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LECTURES ON RELATIVISTIC PEYSICS IN ONE SPACE AND
ONE TIME DIMENSION

Introduction: -
\

These lectures cover certain sspects of two dimensional
physics. They zre by no mezns exhgustive and must be supple-
mented by the comprehersive trestment of Wightman's Cargese
lecture notes, 1964.

We do two dimensionzl physics for various reasons. It
seems difficult to accept that the four dimensiongl case won't
be significantly harder, so this is & start. One finds that these
models glready solved ars trivial, in that there is no scatter-
ing theory, i,e.,SE 1 . The exception to SE 1 is the
Federbush model, but here the cross sections are energy indepen-
dent. The mathemetical structure of the class of models we solve
have a certain intrinsic interest in themselves. The structure
is within the Wightman framework up to questions of positive
definiteness, We hope to gain a certain proficiency in field
theory, a knowledge of phenomens hidden or obscured by pertur-
bation theory, that will be helpful in realistic cases, The final
reason is subjective: the theortes are there and can be solved
exactly, SO do them.

In particular we cover the fairly trivizl Lorentz and
Poincare groups and then classify the relevant free fields in

terms of scalar fields. Then we consider our models. Details
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end proofs are often omitted, references are often not cited
and there might well be mistakes, for which the author takes

< w

full responsibility.
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PART I, THE REAL LORENTZ GROUP

4, INTRODUCTICN

DEF,1. The real Lorentz group, (L( EF) , 15 the one
parameter matrix grouyp that leaves invariant the quadratic
form with G

L) o Tl <G (2 5)=Ca 2

(1)

whe re-oy ¢ CP towg (v/c).(,,oc is the velocity parametgr we
née to pavemetiize £ . Let Db be the identity connected

component of.[, « . Then '[‘f must map the co-ordinate vector,

X, into X4

. P
CP", X = Xg = Q—c#’)(-’- )Q+,¢X—> ,'*%-Cb € vL+

(2)
Here X = (X*, x‘)' and > =x°4 x" , the most useful beasis.
DEF.2. Let Pr x> (x5 x7) and T3 x— - (x5, x?)
Then L decomposes into
N N 4
L-uHUCLDUHuetr)

Lemmg 1 LetR be the real line with its usual topology.
/T\
Then as a group, [._,, is isomorphic to the additive group of
integers. With the parametrization of Equation (2), as a

topological group

/T\
f+ ~ IR (4)



2

The proof should be obvious. We note thst es,R is its own
universal covering group we shall not have to deal with multi-

valued representations =s in higher dimensions,
4\
B. Representztions of e

We consider only a certain class of representeations of

ﬁ.,. « 4As all the representations of £+4\ are well known(l)

we shegll prove none of the assertions in this section.

DEF,3: For brevity we shall mean by representation the
faithful, irreducible, comtinuous representations. Further,
we shall restrict ourselves to representations with real-valued
indices., Then, our representaticn spaces,a\/); AeR ') 'U)

spens V/\’% are all copies of @z one dimensional vector space\/

over C, I: is to zct on \/)\ through the relation

. . . 6
= G U, = (1,/\)¢ L ) )VLCFC’L— (5)

A

The concepts of tensor and spinor fields are artificial
in two dimensions. We shgll first define them and then moti-

vate the definition.

DEF.4: A )\ -vector field is a field teking values in
\//\@ \/,)\ . & ) -spinor field is a field taking values in
\’/,\@\/,\H )

The motivation for X\ -vector fields is simple. Firstly,
the co-ordinste vector is a l-vector znd secondly. the tensor
product of A -vectors reduces to the direct sum of ¢ -vectors,

04T <N
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The motivation for A -spinors is tied up to the classi-

cel Dirac equation, as no "spin'" exists in two dimensions, 1.€s5
contains no rotation subgfqup. The solutions of the Dirac

eyuation are A -spinors and their tensor product reduces to

the direct sum of ¢~ -spinors,0{ ¢ < A . The Dirac equa-

tion is defined just below in definition 5,
L ]

o
DEF.5: Let ¥ , ‘b’lj M be non-singular Wxn matrices
M

and let f Dbe 2 field taking velues in .5_@ V/\5 . The

J=!
Dirac esquation is the first order partial differential equation

m
= o) _l :
ézz—[‘(B’ ..D.—‘"B'?%—‘\‘f‘M]a@ %6(1) = B (6)

27,

which implies the second order Klein-Gordon eyuation

(D“W‘2> = ): E_%_ - ;C:?;-— __wi] /{ =0
{4: p i g

(7)

X2

Here m 1is & parameter relating to the orbits of the Poincare

group below and hgs the physical significence of particle mass.

