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This is the secord in the serie 'Concepts in
Hodern Hathematics’. This volume deals with some fundg -

nental concents in tonology,

The first part deals with point set~topology and
introduces the notions of conpactness, connectedness,
product and quotient topologieg and para-comngct séaces."
The second part deals with algebraic tonology, Bagically
1t isg topology of polyhedra and the matert,

als are freely

drawn from the‘lectures given to the author at North -
western University by Professor A.I, Weinzweig to whon

the author is indebted,
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POINT SET TOPOLOGY

1. Topology and Topologieal Spaces
1.1, DEFINiTION.\\Let S - be a set, A family T of

. subsets of § 1s said to be a topology for § 1if and
only if

a) ¢; and S are’in T,

1
the union of members beionglng to any sub-family of T

b) If T, C. T  then U %-A/IA et ,5 € T, that is,

1s again in 7. g

¢) Intersection of any finite nuﬁber of memﬂers of T
. is again in T, , _
Then, § is called the space for the topology T and the pair
(8,T) 1is called a topological §Qg§e, When there is nb eonfusion,
we wfite S for a topological space, which means that the under-

lying topology is understood. The sets-of T are called open

relative to T or 7T-open or simply open sets when no confu-

slon is likely to arise.
1.2. DEFINITION,  If tl and T, are two topologies

for S, we say that Tl is weaker than tz (or To is

stronger than T ) if T ' Ty o

1«3, DEFINITION. If o 15 a family of subsets of 8§,

Ue), the tonolomy generated by o , is the smallest

topology containing o , If T= ts), then o is a
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| sub-basigs for the tovnology T. If o is 2 sub-basis
for T, then A.€ T if and only if A = $ or s

or a union (perhaps countable) of finite intersections
of elements of o , If every element of T is g union
of elements of « y @ 1s called a badls for T,

1:4. Examples. &) S = any set., T = (gﬁ y 8)¢ Then, T

is called the trivial topolosy or indiscrete tovology.
h) Let 8§ be any set. Let 7T be the collection of

all subsets of 8. Then < 1s called- the digcrete

topology. . ' : ,

¢) 8= {'a,b,c} , T = {5{\, ,{af , {b,c_g . S} .
d) S is an infinite set, Let T be the collection

of a1l subsets A of § .such that SN A is finite,
together with gé .

e) 8 1is the set of all real numbers, The collection of
all possible unions of owen intervals forms a basis for
the eorresnonding topology.

f) 8 1is the set of all complex numbers, A basis ig
defined by % lz - zo | < c‘} where =z, z, are complex
numbers and ¢ is a constant.

1.5, THEOREM, Suppose (S,T) is a topological space, 7If

A family B of subsets of & ig a basis for T then
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a) 1f x € 8, there exists a B € such that x ¢ B.
) “f x € By N By where 31, B, € (3 , then there
must exigst B € (f% such that % € B C B1 ) Bé.
- Proof, Suppose - 3 is a basis for T. Let x € S
~ 'Therefore there exists By € (3 ‘such that x 6 § = U B«
- . : | of
Then, x € B, for some. o,
Let By,B, € B . Then B,B, 6 T and hence
B, 1B, 6 T, There exists By € {5  such that x € By B, =

:!g B, « Hence, there egists «, such that x € qu(: By M B,

1;6{ THEOREM, Let _Q3 be a family of subsets of a set
8. 1t B satisfies (a) ‘and (b). of Theorem 1,5, then 3
1s a basis for some topology T of 8. Each element of
T is a unlon of elements of (B

1.7. DEFINITION, Let § be a tovological space. A sub-

set A of § 1s closed if S NA 1s ooven.

1.8. THEOREM, Let { A be a family of closed
a RN NN
. sets In 8. Then, the following sets are closed,
a) ¢ and s |
D) () A, | |
e/
c) L) A .
=1 ?\i



Proof. Since <¢3- and S are open, (a) is trivial from
definition., (b) and (c¢) follow from De Morgan's laws.

1.9, DEFINITION, A subset N of a tovological spaces

S 1s called a pelghborhood of a point v, if there

: . exists an open get G such that peGC N,

1.10. Remark: -Ah open set is a nelghborhood of any point
contained in it. A neighborhood need not be an onen set.

1,11, THEOREM, A set A is open if and only if for
each point x € A, there exists a nelghborhood N such

that x € N C A, _
Proof. The necessity is trivial. To estsblish the suffi-
ciency, assume that the condition holds. We assert thet A isg

an open set, Pick any point x € A, There exists a neighborhood

N such that. x € N (LA, By definition of neighborhood, there

exists an oven get G(x) such that x € (x> < ¥ . A, Then

A= U G(x) and A. is oven,

x & A

1.12. DEFINITION. A neighborhood systom at a point x in
S 1is the set of all neighborhoods of x.

1,12 THEOREM, Let S be a topological space and N(x) be
the neighborhood system at x, for each x € S. Then

the following conditions are true.



a) If N6 N(x), then x ¢ N,

P If N € N(x) and M € N(x), then N ()M €& N(x)

¢) If NeW(x) and NC M, thenM & N(x).

d) If N 6 N(x), then there exists an M & N(x) such that
M € N(y) for each y € M.

Proof. a) is obvious. To prove (b), let x € N NM ,
There exist open sets G, and G, such that x € Gy C N,

* 60y C My sothat x €6 N 6, C NN M Now, G and

2
G, are open sets, therefore;gelfﬁ_Gg is an open set. To prove
(¢), there exists an open set G  such that .x €GN, Now
M D> N and M2 G such that x is contained in G, which
lmplies that M is a neighborhood of ‘X.V To prove (d}, given
X € N(x), there exists an open set G sguch that x € G ¢ N.

Take M = G,

1.14. THEOREM, Let 8 Ybe a nonempty set and for each

x € S, let N(x) be a collection of subsets of S such

that

a) If N € N(x), then x € N.

by If N, Me N(x), then ¥ N M e Mx).

— ' ‘ R : 1 ¢
Let 'cw,{ch, Jecs/xec, 3 nenx > xeNCGj} .

Then T 1s a topology for S e
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Prool, (1) S € Tsince x €8 = 8§ C N(x) |
(11) Let §'qx // Qq e t.f be a collection. To

prove that U Gy €Ty let xe U G4+ Then, there exists

« o

o«  such that x ¢ G, and N € N(x) such that x € N LJGQ
of

which imnlies (J G, ¢ T.
v X

(111) Let Gysloyeva,G, be a finite number of sets in

n , _
bt Let x € () G;. Then, therc exists N; € N(x), i=1,,..,n
' i=1
such that x € Ni C Gye By (D) of the statement of the theorem
n ‘ n n n
[ ¥ CN(x) and x ¢ N Ni(:’[) G, « Hence N G, € T.
1=1 , i=1 i=1 i=1

These three conditions prove that T is a topology for g.
1.18. DEFINITION. Let A be a subset of a topological
space 8. Then the 1arges£ onen set contained in A ig
called the ipterior of A and is denoted by AO.
Cléarly A 1s open if A = A° + The glogure of A is
the smallest closed set containing A and is denoted by
L. TNotice that A is closed if and only if 4 = X ,
1.16. DEFINITION, Let x € S. x 1is called a limit

polnt of A if for each neighborhood N of x, there

exists y#x and y € N, The set of all 1limit points

of A 1is called the derived set of A and is denoted
o
by A .



1.17, THEOREM, TLet A be a subset of S, Then 4
and AU A are closed sets. Turther A=A ( 4',
~Proof. We shall first prove that A 1is closed if and
only if A.rCL A. Assume A 1is closed. Then SN A is open.
Let x € 8 NA, There exists N such that x € N C©8N A4 which
implies x £ A . Hence 4' C A, Assume A'C A, To nrove
that A 1is closed, we show that § ~ 4 is open. Let y € S\A.
y 24 DA ynicn implies y £ A' also, Therefore, there
exists;a neighborhood @f Y which doés not contain any point
of A and SN4 is open. , o /
| To prove the theorem, let x ¢ A" (derived set of Ai_).
Endugh'to prove that A}u: AL e have to show that every
neighborhood of x contains a point of & different from x,
Let N be a neighborhood of x, -Sirce X 1is a limit noint of
' » there exists a point y # x such that vy e ¥N 4" . gince
y €A and 1s a limit point of A , there exists z # y such
that z € ¥ MA' N A, Hence x is a limit voint of A, Thus
x € A" . The proof that AU A’ is 4 closed sot ie left as
an exercise,

To prove that K= Ai)A!, av & is a closed set contain-
ing A. By defiﬁition, LCaus . Tt remains %o nrove that
AU A C K. Since AC A, it is enough to nrove that A C A,

If x¢e 4 , for any neighborhood N(x) of x, there exists o
y € A_ﬂ (N -~ {3{} ) C i N (w - {x}. Ve Sgnge L is closéZf:n{

—

/
Hence A UA = [ .
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HAPPINGS

2+1. DEFINITION, TILet XyY Dbe tonological Snaceg. 4

- function f: X->Y is said to be gontinuoug if ¢

" e i L e e

open in Y iﬁplies f-l(G)//is onen in X.
2.2+ THEOREM, ILet X, ¥ be topolqgical Spaceg and

f @ X -}Y} The following are equivalent,

a) T is continuous. -1
b) F ¢losed in Y ::> £ (F) is closed in X,

©) Forwesch x € X and N € N (£(x)), £t e N(x) .

d)‘ If x€X and Wwe N(f(x)), there exists a neighbor-
hood M € N(x) such that (M) C N.

e If A < X, then f(R) <. F(IJ .
Proof, Exercise,

2+¢3. DEFINITION, Tet X and Y be tonological spaces,
A one-one, onto function f @ ¥ —~» ¥ is called g homeo -

morphism if £ and £l are both contimous.

- 2e4s DEFINITION, A manping which takes open sets into

3, CONNECTED SETS,

3.1, DEFINITION, Supnose ¥ is a topological space and
A'CZX. We make A into a topological spacehby defining
open sets in A as the intersections of A with the onen
sets in X. The topology of A thus obtained is known

as lnduced topology or relative tonology., A is then

called g tqnological subspace of X,
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At

Let X be a tonological space and ACX. A is said
to be connected 1f there do not exist two nonemnty sets A; and
Ay such that Ay N Ko = KN Ay = and 4 U4, = A,

3.2, THEOREM. If A is connected, then A is connected.

Progf. Let A=BUC vhere B and C are both open |
and closed in A, Then AOB and ANC are both open and
closed in A. Since A 1s connected, one of AN B and ANC

is equal to CP . Suppose A (B = Cp « Then A ¢ C. Hence

ACc, since C 1is closed in A . Thus B = (/'b . Similariy,
if A0C = (P , then C = C,?ﬁ.’ Hence, we have & is connected.

3.3. THEOREM, Let G{ be a family of connected sub-
sets of a tonological space 8. If Ag 1 4y # gf) for

any two sets A, AB € O , then 9) A, 1s connected.
/ R

Proof, Let X = U {A/ Aeﬂ;i Suppolse X =B C

vhere B and C are both oven and eclosed in X. Then A OB

and A () C are both onen and closed in A, for each A, Since
A is connected, one of them should be (b , say 47 B=¢ .
Then AQC‘. Sunpose D & GL. If D /}C = q) , then DB
and ANDCA () B= é%) wvhich is a contradiction., Hence
8N B=q for all A€ GL. Hence B = ¢ . Thus
L {A / A€ G'C} is connected,

" 3,4, THEOREM. A continuous image of a connected set is

connected.

Proof, = FExercise.
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3.5, DEFINITION, A comoonent in a tovological space is
a maximgl connected subsget,

3+6. Remarks. a) Two comnonents gare disjeint

b) A component is a closed set,

COMPACTNESS,

4.1, DEFINITION, TILet § be a tonologlcal snace and
A C 8. A family of subsets [ D, | A L8 ealleda

covering for A if A . U Dy.- If Di's are open
A e D A ’

then we call 1%t an Qpen _covering.

4.2, DEFINITION., A is compact if every onen covering
of/has a finite subcovering, _

4,3, DEFINITION, A family of gets is said to have finite
intersection » property if every finite subfamlly has

nonempty irt ersection,
4,4, THEOREM, A dis compact if and only if every family
of closed sets with finite intersection oronezty has

nonemovty intersection.

Proof. Exercise.
4.5, DEFINITION, § 1ig a Hausdorff space (or Tghspace)

1f for any two distinet points Pyq there exist open

sets U, V such that pel, geVand ¥NV = gb .
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4,6, THEOREM, Let € Dbe a compact subset of a Hausdorff

space S and x € 8 \ C. Thep, there ‘exist oven sets

U4, V' such that x € #, ¢ &V, Y nNv = qb + In parti-

cular, C 1s closed,

T T e o ot

Proof, Since § is Hausdorff, for each noint y € C,

there exigst open sets H&, Vy suzh that x € Uy,'y € Vy’
U v =@, j I 1s an opc i
v v Qb The fam}ly E.Vyj ;e 5 an opgn covering
F . of C, Since C 1s compact, there exist Yis Vg1 ooy ¥y
n n S n
; such that ¢ C U V.. Let V= \J Vv, and u={1v., .,
1=1 Y4 1=1 i

i=1 ¥ji

Then U,V satisfy all the renulrements, ’
4,7. THEOREM, Lot A and B be disjoint commact sub-
sets of a Hausdorff snace S. Then, there exist open

sets U,V such that A < U, BEV, U0V = ,

Proof. For each x € A, there exist open sets U, V_

such that x €U, B C V, and U N V, 5P . Now, the
seguence S'Ukﬁ : is an open covering of A, By the

: x € A -
comnactness of A, we obtaln points XysXgyees X such that

n n 1n .
A C\Y U ., Teke U= UJ U ,V= (U ., U and V
1=1  *q i=1 %3 i=1 X4
will then satisfy all the requirements.
4,8, THEOREM, A closed subset of a compact space is

comnact.,
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Proof. TLet € be a closed subset of a compact space 9.
Let { } - be an open covering of €. Now Q‘Qx_} and SN C
give gn open covering of S. Since S 1s compact, there exists

a finlte nwmber of these onen sets Gd Y ey Go< such that
1 n

thege sets together with § \¢C cover S. - Therefore

G, 3 eeayC cover € and hence ¢ is compact,
dl _dn _

4.9, THEOREM. A continuous image of g compact set is
compact,

Proof, Let}
£V X = v
be continuous and onto, where X and Y are sets, with X
compact. We have to show that Y ig ¢ compact., Let { q}
be an open cowmering of Y. Then - (B ) is an onen set in X
for each of, Further %:f (D ); is an open cov«fﬁng of X.
Since X. 1is compact there exist £~ (D ), coey T (D ) such
I'l
that x=jU (D ). Then D, ...,DO< will cover Y
i=1 1 n

and therefore Y ig compact. :

4;10. THEOREM; Tet ‘

. X — ¥
be & continuous, onto function, If X 'is cempact, Y ig
Hausdorff and f is one~one,-then f 1s a homeomorphism.
Proof. Enough to show that. f is an onen man or it takes
| closed sets into closed sets. Let C .be a closed set in X. |
Thén C 1is éompact. F(C) 1is compact, since f ig continuous.

Since Y ig Haugdorff, Cf(C) 1s closed,
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4.11. THEOREM, (Alexander), If & ig a sub-bagis

for the topological space X such that every covering by
members of S has a finite sub~covering, then X 1is
compact.

4,12. DEFINITION, A family of subsets of X is in-
adequate 1f it falls to cover X and f;nitely_ingdequgtg

1f no finite subfamily covers X ., Then

a) Compactness ﬁeans every finitely inadequate family

is inadequate.

b) If 5  1s the class of all finitely inadequate fami-
lies of subsets of ‘X, then 5 contains a maximal
element, (thisdfollows from Zorn's lemmg) .

o) If (3 15 a finitely inadequate family, then by

(b) there existsa maximal finitely inddequate family

of oven sets containing dg v

d) If ¢e OU and ¢ = E} C; where Cy's are open
sets, then C; € G( for so;;l i, |

e) Every covering of X bv members of S has a finite
subeovering., ‘Every finitely inadéquate family of 8 1is
inadequate.

” Proof. d). First we notice that if A 1is an open set,
A2 6U. By maximality of GU , it follews that there exists
. a finite number of ‘open sets Ay, v.., A, € 6L sueh that
AU .. lJAm U A =X. Therefore any set containing A does
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not belong to of . Let ¢ = {Wl C; belong to. GT where

» “the Ci’s> are open sets. Supnose no c, € 6{,, 1=1,2%...,ki
Then, by what has already been proved, we can find open sets

A, (= l,2,...,mi) belonging to U such that
J ,

G, L) A U e U d =x, 1= 1,2,e44, k.

17 1,

i
Then
p k oy
cvc A =0 A ep U U a0
1,3 3 1=1 i=1  j=1 3
K ™,
= 0 (g U U” s
1=1 j:’l j
; = (1x = 'y,

| Hence C‘E;Cﬂ. which ylelds a contradiction. Thus the result
follows,
; e) Let 43 be any finitely inadequate family of open sets.
2  It is sufficient to prove that B ig inadequate., Lot 6C Dbe
é given by (e). We now show that 0T 1g inadequate. The family
s N 6L of all members of U which belong to g is finitely
; inadequate and hence § N o7 is‘finitely‘inadequate. Thus,

1% s sufficlent to prove that

oy Aeét}gU {A/AGS(}G{}
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. Suppose x € 4. Since 4 1is oven and 8 is a sub~basis, A
is the union of finite intersections of '8. Hence x belongs

té finite interséctions of members of § contained in ST

~ and hence by(d) x belongs to a set in S which belongs te &T.

This?éoﬁpietes ﬁhé‘proof of (e). The other parts can be easily

proved.
5, PRODUCT SPACES.

5:1., DEFINITION, If T1s T, are bases for the topologies'

X and Y respectivaly, then
71 * g = {Alx%/ A €7y A2€’""2%
18 a basis for the tovology #f the nroduct spate X x Y.

5,2, DEFINITION, Iet {A?\}}\ ¢ A De @ family of sets

indexed by [\ . Then, TT_[& A, 1s the set of nll
AE

3 functions
£ A= UAA?\
' , ' ANE
sueh that £(™) € A, for each » €4
Let {Xh} be a family of tonological spaces. Then

the product X[\. Xy 1s the set of all functions x
A€ .

on JAL such that

X(N = x, € X, for each a6 /\ ,

Xa ls called the .hth coordinate of x, Define

B Pu s ><:- 2 __ﬁ>l Xu
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A topology 1s defined on ;K: L, by taking as sub-basis the

16
by
PM(X) = X .
p is called the projection onto the u n coordinate.

sets of the formlygl(ou), where-on is an open set in Xﬁ. The re-
sulting topology{is called the product topology and is the smallest

i
in which the projections are continuous. This is called

LJchonoff topoloéy. _ ,
[
-1 ava
= e .
D u(Uu) {% g 2(.Xn / X, OM,}

5.3, Exerciéq; Show that the product of an arbittrary

fanily of conﬁectéd spaces 1s connected.

‘8,4, THEOREM, If Xy 's are Hausdorff spaces, then.EX; %N
, . ' A
is al&g.a.gaqségnff.spgce;;:J

Proof.;If ¥ and y are two distinct points of X= ;<. Lo

| ITAN
then for some A=A, say, thelr components are different, that is,

Xho#yko. S8ince Xﬁb is Hausdorff, there exist open sets U}6,V$b

- -1
such that z, € U ¥y €Uy, Un 0¥, =@, Then p
AR T U ho(Umb) and
Pwi(V ) are disjoint open sets in X and x ¢ h“l (U, ), |
N hO 2 N J
\ ¥y e p;l (Vh ). Hence X is Havsdorfrf, :
o o}

5.5.THEOREM. The product of a family of compact sets
1s compact.,
Proof. Let X E:XIXA be a product of topological spactes,

Xh’ A GINL « X has the m oduct topology and Xhls are assumed to be
compact, Let é&-denote the sub-basis consisting of p;%U) where 12N

is the projection of Zse We shall apply nlexander's theorem to
prove the result, Let g, be a fanltely inadequate family of mem-
bers of éb . Let Eﬂm be the family of sets U on X+ such that

Phi(U) € 6L, Then Glo 1is finltely inadequate. Since Zn 1s compact,
Gl 18 lnadequate. Hence there exists Xp € X\ N\ U for any U € SER
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5.6. THEOREM (Wallace) If X and 'Y are tobological

E

*%naces. A and B are comnact subsets of X and Y '

respectively and W is a neighborhood of X x Y, thén there
%re neighborhoods U of A and V of B such that '
@ch.vacw. ”

? . Proof. For each point (x,y) € A'x'B, there exist oven

'isets R,8 such that x € R, y € § and R x S CW. 8ince for
Eg fixed point x € A, B 1s compact, there exist R,, 8y,

n

(i = 1,2,,..,0) “such that x € Ry for each 1 and B C U 8.

- n n : : '
jLet P= Y Ri and Q= U 84+ Then P and Q are open

- i=1 ' i 1

ets such that x € P, B(: Q. Now, use the compactness of A.

m

Considering sets of the tyoe P x Q, there exist Pi’ Qi(i =] yeeeym)
E such that B C Q; for each 1 and Upr, O A, Let

y m .
U o= U Py, V= (W Q¢ Then U,V will do the Job.
v 1=1 1=1 o
4?»‘
5,7, Problem., Given a function f . X > ¥, where X

is altopological space and T is onto, tonologize Y such that
gf is continuous., |

; 5.8, DEFINITION, Define U to be gnen in Y  1if and
éanl? if f“;(U) 1s open in X. The collection of all such U's
”?;is a topology for Y. This is called the guotient topology for
‘ f. f 1s called the o) nt _man. Then £ 1s an open mapn also.
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5.91 THEOREM. If £ ' X - Y is continmious, where X
and ¥ are topological spaces, such that f is either
open or closed, then £ 1s edsher a quotient map.

Proof. Exercise. |

5.10, THEOREM, Let f | X — Y, be continuous and
suppose Y has the qﬁotient topology. If g ' ¥ — 3,
then gf is continuous if and only if g 1is continuous.
Proof, If £ and g are continuous, clearly gf 1s

continuous.,
Conversely, subpose gf 1is continuous, we have to vrove

that g is continuous. Let U be an open set in Z. Now

(gf)"lU is oven in X. But (gf)-lU = fnl(g"l(ﬂ)). Since
f-l(g“l(U)) is open in X and Y has bthe quotient tonology,
'g"l(U) is opan in ¥, This »roves theltheorem.
6, METRIC SPACES AND PSEUDOMETRIC SPACES.

6+1.. Let X be a set. A non-nemative real valued func-

tion d defined on X x X 1is called a metric for X if

a) d(x,y) = d(y,x)
b)  A(x,y) + &(y,z) 2 d(x,z)
¢) dlx,y) =0 if x = y.

d4) If d(x,y) =0, then x =y,
CIf the condition (d) does not hold, then d 1is called a

psevdo~metric,
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6.2, A metric (psendo-metric) gnace is a pair (X,d),

~Where X 1s a set and d is a metric (pseuvdo-metric) for X.
6.3, Notation. Hereafter, X will stand fdr a pseudo-
- metric space with underlying vpseudo-metric d being understood..

6.4, DEFINITION, Let r > 0. Then §,(x) ={y/d(x,y)< r}

1s called the open gnhere of d-radius r, with centre x,

and §y/d(x,y) <r } lg called the closed gphere of

d-radius r, with centre x.

6.5, THEOREM, Let rsTp > O0s If x € srl(xlmsrg(xg),
then there exists r > 0, such that
srcx) - srlcxl) () srz (x)

~Proof. Let sy = d(x,xy), s, = d'x,x5) e Let

s 2
- r = min § (n-s)/i =10 §{ + Then 5.(x)C S (%) (18, (x5).

