(Analysis)
Part I
R.By ${ }^{\text {ByNI* }}$

Member, MATSCIENCE, Madras-20.

Notes by
G.N. Keshatramurthy and N.R.Nandakumar

INTRODUCTION

Being the third in the series 'Concepts in modern mathematics', this volume deals with some fundamental concepts in analysis. The first four chapters comprise the first part. Chapter 1 gives a detailed discussions of Lebesgue integrals. Basic properties of tonological vector spaces are given in Chanter 2 while the results are specialized to normed linear spaces in Chapter 3 and in particular different representation theorems are given. Gelfand theory and elementary properties of Banach algebras are the contents of Chapter 4 .

In the remaining Chapters, which will appear in a separate part, are discussed the existence of Haar integral on a locally compact abelian groups, duality and characters, Fourier transforms on $L_{1}(G)$ and $L_{2}(G)$ and finally Pontrjagin's duality theorem is proved.

Materials are freely drawn from the standard books included in the bibliography given at the end of part 2.
K.R.U.
IMSC
C O N T E N T
Part I
CHAPTER 1. LEBESGUE INTEGRATION.
Page
1.1 Lebesgue measure 1
1.2 Integration 14
1.3 Measurable functions 25
1.4 Fubini's theorem 34

1. 5 General measures 41
2. 6 Measurable transformations 46
CHAPTER 2. TOPOLOGICAL VECTOR SPACES 48
2.1 Topological vector space 48
3. 2 Seminorms 50
2.3 Locally convex spaces 53
2.4 Linear mapoings 58
2.5 Extension of a linear form 63
4. 6 Duality and weak topology 68
2.7 Dolar sets 73
2.8 Finite dimensional subspaces 76
2.9 Transpose of a linear map 78
CHAPTER 3. MORE ON NORMED LINEAR SPACES 81
CHAPTER 4. NORMED AND BANACH ALGEBRAS 123
4.1 Definition and examples 123
4.2 Gelfand Representation 133
4.8 Adjunction of an identity 142
4.4. Topological devisors of zero 144

CHA $\dot{P} T E R 1$.

- LEBESGUEINTEGRATION
1.1. Lebesgue Measure
$\because \quad$ Let \mathbb{R} denote the field of real numbers. Let \mathbb{R}^{n} denote the n-dimensional real Euclidean space with the usual topology. $x \in \mathbb{R}^{n}$ means $x=\left(x_{1}, x_{2} \ldots, x_{n}\right)$ where $x_{i} \in \mathbb{R}$. The metric in \mathbb{R}^{n} is giver by

$$
d(x, y)=\left\{\sum_{r=1}^{n}\left(x_{r}-y_{r}\right)^{2}\right\}^{\frac{1}{2}} \quad \begin{aligned}
& x=\left(x_{1}, x_{2}, \ldots, x_{n}\right) \\
& y=\left(y_{1}, y_{2}, \ldots, y_{n}\right)
\end{aligned}
$$

The symbol $<$ will stand for $<$ or \leq. An extended vector $a=\left(a_{1}, a_{2}, \ldots, a_{n}\right)$ in \mathbb{R}^{n} is one in which the components a_{i} could take the value $\pm \infty$.

An interval in \mathbb{R}^{n} is a product of n intervals in \mathbb{R}. This means that if a, b are two extended vectors in \mathbb{R}^{n}, $\left.a_{r} \leq b_{r}, a_{r}<\infty, b_{r}\right\rangle-\infty, 1 \leq r \leq n$, the interval $I=(a, b)$ ${ }_{4} \bar{q}\left\{x \in \mathbb{R}^{n} \mid a_{r}<x_{r} \nless b_{r} ; 1<r \leq n\right\}$. An open interval $] a, b[$ is given by

$$
] a, b\left[=\left\{x \in \mathbb{R}^{n} \mid a_{r}<x_{r}<b_{r} ; 1 \leq r \leq n\right\}\right.
$$

and the closed interval $[a, b]$ is given by

$$
[a, b]=\left\{x \in \mathbb{R}^{n} \mid a_{r} \leq x_{r} \leq b_{r} ; I \leq r \leq n\right\}
$$

I is said to be degenerate if $a_{r}=b_{r}$ for one or more values of r. If $a, b \in \mathbb{R}^{n}$, then the components of a, b are finite real numbers and the interval is said to be bounded. DEFINITION 1. Let I be a bounded interval in \mathbb{R}^{n}. The n-dimensional measure is defined by

$$
m(I)=T_{r=1}^{n}\left(b_{r}-a_{r}\right)
$$

If I is unbounded, we define $m(I)=\infty$.

Remarks. 1. $m(I)=0$ if and only if I is degenerate
2. measures of an open interval, closed interval
and all intermediaries are the same.

Let X be a bounded interval in \mathbb{R}^{n}. We assume that X is closed (and thus compact). We will consider only subsets of X. Let $f=f(X)$ denote the class of all subsets of X which are countable unions of intervals. Our object is to extend the Definition 1 to the class f. We have

THEOREM 1. Let $J \in \mathcal{G}$. Then J is a countable union of
disjoint intervals. Moreover if J is expressed as
countable disjoint union of intervals in two different ways

$$
J=\bigcup_{r=1}^{\infty} I_{r}=\bigcup_{s=1}^{\infty} I_{s}^{\prime}
$$

then

$$
\begin{equation*}
\sum_{r=1}^{\infty} m\left(I_{\dot{r}}\right)=\sum_{s=1}^{\infty} m\left(I_{s}^{\prime}\right) \tag{*}
\end{equation*}
$$

PROOF. By definition of the class of, we have $J=\bigcup_{r=1}^{\infty} A_{r}$ where A_{r} is an interval for each r. Now set

$$
\begin{aligned}
& I_{1}=A_{1} \\
& I_{2}=A_{2}>I_{1}
\end{aligned}
$$

Define inductively

$$
I_{n+1}=A_{n+1} \backslash\left(I_{1} \cup I_{2} \cup \ldots \cup I_{n}\right)
$$

Thus $J=\bigcup_{r=1}^{\infty} I_{r}$ and the I_{r} 's are disjoint. The first part of the theorem is immediate if we notice that each I_{r} is a union of finite number of intervals and hence a disjoint union of finite number of intervals.

To prove the second part of the theorem, we first observe that both series in (*) converge, since all intervals of subsets of X, it follows that

$$
\sum_{r=1}^{N} m\left(I_{r}\right) \leq m(X) \text { and } \sum_{s=1}^{M} m\left(I_{s}^{\prime} ; \leq m(X)\right.
$$

Now suppose that the two sums are different. For convenience let us assume that $\sum_{r=1}^{\infty} m\left(I_{r}\right)>\sum_{S=1}^{\infty} m\left(I_{S}{ }^{1}\right)$. Then there exists an integer N such that

$$
\sum_{r=1}^{N} m\left(I_{r}\right)-\sum_{s=1}^{\infty} m\left(I_{S} 1\right)=h>0
$$

We choose open intervals $A_{S} \partial I_{S}^{\prime}$ so that $m\left(A_{S}\right)<m\left(I_{S}{ }^{\prime}\right)+2^{-s-2} h$ and closed intervals $B_{r} C I_{r}$ so that $m\left(B_{r}\right)>m\left(I_{r}\right)-2^{-r-2} h$. Then

$$
\begin{aligned}
\sum_{r=1}^{N} m\left(B_{r}\right) & >\sum_{r=1}^{N} m\left(I_{r}\right)-\sum_{r=1}^{N} 2^{-r-2} h \\
& >\sum_{s=1}^{\infty} m\left(A_{s}\right)+h+\sum_{s=1}^{\infty} 2^{-5-2} h-\sum_{r=1}^{N} 2^{-r-2} h \\
& >\sum_{s=1}^{\infty} m\left(A_{s}\right)
\end{aligned}
$$

Now set $K=\bigcup_{r=1}^{N} B_{r} . K$ is then compact. Now $\left\{A_{S}\right\}$ is an open covering of J and hence of K. The compactness of K implies the existence of a finite number of intervals $A_{1}, A_{2}, \ldots, A_{n}$ such that $K \subset \bigcup_{k=1}^{n} A_{k}$. Then

$$
\text { , } \quad \sum_{r=1}^{N} m\left(B_{r}\right) \leq \sum_{S=1}^{n} m\left(A_{S}\right) \leq \sum_{S=1}^{\infty} m\left(A_{S}\right)
$$

which gives a contradiction.
In view of Theorem 1 , we can make
DEFINITION 2. If $J \in f$ and $J=\bigcup_{r=1}^{\infty} I_{r}$ is a representa-
tion as a countable disjoint union of intervals then
the measure $m(J)$ of J is defined by

$$
m(J)=\sum_{r=1}^{\infty} m\left(I_{r}\right)
$$

Remarks 1. $\phi \in f$ and $m(\phi)=0$
2. every countable set is in \mathcal{f} and its measure
is zero.
3. If Jef , then given $\varepsilon>0$ there exists J_{0} which is a finite union of intervals such that $J_{0} \subset J$ and $m\left(J_{0}\right)>m(J)-E$.

THEOREM 2. a) $J_{1} \subset J_{2}$ implies $m\left(J_{1}\right) \leq m\left(J_{2}\right)$
b) $J=\bigcup_{r=1}^{\infty} I_{r}$ implies $m(J) \leq \sum_{r=1}^{\infty} m\left(I_{r}\right)$
c) if $J_{1} \subset J_{2} \subset \cdots, C J_{n} \subset \cdots$ and $J=\bigcup_{r=1}^{\infty} J_{r}$
then $m(J)=\lim _{r \rightarrow \infty} m\left(J_{r}\right)$.
d) $m\left(J_{1} \cup J_{2}\right)+m\left(J_{1} \cap J_{2}\right)=m\left(J_{1}\right)+m\left(J_{2}\right)$
where $J, J_{r} \in f$.

PROOF. (a) and (b) are left as exercises. We shall now prove (c). By (b), $\lim _{r \rightarrow \infty} m\left(J_{r}\right)$ exists and it does not exceed $m(J)$. To prove the opposite inequality, let $J_{r}=\bigcup_{S=1}^{\infty} I_{r S}$. Then $J=\bigcup_{r=1}^{\infty} \bigcup_{S=1}^{\infty} I_{r S}$ and this may be arranged as a single sequence $J=\bigcup_{t=1}^{\infty} I_{t}$. We set

$$
\begin{aligned}
D_{1} & =\tilde{I}_{1} \\
D_{2} & =I_{2} \backslash D_{1} \\
\ddots & \ddots I_{n} \backslash\left(D_{1} \cup D_{2} \cup \ldots \cup D_{n}\right)
\end{aligned}
$$

Now given $\in>0$ there exists an integer \mathbb{N} such that

$$
m\left(\bigcup_{t=1}^{N} D_{t}\right)>m(J)-E
$$

Further there exists an integer n such that

$$
J_{n} \supset \bigcup_{t=1}^{N} I_{t} \supset \bigcup_{t=1}^{N} D_{t}
$$

Hence $m\left(J_{n}\right)>m(J)-E$. Since E is arbitrary, the result follows We have to prove (d). If J_{1}, J_{2} are finite unions of intervals, so is $J_{2} \backslash J_{1}$ and $J_{1} \cup J_{2}=J_{1} \cup\left(J_{2} \backslash J_{1}\right)$; so

$$
m\left(J_{1} \cup J_{2}\right)=m\left(J_{1}\right)+m\left(J_{2} \backslash J_{1}\right)
$$

Also

$$
T_{2}=\left(J_{1} \cap J_{2}\right) \cup\left(J_{2} \backslash J_{1}\right)
$$

whence

$$
m\left(J_{2}\right)=m\left(J_{1} \cap J_{2}\right)+m\left(J_{2} \backslash J_{1}\right)
$$

This gives the result. In the general case, $J_{2} \backslash J_{1}$ is not necessarily in f, nor have proved that the measure of a disjoint union is the sum of the measures. But this fact has been assured for finite number of intervals. To complete the proof, we proceed as follows.

Let

$$
J_{I}=\bigcup_{r=1}^{\infty} I_{r}, \quad J_{2}=\bigcup_{S=1}^{\infty} I_{S}^{\prime} \quad \text { disjoint unions. }
$$

Set

$$
A_{n}=\bigcup_{r=1}^{n} I_{r}, \quad B_{n}=\bigcup_{s=1}^{n} I_{S} ;
$$

The $A_{n}, B_{n}, A_{n} \cup B_{n}, A_{n} \cap B_{n}$ are increasing sequence of sets whose unions are respectively $J_{1}, J_{2}, J_{1} \cup J_{2}$ and $J_{1} \cap J_{2}$. Further for each n,

$$
m\left(A_{n} \cap B_{n}\right)+m\left(A_{n} \cup B_{n}\right)=m\left(A_{n}\right)+m\left(B_{n}\right)
$$

Now let $n \rightarrow \infty$ to obtain the result. THEOREM 3. If J_{1}, J_{2}, \ldots. is a countable collection of sets in f, then

$$
m\left(\bigcup_{r=1}^{\infty} J_{r}\right) \leq \sum_{r=1}^{\infty} m\left(J_{r}\right)
$$

and if the sets J_{r} are disjoint then

$$
m\left(\bigcup_{r=1}^{\infty} J_{r}\right)=\sum_{r=1}^{\infty} m\left(J_{r}\right) .
$$

PROOF. If there are only two sets J_{1}, J_{2}, then

$$
m\left(J_{1} \cup J_{2}\right) \leq m\left(J_{1}\right)+m\left(J_{2}\right)
$$

with equality when $J_{1} \cap J_{2}=\phi$.
Now let there be infinitely many sets J_{1}, J_{2}, \ldots Now let $D_{n}=J_{1} \cup J_{2} \cup \ldots \cup J_{n}$. Then the sets $D_{n}{ }^{\dagger} S$ form an increaseing sequence whose union is J. Then by Theorem 2, we have

$$
m(J) \leq \lim _{n \rightarrow \infty} m\left(D_{n}\right)=\lim _{n \rightarrow \infty} \sum_{r=1}^{n} m\left(J_{r}\right)=\sum_{r=1}^{\infty} m\left(J_{r}\right)
$$

Again equality in the disjoint case.
Exercise 1. Show that every open set is in f (closed sets may not be there).

Exercise 2. If $J \in \mathcal{G}$, show that for each $€>0$ there exists an open set $J^{\prime}(€) \supset J$ such that $m\left(J^{\prime}(€)\right)<m(J)+€$.

DEFINITION. 3. Let X be a bounded interval and $A C X$. We define the outer measure $m *(A)$ by

$$
\begin{aligned}
m *(A)= & \inf \operatorname{mi}(J) \\
& J \supset A \\
& J C j
\end{aligned}
$$

and the inner-measure $m_{s}(A)$ is defined by

$$
m_{*}(A)=m(X)-m *(X \backslash A)
$$

THEOREM 4. The inner and the outer measures of a set are independert of X.
2.
of outer measure only for inner measure, the case containing A. Without less of generality, we assume that $X \subset X^{\prime}$. Suppose $X \supset J \supset X \backslash A$. Then $I^{\prime}=J U\left(X^{\prime} \backslash X\right) \supset X^{\prime} \backslash A$ and $J=J!\cap X$ satisfies $Y \supset J \supset X \backslash A$ and $J \in f(X)$ 。

$$
\begin{aligned}
& m\left(J^{\prime}\right)=m\left(J U\left(X^{\prime} \backslash X\right)\right)=m(J)+m\left(X^{\prime} \backslash X\right)=m(J)+m\left(X^{\prime}\right)-m(X)
\end{aligned}
$$

$$
\begin{aligned}
& m^{*}\left(X^{\prime} \backslash A\right)=r *(X \backslash A)+m\left(X^{\prime}\right)-m(X) \\
& m^{\prime}(X)-m^{*}(X \backslash A)=m\left(X^{\prime}\right) \sim m^{*}\left(X^{\prime} \backslash \Lambda\right) .
\end{aligned}
$$

Exercise 3. Show that $m *(A) \geq m_{*}(A)$ for any set A.
Exercise 4. If $J \in \mathcal{F}$, show that $m_{*}(J)=m *(J)=m(J)$ DEFINITION 4. A set E_{1} is measurable if $m *(E)=m_{*}(E)$ and the common valve is called the measure of the set E denoted by $m(E)$.

Remark 1. JG is measurable.
Remark 2. If E is measurable, then $X \backslash E$ is measurable and $m(X \backslash E)=m(X)-m(E)$.

DEFINITION 5. If A is unbounded, we define $m(A)$ as follows. For each positive integer k, set

$$
I^{(k)}=\left\{x \in \mathbb{R}^{n}| | x_{r} \mid \leq k ; 1 \leq r \leq n\right\} .
$$

Let

$$
A^{(k)}=A \cap I^{(k)} \cdot A \text { is measurable if } A^{(k)}
$$

is measurable for each k. Then $m(A)=\lim _{k \rightarrow \infty} m\left(A^{(k)}\right)$.
The remaining theorems in this section hold also for unbounded sets, but we prove them only for bounded sets.

THEOREM 5. If A and A' are sets, then

$$
\begin{aligned}
& m *\left(A \cup A^{\prime}\right)+m *\left(A \cap A^{\prime}\right) \leq m^{*}(A)+m *\left(A^{\prime}\right) \\
& m_{*}\left(A \cup A^{\prime}\right)+m_{*}\left(A \cap A^{\prime}\right) \geq m_{*}(A)+m_{*}\left(A^{\prime}\right)
\end{aligned}
$$

PROOF. Let $\in>0$ be given. Let J, J'ef such that $A \subset J, A^{\prime} \subset J^{\prime}, M(J)<m *(A)+E$ and $m\left(J^{\prime}\right)<m *\left(A^{\prime}\right)+E$. Then $A \cup A^{\prime} \subset J \cup J '$ and $A \cap A^{\prime} \subset J \cap J '$ so that

$$
\begin{aligned}
m^{*}\left(A \cup A^{\prime}\right)+m^{*}\left(A^{\cap} A^{\prime}\right) & \leq m\left(J \cup J^{\prime}\right)+m\left(J^{\prime} \cap J^{\prime}\right)=m(J)+m\left(J^{\prime}\right) \\
& \leq m *(A)+m *\left(A^{\prime}\right)+26 .
\end{aligned}
$$

€ being arbitrary,

$$
m *\left(A \cup A^{\prime}\right)+m *\left(A \cap A^{\prime}\right) \leq m *(A)+m^{*}(A)
$$

Now

$$
\begin{aligned}
& m_{*}\left(A \cup A^{\prime}\right)+m_{*}\left(A \cap A^{\prime}\right)= m(X) \\
&-m *\left(X \backslash A \cup A^{\prime}\right)+m(X)- \\
&-m *\left(X \backslash A \cap A^{\prime}\right) \\
&=2 m(X)-m *\left((X \backslash A) \cap\left(X \backslash A^{\prime}\right)\right) \\
&-m *\left((X \backslash A) \cup\left(X \backslash A^{\prime}\right)\right)
\end{aligned}
$$

$$
\begin{aligned}
& 2 m(X)-m *(X \backslash A)-m *\left(X \backslash A^{\prime}\right) \\
& =m_{*}(A)+m_{*}\left(A^{\prime}\right) .
\end{aligned}
$$

THEOREM 6. If $A=\bigcup_{r=1}^{\infty} A_{r}$, then $m *(A) \leq \sum_{r=1}^{\infty} m *\left(A_{r}\right)$ 。
PROOF. Given $\varepsilon>0$, there exists $J_{r} \supset A_{r}$ such that $m\left(J_{r}\right)<m *\left(A_{r}\right)+\epsilon 2^{-r-1}$. Then $A C \bigcup_{r=1}^{\infty} J_{r}$ and

$$
\begin{aligned}
m *(A) \leq m\left(\bigcup_{r=1}^{\infty} J_{r}\right) & \leq \sum_{r=1}^{\infty} m\left(J_{r}\right) \leq \sum_{r=1}^{\infty}\left(m *\left(A_{r}\right)+\frac{\epsilon}{2^{r+1}}\right) \\
& <\sum_{r=1}^{\infty} m *\left(A_{r}\right)+\epsilon
\end{aligned}
$$

Since ϵ is arbitrary, the result follows.
THEOREM 7. If E and E^{\prime} are measurable sets, so are $E \cup E^{\prime}$ and $E \cap E^{\prime}$. Further $m\left(E \cup E^{\prime}\right)+m\left(E \cap E^{\prime}\right)$ $=m(E)+m\left(E^{\prime}\right)$.

PROOF. Since E is measurable, we have

$$
m(E)+m\left(E^{\prime}\right) \leq m_{*}\left(E \cup E^{\prime}\right)+m_{*}\left(E \cap E^{\prime}\right) \leq m^{*}\left(E \cup E^{\prime}\right)+m^{*}\left(E \cap E^{\prime}\right)
$$

$$
\leq m(E)+m\left(E^{\prime}\right)
$$

Thus we have equality throughout and

$$
m_{*}\left(E \cup E^{\prime}\right)+m_{*}\left(E \cap \mathbb{E}^{\prime}\right)=m^{*}\left(E \cup E^{\prime}\right)+m *\left(E \cap_{E^{\prime}}\right)
$$

Since inner measure does not exceed outer measure, it follows that

$$
m_{*}\left(E \cup E^{\prime}\right)=m^{*}\left(E \backslash E^{\prime}\right) \text { and } m_{*}\left(E \cap E^{\prime}\right)=m^{*}\left(E \cap E^{\prime}\right)
$$

This proves our theorem.
COROLLARY. If E and F are measurable, then $E \backslash F$ is also measurable.

PROOF. $E \backslash F=E \cap(X \backslash F)$ which is the intersection of two measurable sets.

THEOREM 8. Any countable union or countable intersection
of measurable sets is measurable. Further
$m\left(\bigcup_{r=1}^{\infty} E_{r}\right) \leq \sum_{r=1}^{\infty} m\left(E_{r}\right)$, with equality when the sets are
disjoint.
THEOREM 9. If the sets E_{r} are measurable,
$E_{1} \subset E_{2} \subset \cdots$ and $E=\bigcup_{r=1}^{\infty} E_{r}$, then

$$
m(E)=\lim _{r \rightarrow \infty} m\left(E_{r}\right)
$$

and more generally if $A_{1} \subset A_{2} \subset \ldots$ and $A=\bigcup_{r=1}^{\infty} A_{r}$, then

$$
m *(A)=\lim _{r \rightarrow \infty} m *\left(A_{r}\right)
$$

PROOF. Exercise.

If $E \subset \mathbb{R}^{n}, E^{\prime} \subset \mathbb{R}^{m}$, then $E \times E \cdot=\mathbb{R}^{n} \times \mathbb{R}^{m}=\mathbb{R}^{n+m}$.
THEOREM 10. If E and E^{\prime} are measurable, so does $E \times E^{\prime}$ and then $m\left(E \times E^{\prime}\right)=m(E) m\left(E^{\prime}\right)$.
PROOF. Suppose $E \subset X$ and $E^{\prime} \subset X^{\prime}$ where X, X^{\prime} are bounded intervals. For sets in \mathcal{g}, if $J=U I_{r}$ and $J^{\prime}=$ U.I $_{S}{ }^{\prime}$ where unions are disjoint,

$$
J \times J '=U I_{r} \times U I_{S}^{\prime}=U U\left(I_{r} \times I_{S}^{\prime}\right)
$$

is a countable disjoint union. Then

$$
m\left(J \times J^{\prime}\right)=\sum \sum m\left(I_{r}\right) \cdot m\left(I_{s}^{\prime}\right)=\sum m\left(I_{r}\right) \cdot \sum m\left(I_{S}^{\prime}\right)=m(J) \cdot m\left(J^{\prime}\right)
$$

Now let $J \supset E, J^{\prime} \supset E^{\prime}$. Then $J \times J \cdot \supset E \times E^{\prime}$ and

$$
m *\left(E \times E^{\prime}\right) \leq m\left(J \times J^{\prime}\right)=m(J) \cdot m\left(J^{\prime}\right)
$$

The left hand side is independent of J and $J '$. We can choose J, J^{\prime} such that $m(\#), m\left(J^{\prime}\right)$ are arbitrarily close to $m(E)$, (E) respectively. Then

$$
m *\left(E \times \mathbb{E}^{\prime}\right) \leq m(\mathbb{E}) \cdot m\left(\mathbb{E}^{Y}\right)
$$

Also

$$
m_{*}\left(E \times \mathbb{B}^{\prime}\right)=m\left(X \times X^{\prime}\right)-m *\left(X \times X^{9} \backslash E \times E^{\prime}\right)
$$

Now $X \times X^{\prime} \backslash E \times E^{\prime}=X \times\left(X^{\prime} \backslash E^{\prime}\right) U(X \backslash E) \times E^{\prime}$ 。
$m^{*}\left(X \times X^{\prime}-E \times E^{\prime}\right) \leq m(X) m\left(X^{\prime}-E^{\prime}\right)+m(X-E) \cdot m\left(E^{\prime}\right)$.
$m\left(X^{\prime}-E^{\prime}\right)=m\left(X^{\prime}\right)-m\left(E^{\prime}\right) ; m(X \cdot E)=m(X)-m(E)$
$m_{*}\left(E \times E^{\prime}\right) \geq m(X) m\left(X^{\prime}\right)-m(X)\left(m\left(X^{\prime}\right)-m\left(E^{\prime}\right)\right)-m\left(E^{\prime}\right) \cdot(m(X)-m(E))$ $=m(E) \cdot m\left(E^{\prime}\right)$ ．
Hence

$$
\begin{aligned}
& m *\left(E \times E^{\prime}\right) \leq m(E) \cdot\left(E^{\prime}\right) \text { and } m_{*}\left(E \times E^{\prime}\right) \geq m(E) \cdot m\left(E^{\prime}\right) . \\
& m_{*}\left(E \times E^{\prime}\right)=m *\left(E \times \sum^{\prime}\right)=m(E) \cdot m\left(E^{\prime}\right) .
\end{aligned}
$$

1．2 Integration

Let．E be a measurable set in \mathbb{R}^{n} ．A．countable collec－ tion of disjoint measurable sets

$$
\xi=\left\{E_{1}: E_{2}, \ldots\right\}
$$

is called a dissection if their union is E ．
If $\xi^{\prime}=\left\{E_{1}^{\prime}, E_{2}^{\prime}, \ldots.\right\}$ is another dissection of E ， then the collection $\left\{\mathbb{E}_{i} \cap \mathrm{E}_{\mathbf{j}}^{\prime}\right\}$ is also a dissection of E called the common refinement of ξ and ξ^{\prime} and is denoted by安v＇旨＇．

$$
\text { Let } \xi_{0}=\left\{E_{r}\right\}_{r=1}^{\infty} \text { be a dissection of the set } E
$$

and let f be a real valued function on E ．Set

$$
B_{r}(f)=\sup _{x \in E_{r}} f(x), \quad b_{r}(f)=\inf _{x \in E_{r}} f(x)
$$

and

$$
h_{r}(f)=\sup _{x \in E_{r}}|f(x)|=\max \left\{\left|B_{r}(f)\right|,\left|b_{r}(f)\right|\right\}
$$

Convention $h_{r}(f) m\left(E_{r}\right)=0$ it ono of them zero and the other is infinite.

E is said to be admissible (for f over E) if

$$
\sum_{r=1}^{\infty} h_{r}^{\prime}(f) m\left(E_{r}\right)<\infty .
$$

Let O denote the set of all admissible dissections of f over E. If $\xi_{0} \in a$, set

$$
\begin{aligned}
& S_{r}(f)=\sum_{r=1}^{\infty} B_{r}(f) m\left(E_{r}\right) \\
& S_{g}(f)=\sum_{r=1}^{\infty} b_{r}(f) m\left(E_{r}\right)
\end{aligned}
$$

and call them upper and lower approximating sums for f over E.
LEMMA I. If ζ^{\prime} is a refinment of an admissible dis-
section ξ then ξ^{\prime} is also admissible and

$$
S_{\mathscr{E}} \approx S_{y}, \quad S_{E} \geq S_{\mathscr{E}}
$$

PROOF, Let $\left\{E_{p_{1}}^{\prime}, E_{p_{2}}^{\prime}, \ldots.\right\}$ be the sets of ξ^{\prime}
contained in ${ }_{p}$ of φ. Then

$$
B_{p_{q}}^{\prime}(f) \leq p_{p}^{(f)} b_{p}^{0}(f) \geq b_{p}(f) \text { for } a l l \quad p \text { and } q \cdot
$$

Also

$$
\begin{gathered}
\sum_{q} m\left(E_{p_{q}^{\prime}}^{\prime}\right)=m\left(E_{p}\right) \\
\left(h_{p_{q}^{\prime}}^{\prime}(f) \leq h_{p}(f)\right. \\
\sum_{q} B_{p_{q}}^{\prime}(f) m\left(E_{p_{q}^{\prime}}^{\prime}\right) \leq \sum_{q} B_{p}(f) m\left(E_{p_{q}}^{\prime}\right)=B_{p}(f) m\left(E_{p}\right) \\
\sum_{q} b_{p_{q}}^{\prime}(f) m\left(E_{p_{q}}^{\prime}\right) \geq \sum_{q} b_{q}(f) m\left(E_{p_{q}}^{\prime}\right)=b_{p}(f) m\left(E_{p}\right) \\
\sum_{q} h_{p_{q}}^{\prime}(f) m\left(E_{p_{q}}^{\prime}\right) \leq \sum_{q} h_{q}(f) m\left(E_{p_{q}}^{\prime}\right)=h_{p}(f) m\left(E_{p}\right)
\end{gathered}
$$

The results now follow by summing over p.

