arena A, is deterministic and satisfies the property:

(R1) for all (w, X) € Wy, for all a € ¥ such that w->w’, there exists a unique Y
such that (w, X )%, (w',Y).

Every strategy v € Q(G | A,) is also a strategy in Q2'(G) where the additional
memory required is 2¢. Given a strategy v = (SV,:>V,5(”],XV) let st(v) be the
strategy tree obtained by simply projecting out the 22 component from the game
positions of v. Due to property (R1) this defines a valid strategy in Q(G). Lemma

5.3.2 follows from the definition of the restriction operation.
Lemma 5.3.2 For all v € QG |\ A,), st(v) € Lang(A,).

Lemma 5.3.3 Forall p € Q1(G) such that u € Lang(A,), there exists v € Q(G\A,)
such that st(v) = p.

Proof: Consider any p € Q'(G) such that u € Lang(A,). Let T = (S, =, 56‘,/)\\“, l)
be @ labelled tree accepted by A,. We define the strategy v = (.S, =, sg,/)\\y) in-
ductively. Let vy be the tree containing the single node (wg, ). The construction

maintains the following invariant property:
(Invl) for all ¢t € v, where t[1] = s and last(t) = (w, X), if [(s) = ¢ then ¢ € X.

Since [(sg) € I, for the tree vy, property 1 is satisfied. Assume inductively we

have constructed the tree v, = (S,,=,, si, A\,). Pick any node t € S, where ¢[1] = s
and last(t) = (w, X). We have the following two cases:

1. If Xy(t) = i then let a = 0,(l(s),w). By definition, there exists a unique
outgoing edge in u such that s=s', let w’ = last(s’). By property 1, we get
I(s) € X. By construction of G |' A,, there exists a unique node (w’,Y’) such
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that (w, X)=,(w',Y). Since T is an accepting run, I(s') € d(I(s),w,a) and
by definition of G [ A, we have [(s') € Y. Thus the invariant property can be
maintained by extending the tree with the node ¢ =t¢- (w',Y).

Define the tree vy1 = (Suys = vrs S0 py ) where S, ., =5, U{t'} and

b Vi+1 Vi+1
X 41
S = = U {t=t')

2. If X,,(t) =7let {s1,...,8n} be the set of all nodes in u such that sgsj for all
j:1<j<m. Let last(s;) = w; and ¢q; = I(s;). By construction of G ' A,,
for all j we have (w, X)), (w;,Y;) and ¢; € Y;. Let t; =t - (w;,Y)).

Define the tree v = (S k“,/):,,kﬂ) where S, =S, U{t1, ..., tm}

1%
Vir1 ki1 S0

and =, | ==, U{tSt,... 1%t}

V41

~

The strategy v = (S, =, 55, \y) defined by S, = (.~ Sy, and =, = J,o0 =, -
From the construction it follows that v € Q(G |' A,) and it is also easy to see that
st(v) = p. O

Lemma 5.3.4 For every strategy i € Q(G), for alli € N and for all o € Strat'(P?),
there exists 1/ € QUG | A,) such that st(iu') = p iff p | o

Proof: Follows from Lemmas 5.3.2, 5.3.3 and 3.1.7. O

In other words, Lemma 5.3.4 states that strategies of player i in the restricted
arena G |' A, are precisely those strategies of i in G which conform to o. The
restriction operation can be applied iteratively. For instance, given advice automata
A, and A, of players i and 7 respectively, the structure (G | A,) | A, consists of all
paths which conform to the specifications ¢ and «. It is also easy to check that the
order of restriction is irrelevant. That is (G [' A,) | A = (G ' 4A,) | A,

Theorem 5.3.5 Given a game G = (G, &) and a strategy specification w for player

Z,

1. The verification problem of checking whether for a player ¢ a strateqy specifi-
cation o and a binary evaluation automaton E%, checking whether o,V : EL
or Vo,V : 5}; holds in G is decidable.

2. For a binary evaluation automaton E%, it is possible to synthesize (when one

exists), a deterministic advice automaton A; such that A;,Vr : E& holds.
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Proof: The assertion Jo,Vr : L holds in the arena G iff there exists strategy p
for player ¢ which conforms to o such that for all strategies 7 of player 7 conforming
to m, the resulting play p(, ) is “winning” for player ¢ with respect to the win-loss
condition given by £4L. We make use of the restriction operation given in definition
5.3.1 to decide the verification question. Let the advice automata corresponding
to o and ™ be A, and A, respectively. Consider the arena G |' A,; by Lemma
5.3.4 strategies of player 7 in the restricted arena are precisely the strategies which
conform to 7 in G. Thus to check if Jo,Vr : EL holds it suffices to check if there
exists a strategy for player i conforming to ¢ in G |' A, which is winning for the
objective given by EL.

We construct a nondeterministic tree automaton 7 which checks this property.
Intuitively, the automaton works as follows: it simulates both A, and &% and runs
on Tg Mg Thus the states of the tree automaton are tuples of the form (¢, r) and
the initial state is (go,79) where gy € I. At any position s of Tg M, where the state

of the automaton is (¢, r), the automaton proceeds as follows:

e if s is a player ¢ game position then let a be the action dictated by the output
function o of A, on state g and position s. The automaton guesses a new state
q € (q,s,a) and proceeds down the a edge on the state ¢’. Formally, this
means that on all outgoing edges of s labelled by b # a the automaton enters

a default accept state and stays in this accept state.

e if s is a player 7 game position then let {b1,...,bx} be the outgoing edges at
s. For each action b; player i guesses a state ¢; € d(q, s,a) and branches on

all the outgoing edges.

In other words, the automaton 7 guesses a strategy p of player i in G |' A, which
conforms to o. 7 accepts this strategy if all paths of y are accepted by the Muller
automaton E&.

