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THEORY OF FUl'TCTIONALEQUA'l'TONS

By
PL.l\annappan'

••

At the outset I express my sincere thanks to
the authorities of M::tt~ciencefor hav ing given me an

•ot)portunity to sueak in this Institute. The aim of these
lectures to start with WA.S to give a brief survey of the

•theory of functional e('!u1.tionstouching all asnects of the. . ,

functional e0.uqtions and giving,examples for each and also
the functional ineallalities. Rut as the lectures nrogressed,
it was felt that within this short time limit, what was
originally ulanned cannot be accomnlished. So, in these
lectures more concentration "fasmade on Cauchy's functional
eq'lqtions. Its gener-a.l.tza't'ons , relat.sd aou-rt Lons , some
trigonometric eouations etc. were aIso cons ider sd , Finally
some annlicati.ons and unsolved ryroblems were treated.
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1. INTRODUCTION.

Theory of fun!ltional equations is one of the oldest
as well as relatively young topics of mathematical analysis

'. .which is growing very rapidly. Oldest in the sense D 1Alembert
,was, the fir9t to apply and solve func-

tional equations in the sense of modern terminology in these
three papers. In many respects they are typical; they are in
connection with the stu~y of vibrations of strings and the•
equation considered is f(x+y) + f(x-y) = g(x) hey). Ftmctional
equations have fascinated many mathematici~. Even though such

•
eminent mathematicians.like Abel, Cauchy, Darboux, Euler, Gauss,
Hilbert and Weierstrass among others contributed to the growth

and development of this branch, no systematic presentation of
this branch was attempted as late as lq18. Applications of
functional equations were found much earlier than any systematic
presentation could develop. Hence results found 'in earlier
decades have often been presented anew. ,Young in the sense
that the literature has grown markedly during the past fifty
years. Further, an attempt to give a unified theory was first
tried by A.R.Schweit'zer [78J in 1918. Monographs on functional
equations have been written by Aczel - Golab [13J ,
M. Ghermanescu [34J "T. Anastassiadis [2lJ and M.Kuczma [57J
(who is also preparing" a monograph on functional equations in
a single variable). An excellent'first systematic presentation

•
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of this subject ever written is by an expert in this field,
Hungarian methematician J. Aczel [5] in 1961. This book also
gives a survey of the theory of functional equations and contains

•a good collection of references at t~e end (more than 100 pages,
from 1747 to the present). In his·numerous papers as in his
book, he treats the whole class of functional equations, gives
general method of solving them and criteria of the existence

IIand uniqueness of solutions~ He also indicates many new appli-
cations of functional equations. A new edition (English) almost
twice. its original size, containing the many new contributions

•
since 1960 to the present day has come out C 6 ] • After this
publication, we hope (like the author), the growth of this field
will be accelerated, more people will take up this study and
new applications will be found.

In studying Mathematics and its applications to other
branches, the tyue of equations (algebraic) one first comes

2across are ax + b = c, ax + bx + c = 0 etc. or the system
nof equations 2: aij Xj = bi, (i=l, ••• .n) • The problem in

j=l
all these cases, is·to determine particular values of a known
function or f'unct i ons , Only in calculus, for the first time,
one encounters the question of determining an unknown function.
Functional equqtions generally deal with this.

The large number of papers appearing in various
journals, since 1747, is an index of the interest, the mathe-
maticians ann others, have for this field. The first significant
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by reducing it to the partial differential equation

( 5)

•

The general continuous solutions of the equation
(1.1) known as Cosine Equation or D'Alembert EquatIon or Poisson.
Equation were found by CaU~hY [25J • Equation (1.1) was
solved by Andrade [22] by using the technique of integration
and 'differentiation and reducing 1t to the fbrm r " (x) = c f(x) •

•
Equation (1.1) in abstract spaces (Banch , Hilbert, 'Banach
algebra, groups etc.) was also treated in considerable detail.
(1.1) is one of the equations extensively studied among others
by Aczel [7J , T.M.F1ett [31] ,D.V.Ionescu [46J , Kaczmarz
[49] ,Kannappan [5CJ, [51] , [52J ,S.Kureoa [621 , [63J ,
[64J , [65J·, G.Maltese [72J ,Van der Lyn [82J ,L.Vietoris
[84J ,Wilson [93J ,[ g4] and F.Vajzonic.

Under the hypothesis of continuity, Cauchy [25J ,
solved the following four equations, widely known in general as
Cauohy equations

(6) f(x+y) = f(x) + f(y) ,
(7) f(x+y) = f(x) fey) ,
(8) f(xy) == 'f'(x)+ f(y) ,
(9) f(xy) = f'(x) f(y) •

•
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(1.6) finds applications almost in every branch of mathematics.
(1.6) anpears in the problems of the measurement of areas, in
projective geometry, in mechanics, in the nroblem of the

••parallelogram of forces, in the theory of probabi+ity, in the
non-Euclidean geometry etc. Cauch~s equations are used in
mathematics of finances, in the probability theory and in many
other topics. Equation (1.6) is one of the equations which has,

•been extensively studied anA was solved among numerous others
by Aczel, Alexievicz and Orlicz, Banach, Darboux, Frechet,
Gauss, Hamel, Kuczma, ~.Kurepa, A.Kuwagaki, Legendre, Satz,
Sirpenski and Vincze, A. Ostrowski, H.Kestelman, I.Halperin,
P.Erdoss, F.B.Jones etc. under various hypothesis of the func-
tion, domain and range. We will deal with them in detail later.
The existence of discontinuous solutions of (1.6) was proved
by Hamel, using axiom of choice. In case where the domain and
range of f are abstract sets (groups etc.) (1.6) and (1.8)
play an important role in algebra as the equations of homo-
morphism, endomorphism, isomorphism etc.

One of the striking features of functional equations
is the fact that, unlike differential equations, a single equa-

tion can determine more than one function. The generalizations
of Cauchy's functional equations, known as Pexider equations
( 10) f(x+y) = hex) + g(y)
(11) • f(x+y) = hex) g(y)
( 12) f(xy) = hex) + g(y)

•
(13) f(xy) = hex) g(y)
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is one such example and they were solved in an elementary way
by Pexider [75J " for the three unknown functions f, g and h.

Generalization of Pexider equations was considered by Aczel [8J .
••These equations and some generalizations will be considered later.

The Jensen equation (47),

(14) f(x) + fey)
:2 '=,

•
has many properties analogou; to those of the equation (1.6).
Aczel and Fenyo [11J ' have applied (1.14) to define the centre
of gravity of field of ~orces. Generalizations of the Cauchy

•equations and .Jenseneque.tions of the type

( 15) f(x+y) = F [f(x) ,f(yD (Known as addition
formula)

(16) f(X;Y) = F[f(X) ,f(Y~

and

( 17)

were treated by Aczel, Dunford-Hille, Alt, Kuwagaki, Montel,
Monroe, I., etc.

Abel published four important papers on this subject
[1 J, [2J , L'3 ] , ( 4J .

•
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The first gives a general method of solving functional equations
by differentiation. The second deals with the system of func-
tional equations

(18) F(x,F(y,z)) = F(z,F(x,y)) = F(y,F(z,x)) =
F(x,F(z,y)) = F(z,F(y,x)) = F(y,F(x,z)),

for the function F. J\n the third he solves the equation

(19)
•

g(x)+g(y) = h [Xf(y)+yf(X) J ,
for the three unknown ~unctions f,g and h. The technique

toemployed in these three papers is/reduce the functional equations
to differential equations and then solve them. In the last

paper Cauchy's equations generalized for complex variable were
solved.

Development of the theory of functional equations is
closely related to its anplications to various branches, namely,
mechanics, the theory of continuous groups, the theory of geo-
metrical aspects, vector analysis, Euclidean and non-Euclidean
geometry, the theory of proba.bility, characterization of means,
characterization of v3.rious functions such as Euler's function,
exponential and logarithmic functions, trigonometric functions,
polynomials, characterization of determinants etc. Characteriza-
tion of determinants has led. to the study of matrix equations •

•
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"-Matrix equations find a~p~tions in invariant theory, theory
of geometric objects etc. systems of functional equations were
used by Stokes [81J ,to determi~e the intensities of re-
flected and absorbed light. Weierstrass [95~ , has used the
equation F(f(x) ,fey),f(x+y)) = 0 ·for the development of
elliptic functions. Functional equations with several unknown
functions were considered among others by Sinzov, Stephanos,

\
Sutt) , Schweitzer and Wilso~. Fe"'T international conferences on
functional equations were held since 1Q61, at B1atonvilagos,
Sarospatak, Oberwolfach and i,ATaterloo.

Of course orre may ask what is the reason of this
interest taken in functional equations by the mathematicians of
all the world. This may be connected with the fact that in many
branches of mathematics analytic methods are already exhausted
to some extento A use of elementary methods often allows one
to obtain much deeper and more general results than it was
Dossible with a use of classical methods of mathematical anaJy-
sis. On the other hand, more and more problems of physics and
technics require making weaker assumptions regarding the occur-
ing functions.

There is no general method of solving functional
equations. This itself could have been one of !:;hereasons that
might not have attracted many persons to this field. It used
to be said that every functional equation requires its own mode



9

of attack. In recent years the situation has imuroved.
Gradually more general results are available, the classically
known results are shown to be vali~under less severe restric-
tions, existence proofs anplicable to a wide range of equations

•
are being found etc.

The works of Aczel in recent times had considenbly
h

~i advanced the discipline\.of this field. The techniques employed

',.,

are varied, but sp~cial mention can be made of the method of
specialization of variables, iteration and inverse iteration,
method of determinants; reducing functional equations to

•differential equations, reducing functional equations to
integral equations etc.

The most important range of problems in this field
is however the developing of 3. Qualitative theory of functional
equations - eXistence, uniqueness, extension, characterization
etc.

2. Definition and classification
First we shall start with the following questions.

What is a functional equation? How to classify them? The
answer to these seemingly simnle questions is not easy. It is
not answered in a satisfactory manner and finding a suitable
answer is one of the problems in this field. But the present
day view eliminat~s wide class of equations. differential,

•



10

integral, integro-differential, operat or eauations etc. How-
~ ever what remains is so vast t.nat it needs further compartment-

alization and snecialization. Her~ we give the definition
found in [6], [57J . As the definition of function21 eaua-. -..
tion involv~the notion of a term, we begin with the definition
of a term.
Definition of a termt i) The indeoendent variables xl,x2,···

x are terms.
n

2)
•Given that are terms and a

function f of n-v ar-Lab Les, then f(yl,y2,. •• yn) is also a

term 3) There are no other terms.
A given term thus contains a definite number of variables

and a definite number of functions.
Definition of a functional equation. A functional eauation is
an equation f=g letween two terms f and g, which contain
n Lndeoenderrt var i ables xl'x2' ••• xn and p(~ 1) unknown
functions f1,f2,••.fp of il,i2,..•ip variables respectively,

as well as ~ finite number of known functions.

.~.

Definition of a system of functional equations.
A system of functional equations consists n(~ 2) functional
equations which contain m(~ 1) unknown functions altogether •

.The functional equations or sy sternsmast be identically
satisfied for certain value'S of the var tab l.es occurring in them
in a certain set of any sort, i.e. in~;l.domain which may be real

•
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or comulex numbers, a vector space or an n-dimensional space
(real or complex) or a set of matrices or any abstract algebraic
system. The range of the unknown functions may be real or comulex

•
numbers, vectors, matrices, conjugate snace etc.

The number and behavior of "solutions of a functional
equation may denend very LargeLy on the domain and a function
class, known as the class of admissible functions, which are
defined by the analytic pr<iuerties like analyticity, mG'1surabi-
lity, continuity, differentiability, integrability etc. It is
one of the imuqrtant d~ffGrences between differential and in-
tegra.l equations. For- example, (1) the only solution of

is f(x) ='0'" where as the general me asurabl.esolution in
suitably restricted sets is fex) = k arc cos x, (2) The only

.solution of (1.8) in J- CD ,roC is f(x)::: 0, whereas in
R - f o} , the continuous solution of (1.8) is f'( x) = c log [x]
(we will see this later). Behav.i.or of solutions depends on the
function class also. For example, (1. 8) has also non-me asur ab.Le
solutions in R- {o~. This is one of the characteristic
features of functional cquat t ons, Here we make note of the
observation made by Abel that one functional eauation can con-
tain several unknown functions in such a way th:lt all the un-
known functions can be det(~rmined from it•

•
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Classification. Rough but useful classification into four
types: functional equations for flolnctionsof one or several
variables for one function or several functions was made by
.J. Aczel L 6] • Here we follow the monograph of Kuczma L 57~

Definition. A functional equation in which all the unknown
functions are functions of one variable is called an ordinary
functional equation.. A f~ctional eouation in which at least
one of the unknown functions is a function of several var t ab.le

is called a partial functional equation.
The classification of ordinary functional equat i orsis

based on the concent of rank, order and implication index kno'
as tyne.
~finition of rank. The number of independent variables occur
ing in a functional equatLon is called the rank of the eoua t i c ,
Definition of Order. The sm'lllestnumber of additional eQuatic-
which are necessary in order to reduce a functional eouation tc
a form where under the sign of the unknown function, only sing]
var i able occur, is called the order of the eql1stlon.
Definition of imulication index. Suupose that a functional equ~
tion has been reduced to a system of equations as described
above. The number of additional equations containing the unknc'
function is called the implication index of the equation.
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These definitiom concern only the ordin~ry functional
equations. The above definition of order has some short-
comings. It may be due to the fact that, at times, it is hard
to tell whether the number of additional equations is really
the smallest. li1eshall illustrate this and the definitions
by the following examples.
( a) The equation i(x+y.:)= f(x) + fey) + f(x)f(y)

"may be writ~en as fez) = f(x) + fey) + f(x) fey)
where z = x+y.

(b) The equation f(x+y) + f(x-y) = 2 f (x) + 2 fey)
can be written as fez) + few) = 2 f(x) + 2 fey)
where z = x+y, w = x-yo

(c) The Babbage equation fn(x) = x (nower denotes iteration)

can be written as

Cd) The equation. f(x+f(x)) = f(x)g(x) + hex) may be written
as

fez) = f(x)g(x) + hex)

where z = x + f(x) •

•
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(e) The functional equation

,"ith g unknown, may be writton as

where

• (e)The ranks of (a) , (b), (c), (d) and are 2,2,1,1 and n.

'rheorders of (a), (b), (c), (d) and (e) are 1,2,(n-l) , 1 and 1.

The implication indicies of (a), (b), (c), ( d) and (e) are 0,0,

(n-l), 1 and 1. One can unify the rank n, the order 0 and
implication index i of a functional equation into one symbol
[n, 0, i) called the type of the equation.
(b), (c), ( d) and (e) ar e [2, 1,0] [ 2, 2,0]
[ 1,1? 1] and [n ,1,IJ .'
(f) Now consider the following equation:

The tynes of (a),
, [1, (n-l) ,(n-I)] ,

If(x+y) ='f(x) + y.

This has auuarently order I: fez) = f(x)+y where z = x+y.
But in fact it is of order zero, for it can be written as

.fez) = f(x) + z-x, where x and z are not connected by any
relation.



15

Some results reg~rding the reduction of the rank have
been obtained by Aczel and Kiesewelter [15J • It is evident
from their results that rank 2 plays a particular role, in the
sense that equations of higher rank usually, can be replaced by

•
eqvri.va.l.errt equations of rank 2 [for example, the families
of solutions of (1.6) f(x+y) = f(x) + fey) and f(xl+ •• +xn) =

are Lderrt LcaI J, , while similar replac-
ing an equation of rank 2 by an equation of rank 1, is in
general not possible. In case of rank ~ 2, the most frequently
used method is that of a specialization of variables. For ex-
ample, putting x = 0 in the above example (f), we obtain
f(x) = x + co In most cases, however, the solution cannot be
obtained in such a simple Walf and the process of specialization
must be repeated several times in a rather ingenious manner.
The method of specialization of variables cannot be used in the
case of equation of rank 1. The reduction of the order has been
investigated by Kuczma [58] .

All these attempts do not prove satisfactory. Two func-
tional equations with t he same cnnract er-t stt cs may differ by the
structure of their solutions. The Cauchy equation (1.6) and
the Jensen equatLon (1.14), both have the same type '[2,1,OJ .
Nevertheless the former has a one parameter family of continuous
solutions f(x) =.cx, while the laiter possesses a 'two parameter
family of continuous solutions f(x) = cx+d •

•



16

3. The Cauchy Equations.
••One of the most imnortant and very widely studied func-

tional equations, is the Cauchy eqQation

(1.6) f(x+y) = fex) + fey).

This equation has apclication in many branches of mathematics.
Cauchy has found the general continuous solutions of (1.6) as-
given in theorem (3.1). Tho same equ~tion (1.6) was treated
by Legendre L67} and.Gauss [331 before Cauchy.

THEOREM 3.1. Let f be.'1real valued function of
real variables satisfying (1. 6). Then if f is continuous, f
has the form

( 1) f(x) = cx, for all real x,

where c is a real constant. Further, if f is defined only
for nositiv8 or non-negative x,y, then also f has the form
(3.1) for all positive or non-negative x, provided f is
continuous.

Proof. First setting x = 0, y = 0 in (1.6), we obtain

( 2) f( 0) = o,

Now, replacing y by -x in (1.6) and using (3.2), we get

( 3) fe-x) ;:;-f(x) •
•
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Now, we will show that f is r at i onaL homogeneous, i.e. if x

is any real number and r is any rational, then

(4) f(rx) ::: rf(x).

From (1. 6J, it f o.l I ows by fini to induction, that

Letting xk::: x (k ::: 1,2, •• ,n) in the above, we have

( 5) f (nx) ::: n f (x) •

That is, (3.4) is true for aI1Y nos i tLve integer n. Let n be

any negative integer. Then using (~.3)and (3.5), we get

( 6)

f( nx) ::: - f( -nx)

::: -( -n) f(x)

::: nf(x).

Hence (2.4) is true for all integers n. Let r be any rational

and mr :::n , i.e. m ::: nr. Then from (3.5) and (3.6), we get

f(nrx) ::: f(mx) , x real

that is nf(rx)

f(rx)

::: mf (x)

m:::Ii f(x)hence

= rf(x) , so (3.4) is valid for all

rational r and real x.

