MATSCIENCE゙ REPORT 48

THEORY OF FUNCTIONAL EQUATIONS

By
P1. KANNAPPAN
.,

- the institute bf mathematical sciences, madras-20. (india)

MATSCI ENCE REPORT No. 48

THE INSTITUTE OF MATHEMATICAL SCI ENCES Madras-20, INDIA

THEORY OF FUNCTIONAL EQUATIONS

[^0]
MHEORY OF FTJMCTTONAL EQTJATTONS

By
PL.Kannapdan ${ }^{\bullet}$

At the outset I express my sincere thanks to the authorities of Matacience for having given me an opportunity to speak in this Institute. The aim of these lectures to start with was to give a brief survey of the theory of functional equations touching all aspects of the functional ecuations and giving examples for each and also the functional inecualities. But as the lectures orogressed, it was felt that within this short time limit, what was originally olanned cannot be accomplished. So, in these lectures more concentration was made on Cauchy's functinnal egrations. Its generalizations, related equations, some trigonometric eauations etc. were also considered. Finally some anplications and unsolved problems were treated.

CONTENTS

1. INTRODUCTION.

Theory of funstional equations is one of the oldest as well as relatively young topics of mathematical analysis which is growing very rapidly. oldest in the sense D'Alembert $[16],[17],[18]$, was the first to apply and solve functional equations in the sense of modern terminology in these three papers. In many respects they are typical; they are in connection with the stuafy of vibrations of strings and the equation considered is $f(x+y)+f(x-y)=g(x) h(y)$. Functional equations have fascinated many mathematicians. Even though such eminent mathematicians.like Abel, Cauchy, Darboux, Euler, Gauss, Hilbert and Weierstrass among others contributed to the growth and development of this branch, no systematic presentation of this branch was attempted as late as 1918. Applications of functional equations were found much earlier than any systematic presentation could develop. Hence results found in earlier decades have often been presented anew. Young in the sense that the literature has grown markedly during the past fifty years. Further, an attempt to give a unified theory was first tried by A.R.Schweitzer [78] in 1918. Monographs on functional equations have been written by Aczel - Golab [13] , M. Ghermanescu [34] , J.Anastassiadis [21] and M.Kuczma [57] (who is also preparing a monograph on functional equations in a single variable). An excellent first systematic presentation
of this subject ever written is by an expert in this field, Hungarian methematician J. Aczel [5] in 1961. This book also gives a survey of the theory of functional equations and contains a good collection of references at the end (more than 100 pages, from 1747 to the present). In his numerous papers as in his book, he treats the whole class of functional equations, gives general method of solving them and criteria of the existence and uniqueness of solutions, He also indicates many new applications of functional equations. A new edition (English) almost twice its original size, containing the many new contributions since 1960 to the present day has come out $[6]$. After this publication, we hope (like the author), the growth of this field will be accelerated, more people will take up this study and new applications will be found.

In studying Mathematics and its applications to other branches, the type of equations (algebraic) one first comes across are $a x+b=c, a x^{2}+b x+c=0$ etc. or the system of equations $\sum_{j=1}^{n} a_{i j} x_{j}=b_{i},(i=l, \ldots, n)$. The problem in all these cases, is to determine particular values of a known function or functions. Only in calculus, for the first time, one encounters the question of determining an unknown function. Functional equations generally deal with this.

The large number of papers appearing in various journals, since 1747, is an index of the interest, the mathematicians and others, have for this field. The first significant
by reducing it to the partial differential equation
(5)

$$
x f_{x}(x, y)+y f_{y}(x, y)=k f(x, y)
$$

as $f(x, y)=x^{k} \quad \varphi\left({ }^{y} / x\right)$.

The general continuous solutions of the equation
(1.1) known as Cosine Equation or DiAlembert Equation or Poisson Equation were found by Cauchy [25] . Equation (1.1) was solved by Andrade [22] by using the technique of integration and differentiation and reducing it to the form $f^{\prime \prime}(x)=c f(x)$. Equation (1.1) in abstract spaces (Bench, Hilbert, Banach algebra, groups etc.) was also treated in considerable detail. (1.1) is one of the equations extensively studied among others by Aczel [7], T.M.Flett [31], D.V.Ionescu [46], Kaczmarz $[49]$, Kannappan $[50],[51],[52]$, S.Kurepa $[62],[63]$, $[64],[65]$, G. Maltese $[72]$, Van der Lyn $[82]$, L.Vietoris $[84]$, Wilson $[93],[94]$ and F.Vajzonic.

Under the hypothesis of continuity, Cauchy $[25]$, solved the following four equations, widely known in general as Cauchy equations
(6)
(7)
(8)
(9)
$f(x+y)=f(x)+f(y)$,
$f(x+y)=f(x) f(y)$,
$f(x y)=f(x)+f(y)$,
$f(x y)=f(x) f(y)$.
(1.6) finds applications almost in every branch of mathematics. (1.6) anpears in the problems of the measurement of areas, in projective geometry, in mechanics, in the problem of the parallelogram of forces, in the theory of probability, in the non-Euclidean geometry etc. Cauchy s equations are used in mathematics of finances, in the probability theory and in many other topics. Equation (1.6) is one of the equations which has been extensively studied and was solved among numerous others by Aczel, Alexievicz and Orlicz, Banach, Darboux, Frechet, Gauss, Hamel, Kuczma, S.Kurepa, A.Kuwagaki, Legendre, Satz, Sirpenski and Vincze, A. Ostrowski, H.Kestelman, I.Halperin, P.Erdöss, F.B.Jones etc. under various hypothesis of the function, domain and range. We will deal with them in detail later. The existence of discontinuous solutions of (1.6) was proved by Hamel, using axiom of choice. In case where the domain and range of f are abstract sets (groups etc.) (1.6) and (1.8) play an important role in algebra as the equations of homomorphism, endomorphism, isomorphism etc.

One of the striking features of functional equations is the fact that, unlike differential equations, a single equation can determine more than one function. The generalizations of Cauchy's functional equations, known as Pexider equations

$$
\begin{align*}
f(x+y) & =h(x)+g(y) \tag{10}\\
\cdot f(x+y) & =h(x) g(y) \tag{Il}\\
f(x y) & =h(x)+g(y) \tag{12}
\end{align*}
$$

$$
(13) \quad f(x y)=h(x) g(y)
$$

is one such example and they were solved in an elementary way by Pexider [75] , for the three unknown functions f, g and h. Generalization of Pexider equations was considered by Aczel [8]. These equations and some generalizations will be considered later. The Jensen equation $[47]$,

$$
\begin{equation*}
f\left(\frac{x+y}{2}\right)=\frac{f(x)+f(y)}{2} \tag{14}
\end{equation*}
$$

has many properties analogous to those of the equation (1.6). Aczel and Fenyo $[11]$, have applied (1.14) to define the centre of gravity of field of forces. Generalizations of the Cauchy equations and Jensen equations of the type

$$
\begin{equation*}
f(x+y)=F[f(x), f(y)] \quad \text { (known as addition } \quad \text { formula) } \tag{15}
\end{equation*}
$$

$$
\begin{equation*}
f\left(\frac{x+y}{2}\right)=F[f(x), f(y)] \tag{16}
\end{equation*}
$$

and

$$
\begin{equation*}
\varphi[f(x, y)]=F[\varphi(x), \varphi(y)] \tag{17}
\end{equation*}
$$

were treated by Aczel, Dunford-Hille, Alt, Kuwagaki, Montel, Monroe, I., etc.

Abel published four important papers on this subject $[1],[2],[3],[4]$.

The first gives a general method of solving functional equations by differentiation. The second deals with the system of functional equations

$$
\begin{align*}
& F(x, F(y, z))=F(z, F(x, y))=F(y, F(z, x))= \tag{18}\\
& F(x, F(z, y))=F(z, F(y, x))=F(y, F(x, z)),
\end{align*}
$$

for the function F. In the third he solves the equation

$$
\begin{equation*}
g(x)+g(y)=h[x f(y)+y f(x)] \tag{19}
\end{equation*}
$$

for the three unknown functions f, g and h. The technique employed in these three papers is/reduce the functional equations to differential equations and then solve them. In the last paper Cauchy's equations generalized for complex variable were solved.

Development of the theory of functional equations is closely related to its applications to various branches, namely, mechanics, the theory of continuous groups, the theory of geometrical aspects, vector analysis, Euclidean and non-Euclidean geometry, the theory of probability, characterization of means, characterization of various functions such as Euler's function, exponential and logarithmic functions, trigonometric functions, polynomials, characterization of determinants etc. Characterization of determinants has led. to the study of matrix equations.

8

Matrix equations find apprations in invariant theory, theory of geometric objects etc. Systems of functional equations were used by Stokes [81] , to determine the intensities of reflected and absorbed light. Weierstrass [95], has used the equation $F(f(x), f(y), f(x+y))=0$ for the development of elliptic functions. Functional equations with several unknown functions were considered among others by Sinzov, Stephanos, Suto, Schweitzer and Wilson. Few international conferences on functional equations were held since 1961, at Blatonvilagos, Sarospatak, Oberwolfach and Waterloo.
of course one may ask what is the reason of this interest taken in functional equations by the mathematicians of all the world. This may be connected with the fact that in many branches of mathematics analytic methods are already exhausted to some extent. A use of elementary methods often allows one to obtain much deeper and more general results than it was nossible with a use of classical methods of mathematical analysis. On the other hand, more and more problems of physics and technics require making weaker assumptions regarding the occuring functions.

There is no general method of solving functional equations. This itself could have been one of the reasons that might not have attracted many persons to this field. It used to be said that every functional equation requires its own mode
of attack. In recent years the situation has improved. Gradually more general results are available, the classically known results are shown to be valid. under less severe restrictions, existence proofs applicable to a wide range of equations are being found etc.

The works of Aczel in recent times had considerbly advanced the discipline of this field. The techniques employed are varied, but special mention can be made of the method of specialization of variables, iteration and inverse iteration, method of determinants; reducing functional equations to differential equations, reducing functional equations to integral equations etc.

The most important range of problems in this field is however the developing of a qualitative theory of functional equations - existence, uniqueness, extension, characterization etc.

2. Definition and classification

First we shall start with the following questions. What is a functional equation ? How to classify them ? The answer to these seemingly simple questions is not easy. It is not answered in a satisfactory manner and finding a suitable answer is one of the problems in this field. But the present day view eliminatos wide class of equationss differential,
integral, integro-differential, operator equations etc. However what remains is so vast that it naeds further compartmentalization and specialization. Here we give the definition found in $[6],[57]$. As the definition of functional equation involves the notion of a term, we begin with the definition of a term.
Definition of a term. 7) The indenendent variables x_{1}, x_{2}, \ldots x_{n} are terms. 2) Given that $y_{1}, y_{2}, \ldots y_{n}$ are terms and a function f of n-variables, then $f\left(y_{1}, y_{2}, \ldots y_{n}\right)$ is also a term 3) There are no other terms.

A given term thus contains a definite number of variables and a definite number of functions. Definition of a functional equation. A functional eduation is an equation $f=g$ letween two terms f and g, which contain n independent variables $x_{1}, x_{2}, \ldots x_{n}$ and $p(\geq 1)$ unknown functions $f_{1}, f_{2}, \ldots f_{p}$ of $i_{1}, i_{2}, \ldots i_{p}$ variables respectively, as well as a finite number of known functions. Definition of a system of functional equations.
A system of functional equations consists $n(\geq 2)$ functional equations which contain $m(\geq 1)$ unknown functions altogether.

The functional equations or systems mast be idontically satisfied for certain values of the variables occurring in them in a certain set of any sort, i.e. in a domain which may be real
or complex numbers, a vector space or an n-dimensional space (real or complex) or a set of matrices or any abstract algebraic system. The range of the unknown functions may be real or comolex numbers, vectors, matrices, conjugate snace etc.

The number and behavior of solutions of a functional equation may depend very largely on the domain and a function class, known as the class of admissible functions, which are defined by the analytic properties like analyticity, measurability, continuity, differentiability, integrability etc. It is one of the important differences between differential and integral equations. For example, (1) the only solution of

$$
f(x)+f(y)=f\left(x y-{\sqrt{1-x^{2}}}^{2} \sqrt{1-y^{2}}\right) \text { for all } x, y \text { in }[-1, I]
$$

is $f(x) \equiv 0$, where as the general measurable solution in suitably restricted sets is $f(x)=k$ arc cos x, (2) The only solution of (1.8) in $]-\infty, \infty[$ is $f(x) \equiv o$, whereas in $R-\{0\}$, the continuous solution of (1.8) is $f(x)=c \log |x|$ (we will see this later). Behavior of solutions depends on the function class also. For example, (1.8) has also non-measurable solutions in $R-\{0\}$. This is one of the characteristic features of functional equations. Here we make note of the observation made by Abel that one functional equation can contain several unknown functions in such a way that all the unknown functions can be determined from it.

Classification. Rough but useful classification into four types: functional equations for functions of one or several variables for one function or several functions was made by J.Aczel [6] . Here we follow the monograph of Kuczma [57, Definition. A functional equation in which all the unknown functions are functions of one variable is called an ordinary functional equation. A functional equation in which at least one of the unknown functions is a function of several variable. is called a partial functional equation.

The classificaition of ordinary functional equations is based on the concept of $r a n k$, order and implication index knor as type.
Definition of rank. The number of independent variables occur ing in a functional equation is called the rank of the equatic. Definition of Order. The smallest number of additional equatic which are necessary in order to reduce a functional equation to a form where under the sign of the unknown function, only sing? variable occur, is called the order of the equation. Definition of implication index. Suppose that a functional equ= tion has been reduced to a system of equations as described above. The number of additional equations containing the unkner function is called the implication index of the equation.

These definitions concern only the ordinary functional equations. The above definition of order has some shortcomings. It may be due to the fact that, at times, it is hard to tell whether the number of additional equations is really the smallest. We shall illustrate this and the definitions by the following examples.
(a) The equation $f(x+y)=f(x)+f(y)+f(x) f(y)$ may be written as $f(z)=f(x)+f(y)+f(x) f(y)$ where $z=x+y$.
(b) The equation $f(x+y)+f(x-y)=2 f(x)+2 f(y)$ can be written as $f(z)+f(w)=2 f(x)+2 f(y)$ where $z=x+y, w=x-y$.
(c) The Babbage equation $f^{n}(x)=x$ (Dower denotes iteration) can be written as

$$
f\left(z_{n-1}\right)=x
$$

where $z_{n-1}=f\left(z_{n-2}\right), z_{n-2}=f\left(z_{n-3}\right), \ldots, z_{1}=f^{\prime}(x)$.
(d) The equation $f(x+f(x))=f(x) g(x)+h(x)$ may be written as

$$
f(z)=f(x) g(x)+h(x)
$$

where

$$
z=x+f(x)
$$

(e) The functional equation

$$
\begin{aligned}
& F\left[x_{1}, x_{2}, \ldots x_{n}, g\left(x_{1}\right), \ldots, g\left(x_{n}\right), g\{ \right. f\left(x_{1}, \ldots, x_{n}, g\left(x_{1}\right)\right. \\
&\left.\left.\left.\ldots, g\left(x_{n}\right)\right)\right\}\right]=0
\end{aligned}
$$

with g unknown, may be written as

$$
F\left[x_{1}, x_{2}, \ldots, x_{n}, g\left(x_{1}\right), \ldots, g\left(x_{n}\right), g(y)\right]=0
$$

where

$$
y=f\left(x_{1}, \ldots, x_{n}, g\left(x_{1}\right), \ldots, g\left(x_{n}\right)\right)
$$

The ranks of $(a),(b),(c),(d)$ and (c) are $2,2,1,1$ and n. The orders of (a), (b), (c), (d) and (e) are $1,2,(n-1), I$ and 1 . The implication indicies of (a), (b), (c), (d) and (e) are 0,0, ($n-1$), I and 1. One can unify the rank n, the order 0 and implication index i of a functional equation into one symbol $[n, o, i]$ called the type of the equation. The types of (a), (b), (c), (d) and (e) are $[2,1,0][2,2,0],[1,(n-1),(n-1)]$, $[I, I, I]$ and $[n, I, I]$.
(f) Now consider the following equation:

$$
f(x+y)=f(x)+y
$$

This has apparently order $1: f(z)=f(x)+y$ where $z=x+y$. But in fact it is of order zero, for it can be written as $f(z)=f(x)+z-\dot{x}$, where x and z are not connected by any relation.

Some results regarding the reduction of the rank have been obtained by Aczel and Kiesewelter [15] . It is evident from their results that rank 2 plays a particular role, in the sense that equations of higher rank usually can be replaced by equivalent equations of rank 2 [for example, the families of solutions of (1.6) $f(x+y)=f(x)+f(y)$ and $f\left(x_{1}+\ldots+x_{n}\right)=$ $=f\left(x_{1}\right)+\ldots+f\left(x_{n}\right)$ are identical] , while similar replacing an equation of rank 2 by an equation of rank 1 , is in general not possible. In case of rank ≥ 2, the most frequently used method is that of a specialization of variables. For example, putting $x=0$ in the above example (f), we obtain $f(x)=x+c$. In most cases, however, the solution cannot be obtained in such a simple way and the process of specialization must be repeated several times in a rather ingenious manner. The method of specialization of variables cannot be used in the case of equation of rank 1. The reduction of the order has been investigated by Kuczma [58].

All these attempts do not prove satisfactory. Two functional equations with the same characteristics may differ by the structure of their solutions. The Cauchy equation (1.6) and the Jensen equation (1.14), both have the same type $[2,1,0]$. Nevertheless the former has a one parameter family of continuous solutions $f(x)=. c x$, while the latter possesses a two parameter family of continuous solutions $f(x)=c x+d$.

3. The Cauchy Equations.

One of the most important and very widely studied functional equations, is the Cauchy equation

$$
\begin{equation*}
f(x+y)=f(x)+f(y) . \tag{1.6}
\end{equation*}
$$

This equation has application in many branches of mathematics. Cauchy has found the general continuous solutions of (1.6) as* given in theorem (3.1). The same equation (1.6) was treated by Legendre $[67]$ and. Gauss $[32]$ before Cauchy.

THEOREM 3.1. Let f be a real valued function of real variables satisfying (1.6). Then if f is continuous, f has the form

$$
\begin{equation*}
f(x)=c x, \text { for all real } x \tag{1}
\end{equation*}
$$

where c is a real constant. Further, if f is defined only for positive or non-negative x, y, then also f has the form (3.1) for all positive or non-negative x, provided f is continuous.

Proof. First setting $x=0, y=0$ in (1.6), we obtain

$$
\begin{equation*}
f(0)=0 . \tag{2}
\end{equation*}
$$

Now, replacing y by $-x$ in (1.6) and using (3.2), we get

$$
\begin{equation*}
f(-x)=-f(x) \tag{3}
\end{equation*}
$$

Now, we will show that f is rational homogeneous, i.e. if x is any real number and r is any rational, then

$$
\begin{equation*}
f(r x)=r f(x) . \tag{4}
\end{equation*}
$$

From (1.6), it follows by finite induction, that

$$
f\left(x_{1}+x_{2}+\ldots+x_{n}\right)=f\left(x_{1}\right)+\ldots+f\left(x_{n}\right)
$$

Letting $x_{k}=x(k=1,2, \ldots, n)$ in the above, we have

$$
\begin{equation*}
f(n x)=n f(x) \tag{5}
\end{equation*}
$$

That is, (3.4) is true for any nositive integer n. Let n be any negative integer. Then using (3.3) and (3.5), we get
(6)

$$
\begin{aligned}
f(n x) & =-\hat{i}(-n x) \\
& =-(-n) f(x) \\
& =n f(x) .
\end{aligned}
$$

Hence (3.4) is true for all integers n. Let r be any rational and $r=\frac{m}{n}$, i.e. $m=n r$. Then from (3.5) and (3.6), we get

$$
\text { that is } \begin{aligned}
f(n r x) & =f(m x), x \text { real } \\
\text { hence } \quad f(r x) & =m f(x) \\
& =\frac{m}{n} f(x) \\
& =r f(x), \text { so (3.4) is valid for all } \\
& \text { rational } r \text { and real } x .
\end{aligned}
$$

Thus taking $f(1)=c$ and $x=1$ in (3.3), we see that

$$
\begin{equation*}
f(r)=c r, \text { for all rational } r \tag{7}
\end{equation*}
$$

So far only the condition that f. Satisfies (1.6) is used. Now using the hypothesis that f is continuous, it is easy to see from (3.7), that $f(x)=c x$, for all real x, c being an arbitrary real constant. It is evident from the above arguments that (3.1) is valid for all non-negative or positive x.

There are as many conditions known for the solution of (1.6) to be (3.1) and thus continuous. The hypothesis of continuity of f in (1.6) can be considerably weakened, to obtain the same conclusion. In this connection, first we consider the following results due to Darboux [26].

THEOREM (3.2). If f satisfies (1.6) for all real x and y, then the following conditions are equivalent: (i) f is continuous at a point x_{0}.
(ii) f is non-negative for sufficiently small positive x 's
(iii) f is bounded on an arbitrarily small interval.
(iv) $f(x)=c x$, for all real x.

Proof. First (i) \Rightarrow (iv). Given that f is continuous at x_{0}. That is,

$$
\lim _{t \rightarrow x_{0}} f(t)=f\left(x_{0}\right)
$$

Then for every x, we have

$$
\begin{array}{rl}
\lim f(t)= & \lim f\left(t-x+x_{0}+x-x_{0}\right) \\
t \rightarrow x & t-x+x_{0} \rightarrow x_{0} \\
= & \lim f\left(t-x+x_{0}\right)+f\left(x-x_{0}\right) \\
& t-x+x_{0} \longrightarrow x_{0} \\
= & f\left(x_{0}\right)+f\left(x-x_{0}\right)=f(x)
\end{array}
$$

Hence f is continuous everywhere and so (iv) holds. Second. (ii) \Rightarrow (iv).

From (1.6) and the hypothesis that $f(x) \geq 0$, for sufficiently small $x>0$, it follows that

$$
f(x+y)=f(x)+f(y) \geqslant f(y)
$$

so that f is monotonically increasing. Choose $\left\{r_{n}\right\}$ and $\left\{R_{n}\right\}$ as increasing and decreasing sequences of rationals respectively, both having the same limit x. Then for every n, we have $r_{n}<x<R_{n}$. Now using (3.7), we obtain

$$
c r_{n}=f\left(r_{n}\right) \leq f(x) \leq f\left(R_{n}\right)=c R_{n} \text {, from which we can }
$$

conclude that $f(x)=c x$, for all real x. Hence (iv) is true.

Third. (iii) \Rightarrow (iv).
Let f be bounded on (a, b). Let us suppose that

$$
\begin{equation*}
\varphi(x)=f(x)-x f(1), \text { for all real } x \tag{8}
\end{equation*}
$$

Then by virtue of (1.6) and (3.8) φ also satisfies (1.6) for all real x and y, and is bounded on (a, b) and

$$
\varphi(r)=r \varphi(1), \text { for all rational } r . \text { But } \varphi(1)=0
$$

Hence for any rational r,

$$
\begin{equation*}
\varphi(r)=0 . \tag{9}
\end{equation*}
$$

Thus we have, $\varphi(x+r)=\varphi(x), x$ real and r rational. Since for any real x, we can find a rational r such that $x+r$ is in (a, b), we conclude from (3.8) and (3.9) that ϕ is bounded everywhere. Now we will show that $\varphi \equiv 0$. If not, suppose there is an x_{0} such that $\varphi\left(x_{0}\right)=k \neq 0$. Then it is true by (3.6) that $\varphi\left(n x_{0}\right)=n \varphi\left(x_{0}\right)=n k$. So, for arbitrarily large n, φ can take arbitrarily large values, contradicting the boundedness of φ. Thus, $\varphi(x) \equiv 0$. This enables us to. deduce that $f(x)=c x$. Hence (iv) holds. Other cases can be easily deduced from the above. The proof of this theorem is thus complete.

THEOREM (3.3). Every measurable (in the Lebesgue sense) function f satisfying (1.6) for all real x and y is continuous (so after Cauchy is of the form ca). Number of proofs of this theorem are known. We give below some of them.

Proof I. (Due to Sierpinski " 70$]$). Here he uses the fact that if P and Q are 2 linear measurable sets of positive measure, then there exist points $p \in P$ and $q \in Q$ such that $p-z$ is a rational. Let us define

$$
\begin{equation*}
\varphi(x)=f(x)-x f(1), \text { for all real } x \tag{8}
\end{equation*}
$$

Then we know that $\varphi(r)^{\bullet}=0, r$ any rational and

$$
\varphi(x+r)=\varphi(x), \quad x \text { real, } r, \text { rational. }
$$

From the definition of φ, it follows that φ is also measureable (since f is). Now we will prove that, for all real x,

$$
\varphi(x)=0
$$

Suppose, in fact, there is a real 'a' such that

$$
\begin{equation*}
\varphi(a) \neq 0 . \tag{10}
\end{equation*}
$$

Let

$$
\mathrm{E}_{1}=\{\mathrm{x} \in \mathrm{R}: \varphi(\mathrm{x})>0\}
$$

and

$$
E_{2}=\{x \in R: \varphi(x): 0\}
$$

Since $\varphi(-x)=-\varphi(x), E_{J}$ and E_{2} are symmetric to each other.

Further, E_{1} and E_{2} are measurable (since the function φ is) and therefore of the same measure. Suppose the measure of these sets is positive. Then there exist $X_{1} \in E_{1}$ and $x_{2} \in E_{2}$, such that $x_{1}-x_{2}=r, r$ rational: Then we have $\varphi\left(x_{1}\right)=$ $\varphi\left(x_{2}+r\right)=\varphi\left(x_{2}\right)$, which is impossible, since $x_{1}, € E_{1}$ and $x_{2} \in E_{2}$. The sets E_{1} and E_{2}, are therefore of measure zero. Let $E=E_{1}$ U. E_{2}. So, measure of E is also Zero and E is the set of all points x, for which $\varphi(x) \neq 0$. Then the set $G=\{x \in R: \varphi(x)=0\}$ is of positive measure.

Let $H=\{x \in R: \varphi(x+a)=0\}$. Then H has positive measure (for $H \supset G-a$, the translate of G).

Let $x \in H$. Then $\varphi(x+a)=0$. Hence

$$
\varphi(x)+\varphi(a)=0 . \text { Since by }(3.10) \quad \varphi(a) \neq 0 \text {, we have }
$$ $\varphi(x) \neq 0$. Hence $H \subset E$, that is, a set of positive measure is contained in a set of null measure, which is impossible. Hence our assumption of existence of 'a' such that $\varphi(a) \neq 0$ is false. Therefore, $\varphi(x)=0$ for all real x and $f(x)=$ $x f(1)$.

