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Particles are characterized by definlte electric charge

. | 1. Blemenbary particles

¢ip units of the charge of an elecktron), mass, spin and 11ife

time.

Most recent Table ob
Particles and Resonanees

TABLL

Interaction bvetween particles.

. i, .
It is possible to classify the inte?actions among:
}
particles into the following groups. '

1) Blectromagnetic Interagtion: - .?his 1s worhaps the

most well underotooﬁ type of imteractlon. fhis is the interaction
hetween electric charges., The law governing this is the well-

khown coulomb's 1aw. The interaction 1s characterized by a
: L= .
coupling_parameter L cz._Lﬁ. (in units of ’ﬁ = 1)
- (v 13% _

2) ggavitation@l Interaction:- This is the interaction

between particles virtue of thelr massiveness. . The lay governing

sucn an interaction is the well knownh Newton's iaw or the

Binsteln's equations. The strength is typleally characterised
.
-39

by a coupling 2 A 1o . The typical gize of a nucleon
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G



P

beirg 1 Fermt (1 Fermi = 10~13 ém), the gravitatiohal
{pteraction between particles 13 very small and will not be
cﬁpsidered in'our discussions. However, one is hot clear whether
1 f one goeg into substructures like quarks, the masses steadlly

increasing with decreasing distance, this gravitational

interaction could be neglected, But this is én open question.

3. Strong Interactions

This is the interastion hetween the nesons and baryons.
Hhich axhibits fantagtie symmefry nroperties and respects all
ﬁonservation laws. The strength of strong interaction is
typically characterized Dby fﬁ ol (137 times stronger
than electromagnetic 1nteractionl) Various methods have heen
tried to understand this type of interactlon. Certainly,
the study of !'Symmetry’ has helped us to understand the pattern
and symmetries ol this interaction. But the dynamics of it is

far from clear.

4, TWesk Interactions

This type of interaciion is perhaps the least understood
by physicists. Tt Pas the maximum comnlex and is a good source

of light to the actual dynamics. The coupling eonstant

.deacribing this kird of interaction is not dimenslonless. Tor

~convenlence, it 1s chosen to be

g wvv 1.0l X LO"5 m=?



Whether or not such an interaction is mediated by Intérmediate
bosons is still an open question whlle what is clear from
experiments 1s that 1T such a bosn exists, 1t must have a

?antastically heave mass.

This classification gives one of the most important
orientation in the study of Elementary Partieles. The deep and
difficult question of tihe arigin of such a elassifleation is
st111 an onen problen. But mueh light has been thrown by the
study of tsymmetries', and conservation laws. The strong

interactions offer the maximum symmetry while weak and electro-

.magnetic interactions violate many conservation laws,

fn

REVIEW OF THE
DIRAC EQUATION

Empirical facts:i-  ILf one sees theAlist of particles
in Table T, it 1s obvious that each particles is attributed a -~
definité glectric charge, mass and spin. Among the spin y&
particles, we find two different groups, one with light mass
(called the leptons), the other group fairly massive (eélled the
baryons). In order that the universe is stable, the attribute
of a baryon number is bestowed on edch particle. Its value is
one for haryons and zero for leptons. If one postulates its
conservation, we can nrevent nrotons decaying &o leptons. Our
main interest 1s to explain the systematics of Table I by

theoretlical means.



Charge Indevendence: - .Thé proton and the neutron have

identicai properties except for therelectrié chewya.  As for as
qprong interactions are concerned (1f oné'neglects twe relatively
*ary weak electromagnetic interactions); they behave like
1dentical particles. The same is true fbr the three plons as wells
An empirical re”stion (Q:&fﬂz , where Q 1s the electric
charge and Tﬁ; is the vprojection on the Z-axls of a spinlike
object I (called the isotgple spin) was sbserved to start with.
The multiplicl By of a'groqp of particlés differing only in charge
1s found to be (2I+1). But to make su'h a formﬁla work for the
.:nucleons‘ ( = name for.protons and neqtron), it was then modified
las @l = Iy 4.%% where N 1s thé nueleon humber,

Rut with the discovery of the K-mesons (which ecarries no
'baryoh number), the ahove enpirical foémula had to be modified

as

(: P I'Z -+ N/l »-1»5/2

where S is called the 'stfangeness'. At present, all the known
physical particles_obey such a relation. This empirical relation
i{s known 1is tell-Mann-Nishijima relation.

The interesting feature is the experimental observatlon
that though the neubtron and proﬁon differ in electric charge,
the p~p forces = p-n forces = n~n forces. This fact comes from
fhe Linding energy consikerations in nuclear ovhysics from the
study of mlrror nuclel, OFf course, small electromagnetic

corrections are understood. Sueh an experimental observallon

1s ¢alled the teharge- independence! of strong interactlions.
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Invariance of a Theory under Iorentz transformations.

 IORENTZ GROUP. The idea is that Physics is unchanged 1f goes

Q‘

from a given frame to its Loréntz transformed frame,

DISCRETE TRANSFORMATION

(PT and their

Implications and Reactions
/

j
/

Charge conjugation:~ Definition: Charge conjugation
~isrdefiﬁed as narticle %9 antiparticle conjugatioh without changing
the svinh or moméntumﬂ' Iﬁ other words, the conjugation C is

defined as comuuting wiﬁh all connected Prineare transformations.
It leaves momentuh p and spin s invarient.

Invarianece under charge o njugaation requires that

Probabilitg’transition A=+ B

= Probabi}ity transition A& - g
where

Ly . ' V - .

Ac 1s obtained from A by changing all particles to

their qnﬁinarticles without -changling their energy'momentum and
olarigation. ' '

Anwlicqtions and simiiar diseuSsion
on P and -7 (gee-Sridhar's
notes)
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G-Conijugation;- Definition: This is defined an extended conju-

gation (called by Michel as isonparity),

i T
GoooCcet"H o5 CR

where C is the usual charge conjugation operation and R is a
rotation around the second isosmpin axisrthrougn an angle .

The operation is defilned such that the self-conjugate boson
field is an eigenstate of this operator (In this case the pions
arekeigenstates of thls operator.) A system of n plons is anb
eigenstate of ¢ with an eligenvalue (ﬂwft The assumption of
Q-conservation 1n reactions lead to severe selection rules.

A close observatlon of Table T reveals that any theory
has to explain t & multiplet structure of the varticles. The
strong interactions are bharge independent and conserve the
hyﬁercharge (y=B~—>8) . We ook for some generalization of
charge-indenendence. In the case 5f isosnin, <11 members of an
isomultinlet have the strong interaction proéerties and di ffer
only in thelr electric charge nroperties. Simllarly one Toeks
far a generalization of this concept such that members of a
larger multiplet huve the some 'super-strong! interaction
oroperties, but differ in their 'medium-strong' interaction
properties which respect only charge~indapendence and also

differ 1n their electric charge properties,

&



L]

IT. Mathematical Preliminaries

1. Group Thensry:-~

An shatrach groun is a set G of elements whleh nossesses

5 binary law of comwosition, such that

R

+

(1) for sny two elements a,b € G,
2.h 15 an element of G. Here the dot
denntes the binary law >f composition

cnlled sometimes the 'group multiplieation'.
({1). if ~,h,c are in G, ‘

‘a.(b.eY=l(a.b).e
This is known as thé agsoeiative Iaw'for
the binary oneration. |
(111} there exists an element I in G such that
for =ny a2 éG, a,I = I.a = a. The element

T is called the Ldeatity element of G,

(17v) for each element a in G, there exists an
glement a"]-EC}such that aoa-k = a~la =1

.a~l is called the inverse »f a. For any
a;b £G, 15 2.0 = dag, then G is sald to he

avellan,

A topological space {3 a set for which the followlng

conditions are satisfled.
+ (1) The intersection »f any finite number of open
- subsets 1s open,

(11) The union of any number of open subsets is oven,

(111) The empty subsét and the whole space are onen.



* (1v) To each pair of distinet polnts, there are open sets’

contalnlng them which do not intersect,

A set G of élements 1s = topological group 1f

. (1) ¢ is an abstract group,

(11) & is a taﬁological snace
(111) (1) IT 2 and © are clements of G, then for each
open set LJ of a.bh, there exists oven subsets 7,V eontaining
a,b respectively such taat UﬂV;C:LJ i.e. for =ny x E v,

4. - Voo, oy & iV\J ’

(b) If a 1ls in G, then for ever® oven set V
2ontaining 2~L1 thers exist open sets U contzining a sueh that

- _
U C: \/ (i.=. for any = & U, ;Z‘ 15 in V).

f A tonnlogical group G 1s called a Iie grouQ,‘if the fellowing

conditions are sab:sfied:
(1) A coordipate system can be introduced in G. By this
, ' o ‘
we mean that to every r-tunle (S, S5) in an open set

contalning (0,0,...9) of a r-dimensional enclidean space, we can
i assoclate an clement S°in an owea set U of G conbatning T in a
spe-one bicontinuous menner such that the r-tuple (",0y.4.9)

corresvonds t5 T. (S8t.....8Y) are c:lled the coordinates of S,

let LJ be a sufftciently s=all open set nontaining I and contained

in U so that for any s, € bjs 3.t = u € LJ . Then

el :,COL(_?:....‘S‘(

[ Al
oot )

2

(1)
04.:4_,,.,..Y .

e |1 o . 4 4




A . .
whede W denotes the o enordinate of u,

% . |
111)  The funetion F  1is analytic (differentiable an

*

. ' v o
arbitrary number »f times) in the 2r parameters S e Lt

The number v is calied the dimension -of G

2. Structure Constentst-

et G he a Lie Group. As I = (0, .. , 0) amd

ul = T = u, from (1) we et

“
%
-~
>
a
(3
<
c
p-—y
i
a

| ’ ¥4
':f-d (o),{;j..r) t;-...'ﬁw) = t

In viaw of (il) in the definition of a Die group, we
ot .
can develon J— ns a Taylor's serles which we give below
with summation copvention as
of L . ¥ ! h'a
+ (./D..\""‘/D-; {"_;"' t )
‘ o
o e i ‘3 Y
A __’_'t‘ + (’_L‘:}b/ o) t\

f

#

oL by S o .Y, S
' VEREP T v £ % 'k {—
| i %pz’g *Vprs
/“/- + Pt
s o ~ o (3)
ﬁ;If Ah = T, then from (3) we can manage to get
the & coordinate j§°{ in terms of the ¢nordinates of s as
Aoz A 4+ L }Eisjb +

pY (4)

£

v

(2)




ol
If ¢ apnd t are elementsAG

, consider the element q(s,t)
-1 t"l (called the commutator of 3 and t),
. and (4) we obtain ‘

= st s

mhen from (3)

. S ok

* \ ¥
. G (~»t) = C@}’/;/g b o, (5)

&

~ The constants ‘BY tr X, P ¥ varying from

1;l,.. , T are ¢ lled the structure constﬂnts af G, TFrom (3}
: o(
= and (5) we deduce that G rg = (%K - Cbafr . Hence
NS L
: - B >
- : £
C = -
Py " CxF - (©
¢

From the assoclate law for G, we can deduce another

condition on the r3 structure constants of G.