Thus taking f( 1) = c and x::: 1 in (3 .•3), we see that
•
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(7) fer) = cr, for all rational r.

So far only the condition that f~ sqtisfies (1.6) is used.
Now using the hypothesis that f is continuous, it is easy to
see from (3.7), that f(x) = ex, for all real x, c being an
arbitrary real constant. It is evident from the above arguments
that (3.1) is valid for all non-negative or positive x.

There are as many 'conditions known for the solution of
(1.6) to be (3.1) and thus continuous. The hypothesis of con-
tinuity of f in (1.6) can be considerably weakenad , to obtain
the same conclusion. In this connection, first we consider the
following results clueto Darboux \..261 .

THEOREM (3.2) • If f satisfies (1. 6) for all real x-
and y, then the following conditions are equivalent'
(i) f is continuous at a point xo'

(ii) f is non-negative for sufficiently small positive XIS

(iii) f is bounded on an arbitrarily small interval.
(iv) f(x) = ex, for all real x.

Proof. First (n ) (iv). Given that f is con-
tinuous at x.

o Tnat is,

lim f(t) = f(xo).



- ...•.----------------------'---'------ --------

so that f is monotonically incrcqsing. Choose and

Then for every x, we have

-'

lim f(t) == lim f(t-x+x +x-x )o 0

t - x+x --)Xo 0

==

t -x+x --) xo 0

Hence f is continuous everywhere and so (iv) holds.

Second. (ii) :; (iv).
From (1.6) and the hypothesis that f(x) -;,.0, for sufficiently

,
~. small x.., 0, it follows that

f(x+y) = f(x) + fey) ~ fey),

~Rn} as increasing and decreasing seauences of rationals

respectively, both having the same limit x. Then for every n,
we have rn < x '-Rn. Now using (3.7), we obtain

concLude : that f(x) :::cx , for all real x. Hence (iv) is true.
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Third. (iii) => (i v) •

Let f be bounded on (a,b). Let us suppose that

( 8)
•

9(x) = f(x) - xf(l) , for all real x.

Then by virtue of (1.6) and (3.8) Cf> also satisfies'(1.6)

for all real x and y, and is bounded on (a,b) and

cp(r) = r q> (1), for all rational r , But Cf(l) = o,

Hence for any rational r,

(9) <:per) = o.

Thus we have, cp (x+r) = 'f (x), x real and r rational.

Since for any real x, we can find a rational r such that

x + r is in (a,b) , we conclude from (3.8) and (3.9) that cp
is bounded everywhere. Now 'tore will show that cp ~ o, If not,

suppose there is an Xo such that cp (xo) = k ;f o, Then it is

true by (3.6) that cp(nxo) = n cf(xo) :: nk, So, for nrbitrarily

large n, cp can take arbitrarily large values, contradicting

the boundedness of c.p. Thus, <9 (x) =- o, This enables us to

deduce that f(x) = cx. Hence (iv) holds. Other cases can

be easily deduced from the above. The proof of this theorem

is thus complete.
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THEOREM C3.3). Every mcasur ab.le (in the Lebesgue sense)

function f satisfying (1. 6) for all real x and y is con-

tinuous (so after Cauchy is of the f'Orm cx). Number of proofs

of thi s theorem are known. We give below' some of them.
If

Proof 1. (Due to Sierpinski L7QJ ). Here he uses

the fact that if P and Qare 2 linear measurable sets of

posi ti ve measure, then there exist - points p E', P and q t, Q

such that p-z is a rational. Let us define

( 8) ~ ex) ::::fex) - xi(l) , for all real x~

Then we know that 'f (r) ::::0, r any rational and

~(x+r) :::: ~ (x), x real, r, rational.

From the definition of c.p , it follows that c..p is also measur >

able (since f j.s). Nowwe will prove that, for all real x ,

'-P(x) ::::0.,

Suppose, in fact, there is a real 'a' such that

(10) ~ (a) :f. o.

El :::: {x 8 R ! ~ ex) >0 rLet

and E2 ::::~x 8 P , f (x) '« 0 ~ •

Since q:> (-x) ::::- cp ex), El and E2 are symmetric to each other •

•
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Further, EI and E2 are measurable (since the function cp is)
and therefore of the same measure. Suppose the measure of these

'.
sets is positive. Then there exist

such that xl - x2 = r, r
..rational. Then we have ~(xI) =

x2 e E2" The sets EI and E<), are therefore of measure zero.
~. ...I

Let E = El U. E2- So, measure of E is also Zero and E is

the set of all points x, for which ~ (x) :t. o, Then the set
.

G = {x c R: ~ (x) = o} is of positive measure.
Let H = ~x e R: cp(x+a) = ot ~ Then H has positive

measure (for H ~ G-a, the translate ofGl.
Let x (=', H. Then Cf (x+a) = o, Hence

q>(x) + c..p (a) = o, Since by (3.10) <..p(a)-t 0, we have
CP(x) ~ o. Hence He E, that is, a set of positive measure

is contained in a set of null measure, which is impossible.
Hence our assumtrt l.on of existence of 'a' such that (P (a) t 0

is false. Therefore, cp (x) = 0 for all real x and f(x) =
xf(l) •

From this, one can conclude that every discontinuous

solution of (1.6) is non-measurable •

..
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Proof 2. (due to Banach [23 J ). Let Xo be any real

number, E. any posi ti ve number and (a, b) an arbitrary interval.

By the theorem of Lusin, there exists for every measurable func-

tion f and for every ~ / 0 (in uarticular ~ = b;a ), a

continuous function F (for all reals x) such that

( 11) f(x) = F(x)

is true for all x 8 (a,b), except perhaDs for x's forming

a set E of measure < rr , 'T'he function 'F being continuous,

for every t > 0, there is a 6«~) such that, for all

x e (a,b)

(12) IF(x+h) - F(x) \ (. c,

whenever \ h I < 6. Let h be such a real number satisfying

\ h \ (6. (3.11) being true for all x t, (a, b) except over a

set E of measure < ~, we can conclude that

(13) f(x+h) = F(x+h)

is satisfied for all x 8 (a,b) except over a set G of

measure < (J- + \ h \ < ~ + 6. The set of x e (a, b) for which

either (3.11) or (3.13) is not satisfied, is therefore of

measure ~ m(E \J G) < 2 () + 0 ( 3 () c b-a. Hence there is a

point x 8 (a,b) (denendent on h) for which (8.11), (3.12) and

(3.13) are valid.' So we have
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(14) If(x+h) - f(x) I < S
•

Using (1.6) and (8.14), we have f(x+h) = f(x) + f(h) and

f(xo+b) = f(x
o
) + f(h) and so f(x+h) - f(x) = f(xo .•.h) - f(xo)

and consequently for any real xo'

Hence f is continuous.
E.!:Q..o.f..;:'h. (du.e to Alexawicz and Orlicz L20J ). Let

x t o, suoocse

<p (t) ::: f( t) - llil tx

and 1jJ(t) 1::!:: -----==----
1 +/q>(t) I •

It is evident that f (t+x) ::: Cf (t) + 9 (x) = c.y> (t), since

'P (x) ::: o, Hence <f and so 1jJ are of period x, So,

SX x
dt 5 1jJ(t}dt

l+l<p(t)[ =
0 0

X

:::J 1jJ(2t)dt

0

x

f dt
::: 1+ 2ICP(t)T •

0
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so
x

j icrCt)ldt :=

(1+ \ cp(t)\) (1+2 ICP(t) I). O.
o

It follows that ~(t) = 0 almost 'everywherel That is to say
that, f(t):= f~X) t for almost all t, in nqrticular for

x = 1, f(t) = f(l)t for almost all t. Hence for every x + 0,
there is a t + 0 such thato

and

Therefore f(x) = f(l) x for all x + o. Evidently this eua-
lity is also true for x = o.

THEOREM 3.3. For Cauchy's eauation (1.6), continuity
and measurability are equivalent.

Proof. Let f be measurable and satisfy (1.6). Then f
is bounded on every bounded interval. Indeed, sunpose there is
an interval I:= (-A,A) on which f is not bounded. Choose
a sequence Yk 8 I such that f(Yk) '> 2n + f(Yk_l)' for fixe_d

n , Let Em = { x 8 I : \f(x)l ~ m~, m any integer. Then

ElC E2 C· .• and U Em :=I. Therefore, there is an n such that

,U(En) is positive (f..L is the Lebesgue measure) •. Define

\
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Also define

Then we see that Fk C Gk- Now choose an integer j > k,

then

f(Yj) - n ~ f(Zj) by the definition of Gjo

inequali ties we have n + f(Yk) <: f(Zj)- So

A.ddingthese two
Zj ¢Gk, k + j,

Hence F j " Fk = q-) for j 4= k. Therefore,

CD= L g(Fk) ~ 4A, FkC Gk C (-2A,2A) 0

1
that g(Fk) = 0 for every k. So,

From this weCD
f..L( U Fk)

1
conclude
(for every k) = 0, which is a contradiction- Therefore, f is
bounded on every finite interval and hence is continuous.
Thus for Cauchy's equation, continuity and measurability are

equivalent.
THEOREM 8.4. Su)pose f is a real additive function

f satisfies (1.6) and is bounded on a set E of positive
measure. Then (3.1) holds, i.e. f is continuous.
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Proof. (Due to Kestelman l53] ).. By a theorem of
Steinhaus L80] ,there is a poSi.tive number 6, such that,
every real number e, satisfying \e"l<. 6, may be expressed as
x-y for suitable x,y in E. If M is the uuper bound of
f on E, then by using (1.6), we obtain

\f(e) , :::\ f(x-y) \
:: I f( x) - f( y) I

(15) t 2 M.

Hence, using (1.6) and.(3.15), we get, for \~I ~ * ,that

(16)
Let 0( be a real number. if rn is a rational such that

6 /I 0( - rn \c. Ii ' using (1.6) and (3.16), we have

\f(O()- 0( f(l)) :: I f(o(-rn)+ (rn - o() f(l) I

L. Eli + \ f( 1) I 6 ( ), n:: 1,2,•••n n

which means that f(O()::0( f(l), which is wanted to be proved.
COROllARY 3.5. Every discontinuous solution of (1.6) is

unbounded on every set of positive interior measure.
COROLLARY 3.6. If f satisfies (1.6) and is measurable

in some set of positive measure) then f is continuous, because~

•
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the set of x for which \f(x) \ -: N has positive measure,

if N is large enough.
THEOREM 3.7. Let f be real additive and be bounded

from above on some interval [a,b J Then f has the form

(3.1) .

Proot. L 41 ] We first show that f is bounded in
a neighborhood of the origin. If this were not so, there would

exist a sequence x --) 0 +n
such that Hence

\ f( a+xn) I = t f(a) + f(xn) \ -;00 •

in [a, b1 ,this means f(xn)-7

Since f is bounded above

-00 and hence f(b-x ) =n

f(b) _ f(xn) -=)oo which is impossible. [so, f is bounded in
a neighborhood of the origin which certainly is of positive
measure]. So, from theorem (3.4) f has the form (3.1). [we
give another uroof here] • Now claim that f(x) -70 as
x-,?o + • If the contrary were true, then t here would exist a

sequence x -4 a +n
(or f (x ) cn -

-t -:0) But then andfor some

k+n
lim l: Xi = a for arbitrary n, which again is impossible.

k-7co i=k
So, f is right continuous at the origin. Not only f is

right continuous at the origin, but because of the additivity,
it is clearly right continuous for all x > o. From (3.4) we

•



29

have fer) = r f(l) for any "l'"ationalnumber r. Making use
of the right continuity, we finally obtain f(x) = f(l)x, for
all x '> o. Hence f has the fof'm(3.1).

THEOREM 3.8. All solutio~s of the equation (1.6) which
are bounded from below (or from above) on an interval ar8 of
the form f(x)=cx, c, a constant.

Proof. Let f satisfy (1.6) andb8 bounded below in
[a,b] , that is, there is an M such that f(x) ';> M, for all
x (,'[ a,b.:J • Now, first we will show that f is bounded
below in [0,b-a '] • .
If x c r0, b-a 'J, then (x+a) E'. [a, b J. Hence

f(x) = f(x+a) - fea)

( 17) ~ M - f(al, that is f is bounded below
in l0, b-aJ ·

Consider the function

( 18) g(x) = f(x)
.llill.. .1d x, where d = b-a T 0,

= f(x) cx, where cd = fed).

Evidently g also satisfies (1.6). It is enough to show that
g(x) = 0 for all real x. For all x 8 [o,d] , c x <.

max (o,cd) = e·

•
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~ Prom (?17), (?H~) and the 8.1)ove we seE: t.b at

for all xf fo,d-\- -g(x) ?. M-f( a) -e,

l'ho.t is, g is bounded below in to, d J, say

( 19) g Cx) '> N, x r t.o,dJ ·
""'rom (:-:<.18) I}TE: have g(d) = o. "'hus g Cx+d) = g(x), for all real

x , That is, f is DeriocHc, vri th nor i od d.':; ince g is bounded

and g is oeriodic with Deriod d, we conclude that

g is bounded below every\"here by 1'-1.

Surmo s e there is an xo such +ha t g(xo) = o•

•
If g(x

o
) ). 0, then by (? ':l), g( -xo) < o.

By (~.6), we can find 8.n integer n sufficiently large such that

g( -nx,o) I:... N. If g(x ) z 0, as before by (2.6) we can find an.•...., 0

int.eger n sufficiently Lar ge such that gnxJ) < N. In either

case we get a contraniction to the fact t.h:J.t g is bounded be-

10\.)' everywhere by N (?19) 0 Hence g(x) = 0, for all real x ,

'T'hen by (~.18), the result f o.l Lovs .

Extsj;ence of 8. rUscor.tinuous solution of (1.6)

Hqmel I 'lq-.J , has ~roved by using the axion of choice
,,'

tl-}at (1.6) has a di.sconttnuous solution.

'T'~{EOREE?~ ""here exists an f satisfying (1.6) but is

not of the form f(x) = ex.

Droof. '.Te shall rie ed the i,1e8, of 8. Hamel bqsis. fA set H

wi t.h the following nr ooer t i es is called 8. Hamel basis:

•
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(i) every real number x can be represented as a finite linear
combination

with xi E', Hand ri rationals for i = l,'?,•••n ,

(ii) No proper subset of H has the property described by (i).
Such a basis can be shown to exist by making use of

transfini te induction [42 J , or equivalently by Zorn's lemma
etc. Note that H is nondenumerable and the representation
for x given by (i) -i s unique, because of (ii).
Now let H be a Hamel basis and for each b 8 H, choose
f(b) as an arbitrary real number. Then for any real x (of

the form in ( L) define

n
( 20) f(x) = L: ri f(xi)•

i=l

Then f constructed by (3.20) always satisfies the functional
equation (1.6). Indeed, if

n n
x = L: rixi and. y = L: qk xk' (xi €, H)

i=l k=l

(f\omeof the coefficients r. and qk may be zero, but we
1

use n terms in both cases), then

•
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n
x + y == L (ri + q . ) x ..

i=l 1 1

From (3.20) , we obtain

n ,.
f(x+y) = L (ri + q.)f(x.)

i=l 1 1

= f(x) + fey).

Such a solution f is continuous, if and only if, there is a

constant c such that

f(x.) == cxi' for all x. e H.
1 1

Now to exhibit an f that is discontinuous. For a particular

xi C' H, let f(x.) = 1 and f(xi) = 0 for j ~ i, x. 8 H.
\J 1 u

I J

If f is to be continuous, then we know that f(x) = cx.

Hence
x.
~
x-'-'-

• But the left side is zero for all=

x. t x. for the above definition of f, while the right side
J 1

can never be zero (since a basis does not contain the zero ele-
ment). This contr~diction shows that f is not continuous.
Reduct:i..9tlto differential and integral eQuations.
The method employed here is to reduce functional equations to
differential or integral equations and thereby solve the func-
tional equation. 'Here we illustrate theSE)methods by the ex-
ample of Cauchy functi('Illalequati on (1.6) •
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Reduction to differential equation.

Differentiating (1.6) with respect to x, we have

f I ( x+y) = f! <. x) •

Hence f' is periodic with arbitraty period y and consequently
,.:ehave fl(X) = c , where 0 is a constant.

Hence f(x) = cx+d.
Since feo) = 0, we get f(x) = cx, that is

form (3.1).

f is of the,

~eduction to integral equation.
Let f satisfy (1.6) "and f be integrable. Consider the
double integral in the region x .') 0, y "/ 0, x+y <:.. t.

;' -

Then
t

dxdy + J
o

t

r
,I o 0

t-y
f
o

t t-y
=.f Jt-y

f
o

f(y)dxdy.fex)f(x+y) dxdy

o

Hence
t t t

S f f(v)dv dy = r
o y 0

t-y t
S f(x) dx dy + f (t-Y)f(y)dy.
o 0

t
Let F(t) = \ (t-y) fey) dy , then F I let) == f(t) and F '(0) == 0 ==

"::0

f(o). Now, we have
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J,

t

S [f'(t)
o

t
-F'(y)]dy= ) :r!'(t-y)dy+F(t)o

o

that is,

tF I ( t) - F( t ) :::F (t ) + F (t) 0

3= t or ?( t.)
':!

= k t<' 0
F I (t)

F( t)Hence,

Thus f(t) = 6 kt and hence is of the form (3.1).
De_duction of differentiability from inteF.Trability.
\s in the above case, ~et f satisfy (1.6) and be integrable,

say in the int(~rval [0.1J
Integrating with respect to y, we have

1 1 x+ L

f(x) = .~
f(x+ y) dy -5 f( y) dy = j f(t)dt - c, where

0 0 x
1

)f(Y)dY = co
0

Since the right side is continuous, so is f. Since f is
continuous ~ aga t n we ho9.'18the right side is differentiable and
thus f is differentiable. Hence f h~s the form (3.1). But
differentiating the above equation, we have, by using (1.6)

Thus

f I(X) = f(x+l) - f(x)
= f( 1) ,

f(x) = f(l)x.
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Solution of the Cauchy eQuation (1,6) for comolex values.
Theorem 3.10. Let f be a comolex-va1ued functiibn

of the com~lex variables satisfying (1.6). Then the most
general solution is given by

f(x) = f1(Xl) + i f 2(x1) + gl(x2) + i g2(x2)

where x = xl + i x2 and f1' f2, gl and g2 are solutions of

( 1. 6) , xl' x/2rea1s.