From this, one can conclude that every discontinuous solution of (1.6) is non-measurable.

Proof 2. (due to Banach $[23]$). Let x_{0} be any real number, ε any positive number and (a, b) an arbitrary interval. By the theorem of Lusin, there exists for every measurable function f and for every $\sigma>0$ (in carticular $\sigma=\frac{b-a}{3}$), a continuous function F (for all reals x) such that

$$
\begin{equation*}
f(x)=F(x) \tag{II}
\end{equation*}
$$

is true for all $x \in(a, b)$, except perhabs for x 's forming a set E of measure $<\sigma$. The function F being continuous, for every $\varepsilon>0$, there is a $\delta(<\sigma)$ such that, for all $x \in(a, b)$

$$
\begin{equation*}
|F(x+h)-F(x)|<\varepsilon \tag{12}
\end{equation*}
$$

whenever $|h|<\delta$. Let h be such a real number satisfying $|h|<\delta$. (3.11) being true for all $x \in(a, b)$ except over a set E of measure $<\sigma$, we can conclude that

$$
\begin{equation*}
f(x+h)=F(x+h) \tag{13}
\end{equation*}
$$

is satisfied for all $x \in(a, b)$ except over a set G of measure $<\sigma+|h|<\sigma+\delta$. The set of $x \in(a, b)$ for which either (3.11) or (3.13) is not satisfied, is therefore of measure $\leq m(E \cup G)<2 \sigma+\delta<3 \sigma<b-a$. Hence there is a point $x \in(a, b)$ (dependent on h) for which (3.11), (3.12) and (3.13) are valid. So we have

$$
\begin{equation*}
|f(x+h)-f(x)|<\varepsilon \tag{14}
\end{equation*}
$$

Using (1.6) and (3.14), we have $f(x+h)=f(x)+f(h)$ and $f\left(x_{0}+h\right)=f\left(x_{0}\right)+f(h)$ and so $f(\dot{x}+h)-f(x)=f\left(x_{0}+h\right)-f\left(x_{0}\right)$ and consequently for any real x_{0},

$$
\left|f\left(x_{0}+h\right)-f\left(x_{0}\right)\right|<\varepsilon
$$

Hence f is continuous.
Proof 3. (due to Alexawicz and orlicz [20]). Let $x \neq 0$. Suppose

$$
\varphi(t)=f(t)-\frac{f(x)}{x} t
$$

and

$$
\psi(t)=\frac{1}{1+|\varphi(t)|}
$$

It is evident that $\varphi(t+x)=\varphi(t)+\varphi(x)=\varphi(t)$, since $\varphi(x)=0$. Hence φ and so ψ are of period x. So,

$$
\begin{aligned}
\int_{0}^{x} \frac{d t}{1+|\varphi(t)|} & =\int_{0}^{x} \psi(t) d t \\
& =\int_{0}^{x} \psi(2 t) d t \\
& =\int_{0}^{x} \frac{d t}{1+2|\varphi(t)|}
\end{aligned}
$$

so

$$
\int_{0}^{x} \frac{|\varphi(t)| d t}{(1+|\varphi(t)|)(1+2|\varphi(t)|)}=0
$$

It follows that $\varphi(t)=0$ almost everywherel That is to say that, $f(t)=\frac{f(x)}{x} t$ for almost all t, in oarticular for $x=1, f(t)=f(1) t$ for almost all t. Hence for every $x \neq 0$, there is a $t_{0} \neq 0$ such that

$$
f\left(t_{0}\right)=\frac{f(x)}{x} t_{0}
$$

and

$$
f\left(t_{0}^{j}\right)=f(1) \quad t_{0} .
$$

Therefore $f(x)=f(1) x$ for all $x \neq 0$. Evidently this euality is also true for $\mathrm{x}=0$.

THEOREM 3.3. For Cauchy's ecuation (1.6), continuity and measurability are equivalent.

Proof. Let f be measurable and satisfy (1.6). Then f is bounded on every bounded interval. Indeed, suppose there is an interval $I=(-A, A)$ on which f is not bounded. Choose a. sequence $y_{k} \in I$ such that $f\left(y_{k}\right)>2 n+f\left(y_{k-1}\right)$, for fixed n. Let $E_{m}=\{x \in I:|f(x)| \leq m\}$, m any integer. Then $E_{1} C E_{2} \subset \ldots$ and $U E_{m}=I$. Therefore, there is an n such that $\mu\left(E_{n}\right)$ is positive (μ is the Lebesgue measure). Define

$$
\begin{aligned}
F_{k} & =y_{k}+E_{n}=\left\{z: z=y_{k}+x: x \in E_{n}\right\} \\
& =\left\{z:\left|z-y_{k}\right|<A,\left|f\left(z-y_{k}\right)\right| \leq n\right\}
\end{aligned}
$$

Also define

$$
G_{k}=\left\{z:|z|<2 A, f\left(y_{k}\right)-n \leq f(z) \leq n+f\left(y_{k}\right)\right\}
$$

Then we see that $F_{k} \subset G_{k}$. Now choose an integer $j>k$. Then we have $-f\left(y_{j}\right)+2 n+f\left(y_{k}\right)<0$. If $z_{j} \in G_{j}$, then $f\left(y_{j}\right)-n \leq f\left(z_{j}\right)$ by the definition of G_{j}. Adding these two inequalities we have $n+f\left(y_{k}\right)<f\left(z_{j}\right)$. So z_{j} 中 G_{k}, $k \neq j$, and $G_{j} \cap G_{k}=\phi$. Hence $F_{j} \cap F_{k}=\phi$ for $j \neq k$. Therefore, $\mu\left(\bigcup_{I}^{\infty} F_{k}\right)=\sum_{I}^{\infty} \mu\left(F_{k}\right) \leq 4 A, F_{k} \subset G_{k} \subset(-2 A, 2 A)$. From this we conclude that $\mu\left(F_{k}\right)=0$ for every k. So, $\mu\left(E_{n}\right)=\mu\left(F_{k}\right)$ (for every k) $=0$, which is a contradiction. Therefore, f is bounded on every finite interval and hence is continuous. Thus for Cauchy's equation, continuity and measurability are equivalent.

THEOREM 3.4. Suppose f is a real additive function i.e. f satisfies (1.6) and is bounded on a set E of positive measure. Then (3.1) holds, i.e. f is continuous.

Proof. (Due to Kestelman [53]). By a theorem of Steinhaus $[80]$, there is a positive number δ, such that, every real number θ, satisfying $\left|\theta^{\circ}\right|<\delta$, may be expressed as $x-y$ for suitable x, y in E. If M is the upper bound of f on E, then by using (1.6), we obtain

(15)

$$
\begin{aligned}
|f(\theta)| & =|f(x-y)| \\
& =|f(x)-f(y)| \\
& \leq 2 M .
\end{aligned}
$$

Hence, using (1.6) and. (3.15), we get, for $|\sigma|<\frac{\delta}{n}$, that

$$
\begin{equation*}
|f(\sigma)| \leq \frac{2 M}{n},(n=1,2, \ldots) \tag{16}
\end{equation*}
$$

Let α be a real number. if r_{n} is a rational such that $\left|\alpha-r_{n}\right|<\frac{\delta}{n}$, using (1.6) and (3.16), we have

$$
\begin{aligned}
|f(\alpha)-\alpha f(1)| & =\left|f\left(\alpha-r_{n}\right)+\left(r_{n}-\alpha\right) f(1)\right| \\
& \leq \frac{2 M}{n}+\frac{|f(1)| \delta}{n},(n=1,2, \ldots)
\end{aligned}
$$

which means that $f(\alpha)=\alpha f(1)$, which is wanted to be proved. CORDIARY 3.5. Every discontinuous solution of (1.6) is unbounded on every set of positive interior measure. COROLIARY 3.6. If f satisfies (1.6) and is measurable in some set of positive measure, then f is continuous, because,
the set of x for which $|f(x)|<N$ has positive measure, if N is large enough.

THEOREM 3.7. Let f be real additive and be bounded from above on some interval $[a, b]$. Then f has the form (3.1).

Proof. [41] . We first show that f is bounded in a. neighborhood of the origin. If this were not so, there would exist a sequence $x_{n} \rightarrow 0+$ such that $\left|f\left(x_{n}\right)\right| \rightarrow \infty$. Hence $\left|f\left(a+x_{n}\right)\right|=\left|f(a)+f\left(x_{n}\right)\right| \rightarrow \infty$. Since f is bounded above in $[a, b]$, this means $f\left(x_{n}\right) \rightarrow-\infty$ and hence $f\left(b-x_{n}\right)=$ $f(b)-f\left(x_{n}\right) \rightarrow \infty$ which is impossible. [So, f is bounded in a neighborhood of the origin which certainly is of positive measure]. So, from theorem (3.4) f has the form (3.1). [We give another proof here] . Now claim that $f(x) \rightarrow 0$ as $x \rightarrow 0+$. If the contrary were true, then there would exist a sequence $x_{n} \rightarrow 0+$ such that $f\left(x_{n}\right) \geqslant \varepsilon>0$ (or $f\left(x_{n}\right) \leq$ $-\varepsilon<0$) for some ε. But then $f\left(\sum_{i=k}^{k+n} x_{i}\right) \geq n \varepsilon$ and $\lim _{k \rightarrow \infty} \sum_{i=k}^{k+n} x_{i}=0$ for arbitrary n, which again is impossible. So, f is right continuous at the origin. Not only f is right continuous at the origin, but because of the additivity, it is clearly right continuous for all $x \geq 0$. From (3.4) we
have $f(r)=r f(1)$ for any rational number r. Making use of the right continuity, we finally obtain $f(x)=f(I) x$, for all $x \geq 0$. Hence f has the form (3.1).

THEOREM 3.8. All solutions of the equation (1.6) which are bounded from below (or from above) on an interval are of the form $f(x)=c x, c, a$ constant.
proof. Let f satisfy (1.6) and be bounded below in $[a, b]$, that is, there is an M such that $f(x) \geq M$, for all $x \in[a, b]$. Now, first we will show that f is bounded below in $[0, b-a]$.
If $x \in[0, b-a]$, then $(x+a) \in[a, b]$. Hence
(17)

$$
f(x)=f(x+a)-f(a)
$$

$\geqslant M-f(a)$, that is f is bounded below

$$
\text { in }[0, b-a]
$$

Consider the function

$$
\begin{align*}
g(x) & =f(x)-\frac{f(d)}{d} x, \text { where } d=b-a \neq o, \tag{18}\\
& =f(x)-c x, \text { where } c d=f(d)
\end{align*}
$$

Evidently g also satisfies (1.6). It is enough to show that $g(x)=0$ for all real x. For all $x \in[0, d], c x \leq$ $\max (o, c d)=e$.

From (2.17), (2.18) and the above we see that

$$
g(x) \geq M-f(a)-e, \text { for } a 11 \quad x \in[0, d] \text {. }
$$

That is, g is bounded below in $\left[0^{\circ}, d\right]$, say
(19)

$$
g(x) \geq \mathbb{N}, x \in[0, d]
$$

Prom (2.18) we have $g(d)=0$. Thus $g(x+d)=g(x)$, for all real x. That is, z is periodic, with period d. Since g is bounded in $[0, d]$ and g is periodic with period d, we conclude that g is bounded below everywhere by \mathbb{N}.
Sunnose there is an x_{0} such that $g\left(x_{0}\right)=0$.
If $g\left(x_{0}\right)>0$, then by $(\Omega \cdot 3), g\left(-x_{0}\right)<0$.
By (2.6), we can find an integer n sufficiently large such that $g\left(-n x_{0}\right)<\mathbb{N}$. If $g\left(x_{0}\right)<0$, as before by (2.6) we can find an integer n sufficiently large such that $g\left(n x_{0}\right)<N$. In either case we get a contradiction to the fact that g is bounded below everywhere by $\mathbb{N}(2.19)$. Hence $g(x)=0$, for all real x. Then by (2.18), the result follows.
Existence of a discontinuous solution of (1.6)
Hame [39], has proved by using the axion of choice that (1.6) has a discontinuous solution.

THEOREM ?.2 There exists an f satisfying (1.6) but is not of the form $f(x)=c x$.

Proof. We shall need the idea of a Camel basis. A set H with the following properties is called a Hame basis:
(i) every real number x can be represented as a finite linear combination

$$
x=r_{1} x_{1}+r_{2} x_{2}+-+r_{n} x_{n}
$$

with $x_{i} \in H$ and r_{i} rationals for $i=1,2, \ldots n$.
(ii) No proper subset of H has the property described by (i). Such a basis can be shown to exist by making use of transfinite induction [42], or equivalently by Zorn's lemma etc. Note that H is nondenumerable and the representation for x given by (i) is unique, because of (ii). Now let H be a Hamel basis and for each b f H, choose $f(b)$ as an arbitrary real number. Then for any real x (of the form in (i) define

$$
\begin{equation*}
f(x)=\sum_{i=1}^{n} \quad r_{i} f\left(x_{i}\right) \tag{20}
\end{equation*}
$$

Then f constructed by (3.20) always satisfies the functional equation (1.6). Indeed, if

$$
x=\sum_{i=1}^{n} r_{i} x_{i} \quad \text { and } \quad y=\sum_{k=1}^{n} q_{k} x_{k},\left(x_{i} \in H\right)
$$

(some of the coefficients r_{i} and q_{k} may be zero, but we use n terms in both cases), then

$$
x+y=\sum_{i=1}^{n}\left(r_{i}+q_{i}\right) x_{i}
$$

From (3.20), we obtain

$$
\begin{aligned}
f(x+y) & =\sum_{i=1}^{n}\left(r_{i}+q_{i}\right) f\left(x_{i}\right) \\
& =f(x)+f(y)
\end{aligned}
$$

Such a solution f is continuous, if and only if, there is a constant c such that

$$
f\left(x_{i}\right)=c x_{i} \cdot \text { for all } x_{i} \in H
$$

Now to exhibit an f that is discontinuous. For a particular $x_{i} \in H$, let $f\left(x_{i}\right)=1$ and $f\left(x_{j}\right)=0$ for $j \neq i, x_{j} \in H$. If f is to be continuous, then we know that $f(x)=c x$. Hence $\frac{f\left(x_{j}\right)}{f\left(x_{i}\right)}=\frac{x_{i}}{x_{i}}$. But the left side is zero for all
$x_{j} \neq x_{i}$ for the above definition of f, while the right side can never be zero (since a basis does not contain the zero edemont). This contradiction shows that is not continuous.

Reduction to differential and integral equations.

The method employed here is to reduce functional equations to differential or integral equations and thereby solve the fundtional equation. Here we illustrate these methods by the example of Cauchy functional equation (1.6).

Reduction to differential equation.

Differentiating (1.6) with respect to x, we have

$$
f^{\prime}(x+y)=f^{\prime}(x) .
$$

Hence f^{\prime} is periodic with arbitrary period y and consequently we have $f^{\prime}(x)=c$, where \boldsymbol{c} is a constant.

Hence $f(x)=c x+d$.
Since $f(0)=0$, we $g \in t f(x)=c x$, that is f is of the form (3.1).
Reduction to integral equation.
Let f satisfy (1.6) and f be integrable. Consider the double integral in the region $x \geq 0, y \geq 0, x+y<t$. Then

$$
\int_{0}^{t} \int_{0}^{t-y} f(x+y) d x d y=\int_{0}^{t} \int_{0}^{t-y} f(x) d x d y+\int_{0}^{t} \int_{0}^{t-y} f(y) d x d y
$$

Hence

$$
\int_{0}^{t} \int_{y}^{t} f(v) d v d y=\int_{0}^{t} \int_{0}^{t-y} f(x) d x d y+\int_{0}^{t}(t-Y) f(y) d y
$$

Let $F(t)=\int_{0}^{t}(t-y) f(y) d y$, then $F^{\prime}(t)=f(t)$ and $F^{\prime}(0)=0=$
$f(0)$. Now, we have

$$
\int_{0}^{t}\left[f^{\prime}(t)-F^{\prime}(y)\right] d y=\int_{0}^{t} \mathbb{F}^{\prime}(t-y) d y+F(t)
$$

that is,

$$
t F^{\prime}(t)-F(t)=F(t)+F(t)
$$

Hence,

$$
\frac{F^{\prime}(t)}{F(t)}=\frac{3}{t} \text { or } F(t)=k t^{3}
$$

Thus $f(t)=6 \mathrm{kt}$ and hence is of the form (3.1).

Deduction of differentiability from integrability.

Is in the above case, let f satisfy (1.6) and be integrable, say in the interval $[0.1]$.
Integrating with respect to y, we have

$$
\begin{array}{r}
f(x)=\int_{0}^{1} f(x+y) d y-\int_{0}^{1} f(y) d y=\int_{x}^{x+1} f(t) d t-c, \text { where } \\
\int_{0}^{1} f(y) d y=c
\end{array}
$$

Since the right side is continuous, so is f. Since f is continuous, again we have the right side is differentiable and thus f is differentiable. Hence f has the form (3.1). But differentiating the above equation, we have, by using (1.6)

Thus

$$
\begin{aligned}
f^{\prime}(x) & =f(x+1)-f(x) \\
& =f(1) \\
f(x) & =f(1) x
\end{aligned}
$$

Solution of the Cauchy equation (1.6) for comolex values.
Theorem 3.10. Let f be a complex-valued function of the complex variables satisfying (1.6). Then the most general solution is given by

$$
f(x)=f_{1}\left(x_{1}\right)+i f_{2}\left(x_{1}\right)+g_{1}\left(x_{2}\right)+i g_{2}\left(x_{2}\right)
$$

where $x=x_{1}+i x_{2}$ and f_{1}, f_{2}, g_{1} and g_{2} are solutions of (1.6), x_{1}, x_{2} reals.

Proof. Let $x=x_{1}+i x_{2}, y=y_{1}+i y_{2}$. Further, let
(21)

$$
f(x)=F\left(x_{1}, x_{2}\right)+i G\left(x_{1}, x_{2}\right)
$$

Then, it is easy to see that

$$
\begin{equation*}
F\left(x_{1}+y_{1}, x_{2}+y_{2}\right)=F\left(x_{1}, x_{2}\right)+F\left(y_{1}, y_{2}\right) \tag{22}
\end{equation*}
$$

and

$$
\begin{equation*}
G\left(x_{1}+y_{1}, x_{2}+y_{2}\right)=G\left(x_{1}, x_{2}\right)+G\left(y_{1}, y_{2}\right) \tag{23}
\end{equation*}
$$

Set $x_{2}=0, y_{2}=0$ in (3.22). Then, with

$$
\begin{align*}
& f_{1}(x)=F(x, 0), x \text { real, we get } \tag{24}\\
& f_{1}\left(x_{1}+y_{1}\right)=f_{1}\left(x_{1}\right)+f_{1}\left(y_{1}\right)
\end{align*}
$$

that is, f_{1} satisfies (1.6). Similarly, we obtain by defining

$$
\begin{align*}
& g_{1}(x)=F(0, x) \text { for } x \text { real, that } \tag{25}\\
& g_{1}\left(x_{2}+y_{2}\right)=g_{1}\left(x_{2}\right)+g_{1}\left(y_{2}\right), \text { that is, } g_{1} \text { is also a } \\
& \text { solution of }(1.6) .
\end{align*}
$$

From (3.22), (3.24) and (2.25), we have

$$
F\left(x_{1}, x_{2}\right)=F\left(x_{1}, 0\right)+F\left(0, x_{2}\right), \text { and }
$$

(26) $\quad E\left(x_{1}, x_{2}\right)=f_{1}\left(6 x_{1}\right)+g_{1}\left(x_{2}\right)$ where f_{1} and g_{1} satisfy (1.6). Similarly, we obtain
(27) $G\left(x_{1}, x_{2}\right)=f_{2}\left(x_{1}\right)+g_{2}\left(x_{2}\right)$ where g_{2} and f_{2} satisfy (1.6). From (3.21), (3.26) and (3.27), we have the desired result

$$
f(x)=f_{1}\left(x_{1}\right)+i f_{2}\left(x_{1}\right)+g_{1}\left(x_{2}\right)+i g_{2}\left(x_{2}\right)
$$

Theorem 3.11. The general continuous complex solution of (1.6) is $f(z)=c z+d \bar{z}$ where c and d are arbitrary complex numbers.

Proof. From theorem: (2.10), we see that f_{1}, f_{2}, g_{1} and g_{2} are continuous solutions of (1.6). Hence by Theorem (3.1), we have, for $z=x+i y$,

$$
\begin{aligned}
& f_{1}(x)=c_{1} x, c_{1} \text { real } \\
& f_{2}(x)=c_{2} x, c_{2} \text { real } \\
& g_{1}(x)=c_{2} x, c_{3} \text { real } \\
& g_{2}(x)=c_{4} x, c_{4} \text { real. }
\end{aligned}
$$

and

Hence

$$
\begin{align*}
f(z) & =c_{1} x+i c_{2} x+c_{3} y+i c_{4} y \tag{28}\\
& =c_{0} z+d \bar{z} \text { where } c=\frac{1}{2}\left(c_{1}+c_{4}\right)+i\left(c_{2}-c_{3}\right)
\end{align*}
$$

and $d=\frac{1}{2} \quad\left(c_{1}-c_{4}\right)+i\left(c_{2}+c_{3}\right) \quad$.

Remark. The general differentiable solution of (1.6) in the complex case is $f(z)=c z$, where c is any complex number, since \bar{z} is not differentiable.

Solution of Cauchy equation for functions of several variables.
Theorem 3.12. Let f be with domain R^{n}, taking real values and satisfy (1.6), Then the most general solution of (1.6) is

$$
f\left(x_{1}, x_{2}, \ldots, x_{n}\right)=f_{1}\left(x_{1}\right)+f_{2}\left(x_{2}\right)+\ldots+f_{n}\left(x_{n}\right)
$$

where $f_{i}^{\prime} s$ satisfy (1.6). Thus the general continuous solution is $f\left(x_{1}, \ldots, x_{n}\right)=c_{1} x_{1}+\ldots+c_{n} x_{n}$, where c_{i}^{\prime} s are reals.

Proof. It is similar to the proof of theorem (3.11).
Number of questions were raised of (1.6), some of them were solved very recently and some of them still await answer. (I.Halperin). Does the continuity of f (real) follow from (1.6) and from $f\left(\frac{1}{x}\right)=\frac{1}{x^{2}} f(x)$. (all $\left.x \neq 0\right)$?

The answer turns out to be true. Here we give proofs due to Kurepe and Jurkat. The following theorem in this direction is due to Kurepa [66].

THEOREM 2.13. Let f and $g \neq 0$ be two solutions of the Cauchy functional equation (1.6). If $g(t)=P(t) f\left(\frac{1}{t}\right)$ holds for all $t \neq c$, where D is a continuous function such that $P(1)=1$, then $P(t)=t^{2}$ and $f(t)+g(t)=2 t g(1)$. Furthermore, the function $F(t)=f(t)-t f(1)$ satisfies (1.6) and the equation $F(t s)=t F(s)+s F(t)$ for all real t and $S(F$ is called a derivative).

Proof. Let $t \neq 0$ and r a rational number different .from zero. Then

$$
\begin{equation*}
g(r t)=p(r t) f\left(\frac{1}{r t}\right) \tag{29}
\end{equation*}
$$

Since f ard g satisfy (1.6), using (3.4) we get from (29),

$$
r g(t)=P(r t) \frac{1}{r} f\left(\frac{1}{t}\right)
$$

Hence, $g(t)=\frac{P(r t)}{r^{2}} f\left(\frac{1}{t}\right)$ so that,
(30)

$$
\left[\frac{P(r t)}{r^{2}}-P(t)\right] f\left(\frac{1}{t}\right)=0, \text { for all } r \neq 0 .
$$

If $s \neq 0$ is any real number, using the continuity of D and (2.20), we obtain
(31) $\quad\left[\frac{P(s t)}{s^{2}}-P(t)\right] f\left(\frac{1}{t}\right)=0$.

Since $f \neq 0$, from (2.31), we have
(32) $p(s t)=s^{2} p(t)$, for all real $s \neq 0$ and for at least one t say $t_{0} \neq 0$.
In (2.?), setting $s=\frac{1}{t_{0}}$, we get
(33)

$$
\begin{aligned}
\partial\left(t_{0}\right) & =t_{0}^{2} p(1) \\
& =t_{0}^{2}
\end{aligned}
$$

From (2.32) and (3.22), we have

$$
p\left(s t_{0}\right)=t_{0}^{2} s^{2}
$$

In the above replacing s by $\frac{s}{t_{0}}$ we find that

$$
\begin{equation*}
P(s)=s^{2}, \text { for all } s \neq 0 \tag{34}
\end{equation*}
$$

Thus

$$
\begin{equation*}
g(t)=t^{2} f\left(\frac{1}{t}\right) \tag{35}
\end{equation*}
$$

Evidently

$$
g(1)=f(1) \text {. Now, refine }
$$

(26) and $\left\{\begin{array}{l}E(t)=f(t)-t f(1) \\ G(t)=g(t)-t g(1) .\end{array}\right.$

Obviously F and G satisfy (1.6). Further from (2.25) and $(? .26)$, we have

$$
\begin{equation*}
G(t)=t^{2} \nabla\left(\frac{1}{t}\right) \tag{37}
\end{equation*}
$$

We have from (0.26) and (3.4), that for any rational r,
(38)

$$
\text { and }\left\{\begin{array}{l}
F(r)=0 \\
G(r)=0
\end{array}\right.
$$

Now, from $(2.27),(2.28)$ and (1.6), we have

$$
I(t)=G(t+1)=(t+1)^{2} F\left(\frac{1}{1+t}\right)
$$

$$
=(t+1)^{2} F\left(1-\frac{t}{1+t}\right)
$$

$$
=-(t+1)^{2} F\left(\frac{t}{1+t}\right)
$$

$$
=-(t+1)^{?} \cdot\left(\frac{1}{1+t}\right)^{?} \cdot G\left(\frac{1+t}{t}\right)
$$

(29)

$$
=-t^{2} c\left(\frac{1}{t}\right)
$$

$$
=-F(t) .
$$

(3.27) and (2.na) yiold
(4.0)

$$
\vec{r}(t)=-t^{2} F\left(\frac{1}{t}\right) .
$$

From (2.36) non (2.39), wo have

$$
f(t)+t f(1)=-g(t)+t g(1)
$$

thet is,
(41)

$$
f(t)+g(t)=2 t f(1)
$$

Now using (2.4) and (2.40), wo hnve

$$
\begin{aligned}
F(t)+\frac{1}{t^{2}} F(t) & =F\left(t-\frac{1}{t}\right) \\
& =F\left(\frac{t^{2}-1}{t}\right) \\
& =-\left(\frac{t^{2}-1}{t}\right)^{2} \cdot F\left(\frac{t}{t^{2}-1}\right)
\end{aligned}
$$

$$
=-\left(\frac{t^{2}-1}{t^{2}}\right)^{2} \pi\left(\frac{1}{t-1}-\frac{1}{t^{2}-1}\right)
$$

$$
=\frac{\left(t^{2}-1\right)^{2}}{t^{2}}\left[\frac{-1}{(t-1)^{2}} P(t-1)+\right.
$$

$$
\left.+\frac{1}{\left(t^{2}-1\right)} F\left(t^{2}-1\right)\right]
$$

$$
=\frac{(t+1)^{2}}{t^{2}} F(t)-\frac{1}{t^{2}} F\left(t^{2}\right)
$$

Simplifying we obtain
(43)

$$
T\left(t^{2}\right)=2 t F(t) .
$$

In (2.4n), ronlace t by ($t+5$) and use (2.42), wo have

$$
\begin{equation*}
F(t s)=t F(s)+s F(t) . \tag{44}
\end{equation*}
$$

This completes the or oof of the theorem.
Corollary 2.14. If a function $f: R \rightarrow R$ satisfies
(1.6) and $f(t)=t^{2} f\left(\frac{1}{t}\right)$ holds for $t \neq 0$, then $f(t)=t f(1)$. Proof. It is evident from the proof of the theorem (2.19) and (0.41).