DEFINITON 6. The upper and lower integrals are defined by

$$
\begin{aligned}
& f_{\mathbb{Z}}^{*} f=\inf _{\& \in \pi} S_{\&}(f) \\
& \int_{* E} f=\sup _{\& \in O} S_{\&}(f) .
\end{aligned}
$$

THEOREM 11.

$$
\int_{E}^{*} f \geq \int_{* E} f
$$

PROOF. Let \mathscr{c}_{1} and ε_{2} be two admissible dissections. Let $\varphi=\xi_{1} \vee \xi_{2}$ the common refinement, then

$$
\begin{gathered}
S_{g_{2}}(f) \leq S_{g}(f) \leq S_{g}(f) \leq S_{g_{1}}(f), \\
\sup _{g \in \alpha} S_{g_{g}}(f) \leq \inf _{g_{E O}} S_{g}(f), \\
\int_{* E} \leq \int_{E}^{*} f .
\end{gathered}
$$

DEFINITION 7. f is said to be integrable over E if $\int_{E}^{*} f=\int_{* E} f$ and the integral of if is the common
value. We write

$$
I(f)=\int_{E} f d x \text { or } \int_{E} f
$$

THEOREM 12. A necessary and sufficient condition that f should be integrable over E is that given $\varepsilon>0$ there exists an admissible dissection $\mathscr{G} \in \pi$ such that

$$
S_{\varepsilon}-S_{\varphi} \lll
$$

PROOF. If there is such a dissection, then f is intergrable is trivial. Suppose f is integrable, there exists dissection EA_{I} such that,

$$
S_{\varepsilon_{I}}(f)-I(i)<\frac{\varepsilon}{2}
$$

and a dissection \S_{2} such that

$$
I(f)-s_{\varepsilon_{2}}(f)<\frac{\varepsilon}{8}
$$

Let $\mathscr{\xi}^{\circ}=\mathscr{E}_{1} \vee \mathscr{E}_{2}$. Then

$$
S_{\mathscr{E}}-S_{Q_{0}} \leq S_{Q_{1}}(f)-s_{\mathscr{E}_{2}}(f)<\varepsilon .
$$

REMARK. If there is a dissection such that $S_{8}=s_{g}$ then f is integrable over E and

$$
\int_{E} f=S_{E}=S_{p}
$$

Examples 1. Let f be a generalized step function, i.e., it takes a countable set of non-zero values on E say $f_{1}, f_{2}, \ldots, f_{n}, \ldots$ Let, $E_{r}=\left\{x \mid f(x)=f_{r}\right\}$. If

$$
\sum\left|f_{r}\right| \cdot m\left(E_{r}\right)<\infty
$$

then $\xi_{0}=\left\{E_{1}, E_{2}, \ldots\right\}$ is admissible and $E=\bigcup_{r=1}^{\infty} E_{r}$

$$
\int_{E} f=\sum f_{r} m\left(E_{r}\right)
$$

2. Let ϕ_{E} be the characteristic function on E. Then ϕ_{E} is integrable and

$$
\int_{E} \phi_{E}=\sum m\left(\mathbb{E}_{\mathrm{r}}\right)=m(\mathbb{E})
$$

3. If f is a constant function say $f=c$ then

$$
\int f=c m(E)
$$

THEOREM 13. Let E, E' be measurable sets such that E fE'. Let f and g be defined on E and E^{\prime} respectively. Suppose

$$
g(x)= \begin{cases}f(x) & x \in E \\ 0 & x \in E^{\prime}-E_{0}\end{cases}
$$

Then i is integrable over E iff g is integrable over
E^{\prime} and

$$
\int_{E} \mathrm{I}=\int_{E^{\prime}} g .
$$

PROOF. II $\mathscr{G}=\left\{E_{1}, E_{2}, \ldots.\right\}$ an admissible dissection on E, then $\left\{E^{\prime}-E_{1} E^{\prime}-E_{2}, \ldots\right\}$ is an admissible dissection of $E:$. If $\left\{E_{1}^{\prime}, E_{2}^{\prime}, \ldots\right\}$ is an admissible dissection, then $\left\{E \cap E_{\mathcal{I}}^{\prime}, E \cap E_{2}^{\prime}, \ldots\right\}$ is an admissible dissection of E.

COROLTARY. A CE, then

$$
\int_{A} f=\int_{A} f \phi_{A}
$$

THEOREM 14. If $f=g$ a.e., then $\int^{*} f=\int^{*} g, . \int_{*} f=\int_{*} g$ and $\int f=\int g$.

$$
20
$$

PROOF. Let E_{0} be the set in which $f \neq g$. Let

$$
\begin{aligned}
= & \left\{E_{1}, E_{2}, \ldots,\right\} \text { Then } \\
& \left\{E_{0}, E_{1} \cap\left(E-E_{0}\right), E_{2} \cap\left(E-E_{0}\right), \ldots\right\}=\xi_{0}^{\prime}
\end{aligned}
$$

is an admissible dissection of E. Then

$$
\begin{aligned}
S_{\tilde{E}^{\prime}}(f) \leq & B_{0}^{\prime}(f) m\left(E_{0}\right)+B_{I}^{\prime}(f) m\left(\mathbb{E}_{I} \cap\left(E-E_{0}\right)\right) \\
& +\ldots+B_{r}^{\prime}(f) m\left(E_{r}!\left(E-E_{0}\right)\right)+\ldots \\
= & B_{I}^{\prime}(g) m\left(E_{I}\right)+\ldots+B_{r}(g) m\left(E_{r}\right)+\ldots \\
< & S_{\text {参 }}(g)
\end{aligned}
$$

from which it follows that

$$
S_{g}(f) \leq S_{\mathscr{E}}(g)
$$

Similarly,

Then

$$
\begin{aligned}
& S_{g^{\prime}}^{\prime}(g) \leq S_{g}(f) \\
& \int_{E}^{*} f=\int_{E}^{*} g \\
& \int_{E}^{*} f=\int_{*}^{*} g .
\end{aligned}
$$

THEOZEM 15. (a) If $f \geq g$, then

$$
\int_{E}^{*} f \geq \int_{E}^{*} g, \int_{* E} f \geq \int_{* E} g \text { and } \int_{E} f \geq \int_{E} g
$$

(b) If $f_{1}, f_{2}, \ldots, f_{k}$ are integrable and

$$
\begin{aligned}
& c_{1}, c_{2}, \ldots, c_{k} \text { are constants then } c_{1} f_{1}+c_{2} f_{2}+\ldots \\
& +c_{k} f_{k}, \text { are integrable and }
\end{aligned}
$$

$$
\int_{E}\left(c_{1} f_{1}+\ldots+c_{k} f_{k}\right)=\sum_{i=1}^{k} c_{i} \int_{E} f_{i}
$$

(c) If $E=\bigcup_{i=1}^{n} E_{i}$ disjoint union, then

$$
\int_{E} f=\sum_{i=1}^{n} \int_{E_{i}} f
$$

PROOF. a) is trivial since for any admissible dissection

b) Let f and g be integrable over E and c a constant. Let \mathscr{G} be an admissible dissection of f over E. Then

$$
B_{r}(c f)=c B_{r}(f), b_{r}(c f)=c b_{r}(f), h_{r}(c f)=c h_{r}(f)
$$

hence

$$
\sum h_{r}(c f) m\left(E_{r}\right)=c \sum h_{r}(f) m\left(E_{r}\right)<\infty \Rightarrow \sum_{6} \text { is }
$$

admissible for cf also.

 and the integrability of f follows and $\int c f=c \int f$.

Let f and g be integrable over E. Let φ^{\prime} and $\zeta^{\prime \prime}$ be admissible dissections for f, g respectively over E.
 Consider the dissection φ

$$
\begin{aligned}
B_{r}(f+g) \leq & B_{r}(f)+B_{r}(g), \quad b_{r}(f+g) \geq b_{r}(f)+b_{r}(g), \\
& h_{r}(f+g) \leq h_{r}(f)+h_{r}(g)
\end{aligned}
$$

Hence, φ is admissible for $f+g$ over E also

$$
S_{g}(f+g) \leq S_{g}(f)+S_{g}(g) \leq S_{g^{\prime}}(f)+S_{g^{\prime}}(g)
$$

and

$$
s_{g^{\prime}}(f+g) \geq s_{g}(f)+s_{g}(g) \geq s_{\varphi^{\prime}}(f)+s_{g^{\prime}}(g)
$$

 $s_{g}(g)<\frac{\varepsilon}{2} \cdot$ Hence

$$
S_{\mathscr{E}}(f+g)-S_{\mathscr{E}}(f+g) \leq S_{g}(f)-S_{g}(f)+S_{g}(g)-S_{g}(g)<\varepsilon_{g}
$$

Therefore $\mathrm{f}+\mathrm{g}$ is integrable, further $\int(\mathrm{f}+\mathrm{g})=\int \mathrm{f}+\int \mathrm{g}$.
(c) Let $\overbrace{E_{i}}$ be the characteristic function of $E_{i}, i=1,2, \ldots, n \cdot$ Then $f=\sum_{i=1}^{n} f \phi_{E_{i}}$ and $\int_{E_{i}} f=\int_{E} \cdot f \phi_{E_{i}}$. Hence

$$
\int_{E} f=\int \sum_{E_{i=1}^{n}}^{n} f \phi_{E_{i}}=\sum_{i=1}^{n} \int_{E^{2}} f \phi_{E_{i}}=\sum_{i=1}^{n} \int_{E_{i}} f
$$

DEFINITION 8. For any real valued function f we define the positive part f^{+}by

$$
f^{+}(x)=\left\{\begin{array}{cc}
f(x) & \text { if } f(x) \geq 0 \\
0 & \text { if } f(x)<0
\end{array}\right.
$$

The negative part $f=f^{+}-f^{-}$equivalently

$$
f^{+\cdots}(x)=\left\{\begin{array}{ccc}
0 & \text { if } f(x) \geq 0 \\
-f(x) & \text { if } f(x)<0
\end{array}\right.
$$

Now $|f|=f^{+}+f^{-}$.
THEOREM 16. If f is integrable, so are $f^{+}, f^{-},|f|$ and

$$
\left|\int_{E} f\right| \leq \int_{E}|f|
$$

PROOF. Let \mathscr{A} be an admissible dissection for f over E. Now for each $r, h_{r}\left(f^{+}\right) \leq h_{r}(f)$ and G is admissible for f^{+}. Also

$$
B_{r}\left(f^{+}\right)-b_{r}\left(f^{+}\right) \leq B_{r}(f)-b_{r}(f)
$$

then

$$
S_{\mathscr{C}}\left(f^{+}\right)-S_{E}\left({ }_{0} f^{+}\right) \leq S_{\mathscr{E}}(f)-S_{E}(f) .
$$

Hence f^{+}is integrable if f is.

Now if f is integrable, (-1)f is integrable and $((-1) f)^{+}$is integrable. But $((-I) f)^{+}=f^{-}$and hence f^{-}also integrable.

$$
\begin{aligned}
& |f|=f^{+}+f^{-} \text {is also integrable. } \\
& \left|\int_{E} f\right|=\left|\int_{E}\left(f^{+}-f^{--}\right)\right|=\left|\int_{E} f^{+}-\int_{E} f^{-}\right| E_{E} \cdot \int_{E} f^{+}+\int_{E} f^{-} \\
& =\int_{E}\left(f^{+}+f^{-}\right) . \\
& \text {Let } f, g \text { be two functions which are integrable. Define } \\
& f_{V} g=\frac{f+g+|f-g|}{2}, f \wedge g=\frac{f+g-|f-g|}{2}
\end{aligned}
$$

then $f \vee g$ and $f \wedge g$ are integrable.
Notice

$$
\begin{aligned}
& f V g=\max (f, g), \\
& f \wedge g=\min (f, g)
\end{aligned}
$$

Exercise 1. If E is measurable and A is a subset of E, such that $m *(A)<\infty$, then

$$
\int_{E}^{*} \phi_{A}=m^{*}(A), \int_{* E} \phi_{A}=m_{*}(E)
$$

Exercise 2. If f is, integrable over E, and E ' is a measurable subset of E, then f is integrable over E '.

Exercise 3. If $f \geq 0$, then $\int f=0$, iff $f=0$, abe.
1.3. Measurable Functions

Let E be a measurable set and f an extended real valued function. We say that f is measurable if for each real number a, the set

$$
\{x \mid f(x)>a\}
$$

is measurable.
The following conditions are equivalent
(1) Sets $\{x \mid f(x)<a\}$ are measurable
(2) Sets $\{x \mid f(x)-2$ a $\}$ are measurable
(3) Sets $\{x \mid f(x)>a\}$ are measurable
(4) Sets $\{x \mid f(x) \leq a\}$ are measurable
(1) and (2) are equivelent by complementation. So are (3) and (4). Assume (4). Let a be a reel number. Then the sets

$$
\left\{x \left\lvert\, f(x) \leq a-\frac{1}{r}\right.\right\}
$$

are measurable. Now

$$
\{x \mid f(x)<a\}=\bigcup_{r=1}^{\infty}\left\{x \left\lvert\, f(x) \leq a-\frac{1}{r}\right.\right\}
$$

Hence (4) implies (1). Assume (2), then

$$
\{x \mid f(x)>a\}=\bigcup_{r=1}^{\infty}\left\{x \left\lvert\, f(x) \geq a+\frac{1}{r}\right.\right\}
$$

and hence measurable i.e., (2) \Rightarrow (3).
Remark 1. $\{x \mid a \leq f(x) \leq b\}=\{x \mid f(x) \geq a\} \cap\{x \mid$ $f(x) \leq b\}$ is measurable.

Remark 2. If $f=g$ ace., f is measurable iff g
is measurable

$$
\{x \mid f(x)>a\}=\left[\{x \mid g(x)>a\} \cup E_{1}\right]>E_{2}
$$

where E_{1}, E_{2} are sets in which $f \neq g$ and of measure zero. Exercise 17. If f nd g are measurable functions and c is a constant, then tho functions $f+g, f+c, c f, f^{2}, f^{l / 2}$, $f g, f \vee g, f \wedge g, f^{+}, f^{-},|f|$ are all measurable.

Exercise 18. Continuous functions are measurable.
DEFINITION B. f is said to be dominated in E, if there is an integrable function g such that $|f| \leq g$ on E. THEOREM 17. E $G R^{12}$. A necessary and sufficient condition that f is integrable over E is that f is measurable and dominated in E .

PROOF. Let f-be measurable and dominated by g. Take any admissible dissection \mathcal{E} for g. Given $\varepsilon>0$ choose p such that

$$
\sum_{p+1}^{\infty} h_{r}(g) m\left(E_{r}\right)<\frac{\varepsilon}{3}
$$

Let $E_{0}=E_{1} \cup E_{2} \cup \ldots \cup E_{p}$. Choose N integer such that $\frac{m\left(E_{0}\right)}{N}<\frac{\varepsilon}{3}$. Consider the dissection G^{\prime} obtained by the intersection of the sets in ${ }^{\circ}$ with the sets

$$
\left\{x \left\lvert\, \frac{p}{N} \leq f(x) \leq \frac{p+1}{N}\right.\right\}
$$

where p is an integer and the sets on which f is $+\infty$ or $-\infty$. This dissection is admissible for f. Then
where

$$
\sum_{I}=\sum_{E_{r}^{\prime} \subset E_{0}}, \sum_{2}=\sum_{E_{r}^{\prime} C E^{\prime}-E_{0}} .
$$

Then

$$
\begin{aligned}
\sum_{1}\left(B_{r}(f)-b_{r}(f)\right) m\left(E_{r}^{\prime}\right) \leq & \sum \frac{1}{N} m\left(E_{r}^{\prime}\right)=\frac{1}{N} m\left(E_{0}\right)<\frac{\varepsilon}{3} \\
\sum_{2}\left(\left|B_{r}(f)\right|+\left|b_{r}(f)\right|\right) m\left(E_{r}^{\prime}\right) \leq & \sum 2 h_{r}(g) m\left(E_{r}^{\prime}\right) \\
& =2 \sum_{p+1}^{\infty} h_{r}(g) m\left(E_{r}^{\prime}\right)<\frac{2 \varepsilon}{3} .
\end{aligned}
$$

Hence $S_{\ell_{5}}-S_{\varepsilon^{\prime}}<\varepsilon$, implies f is integrable.
THEOREM (Egorov) 18. Let E be of finite measure, $\left\{f_{n}\right\}$ a sequence of measurable functions such that $f_{n} \rightarrow f$ abe. in $E \cdot$ Then given $\varepsilon>0$ there exists
a subset $F C E$ such that $m(E-F)<E$ and $f_{n} \rightarrow f$ uniformly.

PROOF. We assume without loss of generality that $f_{n} \rightarrow f$ everywhere on E (otherwise, we have to start with E_{0} where $f_{n} \rightarrow f$. Let

$$
g_{r}=\left|f_{r}-f\right|
$$

Define

$$
E_{p q}=\left\{x \in E \mid g_{r}(x)<q^{-1}, \text { for } r \geq p\right\}
$$

for a fixed q. The sets $E_{I q}, E_{2 q}, \ldots$, is an increasing sequence whose union is E. Hence $\lim _{p \rightarrow \infty} m\left(E_{p q}\right)=m(E)$. There exists an integer $p(q)$ such that $m\left(E \backslash E_{p(q)}\right)<\frac{\varepsilon}{2^{q}}$. Now let

$$
F=\bigcap_{q=1}^{\infty} E_{p(q)} .
$$

In $F, g_{r}<q^{-1}$ if $r \geq p(q)$. Therefore $f_{r} \rightarrow f$ uniformly
in F. Since $E \backslash F \in U\left(E \backslash E_{p(q)}\right)$

$$
m(E \backslash F) \leq \sum_{q=1}^{\infty} m\left(E \backslash E_{p(q) q}\right)<\sum_{q=1}^{\infty} \frac{\varepsilon}{2^{q}}=\varepsilon .
$$

REMARK. Theorem does not hold if E is not of.finite measure. (Find an example).

DEFINITION 9. A family of functions $\left\{f_{\alpha}\right\} \alpha \in \Delta$ is said to be dominated by g in E if g is integrable over E and $\left|f_{s k}\right| \leq g$ for all α_{r} THEOREM 19. (Lebesgue dominated convergence Theorem.) If $\left\{f_{r}\right\}$ is a dominated sequence of integrable functions such that $f_{r} \rightarrow f$ as $r \rightarrow \infty$ then f is integrable and

$$
\lim _{r \rightarrow \infty} \int\left|f_{r}-f\right|=0
$$

ide.

$$
\int \hat{r}=\lim _{r \rightarrow \infty} \int f_{r} .
$$

PROOF. f is clearly measurable. If f_{r} is dominated by ϕ then f is also dominated by ϕ and hence integrable. Let

$$
g_{r}=\left|f-f_{r}\right|
$$

clearly $g_{r} \rightarrow 0$ as $r \rightarrow \infty$ and $g_{r}<2 \phi$. Choose an admissible dissection $\left\{\mathrm{E}_{1}, \mathrm{E}_{2}, \cdots\right\}$ for ϕ over E consisting of sets of finite measure. Given $\varepsilon \geqq 0$ there exists an integer such that

$$
\sum_{r=\mathbb{N}+1}^{\infty} h_{r}(\phi) m\left(\mathbb{E}_{r}\right)<\frac{E}{4}
$$

Let $E^{\prime}=\bigcup_{r=1}^{N} E_{r}$ and $h=\sup h_{r}(\phi)$ where supremum is taken for varying r, I to ∞ where $h_{r}(\phi) \leqslant \infty$. By Egorov's theorem, $g_{r} \rightarrow 0$ uniformly on a subset $E^{\prime \prime}$ of E^{\prime} such that

$$
m\left(E^{\prime}-E^{\prime}\right)<\frac{\varepsilon}{8 h} .
$$

There exists r^{\prime} such that $g_{r}<\frac{\varepsilon}{4 m\left(E^{\prime}\right)}$ if $r \geq r^{\prime}$. Then

$$
\int_{E^{\prime}} g_{r}=\int_{E^{n}} g_{r}+\int_{E^{1} \times E^{n}} g_{r}+\int_{E \backslash E^{\prime}} g_{r} \cdot
$$

Now

$$
\left|\int g_{r}\right| \leq \frac{\varepsilon}{4 m\left(E^{\prime}\right)} \int 1=\frac{\varepsilon m\left(E^{\prime \prime}\right)}{4 m\left(E^{\prime \prime}\right)}=\frac{\varepsilon}{4}
$$

E"
E"
Similarly

$$
\left|\int_{\mathbb{E}^{\prime} \backslash E^{\prime \prime}} \operatorname{gr}\right|<\frac{\varepsilon}{4}
$$

and

$$
\left|\int g_{E \backslash E^{\prime \prime}}\right| \leq 2 \int \phi<2 \sum_{E \backslash E}^{\infty} \int_{r=1}^{\infty} h_{r}(\phi) m\left(E_{r}\right)<\frac{\varepsilon}{2} .
$$

Hence

$$
\int_{E} g_{n}<\frac{\varepsilon}{4}+\frac{\varepsilon}{4}+\frac{\varepsilon}{2}=6 .
$$

THEOREM 20. (Lebesgue Theorem on Bounded Convergence).
If E is of finite measure and $\left\{f_{r}\right\}$ is a sequence of
integrable functions such that $\left|f_{r}\right| \leq a<\infty$ and $f_{r} \rightarrow f$ as $r \neq$ ∞ then

$$
\lim _{r \rightarrow \infty} \int \rho_{r}=\int f
$$

ie.,

$$
\lim _{r \rightarrow \infty} \int f_{r}=\int\left(\lim _{r \rightarrow \infty} f_{r}\right)
$$

PROOF. This is immediate from the Lebesgue dominated convergence theorem.

Example. Consider the functions f_{r} defined by

$$
f_{r}(x)=\left\{\begin{array}{l}
r^{2} x, 0 \leq x \leq \frac{1}{r} \\
2 r-r^{2} x, \frac{1}{r}<x \leq \frac{2}{r} \\
0,
\end{array} \frac{2}{r}<x \leq 1 .\right.
$$

Then

$$
\begin{aligned}
& \text { Then } \int_{0}^{I} f_{r}=\int_{0}^{\frac{1}{r}} r^{2} x d x+\int_{0}^{\frac{2}{r}}\left(2 r-r^{2} x\right) d x=\frac{1}{2}+\frac{1}{2}=1 \\
& \\
& \quad \int f_{r} \rightarrow 1 \text { but } f_{r} \rightarrow 0 \text { as } r \rightarrow \infty .
\end{aligned}
$$

Define

$$
\begin{aligned}
& I^{(k)}=\left\{x \in R^{n}| | x_{r} \mid \leq k, r=I, n \ldots, n\right\} \\
& E^{(k)}=E \cap I^{(k)}
\end{aligned}
$$

and

$$
f|k|(x)=\left\{\begin{array}{cl}
f(x) & \text { if } \\
f(x) \leq k \\
k & \text { if } \\
f(x)>k
\end{array}\right.
$$

Remark. If $f \geq 0$ then $\lim \int_{E}(p) \quad f^{[Q]}$ may be finite
or infinite and independent of the way $p, q \rightarrow \infty$.
THEOREV 21. Let f be nonnegative. A necessary and Sufficient condition that f should be integrable over E is that f ${ }^{[q]}$ is integrable over $E^{(p)}$ for all p and. q and that $\lim \int_{E}(p)[q]$ should be finite. If f is integrable then $\quad f=\left\{1 m{ }_{E}(p) f^{[Q]}\right.$ PROOF. Suppose f is integrable, then $f[q]$ is
obviously measurable and is dominated by f and hence integrable over any measurable subset of E.

$$
\text { Suppose } \int_{E(p)} f^{[q]} \text { exists }\left(s . y a_{p q}\right) \text { for all } p \text { and } q
$$

and $a=\lim a_{p q}$ (finite). Let

$$
\begin{aligned}
& E_{r}=\left\{x \mid 2^{r} \leq f(x) \& 2^{r+q}\right\}(-\infty<r<\infty) \\
& E_{-\infty}=\{x \mid f(x)=0\} \\
& E_{\infty}=\{x \mid f(x)=\infty\}
\end{aligned}
$$

Obviously $m\left(E_{\infty}\right)=0$. Otherwise $a=\infty$. Also

$$
\sum_{r=q^{\prime}}^{q} 2^{r+1} m\left(E_{r}^{(q)}\right) \leq 2 a_{p q}<2 a
$$

33

Making $q^{\prime} \rightarrow-\infty, q \rightarrow \infty$ and $p \rightarrow \infty$, we have

$$
\sum_{r=-\infty}^{\infty} 2^{r+1} m\left(\mathbb{E}_{r}\right) \leq 2 a
$$

Now the function F defined by

$$
F=\left\{\begin{array}{lll}
0 & \text { on } & E_{-\infty} \\
2^{r+1} & \text { on } & E_{r} \\
\infty & \text { on } & E_{\infty}
\end{array}\right.
$$

is integrable. Since f is dominated by F and is measurable being the limit of sequence of measurable functions, f is integrable.

THEOREM 22. (Fatou) If $f_{r} \rightarrow 0$ for all r and $\mathrm{f}=\lim \inf \mathrm{f}_{\mathrm{r}}$, then
$\int f \leq \lim \inf \int f_{r}$.
PROOF. Set $g_{r}=\inf f_{S}, s \geq r$ then $f=\lim g_{r}$

$$
\int_{E^{(p)}}[q]=\lim \int_{E^{(p)}} g_{r}^{[q]}
$$

$$
=\liminf \int_{E^{(p)}} g_{r}^{[q]} \leq \liminf \int_{E} f_{r}^{[q)}[q]
$$

$$
\leq \lim \inf \iint_{r}
$$

$$
\int_{E} f \leq \liminf \int_{\mathbb{E}} f_{r}
$$

1.4 Fubini's theorem.

DEFINITION 10. Let $C C A \times B$. By a section of C by $a \in A$, we mean the set

$$
\{b \mid(a, b) \in C\}
$$

The projection C on B is the set $\{b \mid(a, b) \in C$ for some af.A $\}$.

Let x be any point in \mathbb{R}^{n} and y any point in \mathbb{R}^{p}. Let \mathbb{E} be a measurable subset of \mathbb{R}^{n+p}. The section of E by x is denoted by $E(x)$.

Let $f(x, y)$ be defined in \mathbb{R}^{n+p}. If the integral $\int f(x ; y) d y$ exists, we write $g(x)=\int f(x, y) d y$ (This integral is taken over $\mathbb{E}(x) \cdot \int g$ is taken over some set in \mathbb{R}^{n} containing the projection of E on \mathbb{R}^{n}. m will stand for Lebesgue measure.

