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INTRODUCTTION

Being the third in %the series 'Concents in modern mathe-
matics', this volume deals with some fundamental concepts in
analysis. The first four chapters comprise the first part.
Chapter 1 gives a detailed discussions of Lebesgue integrals.
Basic properties of topvological vector spaces are given in
Chanter 2 while the results are specialized to normed linear
spaces 1n Chapter 3 and in particular different representatiocn
theorems-are given. Gelfand theory and elementéry properties

of Banach algebras are the contents of Chapter 4.

In the remaining Chapters, which will avpear in a
separate part, are discussed the existence of Haar integral
on a locally compact abelign groups, duality and characters,
Fourier transforms on Ll(G) and LZ(G) and finally Pontrjagin's
duality theorem is proved.

Materials are freely drawn from the standard books in-

cluded in the bibliography given at the end of part 2.

K.R.U.
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CHAPTER 1 - -
''LEBESGUE INTEGRATIOUW

l.1. Lebesgue Measure

I ¢
®

Let /& denote the field of real numbers. Let R®  denote
the n-dimensional real Euclidean space with the usual topology.
x€ R® means x = (X13%geesy X)) where x,€ (R . The metric

in R® is given by

I |
n = P N (b SRS SIS ol
A =z 0o - P 1 gt

The symbol ~ will stand for < or < . An gxtended vector

; . o . ,
ar~ (,al,az,...,an) in R is one in which the components a4

could-thke the value + 0.
An interval in /Rn is a vroduct of n intervals in /R

) e g i n
This means that if a,b are two extended vectors in K~ ,

ars b, a,< @b > -0, 1< r< n, the interval I = (a,b)

F { xeljénj ar'..s Xr’<br;»l< =<y n} . An open interval ]a,bf_

is givenh by
Ja,o[ = {xe(Rnl a.< x,< b;1<rg n

and. the closed interval [a,b] is given by

[a,b] = {xeﬂ{n‘ar's X, & b3l in}.

e (yl, yg,,,,,yn) e



I is said to be degenerate if a, = b, for one or more

values of r. If a,bSNin y then the components of a,b are

finite real numbers and the interval is said to be bounded.

n
DEFINITION 1., Let I be s bounded interval in IR~ .

The n-dimensional measure is defined by

n
m(I) = [T (b, - a.)

r=1 .

If I 1is unbounded, we define m(I) = oo.

Remarks. 1. m(I)=0 if and only if I is degenerate
2. measures of an open interval, closed interval

and all intermediaries are the same.

Let X be a bounded interval in JR®. We assume that X
is closed (and thus compact). We will consider only subsets
of X. Let 5’= }(X) denote the class of all subsets of X
which are countable unions of intervals. Our object is to ex-
tend the Definition 1 to the class J . We have

THEOREM 1. -Let J€f . Then J is a countable union of

disjoint intervals. Moreover if J 'is expressed as

countable disjoint union of intervals in two different wavs

00 (o0}
J = U 1, = ] Id: .
r=1 = @{ -
s=1



® o
2 m(I;) = 2. m(Ig:) (=)

PROOF, By definition of the class; , we have

0
J = {J A, where A, is an interval for each r. Now set
r=1
I
I2 = »A2\\Il

Define inductively

Toep = A N(LU I, U.eee UL
m i

Thus J = U I, and the I 's are disjoint. The first part
r=1

of the theorem is immediate if we notice that each Ir is a
wmion of finite number of intervals «nd hence a disjoint union

of finite number of intervals.

To prove the second part of the theorem, we first observe

that both series in (*) converge, since all intervals of sub-

sets of X, it follows that

N

M
Zl m(I) < m(X) and 2 m(I). < m(X)
168 sS= ®
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7
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Now suppose that the two sums are different. For convenience

0 a
let us assume that m(Ir)> j{_m(ls‘). Then there exists an
r=1 s=1
integer N such that i
N @
2. u(I) — E;m(I ) = h>0
r=1 s= S

We choose open intervals A I,' so that m(A))< m(IS')+2-S'2h

and closed intervals BrC_ Ir so that m(Br)> m( Ir) -2'r°2h. Then

N N N
> mB)> > m(I) - > o~T=2
r=1 r=1

=]
£ L -8e2 L sre2
; Z m(AS)+h+Z_2" he S 27%n
’ s=1 s=1 il
> S ma)
m .
s=1 S

N .
Now set K = {(J B.. K is then compact. Now ~{A E. is an
r=1 3

open covering of J and hence of K. The compactness of K

implies the existence of a finite number of intervals

n
AysAgyeeey A such that KC U &

+ Then
K=] &

S ) < oa(a) <
r=

m(A )
S=1 2 S

S

4118



which gives a contradiction.

In view of Theorem 1, we can make

(00)
DEFINITION 2. If Jef and T = (J I
r=1

- is a representa-

tion as a countable disjoint union of intervals then

the measure m(J) of J 1is defined by

o0

wI) = 2 m(I).

=

Remarks 1. ¢ e} and m(p) = 0
2. every countable set is in f and its measure
is zero. | L
<o BT Je<; , then given £ > 0O there exists
I which is a finite union of intervals such that JOCLJ and
m(JO) >n(J) - €. -
THEOREM 2. a) J,CJ, implies m(J;)< m(J,)

x
I, implies m(ME > m(T)
r=1

©0)
) Af I CI,Cevesy, @ T C . :_aQ@J=rgl I

then m(J) = 1lim m(J_ ).
T 00 £

d) m(I,UT,) + m(Jlﬂ J2) = m(J)) + m(J,)

where J +J€ £,



PROOF, (a) and (b) are left as exercises. We shall

now prove (¢). By (b), 1lim m(J)) exists and it does not
r = 00

exceed m(J). To prove the opposite inequality, let

© o
J. = Q’ I,,+ Then 7 = L) L} I.. and this may be arranged
s=1 r=1 s=1
00
as a single sequence J = | I.. We set
t=1
D, = I

D2 = IND,
D, = I~ (Dltj D, ...L}Dn)

Now given € > O there exists an integer N such that

g N
i m({) D) ” ) -¢
£=1

Further there sxists an integer n such that
3 ‘ J,DOU I, D U D
E Bl T e €

E Hence m(Jn)> m(J)-6. Since & 1is arbitrary, the result follows
We have to prove (d). If J1sJ, are finite unions

of intervals, so 1s Jo\J; and J,{J J2‘= T U T N\J)5 so

m(J{U T = d(I) + m(TyTq)

e




o= e

ey ey

Also

=
0o
i

(7,113, U (TTY)
whence

m(Jg)

t

m(J3NJT5) + m(Jo\J,) .
This gives the result. In the general case, Jz\‘Jl is not
necessarily in ; y NOT have proved that the measure of g

disjoint union is the sum of the Measures. But this fact has

been assured for finite number of intervals. To complete the

proof, we proceed as follows.

Let
00 0 -
Ji= U s I = U 10 disjoint unions.
Set
n n
A=VU 1, B = U 1.t
Bopm T P

The An’ Bn’ AnL/Bn, Anr\Bn are increasing sequence of sets
whose unions are respectively 7, Joy J,UJT, and Jlr)Jz.
Further for each n,

mU%ﬂ%R+zM%NBJ =mug-+mmg.

Now let n —> 00 to obtain the result.

THEOREM 3, gt I19 Joseee.. 1S a countable collection of

sets in g s then




I
i

%im
=7
L

,‘Oo
m( i\} J ) _<_

T _ m( Jr)

and if the sets Jr are digjoint, then

o o
m( {J Jr) = 23 m(JT,) -
r= r=.L

PROOF, If there are only two sets Jq, Jo, then

m(J,U J'z) < m(JI) + m(Jg)
with equality when 7,0 3, =@ .

Now let there be infinitely many sets Jl,JQ,.g.. Now

<

let D, =J,UJ5U +..UT,+ Then the sets D, 's form an increas-

ing sequence whose union is J. Then by Theorem 2, we have

g

n
m(J) £ 1lim m(Dn) = ‘lim > m(Jr) =

m(J_) .
n-» oo n—xe ooy r s

1

il

Exercise 1. ©Show that every open set is in } (closed

‘sets may not be there).

Exercise 2, If Je€ } s Show that for each €> 0 there

exists an open set J'(€)DJ such that m(J'(e))< m(J)+¢€.

DEFINITION.3. Let X bc a bounded interval and ACX.

We define the outer measure m*(A) by




0

m¥(4) = inf w(J
J DA
Je.f

and the inner-measure m.(A) is defined by

m (4 = m(X) - m* (X ~\_A)

THEQREM 4, The inner and the outer measureg of a_set

are independer: of X.

o é soat

» o PROOF, We will PTOVe only for inner measure, the case
of outer measure being trivial, TLet X, X' be bounded intervals

confaining A. Without less of gencrality, we assume that

XCX'. Suppose XDOIDXNA. Then J'=JU(X'\_}Z)DX'\A and
J = J'NX satisfies LOTDXNA und  Te f(x).

m(I") = m(JU(X'X)) = u(J) + m(I\X) = m(J) + m(X") -m(X)

inf” m(J'") = inf i) +« m(X') - m(X)
Jref (X" Je &(X)
J'IOX I~ A JTOX~A
me(Xr< a) = k(X ~4) + n(X') - m(x)

m{X) - m*{<4) = m(xX') = m¥(X '~ A,

« - Show that mx(y) 2 M, (A)  for any set a4,

Exercise 4, 1° Jef‘ » show that m,(J) = n¥(J) = m(J)

DEFINITION 4, A set E ig Teasurable if mx*(E)

1]

m, (E)
and the common Talve is calleqd the measure of the set &

i denoted by m(m),
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Remark 1. Jef is measurable.

. Remark 2. If E 1is measurable, then X\ E 1is

measurable and m(X~\E) = m(X) - m(E).
DEFINITION 5, If A 1is unbounded, we define m(A) as

follows. For each positive integer k, set

(%)

I

{xeninl sl < x5 1¢ rg_n} .

Let
A(k) = AIWICk) A is measurable if A(k)

is measurable for each k. Then m(A) = 1lim m(A(k)).
k -5 oo

The remaining theorems in this section hold also for

unbounded sets, but we prove them only for bounded sets.

THEOREM 5, If A and A' arc sets, then

mk(AUAY) + mk(ANAY) < m*(4) + m*x(A")
m(AJAY) + m (ANA"Y > m,(A) + m(AY)

PROOF, Let € > O be given. Let J, J'e¢f such that
ACT, A'CTYy M(T)< m*(4) + € and m(J') ¢ m*x(4') + €. Then
AUA' CTYJI' and ANA' ¢ JNJI!' so that
mk(AUAY + m*(a AN < m(TUTY) + m(@ITNIH = m(I) + m(TM
< om*(A) + me(AY) + 2€.

€ being arbitrary,

m*(AUAY) + mx(ANAY) < m*x(a) + m*éAl
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Now

H

m (AUA"Y + m (ANAY) = m(X) -~ mx(X~AUAY + m(X) -

- mx(X~ANAY)

I

om(X) = m*( (X~ A) N(X~ AY)
- mx((X~ AU (X~4a")

2m(X) - mR*(X~ A) - m*(XN\AY)

v

= m (A} + m, (A1) .

00 e
THEOREM 6. If A= () A, then mx(A)¢ 2 m*(A,) «
=L - r=1

PROOF., Given € > 0, there exists J,.D A, such that

i P
« Then AC_ U Jr and

m(J_ )< m*(a) + ¢ 2%
2 Ar =il

W Y IDC S R S (A ¢ —
W< Yy TE S m)< me(A) + ——= )
= r=1 T T p=1 & 2t

.
m¥{A_) + €.
=

Since € 1is arbitrary, the result follows.

THEOREM 7, If E and E' gre measurable sets. so

are EUE' ard ENE!'. Further m(EUE') + m(ENE")
= m(E) + m(E").

PROOF, Since E is measurable, we have

°

m(E) + m(ENS mu(EUE") + me(ENED £ me(EYEY + m*(ENEN

< m(E) + m(E").
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Thus we have equality throughout and
n (BEUEY) + n (ENEY = mx(EUE") + n*x(ENE").

Since inner measure does not exceed outer measure, it follows
that

m(EUE") = m«(ElJEY) and m (ENE") = mx(EJE").

This proves our theoreun.
COROLLARY, If E and F are measurable, then E~F

is also measurable.
PROOF, E~F = EN(X~F) which is the intersection

of two measurable sets.

THEOREM 8. Anv countable union or countable intersection

of measurable sets is measurable, Further

fee oo
m( La B & > m(E,) , with equality when the sets are
r= r=1

Jisioint.
THEOREM 9, If the sets E, are measurable,

58

060
EJCE,C .- and E= U E , then

r=1
nfE) = lim m(E))
r— oo z
a
and more generally if AjCA,C .... and A = U A., then
. r=1"*
m*(A) = lim m*(Ar).

18 =2 ©9)
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PROOF. Exercise.

v $i
If ECRY, E'CR®, then ExE'~ Ry IR" = RO,

THEOREM 10. If

t

and E' are measurable, so does

EXE' and then m (ExE') = m(E)m(E").
PROOF, Suvpose EC X and E'C X! ‘where X, X' are
bounded intervals. For sets ind , if J = U T, and

Ji = LLIS' where unions are disjoint,

. t
JxJ!' = UII, x UIS'= U U, x IS)

is a countable disjoint union. Then

== 1 B — ! = '
n(J x J) = 2“211n(Ir).m(Is)-— 2m(I)e > n(I) = m(J).m(I").
Now let J E, J'DE!s Then JxJ' DE x E' and

m*(E X E') < m(IxJIY = n(I).m(T").
The left hand side is independent of J and J's We can choose
Jy ' such that m(J), n(J") arec “rbitrarily close to m(E),

B(E') respectively. Then

m*(E xE') < m(E).n(EY).
Also

n (B XE') = m(X xX') - m*(X XX ' _E XE")

.
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Now XxX'NExXE' = Xx(X'-E" U (X~E)xE!.

(XX X'~ ExE") £ m(X)m(X'~E") + m(X~E).m(E").

mX'~E") = m(X") - u(EY; n(X-B = mn(X) - n(5)

me(ExE') 2 m(XDn(X") - m(X) (n(X")-m(EN) = m(E") . (m(X) -m(E) )
= m(E) nm(E").

Hence

mx(ExXE') < m(E) .:(E') and m,(ExE") > m(E).m(E").

m(EXEY) = mx(Ex8") = u(E).m(E").

1.2 Integration

Let - E be a n2casurable set in NZn . A countable collec-

tion of disjoint measurable sets

&/
& = { Bp B seo s &

is called a dissection if their union by 8

ol ! ! i . .
if g; = é El’Eg"°" j 1s another dissection of E,

(o

!
then the collection { Ej(ﬁ E, } is also a dissection of E

]

called the common refinement »f Lg and ‘é and is denoted by

gve'

; o0 ’
Let g = i Erl be a dissection of the set E
"/ r=l
and let f be a real valued function on E. Set .
B () = sup f(x), b.(f) = inf flx)
= X Er L .xéEr



and

Convention

is infinite.

/70
€ 1

Let Ol denot

h,(f) = sup I£(x)l
err

i

" maXu{iBr(f)(,Ibr(fig
hr(f)m(Er) = 0 if onc of them zero and the other

s said to be admissibie (for f over E) if

S

D,
=

€

! 8
hr(f)m(Er) < o .

=
iy

e the set of all admissible dissections of f over

E. If £ ed , set

0

Sg(D = 2 B (DuE)
o2 .

sg (0 = > b (On(E)

and call them unper znd lower spproximating sums for f over E.

LEMMA

1. If € i refinment of an gdmissible di

section ¢ then ©"  is also admissible and

PROOF.

contained in

1
B_ ()
Pq

(S & S% ) ng > s

%

. i
Let { E_ , E

1 3 . /
5 NETEEE be'the sets of §
1 &

st

Ep of g'. Then

< }f-lngf), bp(f)_>_bp(f) for all p and q.
B q
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'
2{ m(Ep )

m(E..)
a a £

(n' ;
( 1p(f) S_hp(f)

The results now follow by sunming over

a
% B;q(f)m(E};q) < %‘Bp(f)m(E};q) = B (Hn(E)
qu};q(f)m(E;)q) - %bq(f)m(E;q\, = b (n(E)
% h;q(f)m(EI;q) < qZ hq(f)m(EI;q) = hp(f)m(Ep)

Pe

DEFINITION 6. The upper and lower integrals are defined
by
X
£ £ = 1nfs o ()
w EEN
[ = SUp s, (f).
. geor ¢
T,
K .
THEOREM 11. ft2 if
B *5
PROOF, Let %; and E; be two admissible dissections.
Let & = gl\v %? the common reifinment, then



grable 1s trivial.,

ik

s (D¢ s (DL 8, (0 < sy (D),

Sg(f),

DEFINITION 7. f 13 =aid to be integrable over E if

~

-
*H

*
f f = ( ¢ and the integral of f 1s the common
B

value . We write

s /"
e = j fdx or \J £,
E B

THEOREM 12. A necegsary and sufficient condition that

f should be integrable over E

is that given €2 O
there exists an admisgible dissection

g€ ¢ OU such that

S.

PROCF. If there is such a dissection, then f 1is inte-

Suppose [ 1is integrable, there exists

disseetion € such that

S ¢ (f) — T(1) < 5



18

and a dissection 22 such that
' ‘ £
T(£)=sg U£) < 5
Let = £ v . Then
£€-gve

S — s, < S_ (Y — s, (D) € £.
¢ & - 2 z
& %"’1 '52

REMARK, If there is a disszection such that S? = sg

then f 1is integrable over E and

/

\Eff=8%<sg

Examples 1. Let £ Dbe a generalized step function,

I

leeey it takes a countable set of non-zero values on E say

- = -
fl’f2""°’fn9°°" Le*; Er - i X f(x) - fr } ® If

oo
then § = {El,EZ,.,,.} 1s admissible and E = U E
r=

e

e o= 2 £u(E )
B

2. Let ‘#DE be the characteristie function on E.

Then CfD 1s integrable and

E

r

u( ¢E = ZH’J(E) = m(E)
E
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3. If f 1is a constant function say f = c¢ then

j’f = em(E).