THERE .15 . Let f be additive and satisfy $f\left(\frac{1}{x}\right)=\frac{1}{x^{2}} f(x)$, for $211 \quad x \neq 0$. Then f is continuous.

$$
\text { Proof. (Due to Jurkat. }[48] \text {). }
$$

For $x \neq 0$ and 1 , we have

$$
\frac{1}{x(x-1)}=\frac{1}{x-1}-\frac{1}{x}
$$

Since

$$
\begin{equation*}
r\left(\frac{1}{x}\right)=\frac{1}{x^{2}} f(x), x \neq 0 \tag{45}
\end{equation*}
$$

we have

$$
\frac{1}{x^{2}(x-1)^{2}} f[x(x-1)]=\frac{1}{(x-1)^{2}} f(x-1)-\frac{1}{x^{2}} f(x)
$$

That is

$$
f\left(x^{3}\right)-f(x)=x^{2}[f(x)-f(1)]-(x-1)^{2} f(x)
$$

$$
\begin{equation*}
\text { (46) is also true for } x=0 \text { and } \tag{46}
\end{equation*}
$$

Ting

$$
\begin{equation*}
4 x y=(x+y)^{2}-(x-y)^{2} \tag{47}
\end{equation*}
$$

and (0.46), we have

$$
\begin{aligned}
f(4 x y)= & 2(x+y) f(x+y)-(x+y)^{2} f(1) \\
& \left\{_{1} 2(x-y) f(x-y)-(x-y)^{2} f(1)\right\} \\
= & 4 \times f(y)+4 y f(x)-4 x y f(1)
\end{aligned}
$$

Hence
(48)

$$
f(x y)=x f(y)+y f(x)-x y f(1)
$$

Putting $y=\frac{1}{x}, x \neq 0$ in (2.48), and using (2.45), we have

$$
\begin{aligned}
f(1) & =x f\left(\frac{1}{x}\right)+\frac{1}{x} f(x)-f(1) \\
& =\frac{2}{x} f(x)-f(1), \text { from which follows } \\
f(x) & =x f(1), \text { for } x \neq 0
\end{aligned}
$$

The last equation is also true for $x=0$. Hence f is contrnous.
(D.Erdos). A question regraing the Aomain of (1.6) was raised by. P. Frdös. Let f be a real valued function satisfving (1.6) for almost all pairs (x, y). ' Is it true that f is thon equal almost everywhere to a function wich satisfies (1.6) for $211 \mathrm{x}, \mathrm{y}$? Hero again the answer is yes. The result orover uncer is tue to Jurkat [48].

THEOREN ?.16. Let f be real valued, dofined for almost all real x and sunnose that (1.6) holds for almost all vairs (x, y) in the sonse of plane measure (Lebosgue). Then there oxists a real-valued function F, dofined for all x and satisfying (1.6) for all x and y, whieh coincides with f for almost all x in the sense of linear measure (Lebesgue). These reauirements dotermine F unicuely.

Proof. By Fubini's theorem, there are null sots \mathbb{N} and N_{X} such that (1.6) is true, if $X \kappa N, Y, N_{X}$. Let, M be tho comolement of N and notice that f is defined on M. First wo will show that (1.6) holis, whenever $x, y, x+y$ f. M. Fix x and y for the moment and nick Z such that $Z \not \subset N_{x+y}$, $Y+Z X N X$ and $Z \not N_{N}$. This is possible by avoiding $?$ null sets for z. But then we have

$$
\begin{aligned}
& f(x+y+z)=f(x+y)+f(z) \\
& f(x+y+z)=f(x)+f(y+z) \\
& f(y+z)=f(y)+f(z)
\end{aligned}
$$

and the result follows. Next, we will prove that

$$
\begin{equation*}
f\left(x_{1}\right)+f\left(x_{2}\right)=f\left(y_{1}\right)+f\left(y_{?}\right) \tag{49}
\end{equation*}
$$

whenever $x_{1}+x_{2}=y_{1}+y_{2}, x_{1}, x_{2}, y_{1}, y_{2}$ all belong to M.
Pick $Z \in M$ such that $x_{2}^{\prime}=x_{2}-z \in M, y_{2}^{\prime}=y_{2}-z \in M$, $x_{1}+x_{2}^{\prime}=y_{1}+y_{2}^{\prime}=x_{1}+x_{2}-z=y_{1}+y_{2}-z$ f. M. This is possible by avoiding four null-sets for z. Now, we have

$$
\begin{aligned}
& f\left(x_{?}\right)=f\left(x_{2}^{\prime}\right)+f\left(z_{2}\right), \quad f\left(y_{2}\right)=f\left(y_{2}^{\prime}\right)+f(z) \\
& f\left(x_{1}+x_{\overline{2}}^{\prime}\right)=f\left(x_{1}\right)+f\left(x_{2}^{\prime}\right) f^{\prime}\left(y_{1}+y_{2}^{\prime}\right)=f\left(y_{1}\right)+f\left(y_{2}^{\prime}\right)
\end{aligned}
$$

Hence

$$
\begin{aligned}
f\left(x_{1}\right)+f\left(x_{2}\right) & =f\left(x_{1}+x_{2}^{\prime}\right)+f(z) \\
& =f\left(y_{1}+y_{2}^{\prime}\right)+f(z) \\
& =f\left(y_{1}\right)+f\left(y_{2}\right)
\end{aligned}
$$

Finally, we show that given $x_{1}, x_{2}, x_{3} \in M$, there exists $y_{1}, y_{2} f, M$, such that
(50) and $\left\{\begin{array}{c}x_{1}+x_{2}+x_{2}=y_{1}+y_{2} \\ \cdot \\ f\left(x_{1}+x_{2}+x_{3}\right)=f\left(y_{1}+y_{2}\right) .\end{array}\right.$

This is rome by nicking $z \in M$ such that $z^{\prime}=x_{3}-z \in M$, $y_{1}=x_{1}+z \in M, y_{2}=x_{2}+z^{\prime}=-x_{2}+x_{2}-z f M$ (avoid four null sets). Then we have

$$
\begin{aligned}
& f\left(x_{2}\right)=f\left(z^{\prime}\right)+f(z) \\
& f\left(y_{1}\right)=f\left(x_{1}\right)+f(z) \\
& f\left(y_{2}\right)=f\left(x_{2}\right)+f\left(z^{\prime}\right)
\end{aligned}
$$

Thus (2.50) is obtained. In order to define F, we notice that every real number z, is of the form $x+y$ with $x \in M, y \in M$ (simply pick $x f M$ such that $y=z-x \in M$). Define. $F(z)=f(x)+f(y)$, which is single-valued, because of (2.40). For $z \in M,(1.6)$ implies $F(z)=f(z)$. Now take two arbitrary real numbers z_{1}, z_{2} of the forms $x_{1}+y_{1}$, and $x_{2}+y_{2}$ where $x_{1}, x_{2}, y_{1}, y_{2} \in M$. By applying (2.50) twee we obtain, two numbers $z_{1}^{1}: z_{2}^{\prime} \in M$ such that
(.51)
and

$$
\left\{\begin{array}{l}
x_{1}+y_{1}+x_{2}+y_{2}=z_{1}^{\prime}+z_{2}^{\prime} \\
f\left(x_{1}\right)+f\left(y_{1}\right)+f\left(x_{2}\right)+f\left(y_{2}\right)=f\left(z_{1}^{\prime}\right)+f\left(z_{2}^{\prime}\right)
\end{array}\right.
$$

L.H.S. of (9.51) is equal to $F\left(z_{1}\right)+F\left(z_{2}\right)$ by definition, while R.H.S. of (2.51) equals $F\left(Z_{1}^{\prime}+Z_{2}^{\prime}\right)=F\left(Z_{1}+Z_{2}\right)$, thus proving (1.6) for F with unrestricted variables.

It remains to show the unicueness of F. Let F_{1} and ${ }^{T}$ 2 be 2 functions satisfying (1.6) for all x, y and coincide on a set wich inclures almost all x. Let $F=F_{1}-F_{2}$. Then F also satisfies (1.6) and vanishes on M. As every real number z is of the form $x+y$ with x, y f. M, we see that $P(z)=F(x)+F(y)=0$ holds generally. This completes the proof of this theoren.

The other Cauchy Eruations.

Now let us consicer the following eauations:

$$
\begin{align*}
& f(x+y)=f(x) f(y) \tag{1.7}\\
& f(x y)=f(x)+f(y) \\
& f(x y)=f(x) f(x) \tag{1.9}
\end{align*}
$$

One can fin? solutions of these cauations either by a methor adonted sjmilar to that emnloyed for (1,6) or br other means. But one can also find more promptly the solutions by putting them in a form analogous to that of (1.6). First let us consider (1.7).

THEOREM 2.17. Let f be a real valued function of the roal variable satisfying (1.7). Then the most general solutions of (1.7) are $f(x) \equiv 0$ and $f(x)=e^{g(x)}$ where g is an arbitrary solution of (1.6).

Proof. Sunnose $f\left(x_{0}\right)=0$ for some x_{0}. Then from (1.7) we hove

$$
\begin{align*}
f(x) & =f\left(x-x_{0}+x_{0}\right) \\
& =f\left(x-x_{0}\right) f^{2}\left(x_{0}\right) \tag{52}\\
& =0, \text { for all real } x .
\end{align*}
$$

Hence $f(x)=0$ everywhere or nowhere. In ease (1.7) holds only for positive x, y, then also the above condition holds. For what we have from (2.59) is that $f(x)=0$, for all $x \geqslant x_{0}$. Let $\left.x f\right], 0, x_{0}[$. Then there is an interer n such that $n x \geq x_{0}$. Now from (1.7), we have

$$
f(n x)=f(x)^{n}
$$

Since $f(n x)=0$, this gives $f(x)=0$ for all positive x. So, without loss of generality, we can assume that $f(x) \neq 0$ for all real x. Renlacing x and y in (1.7) by $x / 2$, we obtain

$$
f(x)=f(x / 2)^{2}>0
$$

from which follows that, any nontrivial solution of (1.7) is always positive. Now taking logarithm on both sides of (1.7) and

$$
\begin{equation*}
g(x)=\log f(x) \tag{53}
\end{equation*}
$$

we have

$$
g(x+y)=g(x)+g(y):
$$

Hence $f(x)=e^{g(x)}$ is the most general nontrivial solution of (1.7), with g satisfving (1.6).

COROLIARY 3.18. The most general continuous (contnous at one point, measurable on a set of positive measure etc.) solution of (1.7) is $f(x)=e^{c x}$, where c is any constant.

Proof. From (2. 5^{2}), it follows that g is continuous, since f is, Hence $g(x)=c x$ (by theorem ?.l) and the result follows.

Remark. In case (1.7) is valid only for nonnegative x, y, in adrition we have also the solution $f(0)=1$ and $\hat{x}(x)=0, x>0$.

Deduction of differentiability from integrability.

THEOREM 2.19. The continuous solution of the functional equation (1.7) are $f(x)=0$ and $f(x)=e^{c x}$ (c, constant) and only these.

Proof. $f\left(x_{0}\right)=0$ at some point x_{0} implies $f(x)=0$, for all x. So, we assume that $f(x) \neq 0$, for all real x. Then from (1.7), we have

$$
f(0)=f(0)^{2} \text { and thus } f(0)=1
$$

Since f is continuous and $f(0)=I$, there is an $\Leftrightarrow>0$ such that

$$
a=\int_{0}^{\varepsilon} f(x) d x \neq 0
$$

Integrating (1.7) with resnect to x between. 0 and ε, we get

$$
\begin{aligned}
\int_{0}^{\varepsilon} f(x+y) d x & =\int_{0}^{\varepsilon} f(x) f(y) d x \\
& =a f(y)
\end{aligned}
$$

Hence

$$
f(y)=\frac{1}{a} \int_{0}^{f} f(x+y) d x \text { for all } y
$$

Replacing $x+y$ by u in the right side, we get

$$
\begin{aligned}
f^{\prime}(y) & =\frac{1}{a} \int_{y}^{t+y} f(u) d u \\
& =\frac{1}{a}\left[\int_{0}^{\xi+y} f(u) d u-\int_{0}^{y} f(u) d u\right]
\end{aligned}
$$

The continuity of f gives that the right side is differentable and hence f is differentiable.

Differentiating (1.7) with eosject to x, we obtain

$$
f^{\prime}(x+y)=f^{\prime}(x) f(y), \text { for all } x \text { and } y \text {. }
$$

Putting $x=0$ and taking $f^{\prime}(0)={ }^{\prime} c$, we have

$$
f^{\prime}(y)=c f(y) \text { for } 2.11 \cdot y
$$

Thus $f(y)=a e^{c x}$, where a is a constant. Using the fact that $f(0)=1$, we get $a=1$. Thus

$$
f(x)=e^{c x}, \text { for all } x
$$

THEO EM 2. 0 . Let ν be a complex-valuer function satisfying (1.7) non-trivially for $x, y \geq 0$ with $V(0)=1$ and $|v(x)|$ be bounded in some interval $[a, b]$. Then $|\nu(x)|=\exp \alpha x$ for some real number α. Proof. [41] Let $f(x)=\log |V(x)|$, Then f is well defined on $[0, \infty[$. Further $f(x+y)=f(x)+f(y)$, that is, f satisfies (1.6). Also $f(0)=0$ and f is bounder from above on $[a, b]$. Then we know that (Th.2.7), f is continuous, that is $f(x)=f(1) x$, for $x \geq 0$. Taking $\alpha=f(1)$, we get our desired result.

DEFINITTON. (Also refer $[40]$). Set $\chi(x)=$ $\frac{\nu(x)}{\nu(x)}$ where ν satisfies (1.7) with $\nu(0)=1$. Then it is clear that X also satisfies (1:7) for $x, y \geq 0$ and $\left|X_{+}(x)\right|=1$. For negative x, we may set $X(x)=\left[X_{0}(-x)\right]^{-1}$. Then \mathcal{X} satisfies (1.7) for all real x. Such a function is called a character of the real line.

THEOREM 2.21. If X is a measurable character of the real line, then $\chi(x)=\exp (i \beta x)$ for some real β. Proof. For $|\delta|>0$ and $v>0$, we have

$$
[\chi(x+\delta)-\chi(x)] v=\int_{0}^{\eta}[\chi(x+\delta-y)-\chi(x-y)] \chi(y) d y
$$

Hence $|x(x+\delta)-x(x)| \leq \frac{1}{v} \int^{\prime}|x(x+\delta-y)-x(x-y)|$ dy which tends to zero with $|\delta|$. Thus χ is continuous. Further

$$
\begin{aligned}
\frac{X(\delta)-1}{\delta} \int_{0}^{\gamma} X(x) d x & =\frac{1}{x} \int_{0}^{Y}[X(x+\delta)-X(x)] d x \\
& =: \frac{1}{\delta} \int_{Y}^{\gamma+\delta} X X x(d x)-\frac{1}{\delta} \int_{0}^{\delta} X(x) d x
\end{aligned}
$$

Choose γ so that $\int_{0}^{Y} \chi(x) \lambda x \neq 0$. Since the limit as $|\delta| \rightarrow 0$ exists for the terms on the right hand side of this equation, it follows that the derivative of $X(x)$ at $x=0$ exists. Let $\left.\frac{d x(x)}{d x}\right|_{x=0}=i \beta$. Then we will show that the derivative of χ exists t all $x f]-\infty, \infty\left[\right.$ and $\frac{\lambda \mathcal{X}(x)}{\lambda x}=i \beta \mathcal{X}(x)$. In fact,

$$
\frac{\chi(x+\delta)-x(x)}{\delta}=\chi(x) \cdot \frac{x(\delta)-1}{\delta}
$$

Limit as $|\delta| \rightarrow 0$ exists in the right sire. Hence the derivative of X exists at a] x. Taking the limit as $|\delta| \rightarrow 0$, we get

$$
\frac{d \chi(x)}{d x}=X(x) \text { i } \beta . \text { Hence } \mathcal{X}(x)=c \exp (i \beta x) .
$$

since $X(0)=1, c=1$. As $|\chi(x)|=1$, we see that β is real.

THEOREM ?.in. If ν is a measurable function (complexvalued) and satisfies (1.7) non-trivially for $x, y \geq 0$ with
$\eta(0)=1$, then $\gamma(x)=\operatorname{oxp}[(\alpha+i \beta) x]$ for some real numbers α and β.

Proof. Let $f(x)=\log |V(x)|$. Then f is measurable and additive on $[0,00[$. Hence f is continuous (Th.2.3). So, by theorem (2.20) $|\nu(x)|=\exp \alpha x$, for some real α. Further $f(x)=\frac{V(x)}{|\gamma(x)|}$ is measurable. So, by theorem (3.21),

$$
X(x)=i \beta x \text { for some real } \beta
$$

The result now is immediate.
Now we will take vo the equation (1.8).
THEOREM 2.27. If f is a solution of (1.8) for all real $x, y \neq 0$, then the most general form of f is $f(x)=$ $g(\log |x|)$, where g satisfies (116).

Prof. First noto that f is even. For, replace y by x and then x and y by $-x$ rosnoctively in (1.7), then we obtain

Thus

$$
\begin{aligned}
& f\left(x^{2}\right)=2 f(x) \\
& \text { also }=2 f(-x) \\
& f(x)=f(x), \text { for } x \neq c_{0}
\end{aligned}
$$

Now let x and y be nositive. Thero exists u and v such that $x=e^{u}$ and $y=e^{v}$. By defining

$$
g\left(u_{0}\right)=f\left(e^{u}\right)
$$

and using (1.8), we obtain, $g(u+v)=g(u)+g(v)$.
Thus for $x>0, f(x)=g(\log x)$, where g satisfies (1.6). Then the result follows from the fact that f is even. COROLTARY 2.24. The continuous solution of (1.8) which is definerl for $=11 \quad x, y \neq 0$ is $f(x)=c \log x \quad$. The proof is inmoriate from the sbovo thenem (2.22).

Remark. If (1.8) is valid for $2 l l$ real x, then $f(x) \equiv 0$. For, butting $x=0$ in (1.8), we have $f(0)=f(0)+$ $+f(y)$, irom which it is casy to see that $f(x) \equiv 0$.

Charactorization of exoonential and logarithmic functions.

The functions $e^{c x}$ and $\log c x$ can bc characterized by means of the equations (1.7) and (1.8) resnectively (vire above theorems), in two variables. But these functions can also be characterized with the nid of the following equations
in a single variable:

$$
\begin{equation*}
f(o x)=f(x)^{2}, \tag{54}
\end{equation*}
$$

and

$$
\begin{equation*}
f\left(x^{2}\right)=2 f(x) \tag{5.5}
\end{equation*}
$$

and some additional conditions. Tho following thoorems will be of inter st in that rirection (for nroof see [50]). THEOREN 2.25. Tre function $f(x)-e^{x}$ is the only function which is differentiable in $[0, \infty$, satisfios (.54) and the conditions $f(0)=f^{\prime}(0)=1$.

The function $f(x)=\log x$ is the only function which is Pifferentiable in $[1, \infty[$, satisfying (?.55) with the condition $f^{\prime}(I)=1$.

THEOREN 2.25. The function $f(x)=e^{x}$ is the only function wich is logarithmically convex in $] 0, \infty$ [, stisfying (2.54) and the condition $f(1)=0$. The furction $f(x)=\log x$ is the onlv function wich is concare (-f convex) in $11, \infty$, satisfying (2.55) and the condition $f(e)=I_{n}$ THEOREM 2.27. If f satisfies (1.9) $f(x y)=f(x) f(y)$ for all nositive, x, y or for all real x, y or for all real $x \neq 0, y \neq 0$, then tho contjnuous solutions of (1.0) are
(55)

$$
\left\{\begin{array}{c}
f(x)=x^{c} \text { on } f(x)=0 \\
f(x)=\left\{\begin{array}{l}
|x|^{c}, x \neq 0, \\
0, x=0
\end{array}\right. \\
f(x)=\left\{\begin{array}{l}
|x|^{c} \text { ign } x, x \neq 0, \\
0, \quad x=0
\end{array}\right. \\
f(x)=1, f(x)=\operatorname{sgn} x \\
f(x)=0, f(x)=|\operatorname{sgn} x|
\end{array}\right\} \begin{aligned}
& f(x)=|x|^{c}, f(x)=|x|^{c} \operatorname{sgn} x, f(x)=0
\end{aligned}
$$

respectively.
Proof. Let x and y be nositive. Put $x=e^{u}$, $y=e^{v}, f\left(e^{u}\right)=g(u)$ in (1.9). Then we have

$$
g(u+v)=g(u) g(v) \text { which is same as (1.7). }
$$

Thus the continuous solutions in this case are

$$
\begin{aligned}
& f(x)=e^{c \log x}=x^{c} \text { or } f(x)=0 \\
& \text { Now, but } x=0 \text { in (1.9).. Then we have } \\
& f(0)=f(x) f(0) \text { from which we can conclude }
\end{aligned}
$$

that either

$$
\begin{equation*}
f(x) \equiv 1 \quad \text { or } \quad f(0)=0 \tag{57}
\end{equation*}
$$

Now, let $\mathrm{x} \neq 0, \mathrm{y} \neq 0$. Set first $\mathrm{y}=\mathrm{x}$ and then replace x and y by $-x$ in (1.9): Then we obtain

$$
f(x)^{2}=f\left(x^{2}\right)=f(-x)^{2}
$$

Hence

$$
f(-x)=f(x)=x^{c}
$$

$$
\text { or }=-f(x)=-x^{c}
$$

Thus since f is continuous, for $x \neq 0$, we have

$$
f(x)=x^{c}, f(x)=x^{c} \operatorname{sgn} x, f(x)=0,
$$

for if there are x and $y(\neq 0)$ such that $f(-x)=f(x)$ and $f(-y)=-f(y)$, then from (1.a) we would have $f(x) f(y)=0$. Let x, y be real. Then from (?.57), (?.58) we obtain the continuous solutions as

THEOREM 3.29. The common solutions (real) of (1.6) and (1.9) are $f(x)=x$ and $f(x)=0$.

Proof. For $x>0$, replace x and y in (1.9) by x. Then we have

$$
f(x)=f(\sqrt{x})^{2} \geq 0
$$

$$
\begin{aligned}
& f(x)=\left\{\begin{array}{l}
x^{c}, x \neq 0, \\
0, x=0
\end{array} \quad f(x)=\left\{\begin{array}{l}
x^{c} \operatorname{sgn}, x \neq 0, \\
0, x=0
\end{array}\right.\right. \\
& f(x)=0, \quad f(x)=I \quad f(x)=\operatorname{sgn} x, f(x)=\operatorname{sgn} x
\end{aligned}
$$

Thus f is non-nemative for positive x. Then by Theorem (3. ?) f being a solution of (1.6), we have $f(x)=c x$. This in (1.9) gives the condition that $c x y=c^{2} x y$, from which it follows that either $c=0$ or $c=1$. Thus $f(x)=x$ or $f(x)=0$.

THEOREM 2.29. The common continuous complex solutions of (1.6) and (1.9) are $f(x)=0, f(x)=x$ and $f(x)=\bar{x}$. (here f is a complex function of a complex variable). Proof. All continuous, complex solutions of (1.6) are given by (theorem 2.11)

$$
\begin{equation*}
f(x)=a x+b \bar{x}, \text { for all complex } x ; a, b \text { complex. } \tag{28}
\end{equation*}
$$

Fence for all real $x, f(x)=(a+b) x$. This in (1.9) gives either $a+b=0$ or $a+b=1$. Thus (3.2.8) takes the form

$$
f(x)=a(x-\bar{x})
$$

or

$$
f(x)=a x+(1-a) \bar{x}, \text { for all complex } x
$$

First let $f(x)=a(x-\bar{x})$.
Putting $x=1, y=1$ in (1.9), we have

$$
\begin{aligned}
& f(i)=f(i) f(1) \text {, that is, } \\
& a \cdot 2 i=a \cdot 2 i \cdot 0 \cdot \text { Thus } a=0 .
\end{aligned}
$$

Hence $f(x)=0$.

From (59), next let $f(x)=a x+(1-a) \bar{x}$.
Setting $x=i, y=-i$ in (1.9) we have

$$
f(1)=f(i) f(-i)
$$

that is,

$$
\begin{aligned}
1 & =[a i+(1-a)(-i)][-a i+(1-a) i] \\
& =1-4 a+4 a^{2} .
\end{aligned}
$$

Hence $a=0$ or 1. This gives either

$$
\begin{equation*}
f(x)=\bar{x}^{\prime} \text { or } f(x)=x . \text { Hence the result. } \tag{60}
\end{equation*}
$$

Solution of (1.7) and (1.a) for complex values.

$f(x+y)=f(x) f(y), f: \mathcal{C} \rightarrow \mathbb{C}$, complex numbers. THEOREM 2.20 . The continuous, complex solutions (nonvanishing) of (1.7) are $f(x)=e^{a x+b \bar{x}}, a, b$ complex constants.

Proof. (Hue to Abel [4]). Let $v+i a=$ $r(\cos \phi+i \sin \phi), n, a$ real. Then $r=\sqrt{0^{3}+a^{3}}$, $\cos \phi=\frac{D}{r}$ and $\sin \phi=\frac{a}{r}$.

