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PREFACE

The aim of theée.lectures is to provide an introduction
to some of the basic theorems of representation thedry. They
are pﬁrely expository 3 there is 1little or hothing that cannot
be found in standard treatises such as M.A.Naimark's Nomed

rings,(revised edition: Noordhoff, Groningen 1964) or Vol.l

of Abgtract harmonic anélysis by E.Hewlitt and K,A.Ross (Springer,
Berlin 1963), The background assumed is (a) the elementary
theory of Banach algebras, in particular of commutative algebras,
up to Gelfand's representation theorem § (b) the elémentary
theory of Haar measure on é (not necessarily abelian) locally
compact group 3 (c) some standard results from linear analysis,
such as the spectral theorem, tlte Banach-Steinhaus theorem and
the Krein-Milman theorem, This material is readily.avaiiabie

in several excellent texts, and it would perhaps be super-

fluous to make specific recommendations.,

January 1967 | | | JLHW
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CHAPTERL

GENERALITIES

Most abstract mathematical systems have at least

one reasonably well understood concrete realisation, which
may have served as the starting-point for the abstract
theory. One may think of groups (finite groups at least)
envisaged as groﬁps of pemmutations, Such a concrete
reallsation may also have been found in the course of, or
subsequent to, the develophent of the general theory. In
any cace we assume a class éf) of abstract systems S and
a class ff; of concrete realisations S, . A stiucture
preserving map S -——y S, 1s a representation of 5 as a
system of ‘32 . In general many systems S, &€ ¥ can contain
images of a given S €% ; think of permutations and finite
groups., The cholce of the classéﬁ of M"well known,'bohcrete“
systems 1s to some extent arbltrary ¢ and in most cases no
;entirely safisfactory reason can be put forward for selecting
one such class bg rather than another., However in most 1
instances there sare qertain cenventional cholces for jﬁ

- which are clearly in some sense reasonable, and we follow
the traditions. In the cases in which we are interested.jﬁ
will be some class of algebrzs or of groups of linear
operators on linear spaces, which are regarded as reasonably

familiar objects,
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An important general notion is that bf *irreduci-
bility! or the equivalent, We cshall be particulsrly interes-
ted in representztions that are *gimple' in some sultably
defined technical sense ; we demand that they cannot be made
up out of simpler pieces. In this kind of context the temms
'simple', 'minimal', 'irreducible’, tindecomposable' are all
going to mean much the same thing. To take an elementary

casée s suppose j” is the class of linear'spaces (real say)

and.yg 1s the class of finite dimensionszl real Fuclidean

spaces RY , fmong the various possible maps § ——aRR
Those for which n=1, 1,e. the linear functionals oﬁ S,
evidently have this 'minimal' or 'simple' property.

Another genersl idea is that of a 'falthful' repre-
sentation : this simply means that the map is 1-1 (from &
to Sg) « A set {Ti} of representations is completg 17
whenever x#y in S there 1s a Ty such that T4 (x) o
Ti(y) in 85 €Y . We would like complete set of irredu-
cible representations in geﬁeral. Two representations
Ty S-h—bSl and To s S—>8, are equivatent 1f there is
a l-lmap W of S; on to 8o such that W and w‘l ara
both structure-preserving and Tolx) = WTy(x) for all x € 8,
We are ususlly interested in representaticns only up to
equivalence,

We now turn more particularly to Banach algebras

and topological groups. We shell always be concemmed with
!
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representations by bounded linear operators on a Banhach upace
(which will usually be a Hilbert space) : we assume jg To be
the class { Jﬁ,éf)}ﬁegof all algebras of linsar operators
on the Banach space E, for E£ £ (the class of all Banach
spaces), In each case there 15 a trivial representation
if B 1is a Banach algebra then T(x) = C for all x{E B s
if G is s group then T{t) = I for all +t& G .

Take now B to be a Banach alzebrs : we shall
consider only complex slgebras (the real cese 1s similar bul

e
.

slightly more complicated) and we do not assume a yait,

however there is a unit e we shall eiwmays demend T(e) = I
(the identity operator). 4 representation T : B > &@(Fﬂ
1s bounded (or continmous) if || 7(x) || < ¥ ixl] for ail 4 =

and some Tresl Kk,
There are atlezst two obvious representations fo. any
Banach algebra B, If we consider B &s acting on i1tseld

(as & linear space) by left muitiplication and write
T(x)y = xy

then it is elear that x >T(x} 1s a vepresentation of 3

in & (B) . Also [[T(x)&lxll for all x4 B. We shall call

it the lefi obvious rez@resenteﬂcioz:f’t of B, The left ohvious

Balth

~representstion is faithful 1f and only if tiie ielt annlnila-~

tor of B , that is, { x : xy = ¢ for all y¢ B} ls reic,

o - ‘ R
sometimes it 1s also called left regular reporesentation.
but this term is also applied in a rather similer but
dlstinet sense, so we avold it here .




4

More generally, let J be a closed left ideal in B and
take the quotient B/J , which will be a Banach space ( wut
not a Banach algebra unless J 1s two sided); Let q? he the

canonical mep B ——>» B/J, then the representation T whers

gimilarly for "right!',

The kernel of a representation T :{x s T{x) = O} is
&z two sided ideal in B, closed 1f T 1is bounded, and conver.
sely, This fact seems however not to be so useful in the non-
commutative case as-in the commutative case, where 1t Ig¢ of
fundamental importance,

A4 subspace E; of E 1s said to be invariang under
the representation T 1f T(x)(B)CBy for all x & B. A
representation T 1s reducible if there exlsts a nontriviel
closed subspace Ey¢ E which is invartant under T ¢ otner-

wise irreducible, If _T( is irreducible, then the vectors

T(x)§ , X€B, §(§ E are dense in B , otherwise the
closure would be a non-trivial subspéce E; with the
required properties,

If there is & single vector Z:tf B such that thc

vectors {T(x)é‘; : X € }3} are dense in B ‘then [ is

aald to be a gyelic vector for T and E i1s-cyclic under
T. If for each non-zevo £ € & there s a x £ B with

7(x)§ #0 then T is essential : in general if we wrie

"=

| . )
g s T(x) = 0 for all x & B:,r

.
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then N 1is & closed subsapce of E, We may take the qub-
tient E/N and then the induced representation Ty given by
T1(x) qt.),(y) = gg(xy) is essentigl., BSo in fact we can
tonfine ourselvés to a great extent to essential r¢épresenta:

tions.

FROFOSITICON 1.1: A.non-zero representation is

lrreducible if and only if every non-zero vector

is cyelie for it,

PROOF: if ?!#169 1s not cyclic then the closurs of
{TCX)E, $ X € B} would be a proper closed subspace of [v
Anvariant under T : so T 4is reducible. Conversely, if T
1s reducible, then eclearly no vector in a closed invarian:
proper subspace can be cyclic. |
| Now we shall tzke the case of = locally compzct

topological group. Here we are assured »f the exlstence of
an essentiall& unigue invariant measure on the group,

Let G be a locally compact topologlical group ang
let dt denote the left inveriant Haar measure on G, We

have then,

ff(t)dt - ff_(s'lt)dt for all s ¢ G.
G G

Denote ‘f(s“lt) as & function of t by Sf(t) , the laer:

: tnans;aﬁe of by s, If CoolG) 1s the linear space of



complex valued continuous functions on G with compact

support then j‘f(t)dt mskes sense for i‘ECOO(G) . We can
G )

introduce various norms into ~Cup(G) 3 for example

Il = sup [£(4)]
t€ G \

iffllp = (gmt);%t)/*’ 1< A <o

On completion, we heve the spaces CO(G) , LP(G) . If p=2
we have a Hilbert space with inner product
| (T,g) = ff(t) g(t)dt
' G
It is clezsr that we hove a wide variety of representationc

of G as (isometric) linear operators T(s) on one of

these spaces. 1In view of the left invariance, i1f we write

T(s) = T(s){ = _f

S
we have B -
| £
! /";f(s“lt)[pc‘t>‘bi
I $ll = It =4\ P 1l
] sup [f(s=t)|

_ -1
SOVHT(S)” = 1. TFurther T(slsg) f{t) = f@?lsg) tj)z
£(sys7t) = (Tsp) £) (s716) = T(sp) T(sy) £(t) so that
T(s18g) = T(sl) T(sg)s Thus we heve s representation

5§ —% T(s) is a homomorphism, It turns out thut the nowm




topology on the operators 1s not the apprepricle ons hevc,
but rather the strong topology. We heve, in fact, the ol

ing

PROPOSITION:1.2: If G is a localls

logical group, it has a faithful represgatsaiion

isometric operagtors.on Lp(G). (1 < » <00 ) or i

‘CO(G). This is bicontirvous if

strong topelogy, where the hasic neighb

{ ”T - T % s 2= 1, 2,2 .0 ?

In case p=2, the operators arve unitory,

PRCOF: If S, # So s then frow the local cowpsr.7o oo
of G, we cen find ¢ function f &C_ {Glsuch that flsq)
, 80 that T(sy{)f = T(so)f . So T is 1-1.

Since each TEC, Gl is vnifommly contiaucuz, ¢iven
& >0 ‘there exists a nelghbourhood .N(¢> 67 tho ddennity
such thet ~ o(s)f « £l <& for s €% ., Sincel (Gl ia
dense in sach Lp(G) and in C,(G) , there ¢xlsis a neigh

&

hood Tt i ” / i I . P A AR
bourhood N'{e) with [[T(s)c, i CE PoT s €N, G gL .
or CO . This proves that the man s —s 2(5) 17 crortiii-
ous,

" For the converse let M{; be a given neighbourhoc)

f3

‘o' &. Then there exists a symmet:iic neighbourhses N {e
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such that N'N'CN. Let [ £¢,, such that f » 0, the support
of TCN' and |l =1 . 17 s¢N, then £, 7(s)f will have

disjoint supports and then

3

iy

"
it
I

el =1

[+ - .

(s)

Lo

0
whenever sgiN and so the strong neighbourhood

{ 53 l]T(S)f - 3“” < 1’?
' »

is contained in the given N as required.

If p=2 we have

s

(T(s)g , 1(s)) = ing(_,j"‘ha:q(s“l-c)dt = u(?;{t}YZ('t)d‘t -
G G

This completes the proof. |
The functions in ~COO(G) nave a rathrer rich algebralc

.2

structure : in addition to thelr linear spscs propariies we nay

[

{

12

introduce an operation of multiplicrtion g if £,5&C,(C) then

the function

ls easily verified to be again in C,5(G). It is calied the
convolution product of £ and g. With this as multiplica-
tion, ColG) becomes a linear aesoclative algshra (not

commutative in general)., We have in generel the inequallty



;:éo that in particuler IL7(G) is a Banach algebra. Also
regarding £ as an operator on Coo with I Hp, the operator

nom satisfies Hf”op < Hflll, and completing Coo under | ilop

we get various operator algebras, The case p=1l gives Ll(G)

agaln and p=2 gives A(G), which 1s in fact a B*-algebra.



CHAPTERDZ

ALGEBRAS WITH IrvoerLogrTIT oM

Let B be a complex Banach algebra, not necessarily
~with a unit § we shall denote by By the algebra B with a unit

adjoined, in case B lacks s unit, By may be normed in the

“obvious way 3 | Ae + xll = | ’H + x|l but there also othe
ways‘of norming B which are more appropriate in certain/cases,

in particular if B is a B -algebrz,

DEFINITION : An involution on B 1s a map X —>% of B
to itself satisfying at least the following conditions
(1) x** = x
¥ _ oso# - K
(11) (Axtpy) = AxX +py
(111) (xy)* = y*x*

The involution may be releted to the norm in varicus

ways
(1) x » x* 1is a continuous map ;
(2) x —— x* 1s an isometric map 5
(3) Ix x¥ = xlI” for a1l x 4
@ el =kl for a1l x
iﬂ{It is not ﬁard to see (3') &= (3) —/= (2) —==(1).

4 Banach algebra with a involution satisfying (2) will

be called a Banach s¢t-zlgebra and we shall alwayé

assume this condition from:now on., If the stronger

condition (3) holds, we have a B*ialﬁebra.
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Exampleg: (1) B = C , with complex conjugeation as involution,
is a B*- algebra, This 1s the simplest example of é B¥ialgebraﬁ
| (2) B = Co(x) , the continuous functions on the locally compact
: Hausdorff space X vanishing at infinity, with [x]] = suplx(t)l;
t € x and conjugation as invclution. This is the typical
commutstive B*—algebra. -

(8) B = algebra of all complex nxn matrices, with x ¥ = trens-

. . %_, z2 /a )
posed complex conjugate of X end norm x|l =, Ixijl 4% this
| 1,J=1

is a Banhachyg algebra but not =& B*-algebra.

(4) B = os (H) , the algebra of all bounded linear operators on
¢ 7 a Hilbert space H, with the involution x —-> x* the natursl
Hilbert space adjoint (x* t,v‘,).: £, x‘r-g{-) for x-fécf,(H) ,
%' ,VYZ (5 H, It is gasy to see that with the natural operalov
‘ , e
© norm fxfl = Sup ||XE i, &8 (H) becomes a B> -algebra.
1€k .

('6) Any cldsed';é-sub algebra ofc}"(H) (known as a C’-a__g_ebm) 3
Lthis is the standard mddel for not necessarily commutotivc

*—algebra, a8 will be proved later (Theorem 7 - 10)

o

: DEFINITION If in as-algebra an element x -satislfies
k*"x 1t will be called self-adjoint or Hermitian. If
B has a unit 6 then x is sald to be unitary 1f xx‘* =
x*x = e, If x"‘x = xx* then x 1s sﬂd-to ‘be normsal,

For sny. X' the elements xx™, x7x, é(xﬂc""),

- -";'_‘1(x-x*) ~are glwsys self-adjoint and X can always
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De written as xl+ix2 where x, and x, are self-adjoint s
xi :%ﬂx+ﬁ3, X o= %ﬂx-xﬁ end ¥ 1s normel 1f and only if

XiXg = Xo¥q If B is a ¥-algebra without a unit then

2
Bl becomes g H-algebra if we define (d‘e+xf€=cxe+x* .
Further if we have a Banachyealgebra (ljx| = HX*H)BI,

on' extension in this way will be a Banachx-algebres with

the ususl nom
locetx]] = Jel | + [x]

However 1f B is a B -algebra then with this romm By

1s not E*—algebra.