TAEOREM 13, Let E. E' be measurable sets such that

ECE's Let f and g be defined on E and E!

respectively. Supnose

;f(x)' XEE
2(x) = o
. O XEETY ~ H,

o

Then 1 dg inteerable over F iff g 15 integrable qver

E' and

PROOF, 1ITf % = { El’EZ’"“°°E s an admissible dis-

J

. . s { et Y . < <
section on E, tnerﬁBL:«E~hEo,... } is an admissible dis-
1 !

section of E'. If { El’ Eg,w.. L is an admissible dissection,
A~ K
then § B (1 By, BN Eg,.... } is an admissible dissection
of E.
COROLLARY. A (_E, then

.
Jr= e,

A A

~d

* *
THEOREM 14, If f =g a.e., then [ £ = [g,.ff = (g
e 9 o 9 ‘. .;(
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PROOF, Let Eo be the set in which f # g« Let

{E;sEgyevs. '. Then

§

/
< B, El?W (E-E), E2(>(E-EO),... }

(N

is an admissible dissection of E. Then

! '
B3 (BYml(m_ /| -
S’g' () < B (Dm(E) + B, (f ,n(ng(E EJ))

' ;
a5 soe + Br(f)m(Er\ )(E"Eo));""o-o

!
Bl(g)m(El) + oee. + Br(g)m(Er) + eee
< Sg(g)

from which it follows that

5,00 < 8, (g).

€
Similarly,
g
‘ o?ug) < Sg(f).
Then 5
o R
E . B
Similarly f' ;
f = | g
* T * 10

THEOIEM 15. (a)

5 * -
ff?_f g, / f_)_ f . /
E E

DI
=
25 e
o
v}
&
Q.
S
Hy
Y%
B
(4)¢]




a2k

(b) If fl’fg""’ fk are integrable and

are constants then clfl + c2f2+...

C1aCgreesy Cp

+ Ckfk’ are integrable and

k
j‘(clfl+...+ekfk) = 5 cs j'fi .
' _ S i=1
E E

n
(¢) If E = (/] E. disjoint union, then
i=1 =
_ n o
Je= = [
) : i=1
- B Ei

\

PROOF., a) is trivial since for any admissible dissection

. . ) 2 _ . 2
&  of E‘ Sg() Sg(g) and Sg(f) > sg(g)

b) Let £ and g be integrable over E and o a con-

stante Let € be an admissible dissection of f over E. Then
B,(cf) = cB (), br(cf) = cbr(f), hr(cf) = ch (£},
hence
2 h(enm(B) = ¢ Zn(OnE) < o = £ is

admissible for cf aliso,

i e > o, S;,(cf) = es . (f), s;_(cf) ng (f)

csg (D)

¢c < o, S?Z(cf)

i
Q
0w

(£), s, (ch

NS

and the integrability of f follows and [eof = o[ t.




e ’

. /
Let £ and g be integrable over E. Let g' and

7
4

Let %

be admissible dissections for

o ! !t @
= £ V45 . Then ¢

f,g resvectively over E.

is admissible for f and g.

Consider the dissection g

B,(f+g) < BL(D)+B_ (&), b (f+8) 2 b (H+b (),

hr(f+g) < hr(f)+hr(g) .

Hence, § is admissible for f+g over E also
Sg(f+e) £ 8, (N +35,() & 5,.(D) + 8,00
and :

s, (T+g) > s (D) + s (8 2 S%‘(f) + s, (8).

! s

Given £ > 0, choose ¢ , ¢ such that 8. (f) .~ sg(f)< &
- ] - £ -
and.Sgﬂg) sgig)< £ Sg(f) s%(f)< o 3%(8)
S < £ . Hence
g(g) =

8, (f+g) - s, (f+e) <5, (D) -5, (D +8,(8) - s ()< E.

Therefore f+g 1is integrable, further j((f+g) = jrf+ _/é.

(c) Let 'ng be the characteristic function of
- n ‘ .
E;y 1 = 1,2500., n. Then f = S f qu and j‘ = jcf¢E ;
i=1 — Ez" E i
1
Hence
n n r n
. J/F = |5 ¢d = 3 f¢ = S f £
S Ziow B =1 E
B g 1= i 1= il i= 5
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o)

DEFINITION 8. For any real valued function f we

; < +
define the positive part f Dby

:fff(x) if f(x)2 0

!

0 if f(x)< 0

£ (x)

i

The negative nart f = f@-f" equivalently

.
x
i

oo o ==
:-—f(x) if £(x)< 0

o

0 if f(x) > 0

Now |f] = ¢t 4 o7,

THEOREM 16, If f is integrable, so are £, £, |f]

Sevacsien

and

:jfl < [lgr .
E

E

PROOF, Let % be an admissible dissection for f over

E. Now for each r, hr(f+) <. h(f) and % 1is admissible

for f+, Also

+ +
B.(f7) - b (f) < B (D - b (D)

then

. e«
8y () = s, (D $ 8, () - 5, (D).

R g i
Hence f is integrable if £ 1is,




A\

4

Now if f 1is integrable, (-1)f 1is integrable and
((-1)H)T  is integrable. But ((-1)f)T = £~ and hence £~ also

integrable.

{f! = f + f is also integrable.

J:(f+- ff'lFa-ff++ ff”
B T E E

[ Lo = | S -
E
f(f+ + £7). P
E

i
i

E

11

Let f,g be two functions which are integrable. Define

. f+g+ (£-gl f+g - [f-
ry g = g?z el g = g2f gl

then fyg and fag ars integrable.

' Notice

il

f\ g max (f,g),

i

fAE min (f,g).

Exercise 1, I E 4dis measurable and A 1is a subset

of E, such that m*(A)< oo, then

(2

_Exercise 2, If f 1is integrable over E, and E' is a

n
measurable subset of E, then f 1s integrable over E'.

»
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Bxercise 3. If f 2>

le3. Measurable Functiong

0, then ]'f = 0, iff £ = 0, a.e.

Let E Dbe a measurable set and f an extended real

valued function. We say that

number a, the set

{ X l f(x)

is measurable.

f 1is measurable if for each real

> a)

The following conditions are equivalent

(1) sets { x | £(x) <
(2) Sets { x| f(x).2
(3) Sets { x! £(x) >
(4) Sets { z | £(%) <

(1) and (2) are equivealent by

(4), -Assume (4). Let a be a

{x[f(x)g_

are measurable. Now

{x|f< a}

a } are measurable
a.} are measuréble
a} are measurable
a } are measurable

complementation. So are (3) and

real number. Then the sets

™
= U}x!f(x)s_a—!'- .
r=l\ ‘ r}

Hence (4) implies (1). Assume (2), then
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{x{f(x.) > a}= 6{}(‘3‘.’(}(72 a+%}

and hence measurable i.e., (2) == (3).
: 5 i
Remark 1. {x|a < f(x) & b}-= { xl f(x) 2 a}(w-tx‘
ST ——— L i
f(x) < b } is measurable.

Remark 2. If f =g a.e., f 1is measurable iff g
is measurable

;{le(x)> g}:[{xi-g(}()> a}UEﬂ Y E2

!
where E,, B, are sets in which f # g and of measure zero.

Exercise 17. If f :nd g are measurable functions

and ¢ 1is a constant, then th¢ funections f+g, f+c, cf, fg,,fl

fg, fV g, fAg, £, £, |f|  are all measurable.

Exercise 18. Continuous functions are measurable.

1/2

9

DEFINITION @, £ ¢ said to be dominated in E, if there

is an integrable fanction g such that [f[ < g on

THEOREM 17. E CMR'. A necessary and sufficient condi

E.

tion

that f dig integrable over E dis that f is measurable

and dominated in E.

PROOF., Let £ -be measurable and dominated by g. Take

any admissible dissection & for g. Given £ > O choose p

~

suchethat

h (g)m(E,) <

o™

18
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Let EO = ElL}ﬁggj o5 s L}Ep. Choose N integer such that

E t
WE) ¢ € . Gonsider the dissection £  obtained by the

intersection of the sets in % with the sets

o] 8 ¢ =oc B2}

where p 1is an integer and the sets on which f 1is +oo or

-0 o+ This dissection is admissible for f. Then

\ - ' = 1
| Sy = sp = (T T ) (D) - o (0)n(EY
where
2= 2 2= 2 .
L ! 2 =
EI'CEO .ur-‘.‘..:“on
Then

RACNCIERNCILIENE EEME $m(E) < £

% (l Br(f>l+f (D) | Im(BYL Z2 hr(g)m(E;)

o0 v o
2 pgl h,(g)m(E,) < ——5— .

1

Hence S? -8, < ¢ , implies f 1s integrable,
> o

THEOREM (Bgorov) 18. Let B be of finite measure,

q .
p fn} a seguence of measurable functions such that

fn —> T a.e. in FE. Then given § > 0 there exi




a subset FTE such that m(E~F)céand I —> 0

uniformly,

PROOF. We assume without loss of generality tha%
f,—> f everywhere on E (otherwise, we have to start with Ej

where fn-é~f. Let

/ g. = |-t}
Define
E__ = {er;gr(x)<< qﬁl, for r > p}

Pq
for a fixed gq. The sets Elq’ qu,.l., is an increasing

seguence whose union is B. fence 1lim m(E_ ) = m(E).
p oo ¥

£
There i i s h the N _ .
ere exists an integer p(q) such that m(E\\Ep(q)q) < o
Now let
00
in,\E °
g=1 P(Da
In F,g, < q-l if r > (@), Therefore f, — f uniformly
i B i ~NF 2 B
in Since E C UG - rp(q>q)
(ENF) ¢ & ml S = =
n(ENF) < m(E\ E < == E
- éél | p(q)q) =1 o9 -

REMARK, Theorem does not hold if E is not of .finite

measure. (Find an exampla).
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: N O, ami 1 ‘ i id
DEFINITION ©. A family of functions { £} .. is sai
to be dominated by g in E if g 1is integrable over

E and ]fgﬁ < g for all o

il

¢ dominated Convergence Theorem.)

=

THEORE!. 19. (Lzbeseu

e

If é'fr} iz s dorinated seguence of integrsble functions
i

such that f., —7  as r—>00 then f is integrable

and
1im [le. -f]=0
r —»o T -
ise.
(. . _
J I = lim J I
T -2 £

PROOF, f 1is clearly mewnsurable. If fr is dominated
by ¢ then f is also dominated by ¢ and hence integrable.
Let

g, = | Erty

clearly gr -—> 0 as r -~ 00 and &n < ‘243 « Choose an
admissible dissecticn { ElgEO, oo } for <ﬁ over E con-
sisting of sets of finite measure. Given & 2 0 there exists

an integer such that

68

2 h(PImE) <
r=N+1

W oy
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N

Let E!' = Jia E, and h = sup hr(ib) where supremum is taken

for varying r, I $& o where hr(¢>T ¢ oo. By Egorov's
theorem, g, —> O uniformly on a subset E'' of E!' such

gloiEng

15 °

- o
(B! - BTN < —E_gh

There exists r' suchithat g_.< ZE%ETT if r 2 r'. Then

jgr = fgl'* * J( &p ¥ j Ep
E E" Bl OBt
Now
| (e | =5~ [ 1 - fn@En o £
{ J °r | = 4m(E") 4m(B'") 4
E" ™ n \
Similarly
| £
’ f g | < £
E'\\E"
and :
- 7 Q0 £
: g i 2 y < = &
| [ o)<z [ 4 2 2 n($ImE) < 3 .
EXE" AN
Hence 5
‘:l/qff .é :C...', ..(;. -
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THEOREM 20. (Lebesgeue Theorem on Bounded Convergenge).

If B is of finite messure and % fr}glg a _sequence of

Integrable functions such that *fri ac<oand f +fasr3

©0 then . /
w 7, = /f
r— @0
0L

e = (( lim f
" ’%031 T ST —>®

PROOF. This is immediate from the Lebesgue dominated

convergence theoren.,

Example. Consider the functions f defined by

r
@
i Tox, 0 e %
£, = < or-rx, %< x< %
i 0, §<XS Ly

Then 1
=

\e] [
+
o] I=
il
[}

O

1 -
i r ’
) i 13
| jf £, = ( roxdx + | (Pr-r®xidx =
0 L
T

‘[fr —> 1 but fr-ﬁ? 0 as r— 0.

Hence [ lim £, # lim [f,.

Define

(k) ;

i1
U AN =,
>
m
%
>
]
N
=
]
il
o
8)
]
N

7 N




2
A}

and
" ff f)g if f(x)< k
f ()= )
k if £(x) > k.
|
Remark. If f > O then 1lim fh f[g] may be finite

E(p)
or infinite and independent of the way p,q — ®@.
THEOREM 21, Lot f be pnonnegative. A necessary and
sufficient condition that f should be integrable over

E ig that f [a] is integrable over E(p) fop 2l in

and  q and that 1im é%ﬂf[d] should be finite. If f 1is
(" Q
1im \h/f(p) f[]

PROOF. Suppose f is integrable, then f[qJ is

integrable then f =

obviously measurable and 1s dominated by £ and hence integrable

over any measurable subset of .

.

Suppose | "% exists (s .y apq) for all p and ¢
2P \ A

and g =1 apq (finite). Let

E == {xf?,rﬁ fi(x) @ 2r+qj'(-oo< r <~ )
r :

o= ﬁxi f(x) =0 :

EE ] x[ f(x) = ©7.

Obviously m(Eaa) = 0. Otherwise a = w. Also

a
Z 2r+l m(Eﬁq)) < 2a € 2a .,




(%]

Making q'— -, ¢ —> o and p —r 0, we have

a
S 2 m(m) ¢ ea.
B==60 -

Now the function P defined by

i
| 0 on E—oo
4 o
B o= b 2r 1 on E
' i3
]
. loe) on Eoo

is integrable. Since f 1is dominated by F and is measurable
being the limit of sequence of nsasurable funetions, f is
integrable.

THEOREM 22, (Fatouw) . If L for all r and

f = 1im inf £, then

r?
lo ¢ o oinf | £
(& £ lim in J e

PROOF., Set g = inf f_, s >T then f = lim gp

= =
( f[Cﬂ = f grfq'l
(D) g(P)
. > q
= 1in inf f gr[q} < lim inf f fgj
() 7(D)
< lim inf f £ '
i.e., i ’
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1.4 Fubini's theorem.

DEFINITION 10. Let C ¢ A XB. By a section of C by

aCA, we mean the sct

{ b| (a,b)ec )ﬁ .
The projection C on B is the set {jb[ (a,b)eC for
some afA } .

Let x be any point in )Rn and y any point in
[Rp - Let E be 2 mensurable subet of R™P, The
section of E by x is denoted by E(x).

Let f(x,v) be defined in R™P ., If the integral
ff(x;y)dy exists, we write g(x) = j(f(x,y)dy (‘Phis
integral is taken over B&(x). _/é 1s taken over some
set in R containing the projection of E on R .

m will stand for Lebesgue measure.

THEOREM 23. If E is of finite measure in R™P, then

for almost all x, E(x) is measurable and of finite

measure in ﬁzp, m(E(x)) is an integrable function of x

and

er(E(z))dx = m(E)

PROOF. (i) If E 1is a bounded interval, the result is
trivial. E(x) is measurable for all xy and m(E(x)) is =« con-
stank multiple of characteristic function of the projection of

Eoano

»



(i1) If E 1is a finite union of bounded intervals

then the result follows from (1) by addition.

63}

(iii) Let E bte a (bounded) set inf(ﬂ{m-p) then for

each x, BE(x) 1s a bounded set in ’(iRp) and hence is

measurable and of finite measurce. If B =_L#Ir~t§?Q$E'x)"= Ir(X)'

N N
By = égl Tpy Ep(x) = }ﬁl I.(x). Then m(EN) —> m(E) and

m(EN(x)) —> n(BE(x)) 2s N — oo and E(x) is measurable. By

Lebesgue theorem on oounded convergence.

lim m(EN(X))dx =0 jhm(EN(X))dx

jﬁm(E(x))dx = m(E)

(iv) If E 1is the complement with respect to a bounded
interval of a set inwf s (1ii) gives the result.

(v) Let E be a bounded meoasurable set. Given €5 0
there exists sets JDE with Jﬁf, Kcécf with m(J)-m(X)< £ .

Take a sequence J,,K., of sets such that Jr(:'Jr+l’ KnCKoq

for allra:rﬁm(Jr-‘)'*@*{}Qr) —> 0 238 I —s . Then

S a0 m(R (0)ax —> 0 as T —» o.

Since m(J (x))-m(X,(x)) 1s a decreasing function of x for

»

all r and the limit exists and the limit is zero a.e. Hence

E(x) i1s measurable and



n(E(x)) = 1lim m(E (X)) a.e.
S
r —>c0

By Lebesgue bounded oconvergence theorem

[n@G0rax = [1im m(7,(x))dx = lin n(I_(x))dx
= m(E).
(vi) If E 4is unboundad

'y we first consider Ek and
then take the linmit as k —

Q0O o

\

THEOREM 24, If f(x,y) Is integrable over E, then fo

imost all x, f(x,y) is irtezrable over E(x).
Q4LMOST gl 9 9

gl = Jf f(x,y)dy

E(x)

then g is integrable and [¢ = [r.

( Or\f*{ &[ f(x,y)dy‘} dx = jjrf(X,Y)dX dY')

E(x)

THEOREM 25. If f(x,y) is measurable (in R™P) apg

=

SR 1
g J i ﬂf(X,y)‘dxj'dy exists then

s N o
\5{_[f(xgy)dx} dy = }f j f(x,y)dy} dx.
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1.5 The Class Lp.

Letn s LF(E) = class of all measurable functions ¥
f such that
% < «
J
B
We will identify two functions which diffap only on a set of

HegstiseNZcron

If p > 1 we define 4 Ly % it -% = 1

If feLn and c¢ is a constant, then clearly cfeLp

and if f,gBLp then

£+ glP < otlelP 4 |glPy

which gives f+g6Lp(E) "as well and hence Lp is a vector space,

beil = [hepe |
~ B

If ¢ 1is a constdnt

Fefll = kel gl .