Let $r=h(x, y)$ and $\phi=g(x, y)$, where $p+i q=f(x+i y)$
Then for x, y, u, v rail, we have

$$
\text { (61) }\left\{\begin{array}{l}
f(x+i y)=h(x, y)[\cos g(x, y)+i \sin g(x, y)] \\
f(u+i v)=h(u, v)[\cos g(u, v)+i \sin g(u, v)] \\
f(x+u+i y+i v)=g(x+u, y+v)[\cos g(x+u, y+v)+
\end{array}\right.
$$

$$
+i \sin g(x+u, y+v) \mid
$$

From (1.7) ant (2.61), we get

$$
\begin{aligned}
& h(x+u, y+v)[\cos g(x+u, y+v)+i \sin g(x+u, y+v)] \\
= & h(x, y) h(u, v)[\cos (g(x, y)+g(u, v))
\end{aligned}+i \sin (g(x, y)+子 .
$$

Squaring and adding (2.6?), we get

$$
\begin{array}{r}
h(x+u, y+v)^{2}=h(x, y)^{2} h(u, v)^{2} \text { from which follows } \\
h(x+u, y+v)=h(x, y) h(u, v) \quad \text { (since } h \text { is always } \tag{6?}\\
\text { positive). }
\end{array}
$$

From (2.6?) and (2.63) results

$$
\begin{equation*}
g(x+u, y+v)=2 m \pi+g(x, y)+g(u, v) \tag{64}
\end{equation*}
$$

where m is any integer.
Since f is continuous, so are h and g.
As g is continuous, m in (0.64) should be a constant.
From Theorem ?.lo, it follows that,
(65)

$$
g(x, y)=c_{1} x+c_{2} y-2 m \pi, c_{1}, c_{2} \text { real. }
$$

But we will prove (0.65) using Abel's argument as follows.
Putting $x=0$ and $u=0$ in (3.65), we get

$$
\left\{\begin{array}{l}
g(u, y+v)=2 m \pi+g(o, y)+g(u, v) \tag{66}\\
g(x, y+v)=2 m \pi+g(x, y)+g(0, v)
\end{array}\right.
$$

From (3.64) and (3.66), we get

$$
\begin{equation*}
g(x, y+v)+g(u, y+v)=2 m \pi+g(u, y)+g(0, v)+g(x+u, \tag{67}
\end{equation*}
$$

Letting (68) :

$$
\left\{\begin{aligned}
\alpha(x) & =g(x, y+v) \\
c & =? m \pi+g(0, y)+g(0, v)
\end{aligned}\right.
$$

we have from (3.67):
(69)

$$
\alpha(\dot{x})+\alpha(u)=c+\alpha(x+u)
$$

α being continuous, we get from (2.66°),
(70)

$$
\alpha(x)=d x+c,
$$

where $d=\alpha(1)=c$.
Thus, α (I) being a function of y and v, we have

$$
\begin{equation*}
g(x, y+v)=d(y, v) x+2 m \pi+g(0, y)+g(0, v) \tag{71}
\end{equation*}
$$

$x=0$ in (3.71) gives

$$
g(0, y+v)=2 m \pi+g(o, y)+g(0, v)
$$

Hence, (72) $g(0, y)=$ by $-2 m \pi$, e a real constant.
Therefore from (3.71) and (3.72), we have

$$
\begin{equation*}
g(x, y+v)=d(y, v) x+e(y+v)-2 m \tag{73}
\end{equation*}
$$

$6 ?$
From (0.72) wo see that (V, V) is of the form $\phi(y+v)$. So,

$$
\begin{equation*}
g(x, y+v)=\phi(y+v) x+o(y+v)-2 m \pi \tag{74}
\end{equation*}
$$

Putting $v=0$, in (2.74), we have
(75)

$$
g(x, y)=\phi(y) x+e y-2 m \pi
$$

But from (2.64) we have, putting $u=0$,

$$
\begin{equation*}
g(x, y+v)=2 m \pi+g(x, y)+g(0, v) \tag{76}
\end{equation*}
$$

From (?.73), (?.74), (2.75) and (?.76), we get

$$
\phi(y+v)=\phi(y)=\text { constant }=\alpha .
$$

Thus from (3.75)
(77)

$$
g(x, y)=\alpha x+e y-M \pi, \alpha, \text { e real constants which }
$$

Is same as (2.65).
As $h(x, y)$ is positive, with $h(x, y)=e^{H(x, y)},(2.63)$ reduces to

$$
H(x+u, y+v)=H(x, y)+H(u, v)
$$

Hence
(78)

$$
\begin{aligned}
& H(x, y)=\lambda_{I} x+d_{2} y, d_{I} d_{2} \text { real constants } \\
& h(x, y)=e^{d_{1} x+d_{2} y} .
\end{aligned}
$$

The equations (2.61), (2.65) nne (0.78) give

63

$$
\begin{aligned}
f(z)=f(x+i y)=e^{d_{1} x+d_{2} y} & {\left[\cos \left(c_{1} x+c_{2} y\right)+\right.} \\
& \left.+1 \sin \left(c_{1} x+c_{2} y\right)\right]
\end{aligned}
$$

$$
=e^{a z+b \bar{z}} \text {, where } a=\frac{1}{2}\left[\left(d_{1}+i c_{1}\right)+\left(c_{2}-i d_{2}\right)\right]
$$

and

$$
b=\frac{1}{2}\left[\left(d_{1}+i c_{1}\right)-\left(c_{2}-i d_{2}\right)\right]
$$

This completes the proof of the theorem.

$$
\begin{equation*}
f(x y)=f(x) f(y), f: \mathbb{C} \longrightarrow \mathbb{C} \tag{1.9}
\end{equation*}
$$

THEOREM 2.31. Let f be a complex v blued function of the complex variable satisfying (la). Further let f be a continuous solution of (1.9). Then f is of the form

$$
f(z)= \begin{cases}e^{k \log }|z| & z^{n}, \\ z \neq 0 \\ 0, & z=0\end{cases}
$$

where k is a complex constant and n any integer, provided $f \neq 0,1$.

Proof. Let $T=\{z:|z|=I\}$. Then f restricted to T is a continuous character $[40]$. It is known that $[40]$, the character group of T is the group of integers z, that is,

$$
f\left(z^{\prime}\right)=z^{n}, \text { for } z f T, n \in Z
$$

By theorem 3.27, for x positive, we have

$$
f(x)=x^{k}, x f R^{+}
$$

For $z \neq 0$, we have

$$
\begin{aligned}
& f(z)=f\left(\left\lvert\, z \cdot \frac{z}{|z|}\right.\right) \\
&=f(|z|) \cdot f\left(\frac{z}{|z|}\right) \\
&=e^{A \log |z|}\left(\frac{z}{|z|}\right)^{n}, \quad \text { a complex constant, } \\
& n \text { any intecer } \\
&=e^{k \log |z|} \cdot z^{n}, k, \text { any complex constant. }
\end{aligned}
$$

Thus the theorem is proved.

3 4. Pexider and Tensen Fouations.

Dexider's Equations. The functional equations (1.10), (1.11), (1.12) and (1.12)

$$
(1.11)
$$

$$
\begin{align*}
& f(x+y)=h(x)+g(y) \tag{1.10}\\
& f(x+y)=h(x) g(y) \\
& f(x y)=h(x)+g(y) \tag{1.12}\\
& f(x y)=h(x) g(y) \tag{1.13}
\end{align*}
$$

known as Pexider equations are an immediate generalization of the Cauchy Equations to which they can be easily reduced and solved.

THEOREM 4.1. The general solution of (1.10) is $f(x)=$ $a(x)+b+c, g(x)=a(x)+c$ and $h(x)=a(x)+b$ where $a(x)$ is an arbitrary solution of (1.6) and b, c are constants. Further if f is a continuous solution of (1.10), then $f(x)=$ $k x+b+c, g(x)=k x+c$ and $h(x)=k x+b, b, c, k$ are constants.

Proof. Put first $x=0$ in (1.10) and then $y=0$ in (1.10). Then we have

$$
\begin{align*}
& f(y)=h(0)+g(y) \tag{I}\\
& f(x)=h(x)+g(0)
\end{align*}
$$

From (1.10), (4.1) and (4.2) we have

$$
\begin{equation*}
f(x+y)=f(x)+f(y)-b-c \text { where } h(0)=b \tag{3}
\end{equation*}
$$

and $g(0)=c$.
(4) Setting $a(x)=f(x)-b-c, f r o m(4.3)$, we have $a(x+y)=a(x)+a(y)$.

From (4.1), (4.2) and (4.4), we obtain the required result.
Remark. As for g and h are concerned, no further assumntions are necessary. Further these functions are continuous, when f is. This follows from (4.1) and (4.2).

THEOREM 4.2. The most general solution of (1.11) is $f(x)=a b \exp c(x), g(x)=b \exp [c(x)], h(x)=a \exp$ $[c(x)]$, where $c(x)$ is an arbitrary solution of (1.6), $a \neq 0, b \neq 0$ are arbitrary constants excluding the trivial solution $f=0, g=0, h$ arbitrary, $f=0, h=0, g$ arbitrary. Further, if f is continuous, then $f(x)=a b$ exp $(c x), g(x)=b \exp (c x), h(x)=a \exp (c x)$, where a, b, c are non-zero constants (excluding the triviel solution).

Proof. If either $h(0)=0$ or $g(0)=0$, we obtain from (1.11), that $f \equiv 0$ and either $g \equiv 0$ or $h \equiv 0$, so that either h or g is arbitrary respectively. Henceforth, we assume $h(0) \neq 0$ and $g(0) \neq 0$. Putting $x=0$ in (1.11) we obtain,
(5) hence

$$
\begin{aligned}
& f(y)=h(0) g(y) \\
& g(y)=\frac{1}{a} f(y), \text { where } h(0)=a \neq 0
\end{aligned}
$$

Similarly, butting $y=0$ in (1.11), we have

$$
\begin{equation*}
h(x)=\frac{1}{b} f(x), \text { where } g(0)=b \neq 0 \tag{6}
\end{equation*}
$$

From (1.11), (4.5) and '(4.6), we have
(7)

$$
f(x+y)=\frac{f(x) f(y)}{a b}
$$

Setting
(8)

$$
g(x)=\frac{f(x)}{a b}
$$

from (4.7) and (4.8) we obtain

$$
\begin{equation*}
g(x+y)=g(x) g(y) \tag{1.7}
\end{equation*}
$$

Thus $g(x)=\exp (c w)$. Then from (4.5), (4.6) and (4.8) we obtain the desired result.

Remark: When f is continuous (nontrivial solution), then so are g and h.

THEOREM 4.2. If f, g, h satisfy (1.12), then $f(x)=\ell(x)+a+b, g(x)=f(x)+b$ and $h(x)=l(x)+a$ where $l(x)$ is an arbitrary solution of (1.8), a, b are
constants. When f is continuous, $f(x)=\gamma \log (\alpha \beta x)$, $g(x)=\gamma \log (\beta x)$ and $h(x)=\gamma \log (\alpha x),(\alpha, \beta ; x>0)$. Proof. Putting $x=1$ in (1.12), we have

$$
f(y)=g(y)+h(1)
$$

or
(9)

$$
g(y)=f(y)-x, \text { where } h(1)=a \delta
$$

Similarly, putting $y=1$ in (1.1?), we have

$$
\begin{equation*}
h(x)=f(x)-b, \text { where } b=g(1) \tag{10}
\end{equation*}
$$

Setting

$$
\begin{array}{r}
\ell(x)=f(\dot{x})-a-b, \text { we obtain from }(1.12),(4.0) \\
\text { and }(4.10),
\end{array}
$$

(1.8)

$$
l(x y)=l(x)+l(y)
$$

If f is continuous, $x, y>0$, then $\ell(x)=y \log x$ and taking $a=\gamma \log \alpha$ and $b=\gamma \log \beta, \alpha, \beta>0$, we have the sought for result.

THEOREM 4.4. If f, g, h satisfy (1.13), then $f=0$, $g=0, h$ arbitrary; $f=0, h=0, g$ arbitrary and $f(x)=$ $a b m(x), g(x)=b m(x)$ and $h(x)=a m(x)$ are the only solutions of (1.13) where $m(x)$ satisfies (1.9) and $a \neq 0$, $b \neq 0$ constants. If f is continuous, then $f(x)=a b x^{c}, g(x)=b x^{c}$ and $h(x)=a x^{c}$ where $x>0, a \neq 0, b \neq 0, c$ are constants.

Proof. Putting $y=1$ in (1.13), we get

$$
f(x)=h(x) g(1)
$$

or

$$
\begin{equation*}
h(x)=\frac{f(x)}{a}, \text { where } g(1)=a \neq 0 \tag{11}
\end{equation*}
$$

Similarly nutting $x=1$ in (1.1.), we obtain

$$
\begin{equation*}
g(y)=\frac{f(y)}{b} \text { where } h(I)=b \not o_{0} \tag{12}
\end{equation*}
$$

If either $g(1)=0$ or $h(1)=0$ we obtain the trivial solustions. Now, setting

$$
m(x)=\frac{f(x)}{a b}
$$

from (1.13), (4.11) and (4.12), we have

$$
\begin{equation*}
m(x y)=m(x) m(y) \tag{1.9}
\end{equation*}
$$

Thus, when f is continuous and $x, y>0$, we obtain the desired result.

The functional equations (1.7), $f(x+y)=f(x) f(y)$ and (1.11) $f(x+y)=h(x) g(y)$ where f, g, h are real valued fundtions of the real variables have been extensively studied and it is well known that the continuous of (1.7) are given by $f(x)=$ $=e^{c x}$ (Theorem 3) and that of (1.11) are of the form $f(x)=$ $=a b e^{c x}, g(x)=b e^{c x}$ and $h(x)=a e^{c x}$ (Theorem 4.2), where a, b, c are arbitrary constants. Here wo consider (1.11) in the following manner.

Let $f: R \rightarrow R(R$, real numbers). Then f is said to have property (A) if there exist functions $h, g: R \rightarrow R$ such that (1.1.1)

$$
f(x+y)=h(x) g(y) \text { holds, for all } x, y \in R
$$

As pointed out in Theorem 4.?, if either f or g or h is zero at some point, we will have only trivial solutions. In what follows we consider f, g, h to be nowhere zero.

LEMMA 4.5. Let $f: R \rightarrow$. Then the following two conditions are equivalent:
(i) f has property (A)
(ii) $f(x+y)=\frac{f(x) f(y)}{f(0)}$, for every $x, y \in R$.

Proof. Let (i) be true. From (1.11) first with $x=0$ and then with $y=0$, we obtain

$$
f(y)=h(0) g(y)
$$

and

$$
\begin{equation*}
f(x)=h(x) \quad g(0) \tag{13}
\end{equation*}
$$

From (1.11) and (4.13), we have

$$
\begin{equation*}
f(x+y)=\frac{f(x) f(y)}{h\left(o^{\prime} g(0)\right.}=\frac{f(x) f(y)}{f(0)} \text {, which is (ii). } \tag{14}
\end{equation*}
$$

Let (ii) be true. Then $f(x+y)=h(x) g(y)$ where $h(x)=f(0)$ $f(x)$ and $h(y)=\frac{f(y)}{f(0)^{2}}$. So, (i) holds. This completes the proof of this lemma. Let f have property (A). Then (4.14) holds. Renlacing x by $x /$? and y by $x / 2$, we get

$$
(15) \cdot \quad f(x)=\frac{f(x / 2)^{2}}{f(o)^{2}}
$$

Hence from (4.15), we see that f has always the same sign as that of $f(0)$. From (4.14), it is also evident that $f(0)$ is arbitrary. In the sequence we take $f(0)$ is positive and hence f is always nositive. Putting $y=-x$ in (4.14), we obtain

$$
f(0)=\frac{f(x) f(-x)}{f(0)} .
$$

That is,

$$
\begin{equation*}
f(-x)=\frac{f(0)^{2}}{f(x)} \quad, \text { for every } x \in R . \tag{16}
\end{equation*}
$$

THEOREM 4.6. SUnDOSE $f: R \rightarrow R$ with property (A). Then for every rational $r, f(r)=\frac{f(1)^{r}}{f(0)^{r-1}}$.

Proof. Put $y=x$ in (4.14) we have

$$
\begin{equation*}
f(\rho x)=\frac{f(x)^{2}}{f(0)} \tag{17}
\end{equation*}
$$

Setting $y=2 x$ (in 4.14) and using (4.17), we obtain

$$
\begin{aligned}
f(3 x) & =\frac{f(x) f(2 x)}{f(0)} \\
& =\frac{f(x)^{3}}{f(0)^{2}}
\end{aligned}
$$

Hence by induction on n, we have for any natural n,

$$
\begin{equation*}
f(n x)=\frac{f(x)^{n}}{f(0)^{n-1}} \tag{18}
\end{equation*}
$$

Let $n=-m, m>0$. From (4.16) and (4.18), we have

$$
\begin{aligned}
f(n x) & =\frac{f(0)^{2}}{f(m x)} \\
& =\frac{f(0)^{m+1}}{f(x)^{m}} \\
& =\frac{f(x)^{n}}{f(0)^{n-1}}
\end{aligned}
$$

Hence (4.18) holds for all integers n. Let any rational
$r=\frac{p}{q}$. Then $p=q r$.
From (4.18), we have, $f(p x)=\frac{f(x)^{p}}{f(0)^{p-1}}$

$$
\text { also }=\frac{f(r x)^{p}}{f(o)^{q-1}} \text {. }
$$

Hence $f(r x)^{q}=\frac{f(x)^{p}}{f(0)^{D G}}$.

That is, $\quad f(r x)=\frac{f(x)^{p / q}}{f(0)^{p /} q^{-1}}$
(19)

$$
=\frac{f(x)^{r}}{f(0)^{r-1}} \quad \text { for all } \quad x \in R .
$$

Now setting $x=1$ in (4.19), we have

$$
\begin{aligned}
f(Y) & =\frac{f(1)^{r}}{f(0)^{r}} \\
& =f(0) \cdot \frac{f(1)^{r}}{f(0)} \\
& =c a^{r}, \vec{c}=f(0) \text { and } a=\frac{f(1)}{f^{(}(0)} .
\end{aligned}
$$

(20)

THEOREM 4.7. Let $f: R \rightarrow R$ be continuous at some point. Then
(i) f has property (A)
(ii) $f(x)=c a^{x}$, for every $x \in R$
are equivalent.
Proof. Let (i) hold. First we will prove that f is continuous everywhere. Let f be continuous at x_{0}. Then, from (4.14) and (4.16), we have

$$
\begin{aligned}
& f\left(x_{0}\right)=\lim f\left(x_{n}-x+x_{0}\right) \\
& x_{n}-x+x_{0} \rightarrow x_{0} \\
& =\lim _{x_{n}-x+x_{0} \rightarrow x_{0}} \frac{f\left(x_{n}-x\right) \cdot f\left(x_{0}\right)}{f(0)} \\
& =\frac{f\left(x_{0}\right)}{f(0)} \cdot \lim _{x_{n} \rightarrow x} \frac{f\left(x_{n}\right) \cdot f(-x)}{f(0)} \\
& \lim _{x_{n} \rightarrow x} f\left(x_{n}\right)=\frac{f(0)^{2}}{f(-x)}=f(x) .
\end{aligned}
$$

Hence f is continuous everywhere. From theorem 4.6, now it is easy to see that $f(x)=c a^{x}$ for all $x \in R$. Hence (ii) holds. Suppose (ii) holds. Then f is continuous everywhere. Also

$$
\begin{aligned}
f(x+y)=c a^{x+y} & =\frac{c a^{x} \cdot c a^{y}}{c} \\
& =: \frac{f(x) f(y)}{f(0)}, \text { which is (4.14)}
\end{aligned}
$$

Hence (1) is true. This completes the proof of this theorem. Jensen's Equation: Now let us consider the equation

$$
\begin{equation*}
f\left(\frac{x+y}{2}\right)=\frac{f(x)+f(y)}{2} \tag{1.14}
\end{equation*}
$$

known as Jensen's equation. The solution of this equation can be obtained by reducing it to the Cauchy equation (1.6).

THEOREM 4.8. The most general solution of (1.14) is $f(x)=a(x)+b$, where $a(x)$ is a solution of (1.6) and b is an arbitrary constant.

Proof. Put $y=0$ in (1.14). Then we have

$$
f\left(\frac{x}{2}\right)=\frac{f(x)+b}{2}, \text { where } b=f(0)
$$

Thus
(21)

$$
\begin{aligned}
\frac{f(x+y)+b}{2} & =f\left(\frac{x+y}{2}\right) \\
& =\frac{f(x)+f(y)}{2}
\end{aligned}
$$

Now set $a(x)=f(x)-b$. Then (4.21) becomes

$$
a(x+y)=a(x)+a(y)
$$

Thus $f(x)=a(x)+b$, where a satisfies (1.6).
Remark. The general continuous solutions of (1.14) are $f(x)=c x+b$, where b and c are constants.

THEOREM 4.9. Let f be defined on an arbitrary interval and satisfy (1.14). If f is continuous, then $f(x)=c x+b$ for all x in the interval.

Proof. Without loss of generality, let us assume the interval to be $[0,1]$. Let $f(0)=b$ and $f(1)=$ a. For every $x, y \in[0,1]$, it is evident that $\frac{x+y}{2} \in[0, I]$ - The proof is based on induction. First, let us show that $f(x)=c x+b$, for x a dyadic number in $[0,1]$. Then since the dyadic numbers are dense in $[0,1]$ and f contrnous, we will have the reautired result. From (1.14), we have

$$
\begin{aligned}
f\left(\frac{1}{2}\right) & =f\left(\frac{0+1}{2}\right)=\frac{b+E}{2}=b+\frac{1}{2}(b-a) \\
& =b+\frac{1}{2} c, \text { where } c=b-a
\end{aligned}
$$

Now,

$$
\begin{aligned}
f\left(\frac{1}{4}\right) & =\frac{f(0)+f\left(+\frac{1}{2}\right)}{2} \\
& =b+\frac{1}{4} c, \text { etc. }
\end{aligned}
$$

Suppose $f(x)=c x+b$, for all dyadic s with denominator 2^{n}. Then by induction hypothesis, we have

$$
\begin{aligned}
f\left(\frac{2 k}{2^{n+1}}\right) & =f\left(\frac{k}{2^{n}}\right)=b+c \cdot \frac{k}{2^{n}} \\
& =c \cdot \frac{2 k}{2^{n+1}}+b
\end{aligned}
$$

and

$$
\begin{aligned}
& f\left(\frac{k}{2^{n}}\right)+f\left(\frac{k+1}{2^{n}}\right) \\
= & \frac{2}{2} \\
= & \frac{1}{2}\left[c \cdot \frac{k}{2^{n}}+b+c \cdot \frac{k+1}{2^{n}}+b\right] \\
= & c \cdot \frac{2 k+1}{2^{n+1}}+b \text {, which proves our assertion }
\end{aligned}
$$

that $f(x)=c x+b$, for all dyadic x in $[0,1]$.
§ 5. Some generalizations of Cauchy, Pexidor type equations.
A). (I) $f(a x+b y+c)=p f(x)+a f(y)+r, a, b, p, a \neq 0, f: R \rightarrow R$.

The equation (5.1) possesses measurable and non-constant solutions if and only if $a=p, b=q$.
The equation (5.1) can be reduced to the equation (1.6) by a scorxonce of substitutions as follows.

$$
x=-c / a, y=0 \text { in (5.1) gives }
$$

(2) $f(0)=D f(-c / a)+q f(0)+r$.

$$
x=\frac{t-c}{a}, y=0 \text { in (5.1) gives }
$$

$$
\begin{equation*}
f(t)=p f\left(\frac{t-c}{a}\right)+a f(0)+r . \tag{3}
\end{equation*}
$$

$$
x=-c / a, y=\frac{z}{b} \text { in (5.1) gives }
$$

(4) $\quad f(z)=p f(-c / a)+q(z / b)+r$.

Lastly: $x={ }^{\prime}(t-c) / a, y^{\prime}=z / b$ in (5.1) gives
(5) $\quad f(t+z)=p f((t-c) / a)+q(z / b)+r$.

Adding (5.3) and (5.5) and then subtracting (5.7) and (5.4), we get

$$
\begin{equation*}
f_{0}(t+z)=f_{0}(t)+f_{0}(z)^{\prime} \text {, where } \tag{1.6}
\end{equation*}
$$

$$
\begin{equation*}
f_{0}(t)=f(t)-f(0) \tag{7}
\end{equation*}
$$

Hence if f in (5.1) is continuous, from (1.6) and (5.7), we have,

$$
\begin{equation*}
f(x)=e x+d, d=f(0), e, \text { constant } \tag{8}
\end{equation*}
$$

Putting this value of f in (5.1), we obtain

$$
a=p, b=a, e c-r=(a+b-1) d
$$

Remark. For $a=b=1 / 2, c=0, p=q=1 / 2, r=0$, the equation (5.1) reduces to the Jensen equation (1.14).

As (1.6) nossesses discontinuous solution, all solutions of (5.1) are not continuous. As for non-measurable solutions, it has been proved for

$$
\begin{equation*}
f(a x+y)=p f(x)+y \tag{9}
\end{equation*}
$$

(with $b=q=1, c=r=0$) that if a or p is rational, then (5.0) has non-constant solutions only for a $=\mathrm{p}$; if a or p is algebraic and (5.a) has non-constant solution, then a and p are algebraic and are roots of the same irreducible monic polynomial [27].
B. (10)

$$
f(x+y)=g(x) k(y)+h(y), \quad f: R \rightarrow R
$$

Let f be not constant. Putting $y=0$ in (5.10), we get

$$
\begin{equation*}
f(x)=g(x) k(0)+h(0) \tag{11}
\end{equation*}
$$

From (5.10) and (5.11), we have

$$
\begin{equation*}
f(x+y)=\alpha(y) f(x)+\beta(y), \quad \text { where } \tag{12}
\end{equation*}
$$

$$
\begin{equation*}
\alpha(x)=\frac{k(x)}{k(0)}, \beta(x)=h(x)-\frac{h(0)}{k(0)} k(x) \tag{13}
\end{equation*}
$$

Now to find the solution of (5.12).
Set $x=0$ in (5.1?) and subtract the equation

$$
\begin{equation*}
f(y)=\alpha(y) f(0)+\beta(y) \tag{14}
\end{equation*}
$$

then we have

$$
\begin{align*}
& \delta(x+y)=\alpha(y) \delta(x)+\delta(y), \text { where } \tag{1.5}\\
& \delta(x)=f(x)-f(0) \tag{16}
\end{align*}
$$

Interchanging x and y in (5.15) and using (5.15), we get

$$
\alpha(y) \delta(x)+\delta(y)=\alpha(x) \delta(y)+\delta(x), \text { that is }
$$

$$
[\alpha(x)-1] \delta(y)=[\alpha(y)-1] \delta(x)
$$

If $\alpha(x) \equiv 1,(5.15)$ reduces to (1.6) $\delta(x+y)=\delta(x)+\delta(y)$.
Hence, from (5.16) and (5.14), we have

$$
\begin{equation*}
f(x)=\delta(x)+f(0), \alpha(x)=1, \beta(x)=\delta(x) \tag{18}
\end{equation*}
$$

as a solution of (5.12), where δ satisfies (1.6).

