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PRE F ACE 

-The aim of these lectures is to provide an introduction 

to some of the basic theorems of representation theory. They 

are purely expository ! there is little or hothj_ng that cannot 

be found in standard treatises such as M.A.NaimGrk' s N.ormed 

rings,(revised edition: Noordhoff, Groningen 1964) or Vol.l 

of Abstract harmonic analysis by E.HewHt and K.A.Ross (Springer, 

Berlin 1963). The background assumed is (a) the elementary 

theory of Banach algebras, in particular of commutative algebras, 

up to Gelfand's representation theorem ; (b) the elementary 

theory of Haar measure on a (not necessarily abelian) locally 

compact group ;(c) some standard results from linear analysis, 

such as the spectral theorem, tlte Banach-Steinhaus -theorem and 

the Krein-Milman theorem. This material is readily available 

in several excellent texts, and it ,"auld perhaps be super-

fluous to make specific recommendations. 

January 1967 J.H.l.lI. 
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C ,H APT E R I 
.. "~.~,,, 

G ENE R AL I TIE 8 

Most abstract mElthematical systems have at least 

one reasonably well understood concrete realisation, which 

may have served as the starting-point for the abstract 

theory. One may thin1 of groups (finite groups at least) 

envisaged as groups of permutations. Such a concrete 

reali sation may also have been found in the cou rse of, or 

subsequent to, the development of the general theory. In 

any Ca::;e we assume a class Y of abstract systems. 8 and 

a class ro of concrete realisations 80 A structure 

preserving map 8 -) 8 0 is a renresentgt!on of 8 as a 

system of 10 • In general many syst ems So (~ can contain 

images of a given 8 E(f ; think of permutations and finite 

g rou ps. The choice of the class Yo of "well knOlvn "concrete" , 
systems is to some extent arbitrary; and in most cases no 

I entirely satisfactory reason can be put forward for selecting 

lone such class Yo rather than another. HOwever in most 

I instances there are certain conventional choices for Yo 
I, which are clearly in sOme sense reasonable, and \'re follow C,O 

I. the tradi Hons. In the cases in w~1ich we are interested c/o 

I will be some class of algebras or of groups of linear 

operators on linear spaces, which are regarded as reasohably 

fllUliliar objects. 

I 

I I 
I 

[ • 
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An import&nt general notion is that of 'irreduci­

bility' or the equivalent. We 3hall be particulorly interes­

ted in representations that are 'sjmple' in some suitably 

defined technical sense ; \·re demand that they cannot be mad8 

up out of. simpler pieces. In this Idnd of context the tenns 

'simple', 'minimal', 'irreducible', 'indecomposable' are all 

going to mean much the same thing. To take an elementary 

case: suppose Y is the class of linear spaces (real say~ 

and Yo is the class of finite dimensionEl real Euclidean 

spaces Among the various possible maps 

Those for which n=l, L e. the linear functionals on 8, 

evidently have this 'minimal' or 'simple' property. 

Another general idea is that of a ' faithful' rSp1'8-

sentation this simply means that the map is 1-1 (from S 

to So). A set {Ti} of representations is com)21ei.G. if 

whenever XfY in S there is a Ti such that Ti(x) f 
Ti(y) in So E~. We would like complete set of irredu­

cible representations in general. TI"O represent2t:lons 

Tl : 8 ->Sl andT2: S -)82 are equivalent. if there is 

a 1-1 map W of Sl on to 8 2 such thClt Wand W-
l aI',~ 

both structure.,preserving and T2(x) = WTl(x) f01' all xEs, 

We are usually interested in representations only up to 

equivalence, 

We nOl" turn more particularly to Banach algebras 

and topological groups. We sh211 always be. conce::ned vrith 

\ 
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representations by bounded linear operators on <1 B&llach :Jpac(: 

(which will usually be a Hilbert space) : we assume ~ to be 

the class { £0 (En Ef-i5 of all algebras of lirl8ar opo::.'ators 

on the Banach space E, for E E r, (the dass of all Bansrch 

spaces). In each case there is a t~ivial representation : 

if B is a Banach algebra then T (x) = C for all 

if G is B group then T(t) = I fOj: all t £ G 

Take now B to be a Banach algebr2 : we shall 

consider only cotnplex algebri)s (the real C2se is simLar 

slightly more complicated) and \-16 do not aSSUi'le a 1):1i·;. 

however there is a unit e \-Ie shall 8hrays demand T(a;·c I 

(the identity operator). A representation T: B --'>"" ,~(F,:i 

is bounded (or continuous):f II T(x) II :: k ;Ix!l for a.i.l ," I. 'H .' ... ~ .-

and some real k. 

There are atleast two obvious representations fo~ any 

Banach algebra B. If we consider B as acting on itself 

(as a linear space) by left multipl.ication and \Ir~tc 

T(x)y = xy 

in~(B). Also IIT(x)II~lIxll for all xt; B. Ke sha'.l cCtL. 

it the left obvious representatior* of B. The left O~ViO~H 

representation is fai thful if and only if ti~e 18:~:~ a11 .. '1ihila" 

tor of B , that is, { x : xy = 0 for all y E B} .'..5 !-('~>C. 

* Sometimes it is also called ~eft regular rep::.'esent:J·~ion. 
but this term is also applied in a ratller 3~_milar bUG ' 
di stinct sens e, so we avoid it here. 
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More generally, let J be a closed left ideal i.D Band 

take the quotient B/J, which will be a Banach space ( ;n',-c 

not a Banach algebra unless J is two sided). 
., 

Let p 
canonical map B --;~ B/J, then the representation T \,;he):2 

is the left obvious representatlo:1 modu](' '\ 
, -----;-.~--~----.~-~-~.-'-.-

Similarly for 'right'. 

The kernel of a representation T :,(X : T(x) = o} Ls 

a two sided ideal in B, closed if T is bounded, and conver, 

sely. This fact seems however not to be so useful in '~lJe no;'},· 

commutative case as in the commutativEl case, Hhere it is of 

fundamental importance. 

A subspace El of E is said to be ill'ULri8ni nncler 

the representation T if T(x)(El)CEl for all x £. D. _~ 

representation T is Xedl1CiblQ if there exists a nonitr:','id 

closed subspace E '-' E 1 'rl- \~hi ch is invariant under othe:r.'= 

wise .l.rreducible. If T is irreducible, then the ve~':;or;, 

T(X)\=, x E B , t6 E are dense jn E othe:C'w'i sa the 

closure would be a non-trivial subspace El wi.th the 

required properties. 

If there is a single vector ~ E E such that t:-lC 

vectors {T(X) ~ l,X E B} are dense in E '~hen is 

!laid to be a J)]LcliQ. vector for T and E is, cyclic unc1er 

T. If for 

T(x)~ I- 0 

there is a x 1ft. B ... with each non-zero l; ',E E 

then T is ess6ntL~+ : in gener8J if we w!~te 

1 
T(x) = 0 for all x fD:, (-

.l 
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then N is a closed subsapce of E. We may take the 4uo­

tient E/I\T and then the induced representaUon Tl given by 

Tl(x) P(y) = P(x y ) is essential. 30 in fact we can 

confine ourselves to a great extent to essential representz .. 

Hons. 

FROFOSI TION 1.1: A non-ze ro represent ation i ~ 

jrreducible if and only if eveY'y non-zero vector 

is cyclic for it. 

PROOF: If ~, f- 0 is not dyclic then the closurs of 

: x E B} would be a proper closed subspace of 

invariant under T : so T is reducible. Conversely, if T 

is reducible, then clearly no vector in a closed invarian~ 

proper subspace can be cyclic. II 

Now He shall t:::.ke the case of a locally compBct 

topological group. Here we are assured of the existence ,,:' 

an essentially unique invariant measure on the gro"p. 

Let G be a locally compact topological group alYJ 

let dt denote the left inv2ri&nt Haar measure on G. 'Ne 

have then, 

f f(t)dt 
G 

= for all s E G. 

Denote f(s-lt) as a function of t by sf(t) , the ),il:f~ 

t.ranslate of by s. If Coo(G) is the linear Space of 

• 
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complex valued continuous functions on G with compact 

support then f f( t )dt makes sense fo r f E Coo( G). )'Ie can 
G 

introduce var.i ous norms into for example 

IIfll"" == sup I f(t) I 
tE- G ~ 

IIfll == (J1f(t)IPdt) P 
p G 

J.<" <00 

On completion, we have the spaces Co(G) , Lp(G). If p==2 

we have a Hllbert space lvl th inner product 

(1' ,g) == f f(t) g(t)dt 
G 

It ls clear that we have a wide variety of representation::; 

of G as (i sometri c) linear operators T( s) on one of 

these spaces. In vielv of the left invariance, if we w:,'.lCe 

T(s) 

\1e have 

IIT(s)f II 

== T( s) f == f s 

II s fll 

So IIT(s)1I == L Further T(sls2) f(t) == fchS2)-lt))== 

f(s;l si1t ) == (T(S2) f) (Silt) == T(sl) T(s2) f(t) so that 

T(sls2) == T(sl) T(s2)' Thus we he.ve 8 representation; 

s ----7' T(s) is a homomorphism. It turns out that the no::'!:, 

• 
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topology on the operators is not the apprOrri2~8 ODS hE~) 

but rather the strong topology. We hove, in i'e,ct, the i'C',' 

ing 

i sam e t ri cop e ra to I' S oJ).. Lp ( G ) > Ci 5, 9 < 00 ) 0 r C~ . 

. Co (G) • .i.'hts is bi con:i:.jl'119J.t~LJ .. L,QIl,s::.c: :~o,:':'_'l_Jl§.'Ls 

strong top<;,.1 0 gy ,_~'~Q.?,l:,LtAL,}g~.:)1_Q_n ~j..xtj;;Q rh~"~)_ 'Le) T' 

T a are, 

{ T : liT ~ II < E _. 1" 
• r ~ , ;J ,; 

PRCOF: If sl f. s2 , then frcK the lac'll C0tnp>,,'.::,:·s 

of G, we cen find" function f ECoo(G)snch t:1Bt f~.S·I) I 

f(s2) , so that T(sl)f:= T(s2)f, 80 'r j s 1-10 

Since each f E Coo(G i is l'n5fo rmly "on~:l,nU01..3 J <;t".,n 

( > 0 there eXists a neighbourhood 

such thct IIT( s)f .. fll < E fOl' s E 'IT .... :r. c f~ { r ( ('I' .:.., 
~.)J. '. C \- (")~i '..'.' .1." 

dense in each Lp(G) dnd in Cf)(G) , ~;t-,eHJ eX!.s~s ::\ 061[;'. 

bourhood ?-rYe) ~rith IIT(s)<';), -~i' n -: [: for s (- ?T~ ~<l·"4L:·:T: 
or C This proves that the rGe.}J S .~!. ri'(~;) i~ (o't':~~i'l'l'--o 

ous. 

of e. Then there exists a symmei;;'ic ndgtbol.lrh,.)oc: ]Ii' (G; 
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such that N'N'CN. Let f ("Coo such that f ~ 0 9 the support 

of feN' and II fll = 1 p 
If S¢N, then f, T(s)f II'ill have 

disjoint supports 8ild then 

IIr - m (s) fii ~ .. It· 
p 

;: I[~I' = 1 I L : 
p 

when(JV c r sdN 
i' 

and so the f~t ~.."o:_:.g r.Ai ghbou rhood 

{II ,,' 1 s: T( s)f .- f:r < J.? 
\ "P ~ 

is contained in the gj_ven 

If p=2 we have 

as pequi re~1. 

(T(S)~ ( 1-( ··l ,~( .,1-) 
j~,;j C,;t.s tdt-

G 

Thts completes the proof. Ii 

( t .: ~; n( t ) d~ = 
'oj' l 
G 

:::(~,11) 

The functions tn . Coo(G) hc:ve a rather :ci'.!h algebrBic 

introduce an operation of L\UJ_tir,li::r:'don ; if f: ,S (CooCG) then 

the function 

G 

is easily verified 'Go be agaJ.r. ",n r; lOCG). It is caLLed the 

" " . ':;!."h this as multipl1ca-

tion, Coo(G) becomes a lir:.ear ass;)0iat',,>",? alg:;:'.:-a (not 

commutative in general). l,'le have it: gEinp.r2.1 the inequality 
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. so that in particul2r Ll(G) is a Banach algebra. Also 

&. regarding f as an operator on Coo with II lip, the operator 
if· .~ . nonn satisfies IIfllop ~ II f ll l , and completing Coo under II Hop 

we get various operator algebras. The case p~l gives Ll(G) 

again and p=2 gives !\(G), which is in fact a B"-algebra. 



C HAP T E R 2 

ALGEBRAS WITH I P V Q L UTI 0 r 

Let B be a complex Banach algebra, not necessarily 

wi th a uni t I we shall denote by B1 the algebra B 1·1i th a unit 

adjoined, in case Blacks b. uni t. Bl may be normed in the' 
) 

obvlous way: II Ae + xII = I A I + IIxll but there also otha:' / 
" 

ways of norming B 
I 

Ivhich are more appropriate in certain' cases, 

fo· in particular if B is a B -a1gebr&. 

DEFINITIO~1 : An inyo1ution on B is a map x ---'7Y!' of B 

to itself satisfying at least the following conditions 

(i) x*''' = x 

(ii) ()"x+fY{ = ).x~ +FY~ 
(iii) (xy)'" = y~ x*' 

The involution may be re1c,ted to the norm in varl ous 

ways 

(1) X ~'>, x* is a continuous map; 

(2) x '> x*' is an isometric map; 

(3) IIx x*1I = IIxll
2 

for all x ; 
2 

(3') IIx>'fx II = Ilxll for all x 

·rt is not hard to see (3') <-> (3) -==> (2) _,';(1), 

'A Banach algebra with a involution satisfying (2) \>Iill 

be called a Banach *-algebrq and Vie shall ali-laYs 

assume this condition frollt noVi on. If the stronger 
-.¥: condition (3) holds, Vie have a B -algebra. 
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Examp~~: (1) B ~ c , with complex conjug&tionas 

is a B*" algepl1a. This is the simplest example of 

involution, 

* a B "algebrc1,. 

~2) B = Co(x) , the continuousfunctlons on the locally compacj; 

HalAsdorff spaCE K vanishing at infinity, wJth IIxll = suplx(t)l. 

t f x and conjugation as invclution. This is the typi'cal 

commutative B~"algebra. 

(3) B = algebra of all complex n;><.n matrices, with x}l'= tr2ns-

posed complex conjugate of i (
A.- ,: )1'" md norm I!xll~ ~ IXij I· ; this 

i,j=l 
.)t' 

is a Banach¥- algebra but not a B "algebra. 

(4) B ~ J$ (H) , the algebra of all bounded linear operators on 

". a Hilbert space H, with the involution x -> x ' the natu:t'ctj, 

Hilbert space adjoint I (x'*\,1.) ~ (~ , x1i!) for x-E~(H) ? 

.... Yl' L )' c, H. It is easy to see that with the natural operator 

norm IIxil = sup IIx ~ Ii >" , d€, (H) becomes a B' "algebra. 
IIrll=l ' 

(5) Any closed ~"sub algebra of ct (H) (known as a C~~"~keb:rc1'1 ~ 

. this is the standard mddel for not necessarily commut5tive 
" J 

B*"aigebra, as lvi11 be proved later (Theorem 7"10). 

DEFINI'rION : If in a '* "algebra an element x 'Sati:3i'ies 

'* x =x, it will be called self"ad.ioint or Hermitian. I,f 
., .' . 

B has a unit e then x is said to be unitary if xx* = 

:l'<x = e. If Y!'x = xx'*' then x is said to be .l:!.Ql:.tlJ..~;L,. 