Formally, the tree automaton is given by: 7 = (Q,R,I) where Q = (Q, X R)
and I = I, x ro. For 7 in a state ¢, reading node t, R(q,t) = ((q1,a1), .-, (Gm, am))
means that the automaton will branch out: on the a; successor it goes into state
q1, as successor it goes to state ¢o and so on. The transition relation is defined as

follows: for a node t € S, let {ay,...,a,} be the outgoing edges.

o If \.(t) = i then R((q,7),t) = {((accept,ar),...,((g;,75),a;5),...,(accept,an)) |
00(qj,t) = aj, 4 € 06(q,t,a;) and rj = A(r, ¢, a;)}.
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o If Ar(t) =7 then R((¢,r), ) = {(((q1,71),01), -, ((45,75),@5)s -+, ((@ms ) @) |
qj € 05(q,t,a;) and rj = A(r,t,a;) for all j: 0 < j < m}.

The tree automaton 7 accepts a tree iff for all paths either the Muller condition
specified by the win-loss automaton £% is satisfied or the state accept occurs infinitely
often.

To check if Vo, V7 : €L holds, it suffices to check if all plays in (G ' A;) | A, are
winning for ¢ with respect to . This can be done easily.

(2) We want to synthesize a bounded memory strategy p for player ¢ such that
for all strategies 7 of player 7 conforming to 7, the resulting play p(, ) is winning
for player i with respect to £4. By the observation made in the previous part, we
need to synthesize a bounded memory winning strategy for player i (if it exists)
in the restricted game G |' A,. Consider the game (G A A, EL), this constitutes a
classical win-loss Muller game where the arena is G |' A, and the winning condition
of player i is given by £L. We know that if player 7 has a winning strategy in the
game (G |\ A, EL) then i has a bounded memory winning strategy p which can be
synthesized effectively. The advice automaton A; is taken to be the automaton rep-

resenting the bounded memory winning strategy p. O

Theorem 5.3.6 Given a game G = (G, E) and a strategy specification w for player 1,

1. For a specification o for player i, checking if o is the best response to m is
decidable.

2. It is possible to synthesize a deterministic advice automaton A; such that A;

15 the best response to .

Proof: (1): Given ¢ and 7 to check if o is the best response to m, we use the
tree automaton construction in Theorem 5.3.5 with a slight modification. We enu-
merate the sets F' € F in such a way that those higher in < appear earlier in the
enumeration. For each F', we construct a tree automaton as in Theorem 5.3.5, the
only difference being that the guesses made by 7 at player ¢ game positions are not
restricted by o. 7 runs £% in parallel to check if player 7 can ensure F for all choices
of 7 which conform to 7. Since the evaluation automaton is “complete”, the play
eventually settles down in one of the sets I € F. Therefore, as we try elements
of F in order, the tree automaton succeeds for some £%,. This gives us the “best”
outcome which player ¢ can guarantee. We then use the verification procedure given
in theorem 5.3.5 to check if o,V : €L, holds in G.
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This also implies that given a strategy profile (presented as advice automata),
we can verify whether the profile constitutes a Nash equilibrium.

For (2) we enumerate F and find the “best” outcome F' that can be achieved.
Using the synthesis procedure given in theorem 5.3.5, we then synthesize an advice

automaton for F. O

119



Chapter 6
Games with imperfect information

So far in this thesis we have looked at games of perfect information. Games which
capture more realistic situations of social interaction are ones where players do not
have complete information on the past moves of other players. These are games
of imperfect information. The typical way of modelling imperfect information in

games is in terms of information partitions for players. In this view, each player

¢ over the set of game positions. For

1 is associated with an equivalence relation ~
two game positions w and w’ if w ~* w’ it means that player i cannot distinguish
whether the current game position is w or w’. The equivalence relation is part of the
game definition and it is assumed to be presented along with the game structure.
Now consider the following n player game with players 0,...,n — 1. Each player
has a local arena (graph). The global arena is constructed by taking the product of
the local arenas such that it satisfies the condition: player 0 has access to the global
game positions whereas players 1 to n can view only their local graph structures.
For i € {1,...,n}, the view of player i is the history of the play restricted to i’s
local game structure. Imperfect information arises from the fact that player 7 is not
aware of the exact global state but only his local component of the global state. The
information sets of player ¢ constitute the global game positions where his views are
the same. A local strategy of player ¢ dictates his choice based on his view. The
objective can be taken to be a regular win-loss condition. We can now ask the

following verification question:
e does there exist a tuple of winning local strategies for players {1,...,n} in G7

It follows from the result by Peterson and Reif [PR79] that this question is unde-
cidable. Thus the verification question is undecidable for the general class of multi-

player games with imperfect information. The global game arena has its structure
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derived from the local game graph. However, there is no information passed between
players about their local game structure.

A closely related question is the synthesis question which asks whether it is possi-
ble to synthesize local winning strategies when they exist. This has been extensively
studied in the control theory literature where the synthesis of distributed control
can be modelled as a game where n players playing against a global environment.
Pnueli and Rosner show that even for a two site distributed architecture where
there is no possible communication between the sites, the synthesis question is un-
decidable [PR90]. There has been various work in this context which investigates
conditions required to attain decidability of synthesis (see [Mad01], [KVO01] for an
overview). [MWO03| proposes a model for distributed games in order to formalize
and solve distributed synthesis problems.

In this chapter we propose a model for imperfect information games, where the
information partitions are generated explicitly by players’ behaviour. Communi-
cation between players is part of the game model and thus imperfect information
depends on the exact mechanism of communication adopted by players. We show
that in the case when players communicate by means of public announcements, the
verification question is indeed decidable. This also suggests that the real problem
lies not in the fact that there is imperfect information but rather in the way it arises.
If uncertainty is introduced through some structural means then it may be possible

to resolve it using communication.

6.1 The game model

Since we are looking at games of imperfect information, we deal with multiple players
explicitly. Let N = {1,...,n} be the set of players. We want to make communica-
tion between players explicit in the model. For this purpose we associate with each
player i € N a finite set I'* which represents the set of symbols which player i can

employ for communication. Let I' =Tl x - -+ x ™.

6.1.1 Game arena

Local arena: For a player ¢« € N, the local game arena for player 7 is given by
gi = (Wla i U}é, XZ) where

e W is a finite set of local game positions.
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e w) is the initial game position.

e ' : W' — I' associates with each local game position of player i an element
of T,

o —,;:Wix ' — 2" is the move function which satisfies the following condition:
for all w’, v’ € W, if w'5;0" then v(i) = x*(w?).

