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LECTURES ON REL.1;iT1VISTIC PHYSICS IN ONE SPACE AND
ONE, TIME DIMENSION

Introduction: -,
These lectures cover certain aspects of two dimensional

physics. They are by no meens exhaustive and must be supple-

mEnted by the compreher.sive treatment of Wightman's Cargese

lecture notes, 1964.

We do two damensfon al physics for various re ason s , It

seems difficult to accept that the four dimensional Case won't

be significantly ha rde r , so this is a st r.rt , One finds that these

models already solved are trivial, in that there is no scatter-

ing theory, r , e. , 5;; .1 The excepti on to S.= 1. is the

Feoerbush model, but her e the cross sections are energy indepen-

dent. The mathemc:tical structure of the class of models we solve

have a certain intrinsic interest in themselves. The structure

is within the Wightman framework up to questions of positive

definiteness. Wehope to gain a certain proficiency in field

theory, a knowledge of phenomenc hidden or obscured by pertur-

bation theory, t nat wi.L). be helpful in realistic cases. The final

reason is sub je ct Iv e , the theories are the re aud can be solved

exactlY, so do them.

In particular WE: cove r the fai rly trivial Lorentz and

Poincare groups and then classify the relevant free fields in

terms of SCalar fields. Toen we consider our models. Details
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and proofs are often omitted, references are often not cited
and there might well be mistakes, for which the author takes
full responsibility. .~

•



FliRT I: THE REAL LO'RENTZ Group

A.INTROroCTICN

DEF.l. The real Lorentz group, l( f) ,is the one

parameter matrix group that leaves invariant the quadratic

form wi th G:

(1)

where-o(J{ cp.=tCM.~-I{11Ic)<+O() is the velocity paramet~r we

use to parametrize L. Let z; be the identity connected

component of,L • Then 1; must map the co-ordinate vector,

x , into X tp ~

9: x -'> Xq, ~ e-4> x+ > (2-t<P x-) j ¥-4> f L:
....../1:t 0 Iand A. =:)( ± X , the most useful basis.

DEF.2. Let p: X ~ ( X ~ X + )

Then L decomposes into'

•

L ~(L:) U (p L/) {J (T L: ) U(PT .; )
(3)

Lemma 1: LEt iK be the real line wi th its usual topology.

Then as a group, C; is isomorphic to the additive group of

integers. With the Parametrization of Equation (2), as a

topolog1.cal group

(4)

\
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The proof should be obvt.ou s , Wenote thc:~t 8sIK is its own

universal covering group we shall not have to deal with multi-

Valued representations &s in higher dimensions.
l'

B. Repre sent ati ons of L-+-
We consider only a certain class of represent~tions of

l't+ . J.s all the representations of [: are well known(1)

we shall prove none of the assertions in this section •
•

DEF.3: For brevity we shall meen by representation the

faithful, irreducible, corttinuous representations. Further,

we shall restrict ourselves to representations with real-valued

indices. Then, our representation spaces, l\/); At R) 11)

spans V,>.} are all copies of a one dimensional vector space V
over c. i; is to "ct on V).. through the relation

,

1) -)). (5 )
)

The concepts of tensor and spinor fields are artificial

in two dimensions. We shall first define them and then moti-

vate the definition.

DEF.4: 11 ,>. -v ect or fleld is e. field taking Values in

A ~ -spinor field is a field taking values inV~®V-1 ·
V)-@~i"1 ·

The motiVation for).. -vector fields is simple. Firstly,

the co-ordinate vector is a I-vector 2nd secondly. the tensor

p rodu ct; of).. -ve ct.ors reduces to the direct sum of () -vectors,

,
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The motivation for A -spinors is t i ed up to the classi-

i'l cal. Dirac equation, as no IIspin" exists in two dimensions, i. e.,

~. contains no rotation subgroup. The solutions of the Di rac

equat t on are;" -spinors and their tensor product reduces to

the di rect sum of () -spinors, 0 ~ c:~ ,>. • The Di rac equa-
!'-;
~ tion is defined just below in definition 5,

•

and let

be non-singular 'fiX'); matrices
"Yl

v slu e s in Ie v)...
, . J
J-=- ,

DiraCe4U&tion is the first order partial differential equation

DEF. 5: Let 00
'01 t1) )

f be a fiEld taking • The

(6 )

which implies the SEcond order KlEin-Gordon e4uation

-r', ~ )..
c "",

-ci7-

t -r-c2- (7)

Here m is & parameter relating to the orbits of the Poincare

group below and has the physical significance of particle mass.

