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LIE GROUPS AND LIE ALGEBRA

I. Tovological Groups:

1. Grouns axioms

A

A sct (} is a groun 1f the comnosition law, d-fined in

(3 has the following pronertics:

a  Associntivity: albe) = (ab)e = abe. - a,b,c: € G} ~
b Identitysmd element €. €n=c€= a, & & G

-1 -
¢ Inverse a a = asn T = @

2. Tonological grouns

=L of G x G into

The manning (a, b) = % ab
(3 is a continuous manning. Such a condition is equivalent to the
two following ones:

a The mapring a =» . of G 1into (; 1is continuous:

: b The maonping (a,b) =y ab of G x G into (4 is
' continuous.

The mapoing a== a‘l of Gr into (G coincides with its inverse

_1)—1 B

because of the relation (a = a. Such a mapping, noted T ,

is a homeomorphism of C% .

3. TIranslations:

The manning a =D am of & into (5 1s one to one and
continuous.

This homeomorphism of (& 1is called a right translatior jD 3
m

The maonping a = na of (5 into & 1s one to one and

continuous.
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This homeomorphism of (o is called a left translation -;}h' .

The right and left translations are related by

M T F = T

4. Theorem
It is nossible to show that the necessary and sufficient
condition for a group (¢ to be a topological group can be given

in the following form:

a2 The translation f>m' and & m are continuous (m € G);

b The mapping (a, b)=> = ab™L of G x G into G 1s

continuous at the point (e, e) of G x gG.

~II. Lie Groups:
1. Definition
A group G 1is a Lie group n i
a2 G is an analytic manifold
b The mavping (a, b)=> abof G x G into G 1is an

analytic mapping

2. Comnosition functions

We choose a chart at the noint e of G and we denote
the coordinates of an element afG by a° . The compnosition

law can be written as

o~ e
(ab) = 7 (a, b) a, b€g
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i i : A i ; ;
The compositions functions %» are analytic functions of their

arguments. We have the following evident n»nroperties:

f G~ ,

i Qﬁ (a, be) = c#ikab, ¢)

] ¢Gw( a, c) - g-\,(f"(e’ a) = a{j.'
C//Vv(a’ a-—l) = ¢O"(a—l, a) - e(/\'

[o%]

It car e easily shown that the mapping a= a':L of 6

into G 1is also an analvtic mapping.

It follows that a Lie groun is a topological group.

4., Structure constants

The identity transformation 1s described by the relation

g o,
a’ = 7>(a, e)

and we now consider an infinitesimal transformation in the neigh-

Pourhood of the identity

5
a

f daa\/ = $L>W(a, e % cSm) = L’}Daq(a,ﬁ ) + Smf[_a_.P?r(a’bj
04
4?:6-

The velocity field is defined by

o~

/&5’<a) i [%@f /Thr(a’ b)]b - e

and we obtain

d‘aGv = /"(;(ﬁ) 6m?



= =

It is convenient to use the inverse matrix S (a)s

g \Jond }
= (a) n
S o= A A ()

The eliminatior of om Dhetwe en the two relations:

da’ = /O;QD Gm? d5r= /QF(b)SmjD

leads to the exnression

L
'Lrb't = /‘Af(a)/“t(/f’r)

. ' -\9 g \‘;{ o=
We now introduce the continuity condition ¢ G = ¢ G

00708 14T 0t

By using the vprevious exvressiean for the first derivative, we

obfain:

VA k)
a@?sgf‘ = Do i Kot e Y
C-/

A2 T - 6‘ . c,€

%—gg F= /0 ( )/t (f) f)-w‘» (6) A f (L)
| | b<ﬁ (4%j?




Calculations are straight forward but tedious and we obtain the

following equality:

T
(.__M ) - U/( (/A)/(f ()J /Lfd ([%)::

L U n /X ‘ a (\f/\

v V7
_ ('@/‘"z(/@/ Wv___g_{)
047 04T

2RO

The LHS 1is function of a only and the BRHS 1is function of b

only. The two quantities a and b Dbeirg independent variables,

the two - sides . are constants. By definition, the structure

3
constants C « B are given by the two equivalent expressions.

T ~ 7 NI
G _ - [ c/_.____(“ 40 (a) - f'J/.ﬁ’d_ﬂ(“)/;(Nj/‘aU(n)
o(3 A a

% Dci’
Zr. ’\\/?f VFD/_
=) oA (R) s T f
I I S OV
| E)C‘F ?/«I
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III. Lie Algebra:

1.. Infinitaesimal transformations

/e;

We are first working in an analytic manifold ~( of

A : . . N
clements a £ e The set of the aralytie functions ¢ in ?ﬂ
[

is denoted by '} and the snmace of arnalyfical infinitesimal trans-

formations X Dby (z .

The ~lements X of '(; cen he used to Aefipe the linecar

<L

T” ints 9F . The guantisies XY and YX allow also to deine
H 5 v oY’ 9

Linear mappings of Jﬁv into itself but, in general, XY and YX do
not belong to the s»ace Tz :

Let us introducc a oeoordainate system:

. P 0 .

.. s v )
Tne continuity condition R - = - _allows us to write

Xy — (V)
[xolf = (2




) s - = . e »
and it follows that the commutator [ X,V ] is also an elrment

of f} which can be renresented by:

rd

xoy] - (B )

NG

Lie algebra

h
L)
.

< 4

The Lie -roduct of two ovnerators X and Y 1s TAe

-/ Aan Ne 3 e
commutator YX, Y:] . Tae snace (g can e considered as a

1

i 7 i K re 1 ined F : we have the
lincaralgehra on the field K where 1S defined f; and  w

following nronerties:

a Linear algebra

(&X v By, ;;] . [}:, ZJ . 0 [Y, z]

—

(X’ﬂ“rgzz = o {X, YJ + D [v., z]

for all < B E£ K and X, Y,

N
™

o2

Antisymmetry

Jacobi Identity

[x, 7, 4” . [’f? iz, x}] , V) 7, Ylﬂ =9

L Tie algebre is 2 linear algebra which satisfies the antisymmeiry

el

sronerty and the Jacobi idertity.
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. ILie slgebra of a Lie groun G.

A Lie groun G 1is an aralytic manifold and we consider

et
=
D
[6)]
D
pre

(@) of the apglytic fTunctions in 6.

The right translations define com>letely tha group G

Je
5 = =W a, mEG

and induce, in ;}r(G) a continuo is manning;

(a) = f(am)

gt

We now introduce 2 tengent vector T at the unit element € of G

Thie infinitesimal right translatiors are defined by:

X(a) f(a) = ,?(m)fﬂq (a>J m= e

Let us nrecise these definitions with a coordinate syste

\
0"~ KA
L(m) = ) U X(a) = ) Xﬁf@;
P 7
U
X (a) f(a) = | f (a) |
¢ l C‘,' ‘0'“} A |
Un i m=e

The right hand side can be evaluated usirg the relation given in

a orevious section:




and we obtain:

ﬂ._C._&_;j‘fM((x/ = //fof ﬁ)/ (( ( )J/ i

() s
v T .
In the limit m = 2 , we have A (e) = 6 and the infi-
7 s ;

nitesimeal generators ¥ | (a) can be revrcsented in terme of diffe-
o

rantial ooerators hy:

X (a)y= A () C |
iy Rend .,;i————— >
0 Y] Ja
The Lie =lgebra of the gensrators er(?) is known from the Lie

g
oroduct of two omerators as calculated in section 1.

f
[Xf Xo] = (/C 2 /A () — A ") "/f(”)) %
- (

chd a N [

v///\

This exoression can be simnlified bv using the structure constants

introduced in Section II.

q o ‘7] B
°< = [ - (:;\" + «;“ ! q -(‘ (.?/
Ay (2) ‘)/’\0‘ (4) — A (a) GERe C A
j) o 7 fou A
DCT% (/554

J.;xf‘fxfj = C X"C‘



s () =

T a

e entisymmetry nroyarty of the Lie algebra is contnined in the
wnbicymsetry cheracter of *the structure constants., The infinite-
simal gercrators ss=tisfy the Jecohl identity and it followe for the

structure constants the relation

A
)
A
D
R
g

< <+ C

S

IV. Simpnle and Semi Simplc Lie Algebra

1., Definitions

We first give some classical definitions for the grouns

sl

In an abelian group the multinlication law is commutative.

lo

4 subgroun is 2 set of elements of a grouv which satis-
fies the group axioms. A trivial subgroun is the iden-

tity element itself.

e

An invariant subgroup H of a group G 1s a subgroun

of G such that:
a X at & A forall (& E ant a €6
If we now consider the »articular case of interest of Lie groun
a All the infinitesimal gencrators of the Lie algebra of an

abelian groun commute and all the structure constants

are Zero.
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-

. /[
b The Lis algebra !L 5f an aralvtic su + groun H of a Tie
g

group G 1s a sub-algebra of the Lie algehra,

A

of ¢ and the struc-

ture corstants satisfy the ralation:

¢ If now, H 1is an invariant sub-group of G, fthe sfructure

constants verify the conditlon:

Q}) - 0 for all x.} €h, ><“< ) )\() & 9 if><r,S ccnot 1n h.

2. Simvle groun and simple algobra

A simple group has no invariant subgrouns hcsideq’itsplf)

the identity and nerhaps discre te subgrouns,

£ simple algebra has no inveriant subalgebra.
The Lie algebr~ of 2 simple Lie groun is a simnle =2lgebra

3., Semi-simnls groun and Scmi-simole algebra

€A

A semi-simnle groun has no abelian invariant subgroun,
besides itself, the ideptitv and »nerhans discrc tgsuhgrouns

A semi-simnle algehra has ne  abelian inveriant subalgebra.

The Lie algebra of a semi simole Lie groum is a semi

simnle algebra.
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4, Cartan criterion for semi-simple algebre

¥

We define the symmetrical Cartan tensor

The Cartan eriterion is the following:a neceseary and sufficient
condition for a Lic =2lgebra to be semi-simnle is:

&{el_ﬂ < ?fﬁ‘) + 0-

!
For » semisimnle algebra, the matrix 3‘F0“ is a regular matrix.
This condition is obviously a3 necessary ;onﬂition. If we sumnose
that the Lie algebra possesscs an abelian invariant sub algebra }1
211 the structure constants C;o: where X & H varish and it
follows that 211 elements ? X of the row (; of the Cartan

'

tensor also vanish and det( 0

o] =
1 fJGV

Cartan has »roved that if det <(i'> £ 0 the Lie algehra is
semi-simnle.

5. Let us consider = semi simmle Lie 2lgebra. The Cartan
tensor f?Fﬂ, allows to define a symmetrical linear connexion

e

in the Lie algsbra  In »articular, this tensor can e used to lower
the irdices. As an example, we have

C >
fer = Cop Tat
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We renlace ﬁ by its definition and we anply the Jacobl

ident{tr B
_ PR B S SN
fot 5f A T C(’@o*'cdf C’ft

The tensor ij%“Z: is invariant under a cyclic nermutation

of the indices 2and comnlétaly antisymmetric.
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Chapter 2
LIE GROUPS OF TRANSFORMATIONSG

I. Generalities

1, Defipition:

G 1is a Liec groun of transformations of an analytic
manifold @ Lf for erch J( €u and & €G , one can find
a y&m denoted y = J( a such thtt

a The mapoing (1, a) ==y of I x{(r into m
is analytic
b xe = e for ecach W &m-

¢ Associativity ( X a ) b= ) (ab) for cach ) fm

and a, b EG.
If the unit element e of G 1is the only one element satisfy-

ing the condition b, the groun is called an effective groun,

2. Lig algebra

Let us define o chirt in m and a chart in G and
we use greek indices in G and latin indices in m. The

manning X a ==> y 1s written =s

(y / = f % ()(}A)

where the composition functions f 3 ar

> analytic functions

of their arguments. The velocity fleld is d~fined by

-

o
ui Go=] & {90, n)

e
i

BREA g = ¢

9 ]

and the infinitesimal generators of the Lie algebra are given by




aj "\"
= ) ) U
UC

For an effective group, the generators X _[») defined

o |
in this way are llinearly independent and constitute a basis of

the Lie algebra.
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II. GRQUP OF LINEAR TRANCSFODMATIONS OF £ VECTORS®ACE ON
THE FIFLD OF REAL NUMBFRS

We are working with a n-dimensional vector snace or the
field R of real numbers as analytic manifold; E(n,R). We
define in E(n,R) a symmetrical lirnesar connexicn g, with a
regular matrix which allows us to introduce a scalar oroduct

in E(n,R)..

Bs General Linear Group GL(n,R).

1. The regular nxn matrices with real coefficients
generalethe general linear group GL(n,R).

Any arbltrary nxn matrix with real coefficients™: 'n,R),
defines 1in the v%ctor space E(n,R) a linear tranfor nation by

1/} - R §g (a)

When the matrix &(8) 1s regular, the associated linear trans-
formation is also called regular. It follows that the group
of regular linear transformations ir %®E(n,R) 1s isomorphic to
the general linear group GL(n,R).

2. Let us now define, for the matricesy| (n,R), a basis

Eij by the matrix elements:
e o ‘:..'/:’ .6,"
(E13>k£" %&(~T1&

The matrix a 1s regular and the Eii's span a comrlete basis.
L5, J
The matrix 9(a) carn be expanded onthis basis following:

ij
8(a) = E a

1]

The velocity fleld (Aj4<ﬂ) can then be written as




J _ 0 T .k QJI Y VS
w! ()= w5y ()| = W .d
L] 0a"° L i

and the infinitesimal generators have a representation as -
igl

dfffer@nt?operators

9

3)(5

X = X,

We are now able to deduce the commutation rules of the TLie

algebra

[xvs'xfuj: ?S(' ‘XV“U o ((]MV XbS

The linear group GL(n,R) denends on n? 1indenendent rea]
parameters and the Lie algebra has n” elements.

3. The product of two matrices ij i1s given by:

E.. B = g o
i3] ki >

We can consider the matricequﬂ(n,R) as a Lie algebra on “ie

real numbers with multiplication law given by the TLie product.

7 B - = 5 i e ) I
[Py B SRRV T
L. ‘ J
The previous eouality shcws clesrly that the Lie algehra of

the matrycesvnw\n?R) is isomerphic to the ILie algehra of the

general linear group GL(n,R).
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B. Special Linear Group SL(n,R):

LN
1. The psrtl cular operator A= ‘} ’<~'5 commutes
in an evident wayvvith‘the n® infbnitesimal generators ><tuf

The transformation generated by >< 1s given by:

(f)(h: ‘EX)Lk = ‘é)(k‘

and 1is interpreted as a dilatatiopnr of center the origin .

The groun generated by X’ is an one parameter abelian group;

subgroup of GL(n,R) and isomornhic to the additive grouv
R of real numbers.

The factor group GL(n,R}/i is the spectal linear group
SL(n,R). It can be defined as the set of unimodular linear ﬂ

tranfopmaticns in B(n,R) or, equalently, as the set of the

nxn unimodular matrices with real coefflcients. The number

Py

of independent real parameters is n?— 1.

e

2. The Lie algebra of SL(n,R) i1s immediately defined

by the infinitesimal generators

/
I
Ay = XTS*“ ”_‘?¥S X

YS n

The commutation laws are unchanged.

%, C. Pseudo-Orthogonal Groups: Os(n,R):
| 1. The scalar product, in E(n,R) 1is given by the sym-

metrical linear connection ‘} :

4

x,y) = gx,y) = >(k ng yoo= (y, 2 )

Let us call as A an arbitrary linear transformation in
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E(n,R). The conservation of the scalar product under the

tranforeation A 1s simpnly
(AX, A\Y) = (X,Y)

This equality must be satisfiled for all vectors »( and vy
of E(n,R). The invariance propety takes then the simple form.
AT g A = g
A matrix which verifies the previousmlation is called a ortho-
gonal matrix with respect to the connection g. The ortho-
gonal matrices generate a subgroun of GL(n,R), the pseudo-
orthogonal group.
2. The connexion g 1is a symmetrical bilinecar regular

form and can be diagonalised in the following way: gij= +85

—-ij.
We choose in %®{(n,R) an erthopormalized basis such that:

i

gij —_— ﬁij i 1,2, nnnnnnn ] n-s

gij. = "Gij 1 = nes+l, ...., n

The number s of time like vectors 1s callad the signature.

The pseudo-ortnogonal groups are characterized by the signa-~
ture s and noted OS(H,R)- The two pnseudo-orthogonal grouwns
Og(nyR) ard O, _¢(n,R) are isomorvhic.