We chall define a norm_under which it 135 so ¢

PROPOSITION 2,1: If B 1s_a ﬁ%—alﬂebra without a unit

then Bl becomes a Bﬁ;algebra under the norm

oo = ;uﬁ’ o"xwxy_lyﬂyll

and further || |" induces || | on B.
(1.e. |l ”’ 1s the norm zs an slgebre of left multd-

plication operstors on B).

PROOF; Since oL y+xy=0 for all y €B cen only hold for
of, =x=0 (if(xy# 0 then ¥y i.-gj all y and ~‘g% 1s a unit
in B, 1f o{ =0 then xy=0 for all y#B and thls cannot happen

- .
in a B -algebra), 1t follows that a nonzero element in B4

. glves a nongzero operstor on B . 8Since the expression on the
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ight is certsinly a norm on the operators on B, by general

snach space theory 1t 1s &lso a norm on Bj.

!
We show rs &t when = xl = |IX which meeans
firet that when o6=0, fxll = [Ixlii which

hdt the norm on By induces the originol norm on B, In

eneral flxyll < < flxll livll, so thet HXH < llxlf . But in a B -algebrs,
lxyl

taking y=x , we get e || = Nl Il and so sup - T > > |xl

Suppose next { 1s a real number > O,

and hence Hx” 1=
Then theve exists y with flyll=1 and leyxyll > (1- 6 | ot etxll'

Then

(1-65° kel < byl

1 y+xy) ™ Cocy+xy)ll
ly * (s e4x) ™ (etx)¥]
< e e+x) % (o6 erx)y
gu(weW)*Umem)W

I

1

since.d could be arbitrarily small (of and x fixed) we get

(ot el ) < (ot er)™ (oles)]]

[~

< et eny I el

| oo thet  Nocerxl < Moo 1"

stnilarly oo e P < Nloterl’

so thet (e e+xY"li = et el

But then (leoesh? < st er) * (e el

| < st erx ¥ Toerll =locesxl”

. 1 g
(ot etx (ot etx)|l =l obetxl]  which 1s whet we want.
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¥
We still heve to verify that By is complete in [l | .
et (cxng+xn) be & Cauchy sequence in By . If ( ely; ) 1s not

ounded then there exists a subsequence {cﬂy”(} with {ocnki

But then ¢ a(%;xnk} is a Cauchy sequence in By hence in B
’ { )

nd since B i1s complete there is & limit in B so the¢t B has
unit e which is not so. Hence ©¢y is bounded, This belng

‘50 there is a2 convergent subsequence o, LSl el 1is a
. M 1270 ng

Cauchy sequénce hence x,. = (ol e +x_ ) -, ¢ 1is a

Cauchy sequence In By and hence in Bj therefore there is =

k

nd hence OCne t Xy —> o{etx also end By 1s complete; I

;mit, x say, in B, If oﬁnﬁﬂ—bcﬁ then ol ¢ + Xy, 7 A Etx

PROPOSITION 2,2: If x 1s_a normal element of o B*-a}geu

. }
bra then x| = 1im [[xP® : (spectral radius of x) if x
n—prm
is unitary then [Ix|l = 1.

proor:  *el)” = Ikl = 107 = %

. . .2 5 g E 2
since (X*x) = x“(x*™)" ; x being normal) and hence fx || =
i @ 2 2n : L
17 Hence lIx™ 3 = [l for a1l n &and so 1im [x7] %
im x| =lx|]] , if X x=e then clearly lxil = 1. |
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COROLLARY: In a commutstive B wzlgehra lx|l=1im [[x™
R N 3 0

for all x,

In genersl in any ¥-algebra it is clear that eithe:
5 ie-x and'ie-x*'both heve inverses or both fall to heve
‘inverses, Hence cr(x*j = o(x) (the ber denoting complex
conjugction and not closure). If x 1is self adjoint then

o (x) = O(x) so that O (x) is symmetric about the real
axis, In general this is as far as we cen go: G (x) need hot

be rezl. However we have the following

PROPOSITION 2.,3: If B is a B#;algebra (with s unit)

znd X € B 1is self.adjoint then o{x) is real.

PROOF: Suppose not, let oL +iP € 0 (x),  # 0. Write
y=x + 1ge where'{ is realj thenCi+i(ﬁ3+g)é<7(y). Hence

(P < Cum W™ T < vl = Iyl
end y¥exafe  sothat y¥y=xf o+

and fly 5l < Iel® + 67 thus

_oézh+ f&2+,zﬁfa",<_ [lxl'l2 for all real 4 which
i's clearly impossible 1f A £ 0, |
We now turn to representations of x-algebras. By a
representation we shall always mezn in what follows a
representation of B in & (H) ‘in which the involution in
B 1s mapped onto the ngtursl involution in 4 (H); that is T
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1s to be a %-representation, in which T(X'ﬁj'z'(T (x) f* for

all x € B. We do not assume the boundedness of T3 in fact

this will follow automatically (Proposition 3.5).

LEMMA 2,4: Lf HqCCH 1is invarient under T then o is
Hy»
FROOFs 1f § € Hi‘,vqe;Hl, x €B  then

| | ) | .
(r0f M) = (5, 1650) = (§,26%M) =0

“since T(x*)q € Hl from this 1t follows that T(x)E’JéTZ for
_ N '
all?zé}ﬁ_ and so T(X)§ E Hy I

The next result is a substantlszsl one znd will be used

essentially in what follows:-

PROPOSITI(N 2,6: T is irreducible if and only 1f the

only operators on H that commite with 211 the
operators  T(x) , X€ B gre scalar multiples of the
identity, | |

PROOF: If T 1% reducible let Hl be 2 nontrivial

invariant subspace and let P Dbe the projection on Hyo IT
. ﬂ o
g = §f¥§1 with E}E Hy, Eie;Hl , then

T(x)‘g. =T(x)E +T(E

and in view of Lemma 2, 4 T(x)§ € Hl so that this must be

the unique decomposition of T(x)%— as the sum of a vector in

1
PR(x)§ =1(x) ¥ = 1(x)PE

: A
Hl_and a vector in H  thet 1s
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nd sincerg was arbltrary 1t follows that PT(x) =T(x)P, for
11 x, as required. We have & non~trivial opcrator commuting
’ith all fhe T(x).

3 If there is a non~trivial projection operator P thet
mmutes wiih'all T(x) then T(x)(P%) =P (T(x)f) so that
leaves invarient the non-trivial subspace Hy = P(H) end T
s reducible,

: More generally, suppose thet T, 1is a bounued self-
Qajoint (Hermitian) operétor that commutes with all the %(x).
Qalling'the spectral theorem for self~adjoint operztors, we
e that there exists a speectral family P(;i) of projecticn
perators associated with Ty that commute with all operators
?fﬁat commute with Ty, In particuler P(A)T(x) =T(x)P(x) for
{il X€B, AGR . 1If then T is irreducible the only projection
_pefators thet commute with T(x) for all x are of the foru
I, so that esch P( A) 1s elther zero or the identity
éfator, Since P( /)l,) P(/u) = P(min (A)/“‘D it follows that
I'/ SOme)olP(a) = 0 for A(AO and P(A) = I for )(>,\C,;
hen

T, :fAdP(A) = A

Finally 1f To 1s bounded bul not necessarily self
joint, commuting with 11 the T(x), write Tg= % (T, + To)
i +# - o % | 3

21 (To-Ty ). The operators F(T, + Ty )y 57(T,-T, ) are

;fédjoints They also commute with T(x) for &ll x for we
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. i . 5 ul . e %
have 75 T(x) ={(1(x)) 18= (r()1) = (T,0(x%)) =

:(ﬁk,(T(x)fﬁj*: T(X)TO%;Tz:commutateg with T(x) hence
fé(To + Tﬁ) and —%gTO - Tge) do so also: by what hes just bsen
p:OVed tﬁey are respectively cQI and :sz whence TO is
(el +1 ey )T  as required. |
Thus T irreducible implies T, = o/ I. | -/

COROLLARY: If B is commutative, then T is irreducible

if and only 1f 'H is one-dimensional.

PROOF: Clesrly H one-dimensional implles T irreducikle

If T is 1rreducible then for & fixed x € B we have

1

T(x)T{y) = T(xy) = T(yx) = T(y)T(x) for all x £ B,

from which it follows that

I

T(x) = £(x)I

from the proposition., Since every subspace of H is then
invariant under T clearly T 1s irreducible H must be one

dimensional. |
Thus the homomorphisms B ——3% (¢ are the only Irrec-

ducible x -representetions in the commutative case,

THEOREM 2.6: Let T be snv representestion on H. ‘oo

we _can write H ss a direct sum of mutuslly orthosconrzl

closed subspaces

H=H, & O H

~L

161



such that T rastricted to H, is zero end ecch Hy 1s
ayclic for T (hence inverisnt under T).

PROCF: Write Hy ={§ :7(x)¥ =0, for all x € B};

then evidently HO has the properties asserted and T
is essentiul on Hj:
! 1 . . ! .
1 € € Hy then H' =(4 JT00f x€ B} is
closed znd dlearly invariznt under T . In fact it is
I .

cyelic, with g—' as cyclic vector, This is clesr 1if B
has & unit] for then

g"-:*r(e)'g' :nd ?'E H',
In general, write. H" for CL -{OCI + T(x) ifl 3 %éc, x & B}:
et FErn, FLrGOE

we show H" = H' , Suprose not

s

for every x. Then

o= (6, % P0E)

[H

(§,T'(y*) (eeT+T () E')
(1) E ot vne0f’)

. o _
“8ince E(—H", then T(y)%’ & HY also, and since vectors

I

!
of the fomm d«? +T(X)%l are dense in H" it follows that
T(y)f =0 for all y. But now observe th:t H"CH'OL and T
1s essenticl on Hé— so 1if ?% 0 therec exists y with

| T(y)? # 0 . Hence § =0 gnd H'=H" zs reguired., Thus

. ' ! ' !
: ‘there ure vectors T(X)f arbitrarily close to f and S0
: EGH' s 1t is then clesrly a cyclle vector for HY.
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So there exist systemé of mutually orthogonal Subspaces

Hy
" Partislly order ‘such systems by indlusion apply ZeIn's

, each cyclic for T but possibly not spanning HS’.

principle : it follows that maximal systems exist. If such
a maximal system did not span Hé' then we could extend
1t by taking eny vector in (®H, )i’and, stgrting ageoin,
obtaining & new subspace with a cyelic vector, so that the
system (Hi) would not be makimal.

What thecorem 2.6 shows is th:t we mey confine our-
" selves to cyclic representation if this d4s convenient, es
any representetion can be bullt up out of cycllic representa-
tions &s 1n the Theorem, We write Ty for the restriction

of T to Hy, |



CHAPTERSES

0SITIVE FUNCTIONALS

Let B be any elgebrea with an involution; the norm

s rcally irrelevant to begin with,

- DEFINITION : A linear functional p on B 1s said to be
positive 1f p(x*x) > 0 for all x€B. The positive
functionals 'play a part.i'n the non-commutative theory
somewhat similer to thet of the multiplicgtive linear

functionals in the commutative theory.
PROPOSITION 3,1 : If p is =z positive fungtional then
(1) p(¥"x) = p(Ry)  (all x, YEB)
. o 2 3 2 +
(1) Ip(y )17 = Jp™ 7 < p(x™) p(v7y)

PROOF : 0 < p L (x4ouy )™ (x4 oly) ]
= p(x"x) +eBp(y’%) +olp(x¥y) + fofl (YY)
Sincé the first end fourth temm are real (and > 0) the sum
i ozp(y#x) +9Lp(x*y) is real. Put of =1 and we get gmp(y%x) +
3m.p(x$y)- end putting oL =1 we get Re p(y’ex) = Re p(x%y) SO
that we heve (1) moreover we heve then

0 < p(x) + 2 Re[ap(x™y) ] + otd? p(y™Y)

If p(_x%y) = 0 then (11) is obvious, Othe wise, take

o)
G{; = m (X X) 3 o
P /p(x*y) nd then

0 < p'x) —2p) +(GE N 2V /L L
~ o lp(x"y) |

feen  p(x) [pGfy)17 < CoEx) I% p(7y)
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from which the required result follows if p(i*k) % 0, If
b(ikx) = 0 but p(y*y) f 0 we cin reb@at the érgument with

x and y interchanged, If both p(x*x) snd p(y*y) sre 0 we

Re(et p(x™y)) 2 0

f6r 211 o which 1s impossible unless p(xXy) = 0. 8o (i1)
holds in all cases. |
We néw.define something like s norm for the positive
.functionals (which do not assume bounded even when B is =
Benach algebra), Write ° !
M(p) = 0 1f p=0, M(p) =0 1f p # 0 but p(¥*x)=0

2
for all x end in generzl M(p) = sup p(x) | . Thus
: x€ B p(x*x)

Ip(x)la < M(p) p(x*x), with the appropri te conventions about

&0, end M(p) 1s the least number with this property. We

it

heve evidantly M(C p) =oM(p) if K> O ; M(p) = 0 1if and only
if there exists k < o0 with |p(x)|~ < k p(x¥x) 211 x €B,

If B 1s e %-clgebra without a« unit let By be the
algebra with ¢ unit e adjolned ¢ 1t is glso a sx-algebra,