Y
o p
8 £ 1 p - — o - 0 -
Hell = or=> I = 0 => =0 a.:. Since we are not
P E
distinguishing functions which differ on a set of measure Zero,

we have || £l o 0 =% £ = 0,



LEMMA. If p > 1, and x> 0, ¥y > O then

ol [=

. ag

Q2 -
l
|~

o

X q
v L
= 4L .

PROOF, Consider the function

£(t) = tP - pt -1+ p
f’(t) = ]Jtn”l =0 == p(tp-.l - l)o

If

£> 1, £1(t)> 0

t< 1, £1(t)< 0

and  £'(1) =0 |

£(1) =0, £1(£)>0 for £ >1=>1(t) > O,
t21 when t <1, f ()< 0 =rf(t) is decrgéasing 1i.e.,

f(t) 2 £f(1) = 0 for all t 2 ©
or
tP ~pt -1+p> 0
2 CINCES
p P
or
t ¢ 1 4 £h
q P
e = % —  and obtain wyg X o+ Lo
yq p R D q .
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To prove (1)
, | A L
(o PyD ( q
[lee] <« j.f! Pt | BB rer,een,
E i B
(2)
T 1 "
(’ it+2|D)P < ¢ ('l,f‘gp)p * (‘“g\p)_p, £,86L -
E B E
(1) Put
B | £ B :'gi
T g ——71, ¥V = T3
C(f1E]D)?P ( [ig D
| Tel £}° lg] @
17D i 7qg £ ———— t ——
Cf1£1P) ([iel® ol [ 151D aC [ 1gl¥
Integrating, we have
J,lfgi j.!f(p ﬂg!@
. 7o 73 . ':'I"‘T""""
Cfle® 7 (1219 o [121P) at [ 1g®
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2)

[1esg® = (!f+g§!f+g(p71

i J
[l iergP v flg) ferg P

1y i - =
Py 7P (S leeg] PV

/q

I
—
e

/B 1/q
F (g™ T ((feeggleDa

B 1/p 1/q
= C(JIe™ T (fl1-e®

1/p 1/q
+ <.figlp) g[ff+g{p) 5

o gt "J ]
Dividing by ( J if+gfp) we obtain the result.

DEFINITION 11, Let ! fn} be 2 scquence of functions
belonging to the class L. If an - ﬂip as n —»

we say f —» £ in the mean (with index p).

DEFINITION 12, ?f.7 1is a Cauchy sequence or funda-

mental sequence if “fm - fn“~»?‘0 4s myn -—» @ oOor
- 84

A

gQ
H
<!
(0]
)

¥y
N/
()
cir

here exists no(£.3 such that

I, - §J9A< £ if mn > ng (€) .

THECREM 26. If ~ffq§ is 3 Cauchy sequence in LD, then

there exists FPLD Sell N Ehah fn —= PN irean,

DEFINITION 13. A family of functions {fd'} is gald to

oo

be p-dominated if there is a function gPLp such .that

‘ fd ‘ < g for a1l o,




4]

TEOREM 27. If { £ ! is a p-dominated sequence of

£
functiong in Lp and if fn—% f a.e. on E, then

feL and
p =2

e, - pr_*»o as n —> o .

v

1.5 General Measurcs.

€

In this section we wil. define measures more general
than Lebesgue measures.

DEFINITION 14, Let X be an arbitrary set and R any

class of subsgts of X. R 1s said to be a ring if

E, FER, ther E{JFER and E-Fe€R.

RBemark. (i) <& €R. Since ¢b= BE~EFR if EER,

T d1) TAFER whéneve E,FER. TFollows from

(111) ENFeR, whenever E,FER. This follows
from E/'F = (EUF)~(EAF).
il

(iv) Y EiGR and iJlEiRR if EiGR

DEFINITION 15, Le- of be sny nonempty collection of
subsets of Z. Then / 1is said to be a Tg-ring if

( () 0y ] 0] r 2 . -
S isa ring and if niQJp for 1 = 1,2,...,.implies

co
U B .
1=1
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Notation. Let ég be any class of subsets of X. We
denote by R(E) {gﬁ(g;} the ring (s-ring) generated by g€ i.e.

the smallest ring (a-ring) that contains & .

DEFINITION 16. A measure is an extended real valued,
non-negative and countably additive set function p

defined on a ~-ring JF of subsets of X such that

wP, = 0. Tt is if Ee S then u(E) X O and if
Bef for 1 =1,2,..., and E E, = ¢ for i # j then
o) Q0.
BCU B = 2 wu(B).
1=1 i=1

Remark. We could have defined a measure on a ring of
subsets of X as well, and then z2xtendcd the measure to the

generated o-ring. For our purposes it is enough if it is

defined on a o-ring. The interested reader is referred to
P.R.Halmas.

It is immediate that we can define measurability, inte-
grability, integrals of functions with respect to g, in just the

same way as we 4did for Lebesgue measure. The, integral of a

. : i
function f over ,EQQW is denoted by f f du or j f(x)au(x) .
E B

The measure 4 1is finite if p(X) <« ® and is o-finite if X

is a countable union of sets of finite wu-nmeasures.
DEFINITION 17. A function 1, defined on a ¢-ring ép

of subsets of X, is a gsigned measure if it is of the

form




wE = w8 - uy(B)  E S,

where Hy and Hy are measures and at least one of

“l and u il Sl

2
DEFINITION 18. A function g, defined on a o-ring &

of subset of I, is a complex megsure if it is of the

form

u(E) = ,ul(E) + iug(E)g B¢

where U, and i arc signed measuret,

it 2

Note. To avoid confusion we use positive measures for

ordinary measures aﬂa real measur.s for signed measures.

A complex measure is a llinear combination of at most four
positive measures. Integrals with rssrect to real measures and
complei measures are defined in the obvious way in terms of
integrals with respect to the anptpriate positive measures. For
example, if pu = T T Mg * 1 (“3 - M4) where ks are positive
measures then f 1is said to be integrable wer.t o if it is so

WeTets Uy y1=1,2,3,4 and we have

‘)rf‘d,u = j»fdul- ffduz-a» iffdus-iffdu4.

If K 1is a real or comnlex measure, then |u| 4 de-

fined by



|4{@) (D == sup > §u(Ei)l where E =

e e
ni_s
=

Ei/W By = qﬁ, 1+ j, and the sup 1is taken over all such finite

unions, is a positive measure. The measure |y is the total

variagtion of wpu. If o is r eal then

‘ brpg - i
whoe R - -

2 ? 2
are obviously nositive measures. Thoy are respectively called

the vositive and the negative variation of 4 and also

- o -
wo= u-u anda Jul= gt en .

The representation of u in terms of u° and g~ is the
Jordan decomvwocition of (.

The relation botween measurability and continuity are
most interesting and have been stﬁdied in locally compact spaces.
Here we shall introduce some basic results of meagsurability
theory in a locally compact space. |

Notation., We decnote by

X - a‘locally compact Hausdorff space.

e the class of all compact subsets of X.

2, = the class of all compact subsets of X which aré also

o

¢ = the o-ring generated by & .
= o o S o Y
- the w_rlng'gcm@rated<by~€;a~v

U - the class of all open sets contained in j” .

U,~ the class of all oven sets contained in F .

'
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We shall call the elements of $P the Borel-sets of X and

the elements of ji s the Baire-sets of X, A real valued

function on X 1is said to be Borel (Baire) measurable if it is
measurable with respect to the o-ring 59 (’3&) o It is

immediate that every Baire-set is a Borel-set.

DEFINITION 19. A Borel me: v 2) is a
non-negative measure K defined on the class ﬁa(ji)
of Borel sets (Bairs sets) such that pu(e) < o
(u(e)) < ) for every ce 8 (for every C,E €.).
DEFINITION 20. A szt EfF is said to be outer re-

gular with respect to the Borcl measure u, if

K(E) = inf -{ w(U), ECU and UF %L}

1S

E dis spid to be inner regular if

VOWE) = swp {u(C), CCE and CeB}

and E 1s rsgular if it is both inner and outer regular.
A measure i 1s saidto be regular if each E€ Y1is regular.
We can similarly defines regularity for Baire measures.
Every Borel ucasure [ defines a Baire measure v in an

obvious manner. Y is cefined by

D(BO) = u(BO) for every Baire set Bo'
It is not difficult to prove that every Baire measure is re-
gular. Also every Paire measure can be extended to a unique

regular Borel measure.
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l.6. Measurable Transformations.

A measurable space is 3 set X together with a s-ring

50 of subsets of X such that Léf S = X, We denote a
sed .

megsurable space by (X, QP'). A measure space is a measurable

space (X, F ).together with:atrmeddure. u defined on £ .

A measure space is denoted by (X, 7, W).

Let (X,&) and (Y , 5 ) bs measurable spaces. Let
T be a transformation of X dinto Y i.ee T 1is a function
which assigns a unique pcint of ¥ to every point of X.

Then T assigns, in an obvious way, a real valued function

f on X to every real valued function g on Y, f is

defined by f(x) = g(T(x)), x€X. We write f = gT.

DEFINITION 21. Lot (X, ¥ ) and (Y,&) be measurable

spaces and T a transformation from X inte Y. Then

T is said to be a measurable transformation if for

every FG§7', NP is in & . That is, the inverse
image of evéry measurable set of (¥,5 ) is a measurable
set of (X,&).

=1, o7

We denote by T (. ) the class of all subsets of X

which have the form T 1(F) for some Fe %7 + Then THT) s
a o=-ring contained in ﬁa - |
A measurable transformaticn T from (X,¥F ) into

(Y, ) assigns in an obvicus way 2 measure Y on 97 to

every measure U on F Y is defined for every Fe S/ by -

Y (F) = u(T-l(F)). We write Y = MT-l.

T
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We conclude this scction by stating a theroem without
proof. The reader is again referred to P.R.Halmos' book

for proof.

THEOREM 28, IfL T _is a measurable transformation from
a measure space (X, % , u) - :imt> 2 measurable space (Y,& ) and’

if g 1s an extended rec e function on Y, then

& i =7 a
Jegdur ™) = ) (gl du,
in_the sense that if cither integr: d
and the two are equal.
COROLLARY. If F is anm et o
an ic gtion ng at the functicn

X@g ¥gilds the relation

e e s

[ew artn = [ er) aum.
. | (P

We observe that either side of the above relation is

obtained from the other by the forrel substitution

i y = T(x).




TOPOLOGICAL VECTOR SPACES

2.1. Topologicel Vector Svace.

Let [K denote the real or complex number field.

DEFINITION i, Let ® he a vector space over K. A

topology Tt on E 1is said to be compatible with

the algebraic structure of E if the vector

space operations (x,v) ¢ E x O —» x+y € E and

(Nsx) # X x BE—>» NXFE are continuous. A topological

vector spacz is a vactor space gpxxx together with a

compatible topology.

PROPOSITION 1, If Eis a t cal vector space,

P

the mapping X € E —xx+a € E is a homeonorphism of

E for each fixed o # 0, «€ /K and a€E.

PROOY', Sihce a continuous function of two variables
is continuous in each of the variables, 1t follows from
Definition 1 that the mapnirgs x— «x for fixed «¢€ K and
X —r Xta for fixed afFE are continuous. Therefore the composite
map X —» fX—oF-a is also continucus. If further«# 0 and
Yy = ox+a, then x = %{y-a). Hence th:s mapning X—»ox+a 1is
1 T

Invertible and its inverse ,V——-?-;—( Y=< o is continuous. Hence

X —>qX+a 1s a homeomorphismn.
Remark 1. The mapping xFE -— -xFfF is continuous and
so is (x,y) EEXE —> x~y€E.
Remark 2. If U 1s a neighborhood of 0 then U+a 1is a
neighborhood of a and «U is a neighborhood of 0 for each;q# 615
Remark 3. In n» topological vector space, it is enough to

déel with neighborhoods of O.



DEFINITICON 2. A subset A of a vector space E 1is
convex if x,y € A== Ax+uyCA whenever A2 0, 120
and My = 1. It is balanced i1f xfA =X € A for

|al< 1. Tt is symmetric if 4 = -A. Tt is absolutely

convex if it is balanced and convex.

Remark 1. If A 1is convex, so is x+M for each x€E,

7
AEK.

Remark 2. Any intersazction of corvex sets 1s convex.
Remark 3. A 1s absolutely convex if and only if ». =4
X,YEA =Nx+UYCA when [A| +|ui< 1.-
N

Exercise 1. Let A be a nonenpty absolutely convex set, .

Then
(i) QeaA
(11) M pA 1f N |
(111) }r_'i AA = nw [ 2] "\JA i for all A €K.
i=1 ci=1 /

DEEINITION 3. A subset A of a vector space E is

absorbent 1f for cach xFE there is some A>0 such x € uA

for all p with [u| 2 A

Remark 1. A finite intersection of absorbent sets is

absorbent.

Remark 2. An absolutely ccrvax set is absorbent if and
only if it spans E. This is equivalont to

™
B = L} NA or E = U nA
7\70 E -~ ’ n:l

»
o




PROPOSITION 2, If V is a neighborhood of O, then

(1) V is absorbent

(ii) there is a neighborhood W of O such that*®
W+WCV,

(i1i) there is a balanced neighborhcod WC V.

PROOF. (i) Let xfE be given. If f(A) = Ax then f is
continuous at N = 0 and so there is €29 such that A€ K,
|| < € =>2x€V. Then x € uV for |u|p e7T.
(é (1i1) The mapping (x,y)€E x E —> x+y € E is continuous

at (0,0). There exist neighborhoods Wy,Wy of O in E such that

xEW;, yeW, and Wy+W, C V. Set W = Wy () Wy

2 10

(1ii) The mapping (A,y) € KxXE —Ax € E is continuous, at
(0,0). So there existgp 653 O’yénd a nezghborhoo& 7ot 1A
E such that |N|< 8, x€U=> axev. Set w = {adae kK, |al<8, xev}.

Then W 1s a balanced neighborhood contained in V. (Verify)

Remark. Symmetric neighborhoods form a basis of

neighborhoods at 0.
2227 Seminorms.

DEFINITION 4. A seminorm p on a vector space E is a

non-negative real valued function on E such that

(1) p(x)> 0
(i1) p(xx) = | Al p(x)
(1i1) p(x+y) < p(x)+p(y)
for all x,y6E, A€ K. Clearly p(@s0and lp(y) - p(x)l <p(y-x).

A norm p on E is a seminorm such that p(x) = 0= x = 0.




DEFINITION 5., Let p be a seminorm on a vector space E..
If a€E, r» 0, the open ball Brﬂ§0) with centre a and

radius r is defined by

= el
Br,p(a) | XCE p(x-a)<r }

and the closed ball B

r,p(a) is defined by

Br’p(a) =<{x9E‘ p(x-al{ r }.

In a seminormed space E, we usually write B,(a) and

= } o) i
br(a) for Br,p(a ) and Br,p(a) respectively.

DEFINITION 6, Let I' = '{pi§ieI be a family of
seminorms on a vector space E. The collection of
all sets of the form Br,pi(a) where a€E, r> 0, i€l
may be taken as 2 sub-basis for a topology tI‘ on E

and it is called the natural topology defined on E by
.

Remark. Each Py is continuous im tr .

.

PROPOSITION 3, Let £ > O, iy,i5y...,1,6T and ack.

Set
/{1\
A o B a
Eylygials o= = -_)1n(a) i=1 5,Pij£ )
and n
T.. = . (a) = B
R 1n(3 [W E’Pi.(a)
J=1 J
Th : : : : v, ., . (a)
en the collection of‘qll VE,11,° . ,ln(a) (mi,ll,_,1n<an

is a basis of open (closed) neighborhoods at a for tr .

Also E is a topological vector space with‘respect to TI"
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)

Proof. Let afE, bl,bg,.....b € E, 81,82,- - -3E >0

n
il’iz”"’ineI be such that

n
a € B (b))
=1 “y2P;
J
Let 6§ =min{ €, ~ P, (asb }. Trxev . (a)
e m?]" { J _Lj( J J 6911’...,11’1
then pij(x~a) < 8 so that pijgx-bjz < pij(x-a) + piﬁ(a-bj)<
- - a
6+pij(a bj)__ 3 so that
L ; (A B ,p, (b)) for esch 5
6,11’10.7-an \"‘“ #:j -Lj J .
Hence

n
a€ev, . e e (2)
6,11,".,%] Cij:l Ej’plj
Further we have
a ev ( \ C—v , » - | (a)
53 . L) . . () S
5’11,"0 ? ln g?ll,‘ . °).LI.'. é‘v-‘;-_I; L ,.’Ln

This will prove the first part of the propositicn,

It remains #o show that TI‘ 1s compatibie with the
algebraic structure 6 B,  Let a,b€E. Set ¢ = a+h, Consider
a sub-basis neighborhood Be,p. () of c. IfxeB € /29005 (),

)
1
v €B €/2,p, (P then

p; (x+y-c) ¢ pi(x~a)+ni(y-b5< E+€ ¢ :
- 2 2
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so that x+y € B (). This proves the continuity -of addition. f

€,D=
. i
Let %€ K, afE set b = «a. DPick a sub-basis neighborhood

Be p. (D) of b. If &> 0, 7> 0, 6> 0, im-d|<f,x;€Bé (a), |

’pl ,pl

- 4

P(N-«a) = p, [ Mx-2) + (A= a] ¢ |2 ] p; (x-a) + |a-<| p, ()

Now [al < |+ [« < 7+ [« 50 that p, (A=) < (£+ |« & +{pi(a)

<&, if we choose ,8 small esnough. l.e., XxfB, 3 (a).
. Gl

|

 Exercise 2. The family T' = {

Pig o of seminorms is
directed if for any 11515, € I there exists 16T, A¢ R, N> 0 such
that p, < kpi’j = 1,2, If T" 1is a directed family of semi-
J
norms on E, show that for each fixed a ¢ E, the collection of all
B, .,.(a) (B - (a)) 1s a basis of open (closed) neighborhoods
E,&_ ‘-’pi

at a, with respect %o Tp s Where € >0 and i €1,

2¢3. Locally convex spaces.