For any x the elements 'xx* x*x , , £(x+x "") , 
l 

'Z\(x":x;>I) are alwoys self"adjoint ond x can always 
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be written as x l +ix
2 

where xl and x 2 are self-adjoint: 

xl =t(x+i+), x 2= !t(x-x1 and x is normal if and only if 

x l x 2 == x 2x l '. If B is a t<--algebra without a unit then 

Bl becomes a~-algebra if ~e define (Qi. e+x)""", oLe+x* 

Further if we have a Banach¥,-algebra (11xll == IIx*II)Bl ,. 

on' extension in this way \vill be a BanachX-algebn with 

the usuc'<l nonn 

lI()(e+x II = I c(. I + IIx II 

However if B is a 
:of< 

is not B -algebra. 

>f< 
B -algeb ra then wi th this norm 

We shall define a norm under which it is so i 

PROPOSITION 2.1: li B * is a B -algebra without a unit 

, 
lIC(,e+xll '" ;ui oIlO(Y+Xy'Yllyll 

and further II II' induces II II Ql1 B. 
I 

(i...fu. II II is the norm as an algebrv of left multi-

plication operc.tors on~. 

PROOF: Since « y+xy=O for, all y E. B co.n only hold for 

«.. =x==O (if ()(, 1- 0 then y 
x 

== - CZ all 
y 

unlt y and - v.: is a 

in B, if r;h =0 then xy==O for all yEB and this cannot happen 

'" in a B -algebra), it follovls that a nonzero element in Bl 

gives a nonzero oper&tor on B. Since the expression on the 



is certainly a norm on th~ operators on B, by general 

.Btmach space theory it is &lso a norm on Bl' 
I 

We show fir:ot th&t when 0(,=0, IIx!! = IIxll which meEns 

. that the norm on Bl induces the original norm on B. In 

;<gener8l Ilxyll ~ IIxll lIyll, so thbt Ilxll' < "xl! • But in a B -algebr[" 

taking y=x , we get Ilx~ II = IIx II IIx*1I and so sup !!xyll > Ilx II 
II yll -

and hence IIxll' = IIxll. Supj:ose next [, is a real number> 0. 

Then the'fe exists Y 

Then 

with lIyll=l and l~y+xYIl > (1-6) lIoGe+xll 

222 
(1-6) (lIo!-e+xll') < lIo(,y+xyll 

= II ( 0(, y+xy) ¥ ( o<:y+xy) II 

= II y -'« (.v., e+x) ~- (c.( e+X )111 

< II ( d. e+x) ~ (cI.. e+x) y II 

~ II ("'-e+x) * (~e+x)II' 
Sinced could be &rbi tra41$T small (0£ and x fixed) ';Ie get 

so that 

similarly 

. so thc.t 

But then 

(II 0(, e+xll' ) 2 ~ II (0(, e+x) -!of ( 0(. e+x ) II' 

~ II (0( e+x )"''<11' II 0(. e+xll' 

II ol,e+xll' ~ H( (){.e+x)* lI,t ; 

lI(d e+xtll
i ~ JI(o{e+x)II' , 

II(~ e+xfll' = 11(0<. e+x)II' • 

( II ( ex.. e+X ) 11')2.. ~ II ( ~ e+x) ;'!4 (c/, e+X ) II' 

~.II (t>{ e+x )~ II 'II ( t{. e+x ) II' 
:I 

= II 0{, e+X II 

i.e. 1I(cX,e+x)~'(o(e+x)1I1 =11 (>('e+xIl
2 

.Ihich is what we want. 

I 
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We stiE hove to verify that Bl is complete in II II'. 
(ct..ne+xn ) be:; Cr,uchy sequence in Bl • If ( <X y\ ) is not 

ib,)urlded then there exists a subselJ.uence {oG rrk } with \cGl1k.t 
c/J • then , 

---.;> 0, 

then ~ 0(, ~;tl X I. is a CBuchy sequence 
(. k nkJ 

in Bl hence in B 

B so th(t B has since B is complete there is B limit in 

which is not so. Hence oG n is bounded. Thisbeing 

is a convergent subsequence is a 

C,auchy sequence hence xn := (C£n e + x ) - do e 
k k nk nk 

is 8. 

Cauchy sequence in Bl and hence in B; therefore there is a 

,limit, x say, in B. 

hence oC,ne + xn -> c(, e+x also end Bl is complete. II 

* PROPOSITION 2.2: 11-x is a normal element of a B -afgs-
I 

bra then IIxll:= lim IIx n ll n : (spectral radius of x) if x 
n-'7l)<) 

,1s unitary then IIxll := 1. 

PROOF: Ilx*xl1
2 

'" Ilxil 4 '" IIx l<x11
2 

:= IIx211 2 • 

(x*x) 2 := X 2 (x 'M~ )~' ; x being normal) Bnd hence IIx 211 '" 
2P' 2n n l. 

Hence IIx "'" IIxll for all n c, nd so lim IIx II n 
m -m 

IIx
2 

112 "'IIxil 
.!j n ~/()Q 

if x x:=e then clearly IIxll := 1. II 
m,~oo 

• 
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CO ROLLiflRY: In 
~ '7\ 

a commutc;tive B' -algebra IIxll==lim IIxnll 
n->11O 

for all x. 

In gener&l in any*-algebra it is clear that either 

..:1.e-x and le-x* both hc.ve inverses or both fail to hove 

im'"rses. Hence u(x*) == (/(i) (the her denoting complex 

conjug~tion and not closure). If x is seif adjoint then 

(T(X) == CT(x) so that o-(x) is symmetric about the real 

axis. In general this is as far as we CLn go: 6(x) need not 

be re",l. However we have the following 

PROPOSITION 2.3: If B *" is a B-algebra (\ofith a unit) 

and x E B is self-adjoint then (T(x) is ree:l. 

PROOF: Suppose not, let rX. +i J?> E. <T(x) \ f3 ~ O. Write 

y=x + ite whe ref is real; then c<.+i(.f3 +t') E v( y). Hence 

of +( f!> +l')2 ~ [lim lIynll:k ] 2 ~ lIy,,2 == IIY*YII 

* ~ '6' y7t Y ? Z-
and y -. x-i e so that == x + 'lJ e 

and '* 2 lIy yll ~ IIxll + if. thus 

'2. 2-
.DC + fo +2,f~ 

·2 

IIxll for all real l' which 

is clearly impossible if j3 r 0 II 
We now tum to representations of *-algebras. By a 

representDtion lye shall ahlays mean in what follNIS a 

representation of B in £, (H) ·in which the involution in 

B is mapped onto the ndur&l involution in J<; (H); that is T 

• 
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,is to be a -x·-representation, in which T(X *) = (T (x) t for 

all x E B. \ve do not assume the boundedness of T; in fact 

this will follnw automatic&lly (Proposition 3.5). 

LEMMA 2.4: If HICH is invariant under T then ro i~ 

.l 
HI' 

(T(X) ~ ,1'1) = (~, T(xt}1) = ( ~ , T(X~)Y)) =0 

since T(X*)yt E HI from this it follows that T(X)S-L-rz fo:, 

all ~EHI and so T(X)~ E Hi
L 

, II 

The next result is a substantial one &nd will be used 

essentially in what follows:-

PROPOSITI(~: 2.6i T is irreducible if and only if the 

~ly operators on H that~ommute with all the 

operators' T(x) , x E B ore scalar l!lJ.lltipl§.p of ttL'i 

identi tv. 

PROOF: if T is reducible let HI be a nontrivial 

inVariant subspace and let P be the projection on HI' Ii 

.~ 
= ~, + t:. with ~, E HI' 

.L 

~2. E. HI 

and i.n view of Lemma 2,4, 
.- : ,': . 

the 1in~~u.e decomposi tion 
'<." J. 

Hl and a vector i.n HI ; 

T(X)~2. E 

OfT(X)~ 

till t is 

, then 

.l-
HI so that this must be 

as the sum of a vector in 

PT(x) ~ =T(x) ~, = T(X)P~ 

• 
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and since ~ was arbitrary it follows that PT(x) =T(X)P, fo", 

x, as required. We have a non-trivi~l operator commu~ing 

all the T(x). 

If there is a non-trivial projection operator P that 

with 011 T(x) then T(X)'(P~) = P (T(X)O so that 

invariant the non-trivial subspace Hl = P(H) and T 

S reduci ble. 

Hore gene rolly ~ suppose thEt To is a bounued self­

joint (Hermitian) operator that commutes with all thE ':'(x). 

calling the spectral theor€lll for self ~adjoint opei'E:tors, \"['2 

e that there exists a spectral family P(A) of projecticn 

rators associated with To that commute with all operators 

TO? in particular P(~)T(X) =T(x)P(x) f0r 

If then T is irreducible the only proje~tion 

",,",vratprs thf,t commute with T(x) for all x nre of thE form 

9GI,so thEt EECh P(~) is either zero or the identHy 

Since P( i\) P( fA) = P(min (~~r)} it follows tll,-:t 

f6r , some :1
0

, P( ~) := 0 fo r ;j z: ;:) 0 und P(,1) := I for ~ > ,i(); 

FinBlly if To is bounded bu'~ not necessarily self 

, commuting with ell the T(x), write 

*) .I( ~~ . To-To' The operators 2. To + To ), are 

adjoint, They also commute with T(x) for all x for we 

• 
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T(x)T 1'< T* commut&tes with T(x) hence o I 0 ' 

I ~ 
II(To - To ) do so also: by what has jus L bG2~~. 

proved they are respectively d/I and 0(/ whence To is 

, ,(cl. j +i eX;<)I as required. 

Thus T irreducible implies To = D(L II; 

COROLLARY: If B is commutative, then T is irredu~ll>)s, 

if and only if ::H is one-dimensj onal,. 

PROOF: CleE,rly H one-dimensional implies T irred'ldbl" 

If T is irreducible then for [; fixed x E: B ",e havo 

T(x)T(y) = T(xy) = T(YX) = T(y)T(x) for all x E B, 

from which it follo1>'s that 

T(x) = f(x)I 

from the proposi tion. Since every subspace of His t:lsn 

invariant u11der T clearly T is irreducible H tlUst b2 O':'1e 

dimensional. II 

Thus the homomorphisms B -7 C are the only 1:-.£'8" 

ducible ¥-represent8tions in the commutative case, 

THEOREM 2.6: .I&i T be any :t§Jlyesent, '(j,on on B,o,:;",,;;, 

we can wri te H as a direct sum of mutu8l1y or~\LQJ~Q)l'\ 

closed subspaces 

• 



19 

such th&t T restricted to Ho is zero end e,ch Hi :Ls.. 

>:yc]ic for T (hence1nvcrirp t llPder T). 

PROOF: )vrite Ho = {~ :T(X)S =0, for &11 x E B}; 

then eVidently Ho has the properties asserted and 
..L 

T 

is essentic;l on Ho ' 

If ~' E l-
Ho then Ht =Ct 1 T(X)( :x E B} is 

closed &nd clearly invclrip,nt under T In fact it is 
I 

cyrilic, with r as cyclic vector. This is cleEr if B 

has " unitj for then 

[.nd 
I 

H , 

In gener"l, write H" for CL {«I + T(x) rl C:{fC,XE-B); 

~Ie ShOl., H" = H' , Suppose not : let ~E-H"; ~.l.T(X)r 
for every x. Then 

Since 

of the 

T(Y)~ 

o = (~,T(t-4t+ I'x)~j) = ('5,T(Y*) '(cx.I+T(X»)r) 

= (T(Y)~ ,o«(+T(X)'f') 
I s E- H", then T(Y)~ t: H" alSO, and since vectors 

form <::Lrl+T(X)~' are dense in H" it follows that 
1-

=0 for all y. But no\., observe thE t H"CHo and T 

is essenticl on H~ so if ~f 0 there exi sts y with 

T(Y)~ 10. Hence ~'=O ~:ndH'ooH" as required, Thus 
I i: I 

there [,re vectors T(x)f arbitrarily close to.'l and so 
I $ f H' : it is then cle&rly Cl cyclic vector for H' • 

• 
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So there eXist sy stems of mutually orthogonal subspaces 

Hi:.' each cyclic for T but possibly not spanning .1. 
Ho • 

Partially order 'such systems by inclusion &pply Zero's 

principle: it follows that maXimal systems exist. If such 

.L a maximal system did not span Ho then we could extend 
.L 

it by taking Eny vector in (®Hi) and, starting again, 

obtaining D nel" subspf\ce wi th a cycli c· vector, so that the 

system (Hi) would not be mc.ximal. 

Vlhat theorem 2.6 shows is th, t we may confine our­

selves to cyclic represent&tion if this is convenient, c.s 

any representEtion can be built up out of cyclic representa­

tions as in the Theorem. VIe write Ti for the restriction 

of T to Hi' II 

• 



CHAPTER3 

o SIT I V E FUN C T ION A L S 

Let B be any clgebrc, with an involution; the norm 

really irrelevant to begin wi tho 

DEFINITION : A linear functional p on B is said to be 

positive if p(xltx) L 0 for all x E B. The positive 

functionals plClY a part in the non-commutetive theo ry 

somewhat simil[.r to th[t of the multiplicetive lineCl r 

functionals in the <10mmutative theory. ' 

PROPOSITION 3.1 : II pis c; positivE functional tl1sill. 

(1) p(y"'x) cO p(x"*y) (all x, yE. B) 

(ii) Ip(y*x)1 2 
cO Ip(x-'*y) 1 2 ~ p(x*x).p(y·*y) 

PROOF o ~ p [(xtd.Jy/,\xt c<,y) ] 

= p(x~x) toGp(y~) toi.p(x~y) 2 ¥: 
t 1..(1 ,p(y y) 

Since the first [;nd fourth term arc rEal (and L 0) the sum 

- ~ "*" d '* 00p(y x) tl)l.p(X y) is real. Put ex, =1 and WE gGt ump(y x) t 

* '}(:-)k' 3rttp(x y) <md putting eX, =i we gEt Re p(y x) = Re p(x y) S0 

that WE have (i) moreover' we hove then 

-'/: 
If p(x y) = 0 then (ii) is obvious. OthErwise, take 

~ = - p(X~x)lr(x+('Y) "IUd then 

o ~ p(ji'x) _2p(x1'lx) t(p(x*x»)'L. p(/,y) / J.f. 2 
. /lp(xy)1 

i.e. p(x*x) Ip(x""y)12 < [p(x*x)]2 p(ly) 
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from which the required result follO\~s if p(x*x) I O. If 
.. )i: 
p(x x) := 0 but p(l'y) lOwe cen rep(rLt the <:rgument "'ith 

x and y interch",nged. 
~ ')<; If both p(x x) ~nd p(y y) are 0 we 

have 

for dl ex, which is impossible unless p(x*y) := O. So (11) 

holds in all cases. II 

We now define something like a norm for the positive 

functionals (\"hich do not assume bounded eVen "'hen B j 8 B 

h 1 br) Pr:l.te· j Banac B ge a. w 

M(p) = 0 if p=O, H(p) =00 if p i 0 but p(x*x):=o 

for all x End in generd H(p) := sup :!-p(x)! 2. Thus 
xE B p(x*x) 

Ip(x)1
2 ~ M(p) p(x*x), with the Etpproprx·. te conventions about 

CO ,End M(p) is the least number with this property. We • 

h&V'G evid@tly M(o<.p) =OCM(p) if c;(2. ° M(p) := 0 if and only 

if there exists k < 00 with Ip(x)1
2 ~ k p(x*x) cell xEB. 

If B is Eo ",·-dgebra without ~, unit let Bl be the 

algebra with [ uni t e &djoined: it is c;l so a '1(_ -algebra. 

