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- PREFACE

A CHARMED ERTRANCE

It is considered a worn-out cliche to emphasise that

Pauli and Dirac matrices are the representations of a
Clifford algebra of anticommuting elements, However, the
exact mathematical transition from Paulli to Dirac matrices
has never been studied in rigorous detail. Recently, by a
series of fortultous circumstances it was demonstrated at
MATSCIENCE that the transition from Paull to Dirac matrices
revealed a charmed entrance into a fasclnating structure
called L-matrices with a definite relatlionshilp between the
number of elements and the dimensions of the matrixz repre-

sentations of a Clifford algebra. Even more surprising was

the possibility of entering the unexplored domaln of w-commuta-

tion relatlions where o 1s the general root of unity.

We later found that these extensions have claimed the

attention of mathematigians some years ago but thelr contri-

butlons had not gained general currenecy since they were

published in Journals not easily accessible. Nono and

Morinaga in Japan had arrived at the Genersllzed Clifford

Algebra based on w-commutation relatlons
AB = aBA

iil



and this was independently studied by Yamazakl followed
ten years later by A.O.Morris., It was therefore found
worthwhile to arrange a conference when the creators of
the mathematical structure could meet those who had for
the first time applied these 1deas to elementary particle
physicss They met at Ootacamund,that lovely hill resort
of colourful South India,where sunsets swathe the verdant
valleys and misty mountains with the hues of heaven and
forest pines sway to the 'gentle wind whose breath can

teach the wilds to love tranquillity!,

It is our earnest hope that at a time when the
theoretical physicist of this Gell-Mannic era is satiate
with the triuwmphs of unitery symmetry in the mood

"unarm, my friends - the long days' work is done"

we are able to discern the dawn of a new algebra which may

further enlighten elementary particle theory in the years

(Alladi Ramakrishnan)

to come,
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GENERALIZED CLIFFORD ALGEBRA AND LINEARIZATIONS OF

A _PARTIAL DIFFGRENTIAL EQUATION:
ilia v im m
3’ Viivia' o ij'\]f'-‘-c L'

Takayuki Nono *
Visiting Professor, MATSCIENCE,
Madras-20, India,

Heokok ¥

About twanty years ago, the purpose of our work was
to generalize the thaory of spinors as a whole, and to find
its apolications for physies. As well known, the theory of
spinors 1s established on the combined basiec concentg:
Clifford algebra with (-1)-commutation rule, orthogonal groun
(or Lorentz group), linearization of quadratic .form:

n . - .
(%173 )2 =% ¥ (ocl)?‘ y and linearization of nuadratic

wave eguation: D"l,lf-.-(cm)aﬂ;r . First of all, our task
was to construct an assoclative algebra generallzing the
ordinary Clifford algebra, and to investigate some pronerties
related to the algebra, and the results obtained at that time
were published in a paper {_1 . Thereafter, the theory

of W -Clifford algebra with Ww-commutation rule, being
a spaclal one of our generalized Clifford algebra, were well
cultivated independently by many authors: Professor K, YTamarzaki E9]
and A.0.Morrls 3], and members of Madras school C4,5,6].
It 1s a great pleasure and also survrise for me to see that
this mathematical theory is now being avnlied beautifully to
the theory of elementary particles by Madras school under

the direction of Professor A.Ramakrishnan [_7,8,9,107.

* Permanent Address:
Dapartment of Mathematlcs
Pukuoks University of Educstion
Fukuoka, Japan.
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In Part I, we shall state the outlines of our vaper | 1]

J and, in Part II, generalizing some results of Profesgsor K.Morinaga
on the linearization of wave equation Oy=mcYy [[11],

we shall have some results on the linearizations of a vartial

TR PR |
di fferential equation: glila m VigVig* " Vi, ¥ = My Cr21.

I, Goperalized Clifford Algebrg,
1. Generalized Cliffopd Algebra:

We shall define a generallized Clifford algebra (briefly
G.C.algebra), by extending the concept of the ordinary Clifford
algebra,

Let G be the direct product of n grouns G, 32""’Gn’
and let a symbol €, correspond to each element
A2 ( Qy,0p 5..:50n),( %5 € Gi ) of G, We deftne
the followlng llnear assoclative algebra 17 with the basic
elements €, , A€ G on a fleld of characteristic zero,

1) 1 1s a left and right linear space on a field K,

A
11) Thers is a mapping @ —-»G in K, such that
ep & = 0% s  for any €y, AcGand 0EK.

111) There is defined an assoclative multiplication in 7

such that, for any two basic elements €p and €q ¢

A = (Qi,Oﬂa a--‘:an) d‘nd Bg(pinﬁIIQS"'SBn)‘

eA eB = ‘S(A,B), AB = (X1By s Ao Ry 5. 3 AnBy),




where

* (‘xiﬁi’a"lfsar” aai-iﬁi_.i sy s ak-i) ‘
5(A,B) = T Q(ay, B
ky1
(0f1,4003 3.+ -3 On=1)  (Qay-:.sAn-2) (aa)
= 9(05119 ﬁi) . Qcan_isﬁi) e ? (052:531)

(01 Ba >R 3+ 3%n-4)  (04P4, %50 0n2) (HaBy,0)

- Q@ (Un,Pe) + 8 (-1, P0) Q (o3, Pa)

[ S T S T Y S |

(1Bis ApPasr 3 An-2fn-25 An-4)
< 9(aq, Ba-1)

in terms ?(Of-kg Bi) 6 K, (k >1i),and
?(ak,Ei)=?(€k,9i) =1 (k>i)9

for the unit element €j of G4 and the unit element 4 of K.
iv) For any basic elements €4, €y and any alement O0.e K

€p(a€p) = (epa).ey .

Such a linear assoclative algebra F shall ba called
a generallzed Clifford algebra (G.C,algebra), and its elements
generalized Clifford numbers. And moreover we shall call Gi,-'-san
the basic groups of , and 0 (Oti,gj) the structure

nunbers of ‘19‘ .



(olyPas- v+ s Oi-q P-4 2Agseer sy g)
Here 9 (g5 By , lacking
the upper indices Qf'_k_:---ga'n)_ﬁi - IR ﬁn in (1.3),
A
means ? (aksﬁi) for A= (C‘ig’iﬂaa_@a:-'-aai-lei-i,---A

C(.k_i » Eko"' aEn).

We have a theorem derived directly from this definition,
Thoorem 1. let Gy and Gj (i>3) be the two basic
groups of a G.C. algebra F y and let Q(wy, 83) be the

structure numbers of '3‘ . Then we have the relations
i

1 2 4 P32 , 1 2

§(xis B3 83) = (@5 By ¢ (@, py)for any %i6 Gy 5 PiaB3€ Gy,

N .

12 ©y) 2 4 1 2, .
PlanaLy, Py = 9 (a4,Bp) § (FpPTOr a0y A4,A 6 Gy 5 Bi€Gy
The set Nj @) Ei@ji PGy > @R =1F 15 a subgroun
of G:j The necessary and sufficient condition for Nj @
to be a normal subgroup of G 13 that 9(‘%)(0.1, J) = P(dis GJ)
for any jSJeN (), GJ € GJ . The necassary and
sufficient condition for NJ ©®4) to contain the commutator
group Q_] of GJ ts that 9 (aji, 553 ﬁa) ¢ (o4, ;53333
for any §J’ 553 (<] GJ .

As for N3 (By) = §¢i> %1€ G35 Q(i» B =43 »
the simlilar results are obtalned.

i B
Here ?(ﬁl)("Q) meansg - ? ("‘) for B=‘_:(Ei,u-,&j_i)@j;&j_‘_i!"';En)-

2, G,C, algebra reducible to G,C, algebra each whoge
group 1s commutative.

! [
et " be a G,C. algebra which has the basic grouns Gi.
(i-—- 1,24 .05 M) and has the structure numbers 9'( a’i,ga) .




Then we shall define tﬁat the G.C, algebra T s homomorphie
to ‘19" s when the basiec groups G:i. are homomorphic snto G'i
regpectively, and in the homomorphismg: Of —» cx','_ 1t holds

P Coeis B :.:9'(0!;'1,_53) » By the correspondence from the basie
element €4 , Ac—;(}.-:-:-. Gix Ga X'+ - XGpn to e'A‘,

Aed' = dixaLn--%dh »
R [
the G.C, algebra O 15 homomorphie to X in the

ordinary sense. In this terminology we have

Theorem 2, let G.C., algebra P ve defined hy the
basic groups &3  and the structure numbers § (&3, $4)
(>3 i,j = 4,2, » M) . Then the necessary and
sufficient condition in order tha1': the G.C, atgebra O 1s

homomorthic to a G.C. algehra D each »f whose hasle grouns

{s commutative 15 that

1 2 . 2 4 4 2
Q(in: ﬁJ F‘J Y= (i %ﬁj) for any ?iedi R pj:ﬁjeaj .

2 2 4 3, ‘ . .
S (&iaiaﬁj) = o(djdi,py) T AW &, die Gj, $j€Gy-

3., G.C., algebra whose basic elements are commutative
th it c e b

How we shall consider the G.C, algebra whose hasic
elements €4 , A € G are commutative with its structure
numbers @ (&is Bj) (1>3 , i, = 4,2, .-.5m).

In this case we have



Thoorem 3. Let €4 be a symbol corresponding to

an element AcG = Gy XGe %+ xGyn , and let

= {Q(ais Py) 3 Q416G 5> i€ Gy » 1¥], 4,524,250

be a set of numbers which are commutative with €A , A€ G .
Then the necessary and sufficient condition that there 13 a
G.C. algebra having 'G; &s the baslc grouvos and A as the

get of the structure numbers is that

1. A 1s a commutative set,
and
2. §(di, &53 .‘?’3) Play, ﬁ;) ¢ (0'1:.53)
f{ir ahy aleGi_ s ﬁ],p_] e G:! ]
9((! algp‘))" 9(a13g3)9(d1’ﬁ.] 1. Q.
As we shall see from this theorem, in the G.C. algebra
whose basic elements are commutative with its structure numbers,

it 1s-evident that
1 2 - 2 4 ¢ o 1 2 .
Q(0y,B8y) = 9(ps Bi$y) for any aj€ Gi. Bj.PjeEGy,
i 2 2 4 ) 4 '2.' . '
e (ajay, By = ¢ (ajdj, Py) for any &f -0 €Gis )€ Gy -

So by Theorem 2, such a G.C, algebra 4" 1s homomorphic to the
[
G.C. salgebra 7 esach of whose basie grouvns is commutative.
In particular, let us suppose that the basle groups GMGZ’-"" Gn

are the cyclic groups of order ¥4, Mg sy M,, regpectively,

. m;-1 m
tee. (36 [ &85> Ais vt s (y,l* 1, Oﬁxi= g B
A3
Theorem 3, the set A = {9(@1 \ CXJ) , a3 €dy

Ay =04, ,my-1, 1.,3 =4,2,...,n} of the structure numbers
of the G.C, algebra with the basic groups Gis: > Gn




commutative and is determined by the conditions:

A+ "
peas, iy - § (o, 43 ) 9 (e,045) 5

9 (Ot}i+H, ;) 9(0@, a;,)?(ot?, 4Gy, (7))

from which we have

: s N
o (ot o3y o (o aps (papopytt

(K =0,4,...5m5-~1)

i
since O = &; , we have
m m3 . )
Plais )+ = QC @i %) = P(&1,2y) =1,
and m. m' . - —
P, %) V= P(A, o) = (X Ed=1
and therefore  §(¥i,Q)) must be a primitive P.ij-th root Wj3
of unity, whore f,ij 1s a factor of M3 and my .
In this case we have
Thaorem 4. For the G, c. algebra with the basic gronps
mj- ™mi
Gi"itei’a’i"“’ Q',il ] ’ oci‘ = &3 , the structure
. M ?\\ »
numbers 9(0&?1,&?3) are equal to miTjPJ where mij is
a primitive ,EIJ -th root of unity and ‘f-ij 1s a factor
of mMj and mj .

4. linearization of igi(mi)m
Now, in particular, we shall consider the G.C. algehra
whose basie groups,are the same cyclie group of order m:
Le,a,a%,. .. a1t J, o =& , and vhose basic elements

are commutative with its structure numbers, Suppose that

the field K is commubative and contains = primitive m-th root



of unity., If we take m = 2 and K as the field of real
or complex numbers, then we obtain the theory of ordinary

splnors. As a special case of Thecrem 4 we have

lgg_o_r_am_&’ For the G.C, algebra with the basie groups .
Gi = [_8,0(.,0'.2, .‘.,ocm_i_] , mm= £ , the structure
numbers @ (x>, o) are equal to W™ where w 1s
any m-th root of unity in K
' by
30 1f we write ei = e(&’.._,e’a?; e’_.,,e), then we
1)
have
r Sl N A
€ie; = w ”%ei , (123)>
in particular,
A 2 2 A 2 . s
eie; = w" ee; » (123

We can prove the followlng theorem.

8
Theorem B, ILet €; be the basic element € (g . . .z o g,...,8)
—————— ’('i.),

of the G.C. algebra whose basle groups are the same cyelic

group of order ™M and whose structure numbers are 9(0;3‘, a,“'):. wMJ'
( w 1s a primitive m-th root of unity in K), Then we have

an identity

o

(

ix n 1.8
1 x ei ) = eo 12.:1 (m ) > (-eo = e(e’e’...,&,)):

H

1

for &= m/(2a,m), 1f and only 1f (m/(x,m), (7A,m))=1.




6. Structure of the G.C, algebra associated with the
n :
linesrization of .2 (%)
1= 4
!
Here we write P, and P; for €, and €3 in 4.

respectively. So we have
Pipy = oBP, (>)),

where is a primitive m-th root of unity. The G.C, algehra

generated by P and Py (I=4,2,...,Mm ) ywill be called

the G.C. algebra associated with the 1linearization:

( 5 xbp, o
-

called w -Clifford algebra, (W.C, algebra), emphasising

mn i m
= p°i§i(m) . This G.C: algebra might be

w-commutat ion rule.
Now we shall investigate the center and ideal of

W.C. algebra, in each case of the followings:

Casé (I} : n tis even,
Case (Hl) t n 1s o0dd and m is also odd,
Case (IIp) : n 1s odd, n=1 (mod, 4) and m 1s even,

Case (IIy) ¢ n 1s odd, n= 3 (mod, 4), m 15 even, and

there exists an element K in X such = k2 ,
Case (IIg) ¢ N i3 0dd, n =3 (mod, 4), m {3 even m=2m,

there does not extst an element k in X such that co= k°

We have the folldwing results:
Theorem 6. If n 1is aven (1.6. Case (I)), then the
center 7, of 17 1s { P,} and the 1deals of " are only jo}
and the whole algebra '@’2. If N 1s0dd, then the center
m- -

o i -
4ot ® ts | B, P,P,...D } where P = PfPa“Pi‘--- P'u..iPn-

n
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And in the cases (IIy), (II,) and (II.), 7' 1s decomnosed
m-4

tnto the direct sum 2\2 g;fﬁ-z, of the stnple 1deals of U
=20

where

Y -1 oy - Ln-DHp-1) P
F& —1%- PZ_',_ w t-z o2, P for the cases (II;) and (IX,),
% i 7:, u)M‘L I( P’. P for the case (113);
m ‘L: . B
moreover, as for any ideal D of " , LAV i3 an {deal
o
% & { E} of ¥ and =3 @V'Z . Similarly,
DLZ #o0 EZ%0

in the case (II,) we have m&ﬂ ® 7Y%, ('ﬁ"’?(x = 7)'102)

, +o
MmNV = 2@?} and U = % @1)103' where ?ﬁ:{ﬁ,% §s

Ahto % oo .
@ o T2 gp-iCa-ay” K
U = — 7, fy] . P H
m M=o
(even)
2
and Mo+ o '“{‘ wv-pa-v’+ s
u - m =4
_ N (odd)
Moreover, PZ (2= 0,4, ..., Mm-1) are mutually Lsomorphic

n-4
and have m linearly independent dlements respectively,

and ’17""3' (= 0,45+..5Mo~1) are mutually isomorphic and have
-4
?_m linearly independent elements respectively,
Here § ﬁa‘i,ﬁﬁz---:‘%‘s}denotes the linear space over

K spanned by Bg-i , ‘03,2,,‘_, ‘t_)&_.