In the particular case s=0 (or s = n) the vector’
space 1s an euclidian space and the cornnexion g can always
be cho .sen as the unit matrix I. The orthogonal group

0(n,R) 1s the set of orthogonal matrices: ATA = T.
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3. The pseudo orthogonal grouns are sub-grouvs of

|

GL(n,R). The Lie algebra of the nseudo-orthogonal group 1< a
sub-algebra of that of the lincar group. The infinitesimal

genearators 2 can be written as linear combinations of the

1j
Xi3 vpreviously defined:

- N mn
Fiw s = Ax s X
ij A?J m

n
It is sufficient to imvosc the invarience of the nurm of all
vectors

Zij (3 , %) = O for all o> E%(n,R)

which can be transformed into:

MmN
Ak‘,)( )(Jv\ )(!/\ = 0 } n
B : N m
The matrices A 5 Ymust be antisymmetrizal | ) ;_+fA ; = 0

and it 1s convenient to choose:

which gives for the Zi3 ts the exolicit for
Tt is possible to construct _nla-1)  yipcarily indencndent

antisymmetric .
/nxn matrices ,A,‘ ., The Tle algebra of the pseudo-orthogonal

!

groups is sn»anned by Eﬁg:}i infinitesimal generators Zij
and the pseudo-orthogcnai grourn: Adepend cif Qgg:ll real in-

dependent parameters.
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B R i ks s R

The commutation rules for the Zij are then given hy:

[Z\‘} o] =

\
J

k Zg- 9 Z}a; '*'?(hz{?o[" (}\ﬁ ik

4, TFor a given value of n, there oxist only [pgjl + 1

non-equivalent pseudo-orthogonal grouns.

Two particular sub-groups of O0g(n,R) are the twc ortho-
gonal groups O(S,R) and O(n-s,R) and also the direct

product.

0(5,R) & 0(n-s,R) 7 04(n,R) é

D. _Special Pseudo=-0rthogonal Groups SOSLQLR)T

1. As a consequence of the relaticn ATg A= g, we cb-

taine
(det £)2 = (det g)* = 1

It is then nossible to define in the psegdo-orthogonal grouns
Og{(n,R) an equivalence with respect tc the sign of det A
Onlyiaiset det A =+1 1s a sub-group called the spnecial pseu-
do-orthogonal group SCS(n,R), This special grcup, of course
is alsoZ%ub-grouprof the snecial linear grcvp SL(n,R) and more
preclsely |
8045 (nyR) = C4(n,R) M SL(n,R)

2. 1In a euci®iirn scace where g A~ I, the grouv of uni-

modular orthogcnal matrices 1s the snecial orthogonal group

S0(n,R).-
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3. The two grouvs Os(n,R) anrd SOS(n,R) have the

sgme Lie algebra but they are not Lsomorvhic.

E. Aponlications:

1. The signature of a three dimensional vector space can
be S§=0 (or s =3) and s =1 (or 8=2). We will have only
two pseudo-orthogonal grouvs, 0(3,P) and Ol(S,R). The in-

finitesimnl generators can bz represented by:

Ligo= 24 8 >0, U
"N A )

L )¢

T _ 0

“ag = Maa— — Wy L
N7 U
Zyo= 2 o L
' on! IE

In the case of an ewclidian snace the connexion g can be

taken as

O O
= O O

fl
g = |0
[0

|
|

and the commutation rules are given by: ]

) , ]
% . B =-2 |z, z 1:-7, Az Z . 2 !
23" “81 12, |31 12 93»L12 23 31

!
- A

In the case of a pseudo e#clidian s»ace, the connexion g

can be cho sen so that
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1 0 0
g D 1 0
i 9 =L
and the commutation ruless become:
ik ool = &3 . = 7 7., Z =7
L?ZB? QBl‘J - Al? izgl’élg } A?B [ 12 23:} 31

Usually, for the orthogonal group 0(3), the hermbtic infini-

tesimal generators arc defined followings

“ik= 0 Ty .

and the commutation rules take the fdmilisr form J X J = 17.
Z%. Let us now consider a 2-dimensional vector space with
a linear connexion g defined by: gf‘ = 1, ?;@_ = & with
£ = +l. The general lincar group GL(2 ,R) is a 4-vara-

meter groun and the Lie algebra is known from the commutatior-

relations

x X ] [

!\ P IQZJ — XILL [X&Q‘ X;QJ: _...2 K‘o&

| X, [ :

\/ 9"(\’ Q’_l [ ~
X2, XJUJ = € XQ\

(ﬂx - X ] = [ w

A Xaa i ,)(l;/&]]: € X)) — Xz
The gcnorator \f = X+ £ X’ commutes with the four

ngl A. The Lle algebra of tho special linecar group
SL(2,R R) can be convepilently defined by the folluwing infini-

tesimal generators:
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L (%= € X)

= & (xh&;*”é X )
X = éf ( Xig— € X§l)

which setisfy the commutation relations;
¢ +- i A+ . o ) — ;

If we compare these results with those obtained in the previous
section, we immediately see that the special linoar group
SL(2,R) and the pseudo-orthegonal groub Ol(B,R) have two
1somorphic ILie algebra. Of course the two groups are not
isOmorﬁhic.

Sf” The Lie algebra of the orthogonal group in a 4-di-
mensional euclidian space 1s defined by six inﬁ.d{ésimal gengra-

tors Zs and the commutation rules:

13

[ch  Ziy|= T N e R I

Let us define two sets of three generators by
+>.

Z (Lt )
where J & E i1s a cyclic permutaticn of 1,2,3. The follow-

ing relations can be immediately verified
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The Lie algebra of the orthogonal groun in a 4-dimensional
euclidian snace can be written as the direct sum of two Lie
algebra, cach of them being isomorphic to the Lie algebra of the
orthogonal group in a 3-dimensional euclldian snace.

As a copsequence of this result, we have the evident iso-

morphl sms

S0 (4,R) ~ SO0(3,R) (X SO(3,R)

4., The homogeneous Lorentz group L 1s the pseudo-
orthogonal group assoclated to a 4-dimensional vector svace of

signature S = 1, the Minkowskl . i space. The connexion g

-

811 7 Bog TEay”

Under ILorentz transformations, the norm of each vector is

. q a - 1.
is cho..sen so that +1 and / B = 1

2 A -~
invariant )(54~)§-4->(§1. Ny, = Coﬂglaﬂk,

The Lie algebra of L 1s defined by the following

commutation rules

12, <, Jm_Z [Z. 7\J\~“ Z —
{ e R ¢1g~/ ja\,zL&]:"~Z&3
[ = Zﬁ; J ‘433, Zo&JZ:“”Z@* ) J;Za\fzoz,“' Zal

[ZDBIZOV :+231 } !:ZQI»Z(R]:‘*”ZtQ\I }'20;{'203':'+Z

Some p=rticular sub-algebra¢ and sub-groups are evident from

the previous equations and correspond to partlicular invariance-=:




o

Zi9y Loz 5 Zgy Bcnerate the Lie subalgebrd. of an
orthogonal sub-group which leaves invariant the

N B & 2
component > and the space norm "l’*’(‘z"")(s :

2 25 4019 Zpgs Benerate the Lie sub algebra of a
pseudo-orthogonal subgroup which leaves invariant the
component )(3 and the quantity )(‘)Q'+)(j_ )(;1.

3 223, Lh9? 203 y, 1n the same way generate a Lie suh-
algebra isomorphic to the »nrevious one and the corrrse-
vonding pseudo-orthogonal sub-group leaves invariant

2
0 aed g+ nZ
d Z Z . av e i 3 ] =
d 917 ZOB’ 51> ve have again the Lle subalgebra of

a third pseudo-orthogonal sub-groun and now *im-

b, : 4
the invariant quaptities are 3(& and 9(,+ag,f~ MW
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IIT. GROUP OF LINEAR TRANSFORMATIONS OF A VI'CTOR SPACF
ON THE FIELD OF COMPLEX NUMBFLS

We now introduce gn n-dimensional vector space on the
field of complex numbers FE(n,C). A large part of the results K
- previously obtained in a réél'Vector space can easlly be ex-
Hendat o @ complex vector space. The herritian oroduct in |
E(n,C) 1is defined with a symmetrical antilinear connexion g
which is a regular sesquilinear form in E(n,C)
Let us consider a Lie algebra, = ?><O'} on the
real numbers with the commutation rules
[ Xy, X | = C(jc X ¢
If now the Lie algebra is defined on the complex numbers, 1t
can be interesting to introduce 1ts comnlex extension /\¥- as
a new Lie algebras on the real numbers with infinitisimal i

generators XJ_ and >%~ satisfying.

. f » ’ -
| %, % = € Xey DX Ve )= Caiyf ) E%wytJ:*CfCXf

,*—»
It 1s easy to verify that the complex extension of A  1s a

] direct sum of two Lie algebra isomorphic to /\*
| LS *
f (A =A@ A

A. General Linear Group GL(n.C):

1. Thc regular nxn matrices with complex coefficients
generate the general linear group GL(n,C). The group of

regular linear transformations in E(n,C) is isomornhic to




GL(n,C).
2. The Lie algebra of the general linear group GL(n, )
either

cap be considered/as a Lie algebra on the comnlex numbers with
the infinitesimal generators XG‘ or a Lie algebra on the
real number with the infinitesimal generators %0,and >%~
The commutation laws of the com?lex ~xtension of a real Lie
glgebra have bern previously given and can also be directly
obteimed by using the method exnlained in the previous section

for the rcal case

EXV‘S ! th.4]: ?Sf’x”\/‘u - ?H'Y X(—“

[X'YS , yh‘\] ?g(' >/\ru. N ?UY \//fu

i

\/ .
Lyyvg' /h/\] = ~?S(‘><"ru +%UY" X{

e

3. The Lie algebra of the gereral linear group GL(n,™)
1s also the Lier algebra of the complex matricesm (n,C). The
proof is identical to those obtnined on the real case and A

convenient basis will bhe




= BB

B. Special Linear Group SL(n,C):
Sv Sv
1. The two operators X= ﬁ X‘Y‘S and )’: ? >/YS

commute with all generators of the linear group GL(n,C). They
generate a two parameter abeliar group corresponding to comnlex
dilathtions of center the origin. This subgroup of GL(n,)
is isomorphic to the additive group € of compnlex numbers.

The factor group GL(n,C)/C is the special linear group
SL(ny¢). It car also be defined as the set of urmodular linear
transformations in E(n,c) of;?ééuivalently, 2s the set of the

€omplex

nxn unimodular matrices with/coefficients. The number of

independent re-l parameters 1s 2n> — 2,

2. The Lie algcbra of SL(n,¢) 1s immediately defined

by the infinitesimal gercrators

/

XYS = XYS "%r ?yg X
X

>T’5 = yvs - i,( Gvs 7

The commutation laws 2re unchanged

" C._ Pscudo-Unitary Groups USQQ,GP:

1. The hermitian product in FE(n,€) 1is given by the

antilinear connection

Y pe—
(X,‘;}): ?C)()';L):_ 3 ghﬁ\’} _ Q},D()
Let us call as M an arbitrary lincar transformation in

E(ny,¢). The c;nscrvation of the hermitian nroduct under the

transformation A 1s simply

@)(/ Aﬂo) = (X, Y4)




-~ 3D -~

This equality must be satisfied for all vectors in =(n,2).

The invariance pronerty takes then the simnle form

Ata 4= ¢

y
A matrix which satisfies the prévious equality is called an

unitary matrix with resnect to the connection ‘} . The unitary
(

matrices generate a subgroun of GL(n,€), the pseudo-unitary

group.

sesquilinear
2. The cornexion ?< is a symmetrical/-: vttt wpegnlar

- U

form and can be dlagonaliz~d in the foliowing way ° ‘](;’: +
J

We will choose in E(n,C), an orthogonalized basis such that:

(3% = ‘_J“‘o[' {= N=8 41, - -~~~ n
The pseudo~unitary groups are characterized by the signatur~ o
and noted  Ug(n,@)

In the particular cace 8§ = O (or s = n) the Vector ~n~ne
is hermitian and the conne-tion C} can always be cho sen as the
upitimatrix ﬂ ~ T . The unitary groun U(n,€) is the set
of unitary cxm matrices A*A = I,

3. The pseudo-unitary groups are subgroups of GL(r,€).
The Lie algebr a of the pseudo-unitary group B L R
1s a sub algehra of that of the comnlex linear group. The
infinitesimal generators %Z(}' can be written as linear comhi-
nations of the Xk” previously defined with comnlex coefficients.

Mmoo
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It is sufficient to impose the invariance of the norm of

all vectors and the matrices }.j turn Hut to be antihermi“ian:
)”}“ + ) ’\,“ - 0 L ®(n,c), 1t is possible

to construct n2 lincarly independent nxn antihermttian
matrices. The dimension of the-Lle algebra of the pseudo-

unitary grouns is then n”.

It 1s convenient to choose for the )\)

a _Eiﬁ_ll_ antisymmetric real matrices E,,K6K —F_
2 | iy
b _alnel) symmetric purely imaginary matrices
2 I S
1y it

and the infinitesimal generators can then be written as

-.)'4:-—,2,“, - X‘}—wx(}'k
I T
;Z(J ::4’313('::: 72& ff.>{5c

The eommutatiocn laws are the following:

202 = T2z~ T o+ 0.0 25

ro S T T L
LZ*-}'ZM]“ 9;&2(-1'3\-;¢733£*?Jﬂi‘é‘wzoﬁh
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As a trivial conseqguence, the Zij generate a Lie sub-algebra
isomorphic to the Lie algebra of the pseudo-orthogonal group
05(n,R).

4. The Iie algebra of the groups GL(n,R) and Us(n,G)
have the same comnlex extension which 1s the Lie algebra of

GL(n,@).

D. Special Pseudo-Unitary grouns sq;(nxr)
T
13

inflnitesimal generators Zij& ij. It generatesan one-pera-

meter abelian group whieh/in fact a gauge group, all the com-

1. The operator Z = gij Z commutes with the n~

ponents of a vactor being multiplied by the same phaée.

Jxk:QﬂZxkzlﬁ)Jz & recd
This grouv 1s 1somorphic to the one dimensional unitary grcurv

U(l). The factor group.
7.7 G ‘,,/
Js{n,0)¢ 17(1) SUg(n,&)

1s the special pseudo-unitary group also defined as the set
cf unimodular nxn matrices with complex coefficients.
2. The Lie algebra of the unimodular pseudo-unitary

groups 1s defined by n® —1 infinitesimal generators

/I 1
‘ Z-I:Z ’ {'-'Z
/ v\ e T T v
/ qJ n /4
and the commutation laws are unchanged.
3. In ar hermitian svace where g ~ I, the group of

unimodular unitary matrices is the special unitary group

SU(n,@).
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4, An'inclusion which is a conscaquence of the cxvnlizit
form given for the Lie algebra is the following
s04(n,R)  ( 8U,(n,0)
5. The Lie algebra of the groups SL(n,R) and SU,(n,t
have the same comnlex extension which is the Lie algebvn oI

the group SL(n,¢€).

E. Complex Orthogonal Group 2(n,0)

1. The pseudo-orthogonal grcup O.(n,F) is the grrun
of linear transformations in E(n,F) which leaves invarfanc toe
symmetrical bilinear furm £.

In a comvlex vector space E(n,c), the scalar oraducst i
now a comnlex number exvlicitly given hy:

(21 We, Y1 LJ,L) = (00 %) =0, )+ 00, ) 40 SIS
where each term is well defined in E{n,R).

The group cf linear transformavicns in EB(n,c) wulch
leaves 1nvariant thls scala» product g is the ccocmuleX oronc-
gonal grout J(n,®)

2. This group can be considered as the complew extinsio:
of the pseudo—orthogonal,grouos' 04(n,Rj. But with a corven?s:
Changgngﬁqusiéﬁi£hiéwalways nossible now, in E(n,¢), to chooue
}ib as the unit matrix because of the definition of the zcalar
product.. It follows that all nseudo-orthogonal grdups Ggir, R

have the same coumolex extension 0(n,&).
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3. The orthogonallty condition can always be written as
T )
/\,4 = I and the infipitesimal generators of the ILie algebra

are given by

X _1
;Z(J = (}_“‘xj( ) ’Z(J = >Q} — 7}(
Its dimensionality 1s sirmply n(n-1).

F. Apnlications:.

1. We first consider the unitary group U(2,C). The Lic

algebra is spanned by four generators 212,2{9, Z{l, zk with

2929

the following commutation rules

I} I -
[Zl'l/ZHJ:“"ZZW& / LZ,;L,ZI:(:—OZZI'

22 12
T T - -
. "t £N
z Z ] = o ’ ¥ _ -
o L ,li i Z'(;L_ 1 ZI;&/ f"-’QZQ ~-°Z Z l°2__'

XA :O

Zh 2] =2 2T [27 |

The linear combination 4 = Z{l + Z;Q commutes with all the

generators and can be associated to 1 gauge group U(1l).
The Lie algebra of the special unitary group has there-

fore only three inf{initesimal generators 1t is convenient toc write

in the form

I ~
M = 71;- Zie M. = % Z Mg = 1 (Z31—23,)
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From the commutation relntions given above, it is easyto deduce:

ﬂMu ij’ = Eype M

The Lie algebra of ¢U(2,C) and the Lie algebra of the ortho-
gonal group O(3,R) are two isomorvhic three-parameters Lie
algebra.

