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I N T ROD U C T ION

Being the third in the series '0oncents in modern mathe-
matics', this volume deals with some fundamental concepts in
analysis. The first four chapters comprise the first part.
Chapter 1 gives a detailed discussions of Lebesgue integrals.
Basic properties of topological vector spaces are given in
Chapter 2 while the results are specialized to normed linear
spaces in Chapter 3 and in particular different representation
theorems'are given. Gelfand theory and elementary properties
of Banach algebras are the contents of Chapter 4.

In the remaining Chapters, which will appear in a
separate part, are discussed the existence of Haar integral
on a locally compact abelian groups, duality and characters,
Fourier transforms on Ll(G) and L2(G) and finally Pontrjagints
duality theorem is proved.

Materials are freely drawn from the standard books in-
cluded in the bibliography given at the end of part 2.

K.R.U.

•
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CHAPTER l'

LEBESGUE INTEGRATIOF

1.1. Lebesgue Measure

f! (xl' -

1
(xl ;x2' • • • ,xn)

Yr) 2}2
x =

d(x,y) :::

..1'=1 Y = (Yl' y2,···,Yn) •

The symbol ~ will stand for < or < An extend~ vector

a ,= (aI' a2, ••• ,an) in IR. n is one in vhi ch the componerrt s ai

c~)Uld,.tilke the value ± 00.

An interval in It< n is a or oduct of n intervals in IR •
This means that if a,b are two extended vectors in IIZn ,
ar < br, ar < 00, br> -00, 1 < r < n, the interval I ::: (a,b)

~ { xell~n J ~.~ xr.Jt(br; . 1 < r ~ n}. An open· interval J a, be

is giveh by

"] a, b[ ::: ~ x8 tRn 1 ar < Xr < b . 1< r$. n} •
\,. r'

and. the closed interval La, b J is given by

[a, b] = {xe fR,n1 ar·< x < b • 1~ r { n} •r- r'
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I is said to be degenerate if ar = br for one or more
values of r , If a, bS IIZn , then the component s of a,bare
finite real numbers and the int(~r-"al is said to be bounded.

DEFINITION 1. Let I be 8. bounded interval in If(n •,,-, ' ..~.. '~ .

The n-dimensional measure i~ defined by

m( I)
n

= TT (b - a )r=l r r

If I is unbounded, we define' m(T) = 00.

Remarks. 1. m(I)=O if and only if T is degenerate
2. measures of an open interval, closed interval

and,all intermediaries are the same.

Let X be a bounded interval in IRn. We assume that X
is closed (and thus compact). ,\lIewill consider only subsets
of X. Let f = I(x) denote the class of all subsets of X
which are countable unions of int~rvals. Our object is to ex-
tend the Definition 1 to the class j . We have

THEOREM 1. ,L..e..t. J8 f . Then J is a countable union of
disjoint intervals. Moreover if J 'is expressed as
cOuntable disjoint union of intervals in two different ways,

J
00
LJr=l

=
co
{ Ij

s=l
=
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co
~ m( I:) =

1'=1 r

PROOF. By definition of the class j ,we have

where is an interval for each r. Now set

I...,
w

Define inductively

'.Chus The first partand the I 's
l'

are disjoint.

of the theorem is :i.mmediate if v.J8 not Lee t1.at each Iris a
mion of finite number of int.ervals dnd hence a disjoint union
of finite number of in~8rvals.

To prove the second part of the theorem, we first observe
that both series in(*) converge, since all intervals of sub-
sets of X, it follows that

N
~ m( I ..) < m(X)

1'::1 .•.

M
- I,.and'L m(Is.l. < m(X)

s=l
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Now suppose that the two sums are different. For convenience
00 00

let us assume that L m( Ir) > Z m( Is t) • Then there exists an
r=l s=l

integer N such that

CD
")m (I t) = h > 0

sST s

We choose"open intervals A ..-J I t so that m(A) < m( I ')+2-s-~s s s s
and closed intervals BrC:Ir so that m(Br'> m(Ir).2-r-2ho Then

> r.
8=1

mCA ).s

N
Now set K = U B. rO

r=l
is anK is then compact. Now

open covering of J and hence of K. The compactness of K
implies the existen~e of a finite number of intervals

n
K C lJ Ak" Then

k=l

fr=l
meA ) <s

n
'"L-

s=l
m(B ) sr
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which gives a contradiction.
In view of Theorem 1, we can make
DEFINITION 2. If J8J and

co
J = U Irr=l

is a representa-

tion as a countable disjoint union of intervals then
the measure m(J) of J is defined by

00

m(J) = 2: m(Ir)·r=l

Remarks 1. <f> €. f and m( cp) = 0

2. every countable set is in I and its measure
is zero.

3. If Jr:,! ,then given E > 0 there exists
Jo which is a finite union of intervals such that JoC:J and
m(Jo) >m(J) -e ..

THEOREM 2. a) JIC:J2 imnlies m(Jl)~ m(J2)
00 co

b) J = U Ir implies m(J)< 2:..: m(Ir)
r=l r=l

co
c) if J1C J2c....,C JnC .. and J= U Jrr=l

~ m(J) = 1im m(J).
r~co r

d) m(JILJJ2) + m(J1nJ2) = m(J1) + m(J2)

where J \Jr8 ! .
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PROOF 0 (a) and (b) are left as exercises. We shall
now prove (c). By (b), lim m(Jr) exists and it does not

r -700

exceed m(J). To prove the opposite inequality, let
(X)

Jr == U I • Thens=l rs
00 00

,J = U I J I and this may be arrangedr=l s=]_ rs
00
'!,)J = It. We set

t=l
as a single sequence

D = --
1 1.1

D2 '- 12,D1.
D - In"" (D1U DC" U ••• U D )n G n

Now given 8 > 0 there exists an int8ger N such that

N
m( U Dt) > m(J) - ~

t=l

Further there oxa st.s an integer n such that

r; N
J:JU It~ UDn t=l t=l t

Hence m(J» m(J)-S. Sincen
We have to prove (d).

of intervals, so is J2"J1

8 is arbitra~y, the result follows
If J1,J2 are finite unions

and J1U J2, = J1U (J2'-..J1)"; so
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Also

.T2 :: (Jln J2) U (J2"Jl)
whence

m(J 0) ::: m(Jln J2) + m(J2'-...Jl)··c.

This gives the result. In the general case, J2'-Jl is notnecessarily in f , nor have Droved that the measure of a
disjoint union is the sum of the measw'es. But this fact has
been assured for finite number of intervals. To complete the
proof, we proceed as follows

4

Let
00
U Ir,r:::l

co .
'J I II..., '"

8:::1 ::>

::: disjoint unions.
Set

n
Bn :: U

s:::l
I :

S

The An' Bn, AnU Bn" Ann Bn are increasing sequence of sets
whose unions are respectively Jl, J2, JlUJ2 and J

l
()J

2
.

Further for each n,

Now let n -4- 00 to obtain the result.

THEOREM 3. ~f Jl, J2' •••.• is a countable collection of
sets in J , then
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, co 5::.m( U Jr) < m(Jr)
r=l :::,=1

and if the sets Jr are dis,lointj then

PROOF. If there are only two sets J1, J2, then

m(JlUJ2) < m(J1) + m(J2)

with equality when J1n J2 = cP •
Now let there be infinitely many sets Jl'J2'•... Now

D tsn forman increas-Then the sets
ing sequence whose union is J. Then by Theorem 2, we have

nm(J) ~ lim m(Dn) = 'lim L m(J )
n~co n+-e co r=l r

Again equality in the disjoint case.

Exercise l~ Show that every open set is in j (closed
'sets may not be there).

Exercise 2. rr ,TS J , show th'3.t for each S) 0 there
exists an open set JI(t.)~,J such that m(J'(E',))<m(.J)+8.

DEFINITION.3. Let X bo a bounded interval and ACX.
We define the o2ter measure m*(A) by
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m*(A) = inf w(J'~

J:;JA
J 8 'J

and the inn~r-measure m, (A) is defined by

THEOREM4. Tbe inner and the outer measu1"eg of a setp'

are independe~t o~ V.11...

. .' '~~. ;,-.' ,

.', '.•..:PROOF• We will pro78 only for inner measure, the case

of outer measure being trivial. Let X, X' be bounded intervals-
containing A. Without less of genGrality, we assume that

XCX r. Suppose X JJ :;yX <,A. Then

J = JInX satisfies Y.:JJ'::)X'A
•..T I = J U (X' "X) ,:) X '<, A

r.•nd J8 j (X) 0

and

mCJ') ::: m(JU(x''-.X)) ::: m(J) + mC:',,-x) ::: m(J) + m(X')-m(X)

rnr: m(J')
JI8}(XI)

J''::>X:''A
= inf ~(J) + m(x') - m(X)J8 l (X)

J~X'A

r:i* (X <, A) + m (X ' ) - m ( X)

= m(X') •.•m*(X' J\.) 0

EXercise 3. 2how t:-~at m*(A) > m*(A) for any set A.

!1.xerc~i.se 4. If J8!
show that m*(J) ::: m~(J) ::: m(J)

DEFINITION 4. Po is measurable if

and the COrr~'1l011 nal~'s is called the measure of the set E
denoted by meE).
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Rema:rk 1. Jt,1 is measur able;0
Remark 2. If E is measurable, then X~,E is

measurable and m(X,E) ::::m(X) - meE).
DEFINITION 5. If A is unbounded, we define meA) as
follows. For each positive integer k, set

I( k):::: {X8 /l\n I I xr" ~ k ; 1 < r ~ n } •
".Let

I - ,

A(k):::: AfiICkj. A is measurable if A(k)
is measurable for each k. Then meA) = lim m(A(k)).

k-)CXOl
The remaining theorems in this section hold also for
unbounded sets, but vle prove t.hcm only for bounded sets.

THEOBEM 5. If A and At arc sets. then

m*(AU AI) + m*(A(\A') ~ m*(A) + m*(A')
m*(AUA') + m*(A n A!) ~ m*(A) + ID*(A')

PROOF. Let t > 0 be given. Let J, J'Sf such that
ACJ, A' CJ i, M(IT)< m*(A) + 8 and m(J I) < m*(A ') + t.• Then
AUA' CJ(jJl and AriA' C J (lJ t so that

< m*(A) + In"(A ,) + 2E'.•

8 being arbitrary,
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Now

m*(AUA') + m*(AnA') = m(X) m*(X"AUA') + m(X) -
- m*(X,An A I)

= 2m(X) - m*( (X "A) (j (x-, AI))

- m*( (X "A) U ex" A I))

~ 2m(X) - m:J(X"A) - m*(X'-.A I)

THEOREM'6. co
II: A = U,

r=..L
A ,r t.hen-_.'_ ..

CD
m*(A) < ~ m*CAr).r=l

PROOF. Given 8 > 0, there exists Jr ~ Ar such that
C«:J)

Then A C-=- U Jrand
r=l

co
< L m*(A ) + 8.

r=l r

Since 8 is arbitrary, the result follows.

THEOREM7.lf, E .&Lei. E I are measurable SGts, so

.ar..g EUE' ill2i EnE'. Further m(EUE') + m(EnE')

= m(E) + m(E').

PROOF. Since E is mcasur3.ble~ we have

/m(E) + m(E')< m*(EUE') + m*(EI)E') ~ m*(EVE') + m*(ErlE')

< m(E)' + m(E').
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Thus we have equality throughout and

Since inner measure does not exc.ecd outer measur e, it follows

that

This proves our theorem.

COROLLARY. If E and F fire measurable, then E "",F

is also meAsurable,

PROOF. E"-.,.F == E (\ (x "F) which is the inter secti on

of two measurable sets.

THEOREM8. Any cOl.mtable union or .countable intersection

of measurable sets j.s measurable. Further

00 00

mCU Er) ~ 2: m(Er) , with eQ~~Ji~y when the sets are
r==l r==l

disjoint.

THEOREM9.

El CE2C ..•

If the sets E~ §re measurable,
co

and E == UI F thr:m"r 'ir==l

m(E) == lim m(E )
r~ 00

r
Clil)

and more generally if AlCA2C • 0 •• and ,A == U A , then
r=l • r

m*(A) == lim m*(~) •
r ~oo
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PROOF. Exercise.

THEOREM10. If E and B' ~ measurable, so does

ExE' and then m (ExE') = m(E)m(E').

PROOF. Sunpose E C X and E I C X' where X, X' are
bounded interv2ls. For sets in J J == U Ir

, if and
J' == U·I 's where unions are disjoint,

J ~J I ==

is a countable disjoin~ union. Then

--"- I _ _ ,

m(J>,- J f) == " " m(r ) .m(I ) == -, m(I ). <, m(I) = m(J) .m(J').L-L- r s L- r L- s

Now let J.:J E, Jl~Et. Then Jy.:.J':JE x E' and

m*(E.x E') < m(J xJ I) = m(J) .m(J t).

The left hand side is---Ihdependent of J and J' • We can choose

J, J t such thClt m(.j) , m(J ') are'·:.rbi trarily close to m(E) ,

~(Et) respectively. Then

m*(EXE') < m(E).m(E)).

Also
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Now X,X X' "E x E ' = X x (X ' <, E ') U (X ",E) x E'.

m*(XxXr'".ExE') ~ m(X)m(X'"Et) + m(X,-,E).m(E') •
..

m(X'",Et) = m(X') - mCE'); m(X·"E) = m(X) - m(E)

m*(E)<.E') > m(X)m(X') - m(X)(rn(X')-m(E') - m(E').(m(X)-m(E»

= m(E).m(Et).

Hence

m*(E)<.Et) < m(E) .dE I) and fil*(ExE ') > m(E) .mCE').

m~(Et<E') = m*(EXE') = m(E).m(E').·

1~2 Integration

Let· E be a "1casurable set in iI<-n • A. .countable collec-

tion of disjoint measu~able sets

is called a dissection if their union is E.
(p' __ l 'I 1

If 0 L El,E2,···· j is another dissection of

then the collection {Ei n E;} is also a dissection of E

£alled the common refinement 'Jf ~ .and ~' and is denoted by
~y~'

E,

< E II
CD

Let ~ = be a dissection of the set El J!') r=l

and let f be a real vA.lued function on E. Set

B (f) = sup f(x) , br(f) = inf f(X~r
xE Er • x E Er
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and

sup irex)i
x8Er

:::

Convention hr (f) mCEr) = 0 U' one of them zer0 and the other
is infinite.

~o is said to be 3.dmis~jibJG (,for f over E) if

co:>:' h~Cf)m(Er) < CD •
r=l

Let en denote the set of all admissible dissections of f over
E. If ~ 8 at , set

CD
S .",Cf) -= ~ Br(f)m(Er)

E; r=l
CD

s (f) ::: 2:.- br(f)m( Er)
~ r=l

and call them uuper and lower annroximating sums for f over E.
LEMMA 1. If ~I is a refin:nent of an admissible dis-co

~ection t then

s ~. S.~ •... > sto' ,
.J r" ~~'.> '"

r , I i ~IPROOF. Let ~ E E be'the sets ofPI ,
P2

' 0 Q e ., )

contained in 1:i' of t;. Then..:Jp o

,
B (f) <

Pq
r \qb'CO>b (f) for all p and q ,

P Pq - P
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~' IL- B (f) m( E ) <
q Pq Pq

I
(h (f) < h (f)

p - pq

-- ,L B (f)rn(E )
q P Pq

= B (f) m( E )
P P

I
") b (f)m(E ) = b (f)m(E )
c:.. q 0 P P.q q

I
~ h (f) mC E ) = 11. (f) m( E )L- q p p pq- q

The results now follow by sUG~ing over p.

DEFINI T~::ON 6.

by

THEOREM11.

The UPper and lower integrqls are defined

*( f inf S 11 (f)=-.
l~ fem

(' f = sup S G (f) •.J-..- ~em:*E
* .-r II f > fI !

<l i

E *4'.'.J

PROOF. Let ri and t~~be t.wo admi s s ibj,e dLssec t i.ons ,

Let ~ = ~ V ~2 the common r ot J nmerrt , then
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s '#,2 (f) ~ s '~ (f) ~ s ~ (f) S. S~l (f) ,

:~~ S t; (f) < ~l~~S t (f) ,

*r) f.r f <
"
*E E

DEFINITION 7. f L3 said to be integrable over E if

*f f f f and the integl'a;t, ,0f· [ ,ts the pommon=

va lu~~lt{.e write

Ie f) J" fdx
E

(
or J f.

E
=

THEOREM 12. A necessary and sufficient condition that

f should be in.tegrabJ.e over E is that given E> 0

.thQ...r:.,eexists an admissible dissection ~ 8 (J{ ~uch that

PROOF. If there is such a dissection, then f is inte-

grable is trivial. SUDDose f is integrable, there exists

dissection ~l such t.hat

S (f)
if:
""1.

.s,
2

I( 1') <
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and a dissection (CS such that

, e
I (f) - s~ 2 ~f) < -g:;

Let ~ = ~l V ~2 • Then

S '? Se < S (. (f) - s (f) < £.
-o '0 - G;l ~2 '

REMARK. If· tl1er'2 is a d.l ss ec t i.on such that S ~ = s-e

then f is integrable over E qna

s~
'.,

Examples 1. Let f be a f:ener-3.1ized step function,

i.e" it takes a countable set of non-zero values on E s~y

f1,f2,···· ,fn,···· Le~~ Er = {x I f'{x) = fr }. If

I ! f r I . m(Er) < 00

then ~ {P.' ri' }"i ,J.J2, •• o. Er

00

U
r=l

= is admissible and E =

jf
E

= I f Ih(E )r r

2. Let rt E be the char!3,ctc,rist:LC' function on Eo

Then <FE is integrable and

(¢ = " :YJC2~) = m(E)<,) E L, r
E
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3. If f is a constant func~ion say f = c then

Jf = em] E) •

TJ:EOREM 13. Let E, E' be meaSurable sets such that
E C E ' • Let f and g be defined on E and E'

respectively. SUDDose

1 f'{x) , xeE
g(x) = ")

, 0 xeKt ..............Eo
'.""

E' and
Then f is integrable over E iff g is integrable over

PROOF.

section on E,
section of E; .

{ E n Ithen El,
of E.

COROLLJI..RY.

THEOREM 14.

I .co = ( gJ. .J
E r-- ,

.fJ

II' ~ = { El ' E? ~. <. • • : ::.3 an admissible dis-
c

.' ~ .I

ther hi" ~ ~' t<: I is an admi s s fb Le qis->' ~~.J -.!.~ -_ .!.-J C)' 0 • •
jl '-', ,

If \ El, E2, .... ~ is an admissible dissection,\ IEn 1 lEn, ...•
G S is 3D admissible dissection

ACE, then

( f f f 1A) -
A A

* *If f = g a.e. , then ( f = r g,.J f = Jgj

* *
.§ll£ j r = Jg.
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PROOF. Let E bo the set in whicho f ~ g.

