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I. Introduction

The problem considered here is that of describing free

particles and antiparticles of definite nonzero mass m, spin

O I, -z. and with inte mal SUe2)-•, 1,

symmetry •

Several approaches to this problem alreadY exist:

(a) Spinor-analjsi s e quat.t on s of motion (Dirac, Ff.e rz , and
1 2 '3)

Pauli) , ,
4

vJigner) (c).A Schrodinge r e qu at.: on

(b) Hyper-Dirac equations of motion (Bargmann,
1..\1-

wit h Hami1toni an ($ ( ~ + P ) z,
6

(J acob and Wick ) (e)P roca
5

(Foldy) (d) The heLi ct ty f'o rmal f sm

type e quat.t ons for intccer spin 7 (f) Rari ta-Schwinge r type
. 7

e quat I ons for half -in eGge r s pi.n •

.All these .ro_"'Il'.~labons are e qutv a.Len't , although it maY

be a complicated affair to find the details of the conne~tion

between two of them.
4

Bargmann and Wigner - have emphasized that

a set of functions describJng all possible states of a free

Particle I'o r.; the basis of a representation of the Poincare

group and h ave shown that, except for e quf.v a.Lenc es , ther e is

only one representation for given finite m and s , Thus there is

only one type of system to study, for given masS and spin, and

the only question is how to describe it Ln a way that lends

itself to application.

In the de scrt rrt i on r evi ewed here, the particle is

described by a (wsv e "un ct Lon which is the basis of a(O,s)

e (s,O) rep r esent at i on of the Lorentz group. One value of the
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description is t hr.t it pennits all properties of the free particle

to be discussed in a straightforwcrd w~y, in p&rallel to the

well-known discussions in Dirac theory. Detailed fonnulas for

almost everything Can be worked out. For example for any spin

the p.l.ane WE:vesolutions can b e found end fo:mnulas for the

various polarization8 and posi ticn9 operators are known. Another

usefulness of the description is that it gives an easy Wb.Yto

build up inte ractions. To make; phenomenologi ca L inte ractions

wi th form factors you just combine the v zs e functions to make

scalars. Some progress has been made in including effects of

external electric and :nc:gnEtic fields on pr.rt.Lc Le s with v a rt ous

spins by f'o rmuLat I ng the wcve equrtion in such a way the.t there

no auxiliary condi.tions a.nd then replacing Pr by ~- e ~
The utility of the (o,s) ® (s,O) rep re sent at Ion Was

suggested independently by JooSll, Weinbergl2, and by Weaver,
13 14

Boammer, and Good • Mathew's gave a v al.uab Le discussion of the

urrl quen es s of and gene raL formulas for the Hamiltonian. Williams
15 16Draayer and Weber' also gave several general formmcs and

a re

•

showed how to h snd'l e the special type s of series that occur in

this subject. The rel&tion~hips between all the formulations was

di scussed by Ssnkarar.Lar",yc:nan and Good8 for spin 1 and by Shay

Song and Goodl? for spin 3/2. The quaftllti zation of the; theory,

has been studied by 1IJsc:ve r18, Mathews19; Hathews and Ramakri shncm20,
21and Nelson &nd Good •

aThi s p r e s errt rc:vi ew follows Nelson c,nd Good t s work • Some

'background mat e r-i.a.L h z.s been added in the e&rlier sections and

some subjects are discussed more at length h~. However the

Original pape.r cont ai n s more details ,:IUdespecially the treatment

of SU3 sElf-conjugstE multiplEts.
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II. TransfoI'mgti<Il>nRule for the Wave Function

The basic Lds a in this description il5 to set up the

properties of the system meatly in the rest frame and. then

mske the Lorentz transformation to the laboratory. The peoc ess

is straightforward once a certain form for ~he wave function
f
t

I
t
I

I
I
I

I
I

~,
;

transformation is adopted.

~onsider to begin \'Iith the representation of Lorentz

transformations continuous with the identtty by ~ xZunimodular

matrices. It is known that

tAoA
0(

(1)

where A are the two-by-two unimodular matrices, cr~ are

where CTt-v are the three Pauli matrices, and ct~#
are the Lorentz transformation coefficients

•

Here X't is it (factors of c and t: will be omitted). The

matrix A Can be written explicitly as

A

where;r has three complex components corresponding to the

six parameters of the continuous Lorentz group. To see some
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of this in detail consider the special case

::: (3)

where if is the Length of a vector A../and "C- · is 1:!/ V. Then
~ /'--'

A can be written as

A

YI..

- , .i: (-I;- '- T) +- L 'n! .....,
t.v "-,.,.

~

,
- ~.,L T + L- T' . U . f (4)'7 ,....., I--V _ -1 i.A'V - T

~ T ~
where T is defined to be i arctanh if ; th:Ls is a eonse quan cc

•
of (r. O")?';::

}..AJ fJJ
~e coefficients aot...p can be evaluated

in a straightforward W8S, for example

Q4-/3 ef> = At a;. ;-\
,A /'.

:::. (i...4.;.J .l..T + L { . 0- ,6~ 1- T\O-; (COOl- r + L T#() ,1~.!.. ~
j., f\JJ fJ.J 2..,. ) '1-. \";J.. ,....v I""" .l )

.::::( Ctlo~±-T - /.l~ 2;., T')~- s.i .;r ~~±T~.t '{

- L I\.T

V I - A..r~ .
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~ Thus one finds that
r

/') .-lA.. '4-L CL :::: ===/::=:=-'+ir- 1r Z
V /-lj

(5a).>

•
The other results are

(5b)

These are the coeffi cis nts for a pure Lorentz transformation,

the primed axes having veLcct ty I..f relative to the unprimed.
fo.A-J

Thus with given by
A

L cr arctanh if
f"JV

are the unimodular matrices, for pure Lorentz transformctions.