A positive functional p on B is extendable if there exists

a positive functional p' on By which whe restricted to B

coincldes with p.
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PROPOSITION 3.2: p 1s_extendable if snd only if
(1) p(x*) = p(x) for all X& B
(14) M(p) < <0,
If p is extendsble then for esch oL > M(p) there is an

extension pt with p'(e) =<

PROOF : Suppose p is extendable ; let p' be an exten-
slon, Take y=e in (i) of Proposition 3.1 j.

then p(x™) = p'(x") = p'(x) = p(x). Similarly teke y=e
‘in (11) of Proposition 3.1 and
)% = Ip' ()7 < p/ (%) p(e) = p(x"%) p' (o)
so thzt (11) holds, znd M(p) < p’(e).
If (1) end (11) hold let o be any resl number > M(pj snd write
p’ (Ae+x) =A+p(x) ; we then have p’ a linear functional which

we shall prove 1is positive

p (A et *Aetx)) = | ALK+ Qo)+ Ap(x®)ep(x)
- |/“20<» +2 Re()( p(x*)) p(xx)
Al -2 - |p(X)I N p(x"x)

> AL ZIA{chp(x x)z gp(x x)
> -L.lh!oﬁ (p(Xx 3 B

0

n

i

v

i

If (1) end (i1) hold for p; &nd py let pj, pg be
extensions with pi(e) = M(pq), pé(e) = M(pg) then Pi + Pi
is also positive and M(p, + Py ) £ pl(c) + p (e) = M(pl) +
M(p )o
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An exesmple of a nonextendable funciionszl:-

Let B consists of {bounded) continuous complex func-
‘tions on |_0, 1] with the usual involution and linear space
Structureg,with all products equal to zero. Then for zny fixed

to €10, 1], p(x) = x(t,) is a positive functional with

Mmoreover p(x%ﬁ = plx) . However it is not extendable since
- M(p) =0,

| From now on we useé essenfially the relation between
the norm in B and the involution, that is, [x¥] = {xI for
© all x €B. one or two results hold under weaker conditions

slso,

- PROPOSITION 3.3: If B has aunlt e and . p 1S &
positive functional then
[p(x)| < ple)x for sll x € B,

o | . N
PROOF: If [Ixl] < 1 then the series for (e - x)*

‘that is
! LN VO T, - L B S T
e-i-x- 7 2 f!x - g 272« Ex—----—-

converges cbsolutely to an element y€B with ygze—x . If

X 1s self-zdjoint, so is y; from the secries. Then we get
. , _
L plex) = (%) = () 2 0
" &znd so p(x) < ple) : 10 Ixl] < 1
But we can tzke [x|l as near to 1 as we please

so thet p(x) £ ple) i1f fIxli < 1.
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hus in géneral,.by the linearity of p
p(x) < ple) lIxll  1if x 1s self adjoint,
ut, (%) = -p(x) & ple)lx"

9: [P(X)i < ple) x| for g1l self-adjoint x,
£ x is not self-adjoint. tzke x Fx, which is self-adjoint:-

p(x) < ple) - IIx"xl <p(a) Nxl”

Ip(x) | < ple) p(x¥*x)

L . o o "2
50 thet [p(x) " & (pleN” Ix]l
nd the required result follows on taking the square root. f

COROLLARY 1. Every positive functional on an zlgebre

with g unit 1s continuous.

COROLLARY 2: Every extendeble positive functionel on

an algebra without a unit is gogﬁinugg .

We now turn to the reiaticdn between positive function-

z1s end ?%—representatidns.

THEOREM 3,4: Let T be s representetion of B on the

Hilbert spsce H. _If{ € H then

p(x) = (1x)&,8)

2
1s an extendable positive funciionsl end M{p) g,i!@l!.

I£ T is eyelice end ﬁ 18 a cyclic vector then M(p) £

1.
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PRCOF: p 18 evidén%iy linezr, Since
b= (606 )= (16TEd 6
(220, §) = (2005, TG 20
p is clecrly positive. Mo hive 5150

(16796,4) = _(\T'fx)"“(;,z; y oo

(¢, T(x)C\). = (T(x)C,Zf:) = p(x)
(r0g ) < Ireog 17 g1
I1E1° p™ x).

“;” <go, p is thus c&tend ‘hle,

1t

il

*y

1

1

" end el ?

1

so thet M(p)

783

If T 1g cyelic end ﬁ-is &, cyclic vector, then given
&> 0 we cen find XOEB with IlT(xO)(";—ﬁcg I <&, since [ & H
:nd the vectors T(x)é’ sre dense in H, Then

IpGe )17 = 1 IE )
.is arbitrery close to I(Z' ) 2= Ilgllz&p(x% x,) ”'i‘(xo)ﬁ: I

ds erbitrerily close to 1]l //”k” = |7 H But since M(p)

is always between [I§]° end !p(x ) | f/fxxo o) {1t folllews

that M(p) is actuslly eyuel to HQH cs nsserted. |l

PROPOSITION 3.5: Hvery ;«—renresentatjon of & Benach

y¢.zlgebra 1s continuous s more precisely T¢I <

Ixll for =11 x.
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PROCF: We may sssume B has a unit : if not we could
learly extend sny representztion from B to By by writing

'.é;(OCG*‘X) = o, T+T(x), Then 1f gé it

p(x) = (T(X)E, éf} is a positive functional.
?: 3

Apply Proposition 3.3 wnd we get [(T(x)E, €)1 < IxICE, % ).
; e 2 ¥
Repldce X by ¥ x end we heve HT(X)gr” = (T(X X)§ a%) <

S IENT < I DEL® ana so TGO & I < el 1
fé H was erbitrary [[T(x)l < il as asserted. |

’. Bince

We will now go from functionals to representations

his is much more Aifficult,

THEOREM 3.6: If p 1% an extendable positive func-

tionzl on the Banachst -alsebra then there is & cvaelic

¥ -repregsentation T of B with cycllc vectorég,aqu

thet for all x € B .
- N <
B(x) = <T(X)§, &)
PROOF: Suprose first thet B has a unit &, Wriic

1€
b= fxpGi) =0 )
we show first that ¥ is & left idesl in B. If x&W

y&B then by Proposition 3.1 (11)
2
Iy 1% < p(%) vy = 0 s0 plyx) = 0.

Then
p( 3x)*yx) = ((ZYY) 1) =0

"s0 thet XE-N implies yx(fN. Also if xl,kéé_N then



R p((xl+x2)*'(X1+X2)):p(x]%xl) +p(x';xl)‘ +p(xi{'xg) +p(x?§ Xg5)=0

and p( (dx)*dx) = |a( ’ p(x*%x) = 0 so ¥ is indred & left
'ideal in B, In fact 1t is 'a closed 1desl, but we do not

require this.

Now teke the quotient B/N j this is & linesr space.

this c¢en be made into & Hilbert space-using the functionzal p,

Suppose Xj-X,€ N and yl;yger_ﬂ ;- then

I

p(yféxl) - p(y?;xz) po(yi*(xl—xg))Jr P ((Yl—yz)% 3:2}
1}(y§(x1~x204-p (Xg(Y17Y2))A

=0 4+ 0 = 0

N

It follows thet the function (f;?y) = p(y¥k) is well defined
on B/N ¢ it does not depend on the choice bf 'x,y in the
equ_iire-.lence ¢l sses f;? respectively., We cin show essily

thet (fﬁl) hes all the proportles of inner products-

) = TLE) o (5+6M) =(8 )% (5, 1))
(dg,’?)“:—o(.(g)"?s ; (f,f) > 0 for§ ;t/O.

B/N is thus & pre-Hilbert spece it! is in general not
complete under the norm Ilé'[l = (ig)g . Let H be its
Vcompletion. Mow define the operafors T(x) on B/N as followss
. Suppose d)(y): Y} ( C;) the etnonicel map B
:‘ -‘T(X)YZ to be @(sz). This 1is independent of y (subject to

> B/N) ; define
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(y) = Yl ) since N 1s a left ideal end is eesily veri-
;ied to bé & lincar operator on B/N, TFurther X ——=y T(x)

clecrly 2 homomorphism, We now exemine the boundedness

T(x) ¢ fix, for the moment, y€ B &nd write
gy(x) = p(y*xy).
Then it is ecsy to see thet O“y 1s o positive functional n

-~ B, end qy(e) = p(y‘x’y). By Froposition 3.3,
| 3¢

la, GO < pyy) =l .

“Then if C;D(.V) =) we heve

(T(x)rz , 1)) =P ((Jw)%f xy) = qy(xa*x‘)
| < a9 I = (s Il
Thus I[T(x)’}\“ < izl Ml s so T(x) is bounded &nd indeed rix)i

£ lxfl, Moreover 1f we heve

(23, 8) = p(Z) = 42T v) =( ()G
" 80 thet T(x”“') :T(x)* . Now tzke the (unique) extension by
continuity of T from B/N to H end we hive the required % -

representetion T.

This represent:tion is cyclic ¢ & cyclic vecbr 1s

given by & :(j) (e), We heve (T(X)gjf;) = p(e%xe) = p(x),

and ényg 6 B/N is (f)(x) for some x'E'B., ser ns x runs throuvgh
B, T(x)(_": :'C}E(xe) =<;5(x) runs bthrough the whole of B/W.
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We now tum to the caese where B hes no unit., Tgke

- B,, extend p, end proceed &s azbove, obtaining H ond the repre-

1"
‘sentetion x ——» T{x), Let Hl be the subspace of H :

{ 7 3T(x)7] =0 for &ll x ¢ B}

=
and H2 = Hl .

Write g,: §1+C2, ) where.Z;IE Hy, élé 32 . We show that T

restricted to Hoy 1s the required representation, with Egzas

cyelic vector, We heve, for x € B .

(r0)g,7) = (108410, & +5,)
OHX)<2>ZJ +(TOOCE) G2)
Now since Hy 1is inveriant under T so is Ry, and s0

x)E, € Hy, (1)L, ,8 ) = 0 giving

p(x) = (18, ,5,) .
‘Now vectors of the form 0{.;2+T(X)Z;2 zre dense in H;, since
for any Y} € H we heve

1

p(x)

It

1S +1(x)E, M) | < g +1x)E-77 |

and B/N is dense in H. Supposcd ( Hy 1s orthogonsl to all
bl
T(X){)' , X & By then for all x, y € B we get

0 :(Ea, (ot £y )ﬁ}j = (T(x)?{z , T ety)T,)
= (20, 5,8, ) |
tnd it follows thet T(X)EZ =0 for zl1l x€B which implies,
since 52,6 Hi‘, thet fZ:O « Therefore the vectors gT(x)éz}

sTe dense in Hye Thus the theorem holds, with the Hilbert

space Hy and cyclic vector f;l.li




CHAPTERA4

" "INDECCMPCSABLE FPUNCTIONALS AND
| IRREDUCIBLYSE REPRESENTATIOCNS

We say that.the (positive) functionzl p dominztes the
(positive) functionsl ¢ znd write p > q or g < p if there
exlsts & positive rezl o smuch thet olp-q ¥s positire, - Ndte
thet p>g @p do not imply together p=q s any functionsl p
dominates;gﬁsitive multiple of itself and is dominzated by any
strictly positive multiple of itself. We clearly heve that
§>q, g>r implies prr. If p dominetes mnly positive multiples
of itself, it is called indecompossble,

In the following theorems p,T,H &nrd Q ere. zs in theerem
3.6.
THEOREM 4,1: If S 1is g positive self-azdjoint opera-

tor on H commuting with &11 the T{x) then

a(x) = (st §)

is a positive extendable functionzl, with ag<p.

Conversely if d 1s positive extendebleg functionegl with

a<p there exists : positive se¢lf-adioint S such that

q(x) is piven by the above formule.

PROCFs If S 4is positive and self-adjoint it hezs =2
/,
(unique) positive self-zadjoint square root § unich commutes
- with everything thet commutes with S , in particuler with

1l the T(x) . Writing g(x) = (ST(x)g');;) , it 1s cleer




~thet g 18 & 1inear functionzl on B,. Also
a0 = (51008, 8) = (s%* 7(x)G . QS%T(X)Z;) > 03

aso a) = (1G5 5,6) = (4, st0g)= (ST, L) )

ma lam]? = 1T08,5) 17 = |(zosig, ste)®

lreosk 212 1572 (17

(r0sEE, mosE Bt 5 I

(5108 8 IsT5 17

W(OlsE5 1

i1

1 it In

1

}
. : ) =
so thi:t (1) end (ii) of proposition 3,2 hold with M(q)<lls* & {7,

so q is = poéitive e}_{tendable functional.

Finelly 1 o 2 |lsl then sp-q is positives for
() = s T Z 17 < IsE® reogll® = ls™ 1% ped) =
llsl

required,

T i*k 3
(X %) 3 so LfK> I8l thenwp(x x) -q(x"x) 20 s

To prove the converse : let H' = {T(x)f,’: XGB}. Then

since £ 1s cyclic H' is dense in H (and & linear subspece),

For x,y€B write -

(T &, (98 =a(y w0,

We saow first thet this depends only on T(x‘)g &nad T(y)-Z; .

note on the particuler choice of x and y. Suppose T(x'){ =

T(X)g ) T(y')-@z T(y)L 4 then T(x'-x) =T(y-y')Z = 0 so
thet

P ((X- XY)e (x-x))= p(y-y Y (y-y")re 0
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(peing (T(x-x')G , T(x-x' ), (2(y-y) &, (y-y")E ) respec-
tiVely) tnd it follows since g<p that

Q((X-X‘)%(X-X')):rq((y-r")(y—y‘))z 0.
Now use Proposition 3,1 (ii) ; we heve |
la(y"%) -q (y'%éx')l = Ja(y?y™x + QCV’%(X—X'ﬂ l
< a7y ™xl + lay T xxt) |
- 3 '3 }/2“
Ly =y My-y" al(x x) ]
o\ L
(v e Yxx) 17

= 0.

