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LIE GROTJPS AND LIE ALGBBRA

II. TODo1ogical Grouns:

1. GrouDs axioms

A set is a~rou') if the composition law, d= f'I ne d in

(1 has the f'oHow l ng pr oocr t t e s:

a (ab )c -:: abc ; 8"li"c::e ·6,,..'"
.

Identi tY~lI11tttelement e . ec.»: c. e ::...c: I &" f:. Crt,
-1 .,

Inverse : a a = aa-..L

Asso oi nt.Lv l ty e a (be) =
b

c

2. TO~91ogica1 grouDs

The maop.l ng (a, b) ~ '). -1ab of intoGr x 0-1
i,8 a continuous rnan-rl.ng , Such a condition is 0quivalpnt to t1.e

fo.Ll.ovl ng one s:

The map'Jing =r -1 of C, into Crr is continuous'a a a

b The mapping (a,b)-=r ab of ~ x (IT into cSr is
continuous.

~he mapping a ~ a-I of Gr into G
(a-1)-1 := a.

G{

coincides with its invprse

~ecau8e of the relation

is a homeomorphism of

Such a mapping, noted L

3. Tran~ lation..§..:

The maDDing
continuous.

This homeomorphi sm of Cr is called a right translatiar f. .
{Y1

The mapping a ?' na 0 f (Sf into Gis one to one and

a 4 am of G; into 07 is on= to one and

continuous.
,.,
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This homeomorphism of Gr is called a left translation ~ ..
. }\

The right and left translations arp related by

. 4. Theorem

It is oo s s ibl e to show that the necessary and sufficient

co nd l t ton for a group Gr to be a topological group can be gi ven

in the fo Tl.ow l ng form:

a The translation fm and t m are continuous (mE'G);
b The mappt ng (8, b)~ ~ ab-1 of G x G into G is

continu')us at the point (e, e) of G x G.

II. Lie Groups:

1. Defin1 tioll

A group Gis a Lie group if;

~ G is an analytic manifold

b The mappi ng (a, b) ~ ab of G x G into G is C.(1

analytic mapping

2. Com~osition functions

lve choose 3. chart at the oo i nt e of G and we denote .,

the coordinates of an element
.1 .._

a t: G by a-.l. The comno s i t ton

:l law can be wri tten as

0-
(ab) = a, beG
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o:1~' are ana Lyt.Lc funct ions 0 f their
arguments. liVehave the f'o Ll.ov Lng evident 'jroperties:

c: c:cf (a, bc) :: cp (ab , c)

"( a,e)
»r-:

~,r(e,a) <.J

-= -::: a
df"( a a-l) f(a-1, a) u

-:: -::: er c,'

3. It car' be easily shovn that the mapping a::::2;a-1 of, G

into G is also an analytic mapping.
It follows that a Lie group is a topological group.

4. Structure constants
The inent! ty t.rans f'onmat.Lo n is described bv the relation

() r;v
a -=t(a, e)

and we n8W consider an infinitesimal transformation in the neigh-
bourhood of the identtty

c:
a -t- da(/" r;vf (a, e + orn ) ::

u"'-
c:p(a,~ f [ ""\ r:r' -}) + Bm ..JL 1(a, b

() -e, P
~.:::eThe velocity field is defined by

an d ,Ile 0bt ain

=
o: f

~f( a) em
IV'da
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It is convenient to use the inverse matrix
v

/: (a):

rV __ vo: fo -r A (a) /-'- ((i.)\.., f t

The eliminatior; 0 f om betwe en the two re1ations:
1:_

a:da :=

. i leads to the exryre~sion

:=We now intr~d~ce the continuity conditionI ~

uf fdRl U.€r J~f
By using the previous expr-e ssian for the first derivative, WP

obtain:

r..,
i

. ', \
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Calculations are straight for-war-d but tedious and ,!lP obtain the
following equality:

The LES is function 0 f a only ann t'le RES is function 0 f b
only. The two quantities a and b bpirg independent variables,
the hJO sides

aconstants C o(~

"-are constants. By definition, the structure
are given by the two equivalent expressions.

C
0(13

=

An immediate ,roryerty is:

0-
+ ( - 0
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~. III. Lic? A~gebra:

WR pre first working in an analytic manifolrl""-

clements '" C'c... .,»
··cC, .

::'r-
r-·I ;:1Od t h« S'J2Cr: 0 I

The S8 o f the

is do not ed by

1 formations X bVe

of (.1' I nt.o iJ.Y'. The q uanti r.t e s XY and YX a ll.ov a lso to ~('£'in~.11 J!

linear mappings of t nto itc;clf bu t , in genr-r a.l , XY and do
no t belong to the s:X3.ce (.~

Let us introduce a coordinate system:

x y=

x)' -; -=-

yd. u "
'G (/ d

Ti1C continuity co~dition

.
1 ~\

yO l/ w'

-~J

(\-{ -1.-. Y J- ~ l
U{,\(

-ll-.
'OOJu c:(

(\.,2p
U -t

alLow s us to »rt: t t o
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and it f01101·rs that t he oommutato r [X! yJ is also an elnmont

of 4 which can be rs,resented by~

2. Lie al0"cora___ .:0._.__

The Lie ~'roduct of tvo o os r at or s X ar.~ Y is t~8

cornmut at or [x, yJ f4.. C;W. 1-:"'8 no n s i do r e d as a

line aralgchra on the field 1\ I,rhcre is defined'~ and IN" have theLx.

following nro~erties:

a Linear algebra

r·I X n Y '-,] 0{ [- Y' z·. -1:......... +- ~~ ) ,.J '. n., 'J r [y, z]
+ 0 [,r, -.

for all

[x, «t: + ~Z] = 0( [x, y]
!=' '-..p.~, ~ £ K and X, Y, Z - 4

b Anti symmetry

[x, x] .- 0

c Jacobi Lde.n t i.ty

lX, IY ~ Z)j + Ly, rz, xJ] t
~

} [x, yjJ .- o

f Lie algebra is a linear algebra which satisfie~ the antisymmstry

sro'Jerty and the Jacobi idertity.
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t ho set .>...:L. . (\ G' ))' o f th0 aC~·:i.1.ItiC' functions in G.

The right trnnslations defi~s c~m)lot01y the group G.

8., m ~ G

and t nducr , in 'Jr (G) (1. ccr t inuors mp.')r)lnf·:;

+- (a) =: f(am)
)d

hie now Ln t ro duc c 2. t.angr n t vector L at the unit element e of G.

The infinitesimal rtght translatiors qre defined by:

X(r') f'{a )

Let us Jrecise these definitlans with a ro~rdinatp systrm

,-...
() <.

L(m)- ) (,/
"1 ()
(; )v\

(J~

X(a) c:: 11 X (0,:(f'

X (a) f(a) =
C [ ( +'/1 (a) Jv

=:> \L'.' \.' J m - e

ThE right hand side can be evalu2ted using the relation given i~

a Jrevious section:
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and we 0bt ai.ne

v '( t:
In the limit m - '; 1,{C i1(3/0' ,;0. (o)c:: (5..... aDO the infi-e-' v
nitosim~l nsratars X (8) can bE rr~rrsG~tod in t0rms of dtffp-
rential o~crators by:

,f "\
A,' (.~) l!/., \

(j 0&f

The' Lie algebra of the gnncrators X (R) is known from the Lie
U

nr o due t 0 f two o oo r ator ~~ as c a Leu latp(l in se etion 1.

This eX0ression can be siffinlified using the structure constants
introduced in Section II.

r-. 'I~
J !}C 8.) c:::

---{)~cJ.
r olat ton of a Lie algpe,rq:

c(

,- /L( (a)

and we finally o btai n tll" f'undamonta l
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siu21 g rcrators sRtisfy th0 Jrcohi irlrntity and it followc for tho
s tr-uc t.uro c oris t ant.s t.he r-e Lat Lo n

0:.. 0- c< ~
0( R

IJ

e .c + c c + C C -::: 0p 'x: -C J--C o<f) .oj cf' o/...cr

1. D0'finitions
We first give some classic31 definitions for the grou~s
a In an abe li an group the mult i oltc ot Lon 1,~1N is commut at tve-

b A subgrou0 is a set of elem('nts of a grouD which satis-
f't e s the group axioms. A t rtvl nl subgr-o u'o i s thE' tr'\roD-

tity ele~ent itsPlf.
c ~n inv~riant sub~roup H of R group G is a subgrou~

of G such tha t :

a )( -1a c H for all )( E H an~ a 2 G

If WE now consi~rr the ~articular CRSP of int0rest of Lip groun
it is CRSY to translate thns0 pronsrties in terms of 1ie algebra.

a All the Lnfinitcsimal gpncrators of the Lie algebra of an
208112n groun commut~ and ~ll t structure constant~

arc zero .

'I
')
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b The Lie al ge or a 1'1
(

2r::lvttc su v' !~rou") H of a ~Ji.s

G is a sub-algnbra

turs constants s2tisfy the r01qtion:

0(

C. -::.c for all
)1<

x . X. (_ /. ifJ / *<~.,~
c If H is an invarin~t sub-group of

c~nstants verify tho con~ition:

1)c:. . := 0 for all
.} c/

Xi E h)
J

i f X'5 tS no tin h..
(

A simple grou~ hns no invariRnt subgrou")s hnsides ttsplf)
the identity and Qorhaps discre te subgrau0s,

t: simple algebra ha s no t nv er ivnt subal gr-br a,

Th8 Lie o.li?,('br~ 0 f 2, s i.mo l.e Lie g r ou o is a s imo Le 2.1g"hra

A semi-si~")le grou") h~s no ab~liAn invariant subgroun,
besides itself, t h- identity ;:lO0 "wrh"',s di scrc t<;s!,l~groU1,)s

The Lie 21.gr:br'1o f a semi si.mo Le Lie grou") is a sF'ffii

sim oLe algebra.

I
,

"

-,

';,

,

I.r

: :

,
~,i
l :
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We define the symmetri~al Cartan tensor

(1 p
fJ o

The Cartan criterion is the following:a n c0scary and sufficient
c~ndition for a Lie 0 bra to be semi-si Ie is:

u[ e I~.( ~j'.f:)' ::t O·
. U I

q .
ofu r s a regular matrix.algebra, the matrix

This condition I s obviously ::1 necss.c;ary co nr'Lt Lon. If We' su-roo s«
that the Lie algebra possesses an a lian invariant sub algebra J~

c); '.<here' x j 0 E- ~ v an i sh and it

q of the rO'N (,I of t h o C2rbln
:J J 0 )
~f())::O

C·'irt;:\Ohas Droved that if de t (q ) -I- 0 the Lie algpnY>a is
(jftT'

all the structure constants
follows that all elements
tensor also vanish and det(

• • 1
Serll-S1m').Le.

tens)r j p:r allows to r'lc'fi'ne3 syramc t ri oal linear ccnnex lo n
in t.hc Lic a l.gc br a In Darticular, this tensor can useo to lowpr
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q i_by its definition and Wp aeply the Jacobi
O{),,-. C

The tensor C fu L is invariant under a cyclic ':)ermutation
of the indices nnd completely antisYmmetr~c.
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1. Gener~lltif's
L Def1Di tion:
G is ~ Lie grouD of trnnsform2tions of an analytic

mani fold m if for e rch )( tm and a tG ,onp c an find

a ySm do no t ed y ::: )( a such t hr t

m x ('( into ma The mapo i ng .( x ,a) > y of

is analytic
b xe::: e for each )l em',
c Associativity ( )( 4.) b =)( (ab) for each )<.. ~m

and a, b tG.

If the unit element (:3 of G is the only one element satt sfv-

ing the condition b, the group is called an effective group,
2. L1e algebra
Lo t us define a ch.ir t in m and a chart in G and

we usp greek indices in G and latin indic~s in m. Th~
mapn l, ng )( a ==> y is 1,!ri t tt0 n r.s

~ J z: 1J ()() b,-) ,
,,,,herethe composition functions 1J are analytic functions
of their arguments. The velocity field is d0fined by

and the infinitesimal generators of the Lie nlgebra are gtven by
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For an effective group, the generators X{T(/l) defined

in this way are linearly independent and constitute a basis of

bae Lie al.ge.br a.
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I To GROUP OF LINFAH TJU:·FFi)Pt,l."TIOl"S 0;;' t 'IffiCTORSry ACE on
THE FIELD OF RF:ALNUHBPHS

We are working with a n-dimensional vector s~ace or the

field R of real numbers as analytic manifold; E(n,R). 1tle

define in E(n,R) a symmetrical lirear connexicn g, with a

regular matrix which allows us to introduce a scalar nroduct i
:~

in E(n,R).

