LEGTURES ON

REPRESENTATION THEORY FOR BANACH ALGEBRAS AND LOCALLY COMPACT GROUPS

J. H. WILLIAMSON
Visiting Professor, Me TSCIENCE.

8705

USC
R54
3705
institute of Mathematical sciences, MADRAS-20, INDIA.

J.H. Williamson ${ }^{+}$
(Visiting Professor, Matscience, Madras)

Permanent Address: Department of Mathematics, University of Cambridge, England.
PREFACE

The aim of these lectures is to provide an introduction to some of the basic theorems of representation theory. They are purely expository; there is little or hothing that cannot be found in standard treatises such as M.A.Naimark's Normed rings, (revised edition: Noordhoff, Groningen 1964) or Vol.1 of Abstract harmonic analysis by E.Hewfitt and K.A.Ross (Springer, Berlin 1.963). The background assumed is (a) the elementary theory of Banach algebras, in particular of commutative algebras, up to Gelfand's representation theorem ; (b) the elementary theory of Haar measure on (not necessarily abelian) locally compact group ; (c) some standard results from linear analysis, such as the spectral theorem, tle Banach-Steinhaus theorem and the Krein-Milman theorem. This material is readily available in several excellent texts, and it would perhaps be superfluous to make specific recommendations.

January 1967 J.H.W.
COXTENTEPage No.
CHAPTER 1. GENERALITIES 1
Proposition 1.1. 5
Proposition 1.2 7
G APTER 2. LLGEBRLS WITH INVOLUTION 10
Banach * -Algebra and B^{*}-algebra 10
Proposition 2.1 12
Proposition 2.2 14
proposition 2.3 15
Lemma 2.4 16
Proposition 2.5 16
Theorem 2.6 18
CHAPTER 3. POSITIVE FUNCTICNALS 21
Proposition 3.1 21
Extendable functional 22
Proposition 3.2 23
Proposition 3.3 24
Theorem 3.4 25
Proposition 3.5 26
Theorem 3.6 27
CHAPTER 4. INDECOMPOSABLE FUNCTIONALS AND IRREDUCIBLE REPRESENTATIONS 32
Theorem 4.1 32
Theorem 4.2 36
Proposition 4.3 37

CHAPTER 5. THE SELF-ADJOINT ELEMENTS OF B AS BUNACH
SPACE...
Propósition 5.1 39

Proposition 5.2 \& 41
Proposition 5.3 42
proposttion 5.4 44
Theorem 5.5 44
CHAPTER 6. THE ELENENTS $x^{*} x$ AS A CONE IN $B_{S} \ldots . .$.
Lemma 6.1 47
Proposition 6.2 48
Proposition 6.3 51
Proposition 6.4 52
CHAPTER 7. THE REALISATION OF B^{*}-ALGEBRASAS C^{*}-ALGEBRAS. . 55 Proposition 7.1 55

Radical (Left and Right) 56
Proposition 7.2 56
Proposition 7.3 57
Proposition 7. 4 57
proposition 7.5 58
Proposition 7.6 58
Proposition 7.7 59
Proposition 7.8 59
proposition 7.9 61
mespent 7.10 63

Page No,

CHAPTER E: REPRESENTITIONS OF LOCALLY COMPACT GROUPS........ 65
Reducible and Irreducible representations .. 65
Proposition 8.1 65
Proposition 8.2 67
Proposition 8.3 67
Theorem 8.4 70
Theorem 8.5 76
Theorem 8.6 (Gelfand-Raikov) 76

CHAPTER 9. REPRESENTATIONS OF COMPACT GROUPS ETC......... 80

Theorem 9.1		\therefore.	\therefore			80
Theorem 9.2	:					83
Lemma 9.3	\cdots		-			85
Proposition 9.4	-•	:	;			86
Proposition 9,5				\therefore		87

CHAPTERI

GENERALITIES

Most abstract mathematical systems have at least one reasonably well understood concrete realisation, which may have served as the starting-point for the abstract theory. One may think of groups (finite groups at least) envisaged as groups of permutations. Such a concrete realisation may also have been found in the course of, or subsequent to, the development of the general theory. In any cace we assume a class ψ of abstract systems. S and a class \mathscr{J}_{0} of concrete realisations S_{O}. A structure preserving map $S \longrightarrow S_{0}$ is a representation of S as a system of \mathscr{U}_{0}. In general many syistems $S_{0} \in \mathscr{H}_{0}$ can contain images of a given $s \in \mathscr{Y}$; think of permutations and finite groups. The cholce of the class \mathscr{O}_{0} of "well known, "concrete" systems is to some extent arbitrary ; and in most cases no entirely satisfactory reason can be put forward for selecting one such class \mathscr{S}_{0} rather than another. However in most instances there are certain conventional choices for \mathscr{F}_{0} which are clearly in some sense reasonable, and we follow the traditjons. In the cases in wich we are interested \mathscr{L}_{0} will be some class of algebras or of groups of linear operators on linear spaces, which are regarded as reasonably fomillar objects.

An important general notion is that of 'irreducibility' or the equivalent. We shall be particularly interested in representations that are 'simple' in some suitably defined technical sense ; we demand that they cannot be made up out of simpler pieces. In this kind of context the teims 'simple', 'minimal', 'irreducible', 'indecomposable' are all going to mean much the same thing. To take an elementary case : suppose $\mathscr{\rho}$ is the class of linear spaces (real say) and ρ_{0} is the class of finite dimensionel real Fuclidean spaces R^{n}. Among the various possible maps $S \rightarrow R^{n}$. Those for which $n=1$, $1, e$. the linear functionals on S, evidently have this 'minimal' or 'simple' property.

Another general idea is that of a "faithful' representation: this simply means that the map is l-1 (from S to S_{0}). A set $\left\{T_{1}\right\}$ of representations is complete if whenever $x \neq y$ in S there is a T_{i} such that $T_{1}(x)$ di $T_{1}(y)$ in $S_{0} \in \mathscr{S}_{0}$. We would like complete set of irredu. cible representations in general. Two representations $T_{1}: S \longrightarrow S_{1}$ and $T_{2}: S \longrightarrow S_{2}$ are equivalent if there is a I-1 map W of S_{1} on to S_{2} such that W and W^{-1} are both stmucturempreserving and $T_{2}(x)=W T_{1}(x)$ for all $x \in S$, We are usually interested in representations only up to equivalence.

We now turn more particularly to Banach algebras and topological groups. We shell always be concerned with
representations by bounded linear operators on a Banach wpacs （which will usually be a Hilbert space）：we assume \mathscr{F}_{0} to be the class $\left\{\mathcal{L}_{0}(E)\right\}_{E \in ⿺ 𠃊}$ of all algebras of linear operators on the Banach space E ，for $E \in$（the class of all Banach spaces）．In each case there is a tujvial representation ： if B is a Banach algebrathen $T(x)=C$ for all $x \in B$ ： if G is a group then $T(t)=I$ foj all t $E G$ 。

Take now B to be a Banach algebre ：we shall consider only complex algebras（the real cese is simizar but slightly more complicated）and we do not assume a uni\％．If however there is a unit e we shall rimays demand $T(3)=\pi$ （the identity operator）．A representation $T: B \longrightarrow \mathscr{L}\left(F_{i}\right)$ is bounded（or continuous）if $\|T(x)\| \leq x\|x\|$ for aid x and some real k ．

There are atleast two obvious representations for any Banach algebra B．If we consider B as acting on itscifi （as a linear space）by left muitipifeation and wate

$$
T(x) y=x y
$$

then it is clear that $\mathrm{x} \rightarrow \mathrm{T}(\mathrm{x})$ is a representation a^{2} ； in $\mathscr{L}(B)$ ．Also $\|T(x)\| \leq\|x\|$ for ajl $x \in B$ ．he sharl cail it the left obvious representation of B ．The left obvious representation is faithful if and only if tie len anninilam tor of B ，that is，$\{x: x y=0$ for all y $\mathcal{E}\}$

Sometimes it is also called left regular representacion， but this term is also applied in a rather similer but distinct sense，so we avoid it here．

More generally, let J be a closed left ideal in B and take the quotient B / J, which will be a Banach space (but not a Banach algebra unless J is two sided). Let Φ be tho canonical map $B \longrightarrow B / J$, then the representation T where $T(x) \Phi(y)=\Phi(x y)$ is the left obvious representation modula. similarly for 'right'.

The kernel of a representation $T:\{x: T(x)=0\}$ is a two sided ideal in B, closed if T is bounded, and conver. sely. This fact seems however not to be so useful in the non.. commutative case as in the commutative case, where it is of fundamental importance.

A subspace E_{1} of E is said to be invariant under the representation T if $T(x)\left(E_{工}\right) \in E_{\eta}$ for all $x \in \mathbb{E} A$ representation. T is reducible if there exists a nonitiviel closed subspace E_{1} E which is invariant under I ; otherwise irreducible. If T is Irreducible, then the veotore $T(x), x \in B, \xi \in E$ are dense in E, otherwise the closure would be a non-trivial subspace E_{1} with the required properties.

If there is a single vector $\zeta \in E$ such that tho vectors $\{T(x): x \in B\}$ are dense in E then $\frac{G}{}$ is sold to be a cyclic vector for. I and E is oyclic under T. If for each non-zero $\xi \in \mathbb{E}$ there is a $x \in B$ with $T(x) \neq 0$ then T is essential : in general if we write

$$
N=\{S: T(x)=0 \text { for all } x \in \mathrm{~B}:\}
$$

then N is a closed subsapce of E. We may take the quotrent E / N and then the induced representation T_{1} given by $T_{1}(x) \Phi(y)=\Phi(x y)$ is essential. So in fact we can confine ourselves to a great extent to essential represent. lions.

FROFOSITION 1.1: A nonzero representation is irreducible if and only if every non-zero vector is cyclic for it.

PROOF: If $\xi_{1} \neq 0$ is not cyclic then the closure of $\{T(x) \xi, x \in B\}$ would be a proper closed subspace of is invariant under T : so T is reducible. Conversely, if T is reducible, then clearly no vector in a closed invariant proper subspace can be cyclic. \|

Now we shall take the case of a locally compact topological group. Here we are assured of the existence of an essentially unique invariant measure on the group.

Let G be a locally compact topological group ana let de denote the left invariant Haar measure on G. We have then,

$$
\int_{G} f(t) d t=\int_{G} f\left(s^{-1} t\right) d t \quad \text { for all } \quad s \in G
$$

Denote $f\left(s^{-1} t\right)$ as a function of t by $s^{f}(t)$, the Ie p translate of by s. If $C_{O O}(G)$ is the linear space of
complex valued continuous functions on G with compact support then $\int_{G} f(t) d t$ makes sense for $f \in C_{O O}(G)$. We can introduce various norms into ${ }^{-} \mathrm{C}_{00}(\mathrm{G})$: for example

$$
\begin{aligned}
&\|f\|_{\infty}=\sup _{t \in G}|f(t)| \\
&\|f\|_{p}=\left(\int_{G}|f(t)|^{p} d t\right)^{1 / p} \quad j<\therefore<\infty
\end{aligned}
$$

On completion, we have the spaces $C_{o}(G), L_{p}(G)$. If $p=2$ we have a Hilbert space with inner product

$$
(f, g)=\int_{G} f(t) \overline{g(t)} d t
$$

It is clear that we have a wide variety of representations of G as (isometric) linear operators $T(s)$ on one of these spaces. In view of the left invariance, if we withe

$$
T(s)=T(s) f=s^{f}
$$

we have

$$
\|T(s) f\|=\|s f\|=\left\{\begin{array}{c}
\{ \\
\{ \\
\left.\left.\int_{G} \int_{G} f\left(s^{-1} t\right)\right|^{p} d t\right)^{1 / p}\left|f\left(s^{-1} t\right)\right|
\end{array}\right\}=\|f\|
$$

So $\|T(s)\|=1$. Further $\left.T\left(s_{I} s_{Z}\right) f(t)=f\left(\left(s_{1} s_{2}\right)^{-1} t\right)\right)=$ $f\left(s_{2}^{-1} s_{1}^{-1} t\right)=\left(T\left(s_{2}\right) f\right)\left(s_{1}^{-1} t\right)=T\left(s_{1}\right) T\left(s_{2}\right) f(t)$ so that $T\left(s_{1} s_{2}\right)=T\left(s_{1}\right) T\left(s_{2}\right)$. Thus we hive e representation; $s \longrightarrow T(s)$ is a homomorphism. It turns out that the norm
topology on the operators is not the appropriate one here, but rather the strong topology. We have, in fact, the ion ing

PROPOSITION: 7.2: If G is a locally_Scroct tare.
logical group, it has a faithful repmesghtito
isometric operators on $L_{p}(G) \cdot(i \leq p<\infty)$ or a. $C_{o}(G)$. This is bicontiruons it oncratong here strong topology, where the tesionetghertogisor: T_{0} are,

$$
\left\{T:\left\|T \xi-T_{0} \xi\right\|_{2}<\varepsilon,: i=1,2,3 \ldots, \cdots\right\}
$$

In case $p=2$, the operators are unitary.
PROOF: If $s_{1} \neq s_{2}$, then frore tho local comps $\because: \therefore$ of G, we cen find a function $f E_{C O}^{C}(G)$ such that $f^{\prime} s_{1} ; \%$ $f\left(s_{2}\right)$, so that $T\left(s_{1}\right) f=T\left(s_{2}\right) f$. So T is leI.

Since each $f \in C_{00}(G)$ is uniformly continuous, given

 dense in each $L_{p}(G)$ and in $C_{n}(G)$, there exists a net $\tilde{E}^{\prime} \ldots$ bourhood $W^{\prime}(e)$ with $\left\|T(s) G_{Y}-\xi_{r}\right\|<\varepsilon$ for $s \in \xi_{1}, \ldots, \xi_{i}$
 onus.

For the converse let ria) be a given neighbourhood? of e_{0}. Then there exists a symmetric nsighbourhoon $N^{*}(e$;
such that $N^{\prime} N^{\prime} \subset N$. Let $f \in C_{O O}$ such that $f \geq 0$, the support
 disjoint supports and then

$$
\left\|f-T(s) \tilde{r}_{\underset{p}{ }} \geq\right\| f \|_{p}=J
$$

whenever s $\underset{j}{4} \mathrm{~N}$ and so the strong neighbourhood

$$
\left\{s:\left\|\Psi(s) f-r_{i}^{i}\right\|_{p}<I\right\}
$$

is contained in the given N as required.
If $p=2$ we have

$$
\begin{array}{r}
(T(s) \xi, T(s) \eta)=\int_{G}\left\{\left(s^{2}, \bar{\eta}\left(s^{n-1} \dot{t}\right) a t=\int_{G} \sum_{i} i, \eta(t) d t=\right.\right. \\
=(\xi, \eta)
\end{array}
$$

This completes the proof.
The functions in $C_{00}(G)$ have a rather rich algebraic structure : in addition to their linear specs proparies we may introduce an operation of riujtivlicetion ; if $\hat{i}, G \in C_{o o}(G)$ then the function

$$
f: g(s)=\int_{G}^{T} f\left(s_{0}^{\prime}\right) s^{\left(t^{-1}\right)} d t
$$

is easily verified to be again in for (G). It is allied the convolution product of f and g. with this as multiplicatron, $C_{O O}(G)$ becomes a linear associative algebra (not commutative in general). We have in general the inequality

$$
\|f * g\|_{0} \leq\|f\|_{1}\|g\|_{p}
$$

so that in particuler $L_{1}(G)$ is a Banach algebra. Also regarding f as an operator on C_{00} with $\left\|\|_{p}\right.$, the operator nom satisfies $\|f\|_{o p} \leq\|f\|_{I}$, and completing $C_{o o}$ under $\left\|\|_{o p}\right.$ we get various operator algebras. The case $p=1$ gives $L_{1}(G)$ again and $p=\varepsilon$ gives $\Lambda(G)$, which is in fact a B^{*}-algebra.

$A L G E B R A S W I T H I N O L U T I O N$

Let B be a complex Banach algebra, not necessarily with a unit ; we shall denote by B_{1} the algebra B with a unit adjoined, in case B lacks a unit. B_{1} may be normed in the obvious way : $\|\lambda e+x\|=|\lambda|+\|x\|$ but there also other ways of norming B which are more appropriate in certain cases, in particular if B is a B^{*}-algebra.

DEFINITION: An Involution on B is a map $x \longrightarrow x^{*}$ of B to itself satisfying at least the following conditions
(i) $x^{* *}=x$
(iii) $(\lambda x+\mu y)^{*}=\bar{\lambda} x^{*}+\bar{\mu} y^{*}$
(iii) $(x y)^{*}=y^{*} x^{*}$

The involution may be releted to the norm in varicus ways
$(1) x \rightarrow x^{*}$ is a continuous map ;
$(2) x \longrightarrow x^{*}$ is an isometric map;
(3) $\left\|x x^{*}\right\|=\|x\|^{2}$ for all x;
(3') $\left\|x^{*} x\right\|=\|x\|^{2} \quad$ for all x.
It is not hard to see $\left(3^{\prime}\right) \Longrightarrow(3) \Longrightarrow(2) \Longrightarrow$ (1).
A Banach algebra with a involution satisfying (2) will be called a Banach *-algebra and we shall always assume this condition fromi now on. If the stronger condition (3) holds, we have a B^{*}-algebra.

Examples: (1) $B=C$, with complex conjugation as involution, is a B^{*} - algebra. This is the simplest example of a $B^{\text {关 }}$-algebra.
(2) $B=C_{0}(x)$, the continuous functions on the locally compact Hausdorff space X vanishing at infinity, with $\|x\|=\sup |x(t)|$; $t \in x$ and conjugation as invclution. This is the typical commutative B^{*}-algebra.
(3) $B=$ algebra of all complex $n \times n$ matrices, with $x^{\frac{7}{2}}=$ transposed complex conjugate of x end norm $\|x\|=\left(\sum_{i, j=1}^{n}\left|x_{i j}\right|^{2}\right)^{1 / 2}$; this is a Banach* algebra but not a B^{*}-algebra.
(4) $B=\mathscr{L}(H)$, the algebra of all bounded linear operators on a Hilbert space H, with the involution $x \rightarrow x^{2}$ the naturai. Hilbert space adjoint: $\left(x^{*} \xi, \eta\right)=\left(\xi, x \gamma_{i}\right)$ for $x \in \mathscr{L}(H)$, $\dot{\zeta},{ }^{r} \in \mathrm{H}$. It is easy to see that with the natural operato: norm $\|x\|=\sup _{\|\xi\|=1}\|x \xi\|, \mathscr{K}(H)$ becomes a $B^{* *}$-algebra.
(5) Any closed *-sub algebra of \mathscr{L} (H) (known as a C C *-algebra) : this is the standard model for not necessarily commutetive, B^{*}-algebra, as will be proved later (Theorem 7-10). DEFINITION: If in a*-algebra an element x satisifes $x^{*}=x$, it will be called self-adioint or Hermitian. If B has a unit e then x is said to be unitary if $x^{*}=$ $x^{*} x=e$. If $x^{*} x=x x^{*}$ then x is sald to be normal. For any x : the elements $x x^{*}, x^{*} x, ~ d ~ d ~\left(x+x^{*}\right)$, $\frac{1}{2}\left(x-x^{*}\right)$ are always self-adjoint and x can always
be written as $x_{1}+i x_{2}$ where x_{1} and x_{2} are self-adjoint : $x_{1}=\frac{1}{2}\left(x+x^{*}\right), x_{2}=\frac{1}{2} t\left(x-x^{*}\right)$ and x is normal if and only if $x_{1} x_{2}=x_{2} x_{1}$. If B is a ${ }^{*}$-algebra without a unit then B_{1} becomes a -algebra if we define $(\alpha e+x)^{*}=\alpha e+x^{*}$. Further 1f we have a Banach*-algebra $\left(\|x\|=\left\|x^{*}\right\|\right) B_{1}$, on extension in this way will be a Banach *-algebra with the usuel norm

$$
\|\alpha e+x\|=|\alpha|+\|x\|
$$

However if B is a B^{*}-algebra then with this norm B_{1} is not B^{*}-algebra.

We shall define a norm under which it is so : PROPOSITION 2.1: If B is a B^{*}-algebra without a unit then B_{1} becomes a B^{*}-algebra under the norm

$$
\|\alpha,+x\|^{\prime}=\sup _{y \neq 0}\|\alpha y+x y\| /\|y\|
$$

and further $\left\|\|^{\prime}\right.$ induces $\| \|$ on B. (i.e. $\left\|\|^{\prime}\right.$ is the norm as an algebre of left multiplication operators on B).

FROOF: Since $\alpha y+x y=0$ for all y $\in B$ can only hold for $\alpha=x=0$ (if $\alpha \neq 0$ then $y=-\frac{\dot{x}}{\alpha}$ all y and $-\frac{y}{\alpha}$ is a unit in B, if $\alpha=0$ then $x y=0$ for all $y \in B$ and this cannot happen in a B^{*}-algebra), it follows that a nonzero element in B_{1} gives a nonzero operator on B. Since the expression on the
right is certainly a norm on the operators on B, by general Banach space theory it is also a norm on B_{1}.