AN

-+

It is clearQis linear in T(x)?’cnd conjugcte-linecr f
in T(y)/ 3 moreover if «p-¢ is positive then |

Iy Ly
1Q T(X)ZQ, M) g | = Jay 0l & (q(x*X)’" aly Y)‘)
S TpEF (9P

Thus Q is.continuous on H' XH' &nd hence there is & unique
extension by continuity to the whole of HxH, zlso linecr in
one variable ind conjugete-linesr in the other, WNow eny such

function must be df the fom

E) = (5E,m)  (EEH
where S 1s some bounded lineuT operator on H,

_ We proceed to verlfy the proporties asserted for S,
e N
pirst, (8T()& , T(y¥)&) =aly x) = g (x™y) = (ST(Y)Z ,T(x)T )
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(8T(x) &, T(x)Z)=a(x"x) 2 0, so thet § is positive ( ='non-
negstive definite"). TFor x,y,z2&BR, '
(ST E , @) =4(2%y) end
{rostnE ()= (81908 1678
= q((}c*z}*y) =q(2%y)

t«nd it follows (H' being dense in H 3 <11 these arguments

depend on thils fact) th:t

ST(x) = T(x)S for 11 x.
Then

H

W) = (81008, 1N )

(ST(Y&X): ' C;)

It

for &ll x,y €B.

We wish to show thet

a(x) :(ST(X)QJ,g) for £11 X,

If B has & unit ¢ then simply put y=e in the formula for
a(y%). 1n general, write

Q' (%) =(ST(x)5, &) 3
by the first part of this theorem sznd Theorem 3,6 there
exists a Hilbert spmce H', ¢ cyclic representatirn T' and
a cyclic vector 4 € H' with q'(x) = ('), 4'). slso there
exist H", Tﬁégnsuch that g(x) :@"(x){f{v Fewdefine a mapihas
follows

UT(x) g =m0

the map 1s well defined: for we harve

»
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T (xy-x,) 4 0 (={(1" (x -X2) (xl-Xg)Z o= 0 =
4(ey ) (xp gl = 0 <= oy -1V (xy X)) = 0=

T ((xy =g *(xy x5 )= 04 ==y fln(xy x0) g = 04==>
T"(xl—xg); =0 3 so if T' (xl)C =T (x )§ then T"(xl)é:—
. T"(Xg)gJ'End conversely s SO T"(x)g i{s genulnely a function
of T‘(X)Z'. {) 1is then evidently & linear map of a2 dense
subspzce of H' onto ¢ dense subspece of HY, It is unltary
for |

{8 (g ) =m0 &5 Faty™)

- w0 (088 = [ oG 8
snd so sinece in perticuler U is cort inuous it can be extended
uniquely to & unitery traensformetion of thé whole of H' onto
the whole of H".

Then L}T'(xy)§’=T“(xy)§“ so that

ConG)T Y = T (x) T"(y)?;":T"(x)UT'<y)f;’°,
since the vectors T'(y)%”are dense in H' 1t follows thet
YTt ()EE TU(x)Y end

g = yr g = meous’
Hence(ugg T”(X)§”)==(T"(X*NJ§1 C“>
- (e ") = (£ )

«nd vectors T"(x)&" sre dense in H", so thet L};’:E;“ . Then
finally
agx) =(1EZ g'') = (Tnmuz, vED
(Ur @ g,ugh= (T g gy = 4" )
‘{'ST(X)Z-‘ Z;) . as required. |l

1t

i
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THEOREM 4,2: T is irredugible if and only if ©r 1is

indscomposzble,

PRCOF: Suppose p 1is decomposable, p>py, say, where Py
1s not zero znd not & multiple of p. 'Then pl(X) =-(ST(X)Z;,
2;') , where E: commutes with =11 the T(x), by Theorem 4,1,
Thlis S cennot be of the fonmc{I,‘otherwise py would be p.

S0 by Proposition 2,5, T is reducible,

Suppose T redud ble 3 let P be the projection on & non

trivigl inverient subspzce Hy say, of H then PT(x) = T(x)P for

sll x writing

p1(x) = Prx)E .8)
P1 1s a positive functionel dominsted by p (in fact
p(x*k)-pl(xﬁx)ZCJfor all x), This cennot be a multiple of pe
for we cen find x with T(x)Z arbitrerily close to (1-P)5 =7,
say., If then P@:{t, we have |

(T(x)(z,ﬁvtzj (8,48,

(C,Cg+7zsay
snd {p1(x)| = [FT(x)Z, 2] = 1(0,8)] +7,

so that ,pl(x)/P(x)’ - Yl'%ﬁ,)ﬁzﬁ"ﬂ

vwhich can be arbitrarily small : this contradicts Py =P

il

p(x)

1]

for fixed finite real o so p ic decomposcble, ||
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In general 1f the sxtendable posltive functional p
is decomposible and we write p=p,tpy, where pq and p, are
also extendeble positive functionals, then M(p) < M(pp) +
M(pg) 3 for if p', p{, pé are the appropriate extensions

' /

then M(p;) and M(pg) can be t:ken for py(e), pé{e),
respectively 3 and we heave M(p) = M(p1tpy) £ p'(e) = pi(e) +
ps(e) = M(py) + M(py) .
It will be useful to have the following result, which

sharpens this inequality to an equality.

PROPOSITION 4,3t¢ If p 1s an extendeble decompossble

positive funetional then there oxist positive func-

tiongls py and Poy neither of them e multiple of p,

with p = py + p, and M(p) = M(pp) + M(py)

PROOF: If p is decomposable, the assoclated cyclic
representetion T 1s reducible by Theorem 4,2. Let P be the
projection on & non-trivial invariant subspsace Hy of H end

write
py(x) = PT(I ,B) , po(x) =((T-PITE, &)

Then evidently Py and o are extendable positive functicnals
and p = py + p2 . By the argument already used at the end of
the proof of Theorem_4.2, neither p; and py, can be & multl-

ple of p.
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Writing P& =8, , (I-F) =L, , we heve p,(x) =
pg(x) = (T(K)Zz,ﬁz) and so, by Theorem 3,4

| M(¥1) +M(p2) S’({;J;) + (;L sg.z) :(g.;zg )

since T is cyclic with éyclic vector ﬁ‘, (in fact of course

M(p) =(Z“§,") end M(py) =(Z, 7, since both & and &, are
cyclic vectors in PH wnd (I-P)H respectively but we do not

(T(X);;)E‘r),

M(p)

need this)., In any csse the required result follows from the
general lneguslity noted immediately before ! the theorem
znd the reverse inequality established in the proof of the

theorem, ||




CHAPTERS

TEE SELF-ADJOINT ELEMENTS OF B AS
A BANACH SFALACE

If B 1is a'Banach;e-algebra then since eny re:cl
‘multiple of a self-adjoint clememtis again self-edjoint, and
sgny sum of salf-adjoint element 1s self-adjoint, it follows
thet the self-sdjoint elements of B form & recl linear subs-

pace, Denote this by B,. It is evidently nomed (as =

subspace of B) and 1frxnzng for &1l n, x, » X then

1im ngz(lim xnf*éxﬁz x, so that BS is closed 1n B, hence
complete, hence s Banzch space in its own right; If p is an
extendeble, positive functionsl on B then 1ts restriction to
By is & recl linesr functional, since p(x”) = p{x) = p(x) .
As a functional on B 1t is continuous, by Proposition 3.3,
Corollary., Write |lpll for the nom of p as &n element of the
dual of B end ||plly for the norm of (the restriction of ) p

¢s &n element of the dual of Bg, It is immediate that ”p”S <

el

PROPOSITION 5.1: [lpll, = llp} € M(p) : Lf B has = unit
then |lpll_ = llpll = M(p).

PROOF: Suppose x£3B, lx =1 end [p(x )] > lpll- £,

Multiply x_ by 9 i necessary : we get zn x with p(x)>{lpll-&.
Y S—

Then also p(x )=p(x)>llpll-€ , end so p( 7 x+x™)) > - £ .

But-zt_(x+x*) is selfeadjoint and ”—é*(x*ﬂc)” 3-LHXH + ;2! ) =

]
%—+-E‘:l so thsat
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gl = y:;gk_w_l?;y” S lpll -¢
Since € was arbitrary HpHS > ol end so el = el
By Proposition 3.2 therc is zn extension p' of p with
p'(e) = M(p). By Proposition 3.3 lp'(x)] < p'(eMx]l znd so
ip'll < p'(e)  (sctuslly equal, of course),
Evidently ipll < llp*ll  ond so finally

Ipll < llp*" < p*(e) = M(p)

L’

If B has & unit e then by Proposition 3,1 (11) we have,taking
y=e,lp(x)1% < ple)(p(x'x)) and so u(p)<p(e)slell (since Ilef=1).
Hence [ipll=M(p). ||

From now on we shell drop the suffix from [pllg in view
of Proposition 5.1. We zlso note the corollary theat if p is
non-zere on B then its restriction to Bg must also be non-zero,
gince if the restriction were zero then Hpﬂg = 0, [lpll=0 ¢nd so
p=0 by the basic properties ﬁf a horm,

Now denocte the set of extendable positive functionsals
p on B with M(p)X 1 by P, This is never empty : it contains
&t least the zero functicnel, Recsll the weak¥-topology of the
dusl of & lincer space B ; the bazsic neighbourhoods of f €I

al's

o oGy - £ el <& 1,2, ]

for & »0and xq,X5,.0040.x, €B, Then we have the



e

41

BOURBAKT -ALAOGLU! THEOREM : The unit bell in the dusl of
& Beanach spece is compect in the wesk¥-topology.

PROPOSITICON 5,2 ¢+ P is 2 wesk¥-closed (and hence

compect) convex subset of the unit ball of the dual of

B

SO

PROOF: gince [pll, = lipll < M(p) < 1, evidently P is &

~subset of the'unit ball., If P15, po¢ P then if pi, Pt are

extenslons it is clecr that oni + (1-0L) pé (0 L et 1) 1s an

extension of o£p£ +(l—%ﬁ)pé &nd =lso M(ﬁipl +(1*°6)Pé)ﬁ°{M(pl)
F(1- o M(pg) <3 11 M(py) < 1, M(p,) < 15 soopy+(1-8)p,y € P,
thet is, P 1s convex,
Suppose py€ CLP (that 1s, the closure inthe dual of By).
For x¢B write x=X,+iXy, where xy, X, € B, #nd extend p, to B
by writing po(x) = p (%) + 1@O(x2) .  Then given & >0 and
X1y Xgy x x € B, there exists p&P with
p(xp) -po(x1) <E,Iplxg) = polx)| < €,1p("x) - po ()]
1 ot*1 S PUEg) = DolX, g ip(x X)) - po X X))
: <&

In particuler

3% x
0 £ plxx) £ p (X %) +&
since & ds srbitrary po(fgk) > 0 and Py is positive, Also
IpGO-po G < TB(x1) - x|+ Ip(x) - polxg)l < 28

so that we get
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e GO FY < oGl ® + | Cpe) 17 - Ly 17

[~

lpGe) | + 2lixll [p(x) - p ()]

p(xx) + 4lx|€

FaN

< po( %) + (allxl+1)g
and since § is crbitrary,
{p O < p (X7%)
so thet M(p ) < 1. Thus p,€ P and P 1is closed. I

A point p€P is egxtreme if 1t is not of the form
A Py + (1-0{)p2 Where 0 <1, P1s p261P end p £ pl,

P ¥ Pg. The zero functionel is zlweys en extreme point of P,

PROPOSITICH 5,3: A non-zero functional QEEP is extrene

if end only 4if

(1) M(p) = 1 znd
(11) p is indecomposable.

PROCF: Suppose 0 < M{(p) < 1. Then we c&n write

M) s ¥ @M(D) 0

and both Q/M(p) and 0 distinet from p, so p cannot be extreme.
If p is decomposazble then by Proposition 4.3, we cen write
p:pl+p2 where neither py nor pg 1s & multiple of p (and neither

is z6r0) 3 we have

M(p) = M(py) + M(py)
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Thus p= M(p, P1 " M(pg) Py

ol - and now
M(p) M(py) M(p) M(po)

P
L er, 22 , and neither is equal to p so that p
M(py) M(pg )

cannot be extreme, Thus (i) and (1i) are necessary conditions
for p to be extreme,

If p is not extreme we cgh write p=olpq + (1-m)p2 with

0 <A< 1 gﬁpl, p#pz. There are two possibilitiesy 1f nelther
Py nor p, is a multiple of p then p is clearly decomposable,
since then p-o(py 1s a positive functional (= (1-CX)p2} .

1f on the other hand one (agd hence both) of Py, p2 is a
multiple of p, say P =olP, P, = Bp, then one of Q,}g_ must be
>1y seyw >l . Then M(p;) £ 1 and M(p) = M(plﬂx),g;% <1, So

(1) and (ii) together are sufficient for p to be extreme, I

COROLLARYs If p 1s nonzero and extreme then the asso-

clated representetion is irreducible,

We next recall the

KREWN -MILMAN THEOREM: Let K be_;'compggt convexXx subset

of a real locglly convex linear topologlical space B

and let Ky be_the set of convex combinations of extreme

2
points of K. Then K=(| Ky

Z—By » convex combination of extreme points we mean a

finite sum Zoiyﬁywhere the er are extreme and the «,are

positive rezl scslars with.igoﬁr ﬂlﬂ7.
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/ In fzct we do not need the full force of the
Krein-Milman theorem in order to prove Proposition 5.4, but

only the partigl results that glven any hyperplane in E there

exists a supporting hyperplane of K thst is parallel to 1%,
and that every supporting hyperplzne of K conteins an extreme

point of X : however we shall not go into this refinemento,7

PROPOSITION 5.4: If for x&B we have p(x)#0 for scie »E P
then we have q(x) # 0 for some extreme point q¢& P

PROOF: Suppose first x 1s self-adjoint and p(x)# 0.