Equivalently, 8.(x) <8, (), 1 =1,2, Letye Sp(x)s. Then
i _

Ay, <

dy,x) S d(y?x) + ax,x,) £ L+ o5y LTy - osf+ Sy F Ty
Fpr‘a topology on X,’_We take the set of all onen sphere as a

baslis and the resulting tonology 1s known as the pseudo-metrie

tonology,

~

6.6, DEFINITION, Let. X %e a pseudo-metric space and A
| 1s a subset of X, A being nonempty. If x € X, then the
| distance of A from X,
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¥

D(A, X) = inf {d(y,x)/ y e A f

\
1

;6 7.. THEOREM, Let A Dbe & fixed .subset of a pseudo-
j;Qfﬁfﬁmetrﬂ% space X+ . Then the distance D(A,x) of x from:
o A Ais a continuous functiOn of x 'in the pseudo-metricf.
r_@jtopology..'; _."““* ‘:' v B
'.“Eggm_. Exercise.f ;;‘ |
6. 8 THEOREM The glésure of o set A in a pseudo-~
:}: metric space is the%set of all points which are at zereo
a distance from A
;Egggﬁ. Exercise,
:6'\9'."ADEFINI-TION A space X is f normal if for any two
613301nt closed sets A and B there exists oyen sets
" UV such that A CU, By such that U0V = b,
“‘-;_ﬁ 6.10,iTHEb§§M. Every pseudo-metpic space is normal,

Proof.’ Let- A and B be two disjoint closed sets of a

pseudovmetric spaée X, Let

YLx € X / D(4x) ~ D(B x) < oj

'le {-x 6 X/ D(A x) - D(B,x) Opg .

rThen, the continuity of D glves the result B

ﬁ, 2, LOCAL COMPACTNMSS | _
. 7.1, DEFINITION,‘ A spagce X 1s‘'said to be loeally
"; compact at the point x if there exists some open set

- U such that x €U and U 1s compact.- 4
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7.2, Remark., X is locally compact if it is locally
canpact Bt each point,

7.2, Examnles. a) A compact space is locally compact.

b) The real line is locally compact.

7.4, THEOAEM,  A closed subset of a locally compact space
1s locally compact.,

Proof. Lét C be a closed subset of a locally compact
space X. Plck a‘pbint x € G, Since X 1is locally compact,
there exists a U, open in 2 such that x € U, U 1s compact.
Then vU() C is open in C and UNC 1s closed in € and
hence compact and U 1s compact, \ ‘

7.5, THEOREM. The imazs of a lcéally compact set under

om omen continuocus map is locally comnact.

Proof. Let X be a locally compact space and £ X—) Y,
an open, onto man. Assume f 1s continuous. For each voint
x € X, there exists an onen set U such that x € U, U is
comﬁact. Then f£(I) 1is ccmpact. Take the interior of £(0T)
as the recuired onen set containing f(x).

7.6, THEOREM; The wroduct of a finite number of locally

compact spacés 1s locally compact,

Proof. T4t Xi, i=1,2yv..4yn be locally compact svaces.
To show that Xy, X X5 X ves X Xn. is locally compact. Let
X = (Xy) Ky eeeyXy) €Ky X Xy X o.. x X with x; € Xy

Since ¥, 1is leeally compach, there oxist U; oven in X; such

that xy € Ui, Ui is compact. Let U = Ul X U2 X evex U

Fa

Then x €U apd U =17 x ﬁg X «vo x U, is compact,
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7.7, THEOREM, If the wroduct ;XZ Xo 1s locally

»ed

comnact, then each Xl is locally compact and all but a

finite number of X\ 's are compact.

Proof. Since the projection maps are both open and

continuous, each coordinate is locally compact if Q*;

iel\_?‘

1s locally compact., If x € :%;Jﬁfh + there exists an open
A€

set U such that U is compact, Then, there exists an element
of the basis which contains x but is contsined in U, Now,
ﬁ% 1s compact and for but a finite number of  N's 'y 61 = Ko

Hence a1l but a finite number of Yl are compact,

7.8, DEFINITION, A space X 1is gommnletely normal if
for any two sepavated sets A, BA# @ , B #d FnB
== 4 NB = (ﬁ ) there exist open sets U,V such that
ACU, BCVY, UGV =¢
Ta%e @ggi§§L Show that a metric space is completely
normal.
8, PARACOMPL CT SPACES
8.l DEFINET}ON;. Let X be a topological space. A
covering {IJ % » 1f ror each vy of %Vb‘f , there is
a U, of { g sach that V. U

covering §‘VBE of X is called a reflnement of the
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8.2. DEFINITION, A covering {U o(} of the space X
is locally f;gite if for each x € X, there is an open
set contalning x and intersecting only s finite

number of the sets Uq.

8.3, DEFINITION, X dis paracompget if X 1s Hausdorff
and 1if every open covering of X has a locally finite
'refinement.

8.4, THEOREM., The homeomporphic image of a paracompact
space is pnaracompact.,

Proof, Let X be a paracompact space and f ¢4 X —% Y

be a homeomornhism. To show t@a§r Y 1s paracompact,

let & Ud)} be an open covering of Y. Since f 1is continuous,

{f‘l(UqXE is an open covering of X. Since X 1is paracothpact

there exlsts a locally finite refinement of {f"l(Uq); y say

t

- 1
{Vb‘f « Let VB = f(Vﬁ). Since f 1s a homeomorphism,

{vﬁ} 1s Aorefinementtby opeh sets of {Qif . To complete
the proof, we have to show that %VB} is locally finite.
Let y € ¥, There exists x € X such that f£(x) = y, Then,
there exists an open set W such that x € W, W interseets
only a_finite number of Vg + Then f£(W) 1is the requﬁred
open set containing y.

8.5, Remarks. a) in terms of refinement, we state that

the space is compact if and only if every onen covering has a

finite refinement.
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b)Y A compact space is parébcmpact.
8.,6. THEOREM, Every paracompact space 1s regular.
Proof. Let X be a paracompact space., Let C be

closed in X and p € X\ C. TFor each point x ¢ C, there

exlst open sets U, ;and V4 sueh that x € Ves D6 Uy

such that V, NU, = b . The sets Tx bogether witn X \¢
give an open covering of X, Since X is baracompact, we have
an open loecally finite refinement { Vh.}'. Now let V be the

wnion of the sets Vg which intorsect C, Then ¥V 1is an open

set contalning cC, There exists ah open set W containing p,

. ,
Intersecting only a:finite number of Vﬁs y Say _VB 5...,VB
: 1 n

H

and eaeh sueh Vﬁi ﬁhich meets C 1is éontained in seme Vx‘;

bet U=W 0 (U ) Then U and ¥V are the required
i

open sets, _ _

8.7, THEOREM, 'A-closed subset of g paracompact space

is paracompnact. , _

Eroof. ILet X be paracompact. TLet A be. a closed sub-
1 get of X, Let {AQ‘}: be an open cbvering of Ay Now, the
'l? femily Q_Ax} together with X\ A glves an open cévering
3-§'gf the paracampact space X. Ve can find therefore a locally
| finite refihement, say {Uﬁ j o« Then, [an Ug j is a

’; locally finite refinement and 4 is varacomnact,
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8.8, THEOREM, Any locally compact Hausdorff space that

1s a union of a cmuntable number of compact gets is |

paracomnact.
o

Proof, Let X = U Ci, where Ci's are compact and X
i=1

1s loeally compact and Hausderff, Without loss of generality,

for n=1,2,.,.. (otherwise , let

¢ '= U ci). We shall first show that X is the union of

the sets Wh such that W is compact, ﬁ' < W +1° For each

point-x“ﬁ“ﬁi; since X is locally compact, thero exists an

open set Vx such that x € Vx, V is comnact. Now Vx
is an open ecovering eof Cqe Use the compactness of Cy to

ebtain a finite number of sets Vx gessy Vo such that
1 *n

¢, < LJ V . Let Wl = U V.”i;‘ Then, - ul is comnact,

is def%hed for all m -n, With t}e nroner%yqn t-—-we:w

Now assume that W éis onen, W S Tomnac 1"

wa CDnSLQOP e comnadt sk “‘1) @ ~andvobtain W, 1is

b=

oxactly the same way as Wy, from Cy. Set K, =¥ =W . .K_

E. 1is compact. Let {i&:} be an oven céVering of Xi Let x Dbe
an arbitrary voint of K.,» We can find an open get. Vx contain~
L ing' x and contained in one of the U«'s containing Xe Now,

1
{ij covers Kn. The Vx's. can be chosen to lie in W 1 n -0

X n

we can find a finite number, V_ ,...,V, to cover K . Hence

Then, the V_'s give a eovering of K,+ 8Since K, 1s compact,

the result fol}ows.
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ALGEBRAIC TOPOLOGY

1. CONVEX SETS

; ‘l.l.fPreliminarv nbtation.' V 1s an arbitrary:vectOr

- Spaes over the regl numbers R ¢ If p and q are any &wo

vectors in V, the line segment joihing P

and q 4is the set

of'Vectors ‘ _
Pq = Sep + (1-0g/0 € o < 1

!
S *
Clearly

%

i

Pq = gp

and 1f p = g,

Pq = ypq
If 4 and B are two non-empty subsets of V, their join is
 defined as th set -
' AB = L)‘.ab

ath

; N . bEB
_ Then

- AB = BA
AB 2 4
AB: D B
and 1f C < 4,'D C B,
| | CD ¢ AB.

Whenever the set 4 (or‘B) consists of a simgle point

{'aﬁ » We write 4B ag 4B,
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For convenience, we take §b A = A, where 7[) is the
emnty set, |

'@ 1.2, DEFINITION,. The subset A4 CV 1is convex if it

contains the join of any two of 1ts subsets (i.e,) if
-CCA D CA, thenCDC.A.

. ’:l 3. Remark. A set is. convex if and only if 1t contains
the join of any two of its points.
L.4. Examples. a) Any subspace of V -is donvex. In fact,

"a coset of a subspace of V 1s convex.

b) The line~segment pq Joining any two voints p,q of
v i% convex, {pg i1s convex for all p ¢ V;

. |
c) The empty set 1s convex.

Le5. Exerciseg. a) The ¢ ~neighborhéod1 £ € IR yE 7 0

of 3 convex subset A of JRn y

“N(A ¢ ) = { p € IR/ || p- An s S

is an open convex set contining A.
b) The closure -4 of any convex set A in an; is
convex, Use a) and b) to show that the unit ball B> 4n |RD

is convex.

¢) TFor any open se¢f UCZiRn the set p U~N1p§ is open .

—

MoreOVer, when U ig compact then so is DU and p U“\{ pf pU.
Further, 1f U 1is convex, so is p U k\g_pf nrovided p # U.
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1.6, PROPOSITION, The intersection of any family of
convex sebs is cbnvex.

1.7, COROLLARY, Every subset A C_V 1is contained in

a smallest convex set,

1.8. DEFINITION. The smallest convex set [A ] contain-
ing & given set A <V is called the convex hull of A

or (Al is spanned by A,
1.9. THEOREM, .a) A 1is convex if 4 = [Al
b) 4B |A U B]

¢) If A and B are convex sets,
then 4B.= {4U B]

Proof. ») and b) follow Trom definition. We shall prove

It is enough to show that AB is convex if A and B are

e}
convex.

Let Pys Po be any two points of AB, Then,
Py = Ay ay + (l-4)b,, where a; €Ay by €8, 05 « <1, 1=1,2,

Any point of is of the form

pl P2

u

olofyaq + q(l-«l)bl + (1-%)42a2 + (L~e() (1~«2)b2

it

qqlal+ (1-¢)qga2 + q(l-ql)bl + (1-«-«2+442)b2

If

e - (L-cty)
plogt oy + (1mba, | P
| qﬁl-dl) .

~ bde!“@J

C AB .
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where B = ool - ol + Lo
1,10, COROLLARY, If € 4is convex and 4 < ¢, then

LAl < c. If further, B C C, then AB < ¢,
l.11. COROLLARY, If AByC are convex sets, then

A (BC) = (AB)C.
Proof. Bach is equal to [AUBO ¢ .

1412, Remark, The join of any finite number of convex
setsis independent of the order in which the joins are taken.

We thus write Al......Ak for ,Lﬁltj Ceae L)Ak] where
Ayseveeshy are convexi In particular, if A = Ja,¢ » then

a1f""@k is the convex set spanned by E‘al,...?ak‘; + The
T . :

subscripts 1 = 1,2,...,k are used to designate the points, not

order them .

1.13, DEFINITION, & baryveentric function on a set

A is a function

. A =2 I

1

such that B(a) = 0 for all but a Tinite number of the

> B(a) = 1,

aCA

points in A and

The finite set of polnts of A4, {.ao’al’;“’ak;§ on whichs
sunport of p, s(p). The integer k is called the degree of p,
d{p)e The set of barycentric functions on a set A will be

denoted by  J3.(4),

the barycentric function p is different from zero is called the
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1.14, PROPOSITION, For any set A CV, therc is a.
natural projection a
n @y v
f given by

TP E p(a)(a)
ath '

whose image is precisely L A ) , the convex hull of A,
Proof. The natural projection is certainly welldefined,

We ghall now'éhow that the ilage of the natural projegtionc:.[A]
and is convex. Since the image contains A, 1t must then be [A] .

If d(p) =0, then N(p) = a € A <[A] , where faf = s(p .

Suppose that N(p) € [:A] , Whenever d(p) < %k ~1 and
consider;any.'p e ﬁS(A) of degree k. Let s(p) = |
:kal"°';ak z « If g, is the unique barycentric funetion

with a, (a)) = 1, then

1
(1 - pla,)) (e - p (ay) &)

is a barycentric function of degree k-1 with support
§al,;..,ak_g + Hence its image under M 1s a poiﬁt
g € ['A] , and

k

| ) = 2 p(a) a= S p(a) a
= = . pa 1 i
2 el 1=0 “

—

1}

2 (ao) aq + (1 ~p (ao)) q © [:A] .
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- That the image under M is convex folloWs from the facts that
for any th p, g ¢ B (),

”  (L - p+og € B(A)

for'any «{ & I and moreover

H

N [ Qtp+otg] = (1= 0 (p) + oAM(g) .

1.15. Remarks. a) If R(A) denotes all the real valued
functions on A wilth finite sunport, that 1is, whlch assume
_nonwzero values in only finitely many elements of A JFhen-the
natural projection defined above extends to a-projection

m R Ay > ¥
whbse'imaée 1s the subspace generated or spanned by 4.
b): Denoting by ﬂ(A} the subset of @%(A) consisting

of these functions p such that 2. p(a) = 1, the image of 7N(A)
afA ~

under N 1s called the smallest flgtuggg containing A, where
by flat set we mean_a cogset of a subspace of V., The gimgngign
of a flat sét is the dimenéion of the subsgy ace of which 1t is
a coset, , .

| @L(A) is in fact the veetor space generated by A,
@5(A) is a convex subset of (A, (4), the convex hull of

A= { a € QB(A) / a (a) = l, a €A § s TNCA) 2 > B (a) and

ﬂQA) is the coset a + N'(A) where a & A and MYA) 1is the

kernel of the projection,
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Ry —> R h
P —> é%A p (a).

d) Recall that the set A 1is linearly independent, if
the natural projeetion 7 \@(a) —r v 1s 131 .

1.16, DEFINITION, The set AC V is affinely linearly

independent if the natural projection
Nina) —2 v
is 1 s+ 1 . We shall use aslsl, for brevity.
'1.17. PROPOSITION, The set A 1is affinely linearly

independent (a.l.1,) if the only functlon r ¢ @R, (4)
with the property that

N(r) = 0 and r(a) = 0

2M

is the zero function p = 0.

Proof. If there is such a non-zero function r 5 them

for any p € N(4),
p+r € ﬂ(A)

and :
f(p) = M (p + 1)
s0 that M isnot 1 : 1,
Conversely, if |
M(p} = (g
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Then
N(p ~ g) =0

and

H.
o

atan

2 (p-g (a)

where p - q ¢ (R (a).

1.18, COROLLARY, A ‘is asleie 1f every finite subset
of A is a.l.i. | '
Proof., This follows from the fact that all functions

have finite support.

Exercises. a) The set A 1s a.l.l, if for any a ¢ A,
the set_
A-a= 52‘0-3./1)611}
1s linearly independent. . .

b) The set A = {ao,al,...,ak b is a.lii. if the
smallest flat set contining A has dimension k.,

1.19. Remarks. a) A linearly independent set ig a.l.i.
but not conversely., If U 1s a non-zero vector, then-ilf»*?f}
i1s a a.l.i. but not linearly independent,

b) The points in the convex hull [h:] of an a.l.i.
set A are in 1.1 correspondence with the set @B(A) of

barycentric functions on A,



2. SIMPLEXES,
2.1, DEFINITION, The convex hull of an a.l.1, set of
~(k+1) points A 5; %ai,al,...,ak.é is called the
k-gimplex spanned by A.

The elements of A are called the vertices of the
simplex, We usually denote a simplex by Greek letters 5, T , ete.

If we wish to emphasize that & is a k-simplex, we write o k.

If we identity 3-space with |R- |

a O-simplex is just a point,
a l-simplex 1s a line segment,
a 2-simplex is a triangle,

a 3~simplex 1s a tetrahedron and so on

. /

P.

B . -"'"""_M—-—ml_

- 7 ke b,
F"\’__._Pi Pcf'Pl_ 2ol by fra

2,2, PROPOSITION: The points &f a simplex akd in 1 3 1

corresnondence with the barycentric functiens in the
vertices. This . correspondence is effected by nastural

projection,




35

2.3, ROPOSITION, A gimplex completely determines its

vertices,

Proof. Let o = 8 B1sreesdy  Po any simplex. We will

show that any point of & other than the vertices is the midpoint

of two distinct points of &, This will completely characterise

vertices,

For any psint p € & , let p denote the unique barycentric
function on the vertices such that N(p) = p. D never assumes

the value 1 if p is not a vertsx, If

= & Py
P = 59 *3 4
Az
where qp # ¢ 93 & @3 then for some vertex a;

41 (ay) # g5 (a)).

Hence,

_0 . gi(ai) + gq (ai) < 2

from which it follews that

OCLE(ai)Cll

and p 1is not a vertex.

Conversely, if p is not.a vertex, then for any

p =

Dol
i
+
0o
5

PR |
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where qy = p+ (-1)i o (pi - p)y 1 = 1,2, are distinct elements
of & and o« = min (p (ag)y 1-p (ay))
Any nonempty subset of the vertifes of a simplex

T = agdyyeeayayy say,  jay ail,...,ai } is certainly
: o m :

a+lsi. and hence spans a simplex ™ called an m~face of Ek .

Clearly e C Ek . We denote this face relation by '< ,'i.e.,
The face relation defines a partisl ordering among the faces of

T & . Since any face of T is also a face of E}qlf e 7
m=k, T = 7 Otherwise, T@ 1is called a proper face of

3k « In general, there are k + 1 Cm+1 m-faces of o,

Sometimes, we consider the empty set as the -1 face of a
simplex and then the simplex 1g said to be augmented, If
ay £ s(p) for some D E Ek , then E(ai) = 0 and the restriction
of p to the remaining vertices again defines a barycentric func-

-

tion which corresponds to a (k~1) -face &i = ao...gia..ak of

7, Thus p € ao...;l...ak and conversely if p € ao...éavv:ak,
then the barycentric function of p on the vertices of 5
takes on the value 0 at a;. More generally if ™2 gk .
then the barycentric function d} p in T 3 on the vertices
of & 1g different from zero only on the vertices of T ,
Hence we can identify the barycentric function of a point

o GI%m-é‘ e on the vertices of T  with that on the vertices

‘of Ek .
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2:4.:3emazg. We hereafter identify each point of a

simplex with the cofreéponding barycentric function.
2D DEFINiTION, The clogﬁre of a poinf° v of & simplex
5:5 B vee By eee Oy is the face qg(p) = Ls(p)J of o,
2.6. Remark. dl may be regarded as an operator function

from the points of the simplex.to its faceg,

. 2.7. Properties of the closure function .

a) Any face of & which contains p contains ¢ (p)
so that ¢ (p) 1ie the Smallest face of & containing p. In
partieular, if g € ¢ (p), then Pla) < ¢p) .

1 |

b) The eclbsure operator is onto} that is, if

0= a, ees apand ™ ay ++v a3y 1s any face of - y Tthen
: 0 m

?L(e) = T yhere o =.m+l (aib S aim>f

¢) Let %i and %2 be any two faces of &, If
peT N T, then P(p) £ T and P(p) 4 T, so that
P < Ty O T, . Inthis case, T NT, # ¢ . Lot T
be the largest face of & common to T, and < + For any

polnt p € T 01T, S S T, By Wy T = P (g for

some g 6 %1{1 T, « Then T = T, 0 (




g,k

-1s the disjoint.unioh of interiors of all proper faces of - &,
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2.8, DEFINITION. A point p of the simplex o~ {is 4n

loterior point of & if Hh(p) = 7%, Otherwise ¢ (p)

1s a proper face of & and- p 1is a frontier point of
5 . The set of all interior points of - X , denoted by
: ;kf is called the interior of Ek « The frqgtier &k

~X

_ of &% is the set of frontier points of o Then, &%
'is:ﬁhe disjoint union of the interiors of all its faces
‘and & 15 the disjoint union of all the interioms of all

ﬁroper faces of -k. s

(iae') 'O:k = ffk U &k
and - _
& Nk - ¢>.
2.9. Remarks. Let o be g simplex.. Then

(a) 5_'30'\.)5‘ and o /) & = ff_} .

(b) ¥ p is an interior point of ¢>(p), Every

-l

point of 1s the interior of a uniwue face of 5% and

every frontier point is the interior of a unique proper faces of
! [ 3

| (¢) ' & 1g the disjoint union of all 1ts faces., &%

k

2,10, DEFINITION, The intevior of the simnlex
Ek S Ay eee oy 1s called the open gimvlex spanned by the

vertices %ao,...,ak 3 » We denote this by

o = (ao,é..,ak). An oven face of a simolex is the in-

terior of a face of the simplex. Thus, we have the
following:'
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2+,11, PROPOSITION, Any simplex is the union of all its

faceé and the disjoint union of all open faces, The

frontiér of a simplex is the unlon of all the proper faces

of the simplex and the disjoint union of all its open proper
=, faces, Any two faces of (the frontier of) a simplex are

disjoint or intersect in a common face. If the simplex

18 argmented, we say.that any two faces of (the frontier

of) a simplex intersect in a common Face,

3., THE'NATURAL TOPOILOGY OF A SIMPLEX

3

3.1. DEFINITICN, Let ©)74ee3€,q De the unit basis

T P

%_ vector in iRk+l

e, = <o,1,:.'_..,o) »

; where e = {1,0,.445,0 )

fi

£0,0,1,4..,0 > and so on.
=k '

2. 1s called the

k+1

x - representative Xk-simplex in. IR

Any function qb :{el, cee g ek+l}\ ——% R has a,

1

% The simplex €y ser Oy
k+1

unigue linear cxtension

k’f‘l____ﬁ;, n

defined by
k+l

CBy ven By = 2 By P ey
i=1
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Thus, the image of 5 under 45 is Just ?b(el)"'ﬁb(ek+l)'

If o is any simplex in (R# , with gb(ei) € & , then

¢’(5k) . & so that we have a function

called the linear extension of the vertex man.

. 2
P fewr et oy fT7 T
If ¢>ei 1s vertex of & for 1 =1, ,.,, k+l, then qb‘ is

called a gimplicinl map. The barycentric function of any point

p = <{“1"“’dk+l> of B 4 given by

p(ei) = di; i = 1,2,000,k+10

Then

E(p) = p (o) () + euv + Blog, ) P (o, )
2\

3.2, DEFINITION, A function ¢! & — T , where o and
T are simplexes, (not necessarily in the same veetor space)

is linear, if it is the linear extension of its restric-

tion to the vertices of o, (i.e.), if ¢ = ag

¢ ak and

p €& o is any point, then -

(?(p) = p(aﬁ) 6#‘(30) + ees + play) d)(ak).
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If moreover qb takes vertices of o into vertices of < , &

1s called gimplicial., A simplicial map which is 131 and onto

18 called an isomorphism.
3.2, PROPOSITION, TLet : & -2 T be a simplicial map:
a) If & L5, then P(5) < ¢ (), |
b) If 5K &y, then P(F) 4L Plry.
c) If Tlﬁ{ %2{ then Cph 1 (%1)*4 -,

d) If ¢ is 1tl on the vertices of o, then ¢ is 1:1

and takes frontier of & onto frontier of T,
e) If d) takes the vertices of & onto the vertices
of T, then ¢ is onto and taken interior points.

