A MATHEMATICAL INTRODUCTION TO UNITARY SYMMETRIES

PROFESSOR M. GOURD:N
Visiting Scieatist, Matscience

THE INSTITUTE OF MATHEMATICAL SCIENCES
 MiDRAS-20 india)

A MATHEMATICAL INTRODUCTION
T0
UNITARY SYMMETRIES

Professor M. Gourdin* Visiting Scientist, MATSCIENCF

Visiting Scientist uncier the Council of Scientific and Industrial Research (India) schene.
Permanent Address: Laboratoire De Physique Theorique F.t Hautes Energies, Faculte Des Sciences; Universite De Paris, Orsay (France).

CONTENTS
 $$
\frac{P a g e}{I}
$$

QPTER II Iie Grouns of transformations 1446
Topological Pronerties AAPTER III
GPTER K $\boldsymbol{\gamma}$ Lie Algebra of the Semi Simple grouns 53
AAPTER V Representations 85HAPTER VI Tensor Algebre of the linear group 126

CONTENTS

Page.
I
CHAPTER I Lie Groups and Lie Algebra
CHAPTER II Lie Groups of transformations 14
CHAPTER III Topological Properties 46
CHAPTER IV Lie Algebra of the Semi Simple groups 53
CHAPTER V Representations 85
CHAPTER VI Tensor Algebra of the linear group 126
ter 1.

LIE GROUPS AND LIE ALGEBRA

II. Topological Groups:

1. Groups axioms

A sot G is a group if the composition law, defined in G has the following properties:

A Associativity; $a(b c)=(a b) c=a b c ; a, b, c \in \varepsilon_{0} k$
b Identity init element $e, \quad \in a=a e=a, a \in G$.
c Inverse: $\quad a^{-1} a=2 a^{-1}=0$
2. Topological groups

The mapping $(a, b) \Rightarrow 3 a^{-1}$ of $G \times G$ into
G is a continuous mapping. Such a condition is equivalent to the two following ones:
a The mapping $a \Rightarrow a^{-1}$ of G into G is continuous.
b The mapping $(a, b) \Rightarrow a b$ of $G \times G$ into G is continuous.
The mapping $a \Rightarrow a^{-1}$ of G into G coincides with its inverse because of the relation $\left(a^{-1}\right)^{-1}=a$. Such a mapping, noted τ, is a homeomorphism of G.

3. Translations:

The mapping $a \Rightarrow a m$ of G into G is one to one and continuous.
This homeomorphism of G is called a right translation ρ_{m}. The mapping $a \Rightarrow$ na of G into G is one to one and continuous.

This homeomorphism of G is called a left translation λ_{n}. The right and left translations are related by

$$
\lambda_{m} \tau \rho_{m}=\tau
$$

4. Theorem

It is possible to show that the necessary and sufficient condition for a group C_{s} to be a topological group can be given in the following form:
a The translation \mathcal{F}_{m} and λ_{m} are continuous ($m \in G$);
b The mapping (a, b) $\Rightarrow a b^{-1}$ of $G X G$ into G is continuous at the point (e, e) of $G X G$.

II. Lie Groups:

1. Definition

A group G is a Lie group if;
a G is an analytic manifold
b The mapping $(a, b) \Rightarrow a b$ of $G X$ into G is $a n$ analytic mapping
2. Composition functions

We choose a chart at the point e of G and we denote : the coordinates of an element $a \in G$ by $a^{5 \pi}$. The composition law can be written as

$$
(a b)^{\sigma}=\phi^{\sigma}(a, b) \quad a, b \in G
$$

The compositions functions ϕ^{σ} are analytic functions of their arguments. We have the following evident properties;

$$
\begin{aligned}
& \phi^{\sigma}(a, b c)=\phi^{\sigma}(a b, c) \\
& \phi^{\sigma}(a, c)=\phi^{\sigma}(e, a)=a^{\sigma} \\
& \phi^{\sigma}\left(a, a^{-1}\right)
\end{aligned}=\phi^{\sigma}\left(a^{-1}, a\right)=e^{\sigma} .
$$

3. It can be easily shown that the mapping $a \Rightarrow a^{-1}$ of 0 into G is also an analytic mapping.

It follows that a Lie group is a topological group.
4. Structure constants

The identity transformation is described by the relation

$$
a^{\sigma}=\phi^{\sigma}(a, e)
$$

and we now consider an infinitesimal transformation in the neighmourhood of the identity

$$
a^{\sigma}+d a^{\sigma}=\phi^{\sigma}(a, \epsilon+\delta m)=\phi^{\sigma}(a, E)+\delta m^{\rho}\left[\frac{\partial}{\partial b^{p}} \phi^{\sigma}(a, b)\right]_{b=e}
$$

The velocity field is defined by

$$
\mu_{\rho}^{\sigma}(a)=\left[\frac{\partial}{\partial \ell^{f}} \phi^{\sigma}(a, b)\right]_{b=e}
$$

and we obtain

$$
d_{a}^{\prime}{ }^{\sigma}=\mu_{\rho}^{\sigma}(a) \delta m^{\rho}
$$

It is convenient to use the inverse matrix $\quad \underset{\mu}{\mu}(a)$:

$$
\delta_{\tau}^{\sigma}=\stackrel{v}{\rho}_{\rho}^{\sigma}(a) \mu_{\tau}^{\rho}(i)
$$

The elimination of \bar{m} betwe on the two relations:

$$
d a^{\sigma}=\mu_{\rho}^{\sigma}(a) \delta m^{f} \quad d b^{\sigma}=\mu_{\rho}^{\sigma}(b) \delta m{ }^{\rho}
$$

leads to the expression

$$
\frac{\partial_{a}^{\sigma}}{\partial b^{\sigma}}=\mu_{\rho}^{\sigma}(a) \check{\mu}_{\tau}^{f}(b)
$$

We now introduce the continuity condition

$$
\frac{i^{2} a^{\sigma}}{\partial l^{\rho} \partial l^{\tau}}=\frac{i^{2} a^{\sigma}}{\partial l^{\tau} \partial l^{\rho}}
$$

By using the previous expression for the first derivative, we obtain:

$$
\begin{aligned}
& \frac{\partial^{2} a^{\sigma}}{\partial h^{\rho} \partial b^{\tau}}=\frac{\partial \mu_{\alpha}^{\sigma}(a)}{\partial a^{\lambda}} \cdot \mu_{\beta}^{\lambda}(a) \mu_{\rho}^{\beta}(l) \mu_{\tau}^{\gamma}(b)+\mu_{\gamma}^{\sigma}(a) \frac{\partial \mu_{\tau}^{\gamma}(b)}{\partial \ell^{\rho}} \\
& \frac{\partial^{2} a}{\hat{v} b^{\tau} \partial b^{\sigma}} \rho=\frac{\partial \mu_{\beta}^{\sigma}(a)}{\hat{v a} \lambda} \cdot \mu_{\alpha}^{\lambda}(a) \mu_{\tau}^{\nu}(b) \mu_{\rho}^{\gamma}(l)+\mu_{\gamma}^{\sigma}(a) \frac{\partial \mu_{\rho}^{\gamma}(b)}{\hat{\rho_{b} \tau}}
\end{aligned}
$$

Calculations are straight forward but tedious and we obtain the following equality:

$$
\begin{aligned}
& {\left[\frac{\partial \mu_{\beta}^{\sigma}(a)}{\partial \alpha_{1}^{\lambda}} \cdot \mu_{\alpha}^{\lambda}(a)-\frac{\partial \mu_{\alpha}^{\sigma}(a)}{\partial a^{\lambda}} \mu_{\rho}^{\lambda}(a)\right] \dot{\mu}_{\sigma}^{\gamma}(a)=} \\
= & {\left[\frac{\partial \mu_{\tau}^{\gamma}(l)}{\partial l^{\gamma}}-\frac{\partial \mu_{\rho}^{\gamma}(l)}{\partial l^{\tau}}\right] \cdot \mu_{\alpha}^{\tau}(l) \mu_{p}^{\gamma}(l) }
\end{aligned}
$$

The LHS is function of a only and the RHS is function of b only. The two quantities a and b being independent variables, the two sides are constants. By definition, the structure constants $C \begin{gathered}\gamma \\ \alpha\end{gathered}$ are given by the two equivalent expressions.

$$
\begin{aligned}
& C_{\alpha \beta}^{\gamma}=\left[\frac{\partial \mu_{\rho}(a)}{\partial a_{\lambda}} \lambda_{\alpha}^{\lambda}(a)-\frac{\lambda_{\alpha}^{\sigma}(a)}{\partial a^{\lambda}} \mu_{\rho}^{\lambda}\left(a_{0}\right)\right] \mu_{\sigma^{\prime}}^{\gamma}(a) \\
& c_{\alpha \beta}^{\gamma}=\left[\frac{\partial \mu_{\tau}^{\gamma}(a)}{\hat{\partial} a^{\gamma}}-\frac{\partial \mu_{1}^{\gamma}(a)}{\hat{\rho^{\tau}}}\right] \mu^{\tau}(a) \mu_{\beta}(a)
\end{aligned}
$$

An immediate property is:

$$
C_{\alpha \beta}^{\gamma}+C_{3 \alpha}^{\gamma}=0
$$

III. Lie Algebra:

1. Infinitesimal transformations

We are first working in an analytic manifold th of clements $a \in E$. The set of the analytic functions f in $\}$ is denoted by and tho space of analytical infinitesimal transformations X by l_{e}.

The -loments X of C cen be used to define the linear mapping

$$
\Rightarrow x f
$$

of \mathcal{F} into \mathcal{F}. The quantities $X Y$ and $X X$ allow also to define linear mappings of \tilde{F}^{\prime} into itself but, in general, $X Y$ and Y do not belong to the space C_{k}.

Let us introduce a coordinate system;

$$
x=\lambda^{i} \frac{\partial}{\partial a^{i}} ; y=y^{j} \frac{\partial}{\partial a^{j}}
$$

$$
\begin{aligned}
& \text { We have successively } \\
& x y f=\lambda^{i} \frac{\partial}{\partial a^{i}} \nu^{j} \frac{\partial}{\partial a^{j}} f f=\lambda \frac{\hat{\nu} \dot{\partial}}{\partial a^{i}} \cdot \frac{\partial f}{\partial a_{j}}+\lambda \gamma^{i} \frac{\partial^{2} f}{\partial a^{i} \partial a^{j}} \\
& y_{\times f}=\nu \frac{\nu^{j}}{\partial a^{j}} \lambda i \frac{\partial}{\partial a^{i}} f=\nu^{j} \frac{\partial \lambda^{i}}{\partial a^{j}} \frac{\partial f}{\partial a^{i}}+\nu^{j} \lambda^{i} \frac{\partial^{2} f}{\partial a^{j} \partial a^{i}} \\
& \text { The continuity condition } \\
& {[x, y] f=\left(\lambda, \frac{\partial \nu^{j}}{\partial a^{i}}-\nu^{i} \frac{\partial \lambda^{j}}{\partial a^{i}}\right) \frac{\partial f}{\partial a^{j}}}
\end{aligned}
$$

and it follows that the commutator $[X, Y]$ is also an element of ζ which can be represented by:

$$
[x, y]=\left(\lambda_{i} \frac{\partial \nu^{j}}{\partial a^{i}}-\nu^{i} \frac{\partial \lambda^{j}}{\partial a^{i}}\right) \frac{\partial}{\partial a^{j}}
$$

2. Lie algebra

The Lie roduct of two operators X and Y is the commutator $[X, Y]$. The snace ζ can be considered as a lincaralgebra on the field K where is defined ξ_{ℓ} and wo have the following properties:
a Linear algebra

$$
\begin{aligned}
& {[\alpha X+\beta Y, Z]-\alpha[X, Z]+[Y, Z]} \\
& {\left[X, \alpha Y^{\star}+B Z\right]=\alpha[X, Y]+\beta[r, Z]}
\end{aligned}
$$

for all $\alpha, \beta \in K$ and $X, Y, Z \in \zeta_{\ell}$
b Antisymmetry

$$
[x, x]=0
$$

c Jacobi Identity

$$
[X,[Y, Z]]+[Y,[Z, X]]+[Z,[X, Y]]=0
$$

A Tie algebra is a linear algebra which satisfies the antisymmetry property and the Jacobi identity.
3. Lie algebra of a Lief group G.

A Lie group G is an analytic manifold and wo consider the set (F) (G) of the analytic functions in G.

The right translations define completely the group G.

$$
a \Rightarrow \mathrm{am} \quad a, m \in G
$$

and induce, in $\mp_{1}(G)$ a continuo is manning:

$$
\mathrm{f} \Rightarrow \boldsymbol{t}_{m} \quad f, f_{m} \in J_{\mathrm{m}}((\mathrm{G})
$$

where

$$
f_{i n}(a)=f(a m)
$$

We now introduce a tangent vector I at the unit element \mathcal{E} of $r_{\text {. }}$ The infinitesimal right translations are defined by:

$$
X(a) f(a)=\left[L(m) f_{m}(a)\right] m=e
$$

Let us precise these definitions with a coordinate system

$$
\begin{aligned}
& L(m)=\lambda \frac{\partial}{\partial m^{\sigma}} \quad X(a)=\lambda^{\sigma} X_{\sigma}(c ; \\
& X_{\sigma}(a) f(a)=\left[\left.\frac{i}{l_{m}} f_{m}(a)\right|_{m=e}\right.
\end{aligned}
$$

The right hand side can be evaluated using the relation given in a previous section:

$$
\frac{\partial l^{p}}{\partial m^{\sigma}}=\mu_{\tau}^{\rho}(b) \mu_{\sigma}^{\mu^{\tau}}(m)
$$

and we obtain:

$$
\frac{\hat{c}}{\partial m^{\top}} \cdot f_{m}(a)=\left[\frac{\partial}{\partial l^{f}} f(l) \mu_{\tau}^{f}(l) \mu_{\sigma}^{\tau}(m)\right]_{b=a i n}
$$

In the limit $n=\sigma$, we hare $\quad \mu_{\sigma}^{\tau}(\epsilon)=\delta_{\sigma}^{\tau}$ and the infonitesimal generators X (a) can be roreserted in terms of differrental operators by:

$$
X_{\sigma}(a)=\lambda_{\sigma}^{f}(a) \frac{\hat{c}}{\hat{J}_{a}}
$$

The Lie algebra of the generators $X_{\sigma}(a)$ is known from the Lie product of two operators as calculated in section 1 .

$$
\left[x_{\rho}, x_{\sigma}\right]=\left(\mu_{f}^{\alpha}(a) \frac{\partial h^{\beta}(a)}{\partial a^{\alpha}}-\operatorname{la}_{\sigma}^{\alpha}(a) \frac{\rho_{\rho}^{\beta}(a)}{a_{a}^{\alpha}}\right) \frac{\partial}{\partial a^{\beta}}
$$

This expression can be simplified by using the structure constants introduced in Section II.

$$
\mu_{\rho}^{\alpha}(a) \frac{\partial \mu_{\sigma}^{\beta}(a)}{\nu_{a}^{\alpha}}-\mu_{\sigma}^{\alpha}(a) \frac{\partial \mu_{f}^{\beta}(a)}{i a^{\alpha}}=C_{\sigma_{\sigma}^{\prime}}^{\mu_{\tau}^{\beta}} \mu_{(a)}^{\beta}
$$

and we finally obtain the fundamental relation of a lie algehra:

$$
\left[x_{f}, x_{\sigma}\right]=c_{\rho \sigma}^{\tau} x_{\tau}
$$

The entisymmotry orourty of tho lIfe algebra is contained in the antisymetry character of the structure constants. The infinitesima generators satisfy the Jacobi identity and it follow for the structure constants the relation

IV. Simple and Semi Simple Lie Algebra

1. Definitions

We first give some classical definitions for the groups
a In an abelian group the multiplication law is commutative.
b A subgroup is a set of elements of a group which settsflies the group axioms. A trivial subgroup is the inntidy element itself.
c in invariant subgroup H of a group G is a subgroup of G such that:
a $x a^{-1} \in$ H for $a l 1 x \in H$ and $a \in G$
If we now consider the particular case of interest of Lie group it is cagy to translate those properties in terms of tie algebra.
a All the infinitesimal generators of the Lie algebra of an aphelian group commute and all the structure constants. are zero.
b The Lie algebra h of an analytic sui grown H of a rio group G is a sub-algobre of the Lie alconrafof G and the structue constants satisfy the relation:

$$
C_{j k}^{\alpha}=0 \text { for all } X_{j}, x_{k} \in h \text { if } x_{\alpha} \subseteq g \text { is not in } h \text {. }
$$

© If now, H is an invariant subgroup of G, the structure constants verify the condition:

$$
C_{j \alpha}^{\beta}=0 \text { for all } x_{j} \in h, x_{\alpha}, x_{\beta} \in g \text { if } X_{\beta} \text { is not in } h .
$$

2. Simple group and simple algebra

A simple group has no invariant subgroups besides itself, the identity and perhaps discre te subgrouns,

A simple algebra has no invariant subalgebra.
The Lie alger of a simple Lie group is a simple algobra
3. Semi-simpla group and Somi-simole algobra

A semi-simple group has no abolian invariant subgroun, besides itself, the identity and jerhons discre tosubgrouns A semi-simble algebra has n abolian invariant subalgebra.

The Lie algebra of a semi simple lie group is a semi simple algebra.
4. Tartan criterion for semi-simplo algebra

We define the symmetrical Carton tensor

$$
q_{\rho \sigma}=C_{\rho \alpha}^{\beta} C_{\sigma \beta}^{\alpha}
$$

The Carton criterion is the following:a necessary and sufficient condition for a Lie algebra to be semi-simple is:

$$
\text { det. }\left(g_{f \sigma}\right) \neq 0
$$

For a semisimple algebra, the matrix $g f \sigma$ is a regular matrix. This condition is obviously a necessary condition. If wo suppose that the Lie algebra possesses an abolian invariant sub algebra h all the structure constants $C_{j \alpha}$
follows that all elements $g_{j \gamma}$ of
tensor also vanish and $\operatorname{det}\left(g_{\rho \sigma}\right)=0$

Tartan has proved that if aet $\left(g_{\sigma_{\sigma}}\right) \neq 0$ the Lie algehra is semi-simple.
5. Let us consider a semi simple tin algebra. The Carton tensor ffo^{r} allows to define a symmetrical linear connexion in the Lie algebra In particular, this tensor can be used to lower the indices. As an example, we have

$$
c_{\rho_{\sigma} \tau}=c_{\rho_{\sigma}}^{\alpha} g_{\alpha \tau}
$$

$$
-13-
$$

We replace $g_{\alpha \tau}$ by its definition and we apply the Jacobi identity

$$
c_{\rho \sigma \tau}=c_{\beta \rho}^{\alpha} c_{\alpha \sigma}^{\gamma} c_{\gamma \tau}^{\beta}-c_{\beta \sigma}^{\alpha} c_{\alpha f}^{\gamma} c_{i \tau}^{\beta}
$$

The tensor $C_{f_{\sigma}} \tau$ is invariant under a cyclic permutation of the indices and completely antisymmetric.

Chapter 2

LIE GROUPS OF TRANSFORMATIONS

I. Generalities

1. Definition:
G is a tic group of transformations of an analytic manifold m if for each $x \in m$ and a $\in G$, one can find a $y £ m$ denoted $y=x$ a such that
a The mapping $(x, a) \Rightarrow y$ of $m \times G$ into m is analytic
\underline{b} xe $=e$ for each $x \in \mathbb{m}$:
c Associativity $(x a) b=x(a b)$ for each x.m and $a, b \in G$.

If the unit element e of G is the only one element satisfying the condition b, the group is called an effective group,

2. Lie algebra

Let us define a chert in m and a chart in G and we use greek indices in G and latin indices in m. The mapping $x a y y$ is written as

$$
y^{j}=f^{f}(x, a)
$$

where the composition functions f^{j} are analytic functions of their arguments. The velocity field is defined by

$$
u_{j}^{j}(x)=\left[\frac{\hat{\imath}}{\hat{i} a^{\sigma}}+j(x, a)\right]_{i=e}
$$

and the infinitesimal generators of the Lie algebra are given by

$$
x_{\sigma}(x)=x_{\sigma}^{j}(x) \frac{j}{i x^{j}}
$$

For an effective group, the generators $\quad X_{\sigma}(x)$ defined in this way are linearly independent and constitute a basis of the Lie algebra.

II. GROUP OR LINER TRATMEOPNATIONS OT A VECTORSTACE ON

 THE FIELD OF REAL NUMBERSWe are working with a n-dimensional vector snace or the field R of real numbers as analytic manifold; $E(n, R)$. We define in $E(n, R)$ a symmetrical linear connexion g, with a regular matrix which allows us to introduce a scalar product in $E(n, R)$.

A. General Linear Group GL (n, R).

1. The regular $n \times n$ matrices with real coefficients generalethe general linear group $G L(n, R)$.

Any arbitrary $n x n$ matrix with real coefficients $\left.\eta_{:}^{\prime} n, R\right)$, defines in the vector space $E(n, R)$ a linear tranfor nation by

$$
y^{j}=x^{k} s_{k}^{j}(a)
$$

When the matrix $S(a)$ is regular, the associated linear transformation is also called regular. It follows that the group of regular linear transformations in $E(n, R)$ is isomorphic to the general linear group $G L(n, R)$.
2. Let us now define, for the matrices $M(n, R)$, a basis $E_{i j}$ by the matrix elements:

$$
\left(E_{i j}\right)_{k} h=q_{k i} q_{j} l_{j}
$$

The matrix \mathcal{G} is regular and the $\mathbb{E}_{i j}$'s span a complete basis. The matrix $S(a)$ can be expanded onthis basis following:

$$
S(a)=E_{i j} a^{i j}
$$

The velocity field
$u_{\sigma}^{j}(x)$ can then be written as

$$
u_{[r s]}^{j}(x)=\frac{\partial}{\partial a^{r s}}\left[x^{k} \delta_{k}^{j}(a)\right]_{a=e}=x_{r} \delta_{s}^{j}
$$

and the infinitesimal generators have a representation as isl differ』ntloperators

$$
x_{r s}=x_{\gamma} \frac{\partial}{\partial x^{s}}
$$

We are now able to deduce the commutation rules of the Tie algebra

$$
\left[x_{r s}, x_{t u}\right]=g_{s t} x_{r u}-g_{u r} x_{t s}
$$

The linear group $G L(n, R)$ depends on n^{2} independent real parameters and the Lie algebra has $n^{?}$ elements.
3. The product of two matrices E, j is given by:

$$
E_{i j} E_{k j}=E_{j} E_{i n}
$$

We can consider the matricesmp(n,R) as a Lie algebra on the real numbers with multiplication law given by the lie product.

$$
\left[\begin{array}{cc}
E_{i j} & E_{k}
\end{array}\right]=g_{j k} E_{i \ell}-g_{\ell i} E_{k j}
$$

The previous equality shows clearly that the Lie algebra of the matrices $\eta_{\eta}(n, R)$ is isomorphic to the Lie algebra of the general linear group $G L(n, R)$.

B. Special Linear Group $\operatorname{SL}(n, R)$:

1. The particular operator $X=g^{s r} X_{v s}$ commutes in an evident way with the n^{2} infinitesimal generators X tu The transformation generated by X is given by:

$$
d x^{k}=\varepsilon X x^{k}=\varepsilon x^{k} .
$$

and is interpreted as a dilatation of center the origin. The group generated by X is an one parameter abelian group; subgroup of $G L(n, R)$ and isomorphic to the additive group R of real numbers.

The factor group $G(n, R) / R$ is the special linear group $\operatorname{SL}(n, R)$. It can be defined as the set of unimodular linear tran formations in $E(n, R)$ or, equalently, as the set of the non unimodular matrices with real coefficients. The number of independent real parameters is $n^{2}-1$.
2. The Lie algebra of $\operatorname{SL}(n, R)$ is immediately defined by the infinitesimal generators

$$
X_{r s}^{\prime}=x_{r s}-\frac{1}{n} g_{r s} X
$$

The commutation laws are unchanged.
C. Pseudo-Orthogonal Groups: $0_{S}(n, R)$:

1. The scalar product, in $E(n, R)$ is given by the symmetrical linear connection g :

$$
(x, y)=g(x, y)=x^{k} g_{k \ell} y^{\ell}=(y, x)
$$

Let us call as A an arbitrary linear transformation in
$E(n, R)$. The conservation of the scalar product under the tranformation A is simply

$$
(A x, A y)=(x, y)
$$

This equality must be satisfied for all vectors x and y of $E(n, R)$. The invariance property takes then the simple form.

$$
A^{T} \quad g \quad A=g
$$

A matrix which verifies the previous relation is called a or thogonal matrix with respect to the connection g. The orthogonal matrices generate a subgroup of $G L(n, R)$, the pseudoorthogonal group.
2. The connexion g is a symmetrical bilinear regular form and can be diagonalised in the following way: $g_{i j}= \pm \delta_{i j}$. We choose in $E(n, R)$ an orthonormalized basis such that:

$$
\begin{aligned}
& g_{i j}=\delta_{i j} \quad i=1,2, \ldots \ldots, n-s \\
& g_{i j}=-\delta_{i j} \quad 1=n-s+1, \ldots, n
\end{aligned}
$$

The number s of time like vectors is called the signature. The pseudo -orthogonal groups are characterized by the signalure s and noted $O_{S}(n, R)$. The two pseudo-orthogonal groups $O_{S}(n, R)$ and $O_{n-S}(n, R)$ are isomorphic.