We show first that when $\alpha_{0}=0,\|x\|^{\prime}=\|x\|$ which means that the norm on B_{1} induces the original norm on B. In general $\|x y\| \leq\|x\|\|y\|$, so the it $\|x\|^{\prime} \leq\|x\|$. But in a $B-a l g \in b r i$, taking $y=x$, we $\operatorname{get}\left\|x x^{*}\right\|=\|x\|\left\|x^{*}\right\|$ and so $\sup \frac{\|x y\|}{\|y\|} \geq\|x\|$ and hence $\|x\|^{\prime}=\|x\|$. Suppose next δ is a real number >0. Then there exists y with $\|y\|=1$ and $\|\alpha y+x y\|>(1-8)\|\propto e+x\|^{\prime}$. Then

$$
\begin{aligned}
&(1-\delta)^{2}\left(\|\alpha e+x\|^{\prime}\right)^{2}<\|\alpha, y+x y\|^{2} \\
&=\left\|(\alpha y+x y)^{*}(\alpha y+x y)\right\| \\
&=\left\|y^{*}(\alpha e+x)^{*}(\alpha \in+x) y\right\|^{*} \\
& \leq\left\|(\alpha \epsilon+x)^{*}(\alpha e+x) y\right\|^{\prime} \\
& \leq\left\|(\alpha \in+x)^{*}(\alpha \in+x)\right\|^{\prime}
\end{aligned}
$$

Since δ could be arbitrarily small (and x fixed) we get

$$
\begin{aligned}
\left(\left\|\alpha_{1} e+x\right\|^{\prime}\right)^{2} & \leq\left\|\left(\alpha_{,}+x\right)^{*}(\alpha e+x)\right\|^{\prime} \\
& \leq\left\|(\alpha e+x)^{*}\right\|^{\prime}\left\|\alpha_{e+x}\right\|^{\prime}
\end{aligned}
$$

so that $\|\alpha, \epsilon+x\|^{\prime} \leq\left\|(\alpha, \epsilon+x)^{+t}\right\|_{1}^{\prime}$;
similarly $\left\|(\alpha e+x)^{*}\right\|^{i} \leq\|(\alpha e+x)\|^{\prime}$,
so that $\left\|(\alpha, \epsilon+x)^{*}\right\|^{\prime}=\|(\alpha, \epsilon+x)\|^{\prime}$.
But then $\left(\|(\alpha, \epsilon+x)\|^{\prime}\right)^{2} \leq\left\|(\alpha, \epsilon+x)^{*}(\alpha, \epsilon+x)\right\|^{\prime}$

$$
\begin{aligned}
& \leq\left\|(\alpha \epsilon+x)^{N}(\alpha, \epsilon+x)\right\| \\
& \leq\left\|(\alpha \epsilon+x)^{*}\right\|^{\prime}\|(\alpha \epsilon+x)\|^{\prime}=\|\alpha \epsilon+x\|^{2}
\end{aligned}
$$

i.e. $\left\|(\alpha, \epsilon+x)^{*}(\alpha \in+x)\right\|^{\prime}=\left\|\alpha_{e}+x\right\|^{2}$ which is what w \in want.

We still heve to verify that B_{1} is complete in $\left\|\|^{\prime}\right.$. Let $\left(\alpha_{n}{ }^{e+x_{n}}\right)$ be a Cauchy sequence in B_{1}. If $\left(\alpha_{n}\right)$ is not bounded then there exists a subsequence $\left\{\alpha_{n_{k}}\right\}$ with $\left|\alpha_{n_{k}}\right|$ $\longrightarrow \infty$; then
1.6

$$
\begin{gathered}
\alpha_{n_{k}}^{-1}\left(\alpha \alpha_{n_{k}} \epsilon+x_{n_{k}}\right) \rightarrow 0 \\
\alpha_{n_{k}}^{-1} x_{n_{k}} \rightarrow-e
\end{gathered}
$$

But then $\left\{\alpha_{n_{k}}^{-1} x_{n_{k}}\right\}$ is a Cauchy sequence in B_{1} hence in B and since B is complete there is a limit in B so thet B has a unit \in which is not so. Hence α_{n} is bounded. This being so there is a convergent subsequence $\left\{\alpha_{n_{k}}\right\} ;\left\{\alpha_{n_{k}} \in\right\} \quad$ is a Cauchy sequence hence $x_{n_{k}}=\left(\alpha_{n_{k}} \epsilon+x_{n_{k}}\right)-\alpha_{n_{k}} \in \quad$ is a

Cauchy sequence in B_{1} and hence in B; therefore there is a Limit, x say, in B. If $\alpha_{n_{k}} \rightarrow \alpha$ then $\alpha_{n_{k}} \in+x_{n_{k}} \rightarrow \alpha_{i \in+x}$ and hence $\alpha_{n} \epsilon+x_{n} \longrightarrow \alpha_{1} \in+x$ also end B_{1} is complete. \|

PROPOSITION 2.2: Ifx is a normal element of a $B^{*}-a l g e-$ bra then $\|x\|=\lim _{n \rightarrow \infty}\left\|x^{n}\right\|^{\frac{1}{n}}:(\underline{s p e c t r a l}$ radius of x) if x is undtary then $\|x\|=1$.
PROOF: $\left\|x^{*} x\right\|^{2}=\|x\|^{4}=\left\|x^{*} x\right\|^{2}=\left\|x^{2}\right\|^{2}$.
$\left(\operatorname{since}\left(x^{*} x\right)^{2}=x^{2}\left(x^{*}\right)^{2} ; x\right.$ being normal) and hence $\left\|x^{2}\right\|=$ $\|x\|^{2}$. Hence $\left\|x^{2^{n}}\right\|=\|x\|^{2^{n}}$ for all n end so $\lim \left\|x^{n}\right\|^{\frac{1}{n}}$ $=\lim _{m \rightarrow \infty}\left\|x^{2^{m}}\right\|^{2^{-m}}=\|x\|$, if $x^{*} x=e$ then clearly $\|x\|=1$. $\|$

COROLLARX: In a commutstive B^{*}-algebra $\|x\|=\lim _{n \rightarrow \infty}\left\|x^{n}\right\|^{\frac{1}{n}}$ for $21 . \mathrm{x}$.

In general in any *algebra it is clear that either $\bar{\lambda} \in-x$ and $\bar{\lambda} e-x^{*}$ both heve inverses or both fail to heve inverses. Hence $\sigma\left(x^{*}\right)=\overline{\sigma(x)}$ (the ber denoting complex conjugation and not closure). If x is seif adjoint then $\sigma(x)=\overline{\sigma(x)}$ so that $\sigma(x)$ is symmetric about the real axis. In general this is as far as we cen go: $\sigma(x)$ need not be resil. However we have the following

PROPOSITION 2.3: If B is a B^{*}-algebra (with a unit) and $x \in B$ is selfadioint then $\sigma(x)$ is reai.

PROOF: Suppose not, let $\alpha+i \beta \in \sigma(x), \beta \neq 0$. Write $y=x+1 \gamma$ where γ is real; then $\alpha+1(\beta+\gamma) \in \sigma(y)$. Hence

$$
\alpha^{2}+(\beta+\eta)^{2} \leq\left[\lim \left\|y^{n}\right\|^{\frac{1}{n}}\right]^{2} \leq\|y\|^{2}=\left\|y^{*} y\right\|
$$

and $y^{*}=x-1 \theta \in$ so that $y^{*} y=x^{2}+\gamma^{2} e$
and $\|y * y\| \leq\|x\|^{2}+\gamma^{2}$ thus

$$
\alpha^{2}+\beta^{2}+2 \beta \gamma \leq\|x\|^{2} \quad \text { for all real } \gamma \text { which }
$$

is clearly impossible if $\beta \neq 0 . \|$
We now turn to representations of x-algebras. By a representation we shall always mean in what follows a representation of B in $\mathscr{L}_{S}(H)$ in which the involution in B is mapped onto the netural involution in $\mathscr{L}(H)$; that is T
is to be a $*$-representation, in which $T\left(x^{*}\right)=(T(x))^{*}$ for all $x \in B$. We do not assume the boundedness of T; in fact this will follow automatically (Proposition 3.5).

LEMMA 2.4: If $\mathrm{H}_{1} \subset \mathrm{H}$ is invariant under T then so is $\mathrm{H}_{1}{ }^{\circ}$

FROOF: If $\xi \in H_{1}^{\perp}, \eta \in H_{1}, x \in B \quad$ then

$$
(T(x) \xi, \eta)=\left(\xi, T(x)^{*} \eta\right)=\left(\xi, T\left(x^{*}\right) \eta\right)=0
$$

since $T\left(x^{*}\right) \eta \in H_{1}$ from this it follows that $T(x) \xi \perp \eta$ for all $\eta \in H_{1}$ and so $T(x) \xi \in H_{1}^{1}$. \|

The next result is a substantial one and will be used essentially in what follows:-

PROPOSITI IN 2.5: T is irreducible if and only if the only operators on H that commute with all the operators $T(x), x \in B$ erescalarmultiples of the identity.

PROOF: If T is reducible let H_{1} be a nontrivial invariant subspace and let P be the projection on H_{1}. If $\xi=\xi_{1}+\xi_{2}$ with $\xi_{1} \in H_{1} ; \xi_{2} \in \mathrm{H}_{1}^{-L}$, then
$T(x) \xi=T(x) \xi_{1}+T(x) \xi_{2}$
and in view of Lemma 2.4, $T(x) \xi_{2} \in H_{1}^{\perp}$ so that this must be the unique decomposition of $T(x) \xi$ as the sum of a vector in H_{1} and a vector in H_{1}^{\perp}; the is

$$
P T(x) \xi=T(x) \xi_{1}=T(x) P \xi
$$

and since ξ was arbitrary it follows that $P T(x)=T(x) F$, fo: all x, as required. We have a non-trivial operator commuting with all the $T(x)$.

If there is a non-trivial projection operator P thet commutes with all $T(x)$ then $T(x) \cdot(P)=P(T(x) \xi)$ so that T leaves invariant the non-trivial subspace $H_{1}=P(H)$ and T is reducible.

More generally, suppose thet T_{n} is a bounued selfadjoint (Hermitian) operator that commes with all the $\mathrm{F}_{1}(x)$. Recalling the spectral theorem for self-adjoint operetors, we seє that there exists a spectral family $P(\lambda)$ of projecticn operators associated with T_{0} that commute with all operators that commute with T, in particuler $P(\lambda) T(x)=T(x) P(x)$ fox all $x \in B, \lambda \in R$. If then T is irreducible the only projection operators thet commute with $T(x)$ for all x are of the form人I, so that each $P(\hat{\lambda})$ is either zero or the identity operator, Since $P(\lambda) P(\mu)=P(\min (\lambda, \mu))$ it follows that for some $\lambda_{0}, P(\lambda)=0$ for $\lambda<\lambda_{0}$ and $P(\lambda)=I$ for $\lambda>\lambda_{0} ;$ then

$$
T_{0}=\int \lambda d P(\lambda)=\lambda_{0} I
$$

Finally if T_{0} is bounded bui not necessarily self adjoint, commuting with $: 11$ the $T(x)$, write $T_{0}=\frac{1}{2}\left(T_{0}+T_{0}^{*}\right)$ $+\frac{1}{2 T}\left(T_{0}-T_{0}^{*}\right)$. The operators $\frac{1}{2}\left(T_{0}+T_{0}^{*}\right), \frac{1}{2 i}\left(T_{0}-T_{0}^{*}\right)$ are self adjoint, They also commute with $T(x)$ for all x for we
have $T_{0}^{*} T(x)=\left((T(x))^{*} T_{0}^{*}=\left(T\left(x^{*}\right) T_{0}\right)^{*}=\left(T_{0} T\left(x^{*}\right)\right)^{* /}=\right.$ $\left(T_{0}(T(x))^{*}\right)^{*}=T(x) T_{0}^{*}, T_{0}^{*}$ commutates with $T(x)$ hence $\frac{1}{2}\left(T_{0}+T_{0}^{*}\right)$ and $\frac{1}{2}\left(T_{0}-T_{0}^{*}\right)$ do so also: by what has juci bson proved they are respectively $\alpha_{1} I$ and $\alpha_{2} I$ whence T_{0} is $\left(\alpha_{1}+i \alpha_{2}\right) I$ as required. Thus T irreducible implies $T_{0}=\alpha I . \|$ COROLLERY: If B is commutative, then T is irredisibls if and only if H is one-dimensional.

FROOF: Clecrly H one-dimensional implies T irreducible If T is irreducible then for a fixed $x \in B$ we havo

$$
T(x) T(y)=T(x y)=T(y x)=T(y) T(x) \text { for all } x \leqslant B
$$

from which it follows that

$$
T(x)=f(x) I
$$

from the proposition. Since every subspace of fis then invariant under T clearly T is irreducible H must be one dimensional. ||

Thus the homomorphisms $B \rightarrow C$ are the only irce..
ducible $*$-representations in the commutative case.
THEOREM 2.6: Let T beany representstion on H, Wis we can write H as a directsum of mutueliy orrnoforej. closed subspaces

$$
H=H_{0} \oplus \underset{1 \in I}{ } H_{i}
$$

such that T restricted to H_{0} is zero end exch H_{i} is cyclic for T (hence invariant under T).

PROOF: Write $H_{o}=\{\xi: T(x) \xi=0$, for all $x \in B\}$; then evidently H_{o} has the properties asserted and T is essenticil on $\mathrm{H}_{\mathrm{O}}^{-}$.

If. $\xi^{\prime} \in H_{o}^{\perp}$ then $H^{\prime}=C \ell\left\{T(x) \xi^{\prime}: x \in B\right\}$ is closed and dearly invariant under T. In fact it is cyclic, with ξ^{\prime} as cyclic vector. This is clear if B has a unit, for then

$$
\xi^{\prime}=T(\epsilon) \xi^{\prime} \quad \text { nd } \quad \xi^{\prime} \in H^{\prime}
$$

In general, write $H^{\prime \prime}$ for $C L\left\{\alpha, T+T(x) \xi^{\prime} ; \alpha \in C, x \in B\right\}$; we show $H^{\prime \prime}=H^{\prime}$. Suppose not : let $\xi \in H^{\prime \prime}, \xi \perp T(x) \xi^{\prime}$ for $\in V \in r y$. Then

$$
\begin{aligned}
0=\left(\xi, T\left(\alpha y^{*}+y^{*} x\right) \xi^{\prime}\right) & =\left(\xi, T\left(y^{*}\right) \cdot(\alpha I+T(x)) \xi^{\prime}\right) \\
& =\left(T(y) \xi, \alpha \xi^{\prime}+T(x) \xi^{\prime}\right)
\end{aligned}
$$

Since $\xi \in H^{\prime \prime}$, then $T(y) \xi^{\prime} \in H^{\prime \prime}$ also, and since vectors. of the form $\alpha \xi^{\prime}+T(x) \xi^{\prime}$ are dense in $H^{\prime \prime}$ it follows that $T(y) \xi=0$ for all y. But now observe the $H^{\prime \prime} \subset H_{o}^{1}$ and T is essentici on $H_{o}^{\frac{1}{0}}$ so if $\xi \neq 0$ there exists y with $T(y) \xi \xi^{\prime} 0$. Hence $\xi=0$ and $H^{\prime}=H^{\prime \prime}$ as required. Thus there are vectors $T(x) \xi^{\prime}$ arbitrarily close to ξ^{\prime} and so $\xi^{\prime} \in H^{\prime}$: $1 t$ is then clearly a cyclic vector for H^{\prime}.

So there exist systems of mutually orthogonal subspaces H_{i}, each cyclic for T but possibly not spanning $H_{o}^{\frac{1}{o}}$. Partially order such systems by inclusion apply Zcrn's principle : it follows that maximal systems exist. If such a maximal system did not span H_{o}^{\perp} then we could extend it by taking any vector in $\left(\oplus \mathrm{H}_{1}\right)^{\perp}$ and, sterting again, obtaining a new subspace with a cyclic vector, so that the system (H_{i}) would not be meximal.

What trieorem 2.6 shows is thit we may confine ourselves to cyclic representation if this is convenient, es any representétion can be built up out of cyclic representations as in the Theorem. We write T_{1} for the restriction of. T to H_{1}. \|

POSITIVEFUNCTIONALS

Let B be any algebre with an involution; the norm Is rcally 1 rrelevant to begin with.

DEFINITION : A linear functional p on B is said to be positive if $p\left(x^{*} x\right) \geq 0$ for all $x \in B$. The positive functionals play a part in the non-commutative theory somewhat similer to thet of the multiplicative linear functionals in the commutative theory.

PROPOSITION 3.1 : If p is enosituve functional then

$$
\begin{aligned}
& \text { (i) } p\left(y^{*} x\right)=\overline{p\left(x^{*} y\right)} \quad(a 11 x, y \in B) \\
& \text { (ii) }\left|p\left(y^{*} x\right)\right|^{2}=\left|p\left(x^{*} y\right)\right|^{2} \leq p\left(x^{*} x\right) \cdot p\left(y^{*} y\right)
\end{aligned}
$$

$$
\text { PROOF: } 0 \leq p\left[(x+\alpha y)^{y i}(x+\alpha y)\right]
$$

$$
=p\left(x^{* *} x\right)+\bar{\alpha} p\left(y^{*} x\right)+\alpha p\left(x^{*} y\right)+|\alpha|^{2} \cdot p\left(y^{*} y\right)
$$

Since the first and fourth term are real (and ≥ 0) the sum $\bar{\alpha}\left(y^{*} x\right)+\alpha p\left(x^{*} y\right)$ is real. Put $\alpha=1$ and $w \in \operatorname{get} \operatorname{gmp}\left(y^{*} x\right)+$ $g_{m p}\left(x^{*} y\right)$ and putting $\alpha=1$ we get $\operatorname{Re} p\left(y^{*} x\right)=\operatorname{Re} p\left(x^{*} y\right)$ so that we heve (1) moreover we heve then

$$
0 \leq p\left(x^{*} x\right)+2 R \in\left[\alpha p\left(x^{*} y\right)\right]+|\alpha|^{2} p\left(y^{*} y\right)
$$

If $p\left(x^{*} y\right)=0$ then (ii) is obvious. otherwise, take $\alpha=-p\left(x^{*} x\right) / p\left(x^{*} y\right)$ and then

$$
0 \leq p\left(x^{*} x\right)-2 p\left(x^{*} x\right)+\left(p\left(x^{*} x\right)\right)^{2} p\left(y^{*} y\right) /\left|p\left(x^{*} y\right)\right|^{2}
$$

1.e. $p\left(x^{*} x\right)\left|p\left(x^{* *} y\right)\right|^{2} \leq\left[p\left(x^{*} x\right)\right]^{2} p\left(y^{*} y\right)$
from which the required result follows if $p\left(x^{*} x\right) \neq 0$. If $p\left(x^{*} x\right)=0$ but $p\left(y^{*} y\right) \neq 0$ we cen repoct the argument with x and y interchanged. If both $p\left(x^{*} x\right)$ and $p\left(y^{*} y\right)$ are O we have

$$
\operatorname{Re}\left(\alpha p\left(x^{*} y\right)\right) \geq 0
$$

for all α which is impossible unless $p\left(x^{*} y\right)=0$. So (1i) holds in all cases. \|

We now define something like a norm for the positive functionals (which do not assume bounded even when B is a Banach algebra). Write - '

$$
M(p)=0 \text { if } p=0, M(p)=\infty \text { if } p \nRightarrow 0 \text { but } p\left(x^{*} x\right)=0
$$

$|p(x)|^{2} \leq M(p) p\left(x^{*} x\right)$, with the approprii: $t \in$ conventions about ∞, end $M(p)$ is the least number with this property. We. have evidantly $M(\alpha p)=\alpha M(p)$ if $\alpha \geq 0 ; M(p)=0$ if and onty if there exists $k<\infty$ with $|p(x)|^{2} \leq k p\left(x^{*} x\right)$ all $x \in B$.

If B is a \neq-algebra without a unit let B_{1} be the algebra withe unit e adjoined : it is also a \neq-algebra. A positive functional p on B is extendable if there exists a positive functional p^{\prime} on B_{1} which when restricted to B coincides with p.

PROPOSITION 3.2: p is extendable if and only if

(i) $p\left(x^{*}\right)=\overline{p(x)}$ for all $x \in B$
(ii) $M(p)<\infty$.

If p is extendable then for each $\alpha \geq M(p)$ there is an extension p^{\prime} with $p^{\prime}(\epsilon)=\alpha$.