Proof. Let X :;:xl+ix2, Y = Yl+iY2. ,Further, let

( 21)

Then, it is easy to see that

(22)

and

(23)

Set in (3•.22)• Then, with

( 24) flex) = F(x;o)t ,x real, we get
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that is, fl satisfies (1.6). Similarly, we obtain by defining

( 25) gl(x) :::F(O,x;for x real, that
.l gl(f2+Y2) :::gl(x2) + gl(Y2)' that is,gl is also a

solution of (1.6).

From (8.22), (3.24) and (°.25), we have

Similarly, we obtain

From (3.21), (3.26) and (3.27), we have the desired result

Theorem 3.11. Tho general continuous comulex solution
of (1.6) is fez) :::cz + dz where c and d are arbitrary
complex number s,

Proof. From theorem:(~.lO), we see that fl, f2, gl
and g2 are continuous solutions of (1.6). Hence by Theorem
(3 •1), we have, for z > X + i y,



flex) := clx, cl real

f2(x) = c2x, c2 real·

gl(x) = c')x,c real.
t.· 8•....•'

and g2(x) = c4x, c4 real.

37

Hence

( 28)

and 1d := -
2

Remark. The general differentiable solution of (1.6)
, in the complex case is fez) = cz, where c is any comolex

number, since z is not differentiable.
Solution of Cauchy equation for functions of several variables.

Theorem 3.12. Let f be with domain nR , taking real
values and satisfy (1.6), ~hen the most general solution of
(1.6) is

,
where fis satisfy (1.6). Thus the general continuous solution
is f(x1, ••• ,Xn) = c1xl + •• + cnxn' where cd.s are reals.
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Pr09f• It is sioil1.rto the proof of theorem (8.11).
Number of questions were r~ised of (1.61, some of them

were solved very recently and some of them still await qnswer.

(I.Halperin). Does the continuity of
(1.6) and from f(~) = ~ f(x) • (all

x

f (real) follow from
x f. 0) ?

The answer turns out to be true. Here we give proofs
due to Kurep:~ and Jurke.t. 'T'hefollowing theorem in this direc-
tion is due to Kurepa [661 •

'T'HEOQEM 2.13.° Let f and g i 0

the Cauchy functional equation (1.6). If
be two solut~ons of

1get) = pet) f(t)

holds for all t f. 0, whero Pis a continuous function such
that pel) = 1, then net) = t2 and f(t) + get) = 2tg(1).
Furthermore, the function F(t) = f(t) - t f(l) satisfies (1.6)
and the equ~tion F(ts) = tF(s) + sF(t) for all real t and
s(F is called a 1erivative).

Proof. Let t f. 0 and r a rational number different
.ftom zero. Then

(29) g(rt) = pert) f (:t).
Since f and g satisfy (1.6), using (3.4) we get from (,~.e» ,

1 1rg(t) = pert) r f (t)'
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Hence, get) = p(r~) f(i) so that,
r

If s 1- 0 is any real number, using the continuity of 'D

and (2.20), wo obtain

Since f ~ 0, from (2.31), we have

(32) P( st) 2= s pet), for all real s -I 0 and for at least one

In (3.9.), setting
t say t 1- c,

o

S = 1. ,we getto

( 33) n(t ) =: t2 pel)o 0

= t 2° .

2s .

In the above renlacing s by ~ we find thatto

(24) PC s)
C")= se., for all s -F o,
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(35)

Evidently gel) = f(l). Now, ~efine

(26) and
(P(t) =

l G(t)

f(t) - tf(l)

= get) - tg(l).

Obvi ousLy F and G s::-.t:isfy (1.6). Further f'r or;(~.r:l5) an,-l

( ? •"6), we have

(37)

i.•re have frol"l (r:l.')6) and (".4), that for an" rational r ,

( li'(r) = 0t G(r) = o ,

No\-!, from (~.~7), (r:l."g) and (1.6), we have

(38) and

Set) = G(t+l) = (t+l)? F(l~t)

= (t+l)2 H'( 1 - -rtt)

=-( t+l) 2 F(-rtt)

=-(t+l)? (-1-)? G(l+t)• l+t • t"
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( 29) = - "P(t).

(40)

r{t) + t'f{l) = - get) + t g(l).

th..,t is,

f(t) + get) = ~ t f(l).

NOW using (~.4) and (~.40), we h~ve

F( t) + ..l~~(t)
t--'

1= 1i'(t- t)

= F( t
2
_1)
t

= _Ct2_1)2
t·

(4?)

t2 1 2 , 1= -(-=-) Li'(-=- _ - )t2 +-1 t2_1
2 2 ~= (t ;],.1_ \ -1 ~ 1;' ( t -1) +
t-' L(t-1)-'

+ 1 F(t2_1~)
') 2(t-'-l) -

(t+l)2 1 2= 2 F(t) -? F(t ).
t -, t-~
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SiDDlifying wo obt~in

(43)

In (-=<.4r,), rc'')lqco t bv (t+s) '''.TIn. use ("'-l.4::», we h-ive

( 44)

Q.,QrolW"Y'1.14. If ,'3.. function f:R~ R s1.tisfios

(L G)'lna holds for t ~ 0, then f(t) = t f(I).

'Proof. :r t is 81rident tr on the proof of the theoren

(':l 0 1:') and (') .41) •,

f(~') = ~ fC-~), for 'l11 x ~ o, "'hen f is eont tnucus ,
x

For x ~ 0 nn~ 1, we bqve

_--:::1::- = _1_
x Cx=L) x-I

1- - •x

Since

(45) = ~ f(x), x ~ 0
x

I.,Te have

1 fLx(x-l)J = _L:)
(x-I) ~

r(x-I) _..l..
x2 f(x)
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Thnt is

(46)
\ .,

(46) is ~lso true for x = 0 and 1.

n ..s i ng

4xy = (x+y) 2 _ (x-y) 2

ann (?46), we h~ve

f(4 x y) = 2(x+y)f(x+y) - (x+y) 2 f(l) -

~ 2(x-y) f(x-y) .• (x-y) 2f(1) j
= 4 x fey) + 4 yf(x) - 4 xy f(l),

Y:ence

(48) f(xy) = xf(y) + yf(x) - xyf(l).

1
y = x' x ~ 0Putting in (~.48), and using (8.45),we h~ve

f(l) = xf(l) + 1 f(x) - fel)x x

= ~ f(x) - f( l)? f'r om which follows

f(x) = x fel), for x ~ o.

Th::.~ last oquit Lon is also true for x = c, Hence f is conti-

nuous.

r,.

I

:'1
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., 0 A·'oy. ' •Er oo s, Let f be a real valued function satisfying
(1.6) for almost all Dairs (x,y).' Is it true that f is then

criua L almost 8v(-;rywhereto a f'unc t ion w~lich satisfies (1.6) for

qll x,y? Here again the answer is yes.. The result nrove1

~HEO'~EL~.16. Let f be r esL vaLued , dof'Lncd for al-

most all real x and sunnoso that (l,e) hol~s for al~ost all
na Lr s (x,y) in +ho sense of DIane measure (Lebesgue). 'rhen
there exists R real-valuo~ function F~ defined for all x and

Y whieh coincides with. , fsatisfying (1.6) for ~ll x 2nd
for almost all x in the sense of lino2r measuro (Lebesgue).
These r ecuf.r omerrt s (1et~,;rmin,:;F urit oue l.v,

Proof. B "'"h • • I tl th 11 t. Y rUIJ1_nlS 11GOrem, ere are nu so s N

NX such that (1.6) is tru0, if X f N, Y t Nx• Let M be tho
com'Jlement of N and notice that f is definer! onM. First

we will shaw that (1.6) holds, whenever x,y, x.•.y P M. Fix

th1.t Z 1 N ,x+y

and Z t Ny. ~his is Dossible by avoiding ?

But then life have

and y for the moment and nick Z such

y + Z t }'IT x
sets for z ,

null

t Cx+v+z) = f(x+y) + fez)

f(x+y~z) = f(x) + f(y+z)

f(y+z) = f(y) + f(z),

x
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~n~ the result follows. Next~ we will nrove that

( 40) fexl) + f(x2) = f(YI) .•.f(Y2)
!t

,
Pi ck Z t· M such that X2 = x2 - z t. M, Y2 = Y2 .• Z E' M,

, ,
Xl + x2 = YI + Y2 = Xl + x., - Z = Y1 + Y2 - z r M. This is

nos sLb'Le by avcd df ng Tour null-set.s for z, Now, we have
,= f(Y2) .•. f( z)

Hence
,

f(xl)+f(x2) = f(x1+x2) + fez)
,

=: f( y +Y ) + f(-,)I 2

Finqlly, we show th~t given x1,x2,x8 e M, there exists
YI'Y2 r, M, such t.hat

~

71 + x2 + x2 =: Yl + Y2

( 50) and
l f(xl+x2+x1) =: f(y1+y2)·
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This is ~one by nicking z r M such that z·::: x3 ~ z r M,

Y1 = xl + z E', 1v1, y? = x.:2 + Z, = -x~• ..j- x~ •.z P M (avoid four

null sets). 'T'henwe have

f(x~) = fez') + fez)

f(Y1) = f(x1) ..j- fez)

fey?,)= f(x2) + fez').

Thus (?C)O) is obtained. In order to define F, we notice that

every real number z is of the form x+y with x t- M, y t. }1
,

(sirn'Dlynick y r 11 such that y = z ... x t. M) • Define
-I.

F( z) = f(x) + f(v) , vh l ch is single-valued, beeause of (?4C;)0
Ji
II

For z c M, (1.6') im'r)lies F( z) ::: f(z). Now t ake two arbitrary i'
,~

real number-s zl' z2 of the forms xl"'" y, I and x2 ..•.Y2 where II
I ~

xl,x
2
'Yl'Y

2
e H. By annlying (?.SO) tw(.c we obtain, two numbcr s ~

~zi~ z~ e M such that I

(.Sl,)

\ xl+Yl+x2+y? = zi+z2
'\If(xl)+f(Yl')+f(x2)+f(Y2) ~ f(zi)'+ f(z~).and

L.B.S. of ('=\.1:)1) is er:ual to F(zl)+F(z2) by defjnition, wh.i Le, ,
R. H. S. of C":\•.Sl) eouals FC Zl"'"Z2) = F( Z1+Z2)' thus orovIng (1.6)

for F with unrestricted variables.
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,.

i;
It remnins to show the uniqueness of F, Let Fl ,nd

"? 2 be ? functions sqtisfying (l.~'\for Rll x ,Y and coincldc

on a set wri cn Lnc Lu+e s almost all x , Let F = Fl-F2" Then

F also satisfies (1.6) and vqnishes on M. As overy re~l
number z is of the form x+y vvith x,y r, M, we see that
F(z) = F(x) + F(y) = 0 hol~s generally. ~his comryletes the nroo~

of this theoreEl.
~hQ. other CGJJ..chyEr'lu':ltions.

Now let us consirl.erthe following eauationSl

(1.7) f(x+y) = f(x) f(y)

(1.8) f(xy) = f(x) + fey)

(1.9) f(xy) = f(x) f(x).

One can fin0. solutions of these eauations either by a met.nod

adonted similar to that emryloyed for (1.6) or bv other means.

,.
i

"But one can also find more promptly the solutions by 'Jutting
them in a form 2.nalo~s t.othat of (1.6). First let us consi der

( 1. 7'\ •

THEO:l.EH~.17. Let f be a re:=tlva l.uert function of the
real variable satisfying (1.7'). mhen the most general solutions
of (1.7) are f(x):::::0 ann f(x) = eg(x) where g is an
arbitrary solutjon of (1.6').

1 't

I
'\

1
i
I
I
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(:

Proof. SU~Dose f(xo) ~ 0 for some xo. Then from
(1.7) we have

fex) ~ f(x x -+- x )o 0

( 52) = f(x x ) r(x )o 0

: 0, for all real x.

Hence f'(x) = 0 e,,rerywhereor nowhere, In ease (1,7) ho Lds
only for nositiVG x,Y, then ~lso the a~ove condition holds.
For vh at we have from (~.F:;0) is that f(x) = 0, for all
x > x •./ 0

~hen there is an inte~er n

n x '> x •a
Now from (1.7), we havesuch thflt

Since f(nx): 0, this gives f(x):; 0 for '111 nositive x,

So, without loss of gener'llity,we can assume that f(x) ';i 0

for all real x. Renlacing x and y 1n (1.7) by x/2, we
obtain

f(x) = f(x!2)2) 0.

from which follows that, any nontrivial solution of (1.n is
always noslt i.ve , Now taking logarithm on both sides of (1.7')

('l.nd
,e
c

( 53) g(x) = log f(x),

~.
;,
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we have

g(x+y) = g(x) + g(y):

Hence f(x) = og(x) is the most general nontrivial solution of
•

(1.7), "lith g satlsf'vang (1.6).

COROLL~~Y 2.18. ~he most general continuous (conti-
nuous at one "I)oint,men sur-abLo on a set.of nos Ltive measure
etc.) solution of (1.7) is f(x) cx= e ,where c is any
constant.

Pr0of. ~rom (~.~~), it f0110ws thqt g is continuous,.
since f is, Hence g(x) = ex (by theorem ~.1) and the result
follows.

-qem1.rk. In case (1.7) is va l.Ldonly for nonnegative-----..--" ......-
x,Y, in ~~~ition wo have ~lso the solution f(o) = 1 ~nd

f(x) = 0, x > o ,

p~2:getion of differentiability from integ~ability.
Tl-IE03EM 2 .19. ~he continuous solution of the functional

equation (1.7) are f(x) = 0 qnd f(x) = eCx (c, constant) and
only these.

~rooZ~ f(xo) = 0 at some "I)ointXo implies f(x) = 0,

for all x. So, vie as sume t.nit f'{x) #- 0, for all real x ,
'1'henfrom (1.7), 'It-Je have

f(o) = f(0)2 and thus f(o) = 1.

11



.,:.-.,.

so

Since f is continuous an~ f(o) = 1, there is an

S1.J.ch th8.t
[

8. = S f (x) dx ~ 0 •

o

c ') 0

-~

~I

i'
;Il
.~

Integrating (1.7) with res~ect to x between 0 an~ b, we get

£

J f(x+y) dx =
o

t

f fex) fey) c'lx

o

Hence

f( y)

s
= 1 J"f(X+Y) dx for all

a
o

~eplacing x+y by u in the right side, we get
t,+y
S f(u) nufey) = 1

Y

ff+Y Y
f(u~ du - f f(u) du 1 ·

o o

':.'hecontinuity of f sives thqt the right side is differenti-
able and hence f is differentiable.



Diff8r8nti~ti~g (1.7) with rcs~eet to x, we obtain

fl(X+Y) = fl(x) fey), for all x 1.nd y •

•Putting x = 0 and taking f '( 0) = e, \'le have

fl(y) e cf(y) for 'tIl'Y.

'T'hus fey) = ex
11 (; , ,'1where

Using the fact th~t f(o) = 1, we get a = 1. ~hus

f(x) = exe , x.for all

'l'HEO,lEH 2.00. Lot ..y be a como'l ex-va'l.uod function

sat Lsf'yt ng (1.7) non-tr.1vial1y for x,Y ~o with V (0) = 1

and h)(x) \ be bounded in some Lnt.or-vaL (a, b J . 'T'hen

\...J (x) I = exp cI. x for some real number d.

proo,r.---L!ll Let fex) = log \~ (x) t. 'T'hen f is

well i1efined on Co,m[. Further f(x+y) = f(x) + fey),

that is, f s at l sf t os (1.6). Al.so f( 0) = a and f is

bounded from above on [rt, b). 'T'hcm we l-now th,'1t (~h. ~. 7), f

is cont Lnuous , +h+t is f(x) = f(l) x, for 'T'akingx ~ o.-
0( = f(I), we get our rlesircrl result.

DEFINIT!ON. (\ls(; refer [40'J). Set ~ (x) %

..) (x)
vthereV sat t s r i es (1.7) l<Tith "V (0) = 1. 'T'hen it

is clear th!:1.t ~ aLso sa't l s I'Le s (1~7) for x,Y '"2.. O!:l.ncl.

Ij'~ (x)\ = 1. For negative x , we may set 'J<. (x) = (%( _x))-l.
Then 1- satisfies (1. 7) for all ro!.'!l x , Such a function is

called a char~ct2r of the real line.

'j
i

: .
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THEOREM ~. 9.1. If IX Ls a I'1G'1surablGcharacter of the

real line, then .'1.... (x) = exp (i~x) felr some real ~ •

Proof. For \ 0 \ /'> 0 anc'l -<) ') 0, we have
-)

[f(X+6) - (';(ex) ] ~J '- J [·,~~(x+o-y) - IX (x-v) J :x. (y) dye

o
.~
I

Hence ,'X.(x+o) - f( (x) I 4, I ( \X(x+o-y) -X (x-y)\rly which
',,I

" \',

tends to zero with \ 0 t • 'i'husrf.. is continunus. Further

"/.., (0) -1

o

y

J ''X (x) dx

o

y

= ~ f [qX. (x+S)
o

j( (x) J ix

Y+6 fJ
1 J tt. 1 r ?(. (x) ,l.x.- . x( dx)-- ~~ -0 0 "y 0

y

Choose Y so th:l.t.r 'X (x)dx -f. c. Since the limit as \ 0 ) -00

o

exists for tho terms on thn right hand side of this equ~tion, it

follows th~.t the dor Lvat Lve of 'X (x) at x > 0 exists. Let
d rx (x) i .
-~. - -I = 1 B. "'hon we 1tlillshow

dx ! x=o .
~. exi sts ~t all x P. ] -co, CD [' and
In fact,

th:tt the
11. IC (x)

ax

aerivative of

/,,?<. (6) - 1= ./'v (x) , 0
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Li111it as \ 0 \ ..-':.) 0

of rxr),:Jrivat.Lve

exists in the right sirte. Hence the

exists at all x. ~aking the limit as

, 6 ~ -; 0, we get
I

d ~xill. = ~ (x) i s , H(;:mce1-- (x) ::: C eXD (i ~x) •

Since rx-, (0) ::: 1, c ::: 1. As 1'7v (x) \ ::: 1, we see that ~ is

real.
THEOREM 2. ?? If 'V is q me1.surable function (comDlex-

valued) and satisfies (1.7) n0n-trivinlly for x,Y? 0 with

~ (0) = 1, then -V (x) = eXD C (0( + i ~) x J for some real

numbers 0( and ~.