£y If Cp takes vertices of ¢ onto the vertices of T
1:1, then 4)pis 1:1 and onto and the ilmwerse map is

also simplicial,

g) The compositlon of two simplcial map is again a

simplicial map.

; 3e4. DEFINITION, Two simplexes are isomorphic if there
. exhists an isomorphism between them.

3.5, PROPOSITION; Two simplexes are igomorphiec if and
oply if they have tne same number of vertices. in parti—
cular, every k-simplex is isomorphic to the representa-

tive k-simplex.
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3.6, PROPOSITION, An isomprphlsm carries interior points
into interior points and frontier nolnts into frontier

points.

The representative k-simplex sk inherits a topology

from {Rk+l and in this topology fk ig a compact metric

k

s S o e g T R s S . T e e Rt e e e G e
o e e L T o e i A R T g € Y e S T A s S R

spaces., Any simplex Ek = 8y eee o 1s isomorphic to ¥

s

. % "k -
so that there exists an lsomorphism CP. r = Gk. We agsign to

5 the topology which makes i\ a homeomorphism and show that

it is independent of q; . The tonology of sk is given by the

metric of RSTL pestricted to SF. We set

ey = P ool = ey = Py

where Py» Py are any two points of I ., The coordinates of

Py € fk - !Rk+1 are given by the barycentric functions,

- : ~ T
pi = < pi(el),...?pj.(ek'*‘l)/ g 1 = 132

so that
k+1 21/2 |
. N o
Py = Pull = % 2 (pyley) = pyley)) ( . .
i=1
By the definition of (&
¢7p,¢ plep) = pyley), 3= 1,800,041
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so that
“k+l o 21/2 \kﬁl o 1/2
| 2 afepdmpple™ ¢ = 13}1 (poyCf o) - palef e ¢
i=] -
x , 1/2
= s ((.]Spl(ai)- P polay)) f
Ti=0 '
X , 2
i=0

where v, = ¢’pi are any two points of & ., Thus
| k ﬁ1/2
( *) “Vl - v2|| = { z*m(vl(ai) - v2(ai))2_§

- 1=0

-

is 1ndependent of d) .

3.7. DEFINITION, The metrie defined by (#) for the

simplex &% is called the natural metric in Ek.

3.8, demark. If T is a face of the simplex & , then
the natural metric of T 1is just the restriction to T of the
natural metric of o, Hence the natural topology of T agrees

with the topology inherited from o .

3.9. Exercise. If 5% is a simplex In \Rn the tonology

inherited from an is the same as the natural topology of Ek.

3,10, PROPOSITION, A linear map from one simplex to

another is continuous in the natural topologles.
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Proof. Let T ana T be representative simolexes in
\Rk+l and }Rn+l respectively and ! §k - §% . a linear
?

map. Since  is defined by the linear extension

(_})HR}{-P]. —3 HRH+1

which is continuous, cﬁ is also continuous in the inherited

topologies. More genecrally, let

be a linear map, and

v "'k . ~, ol
¥y 5o g

l1somorphisms. There is a unique linear map

¢’ Fk 5 o

such that
! -

¢ = v, ¢ ow
Singe all the maps on the right are continuous, (in facf wl and
wg are homeomorphiams) qﬁ 15 also continuous. |

3.11: Remarks. a) The frontier of a simplex is a union

of finitely many closed sets (viz) faces and hence closed and so

1s a compact subset of the simplex. The interior of the simplex,

as the complement of a closed set, is oren.




interior of the simplex is not in general open in R,
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b)) A Xk-simplex in |R" 1is a compact subset and hence

1ts frontier which is also compact, 1s closed in (R". The

n

3.12, DEFINITION, A point v € V 1is independent of

the set A CV if v £ 4 and va{lAs é a % for

all a € A. - | ¢

3,13, LEMMA, If the point v € an im independent
of A< R® and if A is compact, then in v4 (as a

subspace of IR™) sets of the form

(1) botv + (L=) a/< € T, a € 4§
(1) vv > ] v¢
are open, whenever U 1s an open set in I énd V is an
open sct 'An A&, Moreover, these two tynes of sets
together generate the open sets in " v A,
Proof. Exercise.
3.14, COROLLARY, If u, v € |R’ are independent of the
subsets‘ A, B respectively of R , and if gﬁd A - B

i1s a contintious map and 1f moreover A 1is compact, then

the map

i

¢ . wma — B
defined by N
u+ (o) & —y o+ (1) (b a
is continuous., If qt is oven, or lil, or onto, then

so 1s ¢Z!.



3.15, Exercise. Giveh an example to show that the hyno~

thesis that A be compact 1s essential.

Let & be convex subset of V such that the flgt- set

spanned by A has dimension n. Then A conbains an a.l.i. set

ﬁ_ao,...,an f which spans the flat set spanned by A. Choose
. . |

aﬁy isomorphisnm

\,\’ ., © el LI en ,.._,_7 3.0 e an
: . . 1 . .
where @y 3eeey€, AarTe the unit basis vectors in JR , ~This

extends linearly to a function

/ I

b R —» ¥

where

it

n
2 A (¢ (ep) = h ()

i=1

/
(L <ehqyeneyd, 7

]
and (p maps {Rn

! ___l"".i. g
Let A = 4, (4. Then, A D e; +«+» ¢, and hence has a

sy L1l , onto the n-flat set spanned by A.

non-empty interior {(as a subset of IRn). Morecover, A’ is convex.

3.16, LBMMA, Let B be a compact convex subset of R
with a non-empty interior and p_ € Int B = B, Then

. . . {
Py is dndenendent of B = B N B® and B = e B. \

a4

Proof. For any point p € B, »p B¢ \\{p 1s an open sub-

set of B gnd
Be-p% ¥ < pB® N\ Sy .



If p # 8% then pB° ~ (pt =B% 1Irove B, p e B°,
then pdVEW . B= Ebi which implies that p, is indenendent
of B. For any p € B, consider the real-valued function,

(L-l)p, + &p —7 o,

Let do be the maximum value of this function at b0 say. Then,

clearly b, is a frontier point of B; «, 2 1 and

a =
do -1 1 .

p =(f*“"**’ p.+ —— b is a frontier woint of p_ B .

h ) °<o 0 o{o o) Py

2,17, COROLLARY, If the set A is compnct, then, for
any interior point p' of A' (such 2 point certainly
exlsts) the corresponding point qﬁ’p‘ = n €A is
independent of A° and A = pAo where A° = P’ AO'.
3,18, THEOREM, If B is a compact convex subset of §Rn
with nonempty interlor, then the boundary ls homeomorphic
to ™%, the unit ball in R
Proof, Choose an interior point n»n of B. Then, b-p

ig rever zero for b € B® so that the function
p 1 B° —» g0t
b*"“? _”_13""0

1g well defined and continuous,
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For some ¢ 7 0, N(p,© ) < B, so that for any

n-1 .
s €8 7, (»r+ & s} €B and by the previous lemma, has a

unigue renresentation
p+t & s=(L - p+ b

for some o € I,  #0, b € B°, This glves rise to a function

such that

Hence % = Isn_l and ‘¢)¢ = %BO . Thus,%’ is 131 and
onto and since B®- is compact, %. is a homeomorghism,

3.19, COROLLARY. The homeomorphism extends to a homeo-

n n
morphism of B onto B, the unit ball in IR , which
takes interior of B onto the interior of Bn.

Proof. 8Since -Sn-l is the boundary of the cowpact convex

subset B™ < R’ and 0 is an interior point of BY, the

result follows. 1

3,20, COROLLARY., TIf A 1 a compact convex subsct in

% then A is homeomorphic (as o subsnace) to the unit

iR
ball Bk:- le for some k.,
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Proof. Since the function jf is continuous, the

result follows.

. . ~k
Avplying the above to a k~simplex o , we may choose

as the maximal a.l.i. set, the vertices of & . It follows

therefore that any interior point p of EL is independent of

R ¥ ana 7 = p & k. Moreover, o  is homeomorphic to the

unit ball BS which takes, the interior of & homeomorphically
o k n-1

4

onto the interior of Bk and & = homeomornhically onto S .

R.21. DEFINITION, A topologieal space Y homeomorphic

to the unit n-ball B" in an iz called an n-cell.

If Y 1is a subspace of X, then Y is an n-cell in X.

More particularly, Y is a g¢losed n-cell., If Y 1is

. . \ n .
homeomornhic tothe interior of B then Y 1is an
; 3

. n
open  n-cell, Thus a compact, convex subset of R

id a k-~cell for some k. A k-simnlex is a k-cell and an
onen k-simplex is an open k-cell, The interior of a
k~simnlex is an onen k-cell in the sl nolex.

Lo, R,
- s E .

4, THE BARYCENTRIC SUBDIVISION OF A SIMPLEA

The k~simnlex nrovides a ugeful reprasentation of the
krceil. One advantnage of this representotion is that it c¢can be
caslly decomnosed into smaller k-simplexes. We assume through-

out that the simplexes are augmented.
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4,1, DEFINITION, The barycenter of n simplex is the

point whose barycentric function takes on the same value

at cach vertex. Thus, if Ek.i A, o+ A3 the bary-
center b (Ek) is the point b (Ek) (a.) = N
t =i kt+1°
K X
1= 0yeeeyk or b(n) = i iﬁﬁ ay+  ~The barycenter is

sometimes called the centroid.

4,2, DEFINITION, The barycentric subndivision of a simplex

7T a, e+ 3, 1s defined inductively as the collection

- "o
of k-simnlexes of the form b T?"lg where b 1s the bary-

—

center of == and %?—1 is any (k-=1) simplex in the bary-

- [AS
centric subdivision of the (k-1) face Ty 0T Ay cee Ageeeny,
. -~k oo
i=0,1,...,k, of + To comnlete the definition

{start the induction) we define the bharycentric subdivi-

sion of a (-1)-simplex to consist of the (~1)simnlex
itself, .
The barycentric subdivision of the simnlex ;k will bhe
denoted by 8d &7,
It follows from the definition thnt the barycentric sub-
divisién of a O-simplex consists of a O-simnlex itself. For
;

a l-si X daa, = a bya b, . For a 2-simplex
a l-simolex 2587 9 S e L "o "t i [ * SLIP

1,2 8gs 84 2 a8, = -j a bgby 8;b,0y a byB, a b b, agb, by ayb b ¢ .
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P
,// o !
A
yd
Gy
Sd a,a,

5(1 LI o, O"z,,

.
Inductively, the number of k-simplexes in  8d &  is (k+1)} |

4.3, Some Pronerties of the Baryecentrlic subdivision.

~k
Let o - ajdy ree Ay be any simplex. The properties
we wish to consider are trivial for ¥ = -1 or 0. Assume true
for for m « k. We shall prove for m = ', to complete the

induction argument. A face of any simplex in 8d Ek is referred

-1 , - : ,
to as a face Sd m.. We denote by o, the simnlex a ... gi“"ﬂk’
1 =0,se03k and by b, the barycenter of ;k.

a) the union of all the simplexes of &d - is EK.

Since b is independent of ;k’ we have 2 p¥ = U bk =

U U b T .

i Ti £ 34 Gi

b) The simplexes of Sd 2 are of the form bobl ver by
where b, = bi (51), the barycenter of some i~face of &k
and 60X L 2. & and conversely, (i.e.), the

faces of Ek are partlally ordered by the Tacing relation. The
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simplexes of 854 Fk are then in 11 corresnondence with the
g_k

i

maximal linearly ordered sets of nonemnty faces of . ©Since

‘every simplex of 8d ;k is of the form b %j’ vhere %j is

N

a simplex of 84 53 , the assertion follows from induction.

¢) The faces of Sd ~ are of the form bi vee b

o r
A -
where by 1s the barycenter of an ij-fmce s 9 of mk and
i I i, , L
cr o ‘< ¥ ;{"/'\ .« s ‘f; g' r »
7 + g
' B T - ~ - "k_: K
d) The interse€tidn of o face iﬁ of 8d o amd a.

0 p

t

1s sbanned oy the barycentfrs of a linearly ordered sequence of

1 , _ S —

faces of a+ , » % = d'l';é <o :i % gnd PN oW is
¥

the spanned by the barycenters of these faces in the sequence,
: i .

&

i/

which are faces of e N w  (i.e))
g’—;ﬂb—; =
biqln bi 1
r
’ iij i -1y A AL
where bij = bij (@4) and %<4 7L LAY e
i ) i
:}{ E_S'{-? .. "{\ n-ro
T

e) A (k-1)-face T of §gd Ek is a2 face of exactly two
s - -k

ral

k-simnlexes of ©d = if T contains interior points of &

. g oK
Otherwise, T is a face of exactly one- k-simnlex of 5d & .

‘A. (k-1)-simplex is spanned by the brrycenters of a linearly or-
dered sequence of k nonempty faces of Ek, say -i-1

i
T ey
T bobl-"' by bi+l ces Dy 1€ k., If 1 <& k, then o

face w of Ek ig a face of e and a face of 84 {3 . Forp
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-1+ -1 =1
is a face of exactly two 1-faces of & l; Ty 7 Wé where

b, = bj (;j). Then T 1is a face of

and

o . : X
Moreover, T contains interior points of 7 if b, =1b 15 a

vertex. On the other hand, if i = k., then 7T contalns no
interior points and T is a face of the simplex by «vv by

and no other.

£} Any two faces of &4 Tk intersect in a common face.

In fact, 1f pq, p, are spanned by the barycenters of the
i ' i J.. 3

L ] -
sequonces o 0 < At L., <&t , FOL T, <8,

then pq N Po is snmanned by the barycenters of those faces

occurring in both sequences.

4.4, DEFINITION, The n' _barycentric subdivision of

i

of a k-simnlex is the collasctlon of all éimplexes arising
from the barycentric subdivision of every k-simpnlex in
the (n-—l)th barycentric subdivision of the simnlex and
is denoted by 8a% 7 | where #° igs the k-simplex, We
set 8a° & = { K } and any face of any simnlex in

- kK
Sdn Gk is called a face of Sdn T .
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The following figure 1llustrates Sd2 2, 89 Age

© m -k n+m -k
(v = L'

4.6, Exercises. a) The number of k-simplexes in Sdn Ek

is (k+l 1)U
. . - n <k . -k
b) The union of all the simnlexes of 5d is o

*

¢) The faces of 8dP &% are partially ordered by the

n -
facing relation ¢ . Show that the faces of 3d wk are
spanned by the barycenters of a linearly ordercd sequences of

faces of Sdnhl X,

d) If & is any face of K , any face of sa® 55
contained in o+ is a face of 54" &7 and conversely.

4,7, DEFINITION, The closure of a point p € Ek in

- -k
sa® & is the smallest face of sd” & containing b.

This is well-defined, since the interscction of any two

faces of Sdm = is again a Tace of Sdm Ek . We de-

note the closure of n in sa" 7 by <L (p, sd" Ek) or

simply &L (p).
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4.8, BExercises. a) Let e a. and T any -face of
sa® &8 with p € T . Then, with respect to T , we have

_defined ¢& (p) X T . show that CL (p) = ClL,. (p).

- b) Ror any point v € 53', Cthw(p) is & face of

any face of sa™ EK‘.Which'contains D

4,9, DEFINLTION, Let v (7% denote the set of ail

vertices of 5d™ (& ), m > 0. An‘m-standard map on =S

=k
©is a function. sﬁ : m(¢ Y, =2 V(7)) such that qﬁ(v)

is a vertex of CL (v) for all v € V (Ek). An

M= standqrd map extends to a 31m0110111 map of Sdm o .

We de not dlstinguish between the standard map and its
extension ofi any & oor  gd" e . In general, we drop
the reference to the order of subdivision and speak of

a standard man, |
4,10, DEFINITION. Let v be o vertox of sa &%,

v € Vm_(5k). The union of those simplexes of Sd° 7K

with v as a vertexy”lis -a: clbsad subsetﬁof"*ék (the

finite union of compact setd is compact) called the glomed

gtar-of v in Sdm Gk. We denote this get by

St (v, ga™ # ) or simply §€h(v), The union of thése

simplexes of 8d" 7 y for which v 1is not a vektex is

laso a closed subset of &~ ., The complement of this set

is an open set of 3K containing v, called the gpen star

- ~1
of v in sd" & or simnly sbar of v in sa” 5{, This is

k

denoted by 8t (v, 8a™ &) or st (V).
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4,11, Exe pg se. Prove that for any vertex v v, (G )
the tonological closure of St (v) is just Stm(v) and the
tOpological interior of SthV) is just Stm(v).

© -+ 4.12. Example.. Consider the 2-gimplex Sd JCIE- S0 <
Stl(b) = interior of a 0?1801 While
gf (b) 4g all of a 02180+ The shaded

‘ portion in the adjacent figure re-
presents Stl(bz), Stl(b2) is

obtained by adjoining a, b U bal.

4,13. Exerelse, Let v € V'(Ek), Show that St (v) is
the union of all open f{aces of Sdm ak with v as a vertex,

4.14, PROPOSITION. Lot v ,ev.,v, © V (55 yhere X

o r

is any k-simplex, Then the sets Stm(vo); eeeyS% (vr)
have a non=<empty intersection k

/if the vertices VoreeesV, SDan a face of 8d° & In

this gase, St (v )N see N st (v,) D Tr, where

T '*
=V L. Vo
0 *p

Proof, ' The point p ¢ Stm(v) for any vertex v € Vm(Ek)

if v dis a veﬁtex of CLth(p}°
4,15, COROLLARY, Stm(vo)n vee [ St,(v.) 1s the

union of all open.simplexes of which Vo eee v, 1s a face.

4,16, LEMMA, The diametor of a simplex in R® is

the length of the longest edge or 1-faee,
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“k ‘ n
Proof. Let 6" = a  v.o & be a k-simplex in TR (n 2x).
Since & 1is compact, the diameter is asswned by some pair of

points of 5k ; that is, a line aegment in Ek

)

. However, for
-any point p © = » the closed ball about p, wlth radius =

=1

max H D - ai][ is-coﬁvex and contains all the vertices of Ek
i : :

and contains therefore:. . The maximum distance from p is

thus achieved: by a vertex, The longest lins segment in ' §k
rmust therefore have a vertex as an end voint., By the same
argument, it must have a vertex at each end and hence 1s an edge.

4.17;.LEMMA._ If the dlameter of the simplex
-k - . L ,
o = a .. in JR is d, then the diameter of

¥ ~ —r kd
cach simplex of 8d s < TR

Proof. Let b = b(+). Then,
P .1 )
- ! , b - ai - K1 (ao + see t Ay s £

. A ) o - a) |

‘from which

o - ol S gln Gngmagll + oot fiaeag ) S 35

k+1 7
The ball-eof radius kfi , about b contzins every vertex of
& and hence contains §k. | Thus, every edge of 8d 5 with b

a vertex, must have length ég kgfl' Any of the remaining cdges of

Sd &k are edges of the gubdivision of one of the (k-1)~-faces of
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of a7 and by induction hypothesis has diameter

< gié a < i d and this completes the nroof,

o = k1
' - -
4,18, THEOREM, For any k-simplex & in ﬂQn and any

£> 0 , m can be chosen.so that the diameter of every

o m
~simplex in Sdn ﬁk is 5§‘ (’E%T ) d, where d 1is

-

the dismeter of &t . Choose m sufficieftly large
k 4

_ m
sach that  (777) 4 e . E

v

5. AN INTRODUCTION TO DIMENSION

5.k, DEFINITION,  Let L = { U}" /)»6 j\_% be a cover-
ing of the topological|space X. Th= largest integer n

for which there are n distinet indices MoRgyeaeyd, € L\

with Uy Noeee N Uy # ¢ 1s called the grder of the

'co°\re:r':'u:dg{.1 If there 1s no such largest integer, then the
the

order ofkcovering ig infinite.

5.2. Remark: We do not assume Uy, # Uy for N N
1 2

For any space X, the covering iXh // A6 jﬂk} where X% =

!
>

for all AN € /\  has order equal to the cardinality of /. if
/N is finite, otherwise infinite. However, X is connected

ifiaﬁd only if there is only one covering by nonempty open sets,

of order 1, (viz), .{ X.}‘. The order of any covering of the mull

space 9§ is 0.

BRI

R
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5.3, DEFINITION, A covering 1L = {v, /aeA} for

the topologiecal space X is sald to pefine the covering
V= ll Ve /{* € {"“l} of X 1f there is a function

£1 /A — M such that Uy Vepy for all a e/,

We say that f effects the refinement, If 1L refines

V- s then W 1s called a pefinement of V. If further
A\ = M » any refinement effected by the identity of A

is called a direct refinement. If every (open) covering

of X has a (open) refinement with a given property Dy

then X 1s said to have arbitrarily fine (open) coverings

with the property p,

5.4, DEFINITION, The dimension of g topological space X,
is the least integer n for which the spacé has arbitra-
rily fine coverings of order n+l . This definition is
clearly tonologically invariant.

S¢5. DEFINITION, For a metric svace (X,d), the supremunm
of the diamters of the sets of a covering W of X 1is
.called the megh of the covering 1. TFor any ¢ >0~ , the
E N(p, €)Y / neX :} is an open

It

the covering N & )
covering of meéhxﬁf .

5.6, THEOREM, ' Let « X,d > bé a comnact ﬁetric space.

For any covering U = {Uh /A 6_/\L} of X by open sets,
there exists a nositive real number. € such that any

rovering of X of mesh less than & refines 1.
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Proof. Since X 1is compact, we may choose a finite sub-
covering § Uhl""’UA { of . For each i = 1,2,..,n, the
, -

function

where

Li(p) = d(ps L \U?\'j_)

1s continuous, hence the function

. +
L X —> R
where
L(p) = max Li(p)
i
is also contintous. Set
peX

Every voint p € Uy for some 1, so that L(py) > 0, But X
i
is compact, hence & > 0 and for any p €X,
dlp, ANV, ) = ¢«
1

for zome 1 = 1,2,..;,n. But thls means that if p € V and V

has diameter less than & y then Vv < U% « The assertion
is proved.

—

5.7. SPERNER'S LEMMA, 4 standard man on & {ig gn

isomorphism on an odd nmumber of simplexes of gd o,
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Proof (By induction). Let

2 MCONN S

m -
be a standard map. A k-simplex of 8Sd Gk on which gﬁ- is an

lsomorphism is called pesular. 4 (k~1)-face of sa” Ek ig

regular &f 735 takes it isomornhilcally onto the (k<1)-face
aja, +ee g Of . We must show that the number of regular

k-simplexes 1s odd.

& has a regular (k-1)-

X ' m
If a S}mplex Vg see Yy of &d

face, Visere3Vyy Where we assume that

95 (vi) = a5y 1= 1,200,k (1)

B g = o,

in which case v_ ... Vi 1ls regular or

o)
QS (vo) = ay
Fa

for some 1 = 132,400,k and v, ee. vy oaes Vk. is regular. (Ve

then either

i

use 1 only to label the vertex and not order the vertices).