Lemmg Z: The matrices 7{037‘ MZme€ and )’9 setisfy

) >
the multiplication table

e ¥° ¥ ¥
ele »° ¥ %%
Yzt ¢ ¥5 ¥
1y Y e w®

i A LR
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|5

4

end generate a Clifford algebra. The lowest rank irreducible
representation of this algebra is for n=2. £ particular matrix

representation for n=2 1is

.‘IO ) c 1 N & = 4 ;0
Q—(O 1)57}0: (1 C">77 - (1 C) )Xg: (o ~—1>(8)

\

The proof of this lemma follows the well known anaiogous calcu-

lation in four dimension znd is omitted,

THE POINCALRE GROUP

b, The two dimensional translction group ,TQ ;
DEF,G:‘T;: %C(': (a+>a'>é\/‘@\/_1} . As a topo-
logical group )
g ’ Tl - TRQ_
The representations of interest for the Poincare group

are given by the characters of Tl ,centinuous unimodular maps

frommzxmz—-i'-& :
K (p,a) = exp [ <P)q>] (9)

Here I : .
<> R , X K,— K
S —
<pay = LOP a+Pab)
and has the property of being Lorentz invarient, i.e.,, invariant

1
under f,_,, 1f P tekes values in Vl@ V-—l

(10)




B. The Poincgre group 6> 2
pEr.7: (P < L@T | P - L, ®T, (11)

Then semidirect compositlon law is

(0,9) (b, W) = (a+W)y $+v) 0,4€T,

(12)
P, we L
Equation (12) is well defined, as(l:)c;; is known.
Lemmg 3: The orbits(Z) of &ZT‘ are each contained in
3 one of the solutions of
2 + - '
(PP )wc  ceR p-(p,p)€R,

of course P is a l-vector field., The orbits are nine in number
end fall into four classes. We list the orbits below by giving

a convenient arc-length persmetrization for the values of p for

each orbit. Let de R , Pe R* . Then
cLags 1. O, :i{g (oA e—-/\>} (14)
; C‘za )-lc ( A)B
20

iy ie >+v—c (e¢? **)j

s ATirRET ey |
4 05=3(P,0) 0,300 7§ DY Og= §(0;€>}
.02 ¢ %5 (e




This lemmg is the two dimensional anzlogue of the four dimen-
sional lemma proven by Mackey(l) . Its éroof 1s therefore omitted,
as 1s the proof of Lemma 4 for the seme reason.

Lemmg 4: The homogeneous little groups (stzbility groups)

corresponding to the nine orbits are

H\):C;) )(): 152,- 48

Hq = [f - (15)

2

The orbital diggram is given in Figure 1:

P>
sk
Ct Figure 1.
4 In inducing from the characters of _Fé to the unitary representa-
f i
tions of 02r , the coverience condition is eutomaticelly
E trivially satisfied, since HJ is either CF or L, .
E
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R S g

it

, o (PT (2)
C. The unitary representzstions of "

The unitary representaticns are discussed by orbits,

First we consider orbit O, . Let dh bethe 1,_: invariant

measure concentrated on O'

App) = L3P )6 (P ) bt clp” 16)

2 .
Here m -C is the s uarc of the particle mzss, Let f,G,

¢l (dp, (). |
(F)G)—“ S F({‘)) Zv_(;) C‘{“;(P) (17)

[ltemately, let /{N\(Lf [2 {0(’\,(> )> , SO that
umﬂ%)j F S:O 4M(A) 9{’\7 4 ) ers
Then 1f \[;r_v_\ 4%1(/\):}:(%@(2’\)77)&'/\) , similarly for 9Mand.G,
(:(m?h)l: (F,CJ) Lz(.d/“, > U_(cl) (), ) s

Since \\\:4 , the infinite dimeneional unitary represen-
- (a d)ec T -
tation of ,CP e szcting on the representation space

lL- (d’\ ) can be explicitly written

‘(a cf)—-bu(ac;) {.(nN—=>Ule4) )

5 m,,S( )[q Q—Q ¢7 - +(,\+ct);”f (,\+4>> (20)



'8
a similar construction works for Oz~ C’4 which correspond

to non-positive masses and are thereby excluded on physical

grounds,

Next -we discuss the orbit C’,). . Tis will lead us to the
concept of infraparticles, i.e., an essentizl indefinite metric
will appear. The obvious procedure might be to consider the

invarieant megsure concentrated on 05— O
{ )

., and Oq .

b, s 200 ) [P e poutp! (21)

i R L7t
or perhaps even G(J-f';;( ") Cup ) . This will introduce a

problem because of the pointfb =0 . These above measures are
positive, but will be too singular, except when restricted to

f smecring with a set of test functions, smeller than § |, e.g.,

/Sr-: 3 %6 ffﬁ 4 (”: o) =c J/ C j . But such a set,

the largest allowed within the Yightm:n fremework, i1s too small

to bguseful., This cen be seen s follows., In the familiar

Fock representation for the free massless scalar Tield, ?9 5
Fes

represented Via\Q?ﬁ , we would have

(_Qo)qm(‘:{\) C;pﬂ()) -3-0) '\JJ f{(p) Jp) C’l'QPas(P) (22)