PROOF : Suppose p is extendable ; let p' be an extenston. Take $y=\epsilon \ln (i)$ of Proposition 3.1 ; then $p\left(x^{*}\right)=p^{\prime}\left(x^{*}\right)=\overrightarrow{p^{\prime}(x)}=\overline{p(x)}$. Similerly take $y=e$ in (ii) of Proposition 3.1 and

$$
|p(x)|^{2}=\left|p^{\prime}(x)\right|^{2} \leq p^{\prime}\left(x^{*} x\right) p^{\prime}(\epsilon)=p\left(x^{*} x\right) p^{\prime}(e)
$$

so thet (ii) holds, and $M(p) \leq p^{\prime}(e)$.
If (i) and (ii) hold let α be any real number $\geq M(p)$ and write $p^{\prime}(\lambda \in+x)=\lambda \alpha+p(x)$; we then have p^{\prime} a linear functional which we shall prove is positive

$$
\begin{aligned}
p^{\prime}\left((\lambda \epsilon+x)^{*}(\lambda \epsilon+x)\right) & =|\lambda|^{2} \alpha+\bar{\lambda} p(x)+\lambda p\left(x^{*}\right)+p\left(x^{3 *} x\right) \\
& =|\lambda|^{2} \alpha+2 \operatorname{Re}\left(\lambda p\left(x^{*}\right)\right)+p\left(x^{*} x\right) \\
& \geq|\lambda|^{2} \alpha-2|\lambda| \cdot|p(x)|+p\left(x^{*} x\right) \\
& \geq|\lambda|^{2} \alpha-2|\lambda| \alpha^{\frac{1}{2}} p\left(x^{*} x\right)^{\frac{1}{2}}+p\left(x^{34} x\right) \\
& \geq\left[|\lambda| \alpha_{e^{\frac{1}{2}}}^{\frac{1}{2}}-\left(p\left(\lambda^{*} x\right)\right)^{\frac{1}{2}}\right]^{2} \\
& \geq 0 \quad \text { as required.ll }
\end{aligned}
$$

If (i) end (ii) hold for p_{1} and p_{2} let $p_{1}^{\prime}, p_{2}^{\prime}$ be extenstions with $p_{1}^{\prime}(e)=M\left(p_{1}\right), p_{2}^{\prime}(e)=M\left(p_{2}\right)$ then $p_{1}^{\prime}+p_{2}^{\prime}$ is also positiøe and $M\left(p_{1}+p_{2}\right) \leq p_{1}^{\prime}(e)+p_{2}^{\prime}(e)=M\left(p_{1}\right)+$ $M\left(p_{2}\right)$ 。

An example of a nonextendable functional:-
Let B consists of (bounded) continuous complex functions on $[0,1]$ with the usual involution and Iinear space structures with all products equal to zero. Then for any fixed $t_{0} \in[0,1], p(x)=x\left(t_{0}\right)$ is a positive functional with moreover $p\left(x^{*}\right)=\overline{p(x)}$. However it is not extendable since $M(p)=\infty \quad$.

From now on we use essentially the relation between the norm in B and the involution, that is, $\left\|x^{*}\right\|=\|x\|$ for all $x \in B$. One or two results hold under weaker conditions a1so.

PROPOSITION 3.3: If B has a unit e and p is is positive functional then

$$
|p(x)| \leq p(\epsilon) x \text { for all } x \in B \text {. }
$$

PROOF: If $\|x\|<1$ then the series for $(\epsilon-x)^{\frac{1}{2}}$, that is

$$
\epsilon-\frac{1}{2} x-\frac{1}{2} \frac{1}{2} \frac{1}{2!} x^{2}-\frac{1}{2} \frac{1}{2} \frac{3}{2} \frac{1}{3!} x^{3}-
$$

converges absolutely to an element $y \in B$ with $y^{2}=e-x$. If x is self-cdjoint, so is y, from the series. Then we get

$$
p(e-x)=p\left(y^{2}\right)=p\left(y^{H} y\right) \geq 0
$$

and so

$$
p(x) \leq p(\epsilon)
$$

$$
\text { if }\|x\|<1
$$

But we can teke $\|x\|$ as near to 1 as we please so the t

$$
p(x) \leq p(\epsilon)
$$

$$
\text { if }\|x\| \leq 1
$$

Thus in general, by the linearity of p,

$$
\begin{aligned}
& p(x) \leq p(\epsilon)\|x\| \quad \text { if } x \text { is self adjoint, } \\
& p(-x)=-p(x) \leq p(\epsilon) \| x^{\prime \prime} \\
& |p(x)| \leq p(\epsilon)\|x\| \quad \text { for all self-adjoint } x .
\end{aligned}
$$

but,
so
If x is not self-adjoint take $X^{*} x$, which is self-adjoint:-

$$
p\left(x^{*} x\right) \leq p(e)^{+} \cdot\left\|x^{*} x\right\| \leq p(\theta)\|x\|^{2}
$$

By Proposition 3.1(1i) with $y=e$

$$
\begin{aligned}
& |p(x)|^{2} \leq p(\epsilon) p\left(x^{*} x\right) \\
& |p(x)|^{2} \leq(p(\epsilon))^{2}\|x\|^{2}
\end{aligned}
$$

so thet
and the requi red result follows on taking the square root. II COROLLARY 1. Every positive functional on an algebre with a unit is continuous. COROLLARY 2: EVEry extendeble positive functionel on an algebra without a unit is continuous. We now turn to the reiation between positive functionils and *-representations.

THEOREM 3.4: List T be arepresentation of B on the Hilbert spece H. If $\zeta \in H$ then

$$
\mathrm{p}(\mathrm{x})=\left(\mathrm{T}(\mathrm{x}) \zeta_{\zeta}, \zeta_{2}\right)
$$

1s an extendable positive functional end $M(p) \leq\|\zeta\|^{2}$. If is cyclicend ζ is a cyclic vector then $M(p) \leq$ $\|\zeta\|^{2}$.

PROOF: p is evidently linear. Since

$$
\begin{aligned}
\mathrm{p}\left(\mathrm{x}^{*} \mathrm{x}\right) & =\left(\mathrm{T}\left(\mathrm{x}^{\nexists} \mathrm{x}\right) \zeta, \zeta\right)=\left(\mathrm{T}\left(\mathrm{x}^{*}\right) \mathrm{T}(\mathrm{x}) \zeta_{\zeta}, \zeta\right) \\
& =\left(\mathrm{T}(\mathrm{x})^{*} \mathrm{~T}(\mathrm{x}) \zeta, \zeta\right)=(\mathrm{T}(\mathrm{x}) \zeta, \mathrm{T}(\mathrm{x}) \zeta) \geq 0
\end{aligned}
$$

p is clearly positive. We thieve also

$$
\begin{aligned}
\mathrm{p}\left(\mathrm{x}^{*}\right) & =\left(\mathrm{T}\left(\mathrm{x}^{*}\right) \zeta_{,}, \zeta_{2}\right)=\left(\mathrm{T}(\mathrm{x})^{*} \zeta, \zeta_{,}\right) \\
& =(\zeta, \mathrm{T}(\mathrm{x}) \zeta)=\overline{(T(x) \zeta, \zeta})=\overline{\mathrm{p}(\mathrm{x})}
\end{aligned}
$$

and

$$
\begin{aligned}
|p(x)|^{2} & =\left(T(x) \zeta, \zeta_{y}\right) \leq\left\|T(x) \zeta_{2}\right\|^{2}\|\zeta\|^{2} \\
& =\|\zeta\|^{2} p\left(x^{*} x\right) .
\end{aligned}
$$

so that $M(p) \leq\| \|^{2}<60 . \quad p$ is thus extendable.
If T is cyclic and ψ_{3} is cyclic vector, then given $\mathcal{C}>0$ we cen find $x_{0} \in B$ with $\left\|T\left(x_{0}\right) \zeta_{\zeta}-\zeta\right\|<\varepsilon$, since $\zeta \in H$ and the vectors $T(x) \zeta$ ere dense in H. Then

$$
\left|p\left(\dot{x}_{0}\right)\right|^{2}=\left|\left(T\left(x_{0}\right) \zeta_{,}, \zeta\right)\right|^{2}
$$

is arbitrary close to $\mid(\zeta, \zeta)\left\|^{2}=\right\| \zeta\left\|_{\&}^{2} p\left(x_{0}^{*} x_{0}\right)\right\| x_{0}\left(x_{0}\right) \zeta_{y} \|^{2}$ Is arbitrarily close to $\left\|\zeta_{,}\right\|^{4} /\|\zeta\|^{2}=\| \|_{s}^{2} \|^{2}$. But since $M(p)$ is always between $\|\zeta\|^{2}$ and $\left|p\left(x_{0}\right)\right|^{2} / p\left(x_{0} \rightarrow x_{0}\right)$ it foll lows that $M(p)$ is actually equal to $\left\|\zeta_{j}\right\|^{2}$ es asserted. \|

PROPOSITION 3.5: EVEry \nVdash-representation of E Bench *-algebra is continuous : more precisely $\|T(x)\| \leq$ $\|x\|$ for e 11 x .

PROCF: We may assume B has a unit : if not we could clearly extend any representation from B to B_{1} by writing $T(\alpha \epsilon+x)=\alpha I+T(x)$. Then if $\xi \in H$

$$
p(x)=(T(x) \xi, \xi) \text { is a positive functional, }
$$ Apply Proposition 3.3 and we $g \in t|(T(x) \xi, \xi)| \leq\|x\|(\xi, \xi)$. Replace x by $x^{3 \epsilon} x$ end we $h_{i} v \in\|T(x) \xi\|^{2}=\left(T\left(x^{*} x\right) \xi, \xi\right) \leq$ $\left\|x^{* x} x\right\|\|\xi\|^{2} \leq\|x\|^{2}\|\xi\|^{2}$ and so $\|T(x) \xi\| \leq\|x\|\|\xi\|$. since $\xi \in H$ was arbitrary $\|T(x)\| \leq\|x\|$ as asserted. $\|$

We will now go from functional to representation is; this is much more difficult.

THEOREM 3.6: If p Ps an extendable positive fund-tional on the Banach * -algebra then there is ecrelic * -representation T of B with cyclic vector ζ_{2} sur s the for all $x \in B$.

$$
p(x)=(T(x) / 5, \zeta)
$$

PROOF: Suppose first the B has a unite. Write

$$
\mathrm{N}=\left\{\mathrm{x}: \mathrm{p}\left(\mathrm{x}^{*} \mathrm{x}\right)=0\right\} ;
$$

 y $\in B$ then by Proposition 3.1 (11)

$$
|p(y x)|^{2} \leq p\left(x^{* *} x\right) p\left(y y^{* *}\right)=0 \text { so } p(y x)=0
$$

Then

$$
p\left((y x)^{* *} y x\right)=p\left(\left(x^{* * *} y\right) x\right)=0
$$

- so the $x \in N$ implies $y x \in N$. Also if x_{1}, $x_{2} \in N$ then

$$
p\left(\left(x_{1}+x_{2}\right)^{*}\left(x_{1}+x_{2}\right)\right)=p\left(x_{1}^{*} x_{1}\right)+p\left(x_{2}^{*} x_{1}\right)+p\left(x_{1}^{*} x_{2}\right)+p\left(x_{2}^{*} x_{2}\right)=0
$$ and $p\left((\alpha x)^{*} \alpha x\right)=|\alpha|^{2} \cdot p\left(x^{*} x\right)=0$ so N^{r} is indied a left ideal in B. In fact it is a closed ideal, but we do not require this.

Now take the quotient B / N; this is a linear space. Denote its elements by $\xi, \gamma, \ldots . .$. this cen be made into a Hilbert space using the functional p. Suppose $x_{1}-x_{2} \in N$ and $y_{1}-y_{2} \in N ;$ then

$$
\begin{aligned}
p\left(y_{1}^{*} x_{1}\right)-p\left(y_{2}^{*} x_{2}\right) & =p\left(y_{1}^{*}\left(x_{1}-x_{2}\right)\right)+p\left(\left(y_{1}-y_{2}\right)^{* *} x_{2}\right) \\
& =p\left(y_{1}^{*}\left(x_{1}-x_{2}\right)\right)+p\left(x_{2}^{* *}\left(y_{1}-y_{2}\right)\right) \\
& =0+0=0
\end{aligned}
$$

It follows theit the function $(\xi, \eta)=p\left(y^{*} x\right)$ is well defined on B / N : it does not depend on the choice of x, y in the equivelence clesses ξ, η respectively. We cen show easily theit (ξ, η) hes all the proporties of inner product:-

$$
\begin{aligned}
& \left.(\xi, \eta)=\overline{(\eta, \xi}),\left(\xi,+\xi_{2}, \eta\right)=(\xi, \eta) \neq\left(\xi_{2}, \eta\right)\right) \\
& (\alpha \xi, \eta)=\alpha(\xi, \eta),(\xi, \xi)>0 \text { for } \xi \neq 0
\end{aligned}
$$

B / N is thus a pre-Hilbert spece: it is in general not complete under the norm $\| \xi=(\xi, \xi)^{\frac{1}{2}}$. Let H beits completion. Now define the operators $T(x)$ on B / N as follows: Suppose $\phi(y)=\eta(\phi$ the cenonicel map $B \longrightarrow B / N)$; define $T(x) \eta$ to $b \in(x \dot{y})$. This is independent of y (subject to
$\phi(y)=\eta$, since N is a left ideal end is easily veririt ed to be e linear operator on B / N. Further $x \longrightarrow T(x)$ is clearly a homomorphism. We now examine the boundedness of $T(x)$: fix, for the moment, $y \in B$ and write

$$
q_{y}(x)=p\left(y^{*} x y\right)
$$

Then it is easy to see the q_{y} is a positive functional in B , and $\mathrm{q}_{\mathrm{y}}(\mathrm{e})=\mathrm{p}\left(\mathrm{y}^{*} \mathrm{y}\right)$. By Proposition 3.3,

$$
\left|q_{y}(x)\right| \leq p\left(y^{*} y\right)\|x\|
$$

Then if $\phi(y)=\eta$ we hebe

$$
\begin{aligned}
(T(x) \eta, T(x) \eta) & =p\left((x y)^{+k} x y\right)=q_{y}\left(x^{\not *} x\right) \\
& \leq p\left(y^{* *} y\right)\left\|x^{\not *} x\right\|=(\eta ; \eta) \cdot\|x\|^{2}
\end{aligned}
$$

Thus $\|T(x) \geqslant\| \leq\|x\|\|\eta\|$: so $T(x)$ is bounded and indeed $\|T(x)\|$ $\leq\|x\|$. Moreover if we have

$$
\left.(\mathrm{T}(\mathrm{x}) \eta, \zeta)=\mathrm{p}\left(2^{*} \mathrm{xy}\right)=\mathrm{p}\left(\mathrm{x}^{*} \mathrm{z}\right)^{*} \mathrm{y}\right)=\left(\eta \mathrm{q} \mathrm{~T}^{*}\left(\mathrm{x}^{*}\right) \zeta\right)
$$

so that $T\left(x^{*}\right)=T(x)^{*}$. Now take the (unique) extension by continuity of T from B / N to H and we hive the required K_{-}representation T.

This representation is cyclic: a cyclic vector is given by $\zeta=\phi(e)$. We $n \in v \in(T(x) \zeta, \zeta)=p\left(\epsilon^{*} x \in\right)=p(x)$, and any $\xi \in B / N$ is $\phi(x)$ for some xe B, so as x runs through $B, T(x)^{\varphi}=\phi(x e)=\phi(x)$ runs through the whole of B / N.

We now turn to the case where B has no unit. Take B_{1}, extend p, and proceed as above, obtaining H and the reprosentation $x \rightarrow T(x)$. Let H_{l} be the subspace of H :
and

$$
\begin{gathered}
\{\eta: T(x) \eta=0 \text { for all } x \in B\} \\
H_{2}=H_{1}^{-1}
\end{gathered}
$$

Write $\zeta \zeta_{1}+\zeta_{2}$, where $\zeta_{1} \in H_{1}, \zeta_{2} \in H_{2}$. We show that T restricted to H_{2} is the required representation, with ζ_{2} as cyclic vector. We hive, for $x \in B$.

$$
\begin{aligned}
p(x) & =\left(T(x) \zeta_{y} \zeta\right)=\left(T(x) \zeta_{1}+T(x) \zeta_{2}, \zeta_{1}+\zeta_{2}\right) \\
& =\left(T(x) \zeta_{2}, \zeta_{1}\right)+\left(T(x) \zeta_{2}, \zeta_{22}\right)
\end{aligned}
$$

Now since H_{1} is invariant under T so is H_{2}, and so

$$
\begin{gathered}
T(x) \zeta_{2} \in \mathrm{H}_{2}, \quad\left(T(x) \zeta_{2}, \zeta_{2}\right)=0 \text { giving } \\
p(x)=\left(T(x) \zeta_{2}, \zeta_{2}\right)
\end{gathered}
$$

Now vectors of the form $\alpha \zeta_{2}+T(x) \zeta_{2}$ are dense in H_{2}, since for any $\eta \in H$ we have

$$
\left\|\alpha \zeta_{2}+T(x) \zeta_{2}-\eta\right\| \leq\left\|\alpha \zeta_{2}+T(x) \zeta-\eta\right\|
$$

and B / N is dense in H. Suppose $Y_{2} \in H_{2}$ is orthogonal to all $T(x) \notin, x \in B ;$ then for all $x, y \in B$ we get

$$
\begin{aligned}
0 & =\left(\xi_{2}, T\left(\alpha x^{*}+x^{*} y\right) \zeta_{2}\right)=\left(T(x) \xi_{2}, T(\alpha \in+y) \zeta_{2}\right) \\
& =\left(T(x) \xi_{2}, \alpha \zeta_{2}+T(y) \zeta_{2}\right)
\end{aligned}
$$

and it follows the .t $T(x) \xi_{2}=0$ for all $x \in B$ which implies, since $\xi_{2} \in \frac{1}{1}$, that $\xi_{2}=0$. Therefore the vectors $\left\{T(x) \zeta_{2}\right\}$ gre dense in H_{2}. Thus the theorem holds, with the Hilbert space H_{2} and cyclic vector ζ_{2}. $\|$

INDECOMPCSABLE FUNCTIONALS AND IRREDUCIBJERPPRRSENTATIONS

We say theit the (positive) functional p dominates the (positive) functionel q and write $p>q$ or $q<p$ if there exists a positive real α such the $\begin{gathered} \\ \alpha p-q i s \\ \text { posftive. Note }\end{gathered}$ thet $p>q q>p$ do not imply together $p=q:$ any functional p any dominates/pasitive mutiple of itself and is dominated by any strictly positive multiple of itself. We clearly heve that $p>q, q>r$ implies $p>r$. If p dominetes nnly positive multiples of itself, it is called indecomposable.

In the following theorems $\mathrm{p}, \mathrm{T}, \mathrm{H}$ and ζ ere as in thenrem 3.6.

THEOREM 4.7: If S is a positive self-zdioint operator on H commuting with 11 the $T(x)$ then

$$
q(x)=(\sin (x) \zeta, \zeta)
$$

is a positive extendable functional, with $q<p$.
Conversely if a is cositive extendsble functionel with $q<p$ there exists e positive self-edioint such thet $q(x)$ is given by the obove formule.

PROOF: If S is positive end self-adjoint it has e. (unique) positive self-adjoint square root $S^{1 / 2}$ which commutes with everything that commutes with S, in particuler with \&.ll the $T(x)$. Writing $q(x)=(\operatorname{ST}(x) \xi, \xi)$, it is cleer
the. q is a linear functional on B. Also

$$
\begin{aligned}
& \mathrm{q}\left(\mathrm{x}^{*} \mathrm{x}\right)=\left(\mathrm{ST}\left(\mathrm{x}^{*} \mathrm{x}\right)^{\boldsymbol{\zeta}}, \zeta\right)=\left(\mathrm{S}^{\frac{1}{2}} \mathrm{~T}(\mathrm{x}) \zeta \mathrm{S}^{\frac{1}{2}} \mathrm{~T}(\mathrm{x}) \zeta_{\mathrm{y}}\right) \geq 0 \text {; } \\
& \text { also } \mathrm{q}\left(\mathrm{x}^{*}\right)=\left(\operatorname{ST}\left(x^{*}\right) \zeta, \zeta\right)=(\zeta, \operatorname{ST}(x) \zeta)=\overline{(\operatorname{sT}(x) \zeta, \zeta)}=\overline{q(x)} \\
& \text { and }|\mathrm{q}(\mathrm{x})|^{2}=|(\mathrm{ST}(\mathrm{x}) \zeta, \zeta)|^{2}=\left|\left(\mathrm{T}(\mathrm{x}) \mathrm{S}^{\frac{1}{2}} \zeta, \mathrm{~S}^{\frac{1}{2}} \zeta\right)\right|^{2} \\
& \leq\left\|\mathrm{T}(\mathrm{x}) \mathrm{S}^{\frac{1}{2}} \zeta\right\|^{2}\left\|\mathrm{~S}^{\frac{1}{2}} \zeta\right\|^{2} \\
& =\left(T(x) S^{\frac{1}{2}} \zeta, T(x) S^{\frac{1}{2}} \zeta\right)\left\|S^{\frac{1}{2}} \zeta\right\|^{2} \\
& =\left(\operatorname{sT}\left(x^{4} x\right) \zeta_{5}, \zeta\left\|s^{\frac{1}{2}} \zeta\right\|^{2}\right. \\
& =u\left(x^{*} x\right)\left\|s^{\frac{1}{2}} \zeta\right\|^{2}
\end{aligned}
$$

so the (i) and (ii) of proposition 3.2 hold with $M(q) \leq\left\|s^{\frac{1}{2}} \zeta\right\|^{2}$, so a is a positive extendable functional.

Finally if $\alpha \geq\|s\|$ then $\alpha p-q$ is positive; for $q\left(x^{*} x\right)=\left\|S^{\frac{1}{2}} T(x) \zeta\right\|^{2} \leq\left\|S^{\frac{1}{2}}\right\|^{2}\|T(x) \zeta\|^{2}=\left\|S^{\frac{1}{2}}\right\|^{2} \cdot p\left(x^{*} x\right)=$ $\|s\| \cdot p\left(x^{*} x\right)$: so if $\alpha \geq\|s\|$ then $\alpha p\left(x^{*} x\right)-q\left(x^{*} x\right) \geq 0$ ss required.