Thus, a reguiar simplex has exactly one regular fate while all
other simplexes ha®e two regular faces or none at all, Henece,
if n(fk) is the number of regular (k-1)-faces of the simplex
™ or g™ r?"k, the ﬁmaﬁvi,gzof the number |

LIBRARY N

. = D
- Faty
e [-!‘!ﬂ',.x SR NI Nudg g remy
R )

T

NN
*y 8 hARTY
N

b
L
B, -
RN
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=
2

(2)

is the same as the number of regular k-simnlexes. In the summé—
tion (%), any regular (k-1) face containing interior voints of
Ek is the face of exactly two- k-simplexes of Sdm Ek an& hence
1s counted twice., On the other hand, a (k-1) face of 8@ 2 on
the frontier of 'Ek_ 1s counted ¢nly once. The parity of n
therefore is equal to the parity of the number of régular (k-1)

faces on the frontier of = .

Any (k-1) face lying in Ek must die in some face of

- e .
¥ » SaY 8, ees 8y eev ape  No vertex of such a face is mapped

onto a,; hence cannot be regular unless i = 0, that is, all the
regular (k-1) faces contained in Eb + The standard map ¢>

gives rise to a standard map
b, (T — V()
and the regular simplexes of this are just the regular (k-1)
faces of 8d° Ek c¢ontained in ;o‘ The result follows by
induction,
5.8, LEMMA, A k-~cell has dimension £ k,
hhe 4

Proof. Consider a representation Oﬁxk‘qell as the k-

. - . Rp P
Simplex mk in ® (n2> k)., Choose m sufficiently large

such that the mesh of the open star covering

A5 = { st{v)/v ¢ Vm(gk)j

kel

LI I VI{

can be arbltrarily small. Mereover, for any k-simplex vy
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~k
" .

of sd" &,

st(vy) 1 oo 1) 8t{vy)

i1t not empty so that the order of this covering is at least k+1,

The order cannot exceed k+l, since k 1s the largest integer

for which there are k-faces of Sd s .

5.9, LEMMA, Bvery finite open covering of a normal

space has a closed direct refinement.

Proof. Let L= {’ui/i = 1,2,440,0 }- be any finite oven
covering of the normal space, X, The assertion is trivisl for
m = 1. Assume by induction that the assertion is true for m-1
and set "

o= U o
k=2
Then X =1 |JU; so that X\ TU; and X ~ V" gre disjoint

closed sets. . By normality, there are dlsjoint open sets
4 oy f
Vv O X N 1w Ve 2 XN 1y

4

The complements X N\ V' = A" , X "V, =4, of these sets
are closed and satisfy A < U Ay - U, and AT A = X

Applying induction hyvothesis to ? AN Uy ooy A,f}‘Um.§ of

A H; (which is closed in X and hence normal in the relative

- topology) there are closed sets Aoy wev; A such that A, < Uy,
/ m -

1= 25000,m and A4 = éi? Ak' Then the covering {.Al’Agi"”Akg

is g élosed direct refinement of the covering 7U.
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5.10, LEBESGUE SPERNER LEMMA, Any direct refinement of
the covering by open stars /%o of the simplex g

=k -
U= ag vee @ has order 2 w+1,

Proof. Let U = i'Ub, seey Uﬁ } be any open direct
refinement of 5, , where U; <& S8tlay), i =0,1,...,k. By

above lemma, we obtaln a #irect closed refinement

I' = {AO, jtlg O.l, Ak}
with
z{iCZ"ui » 1=0,1, ..., k,
Let , ) i-1
. - !
. =0
1 = O?lﬁtl.,kl
The sets Vi are mutually disjoint and VvV = (j Vi. Define g
i=0
standard map by
gf (Vi) = ay.
Then, by Sperner's lemma, there is at least one regular k-simplex
=k _ ol =k
T = Vo *00 Vi in 84" o  where
4 (v =
But then vy €A, 1 =0, 1, oo ke If o is suffidtently

m <~k
large so that the diameters of the simplexes of 8d « are less

than £ where € = pin ]| A 5 ™~ Ty H s then any
i:O’..O?k
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point within & of A; must lie in U, and hence any

-k

simoplex of Sdm with a point in Ai must lie entirely in

ﬂi' In particular, the regular simplex %k lies in each of the
sets Uy and hence the order of covering U must be k+l1 .
5.11, THEOREM, & k-cell has dimension k.
2roof. By Lemma 5.8, the dimension is < k. To comnlete
the proof, it is enough to produce a covering of ;k s with the
property that every refinement has order 2 k+1 . This will
vrove that the dimension is at least k. The covering )&bby'open

stars of = 5a° &K has this property. ¥or, let

ax = E Uh//l e /\j be any refinement of A, « Ue construct a

direct refinement w of £ _  as follows:

Since U 1is a refinement of A, , this process exhausts all the
Cos s . ~ =k
sets of U so that w' is indeed a covering of & ., Moreover

each of the sets vy is open and

vy St(ai), 1 =0,1,...,k,
Clearly, the order of w is not greater than that of U and

hence the resmlt follows.

5.12, LEMMA. A closed subset of a tonological space of
dimengion n has dimension < n.
Proof. ILet A Dbe a closed subsnace of the n~dimensional

space X and let U be an onen covering of 4, Let U be any
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covering of X which induces U, that is,
T 3 {11‘11 A /! BTL'} .

Such g covering exlsts, for every set of 1L is the intersection
of some open sets of A, with 4 and the collection of all
these open sets together with X \ 4 constitutes such a cover-
ing. Since X has dimension n, there is an open refinmement V!
of u' of order < n+l and the restriction V of v  to 4
ylelds a refinement of U of order < n+l. Hence dimension of
A< n,

5.13., THEOREM, TR" and ®" are homeomorshic if and

only if n = n.

RBroof. We first remark that any compact subset of Tﬂn,
being bounded; is contained in some n-cell of ®" and hence
has dimension <« n. Any homeomorphism of R" to. R with
m << n would map the unit n-bati B2 homeomorphically into' g
compact subset B of me + Since the dimeﬁsion is topologically
invariant the dimension of B would be n. But thig is impossible

m ; the dimension of B is <.m < p.

since as a subset of IR
Hence TRn is never homeomorn-hic to 1Rm when m < n, Inter-
changing m and n, we have the result.
5.14, DEFINITION, Tor 2 compact metric space LEd >,
the number & defined as in the Lebessue Sperner Lemma,
for the finite covering :‘hl""?ﬁn.t} 1s called the
Lebesgue number of the covering, |
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oy,

5.15. Remark. For a compact metrice space, to show the

existence of arbitrary fine coverings with a given property Dy

it suffices to show the existence of coverings with property o

Py

of arbitrarily small mesh.

, ©+16. DEFINITION, A _subset A —of —~%—is called-a

Zetraction.if there exists a map.

o X ,:Tf)_m.,ki, ®
A subspace Y of a tonological space X 1is called a

retract 1f there exists a mapping or function

r ¢+ X

> Y
such that r/Y 1is the identity on Y,(i.e.),
r(y) =y
for all vy ¢ Y. The function r 1is called retraction,
5,17, DEFINITION, Let X and Y be tonological spaces.

Two functions f,g- i X —>Y are said to be homotopic
1f there exists a function h : X x T -—=>Y such that

h(x,0) = £(x)

B S S

1f

hix, 1) = g(x)

We write f % g, If instead of X in previous defini-
tion, there exists a neighborhood 1L such that Y is a

retract of U, then Y is called a peishborhood retract.

5.18, DEFINITION, Combine the retractions

EAH Y

VA

X
r s W Y




68

with the inclusions

i ¢ ¥ —s X

/

i ¢ Y — 1L

and we get the comnositions
ir + X — X
ir v U — 1

/

If this map is homotopic to the identity,then Y 1s called

a (neighborhood) deformation refract of X. WMorcover, if the

points of Y are left fixed, that is h(y,t} =y for all
t e [0,1] and yeY, then Y is a strong (neighborhood)

deformation retract of X.

519, Fxamples. a) Any noint of a tonological space X
is a retract of X.
b) The equatorial nlane is a retract of the n-ball under
affine projection. |
c) Sn*l 1s a neighborhood deformation retract of B,
5.20. BROUWER FIXED POINT THEOREM, ZEvery map of an ne-cell

into itself has a fixed point.

Proof. Consider the representation of an n-cell as an
—n_

n-simplex, i.e., o = By t+e 8, 5 and let
<
v o —3 o

be any map.
The sets

¢, = {p ea / £(p) (ap) <plagd by 1=0,1,...,n0.




~are open subsdts of o,
Ci < Stlay)s 1= 0,1,.00,1
since p € Cys

plag) > £(p) (a) > 0

and hence
. St(ai) .

—

If ¢ = { Cqys Cqs ...,Cn } is a covering of 1 s then by

Lebesgue Snerner Lemma, there isg
| n
p e C
i=0
such that
f(p (a) < play), 1=0,1,..0,n.

By adding

o

n
_ () (e & % play).
1=0

e
11
(@

Since both the sums are e al to unity, we have a contradiction.

Hence the Ci's do not cover the whole space. Therefore, there

exists ©» such that

n
p e~ N\ U ¢y
1=0

for which

£(p) fa) > play), 1=0,1,.0..,n

o i
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summing both sides over 1 = 0,1,+.4,n, both sides would be
équal toruntty, hence all the Inequalities should be equalities.
Hence

play) = £(v) (a4), 1 =0,1,...,n.

Hence : _ ‘
£(p) = »
which implies that p 1is a fixed noint.
21. THEOREM, thl is not a retract of BY,

5,
Proof. Tf

n R
r: B > 8
1s a retraction, then the man
n n
B — 1
given by
P> -r(p

has no fixed voint, a contradiction to the Brouwer fixed voint
theorem., Hence the result.
5.22. DEFINITION, If the topological vector snace has

a base of convex neighborhood of the origin, the svace

is called a lpcally convex tovological vector space, or

in short, convex, space.

—

5,23, THEOREM., §" ™" 1s a neighborhood deformation ro-

tract: of Bn.

1 .
Proof, Let R be an interior voint of BI. Then p, is

— n
Yoana %= 8™1 . 10563 , then

o
independent of 3 o
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' i n-1 .
p=oLp,+(l-g, g€ S . Then
CPit> —> ot p * (1 - Lb)g

1s a deformation retraction of Bn"*lpo} onto gP%,

5.24., DEFINITION, A space X 1is said to be contracti-
blg 1f any point of X 18 a deformation retract of X.

The deformation retraction is called contraction,

5:25. Examnle. The map < Pyt > —> tp defines a con-
traction of TRn onto the origin. Its restriction to B

gives a contraction of B" onto fhe origin,

5.26. Bxercise. If a ppind is a deformation retract of X,
so is every point.
| 5.27. THEOREM; §" 15 not contractible:

Proof. If possible, let

n

Fi: g% x 1— gt

be a contraction and let po‘ be an interior point of BYFL,

Then, p 1is independent of " and B - gt
s P P

0 . Then, the

function:

< D, + (1 - g — Fa,el)

is a retraction of Bl onto 87 which ailves a contradietion.

5. 28, Pxercises. a) A noint of B" has arbitrary small
neighborhoods T such that B\, 1L is a retract of Bn, if »
is a frontier noint,

b) ,Sn“1 has dimension n-1,
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6., LINEAR SIMPLICIAL POLYMEDRON

6.1, A linear simnlicial nolvhedron P in a vector snace

represented as the union of a collection of simplexes in V such
that

a)  any two simvlexes fo;ming the nolvhedron are dig-
Joint or intersect in a common face.

b) A subset of P is closed if it interseets each
simplex making up P in a set closed in the natural tonology.

. . 2
Example., Consider ay4 = <1,3> € R"; then

(.:ioz.. G‘Z?—.
a’l‘-’
a

aoo a20 a22 \J aoo 20 aoE

Qoo
is not g polyhedron, because their intersection is not a common

face. But

foo M11 %02 U %00 P20 P11 U 290 292 213
is a polyhedron,
Condition (b) asserts that the tonology of the nolyhedron
is the finest topology which induces the natural tonology in
each of the simplexeé. It is called the-natural topology of the

polyhedron or the Whitehead tonology, after J.H.C.Whitehead.

6.2. DEFINITION., If a polyhedron is made up of a finite
number of simplexes, it is called a finite polyhedron.,

Otherwise it 1s an lnfinite polvhedron. If oné of the

simplexes making up the polyhedron has dimension n, but
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none of the simplexes has dimension » n; then n is

called the dimension of the vnolyhedron and the polyhedron
ig called an n-polvhedron. Otherwise it is an oo-poly-
‘hedron. Thus, a k-simplex and the nth barycentric sub-

division of a k-simplex are finite k-polyhedra On the

other hand, the resl numbers TR  can be represented as

the union of l-gsimplexes spanned by consecutive integers.
This is an infinite l-polyhedron. Observe that an O -poly-
hedron is necessarily infinite, since a simnlex is always

finite dimensional.

6.3, Motation., Any face of any simplex of a poiyhedron

rrerle

will be referred to as a simnlex of the polybedron: If every
simplex of *a polyhedron is augmented, we say that the polyhedron
s augmented., Then the intersection of any two simﬁlexes of a
poly@edron is again a simplex (common face)} of the polyhedron.
Henci;Y%%’assume that all polyhedra are augmented.

4

6.4, DEFINITION, A subset @ of P which is a union of
simnlexes of P is called a gub-nolvhedron of P. 7§ it-
éelf is a polyhedron., In particular, any k—simpleﬁ of a
polshedron P 1s a finite k-subnolyhedron of P. The
union of all k-simplexes (k<. n) of P is an n-sub-
polyhedron called the n-gkeleton or n-gection of P and.

is denoted by ‘,P . Thus, if P = o, then , 4P =&,

Again, if P is the polyhedron renresented in the adjacent
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figure, then P 1s a finite

2=-polyhedron which is the

union of a l-simplex V,Vis @

-si Vo V. and v
S=-simplex vy Vg Vg a v,

3-simplex Vy Vo Vg V4o Then

LP consists of all noints of P 4

o+

<.

L

not in the interior of Vq Vg Vg Vg For any nolyhedron
g

i S

P, P denotes the vertices of P.

6.5, DEFINITION, Let X be a subset of P, The union of
all simplexes of P which are disjoint from X 1s a sub-

polyhedron and hence a closed subset of P, TIts complement

is an open set in P containing X and is called gtar of

&, written St. X. On the other hend, the union of all

the gsimnlexes of P which havelnonempty intersection with

X is %Isubpolyhedron and a closed subset containing X
e

Ls called)closed star of X, written St X If X = x}

i

consisting of a single point, we may write St {X} R St x

and so on. We say that P is ghar-finite if &t p 1is

a finite subpolyhedron, for each point p € P,

©.6. Examples. a) Consider ?Rg . Let 8. be the origin

and a; = < cos ¥, sin >, 3=1,2,... . Then the poly-

S

1
hedron P 1is the union of all the simplexes { ay 4, / n 21,

P is an infinite l-polyhedron., But P is not star-finite,

Ay
since St a, is not finite,




b) Let B denote the real vector space generated by

the ndn-negative integers and let e; be the basls element

corresponding to the integer 1. Then { ei// i=20,1,... } is a

bagis for R | mhe polyhedron P! 1is the set of all

simplexes

n< an + 4
-on-o . / o= e v 4 = 1.9
Ecrn ""ej ej‘.}_l “ 0 bj+9n~9 3'— 2 ] I'lw-l,_.:,...

with the Whitehead topology., That is,

Promoglerea®y U egBae egeg (J 0405048005200, U -o e

Clearly, this gtar-finite.

6.7. PROPERTIES, We may think of St as an operator or
function defined on subsets of P into some special

open sets of P. It has the following properties:

a) "If X < X,C P, then 8t X < st ¥

1 o
) st U X1 = U St X..
'mwxinJ AC I A

c) St (St X) = st X.
6.8, DEFINITION, Let P be any noint of the polyhedron

P and ;l any simplex of P containing p. Regarding

P as a nolnt of ay, the closure of n is a face of 713

which is denoted by Cl(p,m). If » lies also in .
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then o N 7, 1s a face of

<1

containing p, so that

} =

1
-

Cl(pyry) 1s a face of oy N Hence Cil(p,~

o * 1
Cl(pggg) is independent of 51 and define it to be the

closure of p, denoted by Cl{p). It is the smallest

' simnlex of P containing » and ©» is an interior point

of the simplex. The closure Cl 13 thus a function de-

fined from the points of P to the simplexes of P, If

-

™ is a simplex, then ci™t & = o ( = interior of @ ).

Therefore, P 1s a disjoint unlon of the interiors of

simplexes of P,

6.9, Exercises. a) Let p be any »oint in a nolyhedron

P and let & = ¢l n, DProve that Bt p = 5t «.

b) Let { Vor Yoo eeey } be a set of (distinet)

vertices of P. Then the stars of the vertices, 8t v ,...,5t vy,

have a nonempty intersection 1f VaareeeaVy is a simplex T of
P and then
St Vo) e f].St e = St T
6,10, PROM:RTIES OF THE CLOSURE FUNCTION, If X < P,

crx= Y c1x,
x £ X

a) Cl X iz the union of all simplexes & of P

whose interiors meet X, that is, X Vo # qb‘ %

by If X, < ¥, P, then CL Xy & C1 X,

\




s

c) QC P is a subpolyhedron if C1 ¢

i1
]

d) CL{(C1X) = C1X

e) c¢1 U Xy = U CL Xy
r ALY YA

e Nz N C1 Xy
Y AN A e

g) Clstx = §tx
h) x € St X if and only if (CL x) N X # ¢ .

6,11, PROPOSITION, The union of a family of subpolyvhedraq,
of ¥ a polyhedron P 1is again a subnolvhedron of P.

The intersection of any family of (finite) subpolyhedra

is a (finite) subpolyhedron. The first statement follows
from the definition, The second follows from the above
nroperties,

6.12, COROLLARY, For any X, C1 X is the intersection
% wkk of sll subpolyhedra of P containing X and

hence is the smallest subpolyhedron of P eontaining Ko

6.13.‘Remgrkg° a) 5t X 1is the complement of the union
of all volyhedra of ™ disjoint from X and hence is
the complement of the larzest subpolyhedron‘of ? dis-
joint from X.

b) If P and § are polyhedra in the same vector space

V, then P/l Q and P U Q are defined but need not be
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golxhqggg. However, if either one is a polyhedron,

then both are.
6.14. PROPOSITION, Tet { P, /M€ | be a family

of polyhedra such that Phl N Ph is a wolyhedron for
2

any Apy A, € /N + Then ké{ﬁx Py defines a polyhedron

P and P is a subpolyhedron of P for all A€ /\ ,
6,15, Notation. If P 1is a nolyhedron, the topological
space represented by P 1is denoted by / P ] e If § 1is
a subnolyhedron of P, then jQ, is 2 subset of [P} .
Two different nolyhedrs ?1 and P2 may have the same
topological space I P} » We then write for any

x<rp o,

St(Z,P)

11

- o
SE(X,P) = stp(x)

CL(X,P) 01p(X).

If @ 1is a subpolyhedron of P and X <{(P[
Sto(X) = sty (X N Jo] ).

6,16, DEFIKITION, The nolyhedron P! ig said to be

a gimplicial subdivision of the nolyhedron ™ 1f

[P{ = [P'] , and flor every simplex & of AR
Clp(l& )  is a simplex of P,
This means that the simoplexes of P' are 'smaller' than

those of P.
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6.17. Remark. For any sibset X [ P{ = [P'| , where
P1 1s a simplicial subdivision of P, it follows that €1 (2)
. P !
Cl
p(X).

6.,18. Notation. When two polyhedra ¥ and P' are
glven with same space [P| = [P1| » then for every sub-

polyhedron < P, Ci pi{[2) 1is a subnolyhedron of P!,

Then, CiL . gives rise to a function from the subpolyhedra of

P into the subpolyhedra of P' ., We denote this by Gl ( PPy,

i‘r
that ig CL (@, P, P") = CL p C1Q]) it being understand that

P} = |P'] and Q < P. We will write CL Q when there

,[ji
is no confusion.

6,19, PROPRTIES, Let Qd’ Qﬁ be subnolyhedra of P and
/ / ; ‘

Qd 3 Qﬁ those of P~ ,

a) If Qi < QB' ; then (ft}:(Qé) < L P(Qé)'

B P00 Q)= Ly @) L Cly, U%)-

) Clp (N g Sl (@ N AL, (gy)

If moreover, P! 43 a simplicial subdivision of P,

4y irf | Qxf = |9 | , then ,QH_P () = Q

) [(jt?fgd \ = ng | so that(fLP, Q Is a simpli-

cial subdivision of Gt We say that C:L'Pf Q, 1s a

simplicial subdivision of Qd induced by P!
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DSl ng) = Sl N Cl e (Q).
g) L (<l Q) = g

h) Qd/ is a subpolyhedron of ¢ LP, ( d{_? Q&)

and if Qﬁ' < Q%‘ ; then Ciﬁ}ﬂ (cL = Qé) C:CL;-SLPQ&)°

Suppose P!'' is a simnlicial subdivision of Pt, which
is again a simplicial subdivision of P, then for any

subpolyhedron Q'' of P'' , it is clear that
i) CL ( C_‘L (Q"l'; P!t’ p!)" prgp) = L (Q‘; P”,P).

This means that P!'' 4ig a simpoicial subdivision of P,

If ¢ 1is a subpolyhedron of Py 1t 1s also true that
3 (CjL(Qg P,PT) § PI, P") = | (Q; P,PY)
6.20. Remark. If P! ig a simplicial subdivision of P,

for any X [P/ and Q,a subpolyhedron of P not meeting X

CJ_P.Q 1s a subpolyhedron of P! not meeting X and so

[st o x [ < ]st,x .

6+21. DEFINITION, Let @ be 3 subnolyhedron of a poly-
hedron P and let P' be a simplicial subdivision of P,
If every simplex of Q is also a simplex of P', then @

1s a subpolyhedron of P! and

1l

CLP' {:5-" 5_ = (—‘tlag—
for any simplex & € Q. We then sny that P! is a gimpli-

cial subdivision of P relative _to 9 and is denoted by

e T b e
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(P, @) .
6.22. DEFINITION, The barycentric subdivision of a
" polvhedron P ig the sinmplicial subdivision 8d P
resulting from the barycentric subdivision of eaeh df the
simplexes., The n-th barycentric subdivision of P, de-
noted by sa” Py 1s defined Inductively as Sd(Sdnhl P)-
and 8d° p = P,
A common procedure for defining subdivision of a polyhedron
P is inductively on the n-skeleton . ,P of P, Any subdivision
of P leaves P unaltered. 7We may assume P has already_ +1
Beengtaking caro to Boe thal The bubatvi s anY ob skt 1 RLex 3
by nP 1s preserved. We shall not describe barycentric sub-

division of a polyhedron P with respect to a subpolyhedron Q.

Let & Dbe any simpiex and o ' any simplicial subdivision of
« . Then, the simplicial subdivision of 6 relative to o' is

i
ol
:

the collection of all simnlexes b T where b 1s the barycenter o

of ¢ and T 1s a simplex in #' . We denote this by b et .

If o' = 84 o (barycentric subdivisien of & }, then

b ot :b SdG‘ = ‘Sdfr'o
Suppose Sd(P,7) has already been defined on of and let
& nrl be aftga(n+l) ~simnlex in P, If o+l 1s a simplexoof “@Q, ",
FE 15 atso in sa(P,9). Ir & ™1 does not belong to Q,

n+l

A\
its frontier o ig a subpolyhedron of nP. Let o' be the sub-

division of ¢ dinduced by Sd(P,2), Then the subdlvision of

o Bl is b o', where b 1is the barycenter of & n+l. Lo
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Inductively define 84™(P,q).

. 1!
6.22. Notation. The relationr T is a face o

(T < &) defines a partial ordering among the simplexes of
the polyhedron @,
6,24, DEFINITION, Let 9 be a subnolyhedron of P.

Then, a nroper seauence in (P,0) is a finite linearly

ordered seguence.

- 2 - -
0“0\‘ ffl<—-—--z\ (I'k,

of simplexes of P, with &o » ahd only 55 y a-simplex

of Q. (o

o May be the empty set).