1. General Linear Group GL(n,R).

1. The regular nxn matrices with real coefficients

generat~the general linear group GL(n,R).

Any arbitrary nxn matrix with real coe f'f'Lc Lerrt s rt c ,'n,R),

defines in the vector space 3(n,R) a linear t r anf'er nat i on by

1j r o:c )L k ~t (cd
When the matrix Sea) is regular, the associated linear trans-

formation is also c a lLe d regular. It fc Tlows that the group

of regular linear transformations in B(n,R) is isomorphic to

the general linear group GL(n,R).

2. Let us n01,[define, for the matricesr~!. (n,F), a ba sl s

~ by the matrix elements:""ij

(Eij )k; . -;:(1, i..
:Q \ 1. rJ

The matrix 1 is regular and the

The matrix ,S (a) can l')e expanded

Eij 's span a complete basis.

on t.hfs basis following:

1.1
aSea) = Ti''-'i j

The ve Lee.Ity fie ld IJ.l J (.)() can then be written as
U

ii
tl

t,.
1

I
'f
.-~
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and the infiniteeimal generators have a representation as .:
. 1

dfffer9ni'operators

Xrs

We are now able to deduce the commutation rules of the Lie

algebra

The linear group GL(n,R) denends On n2 inden6nden~ Teal

parameter s and the Lie algebra has
C')n elements.

<:<u. The product of two matrices is givpn by~

E
i ,j

Ek.,
::: g;v

1·-·:\'

If

E .
I,"; "

14e can consider the matrices~'n(n,R) as a Lie algebra on ~;iG

re al number s wi th multi plie at i on Law gi -ren by the Lie prod LJC t .

[E:;'j' g lli E '.x k I.
if

::: g. E ,":-
ik i r~ 'L

The previous equall ty shews cl» r r Ly t hat the Lie algebra 0 f

the matrices yvr1 \n,R) is isomorphic to the T-Jiealgebra of the

general line ar group GL(n , R).



The factor group GL(n-,R)/n is the special Li noar group "~I

SL(n,R). It can be definerl as the set of unimodular linear
tranfOl!maticns in E(n,R) or, equa'l ent.Ly , as the set of the
nxn unimodular matrice s with real coe fficients , The numher

••••• ---------------------~- -~. -=---~-.=-- ~~-=.---- ..-.---- .... -.
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B. Special Linear Group SL(n,R):
y ~Sr'X

1.' The p srtacular oper ator ('= (t vS commute s
in an evIderrt"'Jaywith the n2 inft>nitesimal generators Xtu'
The transformation generated by X is given by:

&xR=- £ XXR- ~ )(k-

and is interpreted as a' d11at:at-l'orr 0 f center the origin.
The grou9 generated by X is an one parameter abe ll an group;
subgroup of GL(n,R) and isomor~hic to the additive groun
R of real numbers.

of independent real parameters is n~- 1.

2. The Lie algebra of SL(n,R) is immediately defined
by the infinitesimal generators

(

X (= XV'" -y- v' r .') ~YS Xn
The commutation laws are unchanged.
c. Pseudo-Orthogonal Groups: Qs (n,R):

1. The scalar product, in E(n,R) is given by the sym-
metrical linear connection ~

ey = (y, x )(x , y) = g (x ,y) = )( k gke

Let us call as A an arbitrary linear transformation in
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E(n, R). The conservation of the sca.Lar product under the
tranf~rmation A is simply

( Ax , Ay) == (x , y )

This equality must be satisfied for all vectors )( and y

of E(.n,R). The Lnv art ance propety takes then the Simple form.

g A = g

A matrix which veri fies the previous relation is called a ortho-
.1:
.' gonal matrix with respect to the connection g. mhe ortho-

gonal matrices generate a subgrou? of GL(n,R), the pseudo-
orthogonal group.

2. The connexion g is a symmetrical bilinrar regular
form and can be di agonalise d in the following -v.ray:gi'== +~\, .

,J - J
We chOose in E(n,R) an orthoQormalized basis such that:

gij .- °i' i -:: 1,2, ....... , n-s. J

gij = -Oij r == n...s+l, ....., n

The number s of time like vectors is cal10d the sign~ture.
The pseudo-orthogonal groups are characterized by the signa-
ture s and noted 0s(n,R). The two pseudo-orthogonal grouns
0s(n,R) aDd 0n_s(n,R) are isomorphic.

In the particular case s == ° (or s -= n) the vector'
space is an euclidian space and the connexl.on g can always
be cho .sen as the unit matrix I. The orthogonal group

l'°(n ,R ) is the s0. t 0 for thogona1 mat rices: A - A = r.
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3. The pseudo orthogonal grou~s aTe sub-grouDs of
GL(n,R). The Lie algebra of the pseudo-orthogonal group is ~
sub=a Igebr a of that of the linear group. The inf~nitesimal

generators Z ..
1J

can be written as linear combinations of the

Xij previously defined:
,_ -, rnn.
f.,'j ==}... X
l' J mn

It is sufficient to im~osG the inva~iance of the Durm of all

vectors
Z i j ()(,)(.) o for all »: ~~f,(n , R)

which can be transformed into:
[v>: t>11 -. )( »: )( IA ::::: I)

\.~ J\\: \

The matri ce s ~. ; must be anti syrnme t ri~allJ-
and it is convenient to choose:

1\ i j - E '. ~ E -.lJ J1

which gives for the Zij ! S tile e x ol i o it form:
I·

!
Z,l'J' == X .. - ;(.,1J --21

It 1s possible to construct
ant i symme t.ric

('\ .
/ nxn mat r i ~e c~ /1-

~ - "I ,:J '
groups 1s s~anned by

liD~arly indensndent

The =Jie algebra of the pseudo-orthogon21
n(n-l)-----')

infinitesimal generators Zij

dependent parameters.

n(n-l).-~--.--
2

r e a L 1n-

.,
"
",'"
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The commutation rules for the Zij are then given hy:

4t For a given v a l ue of n, there -ixt s t only ["~] + 1

non-equivalent pseudo-orthogonal grou9s.

Two particular sub-groups of Os (n , R) are the twc ortho-

gonal groups O(S,R) and O(n-s,R) and also thp direct

product.

O(S,R) ® O(n-s,R)

D. Speci all:..s;5:.!:l-.ct?.:-.9rthMgn0:L.Q.roups ~Q.s.(n2}~'

1. As a consequence of the relation ATg A::: g, weob ....

tain:

(det A)2 ::: (det g)2 1
It is then ,ossible to define in the ryseudc-c~thogonal grotins

0s(n,R) an equivalence wi th rc spect tc the sign of det A.
the

only/coset det A::: +1 is a sub-group called the sneeial p s eu-

do-:ort:O-ogonal group SCs(n,R)~ This special group,of course
ec

is alsO~Sub-grQUp of the sDecial linear group SL(n,R) and more

precisely

2. In aellc~; ':.-11 =n ':'D8.Ce whe r e g ~ I, the gr-cuo 'of uni-

SO(o, R),.

modula.r orthogcnal matric e s 1 s the s'Jeci q] orthogonal group
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so (n,R)sThr two groups 0s(n,R) have thear.d3.

s6tne Lie a1ge br a but they are not isomorphie.

E~ Apolications:
1. The signature of B threp dimensional vector space can

be _5 == 0 (or s == 3) and s == 1 (or 9=2). rllTewill h-ve only'
two pseudo-orthogonal groups, O(3,P) and 0l(S,R). ~he 1n-
finitesim3l gpner8tors can be roprespntcd by:

2~ -
/",

)c,

JL )
j

."
U

o ll'\....

'.
)(1 -L

U)l3
In the case of an el!1~lidian space the connexion
t ako n as

/1 0 0
J

g = 1° 1 0

10 0 1

6 can be

and the commutation rules are given by:

= Z 12 )
rz
L 31'

In the case 0 f a p seudo r-tic lldi an so ace , the connex1on
can be eho sen so that

-'

!
-j:

g
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1 0 0\

g ::: 0 1 0

iO ') -1
and the commutation rulps become:

:::-23l

Usually) for the orthogonal group 0(3), t.he herm!htic infini-

te simal gt?ner at or s arc de fined fcTl.ow't ng.:

Zj k z; L ~ J R ~ 'Ji -+ -+

and the commutat icn rule s take the fami li ar form J x J
-+

-= 1J.

0,. Let us now consider a 2-dimensional vector space with

a line ar connexion g de fined by: Cf - 1 q ::: E withcf II - , O.)..~
f = +1. ~he general linrar group GL(? ,R) is a 1-para-

meter group and the Lie algebra is known from the commutatioD0

relations

eX!11 X/d.] - Xjcz [X~I X 1:2.] z; t(,;(.-
~.-. -

[Xj,jX?(l] - Xotl
[ X,J;J. I Xc21]

- -
X;<I- E-

['X II) X~.I] t) I' V X] - c X XL'" I~ J'Z I - C. ) \ - .2:2.

The gen~rator y -= >< Ii + f. X,;z.,;(. commutes wi th the four

XJR "q. The Lie algebra of the special Lt noar group

SL(2,R) can be conveniently defined by the following inflnl-

tesimal generators:
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v·t) ). ( •. x )/\ - -;1. X'I - ~ ~J-.

x-+:= 1: (X,.,. +~>\t,)
x·.-:: i· C X I;;L. -- f: X.;z I )

which s at i s ry the commutation r e Lat ions r

[x ",X+J::: X ~

If we compare these r-o su l t s with those ob'fain~d in the previous

se c tt on , '{8 immediately see that the special llnnar group

SL(2,R)' and the pseudo-orthogonal group 01 (3,·P) have two

Isomorphic Lie aLgebr a; Of course the two groups at'f"I not

isomorphic .

.3~ The LIe algebra of the orthogonal grcnip in a 4-di-

mensionhl euc It.d.i an space is de fine d by six inn:. iit~simal g0Der a-

tors Zij and the commutation rules:

Let Us de fine two sets of three ganr r at.or s by
+- 1_ ( 2R~ 2:j4)7 -+.--. f cZ --. ()

where J.'k./~ is a cycl1c permutaticn of 1,2,3. fTlhe fOllow-

ing relations can be immediately' verified .
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The Lie algebra of th~ orthogonaJ grouD in a 4-dlmensional

euclidian Space can be written as the direct sum of two Lie

algebra, each of them being isomorphic to the Lip algebra of ~hp

or tnc gona L group in a 3-dimensional eucll dian soace ,

As a corsequence of this result, we h-ve the evident 1so-

morphism~

so (4, R) rv SO(3, R) ® SO(3, R )

4. The homogeneous Lorentz group L is the pseudo-

urthogonal group associated to a 4-dimcnsional vector soace of

signature S = 1, the l'1inkolvski i space. The conn=xt on g

is cho.isen so that +1 q = -1.
i coand

Under Lorentz transformntions, the norm of each vector is
;< J.. 2. ), elL

invariant )ll .--\...)~.+ )(,3 - ')tlJ -::::. Or,S -(.",r .