From (5.13) , (5.18) and (5.11), we see that, a solution of (5.10) is of the form

$$
\begin{aligned}
& f(x)=\delta(x)+f(0) \\
& g(x)=\frac{\delta(x)+f(0)-h(0)}{b} \\
& h(x)=\delta(x)+h(0) \\
& k(x)=\text { constant }=b .
\end{aligned}
$$

Let $\alpha(x) \neq 1$. Then there is an x_{0} such that $\alpha\left(x_{0}\right) \neq 1$. Putting $y=x_{0}$ in (5.17), we have

$$
\begin{equation*}
\delta(x)=c,(\alpha(x)-1), \quad c=\frac{d\left(y_{0}\right)}{\alpha\left(y_{0}\right)-1} \tag{19}
\end{equation*}
$$

$c=0$ in (5.19) gives $\delta \equiv 0$ and hence f is a constant from (5.15) which cannot be.

The equations (5.15) and (5.19) yield

$$
\begin{equation*}
\alpha(x+y)=\alpha(x) \quad \alpha(y) . \tag{1.7}
\end{equation*}
$$

Hence from (5.14), (5.16), (5.19), we have
(20)

$$
\left\{\begin{array}{l}
f(x)=c \alpha(x)+d, d=f(0)-c \\
\beta(x)=d(1-\alpha(x))
\end{array}\right.
$$

as solutions of (5.12), where α is a solution of (1.7).
Thus (5.11), (5.13), (5.90), yield, a solution of (5.10) as

$$
\begin{aligned}
& f(x)=c \alpha(x)+d \\
& g(x)=\frac{c \alpha(x)+d-h(0)}{b} \\
& k(x)=b \alpha(x) \\
& h(x)=d+(d-h(0)) \alpha(x)
\end{aligned}
$$

where α satisfies (1.7).
In case f is a continuous solution of (5.10), we get

$$
\begin{aligned}
& f(x)=e x+f(0) \\
& g(x)=\frac{e x+f(0)-h(0)}{b} \\
& h(x)=\text { ex }+h(0) \\
& k(x)=\text { const }=b
\end{aligned}
$$

and

$$
\begin{aligned}
& f(x)=c e^{1 x}+d, A \text { a constant } \\
& g(x)=\frac{c e^{A x}+d-h(0)}{b} \\
& k(x)=b e^{A x} \\
& h(x)=d+(d-h(0)) e^{A x}
\end{aligned}
$$

are the only solutions of (5.10).
C. Equation of the type $f(x+y)=F[f(x-y), f(x), f(y)]$.
(21) $\quad f(x+y) f(x-y)=f(x)^{2}, f: R \rightarrow R$, with f differen- \quad viable.

Evidently $f \equiv$ constant is a solution of (5.21).
Suppose there is an x_{0} such that $f\left(x_{0}\right)=0$. To show that $\mathrm{f} \equiv 0$. Putting $\mathrm{x}=0, \mathrm{y}=\mathrm{x}_{0}$ in (5.21), we see that

$$
f\left(x_{0}\right) f\left(-x_{0}\right)=f(0)^{2} \text { implies } f(0)=0
$$

Hence putting $x=0$ in (5.01), we see that $f(y) f(-y)=0$,
all y. Suppose $f\left(-x_{1}\right)=0$,
Putting $x=-x_{1}$ and $y=2 x_{1}$, we see that

$$
f\left(x_{1}\right) f\left(-2 x_{1}\right)=0 .
$$

If $f\left(x_{1}\right)=0$, there is nothing to prove.
Otherwise $f\left(-3 x_{1}\right)=0$.
Put $x=x_{1}$ and $y=-4 x_{1}$ in (5.21) to obtain

$$
f\left(-3 x_{1}\right) \cdot f\left(+5 x_{1}\right)=f\left(x_{1}\right)^{2} \text { implying } f\left(x_{1}\right)=0 .
$$

Hence in either case, we have $f\left(x_{1}\right)=0$. So, $f \equiv 0$. Let us assume that $f \not \equiv c$, in particular, f vanishes nowhere. Differentiating (5.01) with respect to x and y, we have

$$
\left\{\begin{array}{l}
f^{\prime}(x+y) f(x-y)+f(x+y) f^{\prime}(x-y)=2 f(x) f^{\prime}(x), \tag{22}\\
f^{\prime}(x+y) f(x-y)-f(x+y) f^{\prime}(x-y)=0 .
\end{array}\right.
$$

Thus from (5.22), we have

$$
\begin{align*}
f(x) f^{\prime}(x) & =f(x+y) f^{\prime}(x-y), \text { for all } y \\
& =f(2 x) f^{\prime}(0), \text { for } y=x \tag{3}\\
& =\frac{f(x)^{2}}{f(0)} f^{\prime}(0)
\end{align*}
$$

since putting $y=x$ in (5.21) we have $f(2 x) f(0)=f(x)^{2}$. since $i \neq 0$, we have

$$
f^{\prime}(x)=c f(x), \text { all } x \in R, c=\frac{f^{\prime}(0)}{f(0)}
$$

$f^{\prime}(0)=0$ gives $f(x) \equiv c$, which cannot be.
Thus, $f(x)=A e^{c x}, A, C$, Constants.
D. (24) $f(x+y)=\alpha f^{(}(x)+\beta f(y), \alpha, \beta \quad$ constants
$x=0, y=0$ in (5.24) gives either $\alpha+\beta=1$ or $f(0)=0$. Suppose $f(0)=0$.

$$
\therefore y=\sigma \text { in }(5.24) \text { gives } f(x)=\alpha f(x)
$$

$$
\text { similarly } \quad f(y)=\beta f(y)
$$

Thus $f(x+y)=f(x)+f(y)$.
Suppose $\alpha+\beta=1$.
$x=0$ in (5.04) gives

$$
f(y)=\alpha f(0)+(1-\alpha) f(y)
$$

that is, $\quad \alpha f(y)=\alpha f(0)$ and hence

$$
f(x)=\text { constant. }
$$

E. Equation of the type $F(x * y)=G(x)+H(y)+K(x) L(y)$.

Let $\mathrm{F}, \mathrm{G}, \mathrm{H}, \mathrm{K}, \mathrm{L}: \mathrm{C} \mathrm{A} \rightarrow \mathrm{C}$ (where A is an arbitrary Abelian semigroun with operation $*$ such that, there is a fixed element $a \in A$ with the property that the equation $a * x=b$ for arbitrary $b \in A$ has at least one solution, C the complex numbers) satisfy
(25)

$$
F(x * y)=G(x)+H(y)+K(x) I_{1}(y), x, y \in A .
$$

It has been proved by Vincze [85] , that the following are the only solutions of (5.25).
I.

$$
\begin{aligned}
& F(x)=0(x)+\alpha_{1}, \\
& G(x)=0(x)-\alpha_{2} K(x)+\alpha_{2}+\frac{\alpha_{1}}{2}, \\
& H(x)=0(x)+\frac{1}{2} \alpha_{1}-\alpha_{2},
\end{aligned}
$$

Kex) arbitrary

$$
L(x)=\alpha_{3} .
$$

II.
$F(x)=\alpha_{1} \psi(x)+o(x)+\alpha_{2}$,

$$
G(x)=\alpha_{2} \psi(x)+\phi(x)+\alpha_{4},
$$

$$
H(x)=\alpha_{5} \psi(x)+\alpha(x)+\alpha_{6},
$$

$$
K(x)=\alpha_{7} \psi(x)+\alpha_{8},
$$

$$
L(x)=\alpha_{0} \psi(x)+\alpha_{10}
$$

$$
\begin{aligned}
\alpha_{1}=\alpha_{7} \alpha_{9}, \alpha_{3}+\alpha_{7} \alpha_{10}=0, \alpha_{5}+\alpha_{8} \alpha_{9}=0, \alpha_{2}=\alpha_{4} & +\alpha_{6}+ \\
& +\alpha_{\alpha}
\end{aligned}
$$

$$
+\alpha_{8} \alpha_{10} ;
$$

III.

$$
\begin{aligned}
& F(x)=\alpha_{1} \phi(x)^{2}+\alpha_{2} \phi(x)+\phi_{1}(x)+\alpha_{3} \\
& G(x)=\alpha \phi(x)^{2}+\phi_{1}(x)+\alpha_{4} \\
& H(x)=\alpha_{1} \rho(x)^{2}+\alpha_{5} \phi(x)+\phi_{1}(x)+\alpha_{6} \\
& K(x)=2 \alpha_{1} \phi(x)+\alpha_{7} \\
& L(x)=\phi(x)+\alpha_{8}
\end{aligned}
$$

$$
\alpha_{2}=2 \alpha_{1} \alpha_{8}=\alpha_{5}+\alpha_{7}, \alpha_{3}=\alpha_{4}+\alpha_{6}+\alpha_{7} \alpha_{8} ;
$$

where ϕ, ϕ_{1} respectively ψ are the solutions of

$$
\begin{aligned}
& \phi(x * y)=\phi(x)+\phi(y) \\
& \psi(x * y)=\psi(x) \cdot(\psi(y),
\end{aligned}
$$

ϕ, ψ being $: A \rightarrow C, \alpha$'s are arbitrary constants.
F. Equation of the type $f(x+y)=\sum_{i=1}^{n} g_{i}(x) h_{i}(y)$.

Let $F, G, H: A \rightarrow C$ satisfy
(26)

$$
F(x * y)=F(x)+F(y)+G(x) H(y)+G(y) H(x),
$$

for $x, y \in A$, where 'A is an arbitrary Abelian group with operation * and C, the set of complex numbers. Then it is known $[87]$ that the following are the only solutions of (5.26).
I.
II.

$$
\begin{aligned}
F(x) & =\phi(x) \\
G(x) & \text { arbitrary } \\
H & \equiv 0 \\
F(x) & =\alpha_{1} \phi_{1}(x)^{3}+\phi_{1}(x) \phi_{2}(x)+\phi_{3}(x) \\
G(x) & =\phi_{1}(x) \\
H(x) & =3 \alpha \phi_{1}(x)^{2}+\phi_{2}(x)
\end{aligned}
$$

III.

$$
\begin{aligned}
& F(x)=2 \alpha \beta(\psi(x)-1)+\beta \phi_{1}(x) \psi(x)+\phi_{2}(x) \\
& G(x)=\alpha(\psi(x)-1)+\phi_{1}(x) \psi(x) \\
& H(x)=\beta(\psi(x)-1) .
\end{aligned}
$$

IV. $\quad F(x)=2 \alpha^{3} \beta(\psi(x)-1)-\alpha \beta \phi_{1}(x)^{2}+\phi_{2}(x)$

$$
\begin{aligned}
& G(x)=\alpha^{2}(\psi(x)-1)-\alpha \phi_{1}(x) \\
& H(x)=\alpha \beta(\psi(x)-1)+\beta \phi_{1}(x) .
\end{aligned}
$$

and

$$
\text { V. } \quad \begin{aligned}
F(x) & \left.=2 \alpha^{2} \gamma\left[\psi_{1}(x)-1\right]-2 \beta^{2} \gamma\left[\psi_{2}(x)-1\right)\right]+\phi(x) \\
G(x) & =\alpha \gamma\left[\psi_{1}^{\prime}(x)-1\right]+\beta \gamma\left[\psi_{2}(x)-1\right] \\
H(x) & =\alpha\left[\psi_{1}(x)-1\right]-\beta\left[\psi_{2}(x)-1\right]
\end{aligned}
$$

where ϕ, ϕ_{1} respectively $\psi_{1}, \psi_{1}, \psi_{2}$ are the solutions of

$$
\begin{aligned}
& \phi(x * y)=\phi(x)+\phi(y) \\
& \psi(x * y)=\psi(x) \psi(y)
\end{aligned}
$$

$\left(\phi, \psi, \phi_{1}, \psi_{1}, \psi_{2}: A \rightarrow C\right)$ and α, β, γ are arbitrary complex constants.
G. (2.7)

$$
\phi(x)=\phi(a x) \phi(b x) .
$$

Int $\phi: R \rightarrow C$ be twice, differentiable at $x=0$ and satisfy (5.27) with $a>0, b>0, a^{2}+b^{2}=1$. If ϕ is nonconstant, then $\phi(x)=e^{m x^{2}}$. (refer $\left.[88]\right)$.
H. (28).

$$
f(x y)=g(y) f(x)+h(y) x+k(y) .
$$

The general solution of (5.28) bounded on a set of positive measure are [9] , [37]

$$
\begin{aligned}
& f(x)=a \log |x|+b+c \\
& f(x)=a \dot{x} \log |x|+b x+c \\
& f(x)=a|x|^{d}+b x+c \\
& f(x)=a|x|^{d} \operatorname{sgn} x+b x+c
\end{aligned}
$$

I. (29)

$$
\phi[x+y \phi(x)]=\phi(x) \phi(y) .
$$

The equation (5.29) has continuous solutions which are not differentiable, also measurable and bounded solutions which are not continuous. The continuous solutions of (5.29) are $[38],[28],[35],[89],[77]$,

$$
\begin{aligned}
& f \equiv 0 \\
& f(x)=c x+1 \\
& f(x)=\left\{\begin{array}{cl}
1-\frac{x}{x_{1}}, & x \leq x_{1} \\
0, & x \geq x_{1}
\end{array}\right. \\
& f(x)=\left\{\begin{array}{cc}
0, & x \leq x_{1}<0 \\
1-\frac{x}{x_{1}}, & x \geq x_{1} .
\end{array}\right.
\end{aligned}
$$

The first two solutions are differentiable.
The function

$$
f(x)= \begin{cases}1, & x \text { rational } \\ 0, & x \text { irrational }\end{cases}
$$

satisfies (5.29). Here f is not continuous, but bounded and measurable.

86

§ 6. Miscellaneous equations. In this section, some examples of equations belonging to cyclic equations, iterated equations, trigonometric equations etc. are treated.
A. Solution of equations by simple substitution.
a) (1) $f(x+y)+f(x-y)=? f(x)$ sin y, where $f: \mathbb{C} \rightarrow \mathbb{C}, \mathbb{C}$, complex numbers.
Here f is a solution if and only if $f \equiv 0$.
$\mathrm{f} \equiv \mathrm{o}$ is evidently a solution.
Put $x=0, y=0$. Then we have $f(0)=0$. Put $x=0$ and use $f(0)=0$. We have $f(y)=-f(-y)$, \pm is odd.

Interchanging x and y, we get

$$
f(x+y)+f(y-x)=2 f(y) \sin x
$$

Since f is odd,

$$
f(x+y)-f(x-y)=2 f(y) \sin x
$$

Hence, $\quad f(x+y)=f(x) \sin y+f(y) \sin x$.
Putting $y=0$, we obtain, $f(x)=0$.
Hence $f \equiv 0$ is the only solution of the above equation (1).
b) (0) $f(x+y)+f(x-y)=2 f(x) \cos x, f: \mathbb{C} \rightarrow \mathbb{C}$

Here again $f \equiv 0$ is the only solution of (0.2)
Putting $x=0$, we get

$$
\begin{equation*}
f(y)+f(-y)=2 f(0) \tag{3}
\end{equation*}
$$

Putting $x=\frac{3 x}{2}$ and replacing y by $y+\pi$ in (6.2), we have

$$
f\left(y+\frac{5 x}{2}\right)+f(\pi / 2-y)=0
$$

Putting $x=\pi / 2$ in (6.2) we have $f(y+\pi / 2)+f(\pi / 2-y)=0$. Hence, $f\left(y+\frac{5 \pi}{2}\right)=f(y+\pi / 2)$. that is

$$
f(y+2 \pi)=f(y), f \text { is periodic with period } 2 \pi
$$

Tutting $y=\pi$ in (6.3), we have $f(\pi)+f(-\pi)=2 f(0)$. Hence $f(\pi)=f(0)$, since $f(-\pi)=f(\pi)$.

Set $x=\pi, y=\pi$ in (6.2). We have

$$
f(\varepsilon \pi)+f(0)=-2 f(\pi)=-2 f(0)
$$

Therefore

$$
f(0)=0 .
$$

From (6.3), we see that $f(-y)=-f(y), \quad f$ is odd. $x=\pi$ in (6.2) gives, $f(\pi+y)+f(\pi-y)=0$, that is, $f(\pi+x)-f(x-\pi)=0$.
$y=\pi$ in (6.2) gives $f(x+\pi)+f(x-\pi)=2 f(x) \cos x$.
Thus, we have $f(x+\pi)=f(x) \cos x$.
Replacing x by $x+\pi$ and using the periodiarity $A f$, we get

$$
\begin{align*}
f(x) & =-f(x+\pi) \cos x \\
& =-f(x) \cos ^{2} x, \text { for all } x . \tag{4}
\end{align*}
$$

Putting $y=0$ in (6.2) we get either

$$
f(x)=0 \text { or } \cos x=1
$$

Hence whenever $\cos x \neq 1, \quad f(x)=0$.

Now, let $\cos x_{0}=1$.
Then from (6.4), we get $f\left(x_{0}\right)=-f\left(x_{0}\right)$, that is $f\left(x_{0}\right)=0$.
Hence $f(x)=0$ for all x.
c) (5) $f(x+y)+f(x-y)=2 f(x) \cos v, f: \mathbb{C} \rightarrow \mathbb{C}$.
$x=0$ in (6.5) gives

$$
f(y)+f(-y)=2 f(0) \cos y .
$$

So,

$$
f(y+\pi / 2)+f(-y-\pi / 2)=-2 f(0) \sin y .
$$

Put $x=\pi / 2$ in (6.5),

$$
f(\pi / 2+y)+f(\pi / 2-y)=2 f(\pi / 2) \cos y
$$

Hence

$$
f(-y-\pi / 2)-f(-y+\pi / 2)=-2 f(0) \sin y-2 f(\pi / 2) \cos y
$$

or

$$
f(y-\pi / 2)-f(y+\pi / 2)=a_{1} \sin y+b_{1} \cos y
$$

$x=y, y=\pi / 2$ in (6.5) gives $f(y+\pi / 2)+f(y-\pi / 2)=0$.

$$
\text { So, } f(y-\pi / 2) a_{2} \sin y+b_{2} \cos y \text {. }
$$

Hence $f(y)=a \sin y+b \cos y$.

Every solution of (6.5) is $f(x)=a \sin x+b \cos x$.
d) (6) $f(x+y)+f(x-y)=\partial f(x)+\partial f(y), f: R \rightarrow R$.

$$
\begin{aligned}
& x=0, y=0 \text { in }(6.6) \text { gives } f(0)=0 . \\
& x=0 \text { in (6.6) gives } f(-y)=f(y), f \text { is even. }
\end{aligned}
$$

By induction, let us prove that $f(n x)=n^{2} f(x), n$ an integer.

Put $\mathrm{y}=\mathrm{nx}$ in (6.6)

$$
\begin{aligned}
& f((n+1) x)+f(-(n-1) x)=2 f(x)+2 f(n x) \\
& f((n+1) x)
\end{aligned}=2 f(x)-(n-1)^{2} f(x)+2 n^{2} f(x) .
$$

Hence

$$
f(n x)=n^{2} f(x)
$$

Putting $x=1, \quad f(x)=f(1) n^{2}=c n^{2}$.
Similarly, we have $f\left(\frac{m}{n}\right)=c\left(\frac{m}{n}\right)^{2}$, that is, for any
rational m

$$
f(r)=c r^{2} .
$$

If f is continuous, then $f(x)=c x^{2}$, for all $x \in R$, is the only solution of (6.6), where c is any constant.

B. Iterated equations.

The equation of the type
(7) $\quad f^{n}(x)=g\left[f^{m}(x)\right], m, n$ integers (f^{n} denotes the n-th iterate of f) belongs to this category. The equation (6.7) for $m<n$, can be reduced to the equation [60].

$$
\begin{equation*}
f^{n}(x)=g(x), \tag{8}
\end{equation*}
$$

which is a generalization of the well-known Babbage equation.

$$
\begin{equation*}
f^{n}(x)=x . \tag{9}
\end{equation*}
$$

It has been proved $[90]$, that the general continuous solution of (6.9) for odd n is $f(x) \equiv x$, for even n, continous
solutions of (6.9) are the continuous solutions of $f^{2}(x)=x$. Further every continuous solution of (6.9) is strictly monotomic. For $g=f$ in (6.8), the following two classes of fundtions occur as solutions [22] • Class 1. i) The function f is continuous for all r feal x ii) $f(x)=x$ on a connected subset s of the x-axis and iii) $g L \leq f(x) \leq M, L, M$ being the infimum and suremum of f on s.
Class 2.iv) The function f is continuous for all real x v) $\quad f^{2}(x)=x$
or \quad vi) $f^{2}(x)=x$ on a non-degenerate closed interval $[a, b], f(a)=b, f(b)=a, a \leq f(x) \leq b$. The general solution of (6.8) has been constructed by G.Lojasiewicz [71] and the general continuous solution under the assumption that g is monotonic been constructed by Kuczma [61] . For $n=$? in (6.8) it has been proved by Throne, W.J. [82], that, when g is an entire function of finite order, which is not a nolynomial and which takes on a certain value P only a finite number of times, (6.8) does not have a solution f which is an entire function. A stronger version of the above result was proved by R.Osserman [72] , for $g(z)=e^{z-1}$ and $n=2$ in (8). Let $z=x+i y$ and let Ω denote an infinite strip $|y|<b$, for some constant $b>\pi$. Let f be a function defined in some domain D containing Ω. If f satisfies in D, then f cannot be analytic.

C. Method of determinants.

The following results are needed to prove the main theorem in this section. For more details and proof refer [86] , [6] Notation. Let θ_{0} be an arbitrary Abelian semigroup and \mathbb{C}, the field of complex numbers. Let $\mathbb{F}_{\nu}: Q_{0} \longrightarrow \mathbb{C}$, $\nu=1,2, \ldots$, n. Let

$$
\Delta\left[F_{1}\left(z_{1}\right), F_{2}\left(z_{2}\right), \ldots, F_{n}\left(z_{n}\right)\right]=\left|\begin{array}{llll}
F_{1}\left(z_{1}\right) & F_{2}\left(z_{1}\right) & \ldots & F_{n}\left(z_{1}\right) \tag{10}\\
F_{1}\left(z_{2}\right) & F_{2}\left(z_{2}\right) & \ldots & F_{n}\left(z_{2}\right) \\
F_{1}\left(z_{n}\right) & F_{2}\left(z_{n}\right) & \ldots & F_{n}\left(z_{n}\right)
\end{array}\right|
$$

$Z_{i} \in Q_{0}$.
Lemma . The functions $F_{1}, F_{2}, \ldots,{ }_{n}$ are linearly dependent, that is,

$$
\alpha_{1} F_{1}(z)+\ldots+\alpha_{n} F_{n}(z)=0, \sum_{1}^{n}\left|\alpha_{\nu}\right|>0
$$

if and only if $\Delta\left[F_{1}\left(z_{1}\right), \ldots, F_{n}\left(z_{n}\right)\right]=0$ for all $z_{1}, z_{2}, \cdots z_{n}$. Lemma 2. If $F_{\mu}(z)=F_{\nu}(z)$ holds, then

$$
\Delta\left[F_{I}\left(z_{I}\right), \ldots, F_{u}\left(z_{\mu}\right), \ldots, F_{\nu}\left(z_{\nu}\right), \ldots, F_{n}\left(z_{n}\right)\right]=0
$$

$$
\text { Lemma 2. Whenever } \sum_{\nu=0}^{k} \Delta\left[F_{\nu}\left(x_{I}\right), \ldots, F_{\nu n}\left(x_{n}\right)\right]=0 \text { is true, }
$$

then $\sum_{\nu=0}^{k} \Delta\left[F_{1}\left(x_{1}\right), \ldots, F_{\nu_{n}}\left(x_{n}\right), F\left(x_{n+1}\right)\right]=0$ is also true for arbitrary $F: Q_{0} \rightarrow \mathbb{C}$.

The second ${ }^{\text { }}$ equation is a result of 'enlarging' the first equation by F. This lemma will play the important role in proving many results in this direction.

Lemma 4. Let $\xi \in \sigma_{0}$ be an independent parameter from the variables $z_{1}, z_{\infty}, \ldots, z_{n}$. Then from

$$
\Delta\left[F_{1}\left(z_{1}, \xi\right), F_{2}\left(z_{2}\right), \cdots, F_{n}\left(z_{n}\right)\right]=0
$$

follows at least one of the equations

$$
\begin{gathered}
F_{n}(z) \equiv 0 \\
F_{\nu}(z)=\alpha_{\nu+1} F_{\nu+1}(z)+\ldots+\alpha_{n} F_{n}(z),=2, z_{2}, n-1 \\
F_{1}\left(z_{1}, \zeta\right)=\alpha_{2}(\zeta) F_{2}(z)+\ldots+\alpha_{n}(\zeta) F_{n}(z), \text { is true. }
\end{gathered}
$$

The main theorem in this section is the following: Let $f: 0_{0} \rightarrow \mathbb{C}$. Then the following two ocuations are avivalent,

$$
\begin{align*}
& f\left(z_{1} * z_{2}\right)^{n}=\left[f\left(z_{1}\right)+f\left(z_{Q}\right)\right]^{n} \tag{II}\\
& f\left(z_{1} * z_{Q}\right)=f\left(z_{1}\right)+f\left(z_{2}\right), \tag{12}
\end{align*}
$$

where $z_{1}, z_{2}, z_{1} * z_{2} f Q_{0}$. That is, any solution of (6.11) is also a solution of (6.12) and conversely.