A positive functional p on B is extendable if there exists 

. a positive functional p' on Bl which whill restricted to B 

coincides with p. 
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PROPOSITION 3.2: p is extendable if end only if 

(1) p(x'>":) = p(x) for all x E B 

(li) M(p) < 00 • 

li p is extendc:ble then for each d. 2. M( p) the re is an 

extensi on p' "lith pI (E) "ct., 

PROOF : Suppose p is extend&ble , let pI be 8n Exten-, 
Take y"e in (1) of P ropo si ti on 3.1 , , ' 

p(x*') p' (x'i<-) 
, -----" " p' (x) = p(x). Similc.rly take y=e 

in (ii) of Proposition 3.1 and 

I p (x ) I 2 = I p I (x) I 2 ~ P I (x7'-x) P I ( e) " p (x *x) p I ( e ) 

so thc.t (ii) holds, and 'M(p) ~ p/(e), 

If (i) end (ii) hold let eX. be any red number 2. M(.p) End loJrite 

p' (Ae+x) ,,~o(.+p(x) ! we then h&vE pi a lineur functiom,l which 

we shc:11 prove is positive 

p'«.:1 e+x)~(Ae+x») = IAI2a( + )p(x)+ AP(X*)+p(x~~x) 

= IAI20(. +2 Re(1t p(x*» +p(x~ x) 

2. IAI
2
c¥. -211t1·lp(x) I + p(x*'x) 

') IAlk-21i\Ic<,tp(x*x)i +p(x*x) 

2.[ 11\1 <*i -(p(.it~x) i J2. 

2. 0 
as requi red. II 

If (i) End (ii) hold for PI and P2 let pi, P2 be 

extensions with p~(e) " M(Pl)' p~(e) " M(P2) then P~ + P~ 

is also positi~e and M(PI + P2) ~ p~(e) + p~(e) = M(Pl) + 

M(P2)' 

• 
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An example of a nonextcnd&ble functional:-

Let B consists of (bounded) continuous complex func­

tions on [0, 1] with the usual involution and linee r spece 

structure, ",i th all products equal to zero. Then for c:ny fixed 

toE[o, IJ, p(x) == x(to ) is a positive functional with 

*' ~-moreover p(x ) := p(x). HOwever it is not extendable since 

M(p) =00 

From now on we use essentially the relation between 

the norm in B Gnd the involution, thc!t is, IIx*1I := IIxll for 

all x EB. One or tHO results hold under weaker coridi ti ons 

also. 

that is 

PROPOSITION 3.3: li B has a unlt e .mill _ p .iLn 

positive functional then 

Ip(x) I <p(e)::c\ for all x E B. 

PROOF: If Ilx II < 1 

\ I J; 
e--·x - z: 2 2-

1-
then the series -for (e - x).:I.-

I 2 \ \ ") \ 3 J 

fi x ~ 2Z 2. r! x - --- -

converges E.bsolutely to c-.n element yfB Hith 
2 y ==e-x • If 

x is self-E.djoint, so is y, from the series. Then we get 

[.nd so p(x) < p( E:) if IIxll < 1 

But \>,e can t"ke IIxll &s near to 1 as we please 

so the t p(x) S. pee) if IIx II s. 1. 

I 
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in genenl, by the linearity of P, 

p(x) ~ ree) /lxll if X i8 self adjoint. 

p(-:lS) =0 -p(x) ~ p(c)lIxll 

Ip(x) I ~ p(e)/lx/l for dl self-adjoJnt x. 
not self-adjoint td{e x*'x, which is self-adjoint:-

f * 2 p(x*x) ~ pee) . /Ix 'xii ~p(~) Ilx/i 

By Proposition 3.1(ii) with y=oe 

2 * Ip(x) I ~ pee) p(x x) 

so thct 
. 0 2 2 
Ip(x)l~ ~ (p(e» Ilxll 

the reQui red result follows on taking the squarG root. II 

COROLLARY 1. Every positive functionaron Dn algebr[, 

willi a unit is continuous. 

COROLLARY 2: Everuxtend<::blG positive functiond on 

an Rig eb ra wi thou t a unit is cont inu.Q.1l.2. 

We now turn to the relat·; ')n betweGn positive function-

Lls end 74: -representations. 

THEOREM 3.4: L~t T be a rGpresEDtation of B on th~ 

Hilbert spaCG H. JJ: ~ E H then 

p(x) =0 (T(X) ~ , r, ) 
2 

is an extendable ]Josi tive functiond end M(p) So II t; II • 
If T is cyclic md t, is a cyclic vector then M(p) ~ 

II~II? 
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Pi\COF: pis evidently EnG,H. Since 

p(X*X):= (T(X?tX)S) r,):= (T(X*)T(X)~ ,t;) 
:= (T(X/i-T(X)~/~):= (T(x)Z; ,T(X)S') L 0 

clecrly positive. 1lJeh<.ve ['lso 

p(X*) := {T(X*)~) t:) := (T(X)*S-,t,) 
, , 

(C; , T(x) ~). := (T(X)C:, t;) 
~~ 

:= := p(x) 

&nd Ip(x) 12 := (T(x)t; ,~) < IIT(x)t;1I
2 lit; 112 

:= II ~1I2 p (x *" x) • 

so thct M(p) ~ 114112 < 1'i0. P is thus extendeble. 

If T is cyei.ic 2nd ~ is c<" cyclic vector, then given 

t- > 0 we em find xoEB \ofHh IIT(xo)e;--~ II < t, sincel;E H 

end the vectors T(x)S c,re dense'in H. Then 

1 p(x o ) 12 := ,I(r(x,)!:;', nl 2 

. ~ 2 ~ 
is arbitrc:ry close to 1 (I; , t;)1 := IIsll &P(xo xo) 

is crbitrcrily close to 1It,1I4/llsI12 := 1I~1I2. But since H(p) 

is alwpyS bet\ofeen 11(;;11
2 

end Ip(xo ) 12 /p(xo~(;Xo) it follJGlofs 

, ' 
th&t M(P) is flctudly el].ucl to IIsl12 FS nsserted. II 

PROPOSITIO!-T 3.5: Every ~_rGpr€sentdion of [: BLnach 

~-91gebra is continuQll!? : more precisely IIT(x)1I ~ 

IIx II for ell x. 

\ 



PROCF: >·ie may E.ssume B he,s a unit : if not we cO'.lJd 

arly extend any representc,tion from B to Bl by ~lrit1n.' 

OC-I+T(x). Then H SE H 

p(x) = (T(X) ~ J ~ J is [t positive functionaL 

Proposition 3.3 End we get I(T(X)~) ~)\ ~ IIxll( ~} ~ ). 

x?~x end we hi.ve IIT(X)$'1I
2 

= (T(X'Y-:X )'; ,~) < 

.lIx~xlI 1I~1I2 ~ IIxll
2 1I~112 und so IIT(x)S II ~ IIxll II~II. Since 

fE H wr.s Hbitrary IIT(x)1I < Ilxii as asserted. II 

vie will now go from fUDctionClls to representatiorci; 

is much more difficult. 

TFiEOREl<! 3.61 Jf p 'I,ll an extmda1::le positive fUJ;E,-' 

tiond on the Banach* -algebr.SLt.hen _th€rLi~ Co c',-~J',s 

* -.represent&tion T Q.f B l'Ii th cyclic vector t;.c.~\l':~;l 

thc.t for all x E B 

Nx) = (T(X)/.;) t; ) 

~ ~.f.: 
~l= 1 x : p(x x) = o}; 

we show first thd ~T is cleft ide&l in B. If XCI-' 

y fB then by Proposition 3.1 (11) 0 

Ip(yx) 12 ~ p(x¥x) p(Yl~) = 0 so p(yx) = O. 

Then 

p«yx)~~yx) = p(x¥<y"'y) x) =0 

. so thE.t x E N impli es yx EN. Plso if xl,x2E. N then 



.It ~. ). -* * 7(- 1-{. ~xl+x2) (x l +x 2 ) ==p(x l xl) +p(x 2 xl) +P(xl x 2 ) +p(x 2 x 2 )==l) 

&nd p( (i;o(,x)~o(x) '" 1.x.12. p(x~x) '" 0 so !IT is ind>ed [, left 

ideal in B. In fact it is R closed ide&l, but we do Dot 

requi re thi s. 

NOH t"ke the quotient BIN ; thi s is 5 Ij ne .. :r spc.ce. 

Denote its elements by ~ , '7 lve Shl'<ll show the:; 

this CDn be me.de into & Hilbert sp8ce 'using the function!';l p. 

Suppose x l -x 2E N and Yl':Y2E~T; then 

*' - P(y~x2) P.(yt(XI-X2 ») + p (YI-Y2 Y* x 2 ) P(YI xl) = 

== p (yi(XI-X 2 »)+ P (X~(Yl:'Y2») 

=- 0 + 0 == 0 

It follows thd the function (5-'J y)) == p(y*x) is well defined 

on BIN: it does not depend on the choice Of X ,Y in the 

equivc,lence clesses 5, I[ respectively. We ctn shoy! eF-sily 

th&t (~J1) has all the proporties of inner product:-

(~)l() =(YI)~) , (r,.J-~ 2. ~Y() ::: (fl ) 7 );i' ( f ~ I~) 
, ({, f) > 0 for~ 10. 

BIN is thus a pre-Hilbert SpiCE: it is in general not 
I 

complete under the norm IIfli == (fJgl Let H be its 

completion. }TOW define the operators T(x) on BIN as follovlS, 

. Suppose ~ (y)oo >7 (4' the c1DonicEl, m~p B '7 BIN) .; define 

T(X)1 to be ~(xy). This is independent of y (sub2ect to 
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) since N is" left ideal end is e2sily veri-

to be c li.near operator on BIN. FurthEr x --ry"'" T(x) 

cleLrly a homomorphi sm. \~e now exomine the boundedness 

T(x) : fi.x, for the moment, Yt B wd writ e 

y. (x) = p(y*xy). 
y 

Then it is H.Sy to see thd qy is a positive function81 in 

B) end qy(e) = p(y'*y). By Froposition 3.3, 

I qy(x) I .<;. pel~Y) IIxli . 

. Then if 1>(Y) = 1. we hcve 

(r(X)7,T(Xry(') ==p(XY)~XY) =qy<x*X) 

.<;. p(y¥'y) lI~xll == ()1. j 1Hlx112. 

Thus II T(x)'1!I.<;. IIxll Ilytll so T(x) is bounded cmd indeed IlT~x)!i 

~ Ilxli. Moreover if we hive 

(TeX)y[, l;) :.0 p(z*xy) = p«ex*dy) ==(~]eX~~)t;) 

so thE't T(x*) =T(X)*. !lTow toke the (uni que) extension by 

continuity of 'f from B/I\! to H end 'lfe hiVe the required -1,-

representEtion T. 

This representition is cyclic: [< cyclic vector is 

gi v en by I; == <p (e). We h i. V e (T (x ) t; ) t;) == p ( e* x e) = p ex) ) 

wd cny ~ E BIN is P (x) for some x'E Il, so [\8 x runs througi.' 

B, T(X)C, ==cfexe) == +ex) runs through the whole of BIN. 
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We now turn to the C2se where B hEs no unit. Take 

. Bl' extend p, 2nd proceed ES [,bove, obtdning H ond the repre­

sentction x -» T(x). Let HI be the subspace of H : 

{Y( !T(X)'1. =0 for [,11 x E B} 

and 
-L 

H2 = HI • 

Hri te S \OJ S>~- S 2- ' where S, E HI, S). E H2 • We sho", thr,t T 

restrl.cted to H2 is the requj red representaU on, with Sz. 8S 

cyclic vector. We hrve; for x E B • 

p(X) = (T(X)S/':) = (T(X)?: +T(x)S2.' SI t /;'2) 

= (T(X)Sl)S,) + (T(X)(2.) t;~) 

Novi since HI is invbriCtnt under T so is H2 , and so 

T(x )s). E: H2 , (T(X) t; 1 ) t;. ) = 0 giving 

p(x) =: (T(X)S2- iSz) 
Now vectors of the form o(S2 +T(x )0

2 
[',re dense in H2 , since 

for ,my 1E H we hEve 

and BIN is dense in H. Suppose$,E:: H2 is orthogonr,l to ell 
(-

T(X)( x E Bj then for all x, y E B we get 

o = (fl.' T(o(, t+x*y )~~) = (T(X) S 2. ' T( 0(. e+y)t; L) 

= (T(X) ~ L'd... [;2.+T(y)St-) 

&TId it follows thLt T(X)~l =0 for 811 xEB which implies, 

since fz. E H~ , thct!2- =0. Therefore the VEctors ~T(X)S2.} 
Bre dense in H2 o Thus the theorem holds, with the Hilbert 

space H2 and cyclic vector S,- 0" 

° 



CHAPTER4 

I N DEC C M pes A B L E Fur C T ION A L SAN D 

I R RED U C I B L S REP R ~ SEN TAT I C r S 

We S&y th£,t the (positive) functionc',l p dominates the 

(positive) functionc.l q c,nd write p > II or q < p if there 

exists a positive red <:>Llluch ttrt o(p-q:ls POSf'hiTt> . . oflRlte 

th2.t p>q q>p' do not imply togethe r p==q : &ny functional p 
"ny , 

domin&tes/pllsi tive '1\~Jltiple of itself and is dominated by ccny 

strictly positive multiple of itself. We clearly hcve·that 

p>q, q>r implies p>r. If p domin&.tes f\nly positivE) multiples 

of itself, it is c&lled indecomposable, 

3.6. 

In the following theorems P, T ,H 2nd ~ Ere as in the!' rem 

THEOREM 4.~: li S is a positive self-adjoint opern ... 

tor on H commuting wi th [,11 the T(x) then 

q(x) == (8T(X)~ ,t;j 
is a pOS1 tive extendable functionc:l, with q<p. 

Conversely if q is rositivG extendible functionfl with 

q<p there exists £ positive self-£;d.ioi.nt S such thE:t 

q(x) is given by the <"bove formulc. 

PROOF: If 8 is positive E.nd self-adjoint it ho:s E 

~ 
(unique) positive self-adjoint square root S lwhich commutes 

with everything that commutes with S , in particuler with 

dl the T(x). l>Jriting q(x) := (ST(X) ~ ) s) , it is cleC'r 

, 
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thE.t q is Ii lineer function£.l on B.· Also 
I , 

q(xkx) :=(ST(x-}fx)~Jt;) := (S'i.T(X)~. ,S2T(X)~) > 0; 

also q(x*):= (ST(.t)SJ~) := (~J ST(X)S')= (ST(X)~/(;)= q(x) 

&nd Iq(x)1
2

:= l(sT(X)~J~) 12:= I (T(X)STC; , s1 <';)1
2 

I . I 

~ IIT(x)st';-1I
2 

IIs
2

;1I
2 

\ t I. 

:= (T(X)Sl.~, T(x)S£ ';)lIs2: I; 112 
~t ' . 

:= (s T (x x:)t; > ~ II S ... ,; 112 

:= q(x*x)lIs±~ 112 , 
-:- ~ 

so thct (i) E.nd (H) of proposition 3.2 hold with M(q)~lIs2.s Ir-, 
so q 1 s a positive extendc:ble functional. 

Fin&lly if ex.. ~ Iisil then Q{p-q is positive; for 

q(x*x) := lis i T(x) S 112 ~ list 112 IIT(x )1;'11 2 
= lis i 112. p(x:ll;x) := 

IIsll.p(x'.f'x) : so if~2. IIsll thenclp(x~x) _q(x>fi'x) ~ 0 is 

r:equired. 

To prove the conver.se : let H' = {T(x)l; : x EB}. Then 

since ~ is cyclic H' is dehse in H (Dnd E line~r SubspEce). 

Fo r x, y e B VI ~i t e . 

Q(T(x)0, T(y)~):=q(lx). 

VIe r'1ow first thc:t this depends only on T(X)S md T(y)S , 

not. on the p&rticulc.r choicE of x E<nd y. Suppose T(x')f; := 

T(x)? ' T(Y')~:= T(y)S ; then T(x' -x)S =T(y-y')1; = 0 so 

thLt 

, .•. 
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(being (T(X-X·)t; , T(x-x' )t;)) (T(y-y')S , T{y-y' )1;) respec­

tivelY). end it follows since q<p that 

q(Cx_xi /\x_x' »)=q(CY-Y*)(Y-Y'»)== O. 