Lemma8: The .matrices )"0 '01 \'1::: 'me and ¥) satisfy..,
)

the multipli cati on table
e DC 0') 0'')

e e -00 y' {51J

[ 0° or e or; ot
01 a' -"'I s -e. -y.D

0'5 {f'5 _pI --00 e
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and generate a Clifford algebra. The lowest rank irreducible

rep re sent at.Lon of thi s al geb ra is for n=E; J;. parti cular matrix

representation for n=2 is

I
-0 ::- - 1 ) 5". (f 0 )( ) '0 ;: \ C -1 (8)

'The proof of thi s lemma follows the well known analogous calcu-

lation in four dimension and is omitted.

THE POINCJ.REGROUP

jl. The two dimensional translc::tion group,r2 •

DEF.6: --r; -=- 1a:: (n+, a-) f V, @ V-1.} As a topo-

logical group, T2. ~ 1K2 ·
The representations of interest for the Poincare group

are given by the characters of T2. ,cootinuous unimodular maps

from JK2x TK1~ R
(9)

Here <.»: fR2xfR2-~ R
< p, C\ > ~ ~ ( P-t c~·~ P- 0+)

and haS the property of being Lorentz invariant,

under t-+1' if P take s values in V1EB V -1 .

(10 )

i .e., i nv ari ant
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B. The Poincare group ~!..

DEF.7: rP -;: i.@ T2. (11)

Then semidirect composition law is

( (A ) ~) (t) ~ ) ~ ( [(-+ (-f: ) ~ )t -+ ty ) 0 )t- t S.
~) (12)

4' 4J{ L
)

EQuation (12) I s well defined, as(.(,)cp is known.

Lemma 3: The 0 rbi ts( L) of ~+1\ are each cont ained in

one of the solutions of

flf( h _ ( -4- p-) e fR) '-t ) r - P , 2 (13)

of course p is a I-vector field. The orbits are nine in number

end fall into four classes. We list the orbits below by giving

a convent erit arc-length pE-rclmetri zation for the values of p for

each orbit. Let A E 'R , Pf R ~ Then

GLASS 1. 0 I "i rc (E' '\ e -).) J
(12:: )\-J( ( E A ) C - ~) )

2. °3, ? +.J-C (e). )('-). ) J
3. O~:: ~-+[:C ~e-t~ ) c-»} ,

°5= lCp,c) J) 0 £ ,ire,c)) ,°7" ~ (q)~,o~=i(o )-e~
4.°4;:- r::- ~ t ( 0)'0)3.

(14)
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This lemma is the two dimensional analogue of the four dimen-
0.) I

sional lemma proven by Mackey • Its proof is tn s re ro rc omitted,

2.S is the proof of Lemma4 for the SemE reason.

Lemma4: The homogeneous little groups (stability groups)

corresponding to the nine orbits are

Hj: cP ) j:; ') 2 ) - .. ~ .. I-lq - 1 l' (15)
) -

) -+

The orbi tal diagram is given in Figure l~

/tp..,. 0-
I(~ s

·°3

Figure 1.

In inducing from the characters of jr to the unit~ry representa-
~ 2

tions of Vi- ,the cov s r-l sn ce condition is

trivially satisfied, sl nce Hj is el th e r cf
automatice.lly

l'1"
or T
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c. The unitary representations of ~tt
The unitary reprfsent8tions are discussed by orbits.

O _I -11-First we consider or-bit I • Let (JIt\, bE}khe J..;t' invariant

measu re concentrated on 0 I

(16)

~ C ~.HEre /"'rI -,. 1s t hs s cua re of the particle mass, Let ,GJ

t -Un (d L( ( )). ThenI I) )

( F> (1 ).oj r ( r') b(p) ell" I ( p) (17)

f.ltemately, let --(r.t' ~Yl ( L :2 (viA, •. ')) , so. t.h at

(j ,d 1\ '\ - (t 00 J ( -\) Q c,') J,A (18)
'\ 1'11. ' y\.) 1 - J ~, Th O'Y\.

