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INTRODUCTION,

Polynomials nave the following two properties:

1) A polynomial takes on every complex value the same
number of tim?s.

2) On large circles {z| = r the absolute value .of a

polynomial p(z) 1s large and

lp(rei"() |
1im e s

.
r > Ip(re™)|

uniformly in <« and .

The example of the exponential function shows that
neither of these two properties subsists for entire functions.
Phese lectures discuss the problem of finding analogues for
the properties 1) and 2) for entire and meromorphic fﬁnétions
qf lower order. In sections 1 and 2 some auxiliary results
are glven. 1In 3-5‘analogues-of,property 2) are discussed and
in sections 6-8 analogues of property 1). ‘

A knowledge of the fundamentals of Nevanlinma Theory 1s
assumed, such as it c an be found in W.K.Hayman's Maromorphic

Functlons, Chapteré 1 and 2.
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POLYA PEAKS.

Let G(t) be a real-valued functlon of t defined in

t > t 2 0. By a gequence of Pblva peaks of order o We

mean a sequence of positive numbers $ rn% + 0 as

n = oo, such that there are two sequences $ En'E , §Cn§

where €, - '0 and C = @ as 1 -+ o0, with the property

that

r
6(t)t™ < Glrr (1) (Eﬁ <t<er,)

LEMMA, If G(t) Ais an increasing continuous function

of t and if for every € > 0

(1.1) 1lim inf G(£)t""% = 0, lim sup (Yt E = 0 (- o)

. ;
then G(t) has sequences of pélva peaks of order & .

PROOF, We shall construct an auxlliary function N(t)
such that | ‘

1. N(t) 1is real~valued aﬁd continuous in t > ty

2, NE) =+ 0O (t = o)

3. ﬂ'(t)_ exists except at isolated points and

1, 1
n (t) =0 ( t log t
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4. () = act) £~ o

satisfies

Lin P =0, Tin ¢ (t) = (t = )

Notice that 3. has the following cdnsequence. There 1s a func-
tion e(t), 0 < €e(t), €(t) = O (t + o) and a function C(t),
c(t) = oo (t~ o0), such that

n(r) | .

T _ T
(1.2) xm - ll < e(t) (—m < t<¢r C(I’))

To prove the existence of an €(%) so that (1.2) holds,

we first notice that the assertion is equivalent to

n{r) \
(1.3) log (?JW }l < ey (1) (C(II“) < £< r C(r))

where Bl(t) - 0 as t =+ .
But }

e () = [ (s
. t

fqu | |

d. (log u'ﬂ(u) )




RS f ICHI lau| + S [n*w | log u laul
t u

t
By 2.and 3 this inequallty becomes N
N(r) £ .
T 1 r
| ¢ & - L
log e ‘Q o (5 ldu| = o |10g T |)

It 1s now easy to find functions Bl(t), ¢(r) such that (1.3)
holds, which implies (1.2) for a suitable e(t).

The actiual construction of M(t) 1is as follows:
Divide the segment t > to of the t-axis into successive

intervals I, Jl’ Toy Tgs eee o

k
L iy = 0, Nty = L
k-1
In Ty n'(p) = B
b kKt log t

The end-points of the intervals are determined in succession by

requiring that at the right-hand end-point t, of I
1
bt & § (k odd, kX > 1)

"lb(tk) .2_ k | (k even)
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k
‘gince in Les Nty = L:%lfm suel. values of b(t) are

certainly possible by.the hynothesis (1.1). The intervals J'k

p k
“are chogen so that N(t) varies from the value izil— to the

g . k-1 _
value g:%%T—— in Jy. This is possible, because

a0

at oo
Tt Iog t '

Tt is obvious that the function MN(t) constructed in

this way satisfies all requirements. :
Consider now the function -43(t) = G(tﬁfﬁ*n(t) + Let

T = T(t) be the least value of x such that

CfD(’C) = . <s§p$ . 95(}{).

0-

Then T(t) € % and, since (ﬁ(t) - w (t =+ o), T(L) » @
with t. Notice also that '

e

(1.4) ' 1im Ei%l =0 .

For, otherwise

(1.5) | T(E) > A (t > t)

for.some positive A. But then




bty = owy ™Y 3 o™ ™Y (F) Sqry
2 SO, -35 (t > t)

using (1.2) and (1.5). But this contradicts Lim P (t) = 0.
Therefore (1l.4) must hold. '

Choose a sequence {tn} such that t = o0,

B - o, Put r, = TU(t). Then

bty ¢ plr) (b < b < )

-c+N(t)

Replacing ¢ (t) by G(t)t and remembering (1.2),

the Lemma is established with .

. tn
Cn = min { C(rn), 5; }

and € = B(rn). | }




| ‘ - SECTION 2
THE APPROXIMATION LEMMA

LEMMA, 2,1 (Approximetion Lemma), Let f(z) be a

L

meromorphic function and let f£(0) = 1. Let aj,ag .o
be the zeros and byyPgse.. be fthe poles of f(z). IfL

q is a non-negative integer and if

then

log lf(z)l = ij{UYO + Yl z + ..; + quqs} +

T log E(Z Q)
| a{< R | (2,0

3 . o 2z
| i mjz o Log B ] + 8y (z)

where E(u,q) 1is the Weleratrass primary factor,

(
11-u (qg=0)
E(u,q) = _ . )
" i(l—u)exp <u + EE + + ud ) (g?> 0)
1 ) . a q g

+1
| 5tz < 16.(§)q T(2R,f)




. m
Y =0, Y = —lg f 1pglf(peieﬂ e“imide (m > 1)
mp e

(£(z) #0 in |2z| ¢ p )

*

PROOF. The Lemma is a consequence of the Poisson~Jensen

formula in the Torm

Z log R(s-2) _ Z log R{b-z)

log f(2z) = , = -
le < R RE-3z bl R RE-Bz

T

_ ie

+—2%- j loglf(Reie)lBﬁaﬂﬁﬂ do + 1 C.
- g . Re™ -2

valid in |z| ¢ R for suitable determinations of the logari-

thms, Differentiating - (g+l) times

) q+1 . _
2. S ~z) 4L
(&) 1og £(2) 1a‘§RqL(a z) "9+

T TR

{ P <R
v 2 QURZanelael o 2 quptt (%) -a-1
laj< R b ¢ R '
i¢

i
- (g1 d 10 Re
+£Q'1T_L J loglf(Re )‘ (.ﬁeiﬂ_z)m? ag



(2.1}
| - . 2. ab (awz)_q-l Ej gt (b-z)"q'l
- lalg R i< R

+ T(z) + U(2)

where o

Jmzd < qi RY (R%-Rr) "1 (n(R,o)m(R,oo)\
(2.2) ¢ gt (®er) 4Ry ( W(eR, o) +N(2R, ) )

< 1—0?- gt (R,r)’ 4L ¢(gr, 1)
and

-1

< _lﬂillmn m(R, ) +m(R 1y
" (Re-r { ’ 1T }
. '(2.3)
< _.(_Qiél__ T(R,L) .

(R )

Tf we assume that there is no zero Or pole of f(z) on
the straight-line segment with endéﬁoints 0 and 2z = reie R
then we can obtainl log f(z) by (g+1) successive ilntegra-
tions from (2.1). After these integrations, the left-hand

gide of (2.1) becomes ) .




a
log £(z) - EZ ‘szm
‘ m=0
where
A d "
Ymzml. (E"{) log £( ) l‘<—~0

Byi(2.1) with R = p so small that f£(z) #0 and # ©

in {zl € py» q=mly, 2=0

kii .

s ‘( log If(peigﬂ e~ 18 ag
Trp .-'.-n-

The function ~log E(%,q) has the (q+l)St‘deriVative

q1(a-t)~9"  and its first q derivatives at the origin are

equal to 0. Therefore (g+1) successive integrations of

e 2. ql(a~z)"q"l S qz(b~z)“q"1
jal< R Ibl< R

yield

. 4 -
‘EA%}R log E(%,q) lbl%ER log E(pyd).

In the same way integration of error terms leads to new error

terms. By (2.2) and (2.3) these are at most ~ _ 2 _ T(2R,)°
log 2
r d @l 7
log B(g,q) and -4R _ log E(§3q+l)T(R,f)¢
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a 1 : _
For r<2R

T % 1 (r)k L g I"~k
- 10g E(—’q) = =} - — (.m
R Sy KR L 6 R
1 Cﬁ‘]
1 1'&0-!— __;L_ Ve '}2‘\
| . < (g+1) '(ﬁ') 1'__11:% = 2°(R)
and
oo
. T k-1 g+l
4 Lo = /5 : I
- R 37 1og E(R,q.l) = 22(\3) <, O(R) .
q
. . /
The final result is
q —
o ~ m > T
(2.4)  log £(z) = » Y,z + £ log E(xpd)
s lal< R

R _ _ - Z log E(%gq)+83
taking real parts : ~ Ibj=R

q . .
log le(z) = R > v+ 3 loglE(Zyal
o ™ lal < R

/

-2 loglE(gol + 8.,

il & R
......-.-..‘.4;_-- T C.+l ./ r ('1’:_.1 ,
1 Is)l < Vsl < 1555 (%) T(2R,£) *+ 8()  T(R,f)
: .4
« 1“(% T(2R,f) .
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A simple continﬁity argument allows us toldrop the

restriction that the straight line segment from Of to 2z must

be free of zeros and poles of f£(z).

