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At the outset I express my sincere thanks to
the authorities of Matacience for having given me an

®
oovportunity to svweak in this Institute. The aim of these

lectures to start with was to give a brief survey of the
theory of functional éauqtions touching all asnects of the
functional ecuations and giving\exaﬁples for each and also
the functionalbineoualities. But 3s the lectures vrogressed,
it was felt ﬁhat within this short time 1limit, what was
originally olanned cannot be accomnlished. So, in these
lectures more concentration was made on Cauchy's functional
‘equations. Its generalizations, related eouations, some

trigonometric equations etc., were also considered. Finally

~ some annlications and unsolved nroblems were treated.
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1. INTRODUCTION. N % T
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-

Theory of funational equations is one of the oldest

as well as relatively young topics of mathematical analysis
which is growing very rapidly. Oldest in the sense D'Alembert
{16] : Lljj y [ig] ;-was‘the first to apply and solve func-
tional equations in the sense of modern terminology in these
three papers. In many respects they are typicaly they are in
connection with_the study qf vibrations of strings and the
equation considered is f(x+y) + f(x-y) = g(x) h(y). Functional
equations have fascinaﬁed many mathematiciéhs. Even though such
eminent mathematicians.like Abel, Cauchy, Darboux, Euler, Gauss,
Hilbert and Weierstrass amqng others contributed to the gfowth
and development of this‘branch, no systematic presentation of
this branch was attempted as late as 1918. Applications of
functional equations were found much earlier than any systematic
presentation could develop. Hence results found 'in earlier
decades have often been presented anew, Young in the sense
that the literature has grown markedly during the vpast fifty
years. Further, an attempt to give a unified theory was first
tried by A.R.Schwéitzer Y?S] in 1918. Monographs on functional
equations have been written by Aczel - Golab | 13]
M.Ghermanescu [34] , J. Anastassiadis [e1] and M.Kuczma.tS?]
(who is also preparing- a monograph on functional equations in

a single variable). An excellent first systematic presentation



of this subject ever written is by an expert in this field,
Hungarian methematician J. Aczel [5:] in 1961. This book also
gives a survey of the theory of functional equations and contains
a good collection of references at é&e end (more than 100 pages,
from 1747 to the present). In hisenumerous papérs as in his
book, he treats the whole class of functional equatlions, gives
general method of solving them and criteria of the existence
and unigqueness of solutians, He also indicates many new appli-
cations of functional equations. A new edition (English) almost
twice . its original sizg, containing the many new contributions
since 1960 to the preseat day has come out [j6:] . After this
publication, we hope (like the author), the growth of this field
will be accelerated, more people will take up this study and
new applications will be found.

In studying Mathematics and its apolications to othner
branches, the tyve of eguations (algebraic) one first comes
across are ax + b = c, ax2 + bx + ¢ =0 etc, or the system

of equations % ajjy Xy = by, (1=1,...,m). The problem in
=1

all these cases, is to determine particular values of a known
function or functions. Only in calculus, for the first time,
one encounters the question of determining an unknown function,
Functional equations generally deal with this.

The 1arge.number of vapers appearing in various
journals, since 1747, is an index of the interest, the mathe-

maticians an8 others, have for this field. The first significant
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by reducing it to the partial differential equation

(5) | x f(x,y) +y fy(X,y) = k f(x,y)

as f(x,y) = x= @ (Y/%).

The general continuous solutions of the equation

(1.1) known as Cosine Equation or D‘'Alembert Egquatlon or Poisson

Equation were found by éauqhy [25] o Equation (1.1) was
solved by Andrade [22] by using the technique of integration

and differentiation and reducing it to thefdrm f" (x) = ¢ f(x).
Equation (1l.1) in abstract spaces (Banch, Hilbert, Banach
algebra, groups etc.) was also treated in considerable detail.

(1.1) is one of the equations extensively'studied among others
by Aczel [7] , T.M.Flett {31] , D.V.Ioneseu [46] , Kaczmarz
[49] y Kannapoan [5(‘],[51] ’ [52] y S.Kurepa {:621 y [63] s
l62] , [65] , G.Maltese [72J , Van der Lyn [82] , L.Vietoris
Caa] , witson [93] , [94] and F.vVajzonic.

Under the hypothesis of continuity, Cauchy [25] ’
solved the following four equations, widely known in general as

Cauehy egquations

(6) f(x+y) = f(x) + £(y),
(7 f(x+y) = £(x) £(y), |
(8) f(xy) == £(x) + £f(y),

(9 f(xy) = f(x) £(y).



(1.6) finds aﬂplications almost in every branch of mathematics.
(1.6) anpears in the prdblems of the measurement of areas, in
projective geometry, in mechanics, in the oroblem of the
parallelogram of forces, in the the;ry of probability, in the
non-Euclidean geometry etc. Cauchy®s equations are used in
mathematics of finances, in the probability theory and in many
other topies. Equation‘(1.6) is one of the equations which has
been extensively studieé and was solved among numerous others

by Aczel, Alexievicz and Orlicz, Banach, Darboux, Frechet,

Gauss, Hamel, Kuczma, §.Kurepa, A.Kuwagaki, Legendre, Satz,
Sirpenski and Vincze, A. Ostrowski, H.Kestelman, I.Halperin,
P.Erdoss, F.B.Jones etc. under various hypothesis of the func-
tion, domain and range. We will deal with them in detéil later.
The existenée of discontinuous solﬁtions of (1.6) was proved

by Hamel, using axiom of choice. In case where the domain and
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range of f are abstract sets (groups etc.) (1.6) and (1.8)

- RN ApA

play an important role in algebra as the equations of homo-

morphism, endomorphism, isomorphism ete.

One of the striking features of functional equations
is the fact that, unlike differential =quations, a single equa-
tion can determine more than one function. The generalizations

of Cauchy's functional equations, known as Pexider eguations

(10) f(x+y) = h(x) + g(y
(1) s f(x+y) = h(x) g(y)
(12) f(xy) = h(x) + g(y)

(13) - f(xy) h(x) g(y)



is one such example and they were solved in an elementary way
by Pexider [75] s for the three unknown functions f,g and h.

Generalization of Pexider equations was considered by Aczel [éj)-

. L]
These equations and some generalizations will be considered later.

The Jensen equation [47j] 3

’

+
(14) rghy = L0 £
Y
has many properties analogous to those of the equation (1.6).
Aczel and Fenyo [11tl , have applied (1l.14) to define the centre

of gravity of field of forces. Generalizations of the Cauchy

equations and Jensen egquations of the type

(15) f(x+y) = F[?(x),f(yi} (Known as addition
formula)

(16) f(-’%z) = F[f(x),f(Y)‘]

and

(17) @[f(X,y)J = F[@(X), ‘P(Yﬂ

were treated by Aczel, Dunford-Hille, Alt, Kuwagaki, Montel,
Monroe, I., etc.

Abel published four important papers on this subject

[l:]) [Ej}, [?:]ai:Qt}-




The first gives a general method of solving functional eguations
by differentiation. The second deals with the system of func-

tional equations

1l
I

(18) O F(x,F(y,2)) F(z,F(x,¥)) F(y,F(z,x)) =

1]

CF(x,F(z,¥)) F(z,F(y,x)) F(y,F(x,2)),

for the function F. Rp the third he solves the eguation

(19) g(x)+g(y) = h [xf(y)wf(X)] y

for the three unknown functions f,g and h. The technique
employed in these threce papers i;?reduce the'functional equations
to differential equations and then solve thems In the last
paper Cauchy's equations generalized for complex variable were
solved, |

Development of the theory of functional equations is
closely‘related to its anplications to various branches, namely,
mechanics, the theory of continuous groups, the theory of geo-
metrical aspects, vector analysis, Euclidean and non-Euclidean
geometry, the theory of probability, characterization of means,
characterization of various functions such as Euler's function,
exponential and logarithmic functions, trigonometric functions,

polynomials, characterization of determinants etc. Characteriza-

tion of determinants has led . to the study of matrix eguations.
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Matrix eguations find aggrroations in invariant theory, theory
of geometric objects etc., Systems of functional equations were
used by Stokes [Sl] , to determi§§.the intensities of re-
flected and absorbed light. Welerstrass [QSi] , has used the
equation F(£(x) ,£(y) ,f(x+y)) =0 *for the development of
elliptic functions. Functional equations with several unknown
functions were considenfd among others by Sinzov, Stephanos,
sute, Schweitzer and Wilsom. Few international conferences on
functional equations were held since 1061, at Blatonvilagos,
Sarospatak, Oberwolfach and Waterloo.

Of course ore may ask what is the Treason of this
interest taken in functional equations by the mathematicians of
all the world. This may be connected with the fact that in many
branches of mathematics analytic methods are already exhausted
to some extent. A use of elementary methods often allows one
to obtain much deeper and more general results than it was
nossible with a use of classical methods of mathematical analy-
sis. On the other hand, more and more problems of physics and
technics require making weaker assumptions regarding the occur-
ing functions.

There is no general method of solving functional
equations. This itself could have been one of the reasons that
might not have attracted many persons to this field. It used

to be said that every functional eguation requires its own mode



( .
of attack. 1In recent years the situation has imnroved.

Gradually more general results are available, the classically
known results are shown to be valide under less severe raestric-
tions, existence proofs aoplicable to a wide range of equations
are being found etc. ]

The works of Aczel in recent times had considerdly
advanced the disciplineyof this field. The techniques employed
are varied, but special mention can be made of the method of
specialization of variables, iteration and inverse iteration,
method of determinants, reducing functional equations to
differential equations; reducing functional equations to
integral equations etc.

The most important range of problems in this field
is however the developing of a qualitative theory of functional
equations - existence, uniqueness, extension, characterization

etc.

2., Definition and classification

First we shall start with the following questions.
What is a functionél equation ? How to classify them ? The
answer to these seemingly simple questions is not easy. It is
not answered in a satisfactory manner and finding a suitable
answer i1s one of the problems in this field. But the present

day view eliminates wide class of equations: differential,
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integral, integro-differential, operator eguations etc. How-
ever what remains is so vast that it nmeds further compartment-
alization and svecialization. Hera we give the definition
found in [:Gj], [ﬁ?t] . As the definition of functional equa-

tion involves the notion of a term, we begin with the definition

of a term.

Definition of a term., 1) The indevendent variables xl,xg,;..
e
x, =~are terms. 2) Given that Vy9Ygrees ¥, 8rE terms and a

function f of n-variables, then f(yl,y?,...yn) is also a

term 3) There are no other terms.
A given term thus contains a definite number of variables
and a definite number of functions.

Definition of a functional equation. A functional ecuation is

an equation f=g tetween two terms f and g, which contain

n indevendent variables Xy,Xgye..X, and p(> 1) unknown
functions fl’f2""fp of 11,12,...1p variables respectively,

as well as =2 finite number of known functions.

Definition of a system of functional equations.

A system of functional equations consists n(2. 2) functional

equétions which contaln m(2 1) unknown functions altogether.
~The functional equations or systems must be identically
satisfied for certain values of the variables occurring in them

in a certain set of any sort, i.e. in a domain which may be real
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or comnlex numbers, a vector space or an n-dimensional space
(real or complex) or a set of matrices or any abstract algebraic
system, The range of the unknown ﬁynctions may be real or comvlex
numbers, vectors, matrices, conjugate space etc.

The number and behavior of “solutions of a funqtional
equation may denend very largely on the domain and a function
class, known as the class of admissible functions, which are
defined by the analytic preverties like analyticity, measurabi-
lity, continuity, differentiability, integrability etc. It is

one of the imvortant differences between differential and in-

tegral equations. For* example, (1) the only solution of

£(x) + £(y) = flxy - FT%% [Ty?) for all x,y in [-1,I]

1s f(x) Zo., where as the general measurable solution in
suitably restricted sets is f(x) = k arc cos x, (2) The only
.solution of (1.8) in |- ® ,o[ is f(x) = o, whereas in
R — {o} , the continuous solution of (1.8) is £(x) = ¢ log |x|
(we will see this later). Behavior of solutions denends on the
function class also. For example, (1.8) has also non-measurable
solutions in R- {cf%. This is one of the characteristic
features of functional equations. Here we make note of the
observation made by Abel that one functional ecuation can con-
tain several unknown functions in such a way that all the un-

known functions can be determined from it.
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Classification. Rough but useful classification into four

typess functional equations for functions of one or several
variables for one function or several functions was made by
J.Aczel ITG:] . Here we follow the monograph of Kucznma [jS?j
Definition. A functional equation in which all the unknown
functions are functions of one variable 1s called an ordinary
functional equation.. A ffnctional eguation in which at least
one of the unknown functions is a function of several variable-
is called 2 partial functional equation,

The classification of ordinary functional equatiorsis

based on the concent of rank, order and implication index knor

as tyve.

Definition of rank. The number of independent variables occu:

ing in a functional equation is called the rank of the eouatic.

Definition of Order. The smallest number of additional equatic

which are necessary in order to reduce a functional eguation to
a form where under the sign of the unknown function, only sing]
variable occur, is called the order of the equetion.

Definition of implication index. Suvnpose that a functional equr

tion has been reduced to a system of equations as described
above. The number of additional equations containing the unknoc

function is called the implication index of the equation.
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These definitioms concern only the ordinary functional
equations. The above dofinition of order has some short-
comings. It may be due to the fact that, at times, it is hard
to tell whether the number of additional equations is really
the smallest. We shall illustrate this and the definitions
by the following examples.

(2) The equation fix+xp = f(x) + £(y) + £(X)T(Y)
may be written as f(z) = £(x) + f(y) + £f(x) £(y
where 2z = X+Y.
(b) The equation flx+y) + f(x-y) = 2 f(x) + 2 (Y
can be written as f£(z) + f(w) = 2 £(x) + 2 £(y)
where 2z = X+y, W = X=Y.
(¢) The Babbage equation fn(x) = x (vower denotes iteration)

can be written as

where By = f(z__

(d) The equation f(x+f(x)) = f(x)g(x) + h(x) may be written
as

f(z) = f(X)g(x) + h(x)

where z = x + f(X).
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(e) The functional equation

F [ﬁl,xg,... xn,g(xl),...,g(xn), g if‘(xl,...,xn,g(xl),

...,g(xn))}] =‘o

with g wunknown, may be written as

F [Xl,XZ’ ".v”}irl, g(xl) ’.:.,g-(xn) b} g(Y)l = O
where y = f<;xl,...,xn,g(xl),...,g(xn)> .

The ranks of (a), (b), (c), (d) and (e) are 2,2,1,1 and n.
The orders of (a), (b), (c), (d) and (e) are 1,2,(n-1), 1 and 1.

The implication indicies of (a), (b), (¢), (d) and (e) are 0,0,
(n-1), 1 and 1. One can unify the rank n, the order o and
implication index 1 of a functional equation into one symbol
{:n,o, ij} called the type of the equation. The types of (a),
(0, (), (@) and (e) are [ 2,1,0] [2,2,0] ,[1,(n-1,(n-17],
[1,1,1] ana [n,1,17) .

(f) Now consider the following equation:

*

f(x+y) =1f(x) + Y.

This has avvarently order 1 t f(z) = f(x)+y where =z = X+J¥.

But in fact it is of order zero, for it can be written as

f(z) = f(x) + z~i, where x and 2z are not connected by any

: relation. ,
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Some results regarding the reduction of the rank have
been obtained by Aczel and Kiesewelter [15] . Tt is evident
from their results that rank 2 pldys a particular role, in the
sense that equations of higher rany usually. can be replaced by
equivalent equations of rank 2 [ for examﬁle, the families

of solutions of (1l.6) f(x+y) = f(x) + f(y) and f(xl+ .o +xn) =

= f(xl) + ..+ f(xn) ére’identical:} , while similar replac-
ing an equation of rank 2 by an equation of rank 1, is in
general not possible. In case of rank > 2, the most freguently
used method is that of a specialization of variables. For ex-
ample, putting x = 0 in the above example (f), we obtain

f(x) = x + ¢, In most cases, however, the solution cannot be

B obtained in such a simple wgy and the process of gpecilalization

must be repeated several times in a rather ingenious manner.

The method of specilalization of variables cannot be used in the
case of equation of rank 1. The reduction of the order has been
investigated by Kuczma [58:).

‘?Q All these attempts do not prove satisfactory. Two func-
2 tional equations With the same characteristics may differ by the
structure of their solutions. The Cauchy eguation (1l.6) and

the Jensen equation (1.14), both have the same type '[2,1,0:1 .
Nevertheless the former has a one parameter family of continuous
solutions f(x) =.cx, while the latter possesses a two parameter

family of continuous solutions f(x) = cx+d.
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3. The Cauchy Equations.

One of the most imnortant and very widely studied func-

tional equations, is the Cauchy eguation

(1.6) f(x+y) = f(x) + £(y).

This equation has apnlicaQion in many branches of mathematics.
Cauchy has found the general continuous solutions of (1l.6) as
given in theorem (3.1). Thc same equation (1.6) was treated

by Legendre L67_1 and. Gauss [32 ] before Cauchy.

THEOREM 3,1. Let f be a real valued function of

real variables satisfying (1.6)., Then if f 1is continuous, f

has the form

(1) f(x) = cx, for all real x,

where ¢ 1is a real constant. Further, if f 1is defined only
for nositive or non-negative x,y, then also f has the form
(3.1) for all positive or non-negative x, provided f 1is

continuous.

Proof. First setting x = o, y = o in (1.6), we obtain
(2) ~ f(o) = o

Now, replacing y by -x in (1.6) and using (3.2), we get

(3) f(-x) = -f(x).
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Now, we will show that f is rational homogeneous, i.e¢. if x

is any real number and r 1is any rational, then

(4) f(rx) = rf(x).

From (1.6), it follows by finite induction, that

f(xl+x2+ - +xn) = f(xl) + ..+ f(xn).