}TOW use Proposi tien 3.1 (ii) ; we hcve 

I q(y*x) -q (Y'~~x') I ::; I qCY-}"-y'~~)x + q(y'->\x-x'» I 

< Iq(y*_y,')f-)xl + Iq(y'*(x-x') I 
\ 

~ C9.(/':-Y'~)(y-y' )q(x*x) ]/2.. 

1'<' .. yr~ JYz. + C9.« y' y' )q(x-x' 1(x -x') 

= o. 

It is cle"rQ is bnear in T(x)S' end conjug&te-line[.r 

in T(Y)S! moreover ifO(p-lJ. is positive then 
\ I . 

IQ TCx)tt;, T(y)t; I::; Iq(y*x)I < (q(/x)i q(y*y)1) 
, I , 

~c<. [p(:i*x)I (p(y*yf] 

Thus Q is continuous on H' XH' i:nd hence there is ;:, unillue 

extension by continuity to the whole of H~H, elso line[r in 

one variLble ind conjugcte-linecr in the other. Now rny such 

function must be of the form 

where S is some bounded linec,r operr:tor on H. 

We proceed to verify the proporties nsserted for S. 

First, ( * STCx)S, T(y)S') ==q(i'x) '" q(xJ<y) == (ST(y)t: ,T(X)~) 
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(ST,(X)~, T(X)t;"):=q(X*X) > 0, so thd S is positive (:=''non-

negative definite"). For x,Y,zEB. • 

(ST(X)T(Y)I;' , T(z)t;) :=q(z*XY) Lnd 

,(T(X)ST(Y)2;' ,T(Z)S)= (ST(Y)S ,T(X'XZ)t;) 

:= q(x*z{'y) =q(z~"xy) 

c·,nd it follows (H' being dense in H ; c.ll these arguments 

depend on this f2ct) th!t 

Then 

ST(x) := T(x)S 

q(y*x) := (ST(X)t; , T(y) C;) 

:= (ST(Y~X)~, c;) 

for &11 x,yEB. 

We wish to show the'\; 

q(x) =(ST(xH;) ~) 

for [11 x. 

for ell x. 

If B hIls [. uni t G then simply put y=e in the formula for 

q(y~x). In gener[l, write 

q'(x) =(ST(X);,~); 

by the first part of this theorem c,nd Theorem 3.6 there 

exists a Hilbert sp[;ce H', ! cyclic representati','n T' End 

Ii cyclic vectorSEH I with q'(x) = (TI(X)t;',t;'), Also there 

I, (", "I 
exist H", T'; t; such that q(x) =\r"(x)~/S / }TCW'define i', marl-Vs 

follows 

the map is well defined: for we haTe 

T 
I 
I' , 

.1 

I , , 
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T'(X17X::;)l;'~ O( *'(X~-:J!:2)7f(Xl-X2)Z;',Z;')=' 0 .(; ':> 

Q'((Xl-x
2

Y*(Xl-X 2 »)= 0<_'> q(X l -X2 )'''(Xl-X2») = O( > 
TII(Xl-X2/«Xl-X2)~",t;;I')= 0 <;: ) IITII(Xl-X 2 )i;'1I11 :0: 0':::: ::> 

" I TII(x2)S End conversely: so TII(x); 'is genuinely a function 

of T' (x).::;', I) is then evidently Ei linear mr.p of a dense 

subspcce of H' onto 1; dense subspc-ce of H", It is uni tElry 

for 

'( /I """) ( -It II liL ~ T"(X) t; ,T"(Y),:> =' TII(y x) t;" s ru.(y x) 

* ( ~ " 1 , =' q' (y x) = T' (y X )S, ~ ) := (:r' (x) t; ,T' (y) ~ ) 

cmd 'so since in p"rti culG r Vis cont inuous it can be' extended 

uniquely to [; unithry trE,nsformrtion of the whole of H' onto 

the whole of H ", 

I J .,.,' " Then vT' (xy)", =TII(xy)s so thEt 

, til , 
(1-:,~(x)T'(Y)¥ = T"(X) T"(Y) :=TII(x)UT'(y)t, '"> :> ..... , 

1 
since the vectors T' (y)S are dense in H' it follows thE- t 

, , 
\}T'(x)S= T"(x)U vnd 

/1 ' 
TII(X)S = UT' (x)?; := TII(X)U~', 

Hence(us', TII(x)7;") == (TII(X*)U(, (') 

== (TII(X~~)C;/I,t;") := (s'; T"(X) l;'') 

c;nd vectors TII(x)t;" ,ere dense in H", so thc,t UC;':= t;1I Then 

finally 

q(x) ==(TII(X),S ,t;") == (TII(x)Us: u t') 
:= ( U T' (x) S ,U c:;: I) == (T' (x) ~ I, Z;I) = q' (x) 

== fST(X)~ ) c;) as required, II 
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THEOREM 4.2: T is irredudble if cmd only if p is 

imdecomposnble. 

PROOF: Suppose pis decompos&ble, p> Pl' say, where PI 

is no} zero wd not a multiple of p. 'rhen PI(X) =(ST(X)C;, 

t), where S commutes with dl'the T(x), by Theorem 4.1. 

This S cbnnot .be of the form c{I, otherwise PI would be oCP. 

So by Proposition 2.5, T is reducible. 

Suppose T reduct ble I let P be the projection on " non 

trivi&1 inv£ri&nt subspece H1 S[!y} of H then PT(x) = T(x)P for' 

all, x wri ting 

PI is a positivefunctibncl domin&ted by p (in fact 

p(x')(-x) -PI (x*x) ~ 0 for £ill x). Thi s cwnot be 0. multiple of p: 

for lye CEn fiwl x ~Iith T(x) S [,rbitrnrily close to (I -P)l;" := S2. 
say. If then p~:= 1';'" we have 

so that 

p(x) := (T(X)(;-, +S2,) ) (<::,+7;2)) 

= (SL,t;~+ '1 say 

which CE,n be arbi trc:rily small: this contradicts PI = o(,P 

for fixed finite real ()( so P j,8 decomposE.ble." 
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In general if the extendGble positive functional p 

is decomposilble and we write P=Pl+P2' where PI e.nd P2 are 

dso extendE,ble positive functionals, then M(p) .5. M(Pl) + 
, 

,1 M(P2) ; for if p', p{, P~ are the appropriate extEnsions 
'1 

I 
respectively; and we have M(p) = M(Pl+P2) .5. p'(e) = Pl(e) + 

p~(e)= M(Pl) + M(P2) 

It will be useful to have the following result, which 

sharpens this inequality to an equality. 

PROPOSITION 4.3: li-LL is an extend<.ble decomposeble 

positive functional then there exist positive-func­

tionds PI "md P2 ' neithc r of them a multiple of P, 

with P = PI + P
2 

<.nd M(p) = M(Pl) + M(p~) 

PROOF: If P is decomposDble, the associ~l_ted cYclic 

representc:tion T is reducible by Theorem 4.2. Let P be the 

projection on a non-trivial invari[tnt subsp[;ce HI of H .ond 

write 

Then evidmtly PI and 1'2 are extendable positive functicnals 

and P = PlL + P
2

' By the argument already used at the end of 

the proof of Theorem 4.2, neither PI and P2 CDn be a multi­

ple of p. 
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Wri ting PC; = 0/ , (I~P)S:=;~, we hcve PI (x) =(T(X)S/~I) 
" ) 

P2(X) = (T(X )';2.' (:,2.) and so, by 'rheorem 3,4 

M(PI) +M( P2 ) ~('(t>s,) + (,1. ,0.1-) =(.;, '(;: ) :0 M(p) 

since T is cyclic with cyclic vector ~ (in f8ct of course 

l1(p) =(S/)e) End M(P2) =(:;::7./;~)since both Siond Sz'are 

cyclic vectors in PH Lnd (I -P)H respectively but we do not 

need this), In any c&se the required result follows from the 

gene ral inequLli ty noted immedi at ely before: the theorem 

c,nd the reverse inequali ty est«blished in the proof of the 

theorem, II 



CHAPTER5 

THE S ELF - A D J 0 I N TEL E MEr T S 0 F BAS 

A BAN A C H S f ACE 

If B is s Bc:nach*-algebNi then sjnce eny reLl 

multiple of a self-adjoint elem~J:ltis agcdn self-edjoJ nt, and 

any sum of s'llf-adjoint element is self-adjoint, it follows 

thet the self-adjoint elements of B form a re~l linear subs­

pace. Denote this by Bs' It is evidently normed (as a 
-)I; 

subspf,ce of B) and if xn=xn for all n, xn ';> x then 

~ , )~ ~~ lim xn =(llm xn =X = x, so that Bs is closed in B, hence 

complete, hence & Banc,ch space in its own right. If p is an 

extendE.ble, positive function[,l on B then its restriction to 

Bs is 8. reel lineEir functional, since p(x~f) = p(x) = p'(x) 

As a functional on B it is continuous, by PropositJon 3.3, 

Corollary, Write IIpll for the norm of p as an element of the 

dual of B [:nd IIpl's for the norm of (the restriction of ) p 

LS nn element of the dUEIl of Bs' It is immediate thd I!plls ~ 

IIpli. 

PROPOSITION 5.1: IIpP s = IIpi! .::;, H(p) : if B has a unit 

then IIpil = IIpil = M(p). -- s 

PROOF: Suppose XoE. B, IIxoll=l and I p(xo ) I > lip II - f . 
'13 

Multiply Xo bye' if necessl.'ry : we get en x with p(x» Ilpll- t . 

~ - (' '* Then dso p(x )=p(x»lIpil - E ,End so p l.' (x+x ») > IIpil - t 

But i (x+x~) is self-udjoint and" i (x*+x) II ~ illxll + ~ IIx'~1I = 
I I "2 + Z =1 so thct 
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> I!pli -t 

Since eVTaS Hbitruy 111='lIs ;: Ilpll Gnd so 1I13lls = IIpl!: 

, 

By Proposition 3.2 there is on extensionp' of p ,tlith 

p'Ce) = M(p). By Proposition 3.3 Ip'(x)1 ~ pl(e)llxll Lnd so 

IIp'lI ~ p'Ce) (octuallY equal, of course). 

Evidently Dnd so finally 

If B has & unit e then by Proposition 3.1 (ij) we h[,ve)taking 

2 "* yooe,lp(x)1 < p(e)(p(xx» and soM(p)~p(e)~lIpll (sinCe lIell:=l). 

Hence I!pll=M(p). I! 

From now on we shell drop the suffix from IIplis in vi ':',,, 

of Proposi tion 5.1. '!fe c:lso note the co rollary thE,t if P 1s 

non-zero on B then its restriction to Bs must olso be non-zero, 

since if the restriction were zero then IIpH's = 0, I!pllooo End so 

p=O by the basic properties of a norm. 

Now denote the set of extendable posi tive function[.ls 

p on B with M(p).s. 1 by P. This is never empty: it contains 

c.t least the zero functiom:l. Rec,.ll the we8k·*-topology of the 

dUDl of a lineer sp:::ce E ; the bc;sic neighbourhoods of fo EE' 
are 
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BOURBP,KI -ALAOGLTT THEOi:IEM : The unit ball in thE: dUG. 1 of 

.a.. Bqnach SPace is compf ct in the wef·kt-topology. 

PROPOSITION 5.2 E is 8 week*-cIQsed (Hnd hence 

compact) convex subset of the unit ball of the dual of 

PROOF: Since IIp11s = lipil ~ H(p) ~ 1, evidently P is a 

subset of thG'unit ball. If PI' P2EP then if pi, p~ are 
f , 

extensions it is cle~.r th~t 0( PI + (1-0\.) P2 (0 S. o(~ 1) is 1m 

. I 
extension of o(..Pl +(1-,.0 )p' 

2 
+(1- O<,)M(P§j) S. 1 if M(Pl) ~ 

that is, P is conVGx. 

&nd ,-Iso M(o<.Pl +(1-0(. )p
2
) <cl.M(Pl) 

1, M(P2) ~ 1; sOc(Pl+(l-iI>( )p2EP, 

Suppose poEC.lp (thC':t is, thE closure inthe dU.'ll of Bs )' 

For xEB write x=x l +ix 2 , where xl' x~ E. Bs fond extend Po to B 

by writing po(x) = po(xl ) + iPo(x2). Then givenc>oc,nd 

xl' x 2 ' x*x E Bs there exists p{:P with 

Ip(x l ) -Po(xl) <t)P(x2) - po (x 2 )1 < € ,lp(x
7t

x) - Po(i~x): 
< l: 

In pc,rti culc r 

* * o ~ p(x x) ~ po(x x) +&; 

since Gis Lrbitrary po(?x) L 0 and Po is positive. Also 

so that we get 
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. ~ 

~ p(x x) + 411xll~ 

~ po(x*x) + (4I1xll+l)t 

and since £ is '.rbi trary, 

so thc.t M(Po) ~ 1. Thus poE P and P is closed. II 

A point pEP is extreme if it is not of the form 

c<.PI + (l-o()P
2 

wherE 0 <~< 1, Pl' P2 EP md pi PI' 

P f P2' The zero functiom·1 is elwiYs C.n extreme pOi nt of P. 

PROPOSITION 5.3: A non-zero functional P EF is extreme 

if wd only if 

(i) M(p) = I and 

(ii) P is indecomposable. 

PROOF: Suppose 0 < M( p) < 1. Then we CEn writ e 

p=M(p) P + 
M{p) (I-M(P)) 0 

&nd both p/M(p) and 0 distinct from P, so P c[,nnot be extreme. 

If p is decomposable then by Proposition 4.3, we cm write 

P=PI+P2 where neither PI nor P2 is B multiple of P (end neither 

is ze ro) : lye have 

i 

I 
i 
i 
i 
i 
I 
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M(P2) __ P2 

M(p) M(P2 ) 
and now 

~ E P , ~ E P 9 and neither is ellual to P so that 
N(Pl) l1(p~) 

P 

cannot be extreme. Thus (i) and (ii) are necessary conditions 

for p to be extreme. 

If P is not extreme we c~n write POOoI,Pl + (1-o(,)P
2 

lifith 

o (0« 1 pfp19 pfp2' There are two possibilities; if neither 

PI nor P2 is a multiple of P then P is clearly decomposable, 

since then P-o(Pl is a positive functional (oo (1-0()P2) 

If on the other hand one (and hence both) of PI' P is a 
2 

multiple of P, say PI = o/.P, P2 = Pp, then one of 0(, p must be 

>1; say~>l Then I1(Pl ) S. 1 and l1(p) = N(Pl/e<,) s. t <1. So 

(1) and (11) together are sufficimt for P to be extreme. II 

COROLLARY: If P is nonzero and extreme then the asso­

ciated representation is irreducible. 

We next recall the 

KRlHlN-I1ILI1H\1 THEOREl1: Let K be s compact convex subset 

of a real locdlly convex linear topological space E 

and let Kl _be the set of convex combinations of extreme 

points of K. Then K=CL K{* 

L-By ? convex combination of extreme points we mean a 

fini te surtl ~ <XyCywhere the e yare extreme and the O<'.yare 

positive real scalars with ~c{y oolJ. 
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L- In fact we do not need the full force of the 

Krein-Milman theorem in order to prove Proposition 5.4, but 

only the partial results that given any hyperplane in E there 

exists a suprorting hyperplane of K thfit is parallel to it, 

&nd that every supporting hyperplane of K contains an extreme 

point of K 1 however we shall not go into this refinementoJ 

PROPOSITION 5.4: If for xEB we have p(x).lo for SOI,e ~E.P 

then we helve q(x) .I 0 for some extreme point qE. P. 