Gyvas (s.t). u = s. (t.4),

jﬁ [ LA u] }d ]:h) §d(f}‘49(cfo (1)

If s, t, u are in

Substituting (3) far the ehementg af third order in the equ:

ati~n
,(wnlch is ide

ntically fulfilled in the firgt and second order),

_ > 5
we-have f>r the coefficient of ‘ ¥ , the relation
Ou ~ @ - QL O ~ o
o
ol ol . %‘rwg Hypd s
. As, fL(%XS z - Rustg ete., the right hand slde wanishes when
summed with respect ©o K.  while the left hand side in view of
| . - (&) becomes .
| ' \‘?{ U.‘ (;[, q— (~,( G“
o C ¢~ + C "

C%BY =0 (8)
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N.B. The structure constants denend on the coordinate system

chnsen for the enclidean svnacse.

3. Lie Algebrat-
Let @ he ﬁhe r-dimenslonal vecltonr spnaee in whlch the
f+11lowing operation of comnosition of veetors 1s defined:
| (1) to every hatr & v, of veelors, there corresponds

» vector w = % 1] called the Lie bracket of &, 70 ;
_ui)[g,j Cor < Qf} SERA v < [%;;1{]

when €, . ¢, oare © nstants and '+! ts vector additlon,

(iil) [:9 4 {}1 é-j | ?
(1) [[= ,r{j,ei\ r [0} ,:ﬂ v [Leg) ]

- for any trivie E o, . Q. (this property is knowh as

the Jacsbi identliy). Then § is called a Lie Algenrs:

Let iaxg, W |5 +e. Y De abdasis for ge
v o '
Then [jwp o ] . CWEK e (written with summation
conventiosn) far a suitnmie choice of r3 ecanstants GX , KXy

F’.E/ 3 varyieg from 1 3 T i C Paij are called the
structure constants of % {These ~bvi>us sbvlously depend
on the choice »f the basis).

From (11i) and (iv) it f-+11ows that

o
(a) C -
S
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: Clbi T of T ol g
‘ c
(1) oo CXS + ‘o ¢ g, CS(r C(%b’

0~

Conversely, 1f i C;;X‘} are r éonstants satl sfying (a)
ahd (b), then hy.défining e eai] - c(sx e, and extending
ny linearity the bra acket ooerntion far any two veetors of a

r- dimga veehtor space for which { rog ls a basis, we get a
Lie algebra structure 3 for which i(: X% are thg structure

o nstants. Thus = Lie Algebra is camnletely speci fled by 1ts

skructure constants.

4, The Tie Algebras 5f a Lie Group.
_—— Lrvd I AN . L3

4 anllection ((s(€)) »f elements in a Lle group G
Aepending contimously >0 a real varameter T varying op a real

interval such that s(o) = I 1s called a curve in G,

| We shall say that the curve 5 (T) has a tangent
- o . <) '
1f the derivatives = & = é_f ¢ \ exist, The
P T 20 _ -
r-vactor whose ouqunentq are ij y, L =]y coo T is ealled the

tanpent vectar 2f the ~quP in question.

Thus we associ&tJ‘witq”g T- dimensianal Lie grogg G,

. : =

r-dimensional vacfﬂr $0ACe ﬁ composed of all tangents to the

curves in G. This assoclation can be shown to be 1ndependent in

n natural menner of the choice of a basts for» the euslidean snace

which glves the soordinates 4 f elements »f G.
>

Y Ir Z ’.VL are tansents to the curves 4;(‘C), {:('t>

respectively and if «w {T) is the curye sueh that

L]
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w(T)s A(T)E (T) , the tangent B to wir) is
given by @ = Z-{- '(?.}
With the same notations as in nrevious para let qs(t) be

L]

the curve such thaﬁ

4 (t) = 4 (T)E(T) (4 (,‘C))#‘E({: (T )"\

“Introducing the parameter J?; ' (the positi?é root of Ty let

63_ pe the tangent vector of q (T). wé defipe a bracket nopera-
tio.n on ﬂ thus: For F ; ‘7/ tn 9 define [,‘E& ;VL’X - 6 , I
defined as shove., .
o We can check up that the bracket operation defimed on 9
gatigfies the nynditinns 21 & Ile algebra. Further the structure

conshants of the TLie ~1gebrcs are the same as those of the Tie

groun ¢ 1in corresnomding ensrdlinates, f} iq'qa}led the Lie

algebra of the Lie ZTOUD Ge

We quote Iie's Fundameﬂtai ‘Pheorem:
To every Lie £rsun there correaponds a tie algebra of bEhs
same dimenslion, eonversely, every lle algebra‘determineé uniquéky

up to 'local isomorphism® 2 1ie groun (ef. Pontrjagind.

5. Snecial clagses of Tie Grouns and Algebras:
RS v e " T SRRV A GiCSE LT -

In sec, 1, we defiped anr abelian group. TFox an abelian

Lis groun, Loview of () in § 2, gll structure sonstamts are

o

070,

A enommutvative Lie slgebpn 18 sne where the pracket of
Y i T " . R

any tyo elexents 13 0. The_structure annstants of a aczmntation

Lie algebra are ZELO.
, T SRS
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A subgroup of a group G is a non-vold subsét whieh with
resvect to the iaduced averation eonstitutes a group., An

inVariant subgroup S is a subgroud sueh that whatever ®e x in G,

X S x-L 1is contalned in S.

A subrlnp »f a Lie algebra g 1is a subgraup of 3§ W1th
respect to vector addition which is closed I3t bracket operation.
An ;gggl-J of g 1is arsubring .7 such that whatever « 1in 9 and
t ing, [x,%) istinl. o |

. B& a simnle grogn, we mean a groun whieh does not csntéin

sny invariant subgrous obher than the whole group and the identity

clement, considared as subgroups, A group 1is semi-simpl if 1%

does not contaln any shelian invariant subgroug.

The Lie ﬂ algebra 5f » simple (respectively semi%ﬁﬁpple)
Lie group ls 1tseif said to be simple (semi-simple).

8y Sohe proverties 2F Semi-~simnle Lie Algehras.

. .
Let ﬂ be a Lie algebvq with strueture constants { C(5yi,

A=

of ﬁ ,}( ranging from L to r. we define the symmetric tensor

%.p thus:
% &
Q- 4 N .
Fpoe 4= Cup Cne (1)
Pheorem Ll (Cartan's apiterinn):; The necessary and sufficient

eondition that & Lie algebre § Dbe semi-simple is that
l .

By a2 Linear Lie algeprz, we e an a Lie algebra the elements

" of which are linear operators actlng on a vector space.
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Lemma: Let G De a Tie algebra and A an element of 9 .
Define-for each X in 9§ , A( % ) as the element [A,?gj
of 8 . Then A (X) is a linear operator on the vector space
un&erlying 9 - (The operator A (X ) is 0 1f and only if A
commutes with each element of 3 ) .

With vsual addition of operators and defining the bracket
of two operators defined inhfhé‘above lemma as the operator
defined by the bhracketb of the elements détermining them, we can
prové that such operators constitute a (linear) Lié algebra,
As o semi-simple Lie algebra cannot contain a commutative ideal,

i% follows that auch a ILie algebra is identical with the Lie

algebra constituted by the operators A( X ). Hence we have

Theorem 2. Every semi-gimple Lie algebra is a linear

.

Lie algebra.
Tor linear operators we have the usual product operator
" which is an associative operation. Thus in any semi-simple

Iie algebra we have an aasnoiative product denoted by o

We now define the CasmimirForm of =a semi-gimple Lie algebra

8 . Let ‘gik | bhe normalized cofactors of det \ gik\
(cf. (j) above),.i.e. a;‘“' %k . = § ; ks dek 1 %irltoO
<}LM exist.

The cuadretic form,

b= 3 ed-e(b | (2)
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(where @y ® ep  4ig the associative product referred to above)

ig palled the Cesimir TForm of 3 .

Theorem 3. (Casimir). The casimir form F of a semi-

aimple Tie algebra commubtes with every element (equi~

valently, [ﬁ, e?il = 0 .

The following theorem relates semi-ginple Lie algebras to
simplé ones .
Theorem 4. (Cartan) Pvery semi-simple Lie algebra is a

ldgirect sum! of all its simple ideals.

7. The Standard Yorm of a Semi-gimple ILie Aléebra.

Tet 9 be a Lie algebra of dimension = . Congider the

eigen value.probleﬁ'of the operator A (X ) defined in the

Lomma in Sec6. i.e. A (X) = [A, X} = £ X. If the

~secular eguation of the eperator has ¥ distinet roots, then

ve héﬁe’ r linesrly independent eigen vectors which can be

used as 2 bagis for the vector gpace underlying a . If, however,
the secular eguabtion has degorerate roots, r linearly independent
vectors may not exist. Hence, & coordinate'system for f} cannot

pe arrived st by the above method. But for semi-gimple Lile

algebras we have the following
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THEQREM (Car_tan): or a semi-simple Lie algebra Q| 1f we choose
A so that the secular equation »f A(x) has the maximum number sf
distinct roots (wha.oh we cah), the only deganerate root is. (9 o

and if »Q, is the multiplicity of the root, there exist eorresnonding

tos this rost, §  linearly independent eigenvectors any two ®f
which commute. |

The numher 15 cslied rank of 9 .

We shall choose as basis the 1 linearly._independent

elgenvectors (say) H, RS )HgJ corresnonding to the degenerate

root, = together with the (v-L) 1linearly independent

eigenvectors E,,Ep - .. corresponding to the distinct

4

roots o r» g ety

*

The commutational relations for H, o .‘HQ,;
Eg EP can be obtained to be
. [H., L’-ﬂ =0 (L
D‘l{ij Eu) = %0y, (2)

- ' A + ‘
[Eo',ng—l = Ndr) ,EGH'()‘\' * L/\ i(; not a vanishing rootD

(3)

— ) 4, l
- - . . .
[Lof ' L ”C’!‘tl B V{ '—1 L " (4)

T . ' o(+
C" .'_'.O C O‘L‘; B (b

1

;S TNep

.
: 3 Cd(sfo % qwurgb
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Further,

AJ H:} = O (5)

(6)

As A is en elgenvector of E\A/*] = fx o

N\

E}_ _ From (8), (7) and (2), it f>llows that

' oL = N oL (@

8, The Concent of Rootb:-

&

The form (8) of sec.7 1s called a rookt of the semi—simple
Lie algebra-%. Tt can be thought of as a vestor 1n a 1-dimensional
vectnr space.

| A root is seid to be nositive if 1ty first nonvawishing
component is positive (in an arbitrary pasis), A root is called

" gimple (sometimes &the terminology primitive or elementary is also

: aged in the literature) 1f it is a positive root and im addition

cannot be decomnosed into the sum of two positive roots,

Theorem: (1) ¥or a simple group of rank 1 there exist 1

simple roots and they are all linearly independent (We shall call

the set of simple roots the w-system).