In the particular case $s=0$ (or $s=n$) the vector space is an euclidian space and the connexion g can always be chou sen as the unit matrix I. The orthogonal group $O(n, R)$ is the set of orthogonal matrices: $A^{T} A=I$.
3. The pseudo orthogonal grouns are sub-groups of $G L(n, R)$. The Lie algebra of the pseudo-orthogonal group is a sub-algebra of that of the linear group. The infinitesimal generators $Z_{i j}$ can be written as linear combinations of the $X_{i j}$ previously defined:

$$
z_{i j}=\lambda_{i j}{ }^{m n} x_{m n}
$$

It is sufficient to impose the invariance of the norm of all vectors

$$
z_{i j}(x, x) \equiv 0 \text { for all } x \in R(n, R)
$$

which can be transformed into:

The matrices $\lambda_{i j} j_{\text {must }}$ be antisymmetrical: $\lambda_{i}^{m n}+\lambda_{i j}^{n m}=0$ and it is convenient to choose:

$$
\lambda_{i j}=E_{i j}-E_{j i}
$$

which gives for the $Z_{i j}$'s the explicit form:

$$
z_{i j}=x_{i j}-x_{i j}
$$

It is possible to construct $\frac{n(a-1)}{2}$ linearly independent In xn matrices $\lambda_{i j}$, The He algebra of the pseudo-orthogonat groups is spanned by $\frac{n(n-1)}{?}$ infinitesimal generators $Z_{i j}$ and the pseuaio-orthogonal ground depend ot $\frac{n(n-1)}{2}$ real independent parameters.

The commutation rules for the $Z_{i f}$ are then given by:

$$
\left[z_{i j}, z_{k l}\right]=g_{i k} z_{i l}-q_{i l} z_{k j}+g_{i k} z_{j j}-q_{i l} z_{i k}
$$

4. For a given value of n, there oxist only $\left[\frac{n}{2}\right]+1$ non-equivalent pseudo-orthogonal groups.

Two particular subgroups of $O_{S}(n, P)$ are the two or thogonal groups $O(S, R)$ and $O(n-s, R)$ and also the direct product.

$$
O(S, R) \quad O \quad O(n-s, R) \quad O_{S}(n, E)
$$

D. Special Dseudz-orthogonal Groups $\mathrm{SO}_{\mathrm{S}}(\underline{n}, \mathrm{R})$:

1. As a consequence of the relation $A^{T} g A=g$, we obtain:

$$
(\operatorname{det} A)^{2}=(\operatorname{det} g)^{2}=1
$$

It is then possible to define in the pseudo-crthogonal groups $O_{S}(n, R)$ an equivalence with respect to the sign of $\operatorname{det} A$. only/coset get $A=+1$ is a subgroup called the special pseu-do-orthogonal group $\mathrm{SC}_{S}(n, R)$. This special group, of course is also/ sub-group of the special linear group $\operatorname{SL}(n, R)$ and more precisely

$$
\mathrm{SO}_{\mathrm{S}}(n, R)=O_{S}(n, R) \Gamma \mathrm{SL}(n, R)
$$

2. In a exc: it po space where $g \simeq I$, the group of unimodular orthogonal matrices is the special orthogonal group $S O(n, R)$,
3. The two groups $O_{S}(n, R)$ and $S O_{S}(n, R)$ have the some Lie algebra but they are not isomorphic.

E. Applications:

1. The signature of a three dimensional vector space can be $s=0$ (or $s=3$) and $s=1$ (or $\mathbf{s}=2$). We will have only two pseudo-orthogonal groups, $O(3, R)$ and $O_{1}(2, R)$. The infinitesimal generators can be represented by:

$$
\begin{aligned}
& z_{12}=x_{1} \frac{\partial}{\partial x^{2}}-x_{2} \frac{\partial}{\partial x^{1}} \\
& z_{23}=x_{2} \frac{\hat{\partial}}{\partial x^{3}}-x_{3} \frac{\partial}{\partial x^{2}} \\
& z_{31}=x_{3} \frac{\partial}{\partial x^{1}}-x_{1} \frac{\partial}{\partial x^{3}}
\end{aligned}
$$

In the case of an ouclidian space the connexion 5 can be taken as

$$
g=\left|\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right|
$$

and the commutation rules are given by:

$$
\left[\begin{array}{ll}
Z_{23}, & z_{31}
\end{array}\right]=-z_{12} ;\left[\begin{array}{ll}
Z_{31}, & z_{12}
\end{array}\right]=-2_{23} ;\left[Z_{12}, z_{23}\right]=-z_{31}
$$

In the case of a pseudo edolidian space, the connexion g can be oho sen so that

$$
g=\left|\begin{array}{ccc}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 7 & -1
\end{array}\right|
$$

and the commutation rules become:
$\left[Z_{23}, z_{31}\right]=4 z_{12}\left[z_{31}, z_{12}\right]=-z_{23}\left[z_{12}, z_{23}\right]=-z_{31}$
Usually, for the orthogonal group $O(3)$, the hermitic infinitesimal generators are defined following:

$$
z_{j k}=i \epsilon_{j k l} J_{l}
$$

and the commutation rules take the familiar form $\vec{J} \times \vec{J}=1 \vec{J}$.
2. Let us now consider a 2-dimensional vector space with a linear connexion g defined by: $g_{11}=1, g_{22}=\varepsilon$ with $\Sigma= \pm 1$. The general In ear group $G L(?, R)$ is a 1-parameter group and the Lie algebra is known from the commutation: relations

$$
\begin{aligned}
& {\left[x_{11}, x_{12}\right]=x_{12} \quad\left[\begin{array}{ll}
x_{22}, & \left.x_{12}\right]=-\varepsilon x_{12} \\
{\left[x_{11}, X_{21}\right]=-x_{21}} & {\left[x_{22}, x_{21}\right]=\varepsilon x_{21}} \\
{\left[X_{11}, X_{22}\right]=0} & {\left[x_{12}, X_{21}\right]=\varepsilon X_{11}-X_{22}}
\end{array}\right.}
\end{aligned}
$$

The generator $Y=X_{11}+\varepsilon X_{22}$ commutes with the four $X_{j k} 8$. The Lie algebra of the special linear group $S L(2, R)$ can be conveniently defined by the following infintesimal generators:

$$
\begin{aligned}
& x^{0}=\frac{1}{2}\left(x_{11}-\varepsilon x_{22}\right) \\
& x^{+}=\frac{1}{2}\left(x_{12}+\varepsilon x_{21}\right) \\
& x^{-}=\frac{1}{2}\left(x_{12}-\varepsilon x_{21}\right)
\end{aligned}
$$

which setisfy the commutation relations:

$$
\left[x^{0}, x^{+}\right]=x^{-} ;\left[x^{+}, x^{-}\right]=-x^{0} ;\left[x^{-}, x^{0}\right]=-x^{+}
$$

If we compare these results with those obtained in the previous section, we immediately see that the special linear group $S L(2, R)$ and the pseudo-orthogonal group $O_{1}(3, F)$ have two Isomorphic Lie algebra. Of course the two groups are not isomorphic.
3. The Lie algebra of the orthogonal group in a 4-dimensional euclidian space is defined by six inflytumal generators $Z_{i j}$ and the commutation rules:

$$
\left[Z_{i j}, Z_{k l}\right]=\delta_{j k} \not z_{i l}-\delta_{i k} z_{j l}-\delta_{j k} Z_{i k}+\delta_{i \ell} Z_{j k}
$$

Let us define two sets of three generators by

$$
z_{j}^{ \pm}=\frac{1}{2}\left(z_{k l} \pm z_{j 4}\right)
$$

where j, k, l is a cyclic e permutation of $1,2,3$. The following relations can be immediately verified:

$$
\begin{gathered}
{\left[z_{j}^{+}, z_{k}^{-}\right]=0} \\
{\left[z_{k}^{ \pm}, z_{l}^{ \pm}\right]=\cdots \varepsilon_{\text {kl }} z_{j}^{ \pm}}
\end{gathered}
$$

The Lie algebra of the orthogonal group in a 4-dimensional euclidian space can be written as the direct sum of two lie algebra, each of them being isomorphic to the Lis algebra of the orthogonal group in a 3 -dimensional eucll dian space.

As a consequence of this result, we have the evident isomorphism:

$$
S O(4, R) \simeq S O(3, R) \otimes S O(3, R)
$$

4. The homogeneous Lorentz group I is the pseudoOrthogonal group associated to a 4-dimensional vector space of signature $S=1$, the Minkowski i space. The connexion g is cho.sen so that $g_{11}=g_{92}=g_{33}=+1$ and $g_{00}=-1$. Under Lorentz transformations, the norm of each vector is invariant: $x_{1}^{2}+x_{2}^{2}+x_{3}^{2}-x_{0}^{2}=$ constant.

The Lie algebra of L is defined by the following commutation rules

$$
\begin{aligned}
& {\left[z_{12}, z_{23}\right]=-z_{31} ;\left[z_{23}, z_{31}\right]=-z_{12} ;\left[z_{31}, z_{12}\right]=-z_{23}} \\
& {\left[z_{12}, z_{01}\right]=-z_{02} ;\left[z_{23}, z_{02}\right]=-z_{13} ;\left[z_{31}, z_{03}\right]=-z_{01}} \\
& {\left[z_{03}, z_{23}\right]=-z_{02} ;\left[z_{01}, z_{31}\right]=-z_{03} ;\left[z_{02}, z_{12}\right]=-z_{01}} \\
& {\left[z_{03}, z_{01}\right]=+z_{31} ;\left[z_{01}, z_{02}\right]=+z_{12} ;\left[z_{02}, z_{03}\right]=+z_{23}}
\end{aligned}
$$

Some particular sub-algebrae and subgroups are evident from the previous equations and correspond to particular invariance:
a Z_{12}, Z_{23}, Z_{31} generate the Lie subalgebri. of an orthogonal subgroup which leaves invariant the component x_{0} and the space norm $x_{1}^{2}+x_{2}^{2}+x_{3}^{2}$.
b Z_{12}, Z_{01}, Z_{02}, generate the Lie sub algebra of a pseudo-orthogonal subgroup which leaves invariant the component x_{3} and the quantity $x_{1}^{2}+x_{2}^{2}-x_{0}^{2}$.
c $\quad Z_{23}, Z_{02}, Z_{03}$, in the same way generate a Lie subalgebra isomorphic to the previous one and the corriesbonding pseudo-orthogonal sub-group leaves invariant x_{1} and $x_{2}^{2}+x_{3}^{2}-x_{0}^{2}$.
d Z_{31}, Z_{03}, Z_{01}; we have again the Lie subalgebra of a third pseudo-orthogonal sub-group and now time the invariant quantities are x_{2} and $x_{1}^{2}+x_{3}^{2}-x_{0}^{2}$.
III. GROUP OF LINEAR TRANSFORMATIONS OF A VECTOR SDACF ON THE FIELD OF COMPLEX NOMBFIS

We now introduce $q n$ n-dimensional vector space on the field of complex numbers $E(n, C)$. A large part of the results previously obtained in a real vector space can easily be extended to a complex vector space. The hermitian product in $E(n, C)$ is defined with a symmetrical antilinear connexion g which is a regular sesquilinear form in $E(n, C)$

Let us consider a Lie algebra, $\Lambda=\left\{X_{0}\right\}$ on the real numbers with the commutation rules

$$
\left[X_{\sigma}, x_{\tau}\right]=C_{\sigma \tau}^{\rho} X_{\rho}
$$

If now the Lis algebra is defined on the complex numbers, it can be interesting to introduce its complex extension Λ^{*} as a new Lie algebra: on the real numbers with infinitisimal generators X_{σ} and Y_{σ} satisfying.

$$
\left[x_{\sigma}, x_{\tau}\right]=c_{c}{ }_{c}^{p} x_{\rho} ;\left[x_{\sigma}, y_{\tau}\right]=C_{\sigma \tau}^{f} y_{\rho} ;\left[y_{\sigma}, y_{\tau}\right]=-C_{\sigma \frac{p}{f}}^{f} x_{\rho}
$$

It is easy to verify that the complex extension of Λ^{*} is a direct sum of two Lie algebra isomorphic to Λ^{*}

$$
\left(\Lambda^{*}\right)^{*} \simeq \Lambda^{*} \oplus \Lambda^{*}
$$

A. General Linear Group $G L(n, C)$:

1. The regular nun matrices with complex coefficients generate the general linear group GL($n, C)$. The group of regular linear transformations in $E(n, C)$ is isomorphic to
$G L(n, C)$.
2. The Lie algebra of the general linear group $G L(n, r)$ either can be considered/as a Lie algebra on the complex numbers with the infinitesimal generators X_{σ} or a Li c algebra on the real number with the infinitesimal generators X_{σ} and Y_{σ}. The commutation laws of the complex extension of a real lie algebra have bern previously given and can also be directly obtained by using the method explained in the previous section for the real case

$$
\begin{aligned}
& {\left[x_{r s}, x_{t u}\right]=g_{s t} x_{r u}-g_{u r} x_{t_{u}}} \\
& {\left[x_{r s}, y_{t u}\right]=g_{s t} y_{r u}-g_{u r} y_{t u}} \\
& {\left[y_{r s}, y_{t u}\right]=-g_{s t} x_{r u}+g_{u r} x_{t u}}
\end{aligned}
$$

3. The Lie algebra of the gereral linear group $G L\left(n,{ }^{\sim}\right)$ Is also the Lis algebra of the complex matrices (n, c). The proof is identical to those obtained on the real case and a convenient basis will be

$$
\left[E_{k l}^{R}\right]_{m n}=g_{m k} g_{n l} i .\left[E_{k l}^{I}\right]_{m n}=i g_{m k} g_{n l} .
$$

B. Special Linear Group $\operatorname{SL}(n, C)$:

1. The two operators $x=g^{s r} x_{r s}$ and $y=g^{s r} y_{r s}$ commute with all generators of the linear group $G L(n, C)$. They generate a two parameter abeliar group corresponding to complex dilatation of center the origin. This subgroup of $G L(n, r)$ is isomorphic to the additive group C of complex numbers.

The factor group $G L(n, C) / C$ is the special linear group SL(n, ©). It car also be defined as the set of untmodular lInear transformations in $E(n, C)$ or,iequivalently, as the set of the non unimodular matrices with/coefficients. The number of independent real parameters is $2 n^{2}-2$.
2. The Lie algebra of $\operatorname{SL}(n, C)$ is immediately defined by the infinitesimal generators

$$
\begin{aligned}
& x_{r s}^{\prime}=x_{r s}-\frac{1}{n} g_{r s} x \\
& y_{r s}^{\prime}=y_{r s}-\frac{1}{n} g_{r s} y
\end{aligned}
$$

The commutation laws are unchanged

C. Pseudo-Unitary Groups $U_{S}\left(n_{r}\left(C^{2}\right)\right.$:

1. The hermitian product in $P(n, C)$ is given by the antilinear connection

$$
(x, y)=g(x, y)=x^{k} g_{k l} y^{l}=\overline{(y, x)}
$$

Lat us call as an arbitrary linear transformation in $E(r, C)$. The conservation of the hermitian product under the transformation A is simply

$$
(A x, A y)=(x, y)
$$

This equality must be satisfied for all vectors in $Q(n, y)$. The invariance property takes then the simple form

$$
A^{*} g A=g
$$

A matrix which satisfies the previous equality is called an unitary matrix with respect to the connection g. The unitary matrices generate a subgroup of $G L(n, 0)$, the pseudo-unitary group.
2. The connexion g is a symmetrical sesquilinear form and can be diagonalized in the following way: $g_{i j}= \pm \delta_{i j}$ We will choose in $E(n, C)$, an orthogonallzed basis such that:

$$
\begin{array}{ll}
g_{i j}=\delta_{i j} & i=1,2,3, \cdots \cdot n-s \\
g_{i j}=-\delta_{i j} & i=n-s+1, \cdots \cdots n
\end{array}
$$

The pseudo-unitary groups are characterized by the signature? s and noted $U_{S}(n, C)$

In the particular case $\mathrm{s}=0$ (or $\mathrm{s}=\mathrm{n}$) the vector pone is hermitian and the connexion \mathcal{G} can always be chow sen as the unitimatrix $g \simeq I$. The unitary group $U(n, \sigma)$ is the set of unitary emo matrices $A^{*} A=I$.
3. The pseudo-unitary groups are subgroups of $G I(n, C)$.

The lie algebra a of the pseudo-unitary group n': is a sub algebra of that of the complex linear group. The infinitesimal generators $\mathcal{Z}_{i j}$ can be written as linear com hinations of the $X_{i j}$ previously defined with complex coefficients.

$$
Z_{i j}=\lambda_{i j}^{m \prime \prime} X_{i m n}
$$

It is sufficient to impose the invariance of the norm of all vectors and the matrices $\lambda_{1} j$ turn out to be antihermitian:

$$
\lambda_{j}^{m n}+\bar{\lambda} \hat{j}^{n}=0 \quad \text {. In } F(n, C), \text { it is possible }
$$

to construct n^{2} linearly independent $n x n$ antihermitian matrices. The dimension of the Lie algebra of the pseudounitary groups is then $n^{?}$.

It is convenient to choose for the $\lambda i j$
a $\frac{n(n-1)}{2}$ antisymmetric real matrices $E_{i j}^{R}-E_{j i}^{R}$

$$
\underline{b} \frac{n(n+1)}{2} \text { symmetric purely imaginary matrices } \underset{E_{i j}+E_{j i}^{I}}{ }
$$

and the infinitesimal generators can then be written as

$$
\begin{aligned}
& Z_{i j}=-Z_{j i}=X_{i j}-X_{j i} \\
& Z_{i j}^{I}=+Z_{j i}^{I}=Y_{i j}+Y_{j i}
\end{aligned}
$$

Tho commutation laws ares the following:

$$
\begin{aligned}
& {\left[z_{i j}, z_{k l}\right]=g_{j k} z_{i l}-g_{i k} z_{j l}-g_{j l} Z_{1 k}+g_{l l} z_{j k}} \\
& {\left[z_{i j}, z_{k l}^{I}\right]=g_{j k} Z_{i l}^{I}-g_{i k} z_{j l}^{I}+g_{j l} z_{i k}^{I}-g_{i l} Z_{j k}^{I}} \\
& {\left[Z_{i j}^{I}, z_{k l}^{I}\right]=-g_{j k} Z_{i l}-g_{i k} z_{j l}-g_{j l} z_{i k}-g_{i l} Z_{j k}}
\end{aligned}
$$

As a trivial consequence, the $Z_{i j}$ generate a Lie sub-algehra isomorphic to the Lie algebra of the pseudo-orthogonal group $O_{s}(n, R)$.
4. The Lin algebra of the groups $G L(n, R)$ and $U_{S}(n, 6)$ have the same complex extension which is the Li f algebra of $G L(n, \varnothing)$.

D. Special Pseudo-Unitary groups So ${ }_{s}(n,(c)$

1. The operator $Z=g^{i j} Z_{i j}^{I}$ commutes with the n^{2} infinitesimal generators $Z_{i j} \& Z_{i j}^{I j}$. It generates an one-parameter abelian group which/in fact a gauge group, all the components of a vector being multiplied by the same phase.

$$
d x^{k}=\varepsilon Z x^{k}=2^{\prime} \varepsilon x^{k} \quad \in \text { real }
$$

This group is isomorphic to the one dimensional unitary group U(I). The factor group.

$$
\mathrm{J}_{\mathrm{S}}(\mathrm{n}, 0) / \mathrm{O}, \mathrm{~T}(1) \quad \mathrm{SU}_{\mathrm{S}}\left(\mathrm{n}, C_{0}\right)
$$

is the special pseudo-unitary group also defined as the set of unimodular $n x n$ matrices with complex coefficients.
2. The Lie algebra of the unimodular oseudo-unttary groups is defined by $n^{2}-1$ infinitesimal generators

$$
Z_{i j}^{\prime}=Z_{i j} ; Z_{i j}^{\prime I}=Z_{i j}^{I}-\frac{1}{n} g_{i j} Z
$$

and the commutation laws are unchanged.
3. In an hermitian space where $g \simeq I$, the group of unimodular unitary matrices is the special unitary group $\operatorname{SU}(n, C)$.
4. An inclusion which is a consequence of the explicit form given for the Lie algebra is the following

$$
\mathrm{SO}_{\mathrm{S}}(n, R) \quad\left(\mathrm{SU}_{\mathrm{S}}(n, \theta)\right.
$$

5. The Lie algebra of the groups $S L(n, F)$ and $S U_{S}(n$; $)$ have the same complex extension which is the Lie algebr? if the group $\operatorname{SI}(n$, © $)$.
E. Complex Orthogonal Group $3(1,6)$
6. The pseudo-orthogonal group $O_{S}(n, F)$ is the greiun of linear transformations in $E(n, F)$ which leaves inver*anc toe symmetrical bilinear form g.

In a complex vector space $\mathbb{E}(n, 0)$, the scalar produet is now a complex number explicitiy given ry:

$$
\left(x_{1}+1 x_{2}, y_{1}+1 y_{2}\right)=\left(x_{1}, y_{2}\right)-\left(x_{2}, y_{2}\right)+\left(x_{1}, y_{2}\right)+i\left(x_{2}, y_{1}\right)
$$ where each term is well defined in $E(\Gamma, R)$.

The group of linear trarisformaions in $\mathrm{E}(\mathrm{n}, \mathrm{c})$ which leaves invariant this scalar product g, is the comolex urinc. gonal groux oin,e)
2. This group can be considered as the complex fxtons:0: of the pseudo-orihogonal grours $O_{S}(n, R)$. But with a cervonion change of basis it is aiways possible now, in $E(n, C)$, tu ohoose \bar{g} as the unit matrix because of the definition of the sodiar product. It follows that ail pseudo.orthogonal groups osir, p) have the same comolex extersion $O(n, \tilde{i})$.

- 34 -

3. The orthogonality condition can always be written as $A^{\top} A=I$ and the infinitesimal generators of the Lie algebra are given by

$$
Z_{i j}=x_{i j}-x_{j i} ; \quad z_{i j}^{I}=y_{i j}-y_{j i}
$$

Its dimensionality is simply $n(n-1)$.
F. Applications:.

1. We first consider the unitary group $\mathrm{U}(2,0)$. The Lie algebra is spanned by four generators $z_{12}, z_{12}^{I}, Z_{11}^{I}, z_{22}^{I}$, with the following commutation rules

$$
\begin{aligned}
& {\left[Z_{12}, Z_{11}^{I}\right]=-2 Z_{12}^{I} ;\left[Z_{12}, Z_{22}^{I}\right]=2 Z_{12}^{I}} \\
& {\left[Z_{12}^{I}, Z_{11}^{I}\right]=2 Z_{12} ;\left[Z_{12}^{I}, Z_{22}^{I}\right]=-2 Z_{12}} \\
& {\left[Z_{12}^{I}, Z_{12}\right]=Z_{22}^{I}-Z_{11}^{I} ;\left[Z_{11}^{I}, Z_{22}^{I}\right]=0 .}
\end{aligned}
$$

The linear combination $Z=Z_{11}^{I}+z_{22}^{T}$ commutes with all the generators and can be associated to a gauge group $U(1)$.

The Lie algebra of the special unitary group has therefore only three infinitesimal generators it is convenient to write in the form

$$
M_{1}=\frac{1}{?} Z_{12}^{I} \quad M_{2}=\frac{1}{2} Z_{12} \quad M_{3}=\frac{1}{4}\left(Z_{1}^{I}-Z_{25}^{I}\right)
$$

From the commutation relations given above, it is easy to deduce:

$$
\left[M_{1}, M_{j}\right]=\varepsilon_{i j k} M_{k}
$$

The Lie algebra of $S U(2, C)$ and the Lie algebra of the orthogonal group $O(3, R)$ are two isomorphic three-parameters Lie algebra.
2. The groups $S L(2, R)$ and $O_{1}(3, R)$ have two isomorphic Lie algebrae. Such an isomorphism remains true for the complex extensions and the groups $S L(2, m)$ and the complex orthogonal group $O(3, \mathbb{E})$ have also two isomorphic six-parameters Lie algebrac. By using the notations of the previous section the Lie algebra of $S L(2, C)$ satisfies the following commutation rules:

$$
\begin{aligned}
& {\left[x^{0}, x^{+}\right]=x^{-} ;\left[x^{+}, x^{-}\right]=-x^{0} ;\left[x^{-}, x^{0}\right]=-x^{+}} \\
& {\left[x^{0}, y^{+}\right]=y^{-} ;\left[x^{+}, y^{-}\right]=-y^{0} ;\left[x^{-}, y^{0}\right]=-y^{+}} \\
& {\left[y^{0}, x^{+}\right]=y^{-} ;\left[y^{+}, x^{-}\right]=-y^{0} ;\left[y^{-}, x^{0}\right]=-y^{+}} \\
& {\left[y^{0}, y^{+}\right]=-x^{-} ;\left[y^{+}, y^{-}\right]=x^{0} ;\left[y^{-}, y^{0}\right]=x^{+}}
\end{aligned}
$$

After comparison with relations written for the Lorentz group, we immediately see that the Lie algebra of $\operatorname{SL}(2,0)$, of $0\left(4,0^{\circ}\right.$; and of the Lorentz group L are isomorphic.
3. The Lip algebra of the complex Lorentz group is iso morphic to the Lie algebra of the complex orthogonal group $0(4,6)$. It has been shown in the previous section that the Lie algebra of the orthogonal group $0(4, R i$. 1 the directs sum of to isomorphic tie algebras of the orthogonal group of, R). By cosults of the paragraph ?) it follows immediately that the Lie algebra of the complex Lorentz group is the direct sum of two isomorphic Lie algebra of the real Lorentz group.