PROOF: Suppose first x is self-adjoint and p(x)/o. 

Then by the Krein-l1i Im&n thEO rem we CEn find ext reme point s 

ql' q2'······~ and positive scalarscx'-,,""<Xyt with 

Ip(x) - ? o{y q .(x) I < Ip(x) I 
~ r 

Hence for atle&st one value of r, we must have qr(x) fO. , 
In' general, if x=xl+'i~2 where Xl and x

2 
are self-adjoint and 

lJ'Jt) '" 0 then not both p(x l ) and p(x2 ) are zen. If (say) 

P(xl) I 0 then there exists an extreme point q with q(xl) I 0 

thus Re q(x) } 0 and so q(x) ~ o. II 

COROLLARY: If p(x*x) > 0 for some pE P then also 

* . q(x' x»O for SOU.') extreme point qE, P. 

We can now stc.te one of our moln theorems: 

THEOREM 0.5: Let B be a Bc.nach-\(:-algebra and xE B. Theil 

the following are equivalent. 

, ' 
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p(x) f. 0 

p(x7sc) > 0 

(iii) :l extreme pE P with p(x) J. 0 

(iv) j extreme pE P with p(x) > 0 

(v) j~~-_representation T with T(x) ;;' 0 

JVi) 3 irredupible_)( -representaUon Twi th T(x) J. O. 

PROOF: The implications (iii) _ '1 (1), (iv) ~> (ii). 

(vi) ') (v) are trivial. The implicaUons (1) _.) (iii), 

(11) .....-----:') (iv) have just bGen established (Proposition 5.4). 

1,Ile now prove (i) -7 (11), (iv) -? (vi), (v) :-;. (1),. 

(i) =:> (11): Ip(x)1
2 s. M(p) p(x*x) < p(x*x) so if p(x);i 0 

then p(x*x) ;i o. 

(iv) > (vi): by Theorem ~.2 if P is indecomposable, T is 

i rreduci ble: &nd if p(.x'~x) > 0 then T(x) = 0 since p(x-){x) 'I 0 

( T(X)~ ,T(x )0= IIT(x)s 112 : if p(x*x »c then T(x)(; /.0 and so 

T(x) J. o. 

(v) '> (i)~ we note first that To is any linear operator in 
. , 

a complex Hilbert space then (To~, :; )=0 for all ~ implies To=O. 

Thi s follows from the ;Ld mti. ty 

4( To~ ,yt) = (To(~ q), (S +'7 »)- (To(~ -1), (~;-'1») 

+ '- (To(S H?'p, (~+i '0) - i(To(S ~11), (~-~ 1) • , 
if each term on the right is zero then (To~ ,l() is zero for all 

5' ,1. hence ToS'is zero for all ~ hence To is zero. If 

~ ! 
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then there is a representation T(not cyclic in general) with 

T(x) J. 0 then there exists $~ H with (T(X)$ , ~ ) J. 0 and 

Ilfll " 1. Then if p(x) " (T(X) S ,;) 
extendable functional: by Proposition 

so pE P as required. II 

p is evidently a positive 
2 

3.4 we have M(p) < II s Ii ,,1 

ccaOLLARY: If B is a (7'< -algebra and xE: B is non-zero 

then there is an irreducible representation T with T(x) I 

o. 

We have at this stage rsached the point where we can 

assert that if representaticns of a certain kind exist (sepera­

ting, in particular) then also irreducible represent~tions of the 

some Idnd exist. However, we canrot assert that for a general 

BE,nach * -algebra there are enough representations to sepe rete 

points. The fact that thj s is so for Ll(G) is vital for the 

thED ry of group representf,tions and is quite eusy to prove -

v16 return to this later. In the meantime vie specialise our 
~ algebras further to the case of a B -algebra. 
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C HAP T E R'(i 

THE E L E MEV T S f""x A SAC 0 ~T E I}T Bs 

Throughout this section and the next let B be a B *"-elge­

bra, some results are. valid in .more general situ~ti('nsi The 

results proved in earlier sections &.re all aJlpli'~able.. The 

main result proved in the next section is the ,-elebrated 

Gelfand-Naimark theorem, that B is iscill1etri!l and isomorphic 

to a closed sub-algebra of ~(H) for some-_Hllbert space H. 

This, it might be emphasised,·i~ for th/rcomplex case: the real 

case is not so easy to discuss. ·It is clear that in.general B 

cc:nnot be isometrically isomorphic to the whole of Jf./H); 

consider the case where B is comrnut(;tive 8nd of dimension> 1. 

We begin with the remark that there is (; no loss of 

generali ty in I..ssuming that B hes a uni t. For, if not, 

consid8r Bl with the norm described in Proposition 2.1. If 

B is isometrically >,i;--isomorphic to a closEd subdgebr& of £ (In , 

the scme must be true of B, since B is a d;osed subalgebra of 

Bl • 

LEMHA 6.1: If x,y(B,06 is a scalar, and one of 

(e+oLxy)-l, (e+iyx)-l exiilts, then so does the other. 

PROOF: Suppose (e+.,6Jcy) -1 exi sts. Then 
, 

(e+ d.yx) [e- o(,y(e+oGxy)-lx J= [e_ c<,y(e+;l.xy)-lx]"" 

x(e+ c\.YX) := e 

so that (e+«yx)-l eXists: simil.srly if (e+oLyx)-l exists, 

sO doe s (e+ tC,xy) -1. II 

i 
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COROLLARY: If x,yEB then o-(xy) .and (}(yx) are the 

sEme, exc6pt tlu;t possibly 0 may be in one set but not 

in the other. 
~, 

PROOF: If Il J. 0, take 06=-1 A in Lemma 6.1 and it 

follol1S that if one of (Ile-xy)-l, (.1.G-yx)-l exists, so does 

the othe r. II 

To see thd the sets ()(xy) and o-(yx) may indeed be 

different, take for example B = ~(t2)' Imd the infinite 

matrices 

x = 0 it 0 0 y = 0 0 0 • 

0 0 1 0 1 0 0 

0 0 0 1 0 1 0 

then 'xy=e and 

-
yx = 0 0 0 

0 1 0 

0 6 1 

so that ()(xy) = {l} while (}(yx) = {O,l}. It can be prOVEd 

that :l.f B'is a flnite-dimensionc:1 algebr£< then o(xy) = o-(yx). 

PHOFOSITION 6.2: If xEB is self-ad.ioint, thE follow­

ing are egu:l.valent. 

(j) u(x) [0,00,[ ; 
2 

(n) x = y for some self-ad,joint y E B; 
.' 

ii, 
,'I 

,:] 
:;. 
>! 
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(iii) lIe-o(,xll ~ for some stri ctly positive rel'l c£ \ 

(iv) lIe-o<:xll ~ 1 

(v)111I x lie-xII ~ 
for ell 0(, lvith 0 <c(;s. Oili 

IIxll . 

PROOF: Suppose (i), and tBke any sui tBble closed commu­

tdive sub-clgebrc: of B conhinirlg x in which the spectrum of 

x is the same as the spectrum in B. [A suitablG subvlgebra 

would be B"(x) . all elements thot commute with everything 

that commutes with x ; if ( Ae_x)-l exists in B it must be in 

• , 

H 1 B"(x) End so the spectrum () (x) of x in B"(x) is exadly ~(x)_. 

* NO~I use the representBtion theorem for commutative B -clgebC'L 

F..s algebrc-sC(":) (Vie h1.<ve -C comp&ct herE, since B has a unit, 

dthough this is really irrelev,nt). Since the function 5;:­

corresponding to x is non-negative (its values are precisely 

the points of o-(x) ), it has a (unique) non-neprtive squa IE 

root " Y : let y be the element of B corresponding to this. 

Since the correspondence betvleen the algebra end the function 

olgebn_ C(X) is a *-isomoqhism, y must be self-,-~djoint and 
2 

X"'Y • 

2 
Conversely j if x=y with y self-adjoint take a sui tLble 

commutative sub-Elgebru of B ccint,1ining y in which the spectrum 

" of Y is eXt;ctly ()(y) say, B"(y). Let y be the function 

corresponding to y in the representation of this algebra as a 

C(X) : sincG y is self-adjoint ~ is a real function 

(Proposition 2.3) End so is non-negative. Since u(x) 

cBnnot contain any point that is not a value taken by ~ it 
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follows that (T'(x) C [O,c;(J.{. We have thus proved (i) ,?;>(ii). 

To prove (i) -:==> (iv) : tc.ke again BII(x) or some other 

sub-blgebn and consider ~: this is ? o. So if 
2. 

suitable 
2. 

o(..s: W '" IIj:j,' we have O.s: c<.'X" .s: 2, so that -1 < 1- <;/,~ .s: L 

giving 111- ","SCII .s: 1 bnd hence (since the, (orrespondence between 

the algebra and the correspondir;g (.X) is i somctri c) 

lie -C'Gxll .s: 1. ,~ " 

The --"-impli cc;tion (iv) --I (i i 1) is of course t ri viol. 
show (iii ) -_.> (i) ~(M) < 0 for some mE.! 

To . SUppose 
• 

, 

'Then if oG > I' > end II 1- 1f.S?" IIe- <X.x/! > 1. 
0, 1- oI.x(M) 1 so = 

If x=O Loth (i) and (v) hold. If xJo (v) is just 

IIe- II;" xll.s: 1 , which impliES (iii) end is implied by (iv). 

This completes the proof. " 

The proposition we h81e just proved is u$eful because 

it ene,bles us to convert'" statement about the spectrum into 

a stc:tement involving only rorms of elements in the algebrl'l. 

We use' thi s in the fo llowing proposi ti on • . , 

We d6,Pote by Q the set of self-adjoint e16ments of B 

that sati sf'y one (and hence ~j,l) of the condi tions of' Proposi .. 
. , " v ' , ,.,' 

tion 6,2 It is a subset of Bs: we shall now prov6 thE.:t it 

is c. cone; thct is, 8 set K' such the t x ,y( K, OG? 0 _> x+f, 
' , - . -. 

oexE K (so thd xr E K, D(.,,? 0 ==:>L,'cx:yxrE K) [;nd dso x, -x E K 

==-> x=O. 
y 

: . 

ij 
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PROPOSITION 6.3: <Lis a c19sed cone in l?s lvith a non­

empty interior j m<I1rE: preci selY e is an interi or point 

of Q. 

PROOF: Suppose x E Q, «. >- 0 then c/.x f Q by condi­

tlon (i) of Proposition 6.2, since u(OlX) '" <XU(x). 

2 2 
If x,y EQ choose 0< > 0 Vlith00~ 1Ixff ,c/.,~ 1fYIr 

Then lIe-oC.xll ~ 1, !!e-C£yll ~ 1 and so lIe-ic{(x+y)1I '" 

II ~ (e - ,,(.x) + t ( c - d y) ~ -til e -,,(,x II + ill ( e - eX Y ) "-< i + ~ '" 1 

so thd x+yEQ, by (iii) of Proposition 6.2 

If x E Q, -x E Q then u(x) '" {O 1 and S.1, since IIxll '" 
/\ 

Ilxll = 0 Vie hf;ve x"'O. Thus Q is certainly a cone. 

To show that Q is closed, use condi tion (v) of 

proposition 6.2. If xfjQ then 

o < /1 II x lie -x II '" C say: 

since II lI·x lie -xll.5. illl Ylle -y)1 + IIx-yll + )lIxll - IIY~ I 
~ /1 [[y [I e . -y)1 + 211x -yl!, 

it follows the. t 

c:nd 

II liy[le -yll - lIyll >- II Ilxlie -xii - IIxli -3I1x-yll 

so th&t if IIx -yll < 93 Vie hme /1 lIy 11 e -yll > 0 

and so y ~Q. 

i , , 
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To show thet Q has n non-empty intBrior, recall the 

device used in the proof of Proposi tio n 3.3 ;i f I\xl\ < 1 ~,nd x 

there 
. that is self_c,djoint then is a self-o.djoint y such 

I 

2 e-x, given by the usu::,l power seri es for (e_x)'l Th",t 
y := 

is, the elements of Bs thf,t lie in the open 0811 {x • I\x-el! < • 

are all in Q and e is certainly ;;',n interior point of Q. 1\ 

lr 

It is clef,r that if x eQ then x is of the form x-)( Y 

(ind"ed with y s'elf adjoint). Our next result shows the.t the 

converse result ",lso holds. 

PROPOSITH'N 6.4: x*xEQ for all xeB. 

>'-PROOF: We first show thd if -x' x E Q, x tB then x:=O. 

ItJriting x:=xl+ix 2 , where Xl and x 2 "rc self-adjoint, lie hEve 

.* 
x := xl-ix2 and 

.* ~<: ? 2 
X X + XX := 2X 1 + 2x

2 ' 

so tho.t * 2 2 ¥) x x := 2xl + 2xl + (-xx • 

f; .!Iv Now if -x' xEQ then -xxcQ e;l se, by the Co roll::: ry to LemmE: 

6.1. 

in Q, 

SincG Q is 

x'*xEQ: 

a cone, and the three terms on the right are 

this with 

* . in & B -",lgebre x:=O 

-x¥'x E Q impli es x* x 

since I\x'*xl\ := IIxll
2 

• 

:= 0 nnd 

* Now take a gener8l xEB: we wish to show x xEQ. 

since 

Certainly x>fx is self [,djoint, so ','6 CE,n write it as E, diffe-

rence of positive elements!' 

x*x := y-z 

.. 
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where y,z 2re positive, se1f-Gdjoint E.nd commute with every-

thing thd commutes wi th x* x. [In BII(x*x) t8.ke y:=(x*x)+' 

d A (x*x) - ] '. 1,·1 1 hOi /'./'. 0 Th ( )~ ['n z:= ",e a so &ve yz= , s nce YZ"'. en.xz xz 

= zx*xz := z(y-z)z := _Z3 ,md since z
3EQ we get 

3 
which implies xz:=O by the Lrgument giVen 2bove. Then z =0 

c,nd so z"'O since IIz4j\ = I\ z 2\10 "lIz\l4 end if Z3",0 then Z4",0 [md 

so \lz\\=O. Thus x~,,*=YCQ c.s requ1:rEld. \I 

COROLLARY : (e+x'*x)·l exi st s fOr all x E B. 

~ 
PROOF: To.king - sey - BII(X·I: X), we' have (e+x')I:'x) ~ 1 Dnd 

so (e+x-)i:x) certdnly has nn inverse in thQ sub-algebr" hence in 

B. \I 

An dgebra sat! sfying thi s condi tion is called by lITe.imr rk 

.QQ!!illletelY syromet ri c : th condi ti on is thus impli ed by the 

B~-condition \lx*x\l = \lx\l2 (but not \lx*\I = \lx\l). 

In gene ral, if K i s a cone in ;; r"el locElly conveX 

topological vector SpriCG E. We c[.ll [ functional f 12Q§.;l.tiv~ 

.\iith respect to Kif rex) ~ 0 for [.11 xEK. 

In the present C[ se t[,king E=B s ' K=Q, a functi anal 

(on Bs) is positive with respect to Q if and only if f(X*x)~O 

for all x E B. Hence the extension of f to B by Hneari ty 

( f(x l +ix2 ) ;,: f(xl) + if(X2 »)is precisely what \ole h:o:ve clreedy 

CL.lled a positive functional p. 

, , . 
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For positive functional 1'1(3 h[Ne the following vEriation 

of the Hahn-Bf.n&ch theorem: 

KREnn S EXTEl'ISION THEOREM: Let E be 2 rECCll locdly 

convex topological vector space cn<i. K a cone with t' 

non-empty interior. II El is a line,,! r subspf!cG of E 

containing an interior point of K, arulfl iS2 ]jneRr 

functional on El that is rosit iye wi th respect to 

Kl=K() El then there is an extension f of. fl to the 

whole of E th: t is positive with reil12GQ_t.j~Q. K. 

