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I. Introduction

The problem considered here is that of describing free

particles and antiparticles of definlte ncnzero mass m, spin
4= 0, L ,1, 3 end with intemal SU(2) = o (7!
2 2
symmetry,
Several gpprosches to this problem glresdy exist:
(a) Spinor-enalysis eyuations of motion (Dirac, Flerz, and
1,2,3)
Pauli) ’ "’ (b) Hyper-Dirac equations of motion (Bargmann,

. 4 i . . . . 2 1\/p
Wigner) (c) A Schrodinger equation with Hamiltonian /B (m-f-]))

(Foldy)5 (d) The helicity formaglism (Jacob and Wick)6 (e)Proca
type equstions for interer spin'7 (f) Rarita-Schwinger type
equations for half-inccger spin?

All these fommulations are eguivalent, although it may
be a complicated affair to find the details of the conneetion
.between two of them, Bargmann and wigner4 have émphasized‘that
a set of functions describing =11 possitle states of a free
particle fori the basis of a representstion of the Poincare
graup and have shown thiat, except for equivalences, there is
only one représentation for given finite m and s. Thus there is
only one type of system to study, for given mess and spin, and
the only question is how to describe it in a way that lends
itself to applicstion.

In the descrintion reviewed here, the particle is
described by a (wave Tunction which is the basis of a(0,s)

® (s,0) representation of the Lorentz group. One value of the




. 2 %
description is that it permits all properties of the free particle
to be discussed in & straightforwerd wey, in pesrallel to the
well-known discussions in Dirac theory., Detailed formulas for
slmost everything can be worked out. For example for any spin
the plzne weve solutions can be found end fomxmulas for the

8 9 operators are known. Another

various polarization® end positicn
usefulness of the description is that it gives an easy wey to
build up interactions. To mgke phenomenologicel interactions

g with form factors you just combine the wecve functions to meke

| sczlars., Scme progress ngs been made in including effects of
externzl electric znd mcgnetic fields on particles with various
spins by'fonnulating the weve equetion in such g way thet there csre

no auxiliary conditions snd then replacing E;“ by Eiﬁ;* € /Lvu 3

The utility of the (0,s) @& (s,0) representstion was
suggested independently by Joosll, Weinberglz, and by Weaver,
Pammer, and Goodls. Mathewsl4 geve a valuable discussion of the
uniqueness of snd genersl formulas for the Hamiltonien, Williams

Draayer and Weberlb’16

also gave severgl genersl formiss gnd
showed how to hzndle the special types of series that occur in
this subject. The relstionships between all the formulations was
discussed by Sankaranarayznan a.nd‘Good8 for spin 1 and by Shay
Song and coodl” for spin 3/2. The quamtizztion of the theory,

* hgs been studied by Wea?er18, Mathewslg- Msthews snd Ramakrishnanzo

]
and Nelson and Goodal.

?

This present review follows Nelson and Good's workzl. Some
background msterizl hes been added in the esrlier sections and
some subjects gre discussed more st length her, However the

original peper contecins more details =nd especially the trestment

of SU5 self-conjugate multiplets,
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ITI. Transformstion Rule for the Wgve Function

The basic idea in this description iB to set up the
properties of the system méstly in the rest frame and then
meke the vLorem.z transformation to the laboratory. The pwocess
is straightforward once z certain form for ¢the wave function
transformgtion is adopted. |

Sonsider to begin with the representation of Lorentz
transformations continuous with the identity by 2 x 2unimodular

matrices, It is known thgat
T_ .
AO’;A = u_,qﬁO"ﬁ ; | (1)

where A are the two-by-two unimodular matrices, o  are

({) L) where /9_ are the three Pauli matrices, and de
are the Lorentz transformmation coefficients :

/

X, = Cup X5 5 Qup Oy = Spy

Here )(Q is it (factors of ¢ and A will be omitted). The

matrix A can be written explicitly as

J;liTvO\
: L

A= ¢ (2)

where ;(: has three complex components corresponding to the

six parameters of the continuous Lorentz group. To see some
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of this in detail consider the speeial case

A ; .
T = L v orctonth A7 (3)
A s

A\ .
where 4~ is theleigth of g vector A and A 1is t(f//(/.' Then
Vs S 4ad

A can be written as

00 g ¥
I ,um.fr)
A L—-?L'L; fo M
n =0
YL L] n
' e T T !
= F(E;TL ) o= cn! é—b T)
e n T odd !
n "
- / ! .
- Co LT +(’T,«O:41W\,.LT (4)
T 2.

where T is defined to be 1 arctanh«/~ § this 1s a consequence
2 7,
of (Ig’) = T . Te coefficients O’d‘p can be evaluated

in a straigntforward way, for example

a’q./_’, 5'[5 = ATU; A




Y O 3 e et e 12

Ry TR ot s e

Thus one finds that

= oL - (5a)

41 ) &
N Y VT2

The other results are

oL __..l_'/LJ"'

¢ U

A A
a«'w = .. AU A _.;__(____, » QA = = (5b)
4 S%/ g Vit T vT— o

These are the coefficients for a pure Lorentz transformation,
the primed axes having velocity ﬁif relgtive to the unprimed.