Then by the Krein-Milman theo rem we cen find extreme points

Ay Gpgeeense @ and positive scalarscﬁ,f--;‘xyq with

lp(x) = 3 oty a0 < Ipx)]

Hence for atleast one value of r, we must have qr(x)?éo.
In general, 1f x=x1+i§2 where Xy and X,, aTe self-pd joint and
p{¥) # O then not both p(xq) and p(x,) are zew., If (say)
p(x;) £ O theni there exists an extreme point q with q(xq) £ 0
thus Re q(x) # 0 and so q(x) & 0. |

COROLLARY: If p(x%k) > 0 for some pEP 1then also

q(x%x)>0 for sows extreme polnt g€ P,

We can now stete one of our main theorems:

THEOREM $.5: Let B be a Benach%-algebra and x€ B, Then

the following are eduivalent.
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(1) J &P  with p(x) £ 0
(11) 4 pEP  with - p(%) > 0

(111) 3 extreme p¢ P with p(x) £ 0

(iv) 3 extreme pe P with p(x) > 0
(v)?}%-representation T with T(x) £ 0

(vi) J irreduciblex -representstion T with T(x) # O,

PROOT: The implications (1ii) =—» (1), (iv) > (ii1).
(vi) == (v) are trivial. The implications (1) === (i11),

(1i) === (iv) have just been established (Proposition 5.,4).

We now prove (i) ——7 (11), (iv) —> (vi), (v) =—> (1).
(1) =2 (1) IpG) ™ < M) (%) < p(x™%) so 1f p(x) £ 0
then p(xﬁx) £ 0, ,

(iv) —> (vi): by Theorem 4.2 if p is indecomposable, T is
irreducible: and 1if p(f*x) > 0 then T(x) = 0 since p(xﬁk) Z0
(T(x)g',T(x)C): HT(X)ZTTQ s if p(x*x)>c then T(x)& #0 and so
T(x) # 0.

(v) = (1): we note first that T, is any linear opecator in
a complex Hilbert space then (Ty¥, £)=0 for all § implies T4=0,
This follows from the identity

T8 ) = (Tolk +71), (£ +7))- (TolE -7), (E-77))
+ 1 (T8 Hm), (F+)) - 1(T(§ <27), (¥ -1 7

1f each temm on the right is zero then (TOE ,YI) 1s zero for all
€ ,% hence T_.%1is zero for all € hence T, is zero. If
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i s A

I then there is a representation T(not cyeclic in_general) with

l T(x) # 0 then there exi’sts’gé H with (T(x)g ,g) Z 0 and

IEll = 1 . Then if p(x) = (T(x)f ,gﬁ) p is evidently a positive
extendsble functional: by Proposition 3,4 we have M(p) £ H%f”g =1

so pE P as required, |

CCROLLARY: If B 1s a (7 -alpebra and x¢B 1s non-zero

then there 1s gn irreducible representation T with T(x) #
C.

Wé heve at thls stage reached the point where we can

£¥ gssert that if representaticns of a certailn kind exist (gep&raﬁ
ting, in perticular) then also irreducible representiticns of the
seme kind exist, However, we canrot assert that for a general
Bsnach % -algebra there are snough representations to seperate
points, The fact that this is so for Lj(G) is vital for the
theo ry of group representations snd is quite easy to prove -

we return to this later. In the meantime we specialise our

-t

algebras further to the case of a Bfé—algebra.




CHAPTZRG
THE ELEMBEYNTS ¥ x £S A CONE IN B

Throughout this section and the next let B be a Bat-alge—
bra ; some results are valid in more general situaticns: The
results proved in -earlicr sections are all appli;ableg The
mein result proved in the next section.is the aelebrated
Gelfend-Naimark theorem, that B is isametrie and isomorphic
to a closed sub-algebra of L5 (H) for seme-Hilbert space H.

This, 1t might be emphasised,-i¢ for the complex cases tﬁe real
case 1s not so easy to discuss, It is clear that in.general B

cannot be isometrically isomorphic to the whole of SELH);

consider the case where B is commutsative and of dimension > 1.

We begin with the remark that there is z no losé_of
generality in ¢ssuming that B has gz unit, For, if not,
consider By with the nomm described in Proposition 2,1. If
B is isometrically »«-isomorphic to a closed subalgebrsz of ggcﬂ),
the ssme must be true of B, since B is a ¢losed subalgebra of

BlQ

LEMMA 6,1: If x,y€B,, 1s a scelar, and one of

(eﬁixy)“l, (e+%yx)‘l exlats, then so does_the other.

PROOF¥: Suprose (eﬁﬁxy)“l exists, Then

4

(e+ otyx) [[e-oyletoixy)™x J= [Ce- o<,y(e+a#.-xy)'1x 1=
x{et fyx) = e

so that (e-i~c>(,yx)‘l exists'g similsrly if (e+ciyx)"l exists,
so does (e+o@xy)"l. I
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COROLLARY: If x,y&B then o(xy) .and o(yx) are the

seme, except that possibly O may he in one set byt not

in the other.

-
PROOF: If A # 0, take o0=-1 A in Lemma 6,1 and it
follows that if one of ( ﬂe—xy)“lg ( Ae-yx)=t exists, so does

the other. ||

To see thet the sets ¢g(xy) and o(yx) may indeed he

different, tske for example B = 5@(%2), end the infinite

mafrioes
o x=loro0oo0o . ., |, v=l00w0 . .
o0 1 0 . . 16 0 .
o0 0 1 . . | o1 0 . .

then Xy=e¢ and

yxX =

so that gi(xy) = {1} while gi{yx) = {O,l}f ., It can be proved
thet 1f B-is a finite-dimensionsl algebra then gixy) = o{(yx). i

PROPOSITION 6,23 If x€B is self-adjoint, the follow-

4+

ing are equivalent,

(1) ox) [o,e [

, )
(i1} x =y for some self-.adjoint y & Bj
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(111) lle-otxll < for some strictly positive resl of :
2
(iv) fle-oLxill £ 1 for g1l o with 0 << ;
femexl < Tol

CV)“H X He-X” < Ml |

PROOF: Suprose (1), and tske any suitable closed commu-
tutive sub-zlgebra of B conteinirlg x in which the speetrum of
X is the same as the spectrum in B. [ A sultablc subeclgebra

would be B'"(x) . 2ll elements thet commute with everything

thgt commutes with x 3 if (;Ke-x)“l exists in B it must be in
B"(x) end so the spectrum gjkx) of x in B"(x) 1is exddly Q’@{ij
}% Now use the representstion theorem for commutative Ba@—algebra

zs algebresC(l) (we have 7 compect here, since B has a unit,

slthough this is really irrelevint). Since the function %
corresronding to X is non-negative (ite values are preciscly
the polnts of ¢(x) ), it hac a (unique) non-negetive squarc
root § : let y be the élement of B corresronding to this,
Since the correspondence between the zlgebra znd the function
algebre C(X) is a %-isomorrhism, y must be self-adjoint and
x=y”,

Conversely, if xzyg with y self-adjolint take a sultuble
commutative sub-algébra of B containing y in which the spectrum
of ¥y 1s exsetly O (y) say, B"(y). Let ? be the function
corresponding to ¥y in the representstion of this algebra as a

C(X) 3 since y is self.-adjoint §‘ 1s a real function
‘(Proposition 2.3) &nd so %z?a is non-negative., S8ince o (x)

cammot contain sny point that is not a value taken by % it
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follows that o(x) ¢ [XJ,OO,{; We have thus proved (i) —=> (1i )

To prove (i) Z::>‘(iv) ¢ tzke again B"(x) or some other
suitable sub-zlgebra and consider X s this is > 0. So if

ol < 2 —"”%ﬁ‘ Wwe have 0 <% < 2 so that l<l<'/)/{\<l
Sl Ty veheve 0<® <2, 00 that 1 < 1euR <1,

gi?ing Hl-c£§U £ 1 &and hence (since the (orrespondence between

the algebras snd the correspondjrg €(X) 1is isometric)

A

le ~oxll < 1, ;

The implication (1v) =5 (441) is of course trivial,
To show (1ii) ——> (1) s suppose %(ﬁ) < 0 for some mex
Then 1£00> 0, 1-a%(M) > 1 end so || 1- 44l = flo-cexlt > 1.

IT x=0 both (i) and (v) hold, If x£0 (v) is just
HG"H%W xll <1 s Which implies (1i1) end is implied by (iv),
This completes the proof, || '

The broposition we hage Just. proved is useful because_
it ensbles us to convert & sfatement about the spectrum into

& stgtement inJOlVIHg on]y rnorms of elcments in the a2lgebra,

We use this 1n the ﬁ)llowing proposition

b

We dbnote by Q the set of sclf adjoint elements oP B ;
that satisfy one {and henCe ail) of the conditions of _Proposi - %
tion 6,2 . It 1s & subsct of By: we shall now prove ‘thet it
is & ééﬁcg thet is, & set K such thet X, yEK, 2 0 =D xtr,

XXEK (50 thgthK cx‘,> 0—>Z°<Xr61<) and 1sox XE€ K

3

___M> x:O.'
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PROPOSITICN 6,3: Q _1is s ¢losed cone in Bq with a non-

empty interior ; more precisely e is an interior point

of Q.

PROOF: Suppose x € Q, &> 0 then o/x € Q by condi-

tion (1) of Proposition 6,2, since g (ox) = xXx@(x).
p 2

If x,y€£Q choose X > 0 withelg e SR .

then  [lewctxl] < 1, Me-otyll <1 and so fle-gol(x+y)lt = f
1 | o ‘

|3 Cemikx) + g(e-oty) <Hle-otxll # eyl <545 = 1

Y

so thet x+y€Q, by (1ii) of Proposition 6,2
If x £€Q, ~x& Q then T (x) :{03 and sn, since [lx]| =

”QH = 0 we have x=0 , Thus Q 18 certainly a cone,
To show that Q 1s closed, use condition (v) of

Proposition 6.2, If xgq then

0 < “ lxlle -x } = & say:
since “ H‘Xiie x“ < ” lylle —y' + Mx-ylt + Il - HY‘H’
< | Ille-y)] + alxey,

it follows thet

| vtle o] 2 | Hehe x| -2lix-yl
and
| tvlle <)l - 19l > | Dxlle x| - Ixll -alix-yl

so thet 1f fx-yll < €3 we have

Iylle -] > ©

and so ¥ QQ
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To show thet Q has a non-emply interior, recall the
device used in the proof of Proposition 3.3 s i x| < 1 end %
i1g self-zdjoint then there is s self-edjoint y such that
y? = e-x, given by the usuzl power series for (e-xfLi . That
1s, the elements of Bg that lie in the open bhall {x s Ix-ell < 1}
are all in Q and e 1s certainly en interior point of G, I

Tt is clesr that if x€Q then x 1s of the form x % ¥
(indeed with y self adjoint), OCur next result shows that the

converse result alsb holds.
PROPOSITICN 6.4: x " x€Q for all XEB.
PROOF: We first show that if -x“x€Q, x€B then x=C,
Writing x:xl+ix2, where X4 and Xo GIC self-adjoint, we heve
‘;&H
X = Xl—iX2 and
M 3 2 2
X x +xx = 2xy + 2X,
<

2 2 ;
so that x*x = 2xq t 2Xy + (-xxx),

Now if -x%xéfQ then -xxﬁEQ alsc, by the Corollary to Lemms
6.1, Sinceg Q is a cone, and the thrcee terms on the right are
in Q, x X x € Q s this with -k*x(i@ implies x¥%x = 0 and since
we are in & B¥-algebrs x=0 since Hﬁ%kﬂ = Ixll® .

Now tzke a genersl X€ B: we Qish to show f&xé}Q.
Certainly % ,is self adjoint, so we cen write it as a diffe-

rence of positive elementsf
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where y,z are positive, self-adjoint znd commute with every-
thing that commutes with‘x*ex. | _In B"(f*x) take §é(x*k)+'
AN

end 7 = (i%x)”:]'. We also have yz=0, since ¥£:0., Then (xzjﬁkz

= 728 xz = 2(y-2)z = -z° ond since 2z €9 we get
(-xz)*xz € Q
which implies xz=0 by the argument given above. Then 2z =0

P - 4
wnd so z=0 since Uz = 12817 = |zl und if 2°=0 then z'=0 &nd

so flzll=0 . Thus x™&=y€q &s rcquired, |}

COROLLARY s (e+x'*}c)'1 exists for =11 x €B,

PRCOF: Tsking - sy - B"(x#&x), we have (é:;;;BAZ 1 and
SO (e+x%x) certzinly has an inverse in the sub-algebrz hence in
B. | | o

pn slgebra satisfying this condition is celled by Neimerk
completely symmetric : th condition is thus implied by the
B*-condition ¥l = lxll® (but not e = fx]).

In gensral, 1T K is a cone in & reel locelly convex
topological vector space E. We cell ¢ functional f positive
with respvect to K if p(x) 2 0 for «11 x €K,

In the preéent cese teking E=B., K=Q, & functional
(on By) is positive with respect to Q if and only if f(x#k)zo
for all x€B. Hence the extension of f to B by linearity
( f(xl+ix2) = f(xi) + if(x2)>is preéisely what we heve clready

cielled & positive funetional p.
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For positive functional we¢ have the following veristion

Hehn-Benach theorem:

KREINM'S EXTEMSION THECREM: Let E be 2 real loeslly

convex topological vector spacec snd K 5 cone with &

non-empty interior. If By 1s g lincar subspace of E
contalning an interior point of K, and fy is.a linear
functional on El that ig rositive with respect to

K1=K\ E; then there is an extension f of fy to the
whole of E .t dis sitive with respect o K, .