DEFINITION 7. Let V be 2n absorbent convex set in ?

a vector space E. The Minkowsky function p on V

is defined by

p(x) = inf { A RI|N>O, x€ ?\V}

PROPOSITION 4, LL p is the Minkowsky function of v,




then

(1) 0 ¢ p(x) < o for xEE.

(i1) p(x+y) £ p(x)+p(y).

(1i1) p(M) = Ap(x), xfE, nEIR, A20.

(iv) p(a0 = |Alp(x), x5, reK, if v is balanced.
(v) {:er‘p(x)< l}C_V C {xe EI p(x) < l}

(vi) If E is a topological vector space, then

{XQE! p(x)< 1} =V if V is open, and

=

{x€E|p(x)< 1} =V if V is closed.

PROOF, i) is immediate from the absorbing property of V.
ii) Let x,y €E. Choose NUER, A,u> O such that A< p(x)+E,
ae ply)+ €, x €NV, y enV. Then x+y ¢ (Mu)V so that p(x+¥) <

; MU <p(x)+p(y)+2£ » Since € is arbitrary p(x+y) <p(x)+p(y).

.‘ 111) As in ii) ., it is easy to verify that p(Ax) < Ap(x) if
: *N>0. Then % >0 and then p(x) = p(%-?\ x) < %p(?&x) 1go that*
Ap(x) < p(Ax). Hence p(Ax) = A p(x). If A =0, p(Ax) = Ap(x) =0
is trivial.
iv) Suppose V is balanced. Let A€ K with |A| = 1. Then AV = V.
;- Let x €E. Pick g > 0. Then x € #V 1f and only if

] Neu(W) = uV  and hence p(Ax) = p(x). If 4 =N/ where V= dd
Al = 1 then p(ux) = p(Ay x) = p(YAX) = vup(Xx) = |u] p(x).
v) If x€B, p(x) < 1, there is N6 R, 0 <X <1, such that .xeAV.

Since 0O, 3;; € V then x = A % +(1-N0 8V by convexity of V.

Moreover, if x€V = 1V then p(x)< 1.
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vi) Let V be open and %XEV. Now because A6 K—»AX€E 4s continuous
at A = 1, we can choose 8 >0 such that | A-1] £6 => Ax€V. Then

‘ P
(1+8)xeV = p(x) < T+ 38
IZ2@®eE K, ¥ <2 then p(@x) < 1 hence @xeV. Since

< 1, Wow let ¥ be closed and x€E, p(x)< 1.

&x —> X as ® —>1 and V is closed, we get x€V,

DEFINITION 8, A topological vector gpace E is
locally conve® if there exists a basis of convex

neighborhoods of O.

PROPOSITION 5. A seminorm on a topologicd vector

space E is continuous on E if and only if p is

continuous at 0. (Bxercige)
PROPOSITION 6. Qp a locally convexX sSpaCe, the ahsolutely
28X 0 chhorhnhods of O,

(Exercigé)"'
PROPOSITION 7., If E is a topological vector space

whose topology is defined by a family I’ = ipik .
i€

of seminorms, then E is locally convex space and

Py is continuous. Conversely, if E is a locally

convex space, its topology is defined by the collec-

tion of all continuous seminorms.

PROOF. Suppose the topology of E is defined by IT' .
If p is a seminorm on E, afE, € > 0 then the set § x| p(x-a)<£ |
iis:convex., By the definition of TI,, the topology of E has

an open sub-basis, hence an open basis, formed by convex sets,
so E is locally convex., Moreover, each pi is continuous,
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Conversely let E be locally convex with topology T.
Let I be the collection of all T -continuous seminorms on
E. If pel’ , afE, € >0 then the set {xPEl p(x-a)< E:} is
T-open since x —> p(x-a) is T-continuous. Then it follows that
éﬁéf?-t%ﬁléﬁeﬁﬁset is T-open. Hence Tr <T. Let V be a
neighborhood of 0. Ghboae an absolutely convex T-neighborhood
U of 0 such that UCV and p the Minkowsky function of U,
Then p is a seminorm.."Moreover,»xRUﬁ#?p(x\ < 1, hence
x€rU=»p(x) ¢ r for r > 0. Hence p is continuous at O and
hence it is continuous on E. So pf€I'. On the other hand,
x€E, p(x) < 1 =¥ x€UCV i.e. $x€E| p(x) < L} V. There-
fore V contains a tI\—open subset containing 0 and 1s a Tr
nelghborhood of 0. Thus every T-neighborhood of 0 is a TP -

neighborhood of 0. Hence T LT e Therefore T = Tn .

PROPOSITION 8. Ifq[ is a base of neighborhoods of

0 in a topological vector space E, then E is separated

(i.e. Hausdorff) if and only if

() v= {0}

e

In particular, if the topology of B is Tr , then

E 1s separated if and only if for each nongzero .

x€E there is some pE€I" such that p(x)> 0.

322
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PROOF, 1If E is separated and x # O, there is some
U e U with x 2U so that

30}

Conversely, if Nvu-= {O} znd x # y, then there is some U such
that x-y ¢ U. By Proposition 2 there is a balanced neighborhood
W such that WWCU. Then x+W and y+W are disjoint neighborhoods S

of x and y respectively. Hence E is separated

PROPCSITION 9. A locally convex space E is

metrizable if and only if it is separated and there

is a countable base of neighborhoods of O;“ The

topology of metrizable space can always be defined

by a metric that is invariant under translation.

PROOF. If E is metrizable, it is separated and has a

countable base of neigaborhoods of O.

If E has a countable base of neighborhoods of 0, each
an absolutely convex neighborhood
neighborhood contains/and so there is a base { Un}/absolutely
convex neighborhoods. Let By be the Minkowsky function of Un'

Put

f(x) = > ¢o™n inf(p, (x),1)
n=1




form a base of neighborhoods. But Vn is open in the original

_ topology since each p, and so f is continuous. Also VnCZ.Un. i

58

Then f(x+y) < f(x)+f(y), f(-x) = f(x) and if f(x) = 0, then
pn(x) = 0 for all n and so x = 0, since E is separated.

Define 4 by
d(X,Y3 = f(x-y)

then d is a metric and d(x+2z,y+z) = d(x,y) so that d is

invariant under tranalation. In this metric topology, the sets

V= {x] £ < z'n}

Hence d defines the original topology on E. %

COROLLARY. 1If the tovoology on the separated space {

E is the coarzest convex topology making a sequence

_of absolutely convex sets neighborhoods, then E is

metrizable, i

e

2+4. Linear Mappings..

Let E and F be vector spaces over K. ftE—F is
linear if

£ x+py) = L£(X)+BL(Y) ' I

f is 1:1 if f"l(o) = {O} . In general f_l(O) is a sub-space

of E.
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Let L denote the set of linear mappings of E into F.

L is a vector space over K if

(f+2) (x) = £(xX)+g(x)
(AD) (x)= AF(X)

A linear mapping of E into /K is called a linear form on E.

E*x will denote the set of all linear forms on E.

PROPOSITION 10. A linear mapping f3E —F 1is

continuous if and only if it is continuous at O.

PROOF. For each a€E , a neighborhood of f(a) is
given by f(a)+V where V is a neighborhocod of 0 in F, 1If f

is continuous at 0, there exists a neighborhood U of O in E

such that £f(U) C V. Then f(atV ) C f(2)+V and f is continuous

a g hclc omvie B selil sE L ki gl

COROLLARY. If E and F are normed linear spaces

and ftE —F is linear, then f is continuous if

and only if therc is o >0 such that ||£(xll<«|kl|]

for all x€E.
PROOF. Exercise.

Exercise 3. If f is a non-zero linear form on E,
then £75(0) is a maximal subspace of E. Conversely to each
maximal subspace H of E there exists a linear form f on E

such that £-1(0) = H.
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PROPOSITION 11. A linegr form f on a topological
L0

vector space E is continuous if and only if £

is closed in E.

PROOF. Suppose f'l(o) = H is closed. Set
T = {x \\f(xﬂ <l§_'. If £ # 0, choose a € E such that f(a) =1
‘Then there is a balanced neighborhood U such that (a+U) (N H

We assert that UCV. Suppose that x€U -~and lf(x)l > 1.

Then y = fzz) EU and f(a+y) = 0 so that (a+U) NH # @. Contra-

dictions. Then x€68U ==?!f(x)l < ékfor §>0. Hence f is

continuous at O and hence continuous on E,

DEFINITION 9. The dual space E' of a topological
vector space E is the subspace of E* consisting of

-all continuous linear forms on E.

PROPOSITION 12, Let A be .an open convex subset of

a locally convex space E and let M be a vector

sub-space of E such that A(JM = @. Then there

exists a closed hyperplane containing M and not
meeting A.

LEMMA 1. If M is a vector subspace of B, so is M.

LEMMA 2, iIn g topological vector space, a hyper-

plane is either closed or dense.

PROOF. Exercise.
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LEMMA 3. Suppose that E is a real locslly convex

space, A an oven convex subset of E and H a vector

subspace not meeting A. Then H is either a hyper-

plane or there exists x#H such that the vector

subspace spanned by x and H does not meet A,

PROOF. Let C =.H+%§éAA. Then C is open
=Gl = H+_AL<JO?\A and ¢ N-c=. For if xecl)=C, then
x = htda = h'-Na' for scmé h, h'€H, a,a'€A and A,N'> 0 .and
so Ma+N'a'€H. But since A is convex, Mat+A'a'€(MANA which does

not meet H,.

1) Suppose that HUCU-C # E. There is some xfH* with
xgClU-=C. If the vector subspace spanned by x and H meets A say in
¥y then for some M0, x€Ay+HCC . Hence the vector subspace

does nbt meet A,

1i) Suppose HUCU-C = E. If ¥ is not a hyperphne there
is some point a€C so that H and a together does not span E, hence
there 1s some point b € ~C not in the spams of H and a.
Let £(A) = (1-MNa+Ab(0 £ A<1). Now f is continuous and C is
open and so I = fhl(C) and J = f"l(~C) are open in.[O,i] « Also
0€I, 1€J and I J = ¢, Let

i

o = Sup § A ACT }

Then «€I 1} (~I) C(~d) M~ 1) =~F NI, Hence £()gCU-C.
Thus f(«)€H i.e. (1-o)a+abfH. But b is not in the span of a

and Hs Therefore H isahyperplane.
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LEMMA 4. Supnose that E is a complex vector

space and H is a real hyperplane in E. Then

H()iH is a complex hyperplane.in E.

PROOF. Suppose a £ HMiH and supnose for example
agH. Then iafiH, which is a Teal hypervlane and so a = «la+b
with o real and beiH, then (1+;)b = (l+d2)aEH, and so bfH.
Now if x€E, x = Bb+y with B real and y€H, and then y = {ib+z
with 4 real and zE€iH. Hence z€H, thus x = (B+{1 b+z say with

z€H(iH. Therefore HNiH is a complex hypervlane in E,

PROOF OF PROFGSTITION 12, First consider the Cése when
E is a real vector space. Let % be the set of all vector
subspaces of E containing M and not meeting A. Apply the
"maximal axiom $5"the chain €g== {Iﬂ} s+ there is a maximal chain
M inEwith B CMCE. Let H be the union of all sets
ofcﬁﬁ « Then clearly H is a vector subspace of E not meeting A.
By Lemma 3, it is a hyperplaﬁe, because the other possibility
would contradict the:maximelity of oﬁ@. Also H is closed
because otherwise it is dense in E and meets every open set
including A.

If E is a complex vectar space, it 1s also a real vector
space and so there 1s a real closed hyperplane K containing M
#nd.nct. meeting A. Then H = KNViK is a comvlex closed hyper-

plane containing MOiM = M and not meeting A.
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COROLLARY. éverv closed vector subspace of a

convex space is the intersection of closed hyper-

planes containing it.

2.5, Extension of g linegr form.

PROPOSITION 13, Let p be a real valued function

on the real vector spnace E such that

p(x+y) < p(x)+o(y) and p(™x) = Ap(x), N >0, AER.

let FCE be a vector subspace and g a linear form

on F satisfying g(x) < p(x) for any xfF. Then

there is a linear form f on E extending g and

satisfying f(x) ¢ p(x) for all x€E.

PROOF. Let a € EXF and F, = F@ Ra, the vecrtor
subspace generated by a and F. Each element yGFl has the
unique renresentation y = x+Ma where x€F, MR. Define 2l
by gl(y) =‘g(x)+%d where « 1s to be determined. Then g1 is
a linear form on Fl extending g. We now choose « so that
g,(y) ¢ n(y) for all yeF,, or g(x)+Mz.$ p(x+A) . If X 1 X fF,

we have

g(xp)+e(xg) = glxy+xy) < plx+x,) < plxg-a)+p(xst+a)

so that g(x;) - p(xl—d>£ p(xgta) - g(x,5).




]
i
i

i
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Let L

Sup { g(xl) - p(xl-a), xl€F§

N2
]

inf {f(x2+a) - p(xé)’ X5€F }

Now choose & such that £ < «< Y. We assert that this o« will
work.

Now let @ be such that (1) @ is a linear form
defined on a vector subspace Dg of E containing F (2) # is an
extension of g)(B) @ satiasfies #(x) < p(x) for all xBDg. The
set @ of all such @ is partially ordered as followss If
91,056 E, then g;¢ P, if Dy 1@@2 and @, extends §;. The
maximal principle applied to ¢ gives a linear form g, which
extends g and gl(x) < p(x). If Dgl# E, we can extend g; as
in the first paragraph which will contradict the maximality

of 8. This completes the nroof.

LEMMA, Let q and p be seminorms on the vector

space E. Then gq<p if and only if xfE, -

p(x) <1 =7 q(x) < 1.

PROOF. If q < p, then clearly p(x) ¢ 1=>q(x) £ 1.".
Conversely assume p(x) ¢ 1 =y q(x) ¢ 1. Let x€E such that
p(x) > 0. Then p ( —5-)(55\) == q(;%y < 1, hence
a(x) € p(x). If p(x) =0, then p(Ax) = 0 < 1=D|. g(x) =
Q(Ax) < 1z=> g(x) < T'}Tj_ for every MHK) N O Letting
N—>yo, we get q{x) = 0 also. Hence q(x) = p(x) = 0.
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PROPOSITION 14. (Hahn-Banach) Suppose that p is

a seminorm on a vector space E and that f is a

linear form on a vector subspace M of E such that

]f (X)} <p(x) for all x€M. Then there is a

linear form fi'on E extending f with ‘fl(xﬂ < p(x)

for all xEE,

PROOF, Let E have the topology determined by the
seminorm p. Let U = {x {p(x) < l} . Suppose f # 0. Let
a€E suchthat f(a) = 1 and A = a+U. Then A is open and convexX.

put N = £1

: | :
(0). If x€U, then | f(x)[ < 1. Hence AN N = &.
There is then a closed hypervnlane H containing N but not
meeting A. Let f; be the lincar form on E with H = fil(O)

and fl(a) = 1. fl then extends f.

COROLLARY 1. Any continuous linear form defined

on a vector subspace of a locally convex space has

a continuous extension.

COROLLARY 2. If aCE and p is a seminorm on E,

there is a linear form f on E with lf(x” < p(x

for all x€E and f(a) = p(a).

COROLLARY 3. If F is separated with dual B!,

then f(a) = 0 for gll fEE' =% a = 0.
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PROPOSITION 15. Let E be a locally convex spacCe.

Supposc that & and B are disioint convex sets and

A is open.  Then there is a continuous_linear form
f such that f(A) and f(B) are disjoint.

PROOF, The set A-B is open and convex and does not
contain the origin. There is a closed hyperplane H = ?%‘l(O)
containing the vector subspace {0} and not meeting A-B.
The linear form f is continuous since H is closed and f(A)

and f(B) do not meet.

LEMMA. Any non-zero linear form on E is an open map.

PROOF. Let A be an open set in E and x€A. Then
A-x contains a neighborhood of 0 and so is absorbent.
If f is a3 nonzero linear form on E there is some a€E with
£(a) = 1 and then there is some o > O with Ma€A-x for | A | < <.
Then f(x)+A € f(A) for lhl < «. Hence f(A) is open.

COROLLARY 1. If B is a convex subset of a locally

convex space and afB then there is continuous linear

form £ with f(a) £ £(B).

PROOF, Since afB there is an absolutely convex
neighborhood U of 0 such that (a+U) Os = @. By Proposition 15,
there exists a continuous linear form f such that

f(a+0) NV £(B) = ¢ . But £(atl) is open. Hence f(a) £ (B
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COROLLARY 2, If B is an absolutely convex subset

of a locally convex space and afB , then there is

a_continuous linear form f such that |f(x)] <1

for all x€B and f(a) > 1.

PROOF. By Corollary 1, there is a continuous linear
form g such that QTET Z ¢(BY. Then g(B) is an absolutely
convex set so that sup {lg(xﬂ! XGB} <lg(a) . Let

_ - _ lata)l
o = gup {Qg(x){l XGB} . Set f.= £§?§7 g if o # 0 and
2 _
T = ey g if o« = 0,

COROLLARY 3. Let E be a real locally convex space.

If A and E are disjoint convex subsets of E and A is

open then there is a continuous linear form f and

a_constant o with f(x) > « for all x€A and f(x) ¢ «
for all x€B.

PROOF., By Provosition 15, there exists continuous
linear form £ with £(A4) /) £(B) = @./ £(®) . and £(B) are convex

sets and f(A) is open in WR. We may supvose that
sup {f(x)l x€B } <inf % f(x)‘xeA}

(if necessary multiply by -1). Put « = sup { f(x),xeB} -

f(x) < « for all x€B. Since A is open f(x) > o for all xEA.

e
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PROPOSITION 16. Let E be g real locally convex

space. Suppose that f is a linear form on a

vector subspace M of E and that f(x) > O on the

(non-empty) intersection of M with ‘@@ open

convex set A. Then there is a linear form fl

extending f with f;(x) > 0 on A,

PROOF. Let N = £ ~(0). Then AON = ¢ (since
f >0 in ANM). By Proposition, there is ahyperplane H
containing N not meeting A. Let aBANM. Define £, by
fl"l(O) = H and f;(a) = f(a). Then f; extends f. We shall
now show that f;(x) > O for all x€A. Suppose not.