2. The grouns SL(2,R) ‘and ol<3,R) have two 1somorvhic
Lie algebreze. Such an isomornhism remains true for the comnlex
extensions and the groups SL(2,7) and the complex orthogonal
group 0(3,8) have also two iscmornhic six-parameters Lie
algebrac. By using the notations of the previous section the

Lie algebra of SL(2,0) satisfies the following commutaticn

rules:

Loy )=>"5 Dy L=y D yi]==y7
D=y [yocderts [vix]=->

Dyovt]==x7; [y ]=x 0 [y )= x7

After comparison with relations written for the Ilorentz groun,

-

-

we lmmediately see that the Lie a2lgebra of SL(2,C) of 0(48)

and of the Lorentz group L are isomorphic.
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-~

3. The Lic algebra of the comnlex Lorentz groun is 1so-
morvhic to the Lie algebra of the comvlex orthogonal group
0(4,8), It has been shown in the previous section that the

Iie algebra of the orthogoral group 0(4,R}.18 the direek.sum

of tgp isomorphie Lie algebrae of the orthogonal group 903, R).By
HAL0G,1Ys of the paragraph %) it follows immediately that the

Lie algebra of the complex Lorentz group 1s the direct sum of

two 1somornhic Lie algebree of the real Lorentz group.

IV. GROUP OF LINFAR TEANSFORMATIONS OF 4 VPCTOR SPACT ON
THE_FIELD OF QUATERNIONS

The comnlex numbers C can be considered as a 2-dimen-
sional algebra on the field of real numbers R with the com-
mutative muitiplication law:

(ayb) (eyd) = (ac — bd , ad + Dbe)

’

The quaternions '@ can be defined as 2 4-dimersional algehra
on the field of real numbers R with the noncommutative mul-

tiplication law:

L
(a.,3) (b,y,b) = <aob3 — H:H " aoﬁ + bog - 2xh)

0
L simnle matrix representation of the quet:rnion (ag,g) cAan
be realized with the hely of the Pauli matrices: (ag,g) = avraE?A
The queterrnions O can also be considered as a 2-dimensional

algebra on the field of complex numbers C’ with the multinlica-

tior law:

(,4) (g b)) = ()cfdafﬂ/ Kf—f—y@)
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An useful matrix renresentation of the qusaternion ( 2, ? ) is

then

_xy 3
In order to define the norm of a complex number, we first con-
sider the complex conjugate (a,b)* = (a, — b) and the norm
is simply
N2 (a,b) = (a,b¥ (a,b) = (2% b7, 0)

For the quaternions, we proceed in the same way by introducing

the hermitic conjuga-e (ao,g)* = (ao.—- 2) and the norm is
given bys
Nl(a 2) = (a. A)* (a.3) = (a2+ 3, 0)
0) - D 4" 9 2 ’

In the language with the comvolex numbers, we obtaln ¥ Qﬁc/?):;

(X , -y) =and the norm takes the simple form

o — -
N (X,y)= (7()\})*()(,\04): (X +4 7Y, 0)
The quaternionic product of two cuaternions ﬁy‘ and ﬁé{ will
be defined by the quaternion 7 *g — gq,* . By using
) qaﬂ - V) 6Q£ C@&|

the previous forms for the quaternions, we find

(ag,a)* (bg,B) = (aghy + & B, a,B —b, d + 3xE)

X — —
« ) a :'_(
OS4) CnLt) X+t wb-yn)
We now introduce a n -dimensional snace on the field of the
quaternions E(n, @ ). The qusternion product of two vectors
. conjugate
In B(ny, @ ) 1is defined with the -'self / " regular form g.

(g = 3%),



— S8 =

uarternio ‘
R Q;gp‘icextension //\Q of a Lie aliebra A= {XOJ,?

The
defined'on the rcal numbers can ba also considered as a Lie
algebra on the real numbers with the inflnitesimal generators
I e 2 X
Xg‘, >2,, >%¢ >%, + Of course, the three complex exten-

sions /ﬂ*':; %‘XOJ/ >gf § are 1somorvhic.

A. Linesr Grouns:

1le
1. The regular nxn matrices with quarternion/coefficients

generate the general linear group GL(r,R). The grouo of re-
gular linear transormations in ¥(n,Q) 1is isom>rphic to
GL(n,Q).

2. The Lie algebra of GL(n,”) 1s the quaterrnc xten-
sion of the Lie algebra of the real general linear group
GL(n,R). I% can also be regardrd as the Lle 2lgebra of the
matrices z& n?QRJ The dimension of the Lie alzebra is 4n°

and the commutation reletions are given by:

[Xak,,){pw] = Tt K= Faj X

v¢”% A
ER N A T N
!; &p\ / /«t,//n_j _ a},’(ﬁ /Jlm }m\& //p}:z
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Sy
3i The operator K= ? ;KY'S comnutes with all
generators of the line~r group and generates an one dimensinnal

abellan sub-algebhra.

B. Pseudo Sympletic Grounps S0 (n,3):

) c
1. The cuaternion/»roduct of two vectors n E(n,0) 1%

a quaternion given by the connexion ?—: "
%,h g "
— — q — {
G, =9(uw = Jgvt = G
Let us call as 2 an arbitrary linesr transformation in

ie
(r,Q). The conservation of the quaternion/nroduect under the

transformation A 1s sl goly,

(Au, pe) = (v,

The equelity must be satisfiad for all vectors in E(n,2) =nd

the invariance property tekes the simnle form:

(v

The matrix ?/ is defined by (1) = €4 Ay - )*. The matrices
f. which satisfy the previous equality are called symnletic
matrices with respect to the connexion g. They generate a suh-
groun of GL(n,0), the pseudo symplectic groun.

2. /s previously we introduce the signature 8 of the
vector snace E(n,?) ard the nseudo symolzctic grouvs will he
noted SJS(D,Q).

3. The Lie algebra is a sub-algebra of the Lie algehra of

the general linear group GL(n,9). The infinitesimal gen~r:tors
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Zij can be written ~s lincar combinations with onaterrionte eo-

cffcients of the Xij de fined 1in section 11,
h)\r\r’\
& Z‘j = /;(‘j X/ﬂr\'
: 9

It is sufficient to impose the invariance of the norm of =11
M N
vectors and the matrix elements A.,/ must satisfy the

réquircment
] . X
3 AN . m
A de =0
k; \} k&
E ;

The infl nitesimal renerators car thep be written as:

S = o E e = X = X

* ) ’ 4 A=1,2,3
: Z('}': Z)k 2= >/\} =} >’jg =y, 2.

The dimension of the Lie nlgebra of the pscudo-symovlectic grouns

is then n(2n + 1)

The commutation laws can easily be written in the following

form:

2 2= Ge 2=t G0 2nr 0 243
24 70 = 1021 -1z [0+ 9,0 2104 21
[Z be]"j)#%ﬁ*f’bff“)ﬁzuz VST

[Z\ ZHJ £ 6’2 WRZ[ fdjﬁ %(7_7&}2 mzd?

>




is a trivial consequence, the 's genarate a Lie algehra

Aij
isomorphic to the Lie algebra of the pseudo-orthogonal groun
05(n,R) and the three 1isomornhic Lie algebrae %;Z(A/ 2f§ f
are isomorphic to the Lie algebra of the vnseudo unitary grouo
Us(n,C),

4. It is a2lso extremely useful to reovresent the gquater-
nioncv by = ;et of two comvlex numbers ( )&,;:) « The
components ﬁ/) of abvoctpr 5& in E(n,0) can be considered as
the comnonents ( )(f/ yﬁ ) of a vector X in ®{2n,€) ard we
define ] ) ) o,

n+ ]

: XJZZX)/ X +J.: yd Jr),ﬂf&-~~-7ﬁ
Let us now consider two vectors U and % of E(n,8); they can
be associated to two vectors X and Y of E(2n,0:) by

u_,): (Xj/ ><r\+l}) . 'i?z <\/le >/y\+?2)
ic

The quaternior/ product q'<L{!L%) 1s defined by

i Y o¥- }2

¢ A, £ Y L] o [ }

‘{Jl(u(,h,)-‘ )()h (1 U_
and in terns of X and Y we obtajin for the quaternion (L“ V.
the form

\ ' N4l n+R " rtkR on ) :
9Cu,0)= G (R By I E Y R)

We now introduce, in E(2n,C), an antilinear symmetrical conpnec-
tion GY¥ and a linear antisymmetrical connection G- defined

by the rcduced form:




CJr*gO }o

g |
0]
|
and the qusternion- - ? (U)U}, car t han be written as;

g(u, ) = (Cﬁ(x;\/) G (xY))

The linear groun GL(n,3) 1s a subgroup of the linear groun

I -8

GL(2n,C) in an evident way. The pscudo sympletic group

6F]

ps(n,Q) can also be defincd as the set of linear transforma-
tions in #(2n,C) which leave invariant the two connections

Gt and G~ .

In ar cqulvalert way, the group Sps(n,Q) 1s the sub-

group of the pscudo-unitary group Usg(2n,¢) which conserves the

antisymmetrical bilinear form G~

5. We first consider the 2n dimensiona® veector spnace

%(2n,R) with the connection ¢ = {g gf ;  The comvonents of

a vecetor X are noted with the two sets on indices i = 1,2,
ee....n and n + jJ.

The general 1linear groun GL(2n, R ) acting in 7 (2n,R)
depends of 4n” parametcrs. The infinitesimal generators of
the Lie algebra wiil be divided into four sets of a&'genevﬂtorsi

by ~“,»’”‘}/ ;Xm+ﬂ,} / ><H+NJVV+; ‘

The sub-grous of GL(2n,R) whith copsertées. £hc Iinear
symmetrical connection G* 1s the pseudo-orthogonal group

Oo4(2n,R) which .depends on n{2n-1)' narameters.

We will call real pseudo-symnletic group g (20, R)
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the sub-group of GL(2n,R) which conserves the linear anti-
symmetrical form G™i The infinitesimal generators of the

real pseudo sympletic group are givern by:

A(} - X(} — XH+94Vv+C
B\‘{} = XV\-’H") - XW*} ¢ = B/x

C-&;; = XK‘ ,«\\_#OKL -k"., Xd e C& .

The commutations laws are given by

A Ane]= G Ao — 00 Ak

LB‘J’BM] = U= (-C‘}J) C)‘\”d

'_Ak'} j EW ] =~ {1k BM — 4 B{}'ﬁ\i'

LA\& ] Cﬁzﬁ_j = ?}b C&{ —?-U(//)( C,\_}{.

15:,Cral= ~gipAd =GpAi -9 A k=G0 AR

2 : i
The n~ generators AJi define a Lle sub-algebrn lsomornhic
e

o

to the Lie algebra of GL(n,R). The D(0*+1) ooparators B,
and the n(nel) K L

/generators Jcij define two abelian Lic sub-alg-hraé.




The dimension >f the Tie elgebr: of the real pseudo-symnletic
groups Sp,, %n,%) is n(®n 4+ 1).

The sub group of GL(2n,R) which leares invariant the
conn:ctisns G and  G” , 1s the intersccton of the grouovs

0po(?n,R) =2nd 879, (2n R). The inflaitesimal generstors are

Immedlately known by the anti symmetry condition .

24y % My T g 41y = Byg — Cyy

9} i
The dimension of the Lie nalgebra is n” and the commutation re-

lations are given from the previous exovressions hy:

ESIE k2L -k BT Zck+T 4 Zjk
[ jr Zpp | = ?;AZ;%”m%ﬁ?;@h*—m Zik

L RJ‘“" RZS=TRZ -V Z L™ TL Zyk

This Lio nlzebra is isomornhic to the Lie algebra of the nseudo
unitary groun Ugin,C).

€. W2 now Introduce the 2n~dimcnsional.comolox enace
E(2n,¢) with the antilincar connaxion 6. Thc genersl linear
group GL(2n,c) acting on F(2n.g ) Aepends on  8n% waramsters
and the Lie algebra is the complex extension E.X’ >’% af
the Lie algebhra of GL(2n,R).
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The sub group of GL(2n,™) which conserves the sntiiinear §
symmetric connection G 1is the pseudo unitary grouv Us . {2n,7 )

2
4n” parameters.

which depends on

Wa will call complex pseudo symol%ﬁic groun ?p?SCQn,CB
the sub group of GL(2n,c, whichonserves the linear anti-
symmetrical form G-. The Tie algebra of SpQS(Qn{C) is the
complex extension of the Lie algebra of Sp23<2n’R> and 1is
defined by the 2n(2n + 1) 1infl nitesimal generators 4, B, C,
Ay By Ts

The sub group of GL(2n,C) which leaves invariant the
connexions G* and G- is the intersection of the pseudo-
uritary group UZSCEn,C) and of the_oseudo~symol§}ic groun ™M
Spos(gn,R). It is the pseudo-sympléfic group Sps(n,Q) ore-
viously defined. The infinitesimal generators are immediately

given by the linear combinntions:

A — A — i T‘ P - T :"
A 4 A Bij Cij Ty + Tji 5 Bij £ 29 ]

The dimension of this Lie algebra is n(2n+l and this valne
agreeswith the previously obtained result.

7. The Lie algebra of the groups SpQS(Zn,F) and
Sps(n,Q) have the same complex extension which is the Ile

algebra of the group Sp,, (2n,C).
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Chapter 3-
TOPOLOGICAT PROPTRTIFS

I. Compact Lie Groups:

1. Definition: 1In a compact space, any infinite
sequence has 1ts bound on the snace
2. All the coefficients of an t@nitary matrix are

bounded by the unity;

3. The unitary group U(n) 1is then a comvsct Lie group. |

It follows immediately that <U(n), 0(n) and S0(n) are also

compact Lle groups.

C
4, The symplific group Sp(n,0) 1is a closed subset

of U(2n) and therefore it is a comnact group.

II. Connected Lie Groups:

We give briefly some definitions and some pronerties
in order to characéiize a Lie grouv from a topological motirt
of view.

Xe Path:

Let us consider two noints a and b 1in G. A path
from a to b in G 1s described by a continuous funetion
f(t) defined on the closed interval O < t' £ 1 and such
that

f(0) => a f(1) = b
f(t) =>r and r €G for all 0¢ f ¢ |



Figure 1

PC\ ( !'\ .

The exlstence of a pnath between a and b can be used to

define an equivalence in G between a and b, such a
property being reflexive, symmetric and transitive.

2. Connected Lie group:

A topological space is connected if it cannot be consi-
union
dered as the/of two non empty onen subsets. e introduce a
prrtition in G by using the equivalence defined above. If
there exist a path joining two points a and b of G, these
two poirt s belong to the same equivalence class S, which 1s
also called the component of a.

For an analytic manifold, it is easy to see that the
S,'s are over sets. From the previous definition, we obtain
the sufficient and necessary condition: a Lie group 1s con-
nected 1f and only if one can find a point a in G which can be

joined to any arbltrary other point b of G by a path,
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If 2 Lie group G 1is non-connected, only the identity
component S, can be a sub group. It is an invariant subgroup
also called the connected component of G.

3. Homotony:

Let us conslder two paths fy(t) and fo(t) Joinirg

two noints a and b of G

10 4

(&

T.b)

Figure 2,

The path s fl and fo are homotopic 1f fl can be cortinucagl}:

de formed into f5 , the end points a and b remaining fixed. |
The notion of homotopy allows to define an equivalence

between two naths and to divide the paths into homotopy clas-es.

4, Simply Connected Lie groups:

A connccted Lle groun G 1is simply connected if the
homoto?ay classes reduce to the identity . 1In a simply cornected
group, all the paths Jjoining two noints of G are equivalent.

5, TExamnlaos:

As an illustration of the previous definitions, we

give, without »roof the following imnortant results.
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The real orthogonal group 0(n,R) 1s not connected

joo

the two equivalence classes are characterized by

det A =+ 1. The identity comnonent 1is the con-

nccted special orthogonal groun SO0(n,R).

1o

. The Iorentz groum L 1s not connected; the four
equivalence classcs are characterized by det A=+ 1
and ?oo > 1 or A
is L.{,_

The complex Lorentz group, ilsomornhic to the complex

oo < =1. The identity component

orthogonal group 0(4,C) 1is a 2-connected group

e]

The special unitary group SU(n,€) 1s simply con-
nected but the special orthogonal group SO(n,R) is

not simply connected.

III. Universal Covering Group:

1. - The Lie algebra of a Liec grouv 1s uniquely defined
but the cowmverse is not true. -

If the Lie algebrae 3)and ca'&of two Lie groups Gy
and 62 are isomornhic the Tie groups are only locally
isomornhic.

2. To each Lle algebra of finite dtmension on the real
numbers3, there corresponds an uniquely determined, connected,
simply eonnected Lie’groupg called the universal covering
group G*.

3. All connected Tie grouvs G, locally 1sdmorphic to

G* can be obtained from G* with a covering homomorphism.
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The kernel D of such a homomornhism is a disc rte invariant

subgroup of (G¥ and G* being & connected group, D 1s a

sub group of the center 2 of cF

6*p = G with D¢z (¢%)

4, - Ado's theorem:

A Lie algebra of finite dimension on the real numbers
is ismorphic to a sub-algebra of the Lie algebra of a general
linear group GL(n,R) for a convenient value of n,

It follows that to each Lie algebra A of finite
dimension on the real numbers corresvonds a connected Lie group
of Lie algebra A , which is an aralytic subgroup of GL(n,R).