6, MHMatric ra G b ate
n .
m
with_the linearization of . 2y
1’51‘“ )

We can investigate the representatidn of the G.C., algebra
by means of the structure of ¥ -disecussed in 6, and the general
theory of the representations of algebra. - But, {n this section
we shall consider directly the actual renresentation of the
G.C. algebra 19‘ + We must suppose that K contatns a nrimitive
m-th root @ of unity, and the square root wi,aof w .

We have the following results.

Theorem 7. Let w be a primitive m-th root of unity

i
if K contains 2 then the general system nf matrices

Py (1=4,24-+-y 1) such that

"8

P; Py = w@PjPi(i>j) and Py = B

are written as follows: .

(I) If 1 isevent Mn = 27T, then

_'92)5-1 = W-i [.515 X---Xﬂ:sx_-glj_Xme"'xEmXEL]Wa,

N A —— )
.y
P = W—i [ —513x"'XQ‘BXQZXEMX"'XEmXEﬂ]W
2Ah = e )
<

(A'—' i’,a,---,'t)

o
where "W 1s an arbitrary regular matrix of order M L

L'—‘- 1,2"“ .



i2

(II) If n 1s odd: N = 2T +4 , then

-4 .
Py =W Lg% xn?,x.g).ixme'uxmeE,,_]W,
w 7
T—
-4
PZA = W [ﬂ3x"'xQ5XQ2XEmX"‘ XEmXEL]'W,
% w,
L T —
T
-1
' T
(A =4, 2522 T)>
m
where R 1s any matrix of order £ such that R =E,,
wa may take R = waz)doa .o y (¥4 ,---,Of.z: any 1lntegers,
0 ke
L=4,2,+* ) and W 1is an arbitrary regular mattix of order
mT,E . Here ~
‘ 4 T odo .. .0]
W O ool ...0
..Q..i = ; na .
- - {o00...0
and O, = w‘d‘--zi .Q__i_(')_ ) }
i, S 1 2 °*

Py
pt

gsneral representation of ® .

A A
Now Lf we make correspond the matrix '_l?i"L Pza... "P)r\x.n .

veing the matrices in Theorem 7, to the basic element
N ‘
P2 Bpof the G.C. algebra " , then ve obaln:the

Phen we have the following theorem,




Theorem 8 The general representat;:on of‘ the G,C, algebra i
agsociated with the linearization of i?-.:i (m")m {13 generated
by the system of matrices T} (i:-.. 4,24...s7) tn Theorem 7.

If n 1iseven: n=2r , then the faithful representation
of minlmal order ylelds the complete matriec algebra in mr
dimensions, and therafore the representation is irreducible,
If N 1s odd: N=2¢+4 the falthful representation of
minimal order 1s the direct sum of m complete matrie algebras
in n* dimensions, and therefore it 1s completely reducible,
The above remults wars obtained independently by

Professor A,O.Morris [37]. By Theorem 7, there exist only
three matrices i, S0, and S22z in the lowest dimension
m , satisfylng the two generalized Clifford conditions, from
which the general system of matrices Py ( 1=4,2,..,,0)
can be constructed. The method of construction seems.to he
essentially the same as the G - operation by Profagsor

Ramakrishnan [47].

7 .
7. Linear transformation leaving invariant L (mi)m, (m>2).
’ 1=4
In thls last section, we shall determine the linear
transformation
2 n 1
1 J
x = .2 %'J X
J=4

b ]

n i
leaving invartiant 'Zi (x7) , (m>2) . The result odbtained
1=
is the following:

13
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Theorem. 9. The set of all linear transformattons
n i)ﬂl

leaving invariant ,zi(oc , (m>2) 1is a finite group of

order m“-nl These linear transformations are written as
follows: . 3D
s 1
'1‘,1 = w 'S
where 3(1), 1=4,2,5: '35 M {5 any permutation of 1,2,...,n,
W 1s a primitive m-th root of unity, and 2Aj3 1¢ any integer

mod. m.

II.Linearization of a_ partigl differential enuation:
ip .- i
§ v

, ™

'1V12~--V1m"l}rzc V'
1. Preliminaries

The two following theorems were proved by Professor

K.Morinaga L 117.
Theorem I. A partigl differential enuation
o' VY = ey
i1s a linearization of the wave equation

oy = me)y,

if and only if .) ij
. 1
m( (X.J = 8 En R

i.e., Ocl -are matrices of Dirac type.

Thearem II. A partial differential equation

al Vi¥ = mey , (me#o)




1s a 1llnearization of the wave equation
Oy = (me)*y
1f and only 1f there exists an integer P (2 Q) such that

(11 ie 3pyo) (1liie 3 i
a' (x e e a P“' 8 1 a 5.‘.“P+2).

The condition for p = 1 becomes to:

(i1 i 1is) (i1la ip)
o o = ¢ T,
which 13 satisfied by each of the following conditions:
(11 i2) 3 PN
& 147 = % ,
and (i1 (ol i) (iglial 1,)
0: & a 3 = 8 d{ 3 .

The latter is the Duffin-Kemner relaﬁion.
We shall generali{ze these results for a vartial

differential eqqation{

ilaot- lm . . — m
4 Vi, Vig* Vi ¥ = ¢

Y.

1 .
Iet X be n variables , Vi = 3%"::1 (1=4,2,0),

1
O N x N matrices, and Y an N-vector, then a partial

»

differentia+r equation!
1
" ViY = cy - (1)

13 called a linearization of a given partial di{fferential
equat lons
iiialolim ’ m
8, Viiviau-vlmqy- = ¢ Y, (2)

15
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{f and only 1f any solution of (1) 1s always a solution of (2).

1 e 1 - » 1
Hore 8~1" 2 ™ 13 symmetric with respect to 14,123 siwm .

If we take
%.11.12"‘ im Siiia." im 1 fOP 11 - 12. = 4y T 1m s

g B i - 0 otherwise ,

then we have
i’. ia [N X im mn _om
v‘ Vi v Vi w - 2
1 2 m ] .
% 1 R '()—T:n - \r

+

: _
let A= Q" V; , then we define |Ar|| as follows:

ol = (%iiia”‘ b VUi Vi, ' '\Tim)ilms
since '
. '.'Um = @y = oci‘ocig‘-- o™ Vi, Vit Vi
- aiiaia. N Ocim q{iiﬂ)"iam ’Vim)
. - a(iiuizm Oﬂim)"’i{"iz“-'“im :

We see that

vT = T By (3)
1f and only 1if

oc(:'L1 aia... aim) : %'1112... im k.




17

Here ( Jmeans the symmetric part, Ky 1s the unit matrix
of order N, From (3) 1t follows:

Cdet )™ o gy,

g0 that detr = 0 igsequivalent to Hwr)i = o

*

Remark. If we assume that, for a primitive m-th

root @ of unity,

ol = walat , (i)
"
()™ = Ey »
then we heve
14, 1 1 13iz i
Mot ™) oS By o
gimllarly we see that
m +P (L i, im & Ip)
’U’ - m a st a | a IR a viiqj—iznlvim’\rjilu ’U:jp’
and
m P _ iiia-'- im ) ) ji ja jp v
Lizveedm  Jy Ip .
= 8’ a, eve (X fU&iitu-ia "D'.im’U:h Jp)

(ladpr Im is e ip)
a a t-ou qrii(u'izln ’lfim'\faiu. ’l)'jp.
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80 we have that

m+ P m
(Vg = Il 'UP (4)

if and only 1if

4 1 1m ji Ip) (iiia"'imj J Iv)
O(.( 10{.2...0& a” e = 8— C(.icda---ap.(s)

If there exists an integer P (2 o) such that

m+ P m p
v = llqr|| v

]

then a partial differential equation:

e Y (ceto) (1)

"

1
& vy ¥
is a linearization of the partial differentiel equation:

131« im 0
. * L4 : — (2)
Vi, Vi, Vig W= Y

. P+
In fact, opsrating (&' Vi) on the both sides of (1),
we have

b - i ] -—1
1 12 lpem o, T _ i, B+m
ot el o Vi Vi, Vi ¥ = el vy) W (e
since clearly it holds

v V: s

iy V1 vipﬂn: V(iiv '

i 'Vi'.i?-t-m) >

from (6) 1t follows

j ipsr) | P+
SR AR VigVig" Vip, ¥ =Y.




By using (8) we have

quisie imgleet | AmeRdy o v v T
l.e., o .
igig e Im Viivia"'vim (OciVi)P'\y‘ _ cm.i-P"y .
By using (1) agaln we have
' M+ P

P ,igiz.im s
¢ 8 vig_vle v"-'-!'ﬂ. Y= c ’1}!‘,
so that, since ¢ o0 , 1t holéds
igdp e iy m
3 VT Yig ¥ = Y
Thus, (1) 1s a linearization of (2).
2. Main Theorems
Theorem 1. A partial differential equation
1
@' VY = ey
1s a linearization of the partial differential equation:
giila P im

™m
vij_v:'tg'” Vim“}" = ¢ Y,

if and only if

19
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o .
Proof: let A be an arbitrary vector such that

iiiaou J.m [+ [a) [+ )
8_ V3 Vi Vi = 4,

Q
and then we transform 061 'Iri into the Jordan canonical

form:

» [ —1 )
U(dnl’vi)U = ZEB '}\.:. s(p=00ri).

Under the assumption that (1) is a linearization of (2), we can

prove that

, oM O
4 o - n
Ut vyut - W ,
O w¥

where W 1s an m-th root of unity. Therefore we see that

e m
(U *vyu™)” = By
t.e., _ (mi q‘}i)m _ En )

For an arbitrary Uy , if we take
v . i
Wil

1
o
then clearly [l A Il = 41 , so that we have

vy’ ~ N




which 18 equivalent to!

m 1 m m
v o= (@) = ol By
i.e.. (i . * ) + H
1 1 im 1419 o0 1
R S ) -

Conversely, 1f ' satisfy condition (3), then by
operating (OCl \'Z )m-i on the both sides of (1) we have

iy ia im i ra-4
G @V Vi Vig W= (@' vy oy
L6 (i1 i, im) ™
Y 7V 7T S Sk T

by means of (3) we have
.11].-?."' 1m . .
8’ vli.via"' vlm‘V"‘ L
Therafore, (1) 1s a linearization of (2), -

Theorem 2. A partial differential equation

VY = W (e4o) (1)

is a linearization of the partial differential equation:

igle o 1ya m
3 142 Viivia... vlm»qr= ¢ v, (2")

1f and only 1f there exists ean integer P (:;__ 0 ) such that

,U,m+]? - “‘v"mvp

H

iy i i ) (ladariim ]
(x( 1a at ‘e a mqainu‘l me) l_.__,,, % a i"'q p) . (4)

21
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[.]
Proof: 1ILet vy be an arbitrary vector such that

iiiz oy im o ) -3
. et ’U‘ 3
Vi, Vi, i = 1
10
and then we transform ({ U} 1into the Jordan canontical

form:
Ab 0
> 0 2\ .
X = U((xl’uﬂl)u"i= Z@ . -,'p. ) (pzo or i).
0 "a

Under the assumption that (1') is a linearization of (2"),

we can prove that

Wt o 01 -0
i o -4 wt2 ' 001i:-0

X '-"—-U(.a.lfU"i)U = .. @ Z@ 0
O ' P 0O 3.

Lot po be the maximal value of orders of blocks belonging

to zero roots, then we have

(X

T Ey)X® o Oy »

30 that o P,

- o m -
(((xlvi) _EN)(Q' r‘-.r;i_) = ON .
7 -]
Let p be the maximal value of P, for changing ~Jj under
the restriection | {r Hm =4{ , then clearly we have
ie m i2o P .
((or o)™ - Byg)(o vy) = Oy
’ Q Ar:
For any Ay , 1f we take V3 = T'Gl‘-ll , then we know Ilffrillm-_-j_.
and hence 1t holds

] 41 m 1 P
(Cor )™ — o By X' vy)™ = Oy
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that is,

1.

2,

3.

4,

5.

6.

T

O S e S

The converse was already proved in 1,
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Introduction ,

During the preparations of [27] and [31 , the author
has not been aware of [17] . Now it should be referred and
1ts logical connection with [2] , [3] should be clarified,.
The concept of the 'generalized Clifford algebra' given in [1]

may be regarded as a special kind of 'ring extension' given

in [ 2] when the basic fleld is commutative (Cf. 2).

An algebra extension is a ring extenslon whose elements
commute with the elements of the basie fleld, As a specigl
case, the gstructure and representation of 'usual' generalized

Clifford algebra which is written Cp were studied in [ 1]

originally, [2] and [3] contain some clarifications of

the structure of more genersl algebra extensions,

All concepts and theories glven in this lecture will be
taken only frem [ 21, [31 , except some illustrations, TFor

the reader's convenience, some prerequisites will be added.

—— e — — e
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1. Prerequisites

To avold possible confusion, we shall recall some ele-
mentary concepts from the standard algebra.

By a monoid, we mean a set M with an associaetive binary
cperation -

M X M =M ( (xv | =y

such that there exists the neutral element 1, 'A group is s
monoid whose elements x have their inverses X1,

Notes If the binary operation is written addltively: (X,V)
> X +Y , the neutral element is written 0 and the inverse

of x 1s written -x,

Let M, M' be monoids, A (monoid) morphism from M to M!
is a mapplng h : M —= M! satisfying the conditions

h{xy) hix)h(y) (x,7 €M),

L) = Ly

where 1M and IM' mean the neutral elements of M and M

f

respectively.