IV. GROUP OF LINEAR MFANSFOFMATIONS OF A VECTOR SDACT ON THE FIELD OF QUATERNIONS

The complex numbers C can be considered as a 2-dimensional algebra on the field of real numbers R with the commutative multiplication law:

$$
(a, b)(c, d)=(a c-b d, a d+b c)
$$

The quaternions ' Q can be defined as a 4-dimensional algebra on the field of real numbers R with the noncommutative miltiplication law:

$$
\left(a_{0}, \vec{a}\right)\left(b_{0}, \vec{b}\right)=\left(a, b_{0}-\vec{a} \cdot \vec{b}, a_{0} \vec{b}+b_{0} \vec{a}-\vec{a} x \vec{b}\right)
$$

A simple matrix representation of the quaternion (a, \vec{a}) can be realized with the help of the Pauli matrices: $\left(z_{0}, \vec{a}\right)=a_{a} \vec{\sigma} \vec{a}$ The quaternions Q can also be considered as a 2-dimensional algebra on the field of complex numbers C with the multinlicaLion law:

$$
(x, y)(y, t)=(x y-\bar{y} t, x t+y r)
$$

An useful matrix representation of the quaternion (x, y) is then

$$
(x, y)=\left|\begin{array}{cc}
x & \bar{y} \\
-y & \bar{x}
\end{array}\right|
$$

In order to define the norm of a complex number, we first conslider the complex conjugate $(a, b)^{*}=(a,-b)$ and the norm is simply

$$
\mathbb{N}^{2}(a, b)=\left(a, b^{*} \quad(a, b)=\left(a^{2}+b^{2}, 0\right)\right.
$$

For the quaternions, we proceed in the same way by introducing the hermitic conjugal $\left(a_{0}, \vec{a}\right) *=\left(a_{0} \cdot-\vec{a}\right)$ and the norm is given by:

$$
N^{\dot{\alpha}}\left(a_{0}, \vec{a}\right)=\left(a_{0}, \vec{a}\right) *\left(a_{0}, \vec{a}\right)=\left(a_{0}^{2}+\vec{a}, 0\right)
$$

In the language with the complex numbers, we obtain $(x, y)=$ ($\bar{x},-y$) and the norm takes the simple form

$$
N^{2}(x, y)=(x, y)^{*}(x, y)=(x \bar{x}+y \bar{y}, 0)
$$

The quaternionic product of two quaternions q_{1} and q_{2} will be defined by the quaternion $q_{12}=q_{1}^{*} q_{2}=q_{21}^{*}$. By using the previous forms for the quaternions, we find

$$
\begin{aligned}
& \left(a_{0}, \vec{a}\right) *\left(b_{0}, \vec{b}\right)=\left(a_{0} b_{0}+\vec{a} \vec{b}, a_{0} \vec{b}-b_{0} \vec{a}+\vec{a} \times \vec{b}\right) \\
& (x, y)^{*}(y, t)=\left(\bar{x} y+\bar{y} t, x t-y r_{y}\right)
\end{aligned}
$$

We now introduce a n-dimensional space on the field of the quaternions $E(n, Q)$. The quaternion product of two vectors in $E(n, Q)$ is defined with the self \boldsymbol{Q} $\left(g=g^{*}\right)$.

The quartermanicextension Λ^{Q} of a Lie al nebra $\Lambda=\left\{X_{\sigma}\right\}$ defined on the real numbers can be also considered as a Lle algebra on the real numbers with the inflnitesimal generators $X_{\sigma}, Y_{\sigma}^{\prime}, Y_{\sigma}^{2}, Y_{\sigma}^{3}$. of course, the threo complex extensions $\quad x^{*}=\left\{x_{\sigma}, y_{\sigma}^{\alpha}\right\}$ are isomorphic.
A. Linesr Groups:

1c

1. The regular nxn matrices with quarternion coefficients generate the general linear group $G L(r, q)$. The group of regular linear transformations in $F(n, Q)$ is isomorphic to $G L(n, Q)$.
2. The Lie algebra of $G L(n, n)$ is the quaterrioncoxtension of the Lie algebra of the real general linear group GL(n, R). It can also be regardod as the Lie algebra of the $m(n, Q)$. matrices $f+$. The dimension of the Lie algebra is $4 n^{\text {² }}$ and the commutation relations are given by:

$$
\begin{aligned}
& {\left[x_{j k}, x_{l m}\right]=g_{k l} x_{j m}-g_{m j} x_{l k}} \\
& {\left[x_{j k}, y_{l m}^{\alpha}\right]=g_{k l} y_{j m}^{\alpha}-g_{m j} y_{l k}^{\alpha}} \\
& {\left[y_{j k}^{\alpha}, y_{l m}^{\alpha}\right]=-g_{k l} x_{j m}+g_{m j} x_{l k}} \\
& {\left[y_{j k}^{\alpha}, y_{l m}^{\beta}\right]=-\varepsilon^{\alpha \beta} r\left\{g_{k l} y_{j m}^{\gamma}+g_{m j} y_{l k}^{\gamma}\right\}}
\end{aligned}
$$

3. The operator $\quad X=g^{S r} X_{r S} \quad$ commutes with all generators of the linear group and generates an one dimensional abelian sub-alpebra.

B. Pseudo Sympletic Groups Sp s (n,Q):

1. The quaternion \dot{j}^{c} product of two vectors in $E(n, 0)$ is a quaternion given by the connexion g :

$$
(u, v)=g(u, v)=u^{* k} g_{k l} v^{l}=(v, u)^{*}
$$

Let us call as a an arbitrary linear transformation in $\mathbb{B}(r, Q)$. The conservation of the quaternion/ $\frac{10}{c}$ product under the transformation A is simply,

$$
(A u, A(\cdots)=(u, v)
$$

The equality must be satisfied for all vectors in $\mathbf{E}(n, Q)$ and the invariance property takes tho simple form:

$$
\tilde{A} g \quad A=g
$$

The matrix \tilde{A} is defined by $(\tilde{A})_{i j}=\left(A_{\mu}\right) *$. The matrices d which satisfy the previous equality are called sympletic matrices with respect to the connexion g. They generate a sungroup of $G L(n, 0)$, the pseudo symplectic group.
2. As previously we introduce the signature \mathbf{s} of the vector space $E(n, Q)$ and the pseudo symplectic groups will he noted $S_{s} s_{s}(n, Q)$.
3. The Lie algebra is a sub-algebra of the Lie algebra of the general linear group $G L(n, Q)$. The infinitesimal generators
$-40-$
$Z_{i j} c a n$ be written as linear combinations with guaternionic coeffeients of the $X_{i j}$ defined in section $I I$,

$$
Z_{i j}=A_{j}^{m n} X_{m n}
$$

It is sufficient to impose the invariance of the norm of all vectors and tho matrix elements $\lambda_{i j}^{M n}$ must satisfy the requirement

$$
\lambda_{i j}^{m n}+\lambda_{i j}^{n_{i n}^{*}}=0
$$

The infinitesimal renerators can then be written as:

$$
\begin{aligned}
& Z_{i j}=-z_{j i}=x_{i j}-x_{j i} \\
& Z_{i j}^{\alpha}=z_{j i}^{\alpha}=Y_{i j}^{\alpha}+Y_{j i}^{\alpha} \quad \alpha=1,2,3 .
\end{aligned}
$$

The dimension of the Lie algebra of the pseudo-symplectic groups is then $n(2 n+1)$

The commutation laws can easily be written in the following form:

$$
\begin{aligned}
& {\left[z_{i j}, z_{k l}\right]=g_{j k} z_{l l}-g_{1 k} z_{j l}-g_{j l} z_{l k}+g_{l l} z_{j k}} \\
& {\left[Z_{i j}, z_{k l}^{\alpha}\right]=g_{j k} z_{i l}^{\alpha}-g_{i k} z_{j l}^{\alpha}+g_{j l} z_{i k}^{\alpha}-g_{1 l} z_{j k}^{\alpha}} \\
& {\left[Z_{1 j}^{\alpha}, z_{k l}^{\alpha}\right]=-g_{j k} z_{i l}-g_{1 k} z_{j l}-g_{j l} z_{i k}-g_{i l} z_{j k}} \\
& {\left[Z_{1 j}^{\alpha}, z_{k l}\right]=\varepsilon^{\alpha \beta}\left\{-g_{j k} z_{l l}^{\gamma}-g_{i k} z_{j l}^{\gamma}-g_{j l} z_{l k}^{\gamma}-g_{l l} z_{j k}\right\}}
\end{aligned}
$$

- 41 -

As a trivial consequence, the $z_{i j}$'s generate a Lie algebra isomorphic to the Lie algebra of the pseudo-orthogonal group

- $O_{S}(n, R)$ and the three isomorphic Lie algebras $\left\{Z_{i j}, Z_{i j}^{\alpha}\right\}$ are isomorphic to the Lie algebra of the pseudo unitary group $U_{S}(n, C)$.

4. It is also extremely useful to represent the austernion q by a set of two complex numbers $(x, y \cdot)$. The components q of a vector q in $E(n, Q)$ can be considered as the components ($\quad x^{j}, y_{j}^{j}$) of a vector X in $r(? n, C)$ and we define

$$
x^{j}=x^{j} ; x^{n+j}=y^{j} \quad j=1,2,3, \ldots n
$$

Let us now consider two vectors U and U of $E(n, Q)$; they can be associated to two vectors X and Y of $E(2 n, C)$ by

$$
u^{j}=\left(x^{j}, x^{n+j}\right) ; \quad v^{k}=\left(y^{k}, y^{n+k}\right)
$$

The quaternion product $q(u, v)$ is defined by

$$
g(u v)=g_{j k} u^{j *} v^{k}
$$

and in terns of X and X we obtain for the quaternion (U, V) the form

$$
g(u, v)=g_{j k}\left(\bar{x}^{j} y^{k}+\bar{x}^{n+j} y^{n+k}, x^{j} y^{n+k}-x^{n+j} y^{k}\right)
$$

We now introduce, in $E(2 n, C)$, an antilinear symmetrical connedtion G^{+}and a lInear antisymmetrical connection G^{-}defined by the reduced form:

$$
G^{+}=\left|\begin{array}{ll}
g & 0 \\
0 & g
\end{array}\right| \quad G^{-} \quad=\left|\begin{array}{rr}
0 & g \\
-g & 0
\end{array}\right|
$$

and the quaternion $\cdot g(u, k)$, can then be written as:

$$
g(u, v)=\left(G^{+}(x, y), G_{T}^{-}(x, y)\right)
$$

The linear group $G L(n, Q)$ is a subgroup of the linear group $G L(2 n, c)$ in an evident way. The pseudo sympletic group $S p_{S}(n, Q)$ can also be defined as the set of linear transformations in $E(2 n, C)$ which leave invariant the two connections G^{+}and G^{-}.

In an equivalent way, the group $\operatorname{Sp}_{s}(n, Q)$ is the subgroup of the pseudo-unitary group $U_{2 s}(2 n, C)$ which conserves the antisymmetrical bilinear form G^{-}.
5. We first consider the $2 n$ dimensional vector space $P(2 n, R)$ with tho connection $G^{t}=\left|\begin{array}{ll}g & 0 \\ 0 & g\end{array}\right|$; the components of a vector X are noted with the two sets on indices $\mathfrak{j}=2,2$, $\ldots . . n$ and $n+j$.

The general linear group $G L(2 n, P)$ acting in $r(2 n, P)$ depends of $4 n^{2}$ parameters. The infinitesimal generators of the Lie algebra will be divided into four sets of n^{2} generators $X_{i j}, X_{i, n+1}, X_{n+1}, X_{n+1}, n+j$,

The sub-groun of $G L(2 n, R)$ which conserves. Ne It near symmetrical connection G^{+}is the pseudo-orthogonal group $0_{2 s}(2 n, R)$ which depends on $n(2 n-1)!$ parameters. We will call real pseudo-sympletic group $C_{2}(2 n, P)$
the sub-group of $G L(2 n, R)$ which conserves the linear antisymmetrical form G^{-}. The infinitesimal generators of the real pseudo sympletic group are given by:

$$
\begin{aligned}
& A_{i j}=x_{i j}-x_{n+j} n+i \\
& B_{i j}=x_{n+i j}+x_{n+j i}=B_{j i} \\
& C_{i j}=x_{i n+j}+x_{j n+i}=C_{j i}
\end{aligned}
$$

The commutations laws are given by

$$
\begin{aligned}
& {\left[A_{i j}, A_{k l}\right]=g_{j k} A_{i l}-g_{l i} A_{k j}} \\
& {\left[B_{i j}, B_{k l}\right]=0=\left[C_{i j}, C_{k l}\right]} \\
& {\left[A_{i j}, B_{k l}\right]=-g_{1 k} B_{j l}-g_{l l} B_{j k}} \\
& {\left[A_{i j}, C_{k l}\right]=g_{j k} C_{l l}+g_{j l} C_{1 k}} \\
& {\left[B_{1 j}, C_{k l}\right]=-g_{j k} A_{i l}-g_{1 k} A_{j l}-g_{j l} A_{i k}-g_{1 l} A_{j k}}
\end{aligned}
$$

The $n^{?}$ generators A_{1} define a Lie sub-algebre isomorohic to the Lief algebra of $G L(n, R)$. The $\frac{n(n+1)}{2}$ generators $B_{i j}$ and the $\frac{n(n+1)}{2}$ /generators ${ }^{2} C_{i j}$ define two abelinn tic sub-algnbrae.

The dimension of the Lie ägobr: af the real pseudo-sympletiu groups $S_{0}(R n, R)$ is $n(2 n+1)$.

Tho sub group of $G L(2 n, R)$ which leaves invariant the connections G^{+}and G^{-}, is the intersection of the groups $O_{2 s}(2 n, R)$ and $S_{2 s}(2 n, R)$. The infinitesimal generators are immediately known by the anti symmetry condition.

$$
Z_{i j}=A_{i j}-A_{j i} \quad \bar{Z}_{i j}=B_{i j}-C_{i j}
$$

The dimension of the Lie algebra is $\underline{n}^{?}$ and the commutation relations are given from the previous expressions by:

$$
\begin{aligned}
& {\left[z_{j}, z_{k l}\right]=g_{j k} z_{i l}-g_{i k} z_{j l}-g_{j l} z_{i k}+g_{l l} z_{j k}} \\
& {\left[z_{j}, \bar{z}_{k l}\right]=g_{j k} \bar{z}_{l l}-g_{i k} \bar{z}_{j l}+g_{j l} \bar{z}_{i k}-g_{l l} \bar{z}_{j k} .} \\
& {\left[\bar{z}_{i j}, \bar{z}_{k l}\right]=-g_{j k} z_{l l}-g_{i k} z_{j l} l-g_{j l} l z_{k}-g_{l l} z_{j k}}
\end{aligned}
$$

This Lie algebra is isomorphic to the Lie algebra of the pseudo unitary group $U_{S}(n, C)$.
E. We now introduce the 2n-dimonsional complex space $E(2 n, C)$ with the antilinear connexion G. The general linear group $G L\left(2 n ; c^{\circ}\right)$ acting on $\operatorname{Re}\left(2 n, C\right.$; depends on $8 n^{2}$ parameters and the Lie algebra is the complex extension $\{x, y\}$ the Lie algebra of $G I(2 n, R)$.

The sub group of $G L(2 n, C)$ which conserves the antilinomp
 which depends on 4 ? parameters.

We will call complex pseudo symplétic group $c_{0}(2 n, c)$ the sub group of $G L(2 n, C$; which conserves the linear antisymmetrical form G^{-}. The Lie algebra of $S p{ }_{s}(2 n, C)$ is the complex extension of the Lie algebra of $S p_{2 s}(2 n, R)$ and is defined by the $2 n(2 n+1)$ infinitesimal generators A, B, C, $\bar{A}, \bar{B}, \bar{C}$.

The sub group of $G L(2 n, C)$ which leaves invariant the connexions G^{+}and G^{-}is the intersection of the pseudounitary group $U_{2 S}(2 n, C)$ and of the pseudo-sympletic group os $S p_{S}(2 n, F)$, It is the pseudo-sympleftic group $S p_{s}(n, Q)$ oreviously defined. The infinitesimal generators are immediately given by the linear combinations:

$$
a_{i j}-A_{i 1}, B_{i j}-C_{i j}, T_{i j}+T_{j i}, B_{i j}+T_{i j}
$$

The dimension of this Lie algebra is $n(2 n+1)$ and this value agrees with the previously obtained result.
7. The ic algebra of the groups $S p_{\rho}(2 n, F)$ and $S p_{S}(n, Q)$ have the same complex extension which is the Lie algebra of the group $\operatorname{sp}_{2 \mathrm{~s}}(2 \mathrm{n}, \mathrm{C})$.

Chapter 3

TOPOLOGICAL PROP RTIIS

I. Compact Lie Groups:

1. Definition: In a compact space, any infinite sequence has its bound on the space
2. All the coefficients of an unitary matrix are bounded by the unity:
3. The unitary group $U(n)$ is then a compact lie group. It follows immediately that $\operatorname{SU}(\mathrm{n}), O(\mathrm{n})$ and $S O(\mathrm{n})$ are also compact Lie groups.
4. The symple ${ }^{\text {Chic }}$ group $\operatorname{Sp}(n, 0)$ is a closed subset of $U .(2 n)$ and therefore it is a compact group.

II. Connected Lie Groups:

We give briefly some definitions and some properties in order to characterize a Lie group from a topological point of view.
I. Oath:

Let us consider two points a and b in G. A path from a to b in G is described by a continuous function $f(t)$ defined on the closed interval $0 \leqslant t \leqslant 1$ and such that

$$
\begin{aligned}
& \quad f(0) \Rightarrow a \quad f(1) \Rightarrow b \\
& f(t) \Rightarrow r \text { and } r \quad \in G \text { for all } 0 \leqslant t \leqslant 1
\end{aligned}
$$

> Figure 1
> Path.

The existence of a path between a and b can be used to define an equivalence in G between a and b, such a property being reflexive, symmetric and transitive.

2. Connected Lie group:

A topological space is connected if it cannot be consiunion dered as the/of two non empty open subsets. We introduce a partition in G by arsing the equivalence defined above. If there exist a path joining two points \underline{a} and \underline{b} of G, these two point s belong to the same equivalence class S_{a} which is also called the component of a.

For an analytic manifold, it is easy to see that the S_{a} 's are oper sets. From the previous definition, we obtain the sufficient and necessary condition: a Lie group is connected if and only if one can find a point a in G which can be joined to any arbitrary other point \underline{b} of G by a path.

If a Lie group G is non-connected, only the identity component $S_{e} c a n$ be a sub group. It is an invariant subgroup also called the connected component of G.

3. Homotopy:

Let us consider two paths $f_{1}(t)$ and $f_{2}(t)$ joining two points \underline{a} and \underline{b} of G

Figure 2.
The paths f_{1} and f_{2} are homotopic if f_{1} can be continucialy deformed into f_{2}, the end points a and b remaining fixed.

The notion of homotopy allows to define an equivalence between two paths and to divide the paths into homotopy classes.
4. Simply Connected Lie groups:

A connected Lie group G is simply connected if the homotopy classes reduce to the identity. In a simply connected group, all the paths joining two points of G are equivalent.
5. Examples:

As an illustration of the previous definitions, we give, without proof the following important results.
a The real orthogonal group $O(n, R)$ is not connected; the two equivalence classes are characterized by $\operatorname{det} A= \pm 1$. The identity component is the connetted special orthogonal group $S O(n, R)$.
b The Lorentz group L is not connected; the four equivalence classes are characterized by $\operatorname{det} A= \pm 1$ and $A_{00} \geqslant 1$ or $A_{00} \leqslant-1$. The identity component is $L^{\uparrow}+$

The complex Lorentz group, isomorphic to the complex orthogonal group $O(4, C)$ is a 2-connected group
© The special unitary group $C U(n, C)$ is simply connested but the special orthogonal group $S O(n, R)$ is not simply connected.

III. Universal Covering Group:

1. The Lie algebra of a Lie group is uniquely defined but the converse is not true.

If the Lie algebras g_{1} and g_{2} of two Lis groups G_{2} and G_{2} are isomorphic the lie groups are only locally isomorphic.
2. To each Lie algebra of finite dimension on the real numbers, there corresponds an uniquely determined, connected, simply o onnected Lie group, called the universal covering group G*.
3. All connected Lie groups G, locally isomorphic to G* can be obtained from G^{*} with a covering homomorphism.

The kernel D of such a homomorphism is a disconte invariant subgroup of G^{*} and G^{*} being a connected group, D is a sub group of the center Z of G^{*}

$$
G^{*} / D \simeq G \text { with } D C Z\left(G^{*}\right)
$$

4. Ado's theorem:

A Lie algebra of finite dimension on the real numbers
is ismorphic to a sub-algebra of the Lie algebra of a general linear group $G L(n, R)$ for a convenient value of. n.

It follows that to each Lie algebra Λ of finite dimension on the real numbers corresponds a connected lie group of Lie algebra Λ, which is an analytic subgroup of $G L(n, R)$.
5. Let us consider the direct sum g of two Lie algebras g_{1} and g_{2}

$$
g=g_{1}(4) g_{2}
$$

The universal covering group of g is the direct product of the universal covering groups G_{1}^{*} and G_{2}^{*} of g_{1} and g_{2} : $G^{*}=G_{I}^{*} \otimes G_{2}^{*}$

The center of G^{*} contains the direct product of the centers of G_{l}^{*} and $G_{?}^{*}$ but in general, $Z\left(G^{*}\right)$ is much larger than this direct product

$$
Z\left(G^{*}\right) \supset Z\left(G_{1}^{*}\right) \otimes Z\left(G_{2}^{*}\right)
$$

6. Examples:

a We first consider the one parameter lin algebra Ar. In an evident way, its universal covering group
is the abelian additive group of the real numbers R. The mapping $\alpha \Rightarrow \exp (21 \pi \sim$) where $\alpha \in R$ is a covering homomorphism of R into the one dimensional unitary group (1) Due to the property exp $(21 \pi n)=1$ if n is an integer number, the kernel of the covering homomorphism is the discrote additive subgroup of the integer numbers N :

$$
R / N \simeq U(1)
$$

It can be easily seen thet all the discrete subgrouns of R are isomorphic to N and the only cornented Lie groups of Lie algebra to are R and $U(I)$. b The unimodular unitary group $S U(n, C)$ is a connected simply conrected group. It is therefore the universal covering group of its Lie algebra.

The center of $\operatorname{SU}(n, C)$ is the sut of all nxn unitary matrices. The genoral form is then ωI_{n} where I_{n} is the nxn unit matrix. The constant ω is restricted by the condition $\omega^{n}=1$. It follows that the center Z_{n} of $\operatorname{SU}(n, C)$ is isomorphic to the cycilc group of the roots of order n of the unity $; Z_{n}$ is also isomorohic to the integer numbers modulo n. If n is a prime number, Z_{n} has no subgroun besidns the identity and itself. If now, n can be written as a
product of two integers $n=p q$, the groups z_{0} and $Z_{q} /$ subgroups of Z_{n}.
For instance the connected groups associated to the $S U\left(\Omega, X^{\prime}\right.$ Lie algebra are $\mathbb{O}(2,0)$ and the factor group $\operatorname{SU}(2, \Subset) / Z_{2}$ which, as it will be seen later, is isomorphic to $\operatorname{SO}(3, R)$.

In the case $n=3$, we have the two connected locally isomorphic groups $\operatorname{SU}(3, C)$ and $\operatorname{SU}\left(3, C / Z_{3}\right.$. In the case $n=6$ we have four connected Lis groups: $\operatorname{SU}\left(6, C^{\prime}\right), \operatorname{SU}(6, C) / Z_{2}, \operatorname{SU}(6,6) / Z_{3}$ and $\operatorname{SU}(6,6) / Z_{6}$.