X

Letting X, = x (k=1,2,..,n) in the above, we have

(5) Plrxy = n £(x).

That is, (3.4) is true for any nositive integer n. Let n be

any negative integer. Then using (3.3) and (2.5), we get

f(nx) = - £(-nx)
= ~(=-n)f(x)
(6) = nP(%)

Hence (2.4) is true for all integers n. Let r be any rational
m

and r =3, i.e. m = nr. Then from (3.5) and (3.6), we get
f(nrx) = f(mx), x real
that is nf(rx) = af(x)
hence f(rx) = % £(x)

= rf(x), so (3.4) is valid for all
rational r and real X.

Thus taking f(1) = ¢ and x =1 in (3.3), we see that
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(7 f(r) = cr, for all rational r.

So far only the condition that f’ satisfies (l.6) is used.
Now using the hypothesis that f - is continuous, it is easy to
see from (3.7), that f(x) = cx, f;r all real x, ¢ being an
arbitrary real cOnstant. It is evident from the above arguments
that (3.1) is valid for all non-negative or positive x.

There are ags many'conditions known for the solution of
(1e6) to be (3.1) and thus continuous. The hyvothesis of con-
tinuity of £ in (1.6) can be considerably'weakened, to obtain
the same conclusion. .In this connection, first we consider the
following results due to Darboux Eé6i}.

THEOREM (3.2). If f satisfies (1.6) for all real x

and y, then the following conditions are equivalents
(1) f 1s continuous at a point X
(i1) f is non-negative for sufficiently small positive x's
(iii1) f 4is bounded on an arbitrarily smell interwval.
(iv)  f(x) = cx, for all real x.

Proof, First (i) =) (iv). Given that f is con-
tinuous at X e That is,

lim f(t) = f(Xo)-

t-»»xo
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Then for every X, we have

K

i

lim £(t) lim f(t-—x+xo+x-xo)

t — - X+X —>X
X t 0 >o

= lim f(t-x+x,) + f(x-xo)

-X+X —5X
t-X o >o

i

it I f(x—xo) = F(X)e

Hence f is continuous everywhere and so (iv) holds.

Second, (ii) =y (iv).

From (1.6) and the hypothesis that f(x) Z o, for sufficiently

small x S o0, it follows that

f(x+y) = £(x) + £(y) = £(¥),

so that f is monotonically increasing. Choose _{rn% and
{Rn}’ as increasing and decreasing seauences of rationals

respectively, both having the same 1imit x. Then for every n,

we have r < X £ R, . Now using (3.7), we obtain

cr = f('rn) £ f(x) < f(Rn) = CcRp;, from which we can

conclude ' that f(x) = cx, for all real x. Hence (iv) is true.
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Third. (iii) =) (iv).
Let f be bounded on (a,b). Let us suppose that

(8) #(x) = £(x) - xf(1), for all real x.

Then by virtue of (1.6) and (2.8) & also satisfies "(1.6)

for all real x and y, and is bounded on (a,b) and

¢(r) =r q>(l), for all rational r. But ¢ (1) = o.

Hence for any rational r,

(9) @(r) = o.

Thus we have, ¢ (x+r) = ¢(x), x real and r rational.

Since for any real x, we can find a rational r such that
x+r is in (a,b) , we conclude from (3.8) and (2.9) that @

is bounded everywhere., Now we will show that <« = o. If not,
supvose there is an xg such that (P(Xo) = k # oo Then it is
true by (3.8) that cp(nxo) =n Q(xo) = nk. So, for arbitrarily
large n, % can take arbitrarily large values, contradicting
the boundedness of ¢, Thus, @ (x) = o. This enables us to
deduce that f(x) = cx. Hence (iv) holds. Other cases can

be easily deduced from the above. The proof of this theorem

is thus complete.
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THEOREM (3.2). Every measurable (in the Lebesgue sense)

function f satisfying (1.6) for all real x and y 1s con-
tinuous (so after Cauchy is of the form cx). Number of proofs
of this theorem are known. We give below some of them.

Proof 1. (Due to Sierpinskinzﬁo'] ). Here he uses .
the fact that if P and Q are 2 linear measurable sets of
positive measure, then there exist- points p € P and g € Q

such that p-z 1s a rational. Let us define

(8) @ (x) = f(x) - xf(1), for all real x,
Then we know that ¢ (r) = 0, r any rational and
@ (x+r) = p (x), x real, r, rational.

From the definition of &, it follows that ¢ 1is also measur-

able (since f 1is). Now we will oprove that, for all real x,
LP(X) = O.

Suppose, in fact, there is a real 'a' such that

(10) P(a) * o,

Let E

]

1 {x ER ! @ (x) >>o%

1l

and B, {x EF s @ (x) %« o}-.

Since @(-x) = —cp(x), Ej and E, are symmetric to each other.
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Further, E; and BEg are measurable (since the function ¢ is)
and therefore of the same measure. Suppose the measure of these

sets is positive. Then there exist Xy € Eq and Xo € Eos

such that x; - Xo = T, T ratidnalf Then we have q?(xl) =

[

L?(x2+r) = &p(xz), which is impogsible, since Xq.€ E4 and
Xq € E2. The sets Eq and E,, are therefore of measure zero.
Let E = El{j.Ez. So, measure of E 1is also Zero and E 1is

the set of all points x, for which ¢ (x) # o. Then the set

G = {X € Rs @)(x) = oi} is of positive measure.
Let H = {x € Rt @ (x+a) = o'% . Then H has positive
measure (for H D G-a, the translate of & . |

Let x € Ho Then ¢ (x+a) = o. Hence

(x) + p(a) = o. Since by (2.10) (2a) # o, we have
QP(x):# o. Hence H C E, that is, a set of positive measure
is contained in a set of null measure, which is impossible.
Hence our assumntion of existence of ‘'a' such that @(a) F o
is false. Therefore, @ (x) = o for all real X and f(x) =
xf(1).

From this, one can conclude that every discontinuous

solution of (1.6) is non-measurable.




Proof 2. (due to Banach [28t1 ). Let x4 be any real

number, & any positive number and (a,b) an arbitrary interval.

]

By the theorem of Lusin, there exists for every measurable func-

; b-
tion f and for every & > o (in varticular o = —gé ), a

continuous function F (for all reals x) such that

(11) f(x) = F(x)

is true for all x € (a,b), except perhans for x's forming
2 set E of measure < o. The function F being continuous,
for every ¢ > o, there is a 8(< ») such that, for all

»

X € (a,b)

(12) |F(x+h) = F(x) | ¢ &

whenever {h | ¢ . Let h be such a real number satisfying
Inl¢ 8. (3.11) being true for all x € (ayd) except over a

set E of measure ¢ &, we can conclude that

(13) f(x+h) = F(x+h)

is satisfied for all x € (a,b) except over a set G of
measure < o + (h| < o+ 8., The set of x € (a,b) for which
either (3.11) or (2.13) is not satisfied, is therefore of
measure < mM(EU G < 20+ 6 3 a0 L b-a. Hence there is a
point x € (a,b) (devendent on h) for which (3.11), (3.12) and

(3.13) are valid.’ So we have
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(14) f(x+h) - T} < & -

Using (1.6) and (2.14), we have f(x+h) = f(x) + f(h) and

f(xo+h) = f(xo) + f(h) and so f(x+h) - £(x) = f(xo-vh)' - f(xo)

and consequently for any real X,
le(x +n) = (x| < E

Hence f 1is continuous.

proof 3. (due to Alexawicz and Orlicz {20 ). Let

-

x ¥ 0. Supnose

— I
ot = £ty - Lt
1 - 1

It 1s evident that Ot = P(8) + Q(X) = P(¥), since

P (x) = o. Hence and so ¥ are of period X. S50,

X

X
A dt = h
i T+ (0] i b(trat

1

X
j P(2t)dt
(@]

X

_ J’ at

- 1+ 2[@t) °
o
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SO

X

.J lo(t)ldt - g
(I+ ] (BN T+2 19D .

It follows that (@(t) = o almost ‘everywherel That is to say
that, f(t) = ﬁiél t for almost all t, in varticular for

x =1, f£(t) = £(1)t for almost all t. Hence for every x ¥ O,
there is a t # o such that

and f(to) = £(1) toe

Therefore f(x) = f(1) x for all x ¥ o. Evidently this eua-
lity is also true for x = o.

THEOREM 3.3. For Cauchy's ecuation (1l.6), continuity

and measurability are equivalent.

Proof. Let f ©be measurable and satisfy (1.6). Then f
is bounded on every bounded interval. Indeed, suvppose there is
an interval I = (-A,A) on which f 1is not bounded, Choose

a sequence y, € I such that f(yk) > on + f(yk_l), for fixed

n. Let E = { x €I |f(x)] ¢ m§3 m any integer. Then

8.CE;Ceve and k)Em = I. Therefore, there is an n such that

u(E ) 1is positive ( © 1is the Lebesgue measure). Define




g
.
k.

.
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+ B =§z:z=yk+x:x€En}

1l
-
N

‘z - yk) Z By \f(z—yk)l < n%.

Also define
Gk={z

Then we see that chi Gy e Now choose an integer ] > k.

(1]

lz | < 24, flyy) -0 & £(z) < n+£(¥y) }

Then we have - f(yj) + 2n + f(yk) g oo If zj € Gj, then

?(y ) - n <& f(zj) by the definition of Gj‘ Adding these two
nequalltles we have n + f(yk) < f(z ). So 24 thk, k% i,

and G. N G =¢ . Hence Fj AF =¢ for j # k. Therefore,

u(U F ) = z w(Fy) 5_ 4p, F C G C (-2A,24). From this we
1
conclude that w(Fy ) = o for every k. S0, w(E) = u(Fk)

(for every k) = o, which is a contradiction. Therefore, f 1s
bounded on every finite interval and hence is continuous.
Thus for Cauchy's ecuation, continuity and measurability are

equivalent.

THEOREM 2,4. Suppose f 1s a real additive function i.e.?

£ gsatisfies (1.6) and 1s bounded on a set E of nositive

measure. Then (3.1) holds, i.e. T is continuous.
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proof. (Due to Kestelman {53] ). By a theorem of
Steinhaus [ 80 ] , there is a positive number 8, such that,
every real number 6, satisfying |67 < &, may be expressed as
x-y for suitable X,¥ in E. If .M i{s the uoper bound of

£ on E, then by using (1.6), we obtain

il

| £¢0) ) | £(x-y) |

| £(x) - £ ]

(15) { 2 M.

~

Hence, using (1.6) and. (3.15), we get, for \6} < %' , that

(16) @) <&, (n=1,2..0.

Let o be a real number. if Ty is a rational such that

(o] log

| £ = rn[<_ , using (1.6) and (3.16), we have

|2(0 =« £} = | fe-ry) * (r, - 0 £(D}

£ 2 t!s , (n=1,2,000)

n n

which means that f(a) = « £(1), which is wanted to be proved.

CORDIARY 3.5. Every discontinuous solution of (1.6) is

unbounded on every set of positive interior measure.

COROLLARY 3.6. If f satisfies (1.6) and is measurable

in some set of positive measure, then f is continuous, because, §
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the set of x for which |f(x)1< N has positive measure,
if N 1is large enough.

THEOREM 3,7. Let f Dbe real additive and be bounded
from above on some interval (a,p . Then f has the form
(2.1). '

proof. [ 41 . We first show that f 1s bounded in

s neighborhood of the origin. If this were not so, there would

éxist a sequence xn-wﬁ o + such that lf(xn)\-—% o . Hence
\f(a+xn)| = (f(a) s f(xn)\-7a>. gince f 1s bounded above

in [:a,b] , this meang f(xn)~;§ - and hence f(b-x ) =
£(b) ~ f(x) —» o wnich is impossible. [so, £ is bounded in
a nei ghborhood of the origin which certainly is of positive
measurej, So, from theorem (3.4) f has the form (3.1). [ we
give another proof here] . Now claim that f(x) —7o0 as
x—50 + . If thes contrary were true, then there would exist a

sequence X —3 O + such that f(xn)?i ¢7 o (or f (Xn)é¥

k+n
-¢ <« o) for some ¢ . But then f( Z xi) >n¢g and
i=k
k+n
lim I x; = o for arbitrary n, which again is impossible.
koo 1=k :

So, f 1is right continuous at the origin. Not only f is
rignt continuous at the origin, but because of the additivity,

it is clearly right continuous for all x > o. From (3.4) we
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have f(r) =r f(1) for any rational number T. Making use
of the right continulty, we finally obtain f(x) = f(1)x, for
all x > o. Hence f has the fofm (3.1).

THEOREM 3,8. All solutions of the equation (1.6) which
are bounded from below (or from above) on 4an interval are of
the form f(x)=cx, ¢, a constant.

Proof. Let f satisfy (1.6) and be bounded below in
[ a,b7] , that is, there is an M such that f(x) 2 M, for all
x €7 a,b ) . Now, first we will shov that f 1is bounded
below in [o,b-a ] .
1f x € [o,b-a T}, then (x+a) € ['a,bil. Hence

f(x) = f(x+a) - f(a)

(17) >M - f(a), that is { 1s bounded below

in [o,b-a] .

Consider the function

1}

f(x) - £Ha) X, where 4 = b-a + o,

(18) g(x) d

f(x) - cx, where cd = f(d).

Evidently g also satisfies (1.6). It is enough to show that
2(x) = o for all real x. For all x € [0,d7] , cx &

max (o,cd) = e-




—
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From (2.17), (2.18) and the above we see that
g(x) 3 M-f(2) -e, for all x € [o,d] .

That is, g is bounded below in [b,a], say

(19) g(x) > N, x € Go,da]

Trom (R,18) we have g(d) = o. Thus g(x+d) = g(x), for all real
x. That is, ¢ 1is veriodic, with period d. Since g 1is bounded
in Eo,ﬁi} and g 1is veriodic with neriod d, we conclude that
g 1is bounded helow everywhere by N,

Sunvose there is an Xxg such that g(xo) = B

If a(x) > o, then by (2.%), g(-x) < o

By (R.86), we can find an integer n sufficiently large such that
g(-nxgy) £ W. If g(xo) £ o, as before by (2.6) we can find an
integer n sufficiently large such that ghxéb & N. 1In either
case we get a contradiction to the fact that g 1s bounded be-

low everywhere by N (2.19). Hence g(x) = o, for all real x.

Then by (?.18), the result follows.

Pxistence of a discortinuous solution of (1.6)

Hamel t:?§j , has nroved by using the axion of choice
that (1.8) has a discontirmous solution.

THEOREM 2,2 There exists an f satisfying (1.6) but is

not of the form f(x) = c¢x.
Dproof. e shall need the idea of a Hamel basis. A set H

with the following nromerties is called a Hamel basis:
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(i) every real number x can be represented as a finite linear

combination

with Xy €H and 74 rationals for 1 = 1,%2,...0

(ii) No proper subset of H has the property described by (i).
| Such a basis can be shown to exist by making use of

transfinite induction[:42t3 , or equivalently by Zorn's lemma

étc. Note that H is nondenumerable and the representation

for x given by (i) *is unique, because of (ii).

Now let H be a Hamel basis and for each b € H, choose

f(b) as an arbitrary real number. Then for any real x (of

the form in (1) define

n .
(20) f(x) = I Ty f(xi).

=1
Then f constructed by (2.20) always satisfies the functional
equation (1.6). Indeed, if

=
il
i ~s

L]
~
o)
o]
o
<
]
™
Q
»
~
b
™
12

i
(some of the coefficients rs and Q) may be zero, but we

use n terms in both cases), then




x+y= I (ri + qi) .

Prom (3.20), we obtain

f(x+y) = 5 (ry + qi)f(xi)
i=1

= f(x) + £f(¥.

Such a solution f is continuous, if and only if, there is a

constant ¢ such that
Lol —_ .
¢(xi> = cxg * for all x; € H.

Now to exhibit an f that 1s discontinuous. For a particular

Xy ¢ H, let f(xi) = 1 and f(xj) = o for f 14 X5 £ H.

If f 1is to be continuous, then we know that f(x) = cX.

. f(x:) _ Ei & : .

dence i = 3 . But the left side is gzero for all
f(xﬁ5 i

Xj 3 Xy for the above definition of T, while the right side

can never be zero (since a basis does not contain the zero ele-
ment). This contradiction shows that £ is not continuous.

‘Reduction to differential and integral equationse.

The method employed here is to reduce functional equations to
differential or integral equations and thereby solve the func-
tional equation. 'Here we illustrate these methods by the ex-

ample of Cauchy functional equation (1.6).
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Reduction to differential equation,

Differentiating (1.6) with respect to x, we have

fr(x+y) = f1(x).

Hence f' is pefiodic with arbitrary period ¥ and consequently

we have f'(x) = c, where @ is a constant.

cx+d.

Hence f(x)
o, we get f(x) = cx, that is f is\of the

1)

gince f(0)
form (2.1).

Reduction to integral equation.

Let f satisfy (1.6)°and f be integrable. Consider the

double integral in the region x"z C, ¥ 70, Xt¥ < te

Then
} -y t t-y t t-y
] Vf f(x+y) dxdy = ; Lf f(x) dxdy +\f f f(y)dxdy.
o o© o o o o
Hence
t t t t-y t
j g‘ f(v)dv dy = j 5~ f(x) dx dy + j (- f(y)dy.
o v o © 0
&
Let F(t) =(ﬂ (t-y) £(y) dy, then F1'(t) = £(t) and F'(0) = 0 =
Yo

f(o). Now, we have
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t | t
(e -F»lay = ([ mre-pay + T
0] O

that is,

tF1(t) - F(t) = F(t) + F(b).
Hence, F(t)

Thus f(t) = 6 kt and hence is of the form (Bel) .

Deduction of differentiability from integrability.

\s in the above case, Jet f satisfy (1.6) and be integrable,
say in the interval {Co.17] .