6.25. Remark. If b, = b(5,) 1is the barycenter of

Ei’ 1= 1,ii.,k then Eo bl by e bk is a simplex

of Sd(P,Q) of dimension = k + dim &o and every simplex
in 8d4(®,Q) 1is obtalned in this manner. Thus, there
exists a 1 ¢ 1 corresnondence between the simplexes of

Sd(P,R) and the proper seguences in (P,Q).

6.26. PROPOSITION, Let Q be a subnolyhedron of P,
Then a) If R 1s a subpoiyhedron of P and RN Q is
atmost a O~pnolyhedron, then the sﬁbdivision of R induced
by 8a(p,q) 1s sa g.

b) R = P> St P @ is disjoint from .

¢) St (g, 8A(™,Q)) < St(q,P)
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6.,27. LEMMA, Let & be a simslex in JR" of dia-

- -n
meter d and o o AN {n-1) -face of & , If T 1is

any simplex of the k-th barycentric subdivision

$a(5%, &), which mects Ty that is, @ N T # P,
then every point of T iz with ( H%T Ka or Eo.

Proof. (By induction). Trivial for % = 0, Assume it is

-—

true for k-1 (k >>0). Since,T amd o, are both convex setsy
n )k

it 1s enough to show that each vértex of T is within ( )" a

— —

of &, that is, dy of o . Then T,= v, by by «v. by where

o? o
Vs is a nonempty face of Eo s Py (Lt = 1,2,...,t ) is the bary-
center of g simplex S of Sdkhl (En, Eb) such that

T, <L W 4 - - _. .4 9. (a proper sequence). Consider Y. for
i = 1,23-.‘,1} &I’ld let
Y = Voo o .—VS

ig a vertex of &

vhere at least \/ o

+ Then, by the induc-

tion hypothesis, there exist Wi € T 3§ = 132,000y 5 4 such
t."\'\‘.\ t‘ .
“ \,\i - \!\/J' “ é dk'—l, J = l? iy e ee S -

Let e, = ! [}oéddi% ______ +x~5j « Then ey is a point
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f by~ eyl = I "s'lj:-l' (Vo+vl+"'+vs)_ 'é%i' (Vo+wl+"‘+“\rs) I

11

;%—ili (V=W )+ (Vi=W) + oot (v -w ) |

k-1
L R - s (D
o1 %1 T oT %1t o (n+1) d

/AN

() 4w

6,28, LEMMA, TLet 71 be an open covering of the simplex

o Z ay 8y +++ 2y (0> 0) such that, for every vertex

a, of Eb S 8185300058, there i1s nrescribed a set

UL‘?>EB » Then for some m, the covering by closed

h}

stars of Sd" (E_n,‘EO) refines \L and

i

St (ag, 8d° (77, §)) < U, 1=1,2...,n,

n

Froof. & ™ is compact. Thus, we may assume WL 1is a

finite open covering with Lebesgue number & >0 ., Let

A Suel
L= '+ {l; and choose k sufficiently largeXthat
Ly
k : .
nii ) d.<: F’(EO, AT ) where —fq is the natural metric in
7' and d is the diameter of &° ¢ S¢F o
St ( ) = 8t ,8d (v, o)

Then St . (GO)‘c: S

ket (o noz }  contained in

For any vertex v of 5d y Tp
k+1

(7 ", &) with

j Sty (Eéj ‘, wvery Open-simélex of 8d o
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vertex v  is contained in 5 simplex of 5%, (Eb)' Then

IStk+1 v | < | Sty (o) |

and therecfore

—

Sty O lelst () | cw

—

Let B = & T\ Stipy (50« Let a, be the maximun diameter

of any simplex in B. Given £'> o ; We can choose ky

suficlently large so that  (‘iy) "4 <€ . Then, ir

€'« €/ ,m=k+ ki + 1 is the required numﬁer. Let v
be any vgrtex of Sdm(5'n, Eb)' If ye ! Sty (§0V€:} Stk(56)|
<. WU 4 then

[st,00 | < | St (v [ | sy (5:0)'{ <o
If vd { §ck+l (&) ‘ , then
| s, (V[ Sty (V)] € B,
Since the diameter of / St (\/)I < &€ , there is a set LLJE-lL
such that
[ st (VY] < .

This ecompletes the proof.

6,29, THEOREM.(.Refinement theorem). Let "U be an open

covering of the polyhedron P, There exists a simplicial
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subdivision P! of P such that the covering by
closed stars of vertices of P! refines W
Proof, Every vertex- v of P belongs to one of the
sets LLV in U . We proceed inductively. Sunpose now that
of! ‘has been defined (where N is the simplicial subdivision

of _P) and for eich vertex a of nt's there is an open set
L, € gy such that
5t (2, PO < U, - ‘
To simplify the proof, we use the following notation. The letter

a, with or without subscripts will represent a vertex in nP’.
T will be an (n+l)-simplex in P, & its frontier, b is the

A%

barycenter of . 2 o 1s the simpliecial subdivision of o

induced by | P' and T is an (n+1) simplex in the contric sub-

division bs' , that is, T = b Ty » Where T, = 8y eseja, lsoa
Y ' - r - !

simplex in _~'. Finally, » ° and T will be the subdivigions

o and T respectively induced by ,4+1F » so that our task is

-1 P
to deseribe o  ang T,

The covering "L éontains.a finite subcovering 'L(’ of
o with Lebesgue number & s Which we may assume contains all
sets of the form LLG, for every vertex a of o !. 1ilis also
a covering of T , containing the sets LLQ‘}“ o _’Llﬂﬁgnd

satisfies the conditions of the previous lemma. The Lebesgue

\
;
]
i
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/

¢ . v
number of y as a covering for T, £3 > €

» 4

The lemma is gnnlied to W/ (as a covering of ‘%) using E/&‘

instead of g’ (in the proof of that lemma) there is an integer

b o
m! = mq such that the covering by closed stars of Sa™ (T,T,)

refines 111 and

- . oo . -
| )St (a;, sd" (%, T) l < UWa, i=1,2,...,n

L -
and the diameter of every simplex in Sd° (T, T,) 1is less than

1

3 - ¢ - K : =!
/é « Let m = max M =me /T ED W'. « Then, &
sd" (b &', &' ) is the required subdivision,

For each vertex a of N

|88 (o P = U |8ECa, &1 | (1)

where o ranges over all (n+l) ~simnlexos containing 1. Also

188 G, #Y [ ] 3 G, B (2)

where T ranges over all simplexes of b ~' which have a as a

vertex. But

so that ,
= | - ml - -
]St (a, T') }CL\St (a, sa™ (%, T )[
since m' < m. But
| 5t (a, sd"' (%, )| < W

| 8t (ay TH| © W, (3)
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It then follows from (l), (2) and (3) that
5t (a, n+1P!)/ C'ua

Any vertex ¢ of _ .P', which is not 1 vertex of L5 must
b
be vertex VT interior to o , so that
Ve .

- - |
ERRIRTY SR ESONTINE
If furthner c <is an interior point of some T , then

iSt(c,rr)l :lst(c,’tn), .
Annlying the lemma, there is a li;A & 1J_such that
— -
\St-(c,'t)\ oo

Hence
| 8t (e, 1P € W,

If ¢ 4is not an interior noint of T g

\ St (c, ';t)\ = Y t st (e, %‘) i ’

-

where the union ranges over all simnlexes 1 of & such that
c € | T[ and each simplex has diameter less than & 4 Hence,
there is a set W _ e UL , containing ¢ as well as every point

of & within distance ¢ from c. In particular,

{Eg*"t(c,o“-")lc;Lt.




6.20. Bemark. Let W Dbe an open covering for the poly-

hedron P and let Q be a sub-polyhedron of P such that the

covering of @ by closed stars of Q refines the covering

of Q induced by UL . Then there is a simHlicial subdivision

(P;Q) ' such that the covering of P by closed stars of (P,

refines 4,
Proof. As in the previous theorom y except that when o«

- -—
1s a simplex of Q, we take « = 5,

6.21. Exercise., Find an example to show that the result

is not true if ‘'closed stars' are replaced by 'onen stars!';

7. THE TOPOLOGY OF TiiE POLYHEDRAON,

We know that a simplex 1s compact. A finite polyhedron

-is a union of finitely many compact sets and hence 1s compact.

7,1, THEOREM, Lot A Dbe a compact subset of a poly-

hedron P, We shall in fact show that ¢ 4 is s finite

sub~pblyhedron. For each simplex o in &L A, let

pﬁ_e o VoA (This intersection is not emnty). Let

L F= { pc'/’g? e Cl 4 } . Then (7 intersects any
simnlex T of P in a finite number of points (possibly

one for each face). Hence, 0N T 1ig closed Tor each

——

: . : 7 :
gimnlex T in 0’ ; that is, 0 1s closed in P. Hence

4> 1s closed in A, A being compact, (" is compact.
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By the same argument every subset of § 1s closed so

that each point of {2 is open. Since § is compact,
g is a finite set. Hence <l 4 is a finite sub-

nolyhedron.,

7.2, COROLLARY, If 4 1s a compact subnolyhedron, then
8 is finite. In particular, if P is compact, then P

is finite.

-

7.2. Remark. & polyhedron P contalned in IR inherits
T

a tonology from 'ﬁ2\ and this topology nced not agree with the
polyhedron t opology.

i LT
7.4, Bxamnle. Let a_ = < cos nos sing > s = 1,24000

- 1 . 1 Lo
b = 4 = cos y T osin g >> ]

Assume a, = 4;030 > . Lot Pl bs the nolyvhedron consisting

of simplexes%qao a, / o> 04} and P, consisting of simplexexec

j a, by /’n > .0 } . As a sct of ﬂ?ﬁ‘a P, 1s compact while

“

Py

they are not finlte,

PR

is not, As polyhedra, nelghter Pl or P, 1s compact, since

7.5, Remark. A subnolyhedron @ of a rolyhedron P 1s
compact if and only if it is (intte, |

7.6, LEMMA., Let P he a polyhedron and p € P, For

apy simplex & of P containing p, every neighborhood

of p - intersects o .
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Proof, Let W be a nelghborhood of Pe Sunnose
n o= 95 . Then & \ . 1s a closed set containing o .

Hence '3.\\ U7 which is é'contradiction. Hence the result
follows, | 7 |

7.7, THEOREM, 4 nolyhedron is locally comnact 1if and

only if it is star-finite.

Proof, If ﬁhe nolyhedron P ig starffinite, for each point |
p € P, St(p) is a;neighborhood of p and St(p) is finite |

and hence compnct, Hence P ig locally comnact,

Conversely, assume that P is lochlly comnact. Tet N

be an open set containing v such that N 4g comnact, Then

No =N ) St(p) is also an oven set containing p and

ﬁd < ﬁ'f] §f(p), for any simnlex & containing »  has interior

noints in N, and hence is a simplex of L ﬁ; « In particular,
St(p) < CLN_ . Hence, it follows that the latber is Finite

and, compact and hence the same is true of the former. Thus P
is star~finite,

7.8, DEFINITION, Let P be a polyhedron., A P-Baryeentric

function p on. P 1is a barycentric function defined on

the vertices of ©f P such that its support smans a
simplex in P. We will call the simplex spanned by the

support of p as the sunport of n.

7.9. Remark, We know that for any finite set of barycen-

tric functions on oF s say. Ppaessybyy the function
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is also a barycentric function. But it need not be true for

Pebarycerric functions., If DyaesesD, are P-barycentric

n
functions, and p =2 L Py then the sunnort of p is the
i=1 ‘ N
union of the suprorts of py, tret is, s(p) = ) s(p,). Then
i=1

P 1s n P-barycentric function if and only if the supports of -
p; are the faces of the same simplex,
7.10. THEOREM, Lot (3  denote fhe set of P-bary-

centric functions on a polyhedron P, The set G%P is in

1:1 correspondence with the points of P, the correspondence

being given by

D N Z S:(\J)Vc

B ™
Vet}‘

Proof. The sum on the right 13z well defined since p(v)=0

for all but a finlte number of vertices., The sunnort of p 1is

- ol ( |
3(13) = l Vo, ~= - -, My g
Moreovery; Ve, - - ,v. are verbtices of » simplex P that
O
¥
v !ow)_‘_v - 5 POVIdYO g ve Loy,
v C\/ 3 3] tr o

For any point p € P, there is a unlcue barycentric func-

tion »' defined on the vertices of CiLP = M, w.. Mg suchithat

o

H
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S
7 P’ ( V)V

i=0

w3
1

e

Extend p’ to a P-barycentric function p on oP by setting

— .

p(v) =0 1if Vv is not a vertiéz of CL‘,.
7,11, PROPOSITION, If P1s Po are any two points"of a .

polyhedron P, then

f 5 | T 1/2
[ or ol o= | e (309 = pptv)
P - o + .

v e
v o]

defines 2 metric, called the patursl] metric of the

polyhedron.

Proof. Exercise.

7.12. Remark, If the nolyhedron is Ifinlte and the vertices
are unit basis vectors of ﬂ?ﬂ , the natural metric of the poly-
hedron is the restriction of the natural metric in TE? « In
particular, this wetric agrees with the natural metric in P  so
that the topology of P defined by the nntural ﬁétric is coarser

than the nolyhedral tonology or Whitehead towology.

7.13. THEOREM, The tonology of a polyhedron is Hausdorff,

Proof, ©Since a metric space is Hausdonff, the result
follows from the fact that the onen sets in the metric topology
separating distinct points are also open in the polyhedral

topology.
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7,14, Exercises. a) Prove that every polyhedron is normal.
b) A nolyhedron P 1is gseparable if and only if it has a
countable number of simplexes,
7,15, Remark. In general, the metric topology of a noly-
hedron dozs not agree with the Whitehead tovmology. Let a, = 0

and a, =< cos % s Sin % > Let PT{QO an / n =.l,23...} X

We shall show that P Tfails to satisfy the first axiom of

countability at a_ , and hence cannot be a metric space.,

0?
Supnose LW = {Ein:/ = 1,2,... }. be any countable family

of open neighborhoods at a,+ Then \J.“rj a, &, is an open

i a_: and \ an find a/ a_ Wi
set in a_a ~ and hence we can find a, © W, Nad, with

! I
a = . The = is ¢ :d A an iJ ]
0 =7 Ay hen An A a losed in a,d, and YAy,

is closed in P, The set V=P {J 4 is an onen set contain-
™

n
ing a_ and does not contain any of the LLTI' However

7.16. THEOREM, The metric topology of a polyhedron agrces

with the polyhedral topology if and only if the nolyhedron

is star~finite. .

Proof. If the polyhedron ig not star-finite, then a
modification of the above argument will show that it is not a
metric snace.

ConVersely, sunnose that the polyhedrdn ig star~finite
and A < P closed in the polyhedral tonology. We have to show

that & 1s closed in the metric tonology also. From

e -ogfl > !pl(v)l“ Polv)
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where Pys» Py are any two noints of Py 'ind v is any vertex

of P, it follows th=t the function

P — T
defined by

P—> Div)
for any vertex v € P ig continuous in the metrie tonology, Then

—_ i ~ 1
St(v) = i_p/,W)/ o

is open in the metriec topology, as is St(p) for any pn € P,

Sinee the intersection of A with any simplex in P is
closed in both topologies and St(p) 1is finite, it follows that
4 1 st(p) 1is closed in both topologies. Thus, if p 1is an
adherent noint of A; in the metric tonology, then p 1is also
an attherent point of A4 /) St (p) « But the latter is closed
in the metric topology so that » &4 Hence A is closed in

the metric topology.

8., CONNECTIVITY,
8.1. LEMMA, TIf 4 and B are connected and A {1 B is
nonempty, then A (; B 1s connected.
8.2, PROPERTY. Lebt A be n connect=d subset of a polyQ
hedron P. Since any simplex &  is connected, A (/o

ls connected 1 AN & # b, It rollows that St

St&’ L 4 7 Are all connected., Hence n connected compo-
& T Ak

nent of P is a subpolyhedron.
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£

8.3, THEOREM, A necessary and sufficient condition
that a polyhedron P be connected is that it cannot be
represented as a disjoint union of two nonempty sub-

polyhedra.

8.4, ﬁggggg. If »n 1is any point of the polyhedrén P and
pt € Stp then p p'!'  — Stp s0 that Stp is arcwise
connected.,

" are sald to be

comnected, if there exists a sequence of vertices of

- 8.5, DEFINITION, Two vertices VgV

<} e —rr—.

P, Vo’vi"f"vk such that v, ; v, 1sa l-simplex of
Py for 1 = 1,2,...,ks The l-simplex v, 4 v, determines
AN
an arc or path vy , v, in P where
7 - -
/'_"‘\
The sequence of vertices give rise to a nath Vo Vi
N N o .
Ve, Vgy eeeyVy 1 ¥y Jolning v, To .. Such a path,

formed by the conJunétion of l-gimnlexes is called an

edge path.

8.6, THEOREM, A nolvhedron P 1s arcwise connected if
and only if any two vertices of P can be connected by

an edge path.
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Proof. BSuppose any two vertices can be connscted by an

edge path. Any noint Do ©f P lies in the open star of some

vertex v_ of P, Then, Py Vo 15 the path joining p, ‘to v,
Wwhere

/—\ ——

Po Vo = X D+ (1) v,

If p. 1l any other noint of P,

N\ '
Vie Py I8 the arc from Vic to Dy Then, a path from (N to Py

¢ 8t Vk for some v, and

Py X

~

1s obtained by following the nath P, Vv
N

to Vi and the »nath Vi Py Thus P 1s arcwise connected,

o? Gthe edge path from Ve

Conversely, supnose P 1is arcwise connected. Let v be
a fixed vertex of P, Let VO be the set of vertices that can
be joined to v, that is, there is an edge path from v  to any

Vertex in Vor Let Vl be the set of remaining vertices. The

union of all simplexes of P, all of whose vertices lic in _Vi
is a subpolyhedron P, of P, 1=0,1. Clearly, Py 1s dis-

Joint from P If there is a simplex with » vertex v_ in

1* o)

P, and v, in Pl, then the conjunction of an cdge path from

N

v to vy with Vo Vq 1s an elge path from v +to that is,

‘]13

vy € P which is a contradiction, Hence P = Polj Py .
Since an arcwise connected space is also connected, Py

is empty, PU is not empty, for v € Po' Thus, every vertex of

P can be joined to v by an edge path. Since v is arbitrary,

the result follows.
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8.7,  THEOREM, An n-nolyhedron has dimension n.

8.8. COROLLARY., R has dimension n.

9, MAPS ON POLYHEDRA,
9.1. PROPOSITION, Tet P be n polyhedron and X a
tonological snace, Let
£, P » o X
be a function, Then { 1is countinuous if and only if

for each simplex o of P, /& ~is continuous on & .
Broof, [ 1is continuous if and only if for every closed
set A of X, £N(A) is closed in P, that is, £l N T
is closed in & . This means £/ & 1is continuous.

9.2, PROPOSITION, Let P be a polvhedron. For each

simplex & , supnose given a continuous function

such that whenever T is a face of o
. ., . r

f. = f—=/ T

Then, the maps j fﬁ}} give rise Lo n continuous function
f ; P—>X
such that f/ & = f w Vor each simnlex o .

Proof. Define

g




by

20

f(p) = f
’ L (p)

If pe E::g CIW’< & and

or

f(p) = ¢ -

f*g_:f/F‘r.

f ds clearly continuous.

5

9,2, DEFINITION. TLet P and 49 be polyhedra. 4 funetion

A '

is linear 1if for ecach point »n € P

[

f.(}?’) = :El p(v) £{v).
vBOP

That 1s, since the P-barycentric functions are in 1:1
correspondence with points of the nolyhedron P, 2 func-
tion f from P to Q glves rise to a function from the
P-barycentric functions (ﬁ%T) to the R-barycentric func-
tiong db@. . 1t is then linear, if this induced func-
tion 1s linear,

4 linear map mapning vertices énto vertices is called
gimnlicial,
9.4. PROPOSITICN, A linear man

£+ P —> Q
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is comnletely determined by its restriction to OP.

Moreover, a function

g% of — @

has a unique linear extension

g P —3 Q

if and only if the g-image of the set of vertices of any

~simplex of P 1is contained in some simplex of Q.
Proof. We ghall prove the ‘fonly 1f' »nart, asserting the
rest as trivial, Let

R

be linear. Then, for eath noint p, f(p) regarded as a-anary—

centric functlon is given by
f(n) = Y plv) £(v),
VGOP
where pSQB 1s the value of the P-barycentric function at v

and f(v) ig the Q-barycentric function of the image of v under

f.

For any w € .Q,

£(p) (W) = 2_ p(v) £(v) (w)

ve P
0

is different from zero only if for some v € P,
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p(v) # 0, £(v) (w) # 0.
That is,

vecl (» and we &L (£(v).

Hence the sunport

s(£(p) = |} s(£(v)).
V60Q5p>

But f£(p) 1sA G-barycentric function so that s(f(p)) spans

a, siﬁnlex of Q@ contiaining :ECdL (p)). The result follows by

&

taking p to be the barycentey (or interior noint) of a given

simnlex,

9.6, PROPOSITION, The composition of linear (simplicial)

maps 1s again linear (simglicial); Moreover, the identity
map of a polyhedron is simnlicigl.

9.6. PROPOSITION, A lincar map is continuous.

9.7, PROPOSITION, & aimnlicial map

f+ @ P —> Q. 5
is 131 if ité induced man from oP. to OQ is 131
9.8. DEFINITION, Let P and Q be two polyhedra. A
gimplicial map | ;

f1P — Q

is called an jisomorphism if 1t 1s 111 2nd onto. P and Q

-are igomorohic it there exists an lsomorphism between them.
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9.9.. PROPOSITION, a) The inverse of an isomerphism ig
an isomorphism,
b) Two polyhedra which are isomorashic are homeomorphic.

¢) 4n isomornhism is an equivalence relstion.

9.10. jxamples. a) Consider a5 = 0,0 , -

1 I ginZ S
-<: Cos 7 s sin = >

e
]

1 T 1 T
b = o~ €08 =, 5 gin -
n = < n n’ n Sy >

Y
H

B . : P, = I = ' _,Hl .
1 {aoal/n Jﬂ&”.}€md-2 {%kh/n 1,25 §

Then the correspondence an<3;~> b, extends an isomorphism,

b)Y  Let 03 (&) denote the set of 411 baryecentric functions
‘defined on a get A. Then &S(A) 1s a convex subset of 62 (d),
a vector space generated by A, It is the union of all simplexes
spanfied by finite subsets of A (considered as a basis of @Z(A)).
Then @5 (4) with Whitehead tonology is » polyhedron in (R (i)

For any polyhédron P, the P-barycentric functions constitute n

subpolyhedron of (53 (oF)  and the corresnondence between the

points of P and the P-barycentrio functions is an isomornhism.

In particular, if P is finite, containing n vertices,

PGS
then O{ (OP) can be identified with [FZ nd P is isomornhic

~ -— =1
to a subnolyvhedron of the standard (n-1) ~simolex S «  The
e ' . h=1
n.atural metric of P ig Just that inherited from 5" (that is,

the isomorphism is an isometry),
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9.11, THEOREM, Let

fiP 5 q
be a simplicial map. Py and P, are subnolyhedra of P.

Q; is a sibnolyhedron of G. Then
) f(Pl) 1s a subpolyhedron of Q.
b) P U Py = £(P,) k) £(P,)
¢} Pp C Py =% £(P) <& f£(P,)

a) fnl(Ql) is'a subpolyhedron of P,

bl

—_—

e} If » 1s a face of T , then f( o) 15 a

face of f( T Y.
Proof. Exercise.

9.12, PROPOSITION, ILet

f:@1 P—= 0

¥

be a simnlieial map. Q, 1s a subsolyhedron of q.