The local game arena dictates the rules of the game for each player 7. For each
local game position w?, the function x* specifies what player ¢ communicates with
the other players. The transition function takes into account the current game posi-
tion and the communication received from other players to specify the set of possible
moves enabled for player i. Note that communication in this model is by means of
public announcements since for any state w’, the value of x*(w') is communicated to
all players. A game structure G is defined in terms of a set of local game arenas for

each player, G = {G'};en.

Global arena: Given a game structure G = {G'};cy, the resulting global game
arena G = (W, —, wy) is constructed as follows: the set of global game positions W =
Wi xWmand wy = (w, ..., wt). We define the function y : W — T as y(w) =
(x*(w?), ..., x"(w™)) which associates with each global state, the announcements of
players. The move relation — C W x W satisfies the property: for all w,v € W we

have w—v iff
o Vi € enabled(w), w'50" or w' = vf, where v = y(w).
o Vi€ N\ enabled(w), v' = w'.

where enabled(w) = {i € N | o' € W with w' 50" where v = x(w)}.
Note that according to the global transition relation, for a player ¢ at a global
state w, even if a move of player i is enabled at w the player has the option of

remaining in the same state and choosing not to move.

Example 6.1.1 Let the players be N = {1, 2} and the communication alphabets be
I ={9,.. ;7 and % = {»2,...,~2}. Consider the local game arenas G' of player
1 given in Figure 6.1(a). The nodes of the graph corresponds to the local game posi-
tions, the announcements made by player 1 at each local state is marked along with
the local states. For instance, x!(w}) =14, x'(wi) = x'(wd) = ~{ and so on. The

self loop on states without any announcement annotation means that irrespective of
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Figure 6.1: Local game arenas

the announcement made by the other player, the local state remains the same. The
local arena G? for player 2 is given in Figure 6.1(b). The derived global game graph
is shown in Figure 6.2. We have not shown the possibilities of players delaying moves
in the global arena. In the global game graph, players 1 and 2 alternate moves till
the game reaches one of the global sink nodes {(wi, w3), (w}, w?), (w, w?), (w§, wd)}.
Player 2 cannot distinguish between the global states (w},w?) and (w3, w?) since
view? ((wg, wi) (wi, w§)) = view?((wg, wg) (w3, w§)).

The model does allow players to resolve imperfect information as the play pro-
gresses. For instance at the global state (w3, w3) player 2 knows that the play passed

through the position (wi,w?) and not through (wi,w?). O

Since the global game arena is derived from the local arenas it is possible that
there exist global game positions where moves of none of the players are enabled. In
other words, these are game positions where no progress can be made any further.
For convenience, we think of such terminal game positions as sink nodes with a self
loop. Thus a play in G is an infinite path p = wowy ... such that for all 7 > 0, we
have w;_;—w,;. We denote the set of all plays in G by Plays(G). We also use the
notation PB(G) to denote the set of all finite partial plays in G. For a partial play o,
we let enabled (o) = enabled(last(p)).

The (infinite) extensive form game tree Ty associated with G is obtained by
the tree unfolding of G. In the tree unfolding, in addition to keeping track of the
sequence of game positions, (according to Definition 2.3.2) we also keep track of the
sequence of announcements made by players. Formally the tree unfolding is defined

as follows:
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Figure 6.2: Global game arena

Definition 6.1.2 Let G = (W, —,wq) be a global game arena. The tree unfolding
of G is the structure Tg = (S, =, s0) where S C (W x )t and = C S x S are the

least sets satisfying:
L (WO7X(WO)) €S.

o Ifs = (W0.70) - .. (Wi ) € 5 and wy—w’ then ' = (wo,70) ... (Wi, ) (W', X(W)) €
S and s=5'.

6.1.2 Strategies

Views of players: For i € N and w € W, player ¢’s view of w is defined as
view'(w) = (w', x(w)). For a sequence p : wowj ..., we define player i’s view of p
as view'(p) = view'(wq)view'(w1) . ... Let Plays'(G) = {view'(p) | p € Plays(G)}.

Note that a sequence in Playsi(g) need not necessarily be a path in G°.

Strategies of players: A strategy for player i, is a function u* : W* — W* which

satisfies the following conditions:
(S1) p'(e) = wp.

(§2) for all finite partial plays o € P(G), if u'(9) = w’ then there exists v such that
last(0)—v and v’ = w’. This says that the strategy must choose only moves

which are enabled.
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(83) For all g, o € B(G), if view'(p) = view'(¢') then u'(0) = u’(¢'). This says that

the strategy needs to respect the information partition.

We say that a play p : wow ... is consistent with strategy u’ if Vj > 0, w} =
i (view' (wo ... wj_1)).

As we saw earlier (in Section 2.1.2) with a strategy u* of player i, we can associate
a strategy tree. Rather than viewing the strategy tree as a subtree of Tg, in this

chapter we represent it in terms of a labelling function on nodes of Tg.

Definition 6.1.3 Given a game tree Tg and a strategy p' of player i, the strategy
tree t,i = (Tg,l) where [: S — W' is defined as [(s) = p'(s).

It is easy to see that a strategy profile = (', ..., u™) generates a unique path in
G, we denote this by p,.

Joint and distributed strategies: The definition of view can be extended to a

subset of players in the natural manner. For C = {iy,...,it} € N and a position
w € W, we have view®(w) = (w®, x(w)) where w® = (w™,...,w"). For a play p :
wow ... we have viewC(p) = view(wo)view®(w1) . ... Let Plays(G) = {view®(p) |

p € Plays(G)}.

For a subset of players C = {i1,...,it} C N, a joint C-strategy is a function

7€ . W* — W which satisfies the following conditions:

o 7C(e) = (wi, ..., wik).
o Vo € PB(G) if 7°(p) = w® then there exists v such that last(0)—v and v¢ = wC.
e For all g, o' € P(G), if view (o) = view® (o) then 7°(0) = 7°(¢).

A distributed C-strategy is a tuple of strategies u¢ = (u™, ..., u*). A distributed
C-strategy p defines a joint C-strategy as follows: for all partial plays o € B(G),

() = (1" (0), - -, 1™ (0))-
When C consists of a single player i, a strategy pu’ for player i constitutes a joint

C-strategy as well as a distributed C-strategy.