I; E E (I (E···Ei , E,,J) (E-E ) ? • •• } = ~
i, 0' 1 0 c; 0

is an admissible dissection of E. Then

, . .

+ ••• + B (f) m( E " \ (E-E
o

) ) + •••r r ,
I

= Bl(g)m(El) + ••• + Br(g)m(Er) + •••

< St (g)
.'-

from which it to lLows that

S (.:? (g) •
t:

Similarly, .

Then
Sf:,(g) < Seen.

* rJ'~f =, g
E* E"

J f = ,/ g.
>teE

Similarly

Let
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(b) If fl,f2, •••, fk are integrable and
cl,c2'···~ ck ~ constants then c1fl + c2f2+ •••
+ ckfk, are integrable and

J (clfl+·· ·+c:kf}{)
k J fi== ~ cii=lE E

n(c) If E == U E. disioint union, then- li==l

j n rf 5-. I f= J
E i==.lE.

1

PrlOOF. a) is trivial since for any admissible dissection
of E. . S! (f) > S ~ (g) and s! (f) > s 'Ii (g)

b) Let f and g be integrable OVer E and a con-c

stant. Let ~ be an admissible dissection of f over E. Then

Brecf) == cB (f), b (cf) == cb (f), h (cf) == chr(f) ,r r r r

hence

admissible for cf also.
If c > 0, c (ef) == cS G (f) , s; (cf) :;;: cs ~ (f)\.J .,.t ~

C < 0, S I (cf) = CS,.,Cf), ,; I (ef) = cS ~ ( f) .f!: t, ~-'"
and the integrability of r :follows and ICf == cf f.
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- 0'
Let f and g be integrable over E. Let 0 and

be admissible dissections for f,g respectively over E.

Let ~
I </.J1J

= ~ V to • g•(~?~ is admissible for f andThen

. Consider the dissection ~

Br(f+g) S. Br(f)+Br(g), brCf+g) ~ br(f)+br(g),

hr ( f+g) < hr ( f) +hr ( g) •

Hence, ~ is admissible for f+g over E also

and

s ~ (f+ g) > s ~ (f) + :3 is ,( g) > S ~' C f) + sf' C g) •

. > r.a J '.I~ II h ( f) ( f) EGiven f, 0, choose G ,10 sue that St' ,- s~! < ~

and S (0."1'( g) - s,<£" (g) < E. , S "" (f) - s '~ (f) < 1, ~~C g) -
G.. e 0 2 G

S <Q (g) < .£. Hence(..., 2

~~ (f+g) - s~ (f+g) < s~ (f) - s~ (f) + S~(g). - s'g (g) < E.

Therefore f+g is integrable, further f (f+g) = f f+ fg·
( c) q~

"J E.
l

be the characteristic function ofLet

n
cP '" and J f.f~E •E. , i = 1,2, ••. , n. Then f = 2- f f =

l i=l ~~i E-" E iI'·

Hence

f r
n =: n r n f-" s: ~'

I ~ ~ f..I. = j = L... I f =
E E i=l l :1.=1 E, Ei i=l Ei
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DEFINITION 6. For any real valued function f we
define the posi tive pa.~:.1 r" by

r

i f(x) if f(x) ~ 0
r" (x) ;

::: .<
I
, 0 if rex) < 0'-.

The negative Dart f ::; f+-f- equivalently

(
0 if f(x) ~ 0

f~(, ) ::: <.-. )[
I --f(x) if f(x) < 0
I•.

Now Ifl
f+, f , If I'THEOREM 16. II r is integrable, so are

and

1 J f I <. E

PROOF. Let ~ be an admissible dissection for f over
E. Now for each r, hr(f+) ~. hr(f) and ~ is admissible
for

then

Hence

+f •. Also

B (f+) - b (f+) < B (f) - b (f)r I' r r

S,. (f) -
~ s 15. (f) •

+'r is integrable if f is.
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Now if f J.S integrable, (-1) f is integrable and

«-l)f)+ is integrable. But «-l)f)+ = f- and hence f also

integrable.

lr ] = f+ + f is alsq integrable.

If f\ = .f"tr+ f"-) I = l fr+ rf~~"ff++ If-
E E E E E E

== !(f+ + r-). ·1

E

Let f,g be two f'unc ti ons wh i ch are integraole. Define

'fV g f+g+ If-gl f+g - (f-gL== fl\g =:
2

,
2

then f\l g and f 1\ g are Lnt cgr able.
\ Notice

f \/ g =: max (r , g) ,

f J\ g =: min ( f, g) •

Exer c Ls o l. I'~ E is measurable and A is a subset

of E, such that m*(A) < co, then

== *rn (A), f CPA =: m*(F;)

*E
Exercise 2..!,. If f is Lnt.e g'r able over E, and E t is a

measurable subset of E, then f is int<3grable over E I.
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-Exer cl se ,3. If f 2. 0, then f f ::: 0, iff f ::: 0, a.e.

1.3. Measurable Function~

Let E be a measurable set and f an extended real

valued function. We say t.hat f Is measurable if for each real

number a, the set

{x f (x) > :'l}
is measurable.

The follow1.ng conditions ~re equivalent

( 1) S\'3ts {x I f(x) < 8 } are measurable

( 2) Sets { x 1 f( x:_..L "I

measurablea ~ areJ

( 3) Sets' f x I f(x) > at are measurable
I ;

(4) Sets { x I f( x) ~
,

a r are me3.surable
J

(1) and (2) are equi vol.errt by complementation. So are (3) and

(4). -Assume (4). Let a be: a rer-J.l number. Then the sets

{ x ! f(x) $. a - ; }

are measurable. Now

{ x I f(x) < \at:::
J

CD

U {x I f(x) ~ a - ~} .
r=l

Hence (4) implies (1). Assume (2), then
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{ x l f(x) > a} = U {x I f(x) > a + 1}
r=L' r

and hence measurable i.e., ('2) => (3).

Remark 1. {x I a ~ f(x) < b} = { x I f(x) > a} () { xl

f(x) < is measurable.

Remark 2. If f = g a.e., f is measurable iff g

is measurable

where

, { x I f(x) > o.} = [ fx Ig(x) > a} U E~ -, E2
I

El, E2 are sets in wh i ch f:l g and of measure zero.

Exercise 17. If f ;.nd g are measurable runct t ons

is a constant, then t.h.. functions f+g, f+c, cf , f2, .rl/2,and c

ar , all measurable.

Exercise 18. Cont i.nuous functions are measurable.

I

P,~J.~.!~.~.oN.~.~ f "os said to be dominated in E, if there

is an integrable fmct t on g such th.'3t lf l < g on E.

THEOREM17. n'E em . A necess~ry and sufficient condition

that f is integrabl~; over E is that f is measurable

and dominated in E.

PROOF. Let f. +be measurable and dominated by g. Take

any admissible dissection g for g. Given c ? 0 choose p

such that

00 <.f...
") h (g)m(E ) •nn r r 3
r
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Let Eo = E1U E2U '0 •• lJ Ep' Choose N integer such that

mCEo) < [, • Consider the di s section G' obtained by theN ~
intersection of the sets in 6 with the sets

{xl ~ < f(x)s. P;l }

where p is an integer and the sets on which f is +00 or

-00. This dissection is admissible for f. Then

where

Then

S~, - s~, = (L +
I 1

L = ~ Z = ~,
1 ,

2
,

ErCEo T.i' C- R 'E.L:Jr-.:.J , 0

- , <::;"-1 '1 EL- (Br(f) - br(f»m(Er)< L N m(Er) = N m(Eo) < 2\
1

L (I B (f) I + I b < f) I ) m ( Er' ) $.. L 2 hr < g) m( Er' )
2 r r'

Hence s
~

= 2 f, hr< g) m(Er')< £L ·
p+1 3

- s"'" < E , implies«..
f is integr able.

THEOREM(Egorov) 18. Let E be of finite meas~,

{ fn} a sequence of measurable functions such that

fn -}- f a. e. in E. :rh~n givcm E > 0 there exists
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a subset F C.E such that m(E --......F)<'f,arui fn --7" f
uniformly.
PROOF. W8 assume without loss of generality that

fn ~ f everywhere on E (other1.lrise,we have to start with Eo
where f --7 f.

n Let

C1 = 1 f -f I' •Or r

Define

E = {X8EI g (x) <pq r
-1

q ,for r > p t
- j

for a fixed q. The sets El ' Et) ,.~ .• ,q ,->q

Hence

•

is an increasing
sequence whose union is E. lim

p-Yco
such thatThere exists an integer pC q)

NO"J let

F = 00/, E
(t .p(q) q.
q=L

In F <-1,gr q

in F. Since
f -~ fr uniformlyif r > pC q) • Therefore

E"'--F C U(E <, E () )
p q q

00 CD
m(E".F) ~ L m(E"E ( ) ) < q~.=l

q=L p q q •

REMARK. Them'Gm does not noLd if E is not of .finite
measure. (Find an examplo).
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DEFINITION9. A family of functions {fo(} 0(8l':... is said

to be dominRted by g in E if g is integrable over

E and I f~ I ~,g for all 0(•.

THEOREli19. (L:;be_~J..e dominated C-onvergence Theorem.)

If. {fr}- is!:i don'inated sequence of integrable functions

~uch ,tha.t fr --~:' 1-18, r ----? co .1ill.m1 f is integrable

,1.nd

n .p
i ! J__ .-.

•••r .L
! = 0

(
.) f = lim J'. .c»

1
r •

PROOF. f is clearly mer.sur-abl e , If fr is dominated

by 4> then f is also domf.nat ed by <p and hence integrable.

Let
g = !f-frtr

gr < 2 cp. Choose an

} for ¢ over E con-

clearly gr ~ 0 as

admissible dissection

r -?- co and

•••

sisting of sets of finite mea sur e , Given E:~ 0 there exists

an integer such that

co

L
r=N+l

,P

h (1-:) mC E ) < 4(;
l~ . r
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f~r varying

N
U Er and h = sup h (CP) where supremum is taken

r=l r
r, ]: to CD where hrCCP) < 00 • By Egorov's

Let E' =

theorem, --T- O uniformly . subset E' , of E' suchgr on 3-

that

m(E' - E' ') < L
8h

There exists r ' such~that <
E. if r > r t. ThenP' 4m(E ,)=r

(' f gr r fi gr :;: + gr + grJ •..;

E En El-.]'l1 E,E'
Now

/1 = E mC E") =
4m(E' ')

€-4 •4m( E ')
Ti' ".L:J

Similarly
\

J gr < 1-..
4

and

< 2
E'-..E" E'"',. E T

IHence
,r c· r:

E.1 0' < c. c
~) or 4 + 4 =:·2
E I
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THEOREM20. C.1Dbesgue J'Jl)OrCll on BoundedConvergence) •

II E .i.LQf f.;ln:i.tc; me(;~;:l.ltr.:£:.....ilD_d. {fr } is a sequence 0 f .

integrable functions such that lfrl ~ a < 00 and fr -+ f as r ~
00 then

11m
r ~ r::;;D

( ;'
J r = J r

L, e. ,
== (( 1im

» : r.....,.oo
r -->m

(f
) r

f \.
r)1im

PROOF. This is imnediate from the Lebesgue dominated

convergence theorem.

~xamp1e. Consid8I' the functions fr defined. by

(
r', 1r{:J 0 < <x1 X -r

f (x) .) ? '2 1< x< 2= ...r-r x,r r - r

Then 11 ')

:r rf fr ( 2 r ( n.,.. 2) 1 1 1 1== r xdx + '~c -r x (X == - + ;::
.; 2 2

-t

0 0
.i,-r

Hence

If ~ 1r

I 1im fr f.

r~ co.but f -;p. 0r
Ll.m f r . 0

J"

as

Define

r(k) == {' XE'.Ry;1 Ixr I < k , r

EO~) == E n I(k)

, .. ,n }

.,
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and
(

f(x)t if f(x) < k
f Ik] (x)

r

= ~
l k if f(x) > k.

\

lim J f (i.lRemark. If f > 0 then may be finite
E( p)

or infinite and indeiJc'.mdent of the way p , q --->- CD •

THEOREX 21. 1et f bO nonnegat1ye. A necessary and

sufficient condi t i.cn that f .::=:s~h,;.::o.l:::u.=.ld~b~el:::-ol~·n;.:.t~e~g~r;.,:.alll.::b::.;::l,,"",e~o;:....:v~e:..;::..r

E is th'at . ..f [q] 1~'i integrable over E(P) for all p

;;;nq .' q and th Q,t 1im ft}rl,ql .:;.s.;.::ho:;.;u:::.:l~d~b,;;;.e....:.,;fl:.,:n.:,;:i:..:t;,.;;::e.:... -=..1 f:;.....,;f;;,.,..::i:..::.s
_E. .~ j [Q]

integrable then f - '. tm (D) f
E ..

PROOF. Suppose f IS integrable, then

obviously measurable and is d omi.nat od by f and hence integrable

over any measurable subset of E.

Suppose exists (s. y a )pq for all p and q

and a ::: lim apq (fini te) • Let

E -" ::: {x I 2r $. f'(x) ~ 2r+q} "( -00 < r <.: (0)
r

~.x I ,
E :::: f(x) ::: 0 ~

-oc= \ r
E :::: f x [ f(x) ::: CD} •co

Obviously m(E ) ::: O. Otherwise a ::: CD • Also00

- ,.
q

z
r:::q!

2.3. ~ 2apq

I
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Making q t -..:r -en, q -~ co and p ~ co, we have

CQ
~ r+lL- 2 m(B-y» < 2a.

r=-oo -

Now the functicm F defined by

o on E_oo

on Er

on Eooco

is integrable. Since f is dominn.tc'd by F and, is measurable

being tho limit of sequence of :wD.:mra1:)lE:functions, f is

integrable.

THEOREH22. (Fatou) If .c» -)- 0 for all r ~.1.
r

f =: lim inf f ih2nr~

I"
< inf J fr•'f limI -./

PROOF. Set gr ::: inf f s) s ).r then f = lim gr.
( f[q] =: 1 . j g rei]
! ~lm

\~ r
E( p) E( p)

=: Li.n inf ( g[q] s lim inf f f[q]
J r r
E( p) HI( p)

J.:J

i. e. ,
< lim inf I .C"

.L r
E

f < lim inf
(

f
~/ .J r .
E '1~
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1.4 ~ubinits theorem.

DEFINITION10. Let C C- A xB. By a section of C by

a8A, we mean the set

,{ b' (a, b) 8C } •

The pro j ection C on 13 is the set {b I (a, b) 8C for

some at-A}.
Let x be any D~"int in JRn and y any point in

IRP Let E be: men.sur-abLs subet of IRn+P. The

section of E by x is denoted by E(x).

Let f(x, y) be dnf'Lnod in IRn+p• If the integral

ff(X';Y)dy ex i st s , we write g(x) =jf(x,y)dy (This

integrnl is taken over E(x). JOg is taken over some
n nset in ~( containing the orojection of E on ~ •

m will stnnd for Lebesgue measure.

THEOREM28. If E is of finite measure in IKn+p, then

for almo~ll x, E(x) is measurable and of finite

measure in J.R. P, m(E(x)) is an integrable function of x

f m( E( x) ) dx = m( E)

PROOF. (i) If E is a bounded interval, the result is

trivial. E(x) is measurable for all x, and r::i(E(x») is a' con-

stant multiple of characteristic function of the projection of
E on f- n •
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(ii) If E is a finito union of bounded intervals

then the result follows from (1) by addition.

(iii) Let E be C"l (bolJ.ndcd) se t in! («<.n+p) then for

each x , E(x) is a bounded sot in J .( IK p) and hence is

measurable and of finite me.isur e s If E :::.U;Ir ~t~~)~tx)"= Ir(X).

N N
EN ::: U Ir' EN(x) == U Ir (x) • Then m(EN) ~ m(E) and

r==l }~=l

m(EN(x)) --7 m(E(x)) as N---7 CD and E(x) is measurable. By
Lebesgue theorem onjoundedeonvergence.

::: liB f m(~(x)) dx

,.-J m(E(x))dx ::: m(E)

(iv) If E is the complement wt.th respect to a bounded

interval of a set in J , (iil) ~;j.VGS the result.

(v) Let E be a bounded msasur ab'Le set. Given E > 0

there exists sets J..)E with ,Hi, KCe f with m(J) -m(K)< E •
Take a sequence) Jr,Kr of sets such th·r.1.t JrC Jr+l, KrCKr+l

O'l~; r -'7> (X). Then

Since m(Jr(x)-mCKr(x) is a decreasing. function of x for

all r and the limit exists and the limit is zero a.e. Hence

E(x) is measurable and
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,
I I

m(E(x») == lim
r -"700

,

I

~
1

m(E (x) )
r a.e.

By Lebesgue bounded oonvergence theorem ,;

Im(E(~) ')dx::;; !lim m(Jr (x) ) dx ::: lim J mCJr (x) ) dxj

== m(E)·.

(vi) If E is unboundo-t , we fir st consider ~ and

then take the limit as

THEOREM 24. If f(x,y) ;.s tntel\rable over E, then for

almost all x , f(x,y) .i s integrable over E(x).

g(x) ==[ f(x,y)dy

E(x)
I,

then g is integrable and fg ::;;If.

J ~':'(x,y) dY.} dx ::;;

E(x)

fffeX,Y)dX dy )

THEOREM 25. If f(x,y) is measur,"tble (in IRn+p) .and.

if
(' ( r )
J i Jl f( x, y) I dx J dy exists then

f {{f(x,Y)dX} dy = I; J f(x,Y)dY} dx ,

------------------
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Let p> 0

f such th"lt
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class of all measurable functions

I"

J{ II f'i P <~. Cr:'·

We will identify two f'unc t Lons whi ch di ff2I' only on a set of

measure zero.