Proof [41] . It is evident that any solution of (6.12) is also a solution of (6.11). So, to prove that any solution of (6.11) is also a solution of (6:12). Further f. 0 is a solution of both (6.11) and (6.1?). So, let us assume that f \ddagger. Thing the associativity of * , we have

$$
\mathrm{f}\left[\left(z_{1} * \zeta_{1}\right) * z_{2}\right]^{\mathrm{n}}=\mathrm{f}\left[z_{1} *\left(\zeta * z_{2}\right)\right]^{\mathrm{n}}
$$

Now from (6.11), we have

$$
\begin{aligned}
& \sum_{\nu=0}^{n}\binom{n}{\nu} f\left(z_{1}\right)^{n-\nu} f(\zeta)^{\nu}+\sum_{\mu=1}^{n}\left(\begin{array}{l}
n_{\mu}
\end{array}\right) f\left(z_{1} * \zeta\right)^{n-\mu} f\left(z_{2}\right)^{\mu} \\
= & \sum_{\nu=0}^{n-1}\binom{n}{\nu} f\left(z_{1}\right)^{n-\nu} f\left(\zeta * z_{2}\right)^{\nu}+\sum_{\mu=0}^{n}\binom{n}{\mu} f(\zeta)^{n-\mu} f\left(z_{2}\right)^{\mu}
\end{aligned}
$$

Using commutativity of $*$, we have

$$
\begin{aligned}
& \sum_{\mu=1}^{n-1}\binom{n}{\mu}\left[f\left(z_{1} * \xi\right)^{n-\mu}-f(\xi)^{n-\mu}\right] f\left(z_{2}\right)^{\mu}- \\
& \sum_{\nu=1}^{n-1}\binom{n}{\nu}\left[f\left(z_{2} * \xi\right)^{n-\nu}-f(\xi)^{n-\nu}\right] f\left(z_{1}\right)=0,
\end{aligned}
$$

that is,

$$
\begin{equation*}
\sum_{\mu=1}^{\mathrm{n}-1}\left(\frac{\mathrm{n}}{\mu}\right) \Delta\left[f\left(z_{1} * \xi\right)^{\mathrm{n}-\mu}-f(\xi)^{\mathrm{n}-\mu}, f\left(z_{2}\right)^{\mu}\right]=0 \tag{13}
\end{equation*}
$$

Enlarging (6.17) with $f(z), f(z)^{2}, \ldots, f(z)^{n-2}$ and using the lemmas, we obtain, for $n \geq 2$,

$$
\begin{aligned}
& \sum_{\mu=2}^{n-1}\left(\frac{n}{\mu}\right) \Delta\left[f\left(z_{1} * \xi\right)^{n-\mu}-f(\xi)^{n-\mu}, f\left(z_{2}\right)^{\mu}, f\left(z_{3}\right)\right]=0 \\
& \sum_{\mu=3}^{n-1}\left(\frac{n}{\mu}\right) \Delta\left[f\left(z_{1} * \xi\right)^{n-\mu}-f(\xi)^{n-\mu}, f\left(z_{2}\right)^{\mu}, f\left(z_{3}\right)^{2}, f\left(z_{4}\right)\right]=0
\end{aligned}
$$

$$
\begin{equation*}
\binom{n}{n-1} \Delta\left[f\left(z_{1} * \xi\right)-f(\xi), f\left(z_{2}\right)^{n-1}, f\left(z_{3}\right)^{n-2}, \ldots, f\left(z_{n}\right)\right]=0 \tag{14}
\end{equation*}
$$

The equation (14) holds when either
or (15) $f(z)^{n-\nu}=\sum_{\mu=1}^{n-\nu-1} \alpha_{\mu} f(z)^{\mu}, \quad \nu=1,2, \ldots, n-1$, or

$$
\begin{equation*}
f\left(z_{1} * \xi\right)-f(\xi)=\sum_{\mu=1}^{n-1} \alpha_{\xi}(\xi) f\left(z_{1}\right)^{\mu} \tag{16}
\end{equation*}
$$

with $\sum_{\mu=1}^{\mathrm{n}-2}\left|\alpha_{u}\right|>0$ and $\sum_{\mu=1}^{\mathrm{n}-1}\left|\alpha_{\mu}(\xi)\right|>0 . \mathrm{f}(\mathrm{z})$ cannot be
identically zero by assumption. (6.15) implies that the fundtions $f(z), f(z)^{2}, \ldots f(z)^{n-2}$ are linearly dependent and hence $f \equiv O$ (refer [] which cannot be by assumption. Hence only (6.16) is true. Again, enlarging (6.12) with $f(z)^{n-1}, f(z)^{n-2}$, . $f(z)$, we get

$$
\begin{equation*}
f\left(z_{1} * \zeta\right)^{n-1}-f(\zeta)^{n-1}=\sum_{\nu=1}^{n=1} \beta_{\nu}(\zeta) f(z)^{\nu} \text {, with } \tag{18}
\end{equation*}
$$

$$
\sum_{\nu=1}^{n+1}\left|\beta_{\nu} \quad(\zeta)\right|>0
$$

From (6.16) and (6.18), we have

$$
\begin{align*}
{\left[f(\zeta)+\sum_{\mu=1}^{n-1} \alpha_{\mu}(\zeta) f(z)^{\mu}\right]^{n-1}=} & f(\zeta)^{n-1}+\sum_{\nu=1}^{n-1}\left[\beta_{\nu}(\zeta)\right. \tag{19}\\
& \left.\cdot f(z)^{\mu}\right]
\end{align*}
$$

On account of the linear independence of the powers of f, composing the corresponding coefficients, we have
(20)

$$
\begin{align*}
& \alpha_{\mu}(\zeta,)=0, \mu \geq 2, \text { thus } \\
& f(z * \zeta)=\alpha_{1}(\zeta) f(z)+f(\zeta) .
\end{align*}
$$

To determine $\alpha_{1}(\zeta)$.
Interchanging z and ζ in (6.20), we obtain

$$
\left[\alpha_{1}(\zeta)-1\right] f(z)=\left[\alpha_{1}(z)-1\right] f(\zeta)
$$

Since $f \equiv 0$, we have

$$
\alpha_{1}(\zeta)-1=a f(\zeta), a=\frac{\alpha_{1}\left(z_{0}\right)-1}{f\left(z_{0}\right)}, f\left(z_{0}\right) \neq 0
$$

Now (6.20) becomes

$$
f(z * \zeta)=a f(\zeta) f(z)+f(z)+f(\zeta)
$$

From this equation and (6.11) for $\tau_{,}=z$, we have

$$
\left[a f(z)^{2}+\partial f(z)\right]^{n}=[P f(z)]^{n}
$$

As before, comparing the corresonnding coefficients, we get $a=0$ and hence $\alpha_{1}(\zeta)=1$. Thus from (6.?0), we have

$$
f((z) *(\zeta))=f(z)+f(\zeta), \text { which is wanted to be nroved. }
$$

D. Uniqueness theorem.

There exists at most one continuous function f satisfying the functional equation

$$
\begin{equation*}
f,(F(x, y))=H(f(x), f(y)) \tag{21}
\end{equation*}
$$

for all $x, y \in(A, B)$ and the initial conditions $f(a)=c, f(b)$ $=d(a, b \in(A, B))$, if F is continnous in $(A, B) x(A, B)$, and $F(x, y), H(u, v)$ are strictly increasing or strictly decreasing in x, y in (A, B, respectively in u, v in $(f(A), f(B)$), when (A, B) is a closed, half-closed, oden, finite or infinite interval.

Proof. [14] . Define

$$
\begin{equation*}
g(x)=E(x, x) \tag{?.2}
\end{equation*}
$$

Then g takes every value assumed by $F(x, y)$. Indeed, if F is increasing in both variables, we have

$$
g(A)=F(A, A) \leq F(x, y) \leq F(B, B)=g(B) .
$$

Thus, g being continuous, g assumes the value $F(x, y)$ and also g is strictly increasing.

Hence the inverse g^{-1} exists on $(F(A, A), F(B, B))$ and

$$
\begin{equation*}
G(x, y)=g^{-1}(F(x, y)), \quad \text { for } x, y \in(A, B) \tag{23}
\end{equation*}
$$

is well defined, continuous and increases in both variables. Moreover, for $x \leq y$, '

$$
\begin{array}{r}
x=g^{-1}(g(x))=g^{-1}(F(x, x))=G(x, x) \leq G(x, y) \\
\leq G(y, y)=y, \text { that is } G \text { is intern. }
\end{array}
$$

Putting $x=y=G(s, t)$ in (6.21), we have

$$
\begin{equation*}
f,(F(G(s, t), G(s, t)))=H(f(G,(s, t)), f(G(s, t))) \tag{24}
\end{equation*}
$$

Now, set

$$
\begin{equation*}
h(x)=H(\mathbf{x}, x) \tag{9.5}
\end{equation*}
$$

From $(6.22),(6.23),(6.24)$ and (6.25), we obtain

$$
f,(E(s, t))=h(f[G(s, t)])
$$

This by (6.21), becomes

$$
\begin{equation*}
H(f(x), f(t))=h(f[G(s, t)]) \tag{2.6}
\end{equation*}
$$

Now define

$$
\begin{equation*}
K(u, v)=h^{-1}(H(u, v)) \tag{27}
\end{equation*}
$$

h^{-1} exists, since h defined by (25) is strictly monotonic in u. From (6.26) and (6.27), we have

$$
\begin{equation*}
f[G(s, t)]=K(f(s), f(t)) \text {, where } \tag{28}
\end{equation*}
$$

K is strictly monotonic in u and v. This equation (6.28) is of the form

$$
f(F(x, y))=H(f(s), f(y), x, y)
$$

and satisfies all conditions of Theorem 1 in [10]. Hence the proof of this theorem is complete.

E. Cyclic functional equation.

An equation of the type
(aa) $F\left(x_{1}, x_{2}, \ldots, x_{p}\right)+F\left(x_{2} \cdot x_{3}, \ldots, x_{p}, x_{p+1}\right)+\ldots+$

$$
\begin{aligned}
& F\left(x_{n-p+1}, x_{n-n+2}, \ldots, x_{n}\right)+F\left(x_{n-p+2}, x_{n-p+3} \ldots, x_{n}, x_{1}\right) \\
& +\ldots+F\left(x_{n}, x_{1}, \ldots, x_{p-1}\right)=0
\end{aligned}
$$

where p and $n(>p)$ are two arbitrary positive integers, is a cyclic functional equation. We shall consider this equation (6.29) later. First we shall consider a particular case of (6.29) for $n=3, p=2$ known as Sinzov's functional equation. Sinzov's functional equation. The functional equation
(30)

$$
F(x, y)+F(y, z)=F(x, z)
$$

is called the Sinzov's functional eaution.

THEOREM 1. The general solution of (6.20) is $F(x, y)=$ $g(y)-g(x)$, where g is an arbitrary function. Proof. Put $x=c$ in (6.20) and define $g(x)=-F(x, c)$. Then the have

Hence (6.21) $\quad T(x, y)=g(y)-g(x)$.
Obviously $F(x, y)$ dofined by (6.21) satisfies (6.30).
Remark. The enuation (3.20) can be considered as a generalization of (1.6). For, letting

$$
\begin{equation*}
F(x, y)=f(x-y) \tag{22}
\end{equation*}
$$

the equation (6. 0) reduces to $f(x-y)+f(y-z)=f(x-z)$. Dutting $z=0$ and replacing x by $x+y$ in the above eruation, we get

$$
f(x)+f(y)=f(x+y) \text { which is (1.6). }
$$

The solution of (1.6) does not follow from that of (6.20). For, from (6.21) and (6.39), we have

$$
f(x-v)=g(y)-g(x)
$$

which is the Doxider emation (1.10). This illustratesthat the solution of a varticular functional caldation may be more difficult than that of general one. Now let us take up (6.29). The following theorems are oroved uncer the following assuptions $[6],[00],[10]$.
(i) $\quad x_{i} \in S$, where S is an arbitrary nonempty set.
(ii) The values of F lie in on additive Abelian group G.
(iii) The group G is such that in x $=s,(x, s \in G)$ has a unicue solution $x=s / m$ for every $m \leq n, m$ an integer. THEOREM 2. For $n \geq 2 p-1$, the general solution of the functional elution (6.29), under the hypothesis (i) and (ii), is (7刀) $T\left(x_{p}, x_{2}, \ldots, \ldots, x_{n}\right)=f\left(x_{1}, x_{0}, \ldots, x_{p-1}\right)-f\left(x_{2}, x_{2}, \ldots, x_{p}\right)+A$ where f is an arbitrary function and A an rbitrary element of G such that $n=0$.

Proof. Set $x_{p+1}=x_{n+2}=\ldots=x_{n}=c$ (constant) in (6.29).
Then we have
(24)

$$
\begin{aligned}
& F\left(x_{1}, x_{2}, \ldots, x_{n}\right)+F\left(x_{n}, x_{1}, \ldots, x_{n}, c\right) \ldots, \ldots \ldots+ \\
& F\left(x_{n}, c, \ldots, c\right)+(n-2 n+1) F(c, c, \ldots, c)+F\left(c, c, \ldots, c, x_{1}\right) \\
& +F\left(c, \ldots, c, x_{1}, x_{2}\right)+\ldots+F\left(c, x_{1}, \ldots, x_{p-1}\right)=0 .
\end{aligned}
$$

Putting $x_{p}=c$ in (6.24), we obtain

$$
\begin{align*}
& F\left(x_{1}, \ldots, x_{n-1}, c\right)+F\left(x_{n}, \ldots, x_{n-1}, c, c\right)+\ldots \tag{25}\\
& F\left(x_{n-1}, c, \ldots, c\right)+(n-? n+?) F(c, c, \ldots, c)+F\left(c, c, \ldots, c, x_{1}\right) \\
& +F\left(c, c, \ldots, x_{1}, x_{2}\right)+\ldots+F\left(c, x_{1}, \ldots, x_{p-1}\right)=0 .
\end{align*}
$$

Subracting (6.25) from (6.24), we get
(36)

$$
\begin{aligned}
F\left(x_{1}, x_{2}, \ldots, x_{p}\right)= & F\left(x_{1}, \ldots, x_{n-1}, c\right)-F\left(x_{2}, \ldots, x_{p}, c\right)+ \\
& F\left(x_{2}, \ldots, x_{p-1}, c, c\right)-F\left(x_{3}, \ldots, x_{p}, c, c\right)+ \\
\ldots+ & F\left(x_{p-1}, c, \ldots, c\right)-F\left(x_{p}, c, \ldots, c\right)+F(c, c, \ldots, c)
\end{aligned}
$$

Now let
(27) $f\left(x_{1}, x_{2}, \ldots, x_{p-1}\right)=F\left(x_{1}, x_{2}, \ldots, x_{p-1}, c\right)+F\left(x_{2}, \ldots, x_{p-1}, c, c\right)$

$$
+\ldots+F\left(x_{p-1}, c, c, \ldots, c\right)
$$

and
(28)

$$
A=E(c, c, \ldots, c)
$$

Then from $(6.2 \varepsilon),(6.27)$ and (6.28), we obtain

$$
F\left(x_{1}, x_{2}, \ldots, x_{p}\right)=f\left(x_{1}, x_{2}, \ldots, x_{p-1}\right)-f\left(x_{2}, \ldots, x_{p}\right)+A
$$

which is precisely (5.22).
Putting $x_{1}=c=x_{2}=.=x_{n}$ in (6.29) and using (6.28), it is easy to see that. $n A=0$.

THEOREM 2. For $n=9 n-2>n$ and $m=2$, the general solution of (6.20) under the brootheses (i), (ii) and (iii) is
(39) $F\left(x_{1}, x_{2}, \ldots, x_{p}\right)=f\left(x_{1}, x_{2}, \ldots, x_{p-1}\right)-f\left(x_{2}, \ldots, x_{p}\right)$

$$
+G_{1}\left(x_{1}, x_{n}\right)-G_{1}\left(x_{n}, x_{1}\right)+A
$$

with $n A=0$.

Proof. Dut $x_{y+1}=x_{n+2}=\ldots=x_{n}=c$ in $(6 \cdot 2 n)$. Then we get
(40) $\quad F\left(x_{1}, x_{2}, \ldots, x_{p}\right)+F\left(x_{p}, \ldots, x_{n}, c\right)+\ldots+F\left(x_{p-1}, x_{p}, c, \ldots, c\right)$

$$
\begin{array}{r}
+F\left(x_{n}, c, \ldots, x_{1}\right)+F\left(c, c, \ldots, x_{1}, x_{0}\right)+\ldots+F\left(c, x_{1}, \ldots, x_{p-1}\right) \\
=0 .
\end{array}
$$

Putting $x_{p}=c$ in (6.40), we have
(41) $\quad F\left(x_{1}, \ldots, x_{p-1}, c\right)+F\left(x_{n}, \ldots, x_{p-1}, c, c\right)+\ldots+$

$$
\begin{aligned}
& F\left(x_{p-1}, c, \ldots c\right)+P\left(c, c, \ldots, c, x_{1}\right)+F\left(c, \ldots, c, x_{1}, x_{2}\right)+ \\
& \ldots+F\left(c, x_{1}, x_{2}, \ldots, x_{p-1}\right)=0 .
\end{aligned}
$$

Subtracting (6.41) from (6.40), we have
(4?)

$$
\begin{aligned}
& \text { (42) } \quad F\left(x_{1}, x_{2}, \ldots, x_{p}\right)=\left[F\left(x_{1}, \ldots, x_{p-1}, c\right)-F\left(x_{2}, \ldots, x_{p}, c\right)\right. \\
&+ F\left(x_{2}, \ldots, x_{p-1}, c, c\right)-F\left(x_{2}, \ldots, x_{p}, c, c\right)+\ldots \\
&+\left.F\left(x_{n-2}, x_{p-1}, c, \ldots, c\right)-T\left(x_{p-1}, x_{p}, c, \ldots, c\right)\right]+ \\
& F\left(x_{p-1}, c, \ldots, c\right)-F\left(x_{p}, c, \ldots, c, x_{1}\right)+T\left(c, c, \ldots, c, x_{1}\right) . \\
& \text { In }(6.99), \text { irst set } x_{2}=x_{2}=\ldots=x_{p-1}=x_{p+1}=\ldots=x_{n}=c,
\end{aligned}
$$

then set $x_{2}=x_{2}=\ldots=x_{p-1}=x_{p}=x_{p+1}=.=x_{n}=c$ and then $x_{1}=x_{2}=\ldots=x_{n-1}=x_{p+1}=x_{p+2}=\ldots=x_{n}=c$ respectively, we obtain
(49) $F\left(x_{1}, c, \ldots, c, x_{p}\right)+F\left(c, \ldots, c, x_{n}, c\right)+F\left(c, c, \ldots, x_{p}, c, c\right)$ $+\ldots+F\left(c, x_{n}, c, \ldots, c\right)+F\left(x_{n}, c, \ldots, c, x_{1}\right)+F\left(c, \ldots, c, x_{1}, c\right)+$ $+F\left(c, c, \ldots, x_{1}, c, c\right)+\ldots+F\left(c, x_{1}, c, \ldots, c\right)=0$.
(44) $F\left(x_{1}, c, \ldots, c\right)+F\left(c, x_{1}, c, \ldots, c\right)+\ldots+F\left(c, c \ldots, c, x_{1}\right)$

$$
+(p-\text { ?) } F(c, c, \ldots, c)=0
$$

and
(45) $F\left(x_{p}, c, \ldots, c\right)+F\left(c, x_{p}, c, \ldots, c\right)+\ldots+F\left(c, c, \ldots, c, x_{p}\right)$

$$
+(p-2) \quad(c, c, \ldots, c)=0
$$

Adding (6.44) and (6.45) and then sibtracting it from (6.4?) and using $n f(c, c, \ldots, c)=0$, we heve
(46) $F\left(x_{1}, c, ., c, x_{p}\right)+F\left(x_{p}, c, \ldots, c, x_{1}\right)-F\left(x_{1}, c, ., c\right)-$

$$
\begin{aligned}
-F\left(c, \ldots, c, x_{1}\right) & -F\left(x_{p}, c, \cdot, c\right)-F\left(c, c, ., c, x_{p}\right) \\
+ & F(c, c, ., c)=0 .
\end{aligned}
$$

From (6.42) and (6.46), we hove

$$
\begin{aligned}
& 2 F\left(x_{1}, x_{2}, \ldots, x_{n}\right)=2\left[F\left(x_{1}, x_{2},, x_{p-1}, c\right)-\nabla\left(x_{2}, \ldots, x_{p}, c\right)+\right. \\
& F\left(x_{n}, \ldots, x_{n-1}, c, c\right)-F\left(x_{3}, \ldots, x_{p}, c, c\right)+\ldots . \\
& \left.F\left(x_{n-2}, x_{p-1}, c, \ldots, c\right)-F\left(x_{n-1}, x_{p}, c, \ldots, c\right)\right]+ \\
& 2 R\left(x_{n-1}, c, \ldots, c\right)-2 F\left(x_{0}, c, \ldots, c, x_{1}\right)+2 f\left(c, c, \ldots c, x_{1}\right) \\
& +F\left(x_{1}, c, ., c, x_{n}\right)+F\left(x_{0}, c, \ldots, c, x_{1}\right)- \\
& F\left(x_{1}, c, \ldots, c,\right)-F\left(c, \ldots, c, x_{1}\right)-\nabla\left(x_{p}, c, \ldots, c\right)- \\
& F\left(c, \ldots, c, x_{p}\right)+n F(c, c, \ldots, c) \\
& =2 \Gamma\left(x_{1}, x_{2}, \ldots, x_{p-1}, c\right)-F\left(x_{2}, \ldots, x_{p}, c\right)+ \\
& F\left(x_{2}, \ldots, x_{p-1}, c, c\right)-F\left(x_{2}, \ldots, x_{n}, c, c\right)+\ldots \\
& \left.F\left(x_{p-1}, c, \ldots, c\right)-F\left(x_{p}, c, \cdot, c\right)\right] \\
& +F\left(x_{1}, c, \ldots, c, x_{n}\right)-F\left(x_{p}, c, \ldots, c, x_{1}\right)+ \\
& F\left(c, c, \ldots, c, x_{1}\right)-F\left(c, c, \ldots, c, x_{p}\right)+ \\
& \left.F\left(x_{n}, c, \ldots, c\right)-P\left(x_{1}, c, \ldots, c\right)\right]+P F(c, \ldots, c) .
\end{aligned}
$$

Dividing by ? (which is nermissiblo by the hypothesis (iii)), we obtain the renurired result (6.29). This completes the proof of this theorem.
F. Trigonometric equations.

Sine equation. MHEOREM 1 . Let $f: R \rightarrow R$ and such that
(47) $f(x+y) f(x-y)=f(x)^{2}-f(y)^{2}, \quad$ holds for all
$\dot{x}, y \in R$. The general system of continuous solutions of (6.47) is

$$
\begin{aligned}
& f(x)=c x \\
& f(x)=A \sin c x \\
& f(x)=A \sinh c x, \quad \text { A, } c \text { real. }
\end{aligned}
$$

Proof. [69] : Evidently $f \equiv 0$ is a solution of (1). So, we exclude this trivial solution in the following considerations. Since $f \neq 0$, there exists a and b such that

$$
\begin{equation*}
k=\int_{a}^{b} f(x) d x \neq 0 \tag{48}
\end{equation*}
$$

From (6.47) and (6.48), we get

$$
\begin{aligned}
k f(y) & =\int_{a}^{b} f(y) f(x) d x \\
& =\int_{a}^{b} f\left(\frac{x+y}{2}\right)^{2} d x-\int_{z}^{b} f\left(\frac{x-y}{2}\right)^{2} d x \\
& =\int_{\frac{a+y}{2}}^{\frac{b+y}{2}} f(x)^{2} d x-\int_{\frac{a-y}{2}}^{2} f(x)^{2} d x
\end{aligned}
$$

from which follows that, i) f is ode, ii) ${ }^{\circ}$ is differontioble on R, iji) f is a linorr combination of $f\left(\frac{a+y}{2}\right)^{2}$ and $f\left(\frac{b+y}{2}\right)^{2}$ and hence f has derivatives of all orders.

Now difforentiating (6.47) with rosnect to y twice, and then sotting $y=0$, we have
(48)

$$
f(x) f^{\prime}(x)-f^{\prime}(x)^{?}=c \text {, where } c=-\frac{1}{2}[f(y)]^{2} \quad y=0
$$

Differentiating (6.48) with respect to x, we have

$$
f(x) f^{\prime} \prime(x)=f^{\prime}(x) f^{\prime \prime}(x) .
$$

Honce

$$
f(x)=c x, f(x)=A \sin c x, f(x)=A \sinh c x, A, c \text { real. }
$$

Eaution (6.47 can slso be solver bv ronucing it to the well known cosine emation, as follows.

Since $f \neq 0$, there is an ${ }^{\prime}$ ' such that $f(\eta) \neq 0$.
Define
(40)

$$
g(x)=\frac{f(x+\infty)-f(x-2)}{? f(2)}
$$

Tsing (6.47) and (6.4^{n}), we get

$$
\begin{aligned}
& g(x+y)+g(x-y)=\frac{1}{2 f(a)}[f(x+y+z)-f(x+y-z)+f(x-y+a)-f(x-y-z)] \\
& =\frac{1}{2 f(a)^{2}[f(x+y+z) f(a)+f(x-y+a) f(a)-} \\
& -f(x+y-a) f(a)-f(x-y-z) f(a)] \\
& =\frac{1}{2 f(a)^{2}}\left[f\left(\frac{x+y}{2}+a\right)^{2}-f\left(\frac{x+y}{2}\right)^{2}+f\left(\frac{x-y}{2}+a\right)^{2}\right. \\
& -f\left(\frac{x-y}{2}\right)^{2}-f\left(\frac{x+y}{2}\right)^{2}+f\left(\frac{x+y}{2}-a\right)^{2}- \\
& \left.-f\left(\frac{x-y}{2}\right)^{2}+f\left(\frac{x-y}{2}-z\right)^{2}\right] \\
& =\frac{1}{2 f(a)^{2}}\left[f\left(\frac{x+y}{2}+a\right)^{2}-f\left(\frac{x-y}{2}\right)^{2}+f\left(\frac{x-y}{2}+a\right)^{2}\right. \\
& -f\left(\frac{x+y}{2}\right)^{2}+f\left(\frac{x+y}{2}-z\right)^{2}-f\left(\frac{x-y}{2}\right)^{2}+f\left(\frac{x-y}{2}-a\right)^{2} \\
& \left.-f\left(\frac{x+y}{2}\right)^{2}\right] \\
& =\frac{1}{2 f(a)^{2}}[f(x+a) f(y+a)-f(x-a) f(y-a) \\
& +f(x-a) f(y-a)-f(x-a) f(y+z)] \\
& =\frac{1}{2 f(a)^{2}}[f(x+a)-f(x-z)][f(y+z)-f(y-2)] \\
& =2 g(x) g(y) \text {, which is the cosine equation. }
\end{aligned}
$$

The continuous solutions of (6.50) are $f(x) \equiv o, f(x) \equiv 1$, $f(x)=\cos c x, f(x)=\cosh c x, c r e a l$.
the right side of (6.4°) is innenendent of the choice of ' ${ }^{\prime}$, 991 . What is, for all y such that $f(y) \neq 0$, we have

$$
g(x)=\frac{f(x+y)-f(x-y)}{2 f(y)}
$$

Thus
(51) $\quad f(x+y)-f(x-y)=2 g(x) f(y)$, whenever $f(y) \neq 0$.