6.1.3 Objectives of players

The game arena defines the rules of the game, we first look at the situation where

with each player is associated a win-loss objective. That is, the objective of each
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player is specified in terms of a set ® C Plays'(G). We say a play p € Plays(G)
is winning for player i if view'(p) € ®'. We are interested in analyzing regular
objectives of players and therefore assume that ®* for each player i can be presented
in terms of a deterministic Muller automaton M°.

For a subset of players C C N, a joint C-objective ®° C Plays®(G). When C = N,
the set of all players, the objective ®C is simply a subset of Plays(G).

Given a joint C-objective for a subset of players C, we say that a joint C-strategy
7¢ ensures ®C iff for all paths p consistent with 7€, we have view®(p) € ®°. A
distributed C-strategy uC ensures ®€ if the joint C-strategy 7€ induced by u€ ensures
®C. The case when C constitutes a single player 4, this amounts to saying that for
all paths p consistent with u’, we have view’(p) € ®’. Or in other words, p’ is a
winning strategy for objective ®°.

For two player games, we say the pair (®!, ®?) defines a zero sum objective if the
set X = {p € Plays(G) | view'(p) € ®'} and Y = {p € Plays(G) | view?*(p) € ®*}
satisfies the condition that Y = Plays(G) \ X. The class of two player zero sum

games defined in terms of local game arenas with public announcements need not

be determined as illustrated by the following example.

Example 6.1.4 Consider the global game arena given in Figure 6.2. Let the ob-

jectives of players be as follows:

e ®' is the set of all paths in Plays'(G) which cycles in the local state w} or wg

of player 1.

e ®? is the set of all paths in Plays*(G) which cycles in the local state w? or w?

of player 2.

It can be easily seen that the pair (®!, ®?) defines a zero sum objective. Player
1 does not have a winning strategy for ®'. To see this, suppose player 1 chooses
w; at the game position (wg, w?) then there is a path where player 2 chooses w3
which does not satisfy ®'. If player 1 chooses w3 at (w},w?) then the choice w?
of player 2 leads to a path which does not satisfy ®2. Similarly player 2 does not
have a strategy to ensure ®? either, since she cannot distinguish between the global

states (wi,w?) and (wi, w?). In other words, the game is not determined.
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6.2 The verification question

Given a game structure G = {G'};cy, a subset of players C C N and a regular

win-loss C-objective ®°, the verification question asks:
e does there exists a distributed strategy ;€ such that € ensures ®€?

In this section we show that the verification question is decidable in the proposed
game model where players communicate by means of public announcements. When
C consists of a single player i, the verification question asks whether there exists
a strategy for player i to ensure outcome ®’. We first show that this question is
decidable.

Techniques adopted for computing winning strategies in games of perfect in-
formation cannot be directly applied in this context. To see why, consider the
verification question for a single player i in the perfect information setting. Let M
be the deterministic Muller automaton representing the regular objective ®*. To
solve the verification question we consider the tree unfolding 7Ty of the global game
arena G. We can build a tree automaton which at every node of player ¢ guesses a
choice and branches out on choices of nodes not belonging to i. Ty also runs M’ in
parallel and verifies that all runs conform to the specification. An accepting run of
this automaton would be the strategy for player i to ensure objective ®.

In the case of incomplete information note that the guesses made by the tree
automaton at various ¢ nodes need to preserve the consistency requirement of the
strategy (S3). As noted by [KV99] this condition is non-regular and thus cannot be
directly maintained by an automaton. [KV99| suggests a technique to circumvent
this problem in terms of a construction using alternating tree automata. Here we
show that the construction used in [KV99| can be appropriately modified to solve

the verification question.

Alternating tree automata: For a finite set T of directions, a T-tree is a set
T C T* such that the following condition holds:

o if s-u€& T where s € T* and v € T then s € T as well

Given a set X, a 3 labelled T tree is a pair (7, [) where T'isa Y treeand [ : T" — X,
i.e. each node of T is labelled with an element in X.
Alternating tree automata generalize nondeterministic tree automata and were

first introduced in [MS87]. While a nondeterministic automaton can guess a set of
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successor states and send one copy of itself along the subtrees rooted at its children,
an alternating automaton can propagate several copies to a single child.

For a set X let BT (X) denote the set of positive boolean formulas formed from
the elements in X. That is, BT (X) := True | False | x € X | a1 V as | a3 A a. For
a formula o € BT(X) and a subset Y C X, we say Y satisfies « iff assigning True
to elements in Y and False to elements in X \ Y makes « true.

An alternating tree automaton over Y-labelled T tree is 7 = (Q, J, qo, F') where
Q is a finite set of states, qq is the initial state, F' defines the acceptance condition
(a condition that defines a subset of ). The transition relation 0 is a map 9 :
Q x ¥ x 2 — BT(Q x Y) which satisfies the condition: if ¢ € Q,a € X, C C T
then d(q, a, C') is a boolean formula in B¥(Q x C).

Let (T,1) be a X-labelled tree, a run of the automaton 7 over (7',[)is a (7' x Q)
labelled tree (7T,,7) in which the root is labelled by gy and a label of a node w in 7,
being (s, q) represents that the run at that node is reading the node s of the tree T'

and is in state q. Formally, (7T,,r) satisfies the following conditions:
e for the root node o, 7(y0) = (€, Qo)

o Let y € T, and r(y) = (s,q). Let C be the successor directions of the node s
and 0(q, [(z),C') = 6 where 0 is a formula in BT (Q x C). Let Y C @ x C be
the set of all (¢, ') such that there is a child 3’ of y with r(y') = (¢, z - ).

Then we require that Y satisfies the formula 6.

A path p of the run is said to be accepting if the sequence of Q-components of
the labels of p satisfies the acceptance condition. The run (7)., r) is accepting if all

paths in it are accepting.

Solving the verification question: Given a game structure G = {G'}icn, let
G = (W, —, wy) be the induced global arena. For a player i € N, we use the notation
W~ to denote the set W' x ... x Wil x Witl x ... x W". Forw € W, we use w'
to denote the tuple w= = (w!,... w w™ ... w"). For the global arena G, the
tree unfolding Ty (as given in Definition 6.1.2) can be viewed as a Wi x W~ x T
tree. A strategy tree ¢, for player i is then a W* labelled W* x W~ x T tree (Tg, ).