Let f;(a) = N> 0 and £,(b) = -p £ 0, bEA. Since A 1s convex.

patdb ep ang fl< Ka
L%&u

AN - g A
o, = Y = Hf(a) mf‘l(b\

Ay N+ LU

.-

Pherefore 5§ﬁ~ +5%£- €H.. HNA # § céntradiction.

2.6. Duality and weak topology.

Let E be a locally convex space and E* the algebraic
dual of E, E' is the continuous dual of E.” E' 1s a vector

subspace of EY.
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To -each xGE, define %:E'—s K by X(f) = f(x). Then
X is a linear form on E' i.e. XEE'*. Thus we have & map
x€E —s %EE'*, If E is separated, X(f) = J(f) for all feE’
if and only if f(x) = f(y) for all feE', if and only if x = y.

Then E is isomorphic to a subspace of E'*.

PROBLEM. Topologize E' such that E is the continuous

dual of E'.

NOTATION, Xx,y,2y... will denote the elements of E,
whereas x',y'yz';... will denote elements of E'. Write <x,x'>
for x'"(x). Then «Xx,x'>1s a bilinear form on ExE'. Also we

have

1. If x # 0, there is an x'PE' such that < x,x'> # O
2. If x' # 0, there is an x€E such that <x,x%» # 0.

This i1s the same as

(1" ¢ x,x' = 0 for all x'€E' = x = 0

(2") <x4x'>= 0 for all x€E' ==x' = 0.

Let E,E' be vector spaces over the same field K. Let
< Xx,x%» be a nondegenerate bilinear form on ExE'. X'FE' gives .
rise to a linear form on E given by f(x) = < x,x' > . Then
f is W3l and E' is also isomorphlic to a vector subspace of E*.

Similarly E is also isomorphic to a vector subspace of FELES

DEFINITION. (E,E') is called a dual pair. If (EE"

is a dual pair, so is (E',E).
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Examples 1. If E is a senarated locally convex

space with dual E', then (E,E") i1s a dual pair,.

Exampleg 2 For a vector snace E with algebraic dual

E*, (E,E*) is a dual:pair.

1 Let (E,E') be a dual pair. To each x'€E', set

3% p(x) |<X,x'>l for all x€E. Then p is a seminorm on E.
The coarsest topology on E making all these seminorms continuous
is the weak topology on E determined by E' and is denoted by

c(EyE'). It is the coarsest tondogy on E for which all the

linear forms in E'! are continuous. In o(E,E") the sets

| xll<$%? | <x,x¢3| < €} x,'€ E', form a base of closed neighbor-
i<n

hoods of 0. Now o(E,E') is convex and separated.

The dual of E under «(E,E') contains E'. We shall show

that it is precisely E'.

LEMMA, If fo, fl, 5 fn are linear forms defined

on a vector space B, then either f 1is a linear

combination

2

fl’ oo fn or there is afE such

S

That fo(a) =1 and £.(a) =0 for i =1,2,..n.

PROOF. For n = 0, the result is trivial. Assume it
f

1 is true for n-l. Then for each i, 1< 1 < n, f; 1is not a
1 linear combination e ¥ -
ation of f,, i-1, fie1 f,- Then by

induction hypothesis, there exists aiGE, J=1,2,..n such that
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fi(aj) =0 fer i # J and fi(ai) = 1. For each xfE,

X - Z fi(x)ai e [\, le(o)=N

1<i<n Ki<n *

Then there is an element afN such that fo(a) = Top fo(y\ =00

for all y€N. 1In the latter case we have

£,0x) = 2 £ (a)f,(x) for all x¢E

1<in
which implies that
£ = 2 A f; where A, = fo(ai)
IKi<n

COROLLARY. If fy,.... f =~ are linearly independent

linegr forms on g vector space E, then there are

i

elements a,, ... a €E such that fi(aj) =8 i

PROPOSITION 17. For g dual pair (E,E", the dual

of E under o(E,E") is E'.
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PROOF. Let f be a linear form on E continuous
under o(E,E") . Then |f(x)| <« <1 on some neighborhood

U'sijxl sup|<x,xi>]<li where x'€E'.  Then by lemma, f 1is
1<i<n -

either a linear combination of xi, x2' 5 0 xn' or there

is some afE such that f(a) = 1 and x; '(a) =0 for 1 = 12, e lls

Then a€U and f(a) > «, contradiction. Hence

f = zz x4
1<i<n

PROPOSITION 18. If (E,E") 1s a dual pail, and

A is a convex subset of E, then A is_the same for

svery topology of the dual pair (E,E".

PROOF. We shall show that if the closure A under
any topology £ is the same as the closure 4(6) under o(E,E").
Since ¥ is finer than G,KC:K(G). Let aZA. Then there is
a continuous linear form f such that f(a) £ T(A)i.e. there
exists xlEE! such that <a,x'> f#< A,x'> . There 1s a
5 » 0 such that |< a-x, x'>] 28 “for all xfA.
Let U = {’X\‘K:X,X'> 1<8 . Then U 1is a neighborhood in «

and atU does not meet A. This means a@A(e) i.e. INCrles &



olar Sets.

DEFINITION. Let (E,E') be a dual pair. If A is
a subset of E, the subset of E' consisting of those

X 'siche that
SUD |<x,x'>| <1
xEA

is called the polar of 4 and is denoted by A°

PROPOSITION 19, Let (E,E') be a dual pair. Then

polars in E' of subsets of E have the following

nroperties

(1) A° is absolutely convex and o(E',E) -closed.

(i1) If AC3B, then 3°%a°.

(111) If N # 0, then (A1)° = T%TAO
(©) = .
: L W)
(lV)( u(ﬁocl\ = /O(AO(

PROOF., Exercise.

Notice that 4% = () ,x"lﬁx»x'kngil 1

xCA



74

There are important snecial cases of polar sets.
If M is a vector subspace of E, thenjggﬁ}<ﬁx,x'>| < limplies
<X,x'>»>= 0 for all x€M. Hence M° consists of these elements
of E' that vanish on M and so is a vector subspace of E!
orthogonal to M. If E is a senarated locally convex space,
a subset A' of its dual E' is equicontinuous if and only if
there is a neighborhood U of 0 with sun|<x,x'>|< 1 for all x€lU
and x'€4'. Thus A' is equicontinuous if and only if it is

contained in the nolar of some neizhborhood.

PROPOSITION 20. If E is a separated locally convex

space and  1s a base of neighborhoods, then the

dual of E is {}) JUo(the polars.being taked in E¥).
€U

contisnon '
PROOF. The linear form X" €E* is continuous if and only

if there is some nelghborhood UEy{ with |<x,x'> 1< 1 on U.

DEFINITION, If (E,E") and (E!',F) are dual pairs and

A is a subset of E, the polar s of A° in F is

called the bipolgr of 4.

Bsmark. If ECFCE'*, then ACA®°. For, z€4°° if

and only if | < z,x'> | <1 whenever x'er, i.e. whenever

sg% l<x,x'>| <1l. Thus 2€4°° if and only if
b {57

<z, x> ] g_sgp {l<x,x'>| 5 . Since ACE-F, this implies A4 ( A°°
XEA
N

-
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PROPOSITION 21, Let (E,E') be a dual pair and F

a vector subsnace of E'* containing E. Then the

bipolar 4°° in F of a subset A of B is the o(F,E') -

closed absolutely convex envelope of A.

PROOF. Let B be the «(¥F,E') ~closed aﬁsolutely
convex envelope of 4., Then A%° is o(F,E") -closed absolutely
convex subset containing -A and thercfore BCA®®, If afB, then
there is a continuous linear form x'€E' with f < X,x'>|<1
for all x€B and |<a,x'y >1. Now ACB and so x'€A®  thus

aﬂAOO. Hence AOOC:B and so AOO: Ble

COROLLARY 1, If B is a separated locally convex

space with dual E' and 4 is a subset of E, then

the bipolar 4°° in E is the closed absolutely

convex envelope of A,

COROLLARY 2, Under the conditions of the proposi-~

tion ,the polar of A°° in E' is a°.

PROOF. By proposition, the polar of AOO in E' is
o(E',F) -closed absolutely convex envelope of A°, Now A° is
absolutely convex and s(E',F)-closed j also o(E',F) is finer

than o(E',E). Hence A° is also o(Z',F)-closed. Thus A° is

the polar of A°°.
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COROLLARY 3. If (E,E') is a dual pair and if,

for each «, A, 1is c(E,E') -ctoged absolutely
convex subset of E then (Q\Ax)o is the «(E',E) -

;lgsgd absolutely convex envelope of EgAg.

PROOF. Taking polars in E of subsets of E'.

W, o () [ () A
A = A =
(x“) @ %

SN

7o 6o
Hence ( k}A: ) =(1\Aq) and the result follows from the
o( o« %

pronosition.

2.8, Finite dimensional subspaces.

Let E be an n-dimensional vector space with a basis

8,58, .. @ . There is a dual hase eI, .o e; in the algebraic

dual E* of E, with the property <ei,e§:>= 613. For any
element x€E can be uniquely written in the form

ji Ne. and put <x,e¥>= A,. Clearly e¥ are linearly
~1494n e S L | 1 :

independent. They also span E¥.

If E is finite dimensional and (E,E') is a dual pair,
then E' = E'. For E and E* have the same dimension and so
have E' aﬁa\E4*. Since E'C.E* and EC.E'*, all must have the

same dimension.
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PROPOSITION,22., A finite dimensional vector space

has only one topology under which it is a separated

locally convex spaCe.

PROOF. We show that for a finite dimensional sevarated
locally convex space E, its topology is identical with o(E,E*).
Since dual of E is E*, the topology is certainly finer than

o(E,BE*). Now let ej,...,3, be any base of E and ef,... g

n

the corresponding dual base of E*. Let U be an absolutely
convex neighborhood in E. There is some g >0 with eiGuU for

1<i <n. Then

V=g w2 Iexepol e Th )

is a o(E,E*) -neighborhood if x = IAje: € v,

x€e 2> | 2| o =ZI<x,e§>luUc:n(un)'l wo = U
1<i<n

Thus the given topology is coarser than o(E,E*) and so

identical.

PROPOSITION 23. Let M be a finite dimensional

vector subspace of a locally convex separated snace.

Then M is closed in E and the topdlogy induced on M

is the euclidean tonology.
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PROOF. The second part follows from Proposition 22,
To show M is closed: If ej,..., e, 1s a base of M  and
if a £ M, then regarding a, €1,...y €, as linear forms on
the dual E' of E, by lemma there is some x'€E' with ca,x'y =1
and <e;,x'> =0 for i = 1,2,,..,n. Let U ={vle<x,x'>i< 1 }.
Then U is a neighborhood of 0 and a+U does not meet M, for

<atu,x'™> = <a,x'> + <u,x'> = 1+<u,x'> # 0. Hence M is closed.

2.9, Transpose of a5 linear map.

Let (E,E') and (F,F') be dual pairs. Let t:E —>F be
a linear transformation. Then<tx,y'> is a bilinear form of
the two variables x,y'. TFor each fixed y'€F' 1let t'(y") be

the linear form on E defined by

< X, t(y "> = <tx,y!'> for all x€E.

Then t'(y'")EE*, Then t' is a linear tr-nsformation of F!

into E*. t' is called the adjoint, conjugate, dual or transpose.

PROPOSITION 24. Let (E,BE") and (F,F') be dual

pairs. Let t be a linear transformation of E

into F with transpose t'. Then t'(F)C E' if

and only if t 1s continuous in the weak

tovologies o(E,E') and =(F,F').
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( PROOF, Assume t 1is continuous. Let y'€F' be
h fixed. Then <tx,y» 1s a continuous linear form on E. Hence

Xy EB" or tHUFNCT R,
Conversely supnoss t"(F"WCE'. Let

& v = gyeFl sup | < y,y4>l§_l§ any o(F,F') -neighborhood. Take
& K isn -

] U = xCE‘slfp < 1571
s { lf:_ispl X, 1y < 1%

Then U is a o(E,E') -neighborhood and t(U)CV. Hence t is

continuous.

DEFINITION., t is said to be weakly continuous

i;v¥ if it is continuous in the tonologies o (E,E")

and o(F,F").

g COROLLARY. If t is weakly continuous so is t'

PROPOSITION.28. If t 1is a2 continuous linear

mapning of the senarated locally convex space E

i (with dual E') into the separated locally convex

space F (with dual F') then it is also continuous

4a59dinted weal
topologies o(E,E') and o(F,F').

when E agnd F
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PROOF, Let y'€F' be fixed (but arbitrary). <tx,y'>

is continuous on E. t'"(y"EE!' i.e. t (FY)CE'., Hence t

is continuous.

LEMMA., Let (E,E"), (F,F') be dual pairs, TLet t be

a weakly continuous linear mapping of E into F.

Let t' be its transnose. Then ACE, then

o)
(b)) = 7O

PROOF., Each of these is the set of all y'€F' such
that {< tx,y%|= |<x, t'y'>] <1 for all x€A.




CHAPTER 23

MORE ON NORMED LINEAR SPACES
3k Now we shall specialize on normed linear spaces.

DEFINITION 1. A normed linear space X 1s a vector

space over R or KK on which is defined a non-
g ? negative function called the norm (norm of x Dbeing

denoted by |[xll  such that
x| = 0o iff x =0
Ix+ vl < lIxlb + [l
fex < o] Il
for all vectors x, y and scalars o,

X Dbecomes a metric space if we define p(x,y) =

lx - y|l and is called a Banach Space if it is comolete in

this metric.
Example. C [a,b] = Set of all continuous real valued

functions on  [a,p] . If £, £, £ €C (a,b] define

(fl + f2) (x) fl(x) + fg(x)

Lf(x) .

I

() (%)

C [a,b] then becomes a vector space. A norm is defined by

el = max £ |
ayb

and obtain a Banach space.
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DEFINITION 2, TLet M Dbe subset of a normed linear

space X. M 1is called a linear manifold if

X,y € My, «,8 scalars,then ox + By € M.

M 1is a subspace of X 1if M 1s a closed linear
manifold,

Let E De a vector space and M a linear subspace
of E. Two elements x,y are sald to be equivalent, x ~ v,
if x-yeMs If x+ M, y+ M are two cosets, then the
above equivalence relation tells us that either two cosets are
identical or disjoint. The scet of all cosets is denoted by
E/M. It is made a vector space by defining addition and scalar

multiplication by

(x + M) + (y+ M

H

X+ y+ M

I

(x + M) X + M.

PROPOSITION 1. Let M be_ a subspace of g normed

linear smace X. The norm in X/M is defined by

Iyll = g.1.0. { Hxl[\ X ey § for y € X/M.

If X is complete, then X/M is also complete.

PROOF., 1) By the definition of norm, if y € X/M,

then lly |l = 0 iff thers exists g i€y such that lx Il — 0
as n —» oo, Hince y 1is closed, |Jy]] =0 iff 0 €y so
that Jly]l =0 iff y = M. The other axioms of the norm can

be easily checked.
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2) Suppose X is complete. If 3 yné is a Cauchy

sequence in X/M, we can suppose, by passing onto a subsequence

1f necessary, that

- vl < .

” y—n+l n

V)

We can then choose inductivelv a sequence X € L such that

1 s - b
%01 - xn” < ;—ﬁ for p(x,, x 1) = p(yn, Vorl) < il

Then %Xn§ is a Cauchy scquence in X. Since X 1is complete,
there exists X, € X such that Xy —> X - Let Yy be the co-
set containing X Then yn-»;vyo (check). By the property
of the Cauchy sequence iyn§ converges to y_ and X/M is
complete.,

DEFINITION.2, Let X,Y be normed linear spaces. A&

function T : X —> Y 1is called 3 transformation. T

l1a said to be linear if T(KyXy + LX) = G T(xy) +

dgT(xg) for X1y, € X and dl’dz scalars. T 1is

sald to be bounded if there exists M > 0 such that

%

Tl < » x| for all x € X,
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PROPOSITION 2. Let X,Y be normed linear svaces and

E Jet T: X -—>»Y Dbe a linear transformation., Then
3 a) if T 1is continuous at x_, then T is
oy continuous on X

b) T is continucus iff it is bounded.
PRACT e .
PROCF. a) x, —rx, dimplies T(x,) —> T(x.). Now

suovose ¥, € X and yn.~§.yo. Then, by the linearity of T

Ty, = T(¥y = Vg * X5 + Vo - Xo)

= T(yn Ty * XO) + T(yo) - T(xo).

Since y, - ¥V, + X, —> X T(yn 5, xo) —_— T(xo) so that

T(y,) —> T(zy) + T(y) - ™xy) = 6

b) 1) if T is bounded there exists M > 0 such

that
freall < M=l .
Hence | T(x) - T(xo)][ < Imix - xO)II < 'M | x - xO|] "

from which follows the continuity.

ii) If T is not bounded, then for each n there

exists x_ such that [Tz )l > Ix. [ln . Lety = .
n n n n n IX ”
n
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=

Then [y Il =

Ty, 7> T(0)

Notation. B(X,Y) will denote the set of all bounded

and  [[T(y )| > 1. Hence |y || —>0 but

O. Hence T 1is not continuous at 0.

linear transformations of X into Y.

If T, Tyy Ty € B(X,Y) and o« € K , we define

2
T + TosT by

(Tl + T2) (x) = Tl(x) + Tg(x)

(«T) (x) = o«T(x), x € X.

Then B(X,Y) Dbecomes a vector space. If T € B(X,Y) notice

that there exists M > 0 such that

IT(x)]] < Mlx|l for all x € X.

We define a norm by any one of the following :

W QT o= ele du | re g ¢ Mpxg )
) - (x|

(1) vl = i.;.g. Edl
(i11) T = l.uwb. |7
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It is easy to verify that (i), (ii) and (ii1) are equivalent.

As a consequence of this definition it follows that

It < Tl fi=d.