We proceed i® the next. weptima tn apply thic resﬁlt_

to tbe ease of ¢ as a.cone in By




CHELPTER 7

CHE REALIGSGATICN OF B -AL GE PRAS LS
AL GCEBERAS

We hegin with one or two rcsults releting to idesl

theory in B:

PROPOSITION 7.1: If J 1is a vroper left idead in B

there is : positive functiongl p on T with ple)=1 cnd

p{x)=0 for &1l <€ 7,

PRCOFs Consider F:BS 3 let E, be the subsat of Bg
consisting of clements (Ae—i-x), (AQ R, }:EJQBS) . This is
& linsur subspece of By end contains cn interior point of

Q namely e, Write

pl(}leﬂc) :A;
It 1s positive with respect to Ql:Q[]El , for if KEQl and

x = ety then y€J &nd -y"l = ()e-—x)“l fails to exist so
}\E G (x), A > 0 and thus p(x) 2 O.

We cen now apply Krein's extension theorem fo Py there
is a function:l p on Bg that is positive with respect to Q
:nd the extension by linearity of this to the whole of B is
t+he required functiornal. We have p(x)=0 for all x&J ond so

in perticuler —p(x*x) = 0 for 211 x€&7J. i

1%
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We heve used in the above proposition the fact thaet 17
Ac-x 1is in some proper left ideszl then (.ﬁeﬁx)"l fails to
exist, We would like to use next a converse of this : unfor-
tunately a direct conversc would be felse, as 1s seen by
considering the elements x and y ingé(ﬂg) described just
sfter Lemmsz 6.1 & here y"1 fails to exist but tlhe left
principel ideal generated by y is the whole of ¢ az).
Cleerly if we demand thet no left-inverse yfl exists then the

i

b
left principel 1desl generated by y will be proper : so vwe

deel for the moment wlth one—sgded inverses,.
We begin by defining the (left) radicel of B to he

the set of all x€ B such thet & left-inverse (e+yx)€1 exists

‘for zl)l y&B. (It will appeéar leter thet we get exactly tlhe
seame set of elements 1f we start with 'right' rather than

1eft' ), This evidently reduces to the usual definition of
"radic;l" in a commutative Banach slgebrs 3 thet is, all cle-

ments whose spectrum is %(}} .

PROPOSITICN 7,.2: The radicel of B is the intersecticn

of a1l 4he maximal left ldeals of B.

PROOFs Surpose (e+yx)é1 fails to exist for some y{iEa
Then the set of elements of the form z(etyx) is ¢ proper left
1deal end hence is contiined in & maximal 1left idezl., If now
x 15 in the intersection of 2ll meximel left ideéls then =

and hence yx Dbelong to this idesl and hence so does ¢, being




57

c+tyx-yx. This 1s e contradiéfion s so the redicsl conteains
thé intersection of :11 meximel left idealé.
Suprose xﬁZJ for some meximel left ideal J. Then

thé set of all elements bf the fomrm z+yx(z€EJ, yE€ B) 1s agein
s left ddegl end properly contzins J (since it contains the
element x). Since J was meximel this ideal must he the
whole of B. But then e = ztyx for some y,z SO 2 = €-yX .
But 2z we have no left inverse, since J is proper : and sO
Ax%radical thus the redical is contained in each maximel

left ideal J, hence in their intersection. |l

COROLLARY: The radical is & closed left ideal of R.

PROPOSITION 7.3: If x Dbalongs to the radical then

a_two slded inverse (e+yx)‘l (negessarily unique)

exlsts for sll yE€PB.

PROOF: If X € radlicel snd y£&B some left inverse

(e+yx)“1 exists: say (etz), so that (e+z)-(etyz) = e, Thus

L

z =-zyX = YR = -(zy+y)X

Since the radial is 2 left iderl 2z € radical. Thus etz
nas a left inverse w say: wétz) = e, So w(etz).(etyx)=w

= etyr snd etyr has etz as & two-sided inverse, H

M
PROPOSITION 7.,4: A B -algebra is semi-simple.

PRCOFs This follows from-the ahove proposition ¢ If
x € radleel then necessarily J(x) =3 0} wnd then x=0. |
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We now show (zlthough it is not rezlly required in whrt
follows) that we could heve tsken tright! insteed of 'left!
in the definition of the radieczl.

PROPOSITICN 7.5: The redical is a two sided 1desl of

B : it 1s the intersection of all maximal left idesls
and also the intersection of 11 meximel right idesls,

PROOF: This depends on Lemma 6,1 ; teking ¢f=1, if
elther (e+yx)"l or (e+xy)"l exists so does the other, So
x € (left) radical <::i> (<a—l-‘.';'x)"'1 exists for »li y<?:$7(e+xy}ﬂ
exists for a1l y<{&&—» x¢€ right radicsl. Hence the ke £t and

right radicals colncide, I

Note that in genersl the radicel 1s not the interscc.
tion of &1l maximai two-sided ideals of B 3 teke B = (8
for some countebly infinlte dimensionzl H, Then there exists
a unigue prqéer two-sided 1deal, the compact operators s the
intersection of all maximal two-sided 1ldesls is therafore
precisely compszct opsrcztors, therefore not zero, But the
padical is { 0 } end ig not the intersection of meximal two-

sided idecls of B, .

PROPOSITION 7.6: If p(x¥x) = 0 for sll positive

functionsls p on B then x = O .

PROCF: Suprose J is a meximal left idesl, By Prorosi-

tion 7,1 there is a positive functional p such thet p(x¥x) = 0

for all x&J &nd p(e) = 1. But the set of elements

i
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{ 7 3 p(zﬁéz) =0 } is a left ideal (this wes proved during
the course of proving Theorem 3,6) znd this ideal must be pro-
per since p{e) = 1, Then it coineldes with J since J 1is
meximzl, Henee 4f p(X'x) = 0 for all p then x €J for -ich
meximal J and so X is in the radical which is {0} .

(Propositi n 7,4). |l

PROPOSITICN 7.7 : A B%:alggpra has & complete set of

»*-representations and heénce & complete set of firrag.-

ducible % -representetions.

PROOF: What we want is to show thst if T(x) = 0 for
&1l x-representations T then x = 0 ., But if p 1is the
functionel assoccliasted with T then p(xﬁk) = (T(xf&}é:, 7 ) =
|1T(x) g ”2 = 0 and conversely if p is given then there iz =
T associcted with it ¢ so T(x) = 0 for 211 T is equivalent %o

p(x*k) = 0 for all p which implies x=0 by Proposition 7.€. J

We now proceed to construct a Hilbert spece H such thet

N

B is isometricually s¢-isomaXrhicto 2z closed 2k-subalgebra of

QQ(H). First we prove two propositions,

PROPOSITICN 7.8: Let X be_compact, C(X) the ususl

space of continuovs functicns with [x|l = sup |x(t)!
: t & X

Let Hx”’ be sny other nom on C(¥) in which it 1s g

nomed (not necessarily complets) slgebre, Then,

: )
=zl < lx]l for =11 =x,
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PRCOF; Suppose B is the completion of ¢() under
}
i I end let M be lts meximal ideal space. For any m &M
1et fm be the assocleted functionel then £y restricted to

¢ (%) is a non-zerd functional on C(X) : so there exists

tmE X with

Al

£a(x) = x(8,), (511 %€ ()

write X = {t:t =1t for some mE MY . Then Cl % = %,
For, if not, there exists an open subset V with ClVcompact
and(l v C X ‘\CLXl . Now choose x,y& C(X) with y{t) = 1
for y C(ClL V, y(t) = 0 for tc cl 71 ond X Z0, x(t) = ¢ for
t £ XI~gV. Theh given mEM, fp(y) = y(&) = 0. But then
(e-y)'l exists zhd x = xy so that x(e-y) (euy)‘l = 0,1,6.%=0

a contradiction. So(ﬂ,Kl = ¥, Then evidently

=l > sup e (x)] = sup |(x(4))] = %]
m -r

as required, |

1

COROLLARY : If B 1ig semi-simple then fl I and [ I' ere

| metrically equivelent and B= C (%),

PROCFs; This follows at once from the Banach inversion
theorecm if we note thet M which we heve identified with 2
subset of X must be £11 of X |

We next have the key.result which enables us to prove

thet B is . isometric with & closed sub-algebra of & (H).
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PROPOSITICN 7.9: Suppose By #nd B, tre B -algebras

and<¥>is g *-isomorchism {(no continuity assumed) from

By to & dense sub-algebre of 32 +  Then §>is necegsarily

an _isometry and hence ﬁP(Bl) = B

2.

PRCOFs; let foBl and let Bg be the closed subalgebre

¥

of B gensrcted by x7 x (and e} : BS is commutctive. Define

for yegj(BB),

vl = gl , ol = iyl

where the suffix indicetes the nom in B, or B, , respectively
Under f “', 99(53) is a commutetive B*t—algebra,'hence
. _ ) "

(isometriczlly isomorphic to) ¢ (%) for some X  Under [ i :

39(33) is a commututive normed algebra and its completion
By 1s a clesed sub-algebra of 82. Since Bz’ being a B*ﬁ-algebrg
is semi-simple, Bé i1s elso semi-simple, By the preceding
proposition and its corollery fiyll' < liyl" for 211 y€ @(Ba)
- end qj(BB) = By
Kow B4 will e£lso be of the form C(X' ) for some X'

-3

the result of Prorosition 7.8 now ylelds

vt < vl

il

and so (e, lall, 10 2 €8, . In partienlar fll

bl = el = 19 ) peoll, = | q)mnzz

. . w1 T
ard so'gzis an fgomat}?“bn B1 to B2 (since evidently the renge
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of P must then be closed, it is the whole of Bz). I
£ { Hi} is any collection of Hilbert spaces
el .
their Hilbert direct sum H =@H, is the Hilbert space whose

- I 2
elements are "vectors" E = !gj‘) . such that 2, ”§ | <0

(so thet g =0 for all but a countable set of indices EDR

We can introduce the inner product (?g ,”z ) = Z ( Zl’ UED)
and thus the nomm [lf | = (g , € )2 ; note theot n%’ [[

It is easy to verify &ll the Hilbert space axioms (including
completeness). If we hive & dorresponding collection of

hounded opem tors { Ti)? ie1 then thelr dlrect sum is the

operator T on H defined by T'ff = wi%i)iel . This is bounded

1if and V.onl'y if.‘ sup ”Ti” <60 znd then |7l = sup”Ti” . To,
i€l il

seé this, note that 1('1‘% . Yl 3= Z(Ti% i’ni)‘ S_Zl(Ti%ig

}11” s | < sup logll WEN I . so if,

sup [lg;ll <©°. then T is bounded and {7l < sup lizyll . oOn the

other hend, choose ean 4 with {7l > sup Inyll -& 3 there

exist §.,77; €Hy with (1,8, 1 >Csupliz -

Now tekeg to be the vector vl th only one non-zero component

%i and similerly for?) s we then have

[TE )l = 1CrE |, 11 2 CGsup izl - 26 1€ T NI



63

50 tnat el > sup"HTiﬂzf‘EE and since & wss arbitrary
. Il > sup lIylt eiving o] = sup 24l as
asserted, If Ty 1s now & collection of representations of

B, thelr direct sum T, where T(x)g = ( Ti(x)-%i) 1€ T 1s again

& representaetion as is imredi:tely verified,

# o
THECREM 7,10: A B -algebra is dsometrically » -1isomorphic

to & closed sub-glgebrs ofiéﬁ(H)_for‘SOme Hilbert space

. -

PROOF; Let B be the algebra and let (Ty) be eny
gomplete set of representations (not necessarily irreducible)
on Hilbert spaces Hi‘ Taking the direct Sum of théSG we
evidently have a falthful ¥ -representation x — T(X) of B

on the Hilbert spece H = ;%?I Hy .

(since firy GOl < flxll for
2ll i (Proposition 3,5) it follows that [T(x | < lIx[l, but we
do not in fact require this), Taking the closure of the set

of operators%'T(x)} € we heve & closed ¥ -subalgebra of
. ¢ X

I (H) end we are in the situatiion of Proposition 7.53 applylng
the result of that proposition, 1t follows that the map
x —»T(x) 1s an isometry on to & closed sub-algebre ofcﬁg(H)g

which 1s what we wanted, ||

It may be useful to indiecste whet this rerresentation
may be like in & particular case : sterting with B = (3[:05 1]



CH2PTE™T 8

REPRESENMTATIONS OCF LOCALLY COMFZ2CT
GROUPSG

Let G be a locally compact group, not in genersl
ebelian, By & representstion of G we mesn a mep s ——> ¥(s)
where V(s) 1s an invertible linear‘operator on & Benach space,

with V{sqy 52) = V(sl) V(sg). Tt will be celled (strongly)

continucus 1if the mep is continuous when the oﬁerators are
given the strong topology. If the Benech space is in feet
s Hilbert space :nd the opcrators are all unitary (in which
casec we shell usuelly write "(s) rather then V(s) ) we hive o
unitary representstion § in bthails cese u(s~1y = Il:U(S):]&° We
have alresdy seen in Ch.l thet there clweys exists o continuous
feithful unifary‘representatjon of G, We now wish to excmine
the existence of irreducible represente%ionsh

First we define irreducibility : this is exuetly the
same for granys as for Banach zlgebres, The représentation
V is reducible if there 1s = non-triviel closed subspace

E, of E with V(s) E,CE, for &1l s G, otherwlse irreducible,

1
For unitary represent:zticons on ¢ Hilbert space H we heve
exectly the sime criterion for irredycibility es we had

previcusly for algebras

" PROPOSITION 8.1: The unitury representetion U of G on

the Hilbert space H is irreducible if =nd only if the

only operators thet commute with 211 the W(s) are

secler multirles of the ldentity operater,
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Also, we can intrcduce the nction of cyelic rerresen-
tetion, cyclic vector ete,, for representetions of groups in
gxectly the scme wey as for representations of Benech algebres:
we heve ¢ result anclogous to Theorem 2,6,