Simila.ly one finds that if ~

mation coefficients are

is real the Lorentz transfor-

• /'- A
+ ':. 7j' (I - Co6 r) ~

(6 )

Q4-4- - I

which is a space rotation in the right hand SEnse about the
A

T • Any Lorentz trans-direction through the angle

fOImation contd nuous wi th the identi ty Can be produced by

taking products of these two tJp es , HSl'1alorff's theorem shows

how such a product must simplify. The theorem says that
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where" only higher and ilif;ler order commutators occur in the

exponent. In a product like

•
whe re ,-1 :: .1- 0-

/v.I ~"/V-'
are the spf.n '/;;,., matrices a commutator

simplifies according to

•
Thus the entire exponent. s f mpLt I'Le s somehow down to (somethirJ! ).•~

• J>-

and

(8)

It is clear then that the unf.mcdu Lar ~ >< ~ matrices representing
C:"-~~

the continuous Lorentz group can be written as ~ ,.......~ and

that the complex t.h re e-v ect or is a parameter for

ll-abelling Lorentz trans fo rmat i ons ,
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Next ccn si de r the (2.-/.).-,. I)/\sqw.;;}re matrices ..e f-" ~

I

for any spinli.4 ThesE are in correspondence wi th the Lorentz. \

transformations since they have the Same parameters as
•

e- the two-by-two. They also form a representation of the Lorentz
. T -j .

group since the calculation of a product ~ll-,A';':' Qt.-I"·-2
using Hb_sdorff's theorem depends

rules; these are the same for all

only on the commutation
(..;Ic·4

spins so the product ~ ~
i: 1"·4-

Thes e mat ri c es ..e "'" f"" aremll.st be the Same for all spins.

in fact the (O,s) irrepresentation of the continuous Lorentz

group with the par&meters explicitly displayed.

..'. ~
... ~

~hat about the (s,O) representation? For any set of

spin matrices ;j.
;.v t nere is EJ. unitary matrix such that

•
( 9)

where the asterisk denotes complex conjugation. Mostly the

standard representation for the spin matrices will be used,

I,ori th real and positive.
.<. 2-1

C.-1 is (-I) .

diagonal and elements of ~,
L. T/-1-

i s.e ~ ; i tis .re al andThen

The convention is to take C A ~ r for spin 0.

are mattices forming a representation then
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8

( C/S

•
also form a representation since

These matrices are the (s,O) Ibrrep.

For transformation between two Lorentz frames where the

descfiptions of an event are related by

Xl
cJ... )

the (O,s) G) (s,O) \vave functions are related by

(11)

The parameters T
""'"

in par-t i cul.sr :t
,.--)

Can be found from the coefficients u....oLf!>
~

1.5 i. I....F artanhif fora pure Lorentz
M,

;

transfonnation, the primed axes having velocity fi-F .relative
~

ta> the unprtnied.
;.
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III. Summary of Hab:-icGs Used.

For s)in s the matrices are 2(2s+1)-square and

are defined as

.r \ /" \ \ ('/'1 II /
.'_.J ,

i 0 ,t·· .. ( • J 0..:::L Iv - I r~ ..c. I I ) <+ - ,(..0_- ~{ , / -
\ -r ~ I I/ ,r-.

) \0 4-)u -- /1 u
/\ 1-' \ ;vw ,

I .,\ ~)-! U' C~ .' U L~_ IiY5 I \ ) /.J::: ,) I ( 12)- i\ .- -r.() \ (j\ 'J
/ \.

Some of the spin V.z,. properties st iL'. ar-pLy in general. For

I·~example - ant Lcommut.e s with ,:;;1_.
f'-

and ex'
lv'-

and 8~_and

commute. The C mat.r i.x is the char ge conjugation matrix w i th

the properties

C 0{ C-I
-

I-'-
'-v....."

.......•.•.•. _'/
L

c ,..'.'
*\

-I

C~~ C. '--.7
)

(13)

2,-< -t- f
:;: (- I) .

IV. Rest Frame state Functions.

One starts from the assumption that eigenstates of

energy and moment.urn for particle and antiparticle exist. In

the rest frame the Hamiltonian is identified as 1yt /3 and the
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poLarLza't Lon operator as f3 j--
here in preference to just ~

~

(discuss whyP -j. is used

later). These commute and

so eigenfunctions can be found such that

•

(14)

/'
where E:. = ±. 1 for the par t.Lc Le.Zant.a.par t.Lc Le, e is a unit

IV-'

vector in an arbitrary quantization direction, and k. ranges

from -/J to + 4 • Choose the nonmalization ~o that

, '.,

AJtt (,- \ SA. k I

~
Rr::'k' - (./tE' (15);; RE:k,

/1
t

This leaves many phase factors in the )..)~f:: R. not

yet determined. It is a big help in the later discussion of T,
.C,P auestions to have these phases chosen intelligently. As

a first point one no't i.ces that C C IJk ~ fo(. ) -1t must be pro-

portional to ;{Ji<_€::I::.: because

fo ( C{J~ t k ) * - t» ~C

- - ( C!~
- t: (C

~

VRE.k)

~
t0f\t: k )

~
0,<. e t: )
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nlso one can step up and down the angular momentum quantum
numbers in the ~sual way. These two considerations lead to
choosing the phases such that

(l6a)
•

(l6b)

r- ,A 1\ /'

is /,} .£ ,
~ where e t. ± L. 'j , ,

);v. ..
"-'- I-'- /W f-'-

an orthogonal right hand set. To see that this

Here

form
is really all ~ight~ look at the equations first for e = ~l.

is just the usual angular momentum phase choice.