If p > 1 we define q Ly 1 + 1 = 1P q
If f8L andp

and if f,g8Lp then

C is a constant, then clearly cf8Lp

\ f + g\ P <

whi ch gives f+g8Lp(~) . '" C we lI and hence Lp is a vector space •(..4)_'

We set

/' ( }lip
\Ifil = 1 I IflPp J

E

If is Ic a constant

It cf II ::: tel II f \1
p p

Ilfll = ():~~ II fl P ::: 0 ,-> f ::: 0::1. ,~. Since we are. not
P E

distinguishing functions which di f'f'or- on a set of measure zero,

we have II fll P ::::0 ?- f::: o.
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LEMl'vlA. 1+1.II p > 1, p q == 1 0, y > ° illim

xP qxy < - + ::c:...
- p q

PROOF. Conside~ the function

== tP - pt
lJ-lpt

1 + P

P = p(tP-1• 1).f' (t)

If
t > 1, f '( t) > °
t< 1, f'(t)< 0

and f'(l) =0

f( 1) .- 0, f'(t» ° for t > 1::::::;:..f( t) > 0,
t > 1 when t < 1, f'(t)< ° ~f(t) is decrmasing i.e.,

f ( t) ~ f ( 1) = ° f or all t ~ 0

or

tP - pt - 1+ P > °
tP > t + 1 1-P P

or

t < l' + .t!:
q p

Let xP + i:p qt = and obtain xv i



To prove (1)

1 1

j I f g I < C f!f! p) p { f 11 I~}q
E E E

fE'.1 ,g81P q

( 2)
111

(,("If+gIP)P < C JtfIP)P + (JlgIP).P,

E E

f, gP.1 •
P

E

(1) Put

I fi I gj
:x 1 y = .

1- ,... - -( .r I fl p) P ( r i gl q) q
..' I .

!fgl
+

Integrating, we have

r
J Ifl P

pCflflP)

+

i.e.
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<

<.

r: p 1/ q 0

Dividing b1~ j I f+g/-) "we obtal n the result.
\

DEFINITION 11. Lot {fn} be '1 sequence of functions

belongiqg to tho clas S Lp. If IIf n - fil p as n -~~ CD

we say fn -'r f in the, m.san (with index p) ,

DEFINITION 12. ,
) f', is 8. Cauchy sequence 01' funda-t. n J

mental s aquenc o if llfm - fnll --"7 0 as m,n -4 CD or

given F > O. there oxi st s no( E) such that

THEOREM 26.
[ if In,n > no (t) •

r: -.

If ) f ~
- ~. Dr is 3 Cauchy seQuence in Lp' then

ther 0 exi a:t..?_ f'r'Lp such th~1t fn ~ f in moan.

DEFINITION l~~. Ii. f'annLy of functions { for j is said to

be p-9:..omin~~g_dif th or e i;} 3. function gP,L such .that
p
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TdEOREJvI27. 1:(, { f
n
}

functions in Lp an0

f8L ~
P

is a p-dominated seauence of

if f -7 fn a.e. on E,.:t.lliul

Ilf rll -~O as n ~CD •n p

1.5 General Moasur0s.

In this s ect ' on W(~ wiL_ define measures more gener al

than Lebesgue measures.

DEFINITION 14. .LE:t X be an arbitrary set and R any

class of subsqts of X. R is said to be a ring if

E, FeR, then EUFfR and E-......F8R.

Remark. (i)
(1.1)

::t, en. Since d»= E--.EP,R if EE',R.
~6F€R whenever! E, F€R. Follows from
E6F ::: (E --....F)U (F '-E) •

(iv)

En FeR, whenever E,Fr,R. This follows
fromEr: F ::: ~EUF)-""""(E&).
n n
U E. CR and n E. CR if E

l
.8R

i=l 1 i=l 1

( iii)

:i, ::: 1,~, ... n ,

DEFINITION 15. Lo-; c';P bo «ny nonompty collection of

sUbsets of X. Then ~j7 is said to be a ::o-...ririg if

i3 a ring and if 1\P..j? for i ::: 1,2, ••• ,. implies



Notation. 10Let (0 be any class of subsets of X. We

denote by R( te) (UJ(5f ':')"o ,J \.? ' ..
the ring (fl-ring) generated by ~ i.e.

the smallest ring (~-ring) thqt contains ~ •

DEFINITION16. A mO'1.sureis an extended real valued,

non-negative and countably additive set function ~

defined on a "-ring of of subsets of X such that

E. t,;/ for i IJ2, ••• , and
r. eI' for i :i:: j then::: E.I: E. =

1 1 J
CD 00.

tJ,( U E. ) ::: ~ u.(Ei) •
i=l 1 i=l

Remark. vIe ccul.d have d(di!J.od a measur e on a ring of

subsets of X as we Ll., and then cx t.ended the measure to the

generated C)-ring. For our pur no scs it is enough if it is

defined on a ~-ring. The interested reader is referred to

P.R.Halmas.

It is immediate bhat we can define measurability, inte-

grabili t y , Lntegra Ls of functions with respect to u , in just the

same way as we did for Lebesgue measure. The,integral of a
( r
) f au or J f (x) d~(x) •
E E

function f ovor EtJP is denoted by

The measure g is finite if (J,(X) < m and is !l-fini to if X

is a countable union of sets of fir,j.teu-r.aeasures.

DEFINITION17. A f'unc t l on 1[, defined on a !t"-ring Y
of sUbsets of X, is a s:i. gDed neasure if it is of the

form
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t.L(E) EP, '! ,=
where ~l and ~2 are measures and at least one of
t.Lland 42 is finite.

DEFINITION 18. fA function 11, defined on a IJ-ringr
of subset of I, is a complex measure if it is of the
form

where ar e signed measur~

Note. To avoid conf'us ion vie, use positive measures for
ordinary measures ~d real mea sur:s for signed measures.

A comnlex measure is a lin3ar combination of at most four
positive measures. Integra.ls wLth reSDect to real measures and
complex measures are defined in the: obvious way in terms of
integrals with 'respect to the aDp~riate positive measures. For

are positiveexample, if 11 :::
"1 - t.L2 + i (113 - 114) where l1i

measures then f is said to be Lrrt egr ab.Le w.r.t
w.r.t. 4i ' i ::: 1,2,3,4, and we have

t.L if it is so

If J.L is a real or complex measure, then I '..1., i ; de-
fined by
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n
E = t) Eii=l

E. n E.
1 J

= r1~'( , i ::;j, and the sup is t aken over all such fini te

unions, is a positive m8aS1ITG. The measure !ul is the total
variation of 11. If /.1 is real then

'u+ :;;: I tf I+11
2

1-1,

are obviously nos i tiv« measur o». T1'1<1 are respectively called
the 'Oositiv.El.and. the negative var i nt lon of U and also

+ and i 11 i +u. = u u. = u + u •

The representation of in t arras.of + and is theU 11 tt
Jordan decomuoo ttion of u.

, .
The relation [)etween measurability and continuity are

most interesting and have been studied in locally compact spaces.
Here we shall introduce some basic results of measurability
theory in a locally comnact space.

Notation! We denote by
X a locally ~OiTlPClctHausdorff space.
t; - the cloSS of aL. comnac t subsets of X.
~ the class of all CO;~~P[1ctsub s et s of X which are also0

Go
.';::)

~CJ the "--ring gcner-rt od by V? •
<"P the rr--ring;0 Gn:.:,r~t"i by . ·;f:2
.:,1,') ~:, . -;, ":.'5 .••...••• 'J 0' '.

. 'CJ:')

iI - the class of all onen sets contained in y
Uo- the class of all ooen sets contained in s, •

~
I

-
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We shall call the elements of JP the Borel-sets of X and

the elements of:f., ,the Baire -sets of X. A real valued

function on X is said to be Borel (Bnire) measurable if it is

measurable with respect t.o the tJ-ring 'f (Yo). It is

immediate that every Baire-set is a Borel-set.

DEFINITION19. A Borel measure (Baire measure) is a

non-negative mea sur c defined on the clas s :I (ro)
of Borel sets (B"ljy\~ sets) SUC:1 that {..L( c) < CD

({..L( eo) < CD) for «ver-y

DEFINITION20. A S3t Ee ~ I s said to be outer re-

,gular with r espoc t to t.h« Borol measure {..L, if

{..L(E) = inf p,( u i , E C U and UP, U }

E is said to be inner regular if

1 (
!leE) = sup t {..L(e) , ceE and C8 ~}

and E is rsgular if it is both inner and outer regular.
A measure {..L is s at ot.o be regular if each E~:fis regular.
We can similarly d e.I'Lnes regularity for Baire measures.

Every Borel in'~.'lsure {..L defines a Baire measure }J in an

obvious manner. )) .is c of'Lnod by

J) (B )
o for every Baire set B •o=

It is not difficult to prove that every Baire measure is re-

gular. Also every baire measure can bE:: extended to a unique

regular Borel measure. 1
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1.6. Heasurable Tr -msf'or-mat i ons ,

A measurable space is .1. set X together with a I)-ring

1 of subsets of X such t.h.rt U S = X. We denote a
S t',:J

measurable space by ex, :t ). l't measur-e space is a measurable

space eX,!f ). togcther":wi tn: ii/'ne "'-sure, 11. defined on ';f •

A measure space is denoted by ex, (~'o , 11).

Let ex ,:f) and ey , ~7) bo mor.sur-abLe spaces. Let

T be a transform~tion of X into Y i.e. T is a function

which a.ssignsl. unique point of Y to every point of X.
Then T assigns, in an obvious wn..y, a real valued,function

f on X to every real v3.lued function g on Y, f is

defined by f(x) = g('T:'(x») i xex. We write f = gT.

DEFINITION 21. L,3t (X, J) and (Y,7) be mea sur abLe

spaces and T a transformation from X into Y. Then

T is said to be a meflsurable transfO'rm'ltion if for. '

every F€,Y- ,T-l(F) is in Y . That is, the inverse

image of every measurable set of (Y,7') is a mea sur ub.Le

set of (X,~).

W9 denote by T-l( 7") tho class of all subsets of X

which have the form T-l(F) for s ome Fe d. Then T-le gl) is

a o--ring contained in ,f
A mea sur abl e t.r ansf or mat.Lcn 'I' from (X,:f ) into

.
(Y,7) assigns in an obv l ous way'} maa sur e )} on' y to

every measure /-L on
-1V (F) = /-L(T (F)).

is defined for every

lJ = /-LT-1.

Ft',;!by -

!Ne wrl te
/
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We conclude this section by stating a theroem without

proof. The reader is again referred to P.R.Halmos' boo~

for proof.

THEOREM28. If. T is a measurrlble transf)?rmg,tion from

a measure space (X, ':f , fJ,) " "nt) ') mej1sura1<le space (Y,f/ ) arull

if g is an extended real V3.1~10(l. measurable function on Y, then•

r -1j g d(fJ,T ) = (
J (gT) dJ..L,

jn the §8nse that if either integral exists so does the other

and the two are 8q]]81.

COROLLARY.Ir F is:l measurable subset of Y then

an a,pplic ation of the above theorem :to the function
I

'Xpg IQilds the re12 tion

f -1g( y) dfJ,T (y):=

F

f g(T(x)) dU(x).
T-l(F)

'Ne obser-ve th"l.t either side of' the above relation is

obtained fr om the o+hor by the forn:E!.l sUbstitution

y = T(x).



TOP 0 LOG I C A L V E C TOR SPA C E S

2.1. Topological Vector SDace.

Let (K denote the real or complex number field.

DEFINITION 1. Let -r:;; be a Hector space over JK. A

topology 1: on E .is sa i d +.0 be con:bati ble with

the algE braJ.c structure of if the vector

space oper at.t ons ex, y) r; Ex::':; -:'. x+y 8 E and

(A,X) P K x E --* A.x~~E ar e continuous. A topological

vector ::ipac(..::,is a ve ct or space: ~ together with a

compatible topology.

PHOPOSITION1. If 'E is a topological vector space,

the mappi:t1,£.x I?: E -:'-b(X+a t. E ls a homeor.'lOrnhism of

E for each fixed., eX, f. 0, eX,8 iK and a8E.

PROO~'. Since a continuous function of two variables

is continuous in each of the variables, it follows from

Defini tion 1 that the map nl r.gs x--" cIX for fixed eX,C rK and

x --=r x+a for fixed aE',E are continuous. Thereforo the composite
I

map x --) 0( x-,>~,-a is also continuous" If further eX, -:j. 0 and

y = o(x+a, then x = ~(y'-a). Henc e the mappl ng x-~o(X+a is

y~! y_TI_ , t.', eX, o' a J ,3 con Jlnuous •

x -7' cx?C+a is a homeomor ph i sm.

.In:vert1ble and i-ss :LnVerS8 Hence

Remark 1. 'I'hc map-ping x::'E -~ -xr'·E is continuous and

so is (x,y) 8ExE ~ x-YPE.

Remark 2. If U is a neighborhood of 0 then U+a ~s a

neighborhood of a and «U is a neighborhood of 0 for each eX,i- O.

Remark 3. IL s: topological vector space, it is enough to

deal with neighborhoods of O.
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DEFINITION 2. ~\ subs et , A of a vector space E is

convex if x , y t, A=-:=>")..x+J..LyrAwhenever A> 0, J..L> 0

and A+J..L= 1. It is .balanced if xP,A-~ Ax e A for

\ Al < 1. It ts syrnmctr:ic if A = -A. It is absolutely

convex if it is ba.l anc ed and convex.

Remark 1. If A is convex, so is x+l\A for each x8E,

-
E.,cmark 2. Any inter s ac t i on of COi:lV8X sets is convex.

;rtemark 3. A is ab so.Lut.e Ly convex if and only if ~;':"";l

x,y8A=}"J..:x+lJ,y2Awhen fA\ +llJ,r< 1.,

Then

"-Exercise 1. Let A be <l. norien.pt y ab scf.ut.e Ly convex set. '.

(i) 08A

(ii) l\A C~.J..LAif
n

(iii) L
i=l

"'A. Ii =1. for all A.8 IK.1.

DEFINITION 3. A subset A of a vector space E is

absorboD.t if for each x(,E there is some A> 0 such x p, J..LA

for all J..L with 111/ L I,.

absorbent.

Remark 1. A finite intersection of absorbetit sets is

only if it spans E. This is equiveli::;nt. to

Remark 2. An absolutely cc~·v,)X set is absorbent if and

E = L.I}'A
AI-O

CD
'.B = \j nA

n=l
Dr

" " .
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PROPOSITION 2. If V is a neighborhood of 0, then
(i) V is absorbent

(ii) there is a nei ghborhogQ. W .Qf ° such thatt
Vl+WCV.

(iii) there is a balanced neighborhcod we V.

PROOF. (i) Let x~E be given. If f(A) = Ax then f is
continuous at A = ° and so there is 8> Q such that At,.IK,
I AI < c -9" Mev. Then x r, gIT for I gl ~ e,-l.

(ii) The mapping (x,y)8E x E --~ x+y e E is continuous
at (0,0). There exist neighborhoods WI,W2 of ° in E such that
xewl, y8W2 and WI+W2 C V. Set W = WI n W2'

. (iii) The mapp Lng (A,y) 8\KxE--'TM t,E is continuousiat
(0,0). So there exists B > ° and a neighborhood U or 0 n
E such that iAi$..o,x8U=} Ner,V. Set W = {Axl At',K, I AI $..0,xt'U}.
Then W is a balanced neighborhood contained in V. (Verify)

Remark. Symmetric neighborhoods form a basis of
neighborhoods at 0.

2'~2~Seminorms.

DEFINITION 4. A seminorm p on a vector space E is a
non-negative real v~lued functio~ on E such that I

(i) pf x) °
(i i ) P ( Ax) = IAI p ( x)

(iii) p(x+y) < p(x)+p(y)
for all x,y8E, '.1\8 K. Clearly p(O)~and \p(y) p(x)1$..p(y-x).
A llQ!m p.on E is a seminorm such that p(x) = 0 ~ x = O.
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DEFINITION.5. Let P be ,':1, seminorm on a vector space E.
If aCE, r> 0, the .£12.QD. ball BriO) with centre a and
radius r is dofined by

B (a) =; x8E I p( x-a) < r 1.r,p l· j

and the closed ball B (a) is defined by__ . r,p

B (a) = { xr:',E /' p( x -a) ~ r }.r,p

In a seminormed space E, we usually v.~iteBr(a) and
b (a) for B (aj

) and B (a) respectively.r r,p r,p

DEFINITION 6. Let r = {p. Z be a family ofl5ieI
seminorms on a vGctor space E. The collection of
all sets of the form Br (a) where aCE, r> 0, ieI,Pi
may be taken as a sub-basis for a topology ~r on E
and it Ls ca'l Lod tho natural topology defined on E by
r.
Remark. Each p. is continuous ie

l 'tr :

PROPOSITION 3. Let C > 0, il,i2, •••,in8I ~ aCE.
~

V,.. . . (a)
c , ll' 0 o. , In

n

- n Bt,pi.(a)
j=l J

Then the collection oY all Vc .
c ,ll' •

is a basis of open (closed) neighborhoods
'l' (a) (Vf..' . (a))n ,ll,o,ln

at a for "r :
Also E is a topological vector space with respect to ~r .
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Proof'v Let aP.E~ bl,b2, •..••bn S E, 81,82" .. 'Cn> 0
i1,i2,·..,inSI be such tnat

nn Pt.', (b
J
.)

j=l l:.'j,Pi.
J

a S

Let 6 ::: m:i,.n{ E. ,~ p-' (Cl-b.~ }. If x r. IT ~ • • (a)
J J 1. j J u, 11,. 0 • ,1n

then p. (x-a ) < 6 so that p. (x-b.! < p. (x-a) + p. (a-b.)<
1. 1· J 1· 1'i J' J .) J v

6+p. (a-b.) < c. so t.ha t1j J J

v ~ -' " (a) CB _,~p., (b
J
.) for each j.u,~,···?.in . 1'::j .L.j

Hence

Further we have

i "(a) C V 6 i -' (a) C IT>",..: " " " (a)
n - -l.Lr ti)':-'I' • ~, ,1.n2' ' .. Q~ 1. •.•.

This will prove the first part of tho proposition.
It remains to sho •.•r that 't." is compatible wi t.h the

.1

algebraic structure of E. Let a,tPE. Set c :::a+b. Consider
a sub-basis neighborhood Bp,p. (c) of c. If x S B €/2?Pi(a),

1
y S B €/0 (b) then

"",Pi
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so that x+y £ BE (c). This proves the c on t.i nut ty+of addition.,Pi
Let 0(8 IK, aPE set b = o(a. Pick a suu-bas i s neighborhood

BE ,Pi (b) of b.

then

If E > 0, -(> 0, 0> 0, 1:\- 0( I <i, x t.B s: (a) ,u,Pi

so that D. (Ax-0G3.~< (/+ I~l) ° +i'p.'(a)
-1 1

snough , Le.) AxP.Bc,p. (a).
• 1

< t , if we choose f,o small

) Exer cise 2. The f'''lmily r = {p. ~ . of seminorms is
1) 1(=',1

il,i2 c I there exists i8I, 1\8 IR , 1\> 0 such

1,2. If r is a directed family of semi-

directed if for any

that p. < "Pi j =
1j - ,

norms on E, show that for eqch fixed aPE, the collection of all

Be n (a) (B ~.p (a) is a basis of open (closed') neighborhoodsc ,~'];. y 1
at a, with respect to 'tr ,where E. > 0 and i r. I.