We now review briefly cne cr two sspects of integra.
tion on G, As usuel dt will denote left inverient Hear
meésure, with some flxed normelisstion, We then have, for

f‘EfCOO(G) at le%st,
Gf JF(t)at = jf(s"lt)dt = jf(t)dt

but

é-sf(t)dt = {f(ts"l)dt 4 é’f(t)dt, in genersl,

Howsver it is clsar thet

1§

H|

fsf(t)dt ff(ts“l)dt

[ £tuts yat =ff5(ut}dt
G G G G

so that [ —3> jﬁfs(t)dt ig &« left invarient integral on
. G ) -
COO(G) 3 and so by the uniqueness theorem for Hear mezsure

it must be ¢ constert multiple of ff(t)dt + the constant
G
depends on s but not on f snd we write

ffs(t)dt = A(s) ff(t)dt
G | G

This function A(s) is the moduler functicn of G, It is by

definition resl cnd non-negetive, If A(s) = 1 then G is

—
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called unimodular (the tem unimoduler is also applied to
certein groups of metrices with determinent 1, but we do not
use it in the ssme sense here), A(s) = 1 is évidently a
necessary «nd sufficient condition for left cnd right Heaar

messures to coincide,

PROPOSITICN 8.2: s «—> A(s) is_ & continuous homo-

morphism of G intc the multiplicative group of

strictly positive reszl numbers,

PROOF: If £ €Cqyy then f(ts"l) is uniformly continu-
ous funetion j given & we can cefteinly find M(s,) so that for
SEN we heve |f(ts™1) - f(tsgl)! <€ throughout some fixed
compsct set hénce<|jrsf(t)dt ~:{S§(t)dt| < k& Af sE M,

hence continuity &b s

A(sl»sz)“[f(t)dt :‘ff(tsélsil)dt

iH

-1
[fsl(ts2 ydt

&(sg) fsfmdt

i

The Homomorphism property is immedicte:
| A(ss )jrf(t)dt :-{f(ts'ls'ljdt =t (ts,
172 2 "1 s1° @

= A(S)jﬂfsl(t)dt = A(sz) A(sl)Jﬂf(t)dt

Yyat

and the result follows on choosing f withj’f(t)dt £ 0. |

PROPOSITICN 8,3: A(s) =1 1if. G is abelisan or discrete

or compact.
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PROOF: This is immedicte if G is abelian or discrcte.

. If G is compsct note thet the function f£(t) = 1 is in g (G)

——

snd =pply the formula for A(s) with this £, ||

There are of course unimeduler groups of other kirds

i

£1s0.
we hove [ r(t)at = [r(stiat = [r(s-lt)at = [r(ted)
A(s”l)dt :\f}(ts) AMs)dt, We do not have ff(t)dt = ff(t'l)dt

in generzl 3 the appropriate formula 1s

.f&xt)dt :q(f(t'l) a(t-Lyat,
To see this, look at}rf(t“l)ﬁ(t-l)dt- Using the formula
;fQQ(t)dt = A(s-l)jga(ts-l)dt, withp(t) = £(s~1t=1) a(t™), we

havedfsf(t'l) a(ttyat =j(f(s'1t?1)ra(t_l)dt aqs-l)J(f(s"lsfﬁv ;

A(st"l)dt :-[f(t’l) A(t"l)dt, and so this 1s a left-invarient

n

é : ‘ integrel, It must therefore be of the fomm 'f(t"l) A(t'l)dt =
: gfﬁf(t)dt for some constant c, by the uhiqueness of Hear
mezsure,
To ses that ¢ must be 1, choose ¢ neighbourhood of
e 80 thet A(s) is nearly equal to 1 throughout this neigh-
bourhood, Then c¢hoose f to be a non-negetive symmetric
function (f(t'l) = f(t) for_ all ﬁ) with suprort in the neigh-
bourhood, It will follow thet [}Tt)dt znd jﬂf(t’l) A(t"l)dt
are arbitrarily close, and henc; that c=1,
As ¢ corollary,}pf(t)dt:_{f(t"l)dt if end only if |
Aty = 1. | é




We may intrcduce an involution inCpo by writing
£%(t) = £(t=1) at=13. Tt 1s clesr thet this has &1l the
linesr spacé properties required : to shcew thet 1t has the

approrricte preperty reletive to convelutiocn we note
¥ ———— -1 -
(£ g)(t) fr g (£71) ¢ a(t ) =ff(s>g<s'1t yds At

‘fg(s 8 acs 1y £(8) a(s)ds

1

n

*

=fg*(t8)fﬁ(8'1)ds = g —ﬁf%('t)

%
We heve zlso immediztely the fact thet £ —> f 1is an

i1 sometry for the Iq_norm e
TN -—-flf(t-l) At~ lat =flf(t)§dt = {1l

{(on the other hand, it is not zn isometric map in zny other
Lp nerm, unless G 1is unimodular). So we czn extend the
inveclution uniquely by continulty from Coo to Ly &nd Lg

then becomes & Bonach ¥ -algebrea,
We should note £l1so the fact theot 1 we write Ty for

the opsrator on coo obtegined by left convolution by f:
Tf(g) = fs g then we heve (ng, h) = (g, Tf#fh), so that

is exactly T, % . Ths

f
verificstion is not difficult., It is thus c¢lear thet the

the Hilbert spuce idjoint of” Tf
netural invelution on [\ (the completlon ofC in the opera-
tor norm on L,(G) ) coincides with the invalution on CoolB)
(This is of course a shrong argument in favour of defining

£ as we did).,
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There 1s one formula that we shall require'later ¢ 1f
we translzte ¢ convolution product f3xg elther on the right

or the left, we get (£ g)S = qu(gs) end S(f%g) = (Sf)-}e g,

If we take the special case of a rroduct f¥; f then 1f we
' *
transl:te by s we get exactly the same result ¢ (,T)

i
&= f*f., To see this,
e

jsf’*(t) Sf(t—lu)dt :ff(s"lt"]‘) At Hyees™ ety yat

:[f(s'lti f(s™Tt wydt :f‘fﬁ‘) £(tu)dt
:ff(t"l) £(t~1u) a(t-Dyat
:[f*(tjf(t'lu)dt

THEOREM 8.,4: There is g 1-1 correspondence hetween

continuous unitary reﬁxggggiggiqgg U ¢ s-—3TU(s) of
G and essenticl % -representetions Tax —> T(x) of L (G):
i

in cone direetion the ccrrespondence is glven by

(1§ ,m) = f(ucs)g“ , 7 ) x(s)ds

G

and in the other by

U(s) T(x)§ = T(Sx)f (for_ any suitable x,{f ).

#ROOFg Suprose the representation U glven, Conslder
fer X€ Ly, f‘,)? & H, the integral

I = éﬁu(s)f , Ot)x(s)ds.
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Evidently | I | = sup KUCS) £, VM-HXH and since HﬂKs)H

we heve | 1] < HXH‘”E:H "FH. Evidently the integrul is 1ineqr
in'g , conjugate-lineer in 7} ,'so it must be of the form (T(x)§
'7): wnere [m(x) < Ixll. Tt is cleur that T(x) is a linear

function of x. To complete the verification that 1t‘ 150 a
representation we have to éhbw that T(xfk: T(x*) and T(Xﬁy}-:
T(X )T (¥ ) |

t-‘;\Ie heve

(£, q) f(u(s)g pr(s-l)a(s"l)ds

= [(§, mesm™M)x(s™h als*Das = faGTE ey
‘A(s”;)ds

= [ ek n) Gooas = (e 8= (£,2607 )= (16ED
as required : and '

(T(x%y)§ ,72) :j(m(s)§ ,Q)‘/Fx(st)y(t'l)dt ds.
We mey interchange the order of integration by Fﬁbini's theorem

we get

ff(u(st) w(t-1E 1 ) x(st) alt)ds a()y(s~Hrat
-[(reoubE ) seyehae
-{(D(t"l)f' (X)Y ) ﬁ(t"l)sdt"l)dt

‘—“(T(Y)g: : T(X) )7 = (T(X) T(Y)f 30)
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To see that T is essential suppose‘f Z 0 : then U(s)?
is nesrly eyual to % for s nezr e. hence if the surcort of X

" is smell znd X is non-negative with x{s)ds = 1 then

| v[ CU(s)g ,f) x(s)ds is nezrly egual to-f‘(f ,§7) x(s)ds = ”E’f

«nd so in particular (T(x)§ ,g:)y'o and  T(x) § 1s therefore
non-zero,

So, starting from Ug we obtsin T quite stralghtforwardly,
To go in the reverse direction is somewhat harder; Suprose first
to simplify matters that we heve 2 cyclic representation T with

~ecyclic vector C : the vectors T(x)§ are then dsnse in H, We

first observe that if T(x) F=0 then also T(x)& = 0 for all
Tod

s¢€ G. For, we have

1

(T(SX)§ . T(Sx)é') = (T(sx*% sx)é; ’q)
= (g, 0L

so thet the required conclusion follows at once, We now define

W(s) by

U & = T(_KE L
This is well-defined : 1f T(x)¢ = T(y)§ then T(x-y)& = 0,
T(¥-¥)C = 0 and T(SX).C = :r(§§)‘g . We heve

(U()TCNE, U)Tx)G) = (1( )&, T x)E)

- (10w 08 LE) (1% ) 8,8 (108, 1008

(T(Xﬁ*x)g %)
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50 that “U(S)§ | = 1€l for all § of the form T(x) , Since

these are dense in H we cen extend U(s) uniquely by continuity _
to become & unitary operator on H (it is cleerly linear,
algebralcelly), It is clesr that U(e) =I, the identity

operator, and
WO = T (&= Mol = TIT(L(x)E
= (s ())&
30 thet U(st) = Ws)T(H).

The mep s

5U(s) 1s contintous : this is proved by

. gsserticslly ‘the sime argument as was used in Prorosition 1.2.
we heve lulsodé —u(s)E Il = lu(sy) 1(x)E - w(s)Tx)E | if
% éT(x)C' and thig.ig Hi(sdx - SX)Q'” < ”(sdx - Sx)” HZ.”.

So, given§ E Ceeieiaee én’ f, choose X  so that

Xpyeees
H(T(xr)s - f )H < /g for all r and then N(sojﬂ so thet for sem(s,)

e .
| (X ) - (X )H <3“?WI for 211 r : this is possible since the

continuous functions of ccmract surport are dense in Ly &nd

such functions are unf?oﬁﬁiifédmﬁihUOﬁé."Then we get
lutsg)€, - w(s) Bl < allf - OB+ (s ) p)E -Ts):

(x|
L LE s .
< 3 ":3‘“-—- l_ﬁl’_(_l’l ) I
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and so the required continuity follows,

We next remerk thet 1f ? is any vector in H ond X

any element in L, , then U(s)T(x)§ = T(Sx)§ . For, if
§ =T(y)L for some y then we have
U(s)T(x)T(Y)E U (8)T(xny)§ = T(*xy)

= T(( ) *y)l = T X)) = T(x)E

and the general case follows by continuiity since vectors of the
form T(y){'are dense in H.

If T is not & cyclic ropresentetion we c¢cen deéompose it
as a direct sum of cyclic representations, as in Theorem 2.0,
For each T, we form Uy as described apove, and then take the
direct sum of the U, . It is =ecsy to verify thet U and T

i
are releted by

Uls) T(x)E = '0{ x)&

g

- T c ;’/ 7 L, Al i
for all ft H 4 for if Li(.c,-)'.r:.L(>c)é,-’.1 = T\SX)Q:.L for each i

. = 5 (f f ot £
then flsOILi(S)Ti(X)Ei = T(Sz),i (gi the projection of & on Hi)

#nd so the requiréd result holds.
We must show thst the correspondence indiceted is really

1-1. ©Suppose that T has arisen from U, and thet U - hes arisen

from T by the fommula given. Then (T(x)f',q)ﬁ fkuo(s)$ s 1))

x(s)ds &and
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G‘f(_Uo( s}f %Y?) x(t~Fs)ds

j(uu(t'lS) ; Uo(t"l)"hi) x(t ts)ds
2 _

il

<T(tx)f ,Yﬂ

H

it

_ CdeN g
(T(X)‘f s T (2™ M) = (o) TE g’g)
but this is zlso (U(ﬂ Ef(x)f ,)?} by definition so u(t) = Uolt)
for =11 t, as reyuired.

suprose thet U hes arisen from Ty end T fromU For

ZE‘COO(G), end hgnce for 211 z (= Ly(G), the function (To(z)f )

is a complex integral onCOO; we may write i1 as

(TQ(Z);; 9}7) = ‘C{ Z(S)dlu‘to-\f O(S) = ‘sz(s)d/‘ﬂ(s) say

Then (TO(X-:ty)éC ,»?) = fx(t)y(t”ls,‘dt d/u(s)
G

and we may interchange the order of the inteeraticen by Fubini‘ts

Theorem + we get

(To(x.;ey)f ) :fo (X)Xt :ﬁ'TO(_t;f)g: UGLE

s

.:f(ﬂ(t)Tu(y}f’ y“]j)x(ﬂdt = (*1'(::; To(y)i’- 3,?\!

by the definition of T, But it is ziso (TO(X)TO(Y) 3 ,7’2\) end

?
so T(x) = TO(X) for all x (since the vectors C_I‘O(y}f y 7] ) are

dense in H as Evaries throughout H j. |
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THEOREM &.5¢: If U =end T gre releated ss in Theorem

8.4 then 'U is irreducible if aznd only if T 1s irre-

ducible.

PRCOF; Suppose U reduclble, Then there is an operator
P#£ «I (we can teke P to be the rrojection on a non-trivial

inveriant subspace) such thet Pu(s) = y(s)P , ¢11 s éng Then

(rros ) <ot ) - ffof 7)o

G
x(s)ds

f((.- '.PU<s>§ ,7) x(s)ds = fw(s)pg' yp
G .