Pr'')of. Let f(x) ::: log \ V (x) \ • 'T'hen f is measur-

able and additive on [0,00 [. Hence f is continuous

(Th.:?2). so , by theorem ('?20) \ V (x) ::: exp 0( x, f'r)r

SOl71.ereal d. Further rx (x) =
.s.ss: is measurable t s», by,
\'I (x) I

theorem (8.81),

('/...(x) ::: i ~x for S0r.lC real B·

'T'he result nO'His immediate.

New we will take un the equation (l.R).

1'I1E0l1EM 2.?~. If f is a soluti("n of (1.8) for al.L

real x,Y ~ o~ then the most general form of f is fex):::

g(log I x ] ), '';.Jhere g sp..tisfies (ll6).

0,r
~
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Pr"'-'f ~ First not o thqt f is even, For, r e o'l ac e

y by x "ln~ then x ann y by -x resDectively in (1.71,
then we obtain

f(X2) = '), f(x)

:J.150 = 2 f( -x) •

Thus f (x) = f( x) , for x -I ('I.

Now let x 'ClDr1 y bo no s Lti v c., 'T'here exi st s u and v such

that x = eU ~n~ v
y = e ~. By defininG

ug( u.) .:.f( o ),

and using (1.8), vie obt a In , g(u+v) = g(u)+g(v).

Thus for x 7 0, f(x) = g(log x), where g satisfies

(1.6). 'T'hen the result follows from the fqct thqt f is even.

COROLTJARY~. 24. 'T'he corrt l nuous solution 0f (1.8) whi eh

is defined for pll x,y -I 0 is f(x) = e log x

'I'he proof is Lnmcdi at.o from thcqbovc; t.he or-em (1. 2~) •

Remarls.. If (1. R) is '11.11c1 for "111 r caL x , then

f(x) ~ o. For, Dutting x = 0 in (1.8), we h1.ve f(o) = f(o) +

+ f( y), from wh i ch it is O'lSY to see thA.t -f(x) o.

CD.1ractcrization of eXDon<'mtial and log,qri thmic functions.

'l'he f'unc t Lons exe a.nd log cx can bo characterized

by means of the equ"ltions (1.7) and (l.R) res~ectively (vi~c

above theorems), in two var LabLo s , But these f'uno't i ons can

al so be charac t er-Lzod 'N1. th the n.iel. of the following enuat i on s

;..•

,1
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in 8, single vlriable:

( ,54)

and

and some a~~iti0nal conditions. ~ha following theorems will be

of inter ~~st in that rlirecti on (for »r ocf see [.sn. J ).

tion which is differentiaole tn

the oonri i tions f(o) = fICo) = l~,

~he function f(x) = log x is the only function whict. i3

?ifferentiable in

fl(l)::::l.
"'IT

T:-LEO:1EJvi". ~G. "'ho function f(x) = c? ts tho ',nl,y

function which is logari thmically ~onV2X:i,n ] 0, mC, (~citisf'y-

ing C".,S4) ann. the condition f(JJ = 8. 'rho runct.t on

f(x) = log x is the onl.v function l;Ioich is conCA1'E)(-f convex)

in J1,I))C, s~tisfving (::1.,,)5) ;l,l(!, the condition fee) = L

'T'HEOREM ".97. If f satisfies (LS1) f(xy) = f(x1f(y)

for all nositive, x,y or for ~ll real x,y or for all real

x ¢ 0, y ¢ 0, then the contiruaus solutions of (1.0) arc

'I.

';.

,:Jf~
:~
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( 56)

f(x) c= x f(x) = 0

f(x) x i 0,

x = 0

f (x) _}[x~C sgn x, x i 0,

\0 , x = o

f(x) = 1, f(x) = s;znx
f(x) = 0, f(x) = fsgn x,

. cr
f(x) c f(x) . C f(x)= lX\ = \ X\ sgnx, = 0,

respectively.
'lnd be nos tt i vc , Put uPr:lof. Lot x y x = 0 ,

v u g(u) (1. 9) • 'then havey = e , f( e ) = in vIe

g(u+v) = g(u) g(v) which is same as (1.7).

Thus the continuous s"lutions in this case arc

f(x) -- cC Log X -_ XC fe' )or . x = o.

Now, ~ut x = 0 in (1.9) •. ~hen we h~ve

f( 0) = f(x) f( 0) f'r om which we can concLudo
that either
( 57) f(x) - 1 or f(o) = o.
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NO'IT, lot x i 0, y i o~ Set fi.rst y :::: X and then

replace x and y by -x in r r.:» ~ 'T'henwe obtain

f(x)2 f(x2) -"'( ) 2:::: :::: 1. -x -.

Hence
f( -x) ::::f(x) C::::X

( ,58)
or f (-x) ::::O.

or = -f(x) c= -x

Thus since f is continuous, for x i 0, vJe have

f(x) = x c, f(x) = cx sgnx, f(x) ::::0,

for if there are x and y (;t·o) such thlt f(-x) = f(x)
and f(-y) = -f(y) , than from (l.q) we would have f(x)f(y) ::::0.

Let x,y bo real. ~hen from (?~7), (~.58) we obtain the
continuous snlutions as

f(x) =
c sgn, x i 0,

x ::::0
f(x) ::::f x

'-0, x = 0

f(x) ::::0, f(x) ::::I f(x) ::::sgn x, f(x):::: sgnx

THEOHE}ij ~.?R. 'T'he common s o'Lu'tions (real) of (1.6) and
(1.9) f(x) and f( x) :::: o ,::::X

£.roof. For x > 0, re1)lacG 'lndx y

~hen we have
f(x) :::: f C-Fx)2 > o ,

•

x .

I'
hi.
~,
r'1

,.,~
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,(,hus f is non-rievat i.ve for positive x. '('hen by ,(,hec'rem (1.?)

f being a solution of (1.6), we ha~e f(x) = cx. '('his in (1.9)
9 fgives the condition that ' c x y = C" X y, from wh l ch it . allows

. ;
-. -t that either c = 0 or c = 1. ~hus f(x) = x or f(x) = o.

'T.'HEOiiEH ?~. The common continuous comn'l.ex solutions

of (1.6) an1 (I.?) are f(x) = 0, fex) = x andf(x);x

(here f i$ a comu1ex function of a comn1ex variable).

PrO.Qf. All con+ inuous , comnl.cx solutions of (1.6) :=1.re

givenb,!(theorem ~.ll)

( 28) f(x) = ax+bx, f')r all complex X; a, b comol.ex ,

hence for all real x, f(x) = (a+b)x. ~his in (1.9) gives

'¥ either a+b = 0 or a+b = 1. "'hus (8.9.8) takes the form

f(x) = a(x-x)

or
fex) = ax+(l-a)x , for all com'llex x.

First let fex) = a(x-x).

Putting x = i.y = 1 in (1.0), we have

f( i) = f( i) f( 1), that is,

a • 2i = a . 21 • o. Thus a = o.

:-Ience fex) -- o ,
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-From (59), next let f(x) = ax + (1 - a) x.

Setting x = i, Y = -i in (1.9) W~ have

f(l) = f(i) f (-i).
that is,

1= (ai + (l-a)(-i)] [-ai -+- (l-a)~J

= 1 - 4a + 4a2•

Hence a = a or 1. ~his gives either

- .= x or f(x) = x. Henee the result.rex)( 60)

§,olution of (1.7) and (1.0) for coml')lexvalues.

(1.7) f(x+y) = t'( x) f(y), f :t -~ {; C comnl.ex numbers.
THEO~EM ~.~O. ~he continuous, comDlex solutions (non-

vanishing) of (1.7) are f(x):::eax+bx ,a,b complex constants.

~roof ~" (rlueto A.bel C4] ). Let '0 + iq =
,: I ~ ?

:t r (cas <f + i sin 1) ) , lJ,q real. ~hen r + a= p

- .9..
- r •

1)= -rc o s ·t; and

Let r = h(x,Y) and ¢ = g(x,Y), where n + iq = f(x+iy)
~hen for x,Y, u,v real, we have
" C cas g(x,y)]I f(x+iy) = h(x,Y) g (x,y) + i sin
I
I

~ f(u+iv) = h(u,v) [cas g (u ,v) + i sin g(u, v)J
f'(x+u+Ly+L v) = g(x+u ,y+v) [cas g(x+u,y+v) +

-

+ i sin g(x+u, yrV) J

( 61)

""

~.

~.

J
I
I
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=

h(x+u, y+v) Leos g(x+u, y+v) + ,i sin g (x+u , y+v) ]

h(x,Y) h(u,v) [cos (g(x,Y) + g(u,v) + i sin (g(x,Y) +

+ g(u,vn]

'..ll
~l
il
1i

.~

i.,

1<' ....rom (1.7)qnn. ('1..61), we get

Hence

(h(x+u,y+v) cos g Cx+uv y+v) = h(x,Y) b(U,v) cas (g(x,l) +
I + g(u,v».
I

(62) ")

f h(x+u;y+v)
"-

sin g(x+u,y+v) = h(x,Y) h(u,v) sin (g(x,y) +

+ g(u,v»).

Squaring ~nd ad~ing ('1..62), we get

o
h(x+u, y+v) (J = 2 2h(x,Y) h(u,v) from which follows

(62) h(x+u,Y+v) = h(x,Y) h(u,v) (since h is al1,r8..YS

Dositive) •

From (".62) ani! (~. 6'=\) results

(64) g(x+u,Y+v) = 2 m -rr + g(x,Y) + g(u,v).

where m is'lny inte~cr.

Since f is corrt inuous , so are h and g.

,'\s g is continuous, m in (':'l. 64) should be a cons tarrt ,

~rom ~heorem ~.lO, it follows that,
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But we will 1')rO~Te(;1.65) 'Ising t\.bel' s ar gument as follows.

Dutting x = ° and u = 0 in (3.65), we get,

( 66)

""
i g(u, y+v) = 2 m 'TT + g( 0, y) + g(u, v)

~
I g( x , y) g(o,v).I g(x,Y+v) = 2 m 11' + +
I'-

F.'rom (?64) and (3.136), '>1e get

( 67) g(x,y+v) + g(u,v+v) = 2 m 'IT + g(u,y) + g(o,v) + g(x+u,
y+v) •

Letting
(68)·, , 5 c{ ( x)c ~_g(x , y+17 ') ,

l ? m 'IT + g(o,Y) + g(o,v),

we have from (3.67) ~ •
0( (x) + 0( (11) =, c -I: c( (x+u).

(69)

cl. being continuous, we get from (~. 60) ,

(70) cl. (x) = ~x + c,
where d = cl. (1) :.;:C. I •

Thus, cl. (1) being .q function of y and v, we have

(71) ~(x,y+v) = d(y,v) x + ~ m 'TT + g(o,Y) + g(o,v).

x = 0 in (°.71) gives

g(o,y+v) == ? m 'IT + g(o,Y) + g(o,v).

Hence, (72) g( o,y) = ey - ~ 'TT, e 8. real constant.

Therefore from (3.71) and (3.72), we have

(72)
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So,

(74) ~(x, y+v) = l' (y+v) X + d y+V) - ':2m '11".

Putting v = 0, in (~.74), we h~vo

(7.5) g(x,Y) = 1>(y) x + ey - 2 m 'TT •

But f'r on (2.64) we h-rve , '!Jutting u = 0,
( 76) f'(x,y+v) = 2r:J..". + g(x,Y) + g(o,V).

F'r om (~.7~), (~.74), (~.75) 'lnr1 (~.?6', we get

cb(y + v) = CP(y) = constant = e(.

~hus from (8.75)

(77) g(x,y) = cI. x + oy - ?rJ. 'If, e(, o r e aL constants w~ich

is s~e cs (~.65).
As h(x,y) is Dositive, with h(x,y) = eH(X,y), (~.63) reduces to

H(X+il,Y+V) = Bex,y) + Heu,v).

Hance

~l d re'll const~nts"2

( 78)

H(x,y) = rl -o- + c1.? y,1
A

d1x + d2Y
he x, y) = e

~he eau~tions (2.61), (~.6~)~nr1" (').78)

•

d
"
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ed1x + d2Y [co s )fez) = f(x+iy) = (c1X + c2Y +

+ 1 ~in (c1x + c2y)1

~his com~letes the uroof of the theorem.

(1.9) f( xv) = f( x) f( y), f : ([ ~. t[ .

~HEOREl'l ? .11. Let f be a comnlex v -Iusd function of

the corm-Lex variable s~,tisfying (1. Q) • Further let f be a

continuous solution of (1.9). ~hen f is of the form

where k
f ~,0,1.

f( z) r k log I z I n z ~ 0= i
e z ,

'0 z = 0
l '

is a comnlex constant and n any integer, nrovided

Proof. Let 't' = iz : I z ] = 1 ~ • Then f restricted
;- 1 [ -to", is a continuous cnarac t er L40..: It is )rnown.that 40J,

the character gr cuo of 'T' is the gr ouo of integers z , that is,

f( z ") = z n, for z r 1', n r z.
By theorem ~.~7, for x ~ositive, we have

k +f(x) = x , x r R •

•
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For z 1- 0, we have

f( z) = f( i z :

:= f( ! z I ) •
A log= e

~)

, ~ comnlex constant,

n any inte «er

k log= e . j zl nz , k, any comnlex constant.•

~hus the tbeorem is nroved •

...s 4. p.exider '''neI Tensen F;.Q].l,.ations.

pez.ider's Enuatibns. ~he functional eouations (1.10),

(1.11), (1.12) and (1.18)

(1.10)

( 1.11)

(1.19.)

( 1.13)

f(x+y)

f(x+y)

f(xy)

f'( xy)

= hex) + g(y)

= hex) g(y)

= h(x) +,' g)( y)

= h(x)g(y)

known as Pexirler equations are an immediate generalization of

the Cauchy Ecmations to which 'they can be easily reduced and

solved.

mHEOREM 4.1. The general solution of (1.10) is f(x):=

a(x) + b+ c, g(x) = a(x) + c and hex) := a(x) + b where a(x)

is an arbitrary so Lut t on of (1.6)g.nd b,c are constants.

Further if f is a continuous solutio~ of (1.10), then f(x) =
kx + b + c, g(x) = kx + c and hex) = kx + b , b,c,k are

constants.
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Proof. Put first x = 0 in (1.10) and then y = 0 in

(1.10). ~hen we have

(1) fey) = h (0) + g(y)

(?) I'(x) = h (x) + g(o).

From (1.10),(4.1) and (4.?) we have

( 3) f(x+y) = f(x) + fey) - b - c where h(o) = b

and g( 0) = c.

(4) Setting af x) = fex) - b - e, from (4.8) , we have

af x+y) ~ a(x) + a( y) •

From (4.1) , (4.2) and (4.4) , we obtain the required result.

Remark. As for g and h are concerned, no further

as sumnt ions are necessary. Further these functions are conti-

nuous, when f is. '1?his follows from (4.1) and (4.2).
~HEOR&~4.? The most general solution of (1.11) is

f(x) = a b ex'] ,-_c(xf ,g(x) = b exp [c(x)1 ,h(x) = a exp

[c(x)} ,where cf x) is an arbitrary solution of (1.6),
a 1 0, b ~ 0 are ar-b i trary constants excluding the trivial

solution f = 0, g = 0, h arbitrary, f = 0, h = 0, g

arbi trary. Further, if f is continuous, then f( x) = ab exn

(ex), g(x) = b eXD (cx), hex) = a eXD (cx), where a,b,c are

non-zero constants (excluding the trivi2.l solution).



.(

" 1r.

66

Pro9..L.. If either ht o) = 0 or g(o) = 0, u e obtain

from (1.11), that f; 0 and either g = 0 or h ~ 0, so that
. .~, i\ ei ther h or g is n.rbi+-rary respe.ctively. Henceforth, we

assume h(o) f 0 and g Co) 'I- o , Putting x = 0 in (1.11) we

obtain,

fey) = h(o) g(y',

(5) hence g( y) = 1 fe,,!) wherea . , = a. # o.

Similarly, Dutting y = 0 in (1.11), we have

( 6)
1hex) = b f(x), where g (~) = b ~ o.

Fror.; (1.11), (4. s) and '(4.6), ve have

( 7) f'(x+y) -
ill) f( y)

ab

Setting

( 8) er( x) _ f( x)
b - ab '

from (4.7) and (4.8) we obtain

(1.7) g(x+y) = g(x) g(y).

'!'hus g(x) = exp (cw) , 'T'hen from (4.~), (4.6) and (4.8) we

obtain the desired result.

Remar~.. 'When f is continuous (non-trivial solution),

then so are g and h.

rr'HEOREH 4.2. If f,g,h sr:1.tisfy (1.12), then

f'{x) = '~(x) + a + b, gCx) = {. ex) + band h(x) = «x) + a

where f(x) is an arhitrary solution of (1.8), a~b are



67

constants. 1tJ'henf is continuous, f(x)=Y log (d ~ xl ,
\

g(x) = Y log (~x) and hex) = Y log (d x) , (d, ~; x;> 0).

Proof. Putting x = 1 in (1.12), we have

~(y) = g(y) + h(l),
or

(9) g(y) = fey) -1., where hell = a,

Similarly, putting y = 1 in (1.12), we have

( 10) hex) = f(x) - b, where b = gel).
Setting .rex) = f(x) - a - b, we obt~in from (1~12), (4.q)

and (4~lO),

e (xy) = t (x) + {.( y) •

If f is continuous, x,y)- 0, then t(x) = y log x and

,
,: ~

taking a = Y log «and b = Y log~, eX, ~ > 0, we have the
sought for result.

THEOrtE}14.4. If f,g,h satlsfy (l.l,:n,then f = 0,

g = 0, h arbitrary; f = 0, h = 0, g arbitrary and fex) =
abm(x), g(x) = b m(x) and h(~) = a m(x) are the only solutions
of (1.12) where m(x) satisfies (1.<:)) and a¢o, b#o constants.
If f is continuous, then f(x) = ab xc, g(x) = b XC and
hex) = a xC where x /'> 0, a 'I- 0, b 'I- 0, c are constants.
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Proof. Putting y = 1 in (1.13), we get

f'{x) = hex) gel)
or

(11) hex) = f(x) , where g(l) = a ~ o.
a

Similarly ryutting x = 1 in (l.l~), we obtain

(12) g(y) = tss:
b

where h(l) ;:b -I o.