The Lie algebra of L is defined by the following

commutat1£)'n rule s

G:IA .A 1 ~ J-" -- - z .
[ I ,,....? - .3 \

j'z .Z I--z
>- \)3 I J.3_) -\i"<" Iz z l -L D/) ':OS)" -.::: - Z 0 3

[ZCI ,ZCb1.] ~ +2101-·; [2o.J. ,Z03J=+Z'<'3

Some p.0I'ticular sub-ca.l.ge br ae and sub-groups are evident from

the previous equations and correspond to particular invariance~:
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a Z12' 223 '
orthogonal

231 generate the Lie subalgebra. of an
sub-group which leaves invariant the

.:<. :< .2.
X 0 and the space norm )(I+X;,2 +)(3 .component

b 212, 201, 202, generate the Lie sub algebra of a

pseudo-orthogonal subgroup which Le avesinvari ant t.h=

component )(3 and the quantity xf +)(;- X~.

c 223, 202, 203, in the same ,,,aygenerate a Lie sub-

algebra isomorphic to the previous one and the corrrs-
ponding pseudo-orthogonal sub-group leaves invariant

)( 1 and X;' -\- )(_~ )(~.
d 222

31' 03' oi>

a third pseudo-orthogonal sub-group and no~· Li~~
~ ~ ~the invariant quanti ties are )C, and )(1 +.), .- )(0 '

p<.... 1 3

we have again the Lie subaLgr-br a 0 f
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III. GROUP OF LINEAR 'l'RANSFORMATIONS OF A I,JT'"'C'T'OR SD ArT'

QlLTHE. FIELD OF C0!1PLE~ NTJMBr'US

We now introduce ~n n-dimensional vector space on the
field of compLox numbers E(n,C). .A large part of the results
previously obtained in a rerilvector space can easily he ex-
tended to a complnx vector spRee. The herrr1tian product in
E(n,C) is -def'Lned with a symmet r'Lc al antt Linear connexion g
which is a regular sesquilinear form in E(n,C)

Let us consider a Lie algebra, 1\::::. (Xo~ t on the
real numb0.rs·withthe commutatton rules

[X x l_Cf vo: } T -' - cr·r /> J
If now the Lip algebr8. is defined on the complex numbers, it

.;\ '*can be interesting to introduce its com~lex extension as
a new L1e al.ge bra : on the real numbers with infinitisimal
generators x., andv s at l s IyI ng ,

Lxv, XL J co C/( Xf~LX<T IY-c}: eft. 'If i l~1 Yr J=:- e!1r
~It is easy to verify that the complex extension of /\ is a

direct sum of two Lie algebra isomorphic to 1\ Yi

(I\"*) ~- r-..J1¥ E:B 1\ *
A. General Linear Groun GLen,C):

1. The regular nxn matrices with complex coefficlent3
generate the general linear group GL(n,C). The group of
regular linear transformations in E(n,C) is isomor~hic to
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GL(n,C).

2. The Lie algebra of the /jeneral Li noar group GL(n,r')
e i thrr

can be considored/as a Li.o algebra. on t ho cornp Lrx numbers vr t t.h

the infinitesimel generators Xu nr a Li,' algebra on the

real number vvt th the infin.itesimal generators X(j and yO'
The commutat ion laws 0 f tLe «omol.ox ,"xto ns ion 0 fare 8.1 Li e

f}lgebra have be rn previously f~ivcn anc can also be directly

obtaiQad by using the method exnlainsd in the previous section

for the real case

3. The Lie algebra ~f the gereral linear group GL(n,r')

is al so the L10 algebra of the cornp t >x matr l ce s ~ (n,r:). rr'hi?

proof is identical to those obt~ined on thp real case and R

convpnient basis will be
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Soecial Linear Group SL(n,C):
$Y'"

The two operators X:::.. 1 ~Y-5

B.
1. and

commute with all grnerators of the lin~ar group GL(n,~). Th0Y
generate a two parameter abeliar group corresponding to comnlrx
di}athtiOn~ of center the origin. This subgroup of GL(n,r)
is isomorphic to the additive group C of complex numbers.

The factor group GL(n,C )/C :'s the special Iine ar group
SL(n,C:). It c an also be do f't no d as the set of urnnoriu Lar Lt n= ar

I
1~
I, .'0.

transformations in E(n,c} or,;Equi~alently, as thp set of the
t!omplcx

nxn unimodular mat.r i c-e s wi th/coe ffic Le nt s, The number of
independent re s l par ame t.er s is 2n'2 ·-2.

2. The Lie algebra of SL(n,~) is immediately defined
by the lnfl~itesimal geDPrators

I
Xy-S -

I

Iy'') = / V s - * 1 'Y 5 Y
The commutation laws pre unchanged

1. The hermitian product in E(n,e) is given by the
antilin2ar connection

i» '-{)z; a t» V) =- )c R c; <; €
I ;J / if' ) if" (J R..Q rj

Lot us call as P an arbitrary linear transformation in
E CD, C). The con serv at.Lo n 0 f t.hr nermrt Lan nroduct under the

trarsformation A is simply
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This equality must be satisfied for all vectors in ~(n,~).
The invariance property takes t he n the sLmnLa form

A-~ r 4'-t, if /
satisfies the pr~vious equality is called anA matrix 1.111ich

unitary matrix with resY)ect to the connection 1
matrices generate a subgrou9 of GL(n,6), the pseudo-unitary
gro up,

sesquil1near
2. The corine xt on t is 8, symmc t.r-t oaj z" I,' ': '-.rogul::<r

form and can be dt agona.Ltz>d in the fol Iowi ng 1!lay: q ('( ::::+ d,l';
r, =r - d'

We will choose in E(n,c), an orthogonalized basis such that:

~'i - J'j

~ If z; -J(J

~ ::.. ',:2, .i ... _
./, rt-S

\ - Y\- S + 1 - - - - - - Y\I _ I

The pseudo-unitary groups arc ch2racterized by the signaturn s
and noted Us(n,a'J

In the particular case § = 0 (or s = n) thp vector ~Y)0ce

is hermitian and the conne v t io n (J can aLw ays be cho son a::; Ul"1

uQtt~rriat:rix i ,~J I. The unitary group D(n,S) is the set
of unitary c~o matrices ¥-

A f, :::: 1.

3. The pseudo-unitary groups are subgroups of GL(n,c).
The JJie algr:br R of the pseudo-unitary group
is a sub algehra of that of the complex linear group. The
infinitesimal generators Zl)' can be written as linear com"f;l-

; .X .previoUsly defined with camp.lex coeffiCients.\J

Z'J

nations 0 f tr..e

mil.

\
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It is sufficient to impose the inVariance of the norm of
a II vo ctors and the mat.r i ces )\,.i turn jut to be ant.Lhcr-mit.t an :

'j

)~; +. /\,'/' =. 0 In 1=i"(n,c)~it is possible
to c cn st.r-uc t n2 linearly independent nxn antihermitian
matrices. The dimension of the' Lie algebra of the Dseudo-
unitary grouDs is then

It is convenient to choose for the
a n(n-l)

2
n(nt-l)

2

R R
E -Fij iianti symmetric real matrices

b symmetric purely imaginary matrices
r I

F + 'R
i . '1..'. j J

and the infinitesimal goner ators can then be written as

Zij- =. - Z j.Lt

I I
Z(j =+::Z'jL'

Tho commutation laws are the following:



-------------------~--.~----.
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As a trivial consequence , the Zij generate a Lie sub-algehra
isomorphic to the Lie algebra of the pseudo-orthogonal group
°s(n,R).

4. The Li0 algebra of the groups GL(n,R) and Us(n,6)
have the same comDlex extension which is the Lip algebra of
GL(n,@.).
D. Special Pseudo-Unitary grouDs strs (n,(t)

1. Th6 operator Z = gij Z1 commutes with the n2
ij

in1l nitesimal generators Zij & zi.. It generaw's-an one=par a-
is Jmeter abelian group which/in fact a gauge group, all the com-

ponents of a vector being multiplied by the samo phase ,

J x k = ~ Z x 1< = l' <E )( k r: r e cJ
This grouo is isomorphic to the one dimensional uni tar", gr-oup

U(I). The factor group.

Us Cn)O ),/U(l)
,

is the special pseudo-unitary group also defined as the set
of unimodular nxn matrices with comnlex coefficients.

2. The Lie algebra of the unimGdul~r pseudo-unitary
groups is de fined by n2 -1 infint tesimal gener-at.or s

IIZ.,
\ I

I
rZ .. -lJ

7,-qo
_I
n.I

and the commutation laws are unch8.nged.
3. In an hermltiarf soace where g ~ I, the group of

unimodular unitary matrices is the special unitary group
SU(n , C).
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4. An inclusion which I s 8. co nsc quence of the cxp l Lci.t

form given for the Lie algebra is the following

5. The Lie algebra of the groups SL(n, R) and SlJs (n ,' \

have the same complex extension whi.c h is the Lie 3.lgeLT:1 c f

the group SL(n,e).

E., Complex Orthogonal Grol!-.P_?J,'l,Cl

1. Th~ pseudo-orthogonal g rr.up Os(n,E) is the f!rr,'',i;)

of linear t.r ans f'or raat.Lons in E(n,:r~) wh ich Le ave s inv:-;r~_r-'~lL~,::c

symmetric el b:i.line ar f'orm g.

In a cO~Dlex vector space E(n~c), tho scalar pr~d~~t b

now a como Lex number exo l.t c i t l y: gi vcnhy-:

("Ii )1 \1 LJ) ( ) (. ,. f ")' ! f "-
A\-+( "J., (J\-t-~ rJJ.. .:::. ~)"')if:- )\;)..'\)1.../-+' ()(II'd.l./-1-~ \").,)..jt}iJ

where each term is well defined in E(c,)R).

The g rou» of linear t.r-ans for mrr.Lcns in E,rn c )
" \ , I

leaves invariant this sc aLar product; g j.s t.ht' ccm ol.ex 0r-i;"C-

gonal group J(n,e)

2. This group can be considered as t he complex k?Ct;:n~ :,c) ,

of the pseudo-orthogo~al,gro1?-T)S' 0s(n,R).

Chan~E:!.,.Q..f_bRs'i's/·lt i;- arway s po s si bLe nGI/!, in

But with a

~ as the unit matrj.x because of the definition of the 2Cd~ar

product., It fo 110,';s that all pseudo-io r thogo na l gr-oups Gs ~r ;-q)

have th('j same ccrno Lex extension 0 (n , e) •

.,
\

•
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3~ The orthogonality condition can always be written as
T ,

A A = I and the infinitesimal generators of the Lie algebra

are given by

)

Its dimensionality is simply n(n-l).

F. Apnlications:.

1. We first consider the unitary group U(2,C). Thp Lie

I I Ialgebra is spanned by four generators Z12' Z12' Z11' Z;:;2) with

the following commutation rules
•

o·•

The linear combination Z :::Z1 +
11

r
Z' commutes with all the22

generators and can be as soci ated to a gauge group U(l).

The Lie algebra of:the epec I aI unitary group has there-

fore only three inflnitesimal generators it is corrvr-nt=o t to wri.te

in the form

::: 1r;
"

, 1
~

Z
12
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From the commutation relRtions given above, it is easy~o derluce:

The Lie algebra of SU(2,C) and the Lie algebra of the ortho-
gonal group 0 (3,R) are two isomornhic three-parameter s Lie
algebra.

2. The groups SL(2,R) 'and 01 (3,R) have two isomorphic
Lie algebr2(:? Such an isomorphism remains true for the comDlpx
extensions and the groups SL(2,G) 2n~ the complex orthogonal
group 0 (3,e) have also two J somor-ph Lc sLx-pnrameter-s Lip
algebras. By using the notations of the previous section the
Lie algebra of SL(2,8) satisfies the following commutaticn
rule s:

)

[y~ XO]= - v:
[ ';7-, )' OJ=- X-t[)'~)'+J"'-x-; ['< )f-]=: XQ ,

After comparison witt relations writt~n for the Lorentz group,
we immediately see that the Lip algebra of SL(2,C»)of 0(4,0')

and of the Lorentz group L are isomorphic.

, i
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3. The Lln a Lge br a of the como Lax Lorentz g rouo is Lso»
morphic to the Lie algebra of the comDlex orthogonal group
0(4,6)~ It has been shown in the previous section that the
Lie a Lge or a of the orthogonal g r0UD 0(4,R;.i~ the dt:r.eeti·,sum
of t'Wg Lsomor ph l c TJip algebraeof tF1P orthogonal group 003, R).By

us i r z t' '.~ f thA h r,) it f 11 . di t 1 th t thJ :::',~§ults0 Pt;3 p ar ag r ap -: 0 O'·TS anme R e y ,::> ,P

Lie a Lgo bra of the complex Lorentz group is the dirpct sum of
two isomor0hic Lie algebr~of the real Lorentz group.

IV" GROUP OF LINFAR 'T'hMJSFO:rI1P,T IONS OF A VfC7QR ST)N"~ ON
'l'HE FIELD OF qUN~ERNIONS

The complex numbers C can be considered as a 2-dimen-
sional algebra on the field of real numbers R with the com-
mut at Lve multi plic ati cn 12.1":

(a, b) (e ,d) = (ae - bil , ad + bc )

The qu at.ern ions 'Q ean be defined as a 4-dimensional algebra
on the field of re al numbers R with the noncommutative mul-
tiplic at Lon law:

-+ -+
axb )

-+
t simryle matrix representAtion of the qupt2rnion (ao,8) can
be r e al.t ze c with the ho Lp of the Pauli matrices: (qo,~) -= G>\.-,.'~d,·
The qupternions Q ean also be considered as a 8-dimensional
algebra on the field of complex numbers C with the multirylica-
tior law:

.\
;,
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An useful matrix rc")resentation of the quat.e rrit on ()() f ) is

then

)C
'j. t
)(,..