Integrating with respect to y, we have

1 1 x+1
f(x) = S f(x+y)dy -.g f(ydy = j f(t)dt - ¢, where
0 o) X
1
gf(y)dy = C.
o)

Since the right side is continucus, so is f. Since £ 1=
continuous, again we have the right side is differentiable and
thus f is differentiable. Hence £ has the form (3.1). But

differentiating the above equation, we have, by using (1.6)

fr(x) = f(x+1) - £(x)
= £{1},
Thus f(x) = f(L)x.
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Solution of the Cauchy equation (1,6) for complex values.

Theorem 2,10, Let f Dbe a complex~-valued functidn

of the comnlex variables satisfying (1.6). Then the most

general solution is given by
Eal = 4 .F‘
Fl) = fl(xl) + i ¢2(x1) + gl(xz) + 1 gz(xz)

where x =x, + i x, and fl’ f

1 o g, and g, are solutions of

27

(1.6), Xqy X5

reals.,

Proof. Let x = X +ixg, ¥ = yy+ivge . Further, let

(21) fi{x) = F(xl,x2)+ i G(xl,xg).

Then,iit is easy to see that

(292) F(X1+Yl’ X2+y2) = F(Xl,X2) + F(YIQ‘Y'Z)
and

(23) G(xy+Yyy XgtYy) = G(xqyX,) + G(yqs¥y) «
Set X5 = 03¥, = 0 in (2.22). Then, with

(24) £f1(x) = F(x,0),.x real, we get

£ -
1(xq#yy) = £1(xp) + 210y,
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that 1is, fl satisfies (1.6)s Similarly, we obtain by defining

(25) gl(x) = F(0,x) for x real, that

g (x4 = g1(%g) + g,(vy), that is, g 1is also a
solution of (1l.6).

From (2.22), (2.24) and (°.25), we have

i F(Xl’XZ) - F(X1,O)"'+ (0 .’XB)’ and
- (26) F(Xl,xg) = fléxl) + gl(xg) where fq and gy satisfy (1l.6).
Similarly, we obtain

(27 G(xq9Xg) = fg(xl) + gz(xz) where g, and fo satisfy (1.6).

From (3.21), (2.26) and (2.27), we have the desired result

Theorem 3.11. The general continuous complex solution

of (1.6) is f£(z) = cz + dz where ¢ and d are arbitrary
complex numbers.

proof. From theorem’(2.10), we see that £, foy 8
and g2 are continuous solutiéns of (1.6). Hence by Theoren

- (3.1), we have, for z =X+ 17,



f =
l(x) CyX,y Cq real
f?(x) = ¢ X, ¢, real

gl(x) = ¢.X, ¢, real,

2 3
|
and gz(x) = CyX, Cy real, .
Hence
o z - . + 3
(28) f(z) = egx + 1 co X+t coy+ic,y

i

c.z+ d z where ¢ =

)

(cl+c4)+i (cz-cg)

-1 - -
and d = 5 (c1 c4) + 1(c2+03) .

Remark, The general differentiable solution of (1.6)

in the complex case is f(z) = cz, where c¢ 1is any complex

number, since z 1s not differentiable.

Solution of Cauchy eguation for functions of several variables.

Theorem 3.,12. Let f Dbe with domain Rn, taking real

values and satisfy (1.6), Then the most general solution of

(l.6) is
£ =
(Xl,xg,...,xn) fl(xl) + fz(xz) Foeee + fn(xn)
where f{s satisfy (1.6). Thus the general continuous solution

iS f L2 B 2 '= + L + < !
(Xl’ ,xn) c1Xq . ¢ X,y Where cf s are reals.



Procf. It is similar to the proof of theorem (2.11).
Number of questions werc raised of (1.6), some of them

were solved very recently and some of them still await answer.

(I.Halperin). Does the continuity of £ (real) follow from

(1.6) and from £() =5 £(x). (all x # 0 ?
X

The onswer turns out to be true. Here we give proofs
due to Kurepz and Jurkat, The following theorem in this direc-
tion is due to Kurepa [ 66 | .

THEOREM 2.13, Let f and g # o be two solutions of

the Cauchy functional equation (1.6). If g(t) = P(t) f(%)

nolds for all t # ¢, where P is a continuous function such
that P(1) = 1, then P(t) =t~ and f£(t) + g(t) = 2tg(1).
Turthermore, the function F(t) = f(t) - t £(1) satisfies (1.6)
and the equation T(ts) = tF(s) + sF(t) for all real t and
s(¥ is called a Aerivative). |

Proof. Let t # o and r a rational number different

from zero. Then

(29) g(rt) = P(rt) f (%3).

Since f ard g satisfy (1.6), using (3.4) we get from (282

re(t) = P(rt) = (.
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Hence, g(t) = Eiﬁgl f(%ﬁ so that,

r

(30) {%L%LL - P(ti:} f(%) = o, for all r # o.
T ‘

If s # o 1is any real number, using the continuity of P

and (R.20), wo obtain

(31) \ K;?iégl e D(t{] 7P = o.
S ' :

Since f # o, from (2.21), we have

(32) P(st) = sgP(t), for all real s # o and for at least one
t say E,' # 0.

In (2.9), setting s = % , we get

o
- 2
(33) D(to) = to P(1)
=t2_
o)
From (2.32) and (R.2?), we have
o
D(sto) =‘to‘ sz.
In the above revnlacing s by % we find that
o)

(24) P(s) = s, for all s # o.
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Thus
) A1
(35) 2(£) =t £(H.
Evidently g(l) = £(1). Now, "define |
(F(t) = £(£) - tf(D)
(26) and
(G(t) = g(t) - tg(l).

Obviously ¥ and G satisfy (1.6). Further from (2.75) an?

(?.76), we have

2
(37) Gty = ¢ F‘(%‘).

We have from (2.76) and (°.4), that for anv rational T,

=
—~
e |
N

i
O

Oe

{
|
(238) and J
\V G(r)

Now, from (R.77), (2.78) and (1.6), we have

1
1]

(£+1) ° (=t

TE) T4 T)

G(t+1)

(t+1)° 71 - T

1

=-(t++1) % P(=ED

by ® (L 2 gLt
=-(++ 1) " () P 6T



41

I

2ncL
- 7600

(2.727) and (2.7°9) yicld ’
PN . e |
(40) "(t) = - % F(t).

Trom (2.26) ~nd (2,79, w2 have
£lt) « £ 8D = - g(t) + t g(l).
that ds,
(41) £(t) + g(t) = 2t £(D.
Now using (2.4) and (2.40), we have
F(t) + ﬁ; () = "(t- ;0

l

>
g t

= ~(E2h? | w(—g)

£2-1
2
“-1 1 1
= ~(—= - )

£2 EalE K |

2 =
2
-1§~€93-\——:l—3-ﬁ<t-1) +
£~ L(t-l»‘

+ -——l—-— Pt -1;}
(£2-1)

11

2
(49) = - wiry - S E(tD).
tud t_l
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ginplifying we obfain
(42) (£ = 2 t F(th.
in (2.47), renlace t by (t+s)  and use (2,4?), we have

(44) T(ts)=tF(s) + sF(t).

mhie comnlatus the nroof of the theorem.

Corollary 2.14, TIf a function fiR-—R satisfies

(1.8) and (%) = tgf(%\ nolds for t # o, then f(t) =1 £(1).
Proof. Tt is cvident from the proof of the theoren
(2.17) and (~.41).

THREOIEM 2,15, Let £ be additive and satisfy
f(%) = 45 f(z), for a1l x # oo Then f 1s eontinuous.
X

Proof, (Dus to Jurkat rTag]).

Tor x # o and 1, we have

1.1 _1
x(x-1) x-1 x °
Since
.1
(45) I(;Q = l; f(x)y, x £ O

we have

1 1 1
—  fix(x-1) = ———— f(x-1l) - =5 f(x)
X2(X~l)2 E ‘3 (X-D2 x2




b
-
g
o
:
.
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- _ 2\
That is. f(xgﬁ—f(x) = XQ\f(x) - f(lj] - (x~1Y 7 £(x)

(46) r(xD) = oxf(x) - xf(D).

(46) is also true for  x = o and 1.
Tsing
(47) dxv = (X+zr)2 - (x-—y)2
and (”.46), wc have
(4 x yj = 2§x+y)f(x+y) - (x+y)2 (1) -

§ 2(x-p) £(x-y) = (x=y)2£(1)

=4 x f(y) + 4 yf(x) - 4 xy £(1).,
Hence
(4%) f(xv) = xf(y) + yf(x) - xyf(1).

Putting v = %, x # o in (”.48), and using (2.45), we have

i

£§(1) = xf(D + ;1(- £(x) = £(1)

!
> 1o

f(x) - f(1), from which follows

f(x) =

i

£(1), for x # o.

The last equation is also true for x = o. Hence f is conti-

nuous.
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(P.Erdos). A question rez-rding the domain of (1.6) was raised
‘by P.Erdds. Let f be a real valued functlon satisfving

(1.6) for almost all nairs (x,v). Is it true that f 1s then
conal almost everywhere to a function which satisfies (1.6) for
all x,y ? Hers again the answer is yes. The result oroved
un®er is due to Jurkat [48u).

THEOREN ?,16. Let f be real valued, dcfined for al-

most all real x and sunnose that (1,6) holds for almost 21l
nairs (x,y) in the sense of vnlane measure (Lebésgue). Then
there oxists a real-valued function F, dofined for all x and
satisfying (1.5) for all x and y, whleh coineidecs with f
for almost all x 1in the sense of lincar measure (Lebesgue).
These requirements determine ¥ unlouely.

Proof. By Fubini's theorem, there are null scts N and
NX such that (1.6) is true, if X £ N, Y [ 4 NX. Let M be the

comnlement of N  and notice that f 1is defined on M. First
we will show that (1.6) holds, whenever x,y, x+y € M. Fix x

and y for the moment and nick Z such that 2Z ¢ Nx+y’

1% Z L NX and Z £ Ny. This is possible by avoiding 2 null

sets for z. But then we have

i

T(x+y+72) f(x+y) + £(2z)
f(x+y+z) = £f(x) + f(y+2)

fly+z) = f(y) + £(2),




45

=nd the result follows. Next, we will nrove that
(49) Pxy) + £(xy) = £(y) + £(¥,)

whenever Xy + X5 = ¥y + y2’ Xl’x2’yl’y2 all belong to M.

' ]
Pick Z € M such that xé =X, =~ z €M, Vo = Vo - 2 £ M,
+ x. = 1 b X, + Xg = 2 =74 + y2 -z € M., This is

vossible by avoiding four null-sets for z. Now, we have
! . '
f(xy) = flxy) + f(3z), f(yy) = £(yy) + f£(2)

xyxg) = £(xp) + £(x) ,B(y; + ¥ = £(y)) + £{yy).

Hence

]
f(xl)+f(x2) = f(x1+x2) + £(2)

1

'
f(Yl+y2) + (M

|

f(yl) + f(yg).

Finally, we show that given }cl,)c2,><_,3 € M, there exists

Y19Y5 € M, such that
Tt Xt A E )tV

(50) and
k,f(xl+x2+xg) & f(yl+y2).
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This is Aone by vnicking 2z € M such that 2*' = Xq = Z e M,
vy = X + 2z €My Vo T Xg + z' = -x;,+ Xq = 2 ¢ M (avoid four

null sets). Then we have

flx,) = f(z") + £(2)
f(yy) = f(xy) + £(z)
f(yg) = f(xg) + £z

Thus (2.50) is obtained, In order to define F, we noticc that
every real number 2z [1s of the form x+y with x €M, y € M
(simnly vick x ¢ M such that y =2 <« x € M), Define

7(z) = £(x) + £(¥), which is single-valued, beeause of (2.4%).
For z €M, (1.6) imnlies F(z) = f(z). Now take two arbltrary
real numbers z1y Zg of the forms Xy + Yy and X + Vo where
Xq9%53¥797g € M. By apnlying (®,50) twtoé we obtain, two numbers

1 1 3
215 Zg € M such that

Bad]

'

, - ,
\ X +Y PRSI, = 29425

3

(51) and Lf(xl)+f(yl)+f(xg)+f(y2) = f(z) + £(zg) .

L.H.S. of (3.51) is erual to F(z1)+F(zg) by definition, while
! ?
R.H.S. of (2.51) equals F(Zl+22) = F(Zl+Z?), thus nroving (1.6)

for F with unrestricted variables.
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It remnins to show the unicueness of F, Let Fl and

?2 be 2 functions satisfying (1.6) for all x,y and coincide

on a set which includes almost all x, Let F = Fl'Fp‘ Then

F also satisfies (1.6) and vanishes on M. As gvery real

pmber z  is of the form x+y with X,¥ £ M, we see that

T(z) = F(x) + F(y) = 0© nolds cenerally, This comnletes the oroof.

of this theoren.

The other Cauchv E~ryations.

Mow let us consider the following equationss

(1.7) f(x+y) = £(x) (Y
(1.8) f(xy) = T(x) + £(y)
(1.9 _ f(xy) = £f(x) £(x).

One can find solutions of these couations elther by a method
adopted similar to that emnloyed for (1,6) or bv other means.
But one can also find more promptly the solutions by »utting
them in a form analogosto that of (1.8), First let us consider
(1.7

THEOREM 2.17. Let f be a real valued function of the
roal variable satisTying (1.7). ™hen the most general solutions
of (1.7 are f(x) 2 o and f(x) = eg(X> where g is an

arbitrary solution of (1.6).
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Proof. Sunnose f(xo) = o for some X, Then from

(1.7) we have

L]

f(x)

il

f(x = x_ + XO)

(52)

il

f{x - xo) 1(XO)

o, for all real x.

Hence Tf(x) = o everywhere or nowhere, In ease (1,7) holds
only for nositive x,v, then also the ahbove condition holds.
For what we have from (?.57) is that f(x) = o, for all

x > %, Let x € 'W’O,XO[; + Then there is an interer n

such that n x 2 X . Now from (1,7), we have

f(nx) = ftx)7,
Since f(nx) = o, this gives f(x) = o for all nositive X.
S0, without loss of generality, we can assume that f(x) # o

for all real x. Renlacing x and y 1n (1.7) by x/2, we

obtain
- 2
f(x) = f(x/2)7 > o,

from which follows that, anv nontrivial solution of (1.7) 1s

always vositive. Now taking logarithm on both sides of (1,7
and

(5%) g(x) = log f(x),
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we have

g(x+y) = g(x) + g(y2?

Hence f(x) = Cg(x)

is the most general nontrivial solution of
(1.7), with g satisfving (1.6).

COROLLARY 2.18. The most general continuvous (conti-
nuou§ at one ncint, measurable on a set of nositive measurc

etc.) solution of (1.7) is f£(x) = %, where ¢ is any

constant.

Proof. From g?.SQ), it follows that g 1s continuous,
since f 1is, Hence g(x) = cx (by theorem 2,1) and the result
follows.

Remark. In case (1.7) is valid only for nonnegative

X,¥ 4 1in 28%ition we have also the solutlon f(o) =1 and
f(x) = 0oy X > 0.

NDeduction of differentiagbility from integrability.

THEOREM 2,19, The continuous solution of the functional
squation (1.7) are f(x) = o and f(x) = e®® (c, constant) and
only these.

Proof. f(x,) = o at some »oint x, implies f(x) = o,
for all x. So, we assume that f£(x) # o, for all real x.

Then from (1.7), we have

£(0) = £(0)? and thus f(o) = 1.
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Since f 1is continuous and f(o) = 1, there is an &, 20

such that

.
8= ;f £(x) dx # o.
o

Intezrating (1.7) with resnect to x befween o and &, we get

£ t
,j-f(x+y) dx = j~ f(x) f(y) dx
o 0
= af(y).
Hdence
£
f(y) =‘% \j f(x+y). dx for all vy,
o

Replacing x+y by u in the right side, we get

t+y
s =2 rw
Yy
f+y j
- % 1 [ £(u) du -.[ £ () du.] ;
O (0]

o~

The continuity of f <ives that the right side is differenti-

able and hence f is Aifferentiable.
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Differentiating (1.7) with resmect to x, we obtain

fri+y) = £'(x) £f(y), for all x and vy.

Putting x = o and taking £'(o) =‘c, we have

£1(y) = cf(y) for all'y.

Thus f(y) = a ecx, where a 1s a eonstant.
Tsing the fact that f(o) = 1, we get a = 1, Thus

f(x) = ecx, for all x.

THEOEM 2,20, TLet 9 be a comnlex-valued functlon
satisfying (1.7) non-trivially for x,y 20 with Vv (o} = 1
and \¥(x) \ be bounded in some interval [a,b ]} . Then

\‘\7 (x)} = exp o« x for some real number o,

Proof., {;413 Let f(x) = log |\ (x)} , Then f is
well defined on  [o,c0 . Further f(x+y) = f(x) + f(y),
that isy f satisfies (1.6). Also f(o0) = o and f is
bounded from above on Ea,b] » Then we 'now that (Th.”.7), f
1s continuous, that is f(x) = f(1l) x, for x 2 0. Taking
« = (1), we 2ot our desired result.

DEFINITTON., (Wlsc refer [40] ). set X (x) =

¥ (%) .

mere S - f"@ . i 4 = ° ’T\ i

v (O] vhere V¥V satisfies (1.7) with 9 (o) = 1. Then it
is clear that X. also satisfies (117) for x,y > o and

¥, (x)} = 1. For negative x, we may set X (x) = C%(—x))"l.
Then ’)-!. satisfies (1.7) for all real x. Such a function is

called a charactar of the real line.
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THEOREM 2.21. If X 1is a measurable character of the

real line, then X (x)‘ = exp (ifpx) for some real B .