THEOREM 23. If E is of finite measure in \mathbb{R}^{n+p}, then for almost all $x, E(x)$ is measurable and of finite measure in $\mathbb{R}^{p}, m(\mathbb{E}(x))$ is an integrable function of x and

$$
\int m(E(x)) d x=m(E)
$$

PROOF. (i) If E is a bounded interval, the result is trivial. $E(x)$ is measurable for all x, and $E(E(x))$ is a constan multiple of characteristic function of the projection of E on \mathbb{R}^{n}.
(ii) If E is a finite union of bounded intervals then the result follows from (i) by addition.
(iii) Let E be a (bounded) set in $\left(\mathbb{R}^{n+p}\right)$ then for each $X, E(x)$ is a bounded set in $f^{\prime}\left(\mathbb{R}^{p}\right)$ and hence is measurable and of finite measure.If $E=\left(L_{I}\right.$ thens $\left.x^{\prime} x\right)=I_{r}(x)$. $E_{N}=\bigcup_{r=1}^{N} I_{r}, E_{N}(x)=\bigcup_{i=1}^{N} I_{r}(x)$. Then $m\left(E_{N}\right) \rightarrow m(E)$ and $m\left(E_{N}(x)\right) \rightarrow n(E(X))$ as $N \rightarrow \infty$ and $E(x)$ is measurable. By Lebesgue theorem on bounded convergence.

$$
\begin{gathered}
\lim m\left(E_{N}(x)\right) d x=\lim \int m\left(E_{N}(x)\right) d x \\
\int m(E(x)) d x=m(E)
\end{gathered}
$$

(iv) If E is the complement with respect to a bounded interval of a set in f (iii) gives the result.
(v) Let E be a Dounded measurable set. Given $\varepsilon>0$ there exists sets $J \supset E$ with $J \in \mathcal{G}, \mathbb{K}^{c} \in f$ with $m(J)-m(K)<\varepsilon$. Take a sequence J_{r}, K_{r} of sets such that $J_{r} \in J_{r+1}$, $K_{r} \subset K_{r+1}$ for all r and $m\left(J_{r}+(r(K) \rightarrow 0\right.$ as $r \rightarrow \infty$. Then

$$
\int\left(m\left(J_{r}(x)\right)-m\left(K_{r}(x)\right) d x \rightarrow 0 \text { as } r \rightarrow \infty\right.
$$

Since $m\left(J_{r}(X)\right)-m\left(K_{r}(x)\right)$ is a decreasing function of x for all r and the limit exists and the limit is zero a. θ. Hence $E(x)$ is measurable and

$$
m(E(x))=\lim _{r \rightarrow \infty} m\left(E_{r}(x)\right) \text { ate. }
$$

By Lebesgue bounded convergence theorem

$$
\begin{gathered}
\int m(E(x)) d x=\int \lim m\left(J_{r}(x)\right) d x=\lim \int m\left(J_{r}(x)\right) d x \\
=m(E)
\end{gathered}
$$

(vi) If E is unbounded, we first consider E_{k} and then take the limit as $k \rightarrow \infty$.

THEOREM 24. If $f(x, y)$ is integrable over E, then for almost ail $x, f(x, y)$ is integrable over $E(x)$.

$$
g(x)=\int_{E(x)} f(x, y) d y
$$

then g is integrable and $\int g=\int f$.

$$
\left(\operatorname{or} \int\left\{\int_{E(x)}(x, y) d y\right\} d x=\iint f(x, y) d x d y\right)
$$

THEOREM 25. If $f(x, y)$ is measurable ($\ln \mathbb{R}^{n+p}$) and if $\int\left\{\int|f(x, y)| d x\right\} d y$ exists then

$$
\int\left\{\int f(x, y) d x\right\} d y=\left\{\left\{\int f(x, y) d y\right\} d x\right.
$$

1.5 The Class L_{p}.

Let $p>0 \quad I_{p}(\mathbb{E})=$ class of all measurable functions f such that

$$
\int_{E}|f| p<\infty
$$

We will identify two functions which differ only on a set of measure zero.

If $p>1$ we define a by $\frac{1}{p}+\frac{1}{q}=1$
If $f \in L_{p}$ and c is a constant, then clearly $c f \in L_{p}$ and if $f, g \in I_{p}$ then

$$
|f+g|^{p} \leq \quad 2^{p}\left(\left.\left.\right|_{f}\right|^{p}+|g|^{p}\right)
$$

which gives $f+g \in I_{p}(\mathbb{Z})$ as well and hence L_{p} is a vector space. We set

$$
\left\|f_{\mathrm{i}}\right\|_{p}=\left\{\int_{E}|f|^{p}\right\}^{1 / p}
$$

If c is a constant

$$
\begin{aligned}
&\|c f\|_{p}=\operatorname{td}\|f\|_{p} \\
&\|f\|_{p}=0 \Rightarrow \int_{E}|f|^{p}=0 \Longrightarrow f=0 \quad \text { a.e. Since we are not }
\end{aligned}
$$ distinguishing functions which differ on a set of measure zero, we have $\|f\|_{p}=0 \Rightarrow f=0$.

LEMMA. If $p>1, \frac{1}{p}+\frac{1}{q}=1$ and $x>0, y>0$ then

$$
x y \leq \frac{x^{p}}{p}+\frac{y^{q}}{q}
$$

PROOF. Consider the function

$$
\begin{aligned}
f(t) & =t^{p}-p t-1+p \\
f^{\prime}(t) & =p t^{p-1}-p=p\left(t^{p-1}-1\right)
\end{aligned}
$$

If

$$
\begin{aligned}
& t>I, f^{\prime}(t)>0 \\
& t<I, f^{\prime}(t)<0 \\
& \text { and } f^{\prime}(I)=0 \\
& f(I)=0, f^{\prime}(t)>0 \text { for } t>I \Rightarrow f(t) \geq 0,
\end{aligned}
$$

$t \geq I$ when $t<I, f^{\prime}(t)<0 \Longrightarrow f(t)$ is decreasing i.e.,

$$
f(t) \geq f(1)=0 \text { for all } t \geq 0
$$

or

$$
\begin{aligned}
& t^{p}-p t-1+p \geq 0 \\
& \frac{t^{p}}{p} \geq t+\frac{1}{p}-1
\end{aligned}
$$

or

$$
t \leq \frac{1}{q}+\frac{t^{p}}{p}
$$

Let $t=\frac{x}{y^{q / p}}$ and obtain $x y \leq \frac{x^{p}}{p}+\frac{y^{p}}{q}$.

To prove (1)

$$
\int_{E}|f g| \leq\left(\int_{E}|f|^{p}\right)^{\frac{1}{p}}\left(\int_{\mathbb{E}}|g|^{q}\right)^{\frac{1}{q}} f \in L_{p}, g \in L_{q}
$$

(2)

$$
\left(\int_{E}|f+g|^{p}\right)^{\frac{1}{p}} \leq\left(\int_{E}|f|^{p}\right)^{\frac{1}{p}}+\left(\int_{E}|g|^{p}\right)^{\frac{1}{p}}, f, g \in L_{p}
$$

(1) Put

$$
\begin{gathered}
x \equiv \frac{|f|}{\left(\int|f|^{p}\right)^{\frac{1}{p}}}, y=\frac{|g|}{\left(\int|g|^{q}\right)^{\frac{1}{q}}} \\
\frac{1 f g \mid}{\left(\int|f|^{p}\right)^{1 / p}\left(\int|g|^{q}\right)^{1 / q} \leq \frac{|f|^{p}}{p\left(\int|f|^{p}\right)}+\frac{|g|^{q}}{q\left(\int|g|^{q}\right)}}
\end{gathered}
$$

Integrating, we have

$$
\begin{aligned}
& \quad \frac{\int|f g|}{\left(\int|f|^{p}\right)^{1 / p}\left(\int|g|^{q}\right)^{1 / q}} \leq \frac{\int|f|^{p}}{p\left(\int|f|^{p}\right)}+\frac{\int|g|^{q}}{q\left(\int|g|^{q}\right)} \\
& \text { i.e. } \\
& \qquad|f g| \leq\left(\int|f|^{p}\right)^{1 / p}\left(\int|g|^{q}\right)^{1 / q}
\end{aligned}
$$

2)

$$
\begin{aligned}
\int|f+g|^{p}= & \int|f+g||f+g|^{p-1} \\
\leq & \int|f||f+g|^{p-1}+\int|g|^{p}|f+g|^{p-1} \\
\leq & \left(\int|f|^{p}\right)^{1 / p}\left(\int|f+g|^{(p-1) q}\right)^{1 / q} \\
& +\left(\int|g|^{p}\right)^{1 / p}\left(\left(|f+g|^{(p-1) q}\right)^{1 / q}\right. \\
= & \left(\int|f|^{p}\right)^{1 / p}\left(\int|f-g|^{p}\right)^{1 / q} \\
& +\left(\int|g|^{p}\right)^{1 / p}\left(\int|f+g|^{p}\right)^{1 / q} .
\end{aligned}
$$

Dividing be($\left.\int|f+g|^{p}\right)^{1 / q}$ we obtain the result.
DEFINITION 11. Let $\left\{f_{n}\right\}$ be a sequence of functions belonging to the class L_{p}. If $\left\|f_{n}-f\right\|_{p}$ as $n \rightarrow \infty$ we say $f_{n} \rightarrow f$ in the in an (with index p).
DEFINITION 12. $\left\{f_{n}\right\}$ is a Cauchy sequence or fundmental sequence if $\left\|f_{m}-f_{n}\right\| \rightarrow 0$ as $m, n \rightarrow \infty$ or given $\varepsilon>0$ there exists $n_{0}(\varepsilon)$ such that

$$
\left\|f_{m}-f_{n}\right\|_{p}<\varepsilon \text { if } m, n \geq n_{0}(\varepsilon) .
$$

THEOREM 26. If $\left\{f_{n}\right\}$ is a Cauchy sequence in L_{p}, then there exists $f \in L_{p}$ such that $f_{n} \rightarrow f$ in mean. DEFINITION Iss. A family of functions $\left\{f_{\alpha}\right\}$ is said to be p-dominatod if there is a function get p such , that $\left|f_{\alpha}\right| \leq \delta$ for all α.

TIEOREN 27. If $\left\{f_{n}\right\}$ is a p-dominated sequence of functions in I_{p} and if $f_{n} \rightarrow f$ ave. on E, then feL_{p} and

$$
\left\|f_{n}-f\right\|_{p} \rightarrow 0 \text { as } n \rightarrow \infty
$$

1.5 General Measures.

In this section we will define measures more general than lebesgue measures.

DEFINITION 14. Let X be an arbitrary set and R any class of subsets of $X . R$ is said to be a ring if $E, F \in R$, then $E \cup F \in R$ and $E \backslash F \in R$.
Remark. (i) $\phi \in R$. Since $\phi=E-E \in R$ if $E \in R$.
(ii) $\begin{aligned} & \triangle \triangle E R \\ & E \Delta F=(E \backslash F) \cup(F, F \in R \text {. }\end{aligned}$
(iii) E $\cap F \notin R$, whenever $E, F \in R$. This follows from $E(: F=(E \cup F)-(E \Delta F)$.
(iv) $\bigcup_{i=1}^{n} E_{i} \in R$ and $\bigcap_{i=1}^{n} E_{i} \subset R$ if $E_{i} \in R$
$i=1,2, \ldots n$.
DEFINITION 15. Let f be any nonempty collection of subsets of X. Then f is said to be a σ-ring if \mathscr{f} is a ring and if $\mathrm{E}_{i} \in \varphi$ for $i=1,2, \ldots$, implies $\bigcup_{i=1}^{\infty} E_{i} \in \mathscr{L}$.

Notation. Let \mathscr{G} be any class of subsets of X. We denote by $R(\mathscr{K})(\mathscr{G}(\mathscr{G}))$ the ring (σ-ring) generated by \mathscr{E} i.e. the smallest ring (σ-ring) that contains \mathscr{C}_{0}.

DEFINIMION 16. A measure is an extended real valued, non-negative and countably additive set function μ defined on a r-ring \mathscr{H} of subsets of X such that $\mu(\not)=0$. Thet is if $E \in y^{\prime}$ then $\mu(E) \geq 0$ and if $E_{i} \in \mathscr{L}$ for $i=1,2, \ldots$, and $E_{i} \cap E_{j}=\phi$ for $i \neq j$ then $\mu\left(\bigcup_{i=1}^{\infty} E_{i}\right)=\sum_{i=1}^{\infty} \mu\left(E_{i}\right)$.

Remark. We could have defined a measure on a ring of subsets of X as well, and then extenced the measure to the generated σ-ring. For our purposes it is enough if it is defined on a σ-ring. The interested reader is referred to P.R.Halmas.

It is imnediate that we can define measurability, integrability, integrals of functions with respect to μ, in just the same way as we did for Lebesgue measure. The, integral of a function f over $E \in \not \subset \mathcal{V}^{\rho}$ is denoted by $\int_{E} f d \mu$ or $\int_{E} f(x) d \mu(x)$. The measure μ is finite if $\mu(X)<\infty$ and is σ-finite if X is a countable union of sets of finite u-measures. DEFINITION 17. A function u, defined on a $\alpha-$ ring \mathscr{S} of subsets of X, is a signed neasure if it is of the form

$$
\mu(E)=\mu_{1}(E)-\mu_{2}(E) \quad E \in \mathscr{\ell}
$$

where μ_{1} and μ_{2} are measures and at least one of μ_{1} and μ_{2} is finite.

DEFINITION 18. A function μ, defined on a σ-ring \mathscr{y} of subset of x , is a complex measure if it is of the form

$$
\mu(E)=\mu_{1}(E)+i \mu_{2}(E), E \in \mathscr{O}
$$

where μ_{1} and μ_{2} are signed measure
Mote. To avoid confusion we use positive measures for ordinary measures real measures for signed measures.

A complex measure is a linear combination of at most four positive measures. Integrals with respect to real measures and complex measures are defined in the obvious way in terms of integrals with respect to the appropriate positive measures. For example, if $\mu=\cdots_{1}-\mu_{2}+i\left(\mu_{3}-\mu_{4}\right)$ where μ_{i} are positive measures then f is said to be integrable w.r.t μ if it is so w.r.t. $\mu_{i}, i=1,2,3,4$. and we have

$$
\int f d \mu=\int f d \mu_{1}-\int f d \mu_{2}+i \int f d \mu_{3}-i \int f d \mu_{4}
$$

If μ is a real or complex measure, then $|\mu|$, defined by

$$
|\mu|(E)(\vdots)==\sup \sum\left|\mu\left(E_{i}\right)\right| \text { where } E=\bigcup_{i=1}^{n} E_{i}
$$

$E_{i} \cap E_{j}=\phi, i \neq j$, and the sup is taken over all such finite unions, is a positive measure. The measure $|\mu|$ is the total variation of μ. If μ is real then

$$
\mu^{+}=\frac{|\mu|+\mu}{2}, \mu^{-}=\frac{|\mu|-\mu}{2}
$$

are obviously positive measures. They are respectively called the positive and the negative variation of μ and also

$$
\mu=\mu^{+}-\mu^{-} \text {and }|\mu|=\mu^{+}+\mu^{-} .
$$

The representation of μ in terms. of μ^{+}and μ^{-}is the Jordan decomposition of μ.

The relation between measurability and continuity are most interesting and have been studied in locally compact spaces. Here we shall introduce some basic results of measurability theory in a locally compact space.

Notation. We denote by
X - a locally compact Hausdorff space.
\mathscr{S} - the class of all compact subsets of X.
E. the class of all compact subsets of X which are also
δ - the σ-ring generated by ξ_{b}.
$\%$ - the σ-ring son μ_{0} aton by
U - the class of all open sets contained in $\mathscr{\varphi}$.
U_{0} - the class of all open sets contained in \mathscr{S}_{0}.

We shall call the elements of \mathscr{f} the Borel-sets of X and the elements of \mathscr{S}_{0}, the Baire-sets of X. A real valued function on X is said to be Borel (Baire) measurable if it is measurable with respect to the σ-ring $\varphi\left(\mathscr{O}_{0}\right)$. It is
immediate that every Baire-set is a Borel-set.
DEFINITION 19. A Borel measure (Baire measure) is a non-negative measure μ defined on the class $\mathscr{\mathscr { V }}\left(\mathscr{Y}_{0}\right)$ of Borel sets (Baire sets) such that $\mu(c)<\infty$ $\left(\mu\left(\boldsymbol{c}_{0}\right)<\infty\right)$ for every ce. φ (for every $C_{0} \in \mathscr{C}_{0}$). DEFINITION 20. A set Ee \mathcal{Y} is said to be outer regular with respect to the Borol measure μ, if

$$
\mu(E)=\inf \{\mu(U), E \subset U \text { and } U \in \mathscr{U}\}
$$

E is said to be inner regular if

$$
\mu(E)=\sup \{\mu(C), C \subset E \text { and } C \in \mathscr{C}\}
$$

and E is resular if it is both inner and outer regular. A measure μ is saidto be regular if each ECYis regular. We can similarly defines regularity for Baire measures.

Every Borel ineasure μ defines a Baire measure ν in an obvious manner. ν is ciefined by

$$
\nu\left(B_{0}\right)=\mu\left(B_{0}\right) \text { for every Baire set } B_{0} .
$$

It is not difficult to prove that every Baire measure is regular. Also every Baire measure can be extended to a unique regular Borel measure.

1.6. Measurable Transformations.

A measurable space is a set X together with a raring \mathscr{f} of subsets of X such that $\bigcup_{S \in \mathscr{Y}} S=X$. We denote a measurable space by ($X, \mathscr{\mathcal { O }}$). A measure space is a measurable
 A measure space is denoted by ($\mathrm{X}, \mathcal{c}^{\circ}, \mu$).

Let $\left(X, 0^{\circ}\right)$ and (Y, G) be mensurable spaces. Let T be a transformation of X into Y ie. T is a function which assigns a unique point of Y to every point of X. Then T assigns, in an obvious way, a real valued function f on X to every real valued function g on Y, f is defined by $f(x)=g(T(x))$, $x \in X$. We write $f=g T$.

DEFINITION 21. Let (X, Ψ) and (Y, \mathcal{C}) be measurable spaces and T a transformation from X into Y. Then T is said to be a measurable transformation if for every $F \in \mathscr{J}, T^{-1}(F)$ is in \mathscr{L}. That is, the inverse image of every measurable set of (Y, \mathcal{C}) is a measurable set of ($\mathrm{X}, \mathscr{\mathscr { L }}$).
We denote by $T^{-1}(\mathcal{J})$ the class of all subsets of X which have the form $T^{-1}(F)$ for some $E \in \mathscr{G}$. Then $T^{-1}(\mathscr{J})$ is a σ-ring contained in ψ.

A measurable transformation T from ($X, \mathscr{\mathcal { L }}$) into (Y, \mathcal{J}) assigns in an obvious way a measure ν on \mathscr{J} to every measure μ on $\mathscr{\rho}, \quad \nu$ is defined for every $F \in \mathscr{J}$ by $\nu(F)=\mu\left(T^{-1}(F)\right)$. We write $\nu=\mu T^{-1}$.

We conclude this soction by stating a theroem without proof. The reader is again referred to P.R.Halmos' book, for proof.

THEOREM 28. If T is a measurable transformation from a measure space $(X, \mathscr{Y}, \mu):$ int 2 measurable space (Y, \mathcal{J}) and if g is an extended real valuod measurable function on Y, then

$$
\int g d\left(\mu T^{-1}\right)=\int(g T) d \mu
$$

in the sense that if elther integral exists so does the other and the twe are equal.

COROLLARY. If F is a measurable subset of Y then an apolication of the above theoram to the function X_{F} g veilds the relation

$$
\int_{F} g(y) d \mu T^{-1}(y)=\int_{T^{-1}(F)} g(T(x)) d \mu(x)
$$

We observe that either side of the above relation is obtained from the othor by the formal substitution $y=T(x)$.

```
TOPOLOGICALVECTORS PACES
```


2.1. Topological Vector Srace.

Let \mathbb{K} denote the real or complex number field. DEFINITION I. Let E be a rector space over \mathbb{K}. A topology τ on E is said to be compatible with the algebratc structure of E if the vector space operations (x,y) \& $\mathbb{X} \mathbb{X}-\mathrm{x}+\mathrm{y} \in \mathrm{E}$ and $(\lambda, x) \in K X E \rightarrow \lambda x \in E$ are continuous. A topological Vector space is a vector space soxar together with a compatible topology.

PROPOSITION 1. If E is a topological vector space, the mapping $x \& E \rightarrow x+a \in E$ is a homeomorphism of E for each fixed $\alpha \neq 0, \alpha \in \mathbb{K}$ and $a \in E$.

PROOF. Since a continuous function of two variables is continuous in each of the variables, it follows from Definition 1 that the mapnirgs $x \rightarrow \alpha x$ for fixed $\alpha \in \mathbb{K}$ and $x \rightarrow x+a$ for fixed afE are continuous. Therefore the composite map $x \rightarrow \alpha x \rightarrow \alpha$ is also continuous. If further $\alpha \neq 0$ and $y=\alpha x+a$, then $x=\frac{1}{\alpha}(y-a)$. Hence the mapping $x \rightarrow \alpha x+a$ is invertible and its inverse $y \rightarrow \frac{1}{\alpha} y-\frac{\square}{\alpha}$ a is continuous. Hence $x \rightarrow \alpha x+a$ is a homeomorphism.

Remark 1. Tho mapping $x \subset E \rightarrow-X \subset E$ is continuous and so is $(x, y) \in E x E \rightarrow x-y \notin \mathbb{E}$.

Remark 2. If U is a neighborhood of O then $U+$ a is a neighborhood of a and αJ is a neighborhood of 0 for each $\alpha \neq 0$.

Remark 3. Ir. a topological vector space, it is enough to deal with neighborhoods of 0 .

DEFINITION 2. A subset, A of a vector space E is convex if $x, y \in A \Rightarrow \lambda x+\mu y$ f. A whenever $\lambda \geq 0, \mu \geq 0$ and $\lambda+\mu=1$. It is balanced if $x f A \Rightarrow \lambda x \in A$ for $|\lambda| \leq 1$. It is symmetric if $A=-A$. It is absolutely convex if it, is balanced and convex.

Remark 1. If A is convex, so is $x+\lambda A$ for each $x \in E$, र́ $\in \mathbb{K}$.

Remark 2. Any intersoction of convex sets is convex.
Remark 3. A is absolutely convex if and only if $\%$ A $x, y \in A \Rightarrow \lambda x+\mu y \in A$ when $|\lambda|+\mid \mu_{i} \leq 1$.

Exercise 1. Let A be a nonempty absolutely convex set. Then
(i) $0 \in A$
(ii) $\lambda A=\mu A$ if $|\lambda| \leq \mid \mu$
(iii) $\sum_{i=1}^{n} \lambda_{i} \Lambda=\left(\sum_{i=1}^{n}\left|\lambda_{i}\right|\right) A$ for all $\lambda_{i} \in \mathbb{K}$.

DEFINITION 3. A subset A of a vector space E is
absorbent if for each $x \in E$ there is some $\lambda>0$ such $x \in \mu A$ for all μ with $|\mu| \geq \lambda$.

Remark 1. A finite intersection of absorbent sets is absorbent.

Remark 2. An absolutoly convox set is absorbent if and only if it spans E. This is equivalont to

$$
E=\bigcup_{\lambda>0}^{\bigcup_{0}} \lambda A \quad \text { or } \quad: E=\bigcup_{n=1}^{\infty} n A
$$

PROPOSITION 2. If V is a neighborhood of 0 , then
(i) V is absorbent
(ii) there is a neighborhood W of 0 such that. W+WCV.
(iii) there is a balanced neighborhcod $W \subset V$.

PROOF. (i) Let $x \in E$ be given. If $f(\lambda)=\lambda x$ then f is continuous at $\lambda=0$ and so there is $\epsilon>$ such that $\lambda \in \mathbb{K}$, $|\lambda|<\epsilon \Longrightarrow \lambda x \in V$. Then $x \in \mu V$ for $|\mu| \geq \epsilon^{-1}$.
(ii) The mapping $(x, y) \in E x E \rightarrow x+y \in E$ is continuous at (0,0). There exist neighborhoods W_{1}, W_{2} of 0 in E such that $x \in W_{1}, y \in W_{2}$ and $W_{1}+W_{2} \subset V$. set $W=W_{1} \cap W_{2}$.
 $(0,0)$. So there exists $\delta>0$ and a neighborhood U of 0 in E such that $|\lambda| \leq \delta, x \in U \Rightarrow \lambda x \in V$. Set $W=\{\lambda x|\lambda \in K,|\lambda| \leq \delta, x \in U\}$. Then W is a balanced neighborhood contained in V. (Verify)

Remark. Symmetric neighborhoods form a basis of neighborhoods at 0 .
2.2. Seminorms.

DEFINITION 4. A seminorm p on a vector space E is a
non-negative real valued function on E such that
(i) $p(x) \geq 0$
(ii) $p(\lambda x)=|\lambda| p(x)$
(iii) $p(x+y) \leq p(x)+p(y)$
for all $x, y \in E, \lambda \in K$. Clearly $p(0)=0$ and $|p(y)-p(x)| \leq p(y-x)$.
A norm p on E is a seminorm such that $p(x)=0 \Rightarrow x=0$.

DEFINITION 5. Let p be a seminorm on a vector space E. If $a \in E, r \geq 0$, the open ball $B_{r, p}(0)$ with centre a and radius r is defined by

$$
\mathrm{B}_{\mathrm{r}, \mathrm{p}}(\mathrm{a})=\{\mathrm{x} \in \mathbb{E} \mid \mathrm{p}(\mathrm{x}-\mathrm{a})<\mathrm{r}\}
$$

and the closed ball $\overline{\mathrm{B}}_{\mathrm{r}, \mathrm{p}}(\mathrm{a})$ is defined by

$$
\bar{B}_{r, p}(a)=\{x \in E \mid p(x-a) \leq r\}
$$

In a seminormed space E, we usually write $B_{r}(a)$ and $\bar{B}_{r}(a)$ for $B_{r, p}(a)$ and $\bar{B}_{r, p}(a)$ respectively.

DEFINITION 6. Let $I=\left\{p_{i}\right\}_{i \in I}$ be a family of seminorms on a vector space E. The collection of all sets of the form $B_{r, p_{i}}$ (a) where $a \in E, r>0$, $i \in I$ may be taken as a sub-basis for a topology τ_{I} on E and it is called the natural topology defined on E by Γ.

Remark. Each p_{i} is continuous in τ_{I} :
PROPOSITION 3. Let $6>0, i_{1}, i_{2}, \ldots, i_{n} \in I$ and $a \in E$. Set

$$
v_{\varepsilon, i_{1}}, \ldots . . . i_{n}(a)=\bigcap_{j=1}^{n} B_{\varepsilon, p_{i_{j}}}(a)
$$

and

$$
\overline{\mathrm{V}}_{\varepsilon, i_{1}}, \ldots, i_{n}(a)=\bigcap_{j=1}^{n} \bar{B}_{\varepsilon, p_{i_{j}}}(a)
$$

Then the collection of all $V_{\varepsilon, i_{1}}, \ldots, i_{n}(a)\left(\bar{v}_{\varepsilon, i_{1}}, \ldots, i_{n}(a)\right)$ is a basis of open (closed) neighborhoods at a for τ_{Γ}. Also E is a topological vector space with respect to τ_{Γ}.

Proof. Let $a \in E_{,} b_{1}, b_{2}, \ldots . b_{n} \in E_{,} \varepsilon_{1}, \varepsilon_{2}, \ldots, \varepsilon_{n}>0$ $i_{1}, i_{2}, \cdots, i_{n} \in I$ be such that

$$
a \in \bigcap_{j=1}^{n} E_{\varepsilon_{j}, p_{i}}\left(b_{j}\right)
$$

Let $\delta=\min _{j}\left\{\varepsilon_{j}-P_{\dot{i}_{j}}\left(a-b_{j} \backslash\right\}\right.$. If $x \in V_{\delta_{2} i_{I}}, \ldots, i_{n}(a)$
then $p_{i_{j}}(x-a)<\delta$ so that $p_{i_{j}}\left(x-b_{j}\right) \leq p_{i_{j}}(x-a)+p_{i_{j}}\left(a-b_{j}\right)<$ $\delta+p_{i}\left(a-b{ }_{j}\right) \leq \bar{c}_{j} \quad$ so that

$$
V_{\delta, i_{1}}, \ldots, i_{n}(a) C_{\varepsilon_{j}}, p_{i}\left(b_{j}\right) \text { for each } j .
$$

Hence

$$
a \in v_{\delta, i_{1}}, \ldots, i_{n}(a) \subset \bigcap_{j=1}^{n} B_{\varepsilon_{j},} p_{i_{j}}(a)
$$

Further we have

This will prove the first part of the proposition.
It remains to show that τ_{Γ} is compatible with the algebraic structure of \mathbb{E}. Let $a, b \in \mathbb{E}$. Set $c=a+b$ 。 Consider a sub-basis neighborhood $B_{E, p_{i}}$ (c) of c. If $x \in B \in / \varepsilon_{i}, p_{i}(a)$, $y \in B \varepsilon / 2, p_{i}(b)$ then

$$
p_{i}(x+y-c) \leq p_{i}(x-a)+p_{i}(y-b)<\frac{\varepsilon}{2}+\frac{\varepsilon}{2}=\dot{c}
$$

so that $x+y \in B_{\varepsilon, p_{i}}(c)$. This proves the continuity of addition. Let $\alpha_{\in} \mathbb{K}, a \in E$ set $b=\alpha_{a}$. Pick a sub-basis neighborhood
${ }^{B_{\varepsilon}, p_{i}}{ }^{(b)}$ of b. If $\varepsilon>0, \gamma>0, \delta>0,|\lambda-\alpha|\left\langle\gamma, x \in B_{\delta, p_{i}}(a)\right.$, then
$p(\lambda x-\alpha a)=p_{i}[\lambda(x-a)+(\lambda-\alpha) a] \leq|\lambda| p_{i}(x-a)+|\lambda-\alpha| p_{i}(a)$
Now $|\lambda| \leq|\lambda-\alpha|+|\alpha|<\gamma+|\alpha|$ so that $p_{i}(\lambda x-\alpha a)<(\gamma+|\alpha|) \delta+\gamma p_{i}(a)$ $\leq \varepsilon$, if we choose γ, δ small enough. i.e., $\lambda \times f B_{\varepsilon}, p_{i}{ }^{(a)}$.