J—L,T’.”)- : , e,
Thus J&L ~ with ;; given by L & arctanh &~

are the unimodular matrices for pure Lorentz transformetions,

Similzgly one finds that if ;g is real the Lorentz transfor-

mation coefficients are

a 6 . X A ) A A

"j‘ = L‘d'MT'/"edd'th”J"‘“T”’7?";’(/-0“47‘)"
au’_: O’4—{. =0 (6)
aé«-a- =

which is & space rotstion in the right hand sense agbout the

N
direction AZT through the angle T . Any Lorentz trans-

formmation continuous with the identity can be produced by
taking products of these two types. Hamslorff's theorem shows

how such z product must simplify., The theorem says that

A B A+By(rs |+ LA A B]J+L (A, 8] 8] r e

L e = £ (7)
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where only higher and nigier order commutators occur in the

exponent. In &z product like

] T » /;3' LT o P
Lo et 2
G e
L4
where 4 = L O are the spin !/, matrices a commutator

simplifies according to

T, 7 -;f,~— - .
[EA ,é LB ;W_/ = 4y ‘,:)5' L‘*« ’ ‘b]

1

Tar Tg; & Sejh By,

“J

-

= ¢ (ZA X,:b)' K

Thus the entire exponent simplifies somehow down tO’(somethinﬂ),é
A

end
L TA . 4— ¢ ::l": . 4 (: TC ¢ /(}
'J,(_ ) . ! - M, . ,.'4 ;
£ = o _ e ~ (8)

It is clear then that the unimodular X x & matrices representing
¢ T A4

the continuows Lorentz group can be written ss ¢ = and

that the complex three-vecter T  is g perameter for

‘labelling Lorentz transformations.

v D TS T
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Next consider the (2”5ﬁ.{>A$qlare matrices & 7~
f ]

for any spins.4 These are in correspondence with the Lorentz

transformations since they have the same parameters T as

the two-by-two. They also form a representation of the Lorentz

1 T r i .
group since the cslculation of a product _QL""'A Afg Q"I”’ %

using Hawsdorff's theorem depends only on the commutation
’ c T B

Lt <

rulesy these are the same for gll spins so the product g2
| L X A

. L !
mwst be the szame for zll spins. These matrices £ e are

e
e
L
i
.

in fact the (0,s) irrepresentation of the continuous Lorentz
group with the paremeters explicitly displayed. : s A

-
N~

ot 4 o :
~ what sbout the (s,0) representation? For any set of

gpin matrices :}- tnere is a unitary matrix C:A such that

. |
CZd :? = '—"iév (:A (9)

e —

where the asterisk denotes complex conjugation. Mostly the

f standard representation for the'spin matrices will be used,

? with /33 disgonal znd elements of /éj real and positive,
(s § G
then C, is p“"%2 ;itisreal snd C, 1s(~1)"
A

v T
. The convention is to take Cld-: ]C‘ for spin 0., If g2 &

are mattices forming a representation then




These matrices ¢ ~ are the (s,0) brrep,

For transfomation between two Lorentz frames where the

descfiptions of an event are related by
/

X, = @ Xn

. £
the (0,s) @ (s,0) wave functions are related by
’ ; T' 4
S bt A ,
( / € o
’¥/ (X’): éﬁ-,l-’.‘ (11)
\ o e"'%
- The parameters I can be found from the coefficients &dﬁ 2

~
in particular T~ is A7 artanhAs for a pure Lorentz

transformation, the primed axes having velocity AS relative

to the unprimed,
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III. Summary of Matrices Used.

For s»in ¢ the matrices are 2(2s+l)-square and

are defined as

OL/_N - /\_,__{_. (/ foroe i , /,5 -~ {; Q , ’ . :cj = ],/ A.‘_L;[ O j
A< Ve NG 2y
/ -\ -
i © X “ ( A
‘}% - ( } ’ C = | (192)
Y > [/ \-C, v

Some of the spin V&L properties still zoply in general, For
8 > 3 k| D . b
example /3  anticommutes with ¢ and >, and ¢ and 3jr
o~ * A
commute. The C matrix is the charze conjugation matrix with

the properties

E ~ - s h ;7 TN -7 ; >
, (; ;f' C = s = BC = 4,/3 ,
® o= > . —1 -
' o o g ey
Cpl -, CrpC.-x -
- X . 2K e |
CT (=)

IV. Rest Frame 3State Functions.
One sftarts from the assumption that eigenstates of
energy and nmomentum for particle and antinarticle exist. In

the rest frame the Hamlltonian is identified ss 071/3 and the
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polarization operator as /3 ﬁ} (discuss vmqr/aié- is used
here in preference to just & later). These commute and
P

so eigenfunctions AL can be found such that

(14)

[ A KEE Réh

/3 2 '22 i, B k-

/\
where € = + 1 for the narticle/antiparticle, &€ 1is a unit
A

vector in an arbitrary guantization direction, and k ranges

from —.4 to+ & . Choose the nonmalization so that

T - <
UR(:}{, L'Qe'k' = “ee! gh/a’ (15)

1
e

This leaves many phase factors in the AJReﬁz

yet determined, It is a big help in the later discussion of T,

not

.C,P questions to have these phases chosen intelligently. As
. x

a first point one notices that <}: (Jkeiz) must be pro-

portional to A, because
s cC UR&)* = (p “C URUJ*
- = (C/b ’u/ee/<>*
= - 6<C Cock >*

A % - e
ﬁé'ﬁé(c%&k = /%<C'Uf<eh) '
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~ls0 one can step up and down the angular momentum quantum

nulibers in the wsual way. These two considerations lead to

choosing the phases such that

| (C Uecn) = € U en (16a)
v T T \ (16b)
PAr Upen =a s(s11) —k(k2€) Yy e
A A A 4
Here /é“t is {,é ’é —+ L é ’,ﬁ > whereﬁ? > é >

A
and :}? form an orthogonal right hand set. To see that this
is really all right, look at the equations first for & = +1.

Then Eq.(16b) 1is just the usual angular momentum phase choice.

\\\

- A Mo = A ACa+) = h(h £ 'O:Q/ /zf:

and the two eguations for & =t3% | serve to define all the

(J;eé once any one of them is specified. There the ecuations
for &€ = -1 can be derived from those for &€ = +1. For

example if

ts X

. S oy h) = A% ik
then 5 | N
(C Up_rp) = (\C<C’Ukue)x)
= CF W,y

LA+ |
(1) UR,&

4

AR GBI S e e L 85 et
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A similar proof can be made to justify Eq.(16b).
This leaves one phase factor still undetermined for
the entire set of A/, _, . Jnother consideration is that
Yo anticommutes with /3 and 5 4 so that 0 Y.y is

proportional to A, _, _p . By similar reasoning one can

show that the final nhase factor can be chosen so that

' A ek +]
B(‘5' '(fﬂe/: 7("” ’(fﬁ)_./:,-—k. (17)
and that the {J] are then completely specified except for

Re ke
a single over all plus or minus sign.

