'MATSCIENCE REPORT 39

THEORIES OF GRAVITATION
(Based on the lectures delivered at MATSCIENCE )

J. V. NARLIKAR,
Visiting Scientist, Matscience

\;

~=~d by
Dr. R. VAs VAN

]E INSTITUTE OF MATHEMATICAL SCIENCES, MADRAS-20. INDIA.



" MATSCIENCE REPORT 39

THEORIES OF GRAVITATION
(Based on the lectures dehvered at MATSCIENCE )

J. V. NARLIKAR,
Visiting Scientist, Matscience

~=d by
Dr. R. VAo VAN

39 )E INSTITUTE OF MATHEMATICAL SCIENCES, MADRAS-20. INDIA.




THE INSTITUTE OF MATHEMATICAL SCIENCES

MADRAS~ 20 tadia )

MATEOL B HEORT %9

THEORIES OF GRAVITATION

(Based on the lectures delivered at MATSCIENCE)

Dr. J.V.Narlikar*

Prepafed by
Dr. R.Vasudevan

f King's College, Cambridge University, Cambridge, U.K.

L)



PART T

Contents

~I‘“a;ptroduction

IL..The Blectromagnetic Field
III.Principle cf Rquivalence
IV, The Curvature Tensor

V. Einstein's Equations

L VI. Experimental Verification

% ViI.Mach'S‘Principle

R G

VIII.Steady State Cosmology




B

11,

111,

Iv,

PART IT

Contents.

Action at a Distance

Maxwell'!s Field from direct Particle Interactions

Radiation Damping

Retarded and advanced potentials in curved space time

"C" Field Theory

Hoyle-Narlikar Theory of Gravitation

* X %k %k



R TR

e 8 SRR, T i e

R AR e

B

ILECTURES ON GRAVITATION THREORIES*

Dr. J.V.,Narlikar

ek A

1. Introduction

It is but oproper to begin a talk on the theory of gravitation
by remembering the famous laws of Newton defining the gravitational

/
force between the two masses wv and ™ as

{

/__ G- ,.YV\/ N
i ' nr (1)
Along with this one should also bear in mind Newton's equa-
tion of motion given by = = M X and the philosophy of
'action at a distance', by which the gravitational effects caused

by the mass travelled with infinite velocity and affected the

mass W instantaneously. In electromagnetism also a law similar

k4 \Va

h,'L
however, this was found inadequate to describe the phenomenon

to (1) described the force between two static charges FT:

when charges were in motion. TWven as early as 1846 Gauss empha-
sised that the action at a distance required modification in that
this action should travel with a finite velocity. Hence when a
charge moves the disturbance caused by its motion moVes with a
finite velocity i.e. the velocity of light. This calls for a
field theory of interaction between charged particles and the
most successful and brilliant culmination of the field concent
was the formulation of Maxwell's Equations, in electrodynamics

and thelr covariance under special relativistie transformations.

* Lectures delivered an 24th and 25th February, 1965 at the
Institute of Mathematlicsal Seiences, Madras-20,




9, The Rlectromagnetic Field

To derive Maxwell's equations from an action orincivle, taking

into account the linearity of the equation, we can write for the

action, _ S. e : ) | l:f\ l(
— o cda b2 (A‘dx% — _fF@ A S
0 = 2 /ma, /C’ A ‘ [ ‘R
(2)
where the charges are lagelled by a,b, . . . . . and where . " e
is the mass of the charge. The metric is given by

, K ' y
0(_ X( o( X L,\)-\,{ L. [ -1
YLL.K ylk'q - T (3)

and

F "aAk_,&ACJ

TIPS o xF

A represents‘the vector potential of the field oea_ repre-
sents the invariant interval in the world line of the varticles and
the summation extends over all the particles.

Consider variation of and equate it to zero. If we
assume the field to be given armd vary the frajectory of the parti-

cle we get the equation of motion, relatinz the acceleration of
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the charges to the Lorentz force acting on them

m c()]kk ) Qy/ F:(; Cicxfe
L S @

Assuming the motion of the charges to be given and varying only
the field that is only the potentials, we obtain Maxwell's equa-

tions,

(8)

Using the definitions of the Electromagnetic field tensors, we

can verify that

Ok OFq , IFL

N o 6)
P8

Bquations (5) and (6) completely determine the electromagnetic

fields and are the fundamental equations of electrodynamics.

c(zx?A = (jtfl claf'oLCKkz



3. Prineiple of Equivalence.

Maxwell's equations are most elegant in their four dimen-
sional form exoressing their covariance utider Lorentz transforma-

tions. They proved to the hit the invariance of the velocity of

light, with which electrodynamic effects pronagated. Carrying

over the idea into gravitation, a field theory was formulated by

Einstein. He nostulated the ingeneous idea, that gravitation
modified the space-time geometry of the universe and he %ook the

general line-element

k
S 7 '( 0(
0(/08\ ?( k da % (7)

where the C}LJ{ S are not constants like the Yl but

[
e S
are function of the space-time at each point. Of course it is

possible to diagonalise this ﬁftlk into )7L'K at only one
d 9
Rk

hz.

point with Os around that point. This cannot be

X
achieved at all points at once. (i.e.). We can work against
gravity in an infinitesimal region around a point by onutting an
acceleration against it but cannot be do the same at all points

simultaneously in a finite region. This is the essence and

limitation of the principle of equivalence.

According to this vrinciple, we can always replace a gravita-

E tional field by an accelerated frame locally in an infinltesimal
, : q - A -
b: region near a point. That is 3( k. ?2( I and ?‘ P‘/J xe )

near that noint. However all the second derivatives of Cj( 2
: 1




can never be made to become zero by any transformation of coordi-
nates. Therefore we have to construct a theory which uses
invariants made out of the second derivatives of 3LT< s
From the above, we see that an actual gravitational field
cannot be eliminated over all space by any transformation, of
coordi ‘tes i.e. the nresence of gravitational field is such that
the quantities ?ilg cannot by any trensformation be brought to
their Galilean values, over all space-time. Such a space time is
said to be curved or non-Eucledian and the ordinary laws of
Eucledian geometry are not valid, and because of the strange
metric provoerties of space the concept of definite distance
between two given space points loses its meaning; remaining valid
only for infinitesimal distances. Also the rate of a clock is

different at different voints in svace in one and the same frame

of reference in the presence of gravitational fie lds.