As a first application of the approximatlon Lemma we

shall prove an estimste needed in the segquel.

LEMMA.2.2 Let f{z) be meromorphic with f£(0) = 1.

‘.—5

Suppose r < 5 R. Then

T(r,£) < 2. log(ls -% S log(l+ T8
, laf< R o8 .TET) * bl< R ogll* Tpp) *

. kr_T(2R,f)
TR

PROOF, By the approximation lemma with ¢q = 0O

log |f(ret®l = > logll-Zf{- 2 logll - & +s.
o la|< R lv{<R

logh | £(ret®) ¢

e

> log |1 -~ §%~+“”§§Rlog+(|l - &) + 5 .

where




Therefore

12

(2.5) n(r,f) < Ei m{r 1-5) + Ef m{r e + S
’ {ajcr ibl<Rr ( 1-{;) t
|8 < 18 § T(2R,D).
By Jensen's formula
1., + :
m(r, 1——% = m(r,l - g - log ﬁr
so that
2.6 Z = z | 1 - z - f .
(26 |e g " TE) T ey M Y D
Since
i@
\1~red\5__1+1—§—[ (@ # 0)
(2.7) n{r,L - %) < log (L + "‘%r)

The lemma now follows from (2.5), (2.6) and (2.7),
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SECTION 3.
SLOWLY GROWING FUNCTTIONS.

In this sectlon we'show that the relation

lOglf(reie)‘ ~ log M(r) (r =+ ©0)

which is wvalid for polynomials has a Very close analogue for

ontire functions with

Mr,6) = O((og 1)),

The theorem in this section is a special case of a
result of W.K.Hayman who considered subharmonic functions [9] .

an  €-set is a countable set of dises not contalning
7 = 0 and subtending angles gt the origin whose sum s is
finite. The number ¢ 1s called the extent of the €-set.

Let B be an g€-set. Then
a) If Le is the ray arg z = 0, then Lef\E is

bounded for almost all © .

"For, B can be divided into a finite set of dlses and
an €-set B, of extent <e. If LNE is unbounded, then
Lgf\E1 # ¢ . But this means that o6 1is in a set of measure €.
) , 'b) The set of r for which |zl =1 meets E 1is

of finite logarithmic measure.
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For, |z| = r meats the disc |z-zd < |z} sin &
which subtends 28 at 0, if -
r.o= |zl « (1-sin 8) < < |z | (Q+sin &) =7

1 2"

This set of r has the logarithmic_length

.

2
at 1+sin &
( T 7 o8 T35 s

Ty

o l+sin & .
For & < 7 4 108 §5938 < A8, which nroves our assertion.

THEOREM 3.1. If f(z) 1s a transcendental entire

function with

T™(r,f) = C’((log_r)g)

ot
=
[o]
=

- log |f(reie)| ~ log M{r,f) T(r,f)

as reie -+ o outside an e€-get.

PROOF, The function f(z) 1s of order O and there-~

fore

f(n =¢ a8 TT (1--2)

0
V=1 y
omission of the factor Cz° changes log If| , log M(r,f) and

T(r,fY by a O (log r)-term It igs therefore enough to
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consider the case £(0) = 1,

-
— : —Z
f(z) = TT (L =73
V=1 Y
Then :
o w o
1log | £(rel® ¢ f!~108(1+%)dn(t) = f‘ 2 Elgt .
. 0 0
Now
£2 '
n(t) < Top g [ B au g T M(tH) = O (log ©)
:
(3.1)
o0 r ® |
‘ ' n{t) 4 n{t) - r log. b
e Tt at < [ —%———dt-&—@(f __?E_..dt)
0 0 T
<N(r) + O(log 7).
Thefefore
(3.2) log 12(re®® | < N + ©logr) ~ NI).

In particular
log M(r,f) < N(r) + A (log r) ~v N(1)
on the other hand, by Jensen's formula

N(r) ¢ log M(r,f)
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so that
(3.3) log M(r,f) ~ N(T).

We shall prove also that

i

(3.4) Log M(r,f) - log lf(reieﬂ O(N(r)).

uniformly in © as reie -+ oo outside an e-sét. The theorem
follows at once from (3.3) and (3,4). Let Q‘g.1'< 2k+l

(k » 1.

0 < log M(r,f)-1o lf(reie)l( > L (LI log |1 o) -
& 408 ! & = AT 2 log 1= =
S = log _\_a_l_.i__f- ¥ Z + S
‘8.‘( k"'l \a"rele‘ 21{"1 SJ a‘< 21{""2 2k+2 S_‘a\
= Sl+82+83.'
S. is easily estimated In 8 since 1o X ¢ ax (o< x<1l)
1 Y * 1? & Tz 2
lal
%J+r 1+ o lal
0<log—L - < log r. <3
]a-rele\ : T
I r
8,4 3 (RN [ anto = (log 1),
0 0

by (3.1). Since f(z) 1s transcendental, log r = O (N(r)) )
so that '

8= o (N(X)).
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oo ‘ o
0¢55¢ 3 2 T e g b))’ ¢ ar ( nyas
\a\ 2 er op or t

o
co(or [ BELar) = O FF) = o0
ar

It remains to show
(3.5) N -+ Q0 as re -+ oo outslde an e-set.

We need =

CARTAN'S LEMMA. If P(z) =TT (z=%) 1s.a polynomial

of degree ¢, then

iog {P(2)| > q 1log h.

outside. circles containing the dr the sum of whdse

radii is less than 2 eh

LEMMA 3.1, There is a constant 'A  such that in

2o r€<R

(3.6) §,(2) < AN log R (z = re’®)

“A

outside an €-get of egtent e for all N 2 8.
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PROOF, Supnose ok <r« o+l or, Let

, -
p = 023 @,
Then by Cartan's Lemma
ig, . 5‘ r+|a.ﬂ
g (re ) < ‘ log ~—45
2 k l ¢ al < 2K+2 lrel ""ai

<M, log(2 2, Petly g [T (re*0-a)

p 2k+3
. . log e
k h

k

proviced -rele is outside a set E. of disecs the sum of whose

radii is at most 23 hk'

The choice . AN log R
i
hk :‘2k+3 o k
makes
: k
(3.7) 8,(2) < AN log R (2 £ B, °¢lal < 2,

Let &k be the angle subtended by By In view of (3.,1) for
sufficiently large A

AN Log R 1 A log R o
. L b HI L W ——— e
’ Moy e .
7 7 k
< 2 .e <2 e
8
C2THy -\
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since for x » 8, e °< Scl' .

Every point of the planels in at most 3 of the annuli

21{"1( 15| < o2 herefore

,u.l + .LLB. ve +‘ Hag s. 31’1(28 +2)

Summing (3.8) over all integers from 1 to { = %%g—%] + 1
* 0 ! :
shows that B = éqg E, is an g-set of extent less than

8 42 8 ..

-A 2% 3n(2 ) -N 2~ 3n(8R) =N
©. A log B < © Elog R < °©

1f A 1is éufficiently large, by (3.1). Outside E, (3.6) holds,

by (3.7). The Lemma 1s proved, '

Let apjagyees Dbe the zeros of f(z) numbered so that
bl € ool € Jagl ¢ ++» . Suppose p>64 1s such that

- . /
2 < lapl = p< lap+1| = p' ., By Lemma 3,1, with

Sz(reie) < 24 p~ log p! (ng‘f( p‘z)

provided'lréie J Ep, where Ep is an E~get of extent less

‘ -ne
than e p
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Id

Wwe must show that Sz(reie) ig small compared with

N(r). There are three cases Lo distinguish.

2

1. p' € 8p Then for p2< r'j( p'2

2
P
) 1
N(I‘)>f géy"dt?_I)log p>0D log,(%) >C p log p!
P

ool

2. p'> 2p2 " p2< r 4

0o Do

o' . There are no zerog of
<

.f(z) in p <l Kt - But if ¢ .rg_gp',then p(%I‘(EI‘( ol.

Therefore there are 1o zeros contributing to 82( 2) s

Sa(z) = o (N()).
3 p‘>2b.-%p‘5_r spiz.

3P 5
< 4 1 1

N(r) & f _ 9-%3’-)- dt = p log —2%7 > v 1og‘(%—-)2
; _

.1 .
g D og ¢
In all three cases
‘se(reie) - 2 2
I - .
M) < Cp (‘api <r <_ ‘ap-!-l‘ )

X
outside an exceptional c~-seb Ep-‘of extent exp(—pz), There-

fore (3.5) holds outside the €-set U Ep.

This completes the proof of Theorenm 3.1,
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SECTION 4,

WIMAN' THEOREHN

A celebratzd result, conjectured by both Littlewood

and Lindelof in 1908 end later proved independently by Wiman
[207 and Valiron [1973 1is -

THEOREM 4.1. (Wiman's Theorem).. If f(2) is_zn
entire function of order A< 1 and if

inf ! £(2)

m¥(r,f) =
- zl =1

then
: log m*(r,{}
1im sup b > Cog =N -
oo 1qg M{r.,1 .