Definition 6.2.1 For a global arena G = (W, —,wq) we define Proj(G,W—") =
(U, —p,ug) where U = WixT and ug = view'(wo). The move relation —p C U x U

is defined as:
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o u—pu' iff there exists w,v € W such that view'(w) = u, view'(v) = «’ and

wW—V

It can be easily verified that for all paths p in G, view'(p) is a path in Proj(G, W =9).
Proj(G,W~%) is an arena obtained by projecting out from G the components which
give rise to imperfect information for player i in G. A strategy 7' of player 7 in
Proj(G, W™ is therefore a function 7 : (W x I')* — W' such that 7(e) = w.
A strategy 7 in Proj(G, W) generates a strategy u' in G as follows: for all par-
tial plays o € PB(G), p'(0) = 7'(view(o)). By definition, the generated strategy u’
satisfies the condition (S3).

Let G’ = Proj(G, W™). Given a Wi labelled W' x T strategy tree t.. = (Tg/, 1),
we define wideg y—i(t:) as the W labelled W* x W~ x T tree t = (Tg, 1) which

satisfies the condition:
e for every node s in Tg we have [(s) = I'(view'(s)).

Thus a strategy tree . in Proj(G, W ™) generates a strategy tree t,i in G by the

transformation ¢, = wideg y—i(tqi).

(w(l)vw(?)) (w(l)v'yo)
(w07w1) (wévwg) (wov'yl)

(wi,w?) (w},w?) (wi,w3) (wg,w3) (wiy2) (w},73)
(a) g (b) lnt

Figure 6.3: Game arena and strategy tree

wovwm“{O)
(w(1)7w1 771) (wévwgv’yl)
(wiw%f\m) (w27w1773) (w},w%,'yg) (wéngy'ﬁ’))

Figure 6.4: Strategy tree in G

129



Example 6.2.2 To illustrate the widening operator, consider the game arena G
given in Figure 6.3(a). Let ¢,1 be the structure shown in Figure 6.3(b) where
(wg, v0) = wg, V(wg, 71) = wi. The structure wideg y—i(t,:) is shown in Figure 6.4.
Since view!(w}, w?,v1) = view' (w§, w, v1) we have [(w}, w? 1) = (w§, wi 1) =

1
wy - 0

Definition 6.2.3 For a global arena G, a choice function of player i, is a map
¢t : W* — W' which satisfies the following conditions:

e for all finite partial plays o € PB(G), if ¢'(0) = w' then there exists v such that

last(0)—v and v' = w'.

In other words, a choice function for player 7 is similar to a strategy except that
the condition (S3) need not hold. A choice function which is consistent with the
information partition for player i constitutes a strategy for the player. A choice tree
for player i is defined in a manner similar to that of strategy tree, i.e. it is a W
labelled W' x W~ x T tree.

Lemma 6.2.4 Given a global game arena G, a player i € N and objective ®°, we
can construct an alternating tree automaton Ty accepting the set of all choice trees

for player i in G which ensure ®°.

Proof: Let M denote the Muller automaton corresponding to ®!. The automaton
Ty ensures that the structure ¢ constitutes the unfolding of the game arena G. The
labelling function associated with ¢ specifies the choice function of player ¢. The au-
tomaton also runs M? in parallel and ensures that all the paths which is consistent
with the labelling is accepted by M®. O

Lemma 6.2.5 Given an alternating tree automaton T over W* labelled W x W =% x
' trees, we can construct an alternating tree automaton T’ over W labelled W' x T’

trees such that T' accepts a labelled tree t' iff T accepts wideg y—i)(t').

Proof: Let 7 = (Q,6,q, F). We define 7/ = (Q x W, & {qo, wy "), F x W).
The transition ¢&'({g,w™"),u’) is obtained from &(q,u’) by replacing each element
((u',u™% %), q') by the element ((u’,~'), (¢',u~")). We show that for all TW* labelled
Wi x T trees t' = (T4, 1) we have ¢’ € Lang(T") iff widegw-i(t") € Lang(T).
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(<): Suppose widegw-i(t') € Lang(T), let (T,,r) be an accepting run of 7. We
have 7 : T, — (Wix W~ xT')* x Q). Consider the tree (7}, ') where for all u € T,
with r(u) = (s,q) and w = last(s) we have 1’(u) = (view'(s), (¢, w™%)). (T,,7") is
an accepting run of 7' on t'.

(=): Suppose t' € Lang(7T'), let (T,,7") be an accepting run of 7'. We have
v T, — (Wi x T)* x (Q x W=). Consider the tree (T,,r) where r is a map
ri T, — (Wix W x I)* x Q is defined as:

e Foru-de T, with r(u) = (s,¢') and r'(u-d) = (s'- (w',7), (g, w™)), we have
’I"(U ’ d) = (S ’ <wi7w7ia7>7 q)

(T,,r) is an accepting run of 7 on wide g w-i(t'). a

Let the automaton constructed in Lemma 6.2.5 be denoted as narrow g w-i /(7).

Lemma 6.2.6 Given a global arena G, a player i € N and objective ®, there exists

a strategy for player i to ensure ®° iff narrow g w-+(Ze:) 7 0.

Proof:

(=): Suppose there exists a strategy 7 which ensures ®¢, from Lemma 6.2.4 we have
widegw-i)(txi) € Lang(7pi). From Lemma 6.2.5 we get t« € Lang(narrow g w-i(Zei)).
(«=): Suppose Lang(narrow g w—i)(7g:)) is not empty. Then there exists a tree t.: €
Lang(narrow g w-iy(Tgi)). By Lemma 6.2.5 we have wideg w—i)(tzi) € Lang(Zg:).

From Lemma 6.2.4 we get there exists a strategy for player i to ensure ®°. O

Proposition 6.2.7 then follows from Lemma 6.2.6.

Proposition 6.2.7 Given a game structure G = {G'}icn, a player i € N and an
objective ®°, it is decidable to check if there exists a strategy p' for player i such that

1’ ensures ®°.