4, The Curvature Tensor

A Buclidean space, is characterised by a quantity called the
curvature tensor. It ahpoens that in a non-Eucledian space the
parallel transport of a vector from one given point to another
gives different results if the disvlacement is carried out over
different paths. In-particular it follows that if we displace
a vector parallel to itself along some closed contour, then upon
returning to the starting vnoint, it will change. For such an

infinitesimal closed contour, the change in a vector /«,2 is

given by
i ¢
i frl' /\ A ™
A/\}Q ,. /2, }\,Cthm ¢ ‘r
or k (
k t /77 ) é v
. 2y 2
paaN A ’ /2— /\ LQW\ /\
| (8)
where AS_{{"W is the area of +the surface bounded by the contour
and ?{c is called the curvature tensor or the Riemann-
IQ(?YV
Christoffel tensor. It also turns out that when the covariant
derivative of a vector /x(‘ , with resnect to Xik’ and xﬂﬁ

are taken the result generally devends on the order of differen-

tiation and

AL)k,)‘ — AL;{’ K - A'rvvp\hqu

J

(9)



{

- _
Clearly in BEuclidean space ]\ 2 {nx‘-' O and parallel transport

is a unique operation. The converse is also valid i.e.
if R NE the space is Fucledian. The complete
(' i

expresswn for is given by

Rthw» ’j(_n k(h'v )
2.
/9\ dchwx +@fjle _.-Q?L! &ﬂkm

~ T e Sk 3ot
J'Y\ } k! t v K (10)
N
where (-1 ’5 are the Christoffel symbols defined by
rL

[.] ,/l xm(c)dmi\ &dwe _ &CJRQ) (11)

Thus Rézk’ is a tensor made out of the second derivatives

of the metric tensor and 7ossesses well defined symmetry prover-
ties and contracting two of the indices gives a second rank

tensor

Rk = Ry, , R = R, .
k (12)

which is symmetric in its indices.

Finally contracting )2( R we obtain the invariant
A

(13)
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which is'called the scalar curvature of the swace-time continuum.
It was known that the ?i b satisfy other well-known symmetry
properties and also obey what are called Bianchl identities.

If we construct a general second rank tensor from the TQ,A~Qit
can be of the form

- Y Y o ) P
GRu+ G R+ G hp - P

(14)

But choosing the constants here suitably it can be seen that

CRﬁwéﬁﬂlvfo

(15)

: 2%
It is also thought-provoking to note that |,. which can be

taken to represent the stress energy tensor of matter or radia-

tion field or both fields together satisfy the conservation

law of the form

/\/‘0 ]) (16)
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5. Einstein's Equations

Bearing the above ideas in mind, if we want to construct a
variational »rincinle to find the field equations in the pre-
sence of gravity, we should start with an action function,

J- T+
whers jjzw is due to the
gravitational vart and :TF’ action duec to all other fields
existing. We write down the action for chafges in a combired

Tlectromagnetic and gragvitational field as

(R a AL
J- S. fﬂ\.acd@+ Ag‘rﬁ'{{ F \/“jok,:f : BJ‘/‘\C o
—_— 4

(17)

Here the most suitable values of A, B and C are obtained if we
nut | 3

| e

AT T P, :B/C: ; ; ..___g__,
e C and C = 6 TG,

(18)
The choice of C is dictated by the fact that the field equations
should reduce to the Poisson equation of the Newtonian Mechanics
in the weak field approximation, <;, being the gravitational
constant is the determinant of the metric (3(-k and it is
imoortant to note that\j7§.6i * is the invariant infini-

tesimal volume element in 13 curvilinear system, and not simply

Ci‘4x as in flat space.
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Variation of the action J=  with respect to the metric

'tensorcakk‘ leads to the celebrated field equations of
Einstein as given below: 3 )
$T C )
— O' ~ T-‘ /
C : — LR |
\Ll ~ /1 J k ¢ 2 |
or —_
-~k '/5 k R . ol (’? T k (19)
RL 1 C C4‘

Here IL;( is the sum of the stress energy tensor of both the
matter field and the electromagnetic field put together. Varying
the coordinates only we get the equations of motion in a gravi-
tational field, which in the presence of the electromagnetic

field are given by , ?
2 ¢ . ¢ A, X ~A X C O\

| : 4
e A = Y S I
o A* ‘ & ) (22)

which is the geodesic equation of a charged particle. The
negat¥ve sign on the right hand gifde of the equation (19) 1is
needed if gravitation is an attraction. But the equations by
themselves do not prefer any particular sign for CR . In an

empty space /L;< =0 ., Thercfore,
J
— / oo R - 0
fLI{
ol (22)

This doeg not mean that in vacuum the space time is flat. Only

if R .{, © O canwe say that the space is flat? Tt is
¢k



" remarkable to note that the field equations imply the eguations

of motion for localised sources. This statement leans heavily on
the improved understanding of the relationshlp between covarlance
under arbitrary coordinate transformations and the structure of
the field equations. The covariancc of the theory of gravitation
with respect to arbitrary coordinatc transformations require that
the field equations satisfy four differential identities- the
contracted Bianchi identities since the source of the gravitational
fields lies in the ‘dfstribution of matter as descrihed by matter
tensor \T;NQ . The Bianchi identities impose restrictions on
the matter tensor. Thus the distribution of matter camnnot be
arbitrarily assighed if a solution of the field equations has to
exist. Conversely when equations (19) are satisfied the equationrs
of motion fpllow quite easily. The solution of the field equa-
tions which are non-linear has been attemoted for various bourdary
conditions and different matter density distributions. TFor a
theory of such importance underlying the structure of space-time
and as is sometimes suggested paerhaps thes structure of elementary
particles as well-geasral reclativily has led to remarkably few
successful experiments. The fcur predictions the theory does

make require an alomost imoossible precision for any decissive
measurement. Such precision has been realised only for three

cxperiments in the past. Probably more will follow soon.



6. Experimental Verificatioqg)

However, much this throry may be dished up by the elegance
and cogency of mathematical arguments 1t might not have carried
conviction, but for the spectacular exnerimental verification of
1ts prediction in three cases. These are essentially due to the
second order effects introduced in this throry, that could not
have been thought of in the simnle Newtornian theory. Consideritig

—

the action in a non-relativistic form, we write for J

: —>
To-me [(edt -4 L d7 4 Jp delt)

Rl

Corresponding to this for a spherically symmetric gravitational

field, the interval d&,é can sxpressed as:

—

AN - (o= ?7%2” Yelt™- n>(sueod o det)-

ol (23)
2 Crva

c iy

—

For this metric employing the eguation of motion for a test

particle ip the field of the sum, we end up with an equation of=

the type
ok U CoM 30 m 2
+ A - 22 U
d P At * (&)
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1

ére Lk g ;{g, . The effect of the second term in the

equation 1is to yield the solution of a rotating ellinse, with
the apses of the orbit advancing at the rate of C$ radiam per
revolution in the same sense =25 the revolution of the varticle

in the orbilt.