P, = f_l(Qo) is a subnolyhedron of P. Then,

L19nByP) —> 5a(Q,Q,)
is also simplieinl,’

1 . [ & - - :

9.13, DEFINITION, Lét 1 be'a covering of & fopologloal
space Y. Suppose ' '

£5 0,8 X =2y - .

are two maps of the topological space X into Y and
are 4 -approximate if for every x € X 3 there is g
U, € UL such that £,00, f1(x) ell,.
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4 WL ~homotopy between the maps

£, f 1 £~—3Y

is a homotopy

FI X x I —5 Y, 1= [:O,I]
sueh that for each x € X

F(x,0) = £ (x)

F(x,1) = fl(x)

and there is a set Lleé 1L with

F(x,t) € LLx
for t € I. This implies of course that fo and fl are
WLJ—approximafe. In particular, when Y 1is a metric
snace and LW 1s the covéring by open ¢ -neighborhoods,

_then we speak of & «apnraimate mads and & -homotopics,

If Y 1is a polyhedron and ™ 1lis a covering by simplexes,

we speak of Y-approximate maps and Y~-homotonics, !

9,14, DEFINTITION, A4 simplicial map between two polyhedra

P and @
88 P > Q

is a gimplicial annroximation to a man
f+4P—qQ

if for every point p €€P, :

B s(p) €L £(p)
that is, s and f are Q-a wroxim-te.
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9.15. Examnle., Let
svs U, (o) _Hhﬂ%‘VO( a )

be a standard map. Then s extends lincarly to a simplicial map

=l

s 8a" (F) —>
Then, s is a gsimplicinl anproximatlon to the ildentity man on
be |
9.16, THEOREM, Let P and @ be polyhedra and P, s
& subpolyhedron of P,
s+« P — Q
is a simplicial approximation of
£ P —>q
where f/PO is simplieini, Then, s 1s Q~homotobic

relative to PO and

s/P_ = £/P, -

Proof, If f(v) is a vertex in Q for sone vertex of P,
then )
st e <L (s = {e ]

Therefore

s{vy = f(v),

In particular, s and f agrees on the vertices of P,+ Hence

s/PO = f/PO.
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For any point p € P, s(p) and f(p) both belong to the
simnlex &t f(p)e Then for any « € I,

« s{p) + (L - f(p) € L f£(p).
Define a homotony

H: P} x I — g

by setting |
H (pyed = o s(p) + (L = &) £(p).
Then
H(»,1) = s{p) -
H(p,0) = £(p)
and

H(P,) € <4 f£(p) for fixed .
To complete the proof, we have to show that H is continuous.

But for any simplex o of P, the restriction of H %o
is linear and therefore contnnuous, for we may consider \¢ tx T
Tl x Ilias 2 subset of "2*‘*1 s where & i1s the re-

> nEL

% in R wvhere I is

nresentative of the simnlex in §

the unhit interval in _ﬁ% i The proof is complete if we can
show that a set L 1is open in VPl x I if and only if
(T\EW x I )r} (L is open, in \ ¢‘ x I, for cach simplex

@ in P. The latter condition defines a topology on \Plx I,

the socalled Whitehead tonology, Taus, to prove the continuity

of H, it is cnough to nrove the following

b
i
i
i
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9,17, LEMMA., The Whitehead tonology agrees with the
product topology on [P{ x I.

Proof. Since the Whitehead topology is finer than the
produet topology, we must show that a set {{ open in the

Whitehead topology is open in the nroduct tonology. Let

< Por % *>  be any noint in .+ We must find onen sets

W<iPl , V ©I such that
< Pgs &y > € WxV &

which will establish that L is onen in the nroduct tonology.

First, we notice that (§1%1§ x T )N W is open in { Do} x L

Since I 1is normal, there is an open set V contained in I

—

such that { P } x V < L . Since I is compact, V and

E-Po 3 X V  are comnacts Set

W o= [ peEP //Ep'g x V< kl'} .

Then

{ Py € W x ve W,

™~

It is sufficient now to show that W 4is an onen set in P, that ?
1s, W intersects each simplex of P in a set open in that

shinlex, In other words, for any point n € W and any simnlex }

o containing p, there is a set W6 y, Onen in o such that ?

Py

'pewp(: o 1w
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For cach « 8V,
< Py AL > € LL\‘\ ([‘E'VI.XI).‘_

Then, there are open sets W&g Vq Such gl

Ve < |5l v, <
with
< Py A>E wx 2V, cunt|sf x I).
Now i Vg /’d eV } gives a covering of V « Bince V¥
compacty therec exists a finite numbers of these, say

v § eaay v such that

%, G
Ve v, U v, u.. (v, -
dl, o °%1
Set n
o= j;’; wdj.

This wp does the job,

9.18, COROLLARY, The standard man

. m
5§ 8d

T — T
Is homotopic to the ldentity man of & .
9.19. Remark., 4 map
T P> q
1n general cannot have simplicial annroximation,

S:P"'—"\}‘Qo

is
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For example, the identity wmap

id ¢ o —> gd &
has no simplicial annroximation. Sinece this man is sirnlicial on
the vertices, a simplicial annroximation must azroe with the
identity on the vertices and hence a slmplicial anoroximation
cannot exist,

9.20, PROPOSITION, Let
s P-—=>Q
be a §irplicisl map and
fiv Pw3q
a map. Then s is a simnlicial anproximation to £ 1f

and only if
£ {8t (v) ) = St( slv) )
for each vertex v of P,

Proof, Supnose s isg a simplicial anproximation to f.

Then, for each point p e P

s(p) € CL  (£(n).

Since s is simpliecial, s (CL (p) ) must be a face of <L f(n).
Hence, 1f p € 8t(v) for some vertex vy, then s(v) 1is a vertex
in ¢t £(p). Hence
f(p) € 8t ( s(v) ).
Conversely, sunnose

£ 8t(v) ) < 8t ( s{v) )
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for each vertex, If p € St(v), then

£(p) € St(s(v)) |
and s(v) is a vertex of | f(p). Hence, it fellows that

s(d L (p)) is a face of (L f(p), In particular,

s(p) ¢ L f(p).

9.21, COROLLARY. If

s+ P —> Q
t: Q@ —~ R

are simpliecial approximationsto

£1 P —5 Q

and

g Q — R

respectively, then

tO: P-——->R

1s a simplicial approximation to gf,

Proof, (gf) (BtEv)) = g(f(st(v))

< &(8t(s(v)) < 8t(t(s(v)) = 8t ((ts) (v)).

9.22, COROLLARY., A function

s oP —3 4R
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extends to a simpoclal approximation to
£ P 5 Q
if and only if
-1
£ (st (s(v) ) > stv)
for each vertex of P,
Proof, If s extends to a simplicial approximation to

£, then

St(s(v) D £ st(v) ).
that is,

e (Cst(s(m)) > st(v).
Conversely, assune

£t (st (s(ov)) = stlv)

Then for every simplex Vorenes Vi of P

i’—Y((

t- T o

b

: ko K
St Cscw))): N E"'(st (s (wc)))gt[}f,c DK (;6

(= o

since  s(V_) 3 <oy s(v,) are vertices of simplexes in Q.
The result is nowtrivial,

9,22, DEFINITION, A map

 mmme e e £Y -
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from a polyhedron P to a polyhedron Q@ is a gtar manp

1f for every vertex v of P, there is a vertex w
of 4§ Vsuch that
f ( St(v)) — Stlw)
Then we have the following
9.24, PROPOSITION. Let P and Q be two polyhedrs.

Then & map
N f i1 P —> Q
has a_simplicial approximation if and only 4if it is a
star map.
2.26., Remapdr. The identity map

id s 6 —8d &

a. star map.

9.26, PROPOSITION, TLet

f¢ P —> Q

be a2 map, where P and Q@ are polyhedra. Then, there

1s a simnliecial subdivision P' on which f 1ig a star

I'ﬂap »

Proof, Since f is continuous, 1L = %fhl (St(w))/w € OQ}

iy e

is an onen covering of P, By the refinement theorem, there is
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a simplicial subdivision P! of P sudh that the covering by
stars of vertices of P! refines 'L . Hence for every vertex

v € P'y there is a vertex w of Q such that

St{v) fﬂ’(St(w) ) or f(St(v)) C St{w)
Hence f 1is a star map.
9.27, SIMPLICIAL APPROXIMATION THEOREM, Let

£1 P —3Q

be a map, where P -~and Q are polyhedra. Then there

@ exists a simplicial subdivision P' of P and a

simplicial apnroximation
£ P —= Q.

Proof,  Obvious.

9.28, COROLLARY., Tet 7 be a covering of the polyhedron
Qs Then, there exist simplicial subdivisions ®' and Q!

of P and @ respectively and a simplicial avoroximation

.S:P’ —> Q!

such that f and s are .| ~apvroximate.

Proof, Apnly the refinement theorem to obtain a simnli-
cial subdivision Q' of Q@ such that the covering by stars of
vertices of (' refines 1t + Now snply the simplicial snnroxi-

mation to
3 PMM\Q‘




114

This says that any mav f can be approximated 'arbitrarily
closely!' by a simnlicial map.
9,29, Remark. Let
£, P —2 Q
be a map between the polyhedra P and Q@ and PO is a sub-

polyhedron of P on which f 1is simnlieial. That is, the

o is simplicial. One would hope to

restriction of f to P
find a simplicial subdivision (P,P }' of P relative to P,

and a simplicial approximation to f which agrees with f on

Py+ Unfortunately, this not in general possible. One can

easily construct a map .

whose restriction to a19q is simplicial with the vronerty
that no simplicial approximation to f on any subdivision of

8,843, is the identity on ay8ge

9.30: Exercise. Construct such a map.
9.31L. Remark, The simplicial apprdximation to a nmap
f ¢+ P __5 N
>
given by the simplicial approximation theorem is ertainly not
unique. In the first place, the approptiate subdivision P' of P
is not unlquely determined. Secondly, once the P! has been

selected there is still ambiguity in the selection of thz vertex

]
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« simplicial approximation theorem). It is clear that

i

maps (c.
the homotopyclass of a simplicial approximation to f ig uniguely
determined, being just the homotopny class of . But so faf, we

have had no combinatorial formulation of homotopy. This will
be our next goal. We must first show that [P | x I can be
simplicially subdivided.

9.22, DEFINITION, A gstandaord ordering of a polyhedron P

is a partial ordering of the wrticeg of P; whieh linearly

orders the vertices of any simnlex of P, A polyhedron.

-

P together with a standard ordering ig sai to bé standard

ordered.

9.33. Remark. Jﬂny Linear ordering of the wrtices of P is
certainly a standard orderihg.

9,34, PROPOSITION, For any polyhedron P, 8d P has a

natural standard ordering. |

Proof. The vertices of Sd P are in 1:1 corresvondence
with the siwplexes of P and the faecial ordering of P indurss
a standard ordering in 384 P,

9.35, Remark. Let P be a standard ordered polyhedron.
Ve define a polyhedron P x T in V x R where P 1is in the

vector space V. For each vertex .\ of 7, there corresnond

-1 TR o . { “ m
two vertices v T v,ad> and ' v,y of Px I.To
egach -gimnlex Vo, - oL -,V (in the standard order), there

correspond k+l (k+l)-gimplexes defined by
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7., O “ i , Lo
Vo YU v o o LN Ve L L Ve LT Oty o

4s topological spaces, |Px I | and |P| x I are homeomor-
phie,

The vertex function
‘ £

—_— Y
v ” 3 FJ:D,J

extends to a simplicial map,

1 . P —N Px1T

£

which iz an isomorphism into, so that P is isemorphie¢ to the
sub~-polyhedron PEZ = 1. (P} of P xI,

9.36, Remafkg Let P and Q be two polyhedras Suppose

I3 .
o ,'4: ) .l'-, - ‘._',; ."J.
. -

fafy PP s Q
are homotopic maps under a homotopy

FIqpl o xI —> q
where

Folgs= f ¢

Then F gives rise to map

F i |saP| x I —» g

where | 34 P [x I 1is the polyhedron defired above, suech

that 1 (sa P) x I| is homeomorphic to l Sd p ’ x I=|prlxr




117

By the simplicial apvroximation theorem, we can find a sub-
- / _ .
division (T(Sd P) x T ) of (84 P) x I, Furthermore, g

simplicial approximation

/
s (ap x1) 5 g
/
can be found to F. The simplicial subdivision ( (8d P) x I)

induces a subdivision P'E on Sd PE. + The restrietion of 8

&
we can regard as [ ¢ + Under these circumstances, we say that

to P, s SE, ls a simplicilal approximation to F/P’ s which
<

S 1s a gimplicial homotony of 8, ~and sl‘;and 8,18y are

simplicially homotopic. Thus we have
9.37, PROPOSITION. Homotopic maps have simpleially
homotopic, simplicial approximations. ,
9,38, EROPOSITION. Homotopic simplicial maps are

simpleially homotonic,

9,39, PROPOSITION. Any two simplicial approximations

arising from an anpnlication of the simplicial approxi-

mation theorem to a gilven manzare simplicall& homotopic,
10. CARRIERS, o

10.1. Let P Ee a polyhedron. Let .g? (P) denote the
set-of all subpolyhedra of P, I Q 1is also a polyhedron, then
a simpliecial map

sy P > €

induces a function

L (s): L (P) —= ¥ Q)
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preserving order and unions., Explicltly, let Pl,P2 € éﬁ (P).

~If Py © P, then g? (s) (Pl) - %? (s) (Pg). Moreover,

L () (P U PY = 2 () (P) UL (s) (B
More generally, if { Py / ae N\ }C L ( P) , then

VIR /A en)e L)
n E’P(\ [ ye ] e £ (P) ;
£ (Uipa/reny) = LGS
10.2. Exampnles a) The operator which assigns to each

subpolyhedron Py st Pl’ defines a function

—

st v L (P —s L (P),
preserving order and unions.,

b) If P! is a simplieial subdivision of P, (or more
generally if } P‘ = { p! [ ) then the operator P.defines
a flunetion -
Ll 2 BCPY s o (P
with the same proﬁerties. ,

10,3, DEFINITION. Let L be a partially ordered set

with the order relation ‘ <:) and - M 1s a nonempty

subset of L, Then x € L_ is a greabest lewer bound

of Mi(glb) if
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a) x «m for all m €M
b) if y<m for all m €M then y< x.
It follows from b) that the glb is unique. x is

a leagt u-per bound of M (lub) if

a') m< x for all me M

by m<« y for all m &M idnlies x << Ve

The lub is also unigue.

10.4. DEFINITION, A lattice is a partially ordered

set in which any two elements have a glb and lub, If

every subset has a glb and lub then the lattice 1s said

to be comnlete.

10.5. Notation. For any polyhedron P, 2 (P) will de-
note the lattice of all subpolyhedra of P and ?5? (P) the
lattice of finite subpolyhedra of P. L (P) 1is a sublattice
of & (P). That is,  (?) < £ (P), the partial order in

L (P) 1is that induced by gf (P) and the glb and lub of

a set in ¥ (P) are the same as its glb and lub in gﬁ (P).
10.6: Remark, of (P) is comolete but 2 (P) is not
(unless P isg finite)._iﬁ
10.7. DEFINITION, Let P and ¢ be two polyhedra. A
garrier from P to Q is an order nressrving function
7 2P — £ (Q)

The carrier is a) homomor-hic if

[’ (f% U szg) = f1CTq ) U (! (jT%;)
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b) strongly homomorphic, if

r1 (f() i A /ZX G _f\?B'.f U i:f"(Faxj)//)\ G'f\-}

-

¢) homogeneous 1f

dim |7 (P) < dim P, for nll P ,P,,P, € L (P).

1

d) finite 1f [T (Pl) is finite whenever Py is a

finite subpolyheiron of P,

10.8, DAFINITON, If |7 and |, are two carriers
from P to q, then ]"u dominates |77 if for every

PLeZ (P, (.
(R D TR0

10.9. PROPOSITION, A strongly homomorphie earrier is

comnletely determined by its action on the simonlexes.

~In fact, any'ordér preserving function from the simplexes

of a volyhedron of P to 2° (0) can be unigquely extended

to a strongly homomorphle cadridr from P to Q.

Proof, Eaeh subpolyhedron is the union of simpvlexes and

strongly homomorphic carriers praserve arbitrary unions,

10.10. COROLLARY, 4 strongly bomomorphie | '@ frem P to
@ 1s homogeneous (or finite) 1f and only if for eaeh
simplex & of P, éim ! (& ) < dim & - (or

" (&) is finite).
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10,11, COROLLARY, Every carrier unlquely determines
~a strongly homomorphlc carrier,
Proof, The restriction of the carrier to the simplexes

uniquely extends to a strongly homomorvhie carrier from P to Q.

10.12, DEFINITION, The uniqué strongly homomoerphic
carrier determined as in 10,11 by a given carrier [

is called the minimal carrier of [T ,

10,13, PROPOSITION, Any ecarvier dominates its minimal

carrier, Amy carrier which agrees with rT on the .
simplexes dominates the minimal carrier of [ .

10,14, PROPOSITION, The minimal carrier of a homogeneous
(finite) carrier is homogeneous (finite).

10.15. PROPOSITION, The composition (as functions) of

two(finlte, homogenecous, homomorphic, strongly homomor -

phic) carriers is agoin a (finite, homogeneous, homomor -

phié, strongly homomorphie) carrier.

10§16, DEFINITION, Let
f4 P -~ qQ
be a map. Then f gives risc to a carrier

;.Z_” (0 2 (P = L

where

g’ (£) (P = &4 f(pl_)




(£ is called the minimal carrier of f. i

10,17, PAOPOSITION, The minimnal carrier of a map is

:I .:
G
RET
A

TN

finlte and strongly homomorphic,
10.18. Examples. a) The function & (s) induced by a
S —— -
simplieal map>}s a finite, homogeneous, strongly homomerphic

carrier, It is, in fact, the minimal carrier of s.

) Let P and P! be two sim=licial subdivisions of

the some space, that is, [P | = | P'| . Then
5*—-(-:’ .PI . ga__ (P> —_— E(P‘)
o L (P — A

are strongly homomorphlc cariilers. L p! » 1s finite, but

St p, 1s finite if and only if P! is star~finite. In general,

neither of them is homogeneous,
e) C( P’ is the minimal carrier of the 1dentity map
of [P/~ |p{ .

d) The identity map of £ (P) 1is a finite, homogeneous

and'strongly homomorphie¢ carrier, It is the minimal earrier

induced by the identity ma.. | ‘%

1 . " s . .
ir | dominates the minimal crrrier of f. A homotopy

F 1s carried by fj if for cach o € I, the map

F( ,o) dsg earvied by ™ . We also say, thenh that

the maps F( ,0) and F( ,1) are homotopic in the

carrier.
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10.20, Remark. a) 41l the carviers considered so far
carry a map.
b) Consider the simnlex o o . Define [T by
ty g (@) — L (&)
by letting [1  be the identity in &% anda I3 (& %)=¢& o
Then | does not carry a map, for if it does, then we can

show that 1s contractible and hence a contradietion.

11. THE-CONE,
‘11,1, DEFINITION, Let X be 2 tonological space. The
cone of X, denoted by X 1is the space obtained from

X x T by identifying all the soints of X x 1% .

A
More precisely, £ is the sct of all equivalence elasses

of the equlvalance rel:tion R, defined by

< Xl 7 Ry, D ZIx,o 7 r-‘<y,[3> for of = § = 1.

A
Thus X = X x I/R. All the couivalence ¢lasses excopt

one, consist of 5 single point of X x I of the form

< %t > 3 < 1. The exceptional one consists of all

points of the foru { x>/ x¢€ X_} and is called

the vertex of the cone.

Let
d ¢ XxI — X




Then" g
set in
Bt

Since
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be the natural projection. The tonology of X is the

identification tonology. It is the finost topology which

makes d, continuous, This me-ns that a set LL is open

Fi8 y
A !
in X if and only if dxl (_Lg)is open in X x I. The

funetion

\ FaN
1 X —2 X

X L]
A .
wherae iX(X) = < x,0 > embeds X in X . The image ’

iX(X) is called the base of the cone.

1l.2, PROPOSITION, Let X and Y be topological spaces

and
f 3 XxI - Y

a map such that

Cf(x,1) = £(x',1)

for all x, x' € X, Then £ can be uniquely factored

through d, , that is, there exlsts a unique map

A i

gs X -—>Y
satisfying
g o dX = F.

Proof. Since’ dy is onto, set

g (dy (x,%0) = £(x,0). | J

A A
1s a well~defined function on X . Let 4 be an open
Y. ©Since f is continuous, f-l('LL) is open in X-x T.

700 = (g 0d, V) = dyt (g7'Cu))

% has ldentification topology and dy is continuous, gul(UO

is open in -%. Hence g‘is continuous and that completes the pvoof.




10§

11.3. COROLLARY, To every man
fi1£ =%

there corresponds = unicque map

A ~ TN
f:1 XY
such that
A
fo iy = iyo f.

Proof. Let Iy donote the identity on I. Then the

funetion dy © (f x II) gives a map
-~
L£xI —> 'Y

and satisfles the hypothsses of the nronosition. Hence there

T .
frxlz > Yx I

exists ‘ Xx T
N ~ ~
£f: X -—Y
\ X Y C-‘y
. Cx ] >
sueh that , s
A {Lx s
foa, = dy © (f x II) )/\\f A
VX - > Y

Then for x € X,

1

R .
( foiy (x) = f(x,0) = dylxy0) = ( f o dy) (x,0)

it
—
2

N
P
N
O
S
Som
{

= dY (f(x) ,O)

il
I

(£(x),0) = 1y (£(x)) = (?; 0 D (x).




Hence

(?o 1) = (iy o £) (x), for all x € X
which implies .
| fo iK = iY o f.
11.4., COROLLARY, The wap
£L4—7 1
is null homotopic, that is, homotople to the constant

A
map if and only 1if  can be extended to X . That is,

there 1s a map

with
goly = L.

11.5, COROLLARY, X is contractible if and only if thera

1s 8 man

‘such that

‘ — K
r o lX Ty

11.6, COROLLARY, If X 1is a contractible space, then

any map

f ¥ — X
can be extended ovsr the cone over Y, That is, thore is
a man

5 o ¥ —3 X

- ¢

sueh that
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g o iY = f,
Proofs. Exercise,
11.7. PROPOSITION, 1r ve T 1is independent of the
compact set A < ﬂ?k\, then A 1is homeomorphic to v A4,
Proof. The function
f ¢+ AxT

> v A
defined by
fla,) = dv+ (1 - o)a
is continuous. Moreover, f is Lilon AxI N 4Ax {1 } and

£QayI) = v for all a € 4. Thus, there exists a map
IN

[

. '__> MOA

. A
which 1%,11:1 on the comnact set A, Henco g 1s a homeomor-

g

phism,
11.8. COROLLARY, Tor any simnlex @ , the cone over o ,,
5 is homeomorphic to & , Moreover, the cone over any
simplex is homeomorvhic to a sitmlex of ohe higher dimen-
sion.
11,9, DEFINITION, We now define the combinatorial analogue
of the cone. Let P be a polyhedron in a vector space V.
We can reg rd V as o subspace of V@@ R, The point
e =<0,1 > 1s then independent of V and hence P, For
every simplex o of P, ¢ is independent of & and

a——

hence e o is a simplex, The collection of all simplexe
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' - A
of the form e ¢ defines a polyhedron eP or P called
A
the cone over P, The vertex e of P ig called the

vertex of the conc. F 1is naturally a subpolyhedron of

% and the vertices of ? are Just e and the vertices
of P, ;

If e, €V 1is indenendent of P, then we can
construct the polyhedron eoP called the cone over P

with vertex &y

11.10. PROPOSITION.. Regarding P, as a tovological space,
N
| Pl , we can form the cone | P l « As a polyhedron

we form e, P.
FaN

11.11. PROPOSITION, | e, P[ and | P| are homeomor-
phic if e, is independent of P,

11l.12, PROPOSITION, Let » and Q@ be polyhedra,

s: P -— 0

a simplicial man., Then, there exists a unigue simnlicial
map 1’ = ;

A A A )6;

3 e P — 9 5 N
such that [ ‘Q

A Y 5 0.