Exercise 2. The family $\Gamma=\left\{p_{i}\right\}_{\text {if, } I}$ of seminorms is directed if for any $i_{1}, i_{2} \in I$ there exists $i \in I, \lambda \in \mathbb{R}, \lambda>0$ such that $p_{i_{j}} \leq \lambda p_{i}, j=1,2$. If Γ is a directed family of seminorms on E, show that for each fixed a $\in E$, the collection of all ${ }^{B} \varepsilon_{, ~ p_{1}}$ (a) ($\bar{B}_{\xi} p_{1}(a)$) is a basis of open (closed) neighborhoods at a, with respect to τ_{I}, where $\varepsilon>0$ and $i \in I$.

2.3. Locally convex spaces.

DEFINITION 7. Let V be an absorbent convex set in a vector space E. The Minkowsky function p on V is defined by

$$
p(x)=\inf \{\lambda \in \mathbb{R} \mid \lambda>0, x \in \lambda V\}
$$

PROPOSITION 4. If p is the Minkowsky function of y,
then
(i) $0 \leq p(x)<\infty \quad$ for $x \in E$.
(ii) $p(x+y) \leq p(x)+p(y)$.
(iii) $p(\lambda x)=\lambda p(x), x \in E, \lambda \in \notin, \lambda \geq 0$.
(iv) $p(\lambda x)=|\lambda| p(x), x \in E, \lambda \in N$, if V is balanced.
(v) $\{x \in E \mid p(x)<I\} \in V \subset\{x \in E \mid p(x) \leq I\}$
(vi) If Eis a topolocical vector space, then

$$
\begin{aligned}
& \{x \in E \mid p(x)<I\}=V \text { if } V \text { is open, and } \\
& \{x \in E \mid p(x) \leq I\}=V \text { if } V \text { is closed. }
\end{aligned}
$$

PROOF. i) is immediate from the absorbing property of V.
ii) Let $x, y \in E$. Choose $\lambda, \mu \in \mathbb{R}, \lambda, \mu>0$ such that $\lambda<p(x)+E$, $\mu<p(y)+\varepsilon, x \in \lambda V, y \in \mu V$. Then $x+y \in(\lambda+\mu) V$ so that $p(x+y) \leq$ $\lambda+\mu<p(x)+p(y)+2 \varepsilon$. Since ε is arbitrary $p(x+y) \leq p(x)+p(y)$. 1ii) As in ii), it is easy to verify that $p(\lambda x) \leq \lambda p(x)$ if $\lambda>0$. Then $\frac{1}{\lambda}>0$ and then $p(x)=p\left(\frac{1}{\lambda} \cdot \lambda x\right) \leq \frac{1}{\lambda} p(\lambda x)$ so that $\lambda p(x) \leq p(\lambda x)$. Hence $p(\lambda x)=\lambda p(x)$. If $\lambda=0, p(\lambda x)=\lambda p(x)=0$ is trivial.
iv) Suppose V is balanced. Let $\lambda \in \mathbb{K}$ with $|\lambda|=1$. Then $\lambda: V=V$. Let $x \in E$. Pick $\mu>0$. Then $x \in \mu V$ if and only if $\lambda x \in \mu(\lambda V)=\mu V$ and hence $p(\lambda x)=p(x)$. If $\mu=\lambda \nu$ where $\nu=\downarrow_{\mu} d$, $|\lambda|=1$ then $p(\mu x)=p(\lambda \nu x)=p(\nu \lambda x)=\nu p(\lambda x)=|\mu| p(x)$. v) If $x \in E, p(x)<1$, there is $\lambda \in R, 0<\lambda<1$, such that $x \in \lambda V$. Since $0, \frac{x}{\lambda} \in V$ then $x=\lambda \frac{x}{\lambda}+(1-\lambda) 0 \Omega V$ by convexity of V. Moreover, if $x \in V=1 \nabla V$ then $p(x) \leq 1$.
vi) Let V be open and $x \in V$. Now because $\lambda \in \mathbb{K} \rightarrow \lambda x \in E$ is continuous at $\lambda=1$, we can choose $\delta>0$ such that $|\lambda-1| \leqslant \delta \Longrightarrow \lambda x \in V$. Then $(1+8) x \in V \Rightarrow p(x) \leq \frac{1}{1+\delta}<1$. Now let V be closed and $x \in E, p(x) \leq 1$. If $\Theta \in K, \mid<1$ then $p(\Theta x)<1$ hence $\Theta x \in V$. Since $\Leftrightarrow x \rightarrow x$ as $\Theta \rightarrow 1$ and V is closed, we get $x \in V$.

DEFINITION 8. A topological vector space E is
locally conver if there exists a basis of convex neighborhoods of 0 .

PROPOSITION 5. A seminorm on a topological vector space E is continuous on E if and only if p is continuous at 0 . (Exercise)
PROPOSITION 6. an a locally convex space, the absolutely convex nedghborhodds form a basis of neighhorhoods of O. (Exercise)
PROPOSITION 7. If E is a topological vector space whose topology is defined by a family $I=\left\{p_{i}\right\}_{i \in I}$
of seminorms, then E is locally convex space and
p_{i} is continuous. Conversely, if E is a locally convex space, its topology is defined by the collec-
tion of all continuous seminorms.

PROOF. Suppose the topology of E is defined by I. If p is a seminorm on $E, a \in E, \varepsilon>0$ then the $\operatorname{set}\{x \mid p(x-a)<\varepsilon\}$ is convex. By the definition of τ_{T}, the topology of \dot{E} has an open sub-basis, hence an open basis, formed by convex sets, so E is locally convex. Moreover, each p_{i} is continuous.

Conversely let E be locally convex with topology τ. Let I be the collection of all τ-continuous seminorms on E. If $p \in T, a \in E, \varepsilon>0$ then the $\operatorname{set}\{x f E \mid p(x-a)<\varepsilon\}$ is τ-open since $x \rightarrow p(x-a)$ is τ-continuous. Then it follows that overy τ_{Γ}-open set is τ-open. Hence $\tau_{\Gamma} \leq \tau$. Let V be a neighborhood of 0 . Ghoose an absolutely convex τ-neighborhood U of O such that $U \subset V$ and p the Minkowsky function of U. Then p is a seminorm. Moreover, $x \in U \Rightarrow p(x) \leq 1$, hence $x \operatorname{CrU} \Rightarrow \mathrm{p}(\mathrm{x}) \leq \mathrm{r}$ for $\mathrm{r}>0$. Hence p is continuous at 0 and hence it is continuous on E. So p $\notin \Gamma$. On the other hand, $x \in E, p(x) \leq 1 \Rightarrow x \in U \subset V$ i.e. $\{x \in E \mid p(x)<I\} \subset V$. Therefore V contains a τ_{Γ}-open subset containing 0 and is a τ_{Γ} noicihborhood of 0 . Thus every τ-neighborhood of 0 is a τ_{Γ} neighborhood of 0 . Hence $\tau \leq \tau_{\Gamma}$. Therefore $\tau=\tau_{\Gamma}$.

PROPOSITION 8. If U is a base of neighborhoods of 0 in a topological vector space E, then E is separated (i.e. Hausdorff) if and only if

$$
\bigcap_{U \in q} U=\{0\}
$$

In particular, if the topology of E is τ_{Γ}, then E is separated if and only if for each nonzero. $x \in E$ there is some $p \in I$ such that $p(x)>0$.

PROOF. If E is separated and $x \neq 0$, there is some $U \in \mathscr{U}$ with $\times \notin U$ so that

$$
\bigcap_{U \in Q} U=\{0\}
$$

Conversely, if $\cap U=\{0\}$ and $x \neq y$, then there is some U such that $x-y \notin U$. By proposition 2 there is a balanced neighborhood W such that $W+W \subset U$. Then $X+W$ and $y+W$ are disjoint neighborhoods of x and y respectively. Hence E is separatod

$$
\begin{aligned}
& \text { PROPOSITION 9. A locally convex space } E \text { is } \\
& \text { metrizable if and only if it is separated and there } \\
& \text { is a countable base of neighborhoods of } 0 . \text { The } \\
& \text { topology of metrizable space can always be defined } \\
& \text { by a metric that is invariant under translation. }
\end{aligned}
$$

PROOF. If E is metrizable, it is separated and has a countable base of neignborhoods of 0 .

If E has a countable base of neighborhoods of 0 , each an absolutely convex neighborhood neighborhood contains/and so there is a base $\left\{U_{n}\right\}$ fabsolutely convex neighborhoods. Let p_{n} be the Minkowsky function of U_{n}. Put

$$
f(x)=\sum_{n=1}^{\infty} 2^{-n} \inf \left(p_{n}(x), 1\right)
$$

Then $f(x+y) \leq f(x)+f(y), f(-x)=f(x)$ and if $f(x)=0$, then $p_{n}(x)=0$ for all n and so $x=0$, since E is separated. Define d: by

$$
d(x, y)=f(x-y)
$$

then d is a metric and $d(x+z, y+z)=d(x, y)$ so that d is invariant under tranalation. In this metric topology, the sets

$$
V_{n}=\left\{x \mid f(x)<2^{-n}\right\}
$$

form a base of neighborhoods. But V_{n} is open in the original topology since each p_{n} and so f is continuous. Also $V_{n} \subseteq U_{n}$. Hence d defines the original topology on E.

COROLLARY. If the topology on the separated space E is the coareest convex topology making a sequence - of absolutely convex sets neighborhoods, then E is metrizable.
2.4. Linear Mappings.

Let E and F be vector spaces over $\mathbb{K} . \quad f: E \rightarrow F$ is Iinear if

$$
f(\alpha x+\beta y)=\alpha f(x)+\beta f(y)
$$

f is $1: 1$ if $f^{-1}(0)=\{0\}$. In general $f^{-1}(0)$ is a sub-space of E .

Let L denote the set of linear mappings of E into F. L is a tector space over \mathbb{K} if

$$
\begin{aligned}
(f+g)(x) & =f(x)+g(x) \\
(\lambda f)(x) & =\lambda f(x)
\end{aligned}
$$

A linear mapping of E into K is called a linear form on E. E* will denote the set of all linear forms on E.

PROPOSITION 10. A linear mapping $f: E \rightarrow F$ is continuous if and only if it is continuous at 0 .

PROOF. For each aEE, a neighborhood of $f(a)$ is given by $f(a)+V$ where V is a neighborhood of 0 in F. If f is continuous at 0 , there exists a neighborhood U of O in E such that $f(U) \subset V$. Then $f(a+V) \subset f(a)+V$ and f is continuous at a. The converse is trivial.

COROLLARY. If E and F are normed linear spaces
and $f: E \rightarrow F$ is linear, then f is continuous if and only if there is $\alpha>0$ such that $\|f(x)\| \leq \alpha|x| \mid$ for all $x \in E$.

PROOF. Exercise.
Exercise 3. If f is a non-zero linear form on E, then $f^{-1}(0)$ is a maximal subspace of E. Conversely tc. each maximal subspace H of E there exists a linear form f on E such that $f^{-1}(0)=H$.

PROPOSITION 11. A linear form f on a topological vector space E is continuous if and only if $f^{-1}(0)$ is closed in .
PROOF. Suppose $f^{-1}(0)=H$ is closed. Set $V=\{x| | f(x) \mid<I\} \therefore$. If $f \neq 0$, choose a $\in E$ such that $f(a)=1$. Then there is a balanced neighborhood U such that $(a+U) \cap H=\notin$ We assert that $U \subset V$. Suppose that $x \in U$ and $|f(x)| \geq 1$. Then $y=\frac{-x}{f(x)}$ €U and $f(a+y)=0$ so that $(a+U) \cap H \neq \varnothing$. Contradictions. Then $x \in \delta U \Rightarrow|f(x)|<\delta$ for $\delta>0$. Hence f is continuous at 0 and hence continuous on E,

DEFINITION 9. The dual space E ' of a topological vector space E is the subspace of E^{*} consisting of all continuous linear forms on E. PROPOSITION 12. Let A be an open convex subset of a locally convex space E and let M be a vector sub-space of E such that $A \cap M=\varnothing$. Then there exists a closed hyperplane containing M and not meeting A.

LEMMA 1. If M is a vector subspace of E, so is \bar{M}.
LEMMA 2. In a topological vector space, a hyperplane is either closed or dense.

PROOF. Exercise.

LEMMA 3. Suppose that E is a real locally convex space, A an oven convex subset of E and H a vector subspace not meeting A. Then H is either a hyperplane or there exists $x \not$ 肋 such that the vector subspace spanned by x and H does not meet A.

PROOF. Let $C=H+\bigcup_{\lambda \nu} \lambda A$. Then C is open $-C=H+\bigcup_{\lambda<0} \lambda A$ and $C \cap-C=\phi$. For if $x \in C \cap-C$, then $x=h+\lambda a=h^{\prime}-\lambda^{\prime} a^{\prime}$ for some $h, h^{\prime} \in H, a, a^{\prime} \in A$ and $\lambda, \lambda^{\prime}>0$ ind so $\lambda a+\lambda$ 'a' $6 H$. But since A is convex, $\lambda a+\lambda$ 'a' $€(\lambda+\lambda$ ') A which does not meet H.

1) Suppose that $H U C U-C \neq E$. There is some $x \not F H$ * with $x \notin C i-6$. If the vector subspace spanned by x and H meets A say in y, then for some $\lambda \neq 0$, $x \in \lambda y+H C_{C=}$. Hence the vector subspace does not meet A.
ii) Suppose $H U C U-C=E$. If is not a hyperpane there is some point a€C so that H and a together does not span E, he nce there is some point $b \in \cdots C$ not in the span of H and a. Let $f(\lambda)=(1-\lambda) a+\lambda b(0 \leq \lambda \leq 1)$. Now f is continuous and C is open and so $I=f^{-1}(C)$ and $J=f^{-1}(-C)$ are open in $[0,1]$. Also $O \in I, I \in J$ and $I: J=\varnothing$. Let

$$
\alpha=\sup \{\lambda \mid \lambda \subset I\}
$$

Then $\alpha \in \bar{I} \cap(\overline{\sim I}) \subset(\overline{\sim J}) \cap(\overline{\sim I})=\sim J \cap \sim I$. Hence $f(\alpha) \notin C U-C$. Thus $f(\alpha) \in H$ i.e. $(1-\alpha) a+\alpha b \notin H$. But b is not in the span of a and H. Therefore H isahyperplane.

LEMMA 4. Suppose that E is a complex vector
space and H is a real hyperplane in E. Then
$H \cap_{i H}$ is a complex hyperplane.in E.

PROOF. Suppose a $\notin H \bigcap_{i H}$ and suppose for example a\&H. Then ialiH, which js a real hyperplane and so $a=\alpha i a+b$ with α real and $b \in i H_{\text {, }}$ then $\left(1+\alpha_{i}\right) b=\left(1+\alpha^{2}\right) a \not d H$, and so $b \notin H$. Now if $x \in E, x=\beta b+y$ with β real and $y \in H$, and then $y=\gamma i b+z$ with γ real and z GiH. Hence $z \in H$, thus $x=(\beta+\gamma i) b+z$ say with $z \in H \cap i H$. Therefore $H \cap_{i H}$ is a complex hyperplane in E,

PROOF OF PROFOSTTION 12. First consider the case when E is a real vector space. Let E be the set of all vector subspaces of E containing M and not meeting A. Apply the maximal axiom to the chain $\mathscr{C}=\{M\}$, there is a maximal chain M in E with $\mathscr{C} \subset M \subset \mathcal{E}$. Let H be the union of all sets of \mathcal{M}. Then clearly H is a vector subspace of E not meeting A. By Lemma 3, it is a hyperplane, because the other possibility would contradict:themaximality of M. Also H is closed because otherwise it is dense in E and meets every open set including A.

If E is a complex vector space, it is also a real vector space and so there is a real closed hyperplane K containing M ind nct. meeting A. Then $H=K \cap i K$ is a complex closed hyperplane containing $M \cap i M=M$ and not meeting A.

COROLLARY. Ėvery closed vector subspace of a convex space is the intersection of closed hyperplanes containing it.

2.5. Extension of a linear form.

PROPOSITION 13. Let p be a real valued function on the real vector space E such that $p(x+y) \leq p(x)+p(y)$ and $p(\lambda x)=\lambda p(x), \lambda \geq 0, \lambda \in \mathbb{R}$. Iet $F \subset E$ be a vector subspace and g a linear form on F satisfying $g(x) \leq p(x)$ for any $x \notin F$. Then there is a linear form f on E extending g and satisfying $f(x) \leq p(x)$ for all $x \in E$.

PROOF. Let a $\in E \backslash F$ and $F_{I}=F \oplus \mathbb{R a}$, the vertor subspace generated by a and F. Each element $y \in F_{1}$ has the unique rebresentation $y=x+\lambda_{a}$ where $x \in F, \lambda \in \mathbb{R}$. Define g_{1} by $g_{1}(y)=g(x)+\lambda \alpha$ where α is to be determined. Then g_{1} is a linear form on F_{1} extending g. We now choose α so that $g_{1}(y) \leq p(y)$ for ail $y \in F_{1}$, or $g(x)+\lambda \mu \leq p(x+\lambda \alpha)$. If $x_{1}, x_{2} \in F$, we have

$$
g\left(x_{1}\right)+g\left(x_{2}\right)=g\left(x_{1}+x_{2}\right) \leq p\left(x_{1}+x_{2}\right) \leq p\left(x_{1}-a\right)+p\left(x_{2}+a\right)
$$

so that $g\left(x_{1}\right)-p\left(x_{1}-a\right) \leq p\left(x_{2}+a\right)-g\left(x_{2}\right)$.

Let

$$
\begin{aligned}
& \mu=\sup \left\{g\left(x_{1}\right)-p\left(x_{1}-a\right) \mid x_{1} \in F\right\} \\
& \nu=\inf \left\{f\left(x_{2}+a\right)-p\left(x_{2}\right) \mid x_{2} \in F\right\}
\end{aligned}
$$

Now choose α such that $\mu \leq \alpha \leq \nu$. We assert that this α will work.

Now let \varnothing be such that (1) \varnothing is a linear form defined on a vector subspace D_{\varnothing} of E containing $F(2) ~ \varnothing$ is an extension of g, (3) \varnothing satisfies $\varnothing(x) \leq p(x)$ for all $x \in D$. The set Φ of all such \varnothing is partially ordered as follows: If $\varnothing_{1}, \varnothing_{2} \in \Phi$, then $\varnothing_{1} \leq \varnothing_{2}$ if $D_{\phi_{1}}^{\infty} D_{\phi_{2}}$ and \varnothing_{2} extends \varnothing_{1}. The maximal principle applied to Φ gives a linear form g_{1} which extends g and $g_{1}(x) \leq p(x)$. If $D_{g_{1}} \neq E$, we can extend g_{1} as in the first paragraph which will contradict the maximality of g_{1}. This completes the proof.

$$
\begin{aligned}
& \text { LEMMA. Let } q \text { and } p \text { be seminorms on the vector } \\
& \text { space } E \text {. Then } q \leq p \text { if and only if } x \in E, \\
& p(x) \leq 1 \Rightarrow q(x) \leq 1 .
\end{aligned}
$$

PROOF. If $q \leq p$, then clearly $p(x) \leq I \Rightarrow q(x) \leq 1 . ?$ Conversely assume $p(x) \leq 1 \Rightarrow q(x) \leq 1$. Let $x \in E$ such that $p(x)>0$. Then $p\left(\frac{x}{p(x)}\right)=1 \Rightarrow q\left(\frac{x}{p(x)}\right) \leq 1$, hence $q(x) \leq p(x)$. If $p(x)=0$, then $p(\lambda x)=0 \leq I \Rightarrow|\lambda| \cdot q(x)=$ $q(\lambda x) \leq I \Longrightarrow q(x) \leq \frac{1}{|\lambda|}$ for every $\lambda \in \mathbb{K}, \lambda \neq 0$. Letting $\lambda \rightarrow \infty$, we get $q(x)=0$ also. Hence $q(x)=p(x)=0$.

$$
\begin{aligned}
& \text { PROPOSITION 14. (Hahn-Banach) Suppose that } p \text { is } \\
& \text { a seminorm on a vector space } E \text { and that } f \text { is a } \\
& \frac{\text { linear form on a vector subspace } M \text { of } E \text { such that }}{|f(x)| \leq p(x) \text { for all } x \in M \text {. Then there is a }} \\
& \text { linear form } \mathrm{f}_{1} \text { on extending with }\left|f_{1}(x)\right| \leq p(x) \\
& \text { for all } x \in E .
\end{aligned}
$$

PROOF. Let E have the topology determined by the seminorm p. Let $U=\{x \mid p(x)<1\}$. Suppose $f \neq 0$. Let $a \in E$ suchthat $f(a)=1$ and $A=a+U$. Then A is open and convex. Put $N=f^{-1}(0)$. If $X \in U$, then $|f(x)|<$ 1. Hence $A \cap N=\varnothing$. There is then a closed hyperplane H containing N but not meeting A. Let f_{1} be the linvar form on E with $H=f_{1}^{-1}(0)$ and $f_{1}(a)=1 . \quad f_{I}$ then extends f.

COROLLARY 1. Any continuous linear form defined
on a vector subspace of a locally convex space has a continuous extension.

COROLLARY 2. If $a \in E$ and p is a seminorm on E, there is a linear form f on E with $|f(x)| \leq p(x)$ for all $x \in E$ and $f(a)=p(a)$.

COROLLARY 3. If F is separated with dual E^{\prime}, then $f(a)=0$ for $a l l f \in E^{\prime} \Rightarrow a=0$.

PROPOSITION 15. Let E be a locally convex space. Suppose that A and B are disioint convex sets and

A is open. Then there is a continuous linear form f such that $f(A)$ and $f(B)$ are disjoint.

PROOF. Tha set $A-B$ is open and convex and does not contain the origin. There is a closed hyperplane $H=\mathrm{e}^{-1}(0)$ containing the vector subspace $\{0\}$ and not meeting $A-B$. The linear form f is continuous since H is closed and $f(A)$ and $f(B)$ do not meet.

LEMMA. Any non-zero linear form on E is an oven map.

PROOF. Let A be an open set in E and $x \in A$. Then A-x contains a neighborhood of 0 and so is absorbent. If f is a nonzero linear form on E there is some $a \in E$ with $f(a)=1$ and then there is some $\alpha>0$ with $\lambda a \in A-x$ for $|\lambda| \leq \alpha$. Then $f(x)+\lambda \in f(A)$ for $|\lambda| \leq \alpha$. Hence $f(A)$ is open.

COROLLARY 1. If B is a convex subset of a locally convex space and $a \not \subset \bar{B}$ then there is continuous linear form f with $f(a) \notin \overline{f(B)}$.

PROOF. Since $a \downarrow \bar{B}$ there is an absolutely convex neighborhood U of 0 such that $(a+U) \cap B=\varnothing$. By Proposition 15, there exists a continuous linear form f such that $f(a+U) \cap_{f}(B)=\varnothing$. But $f(a+U)$ is open. Hence $f(a) \& \overline{f(B)}$

COROLLARY 2. If B is an absolutely convex subset of a locally convex space and a $\overline{\notin B}$, then there is a continuous linear form f such that $|f(x)| \leq 1$ for all $x \in B$ and $f(a)>1$.

PROOF. By Corollary 1 , there is a continuous linear form g such that $\ddot{g(a)} \not \subset \overline{g(B)}$. Then $\overline{g(B)}$ is an absolutely convex set so that $\sup \{|g(x)| \mid x \in B\}<|g(a)|$. Let $\alpha=\sup \{|g(x)| \mid x \in B\}$. Set $f=\frac{|g(a)|}{\alpha g(a)} g$ if $\alpha \neq 0$ and $\hat{=}=\frac{2}{g(a)} g$ if $\alpha=0$.

COROLLARY 3. Let E be a real locally convex space.
If A and E are disjoint convex subsets of E and A is open then there is a continuous linear form f and a constant α with $f(x)>\alpha$ for all $x \in_{A}$ and $f(x) \leq \alpha$ for all $x \in B$.

PROOF. By Pronosition 15, there exists continuous linear form f with $f(A) \bigcap f(B)=\varnothing$. $\bigcap f(A)$, and $f(B)$ are convex sets and $f(A)$ is open in \mathbb{R}. We may suppose that

$$
\sup \{f(x) \mid x \in B\} \leq \inf \{f(x) \mid x \in A\}
$$

(if necessary multiply by -1). Put $\alpha=\sup \{f(x) \mid x \in B\}$, $f(x) \leq \alpha$ for all $x \in B$. Since A is open $f(x)>\alpha$ for all $x \in A$.

PROOF. Let $N=f^{-\frac{1}{2}}(0)$. Then $A \cap N=\varnothing$ (since $f>0$ in $A \cap M)$. By Proposition, there is ahyperplane H containing N not meeting A. Let $a \in A \cap M$. Define f_{1} by $f_{1}^{-1}(0)=H$ and $f_{I}(a)=f(a)$. Then f_{1} extends f. We shall now show that $f_{1}(x)>0$ for all $x \in A$. Suppose not.
Let $f_{1}(a)=\lambda>0$ and $f_{1}(b)=-\mu \leq 0, b \in A$. Since A is convex.

$$
\frac{\mu a+\lambda b}{\lambda+\mu} \in \cdot A \text { and } f_{I}\left(\frac{\mu a}{\lambda+\mu}+\frac{\lambda b}{\lambda+\mu}\right)=\frac{\mu}{\lambda+\mu} f_{1}(a)+\frac{\lambda}{\lambda \cdot+\mu} f_{1}(b)
$$

Therefore $\frac{\mu_{a}}{\lambda+\mu}+\frac{\lambda b}{\lambda+\mu} \in H \therefore H \cap A \neq \varnothing$ contradiction.

2.6. Duality and weak topology.

Let E be a locally convex space and E^{*} the algebraic dual of $E E^{\prime}$ is the continuous dual of $E \cdot E^{\prime}$ is a vector subspace of E^{*}.

To oach $x \in E$, define $\tilde{x}: E^{\prime} \rightarrow K$ by $\tilde{x}(f)=f(x)$. Then \tilde{x} is a linear form on E^{\prime} i.e. $\widetilde{x} \in E^{\prime *}$. Thus we have a map $x \in E \rightarrow \tilde{x} \in E^{\prime *}$. If E is separated, $\tilde{x}(f)=\tilde{y}(f)$ for all $f \in E^{\prime}$ if and only if $f(x)=f(y)$ for all $f \in E^{\prime}$, if and only if $x=y$. Then E is isomorphic to a subspace of $E^{\prime *}$.

> PROBLEM. Topologize E^{\prime} such that E is the continuous dual of E^{\prime}.

NOTATION. x, y, z, \ldots will denote the elements of E, whereas $x^{\prime}, y^{\prime}, z^{\prime}, \ldots$ will denote elements of E^{\prime}. Write $\left\langle x, x^{\prime}\right\rangle$ for $x^{\prime}(x)$. Then $\left\langle x, x^{\prime}\right\rangle$ is a bilinear form on ExE'. Also we have

1. If $x \neq 0$, there is an $x^{\prime} \in E^{\prime}$ such that $\left\langle x, x^{\prime}\right\rangle \neq 0$
2. If $x^{\prime} \neq 0$, there is an $x \in E$ such that $\langle x, x\rangle \neq 0$.

This is the same as
$\left(I^{\prime}\right)\left\langle X, X^{\prime}\right\rangle=0$ for all $X^{\prime} \in E^{\prime} \Rightarrow \mathrm{x}=0$
$\left(2^{\prime}\right)\left\langle x, x^{\prime}\right\rangle=0$ for all $x \in E^{\prime} \Rightarrow x^{\prime}=0$.
Let E, E^{\prime} be vector spaces over the same field \mathbb{K}. Let $\left\langle x, x^{\prime}\right\rangle$ be a nondegenerate bilinear form on ExE'. $X^{\prime} \in E^{\prime}$ gives rise to a linear form on E given by $f(x)=\left\langle x, x^{\dagger}\right\rangle$. Then f is $I: 1$ and Ψ^{\prime} is also isomorphic to a vector subspace of E^{*}. Similarly Eis also isomorphic to a vector subspace of $E^{i *}$. DEFINITION. (E,E') is called a dual pair. If ($E E^{\prime}$) is a dual pair, so is ($\left.E^{\prime}, E\right)$.

Examples 1. If E is a senarated locally convex space with dual E^{\prime}, then (E, E^{\prime}) is a dual pair.

Examples 2. For a vector space E with algebraic dual $E^{*},\left(E, E^{*}\right)$ is a dualipair.