The wave function in the rest frame is then

Yoer = Y% € S

and the equation of motion is /

fm’/‘)’/\//fge/% = t 2_;%&6_& (19)
' R

V. Laboratory Frame State Functions.
Let i@/ and & be the physical momentum and energy of
the pargicle or antiparticle so that E  is nositive and Y /E

1s the velocity. Then the wave function transformation is,

from Eq.(11),
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A, % OJ—»c‘,'t(M,\l.. CV/,
t~ Y E .
P O
= | 5
- & Y arctomh vz

\ < <
A ;

s ot /\(f Chetomh e ‘ te Y, Xo(,

=€ /Lf;ekzéz

(20)

where %0( is(i/ 5 ( [:—) so that @d X = ...’mf& + As

usual the symbol 2 Will be used for — (Y and for the

eigenvalue, here E:CL/ " . With factors anpropriate for the
I .

normalization set up later, the laboratory system functions

. are
A ’ =
= = 7
LEk Q@m)7* - 4{56 p €
(21) \\‘
At any time t thes: Zorm g complete set for describing 2(2s+1)
L] A A
comporent functions of X . Cne can’specialize to € =%
/\AJ

in which case these are helicity states.
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The zeneral wave function can be found by summing

all these possible states with arbitrary coefficients, say

E’/LAehCﬁ) d/ﬁ to get :
/‘f'(%ﬁﬂ‘—»: -—C—i—*ﬁ— Z’&ék(ﬁ)

E er
A : -

A€ oL+ P oncboh P _‘—([i'j‘rébt)(zz)
€ ’Uk(:h Q'

2
(am)™

Here it 1s neat to break the exponential up into two

parts. Put for short
w = anctond P/ .

Then one can write, since Jof = — Y- &
fo S he

AL ok P ow
PAREEY

I 1 A n '
N . .
£ =7 (4(& ,JBCU) +- E (Aarm O
P astnn ;)Jd
n n
; y SV
= 5 L (4 po r@’_éZ-’-—(/}.‘Pug)
n ! P 5 NIN £o e
darenn ’ odd
"
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45 the exponential occurs in Eq.(22), € can be replaced by

[} actlng on the U;Zék, . Consequently the right hand
side of Eq (22) can be factored so that

V(X)) = ’W SP(xt).

= Va (23)
where the operator § 1is given by
S = w,zv(,%.f ) — /ﬁdl/v\,/’t(é ) (24)

’ D !
el — ¢ ._li
Ep O = (26)
_ y:
Here [ denotes the operator (772—# ”‘2) ol
is the

« Egquation (23)
generalization of the Foldy-Wouthuysen transformation23)

to all spins. For spin Y2 it simplifies to their formula

«rr _ £5-+ W - 3 oL ,l? Qb

[at( +m) " (27)
(This can be verified by combining Egs. (24) and (30) below).

1
The transformation is unitary for spin.§ but not for higher spin.
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Many of the quantities of interest are expressible
in terms of hyperbolic functions of C}Jjgf;ﬁj; , as shown
by.Williams, Drzayer, and Weber. These can be simplified into.
polynomials of degree <4 in G%;- ;% hecause these matrices

satisfy the characteristic equation

(@B ~2) (-Fne)) o (28 +9)=0

12) 15)

Weinberg , Williams, Draayer and Weber and Weber and
Williamsl6) have discussed the problem of simplifying the
hyperbolic functions to polynomials and give many detailed

results. An elementary method that will always give the result

A
in g specific case is to consider the operatarf% » 2 to be
AAs

diagonalized and then solve for the nolynomial coefficients.

For example consider spin 9/2 in which case

Coa b (}:%-,/jg c{) = + b AP

A
A
where a and b arceto be determined. Evaluating the eguation

at the two eligenvalues T 7/2, of fé d gives

Then b is zero and

@ - eml (%)

i}




\
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The hyperbolic functions of E%.Lu are given by

Cooh (Lo) =_Exm
' [Qm(:’:’—/-?’r\)]/g" ¢ 28)
- p "
(&) L2m(E+m)T V2
Zou can see this is true because these valucs satisfy

Cart® — AuAAJyQ’:? [ and they give

}

Cosd co = W.-tv%(é. @),,,Mz(_:i@): £ [y, (298)

Bl o = k(L ) @aoks (L) = Bny (oo

so that

1&0uvu49 co = P/E

as required. The conclusion is that

A _ E_+ m
Q%h(}é.ﬁayh EZM(E+MXV@ (20a)

and similarly one finds that

A(;‘/\Aré "73\&)): Ql/@ ,Azz

Ao e

[2m(CE+m )]t

(3eb)
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This process works in :eneral because there are as many eigen-
values as coefficients in the nolynomial.

The laboratory-frame operators for the time-develop-
ment and polarization are found by transfgrming ther est-frame

operators:
H= SERS™ (21)

4 = 5/3)(5}— = / (32)

A
Not I i 52 , A -
ote H is  EZ, £3 ﬁ? = A(4+!) and H and Sg

commute. The plane wave states can be.written as

1Y)

A L(,‘,/Z'x —-€I5¢)
%ch _ m S ug, e (32)

- (RT) 2 E’%

so they are eigsnstates
H VYiek = & o (24)
E M ~ - /“6‘&7

G-é\y (35)
o S Trek = /\//bc/\, ' ‘

It follows from Zg.(26) that

Hy o o0 2% (36)
, Jt .
$0 H 1is the Hamiltonian for the particle and antiparticle.
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You can get a detailed expression for by first

verifying that

L - AN T
5™ . alh (gews P)S (&7

this way:
A’ec’k(&)wﬁ 'E)[C'O/"A“ (C‘Jé b))+ B}/}auwh@)zg /\Ej |

[Oofsffv CC“A/;'L f) — Y= AA (C’u@f”:éﬂ

= e obo C;Lcu@;-fDLwluz(@ﬁ- P)+W2’(Cu4f27
= dech (Qcop-p ) Cosk (204 B

The general formula for the Hamiltonian then hecomes

"H = [cosk (copp )= V33 Alwh Ceoz-£)] EP
wch Caewg ] )fcosh (co g B )4 05 poini Cog )] |
sk Caeog e Bfcot (e ) Ep- |
| ek ® (o2 B) B — 25 E anh (cp Bk (<) |

dech (& g P )EB— Gk (cop B E .