Chapter 4.

LIE ALGEBRA OF THE SEMI SIMPLE GROUPS

I. Standard Form

1. The eigenvalue problem:

Let us call as X_{r} the Y infinitesimal generator of a Lie algebra Λ. We define as $A=a^{\sigma} X_{\sigma}$ an infinitesimal operator and we consider the eigenvalue problem defined by the equation

$$
[A, x]=5 x
$$

The eigenvector X associated to the eigenvalue S is an element of $\Lambda: X=X^{\rho} X_{p}$ and S is in general a complex number. The basic equation can then be written

$$
a^{\sigma} x^{p}\left[x_{\sigma}, x p\right]=s x^{\tau} x_{\tau}
$$

Taking into account the commutation relations of the Lie algebra we obtain

$$
\left[a^{\sigma} x^{p} c_{\sigma p}^{\tau}-s x^{\tau}\right] x_{\tau}=0
$$

The bracket is zero, because of the completeness of the X_{T} basis in Λ.

$$
\left(a^{\sigma} c_{\sigma \beta}^{1}-s \delta_{\rho}^{2}\right) x^{p}=0
$$

We have a system of homogeneous linear equations with respect to the quantities x^{ρ}. Besides the trivial solution $x^{8}=0$, we have a non zero solution if and only if the determinant of the coefficient vanishes:

- 84.

$$
\operatorname{det}-\left(a^{\sigma} c_{\sigma p}^{\tau}-s \delta_{p}^{\tau}\right) x^{p}=0
$$

This condition is an algebraic equation of degree γ in the variable S and we have f roots, real or complex, degenerate or not. To each root corresponds an eigenvector. For a semi simple Lie algebra, Cartan has obtained extremely important results. If the operator A is choose so that the equation in 5 has the maximum number of different roots:
a The root $S=0$ is degenerate with the multiplicity ℓ and ℓ is called the rank of the semi-simple group
b. All the non zero roots are non degenerate.
2. Fundamental Relations

We first define our notations. A greek index $\{, \sigma, \tau$ refers to an arbitrary component of the Lie algebra. For the generators E_{α} associated to non-zero roots we use the greek indices α, β, γ. and for the generators H_{j} associated to zero root we use the latin indices j, k

We are now working with tho two results obtained by Cartan for a rank l semi simple group;
a The root zero is degenerate with the multiplicity ℓ

$$
\left[A, H_{j}\right]=0
$$

\underline{b} The non zero roots α are non degenerate

$$
\left[A, E_{\alpha}\right]=\alpha E_{\alpha}
$$

As an evident consequence of the first equality, A is an eigen-vector with the eigenvalue zero, it can then be written as a linear combination of the $H_{j} ; A=\lambda^{j} H_{j}$ and the generators H_{j} generate a abelian sub-algebra called the Cartan algebra which is maximal

$$
\left[H_{j}, H_{k}\right]=0 \quad \text { or } \quad C_{j R} P=0
$$

We now use the Jacobi identity for the three operators, A, H F_{α} of the Lie algebra

$$
\left[\left[A, H_{j}\right], E_{\alpha}\right]+\left[\left[H_{j}, E_{c}\right], A\right]+\left[\mid \underline{E}_{\alpha}, \underline{A T}, H_{j}\right]=0
$$

By using the properties a) and b) we obtain

$$
\left[A,\left[H_{j}, E_{\alpha}\right]\right]=\alpha\left[H_{j}, E_{\alpha}\right]
$$

which shows that $\left[H_{j}, E_{\alpha}\right]$ is an eigenvector corresponding to the non degenerate eigenvalue α_{0} It follows that this vector must be proportional to $E_{\alpha^{\prime}}$

$$
\left[H_{j}, E_{\alpha}\right]=\alpha_{j}, E_{\alpha} \cdot r \quad o r \quad C_{j \alpha}^{p}=\alpha_{j} \quad \alpha, \gamma_{\alpha}^{p}
$$

After comparison with the eigenvalue equation b), we deduce the relation

$$
\alpha=\lambda^{j} \alpha_{j}
$$

We now define a ℓ-dimensional vector space ε_{ℓ} associated to the carton sub-algebra. The quantity α can be considered as a vector in \mathcal{E}_{l} with covariant components α_{j}, in the same way, λ can be considered as a vector in \mathcal{E}_{ℓ} with contravariant component λ^{j}. It will be also useful in the following to consider the H_{j} 's as the covariant components of a vector H in ε_{ℓ}.

We apply again the Jacobi identity with the three generators A, E_{α}, E_{β}.

$$
\left[\left[A, E_{\alpha}\right], E_{\beta}\right]+\left[\left[E_{\alpha}, \stackrel{E_{\beta}}{ }\right], A\right]+
$$

We use the eigenvalue equation

$$
\left[\begin{array}{l}
\text { b) } \\
\left.E_{\beta}, A\right], E_{\alpha}, \text { obtain: }
\end{array}\right]=0
$$

$$
\left[A,\left[E_{\alpha}, E_{\beta}\right]\right]=(\alpha+\beta)\left[E_{\alpha}, E_{\beta}\right]
$$

Three cases are possible:
a $(\alpha+\beta)$ is not a root and the operators Ξ_{α} and E_{β} commute,
$\underline{b}(\alpha+\beta) \neq 0$ is a root the commutation $\left[E_{\alpha}, F_{\beta}\right]$ is proportional to the operator $\mathbb{E}_{\alpha+\beta}$

$$
\left[E_{\alpha}, E_{\beta}\right]=N_{\alpha, \beta} E_{\alpha+\beta} \quad \text { or } \quad C_{\alpha \beta}{ }^{\rho}=N_{\alpha \beta} \delta^{\rho}
$$

c $\alpha+\beta=0$ the commutator $\left[E_{\alpha}, E_{-\alpha}\right]$ is a eigenvector associated to the eigenvalue zero and can be written as a linear combination of the operators H_{j}

$$
\left[E_{\alpha}, E_{-\alpha}:\right]=C_{\alpha-\alpha}{ }^{j} H_{j}
$$

3. Theorem:

To each root α, it corresponds the root $-\alpha$. The proof of this theorem is based on the Cretan criterion for semi simple groups previously given.

We consider the element \mathcal{F}_{α} of the row α of the Tartan tensor

$$
g_{\alpha \tau}=C_{\alpha e}^{\sigma} C_{\imath \sigma}
$$

With the previous expressions obtained for the structure constans, \mathcal{F}_{α} ? becomes

$$
g_{\alpha \tau}=-\alpha j C_{\tau \alpha}^{j}+N_{\alpha \beta} C_{\tau \alpha+\beta}^{\beta}+C_{\alpha-\alpha}^{j} C_{\tau j}^{\alpha}
$$

The three terms are non-vanishing if and only if τ can take the value $\mathbf{T}=-\alpha$. The Tartan criterion is satisfied if and only if $-\alpha$ is a root and the only element of the row α different from zero is then $\quad \mathcal{G}-\alpha$

For a Lie algebra of rank $l^{-\alpha}$ and dimension γ, there exists γ - ℓ non degenerate and non vanishing roots. From the previous result $\gamma-l$ is an even integer.
4. Cartan tensor

The normalization of the operators E_{α} can be choosen so that

$$
g_{\alpha-\alpha}=1
$$

58
and the Cartan tensor takes the simple structure

We have

$$
\operatorname{det} g_{8 \sigma}=\operatorname{det} g_{j k}(-1) \frac{v-\varphi}{2}
$$

From the certain criterion, it follows that $g_{j} \mathcal{R}$ is a regular matrix
$\operatorname{det} g_{j k} \neq 0$
Of course, such a result is independent of the normalization condition.

By using the definition of the Cartantensor, we obtain an explicit expression for $g_{j} k$

$$
g_{j k}=c_{j \alpha}^{\alpha} c_{k \alpha}^{\alpha}=\sum_{\alpha} \alpha_{j} \alpha_{k}=g_{k j}
$$

The matrix $g_{j} k$ is symmetrical and will be called simply Ge in the following.
5. Vector Space El':

The matrix g is used to define, in ε_{ℓ} symmetrical connection. We introduce the inverse matrix g ${ }^{j} k$

$$
g^{i R} g_{k m}=\delta_{m}^{j}
$$

to write the scar product into the form

$$
(\alpha, \beta)=g^{(\alpha, \beta)}=q^{j k} \alpha_{j} \beta_{k}=(\beta, \alpha)
$$

The contravariart components of a vector α are given by

$$
\alpha^{j}=q^{j k} \alpha_{k}
$$

and the scalar product takes an equivalent form

$$
(\alpha, \beta)=\alpha^{j} \beta_{j}=\alpha_{k} \beta^{k}
$$

As an interesting consequence, we obtain

$$
g^{j k} g_{j k}=\sum_{\alpha} g^{j k} \alpha_{j} \alpha_{k}=\sum_{\alpha}(\alpha, \alpha)
$$

and

$$
\sum_{\infty} \quad(\alpha, \infty)=l
$$

6. Commutation Relations

Wo now show that the contravariant components a^{j} are identical with the $C_{\alpha-\alpha^{j}}$. The proof uses essentially the antisymmetry property of the structure constants.

$$
\begin{aligned}
& C_{\alpha-\alpha}^{j}=g^{j k} C_{\alpha-\alpha k}=g^{j k} C_{k \alpha-\alpha}= \\
& q^{j k} \gamma_{-\alpha \beta} C_{k \alpha}^{\beta} \\
& \text { with the normalization condition } g_{-\alpha \beta}=\delta_{\beta \alpha}, \text { it }
\end{aligned}
$$

follows immediately.

$$
C_{a-a}^{j}=g^{j k^{k}} k=a^{j}
$$

The commutation relation becomes

$$
\left[E_{\alpha}, E_{-\alpha}\right]=\alpha^{j} H_{j}
$$

It is extremely easy to deduce now a Lis sub-algebra, generated by $E_{\alpha}, E_{-\alpha}$ and the linear combination $\alpha_{j}^{j} H_{j}$ one can write as a scalar product ($\alpha, \mathrm{F})$; we obtain

$$
\begin{aligned}
& {\left[E_{\alpha}, E_{-\alpha}\right]=(\alpha, H)} \\
& {\left[(\alpha, H), E_{\alpha}\right]=(\alpha, \alpha) E_{\alpha}}
\end{aligned}
$$

This sub algebra is isomorphic to a $\operatorname{SU}(2)$ Lie algebra and corresponds to the sequence $\alpha, 0,-\alpha$ of the roots
7. Lemme

If α, β, Y are three non zero roots such that $\alpha+\beta+\gamma=0$ we have $N_{\alpha \beta}=N_{\beta \gamma}=N_{\gamma \alpha}$. We use the Jacobi identity:
$\mid \bar{E}_{\alpha},\left[\mathbb{E}_{\beta}{ }^{E}{ }_{\gamma} I\right]+\left[\mathbb{E}_{\beta}, \underline{E}_{\gamma}, E_{\alpha} I\right]+\left[E_{\gamma}\left[E_{\alpha}, E_{\beta}\right]\right]=0$ and the commutation relations allow us to transform this equality into:

$$
(\kappa, H) N_{\beta \gamma}+(\beta, H) \mathbb{N}_{\gamma \alpha}+(\gamma, H) N_{\alpha \beta}=0
$$

The operators of the Carton sub algebra are linearly independent and each component j of $\alpha \beta \gamma$ are solutions of the system:

$$
\left\{\begin{array}{c}
\alpha^{j} N_{\beta \gamma}+\beta^{j} N_{\gamma \alpha}+\gamma^{j} N_{\alpha \beta}=0 \\
\alpha^{j}+\beta^{j}+\gamma^{j}=0
\end{array}\right.
$$

It can be easily seen that the only possibility to obtain nonzero roots α, β, γ is:

$$
N_{\beta \gamma}=N_{\gamma \alpha}=N_{\alpha \beta}
$$

8. Structure Constants

The structure constants $\mathbb{K}_{\alpha \beta}$ are antisymmetric in the exchange of the two indices

$$
N_{\alpha \beta}+N_{\beta \alpha}=0
$$

Let us apply the previous lemma for three non vanishing roots $-\alpha, \alpha+\beta$ and $-\beta$

$$
N_{-\alpha,}, \alpha+\beta=N_{\alpha+\beta},-\beta=N_{-\beta,-\alpha}
$$

Because of the symmetry $\alpha \longleftrightarrow-\alpha$ in the set of the roots, it is always possible to choose, for the operators E_{α} a normalization so that :

$$
N_{-\beta,-\alpha}=N_{\alpha \beta}
$$

Another relation between the structure constants is given by the normalization condition of the Cartan tensor. By using the previous symmetric on the structure constants, we easily deduce

$$
g_{\alpha-\alpha}=1=2(\alpha, \alpha)+\sum_{\beta \neq-\alpha} N_{\alpha \beta}^{2}
$$

II. Properties of the Roots

1. Theorem

If $\alpha \beta$ are two arbitrary roots
a the number $2 \frac{(\alpha, \beta)}{(\alpha, \alpha)}$ is an integer called a Cartan integer;
\underline{b} the vector $\beta-2 \frac{(\alpha, \beta)}{(\alpha, \alpha)} \alpha$ is also a root deduced from β by symmetry withrespect to the hyper plane through the origin perpendicular to α.

The proof of this fundamental theorem will be given into two steps. Let us first consider a root γ such that $\alpha+\gamma$ is not a root:

$$
\left[E_{\gamma}, E_{\alpha}\right]=0
$$

We introduce the sequence

The only a finite number of generators E_{α} and the sequence of the X operators must also be finite:

$$
X_{\gamma-(q+1) \alpha}=0=\left[X_{\gamma-g_{\alpha}}, E_{-\alpha}\right]
$$

These formula can be inverted following:

$$
\left\{\begin{array}{l}
{\left[x_{\gamma-(p+1) \alpha}, E_{\alpha}\right]=\mu_{p+1} x_{\gamma-p \alpha}} \\
\cdots \cdots \cdots \\
{\left[x_{\gamma-\alpha}, E_{\alpha}\right]=\mu_{1} E_{j}}
\end{array}\right.
$$

and, with the previous assumptions $\mu_{0}=0$
We now write the Jacobi identity for the three operators E_{α}, $E_{-\alpha}$ and $X_{Y-p \alpha:}$

$$
\left.\left[E_{\alpha}, E_{-\alpha}\right], X_{-\gamma-p \alpha}\right]+\left[\left[E_{-\alpha}, X_{\gamma-p_{\alpha}}\right], E_{\alpha}\right]+\left[\left[X_{\left.\left.\gamma-p_{\alpha}, E_{\alpha}\right], E_{-\alpha}\right]=0}\right.\right.
$$

By using the commutations relations this relation becomes:

$$
\alpha^{j}\left[H j, X_{\gamma-p \alpha}\right]-\left[X_{\gamma-(p+1) \alpha}, E_{\alpha}\right]+\mu p_{-}\left[X_{\gamma-(p-1), \alpha-\alpha}\right]=0
$$

and finally:

$$
(\alpha \cdot(\gamma-p \alpha))-X_{\gamma-p \alpha}-\mu_{p+1} X_{\gamma-p \alpha}+\mu_{p} X_{\gamma-p \alpha}=0
$$

We have obtained a recurrence formula for μ_{p} :

$$
\mu_{p+1}=\mu_{p}+(\alpha, \gamma)-p(\alpha, \alpha)
$$

Taking into account $\mu_{0}=0$, we deduce the explicit oxpression for μ p

$$
\mu_{p}=p(\alpha, \gamma)-\frac{p(p-1)}{\alpha}(\alpha, \alpha)
$$

The quantity g is defined by $\mu_{g+1}=0$ and with the previous relation we find the values of g :

$$
g=2 \frac{(\alpha, \gamma)}{(\alpha, \alpha)}
$$

The theorem is now proved in the particular case where the sum $\alpha+\gamma$ of two roots is not a root. The quantity g is an integer and there exists a set of roots:

$$
\gamma, \gamma-\alpha, \gamma-2 \alpha, \ldots, \gamma-g \alpha=\gamma-2 \frac{(\gamma \cdot \alpha)}{(\alpha \cdot \alpha)} \alpha
$$

We go back to the general case where $\alpha+\beta$ can be a root. We define as m and n, two positive integers such that $\beta+k \alpha$ is a root if and only if the algebraic integer k , satisfies - $m \leqslant k \leqslant n$. The previous results can be used with the root $\gamma=\beta+n \alpha$. The value of g is simply $g=m+N$ and we obtain.

$$
\begin{aligned}
& 2(\alpha, \beta)=2(\alpha, \gamma)-2 n(\alpha, \alpha)=(m+n)(\alpha, \alpha)-2 n(\alpha, \alpha) \\
&=(m-n)(\alpha, \alpha) \\
& 2 \frac{(\alpha, \beta)}{(\alpha, \alpha)}=m-n
\end{aligned}
$$

- 65 -.
\underline{b} the vector $\beta \rightarrow \frac{(\alpha, \beta)}{(\alpha, \alpha)} \alpha=\beta+(n-m) \alpha$ is a root of the form $\beta+k \alpha$ because of the property $-\mathrm{m}<\mathrm{n}-\mathrm{m}<\mathrm{n}$

2. Consequences:

Lit us consider the possible roots proportional to a given root $\alpha: \beta=k \alpha$. From the previous theorem, the qurantity $2 \frac{(\beta, \alpha)}{(\alpha, \alpha)}=2 k$ is Cartan integer.

The operator E_{α} commutes with itself and both, 2α and $1 / 2 \alpha$, cannot be roots.

As an immediate consequence, the only allowed values of k are $k= \pm 1,0$. If a sequence contains zero as a root, this sequence must be simply $-\alpha, 0,+\alpha$. This case is realized in the Ifs algebra of the su(2) group.
3. Structure constants:

The operators $X_{\gamma-p \alpha}$ and $E \gamma-p \alpha$ are related to each other by a product of structure constants:

$$
X_{\gamma-p \alpha}=N_{\gamma-\alpha} N_{\gamma-\alpha,-\alpha} \cdots E_{\gamma-(p-1) \alpha,-\alpha}, E_{\gamma-p \alpha,}
$$

and we immediately obtain an expression of β_{p+1} in terms of these constants

$$
\mu_{p+1}=N_{\gamma-p \alpha,-\alpha} \quad N_{\gamma-(p+1) \alpha, \alpha}
$$

We now use the notations introduce in $\xi I, \gamma=\beta+n \alpha$,

$$
g=m+n
$$

$$
\mu_{p+1}=\hbar_{\beta+(n-p) \alpha,-\alpha N_{\beta+(n-p-1)} \alpha, \alpha}
$$

and we can compare this expression with the explicit ones given in S_{s}.

$$
\mu_{p+1}=\frac{1}{2}(\alpha, \alpha)(p+1)(m+n-p)
$$

Wo consider the particular case $p=n-1$. The properties of the structure constants allow us to write

$$
\mu_{n}=N_{\beta+\alpha,-\alpha} N_{\beta, \alpha}=N_{-\alpha, \alpha+\beta} N_{\alpha, \beta}=N_{\alpha, \beta} N_{-\beta, \alpha}=N_{\alpha \beta}^{2}
$$

and finally

$$
N_{\alpha \beta}^{2}=\frac{1}{2}(\alpha, \alpha) n(\beta) \quad[m(\beta)+1]
$$

where for a given root α, the positive integers m and n are functions of β.

The element $g_{\alpha-\alpha \quad \text { of the Cartan tensor will then }}$ give the normalization of the root α

$$
\left.g_{\alpha-\alpha}=1=(\alpha, \alpha)\left\{2+\frac{1}{2} \sum_{\beta \neq-\alpha} n(\beta) I_{-}(\beta)+1\right]\right\}
$$

4. Root Diagram

The roots can be considered as vectors in the vector space \mathcal{E}_{ℓ}. The root diagram is the graphical representation of the roots in ε_{ℓ}.

Let us apply the previous theorem for the roots α and β :

$$
p=2 \frac{(\alpha, \beta)}{(\alpha, \alpha)} \quad q=2 \frac{(\alpha, \beta)}{(\beta, \beta)}
$$

The two quantities p and q are algebric integers. We have

$$
(\alpha, \beta)^{2}=\frac{p q}{4} \quad(\alpha, \alpha)(\beta, \beta)
$$

and by using the Schwartz inequality

$$
(\alpha, \beta)^{2} \leqslant(\alpha, \alpha) \quad(\beta, \beta)
$$

we can define a real angle \varnothing by:

$$
\cos ^{2} \phi=\frac{p q}{4}
$$

Because of the symmetry $\alpha \longleftrightarrow-\alpha$ in the roots set, it is sufficient to study the angle \varnothing between 0 and $\pi / 2$. In order to simplify the discussion, we call as β, the root of larger norm $(\beta, \beta) \geqslant(\alpha, \alpha)$ and it follows immediately $p \geqslant \beta_{0}$. The numbers p and q being integers, the angle \varnothing is restricted to the following values: $0, \frac{\pi}{6}, \frac{\pi}{4}, \frac{\pi}{3}$ and $\frac{\pi}{2}$
a Case $\phi=0$ or $p q=4$
The first evident solution isp $=4=2$ corresponding
to. $\beta=\alpha_{i}$ A, second possibility, $p=4 \quad q=1$,
leads to $\beta=2 a$ and must be rejected.
b Case $b=\pi / 6$ or $\mathrm{PV}=3$
We hive only one solution $p=3, q=1(\beta, \beta)=3$ (α, α)
© Case $\phi=\pi / 4$ or $P Q=2$
We have only one solution $p=2, q=1$ and (f, β)
$=2(\alpha, \alpha)$
d Case $\phi=\pi / 3$ or $P Q=1$
We have only one solution $P=1, Q=1$ and (β, Ω)
$=(\alpha, \alpha)$
e Case $\phi=\pi / 2$ or $P Q=0$
The only physical possibility is $p=0 \quad q=0$.
of course the ratio P / q is undetermined.

III. Simple Lie Algebrae

We first study in some details the particular cases of simple Lie algebra of rank one and two. The results are generalized after to arbitrary rank simple Lie algebra.
A. Simple Lie algebra of rank one

This Lie algebra is well known but it seems to us useful? to deduce its properties in the general framework previously given. The simple Lie algebra of rank one corresponds to the three roots $\alpha, 0,-\alpha$ and the one dimensional root diagram is simply

The commutations relations are given by

$$
\left[E_{\alpha}, E_{-\alpha}\right]=(\alpha, H) \quad\left[(\alpha, H), \Gamma_{\alpha}\right]=(\alpha, \alpha) E_{\alpha}
$$

The normalization condition gives $(\alpha, \alpha)=\frac{1}{2}$. The covariant and the contravariant components are both equal to $\frac{1}{\sqrt{2}}$ and the Carton tensor can be written as:

$$
y_{\rho \sigma}=\left|\begin{array}{rll}
1 & & \\
\hdashline & 10 & 1 \\
& 1 & 0
\end{array}\right|
$$

W1 th the convenient change of notations $E_{ \pm}=E_{\alpha} \quad E_{F}=E_{\ldots \alpha}$ $\alpha= \pm \frac{1}{\sqrt{2}}$, we obtain the commutation rules in a more familiar form

$$
\left[E_{ \pm}, \mathbb{E}_{\mp}\right]= \pm 1 / \sqrt{2} \mathrm{H} \quad\left[H, \Xi_{ \pm} \bar{\square}= \pm I / \Gamma_{2} E_{ \pm}\right.
$$

The Li algebra of the special unitary group SUわ?) can be written in the form

$$
\vec{J} \times \vec{J}=1 \vec{J}
$$

or equivalertiy

$$
\left[J_{1} \pm i J_{2}, J_{1} \mp 1 J_{2}\right]= \pm 2 J_{3} \cdot\left[J_{3}, J_{1} \pm 1 J_{2}\right]=\therefore
$$

The identification is obtained by:

$$
E_{ \pm}=\frac{J_{1} \pm J_{2}}{2} \quad \mathrm{H}=\frac{1}{\sqrt{?}} \mathrm{~J}_{3}
$$

B. Simple Lie algebræof rank two

The root diagrams are two dimensional and wextore allowed possibilities for the angle $\not D$ in order to construct all rank two simple Lie algebras. It is only necessary to consider two roots α ard β with the angle ϕ to deduce all other roots simply by symmetry with respect to the straight line through the origin perpendicular to a root. All these row. flections generate the Weyl group.

1. Diagram Ap

We consider two roots of equal norm α and γ, with the angle $\varnothing=\pi / 3$. After application of the weyl refer. tions, we obtain a regular hexagon and the Lie algebra is eight-dimensional.