2.3. Locally convex spaces.

DEFINITION 7. Let V be em absorbent convex set in

a vector space E. The Minkowsky function p on V

is defined by

p ( x) = inf { At m IA > 0, x c 1\IT}

PROPOSITION 4. 11 P is the Minkowsky function of V,

"
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(i) 0 ~ p(x) < 00 for xE.'.E.

(ii) p(x+y) < p(x)+p(y).

(iii) peNt:) ::: Ap(X'), xt.E, AefR, A~O.

(iv) peNt:) = IA\p(Xl, x eE, Aet(,.if V is balanced.

(v){xeE\p(x)< l}cVC{xeE/ p(x)~ I}
(vi) If E is a topologic~l vector space, then

{x eEl p (x'i c 11 = v if V is open, and

{ x e E \ pCx) < I} = V if V is closed.

PROOF. i) is immediate from the absorbing property of V.

ii) Let x , y e E. Choose A,IJ,t../R, A,IJ,>0 such that A< p( x) +e 1

(.l.<p(y)+[, xeAV, yelJ,V.' Then X+ye(A+IJ,)V so that pCx+y) ~

A+IJ,<p(x)+p(y)+2(. Since C is arbitrary pCx+y) ~p(x)+p(y).

iil) As in ii) , it is easy to verify that peNt:) $..Ap(X) if

'\~ >0. Then ~ > 0 and then p(x)'::: pet-A x) < ~(~)~so that'-

}.p(x) < p(Nt:). Hence peNt:) = A p(x). If}, = 0, peNt:) = Ap(X) = 0

is trivial.

iv) Suppose V is balanced. Let}.8 IK with I}.I = 1. rb~,D- -':NV ::: V.
Let x e E. Pick IJ, > O. Then x e fA- v if and only if
Nt:8U("}.V)= uV and hence peNt:) = pCxt , If U :::"Av where y;::: ~J.Ll

I

I"AI::: 1 then p(ux) ::: p(Al1X) :: p(VNc) ::: Vp(Nc) ;::: \ul p Cx) ,

v) If x8E, p(x) < 1, there 'i,~ "At:R, 0 <}. <1, such that.x8'f,.V.

Since 0, ~ 8 V then x ::: "}.~ +(I-A) 0 Pv by convexity of V.

Moreover, if xE.'V::: IN then p (x) $..1.
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vi) Let V be open an~ x8V. Now because Ar,~~~x£E is continuous
can choose 5 > 0 such that I f..-ll~o='> "}\x8V. Then

1
1+5 < 1.

then p(B>x) < 1 hence QxE'.V. Since

at "-= 1, we
(l+~)xE',v==*' p(x) <
If ® e K, ~@t <!

Now let V be closed and xeE, p(x)~ 1.

8) x -4 x as @ ~l and V is closed, we get xCV.

DEFINITION 8. A topological vector space E is
locally~e~ if there exists a basis of convex
neighborhoods of ,0.

PROPOSITION 5. A se~inorm on a topologic& vector
•space E is continuous on E if and only if p is

continuous at o. (Exercise)
PROPOSITION 6. On a locally convex sPac~. the aDsolutely
.conB.X~;;\;~9r.hodds form a basis Q f neighhorhQods of Qr

(Exercise)
PROPOSITION 7. If E is a topological vector space
whose topology is defined by a family r = i p.\

2. ). rcr
of seminorms, then E is locally convex space and
Pi is continuous. Conversely, if E is a locally.convex space, its topology is defined by the collec-
tion of all continuous seminorms.

PROOF. Suppose the topology of E is defined by r
If p is a seminorm on E, aCE, c >0 then the set { xl pt x-a)« f. t

~Lsvconvex, By the definition of 'tr, the topology of E has
an open sub-basis, hence an open basis, formed by convex sets,
so E is locally convex. Moreover, each Pi is continuous.

ii

",
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Conversely let E be locally convex with topology ~.

Let r be the collection of all ~ - continuous seminorms on

E. If per , a8E, ~ >0 then the set {XPE I pCx-a) < E} is

~-open sioce x -+ p(x-a) is ~-continuous. Then it follows that

evert .t~"'::6pen···set is ~-open. Hence ~r c r. Let V he a

neighborhood of O. Gb.ooae an absolutely convex ~-neighborhood

U of 0 such that uCV and p the Minkowsky function of U.

Then p is a seminorm •. ·Moreover ,xru ~ pCx) ~ 1, hence

xerU ~ p(x) < r for r > O. Hence p is continuous at 0 and--
hence it is continuous on E. So p8r. On the other hand,

xt€E, p(x) < 1 :::i:? x8Uc:.V i.e. {xe E I p(x) < l}C V. There-

fore V contains a ~r -open subset containing 0 and is a ~r
neighborhood of O. Thus every ~-neighborhood of 0 is a ~r -
neighborhood of O. Hence ~ <~r . Therefore 't = 1:r .

PROPOSITION8. If <U is a bas~ of neighborhoods of

o in a topological vector Epace E, then E is separated

(i.e. Hausdorff) if and only if

() U= {o}
ueU

In particulal', if the topology of E is 'tr , then

E is separated if and only if for each nonzero

xeE there is some pr;r such that p(x» O.

I,
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PROOF. If E is separated and x ~ 0, there is some
U 8 Uwith x e U so that

n· U =: 1.0~
UeV"

Conversely, if n U = { 01 snd x -:J. s, then there is some U such
that x-y ~ U. By proposition 2 there is a balanced neighborhood
W such that W+WCU. Then x+W and y+W are disjoint neighborhoods .5

of x and y respectively. Hence E is separ~t~d

PROPOSITION 9. A locally convex space E is
metrizable if and only if it is separated and there.- (

is a countable base of neighborhoods of O. The
topology of metrizable space can always be defined
by a metric that is invariant under translation.

PROOF. If E is metrizable, it is senarated and has a
countable base of neignborhoods of O.

If E has a countable base of neighborhoods of 0, each
an absolutely convex neighborhood { .of

neighborhood contains/ and so there is a base Un} ;absolutely
convex neighborhood$. Let Pn be the Minkowsky function of Un.
Put

00

( ,""-nf x) = L 2 inf(Pn(x) ,1)n=l
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Then f(x+y) < f(x)+f(y), fe-x) =: f(x) and if f(x) = 0, then
p (x) = ° for all n and so x = 0, since E is separated.n
Define d ~;.by

d(x,y) = f(x-y)

then d is a metric and d(x+~,y+z) = d(x,y) so that d is
inv.ariant under tran?lation. In this metric topology, the setB

form a base of neighborhoods. But Vn is open in the origin~l
topology since each Pn and so f is continuous. Also Vn C. Un'
Hence d defines the original topology on E.

COROLLARY. If the topology on the separated space
E is the coaT".?estconvex topology making a sequence
of absolutely convex sets neighborhoods, then E is
metrizable.

2.4. Linear Mappings ..

Let E and F be vector spaces over IK. f:E -7'F is
linear if

f( o(x+py) = C(f(x)+~f(y)

f is 1:1 if f-lCO) = fO}. In general f-leO) is a sub-space
of E.
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Let L denote the set of linear mappings of E into F.
L is a voctor space over ~ if

(f+g) (x) = f(x)+g(x)
(Af)(X) = Af(x)

A linear mapping of E into IK is c.?lled a linear form on E.
E* will denote the set of all line~r forms on E.

PROPOSITION 10. A linear mapping r,E ~ F II

continuous if and only if it is continuous at O.

PROOF. For each a8E , a neighborhood of f(a) is
given by f(a)+V where IT is a neighborhood of 0 in F. If f
is continuous at 0, there exists a neighborhood U of 0 in E
such that run c.. V. Then f(a+V ) C f(3.)+V and f is continuous
at a. The converse is trivial.

COROLLARY. If E ~nd F are normed linear spaces
and f:E.-rF is linear, then f is continuous if
and only if there is co{ >0 such that Illf(x)II<<=<llxll
for all x8E.

PROOF. Exercise.

Exercise 3. If f is a non-zero linear form on E,
then f-l(O) is a maximal subspace of E. Conversely tc each
maximal subspace H of E there exists a linear form f on E
such that f-l(O) = H.
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PROPOSITION 11. A linear form f on a topological
vector space E is continuous if and only if f-1(0)
is closed in E.

PROOF. Suppose f-l(O) = H is closed. Set
V = tx \If(x)1 <l~ ..: If f f. 0, choose a 8 E such that f(a) = 1.
'Then there is a balanced neighborhood U 8uch that (a+U) n H = ~
We a.ssert that UC-V. Suppose that x8U":and If(x)l ~~l.

-x nThen y = f(x) 8U and f(a+y) = 0 so that (a+U) H f. ~. Contra-
dictions. Then x86U -?! t'(x) I < 6 for 6 > O. Hence f is
continuous at 0 and henco continuous on E,

DEFINITION 9. The dual space E' of a topological
vector space E is the subspace of E* consisting of
all continuous linear forms on E.

PROPOSITION 12. 121 A be .an open convex subset of
a localli convex SP4ce E and let M be a ve~or
sub-space of E such that An M = 0. Then there
exists a closed hyperplane containing M and not
meeting A.

LEMMA 1. If M is a vector subspace of E, so is M.
LEMMA 2. :;In a topological vector space, a hyper-
plane is either closed or dense.

PROOF. Exercise.
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LEMMA3. Suppose that E is a real 10c9)11y convex

spac8\A an ODen convex subset of E and H a vector

subspace not meeting A. Then H is either a hyper-

plane or there exists x\ii11 such that the vector

subspace spanned by x and H does not meet A.

PROOF. Let C =. H+~oM. Then C is open

-c = H+ UM and C n -c = 4>. For if Xf,Cn -C, then
f.-<O

x = h+/\a = h'-/\'al for scme h, h'CH, a,a'eA and /\,/\') 0 .snd
I

so /\a+/\ 'a 'eH. But since A is convex, /\a+/\ 'a 'e(/\+./\ I) A which does

not meet H.

1) Suppose that HtlCU-C rS E. There is some x,m~ with

x~CU·-.;c. If the vector subspace spanned by x and H meets A say in

y, then for some f.-~O, xE:~f.-y+HC:G·-(!. Hence the vector subspace

does not meet A.

ii) Suppose Httcu-c = E. If !.~ is not a hyper-pane there

is some point aeC so that H and a together does not span E, hence

there is some point b € -C not in the span. of H and a.

Let f(f.-) ::: (l-f.-)a+f.-b(O < f.-~l). Now f is continuous and C is

open and so I = f-l( C) and J = f-l( -C) are open in [ 0,11 . Also

OeI, leJ and r·· J =~. Let
L~

0( ::: Sup 1, Al Ar.I }

Then o(€.I n (NI) c. (f"'J J) n (-:::-r) :::,-vJ n I"JI. Hence f( o() ~CU-C. i

Thus f(c\)eH Le. (l-o()a+O(bP,H. But b is not in the span of a

and H. Therefore H Is a hyper-p Lane ,
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LE}1MA4. SupDose th,gt.E is a complex vector
space and H is a real hyperplane in E. !hgn
HniH is a complex hyperplane.in E.

PROOF. Suppose a t H n in and suppose for example
a.eH. Then ia.eiH, which js a real hyperlJlane and so a = o(ia+b
with 0(real and b8iH, then (l+o(i)b :::(1+0(2)a.eH,and so btH.
Now if x£E, x :::~b+y with ~ real and y8H, and then y = iib+z
with 1real and z8iH. Hence z8H, thus x :::(~+iDb+z say with
z8HniH. Therefore H niH is a complex hyperplane in E~

PROOF OF PROFGSTTION 12. First consider the case when
E is a real vector space. Let ~ be the set of all vector
subspaces of E containing M and not meeting A. Apply the

',:maximalaxiom 'bo",thechain ~::: {M}' there is a maximal chain
J1 in E with '(% C Ji c ~. Let H be the union of all sets
of ~. Then clearly H is a vector subspace of E not meeting A.
By Lemma 3, it is a hyperplane, becau8e the other possibility
would contr-adf ct. the::ma.:xima,lity of J.i. Also H is closed
because otherwise it is dense in E and meets every open set
including A.

If E is a complex vect~ space, it is also a real vector
space and so there is a real closed hyperplane K containing M
,&,nd-"net meeting A. Then H :::K n iK is a comn1ex closed hypcr-.
plane containing M (\iM :::M and not meeting A.
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.COROLLARY. Every closed vector subspace of a
convex space is the intersection of closed hyper-
planes containing it.

2.5. Extension of a linear form.

PROPOSITION 13. Let p be a real valued function
_ 17_

on the real vector space E such that
p(x+y) < p(x)+p(y) and pet-x) = 'Ap(x), 'A ~ 0, 'AS/R.

Let FC:E be a vector subspace and g a linear form
~ F satisfying g(x) $. p Cx) for any xP.F. Then
there is a linear form f on E extending g and
satisfying f(x) < pex) for all x8E.

PROOF. Lct a 8 E '-...F and F1 = F EB tHe., the ve ct or
subspace generated by a and F. Each element y8Fl has the
unique reeresentat.Lon y = x+Xa where xSF, r..81R. Define gl
by gl(y) = g(x)+~ where ~ is to be determined. Then gl is
a linear form on Fl extending g. We now choose ~ so that
gl(y) < p(y) for ail y8Fl, or g(x)+r..G'.<p(x+'A~). If xl,X28F,
we have

g(x1)+g(x2) = g(xl+x2) s P(x1+x2) < p(x1-a)+p(x2+a)

so that g(xl) - p(xl-a) $. p(x2+a) - g(x2).
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Let. p(xl-a) I Xlt,F}

P(x2') I X2t.F 1
J.L = Sup

v = inf

Now choose 0( such that J.L < 0( < Y. We assert that this 0( will

work.

Now let 0 be such th~t (1) 0 is a linear form

defined on a vector subspace D0 of E containing F (2) 0 is an

extension of g)(3) 0 sati~fies 0(x) < p(x) for all x8D0. The

set (j of all such 0 is partially ordered as followss If

01,028 p, then 01 < O2 if D0 (CD0 and O2 extends 01• The
1 2

maximal princinle applied to 4: gi ves a linear form gl which

extends g and gl(x) ~ p(x). If DgI~ E, we can extend gl as

in the first paragraph which will contradict the maximality

of gl. This comnletes the ~roof.

LEMMA. ~ q and p be seminorms on the vector

space E. »Then q. ~ p if and only if xP.E,

p(x) < 1 ~ <lex) ~ 1.

( ".,

PROOF. If q < p, then clearly p(x) $.. l=*q(x) ~ 1.~1..

Conversely assume p(x) ~ 1 ~ q(x) < 1. Let x8E such that

p(x) > o. Then p ( p~x») = I 1 q(p7x») < 1, hence

q(x) < p(x). If p(x) = 0, then p'(Nc) = 0 $.. 1 PI:AI· q(x) :::

~(Nc) < 1 ~ q(x) ~ m for every A8 tK ) A ~ O. Letting

A~OJ, we get q(x) ::: 0 also. Hence q(x) = p( x) ::: O.
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PROPOSITION 14. (HaQO-Banach) Supnose that p is
a seminorm on a vector space E and that f is a
linear form on a vector subspace M of E such that
I f (x) I <p (x) for all xCM. Then there is a

/

-linear form tl on E .extending f with Ifl(x)1 s.. p(x)
for ClllxCE.

PROOF. Let E have tho topology determined by the
seminorm p , Let U = { x I p(x) < I} . Suppose f ~ O • Let
aCE suchthat f(a) = 1 and A = a+U. Then A is opsn and convex.
Put N -1 If xrn, then I f(x) I < 1. Hence AnN = 0.= f (0).
There is then a closed hypernlane H containing N but not
meeting A. Let fl be the linoar form on E with H = fll(O)
and flea) = 1. f1 then extends f.

COROLLARY 1. Any continuous linear form defined
on a vector subspace of a locally convex space has
a continuous extension.

COROLLARY 2. If aCE and p is a seminorm on E,
there is a linear form f on E with If(x)1 $..p(x)
for all x8E and f(a) = p(a).

COROLLARY 3. If F.:~s senarated with dual E',
then f(a) = 0 for all feE' ~ a = O.
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PROPOSITION 15. Let E be a locally convex space'.
Supposo that A and B are disjoint convex sets and
A is open. Then there is ~ continuous linear_form
f such that f(A) and f'(B) are dis';oint.

PROOF. Th~ set A-D is open and convex and does not
contain the origin. There is a closed hyperplane H = ~?-l(O)
containing the vector subspace {o} and not meeting A -B.

The linear form f is continuous since H is closed and reA)
and f(B) do not meet. .

LEMMA. Any non-zero linear form on E is qn onen map.

PROOF. Let A be an open set in E and x8A. Then
A-x contains a neighborhood of 0 and so is absorbent.
If f is a nonzero linear form on E there is some a8E with
f( a) = 1 and then there is some 0( > 0 wi th p-a.t~A-xfor I p-I < 0(.

Then f(x)+p- 8 f(A) for I p-I < 0(. Hence f(A) is open.

COROLLARY 1. If B 1,8 a convex subset of a locally
convex space and aKB' then there is continuous linear
form f with f(a) f. f(B).

PROOF. Since af.B there is an absolutely convex
neighborhood U of 0 such that (a+U) n B = 0. By Propos~tion 15,
there exists a continuous linear form f such that
f( a+U) n f(B) = 0. But f(a+U) is open. Hence f(a) t. f(B)
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COROLLARY 2. If B is_an absolutely convex subset
of a locally_c,onvex s~ace and ate , then there is
a continuous linegL;form f such that If(x)1 < 1
for all xCB and f(a) > 1.

PROOF. By Corollary 1, there is a continuous linear
form g such that g(a) ~ g(B). Then g(B) is an absolutely
convex set so that sup {\g(x)11 xCB} < 19(a)l Let

I

cl.. = sup {t g(x) I t x CB 1 Set f.= M2.) I g if cl.. ¥ 0 and
\ J o(g( a) -'

COROLLm1Y 3. Let E be a real locally convex space.
If A and E are disjoint convex subsets of E and A is- .
open then there is a conti.nuous linear form f and
a constant cl.. with f(x) > cl.. for all xCA and f(x) ~.cl..

for all xCB.

PROOF. By ProDosition 15, there exists continuous
linear form f with f(A) n f(B) = 0. (. f(it). and f(B) are convex
sets and feA) is open in ill. We may supnose that

sup { f(x) I xCB} ~inf { f (x)I xCA }

(if necessary multiply by -1). Put cl.. = sup {f( x)Ix8B } ,
f(x) S. cl.. for all xCB. Since A is open f(x) > cl.. for all xCA.
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PROPOSITION 16. ~et E be a real locally convex
space. Suppose that f is a linear form on a
vector subspace M of E and that f(x) > 0 on the
(non-empty) intersection of M with 'so open
convex set A. Then there is a linear form fl
extending f with fl(x) > 0 on A.