—

(38)

The Hamiltonian is Hermitian. Some of the detailed results 7 |

that come from evaluating the hynerbolic functions are
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Spin s Hamiltonlan H
o Ep
ol »
542: land *f) i ﬂB 2.
RER—mP)p + Rt p=2(% ),
/ REZ —m*
Onee H 1s known there is a general formula for Aé? &
@ - (AL Xp 4+ FH _ 2L HE

For spin }QL this operator is the known three-vector
24

?

O= 2. p L p+ Ex(pgxp)

oy o A e

polarization operator

The usual spin-up and spin-down functions of Dirac theory
are eigenfunctions of é}; .

The invariant integral between any two free-particle wave
gunctions ’YD(e) and’)V(7Y)cén be expressed in various fomms,

all evidently related by formulas given above:

(") = [y peoTe

-1 (n)
%

it
R
T)
o
o
A
x
%ﬁ
e
’\f
m
~
O%
—
\lr
78]

e d X T E sk (2oog fyy
~20 \LL)T-
=m= 2 fax y IR

, =24 = L —_
==L tm o ¢ ?_}f 4)//("’_. 414“) __a_%("y)(sg)
2 ™\ Bt 2t
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a—

where 'ﬂf is ﬂ+ﬂ;9 . The first expression is Foldy's |
ferm and one sees from it ¢ .- the inner product is positive
definite. The integral is Lorentz-invariant in the sense that,
1f you evaluate it in two different reference frames where the

funetions are related by Eq.(ll), the same number results

@' COMR RSN (n>
(“P > W =
To see how this comes about one starts from the fact that each
function is of the form given in Eq.(22) so, since the svace
. ) niCb-x—éEt) o
.and time dependence is of the form & ~ « gsatisfies

the Klein-Gordon ecuation

Bp“f\,p 2 = M.'z' ) ,
oX, 2 X,
2 0O
O _ m(z’)‘/&)
DX o O XA
@P;

The first equation can be multiplied by, the second by /yu(
and the two subtracted. This leads to

-—-a." Cr_) -‘—(ﬁ) . (’)1) /—(.l )C) C’l> - O
axd(é";{; S axﬁ)

Consequently the current defined by

c(Ln) _ — (O @)  — ) (7

J = L m (ay/ = 2 ” 9
A O Xu S X

has zero divergence. Furthermore this is a Lorentz four-

—ce)
veetor because A}f ’%P is a sealar:
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— o)/ ) +Ce) )
YO 2 T Y gy
; - (L2

_ ot LT E o Vo rlfe T o
_{T.p __ ‘—L’Ctﬂa
o e - Jiro/ie e

! o

_ /g/f(” ’O ,>..y/(m)

— (¢) 62
= Ay
The integral over a2ll space of the fourth component of a

divergenceless four-vector is a lLorentz scalar. Thus
. c@,»)
- jﬂ@ ’ d X is an invariant and this coincides

with the last expression in Eq.(32). The factors in the
mnctions’\//,,e,,v of Eq.(21) have been chosen so that the
e ,

normalization is

(40)

(?ﬁﬁiéh ’ qfd?'f'kf) = beer 5&14‘25(;~ “Aﬁ':>

As well as the function y/ it is important to consider

the function

(X5 t) =[i’~ (1= 7))+ L (/+'5”s)57¢(’0 ¢)  (a)

=1 Z
where €  here meansC O/ Since[.;é—(/ -+ 3’5)] 1s
g ‘
Eai_ ( |+ }5> :/7 and, applied to these functions is 1, the

operator in scvare brackets in Eq.(40) has an inverse,itself.
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Consequently -y has as much information in it about the
system as ’y/ has and serves as an equivalent description.

—~t .
For spin zero, the components of "} are equal and are the

ordinary Klein-Gordon function. Thus if ’Vj(ér satisfies

_ 2 3 \R

= N, — C (9 g

L I//,‘{ G - ( 5E ) /\ZL/{ G
and we write

~ Fre
~ e

I

then

wo= /0N Y\ = (e
(\CJ eﬂ/ e & VYre

and _ — fO \,
Epvy = L </| O:) é‘\sz:

- (é E xm)
E ke

= [ 2
atf‘ﬂf

which 1s the Harmiltionlan wave equation for spin zero. For

spinfé R 4%’15 the usual Dirac wave function. For spin 1,

o~

the components of ~} are closely related to the Proca

field components “. For spin %, certain derivatives ofﬂk are
the Rarita-Schwinger components }7 The wave function used

by Jooslland Weinberg12 is of the’4/ type for half-integer

—~

spin and the ﬂ#& type for integer spin.
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For space reflectibn
/

X‘ :""X(: )t/‘:.'.t

¢

the wave function transformation rule is cHosen to be

/ -
W (X)) = Npp (X (42)
and for time reflection

/ f
X = X¢ 5 t+' = —-t
it 1s chosen to be

SACEES [P Oy I8 &

Here :the 72',a are phase-factors with absolute value of unity.
" With some calculation one can show that the transformations
of Eqgs.(11), (42) and (43) leave the theory cvoariant in the
sense that the same equations, for example ¥ = (2 ¥/ o+
apply in the primed system as in the unprimed system.