In the above construction, the use of alternating tree automata is mainly for
convenience. One could presumably work with nondeterministic automata as well.
However, such a construction would typically involve the size of the resulting au-
tomaton to be exponential. In contrast, alternation provides a helpful mechanism
whereby the description of the automaton itself is very simple and all the combina-

torial difficulty is shifted to the non-emptiness test.
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Theorem 6.2.8 Given a game structure G = {G'}ien, a subset of players C and
an objective ®F, it is decidable to check whether there exists a distributed strategy pu

such that u€ ensures ®°.

Proof: From Proposition 6.2.7 it follows that it is decidable to check whether C has
a joint strategy 7¢ which ensures ®¢. We show that the existence of a joint strategy
implies the existence of a distributed strategy. Since existence of a distributed
strategy trivially implies the existence of a joint strategy, the theorem then follows.
Claim : For all joint C strategies 7€, for all o, o’ € PB(G) consistent with 7¢ where
CNenabled(o) # 0, view® (o) # view®(¢') implies Vi € C such that i € enabled(o) we
have view'(o) # view'(o').

The claim can be verified as follows. Suppose it is not true, then there exists a
player i € C and sequences g and ¢ such that view' (o) = view'(¢'). If o = ¢ then the
claim follows easily. It cannot be the case that p is a strict prefix of ¢’ or vice-versa.
Let o1 be the maximum common prefix of o and ¢'. Let o = 01 - wo - w3 ---w,, and
0 = 01-Va- Vs V. Since view'(p) = view'(¢'), it follows that view'(o; - wy) =
view'(g; - v2). Since announcements are public, x(wz) = x(v2) = 7. Since ¢ and ¢

are consistent with 7€, we have w$ = v§. Since announcements are public we have

view® (o1 - wy) = view® (o) - (w§,v) = view®(o1) - (v$,~) = view® (o1 - v2). We have

the following two cases.

e C N enabled(o; - wy) = (): Since announcements are public, we get view®(o; -

wo - W3) = view®(o; - vy - V3).

e C N enabled(or - wa) # 0: This also implies that C N enabled(p; - vo) # () and
7¢(01 - wa) = 7%(01 - v2). Again since announcements are public we get that

view® (o1 - Wy - W3) = view® (01 - Vo - V3).
Proceeding in this manner we get view® (o) = view®(o') which is a contradiction.
End of claim
From the above claim it follows that for any partial play o € B(G), for any
player i whose move is enabled at g, given view’(p), player i can make exactly the

same move that is dictated by the joint strategy. In this way we define all the local

strategies. O
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6.3 Games with private communication

In the game model introduced above all communication between players are due to
public announcements. Communication through private channels between players
can be captured by modifying the structure of the announcement alphabet.

For each player ¢ we have a set of communication alphabets {Fé}je ~ with the
interpretation that I'; is the set of symbols which player ¢ can announce to player j.
Let T'= U, jen 5 Let ©),, = {v': N =T |Vj € N,v'(j) € I'}} and O}, = {n" :
N — T |Vj € N,n'(j) € T?}. The function v* specifies the announcements made
by player ¢ and 7’ specifies the announcements received by player i.

The local game arena for player i is then given by G' = (W*, —;, w{) where W is

the set of local game positions, wj is the initial game position and x* : W' — ©! .

i

et = 2W" satisfies the following condition: for all

The move relation —; : Wi x ©
wt vt e Wi

o wilsyi implies n°(7) = x(w®)(7).

The global game arena G = (W, —,wy) is derived from the local arenas as
in the earlier case. The global game positions are W = W! x --- x W" and wq =
(wg, ..., wy). The move relation — C W x W which satisfies the following property:

w—v iff for all i, j € N

e for all 7 € enabled(w), ws it where n'(j) = x*(w?) (i) or w® = v'.

o for all i & enabled(w), w' = v'.

6.3.1 Undecidability of the verification question

In this section we show that if we look at the class of imperfect information games
where private communication between players are allowed then the verification ques-
tion becomes undecidable. The interesting fact is that even for simple reachability
objectives, the problem remains undecidable. We prove undecidability by giving a
reduction to the Post’s correspondence problem. The proof proceeds along the lines
of the one presented in [Ber06] which shows that distributed strategy synthesis is
undecidable for the distributed games model introduced in [MWO03] with reachabil-

ity objectives.
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Post’s correspondence problem: An instance of Post’s correspondence problem
(PCP) consists of two lists, A = x1,...,2x and B = yj, ...,y of strings over some
finite alphabet set Z. This instance of PCP has a solution if there is any sequence of

integers ji, jo, . .., jm with m > 1 such that x; ,xj,,..., 2, = Y1, Yjs, - - -, Yj,.- The

sequence 7ji, ja, - - -, Jm is said to be a solution to this instance of PCP.
List A | List B
Jl Yi
1 1 111
2| 10111 10
3 10 0

Figure 6.5: A PCP instance

Example 6.3.1 Let Z = {0, 1}, let A and B be the list of strings as given in Fig-
ure 6.5. Consider the indices j; = 2, jo = 1, j3 = 1 and j, = 3. Then we have
Tow12173 = Yoy1y1y3 = 101111110. Thus the sequence of indices mentioned above is

a solution. O

Theorem 6.3.2 ([HU79]) PCP is undecidable.

Reachability objective: Given a game G = {G'};cn, to model reachability ob-
jectives, we assume that for each player i € N, there is a state reach’ such that
for all j € N, x*(reach’)(j) = reach’. That is, once a player enters reach’ then she
announces this fact to all the other players. The reach state is also a sink state
for players and once entered, the player remains in this state. The reachability ob-
jective @' of player i can then be given as ® = {(w},vo)(wi, V1) ... € Plays'(G) |
3j with w! = reach'}.

Theorem 6.3.3 The verification question is undecidable for reachability games with

private communication.