, Thefxﬁu_e. denotes the fourier transform gand {D? € go . This

restriction on{’ 9 does not suffice to define the wick ordered
p)
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cubic fields, as was siown by Tarski,
But it is chrracteristic of two dimensions th.t in the
0 m o o
nessive case, 3. Gyt @ : (4) is a field if Q({)1s; and if

. M=o
5T M e i e d
e o is entire in 2z. hlso charactéristic of two
Zo '

M _
o o , o %4 ({)
dimensions is thet the models we can solve)use': € 2

- ( ; 4’*({) _', ’:—(
Te % et,,)d- {) , wherc q> is massless,; in the solution

construct.

Hence we must have massl.oss fields we gen exponentiate.
We do this by. sserificing positivity. We shall use the word
field in the extended non positive sense (i.es, infraparticles)
in whgt follows.

Write

({J?)iwr- (iwi& 9(H)CUA;“()

(23)

- - gjdu QM U _;Ja_ [ ({u)gmﬂ
whe.re f{? € U‘z (}”5'> and we zdjoin the conditions Q,\M 4 [t)

exists, U"M ,{ (u)  exists and similarly for 3 . We have the
A o /

following theorem

Theorem 1: Let‘{)? cztisfy the conditions gbove, O(ﬁg_be

; 5 !
as in Equation (23). Then U_l .q"%( ) )5> 1s an incom-
y . .
plete Pontriagin space T[ , which can be completed (toTl—’ .
} .

a complete Pontriagin space)
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Briefly, z Fontriagin spzce '/< is a vecto‘r space of
infini te dimgnsion which is equipped with z non-degenerctey
Hemitien fomm., ﬂ-&( centains at least one subspace of dimen-
sion K <00 on which the form is negative-definite, but not
such K+| dimensionsl subspace. There also exists at least one
orthogonal direct sum decomposit:lon_”',< = W_@W+ for

of the theorem
which—ﬂ’_‘_ 1s ¢ Hilbert spszce. Detalils snd the proof/ean be

found in Reference (3).

For orbit 05— , the infinite dimensional unitary repre-

sentztion of 0)+7T‘ we choose is

(a4) = Lle,8) 1 Jiw— la,¢) {10 o
— Loa- ¢) 1 (U 5‘?)

This normalizcs the choice of massless free field we
choose to use. s there is & logrithmic scgle factor free to
choose., In this cgse we heve chosen it so that no contribution
of the form 6(|b) sppéaring., Similzr constructs hold for
orbits O(,“ C‘:S : Fpr OC( y the' gction of (P+’f‘ 1s the same
as that of 'l , since H(}: ‘Z# i

PART II: FREE QUANTUM FIELDS

4, INTRODUCTICN

DEF:8: We shall mesn a field in the sense of Wightman

when we szy quantum fields. Hence we shell discuss infrapzarticles
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only at the end of this section., Therefore fields have strictly
positive mass until further notice., The discussion conceming
the crbit CD, ig,relevent here, as by free we mean that the
~field satisfy the Klein-Gordon cquation., This 1s the usual
viewpoint in Physics, Perheps it is more revealing to say that
e free field leads to a one particle sector whose measure is

concentrated on orbit O, . We glso deal with locgl fields only.

DEF,9: An element \i/¢ 4 is sald to be loecal if

/.
2

W, {@3Y=c ¥ {g9¢€d (550)

R N ERO T YOS D A S TPy
(25b)

i ‘usual duality o/
we use the symbol <‘ > ~ for the/psiring from /3) X /82 —3 R .

Lemmg 5: Every N-component free quantum field %((}

can be written

} - N s .
¢ (1) = 5 ¢ crﬁ(i) N<o fef
freo . ,

(26)

3 - and where

@ < (pm2)gy {>=0 Y€ 5

(ii) C}(u (4 ) takes values in \//\
h
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i~ g 3 iaguiinh STt

'..J
o

The proof follows by the defunction of a free guantum field,
Point (ii) follows as ;C 4\::_ﬁ3 . The condition N< op 1is an
ed hoc gddition to elimincte infinite towers of fields,

DEF.10: Using "field" for the fields of lemma 5 we define
Boson fields as fields whose commutetor is local in the sense of
DEF, 9. ‘

We first consider the simplest case, that of the real
massive scaler boscn field @ .. It has the frequency decomposi-

!