5. - Let us consider the direct sum g of two Lle

algebrae 4 and go

g = 8 ® g,

The universal covering groun of g 1s the direet product of

the universal covering groups G{ and G§ >f g and 8o :
* * »
The center of G* contains the direct oroduct of the centers

of G and G5 but in general, Z(G*) 1is much larger than
this direct noroduct

2(G*) O 2(61) ® 2(GH)

6. DExampless

a2 We first consider the one parameter Tir algebra

Ase  In an evident way, 1its universal covering group
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is the abelian additive groun of the real numbers R.
The manping « => exp (217¥X) where «ER 1s a cover-
ing homomorphism of R into the one dimensional
unitary group W (1) Due to the nroperty exp
(217tn) =1 41f n 1is an integer number, the kernel
of the covering homomorphism 1s the discrate additive

subgroup of the integer numbers N:

By = vy
It can be easily seen that all the discrate subgrouns
of R are isomorphic to N and the only cornarted
Llc groups of Lie algebra /Ay are R and U(l) .
The unimodular unitary group SU(n,C¢) 1s a cornceted
sinply conrected group. It is therefore the universal
covering group of its Lie algebra,
The center of SU(n,C) 1is the st of all nxn unitary
matrices. The gerncral form is then wIy, where In
is the nxn wunit matrix. The constant W 1s restrictad
by the condition uflz 1. It follows that the center
Zp of SU(n,c) 1s isomorphic to the eyelic groun of
the roots of order n of the unity 5 Z, 1s also

1somornhic to the integer numbers modulo n. If n

1s = prime number, %2, has no subgroun hesides the

ldentity and itself, 1If now, n can be written as a
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product of two integers n = pcv y the grouns Zo and
are

ZW,/subgroups of Zn'

For instance the connected groups associated to the
SU(2,8¢" ILie algebra are cU2,6) and the factor
group SU(2,¢)/Zg which, as 1t will be seen later,

1s isomorphic to <©0(3,R).

In the case n = 3, we have the two conneceted locally
1somoronhic groupé SU(3,€) and SU(3,0/Z5 . 1In the
case n = L we have four connected Tie grouvs!

SU(6,c), §U(6,C)/Z,, SU(6,8)/24 and SU(6,S)/Z6.
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Chapter 4.
LIE ALGEBRA OF THE SEMI SIMPLE GROUPS

I. Standard Fornm

TR s et it < alofll S g

1l. The elgenvalue problem:

Let us call as Xr the Y 1inftmitesimal generator of
a Lle algebra /\ « We define as A = ({ )(‘ an infinitesiwmal
operator and we consider the elgenvalue problem defined by the
equation
[a, x] =5 X
The eigenvector )( associated to the eigenvalue § 1s an

element of A *© X= %e;(P and § '1s in general a complex

- dpt e St g b 2o L e et sekionis SRR SRS SN B2 it S U i A -]

nunmber. The basic equation can then be written
o ! | T
O [Xe, Xed =g w Ky

Taking into account the communtation relations of the Lie algebra

we obtain

T
Eo\‘rxec - sx :\:X =
o ¢ < .

The bracket is zero, becaunse of the completeness of the Xr(

basis tn A\ .

. T f
(oo - ) -
We have a system of ¥ homogeneous linear equations with
respect to they . quantities f)&e . DBesides the trival

solution XY = O , we have a non zero solution if and only 1€ the

determinant of the coefficient vanishes:

£




| e % % 1
det (¢, L g &, I% =0

This condition is an algebraic equation of degree ¥  1in the
variable § and we have ~ roots, real or complex, degenerate
or not. To each root correcsponds an eigenvector. TFor a semi
simple Lie algebra, Cartan has obtained extremely important
results. If the operator A 1is choosen so that the equétion
1nS  has the maximum number of different roots:

a The rootS = 0 1s degencrate with the multinlicity

Q, and {i is called the rank of the semi¥simple
group

b. All the non zero roots are non degenerate.

2. Fundamental Relations

We first define our notations. A greek index Q) 6‘,/(
refers to an arbitrary component of the Lie algebra. For the
generators DBy assoclated to non-zero roots we use the greek
indices «, B,Y. and for the gencrators Hy associated to
zero root we usc the latin indices gf)fi .

We are now working with the two msults obtained hy
Cartan for a rank ﬂ, semi simple groun:

a The root zero is degenerate with the s ltinlicity @

[AH] =0
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b The non zero roots « are non degencrate ' /

[, Bl = XEy

As an evident consequence of the first equality, A 1is an
eigen~vector with the elgenvalue zero, it can then be written

as a linear combination of the H, y A = >\j Hj and the
J

generators H generate a abelian sub-algebra called the Cartan

J
algebra which is maximal

_ | i
\_Hj, HK:] = 0 or Q}?\ = 0

We nquuse<thq,gacgbi,identity for the three overators, A, H @

B« of the Lie algebra ﬁ

Chaed, Bl o+ LUHEE D, A0 + CELA, w0 =0
By using the properties a) and b) we obtain
(o, CEy, B, 00 = EHj, T 1
which shows that [:Hj’ Ed:] is an eigenvecter correspce~ding
to the non degenerste eilgenvalue <, It follows that this

-

vector must be propsrtional to & .

d

After comrariscn with the eigenvaliue cquation b), we deduce

’ the relastion
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We now define a {/, -dimensional vector space E:ﬂ associated

to the Cartan sub-algebra. The quantity « can be donsidered

as a vector in €;Q; with covariant components %j, in the 1
same way, )L can be Gonsidered as a vector in Q;@ with

contravariant component A}' « It will be also useful in the &
following to consider the ijs as the covariant components ‘

of a vector H 1in EL@ .
We apply agaln the Jacobl identity with the three zenera-

Cla Ty B¢l + CLF,, B0, A0
CLEg, 20,8 = 0

We use the eigenvalue equation b) and obtain:
[ 65’1:1@ &&j:l: <“‘*B>EEq’EB] }

Three cases are possible:

a (« + B) 1is not a root and the operators Egx and Ty

commute
b (X + B)#0 1is a root the commutation [Ey, F.é] 15
proportional to the operator E“}B
{ f
By B =N E , . ~ o
L2 ﬁj Ty p T F ng);_ "‘s/{}guHP
¢ «+ B =0 the commutator [E,, BE_ ] is a elgen-

vector assoclated to the eigenvalue zero and can he

written as a linear combination of the ovnerators H. :

j |
[P, Bp 0= G n ‘

¢

J
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3. Theorem:

To each root <, it corresponds the root -« The proof
of this theorem is based on the C=xrtan criterion for semi
simple groups previously given.

We consider the element @}*( of the row « of the

Cartan tensor
o €
%}kt = Cue C’f(o‘—
With the nrevious expressions obtained for the structure con-

stants, G _ . Decomes

- ¢ ¥ A' X
Fur ™ TR Gt Mapcz oA +P Tl - C’(}
The three terms s=re non-vanishing if and only 1f /T can take
the value ( = -« . The Cartan criterion is satisfied if and
only if -« 1is a root and the only element of the row «

different from zero is then G g
For a Lie algebra of rank (L and dimension Y y

there exists ~{_.Q, ncn degenerate and non vanlishing roots.
From the previous result «(,_AQ, is an even 1integer.

4. Cartan ténsor

The nornalizatiocn of thc operators Ed can be choosen

so that

/ = 1




5&

and the Cartan tensor takes the simple structure

o 4 {
b, = 4 o, O
\Q"’ ;..:.J-... 5
r i O 1J
o]
ON % = e
f ! -~l—‘~——
' f .
| ( 0 =
] (:) ;1. O
We have |
_ ] v-¥
dflk %gﬁ_—v OLQi— gf}&(-—-\) 9

From the certaln criterion, ii follows that q(}& 1s a regular
matrix .
O&Qﬁr (%};ék #ﬁ 0
Of course, such z result is independent of the normalization
condition.
By using the definition of the Cartan tensor, we obtsin
an exnlicit expression for C%g1¥{
. O X S Bl

Wk T Cpl s Zide = G
The matrix Q}J'ﬁi 1s symmetrical and will be called simoly
%k in the following.
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5. Vector Space ~ 2 ':

The matrix a/ is used to define, in Eﬁg a lineer
4

symmetri cal conn~ction. We introduce the inverse matrix (%f
e
A ] —
/jf ¥k >
\

to write the secslar produc® imnto the form

(« B) = 9/(«(, By = Qy/jkdj BR: (8y <9

The contravariart comvonents of a vector < are given by

R
X
and the scalar »roduct takes an equivalent form
- R
« B) = = o

As an interesting consequence, we obtain

1

YR iR L - .
Y ohs X T Tk T RDY
and
2’_& (<4, ) = Q/

- 6. Commutation Helations

* We now show that the contravariant components - < are

identical with the (; o -dj . The proof uses essentially

the antisymmetry property of the structure constants.

¢ : - (y%R Cd-d\iz <%*RC =

oL = R =
Jk, R
\;}/ :})/—':(\B W t'ﬁ«
with the normalization condition gy/ 8 = 6 R
- t/‘

follows immediately.




C; ‘ b } X, o=

i %
N ¢ { ~

The commutation relation becomes

— 3 3
LBy s B, 1= H

It 1s extremely casy to deduce now a Lis sub-algebra, generatesd
by E , E X and the linear combin=tion qj Hj one can write
as a scaler product (% H) ; we obtain

\:Eq ’ E..o( ] = (<, H)

I~ (<, H), Ed] = (<, ;-\f)‘Ec<

This sub algebra is isomorphic to a 8U(2) Lie algebra and

corresponds to the sequence «, 0, -X of the roots

7. Lemme

If o« B, \Y are three non zero roots such that
\

I ol = — = i T 4 L ]

X+ B+ Y = 0 we have NA:B Nﬁw h\ f

We use the Jacobl identity:

S

Fo TpEy 1T ¢ By By, 51 4B, ,m10 = 0

and the commutation relations allow us to transform this

equality into:

(<, H) Moy (B B) My o+ Y , H) s = O

The operators of the Carten sub algebro are linearly indenendent

and each comnonent j of dB\Xare solutions of the system:




= B =

.c><j +\(JN¢,=O

”\6 + ,331\*\‘% <
\\ 'j pj h xj = "0

S N m—

It can be easily seen that the only nossibility to obtain ron-

zero roots «, 3, h1 18

8. Structure Constants
The structure constants ¥ are antisymmetric in

the exchange of the two indices

Neg * Nt = O

kY

Let us apply the previous lemma for three non vanishing roots

-, {4+ B and -3

Nootyrorp = Newrp, -p = Mg _x

Because of the symmetry L &= -X 1in the set of the roots,
it 1s always possible to choose, for the operators E°< a
normalization so that :
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Another relation between the structure constants 1s given by
the normalization condition of the Cartan tensor. By using
the previous symmetrics on the structure constants, we easily

deduce

g =152+ a N
Ao B+ —ol A2

II.. Properties of the Roots

1. Theoren

If « p are two arbitrary roots
l a the number 2 (58) 45 an integer called a Cartan
(K, )
integer;
b the vector 5 -2 iflél X 1s also a root deduced
(4, <)
from B by symmetry withrespect to the hyper plane

through the origin perpendicular to « .
The proof of this fundamental theorem will be given into two
stens. Let us first consider a root \ﬁ such that « +\6 is
not a root:
LEy Ejd=o

We introduce the sequence




= BR =

The only a finite number of generators E0< and the

sequence of the X operators must also be finite:
MNogena = O = DX B

These formulae can he inverted following:

EXB P+ s E ] HP_H X

Y= bt

- — — i s, e

[y\(*’o(" Eo{]: }Ai}_?}

and, with the previous assumptions Yk 0O
O‘-

We now write the Jacobi identity for the three operators E

E-d and >(:Y4—PC( .

[E.E.],X S *{[E 1 Aopa ), f—&{& SRy E\

By using the commutations relations this relation becomes:

(!

LT TR, X _ % E L - S

and finally:

(- @va)x%_ e KW Aoy X =0
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We have obtained a recurrcnce formula for I\kp:
Mmﬁ\: b (o) — b ledya)

F Taking into account ‘L&O: 0 , we deduce the explicit ex-

vression for t/&, P

‘) ( {) -
&/ %

The quantity % 1s defined by ;&,,;,H: 0 and with the

&d)d)

Mp = PLSY) =

previous relation we find the values of C(,, 2 1

< o O, 7)
= q
% (O()o()

The theoremis now proved in the particular case where

the sum +\6 of two roots is not a root. The quantity (%/
is an intecger and there exists a set of roots:
(o o)

We go back to the general case where « + 3 can be a root.

e define as Y\ and ', , two vositive integers such that
}3'4-% « is a root if and only if the algebraic integer /?{

f  satisfies _ v < &S y . The previous results can
be used with the root \6 . (5,{_“9\ . The valuc of% is
8imply (}:W\*Y\/ and we obtain.

a 2 (¢,p) = 2 (¥ )-=2n(L) = (mén) (&) —2n(, )
= (m-n) ()
5 (49)
(o, o)

= f-=H




b the vector '3 -2

£ =3+ (n~m)X 1s a root

of the form p + kX because of the property

—m< n—m< n

2. Consecquences:

L.t us consider the vossible roots 5 vprovortional to
a given root o« 3 :){ « From the previous theorem, the qunn-

tity 2 %ﬁlz% = 2’%@ is Cartan integer.
(,

The operator Ed comnutes with 1tself and both, 2« and
1/2 « , cannot be roots.
As an lmmediate consequence, the only allowed values of
KL are R, = + 1, 0. 1If a sequence contains zero as a root,
this sequence must be simply -, O, ¢, Thiscase is realized
in the Iie algebra of the <U(2) group.

3. Structure constants:

The onerators >(5‘_¥k*and. Ej\r_PoKare related to
each other by a product of structure constants:

>\\§“‘P<>< = M\ﬁ;‘o( N

£
Nk - E\(—-(Pﬁ)&?—,( b,

. .  § ] ] \
and we immediatcly obtain an exoression of f~ in terms of

P+

these constants

Pom = N,
P+ e b, — o N“&-’\PHM <




. GE -

s . . el
We now use the notations introduce in 5 1, \grz p + n,

(5’ =m+ n

MP""\ e l_"@‘}'(n-\’)) oy =X N?’+(n- b -1) &«

and we can comnare this exoression with the explicit ones

given in § 1

Fov, = L 0 (p +1) (m+n-p)

We consider the particuler case b = n— 1. The oroperties

of the structure constants allow us to write

2
= N_ N = N N =N N =N
Hn predy =<l ByX =y B X, B P =By «3

and finally

= L () 0@ [mp) «1 ]

where for a given root &, the positive integers m and n

are functions of pB.

The element cy'd~d of the Cartan tensor will then

give the normalization of the root

_ (oS B} |
Cé/___o( 1 = () {2 + T i n(p) I_m (g) + 1 _'_'[j
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4. Root Diagram

The roots can be considered as vectors in the veactor

Pace &JO The root diagram is the graphical renresentation

of the ropts in E @ .

Y

Let us apoly the previous theorem for the roots o and

B _
_ (%, 3) : (¢ B)
dom 2 S B w e S Ak
S, («y ) O\/ (By B)

The two guantities \:: and (], are algebric integers. We have

& P2 = -P{\-’ (% <) (8, B)

and by using the Schwartz inequality

« 2% < (4 < (3 p)

we can define a real angle @ by:

Cos2 ¢ = POV

——r———

4
Because of the symmetry « <> - 1in the roots set, it is
sufftcient to study the angle @ be-ﬁweén 0 and /2 . 1In
order to simplify the discussion, we call as §, the root of
larger norm (3,7) > f«(,x) and 1t follows immediately P Z.GVP.
The numbers b and q/ being integers, the angle . @ is

restrictcd to the following values: 0, Té. ) 741 , 'g. and

]



jo

{e]

[=8

o
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Case § = 0o or bq = 4

The'.firsb-.evident solution is‘h == 2 ‘correspondirg
to, p.==G "A,second ocossibility, [ = 4 ¥y =1
leads to J3 = 2« and must be rejzcted.

Case O =m/6 or V¥ =3

Y | . {1
We h:ve only one solution P = 3, OV

i
-
~~
v
-
2
I
w

(Koel)
Case b = 7/4 or PUY = 2

We have only one solution |3 = 2, Y =1 and (§,R)
= 2(X, %) .
Case O =m/3 or P4 =1

We hnve only one solution \3 = l,CV =1 and (§,P)
= ()
Case _§ = 7/2 or PH = 0

The only nhysical nossibility is \;‘; = 0 Q=0 -

Of course the ratio ‘J/'GV is undetermined.
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ITTI. Simple Lie Algebrae

We first study in some details the particular cases cf
sinmple Lie algebréeof rank one and two. The results are
; generalized aftsr to arbitrary rank simple Lie algebrée.

'A. Simple Lie algebra of rank one

This Lie algebra is well known but it seems to us uscful

to deduce its properties in the general framework opreviously

given. The simple Lie algebra of rark one corresponds to the
three roots &, 0, -X and the one dimensional root diagram

is simply

7y 3 X
Fig. 1

The commutations relations are given by
EEO(, E o J = (%8 C 1), BJ = (&0 B,

The normalization condition gives (¥, «) = % « The covarinnt

and the contravariant comvonents are both equal to 7&. and
N2

the Cartan tensor can be written as:

) 1

oy _ ‘

P jo 1

1L O

With the convenient change of notations E, =By EF = B o

X =+ J%" y we obtain the commutation rules in a more familiar

form
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Eﬁ}.t ) b ] = & l/./—z H EH) ’_:_t j: d -"‘/r—‘ “’i

The Lie algebra of the special unitary groun SU02) can be

written in the form

or equivalertly

LI, 13, 7, 713

+ (3 £ 175)
The 1dentification is o®tained by:
Jir Jo 1
B = e H = J
+ 5 Jo e
Be Simple Lie algebreof rank two »

.o

The root diagrams are two dimensional and,&éfexclorh =1
allowed possibilities for the angle % 1in order to construct
all rank two simple Lie algebrag. It is only necessary to
consider two ro&ts < ard 3 with the angle 7 to deduce alt
other roots simply by symmatry with resnect to the straight
line through the origin perpendiculsr to a root. A1l these re-

flections generate the Weyl group.