,.-- --- 1/ /J ( /,j 1- 0 - h. Lh :i= r) u .
R! R±(

and the t1.lJO equations for E- =-tt(.! r serve to define all the
~~k once anyone of them is specified.

for E = -1 can be derived from those for
There the, ecuatn.ons

E =+1. For
example if

(c /v"RI k ) *
then .J,(

(C if~_{A)
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A similar proof can be made fO justify Eq.(16b).
This leaves one ".Jhasefactor still undetermined for

the entire set or Uk.. E-A. • Ano'tner censideratien is that
Ys- anticommutes with f3 and p t so. that O$" ~r:. b; is

•proportional to Lr; _ E -k- By similar reasening one can
show that the final phase facter can be chosen so that

( 17)

and that the ~ are then cempletely specified- except forRr:: k-
a single ever all plus er minus sign.

The wave functien in the rest frame is then

(18)

and the equatien ef motion is

v. Labo.rato.ry Frame ':3tateFunc t i.ons ,

Let CC; and g be the physical mementum and energy of/.-C

the pargicle or anti.particle so th..::.tE - is ,o.s-1tive and ~ IE
is the velocity. Then the wave function transformation iSt

from Eq.(11) t
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\ o

~ .
4- ~ . r;(" G:hc. tCNv\k CVlr= '-E CUcl.. X 0<.:::e "'"' ~E t<. e

(20)

where '1;cI-. is( ~, l~ E) so that ~o( Xc.'( = - rn -t I?J • As

usual 'the symbol P win- be used for - L V and for the
f"'J ~

ei~envalue, here E q; . With factors a~propriate for the
~

normalization set up later, the laboratory system functions
are

(21)
\\.

.~t any time t t.he so form a complete set for describing 2( 2s+1)
/'. /\

component functions of X . One can/specialize to e = :v
~J ~ ~

in which case these are helicity states.

I
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The general wave function can be found by summing
all these possible states
E - Y.LA C b) d. p

of k If-- f--'-'

with arbitrary coefficients, say

to get •

parts.
Here it is neat to break the exponential u~ into two

Put for short

Then one can write, since /,}?f; = -' Y,- ~ t

(/JC= ~ i w)n +~ l~~~1

o d4
'h..

/\ ')It ?t.-

(
~-, f P 6.JJ - (1,_ f ~_l (4-..pw)

I"~ ,....., J 5 LYlIA-- tv-'
odd I

-n.

- ~
J-
Il{.

~
11.

i •
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..;ls the exponential occurs in Eq , (22), E can be replaced by

f3 acting on the ~ E ~ • Consequently the right hand

side of Eq.(22) can be factored so that

(28)

where the o~erator S is given by

and cP (~ )-t) is +hen

This is Fcldy.' s w:;.vefunction since it satisfies the equation "

\
,
L

( 26)

(
:2. 2.) Y.J.;

Here E denotes the oper at.or p -+- »l . Equation (23)

is the generalization of the Foldy-\\fouthuysen transformation23)

to all spins. For spin yr~ it simplifies to their formula

t--= E + 'h't, - /3 ;: .. J? rl ,- ~ ~
[ :J. E ( E '+ m)] :v

(This can be verified b] combining Eqs. (24) and (30)
The transformation is unitary for spin % but not for

(27)

below) •

higher spin.
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Hany of the quantities of interest are expressible
-<

in terms of pyperbolic functions of CJ..J 4 # P , as shown
,<..w f.v

by Uilliams, Dr aayer , and itleber. These can be simpMied into

polynomials of degree r:!L-'1-
»<

in 4, Pt--v /V-J

equation

Qecause these matrices

satisfy the characteristic

Heinber g12) , Williams) Draayer and ~leber15) and Weber and

~\!illiams16) have discussed the problem of sim,lifying the

hyperbolic functions to polynomials and give many detailed

results. An elementary method that wi Ll. al.ways give the result
,I\.

in a specific case :"s to consider the operator k ·P to be,.,..., IW

diagonalized and then solve for the polynomial coefficients.

For example consider spin V2 in which case

where a and b areto be determined. Evaluating the equation
/\

at the two eigenvalues ± V2 of 4 ,-P gi vesM-' ,..,...

~~-(+0J) Cl. -+- I b- '2

C01Iv(-f 0J) - a .L b
:4-

Then b is zero and

a ~-lv (:4: w)
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The hyperbolic functions of.-L c...v are given b'y:2.-

_ E -t 'WI..;-
[ t9 m ( E -fa rn)J Y~

p ( 28)

[:2.,?l'l (E -rTh) J I/~

because these valu8s satisfy,.
You can see this is t~ue

C<A~2-_ ~~::: f and they give

so that

•
as required. The conclusion is th~t

E + 7YLt: (- )]V~:t 'I'h I:: + 11'1 (30a)

and similarly one fin:"sthat

(3ib)
[;) rn (c'+~)] V~
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This pr oce s s works in 2,eneral because there are as many e igen-

values as coefficients in the polynomial.