Figure 2
Root Diagram A_{2}
The six non vanishing roots have the same norm: $(\alpha, \alpha)=1 / 3$. From figure 2, it can be easily seen that if α, β, γ are three non zero roots such that $Y=\beta+\alpha$, then $\beta-\alpha$ and $\beta+2 \alpha$ are not roots. In the previously defined language, $m=0$ and $n=1$. All the non vanishing structure constants have the same modulus: $\mathbb{N}_{\alpha \beta}^{2}=1 / 6$ and are known from one of them by using the symmetry properties.
2. Diagram \underline{B}_{2}

We consider two roots α and β with the angle $\varnothing=\pi / 4$ from the previous results $(\beta, \beta)=?(\alpha, \alpha)$. After application of the weyl reflection we obtain 4 roots of the type α and 4 roots of the type β. The lie algebra in ten-aimensional.

Figure 3
Root Diagram B_{2}
The norm of the roots is given by the normalization condition

$$
\begin{aligned}
\sum_{\alpha}(\alpha, \alpha)+\sum_{\beta}(\beta, \beta)=2 & \text { and we obtain } \\
(\alpha, \alpha)=\frac{1}{6} & (\beta, \beta)=\frac{1}{3}
\end{aligned}
$$

In order to determine the non vanishing structure constants, we calculate the values of m and n associated to a given system of two roots:
a $\beta_{i} \beta_{j}: \beta_{i}+\beta_{j}$ can never be a root and

$$
N_{B_{1}} B_{j}=0
$$

b $\quad \alpha_{1} \propto_{j}$: there exists a sequence of three roots $\alpha_{i}-\alpha_{j}, \alpha_{i}, \alpha_{1}+\alpha_{j} \quad$ with $i \neq j$ corresponding to

$$
m=n=1 \quad \text { and } \quad \mathbb{N}_{\alpha_{i}}^{2} \alpha_{j}=1 / 6
$$

c $\alpha_{i} \beta_{j}: \quad$ the two types of sequences of throb roots are $\beta_{j}, \beta_{j}+\alpha_{-j}, \beta_{j}^{+n_{-j}}$ and $\beta_{j}, \beta_{j}^{+\infty}-1$, $\beta_{j}+2 \alpha_{-i} ;$ in both cases $m=0 n=3$ and it follows immediately

$$
\mathbb{N}_{3}^{2}, \alpha_{-j}=\mathbb{N}_{\beta_{j}^{2}}^{2}, \alpha_{-1}
$$

All the non vanishing structure constants have the same magnitude and the phases are known from two of them. $\mathbb{N a}_{c_{i}} a_{j}$ and $\mathbb{N}_{\beta_{j}}, \alpha_{-j}$ by using the symmetry properties.

We consider two roots α and Ω with the angle $\phi=\pi / 6$ from the previous results $(\beta, \beta)=3(\alpha, \alpha)$. After application of the weyl reflections, we obtain 6 roots of the type α and 6 roots of the type β. The Lie algebra is 14-dimensional.

Figure 3
Root Diagram G_{2}
The norm of the roots is given by the normalization condition

$$
\begin{aligned}
& \sum_{\alpha}(\alpha, \alpha)+\sum_{\beta}(\beta, \beta)=2 \text { and we obtain: } \\
&
\end{aligned}
$$

It is easy to determine the structure constants by using the same method as in the previous section. All the non vanishing structure constants are known from three of them by using the symmetries propertics and we have

$$
\mathbb{N}_{\alpha_{1} \alpha_{3}}^{2}=1 / 6 \quad N_{\alpha_{1} \beta_{3}}^{2}=1 / 8 \quad \mathbb{N}_{\beta_{1} \beta_{3}}^{2}=1 / 8
$$

C. Simple tie algebra of rank P

We try to extend the previous results to a ℓ dimensional space $\mathcal{E}_{l_{1}} \frac{\text { Lie algebra } A_{2}}{\text { L. The root diagram }}$ Ap exhibits an hexagonal symmetry. It is then convenient to introduce a. three dimensional space and to represent the root diagram A_{2} in the plane $X_{1}+X_{2}+X_{3}=0$. In this way, we define the friangular coordinates X_{1}, X_{2}, X_{3} of sum zero and the non vanishing roots hove the general form $\alpha_{1 j}=e_{i}-e_{j}$

Root diagram A_{2} and triangular coordinates

The natural generalization is to introduce a $(\ell+1)$ dimensional space and $(\ell+1)$ orthogonal vectors of quail norm ℓ_{j} The $l(l+1)$ vectors

$$
\alpha_{i j}=e_{i}-e_{j}
$$

are located in the dimensional hyperplane $x_{1}+x_{2}++X_{\ell H}=0$ - The Lie algebra A_{l} of rank ℓ has the dimansion $V=\ell(\ell+2)$

All the non vanishing roots $\alpha_{i j}$ have the same norm $(\alpha, \alpha)=1 /(\ell+1)$ and all the non-vanishing structure constants the same magnitude $N^{2}=1 / 2(\&+1)$
2. Lie algebra Bl

We introduce in the ℓ dimensional space ε_{l} a systom of l orthogonal vectors of equal norm e_{j}

We first consider the following generalization of the Lie algebra B_{p} by defining two sets of roots
a Roots of type α : $2 l$ roots given by $\pm e_{j} j$
b Roots of type $\beta: 2\left((l-1)\right.$ roots given by $\pm e_{i} \pm e_{j}^{j}$ As previously, we hove of course, $(\beta, \beta)=2(\alpha, \alpha)$ and the norms are given by

$$
(\alpha, \alpha)=\frac{1}{2(2 l-1)}
$$

$$
(\beta, \beta)=\frac{1}{(2 \ell-1)}
$$

The Lie algebra $B \ell$ of rank l, has the dimension $Y=l(2 l+1)$ All the non-vanishing structure constants have the same magnitude $N^{2}=1 / 2(2 l-1)$
3. Lie algebra C ℓ_{ℓ}

A different generalization of B_{2} can be obtained by defining two sets of roots in the following way
a Root, s of type α : $\quad 2(\ell(-1)$ roots given by
It $\epsilon_{i} E_{j}$
b Roots of type B: $2 l$ roots given by $\pm 2 e_{j}$
The values of the norms are given by;

$$
(\alpha, \alpha)=\frac{1}{2(\ell+1)} \quad(\beta, \beta)=\frac{1}{(\ell+1)}
$$

The Lie algebra ${ }^{C} \ell$ of rank ℓ has the dimension $\gamma=$ $\ell(2(+1)$ The structure constants can be divided into two classes following their magnitude:

$$
\begin{gathered}
\left(c_{\alpha_{1} \alpha_{2}}^{\alpha_{3}}\right)^{2}=\frac{1}{4(l+1)} \quad\left(c_{\alpha_{1} \alpha_{2}}^{\beta_{3}}\right)^{2}=\left(c_{\alpha_{1} \beta_{3}}^{\alpha_{3}}\right)^{2} \\
=1 / 2(l+1)
\end{gathered}
$$

In an evident way, the Lie algebra $C_{?}$ is isomorphic to B_{0},
4. Lie algebra D_{y}

A now Lie algebra of rank l can be constructed with the following set of roots of equal norm $\pm e_{i} \pm e_{j}$ We obtain in the way a Lie algebra of dimension $\gamma=\ell(2 l-1)$ The norm of the roots is given by: $(\alpha, \alpha)=1 / 2(l-1)$ and all non vanishing structure constants have the same norm $\mathbb{N}^{2}=\frac{1}{-}$

$$
4(\ell-1)
$$

For $\ell=2$, the Lie algebra D_{2} is not simple and can be represented by the root diagram of the Figure 6

Figure 6
Root Diagram D_{2}
D_{2} is a semi simple Lie algebra, direct sum of two rank one simple Lie algebra, A_{1} :

$$
D_{2} \cong A_{1} \oplus A_{1}
$$

In the particular case $\ell=3$, it can be easily shown that the two Lie algebra D_{3} and A_{3} are isomorphic by superposition of the root diagrams after rotation in ε_{3}
5. Exceptional Groups

The following results will be given without proof and we refer to the original papers of Cartan and to the subsequent works of Van der Waerden and Dyukin.

$$
A_{l}, B_{l}, C_{l}, D \text { constitute the only four general }
$$ classes of simple Lie algebra. To the four series, it can be added five exceptional groups characterized in Table 1.

- 78 -

IV. Realization by classical groups:

1. The determination of the standard for of a Tie algebra A on the real numbers R is obtained by resolving an eigenvalue problem which introduce the field of complex numbers. C. In reality, we are working with the complex extension Λ^{*} of the Lie algebra. Of course, the Lie algebra Λ^{*} is the complex extension of the non isomorphic tic algebra Λ_{α} : for instance, all the Lie algebra of the nseude-orthogonal groups $O_{S}(n, R)$ have the same complex extension which is the Lie algebra of the complex orthogonal group $O(n, C)$. Tartan has shown that only one compact group can be associated to a standard form but of course, many non compact group can have the same standard form.
2. Lis algebra A_{n-1}

We consider the special linear group $\operatorname{SL}(n, R)$ acting in an euclidian space $(G=1)$. The Lin algebra is defined by $n^{2}-1 \quad$ infinitesimal generators $X_{i f}$ such that $\sum_{j} X_{\gamma \gamma}=0$
The general commutation laws are given by

$$
\left[x_{i j}, x_{k l}\right]=\delta_{j k} x_{i l}-\delta_{l i} x_{k j}
$$

It is convenient to work explicitely some particular relations

$$
\begin{aligned}
& {\left[x_{j l}, x_{k l}\right]=0 \quad j \neq k} \\
& {\left[x_{j j}, x_{k l}\right]=\left(\delta_{j k}-\delta_{j l}\right) x_{k l}} \\
& {\left[x_{k l}, x_{l k}\right]=\sum_{j}\left(\delta_{k}^{j}-\delta_{l}^{j}\right) x_{j j}}
\end{aligned}
$$

in order to exhibit clearly the stander d form of the Lie algebra. By putting

$$
x_{j j}=\lambda_{n} H_{j} \quad x_{i j}=\lambda_{n} E_{i j}
$$

the roots components are given by .

$$
\alpha_{[R l]_{j}}=\alpha_{[R \ell]^{\gamma}}=\frac{1}{\lambda_{n}}\left(\delta_{j k}-\delta_{j l}\right)
$$

and the non vanishing structure constants by

$$
N^{2}=1 / \lambda_{\sim}
$$

The normalization condition for the roots and the structure constants determines λ_{\sim} to be $\lambda_{n}=\sqrt{2 n}$

The Lie algebra of the special linear group has the standard form An-1. From the previous results, this result is true for all urinodular pseudo unitary groups in an pseudo euclidian n-dimensional complex vector space. But from Cartan theorem, only one compact group can be associated to A_{n-1} and it is the unimodular unitary group $\operatorname{SU}(\mathrm{n}, \mathrm{C})$.
3. Lie algebra B_{ℓ} and D_{ℓ}

We consider an eluclidian n dimensional space on the real numbers. The Lie algebra of the orthogonal group is defined by $\frac{n(n-1)}{2}$ infinitesimal generators $Z_{\text {if }}$

In order to study easily the standard form of the Lie algebra, it is convenient to use a complex basis in $\mathbb{E}(n, R)$ instead of the real one and a non-diagonal form for the connertion g. We first define an index j. with the following range of variation.

$$
\begin{aligned}
& \underline{a}-l \leqslant j \leqslant l \text { if } n=2 l+1 \\
& \underline{b}-l \leqslant j \leqslant l \text { excepted } l=0 \text { if } n=2 l
\end{aligned}
$$

In such a basis g is represented by an anti-diagonal matrix with $g_{\gamma k}=\delta_{\gamma+k} 0$ and the scalar product becomes

$$
g(x, y)=\sum_{j} x_{j} y_{-j}=g(y, x)
$$

The general form of the commutation laws is given by

$$
\left[z_{j R}, z_{l m}\right]=g_{k l} z_{j m}-g_{j l} z_{k m i}-g_{k m j l} z_{j l}+g_{j m} z_{k l}
$$

It is convenient to write explicitely some particular relations:

$$
\begin{aligned}
& {\left[z_{j-j}, z_{k-k}\right]=0} \\
& {\left[z_{j-j}, z_{k l}\right]=\left(\delta_{j k}+\delta_{j l}-\delta_{-j k}^{-\delta_{-j l}}\right) z_{k l}} \\
& {\left[z_{k l} z_{-l-k}\right]=\sum_{j}\left(\delta_{k}^{j}+\delta_{l}^{j}\right) z_{j-j}}
\end{aligned}
$$

in order to exhibit the standard form of the Lie algebra. We now restrict j to positive values only $j=1.2 \ldots, l$ The standard form is obtained by putting:

$$
Z_{j-j}=N_{n} H_{j} \quad Z_{r s}=\lambda_{n} E_{r s}
$$

The roots components are given by

$$
\beta_{[r s] j}=\beta_{[r s]}^{j}=\left(\delta_{j r}+\delta_{j s}-\delta_{\gamma-r}-\delta_{j-s}\right) \frac{1}{\lambda_{n}}
$$

and, in the case $a=(2 l+1)$ where Y or S can take the value zero

$$
\alpha_{[\gamma \gamma]_{j}}=\alpha_{[S \gamma]}^{j}=\left(\delta_{j r}-\delta_{j-r}\right) \frac{1}{\lambda_{n}}
$$

The non vanishing structure constants are all equal, in agnitude to $N^{2}=1 / \lambda_{n}^{2}$
The normalization conditions for $(\alpha, \alpha),(\beta, \beta), N^{2}$ give the value of $\lambda_{n}: \quad \lambda_{n}=\sqrt{2 n-4}$.

The Lie algebra of the orthogonal group in an $(2+1)$ vector space has the standard form B_{l} and the $L i \in$ algebra of the orthogonal group in an $2 l$ vector space has the standard form

De - All tho pseudo-orthogonal groups, irrespectively to the signature S have the same standard form.
4. Lie algebra C_{n}

Wee consider an 2 -dimensional eucludian space on the real number. The Lie algebra of the real sympletic group is defined by $n(2 n+1)$ infinitesimal generators $A_{i j}, B_{i j}, C_{i j}$ with the commutation laws.

$$
\begin{aligned}
& {\left[A_{i j}, B_{k l}\right]=\delta_{j k} A_{i l}-\delta_{i l} A_{k j}} \\
& \left.\left[B_{i j}, B_{k l}\right]=0=C_{i j}, C_{k l}\right]_{i k} \\
& {\left[B_{i j}, A_{k l}\right]=\delta_{i k} B_{j l}+\delta_{j k} B_{i l}} \\
& {\left[A_{i j}, C_{k l}\right]=\delta_{j k} C_{i l}+\delta_{j l} C_{i k}} \\
& {\left[C_{i j}, B_{k l}\right]=\delta_{i k} A j l+\delta_{i l} A_{j k} \div \delta_{j / k} A_{i l}+\delta_{j l} A_{i k}}
\end{aligned}
$$

It is convenient to write explicitely some parituclar relations

$$
\begin{aligned}
& E_{A_{j j}}, A_{k R} I=0 \\
& {\left[A_{j j}, C_{k R}\right]=2 \delta_{j k} C_{k R}} \\
& {\left[A_{j j},{ }^{B} k R\right]=-2 \delta_{j k}{ }^{B}{ }_{k K}} \\
& {\left[A_{j j}, c_{k l}\right]=\left(\delta_{j k}+\delta_{j l}\right) c_{k l}} \\
& {\left[A_{j j}, A_{k l}\right]=\left(\delta_{j k}-\delta_{j l}\right) A_{k l}} \\
& {\left[A_{j j}, A_{\ell R}\right]=\left(-\delta_{j R}+\delta_{j l}\right) A_{\ell R}} \\
& {\left[A_{j j}, B_{k l} I=\left(-\delta_{j k}-\delta_{j l}\right) B_{R l}\right.}
\end{aligned}
$$

in order to exhibit clearly the standard form of the Lie algebra. By putting

$$
\begin{array}{ll}
A_{j j}=\lambda_{n} H_{j} & B_{j j}=\mu_{n} E_{-j} \quad c_{j j}=\mu_{n} E_{j} \\
C_{k C}=\lambda_{n} E_{k C} \quad A_{k l}=\lambda_{n} E_{k-l} \quad B_{k l}=\lambda_{n} F_{-k-C}
\end{array}
$$

the roots components are given by

$$
\begin{array}{ll}
\alpha_{ \pm k \pm i] j}=\alpha_{[\pm k \pm t]^{j}} & =\frac{1}{\lambda_{n}}\left(\pm \delta_{j k} \pm \delta_{j k}\right) \\
\beta_{[1] j} & =\beta_{(\pm k)^{j}}=\frac{2}{\lambda_{n}}\left(\pm \delta_{j k}\right)
\end{array}
$$

- 84 -

The normalization condition for the roots give $\lambda_{n}=2 \sqrt{n+1}$ and for the structure constants $\quad \mu_{n}=2 \sqrt{2(n+1)}$.

The Lie algebra of the real symplectic group $\operatorname{Sp}(2 n, R)$ has the standard form C_{n}. From the results of Chapter II, this result is also true for all pseudo symplectic group $S p_{S}(n, Q)$ irrespectively to the signature S. But only the symplectic group $\operatorname{Sp}(n, Q)$ is compact.

Chapter 5.

REPRESENTATIONS

I. Generalities

1. Definition:

Let us introduce a N dimensional vector space V_{N} and an abstract group G. We consider the group G_{N} of linear transformations of V_{N} represented by $N \times N$ matrices and such that G_{N} is homomorphic to G. By definition, G_{N} is a representation of dimension of G. As a consequence

$$
U(a) U(b)=U(a b)
$$

for all $a, b \epsilon_{G}$ and $U(a), U(b) \in G_{N}$
If the homomorphism between $\quad G_{N}$ and G is an isomorphism the representation is said faithful. It can be shown that all representations of simple Lie algebra, except the identity, are faithful representations.
2. Equivalent representations:

Two representation $U_{1}(a)$ and $U_{2}(a)$ of G are equivalent if there exist a constant matrix A, independent of the group elements, and such that

$$
U_{2}(a)=A U_{1}(a) A^{-1} \quad \text { for all } \quad a \in G
$$

3. Reducibility:

A representation U (a) of G in a vector space V_{N} is reducible if it leaves invariant a subspace V_{1} of V_{N}. After a convenient change of basis, the matrix U can then
be written. in the form

$$
U=\left|\begin{array}{cc}
U_{1} & 0 \\
U_{3} & U_{2}
\end{array}\right|
$$

where the matrix U_{1} has the same dimension as the vector space V_{1}.

If now $U_{3} \equiv 0$, there exist two invariant sub spaces V_{1} and V_{2} of V_{N} such that the sum is precisely V_{N}, the representation U is said fully reducible into two representations U_{1} and U_{2}

$$
U=\left|\begin{array}{cc}
U_{1} & 0 \\
0 & U_{2}
\end{array}\right|
$$

4. Contragradient Representation:

We consider a N dimensional representation of G with the complex matrices U :

$$
U(a) U(b)=U(a b)
$$

$a, b \in_{G}$.
The complex conjugate matrices \bigcup^{+}constitute a N dimensional representation of G

$$
U^{+}(a) U^{+}(b)=U^{+}(a b)
$$

The representation U and U^{+}are called contragradient representations.
5. The Lie algebra of a Lie group G is defined by a set of γ infinitesimal generators X_{σ}. It is possible to find, in the group G_{N}, a set of r (NXN)matrices also denoted X_{σ}, which have the commutations laws of the Lie algebra:

$$
\left[x_{\sigma}, x_{p}\right]=c_{\sigma p}{ }^{\tau} x_{\tau} .
$$

6. Compact Semi-Simple Groups:

The following important theorem can be proved: all representtations of a compact semi-simple group are equivalent to a representation with unitary matrices. We will consider only this case in the following.

The Lie algebra of a semi-simple group is defined, in its standard form by the infinitesimal generators H_{d} and $E_{\alpha_{-}}$. In the unitary representation, the generators of the Carton algebra can be represented by hermitian matrices: by using the commutation relation

$$
\left[E_{\alpha}, E_{-\alpha}\right]=(\alpha, H)
$$

it is possible to choose representation satisfying:

$$
E_{\alpha}^{*}=E_{-\alpha}
$$

II. Weights

We study the case of compact semi-simple groups for which the representations can be taken as unitary.

1. Definition:

We consider the ℓ-dimensional abelian Carton sub algebra The operators H_{j} can be simultaneously diagonalized; in the vector space V_{N} we have the eigenvalue equation for each operator H_{j},

$$
H_{j}|\Omega\rangle=m_{j}|\Omega\rangle
$$

The numbers m_{j} can be considered as the covariant components of a vector m in the vector space \mathcal{E}_{ℓ} previously considered. The vector m is called a weight and \mathcal{E}_{l} the weight space.
2. A simple weight is associated to one eigenvector only. For the rank $\ell>1$ groups, the weights are not, in general simple.

3. Properties

We now give, without proof two elementary properties:
a There exist, at least one weight in each representation;
b The eigenvectors associated to different weights are linearly independent.

As a consequence, the maximum number of weights for a N-dimesional representation is precisely .
4. Theorem 1 .

If $\quad|\Omega\rangle$ is an eigenvector associated to the weight m. the /vector : $E_{d} s^{j t s}$ s either zero, or an eigenvector associated to the weigh i $m+\alpha$.

By definition, we have:

$$
H_{f}|\Omega\rangle=m_{j}|\Omega\rangle
$$

Let us consider the vector $\quad E \alpha|\Omega\rangle$. By using the relation:

$$
H_{\gamma} E_{\alpha}=E_{\alpha} H_{\gamma}+\left[H_{\gamma}, E_{\alpha}\right]=E_{\alpha} H_{\gamma}+\alpha_{\gamma} E_{\alpha}
$$

we immediately obtain

$$
H_{\gamma} E_{\alpha}|\Omega\rangle=E_{\alpha} H_{\gamma}|\Omega\rangle+\alpha_{\gamma} E_{\alpha}|\Omega\rangle=(m+\alpha)_{\gamma} E_{\alpha}|\Omega\rangle
$$

If $E \nmid \Omega\rangle$ is not zero, it is an eigenvector associated to the weight $(m+\alpha)$.
5. Theorem 2

If M is a weight and α a root:
a the number $2 \frac{(m, \alpha)}{(\alpha, \alpha)} \quad$ is an integer
b, the vector $m-\frac{2(m, \alpha)}{(\alpha, \alpha)} \alpha$ is also a weight, deduced from m by a reflection of the Weyl group. The proof of this fundamental theorem is extremely similar to that given for the corresponding theorem with the roots in Section II of the previous chapter.
6. Equivalent Weights:

Two weights deduced from each other by an operation of the Weyl group are called equivalent. They have the same multiplycity.

III. Weyl Group

The Weyl group has been defined as the set of reflections with respect to the hyperplanes through the origin perpendcular to the roots α. We are now concerned with the deter.mination of the Weyl group for the simple Lie groups by applying the fundamental theorem 2-

1. Lie Algebra Al

The roots can be written $\alpha_{i j}=e_{i}-e_{\gamma}$ and we expand the weight m on the basis of the vectors e_{k}

$$
m=m_{k} e_{k} \quad \text { with } \sum_{1}^{\ell+1} m_{k}=0
$$

We immediately find

$$
2 \frac{\left(\alpha_{i j}, m\right)}{(\alpha, \alpha)}=m_{i}-m_{j}
$$

We now use the theorem 2. From the part a , the differences $m_{i}-m_{f}$ are integer numbers. From the part \underline{b}, the weight m^{\prime} obtained by reflection from m is given by:

$$
\begin{aligned}
\sum_{k} m_{k}^{\prime} e_{k} & =\sum_{k} m_{k} e_{k}-\left(m_{i}-m_{\gamma}\right)\left(e_{i}-e_{j}\right)= \\
& =\sum_{k} m_{k} e_{k}-m_{i} e_{i}+m_{\gamma} e_{\gamma}+m_{\gamma} e_{i}+m_{i} e_{j}
\end{aligned}
$$

The Weyl group is the group of permutations of the components of the weights.

It follows that the maximum number of equivalent weights is $(\ell+1)$!

2- Lie Algebra Be

We have two series of roots

$$
\left\{\begin{array}{l}
\alpha_{I}=\varepsilon(I) e_{i} \quad I= \pm i \quad i=1,2, \ldots, l \\
\beta_{I J}=\varepsilon(I) e_{i}+\varepsilon(J) e_{j} \quad \begin{array}{l}
I= \pm i \quad i, \gamma=1,2, \ldots, l \\
J= \pm \gamma
\end{array}
\end{array}\right.
$$

and $\varepsilon(I)$ is the sign of
I.