There are two possible ways to define the charge conjugation

in such a way that the system is covariant:

/\;/ClC,»Q = Ty [C/\,LCXDJ* (43)

/\//CZOQ = ”lcx[CCH/E>’\PCX>]* (44)



st

To'see that the first type, for example, leaves the system

covariant, you start from

H’%/ = Laf%/&f 7

operate with C and také the complex conjugate. This leads to
>¢ 9< . ' >
(cHe ' ) (c W) =i 2(cy)/ ot

From egs. (13) and (38) one finds that
(cHe-DT - _H
so that
H = L2y /ot

as required. Evidently multiplication by H/E also leaves the
system covariant so Eq.(44) gilves a reasonable charge conjuga-
tion operation also. The difference between the two is 1n

their period: For the first type one finds
Cls ‘ v >
c%) :'Qq[CVHHCGY)_]
P
cFy

t

\)
0
~

S

(DS

s
sT%
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where as for the second type

(p°%)% = m [ e reyme, (e vyl T

- (C(H/E)C“')*C*C.(H/E) 4
= ()= (HE D

X4
= <f—l ) /ﬁp
One chooses to use type 1 for half-integer svin and type 2 for
integer spin so as to have period two for the operation in ady
case. |
A question is what operators in the first-quantized theory

are to be identified with physically observable quantities. A
consistert point of view, which is adonted here, is that the
func;ion A*iﬁ ¢l @actually describes a particle or an antie: =
.particle. (This is not the hole-theory voint of view in which
ﬂ+% Y describes a state which, for a vacuum, is filled.

fﬁére the antivparticle is the absense of a particle from the
state ’VKB'”’ L ). The opefators for the physically observable
quantities are assigned‘to be: energy E, momentum P(H/E),
angular momentum ( 2§x;&-+ A ) (H/E), polarization ,ﬁ? . This
means that the energy is nositive definite and it agrees with

the values you get by thinking through the hole theory point
of view. A property of all these operators, say £2 , 1s that

o cTla*c | (45)

—
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The polarization onerator in the rest frame was chosen at

Eq. (14) to be /3.5 rather than ‘/é so that Lq.(45) finally

o

-~

would apply to . The vroof of Eq.(45) for all these
Aanr

operators follows readily from the fact that

c's*c =S

which gives, since H/Z is S S'l, that

C™'CH/E) C = ~(H/E) (46)

-

To understand the significance of Eg. 1_,§4‘5), consider the
)
matrix element of some operatorﬂ between two states ’4/

and f\,)/(ﬂn)

A — 2 n
® . )): . qdf“i’wﬁl:“/‘“‘“@@ﬁ'z’)ﬂ’f()

By taking the comnlex conjugate and inserting factors of

one finds that

(’YJ(L)) f)_f\//(%) ¥ _ ’)’y\_’ZAfd.&( (Q“}/(’Z)*)Tgyd(gwﬁ@
cne™ (cy™M)

t Ov)Cy

= <«f“""’> CrC %)

(47)



One can also argue that H/D is Hermitian with respect to this

inner product,
(AD hr2) 70 )= m ™ iy e S ™

= " /le C@)TL (S )S 5/55 /y}(?\)

| _24 ot D P R I ¢
= M ax~y TE(pST)IS Ty ")

= 7 g P COF 2 sty Tty

= ( <l'¥/E) ",‘/(LJQ ”Y/CH))

so that Zq.(46) alse leads to

(,L})U) —(2_,\‘/01)) < wrci (H/ ) C’,Q*C (H/ D%\}/Croct)*

(L)yca

=" X c Q*c"({w&)y&) Cﬁ*

7 u)c
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where, in the final step, the fact that (H/E) commutes with .
for all those operators considered here, was used. The point

of BEgs.(47) and (48) is that, as an alternéﬁe to calculating
matrix elements of overators .{ L between functions, one can
calculate the conjugate of matrix elemcqts between onerators
Cl.fz—éﬁcj-‘and the charge-conjugate functions. The significance
of Eq.(45) 1s that (1L and C‘Q*CH are the same operator so
that the identification of overators with physical guantities

is the same whether particles or antiparticles are vreferred,

in the sense of being described by positive-frequency functions.

The equation of motion is of zourse the same since if

Hay = & 2v/0t

then from Eq. (46)
cl/ .
A A

& &
and similar for ’}P . Thus the theory is covariant by
charge conjugation, both for the equatimns of motion and for

the physical assignments.



VI. Field Operators.

In the usual way one starts from the normalized plane
wave functions’%ﬁ§€ L » as glven by Egs.(21) or (33), and
M~ »
defines the field operator by

LY

where Cl;feJc and L%Iié" ‘are the destruction anéd creation
(] 1

operators for the single particle states with ;abelsp_t'?7 & k-

‘The operators are postulated to satisfy the rules

Ca’c—k @DE CLSL('E);L)]:t = O | (50)

. pvE :
O. ' ] :g S g(f"’ 2)
[ ek(ﬁt) > Cg, (fa) ), = %t %es it
for fermions/®osons. lere and below the asterisk denotes
Hermitian conjugation in the Fock space. Also it is postulated
that any operator Q ’ applied to the vacuum 10>

P eh,c,\fg) P 1
gives zero and that all physicdal states are produced by applying

s €

the operators t*’e!@ <DE> in any num)er to the vacuum. It

can be shown that this quantization is Iorentz covariantZl.




"

Sturting from this definition, one can calculate the

commutation rules for the field operators stralghtforwardly.