Let (E, E^{\prime}) be a dual pair. To each $x^{\prime \in E}$, set $p(x)=\left|\left\langle x, x^{\prime}\right\rangle\right|$ for all $x \in E$. Then p is a seminorm on E. The coarsest topology on E making all these seminorms continuous is the weak topology on E determined by E^{\prime} and is denoted by $\sigma\left(\mathbb{E}, \mathbb{E}^{\prime}\right)$. It is the coarsest tondogy on E for which all the linear forms in E^{\prime} are continuous. In $\left.\sigma(E, E)^{\prime}\right)$ the sets $\left\{\left.x\right|_{1 \leq i \leq n} \sup _{n}\left|<x, x_{i}^{\prime}\right\rangle \mid<\xi\right\} x_{i}^{\prime} \in E^{\prime}$, form a base of closed neighborhoods of 0 . Now $\sigma(E, E \prime)$ is convex and separated.

The dual of E under $\sigma\left(E, E^{\prime}\right)$ contains E^{\prime}. We shall show that it is precisely E'.

LEMMA. If $f_{o}, f_{1}, \ldots f_{n}$ are linear forms defined on a vector space E, then either f_{0} is a linear
combination of $f_{I}, \ldots . f_{n}$ or there is afE such
that $f_{0}(a)=1$ and $f_{i}(a)=0$ for $i=1,2, \ldots n$.

PROOF. For $n=0$, the result is trivial. Assume it is true for $n-1$. Then for each i, $1 \leq i \leq n, f_{i}$ is not a linear combination of $f_{1}, \ldots f_{i-1}, f_{i+1}, \ldots f_{n}$. Then by . induction hypothesis, there exists afe, $j=1,2, \ldots n$ such that
$f_{i}\left(a_{j}\right)=0$ for $i \neq j$ and $f_{i}\left(a_{i}\right)=1$. For each x GE,

$$
x-\sum_{1 \leq i \leq n} f_{i}(x) a_{i} \quad \in \bigcap_{1 \leq i \leq n} f_{i}^{-1}(0)=\mathbb{N}
$$

Then there is an element $a \in N$ such that $f_{0}(a)=1$ or $f_{0}(y)=0$ for all $y \in N$. In the latter case we have

$$
f_{0}(x)=\sum_{1 \leq i \leq n} f_{0}\left(a_{i}\right) f_{i}(x) \text { for all } x \in E
$$

which implies that

$$
f_{0}=\sum_{1 \leq i \leq n} \lambda_{i} f_{i} \text { where } \lambda_{i}=f_{o}\left(a_{i}\right)
$$

COROLLARY. If $f_{1}, \ldots f_{n}$ are linearly independent linear forms on a vector space E, then there are elements $a_{1}, \ldots a_{n} \in E$ such that $f_{i}\left(a_{j}\right)=\delta_{i}$. PROPOSITION 17. For a dual pair (E, E'), the dual of E under $\sigma\left(E, E^{\prime}\right)$ is E^{\prime}.

PROOF. Let f be a linear form on E continuous under $\sigma\left(E, E^{\prime}\right)$. Then $|f(x)| \leq \alpha<1$ on some neighborhood $\mathbb{U}=\left\{x\left|\sup _{1 \leq i \leq n}\right|\left\langle x, x_{i}\right\rangle \mid \leq 1\right\}$ where $x_{i}{ }^{\prime} \in E E^{\prime}$. Then by lemma, f is either a linear combination of $x_{1}^{\prime}, x_{2}{ }^{\prime} \ldots x_{n}{ }^{\prime}$ or there is some a€E such that $f(a)=1$ and $x_{i}^{\prime}(a)=0$ for $i=1,2, \ldots n$. Then aEU and $\mathrm{f}(\mathrm{a})>\alpha$, contradiction. Hence

$$
f=\sum_{1 \leq i \leq n} \lambda_{i} x_{i}^{\prime}
$$

PROPOSITION 18. If ($\mathrm{E}, \mathrm{E}^{\prime}$) is a dual pair, and A is a convex subset of E, then \bar{A} is the same for every topology of the dual pair (E, E^{\prime}).

PROOF. We shall show that if the closure \bar{A} under any topology ξ is the same as the closure $\bar{A}(\sigma)$ under $\sigma\left(E, E^{\prime}\right)$. Since ξ is finer than $\sigma, \bar{A} \subset \bar{A}(\sigma)$. Let a\&A \bar{A}. Then there is a continuous linear form f such that $f(a) \not \subset \overline{f(A)}$ i.e. there exists $x^{\prime} \in E^{\prime}$ such that $\left\langle a, x^{\prime}\right\rangle \notin\left\langle A, x^{\prime}\right\rangle$. There is a $\delta \geq 0$ such that $\left|\left\langle a-x, x^{\prime}\right\rangle\right| \geq \delta$ for all $x \in A$. Let $U=\left\{x| | K x, x^{\prime}\right\rangle \ddagger<\delta$. Then U is a neighborhood in σ and $a+U$ does not meet A. This means a/A (σ) i.e. $\bar{A}(\sigma) \bar{A}$.

2.7. Polar Sets.

DEFINITION. Let (E,E') be a dual pair. If A is a subset of E, the subset of E^{\prime} consisting of those x^{\prime} such that

$$
\sup _{x \in A}\left|\left\langle x, x^{\prime}\right\rangle\right| \leq 1
$$

is called the polar of A and is denoted by A°

PROPOSITION 19. Let ($\mathrm{E}, \mathrm{E}^{\prime}$) be a dual pair. Then polar in E^{\prime} of subsets of E have the following properties
(i) A° is absolutely convex and $\sigma\left(E^{\prime}, E\right)$-closed.
(ii) If $A \subset B$, then $B^{0} C A^{\circ}$.
(iii) If $\lambda \neq 0$, then $\left(\lambda_{A}\right)^{0}=\frac{1}{|\lambda|} A^{0}$
(iv) $\left(\hat{\alpha}_{\alpha}\right)^{0}=\rho_{\alpha} A_{\alpha}^{0}$

PROOF. Exercise.
Notice that $A^{0}=\bigcap_{x \in A} x^{\prime} \mid\left\lfloor\left\langle x, x^{\prime}\right\rangle \mid, \leq 1 \quad\right.$.

There are important special cases of polar sets. If M is a vector subspace of E, then $\operatorname{squp}_{x}\left|\left\langle x, x^{\prime}\right\rangle\right| \leq 1 i m p l i e s$ $\left\langle x, x^{\prime}\right\rangle=0$ for all $x \in M$. Hence M° consists of these elements of E^{\prime} that vanish on M and so is a vector subspace of E^{\prime} orthogonal to M. If E is a separated locally convex space, a subset A^{\prime} of its dual E^{\prime} is equicontinuous if and only if there is a neighborhood U of 0 with $\operatorname{sun}\left|\left\langle x, x^{\prime}\right\rangle\right| \leq 1$ for all $x \in U$ and $x^{\prime} \notin A^{\prime}$. Thus A^{\prime} is equicontinuous if and only if it is contained in the polar of some neighborhood.

PROPOSITION 20. If E is a separated locally convex space and is a base of neighborhoods, then the dual of E is $\bigcup_{U \in U} U^{\circ}$ (the polars.boidit takon in E^{*}).
continnou
PROOF. The linear form x^{*} EE* is continuous if and only if there is some neighborhood UEU, with $\mid\left\langle x, x^{\prime}\right\rangle t \leq 1$ on U.

DEFINITION. If (E,E') and ($\left.E^{\prime}, F\right)$ are dual pairs and A is a subset of E, the polar Λ^{00} of A^{0} in F is called the bipolar of A .

Remark. If ECFCEI*, then $A C A^{00}$. For, $z \in A^{\circ 0}$, if and only if $\left|<z, x^{\prime}\right\rangle \mid \leq l$ whenever $x^{\prime} \in A^{\circ}$, i.e. whenever $\sup _{x \in A}\left|\left\langle x, x^{\prime}\right\rangle\right| \leq 1$. Thus $z \in_{A}^{\infty}$ if and only if $\left|\left\langle z, x^{\prime}\right\rangle\right| \leq \sup _{x \in A}\left\{\left|\left\langle x, x^{\prime}\right\rangle\right|\right\}$, Since $A C B=F$, this implies $A \subset A^{\infty}$ 0

PROPOSITION 21. Let (E, E^{1}) be a dual pair and F a vector subspace of $E^{1 *}$ containing E. Then the bipolar A^{00} in F of a subset A of E is the $\sigma\left(F, E^{\prime}\right)$ closed absolutely convex envelope of Λ.

PROOF. Let B be the $r\left(F, E^{\prime}\right)$-closed absolutely convex envelope of it. Then A^{00} is $\sigma\left(F, E^{\prime}\right)$-closed absolutely convex subset containing A and therefore $B C A^{00}$. If $a \mathbb{B}$, then there is a continuous linear form $x^{\prime} \in E^{\prime}$ with $\left|\left\langle x, x^{\prime}\right\rangle\right| \leq 1$ for all $x \in B$ and $\mid\left\langle a, x^{\prime} X\right\rangle$. Now $A \subset B$ and so $x^{\prime} \in A^{\circ}$ thus $a \not \subset A^{00}$. Hence $A^{00} \subset B$ and so $A^{00}=B$.

COROLLARY 1. If E is a separated locally convex space with dual E^{\prime} and A is a subset of E, then the bipolar A^{00} in E is the closed absolutely convex envelope of A.

COROLLARY 2. Under the conditions of the proposition, the polar of A^{00} in E^{\prime} is A°.

PROOF. By proposition, the polar of A^{00} in E^{\prime} is $\sigma\left(E^{\prime}, F\right)$-closed absolutely convex envelope of A°. Now A° is absolutely convex and $\sigma\left(E^{\prime}, F\right)$-closed; also $\sigma\left(E^{\prime}, F\right)$ is finer than $\sigma\left(E^{\dagger}, E\right)$. Hence A° is also $\sigma\left(E^{\prime}, F^{\prime}\right)$-closed. Thus A° is the polar of A^{00}.

COROLLARY 3. If (E, E^{\prime}) is a dual pair and if,
for each α, A_{α} is $\sigma\left(E, E^{\prime}\right)$-closed absolutely convex subset of E then $\left(\bigcap_{\alpha} A_{\alpha}\right)^{\circ}$ is the $\sigma\left(E^{\prime}, E\right)-$ closed absolutely convex envelope of $\bigcup_{\alpha} A_{\alpha}^{0}$.

PROOF. Taking polar in E of subsets of E^{\prime}.

$$
\left(\bigcup_{\alpha} A_{\alpha}^{0}\right)^{0}=\bigcap_{\alpha} A_{\alpha}^{00}=\bigcap_{\alpha} A_{\alpha}
$$

Hence $\left(\bigcup_{\alpha} A_{\alpha}^{0}\right)^{00}=\left(\bigcap_{\alpha} A_{\alpha}\right)^{0}$ and the result follows from the proposition.

2.8. Finite dimensional subspaces.

Let E be an n-dimensional vector space with a basis θ_{1}, e $_{2} \ldots \theta_{n}$. There is a dual base $e_{1}^{*}, \ldots e_{n}^{*}$ in the algebraic dual E^{*} of E, with the property $\left\langle e_{i}, e_{j}^{*}\right\rangle=\delta_{i f}$. For any element $x \in E$ can be uniquely written in the form $\sum_{l \leq i \leq n} \lambda_{i} e_{i}$ and put. $\left\langle x, e_{i}^{*}\right\rangle=\lambda_{i}$. Clearly e_{i}^{*} are linearly independent. They also span E^{*}. If E is finite dimensional and (E, E^{\prime}) is a dual pair, then $E^{\prime}=E^{*}$. For E and E^{*} have the same dimension and so have E^{\prime} and $E^{\prime *}$. Since $E^{\prime} \subset E^{*}$ and $E C E^{\prime *}$, all must have the same dimension.

PROPOSITION.22. A finite dimensional vector space has only one topology under which it is a separited locally convex space.

PROOF. We show that for a finite dimensional senarated locally convex space E, its topology is identical with $\sigma\left(E, E^{*}\right)$. Since dual of E is E^{*}, the topology is certainly finer than $\sigma\left(E, E^{*}\right)$. Now let $e_{1}, \ldots, \ominus_{n}$ be any base of E and $e_{1}^{*}, \ldots, e_{n}^{*}$ the corresponding dual base of E^{*}. Let U be an absolutely convex neighborhood in E. There is some $\mu>0$ with $e_{i} \epsilon_{\mu} U$ for $1 \leq i \leq n$. Then

$$
V=\left\{x\left|\sup _{1 \leq i \leq n}\right|\left\langle x, e_{i}^{*}\right\rangle \mid \leq(\mu n)^{-I}\right\}
$$

is a $\sigma\left(E, E^{*}\right)$-neighborhood if $x=\sum \lambda_{i e_{i}} \in V$,

$$
x \in \sum_{1 \leq i \leq n}\left|\lambda_{i}\right| \mu U=\sum\left|\left\langle x, e_{i}^{*}\right\rangle\right| \mu U \subset n(\mu n)^{-1} \mu U=U
$$

Thus the given topology is coarser than $\sigma\left(E, E^{*}\right)$ and so identical.

PROPOSITION 23. Let M be a finite dimensional vector gubspace of a locally convex separated space. Then M is closed in E and the topology induced on M is the euclidean topology.

PROOF. The second part follows from Proposition 22. To show M is closed: If e_{1}, \ldots, e_{n} is a base of M and if a $\notin M$, then regarding a, e_{1}, \ldots, e_{n} as linear forms on the dual E^{\prime} of E, by lemma there is some $x^{\prime} \in E^{\prime}$ with $\left\langle a, x^{\prime}\right\rangle=1$ and $\left\langle e_{i}, x^{\prime}\right\rangle=0$ for $i=1,2, \ldots, n$. Let $U=\left\{x| |\left\langle x, x^{\prime}\right\rangle \mid<1\right\}$. Then U is a neighborhood of 0 and $a+U$ does not meet M, for $\left\langle a+u_{2} x^{\prime}\right\rangle=\left\langle a, x^{\prime}\right\rangle+\left\langle u_{2} x^{\prime}\right\rangle=1+\left\langle u, x^{\prime}\right\rangle \neq 0$. Hence M is closed. 2.9. Transpose of a linear man.

Let $\left(E, E^{\prime}\right)$ and $\left(F_{2} F^{\prime}\right)$ be dual pairs. Let $t: E \longrightarrow F$ be a linear transformation. Then $\left\langle t x, y^{\prime}\right\rangle$ is a bilinear form of the two variables x, y^{\prime}. For each fixed $y^{\prime} \in F^{\prime}$ let $t^{\prime}\left(y^{\prime}\right)$ be the linear form on E defined by

$$
\left\langle x, t^{\prime}\left(y^{\prime}\right)\right\rangle=\left\langle t x, y^{\prime}\right\rangle \text { for all } x \in E .
$$

Then $t^{\prime}\left(y^{\prime}\right) \in E^{*}$. Then t^{\prime} is a linear tronsformation of F^{\prime} into E^{*}. t'is called the adjoint, conjugate, dual or transpose.

PROPOSITION 24. Let $\left(E, E^{\prime}\right)$ and $\left(F, F^{\prime}\right)$ be dual pairs. Let t be a linear transformation of E into F with transpose $t^{\prime} \cdot$ Then $t^{\prime}\left(F^{\prime}\right)$ EE If^{\prime} and only if t is continuous in the weak tonologies $\sigma\left(E, E^{\prime}\right)$ and $\sigma\left(F, F^{\prime}\right)$.

PROOF．Assume t is continuous．Let y＇巴F＇be fixed．Then $\langle t x, y\rangle$ is a continuous linear form on E．Hence $t^{\prime}\left(y^{\prime}\right) \in E^{\prime}$ or $t^{\prime}\left(F^{\prime}\right) \simeq E^{\prime}$.

Conversely suppose $t^{\prime}\left(F^{\prime}\right) \subset E^{\prime}$ ．Let
$V=\left\{y \in F\left|\sup _{\underline{K} i \leq n}\right|\left\langle y, y_{i}\right\rangle \mid \leq 1\right\}$ any $\sigma\left(F, F^{\prime}\right)$－neighborhood．Take

$$
\left.U=\left\{x \in E\left|\sup _{1 \leq i \leq n}\right|<x, t^{\prime}\left(y_{i}^{\prime}\right)\right\rangle \mid \leq 1\right\}
$$

Then U is a $\sigma\left(E, E^{\prime}\right)$－neighborhood and $t(U) \subset V$ ．Hence t is continuous．

DEFINITION．t is said to be weakly continuous if it is continuous in the topologies $\sigma\left(E, E^{\prime}\right)$ and $\sigma\left(F^{\prime}, F^{1}\right)$ 。

COROLLARY．If t is weakly continuous so is t＇

PROPOSITION．25．If t is a continuous linear mapping of the serarated localiy convex space E （with dual E＇）into the scparated locally convex space F（with dual F^{\prime} ）then it is also continuous when E and F pare tho topologies $\sigma\left(E, E^{\prime}\right)$ and $\sigma\left(F, F^{\prime}\right)$ 。

PROOF. Let $y^{\prime} € F^{\prime}$ be fixed (but arbitrary). tx, $\left.y^{\prime}\right\rangle$ is continuous on E. $t^{\prime}\left(y^{\prime}\right) \in E^{\prime}$ ie. $t^{\prime}\left(F^{\prime}\right) \subset E^{\prime}$. Hence t is continuous.

LEMMA. Let $\left(E, E^{\prime}\right)$, (F, F^{\prime}) be dual pairs, Let t be a weakly continuous linear mapping of E into F. Let t' be its transpose. Then $A \subset E$, then

$$
(t(A))^{0}=t^{-1}\left(A^{0}\right)
$$

PROOF. Each of these is the set of all $y^{\prime} € F^{\prime}$ such that $1\left\langle t x, y^{\prime}\right\rangle\left|=\left|\left\langle x, t^{\prime} y^{\prime}\right\rangle\right| \leq 1\right.$ for all $x \in A$.

MORE ON NORMEDIINEARSPACES
3.1 Now we shall specialize on normed linear spaces.

DEFINITION 1. A normed linear space X is a vector space over \mathbb{R} or \mathbb{K} on which is defined a nonnegative function called the norm (norm of x being denoted by $\|x\|$ such that

$$
\begin{aligned}
\|x\| & =0 \text { iff } x=0 \\
\|x+y\| & \leq\|x\|+\|y\| \\
\|\alpha x\| & \leq|\alpha|\|x\|
\end{aligned}
$$

for all vectors x, y and scalars α.
X becomes a metric space if we define $\rho(\mathrm{x}, \mathrm{y})=$ $\|x-y\|$ and is called a Banach Space if it is complete in this metric.

Example. $C[a, b]=$ Set of all continuous real valued functions on $[a, b]$. If $f, f_{1}, f_{2} \in C[a, b]$ define

$$
\begin{aligned}
\left(f_{1}+f_{2}\right)(x) & =f_{1}(x)+f_{2}(x) \\
(\alpha f)(x) & =\alpha f(x) .
\end{aligned}
$$

$C[a, b]$ then becomes a vector space. A norm is defined by

$$
\|f\|=\max _{[a, b]}|f(x)|
$$

and obtain a Banach space.

DEFINITION 2. Let M be subset of a normed linear space $X . M$ is called a linear manifold if
$x, y \in M, \alpha, \beta$ scalars, then $\alpha x+\beta y \in M$.
M is a subspace of X if M is a closed linear manifold.

Let E be a vector space and M a linear subspace of E. Two elements x, y are said to be equivalent, $x \sim y$, if $x-y \in M$. If $x+M, y+M$ are two coset, then the above equivalence relation tells us that either two coset are identical or disjoint. The set of all coset is denoted by E/M. It is made a vector space by defining addition and scalar multiplication by

$$
\begin{aligned}
(x+M)+(y+M) & =x+y+M \\
\alpha(x+M) & =\alpha x+M .
\end{aligned}
$$

PROPOSITION 1 . Let M be a subspace of a normed
linear space X. The norm in X / M is defined by

$$
\|y\|=\operatorname{g.1.b.}\{\|x\| \mid x \in y\} \text { for } y \in X / M
$$

If X is complete, then X / M is also complete.

PROOE. 1) By the definition of norm, if $y \in X / M$, then $\|y\|=0$ iff there exists $: x \in y$ such that $\left\|x_{n}\right\| \rightarrow 0$ as $n \rightarrow \infty$. Since y is closed, $\|y\|=0$ iffy $0 \in y$ so that $\|y\|=0$ iffy $y=M$. The other axioms of the norm can be easily checked.
2) Suppose X is complete. If $\left\{y_{n}\right\}$ is a Cauchy sequence in X / M, we can suppose, by passing onto a subsequence if necessary, that

$$
\left\|y_{n+1}-y_{n}\right\|<\frac{1}{2^{n}}
$$

We can then choose inductively a sequence $x_{n} \in y_{n}$ such that $\left\|x_{n+1}-x_{n}\right\|<\frac{1}{2^{n}}$ for $\rho\left(x_{n}, x_{n+1}\right)=\rho\left(y_{n}, y_{n+1}\right)<\frac{1}{2^{n}}$. Then $\left\{x_{n}\right\}$ is a Cauchy sequence in X. Since X is complete, there exists $x_{0} \in X$ such that $x_{n} \rightarrow x_{0}$. Let y_{0} be the coset containing x_{0}. Then $y_{n} \rightarrow y_{0}$ (check). By the property of the Cauchy sequence $\left\{y_{n}\right\}$ converges to y_{0} and X / M is complete.

DEFINITION. 3. Let X, Y be normed linear spaces. A function $T: X \rightarrow Y$ is called a transformation. T Is said to be linear if $T\left(\alpha_{1} x_{1}+\alpha_{2} x_{2}\right)=\alpha_{1} T\left(x_{1}\right)+$ $\alpha_{2} T\left(x_{2}\right)$ for $x_{1}, x_{2} \in X$ and α_{1}, α_{2} scalars. T. is said to be bounded if there exists $M>0$ such that $\|T(x)\| \leq M\|x\| \quad$ for all $x \in X$.

PROPOSITION 2. Let X, Y be normed linear spaces and Let $T: X \rightarrow Y$ be a linear transformation. Then
a) if T is continuous at X_{o}, then T is continuous on X
b) T is continuous iff it is bounded.

PROOF. a) $x_{n} \rightarrow x_{0}$ implies $T\left(x_{n}\right) \rightarrow T\left(x_{0}\right)$. Now suppose $y_{0} \in X$ and $y_{n} \rightarrow y_{0}$. Then, by the linearity of T

$$
\begin{aligned}
T\left(y_{n}\right) & =T\left(y_{n}-y_{0}+x_{0}+y_{0}-x_{0}\right) \\
& =T\left(y_{n}-y_{0}+x_{0}\right)+T\left(y_{0}\right)-T\left(x_{0}\right)
\end{aligned}
$$

Since $y_{n}-y_{0}+x_{0} \rightarrow x_{0}, T\left(y_{n}-y_{0}+x_{0}\right) \rightarrow T\left(x_{0}\right)$ so that

$$
T\left(y_{n}\right) \longrightarrow T\left(x_{0}\right)+T\left(y_{0}\right)-T\left(x_{0}\right)=T\left(y_{0}\right)
$$

b) i) if T is bounded there exists $M>0$ such that

$$
\|T(x)\| \leq M\|x\|
$$

Hence $\left\|T(x)-T\left(x_{0}\right)\right\| \leq\left\|T\left(x-x_{0}\right)\right\| \leq M\left\|x-x_{0}\right\|$, from which follows the continuity.
ii) If T is not bounded, then for each n there exists x_{n} such that $\left\|T\left(x_{n}\right)\right\|>\left\|x_{n}\right\| n$. Let $y_{n}=\frac{x_{n}}{n\left\|x_{n}\right\|}$.

Then $\left\|y_{n}\right\|=\frac{1}{n}$ and $\left\|T\left(y_{n}\right)\right\|>1$. Hence $\left\|y_{n}\right\| \rightarrow 0$ but $T\left(y_{n}\right) \nrightarrow T(0)=0$. Hence T is not continuous at 0 .

Notation. $B(X, Y)$ will denote the set of all bounded linear transformations of X into Y.

If $T, T_{1}, T_{2} \in B(X, Y)$ and $\alpha \in \mathbb{K}$, we define $T_{1}+T_{2}, \alpha T$ by

$$
\begin{gathered}
\left(T_{1}+T_{2}\right)(x)=T_{1}(x)+T_{2}(x) \\
(\alpha T)(x)=\alpha T(x), \quad x \in X
\end{gathered}
$$

Then $B(X, Y)$ becomes a vector space. If $T \in B(X, Y)$ notice that there exists $M>0$ such that

$$
\|T(x)\| \leq M\|x\| \text { for all } x \in X
$$

We define a norm by any one of the following :

$$
\begin{aligned}
& \text { (i) }\|T\|=\text { g.l.b. }\{M \mid\|T(x)\| \leq M\|x\|\} \\
& \text { (ai) }\|T\|=\lim _{x \neq 0} \frac{\|T(x)\|}{\|x\|} \\
& \text { (iii) }\|T\|=\underset{\|x\|=1}{l u \cdot b .}\|T(x)\|
\end{aligned}
$$

It is easy to verify that (i), (ii) and (iii) are equivalent. As a consequence of this definition it follows that

$$
\|T(x)\| \leq\|T\|\|x\|
$$

PROPOSITION 3. $B(X, Y)$ is complete, if Y is

complete.

PROOF. Let $\left\{T_{n}\right\}$ be a Cauchy sequence in $B(X, Y)$. Then given $\varepsilon>0$, there exists $n_{0}(\varepsilon)$ such that $\left\|T_{m}-T_{n}\right\|$ $<\varepsilon$ for $m, n \geq n_{0}(\varepsilon)$. Then for each $x \in X$, $\left\|T_{m}(x)-T_{n}(x)\right\|<\varepsilon\|x\|$ so that $\left\{T_{n}(x)\right\}$ is a Cauchy sequence in Y. Since Y is complete, there exists $T(x) \in Y$ such that $T_{n}(x) \rightarrow T(x)$. Thus we define a function

$$
T: X \rightarrow Y
$$

by

$$
T(x)=\lim _{n \longrightarrow} T_{n}(x)
$$

Now
1)

$$
\begin{aligned}
T\left(\alpha_{1} x_{1}+\alpha_{2} x_{2}\right) & =\lim _{n \rightarrow \infty} T_{n}\left(\alpha_{1} x_{1}+\alpha_{2} x_{2}\right) \\
& =\lim _{n \rightarrow \infty}\left[\alpha_{1} T_{n}\left(x_{1}\right)+\alpha_{2} T_{n}\left(x_{2}\right)\right] \\
& =\alpha_{1} \lim _{n \rightarrow \infty} T_{n}\left(x_{1}\right)+\alpha_{2} \lim _{n \rightarrow \infty}\left(x_{2}\right) \\
& =\alpha_{1} T\left(x_{1}\right)+\alpha_{2} T\left(x_{2}\right)
\end{aligned}
$$

2) Since $\left\|T_{n+p}-T_{n}\right\|<l$ for ail $n>N$ and all p,

$$
\left\|T_{N+p}\right\| \leq\left\|T_{N}\right\|+1 \text { for } p \geq 1
$$

and

$$
\|\mathrm{T}\|=\lim _{\mathrm{n} \rightarrow \infty}\left\|\mathrm{~T}_{\mathrm{iN}+\mathrm{p}}\right\|<\left\|\mathrm{T}_{\mathrm{N}}\right\|+1
$$

and hence T is bounded.
3) We show that $\left\|T_{n}-T\right\| \rightarrow 0$ as $n \rightarrow \infty$. Now for $n>n_{0}(\varepsilon)$

$$
\left\|T_{n+p}-T_{n}\right\|<\varepsilon
$$

For $\|x\|=1$

$$
\begin{aligned}
\left\|T(x)-T_{n}(x)\right\| & =\lim _{p \rightarrow \infty}\left\|T_{n+p}(x)-T_{n}(x)\right\| \\
& \leq \lim _{p \rightarrow \infty}\left\|T_{n+p}-T_{n}\right\|<\varepsilon .
\end{aligned}
$$

Hence $\left\|T_{n}-T\right\|<\varepsilon$ if $n \geq n_{0}(\varepsilon)$. Thus $B(X, Y)$ is complete.

If $Y=$ field of complex numbers then Y is complete $(\|Y\|=|Y|)$, we write $B(X, Y)=X^{*}$ called the conjugate solace or dual space of X. An element of X^{*} is called a bounded linear functional.