PROOF. Let N :::f-.l(0) • Then AnN::: 0 (since
f > 0 in An M). By Proposition, there is ahyperplane H
containing N not meeting A. Let !'l8AnM. Define fl'by
fl-l(O) :::H and fICa) :::f(a). Then fl extends f. We shall
now show that flCx) > 0 for all xSA. Suppose not.
Let fICa) :::~> 0 and flCb) :::-~ < 0, beA. Since A is convex.

bLa+~b SA and f (·!..La + ~b \
i--+~ 1 :J..+{J. ~+ ~)

Therefore ~ + ~~~ 8 H :. H ()A ¥ 0 ccntradf.c t tcn ,

2.6. Duality and weak topology.

*Let E be a locally convex space and E the algebraic
dual of E) E' is the continuous dual of E •....E' is a vector
subspace of E*.
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To sach xSE, define x:: E' -~ IK by xC f) = f(x). Then
1is a linear form on E' i.e. xSE'*. Thus we have a map
xSE ~ xSE'*. If E is separated, x(f) = y(f) for all fr.E'
if and only if f(x) = fey) for all fSE', if and only if x = y.
Then E is isomorphic to a subspace of E'*.

PROBLEM. Topologize E' such that E is the continuous
dual of E'.

NOTATION. x,y,z, ••• will denote the elements of E,
hI" • 11 d tIt fE'w ereas x ,y ,z ,••• Wl ano e e emen so. v.rr i t e < x ,x ' >

for x'(x). Then <x,x')is a bilinear form on ExE'. Also we
have

1. If x i 0, there is an x'SE' such that < x,x'> i 0
2. If x ' i 0, there is an xSE such that <x,x '> i O.

This is the same as

(1')< x,x'> = 0 for all x'r.E' :=::? x = 0

(2') <x,x'>= 0 for all xE',E'~x' = O.

Let E,E' be vector spaces over the same field ~. Let
< x,x'> be a nondegenerate bilinear form on ExE'. x'SE' gives
rise to a linear form on E given by fex) = < x,x' > Then
f is 1£: 1 and E' is also isomorphic to a vector subspace of E*.

,
Similarly E is also isomorphic to a vector subspace of E'*.

DEFINITION. (E,E') is called a dual pair. If (E E ") ,

is a dual pair, so is (E',E)•



70

Examples 1. If E is a senarated locally convex
space with dual E', then (E,E f") is a dual pair.

Examples 2. For a vector snace E with algebraic dual
E*, (E,E*) is a dual~pair.

Let (E,E') be a dual pair. ~o each x'8EI, set
p(x) = I <~,xt>1 for all x8E. Then p is a seminorm on E.
The coarsest topology on E ma~ing nIl these seminorms continuous
is the weak topology on E determinE:cJ.by E' and is denoted by
<J(E,EI). It is the coarsest to'laogy on E for 'which all the
linear forms in Et are continuous. In <J(E,E') the sets

{xl sup I <x5xl~1 < 'e} x;'8 E', form a base of closed neighbor-
1~1~n 1

hoods of O. Now <J(E,E') is convex and separated.

The dual of E under (j'(E,EI)contains E'. We shall show
that it is precisely E'.

LEMMA. If f , fl, •.0 f are linear forms defined
-- 0 n ~----------------------

on a vector space E, then either fo is a linear
combination of fl, •.•.. fn pr there is aPE such
thai fo(a) = 1 and fiCa) = 0 for i = 1,2, •.n.

PROOF. For n = 0, the result is trivial. Assume it
is true for n-1. Then for each L, 1 < i < n , f. is not a

- - 1

linear combination of f1' .•• f. 1 f. l, ••.f. Then by .1-, 1+ n
induction hypothesis, tncrc exists a.SE, j = 1,2, ••n such that

J
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x - ">" f.(x)a.1 <i<n l l
E',

Then there is an element atN such that fo(a)
for all y8N. In the latter case we have

= 1 or f (yi = 0o

fo(X) = 2: fo(ai) fi(x) for all x8E
l<i<n

which implies that

A.f.
l l

l<i<n

COROLLARY. If fl 000, f are linearly indenendeni-, n
linear forms on a vector space E, then there are
elements aI' •.• a 8En such that fi(aj) = 0i.'

J

PROPOSITION 17. Eor a dual pair (E,E'), the dual
of E under ~(E,E') ~ E'.
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PROOF. Let f be a linear form on E continuous

under o-(E,E'). Then \f(x)\ ~o( <1 on some neighborhood

~ =={ xl supl<x,x.>I<l} where xt'8E'. Then by lemma, f
1<i<n l

either a linear combination of x~, x2 I

is

or there

is some a8E such that f(a) .:= 1 and xi I(a) = 0 for i = 1,2,.0 .ri,

Then aeu and f( a) > 0(, contradic tion. Hence

f = L. f..iXi

l<i<n

PROPOSITION18. If (E,E') is a dual pair, and

A is a convex subset of E, ~ A is the same for

every topology of 1qe dual pair (E,E t) •

PROOF. We shall show that if the cLosur e A under

any topology ~ is the same as the closure A(o-) under o-(E,E').

Sinc,e ~ is finer than Cl,ACA(Cl). Let a¢A. Then there is
i

a continuous linear form f such that f(a) ~ f(A)i.e. there

exists x'8EI such that <a,x'> 1< Ajx'> There is a

6 ~ 0 such that l< a-x, xl>\ > 6 ~for all x8A.

Let U = {x\ Ix x,x'> =l'<6 Then U is a neighborhood in (f'

and a+U does not meet A. This means a~A(o-) i.e. A(o-)C=A.
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2.7. Polar Sets.

DEFINITION. Let (E,E') be a dual pair. If A is
a subset of E, the subset of E I consisting of those
x' such that

sup 1<x ,x ' > I < 1x8A I

is called the polar of A and is denoted by AO

PROPOSITION 19. Let {'8,E') be a_dual pair. Then
polars in E' of subsets of E have the following
properties

(i) AO is absolutely convex and~(E',E)-closed.
( l"l·) If JI'- B tl 'porAol..'_:, 1en.0 ',- .

(iii) If A f- 0, then (AA) 0 ::: -lAo
IAI

0 i : 0(iv) ( .J\~). ::: o(iAo(",.

PROOF. Exercise.

Notice that AO ::: (,

x8A
x ' Il.<:x, x ,>-1 '.<1 1-, .. a, ~
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There are important sDecial cases of polar sets.
If M is a vector subspace of E, then i~~~<x .x '> 1< 1 implies

< x,x' > = 0 for all xE',M. Hence MO consists of these elements
of E' that vanish on M and so is R vector subspace of E'
orthogonal to M. If E is a senarated locally convex space,
a subset A' of its dual E' is equicontinuous if and only if
there is a neighborhood U of 0 with sunl<x,x' >1< I for all x8U
and x'8A'. Thus A' is equicontinuous if and only if it is
contained in the Dolar of some neighborhood.

PROPOSITION 20. If E ~a separated locally convex
space and is a base of neighborhoods, then the
dual of E 1. LJ UO(the polars·b&tDg takeri in E*) •. .U8V"
c on t ·l.,"'.1101.1

PROOF. The linear form x*8E* is continuous if and only
if there is some neighborhood UE',tt\.:1 th 1<x,x '> t < 1 on U.

DEFINITION. If (E,E') and (Ei,F) are dual pairs and
A is a subset of E, the polar AOO of A° in F is
called the bipolar of A.

Esmark. If ECF CE' *, then ACAoo• For~ z8Aoo.,if
and only if 1< z,x' > I <1 whenever x 18Ao, 1.e. whenever

sup I<x,x' > 1$..1.
x8A

0.00
Zvrt if and only ifThus

I<z,x'> I <sup {1<x,x'>l ), Since AcE=-F, this implies ACAoO
xf,A
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PROPOSITION 21. Let (E,Et) be a dual pai!~~d F
2 vecto~upspace of E'* containing E. Then the
bipolar AOO in F of a3ubset A of E is the o-(F,E')-
closect"abso1.utelyconvex ml.,velopeof s,

PROOF. Let B be th.e(:r(F 1E ') -closed absolutely
convex envelope of .d.. Then It 00 is o-(F,E ')-closed absolut eIy

convex subset containing-A and therefore BCAoo• If atB, then
there is a continuous linear form x 'CE' with I < x ,X I ) I< 1
for all x8B and l<a,x'>l)1. Now ACB and so x'E',Ao thus
a~AOo. Hence AO°C:B and so AOo= B.

COROLLlillY1. If E is_9 separated locally convex
space ',vith dual E' and A is a subset of E, then--
the bipolar .,00 in E is the closed absolutelyA

convex envelope of A.

COROLLARY 2. Und~-.rthe conditions of the proposi-
tion ,the polar of AOO in E' is AO.

PROOF. 00By proposition, the polar of A in E' is
o-(E',F)-closed absolutely convex envelope of AO• Now AO is
absolutely convex and ~(E',F)-closed; also ()(E',F) is finer

o o·than o-(E',E). Hence A is also ()(E',F)-closed. Thus A is
the po'l ar of A00.
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COROLLARY 3. 1£ (E,E') is a dual pair and if,
for each ~,A~ is ~(E,E')-closed absolut~
convex subset of E then (QA~)o ~s the ~(E',E)-
~losed absolutely convex envelope of ~ A~.

PROOF. Taking polars_in E of subsets of E'.

00(1 Ad. ::::
0( \

/ U 0 \,60 (.I·· \ 0Hence \ ~A~) :::: I ~ A~) and the result follows from the

proposition.

2.8. Finite dimensional subspaces.

Let E be an n-dimensional vector space with a basis
~1,e2 •• e.n° There is a dual base er, .• e~ in the algebraic

dual E* of E, with the property <e.,e~>::::<5. j. For any
1 J L

element x8E can be uniquely written in the form
~ A. e. and put. <x,ei>::::Ai" Clearly e1 are linearly

< l~i~n 1 1

independent. They also span E*.

If E is fin1.tedimensional and (E,E') js a dual pair,
then E' :::: E*. For E and E* have the same dimension and so
have E' anhr*. Since E 'C~E* and EC.E'*1 all must have the
same dimension.
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PROPOSITION. 22. A finite dimensional vector space
has only one topology under which it is a separated
locally conve~ space.

PROOF. ",Je show that for a f inite dimensional separated
locally convex space E, its topology is identical with ~(E,E*).
Since dual of E is E*, the topology is certainly finer than
CJ(E,E*)• e ",l' ... '''n be any bas e of E and ei, ..• f3n*Now let
the corresponding dual base of E*. Let U be an absolutely
convex neighborhood in E. There is some U >0 with e.£uU for

1

l<i <no Then

is a CJ(E,E*)-neighborhood if x = LAiei 8 V,

x 8 L l1--iluU = J I <x,ei> 19Ucn(gn) -1 gU = U.
l<i<n

Thus the given topology is coarser than CJ(E,E*) and so
Ld errt Lc a L,

PROPOSITION 23. 1&1 M be a finite dimensional
vector aubspace of a locally cqnvex separated snace.
Then M ~s closed i.D_E1nd the to.,p,ologyinduced on M
1S the euclidean tQ~oJ~gy.
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PROOF. The second part follows from Pronosition 22.
To show M is closed: If el,.••, en is a base of M and
if a t M , then regarding a, el,···, en as linear forms on
the dual E' of E, by lemma there is some x '8E' with <a,x '> = 1
and <ei'x'> = 0 for i = 1,2, .••,n. Let U =ixll<x,xt>l< i },

Then U is a neighborhood of 0 and a+U does not meet M, for
<a+u)x'> = <a,x'> + <u,x'> = l+<u,x'> ~ O. Hence M is closed.

2.9. Transpose of a linear map.

Let (E,E') and (F,F') be dual pairs. Let t: E ~ F be
a linear t.r anst'or-raat ton, Then < tx ,v ' > is a bilinear form of
the two variables x,y'. For each fixed y'8F' let t'(y') be
the linear form on E defined by

< x,t'(Y'» = <tx,y'> for all x8E.

Then t'(y')8E*. Then t' is a linear tr~nsformation of F'
into E*. t' is called the adjoint, conjugate, dual or transnose.

PROPOSITION 24. Let (E,E') and (F,F') be dual- - ------
pairs. Let t be a linear transformation of E
into F with transpose t I. Then t'(F ')C E I if
and on~v if t is continuous in the weak
tODologies ~(E,EI) ~ ~(F,F').
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PROOF. Assume t is continuous. Let Y'~F' be

fixed. Then <tx,y') is a continuous linear form on E. Hence

t I(y I) 8E' or t I(F I)C E I•

Conversely sup~ose t'(F')C:E'. Let

v = ~y8FI sup 1< y,y;>1 ~ 1~any IJ(F ,F ') -neighborhood. Take
1 ~i~n J.

U :::: (X8EI;~\ipl<x t'(y.'))1 < l~1. l<i<n' 1

Then U is a IJ(E,E ') -neighborhood and t(U)C V. Hence t is

continuous.

DEFINITION. t is said to ..be wea~ly continuous

if it is continuous in the topologies ()(E,E')

arid IJ(F,F').

COROLL~RY. If t is weakly continuous so is t'

PROPOSITION..25. If t is.Q. continuous linear

mapping of the seD.}rated locally convex space E

(1,ri th dual E I) j.nto the ~;cparated locally conv..§.!

snace F (with dual F') then it is also continuous

when E and F p2.~~ t~.r.~~.~g,3,.·~ed ~ea~ ..

topologies IJ(E,E') and IJ(F,F').
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PROOF. Let y'SF' be fixed (but arbitrary). <tx,y'>
is continuous on E. t'(y')€:E' i.e. t'(F')CE'. Hence t
is continuous.

LEMMA. Let (E E') (F,F') bo dual n...air~. Let t be-- , ~

a weakly continuous linear mapping of E into F.
Let t ' be its trans;Jose. Then ACE, then

. "0
(t( A) ) =

PROOF. Each of these is the set of all y'8F' such
that i< tx,y'>\= \<x, t'y'>1 ~l for all x8A.



C HAP T E R 3

M 0 REO N NOR M E D L I N EAR SPA C E S

3.1 Now we shall specialize on normed linear spaces.

DEFINITION 1. A normed linear space X is a vector
spac e over IR or \K on which is defined a non-
negative function called the norm (norm of x being
denoted by IIxll such that

II x II :::0 iff x:::0

\Ix+yll< IIxll + lIyll

II«x II < I0( I IIx II

for all vectors x, y and scalars ~.

X becomes a metric space if we define p(x,y):::
IIx - y II and is called a Banach Space if it is comulete in

this metric.
Example. C [a,b] = Set of all continuous real valued

functions on [a,b] • If r , f1' f2 8 C [a,b] define

(f1 + f2) (x) :::fl(x) + f2(x)

(oCf) (x) :::O(f(x).

C [a,b] then becomes a vector space. A norm is defined by

II f II =:: max If(x) I
(a, bJ

and obtain a Banach space.
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DEFINITION 2. Let M be subset of a normed linear
space X. M is called a linear manifold if
x,y 8 M, «,~ scalars,then «x + py 8 M.

M is a subspace of X if M is a closed linear
manifold.

Let E be a vector space and M a linear subsnace
of E. Two elements x,Y are said to be equivalent, x N y,
if x - y 8 M. If x + M, Y + M are two cosets, then the
above equivalence relation tells us that either two cosets are
identical or disjoint. The set of all cosets is denoted by
E/M. It is made a vector space by defining addition and sC2lar
multiplication by

ex + M) + (y + M) = x + y + M

«ex + M) = «x + M.

PE\OPOSITION 1. Let M be a subspace of a normed
linear ~'paS,§,X. The norm in X/M is defined-.J2.y

IIy II = g.1.b. ~ II x II x 8 y} for y 8 X/M.

If X is corro l e t e 2 then X/M is also complete.
PHOO~.• 1) By the definition of norm, if y t, X/M,

then IIy II = 0 iff t.hcr c exists ;, >cd; E' y such +hat IIxnll~ 0

as n -+ 00. f:. ince Y is closed, IIy II ::0 iff 0 t, Y so
that 1/ y 1/ = 0 iff r= M. The other axioms of the norm can
be easily checked.
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2) Suppose X is complete. If 1 Yn 1 is a Cauchy

sequence in X/M, »re can suppose, by passing onto a subsequence

if necessary, that

II Y-n+l - Ynll <
.i,
2n

We can then choose inductively a sequence xn 8 Yn such that

for

Then i xn \ is a Cauchy scquence in x. Since X is complete5

there exists Xo e X such that xn -+ xo' Let Yo be the co-
set containing xo· rr:'henYn---7Yo (check) • By the property
of the Cauchy sequence converges to Yo and X/M is
complete.

DEFINITION.3. Let X,Y be normed Linear spaces. P.

function T . X -'7Y is called a transformation. T.
i~ said to be linear if T(o(lx1+ 0(2x2) = 0(1T(xl) +

o(2T(x2) for xl,x2 8 X and 0(1,0,'2 scalar s, T is
said to be bounded if there exists M > 0 such tha.t

II T(x) II < N IIx II for all x E'. X.
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PROPOSITION 2. ~ X,Y be normed ltnear suaces and

ill. T; X --"7'Y be a.: linear transformation, Then

a) if T is continuous at xo' then T is
continuous on X

b) T is continuous iff it is bounded.

sucpo se Yo E', X and Yn -7 Yo. rr.'hen,by the linearity of T

T(y n

y + x ) + ~(y) - T(x ).o 0 0 0

b) i) if T is bounded there exists M > 0 such
that

II'rex) II< M IIxII

Hence IIT(x) - 'T'(x) II < IIT(x - xo) II < 'M IIx - x 1/0 0

from which follows the corrt i.mri ty.

ii) If or is not bounded, then for each n there

exists such that
xn

DlRTn
Let y =n

,.!

;':'

..~

1
!

':1
1

~I
!,.j

.:;
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Then IIYn II
1 and 1/ 'T'(Yn) II > 1. Hence IIYnil-7- 0 but= n

't'(Yn) -f-7> T(O) = O. Hence T is not continuous at o.
Notq.tion. B(X, Y) will denote the set of all bounded

linear transformations of X iuto Y.

If T, Tl, T2 € B(X,Y) and ~ 8 ~ , we define

(~T)(x) = ~T(x), x e x.

Then B(X,Y) becomes a vector space. If T e B(X,Y) notice

that there exists M > 0 such that

IIT(x)1/ < HI/x II for all x 8 X.

We define a norm by anyone of the following

(i) liTII = g.l.b. { MIl/ '1' (x) 1/ < M/fxlI}

[ (.u..) /I T 1/ = l.u.b. IIT(x)1I
x "I- 0 IIx II

(iii) I/TII = l.u.b. I!T(x)1I
IIx] = 1
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It is easy to verify that (i)1 (ii) and (iii) are equivalent.