Let Y, {X,J denote the of’ th component of /\.&(5,,1;7

Then one finds, considering any soin and either tyne of statistics,

[~ Cx05 /Y’@*CXQJJ 4

:Jd,\}ff jdf”vlz,zz { (/\th:;, +lh(xt>>o( (,‘J/BQ'HZCX&DZSIQL ng/ ’EEQ
=+ (’“Pb,-u h<><,7)oL <"\}/PQ,‘ Q(Xa)j; (Shé qu, _.AEQ_‘)/Z(

00 53,9, (I G, 0}

A
= m (A > "L G-t
@ar)? f%% Forind (5% ey @

> (E(t,-ta)) CP(x-X
=x (‘SMR—-IRDO( (SVR-—:/DB € jﬂ’” L)
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where Eq. (33) for ’\//(7 ck Was used ip the last step. The

R
completeness of the functions "‘f}e(—h« can be used to evaluate

fhe /2/ sums this way:

(5"1:%)0( (SW:H'*)*
’LZG(’”" een), (5 %en)

= [9(/:1:/5/] ,W&C e‘lz)P( e.@J
—'—;';[SCI:»H?)S*L,.%

Iet the indices =, f3 be suppressed so the equations now read
¢
“P(«",) > Y Cxaﬂ,:_,
g I

2 A
- m cl | te —tE(t ~ta)
(3T )3 [ ( '3> ]

i

" (X=X
+ S(l—~(3) S*e‘“LCt' t")jeﬂi (X%

Here S is a function of ,f y 8lven in Eq.(24), and /? is

considered to be real in getting ST . Let § CB) inside

the integral be revnlaced by \)' = SC,— ¢ V,) outside the
Anr

integral. T-Iith/s/fme rearrangement of terms one finds

o/

i
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["7(/(’(") 7"1‘/*@(17]

(,'L.: C‘t/ "t:.) ;E (t" tl-)
/ - s&f‘“’ -
ar’ 2 A
@n ix.auf'<1v~z=)
2.4 : 1

+ —LE(-t) (E(ti-t

+ m S,/BS/fié_kﬁéb '¥>@E('t)
(Qﬁ")g = 2 ‘_E u(,\, — XL)

% £

These integrals ars expressible by the usual invariant fungtion

ANGY,
~-L P X
- SJ AL (e L ook
(an)
(81)
where P# is /\/ /)9' + m> . Thus, replacirigAE
by ~£ in the second term gives
' 3 N
EAGD - f po g Lk
(arr)’ - < ;

et LBt Sk x
AN jdﬁ e +e po
@r)’/ g < ?

/

r
"y




34
~
A i .
where € 15 E!(L 9%, ) . Tnis gives

E/\{’ CXy) :”HI’*CX;L)ji

= ¢maége,}F[g,5|f+g,@5\ JA(X’ Xa)

—

where§‘€«:§; danotes ¢, for fermions, unity for bosons.

Finally Eq.( ) glves

) ST = OCVJ/L/ KQ,QJ, J?,)

and Eq. (24) glives
: R |
Sp S+:£GO/-)'£\/(@-.AECAJ>——X$-/5A{AA/IVC£ e P OJ)]
Pleont(p-Ee)=prssint (@ Bed]
= pl ot (g Pe) = adi (2L )
—_ A, ?;’é Al (%«2@)%(3~E@)

P % sk (R fe)

/

f

|
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All the commutators and anticommutators are given by the formula

[/\P(xl>; /\//-x<><2)jj:
= szégé,}c [ c,ooA(Q,é-:é,w,) + [3/6\1

~ b ,
— % ik (2 2 Breo) | & i) (52)

It 1is obvious from the commutation or anticommutation rules for
the CLGACE) that ["PCN);’\,‘/CX.OJi = &J .
. The equal time commutation rules can be found from these by

using the values

A - ’
ACx,0)=0, €LEa(x,0)=—0(5(X)
One expects the field operators to commute or anticommute
: A
for spacelike sevarwtiosns. The functions A-(X) and ECA (X)
are zero when X is crnacelike,the functions /E\A and E A are

not. TFrom the study 1 the hymerbolic f‘uu’xctionslz’l6

1t is known
that for integer s»in cosh(iLCu/a.’/:) and E"lsinh(lwé—-ﬁé )
are polynomials in /) /7 and /3 , for half-integer sv»in

= Oos/x CQQ_,/J, /3 > and sinh(Rco & - P ) are such polynomials.

Consequently, for Fermi statistics and half-integer spin,
[’W(X,); ";V*(X&)j-;-
= Lfm [E’/wsk(&u,é Pl &
Jr,g - %MA (2o @ f)A]

\

\

1
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and the right-hand-side is zero for space-like segarations.
For half-integer spin and Fermi statistics the system is causal
in this sense but in no other case does a zero occur on the

19 cors iders this to be a crticism of the theory

right. Mathews
for integer spins and sete up different plane wave states with
different Hamiltontans not defined in the-rest frame. However,
Nelson and Good make the point that the theory is all right if
dnly'a different field operator is used to build interactions

Pand

with. The onerator ’Vp can be defined by

X, t) :[Z'L (- afs.>+il_((+9‘_>g/ﬁp(5)f) (53)

the same as in the first quantized theory, Eq.(41). Tguation (49)
then gives

= (d

CX>+)
% a'h(.,é}%.rlz
LRI B

Iy ‘%2

Commutation and anticommutation rules be’/YJ can be calculated

straightforwardly the same way as for A/ . The results are
[¥ (x0, ¥, =0
[ & C<4)s {;%me?]i
- b g8y [eork (2 eng fO4p

e | ~
_ Ve Runh (e @‘:/:’\: 7€e]ACX:'Xa) (55)



N

Here if integer-spin bosons are considered the right-hand-side
13 zero for spacz-liirc separations and in no other case. The
point 1s that the function f#/ is to be usedé to nmake

o~
interactions with half-integer spin, the function N with

integer spin and then the usual spin-statistics felatiwn apvlies

as well. In what follows. Eﬂﬂi° used to dencte wU for half-
integer spin fermigns and /Y/for integer spin bosons.