Putting $x=0$, in (6.51) and using $g(0)=1$, we have

$$
\begin{equation*}
f(-y)=-f(y), \quad f \text { is ord. } \tag{52}
\end{equation*}
$$

The equation

$$
(6.51) \text { now becomes }
$$

$$
f(y+x)+f(y-x)=? f(y) g(x)
$$

Now taking $g(x)=\cos c x$ and using (6.5), we have

$$
f(x)=B \cos c x+4 \prime \sin c x
$$

f being odd, we get $B=0$ and thus $f(x)=A \sin c x$. If $g(x) \equiv I,(6.5)$ reduces to $f\left(\frac{x+y}{?}\right)=\frac{f(x)+f(y)}{2}$ and thus $f(x)=c x+d$. Enuation (5.2) implies $d=0$ and hence $f(x)=c x$. Similarly from $g(x)=\cosh c x, f(x)=A$ in $c x$ can be obtained.

THEOREM ?. Let $f, \phi: R \rightarrow \mathbb{C}$ such that

$$
\begin{equation*}
\phi(x+y)=f(x) \phi(y)+\phi(x) f(y) . \tag{5?}
\end{equation*}
$$

Further let f and b be differentiable.
Then $f(x)=A\left(e^{c x}-e^{d x}\right)$ and $f(x)=\frac{1}{2}\left(e^{c x}+e^{d x}\right)$,
Were A, c, d are constants, [I], [P4].
Proof. Differentiating (6.59) with respect to x, we have

$$
\begin{aligned}
0^{\prime}(x+y) & =f(x) \varphi(y)+\phi^{\prime}(x) f(y) \\
\text { also } & =f(x) \phi^{\prime}(y)+\delta(x) f^{\prime}(y) \text { (differentiating }
\end{aligned}
$$

with respect to y. Hence

$$
\begin{equation*}
f^{\prime}(x) \phi(y)-f(x) \phi^{\prime}(y)-f^{\prime}(y) \phi(x)+f(y) \phi^{\prime}(x)=0 \tag{54}
\end{equation*}
$$

Further let $f(0)=1$ and $\phi(\nu)=0$.
Then from (6.54) with $y=0$, we get

$$
-\phi^{\prime}(0) f(x)-f^{\prime}(0) \cdot \phi(x)+\phi^{\prime}(x)=0
$$

or

$$
\begin{equation*}
f(x)=k_{1} \phi(x)+k_{2} \phi^{\prime}(x) \tag{55}
\end{equation*}
$$

From (6.5A) and (6.55), we obtain

$$
\phi^{\prime \prime}(x)+2 \phi^{\prime}(x)+b \phi(x)=0
$$

Thus,
(56)

$$
\phi(x)=A e^{c x}+B e^{d x}
$$

Now (6.55) and (6.56) yield

$$
\begin{equation*}
f(x)=D e^{c x}+\pi e^{d x} \tag{57}
\end{equation*}
$$

Making use of (6.5), (6.56) and (6.57), we get

$$
2 A D=A, 2 B F=B \text { and } A F+B D=0
$$

Supposeing A and B non-zero, we have $D=\frac{1}{2}=F$ and $A=-B$. Hence

$$
\begin{aligned}
f(x) & =\frac{1}{2}\left(e^{c x}+e^{d x}\right) \\
\text { and } \quad \phi(x) & =A\left(e^{c x}-e^{d x}\right)
\end{aligned}
$$

For $c=-d=i, A=\frac{1}{2} i, f(x)=\cos x, \phi(x)=\sin x$.
For $c=-d=I, A=\frac{1}{2}$, we have $f(x)=\cosh x, \phi(x)=\sinh x$. THEOREM ?. Let $f, \phi, \psi: R \rightarrow \mathbb{C}$ such that f, ϕ, twice differentiable and f, ϕ, ψ satisfy

$$
\begin{equation*}
\psi(x+y)=\phi(x) \cdot f^{\prime}(y)+f(y) \phi^{\prime}(x), x, y \in \mathbb{R} \tag{58}
\end{equation*}
$$

Then

$$
\begin{aligned}
f(x) & =a \sin (b x+c) \\
\phi(x) & =d \sin (b x+e) \\
\text { and } \psi(x) & =a d b \sin (b x+c+e)
\end{aligned}
$$

Proof II. Differentiating (6.58) with respect to x, we have

$$
\begin{aligned}
\psi^{\prime}(x+y) & =\phi^{\prime}(x) f^{\prime}(y)^{\prime}+f(y) \phi^{\prime}(x) \\
\text { also } & =\phi(x) f^{\prime} \prime(y)+f^{\prime}(y) \phi^{\prime}(x)
\end{aligned}
$$

(differentiating)
(5.58) with resnect to y. Hence
(59)

$$
\phi(x) f^{\prime}(y)-f(y) \phi^{\prime \prime}(x)=0
$$

In (6. 99), making x constant, we get

$$
\begin{equation*}
f(x)=a \sin (b x+c) \tag{60}
\end{equation*}
$$

Similarly making y constant in (6.fn), we obtain
(Gi)

$$
\phi(x)=2 \sin (b x+e)
$$

From (6.58), (6.60) and (6.61), we hate

$$
\begin{aligned}
& \begin{aligned}
& \psi(x+y)=a[\sin (b x+e) \cdot b \cos (b y+c)+\sin (b y+c) \cdot b \\
&\cdot \cos (b x+e)] \\
&=a b d \cdot \sin (b(x+y)+c+e i
\end{aligned} \\
& \text { Thus the theorem is prover. }
\end{aligned}
$$

$$
f(x)=\sin x, \phi(x)=\sin x, \psi(x)=\sin x,
$$

consequently,

$$
\sin (x+y)=\sin x \cdot \sin y+\sin y \quad \sin x
$$

THEOREM 4. Let f and ϕ be non-constant real fundtrons such that

$$
\begin{equation*}
f(x-y)=f(x) f(y)+\phi(x) \phi(y) \tag{6?}
\end{equation*}
$$

Let f and ϕ be differentiable. Then $f(x)=\frac{I}{2}\left(e^{c x}+e^{-c x}\right)$ and $\phi(x)=\frac{1}{2} \frac{1}{2}\left(e^{c y}-e^{-c x}\right), e^{\text {a }}$ constant.

Proof [74]-By symmetry of x and y in the right side of (1), we get

$$
f(-x)=f(x) \text {, all } x f B \text {, that is, } f \text { is even. }
$$

Chancing x to $-x$ and y to $-y$ in (6.62) and using f even,

$$
\phi(y) \phi(y)=\phi(-x) \phi(-y)
$$

From this we see that, $\dot{\phi}$ cannot be the sm of an even ard on od function. Further, if ϕ is also oven, by nutting $y=x$ first in (6.62) and then $y=-x$ in (6.6\%), we get

$$
\begin{aligned}
& f(0)=f(x)^{2}+\phi(x)^{2} \\
& \text { also }=f(2 x), \text { which is } ~ \text { a contradiction since }
\end{aligned}
$$

is nonconstant, Hence ϕ is od. Thus

$$
\begin{equation*}
\phi(0)=0 . \tag{62}
\end{equation*}
$$

Putting $y=0$ in (6.62), using (6.68) and the fact tho is non-zero, to get
(64)

$$
f(0)=1
$$

Letting $y=x$ in (6.6?), (6.62), renuees to, using (6.64):

$$
\begin{equation*}
f(x)^{2}+\phi(x)^{2}=1 \tag{65}
\end{equation*}
$$

Changing y into $-y$ ir (6.69), we have
(66)

$$
f(x+y)=f(x) f(y)-\phi(x) \phi(y)
$$

Renlacing x bi $x+y$ in (6.62) and naing (6.65), (6.63, wo

$$
\begin{equation*}
\phi(x+y)=p(x) f(y)+f(x) \phi(y) \tag{67}
\end{equation*}
$$

ferc changirg y into $-y$, we oktain

$$
\begin{equation*}
\dot{\phi}(x-y)=\phi \cdot(x) f(y)-f(x) \dot{p}(y) . \tag{68}
\end{equation*}
$$

Solution of (6.67) by theorem is

$$
\begin{aligned}
f(x) & =\frac{1}{2}\left(e^{c x}+e^{d x}\right) \\
\text { and } p(x) & =A\left(e^{c x}-e^{d x}\right) .
\end{aligned}
$$

Surstituting these values of f and in (6.6\%, wo pot

$$
\begin{aligned}
\frac{1}{2}\left[e^{c(x+y)}+e^{d(x-y)}\right]=\left(\frac{7}{4}+1^{2}\right)\left[e^{c(x+y)}+e^{d(x+y)}\right] & +\left(\frac{7}{4}-a^{2}\right) e^{d x} y+ \\
& +e^{2 x+c y}
\end{aligned}
$$

From this follows $=-$ d and $\frac{1}{4}+i^{?}=0$ or $i=2 \frac{1}{2}$, ance

$$
r(x)=\frac{1}{2}\left(e^{c x}+e^{-c x}\right)
$$

and $\phi(x)= \pm \frac{1}{3} i\left(e^{c x}-e^{-c x}\right)$.

We will derive some further interesting results from the above equations. The following eruptions, are true:

$$
\begin{gathered}
f(\partial x)=f(x)^{2}-\phi(x)^{2} \\
\phi(2 x)=\Omega \phi(x) f(x) \\
\phi(2 x) \pm \phi(2 y)=2 \phi(x \pm y) \cdot f(x \mp y) \\
f(\partial x)+f(\partial y)=2 f(x+y) f(x-y) \\
f(2 x)-f(3 y)=-\rho \phi(x+y) \phi(x-y) .
\end{gathered}
$$

$$
\text { Setting } \psi(x)=\frac{\phi(x)}{f(x)}, w \in \xi \in t
$$

$$
\begin{aligned}
& \psi(x+y)=\frac{\psi(y)+\psi(y)}{1-\psi(x) \|(y)} \\
& \psi(x-y)=\frac{\psi(x)-\psi(y)}{1+\psi(x)} \psi(y)
\end{aligned}
$$

Sunjose there is a $t \neq 0$ such that $\phi(t)=1$.
Then from $(6.63), f(t)=0$. f and ϕ aron nerincic with period 4. t. Indeed, nutting $y=t$ in (6.67) and (6.68), we get

$$
\begin{aligned}
& \phi(x+t)=f(x) \\
& \phi(x-t)=-f(x)
\end{aligned}
$$

Hence $f(x)=\phi(x+t)=-f(x+2 t)=f(x+4 t)$.
Similarly $\phi(x)=\phi(x+4 t)$.
Let
(60)

$$
\lambda(x)=f(x)+i \phi(x)
$$

The equations (6.66), (6.67) and (6.6n) yicld

$$
\lambda(x+y)=\lambda(x) \cdot \lambda(y) .
$$

Hence

$$
\begin{aligned}
{[f(x)+i \phi(x)]^{n} } & =\lambda(x)^{n}=\lambda(n x) \\
& =f(n x)+i \phi(n x), \text { generzl form of }
\end{aligned}
$$

De Moivre's theorom.
By taking $f(x), \bar{b}(x), W_{(x)}$ as $\sin x, \cos x, t-n x$ resnectively the above results nroved redune to the stnnard formulide in circular functions.

G. Vector and matrix equations.

Instead of taking the domain and the range to be neqi or comblex numbers, the domain and range could je R^{n} (n-aimensional vector snace, $n \geq 1), \mathbb{R}^{n}(n \geq 1)$ (n-dimensional complex vector space), $G[\eta, r]$, scuarematrices of order n etc. Here we will consider briefy most of the eanations we treated befors,

MHEORTI . Let $I: R^{n} \rightarrow Q^{m}$ such that

$$
\begin{equation*}
f(x+y)=f(x)+f(f), x, y f R^{n} \tag{70}
\end{equation*}
$$

If f is contiruous, then

$$
f(x)=\Delta v, w \in \operatorname{ser} A=\left(o_{i j}\right) \text { is }
$$

a man matrix ove? R.

Proof. Let $f(x)=\left(f_{1}(x), f_{2}(x), \ldots, f_{m}(x)\right)$.
Then each $f_{j}(j=1,2, \ldots m)$ satisfies

$$
\hat{f}_{j}(x+y)=f_{j}(x)+f_{j}(y), \quad x, y f R^{n}
$$

Hence by Theorem 3.10,

$$
\begin{gathered}
f_{j}(x)=a_{j 1} x_{1}+\ldots+{ }_{j n} x_{n} \text {, where } \\
x=\left(x_{1}, \ldots x_{m}{ }^{j} \text { and } a_{i j}(i=1, \ldots, n)\right. \text { are constants. }
\end{gathered}
$$

Thus

$$
f(x)=A x, \quad x \in \operatorname{A}=\left(a_{i j}\right) \quad i=1,2, \ldots n, j=1, ?, \ldots n .
$$

$$
\text { THEOREM 2. Let } f, g, h: R^{n} \rightarrow R^{m} \text { such that }
$$

(71)

$$
g(x+y)=g(x)+h(y), \quad x, y f(x .
$$

If f is continuous, then

$$
\begin{aligned}
& g(x)=A x+b+c \\
& g(x)=4 x+b \\
& h(x)=A x+c
\end{aligned}
$$

where $\lambda=\left(a_{i j}\right)$ is mar matrix, b, c are elements in R^{m}. Proof. As in Theorem 4.1, equation (6.72) can be reduced to (6.70) be the following substitution

$$
\begin{aligned}
& \phi(x)=f(x)-b-c, b=h(0), c=g(0) . \\
& f(x)=g(x)+b \\
& f(y)=h(y)+c .
\end{aligned}
$$

Then ϕ stisfies (6.70) and hence $\phi(x)=A x$ and the rest follows.

Let $f: G[n, n] \rightarrow G[m, m]$. Consider the following
equations
(79)
$f(X+Y)=f(X)+f(Y), X, Y f G[n, n]$
(73)

$$
f(X+Y)=f(X) \cdot f(Y)
$$

$$
\begin{equation*}
f(X \quad . Y)=f(X)+f(Y) \tag{74}
\end{equation*}
$$

$$
\begin{equation*}
f(X \cdot Y)=f(X) \cdot f(Y) \tag{75}
\end{equation*}
$$

These enuations had bcen treated extensivaly and they have many anplications. All measurable solutions of (6.72), (6.73), (6.74) and (6.75) are given by 4. Kawagaki [60]. Tnder the regularity sumnosition

$$
f\left(V^{-1} X V\right)=f(X)
$$

for all matrices T which are unitary or orthogonal, S.Firema [68] has solved these eauntions.

The equation (6.75)
Por $m=1, n=2$, Golab [26] oroved without any condi.
tion on f, that erory solution of (6.75) is of the form

$$
f^{\prime}(X)=\phi(\operatorname{det}, X),
$$

where ϕ is an arbitrary scalar-valued function of a single variable, satisfying (1.a).
This result has been generalized to the case $m=I$ and n arbitrary by M.Kucharzewski [54] and by M.Hosszu [44] • Here we give the proof due to Hosszu.

THEOREM 2. Let $f: G[n] \rightarrow K$, such that

$$
\begin{equation*}
f(A B)=f(A) f(B), A, B \in G[n, n] \tag{75}
\end{equation*}
$$

where $G[n, n]$ denotes the multiplicative semi-group of square matrices of order n over the real or complex field K. Then

$$
f(A)=\phi(\operatorname{det} A)
$$

where ϕ satisfies (1.9).
Proof. $A=H V$, where H is hermitian and V is unitary. Also H and V are equivalent to diagonal matrices. But from (6.75), we see that, f is the same for equivalent matrices.

$$
\begin{gathered}
f\left(B^{-1}, A B\right)=f\left(B^{-1}\right) \cdot f(A) f(B)=f\left(B^{-1}\right) \cdot f(B) f(A) \\
=f(A)
\end{gathered}
$$

It is enough to prove the theorem for diagonal matrices.

$$
D=\left[\begin{array}{cccc}
d_{1} & 0 & \cdots & 0 \\
0 & d_{2} & \cdots & 0 \\
0 & 0 & \cdots & d_{n}
\end{array}\right]
$$

$$
\begin{aligned}
& 110 \\
& =\left[\begin{array}{lll}
a_{1} & & 0 \\
0 & 1 & 0 \\
0 & & 0
\end{array}\right]\left[\begin{array}{lll}
1 & & \\
& d_{2} & 0 \\
& & 0 \\
0 & & 0 \\
& & 0
\end{array}\right] \\
& =\sum_{k=1}^{n} \quad P_{k}\left[\begin{array}{lll}
d_{k} & & 0 \\
0 & 1 & \\
& & 0
\end{array}\right] \quad{ }_{k}^{-1},
\end{aligned}
$$

where P_{k} is obtained from the unit matrix by interchanging the first and the $k^{\text {th }}$ rows.

Hence

$$
\begin{aligned}
& f(D)=\prod_{k=1}^{n} f\left(P_{k}\right) f\left(\left[\begin{array}{lll}
d_{k} & & 0 \\
& 1 & \\
0 & & 0 \\
0 & & 0
\end{array}\right]: f_{k}^{-1}\right) \\
& =f\left(\left[\begin{array}{cccc}
n & & () \\
k=1 & d_{k} & () \\
& & 1 & \\
0 & & & 0
\end{array}\right]\right. \\
& =\dot{\phi}(\text { set } 7), \text { where } \phi \text { satisfies (1.9) }
\end{aligned}
$$

Hence the result.

For $m=2, n=2$, Fucharzewski and Fuczma [55] have proved the following result.

Let f satisfy (6.75) for all non-singular matrices X, Y of order 2. Then, we have
either
$f(X)=0$
or
$f(X)=\phi(\operatorname{det} X) \cdot c\left(\begin{array}{cc}1 & 0 \\ 0 & 0\end{array}\right) C^{-1}$
or

$$
f(X)=\phi(\operatorname{det} X) \cdot C X c^{-1}
$$

or
where

$$
f(X)=G^{(\operatorname{det} X)},
$$

$$
\phi(x)=\left[\begin{array}{cc}
\phi(x) & 0 \\
0 & \phi(x)
\end{array}\right] \text { and } \phi \neq 0 \text { is a }
$$

solution (1.^), $G: R \rightarrow G L L_{2}(R)$ is multiplicative with $G(1)=\left(\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right)$ and c, a non-singular matrix.

For $m \leq n$, Kucharzewski and Zajtz [56] proved the following result. Let $\mathrm{GL}_{\mathrm{n}}(\mathrm{R})$ denote the multiplicative group of square matrices of order n over R.

$$
\text { Let } f: G L_{n}(R) \rightarrow G L_{m}(R) \text { and satisfy (6.75). }
$$

For $m<n, f(X)=\phi(\operatorname{det} x)$, where ϕ satisfies (1. $\left.{ }^{2}\right)$. For $m=n$, either

$$
f(X)=G(\operatorname{det} X), \text { where } G: R \rightarrow G L_{n}(R)
$$

is multiplicative.
or

$$
\begin{aligned}
& f(X)=\phi(\Delta) C X C^{-1} \\
& f(X)=\phi(\Delta) C\left(X^{\tau}\right)^{-1} C^{-1}
\end{aligned}
$$

where ϕ satisfies (1. Φ) and C is an arbitrary non-singular matrix.
§ 7. Applications. itow we will give some applications of functional enuations in vector analysis, analysis, statistics etc.

1) Addition of vectors.

Assumntions. 1) Tectors under adition from an Abelian group.
2) addition is rotation automornhic; that is, u rotating a pain of vectors, the resultant is rotated through the same amount. This imnlies that the resultant of two vectura of eonal magritude, lies in the same nlane, zlong the bisoctor of the angle.
?) The resultant denends contimousiy unon the menitude of the vectors and their angie, and
4) narallel vectors are added algebraically.

Conclusion. Conditions 1 to 4 innly the comnosition of vectors by the paralielogram riale.

Let \bar{a} and \bar{b} and \bar{c} and \bar{a} be two nairs of urit rectors with same included angle $\quad 5 y$, with resultants \bar{i}_{1} and \ddot{r}_{g}.

By condition 1 , since the magnitude of two unit vectors devends only onthe angle between them, let $\left|\bar{r}_{1}\right|=\left|\bar{r}_{2}\right|=2 \mathrm{f}(\mathrm{y})$. Since the magnitude of the resultant of two vectors of equal magnitude is proportional to the magnjtudes of the original vectors, we have,

$$
\begin{aligned}
|\bar{r}|=\left|\bar{r}_{1}+\bar{r}_{2}\right|=2 f(y) \cdot 2 f(x),|\bar{a}+\bar{b}| & =2 f(x+y) \quad \text { and } \\
|\bar{b}+\bar{d}| & =2 f(x-y)
\end{aligned}
$$

By conditions 2 and 4, we obtain

$$
|\bar{r}|=\left|\bar{r}_{1}+\bar{r}_{2}^{\prime}\right|=|\bar{a}+\bar{b}+\bar{c}+\bar{d}|=|\bar{a}+\bar{c}+\bar{b}+\bar{d}|
$$

thus

$$
4 f(x) f(y)=2 f(x+y)+2 f(x-y)
$$

The only continuous solutions of the qbove enuation, known as, D'Alembert's functional equations or cosine equation or Poisson eauation, are

$$
\begin{aligned}
& f(x) \equiv 0 \\
& f(x)=\cos a x, \text { a, a constant } \\
& f(x)=\cosh a x, \text { a, a constant }
\end{aligned}
$$

Since for two nerallel unit vectors, the resultant has magnitude two, we have

$$
f(0)=1
$$

Similarly since the magnitude of the resultant of two antinarallel unit vectors is zero, we have

$$
f(\pi / 2)=0
$$

Thus $f(x)=0$ and $f(x)=\cosh$ ax cannot be true. Hence $f(x)=\cos a x$, with $a=(3 k+1), k=0,1, \ldots$.

Supnose $k \neq 0$. rhen $f\left[\frac{\pi}{2(2 k+1)}\right]=0$ would imply, two vectors including an angle $\frac{\pi}{2 k+1} \neq \pi$ would have the resultant zero, contrary to condition $2(\bar{a}+\bar{b}=\bar{o}$ only if $\overline{\mathrm{a}}=-\overline{\mathrm{b}})$ Therefore, $f(x)=\cos x$. fitence, two vectors of enual magnitude x and included angle 2ϕ, has their resultant along the bisector, with magnitude $2 x \cos \phi$.

The general case can be similarly considered.
?. Vector analysis. Definition of scalar (dot) and cross (vector) products.

These כroducts are used to give counterexamnles to the well rnown nroperiies of associatirity, comutativity etc. But these products satisfv the distributive laws with regard to adrition. Wi.th regard to these nroducts, we shall prove the following result. Let us assume that the vectors satisfy the following assumbtions:
(1) Products are rotation-automorohic, that is, for a rotation of the snace, the scalar oroduct is invariant and the vector product undergoes the same rotation.
(?) $\left.\begin{array}{r}(\bar{A}+\bar{B}) \cdot \bar{C}=\bar{A} \cdot \bar{C}+\bar{B} \cdot \bar{C}, \\ (\bar{A}+\bar{B}) \times \bar{C}=\bar{A} \times \bar{C}+\bar{B} \times \bar{C} .\end{array}\right\} \quad$ distributivity

124

(2) $(K \bar{A}) \cdot \bar{B}=\bar{A} \cdot(K \bar{B})=Y(\bar{A} \cdot \bar{B})$,

$$
(K \bar{A}) \times \bar{B}=\bar{A} \times(K B)=K(\bar{A} \times \bar{B}), k, a \text { scalar. }
$$

Conclusion: $\bar{A}: \bar{B}$ and $\bar{A} \times \bar{B}$ are the scalar and vector products to within multinliaative constant.
It is not hard to show from the assumptions that,

$$
\begin{aligned}
& \text { if } \bar{A} \perp \bar{B}, \text { then } \bar{A} \cdot \bar{B}=0 \\
& \text { if } \bar{A}|\mid \bar{B}, \text { then } \bar{A} \times \bar{B}=0
\end{aligned}
$$

and $\bar{A} \times \bar{B}$ is perpendicular to the plane determined by \bar{A} and B.

Let $\bar{e}_{1}, \bar{e}_{2}, \bar{e}_{3}$ be unit vectors conlanar with \bar{e}, making angles $x+y, x-y$ and x with the direction of \bar{e}.
we know that
(i)

$$
\bar{e}_{1}+\bar{e}_{2}=2 \bar{\varepsilon}_{2} \cos x
$$

Also, from condition (\cap),

(ii) $\quad\left\{\begin{array}{l}\left(\bar{e}_{1}+\bar{e}_{?}\right) \cdot \bar{e}=\bar{e}_{1} \cdot \bar{e}+\bar{e}_{2} \cdot \bar{e} \\ \left(\bar{e}_{1}+\bar{e}_{?}\right) \times \bar{e}=\bar{e}_{1} \times \bar{e}+\bar{e}_{2} \times \bar{e} .\end{array}\right.$

125

(iii)

$$
\left\{\begin{array}{l}
\left(\bar{e}_{2}: \bar{e}=f(y)\right. \text { and } \\
\left(\bar{e}_{3} \times \bar{e}=f(y) \bar{i}, \text { where } \bar{i} \bar{e}_{3} \text { and } \bar{e}\right. \text { such that } \\
\bar{e}_{3}, \bar{e}, \bar{i}
\end{array}\right.
$$

form a right handed system.
Then we have from (i), (ii) and (iii),

$$
\rho f(y) \cos x=f(x+y)+f(x-y)
$$

Thus by (6.5) of the miscelleneous equation C, we have

$$
f(x)=a \cos x+b \sin x
$$

Since $f(\pi / 2)=0$ for the scalar product, we have in this case
Hence

$$
\bar{A} \cdot \bar{B}=a|\bar{A}| \bar{A}^{a} \cos x \cdot \bar{B} \mid \cos \theta_{1} \quad \theta=A(\bar{A}, \bar{B})
$$

Since $f(0)=0$ for the vector product, we have in this case

$$
f(x)=b \sin x
$$

Hence

$$
\bar{A} \times \bar{B}=b|\bar{A}||\bar{B}| \cos \theta \bar{e}, \text { where } \theta=\not \subset(\bar{A}, \bar{B})
$$ and $\bar{e} \perp \bar{A}$ and \bar{B} such that $\bar{A}, \bar{B}, \bar{e}$ form a right handed system. ?) Area of a rectangle. [70]. It is well known that the area of a rectangle of sides x and y is $x y$. Here it is established using Cauchy functional equations.

Let $F: R \times R \rightarrow R^{+} \quad\left(R\right.$, reals; R^{+}, positive reals) be such that F be additive in both variables, that is

$$
\begin{align*}
& F(x+u, v)=F(x, y)+F(u, y) \quad \text { and } \tag{1}\\
& F(x, y+v)=F(x, y)+F(x, v) .
\end{align*}
$$

Then $F(x, y)=c x y$, where c is a constant.