To prove the converse : let $H^{\prime}=\{T(x) \zeta: x \in B\}$. Then since ζ is cycle H^{\prime} is dense in H (and a linear subspace). For $x, y \in B$ waite:

$$
Q(T(x) \zeta, T(y) \zeta)=q\left(y^{*} x\right)
$$

We row first the this depends only on $T(x) \zeta$ and $T(y) \zeta$, note on the particular choice of x and y. Suppose $T\left(x^{\prime}\right) \mathcal{L}_{4}=$ $T(x) \zeta, T\left(y^{\prime}\right) \zeta=T(y) \zeta ;$ then $T\left(x^{\prime}-x\right) \zeta=T\left(y-y^{\prime}\right) \zeta=0$ so the .t

$$
p\left(\left(x-x^{*}\right) \cdot(x-x)\right)=p\left(y-y^{\prime}\right)^{* *}\left(y-y^{\prime}\right)=20
$$

(being $\left(T\left(x-x^{\prime}\right) \zeta, T\left(x-x^{\prime}\right) \zeta\right),\left(T\left(y-y^{\prime}\right) \zeta, T\left(y-y^{\prime}\right) \zeta\right) r \in s p e c-$ tively) end it follows since $q<p$ that

$$
q\left(\left(x-x^{i}\right)^{*}\left(x-x^{\prime}\right)\right)=q\left(\left(y-y^{*}\right)\left(y-y^{\prime}\right)\right)=0
$$

Now use Proposition 3.1 (ii) ; we heve

$$
\begin{aligned}
\left|q\left(y^{*} x\right)-q\left(y^{*^{*}} x^{\prime}\right)\right| & =\left|q\left(y^{*^{*}}-y^{\prime *}\right) x+q\left(y^{\prime \prime^{*}}\left(x-x^{\prime}\right)\right)\right| \\
& \leq\left|q\left(y^{*}-y^{\prime *}\right) x\right|+\mid q\left(y^{*}\left(x-x^{\prime}\right) \mid\right. \\
& \leq\left[q\left(y^{*}-y^{\prime^{*}}\right)\left(y-y^{\prime}\right) q\left(x^{*} x\right)\right]^{1 / 2} \\
& +\left[q\left(y^{* *} y^{\prime}\right) q\left(x^{*}-x^{* *}\right)\left(x-x^{*}\right)\right]^{1 / 2} \\
& =0 .
\end{aligned}
$$

It is clearQis linear in $T(x) Y$ and conjugate-linec.r in $T(y) \zeta_{𠃌}$ moreover if $\alpha p-4$ is positive then

$$
\begin{aligned}
|Q T(x) \zeta, T(y) \zeta| & =\left|q\left(y^{*} x\right)\right| \leq\left(q\left(x^{*} x\right)^{\frac{1}{2}} q\left(y^{*} y\right)^{\frac{1}{2}}\right) \\
& \leq\left.\alpha\right|_{-p\left(x^{*} x\right)^{\frac{1}{2}}\left(p\left(y^{* *} y\right)^{\frac{1}{2}} I\right.} \\
& =q\|T(x) \zeta\|\|T(y) \zeta\| .
\end{aligned}
$$

Thus Q is continuous on $H^{+} \times H^{\prime}$ cnd hence there is a unique extension by continuity to the whole of $H \times H$, also linec r in one varicible and conjugete-linear in the other. Now any such function must be of the form

$$
Q(\xi, \eta)=(s \xi, \eta) \quad(a .11 \xi, \eta \in \mathrm{H})
$$

where S is some bounded linesr operator on H.
We proceed to verlfy the proporties asserted for S .
First, $(\operatorname{ST}(x) \zeta, T(y) \zeta)=q\left(y^{*} x\right)=\overline{q\left(x^{* *} y\right)}=\overline{(\operatorname{ST}(y) \zeta, T(x) \zeta)}$
$(S T(x) \xi, T(x) \zeta)=q\left(x^{*} x\right) \geq 0$, so that S is positive (='nonnegative definite'). For $x, y, z £ B$.

$$
\begin{aligned}
(S T(x) T(y) \zeta, T(z) \zeta)= & =\dot{q}\left(z^{*} x y\right) \text { and } \\
(T(x) S T(y) \zeta, T(z) \zeta) & =\left(S T(y) \zeta, T\left(x^{*} z\right) \zeta\right) \\
& =q\left(\left(x^{*} z\right)^{*} y\right)=q\left(z^{* *} x y\right)
\end{aligned}
$$

and it follows (H ' being dense in H ; s.ll these arguments depend on this fect) thet

$$
S T(x)=T(x) S \quad \text { for ell } x .
$$

Then

$$
\begin{aligned}
q\left(y^{*} x\right) & =(\operatorname{sT}(x) \zeta, T(y) \zeta) \\
& =\left(\operatorname{sT}\left(y^{*} x\right) \zeta, \zeta_{x}\right)
\end{aligned}
$$

for all $x, y \in B$.
We wish to show the t

$$
q(x)=(\operatorname{ST}(x) \zeta, \zeta) \quad \text { for } \quad=11 x \text {. }
$$

If B hes ε unit e then simply put $y=e$ in the formula for $q\left(y^{\prime *} x\right)$. In general, write

$$
q^{\prime}(x)=(S T(x) \zeta, \zeta)
$$

by the first part of this theorem and Theorem 3.6 there exists a Hilbert spece H^{\prime}, e cyclic representation T^{\prime} end a cyclic vector $\zeta^{\prime} \in \mathrm{H}^{\prime}$ with $q^{\prime}(x)=\left(T^{\prime}(x) \zeta^{\prime}, \zeta^{\prime}\right)$. Also there exist $H^{\prime \prime}, T^{\prime \prime}, \zeta^{\prime \prime}$ such that $q(x)=\Gamma^{\prime \prime \prime}(x) \zeta^{\prime \prime}, \zeta^{\prime \prime \prime}$, Now/aefine a mapues follows

$$
U T^{\prime}(x) \zeta^{\prime}=T^{\prime \prime}(x) \zeta^{\prime \prime}
$$

the map is well defined: for we have

$$
\begin{aligned}
& \left.T^{\prime}\left(x_{1}-x_{2}\right) \zeta_{5}^{\prime}=0 \Longleftrightarrow\left(T^{\prime}\left(x_{1}-x_{2}\right)\right)^{\forall t}\left(x_{1}-x_{2}\right) \zeta^{\prime}, y_{7}^{\prime}\right)=0 \\
& \Leftrightarrow \\
& \left.q^{\prime}\left(\left(x_{1}-x_{2}\right)^{*}\left(x_{1}-x_{2}\right)\right)=0 \Longleftrightarrow q^{\prime}\left(x_{1}-x_{2}\right)^{-2}\left(x_{1}-x_{2}\right)\right)=0 \Longleftrightarrow \\
& T T^{\prime \prime}\left(\left(x_{1}-x_{2}\right)^{*}\left(x_{1}-x_{2}\right) \xi^{\prime \prime}, \zeta^{\prime \prime}\right)=0 \Longleftrightarrow\left\|^{\prime \prime}\left(x_{1}-x_{2}\right) \zeta^{\prime \prime}\right\|=0 \Longleftrightarrow \\
& T^{\prime \prime}\left(x_{1}-x_{2}\right) \zeta^{\prime \prime}=0 \text {; so if } T^{\prime \prime}\left(x_{1}\right) \zeta^{\prime}=T^{\prime \prime}\left(x_{2}\right) \zeta^{\prime} \text { then } T^{\prime \prime}\left(x_{1}\right) \zeta^{\prime \prime}=
\end{aligned}
$$ $T^{\prime \prime}\left(x_{2}\right) \zeta^{\prime \prime}$ end conversely: so $T^{\prime \prime}(x) \zeta^{\prime \prime}$ is genuinely a function of $T^{\prime}(x) \zeta^{\prime}$. V is then evidently ai linear map of a dense subspace of H^{\prime} onto a dense subspace of $H^{\prime \prime}$. It is unitary : for

$$
\begin{aligned}
& \left(T^{\prime \prime}(x) \zeta^{\prime \prime}, T^{\prime \prime}(y) \zeta^{\prime \prime}\right)=\left(T^{\prime \prime}\left(y^{*} x\right) \zeta^{\prime \prime}, \zeta^{\prime \prime}\right)=\Psi\left(y^{*} x\right) \\
& =q^{\prime}\left(y^{*} x\right)=\left(T^{\prime}\left(y^{*} x\right) \zeta^{\prime} \zeta^{\prime}\right)=\left(T^{\prime}(x) \zeta^{\prime} T^{\prime}(y) \zeta^{\prime}\right)
\end{aligned}
$$

and so since in particular U is continuous it can be extended uniquely to a unitary transformation of the whole of H^{\prime} onto the whole of H".

$$
\begin{aligned}
& \text { Then } \cup_{T}^{\prime}(x y) \zeta^{\prime}=T^{\prime \prime}(x y) \zeta^{\prime \prime} \text { so the } \\
& \prime^{\prime ? n}(x) T^{\prime}(y) \zeta^{\prime}=T^{\prime \prime}(x) T^{\prime \prime}(y) \zeta_{?}^{\prime \prime}=T^{\prime \prime}(x) \cup T^{\prime \prime}(y) \zeta^{\prime}
\end{aligned}
$$

since the vectors $T^{\prime}(y) \mathscr{K}^{\prime}$, are dense in H^{\prime} it follows the $U T^{\prime}(x) \zeta_{3}^{\prime}=T^{\prime \prime}(x) \cup$ and

$$
T^{\prime \prime}(x) \zeta^{\prime \prime}=U T^{\prime}(x) \zeta^{\prime}=T^{\prime \prime}(x) \cup \zeta^{\prime} .
$$

Hence $\left(U \zeta^{\prime}, T T^{\prime \prime}(x) \zeta^{\prime \prime}\right)=\left(T^{\prime \prime}\left(x^{*}\right) U \zeta^{\prime}, \zeta^{\prime \prime}\right)$

$$
=\left(T^{\prime \prime}\left(\mathrm{x}^{* *}\right) \zeta^{\prime \prime}, \zeta^{\prime \prime}\right)=\left(\zeta^{\prime \prime}, T^{\prime \prime}(\mathrm{x}) \zeta^{\prime \prime}\right)
$$

and vectors $T^{\prime \prime}(x) \zeta^{\prime \prime}$ are dense in $H^{\prime \prime}$, so that $U \zeta^{\prime}=\zeta^{\prime \prime}$. Then finally

$$
\begin{aligned}
& q(x)=\left(T^{\prime \prime}(x) \zeta, \zeta^{\prime \prime}\right)=\left(T^{\prime \prime}(x) \cup \zeta^{\prime} \cup \zeta^{\prime}\right) \\
& =\left(U T^{\prime}(x) \zeta, \cup \zeta^{\prime}\right)=\left(T^{\prime \prime}(x) \zeta^{\prime}, \zeta^{\prime}\right)=q^{\prime}(x) \\
& =(\operatorname{ST}(x) \zeta, \zeta) \quad \text { as required. } \|
\end{aligned}
$$

THEOREM 4.2: This irreducible if and only if p is indecomposable.

PROOF: Suppose p is decomposable, $p>p_{1}$, say, where p_{1} is not zero and not a multiple of p. Then $p_{1}(x)=(\operatorname{ST}(x) \zeta$, $\xi)$, where S commutes with all the $T(x)$, by Theorem 4.1. This is cannot be of the form αI, otherwise p_{1} would $b \in \alpha, p$. So by Proposition 2.5 , T is reducible.

Suppose T reduad le; let P be the projection on a non trivial invariant subspace H_{1} say, of H then $P T(x)=T(x) P$ for all. x writing

$$
p_{1}(x)=(\operatorname{PT}(x) \zeta \cdot \zeta)
$$

p_{1} is a positive functional dominated by p (In fact $p\left(x^{*} x\right)-p_{1}\left(x^{*} x\right) \geq 0$ for sill $\left.x\right)$. This cannot be a multiple of p : for we cen find x with $T(x) \zeta$ arbitrarily close to (I-P) $\boldsymbol{K}^{\prime}=\zeta_{2}$ say. If then $P \zeta=\zeta_{,}$, we have

$$
\begin{aligned}
\mathrm{p}(x) & =\left(T(x)\left(\zeta_{1}+\zeta_{2}\right),\left(\zeta_{1}+\zeta_{2}\right)\right) \\
& =\left(\zeta_{2}, \zeta_{2}\right)+\eta \text { say }
\end{aligned}
$$

and $\left|p_{1}(x)\right|=|(\operatorname{PT}(x) \zeta, \zeta)|=|(0, \zeta)|+\eta_{1}$
so that $\left|p_{1}(x) / p(x)\right|=\eta_{1}$

$$
/\left(\xi_{1}, \zeta_{2}\right)+\eta
$$

which can be arbitrarily small : this contradicts $p_{1}=\alpha p$ for fixed finite real α so pie decomposable. $\|$

In general if the extendable positive functional p as decomposible and we write $p=p_{1}+p_{2}$, where p_{1} and p_{2} are cilso extendeble positive functionals, then $M(p) \leq M\left(p_{1}\right)+$ $M\left(p_{2}\right)$; for if $p^{\prime}, p_{1}^{\prime}, p_{2}^{\prime}$ are the appropriate extensions then $M\left(p_{1}\right)$ and $M\left(p_{2}\right)$ can be teken for $p_{1}^{\prime}(e), p_{2}^{\prime}(e)$, respectively ; and we have $M(p)=M\left(p_{1}+p_{2}\right) \leq p^{\prime}(e)=p_{1}^{\prime}(\epsilon)+$ $p_{2}^{\prime}(\epsilon)=M\left(p_{1}\right)+M\left(p_{2}\right)$.

It will be useful to have the following result, which sharpens this inequality to an equality.

PROPOSITION 4.3: If P 1s an extendeble decomposeble positive functional then there exist positive functioncls p_{1} and p_{2}, neither of them a multiple of p, with $p=p_{1}+p_{2}$ and $M(p)=M\left(p_{1}\right)+M\left(p_{\Omega}\right)$

PROOF: If p is decomposable, the associated cyclic representetion T is reducible by Theorem 4.2. Let P be the projection on a non-trivial invariant subspace H_{1} of H and write

$$
p_{1}(x)=(\operatorname{PT}(x) \zeta, \zeta), p_{2}(x)=((I-P) T(x) \zeta, \zeta)
$$

Then evidently p_{1} and p_{2} are extendable positive functicnals and $p=p_{1}+p_{2}$. By the argument already used at the end of the proof of Theorem 4.2, neither p_{1} and p_{2} can be a multiple of p.

Writing $p \zeta=\zeta_{1},(I-P) \zeta=\zeta_{2}$, we heve $p_{1}(x)=\left(T(x) \zeta_{1}, H_{1}\right)$, $p_{2}(x)=\left(T(x) \zeta_{2}, \zeta_{2}\right)$ and so, by Theorem 3.4

$$
M\left(F_{1}\right)+M\left(p_{2}\right) \leq\left(\zeta_{1}, \zeta_{1}\right)+\left(\zeta_{2}, \zeta_{2}\right)=(\zeta, \zeta)=M(p)
$$

since T is cyclic with cyclic vector $\mathcal{C}_{\mathcal{F}}$ (in fact of course $M(p)=\left(\zeta_{1}, \zeta_{1}\right)$ and $M\left(p_{2}\right)=\left(\zeta_{2}, \zeta_{2}\right)$ since both ζ_{1} and ζ_{2} are cyclic vectors in PH end (I-F)H respectively but we do not need this). In any case the required result follows from the general inequality noted immediately before : the theorem cind the reverse inequality estsblished in the proof of the theorem. II

THESELF-ADJOJNTELEMENTSOFBBAS A BANACHSFACE

If B is a Banach*-algebra then since any recil multiple of a self-adjoint elemantis agein self-edjoint, and any sum of salf-adjoint element is self-adjoint, it follows that the self-adjoint elements of B form a recl linear subspace. Denote this by B_{s}. It is evidently normed (as a subspace of B) and if $x_{n}=x_{n}^{*}$ for all $n, x_{n} \longrightarrow x$ then $\lim x_{n}^{*}=\left(\lim x_{n}\right)^{* *}=x^{*}=x$, so that B_{s} is closed $\ln B$, hence complete, hence a Bentech space in its own rlght. If p is an extendeble, positive functional on B then its restriction to B_{S} is a reil linear functional, since $p\left(x^{s t}\right)=p(x)=p_{p(x)}^{*}$. As a functional on B it is continuous, by Proposition 3.3, Corollary, Write $\|p\|$ for the norm of p as an element of the dual of B and $\|p\|_{s}$ for the norm of (the restriction of) p c.s an element of the dual of B_{S}. It is immediate that $\|p\|_{S} \leq$ $\|p\|$ 。

PROPOSITION 5.1: $\|p\|_{s}=\|p\| \leq M(p)$: if B has a unit then $\|p\|_{S}=\|p\|=M(p)$.

PROOF: Suppose $x_{0} \in B,\left\|x_{0}\right\|=1$ and $\left|p\left(x_{0}\right)\right|>\|p\|-\mathcal{E}$. Multiply x_{o} by $\epsilon^{i \theta}$ if necessery : we get an x with $p(x)>\|p\|-\varepsilon$. Then also $p\left(x^{*}\right)=\overline{p(x)}>\|p\|-\varepsilon$, and so $p\left(\frac{1}{2}\left(x+x^{* *}\right)\right)>\|p\|-\varepsilon$. But $\frac{1}{2}\left(x+x^{*}\right)$ is $\left.s \in\right] f-a d j o i n t$ and $\left\|\frac{1}{2}\left(x^{*}+x\right)\right\| \leq \frac{1}{2}\|x\|+\frac{1}{2}\left\|x^{*}\right\|=$ $\frac{1}{2}+\frac{1}{2}=1$ so thet

$$
\|p\|_{S}=\sup _{y=y^{*}} \frac{|p(y)|}{\|y\|}>\|p\|-\varepsilon
$$

Since ε was arbitrary $\left\|_{\mathrm{p}}\right\|_{\mathrm{S}} \geq\|\mathrm{p}\|$ and so $\|\mathrm{p}\|_{\mathrm{S}}=\|\mathrm{p}\|$.
By Proposition 3.2 there is en extension p^{\prime} of p with $p^{\prime}(\epsilon)=M(p)$. By Proposition $3.3\left|p^{\prime}(x)\right| \leq p^{\prime}(\epsilon)\|x\|$ end so

$$
\left\|p^{\prime}\right\| \leq p^{\prime}(\epsilon) \quad \text { (actually equal, of course). }
$$

Evidently $\quad\|p\| \leq\|p \cdot\|$ and so finally

$$
\|p\| \leq \| p^{\prime!} \leq p^{\prime}(\epsilon)=M(p)
$$

If B has a unit e then by proposition 3.1 (1j) we have, taking $y=e,|p(x)|^{2} \leq p(e)\left(p\left(x^{*} x\right)\right.$) and so $M(p) \leq p(\epsilon) \leq\|p\|$ (since $\|\epsilon\|=1$). Hence $\|p\|=M(p)$. \|

From now on we shail drop the suffix from $\|p\|_{S}$ in view of Proposition 5.1. We also note the corollary theit if pis non-zero on B then its restriction to B_{S} must also be non-zero, since if the restriction were zero then $\|p\|_{S}=0,\|p\|=0$ end so $\mathrm{p}=0$ by the basic properties of a norm.

Now denote the set of extendakje positive functionals p on B with $M(p) \leq 1$ by P. This is never empty : it contains at least the zero functionel. Recrll the weak*-topology of the dual of a linear space E; the basic nelghbourhoods of $f_{0} \in E^{\prime}$ $a \mathrm{a} \in$

$$
\left\{f:\left|f\left(x_{r}\right)-f_{0}\left(x_{r}\right)\right|<\varepsilon r=1,2, \ldots \ldots, n\right\}
$$

for $\varepsilon>0$ and $x_{1}, x_{2}, \ldots . x_{n} \in E . \quad$ Then we heve the

BOURBAKI -ALAOGLT THEOREM : The unit bell in the dual of a Banach space is compact in the werkK-topology.

PROPOSITION 5.2 : P is a weak*-closed (and hence compact) convex subset of the unit ball of the dual of B_{S} 。

PROOF: Since $\|p\|_{S}=\|p\| \leq M(p) \leq 1$, evidently P is a subset of the unit ball. If $p_{1}, p_{2} \in P$ then if $p_{1}^{\prime}, p_{2}^{\prime}$ are extensions it is clear that $\alpha p_{1}^{\prime}+(1-\alpha) p_{2}^{\prime}(0 \leq \alpha \leq I)$ is an extension of $\alpha p_{1}^{\prime}+(1-\alpha) p_{\varepsilon}^{\prime}$ and also $M\left(\alpha p_{1}+(1-\alpha) p_{2}\right) \leq \alpha M\left(p_{1}\right)$ $+(1-\alpha) M\left(p_{2}\right) \leq 1$ if $M\left(p_{1}\right) \leq 1, M\left(p_{2}\right) \leq 1 ; \operatorname{so} \alpha p_{1}+(1-\alpha) p_{2} \in P$, that is, P is convex.