The laboratory-frame operators for the time-develop-

ment and polarization are found by transforming the rest-frame
•

operators:

H C E S-! (31)o f3 '-.

t3 -- S(h4$-' (32)-~ f'"4-'

n 2 e, B =4(4+1) BNote H~ is E ) and H and
1-' t-· ~

commute•. The plane wave states can be.written as

.4
?'Yt

so they are ~i~~nstates

(34)

(35)

(36)

so H is the Hamiltonian for the particle a.nd antiparticle.
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You can get a detailed expression for by first
verifying that

(37)

..
this way:

4.e .i: (:1 cv ~ -E) [0:>>0 e. C GJ ~ ·1).•.~ f> /.J~ (GJj .):] .

[C01~(wj: Ii) - ~-f3 .i:.: C~~ <~51
- ~etv (~G.J'k' i )[~z(GJ~·i)+~~CcU;1-:EiJ

/'... r-;
_ ~ clv C~ G.J~ -I: ) ~ (~CJ ~ 9 ~e)

J

The general formula for the Hamiltonian then becomes

(38)

The Hamiltonian is Hermitian. Some of the detailed results J

that come from evaluating the hynerbolic functions are
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Spin s Hamiltonian H
E/3

0/.. • j:> + (3 J
~ J..j.J ~ .

C~E-:(. - 7Yl ~!/3-f c!(. E;:!: ·1-:l (Z: j)j E~I
f2. E Cl - ?1t1 ~;t

Onee H is known there is a general formula for e 8 .~
,(.VI

I~ L /-a J.. X ("J ~ ~.t-H _ ~ .,e Heo = I\A-;.J>.J'--

7n E (E-+-rn)

I

For spin ;;~ this operator is the known three-vector
polarization operator24,

!.
t:

The usual spin-up and spin-down functions of Dirac theory
are eigenfunctions of 82.. •

The invariant integral between any two free-particle wave
U:~) (?I.- ) .

Junctions -r and 'f' can be expressed in various forms,
all evidently related by formulas given above:

.
'1
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where ~ is y j3. The first expression is Foldy's
5

r~rm and one sees from it t'- .- the inner product is posi ti ve

defini tee The integral is Lorentz-invariant in the sense that, ~t,
;.;,if you evaluate it in t'>lO different reference frames where the

funetions are related by Eq.(ll), the s~e number results

(_,/../0' ~ ~ (,,)' ) z: (~(O ) --+ (" »
To see how thi s comes about one starts from tm fact that each

function is of t;'J9 form given in Eq.(22) so, since the space

the
.. L C p . x - f: E t) . .and time dependence 1.s of form ~ ~ tv.. ,satl.sfl.es

the Klein-Gordon ecuatrl on

)

~(YI) .

The first equation can be multiplied byAthe second

and the two subtracted. This leads to

Consequently the current defined by

has zero divergence. Furthermore this is a Lorentz four-
--- (rl) (11.)

veetor because ~/ ~ is a scalar:

I
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- (e)/ (>1) IY y
f (()

- "'f' o o

of-

o e
_ /If -t (<) .: ~ )-'1./''' )

- ce) (n)-- "\/~ ~

The integral over all space of the fourth component of a
divergence1ess four-yector is a Lorentz scalar. Thus_ ,'j.--1.-- co I -y. ) -A X~ o~ ~ is an invariant and this coincides'r AA..'

wi th the last expression in Eq. (39,). The factors in the
functionsnf,) E: ~ of Eq. (21) have been chosen so that the

,A-v

normalization is

(40)

As well as the function'~ it is inportant to consider
the function

rv
"i ~(X )" N..J

c(

"

3-

where E.

[t ( ( ±
operator

(41)
\

-/ ] Zhere m9ansE u;Jt- SincerL( I ::i:: ;'s) is
-, €~ L~

'05) J an(11\ applied to these functions is 1, the
in square bracko ts in Eq.(40) has an inverse,itse1f.
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Consequently ""f has as much infonnation in it about the

system as '1..j/ has and serves as anequi valent description.
"'-'

For spin zero, the components of ~ are equal and are the

ordinary Klein-Gordon function. Thus if ~k. 6- satdsf'Le s
•

C
·' ");:('~. c..£.. ~

de r KG-

and we write

then

and

Y (I I U \ ( "f/ .....G- ) ( Yt\ G- )

U E.) "r t< c. \E- "t~G-
\.. .

E/jY - E (~ ~)C~::)
(
f _r- '+-'1<&)

E -~ 1< Gr

[ d +de
which is the HaJ:ni.I·~onianwave equation for spin zero. For

spin ~, "-f' is the usual Dirac wave function. For spin 1,
oJ

the components of ---+ are closely related to the Proca

field cornu,onerrt s F;. For spin.a certain derivatives of...J..,.are.. 2' r
the Rarita-Schwinger components:7 The wave function used

by Joos1~and \Neinberg12 is of the f type for half-integer
..---.-

spin and the ~i type for integer spin.



·J

24

For space re flectlon
I

Xi..=:' -X (. ) t: f ::: 1::

the wave function transformation rule is ctlosen to be

~ I ( X'):= '1l. r I'; ~ eX) (42)

and for time re f'Le ct ion

IXi. x' L. ? + I z: -t

it is chosen to be

(43 )

,
Here .the n -s are phase-factors with absolute value of unity.