Equations ( ) and ( ) combine to male

-

[’ﬂ?(x\>) ’Sr_f(xa)j+ = O >

24 . s
Lfg/{x.) w(xa)’] = (m Eé\,j—;wsi\'(&@/ﬁ';@>

+/3 { } Ts A A LAt Cgbu.) é—. 2 )Jé CX, /\:2\ (56)
12 . o : 1,
Weinberg gives tiaz commutation rules in terms of the

covariantly defined wctrices. Equations (49) and (54 avre

written together ac

= (s o
j E%Lo“f;gcﬁ)”ﬁa}k

* -
+ =0t oo (B Wikl (57)
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VII. Self Conjugate Particles.

The charge conjugation operator‘ég f3 defined to be a

.-mnitary onerator in the Fock svace with the properties

6> = "3:> )

Ly (57 87 [€TH 15y (0T

(58)
From the discussion of the charge conjugation in the first
quantized theory it is clear that the /45 ~transform has period
two. “

What effect doess the /{; -transform have 5n the " tadt¥fdual
operators CLG¢2 C‘hE ) ? This is found by combining Egs. (40)
and  (58): |

[ap ‘kzpz a,k<f>/g‘%,h

| + b0l (p)47 )
=fhrElak ey (e )
o HE0s o) ()Y e

Equations (16a), (32) and the fact that

LS L L) = ST (~b) 4



39

combine to simplify the functions on the right:

| LCp. X —eEE) T
(/6/\1/)994) [/e(’m SUE fie —]

. = Cgeug_ééfy%'
= LS L) m /6) VeekE

@W%E
‘__P) ")’7’14 XA+ | ,.(‘,(fv"z'(-'éEt)
.9 G_: /U A&ke
@’ £ N
R A+ 1
B | —-Jf>'*é> k.

(60)
Consequently the right hand side of Eq.(59) is

AL SLaT, (YAt O (YW ]
= [ 3 [af B Ayt oI Fps ]

The functions /“%VSG p form a complete set so Eq.(50) gives

/%Z>Cléﬁ? C}Ei)/l%’w': Cl—é—k (j—jkk)>

(61)
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Bearing in mind that E?Aé is the physical momedtum, one sees
that the /fé -trans;icmm carries the particle operator into
| the antiparticle overator «with the same polarization and physical
momentum. - This is just as it shon'd be and it justifies the

‘ehoice of Zq.(58) as the definition of charge conjugation.

What is the result of apnlying the,éé ~transform “to the
overator ’EP’ ? The answer is

A2 67 = (/@{%}{3 ’—q")—x (62)

as is easily verified. TFor half-integer spin fermionslﬂig’ 1s
?# and thils agrees with Eq.(58). For integer spin bosons

Egs. (54) and (g1) give, for the left hand side,
e
1s0 Egs.(54) and (en) zive for the right hand side

(o5 B)"= [l 5 [0 YD) b B, ]

SN

¥ "= fdp 5 [a GO —a R

»*
= jdf % [’ Ts oy, wa—b-m'*%/fk)’\l@p;h]

s0 Iq.(62) verifies all right.
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The fact that the,%% -transform has peripd two permits

sel]f -conjugate operators to be set up. Tet /%EQP) , where
P is+ /[ , be defined by

T - s (Tl )

Then this has the prooerty (63)
Gy A7 = L (6l 4 p L)
=pi(E+ PpRELT)
= f 1_{7(‘9) (64)

See how these self-conjugate operators are expressed in
- terms of the creation and destruction operators.by combining

Eqgs. (567) and (63):

) 2, (E) +PO 1 (-
1{?(P) ’fdf Z[ Ik(ﬁ);PO_/e( f)‘%m

4 Qo CED +pﬁ,b< -£) 7~ 755,

(

—/k

Replace Jé by -—f3 in the second term and write this as
BRI AEY: Z[ B DYy
P PIz C;&){" 75'},5"71{_;3,,;2] (65)
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where

Va

The two fields ’LJ_JC’)) thus each have their >wn operators bPk('t) <

The commutation rules of the b's are found from those of the a's

to be

(67

[:bph (},\3'7’; Brg ‘(f@ji: ©
[ bon CBYs by Cpad ], = Pre 5o 5t 2)

This means for one thing that the é:h CEO anticommute/
- commute with the /2, o G J;Jv) > so the fields fj_f(:') andgz__o
. are correspondingly uncoupled.
Also Eq.(g7) says that the b's are single-particle destruc-
tion operators. T> describe this situation in more detail:
the state CL,), (\p)}v:? is a particle with physical momentum,fj
X N [V *
and polarization A s the state Q,_”é C‘EJIO} 1s an
antivarticle with physical momentum AE and polarization 4?/ :
consequently bP/i ij) /O> is a self-conjugate object with
physical momentum AE and polarization /{{, . Also it follows
from Egs.{61) and (66) that

Lo boy (£) 47" = pba(ED (69
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»* ,
so the state bPk Cf} [ O> is actually an eigenstate of the

operator /@) : |
4 B () le> = p by (B Ao
= phy (LD o>

Another question is whether the self-conjugate fields ’%)

are cawsal in the sense of commuting or anticommuting for space-

already established. It is only necessary to considei‘

[:SEI{P)( X1) 3%; Cx;Dji_ because

can be deduced from {t by using Zq.(64) in the form
—_— >
= < - '
P Ty = (6575 %))
First one observes from Eq.(e3) that

| [% 00, «_r Gl :--w-<x,>+(>(fp€m}@<*@>

T xa)+P (@gn}ey(x,j
=[x, T ]

/ +"[(/€D<éb/$}5/?<x”)> Q{b’5’§ 'Y(X‘Qﬂ

like separations. This can be quickly settled from the properties :
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which is the same for both values of P . Second,one writes
U as By and uses the fact that the two varts
e Wy + W, !

anticommute/commute to get

> 1 >
L/\E‘CX()?/S—‘D—‘ \:IX\&)JT_{:’; E/Y(;\—)CT\>)/C__E——<+\>(XQ i

= - <
+ L[‘EC:D CX!)7ﬁDE—t>CX9~)]:t

Finally, since the two terms on tha right are equal, they must
\ each equal half the lelt hand side

[ ¥, O %f(xaﬂi

- [T,

The funetion on the right was given in Eq§(56). The conclusion
is that the self-cunjugate fields have causal anticommutation

or commutation rules.