Suppose $p_{o} \in C l p$ (that is, the closure in the dual of B_{S}). For $x \in B$ write $x=x_{1}+i x_{2}$, where $x_{1}, x_{c} \in B_{S}$ and extend p_{0} to B by writing $p_{0}(x)=p_{0}\left(x_{1}\right)+i p_{0}\left(x_{2}\right)$. Then given $\varepsilon>0$ and $x_{1}, x_{2}, x x_{x} \in B_{s}$ there exists $p \in P$ with

$$
\begin{array}{r}
\left|p\left(x_{1}\right)-p_{0}\left(x_{1}\right)<\varepsilon,\left|p\left(x_{2}\right)-p_{0}\left(x_{2}\right)\right|<\varepsilon,\left|p\left(x^{*} x\right)-p_{0}\left(x_{x}^{*}\right)\right|\right. \\
.<\varepsilon
\end{array}
$$

In particular

$$
0 \leq p\left(x^{*} x\right) \leq p_{0}\left(x^{*} x\right)+\varepsilon ;
$$

since \mathcal{E} is arbitrary $p_{0}\left(x^{* *} x\right) \geq 0$ and p_{0} is positive. Also

$$
\left|p(x)-p_{0}(x)\right| \leq\left|p\left(x_{1}\right)-p_{0}\left(x_{1}\right)\right|+\left|p(x)-p_{0}\left(x_{2}\right)\right|<2 \varepsilon
$$

so that we get

$$
\begin{aligned}
\left|p_{0}(x)\right|^{2} & \left.\leq|p(x)|^{2}+\left|[p(x)]^{2}-\right| p_{0}(x)\right]^{2} \mid \\
& \leq|p(x)|^{2}+2\|x\|\left|p(x)-p_{0}(x)\right| \\
& \leq p\left(x^{*} x\right)+4\|x\| \varepsilon \\
& \leq p_{0}\left(x^{*} x\right)+(4\|x\|+1) \varepsilon
\end{aligned}
$$

and since \mathcal{E} is arbitrary,

$$
\left|p_{o}(x)\right|^{2} \leq p_{o}\left(x^{*} x\right)
$$

so the.t $M\left(p_{0}\right) \leq 1$. Thus $p_{0} \in P$ and P is closed. II
A point $p \in P$ is extreme if it is not of the form $\alpha p_{1}+(1-\alpha) p_{2}$ where $0<\alpha<1, p_{1}, p_{2} \in P$ end $p \neq p_{1}$, $\mathrm{p} \mathrm{t}_{2}$. The zero functionel is alweys an extreme point of P.

PROPOSITTON 5.3: A non-zero functional $p \in F$ is extreme if and only if
(1) $M(p)=1$ and
(ii) p is indecomoosable.

PROOF: Suppose $0<M(p)<1$. Then we cen write

$$
p=M(p) \frac{p}{M(p)}+(1-M(p)) 0
$$

and both $p / M(p)$ and 0 distinct from p, so p cennot be extreme. If p is decomposable then by Proposition 4.3, we cen write $p=p_{1}+p_{2}$ where neither p_{1} nor p_{2} is a multiple of p (and neither is $z \in r o$): we have

$$
M(p)=M\left(p_{1}\right)+M\left(p_{2}\right)
$$

Thus $\quad p=\frac{M\left(p_{1}^{\prime}\right.}{M(p)} \frac{p_{1}}{M\left(p_{1}\right)}+\frac{M\left(p_{2}\right)}{M(p)} \frac{p_{2}}{M\left(p_{2}\right)} \quad$ and now
$\frac{p_{1}}{M\left(p_{1}\right)} \in P, \frac{p_{2}}{M\left(p_{\varepsilon}\right)} \in P$, and neither is equal to p so that p cannot be extreme. Thus (i) and (ii) are necessary conditions for p to $b e$ extreme.

If p is not extreme we can write $p=\alpha p_{1}+(1-\alpha) p_{2}$ with $0<\alpha<1 \quad 0 \neq p_{1}, \quad \mathrm{p} \neq \mathrm{p}_{2}$. There are two possibilities; if neither p_{1} nor p_{2} is a multiple of p then p is clearly decomposable, since then $p-\alpha p_{1}$ is a positive functional $\left(=(1-\alpha) p_{2}\right)$. If on the other hand one (and hence both) of p_{1}, p_{2} is a multiple of p, say $p_{1}=\alpha p, p_{2}=\beta p$, then one of α, β must be >1; say $\alpha>1$. Then $M\left(p_{1}\right) \leq 1$ and $M(p)=M\left(p_{1} / \alpha\right) \leq \frac{1}{\alpha}<1$. So (i) and (11) together are sufficient for p to be extreme. II

COROLLARY: If p is nonzero and extreme then the assocfated representation is irreducible.

We next recall the
KRIWN-MILMEN THEOREM: Let K be a compact convex subset of a real locally convex linear topological space E and let K_{1} be the set of convex combinations of extreme points of K . Then $\mathrm{K}=\mathrm{CL} \mathrm{K}_{1}^{*}$
LBy s convex combination of extreme points we mean a finite surn $\sum \alpha_{r} e_{r}$ where the e_{r} are extreme and the α_{r} are positive real scalars with $\left.\sum \alpha_{\gamma}=1\right]$.
\angle In fact we do not need the full force of the Krein-Milman theorem in order to prove Proposition 5.4, but only the partial results that given any hyperplane in E there exists a supporting hyperplane of K thet is parallel to it, and that every supporting hyperplane of K contains an extreme point of K : however we shall not go into this refinement. $\overline{7}$

PROPOSTITION 5.4: If for $x \in B$ We have $p(x) \neq 0$ for sole $n \in P$ then we have $q(x) \neq 0$ for some extreme point $q \in P$.

PROOF: Suppose first x is self-adjoint and $p(x) \neq 0$. Then by the Krein-Milman theo rem we cen find extreme points $q_{1}, q_{2}, \ldots . . q_{n}$ and positive scalars $\alpha_{1}, \ldots, \alpha_{n}$ with

$$
\left|p(x)-\sum \alpha_{r} q_{\dot{r}}(x)\right|<|p(x)|
$$

Hence for atleast one value of r, we must have $q_{r}(x) \neq 0$. In general, if $x=x_{1}+x_{2}$ where x_{1} and x_{2} are self-adjoint and $p(x) \neq 0$ then not both $p\left(x_{1}\right)$ and $p\left(x_{2}\right)$ are $z \in \infty$. If (say) $p\left(x_{1}\right) \neq 0$ then there exists an extreme point q with $q\left(x_{1}\right) \neq 0$ thus $R \in q(x) \notin 0$ and so $q(x) \notin 0$. \|

COROLLARY: If $p\left(x^{*} x\right)>0$ for some $p \in P$ then also $q\left(x^{*} x\right)>0$ for sow: extreme point $q \in P$. We can now state one of our main theorems: THEOREM 5.5: Let B be a Benach $*$-algebra and $x \in B$. Then the following are equivalent.

$$
\begin{aligned}
& \text { (i) } \exists \mathrm{F} \in \mathrm{P} \quad \text { with } \mathrm{p}(\mathrm{x}) \neq 0 \\
& \text { (ai) } \exists \mathrm{p} \in \mathrm{p} \text { with } \mathrm{p}\left(\mathrm{x}_{\mathrm{K}}\right)>0 \\
& \text { (iii) } \exists \text { extreme } p \in P \text { with } p(x) \neq 0 \\
& \text { (iv) } \exists \text { extreme } p \in P \text { with } p(x)>0 \\
& \text { (v) } \exists x \text {-representation } T \text { with } T(x) \neq 0 \\
& \text { (vi) } \exists \text { irreducible } * \text {-representation } T \text { with } T(x) \neq 0 \text {. }
\end{aligned}
$$ PROOF: The implications (iii) \Rightarrow (i), (iv) \Rightarrow (ii). $(v i) \Longrightarrow(v)$ are trivial. The implications $(i) \Longrightarrow$ (iii), $(1 i) \Longrightarrow$ (iv) have just been established (Proposition 5.4). We now prove $(i) \Longrightarrow$ (ii), $(\mathrm{iv}) \Longrightarrow$ (vi), (v) \Rightarrow (i). (i) \Rightarrow (ii): $|p(x)|^{2} \leq M(p) p\left(x^{*} x\right) \leq p\left(x^{*} x\right)$ so if $p(x) \neq 0$ then $p\left(x^{j k} x\right) \neq 0$.

$(i v) \Longrightarrow(v i):$ by Theorem 4.2 if p is indecomposable, T is irreducible: and if $p\left(x^{*} x\right)>0$ then $T(x)=0$ since $p\left(x^{*} x\right) \neq 0$ $(T(x) \zeta, T(x) \zeta)=\|T(x) \zeta\|^{2}$: if $p\left(x^{*} x\right)>C$ then $T(x) \zeta \neq 0$ and so $T(x) \neq 0$.
$(v) \Longrightarrow(1):$ we note first that T_{0} is any linear operator in a complex Hilbert space then $\left(T_{0} \xi, \xi\right)=0$ for all ξ implies $\mathbb{T}_{0}=0$. This follows from the identity

$$
\begin{aligned}
& 4\left(T_{0} \xi, \eta\right)=\left(T_{0}(\eta),(\xi+\eta)\right)-\left(T_{0}(\xi-\eta),(\xi-\eta)\right) \\
& + \\
& +2\left(T_{0}(\xi+1 \eta),(\xi+1 \eta)\right)-1\left(T_{0}(\xi- \pm \eta),(\xi-1 \eta) ;\right.
\end{aligned}
$$

if each term on the right is zero then ($T_{0} \xi, \eta$) is zero for all ξ, η hence $T_{0} \xi$ is zero for all ξ hence T_{0} is $z \in r o$. If
then there is a representation T (not cyclic in general) with $T(x) \neq 0$ then there exists $\xi \in H$ with $(T(x) \xi, \underline{S}) \neq 0$ and $\|\xi\|=1$. Then if $p(x)=(T(x) \xi, \xi) \quad p$ is evidently a positive extendable functional: by Proposition 3.4 we have $M(p) \leq\|\xi\|^{2}=1$ so $p \in P$ as required. Il

CCROLLARY: If B is a C^{*}-algebra and $x \in B$ is non-zero then there is an irreducible representation T with $T(x) \neq$ 0.

We heve at this stage reached the point where we can assert that if representaticns of a certain kind exist (seperam ting, in particular) then also irreducible representitions of the seme kind exist. However, we cannot assert that for a general Benach *-algebra there are enough representations to seperate points. The fact that this is so for $L_{1}(G)$ is vital for the theo ry of group representations and is quite easy to prove we return to this later. In the meantime we specialise our algebras further to the case of a B^{*}-algebra.

Throughout this section and the next let B be a $B^{*}-a l g e-$ bra; some results are valid in more general situations: The results proved jnearlier sections are all applipable. The main result proved in the next section is the welebrated Gelfond-Naimark theorem, that B is isometrio and isomorphic to a closed sub-algebra of $\mathscr{L}_{0}(H)$ for some Hilbert space H. This, it might be emphasised, is for the complex case: the real case is not so easy to discuss. It is clear that in general B cannot be isometrically isomorphic to the whole of $\mathscr{E}(\mathrm{H})$; consider the case where B is commutative and of dimension >1. We begin with the remark that there is a no loss of generality in assuming that B has a unit. For, if not, consider B_{1} with the norm described in Proposition 2.1. If B is isometrically $*-i s o m o r p h i c ~ t o ~ a ~ c l o s e d ~ s u b a l g e b r a ~ o f ~ \mathscr{L ~}(H)$, the scme must be true of B, since B is a closed subalgebra of B_{1}.

LEMMA 6.1: If $x, y \in B, \alpha$ is a scalar, and one of $(e+\alpha x y)^{-1},(\varepsilon+\alpha y x)^{-1}$ exists, then so does the other. PROOF: Suppose (e+dixy) ${ }^{-1}$ exists. Then

$$
\begin{gathered}
(e+\alpha y x)\left[e-\alpha y(\epsilon+\alpha x y)^{-1} x\right]=\left[e-\alpha y(\epsilon+\alpha x y)^{-1} x\right] x \\
x(e+\alpha y x)=e
\end{gathered}
$$

so that $(e+\alpha y x)^{-1}$ exists : similarly if $(\epsilon+\alpha y x)^{-1}$ exists, so does $(\epsilon+\infty, x y)^{-1}$. \|

COROLLARY: If $x, y \in B$ then $\sigma(x y)$ and $\sigma(y x)$ are the Same, except that possibly 0 may be in one set but not In the other.
PROOF: If $\lambda \neq 0$, take $\alpha=-1 \lambda^{-1}$ in Lemma 6.1 and it follows that if one of $(\lambda \in-x y)^{-1},(\lambda \in-y x)^{-1}$ exists, so does the other. \|

To see the it the sets $\sigma(x y)$ and $\sigma(y x)$ may indeed be different, take for example $B=\mathscr{L}\left(\mathcal{l}_{2}\right)$, and the infinite matrices

$$
x=\left[\begin{array}{cccccc}
0 & 1 & 0 & 0 & \cdot & \cdot \\
0 & 0 & 1 & 0 & \cdot & \cdot \\
0 & 0 & 0 & 1 & \cdot & \cdot
\end{array}\right], y=\left[\begin{array}{lllll}
0 & 0 & 0 & \cdot & 0 \\
1 & 0 & 0 & \cdot & \cdot \\
0 & 1 & 0 & \cdot & \cdot
\end{array}\right]
$$

then $x y=e$ and

$$
\mathrm{yx}=\left[\begin{array}{llllll}
0 & 0 & 0 & \cdot & \cdot & \cdot \\
0 & 1 & 0 & \cdot & \cdot & \cdot \\
0 & 0 & 1 & \cdot & \cdot & \cdot
\end{array}\right]
$$

so that $\sigma(x y)=\{1\}$ while $\sigma(y x)=\{0,1\}$. It can be proved that if Bis a finite-dimensional algebra then $\sigma(x y)=\sigma(y x)$. PHOFOSITION 6.2: If $x \in B$ is self-adioint, the following are equivalent.

$$
\begin{aligned}
& \text { (i) } \sigma(x) \quad[0, \infty,[\\
& \text { (ii) } x=y^{2} \quad \frac{\text { for some self-adioint }}{F} \quad y \in B
\end{aligned}
$$

（iii）$\|e-\alpha x\| \leq$ for somestrictiy positive real α ； （iv）$\|e-\alpha x\| \leq 1$ for all α with $0 \leq \alpha \leq \frac{2}{\|x\|}$ ； （v）$\|\|x\| e-x\| \leq\|x\|$ ．

PROOF：Suppose（i），and take any suitable closed commu－ tütive sub－elgebra of B conteiniñg x in which the spectrum of x is the same as the spectrum in B ．［A suitable subelgebra would be $B^{\prime \prime}(x)$ 。all elements that commute with everything thest commutes with x ；if $(\lambda e-x)^{-1}$ exists in B it must be in $B^{\prime \prime}(x)$ and so the spectrum $\sigma^{\prime \prime}(x)$ of x in $B^{\prime \prime}(x)$ is exaduy $g(x)$ 〕。 Now use the representation theorem for commutative $B^{*}-a l g e b r i$ es algebresc（：）（we have ？compact here，since B has a unit， although this is really irrelevint）．Since the function \hat{x} corresponding to x is non－negative（its values are preciscly the points of $\sigma(x)$ ），it has a（unique）non－nepetive square root \hat{y} ：let y be the element of B corresponding to this． since the correspondence between the algebra and the function algebre $C(X)$ is a $*$－isomorrhism，y must be self－adjoint and $x=y^{2}$ ．

Conversely，if $x=y^{2}$ with y self－adjoint take a suitc．ble commutative sub－algebra of B containing y in which the spectrum of y is extectly $\sigma(y)$ say，$B^{\prime \prime}(y)$ ．Let \hat{y} be the function corresponding to y in the representation of this algebra as a $C(X)$ ：since y is self－adjoint \hat{y} is a real function （Proposition 2．3）and so $\hat{x}=\hat{y}^{2}$ is non－negative．Since $\sigma(x)$ cannot contain any point theit jis not a value taken by \hat{x} it
follows that $\sigma(x) \subset[0, \infty$. We have thus proved (i) \Rightarrow (ii). To prove (i) \Rightarrow (iv): take again $B^{\prime \prime}(x)$ or some other suitable sub-algebra and consider \hat{x} : this is ≥ 0. So if $\alpha \leq \frac{2}{\|x\|}=\frac{2}{\|\hat{x}\|}$ we have $0 \leq \alpha \hat{x} \leq 2$, so that $-1 \leq 1-\alpha \hat{x} \leq 1$. giving $\|I-\alpha \hat{x}\| \leq 1$ and hence (since the correspondence between the algebra and the corresponding (X) is isometric) $\|e-\alpha x\| \leq 1$.

The implication (iv) \Rightarrow (iii) is of course trivial. To show (iii) \Rightarrow (i) suppose $\hat{x}(\hat{M})<0$ for some $m \in \boldsymbol{x}$. "Then if $\alpha>0,1-\alpha \hat{x}(M)>1$ and so $\|1-\alpha \hat{x}\|=\|e-\alpha x\|>1$.

If $x=0$ roth (i) and (v) hold. If $x \neq 0$ (v) is just $\left\|\in-\frac{1}{\|x\|} x\right\| \leq 1$, which implies (iii) end is implied by (iv). This completes the proof. II

The proposition we have just proved is useful because it enables us to convert a statement about the spectrum into a statement involving only forms of elements in the algebra. We use this in the following proposition.

We denote by Q the set of self-adjoint elements of B that satisfy one (and hence all) of the conditions of Proposi. timon 6.2. It is a subset of B_{S} : wo shall now prove the it is ε cone; they is, a set K such the $x, y \in K, \alpha \geq 0 \Rightarrow x+r$, $\alpha x \in K$ (so that $\left.x_{r} \in K, \alpha_{r} \geq 0 \Rightarrow \sum \alpha_{r} x_{r} \in K\right)$ and dino $x,-x \in K$ $\Rightarrow \quad \mathrm{x}=0$.

PROPOSITTON 6.3: Lis a closed cone in Ba with a nonempty interior; more precisely ϵ is an interior point of Q.

PFOOF: Suppose $x \in Q, \alpha_{1} \geq 0$ then $\alpha x \in Q$ by conditimon (i) of Proposition $6 . \varepsilon$, since $\sigma(\alpha x)=\alpha \sigma(x)$.

If $x, y \in Q \quad$ choose $\alpha>0$ with $\alpha \leq \frac{2}{\|x\|}, \alpha \leq \frac{2}{\|y\|}$
Then $\|e-\alpha x\| \leq 1,\|e-\alpha y\| \leq 1$ and so $\left\|e-\frac{1}{2} \alpha(x+y)\right\|=$ $\left\|\frac{1}{2}(e-\alpha x)+\frac{1}{2}(e-\alpha y) \leq \frac{1}{2}\right\| e-\alpha x\left\|+\frac{1}{2}\right\|(e-\alpha y) \| \leq \frac{1}{2}+\frac{1}{2}=1$ so the $x+y \in Q$, by (iii) of Proposition 6.2

If $x \in Q,-x \in Q$ then $\sigma(x)=\{0\}$ and si, since $\|x\|=$ $\|\hat{x}\|=0$ we have $x=0$. Thus Q is certainly a cone.

To show that Q is closed, use condition (v) of proposition 6.2. If $x \notin Q$ then

$$
0<\| \| x\left\|_{e}-\mathrm{x}\right\|=\mathcal{E} \quad \text { say }
$$

$\operatorname{since}\|\|x\| e-x\| \leq\| \| y\|e-y\|+\|x-y\|+|\|x\|-\|y\||$

$$
\leq\| \| y\|e \cdot-y\|+2\|x-y\|
$$

it follows the t

$$
\|\|y\| e-y\| \geq\| \| x\|e \cdot-x\|-2\|x-y\|
$$

and

$$
\|\|y\| e-y\|-\|y\| \geq\| \| x\|e-x\|-\|x\|-3\|x-y\|
$$

so that if $\|x-y\|<\varepsilon / 3$ we have $\|\|y\| e-y\|>0$ and so y $\notin \mathrm{Q}$.

To show thet Q has a non-empty interior, recall the device used in the proof of Proposition 3.3; if $\|x\|<1$ and x is self-adjoint then there is a self-adjoint y such that $y^{2}=e-x$, given by the usual power series for $(e-x)^{\frac{1}{2}}$. That is, the elements of B_{S} that lie in the open ball $\{x:\|x-\epsilon\|<1\}$ are all in Q and e is certainly an interior point of Q. \| It is cles.r that if $x \in Q$ then x is of the form $x^{*} y$ (indeed with y self adjoint). Our next result shows that the converse result also holds.

PROPOSITICN 6.4: $x^{*} x \in Q$ for all $x \in B$ 。
PROOF: WE first show that if $-x^{*} x \in Q, x \in B$ then $x=0$. Writing $x=x_{1}+i x_{2}$, where x_{1} and x_{2} are self-adjoint, we heve $x^{*}=x_{1}-1 x_{2}$ and
so that

$$
\begin{aligned}
& x^{*} x+x x^{*}=2 x_{1}^{2}+2 x_{2}^{2} \\
& x^{*} x=2 x_{1}^{2}+2 x_{1}^{2}+\left(-x x^{*}\right)
\end{aligned}
$$

Now if $-x^{*} x \in Q$ then $-x^{*} \in Q$ aisc, by the Corollaxy to Lemme 6.1. Since Q is a cone, and the three terms on the right are in $Q, x^{*} x \in Q:$ this with $-x^{*} x \in Q$ implies $x^{*} x=0$ and since we are in a $B^{*}-a l g e b r e x=0$ since $\left\|x^{*} x\right\|=\|x\|^{2}$.