With some calculation one can show th8t the transformations

of Eqs. (11), (42) and (43) leave the theory cvo arf.ant in the

sense that the same equations, for example H if -= :... C} ~ (e>t-

apply in the primed system as in the unprimed system.

There are two possible ways to define the charge conjugati~n

tn such a way that the system is covariant:

"':' ~C( ex) 1LC I [C ~ (~)J ~ (43)

•

~C~Cx) - 7L C;t[ C C If IE) ~Cx) ] ~ (44)
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2.8

To: see that the first type, for example, leaves the s,Vstem
cOTariant, you start from

;)
i

i .'

..~ epar-at e with C and t ake the complex conjugate. This leads to

From eqs~ (13) and (38) one finds that

-H
so that

H ~C(

as required. Evidently multiplication by HIE also leaves the
system covariant so Eq. (44) gives a reasonable charge conjuga-
tion operation also. The difference between the two ts in .,

their period~ For the first type one finds

TlCJ[cnC1 (cy)*]*
C?-,~

-;::(--I)



26

where as for the second type
. ~ ~-

7LCR[ C (H/~) YLc:! (C (H/E)"f) J
=- (C(H/E)C-I)T C¥C.O-l/E) "f

--(H / '=)(-1 ) ~-6 -1- J (HIE) 'i"

One chooses to use type 1 for half-integer spin and type 2 for

integer spin so as to have period two for the operation in an)-

case.
.\.

A qae sb ton is what operators in the first-quantized theory

are to be identified 1.;ith physically obserTable quantities. A

eonsistert point of view, which is adopted here, is that the

function
I, pa.rtic Ie.

At, act ua LIy de scri be s a partie Le or an antioA-":'TpEk.
I'-J

(This is not the hole-theory point of view in which

fp -I ~ describes a state which, for a Taeutim, is filled.
IvJ

There the antiparticle is the absense of a particle from the

state "" £ _I ~ ). The operators for the physically observable

quantities are assigned to be: ~nergy E, momentum rE(H/E),

angular momentum ( Xx P + ~ ) (HIE), polarization (9 This
vv~ f'J..; /Vw

means that the energy is positive definite and it agrees with

the v a Iue s you get by thinking thro ugh the hole theory point

of vie, A property

h - C-~C

of all these operators, say S2.. , is that

(45)

,f·

,
1,1
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The polarization 0 nerator ~n the re st frame was cho sen at

Eq. (14) to be P ~
~

wouLd apply toe
~

r at he r than A so that Eq. (45) finally
~

The proof of Eq. (45) for all these

operators follows readily from the fact that

C -( S:X- C = S

which gives, since H/!l: is S{3S-1, that

(46)

To understand the signi ficance 0 f Eq. r- ~45), consider the.~ , ct)
matrix element 0 f some operator Sl. between two states "f

('>1.)
and "'"f

By taking the comoLex conjugate and inserting factors of

one fi nds that

(47)



28

•••.•.1

One can also argue that His is Hermitian 1tJ"ithrespect to this

inner product,

.\. ,

so that Eq. (46) alse leads to

(48)

'. .:;

\
I

II

..
"
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where, in the final step, the fact that (H/E) commutes ,.,i th...n..

for all those op~rators considered here"was used. The point

of Eqs. (47) and (48) is that, as an alternate to calculating,

matrix elements of oper-at or s .Il.. between functions, one can

calculate the eon j ugat e of matrix elements between ooer at.or s
~ -I .

C fL. C and ths charge-conjugate functions. The significance
II /": r-lH- ~Iof Eq. (45) is that ...J s: and <, ~.J- C are the same operator so

that the identification of ooer at or-s ,.,ith physical quantities

is the same wmther part lcle s or anti part icles are -oreferred,

in the sense of being described by positive-frequency functions.

The equation 0 f motion is 0 f cour ss the same since if

then from Eq.(46)

C~
and similar for ~ . Thus the theory is covariant by

charge conjugation, both for the equatl:n s of motion and for

the physical nssignmonts.
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VI. Field Onerators.

In the usual way one starts from the normalized plane

wave functions 1-1€ Pv ' as given by Eqs~ (21) or (33), and
IN

defines the field op~rator by
I i

where Q.. p ~ k.,
,..,..

operators for the

*and (l.t> c: h are the destruction and creation
f.;.J

single particle states with labels £) f--} ~

postulated to s·atisfy the rulesThe operators are

o (50)

for fermlonsllosons. Here and below the asterisk denotes -,
"

Hermitian conjugation in the Fock space. Also it is postulated

.•
that any operator Qe b: C £) applied to the vacuum 10">

gives zero and that all physical states are pro duca d by applying
,,~

the operators L.{.,.E ~

can be shown that this

(£) in any nunber to the vacuum. It
21quantization is Lorentz covariant •

/
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St~rting' from this definition, one can calcUlate the

commutation rules for the field operators str,aightforwardly.