Proof: Given an instance of PCP, we construct a game such that this instance
of PCP has a solution iff the verification question is decidable for the constructed
game. Let the instance of the PCP be given by the list of strings A = zq,..., 2}
and B = y,...,y; over the set of alphabets Z. We assume that the state space
of the players is rich enough to code up the PCP instance. That is, for each index

134



j € {1,...,k} there is a state which represents the index, for each alphabet in Z,
there is a state which identifies the alphabet and the lists A and B are also coded
into the state space. We construct a game consisting of four players where each of

the players’ functions are as follows:

e Player 0 has perfect information about the game. That is, Players 1, 2 and 3
convey their exact local states to Player 0 through the private communication
channel. Player 0 makes the choice of the list (either A or B) and also schedules

the moves of other players.

e Player 1, whenever her move is enabled, chooses indices j € {1,...,k}. At
any point she can also choose to enter the guit! state indicating the end of the

choice of indices.

e Player 2 chooses letters from the alphabet Z. At any point Player 2 can also

choose to enter the quit? state indicating the end of choice of strings generated.

e Player 3 is a deterministic program whose function is to match the index j
chosen by Player 1 with the letters generated by Player 2 and make sure that
it is in fact the j% string in the list chosen by Player 0.

The game proceeds as follows: initially Player 0 moves, chooses one of the list
(either A or B) and communicates the choice to Player 3 through the private com-
munication channel. The choice of list is not revealed to Players 1 and 2. Next
Player 1 is scheduled to move, she chooses an index j € {1,...,k} and communi-
cates the choice to both Player 0 and 3. Player 2 is unaware of the choice made
by Player 1. Player 2 now chooses letters from Z and communicates the choice to
Players 0 and 3. Player 1 is unaware of the choice of Player 2. Player 3 matches the
string generated by Player 2 and ensures that it matches the ;% string in the list
chosen by Player 0. If it does not match then Player 3 enters a reject state. Note
that Player 3 need not keep track of the entire string in order to do this. The lists
A and B are encoded in the state space of Player 3 and she just needs to match
the sequence of alphabets chosen by Player 2 with the j string in the appropriate
list. This can be achieved with finite memory. Once Player 3 enters the reject state
then the game stays in a sink state and does not proceed any further. If the string
matches then Player 1 chooses another index and the game goes on as described

above.
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Players 1 and 2 can choose to enter their quit states at any time when they
are scheduled. Since quit states are intended to capture the end of the sequence
of indices or strings, Players 1 and 2 are required to enter their quit states in their
successive moves. If at any round Player 1 enters its quit state and Player 2 continues
to choose letters from Z then Player 3 enters its reject state. Similarly if Player 2
enters its quit state while Player 1 has not yet chosen to quit then Player 3 enters
its reject state. Player 3 also ensures that Players 1 and 2 do not choose quit states
in their initial moves. If both Player 1 and Player 2 enter their respective quit states
in succession, then Player 3 enters an accept state which is then communicated to
all the players. If Player 3 ever enters its accept state then both Players 1 and 2
move to states reach® and reach? respectively.

Now consider the subset of players C = {1,2} and the joint C objective ®¢ be
the reachability objective where both players enter the states reach' and reach®
respectively. We claim that for a distributed strategy (u', u?) to exist which ensures
®°, the PCP instance needs to have a solution. To see this, suppose the PCP instance
does not have a solution, then Player 0 can appropriately choose the lists A or B so
that the resulting run does not ensure objective ®¢. For instance, suppose Player
1 generates the sequence of indices ji,...,j» and then enters the state quit' and
Player 2 generates the string z;,x;, ...z;, and enters the state quit*>. Now consider
the run where Player 0 chooses the list B. Since the PCP instance does not have
a solution, =, z;, ..., # Yy Yjs - - - Yj.- Let p be the first index where the strings
differ and let p occur in the substring y;,. Now consider what happens in round
i;: Player 1 chooses the index 7;, however, since x, # y,, the string of alphabets
generated by Player 2 in round 4; does not match with y;,. Player 3 therefore enters
the reject state and thus the objective ®C is not satisfied.

If the instance of PCP has a solution, then let the indices ji, j2, ..., j,m be the
solution. Consider the strategies where Player 1 chooses indices ji, jo, ..., jm and
enters quit', Player 2 generates the string xjTj, ... T, and enters quit®. Since
TjTjy - Tj. = YiYijs - - - Yjm» irrespective of whether Player 0 chooses the list A or
B, Player 3 eventually enters the accept state. It then follows that the subset of
players C = {1,2} has a distributed strategy to ensure objective ®C for the above

mentioned games iff the instance of PCP has a solution. O
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6.4 Games with overlapping objectives

In the previous sections we looked at games where players have win-loss objectives.
In general, players’ objectives are specified in terms of a preference ordering <'C
Plays'(G) x Plays'(G). Once the preference orderings of players are defined, we can
look at notions like best response and equilibrium as defined in Section 2.1.3. For
the purpose of algorithmic analysis, the preference ordering of each player ¢ can be
presented in a finite fashion in terms of an evaluation automaton & = (M? <?)
where M' = (R, A" ri, F*) is the underlying Muller automaton (see Definition
5.1.2). Since we want the evaluation automaton to induce a preference ordering
over paths in Plays’(G) we take the transition function A’ : Rf x Wi x I — R'.

Bounded memory strategies of players can also be presented in terms of determin-
istic advice automata (Definition 2.3.3) by appropriately modifying the transition
function to take into account the views of players.

In the context of non-zero sum games, we show that the best response compu-

tation can be effectively performed.

Theorem 6.4.1 Given a game structure G = {G'}icn, preference orderings {=<'}icn

of players and a strategy profile p=" in terms of advice automata, the best response

for player i can be effectively computed.

Proof: Let the strategy profile ;' be presented as advice automata A~% =
(AL AT AL A™). Let the evaluation automaton for player i be £ =
(M, <) where M" = (R', A", 7}, F'). For each F' € F', we can construct a nonde-
terministic automaton Ay which explores paths of G as follows. It consults A~ to
pick moves of players j € N \ {i} and simply guesses i’s moves. Since strategies of
other players are deterministic and the initial game position is unique, this defines
a unique path in the arena. Automaton Ar runs the win-loss evaluation automaton
EL for player 7 in parallel and checks if the run is winning for player i. Now, we can
enumerate the /7 € F in such a way that those higher in <’ appear earlier in the

enumeration. We try automata Ap in this order. O

We then have the following corollary.