-00

Then if i) 1"- 4 JA) == F (YrI e -\ 'm e -A) , similarly for d", and. G,

Since ~.\,= q , the infini t e dimensional unitary represen-

tation of (Q, cp) f ~+1' acting on the represent ation space

l2 (cl.A) () ) I) can be expli ci tly wri t ten

(a, q) ~ U (Q) q) : ~J A) -;; U ((I, 1) 4 'rY1 (A)

.:- ..0'1( p), It'~ ) Iq +(( -41" r) c' - -T ( ~ -.4' ) l} P (.A + f )
lL:l- L +le J in,

(20 )



( -1'10,c:f rt/ f) qp./}) ~1-0) r--;» J .((p) d H) cjJl PiIJ ( p) (22)

ThEtu, denotes t h: t'ou rt e r transform and ~,~ e $'" Thl s

'i· restriction on t» does not suffice to define the wick ordered

'I:

, .
i'i.

8

a similc::.r construction works for ()2-C4 which correspond

to non-positive masses and are thereby excluded on physical

grounds ••

Next -we di scuss the orbi t C~_ This will lead us to the

concept of 1nfraparticles, i. e., an essential indefinite metric

will appear. The obvious procedure might be to consider the

Lnv arf ant measure can cent rat cd on 0,) O~ and OCf '

(21)

This will Lnt roduce a

problem because of t hs pct n t "..= 0 These above measures are

positive, but will be too singular, except when restricted to

sm€[.ring wi th a SEt of t est functions, smal Lor than ~ • e. g. ,

But ~uch a set,

the largest allowed wi thin the l-lightm::-n f r amewcrk , is too small

to b¢lsefUl. This c an be vse en ES follows. In the familiar

Fock representation for the free masslESS scalar field, ~ ,
Tft5re pre sent ed viE ...fl Pt5 ' WE wcu.L d hay €
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cubic fields, as was s;:coWh by Tarski~

But it is chpracte Ii sti c of two df.men st on s th<-t in the

mr.sstv e case; LoOC"Y)~ 4'''1:{~) is a field :l.tCP(~)i$; and if
"ri ::i>

is ehtlreih z. J.•Lso ena ri3~tEl ri st Lc bf two

", la(lr{)
can solve use: e' (I) ~

is massless, in the solution

construct.
Hence we must have ma s sL s s fielss we 'C~h exponentiate.

We do thi s by steri +,ic i.ng posi ti vi ty. TNesh~li us e the word

'f field in the extended non posi t t vc aens e (L, e.; 1nfrapart1cles)

in wh&t follows.

Write

(1,1 )c
)

and we adjoin the condi tions L 1
l( -? +0

T,ve have

It( )

the

following theorem

Theorem 1: Let { }1
as in E4uation (23). Then

sat i sf'y the conditions above, cAfs- be

iLl. (ql's,() ),;-) 1s an tncom-

which can be completed (to 11
, I

<»
plete Pont rt agln spacelT

I

a complete Pontri agin SPC'.CE:)
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Briefly, a Pont rf agf.n sp sce 1/1( is a vector space of

infinite dimension which is equipped with E. non-degenercte;
\

Henni tian form. T/I( con tai.n s at least one sub sp ace of dimen-

sion 1< < c:/:J on which t hc form is negative-definite, but not

such k-t-I dimensionc.l sub sp ac c , There also exists at least one

orthogonal di re ct sum d(] ccmpo si t ion Irk.':IT_ e 1T+ for

which lTf"
of the theorem

is [. Hilbert sprcc , Details c::ndthe proof/can be

found in Reference (3).

For orbit Os- ' the t n ramt c dimensional unitary repre •.

sen t at t ori of if l' we choose is1-

(a )cp)-? Lt (a) f) :~! ~)-;> U (a) 1') 11u.)