Let '*oC (X .•.) denote the dv) th cornpo ne nt of ~~ (~, ?t) ·
Then one finds, cons i.rte r t og any spin and either tyne of statistics,

[ --to/. ( XI) 7 'i'f3*(X "')J:l:
- [sd.,t/f t Q-t-I f. C ,tl)(fb+11u(X,)1+Q._:Cll)(~,_I R.(X~~,

/
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where Eq. (33) for ryp e~
.I-V .

completeness 0 f the f'unc tLons

{he /z; sums thi sway:

was used in the last step. The

can be used to evaluate

Let the indices 00) (3 be suppressed so the equations now read

"

Here S is a function 0 f ):>
considered to be rea], in getting

r:the integral be replaced by 0 t

given in Eq. (24), and P is
1" fVv

5 Let S Ck) inside

:J.'! S (- i. 2,) outside the

integral. T'll th;S'':)!'1e re arrangeme nt 0 f term s one finds

(

I

Ii
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- c:. E (1:, -t:L) :.,r;= (t,- t:..)
e :± .e

, I

These integrals are exprEssible by the usual invariant funttiop

6. eX) .

- L J dp (.e i~~ _ e- =:
(a rr)3, ~:;

(51)
where 1'4 is ~ p2 + 'YV\ ':l.. • Thus, replacing J:,

by -p in the second term gives
~



/

'A.
where e is E -/ (L g/C)t). This gives

Crt CXI),'t~()(;))J±

- i: m;l..6 1 EJ F r S, 5, -r -t- S', (3 s;tE, Jc:> ex, - )(,,)

whereiE\ ; ~ c ano t e s

Finally Eq. ( ) g~ves

E( for fermions, unity for bo so ns ,

TS,S,

and Eq. (24) give s

Sp .s+ , [co4-tvCJ;.lw)- ;rs-f-'AwJvC~',1 G.»]
(3 [ co.~ ,ev ( ~ -1 cu ) - (6 Os ~ ~ c~·1~) J

::.r{ C«Jfv~C:z -1c..» - ~e{~} w)]
- s. 1~q/.~ ( {t ·f w) ~ (~ -1 ~)

'.
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All the commutators and anticommutators are given by the formula

[~()</)) ry:X(x~)J±

_ L. "rn !>-6 i E' ,}p [ Go6A-v(2 ~ - k'cJJ) -r (3-E",
,)

Os /j~ C J.. ~. £1 GV/)E ,J 6 (X 1- x~)
(52) II'

It is obvious from the commutation or anticommutation rules for

the Q'c:hC,t") that [~(Xl)/ ~(XJ)J;t z: 0
The equal time commutation rules can be found from these by

using the values

;',

One expects the field operators to commute or anticommute

for spacelike se par at Lons , The functions 6.. eX) and EE.6 (x)
are zero whee) X is s~;2;elil{e, the f'unc t i.o ns E~ and E:A are

not. From the st ur.y ) f the hy,?erbolic functionsl2,16 it is known

that for integer spin co sh t ~Cv~. f;) and E-lsinh(~CJ/')-. P )""" __ fw ~

are polynomials in ~) . f"'> and (J,l., for half-integer sot n
I-- ~

E -Gosh rQ c".u~,I p) and sinh( ~w Id- • f; ) are such polynomials.
\...C !\IV NV II.N NV

i
" '

Consequently, for Fermi stati sties and half-integer spin,

[ ~ (X,)) -r ~(X~) ] +

_ i 1n :J. /.J [El -I COS?v ('Jv GJ I ~, , ~/) E- F( 6
\ ;-" ~t -ds- /)~ (~CUI :2- -,&)6J

\
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! ! 3Ji

";. :

and the right-hand-side is zero for space-like se?arations.

For half-integer spin and Fermi statistics the system is causal

i
"." >,

in this sense but in no other case does a zero occur on the

right. Hathews19 co rs Lde r s th.l s to be a crt ici sm 0 f the theory'

for integer spins 8.nd sets up different pl ane wave states ~Nith

di fferent. Hamiltonte.ns not de fined in the _.rest frame. However,

Nelso n and Good make the poi nt that the t.heo ry is all right if

only a different field operator is used to build interactions
"" .

itli th. The oper at or c an be de fi ned by

(53) .

the same as in the first quantized theory, Eq. (41). Equation (49)

. ,

then give s

~ (6:> t)

S dl~ [(2" k (I) ~p, k
p.' AN

- a~k(£) ~-~p -Ih]
"""

-
(54)

Commutation and ant i commutat.Lon rules for rf' can be calculated

st.r at grit forwardly the same way as for ~. The re su l ts are

[,q; (XI)) r~ (X~)J± 0

[::flex,), ~*(X~/]±
• Q,/.i j\ [ I' /\ .

L ?n-{ E f ~ r= Co/.l/lv ( a. co12- -j) ) 1-j3

QS-~ (QW/ ;go'}, )EJCi.(X,-XQ)
( .55)
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Here if integer-spin hosons are considered the right-hand-side

is zero for spaca-Tt r.o separations and in no other case. The

point is that the f'ur.ct Lon --t is to oe used to make
/"-"

interactions with half-Lnteger spin, the \unction /'IjJ l.;ith

integer spin and then the usual spin-statistics r e l.at t-in app Lt os

as weI L, In what follows. -"gj:i s used -::.0 de note --"f f'o r hal r.,
~

in teger spin fermio ns and -r fo r inte gel' sp i n boso ns .

Equat ion s ( ) and ( ) combi ne to make

I I

)

, .

( 56)

Weinberg12 give~~ t:1:>.commutat t on rules in te:rms of the

cov ar t ant ly ..de f'Lne d iflc.:.rices. Equations (49) and (S~'-~ ar e

written together as

.•

( 57)

/
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VII. Self Conjugate Particles.