Proof. For | 8| >o and ") o, we have

.,}
fCX,(X-HS) - K (x)j W2 f['}é'(}wé-y) ~ K (x=y) ] XAy .

o

Hence | XA(x+8) - X (x) | £ L (’\‘,X(X+6-y) - X (x-y)|dy which
¥ ,f‘_‘

tends to zero with | &} . Thus ~ 1is continurus. Further

H"’X(xm - X (0 ] Ax

) _

Y+5 5

K N x(dx) -—]g f X (x) Ax.

W

Y o

v

’}(‘,(5)-1 ! 2 1

7 \) W (x) ax = 3
l¢]

.

-
—_

fod [

Y .
Choose Y so that f K (x)ax # c. Since the limit as |&)—o
o

exists for the terms on the right hand side of this equation, 1t
follows that the derivative of X (x) at x = o exists. Let

a X :
"”‘“""ﬁl{lf = i1 8. Then we will show that the derivative of

dax i X=0 X
. A .
")( exists "t all x ¢ 7} -oco,00 [ and e X - igX(x).

A

In fact,




Limit as |6 —% o eoxists in the right side. Hence the
Asrivative of A exists at all X. Talking the limit as

| 6§ = oy we get 8
dﬂ* (x) o : amen Y - . .
e = ﬂK (x) 1 B. Hence 7K (x) c exn (1 8x)

gince X (o) =1, ¢ =1. As ,fxu(x\§ =1, we seec that B 1is

real.

THEOREM 2,92, If 7 1s = measurable function (comoplex-

Y

valued) and satisfies (1.7) non-trivially for X,y 2 © with

) (o) = 1, then =} (X

i

exDp [;(d + 18) X'B for some real

numbers o« and B.

Proof. Let f(x) = log l\?(x){ . M™en f 1s measur-

able and additive on [ 0,00 [« Hence f 1is continucus

(Th.?2.2). Sc, by theorem (2.20) l V(x) | = exp A x, For
some real o, Further c( () = T¥—%§%i is measurable. So, by
Y A0 B

theorem (R.21),

™ (x) = 1 Bx for some real 8.
The result now is immediate.
Now we will take vo the equation (1.8).
THEOREM 2.92. If f 1s a solutien of (1.8) forall
real x,y # 0, then the most genmeral form of £ is f(x) =

g(log | x| ), where ¢ satisfics (116).
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Pro~f, First note that £ 1s even. For, renlace

y by x and then x and y by -x resnectively in (L.7Y,

then we obtain

f(xg) = 2 %) '
also = 2 f(~-x).
Thus f(x) = f(x), for x # o

Now let x =nd v be nositive. Therc exists u and v such

that x = e? and v = e'. Ry defining

g(w =f (e,

and using (1.8), we obtain, g(u+v) = g(w+g(v).
Thus for x 7 o, f(x) = g(log x), wherec g satisfies

(1e6). Then the result follows from the fact that f 1s even.
COROLLARY R.24, The continuous solution of (1.R) which
is defined for =11 x,y # o is £f(x) = c log x .
The proof is immediate from the above theorem (R.22).
Remark. If (1.8) is wvalid for all real x, then

f(x) = o, For, nutting x = o 1in (1.2), we have f(o) = f(o) +

i

+ f(y), Trom which it is casy tn see that f£(x) De

Charactcerization of exvoncntial and logarithmic functions.

; cx x
The functions e and log c¢x can be characterized
by means of the equations (1.7) and (1,8) resnectively (vide
above theorems), in two variables., But these functions can

also be characterized with the aid of the following enuaticns




in a single variable:

1

( 54) flox) = £(x0)7 "

¥

~—r
11

(55) f(x of (%)

and some additicnal conditions. Tho following theorems will be

’
-~

of inter~st in that direction (for nroof see [5% 1 ).

X

TUEOREM 2,25, ™he function f(x)-e is the only funec-

tion which is differentiable in [b,a)E , satisfies (”.54) and

\

the oconditions f(o) = f'(0) = 1.

The function f(x) = log x is the only function which is
~ifferentiable in ‘[1700[;, éatisfying (2.55) with the conditi-n
£1(1) = 1.

PYEOREN 2. 95. The function f£(x) = ¢& is the mnly
function which is logarithmically convex in 3 o,my[‘, catisfy-
ing (?.54) and the condition f(1) = ¢. The function
£(x) = log x 1s the cnlv function wnich is concave (-f convex)
in 31,0 , satisfving (R.55) and the condition f(e) = 1.

THEOREM =.97. If f satisfies (1.9) f(xy) = £(x (7
for all nositive, x,y or for all real x,y OT for all real

x # o, vy # 0, then the continuous solutions of (1.2) =zre




&
3
1

(586)

f(x)

f(x)

respectively.
Proof.

9 f(e?) =

g(u+v) =

(x|

Let x

f(x) = x o

f{x) = Qxlc, x # o,

2 3 X = O

{!Xic SEN X, X # 0,

0O

3 X = 0

f(x) =1, f(x) = sgn x
£(x) = o, £f(x) = fsgn x|

cr

c

, T(x) = ‘xxc sgnx, f(x) = o

1l
pJ

and y be nositive. Put x

g(u) in (1.9). Then we have

g(u) g(v) which is same as (1.7).

Thus the continuous s~lutions in this case arce

Now, »ut

f(o)

that either
(57)

f(x) =1 or

£(x) = o° log x _ _c

= X or Flx) = o,

I

X o in (1L.9).. Then we have

i

f(x) f(o) from which we can conclude

f{o) = 0.
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Now, let X # 0y, ¥ # Os get first y = x and then

replace x and y by -x 1in (1.9). Then we obtain

f(x)2 = f(xz) = f(-x)g.

Hence
£(-x) = £(x) = x
( 58) or £ (-x) = 0.
or = —f(X) = -XC
Thus since f 1is continuous, for x # o, we have
c ¢
f(x) = x , f(x) = x segnx, £(x) = o,

for if there are x and ¥y (# 0) such that f(-x) = £(x)
and f(-y) = -f(y), then from (1.9) we would have (X F(y) = o,
Let x,y be real. Then from (?.57), (?.58) we obtain the

continuous solutions as

- c . ¢
f(x) = x -, x# 5 £(x) = { x = sgn, X # C,
0 4, X =0 0O , X =0
f(x) = o, f(x) =1 £(x) = sgn x, £(x) = sgnx .

THEOREM 2.9%, The common solutions (real) of (1.6) and

(1.9) are f(x) = x and £(x) = o.
Pproof. For x » o, renlace x and ¥y in (1.9) by % .

Then we have

£(x) = £ (V022 o.
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Thus f 1is non-ne~ative for positive X. Then by Theorem (Re)
f being a solution of (1l.6), we have f(x) = cx. This in (Lo
o

gives the conditicn that ~ ¢ X ¥ = ¢” x y, from which it follows

that either ¢ =0 or c¢ =1, Thus £f(x) = x or f(x) = o.

TIROREM 2.99. The common continuous comnlex soluticns
of (1.8) and (1.9) are f(x) = o, f(x) =x and 'f(X?:i -
(here f 1is a complex functicn of a complex variable).

Proof. All continuous, comnlex solutions of (1L.8) are

giveniy(theorem 2.11)

“

(28) f(x) = ax+bX, for all complex x,a,b complex.

Hence for all real x, f(x) = (a+b)x. This in (1.9) gives

cither a+bh = o or a+b = 1, Thus (3.28) takes the form

f(x) = a(x-x)
or
f(x) = ax+(l-a)x , for all comnlex X.
Tirst let f£(x) = a(x-x).

Putting x = i,y = 1 in (1.9), we have

£(1) = £(1) £(1), that is,

1

a . 21 a .21 . 0. Thus a = 0.

Hence f(x) = o,
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From (59), next let f(x) = ax + (1 - a) Xe
Setting x = i, y = -1 in (1.9) we have

(1) = £(1) £ (-1).
that is,
1= [ai+ (1-2) (-1)] [-ai + (1-2) 1]

1l - 43 + 4&2.

Hence a=o0 or 1, This gives either

(60) f(x) = x' or f(x) = x. Hence the result.

3olution of (1.7) and (1,9) for comnlex values,

(1.7) flx+y) = £(x) £(v), £ ¢{ ->» €, ( comnlex numbers.
THEOREM 2.20. The continuous, comnlex solutions (non-

vanishing) of (1.7) are f(x) = eax+bi , 2,b complex constants.
Proof. (Aue to Abel [47). Let o+ ig =

; 2 2
r (cos ¢ + i sin ¢ ), n,q real. Then T =yDp +a ,

cosd =2 and sin¢ =g

Let r = h(x,y) and ¢ = g(x,y), where n + iq = f(x+iy)

Then for x,y, u,v rcal, we have

ff(x+iy) n(x,y) [ cos g (x,y) + i sin g(x,7) ]

(61) < f(u+iv) = h(u,v) [cos g (u,v) + i sin g(u,v) |
| .
;f(x+u+iy+iv) = g(x+u,y+v) | cos g(x+u,y+v) +

1}

+ i sin g(x+u,y+v)} .




i
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£
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From (1.7) and (2.61), we get

h{x+u, y+v) [cos g(xX+u,y+v) +

= h(x,y) h(u,v) [cos (glx,y) +

Hence

(h(X+U9Y+V) cos g(x+u,y+v) =
!

(62) <

ih(x+u,y+v) sin g(x+u,y+v) =

.

Squaring and adding (?.62), we get

[}
h(x+u,y+v) ~

I

(62) h(x+u, y+v)

From (7.62) and (R.63) results

h(x,y)2 Bl

h(x,v) h(u,v)

31 sin g (x+u,y+v)J

g(u,v)) + i sin (g(x,y) +

rog(u, M) .

n(x,y) h(u,v) cos (g(x,¥) +

+ g(u,v)).

n(x,y) h(u,v) sin (g(x,y) +

+ glu,v)).

V)2 from which follows

(since h 1s always

positive).

(64) g(x+u,y+v) = 2 m 7 + glx,y) + g(u,v.

where m 1is any integer.

Since f is continuous, so are h

As g 1is continuous, m 1in (?.64)

Trom Theorem ?,10, it follows that

(65)

and g

should be a constant.

9

g(X,y) = cyX + Co¥ =~ 2 Mm my Cq,Cy real,
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But we will nrove (8.65) nsing Abel's argument as follows.
Putting x = o0 and u=o0 in (3.?5), we get

-~

%' g(u,y+v) = 2 m 7 + glo,y) + glu,v)

(66)

H

L g(x,y+v) om w + g(x,y) + glo,v).

From (3.64) and (3.66), we get

(87) g(x,7+v) + g(u,v+v) = 2 m = + g(u,y) + g(o,v) + g(X+u§
Y+V .
Letting (%) ( 3
; of (X)) = g(x,y+v '

we have from (3.67), - -
o (x) + o (u) = ¢ + o (x+1),
(69) .

o« being continuous, we get from (?.69),

(70) o« (x) = Ax + c,
where d = o (1) = ¢, ‘.

Thus, o (1) being a function of y and v, we have

(71) 2(x,y+v) = A(y,v) x + 2 m 7 + g(o,y) + g(o,v).

x =0 in (°.71) gives
glo,y#v) = 2 m = + g(o,y) + glo,v).

Hence, (72) g(o,y) = ey ~ 2m 7, e a real constant.

Therefore from (3.71) and (J.72), we have

(73) g(x,y+v) = A(y,v)x + e(y+v) -~ 2 m TﬁM”fogxﬁjﬁmm\
f\\” T TR “'\\
A U T
{5’/ LiRgany "o
«\’ ‘j“’ 3 | e, \‘ "‘.'
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From (°.79) we see that A(v,7) is of ths form ¢ (y+v).
SO, )
(74) 2(x,y#v) = P(y+)x + 2(y+v) - 2 m 7,

Putting v = o, in (R.74), we have

(75) g(x,y) = P(y) x+ey-2mm.

But from (2.64) we have,outting u = 0Oy

(76) o(x,y+v) = on 7 + 2(x,¥7) + g(o,v).
From (2.,72), (2.74), (R.75) 2and (2.76), we get

¢(y + v) = ¢(y) = constant = «.
Thus from (R2,75)
(77 z(x,y) = o x + cy - °n w, o, ¢ real constants which
1s same as (R.65).

As h(x,y) is nositive, with h(x,y) = GH(XaY>, (?.62) reduces to

H(X.;_jl?y-}-v\l = ’{(};’V) + H(U_«)V).

Hence
A % A a et i
H(x,y) = 11 X + dq Yy ll ﬁg real ccnstonts ,*
né 80, 1
dlx + dpy
(78) hixz,v) = e 2
The eguntions (2.61), (R.65) ~nd (7.78) zive %
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dlx + dgy
£f(z) = f(x+iy) = e [cos (cqX + eV +
+ 4 sin (e x + czy)}
= eaZ+bz, where a = ']9; [(d1+icl) + (Cg-i d2‘}

1 ) _
and b=3% [ (4 + 1e) = (e, - 1] .
This comnletes the nroof of the theorem.

(1.9) fxy) = £(x) (), £ ¢:C—C .
THEOREM 2,21, Let f be a comnlex valued function of
the comnlex variable satisfying (1.9). Further let f Dbe a

continuocus solution of (1.9). Theﬁ f 1is of the form

£(z) = J’ek log |zl 2%y, 2z #0
r
L

O’ z =0

where %k 1is a comnlex constant and n any integer, nrovided

r 40,1,

Proof. Let T ={z: z]| =1} . Then f restricted
to T 1s a continuous character [éo? . It is ¥nown that [4@],

the character groun of T is the grouvn of integers =z, that is,

: n
f(z) = 2"y forz ¢ T, ne 2,

By theorem 2.27, for x mwositive, we have

f(x) = xk, x f R,




|
5
‘
i k)
T or zZ

(1.1}
(1.10)
(1.11)
(1.12)
(1.13)
knowmn

is an

Further if f

64
# 0, we have

£(z) = £C iz . To7) .

= £( |z]). f(TéTﬁ
n

o2 1o || .z‘) , 4 comnlex constant,
iz

(}

n any intever

K iz, 0
. log Iz, z 4 k, any comnlex constant.

Thus the theorem is nroved.

Pexider »nd Jensen Fguations.

paxider's Equatibns. The functional eouations (1.10),

, (1.12) and (1.13)
f(x+y) = n(x) + g(y)
f(x+y) = h(x)gly)
f(xy) = n(x+ Ay

f(xv) = h(x)egl(y)

as Pexider eguations are an immediate generalization of

the Cauchy Equations to which they can be easily reduced and

solved.

THEOREM 4.1. The general solution of (1,10) is f(x) =

a(x) + b+ ¢, g(x) = a(x) + ¢ and h(x) = a(x) + b where a(x)

arbitrarv solution of (1.6) and b,c are constants.

kx + b+ ¢, g(x) = kx + ¢ and h(x) = kx + b, b,c,k are

constants.

is a continuous solution of (1,10), then f(x) =




n
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Proof., Put first x = o0 in (1.10) and then y = o0 1in

R}

(1.10)« Then we have

1]

(1) £(y) h (o) + g(y)

( 2) £(x)

h (x) + z(o).
From (1.10),(4.1) and (4.2) we have

(3) fx+y) = £(x) + f(y) = b -~ c where h(e) = b

and g(o) = c.
(4) Setting a(x) = f(x) - b - ¢, from (4.3), we have
| alx+y) = a(x) + a(y). |
From (4.1), (4.2) and (4.4), we obtain the required result.
Remark. As for g and h are concerned, no further
assumntions are necessary. Further these functions are conti-
nuous, when f is. This follows from (4.1) and (4.2).
THEOREM 4,92. The most general solution of (1l.11) is
f(x) = a b exn Zc(x{‘ y 8(x) = b oexp [e(x)] , n(x) = a exp
[c{x)] , where c(x) is an arbitrary solution of (1.6),
a # 0, b # o are arbitrary constants excluding the trivial
solution f =o0, g = o0, h arbitrary, f=o0, h=o0, g
arbitrary. Further, if f 1is continuous, then f(x) = ab exp
(ex), g(x) = b exp (cx), h(x) = a exn (cx), where a,b,c are

non-zero constants (excluding the trivizl solution).




.
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Proof, If either h(o) = o or g(o) = o, we obtain
from (1,11), that f = o and either g = o or h = o, so that
either h or g 1is arbi*rary respectively. Henceforth, we

assume h(o) # o and g(o) # o. Putting x =0 in (1.11) we

obtain,
f(y) = nh(o) gy,
.(5) hence gly) = % £(y) , where h(e) = a # o.
Similarly, outting y = o in (1.11), we have
(6) n(x) = % f(x), where g (8) = b # o.

From (1.11), (4.5) and (4.6), we have

(7 fx+y) = m%;‘fbi .
Setting
_ X
(8) g(x) = =5~ »

from (4.7) and (4.8) we obtain

(1.7 g(x+y) = g(x) g(y).

m™us  g(x) = exp (cw). Then from (4.5, (4.6) and (4.8) we
obtain the degired result.

Remark. When f 1is continuous (non-trivial solution),
then so are g and h.

THEOREM 4.2. If f,g,nh satisfy (1.12), then
F(x) = {(x) +a+b, g(x) = ((x)+b and Kx) = {(x) + a

where [(x) is an arbitrary solution of (1.8), ayb are



67

constants. When f 1is continuous, f(x)=Y log (& B x),
z

g(x) = Y log (B x) and h(x) =Y log (« x), (f, By X » O).
Proof. Putting x =1 in (1.12), we have

£(y) = g(y) + n(1),

or

(9) , gly)

i

f(y) -~ a, where h(l) = ai
Similarly, putting y =1 in (1.12), we have

(10) h(x) = f(x) - b, vhere b = g(1),
Setting
[(x) = £f(x) - a - b, we obtain from (1,12), (4.9
and (4.10),
(1.8 Cixy) = ((x) + £y

If f 4is continuous, X,y > o, then {(x) = y log x and
taking a =Y log o and b =Y log B, o« , B > o, we have the
sought for result.