As a consequence of this definition it f'o l Lows that

liT (x) II < /IT" II x II •

PROPOSITION 3. B(X,Y) is comnlete, if Y is

PROOF. Let 1't'n\ be a Cauchy sequence in B(X,Y) •

Then given E > 0, there exists n ( E )o liT - r IIm nsuch that

< E. for m,n > no( [ ). Then for each x e X,

e IIx II so that {Tn (x)} is a Cauchy

sequence in Y. Since Y is complete, there exists T(x) 8 Y

such that Tn(x) ~ T(x). Thus we define a function

by

T(x) = n l~ co Tn(X).

Now

1) =



! i
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2) Since IIT - T II < I for all n > N and all p ,.n+p n

IITN+pll < IITNII + I for p > 1

and

1/ T II = lim IITN+pll < /I TN II + I
n~CX)

and hence T is bounded.

3) vIe show that IIT - T II ---7- 0 as n -~ 00 • Now forn

For II x II = I

== lim lIT (x) - T (x) II
p-->rOO n+p n

~ lim II Tn+p - Tnll < C. •
p-+oo

if n > no( [ ). Thus B(X, Y) isHence liT - T II < En

complete.

If Y == field of complex numbers then Y is comolete

( IIY II == IY I ), we wr ite *B(X,Y) • X called the conjugate soace

*or dual space of X. An element of X is called a bounded

linear functional.
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*COROLLARY. X is always complete.

Hahb Banac~tension Theorem~

PHOPOSITION 4. Let M be a subsnace of normed linear

snace X. Then eve£Lllgund§.g linear functional on M

~ be_§xtended tg the ~hole of X with preservation

of tQe norm i. e., if *T C 11 *there ext$ts S 8 X

SUCil that

sex) = T( x) for all x E', M

and

IIsllx = IITIIM

COJOLLARY. Gi.Y.§Q Xo 8 X, x "I- 0, .there exists
0

*T E' X such that

3.2 DEFINITION 4. A Euclidean space E is a vector SDace

in which a function of two variables x,Y denoted by

(x ,y) called inner pro~~~~~, is defined, satisfying
a) (x,x) > 0 if x ~ 0, (x,x) = 0 if x = 0

b) (x,Y) = (y,x)
c) (Ax,y) = j\(x,Y)
d) (xl + x2,y) = (Xl' Y) + (x2,y)·
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rlEMARK. IIxII =
1/2(x,x) • If E isDefine

complete in this norm then E is called a Hilbert ~~

DEFINITION 5. A Hilbert space H is a Banach s~ace

:-inwhich the norm satisfies an additional requirement

viz.

IIx-» y If++ Ilx _ y 112 = 211~112+~lIy,,2.

for all x,Y 8 H. An inner Droduct (x,y) is then

defined by

4(x,y) = !Ix;+ y If 1;1 \Ix - Yl12 + IIx+ iyll2

I/x iy!r.

PROPOSITION 5. The above two definitions for a

Hilbert space are eguivalent.

Proof. Exercise.

We only give some nroperties necessary to prove the

equivalence which will also be used elsewhere.

PRO!='OSITION6. Let Ii be Hilbert space, If x,y 8 H

and ~ is a scalar, then

a) (x,:t-y) = ~(x,y)
"

b) I (x,y) I <!lx!1 lIyll.
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Pi"WOF. a) (x,~y) = (~y,x) = ~(y,x) = ~(x,y)

b) Let t.. be any comolex number. Then

0 < (x - "i, x - "}..y)

= (x , x) + (x , -}..y)+ (-~y .x) + (-)-..y,-"y)

= (x ,x) 'A(x,y) - ?\(x,y) + ~T(y ,y)•

Assuming y f. 0, set /... = (x,y) Then(y,y)

o < (x,x)
/

(x,e (x ,1)y,y)

wh lch gives
(x ,x) . (y, y) (x,y)· (x,y) > 0

or

DEFINITION 6. Two elements x , y in a Hilbert SDA.ce

H are said "to be orthogonal if the inner oroduct

(x,y) = O. Then W(2 write x Lv- Two subsets 81,32

in H for allare said to be orthogonal if

xl 8 81 and x2 8 82• If M is a subspace of H

the set of all elements of H that a.re orthgonal to

M is denoted by Ml and is ca.lled the orthogonal

complement of M.
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PROPOSITION. 7. Ml is a subspace of H.

PROPOSITION 8. 1&1 M be a subspace of a Hilbert

~ce H and x 8 H <, M. Le:t.

d ::: g.l.b. { IIx - yll i y 8 M } •

Then_.there_exists a un.iau_~.Yo in M @ch that

d::: IIx - Yoll

1Lurth.~. x - Yo 8 tv1

The proof is straight forward. We have the following

COROLLfu~Y. If M is a sutspace of a Hilbert space

H, then every element x 8 H £an be untguely re-

presented as

X :::xl + x
2

wher,..gxl 8 M, x 8 }'112 - •

3.3 Riesz Representation Theorem~

PROPOSITION g. If Y is ~j'ixed element in a Hilbert

snace H .and Ty is defined bv

Ty(X) :::(x,y) for all x 8 H,
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PROOF. Let c{l'0(2 be scalars and xl' x2 8 H. Then

=

",-'-y is linear. Further

Hence Ty is continuous wh t.ch proves the theorem.

ffi OPOSITION 10. EVGry bounded linear functional T

on a Hilbert space H can be expressed uniQuely in

the form

T(x) = (x,y) for all x 8 H

wher~ y is a fixed point of H and

IITII = II y II
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PiiOOF. Given CL bounded linear functional T, let

M { x 8 HIT (x) ::: 0 \.

If M::: H, take
.L

M ~ H, then M There~ o.y = 0.· Suppose

exists an element z ~ 0, z S H, z t M. We notice that

~(z) ~ O. If x is any element in H, let

U :::X - T(x) z
T (z)

then u 8 M and z t. M. That is (u,z):::0, which gives

(x ~ ~t~~z, z) :::0

or
T(x)(x,z) - T(z) (z,z) :::0

or
T(x) - T.liL (x,z) ::: (x, fez)) z)- ~) z,z

Now take if7Z\y :::~) z. ~his Y is the required one. By the

previous proposition

II T II < fl y II ,

also from
2

T(y) ::: (y,y) ::: II v]
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it follows that

IIT II > lIyll

Hence

liTII = IIv]

This completes the proof.

3.4 Corn ider the sot of all measurabLe functions which

are complex valued, defined on a mca surab'le set E of finite

or infinite measure. Let 12 denote the set of all these

Then by Schwarz's ineauality

J If ,2 dx <
E

is integrable on the

CD •functions which are scuar c integrable 1.e.

f subsets

of E of finite measure.

Define for f,g S 12

(f,g) = f f(x)g(x)dx,
E

II f II = (f ,f) 1/2 •

Then (f,g) is an inner product in 12 and 12 is complete

under the above norm. So 12 is a Hilbert snace. So from

what we have proved in Proposition 10 - it follows that if T

is a bounded linear functional on 12 then there exists a
unique function 2g E', 1 such that
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T(f) = f f(x) g(x)dx for all f e L2
E

and II T II = II g II •

We denote by LP(p > 1) the class of all measurable

J I f (x) IPdx < co.
E

complex valued functions wh i.ch a. re such that

Define

\If II = ( f I f(x) I Pdx)l/p
E

(1< p < co).

We under stand by Lco the space of all measurable functions

which are bounded or arc equal a. e. to bounded functions. Jt.Je

define the norm

[r ] = true max I f(x) I, f e LCb

i.e. Ilfll is the smallest value of Iv! for which If(x) I < }II

-1 -1P > 1, let q be define by p + q = 1.,'1.. e. If

3.5 be real numbers and p( [a,b]) be theLet b > a

set of all partitions of [a,bJ

DEFINITION7. A function f(real or complex va l.ued)

defined on [a,b] is said to be of bounded

variation if
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V(f;a,b) = Lvu,b. { ~ \f(t ,) - f(t '-I) \ }
'" 8 P(['l,b]) tj ('.'TT J J

is finite and V(f;a,b) is called the total variatioQ

of f. The class of all functions of bounded varia-
tion on is denoted by BV La,b} •

REMARK 1. If f C BV [a, b 1 then there exist two

functions fl,f2 which are non-negative non-decreasing such

that f = fl - f2.

REMARK 2. If f 8., BV [a,b] then f is bounded on

j},b] •

DEFINITION.8. Let f ~nd ~ (real or complex valued)

be two functions defined on [a, b J. wher e a < b.

Let 'TT = {a = to, •••,tn = b} 8 P( [a,bJ ) and let

where sk 8 rt t ]- k-l' k '

k = 1,2, •..,n. We define the Stieltjes integral of

f with respect to () to be the limit of the sums

n
S '" = :> f(sk) [()(tk) - a-( tk_l) ]

iT,'"" 18

when 1/ rr 1/ =

by
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b

J f(x)d()(x).
a

DEFINITION 9. Let C [a,b] be the set of all con-

tinuous r oaL valued functions on [a,b] • Then the

mapni.n g Lt.C [a,b J ~ IR is said to be linear functior:al

if

1) =

2) L(cf) = cL(f) , c (', IR

and it is bounded (hence continuous) if

3) There exists a constant H such that

IL(f) I < M [r ]

where II f II = max If(x)I .
a < x < b

The smallest of all such bounds M is denoted by

II L II and is called the .llQ.£..ID. of the linear functional.

Now we Drove the following lemma which we utilise in

the pr cof of the next proposition.

LEMNA 11. Let L be a bounded linear functional on

are two increasing

sequences belonging to C [a)b ] which tend to the

same limit,thon the seQuences i L(fn)}

also t0nd to the same limit.
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PROOF. vTithout Los s of generality ve: as sume that the

sequences are strictly increasing (otherwise we conside~ the

sequences Sg - l}). For each fixed n there1. n n
should exist 3.n n such 'chat f' < gn for all nl > n.-IE

Suppose not, then tr.3 sets K = fxlf (x) > gE (x)} for-m an ~ m
nested sequence of cJosed, nonempty sets. Hence there exists a

g (x ) = f(x) contrary to tl1e hypo t.ho si s , By the same argu-
n 0 0

ment there exists for 0ach m an n such that (7 < 1" forom --n

all Now we can form an increasing sequencen I > n,

< fm < gm < ... tending to f. Hence, t~.13 3GaUenCOs
3 4

{ L(fn) ~ f L(gn)
)

tend to tr.e:.:.1scffi8limit.and 1
) .>

PROPOSITION12. A continuous Lt.ne ar funcc-i.on(1)'. L

defined on C [:1. ~b J gap be ext ended to a Ivi;.Q.Qr..

class of functi9D~'

PROOF. 18t {fn} be an .mcr eas i.ng and bounded

sequence of continuous f'unc t i.ons on [a,b 1 whi ch t.end-: to a

bounded function f. Now we extend the f'unc t i ona.L L t o -Chis

f which may n0t be cont i nuous , Cons ecuerrt Ly , the sequence of

va.lues { Lfn 1 tend to a finite limit. The 7J.lue3 of t.::.9

series



99

co

2:::. I L ( f n+ 1) - L ( f n) I
n=l

correspond to tho p~rtial sums o~·the series

co
+ rr 1( x) - f (x) ]- n+ n

by means of L (where the signs .qro suitably chosen) 0 3ut

k
~ + [fn+l (x) - fn(X)] I < f(x) - fl (x) = B( say),

n=l
k = 1,2, •••

Hence

k
;-IL(f .,) - L(f)1 < BII L II, k = Ji2",.- n+J.. n

n=l

and so
-, .'

c onvcr ges abs oLut eLy and nar t t e.I Sl1JI1S Doing IS
n

fini te limit which we; denote by 11'. This is jus ti r.i ed f'r on;

the nrevious Lemma, Hcric e Lis defined um oue Ly to c:;very

bounded function which is the limi t of an increasing SC(1'J8!lCe
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of continuous functions. If f and g are of the above tyo e

then so is f + g &nd L(f+g) = L( f) + L(g) • But the differ cric e

f - g neither is of the type f nor -f. To justify to wr Ite

L(f - g) = L( f) L(g)

consider the relation f - g = fl - gl which is equivalent

to writing f + gl :: f1 + g? so

which yields in turn the desired.
Since (1) and (2)'properties of the bounded linear

functional are evident , it remains to Drove th":l.tit is bounded,

i. e., vlG show

! L( f - g) I < II L /I g

whar-c /.L = sup !f(x)-g(x)!
a~x< b

and f,g arc the limits of

the increasing sequences 5. fn 1 and ~gn} r-esaec'tIvcLy ,

NOH set
( f (x) when I fn(x) - gn(x) I < /.L
J n

FnCx) = j gn(X) + {..L when f (x) gn(x) > /.L
1 n
,f gn(x) when f (x) - gn(x) <- /.L -/.L.
L n
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It is easy to verify that is an increasing sequence

of continuous functions and tends to f. Further

Hence

= '1I1im(L(Fn)

.
< ilL II

which prov€s the theorem.

For our further purposes we remark th~t the class

under consideration contains apart from continuous functions,

simple discontinuous functions and their finite linear combina-

tions. In particular the charac t crLst lc function fc d of the,
closed Lrrt erva'l. [c,d J C [a,bJ also belongs to the class

be-ing the 11mit of decreasing sequence of continuous functions
1 1is zero outside (c - ~, d + ~) and equalfn

to 1 on [c,dJ •

PROPOSITION 13. (Riesz representation theorem).

For every bOU11ded linear functional L Q!1 C [a,bJ

ther~tsts a function ~ ,e ~V I~,bl such that
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L( f) =
bJ f(x) dl)(x)

a

and V [ rJ'; a.,b ] = IlL II. Conver sely the into iSr::1 of

the type defin~s a lin0ar functional.

PHOOF. The converse is evident. For any f p. C [':!.,b}

and () e BV [.~, b] we hav e

b

J f (x) dl)( x) I < 1/ f /I. IT ( I);a ,b) •
a

This satisfies all the thrse properties of the bounded line.1.r

functional.

Reciprocally, the bounded linear t'unct.t cna l L c an

be extended to a characteristic function fc d of the internal
)

[c,d] C I?,b] • Nowwe define

(j( x)
t o , x = a

- ~-1

L L( f ) ,9. < X ~ ba,x

where f i s t~e char act er Lst.j o function of the interval [a ,x-]a,x _

We claim that t.he f'unc t ion (j 8 BIT [a, b] and V(I);,J., b) < /lL /I •

~o prove this cons i dor a partition IT:;: fa = XO'."'Xn = b 1 p.

p( [a, bJ) \ ~ and the expression

i,
I
!

·1)
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n
.2 ! (')( xk) - (')(xk -1) ! ,
k:::l

This is the value of L at

f(x) ::: Elf (x)a,xl

n

+ L E1{[f'a,k(X) - fa,k_lex)]
k=:;2

where Ek equals to 1,0 or -1 according as the sign of

~(Xk) - ~(xk_l). The function f being the finite linear

combination of the functions f belongs to the class undera,k
consideration and further .If! < 1. Hence

n

)- IIJ(xk) - lJ(xk_l) I ::: L( f) < /I L " •
k:::l

Since r.h.s. is indepenJent of ~ we have

Let f e. c La, b J and let n be as above. Let

sk 8 [xk_l,xkJ k::: 1,2,••.,n. Now define the step function
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which could be written as

n

CP(x) = f(sl)fa1xl(X) + ~ f(sk) [fa,xk(X) - fa,xk_l(X)] •
k=2

So cP belongs to the class under consideration. Thus

r1

L(r) = L f(sk) [rJ(Xk) - (j"(Xk_l)]
k=l

where observing that rJ(Xo) = r)(a) = o. The r.h.s. of the ex-

pression is exactly the dl~fini tion of st1eltjes integral when

II 'IT II ~ O. Let CD be the maximumoscillation of f on the

subdivision intervals. Then I f(x) - 9J(x) I CD and hence

I L( f) - L( r) I < I L( f - .::p) I < co \I L II

For II 'IT II ~ 0, co ~ 0; so L( cp) --7 L(f) which means

b

L ( ~) ~ L ( f) = J f (x) drr ( x) ft

a

Also V(rJ;a,b) is a bound for L, hence

•

Combining (*) with the above yields the result.



105 :i

At this s t age we state the above theorem more generally

in terms of Radon measures * more general than Borel measures.

The interested readers may refer to R.E.Edwards1 Functional

Analysis, Page 203.

,.~
',1

I
','i

PROPOSITION14. Le~ L be a continuous linear flJflC-

~ional on C(T) - ~he vector space of continuous real

valued f1J.nctJons on a J,ocally com'!)J,ct space IT'..
exists a Radon measur e fJ, .Qll T having a comnact

sUD~ort and such that

L(f) = fJ,(f) = ff(t)dU(t).
T

Conversely, the integral of the above ;form where

f .8 9.< T} and_ .ii: a Radon measure renresents a linear

functional.

*A Radon measure fJ, on T is a linear functional on the class

of continuous functions on T with compact sU1Jport which is

continuous in the following sense: Given E > 0 and a compact

set KC T there exists a 6 > 0 such that I U(f) I < E when-

ever f has its su~port in K and I f( x) I < (; for x E' K.
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3.6

(f, g)

b

== r
'.

2f(t)g(t)dt, f,g e L •

a

1 b 1

IIfl12 == (f,f)2 == ( J If(x) ,2 dx)2

a

b bIb 1
I ( f ,g) 1 <J 1f ( x) g( x) I dx < ( J \f (x) 12 dx) 2 ( J \g (x) \2dx) 2

a a a

Th(Jn
(f1 + f2,g) (f l' g) + (f2,g)

(f, gl + g2) == r r ,gl) + (f, g.,)

('\f, g) == A( f, g) , (g , f) == (f,g)

(f ,'Ag) == }:(f,g)

ll r + gl\2 ::: (f+g,f+g) ::: (f ,f) + (g, g) + (g, f) + (f,g)

::: (f, f) + (g,f) + 2 Re (f,g)

.;:: (f , f) + (g, g) + 2\f,g) I

< II fl\2 + I\g\l2 + 21\fllllgll •
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Hence

/If + g" < II f' 1/ + "g 1/. •

fn is said to converge strongly (or in the norm) if IIfn-f'il'::~o

RIESZ-FISCHER THEOREM.l.5. If a sequence

given, then in o:::,'der that there exists a function f

such tP.9,t -!' f· -t- •"n ~ ,l" lS necessary and sufficient

Cauchy seguen£..Sk.'

PROOF. If f ---'7f· strongly, given E > 0 theren '

exists no such that

1/ fn - f II < £/2 if n > no •

THEOREH. 12 is complete.