The charge conjugation operator J]; d:s defined to be a

} . ·anitary operator in the Fock sp ace ~"ith the properties

~ I 0) }o>

From the discussion 0 f the charge conjugation in the first

quantized theory it is clear that the ~ -transform has period

two.

What effect does the h -transform have on the' trl~:tv.fdual

operators O-~h. C g) " This is found by combining Eqs. (4q)

and (58):

J c4..£ I.[--& QIIJ,E}4-'~p,h.
k. fVJ'

+ hU:k Ce)A-/~_lk]
(ctp . [ * . )~=- J Nv ~ ~ I R (J:).( -eo ~J31 b

+(-1);3 ~-Ik(£) (h~,e-Ik)* (59)
·'1
i

Equations (16a) ~ (33) and. the fact that·

s

"
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combine to simpltfy the functions on the right:

( 60)
Consequently the r i ghc hand side 0 f Eq. (5q) is

S dl? [a-:';, (!:Jf-lrl/<- + (l_lkC}:)'*-I»I>k]

= f cL,ef[ a~ (-1) "iJ,-lk+ 0--lkC-1')-tP1kJ
The functions ~r E k.. form a complete set so Eq. (5q) gives

/.-v

10

"
I

(61)

(



Bearing in mind that 6 P is the phy st o al momentum, one sees, tvv

that the k =t r ans f'o rm carries the particle operator into

the antiparticle oper at or ··1ith the same polarization and physical

momentum. Th.is is just as it shou'Ld be and it ,justifies the

"choice of Eq. (58) as the 0e fini tion 0 f charge conjugation.

T"lh8tis the result of applying the,,6 -transform "to the

operator :Ir? The answer is

( 62)

as is easily verified. For half-integer spin fermions· ~ is

1 and this agrees with Eq. (58). For integer spin boso ns

Eqs. (54) and (61) give, for the left hand side,

Also Eqs , (54) and (60) l~1.ve for the right hand side

,"

so ~q. (62) verifies all right.

"- \

)
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The fact that the h. -trans fo rm has period two permits

se:Jf -conj ugat e oper atc r s to be set up. Let ~(f) ,where

Pis :t I , be de fi ned by

( 63)
Then this has the pra)erty

- p:¥(p) (64)

See he>wthese self-conjugate operators are expressed in

terms of the creation and do st.ruc t i on operators. by combining

Eqs. (57) and (63):

l{P)
t :

\ i

,+

Replace P by - b in t he second term and write thi s as
/vo..I ' t<f. "-"

~(p)

( 65)



", from Eq;;.(61) and (66) that

//
,,-//

-c'-

•

where
'.

CL!~ (l?) -r p ~IR (-g)
\ji;'

( 66)

The two f'Le Lds ~~) thus each have the t r own operators bpk..(,t)
Tke commutation rule s 0 f the b I S are found from those of the a "s

to be

(67)

.:

This means for one t hl ng that the

commute with the el.e. (tJ )
are correspondingly uncoupled •

b I k< C E') anticommute/
so the fie Ids Ir and T,..-

~..I.(+ I) . :rC-I)

Also Eq. (67) SAY s that the b ' s are single-part t c Le de struc-

tion operators. TJ describe this situation in more detail:

the state 0.. *\ ~ C' p) 1,:» is a particle with physical momentum£
" jV... "*

and polarization k0 ; the state 0.,_1 ~ fe) 10,/ is an

anti nar-t LcLe with physical momentum £ and polarization -Iv- "*
consequently bpk. Ce) Jo) is a self-conjugate object iNith

physical momentum l; and polarization h . Also it follows

(68)
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~
so the state bp k (k.) I 0 > is actually an eigenstate of the

operator h

~ bp: ():) 10> "" p b;: Ct)'£, J 0)

::;:p b;: (e) ~0>
Another quest ion is -,yhether the se1f-conjugate fi.e Ids %)

are cax sal in the sense of commuting or ant Lcommuttng for space-

like separations. This can be quickly settled from the properties

already established. It is only necessary to consider

[~P)( ~I) ~~) CX~)J+ because

can be deduced from it by usi ng Eq. (64) in t he form

First one observes f'r om Ea. (63) that

['tPJ (X,), r;(X~,)J±==t r~(XI)+p(foios38~?):

, .-grtx9)+p(.&1'('}f3Y(X~

- ~[ ~(x,)) ~(x.)]· - \

/ +.t[(,4l0s}5Y-(XI))~C{OS-}B"fV~~ \
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which is the same for both values of p SecondJone'l.,rrites

y as ~ J + ---(P-: and use s the fact that the two nar t s-,+1 -(--I)

anticommute/commute tD get

l~C)(J//~-*~X'd)J+~ [~\J(X\))~\)(XQ.J+

Finally, since the b..ro terms on tho right are equal, they must

each equal half the left hand side

(69)

The function on the r i ght was given in Eq~ (56). The conclusion

is that the se Lf'<cooj ug at.e fie Lds have causal anticommutation

or commutation rules.