This result was sharpened hy Kjellberg bto

THEOREM 4.2. If f{z) 1s_an eptire function of
lower order o < 1, then

. Tog mx(r,{) .
1im sup *-ém-HLWLJ* E‘Cos 1 (T
r oo log M(r,f)

THEOREM. 4.92. will be an Lumedlate consequence of %he

following Lemma due to Kjellberg [11] .
LEMMA 4.3, Let f(z) be .un eptire function

&

(4.1) ¢ = 1im inf = log M(r,&), T = lim sup r”
T =0 T« CO

log M{x)
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£ 0 <o <1 and

(4,2) log m*(r,f) - Cos m{ log M(r,f) < O (r > ro)

Then either (1) o = T = @ or (1i) 0<o, T< @,

Deduction of Theorem 4,2 from Lemma 4.3.

If « > @, then o = 0, so that (4.2) cannot hold,

i.e., for some arbitrary large T

log m*(p,f) - Cos w{ log M(r,f) > O (£ > 1)

Theorem 4.2 follows after division by log M{(r,f) on letting o
tend to U

The proof of TLemma 4,3 is based on an elementary, but
highly ingenlous Lemma of Denjoy (only the part relating to
hl(r) will be required in the proof).

LEMMA 4.4, Let 0@ ¢ w 0< «< 1L, ZRut

~
ho(r) = log|i+xe | -Cos o #§ log{l+x)
1 B e
r
o .
Rt G + :
h2(r) = jix <-§E%§;§ log x =~ log(l+x)> dax

iy -

© Jog|l-x|-mt Cot m Log
ha(r) = j‘ ogll-x 2 %8 X ax .

T Xl+°(
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Then it is pogsible to find constants A >0,
B » 0 such that, for j = 1,2,3

p ROBQLIT) ¢ () < B 2BGEL - (0¢n).
o | r

PROOF, The proof runs along the same lines for
j =1,2,3, The steps are

(1) hj(O) = ﬁj(GO) = 0

(2) hj(r) >0 (0<1r< o ), because there is an Ty
such that h'(r) > 0 (r< rj), hi{r) < 0 (r > rj)

o
PR (S TAr ———ee—
(3) 0< Lim log(1l+r) hj(r)s-]jmllog(l+r) hj(r) < ®

as r =+ 0 and as I = @ .
‘1t follows then at once from the continuity of hj and
(3) that '

« «
‘ T ) .
0 < inf Togrzrmy M) €I Top(mary Myl <
(r > 0)

. which proves the Lemma.
We give the detalls for h(r) = hl(r).' The other cases

are a little simpier. 1) Obviously hl(oo Yy =0

- 0
- : iy : :
: 7 log{l+xe ) - Cos log(l+x)
hy(0) = Qf T o ax
0
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~where the branch of the logarithm with O g_arg(l-r-xele ) € 8
‘{5 chosen. By applying Cauchy's theorem to ‘z"l"o< log(1l+a)
in the sector |z| < R, 0 < arg z < @ and letting R - 0o,

o0 . o'gh o
].og(l-}-xele ye Y Tog(1l+x)
ax = | o 4x .
0 0 :

Multiplying by elc{g and taking real parts proves hl(O) = 0.

(2.) Let u(r) = rl+°( nt(r) = Cos «@ log(l+r)

- %10@; (1+.r2 + or Cos @)

Then

_ 4 1+of Cos o« @ r+Cos ¢
1 —— = R A,
u'(r) dr (r b (r) ENR . 2

Cos o« g~ Cos ¢ + v {2 Cos gCosg ~L-Cos g+ r2(Coset g ~1)

(1+r)(l+r2 + 2r Cos @)

The numerator in the expression for u'(r) 1is a quadratic the

product of whose -roots is

Cos o - Cosg
Cos g ~ 1

ut(p) = Cos (g =~ Cosg > 0 and (o) < 0.
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Therefore u'(r) has a single positive root r = p . For
r < p ,' ut{r) > 0 and for r > p , u'(r) < 0, Therefore
ul) increases from the value 0 at 0 to a maxlmum at r = p
- and decreases then steadily. Since (o) = -0, there is a
unique value rq; such that u(r) > 0 (r < rl) and u(r) < 0
(r >rl) i.e. hi(r) >0, (r < rl) and h'(r) < 0 (» > rl).

3) Ag 1T ~+ @

00 1
I'O(hgrl_., ) o f log x(1-Cos « @) +©(3€) i
log(l+r) log(l+r) IR
r
e 1=Cos K@ 1 i 1-of
- T =Cog ¢ og r -1-
T log(l+r) { of & "‘f O (x )dx}
: r
1-Cos g
of
As T =0, by (1)
r
rqh(r) - s " Cos o log(l+x) - 1ogl1+;cem| a
log (1+r) ~ log (Ll+r) . £ L+l X
o T o
= r f (Cos ¢ - Cos g lx+ O(x7) 5.
log (l+r) . xl+<><
0
¥ Cog g =~ Cos@ I,IL-~<>~( + O r°<
log(l+r) Lo log(1l+r)

- ‘;OS c{g ~ Cos g
1=
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PROOF OF LEMMA 4,3. There is no loss of generallty

'‘in assuming that f(0) # O. For, otherwise f£(z) =¢C 2°g(2)

(s >0) and
log m*(r,f) - Cos mt log M(r,f)

= log m¥(r,g) - Cos m{ log M(r,f) + (1-Cos #={)
s
log lor l
s0 that g(z) also satisfles the hypothesis of the Lemma.
Obviously o = o(f) = o(g) and T = W) = (g .

By the approximation lemma applied to %%g% , we obtaln

log If(2)] = | |Z;R 1og+1~§. + log l£(O)| +67(§ T(ZR,f)),
a —_— .

(lz] = r<3 R
(4.3)

- S el +0( g nez,)

To abbreviate, write § for O (14L T(2R,1)) . Tt is easy to
see that

log ii+tei¢| = log l1+te"igl (t > o)

is monotonely decreasing functlon of ¢ in 0& §<m .+ There-

fore by (4.3)




a7

\ . r 1
log m*(r,f) 2 lalzg_ﬁ log 11 - TTa ‘ + S (rg_gﬁ)

) S r | 1
5(4.4) log M(r,f) Slal < r log (l + TEI') + 5 (r<5R)

‘Also if @ is chosen so that lf‘(ac'eig y) = wx(r,f) we have

. log m*(r,f) + log M(r,f) 2 1log lf(reiﬁ ) | + log If(-reig 3 |

) laizs_a t0g | 15018 | + 208 | 165077 |+ 8

1 - + 8 .

> 2. log

lal <R

r

2
|2
_Hence, for 0 <« < 1,

log mx{(r,f) ~ Cos n{ log M(r,1)

= log m*(r,f) + log M(r,f) ~ (1+Cos =x) log Mir,£)

2 T ooy | vaoe iy - Coos =0
log 1+TT ﬁﬁf- g

(4.8) " R{ log\l- l- Cos < « log l T \} + 8
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:(The first step in this chain 1s necessary to take care of the

case Cos w{ < 0).

Lot SR = p . By (4.4) with the notation of Lemma 2

p
J t__l"q {1o'g m*(t,f) - Cos m{ 10g M(t, D) } dt
T

o |
\al% R g tplhd{log l l"'T—Zﬂ' - Cos mX log (1+§)}dt

+ @(p-o( T(4p, LY + r"°<>

Abbreviating & (p"°( T(4p,L) + r"°()' by 8;, we have, using

Lemma 4-4,

tbl_o( {log m*(t,f) - Cos m< log M(t,) } dt

H:“""‘To

i
> Z | a l—o( u-l-°( {1og |j1-u| - Cos m Tog {1+u 1}du+81

lal € 2¢

ez

- 1
* Ialzzp ol {hl( II&; )" hl( lal>}+ 84
(4.6)
2402 rdlog(hm) -5 2 Pc((lﬂ%ﬂ*-sl
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Now
LA e el 5
2] Z 2 log (l+ lal) = Ll <ZEP{ZLog o | + log (1+—LP—L) log 3} |
(4.7)
S_ 2 .1og-§E- S_N(Bp,%‘) ¢ T(4p,D).
Also, by (4.4)
(4.8) > log (1+-1-§—1-) > log M(r,f) - @(% T(4p,f)

o] <20

Finally, using (4.7) and (4.8) in (4.6), for 1 < p,

. | |
f 737 { Jog mx(t,f) - Cos X log M(t,f)} at
r

(4.9) _}_Ar&c’c log M(r,f) - Bphc{ (T(4p,f) + Sq

Under the hypotheses of the Lemma the left hand side of (4.9) is
<0 for T > Iy .But the right hand side can be made posi-

tive for some arbitrarily large' r and p 1f either

lim inf (4p) = T(4p,f) < 1lim inf p”“'logm(p,f):w:o

or T < o0, T = lim sup rnc.( log M_(.r,f) = 00 .
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THEOREM 4,92.remains true in the limiting case U = 1.
THEOREM 4.2'. If f£(z) 1is an entire function of lower

order 1, then

) log m*(r,f)
L sup T M r, £)

2 =1

PROOF, Let F(z2) = f(z) f(~z). F(& ) is an entire
function of & and the lower order of F( )y is %. There-
fore, by Theorem 4.2

log m*(rg,F)

lim sup log M(rg, F)
lecay
(4.10) IlOg ﬁ*(rz,F) + €& log M(rg;F) >0 (r >ro(e)),
But |
iog m*(rg,F) £ log m*(?,f) + log M(r,f)
and

log M(r®,F) < 2 Log M(r,f)
so that (4.10) implies

log m*(r,f) + log M(r,f) + 26 log M(r,f) 20 (r >r (€))

i.e.

log m*(r,I)
lim Sup log M(I‘,f) _>. “'1'
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This completes the proof of Theorem 4.2';
Lemnsa 4.3 suggests that Theorem 4.9 could be replaced

by the stronger statement
log m*(r,f) - Cos mi log M(r,f) 2 O

for some arbitrarily large T.
Thig i1s not the case. There are entire functions of

order [, 0 < I <'1; such that
(4.2i | log m*(r,f) - Cos w4 log M(r,f) < 0O, i
A simple example is

sin vz )
Nz

2

el L

f(z) = (=

|
Kj@llberg has investigated the class of functions

gsatisfying (4.2) and proved that all such functions are of
regular growth. We shall prove Kjellberg‘s result in the form

THRDREM 4.3. If 0<«<1l and
(4,11) 1log m*(7,f) ~ Cos m log M(r,f) <X, S orr,
then .