C{ GG M . where @_ is the semi
| 9. & ) major axis of the ellipnse

C ol i- G-i) J B

(25)

The planet Mercury being nearest to the sun - can show a maximum
effect, Toking intoaccount the perturbations due to other
planets, this precewsion was calculated *~ be 41.25 + 2.0 ver
century. The most recent estimate is 42.56 + 0,94 per century.
For a light ray vropagating in a gravitational field we
know that c{/:r o and tihis implies that A 1in equatien (94}
goes to y and we have exactly the same equation as (24)
without the first term on the right hand side. Integration of
this equation leads to the result that Lhe net angle betweep the

initial and fina® directions would be

4G
Q’L (Q (26)

For a light ray that is skirting round the sun, this forezoing

A__

predicts a deflection of 1.75. It has been demonstrated by
Schiff that this result can also bz obtained more directly with-
out going into the detailed structurc of general relativity,
starting from the premises of the principle of equivalence alone.

The procedure adontad is to photograph the nosition of a groun



stars in the anzular vicinity of the sun, during the time of
total eclinse and commnare it with their nositions in the
absence of the gra-itational fisld of the sun. Thers is a general

¢
igrecment between the nredictions and the observed results.

] The third crucial test of the theory relates to the retarda-
E%on of the clock rates in 2 gravitational field; considering

gthe stationary clock at two noints A and B for the same irterv=l
,%r coordinate time there corr-spond different oroper times recor-
;ded by the clock due to difference in 534w4_ at the two »oints.
%Considering atomic »nrocesses like emission of light taking nlace
;at A and at B, the ratio of the proper frequencies associated with

fthe processes is given by

% s

NS BY

s

)) - f‘"
4 V(-G48 (28)

If the field at A is more negative than that o4 B, >G3 <;)C\

Thus the presence of a gravitational ficld causes a gravitational
red shift of the spectral line emitted at a high field when

i observed 2t a low fisld. For the case >f litht emitted at the

i surface of the sun and observed =t the earth
Py, -6
— . — 212 xlo
V
This is usually in terms of a velocity which will produce an
equivalent Doppler shift. Though the exnerimentzl confirmation

of the magnitude of this effect for solar radiation as well as




from radiations from other stars has not been without ambigui-
‘ties, nhenomenal »rogress has been achieved in studying this
effect by experiments utilising the rcmarkable discovery of
Mossbauer e¢ffect. Mossbauer found that extremely sharn low
energy AY‘ radiation emitted by long lived isometric states of
nuclel can be obtalned recoil free since.the recoll momentum

igs taken up by the s»lid as a whole, with the result that there
is no Doppler shift. The lines can be so sharp tha*t thsir absorb-
tion by another niece of the same substance can be destroyed by

a relative speed of order of [ Cv /~5XC between the
source and the absorber, i.e. by the introduction of a fractional
frequency disvlacement of only about 10“1Q Fur exneriments on
the earth level 4difference of ¥\ €S near the surface of

%
the earth, would result in a fractional shift LY - [-o9 %ok

PREEREOR g

L)
Rebka, Pcnnd and others used the resonant absorbtion of the

14.4 Rev gamma radiation emitted by 1077 sec Feo/ and
after taking into acchunt the temnerature differences between
the sources and the abhsorber and other inhersent cnrtribution

to this effect verified this phenomenon to a great order of
accuracy. For a ievel differcence of 74 ft. the exnectrd gravi-
tational shift for a two-way vassage was about 4.92 x 15;5times
the mean frequency. The experimental data yielded a net frac-

tional shift of (5.13 + 0.51) x 10719 ¢



(4) Another exneriment of great nromises is to investigate

the effect on the orientation of the spin axis of a gyroscope

in the field of the rotating earth. (This has been discussed by
Schiff in his lectures on Gravitation (4)). According to
Newtonian theory such a gyroscowe in the absence of bearing
friction ete. should vpoint indefinitely in its initial direc-
tion relative to space as determined by fixed stars. Both general
and speeéial relativity predict a vrecession of the spin axis,

due to the following three reasons.

(1) According to the notion of narallel transnort of a vector
say the spin axis around a circle it wil® not return to its
initial orientation, this effect being called goodetic precession
(2) ‘ In the vicinity of a rotating mass the inertial frame tis
dragged around slightly at a small fraction of the angular velo-
city of its mass. Thds a gyroscone even at rest near the earth
withits axis not coanial with the earth will experience a change
in orientation relative to fixed stars. This is refarred to
Lense-Thirring orecession.

(3) A spinning object on the earth in motion exneriencing
non-gravitational forces will precess according to special rela-
tivity. For a gyroscove on the sarth at the equator with spin
axis normal to the earth's axis all the three effects have
approximetely the same value, .4 second of cne¢ per year. Toé
develon adequately stable gyroscones, one involving superconduc-
ting spinning éphere magnetically supoorted has been investigated

by Falrbraches el al.



(8)

Mach's principle

Very refined repetitions of Botvos balance exveriment
‘Teveal the complete identity of ilnertial and gravitational masses
of a body. The concept of inertial dates back to Galileon.
‘Newtom's second law applies to motions measured relative to
“inertial frames. If motior is measured reletive to other frames
additional forces like centrifugal forces come into play. These
are also called insrtial forces. Newton's water filled bucket
exneriment indicates that whenever rotation occurs relative to a
specific reference frame, the surface of water become concave.
This 1s an absolute effect. Thus eczording to Wewton there is a
ttrue' acceleration and a2 'true!' rotation characterized by
absence of other inertial forces. It turns out that this abso-
lute reference frame of Newton relative to which inertial forces
are ohserved is the fixed frame in which distant objects or the
start of the universe remain constant and nor-rotating. TIf the
form of the dynamical law de»ends on the presence and the motion
of distant matter a long range interaction between the latter and
the nbjects in the laboratory must »lay an essential role. The
essence of the Machian nrinciple though rather speculative 1is
that the inertia of a body is the direct outcome of its direct
interactiorn with other bodies in the universs. WNewton's law
F=ma connects the local force - exerted on the mass Yn,
with the inertial force Y\ which as we have seen is the
result of the action on Iwv of the rest of the universe. Thus

‘though Newton's swace has an absolute structure which is hevond
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the matter it cortains, the view of Mach is based on a logical

positivist philosophical stance. It asserts that »hysical

concepts must be based on operational definitions through

measurements. An emn»nty universe according to Mach is devoid of

physiceally measurable »roverties, and

4 1n

vk
Sllab

the inertial proner-

ties must have their ultimate origin in matter contained in the

universe., Although Einstein- was motiv-ted Dy consideratiors

of Mach's ideas, the orincivle was not incorporated into general

relativity. Hewever, matter distribution

geometry 1n the general relativity.

doee affect the

r narticularly nice effect

is the Tense Thirring effect which showed thsat a rotating

massive spherical shell acts to »null an inertlial coordinate

[&2]

ystem inside the shell along with it partially. However,the

difficulty in the Mach's »rincinle within the frame work of

General relativity is thrown 1.tc sharp focus by considering a

un:

=

P
i-_cl o
[

i

i

a
[99]
ct

na

=

= N

the gravitational effects as roesuliing

from

verse empty except for a single test nmarticle. The Einstein's
1¢ equation has a solutior and determines the motion of the

ticles aven if |, b is identically zero, by describing

a tersor field.