It follows immediately

$$
2 \frac{\left(\alpha_{I}, m\right)}{(\alpha, \alpha)}=2 \varepsilon(I) m_{i} \quad 2 \frac{\left(\beta_{I J}, m\right)}{(\beta, \beta)}=\varepsilon(I) m_{i}+\varepsilon(J) m_{\gamma}
$$

From the part a of the theorem 2, the components of a weight m must be either all integer numbers or all half integer numbers. The weights m^{\prime} equivalent to m are defined from the part \underline{b} by:

$$
\begin{aligned}
& \sum_{k} m_{k}^{\prime} e_{k}=\sum_{k} m_{k} e_{k}-\left[2 \varepsilon(J) m_{i}\right]\left[\varepsilon(I) e_{i}\right]=\sum_{k} m_{k} e_{k}-2 m_{i} e_{i} \\
& \sum_{k} m_{k}^{\prime} e_{k}=\sum_{k} m_{k} e_{k}-\left[\varepsilon(I) m_{i}+\varepsilon(J) m_{j}\right]\left[\varepsilon(I) e_{i}+\varepsilon(J) e_{j}\right] \\
& \sum_{k} m_{k}^{\prime} e_{k}=\sum_{k} m_{k} e_{k}-m_{i} e_{i}-m_{j} e_{j}-\varepsilon(I) \varepsilon(J)\left[m_{i} e_{j}+m_{j} e_{i}\right]
\end{aligned}
$$

The Weyl group is the group of permutations of the components of the weights with an arbitrary number of changes of sign.

It follows that the maximum number of equivalent weights is $2^{\ell} \ell!$
3. Inc Algebra Ce

We have two series of roots:

$$
\beta_{I}=2 \varepsilon(I) e_{i} \quad \alpha_{I J}=\varepsilon(I) e_{i}+\varepsilon(J) e_{j}
$$

and it follows immediately :
$2 \frac{(\beta I, m)}{(\beta, \beta)}=\varepsilon(I) m_{i} \quad 2 \frac{\left(\alpha_{I J, m}\right)}{(\alpha, \alpha)}=\varepsilon(I) m_{i}+\varepsilon(J) m_{j}$
From the part a of Theorem 2, the components of a weight m must be integer numbers.

The weights m^{\prime} equivalent to m are defined from the part b by

$$
\begin{aligned}
& \sum_{k} m_{k}^{\prime} e_{k}=\sum_{k} m_{k} e_{k}-\left[\varepsilon(I) m_{i}\right]\left[2 \varepsilon(I) e_{i}\right]=\sum_{k} m_{k} e_{k}-2 m_{i} e_{i} \\
& \sum_{k} m_{k}^{\prime} e_{k}=\sum_{k} m_{k} e_{k}-m_{i} e_{i}-m_{j} e_{j}-\varepsilon(I) \varepsilon(J)\left[m_{i} e_{\gamma}+m_{j} e_{i}\right]
\end{aligned}
$$

The weyl group is tho same in B_{l} and C_{l}.

4. Lie Algebra De

Tho roots of the Lie algebra D_{l} have the general form

$$
\alpha_{I J}=\varepsilon(I) e_{i}+\varepsilon(J) e_{j}
$$

. and it follows immediately:

$$
2 \frac{\left(\alpha_{I J}, m\right)}{(\alpha, \alpha)}=\varepsilon_{I} m_{i}+\varepsilon_{J} m_{j}
$$

From the part a of thenrem 2 , tho two quantities $m_{i} \pm m_{\gamma}$ must be integer numbers.

The weights m^{\prime} equivalent to m are given by:

$$
\sum_{k} m_{k}^{\prime} e_{k}=\sum_{k} m_{k} e_{k}-\left(m_{i} e_{i}+m_{j} e_{j}\right)-\varepsilon(I) \varepsilon(I)\left[m_{i} e_{j}+m_{j} e_{i}\right]
$$

The weyl group is the group of permutations of the components of the weights with an even number of changes of sign.
IV. Fundamental Weights:

1. We first introduce in the weight space ε_{l} a relation. A vector is called a positive vector if its first non vanishing component is a positive number. We then have m_{2} higher than m_{1} if $m_{2}-m_{1}$ is a positive vector. of course, such a property depends of the basis in ε_{ℓ} but the consequences are intrinsically true by means of the weyl group reflections.

For a semi-simple Lie algebra of rank ℓ and dimension γ, these exist $(\gamma-\ell)$ non vanishing, non degenerate roots α and $\frac{\gamma-\ell}{2}$ positive roots symbolically denoted α^{+}.
2. Dominant Weight

In a set of equivalent weights, the dominant weight is higher than another weight of the set.

The highest weight of a representation is the highest dominant weight of the representation.

3. Properties

We give now, without proof two important properties.
a The highest weight of an irreducible representation is simple. It follows that the sot of quulvalent weights to the highest wight of an irreducible representation is a sot of simple weights.
b Two ircoduciblo representations with the same highest weight are equivalent and conversly.
4. Fundamental dominant weight

Cartan has proved the following rosults:for a simple fir group of rank ℓ, there exist ℓ fundamental dominant weights $L^{\prime}, L^{2}, \cdots, L^{\ell}$, with the following properties
a Every dominant weight L can b written as a linear combination of the $L \downarrow$'s with non-negative integer confficionta

$$
L\left(\lambda_{1}, \lambda_{2}, \ldots, \lambda_{\ell}\right)=\sum_{\gamma=1}^{\gamma=\ell} \lambda_{j} L^{\gamma} \quad \lambda_{\gamma} \geqslant 0
$$

b To each L^{γ} corresponds a fundamental irreducible representation for whin h L^{t} is the nighest weight.

Y. CHARACTEI:

1. Definition:

Let ie consider the N dimensional vector space V_{N} of the representation $U\left(a_{1}\right)$ and two vectors $\left|\Omega_{\alpha}\right\rangle$ and $\left|\Omega_{\beta}\right\rangle$ of V_{N}. The trace of the $N \times N$ matrix

$$
\left\langle\Omega_{\beta}\right| U(a)\left|\Omega_{\alpha}\right\rangle
$$

-95-
is independent of the basis chosen in V_{N} and $1 s$ called the character χ of the representation.
2. The theory of the characters has been studied by vinyl. Wo want to give here only some moults but the notion of character is extremely useful because of the following theorem; two representation re equivalent if and only if they have the same characters.
3. We now introduce, in the wieght space ε_{l}, two vectors which are used in the calculation of the character and of the dimensionality of a representation. The first one is:

$$
R=\frac{1}{2} \sum_{\alpha^{+}} \alpha
$$

where the sum is extended over the positive roots only and the second depends of the representation as $L\left(\lambda_{\gamma}\right)$

$$
K\left(\lambda_{f}\right)=R+L\left(\lambda_{f}\right)
$$

The elements of the Weyl group are noted by S and the vector $S K$ is the result of the operation of S on K. For a compact semi-simple group, the character X is given by the general formula

$$
\chi\left(\lambda_{+}, \varphi\right)=\frac{\xi\left(\lambda_{\gamma}, \varphi\right)}{\xi(0, \varphi)}
$$

Where

$$
\xi\left(\lambda_{+}, \varphi\right)=\sum_{s} \delta_{s} \exp i(S K, \varphi)
$$

δ_{S} is the parity of S and φ a vector of the weight $\operatorname{space} \varepsilon_{\ell}$.

If all the weights m of a representation are know r with their multiplicity γ_{m}, an extremely simple expression can be used

$$
x\left(\lambda_{\gamma}, \varphi\right)=\sum_{m} \gamma_{m} \exp i(m, \varphi)
$$

4. Dimension

The dimension of the representation is given by:

$$
N\left(\lambda_{\gamma}\right)=X\left(\lambda_{\gamma}, 0\right)
$$

Weyl has shown the useful formula:

$$
N\left(\lambda_{, j}\right)=\prod_{\alpha^{+}} \frac{\left(\alpha, K\left(\lambda_{\gamma}\right)\right)}{(\alpha, R)}=\prod_{\alpha^{+}}\left(1+\frac{\left(\alpha, L\left(\lambda_{\gamma}\right)\right)}{(\alpha, R)}\right)
$$

Where the product is extended to all the positive roots or ${ }^{+}$
E. ontragradient representations

Tho characters of two contragradiant representations are complex conjugate. This result is simply a con-rquence of the definition of the contragradiont representations with complex conjugate matrices.

It follows that the weight diagrams of two contra-racient representations can bo deduced from aah other by a symmetry with respect to the origin in tho weight space.

The character of representation equivalent to its contragradient is real ard there is a necessary and sufficient congiition. In an equivalent way the weight diagram" is symmetric orth repent to tho orisin in the wight apo and the r is ? ? "
VI. APPLICATION TO SIMP LIE GROUPS
A. Incalebra Ag

1. The components M_{f} of any weight satisfy the two following requiromonts:all the dimereness $m_{i}-m_{\gamma}$ arc integer numbers and the sum of alt the components vanish. The general structure of m_{γ} is tier a fraction with denominator $l+1$: and a^{n} the rumators are quivalent modulo $l+1$. 2. The l fundamental dominant weights of A_{l} can be written as

$$
L^{\gamma}=\frac{\lambda}{l+1}\left[(l+1-j) \sum_{k=1}^{k=\gamma} e_{k}-\sum_{k=j+1}^{k=l+1} e_{k}\right]
$$

The number of weights equivalent to L^{δ} is given by the number of independent permutations of the components of $L^{d}, r \cdot g \cdot$ the number of combinations $\quad C_{l+1} \frac{1}{}$:

$$
C_{\ell+1}^{\ell}=C_{l+1}^{\ell+1-\downarrow}=\frac{(\ell+1)!}{f!(\ell+1-f)!}
$$

3. An the weights of a fundamental representation $F^{\text {d }}$ are equirtient 0 the highest weight which is the fundamental dominant wight L^{f}. It follows chat all the weights are simple ara the dimension of \boldsymbol{F}^{+}is given by

$$
\operatorname{dim} F^{\gamma}=C_{\ell+1}^{\gamma}
$$

4. The two fundamental representations $F^{\text {b }}$ and $F^{l+1-\gamma}$ have the same dimension. It is easy to verify that the weights diagrams car be deduced to each other by a symmetry with respect to the origin in the weight space. The fundamental representations F^{γ} and $F^{\ell+1-d}$ are contragradient representations.

In the case where ℓ is odd : $\ell+1=2 l 1$, the fondamental representation $\quad F \ell_{1}$ is equivalent to its contragradient and can be chosen as real.
5. We define as S_{α}, a permutation, element of the Weyl group

$$
S_{\alpha}=\frac{(1,2, \cdots, \ell+1)}{\left(\alpha_{1}, \alpha_{2}, \ldots, \alpha_{l+1}\right)}
$$

All the equivalent simple weights of a fundamental represontation F^{\downarrow} are deduced from L^{d-} by an operation S_{α}
of the Weyl group. We then obtain, for tho character $\chi_{f}(\varphi)$ of $F^{\frac{1}{2}}$:

$$
x_{f}(\varphi)=\sum_{s_{\alpha}} \exp i\left[\sum_{k=1}^{k=\gamma} \varphi_{\alpha_{k}}\right]
$$

Where the vector q satisfies the usual condition

$$
k=l+1
$$

$\sum_{k=1} G_{k}=0$. It is then easy to verify on the explicit expression the relation

$$
x_{\ell+1-j}(\varphi)=x_{j}^{*}(\varphi)
$$

6. We now consider an irreducible representation, characterized by its highest weight

$$
L=\sum_{j=1}^{j=\ell} \lambda_{j} L^{\alpha} \quad \lambda_{\gamma} \geqslant 0
$$

In order to calculate the dimension of the representation, we are first interested with the positive roots $\mathcal{X}_{m n}(n>m)$ and the vector R, previously defined is given by :

$$
R=\frac{1}{2} \sum_{k=0}^{R=[l / 2]}(l-2 k)\left(e_{k+1}-e_{l+1-k}\right)
$$

We have successively

$$
\left\{\begin{array}{l}
\left(\alpha_{m n}, R\right)=(n-m)(e, e) \\
\left(\alpha_{m n}, L\right)=\left(\sum_{j=m}^{j=n-1} \lambda_{\gamma}\right)(e, e)
\end{array}\right.
$$

The dimension of the irreducible representation $D^{N}\left(\lambda_{1}, \lambda_{2} ; \cdots, \lambda_{\ell}\right)$ is obtained by using the weyl formula:

$$
N\left(\lambda_{1}, \lambda_{2}, \cdots, \lambda_{i}\right)=\prod_{m<n}\left(1+\frac{\sum_{j=m}^{j=n-1} \lambda_{j}}{n-m}\right)
$$

7. A narticular interesting case corresponds to all $\boldsymbol{\lambda} \boldsymbol{\lambda}$'s equal to zero except two $\lambda_{1}=\lambda_{\ell}=1$. The highest weight is simply:

$$
L(1,0, \cdots, 0,1)=L^{1}+L^{\ell}=e_{1}-e_{\ell+1}=\alpha_{1 \ell+1}
$$

All the equivalent weights of the highest wright are the $\ell(\ell+1)$ non vanishing roots $\alpha_{i f}$ of the A_{ℓ} Lin algebra. The dimension of the representation is obtained from the previous formula

$$
N(1,0, \ldots, 0,1)=l(l+2)
$$

and turns out to be equal to the dimension of the A_{ℓ} lIfe algebra. Such a representation is called the adjoint representation of the Li algebra and the weight diagram is simply the root diagram.

The character of the adjoint representation is given by

$$
\chi_{A}(\varphi)=l+2 \sum_{m<n} \cos \left(\varphi_{m}-\varphi_{n}\right)
$$

8. It is easy to show, by using the definition of the highest weights, that the representations $D^{N}\left(\lambda_{1}, \lambda_{2}, \cdots, \lambda_{\ell-1}, \lambda_{l}\right)$ and $D^{N}\left(\lambda_{\ell}, \lambda_{\ell-1}, \ldots, \lambda_{2}, \lambda_{1}\right)$ are contragradient representations.

It follows that only symmetric representations, defined by $\lambda_{\ell+1-\gamma}=\lambda_{\gamma} \quad$ are equivalent to their contragradient representations.
9. Lie algebra A_{1}

From a pedagogical point of view, it is interesting to use the general language for the well known results of the A_{1} Lie algebra.

We have one fundamental 3-dimensional representation, the spinor representation of the Lie algebra, and the fundamental Weight ic:

$$
L^{1}=\frac{1}{2}\left(e_{1}-e_{2}\right)
$$

In figure 1 , we have represented the weight diagram of the fundamental representation and the three roots of the A_{1} Lie algebra

Figure 1
Fundamental representation

$$
D^{2}(I)
$$

The irreducible representation $D^{N}(\lambda)$ of highest weight $L=\lambda L^{1}$ has the dimension:

$$
N(\lambda)=1+\lambda
$$

All the weights are simple and of the general form $L=\mu L^{1}$ with $\mu=\lambda, \lambda-2, \cdots,-\lambda$. The character of the representation $D^{N}(\lambda)$ is given by;

$$
\chi(\lambda, \varphi)=\frac{\sin (\lambda+1) \varphi}{\sin \varphi}
$$

In the usual language, $\lambda=2 J$ where J is the spin associated to the irreucible representation of the rotation grown.
20. Lie algebra A_{2}

There exist two 3-dimensional contragradient fundamental representations. The fundamental dominant weights are given bu

$$
\begin{aligned}
& L^{1}=\frac{1}{3}\left[2 e_{1}-\left(e_{2}+e_{3}\right)\right] \\
& L^{2}=\frac{1}{3}\left[\left(e_{1}+e_{2}\right)-2 e_{3}\right]
\end{aligned}
$$

The corresponding two dimensional weight diagrams are drawn in Figures 2 and 3 and located with respect to the root diagram of the adjoint representation.

Figure 3

We will denote in the following the two fundamental representations by $\mathbf{3}$ and $\overline{3}$ and the adjoint representation by i 8. The characters of these three representations are given by

$$
\left\{\begin{array}{l}
\chi(3, \varphi)=e^{i \varphi_{1}}+e^{i \varphi_{2}}+e^{i \varphi_{3}} \\
\chi(\overline{3}, \varphi)=e^{-i \varphi_{1}}+e^{-i \varphi_{2}}+e^{-i \varphi_{3}} \\
\left.\xi_{\{ }(x) 8, \varphi\right)=2+2\left[\cos \left(\varphi_{1}-\varphi_{2}\right)+\cos \left(\varphi_{2}-\varphi_{3}\right)+\cos \left(\varphi_{3}-\varphi_{1}\right)\right]
\end{array}\right.
$$

with $\varphi_{1}+\varphi_{2}+\varphi_{3}=0$.
The dimension of the irreducible representation
$D^{N}\left(\lambda_{1}, \lambda_{2}\right)$ is given by the symmetric formula:

$$
N\left(\lambda_{1}, \lambda_{2}\right)=\left(1+\lambda_{1}\right)\left(1+\lambda_{2}\right)\left(1+\frac{\lambda_{1}+\lambda_{2}}{2}\right)
$$

only the representations $D(\lambda, \lambda)$ are equivalent to their contragradient and the dimension is then given by:

$$
N(\lambda, \lambda)=(1+\lambda)^{3}
$$

11. Lie Algebra A_{3}

There exist three fundamental representations associated to the following fundamental dominant weights:

$$
\left\{\begin{array}{l}
L^{1}=\frac{1}{4}\left[3 e_{1}-\left(e_{2}+e_{3}+e_{4}\right)\right] \\
L^{2}=\frac{1}{2}\left[\left(e_{1}+e_{2}\right)-\left(e_{3}+e_{4}\right)\right] \\
L^{3}=\frac{1}{4}\left[\left(e_{1}+e_{2}+e_{3}\right)-3 e_{4}\right]
\end{array}\right.
$$

The representations F^{1} and F^{3} are two 4 -dimensional contragradient representations and F^{2} is ab-dimensional representaton equivalent to its contragradient.

The adjoint representation $D(1,0,1)$ is 15 -dimensional as the Lie algebra A_{3}.

The dimension of the irreducible representation
$D^{N}\left(\lambda_{1}, \lambda_{2}, \lambda_{3}\right)$ is given by:

$$
N\left(\lambda_{1}, \lambda_{2}, \lambda_{3}\right)=\left(1+\lambda_{1}\right)\left(1+\lambda_{2}\right)\left(1+\lambda_{3}\right)\left(1+\frac{\lambda_{1}+\lambda_{2}}{2}\right)\left(1+\frac{\lambda_{2}+\lambda_{3}}{2}\right)\left(1+\frac{\lambda_{1}+\lambda_{2}+\lambda_{3}}{3}\right)
$$

12. Lie algebra -A5

There exist five fundamental representations associated to the following fundamental dominant weights.

$$
\left\{\begin{array}{l}
L^{1}=\frac{1}{6}\left[5 e_{1}-\left(e_{2}+e_{3}+e_{4}+e_{5}+e_{6}\right)\right] \\
L^{2}=\frac{1}{3}\left[2\left(e_{1}+e_{2}\right)-\left(e_{3}+e_{4}+e_{5}+e_{6}\right)\right] \\
L^{3}=\frac{1}{2}\left[\left(e_{1}+e_{2}+e_{3}\right)-\left(e_{4}+e_{5}+e_{6}\right)\right] \\
L^{4}=\frac{1}{3}\left[\left(e_{1}+e_{2}+e_{3}+e_{4}\right)-2\left(e_{5}+e_{6}\right)\right] \\
L^{5}=\frac{1}{6}\left[\left(e_{1}+e_{2}+e_{3}+e_{4}+e_{5}\right)-6 e_{6}\right]
\end{array}\right.
$$

The representations F^{1} and F^{5} are two 6-dimensional contragradent representations. The representations F^{2} and F^{4} are two 15-dimensional contragradient representations. The representation F^{3} is a 20 -dimensional representation equivalont to its contragradient. Tho adjoint representation $D(1,0,0,0,1)$ is 35 -dimensional. The dimension of the irmodu. cible representation $D^{N}\left(\lambda_{1}, \lambda_{2}, \lambda_{3}, \lambda_{4}, \lambda_{5}\right)$ is given by

$$
\begin{aligned}
& N\left(\lambda_{1}, \lambda_{2}, \lambda_{3}, \lambda_{4}, \lambda_{5}\right)=\left(1+\lambda_{1}\right)\left(1+\lambda_{1} X_{1}+\lambda_{3}\right)\left(1+\lambda_{4}\right)\left(1+\lambda_{5}\right) \\
& \cdot\left(1+\frac{\lambda_{1}+\lambda_{2}}{2}\right)\left(1+\frac{\lambda_{2}+\lambda_{3}}{2}\right)\left(1+\frac{\lambda_{3}+\lambda_{4}}{2}\right)\left(1+\frac{\lambda_{4}+\lambda_{5}}{2}\right) \\
& \cdot\left(1+\frac{\lambda_{1}+\lambda_{2}+\lambda_{3}}{3} \chi_{1}+\frac{\lambda_{3}+\lambda_{3}+\lambda_{4}}{3}\right)\left(1+\frac{\lambda_{3}+\lambda_{4}+\lambda_{5}}{3}\right) \\
& \cdot\left(1+\frac{\lambda_{1}+\lambda_{2}+\lambda_{1}+\lambda_{4}}{4}\right)\left(1+\frac{\lambda_{2}+\lambda_{3}+\lambda_{4}+\lambda_{5}}{4}\right)\left(1+\frac{\lambda_{1}+\lambda_{2}+\lambda_{3}+\lambda_{4}+\lambda_{5}}{5}\right)
\end{aligned}
$$

B. Lie Algebra Be

1. The l fundamental dominant weights of \mathcal{B}_{ℓ} can be written as

$$
\xi^{f}=\sum_{k=1}^{k=\gamma} e_{k} \quad \gamma=1,2, \cdots, \ell-1
$$

Wo then have l fundamental representations, $F^{\text {b }}$, with the L^{γ} 's as highest weights.
a. The Weyl group is the set of permutations of the components of a weight with an arbitrary number of changes of sign. It follows that all wight diagrams are invariant under

$$
-106-
$$

a symmetry with respect to the origin in the weight space and all representations are equivalent to their contragradient representation. As another consequence, all the characters are real numbers.
3. We row calculate the dimension of the irreducible representation $D^{N}\left(\lambda_{1}, \lambda_{2}, \cdots, \lambda_{\ell}\right)$. The vector R is given by

$$
R=\frac{1}{2} \sum_{k=1}^{k=\ell}(2 l+1-2 k) e_{k}
$$

The positive roots are $\alpha_{j}, \beta_{i j}$ and $\beta_{i-\gamma}$ with $0<i<\gamma$ We have successively:

$$
\left\{\begin{array}{l}
\left(\alpha_{j}, L\right)=\frac{1}{2} \lambda_{l}+\sum_{j}^{l-1} \lambda_{k} \\
\left(\beta_{i j}, L\right)=\lambda_{l}+\sum_{i}^{l-1} \lambda_{k}+\sum_{j}^{d-1} \lambda_{k} \\
\left(\beta_{i-j}, L\right)=\sum_{i}^{j-1} \lambda_{k}
\end{array}\right.
$$

and the dimension $N\left(\lambda_{1}, \lambda_{2}, \ldots, \lambda_{l}\right)$ is finally given by

$$
\begin{aligned}
& N\left(\lambda_{1}, \lambda_{2}, \cdots, \lambda_{l}\right)= \\
& \quad m=l \\
& \quad=\prod_{m=1}^{l-1}\left\{\left(1+\frac{\lambda_{l}+2 \sum_{m} \lambda_{k}}{2 l+1-2 m}\right) \prod_{n=m+1}^{n=l}\left[\left(1+\frac{\lambda_{l}+\sum_{m}^{n-1} \lambda_{k}+2 \sum_{n}^{l-1} \lambda_{k}}{2 \ell+1-m-n}\right)\left(1+\frac{\sum_{m}^{n-1} \lambda_{k}}{n-m}\right)\right\}\right.
\end{aligned}
$$

4. The fundamental representation F^{1} is-called the vector representation of the $L i o$ algebra \mathcal{B}_{l}. The dimersion of F^{1} is given by the general formula:

$$
\operatorname{dim} F^{1}=2 l+1
$$

The weights of the vector representation are the $2 l$ simple weights equivalent to L and the simple weight $m=0$.

The character of the vector representation is then
given by:

$$
\chi_{v}(\varphi)=1+2 \sum_{k=1}^{k=\ell} \cos \varphi_{k}
$$

5. The fundamental representation Γ^{2} is called the spinor representation of the Lie algebra B_{ℓ}. The dimension of Γ^{ℓ} is given by the general formula
$\operatorname{dim} F^{l}=2^{l}$
The weights of the spinor representation are the 2^{ℓ} simple weights equivalent to L^{ℓ}.
6. The fundamental representation F^{2} has its weight. diagram identical to the root diagram of the Lie algebra B_{l} and it follows that F^{2} is the adjoint representation. The dimension is given by the general formula:

$$
\operatorname{dim} F^{2}=l(2 l+1)
$$

and the character of the adjoint representation is simply:

$$
X_{A}(\varphi)=\ell+2 \sum_{k=1}^{k=l} \cos \varphi_{k}+4 \sum_{j<k} \cos \varphi_{j} \cos \varphi_{k}
$$

7. Lie Algebra Be

The fundamental weight of the vector and spinor renresentations are given by

$$
\left\{\begin{array}{l}
L^{1}=e_{1} \\
L^{2}=\frac{1}{2}\left(e_{1}+e_{2}\right)
\end{array}\right.
$$

The corresponding two dimensional weight diagrams are drawn in Figures 4 and 5 and located with respect to the root diagram of the adjoint representation.