><1< •

.,
In order to de fine the norm 0 f a complex number, we fir st con-

sider the compIr-x co n jug atie (a,b)* = (a, - b) and t ae norm

is simply

For the quaternions, we proceed in the srune way by introducing

the hemitic corijug a-e (ao,"aJ* = (ao• - "it) and the norm is

givpn bYI

= = ( 2 -toa:) +- a : , 0)

In the language with the comoLex numbers, we obtain .~ t('1{'/1)=-
( )( , -y) and the norm takes the simple form

~ . .

~I ( x , 't) -= ()( /'1- ) * C)() ~ ) ==. ( )( X + '(j 1.J J 0)
The /quaternionic product of two quaternions CVI and C:;l;~ will

be de f'I ned by the quat.er-rit on 11. =- aV *-!A'I =- a, * Bv using
1;( 1 -V,2 V~I

the previous forms for the quaternions, we find

T:lenow introduce a n-dimensional so ace on the field of the

quaternions E(n, Q~). The qUpternion product of two vectors
conjugate

is defined with the ·'Self I ' reguL~r form g.1n E(n, Q )
(g = g ~).



- 38 -

quarterni.cin1c Q ~X j'The ..... ,' .,",1 extension /\ of ~ Lie al'~ebr8. 1\::: t o:
definpd an the real numhers can be also considpred as 8. L{p

algebr8. an the r e a.l numbers with the infinitesimal gcne r at or s
I s. 3

Xu" J '/(J" J '/ o' I '10-" 0 f cour se, the thrrr:; comp l.ex = xt en-

sions x*" -- <) X ,/0< 2 ar e t somorohie.(\ -- 1 (l1/VJ -

A. Line;:'T Grouns:
1c

1. The r egul ar nxn mat.r i ce s w l th qu ar t er nl on/icoo f'f'Lc t ent s

generate the generRl lineRr group GL(r,Q). Thr groun of re-

gu18.r line8.r trans~ormations in ~(n,Q) is isom~rphic to

GL(n,Q).

2. ThE: Lie algebr2, of GLen, n) is tho qu:;.terriottrJxten-

sion of the Lie Algebra of the real general linear groun

GL(n,R). It can also be r egar d=d 23 the L1e alr;ebr8. of the
ll1, (n,Q).

m(ltrices.J; ). The dimension of the Lie al~;;ebra 1s 4n'?

and the com~utation relntions ure given by:

"

,.'



eom~utps with nIl

generators 8f the linG~r ~r8up RDd generates an one dimensi~nal

abe Lt an s ub=a l ge br >.•

I

I
B. Pseudo Sympletic GrouDB S~s (n,Q):

1. The cURt8rnion7~roduct of two vectors in

a q UCl ternion gi ven by t ho conncxion 't:
~() l1-).::: 1(11/ v) = U~k 1J:<J u- ~

""'C n)., n, ,., is

Let us call as !i an ar b l t.t-ar-y linear transformnti.8n in
ieS(n,Q). The conserv~ti8n of the qunternion/pr8duct under the

t r ar S for m2.t ion J\ is s i 1ply,

( V I U-)

The equality must be s:::tisfi2d for all vectors in l(n,Q} and

the inv ar t ance property take s the s tmol o form:

r-
,\ g Il=g

~ ~
The matrix J\ is defined by U \j = (j~. i-. The ffiatT'icp.3

I, wh i ch sat i s ry tho previ,8us equality 'ire called s,ymulptic

matrices 1"r1 th r o spo c t to the conne xf.o n g. They generate a suh-

group of GLCn,Q), the pseudo symplectic gr8up.

2. j~S previously we introduce the signature s of the

vector SDace E(n,0) and the pseudo symDlectic groups will he

noted S) (n,G).• s ~

3. The Lie algebra is a sub-2.11!,1:bra of th0 Lip; alge'iTrt of

the general linear group GL(n,Q). Tl1e infinitesimal genr>r;:tors
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z ..lJ
c f'f'c t errt s of the X·.lJ

c an be wr i t t e n '':s linear comb l na t Lon s with CllUltprrioniC ("J-

defined in section II,
-,..,1 n

Z i j -=- ;~ l' j X In h .,
It is sufficient to impose the invarinnce of the norm of ~11
vectors 8nd tho matrix 0le~ents must S atI s f'y the
r('quircmcnt

< The inft nitesimal~\2ncrators Ci'U' then br written A.S:

ZtJ
'-, - XL} X, .- - /- I,- JI.. - }'-

eX Di. r}, rlZ, Z j\.' 'I,) + >i( O<:::',},3.
t I

The dimension of the Lie nlgebra of thp pseudo-symnlectic ~rou~s
is th8n n(2n + 1)

The commut at ion laws can e asILy be wr ittG!1 in the f'o 1101!li ng
form:

[Zlj, Z R.Q J=?J k 7:,~- ~l k lje - ;fjf lei, + 1lQ T,j i<

r ~~J ~ ~ ~ d
_.il) , ?rd ;:::Ijk},! -!\PZJi +~J£ ;id,,-dIX rlh

LZ~ )Z~R ] := - dJ ~ Z\~ - 'J, k ilj £ -~ j 1.1:, i:< - t\ ~~j ~

[ Z~i J .z~d=: EO< f if t-jd /'}_Icrj -1,reJC- ~jf l~r~\~~ kf
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f,s a t r tvt pI co nse que nce , the Z .. ' s gener:1to (1 Lie a l.ge br a

1]

isomorphic to t hr L1t3 RIg!; br cl 0 f thf? pseudo-ort ho gona'l gr ouo
, rX (

Os(n,R) and the t.hre.: t somoroh l c Lie n.lgebrae t2(d I Zlj J
are isomotphic to the Lie algEbrn of thp Dseucto unitary groun

Us(n,C) ..

,1.' It is ::1so oxt.r-cmo Ly use fu 1 to repre <ent the ouat or--

by a set of two comD1cx numbers ( x 'd.·-). T h r

of a vector (V in E(n,r;)
t, ,

x J / ~ ()) 0 f a ve ctor X

components can be considered as

the com~oncnts ( in 1': (':'n"C) arid 1"8

de fine
;

x"+J
Let us now consider two vectors ~\ and (J- of E(n,Q); they can

be associ8ted to two VGctors X and Y of E(~n,c;) by

k ( . k \!Y\ +:R)
l/ =- Y / I

; .
U J ~ (X J/ Xn +~)

ie
quaternior/ product

/

q ( L( ! l<;-) i s d(~fi ne d by
t! •

9 j :tzl\ j ¥- LJ R
He ob t a ' n for tho quat er-nt on (U) IF)

Tht-

(0 ( l( . v- ) =v ...
'1nd in t f::rL1Sof X and Y

the form
;

~(UI (j)c:c ~j R ()<,J y~ XV\i-j /+~xi ;+~/'+,})l R)

We now introduce, in E(2n,C), an nntilinear symmetrical connec-

tion G+ arid 2' line ar arrt I symmotri c al conno ct ion G- de fi. need

by the rcoucou form:

i~
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g ° =1 ° glG+ = G- ,
0 g i-g °1

and the qus t.e r nl.on : . ~ (t~)l?), CRC t hem be written as:

1(u ~j--) ( G1+ (X, y) ) Gr - ( XI Y J)
The lineer group GL(n,Q) is a subgroup of thp linear groury

GL(2n,C) in an evident v.fay. The pse udo sympletic group

SPs(n,Q) can also be defined RS the set of Lina ar transforma-

tions in .E(~n,C) which Le ave I nv ar i ant the two connecttons

G+ and G-.

In ar equivalent way, tho group Sp (n,q) is the sub-s
group of the pseudo-unitary group U~s(2n,c) which conservps

anti symmetrical bilinear form G-.

5. We first consider the 2n dimensionR' vector snqce

= I g(0
0' I •

g I 1
B(2n,R) with thr connection the comDonents of

a vo c to r X are noted l.•,d th the two sets on indices j -::1,2,

...... n And n + j.
'rhe general If-near g rou» GL(2n, R) ac t i ng in L:'(2n,P)

depends of par ame tel's. ~he infinitesimal generators of

s:m genoT',:torsthe Lip a lge br a will be di v Ldo d into four so t s of

X ~J/ X ~,/\ +-}) 0\"1 +-\ J} f X (\+\ I V\ TJ I

Th0 sub-grou~ of GL(2n,R) wbltb coosert~~. ~~e lineat

symmet r t c ol connection G+ i.s the pse udo-o r tnogona'l group

02s(2n,R) wh:hch.d9peOaS 011 n(2n.,.1).\ 'Jarameters.

Tilewill. call real pseudo-sym"Dletic group
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the sub~group of GL(2n~R) which conserves the linear nrti-

symmetrical form G-. The infirdtesimal generators of the
real pseudo sympletic group are given by:

A( i - ;{~) - Xn+J_ \-\+.'

B\f =- Xn+l- J + X V"-+j ( Bjl"

The commutations laws are given by

[AtJ, AkRJ = ~jk AR - ~-j\, ARJ

[ 15, j B k,e ] 0 [ Cj ) (R X J
LA,}) Bl<x] - - ~IR BJ-€ - dtjbJk"

[A'j)CR~J=: 3J,~C\~+dJfC'k

[8, j ) C k QJ'" - dj k A d --j IR A-d f --~j J A \ k - ~ I fAd ~
on: gene r ator sThe define a Lie sub-algebr, isomor~hic

to the Lip algehra of GL(n,R). ~he n(n+l) generators B
and the n (n+l) -~- . Ll

/ t 2gcmera ors Cij de f't ne two abeLi an Li!' sub-alg'~bra.e.



---------------------------

grou.ps Sp')",::-~[},h) is '1(]n_~ll.
",.)

The sub rOll]J)f GL(2n,H) which Le a zc s .i nv ar I an t the

c o nne c t i on s (}t- arid G'-, is the inters()ctbn of the gr ouo s

02s(0.n,H) an d SD") (2n,H;. 'J:'he infi"'.dtcsirncll generr>tors are
z s

immediately known by the an tt svmmc t rv c')ncUtion .

:::: B .. - C.". 1J 1)
::::

The dimension of the Lie ~lgebra is n? and the comrnut.a t i.on re-
lations are given from the previous exnressions by:

[ZI,} ,ZI<R] c= ~j~Z,~-d\k;lJ~'-~j2 Zl:R+d\,~ Zd~

lZlj) Z f<!! J 1jJ:<Z(~- dl k T~f +'}; { Id~- t~ij k

[ ZI"j }Z R Q] z; - J JR l:I k - ~ l k Z (ji f - ?)£ ~ k -- ~ ~~ l d t/
This Lin ;llC:~(3bra is Lso no r ohj o to the Lie algebra of the ps eudo

unf t ar y groU-:J Uc(n.C).
- k:>'

E. W2 now introduce the 2n-diGcnsional cOffin10x snace

E(2n)C) w l t h the ant.t Li no er c onne x Lon G'~<. ThG gGner21 lineCir

group GL(2n~C') acting or ?(2n,c ~ nppenris or 8n2 1J2,rn.r'1et"T"s

and thc-:? LieqlgGbra is the complex ext= ns ton Z' X, y f o f

the Lie algebrn of GL(2n,R).
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The sub group of GL(?n,r) whi~h conserves the

symmetric connection is the pse~do unitary group

which depends on jn'::' oar amet.er s ,
c

We ~.vill call complex pseudo symDl~tic g ro up ~D?s(?n, c:;)

the sub group of GL(2n,c: whichcnnservec the linear ,::.nti-

symmetrical form G-. The Lip algebra of

complex extension of the Lie Algebra of

SD (2n"c)
I, ?s

SP2s(2n,R)

is the

defined by tbe 2n(2n ~- 11 inft nitesimal generators )\, B, C,

A, B, C".

The sub gr-oup of GL(2n,C) which leaves t nvar t ant the

connexions G+ and G- is the intersectic>n of the Dseudo-
c,

uni tary g r-oup U? (2 n,C) and of the o seudoc symo Le.t t c gr cu o ':')
~S C - ~

SP0s(2n,P.). It is the pse udc-csymp Le.t Lc group SPs(n,Q) pre-

viously d0fined. The infinitesimal generators a:te immprli~t81Y

given by the lineAr cc>mbin2.tions:

+-'-,
:j

The dimension of this Lie algebra is p(2n+l) and this v~lue
agrees with the previously ~btaincd result.