THEOREM 4.4. If f,g,h satisfy (1.13), then f = o,
g = 0oy, h arbitrary; f = o0, h =0, g arbitrary and f(x) =
abm(x), g(x) = b m(x) and h(x) = a m(x) are the only solutions
of (1.1?) where m(x) satisfies (1.9) and a;o, bfo constants.

If f 1is continuous, then f(x) = ab xc, g{x) = b x° and

h(x) = a x® where x » o, a#0, b# 0, ¢ are constants.
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Proof. Putting y =1 in (1.13), we get

f(x) = n(x) g(1)

or

, where g(l) = a # o.

tl

(11) n(x) faX)

Similarly nutting x =1 in (1.13), we obtain

- £(y)

5 where h(l) = b f Os

(12) g{y)

If either g(l) = o or h(l) = 6 we obtain the trivial solu-

tions. Now, setting

£

n(x) = ab !

from (1.13), (4.11) and (4.12), we have

(1.9) m(xy) = m(x) m(y),

Thus, when f 1is continuous and x,y > o, we obtain the
desired result.

The functional equations (1.7), f(x+y) = f(x) f(y) and
(1.11) f(x+y) = h(x) g(y) where f,g,h are real valued func-
tions of the real variables have been extensively studied and 1t

solutions
is well known that the continuousﬁof (1.7) are given by f(x)

1

i

= %% (Theorem 2) and that of (1.11) are of the form f(x)
= ab eCX, g(x) = b e * and h(x) = a ¢“®  (™heorem 4.2),

where a,b,c are arbltrary constants. Here we consider (1.11)

in the following manner.



69

Let f : R 1R (R, real numbers). Then f 1is said %o

have property (4) if there oxist functions h,g + R-72 such

that (1.11)
£(x+y) = h(x) g(y) holds, for all X,y € R.
As nointed out in Theorem 4.2, if either f or g or h 1is

zero at some point, we will have only trivial solutions. Tn what

follows we consider f,g,h to be nowhere zero.

LEMMA 4.5, Let f : R—3. Then the following two condil-
tions are equivalent?
(i) f has property (4)

(i1) £ (x+y) = = - Of ) | for every x, ¥ € R.

Proof. Let (i) be true., From (1.11) first with x

i
o

and then with v = o, we obtain

£T(y) n(o) g(y)

]

(13) and
f(x) = h(x) g(o).

From (1.11) and (4.1°), we have

(14) f(x+y) = %%%%é%%% S ELE%%%¥l , which is (ii).

Let (ii) be true. ™hen f(x+y) = n(x)gly) where n{x) = £(o)

f(x) and h(y) = ;%ﬁfé— . So, (i) holds. This comnletes
f(o

+he nroof of this lemma. Let f Thave nroperty (A« Then

(4.14) holds. Renlacing x by x/2 and ¥y by x/2, we get

A
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y £(x) f(X/Q)z

15 ) B e P

( (o

Hence from (4.15), we see that f has always the same sign as
that of f(o). From (4.14), it is also evident that f(o) 1is
arbitraryv. In the seguence we take f(o) 1s nositive and hence

f is always nositive. Putting y = -x in (4.14), we obtain

2o = HEGE
That is,
§ | f(o)2
| (16) f(~x) = e , for every x € R.
1 THEOREM 4.6. Sunnose f ¢ R—»>R with property (4).
; . U 6L
] Then for every rational r, f(r) = s i
! (o)
4
g 1! Proof., Put y = x in (4.14) we have
: 2
(17) (%) = £%%%7 :

Setting v = 2x (in 4.14) and using (4.17), we obtain

F(x)f(2x)
f(o)

f(o)g_

ti

£(3x)

Hence by induction on n, we have for any natural n,

f(x) "

(18) f(nx) = -
f(o)n
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Let = -my, m>»o., From (4.16) and (4.18), we have

"

:g f(nx)

Hence (4.18) holds for all integers n. Let any rational
P

r=>=, Then D =qg7T .
q

From (4.18), we have f(px) = —=—7

also =

P
Hence f(rx)q = -ilz%;a- .
f(o) V™

S T
o

£(x) p/q
/ =1
f(o)p !

il

i That is, £(rx)

(19) = iiéli_I for all
ey a XGR.

£(o)F™

Now setting x =1 in (4.19), we have

-
() = S,
f(o)
B
= f(o) . %%%%— .
(20) =ca, ¢=f(o) and a = el

o)
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THEOREM 4,7. Let f ¢+ R —> R be contlnuous at some

point. Then
(1) £ has property (4)
(ii) £(x) = c a¥, for every x € R

are equivalent.

Proof. Let (i) hold. First we will prove that f 1is
continuous everywhere. Let f be continuous at X e Then,

from (4.14) and (4.16), we have

f(x) = lim f(x, - X + X))

X, =X+ X X,
f(x_~x) . f(x.)
= 1im I T <
Xp~X+X  —>X,
_ f(xo) f(xn) o T(-x)
= ?‘ro'*j"' . lim f( O)
X, —>X

P 2
lim f(x ) = £(0) = f(x).
X, —> X n NESD)

Hence f 1is continuous everywhere. From theorem 4.6, now i%t is
easy to see that f(x)= ca¥ for all x € R. Hence (ii) holds.

Sunpose (ii) holds. Then f 1is continuous everywhere. Also
X y
¢ 8 ., &a

f(x+y) = ¢ XY =

= = > < e i D e e S S R e S e R s e e e S e s b R SR I b i s A e s s e B e s e S -
- = = e A e e e Loty ) AR N A3 L R A g e yme g s i g S S A e L S A I o ok

IO L) vnien 1s (4.19). i

S, i i o i



73

Hence (1) is true. This comnletes the proof of thid theorem.

Jensen's Eguation: Now let us consider the equation

)

+ _f(x) + £y
(1.14) £(EFDH = 5

o}

known as Jensen's eguation. The solution of this ecuation can

be dbtained by reducing it to the Cauchy equation (146
THEOREM 4.8. The most general solution of (1,14) 1is

f(x) = a(x) + b, where a(x) 1s a solution of (1.6) and b

is an arbitrary constant.

Proof. Put y = o in (1,14). Then we have

f(%\ = iiz%?:_h , where b = f(o).

Thus
f(x+y) + b _ 4
2 =1 (KEX)
(21) = 200 2 1(y)

Now set a(x) = f(x) - b. Then (4.21) becomes
a(x+y) = a(x) + a(y).
Thus f£(x) = a(x) + b, where a satisfies (1.6).
Remark. The general continuous solutions of (1.14) are

f(x) = cx + b, where b and ¢ are constants.
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THEOREM 4,9, Let f Dbe defined on an arbitrary interval

and satisfy (1.14). If f s continuous, then f(x) = cx + b
for all x in the interval.

Proof. Without loss of generality, let us assume the
interval to be [o0,17 . Let f(o) =D and f(1) = a. For
every x,y € [e,1) , it is evident that Eél e [o,I] & The
proof is based on induction. First, let us show that
f(x) = ex + b, for x a dyadie number in [0,1] . Then
since the dyadic numbers are dense in [o,1} and f conti-

nuous, we will have the requfred results From (1414), we have

1, = O+1,_ b + 8 _ 1 -
f(.é)_f(z)_ 5 b+2(b a)
= b+ Ec, vhere ¢ =Db
2 ’ - * Qe
Now, 1
£(0) + f(+3)
f(l) - 2
4 2
=Db + % c, ete,

Supoose f(x) = cx + b, for all dyadie s with denominator

2n. Then by induction hynothesis, we have
ok k k
f(—=5) = f(=) =b+ ¢ 7
2n+]_ 2n 2n
= 2K _
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and f(i%) + f(E%%)

[ 2 2

i p(Btly o )

3 2 '

' = .].2". [C . xﬁ' + b+ c E‘r-ll + bA\

V’ 2 2 )

;; = 2 ktl + b hich v ur assertion
3 | = c , ;HTI— , which oroves o ass

that f(x) = cx + b, for all dyadic x 1in 0,1} .

8§ 5, Some generalizations of Cauchy, Pexider tvne eguations.

Lﬂ; A). (1) f(ax+by+e) = p £(x) + q £(y) + T, a,byDy0 % Gy [oB=2Rs
The cquation (5.1) possesses measurable and non-constant
solutions if =nd only if a =D, b = q.

The eguation (5.1) can be reduced to the equation (1.6)

by a scoucnce of subhstitutions as {follows.
x = -c/a, y = o in (5.1) gives

(2) f(o) = f(=- c/a) + g f(o) + r.

X = Lig , ¥y =0 1in (5.1) gives
(2) £(+) = pf‘(i:—;-c-} + g f£(0) + r.

= - c/a, vy = % in (5.1) gives

b
l

(4) f(z) = p £ (-c/a) + g (z/b) + r.

Castly:, x = (t-/a, ¥ = z/b in (5.1 gives
(5) £(+t+z) = pf((t-c)/a) + q (z/b) + r.
Adding (5.2) and (5.5) and then subtracting (5.7) and (5.4),

» . we get
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(1.6) fo(t+z) = fo(t) + fo(z)) where

(7 fo(t) = f£(t) - f£(o).
Hence if f in (5.1) is continuous, from (1.6) and (57) 5

we have,

(8) f(x) = ex + d, d = f(0), e , constant.

Putting this value of f in (5.1), we obtain

a=p,b=gq, ec -1 = (atb-1)d.

Remark. For a =b=1/2, c =0, p =q=1/2, r = 0,
the equation (5.1) reduces to the Jensen eguation (1.14).

As (1.6) vossesses discontinuous solution, all solutions
of (5.1) are not continuous. As for non-measurable solutions,

it has been nroved for

(9) flax+y) = pf(x) + v

(with b =g=1, c =1 = o) that if a or p 1is rational,

then (5.°) has non-constant solutions only for a = pj if a or
p is algebraic and (5.2) has non-constant solution, then a

and p are algebraic and are roots of the same irreducible

monic polynomial [27] .
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i
B.(10) L f(x+y) = g(x) k(y) + n(y), fi R—7R.
Let f be not constant. Putting y = o in (5.10), we get
(11D £(x) = g(x) k(o) + h(o).

From (5.10) and (5.11), we have

(12) f(x+y)

= o(y) f(x) + B(y), where
(13) o£(x) = igﬁ% , 8(x) = h(x) - %%%% k(x) .

Now to find the solution of (5.12).

Set x = o0 in (5.1?5 and subtract the equation

(14) f(y) = «(y) f(o) + BCY),

then we hav=z
(15) §(x+y) = o(y) &(x) + 8(y), where
(186) §(x) = f(x) - f(o).

Interchanging x and y in (5.15) and using (5.15), we get

L(y) 8(x) + &(y) = «(x) 8(y) + 8(x), that is
(17) [2(x)-1} 8(p) = [y = 1] 8(x).
If o«(x) = 1, (5.15) reduces to (1.6) 8(x+y) = 8(x) + &(y).
Hdence, from (5.16) and (5.14), we have
(18) £(x) = 8(x) + flo), «(x) =1, B(x) = 5(x)

as a solution of (5.12), where & satisfies (1.6).
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;{ From (5.13), (5.1]) and (5.11), we sce that, a solution of
(5.10) is of the form

} £(x) = A(x) + £(0)

; g(X) - 6(}() + g(o> - hKO)

: h(x) = &(x) + h(o)

; § k(x) = constant = b.

{ Let o«(x) ¥ 1. Then there is an X, such that d(xo) Z 1.

Putting y = x, 1in (5.17), we have

atyy)

(19) 8(x) = ¢ ‘(°< (x) = l)’, c = W
f? ¢c =0 in (5.19) gives &8 = o and hence f 1is a constant
; from (5.15) which cannot be.
1 The equations (5.15) and (5.19) yield
3 (1.7) oA(x+y) = oL(x) (¥ .
! Hence from (5.14), (5.16), (5.19), we have
! ] J £(x) = ¢ ok(x) + d, d = £(0) - ¢
1 20
. (2] {‘B(X) = d (1 - o(x))
f? as solutions of (5.12), where o« 1is a solution of (1,7).

: Thus (5.11), (5.13), (5.90), yield, a solution of (5.10) as
;; f(x) = ¢ «L(x) + 4

el = c_o(x) ; d - h(o)

§ ‘~ k(x) = b o(x)
3 n(x) = d + (d - h(o)) «(x)




79

where o satisfies (1.7).

In case f is a continuous solution of (5.10) , we get

’

ex + f(o)

1l

;% | £(x)

ex + f(0) = h(0)
b

g(x) =

h(x) = ex + h(o)

k(x) = const = D

1 and
i f(x) = ¢ *F + g , A a constant
Ax
: s+ ~ h(o)
g(x) = c e bd h(o
k(x) = b o™*

n(x) = d+ (d - h(o)) ¥

are the only solutions of (5.10).

C. Equation of the tyne Ff(x+y) =F Le(x~y), f(x), £y, -

(21) f(x+y) f(x-y) = f(x\2, f «+ R—~>R, with f differen-
tiable.

Evidently f = constant is a solution of (5.21).

Supnose there is an X, such that f(xo) = o. To show that

f = o, Putting x = 0, ¥ = X4 in (5.21), we scc that

f(xo) f(—xo) = f(o)2 implies f(o) = o.

Hence putting x = o in (5.21), we see that () £ (=)

1
o]




all y. Supnose f(—Xl) = g,

Putting x =-X5 and y = 2X;, We see that
iy - =
(%) f(-2x) = 0.

If f(xl) = 0, there is nothing to vrove.
Otherwise f(-3x;) = o.

Put x = Xy and vy = -4xl in (5.21) to obtain

%z ' f(~3xl) . f(+5x.) = f(xl)2 implying f(xl) = Oa

)
Hence in either case, we have f(xq) = 0. 50, f = oo Let us

3

assume that £ # ¢, in particular, f vanishes nowhere.

Differentiating (5.21) with respect to x and ¥y, we have

((

4 fr(x+y) fx-y) + £(x+y) £1(x=-y)

aflx) £M%)

%;y £ L £r(x+y) flx-y) - £(x+y) £'(x-y) = o.
égiv Thus from (5.22), we have
f(x) £1(x) = f(x+y) f'(x-y), for all v,
( o3) = f(QX) f1(o), for y = x
= £%%%; fr(o),

since putting vy = x in (5.21) we have f(2x) f(o) = f(x)g.

Since f‘# 0, we have

f'(0)
(o) °

f1(x) = ¢ f(x), all x € R,yc =
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f'(o) = o gives f(x) = ¢, which cannot be.

cX

Thus, f{x) = 4 e, A, ¢, Constants.

1l

D. (24 f(x+y) = o tlx) + 8 f(y), « B constants

h

X = 0, y=o0 in (5.94) gives either « + 8 = 1 or f(o)=o. Supnose

o £(x)
B £(y)

-. ‘¥ = oin (5.24) gives f{x)
S8imilarly f(y
Thus f(x+y) = f(x) + £(y).

i

Sunpose o« + B = 1,
x = o in (5.94) gives

f(y) = o f(0) + (1 = ) £(y)
that is, of f(y] = o f(0o) and hence

f(x) = constant.

E. Equation of the tynme F(x * y) = G(x) + H(y) + ¥(x) L{y).

Let F, G, Hy K, L ¢+ C A—»C (where A 1is an arbitrary
Abelian semigroun with operation * such that, there is a fixed
element é € A with the vroperty that the equation a *x =1b
for arbitrary b € A has at least one solution, C the complex

numbers) satisfy

(25) F(x * y) = G(x) + H(y) + K(OL(y), X,y € A.

It has been nroved by Vincze [85] , that the following are

the only solutions of (5.295).
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i F(x) = (P(X) + °(19

oL
G(x) = o(x) =~ oy K(X) + oy + 7% ’

1
o(x) + 5 dl - Ay

ff}

H(x)

1l

K(x) arbitrary

1 Bx) = oty
| 1. F(x) = Lb(x) + o(x) + o,
3 G(x) = oL (x) + o(x) + o,
3 H(x) = o« b(x) + o(x) + <

K(x) = & B(x) + o,

L(X) :°<QU)(X) +O(10’

_ = 0, oA+ dgAy = 0, Ay = Ay + A F
K = Agr g Ay T 5 TR T R 6
* fgt10 3

1T, F(x) = o000 % + ab(x) + 6y(x) + oL
G(x) = o $(X)° + 01(x) + oy
H(x) = opo(x) 7 + oop(x) + b(x) + oLg
K(x) = 2d1¢(x) + oL
Lix) = ¢(x) + oL

]

Ly = 2jelg = olg + Ay oy = Ly + Ag + olpln g
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éﬁf where ¢ % bl respectively ¥ are the solutions of

i

b(x) . (b(y)

b(x * )

$, b being : A—>»C, 's are arbitrary constants.

g4 (x) hg(y).

i ~3
}_._l

| F. Ecuation of the tyve f(x+y) =
; 1

Let F,G,H: A—»C satisfy

(26) F(x * y) = F(x) + F(y) + &(x) H(y) + G(y) H(x),

for x,y € A, where A 1is an arbitrary Abelian group with
operation * and C, the set of comolex numbers. Then it is

known [87] that the following are the only solutions of (5.26).

il

Ls F(x) = $(x)

G(x) arbitrary

Wt

H = o.
iF, () = o b (07 + 40900 + a(%)
G(x) = ¢1(x)
H(o) = Ay (1) 7+ o (50)
II1. F(x) = 2 B(H(x)-1) + Boq(x) Y(x) + py(x)
G0 = o (D) =1) + 4y () b(x)
Hix) = 8 (P(x)-1).