PROOF. ~ f 1., be' a. Cauchy sequence in, n \
2

L • t ,e. ,Let

such that n > ffik implies

IIf - f 1/n mk
-k< 2 •
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Jlfm (x)-
E k+l
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- f IIL:lk

<
J.n( E)

-- 2l\: . •

?or overy moa sur ab l e subset p..' such ths.t m(E) is finite

convar gos ,

CD

(i f (x) - f ex) [dxJ lTIlr+ 1 E1};:

E

-
••k=l

Now apply B.Levi "s t.he or crn to obtain the -3.;Jsolute

convergenco aLmos t ,:;v8Y.'ywh::;reof

Therefore cqnver g J:'; a. e. (cO ,'] to f)

II {'I-n II < I i fill - fm II'k - k 11 1
+ + 1

2
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Si,'lil:;l" ly

For fixed n > Ell' ~ pick k ~ '29 ;t!ten

- f II < 'If''n I, ',~j 1_ .L
.:.:\.,

- r IImr
-'-

Let k - ~CD.

-rrI
,~

II • III, I •.. :C
, ,.1

-- .> 0,

If f* is a120 ~ li~~t of -r ~J '11 c::-.: r1", ~.1, '-.

IIf - f* Ii < IIf

',1'.,'1,' - ~'. ',:~ II, _ 0 'f f'"• " ',J --:> - -- 'i' CI. e.

DEFINIT.ION 10. /I, s e qu ...m(3<.' of f'unc t.Lons ~ fn} in

convcr gcs '.1,81<:11 J::; -~ ·r"
-I.- J ..

(CO C\ -' «",2:)-!1~b I I '--~

for all
<:>g S I.lI...J •

If,

A 1~n2~r fun~tion~l ,.2
'.j is:: aid to be b01.111.c1edr:1, on

if there exi s t s M > 0 sue') that



110

;T(f) I < Iv111fll for all f t L2.

Then the following a~e equiv~lent.

1) l' is cont inuous at 0

2) T is continuous

3) r is bound cd ,

We define g.l.b. of all suc~ M to be the ilorm of T.

II en 'j
I L\ sup i1(n) I ::::

Ilfll i 0 If
SUD l't(f)l.

Ilfll ::::1
::::

For a fixed 2g f, L , define 1'g(f) :::: (f,g) for '111

T is a bounded line'lr functional andg

II T \1
p'
0)

II g II

I· ~ I'T 'I, gll :- I I'~01 s j.

PHOPOSITION 17. Jf T is a bounded lincnr functional

m
J. g'"",S'~=lc=l1t=--t=h=at T =



_____________ """__ __~'4 _ .__ . .. ~,._

III

PROOF. Choose ign} such that Ilghl\ == 1.

IIT(gn)11 ~IITII. Without loss of gonersLi.t.y ~Ne may assume that

T(gn) == 0 (other\.vise multi.ply by a rxct cr ei8)

I T + T I::: Ir (g + g ) I < liT 1I • II g + g I Iz g n m - n m=n m

Ilgr. - gmil2 == 211~112 + 211gml12 - :I\gn:t- grrll2

1 2< <1- -2 IT gn + T gm I
IITII .'

': 2
~ 4 - -~-C) 4! 1 '1'1 I == 0 •

. \\T\\"-
"'1. 2. .J... •SInce L IS complGGc, there GXlsts * 9g p, L- such that

g -+ g'f*n ' Ilg* II == 1, 'I'g* == II T II. Put g == ~·ITllg*. This is

the g we want. To show T(f) == TgCf) 2
f C L •for all

Case (~l.'r '1' ( g *) == (g * , g) == (g *, ll'Il 1 g *) == I \ T \\ :: T ( g *) .
b

Case-iii). Supr.::ose T(f) == 0, f C' L2.

T(g*) == T(g* - 1\f) where :A is I.:~ s ca.Lar ,

I I TII 2 == I l' ( g *) 1 2 == I T ( g * - ""f) I 2

o 2S. I\T \\W \\g* - :A,iI 1

== i \ 'I' \\2 (g * - xr , g* - j;.f)

2==11'1'1\ I (g*,g*) - j\(f,g*) - :A(g*,f) +
1\(...( f .r: J

):( g *, f) + f'.,};'( f , f) ? O.A( g*, f)

Put " == ~g*,f)r r "'), J.
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Then we get (g*,f)(g*,f)
(f ? f) > o

I(g*,f) I = 0 so that (f,g*) = 0

(f,IITlIg*) = 0 i.e., (f,g) = 0

Thus 'TI (f) = 0 ~ Tg( f) = 0, hence T = Tg•

C.ase ( ii~.l. Let f t, L2 " let )-
T( f)

and set= T( g*),

f = f' T( :n g*0 'r(g*)

Then 'r (f 0) = 0 and f = f' + Ag*.i,

0

= 'J\,.C fo) + AT (g*) = T( fo) + 'AT. ( g*)
C> g

= Tf~;~'T(g*) = T(f) •

Hence Tg = T.

Functions of bounded variation (He'">d from my notes).

2.7 Absolute continuity

DEFINITION 11. A function f defined on (a,b) is

said to be .ab..s.Ql"]Jtely contiUlJolls (A.C.) if



4

113

where (~k'~k) denotes a system (finite or infinite)

of nan-overlapping intervals.

DEFINITION 12. F is said to satisfy LiP!3chitz

condition if there exists c > 0 such that

IF(x') - F(x")1 < c ]x ' - x"1

Remark. A function which sathf:1Bs Lipschitz condition

is A.C.

PROOF.

PHOPOSITION18. A function. F is A. C. if and onlY

if gi vep E. > 0 there exists 0 > 0. such that

whenev~

L- I F ( ~k) - :8'( o(k) I < t ·

2: (~k - o(k) < 0 where the intervals

(o(k'~k) do not overlap.

PROOF. Suppose F is absolutely continocus. We

shall show that given i. » a there exists 0 > 0 such that

whenever

~ I F(l~k) - F(o(k) I < [ •

I (~k - o(k) < 6.
r.
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Assume false: 'T':tenthere exists some E. > 0. and

a system of intervals (non-overlaDDing) (o(k'~k) such that

> (~k .:: o(k).-7- '0 and

L IF( Bk) - F(o(k)I > E·

Now decompose the intervals (o(k'~k) into two Darts according

to the slgn of F(~k) - F(o(k)' ~hen the intervals on one of

these Darts wi.Ll, satisfy

but

contradiction to the AC of F.

Converse is trivial.

PiWPOSITION lCl. 11 necessary and sufficient condition

that..F be the indefinite integral is that it j,.§.

absolutely continuDus.

PROOF. Suppose f is integrable in [a,b ] and

x'
F(x) = r f(t)dt.

v

a
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Case (i). If F is bounded then there exists c > 0

such that I f(x) 1 < c for all a< x < b. Then

~

I'(~)- F( «)1 = J f(t)dt/ < c(B -0<'),

c{

and the absolute continuity of F is immediate.

Case (ii). If f is not bounded, let E > O·~ be

given. We can decomryose f into a sum of two functions g

and h wher-e g is bounded and integrable and J h dx < c /2.

i.e., f(x) = g(x) + hex) (to see that this is Dossible :
,. ..

"(. '
(f(X) if

= ..(t n if
I f(x~I!1 < n

f (x)n /f(x) 1)( n ,

Then

f(,X) = f (x) +n

Let c be the bound of g. ~hen for any system of

non-overlaDDing intervals (c{k'~k) such that

~k
= I Y f f( t) dt I

o(k
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~k P

< 2- j- Ig(t)ldt + Zfk hdt
o(k o(k

2: (~k - o(k) [/2
E C E<, c + < c 2c + - =2

Thus F is absolutely continuous.

Suppose F is absolutely continuous. Given E. > ~

choose a 6 > 0 such that for any system of non-overlapping

intervals (o(k' ~k)

whenever L (Pk - o(k) < 6. We claim F is of bounded

variation.

3.8 LEMMA 20. A necessa.ryand sufficient condition that

a function F(x) be an integral of an e+ement fex) 8

LP (1< P <co) is that the sum

.m

L
k=l

formed for every system of points Xo < xl < •.• < xm

lYing in [a,b] have a finite least U~Der bound.
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PROOF. Necessity: Assume F is the integral of f(x)

1-* r~ p 1< (xk - xk-1) . ( J If(x) I dx)P

xk-l
xk

< J I f (x) IP dx •
xk_l

b

~ J If(x) IP dx
a

Sufficiencz: Assume the sums (*) are bounded. Let

BP be l.u.b. Let (o(k'~k) be a system of non-overlaDDing

intervals •. By H·olclers inequality for the (sum)

E
p ~.

,.~ < ~ IF(~k) - F(o(k) 11:'
. LIF(~k) - F( o(k) I L

(Sk - et:k) p-l

This implies F(x) is absolutely continuous. Therefore F'(x)
exists

/e :«, and F(x) is its indefin:Lte integral.
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XOi';this .or tvat tve is the limit of a sequence of

functions f ex).n
]:i'or oxamp l e divide [a, b J into 2n eouaL

segments and in each of these define f (x) by
n

Ii' (p) g (0;)

~ - c{

NOv!the sum (*) which co r r e s nond s to the d ac ornno sLt.Lon con-

sidered is precisely the jnteg:ral of I fnlP over [a,bJ

Then by Fatou's lemma, I F "(x) ,p is Lnt.e gr aoLe and ,this

integral does not exceed BP •

Remark.

=
a

PROOF. Already proved

bJ Ir(x) IPdx. < BP•
a

Also from (**) W{":l have

b

.r
.\ - .-

Ifex') IPdx"o
a

PROPOSITION 21. 1et_. '1" .l2.§... a bOj1nded linear functinna1 or

such that
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T( g)

b

= f f(t)g(t)dt, 1 + 1= 1.P q
a

PROOF. Case 1:. When 1 < q < CD. Let F(x) equal.

where is the characteristic function of (a,x). WeT
gx

shall ShOVl that F(x) satisfies (*) and is the indefinite

integral of a function f(x) rp..I •which belongs to

Consider the st en function r (~) which assumes

the values

Ttp =

b
r:

( I.)
a

•
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or

Therefore F(x) is the indefinite integral of a function

f(x) e LP and such that

b
( 1) J D

/I T liPI f (x) I ~ dx S. .
a

We claim if g is a step function t, Lq

b

J I
( *) Tg = g(t)F'(t)dt (check)

a
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Sincesten functions are dense in Lq, (*) holds for all

g t, Lq. Now
b

'T g EJ J f (t) g ( t )dt
a

b 1 b 1

f - ( -
\Tgi 0( ( I f(t)IPdt)P ( Ig( t) fdt)q

j

a a

b 1

( 2) /I T II < ( J If( t) fdt) p
a

Hence
b

II T IF =: f /f'Ct)IPdt •
a

Case (ii): Wnen p =: 1. For every pair of noints

b

= I T( g - gx ) I < IIT" rx2 1 ~
a

..
.'

i.e. F(x)· satisfies the Lipschitz condition. Therefore F(x)

is the indefinite integral of ~ function f(x) such that
I f(x) I < M. We can show as in the preceding case that
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b

/Tg/ = J- g(x)f(x)dx = (g,f).
a

It follows that
b

Irr g I < (t.r ue max If(x) I J Ig(x) [dx
a

hence

IITI/ < true max I f'(x) I

Also we have I f(x) I < II TII

This comnles the nroof.
Therefore 1/ T" = "f"

-..



CHA?TER 4

NORMED AND BAN.ACH ALGEBRAS

4.Ik DEFINITION 1. A set X is called R normed algebra

over the complex field ~ if

(i) X is a normed linear space

(If) X is a ring with respect to two intern81
operntions, the addition being the vector snace
addi t Lon in (t)

(iii) ~(xy) = (r.x)y = x("y)

(Iv ) IIxyll ~ Ilxll lIyll, x,y e X,1\ e /K,

I~ in addition, X is Banach space, then X is called

a Banach algebra.

Examplel. x = Banach space L(X,X) = set of all

bounded linear transformations on X. Multiplics.tion is defined

by .AB(x) ::: A(B(x» for A,B t. L(X,X) and the norm is defined by

II A~ ::: IIAxli
lj;jj A E: L(X,X)Sup

xt-a

Example 2. X = C[a,b], complex valued continuous

functions on [a,b] . Multiplication is defined in the po Lrrtwt se

fashion and IIrll = max I f'(x ) I, rex:.
a~x<b
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Example 3. Let K be a compact Hausdorff space and

let ~(K) be the set 0 fall cornp le x valued continuous functio ns

on K. Then under pointwise operations and sup-norm

IIfll= sup If(x)l, f£ ~(K).
x€K

~ (K) is a Banach algebra.

Example 4. VV = set of all absolutely conver-gent
'X'

trigonometrical series, x(t) = 2.. C eint and the norm ofn=-00 n .
of anF x(t) in W is defined by

IIx(t) II
.00

= II /' Cneintll =
n=....r;:;o

with multiplication taken as Cauchy product •.

Example 5. !.•.:= set 0 f .al L functions analytic in the

open unit disk in the complex plane and continuous in the

closed unit disk. Mdltiplication is defined pOintwise and

IIf II = max I f (z ) I := max I r (z ) I, rc A
I zl~l IZ\:1
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Examnle 6. Pn ::: space 0 f all polynomials 0 f. degree

less than or equal to n. If f,g £ Pn, f(t) ::: ~bttt

n· j
g (t) == ~ aj t , we take

g(t)f(t)

n n
\l~a.tjll::: 2..la I

j:::o J j~. j

Examnle 7. G == i (~,IS 2' •• » ,ISn1 any finite group

11 (G) de note s the cLas S 0 f all complex valued functions on G.

Multiplication is defined by * and the product of t\.to

f'unct ions f, g£Ll (G) is de fined by

Norm of f is

n

IIf\l ::: L I f(0-1 ) I
1=1
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Example 8. Z = integers and Ll (Z),

complex valued funct ions f on Z such that

the set 0 fall
co
~ I f( n ) I < 00.

n=..J:X)
If

f,g € 11(Z) multiplication f*g is defined by

00

(f*g)(n) = 2. f(n-m)g(m)
m:::..tXJ

and
00

Ilfll = ;[ I f(n)\ .
n=..::x>

DEFINITION 2. Let X. be a Banach space and D an

open set in K. A function x:D ~ X is said to be

analvtic in D if

exists ro r all Ao in D, where the limit t s taken

in the norm topology of X.

LIOUVILLEt S TH]jOREH: Let x: K ~ X where X 1s a

Banach SDace. If x is analytic in the entire

complex plane and bounded Le. IIx(?-.) II ~ M for all

]\£ \K, then x is a const ant.
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PROOF. Let f be an arbitrary ~ounded linear functional

on X. Then there exi st s k L 0 such that I f(y) I ~ k llv II for all

ycr. Now fx is analytic and \ f(X(A) \ ~ kllx(t..) 1\ ~ k M. By

Liouville's theorem for a. si ngle complex v ari able, fx is

a cons t arrt . If c:<,}£K, then f(xec:<) = f(x(~)) which by lineprlty

o f f gives f(x(c:<»-x(~») ::: o . Since f is any bounded linear

functional, it is a <D nsequence of Hahn Banach theorem that

Exercise L Show that in a normed algebra the ring

multiplication ; ~ continuous.

PROPOSITION1. Let X be a nonzero Banach algebra with

identitye. -ILx~X and \Ie-xII <i , then

L x is a unit ( I . e. x ha!? an inverse ) and

-1 00

2. e+ ~ (e_x)n.x ::: ,;...

1

PROOF. The ser t e s in the right hand side of (~)
co nver ge, normally since lie-xii < 1. Now x :; e-(e-x) so that

r DC n
Le-(e-x)]' [ef-y(e-x) ] ::: e+(e-x)+(e-x)2+ •.•

2_(e-x)-(e-x) - •••

= e.
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PROPOSITION2. Let X be a Banach algebra with

identi t.v. Let A be a complex number such that

Hxll < IA\. Then x-Xe is a unit

PROOF. Now ie-(e-,,-lx)ll = II ",-Ix II := 111~\1 < 1which

Lrnp.l i.e s that e-/-..-1x is a unit. Then x-xe := -",(e- -;(lx) t s

also a unit.
oc

Re mark. (2\e - x ) -1 := 2.. },-n
n=l

n-lx

PROPOSITION3. In a Banach algebra X with ldpntit.v

e, the set U of all Qnits is ODen and the operation

of inversion is continuous on U •

PROOF. First we notice ef:U and the uni t sphere

Let X£U. Then -1xx = e.
Since the ring multipliLation is continuous, there exists a

neighbo·urho.od N(x) of x such that N(x)x-1 C.S1(e). Let

YSN(x). Then YX-1e-Sl(e) and hence is a unit. Therefore there

exists zex such that (yx-1)z = y(x-1z) = e, zyx-1 = e or

(x-1z)y := e. Hence Y£U . Thus N(x) c U and U is open.



.- ...
129

It remains to show that the operation of taking

Lnve r ses is continuous in U Let xn~u such that xn-+x.

This implies that x-1xn -+ e or for any f > 0 there exists

an integer N(E) such that

_.

Choose Nl such that Ilx-1xn-e Ii (1 for n > Nl and consider

the series e+- ~ (e-x-~-xn)k for n > Nl· This series converges
k=l -

to (x=lxn)-l = x -Ix. From the absolute convergence, thenn

CD

< Z
k=l

Since IIx-xn \I -+ 0 we can choc se N2 such that n > N2 wi 11

make (*) suf'f'Lc Lerrt Ly small or Ile-x -Ix\! -+ 0 which meansn
x;l -+ x-I. This establishes the continuity.

DEFINITION.3 .. LetA~lK. If x-'Ae is a unit, then

"}...is c al.Le d a regt0-ar point_ 0 f x, The set 0 fall

non-r-e gu l.ar points of x is called the spectrum of

x and is denoted by ~(x).

- -_ .._ .. ---------
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PR:)POSI'rrON 4. L~ X be a Banach algebra with

identity. If xSX then ~(x) is a nonempty comnact

subset 0 f lK.

PROOF. First we Drove that ~(x) is closen. ~nough

to show the set of regular po t nt s is open.

regular point of x, Thea x" = x-i. e£ U
. ~ '1

open there is a neighbourhood N(xA ) of ~
o . 0

Let AO be a

Since U is

such that N(~ ) C u
o

Since the mapping ASK~ x-Ae£X is continuous there exists

a ne t ghbou rhood N(Ao) 0 f Ao such that AtN(}"o) implies

x-/\eSN(xAg) Cu . Hence, e ach point of N(Ao) is a regular

point and thus the set of al~ regular points is open which

im.~lies ~ (x) is closed.