. (2) Any non-simple root can be expressed as a 1inear
combination of the simple roots ‘Z;Rxcig where .RL are »ll
positive or all negative integers:ﬂejT

| (3) If L is a root, then — 1is also a root .for any
simple group. |
(4) If o and (5 “iTe two Toots then
(hekd

integer

and (b - ldﬁ) oL is also a root. Here (_o((s) denotes their s.alar

(el
product. IF 2 1s the nngle between & and Q., then %gom Th, (4)

foove follows that

+

-
?oﬁ P = .{; o .
and - _ '
- 0w
e

Here m and n are integers. Thi s would mean that the angle c? ean
assume only certaln values (implying'therehy sme kind of a
quantization of the angles) In particular, this is true 2T the
simple roots. The allowed =ngles are 90°, 1200, 135° and 150°and

the ratio between thelr lengths become

\d\b - 1 if (= 120°
] ’?K;FL =2 if g= 1350

3 if (= 160°

1€ = 90°, then the ratlo of lengths is undetermined.
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Dynhkin Diggramst- -~

The geometrical sroparties of the simple foots in’thef
w-system cﬁaracterize_in a unique mannel the corre;ponding
 infinite§imé1 Tjie grouis. There fore, it is most'ébnfénient to
incorpofaté them.in‘a schematic diagranm. Thése diagrams (the

4o called Schouten-Dynkin diagrams) are drawn in fig.

Classical Grouns N = number Qf.pgrameters‘
7 -

Py OO 00 Lk

" By g0 O o 205 L
2.

Cy TO—0—®- - —D 2,874 L
, . O _ .

tDQ N s =0 20 0

(271) C/

vy

Bxcentlonal group

G 0= 14

2
), ~ Oo—C=0o-e 52
= O—O—0—0—0 78

5
"ET | 0—0«(@—@-0-0 |

) . ' 048

. ' "E,g . CP*3~fg—(L43«C»4J

cartan's solution of all possible simple Lie groups.

133
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We have seen earlier that the lengths of the simple roots of a given
simpleiLie group can aésume only certain values. This together

. p bR rehs bl ebe
wlth the fact that the angles ¢ n be symbolically devcribed hy
associating with cach simple ?oot a small circle. ‘For roots of
greatef'length, the circle is marked in blac%; If the angle between
the two consecutive. simple roots is equal to 120°, 1350, or 160°
the corresponding circles are jolmed by simple, double oT triple
lines respectively, If the angle 1s 90°, the circles are VGOT
joined. For a group of rank ﬂ, there are leimple roots and
therefore { cireles (black or white). DMNow the 1anguage »f the dia-
grams is clear. In terms of these dlqgrams simple Lie groups €20

be classlfied as classical and excentional groups.

C1lasgssical Grouns:-

The reélization of AQ‘is the gromp of unitary, unimodular
natricés 1n complex space Of (£+1) dimensions Su (L+1)
The realization cf Bg and Dy are the real ofthogonal groups in
QQ,Q+|) and 28 dimensions resnectivelg. Phe realization of
(:Q 1s the groun of unitary matrices in complex 784 dimensions
satisfying the condition (J I U = T where J 15 a non-
singular antisymmetric matrix., In other words, the reallzation

of C, 15 the symplecktic groun in complex 24, dimensions.
L

Some simple examples of ront structures:-

' For g = | , there is just one simple root +1. The

m-space Ls pws the single object ¢11. For L=-2

the w~space is two~dimensional.
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Az: O0—O0 Two sagple roots of equal length
t and the angle between them is
T 120°.

Bos (% Two simple roots. Their length
ratio 1s J2. The angle between
them 1is 138°.

Cot Q@

Got g— Two simnle roots with the length
patio 3, and angle 150°.

. - O .
Dot . is semisimnle D= A, % At
O .

It follows that from the Dynkin diagrams we can read off
imme diately the.rank of the group, the length of the simple
‘poots and their mutual angles. ‘

It should be kept in mind that not all the roots are
simple. If the order 5f the group is N (denoting the total
pumber of elements), g 5f the elements ecommute among themselves
( 2 to1d degeneracy) Out of the rest (Nmﬁ) elements, each
gives rise to a root vector. However, since both o{and — ok
are Toots, the distinet roots are only N-¢ in number. Out of
these 2;, we have seen, are simple. Thars}ore, there are Eﬂ%ﬁﬁ
non-simnle roots. The entire root diagram could be constructed
*(the root diagram 1s twoe dimers ional when L =2 for example).

The root diagrams for Ag, B2 Cg and Gg are shown in the fig.

*




In general the entire root diagram 1s p&:itained in the following

Way- l -".
Classical Groubs* - AQ The, ebllection of ¢ (¢ + [)
di fferences. E(et - G&)g L &“‘ .Q»QH) nf Ce+1) unit

vectore yields all. the roots. The dimension of the algebra
Bf., +- The roots are obtﬂned from %-_t ey } ) E-te{: b hz

<

) : &y ko=t /Q
The dimension of the algebra 1s R (2¢+1),
CQ/ HE The/,fcollection § + ¢ ‘:z g-_{: £ ‘3- § yj_,eld's"
the rootgfof Cpu . T e , !
"D{Q: The collection §+ e Jf_ckzs “% h«l E 7 Z

yields all the roots. The¥e faﬂ:e, ge(e - ) ~f them and the
"simension of the algebra is L (2€-1) - .
Bxceptional Groups:= Gp_ + The collection g:t €l —QJ{

igefmlﬁr; +€h? )C,jlh:l.z,j yields: ‘all the

roota The order of the group is 14.
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Fé& ©.  The diagram of B, with 16 more vectors
Lo ' '
..7:( e, +e, +e, ieq) _ ) (Totaf}. 48 vectors and
dimension 1is 52.)
Fes: The al am t a 4L +e .
6 agram Ag, e ?ectors + fiﬁ?7 and  —~ ( e

ek €y & ST/ |
Constitute the root diagram of Tgy Were we take four
v negative in the first fraction.

d the dimension is 78.
Lo by RS

positive and fot The total

number of vectors are 72 an
E?" The dlagram Ay and the vectors
ur positive and four negative slgns

where we take fo
The number of vactors

constitutes the roort diagram of Eg

is 126 and the dimenslon 1is 133.
P The diqgram Dg and the vectors J— (4—Q;i N egD

with each sign occurring an even pumber of times forms the root

’diagram of Bg. There are 240 vectors and the dimension 3f the

algebra is 248
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TII. Representation of TLie group

and -Lie Algedras

Iet G be a Lie gfoup. If to each element of G,
we can assoclate a linear operator R(g) of a certain n dimen-
sional vector space V such that 1T | 44y = & 3 G ,
then Rig) RU52) = R{%3) and the assoclation
la,__» r(3) is further continuous, theﬁ R is a n-dimensional
‘representation of G.
et 3. pe the Lie algebré. 1f to each element Z, of 3

we can assoclate an aperator A,(gj acting on V such that
. A (za) = ALE) +ALL)

A () - oo AtE)
A(f%,%ﬂ L [ als), ACY]

then A is salgd to be a n-dimensional,representation of Ej.
Theorem li- Let G be a Lie group and G its Tle algebra,
- Then any renresantation of G ig a representation of 8 and

ivice versa.

Theorem 2: The commutation relation af the Ile algebra
&hence that of th=2 Lie groun) is true for aﬁy representation.
Two representation A, (5] and A,(2) are sald to be
'xequiv“lent 1f there exists 2 nonsingular onerator &/ such that

oA (B U e AE)
i

for any g .



20

A representation '€,r#"'ﬂ‘(%)' ig reducible, 1f the
operators A C%) actiné'on the “vector space \/ leave a proper
sub—soace of V iHVarlant - .

If a representation A(E) 1is reducible, then, it could be
brought, by equivalence, to the standard matrix form
A O
|53 C
A representatien dhich could not be brought'to this form by

equivalence 1s called an irreducible representation.

A renresentation ¥ —» A(§) 1is decomposable LT the

-3

operators A (%) leave two mutuq?ly orthogonal subsnaces which
together span th wnole seace 7. If a reoresentation A is decommos?
then there 4g¢an equivalent renresentation in which A could he

wrought to the form f .

Theorem 3: Bvery representation of n gompact Lle -
group (see ohavalley 'Lie groups' for defipition) is finite
daimensional and is equivalent to a unitary renresentqtion. Thus

R{g) takes the form

- o
‘P-(Cg’): e}(.é) L € chvL.

o ' ;
where € 4 are real and ><d. {g hermitian.

Theofem 4. Tor a unitary gfoup, if a representation SR

i s reducible, then it 18 fully peducible to the form

A O
o B ] .
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The,cogpept of weight:

~_Conslider a n~dimensional mafrix representation nf a semi-
simole Ilie algebra ' 8' .,  The renresentation is enmpletely

pecified by r—matrices (r bping the dlmension of 94 ) 'jjf

-S):l Ceae Y which satlsfy the equation
- C
[EI)? ,j)a:] - Po iz)x
x . ..
. where CZPG-,are the structure constants of 8 ., Tet us

express the representation with respect to the standard Cartan
i \ ! !

form.  Tet ., Mg FRa e Ey pe the matrices in the
representation corresnonding to the basis H‘J“'LH?,Ed,-"iix
of 9 . Tlet ube the simultaneous eigenvector of the dlagonal

i
matrices Fh';“5~HQ go that

i )
Hbu. :mr(:ﬁb

ok
‘Then the 1- comoonents (m,, ... wwi') can be thought ofAthe

' components ot krdimeasionil vector wu which is called the

weight vector» Tt should be noticed that While the Toot vectors

characterize the 1nfinite01ma1 Lie group) the weight vectors
)
characterize the representation.
Theo rem i: Every representation has at least one welght

(see Racah's Princeton notes for proof).

> Theo rem Dy A vectbr u of weight m which is a linear
combinatéon of vector LL&"of weights ™, 5 ™ :% v
for each k'K gust vanish. (The correspanding theoren in
matrices thih the elgenvectors corresponding to two

A ong.
aistinct eibenxalues of a hermitian matrix =77 orthogonal)

A
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Theorem 3t There exists at most n Tinearly independdnt

weights corresponding ts a representation.
t

Theorem 4 4: If . is =2 vector of weight m, then ‘Eitx is

an eigemvector with weight (b at) o
’Z«

Theorem 5: If a renreqentation is- irreducible, then all

1
the H, » . (we drop the nrimes for convenience and

A,
these denote tke mabrix rporesentation) can be 51multa-
neously diagonelized.

Theorem ¢: If m is a welght and o 1s a root then

2, (’W\;GL)
(Ket)

7 integeﬁ

snd o _ ¥me} o is A welght
( Aat)

(Note:. There is no theorem anqlogus to that % T of

the roots that if - and Wmlare weights, then

s (Wi"'ml)

B is -an integer)
('m’ ¥, ) ) g

Theorem: The set of all weights 18 spvariant under the |

Weyl groun S of uransformations generated by reflections
with,resnect to the hyoerplanes passing through the origin

and neroendicular to the roota.