Sl o
it
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Iv. P(x) = 2 o B 1) - o B (07 + (%)
G(x) = oLZ((x)-1) = ety (%)
H(x) = o B(W(x)-1) + B¢, (x).
and
V. TNX)=fM2Y Wluﬁd]-ﬂﬁav[@gxbaﬂ+ $(x)

G0 = o v [y (0-1] + 8y [by00-1]
H(x) = o [by(x)-1] - 8 [by(x)-1]

where ¢,¢, respectively w,wl,wo are the solutions of

y

I

d(x * ¥
b(x * y)

$(x) + ¢(v)
b(x) b(y)

1l

(¢,¢,¢1,¢1,¢2 : A->»C) and o,B,Y are arbitrary comolex

constants.,.

G. (27) $(x) = ¢(ax) ¢(bx).

T.at ¢ ¢ R>C Dbe twice . differentisble at x = o and

. 2
satisfy (5.27) with a » o0, b » o, a® + b° = 1., If ¢ 1is non-

2
constant, then ¢(x) = ™. (refer [8§1 Y.

H. (29) flxy) = g(y) £(x) + h(y) x + k(y).
The general solution of (5.22) bounded on a set of nositive

measure are [9] 27




£f(x) = a log [x| +b+c
f(x) = a x log [x‘ + bx + ¢C
f(x) = a {de + bx + ¢
f(x) = a fx[d sgnx + bx + c.
I. (29) o [% + v b(xﬂ = ¢(X\ ¢(y).

The eguation (5,.,2®) has continuous solutions which are

not differentiable, also measurable and bounded solutions

which are not continuous. The continuous solutions of (5.29)

are [n@ 9 ,.’28] ’ @5] , B, [771 )

f=o
f(x) = cx +1
- .
f(x) = (1 - 3oy X & X
j 1
{ © ’XZX]_
f(x) = 0O 4, X <X L0

X
I" ’XZX}_“

The first two solutions are differentiable.
The function f(x) = |1, x rational
0, X irrational

satisfies (5.20). Here f is not continuous, but bounded

and measurable.
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§ 6. Miscellaneous couations. In this section, some examples e

of equations belonging to cyclic equations, iterated egquations, A

trigonometric equeotions etc. are treated.

A. Solution of eguations by simole substitution. ’@

a) (1) f(x+y) + f(x-y) =2f(x) sin y, where £: € —»C €,complex

numbers.

Here f 1is a solution if and only if f = o .

f = 0o is evidently a solution.

i

Put x = 0, ¥y = 0. Then we have f(o) = o.

Put x = o and use ‘f(o) = 0. We have £f(y) = =f(-y),

)

f 1is odd.

Interchanging x and vy, we get

f(x+y) + £(y-x) 2r(y) sin x.

Since f 1is odd,

f(x+vy) f(x-y) = o2f(y) sin x

Hence, f(x+y) = f(x) sin y + £(y) sin x.

Puktting y = o, we obtain, f(x) = o.

Yence f = o ic the onlv solution of the above equation (1).
b) (2) f(x+y) + f(x-y3 = of(x) cog x, £: € — ¢

Here again f = o is the only solution of (6.2)

Putting x = o, we get

(3) f(y) + £f(-y) = 2f(o).
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b and replacing y by y + n in (8.2), we have

Putting x 5

I

i\ a

"x
f(y + ?;) + f(w/2 - ¥y O.

il

1

Putting x = /2 in (6.°) we have f(y+"/2) + f(ﬂ/z-y) = O.
Hence, f(y + %?) = f(y+n/2). that is

f(y + o2r) = £f(y), £ 1is veriodic with period 2m.

Putting y = 7 in (6.2), we have f(-) + f(-m = 2 £(o).
?ﬁ Hence f(wm) = f(o), since f(-m) = £(m.

Set x=m, y =7 in (6.2). We have

f(2r) + (o) = -2f(7) = -2f(0).

Therefore flo) = o«

il

From (6.2), we see that f(-y) -f(y), f 1is odd.

il

x = in (6.2) gives, f(m+y) + £(7=y) o, that is,

f(m+x) - fx-m o

2 f(x) cos X.

i

y =7 in (6.2) gives f(x+7) + f(x~-m

Thiis, we have flx+m) = £(x) cos x.

Repl~cing x by x + 7 and using the veriodiarity Af, we get

f(x) = -f(x+m) cos x

(4)

-f(x) cos® x, for all x.

Putting y = o in (6.2) we get either

f(x) = o or cos x = 1.
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Hence whenever cos x # 1, f(x) = o.
Now, let cos x, = 1.
Then from (6.4), we get f(xo) =wf(xo), that is f(xo) = G’

Hence f(x) = o for all x.

o) (5) f(x+y) + £lx-y) = 2f(x) cos v, £ 1+ L —=>C |
X = o0 1in (6.5 gives
f(y) + f(~y) = 2 f(0o) cos ¥.
So, f(y+n/2) + f(wy-n/2)= - 2 £(0) sin y.

Put x = /2 in (6.5),

f{w/2 + y) + £f(«/2 = y) = 2 £f(n/2) cos y.

Hence f(-yin/2) -~ f(-y+=/2) = -2f(0) sin y - 2f(n/2) cos y

or f(y-n/2) - £(y+7/2) = a, sin y + by cos y.

1

x =y, v=7/2 in (6.5) gives f(y+n/2) + fly-/2) = o.

S0, f(y~-v/2) ag sin y + b, cos y .
Hence f(y) = a sin y + b cos v.
Every solution of (6,5 is f(x) = a sin x + b cos Xx.
d) (6) f(x+y) + f(x=-y) = °of(x) + 2f(y), f: R—>R.
X = 0,y = 0 in (A.6) gives f(0) = o.

1

X = o in (6.8) gives f(-y) = f(y), £ 1is even.

2
By induction, let us nrove that f(nx) = n f(x), n an integer.
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Put v = nx in (6.6)

f(n+1)x) + f(-(a-11x) =2f(x) + of (nx)
of(x) - (n-1)2£(x) + 2n°f(x)

1

£((n+1)x)

(n+1) 2 £(x).

}

Hence f(nx) = n2 £(x)

2 2
Putting x =1, f(xX) = f(n~ =cn .

m .
Similarly, we have f(%} = C(E) , that 1is, for any
rational m flr) = ¢r .
! 2 .
If f is continmous, then f(x) = cx’, for all x € R, is the

only solution of (6.6), where c 1s any constant.

B, TIterated ecquations.

The ecuation of the tyve
(7 fNx) =g [fm(xil , m, n integers (£ denotes the n-th
iterate of f) belongs to this category. The equation (6.7)

for m< n, can be reduced to the equation 6O]
n
(R) f(x) = g{x),
~which is a generalization of the well-known Babbage equation.

(9) f(x) = x.
It has been oroved [?O] , that the general continuous solu-

tion of (6.9) for odd n is f(x) = x, for even n, continous
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solutions of (6.9) are the continuous solutions of fz(x) = X,
Further every continuous solution of (6.9) is strictly monoto-
nic. For g=f in (6.8), the follewing two classes of func-
tions occur as solutions [?2] .
Class 1. 1) ™he function f 1is continuous for all real X
11) f(x) = x on a connected suhbset s of the x-axis and
iii) g L< T(x)< M, LyM Dheling the infimum and sunre-
mum of £ on s.

_Class 2.iv) Fhe c~unction f 1is continucus for 5311 real X
and either

V) fz(x)

1!

X

»

or vi) £2(x) = x on a non-degenernate closed interval

[2,0] f(a) = b, f(b) =a, a & f(x) < b.

The general solution of (6.8) has been constructed by G.Loja-

éiewicz [71] and the general continuous solution under the

assumotion that g 1is monotonic been constructed by Xuczma [511 .
Tor n = 2 in (6.8) it has been proved by Thron, W.J.

£8é1 , that, when g 1is an entire function of finite order,

P

which is not a nolynomial and which takes on a certain value

only a finite number of ftimes, (6.2) does not have a solution £
which is an entire function. A stronger version of the above
result was proved by R.0sserman 2] , for gl2) = P apd
n=o2 in (8. Let z = x+lyand let Q denote an infinite striv
1y‘41b, for some constant b > 7. TLet £ be a function defined

“in some domain D containing Q. If f satisfies in D, then

f cannot be analytic.
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C., Method of determinants.

The following results are neseded to orove the main theorem

il

in this section. TFor more details and proof refer [é@] , 6]

; Notation. Let QO be an arbitrary Abelian semigroun
g and €, the field of complex numbers. Let Fv . QO*-%>QC y
:, )) = l’ 9:’ e s 8 :) na Ilet
* v z-) F F
] (10)  AlF,(27),Fo(z) yees, P (2)] =
L 1he1 a2 Y ’nnd g
Fl(zn> FQ(Zn) e e s Fn(Zn> ?
] Zi € Qo
1 Lemma 1. The functions Fq,Fgyes+,f, are linearly
4 denendent, that is,

i

n
oy F1(2) + wuu + o F(2) = o, ]ZL l, | >0
if and only if A [Fl(zl),...,Fn(zn)] = o for all zyyZgy+++2p:

Lemma 2. If Fu(z) = Fy(z\ helds, then

; (P (z) 7 7 T ( = 0.

’ ALl\zl,,...,,.u(zu),...,w<zy>,...,..n(zn)’ o

4 k

i Lemma 2. Whenever pio A[Fyl(xlﬁ,,..,PlJn(xnﬂ = o is true,
i o

3 the a ™ - = i 1

f then vio A ngl(xl),..., NI A F(xn+1)] o 1is also true

for arbitrary E‘Z.QO——> C .




02
The secon? eguation 1s a result of 'enlarging' the

first equation by F. This lemma will olay the important role

in proving many results in this direction.

Lemma 4. Let E € OF be an independent parameter from

the variables 2Zyy Zey ¢+ s Zp° Then from

A [Fl(zl,gﬁ, Fg(zg), S Fn(zn) = 0
follows at least one of the equations
Fp(z) =06
s (2) = o, 1 Fp (2 +oardy Foo(2), = 2%, n-1,

F (24,8 ) = do(G) FolZ) + wee ¥ « (L) Fplz), 1is true.

The main theorem in this section is the followings

Let f1 00'“%-Q:~ mhen the following two ~souations are equl-

valent,
n
(11) flzy * 2" = [ozp) + 2(2))]
(12) f‘(zl & 22) = F(z17 + f(zg),

* 7z, € Q. That is, any solution of (6.11)

)

where 2zqy 299 27

"is also a solution of (6-12) and conversely.
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; proof [41] . It is evident that any solution of (6.12)

is also a solution of (6.11). So, to prove that any solution
3 of (6.11) is also a solution of (6:12). Further f % o isa
4 solution of bath (6.11) and (6.12). 8o, let us assume that
é f $ o. Tlsing the associativity of * , we have
é t [(zl * ) ZQ] Tog le * (C * qu>n .
f Now from (6.11), we have
i n n
§ g (5 f(zl)n"’ e(g)yY + (M f(zq *C)n"}& f(z?)“'
1 »=0 . u=1 H -
: n-l 4 n-y Y o n n-g i
= 3 () flz) £(g*zy) + T () £ z) £(z)".
p=o ) S ‘
;; Using commutativity of * , we have
% n-1 n n-y n-g I
g 2D [£ap ™™ - 2D ] ez )" -
. u=1
4 n-1 , |

n n-p n=-y
2 (3 Lete*0 - 20 J1(z) = o,
p=1 |
that is,

]

1 .
(13 1 (M 8 [fz * 0" - 2@, 22" ] = o,
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2

) - ;
Enlarging (6.1%) with £(2), £(2) 7y sev £(2)" and using

the lemmas, we obtain, for n > 3

I By & [£(zq * i L ()H, f(at,y flzg) ] =0
u=2

il
o)

n-1
-u - W 2
Za () 2 [£ 0™ - @7, £lz))7,f(2) J£(z,)]

(19) (2 a0 - 2O, £(z )", f(23>n’2,...,f(zn>]= .

The eguation (14) holds when either

it

f(2)
_ n-yY -1
or (15) Y= I & (Y, ¥= 1,20, 07l

C

i

or

n-1 0
(16) f(zi*{) - (8 = T % (g) f(2)",
u=1

n

= n-1
with ® |o, |»o0 and I |« (£) | > 0. f(z) cannot be
=1 M w=1

identically zero by assumntion. (G.15) implies that the func-
-2
tions f(z), . f(zﬁg, . £(2)P77 are linearly dependent and
hence f = o (refer [ 1) which cannot be by assumption.
Yence only (6.16) is true.
. A p n-~1 n-2
Again, enlagrgig (6.12) with £(z) , £(2) , « o £(z), we get
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N n=1 Y
(s ferOPE o ng)Th = x B, () £z, it
. y=1
n+1 | ’
z IB (%) | > Os
p=l ! ¥

From (6.16) and (6.18), we have

n-1 - n-1 .
(19)  [#g) + £, (5 O L L S L [ C
u=1 y=1-"Y

-f(zY] :

On account of the linear indenendence of the powers of £,

comparing the corresnonding coefficients, we have
of -
Lﬁ ) =o0,u 22, thus

(20) f(z *& ) = dl(tg) f(z) + £( L ).

To determine dl( r s

Interchanging z and & in (6.20), we obtain
[ (T =17 £ = [#(z) - 1] £(Z).

Since f = o, we have

L (z) -1

- _ L
o (7 ) -1=af(L),as= f(z& , £z # o
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Now (6.20) becomes
flz * § ) =a £({) £(z).+ £(2) + £(5)
From this equation and (6.11) for ¢ = z, we have
Z n -
fa f(z)" + of(2)] = [?f(z[l ‘

As before, comparing the corresponding coefficients, we get

a = o0 and hence o« (g ) = 1. Thus from (6.°0), we have

f(z) *(g) = £(z) + £(Z ), which is wanted to be vnroved.

5

"D, Unigueness theorem.

There exists at most one continuous function f satisfy-
ing the functional equation
(21) £, (F(x,y)) = H(£(x),f(y))
for all x,y € (A,B) and the initial conditions f(a) = ¢,f(b)
=d (a,b € (4,B)), if F is continnous in (A,B).x (4,R){ ‘and
F(x,y), H(u,v) are strictly increasing or strictly decreasing
in x,y in (A,B), resvectively in u,v in (f(a), f(B)), when

(4,3) 1is a closed, half-closed, oven, finite or infinite

interval.

Proof. [14] . Define

(22) g(x) = F(x,x).
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Then g takes every value assumed by F(x,y). TIndeed, if F

is increasing in both variables, we have

- g(A) = F(a,n) £ F(x,y) _<_ 7(B,B) = g(B).

Thus, g Dbeing continuous, g assumes the value F(x,y) and

also g 1is strictly increasing.
Hence the inverse g-l exists on (F(4a,4), F(B,B)) and

(23) G(x,y) = g—l (F(x,y)), for x,y € (A,B)

is well defined, continuous and increases in both variables.

Moreover, for x < y,"

x =g} (g(x) = g H(Fx,x)) = 6lx,x) £ G(x,7)
< G(y,y) =y, that is G is intern.

Putting x = y = G(s,t}) in (6.21), we have

(24) £,(F(G(s,t), G(s,t))) = H(f(G,(s,t)), f(G(s,t))).
Now, set
(25). hix) = H(x,x).

From (6.22), (6.23), (6.24) and (6.25), we obtain

£,(F(s,t)) = h(f [G<s,€3] )
This, by, (6.21), becomes
' °6) H(E(x), (1)) = h(f [G (s, )]
Now define

(27) K(u,v) = h™% (H(u, ).
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h-l exists, since h defined by (25) is strictly monotonic

in u. Trom (6.26) and (6.27), we have

(28) £ [6(s,t] = K(£(s),T(})), where

K is strictly monotonic in u and V.

This equation (6.28) is of the form

f(P(x,7)) = H(L(s), £(¥,x,y)

and satisfies all conditions of Theorem 1 in [10] . Hence the

proof of this theorem is comnlete.

E. Cyclic functional equation.

An egu-tion of the type
(29) F(xl,xg,...,xn) + F(XZ.XS,...,XD,XD+1) * gs5 F

F(Xn-o+1’xn-n+2""’xn) + F(Xn-p+2’xn—p+9'"’Xn’Xl)

+ LA 2 + F(Xn,Xl,o--,XD-l) = 0

where p and n(> p) are two srbitrary vositive integers, is
a cyclic functional ecuation. We shall consider this ecuation
(6.,29) later. TFirst we shall consider a particular case of

(6.29) for n = 3, p = 2 known as Sinzov's functional ecuation.

Sinzov's functional ecuation. The functional equation

(30) 7(x,y) + F(y,z) = FPlx,z)

is called the Sinzov's functional egu-tion.
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THEOREM 1. The general solution of (6.70) is (x,V) =
g(v) - g(x), where g 1is an arbitrary function.

Proof. Put x = ¢ in (6.20) and define g(x) = -F(x,0).

Then we have

P(x,y) + T(y,c) = (x,0).

Hence (6.°1) (x,y) = g(v) - glx).
Obviously F(x,v) defined by (6.7°1) satisfies (6,30) .
Remark. The enuation (5.70) can be considered as A

gencralization of (1.6). For, letting

(22) | F(x,y) = flx-v),

the equation (6.70) reduces to f(x-y) + £(y-2) = f(x-2).
dytting 2z = o and replacing x by x + Yy in the above enua-

tion, we get

f(x) + f(v) = f(x+y) which is (1.6).

The solution of (1.6) does not follow from that of (6.20). For,

from (6.21) and (6.72), we have
f(x-v) = g(v) - g(x)

which is the ™exider ~reaation (1.10). This illustratesthat the
solution of 4 »narticnlar finctional eouation mav be more diffi-
cult than that of = general one. DNow let us take un (6.29). The

following theorems are nroved under the following assuptions

61, [l , 101 .
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o
5 »

(1) X, ¢ 3, where S is an arbitrary non-empty set.