COROLIARY. X^{*} is always complete.
Hahb Banach Extension Theorem:
PROPOSITION 4. Let M be a subspace of normed linear space X. Then every bounded linear functional on M can be extended to the whole of X with preservation of the normi.e., if $T \in M^{*}$ there exists $S \in X^{*}$ suca that

$$
S(x)=T(x) \text { for all } x \in M
$$

and

$$
\|S\|_{X}=\|T\|_{M}
$$

COROLLARY. Given $x_{0} \in X, x_{0} \neq 0$, there exists $T \in X^{*}$ such that

$$
T\left(x_{0}\right)=\left\|x_{0}\right\|, \quad\|T\|=1
$$

3.2 DEFIVITION 4. A Euclidean space E is a vector snace in which a function of two variables x, y denoted by (x, y) called inner product, is defined, satisfying
a) $(x, x)>0$ if $x \neq 0,(x, x)=0$ if $x=0$
b) $(x, y)=(\overline{y, x})$
c) $(\lambda x, y)=\lambda(x, y)$
d) $\left(x_{1}+x_{2}, y\right)=\left(x_{1}, y\right)+\left(x_{2}, y\right)$.

REMARK. Define $\|x\|=(x, x)^{I / 2}$. If E is
complete in this norm then E is called a Hilbert space. DEFINITION 5. A Hilbert space H is a Banach space in which the norm satisfies an additional requirement viz.

$$
\|x+y\|^{2}+\|x-y\|^{2}=2\|x\|^{2}+8\|y\|^{2}
$$

for all $x, y \in H$. An inner product (x, y) is then defined by

$$
\begin{aligned}
4(x, y)=\|x+y\|^{2}=\|x-y\|^{2} & +\|x+i y\|^{2} \\
& -\|x-i y\|^{2}
\end{aligned}
$$

PROPOSITION 5. The above two definitions for a

Hilbert space are equivalent.

Proof. Exercise.
We only give some properties necessary to prove the equivalence which will also be used elsewhere.

PROPOSITION 6. Let H be Hilbert space. If $\mathrm{x}, \mathrm{y} \in \mathrm{H}$ and λ is a scalar, then
a) $(x, \lambda y)=\vec{\pi}(x, y)$
b) $|(x, y)| \leq\|x\|\|y\|$.

PROOF. a) $(x, \lambda y)=\overline{(\lambda y, x)}=\bar{\lambda}(\overline{y, x)}=\bar{\lambda}(x, y)$
b) Let λ be any complex number. Then

$$
\begin{aligned}
0 & \leq(x-\lambda y ; x-\lambda y) \\
& =(x, x)+(x,-\lambda y)+(-\lambda y, x)+(-\lambda y,-\lambda y) \\
& =(x, x)-\bar{\lambda}(x, y)-\lambda \overline{(x, y)}+\lambda \bar{\lambda}(y, y) .
\end{aligned}
$$

Assuming $y \neq 0$, set $\lambda=\frac{(x, y)}{(y, y)}$. Then

$$
0 \leq(x, x) \geqslant \frac{\overline{(x, y)}(x, y)}{(y, y)}
$$

which gives

$$
(x, x) \cdot(y, y)-(x, y) \cdot \overline{(x, y)} \geq 0
$$

or

$$
|(x, y)|^{2} \leq \quad(x, y)(y, y)=\|x\|^{2}\|y\|^{2}
$$

DEFINITION 6. Two elements x, y in a Hilbert space H are said to be orthogonal if the inner product $(x, y)=0$. Then we write $x \perp y$. Two subsets S_{1}, S_{2} in H are said to be orthogonal if $x_{1} \perp_{x_{2}}$ for all $x_{1} \in S_{1}$ and $x_{2} \in S_{2}$. If M is . subspace of H the set of all elements of H that are orthogonal to M is denoted by M^{\perp} and is called the orthogonal complement of M.

PROPOSITION.7. M^{\perp} is a subspace of H.

PROPOSITION 8. Let M be a subspace of a Hilbert space H and $x \in H \backslash M$. Let

$$
d=g \cdot 1 \cdot b \cdot\{\|x-y\| \mid y \in M\} .
$$

Then there exists a unique y_{0} in M such that

$$
d=\left\|x-y_{0}\right\|
$$

Further $x-y_{0} \in M^{\perp}$.

The proof is straight forward. We have the following corollary.

COROLLARY. If M is a subspace of a Hilbert space H, then every element $x \in H$ can be uniquely represented as

$$
x=x_{1}+x_{2}
$$

where $x_{1} \in M, x_{2} \in M^{\perp}$.
3.3 Riesz Representation Theorem.

PROPOSITION 9. If y is a fixed element in a Hilbert
space H and $T y$ is defined by

$$
T_{y}(x)=(x, y) \text { for all } x \in H
$$

then $T_{y} \in H^{*}$.
PROOF. Let α_{1}, α_{2} be scalars and $x_{1}, x_{2} \in H$. Then

$$
\begin{aligned}
\mathrm{T}_{\mathrm{y}}\left(\alpha_{1} \mathrm{x}_{1}+\alpha_{2} \mathrm{x}_{2}\right) & =\left(\alpha_{1} \mathrm{x}_{1}+\alpha_{2} \mathrm{x}_{2}, \mathrm{y}\right) \\
& =\alpha_{1}\left(x_{1}, y\right)+\alpha_{2}\left(x_{2}, y\right) \\
& =\alpha_{1} T_{y}\left(x_{1}\right)+\alpha_{2} T_{y}\left(x_{2}\right)
\end{aligned}
$$

Hence T_{y} is linear. Further

$$
\left|T_{y}(x)\right| . \quad=\quad|(x, y)| \leq\|x\|\|y\|
$$

so that

$$
\left\|\mathrm{T}_{\mathrm{y}}\right\| \leq\|\mathrm{y}\|
$$

Hence T_{y} is continuous which proves the theorem. PROPOSITION 10. Every bounded linear functional T on a Hilbert space H can be expressed uniquely in the form

$$
T(x)=(x, y) \text { for all } x \in H
$$

where y is a fixed point of H and

$$
\|T\|=\|y\|
$$

PROOF. Given a bounded linear functional T, let

$$
M=\{x \in H \mid T(x)=0\} \text {. }
$$

If $M=H$, take $y=0$. Suppose $M \neq H$, then $M^{\perp} \neq 0$. There exists an element $z \neq 0, z \in H, z \not 又 M$. We notice that $T(z) \neq 0$. If x is any element in H, let

$$
u=x-\frac{T(x)}{T(z)} z
$$

then $u \in M$ and z E. M. That is $(u, z)=0$, which gives

$$
\left(x-\frac{\mathrm{T}(\mathrm{x})}{\mathrm{T}(z)} z, z\right)=0
$$

or

$$
(x, z)-\frac{T(x)}{T(z)}(z, z)=0
$$

or

$$
T(x)=\frac{T(z)}{(z, z)}(x, z)=\left(x, \frac{\overline{T(z)}}{(z, z)} z\right)
$$

Now take $y=\frac{\overline{T(z)}}{(z, z)}$ z. This y is the required one. By the previous proposition

$$
\|T\| \leq\|y\|,
$$

also from

$$
T(y)=(y, y)=\|y\|^{2}
$$

it follows that

$$
\|\tau\| \geq\|y\|
$$

Hence

$$
\|T\|=\|y\|
$$

This completes the proof.
3.4 Consider the set of all measurable functions which are complex valued, defined on a measurable set E of finite or infinite measure. Let L^{2} denote the set of all these functions which are square integrable ie. $\int_{\mathrm{E}}|\mathrm{f}|^{2} \mathrm{dx}<\infty$. Then by Schwarz's inequality f is integrable on the subsets of E of finite measure.

Define for $f, g \in L^{2}$

$$
\begin{aligned}
(f, g) & =\int_{E} f(x) \overline{g(x)} d x \\
\|f\| & =(f, f)^{1 / 2} .
\end{aligned}
$$

Then (f, g) is an inner product in L^{2} and L^{2} is complete under the above norm. So L^{2} is a Hilbert space. So from what we have proved in Proposition 10 - it follows that if T is a bounded linear functional on L^{2} then there exists a unique function $g \in L^{2}$ such that

$$
T(f)=\int_{E} f(x) \overline{g(x)} d x \text { for all } f \in L^{2}
$$

and $\|\mathrm{T}\|=\|\mathrm{g}\|$.
We denote by $L^{p}(p \geq 1)$ the class of all measurable complex valued functions which are such that $\int_{E}|f(x)|^{p} d x<\infty$. Define

$$
\|f\|=\left(\int_{E}|f(x)|^{p} d x\right)^{1 / p} \quad(1 \leq p<\infty) .
$$

We understand by L^{∞} the space of all measurable functions which are bounded or arc equal a.e. to bounded functions. We define the norm

$$
\|f\|=\text { true } \max |f(x)|, f \in L^{\infty}
$$

i.e. $\|f\|$ is the smallest value of M for which $|f(x)| \leq M$ zee. If $p>1$, let q be define by $p^{-1}+q^{-1}=1$. 3.5 Let $b>a \because$ be real numbers and $P([a, b])$ be the set of all partitions of $[a, b]$.

DEFINITION 7. A function $f(r e a l$ or complex valued) defined on $[a, b]$ is said to be of bounded
variation if
$\left.V(f ; a, b)=\pi \operatorname{l.u.b.}_{\pi \in P([a, b])}^{t_{j}} \sum_{\epsilon \pi}\left|f\left(t_{j}\right)-f\left(t_{j-1}\right)\right|\right\}$
is finite and $V(f ; a, b)$ is called the total variation
of f. The class of all functions of bounded variation on $[a, b]$ is denoted by $\operatorname{BV}[a, b]$.

REMARK 1. If $f \in \operatorname{BV}[a, b]$ then there exist two functions f_{1}, f_{2} which are non-negative non-decreasing such that $\mathrm{f}=\mathrm{f}_{1}-\mathrm{f}_{2}$.

REMARK 2. If $f \in B V[a, b]$ then f is bounded on $[a, b]$.

DEFINITION.8. Let f and σ (real or complex valued) be two functions defined on $[a, b]$ where $a<b$. Let $\pi=\left\{a=t_{0}, \ldots, t_{n}=b\right\} \in P([a, b])$ and let $\alpha=\left\{s_{1}, s_{2}, \ldots, s_{n}\right\} \quad$ where $s_{k} \in\left[t_{k-1} t_{k}\right]$, $k=1,2, \ldots, n$. We define the Stieltjes integral of f with respect to σ to be the limit of the sums

$$
S_{\pi, \alpha}=\sum_{k=1}^{n} f\left(s_{k}\right)\left[\sigma\left(t_{k}\right)-\sigma\left(t_{k-1}\right)\right]
$$

when $\|\pi\|=\max _{1 \leq k \leq n}\left(t_{k}-t_{k-1}\right) \rightarrow 0$, and is denoted by

$$
\int_{a}^{b} f(x) d \sigma(x)
$$

DEFINITION 9. Let $C[a, b]$ be the set of all continuous real valued functions on $[a, b]$. Then the mapping $L: C[a, b] \rightarrow \mathbb{R}$ is said to be linear functional if
I) $L\left(f_{I}+f_{2}\right)=L\left(f_{1}\right)+L\left(f_{2}\right)$
2) $L(c f)=c L(f), \quad c \in \mathbb{R}$.
and it is bounded (hence continuous) if
3) There exists a constant M such that $|L(f)| \leq M\|f\|$
where $\|f\|=\max _{a \leq x \leq b}|f(x)|$.

The smallest of all such bounds M is denoted by $\|L\|$ and is called the norm of the linear functional. Now we prove the following lemma which we utilise in the proof of the next proposition.

LEMMA 11. Let L be a bounded linear functional on $C[\underline{a}, b]$. If $\left\{f_{n}\right\}$ and $\left\{g_{n}\right\}$ are two increasing sequences belonging to $C[a, b]$, which tend to the same limit, then the sequences $\left\{L\left(f_{n}\right)\right\}$ and $\left\{L\left(g_{n}\right)\right\}$ also tend to the same limit.

PROOF. Without loss of generality we assume that the sequences are strictly increasing (otherwise we conside? the sequences $\left\{f_{n}-\frac{1}{n}\right\},\left\{g_{n}-\frac{1}{n}\right\}$). For each fixod n there should exist an n such that $f_{m}<g_{n}$ for all $n^{\prime} \geq n$. Suppose not, then the sets $K_{n}=\left\{x \mid f_{m}(x) \geq g_{n_{1}}(x)\right\}$ form a nested sequence of closed, nonempty sets. Hence there oxists a point $x_{0} \in K_{n}$ for all n. In turn, we have $f_{n}\left(x_{0}\right) \geq$ lim $g_{n}\left(x_{0}\right)=f\left(x_{0}\right)$ contrary to the hypothosis. By the same argument there exists for sach m an n such that $g_{m}<f_{n}$ for all $n^{\prime} \geq n$. Now we can form an increasing sequence $f_{m_{1}}<g_{m_{2}}$ $<f_{m_{3}}<g_{m_{4}}<\cdots$ tending to f. Hence, the sequences $\left\{L\left(f_{n}\right)\right\}$ and $\left\{L\left(g_{n}\right)\right\}$ tend to thenseme limit. PROPOSITION 12. A continuous linear functiona? I defined on $C[a, b]$ can be extended to a wider class of functions.

PROOF, Let $\left\{f_{n}\right\}$ be an increasing and bounded sequence of continuous functions on $[a, b]$ which tends to a bounded function f. Now we extend the functional i to this f which may not be continuous. Consequently, the sequence of values $\left\{\mathrm{Lf} \mathrm{f}_{\mathrm{n}}\right\}$ tend to a finite limit. The talues of the series

$$
\sum_{n_{1}=1}^{\infty}\left|L\left(f_{r_{1}+1}\right)-L\left(f_{n}\right)\right|
$$

correspond to tho partial sums of "the series

$$
\sum_{n=1}^{\infty} \pm\left[f_{n+1}(x)-f_{n}(x)\right]
$$

by means of L (where the signs are suitably chosen) But

$$
\begin{array}{r}
\left|\sum_{n=1}^{k} \pm\left[f_{n+1}(x)-f_{n}(x)\right]\right| \leq f(x)-f_{1}(x)=B(\operatorname{say}) \\
k=1,2 \ldots .
\end{array}
$$

Hence

$$
\sum_{n=1}^{k}\left|I\left(f_{n+1}\right)-I\left(I_{n}\right)\right| \leq B\|I\|, k=I, 2, \ldots
$$

and so

$$
L\left(f_{I}\right)+\sum_{n=1}^{\infty}\left(L\left(f_{n+1}\right)-L\left(f_{n}\right)\right)
$$

converges absolutely and partial sums being If tend to a finite limit which we denote by If. This is justified from: the previous lemma. Hone $I_{\text {. }}$ is defined uniquely to avery bounded function which is the limit or an increasing sequence
of continuous functions. If f and g are of the above type then so is $f+g$ and $L(f+g)=L(f)+L(g)$. But the difference $f-g$ neither is of the type f nor $-f$. To justify to write

$$
L(f-g)=L(f)-L(g)
$$

consider the relation $f-g=f_{1}-g_{1}$ which is equivalent to writing $f+g_{1}=f_{1}+g$ so

$$
L(f)+L\left(g_{1}\right)=L\left(f+g_{1}\right)=L\left(f_{1}+g\right)=L\left(f_{1}\right)+L(g)
$$

which yields in turn the desired.
Since (1) and (2) properties of the bounded linear functional are evident, it remains to prove that it is bounded, i.e., we show

$$
|L(f-g)| \leq\|L\| \mu
$$

Where $\mu=\sup _{a \leq x \leq b}|f(x)-g(x)|$ and f, g are the limits of the increasing sequences $\left\{f_{n}\right\}$ and $\left\{g_{n}\right\}$ respectively. Now set

$$
F_{n}(x)=\left\{\begin{array}{l}
f_{n}(x) \quad \text { when }\left|f_{n}(x)-g_{n}(x)\right| \leq \mu \\
g_{n}(x)+\mu \text { when } f_{n}(x)-g_{n}(x)>\mu \\
g_{n}(x)-\mu \text { when } f_{n}(x)-g_{n}(x)<-\mu
\end{array}\right.
$$

It is easy to verify that $\left\{F_{n}\right\}$ is an increasing sequence of continuous functions and tends to f. Further

$$
\sup _{a \leq x \leq b} \mid F_{n}(x)-g_{n}(x) \| \leq \mu
$$

Hence

$$
\begin{aligned}
|L(f-g)| & =\| \operatorname{Iim}\left(L\left(F_{n}\right)-L\left(g_{n}\right)\right) \mid . \\
& =\lim \left|L\left(F_{n}\right)-\dot{L}\left(g_{n}\right)\right| \\
& \leq\|L\|
\end{aligned}
$$

which proves the theorem.
For our further purposes we remark that the class under consideration contains apart from continuous functions, simple discontinuous functions and their finite linear combinations. In perticular the characteristic function f_{c}, d of the closed interval $[\mathrm{c}, \mathrm{d}] \subset[\mathrm{a}, \mathrm{b}]$ also belongs to the class being the limit of decreasing sequence of continuous functions $\left\{f_{n}\right\}$ where f_{n} is zero outside $\left(c-\frac{1}{n}, d+\frac{1}{n}\right)$ and equal to 1 on $[c, d]$.

PROPOSITION 13. (Riesz representation theorem).
For every bounded linear functional L on $C[a, b]$ there exists a function $\sigma \in B V[a, b]$ such that
and $V[\sigma ; a, b]=\|L\|$. Conversely the integral of the type defincs a linear functional.

PROOF. The converse is ovident. For any $f \in C[2, b]$
and $\sigma \in B V[a, b]$ we have

$$
\left|\int_{a}^{b} f(x) d r(x)\right| \leq\|f\| \cdot W(r ; a, b)
$$

This satisfies all the three pronerties of the bounded linear functional.

Reciprocally, the bounded linear functiomal L can be extended to a characteristic function $f_{c, d}$ of the internal $[c, d] \subset[a, b]$. Now we define

$$
\sigma(x)=\left\{\begin{array}{l}
0, \quad x=a \\
L\left(f_{a, x}\right), a<x \leq b
\end{array}\right.
$$

where $f_{a, x}$ is the characteristic function of the interval [a, x] We claim that the function $\sigma \in B V[a, b]$ and $V(\tau ; a, b) \leq\|L\| \cdot$ To prove this consider a partition $\pi=\left\{a=x_{0}, \ldots, x_{n}=b\right\} \in$ $P([a, b])^{\prime}$, and the expression

$$
\sum_{k=1}^{n}\left|\sigma\left(x_{k}\right)-\sigma\left(x_{k-1}\right)\right|, \quad x_{k} \leqslant \pi,
$$

This is the value of L at

$$
f(x)=\varepsilon_{1} f_{a, x_{1}}(x)+\sum_{k=2}^{n} \varepsilon_{k[}\left[f_{a, k}(x)-f_{a, k-1}(x)\right]
$$

where ε_{k} equals to 1,0 or -1 according as the sign of $\sigma\left(\mathrm{x}_{\mathrm{k}}\right)-\sigma\left(\mathrm{x}_{\mathrm{k}-1}\right)$. The function f being the finite linear combination of the functions $f_{a, k}$ belongs to the class under consideration and further $|f| \leq 1$. Hence

$$
\sum_{k=1}^{n}\left|\sigma\left(x_{k}\right)-\sigma\left(x_{k-1}\right)\right|=L(f) \leq\|I\| \cdot
$$

Since r.h.s. is independent of π we have
(*)

$$
V(\sigma ; a, b) \leq\left\|I_{1}\right\|
$$

Let $f \in C[a, b]$ and let π be as above. Let
$s_{k} \in\left[x_{k-1}, x_{k}\right] k=1,2, \ldots, n$. Now define the step function

$$
\rho(x)= \begin{cases}f\left(s_{k}\right), & x_{k \rightarrow 1}<x \leq x_{k} \\ f\left(s_{1}\right), & x=1\end{cases}
$$

which could be written as

$$
\varphi(x)=f\left(s_{1}\right) f_{a, x_{1}}(x)+\sum_{k=2}^{n} f\left(s_{k}\right)\left[f_{a, x_{k}}(x)-f_{a, x_{k-1}}(x)\right] .
$$

So φ belongs to the class under consideration. Thus

$$
L(\varphi)=\sum_{k=1}^{\mathrm{n}^{\mathrm{f}}} f\left(s_{k}\right)\left[\sigma\left(x_{k}\right)-\sigma\left(x_{k-1}\right)\right]
$$

where observing that $\sigma\left(x_{0}\right)=\sigma(a)=0$. The r.h.s. of the expression is exactly the definition of stieltjes integral when
$\|\pi\| \rightarrow 0$. Let ω be the maximum oscillation of f on the subdivision intervals. Then $|f(x)-\varphi(x)| \quad \omega$ and hence

$$
|L(f)-L(\varphi)| \leq|L(f-\rho)| \leq \omega\|L\| .
$$

For $\|\pi\| \longrightarrow 0, \omega \longrightarrow 0 ;$ so $L(\varphi) \longrightarrow L(f)$ which means

$$
L(\varphi) \rightarrow L(f)=\int_{a}^{b} f(x) d \sigma(x) n
$$

Also $V(\tau ; a, b)$ is a bound for L, hence

$$
V(\sigma ; a, b) \geq\|L\|
$$

Combining (*) with the above yields the result.

At this stage we state the above theorem more generally in terms of Radon measures* more general than Borel measures. The interested readers may refer to R.E.Edwards, Functional Analysis, Page 203.

PROPOSITION 14. Let L be a continuous linear functional on $C(T)$ - the vector space of continuous real valued functions on a locally compact space T. There exists a Radon measure μ on T having a compact support and such that

$$
L(f)=\mu(f)=\int_{T} f(t) d \mu(t)
$$

Conversely, the integral of the above form where f $\in C(T)$ and μ a Radon measure reoresents a linear functional.

[^0]$$
\text { 3.6 } \frac{L^{2}(a, b)}{\text { Let }}:
$$
\[

$$
\begin{gathered}
(f, g)=\int_{a}^{b} f(t) \overline{g(t)} d t, f, g \in L^{2} \\
\|f\|_{2}=(f, f)^{\frac{1}{2}}=\left(\int_{a}^{b}|f(x)|^{2} d x\right)^{\frac{1}{2}} \\
|(f, g)| \leq \int_{a}^{b}|f(x) \overline{g(x)}| d x \leq\left(\int_{a}^{b}|f(x)|^{2} d x\right)^{\frac{1}{2}}\left(\int_{a}^{b}|g(x)|^{2} d x\right)^{\frac{1}{2}}
\end{gathered}
$$
\]

$$
|(f, g)| \leq\|f\|_{2}\|g\|_{2}
$$

Thon

$$
\begin{aligned}
\left(f_{1}+f_{2}, g\right) & =\left(f_{1}, g\right)+\left(f f_{2}, g\right) \\
\left(f, g_{1}+g_{2}\right) & =\left(f, g_{1}\right)+\left(f, g_{2}\right) \\
(\lambda f, g) & =\lambda(f, g), \quad(g, f)=\overline{(f, g)} \\
(f, \lambda g) & =\bar{\lambda}(f, g) \\
\|f+g\|^{2}=(f+g, f+g) & =(f, f)+(g, g)+(f, f)+(f, g) \\
& =(f, f)+(g, f)+2 \operatorname{Re}(f, g) \\
& \leq(f, f)+(g, g)+2 \mid f, g) \mid \\
& \leq\|f\|^{2}+\|g\|^{2}+2\|f\|\|g\| .
\end{aligned}
$$

Hence

$$
\|f+g\| \leq\|f\|+\|g\| .
$$

f_{n} is said to converge strongly (or in the norm) if $\| f_{n}-f_{n} \rightarrow 0$ $n \rightarrow \infty$.

RIESZ-FISCHER THEOREM.15. If a sequence $\left\{f_{n}\right\}$ is given, then in oder that there exists a function f such that $f_{n} \rightarrow f$, it is necessary and sufficient that $\left\|f_{n}-f\right\| \rightarrow 0$ as $m, n \rightarrow \infty$, ie. f_{n} is _a Cauchy sequence.

PROOF. If $f_{n} \rightarrow f$. strongly, given $\varepsilon>0$ there exists n_{0} such that

$$
\left\|f_{n}-f\right\|<\varepsilon / 2 \text { if } n \geq n_{0} .
$$

THEOREM. I^{2} is complete.
PROOE. Let $\left\{f_{n}\right\}$ be a Cauchy sequence in I^{2}. ie., $\left\|f_{m}-f_{n}\right\| \longrightarrow 0$ as $m, n \longrightarrow \infty$. Choose integers $m_{1}<m_{2}<\ldots$ such that $n>m_{k}$ implies

$$
\left\|f_{\mathrm{n}}-f_{m_{k}}\right\|<2^{-\mathrm{k}}
$$

In particular

$$
\begin{aligned}
\| f_{m_{k+1}} & -f_{m_{k}} \|<2^{-k x} \\
\int_{E}\left|f_{m_{k+1}}(x)-f_{m_{k}}(x)\right| d x & \leq\left(\int_{E}\left|f_{m_{k+1}}(x)-f_{m_{k}}(x)\right|^{2} d x\right)^{\frac{1}{2}}\left(\int_{E_{i}} d x\right)^{\frac{1}{2}} \\
& \leq \sqrt{m(E)}\left\|f_{m_{k+1}}-f_{m_{k}}\right\| \\
& <\frac{\sqrt{m(E)}}{2^{K}}
\end{aligned}
$$

For every measurable subset E such that $m(E)$ is finite

$$
\sum_{k=1}^{\infty} \iint_{f_{k}}(x)-f_{m_{k+1}}(x) d d x
$$

converges.
Now apply B. Levi's theorem to obtain the absolute
convergence almost everywhere of

$$
\sum\left(f_{m_{k+1}}(x)-a_{m_{k}}(x)\right)
$$

Therefore $\left\{\bigoplus_{m_{k}}\right\}$ convergau ave. (sa, to f)

$$
\left\|f_{m_{k}}\right\| \leq\left\|f_{m_{k}}-f_{m_{1}}\right\|+\| \|_{m_{1}}\|\leq\| f_{m_{1}} \|+\frac{1}{2}
$$

By Fatou's leman $f \in \Psi^{2}$, Similarly $\left\|f-f_{m_{h}}\right\| \rightarrow 0$ as $k \rightarrow \infty$.

$$
\left\|f_{n}-f_{m_{2}}\right\| \leq\left\|_{n_{n}}-f_{m_{r}}\right\|+\left\|f_{m_{r}}-f_{m_{k}}\right\| \leq 2^{-r+1}
$$

Let $k \cdot \neq \infty$.

$$
\left\|f-f_{i 1}\right\| \leq e^{\cdots+1}
$$

Let $r \rightarrow \infty$ 之, e, $n \rightarrow \infty$

$$
\left\|i-I_{n}\right\|-\infty
$$

If f^{*} is also a limit of f_{n}, then

$$
\begin{gathered}
\|f-f *\| \leq\left\|f-f_{n}\right\|+\left\|f_{n}-f *\right\| \longrightarrow 0 \\
\|f-f *\|=0 \Longrightarrow f=f^{*} \text { ae. }
\end{gathered}
$$

DEFINTMION 10. A sequence of functions $\left\{f_{n}\right\}$ in L^{2} converges rakly to ff L^{2} is

$$
\left(\theta_{n}, g\right) \rightarrow(f, g)
$$

for all g ¢ L^{2}.
PROPOSTTION 16. If $f_{n} \rightarrow i$ strongly then $f_{n} \rightarrow \ddot{f}$ weakly but not contrers In.

A Inner function -1 on I^{2} is said to be bounded

$$
|T(f)| \leq M\|f\| \text { for all } f \in L^{2}
$$

Then the following are equivalent.
1)". T is continuous at 0
2) T is continuous
3) T is bounded.

Wo define g.l.b. of all such M to be the norm of T.

$$
\|T\|=\sup _{\|f\| \neq 0} \frac{|T(f)|}{\|f\|}=\sup _{\|f\|=1}^{|T(f)| .}
$$

For a fixed $g \in L^{2}$, define $T_{g}(f)=(f, g)$ for $a l l$ i $\in L^{2}$. Clair: T_{g} is a bounded linear functional and
$\left\|r_{g}\right\|=\|g\|$

$$
\left|T_{g}(f)!\leq\|(f, g) \mid \leq\| f\| \| g \|\right.
$$

$$
\operatorname{lig}_{g}\|\underline{y}\|
$$

Then $T_{g}(g)=(g, g)=\|g\|^{2} \Rightarrow\left\|T_{g}\right\| \geq\|g\|$.
PROPOSITION 17. If T is a bounded linear functional on L^{2}, then there exists a $g \in L^{2}$ such that $T=T_{g}$.