Definitlons: A welght is gald to he nositive, if 1tg Tirst

non-vanishing commonent (in an arbitrary basis) is nosit1Ve
‘Opé weight is ,nid to be higher than the other, 1f their

d1fferercs is mositive. Thus weights are equivalent 1f they are

L]

connecbed by & trﬁns?ormation be longing to s
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A weight hlgher than all 1its equ1Valents ig said to

ht 1s .called ‘gimple if it belongs to onlv

be dominant. A welg
s ig called

The highest among the dominant weight

one eigenvector

tmaM£Mmfw@ng

ucible reoresentation ig uniquely

. Theorem: AnD irred

bharacterized by 1fs highest welght which 1s simple.
- Theorem? Two irretucible renresentations are equlvalent

if their highest weights are equal.
algebra of rank_ﬁf, there

R AT R s e B S A T
e T B e e R
S

TR

“Theorem: For a seml-simple Tde ;

sare wpibhts (called fundumenta] dominant weights) such that any %
dominant weighs 1s @ nonanegatlve integral lineaf.combination g
5T them. B L |
Qgggggg{ There are £ fundémental'irfeducible represedtatiQnS
AL Ay which have the fundamental weights as their highest

}
. weights. The dimen

weight /\ 1is glven by . _
' (At) ,
|-+ e
T (75 |

A ET

where
s T

( ¢ 2

) ig; is the system of all positive roots.

gion of the reoresentation'with,highest




IIT. Review of Unitary Groubs

The set 5f all (n ¥ n) non-singular matrices with compiek
antries forh a group under matrix multiplication. An igtéresting"
| subgroup is the set of unitary (n X n) matrices. ThLE/group 1s
called U(n). If g is a typical element, then it can always be
diagonalized. Then, any unitary matrix. 8 can be written as

%/':‘.. eﬁclf)'-:.(;H

l?,/

f

where C’-aro real and H is a hermitian matrix. If in additio& -

g is such that debt g = +1, _then 1}; follows for 4nfinitesimdl €

> —

ok ogom  twie T H+ o (€7)

“r‘r,_' -0

Now an arbitrary hermitian matrix is glven in terms of n real

diagonal elements (which are necessarlly real for a hermitian

—

matrixf and v (e =1 complex olements above the maln diagonal.%

Thus, 1t has n? independent peal parameters. If in addition its

trace is zero, it depends only on (n-1) real diagonal elements

and therefore only on (nz—l) real parameters. Thege (nxn) unitaryi

unimodular matrices form the groud af(n) under matrix multiplica~-

tlon.

Tt e, i

!
!
i




The topological properties of this group are:
(1) 8U(n) 1is compactt By this we mean that 1f we are glven

an 1nfin1te sequence of elements % .., FL, R

ig'

we can elways aytract a sub-gequence. which converges to an

element of the group. A5 we had seen 1in an carlier section that

an immediate consequence of this tovotloglcal property is that

(a) the irreducible representations are finite dimensional and

are equlvaient to unitary representations.

e e

(b)) 1f any representatlon ig reducible, it 1s fully reducible

and so

(¢) Any representation can be split into a direct sum of irredu-

b g" , PRI '-v.~ :i'
Luk c,.t svifa a. A, ,L(Jv s G".z- i, B SR L PR

(2) SU(n) is = Tie (roup: This means that the soace are. anaiytic,

It should be emphasized, that for a ILie group, the number of
elements can be infinite. The only condition is that the number ?

of parameters (called coordinates earlier) are finite. |

(3} SU(n) is a aimply connected Zroupi By ‘t'connected!', we

mean that for a glven element g, we can always find a continuous

function | g () oStz L such that g(o) = I = identiby
element of the group and g(l) =g, Ina=a simply connected groun
two - such\‘pﬁ+ﬁ;1 co£(ty, g(t) 1eading from I %o g cab be

continuously transformed from one. another. The Lie algebra
of SU(Q*l), (ﬂ,; rank of the group 7 n-1) is ~alled [} in

Cartan's notatlon (see the discussion in our earller chapters).




The rdot diagram consists of the collectlon {_ (aL "Q?>}J

e gt e of unit vectors £¢

in a (1+1) dimenslonal space. The dimension of the algebra is

(‘2+;) *a_L . We have also seen that there are 1 independent
simple roots and the Dynkin diagram 18 O OO+ D
Weight Diagrams: 8ince the root space {s (1+1) dimensional

it is convenient to describe_the weights also as vesto¥s in a
(1+1) dimensional space, but because they will no® then auto-
matically lie in the 1l-space with normal

1

Gy

(L4032

we impose on the wel ghts the condition

£ +1

E Y b - O .':

‘(_,‘.:! : .
Then they also be lie in the same 1~dimensional space as the roots.

The Weyl group in this case 1Is igomé}phic to the permutation
group in.(1+1) Aimension. By this Qe ﬁéan that the elements of the
Weyl group permute the (1+1) components of a given weight and
- yield its eouivalents. The condiblon that 2 ) ypteger

(o'-. &)

shows that

LA i':ejc,_ &Jb

(L+1)

nd e mg = wegen
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An immediate consgquence is that the highest welght of any

revpresentation should sati sfy the condition

! ™, 7, TV Tt 7, TRk

and of course
2al

g e

'(,-;_—_,|

ft
O

and so
' Y 7 O
vy, ; €0

. 'To find the representationof the algebra f\g, we proceed as
follows. We first wvuil® the so-called the 'self-representatlon',
then construct out of that 1-fundamental representations and
finally wgo »them to bulild any representati&n. cOnsider the set of
all (A1) (2+1) unttary matrices. We choose as a basis

for thelr algebra, the matrices

E——

o= R <:i’*

T R <) 3 <

where |é>-stands for a set of orthonormal vectors inh a (1+1)

{H; )EOL—X = <8°& ~ g‘,h) E[;L

space. Then




-]

The roots are then just (e ~ €1§) . Thus the self

-pepresentation or realt zatliop of_fqg 1s the group of unltary
matrices.

proceed as fbllbws: Define

. : (L+D
where I 1is (VQ,T 1) dimensional quJ: matw»ix, The
matrices H: are tracesless and
: L+l .
-z hooo=
» L= L T ) N
so that the are hot all 1linearly-independent,  Thus
take the form ‘
. PR . 0O
{
L+1 -1
O
L. - |
A,

To get the realization for the graup SU(IL+1) , we

e u IS PRI

——




Thelr simultaneous elgenvectors are the vectors’

L’L’E:— (J)D)Oll- O)

., = (o)l)o;.: o)

- L, - o o, - 4

' Lyt (e, )

and their correspondlng welghts are

{ . .
- (4 ov, =1, e =)
_€+] 3 7
1
—————as (__!j»gj e s i ._!)

Ly ; '

: ’ (=1, <1, . =, D)

Ly

The highest weight here 1s obviously

! . . —
(4,1t e =)
L+
We now proceed to construct the other fundamental representations:

Tf we call the above self-repregentation as 33} , then the

other fundamental representations are:

Representation Highest weight
B | MU):::. L (E’.—i‘) ¢ "J"I)
t LN
'.__D = {‘1)-— ! i -on
5 (T.D,\AZD,)A,S m = 1—;‘ (ﬂ,!,{‘,_r)ﬂ,‘. 4—9
, ”Da: (D‘,gD,xTD,)CQC m& )C A ({Q_g_’g,l)g,z,
' = £ -
+ 1 ,,3}_,?.'. ?s)
©
iD,QZ ('D;Y‘_D,-—'%:D,)CAS v :erfk\)i ‘..,—E)



The highest weight of I3, 1is obtained by adding the highest

and the next to it of D, and that of Tz by addimg the first,

second and their weights of D, . Tt remains for us to show

that these are the {-fundamental representations. Iet

'}, = ("mJ"-ml-)

3 | Al 70
‘ - LS VPR 4 ¥
Ay = vy, 3 ~ \ o

-

f\‘ - (W—E, ___‘Vw‘{ -;)
oL * and :XLz intezers, then

Hence, if we form the direct produqtl

tD - I':l)’%j)f A~ n...,.)‘\rD'j ~ ,.DQ‘\X -DL b SR Y\"PQ_,
e N\ ——D Y R
Koo e x Dy » Dy x Dy

A

e Dy >
:r:DWu—k"" l

the leading irreducible representation.

3




T?gw occurrihg in the reduction will have the highest welight
in 7D with highest weight ~ww., In this way, we cah construct
tﬁe jrreducible representation tiU with any given highest weight

v out of the f;fundamental representations.

Deseription of the irreduible representations of su{n)

In this we shail describe in detall the deseription of an

irreducible representation (I.R,) of SU(n), in terms of tensors

. ,and Young Tableamt while our discussion will be qutte general

for 8U(n), we shal’ 11ilustrate them for the group SU(3) 1in view
of the later applications.

Consider any mixed tensor

Ay |
"\“’ (5 d.(”ex'g—_t- v
’:'2; -y < gk

with the proverty under unitary, unimodnlar transformation

dpa Y
A (‘D ‘

&ol’»\ (L(zj& (]\,XV £‘)£L<OCI)M}

APy |
-1 ’A\_&.,.D

(@ T

.Q\w.,-?v

; oo




with the aﬂb satisfying the unitary unimodular conditlon.

ied to be

The followlng numerical tensors canb be easlly verif

invariant under such transformations

—t ‘ ' 2 b,
s
k¥ .
| _, :
- Z ﬁ,“.ﬁ' (O_ )Qg - Sa‘,
— itk L R
6 } e Z Ou.-..‘ﬂ.. CL}M a’hﬁ\) e
£ v by
Lk
- dot @ €"¢
v \:‘v .
= 6 D e 2 M a, = __’j__
AN ‘\

A general mixed tensor witn upper and - lower indices can %

he written as

Q.
-
oA

rj)*—)sw.xb Eevn v b _
SRAREE bt ‘
| (’vwmg R Ao O
% . - 5 A _(5
y v Q, A ‘L}"‘fe’

h] d| ] B
#

~1) lower indices.. -

B behaves like a tensor with (p-1) upper and (%
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¥ o .C A
C:V‘b?r|£1 = pdkF p\ig}‘,_ﬁ

?

¢ behaveslike a tensor with (F_;) upper indices and (% +1)

lower indices.

v o of (5 ,..S ‘M’Li d[‘)”'g
D .« |
R L | )

is a tensor with (lo+-|) upper and ‘(%«—L) lower indices.
I other words, what we have heen able to do was to reduce the
mixed tensor A to tensors B, ¢ and D with the help of the invariant
v dgsy
and ' A 111 be T hr-

reducible if the action of these numerical tensors is zero oh A.”

’

numerical tensors

j.e. we cannmob foprm non-zero 8,6, D. In order that A is lrreducible

B=o0, C=o0, D=0, ¥We see that

| coo Y
B -o0 Yy A . g" . = O

A is traceless in each pair of upper and Jower
indices.