Einstein was able to exhibit the irertial force provortional to

the acceleration of a narticle as one
from the tensor [field. As seen above

4.

matter, the metric tensor describes a

svace nossesses inertial pirowerties

of the force terms derived

in

the absence of all

i b
flat

Bv

A

=

n

space, and this flat

Schwartzsehi#1ldv181

famhrous solution is unsatisfactory from the voint of view of

Mach. As one moves to infinity and th

=

[

mass source disavvsars

in the distance the snace becomes flat and continues to possess
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inertial properties in contradiction with the exvectations of
Mach. However, one way out of this difficulty is to say that
we have to prescribe initial and boundary conditions for the
field equations add all non-Machian solutions may be excluded

in thet way.

VIII. Stead State Cosmology

The coincidence of the inertial frame of Newton with that

ct

1n which the distant parts of the Universe are non-rotating can
ve deduced from normal relativistic Cosmology. Though this may
appear vuzzling the reasor for this is that relativistic
cosmology contéins two nostulates which are extraneous to
general theory of relativity. They are (1) Weyl's postulates
(i.e.), the particles of the substratum representing the nebulae
lie in the space time of the cosmos on a bundle of geodesics
diverging from a2 point,in the (finitely or infinitely) distant
pasts; (2) The cosmological »rinciple. This states that the
universe as a whole when looked uvoon from a large scale point
of view its spatially homogeneois and isotropic. For all
observers in the universe a commcn ccemical time may he adoontad,
so that at any given inatant of this time., the metric of snaco-
time continuum representing the develooment of our smeared out

universe is everywhere the same. These assumptions after

considerable investigations ioad to the Robartson-Walker line




element of the fofm

ot +~¢l(dc?ﬂﬁwﬂcobﬁ>J

ApT . At — sTCO [T~

, . l ‘/Sf/h'?’
Now a transformation Y - fb~5<jf:> t = t+ A

where 53- QKPC>H'ﬁ> 9 H being the Hubble's

constant, for sufficiently small ). 1leads for any local exveri-
ment to a metric of the snecial relativity type. © }end q3 are
not changed in this transformation. TP/, a8, jL .t renresent
an inertial frame for a local exvneriment. Any rotation relative
to this produces inertial forces. Ininther words this is the
special frame indicated by the bucket experiment. Since %F

and 6 have not been changed for any {( ~-the distance partis-lo
of the universe are not rotating as required by Mach's princiole.
The usual method in cosmology is to take Einstein's field eoua-
tions

_Ck ck . /‘L'/%_ ~ ¢ R

K ,}5 o R o+ A“4 = < T

[ J
(30)

| LR
and insert the values of (? from the line element (29)
{

. LR .

and find that \r can be expressible in terms of matter
density pressure and flow vectors of matter in the universe.
If we want to stick to Mach's »nrinciple we shonld read the

equation from right to left and ask the guestiun whether for a



k

:

given —7— do the equations lead uniquely to the line element
(5) CK

(29)? Godel has shown that for a normal form T the

solution for the line element 1is of a form which is fundamentally

different and if we want a local special relativistic frame then

the distant matter vossess rotation and Mach's nrincivle 1is

not satisfied. Interpreted as above Mach's »rincionle is not

incornorated in General Relativity. Hence within the framework

of tho usaal theory, what could be done is to take an initial

snace-1ike surface, and define coordinates on it to give tte

Robertson-walker line element and also specify the matter and

Kinematical situations and the quantities Cﬁ F\V

563/“ @1%»)

:;::J" ;5;7—;7k corsistent with the field equations to
calenlate the metric tensors off the initial surface. Soecifi-
cations on the initial surface can be SO chosen that the line
element is of the Robertson Walker form everywhere, That 1s
the initial boundary conditions were supposed %o Dbe imovosed at
the origin of the universe 1in such a way that it just hannens
that out of 2 number of nossible solutions, the ore with the
required line element was chosen. Thus it may be said that
Newton's concept of 'abstlute s»ace' has been renlaced by

inltial boundary conditions nn matter and the metric tensorsd




- 22 .

The main goal of the steady state cosmology is to dispense
,Ith initial boundary conditions. In the steady state theory
~of Bondi and Gold, the perfect cosmological principle 1s used
~which states that the universe as a whole always remains in the
steady state. Hence the coincidence we observe must be there
:élways. Ir. other words the nerfect cosmological vrinciple serves
for the oroper initial boundary conditions. Also therc are no
equation occurs.

In Hoylsa's approach<7), Einsteir's equations are modified
through the introduction of a new field. af course, in view of
the curious situation surrounding Mach'ts principley, and the
general roles of boundary conditions modifications can be thousht
of in an infinity of ways. The simplest field that one can
introduce is a scalar one denoted by C . In analogy with
the theory of electromagnetism, the action function incorvora-

ting this field is written down as

. | P ; pa { ) | ( ¢ a4
J - TC /VQijA X — Zﬁa»[a5-4i_FQC\ﬁao(x

, )L
o % A
- 'mJC; N ol (31)
i cp

where j€ is the counling constant. The condition QS'T: )

taken with respect to the metric tensors and indevpendently with




respect to the field (j vield the equations ; 7

whers ‘g is the mass current. In equation (32) it is not
necessary that both sides vanish separately since in this theory
world lines of matter may end or begin at various voints in

snace-time. With these field equatiors, provided we argue that

in hemogensous isotronic case that C field is a function of

)

‘t only, the solutions are consistent with Robertson-volker line
element; and for C = © , they reduce to the usual cosmological
L
equations. EBven with C. ( no significantly different
; :

¢
sclutions are obtained. If, however, C. ¢ ?i O  nossibility

/

&

E of creation or annihilation is ~llowed. We allow an infinite-

simal verturbation and we obtain different class of solutions
which as ’t — reach a steady state solutior. AVso

the matter density and the crcation rate tend to a nositive

steady value ner unite volume. i.e. in the asymptotic case

o creation and expansion are in exact balance. Further in the
( ) ) '

case C, # 0 it turns out that C - + at all t.