1t

(T(X)? §,7?),

and since this holds for all,%,17, we have PP(x) = T(x)P and
T is reducible by Propositicn 2,5,

Suprose T reducible, and let P commute with all the T(x).
Then PU(8) T(x)§ = PT( x)& = T( x) PE = y(s)T(x)P& = u(s)pT(x)E,
, s

and since the vectors T(x)f are dense in H (since T is
esséntial) 1t follows thet P(U(s))= w(s)P and U 1s reducible
by Proposition 8.1. |

TIEOREM 8.6 {GELFAND-RATKOV) ¢ A locally compact group

G glw:vs has enough continuous irreducible unitary

representations to separate the points of G ¢ given s£6G

there is o representstion of the kind described with

U(s) # I.

H]
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PROOFs: If s # ¢ we cen find x€ C (G) with X £x s
Suriose sng(e) znd take a symmetric M' with M'N'CZN, then

1f the support of x is in ¥M', the supports of x end of X are

s
we can find =

’
disjoint., Given any ron-zero function yG?COo ,
function zefcoosuch that the convolution ¥z 1is non-zero :
we heve only to tzke z non-negative, with sufficientiy smell
suﬁport near e, and wlth z(tjdt = 1 s then y snd y*z will be
uniformly close and if y #Z O then y#z Z 0. Thus 1f we coneider

the representation of Ll(G) a8 1lefl convolution operators on

Lz9 where
T(%)E = xx £

then y 7 0 =y T(y).# 0. Then by Theorem 5.5 thers is sn
1rreducible representstion of L, with ©(y) # ¢, Taking v = x-.x
we see that 1f U is the associcted unitary representaiicn of

G we have T(X-Sx) = T{x) - Ws)T(x) 5 0 so thet W(s) Z I : and
this is what we wanted, |

We conclude the scction by remarking th:t in the proof

of Theorem 8.4 we did not use the full force of the assumptlicn

thet U s) 13 strongly continuous, in going from U to the zsco-
clzted T, It 1s clesr thit weak cohtinuity (that is, the
continuity of’(?(s)g ,q) for ezch %,r?é'ﬁ) would suffice : we
could then go to T and beack to ¥ which must then necesserily
be strongly continuous.,  So, for unitary rerresentali ons, weak

continulty implies strong continuity,
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If we only cssume that y(s) is weskly meszsurshle then
we cen obtiin en associs ted representztion T as before, excert
thet now we‘heve no assurence thet T is non-zero, to say
nothing of bheing ¢ssential. For examyle, let G=R and let H
be the épace of furetions & (t) of the real variable t with
Z|§(t)] <ed(so that £(ty # 0 for
of t only). The inner product ({,7)

countehle set of vglues

> %(t) M (t) is then
t € R

defined for 211 ?,V?E-H, Take the representation of R on H

o

"

given by
U(s)< (1) = Eltes) 4

this is evidently unitary. It is evidenfly also weakly
meecsursble » indeed for & fixed % ,T? we haveii?(t—s);ﬂﬁsrﬁ ¢
fer a counteble set of values of s only i.e. (IKS)§ ,7?):0 for
almost all s for fixed fgﬁd 7 - But then of course ( (z;f 77)
:J(U(s)gfjf)x(s)ds = 0 for allg ’? and so T(x) = ¢ for &1l x,
| However,'if'ﬁ is werkly measursble tnd T is separable,
we cezn conclude that T is essentiacl. TFor, let Y?ﬁ be an ortho-
nomal basls for i 3 1f W(s) is unitary snd weskly measurable
then (U(s)f ,r?j cennot be elmost everywhere gzero for all ne

if 1t were, then in view of the formulae

035 = 5. (w0 7).

n=1
o0

g1 = 2 ok, 1°

=1
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it would follow that {[U(s)E || = 0 for almost all s; but
o (s) el = ||"§ [ for 211 s sinceUis waltary. So we cen find,
for{;f 0. &n7) so thet (U(S)? ,?’Zj is not &lmost everywhere

zero, Then therc cxists x(s)ECOO such that

.(U(S)%‘ ,‘//)x(s)ds 20
znd hence (T(x){ ,Y?) £ 0, T(X)% A 0 as required,

S50 for unitary representctions 1 on & sepcreble

Hilbert spsce, wesk mecsurability implies strong continuity,

This is not true in general : the rTepresentation of R d-scribed

above 1s not even wezkly continuous.



CHAPTER ©

REFRESENTLTIONS OF COMEACT GROTUTPS
ET C '

In this section we sssume thet Hear msasure on § has

been nomalised so theat J—ds = 1,
G 0
THECREM ©,1: If G is compect, every continuous 1rredu-

cible unitary representetion is finite-dimensional.

PROOF; For § .7 ,[ £ H consider the integral

r(u(s)q Y;)(U(s)z ,

[N \\-

}ds

For fixed { this is linear in¢, conaugcte-linear in q since
it is evidently bounded (bvy || H HEL 1M ) 1t must be of

the form (A(%)% ,¥} ) where B(.Z) 1s some bounded linear operstor

on H, Ngw

(&) g )

f(U(S)E ,Y))(ﬁ(s)(‘: , U(£)E) ds
G

il

j(U(ts)Z ,'Q)(ﬁ(ts)i L0 ) s
G

f(u(s)?;g u(e U ) ds
G

(a(& )f’rr(t-l)q) = (T ,‘77)

Sincez%,?? were erbltrary A(Z')U(t) = U(tjA(Z } for all t:

since U is assumed irreducible, A(& ) = a( ) for scue
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sceler 2( ). Thet is,

,ﬁfﬁ(s)ﬁ',yz)(ﬁ(s)( ,E)ds = a(g ) ($9}?)
G

©
and in particuler, taking?==£ ,

|(u(s)g ,§){2 = a(Z) ][gn2

for all { ,¥ & H.

Also

(5 I = [l s = [1E, wehel -

froot o
(as™HE, €] as
G .

snd in & compzet group A(s) = 1, so that Hear measure is invers-

3

invariant ¢ the integrel is equal to

f}w(s)z,gngds - a(E) NEN .
G

L e a(? .
It follows thet %) 2= for any s+ that is,
/) £l N §8 '

there is a constznt %k such that
a(g)= ¥IE 1 for a11E € 1.
' o 2 "
mus [ 1(a(o)E L )1 7as = «@) NEN = ¥IE N ena 1o JE 0 =2
G
then M(I(U(s)f ,f )Izds = k 3 this shows that k#0 since
G ' ,

I(U(s){ ,f Y| 1is a continuous function of s &nd takes the
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value 1 at_ése.‘

Now let El’ £ v...s8_ Dbe an orthonommal set of
= n

vectors in H, and E eny vector with Hg |l = 1. Then

{ l(U'{S)i:i 3?)!26.8 = {(E‘,) ”E ”2 _
G

snd so

e

nk

fl(mt(s)éL eV “ds

;._J.
-

.

J RO RS | as

M::

-

i

E:](g}, U(S'l)§ )| ds

i
Do

B,
But we heve ”m(s"1)§ ”2 2 ;21 l(gi? U(S_l)f )129 by Bessel's

inequality, (if‘ffgfé ee.s.&, is & complete orthonormal set)

< s~ f ”zds = J—ds = 1,
G

G

and so

and it follows that n < k'l, so thet the dimension of H cennot

exceed k™1 and so in particular is finite. |-

There follows from this result ¢nd frem Theorem 8,6 the
celebrated Peter-Weyl theorem (1927) : there are enough
representations of a compect group by unitery (finite) matrices
to seperate the points of the group., 4 direct proof of this

would of course zvold many of the complicated considerations



83

necessery to decl with the locally compeet case,

It should 4iet be supposed thet given & compact group
G there 1s =n integer n=n(G) such thet every continuous
1rreducible unitery fepresentétions 1s of dimension £ n,
Teke for example for each integer m, G, to be the group of
1l m Wm unitery m&frices, with ususzl topology as é subsect
of Rzmﬁ. G, 1s compret for esch m and if ¢ =7{G, 1is the

product of the G,'s with the usual topology then G is compeact

th

¢lso, The map § — s, where s 1is the m“" coordinate of s

1s a unituary representaetion of G on & spuce of dimension m
and 1is clearly irreducible.

| The next theorem genecrelises a result that is well
known for finite groups : we recall thet two representations

Vi on E, V, on Ey are equivalent 1f there is a bounded

linear operatory from Bq to E, with = bounded inverss such

2
thet Vg (s) = WVy(s) W~ for ell s€ G,

THEORFM €,2: Let G he compsct snd V z continuous

represertetion, not in . genersl unitary, on a

Hilbert space H, Then V 1s equivalent to a continuous

unitary representation.

PROOF: Introduce & new inner product in H by writing

(F oy = [ o), Mo Has
G
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Since V is continuous :nd G is compzct the integral cer tzinly
exists, It is ecsily verificed thet 211 the inner product
properties hold s in particuler, (f ,f Y = 0 implies E':O

| since if £ # 0 then the function (W(s)f , W(s)F) being

continucus, non-negetive &nd equal to ( ? ,E Y ot s=e has &n

integrel which 1s strictly positive.
then ((VCOF , W1)7), = [(VEVENs) V(1)) as
G | g

= JtV(st)fl, V(st)ﬁ}ﬁs and since in ¢ compact group left
A .

invariant Hazr mezsure is slso right invarient, this is

.£§V<e)% y V(s:¥) ) ds i-(§ ’7.)1 3 so V is unitery with

respect to the inner product (?',q )l .
Now for each?fé H, V(s)f is continuous, hence [v(s)E |
is continuous hence (since G 1s comp:ict)
sup [W(s)E Ul <o o
s &G ‘

It follows from the Banach-Steinhsaus theorem theat

ssup V() < e
s¢ G ,

‘Writing k for this .supremun we have

G

EH = (g0 = [ineogles <’ 1g T [ 10e
BN ) |

=k LEN,
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end on the other hand

Iv(s™l) w)E I < V) E N7

Integrite both sides of this with respect to s snd we heve
P 2 =
IED < HE I

and hence the rorms | || and |l ||1 are equivsalent, If now Hy
is simyly H with the nom || “1 instead of |l H, snd W is the

identity mep of H onto Hi then W end W™ are bounded ond

U= V(s)) = W V(s)u-t
is uniturv £¢8 ¢n operztor on Hl H

We conclude by showing that there are groups thet admit

no non-trivisl finite dimensionel unitery represent:tions,

LEMMA ©,5: Let V be & non-singuler nomsal n x n matrix,

If for every integer m 2> 1 there is cn inteprel myltl -

Jle of m, say k(m), and g non-ginguler ny¥n . matrix

W such that vE() o ow yw=l then v = 1.
m ———— m m ————

PRCCF: Let A:r:‘bqnbe the elgenvelues of Vy then Vk(m)

has elgenvelues Ak(m) e ;k(m) and wmvw;1 hes elgenvalues
n :

At9°;'°-;*ﬂyﬁ e )k(m)q... vy ﬂﬁ‘m) are simrly a f@rmuta—

tizg of ) v---:-,,lﬂ. Tlx wttention on W*- }k(l) ,Af(é)9"
ceeooey k(r)g .. 1s =n infinite sequence selected from the

finite set‘AIe.....,A,qé
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k .
Hence for some j, Ai(m) takes the value Aj for infinite-

ly meny values of m, If m is the first of these we can

’ K(m) _ ) _

find an m such that k(m) > k(m,) and ﬁj_
N kj(m) - k(mo): 1
i

(since k(m) 1s alweys a multiple of m). Then »
and IA is a root of unity.
This holds for any 1 3 we obtain integers TeessesTy

I
such thet A 1= ....... :A;n: 1. But then if m 48 any

integer containing rl"‘f"’ r, as factors (efg., 1.c.m(r1...xh)

then k{m) zlso contains Tievsesea,, as factors and so

k(m) k(m)
)\ T ~;‘\\ _1,

1 = eienas N
and hence,ﬁlrz vevees :’%n = 1, This clearly implies that
v=I as required; since V is = normal metrix, U

For any locally compgct group G let GO be the
subset g.{SzU(S)EI 1f U 1s a finite dimensionzl continuous
unitary representation}- . That is-Go is the set of elements
that carnnot be sepcratéd from e by a finite dizensional
continuous unitegry representttion; It is immediétejihat Gy 15

& closed invariant subgroup G. Then we heve

PROPOSITION 9,4: Let s & G be such that for each

integer m there exists tmégG and an integral
muitigle k(m) of m such thet

Sk(m): tmstél 3

~then s¢ G
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PROCF: This follows et once fyom Lewma .3, on roing

over to ¢ finite dimensicnsl unit: ry rerresente ticn, ||

PROFOSTTICN 9,5: Let G he the groun of '2x 2 comnir~

matrices with deteminent 1 (the specisl lineor grour

SL(2, ¢) or the2x 2 unimoduler group) then G hes no

finite dimensionel unitary represcntations,

PROOFs We mey ss well tike the discrete topology on G
1f we show thet the result hélds in this c¢ase it is of coursg
true’a fgrtiori for the usurl topolory. We proceedAto show
G, = G here, | |

O
. [1 3‘7 mo
Le S = ‘tn - ;
1C 14 o omtt -
1 m { 1 =& | m-1 ¢
then tmst' = ‘ 1
f 0 m™- 0 1 ¢ m
- - T
m  ma m=t 0 |
o m"l_!. 0 m
L _
- —m-
1 m%: 1 5

= = y 50 the required
0 1 6 1

conditions hold with k(m) = md;. by Propositien €.4 s{ G,
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1 07T 0 -1 1 T
Now G_ is dnverient and . =
o a l"J 1 o 0 1 .J
o -1 | "1 0
sc it follav s th:it G, » Then if ¢ # 0 we
1 O ram & l
have . “r _
}: o] 1 agl'} {1 o] |1 d-1
= ¢
G
c d._| ¢ 1 C l__ 0 1 6 G

ind 11 ¢=0 then dZ0 (since :d-be=l) ind we huve

[:a ] [-b o {o 17
0 d‘!— 4 o] L1 o

€ G, since both

factors ure of the formm which we heve just yproved to be in GO,i
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