G

U

whan Ais svmzat”ic in the upper indices
D = o, when ﬁ is svmmetric in the lower indlces,
.Thws, a mixed tensor.with p upper and of lower indlces will be

irreducible Lf
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(1) it is totally symmetric in the p upper
; indlces

(2) 1t {s totally symmetric in the lower
. indices

and (3) it is traceless

A traceless fonsor symmetrlc in all p upper lndices ahd

symmetric in all ﬁ%lower indices ‘has dimenslon (the number of

independent comnonents) in. Clt'giﬁen by

we2)!
N =~ (()—kwml) ____._._.-_-m—--——-w'(%'f ') (}3%’%4 +W-—l_)
b % @\,_\)‘. (m-—tb‘)_.( |

L\D'l"'“""’)‘. LC%+&V.-:)!,

et i st

SARCREEE RS

8

(F'+m’ L)‘ (G- L)
_____,,_,—'—-"——-—.-—‘
(.,\’)‘“\) L"“’-\) (% -1 (- 1)‘

R e 1 oy

ey g —.
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Example: . In the case of 8U(3), n = 3,

) i ‘ . .
| N = LF+F)‘ (%”H)' (b+%jFL)
R

1

i
2,

Descrivtion of‘an I.R. with Young Tablean

‘A standard Young Tablean 1s an array of T 'boxes wlth

4

£ {, ‘boxes in the second row, and

y boxes 1in the first row,

‘§?u4 voxes in the (n-1)-th row, where f, 4 . J.§Q_?

sabisfy the relations

é;t 7y ‘Fz /2 7/‘§wv-1
and
VIR |
S f = 4
L= |

A tablean is usually drawn as follows:

|4,

—f'.‘f{Z

T e
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wing symmetry operations

o the

To this tablean corresponds the follo

(1) symmetrize completely with respect t

first }‘indices , the following {Lindices and so on getting o

’ ]
Te. .
?."‘ “%1 ,{ bg ey {,+f&},
F
(2} Then antisymmetrize the tensor T with respect

.. . the indlces { 2, " +ﬂ4:"} E
1} '

a’tensor -

to the indices {L,, Lg e ]
g Yhra, - and so on, The resultlng tensor T

which generates.an

m the basls of an inv. ariant subspace
In s di fferent notation,

for

_ irreducible representation of SU(n).

we can wrilte
] ) ’ . )
I

where — R é
o= > gok %\9 : |

mhe sum in Y is carried evVeT all {

is the Young symmetrizer.

gers in the swe row, and all pérmutatiﬁns

permutations D of inte
S% {s the signature of i

% of integers ip the same column and
the permutation 5¥G = for 94 even and = -1 for 9 odd.

The tableanvhas no more than (n- 1) rows. this follows from the

fact that it 1is impossible to antisymmetriza more thah n indices

each index punning from VooV ( 'ﬂ-cﬁ. for ¥ yyv has no

. meaning), and we restriet ourselves to transformations with

determinant 1 sO that a column with n boxes is equivalent to 1.
rvesoondence hatweem a regular Young

Thug, there is ohe-one co
tg of SU(n).

Tableam,oi no more than (n-1) rows and the T.R.
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A tableaalwith zero box (dot) corrgspondé'to the”identitx reﬁresenta—‘

tion. The tablean with one box-corresponds-ﬁo the self-representa-

tion. Among the other interesting fepreséntation we note the

followingi

(1) The representations with one row only 1.e. f, = f

These correspond to totally syrmetric tensors, The dimension

of the representation of a tensor with { indices bot 411y symmetry

(allowing repetitions) aan e computed as

vo o+ £~ (W'ﬁﬂ('*).‘
f NGRS

t

N =

There are infinite number of such represcntations.

(2) Phe representations with one eolumn. Excluding the

1dentity reovresentation, there are (n-1? such renreq@ntations.

The se correspahd to totally antisymmetric tensors. I t 1g the

length of the column then the dimension of this representation 1s

N

given by.

) ’ N = Cki\r\‘ | ) = ‘(‘r\l}ff ) g
. e e F - — mi,.—w———:-)-v;
- e € ety

we shall give later the dimension of an arbitrary

Yeung Tableau.

a glven representation, we mean 1ts ecomplex conjugate.

Fer unitawy representatlon, by contragradient

Far a




glven tablean of SU(n)-corresponding to a représentatioh A,
“we get the contragradient a glven representation, we meah its
complex conjugate. For a given tableau of SU(n) corresponding

¥

to a representation A, we get tie cort ragradient representation
by the followlng pProcess. ,
(1) Draw the initial Young Tableau

(2) Complete the drawing to obtaln a rectangle

of horizontal dimension }iand vertical dimension YV

(3) The complemehtary part is the desired Yaung

Tableaw if one rotates 1t by 1. The procedure
o can be seen to be equivalent to saying that if

t ] /
?f“, Zs o . 7,g‘

Tableau corresponding teé the contragradient

are the rows of the Young

Y-}

renresentation, then ;

£, | i
_Fl 'djc“.—l |

l]

e
(44

"g‘, = ?‘;-—- -FTL-}’JJ-i | . ‘

4 representation is self contragradient if

so that
. {; .¥
, lo# bt "—"f. .

b = UM <
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A represantation and 1ts contragradient have the sane dimension.

Thus an I.R. of 8U(n) can be deseribed by
tts nighest welght (D
This mean that the glven

(l)ithe components of CLAL )

where A, Ag are integers.

I.R. has been obtained from

. o~ o b LR
e kD kD v AD ke X DD KD
e N e ANq — e Ng >
L
where "Df,.,.- D are the fundamental representations .

(2) By a traceless'tensoszymetric in lower and symmetric

in upper indices.
(3) By a standard Young Tableai.

ial case of SU(Bj for which there are ohly

For the ‘spec

two fundamental representations. _
' The pumber of upper {pdices = rx;

and the number of lower tndices = Aa

(fk, J}Q,) denotes the highesp welight.
{3 of Young Table_au and

Iin this case the
!

where
NS 1s

connection between the
r>‘$: F&{F‘FL

v

9\/{ = §e_i”{£ :.
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The ¢haracter.

If D, with matrices D(&), is a representétion of

seme group G, then one calls the system of numbers

)(J ( "‘;) — ‘t‘{‘ D f_h)

e

the character of the representation. aince the trace 18

unaltered by equilvalent transformations, gquivalent representations

have the same character. the following formula gives the

character of the representation pelonging to the Young Tableau

6 %])42,r.-~=- )1Fﬁdl) as a symmetric funetion of the elgen-
values (é” )éz"-ﬁnﬂwi“ the diagonal form of a general element %
of ‘

I f,am-2 , e
¢ € LY
; '
Loamel ' o)
L T L . €.
—(-' |V\-.\ o
- eﬁ'u 6‘1
+1 “’g;‘(\—. )
——
-1 . o
Y. b
G‘"' | & ¥ é‘ i
- “ﬁs’zﬁ'ﬁsm
o e '
t= (t tB@ARY}) 2
E Pltr . 7
RN .j‘q’g ___w%/‘ -1 “_"L o
L MADR[\% ....... e"n, GW o R é.“/




From this formula one

1imitting problem

7£+,~ +.

distinguish the TR's.

otherwise

First we set

i.e. N 1is the character

€, .

charscters of ai fferent IR's. are

w3

)

itng €, ,--€.71

of the Identity representation. The
' ‘ coentiae b

should be carefully as
A

gets the dimension N hy lett

¢, —» L
The ¢haracters

will become indeterminate.
This is t:ue in general, since the

orthogonal to each'other;

21‘ ool -F'-—\-'\’v-- 1.

22' = - ‘92,."1' vi - A -

,QW = ﬁ(;'w +n o~ L
Tn order to take prover 1imit, we relax the condition

<, ¢. = 1 and choose
J. yu- o ’ o [V
¢, = (& €n = € €. = (&)
with & — 5“4) and (# - O , we have
w-4
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Using the result

vy it vw- 1
9 :L: DCZ‘ x:’u
A (I‘; x%) =
jo) (=]
e Xoa -1:'

afid taking into account

LI WL

we obtaln
N At b, A0
PANE CTIES B o)
where
. }
A(‘n_f}“(},-i)w-OD = [’\v-i\,('n-l')“ 11

}

The character is very useful when we discuss the direct products

of representatlions as we shall see lsgter. R
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Direct Products of represehtations

Tensor,Method: Wwe shall limit ourselves to'the discuésion

of SU(3) while the method is quite general. We have seen earlier
that an IR, is described by a traceless tensor, symmetric in

upoer indiees and symme%ric in lower indices. The basic

functions for the representation D (F %) are the components
of the traceless, symmetric tensor “r\“" 1& . By using
. E—“, - “t;

tensor multiplication and contraction, the basic functlons for
product reoresentations may be obtained and reduced. Ue shall

glve many examples to tllustrate the method.

g %4

I '

while for D(0,1) is LY . The product éigﬁiv‘ 1 s reduclhle

since trace 1s ipvariant under unitary transformation. We yrite
\‘A &,‘ 7] t ‘A l)\r.
A L AR R R A

N A
+ sy 4}

N
3 3/

’Afqu = 1124’5

where the tensor in the bracket provides the basls of the
represehtation ) (‘)l) and the second term corresponds to

the trace. Oymbolically, we &@Xpress this reductlion as

Do Y@ DO, = DD ® DO

¥

or in terms of their dimensions,

36 3 = 8@®1L

. T




o1

(11) jDC'JC)? 69 thi‘O) :- The reducible product now is
c# LH* . The trace has now no meaning and we split this
r,-,, )), .

into its symmetric

[\l

and antigymmetric parts.

| | T« J
(bp h})r\ = "LL ( Cb-» LPP + ‘"1’(% qﬂu)
r 4 ( P, Yo — .4’,\,« W)

(f

Pupe v Aup

S

W is already symmetric and it corresponds to t e

representation D (2, 0) . However, the antisymmetric part

AV?‘ 1s equivalent to a tensor with just one index as
by y\(% 'A
¢ Ay & T

Thus the reduction is then

T, D) G Do) = DY) G Do)

or symbolically

rl

w%géé the Kran, on 3 denoteg that it transforms as s
y * .

contragradient vector,
/ o

NI 6 ® 3

N
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(1i1) DCL,0) G DC,1D  ,  The reducible tensor 1in this

£

cage is j“ij 4%% . This, we write as
L "
s (T b, 4Ty $,)

. o ol o o ‘
- L (5% T‘<h.+5v TX{J

W

_1

v o
o
M

i}

{3 ¢l % 43 EEUT 1
g 7N v Tl 2 v
The quantity 1n the fLrst pracket is symmetric in the lower
indices and also traceless and so 1T forms the basis for D(2,1A
The quantity in fhe second bracket 1s antisymmetric in the lower
indices and so it is eguivalent to a tensor with an upper indém. '
This along with the other upper indcx;maﬁésﬂibithe basis for the.