So reverting to Mach's principle we formulate the following

% oroblem. Set up surfaces C =z constant and define’t = ¢ ;

Suonose matter and velocity distribution is given on this (?




surface. To permit a calculation off this surface, we svecify,
metric tensor and 1its derivatives. As C increases what
havpens? Using a perturbation calculation, Hoyle and Narlikar
were able to show that if we take an initial line element,
as (. increases over any snecified volume, the line element
tends to a homogencous 1sotropic form as time increase,
srovided that contiguous creation acts in such a way as to
smooth out any initial anisotropy or inhomogeneity over any
speeified vroner volume. Tike in the electrical circuits,
once the generator is switched on and runs for » time the
transients die away and ~» steady state is maintained. Ifthe
C field w@ich is the driving force of the universe is ore-
C .
sent with C, ¢ ;ﬁi@ the universe attains the observed

regularity, irrespective of its initial boundary conditions.
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PART II

Sp? Sy

- I, Action at o Bistance

The field concert has been so very successful in
Electromagnetic theory that we have come to consider the field
as a physical svstem in its own right interacting with narticles,
These ideas have considerably discouraged tre general use of the
tools which Gauss and Newton emnloyed for analysis of forces,
namely the concent of action at a distonce (propagated with a
finite veloeity). However the field nicture led to infinite
self energy and to the necessity of mass renormalisation ete.,
It 1s becoming increagingly evident that it is nossible to eli-
minate the concept of field and introduce only direcct interaction
between particles for descrivtion of different vnhenomena., The
advantage is that 2 single particle in this apnronch hags no self-
energy. As is expounded by Wheeler and Feymman the formalism
developed by Schwarzschiid9 Tetrode and Fokker in thc case of
electromagnetic theory makes no use of the notion of a field.

Bach particle moves in comnliance with the prinecivle of stationary

7= = Trea [da - 3% U Le €y ffé(w-ﬂ)?ﬂ

A~:£/L
Oﬁf\ﬁ'ci{fﬂA/ (2,1)

Here we aore now concerned with the time svmmetrie theory
of action at a distance in = flat space-time. We therefore have

3 P l 'l/\ s
i gzohsl (i»ll,; = ,—+t> and the ()t' narticle

,_..,.
-
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has charge Co. © and mass YWig and has coordinates (k&)

The 1ine eloment

Ry e ket ela g
ot (ab, o™ (&' DICE

¢k (2.2)

A1l of mechanics anrd electrodynamics is contained in this single
variational vrinciple without meeting with the difficulty of
action of the charge on itseclf. THowever, in this formulation we

have two other headaches, namely: (1) The field quantities come

out to be the sum of half the advanced and ralf the retarded

solutions of Maxwell's equations. To avoid the inclusion of
advanced fiel so contrary to experience, Tetrode proposed to.
abandon the symmetry in the time of the clementary law of force, v

But this is no cure at all since (2) we have to exnlain the fact

that the accelerated charge suffers a force of damning which is
simultaneous with the moment of acceleration. Wheeler and
Feyman rcsolved this impasce by toking into account the sugg

tion of Tctrode that the act of radiation hes everything to do

with the presence of the absorbers, in the universe.




II. Mazwell's Field from direct Particle Interactions i
Let us now get back the Maxwell's equations from the T
varying of action J by altering the world line of ‘
particle & say & CGJ to ol (0\3 + o ( 6\) « The
%) CX L/{» s A> /L&) occurring in the action is nothing but the f
Green's function D—'Cx_ L) which is symmetriec in ifs varia-
bles, and in past and future.
s —
—_— ‘ . \{Q«t ) Cy(mc )\),J
D C\() - & L D Cx +
| (2.3)
We define the four potential of /(.» at a voint X by the
function 5
I~ ‘ ¢ ol b
B P NIV AP IR .
Ao OV { ¢ ; ,—
™ (2.4:) £
From the variation of the action we obtain the ecvation of motion ,
of the form given below yielding the usual Lorentz force on the
right hand side. | kR ( L») 2
LR e T F ola
el .
>~ Aha* o (2.5) 4
(L)
where (, .
F(b d AL o Ak :
(0 = — .
T IxE AP ﬁ
_ (2.8)
i

i



represents the field of the charge ~Ar at X o Also making

use of Dirac's identity
ko9t D Cl,()--évn&Cx—&)d(x— L)
N &)k(o\'ﬂk g(k“ 3)5(14 L4) (2.7)

we can casily find

5 (L)
O Aib N T

(2.8)

()
wvhere gQ_ the currer+ is de*inad as
()

(jQ o - Ié G P (2.9)
CL

Also one can casily sec that L P satisfics the geuge condi-

tions W\(U

L)
A (9*> - (%)

= = Al (2.10)
ey
and we get the Maxwell equations from
w () N
LD
0 n - —4u T, (0 (2.11)
o™ (L)
9 :
CL (
O Fat Ot + “’TTd i SHR
_ +W N (2.12)

The time symmetric neture of the thecory is brought out by the

«Chb)
fact that the solution /\ is to be distinguished from all

solutions of Maxwell's equations, by being half the sum of the




advanced and retarded Lienard Wiechert votentials nroduced by the

pafticlc l# » Let us write the soluti%n for the field as
L] %) + S 2)
ZXYW () = /<£ )zmA ¢ /3, v ¢

(2,13)

at that point on the world linc of ~ which intersects the

is the retarded notential cvaluated

light cone drawn from the point of observation into the nast.
Jgh*: (1) 15 a similer cxpression but evaluated at the point

where the future 1light cone from X intersects the world

line of L, . The theory treats the advanced and retarded

votentials in entirely symmetric fashion.

SpmTe i e e




III., Radiation Demping

A charged particle on being accelerated sends out clec-
tromagnetic encrgy and itself losc® cnergy. This loss interpreted
as caused by a force acting on the particle, given in magnitude

s . . 2 QL ) s o » £ Al -
ond direction by =/ X __ where O_ 1s the rate of changc

> ¢3

of acceoleration when the oarticle is moving slowly. The origin
of this force of radia~tive resction is not cloare. Dirac advonces
no explanntion for the origin of this damping force but sunvlies
a well defined 2nd relativistically invariant preseription to
celculate its magnitude. From the motion of a particle ealculate
the field produced by it from Maxwell's covation with the boundary
condition that at large distances, the ficld shall contain only
outgoing waves,

In addition to the so defined retarded ficld of a

particlc calculate its advanced ficld. Define half the diffe-

rence between the ~dvanced and retaorded fields as radiation field.

)

his is finite everywheore, Evaluate it at the position of the
charge and multiply it by the magnitude of the charge to obtain
the force of radiative recaction. No physical explanation of
this had come out till Feymman and Wheeler, took un the idea of
Tetrode that the absorbers in the Universe arc an essentinl
clament of the radiation vrocess. Adopnting this to the idea of
action at a distance, it was assumed that (1) an sccelerated
charge does not radiate if therec are no charges in space (2) the
fields which act on the particle arisc from other charges (3)

These fields are sum of 1/2 retarded and 1/2 advanced Licnard-

Wiechert solutions (4) Sufficiently large number of absorbers

e



arc present to absorb comnletely the radiation given off by the

oc is aceclerated o disturbonce travels from

D

sourcec. When a cha

+3
[}

the charge to the 2bsorbers and cach particle of the absorber

is set in motion, and generates a field holf advanced and half
rectarded. The sum of 2ll the advanced cffccts of the ahsorbers
evaluated in the neighbourhood of the sources, gives a field

which has the »ronerty that it is indeconendent of the absorbing
medium and exerts a2 force on the charge vhich is finitc and is
simultancous with the moment of ~cceleration., These ahsorbers

thercefore are the »hvsical origin of the Direc's radi=tion field.