1im % log M(r,f) (< o ) exists .
T rCO )
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PROOF. For sultable choice of the constant C. Cf(z)
satisfies the hypothesis of Lemma 4,3, Therefore elther
-
r " log M(r,f) =+ ©
or
(4.12) ™% 1og M(r,£) < K

(K denotes aApositive constant, not necessarily the same at
each occurrence). It remalns to prove the theorem under the
hypothesis (4.12). We need

LEMMA 4.5, Let

Q0
£(z) = T (1~5—z-j 0< oyl <lagls .
y =1 d |

be an entire function of order A< « < 1. Then
T(f) = 1im sup r"ulog M(r,f) <o
i implies |
\ . () = lim sup ™ log M(r,f;) <o

where

fl(z) = ﬁ (1+T§J_) |
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PROOF,

S log <1+T2.T)

log M{p,f,) = log £.(p) =
g ! fal <p

+ > log (1+T—;—I)

lal>p
, ap Jal
= |aép{log—1§r ~ log 2 + log (l+ 5 )}
w o .
+ f log (1+ a) dn(u’i")
p
© (P
&y & > - log 2) + e
< N(2p,3) + . 4. (-log 2+ log p
= Py ‘a‘ <‘P _!; U.(U.+p)
. 1 j?’
< N(2py% du.
- ( P,f) + p }[ m
Since
N(E,3) < DB, < log M(t,0) cun+tt  (t>t(e)
| 7 w2
log ,M(p’fl) <_108 M(291f) + p('t(f)‘l‘@) £ (U.-i-p)z du

@O o
J x_dx
1

< Log M(2p,8) + p (T(£)+€) e
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The lemma follows on dividing by pd and letting p -—> o0 .

PROOF OF THEOREM 4.8. We may suppose without loss of
generality that f£(0) = 1. Otherwise

gl

£(z) = C = g(z)y g(o) =1 'C#O, 820

log m¥(r,f) - Cos m log M(r,f).

= log mx(r,g) - Cos m log Mér,g) + (1-Cos =X} log jC rsi

Therefore g also satisfiles the hypothesis of the theorem and
1t is obviously sufficlent to prove the theorem for g(z). |

By (4,12), £(z) is of order ¢ « < 1, so that |
. |
. zZ
(o = TT (1)
y =1 V

Lot

0

- % ‘

I 0z = T (1)

B V=1 la)) '

. By (4.12) and Lemma 4.5,

- =of : - M

. lim sup p  T(p,F) < Lim sup p  log “(p,F) <o o

By (4.9) (applied to F(z)), (4.12) and Lemma 4.5

(4.13)

e R0

g1~ { log m*(t,F) - Cos m log M(t,M} dt > - K.
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But
log m*(t,F) - Cos m{ log M{(t,F) ~ K <0

so that
P leet | '
[ 7 {1og m(t,7) - Cos m log M(t,P) - K} at

either tends to -co or to a finite limit as p " ®. There-

fore (4.13) implies that

0 ,
j- t"l'd{'log m*(t,F) - Cos w log M(t,F) K } at
/ |

(a > 0)
exists, Since

© L ‘
f £ gt <o

a

this implies that
o Co
[ aewas = [ £ {108 ma(t,F) - Cos w Log M(t,F) Lat
a a '

exists and since

“Lek {1 :
t {log m*(t,F) -~ Cos m{ log M(t,F)} = max (o,h(t))

< Kt"l"d B.L(a,GD)
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the same is true of h (%) = min (o,h(t))and so

£"3 ¥ 10g mx(t,F) - Cos n log M(t,F)| = B (t)-h7(t) € L(a,00).

(4.14)
Next we derive an integral formula for r"d log M(r,F).
}Considef
-7l 2 2o |
~1-ct (€ -
T f Yog F(Z)Zlo(( ;) -r
g -1

C

where. ¢ 1is the boundary of the semiclrcle

|z | <R, 0 ¢ arg z < 7 -
withindentations at 0, T and the points -|ar|'. By Cauchy's
theorem the value of the integral is 0. On the other hand
letting =z = t, on the positive real axis, z = eﬁit on the
negative real axls, the contribution of the real axls ﬁo the
integral 1s

R ‘ .
o t2°(—r2°(

% -
-_f loglF(-t) {t = ;Erw-ma dt +

0

R
Qe o-mieE _ miel 2
+‘[ log|F(B)t™ < b g. T
O

dat
£2 - r2
where the second integral is to be‘understbod as a principal

vaglue at t = r.
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~ The indentation at.the pole =z =T of the integrand
gives a contribution

o (ef"ld . e”ld)rgd

- ~mi log F(r)r
or

= -wrdbz log F(r) sin m{.

Thé.othef indentations give no contribution when they are allowed
to Shriﬁk to points. The big semicircle gives a contribution of

the order of magnitude

sup |log F(reig)IR"("2
0LBLT
= sup llog!F(reie)i + 1 arg F(reie) Rd'g.
0<0 <n

Since F is of order < « <1,

log |F(re'®) | %72 4 0 (R =c0 )

The formula (2.4) whose real part yields the approximation

lemima with ¢ = O also shows that

larg FROI)| < 7 n(2R,® + O (T(4R,M) = O (T(4R,M)

and so

0 (R =),

|arg-F(rele)|Rd"2
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g all these pleces of information together,

£ F(-t) = mx(t,F), F() =

Collectin
taking real parts and noting tha

M(t,F), we obtain

r%10g F(r)
1 6 8)
T Ty sin g { log m*(t,F) - cos ﬂdziog M(t,F)}
w1 (F) -1
t 5 at .
t
(&) -1
Since
2ol -
0 ¢ Bt < K (u > o)
u -1

the absolute value of the integrand is dominated by the inte-

grable function
~1of
Kt | Log m*(t,F) - cos m log M(t,M)] (0< t <00 .

We may therefore perform the limisint transition T-»00 under

tg Theorem of dominated

the sign of integration, by Lebesgue

convergence, This yields

1im ™% log M(z,F) =
r -+ co

1
7 sin m{

t—ldxdt{ log m*{t,F)~-cos mX log M(t,F)}

O g
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In particular this limit exists snd is finite.

By the inequalities (see reasoning teading to (4.8))

log M(r,f) £ log M(r,F)
log m*(r,f) + log M(r,f) 2 log m#(r,F) + log M{r,F)

(4.15) K > log m*(r,f) - cos ml log M(r,f)
> log m*(r,F) -~ cos wX log M(r,F)

0 < (Lcos w0 tTT% { log M(t,F) - log M(t, 0y

(418 <t 108 et , £) +Log M(tAE) “Logm*(t,1) ~log M(t,F)

+ (l+cos ml) [log M(%,F) - log M, )]} ?%

By (4.14) and (4.15) the right hand side of (4.16) 1s in
L(0,0) (no trouble at O since £(0) = 1). Therefore

o0
(4.17) j' t"l”“‘{log M(t,F) - log M(t,f)} dt < ©. o

Suppose now that

lim r"d 16g M(r,f) < lim r"ﬁ log M{r,F) = Db

————

Then we can find a constant ¢, O <c<b and arbitrarily

'1arge. p .such that

p-.D< log M{p,f) < ¢
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and so, since log M(r,f) 1is an increasing function of =

| | d ' |
£ log M(t,f)<:(§) e (t<p) .
t

On the other hand, for all large

£~ log M(t,F) > E%E .

Therefore

e
f t_lhc{{log M(t,F) -log M(t,f)} dt>J t'l{%ﬁ

Py CoPy
py* b+ 2¢
If p; 1s chosen so that (—] ¢c = 3 i.e.,
| !
T bro o -1
P = g;gg) p = ¥Kp, then the integrand S - ;3 c ) t'
b

is greater than —ég- s¢ that

gL {1og M(t,F) - log M(t,f) }dt:>bé£ tog % '

PR G T

p

But this contradicts (4i17)., Therefore

lim r"‘f’( log M(r,) = lim ™% 1og M(r,F) >Tim v~ 1og M(r,f),

Sty

i.e, S dim r~ log M(»,f) = 1im r~ log M(r,f)

and the'theorem is proved,
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Theorem 4.3 has been generallized by M.BEssén. He

, A
replaced the hypothesis that (4.2) holds by the hypothesils

VI‘
I(r) = ‘[ gt {1og mx(t,f) - Cos mX log M(t,f)} dt <K
o |

¢ % log M(r,f) has a finite upper bound, then
and 1im I(1)

and proved.
I(r) is bounded below and lim ™% 1og M(r,f)

exist or fail to exist together.