Corollary 6.4.2 Given a game structure G = {G'}icn, preference orderings {<'}icn
of players and a strategy profile ;v in terms of advice automata it is possible to check

whether the strategy profile constitutes a Nash equilibrium.
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6.5 Discussion

In the context of non-zero sum games of imperfect information, we showed that the
best response computation can be done and it is possible to verify whether a given
strategy profile constitutes a Nash equilibrium. It turns out that Nash equilibrium
need not always exist in such games. In fact, a game similar to the one given in
Example 6.1.4 can be used to show this fact. A natural question therefore would

be to ask: given a game structure G = {G'};cy along with preference orderings

{="}ien of players,
e is it decidable to check if Nash equilibrium exists in G?

An obvious approach would be to try using techniques similar to the LAR tree
construction developed in Chapter 5 to tackle this question. Unfortunately the finite
tree unfolding construction does not solve the problem, since in general, the strate-
gies constructed need not respect the information partition of players. However, the
core idea of the LAR construction is to transform the game structure G into a bigger

structure G’ which satisfies the property:

e there exists an equilibrium profile in G iff there exists an equilibrium profile in

memoryless strategies in G'.

We believe that using this approach one can show that the above mentioned
question is decidable for imperfect information games where players communicate

through public announcements. However, we do not have a proof of this fact yet.
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Chapter 7
Conclusion

In conclusion, the main topic of this thesis has been the analysis of strategies in
games. We have focussed our attention on two main aspects: the algorithmic analy-
sis and the logical analysis of strategies. Algorithmic analysis of strategies included

issues like,
e synthesis of winning strategies for two player zero sum games, and

e best response computation and synthesis of equilibrium profiles for non-zero

sum games.

For finite extensive form games, our main tool for algorithmic analysis was the
backward induction algorithm. For infinite duration games, on the other hand, even
presenting the strategies and objectives of players in a finite fashion is a non-trivial
issue. We proposed evaluation automata as a convenient finite state model to present
the preference orderings of players in an infinite duration game. We showed that in
the case when preference orderings of players are presented in terms of evaluation
automata, the backward induction procedure can be effectively adapted to synthesize
an equilibrium strategy profile.

Algorithmic analysis as mentioned above, analyses functional strategies of play-
ers. However, functional strategy synthesis even though theoretically possible, may
not necessarily be a practical tool in terms of a prescriptive theory for players. In
this context, we suggested that it makes sense to look at strategies as partially de-
fined objects and proposed a logical syntax to represent strategies in terms of their
observable properties. Thus strategy specifications formed our basis of logical anal-
ysis of strategies. We showed how strategy specifications can be embedded into a

simple modal logic to reason about games. On the technical front, we showed that
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the logic admits a complete axiomatization and that the model checking problem for
the logic is decidable. We also considered how the logical analysis can be adapted
in the situation where the game itself has compositional structure. We proposed a
logic which explicitly takes into account the compositional structure of games for
strategic reasoning. We showed that the logic admits a complete axiomatization
and that its satisfiability problem is decidable.

As mentioned in the introduction, we do not consider the very important concept
of mixed strategies in the logical analysis. Thus one of the natural extensions to
strategy specifications is to incorporate the notion of expectations of players. To
come up with prescriptive mechanisms which provide advice to players on how to
play, it is essential to be able to represent a player’s expectations about the be-
haviour of the opponent. The expectations need not necessarily be represented in
a probabilistic manner and could also be based on abstract notions like “likelihood”
[HR87|. Introducing expectations of players is particularly interesting in the frame-
work of unbounded game composition as it allows players to learn from the past
information, revise their expectations and accordingly make use of it to generate
sophisticated plans. Enriching the framework to be able to represent expectations
of players is thus a challenging exercise. A related work in this context is that of
[AB95] which looks at the epistemic conditions of players in terms of equilibrium
notions.

All the above comments were regarding games of perfect information. For games
of imperfect information, algorithmic as well as logical analysis remains in its early
stages of development and most of the work which exists in the literature provide
negative results. In the context of algorithmic analysis, even in finite extensive
form games, the techniques developed for perfect information do not easily extend
to games of imperfect information. For instance, our core technique of backward
induction crucially relies on the fact that players have perfect information in making
assumptions on how a rational opponent would play. For finite extensive form
games, however, since the set of deterministic strategies of players is finite, one
could enumerate all the strategies and decide on the existence of winning strategies
as well as synthesis of equilibrium profiles.

The situation is less clear in the case of imperfect information games since in
general stable strategy profiles in these games require memory; providing bounds on
memory is a challenging task. In the case of two player zero sum games, it is possible

to transform a game of imperfect information into a game of perfect information via
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the subset construction such that the existence of winning strategies for at least one
player is preserved. This construction was originally suggested by Reif in [Rei84].
Thus checking for existence of winning strategies in such games is decidable. For
multi-player non-zero sum games, in general, even the question of checking whether
an equilibrium profile exists turns out to be undecidable. A proof of this runs along
the lines of the undecidability proof presented in Section 6.3.

As far as the logical analysis is concerned, for finite extensive form games, the
modal and dynamic logic framework can be extended to reason about games with
imperfect information. [Ben01] looks at reasoning about such games with respect to
an epistemic modal language.

For unbounded duration games, there are hardly any decidable logics to reason
about games with imperfect information. The ability of ATL to reason about games
with imperfect information has been studied in the literature. The results are mostly
negative; in [AHKO02|, the authors show that the ATL model checking problem for
multiple players with imperfect information is undecidable. [Sch04] and [JvdHO04]
look at extensions of ATL which combine incomplete information and imperfect
recall. [AWO09] proposes an extension of ATL where bounded memory and bounded
recall are explicitly taken into account in the logical language.

The notion of partial strategies makes sense in the context of a prescriptive
theory for imperfect information games as well. Strategy specifications as introduced
in Chapter 3 can be utilised to specify partial strategies in imperfect information
games. As noted in [Ben07|, imperfect information games encompass two intuitively

different senses of uncertainty.

e “Future uncertainty” the uncertainty of players which arises from their lack

of knowledge of what other players are going to do in the future.

e “Observation uncertainty”: the uncertainty arising due to players not being

able to observe events in the past.

Strategy specifications already incorporate the notion of future uncertainty of
players. However, coming up with an appropriate logical language which embeds
these specifications and can effectively reason about games with imperfect infor-
mation is a challenging task. For it to be realistic, such a language also needs to

incorporate epistemic attitudes and beliefs of players [HFMV95|.
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