VIII. Self coniugate Isospin Multiplets.

For a partizcle-antivparticle system with isotopic spin t
there are wave function operators A+?¢:<Zi:>*:> where (v 1is
the iz&spin component label, ranging from -t to +t. In terms

of t complete set of functions ”4/bc L the operators are
Ao

Bl s[4 2 an, Y,

_><.
+§»b’s‘}6 Q_}h_/ﬂ(ﬁ)%wlk] (70)




The subscripts are put on the a's in agreement with the usual
ideas about isospin; the antiparticle has opposite isospin
component to the particls. The a's with the same /*z index
‘have the same comzntation rules as before; those with different
Jv indices anticommute/commute.

The isospnin onerators are defined by

(:(L WU | —-QA dXZ[B?p (’TZ)PM,’-\_F’r

Zi Tl

T (T 2T

where T t are the (2t+1)-square angular momentum
/e

(71)

matrices in the standard representation. This form is suggested
by the invariant integral defined in Rq.(39). It makes the
isospin operators ijl be Iorentz scalars. The dots indicate
the normal product of the overators: when written out in terms
of the a's, every tz2ri: involving an (jjb and an Q_ 1s organized
so that the Cf? is on the left, anticommutators for farmions andff
commutators for bosons being neglected in the process. As a

) )
result of this nornal ordering;KE ‘. in terms of the Q. 4 1is
found to be

5 - g‘_@ Dt J > [k B Oy CRD

: v
e — Cl__,k,P;CkE)a_llz—}ﬂ(Bﬂ
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so that 3?;' { (>>: O , and the vacuum is invariant to
isosnin rotations, as it should bhe.

It is straightforward to calculate the properties of the
iji from the above definitions. All the cdrrect oroverties can

be verified. The operators have the correct algebra

Al

[:'ifl 2 Sﬁ}:] = L’G}ﬁd L fEﬂQ

(72)
they are the generators of isospsre rotatisns of the field
- operators
- .
o7 | =
[g 7«-‘:.’..1- ’Z. Tl/.) l,@/‘
ot ’M)’C L /[,u f,u P (73)
and they comblne the right way with //65
-/ ijpD
/6 5’/073 /ég =7 l o 3
' (74)

( The charge conjugation operation is now defined by
& T, 47 = (B3R EL) L D
An interesting question is whether isospin multiplets
that are in some sense self-conjugate can bé set up. This
'question was first raised by Carruther525 who remarked that
only for integer isos>.n can there be a self-conjugate system
of sd&lar-bosons., WNew isospin multiplets can be made if the

éonjugation operation commutes with fyi . As 1is well known,

the G-parity

AL
/X% = /éz-e V (75)
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so that CJ)L { O>: (O , and the vacuum is invariant to
isosnin rotations, as it should be. |

It is straightforward to calculate the properties of the
o
Ji from the above deiinitions. All the correct properties can

be verified, The on2rators have the correct algebra

O ‘
[:.ijz 5 *Ij A = Lré?ié k iS?z

. (72)
they are the generators of isospsce rotations of the field
onerators

@ —
[T 1= (T, %

/'y 7 b ’“J,C C /L,u I..-—P,- 2 (73)
and they combine the right way with ,/6;

sy =1 ijpo
/@ 3‘/073/&9 = l oy %
' " (74)

( The charge conjugation operation is now defined by
& A, 7 = (B3R 0
An interesiing question is whether isospin multiplets
that are in some sense celf-conjugate can be set up. This
question was first raised by Carruther525 who remarked that
1y for integer'isospin can\there be a self-conjugate system
of scilar bosons. New isospin multiplets can be made if the

conjugation ovneration commutes with ifi . As is well known,

the G-parity

LT T2
Ay = Lo ¢ (75)
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has this property. The operator £ rotates through

angle(—~T7 ) about the 2 axis in isospace so

3-“2 -Q - o} 9.
+(MTh ~L 1T 53 —

(76)

Equations (74) and (76) together imply that

L,%,ijij = O (77)
From this it "f3llows that the fields

@Ew = 5';("17“ + p@@;/g”')‘

' , - (78)
where F> is +1 or -1, separately satisfy =q.(73)

J-(Pw ? ] T g e P (7]

and so each forms an isospin t multiplet. The rewaining questim
is when the /%/ -transform has period two so that the multiplet

is self-conjugate 1in the sense that

/g /J}ZPU«J /9-1 :P%)/w (80)
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| LT Ty —f (
In the standard representation Y2 y is(#]) éa%ﬂ”’
| e

so that

LT LT - 7 |
eLTr x,f/:e - % (@ ) )/w/w,/‘i’/:/

= (;—‘ID t:_-fp‘fi?j:fu’

The square of this transform is then

ey
——

QLT T3 AT T ot
! ya zgpe RN E DRy

This just expresses the fact that a minus sign comes in when
a half-integer spin system 1is rotated through 2T7. The

,{g-transform st11ll has period two so
= (—1) .
4L 47 05

Thus for integer isospin Eq.(80) holds and the self-conjugate
isospin multiplet exists. The rest of the discussion goes
through the same as for the self-conjugate fields in the previous
sectiop, with modificati:ns to take care of fhe fu index. The

f field commutators are found to be

| | 5
{./?Em,w(xa 7 @zo—)u (Xaﬂ_j
- fLL CSPO_ S/“_.Z:":—Q"CXO\)@'CKQDJ:};




where the right hand side is known from ﬁq.(ss). Thus the
éelf—conjugate fields have causal commutation rules. These

1deas have been extended to 'SUS multiplets in reference 21.
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