A simple minded wey to derive the radiation rcaction is to

=

mag t”at the acccelerated charge sends out the rctarded field
of Maxwell's solutioBR of our normal cxvericnce to the distant

absorber at jbk, which is given by

R
e (RO e

(2.14)

The typical narticle of the absorher which has o charge C?r' and
mass %AJh. will experience an acccleration, and will gencrate

2 ficld which is half rotorded and half advanced, The advanced
pert of this ficld will exert on the source a forece simultancous
with the originnl acccleration. The comnonent of this reactive
force along the dircection of thc acececleration will be

— 9 C 2 51 =2

X e _ R S <'0< fLPj>

Qe 4 i

(2,15)

To evalunte the total effect due to many nerticles we have to

take into account the number of particles in the snherical shell




h’P ’}Ldehf’k as 47 N*( ot”tk being the densitew i

of absorbers. The average value of the goometrical factor 4

-2 7 ; .
Sins 7<'F3 }Lk. will be 2/32. It is now necessary to nronnor.
ly a7d the effects duc to all vnarticles of a comwlete absorher 4
with duc allowance for their phasc changes. For this we hove to
- — = _(wt
have the Fouricr decomnosition of ofF as oA = {8

and bear in mind that 2 disturbance of this frequency will

cxperiencc in @« meodiun of low density 2 refractive index

- o ] :
L PINC Yy, /W\'Rw (2.16) ;‘
5
The radiative reaction which resches the source from a depth BW{ & 4

will have a phese lag behind the acccleration of the narticle %E

given by 2 "
2T NG
w( e - - '

_ , !
M/(CLO (2.17)

The sum over contributions from all denths in the medium contri- f
buting to the total rcactive force is givon by . Hi
22 — 2 c [-n2WNCY
—_ X (;QW) 7\‘<1 // &) 0<7 ; ‘1# ., C i
3 ¢” 0 k ﬂak& R \ R~%2.13 &

Also it can be scen that the radiation ficld obtained at dis-

tances a number of wavelengths awey from the source is given by

\) "
CV(Q Cew TL/Q,  uiot C T o w{>] ‘!
= 2 C En o Ly f’ —— = & i
2N C 27 e? (2,19) e



cqual to differcncc botwooh half reterded and half advanced ficld
which one calculates from the sourcc itself, The advenced ficld
of a gingle charge of the 2bsorber can he svmbolised as a snhere
which is converging on the particle and which wlll collansc on
it at the time wher it is disturbed., The shrinking sohere just
before touching the nartielc will anpear es nearly a nlanc wave,

which vasses over it headed towards absorbers. The effect of =11

the ebsorbers is to visualisc 2n 2rrav of onlane waves =2ll marching

towards the source and marching on it in sten. 'The result out
of all this is the spherical cenvclope of all thesc planes waves
converging on the source. The soherc converges on the source
and then pours out again as a divergent sphere. An observer
will get the impression that this divergent wave originated from
the source. Hence the elementary retarded field can be written

in the form

(retarded | .
field of = 1 rotarded + - advanced ]
our exneriencce) # 2

l_ retardcd - l\advanceé]
2 2

(2.20)
The sccond term is the radistion ficld of Dirac which combinecs
with the ficld of the source itself to »roducc the usu~l observed

fvll retarded ficld. From 2 more sonhisticated argument we can

oot £ 5 (R4 5 CRal)
. D F, +(/ Fet =74 Fay )
/0\-# Q) Ck
| - 2? (j waf "‘}EI:*A“ ;>

(2.21)




=34

and the third terms can be shown to be identica2lly zecro outside

211 absorbers by usc of arguments concerning wave equations for f

potentizls: This term is zero if one makes the assumption that , §
all radi-tion emitted by =211 varticlics is absorbed by thce absor-
bers., If a2 scupec has emitted radisntion during o certain inter- /]

- ; ER ok 4 ;
val then a very long time afterwards z: }*Y 18 Zeros,
R R , '
The guantity Ez oAy is elso zero, at the same time

Y

since the source is no longor emitting any radiation. YNow
beeause %:[ Korek _ 5p/ O“’{V] satisfics Maxwell's
cquations'lt vanishes at all times if it vanishes at onec timoc.
The sccond term is that causcs reaction damving. The equation

.

of motion in the relativistic form can be wr:tt n as

Cl\ 9_Cc~ a & a,\ &
vaafk7x': C%LEL (l?< ,><j&1 o« n OL} ch
(2,22)

Hence an nccelerated charge loses energy to the surrounding
mediun of absorbors. Why does radiation has this irreversible ‘
character, even in & formulation of clectrodynamies which is
symmetrical in time? If in the arguments 2bove (since condition
of absorption is symmetrical hetween advanced and retarded poten-
tials) we reverse the roles of the two ficlds, we will arrive at
an cquation of motion with the radistive renction with an onmo-
site sign. (c.c.) the source will hc sunpnlicd with cnergy by the
absorber. However, since this docs not hanpen, Wheecler and
Feyrmmen concliuded that irreversibility of the emis ion process
is a phenomenon of statistical mechanics, connected with the

asymmetry of initial conditions with resncet to time,



IVe Retarded and advanced potentils in curved space time

A11 the formulae and derivations glven above refer to

(9)
flat space geometry. However, we can consider Riemanian surfaccos

with the gencral metric tensor with line elencnt

AQQ - Ca(;ko(&i'o(ar{

CA t
Consider a vector X O A o Ironn this we generate a

vector by parallel transnort along the geodesic from A, The

— B
vector at an arbitrary point B  con be denoted by X hy
— ¢
a »nropagator @
J e |
LR - (,A & A E
EVE X
X ?3 (B (2,23)
— A
where Cj A acts as two point tonsor, Looking at the
L®

clementary solutions of the scalar and vector wave equations
C K C lz Q ) ,‘in,\,.
a .ooTo g AN L1 ROAWTO
{ ¢ ) 0 At TR e

(2.24)

the secalar and vector green's functions are of the fornm

VAR IOERTIGLa

= ?cyxas

_ | Vi — . @C—fcrﬂ (2.85)
CnAéBrérr["’ S N

2
{
where S = /;l SA-B where SAB is the

distance between A ard B
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and

Az - a(et[g—}CA(Bj/cAQ‘tliLAtBj

(2,26) }?