Figure 4

Figure 5

The characters of the fundamental and adjoint representations are given by:

$$
\left\{\begin{array}{l}
x_{1}(\varphi)=1+2\left(\cos \varphi_{1}+\cos \varphi_{2}\right) \\
x_{5}(\varphi)=4 \cos \frac{\varphi_{1}}{2} \cos \frac{\varphi_{2}}{2} \\
x_{A}(\varphi)=2+2\left(\cos \varphi_{1}+\cos \varphi_{2}\right)+4 \cos \varphi_{1} \cos \varphi_{2}
\end{array}\right.
$$

The dimension of the irreducible representation: $D^{N}\left(\lambda_{1}, \lambda_{2}\right)$ is given by the formula

$$
N\left(\lambda_{1}, \lambda_{2}\right)=\left(1+\lambda_{1}\right)\left(1+\lambda_{2}\right)\left(1+\frac{\lambda_{1}+\lambda_{2}}{2}\right)\left(1+\frac{2 \lambda_{1}+\lambda_{2}}{3}\right)
$$

C. Lie Algebra \mathcal{C}_{ℓ}

1. The ℓ fundamental dominant weights of C_{ℓ} can be written as

$$
L^{t}=\sum_{k=1}^{k=t} e_{k} \quad t=1,2, \ldots, l
$$

We have l fundamental representations F^{f} with the L^{+}'s as their highest weights.
2. As in the can of the \mathbb{B}_{l} Lie algebra, all the representations are equivalent to their contragradient representstion and all the characters are real numbers.
3. We now calculate the dimension of the irreducible representation $D^{N}\left(\lambda_{1}, \lambda_{2}, \cdots, \lambda_{l}\right)$. The vector R is given by:

$$
R=\sum_{k=1}^{k=l}(l+1-k) e_{k}
$$

The positive roots are $\alpha_{i j}=e_{i}+e_{j}, \alpha_{i-j}=e_{i}-e_{j}, \beta_{j}=2 e_{j}$ with $0<i<\gamma \leqslant \ell$. We have successively:

$$
\left\{\begin{array}{l}
\left(\alpha_{i j}, L\right)=\frac{j-1}{\frac{1}{2}} \lambda_{k}+2 \frac{\sum_{i}}{\delta} \lambda_{k} \\
\left(\alpha_{i-\gamma}, L\right)=\sum_{i}^{j-1} \lambda_{k} \\
(\beta \gamma, L)=2 \sum_{j}^{l} \lambda_{k}
\end{array}\right.
$$

The dimension $N\left(\lambda_{1}, \lambda_{2}, \ldots, \lambda_{\ell}\right)$ is given by:

$$
\begin{aligned}
& N\left(\lambda_{1}, \lambda_{2}, \cdots, \lambda_{l}\right)= \\
& m=l \\
& =\prod_{m=1}^{\ell}\left\{\left(1+\frac{\sum_{m} \lambda_{k}}{l+1-m}\right) \prod_{n=m+1}^{n=l}\left[\left(1+\frac{\sum_{m}^{n-1} \lambda_{k}+2 \sum_{n}^{l} \lambda_{k}}{2 \ell+2-m-n}\right)\left(1+\frac{\sum_{m}^{n-1} \lambda_{k}}{n-m}\right)\right]\right\}
\end{aligned}
$$

4. The dimension of the fundamental representation $F^{\mathcal{I}}$ is given by the general formula to be

$$
\operatorname{dim} F^{1}=2 l
$$

The weights are the 2ℓ simple weights equivalents to L^{1} The character of F^{1} is given by

$$
x_{1}(\varphi)=2 \sum_{k=1}^{k-l} \cos \varphi_{k}
$$

5. The dimension of the fundamental representation $F \approx$ is obtained using the general formula

$$
\operatorname{dim} F^{2}=(\ell-1)(2 \ell+1)
$$

For the funcanental representation \mp^{3}, we have

$$
\operatorname{dim} F^{3}=\frac{1}{3} l\left(4 \lambda^{2}-1\right)
$$

6. The adjoint rooresprtstion has its highest weight given by $L_{A}=2 e_{1}$. It is tho irreducible representation $D(2,0,0, \ldots, 0)$ for which the wight diagram coincides with the root diagram of the tiu algebra C_{l}. The dimension is calculates: with the general formula:

$$
N(2,0,0, \cdots, 0)=l(2 l+1)
$$

The character of the adjoint representation io given by:

$$
x_{A}(\varphi)=l+2 \sum_{k} \cos \varphi_{k}+4 \sum_{t<k} \cos \varphi_{j} \cos \varphi_{k}
$$

7. Lie algebra C_{3}

The fundamental weights are

$$
\left\{\begin{array}{l}
L^{1}=e_{1} \\
L^{2}=e_{1}+e_{2} \\
L^{3}=e_{1}+e_{2}+e_{3}
\end{array}\right.
$$

The first furdnmentei representation is six dimensional the second one 14-dimensional ard the third one 35-dimonsional. Tho adjoint representation $D(2,0,0)$ is 21-dimensionol. The dimension of anirreducible representation $D^{N}\left(\lambda_{1}, \lambda_{2}, \lambda_{3}\right)$ is given by:

$$
\begin{aligned}
N\left(\lambda_{1}, \lambda_{2}, \lambda_{3}\right)= & \left(1+\lambda_{1}\right)\left(1+\lambda_{2}\right)\left(1+\lambda_{3}\right)\left(1+\frac{\lambda_{1}+\lambda_{2}}{2}\right)\left(1+\frac{\lambda_{2}+\lambda_{3}}{2}\right) . \\
& \cdot\left(1+\frac{\lambda_{1}+\lambda_{2}+\lambda_{3}}{3}\right)\left(1+\frac{\lambda_{2}+2 \lambda_{3}}{3}\right) \\
& \cdot\left(1+\frac{\lambda_{1}+\lambda_{2}+2 \lambda_{3}}{4}\right)\left(1+\frac{\lambda_{1}+2 \lambda_{2}+2 \lambda_{3}}{5}\right)
\end{aligned}
$$

D-Lie Algebra D_{ℓ}

1. The fundamental dominant weights of D_{ℓ} can he written as:

$$
\left\{\begin{array}{l}
L^{\gamma}=\sum_{k=1}^{k=\gamma} e_{k} \quad t=1,2, \ldots, l-2 \\
\left\{\begin{array}{l}
l-1 \\
\{
\end{array} \quad \frac{1}{2}\left(e_{1}+e_{2}+\ldots+e_{l-1}+e_{l}\right)\right. \\
L^{l}=\frac{1}{2}\left(e_{1}+e_{2}+\cdots+e_{l-1}-e_{l}\right)
\end{array}\right.
$$

We have l fundamental representations F^{γ} with the L^{γ} 's as the highest weights.
2. The weyl group is the set of all permutations of the components of the weights with an even number of changes of sign. The fundamental representations $F^{1}, F^{2}, \ldots, F^{l-2}$ are all equivalent to their contragradient representation. The same result is also true for $F^{\ell-1}$ and F^{l} if l is an oven number. But if l is an odd number, the fundamental representations F^{l-1} and F^{ℓ} are contragradient representations.
3. We now calculate the dimension of the irreducible representation $D^{M}\left(\lambda_{l}, \lambda_{2}, \ldots, \lambda_{l}\right)$. The vector R is given by:

$$
R=\sum_{k=1}^{k=l}(l-k) e_{k}
$$

The positive roots are $\alpha_{i j}=e_{i}+e_{j}$ and $\alpha_{i j}=e_{i}-e_{\gamma}$ with $0<i<\gamma \leqslant l$. We have successively:

$$
\begin{aligned}
& \sum_{i}\left(\alpha_{i-}, L\right)=\sum_{i}^{\ell-2} \lambda_{k}+\sum_{k}^{\ell-2} \lambda_{k}+\lambda_{l-1}+\frac{1}{2}\left(1-\delta_{j l}\right) \lambda_{l} \\
& \xi\left(\alpha_{i-j, L}\right)=\sum_{i}^{j-1} \lambda_{k}+\delta_{j l} \lambda_{l}
\end{aligned}
$$

and the dimension $N\left(\lambda_{1}, \lambda_{2}, \cdots, \lambda_{\ell}\right)$ is finally given by

$$
\begin{aligned}
& N\left(\lambda_{1}, \lambda_{2}, \cdots, \lambda_{l}\right)= \\
& =\prod_{m=1}^{m=l}\left\{\left(1+\frac{\lambda_{l}+\sum_{m}^{l-2} \lambda_{l}}{l-m}\right)\left(1+\frac{\lambda_{l-1}+\sum_{m}^{l-2} \lambda_{k}}{l-m}\right) .\right. \\
& \left.\quad \prod_{n=m+1}^{n=l-i}\left[\left(1+\frac{\sum_{m}^{l} \lambda_{k}+2 \sum_{n}^{l-2} i \lambda_{l}+\lambda_{l-1}+\lambda_{l}}{(2 l-m-n)}\right)\left(1+\frac{\sum_{m}^{n-1} \lambda_{k}}{n-m}\right)\right]\right\}
\end{aligned}
$$

4. The fundrmental representrion F^{1} is called the vector representation of the Lie algebra D_{ℓ}. The dimension of F^{1} is given by the general formula:

$$
\operatorname{dim} F^{\prime}=22
$$

The weights of the vector representation are the 2ℓ simple weights equivalent to L^{1}.

The character of the vector representation is given by:

$$
x_{v}(\varphi)=2 \sum_{k=1}^{k=l} \cos \varphi_{k}
$$

5. The fundamental representations F^{l-1} and F^{l} are called the two spinor representations of the Lie algebra D_{ℓ} and they are inequivalent representations. The dimension of F^{l-1} and F^{ℓ} is the same, due to the symmetry of
$N\left(\lambda_{1}, \lambda_{2}, \cdots \lambda_{\ell-1}, \lambda_{l}\right)$ in the exchange of $\lambda_{\ell-1}$ and λ_{l} :

$$
\operatorname{dim} F^{\ell-1}=\operatorname{dim} F^{\ell}=2^{\ell}
$$

The weights of the spinor representations are the simple weights equivalent to the highest weight $L^{\delta-1}$ and L^{γ}.
6. The fundamental representation F^{2} has a weight diagram identical to the root diagram of the Lie algebra D_{ℓ} and it follows that F^{2} is the adjoint representation. The dimension is given by the general formula

$$
\operatorname{dim} F^{2}=l(2 l-1)
$$

The character of the adjoint representation is:

$$
x_{A}(\varphi)=\ell+4 \sum_{\gamma<k} \cos \varphi_{\gamma} \cos \varphi_{k}
$$

7. Sic algebra D_{4}

The fundamental $r e p r e s e n t a t i o n s$ are defined by the fundmental dominant weights

$$
\left\{\begin{array}{l}
L^{1}=e_{1} \\
\left\{\begin{array}{l}
L^{2} \\
\left\{\begin{array}{l}
2 \\
\{
\end{array} E_{1}+e_{2}\right. \\
L^{4}=\frac{1}{2}\left(e_{1}+e_{2}+e_{3}+e_{4}\right)
\end{array}, \frac{1}{2}\left(e_{1}+e_{2}+e_{3}-e_{4}\right)\right.
\end{array}\right.
$$

The vector representation F^{1} and the two spinor representtions F^{3} and F^{4} are 8-dimensionel representation. The adjoint representation is 28 -dimensional.

The characters of the fundamental representations are given by:

$$
\begin{aligned}
& x_{V}(\varphi)= 2\left[\cos \varphi_{1}+\cos \varphi_{2}+\cos \varphi_{3}+\cos \varphi_{4}\right] \\
& x_{A}(\varphi)=4\left[1+\cos \varphi_{1} \cos \varphi_{2}+\cos \varphi_{1} \cos \varphi_{3}+\cos \varphi_{1} \cos \varphi_{4}+\cos \varphi_{2} \cos \varphi_{3}+\right. \\
&\left.\cos \varphi_{2} \cos \varphi_{4}+\cos \varphi_{3} \cos \varphi_{4}\right] \\
& x_{5}(\varphi)= 8\left[\cos \frac{\varphi_{1}}{2} \cos \frac{\varphi_{2}}{2} \cos \frac{\varphi_{3}}{2} \cos \frac{\varphi_{4}}{2}+\sin \frac{\varphi_{1}}{2} \sin \frac{\varphi_{2}}{2} \sin \frac{\varphi_{3}}{2} \sin \frac{\varphi_{4}}{2}\right] \\
& x_{S^{\prime}}(\varphi)= 8\left[\cos \frac{\varphi_{1}}{2} \cos \frac{\varphi_{2}}{2} \cos \frac{\varphi_{3}}{2} \cos \frac{\varphi_{4}}{2}-\sin \frac{\varphi_{1}}{2} \sin \frac{\varphi_{2}}{2} \sin \frac{\varphi_{2}}{2} \operatorname{x}_{\min } \frac{\varphi_{4}}{2}\right]
\end{aligned}
$$

The representation $D^{N}\left(\lambda_{1}, \lambda_{2}, \lambda_{5}, \lambda_{4}\right)$ has the following dimension.

$$
\begin{gathered}
N\left(\lambda_{1}, \lambda_{2}, \lambda_{2}, \lambda_{4}\right)=\left(1+\lambda_{1}\right)\left(1+\lambda_{2}\right)\left(1+\lambda_{3}\right)\left(1+\lambda_{4}\right)\left(1+\frac{\lambda_{1}+\lambda_{2}}{2}\right)\left(1+\frac{\lambda_{2}+\lambda_{1}}{2}\right), \\
\left(1+\frac{\lambda_{2}+\lambda_{4}}{2}\right)\left(1+\frac{\lambda_{1}+\lambda_{2}+\lambda_{3}}{3}\right)\left(1+\frac{\lambda_{1}+\lambda_{2}+\lambda_{4}}{3}\right)\left(1+\frac{\lambda_{2}+\lambda_{3}+\lambda_{4}}{3}\right) . \\
\left(1+\frac{\lambda_{1}+\lambda_{2}+\lambda_{3}+\lambda_{4}}{4}\right)\left(1+\frac{\lambda_{1}+2 \lambda_{2}+\lambda_{3}+\lambda_{4}}{5}\right)
\end{gathered}
$$

This formula exhibits a complete symmetry in the variables $\lambda_{1}, \lambda_{3}, \lambda_{4}$. associated to the treen 8-dimensional. fundamental. present ions.

VIF. Examples of duplication of the theory of characters 1. Weight diagrams of A_{2}.

$D^{27}(2,2)$
$L=2\left(e_{1}-e_{2}\right)$
Figure 6.

In Fig. 6 , we have given the weight diagrams of the representation of SU_{3}. The weight space is two dimensional. The highest weight L for each representation is indicated below the diagrams. It is seen that not all the weights of the representations 8 and 27 are simple. The zero weight in the ' 8 ' representation has multiplicity 2 . While the zero weight of '27: has multiplicity 3. A rule about the multiplici.ty of the weights is that the multiplicity of weights on hexagons (boundary of weights) within hexagons goes on increas. Ing by one till we reach a triangle, their it remains the same.
2. Characters of A_{2}

The characters of the different representation of A_{2} can be found once the weights are given. In this case since the weights are given in a two dimensional plane we rave the relation

$$
\varphi_{1}+\varphi_{2}+\varphi_{3}=0
$$

Then we have

$$
\begin{gathered}
x_{3}(\varphi)=\exp \frac{i}{3}\left(2 \varphi_{1}-\varphi_{2}-\varphi_{3}\right)+\exp \frac{i}{3}\left(2 \varphi_{2}-\varphi_{1}-\varphi_{2}\right)+ \\
+\exp \frac{i}{3}\left(2 \varphi_{3}-\varphi_{2}-\varphi_{1}\right)
\end{gathered}
$$

making a change of variables

$$
\begin{aligned}
& \varphi_{2}-\varphi_{1}=\phi_{3} \\
& \varphi_{1}-\varphi_{3}=\phi_{2} \\
& \varphi_{3}-\varphi_{2}=\phi_{1}
\end{aligned}
$$

Which still preserves the relation:

$$
\phi_{1}+\phi_{2}+\phi_{3}=0
$$

we have

$$
\begin{array}{r}
x_{3}(\phi)=\exp \frac{i}{3}\left(\phi_{2}-\phi_{3}\right)+\exp \frac{i}{3}\left(\phi_{3}-\phi_{1}\right)+ \\
+\exp \frac{i}{3}\left(\phi_{1}-\phi_{2}\right)
\end{array}
$$

We also obtain

$$
\begin{aligned}
\chi_{8}(\phi)= & 2\left[1+\cos \phi_{1}+\cos \phi_{2}+\cos \phi_{3}\right] \\
x_{10}(\phi)= & 1+2\left[\cos \phi_{1}+\cos \phi_{2}+\cos \phi_{3}\right]+ \\
& +\exp i\left(\phi_{2}-\phi_{3}\right)+\exp i\left(\phi_{3}-\phi_{1}\right)+\exp i\left(\phi_{1}-\phi_{2}\right) \\
\chi_{10}(\phi)= & 1+2\left[\cos \phi_{1}+\cos \phi_{2}+\cos \phi_{3}\right]+ \\
& +\exp i\left(\phi_{3}-\phi_{2}\right)+\exp i\left(\phi_{1}-\phi_{3}\right)+\exp i\left(\phi_{2}-\phi_{1}\right) \\
x_{27}(\phi)= & 3+2\left[\cos \phi_{1}+\cos \phi_{2}+\cos \phi_{3}\right]+ \\
& +2\left[\cos 2 \phi_{1}+\cos 2 \phi_{2}+\cos 2 \phi_{3}\right]+ \\
& +4\left[\cos \phi_{1} \cos \phi_{2}+\cos \phi_{2} \cos \phi_{3}+\cos \phi_{3} \cos \phi_{1}\right]
\end{aligned}
$$

3. Fundamental weight diagrams of D_{4}

The weight space is four dimensional with basis e_{γ} $(f=1,2,3,4)$. The fundamental representations with their corresponding highest weights L are

$$
\begin{array}{lll}
8_{s_{p}} & L=\frac{1}{2}\left(e_{1}+e_{2}+e_{3}+e_{4}\right) & D(1,0,0,0) \\
8_{s_{p}} & L=\frac{1}{2}\left(e_{1}+e_{2}+e_{3}-e_{4}\right) & D(0,1,0,0) \\
8_{V} & L=e_{1} & D(0,0,1,0) \\
28_{A} & L=e_{1}+e_{2} & D(0,0,0,1)
\end{array}
$$

4. Fundamental characters of D_{4}

Knowing the highest weights the characters for the different representation can be immediately written down:

$$
\begin{aligned}
x_{s p}(\phi)= & {\left[\cos \frac{\phi_{1}+\phi_{2}+\phi_{3}+\phi_{4}}{2}+\cos \frac{\phi_{1}+\phi_{2}-\phi_{3}-\phi_{4}}{2}\right.} \\
& \left.\cos \frac{\phi_{1}-\phi_{2}-\phi_{3}+\phi_{4}}{2}+\cos \frac{\phi_{1}-\phi_{2}+\phi_{3}-\phi_{4}}{2}\right]
\end{aligned}
$$

The highest weights of the two spinor representations differ only in the sign of Q_{4} and hence their characters differ only in the sign of Φ_{4}.

$$
\begin{aligned}
& x_{s p^{\prime}}(\phi)=2\left[\cos \frac{\phi_{1}+\phi_{2}+\phi_{3}-\phi_{4}}{2}+\cos \frac{\phi_{1}+\phi_{2}-\phi_{3}+\phi_{4}}{2}+\right. \\
&\left.+\cos \frac{\phi_{1}-\phi_{2}-\phi_{3}-\phi_{4}}{2}+\cos \frac{\phi_{1}-\phi_{2}+\phi_{3}+\phi_{4}}{2}\right]
\end{aligned}
$$

As o we have

$$
\begin{aligned}
x_{v}(\phi)= & 2\left[\cos \phi_{1}+\cos \phi_{2}+\cos \phi_{3}+\cos \phi_{4}\right] \\
x_{A}(\phi)= & 4\left[1+\cos \phi_{1} \cos \phi_{2}+\cos \phi_{2} \cos \phi_{3}+\right. \\
& +\cos \phi_{3} \cos \phi_{1}+\cos \phi_{3} \cos \phi_{4}+ \\
& \left.+\cos \phi_{2} \cos \phi_{4}+\cos \phi_{1} \cos \phi_{4}\right]
\end{aligned}
$$

5. Inclusion $\operatorname{SU}(3) / Z_{3} \subset \mathrm{SO}(8)$:
a) $A_{2} C r: D_{4}$

It is seen from section (4) that the representations $8_{S p}$ ${ }^{8} S_{p}$ and 8_{v} are inequivalent if one considers all orthogonal transformations. However using the characters one can show that if one restricts to the transformation contained in the A_{2} sub-algebra of D_{4}, the three eight dimensional representations $8_{S p}, 8_{S_{p}}$ and 8_{v} are equivalent and
irreducible and that the adjoint representation 28_{A} of D_{4} is reducible according to

$$
28_{R} \Longrightarrow 8 \oplus 10 \oplus \overline{10}
$$

The inclusion $\Lambda_{2} \in D_{4}$ is realized by the projection of the four dimensional weight diagrams on the two dimensional plane defined by choosing any one of the four ϕ 's to be zero and the sum of the other three equal to zero. For convenience, (to study the inclusion $A_{2} \in D_{4}$), we choose

$$
\phi_{4}=0 \quad \phi_{1}+\phi_{2}+\phi_{3}=0
$$

Then we have

$$
\begin{aligned}
x_{s p}(\phi) & =2\left[1+\cos \phi_{1}+\cos \phi_{2}+\cos \phi_{3}\right] \\
& =x_{8}(\phi) \text { of } A_{2}
\end{aligned}
$$

Similarly $X_{S p}(\phi) \Rightarrow \chi_{8}(\phi)$ and $X_{\vee}(\phi) \Rightarrow X_{8}(\phi)$
Thus the throe 8 dimensional representation of D_{4} are equivalent and irreducible with respect to the A_{2} subalgebra. Further we have

$$
\begin{aligned}
\chi_{A}(\phi) \Rightarrow & 4\left[1+\cos \phi_{1} \cos \phi_{2}+\cos \phi_{2} \cos \phi_{3}+\right. \\
& +\cos \phi_{3} \cos \phi_{1}+\cos \phi_{1}+\cos \phi_{2}+ \\
& \left.+\cos \phi_{3}\right] \\
= & x_{10}(\phi)+\chi_{10}(\phi)+\chi_{8}(\phi) \text { of } A_{2}
\end{aligned}
$$

Thus it is seen that for $A_{2} \subset{ }_{4}$

$$
\begin{aligned}
& 8_{S p} \Longrightarrow 8 ; 8_{S p^{\prime}} \Longrightarrow 8 ; 8 ; 8{ }^{2} \Longrightarrow 8 ; \\
& 28_{\mathrm{A}} \Rightarrow 8 \oplus 10 \oplus \overline{10}
\end{aligned}
$$

b) $\mathrm{SU}_{3} / \mathrm{Z}_{3} \subseteq \mathrm{D}_{4}^{*} / \mathrm{Z}_{2}$

If one defines D_{4}^{*} as the covering group of D_{4}
algebra their

$$
D_{4}^{*} / Z_{2} \simeq \Delta_{4}
$$

One can realize three isomorphic but inequivalent ground of this type $\left(\Delta_{4 S p}, \Delta_{45 p}\right.$ and $\left.\Delta_{4 v}\right)$ by considering the tonsorial powers of the eight dimensional representations $8_{s p}, \quad 8_{s p}$, and 8_{v} respectively. Further we have

$$
\Delta_{4 V} \simeq c o(8)
$$

Where $S O(8)$ is the orthogonal group on the eight dimensional space. Δ_{4} contains $\mathrm{SU}_{3} / \mathrm{Z}_{3}$ as a subgroup. The adjoint representation ' 8 ' of $\mathrm{SU}_{3} / \mathrm{Z}_{3}$ is a self contragradient representation and can be described by 8 x 8 unitary unimodular real matrices which form a subset of 8×8 unimodular orthogonal matrices of $\mathrm{SO}(8)$.
VII. THE SCHUR-HRO NOS CLASBIFICAT ION:

1. We consider an unitary representation $U(a)$, ff a compact semi-simple group G. If $U(a)$ is equivalent to its contragradient representation $U^{+}(a)$, there exist a constant matrix C such that

$$
U^{+}(a)=c U(a) c^{-1} \text { for all } a \in G
$$

Taking into account the unitarity property written as $U^{+}=U^{-1 T}$, we also obtain,

$$
C=U^{\top}(a) C U(a)
$$

The U transformations leave invariant a bilinear form in the N-dimensional representation space V_{N}.
2. By using a representation of the Lie algebra with
$N \times N$ hermitian matrices, the transformation $U(a)$ can be written as

$$
U(a)=\exp i a^{\sigma} X_{\sigma}
$$

and the a^{σ} 's are real parameters.
For the contragradient representation, we have:

$$
u^{+}(a)=\exp i a^{\sigma} x_{\sigma}^{\prime}
$$

with

$$
x_{\sigma}^{\prime}=-x_{\sigma}^{T}
$$

If the representations U and U^{+}are equivalent, there exist a matrix C such that

$$
x_{\sigma}^{7}=-C x_{\sigma} c^{-1}
$$

for all the generators $\quad X_{\sigma^{-}}$of the Lie algebra.
3. The properties of tho matrix C can be obtained
by iterating the basic relation. Without loss of generality,
C can be chosen as unitary and using the Schur lemma, we can easily prove the following relations;

$$
\left\{\begin{array}{rc}
C^{T}=\varepsilon_{i} C & c^{+}=\varepsilon_{2} C \\
\left\{C C^{*}=I \quad C C^{T}=\varepsilon_{2} I\right. & C^{2}=\varepsilon_{1} \varepsilon_{2} I
\end{array}\right.
$$

where $\quad \varepsilon_{1}= \pm 1$ and $\quad \varepsilon_{2}= \pm 1$.
If a real representation can be used for $U(a)$, the matrix C can be chosen as real $\left(\varepsilon_{2}=1\right)$ and is an orthogonal matrix:

$$
\left\{\begin{array}{l}
C^{\top}= \pm C \\
C C^{*}=I \quad c^{+}=C \\
\left\{C C^{T}=I \quad C^{2}= \pm I\right.
\end{array}\right.
$$

4. The Schur Probe ius classification:

An irreducible representation belongs to the class

$$
\lambda=1, \quad \lambda=0 \text { if it leaves invariant respectively: }
$$

a $\quad \lambda=1$ a symmetrical bilinear form $\left(\varepsilon_{1}=+1\right)$
b $\quad \lambda=0$ no bilinear form
c $\quad \lambda=-1$ an antisymmetrical bilinear form $\left(\varepsilon_{2}=-1\right)$

5. Amlication:

As a consequence of the properties of the fundmental representations of the simple Lis groups obtained in the previous sections, all the irreducible ropesentations of $B_{l}, C_{l}, D_{2 l}$ belong to the classes $\lambda= \pm 1$.