PRCPOSITION 3. B(X,Y) 1s complete, if Y is

complete,

PROOF., Let %Tn § be a Cauchy seguence in B(X,Y).
Then given £ > 0, there exists n (&) such that ”Tm - Tn”
< & for myn > n (& ). Then for each x € X,
It (x) - T (0 < Eflx|| so that .{Tn(x)} is a Cauchy
sequence in Y. Since Y 1is complete, there exists T(x) € Y

such that Tn(x) —> T(x). Thus we define a function

T 3 X == X
by
™x) = 1lim Tn(x).
n—>>
Now
1 = i
) T(Ay%) + oAX,) lim T (% + < X,)

N —00

= 1lim [len(xl) + dng(xg)I
N —-=>00

= o 1lim T _(x,) + o, 1im T (x.)
1 Aty B 1 2 N>l 2

= le(xl) + dzT(xz)
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2) Since “Tn+p - T/l <1 for all n > N and all p,
|
Iyl < gl + 1 for p 3 1
and
belt = im fimg b < gl + 2
n —= 00

and hence T 1is bounded.
3) We show that HTn -Tll — 0 as n > co0. Now for

n > nO(E )

“Tn+p - Tn” < & .

1
ot

For | x|

T(x) - T (X)) = p%ifoo ”Tn+p(x) - T (0
< 1im I[Tn+p - Tl < €.
P —-00

Hence ”Tn -7l < € if n2 n(&). Thus B(X,Y) is
complete.

If Y = field of complex numbers then Y 1is complete
(el =1Y1]), we write B(X,Y) = X" called the conjugate svace
or dual space of X. An element of X* is called a bounded

linear functional.
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COROLLARY, X* is glwavs complete.

Hahb Banach Extension Theorem:

= PROPOSITION 4, Let M be a subspace of normed linear

space X. Then every bounded linear functional on M

e b

can be extended to the whole of X with preservation

*
of the norm i.e., if T € M there exists S € X

suca_that

I

S(x) T™x) for all x e M

and

1

Isly = il

COROLLARY. Given x_ € X, X # 0, there exists

b3

T € X  such that
Txy) = =, Wl = 1.

3e2 DEFINITION 4, A Buclidean space E 1s a vector snace
in which a function of two variables x,y denoted by

(x,¥) called inner product, is defined, satisfying

a) (x,x) > 0 if x #0, (x,x) =0 if x =0

Dy

) (x,y) = (7,%

1]

c)  (Nx,Vy) Mx,y)

D) (X + Xy ) = (X)) + (X5, )«
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1 ;
REMARK., Define |x| = (x,x) /2 . If E 1is

complete in this norm then E 1is called a Hilbert space.

DEFINITION 5, A Hilbert space H 1s a Banach space
-in which the norm satisfies an additional requirement
viz.

xet y P e - yIP = 2zl + 2yl
for all x,y € H. An inner nroduct (x,y) dis then

defined by

axyy) = lx+ ylP =lx - yIB + lx + 1yl?
- Ix - iy P

PROPOSITION B, The above two definitions for a

Hilbert space are egquivalent.

Proof. Exercise.

We only give some nroperties necessary to prove the

equivalence which will alsc be used elsewhere.

PROPOSITION 6. Let H Dbe Hilbert space, If x,y € H

.

and N 1s a scalar, then

a)  (X,2Ay) N x,y) ,

o) 1[G < = vl




Assuming

90

PROOF, a) (xy,Ay) = (Ny,x) = a(y,x) = T(x,y)
b) Let N Dbe any comnlex number., Then

0 ¢ (x =-72yy x - 2Ay)

1

(x,%) + (X, =AY) + (=AY, x) + (=2y,-y)
= (X,x) - NMx,7) = Mx,y) + M (y,¥).

y #0, set A=< Zal | mpen

which gives

or

(y,¥)
0 < (x5 B
(X,x)-(y,7) — (x,9)-(x,y) 2 O

2 2 2
[, 17 < Gy = IxPIyl” .
DEFINITION 6. Two elements x,y 1in a Hilbert swvace

H are said to be orthogonal if the inner vroduct

(xyy) = 0. Then we write x_Ly. Two subsets 81,82

for all

in H are said to be orthogonal if le-xz

Xq € Sl and x2 e 82 . If M 1s a subspace of H

the set of all elements of H that are orthgonal to

M 1is denoted by M'L and is called the orthogonal

complement of M.
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PROPOSITION. 7, M'L is a subgpace of H.

PROPOSITION 8, Let M Dbe a subgpace of g Hilbert

space H and x € HM. Let

d:g.l.b.{llx-yl!»,‘yeM}.

Then there exists a unigue Yo in M guch that

d= |lx -yl .

Further x - Yo € M'L .

The proof is straight forward. We have the following
corollary. /

COROLLARY. If M ig g subspace of a Hilbert space

H, then every eclement x € H can be uniguely re-

presented as

X = %, + X
1 2

&
where Xl,e M, X, €M™ .

3.3 Riesz Representation Theorem.

PROPOSITION 9, If vy is a fixed element in g Hilbert

space H ' and Ty is defined by

Ty(x) = (x,y) for all x¢€H,




e A PPN

*
th T €H .
en v

3 E PROOF, Let dl’ dg be scalars and X1y Xg € Ho Then

1}

Ty(dlxl + dgxg) (dlxl + dgxz,y)

1

o (x1,¥) + £5(X55)
ley(xl) + dgTy(xg).

Hence T is linear. Further
7,00 = 1w Il iyl

so that

ey < Wyl

Hence T is continuous which »proves the theorem.

y
PROPOSITION 10, Every bounded linear functional T
on g Hilbert space H can be expressed uniguely in
the form

T(x) = (x,y) for all x € H

where y is a fixed point of H and

ST o= vy
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PROOF, Given a bounded linear functional T, let

M = {xeH ]T(x) =0\,

If M = H, take y = 0, Suppose M # H, then M'L # 0. There
exists an element z # 0, z € H, z £ M. We notice that

T(z) # 0. If x 1s any element in H, let

3

(x)
™z

Z

then uwW €M and 2z € M. That is (u,z) = 0, which gives

or
(x,2) = ggﬁ% (z,2) = 0O
or
T(x) = Téfz) (x,2) = (x, Tzf; 2)
Now take y = %zfz) ze This y 1is the required one. By the
previous proposition
el < Uyl

also from

2
™(y) = (y,9) = |yl
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it follows thst

Nt > vl -
Hence
ey =0yl -

This completes the proof.

3.4 Cors ider the sct of all measurable functions which
are complex valued, defined on a measurable set E of finite
or infinite measure, Let 12 denote the set of all these
functions which are sguare integrable i.e. J |f|2 dx < .
Then by Schwarz's inecuality f 1is integrab?e on the subsets
of E of finite measure.

Define for f,g € L2

f f(x) g(x)dx,
E

(r,0)1/2 .

(fy8)

I

I £1]

2

s and L~ 1s complete

Then (f,g) 1is an inner product in L
under the above norm. So L2 is a Hilbert svace. So from
what we have proved in Proposition 10 - it follows that if T
is a bounded linear functional on L2 then there exists a

unique function g € L2 such that
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T(f) = jﬁf(x) g(x)dx for all f € L2

E

and |IT | =i|gl|-

We denote by Lp(p > 1) the class of all measurable

b
complex valued functions which are such that j If(x)l dx < .
E

Define

el =« f.lf(x)lpdx)l/p (L<p < o).
E

We understand by L® the space of all measurable functions
which are bounded or arc equal a.e. to bounded functions. We

define the norm

i

? el = true max |f(x) |, f € A

5_ ice. |l is the smallest value of M for which |f(x)| < M
4 ave. If p> 1, let q be define by p - + q % = 1.

M . Let b > a - be real numbers and P([a,b]) be the

E set of all partitions of [a,b] .
DEFINITION 7, A function f(real or complex valued)
defined on [a,b] is said to be of bounded

varistion if




functions

that f =

&,b] .
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V(fya,b) = 1l.u.b. > ety - e, D
T WBP(Ea,b]){tj(-‘.v / 3-1 }

is finite and V(fja,b) 1is called the total variation

of f. The ciass of all functions of bounded varia-

tion on [a,b} is denoted by BV [a,b] .

REMARK 1. If f e BV [a,b)  then there exist two
fl,f2 which are non-negative non-decreasing such

fl - f2.

REMARK 2. 1f f € BV [a,b] then f is bounded on

DEFINITION.8, Let f and & (real or complex valued)
be two functions defined on [a,b]- where a < b.

Let 7 =4a=t et =bt € P [a,b] ) and let

i

L] s t
C ésl,sz,.. ’Sn % where s, € [fk-r k] ;
k= 1,2,...,n. We define the Stieltjes integral of

f with respect to o to be the limit of the sums

n
Sppe T2y T Loty - oty )]
when ||« | = max (t,-t, ) 0, and is denoted
I<hen ¥ k-1 —> Y

by



9%

- JRESIECER
4 %
- DEFINITION 9, Let C [a,b] be the set of all con-
1 | tinuous real valued functions on [a,b] . Then the
1 -
E mapning L:C [a,bj——»IR is said to be linear functioral
i if
] D L(fy + £y = L(f) + L(fy)
2) L(ef) = cL(f), c e R .

and it is bounded (hence continuous) if

3) There exists a constant M such that

Ly | ¢ M|t

where £ = max [£(x)] .
agx<b

The smallest of all such bounds M 1is denoted by

L] and is called the pnorm of the linear functional.

Now we prove the following lemma which we utilise in
the proof of the next nroposition.

LEMMA 11. Let L be a bounded linear functional on

¢ [a,b] . If ifn§ and %gn} are two _increasing

sequences belonging to C[a,b] , which tend to the

same 1imit, then the sequences § L(f;)} and {L(g,)]

also tend to the same limit.




98

PROOF, Without loss of generality we assume that tThe

sequences are strictly increasing (otherwise we consicer the

(£ - 3 "l'} For each fixed n the
sequences 1fn. R %gn = (). For each fixed =n !

should exist an n such that f < g, for all n'> n.

Suppose not, then ths sets Kn — fxlfﬂ(x) b gr(x)} form a

nested sequence of closed, nonempty sets. Hence there ciists

point x, € K, for all n. In turn, we have £ (x)) 2 lim

gn(xo) = f(xo) contrary to the hypothussis. By the same argu-

ment there exists for zach m an n such that € < fn for

all n' > n. Now we can form an increasing seguence f_ < 2y
— ) li—!

< fm? < gm4 < +s. tending te f. Hence, ths seguences

{ L(fn).% and i L(gn)} tend to thetsamd limit.

PROPOSITION 12. A_continuous linesr funccional L

defined on C [aﬁ)] can_be extended 1o 2 wider

class of functions.

PROCF. Lot '%fn\} be an increasing and bounded
sequence of continuous functions on [a,b] which tends to 2
bounded function f. DNow we extend the functional L to this
f which may ntt be continuous. Consecuently, the csequence of
values { LE, } tend to a finite limit. The 7alues of the -

seriess

re

2
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S iL(£,,) - LY
n=1

correspond to the partial sums of-the series

|

L E‘n‘l*l(X) - fll(X)]

%

1
i_l

n
by means of L (where the signs arc suitably chosen). 3ut

k
1S 26,0 - 5] | < £ - £ = Blsay),

n=1
k=1,20000 &

Hence

S —
| L(f L. - L(ln/[ ¢ BlERy B2 1,205
n=1
and so
o)
(o) + N [ - £ ))
n=1
converges =bsolutely and partial sums heing LT tend to A

finite 1limit which we denote by Lf. This is justified from
the nrevious lemma. Hence I is defined uniguely to every

bounded function which is the limit of an increasing sequence
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- of continuous functions. If f and g are of the above type

then so is £ + g and L{f+g) = L(f) + L(g). But the difference

f - g neither 1s of the type f nor =-f. To justify to write
? 5 L(f -g = LD - Lo
! consider the relation f -~ g = fl - 8 which 1s equivalent

to writing f + g1 = fl + g4 s0

L(f) + L(gi) = L(F +.gl) = L(fy ; g) = i(fl) + L(g)
which yields in turn the desired.

Since (1) and (2) properties of the bounded linear
functional are evident, it remains to prove th2t it is bounded,
i.¢., we show

[L(f - 2| < L) wu

where (g = sup  If(x)~g(x)| and f,g are the limits of
a< xg<b
the increasing scquences § fn § and %gn} respectively.
Now set
r ,
: fn(x) when Ifn(x) - gn(x)l < U

Fo(x) = < g (%) + when £ (x) - g (x)> u -

4
) g, (x) ~ i when £ - g (0 < -u.




- 101

It is easy to verify that { an is an increasing sequence

bf continuous functions and tends to f. Further

F - .
ag;gb F (x) - g (0] < u
Hence
ln(t-g)p = in(L(F) - Llgy))]

= lim|L(¥,) - L(g)|

M

IN

which proves the theorem.

For our further purposes we remark that the class
under consideration contaiﬂs apart from continuous functions,
simple discontinuous functions and their finite linear combina-
tions. In particular the characteristic function fc,d of the
closed interval [c,d] ( [a,b] also belongs to the class
being the limit of decreasing sequence cof continuous functions
{ i } where [ ié zero outside (c - %, d + %) and equal
to 1 on [c,{]A .

PROPOSITION 13. (Riesz representation theorem).

For_ ecvery bounded linear functional L on C [a,b]

there exists a function o € BV [a,b] such that
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b
I(f) = J‘ £(x)dr(x)

L

and V[e3a,b] = |IL|l. Conversely the inteesral of

the type defincs a lincar functional.

PROOF. The converse is covident. For any f € C [a,b]

and & € BV [a,b] we have

b
| ] toar | ¢ I
¢

«V(~rja,b).

This satisfies all the three properties of the bounded linear
functional.

Reciproeally, the bounded linear functiamal I c¢an
be extended to a characteristic function fc,d of the internal

[c,d](:: @,Q] + Now we define
f
o(x) =1

where f _  1is the characteristic function of the interval [a,x]
\.4-’— -
We claim that the function & € BV [a,b] and V(sja,b) ¢ o .

To prove this consider a partition g = %’a = Xgyere9Xy ='b} €

P( {a,b])‘; and the expression
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|{T(Xk> = "T(Xk_l) ' 3 Xk € <
1

T M s

This is the value of 1L at

n

f(x) = Elfa,xl(x) * é;B Ek i—fa,k(x) - fa,k-l(x)]

where Ek cquals to 1,0 or -1 sccording as the sign of

U(Xk) - ¢(xk_l). The function T being the finite lincar

combination of the functions fa K belongs to the class under
?

consideration and further |[f| < 1. Hence

n

> lo(x) - (x, )] =L < L.
k=1

Since r.h.s. 1s independent of = we have

(*) V(ecs3a,b) < (L)l .
"Let fecC [a,b] and let 7 be as above. Lot

8y € [Xk—l’xk] K =1,2y.0.,n. Now define the steo function

(f(sk), X < X<x

Kk
P(x) i‘{

f(sl), x =1
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which could be written as
n
P = £(s)F, o () + > f(s) [fa,xk(x) - fa,xk_l(x)] .
k=2

So 90 belongs to the class under consideration. Thus

o]
We) = zz f(sk) [w(xk) - G(xk_l)]
k=1

where observing that W(XO) = o(a) = 0. The r.h.s. of the ex-
pression is exactly the definition of Stleltjes integral when
f|m|] —= 0. Let o be the maximum oscillation of f on the

subdivision intervals. Then )f(x) - 90(x)| o and hence

L) =P < JLE =) < oLl .

For | nﬂ!—<>03 ® —s 03 so L(P) —s L(f) which means
b
L(p) —> LD = f £(x)do(x)
a

Also V(m3a,b) 1is a bound for L, hence

V(eya,b) > [IL]| .

Combining (*) with the above yields the result.
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At this stage we state the above theorem more generally
in terms of Radon measures* more general than Borel measures.
The interested readers may refer to R.E.Edwards, Functional

Analysis, Page 203.

PROPOSITION 14. Lect L be a continuous linear func-

tional on C(T) - the vector space of continuous real

valued functions on a locally comnact space T. There

. s

exists 3 Radon measure K on T having a compact

supnort and such that

() = w(D = [r(e)aue).
T

Conversely, the integral of the above form where

f € C(T) _and W _a Radon measure represents a linear

functional.

*A Radon measure © on T is a linear functional on the class
of continuous functions on T with compact sunport which is
continuous in the following senses Given £ > 0 and a compact
set KC T there exists a & > O such that |u(f)| ¢ € when-

ever f has its support in K and | f(x) | ¢& for x € K.
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2.6 L7(a,b)
Let
b
(f,8) = ( f(t)E(Ddt, £,g € L°.
a
Py b o i
et = (£,0)2 = ( f lr(x) | ax) 2
a
b B b 1 1
l(r,e) | Sb{ le(x)e(x))ax < ,{ lf(x) |© ax) 2 ( j’lg(xﬂzdx)g
a, a a
(£, ) < el el
Then
(fl + f?,g) = (flgg) + (fzag)
(f,8) + 8y = (T8 + (f,8)
(Mf,e) = ML), (g,0) = (f,2)
(f,28) = ANf,e)
£ = gﬂg = (f+g,f+g) = (£,f) + (g,g) + (g,0) + (f,8)

= (f,f) + (g,f) + 2 Re (f,8)

£ (£,0) + (g,8) + 2if,8) |

< el + gl + 2lel gl

/
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Hence

It + el < £ +
§ £ i

el -

said to converge strongly (or in the norm) if ”fﬁ-f4lé¥>o
I’l-—-?CI)-

RIESZ-FISCHER THEOREM.15,

If a sequence

() 12
given, then in order that there exists a function
such that

f
n—> Ty 1t is necessary and sufficient
that an -fll — 0 as mypn—sw, i.e. f, is a
Cauchy seguence.
PROOF, If fn—47fu strongly, given & > 0 there
exists n, such that

an - £ < &/2 if n > ng .
THEOREM. L2 1is complete.

v " s
F, Let Lfn
”fm = fn” —> 0 ac¢

such that n>

} be'a Cauchy seguence in

-

TJ . i.e-,
my,n —% ® . Choose integers m <My <o
m,. implies
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In particular

it - £, Il < o8
’ 1
2
jif x) = £, (0 ]dx ¢ | J(Ifm (x) - £, (¥ | dx)‘“ (fdx>
k+1 k T Tk+1l “k '
E 0] E
<) |if - £
mk+l mk
¢ B®
I S
Tor every mcasurable subset & such that m(E) 1is finite

cConvarges.,

M

| f (x) - £ (%) Jdx
el Py

Now apply B.Levi's theorcm to obtain the absolute

convergence aimost everywhare of

Therefore

S i () = 2 ()Y,
;2‘ By e
Q‘Imkj convergz:s a.e. (327 to T)
len o<ty = 200l + Nopll < U5l * %
J.k_ — Il’lk ul m:“ i ml

o=



2y Fatou's lemua £ ¢ L7, Sinilarly I - fm | ->0 as k.—co.