We proeeedt? the next. ~epti#"n tl). apply thi" ·r€su;Lt 

to ·the ease of q as a ,cone in Bs '_' 
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C H A P' T E R 7 

T H E II E A L I S A T I C 11' 0 F B*-A L G E B R A S A S 

C.>f:. -A L G E B R A S 

We begin with one or two results rGlr.ttng to idee:l 

theory in B: 

PROPOSI'.rIO~J 7.1: If J is C\ Irorer left idee,l in B 

there is , positive functionel P on P with p( e )::1 £ll2. 

p(x)::O for &11 xEJ. 

PIIOOF: Consider F=B s ; let E, be the subset of Bs 

coDststtng of elemmts (ltE+x), (AER, xEJ0B). This is s 

q linet. r sub spc ce of B send cont",tns Ln tntert 0 r potnt of 

Q nc,mely e. Write 

It is positivG with respect to Ql::Q Ii El , for if x E Ql wd 

x = ::\e+y them y E ,T end _y-l '" (A. e _x) .. l faUs to ext st so 

I\E cr(x), ~ >-. 0 and thus p(x) > O. 

We CLn now npply KrEtn's extenston theorem to PIg the:pe 

t5 a function, 1 p on Bs thc,t ts positive with respect to Q 

[,nd the extenston by line[:ri ty of this to the whole of B is 

the required functio~al. VIe h,w" p(x)=O for cll xE J c' nd so 

in p2rticulgrp(.i~x) '" 0 for C'll xEJ. II 
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We hfve used in the above proposition the fact that if 

Ae-x is in some proper left ide"l then (-1e_x)-l fl"(ils to 

exist. We Iwuld like to use next f: converse of this: un£'or c 

tunately a di rect converse would be fE,lse, 

considerinf the elements x and y . (~(~) In 0'''' 

after LemmE. 6.1 . here y-l fails to exist . 
princiPE:l ided generated by y is thG whole 

as is seen by 

descrj bed just 

but tllne left 

of:i;(e 1 ). 
~ 

Cle£.rly if l'Ie demf,nd thLt no left-inverse 

left principal ideal generated by y l>Ii11 

-1 y. exists thEn the 
';" 

be proper : so we 
\ dc';;"l for thE moment "ith one-sldGd inversEs. 

WE begin by defining the (left) radical of B to.be 

the set of all xE;B such thct [: left-inverse (e+yxyl exists 

for all (It l>Iill app~ar later that WE get exactly 

sE.me set of elements if we stlC1rt I,i th 'right' rather than 

'left'). This evidently reduces to the usual defjnition of 

"radic:,l" in <1 commute.tive Banach algebra; th2t is, £:11 ele-· 

mGnts whose spectrum is {O} • 

PROPOSITIOT 7.2: ThE radical of B .1 s the inters.Ec·::js.n 

or all the maximal left ideals of B. 

PROOF: Suppose (e+yx)[l fails to exist for some v,CE . '- . 
Then the SEt of elements of thE form z(e+yx) is i proper lef'c 

ideal [end henCE is contrined tn [ maximal 16ft ideel. If nO\or 

x is tn the interSEction of all m2ximal left ideals then ~ 

1Cmd hence yx belong to thi s idee.l and hence so does e, Lein,; 

., 
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e+yx-yx. This is [' contndiction : so the radicDl contains 

th~ intersection of III m~xim[l left ideals. 

Suprose X¢J for some mE,ximcl left ideal J. Then 

the set of all elements of the form z+yx(zEJ, yEB) is &gdn 

" left ideal end properly contdns J (since it contains the 

element x). Since if WE'S m&XimE 1 thi s id eEcl must be the 

i whole of B. But then e ~ z+yx for some y,z so z = e-yx 
',: 

But z we h&ve no left inverse, since J is proper and so 

. x¢ radicE,l thus the ndioal is contEtined in eE,ch m8ximel 

left ideE,l J, hence in their intersectj on. 11 

COROLLARY: The r,;dical is c. closed left ideal of B. 

PROPOSITION 7.3: If x belongs to the radical then 

a two sided inverse (e+yx)-l (necessaril~tque) 

exists for [\11 yEB. 

PROOF: If x E. rE,dicEcl End y EB some left inverse 

(e+yxyl exists: say (e+z), so th,:t (e+z)·(e+yz) = e. Thus 

z = -zyx - yz = -( zy+y)x 

Since the radial is ,a left ideLl z E radical. Thus e+z 

has a left inverse w say: w$+z) ~ e. So w(e+z).(e+yx)=w 

= e+YJIl ciDd e+YA has e+z as 8 hlo-sided inverse. II 

PROPOSITION 7.4: 

PROOF: Thi s follOl'ls from the above proposition : If 

x E radicLl then necessarily cr(x) oo~. 0 } bnd then x~O. II 

Ii 
d 
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We now sho." (E:l though it is not really requi red in whr t 

follows) that we could hrve tE.ken "right" inst6['d of 'left' 

in the definition of the rEdic~l. 

PROPOSITICN 7.5: 1he ndicc:l is a two sided ideal of 

B : it is the intersection of all mpximal left id681§ 

and also the intersection of [11 !ll§!xim,:J, r;i.Rht id6[:l,s .• 

PROOF: This depends on Lemma 6.1 ; tE:king c::/., =1, if 

either (6+yx)-1 or (e+xy)-l exists so does the other. So 
1 _1 

X E (left) rc:.dical < ~ (e+yx)'" exists for 811 y( )(e+xy)-

eXists for all y¢ ';7 x E right rC\dic~l. Hence the k ft [,nd 

right radicals coincide. II 

Note thf.t in genErEl the radicLl is not the intersec,· 

tion of ,,11 mc:xima 1 two-sided ideals of B ; t&Ke B = ~ (E) 

for some countc:bly infinite dimension:::l H. Then there exists 

a uni(lue proper two-sided ideal, the comp~ct operators: the 

intersection of all maximal two-Sided idebls is therefore 

precisely compBct operEtors, therefore not zero. But the 

radicbl is {O 1 Lnd is not the intersection of maxim:".l t\,ro­

sided idells of B. 

PROPOSITION 7.6: ;If p(x*x) =: 0 for dl positi"e 

functionrls p 011 B .:then x=:O 

PROOF: Suppose J is a mc.ximal left ideal. By proposi­

tion 7.1 there is a positive functional p such th,t p(x'''''x) =: u 

for allxEJ End pea) =: 1. But the set of elements 
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~ z : p(zf:'z) ~ O} is a left ided (this wr·s proved during 

the course of provjng Theorem 3.6) End this ideal must be pro" 

per since pee) =' 1. Then it coincidEs with J since J is 

mcexim£ 1. HenCE if p(~x) := 0 for all p thEn x E:J fo~' .: ~~ch 

m8ximE,1 J bnd so x is in the rndicE,l v/hich is { O} • 

(Fropositi n 7.4). II 

PROPOSITICN 7.7 : h 

*-represEnt8tions and henCE c' complete SEt of irr2.-

dudble -'1k-represent;;tions. 

PROOF: What we want is to show th"t if T(x) =' 0 fo r 

Ie:ll *-reprEsentations T thEn x='O 

functional associated with T then p(x''''x) 

But if P is the 
>" 

=' (T(X''l.:)l;' \ 7:; ) '" 

IIt(x) S 1!2 =' 0 and conversely if p is given then therE i.' 

T associ<- ted wi th it: so T(x) =' 0 for d1 Tis eCiui y alen t .~[) 

* 'I p(x x) =' 0 for all p which implies x~O by Proposition 7..6. " 

\Ale no\<! proceed to construct 2. Hilbert SpE.CE H ;3u:-h -CJlrt 

B is isometrich11y *-isomorrt.Jto to a closed >';/;'-SUo;:;l[',E'or[\ Jr' 

~ (H). Fi rst we prove two propositions. 

f'ROPOSITICN 7.8: jAt X be Qompact, C( X) JhLllsual 

space of continuous functions wi th IIxll = sur Ix(t): 
- tGx 

Let IIxll' lliulny other norm Sill C(:'C) Jn which it J.JL'l 

normed (not necessarily complete) algebrc. Then~ 

IIxll ~ Ilxll' for alL x. 
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PRCOF: Suppose B is the completion of C( X) under 

M be its m<'.ximEl ideal space. For any m E: M 

let fm be the 8ssociLted function£.l then fm restricted to 

C (X) is a non-ze ro fUnctional on C(X): so the re exi sts 

tmEX with 

([,ll xE C( ':) 

Wri te Xl = {t: t = tm for some m f. M } Then Cl X:!. = X. 

For, if not, there exists 8n open subset V with C1 Vcompact 

andCL V ex --.....CLx
l

• No,., choose x,y E. C(X) "rith yet) = 1 

for y EeL V, yet) =. 0 for tE cL '~l wd x i 0, x(t)·", 0 for 

t E X ........ Cl V. Theh given mE.M, fill(y) := y(tm) = O. But then 

(e_y)-l exists E.nd x = xy so that x(e-y) (e_y)-l = O,Le.xooO 

a con t radi cti on. SO CI. Xl = X. 

I . 

IIx II L sup I fm ex) I '" 
mE M 

as required. II 

Then evidently 

sup l(x(t))1 = IIxil 
tE~{ 

COROLLARY : If B is semi -simrle then II II i.:nd II II' or,,, 

metrically equivElent ,md Boo C (X). 

PROOF: This follows at once from the Banach inversion 

theorGm if 'Ire note thEt M whtch 'Ire hEve idenUfied with "­

subset of X must be Ell of x. II 
He next have the key result which enables us to prove 

thi.t B is, iSOlnetric with a closed sub-algebra of ~(H). 

" 

1 
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PROPOSITION 7.9: Suppose 

end cp is « -:*-isomorRhism (no continuity Dssumed) from 

BI to u dense sub-algebn of B2 • 

an isometry and hence 90(Bl ) = B2, 

Then ~ is necessaril:y 

PRCOF: Let xE Bl e,nd let B3 be the closed subdgebrc 

of B, gen5rated by x*x (and e) : B3 is commutcUve. Define 

II 
lIyll" = Ilyi/ 

2 

"'he re th€ suffix indicrtes the norm in Bl or B2 , resp€ctivcly. 

under II II', 9?(B
3

) is a commutGtiv€ B~ -algebr:::c, hence 

(isometricdly isomorphic to) C(X) for some X Under 

1) (B3 ) is a commut",tive normed nlgebra nnd its comr1etion 

B4 is a closed sub-ulgebrR of B20 Since H
2

, 

is semi-simple, B4 is &Iso semi-simple. By 

proposition and its corollary Ilyll ' ~ IIYII" 
wd cp (B3 ) = B4• 

bein? a B 1"-1' -2lgcbr2, 

the preceding 

fo r all yE <PCB3) 

Now B4 will also be of the form C (X' ) for some X' ; 

the result of Proposi tlon 7.8 DOW yields 

. ' 

, , 
!' 
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of(pmust then be closed, it is the whole of B2 ). II 

If { H
i

( is any collection of Hilbert spaces 
S i E I . 

their Hilbert direct sum H = ami is the Hilbert space whose 

elements are "vectors" ~ = Z nJ i E I such that 2', II fi II 2 < c<) 

iE I 

(so thc,t ~i =0 for all'but a countuble set of indices i). 

(~//) = 2: (h,lLj,) We can introduce the inner product 
I 

und thus the norm 115 II " (S , S /-
: iE I 2' 'C' 2 

; note thct II $' II - " ~ II ~ _ II • 
iEI 1 

It is easy to verify all the Hilbert space axioms (including 

completeness). If we hIve e corresponding collection of 

bounded operators f Ti } if I then their direct sum is the 

operator T on H defined by T~ = ('l'i S i\E: I' This is bounded 

Hand.only if sup IITili <00md then IITII '" supliTi li • To, 
iEI ~I 

see thiS, note that I(T~,"7)1 " IZ(TiS i,'l i )1 ~:ZI(Ti~i' 

'1 i ) I < sup II Till L)I ~ i 11'1!~111 ~ sur l11)i II II ~ II 11'111. So if, 

sup 1I~-'111 < 00. then T is bounded and IITII ~ sup IITJ On the 

othEr hand, choose an i ~lith IITi II > sup II Ti II - E ; thE re 

exist ~1' 1i EHi with I(TiS i,YJi)1 >(sup" Ti "-2t-) II Si" lI'1ill· 

Now tEke S to be the vector ~Ji th only one non-zero component 

~ i End simi It rly for ~ : we then have 
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so'th,at 11'1'11 2. SUpll.Ti ll ,"" 2 t and since c wr·s arbitrary 

IIT'II 2. sup IITili giving IITI! = sup IITili as 

asserted. If Ti is now E collebtion of representations of 

B, their direct sum T, where T(x)S = ( Ti(X)~'i) iE I is again 

a representDtion as is illllredic tely verifi'cd. 

* . THEO}EM 7.10: A'B--algebra is isometrically~-isomorphic 

to & closed sub-algebra of.~(I-I) for some Hilbert space 

H. 

PROOF: Let B be the l1lgebra and let (Ti ) be eny 

llt;lmplete set of rerresentati ons (not necessari ly i rreduci ble) 

on Hilbert spaces Hi' Taking the direct sum of these we 

evidently have a faithful *-representation x '>- T(x) of B 

on the Hi,lbert spc1 ce H = EDc Hi' (Since IITi(x)1I < IIxll for 
i>;.. I 

all i (Proposition 3.5) it follol.,S that IIT(X)II ~ IIxll, but we 

do not in fact, requi re thi s). Tal,Hng the closure of the Sf't 

of of-erators S T(x) ( ",e heve 2. closed * -subalgebra of ,I J xeB 

~(H) [:nd we are iri the situ2t:iLon of Proposition 7.51 Elpplying 

the result of thc.t prof-osition, it follows that the map 

x ->;>T(x) is un isometry on to E; closed sub-algebrc: of~(H), 

whjc h is what we wanted. II 

It may be useful to indicate whet this representption 

may be like in a particu]ar case: st2rting with B =C [0, lJ 
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CH APT E ': 8 

REP RES E r TAT ION S 0 F 1 0 C A 1 1 Y COM F ACT 

GROUPS 

1et G be a loc~llt comract group, not in general 

[.beli"n. By [, represent£'.tion of G we me[,n a mep s~>'V(s) 

~lhere V( s) is an invcctible linec.r opervtor on c; BE.nach spece, 

with V(sl s2) = V(sl) V(s2)' It will be cElled (strongly) 

continuous if the m[,p is continuous when the orer"tors are f' 

given the strong topology, If the B[ntch space is in fact 

[. Hilbert sp",ce ind the operators ,ue all unitll1'Y (in which 

case ~le ShLll usuc.lly write H( s) re.the r th[:n 

unit[:ry representi.tlon ; in this CE.se TJ(s-l) 

V(s) ) we h'.ve c. 

. * 
=- CUes) ] ' Vie 

have c,lreedy seen in (h.l thE t there c,hlEYs exists [; continuous 

fLithful unitLry'rerresentation of G. We now wjsh to exe·mine 

the existence of irreducible representlfions •. 

First we define irreducibility: this is eXLctly the 

SE,me for graups as for BLnoch ,;lgebr,;s. The represGntctirm 

V is redUCible if there is a non-trivial closed subspace 

El of E \~ith V(s) EICEI for 111 sEG, otherwise irreduc~ble. 