Chaoter 6
TENSOR ALGEBRA OF THE LINEAR GROTTP.

I. Generalities

1. If H is a sub group of G, the irreducible representations of G can be either irreducible representations of H or reducible into a direct sum of irreidnible representations of H.
2. The irreducible representations of a compact semisimple group G can be talren as unitary. Tho unitary matrices of a N dimensional representation of G generate a subgroup of the unitary group
3. It follows that the irreducible renresentations of a compact semi-simple group $G \quad$ can be studied from the Irreducible representations of the unitary groups.

The importance of the tensor algebra of the unitary. group is essentially due to this property.
4. It is convenient for simplicity to speak the language of the general Inear group ($\sigma \|(N, R)$ instead of that of the unitary group $\because \because: S$. As it has be shown in the previous chapter the two languages are equivalent from the point of $v i e w$ of irreducible representations.
II. Irreducible Representations of $G L(n, R)$:

1. We consider a n-dimensional real vector space
 space of the linear forms on F. The elements of F are called contravariant vectors and the elcments of F^{*} covariant vectors

$$
\begin{aligned}
& \bar{n} \in E \quad x \in E^{*} \\
& \text { ?. A contravariant tensor } \xi_{p} \text { is an alement of }
\end{aligned}
$$ the censorial power of order p of p :

$$
\xi_{p} \in t^{\otimes} p \quad \xi_{1} \in t \quad \xi_{0} \in R
$$

In the same way, it is easy to introduce covariant tensors as the tienent of $E^{*} \otimes Q$ and mixed tensors as the elements of $E^{\otimes} p$ ($E^{*} \otimes q$
3. We now consider the general linear group de(n, R $\left.)^{*}\right)$ and the unimodular linear transformations $\delta\left(n, T_{i}\right)$.

The irredxible tensors can bn associated in a one-toone correspondence to the irreducible representations of the permutation group. We don't give the proof of this important result.
4. The irreducible representation of tho permutation group of p elements Gre easily described by using the Young tables ard the Young dies rams.

A Young tall is a set of h non negative integer numbers such the:

$$
f_{1} \geqslant f_{2} \geqslant \cdots \geqslant f_{n} \geqslant 0
$$

with the restriction

$$
\sum_{j=1}^{j=n} f_{j}=p
$$

In other terms, it is a partition of the number p The associeted Young diagram is a sot of p boxes divided in n rows with f, γ boxes in the $\hat{j}^{t h}$ row

$[4,2,00]$

$$
p=6 \quad n=
$$

$$
[2,2,1,1]
$$

$$
p=6, \quad 1=4
$$

Young diagrams
5. Te now go back to a contravariant tensor of order p, the dimension of F being precisely n. The Young table describes a symmetry of the tensor and the properties are the following:
a the indices associated to each box of a horizontal row are symmetrized
b the indices associate r to each box of a vertical column are antisymmetrized.

For instance, a completely symmetrized tensor of rank p is associated to the partition $f_{1}=p f_{2} \quad f_{3}=\cdots \cdot=f_{n}=0$ and the corresponding Young diagram has only one row.

Bach a tensor is an element of the vector sah-space
of the completely symmetrical tensors. The dimension of $S t^{\otimes f}$ is the combination number (${ }^{P}$
a completely antisymmetrized tensor of rank it is
 ard the corresponding Young diagram has only one column

$$
\begin{aligned}
& E 1,1,1,0 \\
& y= 3 \quad n=4 \\
& \text { figure } 3 .
\end{aligned}
$$

Such a tensor is an element of the vector subspace $A E^{\mathbb{Q}}$ p of the completely antisymmetric cal tenors. The dimension of it ${ }^{-1 p}$ is the combination number C_{n}. Of course, it is not possible to construct a completely anticymmetrinal tons or of order $b>y$ and the maxima number of rows of a young diagram is precisely n
6. Bor a covariant tensor of order : element of
$E^{*} V$, the previous results can be extended in the
following way. To e, ch partition of the number V, we as socite a set of non positive integer numbers

$$
0 \geqslant f_{1} \geqslant f_{2} \geqslant \cdots \geqslant f_{n}
$$

with the restriction

$$
\sum_{d-1}^{+6 n} f_{j}=-9
$$

The corresponding Young diagram is a sot of q boxes divided

$[-1,1,-1,-3]$
n -in. 4

$[0,0,-3,-3]$

$$
\eta=6 \quad n=4
$$

Figure 4
For a mixed tensor, element of $E^{*}(z \cdot \mathcal{V}$ one aerociates to each petition of P and ψ, a set of n algebraic integer numbers

$$
f_{1} \geqslant f_{2} \geqslant \cdots, f_{0} \geqslant 0 \geqslant f_{j+1} \geqslant \cdots f_{R}
$$

such that

$$
\sum_{k=1}^{1} f_{k}=p \quad \sum_{k+1}^{k=y}+f_{k}=-q
$$

The corr sponging Young diagram is then immediately drawn by using the previous results.

$[2,2,-1, \cdots]$

$\left[\begin{array}{llll}2 & 0 & -1 & -3\end{array}\right]$
$p=2, r v=4 \quad n=4$

Figure 6
Young diagrams for mixed tensors
7. We are now interested with the completely antisymmetrized one component tensor of order n.

Let us introduce in E a basis $E j$ the corresponding basis in $A E^{\otimes n}$ can be written with exterior tonsorial products as:

$$
\overline{e_{1}} \bar{e}_{2} \ldots \cdots, \bar{e}_{n}
$$

We consider m linearly independent vectors $\overline{x_{(}}$, of E the completely antisymmetrized product

$$
\bar{x}_{1} \wedge \bar{x}_{(2) \wedge}, \ldots, \wedge \bar{x}_{(1)}
$$

is the only linearly independent clement of $A[\& n$ By using the coordinates

$$
\bar{x}_{(1)}=x_{(!)}^{k} \bar{k}
$$

We immediately obtain

$$
\begin{aligned}
& \overline{c_{c}} \wedge \overline{x_{(2)}}, \cdots x_{(n)}=\left[\sum_{[\pi]} X_{(\sigma)} x_{1}^{J}\right. \\
& x \bar{E}_{1} \wedge \overline{e_{2}} \wedge \cdots \overline{E_{n}}
\end{aligned}
$$

where $[5]$ is the permutation $\left|\begin{array}{cc}1 & \ldots, n \\ n\end{array}\right|$ of parity $X(\sigma)$. The bracket is simply the determinant $D\left(\bar{x}_{(1)} \bar{x}_{12}\right)$, \bar{x}

$$
\begin{aligned}
\bar{x}, x_{\left(2, \ldots, x_{(n)}\right.} & =D\left(\bar{x}_{11} \bar{x}_{(2)}, \ldots, \bar{x}(n)\right) \\
& =\bar{e}_{1} \bar{e}_{21} \ldots, \bar{e}_{n}
\end{aligned}
$$

We now porforn a regular If near transformation in presented by the clement A of $G L(N, R)$:

$$
\bar{x}_{(R)}^{\prime}=\bar{x}_{(j)} A_{k}^{j}
$$

By
using the previous results

$$
\bar{x}_{(1)}^{\prime} \bar{x}_{(2)}^{\prime} \wedge, \ldots, \bar{x}_{(n)}^{\prime}=\operatorname{det} A \bar{x}_{(1,1} \bar{x}_{(2)}, \ldots \bar{x}_{(n)}
$$

and finally,
$\operatorname{Det}\left(\bar{x}_{12}, \overline{x_{1}}, \ldots, \ldots, \bar{x}_{(2)}^{\prime}\right)=\operatorname{Det} A \operatorname{Det}\left(\bar{x}_{(1)} \ldots \bar{x}_{1}\right)$

If now, A is an unimodular matrix, element of the special lInear group $S L(N, R)$ the quantity $\operatorname{Det}(\bar{x}(1)$
is an invariant.
in

($)$

III. IREPDICIBLE RTPEBEPTATIONS OF SL(n,R):

1. We have just som that for the unimodular linear transformations of $E(n, \sqrt{3})$, the one component representation is invariant. In other toms, the two representations $[1, \ldots, 1]$ and $[0,0,0,0]$ are equivalent. In a more general way the two inequivalent representations of $C L(n, R)$,

$$
\left[f_{1}, f_{2} \ldots f_{n}\right] \text { and }\left[f_{1}^{\prime} f_{2}^{\prime}, \ldots, f_{n}^{\prime}\right]
$$

are equivalent in $\delta L(\mathrm{n}, \mathrm{F})$ if and only if

$$
f_{y}^{\prime}=f_{y}+s \quad \eta=1,2 \ldots n
$$

where S is an algebraic inter ger number independent of f.
In particular, in $\operatorname{SL}(n, R)$, the two representations
$1\left[f_{1}, f_{2} \ldots f_{n-1} f_{n}\right]$ and $\left[f_{1} \ldots f_{n}, f_{2} t_{n} \ldots t_{n-1}-t_{n} 0\right]$
are equivalent and with respect to unimodular transformations, any tensor is equivalent to a contravariant tensor with $f_{n}=0$.
2. It is convenient to introduce the completely antisymmetrical tensor of order \Rightarrow, element of $A E^{*} \otimes n$, $E_{J_{1}} \kappa_{2} r_{n}$, defined by

$$
\varepsilon_{1} \ldots n=1 \quad c_{n_{1} \sigma_{2}} \sigma_{n}=X(5)
$$

In this language, we have: $\sigma_{1} \sigma_{2} \sigma_{r}$

$$
\operatorname{Vet}\left(\bar{x}_{(1)} \bar{x}_{(2)} \ldots, \bar{x}_{m}\right)=\sum \varepsilon_{\sigma_{1} \sigma_{2} \ldots \sigma_{n}} x^{\prime} x^{2}, r^{\prime}
$$

The determinant is invariant under unimadular transformations but transforms with a factor Deft A for all $A \in G L(n, R)$.

In the same way, the quantity:
$\varepsilon_{r_{1}, \ldots} x_{n}^{r_{2}} \ldots x_{n}^{a_{n}}$
transforms like a covariant vector of E^{*} underuntmodular transformations. A straightforward generalization of this result is the following.t the two irreducible representations of $\operatorname{CL}(h, R)$:
$\left[f_{1}, f_{2}, \ldots f_{n}\right]$ and $\left[f_{1}+s, f_{2}+s, \cdots, f_{n}+s\right]$ are equivalent for unioodular transformations but we have to add an extra factor (D ut:A) if now A is an element of the general linear group.
3. As a consequence, an irreducible representation of $G L(h, R)$ is also an irreducible representation of $\mathcal{W}(n, R)$. It is then sufficient to study the irreducible representation of $\operatorname{sic}(h, \mathbb{R})$ and with the previous statement we are able to deduce all the irreducible representations of $G L(h, R)$. Such a result was expected because the homomorphism from $G L(h, R)$ into $\sigma L(n, R)$ is a central homomorphism. Of course, the representations $\left[f_{1}+5, f_{2}+5, \ldots, t_{n}+s\right]$ have the same dimension tudopendent of S. .
4. The irreducible representations of $\operatorname{Et}(\mathrm{A}, \mathrm{R})$ en n then be characterized by a gut of (hel) non negative integer numbers.

It is convenient to work with the representation $\left[f_{1}, f_{2}, \ldots, f_{n-1}, 0\right]$ and to define

$$
\lambda j=f_{j}-f_{j+1} \quad \gamma=1,2, \cdots \cdot n-1 .
$$

and conversely

$$
f_{j}=\sum_{k=2}^{k=n-1} \lambda_{R}
$$

The representation $\left(\lambda_{1}, \lambda_{2} \ldots \lambda_{n-1}\right)$ can be associated to a contravariant tensor of order P given by

$$
p=\sum_{j=1}^{1=n-1} f \lambda=\sum_{k=1}^{k-n-1} k_{\lambda} \lambda k
$$

The representations R^{k} with all the $\lambda_{j} \dot{\prime} s$ equal to zero, except $\lambda_{k}=1$, corresponds to a completely antisymmetrical tensor of order k

$$
f_{1}=t_{2}=\cdots=f_{R}=1, \quad f_{p_{+1}}-f_{k+2}=\cdots=t_{n-1}=t_{m}=c
$$

The dimension of this representation is $C m^{k}$ as the dimension of the fundamental representation F^{k} of the $A n-1$ Lie algebra discussed in Chapter IV. It an bs shown that R^{R} and F^{i} are isomorphic and more generally, the highest weight of the irreducible representation $\left[f_{1} f_{2}, \ldots f_{n, 1}, 0\right]$ is simply given by

$$
L=\sum_{j=1}^{j=n-1}\left(f_{j}-\frac{p}{n}\right) e j
$$

For instance, the n dimensional fundamental representation of An-1, H^{\perp} is associated to the vectors of \mathbb{L} and the contragredient representation to the vectors of . : considered also as completely antisymmetrized contraveriant tensors of order h-1.

IV. ADJOINT REPRESENTATION

1. The Lie algebra of the general linear grown GL(n, \bar{R}) is the set of n^{2} infinitesimal generators X_{σ}. It has been shown thus the linear combination $X=\sigma_{2} X_{6}$ commutes with all the generators.

The $n^{2}-1$ generators $X_{\sqrt{5}}$ of trace zero, generate the simple Lie algebra of type. Anal of the special linear group $\operatorname{sL}(b, \mathbb{R})$.

We also consider a sub-algebra of $A_{\text {Moi }}$, with infinitesimal generators $L \sigma$ and the commutation laws

$$
\left[L f, L_{\sigma}\right]=C_{f \sigma}^{\tau} L \tau
$$

of course, this sub-algebra can be An-1 Itself.
2. The adjoint representation of the Lie algebra A_{n-1}

$$
D(1,0,0,1), \text { can be associated, from the previous }
$$ results of section III, to an irreducible mixed tensor of order 2 , or equivalently, to a covariant tensor of order n* ${ }^{2}$. We now study the mixed tensor of order two.

3. The second order mixed tensor ξ_{σ} are the olements of $E \in t^{*}$. Let us now consider the representstion with unitary matrices of the Li algebra Ariel

$$
U U^{*}=T
$$

The infinitesimal generators can be represented by hermitic matrices following

$$
U=I+i \varepsilon^{\prime} x_{p} \quad U^{*}=I-i \varepsilon^{f} x_{\rho}
$$

where $\varepsilon \quad$ is a set of real infinitesimal parameters and

$$
x_{p}^{*}=x_{f}
$$

The tensor $;$ is transformed, according to

$$
\xi^{\prime}=V^{*} \xi U
$$

and, for infinitesimal transformation, we obtain
and after reduction

From the previous expression we immediately verify the in-

4. We now consider the quantities

$$
p_{\sigma}=[L \sigma]_{k}^{d} \xi_{j}
$$

The transformation laws of the $\psi_{\sigma} s$ are deduced from those of the $\sum_{j}^{k} k_{j}^{\prime}$, taking into account the commutation laws of the Lie sub-algebra we obtain,

$$
\phi_{\sigma}^{\prime}=\phi_{\sigma}+i \varepsilon p \therefore C_{\psi \sigma} \tau_{\tau}
$$

In the basis of the $\mathcal{F}^{\prime} s$, the infinitesimal generators of the $L i$ algebra $\left[L_{\sigma}\right]$ are represented by the structure constants of this Lie algebra

$$
\left[L_{\sigma}\right]_{p}^{T}=C_{p}^{\tau}
$$

This result can be also interpreted as a consequence of the Jucobi identify satisfied by the structure constants. The dimension of the representation is the dimension of the/algehra and we have extracted the adjoint representation of the tie algebra.

The adjoint representation is irreducible if and only if the Lie algebra is simple. For instance, the $n^{2}-1$ quantities

$$
\Psi_{\sigma}=\left[X{ }_{\sigma}\right]_{k}^{\gamma} \xi_{i}^{\gamma}
$$

are a basis of the adjoint representation of $s t(n, R)$
5. The η^{2} components of the second order mixed tensor
, have been reduced in the following way:
ㅡ The invariant trace $\delta_{K}^{b} \begin{gathered}k \\ \gamma\end{gathered}$
b The no components of trace zero

$$
\left.\xi_{z}^{R}-\frac{1}{n} \sum_{j}^{R} \operatorname{Tr}\right\}_{\}}
$$

V: PRODUCT OF REPRESENTATION.

The reduction of a product of representation is the determination of the irreducible components of a tensor.

1. Second Order tensors.

We first consider the case of a contravariant tensor. The indices can be symmetrized and antisymmetrized following the decomposition of the tonsorial product into a symmetrical and an exterior product

$$
\bar{x}_{1} \otimes \bar{x}_{2}=\bar{x}_{1} \vee \bar{x}_{2} \not \bar{x}_{1} \wedge \bar{x}_{2}
$$

In terms of Young diagrams, we have:

corresponds to $\overline{x_{1}} v \bar{x}_{2}$ with $\frac{n(n+1)}{2}$ components 4. corresponds to $\bar{x}_{1} 1 \bar{x}_{2}$ with $\frac{n(n-1)}{2}$ components

In the general linear group the product of representations is written as

$$
[1,0,0, \ldots 0]\left(\bar{x} ;[4,0, \ldots, 0)=\left[\begin{array}{llll}
2 & 0,0 & \cdots
\end{array} \in[1,1 ;]\right.\right.
$$

and in the special linear group, the corresponding expression is

$$
D(1,0,0,0) \Theta D(1,0, \ldots 0)=D(2,0,0, \ldots, \oplus D(0, \ldots, 1)
$$

The same results con easily be obtained for covariant second order tensors using

$$
x_{1} \otimes \underline{x_{2}}=\underline{x_{2}}+x_{2}+x_{1} \wedge x_{2}
$$

and we obtain the same expressions for the product of the contragradient representations

$$
[0 \cdots, 0,-1] \ll[0, \ldots, 0,0,-1]=[0, \ldots \cdots 0,0,-2]
$$

$$
([0 \cdots 0,-1,-1]
$$

in $\operatorname{GL}(n, R)$ and for $\operatorname{SL}(n, R)$
$D(0, \ldots 0,0)(D)(0 \ldots 0,01)=D(\cdots, 0,02)(t) D(0, \ldots 0,0)$
The case of a mixed second order tensor has bon studied with some details in the previous section. In terms of product of representations we obtain simply in $G L(n, \vec{R})$.

$$
[1,0 \ldots, 0,0](x[0,0,0,-1]=[0,0, \cdots, 0,0][1, \cdots, 0,-1]
$$

and in $S E(n, \mathbb{R})$

$$
D(1,0, \cdots 0,0) \otimes D(0,0 \cdots, 0,1)=D(0,0, \cdots 0,0) \oplus D(1,0 \cdots 0,1
$$

2. Third order contravariant tensor:

We use the method of the Young diagrams and we have only three possibilities

with $\frac{n(n-1)(n-2)}{6}$ components

The second possibility can be reached in two different ways and we obtain the following reduction in $C L(n, R)$

$$
[1,0 \ldots 0]^{\otimes 3}=[3,0,0, \cdots 0] \oplus 2[2,1,0 \cdots 0 \oplus[1,1,10 \ldots 0]
$$

and in $\mathrm{sL}(\mathrm{n}, \mathrm{R})$ we have

$$
D(1,0,0 \cdots 0) \otimes D(1,00 \cdots 0) \otimes D(1,0,0)=D(3,0, \cdots) \in D(1,0,0)
$$

$$
\Theta D(0,0,1,0 \cdots 0)
$$

3. General Case

Let us consider two irreducible representations $[f]$ and $\left[\overline{F^{\prime}}\right]$ of $G L(n, R)$. It is always possible to introduce the representations $[f]$ and $\left[f^{\prime}\right]$ equivalent in $S L(r, \mathbb{R})$ respectively to $[f]$ and $\left[\xi^{\prime}\right]$ and such that $t_{n} f_{n}^{\prime}=0$ We are then working with representations $[f]$ and $\left[f f^{\prime}\right]$ associated to contravariant tensors where all the f_{γ} 's and $f_{j}^{\prime} s$ are positive. The best way to reduce the product [f] © $\left[f^{\prime}\right]$ is to use the Young diagrams following the Littlewood method.

The $[f]$ diagram has f_{1} boxes $\alpha, \quad f_{2}$ boxes β $\because \quad f_{3}$ boxes γ, atc. The boxes of the diagram $[f]$ are added to the diagram [$\left[f^{\prime}\right]$ in the following way.
a With the $\alpha^{\prime \prime}$, we form a new Young diagram, excludeing the case where two boxes α ares in the same column.
\underline{b} With the β^{\prime} 's, we form a now Young diagram, excluding the first row and the case where two boxes β are in the same column.
c With the $\gamma^{\prime \prime} s$, we form a now Young diagram, fxoluding the first and the second rows and the case where two boxes ${ }^{\prime \prime}$ are in the same column.
and so an with all the boxes of the diagram $[f]$.
4. As an example, the Littlewood method can bn used to reduce the product of two adjoint representations of the lie algebra A_{n-1}. The result, written in $G \mathbb{M}(m, R)$ is the following.

$$
\begin{aligned}
& {[1,0, \ldots, 0,-1] \oplus[1,0, \ldots, 0,-1]} \\
& =[0, \cdots, 0] \oplus(\notin(1,0, \ldots 0,-1] \\
& (\pm[2,0, \cdots 0,1,-1]+[1,1,0 \ldots 0,-2](+1,1,0, \ldots 0,-1,-1)
\end{aligned}
$$

$D(1,0,0,0,1) \otimes D(1,0, \cdots 0,1)=D(0,0) \oplus \otimes(1, \cdots 0,1)$
$(+D(2,0 \cdots 0,1, i)(1)(0,1,0 \ldots(0,2)(0)(0,1,0 \cdots 0,1,0)$
(土) $1(2,0 \cdots, 0,2)$
The dimension of these irreducible representations can be calculated using the general formula given in the Chapter XV. We add the symbol S or A according as the representation enters in the symmetrical or in the antisymmetrical part of the product

$$
\left\{\begin{array}{l}
N(0, \cdots, 0)=1 \\
N(1,0,0,1)=n^{2}-1 \\
N(1,0,0,1)=\frac{1}{4}\left(n^{2}-4\right)\left(n^{4}-1\right) \\
N(0,1,0,0,2)=\frac{1}{4}\left(n^{2}-4\right)\left(n^{2}-1\right) \\
N(n) A \\
N(0,0,1,0,1,0)=\frac{1}{4}(n-3) n^{2}(n+1), ~ S \\
N(2,0 \cdots 0,2)=\frac{1}{4}(n-1) n^{2}(n+3) \cdots
\end{array}\right.
$$

$$
\text { - } 143 \text { - }
$$

The representations being denoted by their dimensionality, we obtain

Excepted the case $l=1$, the adjoint representation is present in both the symmetrical and the antisymmetrical part of the product of t_{t}) adjoint representations.