tion C}) = C?D(—D_,_ q;(”) end well known two point funggion

(9, ¢ q:‘*?kp 0.) =7 ALE) (27)
7 WL Jmiz)% ]

where?:’l—‘&j andj_- ~] for §2>o)g'°>o;;):_+l for

2
§'>o /§0.)(o end for ZQK’ 0 . We are agssuming a Fock space,

—

the Hilbert space with cyclic vector.ﬂo heving the Fock property
(t) (4) 0 5= ; the Hilbert space hcs the inner product
(

It is seen, thereby, that d‘ is locel. £11 free local boson

)) « The commutator function is A’M(X):A(W:(?W‘ A«T(;)(_I);

fields are classified in the theorem below,

Thegrem Z: Let § be zn n-compcnent free boson field

whose J A component takes vslues in \/"U . Then

(1) ct).(;‘{) = (constant) (%)“)Cr(w > j € /Yl (28a)

(11) If @ is local, then



9<)'+°(h€f o k=1l,----M (28b)

Note thet negstive power derivatives are to Be interpreted as

‘Xﬂ
("’Ml %> ) since the Klein-Gordon equation holds.
=

Procof: Eyuaticn (28gz) is obvious in the momentum repre-
sentztion. For (28b) we must d:=fine our normalization of frace

tional derivatives. In one dimension, cp(—/g' ) {éj .

24 () ¢ TPl o
y

If ¥ denctes the Fourier-Flencherel transformation map,g'“)/g ’

then {o( is defined through:

}({0() 3 C(WJ{/Q (Py(//\/(/)) (osh)

We assume known the standard relctions between the
locality properties of distributions ond the anzlyticity propecr-
ties of the holomorphic functions which have the distributions
as boundary Valu_es. |

The support of _A,mﬁ) is contained in the closed
timelike cone. The support of K(2) = (({%¢) Am(j) is contained

iﬁ the closed future cone.
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i!j)o( F‘\’(ﬂ] (p)

fa

is the boundary value

Then %ld(/’) = 9/ }:(

Yo, o | - s o (¢

Ry (P - é‘if‘o ki ) (29¢)
Ne,

~N

R = () (2w )T

(29d)

D\ ~
But for (:0—;,> Aw,(i) to be Locel, RO( (‘U) must be analytic for
all 7}:}3+1ﬂ7 . ’)‘)é \/.r . J<als 1s not sc, 28 R (7/3 has a
I
brsnch point at 9 = 0 unless o € f_l g
o ~
For (%‘5) K (x), the corresronding Rs(‘?}) hes a branch
~ X
point at 9 =im , unless A€ } . Thus(_‘i,> K (x) are not
27t
local unless € £ ., This implies eguation (28b), and the
theorem is proven. 7.¢ Al
EXAMPLES

1. Vector field: The usuel presentztion wouy teke theform

(E-%Z> ’UOd: o’ , Dg_uT =0 )[ UT) C(L] - 2.,

(30a-c)
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T ¢ T
7 (9T a2 ?o}@
{304)

In the termms cf our clessification theorem,

ut - sy - = (ot b
' - >C CP (30¢€)

( | { 0
CP ) u - (ﬁ)b CF (301,)

0-_{_—-\
= == @

c. "Curl"-field: In two dimcersicne we can define the anti-
symmetric second renk tensor
o ,1 ’ V

- (31a)

chv-—er . € = — €7

, M
Then we cen define the curl-field ® 5

},-( - H v ’A‘_ Ao
:B - 6 ()) :’ ) (31b)
this is "chiral" to 4" , as can be seen DY
¥ +
. Pap' = 17 a (31c)
15 = O L = 7 !
3. 4s a third exzmple we consider the second rank symmetric
tensor field \/O‘hr ,
o~ T T6=
. 2 MY &T A ! _
(0w V2o 3.V =%V =0
? (32a,
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This ic expressible zs

- w2 1) -+ 2
Vo= )#’)V b Y e () ¢ (22¢)
The commutator is then

EVG”’T)V}"VJ: _|£ (T\’(FFHN'?@WG\]/TTTF)(‘—'AW (azd)

4, This 1last illustration is & counterexzmple to a usuel Spin

and stetistics theorem., Let

— (") o~ |
? N [ %4.(?‘)\/: ](\C\+> CF 76~€-Z.

(33)

Then 4) is 2 locel boson fieldd, but tgkes values in \/( )
G, -Y
2 2

@\/((;2- \/2)+’ gy o€y 18 2 [f"_\/Q’] -spinor.
DEF,11: & Dirac field is & free quantum field setisfying
the Direc equationy bilinesr expressions formed from the field

with elements of the Dirac-Clifford algebra are local.