1, Diagram Ao

S

We consider two roots of equal norm « and \{ , with
the angle @£ /3 . After apolication of the Weyl roflnr-
tions, we obtain a reguler hexagon and the Lie algebra is

elight-dimensional.
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Figure 2
Root Diagram .A2
The 8ix non vanishing roots hsve the same norm: («,«) ='1/3.
Frem figure 2, 1t can be easily seen that 1f «, ﬁ,\( are
three non zero roots such that \{ = B+ & then p—o and
p + 2% are not roots. In the previously defined language,

m =0 and n = 1. All the non vanishing structure constants
have the same modulus: Niﬁ = 1/6 and are known from one

of them by using the symmetry proverties.

2. Diagrag_mgz

We consider two roots « and p with the angle # =r/4
from the previous results {j3,p) = 2(« ). After apnlication
of the Weyl reflection we obtain 4 roots of the type « and 4

roots of the tyne ‘B¢ The Ile algebra is tenédimensional.



The norm of the roots 1is gilven by the normalization condition

Z (50 ¢ 2 (p, )

In order to determine the non vanishing structure constants, we
caleulate the values of m

system of two roots:

Figure 3
Root Diagram Bg

BVl W

associated to a gilven

can never be a root and

there exists sequence of thre~ roots

corresnonding to



= 03, =

s Bs . the two typos of scguences of throe

roots are 3., P4 ,,5,.+2% . angd Ba 5 Bt g
UL R H R R i 3 4

gL+ 2 : . in hoth cases m = 0 n = 2and 1t follows
i"J oo %
immedintcely Ne = N2 L = 176

WD ¢l s 2 =

Y= Fioo -1

A1l the non vanishing structure eonstants have the same

magnitude 2and the phnses arc known from two of them. Ndi <

J

- by using the symmetry pronerties .

.3, Disgram agg

We consider two roots « and & with the angle # = /8

%
¥
:

from the previous results (p,p) = 3 (). After application

of the Weyl reflections, we obtain 6 roots of the type

and 6 roots of the type p. The Lie algebra is l4-dimensional.

b
.

iy

Meure 3
Root Diagram Go

The norm of the roots is given by the normalization condition

A}

and we obtaln:

1/12 (B, 8) = 1/4

S
Py
~»
/()\
A
1l
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It 1s easy to determine the structure constants by using the
same method as in the nrevious scction. All the non vanishing
structure constants are known from three of them by using the
symietries propertics and we have

o

= 1/8 = 1/8

. N, 1
15 *1P3 P13

C. Simnle Tie algebr®e of rank:Q

Ve try to extend the previous results to a Q, dimensional

spacegﬂl

Lie algebra A4 :
. The root diagram Ao exhibits an hexagoral sym-

metry. It is then cenvenlent to introduce a - three dimenslional
space and to ropresent the root diagram A, 1in the plane
Xw + X, + V\b =0 . Inthls way, we define the tri-

angular coordinates 7§‘ bRy s ¥\5 of sum zero and the non

vanishing roots h=ve the general form c(ij = 0. - e:l/

1S

Az

X, -
| \ /

Root diagrem A and trinsngular co-
ordinates
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The natural generalization is to introduce a ( ﬁq,-\ ) dimen-
sional s»nce and (Q%’\) orthognnal vectors of egual norm Q);,

The QKQH) vectors

are located in the dimensional hyperplanex}’*xf' +>(QH: 0

P
. The Lie algebra A Qx/ of rank )(, has the di-
mension V= {(U+2)

A1l the non vanishing roots « ., have the same norm

i
(«, «) = i/"(£+\) and 2ll the non-vanishing structure constants
the same magnitude N@ = \/ZUZ“H)

2. Lie algebra B(f;,

We introduce in the f, dimensional space EQ, a sys-

’

tem of ]& orthogonal vect»rs of equel norm @J’
We first consider the following grneralization of the

Lie algebra Bo by defining two sets of roots

e

b Roots of tyme B : 2¢{({-roots given by + €: + ¢l

As previously, we hrve of course, (8,3) = 2(¢,«) and the

a Roots of tyme & 2 ¢ roots given by + &

norms are given by

: l \
() = — ($;8) =, —=
’ 22 ¢-1) U 2e-0

The Lie algebra BQ of rank (,, has the diménsion \i;QbQH)

All the non-vanlshing structure constants have the same

2 1 o) 2 ~
magnitude N7 = /’2(1Q"‘ >
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3. Lie algebra CQ/

A cifferent generalization of B2 can be obtainecd by
defining two sets of roots in the following way

a FPoots of type o Q_Q(~Q‘-l) roots given by

T ¢ te&

b

Roots of type B8: 2.2/ roots given by + Q;Qé/

The valuers of the norms are given by:

\
L (L+D (L +1)

The Lie algebra CQL of rank ,@/ has the dimension Y =
¢

() =

(2(H) The structure constants can be divided into two classes

following their magnitude: % o 9
EENE c By
== - C/
<C°<\O<l > 4 (L +0) < A > l( Pz >
= /o 4+

in an evident way, the TLie algcbra Co 1s isomorphic to B,

4. Lie algebra QX&

A now Lie algebra of rank /C can bec constructed with
the following set of roots of equal norm 3 42: + Ea}
We obtair in the way a Tie algebra of dimension Y = Q (QQ_J)
The norm of the roots is given by :(d,d)‘:!/zkg_‘x and all

. 2 f
non vanishing structure constants have the same norm N° =

4(¢-1)
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For (l = 2, the Lle algebra Dy 1s not simnle and can
be represented by the root diagram of the Figure 6

!
|
|
Figure 6
Root Diagram D_‘2

D2 is a semi simple Lie algebra, direct sum of two rank one

siuwple Lie algebra, Al

In the particular case QL = 3, 1t can be easily shown that the
two Lie algebra D3 and AB are lsomorphic by superposition
of the root diagrams after rotation in §

3

5, Exceptional Groups

The following results will be given without proof and
we refer to the original papers of Cartan and to the subsequent

‘works of Van der Waerden and Dyukin.

Ay oy B€1, CQ,’ D constitute the only four general
classes of simple Lie algebra. To the four series, it can be

added five exceptlonal groups characterized in Table 1.



E_ 6 78
o]

E 7 132
7

Eg 8 248
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Table 1
Exceptional Simple Lie algebras

IV. Realization by classlcal groups:

1. The determination of the standard for of a Tie algebra
f\ on the real numbers R 1s obtained by ressiving an elgen-

value problem which introducs the field of compnlex numbers. C.
In reality, we are working with the complex extension A*" of
the Lie algebra. Of course, the Lie algebra ff* 1s the complex
extension of the non isomorphic Tie algebra )AC* +  for 1in-
stance, all the Lie algebra of the nscude-orthogonal groups
Og(n,R) have the same complex extension which is the Lie
algebra of the complex orthogonal group O0(n,C). Cartan hns
shown that only one compact group can be assoclated to a standard
form but of course, many non comn=ct group can have the same

standard form.
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24 iz algehra A
e 5L n-1

We consider the special linenr group SL(n,R) ~ncting

in an euclidian space (gT: 1). The Lie algebra is.dofined by

2

n® - 1  inflpitesimal generators N 1y such that §;>&}J/:(3

The general commutation laws are given by
LX) X d= Spp Xag = Bg0 X e
It is convenient to work explicitely some varticular relations
R EITIEY s
[X;gaxlzﬂf <63 SRITR RN
- / ,_" ?(\; 3” .« &
L X Paed= 2087087 ) Xy
&
in order to exhibit cleerly the standard form of the ILie algehra.

Xji = MMy Xii= M B

‘¥

By putting

the roots components are given by |

¥

X = X = L(d; = &:yp)
LRU,}/ R N FR +X
AN A
and the non vanishing structure constznts by

ne = \/ N

The normallzation condition for the roots and the structure

constants determines /\\,V to be /Xn = WZn
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The Lie algebra of the special Iinear grouv has the

standard form An_1 . From the previous results, this result
is true for all urnmodular pseudo unltary groups in an pseudo
euclidian n-dimensional'complex vector snace. But from Cartan
thafrem, only one compact group can be assoclated to A _q

and it is the unimodular unitary grouvvo SU(n,C).

3. Lie algebra Bpand Dg

We consider an euclidian n dimensional svpace on the
real numbers. The Lie algebra of the orthogonal group is de-

fined by 9_(_;‘."_1_)_

infidnitesimal gencrators Z 13

In order to study casily the sténdard form of the Lie
algebra, it is convenient to use a complex basis in E(n,R)
instead of the real one and a non-diagonal form for the connec-
tion %/ . We first define an index (V with the following
range of variation. |

<A,3*Q if n= 2{+\
b _.Qg JgQ/ excented {, =0 1f n =20

o

In such a basis E}' is represented by an anti-diagonal matrix

with — ég and the scalar product becomes

JRO TgeR O < - |
g (X = 5= G0
The general form of the commutation laws is given by

Zjee Zam = Fre L 9
: " T R“\%kn\$£+%5m RL
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It 1s convenient to write explicitely some particular relations:

[Z 53 2ea) = (S S0 8308 1) 2
, PP &
1 Z,e 2, .7 = 2(5_14“)2, .

in order to oxhibit the standard form of the Lie algebra.
We now restrict J, to positive values only OP = 1.9....7(L
The standerd form 1s obtained by putting:

} a\‘ /} Z\(S: /\Y\EYS

The roots components are given by
(-]

o= A él - g K : 4
F)['“f Sl Tvsl = (SM Oy T gg——“r“ grSB -
and, 1n the case a4 = (Q_Q%~\\ where Y or § can take th=

value zero

C< @ - (6 — &L ) —
Al b . \ ‘\( —-Y
Yy Y] ¢ i-v) A
The non vanishing structure constants are all equal, in magni-
tude to N° = VT

The normalization conditions for (%, «), (B, B), N° glve the
value of >\Y\ : )\ = Jopn-4 .

AN . \
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The Lie algebra of the orthogonal group in an(JZG+4> vector
space has the standard form sz and the Lie algebra of the
orthogonnl group in an TLQ;'vector snace has the standard form
Q& « 4All the pseudo-orthogonal groups, {irraspectively to the
signature § have the same standard form.

4, Lie algebra C

S|

1.7~

We consider an 2n-dimensional eucludian space on the

real number. "he Lie algebra of the real sympletic group is

defined by n(2n+l) infinitesimal generators Aij’ Bij’ Cij
with the commutation laws.
Loy, Bd s 6‘}&%{ CSE&ZARJ
CByy» B 1= 0 = Loy, o
[Bia 4 AM] - éLLBjQ+ é;%&BiQ/
Ly Cpod =05ncypr %@Ci\
Loy B =Gty Ot * St Sie Mk
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It 1s convenient to write explicitely some varituclar relations
= | o
| l"AJJ ’ AkRI
A C = 2 v C
Lagys Cppd S5k Cpp

EA“, BR.P\'_F = -2 63‘& B hi
LAy 0 o d

1l

(B7p+850) cpp

1

Loy Aped = (8jr=8g) 4gq
Cayy, A5 = (*85-R+S(;Q) Aok

A') B = "6-\ v

in order to 2xhibit clearly the standard form of the Lie
algebra. By nutting

CTIALY L PR N Mo B
C = >\ E. N — - i

kRE "TRE ARQ M ER,—Q B\*\-‘( %\\F-R—Q

the roots components are given by
5 ~ [+
X “ = 54 = j: & :t g o
E T [ER T M( R &'O
= ﬁ d’ = %-__

Bi ¢ ¢ . s
Bily o) o ESL)
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-
The normalization condition for the roots give Avx: o n+ Ll
and for the structure constants F\nn= 2 No(p+l) .

The Lie algebra of the real symplectic group Sp(2n,R) has the

standard form C =~ . From the results of Chapter II, this

result 1s also true for all pseudo symplectic group Sps(n,Q)
irrespectively to the signature ©S. But only the symplectic

group So(n,Q) is compact.
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Chapter 5. ’

REPRESENTATIONS

T. Generallties

1. Definition:

Let us introduce a [\ dimensional vector space VN and
an abstract group G. We consider the group GN of linea
transformations of VN represented by N )X M matrices
and such t hat GN is homomorphic to G. By definition,

G{N is a representation of dimension k& of G. As a
consequence

Udalu(b) = U (ab)
for all G,_)b @G and U(a,), UCb) c GN

If the homomorphism between GN and G 1s an 1so-
morphism the representation 1s said faithful. It can be shown
that all representaﬁions of simple Lie =2lgebrag, except the
identity, are faithful representations.

2. Eqgulvalent representations:

Two representation Ui(o') and UL(&) of G are

equivalent 1f there cxist a constant matrix A , independent

of the group elements, and sucht hat

Ul(ou) = /-\ Ui(a) A-—‘t for all o EG

3. Reducibility:
A representation U (a) of G 1in a vector space VN

is reducible 1f 1t leaves invariant a subspace Vl of \](—\l .

After a convenient change of basis, the matrix [J can then



R,

be written.in the form

\J ~ ‘~kJL O }

U Uy,

where the matrix L)i has the same dimension as thé‘vector
space Vi o

If now L}B = (O , there exlist two invariant sub spaces
\11‘ and \ZZ of ‘NC% such that the sum is precisely T[N ,
the representation [J :is said fully reducible into two re-

presentations L[L and LJZ

Ug o©
o Uy

U

4, - Contragradient Renresentation:

We consider a N dimensional representation of G with

the complex matrices (U :

Uda) UCh) = U(ab) a,b €g,
The complex conjugate matrices LJ*" constitute a |\ dimensional
representation of G

U*(e) UT(b) = U™ (ab)
The reprcsentation {J and LJ+'are called contragradient
representations,

5. - The Lie algebra of a Lic group G 1is defined by a
set of Y infinitesimal gencrators ><O'° It is vossible
to find, in thegroup _%h, y a set of v (NXN)matrices
also denoted )(O~ , which have the commutations laws of the

Lie algebra:

[ X Xe] = Cop® Xo
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6. .Compact Semi-~Simple Groups:

The following immortant theorem can be proved:all represen-
tations of a comnact semi-simvnle group are equavalent to a re-
presentation with unitary matrices. We will consider only this
case in the followihg.

The Lie algebra of a2 semi-simple group is defined, in 1ts
standard form by the infinitesimal gensrators Ft; and Egot'
In the unitary representation)the generators of the Cartan
algebra can be reoresented by hermitian matrices:by using the
commutation relation

EEOQ‘ ) t-oc) - (O(; H)

1t 1s possible to choose representation satisfying:

E, = E

o af

II. Weights

We study the case of compact semi~simple groups for whiczn
the representations . can be taken as unitary.

1. Dafinition:

We consider the i. -dimensional abelian Cartan sub =2lgebra
The operators ’4& can be simultancously diagonslized; in the
vector space \/hd we have the eigenvalue equation for each

operator HJ 9

HJ > = m (ad

d
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The numbers YYl&_ can be considered as the covarlant comvonents
of a vector W' 1in the vector space Eal previously consi-
dered. The vector ™ 1s called a weight and Eiz the
welght space.

2. A simple weight is associated to one elgenvector only.
For the rank { > 4 grouvs, the weights are not, in general
simple..

3. Properties

We now give, without proof two elementary propertises:

There exist, at least one welght in each representation;

)

[o

The eigenvectors associated to different weights are
linearly independent.
As a consequence, the maximum number of weights for a JN-dimen-
sional representation is precisely &l .
4. Theorem 1..
If | SLy 1s an eigenvector associated to the weight m.
/322t0§ a4 Edﬁgs either zero,or an eigenvectér associated to the
weighe Y4+ &K ¢
By definition, we have;
Hoif > = mylas
Let us consider the vector ELO([_£1_>> .. By using the

relation:
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we immediately obtailn

Hy B o> = Egh, 1ad+ oy Eo 152} = (mvod) B, 1Q)

If Eicx ‘S7~>> is not zero, 1t 1s an eigenvector assoclated to
‘the weight (w4 o).
5. Theorem 2

If YY, 1s a weight and X a root:

a the number (hﬂ x) 1s an integer
(X, oc)
b the vector WM - gW\°‘;C( i1s also a weight, deduced
i of ,of

from Y\ by a reflection of the Weyl group.
The proof of this fundamental t heorem 1is extremely simlilar to
that'given for the corresponding theorem with the roots 1n Sectior

IT of the previous chapter.