For let,

$$
\begin{equation*}
C_{y}(x)=F(x, y) \tag{3}
\end{equation*}
$$

Then by (7.1) and (7.3), C_{y} satisfies (1.6) and further C_{y} is positive, since F is. So, by theorem ?.l.
(4) $\quad C_{y}(x)=k(y) x$, where $k(y)$ is a constant depending upon y. From (7.2), (7.2) and (7.4), we see that k satisfies (1.6) and k is positive. Thus,

$$
k(y)=c y, \text { where } c \text { is } 3 \text { constant. }
$$

Hence $F(x, y)=$ cay.
The value of c depends on the choice of the area-unit. By choosing the ar a of the square with unit sides is equal to l, we obtain $c=1$.

Remark. F above represents the area of a rectangle of sides x and y. The suppositions (7.1) and (7.2) correspond to the area F which depends on the sides x and y, is additive in both x and y.
4) Analysis. It is well known that

$$
\lim _{x \rightarrow 0} \frac{\sin x}{x}=1
$$

Here a proof based on Cauchy functional equation is given [85]. Here angles are measured in any linear scale, viz degrees etc.

Let
(5)

$$
\int_{f_{n}}(x)=2^{n} \sin \frac{x}{2^{n}}
$$

$$
g_{n}(x)=\cos \frac{x}{2} \cdot \cos \frac{x}{2^{2}} \ldots \cdot \cos \frac{x}{2^{n}} \cdot
$$

We know that
(5)

$$
\sin x=2 \sin \frac{x}{2} \cdot \cos \frac{x}{2}
$$

From (7.5) and (7.6), we have
(7)

$$
\sin x=f_{n}(x) \cdot g_{n}(x)
$$

g_{n} is a bounded, decreasing seouence. For, from (7.5),

$$
g_{n}(x)=g(x) \cos \frac{x}{2^{n}}<g_{n-1}(x)<1, \text { for } 0<x<R
$$

(R , numerical value of the right angle).
Hence $\lim _{n \rightarrow \infty} g_{n}(x)=g(x)$ exists and $g(x)<1$.
Further, let

$$
\begin{aligned}
& h_{n}(x)=g_{n}(x) \cos \frac{x}{2^{n}} \cdot \\
& h_{n-1}(x)=h_{n}(x) \cdot \frac{\cos \frac{x}{2^{n-1}}}{\cos \frac{x}{2^{n}}}
\end{aligned}
$$

Then

$$
\begin{aligned}
h_{n-1}(x) & =h_{n}(x) \cdot \frac{\cos \frac{x}{2^{n-1}}}{\cos \frac{x}{2^{n}}} \\
& \equiv \frac{h_{n}(x) \cdot \cos ^{2} \frac{x}{2^{n}}-\sin ^{2} \frac{x}{2^{n}}}{\cos ^{2} \frac{x}{2^{n}}} \\
& <h_{n}(x), \text { for } 0<x<R .
\end{aligned}
$$

128

Thus $\left\{h_{n}\right\}$ is a bounded, increasing sequence and

$$
h_{n}(x)<g_{n}(x), \quad 0<x<R .
$$

So,
(8)

$$
I>g(x)>h_{1}(x)=\cos ^{2} \frac{x}{2}>0 .
$$

Hence we have from (7.7), that, $\lim _{\mathrm{n} \rightarrow \infty} \mathrm{f}_{\mathrm{n}}(\mathrm{x})=\mathrm{f}(\mathrm{x})>0$ exists and we have
(9)

$$
\sin x=f(x) g(x) .
$$

Further,

$$
\begin{aligned}
& f(x+y)=\lim _{n \rightarrow \infty} f_{n}(x+v) \\
&=\lim _{n \rightarrow \infty} 2^{n} \sin \frac{x+y}{2^{n}} \\
&=\lim _{n \rightarrow \infty} 2^{n}\left[\sin \frac{x}{2^{n}} \cos \frac{y}{2^{n}}+\sin \frac{y}{2^{n}} \cdot \cos \frac{x}{2^{n}}\right] \\
&=f(x)+f(y), \text { since } \cos x \text { is continuous } \\
& \text { at zero. }
\end{aligned}
$$

Since, for $0<x<R, f_{n}(x)$ is increasing and so $f(x)$ is non-decreasing. Hence $f(x)=c x$.

Therefore

$$
\begin{equation*}
\sin x=c x g(x) . \tag{10}
\end{equation*}
$$

129

From (7.8), we have $\lim _{x \rightarrow+o} g(x)=1$
Thus we have, from (7.10),

$$
\lim _{x \rightarrow 0} \frac{\sin x}{x}=c \text {, where } c \text { depends on the scale. }
$$

Now, let us introduce the natural angular measure, $t=c x$ and define

$$
\sin x=\sin \frac{x}{c} \text { and } \cos x=\cos \frac{x}{c}
$$

Then we have

$$
\lim _{x \rightarrow 0} \frac{\sin x}{x}=\lim _{x \rightarrow 0} \frac{1}{c} \cdot \frac{\frac{\sin \frac{x}{c}}{\frac{x}{c}}=1}{c}
$$

5. Statistics. Normal distribution. Let f be continuous and have continuous derivative and such that,

$$
\int_{-\infty}^{\infty} f(x) d x=1
$$

Then $g(x)=f\left(x_{1}-x\right) \cdot f\left(x_{2}-x\right) f\left(x_{2}-x\right) f\left(x_{4}-x\right)$ has maximum at $x=\frac{x_{1}+x_{2}+x_{2}+x_{4}}{4}$ if and only if

$$
f(x)=\frac{1}{\sqrt{2 \pi} \pi} \text { exp }\left[\frac{x^{2}}{2 \sigma^{2}}\right] .
$$

Indeed, let g have a maximum at $x_{0}=\frac{x_{1}+x_{2}+x_{2}+x_{4}}{4}$. Then

$$
\begin{aligned}
& f^{\prime}\left(x_{1}-x_{0}\right) f\left(x_{2}-x_{0}\right) f\left(x_{2}-x_{0}\right) f\left(x_{4}-x_{0}\right)+f\left(x_{1}-x_{0}\right) f^{\prime}\left(x_{2}-x_{0}\right) \\
& f\left(x_{2}-x_{0}\right) f\left(x_{4}-x_{0}\right)+f\left(x_{1}-x_{0}\right) f\left(x_{2}-x_{0}\right) f^{\prime}\left(x_{2}-x_{0}\right) f\left(x_{4}-x_{0}\right)+ \\
& +f\left(x_{1}-x_{0}\right) f\left(x_{2}-x_{0}\right) f\left(x_{2}-x_{0}\right) f^{\prime}\left(x_{4}-x_{0}\right)=0 .
\end{aligned}
$$

$$
\text { set } \quad h(x)=\frac{f^{\prime}(x)}{f(x)}
$$

Then $\sum_{i=1}^{4} h\left(x_{i}-x_{0}\right)=0$, with $\sum_{i=1}^{4}\left(x_{i}-x_{0}\right)=0$.

Hence by $[6,0.47], h$ is additive and so, $h(x)=c x$. Therefore,

$$
\begin{aligned}
& \frac{f^{\prime}(x)}{f(x)}=c x, \text { or } \\
& f(x)=a \exp \left(\frac{-u^{2}}{2 \pi^{2}}\right), \text { negative necessary }
\end{aligned}
$$

for the convergence of the integral $\int_{-\infty}^{\infty} f(x) d x=1$.
Again by the same integral we get, $a=\frac{1}{\sqrt{2 \pi r}}$.
Thus

$$
f(x)=\frac{1}{\sqrt{2 \pi} \sigma} \exp \left(-\frac{u^{2}}{2 \sigma^{2}}\right)
$$

S 8. Some unsolved problems in functional equations.

1. The function $f(x)=\frac{1}{x}$ can be characterized by the functional equation $f(x+1)=\frac{f(x)}{f(x)+1}$, for $\left.x \in\right] \circ, \infty[$ and some additional condition, namely convexity. The same function $f(x)=\frac{1}{x}$ also satisfies $f^{2}(x)=x$ (iteration)). It will be interesting to charactrize f by the above function and some additional conditions.
2. Babbage equation. The equation $f^{n}(x)=x$. (n denotes the n-th iteration) has been treated well and is known that for continuous f, when n od, $f(x)=x$ and when n even, every solution satisfies $f^{2}(x)=x$. Also every continous solution is monotonic. Tinder what conditions on $g, f^{n}(x)=g(x)$ or $f^{?}(x)=g(x)$ has a convex solution and whether such a solution is unique ? Also, find the general continuous solution of $f^{n}(x)=g(x)$, without assuming g monotonic.
3. Find the general solution of $f[x+y f(x)]=f(x) f(y)$. 4. Find all solutions of $f(A B)=f(A) f(B)$, where f : $G L_{n}(Z) \rightarrow G L_{m}(R) \quad\left[G L_{n}(R)=a l l\right.$ square matrices of order $\left.n\right]$ without any supposition whatever on for arbitrary f and n.
4. Find all solutions of $f(A B)=f(A) f(B), g(B)=f(A) g(B)+$ $g(A), f, g: G L_{n}(R) \rightarrow G L_{m}(R)$, without any further r assumption on f and g for m, n arbitrary.
5. Consider the equation $f(m n)=f(m)+f(n)$, where m and n are integers such that $(m, n)=I(m, n$ are relatively prime). Suppose there is a constant C such that $\mid f(n+1)-f(n)!<C$. Do there exist constants a and M such that $f(n)=a \log n$ $+\therefore g(n) \quad$: with $|g(n)|<M$?
6. Determine all homomornhisms of multiplicative groins of algebras. in each other, that is find all solutions of

$$
f(x y)=f(x) f(y) \text {, where }
$$

$f: A_{n}(F) \rightarrow A_{m}(F), \quad\left(A_{n}(F)\right.$ an algebra of order n over the field F).
8. Find all solutions of $f(x y)=h(x) g(y)$, where the domain is a semigroun or masigroln and the range is in a nuasigrond. 9. Find the solutions of the composite equations [45]

$$
\begin{aligned}
& \Gamma\{F[x, F(x, y)], F[F(x, y), y]\}=F(x, y) \\
& F[F(x, y), x]=F[x, F(y, x)] \\
& F[F(x, y), x]=y
\end{aligned}
$$

10. Find all the solutions of

$$
\begin{aligned}
& x f\left[\frac{f(y)}{x}\right]=y f\left[\frac{f(x)}{y}\right] \text { (unsolved without continuity) } \\
& f(x+y)=f(x) \cdot f\left[\frac{y}{f(x)}\right] \text { (unsolved without continuity) } \\
& f(x)+f[f(y)-f(x)]=f[x+f(y-x)] \text { unsolved }
\end{aligned}
$$

without differentiability.

References

1. N.H. Abel, oeuvres completes, vol. I, pn l-10, 1881.
2. N.H. Abel, oeuvres comnlotes, vol. I, on 61-65, 1881.
3. N.H. Abel, oeuvres comnletes, vol. I, गn 289-398, 1881.
4. N.H. Abel, ocuvres completes, vol. I, op 219-250, 1881.
5. J. Aczel, Vorlesungen Tiber Tunktion?lgleichungen und ihre Anwendungen, Basel, Stuttgart 1061.
6. T. Aczel, Lectures on functional enuntions and their applications, Academic Press, 1966.
7. I. 4czel, Fuggnenegyenletek az alkalmazott mathematikaben Magr. Tud. Akad. Hat. Fiz. Oszt. एözl I, pp 131-142, 1961.
8. J. Aczel, on a goneralization of the functional equations of Dexider, Publ. Inst. Math., Beograd 4(18), po 77-80 1964.
9. J. Aczel, Niszellon T̈ber Funktionalgleichungen, I, II, Math. Nach., 19, on 87-99, 1958; pn 3n-50, 1961.
10. J. Aczel, Ein Einceutigkeitssatz in dor Theorie der Eunktionalgelichungen und einjge ihrer Anwendungen, Acta Math. Acad. Sci. Hung. 15, 1964.
11. J. Aczel, and I. Fenrö, on fields of forces in which centres of gravity can be defined, Acta Math. Acad. Sci. Hung. I, $n \mathrm{D}$ 52-60, 1946-49.
12. T. Aczel and M. Ghermanoscu and M. Aosszu, On Cvclic onuations, Publ. Math. Inst. Hungarian Acad. Sci., 5, Dn 215-221, 1960.
13. J. Aczel and S.folab, runtrionalgleichungen der Theorie der geometrischen Objekte, Warsaw, 1960.
14. T. Aczel and M. Hosszu, Further uniaueness theorems for functional Equtions, scta Math. 1cad.Sci. Fung.19, pp 51-55, 1065.
15. J.Aczel and Kiesewetter, Thor die Reduktion der Stufe bei oiner Klasse von Funktion \lg leichungen, Publ. Math. Debrecen, 5, מ מ מ $48-363$, 1958.
16. D'Alembert, T., Recherches sur la courbe nue forme une corde tendu mise en vibration, I. Hist. Acad. Berlin, n 214-219, 1747.
17. J.D'llembert, Zecherches sur la courbe aue forme une corde tendu mise en virbation, II, Hist. Aczd. Berlin, pp 230-249, 1747.
18. T.D'Alembert, Addition au memoire sur la courbe oue forme une corde tendu mise en nitration, Hist. Acad. Berlin, $255-360,1750$.
19. T. \quad alembert, Mémoire sur les princines de mécanique, Hist. Acad. Sci. Paris, $n 7$ 278-386, 1769.
20. A. Alexiwicz and w.Orlicz, Romaraue sur l'equation fonctionelle $f(x+y)=f(x)+f(y)$, und. Math. 23, po 214-215, 1945.
21. J. Anastzssiadis; Définitions des fonctions Euleriennes Dar des eruations fonctionnelles, Gauthier-Villars and co., Paris, 1964.
22. J. Andrade, Sur I'énution fonctionnelle Doisson, Bull. Soc. Math. France 28, np 58-6.2, 1000.
23. S. Banch, Sur l'éruation fonctionnelle $f(x+y)=f(x)+f(y)$, Tund. Math. 1, on 120-124, 1920.
24. J.C.W.D. la Bere, The adition theorems for circular and hyperbolic sine, Nath. Gaz. n 1:20-121, 1956.
25. A.I. Cauchy, Oeuvres completes, II. sories, Tol.III, Paris, pn. 98-112, 1897.
26. G. Darboux, Sur la comnosition des fores en statiaue, Bull. Sci. Math. [1] , 9, pn 281-288, 1875.
27. Z. Daroczy, Notwendige und hinreichende Bedingungen für die Existenz von nichtronstanten Lösungen linearer Finktionalgleichungen, I, Dubl. Math. Debrecen 9 , op 149-162, 1962.
28. Z: Daroczy, T̈ber die Funktionalgleichungen $\phi[\phi(x) y]=\phi(x) \cdot$ $\phi(y)$ Acta Thiv. Nehrecen, Ser. Fiz: Chem. 8 ,
pp $125-132,1962$.

29．D．Z．Djokovic，Generalization of zesult of Aczel， Ghermanescu and Hosszu，Publ．Math．Inst．Hung． Acad．Sci．9，po 51－59，1964．
30．亡．Euler，Institutiones Calculi integralis，I，D．406， Petronal， 1768.

31．T．M．Flett，Continuous solutions of the functional eauations $f(x+y)+f(x-y)=2 f(x) f(y)$ ，Amer．Math．Monthly， vol．70，加98－112，196？．
32．G．W．Ewing ond T．R．Ttz，Continuous so utions of the func－ tional eauation $f^{n}(x)=g(x)$ ，imn．Soc，Dolon． Math．24，pn 8－91，1951．

23．G．F．Gauss，Theorie motus cornorum coslestum，fomburg， מ力．175－177，1809．

34．M．Ghermanescu，Ecuatti fonctionale，Bucuresti， 1960.
25．T．Thogil，Verallgemeinerungen einiger Funktionalgleithungen， Ensejgnement Math．［22］，10，מ0 147－151，1064．
25．S．Golab，Gur I＇écuation $f(x) f(y)=f(x y)$ ，Ann．Dolon． Math．6，pn 1－12，1959．
37．S．Golab，and S．Lojasiexicz，Tn theoreme sur la valeur moyenne θ dans ia formulae des acro isements finis，Ann．Dolon，Math．2，n 118－125， 1956.
28．S．Folab and A．Schinzel，Sur l＇éaretion fonctionelle $f[x+y f(x)]=f(x) f(y)$ ，Putz．Math．Debrecen 6， D0 112－125，1959．

29．G．Hamel，Eine Basis aller Zahlen und dio unstotigen Lósunger der Funktionalgloichungen $f(x+y)=f(x)+$ $\mathrm{f}(\mathrm{y})$ ，Math．Arn．60，op 459－462， 1905.
40．E．Hewitt and K．A．Ross，Abstract Harmonic Analysis，V．R，I， Soringer＂erlag，1964．
41．E．Hille and Phillins，Functional Analysis and semigrouns， Amer．Math．Soc．Pidhlication，1957．
42．Casper Hoffman，Zeal function，Holt，Reinhart and Wiaston，Inc．
43．M．Hosszu，Remarles on the Dexider＇s functional eauation， 1 ，po 92－102， 1962.
44. M. Hosszu, A remark on scalar valued multinlicative func-
tions of matrices, D0 288-289, 1959/60.
45. M. Hosszu, on some functional equations and on their classification, Mat. Bechuk, 2(12), nul39-145, 1966.
46. D.V. Ionescu, ouelaues annlictions de certaines éauations fonctionnelles, Mathématica (Timisora) 19, po 159-166, 1942.
47. Jensen, Sur les fonctions convoxes et les inégqlities entre valeurs movennes, Acta "ath. 30, מn 175-192,1906.
48. Jurkat, On Canchy's functional equation, Proc. Amer. Math. Soc. 16, 168 -686, 1965.
49. S.Kaczmarz, Sur l'éruation fonctionnelle $f(x)+f(x+y)=$ $\phi(y) f\left(x+\frac{y}{2}\right)$, Find. Math. pn.121-1е9, 1924.
50. PL. Fannaonan, on the functional eauation $f(x+y)+f(x-y)=$
$2 f(x) f(y)$, Amer. Math. Monthly, $T \cdot 72$, on $374-277$, 1965.
51. PL. Kannabnan, The functional equation $f(x y)+f\left(x y^{-1}\right)=$ Of(x) $f(y)$ for thelian grouns, Dh.D. Thesis, Thiv. of Washington, Seattle, 1064.
59. L. Yanrannan, mae functional eauation $f(x y)+f\left(x y^{-1}\right)=$对 $(x) f(y)$ for grouns, (to anear in Proc. imer. Math. Soc.).
52. Kestelman, on the functional eauaticn $f(x+y)=f(x)+f(y)$, Tund. Math. 24 , bo 144-147, 1047.
54. M. Wucharzewski, ت̈ber die Funktionalgleichung $f\left(a_{\alpha}^{i} b_{k}^{\alpha}\right)=$ $f\left(a_{k}^{i}\right) f\left(b_{k}^{i}\right)$, Dubl. Ma今h. Debrecen 6, pp 181-198, 1959/60.
55. W. Kucharzewski and M. Kuczma, on the functional enuation $F(A B)=F(A) F(B)$, Ann. Dolon. Math. 12, po 1-17,
1962.
56. M. Fucharzewski, and 4.Zajtz, F̈ber dic linearen, homogenen, geometrischen objekte des Typus [m, $n, 1]$, wo $\mathrm{m} \leq \mathrm{n}$ ist, Ann. Dolon. M-th., 18, DD $005-295,1966$.
57. F. Fuczma, A survey of the theory of functional equations, Publ. Elektrotechnickog Fakulta, Tniv. o. Beogradu, No.130, 1964.
58. M.Kuczma, Einige Sätze fiber die Redultion der Ordnung der Matematyczme.
59. M.Kuczma, A characterization of the exponential and logarithmic functions by fumptional emitions, Fund. Math. V. 52, 加 283-288, 1962.
60. M. Vuczma, on some functional eruntions containing interations of the unknown function, Ann. Dolon, Math. 11, po 1-5, 1961.
61. M. Kuczma, on the functional eruation $\phi^{n}(x)=g(x)$, Ann. Dolon. Math., 11, on 161-175, 1961.
62. S.Kuropa, A cosine functional enxation in n-dimensional vector syace, Glis. Math. Fizi. 4stroyis, no 16a_ 187, 1958.
63. S. Kurena, 4 cosine functional eauation in Hilbert space, Canad. J. Math., V. 12, p 45-50, 1960.
64. S.Yurena, A cosine functional enuation in Banach soace, Studio Math., T.19, D 149-158, 1960.
65. S.Kurepa, A cosine functional equation in Banach Algebras, Actasci. Math., Ψ. XXIII, nn 255-367, 1962.
66. S.Kurena, The Caluchy functional enuation and scaliz product in vector spaces, Glas. Math. Fiz. Astro., 19, pp 22-25, 1964.
67. S. Kurena, on the functional enuation $f(x+y) f(x-y)=f(x)^{2}-$ $-f(y)^{2}$, Ann. Dolon. Math., 10, op 1-5, 1961.
68. S. Kurena, Functional equations for invariants of a matrix, Glas. Mat. Fiz. Astron. 14, Dy 97-112, 1959.
69. A. Fuwagaki, Sur I'écuation fonctionnelle de Cauchy pour les matrices, J. Math. Soc. Janan, 14, po 250-266,1962.
70. A.M. Legendre, Éléments de géométric, Note II, Dris, 1701.

129

71. S. Lojasiewitz, Solution générale de l'éruation fonctionnelle $f^{n}(x)=g(x)$ Ann. Soc. Dolon. Math., 24, 0p 88-91, 1951.
72. Maltese, Snectral renrosent, tion for solutions of certain abstract functional equations comnosito Math., 15, pn 1-22, 1962.
73. R.Osserman, on the solution of $f(f(z))=e^{z-1}$ and its domain of regularity, Proc. 1 mer. Math. Soc., 8 מ0 262-262, 1957.
74. S. Parameswaran, mrignometry retold, woth. Gaz., 12, b0 81-82, 1958.
75. H.W. Dexider, Notiz ther Funktional-Theoreme, Monatsh. Math. Phy. 14, מ 292-?01, 1902.
76. S.D. Poisson, Du parallelogramme तes forces, Correspondance sur l'École Dolytechniaue I, no ?256-360, 1804.
 $\mathrm{f}(\mathrm{y})$, Ann. Dolon. Mat' ., 17, no $193-198,1965$.
77. A.R.Schweitzer, on the history of functional equations, Bull. Amer. Math. Soc., 25 , po $43 \mathrm{C}_{5}$ 1918.
78. Sier \quad inski, Sur l'énuation fonctionnalle $f(x+y)=f(x)+f(y)$, Fund. Math., 1, no 116-122, 1920.
79. Steinhaus, Sur les distances des noints dans les ensembles de measure nositive, Fund.Math.1, op a3-102,1920.
80. Stokes, 0 the intensity of light roflocted from or transmitted through a nile of nlates, Proc. Rcy: Soc. (London), 11, po 545-557, 1860.
81. W.T.Thron, Entire solutions of the finctional eauation $f(f(z))=g(z), C$ nnad. T. Math., 8, op 47-48, 1956.
82. G. Van der Lyn, Sur l'éruation fonctionnelle $f(x+y)+f(x-y)$ $=2 f(x) \phi(y), M a t h . C l u j, 16, p n 91-96,1940$.
83. L. Wietoris, Zur Kennzeichung des sinus und vorwandter Funktionen durch Funktionalgleichungen, F. reine angew, Math. 186, on 1-15, 1944.
84. L. Wietoris, Wom Grenzwert $\lim _{x \rightarrow 0} \frac{\sin x}{x}$, Elem.Math., p 8-10, 19.57.
85. E.Vincze, Fine allgemeinere Methode in der Theorie der Funktionalgleichingen, I, Dubl. Math. Debrecen 9 , op 149-162, 1962.
86. E.Vincze, Fine allgemoincre Methode in dor Theorie der Funktionalgleichungen, TT, Dubl. Math. Debrecenlo, מ力 228-218, 1962.
87. E.Vincze, Bemerking zur charakterisierung des Gauss'schen Pehlergesetzes, 1 Magyar muc. A Vad. Mat. Fit. Inst. Kozl. Asoroz at 7, on 257-361, 1963.

8a. E.Vincze, tiber die Lösung der Funktionalgleichungen $f(x+y \operatorname{g}(x))=L(h(x), \underline{k}(y))$, Ann. Dolo. fath., 18, pp 115-119, 1966.
90. E.Vincze, Über die Charakterisierung der assoziativen Funktionen von mohreren Teränderlichen, Publ. Math. Debrecen 6, on 241-252, 195\%/60.
91. D.Tincze, Beitrag zur Theorie der Cauchy'schen Funtionalgleichungen, Arch. Math., 15., מ 122-125, 1954.
92. E.Tincze, A d'Alembert-Doisson függvenyagyenlet egyik altalanositasa, Mat. Lanok 12, pp 18-?1, 1961.
92. W. H. Wilson, Two genoral functional eduations, Bull. Amer.
94. W.H.Wilson, on certain related functional equations, Bull. Amer. Math. Soc., 26, p $200-212,1019-20$.
95. Weierstrass, Zur determinanten Theorie, Berlin, 1886.

-/nss.

List of Matscience Reports (1964-66)

Report No.
35

36

Author
K. Symanzik
K. Venkatesan
A. Fujii
M. Gourdin
J. V. Narlikar
K. Venkatesan
K. P. Unni
L. Rosenfeld
K. R. Unri
H. Ruegg
W. K. Haymar

Ph. Meyer
J. Rzewliski
P. L. Kannappan
P. C. Vaidya
K. Venkatesan
K. R. Unni
K. R. Unni
V. Krishnamurthy
J. H. Williamson

Title
Lecture on a modified models of Euclir ean Quantum Field Theory.

Report on recent experimental data (1964).
Lectures on Fermi dynamics.
Mathematical introduction to unitary symmet is s.
Theories of Gravitation.
Repurt on recent experimental data (1965).
Introduction to Hilbe ' space.
Theory of nuclear reactions.
Concepts in fodern Mathematics I (Algebra).
Relativi. ic generalize in of SU. (6)
Transfinite diameter anc its applications.
Selec ed topics: Weak Interactions.
Gauge transformations in quantum field theo \because.
Theory of functional equations.
Selected topics ir Gravitation.
Report on recent experimental data (1966).
Concepts in modern mathematics II (Topology,.
III (Analysis
Duality Theory in locally convex spaces.
Representation theory for Banach algebras and locally compact groups.

[^0]: *Permanent Address:- Department of Mathematics, Annamalai University, ANNAMALAI NAGAR, S.A.Dt.