(1ii) The values of F 1lie in an additive Abelian groun G.

(1ii) Te group & is such that x = s, (X,8 € G) has a

unicue solution x = s/m for every m < n,m an integer.

THEOREM 2. Tor n 2 2 p-1, the general solution of the

functional equation (6.29), under the hynothesis (i) and (i1), is

any W N : : B} .
(22) J(Xf ,..,..,xn) = f(xl,h?,..,xp~l) - f(XQ’AQ,..,XD) + A

X
2

where f 1is an arbitrary finction and A 2an srbitrary element

of G such that ni = 0

Proof. Se 4 = = ., = = 9 i 2
? Set X9 X o . X, ¢ (constant) in (6.29).
Then we have
3 =
(’» 4) V(Xl,iq,.a,xn) + F(Xq,XQ,t.,XU,C) ® s 3 g * s 00 80 0 o+

F Pi e 1 > pnJ
(X 9C50050) + (n-20+1) F(c,Cyees,C) + F(CyCyaayCyXy)

+ F(CyeeyCyXy X ) + oo + T(CyXygees%y ) = O

17
Putting x, = ¢ in (6.R74), we obtain
(R5) F(xl,..,xn_l,c) + F(xq,...,xn_lgc,c) + oy amee
F(X,__19CyeeeyC) + (n=20+2) F(CyChanes) + F(CyCy0us,yCyXy)

+F(c,c,.c,xl,X2) F oae. * F(c,xl,...,xp_l) =5
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Sub*racting (6.25) from (6.74), we get
(36) F(xl?X27"7Xp) = F(X]_?...’XU"].,.C) - F(X.Z’.',Xp,c) <+

F(XQ,..,XD_I,C,C) - F(xg,..,xp,c,c) +

s as T F(XD—I,C"..,C) - F(XD,C,.."C) + F(C,C’IO,C)
Now let

2 , -
(?7) f(xl,xz,...,xn_l) = ?(xl,xg,...,xp_l,c) + F(XgyeenyX _qeCe0)

+ vee + F(x 3 By Ciyminn yC)

p-1
and
(28) A =TF(c,Chuunyc),

Then from (6.2€), (6.27) and (5.28), we obtain

F(xl,xg,...,xn) = f(X19X2""’Xp-1) - f(xg,...,xp) + A

which is precisely (5.77).

Putting x4 = ¢ = x5, = . = x in (6.29) and using (6.78), it is

n
easvy to see that niA = o,

THEOREM 2. Tor n = 2p -2 >p and m = 2, the general

Solution of (6.2°) under the hvnotheses (1), (i1) and (iii) is

(29) F(xl,tg,...,xn) = F(X XgyeenyX, _¢) - f(xg,...,xp)

G [ /
+ l(Xl’XD) Cl(XU,Xl) + A

with na = o. : ]




= = = i o0) Then
Dyt = x = = X e in (6:29).
Proof. ut X401

we get

- W X 5 Cyas syt

)

. (e . e o0 g X
+ F(xn,c,...,xl) + F(CyCyaneyXqaXg) + eee FleyXypeeesXy g

= 0.

Putting x =c in (6.40), w2 have

(4-']-) F(Xl’ntos(‘{n_]gc)v"" F(XQ’°°'9X13~1’C')C) + eeo +

F(x Cyeeel) + F(LyC 0e0,C,%q) + F(CyuueyCyXysXg) +

p-1’
veee + F(CyXqyRpyevesXy 1) = O
Subtracting (5.41) from (6.40), we have

= r" | - 7 LI £ C)
(4(2) F(\Xlaxz’o-oaxn) e L_P(Xl';--os,xo_l’c) N (X?, {)‘{D’

~ T(FngeceaX 9CyCl + 40
+ F(X?,...,Xn_l,C,CY Ly 1 %59 C )

pn]

® : rege) = (X 5.4 -
+ (XD—?,XT’)-]-’C’ g ) ( D_lj p

[N

5 By » w5181

P(XD_l,c,...,c) - W(XD,C7..°909X1) + T(C,Cyeen,CyXy) e

In (6.99), first set x5 = Xg = «e0 T X9 T X 4 T vee T X, T C
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then set x5, = X, = ... = X =x = X,~ =, =x_= ¢ and then

X = X, = ssy = % = x = X = ... = X_= C respectively,

we obtain

(42) F(xl,c,...,c,xD\ + F(c,...,c,xh,c) + F(c,c,...gxp,cic)
*oees +Fleyx ye,.000,0) 4 F(X5CyeneyCyXy) + FlCyuuu,cy%g,0) +
+ ?(c,c,...,xl,c,c) + vee + F(CyXq,Cy000,0) = O,

(44) F(xl,c,...,c? + T(0yXy5Cyeee,C) F oaue F F(c,c...,?,xl)

+ (p=2) Fle,€50044¢) = 04
and
(45)  F(x_yCyecv,yc) + T(CyX5ChraeyC) + 0 + F(c,c,...,c,xb)
+ (p=-2) ?(c,c,...,c\ = O.
Adding (6.44) and (6.45) and then subtracting it from (6.47)
and using n F(e,e,...,¢) = o0, we have
(48) F(xl,c, - c,xp) + W(XD’C7"‘7C’X1) = Flxy9¢, « ,0) -

- F(cyeeeyc,x,) - F(x 3¢y « 40) - W(c,c,.,c,xp)

1

+ FFle,8,-38) = os
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From (6.492) and (5.46), we have
1]

QF(Xl,x?,..vxn) = 2 LW(xl,x?,.,xD_l,c) - F(xg,...,xp,c) +

T(XgyeeayX 15850} = F(XgyeeeyX5CyC) + wunn

&

w

. (Xn-o’:’:n_l,(},o . 0 ,C" - F(Xh—l,xo, C, a e ,C)] +

17CreeesC = OF(X,0,000,0,%q) + 2f(c,cy.uc,x)) N

—

QF(xﬁ

T (xyse,0 50, )+ FlxyC,000,0,%)) <

>

?‘(xl,c,...,c,). - F‘(C,...,C,Xl) = "?(Xpaca'°"¢)‘ -

F(c,...,c,xn) + 2 FLC,0,emnyC)

|

o
= 2 L*(Xl,xg,...,xp_l,c) - F(X?,...,xn,c\ +

:1j

(XQ"’XD~1’C’C) - F(x?,...,xn,C,C) * won
(% . ,c ) - F(x_,c o) |
_._D_l7 LR I B - —«10, 9 L 4 2
+E_F’(xl,c,...,c,xn) = F(X 5Cyeee,0y%q) +
Fleycyeneycyxy) = Fle,cye0a,c,x,) +

F(Xn,c,--.,C) -?(XI’C’OQO’C’-—‘! + ?F(C,.o-,C)'

Dividing by 2 (which is nermissible by the hvnothesis (iii)),
we obtain the recurgred result (6.”9). This comnletes the proof

of this theorem.,
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F. Trigonometric eguations.

Sine ecuation. ™HEOREM 1. 2et f ¢ R—R and such that

(47)  £(x+y) Flx=y) = £(x)° = £(P~ holds for all
X,y € Re The general svstemvof continuous solutions of (6.47)
is

F(x) = cx

f(x) = A sin cx

f(x)

i

A sinh cx, A, ¢ real.

o 1is a solution of (1).

th

Proof. 769} . Evidently f

S0, we exclude this trivial solution in the following considera-

tions., Since f £ o, *there exists a and b such that

b

(48) x= | £x ax# o,
a

From (6.47) and (R.48), we zet

b
k f(y) = f~ f(y) f(x) dx
y e 2 b 2
. = f e ax - f (™ ax
2 A

il
W o
o+ ol +
ﬁ
N
A
N
joR
>4
'
mg—!\
")
)
4
e’
00
Qs
4




e 'v,‘l., e &

oA A
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L4
from which foilows thnat, 1) £ 1is odd, ii) f 1is differon-
3 o

s - . ) . ' aty, "~
tiable on R, 1iii) f' is 2 lincar combination of £(22)  ana

h+v 2 5 .
£ =) and hence £ ohas derivatives of 21l orders.
2

NWow diff-renti=tinz (6.47) with rcsnect to y twice. and

then sctting have

LA

4

t

O
~»

i
s

o
(4R) f(x) T'(x) - f(XY" = ¢, where ¢ = -

Nifferentiating (6.48) with resvect to x, we have

f(x) £11(x) = £Y(x) £r(x).
Henge
£(x) = ex, T(x) = 4 sin ecx, f(x) = A sinrhex, A,c real.

Tan-tion (B.47 can salso be solved bv refucing it to the well

known cosine eruatior, as follows.

Since f £ o, there is an 'i' such that f(a) # o.
Define

C(xeo) = 9(xen)
2 (1)

(40) o(x) =

Tsing (6.,47) and (£.47), we get




(50)

g(x+y) + g(x-v)
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1 i ) __‘i
57 () Lf(x+y+1X¢f(x+y-a)+f(x-y+a) £(x~y-2)]
— S[f(x+y+a) £(A) +(x-y+2) F(a) -
of(a)

~f(x+y=-a) f(a)-f(x-y-2) f( a)_J

R o2
L (e 4 P p(EL 4 a)°

Qf(a)q -
L 2 X+ 2 x+ 2
- f(i-'é‘-) _{‘(_QX) +f(-—-5J-Y- - a) -
X7 2 X-y 27
- ( 5 & Bk - 2)“ |
1 T Xty 2 X=y @ X 2
of(a)” - © 2 2
2 i o 5
£+ p(BL - 27 - r(ED) w2 -a)
2
- tGE5h ]
il

2 [f(X+&) f(y+a) - f(x-a) f(y-a)
2f(a)”

+ f(x=-a) f(y-a) - f(x=-a) f(y+a)]

-—l——5 [f(x+a) - ”(x-a)]):f(y+a) - f(y-a)j

of(a)

2g(x) g(y), which is the cosine ecuation.
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The continuous solutions of (6.50) aré f(x) = o, £(x) =1,

f{x) = ecos ex, f(x} = gosh ¢ x, ¢ real.

the right side of (6.4°) is indenendent of the choice of

raty {927 . That is, for all y such that f(y) # o, we have

y = flx+y) = Flx=y)

g(x
2 f'(y
Thus
(51) F(x+y) = f(x-y) = 2g(x) £(y), whenever f(y) # o.

Putting x = o, in (&,51) and using g(o) = 1, we have
(52) f(-y) = -f(y), £ 1is odd.
The eguation (A.51) now hecomes

(50) j”'(y+x) + ,‘*T(y’-x\ = 2 f(Y) g(X)'

Now taking g(x) = cos ¢ x and using (6.5, we have

fix) = B cos ¢x + Alsin cx.

f being odd, we get B = o and thus f(x) = A sin ¢ x.

It g(x) 51, (6.5 reduces to (X = L L )

and thus f(x) = ¢x + d. Eruation (5.2) imnlies d = o and
hence fix) = cx. ®Similarlv from g(x) = cosh cx, f(x) = A

in c¢cx can be octained.
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THEOREM 2. Let f,6 ¢ R—>{ such that

(57) o (x+y) = £(x) b (¥) + & () Ty

Further let f and b Dbe differentiable.

3 ol ¢ ¢
Then £(x) = A (emc - e X) and f(x) = % (e ® 3 eﬂx),
"mere A,c,d arz constants, [ ] ) [?41 .

Proof. MDifferentiating (6.57) with resnect to x, we have

o' (x+y) = £1(x) ¢ () + ¢ (x) £(v)
slso = f£(x) &' (P + & () £y (differentiating
with resnect to y). Hence

(54) £1(0) & () = £(X) &' (¥) - £H(y) & () + £(¥) ¢' (X} = o.

Turther let f(o) =1 and ¢(9) = o.

Then from (f.54) with v = o, we get

- p'(0) f(x) - £ ()6 () + §' (X) =0

or

(5% ' Plx)y = kl& (x) + kgb'(x\.

From (6.F4) ard (&.55), we obtain

GMx) + a o' (X) + b o (x) = o,
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Thus,
| cX - ,dx
(56) o (x) = ALe  +Be .
Now (6.55) and (&.56) yield
& ax
(867) f(x) =D e Tew e,

Making use of (6.5%, (A.56) ani (6.57), we get

Su9onoseing A4 and B

Yence

For ¢ = ~d = i, 4 =
For ¢ = =-d =1, A=
THEOREM R, Let

differentiable and T,

(58) Ylx+y) = o)
Then f(x) =
o(x) =

i

and  P(x)

A, 9B F =18 and AF + BD = o.
1 _ -

non-zero, we have D =3 = F and A = -B.

_ 1 cX dx
f(x) = 3 (27" + 2

d

o(x) = 4 (e - ™5,
i, f(x) = cos x, ¢(x) = sin X.
, we have f(x) = cosh x, o(x) = sinh X.

fy ¢, ¥ ¢ R—> L such that

b, U satisfy

Eyy + f(y) (XY, x,v € R.
a sin (bx + )
d sin (bx + @)

2d b sin (bx + ¢ + e).

t, ¢, twice
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proof .1} . Differenti=zting (6.58) with resmect to X,

———

we have

]

Pr(x+v) = oLy + BV ¢

also = 6 ()£ 1y + £'(y) br(x),
(differentiating)
(6.,58) with resnect to y. Hence
(59) b (x) £ vy - fy) ¢'1(x) = o.
In.(6.59), making x corstant, we getl
(60) £(%) = a sin (bxtc).
Similarly mnaking ¥ constant in (6.5%), we obtelin
(é1) ¢ (%) = 4 sin (ox+e).
From (4.5%), (A.60) and 6.61), we hove

U(x+y) = 2 d |sin {vx+e) . b cos (Hyre) + sin (by+e) o b oo

. COS (bx+e\}

= ,bd . sin (b(x+y) + c + ).

mhys “he theorem is »nroved.

For a=d=Db=1.c¢c=0= 2, ve ret

£(x) = sin x, & (x> = sin %, Y(x) = sin X,

conseonently,

sin (x+y) = sin x. sin'y + sin ¥y sin'x.




THEOREM 4. Let £ and ¢ Dbe non-constant real func-

tions such that
?

(62) Flx-y) = £(x) £(y) + ¢ (D) ¢ (V.

. s . i1 CX -Cx
Let f and ¢ be differentiable. Then flxy == (g + g )
1 Cy -CX
and ¢ (x) = = o5 (2 - e Yo & & constant.

Proct 747 . 3y symmetry of x and v in fhe rignht

side of (1), we 2ot
f(-x) = f(x), all x ¢ R, that is, f 1s even.

Chanzing x to -x and y to -y in (6.82) and using ? even,

b () & () = b (-0 6 (=)

From this we see that, ¢ cannot be the sum of an even ard an odd
function. Further, if ¢ 1is also even, by mutting v = x  Tiret

in (6.62) and then v = -x in (6.62), we get

(o)

I

f(x)Y" + ¢ (x>?

)
P
16}
o
i!

f(2x), which is 1 contr:zdiction since i

;s nonconstant. Hence & 1is odd. Thus

(6?,) J‘_-(o) Qe

Puttin

s
e
Ji

Ity

v = o in (6.62), using (6.61) and the fact thnv

'

non-zero,ve get

(64) f(o) = 1.




Letting v =x in (6.587), (6.€2), reduces to, using (6.94)
2 2

(55) (X7 (X =1,

Changing v into -y in (6.69), we have

(66) fle+y) = £(x) £() = 6 () & (V.

Renlacing ‘x by x+v in (6.62) and nsing (6.65), (6,65, wu

(67) O (x+y) = b (x) £ + £(x) b (1.
lerc changirg v into -y, we obtaia
(BR) d (x=y¥ = o () £ - £(x) o (¥,

Solutin of (8.67) by theorem © is

) = %(GCX + de\

ax

and p (x) = A (&% — o ).

il

Substituting these values of £ and ¢ 1in (6.62), wc et

™ . ol - 2 &) T\
%[?C(Xky3+ec(x N o (e[S,

B
AN ed(xw)_‘-k(-/'l—'

i

+ @
ren e ol e g g L a® o 1, -
From this follews =2 = ~d »nd F+ 1 =0 or 4=z %% g
; a :
. 1 cx -CX
YY) =3 e & )
and b (x) = =+ -f;- i (2% - " CXy
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We will derive scme further interesting results from the above ¥

equations. The following emuationg are true: i

’ D ' )
fi2x) = f(x)? - ¢ ()~ , : s
b (2x3 = 2 ¢ (%) £(x)

b (2xy + & (oy)

1

24 (xx v o flx+ v

T(2x) + T(2y)

il

of (x+y) f{xz-y)

£(°x) - £()

i

=2 ¢ (x+y) ¢ (x=v) .

Setting U(x) = ;ij?.‘((?_l v pet

U(x+y) = IL(_jil_,t U (y)

Blxoyy = L= ()

Sunno=e there s a t # o sueh that ¢ (+) = 1.
Then from (€.63), f£(+) = o, f 2nd ¢ arc merindic with period

2 t. Indeesd, »utting v = % 1in (5.67) and (6.6%), we get

b (x+t) = £(x)

o (x-t) -f(x).

dence f(x) = ¢ (x+%) = -f{x+2t) = flx+4t),

Similarly ¢ (x) = ¢ (x+4%).
Let

(60) Mx) = f(x) + 14 (x).
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The equatinons (6.66), (5.57) and (€.67) yicld
i

ANoaty) = mM(x) o M) . g
Henca
- -n .
[t + 16 (0] = 2™ = 2(ax)

f(nx) + 1 ¢ (nx), general form of
Da Moivre's theorom.
By taking ©(x)y, ¢ (x), U{x) as sin x, cos x, t=n x recvectively

?

the above results nroved redure to the standard formulae in

G. Vector and matrix equations.

Instead of taking the domain and the range to be 7=zal or
. . y : n . .
comnlex rumbers, the domain and range could e R (n-dimensional
vactor snace, n 2 1 ,f  (n > 1) (n-dimensional comnlex vector
snace), G !n,n| , souare matrices of order n ectc. Here we will
congider brieflv most of the souations we treated hefor:.