and 69 is the Heaviside step function,
The first term renrescnts the narallel propagttion of the distir-
bance from & to B or viece versaz, orovided A and B arc
connected by 2 light signal., The sccond term ariscs from the
curvature of snrnce time, which causcs the disturbence to soread
inside the light cone. By examining the behaviour of the
Green's function in the limiting case & — B and comnaring
it with the flat space Green's functions we obtain
T s I
C() At GL)'M’ARA i ’C'Cfp/q 9 “(A,B)
W —

irmAKA Ei, R 1 Q C% LB:

| acs s A (—_ﬁ \_ ?AA(L,OS CA. R)(2.27)

ﬂ I % ¢
c 4

and O ka;éD is the four dimensional dclta function, With
BERVN

these modifications to the nronagators 55 (xa )1072)

which ocecurrcd in equation (2.1), we can gencralisc the action

A B

(2+28)

function J to the form .
J = - Z.Wk&jo{a IR ’/:LCO\CL 5‘(‘4”
oC



B -

For flat spoce time \,)(_ALB =0 0} ACB WLL‘/\( R’ 2] 1

, ¢ -

5 = /E (:Q\LL’C\(} -> . We see that (2.28) reduces to -
eq.(2.1). Here we obtain the four potentinls t

CA) , ‘B
_ (are, G ol b |
AM (x) J 4 € MR (2.29)

and the oqu tion of motion of the partlclos a 1is given

¥
ot y [&k o{ L(/Lg O(C“
™ + © N MON" res
“Lodat U ] - 49 Z%’ (2430)

where '

ct) b Ab ()5 k
E (9= A O - A > B

Ch a (2.31)
Because (;LL/ijE satisfy the 1nhomo§onoous wave equation
(2.27) the four potontia1° e x & satisfy

We obtain the sets of Maxwell's equation in
YW v
.
F@

F"TY\ = -—-4“{} } FPQ;,TV"‘)—

7

, generalised form

2t g 0O

™ ,)
(2.33)
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Also the gauge condition is gatisfied

s O

( 1\>

we obtain the solutions of
L)

From the wave equation for A
)
in tomms of retarded and ndvanced functions; R, € %) gk S S Cx)

respectively where  _ | dL°B f be
(X))  Ca &2 Grmrte ( ﬁw) (\/C) 5“*-qu
R L= S

R, = =
ek, C ’d“%uﬂj i

(2 -L’Ba)

'{}C'D denotes the valuc of b at the noint where past light

cone from X rects the world linc of '{f . The function

\/w\,'\( (, B
world line of /(% up to /(r(-) which is interorcted as

gives contribution from the whole past section of the

seattering by the curvature.
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V. "C" Field Theory

Modifications of this are nceded when therc are two or
rmore geodesics joining two given points in space-time. This
may hapoen when therc is a dense region of matter which acts as
a lens. The action function must in such cases include the sun
of Green's functions over all distinet geodesics. The broken
linc indicates creation or annihilation at the end noints. To
take nccount of these and also from the demands of the steady
state cosmology, Hoyle and Narlikar(16)introduced the C ficld
and modified the 2c¢tion function. From this they 2re 2ble to
show that expaonsion of the universe and creation of particle
should go together in a steady stote cosmology and Tor the
electromagnetic field the fully retarded votentials scem to be
the only consistent solution in such an expanding steady state
cosmology. Thus the riddlec of retarded votentials of Electro-
magnetic ficld of an acecelerated particle gets resolved. The
asymmetry in local clectrodynamics is reloted to the time asym-
metry of the expanding universc.

The introduction of the € ficld seems necessary not
only hecause of cosmdlogical rcasons, The results obtained by
Hoyle and Narlikar suggest that the introduction of a non-zero
C field into an implosion problem, prevents a massive object
from collapsing into a singulnrrity. The C field secms to have
a repulsive gravitational cffect in this situation, It is
worth noting that the >\ term in Einsteint's ficld equa-

’

tions does give risc to a force of repulsion which however,



fails to compete with the gravitational forcc of attraction at
high densitics, Sines for the singularities to occur, we have
broken lines, to prevent ény disastrous conscgucnces the cnds
should gencrate a ficld called the 'C' field and this field is

& scalar. The vector electromagnetic field duc to world line of

a charge 2 is given by

(& - ¢ A
Acx = AT Ca fatx“""\a&a

(2.34)

Similarly, if we toke the world 1line a to be a segment with ends
at Ay and Ay. A, being at a later time the contribution of
the world line a to the total C ficld at the peint X 1is
defined by

CO\C’O JCIEE<X A ‘6—” (s AD] - (2.38)

we rewrite this ns

C(x) - '/{ KA, G (s o o (2.36)

Therefore including the € ficld 2s o direct particle interac-

tion the action 7| can be rcalised by writing it as :

TCGZ _ mo\gota — 471‘80\ Ze’/b yJ‘aCALB ofLQLAO’(’("LB
+'fmzqf{aﬁCAtb<iawﬂﬁLLB




Varving J y (by varying =a), we obtein that " " 1lines
satisfy R ( o (L>R£. F

2ot o de S F o
Q(;; (ﬂwx—zlﬂﬁ———jgi—_’- ™a Ao

(2.38)
anq at the ends Al and Ao,
da c. AC@R R
™ ”
Q. ao\ * (/;Zé_a 2“ C = C (2.39)

b #a

The € field has no contribution to the usual equation of motion
of a partiecle, There is however an effect at the end of a
world line wherce the field permits encrgy and momentum to be

conserved through recoil cffects on other particles,




YL, Hovle=Narlikar Theorv of Gravitation

With the revival of action at a distance concent, in
the case of electromngnetic field and the Cafield as detailed
above, there is a grecat incentive to »ut in direct particle
interaction terms only in the action function -
.j—:t___‘:,. ‘SR\/’B c/(.4>< _ ZW\,O\ Jl;‘(f&. = Zé' 4—1—\_€a€b

— CA B ) ff . oA ‘
LA B r\/i/(,\

(2.40)

The second term in the above is derived from the concept of
inertia of Galileo and sincc this was rctained the first tem

had to be added., Hoyle and Narlikar(ll)started out saying thot
both thesc terms are not nlausible but should be revloced by o
double integral torm involving dircet narticle interactions,

They assumed that mass ﬁust be a direct nmarticle field

and nust arise from 2ll othcr masses, to satisfv Mach's vrincinle.
Since Y\ 1is a sealar it must arisc from a scalar Green's
function symmetric in its variables and thercfore the mass
function at a point X duc to a 1is defined by

W200- -\ e (D da

(2.41)

;\ being the coupling constant. Omltting the Ce.ficld and



electromagnetic field the n~etion is

T= - Z\/'z _fmmclxct =\ E:&;L ff a (A B Ao A >

(2.42)

~ ) .
The wave function for G(AB> has to be specified and this can
be written as

~ - -.‘/2 4
ﬂ(xkxaCX A)'E’(Kx..}/v\ RC\'CY/A) = -’<_33 C) (\(/A)

(2.43)

When the narticle a is at rest when at A, we should exnect
AN ! .

f&cio\ s /?\, at X' , n being the 3 dimensional

distrnee of X from A. Hence we require that A 20 and

\
/"‘ from analogy with electromagnetic field is taker as /L .