6. Equlvalent Weights:

- Two weights-deduced from each other by an operation of the
Weyl group are called equivélent. They have the same multipli-
city.
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III. Weyl Group

The Weyl groupn has been defined as the set of reflectiohs
with respect to the hyperplancs through the origin perpendi-
cular to the roots X . We are now conéerned with the deter-
minstion of the Weyl group‘for the simple Lie groups by apply-
ing the fundamental theorem 2 -

1. Lie Algebra A,Q,

The roots can be written Q(L‘d, = ei*ea,and we expand the

weight YYL on the basis of the vectors eR
21
m= MpC, with S W, = O
7

We immediately find

2 <O<‘_‘i>m> = My -m,
(of, x)

We now use the theorem 2, From the part a , the differences
ml - m}_ are integer numbers., From the part b, the weight
M’ obtained by reflection from WL 1is given by:

/ _ ,
EMRGRT%MRQR‘(ME “mé)(_e(—e&) =

= Te, -m e tmee +mMye +m; e,
The Weyl group is the groun of permutations of the components

of the weights.

It follows that the maximum number of equivalent welghts

1s (0+41)!

sl
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2- Lie Algebra :BR

We hgove two series of roots
%‘7(1: = eLE) e T=11t {212, 5L
‘ ' ' ' wen L
f\glj = 6(I>€L + 8(_3—)6& T= 1 t,d =102
J= £

i3

and € (L) is the sign of I.

It follows immediately

l(w)r 2LE(TIM 2@)-.- E(TIM; + E(TIM
(o(’,o() (f'%,{%)

From the part a of the theorem 2, the components of a weight
W\ must be either all integer numbers or all half integer

numbers. The weights ‘nm’ equivalent to Wl are defined from

the part b Dby:
SMely= 2 me - [RE@m e e -3 me. - ame;
K R |
};méﬁh = ,Z M, E ~LE(DIM; + E('ﬂm&]&?( DE; +€(7) €]
: R -

émk;@h - 2M G T M€ Ty € - (DIE( [, @t mye]
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The Weyl group is the groun of permutations of the components
of the weights with an arbitrary number of changrs of sign.
It follows thnt the maximum number of equivalent weights is
g »
1A

do Lie Algebra (jz

We have two series of roots:

br = 2€(T)€; N = E(T)E + E(DE,
and it follows immediately
(ﬁI’TM X . m)
9“@‘7;3‘ = ECT)M; l__.—_iof;’) - €£(T) v+ E(T)M,

From the part a of Theorem 2, the components of a weight m
must be integer numbers.
/
The weights WM equivalent to Y are defined from the

part b Dby

Y, e, =5 M8 -[E(mm][2 g(r)eijzgmbefzmlei
R =

The Weyl groun is thc same in ]Bzzﬂui <1Q .
4. Lic¢ *lgebra Dg

The roots of the Lie algebra :DR, nhave the general form

“p = E(I)e + E(TE,




.and 1t follows immedliatclye

2 (zz, )
(()()0()
From the part a of theprem 2, the two quantitics ™M £ M

must be integer numbers.

/

The weights 7YvYL cquivalent to W are given by: g

- / -~

%mheh = % M€ — (m; €, +m&€(}) - E(J.)E(I)[YMZGGL—HY)&EL]

The Weyl group is the group of permutations of the components
of the weights with an even number of changes of sign.

IV. Fundamental Weightss

1. We first introduce in the weight space EE a
relation. A vector is called a positive vector if its fir=t
non vanishing component is a positive number. We then have M,
higher than YN q1if WWi;-m 1is a positive vector. Of course,
such a property depends of the basis in Eiﬂrbut the consequencrs
are 1ntrinsically trus by mcans of the Weyl group reflesetions.
For a sami-simple Lie algebra of rank f and dimension
Y , these oxist (Y —£ ) non vanishing, non degenerate
roots <X and ﬁt:;g
ot

2. Dominapt Weight

positive roots symbolically denoted

In a set of equivalent weights, the dominant weight 1s
nlgher than another welght of the =et.
The highest weight of a representation is the highest

dominant weight of the renresentation.
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&8s Proncrties

We give now, without proof two imnortant propertiecs.

a The highest weight of an irreducible representation
1s simslec. Tt follows that the set of equivalent
weights to the highest weoight of ~n irreducible re-
presentation is a sct of simple weights.

b Two irrcducible reoresentsations with the same highest

weight are equivalent nnd conversly.

4. Fundanental dominant weight

Cartan has proved the following rcsults:for a simple Tir
group of rank 2 , there exist £ fundamental dominant
. ! Le 2 . . = .
weights L , L, -+ - /I with the following promerties
a Evory dominant weight | can b- written as 2 linear

combinetion of the Lf/'s with non-negative integer corfficientsa.

d—:’e ‘O;/
L (A15>\L)" cHAg) = Y :k}_ L )\& > 0

/5" = 1
¥ :
b To =nch ‘__ corresponds = fandamental irreducible re-

&
preseptation for whieh LS is the high-st weight.

Y. CHARACTDL

1. 2Qelinition:

Let uas consider the N dimensional vector space VN of
the represcntation U (Ct} and two vectors ]j;lwx\> andlf;L{5>

of X/@

« The tracc of the N X N matrizr

<_Q‘3\ Ula) | 2
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is independent of the basis chosen in V anc 1s n3lled the
: N

character fX, of the representation.

2. The theory of the characters has besn studied by 'rlayl.
we want to give here only zome re-~ults but the notion of
character 1s cxtremely

useful because of the following theorem:
two represcntatione are e4uivalent i7 and only 1f they have
the same characters,

3. . We now introduce, in the wiesght space ‘EQ, , two

vectors which are used in the calculation of the character and

of the dimensionallty of a representation. The first one 1s:

R= 4 T o
Al
wiere the sum is extendcd over the positive roots only and the
second deovends of the representation as L*<:AJ,)
/
K(Ayp) = R+L 1N
The clements of the Weyl groun are npoted by ?5

vector 6;<

For a compact s

and the

1s the result of tne oneration of S on K.

emi-simple group, the character X

1s given
by the genz3ral formula

| E( 24, 9)
N @) =
L R Y TS

E(>2p, ) :,Z: %54»¢>i(SK;q)
S




2;5 is the parity of § and ¢ o vector of th~ weight

If all the weights YYI of a rcpresentation are knowr with
their multionlicit ’fwm an extremely sigple exnrossion ecan
s b] IS p

be used

(2, @) = L Yom €xp (M, @)

4. Dimension
The dimensiorn of the reprrsentation is given by !

N()\})‘f- 'X(A},O)

W=yl hss showr the useful formnulea:

N(’Ar}}: u“} <’°(>K()\c})>: ]—7/,’ +(N;L(?\Cy)j)

' !
ot (%, R) Xt (e, R)

where the osroduet is extended to all the positive ronts GK+~

S.  Tontragradient renrescntations

The ehsracters of two contragradiant reprsseptations are
complex conjugate. This result is simpdly a con~rquence of the
definition of the contragradient representatiors with ~omplex
conjugn~tc matrices,

It folilows that the weight disgrsms of two contra-sradient
representations can bz deduced from =ach other by a symmetry witn
r¢ spect to the origin in th~ weight space.

The character of = representatior equivalent to its coptra-
gradient is real ard there is a necess=ary and sufficient condi-
tion. In an equivalent way the weight diasera~ is svmmotric -rith
rospsct Lo the aricin in Lhe woiskht space and thore i olan

8 oy 1 N g
) . I PO < R S EMIE LU,




1. The components YY1

e of any weight sa*tisfy *he two
following reguiremcnts:

all the diltvrennes Ynl — ““&. are

integsr rambers and the connonents vanich, Th-

sam of all the

gencral ctructure of VVRT is ther = fraction with demominator

runcrators are ~quivalent modulo A 4 1

Q fun“arental domirant weights of

/%Q can he

R=d R=2+1
15 = 2 [(osr- é;z e, -4y €,
Q+ 1 R=4+1

/
&
The number of weights equivale~t to |

is given by the nunber=

of independent permutations of the comnonents of L~ s P,
the number of combinations Cj & ¢

A+t

™

‘Q+1 =

are equivalent 6o the highost s weilght

dominant wzight |° [t follows thnt a1l the welghts are

s : . &
dimension of [

dm F¥ = of,

whi~h is the fundamentsal

simole ari the 1s given by
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Q+1-

4, The two fundamental renresentations F?&*and ‘P
have the same dimension. It is easy to verify that the weights
diagrams car be deduced to each other by a symmetry with
respect to the origin in the weight space. The fundamenptal re-

L+1- &

nrescntations F1& and E‘ are contragradient re-

In the case where '@ is odd Q,*-1 = Q/QL, the funda-
mental renrcsentation F’zi' is equivalent to its contra-
gradient and can be chosen as real.

5. We define as Eiu:, a permutation, element of the

Weyl group

(1)1),...,£+1)

(otg Ko, v Xgy)

All the equivalent simple weights of a fundamental represeonta-

S

-

X

o

_ &
tion F’ are deduced from L* by an operation 550<

of the Weyl groun. We then obtain, for thr character )Cé“(QD)
of FT&'

_ k=4 |
X (@) = % exp L}:f:f SO

whoere the vector Cg satisfies the usual condition
Rz £-+1
(‘\
z;u b = O+ It ic then easy to verify on the explicit

eXNTes sion the relation

£+1 (@> %j<xw
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6. We now consider an irreducibdle representation, charac-

terized by its highest weight

$=4

L = A, LT Ay 2
= | 4 R Ay 20

y=1
In order to calculate the dimensidén of the representatior, we
are first interested with the positive roots CXYHYI (h >m)

and the vector 'F{ , previously defined is given by

R=[%.]
D - %} hz .(’ehz’h3<€h+1_€£+1*h)

We have successively

- - R) = (n-m)(e, e

. F=n-1
<\o<m~r\) < z /\ )(Q)e)

N
The dimension of the irreducible representation D (5’ Az"'>hi)
) 3

is obtained by using the Weyl formula:
F= YL?

N, s A)= | | (1+ ls— A_ )

mM<n

7. A& »narticular intér«:sting case corresnonds to all A}- !
equal to zero except two ,A1 - ’A,K = 1 . The highest
weight 1s simply:

1 12
L(i,O)”"')O)i): L +L :ei_ez+1: O<i,e-4'~1
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All the equivalent weights of the highest weight are the

Q (ﬁfﬂ-1) non vanishing roots Oé(d¢ of the A Li~ algehra.

0
The dimension of the renrccontation is obtained from the

previous formula

W (1 0,n0 L) = 0 (¢+2)

and turns out to be equal to the dimrnsior of the /\Q'Li€
uch a2 representation is called the adjoint represen-
1

gebra and the weight diagram is simvly the

8. It is easy to show, by using the definition of the
highest weights, that the representations.J)N<A1yaz;”')zﬁ~1)hﬁ) &
and ])N(:)g),kﬂ,1 y-~-)ﬂz)l1)are contragradient representations. |

It follows that only symm-tric repressentations, defined

by %~£+,_&, = >\& are equivalent to their contragradiert

9. Lie algsbra Ai

rom a vedagoglical point of view, it is interesting to
use the general language for the well known results of the A1
Lis algebra.

We have one fundrmental 2-dimensional representation, the

spinor reoresentation of the ILie algebra, and the fundamental

weight 1-:
1
[t = L (e-ey)



In figure 1, we have represented the weight diagram of the

fundamental repfesentation and the three roots of the k\i

Lie algebra

He———ff P —
%21 o [ x 12
Figure 1
Fundamental representation
D2(1)

N
The irreducibls revresentation D ( %) of highest weight
18
L. = AL~ has the dimension:

N{(X) = 1+ )

i
All the weights are simnle and of the general form l_ = f*l_

with M= X A-2 ....,-A. The character of the representation
N
D (A)iﬁ given by:

X(n @) = Ain (A+1) @
. A (‘?

In the usual language, A = 27T where J 1is the spin asso-

ciated to the irreucible revresertation of the rotation groun.
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10, Lie algebre 4ng

There

exist two 3-dimensional contragradiert fundamental
representations. The Tundamental dominant welghts are given bv

1 1
L- = 3 {:léh - (@g*’eg)J

= = L l(e,vey) -2e,7

The corres»nonding two dimensional welght diagrams are drawn in

Figures 2 and 3 and located with respect to the root

diagram of the adjoint representation.
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We will denote in the following the two fundamental
representations by 3 and 2

o
o

and the adjolnt representation by¢
3 .

The characters of these three rewresentations are given
by

L9 S 1 ¢
N> @) = c . s

X(T,9) =¢g'h g% +é£%

(% g) =2+ DV[C“(-‘?'”%H<>os(<s>gc95>+cos(ts>;%@

with P+ @, +

The dimension

(‘)05 = 0.
of the irreducible representation
N ,
D (?K1)Az) is given by the symmetric formula:

A+ A
N (O, x2) = (1e A0 (1+ A) (14 BL222)

Only the repre sentations

D ( A, A) are equivalent to
their contragradient and the dimension is then given by:
3
N(x,2) = (i+ )

1l. Lie Algebra ‘_Jﬂ3

Ihere exist three fundamental renresentations associated
to the following fundamental dominant -reights :
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J_l = 21: [_561'“(\62*"63*‘64—)]

[(61 +Co) - (63 4”@4—)]

= 1 [(e,+e.+€35) — 3€.]

AU ASAN AN
r—b)
I

A

A 3
- ’ n . .
The representations F and K7 are two 4-dimensional contra-

gradiens representations and Pz is abe-dimensional renresenta-
tion equivalent to its contragradient.

The adjoint representation D(1,0,1) is 15-dimensional
as the Lie algebra A3.

The dimension of the irreducible representation

N
D (?\1)%_)7\5)13 given by:

N(>\1‘)2’)>\3): (1+>\1>(1+ >\2)<1+ ,)\3>(1+A:+)1j<’ Ao -1r)\3 )\ +;\2.+A5>

12. Lie algebra . Asx

There exist five fundamental revresentations associated

to the following fundamentel dominant weights.

3

r—;".

[5ei - (e,+es+en+esye)]

Z
- %[u@ te) —(€3+ €4+ 85 +2)]
L—4 §[<91 + €2+ 3+€4)”2‘~95+€6)__’
5 ) |
L z‘[(€1 +€5 + €5 -F€4_+65)_696J
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The renresentations {-— ond ?' =r¢ two 6-dimension-nl contragra-

; . ; =% A
dient representations. The redresentations = and F

are t wo 15-dimencional contragradient representations. The

. _—"v s . k3 . .
representation = 1s a2 20-dimensionsl representation egui-

valent to its coniragradicnt. Thoe adjoint renresentation

2(1,0,0,0,4) 1is 35-dimersional. The dinension of the irrady-

. : N /. - . '
cible revprescntation D (>\1‘ )1, )gth’)5)1s given by

N(/\1/\z ‘/\3,/\‘4')/\\-5> = (7+?\1>(1+)\,Y!+ >\5)(/[+A4)<1+\€>
(1= M) A At Dy, durds),
(1+ )\17“)\ + A

) -L—ia\" )1 Mii_)_;t* ’\5)

. (1[_,. A+ /\2 44?_; - /\q)(1+/\l+/\i+)\q+/\b )(1+)7T)\2+7\%+)4+A/

B. Lie Algebra By

1. The 3 fundemental dominant weights of B

L

can be written as

. Red

;L g: kb e
o=z g

A

e then have fandzmentsal re oresentetions, “F]&—, with
d_.
the L\ s as highest welghts,

“e The Wayl group is the set of permutations of the

components of = weight with an arhitrary number of cnanges of

sigr. It follows that all welght diagrams are invariant under
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a symmetry with resvect to the origin in the weight snace and
all representations are equivalent to their contragradient re-
presentation. As another consequence, all the characters are
real numbers.

3. We row calculate the dimension of the irreducibile

representation :DN <A1,>\2,"", AL). The vector TR is given
k-4
by Fox
R = 5, %4(1(&—1— Qh)eh

The positive roots are O(d,) BL} and F‘L-' I with 0< i< J'

We have succe ssively:

L1
(O<J_,L—)“~>\,(+§Ak
Q-1 L1
(ﬁ‘&)l_): Aﬁ +’Z_lk+ Z}h
- ¢
¢-1
({91_&_)1_) = Z ?\R
and the dimension N()\,))Z) “ v g /\9_) 1s finally given by

¢-1 n~1 -1 n-1
Y'\:Q ZA +2L)> 2
:H (,(+AQ+Q,%;\R) (1+)\p,+m R %— h)(1+%7\h 7

m=- 1 1&4‘1-‘2}0 n=m+14 21‘9‘1—")-"‘( Nn-m f
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4. The fundamental representation ¥j is-called
the vector renresentation of the Lir algebra BQ ¢ The dimon-
i L : . -
sion of r is given by the general formula:

dim Pr = 20+ 1
The weights of the vector representation are the 3 ( simole
weights equivalent to L} and the simnle weight MW= O .
The character of the vector represcentation is then
given by:
R= 4

A, C8) = 1+ ”?’,}_:1 Cos &,

5. The fundamental representation F?ﬂ' 1s called the
spinor representation of the Lie algebra EL « The dimension
2.0 .
f Y is given by the general formula
¢ )
(,7{\'}’)/\ F - ;L

The weights of the sninor representation are the 2L  simnle

O

weights equivalent to L_
2,
6. The fundamental representation ;j has its welght-
diagram identical to the root diagram of the Lie algebra ’BB

o

and 1t follows that is the zadjoint representation. The

dimension 1is given by the general formulas

A pz = ,Q(@Q+ 1)
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and the character of the adjoint representation is simply .

k= {
XA((,?):)Q—\'Q Co.sq’h,—ir/}ZCbS (*570‘ s D

R -1 <R

7. Lie plgebra B
The funrdamental weight of the vector and spinor renresen-

tations ars given by
1 .
"= €4
2
= 1
L = ) (e,+ey)

The corresnmonding two dimensional weight diagrams are drawn
in Figures 4 and 8 and located with resnect to the root diagram

of the adjolnt renresentation -




The charecters oi the fundamental ~né adjoint representations

are given by
Xy (4g) = 1+ 2 (s @y 4 c0s9,)
KsCg) = 4 Cos O Cos &
Xalq) = 2+ 2( s Qu+Coc Gy )+ 4Cos @ Coctp,

N
The dimension of the irrcducible representation: ) <7\1))\7v)

1s given by the formula-

N (AU)\Q/) = (44~)\1>(1+7\;¢)(1+}\_1_'%\i>(1+2’_5%_'\_3/) .