7. The Lie algebra of the groups SP? (2n,F) and
,8

sps(n,Q) have the s ame complex ext.ens i on which t s the Lie

algebra of the group sp (2n,C).
?C'
-" "



f(t) defined on the closed interval 0 ~ t
that
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Chapter 3 .

TOPOLOGICAL PROP~R~IYS

I. Compact Lie Groups:

1. Definition: In a compact space, any infinite
sequence has its bound on the sppce

2. All the coefficients of an ~nitary matrix are
bounded by th8 uni tdl

3. ThE' unitary group U(n) is then a comn8ct Lie gr-oup, :.. ~

It follows immediately that SU( n), O(n) and 80(n) are also
compact Lie groups.

4. (
Th0 Sympl~tic group Sp(n,0) is a closed subset

and therefore it is a comnRct group.of U(2n)

II. Connected Lie Groups:
We give briefly some definitions arid some pr-o oer tt o s

c.

in order to dh.araci±ize a Lie grou o 'from a topological rrot rrt

of Vi0W.

Let us consider two noints a and b in G. A oath
from a to b in G is described by a continuous f'unc t to n

f(O) => a f( 1) => b

f(t) => r and r c G for all 0 ~ l: ~
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fee)

Figure 1
PC~("h .

The existence of a nath between a and b can be used to
define an equivalence in G betw0en a and b , such a

property being reflexive, symmetric and transitive.
2. Connected Lie group:
A topological space is connected if it cannot be const-
union

dered as the/of two non empty o?cn subsets. Pe introduc~ a
p~rtition in G by using the equivalence defined above. If
therp. exist a path joining two points a and b of G, these
two poirt s belong to the same equ.l v a.Le no o class Sa which is'
also called the component of a.

For an analytic manifold, it is easy to see that the
Sa's are ope~ sets, From the previous definition, we obtain
the sufficient and necessary condition: a Lie group is COD-

nected if and only if one can find a pOint a in G which can be
joined to any arbitrary other point b of G by a path.

,
i
<"

't
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If a Lie group G is non-connected, on ly the t ds nt t ty
component S'J can be a sub group. It is an invariant subgroup
also called the connected component of G.

3. HomotoD,V:
Lo t us consider two pnths f1 (t) and f2 (t) joinirg

two points a and b of G

fllb)-------

Figure 2.
The pa titrJ.s f1 and f? are homotopic if f1 can be co rrt t nue ,< ,-"I:._J

deformed into f2 , the end points a and b remaining fixed.
The notion of homotopy allows to define an equivalence

between two )aths and to divide the paths into homotopy clasces.
4. Simply Connecte,~. Lie group_s_=
A connected Lie group G is simply connected if the

homoto~y classes reduce to the identity> In a simply cODnectpd
group, all the paths joining two points of G are equivalent,

Ex amo lo s:
As an illustration of the previous definitions, we

give, without ~roof the following imoortant results.
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a The real orthogonul group O(n,R) is not connected;
the two equivalence c Las ses are char act.cr t zed by

det A = + 1. ~he id0nt1ty comryonent 1s the con-
nected special orthogonal g rou» SO(n,B).

b The Lorentz grcun L 1s not connecter'l;the four
equivalence classes arc characterized by det A = + 1
and Aoo ~ 1 or Aoo ~ -1. The identity component
is i,',
The complex Lorentz group, isomorphic to the comnlex
orthogonal group O(4,C) is a 2-connected groun

c The special unitary group ~U(n~e) is simply con-
nected but tho special orthogonal group SO(n,R) +s
not simply connected.

III. Universal Covering Group:
1. The Lie algebra of a Lio groun is uniquely def1ner'j

but the co~erse is not true.
If the Lie algebrae ~Iand ~J.... of two Lip groups G1

and G2 are Lsomo rohtc the 1,18groups are only locally
isomorryhic.

2. To each Lie algebra of finito dtmension on the real
numb€r3, there corresponds an uniquely determined, connected,
simply Q onnected Lie group , called the universal covering
group G*.

3. All connected 1,1egroups G, locally isomorphic to
G* can be obtained from G* wi th a covering homomorphism.
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The kernel D of such a homomor ohtsm is a dlsc"pte Lnvart ant

subgroup of G* and G* being a connected group, D Is a
b f t h t Z 0 f ("<.J*su group 0 .ne c en er II

G*/D with DC(Z (G*)G

4. 'Ado'stheorem:
A Lip algebra of finite dimension on the rpal numbers

is ismorphic to a sub-algebra of the Lie algebra of a general
linear group GL(n,R) for a convenient value ~f_ n,

It follows that to each Lie algebra 1\ of finite
dimension on the real numbers corresponds a connected L1e group
of Lie algebra 1\ ,which is an analytic subgroup of GL(n,R) •

5•. Let us consider the direct sum .s 0 f two L1e
algebrae gl and g2

g = gl ('t). g?,
The universal covering g~ouJ of g is the direct pro0uct of
the universal covering groups G*2and and
G* Gi 0 *= n., T2

The center of G*
of Gi and G2

contains the direct uroduct of the centers
but in genGral,

this direct ur0duct
Z(G*) is much larger thah

Z (G~)c,

6. Example s:
a '/le first consider the one pnramet er Ll(l algebra

Ao' In an eVident way, its universal covering group

r
u
~1
'.
ji

i,.
f·
I



is the nb81i~n additive groury of thp real numbers R.
The mapp Lng 0( =) cxp (2ii~) whe ro «tR 1s a ('"OV0r:'-

ing homomorphism of R into the one dimensional
~.)(1)un ltary group Due to the ~roperty exp

(217Tn) == 1 if n is em t ntcgr r nurnbor , the kernel
of the covering homomorphism is the di3cr.te additive
subgroup of the integer numbers N:

U (l~.

It can bp easily spen thet all the discrete subgrou~s
of R are isomorphic to N and the only cornA0tn~
Lie groups of Lie algebra /'0 are R and Vel) '"

b 'T'heunimodular uni t ary group SU(n, C) is a cor nr-ct od :1

si np ly conne c t.e d group. It is th('r0fore the un lv= r sal
covering group of its Lie algrbra.
'I'hecenter of SU(n,C) is the s'-t of all nxn un ltary
me t.rt ce s, The ger'''ralform is then L0 In where In
is tho nxn uni t :natrix. The constant W is re st ri ct ert

nby the co nd i t Ion W -= 1. It follows that the center
Zn of SU(n,c) is isomorphic to the cyclic grou~ of
t he roots of order n of the unity 'j Zn 1s also
isomorryhic to the integer numbers modulo n. If n
is p prime number, Zn has no subgrouD ~esi0Ps the
identity and itself. If now, n can be written as a

;~.

:1

.,
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product of two integers n = p~ , the grouDs Zn qndarez~/subgroups of Zn'
For instance the conn~cted groups associAt~d to the
SUC"",~\ Lie algebra are ffi {2,G) and the factor
group SU(?,C)/Z2 which, as it will be SP'Gnlater,
is isomorphic to SO(3,R).
In the case n = 3,· we have the two connected locally
Lsomor ohte groups SU(3,C) and SU(3,C/Z3 < In the
case n = b we have four connected L1p grouos ;
SU(6p)~ 8U(6,C)/Z2' SU(6,0~/Z3 and SU( 6,S)IZ •

6

i,

"

.;~

'II

JI

~j'

j~
i'l··1
'ilfiIe

I'
I

!,ii
i..i

tj

i'!
~/

,;'
.,il
j'

n

"
i)1

f
'II

~'~

1

111
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Chapter 4.
LIE ALGEBRA OF THE SEMI SIMPIE GROUPS

I. Standard Form
1. The eigenvalue problem:
Let us call as

a Lie algebra /\
"',- the Y
l"'ede fine as

infinitesimal generator of
(f"

A = CL 'f.-If* an Lnf'Lnt t.estmaI
operator and we consider the eigenvalue prohlem defined by the
equ~tion

fA, :{l = S X
The eigenvector X associated to the eigenvalue S 1s an

~element of r. : X= ')(.'f...p and S is in general a complex
number. The basic Equation can then b~ written

Taking into account the communtation relations of the Lie alge~ra

The br-acke t is zero, br cunse of the comp Ieteno ss of the j.. 1:

basis in A

(0:- c (- s S ?)
cr~ r

We have a system of i

f
/l :: 0

homogeneous linpar equations with
respect to the'(
solution )(.f::: 0

quantities '){.f Besides the trival
, we have a non zero solution if and only i~ the

determinant of the coefficient vanishes:
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This condition is an algebraic equctiJo of degrer I Ln the
variable S and we have --( roots, real or complex, degenerqte
or not. To each root corresponds an eigenvector. For a ~eml
simple Lie algebra, Cartao has obtained 0xtremely important
results. If the operator A is choosen so that the equation
in 5 has the maximum number 0 f di fferent roots:

~ The rootS = 0 is degenerate with the multiplicity
-:and (., is called the rank of the semi-simple

group
b. All the non zero roots 2re non degenerate.

2. Fundamental Relations
1'/efirst define our notations. A greek index R, 0, \

refers to an ar-bt t rary component of the L1e algebra. 1<'orthe
generators E~ associated to non-zero roots we US0 the grpck
ind1 ces ~,~',\. and for the generators Hj associated to
zero root we use: the LatIn indice s j,) fz •

:;/eare now working wi th t.hctwo re sult s obtained by

Cartan for a rank e- semi simple grouD~
a The root zoro is dogenerate 'fliththe ~t1lti'!'Jlicityfl

[A,HjJ ::: 0
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b The non zero roots ~ are Don degenerate

As an evident consequence of the first equality, A is an
eigen-vector with the eigenvalue zero, it can then be written
as a llnE~ar combination 0 r the Hj,. !...=: 'A j H

j
and the

generators :iJ generate a abelian sub-algebra called the Cartan
algebra which is maxim~l

[Hj, HkJ = 0

W~ nGw~~se ~h~.~~cQbttdentity
E~ of the Lie algebra

f
or CJ-R

for the three oner at.o r s , ,A, H

= 0

1-1- A H' 1- - , J-' + [CHj,Ec<], AJ + CIBc<,A], u~J = 'J

a) and b) we obtainBy using the properties
[), [ Hj , Eo( J J = c< c:HJ ' Ec<].

which shows that [Hj ~ Ec(] is an eigenvector co rrespo~ding
to the non degener~te eigenvalue c<. It follows that this
vector must be propertional to

p
C ',./.J~' '

cr E'. 'J' . c/: ," ...
After comparison ~ith the eigenvalue equation b), we dpduce
the reLatLon

,J = \ j c(
~ !\j

,,

i
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vIe now define a e, -dimensional vector space t t assoct ateo
to the Cartan sub-algebra. The quantity ~ can be donsidered

C(Jas a vector in u)(,.J with covariant components ~j' in the
same way, can be considered as a vector in.
contravariant component 'A J-
following to consider the Hj'S

.. It will be also useful in the
as the covariant components

of a vector H in E.e, •
INe apply again the Jacobi identity with the t hr->e ijen8rCl-

tors A, E~, E~ •
, ~. _.

[ Ut, E~J , 4' \1 + [ [1<' EpJ, ft.J+Df:i -0('

[lEp , A], Eo(J = 0
We use the eigenvalue equation b) and obtain:

t ..\, [Zc(, i~] = (0( + p) [E~, E~J
I Three cases are possible:

~ (~+~) i~ not a root and the operators Eo( and E6
i

commute "
b (0(.)- p) -I 0 is a root the commutation ~o(, FiiJ is

proportional to the operator E~+~

vector associoted to the eigenvalue zero and can he
written as a linpar combination of the oDerators H·.J



3. Theorem:

To each root 0<, it cor-re spond s the root -0<. The pr oo f

of this theorem is based ~n the ~~rtan ~riterion for semi

simple gtoups previously given.

!JIe consider the element 'td'Z
Cartan tensor e()

C}~T- C d.. ~ C,,"{cJ-

of the row 0< of tho

With the pr evfo us expressions obtained for the structure con-

stants, G becomesj-- ol. ?

<} oJ, 1
J

Nc( ~C'(

\-> J-- oi..
- - ~. c.. +

Co(
- + C't}d'" 't 0(.

O(+~ -co(

The three terms pre non-v ani shing if and only if -r can take

the value l' == -0(. The Cartan criterion is satisfied if and

only if -0( is a root and the only element of the row 0(

different from zero is then q
cJ. -~

For a Lie algebra of rank.e, and dimension -.(

there exists y- e non degenerate and non vanishing roots.