If either gel) = 0 or hell = 0 we obtain the trivial solu-
tions. Now, setting

mt x) = .fl&ab

from (1.13), (4.11) and (4.1~), we have

(1.9) m(xy) = m(x) m(y).

Thus, when f is continuous and x,y » 0, we obtain the
desired result.

'I'he functional equations (1.7), f'(x+y)= f(x) fey) and
(1.11) f'{x+y) = h(x) g(y) where f ,g.h are real valued func-
tions of the real variables have been extensively stu~d and itsolutions
is well known that the continuous of (1.7) are given by f(x) =

"that of (1.11) are of the form f(x) == ex )e (~heorem 3 and
cx cx= ab e ,g(x) = b e cxhex) = a e (~heorem 4.2),and

where a,b,c are ar-ui trary const ants, H§I'@we consider (1.11)

in the follo\oJing manner ,
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Let f: R ---- R Ul, real numbers). 'T'hen f is sa i.d to

have property ell.) if there ex i.s t functions h , g ~ R ---7;} such

that (1.11)

f(x+y) = hex) g(y) holds, for all x,y E', R.

As noLrrt ed out in 'T'beorem 4.o, if either f or g or h is

zero at some l)oint, we wi.ll have only trivial solutions. In what

t'o l Lovs we consider f, g,h to be nowhere zero.

LEMHA4. S. Let f: R ~.:~. Then the following two condi-

tions are eauivalent:

( L) f has nr oner+y (4.)

( :l i) f (x+y) =
f(Xt fey) for every x, Y r, R.,

f 0)

Proof. Let ( i) be. true. From ( 1.11) first with x = 0

and then with s= 0, we obtain

f( y) = h( 0) g(y)

( 13) and
f'{x) == hex) g( 0) •

From (1.11) and (4.1':l), "I",e have

( 14) f( x+y) = f( Xl f( y)
h(o'g(o)

= f(x)f(y) , which is (ii).
f( 0)

Let (ii) be true. 'T'ben t'(x+v) = hex) g( y) where h(x) = f'( 0)

f(x) and hey) f( v) So, ( L) holds. '1'his com"r)letes= .-.-~-
f( 0) 2

the nr-oof of this lemma. Let f have "}roDertv ( Ii) • rr:'hen

(4.14) holds. Renlacing x by xl? Rnd y by x/2, we get
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f(x)

Hence from (4.1.t:;),'lIesee that f .has aLways the same sign as
that of feo). From (4.14), it is also evident that f(o) is
arbitrary. In the sequence we t8ke fCo) is Dositive and hence
f is always nositive. Putting y = -x in (4.14), we obtain

f(o) - f(xtff-x)- -f 0 •

That is,

(16) fe-x) = f(o)2.f(x) for every x e R •

'PHEOHEM 4.6. f : R -.,.R with
f(l)r

f( 0) r-l

property (A).SunDose
T~en for everyr1tiona1 r, fer) = •

Proof. Put y = x in (4.14) we have

(17) f(?x) = f'{x) 2
f( o~

Setting y = ?x (in 4.14) and using (4.17), we obtain

f(3x)
f ex)f( 9X)= f( 0) -

= f(x)3
-;-()2
.. 0

Hence by induction on n, vle have -f'orany natural n,

( 18) f'{nx) = f(x)n
fCo)n-I
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Let ta = -m, m '> o , From (4.16) .qnd (4 .18), \oJehave

f(nx) f'( 0) 2
= f(mx)

= f(o)m+l
f(x)m

= f(x)n
f( 0) n-l

p
r - -- .q

Then 'D = C1 r •

From (4.18), we have f(px) f(x)P= -:"';';;':"---e-
f( 0) p-l

= f(rx)P
f( 0) q •..l

= f(x)p..
f(o) ~.

.
·I~··
.,

11
:l~:l
:1"
'~I

J

I!.'i:
I

also

Hence f( r x) q

(19)

f(rx) = f(x)P/q
pi -1f(0) q

= f(x)r for all x 8 R.f(o)r-i

That is,

Now setting x = 1 in (4.1~), vie have

( 20)

fey) = f(1)r
f(0) r

= f(0)
f(l)r

• f(0) •

r c = f(0) .and ff~~= c a , a = •
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THEOREM 4.7. Let f: R ---=r R be continuous at some

uoint. rr:'hen
(i) f has property (~

for every x 8 R(ii) fex) =
are equivalent.

Proof. Let (i) hold. First we will prove that f is
continuous everywhere. Let f be continuous at xo. Then,
from (4.14) and (4.16), we have

f(x ) = lim f(xn - x + x )o . a

= lim
xn-x+xo~xo f( 0)

.;:,

I
:1
il:

:;~

'f
ii
f'
,~

'1:[
:1
J!
'~From theorem 4.6, now it is ,[

f(x) • fe-x)
nf(x )= 0f( 0) f( 0)•

f( 0) 2
f( -x) = f'(x) •f(x ) =n

Hence f is cont f.nuous everywhere.•

see that f(x) = cax,' for
(ii) holds. ~hen f is

xca.

all x 8 R. Hence (ii) holds.
continuous everywhere. Also
c aY

easy to
Suppose

f(x+y) = c aX+Y = c

= rex) fey) which is (4.14).f( 0) ,

,~,

'Ii
·f

-:,'1'1
f
.~.
~,.,
j,

,~
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Hence (1) is true. T.his comDletes the proof of this theorem.
Jensen's Equation: Now let us consider the equation

(1.14)

known as Jensen's eauation. ~he solution of this eauation can
be obtained by reducing it to the Cauchy equation (1.6).

THEOREM 4.8. ~he most general solution of (1.14) is
f(x) = a(x) + b, where a(x) is a solution of (1.6) and b
is an arbitrary constant.

Proof. Put Y = 0 in (1.14). Then we have

f(~) = f(x)2+ b, where b = f(o).

Thus
f(x+YI + b =

2

(21)

f (2ttY)
2

= f(x) + fey)
2 •

Now set a(x) = f(x) - b. Then (4.21) becomes

a(x+y) =a(x) + a(y).

Thus f(x) = a(x) + b, where a satisfies (1.6).

R~mark. The general continuous solutions of (1.14) are

f(x) = ex + b , where band c ar-econstants.
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THEOREM 4.C). Let f be defined on an arbitra.ry interval
and satisfy (1.14). If f is continuous, then f(x) = ex + b
for all x in the interval.

Proof. Without loss of generality, let us assume the

interval to be [0,1 J • Let f( 0) = b and f(1) = a•. For

x,y E', [~,ij it is evident tha.t x+y [0,11 Theevery , 2 ~, •
proof is based on induction. First, let us show that
f(x) = ex + b , for x a dyadic number in [o,lJ • Then
since the dyadic numbers are dense in [0,1] and f conti-
nuous, we will have the reauired result. From (1.14),.we have

f(l) = f (0+1)= b + ~ = b + 1(b - a)
2 2 2 2

= b + ~ c, where c = b • a.

Now,
f(l) f(e) + f(+;)

=4 2

= b + 1 ete.4 c,

f(x) = cx + b~ for all dyadic s with denominatorSup'Oose
Then by induction hynothesis, we have

f( 2k ) = f(-Ji..) = b + e
.k..

2n+1 2n • 2n

= c -2lL + b• 2n+l

r:.

-i\
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and + f(k+;)
2.2k±l.

f( n+l)
2

::: 2

::: 1 [JL k+1 + b\"2 c 0 2n + b + c. 2n J

2 k+l + b which Droves our ass~rtion
n+l '2

t.hat f(x)::: ex + b , for all dyadl c x in C?,lj 0

= c •

§ 50 Some generalizations of Cauchy, p(~xid,;r tync equ~tions.

A). (1) f'Cax+by+c) ::: p f(x) + q fey) + r, a,b,D,q -I 0, f:R-"'7R.. .

'rho cquation (f).l) possesses mO.1.surab1eand non-constant

solutions if ~nd only if ~::: p, b = q.

The eauation (S.l) can be reduced to the eouation (1.6)
by a sooucncc of sub sti tutions 1.S follows.

x ::: -cia, Y :-::0 in (5.1) gives

(2) feo) = D fe- cia) + q f(o) + r ,

X -_ t-c , y = 0
a

in (Sol) gives

(3) f(t) = nf(t-c) + CI 1'(0) + r.
a

x = cia, y ::: ~ in (S.l) gives

(4) fez) = p f (-cia) + q (z/b) + r.

(La'st 1,.::" , x = '( t-c~ ra, :/~ 'z/b in (.!:i.lj gives
(5) f(t+z) = pf«t-c)/a) + q (z/b) + r ,
Adding (5.2) and (f)05) and then subtracting (S.0) and (f504) ,

we get
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(1.6) f (t+z) = f (t) + f (z)',where
o o· 0

( 7) f (t) = f(t) - f(o).o

Hence if f in (S.l) is continuous, from (1.6) ~nd (5.7),

we have,

( 8) f(x) = ex + d, d = f(o), e , constant.

~ t Putting this value of f in (S.l), we obtain
.~'

.~ j
<

"

-e

,-

a = D, b = q, ec - r = (a+b-l)d.

Remark. For a = b = 1/2, c = 0, p =q = 1/2, r = 0,

the equation (5.1) reduces to the Jensen equation (1.14)•
As (1.6) oossesses discontinuous solution, all solutions

of (5.1) are not continuous. As for non-measurable solutions,
it has been oroved for

( 9) f( ax+y) :: pf(x1 + Y

(with b = q = 1, c = r = 0) that if a or p is rational,
then (5.0) has non-constant solutions only for a = p; if a or
P is algebraic and (5.0) has non-constant solution, then a
and p are algebr~ic and are roots of the same irreducible
monic polynomial •
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B. (10) f(x+y) = g Cx) key) + h(y'), f: R-7R.

Let f be not constant. Putting y = 0 in (~.10), we get

( 11) f(x) = g(x) k(o) + heo).

From (5.10) and (S.11), we have

(12) f(x+y) = d.(y) f(x) + ~(y), where

( 13) d.(x) = k(x)
k( 0)

~(x) = hex) - hiQL k(x).k[O) .

Now to find the solution of (5.12).
Set x = 0 in tS.12) and subtract the equation

(14) fey) = d.(y) f(o) + S(y) ,

then.we hav3

(1.5) 6(x+y) = d.(y) 6(x) + 6(y), where

(16) 6(x) = f(x) - f(o).

Interchanging x and y in (S.lS) and using (5.15), we get

o(y) 6(x) + 6(y) = d.(x) 6(y) + 6(x), th~t is

(17) [d.(x)-lj6(y) = [d.(y) -lJ 6(x).

If d.(x) == 1, (.s.lE)) reduces to (1.6) 6(x+y) = (Sex)+ 6(y).
hence, from (~.16) and (5.14), we have
(18) f'(x) '= 6(x) + f(o), d(x) = 1, ~(x) = 6(x)

as a solution of (5.12), where 6 satisfies (1.6).
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J f(x) = c ~(x) + d, d =
l~(x) = d (1 - d(x))

f( 0) - c
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'.

From (.5.11), ('5.1R) and (.5.11), we SGe +ha't , !l solution of

(S.10) is of the form

f(x) = A(x) + f( 0)

g(x) = (Sex) + f( 0) he 0)
b

hex) = b( x) + h( 0)

k(x) = constant = b.

Let ~ex) i 1. ~hen there is an Xo such that ~(xo) i 1.

Putting y = Xo in (.5.17), we have

( 19) 6(x) = c (~(x) - 1).,

c = 0 in (~.19) gives 6 = 0 and hence f is a constant

from (5.1S) which cannot be.
The equ~tions (.5.15) and (S.lQ) yield

(1.7) d(X+Y) = ~(x) ~(y).

Hence from ('5.14), (r,.16), (.'5.1Q), we have

as solutions of (S.12), where ~ is a solution of (1.7).
'rhus (.5.11), (1:).13), (.'5.?0), yield, a solution of' (5.10) as

fex) = c ~(x) + d
g(x) c ~(x) + d - h( 0)= b
k(x) = b 0« x)

hex) = d + (d - h( 0) ) 0« x)
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where cI. satisfies (1.7) •
In case f is a continuous solution of ( ,r::, .10), we get

f(x) :::: ex + f(0)

ex + f'( 0) '- h(0)g(x) ::::
b

hex) :::: ex + h( 0)

k(x) :::: const :::: b

and
t (x)

I\.x+ d A constant:::: C e , a

c Ax + d h(0)
g Cx) e -:::: b

h(o)) cAxh( x) ::::d + (d

are the only solutions of (5.10).

C. Equation of the tyue f(x+y)::::F [f(x-y), f(x), f(y)J •.

(21) f(x+y) f(x-y) ::::f(x)2, f ~ R-7R, with f differen-
tiable.

Evidently f = constant is a solution of (5.21).
SUPDose there is ~n Xo such that f(xo)::::o. To show that
f = 0. Putting x ::::0, y ::::Xo in (~.2l), we see that

f(xo) f(-xo) ::::f(0) 2 implies f(0) :::: o,

Hence Dutting x::::0 in (5.~1),we see that f(y)f(-y)::::0,
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Of·'

i all y. Suppose fe-Xl) = 0,
t

Putting x =-xl and y = 2xl, we see t.h at

If fexl) = 0, there is nothing to prove.
Otherwise fe-3xl) = o.
Put and y = -4xl in (S.21) to obtain

Hence in either case, we have fexl) = o. So, f ~ o. Let us
-,

assume t.tiat f f. c , in p_'lrticular,f vanishes nowhere.

Differentiating (5.21) with respect to x 81ld y, we have
r

1 f I (x+y) f(x-y) + f'{x+y) fl(X-Y) = 2f(x) f I (x) ,

( 22) f I (x+y) f(x-y) f(x+y) f'(X-yi = o.

'Thus from (5.22), we have

f(x) f'ex) = f(x+y) f'(x-y), for all y,

( <)3)
= f( 2x)
= f(x)2

f( 0)

f'(o), for y = x

f'CO),

since putting in (5.21) we have f( 2x) f( 0)
2= f( x) •y = x

Since f I 0, we have
f '(0)

= f( 0) •f'ex) = c rex), all x e R,c
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f '(0) = 0 gives f(x):= c, whi ch cannot be,
cx= A e ,A, c ,f(x)rrhus, Constants.

D. ( 24) t'( x+v) = c< f(x) + ~ f(y), 0;, ~ constants

x = 0, y = 0 in (.C:;.~4) gives either 0;,+ ~,= 1 or f'{o)= o, Supnose
fCo) = o.

~. 'y = a in (.'5.24) gives f~x) = 0( 'rex)
~imil:lrly fCy) = ~ f(y)

Thus fCx+y) = rex) + fey).
Sunpose c< + ~ = 1.

x = 0 in (5.~4) gives

fey) = c< f(o) + (1 - d) fey)
that is, 0( fey] = 0( f(o) and hence

fex) = constant.

E. Equation of the tyne F(x * y) = G(x) + H(y) + K(x) L(0.
Let F, G, H, K, L: C A -,?C (where A is an arbitrary

Abelian semigroun with operation * such that, there is a fixed
element a 8 A with the nroperty that the equation a * x = b
for arbitrary b e A has at least one solution, C the comnlex
numbers) satisfy

(~5) F(x * y) = G(x) + H(y) + K(x)L(y), x,y p, A.

It has been nroved by Vincze [85] ,that the following are
the only solutions of (5.25).
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F(x) = Q(x) + eX1'
I

G(x) <)( x) eX')K(x) eX2 +
0(1

= + 2 ,
s."

H(x) q(x)
1 0(2'= + '2 0(1

K(x) arbitrary
Lex) = 0(:1"

'-'

F(x) -- o(l1);(x)+ (,)(x) + 0(2'

G(x) = eXr,W(x) + G)(x) + 0(4'
(~~ I

II.

H(x) =, eX5W( x) + of.x) + 0(6'

K(x) = 0(7W(x) + 0(8'

L(x) = o(oW(x) + eX1O'
0(70(10' - 0, c{s + c{f{<q :::: 0, eX2 :::: 0(4 + eX6+0(1 :::: o{70(q' 0(3 +

+ 0(80(10 .,

III. F(x) = eX1?(x)2 + c{2~(x) + <h (x) + 0(3
G(x) , 2 ~l(x):::: 0( 4: (x) ~ + + o{4

H(x) :::: o(o(x)2+ eX59(x) + ~1 (x) + c{61
K(x) :::: 20(1~(x) + c{7

L( x) :::: ~(x) + 0(8
0(2 -- 20(10(8 :::: o{s + c{7' o(~ ::::c{4 + o{6 + d7o(8 .

....-
,
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where t , ~l respectively ~J are the solutions of

~(x * y) = ~(x) + ~( y),

l/J(x* y) = ~)(x) •(l/J(y) ,

:f.J , l/J being • A~C, c{ 's are arbitrary constants..
-;; n

F. Eouation of the type f(x+y) = ~ gi(x) h~(Y).
i=l

Let F,G,H: A~C satisfy

(26) F(x * y) = F(x) + F(y) + G(x) H(y) + G(y) H(x),

for x, y 8 A, where A is an arbi trar y Abelian group with
operation * and C, the set of comulex numbers. Then it is
known [87J that the following are the only solutions of (£).26).

I. F(x) = t(x)
G( x) arbitrary

II.
H -= o.

F(x) . 8 ~1(x)t2(x) ~3 (x)= 0(1¢l (x)· + +

G(x) = ~l(x)

H(x) 2 ¢2(x)= 8o(~1(x) +

F(x) = 20( ~ (l/J( x) -1) + ~ tl (x) l/J(x)+ 1'2(x)
G(x) = 0{ (l/J(x)-1) + ~l ex) l/J(x)

H(x) ::: ~ (~)(x) -1) •

III.



where ~'~l respectively ~)'~)l'1V'.2 are the solutions of

~(x * y) ;::: t(x) + t(y)

1V(x * y) = 1V(x) ~(y)

(.h ,I • .1--" ,1'1,1. '0 A-"'C) and ~,Q,Y are arbit,rary comulex~'~'~1'~'~2 7 . ~ "

constants 0

Go (27) ~(x) = 4>(ax) ~(bx) 0

LAt ~: R~ be twice, dl f'f'cr-ent.Lab l.e at x = 0 and

2 2satisfy (S.27) with a? 0, b ? 0, a + b = 1. If t is non-
m :2

constant, then t(x);::: e>x • (refer [8R1).