Problem. Essen's method 1g different from ours,

Does the method of proof of Theorem 4.3 also work

for Essen's theorem 7
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SECTION 5.

r

ANALOGUE OF WIMANI!S TH EOREM FOR

MEROMORPHIC FUNCTTIONS,

L]

A number of analogues of Wiman's -theorem for’ meromor -
phic functions are known. Most of these are due to A.h.

Goldberg and I.V.Ostrovski ( [8 , fe9] .

THEOREM &.1. If f(z) 1s a meromorphic function of

lower order i < 1 and if @ < o <1, then for some

arbitrary large values of T.

, T 1y _ m%_Cos wk
(5.1) Sin N(r,f) log M(r,%) - TRIm X N(r,f) > O.

——

f p <A< % , Lthen for some arbltrarily large T

{5.2) "~ log m*(r,f) - cos =X log M(r,f) + w{ sin X N(r,f) >0

A consequence of this theorem 1s

THEOREM 5.2. If f(z) is a meromorphic function of

lower order 4 < % , then'for arbitrarily large and

€ >0,
(5.3) log+ mx{r,f) S T, 148 &
* T(r?f) Z gin mil cos 7w - L+ (03, -6}
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COROLLARY. If f(z) 4ig of lower order u<% and if

8(c0,f) > l-cos mi , then o is the only deficient

value of f(z)..
ag r -+ o©

PROOF OF COROLLARY. m*(r,f) = oo/ through a suitable

sequence by Theorem 5.2. Therefore ;1Q_m(r,?%g) = 0 for
.every complex <3 8(c,f) = 0.

Remark. Theorem 5.2 does not give any information
about the values of T for which (5.3) holds. The proof
actually yields the following additional informatlion.

Let pp
T(r,f). There 1s a constant © = C(€) such that (5.3) holds

for an r in (pm,Cpm) for all large m.

Deduction of Theorem 5,2 from Theorem 5.1, There is

nothing to prove if §(o0) < 1- coé . Suppose now that

(oo ;f) > 1 - cos mi.

Choogse' ¢ such that
N (r,§%€\)ﬁJT(r,f).
Apply (8.1) %o -, roting that

N(r,f~c)

i1

N(r,) < (1-8{o0)+€y) T(r,f), r>1 (6)

0 S |
M(ry323) = mH(r,t-0) °

be a sequence of Polya peaks of order @ of .
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'For g <o <1y 2 ro(Bl), we have

R . S (1-6(oo)+€l) T(r,f)+log m*{r,f~c) -m{ cot m T(r,f)(lwel)

sin 7l
| > 0.
Rearranging
Log m¥(r,f-c)> =25 { 6(c0) ~1tcos m=261 ) T(2, 1)
sin
and so

log' m*(r,f)2_10g+ m*(r,f-c) + logh |c1 + log 2

sin (6(0?)-1+cos w«-zel) T(r,) i

- log le| ~ log 2 ;ﬁ

Sinee T(r,f) #o with r thls yields ?'
4 o
log _m*(r,f)> win (8(00) -1+cos m{~3€4) T(r,f), _(r>r0(81?)%
By choosing €4 sufficiently small and taking o« close to H E
we can make ‘ “ . é%
EE%#EQ (5(o0 ) «l+cos ml - 361):>§ng;5 (8(a) -1+cos i = €) é

and the theorem is proved.
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PROOE _OF THEOREM B:1. The proof 1s along the same
lin¢s3as'the proof of Wiman's theorem: We only sketeh the

details. By the approximation Lemma

N R I RENPAEL U b
o laj <R &1 Jv|<Rr |

+@(%T2 ﬂ) §

valid for r< % R« Therefore, by the monotonicity of

ll—t‘eigl in 0< ¥ < 7

log M(z,0) - i NGryp + FLgEgR N,

iy Uoe [ | <o e )

" ol <H{W(S(ilgs"“ﬁ‘wC log” py - log ‘ e -,WI;T n+
+ O( £ T(2R,1))

R. Then

ol

,Multiply by r"l"d and integrate from ¢ to p =

p ; . L.
leel S _ et 1 m{_cos 7o '
f 714 {rog u(t, ) - TR W(t,p) + 008 N(t,f)} at

r



@ (™% 140,

. Ifsing Lemma 4.4,

o L

."'Tt-l-cc{ T 10" '[gT - log (1+‘—g—‘)_} dt

gin o<
r

< () - ()

> °<log (l+-r-r) Bpo(log<l+—l—l-)

and simllarly, employlng h (r),
f 1~of | t mo{ cog_mk +
f t {1og 1~ |bl,"’ o o log r%r} at
r : ‘ ~ '

_>.AI'"oc log (1 + T%‘-) -‘Bp"m< log (l +-‘%T) .

: ¥
By means of these estimates, (5.4) becomes

p, . PN
j t"l""‘{log M(t,£) - ;ﬁ* Nt Ly . W N(t,f)} at
s |



.i

47
¢ a5 froeaegp v 0 (1r )]

. Bp“"( “Z {1og (14——'2—1)4» log (1+T—E-{ )}

- O(Heet)

¢ —Ar"c’({ Z log (]_+12a—‘->+ Z log (l+""’£“|)}

(5.5) N, (M&fl),
p{
In the last line we have used the estimate (4.7).

If o S'u, then the right hand side of (5.5) will be

negative for any assigned T and some o > r. Therefore the

integrand on the left-hand side must be negative for arbitrarily

large values of t.

The proof of the sacond assertion proceeds along the

same lines

1

log m*(r,T) -.cos m{ log M(r,f) + w{ sin m N(r,f)

: laFS:R froe o - 7| -ew maoefl + 737))

1 -

{1og (l + lbl cos 7 log N

ol <R
-no(sinnoclog’fT%[}

+ @(% T(ER,f))
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l—cosg'wd

and so, since sin wX = .
sin

p
j t"l'd'{log m*(t,f) - cos w< log M(t,f)}+m sin m N(t,f)} dt

> 2 Ialho(% hl(TE}_.T ’- hl(TgT)}+ coé 'n‘O( Z {1b|_o<

Ibl < 2p

(ny(E) - ma(oD) S

v 2 o™ (hz('T%T) - hg(-T%T)) * C}(p—dT(ép,f)7 .

This implies exactly in the same way as pefore that the left

hand side is greater than
- P ' r
r A { Ei. log (1 + T“T + EZ log (1 +'T“T } -
Ll jal<2p ( & ) b | <2p ( b )

g, T(4p,f)
17T

which can be made positive for any T by suitable choice of
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SECTION 6.

DEFICIENT VALUES OF ME ROMORPHIC
FUNCTIONS OF LOWER ORDER LESS

"THAN ONE,

An Tmportant Formula.

Tet f(z) be a transcendental meromorphic function of
order N (<o) and lower order KU <1, £(0) = 1. Let
! B198geee be the zeros and bl,bg,... be the poles of T(z).

We denote by N(r) a non-decreasing positive conti-

nuous funection such: that

n(r)
T(r,T)

and

B(r,cn(r)) = E(r,-i.l_-(;,'ﬂ(r)) ={e‘|o<_\e< o, loglf(reie)—c‘.}( -ﬂ(r)}?

(¢ # @)
E(r,f,N(r)) = B(r,o ,N(r)) = {e\ 0<0< 2m, 1oglf(reieﬂ}> n{r)

The Lebesgue measure of B(r,o0,N(r)) wve denote by

1l

mes { B(r,c0,n(r))} = 2¥(r,) = 2(r) = 2Y.

so that
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By the definition of m(r,f) and the approximation Lemma we

have for R > 2r

m(r,T) 5—511'; j’ log lf(re.ie)l do + N(r)
E(r,o ,N)
< Z 'él?r_ f log {1 ~ re ‘de
lal <R B(T 00 ,M)
10
{ 1 f re l
(6.1) B ‘br; g 2T  log |1 - T |98
, E(r,c0,M)

+ O (ﬂ(r)) + C)(% T(zR,f)) .
Using agaln the rémark that
llog|l+ te"iel = logt1+teie| (t>a)

is a decreasing function of & in 0 < © ¢ m, we see that

1 | reie 1 r 16
B logll- 5 Ideg_g% f log‘l-t-me ‘de
B R
and
1 pet® 1 i v 16
- logl-—=b—— de_,<_-2,rr flog1+-—--be de -
E . -1




T
2 S ie‘
a9 + Y " logl1+—%'[e d6

By Jensen's formula the first integral on the right hand side

is equal to ~ '.Log+ —!%r . Hence, finally, by (6.1)

y
m(r, ) < ~N(r,f} + Z %;—r 5 log ‘l + ‘—Z[ eie ‘ 48

' lal < R Y
iy . m=Y :
v 2_ 1 r_ .16
+ i logil + e de
]bl <R am —(f*n‘-\") ‘ W \

+ O T(R,1) + ﬂ(r))

(6.2) T, < . 2 = f_logll T *® ‘ ae

la} <R -y
=Y
+ Z -éLTr j log\l + TTET 10 \ ae
lbj <R ~(m-Y

+ O(E 2(am,0) + ne)) .