From the previous result Y - t is an even integer.

4. Cartan tensor

The nor~alization of the operators Eo( can be choosen

so that



and the Cartan tensor takes the simple structure

I

9-J ~~)
1- to-if
·t ~1> - Q ~ - • - 1 - .

10 i. ,
11. 01
1- __ "I_

I
1

o
-- o

- - - -

o
o

I
--1--71-

r 0 -
Ii 0
t

We have

From the certain criterion, it f'o Ll.ows that q.J1~ is a regular

matrix

cJ, e1 ~,J~ tf. 0

Of course, such a result is independent of the normalization

condition.

By using she deftni tion of the Cartan t ensor , we. obt sd n

an explicit exprv s st on for qi' (1..,
o (f /T'<.

0" -C~ 0(
t1J ~ -, Jo(

The matrix q j R is symmot.r-Lc aj

~ in the following.

:::.

and will be called simnly
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Vector Space
r:;::. e" (.. ..:...

, C-is usee. to de f'I ne , in Cf,
IK

We introduce the invers~ matrix 91-1'
n lineerThe matrix .. !

"r, ,
" symmetri cal co nn-act i.o n.

to write the sc?lnr product ioto the form

(C<, ~) == SY(a<, p)
"

== (~, c<)

The co nt r avar i anf comoo nerrt s 0 f a vector c( are given by

== c!,~Z

=

an equivalent

R
== ex: ',.., ~I<..

formand the sc alar 'Jroduct take s

(0(, ~)

As an interesting c~nsGquence, we obtain

. h ~~k~rl\. ,- l, 0(, e< L («, e<)I L - ==, t t'R.- 0( l1 J k a(

and

6( ( c(, o~) == ~

6. Commutation Relations

W& now show that the contr avariant components c<j are

identical with the The proof uses essentially

G j
c( -0(

property of the structure constants.

C. }\'Z, G =
} c( .-a( r(

KCj CL r r:l,
'cY't)-":(~ v \~o(

==

the anti symmetry

with the normalization condition it

follows immedi ate Ly,



C j
"

:::

The commutation relation becomes

It is Dxtremely Gasy to deduce now a Lis sub-algebra, gen0rat~d
by and the linoar combin~tion one can write
as a sca12r product C~, H) ; we obtain

, <

" [):c( , E_« ] ::: (-:<, H)

[C«, H), E«J::: (C<, <) E«
This sub algebra is isomorphic to a SU(2) Lie algebra and
corresponds to the sequence c(, 0, -c( of the roots

7. Lemme

If «, ~, "'i are three non zero roots such that

.;( + ~ +\ ::: 0 'vTe have Nc(~ ::: N~''( ::: N-yc( .
'tIe use the Jacobi identi ty:

and the commutation relations allow us to transform this
equa'li.t.y into:

C c<, H) (~, H) t ('y, H) ::: o

mhe operators of thr ~arten sub algebr2 are linearly indeuendent
and e aeh compo nent j 0 f c(~ ') are solutions 0 f the sy stem:
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.
i·

(

(
c<j Np'6 + ~j. N .- '{j N := 0'\ c<: +«~

~
I ..
l c(j .•.. pj ,t-\ tj - 0

It can be easily seen that the only possibility to obtain non-
zero roots C<, 13, ~ is:

N 'BC(l.
8. structure Constants

The structure const ants .WI'
~~o(~

the exchange 0 f the two indice s

are antisymmAtric in

Nc<S*" Npc( := 0,

Let us apply the previous lemma for three non vanishing roots
-0(, c< + ~ and -~

=:=

Because of the symmetry c< ~ -~ in the set of the root <:,

it is always possible to choose, for the operators Ec< a
normalization so that
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Another relation between the structure cJnstants is given by
the normalization condition of the Cartan tensor. By using
the previous symmEtrics on the structure constants, we easily
deduce

.II.. Properties of the Roots
1. Theorem
If 0( ~ are two
l! the number 2

arbitrary roots
(~,B) is an integer called a Cartan
(0(,0()

integer;
b the vector B-2 (0(, ~) 0( is also a root. deducad(C<,C<)

from p by symmetry withrespect to the hyper plane
through the origin perpendicular to 0(.

The proo f 0 f this fund rune ntal theorem wi 11 be giVE'n into two
steps. Let us first consider a root "t such that 0( +~ is
not R root:

[ [" I E0( -j :=. 0

We introduce the sequence
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The only a finite number of generators Ec< and thp

sequence of thp~, operators must also be finite:

These f'orrnulas can be inverted following:

--

and, with the previous assumptions y..o:;: 0

l~le now wrl te the Jacobi identity for the three operators Ec<,

E'_<=< and X '"__p 0( ".-

[}E:", E_~], X ~-P){tol' X1-I'-IJyEJ-{t~_p~E", J, s.ol1= a
By using the commutations relations this r elation become s:

and finally:
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We have ob'ta'i no d a recurrence formula for ~\J:

}fvp+,::: ~p-+ ~o(1~)-- r(J)d)

Taking into account ~\,0::' 0 , we deduce the explicit rx-

pression for t~r
pct)-\) (01../d.)

~
\~p- P ~ oC1 )

The quantity ~ is

previous relation we

de fined by t'~Cl+-l::::: 0 and 'Ni th the
(j

find thc values of Cj.-
I

~ ~ ~ Cd) 0)
(0< ) 0( )

Tho theorem is now proved in the particular case where

the sum ~ +~ of two roots is not a root. The quantity ~

is an integer and there exists a set of roots:

'v r: _J . V _ ~()'~ oZ) ~j
0- J ~;:;. ~ V\..

L~/<)oZ)
T/le go back to t.hc gene r a.I case INhere c.< + ~ c an be a root.

"() ) "(-ex' ) '0 -20<.) v J'

lJe de f't ne as m and'~ ,two positive integers such that

13 +,*0( is a root if and only if the algebraicintegerAz

I satisfies _ ffi < L < . The previous r e su Lt s can
" 1<. _ YV

be used with the root G = r+Y\.~ . The v al.uo OfC} is

ai mpl.y ~::''fl\ +- IV

Q 2 (0(, ~)-

and we obtain.

2 (0(,) )-- 2n(0(,0() ~ (m+n ) (0(,0() ~n(<<,o()

-- (m-n) (0(,0()

2
( 0(, :, ). ~ m-n
(0(,0()
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b the vectorp -8 (~,p) ~ = r + (n-m)~ is q root
(C<,~)

of the form p + k~ bpcause of the property
-rl < n-m< n

L~t us consider the Do~siblp roots ~ proportional to•
a given root c< '. 0 = k~. From the previous theorem, t ho ClU~!1-

tit y 2 C3 ) o~) = 2 f-z..- i s C :::rt an in t.e g o r •
(~~~)

The operator Ec< com~utes with itself and both, 2~ Rnd
1/2 « , cannot be roots.

As an immediate cons0quencc, the only allowed values of
~ arc ~ = + 1 0.- , If a sequence contains zero as a root,

this sequence must be simply -c<, 0, +~. This case is reallzed
in the L1e algebrc: of the :c:U(2) group.

3. structure constant s:

The operators )("1 - po( and E 1_ p~ are relnted to
each other by a product of structure constant ss

and we immedi ate ly 0bt aln an ('xuression 0 f 'r- in terms 0 f
\:> 4- \

the se constants

\AP+I -
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'{;Va now u se t.ho notat.I ons introduce in § 1, ~::: B + n« ,
C~}.. ::: m + n

and we can comp8re this eX9ression with the explicit ones
given in ~ 1.

~-~ t- \ ::: ~ (c{, ~) (P +1) (m + n - \:7 )

yJo consider the part lcuLar case \'"):::n - 1. The properties
of the structure constants allow us to write

Yl-n::: N N = N N ::: Nc<, ~ N N2

~+~, _c( ~,.:c.( c< c{+ ~ c<, ~ -B,"::< - C<}3- ,

and finally
<"l

\
N~F ::: - (~,c<) neB) [m(~) + 1 ]

1-

where for a gi.ve n root 0(, the positive intAgers m and n
are functions 0 f p.

of the Cartan tensor will thenThe element
giVE the normalization of the root 0(

"n (~) I:m (B·) + 1 JJ
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4. Root Diagr~

1'he roots can be co ns t dcr-ed as ve ct.or s in the ve ct.o r

~ace E.e/ The root diagram is the graphical reor e se nt at ion

of the roots in £.,~
Let us app Ly the previous theorem for the roots ~ and

p:
~) = 2

(c(, g), (0(, ~)

(~, 13)(0(, o()

The two quanti tips \:> and CV are algebricintegers. We hRve

rov
4

( 0(, o() ( 13, p)

and by using the Schwnrtz inequality

(0(, 13) 2 ~ ( 0(, «) (15, 13)

we can definp. a real angle 0 by:

=

Beeause 0 f the symmetry 0( ~ -c( in the roots set, it is

sufficient to study the angle ¢ betwe(m 0 and 1T/2. In

order to simplify the discussion, we call as 13, the root of

larger norm (p,f) ~'"~o(,o() and it t'o Ll.ows rlmmedfat eLy t) ?,CV',
The numbers p and <1t being integers, the angle ,'~ 1s

restricted to tho following values: 0, ~ and
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Q. C8.se o or r C{/= 4

Th£! -first-evident solution isr =<:\1= 2 -c6rresponoir:g

to.F·:::·:c<:eA.;8~cond oo s sLbl l Lt.y, !,)::: 4 (~::: 1,

leads to 13::: 20-: and must be rej(~cted.

b Cast] 12::: rr/6 or ~'<V::: 3

h/t~ 11; ve only one solution I') = 3, CV::: 1 (B, in :::3
(c<~c<)

c C;ase ~::: rr/4 orJ?({!:: 2

•

T..Je have only one so lution I')::: 2, q,,::: 1

::: 2 (c<,C<)

d Case ~::: rr/3 or JJCV = 1

fIe hr~:"e only one solution p ::: l,ev ::: 1 and (~, P)

.qno (f,B). .

::: (C<,o()

e Case ~::: rr/2 or \)VV::: 0

'l'he only phy st cal 'Jossibillty is \):-- 0 OV.;:l) •

Of course the ratio !J i OV 1s undetermined •

•

.- .,(
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. ,,.

III~ Simple Lie Algebr~e
vIe first study in some details the particular cases c f

sinpl,eLie a.Lgebr m o f rank o ne i and two. The results ('Ire
generalized after to arbitrary rank simple Lie algebrae.

A. Simple Lie algebra of rank one
This Lie algebra Ls well known but it s=em s to us u so f'u'

to deduce its properties in the general framework previously
given. The simple Lie algebra of rank one corresponds to the
three roots ~, 0, -~ and the one dimensional root diagram
is simply

~
Fig. 1

The commutations relations are given by

The normalization condition gives (C<, o() 1= - . The covarI !";.r:t

and the contravariant com~onents are both equal to and
the Cartan tensor can be written as:

--i

I 0 1
11- 0

With the convenient change of notations E~ = Ec( E = E..0('·F

~ = + 1- J2"
form

, we obtain the commutation rules in a more f'ami Ltar

j
'.,
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The Lip 2lge~ra of the apecial unitary grouD SUO?) can be
written in the form

-+ -+ -+
J x J = iJ

or equivalc:r~tl.Y

[ J1 ±:.. i J?' J1 +' iJ;I = :±:. 2 J" •.)

Th€ identification is o~tained by:

E
Jl!:. J? 1

J3
= H = st:+

<)
l~

B. Simph~ Lie nlgebrEE of r ank two
The root dtagr~ms are two dimensional anrl.w~explorr ~I',

allowed possibilities for t h» ang Lo 0 in order to construct
all rank two si no Lo Lie algcbr ac, It is only ne c= ssat-y to
considor two roots « q~d p with thr angle 0 to deduc~ all
other roots simnly by symmetry with r0spect to the straight
line through th(O origin pcrpendicul!lr to a root. All these r o

",
" flections generate the Way1 group.

1. Diag~am A?,

lye co nsi rler two roots of e qua l Dort:! « and \ , w-l,th
the ang Lo 0,i: IT /3 After apo li c at.ton of tho \1/oy1 re f'Lo-.-

tians, we obtain a regu12r hexagon and the Lie 21g~bra is
8ight-dit:!ensiona1.
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Figure 2
Root Diagram .A2

The 'six non vanishing roots h,:ve the same norm: (C<,C<) == 1/3.