Note., If M! is a group, the first condition implies the
gsecond one,

Let My, M, be monoids, A pairing ( = bimorphism) from
Myy M, to M is amapping p : My x My—> H' such that,

for arbitrarily fixed elements al e Ml ) A e MB' , the partial
mappings

p(ey az) DMy - M (xl — p(xl, az))

P(al, ) 3 My e MY (x5 o play, x,))




are morphisms., ‘ _
By a ping we mean a set R with,two binary operations -

addition and multiplication - such that 1t is an abelian group
under the addition, it 1s a monoid under the multiplication,
and the multiplication

R X R == R ( (%9 > xy) ,
is a pairing under the addition., A fleld is a ring X such tﬁat
K¥ = K - {0} forms an abslian group under the multiplication,
we shall fix a field ¥,

Let R, R' be rings, A (ring) morphism from R to R' is a
mapping h i R -—»= R!? which'ié & monoid morphism under the
addition and multiplication. |

By a ring over K, we mean a ring R with a ring morphism
K — R, If R is non-triviel, namely R # {0} , K may be re-
garded to be contained in R, An glgebras over X is a' ring over
K whose elements commute with the elements of X,

Let R, R' be rings over XK. A (ring) morphism over X
from R to R' 1s a (ring) morphism h : R - R! making the follow-
ing diagram comnutative:

R'—E-)- Rt

N\, 7~

K

27
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which means h(Aa) = A h(a), h(ad = h(a)d (M€K, a €R);

an algebra morphism means always a ring morphism over X.

A ring R over K is regarded as a two-glded yector gspage
over K whose scalor multiplications are naturally defined. A
subset of R whlch is closed under the addition and scalde multi-
slication, is called a tuo-gided K-subspace. If R 1is an
algebra over K, the word 1two-sided' may be replaced.

For a bijective (monoid or ring) morphism, its inverse
mapping is also a morphism. Such a morphism is called a-(monoid
or ring) isomorphism. Let M be a monoid or ring. An iso-
morphism from M to itself is called an gubtomorphism of M.

Let G be a (multiplicative) group acting on an abelian
(multiplicative) group & as automorphism, we denote by & the
actlon. A mapping

f: G x G —> Q

1s called a 2-gogyele of G in @, if 1t satisfies

(o (NEy, 2 fxy, 27F £x y2) £(x, P~ = 1
(x,¥,2 € Q)
All cocycles form an abelian group Z?(G,Q).
For any mapping '
g+ G — Q,
the mapping £ ¢ G X G -~  defined by

£z, V) = (o0 e(y) g e(x (v e 0
is a 2-cocyle, such a 2-cocyle is called a 2-coboundary,




All 2-coboundaries form a subgroup BE(G,Q) of 23(6,9)4
The quotient group H?(G,Q) = Z?(G;Q)/Bﬁ(G,Q) is called

the 2-cohomology group of G in Q@ , its element is called a

2-cohomology clags.
For the trivial actlon o, H2(G,2) will be denoted

simply by HZ(G,Q).
o, The concept of ring and algebrg extension

DEFINITION, Let K be a field and G a (multipiicative)
groupe A ring extension of G gover K is aring R over K with'a
direct sum decomposition

R= 2 R
xea =

of R Into a family of two-sided K-subspaces R, , indexed by G,
such that

1) R, =Ke, = e K forsome e, F$0(x€aG);

2 R, Ry = ny (xy vy €G).

An glgebra extension of G over K is a ring extension of G
over K which 1s an algebra over K,
Note., For an algebra R over K, 1) is equivalent to the following:

1" EBvery Rx is of one dimension over X,

‘Two ring extensions R, R! of G over K are sald to be 1go-
porphic if there exists a ring isomorphism h ; R ~—»R' over K

gatisfying
h(r) = R} (x€e0G).

29



Let a ring extension R of G over X be given, Then Rl

‘is identified with K, and G acts naturally on K as ring auto-

morphlsms we denote it by opl
(o)) (N = e MeT" (NEK, X €,

where the right side depends only on A\, X, Ogy Mmay be cohsidered
ags an action of ¢ on the multiplicative group.K* .
Hote. If o 1is faithful, R is nothing but a so-called 'crossed
product! of G and K where G is regarded as the Galols group of K
over the fixed subfield, If and only if op 1s trivial, R is an
algebra extension.

Taking non-zero elements e, € Ry (x € ®, we define a
mapping £ ¢ G X G —» K* by the aqualitiles '

= £(x, ¥) e, (xy, Yy € @),

ey ey v
Then £ 1is a 2-cocycle of G in X* whose cohomology class

R e HgR(G, K*) depends only on R. In this waey, we have a one-

{o-one correspondence bhetween

all isomorphic classes of ring extensions of & over X

and all 2-cohomology classes in H?(G,K*).rwhere o runs
over all actions of G on the field K.
In particular, we have a one-to-one correspondence between
all isomorphic classes of algebra extensions of G over K
and

all 2~-cohomology classes in HQ(G,K*).




Now suppose that G 1s decomposed into the direct product
of normal subgrbups Gl,...,Gn. Then we have the natural
morphisms

H2(G,K¥) —> Hf,i(c,i, K  (ersc) (1gigm,

where Ty ls the action of Gi on K induced by o, If aring

extension R of @ over X satisfies the condition
(CR)1=1 (léién),

which means Ri = Z:G Ry is essentially the group algebra
x €
_ i

of Gi over X, then R is almost nothing but the 'generalized
] *
Clifford algebra' given in[1] .

3., Some basic considerations

Hereafter we shall always assume the following
ASSUMPTION, G 4is a finite abelian sroup with exponent e
(= the greatest order of elements) and X _is a field containing

g primitive e-th root of unity.

sz(G,K*) denotes the subgroup of HQ(G,K*) consisting of

all cchomology classes containing 'abelian cocyle?! f
f(XQY) = f(Y,X) (x, y £ G)o

Let Q be an arbitrary abelian group, 'Pa's.(G,Q) denotes

*The author would like to call such a ring extension with direct
product decomposition fof M~N type! . However, exactly saying,
this 1s not the same as given in [1)] y because of the difference
of formulations. To get the concept given in L1l , we should
add a little more restrictions,
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the group consisting of all 'anti-symmetric' palrings
Q0 X G —» Qi

Pz, = @y, (x, vy e,

For any ¢ € HB(G,Q), Qe Pa's.(G,Q) is defined by

¢, (x,9) = £(x,¥) £ly,0 "t (x,y € G
where f belongs to ¢, @, depends only on c.
LEMMA 1. We have the followin 1 _splitting exac
sequence.

1 = Ho () — H2,(0,0) —» Py . (G,0) —> 1

(¢ ¥— @)

Proof, See [[273 p. 160.

Note, Let Z, denote the cyclic group of order m, For

——

G = thxm Xémn, sz(G,Q) has the following structure,

m
o Q/Qmj‘ Koo X Q/Q n

where ™ 1g consisting of all m-th powers of elements in Q.
(see [2] p. 159 . In particular, HZ,,(6,C% 1is trivial,

where C ig the field of complex numbers. Hence we have

COROLLARY, H2(G,C% o Pa.s..((},g#),

Hom(G,Q) denotes the group consisting of all morphisms from
G to . Let Q be the quotient group XK*/K* where K 1s the
algebraic closure of X, Then to any ¥ € Hom(G,Q), taking g




section N ¢ G —»K* of  and 2-cocycle

£(x, ¥) = My Mxp) L MR,

we assign a cohomology class ¢ © Hgb(G,K*) containing f, ¢

depends only on t, which will be denoted by .

LEMMA 2, We have the following isomorphism

sz( G,K*) 2 Hom(G,K*/K¥,

(¢ v ¥)

Proof, See [31 pp . 41-42.
Now, for any ¢ € Hz(G,K*), wa define two subgroups Nc

and M, of G as follows, Ny denotes the annihilator of g%,

namely the subgroup conslsting of all y € G such that
¢ (x, ) =1 for all x € G.

Applying Lemma 1 to the group N, and X+, we see the restriction
¢! of ¢ to N, helongs to Hib(Nc,K*). So, by the correspondence
in Lemma 2, we have Y., ) Hom(N,,,K¥/K¥). M, denotes the kernel

of ﬂ)c, y this is a subgroup of N, < G.

4, Structure theorem.
Any semi-simple glgebra A over a field K is decomposed into

the direct sum of all minimal two-sided ideals which are simple

algebras:
A=Sl+ esse + S5

i)
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Note, u depends only on 4 and may be written Kge This is

equal to the number of all non-similar irreducible representa-
tions of A over X. |

According to this decomposition, we have the followihg
expressions 7

1 = & ...+ &’L ( €1 € S54) -

Then wve define two subalgebras B(4d) and C(A) of A as follows.
B(A) denotes the subalgebra generated by €;...>€:B(4) =
X el+ esvssst K 8# « C{A) denotes the center of 4 which is
the sum of centres of Si(l $1 & s

C(4) = C(Sl) + ....+C(Su).

THEOREM 1, Let G be a finite abellan group of exponent
e and X a field containing g primitive o-th root of unitv.
Then any algebra extension A_of G_over K has the followlng struc-
fupet |

1) «gimpl cobra h

— simple components,

2) B(A) = z Ay
X € Mc

(A corresponds to ¢ & Hz(G,K*).)
'8) CA) = L A,

X
xGNc

Proof, See [2] pp. 175, 170-182 and [3] pp. 44-45.




Remark. 1) follows from the fact that the group
& = Hom(G,K*) acts on A and Iinduces some transitive permutations
on all simple componentss [37] contalns a simplified proof
for this fact which means that there exists anly one non-gimilar
irreducible 'projectiVe' representation of ¢ over X corres-
ponding to a glven cohomology class ¢, M, 1s the kernel of this
representatlon. '

Moreover the centres C(8;) are isomorphic Kummer fields
over K whose automorphisms are induced by G. See [2] pp.180-182
in detail,

Note. If K is the fleld C of complex nunbers, we have M, = N,

and
A o Md(g Peees & Md(g_) (H.A copieS)

where M;(C) is the total matrlc algebra over K of degree d.
We note that By a2 is equal to the order of G.

5., JIllustrationg-1

Taking some simple caswes, let us lllustrate the theory

glven in the sections 3,4, In this section, we assume that

K

C (the field of complex nunbers)

G

% x.uuou A % (n OopiGS).

Then the anti-symmetric pairings @ e Pa.s.(G’K*) are
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given by the tables

3
Q l 52 LI I N ] Sn
S 1 %11 | ™12 ®1n
Sg | 0gy | o9 Oon
Sno | %l ®no P

shere the s 1 genarate G snd the A3 € I satlsfy the condltions

n = . =t
o, 4 =1, 054 =0y (lgi, J & n)d

Ve have such mn(n—l) /2 tables. Hence, by Corollary to

n{n-1)/2

Letria 1, thore are m non-~isomorphlc algebra extensions of

G over XK.
Lote. The abore number is not in the sense of algebra but
talpgebra oxbenslon'!, The number of non-isomorphle algebra exten-
slons in the seuse of 'algebra' can be also calculated using
Treoren 2 in the next seelion, (Cf.1,)

For ecach anbi-symetrle pairing @ , we take the pairing

£ siven by the table

f Sl 52 e Sn
Sq 1 1 1
7 Wy | 1 1
S
Lj’n 4. | “ne 1 ;




vhere all entries 1n the upper half triangle are 1.

Notes Any pairing £ 2 G X G = X* 13 a 2-cocycle of G in K*,
We see that the cohomology class c containing f determines

Q=9, Using the abqve f, the corresponding algebra extension

A 18 glven by the generators ejyeesye, with the fundamental

relatlons
eim = 1,‘ 91 ej = mij ej ei (i > j)o

(ei =e, €4, (1 & 1 €1 according to the previous notaticm).
i i

Now let us find the structure of A, The subgroups M, and

Nc of @ are the same and caleulated as follows:
Let *® be a primltive m~th root of unity and o(i.j integers

such that

o
@3 =0t 1 51,35 0

Since N, 1s the annihilator of 9. , we have

B B
M, = N, = {311"' s, ™ 35'1"{13 By Olmod, m) (1gigm} .

Note. This subgroup is reduced to the unit group which meansg A
is simple, if and only if the.determinant of the matrix (o(ij) is

coprime with m,
Example 1. (‘'usual' generalised Clifford algebras). The algebra

cﬁ may be defined by the generators ejjysessy, With the relations

o1 (Lgdgn o ey =wege (1> D,
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where o 1s a primitive m-~-th root of unlty.

In this case, we have

1 (1>
o = 0 (L =9
13 ~1 (1< 9o

If n 1s even, then det (dij) =1 and ,Oﬁ is sinple,

If n is odd, then solving the equation

_92'63"‘°oloo.c-oo.a01 -511 = O \

pl -53"..00-.0---.-.. "‘fjn = 0
ﬁl + 32 = serssassrasaey = Bn = 0 ? (mOd. m)

L IE B BN B I B BE BE BN B BN B R NN N BN RN SR N N R R N N NN

pl +ﬁ2+63+ """"‘"""’*‘Bn_lao J

we see that ‘Mc = N, is generated by the single element

-1 =1
Sy 8o 7 Sy 84

whose order ls m. Hence we have

Mmp(g) {nh=2v)
o | -
n Mu(® @eer @ M w (O (n=2v+ 1) (m coples)

Sxample 2. The algebra generated bY ey,.ee505,, with the

relatlons




B! ® ej ey (1 = J}+1 1is even)
=11 gt sau),eiej={
' ej oy {othervise)

1s isomorphic to M ,(8). The proof is left to the readers
' il

as an exerclse,
6. Existence theorem. .

According to the notation in Theorem 1, we shall deter- -
of G,

mine all possible subgroups Hc and Nc
THIEOREM 2, Lot G bhe g fintte shelian eroun of exponent e

and ¥ a field containine a printtive e-th rook of unity. Then

for given two suberoups M and N of G there oxlsts an algebra

extension A such that M, = M and N, = Ny Af and only if the follow-

2) The gquotlent group R*/i* contains a subgroup, isomorphic

to N/, vhere N is supposed to contain M,

(Let ¢ correspond to 4).

Proof. See [37] pp. 40-50,.
Note, A group H 1s called 'of symmotric type' if it is isomorphiec
t0 the direct produet of bwo isomorphlc groups: H = Ht x HY, If
X 1s the field C of complex numbers, then the condition 2) ig

trivial and we have:

COROLLARY, Let G be a finite abelian group and d, i nafural

numbers. Then there exlists an algebra extension A lsomorphic to

Hd(g @ svvsn @® Md(g) ( 22 Copies )’
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if and onlvy 1f & contains a guberoup I sueh thot

1) G&/H is of symmetric tvpe

2)  The order of ¥ is ecouation to U

3) The order of G 1s equal to udz .

Zo Illustrations-2

Taking the same group as in the section 5, let us illusg-
trate the theory given in the section 6, Namely we assume
G=2, X see X Iy (n copies).

Exanmple 1. As already shown, any algebra extension 4 of G over
the field € has the following structure:

A = My (C) @ esus and(Q {1z coples)
with the trivial condition
n® = pa?,
Now applying Corollary to Theorem 2, we can know what
nuabers d, ). are really possibles

Th i A = L L
ere exists an algebra extengion A of G = 2, x x 2z

(n coples) over C such that

A o M0 @ . @ Mg (it coples)

if and only if d, p satisfy the conditionss

1) mn = ﬂdzo
2) If n is odd, then mn devides 4.