I.R.. :D((v,Z) . The quantity in the third bracket corresponds

. to TDCFJ:D)'{ Then

Do) @ DL = DD © Do) +D(1,0)

or symbolically.’

s@ & = 15 ® 6 @3,



a3

Let us pow take the more difficult case  DCl,
"'The reducible tensor in this case is -ngr 663 . Of the
possible contractions we notice, that if the two upper indices
gre contracted with the two lower indices are contracted with
the two lower indices we get the trace. For notational
A"convenience,,we~1ntrodqce-the following tebsors after"Okﬁﬁo,

[ <t v o t o« _d Sr“

N
Y

with the obvious property

Mo — 0 [Quo(, . o(\"’"

&L= q

) 2
& Y rfv - pv

{
i

(éymmetry in both upper and lower indiceé)

'
\

R - ) /_‘c( -~ ’
’)JP:: T), 3{5 -4 I[SH?J,)) |
. P BT S o
-7, ESP - %(TP Sy




This obeys the property

— e e I e
R - . o R . _R
'V\’s "“P - (‘51)

= va

(symmetry in the lower'indices and antisymmetry in the upper

indices)
P = T'v. 5. o+ T. S
¥ P | P A
S SN
- T g"z -~ 7T S,
N P v i
with the property !
.-{-: o e A — o(]w pood
? = F = — P ey
Y v py = 7 P pv
(symmetry in the upper indices end antisymmetry;in_the 1§W9T indices;;
and lastly ' | = | 5
- < i
XN T sp - TLep =Ty S _
of |
+ T 5}) ;
"\ .1
, \
manjhtM3pmpm¢y ' | . ‘
olla — — e
?( = - % = = ¥ = X "

N (O RV [P P
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However, these tensors are not traccless.'nWe find the corres-

. ponding traceless tensors as

o
i

>
=

o= A o =N
+ 5, N b &5
RV N
\ P 5 | o |
N +IO[6VSP+ (35,)/ @\%F

The upper indices of Q. are symme tric and so are the lower
indices and it is traceless. It then forms the bhasis for the

I.R. D(2,2) and the dimension of this representation is 27.

From R , we form the traceless tensor,

SR
- R

RUP = Fap




LS
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Then R 1s symmetric in the lower indices and antlsymmetric in
the upper two indices. The antisymmetry 1in the two upper indices
oan be removed using the e tensor which adds one more lower
{ndex and thus R forms the hasis for the ; +R. D(3, 0), Similarly,
we finl that from T ye can construct the following traceless

tensors P which forms the basis for the I.R. of D(0,3)

o BN ol
PrT ¥
> P v P
Aok 2 o
P |
3 % Y S S
o = PO o
"I‘S_y P ap + 8(5 vq%
— Ak |
The tracelss tensor for %tft,[b 1s ;
N . A4 ko
% . - w 5
M = x'u‘a ~ [ 5 V ‘7('7\(5 T > Ll



et

a7 \
!

v b o e

We now note that since )< ig antisymse tric inh the upper indices,

and also in the lower indlces, by using the & tensor we cab ;

t to a tensor with one upper index

show that this 1s equivalen

> _ A :
and one lower 1ndex —5"; and since X 1s traceless, we can

also show that JC;‘ {s traceless. Thus the complete reduction

: o
of Tt ) s into its irreducible constitum:ts.cat:i"\betwr;!rbﬁen
as »
e ‘
5 = A = + P
T')_) ~ (5 iy G\ y“b X '}-’r-’ V{"m ;

1H vr)
o
+ - 8: f:@ﬂp +(TS) e
-8 [(Sﬂf + (75D
L2 TLem, (15, |
) .
+ ;?_o 5 [(5T).J+(T:>)P}}
, ) »
+ ,ié { g? [ (571w "(T3’) u] )
.
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where
ol N

of .
(—rs)fb =Ty e

. e A
(TsS = Ts S

The qﬁantity E((‘ST)Q,{P ﬁ(Ts)&PE, corresponds to the symmetric
6ctet representation (symmetyic under the exchange T4 S )
and E(S_T)O# - (1‘3)7;3 corresponds to the antisymmetric octet

P

" representation. These seems to be no operatlion within the

Bl

group which could distinguisn these two octet representatidns.

The complete reduction now 18
oz © D30 @ DoY)

DCLDE :D(l,!j -
| )

@—DSC‘)l) ®:Dc1,

QD (o, 0)

or symbolically.

Wt

gRE = 21@® 10 @ 10 Se @ %o ®© 1L

We here notice two important differences between SU(2) and SU(3).

In SU(2), the tensor E§\JJ rrakes Cb& and 43} equivalent
Secondly

while these are lpnequivalent in the case of SU(3).

in the reduction sbove we found that the octet representation

4 gt Tty .
e e —t——— .
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i
gceurs twice in the case of SU(3). This feature is tobtally

absent in the case of SU(2), and we call thiD property of SU(2)
as ATiple reducibiliby.

These two dlffﬁrences offer most of the troubles when we
want to find:the generalized cleblish-Gordan coofficients.
This we shallldiscuss later.

The Mothod of reduction using Younty Tableau.

Wwithout going %o the >roof, we shall describe the
method used in actual” -~ computation. suppose we are given two
I.R's (Recall an earlier theorem that 5 standard Young Tableau
characterizes an I.R. uniquely). ye follow the follow;ng
prbcedufe ' V
Step l:~ Draw the Xoung Tableau corresponding to these
I.n.'s and label one of them wlth indices such
that all the boxes in the same TOE are given
the seme index. In practice, it 1s wiser %0
1abel the Tableau which has the least number of

hoxes.,

Example: » D) @ DY) ok 2u(2)

Po ¥

If the representation 1s labelled as D (A >\Q) where

( . ..flg;) are the components of the highest weight then

Ny = 7(1 “'{2 , ,AQ = jrj{ “'5“1[’4(1,

|
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where (41"‘ "¥Q+1 denote the number of bixes in the first row,
(41D Eh row of the corresponding Young Tableau. S0

we see for SU(3) 'j)_(kl:JJ AZ:{)corresponds to the Young Tableau

with {2 A, 4N, = 2 and 4, = 1=A,. Tnis

corregpondence 1is underatood in all our discussion§ .

Step 2:- Attach the indices in the flrst row on the Young

Tableau of thed?ther representation avrh that only standard tahleau
LN

are retained that two of these indices do not occur in the same
’ . FA
column. ’

L]

Ex:- In the example glven above we se€ the allowed

tableau are

R

Notice we have omitted the non-standard tableau /N and

{ .
also the one in which two Q4 occur in the same column
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Then in these reSulting tableau attach the tndices 1n tte
second row such that we agalbd retain only the standard tableau

and with no two indices of the gsecond ToW occurring in the same

cAlumn, One more important caution is that when we g in the

direction ipdicated belbw

e
L& —

there should be moTe *2,k>

hl

at nho stage,

of the resulting tableau,
' |
than @b, more C 5 than

tablean whidy 1s not allowdd is

N

-

!
2 A and so on. An example of a

slpce when one gres 1b the direction indicated Yy 1s seen first

This ig a very important rule.
dices in the third row and

bhefore a.

In exactly the same way the in
50 on are mttached. 1In the example we gave, we get the followlng

~
9]




e

e =

Step III. Omit all the tabléau with more than n Tows for SU(n):
Omit in a given tableal, column'of length n. Retain only the

13st. This means

In the example above for su(3), the only tableau retalned are




atels Nokoce LE o X we towe o Bevir s ‘:O\LQJLM

| L'J\H’\- W Y &L tfw ur\,YQ. — g s.U)j

Step -IV: Labellin‘:- Now read‘the resulting tableau in the

highest weight notation. i.e. the number of columns with one boxX

7\, the pumber of columns with two hoxes '}2_and s00N0. Thus
)

in our example

DO, ® DO = DA ® D(3,0@ Dlo)

& DL @DLDE D(o,0)

Step V: Use the formula for the dimension of the representation

DOV )



In our example sSU(3)

| f;—#ﬁ"?_
N U'i'g‘a) (f*‘ql) ("’”,\l >

S0 that | _

DI = TDIo@®1o@®ED g ® L

The method of Young Tableau is very practical when one goes

to higher rank group.
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Method of Characters:

Here again, let us demonstrate the method using some

examples 1in 8U(3)., Tor a tripletrrepresentation (the matrices

are 3 x 3)

%.{ (61;6;’”63> = '€i+G}; +63
where él, , é; and 63 are the eomponents in the dtagonal
A —
form of the elementa. Tor the representation 3
. * * X
Xy () = €& r e, 4 €y
- \ A
= — + = *
)){_ él (:2. 63
aince € & =1 for \E;\:l

consider next the octet representation TD(W,I) j 1t eould be

computed as

K2 (€,,6:, €) = €1, €L 4+ Eu . €
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In terms of the characters (which are just numbers), the direct

eration becomes ordinafy multiplication =

As an example conslder the product

- “product op nd direct sum

reduces to ordinary sum.

33
N | LT L AN
L% n (6 Ear€y) (& 46 €y )
X ¥ X /
- 6‘63 -’l‘ézel +€3é5' '
| {
T N TR LI .
€, €4 & €y €1 €z 3
€ | - ' 4(
= 2+ — gi. + %3; + ffi +—€:§&-EL“
&, 2 3
] g} ! €3 &) &
+L |
:
. %, %
2 " L /
'so that \ ; }
163 =d1L
: : i AN
We have given earlier weyl's character formula to compute the - \

. ]
character of any representation.



Tpvariants of sU(L+l):

}

We have earlier defined Oastmir forms. A Casimir operators

are functions of generators £ (x, .. .. -xY%di) which

_cpmmute with =11 the gencrators of the algebra
I [&{ (- Xes) Ky | =0

It has been shown by many people (Okubo, Biedenharn, Umezawa .M

for all oL,

and Gruber and Ralfeart aigh) that there are e indgpendent
Casimir operators for %&group of rank L . Tor the group SUCL+1)
the explic1t constructlon of these operators 1s as fdllows:

g.‘

if )<4', ¥ , are the senerators of the group SU(n) in

N ™l
2

the self-represontation then

I AV

4. o{

S

where the trace 1s taked with respect to the reoresentation X .
¥or the special case of SU(3), there are two Casimir operators
vhich are cons tructed as follows. The eight matrices in the

self representation are given by

—r

‘ o
i o o ©
H, = o -1 © H., = o L O
(@ JEN & B - C)O-—L

m
i

o w O
a0
430{;
[
=

11

i
-

im
(€%

3

[}

L)

s

i

i

W
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ov ! '
E*j: 1 = E. & < E_"A.‘ . & o - t‘3 T L'E""’
\F , T V2
' ’ L=
The Casimir operators are
/ | e
Moo Wy =
. - 1 2. .
| S T l “
E—A_ HJ—'HZ EB
\ = £, - H g
and
| 3
3 H, =+ H £y E, \
G . T~ TR
E,  Hi-hHe o
h% : T o ﬂ”'
Since E;1 S PR Fg o= E:? and Ly = Ea , the elgen-

values of theses operators cm bo casily computed. It can also be
veri fied that thesy are bhe orly *wo independent tinvariants!' .

This we shall demonstrate for the case of SU(3) when we  discuss

the 'mess formula'.
. >
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GENERATING TFUNCTIONS OF CLASSICAL GROUPS AND EVALUATION
OF PARTITION FUNCTIONS

T.S.5anthananm, :
MATSCIENCE, The Institute of Mathématical Sclences,
Madras,Iindla. '

-

INTRODUCTION

The Clebsch-Gordan (C.G.) programne of classical groups
suffers from two mgjor difficulties, Unlike the rotgtlion group
in three dimensions for which the ¢.G. programme is well known,
many other classical groups do not possess the properties of
siﬁple reduelbility =nd the equivalence of an irreduciblé repre-
sentation (I;R.) gand its conjugate, Here, we mean by the lack
of simple reducibility, the multiple occurrance of an I.R, in
the product of two I.R's. This multiplicity 1s called the exter-
nal multiplicity "1 7. However, many relations have been worked
out ["27], U 23, which relate this external multiplicity to the
multiple occurrance‘of a given weight in an T.R, This multiple
gecurrance of a given weight\in an IT,R., a feature not shared by
the I.R's of 0(3), is cslled the internal multiplicity structure.