For fixed n > I g pick k¥ > r, then

m,. e 2 m, Tm mk -

L L B - F--
‘. i » T &

Let k- 200,
Let r»—%00 L.&, N -—>C0

If f* 1is alzo o 1linlt of £ then

"!Eﬁ - P “ = 0 _— f = e
DEFINITION 10. A sequence of functions ¢ f b ooin

2 . -,
L convergzes reakly o € L L

for all g © L” .

A linesr funetionsl 7T on L7 1s zaid to be bounded
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< 2
T < M Al for all £ e L7,
Then the following are cguivalent,

DT is continuous at 0

2) T is continuous

VY]
R
~—3
l_l
[63]

bounded.

We define g.l.b. of all sucah M  to be the norm of T.

A
i = e BEL o egn)
ol # e el = 1
. . o . o2
For a fixed g €L%, define Tg(f) = (f,g) for all I e L™,

lain: T _  1is a bounded linear functional and

3

I

r o= gl
‘Tg(f\,l < dict,mt <l Hgll
b Llel

. 2 : .
Then T _(g) = (g,8) | el =>;l?’g\l > 1l ell .

A0POSITION 17, Jf T 1s a bounded lincar functional

on L2 s then there exists a g € L2 suchi _tha

j+
=
i
-3
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PROOF. Choose ¢ g/} such that llg |l = 1.

HT(gn)H —+||P|| . Without loss of gencrality we may assume that

T(g) = 0 (otherwise miltiply by a ficter 1)

iTgn+ Tgmi = m(g, + gl <liTll. le, + g 1
e, - g i® = 2iig)I® + 2llg IIF - illg, + gAiz

2
< 4 - = |Tg, +Tg

a Bl Ton * Tén |

- 4 - _ﬁ_o 4MTH2 = 0.

Hmjl=

; 2 | : *
Since L is complate, therc exists g € L

AW]

such that

By 7 g* Hex || =1, Tgx= ||T

|« Tut g =}|T|lg*. This is
2

the g we want. To show T(f) = Tg(f) for all f € L
case (1), 7 (89 = (g5,8) = (e5,IMlgn = |IT] = T(e")

Case (ii). 3unvose T(f) =0, f € 5

s em——

®

T(g*) = T(g* ~ Af) where N 1s & scalar.

T2 =] m(g |2

il

| T(g* - af) | °
< T Hlex - g
SHTIE (g% - M, g% - AD)

SITIET (g*en - MIye® - Xgx, ) +
NN(E,£) ]

- Mex, ) - A(zx,D) + W(£,0) 3 0.

_ tegx, 1)
Put A = T
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Then we get - (g*’f)(g*’f) > 0
(f,D) =
|(g*,f)| =0 so that (f,g*) =0
(f,lITlg*) =0 i.e., (f,8) =0
Thus ™(f) = 0 => Tg(f) = 0, hence T = Tg.
113 8 g 123t R il wd et
Case (1ii). Let e Ly le ) and se

- P Al
fO = & = T( g*

T(g*)
Then T(f,) = 0 and f = £, # hgk
Tg(f) = Tg(fo) + %Tg(g*) = T(f)) + A (g™

il

- (0 = 2(9)

Hence T =T,
g
Functions of bounded variation (Re~d from my notes).

2.7 Absolute continuity

DEFINITION 11, A function f defined on (a,b) is

sald to be gbsolutely contipuous (A.C.) if

f(Bk) - f(dk) —> 0 as :E(Bk:' k)-—% 0
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where (dk,Bk) denctes a system (finite or infinite)
of non-overlapping intervals.
DEFINITION 12. P is sald to satisfy Lipschitz

condition if there exists ¢ > 0 such that

IF(Xt) -F(X”)l Y CIX’ - X!!I

Remark. A function which satisfies Lipschitz condition

is A.C.

PROOF, Ei%f(ak) - f(dk)} < > f(Bk) - T |

£ 2 (By - ).

PROPOSITION 18. A function F is A4.C. 1f and only

if given & > 0. there exists &8> @ such that

2 IF@RY -7 | <& .

whenever ZE(BK - o) < & where the intervals

(el sBy) do not overlap.

PROCF. Sunpose F 1is absolutely continuous . We

shall show that given £ >> 0 there exists & > 0 such that

2 1P - R | < E .

whenever Z (Bk - o(k) < B,

i
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Assume fzalse: Tien there exists some ¢ > 0. and

a system of intervals (non-overlavping) (dk,Bk) such that

> IFBY - R > €
Now decompose the intervals (dy,Bk) into two narts according

to the sign of F(By) - F(«,). Then the intervals on one of

these parts will satisfy

but
/ | S (FBy) - Fley))| > &/2
contradiction to the AC of F.
Converse 1s trivial.

PROPOSITION 19, A necessarv and sufficient condition

tha P be the indefinite integral is that it is

——r e

absolutely continuous.

PROOF. Suppose f 1is integrable in [a,b] and

X
F(x) = [ f£(t)dt.

a
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Case (i). If F is bounded then there exists ¢ > O

such that [T(x)| < c for all ag X ¢ b. Then
B
#e) - F0l = | [ fvat] < e(s-n
o

and the absolute continuity of F is immediate.

Case (ii); If f 1is not bounded, let g > O~ De
given. We can decomnose f into a sum of two functions g
and h where g 1is bounded and integrable and th dx < é/2.

ices, f(x) = g(x) + h(x) to see that this is vpossible ¢

' | (f(x) it [f(x\fgn
v\(" b f (X) =
n l n if  [f(x)|x n.

Then

f(x) = fr(x) + f(x) - £ (x)
i N ¢

' o

hn(x3

Let ¢ Dbe the bound of g. Then for any system of

non-overlanning intervals (dk,Bk) such that

P
| SIrey - Fell =13 [ sna |

%y
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Bye Py
< zf lg(t)|dt + ZJ hdt
i %k

Thus F 1is absolutely continuous.
Supnose F is absolutely continuous. Given £ > G

choose a & >0 such that for any system of non-®verlapoing

intervals (e, B))

SIF@BY - Fl) | < €

whenever 2 (By - %) < 8. We claim F is of bounded
variation.
3.8 LEMMA 20. A necessary and sufficient condition that

a function F(x) Dbe_an integral of an element f(x) €

1’ (1< p<w) is that the sum

: D
(%) >’5‘— IF(x) - P(x, I

- x p-l
(x Ak—l)

k=1 k

formed for every system of points XO< X] < eee < Xp

lving in [a,b]  have a finite least u-vper bound.
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PROOF, Necessity: Assume F 1is the integral of f(x)

[F(x) - Plx, ) | < | |£(x) ldx

y X
- Xk_lﬂ-1& ( j.lf(xﬁﬁjdx)

LT |

1
<(x, 0

X
F(x) - P(x, )| 'k »
7 < f [f(x)]" dx.

(X = Xp.7) Xy 1

mo i b
(**) ;Z: IF () F(Xk;l;Ip S_jﬂ | £(x) [P ax
k=l (% = %) 2

Sufficiencys Assume the sums (*) are bounded. Let

B® be l.u.b. Let (dk,Bk) be a system of non-overlanning

intervals. By Holders inequality for the (sum)
i

o

. 7B, - ®() P | P
ZIFB) - Flip | < 2, (Bk e )plfl I—Z(Bk - dkﬂ
k " %k

p-~1
< B z(sk-qup-

This implies F(x) 1is absolutely continuous. Therefore F '(x)

exists
/a.e. and F(x) 1is its indefinite integral.
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Sow this ‘erivative is the limit of a seguence of
: . : . B 3] : n
functions f (x). For examnle divide [a,p] into 2 ecual

segments and im each of these define fn(x) by

F(B)_ = F(=0)
B~

Now the sum (*) which corresoonds to the decomvnosition con-
sidered is precisely the integral of |f [P over [a,b] .
Then by Fatou's lemma, IF'(X)|p is integrahle and this
; 1
integral does not exceed B .

Remark.

b
B8P = ([f(xﬁlpdx ’

o

PROOF, Already proved
b
[ Iz [Pax. < BP.
a

Also from (**) we have

b
8P < ( |£¢x) | Pax”
a

PROPOSITION 21. Let_ T Dbe a bounded linear functional or

Lp(a,b) (l{ p<®). Then there exists f ¢ Lq(a,b)

such that
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b

T(g) = j’ r(t)g(t)dt, £ +
a

1
q

= 1.

PROCF, Case 1t When 1<q <®. Let F(x) equal.
4 Tgx where g 1s the characteristic function of (a,x). We
a shall show that F(x) satisfies (*) and is the indefinite
integral of a function f(x) which belongs to P .
Consider the step function 9./ (g ) which assumes
the values

p-1
II?(Xk) - F(Xk—l)l

sgn [_F(xk) = F(xk_l)] on (X _7,%)

k k-1
1
o o ol 5T - JENN] A |
P = \ 2 5T sen (F(x) - F(x, )
€x. " &
k k-1
IP(x) - F(x, ]
= Z X k-1 sgn (F(x,) - F(x, (Tg, -Tg )
(Xk - Xk-l)p—l k k-1 Xy Xy 1
< Fx) - Fx, ) B
=5 e

(3 = %X p)
b

1
re < Tpl, == 0T - Cf et ag)?
a
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A
q(p-1) q
-1 |
- q(p-1)
Xye1)

[F(x,) - F(x

e |3
L

f(x,) - F(x
k

it

(xy = %)

No3 I8

b
-1 |

i

T
Z (Xk -~ Xk"'l) D-l

o

P
i
y Bt

b
F(x) = Flx,_ 1] __jF(xk\ - F(x

sﬂfﬂ.n

=T
(x - Xk-l)n (X - X3

M

or

D
E‘(Xk) - F(Xk—l)l ,

< ot

. p-=1 :
(xk Ak_l)

Therefore F(x) 1is the indefinite integral of a function

f(x) € Lp and such that

b
(1) f |2(x) Pax < TP .

a

We claim if g is a step function € 19

’ b
3 1
(*) Tg = j, g(t)F'(t)dt (check)
a

@ikf
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Since steo functions are dense in L9 , (¥} holds for all

g e . Now

b
e = [ fwenas g e 1o
a
b 1 b 1
ITel < ( flf(t)lpdt)p (f lg(t) flat) @
’ a a
b 1
(2) It < ¢ ~f I£(t) Pat)P .
a
Hence
b
irf = jr £(t) |Pat .
a

Case (ii): When n = 1., For every pair of vpoints
X13%5 € (a,b) we have

b
2, - &) <17 [ I (8D -

a
- g, (&) |dZ
XY

i

|F(x,) - F(xl)l

-t

]

I Ix, - x]

i.e. F(x) - satisfies the Lipschitz condition. Therefore F(x)

is the indefinite integral of s function f(x) such that

| £(x)] < M. We can show as in the preceding case that
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b
ITg| = j’ g(x)f(x)dx = (g,f).
a
It follows that
b
Img| < (true max [f(x)] ) ;~ lg(x) |ax
a
hence
1T < true max [£(x) |
Also we have [f(x)['s IT] . Therefore [[T| = ||

This comples the proof.




CHAPTER 4
NORMED AND BANACH ALGEBRAS

4.% DEFINITION 1. A set X is called a normed algebra

over the complex field (K if

(L) X is a normed linear space
(L) X 1s a ring with respect to two internal
operations, the addition being the vector svace
addition in (1) |
(1i1) Alxy) = x)y = x(Oy)
(1v) lxyll < Izl Hidl,  x,v € Xx,2 € K.

If, in addition, X is Banach space, then X is called

R S ST T T T R

a Banach algehra.

Example 1. X = Banach space L(X,X) = set of all
bounded linear transformations on ¥X. Multiplication 1s defined

by AB(x) = A(B(x)) for A,B £ L(X,X) and the norm is defined by

i

cuo Laxl
o Tl

i Al s A€ L(X,X)

i

Example 2. X = C{a,b], complex valued continuous
functions on [a,b] . Multiplication is defined in the pointwise

fashion and |Ifll = max | f(x)|, feX.
agx<b
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Example 3. Let K be a compact Hausdorff space and
let ©&(K) be the set of all comnlex valued continuous functions

on K. Then under pointwise operations and sup-norm

F£ll = sup | £(x), £e€ 8(K).
x€K

Z?(K) is a Banach algebra.

Example 4. VWV = set of all absolutely convergent

a0

trigonometrical series, x(t) = Z;mgne and the norm of
h=
of any x(t) in W 1is defined by
oo : .
o)l = | 2 ¢ _etnt - Z I,
-

with multiplication taken as Cauchy product.

Example 5. L = set of all functions analytic in the

open unit disk in the complex plane and continuous in the

closed unit disk. Multiplication is defined pointwise and

Ioll = max|f(z)]| = max| £(z) |,
|21 |z|=1
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Examole 6. Pn = gpace of all polynomials of degree

. n
less than or equal to n. If f,g € P,, f(t) = gbitﬁ

n .
g(t) = % ajtj, we take

g(8)F(t) = £C,_t¥

oMb

Cx

n n
where Cy = EL ajbi' Define || E;ajtJH = 2> |a,l
J+{=k =0 jze

Example 7. G = { qi,cz,...,an} any finite group
Ll(G) denotes the class of all complex valued functions on G.
Multiplication is defined by * and the product of two
functions f,g€L1(G) is defined by

(B0 (o) =, 2 £(7y)E(E))
5 Py

Norm of f 1is

<
el = 2 lftE ]
1=1
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Example 8. Z = integers and Ll(Z), Ege set of all

complex valued functions f on Z such that zi | £(n)} < oo If
n=<0C

f,g € LI(Z) multiplication f*g is defined by

o0

(f*g)(n) = 2> f(n-m)g(m)

==0C

and

el = ;{ | £(n)l .

DEFINITION 2. Let X. be a Banach space and D an
open set in K. A function x:D =+ X is said to be

analytic in D if

x'(hg) = 1im 22 - x(o)
RNy AR

exists for all A in D, where the limit is taken

in the norm topology of X.

LIOUVILLE'S THEOREM: ILet x: K = X where X 1is a

Banach svace. If x is analytic in the entire

complex plane and bounded i.e. |x(M)I| < M for all

NE K, then x 1s a constant.

i
1
|
<.
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PROOF. let f be an arbitrary bounded linear functional

a9 on X. Then there exists k > o such that |f(y)|< kllyl for all
‘Q,a yEX. Now fy is analytic and | f(x(A))| < kilx(Mll < kM. By

Liouville's theorem for a single complex variable, fx is
a constant. If «,3€K then £(x()) = £(x(8)) which by linearlty
5f £ gives f(x(xX):-x(B)) = o. Since f is any bounded linear

functional, it is a © nsequence of Hahn Banach theorem that

x()-x(8) = 0 or x(xX) = x(3) for «,3E K.

Exercise 1. Show that in a normed algebra the ring

multiplication 3 continuous.

PROPOSITION 1. Tet X be a nonzero Banach algebra with

p identity e. _If x€X and le-x|l <], then

1. x is a unit (i.e. x has_an inverse) and

1 -1 X
. 2. x™* = e+ I (e-x)O.
am PROOF. The series in the right hand side of (2)

comverges normally since Je-x| < 1. Now x = e-(e-x) so that

[e~(e-x)]-[e;§(e—x)n 1= e+ (e-x)+(e-x)%+...

_(e=-x)=-(e-x)%-...
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PROPOSITION 2. Let X be a Ranach algebra with

identity. ILet AN be a complex number such that

Hxll < IAl . Then x-Ae is a unit

PROOF. Now je-(e-X1x)|| = “):lxn = lniv < 1 which
?? é implies that e-A"Yx is a unit. Then x-Ae = -)(e-'ilx) is

also a unit.

: o>
t * Remark. (Re-x)~L = S 270 x°-1
: n=1

PROPOSITION 3; In a Banach algebra X with identity

e, the set U of all units is open and the operation

of inversion 1s continuous on 77 .

PROOF. First we notice eCU and the unit sphere

S,(e) = { XQX‘“Q-X“ < 1}f:‘U- Let xCU. Then xx T = e.
Since the ring multiplication is continuous, there exists a
neighbourhood N(x) of =x such that N(x)x‘lc:Sl(e). Iet
YZN(x). Then yx‘lé—sl(e) and hence is a unit. Therefore there
exists z€X such that (yx~1)z = y(x‘lz) = e, zyx‘l = & g

(x‘lz)y = e. Hence y€y . Thus N(x) C y and U 1is open.
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It remains to show that the overation of taking

inverses is continuous in v
This implies that x‘lxn -+ g Or

an integer N(£) such that

in

Al xmdxp-ell <

Choose N, such‘that Hx‘lxn~eH <

o0 m K

the series e+ 2 (e-x “Xn) for
k=1 -

to (x:lxn)“l = x&'lx. From the

'He-xalxll < Z He-x'lan =
k=1

(%)

@

A

Let x €U such that XX

for any € > o there exists

for n > N.

1 for n > Nl and consider

n > Ny. This series converges

absolute convergence, then

8

> lxE (x - xn)Hk
k=1 '

>

< T el ey

k=1

Since |x-x,|| ~ o we can chocse

make (*) sufficiently small or |

xal -+ =L

DEFINITION.3. 1Iet) £ K.

\;

N2 such that n > N2 will

le-x "lx“ -+ o which means

n

. This establishes the continuity.