Proof, Let N be any subgroup of G, Then there are

n positlve integers myjees my, such that

G/N o _Zmlx vose X Zmn and my devides my 4 (Lgl<n),

since G/N has n generators. Consldering the orders of l1ts
elements, the m, must be divisors of m, Conversely, for any
divisors oy of m, there clearly exists such a subgroup N, On
the other hand, we note that, for a finite abelian group of order
h, any divisor of h 1is possible as an order of some subgroup.
Hence, by Corollary to Theorem 2, we easlly see the exis-
tence of an slgebra extension of given type under the conditions
1), 2). Let us see the converse, For an even nuuber n, the
condition 2) is trivial, For an odd nimber n, if G/N 1is of sym-
metric type then My = 1 which implies that m devides 4,

namely we have 2).,
Example 2. We take K = Q (the field of rational numbers)

and m = 2 for the simplicity. Then we candetermine all 'comnu-

tative's algebra extensions of G = Zo X eeve x 2y oVer Qi

A2 L @ soeee® L (p coples),

where L 13 a Kummer f{leld over Q. By Theorem 2, we easily
see that any divisor p of of  ig reslly possible, Ve note
that any Kummer fleld with a Galois group homomorphic to G is
possible as L, Such a fact holds also for the general case. (See

(23 opp. 190-192,)
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PROJECTIVE REPRESENTATIONS OF FINITE GROUPS

A, 0, Morrig*
Vistting Professor, MATSCIENCE, Madras, India

Hotation

" Let G be a finite group, K an algebraically closed field of
characteristic p Y |G| (for examole the field of comolex numbers)
K* = K - 5‘0} , V a finite dimengional vector space over K with
(V:K) = n, GL(V) the group of non-singular linear transfomations

on V(or the groun of invertible » x n matrices over K),

1. Faghtor Sets
Definitton 1.1. A mapping < : Gx G — K" 15 called a factar set
aof G in K if '

(x4 ) et (2o 3) = (%, 43)a (g23) > for all x,y,2 & G (1.1)

and
oL(%,8) = o (€,%) = «(ese)=4,for all x € G (1.2)

where e denotes the identity element of G. Two factor sets o and

@ of G in X are said to he gouivalent if there exlsts a manning
b @ — K such that p(e) =1 and

p-Cx) e 08)

Cx, M) =
P pCey)

o ("‘v’a’) for all x,y € G.

Permanent address: Department of Pure Mathematies,
University College of Uales
Penglals, Aberystwyth, Cardiganshire,
England

43



44

Factor sets satisfy various elementary oroverties which are obtaired
in the following series of lemmas. Let ™{(G,K*) denote the set of
all factor sets of G in X, .

Lemna 1.2, M(G,K¥) {5 a multiplicative abelian groun.

Proof. DExerclsge.

Lemma 1.3, If & e M{G,X*), then there exists p e M(C,X*) sueh

that (5 is equivalent to ol and : ‘

plx, o) =4 for 211 x € C.  (1.3)

“roof, Define

ey =

1
for all xe¢ G,
Ve (o5 2c-4)

Ther, the factor set (3 defined by
P Cey) = P CH) o (x, )
PO i)

has the required property, since

Z
B, %) - { o (257D }d(%»x"1)= 4

o (s, x ) o (h )

Lenma 1.4, (Schur [407 ) If o« e M(G,K*), thenh there exists
(b € M{C,X*) such that (3 is equivalent to o and
ye _ .
B (x,4) = 4 for all x,ye G. (1.4)

Proof. WDefine
poo = [ty s

3eG
then




| %E;_d(x»fa) TTG_“(%»?;) el
M—)— = 3¢ = o(("x.)’a) >

) T et=y> )
9 &

usivrg (1.1). If we now let

g
V&l

V) = \_L('ac) ’

then the Tactor set @ defined hy
v{x) ¥ (y)
v(xy)

hasg the required nroverty.

x(X,4) for all x,yg G

ch"d) =

Definthion 1.5. A factor set o € ”(G,K"\ 1s 2al1led a rornalized

factor set if

(o, x ) = A for all x e G, (1,5}
Lemma 1.6. If xe Y{G6,k*) is a rornalized factor set, then
d_i(x)‘a) = ('ﬁ—|>°¢_‘ b)) for all x,y € .G. (1.6)
Proof. By(l.1)

% (x,e)o(y>y "' )= 4,

(o) et (2cys>y )

and

SGORCODHCLPS

It

% (eyog ™ Yot (x5 o)

That is, we have

45
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« (% @'1 0‘(““3"6—4> = o('(*a"‘;m’i) )

as required.

Definition 1.7. An element se G 1s called a & -regular elenent
if

O(CS) :c) = o((‘:C,S) for all ax e CG_CS)::{OC GG\QCS -_-.s;)c} .
( Co (s) 1is called the centralizer of s in G), vhere € “(6,K%),

e shall eonsider in particular for each o« &€ M(G,X*) and

for each o ~regular elenent se G

$.(x>8) = og(ac,s)oc'd(acsx'4, e ) “for all x e G, (1.7}

e note in particular that f, (x,s)=l if x € CeCsd> . Further,

1f & 1s a nornalized factor set
f“ ('x’s) - 0(("1.)5) (=4 (9(5, DC—i> . (1.“0’)

Ther, the following can bhe pfoved.

Lemma 1,2, If o € “(G,XK*) 1s a normalized factor set and se€ G

15 a K -regular element, then

(1) \S-ol (x,5)

1

S (xs7t) for all x € 6 (1.9)

- A
(11) 1f =s o ysy with x,ve G, then

i

£ (x,8) = S, (gos) (1.17)

Proof. (1) §,(x5>8) §, (%58 )= (x5 8D (8, Dot (3,6 ") st (x5 5 ")
= ot (x,8)at (x5, X)X Sl (s™ x")
=1 by Lemra 1.5,




(11) §, (305 £5 (4,8) = ot(xr8) et (oc8, 27 ) et (5 27 33 ol 'Cyo®)

11

X (8D & (55X ) o (x7), ) o« (g58)

n

s 5379) (55 ) w (7 g9 ) (g,0)

"t xo s = gs 3"‘

ard o'y & Cg (s) and since s is
A ~regular

« (s, :x;“‘ta) o'c"‘(rfha,s') = 4
Thus 7 '
S e58) £ (4o8) = (x, saly ) w (5 y8)

= « (9‘:3 'r:“d S)« (x"‘, 39)

= 4

These results are row used to vrove
Theorem 1.2, If «¢ M(G,X*) 15 nornalized and s 18 a & -regular
elemert of G, then '

1)

s is a x -regular slement,

(11) every element conjugate to s 13 & -regular.

Proof, (L) It is easily verified that CG.(s) = CG_(S") . Turther

Jq (x58) =4 for a1l x € Gg (o)

and by Lemma 1.8 (1)

=,

g'u:(x)sni) = 4 for all XECG(SF‘)s

and so s 1s a X ~regular element,

(11) Agaln, 1t is easlly verified that C, (tst™ )zt Calsd
e must gshow that

A7



Fulygrtst? = 4 for all y € .Cc-, (est™)

But

$u (%,ést-') = X(grtst™ ) Ctst™,y)
since 4 e Cg (est™) , it follows that

(g4 s (yt)' = tst' ,
and thus by Lemma 1.8(1i)
S (455 = Su (br )

and |

Fualyt ) = (gt ) yts, +7y™")

= w(ytrs) w(yts, v )a(tsty, y" ) Ehy")

1)

o (3, ts) qc(ta-ts, 7' ) o (ks ’h_‘%fc']—l)o( (_{:,S)

= X (gobstt ) w(kskty, y ') (&3, 7)) e (£,8)

!

Se (grtst™) §4 (e,8)
That is

oy, tst™) » 4 forallye Ce (&st“‘)‘ :

As a result of this theorem, we have
Definition 1,10, A class of conjugate elements of G is cdlled a
K . _plasa 1f all its elements are « -regular, (In the
physical literature such a class has been called a ray ¢lass
(Hoxter [7221 ).




e note in particular that 1f a class K of G is & -regular,
then the class 7\’;* of inverses of elements of ¥ 1is o« -regular,
Before proceeding to our main theorem, we note the following
Lienma 1.3, If an element seC 1s o -regular, then it is P -
regular for all P e M(G,K*) yhich are equivalent to o .
Proof. Exerclse.
Iheorem 1,12, (Conlon [[107] ). If X & ™M(G,K*), then there exists
a e M(G,X*) equivalent to X such that both the following condi-
tions are satisfied

(3y 7 (x,xV) = 4 for all x € G (1.11)

(11) $o (e, = 4 for a1l ¥ -regular se G (1.12)
and for all x ¢ G,
Proof, If ote& M(G,K*), then by Lemma 1.2 there exists a e M(G,K*)
equivalent to o« which satisfies (1.11).
Let 3a4,.--> @n} Do an arbitxﬁry p -regular class of
G, then Qg = 9"-;,(1-1‘11‘ where G = L{ CC,_CQA){)C.L . Yow,
L=

deline

\-L(.Qal):;(}(;(ig,&{)? (_i.—.ln'—-)’n)-

Similarly, define p (&) for all (3 -regular elements a € G, If
a 1is not (5 -regular, let

H(a,)‘ =1,

Then by (1.10), v 1s well-defined and {v(@.) =1 (in particular
(e) =1). Tow, let

Y (y) = LLL:L%—)- (3 CGx>4) for all x,y ¢ G.
Cpyd
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Then

¥ (as,al’) = f"(o"")(*;@'zt) P (asai’)
t-k‘ e

il

Sp i) 5 (x;', o'

I

5: (x¢> Qy) S—‘(IL;.OH
@ B
= 4

by (1.9) and so @ satisfies (1.11). In addition

Fy (xa0) F(x,0:) %" (xay % )

p e
f (o x)

P Gorasd B (eacnt, )

-

(B (xir04) [%( X aixi')p(x“,'xx,.;) (5—' (‘x.’)c};_.,(l.)

i

P (xcis agdp (e 0000, ) PG, xxy) [i_,"(ocx,;,o,,)

f#

B (xe yxe ) P Hexe)

= 4

and so ¥ also satisfies (1.12).
Remark. Unfortunately, the factor set U Aefired in the above
theorem does not in general simultancousiy gati sfy (1.4). Conlon

£107) nas in fact proved that
a1 &
V(x,4) =4 for all x,y € G,

A factor set & € M(G,K*) which satisfies (1.11) and (1.12) is




51
called a ¢-normallsed faclor set,

2. Erajecidve Representations and Twisted Groun Algehras

Dafipnition 2.1 A mapning T:G — GL(V) 1is called a projective
representation with representation space V and factor set o« if

T(ed>TLY) =ot(xy)V (ey) for all x,y € G (2.1)

Tee) = Tv > (2.2)

where o (x,y) c K. (Alternatively, it may he cénsidered as &
mapning T:G —> GL(n,¥} satisfying (2.1) ard T(e)=I,, when it is
referred to as a orojective repregertatior of degree r wlth fac-
tor set o« . These two definlitions are taker to be equivalent},
It is easily verified that the % : G X G — K™ 45
a factor set of G in K, that ig, o€ M(G,¥*), If o (x,y)=1, for
all x,y € G, then T is an ardirary representation of ¢, which we

shall call a linesr representation.

Definitior 2.2. If S and T are orojective revresentationsof ¢ with
representation ‘spaCes V1 ard Vo respectiveljr ard factor sets o rmd[':"
respectively, then S and T are preolectively eauivalent if there
exists an isomorphism FPiVy —> Vg and a mapeing p :G —» X¥

with | (e)=1 such that

PS (x) = l_;_('x YT(x> P for all x ¢ &, (2.2}

If px)=4, for all x € G then 3 and T are saild to be linearly
equivalent.

Lenca 2.3, The facter sets of nrojectively equivalert nrojective, .
representations are equivalent., Linearly equivalert projective
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representations have the same factor set.

Proof . Exercise.

Lemma 2.4. Tor any o€ M(G,K*), there exists a projective repre-
séntation T of G with factor set &

Proof. Let V be a vector space with K-basis {»@2|xeG}
Define T:G —> GL{¥) by

T »(y) = «(xryd» ey) for all x,y€ G.

Then we have

—‘—ij—r(‘a)w(%) = T(‘f-)dt‘zhﬁ)}’("é})
= & (g3 I Y% ) ¥ (XY3)

= & (xy) Tlxeyd) ¥G)
for all x,¥,2 &€ G. That is

TIT(Y) = x (%9 )T (xy) for all x,y € G .

Further,
T(eH)»(x) = A eyoe) V(%)
= (=),
that is
T (&) = IV

Thus, T is the required projective represeptation with factor set ol .
Definition 2.5, Conlon [10] , Yemazaki [607 , Tazawa [556] .
Let K € M(G,K) and

KG), = > E, »(xD l £ eK} 5

XeG

vwhere SL:u(x) \xee} is a set of elements ir one-one corresnorece
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with the elements of G. Then, addition on (KG), 1is defined by

Z Evax) + Zﬂx Y(x) = Z(Ex-l'ﬂx) 2 (‘x) 3
e

xe G XeG

scalar multiplication of elements of (KG)_, by elements of X by

2 (2 5.¥(0) = T vy e

OCE.G‘_

and myltiplication on (XKG) , by

ZLxVLX)> (Z'Y]x_vt'x') = Z \{,”‘_‘Y'B {EITD ':a('x.~3>

e xXeG XIYEG

Then, the following lemma is easily proved .
Lemma 2.6. (KG)y 1is an associative algebra wlth identity v (e),
called the lwdsted groun slgebra associated to o & M(G,K*),

This 1s a natural generalization of the familiar group alge-
bra which plays such an imvortant role in the ordinary represerta-
tion theory of G(see e.g., [117] ). Our aim now is to show that
all of the usual theorems on group algebras ean be generali zed to,
twisted group algebras.

Lemma 2.2. There is a one-one corresnondence between the projective
representations of ¢ with factor set o and the representations of
(KG) ¢ + Furthermore, there is a one-one corresvondence hetween the
representations of (KG)y and finite dimensional left (KG), -modules.
Proof's This is left as an exercise, the vroof belng identical with
'that for the corresnonding result for ordinary represehtations (See

e.ge L1227} , n.44-48),
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Thus, the problem of determining all the prcjective repre-
sentations of G with factor set o« 1is equivalent to the deterrina-
tion of all left (KG) -modules V which are finite dimensional as
vector spaces. If V is a left (KG), —module, then definé T:6 —> GL{Y)
by

TE) VY = »x2V for all x ¢ Gyv & V.

Then T(x) & OL{V), since V is a left (¥G), -module, i.e.
Tix) (wvia va) = »(x) (etVitVa) s L YIXIVy + W) Vo,

= o TGV 4+ VIxXDdVa

and T (x)V = 0 = w(x>V =0 yhich is imvossihle. Further

TG TPV = YEIVEIV
ﬁ ot(t;‘a))) (xydV
= X (xy) T YY)
for all x,v, € G, ve V,

and T(elv = » (edv = v. This representation constructed from the
left (KG), -module V is calle? the nrojective revresertation afforded
by V.‘ In particular (KG) , 1itself may be regarded as a left (KGy
module. The nrojective renresentatior afforded by (XG),, 1is called
the leff regular projective representation with factor set < of G.
That 1is {w (3ed)Ve=ison \G\} may be regarded as a K-basls for tre

vector space (KG), , if g 1is an arbitrary elesent of G, define
RIV(Qi) = »(x)¥(g) Cor all g€ &

= 0(('1'—)3,.,) y.(_xg;_) = O{CDL%;,)
and

RE=D R(‘-a)l'(%):oi(x,ta) 'RL;(_,‘.&)),(%') .-Eo'r all %GG




ag
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and so

RO Ry = «(xy) Ry

The matrix representotion R (x) 415 the matrix whose only non.zero
element in the 1'th colunn is (%> §¢) which annears in the j'th
row 1f X gL = Gy +» For the sake of comnleteness, we include
the following definitions.