At present the intemnal mu}tiplicity structure can be
worked out using Kostent's formula [Z47 . There exist, however,
many other methods {(for instancé, +he recursion method of
Fraudenthal [:5:1 ), although in prectice, Kostant's formula is
the éost useful.' Kostant's Fformula involves the partition func-

7

tion of expressing a non-negative integral linear combination of
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]
positive roots in terms of a non-negative integral lincar combl -
nation of primitive roots. These partition functions have been
known so far only for renk two and three groups 6.

Recentiy we have develoﬁed o method 7] of obtalning the
partition fuﬁctions for ARJ(AJSU( Q,+l) ) using the generating
functions. 1In this, we set up recursion relations for the parti-
tion functions, which are then used in conjunction with Kostant's
formuls to compute the intemal multiplicities. Of course, the
calculation'gets more snd more involved as one goes to large .Q ]
However, the method is precise.

. In this paper, we work out the genersting functions for

A B Cy Do end G.. The caleulations for the other excep-
J RIS LN S RS 2°

tional growps Fq, Ee, E7 and E8

_We zlso obtaln recursion relations for the intemal multiplicity.

will be published elsewhere.

In Section 2, the gensral discus sion of Kostant's fomuls

is given. We discuss the cases of AQJNISU( L+ 1), BX‘AJ 0(22,+1),
Co~ (5922, Dp~ 0(2%) and G, in sections (3)-(7). The

discussion includes the Weyl group, the structure of positive end
primitive (simple) rcots aﬁd the Diophantine equations. Explicit
formulae are obtained =nd possible recursion relations for the
partitioﬁ functions are given, In Sec.(8), the connection between
intermal and external multiplicity structures 1s discussed., In
Sec.f@), the conclusions are given, Many of the properties of

fhe classiéal groups (structure of positive and primitive roots

.nd wo on) are contained in many places. We have taken them from



the papers of Dynkin I~ 8.

o, Kostant's formula

. . * v /
The inner multiplielty Pﬂ (w{) of a weight ™M belonging

to the 1irreducibie representation D(m) of highest weight m is

" given by Kostant's formula |” 4] which is

MM)-—-? c? P[ (m+r2)._.(m+a)] (2.1)

is hslf the sum of positive roots.

‘where W 1s the weyl growp and R
'é;s =+ 1 sccording as whether the reflection is even or odd

respectively., P(M) 1s the partition function for the welght M.
This 1s the number of wezys the welBht M can be written as a sum

orer all the pbsitive roots

| M= ¢ R - (2.2)
t=1
with different non-negative integers Q; ., oOn the other hand,

T
TR AT T i v

é% Antoine and Speiser [_9_] have shown that the vector
i | y
S (m4Ro) — (m +Ro)

can be expressed for a fixed SE W unigquely in termms of the

primitlve roots as

(W+RQ-—*<M+‘3)"‘ Z’ﬁé 4, , (2.3)

L-_’_'}'
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H
/@_«being the rank of the group., From (2.2) and (2.3), 1t is clear

that P(M) is the number of ways we ceD write

L - | '
| %"%F; = %}1 a,ﬁ CP/A (2.4)

k, end Q,)A_are' integers

for glven ,ﬁ,\,&.. It can be shovn tha t P (h‘;"' *’“L) is the

multiplicity - (YY) of a veector Y of Z’g Co7] where the N

~1g related to the character by Weyl's formula

%"“’( Z) o X (M+R°> :
_ A (2.5)
VAN X Ro)

X ("M*'Ro) 1s the altemaﬁihg elementary sum

X (maRe) = S8 exp [Semrmo,=] e
| | AN -

where &, are the coordinates of the torolid (the growp parameters).

Hence (2.1) cen be written as

m Mm(m')':: ng ?(kfg»"““f’:)).

YN,

1



If we can calculate the partition function [ (k,“ e KL),

then ™M (W‘-J)Can be computed in principle. In the following

few sections, we shall explicitly calculate M (k.a..- KP) for

the various classical groups.
A/Q)(fv SU(E +1) )

The roots of this algebra are glven by 2 — {23'/ .

“‘A‘/: Ay L2+1).. The €, form an orthogonal basis in (JL—H)

i

dimensional space in which the roots and weights are defined.

There are L (£ +4) roots, The L £ (L+1) pnsitive roots are
: 2.
then obtained ss S ——eg’, (;.’.:_g',) . The primitive (simple)

roots in this cas¢ are %C“ el —@elyyq., Led, . K.

———

Equation (2.4) then can be written as

]

1 ,Q, : (3.1)

, —‘-EC€+1)

-;'

where C_“_‘Ri;s the (J;.‘__KCQH) X 2,) dimensional rectangular matrix

) .
k— 1, .J-Q-:«QLE-H)‘
1@'!01 O.LO“O"Ol‘q' 1
01"011n 0110 Ol v, 1
OO 001..011“0.‘I ‘1
N C — 6 o0 010 o Olo 4,01, q
s o O 0{0 © <'>oo+-o ' 1
= SR : .
“\ oo ooo0 oloo 1
) T o © ofo © 1 lo 9 4 1 3.2)
. o © 1to O 4100 1 1
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It can caslly be seen that only for the ceseé of Q»iz, the matrix
C 1is a non-singular square matrii so that there ié‘a unique
solution i.e€. Fa(ﬁﬁﬁzz i . However, in general ¢ 1s a
rectangular matrix and SO given the vector k and the matrix C,
thé number of a's is trivially infinite and it is only because

we have the restriction that the clements of the matrix. € are

non-negative integers the very question of the number Of solutions

(number of a's, the components of the vector a are agaln non-
negative integers) makes a mesning after alll). ye recognlse.

trat the number of solution of ng.(2.4) is glven by the coeffi-

ki K L
cient of ;Iilel,”,,,,:pﬂ of the generating functions. To

solve the dlophentine cyuations (3.1), (actually we mean finding

the number of solutions for given k and C) we now use the

method of gensrating functions [:7:1 . Let jf Cxw,w-'-“xz)

T am grateful to professor Ramakrishnan for foenssing my atten-
tion to this genefal problem., There 1s a discussion about such
a matrix equation in the bock on ’Linear'Diffeyential Operators'
by Cornelus, Lanczas, D.Van Noatrand Company Limited (London)
(1961), p,115. HoweveT, the general problem of finding the
nunber of solutions SE€ems to remgzin open, although the generating
function method we have developed in principle gives a'solution

to thisg problenm.



he the generating function defined by

| D‘HIL(QH) y ( )
T m—— 3.3
jcﬂ,(x""" o) = H (1_“_ ocf“'“i’cili‘-- -'x%'t)
A= 1 :

Ly ... g are chosen arbitrary parameters with modulus

bl

less than one. ! (K‘,KQ,"-'- ces K,@) {s now given by the coefficient

K, g
of Ky e Ly in 36/&(\1“..‘

:;2(1_“ . .xﬁ) in power series. Since

. xf) . This can be checked

by actually pranding

the matrix C is known, we cal write the following imvortant

relation
£ 2, -1
—‘F'(,-‘(,’ Ix£>_—_'_ ﬂ (1_ [i xé)) f (:-C.U-.UCED
L | - SO 2 ez, 1)
ot }_JL-MH
Mow, we can exnand (3.4) 1ln power series. M (K:,w*!'&(gj is the
. L V\L 1{& N
coefficient of X, XL .- g™ in (3.4). If M (<, K,Z_D
the coefficlent of xk' '3CKK_| in £, (x >
L boroe s 2 ﬂ-} Fate JJCE—})
then it is easily seen that
fola) X0 o0
T iD= ) ) T (e o)
Yy 20 aTo Y, =0 Ky (=¥, Yy 7Y _) (3.7)



and | :
Y4 Yo 4. 47 = Kg' o,

so that . .
O L Yy +Yp 4o + Ve & v ("t)“-ﬂ-—l) .

Define g new set of variagbles

(,f:Yi ' LQ—:T‘-{—Y‘.-L Ij

) Loy = e Yo b g

‘7(3.6)

then L
I ke [
'e’i ’ Q‘) kg a

Rty = 5 ZZ Z /

Lo y=lo.p “ea®te-

Eq.(3.7) 1s exXactly the recursion relation we want since it

faellitates the computation of the partition function for any
A,Q( /Q, arbitrary) in temms of the simple ‘partition function for

YAV

IECHSE Z 1

— j_+w (K,lkqj)

(3.8)

whicll has been obtained earlier |=10]. The weight space is ‘

again (/Q,+l) dimensional with the condition on the components

k]



"of & weight m,
R4

4::'1

Using Weylk's theorems, 1t can be proved that the componéents

are (integer)}/( £,+1). The Weyl group in this case permutes the

components of m and is of order ( 2.+1)} The dominant weights

sgtisfy
£+
mlp/AmQ- L7 ?/VW'Q-*!*“ ) E ey = O . (3 9)
' L= 1

These properties of the dominent welght will be used in picking

) Y
up the non-vanishing contributions to Ml (?W’>

4, S
B,Q,( 02L+l)
The roots of this algebrs are + (&4 % ej), + ei(i=1,...il)

2, 2
Thexre are Q_Q, of them, The L positive roots may be obtained
) . .
as Q;-—@} , €¢+ey and & (*- <3/) . The simple
roots in this case are given by. ?1—4 = @iy — €7 PE Z'G?@

Equation (24) then tgkes the form

kK: = C‘;?’L‘ Ovj*’

- 1 Q, (4,1)

— J .

L
2.
.}A:“,”_g_ R

]



10

2. } .
where (€ 1is the (}L ;&‘ki> dimensional rectangular matrix

| 2
r —_ 1)~-.~---‘L
11+ 1]l00 O O
412211 1 O
. 114 - 2|11 2] o
: A
o ¢ o L ' .
; C:&fk C X o
| = ' o '
'g e éjzc[+1) 1 } 241 1 2 0
: 1 12 2tz = 1
B ‘, .
5 The.generatiﬁg function in this case is
o
£ ) |
(x, v, ) = - e
3 % [ Cp.
L ‘ (l _ x1’ OCQ_Q_L"‘ L xLQL> (4,83)
. iy , |
It can be easily checked that unlike the case of AQJ , there is
‘ B Bo 4
no simple recursion rel:tion between 42, and 4;@ .

However, the following very interesting relation can be obtained,

which of course is obvious from the structure of the C-matrix

eq. (4,2)
Ay,
By T e
£ (xxy) = T #—% B 3 (4.4)
¢ i, _ — .
. AT (1= 17 =T e )
) &::2_ 3::_0 k:'.l:-1 Y:E'é'

It is therefors clear that for large valués of L the
recursion relation Eq.(4.4) is not simple. For A =2, Bq,(4.4)




1L

regds as

B, {;AL (% x
e = AT

(’— x1x§>

P (4.5)

so that the recursion reletion for M 4is
— By | — A, |
™M ( Ky Kg) == - M (K=t Kyt (4.6)
< |

which is the rclation obtained by Gruber and Zaccaria earller
|Z11 7.