H. (28) f (xy) = g( y) f (x) + h ( y) x + k( y) •

rrhe general s o'l.ut ion of (,1).28) bounded on a set of nos I ti ve

measure are [9J , G'3~
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a log Ixl + b + c
a x log I xl + bx + c

f(x) = a I xld + bx + c
f( ) = ,'" I xl d bx '~ sgnx + x + c.

r Cx) =
,~ :
~~,, f(x) =

I. (29)

'T'heequation ('1.2Q) has continuous solutions which are
not differentiable, also measurable and bounded solutions
which are not continuous. 'T'hecontinuous solutions of (5.20)

are [?~ , 12~ , I:?5] , [8~1 , [77} ,
f -= 0

f(x) = ex + 1

f'{x) = rl
...K.. x L XlXl

, -
~

~--
1 ~

l 0 x ~xl
f"

f(x) = {I 0 x ~ Xl L- 0-
...K..

x >x.- =i' -- 1

The first two solutions are differentiable.

= {I,
0,

The function f'{x) X rational

X irrational

satisfies (5. 2Q). Here f is not con+lnuous , but bounded
and measurable.
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§ 6. Hiscellaneous eoua:tions. In this section, some examn1es
of equations belonging to cyclic eau~tions, iterated equations,
trigonometric equations etc. are t~eated.

A. Solution of equations by simnle substitution.
a) (1) f Cx+y) + f(x-y) =?,f(x) sin v , where f: ~-""[...d:',com'Plex

numbers.
Here f is a solution if and only if f - 0 •

f ; 0 is evidently a solution.
Put x = 0, Y = o. Then we have f(o) = o.
Put x = 0 and use f(o) = o. We have fey) = -f(-y),
f is odd.
Lnt.er-changi ng x and y, we get

f(x+y) + fey-x) = :21'(y) sin x.

Since f is odd,
f(x+y) f(x-y) = ?,f(y) sin x

Hence~ f(x+y) = f(x) sin y + fey) sin x.
Putting y = 0, we obtain, f(x) = o.
Hence f == 0 I.s the onlv solution of the above equation (1).

b) (8) f(x+y) + f(x-y) = 2f(x) cos x , f: a: -?> (

Here again f - 0 is the only solution of (6.2)

Putting x = 0, we get

(3) fey) + f(-y) = 2f(0).
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3x
?

by y + 11' in (8.2), we havePutting and replacing yx =

fey + ~) + f(1I'/2- y) = o.
2

Putting x = 11'/2 in (6.o) we have f(y+1I'/2) + f(1I'/2_y) = o.

fey + 511') = f(Y+1I'/2).
2Hence, that is

~ ,-

f(y + 211') = f(y), f is periodic with period 211'.

T)utting y :=; 11' in (6.3) , we have f(-..-)+ f( -11'1 = 2 f( 0).

Hence f( 11') = f( 0) , since f(-1T) = f(lI').
Set x = 11', Y = 11' in.(6.2). i}lehave

Therefore
f(211')+ f(o) = -2f(1I')= -~f(o).
f'{ o) = o ,

From (6.2,), we see th~t f(-y) = -f(y) , f is odd.
in (6.2) that is,gives,

f(lI'+x)
y = 11' in (6.2) gives I'(x+«) + f(x-1I') = 2 f(x) cos x.

Th'lS, we have f(X+1T) ::: f(x) cos x.
Repl"'.cing x by x + 11' and using t.he 1)eriodia.,.t.ty Af, we get

(4)

f(x) = -f(x+1T) cos x

= -f(x) cos2 x, for all x.

Putting y = 0 in (6.~ we get either

f(x) = 0 or cos x = 1.
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Hence whenever cos x 1- 1, f(x) = o ,

Now, let cos Xo = 1.

Then from (6.4) , we get f(xo) =-f(xo) , that is f(xo) = o.

Hence f(x) = 0 for 8.11 x.

c) ( .')) f(x+y) + f(x-y) = 8f(x) cos 'v J f ,( ~i •

x = 0 in (6 • .'1) gives

fey) + fe-v) = 2 feo) cos y.

So, f(y+~/2) + f(-y-~/2)= - 2 f(o) sin y.
.Put x:=: ~/2 in (6 •.')),

f(~/2 + y) + f(~/2 - y) = 2 f(rr/2) cos y.

Hence f( -y~rr/2) - f( -Y+"T/2) = -2f( 0) s in J - 2f( rr/2) cos y

f(y-rr/2) - f(y+rr/2) :=: a1 sin y + bl cos y.

x = y, y :=: rr/8 in (6 •.S) gives f(y+~/2) + f(y'-·,.,l?)= o ,

or

So, f(y-rr/2) a?, sin y + b2 cos Y .
Hence f(y) :=:a sin y + b cos vr •

Every solution of ( 6 •.l)) is f(x) :=: a sin x + b cos x.
d) (6) f(x+y) + f(x-YI = ?f(x) + 2f(y) , f: R-">R.

x = o,Y = 0 in (6.6) gives f(o):=: o.
x:=:o in (6.6) gives f(-y) = f(y), f is even.

t')

By induction, let us »r ove that f(nx1 = n'~f(x), n an integer.



·,. . Put y = nx in (6.6)

~(n+l)x) + f(-(n-l)x) ;::'~f(x) + ~f(nx)
f( (n+1) x) = 0,f(x) - (n-l)2f(x) + 2n2f(XI

;::(n+1) 2 f (x) •

Hence f(nx) = n2 f(x).

Putting 1, t'( x) f(1) n2 2
X ;:: = =cn .

Similarly, I,rehave f(~) = c(~)2 th'3.tis, for any
n '

rational fer) 2m = cr •

If is continuous, then f(x) 2= cx for all X C R, is the
f

only solution of (6.6), where c is any constant.

B. Iterated equations.

'T'heeauation of the tyPe
( 7) fn(x) = g [fmex)} m, n integers er" denotes the n-th

iterate of f) belongs t.o this category. The equation (6.7)

for m < n , can be reduced to the equ1.tion (60J

nf (x) ;:: g(xl,

-which is a generaliz1tion of the well-known Babbage equation.

( 9)

It has been proved [90] that the general continuous solu-
tion of (6.9) for odd n is fex) ~ x, for even n, continous



., :

·i,,

90

solutions of (6.9) are the continuous solutions of
2f (x) == x.

Further every cont5_nuous solution of (6.Q) is strictly monoto-
nic. For g = f in (6.R.) , the following two classes of func-

tions o ccur as solut-ions G~2J
Class 1. i) mhe function f is continuous for all real x

ii) f(x) = x on a connected subset s of the x-axis and
iii) g L ~ f'{x ) ~ M, 1,M being the infimum and sunr a-

mum of f on s.
Class 2.iv) 'l'.he:unction f is continuous Tor all real x

anrl either
v) f2(x) == x

f2(x) on a non-degenerqte closed intervalor == x

[a,bJ ,f(a) == b , f(b) == a, a .(.f(x) ~ b.

~he general solution of (6.8) has been constructed by G.Loja-
and the general continuous solution under the

assurrrotionthat g is monotonic been constructed by }(uczma [611.
For n =? in (6.8) it has been oroved by rhron, W.J.

I8~ , that, when g iS1.n entire function of finite order,
which is not a nolynomial and which takes on a certain value

p

only a finite number of times, (6.8) does not have a solution f
wh i ch is an entire function. A stronger version of the above

result was proved bv R.Osserman for g( z ) z-l= e and

n == 2 in (8). Let z == x+iyann let Q denote an infinite strip
\y IL b , for some constant b > .".. Let f be a function defined

:in some domain D containing Q. If f satisfiss in D, then

f cannot be analytic.
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C. Method of determin_8.nt~~

The following results are needed to Drove the main theorem

in this section. For more de t.a i.Ls and pr-oof refer [?6J ,[6J
Notation. Let 00 be an ar-b i t.r vr v ltbelian semigrou"Q

and ({;, the fi e Id of comnlex number s . Let F)J : Qo --'7 ([ ,

y = 1,'::'" ••• ,n. Let

F1 (zl) F2( zl) • •• Fn (zl)

( 10) 6.[F1(zl) ,F2(z2) , ••• ,Fn(zn~1 =
F1(z2) F2( z'::',) • • • Fn ( z2)

F1 (zn) F2(zn ) • •• Fn (zn)

Z. 8 Q •
l -0

L 'Iemma --:-...!.. 'T'he functions "7 4' """?
1 1" 2' . . • ,t· n are linearly

denendent, that is,

0( 1 F1(z) + ••• + cI. F (z) = o ,n n

n
L: Ic{p \ » 0
1

Lemma 2. F (z) = F (zi(.J }I
holds, thenIf

6. L--Fl(Zll, ••• ,? ( z i, ••. ,F" Cz; i ,... ,'-"(z)l = o ,u /.1, v y n n ~
k

Lemma ~. 1tJhenGver L: ~[F)Jl(Xl), ... ,Fdn(Xn)J = 0 is true,
y =0 ~

for arbitrary F :. 00 ~ ([: •

,
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The secon~ equation is a result of 'enlarging' the

first eau8.tion by F. This lemma will play the important role
1

in proving many results in this direction.

Lemma 4. Let ~ E',C) be an lndep(mdent pc1rameter from
o

the variables "'hen from

follows at least one of the equations

F (2'.) == 0
.n

F V (z) == o()) +1 F v +1 ( z) + .• + oCn F n (z), == ~ ,11 ., n-1.

The main theorem in this section is the following:
Let r: Clo _,..(£. fT1henthe follm.,ring two ':;(1uationsar e eaui-

valent,

( 11) f(zl * z?,)n == [f( zl) + f( z~:)ln

( 12) f(zl * z?,) == f( zl) + f (z2) j

""I

'9;here zl' z?" zl * z':2E' o . 'T'hatis, any solution of (6.11)
0

is also a solution of (6'12) and conversely.



.} /.. r -IProof ,41, •- -'
It is evident that any solution of (6.12)

is also a solution of (6.1JJ. SO, to Drove +hat any solution

of (6.11) is also ,'1 solution of (6~12). Further f:! 0 is a

solution of b..,th (6.11) and (6.1?). So, let us assume that

f .f o , TTsing the associativity of * \o[e have

Now from (6.11), we h~ve

n ( ) n-v f( ( )v
n

f(zl *~)n-.f .f(Z2)l.l.L (~ 1 fZl + L (n)
}>=o /.L=l u

n-l n f( Zl) n-V Y n
= L ( ) f( 'I .* Z2) + L ( n ) f( ~ )n-/.L f(Z2)f..L·

)J =0 )J -,
u=o /.L

Using commutativity of * we have

n-l
~ (~) [f(Z2*On-» - f(On-v ] f(Zl) = 0,

v=l 1/

that is,

( 13)
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. n-2

••• ,f(z) ~ and using
Enlarging (6.1~) with

the lemmas, we obtain, for n ~ ~,

~he eouation (14) holds when either

or (1.5)

fez) = 0 ,

n- }J -1 u
L: c<u f ( z.) ,

u= l.
v= l,?, ... , n-l,

or
n-l U= l. o(t: (0 fez) ,
u=l

(16)

n-l
L: \c«O\>o.

/.1.=1 /J,

n-2
with 2: \ c<u I '» 0

u=l

f( z) cannot beand

identically zero by assumption. (6.15) implies that the func-·

tions f(z), • fez)2, '0 f(z)n-2 are linearly denendent and

hence f == 0 (refer [ ]) which cannot be by assumption.

Hence only (6.16) is true.
n-l n-2

Again, enlarg:lng (6.12) with fez) ,f(z) , •• f(z), we get
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, with
( 18)

•
n+L

L I ~ ( z : I » o.
)J =1' J)

From (6.16) and (6.18), 1.18 have

n-1[f( t:) + L
~=1

0( (~)
1.1,

f(Z)!-LJn-1 = f( ()n-1 +n~ll~ r z »
v=l ~ )J

.f(zfl .
( 19)

On account of the 1ine~r indenendence of the powers of f,
-~ comparing the corresnonding coefficients, He have
../

"

( ~O)

To determine 0(1 (t: i ,

Interchanging z and ( in (6.'?O), we obtain

Since f - 0, we have

0(1 (t ) - 1= 8. f( r:: i , a

.,
r~

';: .~\
":j .)

"""11".".1
': :1"
I.' ,~.I

,: .~.

. .]
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Now (6.20) becomes

f(z * z; ) = a fe() f(z). ',+ fez) +' £<Z;')
•

From this equation and (6.11) for ~ = z, we have

o n - n
[a f(z)(-' + 2fCz)] = ['?f(z).1 •

As before, comnaring the corresnonding coefficients, we get
a = 0 and hence 0(1«( ) = 1. 'l'husfrom (6. ?O), we have

f(z) * C ~ )) = f( z) + f( t; ), which is warrt ed to be nroved •

.D. Uniqueness theorem.
'l'hereexists 8t most one continuous function f satisfy-

ing the funct.ional equation

(21) f,(F(x,y)) = H(f(x) ,fey))

for all x,y t. (A,B) and the initial conditions f(a) = c,f(b)
= d (a,b 8 (A,B)) , if F i'Scorrt inuous in (A,B):,x (A,R) r,"and
F(x,y) , H(u,v) are strictly increasing or strictly decreasing
in x,y in (A,B), resnective1y in u,v in (f(A) t f(B)), when
(A,3) is a closed, half-closed, onen, finite or infinite
interval.

Proof. [14 J Define

(?<,?,) g(x) = F(x,x1•
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Then g takes every value assumed by F( x , yl , Indeed, if F

is increasing in both variables, we have

I

g(A) = F(A,4) <: F(x,y) ~ F(B,B) = g(B).

Thus, g being continuous, g Rssumes the value F(X,y) and

also g is strictly increasing. .J: '

Hence the inverse -1g exists on (F(A,~,F(B,B)) and .:
H
"

( ~3)·
-1= g (F(x,y)),G(x, y) f or x ,y t. (A, D)

is well defined, continuous and increases in both variables.

Moreover, for x ~ y,"

x = g-l (g(x)) = g-l(F'(x,x)) :: G(x,x) ~ G(x,y)

~ G(y,y) = y, thqt is G is intern.

Putting x = y = G(s,t) in (6.?1), we haye

( '24) f,(F(G(s,t), G(s,t))) = H(f(G,(s,t)), f(G(s,t))).

Now, set

( ,:)5) hf x) = H(x,x) •

. From (6.22), (6. ?2), (6.24) and (6.25), we obtain
1;

f,(F(s,t)) = h(f [G(s,t)]).
~his;b~.(6.?1), becomes
f,::>.6.) H(f(x) ,f(t)) = 'h(f T-?~)s\,:)J) •

Now'define

( 27) K(u,v) = h-1 (H(u,v)).
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h-l exists, since h defined by (2~) is strictly monotonic
in u. ?rom (6.26) and (6.~7), we hRve

( 28) f [G(s,t)] = K(f(s),f(t)), where

K is strictly monotonic ~n u and v.
This equation (6.?8) is of the form

f(F(x,y)) = H(f(s), f(y),x,y)

end sRtisfies all conditions of Theorem 1 in [lOJ
proof of this theorem is cornnlete.

Hence the•

E. Cyclic functional eau.!1tion.
;

An equ~tion of the type

( 20) F(xl'x~, •.• ,xp) + F(x2·x~, •.. ,x ,x +1) + •.• +
G r: P P

F (x + l'x + 2' •••,x ) + F (x p+ 2'x ~. ••,x 7 xl)n-p n-p ..~ n n- n-p+.. n

+ ••• + F (x ,xl"'" x 1) = en p-

where p and n(» p) are two arb i t.r-ar y positive integers, is

a cyclic functional eouat.Lon, '~!eshall consider this eoua'ti on
(6.29) later. Fjr st we shall consider a p-ir tIcul.ar case of
(6.29) for n = 8, p = 2 known as Sinzov's functional eC'luation.

Sinzov's funct.ional enu1.tion. 'fIhefunctional eau1.tion

( ~O) F(x,y) + F(y,z) = F(x,z)
is called the Sinzov's functional equ~tion.



•
THEOREM1. 'T'he general solution of (O.~O) is F(x,y) =

g(y) - g Cx) 1 wher-e g is an f1.r0it:r'1ry function.

Proof. Put x = c in (6.~O)~' and define g(x) = -F(x,c).

Then 1~iehave

T'(X,Y) + ~(y,c) = (x,c).

Hence (6.~1) "'(x,y) = g(y) - g(x).

Obviously F(x,y) dafine~ by (6.~1) s~tisfies (6.10).

1emqrk. mhe enuation (S.~O) can be considered as f1.

generqlization of (1.6). Fdr, letting

('??) F'( x c y) = f(x-v),

the equation (6.~O) reduc2s to f(x-y) + f(y-z) = f(x-z)~

Put tLng z = 0 and r<3ulA.cing x bv x + y in the above e(nl9.-

tion, we get

f(x) + fey) = f Cx+y) wh.ich is (1.6).

'J'lhe solution of (1. 6) does not follow from th1.t of (6.20). For,

reX-y) = g(v) - g(x)

whi ch is the Dr;xi0(;T r;r1U-':1.t.ion (1.10). 'Pht ~ illustr-1.tes tha t the

solution of ~l -i-rr+Lcu'lar f'mction:"l,l onuat ion mav be more diffi-

cul t than that of ,r, genet''1l ODt? Now let us +ake UD (6. ?,Cl). "'he

following theorems 8.t'e nroved un~er the following assuptions
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(i) X. r s, whe r e S is an ar"bitrary non-empty set.
1

(It ) ~he va Lue s of F lie in nn Sldditive A.belian gr ouo G.