By varying %Ck in a given volume we get
R
/P =0 (2.44)
- “R |
where ? 5 arc symmetrical tensors ard the above give the

ficld cquations. , .
e (2

To obtain the cquations of motion we vary XCO\) and
obzﬁn I | ‘~|(4ak.JﬁQ ] %Lkpgpﬁa
KCYWO\ da > +.m“ L oo ES do K
| “(*N‘JQR (2.45)

in which = LT



il

In the above geodesie proverty is lost, since the mass of =2
particle ariscs from 211 other narticles in the Universe., How-
ever in some onnroximntion IYW\Va  may be indenendent of coordi-
nates and the gcodesic nroncrtics can be repaincd,

Concentrating our attention on the wnve equation for
—\

6; and nutting é J=0 , we get field cquetions given below
o b~ N
o~ la. R;) S G
/—-( Rig =390k CZ}A SN

Pa, A E .

. . Po, m
, ’CJ‘?CW/ T :

ac L. &(j’tllja) A P}ﬂ
(L) | =M (R
((3%% W‘m‘ UFESD)

¢ CLJ
+“ (_'Z [Q __1/)wa . '(}R + W\;\ A m),i}z.zz-e)

0\4A

("4/‘0%(& m('@ﬂ e

/

Obtaining the scalar form of the above equation (2.48) and nut-

Z YW»(/\ (SXA) (- "{>/2J0x

ting
(2.47)
we sce that /»' has to have a valuc 1/6. It can now be shwn

that Einstein's theory can be obtained from this by a smooth

fluid approximation, In thc smooth fluid anproximation we



take

S T e =

~

"= (n constent) (2,42)

o A
, = T\
where T~ (X)) - Z}A L O , With this simplificn-

tion the field cguations raoduce to

\/Q\W\?( ,2(@’\/42 OJ(‘RR> - =320 k

(2,49)

Toting that »nreper density

(- 72,
NI s Lc\ ga(k,!—‘)[”? > A>j .

(2.50)

AN

M

and T=m™m N (2.,51)

and CB‘FAW\',‘ M ’*"/6 Ron =

we obtain | 2 3 N AT
= . ~s 5
/é) 22" o - ~ N o
(2.52)
Equation (2.49) is the same as Einstein's equation if
3 A

4T My

(i.e.) if we adont the convention that nasses arc positive 6\ S
is mositive >\ ‘bej_:f:.g only 2 scalar factor and gre~ter than
0. In Bintein thecory gravitotion could be rcpulsive. Here
gravitation should be attractive if it is viewed from particle

physics and not in terms of fields, To obtain the numerieal
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value which ww~, can trke we start with the Robertson walker

11rn elerent

d g dt™ _sco), P (& rsiod )]

R= 0,1
(2.54)
which by the use of the ficld cecquations give
2
S+k 6 >\
S2 B 7\/\
5 ik (2,55)
;’L JE— e D
2
S

No expressioh for M™\, can emerge since the theory does not
Y,

contain any universal lenmgth., The Green's function (R has

the dimension of (longth)"z. A length can be introduced by the

addition of a sccond term,

; — | C tp,
(7\10, gzb (G eacs dod b
- Oz

where <‘>\ ‘F> “has the dimension of a length equal to H- e
where H-1 1s the new length scale, E here may he later
identified with Hubble's constant., The contribution from this
term to 5 J n the smooth fluid approximation is the

fOllOW’.Ll’lD' cxoression

fo( LPECC /_Q\%L’QCCQJ

—
AV
-
[oa!
~J
~—
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and the field equations bwome

c Cl HL R
R -’/Q@ “r- - [T (e’ 2 l

(0.58)
2 ,
A\ H
and R = :mkl_[:j”F“'Er' & C(:} (2.59)
o

R is no longer pronortioned to | = Ny but to Npo T

where is Lho number of broken lines insidc the linmit
2

An & H=m o
volunc ond C CL = W « This means that n = s
/

The source equation becomes
v, C : ¢
(mo b x> R B
ok ¥

where J ) v

= N ; (2.60)
A
For the cosmological casc considered,
"
- Ht Mo H N
C.wmy S:-e rv:“jy“”’ °  (2.81)

We sec th~t No - N that is in the asymototic steady state
the number of ncw particles crected is equal to the number of

particles present per unit volume, and the density is given by

3H1 TN HL
()

6 ) 5
= 41‘1& N (2.6?)

where H 18 now the Hubhle constant, In local problams where

local proper density is N large comparcd to cosmological



density [Ny the C-ficld terms may be reglected

R
LR ol ¢ C()L
T - moN T ol A (2.63)
\ R
- bR
CR ck _ > ol L N ol J(
and l y N - ()(x : . x
- = -
R =29 R =SSR EELEA
(2,64)
If the particles in the rest of the universc is changed nothing
will hapnen in Newton's and Einstcin's gravitational theorics.
As was indiented in Part I even if W_CR.: O on the right hand

side of Einstein's ficld equation i.c. cven if 211 matter 1s

renoved from the Universe, thc curvaturc of snace-tinme can be

assumed to exist. There 1s a varadox here, Nemely if ng,/ﬁc‘rf: o)
R=o and R:Ro . But if R is zero

and there are no narticles the action

/“\S‘R‘\/‘:ZJ O(AX 4+ B 2, Sds -

(2.65)
CR

should itsclf be zero. Honce K = O scem to have been
vroduced out of nothing. In the »nresent formulation such
difficultics do not arise. Inr an cmptyv universe the 2ction is
wincd out altogether and there arc no cquations lcft., For there
to be any vhysical laws at all the number of varticles should
he at lcast two.

But herc if N, is changed bv a factor 2, it would

grossly change the nronerties of thc sun., This is heecause as



Vit "

seen from the above efuation (2.63), the curvature (in the case |
of a2 reduction) is increased, ig&. gravitational ficld will be
larger and greater solar flux nay be nccessary to maintain
cquilibriun of the Sun., So 'Take away half the distant barts of
he Univeorse and tie earth would be fried to crisve. All the
above results flowed from the fact the first two erms of action
< equation ( ) were collavsed into one direct internc-
tion double integral cxpression. The next step is further
simplification of the action by further collapsing of terms into
each other. This may'provo to be the path towards a united

theory of gravitation and clcetriclty.
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