PROOF. Choose $\left\{g_{n}\right\}$ such that $\left\|g_{n}\right\|=1$. $\left\|T\left(g_{n}\right)\right\| \rightarrow\|T\|$. Without loss of generality we may assume that $T\left(g_{n}\right)=0$ (otherwise multiply by a factor $e^{i \theta}$)

$$
\begin{aligned}
\left|T_{g_{n}}+g_{m}\right| & =\left|T\left(g_{n}+g_{m}\right)\right| \leq\|T\| \cdot\left\|g_{n}+g_{m}\right\| \\
\left\|g_{n}-g_{m}\right\|^{2} & =2\left\|g_{n}\right\|^{2}+2\left\|g_{m}\right\|^{2}-\left\|g_{n}+g_{m}\right\|^{2} \\
& \leq 4-\frac{1}{\|T\|^{2}}\left|T g_{n}+T g_{m}\right|^{2} \\
& \rightarrow 4-\frac{7}{\|T\|^{2}} 4\|T\|^{2}=0
\end{aligned}
$$

since L^{2} is complete, there exists $g^{*} \in L^{2}$ such that $\mathrm{g}_{\mathrm{n}} \rightarrow \mathrm{g}^{*}, \quad\left\|\mathrm{~g}^{*}\right\|=1, \mathrm{I}\|*=\| T \|$. Put $\mathrm{g}=\mathrm{H}\|\mathrm{T}\| \mathrm{g}^{*}$. This is the g we want. To show $T(f)=T_{g}(f)$ for all $f \in L^{2}$. Case (i). $T_{g}\left(g^{*}\right)=\left(g^{*}, g\right)=\left(g^{*},\| \|_{\mathrm{g}} \mid \mathrm{g}^{*}\right)=\|\mathrm{I}\|=\mathrm{T}(\mathrm{g} *)$ Case (ii). Suprose $T(f)=0, f \in L^{2}$.

$$
\begin{aligned}
& T(g *)=T\left(g^{*}-\lambda f\right) \text { where } \lambda \text { is a scalar. } \\
&\|T\|^{2}=\left|T\left(g^{*}\right)\right|^{2}=|T(g *-\lambda f)|^{2} \\
& \leq\|T\|^{2} \| g^{*}-\left.\lambda f\right|^{2} \\
&=\|T\|^{2}\left(g^{*}-\lambda f, g^{*}-\lambda f\right) \\
&=\|T\|^{2}\left[\left(g^{*}, g^{*}\right)-\lambda\left(f, g^{*}\right)-\bar{\lambda}\left(g^{*}, f\right)+\right. \\
&-\lambda \bar{\lambda}(f, f)- \\
&-\overline{(g *, f})-\bar{\lambda}\left(g^{*}, f\right)+\lambda \bar{\lambda}(f, f) \underline{3} 0 .
\end{aligned}
$$

$$
\text { Put } \lambda=\frac{(g *, f)}{(f, f)}
$$

Then we get - $\frac{(g *, f) \overline{(g *, f)}}{(f, f)} \geq 0$

$$
\begin{aligned}
& |(g *, f)|=0 \text { so that }\left(f, g^{*}\right)=0 \\
& \left(f,\|T\| g^{*}\right)=0 \text { i.e., }(f, g)=0
\end{aligned}
$$

Thus

$$
T(f)=0 \Rightarrow T_{g}(f)=0 \text {, hence } T=T_{g}
$$

Case (iii). Let $f \in I^{2} ;$ let $\lambda=\frac{T(f)}{T\left(g^{*}\right)}$ and set

$$
f_{0}=f-\frac{T\left(f^{\prime}\right)}{T\left(g^{*}\right)} g^{*}
$$

Then $T\left(f_{0}\right)=0$ and $f=f_{0}+\lambda g *$

$$
\begin{aligned}
\mathbb{T}_{g}(f) & =\mathbb{T}_{g}\left(f_{0}\right)+\lambda T_{g}(g *)=T\left(f_{0}\right)+\lambda T(g *) \\
& =\frac{T(f)}{T\left(g^{*}\right)} T(g *)=T(f) .
\end{aligned}
$$

Hence $T_{g}=T$.
Functions of bounded variation (Rend from my notes).
3.7 Absolute continuity

DEFINITION 11. A function f defined on (a, b) is
said to be absolutely continuous (A.C.) if

$$
\left|f\left(\beta_{k}\right)-f\left(\alpha_{k}\right)\right| \rightarrow 0 \quad \text { as } \quad \sum\left(\beta_{k}-\alpha_{k}\right) \rightarrow 0
$$

where $\left(\alpha_{\mathrm{k}}, \beta_{\mathrm{k}}\right)$ denotes a system (finite or infinite) of non-overlapping intervals.

DEFINITION 12. F is said to satisfy Lipschitz condition if there exists $c>0$ such that

$$
\left|F\left(x^{\prime}\right)-F\left(x^{\prime \prime}\right)\right|<c\left|x^{\prime}-x^{\prime \prime}\right|
$$

Remark. A function which satisfies Lipschitz condition is A.C.

PROOF. $\quad \sum\left\{f\left(\beta_{K}\right)-f\left(\alpha_{K}\right)\right\} \leq \quad \sum\left|f\left(\beta_{k}\right)-f\left(\alpha_{k}\right)\right|$

$$
\leq \quad c \sum\left(\beta_{k}-\alpha_{k}\right)
$$

PROPOSITION 18. A function F is A.C. if and only
if given $\varepsilon>0$ there exists $\delta>0$ such that

$$
\sum\left|F\left(\beta_{k}\right)-F\left(\alpha_{k}\right)\right|<\varepsilon .
$$

whenever $\sum\left(\beta_{k}-\alpha_{k}\right)<\delta$ where the intervals $\left(\alpha_{\mathrm{K}}, \beta_{\mathrm{K}}\right)$ do not overlap.

PROOF. Suppose E is absolutely continuous. We shall show that given $\mathcal{E} \gg 0$ there exists $\delta>0$ such that

$$
\sum\left|F\left(\beta_{K}\right)-F\left(\alpha_{K}\right)\right|<\varepsilon .
$$

whenever

$$
\sum\left(\beta_{k}-\alpha_{k}\right)<\delta .
$$

Assume felse: Then there exists some $\varepsilon>0$ and a system of intervals (non-overlapoing) $\left(\alpha_{k}, \beta_{k}\right)$ such that

$$
\begin{aligned}
& \sum\left(\beta_{k}=\alpha_{k}\right) \rightarrow 0 \text { and } \\
& \sum\left|F\left(\beta_{k}\right)-F\left(\alpha_{k}\right)\right| \geq \varepsilon .
\end{aligned}
$$

Now decompose the intervals (α_{k}, β_{k}) into two parts according to the sign of $F\left(\beta_{k}\right)-F\left(\alpha_{k}\right)$. Then the intervals on one of these parts will satisfy

$$
\sum\left(\beta_{k}-\alpha_{k}\right) \rightarrow 0
$$

but

$$
\left|\sum\left(F\left(\beta_{K}\right)-F\left(\alpha_{K}\right)\right)\right| \geq \varepsilon / 2
$$

contradiction to the $A C$ of F.
Converse is trivial.

PROPOSITION 19. A necessary and sufficient condition
that P be the indefinite integral is that it is
absolutely continuous.
PROOF. Suppose f is integrable in $[a, b]$ and

$$
F(x)=\int_{a}^{x} f(t) d t
$$

Case (i). If F is bounded then there exists $c>0$ such that $|f(x)| \leq c$ for all $a \leq x \leq b$. Then

$$
|\mathbf{P}(\beta)-F(\alpha)|=\left|\int_{\alpha}^{\beta} f(t) d t\right| \leq c(\beta-\alpha)
$$

and the absolute continuity of F is immediate.
Case (ii). If f is not bounded, let $\varepsilon>0$ a be given. We can decompose f into a sum of two functions g and h where g is bounded and integrable and $\int h d x<\varepsilon / 2$. i.e., $f(x)=g(x)+h(x)$ (to see that this is possible :

$$
\because=f_{n}(x)=\left\{\begin{array}{lll}
f(x) & \text { if } & |f(x)| \leq n \\
n & \text { if } & |f(x)| x n .
\end{array}\right.
$$

Then

$$
f(x)=f_{n}(x)+\frac{f(x)-f_{n}(x)}{h_{n}(x)}
$$

Let c be the bound of g. Then for any system of non-overlapoing intervals $\left(\alpha_{k}, \beta_{k}\right)$ such that

$$
\left|\Sigma\left[F\left(\beta_{k}\right)-F\left(\alpha_{k}\right)\right]\right|=\left|\sum \int_{\alpha_{k}}^{\beta_{k}} f(t) d t\right|
$$

$$
\begin{aligned}
& \leq \sum \int_{\alpha_{k}}^{\beta_{k}} \lg (t) \mid d t+\sum \int_{\alpha_{k}}^{\beta} h d t \\
& \leq c \sum\left(\beta_{k}-\alpha_{k}\right)+\varepsilon / 2<c \frac{\varepsilon}{2 c}+\frac{\varepsilon}{2}=\varepsilon .
\end{aligned}
$$

Thus F is absolutely continuous.
Suppose F is absolutely continuous. Given $\varepsilon>0$, choose a $\delta>0$ such that for any system of non-overlapping intervals $\left(\alpha_{k}, \beta_{k}\right)$

$$
\sum\left|F\left(\beta_{k}\right),-F\left(\alpha_{k}\right)\right|<E
$$

whenever $\quad \sum\left(\beta_{k}-\alpha_{k}\right)<\delta$. We claim F is of bounded variation.
3.8 LEMMA 20. A necessary and sufficient condition that a function $F(x)$ be an integral of an element $f(x) \in$ $I^{p}(1<p<\infty)$ is that the sum
(*)

$$
\sum_{k=1}^{m} \frac{\left|F\left(x_{k}\right)-F\left(x_{k-1}\right)\right|^{p}}{\left(x_{k}-x_{k-1}\right)^{p-1}}
$$

formed for every system of points $x_{0}<x_{1}<\ldots<x_{m}$ lying in $[a, b]$ have a finite least upper bound.

PROOF. Necessity: Assume F is the integral of $f(x)$ $\left|F\left(x_{k}\right)-F\left(x_{k-1}\right)\right| \leq \int_{x_{k=1}}^{x_{k}}|f(x)| d x$ $\leq\left(x_{k}-x_{k-1}\right)^{1-\frac{1}{p}}\left(\int_{x_{k-1}}^{x_{k}}|f(x)|^{p} d x\right)^{\frac{1}{0}}$

$$
\frac{\left|F\left(x_{k}\right)-F\left(x_{k-1}\right)\right|^{p}}{\left(x_{k}-x_{k-1}\right)} \leq \int_{x_{k-1}}^{x_{k}}|f(x)|^{p} d x
$$

$(* *) \cdot \sum_{k=1}^{m} \frac{\left|F\left(x_{k}\right)-F\left(x_{k-1}\right)\right|^{p}}{\left(x_{k}-x_{k-1}\right)^{p-1}} \leq \int_{a}^{b}|f(x)|^{p} d x$
Sufficiency: Assume the sums (*) are bounded. Let B^{p} be 1.u.b. Let $\left(\alpha_{k}, \beta_{K}\right)$ be a system of non-overlanoing intervals. By Holders inequality for the (sum)

$$
\begin{aligned}
\sum\left|F\left(\beta_{k}\right)-F\left(\alpha_{k}\right)\right| & \left.\leq\left[\sum \frac{\mid F\left(\beta_{k}\right)-F\left(\alpha_{k}\right) p^{p}}{\left(\beta_{k}-\alpha_{k}\right)}\right]^{\frac{1}{p}}\right]^{\frac{p}{p}}\left[\sum\left(\beta_{k}-\alpha_{k}\right)\right]^{\frac{p-1}{p}} \\
& \leq B\left[\sum\left(\beta_{k}-\alpha_{k}\right)\right]^{\frac{p-1}{p}}
\end{aligned}
$$

This implies $F(x)$ is absolutely continuous. Therefore $F^{\prime}(x)$ exists /ae. and $F(x)$ is its indefinite integral.

Now this erivative is the limit of a sequence of functions $f_{n}(x)$. For example divide $[a, b]$ into 2^{n} equal segments and in each of these define $f_{n}(x)$ by

$$
\frac{F(\beta)-P(\alpha)}{\beta-\alpha}
$$

Now the sum (*) which corresponds to the decomposition considered is precisely the integral of $\left|f_{n}\right|^{p}$ over $[a, b]$. Then by Fatou's lemma, $\left|F^{\prime}(x)\right|^{p}$ is integrable and this integral does not exceed B^{p}.

Remark.

$$
B^{p}=\int_{a}^{b}|f(x)|^{p} d x
$$

PROOF. Already proved

$$
\int_{a}^{b}|f(x)|^{p} d x \cdot \leq B^{p}
$$

Also from ($* *$) we have

$$
B^{p} \leq \int_{a}^{b}|f(x)|^{p} d x
$$

PROPOSITION 21. Let T be a bounded linear functional or $L^{p}(a, b) \quad(1 \leq p<\infty)$. Then there exists $f \in L^{q}(a, b)$ such that

119

$$
T(g)=\int_{a}^{b} f(t) g(t) d t, \frac{1}{p}+\frac{1}{q}=1
$$

PROOF. Case 1: When $1<q<\infty$. Let $F(x)$ equal.
${ }^{T} g_{X}$ where g_{x} is the characteristic function of (a, x). We shall show that $F(x)$ satisfies (*) and is the indefinite integral of a function $f(x)$ which belongs to I^{p}.

Consider the step function $\varphi(\xi)$ which assumes
the values

$$
\begin{aligned}
& \frac{\left|F\left(x_{k}\right)-F\left(x_{k-1}\right)\right|^{p-1}}{\left(x_{k}-x_{k-1}\right)^{p-1}} \operatorname{sgn}\left[F\left(x_{k}\right)-F\left(x_{k-1}\right)\right] \quad \text { on }\left(x_{k-1}, x_{k}\right) \\
& T \varphi=T\left(\sum \frac{\left|F\left(x_{k}\right)-F\left(x_{k-1}\right)\right|^{p-1}}{\left(x_{k}-x_{k-1}\right)^{p-1}} \operatorname{sgn}\left(F\left(x_{k}\right)-F\left(x_{k-1}\right)\right)\right. \\
& \left.:\left(g_{x_{k}}-g_{x_{k-1}}\right)\right) \\
& =\sum \frac{\left|F\left(x_{k}\right)-F\left(x_{k-1}\right)\right|^{p-1}}{\left(x_{k}-x_{k-1}\right)^{p-1}} \operatorname{sgn}\left(F\left(x_{k}\right)-F\left(x_{k-1}\right)\right)\left(T g_{x_{k}}-T g_{x_{k-1}}\right) \\
& =\sum \frac{\left|F\left(x_{k}\right)-F\left(x_{k-1}\right)\right|^{0}}{\left(x_{k}-x_{k-1}\right)^{p-1}} \\
& T \varphi_{j} \leq\|T\|\|\varphi\|_{q}=:\|T\| \quad\left(\int_{a}^{b}|\rho(\xi)|^{q} d \xi\right)^{\frac{1}{q}}
\end{aligned}
$$

$$
\begin{aligned}
& 120 \\
&=\|T\|\left[\sum \frac{\left|F\left(x_{k}\right)-F\left(x_{k-1}\right)\right|^{q(p-1)}}{\left(x_{k}-x_{k-1}\right)^{q(p-1)}}\left(x_{k}-x_{k-1}\right)\right]^{\frac{1}{q}} \\
&=\|T\|\left[\sum \frac{\left|f\left(x_{k}\right)-F\left(x_{k-1}\right)\right|^{p}}{\left(x_{k}-x_{k-1}\right)^{p-1}}\right]^{\frac{1}{q}} \\
&\left.\sum \frac{F\left(x_{k}\right)-\left.F\left(x_{k-1}\right)\right|^{p}}{\left(x_{k}-x_{k-1}\right)^{p-1}} \leq\|T\|\right]\left[\frac{\left|F\left(x_{k}\right)-F\left(x_{k-1}\right)\right|^{p}}{\left(x_{k}-x_{k-1}\right)^{p-1}}\right]^{\frac{1}{q}}
\end{aligned}
$$

or

$$
\sum \frac{F\left(x_{k}\right)-F\left(x_{k-1}\right) \|^{p}}{\left(x_{k}-x_{k-1}\right)^{p-1}} \leq\|T\|^{p}
$$

Therefore $F(x)$ is the indefinite integral of a function $f(x) \in L^{p}$ and such that

$$
\begin{equation*}
\int_{a}^{b}|f(x)|^{p} d x \leq\|T\|^{p} \tag{1}
\end{equation*}
$$

We claim if g is a step function $\epsilon L^{\text {G }}$
(*)

$$
T g=\int_{a}^{b} g(t) F^{\prime}(t) d t
$$

Since step functions are dense in $L^{q},(*)$ holds for all $g \in L^{q}$. Now

$$
\begin{aligned}
& T g \equiv \int_{a}^{b} f(t) g(t) d t \quad g \in I^{q} \\
& |T g| \leq\left(\int_{a}^{b}|f(t)|^{p} d t\right)^{\frac{1}{p}}\left(\int_{a}^{b} \mid g(t) p_{d t}\right)^{\frac{1}{q}} \\
& \|T\| \leq\left(\int_{a}^{b} \mid f(t) p_{d t}\right)^{\frac{1}{p}} .
\end{aligned}
$$

Hence

$$
\|T\|^{p}=\left.\int_{a}^{b} f^{\prime}(t)\right|^{p} d t
$$

Case (ii): When $p=1$. For every pair of points $x_{1}, x_{2} \in(a, b)$ we have

$$
\begin{aligned}
\left|F\left(x_{2}\right)-F\left(x_{1}\right)\right| & =\left|T\left(g_{x_{2}}-g_{x_{1}}\right)\right| \leq\|\mathbb{T}\| \int_{a}^{b} \mid g_{x_{2}}(\xi)- \\
& -\|\mathbb{T}\|\left|x_{2}-x_{x_{1}}\right|
\end{aligned}
$$

ie. $F(x)$ satisfies the Lipschitz condition. Therefore $F(x)$
is the indefinite integral of a function $f(x)$ such that
$|f(x)| \leq M$. We can show as in the preceding case that

$$
|T g|=\int_{a}^{b} g(x) f(x) d x=(g, f)
$$

It follows that

$$
|\lg | \leq(\text { true } \max |f(x)|) \int_{a}^{b}|g(x)| d x
$$

hence

$$
\|T\| \leq \text { true } \max |f(x)|
$$

Also we have $|f(x)| \leq\|T\|$. Therefore $\|T\|=\|f\|$. This comples the proof.

NORMEDANDBANACHALGEBRAS
4. 1 DEFINITION 1. A set X is called a normed algebra over the complex field \mathbb{K} if
(1) X is a normed linear space
(11) X is a ring with respect to two internal operations, the addition being the vector space addition in (i)
(iii) $\lambda(x y)=(\lambda x) y=x(\lambda y)$
(iv) $\|x y\| \leq\|x\|\|y\|, \quad x, y \in X, \lambda \in \mathbb{K}$.

If, in addition, X is Banach space, then X is called a Banach algebra.

Example 1. $\quad X=$ Banach space $L(X, X)=$ set of all bounded Inear transformations on X. Multiplication is defined by $A B(x)=A(B(x))$ for $A, B \in L(X, X)$ and the norm is defined by

$$
\|A\|=\sup _{x \neq 0} \frac{\|A x\|}{\|x\|} \quad A \in L(X, X)
$$

Example 2. $X=C[a, b]$, complex valued continuous functions on $[a, b]$. Multiplication is defined in the pointwise fashion and $\|f\|=\max _{a \leq x \leq b}|f(x)|$, $f \in X$.

Example 3. Let K be a compact Hausdorff space and let $\mathscr{C}(K)$ be the set of all complex valued continuous functions on K. Then under pointwise operations and sup-norm

$$
\|f\|=\sup _{x \in K}|f(x)|, \quad f \in \mathscr{C}(K) .
$$

$\mathscr{C}(\mathrm{K})$ is a Banach algebra.
Example 4. $\quad W=$ set of all absolutely convergent trigonometrical series, $x(t)=\sum_{n=-\infty}^{\infty} C_{n} \theta^{i n t}$ and the norm of of any $x(t)$ in W is defined by

$$
\|x(t)\|=\left\|\sum_{n=-\infty}^{\infty} c_{n} e^{i n t}\right\|=\sum_{n=-\infty}^{\infty}\left|c_{n}\right|
$$

with multiplication taken as Cauchy product.
Example 5. $A=$ set of all functions analytic in the open unit disk in the complex plane and continuous in the closed unit disk. Multiplication is defined pointwise and

$$
\|f\|=\max _{|z| \leq 1}|f(z)|=\max _{|z|=1}|f(z)|, f \in A
$$

125

Example 6. $\quad P_{n}=$ space of all polynomials of degree less than or equal to n. If $f, g \in P_{n}, f(t)=\sum_{o}^{n} t^{t}$ $g(t)=\sum_{0}^{n} a_{j} t^{j}$, we take

$$
g(t) f(t)=\sum_{0}^{n} C_{k} t^{k}
$$

where $c_{k}=\sum_{j+1=k} a_{j} b_{l}$. Define $\left\|\sum_{j=0}^{n} a_{j} t^{j}\right\|=\sum_{j=0}^{n}\left|a_{j}\right|$

Example 7. $G=\left\{\sigma_{1}, \sigma_{2}, \ldots, \sigma_{n}\right\}$ any finite group $L_{1}(G)$ denotes the class of all complex valued functions on G. Multiplication is defined by $*$ and the product of two functions $f, g \in L_{I}(G)$ is defined by

$$
(f * G)\left(\sigma_{k}\right)=\sum_{\sigma_{1} \sigma_{j}=\sigma_{k}} f\left(\sigma_{i}\right) g\left(\sigma_{j}\right)
$$

Norm of f is

$$
\|f\|=\sum_{i=1}^{n}\left|f\left(\sigma_{i}\right)\right|
$$

Example 8. $Z=$ integers and $L_{1}(Z)$, the set of all complex valued functions f on Z such that $\sum_{n=-\infty}^{\infty}|f(n)|<\infty$. If $f, g \in I_{l}(Z)$ multiplication $f^{*} g$ is defined by

$$
(f * g)(n)=\sum_{m=-\infty}^{\infty} f(n-m) g(m)
$$

and

$$
\|f\|=\sum_{n=-\infty}^{\infty}|f(n)|
$$

DEFINITION 2. Let X. be a Banach space and D an open set in \mathbb{K}. A function $x: D \rightarrow X$ is said to be analytic in Dif

$$
x^{\prime}\left(\lambda_{0}\right)=\lim _{\lambda \rightarrow \lambda_{0}} \frac{x(\lambda)-x\left(\lambda_{0}\right)}{\lambda-\lambda_{0}}
$$

exists for all λ_{0} in D, where the limit is taken in the norm topology of X.

LIOUVILIE'S THROREM: Let $x: K \rightarrow X$ where X is a Banach soace. If x is analytic in the entire complex plane and bounded i.e. $\|x(\lambda)\| \leq M$ for $2 l l$ $\lambda \in \mathbb{K}$, then $\times 1$ s a constant.

PROOF. Let f be an arbitrary bounded linear functional on X. Then there exists $k \geq 0$ such that $|f(y)| \leq k\|y\|$ for all yEX. Now f_{x} is analytic and $|f(x(\lambda))| \leq k\|x(\lambda)\| \leq k M$. By Liouville's theorem for a single complex variable, fx is a constant. If $\alpha, \beta \in K$, then $f(x(\alpha))=f(x(\beta))$ which by linearity of f gives $f(x(\alpha)-x(\beta))=0$. Since f is any bounded linear functional, it is a ∞ nsequence of Hahn Banach theorem that $x(\alpha)-x(\beta)=0$ or $x(\alpha)=x(\beta)$ for $\alpha, \beta \in \mathbb{K}$.

Exercise 1. Show that in a normed algebra the ring multiplication ; 3 continuous.

PROPOSITION 1. Let X be a nonzero Banach algebra with 1dentity e. If $x \in X$ and $\|e-x\|<1$, then

1. x is a unit (i.e. x has an inverse) and
2. $x^{-1}=e+\sum_{1}^{\infty}(e-x)^{n}$.

PROOF. The series in the right hand side of (2)
converges normally since $\|e-x\|<1$. Now $x=e-(e-x)$ so that

$$
\begin{aligned}
{[e-(e-x)] \cdot\left[e+\sum_{1}^{\infty}(e-x)^{n}\right]=} & e+(e-x)+(e-x)^{2}+\ldots \\
& -(e-x)-(e-x)^{2}-\cdots \\
= & e .
\end{aligned}
$$

PROPOSITION 2. Let X be a Banach algebra with identity. Let λ be a complex number such that $\|x\|<|\lambda|$. Then $x-\lambda e$ is aunit

PROOF. Now $\left\|e-\left(e-\lambda^{-1} x\right)\right\|=\left\|\lambda^{-1} x\right\|=\frac{\|x\|}{|\lambda|}<1$ which inplies that $e-\lambda^{-1} x$ is a unit. Then $x-\lambda e=-\lambda\left(e-\lambda^{-1} x\right)$ is also a unit.

Remark. $(\operatorname{Re}-x)^{-1}=\sum_{n=1}^{\infty} \lambda^{-n} x^{n-1}$

PROPOSITION 3. In a Banach algebra X with identity e, the set U of all units is open and the operation of inversion is continuous on U.

PROOF. First we notice eEU and the unit sphere $S_{I}(e)=\{x \in x \mid\|e-x\|<I\} \in U$. Let $x \in U$. Then $x^{-1}=e$. Since the ring multiplication is continuous, there exists a neighbourhood $N(x)$ of x such that $N(x) x^{-1} C S_{1}(e)$. Let $Y \in N(x)$. Then $y x^{-1} \hat{\varepsilon}-S_{1}(e)$ and hence is a unit. Therefore there exists $z \in X$ such that $\left(y x^{-1}\right) z=y\left(x^{-1} z\right)=e, z y x^{-1}=e$ or $\left(x^{-1} z\right) y=e$. Hence $y \in U$. Thus $N(x) \subset U$ and U is open.

It remains to show that the operation of taking inversesis continuous in U. Let $x_{n} \in U$ such that $x_{n} \rightarrow x$. This implies that $\mathrm{x}^{-1} \mathrm{x}_{\mathrm{n}}+e$ or for any $\varepsilon>0$ there exists an integer $N(\varepsilon)$ such that
-

$$
\left\|x^{-1} x_{n}-e\right\|<\varepsilon \text { for } n>N
$$

Choose N_{1} such that $\left\|x^{-1} I_{X_{n}-e \|}\right\| I$ for $n>N_{1}$ and consider the series et $\sum_{k=1}^{\infty}\left(e-x^{-7} x_{n}\right)^{k}$ for $n>N_{1}$. This series converges to $\left(x^{-1} x_{n}\right)^{-1}=x_{n}^{-1}$. From the absolute convergence, then

$$
\left\|e-x_{n}^{-1}\right\| \leq \sum_{k=1}^{\infty}\left\|e-x^{-1} x_{n}\right\|^{k}=\sum_{k=1}^{\infty}\left\|x^{-k}\left(x-x_{n}\right)\right\|^{k}
$$

(*)

$$
\leq \sum_{k=1}^{\infty}\|x-1\|^{k}\left\|x-x_{n}\right\|^{k}
$$

Since $\left\|x-x_{n}\right\| \rightarrow 0$ we can choose N_{2} such that $n>N_{2}$ will make (*) sufficiently small or $\left\|e-x_{n}{ }^{-1} x\right\| \rightarrow 0$ which means $x_{n}^{-1} \rightarrow x^{-1}$. This establishes the continuity.

DEFINITION. 3. Let $\lambda \in \mathbb{K}$. If x - λe is a unit, then λ is called a regular point of x. The set of all non-regular points of x is called the spectrum of x and is denoted by $\sigma(x)$.

PRJPOSITION 4. Let X be a Banach algebra with
identity. If $x C X$ then $\sigma(x)$ is a nonempty compact subset of \mathbb{K}.

PROOF. First we prove that $\sigma(x)$ is closed. Fnough to show the set of regular points is open. Let λ_{0} be a regular point of x. Then $x_{\lambda_{j}}=x-\lambda_{\lambda} e \in U$. Since U is open there is a neighbourhood $N\left(x_{\lambda_{0}}\right)$ of $x_{\lambda_{0}}$ such that $N\left(x_{\lambda_{0}}\right) \subset U$. Since the mapping $\lambda € \mathbb{K} \rightarrow x-\lambda e \in X$ is continuous there exists a neighbourhood $N\left(\lambda_{0}\right)$ of λ_{0} such that $\lambda \in N\left(\lambda_{0}\right)$ implies $x-\operatorname{Ae} \subseteq N\left(x_{\lambda_{\gamma}}\right) \subseteq U$. Hence, each point of $N\left(\lambda_{O}\right)$ is a regular point and thus the set of all regular points is open which implies $\sigma(x)$ is closed.