DEF,12: The Dirac scaler field e is a non local free
field Q satisfying

%Q,C*Sr ;oA O (342)

W

W e () ' : .
where AW e A\m (%) + AM (-X) , the even solution

=4

SR
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- )
to the Klein-Gordon equatisr, Note that, being free, 6:(9.,,5("

znd

(- by X -_ | (- |
§V)>()+}:( VO (34b)

-

{
Theorem 3: 5111 Dirac fields, upto cherality, are tensor

products of Dirac fields of the type Ur/ 5 L‘/H)_,, Q/('), where

e = (,; e e (59

so thgt

% \Y, CF—S 2 (=) -0 o S, (362)
where ‘

(S'm)qé = ( 4 ;Z?hb/u +M€>qé Ao 66212 )
and Ze € 7 (28e)

Proof: Direct computation implies that Eqs.{36a,b) follow,

Locality gives (86¢c) just as in Theorem (2). Thet this exhausts

the possibilities is evident frorﬁ the independence of JV) e and

7/(; . Our thecrem should be amended, in fact, to include
possibilities‘ofag- appearing. This is in practice lsrgely

ignored in four dimension so we do so here, That 1s, if
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W"?ﬂﬁgw )1—}/—'——9 \}7 say, then locality wculd not be affected.

* Theorem 4. L\et C have the same meaning as in four
dimensicns, and definc the field mapping© = PCT . The
connectivity of L (€) is the szme as in four dimensions. In
particuler, I+(C)2) ccntains both sheets of I,_‘_(Fz)'?_) as‘ rgal
S‘u‘ggroup. In Ref,( 4 ) en explicit geometricel setting for the
relevent anelytic domeins, in two dimensions, due to Ruelle,
is given. Then ome cen follow the proof thereof the P€Ttheorem
for scelar fields word for word. Certainly i1t holds for our
free fields. The syin-stetistics connection seems lost,

(4)

however .

PART III: THE VECTG2 MisoN MoDEL' ’

We deagl with & vector meson, A} ,' interacting with g

ferrion field of mass zero \V . The coupling is formally
G (oM 14
ng ) (vot v ANM A% (1)

when the mgss of A’,L , 0L m.< 20 this is the vector meson
model. When M,>D " we hsve Schwinger's mcdel; correspondingly,

%09 v 1s Thirrings model.

DESCRIPTION OF THE MODEL:

We use what seecms like the most matural gauge and write

Field equations

L x" Q,M,\V: -9 0(”; A,,J}’f .
a2 S v e
(‘D“.}Mf ) A/v\ = 2( J'Avno(



19

Divergence condition
our-gesuge demands

B/L\ AN = C

(3)

commutztion relasticns
[-A%iE ) (27A=24) (69)] =0 ~'5 )
) . ' |
1T 79, 1630y 1t MDY=t LEEY) @
v el ' gc
A w2 re (0 A0 1))

}

g b |
In this fom, (B A -@'/\07 is the. field eonjugate to A , end |

a%o is constrzined by tihe above. For ordering we use wick

ordering,, , .

Th: tcms ebove have to be suitably defined,

Current: We cen define the current without any divergence

as follows, We set

A — A — f\/\
(),\(’7'0 = 'IEI Wy (71“’@75* W)+ (2-€)7 \V(v()j

(5)
Let GB be spacelike, é\t.’timelike'and orthogonesls
Mooy My
Che <o sele _, . M v /]2 9
S Sy 25 *r\‘o>65 €e (5*6( € C{r‘<6)

There are two independent limiting procedures extant in the

literature lezding to two currents, the Schwinger and the
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Johnson limits =znd currents
X+ €
1, A dy
it . X M ) AL oA
J(vc?— bnin \éﬁ f)r (1;?)@ * g d (72)
S \(S-.)C > : .

| L% 2 t .
: : M{x): (W\ 5166 l AI\{)(.)(T.‘S >+\€{_\K9 (2 5 6{_)} (7b)

|
J 2_€S->O ‘;
Et":)o £
H Here K -K(z,) end picks cut the (finite) leading term,

Projection conventicons:

. RN A P WA LY (82)

for @ vector field, rct of zero mass, For zero mass

o)) € TR0 0) e

Solution ./ns:tz i

Let ég be & linear superposftion of free fields, all

R

dynamicglly independent; Wo seek g solution in the fomn

s Qiga‘i D Wie) 5 Y. éL':"‘iﬁmfgqj‘: <22

we see the mecessity of using massless fields that can be
exponentiated, even ot the expense of not knowing the positive

definiteness of the thecry,




el

-
With this form of \ , the Direc field equaticn gives A
in temms of @'

2,8 Ag= -2t (2,2 -AD (10)

Solubility rests on the commutativity of the of -matricep, We
may pick o %20 '-¥Y with the correct structure, Then
A =

ﬁ ¢ @ must be of the form

) e DR B

where Ea,ﬂ do not contain matrix prcperties, Then
L ) TR
<D/\§a> :<A/\\/ ) (10, iﬂ»): (A»)