Let 0 ¢ ® <ms Then

o1

l""]_—[—ra

- Rfor (1425}

log




T B A

- lal <R
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Z log Q ﬁ%{l + I'e dﬂ(u,%—) .

By two integrations by parts

Jal

The

way.

2 log

n(u,%)reie’

it

du +©(§ n(R,%))

]

<R u{utre

Q 2 N(u,-f-)rp
= 4 du +
0

(u+re

+O( %[N(R,%) +n(R,%)D

error term can be replaced by @(%—{: T(ZR,f)) © in the usual

If O {Y < my, then an integration with respect to 8

from 6 to Y, ylelds

| al

jz —_—
1 J. 1o
g

2T

.16
re \ ae

YTET

. Y
ig

1+ L€ lde= 2 lflog
&l lal <R T 5

R Y :
‘1‘}‘ IO ) £ { LHPG e]} ae + (’9(% T(2R,f))
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R 1
. N(u,5%) :
I 1) L S r
- Q T ,( i {U:H‘ ) ﬁ+reiY} du ©<R T(QR’fD
0
R 1 |
N(u,"‘
copa [ ok )
5 wre :
, R 1 iy
N(u,3) (v-re” )
-- R J L au + O(% T(2R,D)
LT o Ut +our cosY
R 1 \
N(u,=)r sin Y
L[ BBl o)
o uHtraur cos Y

Using this value in (6.2) and the analogous formula for the sum

over the contribution from the poles we arrive finally at the

fundamental formula: If 0 <Y =Y (r,c0,N) <, then

R .
r sin Y
T(r,f) < L f G - N(u,%)du
_ - o u“trS+2ur cos Y :

R (]

1 r sin Y
+ = = N(u,f)du

T 2 2 ?

0 u+r“-2ur cos Y

(6.3)
+ @(% T(2R,f) + 'ﬂ(r}) (r >r).
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We note that (6.3) remains valid without essential

change if the assumption £(0) = 1 is dropﬁed, since in this case

£(z) =0z’ F(a),  F(0) =1
T({r,f) = T(r,F) + (log ;)

N(r,f) = N(r,F) + n(o,f) log r 2 N(r,F) oz 1) ;ﬁ
N(r,% = N(r,%) + n(o,%) log T z;N(r,%) (r» 1) :

so that by an application of (6.3) to F(z) we obtain j?

R X '
- r ain Y r gin (wé&Y)N{t,f)dt
1y ¢ & | =25 Nt R at + | S " :
- oy uSré2tr cos Y o tHrTretr cos{m=Y)
(6.4) B C§(§-T(2R,f) + M(r) + log ) .

)
In exactly the same way one can prove the following extension.

S Let 0 < p < 1. Let

B (r,0) = By () = {0]je(re™ > ¢ PTD, o] < w}

2Y, = 2Yp (ry0) = lB, (2,0 |«

-y

Then, by following the method of proof of (6.4) but integrating

over E , and noting
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"Ll f L o
o loglf(re %lae > m(r,f) - 5o (22 Y, (e))T(r,T),
Ep (ryc0)
Y, . R ?sin Yo L
T(r,f)(l-pa--—))g;j — e N(u,P)du
w 0 1o+r“+2ur cos Yp
(6.5) R r sin Yp
+ ‘f - N(u,f)du
0 u +r 2_our cos Y
+ @(% T(2R,f) + log r))
where

0< Y, = Yy (r,f) <.

As an application of (6.3) we prove

LEMMA 6.1. Let f(z) be a meromorphic function of

1ower order 1 <1 and order ML ®). Let B be a

1imit of ¥(r,c,N(r)) as T = © through a sequence

of Polva-peaks of T(r) of order o where ¢ gatis-

fieg L < p &N and p <1. IE

u = 1-8(d,f), v = 1-8(c,f) (a4 # ¢)
then




G
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56

(6.46) sin 7o < u sin Bp + v sin (7-B)p p >0

r < uf + v{r-§) p = O,

If Bp is g 1limit point of Yp_(r,c,f), then

Bp
(6.6 (l-p (L - —gﬂ) sin mp L U sin Bop + VY sin (7B, )P

/
'rrkl - p{k-- E%-;) Lu, +V (-8, ) (p=0).

PROOF., We give only the proof of (6.6), the proof of
(6.6 1is aldng the same lines starting from (6.5).in the
place of (6.4). We may suppose without loss of generality
d=o0, c =00 , by considering a linear transform of f(z»,'
if necessary. |

suppose first that there is a sequence of Polya-peaks

“of order p {rm} such that o<Y (rm,f,ﬂ)<(ﬂ, Y(rm,f,ﬂ) -+ 8.

By the definitlon of Polya peaks we may suppose that

(6.7) T(6,0) ¢ (e, (146 (t/7)F

i

(r, <t <rp s rxin/'/r_m>m’ rm/r;ﬂ > m)

where Bm -+ 0 as m 00,
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By the definition of deficlency

(6.8) N(ED < (o np) T(E,) gt
(6.9) N(E,8) < (v + 1) T(E,D) gt

ﬂm%O as m-—+® .
Also N(b,£) < T(xM, D3 N(E, <TELD (g >© .

With the estimates (86.7), (6.8) and (6.0) one obtains

. I :
from (6.6} with R =3 T ( >er  for m >m.)

p rm»sin Ym i

| lfrr'x
Tlr ,f) < (wn Y(1+e ) = T(r f)(iL
m? ! T m’ Tm). wrreour _cos ¥
| m Cm m

.
vl . -
v (ven ) (146 ) & 5 T(r £ (-E) 510w du
il mow m T Wl o-our. cos Y
- r% m m m
I.H .
m- ro sin'Ym
+ X T(r;;!) ) ) du
uo+r“+2ur  cos Y
0 ’ m m m
I'-ll
m ’
r.sin ¥
+ 5’ T(r&,f) 5 14 I du

2
0 u +r -Zurm cos Ym
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1-p

H

Jof( )

=

Or, using (6.7) agaln on the right hand side and putting

w/r, = X, we obtailn

m

T(r,, ) < Lﬁu&ﬂm) (146 )

0
+ (v+ﬂm)(1+8m)~f

where

1

T(rm,f)} + 0 ( T(rm,f)) .

O*—-—~—*\8

xP P(x}Y,) dx]

xP p(x,m-Y )dx

1 rm)
':'[_—“du 4-(?1'

+ o(l)} T(rm,f)]

sin Y

X

The error term is o (T(rm,f)) .

By a contour integration (or

T 2

+1+9% cos Y

iY

o5}
xP~t
from f dx) , we have
0 x+e : <
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o :
<P - sin Yo

Jﬂ xF P(x,Y)dx Sin o 0< p <l

0

@ :

j P(xyV)ax = Y/m ' p =0

(
Therefcfé, dividing (6.10) by T(rm,f) and letting m-7
sin 8p N sin (mB) P

1 <u— .
sin 7 e ~ gin mp

which is (6.8) for p > O; gimilarly for p = 0.
If Y(rf) =0 for all large m, then m(r ,f) =0

and so N(rp,f) = T(r, £ + o(1), so that- &(co,f) = O,

1<v

which is (6.6) for p = 0. Similarly (6.6) is true 1f

£) = ¢ for all large m.
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SECTION 7%
THE SPREAD OF A DEFICIENT VALUE. e

Let f(z) be a meromorphic function of lower order

< l. Let g(c) be the geatest lower bound of all
Lim Y(r!,c,M(r)) 3

where rﬁ -+ oo through a sequence of Pblya-peaks of order M.

Then

B(c) = Lim Y(r ,¢,7(1))

where .{rn§ 1s a sultable sequence of pblya peaks of order u.if
We shall call B(c) the gpread of the value c. We shall, prove£
that for a deficlent value the spread is bounded below by a %;
positive constant depending only on [ and 8(c,f). |

If we choose the function N(r) entering into the de~

finition of E(r,c,N(r)) as a function tending to o, then it

is clear that for any finite set of cj‘s the sets E(r,cj,ﬂ(r)ff

are non-intereecting for r > r, A0 that ]
0 < ZS_Y (r,cj,ﬂ(r)) & (r >r,) %

and 50, letting r = in a sultable manner.

(7.1) 0¢ ZBlep <
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By limiting transition this remains true 1f the summation is

extended over all deficient values, finite or infinite in number .

CHEOREM 7.1. If f£(z) Lis meromorphic of lower order

@ <1 and if for some ¢

v = 1-8(c,f) < Cos 7

then 4 & % and ¢ lg the only deficlent value of

sequence of _Pblya-veaks of order i -4

f(z) and for any

Y(r_,c,N(x)) = w =Bl

Remark. This theorem 1s closely related to the corollary

put the information is slightly different.
g > 0.

of Theorem 5,2,

PROOF OF THEOREM 7.,1. We give,the proof for
using the second

For ¢ = 0, it proceeds along the same lines,

formula of (6.6), If § 1is a limit point of Sv(rye,m) Y,

then by (6.6) with o = i, with
u = 1-8(d,1), v = 1-8(e,1)
sin 7 < u sin Bu + v sin (=B K
< sin @i + cos mt sin (w=-BIU

< sin ((m=(w-B)Ip) + cos mh ain (w-BlH

= gin e cos{w-B) .