C. Lie Algebra Cg

1. The | fundamental dominnant weights of CL can he

written as

g P
We have /Q fundamental representations _}:' with the L1

S

as their highest weights.

2. As in the car of the By Lis algebra, all the re-

presentations are eqguivalent to their contragradient representa-

tion =and all the characters are real numbers.,
3. We row calculate the dimension of the irreducible
renresentation :DN(A4))\2)-..)/'\Q). The vector R is given by
R={
P = Z <Q+1-—!’Q)€|Q

R =1

i

!
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The positive roots are OC% = QL*ed, , &4 -4 = Qi‘ea_)@;&:;’z,ﬁ);

with 04t < < 2 . We have successivelys
-1

L
3 (g, L) = §1Ah+2%jxh

<O<[ '(}')[—-) = i

~ i L
CEs L) = 23 ag
The dimension N ()\1 >\>_,~' i } ) given by

N (s, da,eoeey Ag) =
& n-1
z A - Z\ zZ
ST R VT fre By B

(+1m
w=1 Niam«1 Q@«ﬁ-l-»-m-

L

4. The dimcpsion of the fundamental representation T-.‘
is given by the general formula tn be
dim 7
The weights are the ;3/@ simple weights equival@;nts to [_j’

The character of Pl is given by

%1(@> = % Z Q%C%Q
R= 1

A9

5. The dimersion of the fundamental representation T

is obtained using the general formulsa

2
dim Foo= (€-1)(20+1)
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. - 3
For the fundamental representation }_ y W have
3 1
f 1 — 2. )
A T = $ U (4%11 ~ 1
-
6. The adjoint renresontstion has its highest weight

1+ It is tho irreducible repressntetion
]JCQ,O,O;Vu..a,O) for which the weight disgram coincides with

sgrar o1 the Lic algebre C)K « Th= dimension ic

cticulasten with the general formulas

N (2,0,0,‘-v-»0) = 4//)(5&(4- 1)

M1

Ine chearacter of the adjoint representation in given hy:

Xal@)= 0+ 220G a 47 sl Goxqy
FeR
7. Lie algebra CQ

o

The fundamental weights are

L1
1% = S+ Sy
LB

%

irst furdamcptal renresentation is six dimensional the

Threa

)

sccond one 14-dimensional ard the third one 35-dimensicnal.

:D(a.,o Q)

The adjoint representation is @l-dimension=1.

<+

The

dimension o

=t
\

. : AN
inirreducible reproscentation (X4, Ag 23)

i1s given by:




' A+ A ),ﬁ—?\
Ny Dz 2s) = (1320014 Aa) 1+ 2a)(1+ 222 )1 M)

( + +>‘z» A3 )(1+)2,;133>.

(1 + )(H— = )
4
D-Lie Algebra Dy

1. The fundamental dominsnt weights of Dy can be

written as:

£-1
L = :Igg (O +Ez+i + €y 1+ 6’2)

-

£0

4+ Bt + 82—1*e,¢)

(

Pl
o

ANANNANS

. . ¢ &
We have ﬁ/ fundemental representations Fj with the L 's
as the highest weights.

2. The Weyl group 1s the set of all permutations of the

components of the weights with an even number of changes of

sign. The fundamental renresentations ?7,‘D y e E e e are

all equivalent to their contragradient renresentation. The

: -1 L
same result is also true for - and  F 1f £ is an even

aumber. But if 4L is an odd numbher, the fundamental revre-

. -1 :
sentatiors F and ¥:Q‘ anre contragradient representations.
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3. We now calculate the dimension »f the

; M ;
representation D ( ')\47 Ag e '7/\‘0_)'

irreducivle

The vector R is given by:

-4
R =7 ((-w) e,
R= 1
The positive roots are CX(_&,:QQ —%—@J’and di_(y = € ——ea,
with O<i<)» < ," . We have successively:

~
S?

A AANANNAN

-1
(O&i(,(})L\: Z )\{q -+ g&lxﬁ

and the dimension N (9\1) )2)'-- y h,;) is

finally given by
RJ(A1) )2\"0’ A )

m=¢
ﬂ& j\m— , )(4 /u_,mxb)
m=1 L 1
. 7 1,‘(_m/b\*2/z (At Agog+ A

el
Z A
; R
Nz 41 (le,rh_n,> )<1+ n;}"m>]

4. The fundrmental representntion ]:‘1 is called the
vector ropresentation of the Lie algcbra D, . The dimension

1
of Fj s given by the gencral formulas

Adim I:"' = 20

The welghts cf the vector repressntation are the 2, ¢ simpnle
. ; {
weights cquivalent to | -
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The character of the vector representation is

b= &£
X, (q) = DV)QZ Cos 9
=, 4

given by:

— -1
5. The fundamentalrepresentations F’Q and F‘Q
are called the two spinor representations of the Lie algebra
:IDE ~nd they ere inecquivalent representations., The dimen-

-1 i
sion of Fje and F 1s the same, due to the symmetry of
“J(>H,Az,”‘Ag-hAQ1n the exchange of %€_1 and %Q

C*iﬂﬂ ij-1

Phe weights of the

= dmFP?t = Qﬁ

sninor representations are the simple weights
=
equivalent to the highost weight L? and L?

.

2
6. The fundam:ntal representation F1 has a weight

diagram identical to the rost diagrem of the Lie algebra ])2

and it follows that Ffz’ i1s the adjoint representation. The

dimension is given by the general formulsa

%
dm F o= / (210- 1)
The character of the adjnint representation is:
X,(@)= 1+ 4 ¥ (o= ©, Cos P

F (R
7. Lic algebra D

4
The fundamental r spresentations are defined by the funda-

mental dominart weightsy




€4
- = 621 + éfz

T(er+Cateyrey)

J\}\j\j\j\/\_/\-'\/\/\‘"J\/"/\N
r—'\)

%(1[31 4+, + a3~€4_)

1
The vector riepresantation Fj and the two snipnor represcente-

. -3 . 4 ) . .
tions F and - 7 arz B8-dimensional representation. The ad-
joint resressntation is ¢ -dim~nsional.
The char:acters of the

fundamental revrcsentations are

given by:

X\,(‘(p): L[ Gt Py + Gt Gy s P+ Cos Py ]

X . (<Jo> - 4[1+ Coae (_ﬂC’DMPl-!' Cos @, (o @, = Cos @ Cos g + Cas aylcc;tg—\»

Ces §, Cot G + Cos§y Cos @y ]

’X/S(QU %[QWQCOS(_{l”((P“B(%(p /Su,q) ;lYVIZ’}_&M,\Wz 8w“’9 ]

_ Y Do Ga _ 2. Q .y
X (@) = 8[Cos o oo Br Con 20 % — ATt i 2 s %: sme ]

N .
The represcntation D (CA1\AQH ag,AA)has thz following dimeznsion

N (>\ )L A2 >(A> = (14—)13(14 )( 1+ A )/4-%/\4)(1_}_ Mi/\‘?_)(‘“"/\)\;):)'

(10 B 1 AEREHAAAT I 2 an ),
k(1+ A4 Az A3 )451>(_1+ )1“"%’/\9:-* >\3}4_)|4)

&

This formula exhibits a comnlete symmetry in the varinbles

Ay Az A4 associated to the trroe 8-dimensional funpdamental
LAz
FeRPeSant ~Tlons

0.
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VIF. Txanples of =unlication of the theory of characters

1. Weight di=gr=ms of AZ'

10
\ D (3,0)

/L= (2C,-ez-¢€,)

//
'<
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In Fig. 6 , we have given the weight diagrams of ths re-
presentation of SUz. The weight space is two dimensional.
The highest weight {. for each representation is indicated
below tae diagrams. It is seen that not all the weights of
the representations 8 and 27 are simple. The zero weight 1in
the '8! representation has multinlicity 2. While the zerc
weight of 127! has multinlicitiz 3. A rule about the multi-

plicity of the weights is that the multinliclty of weights on

hexagons (boundary of weights) within hexagons goes on increas-

ing by cne tii! we reach a triangle, their it remains the same.

2. Characters of A,

The characters of the different revresentation of Po
can be found once the weights are given. Tn this case since
the weights are given in a two dimensional plans we have the

relation
Then we have

Xy (9) = exp § QoG h)+ €20 S Q4 Gim )

vexp 5 (RYy-D, - )

making a change of varisbles
f- 9 = %
G- = &
{5~ ¥y

i
=
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Which still preserves the relation ¢

ﬁ;}1+¢2’+(\l?3: &

we have
N () = xp3d-d) + exp 5(g-d) +
+exp L ( ¢ -d,)

We also obtain

Ao (D) = L1+ cosb v cosdy + cos dy ]

X‘w(cb) = 1+ .’2,[C,<:>6C}>1 + Cos ci‘)zlﬂ—\ Coscﬁg ] +
4 oexpt (¢2—¢3)+ exp 'l(dmo‘ 4)1) + exb1 (Cb4~dpz)

Xﬂ)<¢> = 1+ 2] Cos ¢, + CoSCbQ—% u§¢3j +
+exp 1 ) Fenp 1) Hexpi(dh- )

Xa7 (@) = 3+ 2L cosds, + Cosd+ eosdy T +

+2 [Cov 20y + Cos 2P, 4+ a5 2 G, ] +

4 4| Cos 43160; by + Cos d,?Q/ &;gckp$+ Cos CLBCog Cb;J

L T T e e R S R ek b i s sisi o o sm o aer e g it Lo BB CE0RRE Susagdy T et o R T e e T e
— i Ak SR 2 T - g b R -
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3. Fupdamental weight diagrams of D,
The weight space is four dimersional with basis Eg,
( &‘ = 1, 2,%, 4—j>, The fundamental representations with

thelr corresponding highest weights L are

&

" Sp L= S5(e+@+€3+€,) D(1,0,0,0)
Ssp’ L = 45(94 +€3 1€3-€4) D (0,1, 6,0
N L = 91. D(c,0,1,0)
;?,%A L = €1+ &y D(0,0,0, 1)

4. TFundamental charactors of D,
Knowing the highest weights the charactaers for the

different roorecsentation can be Immediately written down:

Rep(9) = 2 0o BBt Pt d | vty

Cos P, - b, — ¢‘3+ dh; 1 Cos Py 439,“‘433“ 474}

2 ' 2

The highest weights of the two sninor revoresentations differ

only in the sign of €§4~ and hence their characters di ffer
only in the sign of q;q_;
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Zop (@) = 2 [ s AR S A S A

4+ Cas @1 ” 4’;‘ ‘b_s,’ ¢{+ Cos ey~ Cbz,“;d?g*‘ d;{] i

M so we have

Ky CP) = ;L[Co§<131+aa‘s¢l+ Cik ¢5 +C°§CP“’J

| %A((i)_) = 4—[ 1T+ CoSC))1Cos432/+€/ogc)>LCoS¢3+
4+ Ces by sy 4+ Cos Py Cos P, +

+ Cospy Cocd, 4+ Cos &y Cosd, ]

%, Inclusion SU(3)/Z. C  80(8);

a) A Cr Dy

It is seen from section (4) that the revresentations S?SPJJ
?Sb/ and gv are inequivalent if one considers all
orthogonal transformatiors. However using the characters one
can show that 1f one restricts to the transformation contained
in the Ag  sub-algebra of Dy , the thrce eight dimenslonal

representations %lsb ) %sz and %\/gu@ equivalent and
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irreducible and thrt the adjoint reoresentation 28A of D4

is reduclble according to i

28, ==> 8 @ 10 @ Tn.

The inclusion A2 C D4 is rcalized by the projectior of

the four dimensional weight diagrams on the two dimensional

plane defined by choosing any one of the four @'s to be

zero and the sum of the other three equal to zero. TFor con-~

venlence, (to study the inclusion A9 C Dy), we choose
¢4:O ¢4+¢2+¢3: ©

Then we have

/XSP(CP) = 2 [ 1+ Cos P, + Cos P, + CDSCbBJ

= %g (Ct)) of AL
Similarly XSP (¢) = ')ég\/(b) and X vy (gb) = Xg (CL)

Thus the three 8 dimensional representation of D4

ars equlvalent and 1rreducible with resnect to the A sub-

s

algebra. Further we have
Ap (&) => 41+ Cndytos by + Cosd e, +
+ Cos ¢ Cosdy  + Cos Py + Cos P, +
+ Cos Py |
= X, (P + X () 4 Xe(p) of A

2
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Thus it 1s seen that for Ag o P4_

Bop=> 8 Bgpi=> 8 ; 8,=> 8

28, = 8 @ lL0@®IC

b) Uy /2, © Dy / Zg

If one defines DY as the covering group of D

4 4

algebra their
* "
D,/ 25 X Ly
One can realize three isomorphic but inequivalent grouns of
this tyve ( Aggp , Aggprand A ) Dy considering the
tensorial powers of the eight dimensional representations
83#’; 85Pr and @V respectively. Turther we have
"y - <
Ay, = <08
Where S0(8) 1s the orthogonal group on the eight dimensional
SDACE. A4 contalns SUg / Zo as a subgroup. The adjoint
representation '8t of S8Uz / Zg 1s a self contragradient
reoresenﬁat'ion and can be described by 8 x 8 unitary uni-
modular - real metrices which form a subset of 8 x 8

unimodular orthogonal matrices of S0(8).
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VIII. THE “CHUR-FROM™NI'IS CLASSIFITATION:

L. %e consider an unitary renrecsentation kJ( a)
a cotmact semi-simple groun (9 IR T LU (Al ig eguivalent
. . L w +'( \
to 1ts contragradient representation U A, there exist
a constant mntrix C  such that

Ut (o) = ¢ u(a)C ' torair A €G-
+_y-m

Taking into account the unitarity proverty written as U =
we also obtain,
C = UT(a) C U
The J transformations leave invariant a bilinear form
in the NN -dimenrsional representation snace §/14 .
2. By using a representation of the Lie algebra with
N X N hermitian matrices, the transformation ‘k)(aJ

can be written as
. o
Ula) = exp 1 4 Xg
-
and the A ts are real parameters.

For the contragradient renresentation, we have

Ut (o) = exp 1 O\/O—Xv/.

with
/ 0
xv‘ - - XU-'
If the representations |J and L}+ are equivalent, there

axist a matrix Cz such that

XS = — CXx,C

t’.




-124~

for all the generatore ><or of the Lie algebra.
3. The properties of tho matrix (3 can be obtained

by ilterating the basic relation. Without loss of generality
g ’

79 . ;
(o can be chosen as unitary and using the Schur lemma, we

can easily prove the following relations:

g .
% ¢ = &1¢C ¢ = £, C
P al 2
% cC = T CC =¢,T ¢ = EE, T
where €, = + 1 and €, = &+
If a real renresentation can be used for V(a) , the

J e
Mebpix G can be chosen as real ( £, = 1 ) and is an

orthogonal matrix:

cT - + ¢ c"’—c

ce* =1 ccT-T ¥ =+1

4. The Schur Frobe ius classification:

An. irreducible renresentation belongs to the class

A= 1 ’ A= o if it leaves invariant respectively:
a A= 1! a symmetrical bilinear form (&,= +1)
b A= o no bilinesar form
] A= -1 an antisymmetrical bilincar form (E2;;~1)



A1

S Axnlication:

As a consequence of the pronerties of the fundamertal
renresentations of the sim»le Tie grouns obtained in the nrevious
sections, all the irreducible rojresentations of BQ C\Q :D:LQ

) }

belong to the classes A = + 1,
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INSOR ALGEBRA 07 THE TINEAR GROTP.

I. Generalities

1. If w1 1is a sub group of (n , the irreducinle
representations of (1 can be either irreducible representa-
tions of ] or reducible into 2 direct sum of irre’dnible
representations of H .

2. The irreducible renrecentations of a comwact semi-
simple groun (1 can be taven as unitary. The unitary matrices
of a PJ dimensional representation of G? generate a sub-
group of the uritary grouv .

3. It follows that the irreducible renresentatiors of
a compact semi-simple group (51 can be studled from the
irreducible representations of the unitary grouvs.

The importance of the tensor algebra of the unitary -
group is essentially due to this »ronerty.

4, It is converient for sim»nlicity to speak the
language of the general linear group , QWI(”“Q> instead of
that of the unitary group .~;'*<f;,E§§ . As it has be shown
in the previous chapter the two languages are equivalent from
the point of view of irreducible reosresentations.