801, = lQ o s, .§~ s &

where i {4) 1is the inclusion of P (respectively )
A v A
in P (respectively o),
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11.13. DEFINITION, A nolyhedron P 1is satd to be
. - n . A *
conle if there exists a simplicial subdivision (P, P
of the cone over P, rclative to P, and a simplicial map
A %
Ct(P,P —5 p

such that
C/P = iP’

11.14, Remarks., 1) If the polyhedron is conic, then it
ls ecertainly contractible. The converse is also true, that is,
a contractible polyhedroﬁ 1s econie,

b) When P is finite, it is convenient to assume that

~

n - . .
( P, P) for some n. In this case, we say P

" *
( Py P 15 8d
is finitely econic,

11.Y56. Convention. Tlnless otherwise specified, we shall

assume that when P ig finite, 'conic' means "Tinitely conic!,
in what follows.
11.16.DEFINITION. 4 nclyhedron P is gtar-like 1f there
is some vertex v of P suca that P = ég-( V) vis then

talled the star-vertex of P,

11,17, PROPOSiTION. A star-like polyhedron is (finitely)
eonic,

11.18, COROLLARY. g sinplex is conic (since it is shap-
like with any of its vertices),

11.19. Exereise, If P 4g conic and P* g g simplicial

subdivision of P, then P* 14 conle,




12, CONIC CARRIERS,

12.1, DEFINITION, 4 carrier
ML = L (&)
is sald to be conic, if for each simplex o € 3 (P),
T (&) 1is conic,
12,2, THEOREM, BEverv conic carrier carrles a man, Any
two maps carried by a conic cqrrier are homotopic under
a homotopy carried by the carrier.

Proof. Let P and € be polyhedra and

Moo X (P — X (Q)

*

is a conic carrier. We construct a man
P = el

one simplex at a time, one dimension at a time. We define f
first on the vertices OP ; then, one simplex at a time, extend

this map to 1P. An induction on n , the dimension of nP

will yield the desired function.

Now, we define f as follows, For each vertex v of P,

choose a vertex f£( v ) ¢ ['( V) Then, for each 1- simplex Vo Vi

of Py, f{ ¥ ) and f ( v,) are vertices of \ ‘(v Y)Y . gince
(v ;) is conic, it is contractible. Hence, £ can be

extended to a map ‘over the  cone over _{v ,vl} , that is, £
£an be jextended over ‘the L-sinplex. mo vy Hence f can be

extended over lP. The continuity is t rivial,
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sSunnose now that f  has already been defined on n?
and let o be an (n+l)-simnlex. Each n-face EE, 1=0,1,0.ayn +1

lies in nP. Moreover

fFCE) < Mo ) e o)

50 that f defines a map

o —3( T ).

Using the same argument as before, f can be extended to a may
over the cone of o y that 1s, o . Hence f ¢an be extended
to every (n¢1)~simplex, so that f has now been defined on n+1P-
4s before, the continuity follows trivially.
12.3. DEFINITION, @iven two maps £ _, fl carried byrT
we shall define a homotopy
Foulpl x 1 —3 Q
such that /
FC , €)Yy= 7t y &£ = 0,1
and, for every simnlex & of P,

(7 xD . 1( 7).

AS abpva) we define the homotony, one simnlex at 2 time,
one dimension at 2 time. Fér each vertex v ¢ O'F: fcgv)
\ and £ (v) both lie in  [¢(v) . The function
FrKve? v ]y oo
defined by '

FQ/J &> = -CECV) ) £=euld
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can be extended over the cone, since  {T(vyis conic. o

That 1s, F can be oxtended to

v D = e '*

1

This yields a homotony of fO/OP and fl/OP carried by

L Suppose now that the nomotony F  of fo/nP

o .
and fl/nP carried by \ has ~lready been defined
and let &  be any (n+l)~simvlex. Then, as before, F

is defined on o %X I and

Flo xI) ™" (o),

Bxtend F ag follows,

F(p, € ) = ¢ E—(p), £ =01, ptaoa
-Then ' |
F(CExD U (Fx fo}) U (7 x$1) )Y (&)
and since [ (5 ) is conic, F can be extended over tho
conag of
(& x1D V(T x{o}) v (Fx {1} )
which can be idsntified with o x I. In this way the

homotopy 1is extende? over The eontinuity follows

n+lp’
from Lemma 9,17, ™aisg complates the proof,
12.4. Remark., It would seem from the above theorem that
a likely candidate for the role of conbinatorial analogue of

continuous funetions is the conie cacrier, However, even though

the composition of conic carriers carries a continuous function,
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~

namely the composition of the maps carried by each, the composi-
tion carrier., need not be conie, This is evident from

12.5, Example

Vo = Sa) = s(bD

G : —— )
v, = 5‘((2') U, = 5’\[—;')
<)

P 1s the l-simplex ab, 3 is the subdivision of P obtained by

adding two vertiees, a! = 5 oa % b and b''= % a + % b and R

is the frontier of a 2-gsimplex (refer figure (¢) }. The carriser

from P to Q is just the closure earrier citéz « The carrier

from @ to R is just the carrier &£ (s) induced by the simpli-

¢ial map
s(a) = s(b) = v,
s(at)= Vv,
s(h?) = N
Then
&L (s) o AL Q

carries the map

tslosf2l=yq(— |r|
aind is not eonic, since

xcs)b C[JQ (Qb) ‘:R
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Moreover, the minimal carrier of a map need not be conic, as
the above, example also shows, so that there is no obvious way to
Eeﬁ a conle carrier from a map. It would scem natural to -
consider compogitions of conic carriers. This would however
lead to other dl:i..’E‘ficm].ti.-.’as.J since the wrp earried by such a
carrier might depend upon its represent~tion as s-eomposition of
coniec carriers. We use a modification of the idea of 'comnosgi-
tion?,

12.6. DEFLNITION, An gecentable carrier is any finite

sequence of conic carriers < |7 f; . > sueh that
2 - .

2
the domain of r% = range of rb+! s 1= 1,... k=0,
dmep L dis gorried by the acceptable esrrier
<:’jp,f1 . - ,’[1(> if £ can be represented as a
compsotion
f=f10f20‘o-0fk,

such that f i

ls carried by o9 1= 1,2,,0.0.,k,

1

i
Similarly, for homoﬁopies, % is homotople to f

: - i : & € €
N A R Y A Ly
d £,° is homotoni £ an I =
an fi is homotonlc to £y in e 1= 1,200,k
' /
E = 0,1,

S G LR N

- %

»mpky) <F ﬂ-.rﬂ17

Jot( 2
are two acceptable ¢ rriors and the range of f7k+;is the

domain of [”k » then their composition is the aecentable




carrier

\/"T ____)Py\:}

M- e 7 S

= <.r‘§)~ —-,r‘k)‘-Tk*lr’m.“—)r.,‘n?,

The eonnection between acceptable carriers and maps
ls provided by the following.

12.7. PIOPOSITION, 4n neceptable carrier e¢arries a
Bap. Any two maps carried by an acceptable carrier

are homotopie in the carrier.

A converse result daals with the minimal
carrier of a map, But any man

£f3P—3 g
from a polyhedron P fto 5 polyhedron Q is a star map
on some simplicial subdivision P' of p, Thus, the

minimal earrier of f rpelative to P, éﬁ p{f) can be

factored as

g?(m S ,(F’)QCLP:

where g? () is the minimal carrier of f relative
to P'. That ‘it1y ls conic follows from (a). T1f p
i1s eonic and P*x ig simplicial subdivision of P, then
P* is conie,

(b) A simplex is conic (sinée 1t is star«like with any
vertex) and

(¢} The properties of the closure funetion.,
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Thus; it remains only to show that g? P,(ﬁ) is conic

(vhich we shall show presently) 4o establish that

<: Q? ;({2) ,Cl 7 is an acceptable carrier representa-
ting thc minimal cerrier of f, namely ;? (4?) This
establlshgs the following
12,8, PROPOSITION, The minimal carrier of any map can
be represented as an ncceptable carrier.,
129, LEMMA, The minimal carrier of a star mﬁp is coniec,
Proof, Consider ahy star nman,
£ P =3 g

between the polyhedra P and Qy and let v  Dbe any vertex of

P, Then for some vertex w of Q,

£O St v ) ) @ st(w).

1t follows from this that for any simnlex & with vertex v s

() = £(8t(v )) < St (w
so that

L (FY=stCwuy £ (£) (7)),

fe—

But w 1is a vertex of . f(Vv), a simplex in g? (£) (o).
Heneo '
L) (T) =86 Cu, (0 (7))
and gf (f) () 1s star-like and thus conic,
Observe that this take care of one of the shortcomings
of simplicial maps, since, to every map there corresponds an

acceptable carrier, However, the representation of the minimal

¥
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carrier of a map as an acceptable carrier is certainly not unique.
The existence of a simplicial approximation for a star map has
already been gtablished. This simplicial approximation ig in
fact carried by tﬁe minimal carrler of the given star‘map‘ It
would be of interest to isolate that nroperty of the carrier of

which this is a conseguence.

12.10, DEFINITION, Lot

s P> q
be a carrier, where P,Q are polyhedra. Then |7 is a
stapecarrier if for every vertex ™~ of v, there is a
vertex w of @ such that (the value of) the carrier
on every simplex o of P with vertex V is star-

like with vertex w. That is,

[TCe) =8t (uy- 7 () ),
12,11, PROPOSITION. The minimal carrier of a star map
is a star-carrier.

12.12, PROPOSITION, 4 star-carrier carries a simplicial

man.,.

12,13, PROPOSITION, The composition of two star-carriers

ls again a star-carrier.

12,14, Remark.. One might expect Proposition to hold
under the weaker condition that the carrier of every sinplex is

star-like, That this is not the case is shown by the following
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simple exampley; where P is a simplex and Q = 8d P

a (a) a b b b

Let
F:P —> q,

Fois just ¢ ( s @ )¢ Then [T carries no simplicial map.

We are now ready to define the combinatorial analogue of
homotopy., That i1s, we define an equivalence relation among

acceptable carriers and show that it has all the right properties.

Nt

12,15, DEFINITION, Let <& ”1 i T
O T

be an acceptable carrler and [T , a conic carrier which

dominates lj; o (1c+10 - - -°rg'(j:;l>. Then we say

that the acceptable carriers
<1, e [ s . l‘J;hl ymms T P
w
and <[1“ _,.,P; r%+i)“*“)r31"“ - K>

}
are related. Two acceptable corriers are contipguous if

there is a finite sequence of acceptable carriers start-
ing with one of'them and ending with the other,'such that
any consecutive palrs are related
. , .
<My, M ~ <0 17

This clearly defines an equivalence relation,

e e e

12.16, ROPOSITION, The maps carried by contiguous

acceptable carriers belong to the same homotopy class.
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and gominabes

Ezggi. Tt is cleal thaot 1f (v is conic
o~ of“S gnere < ev- -7 7 jﬂj"> 1s an qcceptable
carpler, then any WaD cqrried by < Me,- -~ 7 15 also
carried bY mo. It follows therefore thalt mans carried DY
related or evan contiguous crrriers ATe homotopl.Ce

12.17. Remark. - Let
g2 p —y 9
P,0Q heing polyhedrq and let Py Py i N
1s o star f?

bhe a e,
y.al subdivision
Pinally, 1et < ;f’,

gimpll- g of P
map on PL,P?J
sonding aceentab

denote {he corTesd
tions of the minimal corrier of £, where
CI,L(‘_ : P '—"-‘7 Pig j— = 71,2,
is the closure earvier and
5’0; Py —7 1= 1,2
i1s the minimal carriler of f.
| . 2 . D
AL, 7 18 conbiguous O

12.18. PROPOSITLON, < s

¢ £ O

Let P3 be a si

Proof.

that the 1dentity map

guch that f
QLI?)(&_'(:?)

1¢ carrier repre

mpiicial supdivision ©

Fro~
Ly

L

senta~

f Py 5‘@5
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1s a star map, and consider the following diagram

I
L,

(V [
AR <
¢ \\55 \
cta _p Lo N
= e 5 N a
e, & L3 4
- /P
_ 2

where the variows carriers are closure errriers, except ;fa )

which are the minimal carriers of f on Piy 1 = 1,2,3. The

following relations hold,

2) L, = ;f3 o CLrS since f, and l’g are minimal

Carriers,

b : = o CLy

c) £, CfL is conle, since both are starlcarriers
and. doninate Qf '

D Cly, CL&LOCLCB
Hence, _ _
Th, ety ~ <L ALy, cl Y

- . o e LY
~ < Ea L Cl Y v By, Cay v SERLED
12.19. PROPOSITION. Tet

A

-

g i ¢

A




be maps, where P,2,% arc polyhedra. Then the minimal
carriers of f,g and f o g con be represented as

acceptable carriers. We can represent the situntion by

the following diagram

Then, _ ‘
<;;_f: 62,63) , ¢t QQ1> < épi(’e))dLPP‘ >

r~ <cf ,:,chof> > de)'PL?

—

Proof., Clearly: ‘ i .

since all dve minimal carricrs. Hence

<¥i&{3>>d£@&i><_‘¥ogf))CLPP‘>
- <§Q,(‘3)) CL@@;>£DP§$>)CLP‘91>
N<b§@|(9))c‘t&&1)d[‘&.é{) gpg‘p )3C‘L'P,‘p:-;t_?f"/

—

~ <X ﬂd(304?)) Cfé?plj>)



since )
3
L (5) o £ _(F) =L (g08)
- & ~ Fa - 2
&
Clep, o dlpp = Clee,,
and , is conic and dominates the identity
Ciﬁggglﬁ CH.QIQ
cary ter,
12.20. PROPOSITION, To every map there is assigned an
acceptable carrier which is unique upto contiguity.
12.21. PROPOSITION, The accentable earriers correspond-
ing to homotopie mans are contiguous.

Proof. Let

be maps, where P and 3{ nre polyhhodra, There is a simplicial
subdivision, Py of P on which fy 1s a star map., Similarly,
let P2 bé;subdivision of P1 on which fl is g gtar map. Ne-
noting Sd P, by P, P' is standard ordered and both £

- :l'<
and fl are star maps on P , Now suppose f fl are horlo-

o!?
topie and

is a map such that

where
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are the isomorphisms of P* into the 'o.sz' and 'top! respecti-
vely of P* x I, Finally, let (P* x I)* be a simplicial sib-
division of P* x I on which F  is a star map. We now have
the following sequence of conic carriers.

It follows that
< "CCF)) CL2,> <§§_L"6) 3 CL|>

: 2% by 7
S CREY Al £ sal, y o~ KERD b
Next, consider the carrier
I
where for every simplex o of P* [' (5) =2 & x 1 re-

garded as a subpolyhedron of ©* x I, Then, clearly [T domi-
nates both ¢ (o ) and Jf,(‘i,) + To complete the proof,

we need only show that fj is conic, for then
(;f’(r:))c(z) L) , &ty >

~ KEUE) JCly T, Al >
~ < L(E), dla, £(0), CL Y

But {1 (o) is star-like, since if & E Vo - = .- Vi tpen

Vo is a vertex of gvery (k+1)-simplex of o x I. This

3

completes the proof.
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13. ABSTRACT STIMPLICIAL COMPLEXES,

13.1. The last sever:l sections were devgted to obtain-
ing combinatorial conditions for topologlcal properties
of polyhedra and' combinatorial analogues of topologieal
notions. We now wish to separate out or ahstract this
combinatorial structure of polyhedra, Recall that g
polyhedron is determined by its simplexes and the
simplexes by their vertices, Hence,

13.2. DEFINITION, Tet 4 be ary set, An gbstract

simplicial domnlex K over 4 is a collection of non-

! empty finite subsets of 4 sach that any non~-emnty subset
7{% of a set in K is nlso in K. The elements of K are
rg called abstrﬁct siimlexes. In particular, the one-cle-

ment sets in K are called Yertices of XK. If «

e e g

and

B are abstr-ct simplexes of X with « > B, then P

[
is said to békjgggwof Ay or « 1is said to be g coface
of 8. The adjective 'proper ', that is tproper face'l

'proper coface!, is used to i icate that the inclusion

R T R A A R

is proper,
An abstract simplex with el elements 1s called an

abstract n-simnlex. If for some integer n,

O

there are n~simnlexes

S e

in Ky but no k-simplexes with K> n, then X 1s said to be an

i abstraet gimplicial n-comnlex, Otherwise, K

1s an gbstract
simplicinl co-comnlex, K

is finite if it containg only finitely

many vertices,
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It is sometirmes convenlent to consider the empty set qﬁ

as an abstract simplex of K. In this case, we sﬁy K 1is
augnented énd regard 96 ng A face of every simnlex. When no
confusion is likely to srise, we drov the adjectives 'abstract!
and ‘simplicial'., We will usually drop explicit reference to ' :
the set A algo.
13.3, DEFINITION, Tet P be 2 nolvhedron. Then P
detefmines a unlgue comnlex X(P) called the vertex i
gcheme of P as followsi Taking for A4 the sot of

vertices of P
K E C "o H + e i r‘S'I £ :‘.t'
(P) g— {30 " 3 /a a, is a simplex of EJ .

It 1s c¢lear that there is a 1:1 correspondence hetween
the simplexes of K(P) and those of P with an n-simplex

corresponding to an n-simnlex, M~reover, the simplexes of

K(P) correspond to onen sirmnlexes of P, 1n such a way
that the face relation is prescrved.

In view of this, any property of nolyhedra given stwictly

in terms of the combinatorial structure can be transferrad Lo

¢omplexes., Thus, 1f K 1is an abstr.ct complex and o« is a )
Simplex of X, the gtar of « 3 9t of 4 1s the set of all co-faces

of K. We can thereforc snhesk of stir-finite complexes..Observe

that if o is an open simnlex in the nolyhedron P, then &t o

1s just the union of all onen simplexes of P, which have o as

PR
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a face, that is, the union of all onen cofaces of o . Similn~rly,
we say that a comnlex K ié connected Lf any two vertices are
connected,

Henceforth, we shnll oftent ronsfer terms and concents
dealing with the combinatorinl structure of polyhedra, to

complexes without exnlicit definition,

13.4, Examples of Conlexes.

a). Let A E;i‘ag'bs ¢, d ] .  Then

RIS PTG R ERXE RN
and '

S c& jb .

<K'= §1alsib) g3 .0, fabt, i elhio
are both finife cbmplexes over A,
b) A complex over the set of integers is defined by
admitting as simplexés, amy finite set of integers with a comron
divisor > 1. For any n > 1, i_n,zn} ,ir% 3n } p ses TG

simplexces of this comnlex, so it is not star-finite, Moreover,

any integer Kk, { ny 2n, 4n; ... 5, (k+1)n } is n k-sirmplex

1

in the complex, so it is o co~complex.
c) Another comnlex over the integers is defined by
taking as simplexes any set of not more than (n+1) integers,

This is an n-complex which is not finite nor even star-Tinite,
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13.5. Remark., Simnlicial nmang take vertices into
vertices and are comnletely determined by their acti&n on the
vertices. Moreover, a vertex map is a simnliclal map if and only
1f 1t takes a mubset of vertices spanning a simplex into a sub-
set of vertices spanning a simplex. We can therefore trangfer
the definition of simplicial map and isomorphism to complexes.

A simplielal map on polyhedra has a natural image as = man on
the vertex scheme of the polyhedra and this map is simpliecial,

13.6. THEOREM. Every complex K ls isomorphiec to the

Vertex scheme of s linear polvhedron P unique unto

1somor phism, |

Proof, Tet 03I< e the set of barycentric functions on
the vertices of K,-whose sun~orts are in ¥. Then dgk , With the
Whitehead tonology, is a nolyhedron. If we identify the vertex
with the barycentric function which is on Vv y then K 1is
precisely the vertex scheme of nga + Hence we may take FZ:G%«..
Clearly, if K is isomorﬁﬁic to the vertex scheme of the noly~-
hedron P!, then this isnuornhism extends to a simplicisl iso-~
morphism betweon F and P,

13.7. COROLLARY, If P and @ are polyhedrs with iso-

morphiec vertex scheties, then P and 9 are isomorphic.

12.8, DEFINITION, A wnolyhedron P whose vertex scheme is

isomorphic to a given complex K is called n geometric

realization of K,
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The previous theore: then not only asserts the existence
of a geometric realization\for any comnlex ¥, but gives an ex-
plicit construction of one also. when ¥ is finite, the vector
space IR(OK) can be identified with N?n' for some n and GBK
is then a subnolyhedron of the representative sinplex En_l.
Thig 4ig certainly not the most cconomical realisation as far as
the dimension of the ambient space 1s concerned, for an (n-1)-
simplex can be realised in lqual + This raises the interest-
ing question: What 1s the stiallest value of k such that any finite

O-complex can always be reslized in int? Clearly, 'k can-
not be too small, for if %k = n s1Y,; then a comnlex containing

L.
3n-simplexes with a common (n-1)~face cannot be realized in IR

To see this, let {}&w" '3ﬂn}>{dg;"'> nfﬁnui-{ugn' : “in}

be the three n~simpiexes, with the cosmon face {LT,,A "Lhﬁf.
Then to each of the vertices V¢, assign the basis vectop ey
of }Rn g 1 = 1,2?...,n to Uy the origin and to Uﬁ the

polht ey + o5 4 L4y + ep = e (Ifn=1, see e= 9 ¢y} . Since

the points ®o1 €13 +ee 3 € ,€ and 0 gman g compact convex

set with an interior point, the union of the simplexes

o7 *r+3 &y ¢ Is an n-cell in R . The Interior of this n-
cell, the union of the two sinplexes with their non-common nroper
faces removed, is open in {sz and hence in any geometric

3 * * .n‘ .
realization of the complex in IR « However, the comnlement
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of this sets does not contain the interior of the simplex

€1 89 +er ¢ Which is a face of an n-sieplex in the complerient,

hence the complement cannot be closed. This contradiction shows
L

that the complex cannot be geometrically realised in R+ what

then 1s the smallest Xk ? The answer is provided in the follow-

ing.
o entl
metrically realised as a polvhedron in IR .

Proof, fet K be =an n-comnlox, with vettices

{V; / i = O,l,...,k } « To construct a geometric realisgstic-

“nt+l :
Pof X in R s We must first sclect the set of vertices

P ::%j Pos seey Py ig corrssponding to the vertices of K. iy,

is the union of the siwnlexes spanned by the points in
corresponding to the vertices of simnlexes of XK. Thus, fcor any

simnlex Voo

Ve, of K, the corresnonding set
o

- - -— - L

n, P Mist snan a simnlex and hencs muast be o, 1.1,
i ? b j_r H -
0 ,

Since K is an arbitrary n-complex, 2 simplex of K nay be

spanned by any (n+l) of the vertices of K, so that to cover all

cases, any (n+l) of the »oints of oF must be a,l.i. But Lhis

in itself is not sufficient for if Vi, - - . _VCY)\UC'” - Yy

are any two simplexes of K, wec must be sure that the COrr ¢gnond .

i ing simnlexes of Py Dy wee 1my oy D g s n, intersecs
: i ; 3 73
o} r ) s

a common face, (For exannle, any three of the set of nointe
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:
1%

1

<0,0,0 %, a; = < 1,0,0 > a, =< 0,1,0 > g

- Ll -~ ¢ L1 _1 i TR .
,33__, <2’2’2 > 3 a_4 = ( 2?2, > in h areg aololo

However, the simplexes A a1 a, and g, a, do not interscct
t . ] Lo

in a comuon face) where r £ n, s <« n. For this, it is o

sufficient that the set ij Pi seeeyps g pj ,...,pj ]_ be a,1,1.,
0 . Tp o S

_ - ont1
for then both simplexes of P will be faces of a simplex in-ﬁQ

v
and hence intersect’in .~ coron face, 4Lgain, to cover all

Cases, 1t is sufficient to seclect the set OP S0 that_any set

_ L
of (r + s+ 2) polnts 13 n,1.1. where r < n, s < n so that C

any set of (2n+2) points of JPdis a.1.d.