For uni tE,ry representi tions on ,; Hilbert spDce H lie hE:ve 

eXEctly the sune criterion for irreducibility 8S we had 

previously for &lgebrDs 

PROPOSITIO~' 8.1: The uni ti]Y representation U of G 9J1 

the Hilbert spc:ce H is irreducible if [.nd only if the 

only operators thE.t commute Ivith ell the U( s) .Q.DL 

seLlar multirles of the identity operator. 
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Also, we can introduce the notion of cyclic rerresen­

t~tion, cyclic vector atc., for representetions of groups in 

eXEctly the Sf,me wcy as for representations of Bccn[ch Dlgebr<:s, 

we hfve , result Hnrlogous to Theorem 2.6. 

vie now review bri'Efly ene or two 8spects of integrn-

tion on G. As usu,.l dt wj 11 denot<e left inv£riLnt Hr.ar 

mer.sure, with some fixed normclisc:tion. We thEn have, for 

f r C (G) at Ie/cst, 
" 00 

but 

However it is cl€t&r thr..t 

f f(uts-l)dt==ffs(ut)dt 
G G 

= 

,j J f(t)dt, 
G 

in generc;l. 

f~f(t)dt = J f(ts-l)dt 

G G 

so thf,t f --". Jfs(t)dt is c, left invariEnt integrd on 
G 

Coo (G) ; and so by the uniqueness 

it must be G, const[:nt mul tipl" of 

theorem 

ff(t)dt 
G 

depEnds on s but not on f [,nd Iva wri te 

Jf(t)dt = L\(s) f f(t)dt 
G S 

G 

for H2[,r me£sure 

!. the const[:nt 

This function L\(s) is thE modul&r functirn of G. It is by 

dEfinition real r.nd non-negrtivG. If 6(5) ~ 1 then G is 

I 
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called unimodu1a r (the te rm unimoduh r is H1so ar.pli ed to 

certdn groups of m[.trices with det"rmin£:nt 1, but we do not 

use it in the same sense here). 6(s) ~ 1 is evidently a 

necEsSary L.nd sufficient condition for left end right HUH 

measures to coincide. 

PROPOSITICI-' 8.21 s ~> 6(s) is c: continuous homo-

morphism of G into the multiplicative gronp of 

strictly positive re£l numbers. 

PROOF: If f fC oo then f(ts- 1 ) is uniformly continu­

ous function I given C we can ceftcin1y find ~i(so) so that for 

sEN we hLve If(ts-1 ) - f(ts~l)1 <f throughout some fixed 

compc,ct set hence I r f(t)dt -J f(t)dtl < kE if sEt!, 
, S So 

hence continui ty at So 

= ff
s1

(ts2
1

)dt 

= 6(s2) fs{(t)dt 

The nnmomorphism property is immedi,:te: 

6(s1 52) f f(t)dt = ff(ts;/si1 )dt = Jf
S1 

(ts;l)dt 

= 6( s) f f51 (t)dt = 6(s2) 6( 51) f f(t)dt 

und the result follows on choosing f with J f(t)dt I o. II 

PROPOSITICN 8.3: 6(s) ~ 1 if·G is abelir.n or discrE'te 

or compact. 

... 

"\ 
;' i 
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PROOF: This is immedi[,te if G is abelian or dJ screte. 

IfG is comp". ct not e the t the function f(t) - 1 is in Coo(G) 

p.nd E,pply the formula for 6(s) with this f. II 
There are of course unimodulcr groups of other kiJ,i.ds 

We hive f f(t)dt =- J f(st)dt = J f(s-lt)dt := f f(ts- l ) 

b-(s-l)dt = ff(tS) b-(s)dt. \<Ie do not have [f(t)dt = ff(t-l)dt 

in gener&l I the B.ppropriHte fonnulH is 

. f f(t)dt = f f(t-l) 6(t- l )dt. 

To see this, look. at J f(t-1 )b-(t- l )dt. Using the fonnula 

J CP(t)dt = b.(S-l)fcp(ts-l)dt, withg:'(t) := f(s-lt- l ) 6(t-l ), 'lie 

have f s f(t- 1 ) b-(t-1)dt =jf(s-lt ... J.)c6(t-l)dt := b.(s-l) If(s-lst-i" 

b.(st-l)dt = ff(t-l) 6(t-l )dt, and so this is [\ left-invarimt 

integral. It must therefore be of the form f(t-l)Jb.(t-l)dt = 

Cff(t)dt for some constant c, by the uniqueness of Hrar 

mec,sure. 

To see that c must be 1, choose c neighbourhood of 

e so thEt b.(s) is ne&rJy equal to 1 throughout this neigh­

bourhood. Then choose f to be a non-neg,tive symmetric 

function (f(t-l ) = f(t) for,c1ll t) with support in the neigh­

bourhood. It will follow th[,t If(t)dt End j'f(t-l ) 6(t-l )dt 

are arbitrE,rily close, &nd hence that cool. 

As a corolh,ry, {f(t)dt " ff(t-l)dt if md only if 

b.(t) _ 1. 

- ----... 

H 
i 

, . 

Ii. 
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We may intrcduce an involution in Coo by vlriti'1g 

f* (t) = f(t-1) 6(t-1'j. It is clec.r thd this hHS 2.11 the 

line[:r sp&ce prop ertiE: s requi red : to shew thE. tit has the 

&Ppropric.te property rellctive to conv('lution we note 

(f¥;g)(t) = f_i;'g(t-1)_6(t-l ) =ff(S}g(S-lt-l)dS 6(t-l ) 

. = f g(s-lt-l ) 6(s-lt- l ) fc;) 6(s)ds 

= f g*(ts)t(s-l)dS = g*~ f*(t) 

>,1; 

We hove E:lso immedhtely the fE:Ct thct f ? f is an 

isometry for the Ll rorm 

IIllll = flf(t-l) 6(t-l )ldt = flf(t~dt = Ilflll 

(on the other hand, it is not en isometric m1:.p in Lny other 

Lp norm, unless G is unimodular). So we CEin extend the 

involution unit(uely by continuity from Coo to Ll End Ll 

then becomes E Br-n"ch:f,: -algebrC!. 

We should note [Iso the f"ct thc.t if \'Ie Ivri te Tf for 

the operHtor on Coo obtdned by left convolution by f: 

Tf(g) = f* g then we h[ve (Tfg, h) = (g, Tf*h), so thd 

... 

'i 
<'I 

I 

I , 
,I 
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There is one formul[, th"t we shEll require later: if 

,,,e trgnsl&te [ ccnvolution product f¥<g eith(,r .'m the r1rl:,t 

or the left~ we get (f* g) := f-lt(g ) c.nd (f>l<g):= (sf)¥: g. 
s s s 

If we take the special case of g product f*" f then 

transl~te f by s we get Exactly the same result : 

* sf'" f * f. To see thi s, 

/'" (t) f 
'(-

:= f f(s-lt) f(s-lt u)dt := jf(t) f(tu)dt 

'" f f(t- l ) f(t-lu) 6(t- l )dt 

:= f f* (t)f(t-lu)dt 

THEOREM 8.4: There is p, 1-1 correspond GDCe between 

continuous uni tary repr.£Ul...~.ni.d:lons U : s ---7 U( s) of 

G and essenthl * -representrti ons T ;x --7 T(x) of L (G) ~ 
i 

in one direction the correspondence is given by 

:= J(U(s)~ ,1 ) x(s)ds 
G 

and in the other by 

(for any suHgble x, « ). 
PROOF: Suppose the representetion U given. Consider 

, YJ. E H, the integral 
" 

I:= J(lJl(S)~, rt) x(s)ds, 
G 

:' , .. 

'. 
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Evidently 1 II = sup I(TJ(s) ~,l()I'llxll and since IhU( s) II = 1 

we ho.ve 1 I 1 ~ IIxll II ~ II lI~tll., Evid~ntlY the integral is linear 

in ~ , conjugate-linear in 1, ·s~ it must be of the form (T(~)i 

'7): where IIT(x)1I ~ Ilxli. It is clec:r that T(x) is a linear 

function of x. To complete the verificCttion that it is a 
.' ..• I, . • 

rep resent~tion we hc;ve to shOl>l that T(x t:= T(x*) and T(~~Y) = 

T(x)r (y). 

We ho.ve 

" 

(T(X~~) S ,1.) == j(U(S)/g ,y()'X(s-1)6'(s-1)dS,! 

= J(S,1!li.(s-lp1)xC s - l ) 6(s"1)ds" f(U('s-l)~ ,1) ;(s-l) 

6(s-1)ds 

as required : and 

We mElY interchange the order of integration by Fubini IS tb,,'orem 

we get 

f f (U(st) lJ'(t-l)f ,1) x(st) 6(t)ds 6(t)y(t-l )dt 

= I( T(X)U(t-l)r ,"fl)' 6(t-1 )y(t-1 )dt 

= f (u(t-1 ) f ' T(X)YI ) 6(t-l ) y(t-1)dt 

= (T(Y)~ , T(x/'1) := (T(X) T(Y)~ ,Y{) 

1 '.1 

, 'I' , ' 

i 
'I 
i 

j 
i 
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To see that T is essential: sup}'ose ~ -10 : then u(s)~ 

is nearly eljual to ~ for s near e. hence if the su}'rort of x 

is small and x is non-negative with ~X(S)dS ,,1 then 

J (U(S)§ ,S)X(S)dS is ne£:rly equd to f (S ,S) x(s)ds 

~nd So in particular (T(X){ '5)10 and T(x) 5" is therefore 

non-zero. 

So, st,;rting from U, we obtain T quite st rni ghtforwa rdly. 

To go in the reverse direction is somewh,~t harder. SUrf,ose first 

to simplify matters that we hove 2 cyclic representbti on T wi th 

. cyclic vector ( : the vectors T(X)~ are then dense in H. We 

first observe that if T(A},~"O then also T(sx)~" 0 for all 

sEG. For, we h&ve 

(T(SX)S, T(sX)~)" (T(SX*7t sX)!; ,f;) "(T(X~X)~ ,» 
"(T(X)C, , T(X)l;') 

so th<..t the required conclusion follows at once. We now define 

U( s) by 

U( s)T(x) ("" T( x)7-, s '-? 

This is well-defined: if T(X)S = T(y)S then T(X-y)S = 0, 

T( SX-sY)<'; = 0 Hnd T( sX)S' = 'l(s ~)( . l"e h£.ve 

(U(S)T(X)S , U(s)T(X)~) = (T(sX)2;' , T(sX)t;) 

= (T('sX.¥*sX)S,S) =(T(X**X)S,';-) =(T(x)l;, T(X)t;) 
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. so that IIU( s) ~ II = II ~ II for all ~ of the form T(x) r;. Since 

these &re dense in H we cen extend U( s) uni <luely by continui ty 

to become i., uni tury operator on H (it is cleLrly linear, 

algebraicfl!y), It is clear that U(e) =I, the identity 

oper&tor, and 

== 'U( s )U ( t ) T (x ) t; , 
. . 

so thL t U( st) :: 'U( s )'U( t ) • 

The Illep s --) U(s) is contirmous : tM s if proved by 

esseJ:ti&llythe s£me argument as WGS used in Prorosi tion 1. 2. 

we heve lIu(so)S -U(s)s II =: IIU(so) T(X)S - U(s)T(x)(;' II if 

f =T(x)(; and this is IIT(s6x .,. sx)t;' II ~ lI(so'x .,. sx)1I lit;' II. 

So, given \: ,~ .......... l: ,f, s choose xl' .•.. ,x so thE.t '>, S2. )1'1 0 n 

II(T(xr)S - ~ r)1I < ~ for 

C. 
IIso(X r ) - s(xr)1I < 3/1t;1I 

all r and then 

for all r: this is possible since the 

continuous functions of C~ll1r!),ct l.'lI1r.vort· ara' clense in Ll Emd 
,", .1', .... ,"1,' '., • '." " 

such functions are uniformlycomb.mious. Then \1e get 

Ilu(so)~r - U(s) rrll ~ 211 ~r - T(xr)~11 + IIU(so)T(xr)s _11(s)· 

. T(Xr)S II 

l'~ r ~ n 

I. 
" 
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and so the required continuity follo'ds, 

:1 :-Je next remcrk th,t if ~ is any vfOctor in H end x 

I any element in Ll ' then U(S)T(X)S- T(sX)S For, if 

I 
I S =T(y)S for some y then we have 

I 

I 

I 
I 
I 

I 
1 

and the general case follO\vs by con t j nni ;;y s4 nee vectors of the 

form T(y)S' are dense in H. 

If T is Dot a cyclic ropresent21;ion vIe Cc-D decomposs it 

as a di rect sum of cy cli c representations I as in Theorem 2.,.G~ 

For each Ti we form Ui GS described above, wd then ta:,e too 

direct sum of the tJi It is 9c.SY to verify. th2.t U and 'f 

8 re relc;ted by 

U( s) T(x)t, = 're x)[ 
s . 

fo r all ~ 0 H 1 for if ri(r)Ti(X){i = i 

H. ) 
1. 

",nd so the requi red result hoIds, 

We must show thL;t the cor.·r8spondence indice.ted is really 

1-1. Suppose thc\t T has arisen from Uo and th,t U h2s 2.risen 

from T by the formula given. 

x(s)ds and 

i , 



= JCUo(S)f /l)x(t-ls)ds 
G 

= J (u. (t-1S), U (Cl)'ri) x(t-ls)ds 
GUo 

but this is also (U(tJ 5,(x)f ,1) by clefinHion so u.(t) '" Uo(t) 

for all t, as required. 

suprose th(c.t U h[.8 ari.sen from To ",nd T fromU F'or 

zEcoo(G), 2nd hence for all z (: 2:,l(G), the function (To(Z)~ ,rf) 
is a complex integral onCooi vIe m2Y "I!:it8 it as 

(T0(Z)~ ,Y/J = J Z(S)df"'t05 ~/s) = I Z(S)df(s) say 

Then (To(X;<Y){ ,1) '" j'X(t)Y(t-=-S:dt d/J..(s) 
G 

and vie mDY interchDnge the ordsl' 0f the i'1tGgr"cioD. by Fuoini' s 

Theorem : Ive get 

(To(X"y)( ,1; =If tY(S)clj.t(s) x(t)dt '" ]TchY>f ?1)X(t)d'; 
G 

= jU(t)Tc/Y)( ,7)X(t)dt '" (1'(x:, '('c(Y); "7) 
by the definHion of T. But it is [,lso (T (x)To(Y) f ,1[ 'j [',1d o ) 

so T(x) '" To(x) for all x (since the vp.dors (ro(y)r ,Y( 

dense in H [~S {varies througllo11t H j, I! 

, 
) e.re 

i 
I 
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THEOREM i).5: Jf U end T 8re relded "s in Theorem 

8.4 then U is irreducible if "nd only if T is i rre-

duci ble. 

PROOF: Suppose U reducible. Then there is an operator 

P=F oU (11e can toke P to be the rrojection on a non-triviDl 

inv&.riant subsp"ce) such th,t PQ}.(s) =: y(s)p , [11 s E G. Then 

(PT(X)~ ,1.) =: (T(X)~ ,F*1() =: [(U.(s)f ' i<-l( ) x(s)ds 

=: f(cPU(s)~ ,1) x(s)ds =: fcu(s)pf 'YI) 
G G 

x(s)ds 

and since this holds for all ~ ,)7 ' we have f'T(x) =: T(x)P "nd 

T is reducible by Propositicn 2.5. 

Supfose T reducible, and let P commutE 11ith all the T(x). 