From figure 2, it can be easily seen that if C<, p,~ are

three non zero roots such that) == 13 + 0(, thenp -c< and

13 + 2C< are not roots. In the previously defined language,

m == 0 and n == 1. All the non vanishing structure constants

have the same modulus: N~B == 1/6 and are known f'r-cm one

of them by using the symmetry propertie s .

2. Diagram B2

'lie consider two r oots c< and? wi th the angle 0' ==1T /Ll:

from the previous results _. ?, (C<, c<)• After anplication

of the "(,veylreflection 1~reobtain 4 roots of t.ho type c< and L1

roots of the tyne~. The Lie algebra i8 ten-dimensional.
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0(,r 2., ---- ., ,--~-- (~ L

£Xl

Figure 3
Root Dingram B2

The norm of the roots is giv00 by the normalization condition
L («, --<) + > ( 3r:t )
c:< if dtJ

(~,~)

2 and we obtain
_ 1

6
(;J ,:,)-p, ;J - 1

3

In order to determine the non v am shing st.r uct.urc oo nst ant s, '-Ie

calculate the values of m and n associated to a given
system of two roots:

B ;).. 1 . J can nevpr be n root and
TIT = 0
""') r,

~)1:)j
there exists a s2quenc~ of threr rootsb d c:(

'1 j'

c<i -,;( . <::<i' «1+ c<~
J ' u

m - n = 1

with i .;.j corres0onding to
and
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root s are and " p ,
P,; , ;'j+~-i '

~ '?,and it fo110'",7s

~ , p +« ~ +'?,«:.j' l:-' j _j ~.~j _j

in both C2ses m == 0 n" + n__/
i~J • uY" i• J -
Lrnmo di ;c'.ce Ly cl

"'-1
c: 1/6

,-/
"'-j

All the non vanishing st r'uc t urc constants have the same

magnl t udc arid tht' phose s ar c known from two 0 f them.

and N~j' ':<-j
by using the symmetry propertiE"'s .

3. Di:;gr2Jrl G2

\A<JTe consider two roots c< and ~ 'Ni th the angle 0 == ,"/6

from the previous re su I t s (r,~)::: 3 (C<, C<). After applicetion

of the 1N"8yl r-o f'Le c ti.on s , 111C: o btat n 6 roots of t.h= type c<

and 6 roots of the type ~. The Lie algebra is 14-dimpnsional.

F'i gur e 3
Root Dic,gr;cm G2

is given by the normalization conditionThe norm of the roots
-.:-( ) '>'
L-, '-'-, c( -r c.: (P, j3 )

C( :~
,.."

== 2 and we 0 bt. ai m

(o~, C<) == 1/12 . r· .,,'<)" )~p, 1/4:::
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It is (';c',SY to de t.e rrm ne t.ho structure cons t ant.s bv using the

SPffiemethod as io the nrevious section. All the non vanishing

structure constants are known from throG of thorn by using tho

symmo t r-Lo s properties and 1,NO have

- 1/6 :::1/8

Sim1'Jle Lip algebra; of ran-k.Q",

We try to extend the previous results to a t dimensional

snac e to" '('l.----~~,--~~~--~-
c.

I
l.

Lie algebra ..D,,!,
The root dLlgram AS exhibits an hexagonal sym-

metry. It is then co.nve nt ent to introduce a, ' three dime ns i onaL

snac e ann. to r cpr-ese nt the root diagram A2 in the plane

X \ + A L t 'f.-!J z: () In thi s itray, 1t!e de fine the tri-

angular coordinates ~ I I ~ L ) \'j.., -3 of sum zero and the non

vanishing roots h:;ve the general form

X 1

X:.z,
Figura 5

Root dl agr am Ai) and t r t ongu l.ar co-
ardine,tes
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The nat.ur a'l generalization is to introduce a ( t-t-\ ) dl men-

sLo naL ~;')~':ce and (e +\) orthogonal veoto r s of oquaI norm (2,;.

The t l~+1) vectors

c<ij =
)( v V -(\

are loc at cd in t he dimensional hyperplane \+" s: +1' Q H- ,,)

The 1ie alge br a i" f 0 frank t has the di-

mension{ - .e, (Q +1)
All the non vanishing roots c(ij have the snm~ norm

(C<~ C<) = i/(Q+_\) and ;:111 the nori-v ant sru ng structure constants

the same magnitude N2 = \/ 2l.Q +1)

2. Lie algebr~c

He introduce in the ~ dimenslonal space t e. a sys-

tom of t orthogonal v ect.s r s of equa.l norm e}
140 f1Ist consider the fo Ll.ow l ng g('neralizatton of the

Lie algebra B~ by defining two S0tS of roots

a Roots of type c<: 2.rl roots given by ±. e..~
b Roots of tYlJe ~ 2( (~-I) roots giv,:;n by ±:.. e ~ 4-

As previously, we hrve of course, (~,S)= 2(C<,«) nnd the

norms are given by
I

(.(,C<) = -
2.l2Q-11

The Lie al.go or a Bt of rank

All the; non-va.nishing structure constants have the same

magni tude N2 _1/ )
- '2(2~-\
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3. Lie algebra C~/

A different generalizAtion of B2 can be obtained by

defining two sets of roots in the following way

a Poo+:s of type c<: 2 ~( Q -I) roots given by

:t l l, t E. .-
<t

b Roots of tYPe? a: 2 C/ roots given by + 2-tj/
The v r.Luo s of the; norms are given by:

(~-.(, C<) (~, ~):= I
l-i +-1 )

The Lie al.g ebr a C(, 0 frank ,t h as t he dimension -y~
eC2~·H) The structure co nst ant s can be d lv Lde d into two c Lass= s

following their magnitude:

eX 3 )1-(c - _I
0< \ ci, 1- ~ 4 (Q +l')

In an evident I~Jay, the Lie algebra is isomorphic to

4. Lie algcbrq D k>
A n..w Li·2 al gebr n o f r ank t can bG constructpd with

the following set of roots of equal norm + e: + ej,
14e o bt ai n in t he way a Lie aLgobr n of ctimc;:nsiony::: {(2 Q_I)

The; norm of the roots is given by ; (0<,0<) := 1/2le-l)

non v ani shing st ruc t.ur o cons t ant s hav» t h«

and all

N
2

--'same norm
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For t = 2, the Lie algebra D2 is not s Lmo Lo and can

be ropresented by the root dt agr am of the Figure 6

Figure 6
Root Diagram D2

D2 is a semi simple Lie algebra, direct sum of two rank one

si~ple Lie algebra, AI:

D2 (V Al B .111

In the particular case .t -:::3, it can be easily Shown that th=

two Lie algebra D3 and A3 are isomor~hic by superposition

of the root diagrams after rotation in S. 3
5. Exceptional Grouns

The following results will be given without proof and

we refer to the original papers of Cartan and to the subsequent

-works of Van del' Waerden and Dyukin.

At, Bt' Ct, D constl tute the only four gener aI

classes of simple Lie al.gebr as, To the four series, it can be

added five exceptional groups characterized in ~ab1e 1.
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Name Rank Dimension

G2 2 14

]' 4 524

Ec 6 78
0

E 7 132
7

E8 8 248

Table 1
Exceptionail. Simple L1e aLgcbr ae

IV. Realization by classical groups:

1.. The determination of the standard for of a TJie algebra

A on the real numbers R is obtained by resolving an eigen-

value problem w~ich introduce the field of complex numbers. C.

In r-e aLt ty , we are working with the complex ext oris ton A)/::... of

the Lie algebra. Of course, the Lie algebra 1\* is the compl,ex

extension of the non isomorphic Lie algebra f. d...: for in-

stance, all the Lie a l.ge b'r a of the ~seude-orthogonal groups

Os (n , R) have the s amo complex extension which is the Lie

al.gebr a of the complex orthogonal g rcup O(n,C). Cartan h=s

shown thpt only one compact group can be associated to a standard

form but of course, many non compio t group can have the same

standard form.



- 7') -

Li·:;Fllge~ri1. An_~

1,"e consider the spcc i al Li ne ar group SL(n,R) :lcting
in an euc lidi an sp ace (~= 1). The Li"'l.lgc:;br2 is dp fi no d by
n
2

- 1 i nff n l t e s Lmn.L gon',rctors X ij such t.hat JX}}= 0
Th~ g~noral commutation laws are gtven by

It is convenient to work oxp llcIt eLy some part Lc uLar- r e Lat t ons

in order to exhibit cloLrly the stRndard form of the Lie algebra.
By putting

the roots components are given by .
}

- a(- Uz tJ

and the non vanishing structure c~nst2nts by

N
2

= V r-:
The normaliz~tion condition for the roots and the structure
constants determines \. to be An::: .../2n

/\ ('v
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The Lie algebra of the special linear group h8s the

standard form ~n-l. From the pr ev t ous results, this result

is true for all unrno duLar pseudo uni tnry groups in an ps oudo

euclidian n-dimensional complex vector snac e , But from CaTtan

th~rem, only one compact group can be a sso cj at.e d to An-l

and it is the unimodular unitary groun SU(n,C).

real numbers. The
n(n-l)

2
In order to

fined by

3. Lie algebra B~ and DQ..

We consider an euclidian n dimensional s-pace on the

Lie algebra of the orthogonal gr6up is de-

inf·ini te simal generators 7. i j

study c as i Ly the standard form of the Lie

algebra, it is convenient to use a complex basis in E(n,R)

instead of the real one and a non-diagonal form for the conne c-

t ton cr . We first define an index

range of variation.

with thr- following

~-Q~~~(,
b -,e ~ J ~ (L

In SUch a basis ~ is r0.presented by an anti-diagonal matrix

wi th o~ 6 and the sc a'l ar product becomes
~0d'k::- J-~R 0

<}CX ,"1)= }tj ~-j-
The general form of the commutation 18.'''s is given by

if n ::::

if nexceT)ted
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It is convenient to write explicitely some pnrticular relattons:

[LJ -.
[L \~_\u (;

")L R -(~J= ()

~ L\.z-\'l 0:: (OH..j.SH-6_;~[;-Jt)ZH,
~

_ ~ (6} 6 i)'L_'Q_h 1 17 -+ Q L ","
v-. j- 1'--·, f -}

in order to exhibit the standard form of the Lie algebra.
We now restrict i to positive values only '~ = 1. '? ••• 'j t
The stand&rd form is obtained by putting:

Z - }\V\Ev-SYs I~'
The roots components arG given by

o

~[n)} - ~['(s/ = (6Jy-\-5j-S -bt--y- E:J--S) ~Y\-

and, in the c a se 1;1 = (1~+- \ 1 where '( or S can take th2
value zero

= c( f
[Syj

, - ,
= (b' - 6" \-'J-Y J-Y) r.»;

The non vanishing structure constants are all equal, in magni-
tude to N

2
7.: V t.~

The normalization conditions for (c(, c(), (~, ~.), N2 give the
value of \V\: ~ = J2n-4

/\ I " I" '
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The Lie al ge br a of t ho o rt ho go na L group in an (2 (2+1) vector

space has t he standard form BfL ::1[1d the Lie 8.1gebra of the;

o r-t.hogon a l group t n 8.D 1e ve.ctor so ace has the standard form

DC j\ll the pseudo-ort ho go na l groups, t r rc spccti v e ly to the

signature S havc. the same s t an dar d form.

We consider an 2n-dimensional eucludian sp8.ce on the

real number.f'he Lie a l.go br a of the real symp le t i c group is

de f'Lnr d by n (2n+ 1) infini to s ima.I ge no r at or S Ai j' Bi j' Ci j

with the commutation Laws ,

[ Aij

I-B· .
1- IJ

[ Bij

[ Aij

[C ..
IJ

B,] =kt
Bt,::J =<.~

A ]kt
C'l']~'-
Bke]

o

J.. " " A
('_2l C lL 1<.j

Ck~;]

= 6ltBj~+ cS,Sk BiG

r . C + (C= '-.J.1 f.2. it °if i k
= >.. b A + 5 ., A _ ~-

'--\Kj( I.l jk
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It is convenient to write Gxplicltely some parituclar rel~tions

[ Ajj A ~d<"] ::: 0

[ Ajj , CRR] ::: 2 6JRCkt<..