Since II x \I < 1:\ I Lmo Li e s that X-Ae~u:, it is c lr->ar that

cY' (x) is corrt adned in the closed disk of raeius \Ixll. rr-(x)

is thus c 10 sed and bounded and hence compac t ,

It remains t.c show that (J(x) is not empty. If CR
denotes the set of all r e gul ar points of x then x may be thought

of 3S mapping C
R

-+ X given by A -+ (x_,\e)-l. rile assert that

X(A) = (x-Ae )-1 is analytic in the set :) f all regular points.

If f...1,J...2 are any two regular poi nt s , then
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so that

from which we obtain

i~O"T supoo se th at o-(x) == rJ. Then x(l-.) == (x-Ae)-1

is ana lyt ic t hr-ougho ut K and.

••••
1 1 (1 )-1 0,\lim (x--I-.e)- == lim -= :- x-e ==.

i» -+x I-. -s oo :.\ .}..

,-1By Liouville's theorem (x··~\.e) is identically o. This is

impossible since 0 has no i~verse. Thus o-(x) ~ 0.

PROPOSITION 5. Let X bG a complex Banach alge~ra

with identity. Then. X .i.s isomorphic to IK if on.e

(1)
(2)

(3)

\\Xy'l == \,x\I'i~}~;l
!Ix-lll ~ ilz!rl,

for all
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PROOF. (1) Let x£X. Then ()(x) -I 0. Let },.f'fI(X)

and consider x-Ae. Now (x_te)-l does not exist. Since X

is a (Hvision algebra, the only element \,.,hich has no inverse

is O. Hence x-Xe = 0 or x=~Ae. Thus every element of X

is of the form Aeand we have the map X -t \K defined by Ae -t A

which is c le ar Iy an i somor pht sm.

(3) We shall preve no", (3). If 1,ITe o an show t hat

every non-zero element is invertible, then (1) applies ~nd

the result follows. Let

A =- ixl !Ix Ii > p }p )

where p > O. Then the set 11 is connected. Let U de notep p
the set of all invertible elements 1n -. i. e. U = UnA.'1

p P P
Then U is open in J.\ Let xn2Up Rno xn 4- x in x. Sincep p

the sequence ~ x;ll corwerges. -1x .xl -+
n

Clearly Thus

x e Up and Up

connectedness

is closed. Since /pe 2 U ,u -191. By, p p

Up = Ap and thus Ap contains invertible

elements only •.
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(2) To prove (2) we as sume that \\el\ ::: 1. Then if if

is invertible, then 1 :::\Ie\I = Ilx-Ixl\ = \lx-Illlxll so tha t

Ilx-111 ::: Ilxl-1 and now (3) applies.

Thi s complete s the oroo f.

4.2 .Q.?lfq,.nd Re')resentation

Throughout X wi 11 de note a cornmutat i ve Banach alge br a

with identity e and \el = 1.

We remark thAt the closure of a proper ideal in X is
ag ai n a proper .1Jdeal.

Let I be a clo sed proper ideal in X. X
IThen is

again an algebra with identity. If we introduce the norm

11):+111:;: Ln f IIx+yll
Y r I

then ~ become s a Bana~ h space. It is easy to check
I

II(x+ I) (y+ I) Ii < Ilx-:-I II llv+ I II

Hence X is a Banacr: aLgebr-a unde r this norm. Then c Lear Ly
I

the natural homomorphism is norm-diminishing

Ilx+III < Ilxll
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PROPOSITION 6. Every maximal ideal in X 1-.1

closed.

PROOF. The c Losur e M of 3 maximal ideal N in X

is also a proper ideal of X. NOH' by max ImaI l ty of H, M -= M

which'tm.plies that H is closed.

PROPOSITION 7. Let H be a m2ximal ideal in X.

Then £,-...;11\ 3Q.d_i[ 0 is the homomo r oht sm of X
H

onto lK, then 10(x) I 5.. Ilx~ for all x r x.

and M
PROOF. Since X is a commutative ring wi t.h identity

i 0 1 °d 1 X 0 fO 1d N X .s a maxi ma i ce a , . M- 1.sale • ow 1s a
M

Hence X N IKM = ,Banach algebra and it is also a field.

If 0 is a homomoz-pht sm 0 f X onto IK, let 1-1 be

its kernel. Now si.nce
1\
x(M) such that x+M-=

explicitly given by

~ '1:::1 lK , there exists a scalarM '
~(M)(e+M), and the isomorphism is

X '--} x
M

i so
----7"-7 K

1\
=x(M) (e+M) '-+ ~(M)

so that n((x) = x"(U). N f h II'tJ 1'l .o;/f.rom t eiefinitions of x+HII
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it ffollows that

IIxll > Ilx+HII ::: 1l~(H) (e+1'1)1\ ::: \~(M) \ ••l\e+MI\ (*)

Now ~e+M\\ < I\el\ ::::1. Suppose \Ie+M\I< 1. Then there exists

y£e+M with I\yll< 1. Then s > e+x for some x01 and then -x will

be a unit. This is impossible since M is proner. 'rhus Ile+M\I::: 1-

Then (*) gives

\Ix\l z. U~(M)II·l\e+M\I::: 1\~(t,O::: IQ!(x)\

This completes the proof~

RemarkJ. 0 satisfies the ro LIovt ng properties

¢(e) ::: 1, 0(x+y) ::: ¢(x)+¢C,y), ¢(~x) ::: /-.0(x)

¢ (xy ) ::: 0 (X ) 0 (y ) and \ 0 (x ) I ~ \\x II

¢ is called a multiplicative linear functionalcnX.

Remark 2. T~1ere exists a one to one correspondence

betwee n the set 0 f all maximal ide als 0 f X and the set 0 fall

multiplicative linear functionals on X.
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Let ,,~ denote the set of all maximal ideals 0 f X.

L~t 0 be the multiplicative linear functional on X with

kernel H. Then to e ach x~X we de fine a map

xs 'dlL ~ \K by Q(M) == 0(x), H 8 '3'n

~ ,..
Then we<~have'e == 1,

Further if M, N ~m
that ~(M) f; ~on.
1f and only 1f x811.

\ve shall now topologizem so that a Hausdorff t.cpo Io gy

" " " " A I, "I'-(x+y) == x+y, (AX) = AX, (xy) = xy

and M i- N, then there ext st s xtx such
A

This is trivi al if we notice that x(M.) == 0

.,
results. Let E» 0 be arbitrary and let xl" .Jx be a finite. n
number of elements of X. If Mo 8 on then the class of sets

form a fundament al system 0 f neighborhoods 0 f M. It iso
easy to check that the se set s do fo rm a fundame nt a1 sy st ern 0 f

ne Lghbour-hoo ds .. If Ml,M~~8m-s.uet that Ml f. M2, t.he n there

exists x8X such that: X(H1) f. 2(M2). Let F.; == ~ I :X(Ml)-:X(M2)\ ....

If V(M1,X;€)n V(Mn,X,~) i- Q:, 1!le can find M 8 m such that2 c:, 2
1~(Hl)-:k(M).I< ~ and 1~(Ml)-Y.(M2)1 < 12 and then

I r; A I I'" "I Ir-. t-:X(H1)-X(M2) < x(M1)-X(M). + x(M)-x(M2) I < t which is a

contradiction. The topObgy thus introduced is calleo the

Gelfandtooology.



PROPOSITION 8. The m2xilT:al ideal space '001.II

comnact with resnect to Gelfand topologY.

PROOF. For e ach x2X, let Sx = {zll~1 ~llxIl1.

is compact fo reach x, By Tychono ff theorem

is compact with Tychonoff topology. Notice that an element

~ in S is a function on X such that 0( €SX. Then an element ofx .is
the basis for the topology of S given by

.A

I
I
1

consider the mapping g: 001.-" 8 given by geM) = 0( where c:.sc := :£'(11).

Since Ix(M) I < Ilx~, we have O(X € 8x' We now claim that g is

a homeomorphism of ~onto a closed subset of 8. Since S is

compact, this will imply' the get'll) is also compact. Let sl=g(m).

Now g is 1: t.. If Ml (:. N2, there exists xo£X such that

Xo (Ml) t ~o (112) so that g (M1)t g (M
2

).

To show g .is ccnt Lnuous. Let TtI(a?,xl'" .xn'~) be a

basis element in 81, Then g-l(liJ) = {t.f€ml I~O.1)-<1 < f. ,1~k~n}.

Since g is onto 81, there must exist M € m such that 2k(Mo) = ...{,
g-l(W) = V(Mo'x~, .•• ,x ,f). This will imply g is continuous.L n
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... To show that 81 i 9 cLosed. Let

end -co~sider the mapping ~~X ~ ~ given

0,.._
~ ~Sl To this

o ..,by 0 (x) ::: c( X •

First we notice that 0 is e nontrivial functional and hence onto.
,.

Suppose ~ 0, then for c X and for f. >or a (1,,:r xl ••• ,x any 0- -- n
there exists 11 em such that !X~(M)-< I ::: I *'k (M) 1< e . In

k
particular, Ie (M) 1< f: whi ch i c:; ~o nt r adt ct t.on, Thus 0t- o.,..
Clearly ¢ is a multiplicative 1.in6ar f'unc ti on al, on X and thus

it is onto c. If Mo is thek.;rnel of the homomorphism y),
XIVM =: IK. Since lK is a field, I\, must be a maximal. Lde a L,

:G 0' C
~(x) :: ~1:Mo) :: ~x Hence g (Ho) :: c< 881• 31 i c; thus

then

Then

closed. This completes t.h'3 prcof.

Remark. ~: ~l -+ IK· i~ continuous and 1l£11x- ~ ~x \I

where "IIx~:c '~ . I " ,sup x(M)\.
M!:...•• ~

. ·.,11" L

PROPOSITION 9. The ma~.~j."': it x -""- ¢ .:S ., no rm_ __ •.1 ~ ----:r J\. J...2-.ra· 4 !-:.

diminishing homomorphis~ of X ~~to ?~~~~ting
,,'

subalgebra X 0 f ~ {J1l.;'

DEFINIT IO N.4.
"-x, X is the Geldfa~J t.r anc ro rm 0 f X and the mapp'i ng

~ .
x -+ x the !.Telf~n..~.r~~:t a·ci0n. o'f x.
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PROOF. l.t::t x(i1) = "A vhe re He ~1. Then

(x-i'e)'" (M) = x(M)-~(M) == 0 =9 x-f.-e2M ==> x-i\e is not a unit.

There fa re AE:()(x) or {SC(H) I r,:t 6'o'l} CI) (x). Conver se Iv SUDpO se

At()(X). Then x-Ae is not q unit. Then there exists some

m axdmaL ide al M such th('tt x-:\eE:tl so th,.t (x-/-.0 )~~ 0 or

~(M) == A •

DEFINITION '5, 7ho real number r (x)::::- sun IAI
I) "\." '( )

j' ~() x

is said to he the ~2ectral r:,ldius 0 f x.

1
!!ll -

lim 1\x II n :: II :<IICb
.0-+ co

?ROPOSITION 11. J:' (x ) ==
rr

PROOF. sun I~(M) I == Ilxll,
MSin

. n-l n-2 n-l.ot he rw i se ex t-AX + •.• -\-1\ e)x

~ (x) == sup I~I::::-
-(J" A0r-(X)

n nA 8()(x ); fo rIf ~CJ(x), then

(xn_~ne)-l lo[il1

Hence lAin -: IlxDll
':}9 an inverse of x-"'}..ewhich g i.vo s 8. co nt r ert l ct l on .

wru ch i~l!')lie s

1
r (] ( x ) _. " im L;f IIxn Ii ?i

, I -1On the other hand, if: A > ~_(;~), C{,e-x), exi st s from the .•.
-1definition of r (x) .. 3inc(; CAe-x) is a function analytic

0-

on the set of regu~~r poi~ts, we caD exp~nd into a L8.urent
.:

serie s

:\. co
)' :--n xn-1

n=1
IAI > r (x ).

()
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As this series oonverges for each A, its general term must
1 1 n- n ITFIbe bounded so that \lxnll n < J.L li--l for· some J.L > o ,

Thus we get

lim sup
1

II xn \I n <r (x)- ()
1

n -IIx II n ~ lim sup This
1

IlxnII n < r (x ).- ()Hence r (x ) < 1im inf
()

comp Ie t s the proof.

DEFINITION 6. The radical of X 15 the set n M.Mem
X is said to be sem1simnle if the radical of X:1s{ O}

Notice thRt x 8 () M ¢:::> X'(M) = 0 for all Mt m.
M e01 '

~ sup I :£0,0 I =}0
Mem.

1-
~ lim IIxn II n = 0

Le. x is in the radical of X if and only if its spectral

radius is O.

DEFINITION 7. x is called nilpotent if there exists

n such that xn = 0 and it is topologically nilpotent'1 . "!oI

(or g~neralized nilpotent) if liml\xnll n = 0

Remar-k.L, The radic al 0 f Xis the set 0 fall topo lo-

gically nilpotent elements of X.
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Remark..2. Gelfand renresenta:tion is en Lsomo rpht sm if

and only if X is semi simple.

1'n e xamo l.e , Let W= {x(t) =

"; ~. j ~
00

with Ilx\l := 2.. I C t. Then 1tJ is a commutative Banach algebra
_'.X) n

lJJe shall first determine m. Let x := eito

Then x;l:= e-it and X-b~M):= c.::-1,

with identity.
A

and let xo(M):= 0<.
Then we have

I c<1 := I ~o (1)1) I ~ ~Xo II ::: 1

I «:11 = I ~o -1 (1) I ~ IIXo-11 := 1

which show that 1c(1 := 1 so that there exists t er- (),2'1T"l0--
. t . VI isosuch that ~ = el o. Then the mapping 0 given by 0~W ~ M --? ~

DC

which sends x ~ ~(M) g Lve s x(t) = 2:. C eint -+ L-C einto = x(M)
-00 n n

N . t- ~n
for 0 is homomo r phl sm and for any fini tesum SN81tJ,SN:= 2. Cn en=N
we have

N

:> C einto
- nn-=-N

wh Lch .

also establishes the continuity of 0. Thus M consists of thos~

xE)1 such that x(to) := o ,
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Conversely let tOt [0, 2Tr) and consider the set M

M ::: {xewlx(to) = 01. M is clearly an ideal of i~T. Let I be

an ideal in \<l containing M properly. Then there exists y£I, y9'M.

By definition of M, we have y(to) -f. C. If ze'oAT we can write

Since yeI and z(t) - Z~ttQ~ yet) t MeI, 'l..,re must have I :::1M.
yo'

Hence Mis maximal.
00

WIENER'S THEOREM. li 2.. Cneint j s absolutely
_00

l'convergent and vani she s nowlilere, then -,-00-':::'-

};?neint

trigonometric

Can b~

expanded in an absolutely convergent

serie s.

PROOF. If x(t) ~ 0 for every t, then x~M for any

M so that x is a unit or X(~~ e w.

PROPOSITION. If X is a complex algebra without ,
/'.

-identity, then X eRn be extended to an algehra X

with identity. If X is a normed algebra (BaDaeh
A

algebra) so is X.

,

I
!
1

I
j
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"PROOF. Det X denote the set of all pairs (~,x)
"-where c<ttK, x£X. Define the algebraic operat ions in X by

"-Then X is an algebra with identity (1,0) ~nd the map x ~ (O,X)
is an i somor-pht sm. Identifying x with (O,x) and setting e = (1,0)

we have
'0

(«, x ) = «e+x

If X is a normed a Lgebr a , let 1Ic<e+xll= 1~1 + Ilxll

"-then X is c1.e&rl.'7 a normed algebra. Now supoo se X is a Banach

algebra. Let { ~ne+xn 1 bea Cauchy sequence in~. Then given

E> 0, there ext st s N = N(E) such t}latll(~e+xn)-(~e+xm)l ~ f

if m,n ~ N. This is the same as I~n-~I+llxn-xmll < C which

implies that {C<n} an" i xn } are C/:'uchy sequence in C and

X respectively. Since C and X are complete, there exist

o(ec, xO such that \C<n-o(j ~ 0 and IIxn-xl ~ ° as n -+ 00. Hence
1\

~C<ne+Xn)- (o<.e+x)II -+ ° as tl: ~ 00 Henee Xis also a Banach

algebra.

•-..
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4.4-; 4opglo&ical divisors of zero.

DEFINITION 8• .Anelement x in !i Banach aLge br-a

X is c a l l.ed a topological zero divisor of X if

there is a seque nce {y n 1 in X such that

i~fII.Yni=o and lim xYn ::: o . The modulus of

w( x) 0 f x2X is de fi ned byintegri ty

ro(x) = inf IlxyQ •
yfo Ilyll

Notice x is a t090logical zero divisior iff

ro(x) = O.

PROPOSITION. ~ny topologically nilpotent element

inX_:tralso a topological zero divisor.

PROOF. Suppose x is t.o po Logl c a.lLy nilpotent. 'T'hen

•
"

its spectral radius is ~ero. Hence there exists comnlex members

Y :::(x-A e) -1.n nx-A e are invertible.nsuch that Let

Then

Since x is not invertible, so is xYn· Hence IAnl· \IYnll > l.

Hence llYnII -+ 00. But then

I Ani llYn'
llYnII

-+ O.<

Hence m(x) = 0 and x is a t9Pological zero divisor.
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PROPOSITION (Areos). z is a tODQlogical zero

divisor of X if and~._onl.v if z is not invertible

in any Banach algebr;-l extension Y of X.

PROOF. The necessity is trivial. l~e shall prove

the sufficiency. As sume that z is not a t.o poLogLcaI zero

divisor. Then (D(z)~. Choose p > 1
(D( x) •

Let y he the

algebra of 811 formal power se ri.e s,

where xo,xl'x2,... 2X such that '.Sllxn~lpl:1< 00. Define

Ilxll =: ~llxnllpn. Then Y;.r is 8 no rmed algebra. Let Y be the

completion of Y and 'et I be a closed ideal in Y ge nor at.e d

by e-zt. set Xl =: I. •
'rhen tis an inverse 0 f z i 0 Xl and Xl

is an extension al ge.br a of X. Let yeX and x(t)8rY. Then

~ CILvl\-llxoli) .1- (llxozll-lIxlll)p-+ (1Ix1zll-llx21!)p2+ •••

=: IIy II - \Ix (t ) II 1-' ( IIXo z II+ Ii"iz II p + ...) p

Since the elements 0 f the form (e-zt) x(t) are dense in I so

the infimum 0 f the 1,3 ft h and side is the Y1-norm 111.1( III 0 f .y.

T hu s III y III >

Illy II \ =: liT II •
lIyll The opposite inequality is evident and thus

Thus X is embedded in Xl isometrically .
••

••••••