If x-2 is a unit, then

AN is called a regular point of x. The set of all

non-regular points of x is called the spectrum of

x and is dencted by o (x).
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% PROPOSITION 4. ILet X be a Banach algebra with

identity. If x£X then o(x) is a nonempty compact

subset of K.

PROOF. TFirst we »nrove that o(x) is closed. Tnough

; i to show the set of regular voints is open. Iet A be a
regular point of x. Then Xy, = X—SHGE U . Since Uy 1is
o

open there isg neighbourhood N(XA ) of Xy such that N(XA YU .
o) “o (o}

Since the mapring NS K- x-2e€¥ is continuous there exists

a neighbourhood N(po) of A, such that AEN(Ay) imnlies

x{AeQN(xNg)cj(] . Hence, each point of N(A,) is a regular

point and thus the set of all regular points is open which

Bt s e

imnlies ¢ (x) is closed.

since |xll < IAl imnlies that x-\e€U, it is clear that
o (x) is contained in the closed disk of fadius |xl|l. &(x)
is thus closed and bounded and hence compact.

It remains to show that & (x) is not empty. If CR
denotes the set of all regulear points of x then x may be thought
of as mapping CR‘* X given by o 4-(x—3e)—l. We assert that
x(A) = (x-2e)~1 is analytic in the set of all regular voints.

If ?\1,%2 are any two regular vpoints, then
x(M) X)) = (x-ne) x() = [(x-2ge)r(2p-n)e ] x(2y)

= e+ (2g-N )x(2)
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so that

I

x(A) = x(M) = (Ag=2)x(N)x(N)

from which we obtairn

1im ?ﬁé?‘X(AQi = X(%b)g = (x_)beﬂz.

-

A=Dy A “-§o

wow supnose that o(x) = ¢J. Then x(A) = (x—%e)"l

is analytic throughout X and

x-e)" L = 0.

L

-
: eyl - 7im = ¢
AR (Re)T =g X 4

I

1

By Liouville's theorem (x-2e) ~ is identically 0. This is

impossible sirce 0 has no inverse. Thus o(x) # #.

- PROPOSITION 5. Let X bc a compiex Banach algehra

with identity. Then X is isomorwhic to K if one

of the following conditions is sa..sfied.

(1) % is_s division alzebra

Nm— e

(2) lxv! = tx)-ly} for all x,y&x

3) Ix il < flzI"Y,  x  invertible.
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PROOF. (1) Let =x£X. Then o(x) # @. Iet ACH(x)
and consider x-)Ne. Now (:»c--)e)'l does not exist. Since X
is a division algebra, the only element which has no inverse
%; is 0. Hence x-Ae = 0 or x=Ne. Thus every element of X
: 1s of the fomm )\e¢2nd we have the map X - K defined by Ae = A
which is clearly an isomorphism.

(3) We shall prcve now (3). If we can show that

every non-zero element is invertible, then (1) applies and

the result follows. ILet

A= )il > )

where p > 0. Then the set Ap is connected. Iet Up denote

the set of all invertible elements in Ap 1.8 Up = U/WAp .

Then U 1is open in A . Tet x.2U and Xx_ = x in X. Since
p P n--pe n

nxél_xn-lu = lx&l(xn~xm)x51ﬂ < —%Q e - X, |l

the sequence gxﬁl} .converges. Clearly xg- -+ x‘l. Thus
x € Up and Up is closed. Since pe £ Up ; Up Z 7 . By
cqnnectedness Up = i and thus Ap contains invertible
elements only.
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(2) To prove (2) we assume that [lell = 1. Then if %
is invertible, then 1 = |ell = lx~1x|l = Ix 1 lxll so that
Ix 1l = |x}-1 and now (3) apolies.

This completes the proof.

4,2 Gelfand Renresentation

Throughont X will denote a commutative Banach algehra
with identity e and lel| = 1.

We remark that the closure of a proper ideal in X is
again a proper ideal.

is

i<

Let I be a closed preper ideal in X. Then

again an algebra with identity. If we introduce the norm

lx+Il] = inf [lx+yl
y €1
then % becomes a Banach snace. It is easy to check
I+ D D < Tl T |
X

Hence f 1s a Banach algebra under this norm. Then 2learly

the natural homomorphism is norm-diminishing

Nzt Tl < lix]
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PROPOSITION 6. Every maximal ideal in X 1is

closed.

PROOF. The closure M of =2 maximal ideal M in X

is also a proner ideal of X. VNow by maximality of M, M =M

which implies that M 1is closed.

- PROPOSITION 7. ILet M be a meximal ideal in X.

Then X K and if # _is the homomorohism of X
M A
onto K, then {@(x){ < [x| for all x € X.

PROOF. Since X is a commutative ring with identity
and M 1s a maximal ideal, - ﬁ is a field. Now % is a
Banach algebra and it is also a field. Hence % ~ K,

If # 1is a homomorphism of X onto &, let M be

its kernel. Now since X o 1K there exists a scalar

_ M 2
x(M) such that x+M = X(M)(e+M), and the isomorphism is
explicitly given by
iso
X s % —_— K

K XM = X (M) (e+M)

> £(M)

so that @(x) = X(M). Now from the 1efinitions of |jx+M|
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itffollows that

Il > et = §RQOD (enn ] = X001 - llel (*)
Now Je+M|| < llell = 1. Suppose lle+Mll < 1. Then there exists
%‘ yCe+M with |{yf< 1. Then y = erx for some xEM and then -x will
be a unit. This is impossible since M is prover. Thus He+Mll = 1.
Then (*) gives

2 Lzl el = %01 = 18]

This completes the proof:

Remark 1. @& satisfies the following properties

dle) = 1, B(x+y) = B(x)+8(y), BQX) = AP(x)

B(xy) = B(x) B(y) and |B(x)| < lixll

g is called a multiplicative linear functional on X.

Remark 2. There exists a one to one correspondence
petween the set of all maximal ideals of X and the set of all

multiplicative linear functionals on X.
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Let 9y denote the set of all maximal ideals of X.
Lét @ be the multiplicative linear functional on X with

kernel M. Then to each x€X we define a map

X7, > K by &(M) = #(x), M € m

Then we"""*have"g = 1, (x+y)/\: §+§r, ()\x)/\z )3:, (xy'))‘= 323}
Further if M,N €%l and M # N, then there exists x€X such
that %(M) # ®(N). This is trivial if we notice that Q(M) = O
1f and only if x€EM.

We shall now topologlze T so that a Hausdorff topology
results. Let &3 o be arbiérary and let S SERRTE N be a finite

number of elements of X. If Mo € M then the class of sets

V(MoyXqs- .- ,%,€) = §MEm) I?ck(M) - R0 <€, d<keny

form a fundamental system of neighborhoods of Mo. It 1is

easy to check that these sets do form a fundamental system of
neighbourhoods. .If ¥;,M, €M suck that My # M, then there
exists x€X such that.' X(My) # x(My). Let £ = 52L- I%(Ml)—Q(MZH,
If V(Ml,X;%)r]V(Mg,x,%) # ¥, we can find M € 770 such that

l:?(Ml)-:'c‘(M).K—% and l%(Ml)-;?:(Mz)l < ‘cé

and then
| x01))-20, ) | <120 )-X 00 L+ 1500 -E(M) | <E wnich is a
contradiction. The topdbgy thus introduced is called the

Gelfand topology.
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PROPOSITION 8., The meximral ideal space 70L 1s

compact with resmect to Gelfand topology.

PROOF. For each x€X, let S = {z'lzl <=l 1.

Then S, 1is compact for each x. By Tychonoff theorem § = T;&Sx
x£

i1s compact with Tychonoff topology. Notice that an element
« In S is a function on X such that XXQSY. Then an element of

is
the basis for the topology of S given by

w<$,xl,'-- ,Xn,f,‘) = {QGS‘ 'dxi"«:xi‘< E, izl,g";- ,[’l§

consider the mapping g: %L~ S given by g(M) = « where L = Q(M).,Z
Since XM < |lxl, we have «, € Sy. We now claim that g is |
a homeomorphism of ry.onto a closed subset of S. Since S is
compact, this will imply the g(en) is also compact. Iet S1=g(m).
Now g 1s 1:%., If My # Mg, there exists x €X such that
X, (M1) # %o (Mg)  so that g(iy) # g(M,).

To\show g is emtinuous. Let W(dp,xl,...xn,é) be a
basis element in S;. Then g™L() = {MEM||%,(0)-0] <€ ,2gkgn }.
Since g is onto Sl,‘ﬁhere must exist M € M such that %k(MO) :.sﬁ,

g=Ll(w) = V(Mo,xl,...,xn,g)° This will imply g is continuous.
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, I

" To show that Sl is closed., ILet E‘Sl . To this
" o] -

end consider the mapping #:X -+ K given by g(x) = <.

First we notice that 3 is 2 nontrivial functional and hence onto.

Suppo se °g? = 0, then for anmr Xxy...,X ¢ 'X and for any € > o

n
/ 9] ' i~

there exists M €7 such that !X (M- ! = [5,D|< 2. 1In

K

particular, |e(M)|< & which is%onrtradiction. Thus # F 0.
Clearly @ is a multiplicative "inear functiorel on ¥ and thus
it is onto ¢. If Mo .is the kornel of tie homomorphism @,
then %g K. ‘Since K 1 a fleld, My must be a maximal ideal.

o o C
Then #(x) = X'My) = <y . Hence g(My) = «€S;. B8y is thus
closed. This compleﬁes th2 prcof. ‘

Remark. =x:® - K »ic continuous and ilfl!mg_ x|l

where ")?“oo = sup l}?(M)}.

PROFOSITION S. The manning X — X 4iS A norm-

diminlishing homomorphism of X oate =2 sanarzsting

~subalgebra e of Llin.

DEFINITION4. % 13 culled the Gelfand %Hransform of

A .
X, X is the Geldfard trancform ¢f X and the manping

A : .
'x =+ x the ;elfand renrssentation o’f X.

PROPOSITION.10. Iei xEX. Then c{(x) = {£(M)|MENL]
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PROOF. Let £(M) =N where MEWL. Then
(x=2)M (M) = XCD-NBM) = 0 = x-AefM => x-Ae is not a unit.
Therefore ANSo(x) or é_%(M)lMEﬁﬂ}Ch(x). Conversely supvnose
Mo (x). Then x-N 1s not 2 unit. Then there exists some
maximal ideal M such that x-\e€fM so th:t (x—)e?ﬁMp:O or
M) = A .

DEFINITION 5. The real number rﬁ(x) = sup |Al
AEe(x)

is said to be the snectral radius of x.

L
PROPOSITION 11. »_(x) = lim IxB B = 125
n—+oc
PROOF., » (x) = sup |l = supl®)| = %1
e Ao (% MEm =

If Mo(x), then }FEG(XH); for otherwise (xn—l+}xn"2+.,.+A e)x
; (xP-2e)"t yi11l we an inverse of x-ne which gives a contradictlion. |

Hence |A|" < =l which innlies

1.
» = iy i = n'y-i.i.
2 r (%) = lim inf [Ix |
k.
s o H ~ \—1 . Y, ’
On the other hand, if ia] > r(x), (de-x) = exists from the “

A : . -1
definition oi’rg(x)‘ Mnce (pne-x) is a function analvtic
on the set of reguv’ar points, we can exrand into a Laurent
series

n-1

(\e-x)"1 = X . > e (o).

W M8

H

S
o)
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As this series converges for eaih A, its general term must
n

ve bounded so that ||x°]] n g_uTﬁhl L  for some u > o.
Thus we get
i
lim sup ||xB] ® < r_(x)
1 1
Bence r_(x) < lim inf Bl P < 11m sup [Pl 7 < r_(x). This

complets the proof.

DEFINITION 6. The radical of X 1s the set (M.

METML ;
X is sald to be semisimple if the radical of Xis{O}

Notice that x Gﬂ M<§:’.>)?(M) = o for all ME WL
Mem
N
Y sup |x(M)} =30
< Mem
1
& 1l |*)°

i
o

i.e. ¥ is in the radical of X if and only if its spectral

radius is O.

DEFINITION 7 x is called nilpotent if there exists
n

n such that x = 0 and it is topologically nilpotent N

(or generalized nilpotent) if lim|x™| B = 0

Remark.l. The radical of ¥ is the set of all topolo-

gically nilpotent elements of X.
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Remark.2, Gelfand renresentation is misomorphism if

and only if X is semi simple.

Ob o
fn example. Let W = {_x(t) = >0 elnt‘Ei]C | < oo
¢ 3
wiﬁh lxll = ;; \Cni. Then W is a commutative Banach algebra
B it

with identity. We shall first determine # . Let Xy = ©
and let ?{O(M) = o, Then xgl = e-1t ang %g](M) = c(‘ln

Then we have

= 1x, 001 € Ixl =1

| = 1% tan ] < Ix,H = 1

which show that || = 1 so that there exists t_ €[ ,2r]

==
e
0
O
5

such that « = elto . Then the mannlng s given by B:W —+ (
Intg .

il
N
=
S~

which sends x = ®(M) glves x(t) = Ei c e - é;cne

int

ub/ha

for % is homomorphism and for any finite sum 8 ?w S

Cn
N N

A . I .
we have Sy(f) = 2> C elPP 5o that [ISy00-R00I < HsN-xﬁ which -

also establishes the continuity of #. Thus M consists of those

xEW such that x(t,) =
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Conversely let tof [O,2n) and consider the set M
M= {x€W|x(t,) = 0}. M is clearly an ideal of w. TIet I be
an ideal in W containing M properly. Then there exists y€I, y7M.
By definition of M, we have y(t,) # €. If zE€W we can write

(t) = 28D yityrfz(t) - 2% yity
$®) = 2y vl - Zeesyn ),

Since y€I and z(t) - ; E )’y(t) e MCI, we must have T = W.
o)
Hence M is maximal.

o0

WIENER'S THEOREM. If > (el is absolutely |

-0

. 1
convergent and vanishes nowhere, then —5s——— cah be
;Cne int

exnanded in an absnlutely convergent triéonometric

series.

PROOF. If x(t) # O for every t, then xgM for any k

. 1
M so that x is a unit or x05) £ Ww.

4.3 Addupction of an ideptity.

PROPOSITION. If X is a complex algebra without -

‘identity, then X can be extended to an algebra X

with identity. If X is a normed algebra (Bapach

A
algebra) so is X.
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PROOF. ILet X denote the set of all pairs (,x)
~
where «€{,x€X. Define the algebraic operations in X Dby

B(,x) = (8%, px), BE K !

(°(l,xl)+(°(2,x2) = (X, xl+x2)

(X% ) (XgyXg) = (ol y X XX +X, %)

A

Then X 1is an algebra with identity (1,0) and the map x -+ (0,x)

is an isomornhism. Identifying x with (0,x) and setting e = (1,0)
we have

2

(o, x) = Ae+x

If X is a normed algebra, let ll<e+x| = '] + |xl|

A
then X is clearly & normed algebra. Now supnose X is a Banach

A
algebra. Let{c(nencn} be a Cauchy sequence in X. Then given
£€> 0, there exists N = N(€) such that||(Xe+x,)-(e+rx I ¢ €
if myn > N. This is the same as l°<n-°$1|+||xn-xm|| < & which

implies that {e(n} an” {xn} are Cauchy sequence in ¢ and

-
X respectively. Since _C and X are complete, there exist

«€C, x€X such that lo(n-c(i -+ 0 and ﬂxn-xu -+ 0 as n + 9o Hence

A
< e+x, )-(%e+x)|| =+ 0 as o >0 Hence X is also a Banach
algedbra.
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<+4. - Topological divisors of zero.

LFINITION 8, An element =x in & Banach algebra

X 1s called a topological zero divisor of X if

there is a secuence {)Q]} in X such that
infllyyl=0 and 1im xy, = o. The modulus of

integrity w(x) of xE€X is cdefined by

o(x) = 1inf lxyi
y#o |yl
Notice x 1is a tovological zero divisior iff

w(x) = 0.

PROPOSITION. Any tonologically nilpotent element

inX also a tonological zero divisor.

PROOF. Suppose x is topologically nilpotent. Then
its spectral radius is gero. Hence there exists comnlex members

ln -+ 0 such that x—lne are invertible. ILet yn:(x—lne)“l.

Then

Xy, = (x—%ne)yn+knyn = e+)nyn,
‘ <
Since x is not invertible, so is xy . Hence lln\-\wnﬂ > 1.

Hence Hynh -+ o, But then

lzypll 1 120l llyal

ol = Sl Dyl '

Hence w(x) = 0 and x is a tppological zero divisor.
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PROPOSITION (Arens). 2z is a topelogical zero

divisor of X if and only if 2z is not invertible

in any Banach algebrns extepsion ¥ of X.

PROOF. The necessity is trivial. We shall prove

the sufficieney. Assume that z is not a topological zero

divisor. Then w(z)#Q., Choose p > 8—) . Let y he the
- : w{X)

algebra of all formal power series.

B . 2 =
x(t) = xo+xfﬂxgt P r

where Xy,%q,Xg,... EX such that Tlx lleR < oo Define
‘ n -
x) = ZHanp . Then ¥ is a normed algebra. Iet Y he the

completion of Y and et I be a closed ideal in Y generated

by e-zt. Set X = % . Then t is an inverse of z in X4 and Xl

is an extension algebra of X. Tet yEX and x(t)E-¥Y. Then q

i

lly+ (e~zt)x(t) |l HY+XO+(X1-XOZ)t + (xg-xlz)t2+...ﬂ

= ly+xg I+ ey ~xozlie +lxg-x 2] o+, .

v

Cyli-l=o 1)+ Ulxgzli-lxg Do+ (HXfJFH e DI

it

Iyl = =)~ Uxpzlelizgzlo + ooup 3

2 yrllvlo(z)e-1 1 fxe) ] 2 liyl

Since the elements of the form (e-zt) x(t) are dense in I so
the infimum of the left hand side is the ¥y-norm |lIylll of y.
Thus llyll > dyll  The opposite inequality is evident and thus

ilyiil = lirll. Thus X is embedded in X; isometrically.

»