A suitable gef OP can be obtained from any set

fbl""’b2n+l 3 of lineﬂrly independent points by choosing

Py = Jby + 32b2 * e, 4 jenHl Popng s (1)

3 =0,1,.00 k. We must check that my set { Dy seeesD

0 32n+l }

of pointg of OP is a.leis Lot o be any real valued funetion

on this set such that, writing <  for o (p, )

Jq

o T D, =0 2
© pJO e P . 2

and

Ay Foeee F oy 0 =0 (3)




We must show that «=0 . Su.etituting the representation (1)

for 5 in ecouation (2) glvos

i
o+l on+ 1 on+1 2nt-1,
Sl — ., M - - m
J <G> Jy b.f > > < 3 ) b, =0 (4
i=0Q Com =0 =0 i=0Q

It follows fra: the linear independence of the set

i b, / m = ()10, 2001 } that

o+l

, ;4 = m=0,1,.s.,20+1, . (5)
= 0

The system of cauations (5) tozether with (2) can be interpreted

as a systom of llnear homoger .ous equibions in the iy Bl
1=0,1,.c.y2m, This syetun will hawe a non-trivial solution

only if the detorminant

} foo- - - - i
Joo oo = - T
= s
Jo - - - - = Jrn et
D - S
S S B S A . 2 n+ |
e I T - - —J-‘-ni—a




‘ on+1
is non-zero, But one can :rsily show that D = (\ (ji -3,
. 1 ’
11< i2
which is zero only if 3, = J; +° Hencc, for any set of (on+2}

iq ig
polnts, the deteruinant is nrever zero, so0 the only solution

is~§he trivial one and « = 0, Thus any set of (2n+2) points

ol

of is a.l.i.
A a

The above result is the 'best possiblel. That is, for
every integer n, thsre 1s 2 finite n-comnlex which cannot be
realised in ﬁglh. This is cauivalent %o the assertion that -
every n therc is an n-nolvhedron which cannot be homeomorpt:

. ,
to a polyhedron in iﬁ?hn. in example of such 1 polyhedron is
the n-skeleton of 1 (2n+2) ~simplex., This nontrivial result is

due to Antonio Flores.

13.10. Let X bpe 7 tonnlogical s8pace, To every cover
ing Y = iu,)\/,xéj\}, We can associate an abstract
complex |1 (ii) a8 Tollows: The verticos of 7fl(lb>:j

are just the sets of e + iosimnlex of 71(1L)is "

finite colleetion of sets of 1L with non~empty inter .

. . ' 7. .
section., That is E(LAQ 3LL%:‘““ﬂiL&kslS a k-simplex
If Ay eveyd are distinet and Lﬂ (L M‘:(‘{:’ + The

complex n_<1g>is cclled the perve of the covering T

TZ(ILD y more nreelsely, its geometric realization
may be thought of g some sort of polyhedral aphroxima-

tion to >§ . I

oy

W 1is 2 covering and 1 is not




connected, that'is, T éan be representéd as the dis-
Joint union of non~ennty sub-comnlexes, then X is not
connected, If X has dimension n, there is an open
refinement 1}  of ‘U  of order < n+l, its nerve
n (1;) s 1s almost an n~comnlex, Further, if f is
the function which wffects the refinement, it induces a
simplicial map _ |
Nv) —> T)
Let (X,d) be s coumpact metric snace of dimension n,
Let‘LL - EL‘, ,_.,,L(k be an open covering of X of order
n+l. Then, for 1 = 1,2,...,k,
‘ Fofx) = ax, X N Wy
is a contlnuous, renl valued function which vanishes outside t\
Let

f = ftl + 9 T ooa + f'k

Then, f 1is a real valued, continuous function which never

vanishes. 8Set o

£,
fi = "%- ? 1 = l,g’ttosko

For each point x ¢ X,
X ( LL\) = fi(x)

1s a barycentric function on L+ Let N be a geometric renli-
2
zation of T (IL in R ek L (notice that 1CW) is an n-complex) .
Denoting by . the vertices of W corresponding to U, , x

can be regarded on the vertices of N, 1t is an N-barycentric
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function. fThe correspondence
X —> x

defines a fure tion

*

J ¢ X -2 N,
I is continuous. x € 8t( . ) 1f and only if x( w) =
£,00 #0 o that 5756 w)) = Wy . Then, ir (%)) =
J(x;) x € LLQ if and only‘if Xo € LLC’ Thus, if the mesh

of the covering U is & , for each roint y € N, the

diameterof j-l(y) < £ .

13,11, DEFINITION, A map £ of a metric space X 1into

——

a space ¥, is called sn & Jaan, if for each y e ¥,

diam £+ (v) < & .

13412, THEOREM, If X 1is an n-dimensional, compact,

metric space, then for any £ > O, there exists an

onk1
£ -map of X into TR

»

lS.lﬁ.HTHEOREM. in n-dimensional conpact metriec space

2nt1
can be embedded in ﬁa .

13,14, DEFINITION, TLet X be an abstract comnlex and

'a' an object not in X, Then, the cone over X 1g the

abstract complex
K=k Ufja} y c/wex] U fal .

13,185, PROPOSITION, &4 geometric realisation of the cone

over K 1s isomorvhic o the cone over the gosmetric




realisation.of K.

13.16. FROPOSITION, 4 carrier [ from K to L, where
KyL are complexes extends fto o carrier fro%:Zone aK

to the cone blL,

13,17, DEFINITION, Let X be a comnlex. The simnlexes
of K are partially ordered by the relstion o< T =,
a proper face of T, We deflne a new comnlex Sd K

Over K by taking ~s simplexes all finite (possibly emnty)

linearly ordered sets of nonemnty simplexes of K, Sd X

1s called the barycentric subdivigion of XK. If I isg

a subcomplex of K, then 8d(XK,L) is the abstract complex
over K defined as follows, 4 prrner sequence in K is

a linearly ordered sequence:

o o, < . <0
o< T < - ™~ Tp
with T, and only oy in L (or o, may be the ecmnty

set). Then

Sd(K,L) = L U{&b_ij {‘Gi s Gk-i / o, < 7 veee g O,

is nroper } .

SA(K,L) is called the barveentric subdivision of ¥

Lelative to L. We Gefine inductively $a™(K,L) to be
n-1- O ‘
Sd (84 (K,L)) =and 8d (X,L) = K,
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13.18, PROPOSITION, TLet P be = geomebtric realisation

of the complex K and @ tho subpolyhedron correspond-

ing to the subcownlex L. Then Sd(P,Q) 1is a geometric

realisatlon of S8d(¥,L).

Proof, Exercise,

13,19. Renmark. To simplify matters, we defire conic
carriers for complexés to be carriers whose geometric realisa-
tions are conic, where the geometric realisation of a carrier is
the carrier induced on the geometric realisations of the conplexes
for which the carrier is defined. Bence we define acceptable

carriers for comvlexes as well.

14, CHAIN COMPLEXES,

14,1, DEFINITION, 4 chain comnlex K

it

e,

!
mf—\

=
-

v

=

A

congists of the seguence

O n+l EDn
7 gy (00 RALY

7 Sne1g0 = - -

such that for each integer n, nosltive, negative of eoual
to zero, there corresponds an abelian group € (K) and a

homoworphism 0, such that By, O d,, = O .

8}1 is éalled the bound~ry onerator and

C,(K) is the grcun of n-choins (n-dimensionsl chains),

Let
1 Zn(K)

I

ker Dy (subgroun of Cn(K))

i

grounr of n-cyclos,
B (K) = m D1

= grou: of n-boun aries, i




Then o, ¢ 3 , = © = Bn(K) s Zn(K)

7, ()
B0 =5 Ty

n-dimensional honology. groun

of the chain complex K,

Tet X, K!' be two chain comnlexes glven by

O+l _ dn o~
— O (K) > G Ch1(E)
f f f
b ntl n n-1
. , N\, Vi , \/
o+l

> Gy (K9

2
> CalED Ly o

respectively., We say that

£ 1 K —> K

f

is a map if for each n, there is a honomornhism
: Y s '
£+ 0 (K) > C (K

suqh that

"o f = ¢
a\'\o n ~ ‘n-1 ° a}'s ’

£ = 3:fn } is ealled a.choin-map or just a oD,
14,2, Remarks, . ») £ (2 (K) 7.(K")  for
on (£ (200)) ) = (mh e £) (2,80)
- C“p'n«; ° Dh) Czﬁck\)) - ’f'“ﬂ-—l (a"ﬁz'h(k)>

= f. 0% o

K'Y —




158

e '
Hence f (Zn(K)) < _Zn(K T

b) fn(Bn(K)) C: Bn(K ') for

il

LB, = (5, 0 B ) (6 (K))

/
O el
M1 o+l

]

(2 (¢, L (K))

n+l

" ") ,‘ 1
. Inm S Bn(K Y

Thus cyeles go to eyeles nd boundaridgs to boundarics,

induces a homoworphisn.

ARES, Z (K"
] n - ’ =/ ﬁ.;nv
* ﬁ;TKT Bn(§77' 3
that is ,
Po ¢ B —  w(x),

‘ If 7z B Zn(K);

Ty (z + B (K)) = f£.(z) + B (K1),

This independent of 3z, for if 3! g B (K}, then

fu(z + 2" + B (K)) = £ lz+ 2 + B, (K"

i

= f(a) B (K9, (0 (2" € B (K),

This

fn(z} + fn(z') + Bn(K’) (‘;‘fn is a homomorphisn)




Ing

[
et K= {c ), 2,), %t = {c k0, 2] be two chain

conplexes.,
b\-\+\
— > d'n+t("K) 7 CJ,'Y\(K)
—'ﬁ:"\'?‘l : ﬁr\-&-l /\)\.‘ ’Ch
N / /.
/Ci-‘ ( kl) ?%\+a Cj
> " oA+ ' ?
Lot
f = { fn}

: I{ "‘——"\7\ K'l

Two maps f,g ¢ K -—3 X' are said to be ghain homotonic if

there exists a map D = {‘Dn } s 2 scguence of homomornhisms
. Y '
D, ¢ ¢ (1) 7 Chep (KD
such that
>/ D o = f
nl O0n F P 09, T gy - Iy
We write.

D v =2g
if £ and g are chain howotonie; =2 is an equivalence rela-

tion.
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a) £ =L £, that ig B/ ;?O+Oob = f - f, S{i
o I S ¢S 3 T n  n n |
] ](j
- 1 : i
Take D= f0] , !
he [a) + QD = ~ . ' .
P) If f = g then © LoD +D o7 n = &y~fy it
.
Take D's= {-—Dn} .
o p .
Then, Dpyy © (D) + (D 1) 0 D =¢ -g . Jence gt,
e) If D f ~ g, DY go~n ; then | r;
>’ b+ D D = i?
1 © n-1 % “n T 8 " & o
! B
a 1 - _ .
el 0 Dn + Dn-l e} ?)n =N - gn.
Let D”= Drl + D Then
/ . .
t
Dy © (D, +D!) + (D4 + D! 1) o Bn |
a" a'
= - !
n+1 © Dn n+l © Dn * Dn-l © an * Dy 1 © an
= (3} oD + D 0o + Eﬁ Do D
n+l n n-1 n n+l “n n-1 n
= gn-fn+_hn“gn=nn_fn'
Hence

D o £ n,

14.3. PROPOSITION, If f ~ g, then £, = g,.




re

2roof. et £, 3, H(K) —> H (K. Let

« € Hy(K). Then

= 2+ BK), g€ 2,.(K),

Now
{
8y = Iy = DHH.ODH+IBJ.OEIY
Bl = gy (24 8010 = g (2) + B (K"
/
- 1
= fn(z) 4 .an+l oD (z) + D _po© an(z) + B, (K")
CLrzez () (2 =0)
= fngz) + B Y = ¢ (),
Hence,

. f>;< = Bx e
4.4, Remarks, n) If
f ¢ K — K

1s the identity man, then

| .. I
f-* - HH(K) “'—--—-> Hn(i\) f

1s the identity homomorphi s,

b) If
A NS
g 1K'y kn -
then ?5
(g o f)>;< = 8y 0 [y !




If 7€ 7 (K), | if
Ly 2+ B () ) = £ (2) + B (KXY,

If 2t ez (K",

! ! : !
£ (Z + Bn(z ) ) = gn(Z') + BH(KI )o. L‘t
(goDy (z+B(K)) = (go £), (2} + B (K™ _é
= (gn o fn) (z) + Bn(K") i
= gn(fn(z)) + B (K') ;{
= g, (f (2)) + B (K" X
= By (f* (z + Bl’l: (K))) 3
= (84 0L (z+7B (K))
o
Hence ﬂ%
(g0 f)y = g, o Ty Hf
We have only to check that g o £ 1ig -« chain map. ig
C_(K) “n
n | > Gy (K !
f i £
\!/ n afn / n-1
. C (vt -
8,07, AFND S Cphop (KD 81 © Tpoi
,gn ' \[ €n-1
N/ B a:r /
\/ it . 1 "
. ) \ 17
C x) > Cpy &Y




It
o

il

(8y.1 © Thay? © O e

{Dn(x)} 1s called the deformation chain of x.

3 2)n+1 ) '@n\ ,
—> G0 > () 7 Cp (K —
2 ne1 Gl

! n It
I Cn+1(1‘{_) > GplEY > O D —
o 1 H
| | >
—_ (x"y? eGSR C (K" —>

- N R

g -~ Y
/ A
/ﬁn / AN I‘h—‘} 3?\*1/
N\

l, y, NSl , V%

/ p » .
— C.hvi—i( . ) Oy 5, C\gK’) &N S C; ~t(k.{> —

j \/[\[ ¢ i’l /
Cjn-H / .£” j £
}/}117,’ / ;I

/

frw:

H ) /
Do (gnofn) = (Bnog.n)ofn=(gn_loa) o f
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14,5, THEOREM. TIf

T8 8 K —S K", £ gt 3 Kt Kity and £~ g, f'~ gt
: 7 3 3 4 3 ’

then - o
(f' o f) v (gt o g ¢ K — K
Proof,
{
gn-fnzam_loi) +D_loa
e ft = D pltap' . o
€y = T Yl OVt P n'
' a '
_fnfn - g1r1gn'-°1r1fn+gnfn"'fnfn
] t
= 8, (gn - ln) + (g - fn) £
= !(DI D 8)
g3!1 n+lon+Dn-lOn+
+ 9" oD + p' &I‘)f
1 n n-1 °“n n
=g'5/D 'D*E)+”D'f+
n n+l “n gn n-1 n ml n n
roo!
+Dn-l°‘n fn
[43
= D ! f t
n+l &ney Py togy D1 é)n T Oy Dy T,
' -
+ Dn-—l fn=1bn
,):f , )
= O . ?
nt+1 ({Jn"‘l Pn * Pn L) # (g, Py ¥ Dn-—lfnnl)an




Define

'Then,

165
D't ¢ K ~—> K'Y by
"o " . oy
Dn . Cn(]:\-) M——-‘-") Cn+l( )
DII _ D+ D, .
n gn+]_ n n'n
" -1 !
D ¢ ffof X g o g,

14.6, DEFINITION, 4 map f K—>K'" is called a

homotopy equivalence if there exists a man

g + K! > K

such that

gof | X —> K 1s homotopic to the identity

of ¥,
and

frog ‘XK — K ig horotonic to the identity
of K!?*,

It £ and g are nomotopic equivalents and
. '.7 H(K) —— H (K1)
Be « HUXYD H_(K)

then

f'og =~ ddentity gives fy o g, = (f o g « = identity

gof = 1 .bity gives g« 0 £y = (g o £), = identity.

Hence the homolugy grouns are dsomorphic,
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14,7, DEFINITION, Let K = §C,(X), @ n§ Dbe a chain

/
complex., Then, a chain complex L = E—Cn(L), Eln j 1s a

o
subcomplox of K, if Cp(L) < Cu(K) and @ /C (L) =9 .

: ¢ (K)
4 n - 3
14.8, DEFINITION, Let W Gn(*)
0, ¢ C (K > o1 (K

D, .[cn(mj G (L),

We get the natural man

o) L
On. ¢ STy 7Ty = G
n n-
C (L) + x . '> D x+ o1l

We get a chain complex -{ c,(M), o } y Which is

called a guotient complex.

14.9, DEFINITION, The sequence ) :

oI Ly on

> Cpyy (K > > Cpop(K) —5— - - -

is exact if Ker 25n = Inm a)n+l for every n. ;o
14.10: THEOREM. The sequence ;ﬂ
0 —= ¢ (L) > C (K) > C 0 —s, 0

n inclusion " canonical O N

map -

1s exact,
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Procf, ker 1 =0 =Ino0, j is trivially onto.

kerj = Cn(L) = In 1,
o & o)

ra\va! ,

“ho Cney
' , fa)
> C‘hﬂ(l;hﬂ"a_“iﬂ? Cn(k) - C - )
R FISY Jo ) L
»————} C_',nH(M ! > n- |
Y 4 4
This diagram is commutative »nd E(_ni j jn’% arg chain-maps.
a) i, 0 ’an+l = an-!—l Lt
Suppose er Cn+l(L).
X —7d _';1( x) > n_'_l(*{) & C, (K) for i, © Dn--}-l-
X 7 X n+1(}‘) & C (K) for Bml o1 i
Py an+]_- = 9r1+1 jn+l °
Suppose x € cn+l(K)‘
X > Dml(x) e a‘ml(x) +'Cn(L) for 3 el

Xy x4 G 5 3 () + c (L) for D

‘:3!‘1
> Cnnll) s 4w S0 A WD) e
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Therefore, in and ;}n are chain maps,

¢y ' ) %
i
> H (K > H (D)~ H (L)

—> H (L)

¢ J
¢ 7 .
5 Hn_l(r_- 1)

I 14
“"_‘/> ’{n—l(“)

This 15 called the homolozy scguence for (K,L).

14.11. LEMMA, Let x e C _(K).

| - >
- e (> LY

a) — j S o, € ¢ (li(v- ¢

D e 72,0 &= 0y € :
f% C{Y, ) <—""'_.,_-> PG (bh-l ( K5 U « (C ‘S\‘L)>'
-

m

b) .

. | P
Proof. a) J., € Z,(0) {==> O™ o{=>"0_¢ L(cfn-ﬂ >)

(L) senuch that ax = iy. Now

There exists y € C__ oy

DDy = Oi_.:\:,}).-:o, that is, iay= 0 = B‘j‘:o since

’

i is 11,
Hence,i Dy € C (Zy\—I CL>>
b ix e Bn(M)’ (== i x= Dy, vy e Cn+1(M)' Hence

y =] Zy % e C (K),'Since i 1s onto,

n+1

ij‘-‘bjzﬁ jaz.

Hence -
IRy ) =0
Therefore,

X - azekez‘jzlmi:i (Cn(L))

1
¢



i g S e o i o i i e

1qe

Thus,

x,ag = (., w e Call)

or

% =

35 +iw € [?)r}(‘<> U < dth-)

Conv_ersely, if x=0z+ iu, z © ChepfB), Lio€ Cn(L),

then ' D .
J'(j,;..'33> f:j(L’L - O CLhC’JjC:j ?):aJré’

ir y = jz: then y &C (Dfi). Hence Jj x € Bn(M)-

n+1l

B

14.12. RemarR. Lot

1

: 3 X
Yy EM s om0 e omen s w (s

be a chain map. Then, we d:zfine
B‘X‘ . Hn(M) —_— Hh_l(L)s

Let <« € H((M). Then, « = B (M) + x, x € 7, (M), Take
y € Cn(K) with J vy = xo By Lemma, o y €1 (Zn-l(L))’ that 1is,
Oy = 1z where z € Z (I)o Let B8 = z+ B_ (L), Set

n~J. n-1

D, =B,
Sﬁppc}se « = B,(M) + x = Bl x'y x, xl € 2 (M), Then

x = x' ¢ B (M. Moreover,
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Jy x! , where y, y' € C(K)

il
e
o
"-4
i

dy = 1z, Oy = iz', where z, z' € Zp.1(0) .
We claim that z - 2' €8 _,(I). For

Jy-yH = x~x' € B (i), y-y' € B (K) U 1(C (1)),

or
v -yl = au+jA1,118qﬂﬂK% v e ¢ (L.
.Hence
; i (z = 2" = OV) =0
or
% - 7! = £ B
# 'a\/ n'-l(L).
l4.l§; Remark, E5¢@ is » homomor phi sm.
Proof, If « = BH(M) + x, ! = Bn(M) + x', then
’a*(c{) =B (D) + 2, a,,(.("‘_') = Sn_l(L) + z',
Then o + o' = B (M) + x + x'.
n
But N ;
Hy+yY=x+x'y (y+yl=1(z+ 2",
Therefore

(o + o(1) = Bn_l(L) + 7 +z! = (Bn~1(L) + z) © (Bnul(L)+

+ z')
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1
14,14, THEOREM, The hormology sequence of (K,T)

("—X- . JI”(‘ O .
—> H(L) ——3 (0 —— H GO Z 7

S Hoq (D) s

is exact.
Proof, By definition, we nmust nrove three propositions.
a) kernel Jao = L d,

b)  kernel Zhv-: lm j,

1

¢} kernel 1, i ax—

a) Let «# ¢ Hn(L). Then  « = Bn(L) + x where x € Zn(L).

i

340N i(x) + B, ()

Cdx 1,00

I

joi(x) + Bn(M) = Bn(M).

Hence j, 1, =0 and so im 1. < ker j,, Conversely, 1if
£ 6 Hn(K), with J, () = 0, |

| of = Bn(K) + %, X € Zn(K)’

30 =B (1) + j(x).,
But |

Jile) =0 == j ¢ B,()

By Lemmg

x €8 (K U i(c (L))
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that is

x = Jdu + L y w8 Cp (K, we c (D).
0=2 = 23 4+ iv =22+ 0 1= 13VU=3dr=0

(since 1 1s 131).
Hence

v e zn(L)

-

L
— Hn(L) _ s Hn(K) —_—
U+ Bn(L) 10 + Bn(K). | -

We only need to show that 1 - x € B (K)s But
| 1Vv-x=9due B,(X). |
Hence, ker J, C 1im i, . Combining the two inclusions, we get
ker Jj,=1im 1, . |
b) Let o € H(K). Then, o = B (K) + x, x ¢ Z, ()
Jilel) = §0) + B (M)
Ekj*(ﬁ) = Bn_l(L)‘+ z, 2 B Znhl(L)

iz = Ox = 0 (since x € Zn(K)).
Hence _ =>z=0,

Ddw (2) = B__ (L)

n=-1
which gives




Hh

17%

So, im j, C ker O, . Cowersely, if o« £ H (M), with
b*ﬁd) = 0, then

o = x + BH(N}’ x € ZH(M).

Then

jyv=x, 0y =1z, z € Cn_l(L).

o4 = z+B (1) =0 == zeB (L),
Then '

z= du, ue ¢ (L)
Oy = iz = i du =9iu = y-3u = VE kero = Zn(K)

Let § = U + B _(K)

Then _
Je B=Jv+B (M) = jy+ B (M) = x + B (M) = «
| (cii=o0).
Hence,
kera%‘CL in J,
and so

ker'zi* = im j*

i

¢) Let o« & H (M), Then, « B, (D + %, x & 7 (M)

|

L) = 2+ 82D, z €2 (1),
iz = d vy, Jy = x.
1,00 « = 1(2) + B, ((K) =y + B,.1(K)

5,000 (lay e s,




.

174

L]

Hence _,i*_aw =.0 and so iw 5*6 ker i,. Conversely, if

€ ghFL), with 14 o = 0, then

= L), x € ‘
d_x+BJ),k€Z&m

ix € Bn(K) and 135 = O y for some y &6C_, (K,

1

Then ) ‘
div=-3dy=31x =0,

Thus |

(M).

1 ,

&

iy € 2

If z ¢ H_, . (M) is the coset of Jy, then it follows that

n+ 1

b*z = ¥. This gives ker i, C i"n?i‘;,‘t and thus ker i, = in Dﬂ_ .
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