Now take a general $x \in B$: we wish to show $x^{*} x \in Q$. Certainly $x^{*} x$ is self adjoint, so we cen write it as a difference of positive elements\%

$$
x^{*} x=y-z
$$

Where y, z are positive, self-adjoint and commute with everything thet commutes with $x^{*} x$. $\quad \operatorname{In} B^{\prime \prime}\left(x^{*} x\right)$ take $\widehat{y}=\left(x^{*} x\right)^{+}$. and $\left.\hat{z}=\left(x^{*} x\right)^{-}\right]$. We also have $y z=0$, since $\hat{y} \hat{z}=0$. Then $(x z)^{*} x z$ $=z x^{*} x z=z(y-z) z=-z^{3}$ and since $z^{3} \in$ Q we get

$$
(-x z)^{*} x z \in Q
$$

which implies $x \dot{z}=0$ by the crgument given above. Then $z^{3}=0$ and so $z=0$ since $\left\|z^{4}\right\|=\left\|z^{2}\right\|^{2}=\|z\|^{4}$ and if $z^{3}=0$ then $z^{4}=0$ and so $\|z\|=0$. Thus $x \forall x=y \in Q$ as required. $\|$

COROLLARY : $\left(e+x^{*} x\right)^{-1}$ exists for all $x \in B$.
PROOF: Taking - scy - $B^{\prime \prime}\left(x^{*} x\right)$, we have $\left(\widehat{\epsilon+x^{*} x}\right) \geq 1$ and so (e+x*x) certeinly has an inverse in the sub-algebre hence in B. ||

An algebra satisfying this condition is called by Naimerk completely symmetric : th condition is thus implied by the $B^{* *}$-condition $\left\|x^{*} x\right\|=\|x\|^{2}$ (but not $\left\|x^{*}\right\|=\|x\|$).

In general, if K is a cone in a real locelly convex topological vector space E. We call f functional f positive with respect to K if $F(x) \geq 0$ for all $x \in K$.

In the present cese taking $E=B_{S}, K=2$, a functionel (on B_{S}) is positive with respect to Q if and only if $f\left(x^{*} x\right) \geq 0$ for all $x \in B$. Hence the extension of f to B by linearity $\left(f\left(x_{1}+i x_{2}\right) f\left(x_{1}\right)+i f\left(x_{2}\right)\right.$ is precisely what we heve clreedy cilled a positive functional p.

For positive functional we heve the following veriation of the Hahn-Benach theorem:

KREIT'S EXTENSION THEOREM: Let E be a real locally convex topological vector space and K a cone with a non-empty interior. $4 \mathrm{E} \mathrm{E}_{1}$ is a linear subspace of E containing an interior point of K, and f_{1} is 2ulinear functional on E_{1} that is rositive with respect to $K_{1}=K \cap E_{1}$ then thereis an extension f of f_{1} to the whole of E the t is positivewith respect $i=\mathrm{K}$.

We proced ig the next saotira to apply this result to the ease of q as a cone in $B_{s} \cdots$

THEREALISATICNOF B $\mathrm{B}^{*}-\mathrm{A}$ aLGEBRAS AS $C^{*}-A L G E B R A S$

We begin with one or two results relating to ideal theory in B :

PROFOSITION 7.1: If J is proper left ideal in B there is : positive functions p on P with $p(\epsilon)=1$ and $p(x)=0$ for il $x \leqslant J$.

PROOF: Consider $F=B_{S}$; let E, be the subset of B_{S} consisting of elements $(\lambda \in+x),\left(\lambda \in R, x \in J \cap B_{s}\right)$. This is a linear subspace of B_{s} and contains an interior point of Q namely \in. Write

$$
p_{1}(\lambda \in+x)=\lambda
$$

It is positive with respect to $Q_{1}=Q_{Q} \cap F_{1}$, for if $x \in Q_{1}$ and $x=\lambda e+y$ then $y \in J$ and $-y^{-1}=(\lambda \in-x)^{-1}$ fails to exist so $\lambda \in \sigma(x), \lambda \geq 0$ and thus $p(x) \geq 0$.

We cen now apply rein's extension theorem to p_{1} : there is a function el p on B_{S} that is positive with respect to Q_{8} and the extension by linearity of this to the whole of B is the required functional. We have $\mathrm{F}(\mathrm{x})=0$ for all $\mathrm{x} \in J$ and so in particular $p\left(x^{*} x\right)=0$ for all $x \in J$. \|

We heve used in the above proposition the fact that if $\lambda \in-x$ is in some proper left idecl then $(\lambda \in-x)^{-1}$ fails to exist. We would like to use next a converse of this : unfor. tunately a direct converse would be $f \in I s \in$, as is seen by considering the elements x and y in $\left(X_{2}\right)$ described just efter Lemma 6.1 : here y^{-1} fails to exist but tike left principal ideal generated by y is the whole of $\mathscr{L}\left(l_{2}\right)$. Clecrly if we demand thet no left-inverse y_{i}^{-1} exists then the left principal ideal generated by y will be proper : so we decl for the moment with one-slded inverses.

We begin by defining the (left) radical of B to.be the set of all $x \in B$ such thet ε left-inverse $(e+y x)^{-1}$ exists for all $y \in B$. (It will appear leter that we get exactly tie seme set of elements if we start with 'right' rather than 'left'). This evidently reduces to the usual definition of "radicl" in a commutetive Banach algebra ; thet is, all cle. ments whose spectrum is $\{0\}$.

PROPOSITICN 7.2: The radical of B is the intersecion
of al the maximal left ideals of B.
PROOF: Suppose $(\epsilon+y x) \varrho^{-1}$ fails to exist for some $y \in E$. Then the set of elements of the form $z(\epsilon+y x)$ is ε proper lefi ideal and hence is contained in a maximal left ideel. If now x is in the intersection of all meximal left ideals then x and hence yx belong to this ideal and hence so does e, veine:
e+yx-yx. This is a contradiction : so the radicail contains the intersection of : 11 meximel left ideals.

Supposex x \mathcal{J} for some meximel left ideal J. Then the set of all $\in l \in m e n t s$ of the form $z+y x(z \in J, y \in B)$ is again \therefore aff ideal and properly contains J (since it contains the element x). Since J wes maximel this idecl must be the whole of B. But then $\epsilon=z+y x$ for some y, z so $z=e-y x$. But z we have no left inverse, since J is proper : and so $x \notin$ radicel thus the redical is contained in each maximel left idecl J, hence in their intersection. \|

COROLLARY: The radicel is e closed left ideal of B. PROPOSITION 7.3: If x belongs to the radical then a two sided inverse $(\epsilon+y x)^{-1}$ (necessarily unique) Exists for G11 y $\in B$.

PROOF: If $x \in$ radicel and $y \in B$ some left inverse $(\epsilon+y x)_{l}^{-1}$ exists: say $(\epsilon+z)$, so that $(e+z) \cdot(\epsilon+y z)=e$. Thus

$$
z=-z y x-y z=-(z y+y) x
$$

Since the radial is a left ideci z Eradical. Thus etz has a left inverse w sey: $w(t z)=\epsilon$. So $w(\epsilon+z) \cdot(\epsilon+y x)=w$ $=$ etye and etya has etz as a two-sided inverse. \|l PROPOSITION 7.4: A B^{*}-algebra is semi-simple. PROOF: This follows from the above proposition: If $x \in$ radicel then necessarily $\sigma(x)=\{0\}$ and then $x=0$. $\|$

We now show (elthough it is not really requi red in whet follows) that we could heve teken "right" insteed of "lefts in the definition of the radicel.

PROPOSITICN 7.5: The radicel is a two sided ideal of
$B:$ it is the intersection of all maximal left ideals
and also the intersection of ell maximal right ideals.
PROOF: This depends on Lemrna 6.1 ; taking $\alpha_{0}=1$, if either $(\epsilon+y x)^{-1}$ or $(e+x y)^{-1}$ exists so does the other. So $x \in(l \in f t)$ radical $\Longrightarrow(e+J x)^{-1}$ exjsts for all $y \Longleftrightarrow(\epsilon+x y)^{-1}$ exists for all $y \Longleftrightarrow x \in$ right radical. Hence the left and right radicals coincide. \||

Note thet in generel the radicel is not the intersec.. tion of all meximal two-sided ideals of B; teke $B=\mathscr{L}\left(k_{k}\right)$ for some countably infinite dimensional H. Ther there exists a unique proper two-sided ideal, the compact operators : the intersection of all maximal two-sided ideals is therefore precisely compact operetors, therefore not zero. But the radical is $\{0\}$ end is not the intersection of meximel twosided idecils of B. .

PROPOSITION 7.6: If $p\left(x^{*} x\right)=0$ for ill positire
functioncls F on B then $x=0$.
PROCF: Suppose J is a meximal left ideal. By proposttion 7.1 there is a positive functional p such thet $p\left(x^{*} x\right)=0$ for all $x \in J$ end $p(a)=1$. But the set of elements
$\{z: p(z * z)=0\}$ is a left ideal (this was proved during the course of proving theorem 3.6) and this ideal must be pro.. per since $p(\epsilon)=1$. Then it coincides with J since J is meximel. Hence if $p\left(x^{*} x\right)=0$ for all p then $x \in J$ for sich maximal J and so x is in the radical which is $\{0\}$. (Fropositi n 7.4). \|

PROPOSITICN 7.7 : A B^{*} algebre hes a complete set of *-representations and hence complete set of irreducible $*$-representetions.

PROOF: What we want is to show that if $T(x)=0$ fow s.ll \neq-representations T then $x=0$. But if p is the functional associated with T then $p\left(x^{* \pi} x\right)=\left(T\left(x^{*} x\right) \zeta_{2} ; \zeta_{3}\right)=$ $\|T(x) \zeta\|^{2}=0$ and conversely if p is given then there $1:$: T associcted with it : so $T(x)=0$ for all T is equivalent to $p\left(x^{*} x\right)=0$ for all p which implies $x=0$ by Proposition 7.6. it

We now proceed to construct a Hilbert spoce H suan tinet B is isometrically *-isomarrmeto a closed *-subalgeora ui \mathscr{L} (H$)$. First we prove two propositions.

PROPOSITICN 7.8: Let X becompact, $C(X)$ the usual space of continuous functions with $\|x\|=\sup _{t \in X} \mid x(t)$. Let $\|x\|^{\prime}$ be any other norm on $C(V)$ in which it isa normed (not necessarily complete) algebre. Then,

$$
\|x\| \leq\|x\|^{\prime} \quad \text { for } 211
$$

PRCOF: Suppose B is the completion of $C(X)$ under $\left\|\|^{\prime}\right.$ and let M be its meximal ideal space. For any $m \in M$ let f_{m} be the associe.ted functionel then f_{m} restricted to $C(X)$ is a non-zero functional on $C(X)$: so there exists $t_{m} \in X$ with

$$
f_{m}(x)=x\left(t_{m}\right), \quad(\delta 11 x \in C(x)
$$

Write $X_{1}=\left\{t: t=t_{m}\right.$ for some $\left.m \in M\right\}$. Then $C l X_{1}=x$. For, if not, there exists an open subset V with CiV compact and $C l \vee \in \subset C l X_{1}$. Now choose $x, y \in C(X)$ with $y(t)=1$ for $y \in C l V, y(t)=0$ for $t \in C l \gamma_{1}$ and $x \neq 0, x(t)=0$ for $t \in x \backslash C l V$. Then given $m \in M, f_{i n}(y)=y\left(t_{m}\right)=0$. But then $(e-y)^{-1}$ exists and $x=x y$ so that $x(e-y)(e-y)^{-1}=0,1, e, x=0$ a contradiction. So $\mathrm{Cl} \mathrm{X}_{1}=\mathrm{X}$. Then evidently

$$
\|x\|^{\prime} \geq \sup _{m \in \mathbb{M}}\left|f_{m}(x)\right|=\sup _{t \in ?}|(x(t))|=\|x\|
$$

as required. \|
COROLLARY: If B is semi-simele then $\|\|$ and $\| \|$ ||re metrically equivelent and $B=C(X)$.

PROCF: This follows at once from the Banach inversion theorem if we note thet M which we heve identified with a subset of X must be ell of X. \|

We next have the key result which enables us to prove thet B is isometric with a closed sub-algebra of $\mathscr{L}_{\boldsymbol{C}}(\mathrm{H})$.

PROPOSITJON 7.9: Suppose B_{1} Find B_{2} are B^{*}-algebras End φ is a $*$-isomorphism (no continuity assumed) from B_{1} to a dense sub-algebrei of B_{2}. Then ρ is necessarily an isometry and hence $\varphi\left(B_{1}\right)=B_{2}$.

PRCOF: Let $x \in B_{1}$ and let B_{B} be the closed subalgebri of B_{1} generated by $x^{*} x$ (and e) : B_{3} is commutative. Define for $y \in \mathscr{C}\left(B_{3}\right)$,
where the suffix indicates the norm in B_{1} or B_{2}, respectively Under $\left\|\|^{\prime}, \varphi\left(B_{3}\right)\right.$ is a commutative $B^{* t}$-algebra, hence (isometrically isomorphic to) $C(x)$ for some X Under $\left\|\|^{\prime \prime}\right.$; $g\left(B_{3}\right)$ is a commutative normed algebra and its completion B_{4} is a closed sub-algebre of B_{2}. Since B_{2}, being a B^{*} - algebra, is semi-simple, B_{4} is also semi-simple. By the preceding. proposition and its corollary $\|y\|^{\prime} \leq\|y\|^{\prime \prime}$ for all $\left.y \in \mathscr{(} B_{3}\right)$ and $\varphi\left(B_{3}\right)=B_{4}$.

Now B_{4} will also $b \in$ of the form $C(X)$ for some X^{\prime}; the result of Proposition 7.8 now yields

$$
\|y\|^{\prime \prime} \leq\|y\|^{\prime}
$$

and so $\quad\|\rho(z)\|_{2}=\|z\|_{1}$ if $z \in B_{3}$. In particular $\left\|x_{1}\right\|^{2}=$ $\left\|x^{*} x\right\|=\left\|\varphi\left(x^{*} x\right)\right\|^{2}=\left\|\varphi\left(x^{*}\right) \varphi(x)\right\|_{2}=\|\varphi(x)\|_{2}^{2}$ anu so y is an tomatry on B_{1} to B_{2} (since evidently the range
of ρ must then be closed, it is the whole of B_{2}). Il

$$
\text { If }\left\{H_{1}\right\} \quad i \in I \text { is any collection of Hilbert spaces }
$$

their Hilbert direct sum $H=(9) H_{i}$ is the Hilbert space whose elements are vectors" $\xi=\left(\xi_{i}\right)_{i \in I}$ such that $\sum_{i \in I}\left\|\xi_{i}\right\|^{2}<\infty$ (so the $\xi_{i}=0$ for all but a countable set of indices i). We can introduce the inner product $(\xi, \eta)=\sum_{i \in I}(\xi i, \eta i)$ and thus the norm $\|\xi\|=(\xi, \xi)^{\frac{1}{2}} ;$ note that $\|\xi\|^{2}=\sum_{i \in I}\left\|_{i}\right\|_{0}^{2}$ It is easy to verify all the Hilbert space axioms (including completeness). If we hive c corresponding collection of bounded operators $\left\{T_{i}\right\}_{i \in I}$ then their direct sum is the operator T on H defined by $T \xi=\left(F_{i} \xi_{i}\right)_{i \in I}$. This is bounded if and only if $\sup _{1 \in I}\left\|T_{i}\right\|<\infty$ and then $\|T\|=\sup _{i \in I}\left\|T_{i}\right\|$. To, see this, note that $|(\mathbb{T} \xi, \eta)|=\left|\sum_{1}\left(T_{1} \xi_{i}, \eta_{i}\right)\right| \leq \sum \mid\left(T_{1} \xi_{1}\right.$, $\left.\eta_{i}\right) \mid \leq \sup \left\|T_{i}\right\| \sum_{i}\left\|\xi_{i}\right\| \cdot\left\|\eta_{i}\right\| \leq \sup \left\|x_{i}\right\|\|\xi\|\|\eta\|$. So if, $\sup \left\|s_{i}\right\|<\infty$. then T is bounded and $\|T\| \leq \sup \left\|T_{i}\right\|$. on the other hand, choose an 1 with $\left\|T_{i}\right\|>\sup \left\|T_{i}\right\|-\xi ;$ there $\operatorname{exist} \xi_{i}, \eta_{i} \in H_{i}$ with $\left|\left(T_{i} \xi_{i}, \eta_{i}\right)\right|>\left(\sup \left\|T_{i}\right\|-2 k\right)\left\|\xi_{i}\right\|\left\|\eta_{i}\right\|$ 。 Now take ξ to be the vector wi th only one non-zero component ξ_{j} and simile ry for η : we then have

$$
|(\mathrm{T} \xi, \eta)|=\left|\left(\mathrm{T}_{1} \xi_{1}, \eta_{i}\right)\right| \geq\left(\sup \left\|\mathrm{T}_{1}\right\|-2 \xi\right)\|\xi\|\|\eta\|
$$

so that $\| T_{\|} \geq$sup $\left\|T_{1}\right\|-2 \xi$ and since ε wes arbitrary $\left\|\mathrm{T}^{\prime}\right\| \geq \sup \left\|T_{i}\right\|$ giving $\|T\|=\sup \left\|T_{\mathcal{j}}\right\|$ as asserted. If. T_{1} is now e collection of representetions of B, their direct sum T, wher $T(x) \xi=\left(T_{1}(x) \xi_{i}\right)_{1 \in I}$ is again a representation as is immedictely verified.

THEOREM 7.10: A $B^{*}-2 l g e b r a$ is isometrically *-isomorphic to a closed sub-algebra of $\mathscr{A}(H)$ for some Hilbert space H.

PROOF: Let B be the algebra and let $\left(T_{1}\right)$ be any semplete set of refresentations (not necessarily irreducible) on Hilbert spaces H_{i}. Taking the direct sum of these we evidently have a faithful $*$-representation $x \longrightarrow T(x)$ of B on the Hilbert space $H=\underset{1 \in I}{\oplus} H_{i}$. (Since $\left\|T_{i}(x)\right\| \leq\|x\|$ for all i (Proposition 3.5) it follows that $\|T(x)\| \leq\|x\|$, but we do not in fact require this). Taking the closure of the set of operators $\{T(x)\}_{x \in B}$ we heve a closed $*$-subalgebra of $\mathscr{L}(H)$ and we are in the situatiion of Proposition 7.5 applying the result of thet proposition, it follows that the map $x \rightarrow T(x)$ is an isometry on to a closed sub-algebra of $\mathscr{L}(H)$, which is what we wanted. Il

It may be useful to indicate whet this representetion may be like in a particular case : starting with $B=C[0,1]$

$$
\text { CHPPTE ? } 8
$$

REPRESENTATIONSOFLOCALEYCOMFACT GROUPS

Let G be a locally compact group, not in general cbelian. By a representation of G we mean a mep $s \rightarrow \mathcal{H}(s)$ where $V(s)$ is an invertible linecr operator on a Benach space, with $V\left(s_{1} s_{2}\right)=V\left(s_{1}\right) V\left(s_{2}\right)$. It will be celled (strongly) continuous if the map is continuous when the operators are given the strong topology. If the Benech space is in fact a Hilbert space and the oferators are all unitaxy (in which cese we shell usucily write " ${ }^{\prime \prime}(s)$ rather then $V(s)$) we heve e unitary representation ; in this case $U\left(s^{-1}\right)=[U(s)]^{*}$. We have alreedy seen in ch.l the there alweys exists a continuous feithful unitery'rer resentation of G. We now wish to exemine the existence of irreducible representitions.

First we defjne irreducibility : this is exactly the seme for grans as for Benach algebres. The representation V is reducible if there is a non-trivicl closed subspece E_{1} of E with $V(s) E_{1} \subset E_{1}$ for all $s \in G$, otherwise irreducible. For unitary representetions on ailbert space H we heve exectly the same criterion for irreducibility as we had previously for algebras :

PROPOSIIION 8.1: The unitiry representation U of G on the Hilbert space H is irreductble if and only if the only ocerators thet commute with all the $\mathrm{T}(\mathrm{s})$ are scelar multirles of the identity operator.

Also, we can introduce the notion of cyclic refresentetion, cyclic vector etc., for representetions of groups in exectly the seme wey as for representations of Bencoch algebres: we heve r result enelogous to Theorem 2.6.

We now review briefly one or two aspects of integra. tion on G. As usuel dt will denote left invarient Hear mersura, with some fixed normelisation. We then have, for $f \mathcal{E}_{\mathrm{OO}}(G)$ at lerst,

$$
\int_{G} s^{f}(t) d t=\int f\left(s^{-1} t\right) d t=\int f(t) d t
$$

but

$$
\int_{G} s^{f}(t) d t=\int_{G} f\left(t s^{-1}\right) d t \neq \int_{G} f(t) d t, \quad \text { in } g \in n \in r a l
$$

However it is clear thet

$$
\int_{G} f\left(u t s^{-1}\right) d t=\int_{G} f_{S}(u t) d t=\int_{G} f(t) d t=\int_{G} f\left(t s^{-1}\right) d t
$$

so that $f \longrightarrow \int_{G} f_{s}(t) d t$ is a left invariant integral on
$C_{00}(G)$; and so by the uniqueness theorem for Heer messure it must be a constent multiple of $\int_{G} f(t) d t$: the constant depends on s but not on f and we write

$$
\int_{G} f_{S}(t) d t=\Delta(s) \int_{G} f(t) d t
$$

This function $\Delta(s)$ is the modular function of G. It is by definition real end non-negetive. If $\Delta(s) \equiv 1$ then G is
called unimodular (the term unimoduler is also arplied to certein groups of metrices with determinent 1 , but we do not use it in the same sense here). $\Delta(s) \equiv l$ is evidently a necessary and sufficient condition for left end right Hear meesures to coincide.