HOREM ¢ T R m
THEOREZM . Let T i P ——» 3 such that

Vi

- !
(70) ' T(ery) = LX)+ TN, x,v £ R,
If £ 1is contirmcus, then

f{x) = 4 x, where A = (=~

=Y

& mxXn matrix over R,

'




Proof. Let f(x) = (f1(x), stx), ooy B (X))
Then each fj(i = 1.2,...m) satisfies

n
fi(x+y) = fj(x) + fj(y), X,y ¢ R,

Hence by Theorem 2.10,

£.0%) = ag, 7 * oeee + A5, Ko where

: in 1 jn
X = (Xl""Au' anid Uiy (1i=1,...yn) are constants.

Thus

f(x) = & x, wlere A= (aii) i=1,2..0m, J=1,7... 1.

|

THEOREM 2. Let f,g,ht R' —¥ R"  such that
(71) f(};—!—y\ = g()() + h(v\, R Y £ g,
If f is continuous, then

%)

il

>
kel

+
ty
o+
(@]

hix) = A x + ¢,
N s : : ot 5 T
where A = (aﬁi) iz & mxn ratrix, b,c are elements in 7 .
Proof. As in "heorem 4.1, enuation (6.72) can be reduced

to (5,70) be the following substitaticn-
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d (x) = f(x) - b ~-¢c, b=h(o), c=glo).

(%)

i

g(x) + b

f{(y) = a(y) + c.

Then ¢ satisfies (5.70) and hence ¢ (x) = Ax and the rest

follows.
Let £ { G [h,n]k%-& [m,m] . Consider the following
equations
(77 FX+ 7Y = £C0 + €0, 7, ¥ ¢ G [n,n]
(73) X+ =-(X) . £V '
(74) MY .Y = £(N) + £(Y
(75) tT(Y . ) = £f(X) . £(0.

These ecuations had been treated extensivaly and trey have many
annlications. A1l measurable solutions of (6.72), (6.73),

(6.74) and (6.75) are given by 4.¥uwagaki !601 . Tnder the
regularity sunnosition

sV x o = (0,

for all matrices V  which are wnitary or orthogonal, S.¥urena

[ER] has solved these ecuxtions.

For m=1, n= 92, Golab [?6 i vroved without any condi-

tion ot f, that ever; soluticnu of (6.75) is of the form

f(X) = ¢ (4 X),




12

where ¢ 1is an arbitrary scalar-valued function of a single
variatle, satisfying (1.9).

This result has been generalized to the case m=1a2and n
arbitrary by M.Kucharzewski [s47] and by M;Hosszu E44j s
Here we give the nroof due to Hoss32U.

THEOREM 2. Let f: G [n nf—¥, such that
(75) e(n By = £(8) £(BY, A,B € G [nm]

where G [n,n] denotes the multinlicative semi-group of sauare

matrices of order n over the real or comnlex field ¥. Then

£(a) = ¢ (det ),
where ¢ satisfies (1.9).

Proof. A = H TV, where H 1s hermitian and V is unitary.
Also H and V are’eouivalent to diagonal matrices. But from

(6.75), we see that f 1is the same for acuivalent matrices.

-1, 1

£(B v ey @ = gBTH L@ £

aB) = £(B
= f( A) ° '

It is enough to »nrovzs the theorem for diagonal matrices.

dl ® s+ O
o} d
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e o000 e a0

; o _ 5 o
n Ay <, 21
= T P R l 'Dk"‘
k:l .k (\ 0 { 2
./ l
° ]

where Pk is obtained from the unit matrix by interchanging the

Ed

first and the kth rows.

Hence _
d / \
n k i O =1k
f(D) = = f£(p,) £ TE(P, )
k=l F A k
O L
) .
- o
= T ( T dk k/’ )
k=1 *°
: 1
O
/
; \)
1 ° |

= ¢ (det M, where $ s~-tisfies (1.9)

Hence the result.
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For m = 2, n = 2, Yucharzewski and ¥uczma LSSJ have nroved
the following result. v
Let £ satisfy (6.78) for all non-singular matrices

X,Y of order 2. Then, we have

either f(X) = o
, -1

or P = ¢ (det X) . C(C D C

- -1
or f(7) = ¢ (det X) . CXC
or (X)) = G (det X0, _

: (o (%) o
where o (x) = and $ % o is.a

» L O d)(X)J

solution (1.2, G

1 g ;
G(1) = ( i) and C, a non-singular matrix.

13

R"’GL?(R) is multinlicative with

For m < n, Kucharzewski and Zzajtz [56] nroved the
following result. Let GLq(R) denote the miltiplicative groun
of square matrices of order n over R.

Let T GLn(R)—€> GLm(R) and satisfy (6.75)

For m < n, f(X) = ¢ (det ¥, where ¢ s tisfies (1.9),

For m = n, either

£(X) = G(det X), where G : R-—>GL (R

is multiplicative.

or (X)) = ¢ (A) O X ¢t
or £ = b (o) c(xhH 7t et

where ¢ satisfies (1.%) and C is an arhitrary non-singular matrix.




§ 7. Apnlications. .Jow we will give some anplications of

functional esuations in vector analysis,analysis,statistics etc.

1) Addit3on of vectors.

Assumntions. 1) Vectors under ~ddition from an Ahelian

grouD.

2) addition is rotaticn automor»hics that is, »y —otat-

ing a »nai» of vectors, the resultant is rotated through the
same amount. This imnlie: that tre resnltant »f two veetoers of
eonal magnitude, ties in ivhe same nlane, along the biscctor of

the angle. »

3

?)  The resultant denends continnously uncn the m-r-nitude

.,
-

,

of the vectors and their angle, and
4) mwarallel vectors are added alszebraically.
Conclusion. Conditions 1 to 4 imnly the comnosgiiion of

vaectors by the narallelogram riale.
—

Let a and » and ¢ and ¢ be two nairs of drit vectors

with same included angle 2y, with resultants 31 And  Cae
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By condition 1, since the magnitude of twolunit vectors devnends
only onthe angle between them, let i;l‘ = I;Z l= 2 f(y).
Since the magnitude of the resultant of two vectors of equal
magnitude is provortional to the magnitudes of the original

vectors, we have,

|

R |fl+52 i = of(y) . 2f(x), lasb| = 2f(x+y)  2nd
ib+dl = of(x-y).
By conditions 2 and 4, we obtain
»lfl = !fl+fé|" = |a+b+o+d | = [aro+bd |,

thus 4 f(x) f(y) = of(x+y) + of(x-y).

The only continuous solutions of the above eruation, known as,
D'ilembert's functional eauations or cosine equation or Poisson

eouation, are

f(x) £ o

r -

f(x) = cos a x, a,a constant
f(x) = cosh a x, a, a constant.

Since for two narallel unit vectors, the resultant has magnitude

two, we have
f(o) = 1.

imilarly since the m%gnitude of the resultant of two antinarallel

unit vectors is zero, we have

f(n/2) = o.
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Thus f(x) = o and f(x) = cosi .ax cannot be true. Hence

f(x) = cos ax, with. a = (°k+1), k = 0,1,... .

Supnose k # o, "hen f F9(9k+l) o would imnly, two vectors

including an angle # v would have the resultant zero,

-
2k+1
contrary to condition 2(3 + 5 = 0 only if a = -bB)
Therefore, f(x) = cos x.

Hence , two vectors of ecual magnitude x and included angle
2 ¢ 4 has their resultant.along the bisector, with magnitude
2% cos . ,

T™he general case can be similarly considsred.

2, Vector analysis. Definition of scalar (dot) and cross (vector)

products.

These »roducts are used to give counterexamnles to the
well ¥nown nroperties of associatiwvity, commutativity ete. RBut
these nroducts satisfv the distributive laws with regard to addi-
tion. With regard to these nroducts, we shall nroveg the follow-
ingz result. Let us assume that the vectors satisfy the follow-
ing assumptions:

(1) Products are rotation-automorohic, that is, for a rotation
of the snace, the scalar oroduct is invariant and the vector

nroduct undergoes the same rotation.

. “~

(" (M .C=1.C+8.0¢, ‘
r = = - - - - % distributivity
(B) x C=4xC+ B xC.




() kD .B=i. B =¥1.B,

>
ke
o
~
il

¥(i x B, k,a scalaT.

?

Conclusion: A . B and A X B are the scalar and vector

oroducts to within mltinlieative constant.

T+ is not hard to show from the agsumntions that,

if 4.1 B , then A.B =0

T
1

if o}

- |

|18, then A x

and A X § is vernendicular to the plane determinéd’by K and

Wt

°

Let 8, &,, e, be unit vectors conlanar with e , making angles

X+y, X-y and X with the direction of e .

We krow that

(1) &, + e, = 2, COS X.

Also, from condition (?),

- 4 4q
el //.
Y\ .3
X 2
s e
(11 ( =y B=8 = . & =
(11) ) (eq + o) + 2= ey . CF g ®
1
1‘(51 +3) xe=6 X e+ eyX e.
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(iid) e = f(y) and

(8, x ¢ = f(y) i, where i ime? and e such that

Feg

Cas e,
form a right handed system.
mhen we have from (i), (ii) and (iii),

of(y) cos x = £(x+y) + fx-y).

Thus by (6.5) of *thc miscelleneous eguation C, we have

f(x) = a cos x + b sin x.. - .
Since f(m/2) = o for the scalar »roduct, we have in this case
f(x) = a cos X.

Hence A . 5= a i Z I | B \ cos 8, 8 = A (3,B) .

Since f(o) = o for the vector nroduct, we have in this case

f{x) = b gin x.

o
b

Hence B=b l 1l |8 | cos © e, where 6 = A (1,B)

and &1 A and B such that A,B,e form a right handed system.

?) Area of a rectangle. E?O] . T+ is well known that the area

of a rectangle of sides x and v 1is xy. Here it is established

using Cauchy functional eocuations.

. .
Let F: RxR—>R (R, reals; R+, nositive reals) be such that
F Dbe additive in both variables, that is

F(x,y) + F(u,y) and

i

(1) F(x+1,v)
(2) F(x,y+v) = F(x,y) + Flx,v).

Then F(x,y) = cxy, where c¢ 1is a constant.
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For let

(3) CV(x) = F(x,Y) .

Then by (7.1) and (7.3), ¢, satisfies (1.6) and further Cy

is vositive, since F is. So, by theorem ?.1.
(4) Cy(x) = k(y)x, where k(y) 1is a constant depending uvon y.

From (7.2), (7.7 and (7.4), we see that ¥k satisfies (1.6) and

k is pnositive. Thus,

k(v) = cy, where c¢ isa constant.-
Hence F(x,y) = cxy.
"he value of ¢ depends on the choice of the area-unit. By
choosing the ar-~a of the sauare with unit sides is equal to 1,
we obtain ¢ = 1.

Remark. F above revresents the area of a2 rectangle of

sides x and y. The sumpositions (7.1) and ( ‘7.2) corresnond

to the area ¥ which depends on the sides x and ‘y, is additive
- in both x and .

4) Analysis. Tt is well ¥nown that

lim sin x - q
X >0 X

N

Here a pnroof based on Cauchv functional couation is given [?5} .

Here angles are measured in any linear scale, viz degrees etc.
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Let
Tt (x) = P gin £
! n n
ﬁ 2
(5) _ X X
L gn(X) o (‘OS -(5 L COS ?2 e o e &0 COS 2n [
We know that
X i
(6) Sin x = 2 Sin % . Cos S :
From (7.5) and (7.6), we have
(7) Sin x = .fn(x) . gn\x) .
g, 1s a bounded, decreasing seomuence. For, from (7.5),

gn(_x) = g{x) Cos -fﬁ- <gn_1(x) < 1l, for o < x < R,

(R, numerical value of *he right angle).

Hence  1lim gn(x) = g(x) exists and g(x) < 1.
' n—>00

Further, let h (%) = g (%) Cos & |

2

Cos "X'T
h (x) . gn",
n :

Cos

—~

ko]

~
1}

Then h

CO:'S Ix

h (

»
~—rt
.

e 2
Cos” -‘H - Sin
2

SN

]

Cos” <=
21’1

< hn(x), for o « z< R,
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P ' ]
Thus 1§ h } is a bounded, increasing sequence and

h (x) < g (x), o«x <R
So,
(R) 1 (3‘»h()-(‘02-}£ o)
. > g(x) > hy(x) = Cos” 5 >o.
Hence we have from (7.7), that lim f _(x) = f(x) > o exists
n-—=00
and we have
(9) Sin x = f(x) g(x).
Further,
f(x+y) = 1lim fn(x+v)
n -0
= lim 9" sin XX
n .o 2
- s ol P S ' s Lo XL
= 1lim 2" [gin Cos + Sin . Cos
0o W ol of & ]

1

f(x) + £(y),

Bince, for o< x <« R, f.(x) 1is
non-decreasing., ‘ence f(x) = cx.

Therzfore

(10) Sin x = ¢ x 2(x).

2 2

since Cos x 1is continuous
at zero.

increasing and so f(x) 1is
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i
=

From (7.8), we have 1lim g(x)
X—~>+ O

Thus we have, from (7.10),

lim 3inx = ¢, where c¢ devpends on the scale.
X >0 b'e

Now, let us introduce the natural angular measurs, t = cx and

define

.. X X
sin x = Sin ry and cos x = Cos T

Then we have

Sin =
g . . 1 ——
lim sinx - 1lim % . X = 1.
X—>0 x X=> O c

5. 3tatistics. Normal distribution. Let f be continuous and

have continnous derivative and such that,
0
J' f(x) dx = 1.
~00

Then g(x) = £(x,=x) + £(xy-%) f(x,-X) f(x4-x) ‘has maximum at

N )(1+)g2+x?+>(4

x = 2 if and only if
o
T A
f(x) = __l e XN }-z; ] .
Jor Lor”
xl+x9'+xq+x4
Indeed, let g have a maximum at x_ = v « Then

it
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f'(Xl-xo) f(xg—xo) f(x?-xo) f(x4-xo) + f(xl-xo) f'(xg-xo)
f(XQ-XO) f(x4-xo) + f(xl-xo) f(xgvxo) f'(xﬂ'xo) f(x4-xo) +

% - - ! - =
+f(xl-xo) f(x2 XO) f(}c:2 xo? f (x4 xo) O.

i A AL B A L 24 e i A AR

% _ fY(x)
Set HEEY = 3oy -
é 4 4
: Then z n(x,-x ) = o, with I (x,-x ) =o.
‘ i=1 1 © i=1 i’o
i
Hence by [6,0.47] ,, h is additive and so, h(x) = cx.
i Therefore, |
: ‘ £Ux) =
! (X) Gy or :«};;
; 2 i
* -u -
f(x) = a exp (9¢g ), negative necessary 1
@
for the convergence of the integral f f(x) ax = 1. §
—.V(I) #

Again by the same integral we get, a = 1 o

YEE
Thus f(x) = 1 axn (- —o ).
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€ 8, Some unsolved nroblems in functional equations.

1. The function f£(x) = % can be char cterized by the

L Jo,0f and

functional equation f(x+1) = FryyT » for x € |

some sdditional condition, namely convexity. The same function

f(x) = % slso satisfies fz(x) = x (iteration):. It will be

interesting te charactrize £ by the above function and some

additional conditions.

2. Babbage ccuation. The comation f(x) = x (n Aenotes
the n-th iteration) has been treated well and is known that
for continuous f, when n ¢éd4d, f(x) = x and when n even, ever)
solution satisfies fz(x) = X. Also‘every continous solution
is monotonic. TInder what conditions on g, fn(x) = g(x) or

o
f7(x) = g(x) has a convex solutim and whether such a solution

is unicue ? Also, find the general continucus solution of

n
£ (x) = g(x), without assuming g monotonic.
2, Find the general solution of £ ?x+yf(xii = f(x)f(y).

4, ™ind 3ll solutions of f(AB) = £(A) £(B), where £

6L (R) —>GL (R)  [GL(R) = all sousre matrices of order n |
- S0 Py
without any sunnosition whatever on f for arbitrary ™ and n.
I A
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5. Tind all solutions of f£(4R) = f(AF(2), g(B) = £(4) g(B) +

g(4), f,g: GLn(R) ——a—GLm(R), without any furth-r assumption on

f and g for myn ' arbitrary.

6. Consider the e~uation f(mn) = f(m) + f(n), where m and n
are integers such that (myn) = l(m,n are relatively prime).
Sunnose there is a constant C such that !f(n+1) - f(n)!< C.
Do there exist constants a and _M such that f(n) = a logn

+ " g(n) ' with Jgnl< M 7?

7. TDetermine all homamornhisms of mnultiolicative grouns of

algebras.in each other, that is find all solutions of L

f(xy) = £f(x) £(y), where

f: An(F) —r A (F), (1 (F)  an algebra of order n over the

field F) ) ‘;
B,
1‘11\
i 8. Find all solutions of f(xv) = h(x) g(y), where the domain is
i a scmigroun or nuaSigronn and the range is in a nuasigroun. ﬁ

9., Find the solutions of the comnosite couations l45]

PR [x,FGY T, LR,y = Ry

F [ F(x,y),x] F [ x,F(y,x)]

F [fF(x,V3,X] = Y. i
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10. Find all the solutions of

x P iTJ - ¢ [ v
flx+y) = f(x). f [f(i)"i
£(x) + £[£(y) ~ fX] =

without di2ferentiability.

-

—_‘_"fj (insolved without continuityﬁ

(unsolved without continuity)

£ [ x + f(y-x)] unsolved
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