1

as illustrstion, after eliminating (€2

" 5 . (c)/h ‘ G‘T€A - L
JJ(')() :Ji—%s-”%é (1) +2§-T—'-— S s t[_ﬁ/\;«; O(o.o(:)+o(\60

i . =
; 6(‘-90 S
1 (st) e
: ¢ 4 ' /L\ 7’2 2 -
# = )/(7‘).+@/2ﬁ UA ) (A )](:()
‘ similarly
A c) M )
Js(vo = J /(z) +Q: (A) ey (12b)

2
0) 0
Note that C.Sommerfielc sets _I( (x) - @\M (k.é !
GS—->O 3 g SD) L

o S st AN ezt
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o : —M_ M
by coverignce, But this gives | = ()5 . We use this

| N .

process in the Thirring model where no W} appears and no line
: .

integral is available to define )g .

Thus two classes8 of soluticns appesr, as we use j\;/’k or

p
J respectively., There will be fcund to be different gauges

/

in each class giving a sclution table 1like

gauges Landzau, Feynmen, Vector-meson, ————
Schwinger - - - i e
Johnsen - - - -

A%
Note also the deep point that well-defining ‘)f gives mess

renormali zation cutometically here. For S:

: . TC ik ley |
(u-vng)w*‘) v 0] - 7,7 92 T8

(13a)
T
or . : »
(D'Wb‘z ) (AN)L_"— (‘D__Ws'Z) (’Afﬂ)’ - 9 )(c) L
(13b)
: T .
f") ae {5 %2 " 2 ~?
P o e ") = ; s
(A }e > s . e (j/n (13¢)
In all our sclutions, toget fromd to J cless, change
m —(m MmN o & a? | 14
= ﬂ- )%5~\>(ﬂmﬁ+ Ay, =™ % 9 2 (14)
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This is for the above reasons, Note alsc that were "Schwinger
tems" to gppear in  we would throw out the limiting procedure
and search for one that wes well defined. There is no divine

recipe for finding AM - 1t must be well defined only.

The Functiongl 4pprosch

With neither details ncor explaneations we write

T(()y)*,w)): LT expi f( DAty eyt 47)>O(15>

I can be found explicitly through two factors. First, as

| ‘ ~h h
LO(M,O(U] = 0 , =n exact expression for G\ (U)’U )—B)o( (d *28 )"‘
G\(U)”U y B> - gm-:_,»;) in clo’sed form is &veilable. Seccndly,

A
our l,/ ansatz le:ds to (' forms znd hence to
. ’7

\[ ¥

<)

< }A\O) = 3 T’( °) - h
) % P ,3__;_ (59)78 ), Q}P‘ >®+ 2’_%(% yﬂgg (16a)
kv
%5

5 Ve (16b)

I

Similarly forJ -class celculstions. With this, it is pcssible
to findT explicitly and hence 211 the T-product VEV's, I won't
write them down zs they are bcringly long(+). Suffice it to say,

compairing <~,— Wi - “Iphjq&> with our ansatz, zssuming
' e

(+) See APFENDIX 4.
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z'z (,: Z-Ca,,jr % ('mj> including vectors, the simplest solu-
al
tion is-
@: Y (YYV e W ¢ )+
TBT d ) 4? (17a)
A\ o N
A s UL - -l Cam "2
C N ’ 7 (17b)
Here
J
U = vector, mess ’YY\S ){ S 14
(f = scalar, O L, ] =+
C = " , 1" 3 [_ , ] Pai— (18)
d
\V = spincr, 1 5 L , J + = ~+
The Solution Proper
| 5) We hwve H,, = & ” ; we only need H,, CTH,,.,
free f1elds ky’

HP}W}” = closure in (A) W) L?)__QOS with induced inner product.

This point is crucial, as s:

(3m) Ag=3 § = -T2 G 1m0 ¥ Cr9 SO ] 2 R a9)

1s not identically zero, iLe. (2 | ‘20,} ) >H 30 - But
(’? lR(J"’ 1)
0 F\ g o fg__’“ (20a)
R

= R
LR bo]=L R Y] o= [Rr W]~0 (20b)

=0 . We see this by examining Ro“ further:

H?Lp'
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B) <T(AB)>O; AB Xp© > 7"
=+ BA Xa < Xgo

we define a T with preperties at ;zAO 2 TBO/MC,L X-M

ol v S MY A
<T" 2 4 O ,\>: @(,) 2w T <PA> (21)
% X
Klso T for second derivetives, ete.
GAUGES
When finding :]—(é % 474) there appears the factor
>y ,
Acﬂv , the causal vector prcpagator. This can be written,

in R space, as

_ ‘ ‘ v
[gr\V_k'ﬁ?’ 1k JJ/]

“p € (22)
I e ¢

Our ‘above gauge, \/H , 1s when A(’ = - kz/wz . For the

F-gauge, A( -t , and

- i (23)
§F\ fVH-’r (e b - )5%”>Wof_)_.3 o) 23

Howevery; 7 = o herc ! This is an infinity in the wave func-
. _

tion renormalization but we see it is due to the wrong prescrip-

tion.