PROPOSITICN 8.2: $s \rightarrow \Delta(s)$ is a continuous homomoruhism of G into the multiplicative gromp of strictly positive reci numbers.

PROOF: If $f \in \mathcal{C}_{O O}$ then $f\left(\mathrm{ts}^{-1}\right)$ is uniformly continuous function ; given \dot{E} we can ceftainly find $\mathbb{N}\left(s_{0}\right)$ so that for $s \in N$ we heve $\left|f\left(t s^{-1}\right)-f\left(t s_{o}^{-1}\right)\right|<\varepsilon$ throughout some fixed compact set hence $\left|\iint_{s} P(t) d t-\int s_{o}^{f}(t) d t\right|<k \varepsilon$ If $s \in N$, hence continuity et s_{0}

$$
\begin{aligned}
\Delta\left(s_{1}-s_{2}\right) \int f(t) d t=\int f\left(t s_{2}^{-1} s_{1}^{-1}\right) d t & =\int f_{s_{1}}\left(t s_{2}^{-1}\right) d t \\
& =\Delta\left(s_{2}\right) \int_{S_{1}}(t) d t
\end{aligned}
$$

The homomorphism property is immediete:

$$
\begin{array}{r}
\Delta\left(s_{1} s_{2}\right) \int f(t) d t=\int f\left(t s_{2}^{-1} s_{1}^{-1}\right) d t=\int f_{s_{1}}\left(t s_{2}^{-1}\right) d t \\
=\Delta(s) \int f_{s_{1}}(t) d t=\Delta\left(s_{2}\right) \Delta\left(s_{1}\right) \int f(t) d t
\end{array}
$$

and the result follows on choosing f with $\int f(t) d t \neq 0$. $\|$ PROPOSITICN 8.3: $\Delta(s) \equiv 1$ if G is abelien or discrete or compact.

PROOF: This is immedicte if G is abelian or discrete。 If G is compect note thet the function $f(t) \equiv 1$ is in $G_{00}(G)$ and apply the formula for $\Delta(s)$ with this f. Il

There are of course unimoduler gromps of other kinids elso.

We $h_{i} v \in \int f(t) d t=\int f(s t) d t=\int f^{\prime}\left(s^{-1} t\right) d t=\int f\left(t s^{-1}\right)$ $\Delta\left(s^{-1}\right) d t=\int f(t s) \Delta(s) d t$. We do not have $\int f(t) d t=\int f\left(t^{-1}\right) d t$ in general ; the eppropriate formule: is

$$
\int f(t) d t=\int f\left(t^{-1}\right) \Delta\left(t^{-1}\right) d t
$$

To see this, look at $\int f\left(t^{-1}\right) \Delta\left(t^{-1}\right) d t$. Using the fommula $\int \varphi(t) d t=\Delta\left(s^{-1}\right) \int \varphi\left(t s^{-1}\right) d t$, with $\varphi(t)=f\left(s^{-1} t^{-1}\right) \Delta\left(t^{-1}\right)$, we $h a v \in \int_{S} f^{\left(t^{-1}\right)} \Delta\left(t^{-1}\right) d t=\int f\left(s^{-1} t^{-1}\right): \Delta\left(t^{-1}\right) d t=\Delta\left(s^{-1}\right) \int f^{-1}\left(s^{-1} t^{-1}\right)$. $\Delta\left(s t^{-1}\right) d t=\int f\left(t^{-1}\right) \Delta\left(t^{-1}\right) d t$, and so this is a left-invarient integral. It must therefore be of the form $f\left(t^{-1}\right) \int \Delta\left(t^{-1}\right) d t=$ $c \int f(t) d t$ for some constant c, by the uniqueness of Hear measure.

To see that c must $b \in I$, choose e neighbourhood of e so thet $\Delta(s)$ is nearly equal to 1 throughout this neighbourhood. Then choose f to be a non-negetive symmetric function $\left(f\left(t^{-1}\right)=f(t)\right.$ for all $\left.t\right)$ with support in the neighbourhood. It will follow thet $\int f(t) d t$ and $\int f\left(t^{-1}\right) \Delta\left(t^{-1}\right) d t$ are arbitreirily close, and hence that $c=1$.

$$
\text { As a corollery, } \int f(t) d t=\int f\left(t^{-1}\right) d t \text { if end only if }
$$

$\Delta(t) \equiv 1$ 。

We may introduce an involution in C_{0} o by writing $f^{*}(t)=\overline{f\left(t^{-1}\right)} \Delta\left(t^{-1}\right)$. It is clecr thet this has all the linecr space properties required : to show thet it has the approfriste property reletive to convolution we note

$$
\begin{aligned}
(f * g)^{*}(t) & =f\left(f^{*}\left(t^{-1}\right)\right. \\
& \Delta\left(t^{-1}\right)=\int f(s) g\left(s^{-1} t^{-1}\right) d s \Delta\left(t^{-1}\right) \\
& =\int g\left(s^{-1} t^{-1}\right) \Delta\left(s^{-1} t-1\right) \overline{f(s)} \Delta(s) d s \\
& =\int g^{*}(t s) f^{*} \cdot\left(s^{-1}\right) d s=g^{*} * f^{*}(t)
\end{aligned}
$$

We heve also immediately the fect thet $f \longrightarrow f^{* k}$ is an isometry for the L_{1} norm :

$$
\left\|f^{*}\right\|_{I}=\int\left|\overline{f\left(t^{-1}\right)} \Delta\left(t^{-1}\right)\right| d t=\int|f(t)\rangle d t=\|f\|_{1}
$$

(on the other hand, it is not an isometric mep in eny other L_{p} norm, unless G is unimodular). So we cen extend the involution uniquely by continuity from $C_{o o}$ to L_{1} end L_{1} then becomes e Benach * -algebra.

We should note also the fact that if we write T_{f} for the operator on $C_{o o}$ obtained by left convolution by $f:$ $T_{f}(g)=f * g$ then we $h \in V \in\left(T_{f} g, h\right)=\left(g, T_{f} * h\right)$, so thet the Hilbert space adjoint of T_{f} is exactly $\mathrm{T}_{\mathrm{f}} \neq$. The verification is not difficult. It is thus clear that the netural invciution on Λ (the completion of $C_{o O}$ in the operator norm on $L_{2}(G)$) coincides with the invalution on $C_{00}(G)$ (This is of course a strong argument in favour of defining f^{*} as we did).

There is one formula that we shall require later : if $w \in$ translate a convolution product f 兴 g either on the riplit or the left, we get $(f * g)_{S}=f *\left(g_{S}\right)$ nd $S_{S}(f * g)=\left(S_{S}\right) * g$. If we take the special case of a product $f^{*}{ }^{*} f$ then if we translate f by s we get exactly the same result: $\left(S_{s}\right)_{* *}^{*}$ $s^{f}=\stackrel{*}{f^{*}} * f$. To see this,

$$
\begin{aligned}
& \int s^{f^{*}}(t) s^{\left.f\left(t^{-1} u\right) d t=\int \overline{f\left(s^{-1} t-1\right.}\right) \Delta\left(t^{-1}\right) f\left(s^{-1} t^{-1} u\right) d t} \\
& =\int f\left(s^{-1} t\right) f\left(s^{-1} t u\right) d t=\int \overline{f(t)} f(t u) d t \\
& =\int f\left(t^{-1}\right) f\left(t^{-1} u\right) \Delta\left(t^{-1}\right) d t \\
& =\int f^{*}(t) f\left(t^{-1} u\right) d t
\end{aligned}
$$

THEOREM 8.4: There is a 1-1 correspondence between continuous unitary representations $U: s \rightarrow U(s)$ of G and essentici $*$-representations $T: X \rightarrow T(x)$ of $L(G):$ in one direction the correspondence is given by

$$
(T(x) \xi, \eta)=\int_{G}(u(s) \xi, \eta) x(s) d s
$$

and in the other by

$$
U(s) T(x) \xi=T\left(S_{s} x\right) \xi \quad(\underline{f o r} a n y \text { suitable } x, \xi)
$$

PROOF: Suppose the representation given. Consider for $x \in L_{1}, \xi, \eta \in H$, the integral

$$
I=\int_{G}(\pi(s) \xi, \eta) x(s) d s
$$

Evidently | I $|=\sup |(T(s) \xi, \eta)\|\cdot\| x \|$ and since $\|\mathbb{U}(s)\|=1$ we have $|I| \leq\|x\|\|\xi\| \|\{\|$. Evidently the integral is linear in ξ, conjugate-linear in η, so it must be of the form $(f(x) \xi$, $\eta):$ where $\|T(x)\| \leq\|x\|$. It is clear that $T(x)$ is a linear function of x. To complete the verification that it is a representation we have to show that $T(x)^{*}=T\left(x^{*}\right)$ and $T(x$ 我 $)=$ $T(x) T(y)$

We heve

$$
\begin{aligned}
& \left(T\left(\mathrm{x}^{*}\right) \xi, \eta\right)=\int(\mathrm{u}(\mathrm{~s}) \xi, \eta) \overline{\mathrm{x}}\left(\mathrm{~s}^{-1}\right) \Delta \Delta^{\prime}\left(\mathrm{s}^{-1}\right) \mathrm{ds} \\
& =\int\left(\xi, \mathrm{w}\left(\mathrm{~s}^{-1}\right) \eta\right) \mathrm{x}\left(\mathrm{~s}^{-1}\right) \Delta\left(\mathrm{s}^{-1}\right) \mathrm{ds}=\int\left(\overline{\left.\mathrm{U}\left(\mathrm{~s}^{-1}\right) \xi, \eta\right) \overline{\mathrm{x}}\left(\mathrm{~s}^{-1}\right)}\right. \\
& \Delta\left(\mathrm{s}^{-1}\right) \mathrm{d} \mathrm{~s} \\
& =\int(\mathrm{U}(\mathrm{~s}) \xi, \eta)(\mathrm{x})(\mathrm{s}) \mathrm{ds}=(\mathrm{T}(\mathrm{x}) \eta, \xi)=\left(\xi, \mathbb{T}(\mathrm{x})^{\eta} \eta\right)=\left(\mathrm{T}(\mathrm{x})^{*} \xi, \eta\right)
\end{aligned}
$$

as required : and

$$
(T(x, x y) \xi, \eta)=\int(\pi(s) \xi, \eta) \int x(s t) y\left(t^{-1}\right) d t d s .
$$

We may interchange the order of integration by Fubini's theorem : we get

$$
\begin{aligned}
& \iint\left(u(s t) u\left(t^{-1}\right) \xi, \eta\right) x(s t) \Delta(t) d s \Delta(t) y\left(t^{-1}\right) d t \\
= & \int\left(T(x) U\left(t^{-1}\right) \xi, \gamma\right) \Delta\left(t^{-1}\right) y\left(t^{-1}\right) d t \\
= & \int\left(U\left(t^{-1}\right) \xi, T(x)^{*} \eta\right) \Delta\left(t^{-1}\right) y\left(t^{-1}\right) d t \\
= & \left(T(y) \xi, T(x)^{*} \eta\right)=(T(x) T(y) \xi, \eta)
\end{aligned}
$$

To see that T is essential : suprose $\xi \neq 0$: then $U(s) \xi$ is nearly equal to $\frac{\delta}{\zeta}$ for s necr e hence if the surport of x is smell and x is non-negative with $\int x(s) d s=1$ then

$$
\int(U(s) \xi, \xi) x(s) d s \text { is nearly equal to } \int(\xi, \xi) x(s) d s=\|\xi\|^{2}
$$ and so in particular $(T(x) \xi, \xi) \neq 0$ and $T(x) \xi$ is therefore non-zero.

So, starting from U, we obtain T quite straightforwardy. To go in the reverse direction is somewhat harder. Suprose first to simplify matters that we have e cyclic representation T with cyclic vector ζ : the vectors $T(x) \zeta$ are then dense in H. We first observe that if $T(x) y=0$ then also $T\left(s^{x}\right) \zeta=0$ for all $s \in G$. For, we have

$$
\begin{aligned}
& \left(T\left(s_{s}\right) \zeta, T\left({ }_{s} x\right) \zeta\right)=\left(T\left(s_{s}^{*} \not{ }^{*} s^{x}\right) \zeta, \zeta\right)=\left(T\left(x^{*} * x\right) \zeta, \zeta\right) \\
& =(T(x) \zeta, T(x) \zeta)
\end{aligned}
$$

so thet the required conclusion follows at once. We now define $\mathrm{U}(\mathrm{s})$ by

$$
U(s) T(x) \zeta_{T}=T\left(S_{S} x\right) \zeta
$$

This is well-defined: if $T(x) \zeta=T(y) \zeta$ then $T(x-y) \zeta_{\gamma}=0$, $T\left(s_{s} x_{s} y\right) \zeta=0$ and $T\left({ }_{s} x\right) \zeta=T\left(g^{y}\right) \zeta$: We have

$$
\begin{gathered}
(U(s) T(x) \zeta, U(S) T(x) \zeta)=\left(T\left(S_{S} x\right) \zeta, T\left({ }_{s} x\right) \zeta\right) \\
=\left(T\left(S_{s} x^{*} \neq s^{x}\right) \zeta, \zeta\right)=\left(T\left(x^{*} * x\right) \zeta, \zeta\right)=(T(x) \zeta, T(x) \zeta)
\end{gathered}
$$

so that $\|\mathrm{U}(\mathrm{s}) \xi\|=\|\xi\|$ for all ξ of the form $\mathbb{T}(x) \zeta$, since these are dense in H we cen extend $J(s)$ uniquely by continuity to become a unitary operator on (it is clecrly linear, algebraicelly). It is clear that $U(\epsilon)=I$, the identity operator, and

$$
\begin{aligned}
& U(s t) T(x) \zeta=T\left(s t^{x}\right) \zeta=T\left(s_{t}\left(t^{x}\right)\right) \zeta=W(s) T(t(x)) \xi \\
= & T(s) U(t) T(x) \zeta,
\end{aligned}
$$

so thet $J(s t)=U(s) U(t)$.
The map $s \longrightarrow W(s)$ is continuous : this is proved by esserticilly the same argument as was used in Proposition 1.2. we heve $\left\|U\left(s_{0}\right) \xi-\mathbb{U}(\mathrm{s}) \xi\right\|=\left\|J\left(s_{0}\right) T(x) \zeta-U(s) T(x) \zeta\right\|$ if $\xi=T(x) \zeta$ and this is $\left\|T\left(s_{0} x-s^{x}\right) \zeta\right\| \leq \|\left(s_{0}{ }^{x}-s_{s} x\| \| \zeta_{0} \|\right.$. So, given $\xi_{1}, \xi_{2} \ldots \ldots \ldots . \xi_{n}, \varepsilon$, so choose x_{1}, \ldots, x_{n} so that $\left\|\left(T\left(x_{r}\right) \zeta-\xi_{r}\right)\right\|<\varepsilon / 3$ for all r and then $N\left(s_{0}\right)$ so thet for $s \in \mathbb{N}\left(s_{0}\right.$: $\left\|_{s_{0}}\left(x_{r}\right)-s_{s}\left(x_{r}\right)\right\|<\frac{\varepsilon}{3\|\zeta\|}$ for all r : this is possible since the continuous functions of onmeact suryort are dense in L_{1} and such functions are uniformly continuous. Then we get

$$
\begin{aligned}
&\left\|u\left(s_{o}\right) \xi_{r}-u(s) \xi_{r}\right\| \leq 2\left\|\xi_{r}-T\left(x_{r}\right) \zeta\right\|+ \| u\left(s_{o}\right) T\left(x_{r}\right) \zeta-T(s) . \\
& \cdot T\left(x_{r}\right) \xi \| \\
&<\frac{2 \varepsilon}{3}+\frac{\varepsilon}{3}=\varepsilon, \quad 1 \leq r \leq n
\end{aligned}
$$

and so the required continuity follows,
We next remerk the if ξ is any vector in H and x any element in L_{1}, then $U(s) T(x) \xi=T\left({ }_{s}\right) \xi$. For, if $\xi=T(y) \zeta$ for some y then $w \in$ have.

$$
\begin{aligned}
& U(s) T(x) T(y) \zeta=U(s) T(x * y) \zeta=T\left({ }_{S} x_{*} y\right) \zeta \\
= & T\left(\left({ }_{s} x\right) * y\right) \zeta=T\left({ }_{s} x\right) \cdot T(y) \zeta=T\left({ }_{s} x\right) \zeta
\end{aligned}
$$

and the general case follows by continuiby since vectors of the form $T(y) \zeta$ are dense in H.

If T is not a cyclic ropresentation we cin decomposs it as a direct sum of cyclic representations, as in Theorem 2.6. For each T_{1} we form U_{1} as described above, and then tare the direct sum of the U_{i}. It is gesy to verify thet U and T are relcted by

$$
U(s) T(x) \xi=T(x) \xi
$$

for all $\xi \in H ;$ for if $L_{i}(s) T_{i}(x) \xi_{i}=T\left({ }_{S}\right) \xi_{i}$ for each i then also $U_{i}(s) T_{i}(x) \xi_{i}=T\left({ }_{s} x\right) \xi_{i}\left(\xi_{i}\right.$ the projection of $\left\{0\right.$. H_{i}) and so the required result holas.

We must show thet the correspondence indiceted is really
1-1. Suppose that T has arisein from U_{0} and thet U hes arisen from T by the formula given. Then $(T(x) \xi, \eta)=\int^{\prime}\left(u_{0}(s) \xi, \eta\right)$ $x(s) d s$ and

$$
\begin{aligned}
\left(T\left(t^{x}\right) \xi, \eta\right) & =\int_{G}\left(U_{0}(s ; \xi, \eta) x\left(t^{-1} s\right) d s\right. \\
& =\int_{G}\left(U_{U}\left(t^{-1} s\right), U_{0}\left(t^{\cdot 1}\right) \eta\right) x\left(t^{-1} s\right) d s \\
& =\left(T(x) \xi, U_{0}\left(t^{-1}\right) \eta\right)=\left(U_{0}(t) T(x) \xi, \eta\right)
\end{aligned}
$$

but this is also $(U(t) I(x) \xi, \eta)$ by definftion so $U(t)=U_{0}(t)$ for all t, as required.

Suprose that U hes arisen from T_{0} and T from U For $z \in C_{o o}(G)$, and hence for all $z\left(\Psi_{1}(G)\right.$, the function $\left(T_{0}(z) \xi, \eta\right)$ is a complex integral on C_{00}; we may wnite it as

$$
\left.\left(T_{0}(z) \xi, \eta\right)=\int_{G} z i s\right) d \mu_{t_{0}} \eta(s)=\int_{G} z(s) d \mu(s) \text { say }
$$

Then $\left(T_{0}(x ; y) \xi, \eta\right)=\int_{G} x(t) y\left(t^{--} s\right) d t d \mu(s)$
and we may interchange the order of the integraton by fuoint:s Theorem : we get

$$
\begin{aligned}
\left(T_{0}(x \neq y) \xi, \eta\right) & =\iint_{G} t^{y(s) d j(s) x(t) d t=\int\left(T_{0}\left(t^{y}\right) \xi, \eta\right) x(t) d^{2}} \\
& =\int\left(x(t) T_{u}(v) \xi, \eta\right) x(t) d t=\left(T^{\prime}\left(x, T_{0}(y) \xi, \eta\right)\right.
\end{aligned}
$$

by the definjtion of T. But $\dot{A} t$ is aiso $\left(T_{0}(x) T_{0}(y) \xi, \eta\right)$ and so $T(x)=T_{0}(x)$ for all x (since the veators ($\Gamma_{0}(y ; \%, \eta$) are dense in H as ξ varies throughont $H \%$! !

THEOREM 8.5: If U end T gre related_as in Theorem 8. 4 then U is irreducible if end only if T is irreducible.

PROOF: Suppose U reducible. Then there is an operator $P \neq \alpha I$ (we can teke P to $b \in$ the rojection on a non-trivial inveriant subspece) such thet $P Q(s)=\mathbb{U}(s) P$, $11 \mathrm{~s} \in G$. Then

$$
\begin{aligned}
&(\operatorname{PT}(x) \xi, \eta)=\left(T(x) \xi, \mathrm{F}^{*} \eta\right)=\int_{G}\left(\mathrm{U}(\mathrm{~s}) \xi, \overrightarrow{P^{*}} \eta\right) x(\mathrm{~s}) \mathrm{ds} \\
&=\int_{G}\left((: \operatorname{PU}(s) \xi, \eta) x(s) d s=\int_{G}(U(s) P \xi, \eta\right. \\
& x(s) d s \\
&=(T(x) P \xi, \eta)
\end{aligned}
$$

and since this holds for all ξ, η, we have $F T(x)=T(x) P$ and T is reducible by Proposition 2.5.