Since $\|x\|<|\lambda|$ implies that $x-\lambda \in \in U$, it is cloar that $\sigma(x)$ is contained in the closed diok of radius $\|x\|$. $\sigma(x)$ is thus closed and bounded and hence compact.

It remains to show that $\sigma(x)$ is not empty. If C_{R} denotes the set of all regular points of x then x may be thought of as mapping $C_{R} \rightarrow X$ given by $\lambda \rightarrow(x-\lambda e)^{-1}$. We assert that $x(\lambda)=(x-\lambda e)^{-1}$ is analytic in the set of all regular points. If λ_{1}, λ_{2} are any two regular points, then

$$
\begin{gathered}
x\left(\lambda_{1}\right)^{-1} x\left(\lambda_{2}\right)=\left(x-\lambda_{1} e\right) x\left(\lambda_{2}\right)=\left[\left(x-\lambda_{2} e\right)+\left(\lambda_{2}-\lambda_{1}\right) e\right] x\left(\lambda_{2}\right) \\
=e+\left(\lambda_{2}-\lambda_{1}\right) x\left(\lambda_{2}\right)
\end{gathered}
$$

so that

$$
x\left(\lambda_{2}\right)-x\left(\lambda_{1}\right)=\left(\lambda_{2}-\lambda_{1}\right) x\left(\lambda_{1}\right) x\left(\lambda_{2}\right)
$$

from which we obtain

$$
\lim _{\lambda \rightarrow \lambda_{0}} \frac{x(\lambda)-x\left(\lambda_{0}\right)}{\lambda-\lambda_{0}}=x\left(\lambda_{0}\right)^{2}=\left(x-\lambda_{0} e\right)^{-2}
$$

ivow suppose that $\sigma(x)=$ ．\quad ．Then $x(\lambda)=(x-\lambda e)^{-1}$
is analytic throughout K and

$$
\lim _{\lim _{\rightarrow \infty}}(x-\lambda e)^{-1}=\lim _{\lambda \rightarrow \infty} \frac{1}{\lambda}\left(\frac{1}{\lambda} x-e\right)^{-1}=0
$$

By Liouville＇s theorem（x－he）${ }^{-1}$ is identically 0 ．This is impossible sirce 0 has no inverse．Thus $\sigma(x) \neq \varnothing$ ．

PROPOSITION 5．Let X be a complex Banach algehra with identity．Then X is isomorphic to \mathbb{K} ifone of the following conditions is san－sfied．
（1）X ise division alébra
（2）$\|x y\|=\|x\| \cdot\|y\|^{\circ}$ for all $2, ~ オ こ ゙ ~$
（3）$\left\|x^{-1}\right\| \leq\|x\|^{-1}, x$ invertible．

PROOF. (1) Let $x \in X$. Then $\sigma(x) \neq \varnothing$. Let $\lambda \subset \sigma(x)$ and consider $x-\lambda e$. Now $(x-\lambda)^{-1}$ does not exist. since X is a division algebra, the only element which has no inverse is 0 . Hence $x-\lambda e=0$ or $x=\lambda e$. Thus every element of X is of the form λe and we have the $m a p ~ X ~ \mathbb{K}$ defined by $\lambda e \rightarrow \lambda$ which is clearly an isomorphism.
(3) We shall prove now (3). If we can show that every nonzero element is invertible, then (l) applies and the result follows. Let

$$
A_{\rho}=\left\{x \mid\|x\|>_{\rho}\right\}
$$

where $\rho>0$. Then the set A_{ρ} is connected. Let U_{ρ} denote the set of all invertible elements in A_{ρ} i.e. $U_{\rho}=U \cap A_{\rho}$. Then U_{ρ} is open in A_{ρ}. Let $X_{n} \in U_{\rho}$ and $X_{n} \rightarrow x$ in X. Since

$$
\left|x_{m}^{-1}-x_{n}^{-1}\left\|=\left|x_{m}^{-1}\left(x_{n}-x_{m}\right) x_{n}^{-1}\right| \leq \frac{1}{\rho^{2}}\right\| x_{n}-x_{m} \|\right.
$$

the sequence $\left\{x_{n}^{-1}\right\}$ converges. clearly $X_{n}^{-1} \rightarrow x^{-1}$. Thus $x \in U_{\rho}$ and U_{ρ} is closed. Since $p \in \in U_{\rho}, U_{\rho} \neq \varnothing$. By connectedness $U_{\rho}=A_{\rho}$ and thus A_{ρ} contains invertible elements only.
(2) To prove (2) we assume that $\|e\|=1$. Then if \bar{x} is invertible, then $I=\|e\|=\left\|x^{-1} x\right\|=\left\|x^{-1} \mid\right\| x \|$ so that $\left\|x^{-1}\right\|=\|x\|^{-1}$ and now (3) applies.

This completes the proof.

4.2 Gelfand. Renresentation

Throughout X will denote a commutative Banach algehra with identity e and $\mid e \|=1$.

We remark that the closure of a proper ideal in X is again a proper ideal.

Let I be a closed proper ideal in X. Then $\frac{X}{\bar{I}}$ is again an algebra with identity. If we introduce the norm

$$
\|x+I\|=\inf _{y \in I}\|x+y\|
$$

then $\frac{X}{I}$ becomes a Banaoh space. It is easy to check

$$
\|(x+I)(y+I)\| \leq\|x-I\|\|y+I\|
$$

Hence $\frac{X}{I}$ is a Banach algebra under this norm. Then olearly the natural homomorphism is norm-diminishing

$$
\|x+I\| \leq\|x\|
$$

PROPOSITION 6. Every maximal ideal in X is
closed.

PROOF. The closure \bar{M} of a maximal ideal M in X is also a proper ideal of X. Now by maximality of $M, \bar{M}=M$ which ionplies that M is closed.

PROPOSITION 7. Let M be a meximal ideal in X.
Then $\frac{X}{M} \cong \mathbb{R}$ and_if \varnothing is the homomorohism of X
onto \mathbb{K}, then $|\phi(x)| \leq\|x\|$ for all $x \in X$.

PROOF. Since X is a commutative ring with identity and M is a maximal ideal, $\frac{X}{M}$ is a field. Now $\frac{X}{M}$ is a Banach algebra and it is also a field. Hence $\frac{X}{\bar{M}} \cong \mathbb{K}$.

If D is a homomorphism of X onto K, let M be its kernel. Now since $\frac{X}{M} \cong \mathbb{K}$, there exists a scalar $\hat{x}(M)$ such that $\hat{x}+M=\hat{x}(M)(e+M)$, and the isomorphism is explicitly given by

$$
\begin{aligned}
& X \longrightarrow \frac{X}{M} \xrightarrow{i s o} K \\
& X \rightarrow X+M=\hat{x}(M)(e+M) \longrightarrow \hat{x}(M)
\end{aligned}
$$

so that $\phi(x)=\hat{x}(M)$. Now from the definitions of $\|x+M\|$

it follows that

$$
\begin{equation*}
\|x\| \geq\|x+M\|=\|\hat{x}(M)(e+M)\|=|\hat{x}(M)| \cdot\|e+M\| \tag{*}
\end{equation*}
$$

Now $\|e+M\| \leq\|e\|=1$. Suppose $\in\|e+M\|<1$. Then there exists $y \in e+M$ with $\|y\|<1$. Then $y=e+x$ for some $x \in M$ and then $-x$ will be a unit. This is impossible since M is proper. Thus $\|e+M\|=1$. Then (*) gives

$$
\|x\| \geq\|\hat{x}(M)\| \cdot\|e+M\|=\| \hat{x}(M)=|\phi(x)|
$$

This completes the proof:
Remark 1. \varnothing satisfies the following properties

$$
\begin{aligned}
& \phi(e)=1, \phi(x+y)=\varnothing(x)+\phi(y), \phi(\lambda x)=\lambda \emptyset(x) \\
& \phi(x y)=\varnothing(x) \phi(y) \text { and }|\phi(x)| \leq\|x\|
\end{aligned}
$$

\varnothing is called a multiplicative line ar functional on X.
Remark 2. There exists a one to one correspondence between the set of all maximal ideals of X and the set of all multiplicative linear Sunctionals on X.

176

Let ra denote the set of all maximal ideals of X. Let \varnothing be the multiplicative linear functional on X with kernel M. Then to each $x E X$ we define a map

$$
\mathrm{x}: \nsim L \mathbb{K} \text { by } \hat{X}(M)=\varnothing(x), M \in M_{l}
$$

Then we have $\hat{e}=1,(x+y)^{\wedge}=\hat{x}+\hat{y},(\lambda x)^{\wedge}=\lambda \hat{x},(x y)^{\wedge}=\hat{x} \hat{y}$ Further if $M, N \in M$ and $M \neq N$, then there exists $x \in X$ such that $\hat{x}(M) \neq \hat{x}(N)$. This is trivial if we notice that $\hat{x}(M)=0$ if and only if $x \in M$.

We shall now topologize M so that a Hausdorff topology results. Let $\varepsilon>\theta$ be arbitrary and let x_{1}, \ldots, x_{n} be a finite number of elements of X. If $M_{0} \in M$ then the class of sets

$$
V\left(M_{0}, x_{1}, \ldots, x_{n}, E\right)=\left\{\operatorname{Men}| | \hat{x}_{k}(M)-\hat{x}_{k}\left(M_{0}\right) \mid<\varepsilon \cdot, \| \leq k \leq n\right\}
$$

form a fundamental system of neighborhoods of M_{0}. It is easy to check that these sets do form a fundamental system of neighbourhoods. If $M_{1}, M_{2} \in m$ such that $M_{1} \neq M_{2}$, then there exists $x \in X$ such that. $\hat{x}\left(M_{1}\right) \neq \hat{x}\left(M_{2}\right)$. Let $\varepsilon:=\frac{1}{2}\left|\hat{x}\left(M_{1}\right)-\hat{x}\left(M_{2}\right)\right|$. If $V\left(M_{1}, x ; \frac{\varepsilon}{2}\right) \cap V\left(M_{2}, x, \frac{\varepsilon}{2}\right) \neq \dot{x}$, we can find $M \in M$ such that $\left|\hat{x}\left(M_{1}\right)-\hat{x}(M)\right|<\frac{\varepsilon}{2}$ and $\left|\hat{x}\left(M_{1}\right)-\hat{x}\left(M_{2}\right)\right|<\frac{\varepsilon}{2}$ and then $\left|\hat{x}\left(M_{1}\right)-\hat{x}\left(M_{2}\right)\right| \leq\left|\hat{x}\left(M_{1}\right)-\hat{x}(M)\right|+\left|\hat{x}(M)-\hat{x}\left(M_{2}\right)\right|<\varepsilon$ which is a contradiction. The topobgy thus introduced is called the Gelfand topology.

PROPOSITION 8. The mexiral ideal space m is

compact with respect to Gelfand topology.

PROOF. For each $x \in X$, let $S_{x}=\{z| | z \mid \leq\|x\|\}$.
Then S_{x} is compact for each x. By Tychonoff theorem $S=\prod_{X \in X} S_{X}$ is compact with Tychonoff topology. Notice that an element α in S is a function on X such that $\alpha_{X} \in S_{x}$. Then an element of the basis for the topology of $\mathrm{S}_{\mathrm{is}} \mathrm{given}$ by

$$
W\left(\alpha^{0}, x_{1}, \ldots, x_{n}, \varepsilon\right)=\left\{\alpha \in \mathbb{S}| | \alpha_{x_{i}}-\alpha_{x_{1}}^{0} \mid<\varepsilon, i=1,2, \ldots, n\right\}
$$

consider the maping $g: m-S$ given by $g(M)=\alpha$ where $\alpha_{x}=\hat{x}(M)$. Since $|\hat{x}(M)| \leq\|x\|$, we have $\alpha_{x} \in S_{x}$. We now claim that g is a homeomorphism of mito a closed subset of S. Since S is compact, this will imply the $g(m)$ is also compact. Let $S_{1}=g(m)$. Now g is 1: 1. . If $M_{1} \neq M_{2}$, there exists x_{0} EX such that $\hat{x}_{0}\left(M_{1}\right) \neq \hat{x}_{0}\left(M_{2}\right)$ so that $g\left(M_{1}\right) \neq g\left(M_{2}\right)$.

To show g is continuous. Let $W\left(\alpha^{\infty}, x_{1}, \ldots x_{n}, \varepsilon\right)$ be a basis element in S_{1}. Then $g^{-1}(W)=\left\{M \in m| | \hat{X}_{n}(M)-\alpha_{k}^{0} \mid<\varepsilon, 1 \leq K \leq n\right\}$. Since g is onto S_{1}, there must exist $M \in M$ such that $\hat{x}_{k}\left(M_{0}\right)=\alpha_{k}^{0}$, $g^{-1}(W)=V\left(M_{0}, x_{1}, \ldots, x_{n}, \varepsilon\right)$. This will imply g is continuous.
". To show that S_{1} is closed. Let $\alpha^{\circ}{ }^{\circ} \bar{S}_{1}$. To this end consider the mapping $\phi: X \rightarrow H$ given by $\phi(x)=\alpha_{x}^{0}$. First we notice that \oiint is ε nontrivial functional and hence onto. Suppose $\alpha_{x}^{0} \equiv 0$, then for $a n_{i} x_{I} \ldots, x_{n} \in X$ and for any $\varepsilon>0$ there exists $M \in M$ such that $\left|\hat{x}_{k}(M)-\alpha_{X_{k}}^{0}\right|=\left|\hat{x}_{k}(M)\right|<\varepsilon$. In
 Clearly \emptyset is a multiplicative linear functional on X and thus it is onto O. If M_{0} is the kernel of the homomorphism π, then $\frac{X}{M_{O}} \mathbb{N} \mathbb{K}$. Since \mathbb{K} is a field, M_{0} must be a maximal ideal. Then $\left.\dot{\phi}(x)=\hat{x}^{(} M_{0}\right)=\alpha_{x}^{0}$. Hence $g\left(M_{0}\right)=\alpha^{c} E S_{1}$. S_{1} is thus closed. This completes the proof.

Remark. $\quad x: m \rightarrow \mathbb{N}$ is continuous and $\|\hat{x}\|_{\infty} \leq\|x\|$
where $\quad\|\hat{x}\|_{\infty}=\sup _{\operatorname{Mem}}|\hat{x}(M)|$.
PROPOSITION 9 . The mapping $x \rightarrow \hat{x}$ ism norm-
diminishing homomorphism of X onto e separating subalgebra $\hat{X} \cap I$ 度 (

DEFINITION. \hat{x} is called the Eland transform of
x, \hat{X} is the Geldfand transform of X and the mapping $x \rightarrow \hat{x}$ the relfand reorascintation of X.

PROPOSIMION 10. Lei KeX. Then $\sigma(x)=\{\hat{x}(M) \mid M \in M\}$

PROOF. Let $\hat{X}(M)=\lambda$ where ME MO . Then
$(x-\lambda e)^{\wedge}(M)=\hat{x}(M)-\hat{e}(M)=0 \Rightarrow x-\lambda e \ominus M \Rightarrow x-\lambda e$ is not a unit. Therefore $\lambda \in \sigma(x)$ or $\{\hat{x}(M) \mid M \in \sigma d\} \in \sigma(x)$. Conversely suppose $\lambda \in \sigma(x)$. Then $x-\lambda e$ is not a unit. Then there exists some maximal ideal M such that $x-\lambda e E M$ so that $(x-\lambda e)^{M} M=0$ or $\hat{X}(M)=\lambda$.

DEFINITION 5. The real number $r_{\sigma}(x)=\sup _{\lambda \sigma(x)}|\lambda|$
is said to be the spectral radius of x.
PROPOSITION II. $\quad n_{\sigma}(x)=\lim _{a \rightarrow \infty}\left\|x^{\mathbb{m}_{\|} \frac{1}{n}}=\right\| \hat{x} \|_{\infty}$

$$
\text { PROOF. } \quad r_{\sigma}(x)=\sup _{\lambda \operatorname{Su}(x)}|\lambda|=\sup _{\operatorname{MEn}}|\hat{x}(M)|=\|\hat{x}\|_{\infty}
$$

If $\lambda \in \sigma(x)$, then $\lambda^{n} \in \sigma\left(x^{n}\right)$; for otherwise $\left(x^{n-1}+\lambda x^{n-2}+\ldots+\lambda^{n-1} e\right) x$ $\left(x^{n}-\lambda^{n} e\right)^{-1}$ will be an inverse of $x-\lambda e$ which gives a contradiction Hence $|\lambda|^{n} \leq\left\|x^{n}\right\|$ which implies

$$
r_{\sigma}(x)=\lim \inf \left\|x^{n}\right\|^{\frac{3}{2}}
$$

On the other hand, if $|\lambda|>r_{x}(x),(\lambda e-x)^{-1}$ exists from the definition of $p_{\sigma}(x)$. since $(\lambda e-x)^{-1}$ is a function analytic on the set of regular points, we can expand into a Laurent series

$$
(\lambda e-x)^{-1}=\sum_{n=1}^{\infty} \lambda^{-n} x^{n-1}, \quad|\lambda|>r_{\sigma}(x) .
$$

As this series converges for each λ, its general term must be bounded so that $\left\|x^{n}\right\|^{\frac{1}{n}} \leq \mu^{\frac{1}{n}}|\lambda|^{\frac{n}{n+1}}$ for some $\mu>0$. Thus we get

$$
\lim \sup \left\|x^{n}\right\|^{\frac{1}{n}} \leq r_{\sigma}(x)
$$

Hence $r_{\sigma}(x) \leq \lim \inf \left\|x^{n}\right\|^{\frac{1}{n}} \leq \lim \sup \left\|x^{n}\right\|^{\frac{1}{n}} \leq r_{\sigma}(x)$. This complets the proof.

DEFINITION 6. The radical of X is the set $\bigcap_{M \in M}$. X is said to be semisimple if the radical of X is $\{0\}$ Notice that $x \underset{M \in m}{\in} \Leftrightarrow \underset{X}{ } \Leftrightarrow \hat{x}(M)=0$ for all $M \in O$

$$
\Leftrightarrow \sup _{M \in m}|\hat{x}(M)|=: 0
$$

$$
\Leftrightarrow \quad \lim \left\|x^{n}\right\|^{\frac{1}{n}}=0
$$

i.e. x is in the radical of X if and only if its spectral radius is 0 .

DEFINITION 7. x is called nilpotent if there exists n such that $x^{n}=0$ and it is topologically nilpotent (or generalized nilpotent) if $\lim \left\|x^{n}\right\|^{\frac{1}{n}}=0$

Remark.1. The radical of X is the set of all topologically nilpotent elements of X.

Remarks. Gelfand representation is \in isomorphism if and only if X is semi simple.

An example. Let $W=\left\{x(t)=\sum_{-\infty}^{\infty} C_{n} e^{i n t}\left|\sum_{-\infty}^{\infty}\right| C_{n} \mid<\infty\right.$ with $\|x\|=\sum_{-\infty}^{\infty}\left|C_{n}\right|$. Then wis a commutative Banach algebra with identity. We shall first determine m. Let $x_{0}=e^{i t}$ and let $\hat{x}_{0}(M)=\alpha$. Then $x_{0}^{-1}=e^{-1 t}$ and $\hat{x}_{D}^{-1}(M)=\alpha^{-1}$. Then we have

$$
\begin{aligned}
& |\alpha|=\left|\hat{x}_{0}(M)\right| \leq\left\|x_{0}\right\|=1 \\
& \left|\alpha^{-1}\right|=\left|\hat{x}_{0}^{-1}(M)\right| \leq\left\|x_{0}^{-1}\right\|=I
\end{aligned}
$$

which show that $|\alpha|=I$ so that there exists $t_{0} \in\left[\cap, 2 \pi^{\circ}\right]$ such that $\alpha=e^{i t_{0}}$. Then the mapping \varnothing given by $\varnothing: W \rightarrow \frac{W}{M} \xrightarrow{\text { iso }} \mathbb{K}$ which sends $x \rightarrow \hat{x}(M)$ gives $x(t)=\sum_{-\infty}^{\infty} C_{n} e^{i n t}+\sum C_{n} e^{i n t_{0}}=\hat{x}(M)$ for $\not D$ is homomorphism and for any finite sum $S_{N} \in W, S_{N}=\sum_{n=N}^{N} c_{n} e^{\text {int }}$ we have $\hat{S}_{N}(M)=\sum_{n=-N}^{N} C_{n} e^{\text {into }}$ so that $\left\|\hat{S}_{\mathbb{N}}(M)-\hat{x}(M)\right\| \leq\left\|S_{N^{\prime}}-x\right\|$ which also establishes the continuity of $\not \subset$. Thus M consists of those $x \in W$ such that $x\left(t_{0}\right)=0$.

Conversely let to $£[0,2 \pi)$ and consider the set M $M=\left\{x \in W \mid x\left(t_{0}\right)=0\right\}$. M is clearly an ideal of w. Let I be an ideal in W containing M properly. Then there exists $y \in I, ~ y \nsubseteq M$. By definition of M, we have $y\left(t_{0}\right) \neq c$. If $z \epsilon^{W}$ we can write

$$
z(t)=\frac{z\left(t_{0}\right)}{y\left(t_{0}\right)} y(t)+\left\{z(t)-\frac{z\left(t_{0}\right)}{y\left(t_{0}\right)} y(t)\right\} .
$$

Since $y \in I$ and $z(t)-\frac{z\left(t_{0}\right)}{y\left(t_{0}\right)}, y(t) \in M \subset I$, we must have $I=W$. Hence M is maximal.

WIENER'S THEOREM. If $\sum_{-\infty}^{\infty} C_{n} e^{\text {int }}$ is absolutely convergent and vanishes nowthere, then $\frac{1}{\sum_{-\infty}^{\infty} \mathrm{c}_{\mathrm{n}} \mathrm{e}^{1 n t}}$ can be
expanded in an absolutely convergent trigonometric series.

PROOF. If $x(t) \neq 0$ for every t, then $x \notin M$ for any M so that x is a unit or $\frac{1}{x(t)} \in w$.

4.3 adiunction of an identity.

PROPOSITION. If X is a complex algebra without identity, then X can be extended to an algehra \hat{x} with identity. If X is a normed algebra (Bapach algebra) so is \hat{X}.

PROOF. Let \hat{X} denote the set of all pairs (α, x) where $\alpha \in \mathbb{K}, x \in X$. Define the algebraic operations in \hat{X} by

$$
\begin{gathered}
\beta(\alpha, x)=(\beta \alpha, \beta x), \quad \beta \in \mathbb{K} \\
\left(\alpha_{1}, x_{1}\right)+\left(\alpha_{2}, x_{2}\right)=\left(\alpha_{1}+\alpha_{2}, x_{1}+x_{2}\right) \\
\left(\alpha_{1}, x_{1}\right)\left(\alpha_{2}, x_{2}\right)=\left(\alpha_{1} \alpha_{2} ; \alpha_{1} x_{2}+\alpha_{2} x_{1}+x_{1} x_{2}\right)
\end{gathered}
$$

Then \hat{X} is an algebra with identity $(1,0)$ and the map $\mathrm{x} \rightarrow(0, \mathrm{x})$ is an isomorphism. Identifying x with $(0, x)$ and setting $e=(1,0)$ we have

$$
(\alpha, x)=\alpha e+x
$$

If X is a normed algebra, let $\|\alpha e+x\|=|\alpha|+\|x\|$ then \hat{X} is clearly a normed algebra. Now suppose X is a Banach algebra. Let $\left\{\alpha_{n} e+x_{n}\right\}$ be a Cauchy sequence in \hat{X}. Then given $\varepsilon>0$, there exists $N=N(\varepsilon)$ such that $\left\|\left(\alpha_{n} e+x_{n}\right)-\left(\alpha_{m} e+x_{m}\right)\right\|<\varepsilon$ if $m, n \geq N$. This is the same as $\left|\alpha_{n}-\alpha_{m}\right|+\left\|x_{n}-x_{m}\right\|<\varepsilon$ which implies that $\left\{\alpha_{n}\right\}$ an' $\left\{x_{n}\right\}$ are Cauchy sequence in 0° and X respectively. Since C and X are complete, there exist $\alpha \in C$, $x \in X$ such that $\left|\alpha_{n}-\alpha\right| \rightarrow 0$ and $\left\|x_{n}-x\right\| \rightarrow 0$ as $n \rightarrow \infty$. Hence $\left.\| \alpha_{n} e+x_{n}\right)-\left(\alpha_{e}+x\right) \| \rightarrow 0$ as $n \rightarrow \infty$ Hence \hat{X} is also a Banach algebra.

4.4 Topological divisors of zero.

DEFINITION 8. An element x in Banach algebra
X is called a topological zero divisor of X if
there is a sequence $\left\{y_{n}\right\}$ in X such that
$\operatorname{Inf}\left\|y_{n}\right\|=0$ and $\lim x y_{n}=0$. The modulus of
integrity $\omega(x)$ of $x \in X$ is defined by

$$
\omega(x)=\operatorname{lnf}_{y \neq 0} \frac{\|x y\|}{\|y\|} .
$$

Notice x is a topological zero divisior iff $\omega(x)=0$.

PROPOSITION. Any topologically nilpotent element
inX is also a topological zero divisor.

PROOF. Suppose x is topologically nilpotent. Then its spectral radius is gero. Hence there exists complex members $\lambda_{n} \rightarrow 0$ such that $x-\lambda_{n} e$ are invertible. Let $y_{n}=\left(x-\lambda_{n} e\right)^{-1}$. Then

$$
x y_{n}=\left(x-\lambda_{n} e\right) y_{n}+\lambda_{n} y_{n}=e+\lambda_{n} y_{n} .
$$

Since x is not invertible, so is $x y_{n}$. Hence $\left|\lambda_{n}\right| \cdot\left\|y_{n}\right\| \geq 1$. Hence $\left\|y_{n}\right\| \rightarrow \infty$. But then

$$
\frac{\left\|x y_{n}\right\|}{\left\|y_{n}\right\|} \leq \frac{1}{v_{n} \|}+\frac{\left|\lambda_{n}\right| \| y_{n} \mid}{\left\|y_{n}\right\|}+0
$$

Hence $\omega(x)=0$ and x is a topological zero divisor.

PROPOSITION (Arens). 2 is a topqlogical zero divisor of X if and only if z is not invertible in any Banach algebra extension Y of X.

PROOF. The necessity is trivial. We shall prove the sufficienc. Assume that z is not a topological zero divisor. Then $\omega(z) \neq 0$. Choose $\hat{p}>\frac{1}{\omega(x)}$. Let y he the algebra of all formal power series.

$$
x(t)=x_{0}+x_{1} t+x_{2} t^{2}+\ldots
$$

where $x_{0}, x_{1}, x_{2}, \ldots$ SX such that $\Sigma\left\|x_{n}\right\| \rho^{n}<\infty$. Define $\|x\|=\Sigma\left\|x_{n}\right\|_{\rho}^{n}$. Then Y is a normed algebra. Let \bar{Y} be the completion of Y and ${ }^{7} e t I$ be a closed ideal in \bar{Y} generated by e-zt. Set $X_{1}=\frac{\bar{Y}}{I}$. Then t is an inverse of z in X_{1} and X_{1} is an extension algebra of X. Tet $y \in X$ and $x(t) \in Y$. Then

$$
\begin{aligned}
\|y+(e-z t) x(t)\| & =\left\|y+x_{0}+\left(x_{1}-x_{0} z\right) t+\left(x_{2}-x_{1} z\right) t^{2}+\ldots\right\| \\
& =\left\|y+x_{0}\right\|+\left\|x_{1}-x_{0} z\right\| \rho+\left\|x_{0}-x_{1} z\right\| \rho^{2}+\ldots \\
& \geq\left(\|y\|-\left\|x_{0}\right\|\right)+\left(\left\|x_{0} z\right\|-\left\|x_{1}\right\|\right) \rho+\left(\left\|x_{1} z\right\|-\left\|x_{2}\right\|\right) \rho^{2}+\ldots \\
& =\|y\|-\|x(t)\|+\left(\left\|x_{0} z\right\|+\left\|x_{1} z\right\| \rho+\ldots\right) \rho \\
& \geq\|y\|+[a(z) \rho-l] \cdot\|x(t)\| \geq\|y\|
\end{aligned}
$$

Since the elements of the form $(e-2 t) x(t)$ are dense in I so the infimum of the left hand side is the X_{1}-norm $\||y| l \mid$ of y. Thus $|\|y \mid\| \geq\|y\|$ The opposite inequality is evident and thus $\|\|y\|=\| r \|$. Thus X is embedded in X_{I} isometrically.

[^0]: *A Radon measure μ on T is a linear functional on the class of continuous functions on T with compact support which is continuous in the following sense: Given $\varepsilon>0$ and a compact set $K \subset T$ there exists a $\delta>0$ such that $|\mu(f)|<\varepsilon$ whenever f has its support in K and $|f(x)|<\delta$ for $x \in K$.