VIII. Self Conj~gRteIsospin Multinlets.

For <3 par t t c Ie -enb l par-t tcLe system with isotopic spin t

there are wave function operators +f'-' (~) t) where /N is

the iS7's~oin component label, ranging from -t to +t. In terms

of tr complete set of functions "+'t& k the operators are

J? t" - J dl ~[CC/k r- (l )rt p ( Y<

" NV
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J

1
l;
j
I
1

l
l,

,

The subscripts are put ~n the a's in agreement with the usual

ideas about isospin; the arrt t par t LcLe has oppos ite t so spt n

compone nt to the par t i c Is. The a's with the same f-'- index

have the same comnat at Lon rules as before.; those with different

t- indices ant.t commutoZcommut e ,

The Lso sp l n ooc r at or s are' defined_~

I ,-Q~fcL,.../-S-·[(j1:~(-r·l It,:::. - - t... 'W\ "c.. ~ L/~fJJ - fJ.;t M-#JJ~' or .

- ~ (TLJfNl"i ad~EJ. ( 71)

where (T~)fP~' are the (2t+l)-square angular momentum

matrices in the stand~rd representation. This form is suggested

by the invariant integral defined in Eq. (39). It makes the
c-?

Lso spl.n ope r at or s ~ l be Lor e nt z scalars. The dots indicate

the normal product o f the oper at.o r s-

of the a's, every ta rr: involving an,.,~
so that the I....\.. is on the left, a nt tcommutat.or sTo r fp.rmions and "

i~;

when written out interrns
~

0- and an Q is organized

c':)mmutat'Jrs for b~s~ns being neglected in the process. As a

result of this norrra" ordering0"', !: in terms of the ~~ is
J !.

found to be

. ,

. ~~
\'
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so that ~L {C»:: 0 ,and the vacuum is invariant to

Lso srd n rotations, as it should be.

It is straightforward to calculate the properties of the
c0J~ from the above definitions. All the c)rrect properties can

be veri fied. The operators have the correct alg ebra

I
i
1
!

I
1
1.,

i
1
~
,j
j,
j

·1

!~
1
j
1
§,
1
!
1
1

l
I
1

l
I
1
J
I

J<
j
•1,
~
~

I
1 "I
1
"

( 72)

they are the generators of Lso sp soe r-o'tat t ons of the field

, operators

[ ~ 1-" 7 5"'; J -::.f, (T,:),-" f" I ~ I ?

and they combine 'L~hE3right way with h
( 73)

~- -r
10"'" "3

( 74)
( The charge conjugAtion operation is now defined by

--e'Y,w~-1 ==CA~o>l~)~~ )
An interesting question is whether isospin multiplets

'.

)

that are in some sense self-conjugate can be set up. This

. que st Lon was first r at sed by Carruthers25 who remarkeo that

only for integer t so s o;n can there be a self-conjugate system

.o~r--bosons.

conjugation operation commutes with

Ne,,,rt so spi n mu Lt.Lp Le t s can be made if the

~ As is well known,

the G-pari ty
\.

( 75)



so that ~L ((»:: 0 ,and the vacuum is invariant to

t so srd n rotations, as it should be.

It is straightforward to calculate the properties of the

from the above d.e Llnl tions. All the c)rrect properties can

be veri fied. The O-p3T at or s have the correct alg ebra

(72)

they are the gener at.o r s of Lso spsoe r-ot at t ons of the field

o per at or s

[ -z, ? 5'~] =~ (T,:.)1--"1"' I ~ I

and they combine the right way with h
( 73)

(74)
C. The charge co njugat to n operation is now defined by

~ 'Y,w (~-i ::: (A1o>1~)~ ~ )
An interesttnt question is whether isospin multiplets

that are in some sense self-conjugate can be set up. ~his

~ question was first raised by Carruthers25 who remarken that

~_y for integer i so sp t n can there be a self-conjugate sv st em

of scalar bo so ns, New t so spt n multiplets can be made if the

conjug ati on oner at Lo n commutes with ~ As is 111e11 known,

the G-pari ty

( 75)
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rotates throughhas this property. 'rhe operator

angle(-lT) about the 2 axis in isospace so

,

(76)

Equ?-tions (74) and ( 76) together imply that ,

( 77)

From this it ·~rollows that ·~he fields

where p 'is +1 or ··1, se par at e Iy satisfy !1q. (73)
( 78)

,,
~.,
I
.~
,J
1

I!~

== ~(T..) .4r IL- l.- r' I" 1 ..l{p) t"
't"

and so each form s an i sospi n t multiplet. The r€lllaining questi:::n

is when the ~ -transform 'ha s period two so that the multiplet

is self-conjugate in the sense that

( 79)

( 80)

,~
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"'~a

f"., - L TT -s.) . t-~ (
In the standard r-e pre se nbat.Lon ~~ 7 is (-I) bf'J)-fJ

f»fV
so that

~ ( - L. .."...0..) -4.1r-:;::1;; e 'r r I r.1-'"

t-~ ,(-/) :Ic~
The square of this transf~rm is then

This just expresses the fact that a minus sign comes in ,,,hen

a half-integer spin system is rotated through 2Tf. The

~-transfonn still has period two so

Thus for integer isospin Eq. (80) holds and the self-conjugate

isospin multiplet exists .. The rest. of the discussion goes

~Ugh the SRme as for the

~section, with modif~2&ti:ns to

field commutators ar-e found to be

se If-conj ugat e fie Ids in the previous

take care of the fv index. The

[ 'i(P),JX,) ) ~:)>.Jex:!)] 1:

==;t- Spa- Sf'''' [ Y(XI~~ -r.rC)(:i)] ±
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where the right hand side is known from Eq.(S6). Thusthe
. .

self-conjugate fields have causal commutation rules. These
1
j
l
j

j
I
I;+

ideas have been exteDded to multiplets in reference 21.

j
I
I

1
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