II. Irreducible Renresentations of GL(n,R):

1. We consider a Yu ~dimensional real vector anece
%(1,R) and the dual rezal wetor cnace Px*(p;R), which is the
space of the linear forms on B. The elements of X are called

contravariant vectors and the elements of E¥ covariart ventors




%« A contravarisnt tensor is an ~lement of

the tersorial power of order F’ of T

-
.

e & 10
% - r % ; & £
Sp € & etk oer
4 L B Ut
Ia the seme way, it is =asy to introduce covariant tepeors s

the e¢lemente of F;% X Qf and mixed tensore as the elemente

T EFF D e
3. We now consider the general lincar groun GLln, R
and theupimodular limear transformations 50(n,m).
The irredicible tensors can b~ as:ociated in a one-to-
One corrcsoondante to the irrcducible reoresentations of the
permutation groun. We don't give the oroof of this imnortant
result.

4, The irreducihle revresentation of the permutstiosn
grous of ? clements (}}T are -casily described hy using
the Young tables and the Young diagrams.

A Young tals is a set of N non negative integer
numbers such thet:
footay oo 2 F0 Y0

with the restrietion

i

L §
4
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In other terms, it is 2 vartition of ths numb-r
b b

The associcted Young diagram is a sct of F e
ivi i : B e .
divided in m rows with %h boxzs< in the 3, row
{ 2,2 A4 A }
Figure 1 h:é_n;g_

Young disgrams

5. e now go back to a contravariant tensor of order
}Q » the dimension of F bveing precisely " . The Young
table describes a symmetry of the tensor and the wropertice are
the following:
a the Indices associated to ecach box of a horizontal

-

Fow are symm-trized

jo

the indiccs associatcd to cach bYox of a vertical
column are antisymmetrized.

For instance, a cdmdletely synmetrized tensor of rank F’ is
=Pt = =tm=cC

associated to the nartition |,

and the corresnonding Yhung diagram has only one row.




such a tensor is sn elomont
of the com»letely syvmmetrica

is the combination number (

_.,_>
1o
N

2 comnletely antisymmotrized tensor of rapk

associnted to the nartition 1, - §, = - $\:1 f ‘V"stz'.fﬂh‘

ard the correcsvonding Yourg diazram has only one eslumn

B
,}"’

Such a tepsor is an elemernt of th» vector sub-space /\ L

of the comnletely antisymmetr c2l ten<ors. The dimersisn of

¥
L T e ? . e ) d g .
LI P is the combination numbher (. . OFf couree, it

1s not nocqible to constract = comiletely antisynmetriral tensr

S. for a covariant tonscr of order , element of
~ S0 o ) . y
= y the orevious results can be extended in the

following way. To e¢-ch partition of the number Pk/ sy WO AaS<o-

ciate a set of pon positive integ:r nunbers

{
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with the restriction

1—‘/‘

7 o -:ij
A

-
v
30
@]
@]
3
3
D
[99]
~
@)

onding Young dizzram is 2 32t of

o
1/ boxes Aivice]

n ;o I
into " rows with -m-{’) hoxes in the '} row

Figure 4

For a mixed tensor, elemont of [~ onec as-~o-

ciates to each prrtition of \3 and

3]
o
i)
o
o
o
=

algebrac
integer numbers

[ ; r

‘}}vj; gn 2t ® A 7/ ‘fJ 2 r

i+ 3

such that

Tre corr~sponding Young diagram is thon immediately drawn by

using the previous results.



L3 &, i) L‘fg o - .AT)hl
’ £ i /
= : " 1 s Ny o
RV ! t/ - l y _)+ [_.)

Figure 6
7‘oung diagrams for mixed tensors

7. We are row interested witha the completely anti-

symmetrized one cemponent tensor of crder M

Let us introduce in [ a basis éj the corresnond-

&N
ing basis in 0 =7

products as:

b b A “é, w

2

A€ n

We consider < linearly indemendent vectors *j) ofE

the completely antisymmetrized oroduct

' ¥ X
X;:\ A ,X.( afp Brom® T A (1)

- &
1s the only linearly indenendent clement of A L

By using the coordinates

< N e
) ) S L ( j ) <
We lmmedistely obiain .
W ¥ 8
{ N 4
— — - s K eram
N'( X , . ' . }— _2—‘ X( 7—) i)
COY N TRY A i) ~ o]

can be wrltten with exterior tensorial

.
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[ 4 Dow 5 w5 T /
where | & ‘1 is the vermutation J g v Ty of parity
o) . The bracket 1g¢ simnly the decterminant (=
¢ ’ ' i )
& A1 X == D ( y 20 .o
\ y 7] / N / 7) v 7 % P
4 (.2 N) v = ¢ N
- € € . R B G

e now porform a regulsr lincar transformation in

nresented by the clement Q of (}]L,Vm'ﬂf )

0 X L = D oA X ~
COAN gy A A ((‘7\) ek AT A Cay A Xy

and finally,

_
Vet ( A3

_ ‘ i & N .
')\ d N S AR 4 ) = I\)‘et— A Ott (7&(\) o
(2

)

If now, 4 is an unimodular matrix, element of the special

linear group SL—('W,R/) the quantity ng,t t:%' A
: e

is an invarian




*
-~ 133 -
II[. IRLEDUCIBLE RUPFESENTATIONS OF  3L(n,R)=
1. We have just soea that for the unimodular linear
transformations of

ns of E(n,R), the one comnonent renresentation
B is tnveriant. 1In other tarms, the two
reprecsegntations (bt o 'J ‘ and Lo, o, .+ tiﬂ
are equivalent, In a more general way the two inequivalent

representations of  (L{n,R),

T ST N

are equiivalent in

S / e
and ( 0 fy

¥ s LI I
SL(n,R) if and only if
(f)’ Sl fe —c S )

:,)2."‘%
where S

1s an algebraic inte ger number indenendent of },
In particular, in SL(k,R), the two representations

’ C Foofa o Pipio fvﬁ] and [: 5, - n,

equivalent and with resnect ts unimodular transformations,
any tensor is equivalent to a contravariant tensor with fhf:;O.

boamint ]

o

g4y

ATe

0N

. It 1s convenient to introduce the comnletely anti-
. .\ 2 ; N 53
symmetrical tensor of ordsr ¥) y €lznent of fN E & n

’

e - ; defincd by

Y i £ Z rh |

& n = < s 2 X (&)
(A 8] — 7Ty ‘S_’Y\ \
In this 1358‘\135@, wWe havos 5, 52 a
— - 3 Yy . )[
‘ ( X X, 2 ) k7 C A )k" '
] ‘ ~ o - . - . T ¢
\U‘{ . \ 7('(!) ((“) } L L Tylg v
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The determinant is invariant under unimadular tranasformations
but transforms with a factor ELA7/§ for all A € GL{n,R).

In the same way, the quantity:

B _ B
& y( o A A
5] Ty s b Ty £ Lo
..*;-_
transforme like a covarianrt vector of [ under untmodular

transformations. A straightforward gencralization of this
result 1s the following:the two irreducible revresentations
of GL(h,R);

[ £ f o fW:J and C‘%\45’ §~2+g),--, &Wr+§]

are cquivelent for uniwodular transformations but we have to
']

€
add an extra factor (Dn%: )Y 1if now EL is an element of

the general linear group.

3. As a consequence, an irreducible representation

of @L(h,R) 1s also an irreducible representation of $1.(n,R).

It is then sufficient to study the irreducible representation
of SL(h,R) and with the orevious statement we are ahle to
deduce all the irreducible representations of GL(h,R).

Such a result was 2xmected because the homomorovhism
from #L(,R) into &L(n,R) is a central homomornhism.

0f coursd, the representations { ﬁ, + 5 ¥2+HS,""+W?+‘J

have the same dimension imdependent of N
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4.. The dirredueidls revresentstions of SL(H;E) ean

then be characterized by 2 st of (M—JQ non nezative inteo-g-r

numbors.

It 1s convenlisnt t5 work with the renresentation

[/ %1, 92” . 5 %“*U Ct} and to define

and converscly

,‘JW = L. Ay
}‘?:9 .
The representation ( Y )5‘,,,. )%4‘) can be associated to 2

contravariant tensor of order f) given by

\'_’Y‘) "‘ i'(_,‘)) '\
- b
‘ a,' } g o)
; 5 /
The representstions Qﬁ< with all the ,Aa § equal to zero,

N k

cxcept /Np‘; | , corresvonds to a complét@ly antisymmetrincal
tensor of order RA . # :
- " <3 i - 4 T = kh“'ﬂ -] - "T”.-"A ;(

\o
. : ; ) . T . .
The dimersion of this representation is CAnq ds the dimension

o R /
of the fundamental represcntation [ of the fx,h_‘ Z
algebra discussed in Chanter IV. It ~an be shown that r R

i

— 0N :
and |- are isomornhic and morc gereraly, the highest weight

Lia

. . [
of the irreducible reoresentation T Foo oo S'% ; Ct]
; i

is simoly given by

rv
|1
N
—
!
2t
e
[
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Hor instanﬁ, the 7) dimensional fundamental representation
of %\Wﬁ-!; F L is associated to the vactors of ﬁé and the
contragradient representation to the vectors of =~ considered
also as comnletely antisymmetrized contraveriant tencore of

order Mh-1.

IV. ADJOINT REPRESENTATION

1. The Lie algebra of the g encral linecar groun GL(h,R)
is the set of W\z' infinitesimal generators Xfc_ . It has
been shown thus the linear combination >< = g Y commutes

-
with all the generators.

TI o a ’ -

"he N"— | generators & of trace zero, generate
the simple Lie algebra of tyve . ;\’ﬁ<~\ of the special linear
group SL(h,R).

/
We also consider a sub-algebra of /%~h_4 y With

infinitesimal generators L»J~ and the commutation laws

i : . T
L L. F L_ f‘\ - (\_ (. P L “C

s b,
Of course, this sub-algebra can be fxmqm\ 1tself.
2. The adjoint renresentation of the Lie algebra f&,ﬂ,\
E} (o {5'%j> y can be associated, from the nrevious
results of section III, to an irreducidle mixed tep=or of

order 2, or acuivalently, to a covariant tensor of order nhels

We now study the mixed tensor of order two.

@ R

3. ‘The second order mixed tensor 3 are the =le-
B ;r -
o0 Tf* .
ments of [ & L . Let us now consider the revrecenta-

tion with unitary matrices of the Li- algebra A'Viwi




- 137 -

VIV

The infinitesimal gencrators can be repressnted by hermitic
matrices following

0. Tavexe  ULI-ds X

where E’( 1s a set of real infinitesimal narameters and
e
i & - 'F

-
The tensor - 1s tranzformed, according to

b K
PV Y
ma

!

)

and, for infinitesimal transformation, we obtain

and after reduction

\ 31'R . "Q\ . () - ) N ‘ )
679 - f e XLXH S Y

From the previous exnression we immediately verifly the in-
. =
variance of the trace of ¢ . !
& F
; ? c 9 é? I
e e . b g S A
e 7 = f P, d

4. We now consider the quantities
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/
The transformation laws of the %gr S are deduced from tho-e
: ¢ ’ . . 3
of the ¥ X S y taking into account the commutation
5 4
laws of the Lie sub-algebra we obtain,

q { 0 PR f’ : C T (»,
’ = 4) —+ ( Z. ' W ‘l’\
g o (/0— L #
In the basis of the i 16’ , the infinitesimal generators
I
of the Lies algebra l; L—G’J aras represented by the structure

constante of this Lie algebra

- ™ . T
LLT];A = CP?

This result can be also interpreted as =z consequence of the
Jucobl identify satisfied by the structure constants. The |
Tie :
dimension of the representation is the dimension of the/élgehra
and we have sxtracted the adjoint reoresentation of the TLie
algebra.
The adjoint renresentation is irreducible if and only

@
if the Lie algebra is simole. For instance, the M o—|

quantities

—

T - & f'k
ch_ = g_x,f]k .

are a basis of the adjoint reprasentation of SL(n,R)
- ) _
9. The 1)  components of the second order mixed tensor

y have been reduced in the following way:

¥ R

jo

N
The invariant trace %' L
. ICR G

i (/ R /\4«— ¢
Y ’ - . a 900 1 v - é 1 ({\ e
b The M --| components of trace zero 3 3 T




V. PRODUCT 9F REPRESENTATIOV.

Tiie reduction of g oroduct of reoresantation i1s the
determinatior of the irreducible components of a tensor,

l. Socond Order tensors.

We first consider the case of a contravariant tensor.
Thz indices can be symmetrized and antisymmetrized following
the decomnosition of the tensorial oroduct into a symmetrical

and an ¢xterior nroduct

€, B X4 S TR @j,yla X,

Ir terms of Young diagrams, wc have:

B e W =

witn nlhtl)

Pt , X — (¥ ontsg
s 7] - comovonents

vV ‘"~Z
7“,4"%2 with ‘p{p-lb components

In the genersl lincar group the osroduct of reprcsentations is
written as

(1o 0] & (Lo cf=[F0a 0l (i 7

and in the special linear Agroup, the corresponding expres<ion 1is

GO Dlne o) = D2 o) @Dy )

The same results can casily be obtained for covariant seeond
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and we obtain the same oxnressions for the product of the eontra-
gradient representations

gl =

(o0 4] Glo, e e

B Lo o1,
in 0L(n,R) and for SL(h,R)

- ~ & ) oy 3 J /’ \ F,
Dioyree, ) @ bleron) = Do e

The case of a mixed second order tensor has beran studticd with

o “\
. ‘b",/v'/

some details in the previous sectior. In terms of oroduct of
representations we obtain simply in GL(h{R).

(7 1 ORI ’0,0] @ ’_»C/t").u ' '(7/ —’J i [OJO)”"{’))UD@ L_‘;’{.,,»O)--lj'}

and in SL(n,R)

D (1,00 v 0,0)' @ D(e,o 1) = ~D("‘/‘)G/"' %,e) @ D(|I)O~'0ﬂ,i

2. Third order contravariant tensor:

We use the mcthod of the Young diagrams and we have only

three possibilities

n{m1l) (h+2)

wit comononents
(€
with n(n®-1) comnonents
3
n(a-1) (h-2
with ( ( ) components

6

The second poésibility can be reached in two different ways and

we obtalrn the following reductior in CL(n,R)
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‘ . NSO B ' ) X
LL““"JJ ~ [ 290 o) GD-intﬁ”ﬂéthhhﬂfﬂ

and in  SL(n,R} we have

D(rc,o 0) GO D(Loc e )@D(re ) = D30 @Ad(he?)
) &) D (c,0,0,00 0)

3. Genersl Case

Let us consider two irreducible representations [.fij
and L Ejlj of GL(n,R). It is always nossible to ilntroduce
the representations [ {] and Lwﬂ'J equivalent in <L(r,R)
respectively to [’¥{} and [ f@’z and such that f,, . {., =O
We are then working with representations L-%) and [;5.j
associatéd to contravariant tensors where all the -f%Jg and
5' § are positive. The best way to reduce the nroduct
[%@ @}[gf; is to use the Young diagrams following the Littlewood

method.
L { | diagrem has :&) boxes o, f:Lboxesgl

Ty f&& hoxes }( s ete.  The boxes of the diagram {:-fl are

—1

The

added to the diagram [ glj in the following way.

a With the "'s , we form a ncw Young diagram, cxclud-
ing the case where two boxes & are in the same
column.

b With the @‘s , we form a new Young diagram, exclud-

ing the first row ard the case where two boxes

are in the same column.
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il
With the Y ¢ , we form a new Young diagram, exclud-

[¢]

ing the first and the sccond rows and the case where

-y
\
Y

two boxes are in the same column.

and so an with all the boxes of the diagram [ ) .

4. As an examnle, the Littlewood method can be used to
reduce the product of two adjoint representations of the Lie
algebra /ﬁ - . The result, written in GL(m,R) 1s the

following

{10, 0,=0 @® Lo, o -]

: —

= [0, 0] UQC_/ 0 ]
6;) 2.0 0, v 4 [vnoo0,-27 “ fG, e 0 =15 0)
and in  SL(n,R), we obtain (E) ta, _OJ-QJ

D (e, o8 )@ Do) = B (e e )@ DL o 0,0)

G) D(a o o 1,c) @ Mo 1G9 & D(e0. . 0n)
. ; @ M go -ued)

The dimension of these irreducible representations can be
calculated using the general formula given in the Chapter XV.
We add the symbol 6 or A according as the reoresentation
enters in the symmetrical or in the antisymmotrical part of

the product

N (o) = L S
N(Le o) =t S and A
vo(9t e Be) - %;(“5“’%3(Yﬁl‘) 3
b = ) (0

N (ci1 0 o 0,0) - _%Q (M -3) “ i) S

N(QIO."O/Q) ;I_H ('\'\-'>m\’(7\+3) -




we obtain
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The repriesentations being denoted by their dimensionality,

Ve |
¥ oo |

Excepted the case

393 =1 & 3 & 5

YO = 1D T @0l 02y
X, A IRS

@IS = 1E) 15,6 15, 45 @ A5 @ 20@5 4

/ -
A
35@ 25 = | A 3. &35 @ 180Hase OIRIE AN

Q::] ’

the adjoint representation 1is

present in hoth the symmetrical »nd the antisymmetrical part

of the »nroduct ef tv> adjoint representations.