::0 ~"p( ~ 0- u e ~) 4 (U ( 4' )
(24)

This no rms.Ltzc s the choice of ma s s l.e s s free field we

choose to use. LS the re is 2. logri thmi c SC8.le factor free to

choose. In thi s Case we have chosen it so that no cont ri bution

of the form b ( p)

orbits O~- O~

as that of T::t '

2J;pearing. Simi 12r con st ruct s hold for

since

0(.1 the action of ~ +t

H~:t ;
is the sameFor

PJ1RT II: FREE QULNTUMFIELDS

A.INTHODUCTICN

DEF; 8: 1/Je shall me~m a field in the sense of Wightman

when we say 4uantum fields. HenCE we shall discuss infraparticles
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only at the end of tnt s section. Therefore fields have strictly

positive mass until further notice. The discussion concerning

the orbit 0, is. re Levsnt here, as by free we mean that the
\

field satisfy the Klein-Gordon equation. This is the usual

viewpoint in Physics. Pe rh aps it is more revealing to say that

2 free field leads to a one particle sector whose measure is

concentrated on orbi t 0 I We 81so deal with local fields only.

DEF.9: An element vJ t. /~ I
.l.

is said to be local if

(25a)

such thc:t

(25b)

we use the symbol <) ) 'usual duality o 10 R
for the/pbi ring from /,).2 X ~~ ~. •

Lemma5: Eve ry N-component fre e quantum fi eld f (.()
can be wri tten

(26)

- and where
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The proof follows by the defunction of a freE Quantum field.

Point (Li ) follows' as l: c: rR. The condi tion N < 0() is an

ad hoc addition to eLf mtn at e infinite towers of fields.

DEF.lO: Using "field" fer the fields of lemma 5 we define

Boson fields as fields whose commut2tor is local in the sense of

DEF.9.
WE fi rst c onsl.d e r the simplest ca se, that of the real

massive sCals,r bos(;D field cb ... It has the fre(iUency decomposi-
I

t· rh - rb(-t) ,+(-)lon, - T +-.r end well known two point run~tiol'1

(27)

where 1=~- j
2

~ >0 11"°.)(0

-
and ~ : -)

2and for ~ < 0 We are assuming a Fock space.

the Hilbert Space with cycli C vEctor..f2. 0 having the Fock property

~-)( 4) JL 0 ::: 'C

( ) ') .
; the Hilbert spac e vhs s the inner product

The commutator function is Ll",(-x)::: L~(-)(:r)- .J(-)(-:().
,I.'J ' 'h-1 }y>

It is seen, thereby, that 4 is local. /)11 free local boson

fields are cIa ssified in the theorem below.

Theorem 2: LC3tf be an n-component free boson field

whose j -tk component takes v al.us s in \~j • Then

(i) cpJ4) = (constant) (L)~jr40(-I) 1f 12 (28a)
J . . '0;(+ ,1) 'J

(Li ) If ~ is local, then
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(28b)

Note that ne gat.tv e power derivatives are to [:)e f nterp re't ed as

(- 'h)1 L )0(; sl n ce the Klein-Gordon equation holds.
CO ::t-

Proof: E4U&ticm (28e.) is obvi ous in the momentum rep rs -

serrt at t on. For -(28b) v: co. must dsf'Lne our normali zati on of frac-

tional derivatives. In one dimension, CPE- /S' J {(-) ,

()~4 (4) - c (Ii~q: ( ;(q )

i
If i- denotes the Fou r-i e r-P'l sn crrere l

t nen '01. is de f'Iried through

(29a)

transformation map~~~

1(c: '~9b )

V/e as sume known the standard relc:tions between the

locality properties of df st r i but l ons 2nd the aneLyt t cat y prcpc z-

ties of the holomorphic functions which have the distributions

as boundary values.