Dafinition 2.8. A left (KG)  -module V is irreducihle if its only
submodules are the trivial submodules {o} ana V. A left (¥6), -
module V:i&iﬁmuﬁiﬁmﬁJLdeucihle module if for every submodule Vy
of V there exists a submodule Vo of ¥ such that

V=v1®.‘r2-

The following generalizatior of Masehke's Theorem 1is now proved
Thearem 2.9, Bvery left (KG) -module ¥ is comnletely reducible.
Proof. TLet Vi be a non-trivial submodule of V. Ther Y1 1s a sub.

space of V and there exists a suhspace ! of V such that
V = .Vl @ '.‘Io
Thus, there exists an & € Hom (V,V1) such that if

V:\/;—l'w )VGV} V‘E\/|,CJ€\/’\/>

then Ev = V4 , Let Fi¥ —>3 V be defined by

Fro= il 2 00 vy

for all v ks
xeCr €%

(which 1s meaningful since |G| # o0 in X), Then FE ¥4°1k (V,7),
ol

<)
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since for all v €V,

Foepv = A 5 2o E v gy
' l6\ xee

= 1 awy) -
VGl yee %043 5(40)™ ) ()

and by (1.1)
o (3 y) (375D = 2 (3,9 xCe)
that is

Folgv = »(y) Fv for all §€ G,ve V.

Furthermore, FV & V, since

L Z_y(_x.')E ety € Z v(!-)EV c Vi o
te g xel 16l xee

since V; is a submodule of V. Also if v, € ¥y,

let xew

F Vi = Z y(x) E -”(.:'CJ_' v
S wix )P v
fed) a
. \/1 ]

since Vq 1s a submodule of V and BV, =V;, Thus FV=v,. Yow, let

Vo= {v -Fv | veV} , thenV, is a sutmodule of V and

V=Vl® V2.

x5y 4) (3337) y@IE @'y



That 1s, V is comnletely reducible,

As a consequence of this theorem, using welleknown results (see
e.g. (117} ), we have

Coratlary 2.10. (KG)y 1is a semi-simnle algebra.

Corolary 2.1%. If T:G —» OL(n,K). is a orojective representation
of G with factor set o , then T 1s linearly equivalent to a pro-
jective representation S(with factor set « ) such that

_‘?’L(ll\.

Sx) =

. \ S-n('x.)

where S (x){1i=1,...,n) are irreducible vrojective representations
with factor set o . .

Corallary 2,12, ( €113 , p.186) (KG), = M (K) + ...+ M ;o (K),
where ¥, (K) (1=1,...,8) is the full matrix algebra of My x v
matrices over K. Further, there are s distinct irreduclible inequi-

valent (KG), -modules My,...,M (In facet, HMK(Mi,Mi) jats MM{K)

g
and (Mg 1K)em;seach M, (K) 1s isomorvhic to a drect sum of My
coples of M; . This in turn implies that the irreducible projective
representation of degree M afforded by Ma’- appears M, times as an
irreducible component of the regular projective representation with
factor set & afforded by (KG)eg ).

‘Wo now conslder Z = 2((KG)y ) the centre of (KG), , that is

Z = 51,(- e (K&, l/(r{l,z alr for all ae(KG)q}

Tt is easily verified (see [ 117} , 0.187) that Z is 1tself ap

~



58

slp~mea over K and that

Z

R

Z(Mm‘(l‘())@) Ce . @Z(M'ﬂs(K)) .

Further Z(Mm(K))’_‘.{ K {i.e. the only matrices which commute with
all matrices in My (K) are scalar multinles of the identity
matrix), Thus (Z:X) = s, the number of inequivalent irrefucible
nrojective representations with factor get o« = (Zs7),

The following theorem glves another method for computing
the dimersion of Z over K.
Thenre:. .13, Let «Le  M(G,X*) be a c-normalized factor set.

Let Kiy v %t be the < ~regular classes of G and let

K, = % »(3) (L= 15en®)
qe R

Then 51 Kiy oo K&-.}( 1s a K-basls for 7=7((KG),) .
Proof. If x & G, then

S xy” KS v(x) = Z »(xD7V w(g ) v (x)
€ ¥y

= 7 v{x'gx) = Ky
geRy
and so Ki (J=ly...,t) € %, The set {Kl"“'xt} 1s clearly
linearly independent over K since each consists of a sum of disjnirt

sats of group elements., Let v ZG I,a :‘J(‘}) e Z . e first
%G.-.

ehow that if g% 4+ 6 » then g is a X -regular element. That is,
wve must show that 1f % € Co (§) , then §,(x,9)=4 . Since

7162' , -»Lx)"'té v(x):a for all xe&G, or
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7;3 » (x> 4:;(3) '»(x)_;.z Ca:v(x) y(%):f(:c) Lé y(3)+2‘43;v(3)
9+2 Aty

This means that

‘é & (13)%)3’(%) + L z)a 5 (I)g Y (™ 'a’l) Z%v(%)-rz zall’(g )
3+ 7+9

and as TGg o © 1t follows that & (x,g)=4 since x7'g'x =g

would contradict 8’ + 9 . Thus g is a o -regular element.

Hence, 1f Yy :ﬁ%'ﬁav (g2 € Z ', the summation is over & -

regular elements = of G. Turther now
—
» (x) ‘é, v(ix) = k(] 2

implies that

7%y $ulxrgdw (atgr) = Zﬁww
%GG— (3€G-
and since S‘d(or.,%)::l for all % -regular ge G, and x € G,

then
ti-’% = ZJmcécc"'

Thus y is a linear combination of i K\,.',.,K{}as required, and the
proof 13 comnlete.

It now follows directly that

&D_._Q_-Lla]:y__u_.l& The number of noreequivalent distinet irr educible
vrojective representations of G with factor set o 1sg equal to the

nunber of ¢f -regular classes of G.



60

Let Pl snd P2 be projective representations of G with factor
sets o and ﬁ resnectively ard representabtion spaces Vl and Vp

resnectively, Then, define

(P ® P) () (W) = (ROI® Palx)) (M@ Vy) for all xe G,

vy & V.)V,_GV;,,

then

('P, @’Pa)@c,) ('ﬂ@?q)(_ua) = (Y By D (Pl(@?a )an)

For all %Y © &

That 1s, P169 Py (the direct product of Py and Pg) 1¢ a projective
repressntation of G with factor set X( where é::(s (*ry)= gy B lxayd
and represamtation svace V) & Vz. (This indicates an error in
Rudra's (487 treatment of the dlrect produet of vrojechtive repre-
gantations. In his vaser an incorrect constructlon for obtaininrg

the direct vroduct of two projective represertations wlth factor set o
to give a orojective reprosentation with factor set & 1s glver.

The aﬁove shows that the resulting projective representation will

have factor set (xa,. Rudra's consiructior 1s only valid for ovro-
jective revnresentations projectively equivalent to ar ordinary renre~
sertation).

Remark. The following theorem due to Clifford €27 (see also [117],
p.3E1) shows that projective represertations arise naturally in the
study of ordivary representalions. ‘

Theoren 2,15, 1If His a normal subgroup of G and v\is an irredu;
eible (KG)-module, then V réstricted to H is a d rect sun of S iso-

morplic irreducible KH-modules. If T is the representation of G
afforde? by V, then
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T(xe) = Pr(x)® Py () for all x € G

where Py and P2 are irreducible projective repr;s'sentations of G
and Py is a grojective representation of G/H of degree s.

For further work of this type, see Tucker (5673 , (577,
conlon {10] and Mackey (317 .

3. Schur Multiplier and. Representatiopn Groups

-If =, 0 e M(G, K*) , we have called « and f equivalert
factor sets if there exists K G —> K* such that

PG (y)

x (x>
Y

r_’) (,JC)‘J) -
This is easily verified to be an equivalence relation on M(G,K*),
Let $XY denote the equivalence class which contalns o€ M(G,E*),
Let Hz(G,K*) denote the seb of equivalence classes of factor sets.

1f (=%, § e}, we define multiplication on H2(G,E*) by
¥ 1ey = R~ed

Then, we obtain the following

Iheorem 3.1. Hz(G,K*) 1s a firite abelian group. The order of
every element of HQ(G,K*) ig a factor of the order of G,

Proof. ‘e have already vroved in Lemma 1,4 that if o € M{C,¥*),

and we define tG —» K* by \4(1): “«(«.,g), then
. qeG-
gl
o (e59) - Ry
pexy)
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or In other words
ye

oy =2

which proves the second statement. Turthermore, in Lewa 1.4, we
showed that there exists a factor set (b equivalent to % which
is a |G\ -th root of unity. Thus, every equivalence class Sl«}
contains a representative {(L} which ig a |G| «th root of unity.
Thus, there are at most a finite number of equivalence classes of
factor sets ard the first statement &is proved.
Defirition 2.2, HE2(G,K*) Ls called the Sghmr Multiplier of G in X,

Before proceeding to give further crvelal results on Schur
Multinliers, we demonstrate its importance in the theory of projec-
tive rapresentations of G,

4 pair (G*,7T ), where G* is a group ard 7T a homorornhism of
G* onto ¢ is called a group extansion of ¢, (G¥% 77 ) is called a
cerdral. gropp. sxterslon 1if the kernel A of 97 1is contained in the
centre of 5*, Thus & ad C—‘,— and & € T{G*), Let{w'(ac)\ocecv}
he a set of cosetl rep:\esentatives of Ain ¢% whieh are ir one-one

corresponierce with the elementy of ¢, Then, we have
ALxrP) swtdw (4) w (xta)—'l e A for all X, v € G

Let T he a linear representation of 0% withr represertation svace V

such that

T (alxry)) = (> y) T, ,

where o (x,y}e K*, Lat T be ar irreducible linear representation

of G*, then sirce A © 7(G*) it follows hy Schur's lemma that
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T() = x{a )Ly, for all a e A. In particular, let T(a(x,y) =o(x,y).

If we define Pi& —> "GIL(V) by P(x) = To (x})) for all xe G, ther

P Ply) = T (W) T (wiyg)) =T (aboydw xy))

= A& {esy) Tlxry) for all x,4 € G.

that is T isa projective reoresentation of G with factor set o .
We say that the wrojective representation P is linearized by the

linear representation T of G%.

Definition 3.3+ A representation groun G* of G 1s a finlte group G*
of lowast nossihle order wich 1s a central grouvo extension of G
sueh that everv nrojec#ive reoresentation of G 1s equivalent to a
projective reoresentation of G which is linearized by a linear reore-
sentation of G*,

The following theorem due to Schur [407) vroves.the existence
of a representation group. The nroof glven here 1s due to Asano ard

Shoda [47] .

Thearen 3.4. G has at least one renregentation groun G* of order
2 :
| WP (e, k) {le) | Furthermore, the kermal A of the extension is

i somornhic to H?(G,K*).

Proof, HQ(G,K*) is a finlte abelian group ard so is a M rect product

of cyelie grouvs

M (e k) = (1) x o x (£<™1)

where (%}fb}) denotes the cyellie groun generated by «¥>  of order

ey (say) (1=1,...,n). By theorem 2.1, {cx“)} may be chosen as an

e
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ei'th root of unity. Let ZL denote a primitive ey'th root of urity,
then

“s )
{ a-“t‘-sg S
u(‘-) (“x’"‘k’) = ZJ:. W‘)e?e (9] S—_ O;(:L)‘_&’_) Se“'_i
By(1.1) 1t follows that
> N o Gur
Py + Fugug = Gy gy + Qyyy (med €2) (3.1)

Then 1f 3} e HR (6,k") y then o 1g equivalent to a factor
set such that

. 2, 04 e Lr
B oy = (M) («@oogd) - (o)
o< se’

(‘Z’Q‘ 0(:,-&) (._(;f.-r O»Gr_’l,’
= 1 P o
Let A be an arbitrary finite abelian groun such that

‘ 2

A > H (G;K*)and let @; e A corresnond to the element.

) e p¥ (e, w¥) . Let o

O'%.a)c,g) Qeoyy D
a (x>9) = o Qe 2
then it follows from (3.1) that
a(xy)alxy,3)=aoysdalyz) » 9% €6 .
Lot %X € Hom (A, k™), derine -
o\
O.(E’laz,‘*) 0‘(13‘3)

‘-I—',‘-_("Cf)‘d) = % (a('x:.\-&)) = K (o) L A (o .

a, |
then W, € H(G,K") and % (ai) 1s an e 'th root of unity,
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Then as % runs through the characters of A, then by (3.2) the &,
run through all the factor systems of HQ(G,K*)-.

%
Let & =%(x,a,)‘xee,aeA} and define

(3¢5, 0) (4, L) = (ocy, aGog) o)

Then, 1t 1s easlly verified that O* is a group such that
3 (1,2) lag A'B o A 1is contained in 2(G*), Further, let
» (x)z(x,1) then {w(x)| x¢€ G} is a set of cosgset renresentation

of A in G* and

wxIwv(y) = CHRICTIPEEN CERICAC S 2D, {ra69) (xys1)

% - _

1% follows that %— o G and 0% is a central extension of G.
Let T:G —> GL(Y) be an arbitrary orojective reporeserta-

tion of G with factor set o« . Then, by the above corsideratiors,

there exists a linear character \{) of A such that
Y (aGoy)) = 2 lxryg) -

Define T*:G* —> GL(V) by

T¥ (vixra) = TEOY (@),

then

T* is a linear renresentation of G¥, that is, T is a linea-
rizable representation. Thus G* 15 a central extension of G such
that every nroject ve representatior of G is linearized in G* and
e ={H? (6, K*)11 &\ . Rut Schur (451 also nroved that the
order of a representation group is Z | H* (6, k¥)IIG1  and so G*

is a representation grouv of G.
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In (4973, Schur slso proved that the Representation Group
of 6* is a characterised by the following propertiest- G* contalns
a subgroup A such that

!
. A &t 0 ZE)

1 &

PR g

A
111 (AL = IR (er kIO

12

e

The representation groun 1s not in general unique, Schur [50] ob-
tained an upper bound for the number of nor-isomorptic representationr
groups.

Thearen 3,8. The nunber of non-isomornhic representation grouns of

G 1s less than or equal to

TT ( EA'- >ﬂ3')
Ly 4 ‘

where {E;,’S and {"1375 are the invariants of EJG;' and W2 (65 %)

respectively. If G is a perfect group (1.e, G'=0), the equality
sign holds., If ( \éﬁ\ 2 P43(G3\<*))=:1 , then G has only one repre-
sentation group.

For an alternative elementary vroof of this theoren, see
Asano and Shoda (413 .-

The nroofIOf'Theorem 2,4 1s a vurely existence nroof and 1g
of no value in the construction of a representation group. Schur
[_50] also gave a nroof for the exl sterce of a represertation groun
which at the same time gives a general method for the eorstructior

of the representation groun and Schur multipller.
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Theoren 3.6. Let F be a free group ir n generators such that

r/R o2 6, Let H= _F and N= & ., Then M is a firitely

Cwrye] LR, F] -
generated ahellan groun contained ir the centre of Y. Let ¥y be the

- (%] - RnF’ ~ HQ K*) 7
torsion group of ¥, then ¥y = ——x = (e, and rark *=n,
‘ LRr,FD

If ¥ =¥ x ¥,, then H 15 a represertation grsuv of C.