ST e
_ijiﬁ‘ﬁﬂvzwﬁfﬁy,ny
e e
DR ; Y
Ty pRr A

N 173 e 3T
jrute, o
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Hence cos(w=B)g = 13 B = m. Returning to (6.6)

sin mi < u sin 7y 3 u =1 and &(d,f) = O.

COROLLARY. A function of lower order O has at most

one deficient value.

THEOREM 7.2, 1If f(z) Lig meromorphic of lower order

i< 1 and if
cos it < v = 1-8(c,f) <1 {

then

I. For any d # ¢ and u = 1-5(4,%)

i

(7.2) wPrvPeguv @os m Z_Sin2 M «

IT. If£ B84 is any limit »noint of a gseguence

{ Y(rmgc,ﬂ(r))} and B2 any limit point of a
geguence {Y (rm,dﬁ(r))} y Where r, @ through

a sequence, of Pblya-peaks, then

sin =
w-ﬁl—ﬁg < 5 arc cos _—-ETE

IIT. With 8, as in 1T

U=V CcO0s Umr - Jaz-singuw 6

S By

2 arc tan
1 (1+v) sin wu

i
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u-v c0os Tt ¢k2-sin2 1%
(1+v) sin =i

< 2 rd tan

v - cos T
sin 7

IV, Bl>ﬂ-§ar0tan

where &2 = u8 + v2 - 2uv c08 7.

PROQF, Under.the hypbtheses of the Theorem Cos i < 1,

——————

L >0. By (6.,6) with p = M

sin < u sin Ba + ¥ sin (w~ﬁﬁ)u

(7.3)
sin m¢ < (u-v cos w) sin 31” + v sin @y cos BqH.

Define M and A Dby

A= (1~ Vv cos ﬁM)g PR sin2 T = w? o+ ve - 2uv cos wui
'; sin M = i CZSAﬁu , cos M = E*fin e
Then (7;3) becomeg
(7.4) sin mp < A Cos (B = n .
{ : gince cos (pp-n) £ 1, this proves (7:2)

?o prove III, put x = tan(}ﬁ,u). Then (7.3) becomes

J = (1+v)\sin ™ x%=2(u~v cos m)x+(1l-v) sin b 0

2 \
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This inequality is true, if x 1lies between the two non-

negative roots

u-v cos 7l iJQu-v cos wu)g—(l-vz) sin2 i

(1+v) sin 74

u~v cos 7 * Jﬁg-sing T

L]

(1+v) sin 7

Assertion IIT follows immediately.
Proof of II. We note next that

(7.5) u-v cos mt > O
For, by Theorem 7.1 Vv <1 implies w > cos mid, so that (7.5)
is true for cos # > 0. If cos mi <0, then (7.5) could only
fail to be true, if u = v = 0, but this is impossible by
Theorem 7.le By (7.5),
T

0 <MK 5

If X 1s defined by

o< X <121_9 cos X = sigﬁg

then (7.4) cah be rephrased

Cos X < Cos(B4 ~ M)
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and since -~ % <yl =M <oy this implies

| BqH - NP <X

(7.6) n-X <BrintR

eince cos M < cos ), the lower bound for PBqi is positive.
By interchanging ¢ and d and calling 62 any limit

point of Y(rm,d,ﬂ(r))7 we have

sin m U sin (ﬁ“ﬁz) o+ v osin B

Which is (7.3) with B, veplaced by m-fy. Since (7,6) was a

consequence of (7,3) and v < 1, we heve now

n-X < (r8)l <n + X

and so
o

(m-Bo~Bip < M X - (my-X) = 2% = 2 arc cos siﬁrﬂg .

'PROOF_of I¥. It is clear from {7.3) that the least

possible value of Bl satisfyiag (7.3) for a given value of v
will be obtained for u = 1. TInterchanging u and v and Bl

and T84 in (7.3) we obtain for w = 1> from IIX

P T ..o
9 v-cos 1l + V14V =¥ COs m-sin mh
‘Trw-B 1 _<_ .ﬁ. arc tan ——— e i o At : - U
. 2 sin vl

) v-cos T
< £ gre tan T
il sin i -

This is IV.
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Geometrical interpretation of Theorem 7.1 and 7.,2. I

Interpret (u,v) where

u = 1-8(d,f) v = 1-8(c,f)

as a point in the plane with Carteslian coordinates u,v.

| The obvious inequaiities o<u £1,0<v <1 say
that (u,v) 1lies in the unit square in the first quadrant.
Theorem 7.l says that any point with v < cos 7 must be on
the line u =1 (This statement is vacuous for g > %). The

inequality (7.2) restricts (u,v) to the outside of the ellipse

2 2 . 2

u® + v° - 2uv cos w4 = sin” wil.

This ellipse touches the lines u =1, v = 1 at the points
(1, cos me), (Cos mty 1)s The point (u,v) therefore lies in

the region drawn in with heavy Iines.

v
T ;TM!E
R N
v.[ \
’ i
T e
1}
]
|
3 u
cos Tl
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simple examples show there are functions of order U
for which (u,v) has any assigned position in the shaded area.

Next we obtain an estimate for the spread of a defi-

cient value for functions of arbitrary, finite lower order.

THEOREM 7.3. Let f(z) be s meromorphic function of

lower order # < oo; Let q be an integer such that

q > 4. If

(7.7 | 1 - cos %% < 8(c,D)

hY

then the spread of ¢ with reapect to T gatisfigs

T
e =
B(e) > 4
if
(7.8) 1 - cos%ﬁ “5(c,f) = p > O
then
!
72 .-l M-cosu T _ 2 -1 P
B(e) > 4~ °°° P =9 Lt Sin e
27i/q :
PROOF. Let w = ¢ . Replacing £ by f-c or

% (if ¢ = w), We may suppose ¢ = O, Let Py 9 Po g oo be
the geros of f(z), Since the set of o such that T(r,f)ro
N(r,;%; is non—countable, we can find such a o different
from all the numbers of the'form f(mkpﬂ Yy (k =0, 1,2,.. q~1,

{ = 1y2y00e)s Consider . ™~
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q-1
T“T f(mlz)
. i=o
d)(zﬁl) = q-—l
T £ (0" 2-0)

J=0

Mz) is meromorphic. Since, by the choice of & , NO 2Zero

of the denominator is cancelled by a gero of the numerator

N(r, $(zH) = g N(r,_ 1) ~ q T(r,).
| f-a

On the other hand

n
Nr, &(zD) < o(r, #zH) < 5 o(r, B = grr, 0+

f(sz)Hd
+ O(1).
Therefore
| T(r, ¢(zq)) ~ q T(r,£).
i Now '
e, bz = Ty p(2)
Mr, $(z9) = nd, $(2).
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Therefore

L 1
1 1 _ —
N(l‘rq;‘(;)- ) = ﬁ(rqs qu)) = q Nz9, f(z))

1
T(r, § ) = T(ry7, )~ q (23,0

2 -

Therefore : .

5{0, § ¥ = 8(0,)

and the lower order of ¢ is u( ¢ ) = % .

If ,-{rm}- is a sequence of Pblya peaks of order K of

£, then {rg} is a sequence of polya peaks of order % of b .

Under the hypothesis (7.7), $(z) satisfies the hy-

' pothesis of Theorem 7.1, .

S _ i
19"  pons once round the whole circumference N

i q
Since T, e f
| € 1= rg as 6 varies from -~ g to % , the conclusion of -

Theorem 7.1 1is expréssed by

meas {e‘log .\$(r% eiqe)‘ < —ﬂ(rm); \e\ < %.}. 7; - €
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By considering separately the cases |f] < 9r and

& g_% |£] it is easily seen that ‘

(7.9) Ti“\{_l?[ Zmin{-%%,g},

I n(r) >0 log £ , the inequallty

Clog |4 (el MO ] < -n(rp),

then (7.9) implies

' q(r,)
nin log.[f(r% e 18 < - -u—?fl—w-log 30"
i) |
| n(r )
i'_—gﬁm“"—' -K‘n(rm),

if ™(r)) > 2 log 3o

Therefore at leat one log |f(r, ele )] < - Kn(r,) for 8

A

in a set ¥ of measure %f - € contained in |6l < i But

this is equivalent to saying that the set of 0 in lef < =

for which logl £f(z, e1®} < -kn(ry)) 1is of measure > 2 - e

This proves the first assertioﬁ.
7o prove the second assertion one applies Theorem 7.2 IV

to ¢ ( £ ) instead of Theorem 7.l.
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Examples show that the estimate g(c) 2:% is best
possible 1f

G(C’f) = l-COS -T-r& (q = 1,2,..0).

é Thig has suggested

Edreit!s Conjecture. For every meromorphic function of

lower order u <

1 ' '
(7.10) g(c) > min {'v, E arc cos (1-6(c,f))} .