Then PU(s) T(X)$ =: PT(sX)~ =: T(sX) p~ =: U(s)T(x)P~=: u(s)p::'(x)f, 

and since the vectors T(x) ~ are dense in H (since Tis 

essential) it folloVls thl t P(U(s)):: U(s)p end U is reducible 

by Proposition 8.1. II 

THEOREM 8.6 (GELFAND-RAIKOV) : j\ locally comoc,ct group 

G alVltys has enough continuous irreducible unitary 

representations to sep8rate the points Q[ G : given s/-G 

thEirs is Ei representction of the kind descri bed 11i th 

U(s)fr. 
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vl6 cin fjnd xE C6oCG) wi th x f. x l 
s 

sunose s¢tJ(e) end take a symmetric t" with tT'}T'CP, then 

if the support of x is in V', the supports. of x 2nd of 

disjoint. Given any '-on-zero function yE Coo, Vie cem 

x arB 
s 
find " 

function z ECoo such that the convolution y>,~z is non-zero ~ 

we ho.ve only to t1:'ke z r.on-negative, with sufficiently smEll 

support near e, and WithjZ(t)dt _. 1 . then y 2md y'*z will be . 
uniformly close and if y t- O then Y"z t- O. Thus if vIe condde!' 

the representation of LI(G) E:S left convolution operators on 

L2 , where 

T(x),; = x-)~- 5 ' 
then y 10 __ '7T(y) -I O. Then by Theorem 5.5 there is 2n 

irreducible representation of Ll with T(y) -I C. Takir.g:r = X-~?: 

we see that if U is the associctsd uni t2;ry n:presenta-Licn of 

G we hE:ve T(x- x) = T(x) - TJ(s)T(x) i 0 so thd D(s) f I : and 
s 

this is what VIe wfmted. " 

We conclude the section by remHrking thd in the proof 

of Theorem 8.4 we did not use the full force of th6 a ssuwptlCll 

the t . U.s) in strongly continuous, in going froGl 'J to the. eSEO-

I d -,ted T. It is cleEr thct waHk com.tinuity (thr.t is, the 

I I continuity of C,f( s) S ,1') for ec'.ch ~,? E- H) would suffiCE 1 \,e 

I could then go to T :md .b2ck to \1i v/hich must then necessarily 

I be strongly continuous, So, for unitary rerreseni;c,ti ons, weak 

continuity implies strong continuity. 
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If WE only [,ssume that n( s) is l"e2kly meE.surp.ble then 

we con obtdn e.n assocL ted represent&tion T cCS before, eXcEpt 

thct now we hove no &SSUnnCE th[t T is non-zero, to SE.Y 

nothing of being essentic:L For Examfle, let G=R Cind let H 

be the spacE of fune tions ~ (t) of the real vari2ble t Vii th 
2 ZI ~ (t)1 <oo(so that f(t) ! 0 for & countE.ble set of vglues 

of t only). The inner rrodl\ct :i S'(t) 11 (t) is then 
tE R . 

defined for ,,11 ~ ,1 E- H. Take tile J'epj'sst'ntati on of R on H 

given by 

this is evidently uni tary. It is evidently 0l1so weakly 

me[.surbble 1 indeed for D fh0d 5 ,7 we hcve'i5(t-s) '1(t) A. (' 

for a countt.ble set of vc:luE.:s of s only i.e. (D(s)5 ,7)=0 for 

almost all s for fiXEd ?'2nd 'I.. But then of course (T(X.;S ,1) 
=j(U(::» ~:,ll) x(s)ds = 0 for all ~,1 [,nd so T(x) = 0 for c,ll x. 

;10wever, if U is weLk1.y measur"ble end :l is separc:ble, 

we C2n conclude that T is sssEntL1L For, let Y(Yl bE an ortho­

nonn"l basis for :I: if 'U(s) is unitE:rJ' Imd wec:kly measurable 

then (U(s) ~ ,r'JJ c&nnot be almo:,t evel'yv!here zero for 211 no 

if it were, then in viel" of the formuJ.&tO 

00 

U ( s ) S = L ( U ( s) ~ 0 1; '1[) 1 >l. 

n=l . 
00 

. 2 
I!TJ( s) ~ II = L, 

n=l 

I. 
! 
(: 
i 
I.; 

ii 
! 

I 

"j 
: ~ 
'I 

j 

'/ 
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it Vlould follow the; t lIu( s ) ~ II := 0 for "Imost All s~ but , 

lIu (s) ~ II '" 11'5 II for dl s sincE UL3 unitary, So "fro cC'n find? 

for5'1 O. &n') so thd (U(s)r ,)11 is not Dlmost everyvrhcrE 

zero, Then ther€ exists x( s)(Coo such that 

(U(s)S' ,1)X(s)ds I- 0 

md hence (T(X)~ ,1) I- 0, 'l'(x)~ I- 0 as requir·"d, 

So for uni tI.,ry represGntc.1:ions IT on a sGpr.rc;bl€ 

Hilbert space, WGc,k meLsurc.oi.lity :impIiG~ strong continuity. 

This is not true in genenl : the represGntation of R d.scribed 

above is not even weakly continuous, 
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REP RES E NT! T lOP S 0 F COM F ACT G R 0 UPS 

ETC 

In this section we &ssume th"t Hear m6esure on G hes 

be 6n nonnali SEd so thLt J ds := l. 
G 

THEOREM 9.1: If G is compLct, every continuous irredu-

Qible uni taryrepresent,tion is finite-dimensional. 

PROOF: For ~ ,l/ ,~ E H consider the integrul 

[( lie s ) t, ,'1) (u ( ~) t' , {)d s 

For fixed (this is linear inS, conjugLte-linear in 1 ; since 

it is evidently bounded (by lit; II;: II ~ II II 1) II ) it must be of 

the fonn (A«()'i; ,y() where A<_'Z;) is some bounded lineer operrtor 

on H. NoW 

(A(t,) U(t)~ ,1) := f(U(S)t ,1)(U(s)(, U(t)OdS 
G 

:= f( U(ts)( ,'1)(U(ts)t: • U(t)S)dS 
G 

:= fCu(s)L" U(t l )1XU(S)t, 
G 

r'l.) d s , I. 

Since S ,'7 were Lrbitrary A(~ );::r(t) := TI(t)A(~ ) for &11 t: 

since U is assumed irreducible,p,(t, ) := a«() for selLe 

i I, 



'I 
I 

I 

I 
I 

81 

sCLIE:r 2.((~). The.t is, 

o 
cmd in particultr, takinF7:=~ , 

for all t: ,~ E H. 

Also 

:= J I (U{ B) ~, z: ) 1 2 d s := J 1 ( S ' 
G . G 

f I(U(s-l)~ , ~)12dS , 
G 

and in " compc.ct group t-( s) := 1, so thc~t Hun me£,sure is invc ;~c r 

invo.ri2.nt : the integrc.l is equcil to 

f,(u(s)( ,~)12dS:= a(C;) 
G 

II ~ II 
2 

It follows th~t c~~1 ~I("'" a(~1r,1I2 for any ~ ,e; 
there is" constant k such thE.t 

acn:= kllfll2 for Iall(E H. 

Thus f 
224 

G I(U(s)r ,~ ) 1 'ds := c:<p II ~ II := kllS" II 2nd if 

f 
2 

1 (u( s) f ,~ ) I ds = k ; thi s shows tl12t k,i0 since 
G . 

then 

II f II := 1 

I(m(s)( ,~)I is 2. continuous function of s cnd takes the 
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value 1 &t &>=e. 

Nm,r let ~ l' ~ 2 ••••• ~n be an ot thonoIWg1 set of 

vectors in H, imd ~ <my vector with 11$'11'" 1. Then 

and so 
n 

nl< co ~fl(1lJ(s)~,nI2dS 
n 
"'( 2 

= i~) I u( s) ~1 ) ~ Ids 

= J Z I (( , tr( s -1) ~ ) I 2 d s 
G 1 

n 

But vie hoye 1iUD.(s-l)~ 112? :L I(~l" ~(s-l)~ )12, by Bessel's 
i=l 

inequality, (if ~I ,ft .... . ('" is Q complete orthonoIWi11 set) 

and so 

f ds = 1, 
G 

2nd it follows thc:t n < k-1 so thd the dimension of H cc.nnot - . 
exceed k-1 2nd so in particulc:r is finite. II 

There follows from thi s re su1 t i'.nd frcm Theorem 8.6 the 

ce1ebrE,ted Peter.\"rey1 theorem (1927) : there are eno\Jl6h 

representations of a compict group by uni t2ry (fini te) matri ces 

to sepe.rete the points of the group. A direct proof of this 

would of course "Yoid many of the complicated considerations 

, 
i , 

" 

, 

l; 
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" 

necess;; ry to de(,l wi th thE 10c311y comp" ct c[:se. 

It shou1dnQt bE suppO"sed thEt given E compLct group 

G therE is 2n integer n=n(G) such the t every continuous 

irreducible uni tLry rerresEntEtions is of dimension ~ n. 

T"kE for eXamplE fc,r Each integEr m, Gm to bE thE group of 

En m Y'.( m uni tc.ry mE'tri ce s, with usu;;l topology 28 2 SUbSEt 
~, 

of R2m • Gm is cOmped for elich m c;nd if G =TIGm is the 

product of thE G's m with the usual topology then G is comp['ct 

,1so. ThE map s ~., sm whEre sm is the mth coordjn,lte of s 

is a unitary represent&tion of G on" sruce of dimension m 

ond is c1eE,r1y irrEducible. 

The nExt thEorem gEneralises a result th;;t is WEll 

kno\>111 for finite groups : WE 1'ec211 thrt two reprcsccntRtions 

V1 on El , V2 on E2 2re equivQlent if there is a bounded 

linear operator W from El to E2 wi th E boundEd inverse such 

thd V~ (s) = WYles) w- l for dl s( G. 

THEOREM 9.2: Let G Jle comPE;ct c,nd V 2cont:lhuou::;, 

rEprEser,tLtion, not~ geneNi1uhit2ry; on a 

Hilbert space H. Then V is eguivnlent to a continuous 

uni tury representation. 

PROOF: Introduce L ne1~ inner product in H by writing 

q~ ,fl \ == f('t(s)~ , 1]'(s) 1 )ds 
G 
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Since V is continuous end G is comp ct the intGgrc;l CEC tein'i.y 

Gxists. It is ecsily verified that all the inner product 

properties hold: in pBrticulLr, Cf,~) '" 0 implies SooO 

since if ~ I- 0 then the function (U(s)~ , UCs)n bdng 

continuous, non-negEtivE find eyuBl to C ~ ,~ ) et sooe has c:n 

integrtl which is strictly positive. 

Then (VCt)f ,.V(t)1)1 = j(V(S)V(t)5'V(s) V(t)Yl)1S 

G 

= f(v(st)t, V(st)Y1).,l.s and since in c compact group left 
G . 

invariant HeUer mec:sure is ,:lso right invarient, this is 

'J(v(e)~, V(s'1) dsoo(~ /1.\; so V is unituy with 

respect to the inner product (r ,'1 )1 • 

Pow fur eachrE H, V(s)~ is continuous, hence I'V(s)S II 

is continuous hence (sinCE Gis comp': ct) 

sup 1I'I(s)~ 1\ < c/, .' 
sEG . 

It follows from the Bunach-Steinhf.us theorem thE.: 

. sup IiV(s)!! < O~: 
sE G 

. Wri ting k for this ,supremmn we have 

= (r,r)l = f!iV(s)~"?dS 
G 

2 
~ k lit Ii , 

? f lels 
G 
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c.nd on the other he,nd 

IntegrLte both sides of this with respect to s pnd we hEve 

IIf 112 S. k
2

. JI~ II~ 
end hence the !'OilllS II II and II III [,re equivf,lent. If nOVl Hl 

is sim[ly H with the no illl II P
l 

inste ad of II II, f'nd \V is the 

id ti 1 1J-l d en ty mc.~ of H onto Hl then \V ~n(, are boun e~ i:nd 

U(8)( = v(s») = w V(s)W l 

is unitary f.S cn orentor on Hl , II 

We cohclud (' by shovling thrt the re are groups thr,t edml t 

no non .. trlvic,l flnite dimensj one·l uniU,ry represent,tions. 

LEMHA 9~3: Let V be L\ non-singuli::r nOilllal n ): n m2trix. 

If for' every integer m >- 1 there is cl2..ihtegr2.1 multi-

J.le 

IV 
m 

of m, say k(m), i:n0c-" non-s·lnr.ulf1.r n~n ,matrix 

~su::::.c:::.:h:...-;:t:::.:h::::.st Vk(m) =- Wm V\'J~l then V = 1. 

P:tC'OF: Let A')';'J~Y)be the eigenvdues of V; then ~(m) 
he's eigenvLluEs ,k(rn), ....• "Ik(m) r,nd ,JmVl'im-l hE,S eigenvalues 

1'1\ . /Y) 

, ,k(m) k(m) 
1\1'·······A.y)t 31' A, .... ··,Il),. 

Fix "ttcntiol;l on . 
are simr1y a permutB-

~ k(l) ,k(~) 
lij: ) i ,;Ii , .. t1::,:9, c.> f ~ " ••.. ' .• , ~ n • 

k( r) .... o.'.Ai ~o ... iSf;n infini te sequence selected from the 

finite set 1\ I ,. •••• ,II Y1' 
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Hence for some j I\k(m) takes the value /\. for infini te-, I i J 

ly many values of m. If mo is the first of these we can 

find an m such that k(m) > k(m ) and ~ k(m) := .:\k(lIbi):= /\ 
o i :L 

, k(m) - k(rn ) (since k(m) is always a multiple of m). Then/'i 0:= 1 

and ~ is a root of uni ty. 

such 

This holds for any i ; we obtain integers rl •.•••• r
n r r 

th"t '~i 1 := ....... oo;\ n := 1. But then if rn i IS any 

integer containing r I •••••• , rn as f[tctors (e. g., 1. c.m( rI'" rn) 

then kern) e,lso contains r 1 •...... , rn as factorll and so 

~k(m) '\ k (m) 
= :=" = 1, 1 ...... 

n 

and hence /1
1 = •••••• := )\ := 1. . This clearly implies that n 

VooI as required, since V is c: norrnc:l mctrix. I! 

For any locally compact group G let Go be the 

subset: i s:U(s):=I if U is a finite dimensionEl continuous 

unitEry representation} • That is Go is the set of elisments 

that cannot be sepcrated from e by a finite di$,n!lion2.1 

continuous unitLry represent:otion. It is immediate thc:t Go is 

a closed inv&riant subgroup G. Then \ole heve 

PROPOSITION 9.4: Let s EG he such that for each 

integer m there eXists tmE. G and an integral 

multi·pt e k(m) of m such thE.t 

then sf G • 
o 

sk(m):= tmst~l ; 



· " 

" 

87 

PROOF: Thi s follows [t onCE f:rcrn Lelom8 9,3, on ('(1j.ng 

over to c fini t8 dirneDsj ('TIll unit, ry r8rr8SE'nt: tion. /I 

PHOFOSITICN 9.5: .L.et G be the group of '2x 2 .QomD:I{c. 

matrices with ddeIminent I (the specid lineis IU'OU.r: 

8L(2, c) or the 2 x 2 unirnodulEr group) thEn G h"s_]1_Q 

finite dimensiol1L,1 unit8ry represrntCiti,ons. 

PROOF: We rniY e.s well tLke the o.i screte topoiogy cn G " 

if we show thLt the result holds in t:-lis CEise it is of ce,ul's.e 

true cl fortiori for the usu21 torolo"Y. "Te proce8d to show 

Go = G here, 

Let 

then 

= 
I 

o 

rn 

I 

rna 

rn , -IJ o :] 
o ,-

o 

m 

r 
I a-Jm 

= , so the required 
o 1 

conditions hold with kern) 2' 
= m I by Propositi on 8.4 s E. Go' 
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= 
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if c=o 
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[~ 
01 

IJ = 
c, 

so it follov s th: t OlE G 
1 0 

~ a~ll J [~ ~J 
T d-l 1 ,-

c E 1 0 1 

then d/o ( since :d-bc=l) rnd we 

[ 
n b 1 = [-b 0 -j r 0 

o d J -<1 0 _1 

1 

o 

[: -~ 1 ~ ~.[ T 
1 .J 

Then if c lOwe 
, 

G 
0 

h:,ve 

since both 

felctors bre of the fonn whi ch we hc:vc just rroved to be in GO'Ii 

.',,< 
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