Ng

Tor a modern vrocf of thls theorem, ssee Tuppert Cea) .
Otﬁer results were obtained by Schar and others which are vseful ir
determining the Schur wultiplier. These results, together with others
involving projective representations are now preserted withou®t oroof.
Thearen 3.7Z. (schur (5071 ). The degree of every irreducible nrojec-
tive representation of ¢ is a divisor of {al| .

Tor a vroof of this theorem see for exawple (113 .
Theoren 2.5, (Schur [50] ). The orly primes that occur in \HQ(G;ﬁ*)[
are those whiich oecur to at least the secord vower in i ¢! ., Thus,
groups of square free order lhave trivial Serur multipller,
Theoren 8.8, (Tehur{ 50} ). Tet S be a subgroup of G of index =
and w{) derote the elements of HQ(G,K*) of order relatively prime
to 1. Then H(n) is isomorphic to a subgrouv of Kz 5,7%3.
Thearer. 3.10. (Schur{lSO] y, Let S be a p-Sylow subgroup of G.
Then a p~dylow subgroup of HZ(G,K*} 1¢ isomorphic to a subgrouﬁ of
HZ(S,K*). Tor an alternative oroof and an improvement of this result
see Koehendorffer ({207} .

Tris result is especislly useful in oroving that the Sehur

multivlier of a grouo is trivial.

Theoremn. 3,11. (Serur U813 ). If G has 1 gererators ard r defiring

relations, then 12(G,K*) has (r-n) gererators. Thus if r-r &0,
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H2(g,k*) 1s trivial.
Defirdtion 2,12. Let G and H be arbitrary groups, then define
P(G,Hy K¥) = § 5 :6XH = K*1 £(a9,4) = F@A FGL W)
-‘i‘-(ca) 4iha)e 5(‘3:&| )g(%; f«a)

Sjoﬁ‘ G.“%,%| »3a € G
A, 0y B2 eH}

If Foofa e P(6H, K¥ ) define

F1 52 (o0 = £ G,00 Salqty .

Ther ™(G,M;K¥) is an abelian group. This may be used to determine
the Schur Yultiplier of a direct vroduct of finlte grouns,

Ihepren 3.13. If ¢ and ¥ are finlte groups, then

H%(GxH7K*)ﬁgkﬁ(ﬁ,K*)xkﬁ(H;K*)xT%ﬁqHsK*)

This may be exterdad by induction to prove that if

G= Gi%xGax---x Gy | then

. -
H( G, k¥ ) = ']TH“(G;,K*)XT.T PG, Gy KD

L= 148 EY

4, Frojeellve Sharzchers

Throughout this sectlon we shall assume that the fachor set

M(G,K*) 15 c-normalised, that is

(1) xle,x™)y=1 | for all xe G

(11) « Q?C;S')o("'{(xsr."‘,oc) = o((x,s)o{CacS,x,"')

= 1 for all « -‘regular g and for




Dafiviiion 4.l. Let T be a vrojective revresentation of G with

factor set o ., Define
Lx) = Trace T (x) for all x € G

Therr ¥, is called a nrojective.character of G.
Lenma_d.2. (, 1is a class function on G,

Froof, 7le shall crove tha?

([(xsx')= 1 (8) for all & -regular s € G and
for all x € G

and
(L(s) =0 1f s is rot e -regular.

It is easily verified that for arbiirary =x €G ard o -regular
se G

T ) T(s) T(’C>_1 = d(-"-’s) ot st fx_)Tstx"i)

b

T(’X.G'-’C‘-‘.l) 2

since o satisfies (13) above. Thus, sirce equivalert rmatrices
nave the same traces, the first result follows.
If s is not o ~regular, there exists xe C, (s) such

that oK {x,s} 2 = (s,x’. 3ince xsx e s )
T(s) = o(x>%) d“i(s,r_) T (s)
and taking traces lmvlies that

Tes) = o (x,8) o sy ) T, (8)

witlel wmeans that \C,(S):: o .,

69
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Iemma 4.3, Linerly equivalent projective representations have

the same character.

Proof, Exereclse, ‘

Projective chargcters also satisfy the usual ortrogonality relations.
Let Ty, ..., T4 form a complete set of irreducible vrojec-

tive representations with factor set o with degrees 5-4 seees S

be
and characters \l;,, .-y by respectively., Let C=[Yrs]ian arbitrary
Fix § matrlx and

P 2 Zite) Sy

el

Then, it follows that

u

2 ®(gae) Zi(y=) CZ45¢™)

AN

il

xe G

Zo(tg »y e he! Yot (' a*a)Z, x')CZ x"i)}Z ()

11

P Z}-' ()

1f we assume that o 1is nomallized (i.e. oL(x.3?) =l for all
X € G). Thus, we may apvly Schur's lemra and obtain that P=0 1f
1 £) ard P= AT, if 4=, For fixed lym, vut ¥ - b ,

and Yyg = O 1 () £ (Rm) , then if Z; )= [a,,s CHP
(#5) Y
> apaedad ezt o
x&lr

and




(€] () -
Z Q.,,-‘Q, (I)O"'ms ('JCA) .'.-._’>\_2'm Q;.,s ’
el

for all (r,l,mys). Put s=r and sum over s, then

£,
L) A
P2 o 0 ) - Singw

¢ ) Rl
Z Qpg (x> &0 (™) = 2= Svs %%
xeG L

Now, vut 1=r and m=s and sum over r and s which gives

_ N '
D U, (x) Gy ) = By el s (4.1)
xe@ .

which 1s the first orthogonality relation for vrojective characters,
Let %,, ..., ¥, derote the = -regular classes of G3 since orojec-

tive characters are class functions, defire
KP = T (%) £ xe¥X
L = L (e or any e

By Theorem 1,2, the class containing the inverses of the elements
of &Se 1s also e¢ -regular; denote this class ag % « . Then

¢
(4.1) can be rewritten as

+ e ?* _
Z ’gVP \Cj, ‘C‘j = 8"'&1 (&
Pxd

71
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where b, ‘Ls the mumber of elements in the class XK, . From this,
the second orthogonality relation

+

e o¥ '
> 4l = l{—;— ®os (4.2)
iz A

is obtained in the usual way., Over the complex field,

* pa——

4, =1

As a consequence, we can prove

Theoren 4.4, Two projective representationsTl and T2 with factor
set A are linearly equivalent if and only if they have the same
projective character,

Proof., Exerclse. _

Let H be a subgroup of ¢ and let V be a left (KG), -module,
then V may be regarded as a left (KH)  _module by restricting the
domain of operators to the subalgebra (XF), 3 in this case, we de-
note the module by Vg. If V affords the vrojective representation
T and Vg the projective representation Ty, then

Ta(R) = T(WD for all he H,

Let L denote the projective character of T and 5, the projec-
tive character of Tye If % 1s an irreducible charscter then in
general ;H is a reducible character of‘ H,

We now consider the inverse problem; let W be a left (KH), -

module. Then

&
(K&) @KH‘W = W
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+t o .
77 @) =£§Z(%~3%~)- AR SCATLI I

[ ]
where § Cx)= T(x) if x€ H

=0 Af xé .

Tlis conforms with the usual formula (see L11] , ».268) for obtai-
ning a class function on G from a class function on H. Therefore, -
all the usual induced character theorems for linear characters are
valid for projective characters without further oroof. For examvle,
Iheorem 4.8. (Frobenius Reciproeity Theorem). Let Tyy...,Ty be a
complete set of inequivalent vrojective representations of G with
factor set of and Sl,...,sS a complete set 6f inequlivalent nrojec-
tive representations of H with factor set o . Let fhe charascter

of T, be . (1=1,...,t) and the wrojective character of S, be
i A : i

G; (1=1,...,s) then if
g |
.. . L= ,.-,'b >
biu = é.;_a*a By o Gi=tors®)

then
G

17 -

t
O.A'_a' ¢)L (é ;i’.'-)s) .

L= A
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5. Schur Multipliers and Proieative Renreqpntatioﬁ af Particular
Gropps., |
We shall concentrate on finite groups which are imvortant in
physies, Namely, cyelic groups, dlhedral groups and symmetrie groupsi.

Examnle 1. Cyelie zroups Eom .

Lot %.n, be a eyeclie group of order n generated by x. Then

x" = e and by Theorem 3.11 1t follows immeliately that HY (%“,K*) €

Alternativelv, if we let T be a projectlvo representation of 9(,

of degree m and factor set & then
o . ‘
a "4
vhere & (%) = X(xx)atlXhx) . a(x »%). Define

/ i ' ' ; ,
T (5 = m T (=D 7 for all X & G’
%L

then
(T/E)Y 2 Tes

and so T 4s a linear representation of %w which is projectively
esulvalent to T. That is,every vrojective representation of %,

is projeetively equivalent to a 1lnear represertation of %w .
'1\ A
{ 9:, ‘x, =€, "5 =€, % %< ua. }
If nis odd, Dsm has only ecyclic Sylow subgronps and thus

H*(D,, ,x*)=E . If nis even, then Schur showed that D, is a
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T (Sg:) = g (e ®R-.06 ®(e® ¢"+ e®T )®T ®,.,<gq

, i_4 L L4 i Lad (w3 By
(Lzdserr»=4)

and

T(Sﬁidfi) = %(e ®'~-®&%L®(i®o*)® T ®“_®-:>

S ,CL:A"""”')
then the relations (5.4) are easily verified. Tor a systematic
construction of projective (spin) representatiors using CLifford
Algebras, sece Morris [36]) . Schur {517} has comnletely deter-
mined the irreducible projective representations of the symmétrﬁc
and alternating groups. Frojective character tables for small values

of n are avallabvle in Yorris [361] .
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e
Plxy) = PPl .

Thus, 1t follows that

Plxyd Plx) = PLgD o
PCyd] Py Nt

n

-4
Plxy )?Lx){?(:ua)}

-4
Ply) {P O Py
= ’P(x)_'i .

and ralsing this to the nth vower gives A 21 and so No=xl, If
A =1 then P is a linear representation of %y, and for a non-trivial
projective representafﬂ.on. 2 must be equal to 1. If n is odd,
1et PMxy= —=Plx) ) ’t"ba): PLy) and
Pleg) =-Pxy) = —PxIP(Y) = PIxd PLY)
and then _
(P oY = (Pl ¥ (P () = T

and so P' 1s a llnear renresentation. That is, if n is od?, Dy, has

=

no non-trivial vrojective representatior. If n 1s even, no further

such simnlificatlon is vossible and furthermore, 1f we nut

w0 '? 0O A
- (4)= '
P = [ o w,,‘} and 4) &:L o\ s where > is a

orimitive 2nth root of unity, then

“n —_ 2 .
(P>l = =L ,P(y)= T 5 ara 'P(:c%)az T, . Pisrot

equlivalent to a linear representation as can he verified by comparirg

characiers.



78

Zxannla 3. Symetrlc grounsz.

Let S, be the symmetric group of degree r. Then S, is
generated by the trarsvositiors S; =(1,1+1) (i=1,...,m=1) with the
defining relations

S. = e (L=A, c0y n=14)
3
(SL, S.i-n)

884 = $4Su (i+4 24

e (L=, ---3m=-2)

Sehur [ 51) wroves that S, has Lwo reprosentation grouos Cn o oavd I
of order 2(n!), where [ 1s generated by f,t;(i=1,...,n-1) with

defining relations
2 2 > th; = Shyty
$Poe, o= f, (bt =§ s ki FEgEL

! '
and .[_‘,w is generated by f,t4(1=1,..,,7-1) with defining relatiors

!

2 / ! 3 . I
S-& =€ “C’,{, = € ‘)_(jci 'b.s',-\-l):e, 'ti‘b’a = -h-ta"b;_

2

The Sehur Yultinlier ¥° (Sn,K*) 2 K,

igain in thls case, we shall obtaln the nrojective revresen-
tations directly, TLet T be a nrojective represertatior nf 54, of

degres m. Then

?CQL)& = OC;_,I.m (J:.:‘.L,ufa“;’;i‘)a

(P(e) Pin Y = GuTwa(L=to-ns® 225 (5.2)

PLSD) PLSL) = Wiy TCs3H>PISL)
8 4 (L ey D . (5.3)




From (5.3) 1t follows that
Pls2) PCoy) PUs) ™ o vy PCSD
and squaring hoth sides gives

2
Vi =4

Let Si = (1,1+1) am Sg = (§,3%1), where J§ > $+1, Then 1,1+1,

’ - !
Jy3*1 are four distinet elements. Let S, =(1',1'+1), Sé =(§1, 3+
and t €S, be defined by

A S A T Y S LR
t = (...,“_’ e .. 3” _2;1;1.-..
then

/
t et = 5, and %‘19?;4;: 5.3 ard 8o

Pee) P (5 PU= XP(SL) apa Peyte(sIPle) = p P(SE)

where MW € K* From (5.3) 1t follows that
PCEY T PSP TE) = Fy P T a5 (SOPGD ,

and

M PCSEIP L)) = A Wiy P LS Pal)

Thus 7 2%'3" for all 1,4%,4,3' € {1,%...,m } . Let Yiy=c

where ¢ = + 1. Trom (5,2) 1t follows that

TEIT 20 TG) = B T (Suwa Y T(s,5 T80T

79
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and squaring both sides glves

2 3 3

(64'. = ol 0(1.',4—1 '
The o (Li=4,-..,n-4) in (5.4) con be chosen arbitrarily.
Let o me(i=1,...yn=1), then (; =+ 1 (1=1,...yn~2), Then define

!
T (8i) = cQa-rrPu-n TG if 1 1s éven,
= Py Beia TCSL) if 4 is edd.