The support ofj'Tvt:t ) is contained in the closed '

tirnelike cone. ThE support of R (7.) ::- 6 i x c) iJyYJ( x ) is contained

in the closed future cone.
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is the boundary value

where

'~9d)

(221,)

must be anolyt1c·for

.~ 0(
as R ({))Thi s i s not so, has. a

Io r-sn ch point at '1; z; 0 unle s s cJ.. ft...
(
'0 )0(_ A.., c(

For ~ k (-;<) ? the c or re spondt ng Ku ({)) has a branch

point at 9; :::('nt, un1e s;:';{ ft:. Thus (1_ )0: K (;() are not
'U :(1

local unless d., E l. ThLj .impl t es e qu at t on (28b), and the

t.nco rem is proven. ""v. C: J.,

EXAMPLES

1. Vector field: ThE usual present2tion wou1r take th~orm

cr-2) u z: 0
) () (30a-c)
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where _0",
/I ( GT )- -- . 0' _t-~-2 Co-~ 'r

!30d)

In the terms cf our cl('ssific(~tion t.heo rem ,

(30e)

(30f)

2. IICurl"-field~ In two df.mer si cns we can define the anti-

symmetri c second rank tensor

.~ E. 0 ::1, r V __ Evr t- 0/t: - - - +1- -. (3la)
)

rt"'C
Then we can defin~ the curJ~field D

I', (3lb)
r- -1-,
c'J (!,

I )

(

this is "chi'rall! to UIJ-' ? as can be seen by

13,7 = f'") \) I -lc I 'c;"':± AI15> +E =- r (jI"v\

(3lc)

",
','

3. As a thi rd example we considc r the second rank symmetric

tensor field \/o-rr'

(0
() /:r"r \/v-r r-; V'I'()-

, -"hI \ ::: D ~() := 00- - 0
) (32a,b)
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This I s expressible as

(32e)

The ecmmut&tor is then

(32d)

4. Thi s last illust r at Lon is" counterexample to a usual spin

and st at r sti cs t.he o r-em , Let

~-= L (c-#-) -if

} () T)G- 4:{ 2

1-/'! ('"'" ~.) '1-- uff (33)\. ( . ~ )

Then Al is a Local. boson field/, but t~kes values in \I
I (CT-V )1 ]..

ED V(u:z- '1;.)-+ I ,i.e., if: C\ [fT--I/2l-sPinor.

DEF.ll: I. Dirac field is a free quantum field s2tisfying

the Direc equat.i on; bt Linerr expressions formed from the field

with elements of the Dirae-Clifford algebra are local.

DEF.12: The Dirac scalEr field e is a non local free

satisfying

(34a)

where ~~I) , the even solution
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to the Klein-Gordon ey.u(l.ti~~r~. Note that, being free, e-;::..ff+~f(-)
and

-- \( (34b)

(

Theorem 3: illl Dirac fields, upto che ra lf. ty, are tensor

products of Di rac fi elds of t he type If/ == \f)"")+ 4/e-). where
.

y:t = e ('~+ )(0+)0- ~(j) (35)

so that

(36a)

where
I- (1 =r ;(k) ')yJ ') ..6

'o~· U or + e / a. ~ 'n1 .•G' > Iv ::. 1,2
/' (36b)

and ZfJ i: i (36c)

Proof: Direct comput.n t.Lon implies th[.,t Eqs.'36a,b) follow,

Locality gives (36c) just as in Theorem (2). ThEt this exhausts

the possibilitiE s is evident from the independence of () ~ Q and>

'07 . Our thecrem should be amended~ in fact, to include

PO~Sibilities'ofOS"' appe2.ring. This is in practice largely

ignored in four dimension so we do so here. That is, if
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say, thEn locality would not b? affected.

, Theorem 4: Let ChENG the Same meaning as in four

dimensicns, and define the fi eld mapping e = Pc T • The
,.,

connectivity of L (c.) is the s ame cs in four dimensions. In

PC1rticulE.r, 1, (C)2) ccn t.si.n s both sheets ofL+(Rj2) a s re al,
-+

subgroup. In Ref. (~. ) en exnlici t geomct r-i c al. setting for the

rc Levarit anaLyt.Lc dorn ai n s , in two dimensions, due to Ruelle.

is given. Then IDtl8 C2n follow the proof thereof the peT.theorem

for sc s.Ia r fields word for word. Certainly it holds for our

free fields. The srin-st2tistics connection SEems lost.
(4)

however •

PART III: THE VECTOa IvfESON HODEL (£;)