" For the L-gauge GICtO , end

=0 Lo €2 o ]
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which locks better tlflan‘c_,{_avH by one field; but i H Phys on

which(@¢>L vanishes weakly. The above gauges are gll fine as
regards the Wightmen functions, but one can see the adVantagé
of the VM gsauge.

We note that the se cperztor sclutions might be termed
gauge fields and will show no scattering for that reason, Up
tc non-definition mathematic¢ally the various gauges cen be

interrelzted via

. - . -~ -A’
(;\/4)3_9(/)#)2 (/]/,‘); N a/AAu_ yore 9 2, y = W, ek

(25)
_/\.'Z = P,Z_ (0) 0,(A7,
LIMITS
4) Ihirring Model
Theorem : Let h :(??/'M(?‘ , 6< X <2W | Let ‘

Tlm0 = explt (92, 4,12 G))

Then th . in
pn T lm 20— ,{
T ';%MW ___)oOT(W;ﬂ = Té’“/\ﬂ) -4 /g
} N '

providedéﬂ__;(w such that ) —> . The proof is in the peper.

Then takewb-axz rether freely to get the Thirring mcdel

with operator sclutions. For VM we have

1 —a: v o)
. ({ — e /’k g
Lf/s)) = ¢ Q \)7—5 &) (263)

&5: L&[X;WE€;<)+§:} (26b)

. SR i T e e e D e eSS Tt
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— L
_fj:J;[j% iwi_c—k Wm qj] (26¢)

n

sgein there 1s an M ?¥ p . £lso note that

M M ]
>(a ) ,,_9A3_9/1()S)/\$ (272)

(27v)

SRt O, )m—(J
(22175‘“ |1 ) Howy =0

B) Schwinger Model
Here M_— 0, Our solutions show singularities even in

the Wightman functicns, except in the L gauge. But here we

hzve no true operator solution. It is felt that the operator
solution will come thrcugh the Coulomb gauge. But the usual
relations between the €oulomb znd Landau gsuges. The two obvious

Coulomb Green's functicns are

{ I SN —~
"= o S Lm, 1) (282)
\/‘(1) - —-Z'—W‘ e—t"mo}f\—]
& | (28Db)
ar GOYQ* C‘\\/; . Buty' is singular ot WM — 0, and yv

at‘%woeoo 71
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NOTE ADDED:

Hegen preposes @ trivial modificestion 1n the current,

leading tc our Schwinger results with

m?_,mr. 2 2
0 L/ " ?/47
Q’Y) 2 —_— % = = r)'hu — z 032/-”—

Fr;.r(’)))g)_— (0,4) schwinger's results:;(‘]",l?_) Johnson's results.
Otherwise this trivizsl cless. We can relax his conditions on
replaces these, or enalyticelly extend, (E/)W)) so that Z‘t’"’)#: l
as he demsznds. For thic Thirring model,

] [/
/H% 3 Vﬁ}

=l

same expressions with (¢ /L)) - (1p) as in our results.
VAR ) ;
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'XM(( 3,79 ("L }_Ly

(D'%o@ Y J = (- T(n>+ 470[) o.(, 3,,7 H)}?
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LPPENDIX [

The generating functicnal for time ordered Green's functicns

T (g v;) (2, Tewp 1§ (Pagempyey* Dely 2o

It satisfies the equations

= ——i"’)(-x)g

BJ—,«”’ e (h.22)

5 ,3;‘(70

(5.2b)

The sclution for? mey be verified to be

U(J 7) =N (“xp["‘"\f % d v7 (W) (u,“/, f ) )”7(@]
(5.3)

XL)()? [ L >J @x)?["‘"‘jdm dfc) {w)A ’"’ 4w 2T (-e)]

In E¢.4.3, N is cheosen so thet (] /0,070 >= i The gsuge is put
in vig the choice of AQV . G is the fermion Green's function

in =n extern:l field:

0§M ((br\"' 93’/)1@(7,&4)3‘) = X & -:j) (4.4)
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Its solution is

Glory; B)- 6 (—n—ﬂQ*PL?g‘( LCWO)C (»-2) -G (%’Iﬂ

Pa,(27]

- (¢) -
U INE C o) = 402 —9)

with causal boundary c:inditions. L is the ¢losed loop funetional

(£.5)

Here (£.6)

end is defined through (fcr the S-class)