Then, an elementary calculation shows that

' 3 —
TI CS‘;’ )a" = £ I‘YT\» 2 [T’ CS;.,)TICQA,-\-‘.\..)} = ('_‘,_LW\, 5

, , (5.4)
T/Ce) T/ (8;) = ¢ T (850 T L8

That is, every orojective representation is nrojectively aquivalent
to a projective representation satisfylng (6.,4)., If e¢=1, then T'

1s a linear representation. A non-linear projective revresertatior,
1f 1t exists w1l satisfy (5.4) with e=-1. “le row glve a corstruc-
tion for such a projective revresentatlion,

-

Let

1 O o A o -& 4 o
€ ::.{‘ ] ) % '-'-& \ 2 0"-:& 5 T =& P
o 4 A © - @) o -4 ]
then 1t is easlly verifie? tlat

?&—_- ot L x¥-¢€ , Qo= —0c€ > PT =~ T 5 OTT=-TT

Murther, if m =¥ or p=2» *1, set




L3
representation group of CDM and Hs' (Daw KD o %a, . Alter-
natively, the vroblem may be corsidered directly as in Frucht [17]

Let P be a projective representation of degree m wlth factor set «

of ﬁgn. Then

& &
('?(‘JC))“' = )\Im ,(?(.‘3)) :\le and ('P(ac'-a))z-;,"lm

Clearly, P may be replaced by a nrojectively, equivalent set nrojec-

tive representation 7' such that -
P ‘as)z’P’cx'S?’(*a)s 0gv gm~-l, o <523,

(that is, vut P/ (7 §*) = «lxr%) - ot (S et (2 P D)

In partiecular
Pliey) = PO Py

Furthermore, let

P Lg) = f’“_{\: PlCy)  and P (xy)= \J_‘-g?' Ceyd)

then

(P (417 = T and (PUGedd= T -

Thus, we may assume that our factor set has heen chosern sueh that

PxY = XTw o, P = Pl ®s Tow  and

'P(x"‘as):'?(x)*’?(‘a)s whete *=20,->mn-135 =01 and

in particular
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GENERALIZED CLIFFORD ALGEBRA AND ITS APPLICATIONS
OR
A NEW APPROACH TQ INTERNAL QUANTUM NUMBERS

Allgadl Ramakrishnan
MATSCIENCE, The Institute of Mathematical Sciences,
Madras-20 (INDIA)
ok ok

The confluence of relativity and QUantum mechanics was
achieved when Dirac just wrote down his famous equation in 1928,
This achievement was made possible since he was able to construct
four mutually anti-commuting matrices so that the Hamiltonlan
‘was conslstent with the quadratic relativistic relatlon between
onergy momento and mass. HEarlier, in non-relativistic gquantum
mechanics three mutually anti-camputing matrices were found
sufficient to inelude the concaept of intringic spin. It was
immediately noticed by Dirac that the quantum mechanlcal concept
of spin was also imbedded in his Hamlltonlan. In the years of
uninterrupted triumph that followed the birth of relativistic
quantum mechanics, the study of the mathematical significance of
the transition from Paull to Dirac matrices was considered quilte
academic and therefore ignored. But it was obvious that it was
st11l a live and unsolved ppoblem since Immediately after
Dirac's formulation., Paull attempted such a study and as late
as 1966, Feynman hinself raised the question of the relationship
between spin and relativity in his famous Caltech lectures even
after the totsl triumph of his graphlical formalism in electro-
dynamics.,
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Ve thafefore set as our objective the understanding
of the mathematical procedure of obtaining Dirac matrices from
the basis Paull set. We thought it was just the right time
now to take it up since the spirit of the hour demanded a re-
oxamination of the whole structure from the polnt of view of
mathematical rigour and loglcal precision, To our strange sur-
prige we found that the procedure which Dirac used was of such
general significance that 1t could be ;xtended into a grammar of
anti-commuting matrices, the ramifications of which give us a
better insight into various branches of theoretical physics -~
relativityz complementarity, propagator formalism and the funda-
mental concepts of spin and mass of elementary particles. Even
more surprising was the possibility of enlarging the concept of
anti-commutation to w-commutation where is a general root
of unity.

This work was presented in a series of papers most of
which were published in the tTournal of Mathematical Analysis
and AppliCations'l). We shall now present a rapid survey of
this work at this confersnce ™,

1. The Generalizgd Clifford Algebra.

Our starting point in the fundamental cyclic n x n matrlx

th

obtained by shifting in the n x n unit matrix k rovw to

the (k-1)% row, k = 2,3,4.4,n and the first to the n-th row

*ppesented at the Rutherford Centennial Symposium on the
Structure of Matter, July 5-7, 1971 at the University of
Canturbury, Christchurch, New Zealand.
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Y-

0 0 0 L ] l
1 0 O L ] o

(1)

bt

whore C operates on an n x n matrix to the right, it just
does this shifting operation.
We immediately note that

¢t = I (2)

1,es C 1s one of the n-th roots of the undt matrix of dimen~
sion n. The elgenvalues of the matrix C are the n roots
of unity:

1y o, ®2, s e s s b s oL
being a primitive n-th root of unity. The corregsponding eigen-
vaectors can be placed together as columns forming a matrix which

we call at the U-matrix. Hence
vl e = B

where B 1is a dlagonal matrix.

o .1

B = . (3)
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and
I 4 |
1 w w1
U = o ' (3a)
. Coon-d
R

We immediétely observe that B and C possess an interest-

ing commutation relation: ‘
GB = aBC (4)

This we shall call the w-commutation relation which 1s the
basis of the Ceneralized Clifford Algebra. It is an inexplicable
fgct in the histgry of matrix theory that this commutation rela-
tion has not been noticed till very recently.

We next observe that any n x n matrix A can be expressed
as a linear combination of the n° independent matrices each of

the fOI‘m Bk C!' ; k,l = 0,1,2,.00- Tl'-l, ioeo

n-d k .t
A = L a,, BC. (5)
k,t=0

Among these n2 matrices there is a matrix CB such that there
matfices (C,CB,B) have a mutual o-commutation relation. De-
noting these as zx, Ey, EZ we find they constitute a generali-
zation of the anticommuting Pauli matrices to the basis set of

o-commuting matfices, It is to be noted that the Iy, Ey, Ez




obey an ordered esomnutation relation.

(6

E:\c 2,} = w E% Zac
E% Zz = W Ez Zg
the order being irrelevant for the case o = -1,
2. Generalized Gell-Mann-Fighijims relation,

The matrices B, B2,...,Bnhl commute as they are powers

of the matrix B, Calling the elgenvalues of B,Bz,...,Bn"'1 as

N9 'rlz, seo ’r}n_l let ug define a set of 'quantum numbers'

$13 Sg9 eee S, as the following linear combinations of the

8 = 4 + )
I | n-i -1 2 n-1mn-4
S = n sl w ‘Yl:“ (w ) qza +o (w 7) ‘Yln_g_i
4 2 | -1
8, J_ﬁ.{ WY, + WY to F Nposl
These can be written as a vector-matrix equation as
—3n i Y -3
8 = n . g ‘T& (7)
where
> - i
§ = | % s 0=, (8)
Sn
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and
§ = U (9)

Since the first set in M  1is set equal to zero, the
ghoice of the first column in 8 is irrelevant, 8 is the
well-known Sylvester matrix. We now notlece that in the case of

the quark, we identify the gquantum numbers s;, s, and Sy as

Sl = Q
Sy = Y -0
s, = X (9a)

vhere Q and Y are the charge and hypercharge respectively.
Moreover, the commuting matrices in Gell-Mamn's formulation of
SU(3) can be identified as a linear combination of the commut-
ing matrices B, B2 in the Generalized Clifford Algebra (G.C.A.)
for «® = 1, The shift matrices of SU(3) algebra can also be
expressed as linear combinations of products of B and C, In
other words, we assert now that the commuting generators of Lie
algebra are the linear combinations of the commuting elements
of the G,C.A, The sama 1s true in the case of the shift operators.
We now proceed to define elgenvalues I,y which are the

differences between the s, and s, , (k#¢)
I]i.lv = Sk - SL 3 k,L=i,2.,-..,'ﬂ (10)
For n = 3, we can identlfy I, 123 and Ioy as the

z=0omponents of I spin, U spin and V spin in the language of
S0(3) «
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We now also recognlse that the equation (10) for
n =3 as the Gell-Mann-Nishij}ima relation 1i,e.

I..=2 IZ = 8 - 8y = 2Q-Y
or Q = I -+

But eq.{10) can be applied to the SU(n) quarks, and thus
constitutes the generalized Gell-Mamn-Nighljima relatlons. What
we have described now is the correspondence between the quantum
mubers of the quarks in the language of the Lie and Clifford
algebras.

If we congider physical particles as composed of quarks
with 1%(3) denoting the j-th quantum number of the i-th
particle then we can define the quantum nmumber of the physiecal
particle ﬂj as

wH = Z ok (11)

In a similar way, the composite s quantum number of a physical
particle can be defined, The vector matrix relation given by

eqs (8), still holds between s(j) and n(J).

3. Dirac procedure for Generalized Clifford Algebra.

The three Paull matrices are the lowest dimensional
matrices which obey antl-commutation relation., It has been shown
by the author that to obtaln a greater number of mutually anti-
comuting matrices, we must increase the dimension of the

matrices, more precisely there are (2mtl) mutually anticommuting
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matrices of dimension 8, Denoting them by &€y s Ko serts Qt’?_m +d

and their linear combination as
21m+1

= L a3 % (19)
jag o+ 1

L

em+ 1

where the ‘A_{s are all real or all imaginary parameters we

notlce that

e 2 2 2 2
L2m+1 = 'A'mI = (2\1 +h2 +oe + .?\-am+i>1 .

(13)
Setting m = 2, hl = Dy h2 B Pys N = P,s }4 = 0, }5 =m
>
the rest mass and A, = E, energy, and A, = hellcity « |Pp}
wve obtain the familiar features of the Dirac Hamiltonlan.
A similar result holds sven for the w-commubting matrices
It can be shown that there are (2m+l) m;commuting matrices of

dimension em nm- where con = 1, Jt follows therefore that

n 2m+4 n n
(Lomss ) = (2 2%83) = (A T (14)
with
(B = 21+ 2 w0+ 20y,

This constitubtes a generalization of the Dirac procedure
to w-commuting matrices and it 1Is considered worthwhile to un-

ravel the physical meaning of the ssquence of elgenvalues.

A s DAYy oov s Ap(n)
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where };m(i) = o j\ﬁ(l), © being a primitive n~th root

of uwnity and 1 = l,2,..n._

The question now may he ralsed whey do we need to invoke
the G.C.As in elementary particle physics, My answer is:
the structure 1is too fundamental to be unnoticed, too consistent

to be ignored and much too pretty to be without consequence,
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GENERALIZED SPINOR STRUCTURE

Tulian Popovici and Adrina Turtol
Inst. Math, Acad, RoS-Ro,
ROUMANTA,

&k ook

We present the princlpal results of [10] and 1] on some
gfading classes assoclated to generalised Clifford algehbras, Ve
apply these results to construet some special bases of unitary Lie
algebras (see also [12] for SU;) and to define the generalized
spinor structures, One establishes a prolognation theorem of gtruc-
tures (6] associated to space~-times, by means of metric of
Sasakian type f[13] , [ns] .

By an algebra over a field P we understand an associative
algebra with unity 1 and of finite dimension over F..The field F
is identitied with #,1,

Let G be a finite Abellan group, {ea}“ ¢ @ basis of the
algebra A over F and 0:GxG —>F , If the structure of A is

glven by

(1) €8y = 6@.Be . (a,b € G),

then the triplet G =(G,f{ea}» ) is a maximal G-grading (or

maximal grading) of 4., There results immediataly that e, (0eG)
and 1 are collinear and we always suppose €, =1 « The equality
(Caeg)e, = €,(e_,€)  implies 8(a,-2) = 6 (-2,4) .

The maximal grading G is normed if, for any a,beG, we have

(2) o(a,b)e(b,a) = 1 .
For such a grading

) L ) _ et
(2" 9 (a,-2) = b(-a,8) = €, 4
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for any &€ G (&, =1).

Let M Dbe the set of all maximal G-gradingsof A, Every
system X ={ka} 16 G (k, =1 of non zero scalars defines an

operator X of M by

(1Y k(@ = (G {ke,},0') , 8'(ab) = Eﬁ N
’ kaﬂ;
Let M' be the set of all maximal G ~gradings of A (G is
isomorphic to G' )+ Every isomorphism h: G.'-a- G defines an

operator h: M —» M by

(11 hea) =@ fepp} ), 8'@Db) < o(h@,hib) .

Let G =(G,{e,},d) and G'z(G',{e};},Bf) be two maximal

gradings of 4 and A' respectively, If 4 = ¢' and o = o' , then

G and G ! are igomorphic. If there exists an operator hek such

that hek (@) and &' are isomorpiie, then G and ¢ are equivalent

(G ~.G"). Inadaition, if k, = £4 (266 , then G and G aro
€ -oquivalent (G £a') . If G~ G , then the algebras 4 and

A’ are isamorplite .

It is eus.ly proved that ~ - (resp. £ ) is an equivalence
relation in the set of all maximal g radings (resp. norimed maximal
gradlngs) of the algebras over a field F. Assuming & 5 G' , 1t
follows ’cﬁat G' is normed if and only if G is normed, |

Let G, = G, ,{82_;} » 8) be a maximal grading of the algebra#

A

T

over F (41 =14,2) » Then A4®? A, Thas the maximal grading

(the tensor product of G s with C—‘.Q )




i 2
6,86, = (@rd, [ef@el},0)

where

8 (81,89, (B4,B)) = 8, (84,5,)6,(2,.D,).
If G, and &, are normed, then G, ® G, is normed,

Let M, (¢ be the algebra of all mxn matrices over the
field F. We sunpose that F contains a primitive n-th root w of
the unlty, Then, from the »epresentation teory of generalized Clifford
algebras [71 , (8] y there results that M _(F) 1isthe
pol¥nomial algebra generated over F by the matrices €458, subjec;

to the relations

_ n
{3) ei =€ = 4, e’zei = 003182 .

Let Zn be a ecyclic group of period n - and oy s 0, two
generators of %, x4, . The elements of Z_xZ, have the form
A= 8,0, +aao¢2 ,La‘bioe.i-i-'bao&a P

The mgtrices

] a
(3" e, =¢," e * (aeZ_xZ.)

define a basis of M, (¥) and

2,0y
(a'n ey = w ~ te (a,b 6%, x%,).

Hence f{e,} is the basis of a % xZ._ -maximal grading A, of

Ma(¥) and ey,e, are called the generators of A, . It is
easily oroved that A,n is independent up to an equivalence of e, 28,

and w |,
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If ¥ -Jw ¢ ¥ we define an operator K gilven by the
scalars k, (262, x2Z.) as follows, If 1s odd, then we
take

5 - w(?""-)lﬂ,ka =g‘9-1&2

»

It - 1s even we assoclate to every & € Zn X Z,n the supplenmen-

tary component B given by 2, +8, + 8, = 0 {mod n) and we take

&
" %gtasat‘*a:s
a = (osas<n;g,t = 4,2,3) .

In both cases we have:

(4) k: . w2 k =k .

= - L] ] -8

From relations (11'), (3'") and (4) there results that the maximal
grading A,:’l =k (An) is normed and the coefficlents £, defined
by (2') are all equal to 1. The matrices e, ,e, are also called

the generators of A; . For m even we consider the operator k
given by the scalars

' -3
k‘a =% * (aeZ _x'4,), 0sd,<n .

=1
Then the algebra M, (¥) has also normed maximal grading Ai.—.k (A:;)
for which

£ =

A if 8,0 (modm)
-

-4  if atzizo (medm) .

t
The matrices 8; =%e, and €, = e, are called the generators of

A; + The normed maximal gradings A; and A _; are independent

up to an £ -equivalence of e,,e w and 3 .

2 ?




It 1s known that every Abellan group G, with m elements
(n > 4) has a representation of the form

(6) qnmzth...ngr Ca, ..+9, =n),

where
mj

(6" q, = P:f CE; ptime ; :i.-;.i,n.,--ur).

i
The nuabers y and q, are invariants of G, .

It 1s clearly that the algebra M, (F) @weF) has the maximal
Gp X G, - sgrading

(?) Gn =43, @45 @..-BA, .