.1'
We deal with t: vector meson, A" ,. interacting with a:

fe m:1 on fi eld of mas s ze ro "t' The coupling is formally

. ,
(1)

when the mas s of A r(
model. When ·)Y1o ~ 'D

this is the vector meson

we have Schwinger's model; correspondingly,

)n -) 00 is Thi rrings model.
'0

DESCRIPTION OF THE HODEL~

We use what sc ems Likc the most raat u r-al. gauge and wri te

Field equations , r:: . \{
{ :x: . (1r "r.:: - :J 0(; ; A r "'t.I

l0 -"(1'1 2 ') A .: n ( i "\
,-c fA (} () r- ) (Yd.

(2b)
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Divergence condition
ou r-g.cug e demands

-:i() AM=- Cr .
(3)

commutstion r6lati~ns

[ _ A ~ ( f- ,~' ) (( C A '- i A 0) (f, ~')J z: (- -I ~(~ ,)

1 ('I 00)(1 If, cr') \f-6 (i", ~,») z, «",,, l:l.-'fi. (5') (4)

/) 0 . -2[ g" e-. ("'-, ('J.fJ" I 7)\ Al:)J
::: - '"'WI o u J I.. + C I o ,., - v

In this f'o rm, (OG.A ~(;.'AC) is the, field conjugate to A r , End

~o is eonstrc:ined by the above. For ordering we use wick

ordering I. Th, t c rm s ebov€ have to be suitably defined.
~ 0 f

Current: Wr ern define the current without any divergence

as follows. We set

There are two independent limi ting procedures ext ant in the

literature Leadf.n g to two currents, the Schwinger and the
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J'ohn son limits ~nd currents
x+ t

l.;.., \ E,1j( t(-'-;f~')ell ? ~x J~I ~) 0( r
(--:'0 J ..1

s

tA &. r \ E .l" ~. )' Ez \ I( \ t~ e ') 1J t )z: 1- {1M, I· 6 d ()()( + t o t » i r JJ' X 2. E5~ 0 s
Et ~D

Here 1<=I«Z) c:,ndpicks Gut the (finite) leading term.

Proje cti on convcnti on s .

1) - u T" + 1) L .,t L ~.J t: .D c ~ 1;- )

for E'. vector field, rot of zc 1'0 mas s , For zero mass

Solution lns,-tz

Let i be 8 linear sups rposft i on of free rields, all

dynamically independent. We seek a solution in the fomt

i (i (f'f : Q 0 - ; ~Io) -, ,T ; .)' - c'\ "f) ty -~.I t c ? C 0 ~

(7a)

E7b)

..;

(8a)

'.

.~.

(9)

we see the necessity of using mRssless fields that Can be

exponenti at ed , even ot the expen s « of not knowing the posf ti v e

definiteness of th~ theory.
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With this form of -r ' the Dirac field equat.Lcn gives}J.G'""

in terms of f

00lubili ty rests on the ccrnnnrt c.t Lvi ty of the 0\. -matrice,. We

may pick 01..0 = e />( I z: I'

t ~must be of thE form

with the correct structure. Then

(11) .;,.
11

where I. A do not cont aLn mat rf.x prcperties. Then
Q).t)-

as illust rr.t i on , aftf r eliminating IE Q., IK

1t" r, JJ +L.
2"

= ) .£v..~
.2- fs -) 0

Et-7t1

-+ (S->c)

-i')t'!.,,) + '%11 UA") {~(;; i"f}~ J

similarly

(12b)

Note that C.Sommerfield SEts
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by cov erf ance , But thi s gives

appears and no line

• We use thi s

process in the Thirring model whe re

integral is av ai Lab.Le to define J ~(
Thus two classes of solutions appcu r , as we use JSfA or

respectively. There iv.Lll be fcund to be different gauges

in each cLa s s giving Cl scLut i on table like

gauges Landau, Vector-meson,Feynm 3D. ,

Schwinger

Johnstn
f,t

Note also the deep point that well-defining,j gives mESS

reno rmali zati on c..utomc·ti' cally he re , For S:

( 0 -'mb
2

) [C A") TS- (N'iJ " J t !~~2 (Ai') ,/\
1J

(13a)

or

(LJ - m6" ) ( A h) l:r ( 0 - "rYl
S

L ') ( A'")Te - d J(t) ~'l

(13b)

(13c)

In all our solutions, t oge t from5 to J cl",ss, change

'm" -? ('mJ ) _ ) 'Tn5 "7( 'iD5\ l 1)01.)
2- CJ? (14)=- 01-1 -+. J-t t- hI}) -

!.
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This is for the above reaSons. Note also that were "Schwinger

terms" to appear in we would throw out the limi ting procedure

and search for one th2t wes well defined. The re is no divine

reci.pe for finding J~ - it must be well defined only.

The Functional i,pprogch

With nei ther details nor exp'Lanr.t i ons we wri te

I can be found expl.ic i tly through two factors. First, as

l~~)~vJ z: 0

~ (II)l! ; B) ::

, ~n eXact expression for

~ Itl- =: in clo~ed form is c:vdlable. Secondly,

our W ansat z Le rds to \V' forms and hence to
I 11

(16b)

Similarly for J -cl.ass cal.cuj.rt t ons , With thi s , it is pcssi ble

to findT explicitly and hence all the T-product VEil's. I won't

write them down 2S they are bcringly long(+). Suffice it to say,

-o//'j~) with our an sat z , assuming
c

(+) See i'.PPENDIX fa.
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-;F;" =: 2. c~)J1r t). (1;1j)
~Ctt .

including vectors, the simplest solu-

tion is·

(17a)
.) G'

1/ :::

(17b)

Here
l n- )[ l{ = vector mE.SS ')'y) - -+-,

5 )

c.y = scalar, 0 [ J ~ -+
)

c = " II L) ] z: (18),
'-Vi) = spino r, " [ ] + .: 4-.,

The Solution Proper
h) We hi.v e Hw,. = ® ~IJ ; we only need H PL~ I-}~\.~,

f rce fi.eld s '"I"

H Ph;'> = closu re 1f (1\ ~) ~) ..i1t)'j with induced tnne r product.
This point is crucial, as ~~

(19) . ,

is not identically (2 I <~,I ) ~ 1- 0 • But
IIM-\

We SEe this by examining Rdr further:

zero, i .e.

(20a)

( 20b)
==0 "c ..,
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B) < -r ( A g) > =- AB
. 0

x,.o > -r !3 c

-;(0< x D. A .1?= + RA

c ..,.. 0 " I-we define a T with properties at ':XA.;. -1:.]. ~cA. .• AW:M

(21)

fo r SEcond de rtv st.Lves , etc.

When finding J(J ~lY),} ~ ) there appears the factor

, the causal vector propagator. This can be written,

space, as

(22)

Ou.r 'above gauge, \I H , is when ~ e := /- t l/,y,'
F-gaUge,Jt= I ,and

• For the

(23)

However, l:. -::::0 he r c T This is an infinity in the wave func-
7

ti on renoImalization but we see it is due to the wrong prescrip-

tion.

(24)
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which looks better than cp Vt1 by one field; but ~ H PAt> on

which (\~)L vanishes weakly. The above gauges are all fine as
..

regards the Wightman functions, but one can SEe the advantage

of the VN gauge.

We note that the se operator solutions might be termed

gauge fields and will show no scattering for that reason, Up

1

I
j
I
I
1
I

I
j
i

to non-defini t.Lon vmat hemat.I <!!£tlly the various gaug es can be

interrelc~ted via.
, ,

(Ar )J ---- (11"')2 ' \Ar), -+ (; r ,\IL

A 12.:: P'2 ( 0) Dv(A:') I

LIMITS
A) Thi rring Model

• Let,

The proof is in the pape r,

Then taker)'r -) aO rathe r freely to get the Thi rring modelo
with operator sclutions. For VM we have

If. ((f,
• f) - <:, J •5,J::: IS I(. '"'

1::JA [0;.s

(26a)

(26b)
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-:::::====- Cy J
(, .; )./

f :2Ti (26c)

f.lgain the rei s an ~}LV\. ) tl Ph • /,lso note that

(27a)