_ The welght space 1s i&_dimensional end the components
may be Integers or half integers. The Weyl group in this case
congists of all possible permutation of the components of m
fogether with 211 possible changeé of sign end is therefore of
order 1&‘ ﬁz! . The dominant weights satisfy

’va* Z W, T 7/“"’4{, 20 .

5. Cq (~spl2))

The Toots of this algebra are #(s; % 6,), iEei(izl,...:g ).

Tt ghould be stressed that the factor 2 in the sscond eclass of

roots is very importsnt and mekes this algebra different from 1331.

i
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)

DI i
There are 2 L7 roots, The X positive roots are glven by
s T P e , el ('iéj}) . The simple roots in
this cas¢ are }3‘.'_1 = €(_4 —e; (4;._._ 1’....‘.2))[5{&:2.@?:

Eg.{(2.4) is then

K = C,; Q
o |
P (5.1)
TN S

P
where G 1s the (ﬁ * Q) dimensional rectangular matrix

’ . ,QL
Q_. O ' o . + O
214 24 0
2 ff ’ 2 1 ¢ O
- 2 A 2. &
'H 2. 2 2. 2.
¥ 114 1 f
5.
8, (5.2)

The generating functlon is of the szme type of :EE. (xi,""x€> )

3

)but the elements of C are different in view of Eg.(5.2). Agaln

, Ce
in this cese, there is no simple recursion relation between :?&
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Coy ,
and pq - However, the following relation can be easily
verifled,
- A
CIQ. 7 Tj:‘g’ (xh"‘x'(’.)
(%, ... x —_ - - .

o ) L a-L L 4o (5.3)
]] [‘ (1'“—ﬂdxkjr Ly
L=1 =1 K= Y::E-g’,

For the special case of L =2, the above relation reads as

A
C\ 2.
'f_ - (x{ xa_j - :Fl (14,3(2)
2. 1

-~ .
(l._:tf:r1)
so that the same¢ relation (4,6) is derived with Ky & Ko

C

_c, .

T T k) = 2 M (keni k) (5.5)
:

(5.4)

3

I3

This is not surprising because of the known i somorphi sm between
Gy and B,.
The welght space is =zngain -2»-dimensiona1 and the components
of the weight one integers. The Weyl group 1is the same as that
IQJ i
for Ef and is of order 2 ﬂj‘ . This consists of all the

permutations of the components of the weight =nd all changes in

sign. The dominant weight satisflies

'Y\'V!'7/m2_| 7/.. . ZML 7/0 . (5.6)
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6. D’@

The roots are given by *(c¢y % eﬂ) 1,3 = 1,.,.,?_ and there

(n 0(2/€J ))

are X Cﬁzl 9«) of them., The 2(9-4) positive roots are then

: “2;,*!“%, and €. —¢4 (4.43,) The simple roots are

B. ,= ©ry~%i, (ize .. ) md Py = %oa+®e Eq.(2.4)
j_S then '
4L =4 2 ' ' ‘

’ ' (6.1)

oz, £ce )

Jhere C is the £(0-1) % g dimensional rectangular matrix
¢
K —> I 1)
{1 o 0\11l1 RN o
1 4. 0142t A0
4 4. ol4 4 2} 20 o)
CL/*: i !
= 4 1 oly o 2|1 2 1
11 1o o 2|2 2 2
. 60 ot |t 1 !
1 11 11 11! 1 1
» -4

(6.2)
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- . Ag 5
where (. denotes the matzix C with the column (o,o}..o;t,d)

micsing, In thls case gls o, there ig the following recursion .

'relation
Ag,
OC.

Pg _ 3 (xq,- xg) E’*_'xﬂ,fxe‘]

o (xy,.-xe) = T 4.2 z-,
e [

o2

1.4 2.v-4 ,
{Tr'ﬂ_ ({-Tr xh—\T Xy >

Y=o Kzo A2t 4 t = Lekozoy I

.~ For =2 , the above relation gives

I LYY i
:F‘Q_ Cox, 65 = 52 (xe, %) [ N (6.4)
Cre=yy (1-2y) .

and so ™ (K')KQ:' { for =11 Ky, %5 , This of courss is a

known result, ror =3 , this yields

D - A | |
_ 3 : .
P ey = B e D) e
‘ ) ( N Ocsj
so that

’ Wv f”;.ﬁ‘&)

f“‘] (“a,“z "3)‘—“ E [ ™M ;4,,.;’3 o, g~ )

L= 6

N [\"[ (K,-A, , Ko -4 k:,)-—i—'-—‘!)
(6.6)
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The welght space 1s Q, dimeﬁsional. The components of the

" weight must be int‘egers or half-integers, The Weyl group in

this case consists of all permutations of the components of the
welght (eorresponding to the reflection pefpend_icular to the
roots €. — &4 ) &nd all changes of sign in peirs (corresponding
to the reflecfion perpendicular to tﬁe roots €.+ aé) , and

K4
is of order = ﬁf, .

The condition for a weight to be dominani is

thy/w\:9_7/.. L 7/W£‘_‘ ‘;;,‘MJQ‘\

r?. Gzl

The roots for this exceptional group are + (e — eg;)
. : )

* ey ALy = t,23 eyzo(erie  THE six positive roots are
(e-en), (e, 2> (ca-ts) e, eomd -y z(eve) -
The simple roots are [P, = €, - €3 and R, =€2 Eq.(2.4)

then becomes

.(j QA
Lj‘& /J-

L=4,2
-1,2

pe

Iy

(7.1)

1,2,. - & .

where the (6 x 2) rectezngular matrix C is

¥



, ‘-A. el ‘lJ Ce G
. 4y o 4 4 1 o2
Iy - I
s S\ 1 1 a2 3 3 (7.2).
The generating function is then
GQ . -1 -1 -1 2 ~ 1
‘.‘F ¢y 257y = ([-'xt) (1-227) (1%, 2X) (1-%,%2 ) (7.3)
, ‘ ' : -1 2 -1
1 ([rg:.,xg?j (‘.P-—Sr‘x:i)
and so one immediately sees the following relations
G, Ao
:F (xi,x?.) - f:— (quocl)
% . £ - ~ c
(‘-—X,DCQ‘)CI-—(,I?_)(;.—:X‘:L;\:2> (7.4_) ﬂ.i.
BQ..
= :Fz (x,,:ra)
Ci-— o&.x:’) (l —-Dc?’:z?%)
It follows therefore .| 111, C127]
___Ga _
M (k)= Z_ M (*i=feg o2k kg oni3po31) (7,5)

Cr LK

The sbove sum has been explicitly carried out in ref.[:12:1 for

various inequglitiecs of K, end Kk, , From (7.4) 1t also
follows that

3 —-—-.Gi ‘——Bn’ |
™~ (k,}Kz) = Z_ ™ (k,_d-lg: : Hl..gg,.gé)
. Y

(7.6)

L]

EE = R
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)

The -weight space in this case is agalin three dimenslional like

A, with the components of a welght satisfying

7W1 +ml+m‘5 = O

The components of the weights are integers. " The Weyl group is

of order 12 end consists of the six pemutations of (v, mwy ™3 )

cor roots

(e —e.) ﬁgzﬁ_egﬁnj(e,d_eg“) ond six permutations with

responding to the reflection perpendicular to the

a total change in sign corresponding- to the roots €;. The

dominent welght satisfies

z 7, 3 5 ‘erv'7/0 ; m_,_,_,.ga P

y 7y

g, FExtemal Multiplicity

Tn the case of rotation groupcin three dimensions,

en IR is cheracterised by the cigenvalue 3 of the single

Casimir operator st which is integral or half integral. Ons

ig then familiar with the C.G. series
4 l q’l" 32,' "

+
iI3i(j D = 25; (Eb._:Dq/ ©.1)

F=8+d,

0)  denotes an T.R. with the highest weight J. If % >3,

h)

. whers
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3

(in which case we shall say that the representation ZD‘?K'1 domi -
nates :ng-'), the right hand side of (8 1) czn be interpreted
as those 1. R's whose highest welghts are obtained by adding to
the highest weight of the dominent I,R. 1l.e. D ¢ , all the

weights of the I.R. j)h

(from %, to -4, This is the main
cong tvnt of Biedenham's theorem "2 1. The conditions for one

I.R. to dominate another I.R, have been worked out (1], The
genersl ides follows from the two equivalent formulae for the

character

X,m(ﬁ) = Z—‘ ety exp 40 (8.2)

A .
.where the X (é:) is the character of an I.R. with the highest

olhey”
weight m and & are ths group parameters. The fomula 18
™ X w4 R ©(8.3)
% (3{):: : A
X‘CR(J).
where
X G R0 = S8, exh i(30men 9)

S EW

Suppose, we are interssted in the product of T.R.'s D(A,) and
D(Ay) with Ay end Ao as their highest welghts respectively,
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Then | :
K (N XA = Z §g exp *'I:S(/Hﬂeo),zj
, SEW
: —
z SS exh L E‘S_(Ro),g]
S €W o

Z No o

. M ("rw') e_gc‘o L(’Wu,g>A 5
"W‘»’é D(/‘Q) ‘ (8 4)

where we have used Eq.(8.2) for X (Ay) and (8.3) for % (A

' Eq.(8.4) can now be. regrouped to be written as

Ny
| Mo ) ® ; Ayva 4R,
X (A M) = Z S Ao Ih.LCS( i m)'%s 5)
-l € DAY Z
| oW SS exl [SCRO:) )g]
where we have used the propsrty
SCPY+ SCA) = S (P+&)D (8.6)

Eq. (8.5) can now be interpreted as follows., In the
product D(Ay) x D( A,) where D(A,) dominates D( A,), only
these TR's with the highest weight /\IMW‘ occur ' E D (/\9_>
in the reduction. These IR's occur with the multiplicity
1 A'}_
M

highest weight /\ . The condition of domingnce of one I. R.

¢m') 1.6, multiplicity of the whight m* in the IR with

over the other is needed to the makse (/\ +w)dominont These
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have been more general formulze of G.Racah and D.Spelser 3]
which do not involve the condition that one I.B. dominates the
- other. For our purpose, Eq.(éﬂb) 1s quite sufficient. Thus,
we reallze thsat the extermal multiplicity is very closely

relsted to the intemal multiplicity structure.

9, CONCLUSION

We neve constructed generating function for the various

classical groups. AQ 9 g£ R CQ , :DF. end G'z. . These are

‘then used to set up recursion relations for the partition

| function which enter Kostant's formula for the inmer multiplicity
structure. The essential idesz of the whole analysis 1s the
reglization that the number of solations of the matrix equation
k= C a (for given k and ¢) where the matrix C is in general a
recfangular matrix with non-negative integer coefficients and

the components of the vectors X snd a ore again non-negative

integers is given by the coe fficient of xq'” .Yy of the

generating function. In many cases the explicit evaluatlon of
the number of solutions is not possible and so we have set up

recursion relstions. While in the case of Ay , the recursion
rélation is between the partition functions of Ag end Ap_y,

in the ceses of By , Cg¢g and Dp the recursion relstions for
tﬁeir partition functions are among these end of JAQ. . Tor G(2),
there arc twu recursion relations one with {2 and the other

with By, = We have also discussed the connection between the
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internal snd external multiplicity structures.
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