Two maximal gradings (7) are equivalent if and only if their grading

groups are isomorphle,

THEOREM 1, Let G be a maximal G-grading of a simple algebra A

over F., If the fleld F has characteristic zero and contains the
roots of all binomial equations over F, then 4w d, xG, s, A=m M,
and @~ Gy,

The proof is given in [11] where a more general class of
maximal gradings, which are also characterised in terms of genera-
llzed Clifford algebras, is constructed.

The algebra M, (¥) (5€F) has the normed maximal CaxG,-
grading
(7" G;=A;®A;®---®A; (620 gy

. 4 n n

2 "
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8uppose that in (6), (¢ we have

P.’L:PQ:"' =PS=2, Pi_v:’:Q_ :Pori'}S
and that the sequence Qy39, v-or 2Ty contains 4 = t G@yydifferent
terms q; >q,2' PR ‘11; . If S:}' terms are equal to q; (4 =iy 1),

we may write
[} |
qﬂ.: ..-=‘191=qi>qsi+1=-..-=q91+92=q2>..->

!
qs_g&.\.i—.' _'q.s:qt Csi'l‘sq-l-"‘ +g.b=8).

The invariant t(4yq) 1is zdéro 1f and only if n is odd.
The algebra ™ _(f) (n even, % €& F ) has the normed
maxinal G, X G,  ~grading

4 x X o o 4 ]
(8) G, =A'® - CA*P® A, @ -®A] (Gyn~G, 3d=ts b,
n qﬂ. qs q9+4 q_r n Gm.
where
4 if 4 = d, 4 o0 - _ + 4
(8" - X; = { : §-
0 otherwise

Hence the relations (71, (8), (8" assoclate to every group
Gy the normed maxima}'gradings G; » 04 € t(&y) . The

gradings G;.?l and G are & ~equivalent if and only if thelr
grading groups are isomorphic and 4 = 4 .

The results established in  [10] together with Theorem 1
4mply

THEOREM 2, Let G be a narmed maximal G-grading of the simple
algebra A over the field F considered in Theorem 1. Then G GuXGm ,

AxM_(8) and G&Gn > 0S4 < b@n)e




Let 4 = (G, -[E.g} s Bj be z normed maximal grading of %the
algebra M, (f), If the characteristic, of F is not a divisior
of n, the following relation of Pauli type [10] holds

i ke ik “
(9) 2 By By =88y CE = g, E ) o
asqg
1 ia and

vhere E;,  and Eﬂ- afe the elements of i-th line j~th row of
matrices B, and 8" respectively, or

. a - '
(o1 - Z & a"E =n trX (X arbitrary in M.nCF') Yy .

aedq

t
From (9) it results that EEa}aqm is a basis of M_(F) (subspace

of M (F) of all matrices of mull trace). Hence
a a
(911 br (B By) = m 8'\: (a,b arbitrary in Q).

Every pair (n,p) of integers (0 < p < ini2]) defines an
antiinvolution X —» X'+ of the algebra MnCC) (€ complex field) by:
+ #* I._ 0
(10) X =HXH,, H=["F (T, wnity of 14, ),
D "‘Ip
* o
where X 1s the adjoint of X,

We congider the real vector spaces
To.p) = [Xe M@ : X -XT}, TP = TepP0M, @
and the real Lie groups |
UGnp) = X e SL@E): XK' = £1], U, tmp)={XesL ) XX =1},
The space U'C‘n,p) has a natural structure of real 'Jordan algebra. We
have U(n,0) = U (m,0) = SU, « If m 1is odd, then U(n, p) = U, (n,p).
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. 4 2
The map XA — -y txr X defines a mx real nondegenerated
[}
quadratic form Q (resp. &P ) on U‘Cn,p) (resp. Tennp) ). Accord-
ing to the relation TJeo,p) =T 00 P @ R*4 , we have & = &P@i ’

where 4:=x—> X (x€R) ., The index of Q’P is equal to (n-2p)4.
[}
The forms &, and &, are positive defined.

Let A(X) be the inner automorphism of M, (¢) given by an
arbitrary element X & SL(a,C)and let A be the nii representa-
tion X —> X(X) . The group 2 (SLe)) 1s the group of all aubo-
morphisms of M, @) . It is easlly proved that J (n,p) is in-
Va.riant’ to A(X) if and only if X € U(;p) . We denote by £p
and ®p the n:i representations of Um,p) induced by 2
on JU'Cfn,p) and TC'n,p)' respectively., We have ¢, = 9£: ® 4,
where 4: X —> I, and 9}; is eqﬁivalent with the adjoint
representation of U (n,p) . Qn the othgr hand, %p (Ut pY) € 50(8y)
and Li(n.p) = 9;,(UCn,p)) c SO{EL;,).

'We suppose that the normed maximel grading G = (G Aehgds ©)
of M,(¢) verifies, for some p , the conditions

(11) E: = E‘a, .
N ( a arbitrary in G .
(11 1 B = 8a€oa |

These conditions are invarlant to every operator ek where k&=t1
and W is an arbitrary isomorphism of &G . 0On the other hand, we
i

can suppose [10] that the generators €,,e, (resp. ei' sy 2 )
of the normed maximal grading AZ (resp. A_: ) verlfy the relations
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+.
* -1 + 4+ D7 1 . L o) .
e; = €4 » €1 =€ C“-QP=—2—): e = €y (p = ni2)
Then, from (3}, (3'), (4) there results that A:: and A: verify
(11), (11" But according to (5), for A:\ we have E:=~a (a=Pa,).

Hence for even w, UM,nl2) & U (n,n/2) . Ve also obtain

THEOREM 3, Every normed maximal grading G of Mnm)' verifies,
up to an igomorphism, conditions (11) and (11'), The integer p=p@)
in (10) is uniquely determined by G and namely if A G.g y then

p=nj2 for jFo0 and n-2p is the number of the elements

of period 2 (zero, too) of Gy for j-0 .

and {iﬁ-a} (4%~ -1) are bases of _

Therefore {Ha} o

afo

! 1
the space J(n,pP)  and of the unitary Lie algebra U(n,p) res-
pectively™ . We consider a total ordering relation < in & and we
denote by q':{aeG:—a< a »2 40} , Then

a . & ' a . & B e B,
(B, +B, {(d -8 )}aeq' and B —B,{ (B, +8 )}“q, (B = &E.,

give two bases of the spaces T(ﬂ,o)‘ and SU,,_' respective_ly**). But
we wrlte the elements of T(ﬂ,o)_" under the form X = Z' Xaﬁ.& s
where }—{&= S&X-a (aeq), axe

The quadratlc form &

the basls {&,7 by

p and the isomorphism dg}? are glven in

a -2
(12) Q, () = S e, XX, XeUTomyp)
aeQ ‘
'b .
(13) de,X), By = [X,B,], Xe U, p ' .

*) If L 1s a Lie group, we denote by L' its Lie algebra. 7
*) In [L2]  this result for SU;’: is obtalned, using the basls of

the maximal grading A z



106

Using relations (9), (9'") and (13), we obtain the explicit form
g ! r—4,
for dpP and J,QP :

b
sy de (X, =5 tr(X[Ea B ", d"? m -1, s T T
Ly

which hold also for @ P; and dﬁ;-i .

e consider the gquadratic form @§ on VvV = % given by !
a0 = - N xH - D e x )"
(14) x) = - —(x) - +

and the following representation of O(R):
‘ 4 ~+ N
(15) m=® N Id , Td: X=X, ATd: X > 1 (X co®)
YTe=O
having the exterior algebra /\V as representation space.
Choosing a system of generators oby » -« > 064 of the growp

'Z: y Wwe write its elements under the form a = 3 &84 %,
b = E‘ b{ %y ,... vhere &y, b:l' are equal to O or 4 (4 =1, =04
Let A br the set given by the zero element of Z;} and all
sequences (d,, - - »4,) where 1 & dy, <« o 41'.,» S4, r=d, 2%
The gem map 8: o + -+ «-+ oy —> ({4, ..»i,) establishes a 1%4
, 1 + :
corregpondsnce 7 j AN
Every orthonormal basis {ei} of V verifies in the Clifford

algebra C(Q) the relatlons

(16) eiej + e__iei- = ’2_?2‘151& Cni___ ,'22 - .125 - __?14 o —4)
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and defines a basls {e,} ae 74 of () , vhere
2

e&: eii".gii with 8 (a) :(ii,"-'>i‘1‘)‘, €p =1 .

There 1s a vector space isomorphism AV 5 c¢(@) such that
e, N ..Aei_t—-)vea for any orthonormal basis of V. Using thls iso-

morphism, we suspose that the representation/u, acts also on C{(Q),

Let h, be the following automorphism of 'z.f
g ¥ Oy kO kg Mo Xy ok G by, gy Xy g
£ 4 o
and @, = h, (A2 ® AZ) ==<ZQ 1By, 6) + The elements €y = 23 o4
verify the relations (16) and we can suppose that e; 1is an ortho-

normal basis of V. From Theorem 3 there results that (11} holds

for n = 4, p = 2 and according to (16) we have:

(17 Ea =-'r'la'€_1.d . 0 e{'r » Ea_—_- ac.a.-a_):ozid...qi_?
where |

1 4f t=d or t-4
(171 Ya” {J:I if +tao2 or va=a 8a) = (g 402 72),

Theraefore we can suppose that M acts also on the space T & ,2)

’ I
and we denote by At  the representation induced by . on T'(4,2)

Any A € 0(8) defines an orthonormal basis ei: =Aey of V
and a map

. ’n— ’ L]
T.Ela—>E,‘& _naeii Te¢L (4,2

>
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i !
Since Eﬂ(g = p (A) E.'a , there results that P'[A)ﬁfr and
we denote by S the subgroup of U(4.2) given by ¢,( a) = p (008 .
Themap 8 + X—>A ,XE€ ?;A QU. (AY) is a 4 t 1 repre-

sentation of the group S on 0(Q) and we have:

(18) ?2()() = M (e:qn), 9; ) -_-/u,' (6x)) (X arblirary in 8)

Hence ¢, induces on the space V the representation & and we

can write;

(19 dBO0; = L tx(X Les -, deT A = L aTeles (Fangep).

Therefore gui is locally isomorphic to the spinor representa-
tien of the Lorenth group 0(Q). Similarly, a representation of
the group 0(4,R) can be obtained, by means of the narmed maximal
grading Tlo (A;@ Azo) . TFrom (123" and (19) there results that
the representation ng'I;d has, in the basis {Ea} , the
expression as the spinor representation of o(Q’.

Let M be a space-time which is, or is not, orientable
and let P = P tm ,0(Q)) be the principal fibre bundle of
orhtonormal frames over M. A splnor structwe of M [6] 1s a
principal fibre bundle homomorphism £ : > (M,8) = F (1, o(ay [5]
with the corresponding str\icture group homorphism E: & —> O®

such that the induced map on M is the identity map®).

* Por every principal fibre bundle we suppose that the structure
group acts freely on the total space., Hence the above map fis

a4: lmap.
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The existence conditions of spinor structures defined by
replé.cing & by the natural 2 t 1 representation Pin & — oa,)
are given in [2] ana | (8] . The same problem for the
covering map of the connected Lorentz groun 8L (2,8) — L4
is considered in [4] .

Let G be a normed maximal grading of M. (C) and let M be
a Riemannian manifbld of dimension n® - 1 and index (m-2p)* 1,
such that the principal fibre bundle of orthonormal frames
over M has a reduction P %o I(n,p) = ?Q(UO":PD < O(&f?) .

If p # 0 we suppose that p = p (@) » A generalised

spinor structure of M asuoclated to G 1s a principal fibre
bundle homomorphism £: 57 (M, UMm,P)) > P(M,L 0.p) with the
corresponding structure group homomorphism 91; . Utn,p)éL(ﬂap)

such that the induced map on M 1is the identity map.

We can xtudy the spinor and spin-tensor fields both for
generalized spinor structures and usual spinor structures. The
relations (13') ‘and (19) imply similar expressions of the spinor
sipuekur covariant deriwatives in both cases. '

THEOREM 4, Let £: > — P be a spinor structure of the
space=-time M, There exists a Riemannian manifold M!' of dimension
15 and index -1 a projection T of M' onto M and a gonerdized
spinor. structure f£': 5> P’ of M' associnted to the normed
maximal grading &, (37 zeducible to §) such that the
transition funetions Y, 888 Wy  of the prineipal fibre
bundles S' and 3} respectively verify the condition

(20) WVap = Vage -
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Proof. Let V be a n-tdtlmensional vectar space and let B
be s symmetric nondegenerated bilinear form on V. There exists
a unique symmetric nondegenerated bilinear form BT on CX)'IV
such that:

B (X,®- @K, s Y @ e ®V,) = B(X,.Y, )+« Bl »Y7)

forallxi,.--,X*,‘\_{d,--‘:YTeV .We
{ . )
denote by By the restriction of & B,  to Ay .oIe
!
for the basis {e;} we have Ble;,e;? = k; 8;; then
]
B, (i, A - Aeq A eg,) =k ook By Sy

We assoclate to any point x of the space-time M the vector
4 x
space T, = f?a AN T, , vhere T, = Ty(@1) is the
tangent space of M at x. The metric g of M induces on each

space ¥, the bilinear form ¢ = g, ® gL+B84-

Lot M! be the vector bundle over M of all pairs(x,y)
hors XEM , Y€ F¢ andlet TW: M — M be the natural
projection (X,¥) —» x . The Riemannian connection of M
assoclates to each point u é M' the horizontsl space M,
and the vertical space Vu = Tw CF'X) with x = T such
that T,(M') = Hy® V), . Let h be the 1somorphism vhich
carries each vector X€ Ty (M) inits horizontal 1ift hx € Hy
and let v be the translation Fy — Vu . The manifold M!'
has Saskian metric of index -1

(21) 4 = g° (‘h_4 xh®gle (v x v 9
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Let {Uy} be an open covering of ¥ such that on every Uy
there exists a field {84} of orthonormel fromes with respect
to g. If {8;} is the field of orthonormal frames on Uy, then

the transition functions of P are given by:

' 4
(22) 8; (X) = Top)i 6500 > xeU, N

and we can suppose that

(28) fag = B Vap -

From (12}, (17}, (17" and (22) there follows that
the field of frames { Yy} (a€¢Z 5 , & #0) on V=1 MUg)

given by

he Oy (g,l-::Bi'oTT), if 8(8) =1

¥, =

. ) if  S(ay= (4g s 2d)r2e

I
and the similar field {T& f on VP are orthorormal with
respect to the metric (21) and we have:

(221) tf’; (x) = /u' ({'ﬁx.p Cx)): f 0 (FeV, 0V, X€ mw -

Hence the principal fibre bundle of orthonormal iromes over M!

nas a reduction P! to L(4,2) vhose transitlon functlons are

' !
(239 Pup = M "‘Pa,;"'_r'
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Relations (18), (23) and (23') imply

I !

(23%) q)dp = ?20'9/“? oM .
!
We consider D, , the principal fibre bundle whose
transition functions are given by (20) and the homomorphism
t ]
' '35 P'  nich preserves the conditions pr,; = ple god'p.
Q'E.Dl

A similar theorem for the normed maximal grading h, CA(; ®A:)

and Riemannian manifolds of dimension 4 and index zero holds.

Inst. Ifatho, Acad. RoanRo,
Calea Grivitei 21, Bucarest 12, Roumania.
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