/~~I~

- ~-l Rf' ~ 0""
c;nd

(~ \ "6 M I I ') M,'~1

(27b)

•
.:::.0,

BJ Schwinger Model

Here \)'no -) O. Our solutions show singulari ties even in

the W1ghtmpn functicns, except in the L gauge. But here we

have no true operator solution. It is felt that the operator

solution will come through the Coulomb gauge. But the usual

relations between the Coulomb and Landau gauges. The two obvious

Coulomb Green's functions are

'I Y. (~) _,_.r~e, ["/')1 ()/-:t)J1 --
1 o 2-ln

0

'11 (";t ') - __ I e.-I"mo Iz\l- 2)'Y1 0

(28a)

(28b)

But'f, is singular at ~1J ~ 0, and YfJ

, ...
!.>

!,
i
i...'
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NOTE liDDED:

Hsgen proposes e trivial modf.f'Lc atd on in the current,

le ading t c our Schwi.nger re sul ts with

rm '2 ~ 1'n '1. _ 'n) Z. fYi. t?\, '2
o 1 - o - f 0 /rr

rrnS '1 ---f. 'h1S ?;: .1-n D - t 0,/ Iff

I ) ( J) • (J.. I)Fer\.,1))~ ',;:t) ):J.. Schwinger's re sul.t si l-~).. Johnson's results.

Otherwise this trivic:l cLr.s s , ~vecan relax his conditions on

replaces these ~ or- en,'llytict-lly sxt.end, (~'J) so that ~-t '7*
as he demands. For tne !b.i rring model,

~ 11
Same exp ressions

)

as in our resul t s,

-,
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i;PPEFDIX L

The generating functional for time ordered Green's functicns

is

It satisfies thE e4uations

o(!-A( i~~-';).:'>_ - Ld_ -i "7 (?() d
2sd r (-y 'l ("lot (<() (.h. 219.)

( _ 2) ~ ';J . ~ s. ~ 0< k r "\~
[J ')'»1) - :: (- I TC'"t)-t! ~ I.. ~ "'6 1'>? ~"t') )8 ~(?[> "\)6:::, /t:.(-7t) '6 - (A.2b)

The solution ~or d mcLYbe verified to be

1

I
i

d (J/t '7) ~Wl",~p[ tJcf" cI Lvt It<) c (U I 'It,. T-h-- ) 1M]
/ r ) J [' Sf" dZ --'" c. ( f). 3 ) JX !(p l- L (~ b J flx.r - Z[ £oJ 1J (w~ r /'}yto /'v-Z) J~~)

In E4. • .A.3, N is chosen so t hat J (O.J 0,0 )::: i The gauge is put

in vi a the choi ce of L1 c.rv
in an external field:

• G is the fermion Gre6n·s function

(A.4)

. t

l
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Its solution is

Here (o<~o C ((·)C (~-1)c: ~ (~-~)
r

with causal boundary crndi ti ons. Lis the closed loop fun,tional

and is defined through (fer the S-class)

!L == i -I d < Jr (?t) >13 := i -I () -< J (OJ-+ L ~T( >0
~ JJt (~) t' Tf (1.•.7)

- {_I:t S(P,,") ('&I --~) J)u ''1) 012'.1
1/ \.) r-

Wehave again used pIi or knowledge for simplifi~ation. p. is the. 5
transverse projection oper-at cr , For J -class solutions, use the

contraction operator P. :
J

~~V ) /-A. v ~ C -V
S (?l-j z: 0 IS)(?1-~)-6xD (71-'J)O~

~~~V(?1-'1) ::: J
2

~PV~ (/7 _~) -o~ tl~J7-~J)d)~

(1••8b)

.Thus

Fellowing Thirring and Wess: !lnn.Phys. (NY),gz,33l(1964), one is
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led through the s.Lg eb rc~ to the GrEen' s functions and thence the

Wightman functions. The n-point fermion functions are necessary
,.h ( <' 1 (f (~ ~( ~~ (..., .

to find :r. in: e. (, - ~ LV10)= e 0 - eta ~ ~(tO). We have

(1..10)

! ,
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