" Support for the conjecture comes
a) from the truth of Theorem 7.3
p) from the fact that it agrees with the conclusion of

Theorem 7.1.
¢) from the possibility of deducing most of Theorem

7.9 from it. By (7.1), for any two values c,d (c # d)

(7.11) .0 ¢Be) +B(d) ¢
If 1-8(c,f) = v and l-6(d,f) = u > cos T4, then (7.11) and
(7.10) 1lead to

0 < Ble) <. w-p(d) <

v > cos(B(elu) > cos(m-(d)) & > u cos wH + J&-ug sin it

B .

N
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so that
(v-u cos ) 2 2 (l-uz) sin® L.

This is (7.2),

Deductions about :E 8y from FEdreitls Conjecture.

Let f(z) be meromorvhic with < % . If one ak > l-cos i,

then ¢ is the only deficient value by Theorem 7.,1l. If

f(z) Thas more than one deficient value then

(7,12) o < By < m, 2By S
and 1-8, > cos By k. Therefore an upper bound for Eiék is
given by

least upper bound JEE (1-cos Bku)
subject to (7.12)., If there are two .B's, By and By say, then
E{ (1-cos By M) can be increased by replécing By DY BytBos

Bo by O,'since

’ B +B, -
2 -~ 2 cos —l§~3 i cos

"

P1Pa

2 - cos‘ﬁlu - cos 62u 5

B.+B g, +B
2 ~ 2 cos 12 2 it cos 12 2 o=

[ T4

\ B, +B
= 1 ~ cos 12 2 My
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because M\Bl—Bgl < (B +B ) <1§ . Therefore max 5 (1-cos Bylb)

subject to 0 < By LMy D By &7 is obtained for Bp =

211 other 8 = 0 and the value of the maximum is L-cos il

This suggests

THEOREM 7.4. If £(2) igeameromorohic function of lower

ordér < % , then

> 8(c,f) ¢ 1 AL £ has only one deficient value
C

S 8(c,f) ¢ l-cos mH if f has more than one defi-
c

cient value.

1 |
1f 5 < wm <1, then

: . ‘
L -8 »cos Byl = max (0, cos By i)

and _Ei&k is majorizgd by

max El(l-cos+ Byt

subiect to o < By < T D By = e

— %

If one 5k »n the sum can be increased by reducing
20

to -IL- and introducing a new term l-cos B with 6u+% = Bk

21
If two

then

Ml .-
B's, Bl and 62 say, satisfy Bj < o J=1,2..
Zi (l—cos+ Bku) can be increased by replacing B4 by

ar

. I ! | : | !
mln.-{ ﬁl+32, EE o = @l and 32 by max { o,Bl+sé - EE-E = S:f
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Bt+R B,
2 - cos ﬁlu - COS3 Bzu 2 -~ 2 cos —»§~2 L cos —l§r§ 1L
t !
< 2 - cos B4f - cos BoH

t 1
B+ B, -B
= 2 - 2 cos —12 2 [t cos *EETEL"

e

P1+B @"‘B 1o
(o <TA?;2'Q lg"a"LL< % y B1Pg >lﬁl”52|>-

Therefore the upper bound is attained for all nonzero B's
equal to < with at most one exception which is less than

T

=g - e

_
T

T .

We can therefore make the guess

THEOREM 7.5, If f(z) is a meromorphic funcbion of

lower order , % < <1, then

'rr - — i 8
;E 6k_< 17+ 1 - cos (4 - 5 Yy = 2 - sin .
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SECTION 8.

PROOF OF THEOREM 7.4. Edrei has managed to prove

Theorem 7.4 independently of his conjecture [4] .
THEOREM 8.1. If f(z) is of lower order < Mo

and 1f f(z) has at least two deficlient values then

> 8(c,f) < L-cos wi.
G
Here iy is the least positive root of

sin #MO

i, -

. 4 2

= a- (.64: <{.LO<'3—)0
Remark, For U < % this bound is best possible,

Note the interesting effect of the hypothesis of at least 2

deficlent values. It reduces the maximum of > &6 from 1

(attained ty any entire function) to 1l-cos .

PROOF, Arrange the deficient values in a sequence

Cl’c2"'f such ﬁhat (6(cn,f) = Gn)

61?_62?_63 D e
‘We must distinguish 2 casess

- s - i3
I. 63 2> l-cos 3 II. 63 <1 - cos 5
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PROOF 1N THE CASE I. We have bj > l-cos ‘5
(j = 1,2,3) and so by Theorem 7.2
B(?rj) ;_% .3 =1,2,3
since 2 ﬁ(cj) < m, this means
‘ | 3.
B(cj) = % and 2; B(cj) = 1,
Therefore s Co CS are the only deficient values and by
Lemma 6.1 with u = l—é(cjl?, v = 1—6(cj?) (31#32,
1< d,de £ e have
‘sin mu < u sin %% + v sin g%& .

Also, interchanging the role of ¢ and cCo,

P . iif
sin 7 < u sin =2~ + v sin 7% .
< g

Adding the two inequalities

2 sin o 5_(u+v)(sin,%% + sin 22& )

= 2(u+v) sin %5 cOoSs %%

gsin ny

-
i cos il

gin 5 3
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Write down for all cholces j,J, and add

i
y g 3 sin mu €08 o

2( B +E5+8 < 6 - =6 1l -
17273 gin %% ofo3:] %% cos %%

since cog %g < 1,

61+62+63 < 3(l-cos %? .
Now
l=cos 2x-=3(l-cos x) = (l;cos ¥} (2 cos x~1).
Therefore
'8(l—cos_%§ ) < l-cos mi
if o

Since ‘uo is less than

PROOF IN CASE II., For J > 3, we can find an integer

, the assertion 1s proved in Case I.

a5 2 3 such that

T ril




8 ' '

Then, by Theorem 7.3,

> = |
Bleg 2 oo

If u=1-84 v =1-6, then, by Theorem 7.2 II,

(8.1) 2 ‘q'"j*.;i's_z B(cj) §_vf5(cl)~6(cg)

joye & 128
2 -1 ( sin m )
< m cosg ( % ]
where
A% = 32v®ou v cos TR
Also, since l-cosx <_%- x% )
, co w 0 N
< < 1 2,2
. 6, < l-cos ZE ) <= ¢ - ——,
(.2 5 8¢ Geeos By Gatut T o
j=3 j=3 j=3
But
o) w
q.+1
- M MR S e
(8.3) ;Zj q:2 > qQs2 q.+1 < 9 2 g+l T
3 J 3 J 3 J

Combining (8.1),(8.2) and (8,3)

N

~1L{ gin ﬁ&)
NOOA

e

E 8. £ 5 T cos
- 7]
2.

] 3
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4t co~"1( sin m) A
9 s =

J 2 [ 2
, AT=sin wl
A 5~ arc tan

sin T

4 Tl 2 . o
< 5 sin nd \/& - sin 7.

Therefore

- DU _ 4l 2 2
j%;l 63 = 61+52 + jé}ﬁ éj < 2-u-v + g Sin WU\/A ~ain® b .

For given A and u,v subject to 0 <u, v <1, min(u+v) is

attained if u ='l, LvPeoy cos mu = AZ (Look at ellinse-

diagram) l.e. u =1, v =

_ .
cos i - Jzé—sinQ a4 (remember

v > cos ). Hénce

—

2 A
6j < 2-(1l+cos +‘/g“~sin2 mL) ““*“ﬂy;*”/£2~sin2 i

2 sin Wit
)31 | -
} | RO S W T
= l-cos md -~/ﬁ =sintomlh YL - 7Ty
< L-cos wd

- LA « sin a5 2 Sy .
il 9 sin m 2.0 1.e. i 2‘9 ? HooH

Theorem 7.5 has not yet been proved, 1t 1g, however

) possible to prove
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THEOREM 8.2, Let f(z) ke an entire function of lowel
d

er i, 5 <1 <1 andof finite order. Then

or

S(e,f) £ 2-sin wld.

PROOF., There is nothing to prove if i = 1. For

g < 1 the proof is based on the - well known results of

Nevanlinna Theory. As r = o, for any n distinct complex

numbers

1 3 1
(8.4) N(r,3 + %} n(r, ?:EE) < T(r £ + 6}(1og r T(r)}
(8.5) ' ™r,f1) £ T{r,f) + & (log r ™(r))

If the order of fz) is infinite, then r has to avoid an

exceptional set of finite measure as 1t tends to oo. By (8.5

m(r 5 (T y7mes)
lim = > 8(cy,f) = lim X
in 0 > %% o~y

Therefore by (8.4)
I - |
1> T Nz ) o Mo |
im T + S : . .
= T(r,t) o T(r, 1)
1.
e N(l‘,% :) m(r, f-c )

> lim _TT?:?W + ji‘ lim (.70

1oy 1e8(0,EN) + S 8(ey,1).
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and so

n .
> 8(cy,,f) < 8(0,r1).
k=1 '

It follows that . &(c,f) (summation over all deficient

c
values) satisfies
(8.6) D 8(c,f) = 8(00,f0) + 2. 8(c,f) < 1+8(0,f ).
' ) cEm

By Theorem 7.2 I applled to f' with

u = 1-8(o0,f"), v = 1-8(w,fN =0

we obtain

singmu,g_u 3 u > sin au

&(o,f") < 1l~sin mu

and the Theorem follows from (8.6).
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