(iii) 'T'hegroup !} is such that ihx = s , (x"s r G) has a

uninue solution x = slm for every m .c: n,m an integer.-
'T.'HEOREM 2. Ti'or n .> 2 n=L, the general solution of the

functional eauqtion (6.~Q), under the hYDothesis (i) ~nd (ii), is

where f is an arbit.rary ~lnction and ~ 'ln 'rbitrary element

of G such that n~ = o.
Set Xp+l = x +9 =p ,

= xn = c (constant) in (6.2Q).'Pr oof' ,

'T.'hcm we have

(24) F(x1,x9,·"x) +.• D

F (x ,c ~•• , c) + (n - 2p+ 1) F ( c , c , ••• ? c) + F( c, c, •• , c ,xl)
n

Putting x = c13
in (6.24), we obtain

"_"1

( ~5)

F ( x 1') -1 ' c , .•• , c) + (n - ~l)+ ~) 'Ii'(' C , C , ••• , c) + F ( c , c , ••• , c , xl)

= o •• •• +

.",
.",
,,'
,:~ ~
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Sub~r2cting (6.25) from (~.24),we get

. •. +

F(x2, •• ,xn_l,c,c) - F(x2""xp'c,c) +

F(xn_l,c, ••• ,c) - F(xp'C""'c) + F(c,c, •. ,c)

NO\\T let

( 27)

+ ••• + F(x l'c,c, •.• ,c)p-

and

( (8) A = ,F ( c, c , ••• , c) •

ob t a Ln

which is precisely (5.~~).

Putting xl = c = x~ = • = xn in (6.2Q) and nsing (6.~8), it is
easy to see th~t nA = o.

THEOqEN~. Ti'or n = 2n -2 ::> D and m = ~, the general
solution of (6.20) under the hvnotheses (i), (ii) and (iii) is

(89) F(x1,x:2, •.• ,xu) = f(xl,x2, ••• ,xn_1) - f(x?" ••• ,xp)

+ Gl(x1,xu) - Gl(xu'xl) + A

with nA = o,

:;~.,
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ThenProof. = c i.n

'Ne get

• •• + ~(x 1'x ,c, .•• ,c)
p- p(40)

= o.

Putting x = C
D

in (6.40),.we hqve

(41) F(x1, .•• ,x
p

_1'C),+ F(x9" ••• ~XD_1'c?c) + ••• +

F(x
p
_1'c, ••• c) + ?(c,c, ••• ,c,x1) + F(c, ••• ,c,x1'x2) +

,subtr acting. (6.41) from (6.40), we have

+ '7(x 0'X 1,c,.~.rc)f- V(x l'x ,c, ... ,c)l +u-._, :>- D- P J

In (~ no' Pl"rct sot\.....• "'('!, _'-_ u ,J • J
= X - X = •..;j-1 D+1



~·-·'···I.·.·

<

4'i
1
J~

lO~

then set = x = x - x0-1 p - p+l
I

= . = xn = c and then

x - x -1 - 2- xp+? = ••• = c respectively,

we obtain

+ ••• + F( c ,x D ' C , ••• ) c) + Ji' (x1) , c, ••. , c ,xl) <t- F( c , ••• , c , xl ' c) +

( 44) F (Xl' c , ••• , c~ + 1j' ( c ,xl' c , •• 0 , c) + ••• + F( c , Co •• , ? ' xl)

+ (p-?) FCc,c, ••• ,c) = o.

and

( 45) F(x ,c, ... ,c) + ?(c,x ,c, .•• ,c) + '0' + wCc,c, ••• ,c,x )D 0 D

+ (p-9) ·':;'\c,c, 0" ,c1 = o.

Adding (6.44) find (604S) and tIlen subt.r act lrig it from (6.4?)

and using n F( c , c , ••• , c) = 0, -"":8 h-ive

(46) ?(xl'c, ., c,x ) + H'(x ,c, .•.• ,c,xl) - F(xl,c, • ,c) -
p p .

\

+ ?~ ( c , c , • , c) = 0 •

:.. .:~, ,
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F(x ,x. l'c"",c) - F(x l'x 'C' ••• ,C)] +n-? D- 1")- P

,,17' (X r- C'r:J!.." 1"" ••• ,ri-.

+ iT (Xl' c , • , c , X 1") ) + F(xu' c , ••• , c ,xl) ••

::;'(c, ••. ,c,x) + ? F(c,c, •••• ,c)p

=

7(X l'c"",c)n- ~(" c'. ''''n' , . ,

-8' ( c , c , ••• ? C ,xl) - F( c, c , ••• , c ,x
D

) +

F(x , c , ••• , c) - ~(xl' c , ••• , c)J + ?F( c, ••• , c) .n

Dividing by ? (whlcn t.s ncr-nrl s sLb'l o by the hvnothesis (iii)),

we obtain the renur~red result (6.?Q). ~his comnletes the proof
::.
I of this theorem.
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Trigonometric 8guations~

Sine eCllJ)3.tion. mHEOREH1. 1et f: R -?R and such that

holos for all

x , y t R. IT'he gener'll system of continuous 'solutions of (6.47)
is

.:~ f(x) = cx

f(x) = .\ stn ex

f( x) = A sinh ex, A, c real.

Proof. f - 0 is a soluti.on of (1).Evidently

So? VTe exclude this t.r I vla I solution in the following considera-

tions. Since f t 0, ~her8 exists a and b such that

( 48)

b

k = J f (x) dx ~ o.
a

From (6.47) and e6.4RJ, we get
\.

b

k f( y) = J f( y) f(x) elx

P.I..

b
2 b 2

f feX;Y) fdx X-Y dx= - -P( -.-,,-)~. 2
a ;'1.

b+y

.[
2 2f(x) .' dx -

a+y
2

b-y

J2 ?
f(x)'~ dx ,

li:Y
2

=

.'

Ir
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•from which f'olLows t.hrt , i) f is ?od, ii) f is differ:;n-
. f f (_3,,_=-._Y.) '~." ndti. "'t'ole on R, iti) f ' l,'3"i, lj.nc''''T c omb lnat.Lon 0:<.

2

r (,1':1_::.,Y\, 2 1 h! '1nr, .cnc o
')
'.>

f 111.sdGriv1.tivQs o~ ~ll orders.

Now diff:rentiqtinq (6.47) with rcsnect to y twice, qnd

then setting y = 0, we have

(48)
')

f'{x ) f' '(X) - f "(x ) " = c, vher o y=oe =

'Tncncc

f(x) = ex, -f'(xl = A sin «x , f(x) = A s l rn cx , ~>c r oa.l.,

E,.,1.1 ·tion (f3.4T c·1~·l.lso bE'':so Lv od hv reducing it to the weI l.

known cosine e'··1J":.tinr!11,'3 101101,'[5.

Since f 1= 0, there is an ' r ' such that f( 1.) i- o.

D8f:Lnc

Dsing (6.47) ~nd (0.40), we get
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, .

g( x+y) + g (x-y)
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= -~rf(X+y+q) f(.'lJ +f (x=y+«) f( a)
2f( a) .-

-f (x+y-~J f( a) -f( x-Y-:1) f'( .'OJ.)]

. 2 2 2= 1 [f(x;,Y + 8.) ~_f(x;Y) + feX-Y + a)
2f(;:).) ~ 2

2 2 2
_ f(x-y) _f(x+y) +f(x+y - a) _2 '" 2 9.

'f(X-Y _ 1.), 2 J+. 9. ~

1 2= --- i f(~ + a)
') !' 22f( a) U -

2
f(x-y)

2

~
+ f(x-y + a)

2

')

fex+y) c.s + f(X+Y _ 8.) 2 _
2 2

2
f(x-y - a)

2

')

f(X;Y) U .,.

f(X;Y) 2 ]

= 1 ') rf(x+a) f'( y+a) - f(x-a) f(y-3.)
')f( ) '.~,~_. a

+ f( x -a) f( y-a) - f'( x-a) f'( y+a) J

= _-=1 _
( \?2f a,

Lf(x+q) - f(x-1.)] [f( y+a) - f(y-q) T

= 2g(x) g( y), whf ch is the cosine enuat.Lon ,



<:+

108'

." 'T'hecontinuous s o.Lut.Lon s of (f). SO) ar4 t'(x) - 0, f(x) - 1,

f(x) = cos ex, f(x) = cosh c x, c re~l.
the right side of (6.40) is in~enendent of the choice of

, ::l ' ,
r -,92 ! fey) f 0, we h~verr:'hatis, f 0':' '1.11 y such th'1t

g(x) = f(x+y) - f(x-y)
'? f( y)

Thus

(')1) f'(x+y) - f(x-y) = ~g(x) f(y), whenever fey) f o ,
"

Putting x = 0, in (6.Sl) and using g(o) = 1, we hav e

( .£)2) fe-v) = -f(y) , f is odd.

rr~le euuat.Lon (6. C)l) now b cc ome s

f( v+x) + ~-'(v-x) = ? f( y) g( x) •

Now taking g(x) = cos c x and using (6.~), we have

f(x) = B cos ex + \'sin ex.
+~ teing odd, we get; p = 0 and thus f(x) l\. sin e x.1. L.' =

If g(x) - 1, (6. Fii reduces to f(x;y:) qx) + f( y)= = 2

and thus f(x) = ex + d. Enu~tion (S.'?) imnlies d = 0 and
hence ftx) = cx. Similarly fro~ g(x) = cosh ex, f(x) = A
in ex can be o~t~ined.

,:".:.
I·:

','\','::~
,
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'L'HEOREH '? Let f, ~ R -7'- cl.; such t.ha+

( 5'?) <P (x+v) = f(x) ¢> ( y) + ~ (x) f( y) .
Further let f .ind b be dj fferenti ab I.e .

Then '1. (x) /I (0 ex edx) 8..nd f(x) 1 (e cx + edx)
= - =-i, 2

,
IT(; con s tan t s , 111~ ~

Proof. niffGrenti~ting (6.fi?) with reSDcct to x , we hqve

(D I (x+v) -. f I (x) q) ( y) + ~) I (x) f( y)

'11so = f (7.) ~I ( Y' + 6 (x) f I (yi (clifferenti qt,j'.l ()'

wtth r e sne ct to y) . Bence

U34) f'(X) ¢ (y) f(x) <pI (y) - f'(y) ~ (x) + fey) <pI (x) = o ,

Fur+her let f( 0) = lqnd ~(-:» = o,

"'hon from (6.'>4) with y = 0, we get

- ~I(O) f(x) - f'(O) 0 (x) + ¢I (x) = 0

or

From (6.f4\ and (6. r.;c;,), ~.Ne cb+a l,n

<bll(x) + ~L o I (x) + b ¢ (x) = o.
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'rhus,
( ,1l6)

I cx' dxm (x) = ~ e + B ~ .

Now (6.~1l) ~nd (6.S6) yield

( 67)
ex dx

f(x) = D e + F e

M~king use of (6.S~, (6.S6) 1nd (6.S?'), we get

2 l\. n = A., ? B F = Bqnd I"F + BD = o.

SU)1')oseing 1.nd R non- zero, '-Te h,qve 1 - FD = "2 - and A = -B.:'\.

1-Ience
f(x) = 1 cx dx'2 (0 + 8 )

and ¢(x) ~-A. (e ex dxe ).

Fnr c - d - i ~ - 1 i ~(x) = cos x, ¢(z) = sin x.-- - '--2 ,L_

'For c = -d = 1, 1 f(x) = cosh x, <rex) = sinh x.A = 2 ' we h-ive

THEOH,EM ':l Let f , q), 4): R----;7CC such tha t f,~, twice

d Lf f er errt l ab Le and f, (D, L!.J satisfy

( .58) L!.;(x+yi = rbCcc) f'Cy) + fey) ¢'(x), x,y t, R.

'T'hen f(x) = a sin (bx + c)

¢(x) = d sin (bx + 0)

'3.nd ~(x) = qd b sin (bx + c + e).
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PrC]of ~lL. Di ff8renti~"ting (6. PiP) \-1ith r e snec t to x,

vie have
1V'(X+Y) = cp!(xlf'(Y)' + fey' ~!I(x)

q,lso = ¢ tXlf' '(y' + f'(y) <b'(x),

(differentiating)

(6.58l with res~ect to y. Hence

( 5'1) q) (x) f' ,~v) - fCy) ~t '(x' = o,
I

In (6. [";9), m-iki.ng x cor-s t anr , W~ get

( 60) f(x) = a sin (bx+c).

Sirnilarly mp.kh~g y cons t int in (G.hrl), W8 obt,:-'.in

(6[) ~ (x) = 0 sin Cbx+e i .

ly(X+Y) - 8. d r sin (ox+el . b c os (jy+c) + sin (o~l+e'l • b •

,COS (ox+e)]

= ~ b d , sin (b(x+y) + c + e~.

mhus ~h8 theorem is ~ro~e~.
P or ,'l = d = b = 1. C = 0 = ,c;. \' E pet

f(x' ~ sin x, ¢ (x~ - sin x, ~(x) ~ sin x,

conscouent Lv ,

s i.n (x+y) = sin x, 3:_n'y + sin y sin 'x ,
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'r'HE03EH 4. L2t f and <p be non-constant real fune-

tions such th'lt

(6~~) f(x-y) = f(x~ f( y) + ~ (x) ¢ (y).

1 ex
f(x) = - (8 +~'T'henLet s» :tnd 1) DE differsnti,'lble.i

., ex -ex)and ~ (x) = ~. ( (, - e .,
?i , '-'-

and y3'{ symmetry of x

fe-x) = f(x) ~ all x r R, that is, f is even.

Chnnzing x t~ -x a~d y to -y in (6.6~)'1.nd usi~g f even,

¢ ex) ¢ (y; = ~. (-x) <P (-y),

From this

in (6.6~~and the~ y = -x j.n (6.6?), WE get

f( 0)
<) •.••

f( \'.J ~ ( -./'= . x' + \1' :{'

Also - f( 2x~, wh i.ch i3 1. contr·:.dictio,1,;:ince

is noncons t ant . Bene,:; <b 1.S odd. "'hus

·i ....
..\.. ~-,

nOD- zero, \;:'set

(64) fCo; = 1.
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Letting y =x 1"1 (6 h)n~ ('h ct')) r e+uces to us inz (6 o~4\, . _ '~ , , , .I. •. _. -" ') "',' • ·c.,::....,. 'J' A .••. ...-:.;. 'J' .:1 :'.") - u .- I ~

( 6S) . f( x) 2 + ~ (x) 2 = t .

,"!

Chr',n,c;ing y : LtO .-y in (6.69), we hav e

( 66) f'(x+v) = f(x) fey) - ~ (xl d:l (,:,1.

..) l' b .' 6 6'"') ..:J ' r 6 ~r::,' r «: Co: •••
\(j~) Slclng 'x -r x+y J.n \ .• :-::lru. nS1.ng i,. b .. ) 7 \ ::'P ... )· 1,/..;; z.:,:-"

( 67) ~) (x+y) = ,~ (x) f( ,.j + rex) ~ (i)"

lerc chqngi~g y into -y, we not af.n

(68):p (x -v) ::::¢. (x) f('l) - f( x) (b (y~.

Soluti~'n of i6.67) by theorem ,) is

'f('\.) = ~(o ex + (;rlx1

d . (x) ex dxan, 1) <-. X =A(n -0).

surs t i tut.i ns t.he se IT' 1",:>", of f ,-,' ') -;.,.,(c 6)') .. c ,.,..,.,t::;'",.) .... L ~f .. , ..... ,c J. .A."_..)' .. ',.n<t (: ....,d O. ". 'I·J ,. ,.

1 \- c (x+y) d(x-v!l- ~ . +0 . J -
'2._'::"

( ~ ~2) r d x+v) .. 0 (x+yfl +(1 .~2) j' '. C:]~ :":y4"1. ._e -r- ~? _ 4 - ·:i (-- +
.:l, -

+ c;v.K+CY I
J'

Frotn t.h i s :'01101-18 -c1 '.n1c1
1 2 1(-. =: --- -1- \ = 0 or .~ = -e- ,-. -,4. -. f..'

'.c': ..:1.(- ,-,

,'( x) _1 cx ,-ex,
- ? ~e + 0 I

and (\) Cx) = .J • .:!:. i (."ex _ p-ex):~ . ' - . ~t
Im"w~
1.1·l~~
~

I
:~!~,
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:.,T8 wi 11 deri IT2 scmc t'ur+h..r- Lnt ere s ti nc resul ts from the above

equations. ~hc following enu~tion~ ~re tr~e:

f ( ?'x) rr ) 9. ¢ ( x)
2= , "x: -

~ ( ?'x~ = :> !p (x) 7' (x)

= 2 4 (x ~ y) • f(x -+ y)

f( <x) + f( ?y)- 9.f(x+y) f(x-y)

f( 0X) f( 2y) -- _.9. (P (x+y) ~ (x-v) ,

Settins ¢ (x)= r(-x-) l WE: r;et

lU( x+v)

= ~)(x) - (LI( YI
l+l/J(x) 1Hy)

~hen from (f.6~), f(~) = o. f pnd ¢ ~ra ~erin~ic with period
~ t. Inds8d, nutting y = t in (S.67) lnd (6.6R), W8 get

q, (x+t ) = t'(x)

(I) (x-ti = -f(x).

Hence f(x) ~ ¢ (x+t) = -f(x+2t) = f(x+4t).

Simil~rly ¢ (x' = ~ (x+4t~.
Let

" ( x) = f (x ' + i ~ (xi ,
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The eq1htioI1s (6.66), (6.,3'1) and (6.6n) yield
J

'f\(X+Y) = )(x) • i-( y) •

Renc·:?

_n
[r(x) + i <D (x)J _ "ix)n =.\ . '\ (nx)

= f( nx) + i ~ (nx) , gonor a.l.form of

De Moivre'~ 'thporcm •
cos x, t!'·.n· 1C r es uec t LveLy.~(x): .: (x).L "'i) . ,

theqbove r e su lts Dr OV~0 I'Edu"('; to thr~-.:;tnnd ar d f'or'mu lac in

circular functions.