Suprose T reducible, and let P commute with all the $T(x)$. Then $P U(g) T(x) \xi=P T\left(X_{S}\right) \xi=T(x) P \xi=U(s) T(x) P \xi=u(s) P=(x) \xi$. and since the vectors $T(x) \xi$ are dense in H (since T is essential) it follows thet $P(U(s))=U(s) P$ and U is reducible by Proposition 8.1. ||

THEOREM 8.6 (GELFAND-RATKOV) : A locally compact groun G alweys has enough continuous irreducible unitary representations to separate the points of G : given sfo there is a representetion of the kind described with $U(s) \neq I$ 。

PROOF: If $s \neq \epsilon$ we cen find $x \in C$ od G) with $x \neq x$; suprose $\notin N^{\prime}(\epsilon)$ end take a symmetric \mathbb{N}^{\prime} with $N^{\prime} \subset N^{\prime}$, then if the support of x is in $N^{\prime \prime}$, the supports of x end of x are disjoint. Given any ron-zero function $y \in C_{o o}$, we can find a function $z \in C_{00}$ such that the convolution $y \not \approx z$ is non-zero : we heve only to take z non-negative, with sufficiently small support near ϵ, and with $\int z(t) d t=l$: then y and $y * z$ will be uniformly close and if $y \not \equiv 0$ then $y * z \not \equiv 0$. Thus if we consider the representation of $L_{I}(G)$ as leit convolution operators on L_{2}, where

$$
T(x) \xi=x) \xi
$$

then $y \neq 0 \Longrightarrow T(y) \neq 0$. Then by Theorem 5.5 there is an Irreducible representation of. L_{l} with $T(y) \neq C$. Taking $y=x-{ }_{y}$ we see that if U is the associsted unitary representaticn of $G \mathrm{w} \in$ have $T\left(x-{ }_{s} x\right)=T(x)-T(S) T(x) \neq 0$ so that $U(s) \neq I$: and this is what we wanted. Il

We conclude the section by remarking thet in the proof of Theorem 8.4 we did not use the full force of the assumpticn thet. U.s) 13 strongly continuous, in going from to the essom ciated T. It is clear thet wasik continuity (theit is, the continuity of $(\Gamma(s) \xi, \eta)$ for each $\xi, \eta \in H)$ would suffice: we could then go to T and beck to of which must then necessarily be strongly continuous. So, for unitary rerresentations, weak continuity implies strong continuity.

If we only issume that $\mathbb{U}(\mathrm{s})$ is weakly mecsureble then we cen obtein on associsted representetion T as kefore, excert thet now we heve no assurence thet T is non-zero, to sey nothing of being essential. For example, let $G=R$ and let H be the space of functions $\xi(t)$ of the real variable t with $\sum|\xi(t)|^{2}<\infty$ (so that $\xi(t) \neq 0$ for \dot{A} countable set of values of t only). The inner product $(\xi, \eta)=\sum_{t \in R} \xi(t) \bar{\eta}(t)$ is then defined for all $\xi, \eta \in H$. Take the representation of R on H gaven by

$$
Y(s) \xi(t)=\xi(t \ldots s) ;
$$

this is evidently unitary. It is evidently also weakly mecsursble : indeed for a fixed ξ, η we heve $\sum \xi(t-s) \overline{\eta(t)}$ e for a counteble set of values of s only i.e. $(\mathrm{U}(\mathrm{s}) \xi, \eta)=0$ for almost all sfor fixed \int_{0}^{\natural} and η. But then of coirse ($r(x ; \xi, \eta)$ $=\int(v(s) \xi, \eta) x(s) d s=0$ for all ξ, η and so $T(x)=0$ for aill x. However, if u is weckly measurable end is semarable, $w \in$ can conclude that T is essential. For, let η_{n} be an orthonomal basis for : if H (s) is unitery and weakly measurabje then $(U(s) \xi, \eta)$ cannot $b \in$ almost $\in V \in i y w h \in z \in r o$ for all no if it were, then in view of the formulae

$$
\begin{array}{r}
U(s) \xi=\sum_{n=1}^{\infty}\left(U(s) \xi \cdot \eta_{n}\right) \eta_{n} \\
\|U(s) \xi\|^{2}=\sum_{n=1}^{\infty}\left|\left(U(s) \xi, \eta_{n}\right)\right|^{2}
\end{array}
$$

it would follow that $\|U(\mathrm{~s}) \xi\|=0$ for almost all s; but $\|\mathrm{U}(\mathrm{s}) \xi\|=\|\xi\|$ for aill s since U_{i} unitary. So we can find; for $\xi \not \neq 0$. sn η so thet $(T(s) \xi, \eta)$ is not almost $\in v \in$ rywher ϵ $z \in r o$. Then there exists $x(s) \in \mathcal{C}_{00}$ such that

$$
(u(s) \xi, \eta) x(s) d s \neq 0
$$

end hence $(T(x) \zeta, \eta) \neq 0, r(x) \xi \neq 0$ as required.
So for unitary representetions if on sepereble
Hilbert space, weak measurebility implies strong continuity. This is not true in general : the representation of R dwscribed above is not even weakly continuous.

REFRESENTETIOPSOFCOMFACTGROUPS ETC

In this section we assume that Hear measure on G has been normalised so that $\int_{G} d s=1$.

THEOREM S.1: If G is compict, every continuous irreducible unitary representetion is finite-dimensional.

PROOI: For $\xi, \gamma_{l}, \zeta<H$ consider the integral

$$
\int_{G}\left(u(s) \zeta_{G}, \eta\right) \overline{(U(s) \xi, \xi)} d s
$$

For fixed ζ this is linear in ξ, conjugate-linear in η : since it is evidently bounded (by $\|\zeta\|^{2}\|\xi\|\|\eta\|$) it must be of the form $(A(\zeta) \xi, \eta)$ where $A(Z)$ is some bouncled lineer operetor on $\mathrm{H} . \mathrm{N}_{\mathrm{O}} \mathrm{W}$

$$
\begin{aligned}
(A(\zeta) U(t) \xi, \eta) & =\int_{G}(U(s) \zeta, \eta) \overline{(U(s) \zeta, U(t) \zeta)} d s \\
& =\int_{G}(U(t s) \zeta, \eta) \overline{(U(t s) \zeta, U(t) \xi)} d s \\
& =\int_{G}\left(U(s) \zeta_{m}, U\left(t^{\prime}\right) \eta\right) \overline{(U(s) \zeta, \eta)} d s \\
& =\left(A(\zeta) \xi, \bar{J}\left(t^{-1}\right) \eta\right)=\left(U(t) A(\zeta) \xi, \gamma_{i}\right)
\end{aligned}
$$

Since ξ, η were arbitrary $A(\zeta) U(t)=\Pi(t) A(\zeta)$ for all t : since U is assumed irreducible, $A(\zeta)=a\left(\zeta_{z}\right)$ for scme
scaler a($\left.y_{\text {, }}\right)$. That is,

$$
\int_{G}(\mathbb{U}(s) \zeta, \eta) \overline{(u(s) \zeta, \xi)} d s=a(\zeta)(\xi, \eta)
$$

and in particular, taking $\eta=\xi$,

$$
|(u(s) \zeta, \xi)|^{2}=a(\zeta)\|\xi\|^{2}
$$

for all $\zeta, \zeta_{j} \in H$.
Also

$$
\begin{aligned}
\bar{a}(\xi)\|\zeta\|^{2}= & \int_{G}|(\tilde{a}(\dot{s}) \xi, \zeta)|^{2} d s=\int_{G}\left|\left(\xi, u\left(s^{-1}\right) \zeta_{,}\right)\right|^{2}= \\
& \int_{G}\left|\left(u\left(s^{-1}\right) \zeta, \xi\right)\right|^{2} d s
\end{aligned}
$$

and in a compact group $\Delta(s) \equiv 1$, so the Hear measure is inverse invariant : the integral is equal to

$$
\int_{G}|(u(s) \zeta, \xi)|^{2} d s=a(\zeta)\|\xi\|^{2}
$$

It follows the ${ }^{(}(\xi) /\|\xi\|^{2:=}=^{a(\zeta)} /\|\zeta\|^{2}$ for any ξ, ζ : that is, there is a constant k such that

$$
a(\xi)=k\|\xi\|^{2} \text { for } \operatorname{ll1} \xi \in \mathrm{H}
$$

Thus $\int_{G}|(u(s) \xi, \xi)|^{2} d s=a(\xi)\|\xi\|^{2}=k\|\xi\|^{4}$ and if $\|\xi\|=1$ then $\left.\int_{G} \mid(G)(s) \xi, \xi\right)\left.\right|^{2} d s=k$; this shows that $k \neq 0$ since $|(\mathbb{U}(\mathrm{s}) \boldsymbol{\xi}, \xi)|$ is a continuous function of s end takes the
value 1 at $\dot{G}=6$.
Now let $\xi_{1}, \xi_{\varepsilon} \ldots . \xi_{n}$ be an orthonormel set of vectors in H, and ξ any vector with $\|\xi\|=1$. Then

$$
\left.\int_{G} \mid(0, s) \xi_{1} ; \xi\right)\left.\right|^{2} d s=\varepsilon\left(\xi_{i}\right)\|\xi\|^{2}=k
$$

and so

$$
\begin{aligned}
n k & =\sum_{i=1}^{n} \int\left|\left(u(s) \xi_{i}, \xi\right)\right|^{2} d s \\
& =\sum_{i=1}^{n} \int\left|u(s) \xi_{1}, \xi\right|^{2} d s \\
& =\int \sum_{G}\left|\left(\xi_{\dot{1}}, \sigma\left(s^{-1}\right) \xi\right)\right|^{2} d s
\end{aligned}
$$

But we heve $\|$ 呫 $\left(s^{-1}\right) \xi \|^{2} \geq \sum_{i=1}^{n} \mid\left.\left(\xi_{i}\right.$, w $\left.\left(s^{-1}\right) \xi\right)\right|^{2}$, by Besse1's inequality, (if $\xi_{1}, \xi_{2} \ldots \ldots \xi_{n}$ is a complete orthonormel set) and so

$$
n k \leq \int_{G}\left\|u\left(s^{-1}\right) \xi\right\|^{2} d s=\int_{G} d s=1
$$

and it follows that $n \leq k^{-1}$. so that the dimension of H cennot exceed k^{-1} and so in particular is finite. \|l

There follows from this result and from Theorem 8.6 the celebrated Peter-Weyl theorem (1927) : there are enough representations of. a compect group by unitary (finite) matrices to separate the points of the group. A direct proof of this would of course evoid many of the complicated considerations
necessery to decl with the locally compect case.
It should thet be supposed thet given e compact group G there is an integer $n=n(G)$ such the t every continuous irreducible unitcry representetions is of dimension $\leq n$. $\mathrm{T}_{\mathrm{i}} \mathrm{k} \in$ for $\in \mathrm{Xemplef}_{\mathrm{f}} \mathrm{fr}$ each integer m, G to be the group of Ell m m unitery metrices, with usuel topology as a subset of $R^{2 m}{ }^{2}$. G_{m} is compect for each m and if $G=\prod G_{m}$ is the product of the G_{m} 's with the usual topology then G is compect also. The map $s \longrightarrow s_{m}$ where s_{m} is the $m^{\text {th }}$ coordinate of s is a unitary representation of G on apace of dimension m and is clearly irreducible.

The next theorem generalises a result thet is well know for finite groups : we recall thet two representations V_{1} on E_{1}, V_{2} on E_{2} are equivalent if there is a bounded linear operator W from F_{1} to E_{2} with a bounded inverse such thet $V_{2}(s)=W V_{1}(s) W^{-1}$ ror sill $s \in G$.

THEOREM ©.2: Let G becompact and V a continuous represertcition, not in general unitary, on a

Hilbert skace H. Then V is equivalent to a continuous unitary representation.

PROOF: Introduce e: new inner product in H by writing

$$
(\xi,)_{1}=\int_{G}(V(s) \xi, \nabla(s) \eta) \mathrm{d} s
$$

Since V is continuous and G is compact the integral der teinly exists. It is easily verified that all the inner product properties hold : in particular, $(\xi, \xi)=0$ implies $\xi=0$ since if $\xi \neq 0$ then the function $(\mathbb{U}(s) \xi, U(s) \xi) b \in i n g$ continuous, non-negative and equal to (ξ, ξ) at $s=e$ has en integral which is strictly positive.
$\operatorname{Th} \in \mathrm{n}(V(t) \xi, V(t) \eta)_{1}=\int_{G}(V(s) V(t) \underset{S}{G}, V(s) V(t) \eta) d s$ $=\int_{G}(V(s t) \xi, V(s t) r) \hat{\xi}$ s and since in e compact group left invariant Hare measure is also right invarient, this is $\int_{G}\left(V(d) \xi, V(s ; \eta) d s=(\xi, \eta)_{1}\right.$; so V is unitary with respect to the inner product $(\xi, \eta)_{1}$.

Now for $\operatorname{each} \xi \in H, V(s) \xi$ is continuous, hence $\|V(s) \xi\|$ is continuous hence (since G is comp:ct)

$$
\sup _{s \in G}\|v(s) \xi\|<c o
$$

It follows from the Banach-Steinheus theorem theist

$$
\sup _{s \in G}\|V(s)\|<c
$$

Writing k for this supremum we have

$$
\begin{aligned}
\|\xi\|_{1}^{2} & =\left(\xi, \xi j_{1}=\int_{G}\|\eta(s) \xi\|^{2} d s \leq k^{2}\|\xi\|^{2} \int_{G} 1 d s\right. \\
& =k^{2}\|\xi\|^{2}
\end{aligned}
$$

and on the other hend

$$
\|\xi\|^{2}=\left\|V\left(s^{-1}\right) V(s) \xi\right\|^{2} \leq k^{2}\|V(s) \xi\|^{2}
$$

Integrete both sides of this with respect to s and we heve

$$
\|\xi\|^{2} \leq k^{2}\|\xi\|_{I}^{2}
$$

and hence the norms $\|\|$ and $\| \|_{1}$ are equivalent. If now H_{I} is simfly H with the norm $\left\|\|_{1}\right.$ instead of $\| \|$, and W is the identity mep of H onto H_{1} then W and W^{-1} are bounded and

$$
U(s)(=V(s))=W V(s) W^{-1}
$$

is unitary es en operetor on H_{1}. Il
We conclude by showing thet the re are groups that admit no non-trivieil finite dimensionel unitery representetions.

LEMMA 9.3: Let V be a non-singuler normal n x matrix.
If for every integer $m \geq 1$ there is n integrel multi-
Ils of m, say $k(m)$, and anon-singular n. n matrix W_{m} such that $V^{k(m)}=W_{m} V W_{m}^{-1}$ then $V=I$.

PRCOF: Let $\lambda_{1} \cdot \therefore, \lambda_{n}$ be the eigenvelues of V; then $v^{k(m)}$ has eigenvilues $\lambda_{1}^{k(m)}, \ldots . \lambda_{n}^{k(m)}$ and $W_{m} V_{m}^{-1}$ hes eigenvalues $\lambda_{1}, \ldots . \lambda_{n}$ ṡя $\lambda_{1}^{k(m)} \ldots . ., \lambda_{n}^{k(m)}$ are simrly a permutatine of $\lambda_{1}, \ldots . . ., \lambda_{n}$. Fix sttention on $\lambda_{j}: \lambda_{i}^{k(1)}, \lambda_{i}^{k(\varepsilon)}, \ldots$ $\ldots . ., \lambda_{i}^{k(r)}, \ldots$ is an infinite sequence selected from the finite $\operatorname{set} \lambda_{1} \ldots . . ., \lambda_{n}$.

Hence for some $j, \lambda_{1}^{k(m)}$ takes the value λ_{j} for infinitely many values of m. If m_{o} is the first of these we can find an m such that $k(m)>k\left(m_{0}\right)$ and $\hat{N}_{i}^{k(m)}=\lambda_{i}^{k\left(m_{0} j\right)}=\lambda$
(since $k(m)$ is always a multiple of m. Then $\lambda_{i}^{k(m)-k\left(m_{0}\right)}=1$ and λ is a root of unity.

This holds for any 1 ; we obtain integers $r_{1} \ldots \ldots r_{n}$ such that $\lambda_{1}^{r_{1}}=\ldots \ldots \ldots=\lambda_{n}^{r_{n}}=1$. But then if m is any integer containing $r_{1} \ldots \ldots, r_{n}$ as factors (e.g., l. c.m($r_{1} \ldots r_{n}$) then $k(m)$ also contains $r_{1} \ldots \ldots, r_{n}$ as factors and so

$$
\lambda_{1}^{k(m)}=\ldots \ldots=\lambda_{n}^{k(m)}=1
$$

and hence $\lambda_{1}=\ldots \ldots=\lambda_{n}=1$. This clearly implies that $V=I$ as required, since V is a normal metrix. \|

For any locally compact group G let G_{o} be the subset: $\{S: U(S)=I$ if U is a finite dimensioncil continuous unitary representation $\}$. That is G_{o} is the set of elements that cannot be sepireted from e by a finite diconsional continuous unitary representition. It is impediate thet G_{o} is a closed invariant subgroup G. Then we heve

PROPOSITION 9.4: Let $s \in G$ be such that for each
integer m there exists $t_{m} \in G$ and an integral
multiple $k(m)$ of m such thet

$$
s^{k(m)}=t_{m} s t_{m}^{-1}
$$

then $s \in G_{0}$.

PROOF: This follows et once from Lemma E .3 , on roing over to e finite dimensiencl unitery rerresentition. If

PROFOSITTCN 9.5: Let G be the group of 2×2 comply matrices with determinent 1 (the specicl linear grour SL(2, c) or the 2×2 unimoduler group) then G hes no finite dimensionsi unitary represcntations.

PROOF: We mey as well teke the discrete topozogy on G : if we show the the result holds in this case it is of course true a fortiori for the usual topolory. We proceed to show $G_{O}=G$ here,
Let $\quad S=\left[\begin{array}{ll}1 & \varepsilon \\ 0 & 1\end{array}\right] \quad t_{m}=\left[\begin{array}{ll}m & \vdots \\ 0 & m^{-1}\end{array}\right]$;
then $t_{m} s t_{m}^{-1}=\left[\begin{array}{cc}m & 0 \\ 0 & m^{-1}\end{array}\right]\left[\begin{array}{ll}1 & a \\ 0 & 1\end{array}\right]\left[\begin{array}{cc}m^{-1} & 0 \\ 0 & m\end{array}\right]$

$$
\begin{aligned}
& =\left[\begin{array}{ll}
m & m a \\
0 & m^{-1}
\end{array}\right]\left[\begin{array}{cc}
m^{-1} & 0 \\
0 & m \\
0
\end{array}\right] \\
& =\left[\begin{array}{ll}
1 & m^{2} \\
0 & 1
\end{array}\right]=\left[\begin{array}{cc}
1 & a \\
0 & 1
\end{array}\right]^{-} \quad, \text { so the requi red }
\end{aligned}
$$

conditions hold with $k(m)=m^{2}$; by Proposition $9.4 s \in G_{0}$.

88

$$
\begin{aligned}
& \text { Now } G_{0} \text { is inveriant and }\left[\begin{array}{ll}
1 & 0 \\
a & 1
\end{array}\right]=\left[\begin{array}{cc}
0 & -1 \\
1 & 0
\end{array}\right]\left[\begin{array}{ll}
1 & \cdots \\
0 & 1
\end{array}\right] \\
& \left|\begin{array}{ll}
0 & -1 \\
1 & 0
\end{array}\right| \text { sc it follow s thit }\left[\begin{array}{ll}
1 & 0 \\
a & 1
\end{array}\right] E G_{O} \text {. Then if } c \neq 0 \text { we } \\
& \text { have } \\
& {\left[\begin{array}{ll}
a & b \\
c & d .
\end{array} \left\lvert\,=\left[\begin{array}{ll}
1 & \frac{a-1}{c} \\
0 & 1
\end{array}\right]\left[\begin{array}{ll}
1 & 0 \\
c & 1
\end{array}\right]\left[\begin{array}{cc}
1 & \frac{d-1}{c} \\
0 & 1
\end{array}\right] \in G_{0}\right.\right.} \\
& \text { end if } c=0 \text { then } d \neq 0 \text { (since } d-b c=1 \text {) and we heve } \\
& {\left[\begin{array}{ll}
a & b \\
0 & d
\end{array}\right]=\left[\begin{array}{ll}
-b & 0 \\
-d & 0
\end{array}\right]\left[\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right] \in G_{c} \quad \text { since both }}
\end{aligned}
$$

factors are of the form which we heve just rroved to be in $G_{0} . \|$

Lisi of Matscience Reports (1964-66)

ort No:	Author		Title
35	K. Symanzik		Lectur: on a modified rodels of Euclidean Qua atum Field Theory.
36	K. Venkatesan		Report on recen ${ }^{+}$nverimental data (1964).
37	A. Fujii		L. Fures on Fermi dynamics.
38	M. Gourdin		Matiematical introduction to unitary symmetries,
39	J. V. Narlikar		Theorins of Gravita
40	K. Venkatesan	,	Report on recer ${ }^{\text {. }}$. - iinental data (1965).
41	K. R. Unni		Introduction to Hilleat space.
12	L. Rosenfeld		Theory of nuclear reactions.
43	K. R. Unni		Concepts in Modern M. Chematics I (Algebra).
44	H. Ruegg		Relativistic generalization of SU. (6)
45	W. K. Hayman		Transfinite diameter and its applications.
46	Ph. Meyer		Selected trpics in We ik Interactions.
47	J. Rzewuski	,	Gauge transformati : 'n quantum field theory.
48	P. L. Kannappan		Theory of functiona! equations.
49	P. C. Vaidya		Selected topics in Gravita in.
50	K. Venkatesan		Report on recent experime al data (1966).
51	K. R. Unni		Concepts in modern maxt ${ }^{2}$ * atics II (Topology).
52	K. R. Unni		" \quad, III (Analysis)
53	V. Krishnamurthy		Duality Theory in . ${ }^{\text {n }}$ cally convex spaces.
54	J. H. Willi mson		Representation theory for Banach algebras and locally compt 't groups