BL_ :i—’?< j}"(7l)>13 ?< 3 () 2— 'TE)O

SBP(V) 7
- {,12’ 5(&) (2-9) R} M)d%’
] TP

We have zgein used prior knowledge for simplifieation, f; is the

(A4.7)

trensverse projection operztor., TFor J-class solutions, use the

contraction operator P

MV
(% (n- O) 2Mv<(w’ﬂ)—zt.bcfm’ﬂ)az

(4£:8a)
Wy, gy - MV M £ »
PJ (= ‘7) ~—'2'."‘(a }{w»y)..'bx b (71-44)}?
(£.8Db)
Thus
@ 9% | g p R
! (> - (y
LS,J =) % 2[”(1) 57 7P % (£.9)

Fellowing Thirring end Wess: fnn.Phys.(NY)27,331(1964), one 1is
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led through the zlgetrs to the Green's functions and thence the
Wightman functions. The n-point fermion functions are necessary

—_— < (_,,
to find (E in ] @_(23{2 o) = e‘(b : 95(’ (@) . We have

<U((‘>Z )~ \}—/lgn)>
,Pz_ (Saw P) T FJ (2, )): P (\/P (£.10)
e <k
_ e
XTI Flar, Y, ) < 5 (Xe=Yp)

The factors F depend upon the current and are given by

¢ m :
’ (L . Q
F;‘S (X)) = €xp %/\‘. I (2,- L)w)ﬁfé )Zsh") (A.11z2)
XAl LY M—’ oy - (1= 9m7) ]
& 3 .
(x(,,\jm) :éxr?/\( \—3"']7 - :D" (X¢- Yo ) (£.11b)

.s b 3O 3012 [a8) 09087 Y

The functicns F follow from: the corrnspondlng Fem by replacing
0 (9!

; .y by unity, The 0z Y™ reter to the

> 5 _

‘ corresponding spinor indices of 1\')('%() end W“)m) respectively.

\



References:

(0) A.S.Wightman: Introduction tc _scme fspects of the Relstivistic

Dynamics ¢f ntized Fields, Cargese Corsica, July 1964.
The nought signifies that this is the bible for thts subject

up tc the date significd!

(1) R.Boemer: The theory cf Groups end their representaticns,

North Holland Publishing Co., fmsterdam (1563),

(2) G.Mackey: Grcup Representaticns in Hilbert Spaces, in

I.E.Segel: Mathematicagl Problems of Relativisti uagtum

Mechanics, hm.Meth.Scc., Providence, R,I, (1963), This
gives the ccrrespecnding four dimenslcnel thecry end further

refesrences
(3) Dubin and Tarski: J.Mgth,Phys. Z, 574 (1966),

(4) This msterial is taken frem D.£4.DUBIN, The Group Theoretical
Structure of Free¢ Quamtum Fields in Two-Dimensions,
ICTR/67/37 (1967).

(5) The latest reference on this subject after Reference (0)
and eczrlier; ones cited therein is DUBIN asad Tarski:
Ann.Phys.(NY)43, 263 (1967)3 after that some Trieste
preprints have recently appeared by Thirring, Wess and

Schwabl¢ snd by Hsgen,



 Ceport No.
38
39
40
41
42
4"
44
45
46
47
48
49

50

61

List of Matscience Reports (1964 - 67)

N

Author
M. Gourdin
J. V. Narlikar
K. Venkatesan
K. R. Unni
L. Rosenfeld
K. R. Unni
H. Ruegg
W. K. Hayman
Ph. Meyer
J. Rzewuski
P. L. Kannappan
P. C. Vaidya .
K. Venkatesau:
K. R. Unni
K. R. Unni
V. Krishnamui thy
J. H. Williamson

H. S. Shapiro
D. Gaijer

K. Srinivasa Rao
and R. Sridhar

V. V. L. Rao
D. A. Dubin

R. Vasudevan

T. S. Santhanam

Titie

Mathematical introduction to unitary symmetiics.
Theories of Gravitation.
Report on recent experimental data (1965).
Introcrction to Hilbert space.
Theory of nuclear reactions.
C¢ «cepts in Modern Mathematics I (Algcbra).
Relativistic generalization of SU. (6)
Tra isfinite diameter and its applications,
¢ 2t 7 lopics in Weak Interactions.
“i. ransformations in quantum field theoy .
Theory (?f functional equations.
Se'  ~{ topics in Gravitation.
Report on recent experimental duta (19686).
Concepts in moderu n:athematics II (Topology).

” ” III (Analysis).
I" "ality Theory i loca™v convex snaces.

Representation theory for Banacl. ¢ igebras aad
locally compact groups.

Smoothing and approximation of functions.
Complex'variable proof of Tauberian theorems.

Nuclear models and
Nuclear matter.

International system of units.

‘Relativistic physics in one spacc and one

time dimension.

Coherence phenomena in quntum mechanical
systems,

Group theory and unitary symmetry.