InstcRd of taking the domain ~nd the rqnge ~o be ~eql or
com o.l ox number s , the doma in and r 'longECI could 'Je Rn (n·-QirrJf:msion"1.1

vac tor 8:').1.(:e, nn ~ 1), ([ (.n ~ 1) (n-dimension.ql c om'o.Lcx vector

n etc. Here 1.vewillSD3ce) , , snu~re mqtrices of or~er

such th'lt

( 70)

If f is contn r.ucus, then
.,:

a m x n m~triz ove~ R.
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~hen each f.(4 = 1,2, ..•m) s'1tisfies
J

f .t x+v) = fJ.(x) + fJ'(Y)'J 1

n
x,Y P R •

Hence by ~heorsm 3.10,

f 1 __)."j \,..!~

x = .(xl' .•• x 'j '-1.ndm
'1'~i ( i = J, .•. ,n) '11:'e coris t urt s ,.

'rhus

f(x) m , .j == A.x "iter e . -L?
1 = "." •..

( 71) :(~+y'= g(x) + h(y), x,y r ~.

If f is continuQus,chen

.:" (-,~) = A x + b + c-'- ~,

g( x) = I\. x + b

h(x) = A. X~ + c ,

1/'.'),.,~ n .

where is 2 m x n ~atrix, 'b 1 ~ . ~~_m._,c are e_ e~e~cs l~ .

Proof. ~,s t.n "huorem 4.1, eaug.tion (6.72) can be reduced
t.o (6.70) be tht; fo lLowi ng subst.itlt:ion
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¢ (x) = f'{x) - b - c, b ="h(o), c = gCo) ,

f(x) = g(x) + b

f(y) = hey) + c.

~hen ¢ s~tisfies (6.70) ~nd hence

follo·ws.

¢ (x) = Ax ~nd the rest

Let f Consider the following

equations

( 7~:)

( 73)

?(y -I- y) = fen + fey) TT y r G [n,nJ,I .I\., , .I, ,

f(X + y' =~(X) f(Y)

f(X y) = f(X) + fCY)

f(X y) = f(X) fey) 0

C 74)

( 7.5)

These erua t i ons h-id been j-reated ext en s ive Lv and t ncv have many
aoo Li cat t ons . All measur ab l.e solutions of (6.72), C 6. 73) ,

(6.74) nnd (6.71=j) ar e given by A..T(l;;:wqga,ki r60] • Under the

r egu Lar aty sunoos I tion

f(V-l X 11) = rr x»,

for all ma+rLces IT lihich ar e nni t.ary or or+hogon al., S.'y11rerya

[6 x] has solved t.he s e ecu :::.tions.

m = 1, n = ?, Golab oroved without any condi-
.

tion on f, th'lt e'/cry s o.Lut i on of (6.7.5) is of the form

f(X) = ~ (dE;t, X) ,
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whsre ¢ is an arbitrary sC9.1'1r-valuerlf1.mction of a single

vari~hle, satisfying (l~a).
'rhis result has been generalized to the case m = 1 and n
arbitrary by M.Kucharzewski [~41 and by M.Hosszu [44 J •

Here we give the nronf due to Hosszu.
'T.':-{EOREH ~. Let f: G rn n] -'>- K, sucu that

(75) f(ft. B) = f(~) f(B), A.,B t G [n,~1

where G [n,nJ denotes the multinlicatiiTe semi-grouP of saU1re

m"ltrices ot err' er n over the real or comnlex field Y. ,,(,hen·

f(A) :: ~ (net A) ,

where <P satisfies (l.q).
Proof. tt = H IT Vlhere I1 is hermitian and V is uni tar v .

?

A.lso H "l.nd V are eouivaLent to di8 gonn..lmatrices. But from
(6.75), we see ~hq~ f is the same for eouivalent matrices.

:: f( A) •

It is enough to T)rOV3 the theorem for cli'1.gonalmatrices.

d1 0 ...

: 1D
0 . d2::

0 0 n-
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rd
-() I

1 ()= I1
1

I d~
0 0I !

... " ....
C) 0 ! () II 0

I
0 ! 0- I- -'

dk 0 -,
n -1= P 1 7) -
l' kk=l k 0 0 i

0 i,
t J
.~

where P
k

is obtqined from the unit mqtrix by interchanging the

fir st and the

Hence

Idk ()
n \/

feD) = f( Pk) f( 1 ') f( p~l)11'

k=l 0

0 0 i
, 0 I
'-

n " "\ l
= -'" ( dk

~)1- -rr

k=l
1 I

0 0
\
I

0 !
.- I-'

= (det n), wher-e ~ s .)tis fie s (L 9)

Hence the result.
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For m = 2, n = 2, Yucharzewski and Fuczma LssJ have nroved

the following result.

Let f s at.I s f'y (6.75) for all non-singular mat.r i ce s

x, Y of order 2. r:'Ihen, we have

f( X) = 0

¢ eel 0) -1
f(X) = (det x) • e

0 0

<P (act X) c -1
feO = e x e

either

or

or

or rr x: =G(detX),
-~ (x) 0

and ~ * 0 is. a~ ex) =where
~(X)Jo

solution R""""GL (R)
2 is multin1icative with

G( 1) = (~~) ant C, a ncn-is t.nguLar- mat.r tx,

For m -== n, Kucharzewski1.nd Zajtz ['56J nr oved the

f'o.Ll.owi.ngresult. Let GLn(R) denote the m-i'Lt.Lpl t cat tve gr ouo

of square matrices of order n over R.

Let f ; GL (R:) ~ ot unn ' m Rnd satisfy (6.75).

For m L:.. n, f(X) = ~ (det X), where ¢ S ltisfies (1.9).

For m = n , either

f(X) = G( clet X), "There G : R-7'GL (R)n

is multiplicative.

or feo ~ (6) r, -1= X e

fcn 4> (6) e(x't) -1 -1= C 'or

where ~. satisfies (l.~) and C is an ar~itrary non-singular
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§ 7. ApT)licatloi1.h ~Jm.; we wiLl. give some anp.l i catd ons of

functional ecuat t ons in vector ana'Lvst s jan.i.Lys l s , st at t st l cs etc.

iTectClrs llnder'.rl(Ution from an Abe Li an

group.

2) Additian is rot1.ticn automor~hic; thRt is, ~7 -otat-
ing a r.>ai:-:oof vectors, t~1P r csuLt arrt is r-ctrt ed t.hr ough -,":hc

errua L magrd tude , J.ies in i.he same nLane , 1.1ong the bLsoc+or of

the angle.

~) "'he r-esu Lt arit denends cont tnuous Ly unon the !1':~t_;nit.ude

of the vectors and their'lngle, and

4) narallel vectors are ~dded al~ebraicaIlr.

Concl'lsio..n" Conditions 1 +0 4 Lnrol.y the comnos i t.Lon of

Let a. and o1.nd c and. C'. b,-" b.;o "!)::lirS of urri t vcc+cr s

with same in<:luded angle 8y, \I,tth r esuLtarrt s "met r?"
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By condition 1, since the mQgnituc1e of two unit vectors denends
only onthe angle between them, let \rl I = I ~2 1= 2 f(y).
Since the magnitude of the resultant of two vectors of eaual
magnitude is pr-oncrtLona.L to the magn i tudes of the original
vectors, we have,

=~f( y) • ?f(x) , I a+b I = 2f(x+y)

i b+d I = 2f(x-y).

!lnd

By conditions 2 and 4, we obtain

thus 4 f(x) fey) = 2f(x+y) + ?f(x-y).

~he only continuous solutions of the above ertu<.ition,known as,
T)' ~nembert 's f'unc t i ona'L ermat i ons or cosine equation or Poisson
ecu=.t Lon , are

f(x) ::0

f(x) = cos a x, a,a constant
f(x) = cosh a x, a, a constant.

Since for two ry,:'-rallelunit vector s , the r esul.tant has magnitude
two, we have

f(o) = 1.

Simil8.rly since the msgnt tude of the resul.t.ant of two antinarallel
unit vectors is zero, we have

f( 'Il'/~) = o.



Thus r(x)::: 0 and rex) = cosh .ax cannot be true. Hence

rex) = cos ax, with. a = (?k+l), k = 0,1, .•. •

k 1- o ,SUPlJose would imoly, two vectors

_'TT_

?k+l

contrary to condi tion ~(3. + 13 = 0 only if a = -0)

including an angle woul d have the r esu l t arrt zero,

Therefor e, f( x) = cos x,

Hence , two vectors of errual, migru tude x and included ang l e

2 <p , has their resu'l t ant al.ong the bisector , with magnitudei
~

:1','

,
-s

".'
2x cos ~.

~he general case can be similarly consid~red.

'? Yeetor analysis. Definition of sca l ar Jdot) and eI.'oss-1Yector)

»r-cduc t s ,-,--,
~hese ~roducts are used to give counterexam'Jles to the

well Jr:nowntrr oper-t Les of as socl at l.vl t.v , eOm""'ut.'1tivi ty et c , But

these nr oduct s satisfv the di st.r Lbut.Lve Laws with regard to.qoil,i-

tLon, 'ATj,threg:v'd to these nroduets, 'VI8 sh!111 nr ove the follow-
I

ins: result. Let us as sume tha+ the vectors sa't i sf'v the follow-

i
"}:

ing as sumnti ons ;

(1) Products are r-ot a+Lon-nut omoroht c , that is, for a r ot.at i on

of the snace , t.he s csLar or oduct; is Lnvar iarrt and the'vector

product undergoes the same rotation.

(A+B) C = A C + B C,
~ - - --Ll+B) x C = 'l x C + B xC.

( ?)
distri'butivity



~
j
j

1
1
j
.i
1

l
1
1
.J
l
i

J
!

1

i
j
i
l
j
1
I
I
j
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EK A) • 13 = A • (KJ'3) = Y(4. • ~),

(KA) x B = A x (103) = K(A. x B), k,a scalar.

Conclusion: A. B and A x B are the scalar and vector

nroducts to witbin m111tiD1ie.ativeconstant.
It is not bard to show 'from the !lssnmntions tbat,

if A. _L B then

if A I IB , then

.fA. B = 0

-
A. 4 B = 0

-
and A x B is DerDendicuLlr to the nlane determined by A. and

B •

Let el, e2,e;1

x+Y, x-y and x

.,be unit vectors cODlanar with e , making angles

with the direction of -e

( L)

Also, from condition ('?), _

»;
. :.:> e

( .. ) f ( 81 8,?) - - - -
,11 + . '" = el e + e2 e

J
~, • •

\

l(e1 a?,) - - - -
+ x e = el x e + e?,x e.
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(iii)
r

I (e? • e =

1I... f( y)

f( y) and
i - dt , wh er e i _\_e28,n e such that(e? x e =

form a right handed system.
mhen \ve have from (i), (ii) and (-iii),

?f(y) cos x = f(x+y) + f(x-y).

Thus by (6.S) of the miscelleneous eauation C, we ha.ve
f(x) = a cos x + b sin x.

o for the scalar nr-oduc t , life have in thi s case
f(x) .= a cos x.

B = a I ~ liB I cos 81 e = 6- (A, B) .
Since f('IT!2)=

Hence A

Since f( 0) = 0 for the vector nroduct, we have in this case

f(x) = b sin x.

Hence A x B = b/ Al I B (cos e~, where e = i (~,B)

- I -and e~. A and B such that A,B,e form 2 right handed system.

2) Area of a rectangle. [70J Tt is well known that the area
of a rectangle of sides x 'lnd vis xy. Here it is established

using Cauchy functional eoua.tions.

Let F; R x R~ :~t +R , Dositive reals) be such thatCR, r ea l s ;

F be add I t Ive in both variables, that is

( 1) F(x+u,y) = F{ x , y) + F(u,Y) and

( 2) F(x,Y+v) = F(x,y) + 1<'(x,v).

Then F(x, y) = cxy, where c is a constant.

-,

"~
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For let

( 8)

Then by (7.1) and (7.3), Cy satisfies (1.6) and further
is Dositive, since F is. So, by theorem ~.l.

cy

(4) Cy( x) = k( y) x , wher-e k( y) is a constant depending unon y.

From (7.2), (7.?) and (7.4), we see that k satisfies (1.6) and
k is nositive. Thus,

,:

we obtain c = 1.
·r

Remark. F above ~eDresents the area of a rectangle of

s i.do s x and s . 'fIaesunnos i t.fons (7.1) and ( '7.2) cor resoond
to t'1.ear ea ~ which depends on the sides x and y, is add Ltiv e

in both x ~nd y.
4) A.nalysis. It is well known that

lim sin x = 1.
x -"'J 0 X

"
i~

Here a proof based on Caucbv f'unc+Lona'l Gaur~tion is given
Here angles are measured in any lineqr scale, viz degrees etc.
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Let

( 5)

r f (x) - ~n Sin .z,
n ~:p '.

:'-i

1
g (x) Cas x Cas ..A.. Cas L= w 22 .....

2n~ n ~

,pre know t.ha t

( 6) Sin x = 2 Sin ~ • Cas x2 2

From (7.5) and (7.6), we nave

( 7) Sin x = fn(x) • gn(X)..
gn is a bound ed s r1ocr easirig seonence. For, from (7.5),

g (x) = g(x) Co s xn ~ gn 1(x) ..::::.1, for 0":::" x < R,n 2-

(R, numerical value of ~he right angle).

Hence lim gn(x) = g( x) exi sts and g( x) < l.
n-o-co

Further, let

Then
(.x.
~()S ,:p

c.

o «. x c R,



",hus {hn \ is a boun+ed , increasing sequence and

So,

(8)

Hence we have from (7.7), that
and we have

lim f (x) = f(x) > 0 existsn~oo n

(9) Sin x = f(x) g(x).

~urther,
f(x+y) = 1im

n-700

= lim
n-+co

= lim
rl-CO

n x ,T1T x
2 [Sin --n Cos -'n + Sin ~ • Cos Ii1

2 :8 2 2

= f'{x) + f( y), since Cos x is continuous
at zero.

is incr8~sing and so f(x)f
l
, (x)
.l

is,..,. f
:::>ltlCC, .. or 0<: X .( R,

non-decreasing. denee f(x) = ex.
'T'her~fore

(10) Sin x = c x g(x).

....•
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From ( 7.~) , we have lirn g(x) = 1
x --"f' + 0

Thus we have, from (7.10) ,

lim Sinx = ~ where c deneno.s on the scale.,
x ~o x

Now, let us introduce the natural angu Lar measur s , t = cx and

define
x= Sin c cos x = Cos x

c •sin x and

Then we have
"i X'J n -c

lim 1.
.- X'-> 0 C

x
c

= 1.lim sin x---x~o x

5. ,Statistics. Normal distribution. Let f be continuous .qnd

have cont inuous oeri v,qti ve and such thg,t,

00

f f(x) dx = 1.
-00

has maximum at

if and only if

1 r x2

]f(x) = e x n I ---;; .
j?-rr ,.,.. L'" c,. ,(I

x +x +x +x
Indeed, let g h'3.V8a maximum .qt Xo = 1 8 ~ 4 Then4 •

,
" ~

. !:(Ii
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get hex) = f 1 (x)f(xT •

Then
4
L

i=l
4

with L (xi-xo) =0.
i=l

h(x.-x ) = 010'

j

I
I
.t

2
-u

f(x) = a exn <21')2 ), negative necessary
co

for the convergence of the integral J f(x) dx = 1 •
-co

A.gainby the same jntegra1 we get, a = -=~1=--.j2~

u2
~- ).
21') .J

't'hus f(x) = 1 exn (-

--

, '

" ~
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§ 8. Some unsolved Y)roblems in functional equations.

1. 'T'hc function
1f(x) = x

can be char~cterized by the

functional eau8.tion
f(x)

f(x+l) = f(x)+l ' for x t. and

some add i tiona1 condition, nameLy conv exi ty. 1"he same function

fex) = 1 al so s".tisfies f2(x) = x (iterat1ot!) 'J. It 'l.-ril1 be
x

intc,rc'sting to charac+r t ze f by the !'tbovc f'unc t i on vind some

additional conditions.

Bab~age e0uation. "'he enu.g,tion nf (x) = x (n !lenotas

the n-th i ter~.tion) has been +r oat.ed weI L and is known t.hat

for continuous f, when n cd4, f(x) = X .ind when n even, every

= x. ~lso every continous solutionsolution sRtisfies
n

g, f (x) = g(x) or• +-.lS monOvonlC. Under what conditions on
of '(x) = gCx) has a convex soLut t'ri and whether such 9. solution

is unioue? Al.so , find the gcncr sL continuous solution of

fn(x) = g(x) , wt t.hout assuming g monotonic.
-,

p . Find the R:(merA.lsolution of f Lx+yf(x)J = f(x)f(y).

4. Find all ;3nlutions of f( .'\.B) = f (~,) f(B) , where f:

rGL (R) = all S0u~re matrices of~ n so
without any surmosition \vh·ltGVer on f for ar bt t.r ar y

n ]GL un ~ GL (R)n m order
Jr('
r')

1'\.'-'

,
.i

i:",.j

n•
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5. Find all solutions of f( A.B) = f( A)f(3), gf B) = f(A) g(B) + ,i:

g(Il..), f,g: GL (R) ~ GL ('R), i,vithout any furth"r :1.ssurrmtion onn m '
f and g for m,n' n.rbitr::J.ry.

6. ' Consider the enuA,tion f(mn) = f(m) + f'(n) , whor-e m and n

are integers such th~t (m,n) = l(m,n are relltively prime).

SUDoose there is ~ constant C such that t f(n+l)- fen) 1.( C.
I '

Do there exist constants a and M such that fen) = a logn

+" g (n) with I g( ri) \ < H ?

7. Det.ermina all homomor-nhd.sms of mul,ti ulicllti v e gr-oups of

algebras. in each other, that is find all solutions of

f(xy) = f(x) f\y), where

An(F) ~ ,~(F) ,

field F).

an algehrq of oraer n over thef :

8. Find all solutions of f(xv) = hex) g(y), where the domain is

asomi groun or -uasf gr011T) and the range is in a nuas i gr oun,

9. Find the solutions of the comoosi t e onua+Lons [45 ]

To' F Lx,-F(x,v)J F CF(x,y),yJ~ = F(x,Y)- ,
F [ F(x, y) ,x~l = F r x,F( y,x)]

F [ F(x, y) ,xJ = y.

';,~r'
'LI'

:!':i'



f( x) + f r f( y) ~ = f [ x + fey-x)] unsolved

10. Find all the solutions of

x f r f( y) ~J =
'L x

y f [
f( x) I
y J (iins ol.ved without

I
I
I

f( x7"Y) = f'(x) • r y -
f ~ f(x)' J (unsolved without

without d11~erentiability.
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