[ A3J , BR· ] :::-2 6 ,. B Rk.,R JR
[ Ajj c1,l] ::: C C; i I'~ +6;t ) cRe
[.4

AkCJ ::: ( &ifz~6J-~) AR~j j

[Aj .1 A X rz.] ::: c-6·J.R+5"iQ. ) A {R
,.

t Ajj B ] (-6'-6'-~ )
I

:::

BR~1 ," kQ. J k J

in order to exhibit clearly the standard form of the L1e
algebra. By 9uttlng

Aj j ::: 'A YvHj Bjj ::: ~rvE_j Cjj :::
~~Ej

C l t :::~\\ERl Ak = ~ )"\ E B = ~ F." )t k - Q, kl )'"\ -(,;:-t

the roots components are given by

~tL' \.''" f... I L
. . j :J
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The nor-mal Lz at Lon condition for the roots give ~ := 2 ..( n- 1'A.

and for tho structure constants ~\." := 2 .J2(c+l) •

The Li8 algebra of tho real syrnp LectLc group Sp(2n,R) has the

'standard form C From the results of Chr.uter II, thisn .
result is 81so true for all pseudo symplectic group sps(n,Q)

irrespectively to the signRturo S. Bnt only the symplectic

group SD(n,Q) is compact.

i:
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REPRESENTA.TIONS

I. Generalities

1. Defini tion:

N dimp.nsional vector space -\TN and

1AJe consider the group ~ N of linear

trans formations 0 f VN repre se nt cd by I'\J j( N mat rt co s

and such t hat q N is homomorphic to

GN is a representation of dimension

Let us introduce a

an abstract group G.

G. By de fini tion,

~ of G. As a
consequence

U(~)U(b) 1;:. U (wb)
for all a,) b (;.G and U ( 0..,) f U (b) E G N

I f the homomorphi sm be twee n U fl.. and Gis an i so-

morphism the representation is said faithful. It can be shown

that all representations of simple Lie algebr~, except the

identi ty , are fai thful representations.

2. Equivalent representations:

Two r'apr-e sent at ion Ut(Cl..) and U2.,(ct) of G are

equivalent if there oxt s t a constnnt mat.r Lx A ,independent

of the group elements, and such t hat

for all

3. Reducibility:

A r epr-e se nt at Lon U (0...) of G in a vector space -VN

is reducible if it Leave s Lnvar Lant a subs pace V1. of "\T
N

•

After a convenient change 0 f basis, the matrix U can then
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be written. in the form

o
U~

where the mctrix U1 has the sc~e dimension as the vector

space Vi· .
If now U3 ~O ,

Y 1 and V.2,; 0 f Vf'.1

the representation U

there exist two inv8riant sub spaces

such that the sum is preci 5eLy V,N J

.ri s said fully reducible into two re-

pre sen t at i.ons U1. and U2.,

u - \
U1. ~~I0

4. . Contr.qgradient Re?resente.tion:

l.Je consider a N dimensional representation of G with

the complex matric~s U
U (CL) U ( h) -= U ( a., b) Q) b € G.

The complex conjugate matrices UT constitute a \\I dimension8.1

representatiori of G

U*(~) Ut-(b) - U1-(Ovb)
The repro serrt at.Lon .U and U+ are called contragradient

repre se nt at Lons~

5•. The Lie algebra of a Lie group G is dr f't ned by a

set of , infinitesimal gencr at.o r s X(). It is possible

to find, in the group (;. ,a set of 'r (NXN)mr-ttrices-" N

also denoted x () ,~Nhich have the commutations laws 0 f the

Lie algebra:



/
;'

I

': ' ...•.:-.

/
'f'"

::.87 -

6. Comoact Semt-Simple Groups:
The following important theorem can be proved:all represpn-

t atLon s of a comoact semi-sim;:>l0.group are equavalent to a re-
presentation with unitary matrices. We will consider only this
case in the following.

The L1e algebra of a semi-simple group is defined, in its
stRndard form by the infinitesimal generators HJ and E <:v-_ •

In the unitary representationJthe generators of the Cartan
algebra can be represented by hermitian matrices; by using thp
commutation relation

it is possible to choose representation satisfyir.g~

E -0<'-

II. Weights
We study the case of compact semi•.Simple groups for~'Thi8D

the representations, can be taken as unitary.
1. ;)<'3 finition:
life consider the t -dimensional abelian Cartan sub p]gebrR

The cpe rators Hj can be sLmu LtaneousLy diagonalized; in the
vector space V N we have the etgenva.Luesquat.Lon for each
operator tlJ
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The numbers YYlJ- can be con sl dere d ns the covariant comoonerrt s

of a vector m in the voctor space t previously consi-l ce
tde r-e d , 'the vector 'YYL is called a weight :clnd the

weight space.

2. A simple weight is p..ssociated to one .eigenvector only.

For the rank t > 1. groups, the weights are not, in general

simple.

3. Properties

We now give, without proof two elementary propett1es:

~ There exist, at le8st one weight in each representation;

b The eLgenvec to r s 2.,S soci at cd to di fferent weight s are

linearly independent.

As a consequence, the maximum number 0 f weight s for a l'J -dime n-

sional representation is precisely

4. Theorem 1.,

.'

If \SL) is an eigenvector associated to the weight m.
the ..

/vector .• EJ~S either zero ~or an eigenvector associated to the

weigh:, "M + eX '

By definition, we havo r

H} lit> - m J I SL '>
Let us consider the ve cto r ~O< 1.Jl. > e' By using the

relation:
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we immediately obtain

If Co( 1.fL> - is not zero, it is an eigenvector 'associated to
'the weight ( )'y\ + 0<).

5. Theorem 2
If rn is a weight and ex.. a root:

!a the number ~
(mlo(~ is an integer
(eX,cx)

b the vector m - :J..(m,o( ) c< 1s also a weight, deduced
(diOl )

from m by a reflection of the 11o]9ylgroup.
The proof of this fundamental theorem is extremely similar to
that given for the corresponding theorem with the roots 1n Sectior
II of the previous chapter.

6. Equivalent Weights:

~wo weights deduced from eRch oth8r by an operation of the
l~eyl group are called equivalent. They have the same multipli-
city.
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III. Weyl GrOUD

The Weyl group has been de f'Lnod as the set of reflections

vii t h re spect to the hyperplane; s through the origin perpendi-

cular to tho roots 0( \ie are now concerned wi th the deter-

min .."tion of the Weyl group for ths simple Lie groups by apply-

ing the fundame nt e.I theorem 2 -

1., Lie Algebra Ap..,
0{ Cd-:= e1.'l-ed' and

vectors e R
.e+1
~YYl R o

1

we expR.nd theThe roots ~an be written
,

weight m on the basis of the

•

We immediately f1.nd

::t i= lJr) m)
(o<-,)c<i

m.
l

\ve now use the theorem 2•. From the Part .Q, the di fferenee s
m l - Y'r1-J-.areinteger number s , From the part Q, the welght

• "fYt1 obtained by reflection from m... is given by:

r.m~el<:;-> WlR8R - (YYLr -ffi,j-)(el-eJ) =R R
..:.. ~ YVlt? el< - Yr\ i. €r + YrL} eJ- +Wlc:r ei +YY1i €J-

·The vIeyl gro up is the grou-p of permutations of the components

of the weights.

It follows that the maximum numbor of equivalent weights

is (€+I)J
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2- Lie Algebra :BQ.
1,ifeh[)ve two series of roots

\ 0( I = [Cd e.
f ~IJ -:::.E,(I) £1. +

,
I=+l i. =- ,1) 2) . , • . ) ~

and t. (I) is the sign of :I.

It follows immediately

From the part a of the theorem 2, the components of a weight

m must be 8i ther all integer numbers or all half integer

numbers. The weights 1'111 equivalent to m are de f'Lne d from

the par t .Q by:



", .

~. r

t~

I

~..

- ~2'-

The ~Vc'yl group is the [,rou'J of permutations of the c omporie n t s

of the W,eights with an ar bl t r ar-y number of c hang o s of sign.

It fo Ll.ow s th.it the maximum number of cqul.v a.lerrt wei gh t s is

~ Q, J.. !
r·.
".c.. • Algebra

We have two series of roots:

and it f'o Ll.ows immedi at o Ly

From the pnr t a 0 f Theorem 2, the c ornpone nt s 0 f a weight m.
must be integer numbers.

I
1'hp weights m e qu l v a Lont to m ~tre defined from the

part b by

I yY1~ ett -= L IY\R ek - [E (r)l))i.] [l E(r)eLJ::::Lmkek-lm~ eL
~ ~ ~

f Y\'\I~ e10 :::: ~ W\t?R - VV\'l e, - IV,,} eJ - E cr:)e erJ[m t ej- + rYlJe,]

The Weyl gr-ou» is the same in B£ and CQ .

4. Lh;,'lge br a J)e
The roots of the Lie algebra l>,t have the general form

eX IT f(I) e, + t(:r) eJ-
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. and it fo Ll.ows immedi at G 1.'1:

~ (c<. I "3) n\ )

(ex i o()

From t h« par t a of t.hco r om 2, the; two quantities mi... ± YYlJ--

must be integer numbers.
I

ThG 111'eights 'YYl- c qul.v a.Le nt to m are given by:

The l.jeyl group is t h« group of pe rmut at ions of the components

of the weights wt t h an even number of changes of sign.

IV, Fundamental Weights:

1. 1tJ(~ fir st introduce in tho wRight space ElL- a

relation. A vpctor is caJled a positive vector if its fir~t

non v ant sh i ng oompo ne rit is a po s.it i.ve number. Fe then have Y1l1,.

higher t han mlif ml.-m1is a positive vector. Of course,

such a property depends of the bes t s in E..e" but the co nse que nccs

are intrinsically t rue by mc ans of t.hc liJeyl group reflections.

For a s?mi-simplc Lie aLge br a of r-ank i and dimension

(-y - i )
r-f

Jv

y t he S8 Gxist non vanishing, non degenerate

roots o.
c(+ .

2nd positive roots symbolically denoted

2. Dominart ~/Jeight

In a set of equivalent weights, the dominant weight is

higher than another weight of the set.

The highest weight of a representation is the highest

dominant weight of the rp~resentation.



2. Pro oo r t.I r- s

~£ give now, without proof two important propprties.

a The highest weight of an irroducible reprosentation

is s iuo l r. It :['01101·rs t ha t the S0t of cquiv.qlent

w1c'L;;hts to t hc hL;hr.?st ,,,T,-·tght of nn irrpducible re-

pre' sc nt at i on i s (~ set 0 f simple, t..;-eights.

b Two Lr r-oduc Lb lc r e or c se n t ati o n s with tho same hi ghr- s t

weight are equivalent ~nd convcrsly.

4. Fundrunental dominant weight

Cartan has proved the following rosults:for a simDle Lin

group of rank Z
weights L 1 l~ )

there exist £. fund:,'.ment2l dominant

•. ) ~ , with the following pro oar t t o s

a Evo r-y dominant 1:!(::ight L c an b. wr I t t e n (IS ~ linear

combt nc t i on of the L! "s with non-neV? ..tive integer c;o('fficiPDtS.

}
b To ,:;r-:ch L corrcsDor:ds~, fUld~lrn(.?nt~11 irrpduciblc r8-

prvso ntnt.Lo n for ~·r'1.ir>h L.::: is thp '1iglyst wo i ght .

'.[• CrL\RP.CTr::t:

Let \~ d.l.me ns io naj vector space VN of

and ISL 0)

. ,
:J~, c ')n S 1 ,-, Eo'r thl-

the u ( O~I and two vcc t.o r s I~Ilo( ')

N Xof N matrix'I'he t r1.C C 0 f the?



- 95 -

is indcpodcnt of the o8sis chosen in VN anc is c a'l Lr d tile
character X of the represcntati~n.

-{c;waot to g iv c he r« only so m: r o rult s but the no t to n of
character is :xtrAmely usef~l because of thG followinr theorom:
two r'eprcsc nt ati on-i v-r+ '2r'~11ivalrnti:r ;:['.0. only if they have
the same characters.

3. We now introduce, in thG wiaght soace
vectors which are used in the ~alculation of the character anrl
of the dimensionality of a representation. The first one is:

1<- ~LcX.
~ o<.T

where the sum is extendud over thE positive roots only and the
second deoends of the representation as L(,AJ-)

R+L(~J-)

The elements of the Weyl grou» aTC; no to d by S anr' the
vector S k is t ho result of Lhe o oorat.Lo r- of 5 on K.
For a compact seni-simp1',:;group, the character '7{; is giver

by t hc gen?r8.1 formula

!,( )'J-) q)

~(O, cy)

~!Iher e

L. b 5 eX iJ 1 (S 1-< /f )
s
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is the pnr i t.y 0 f S and cti :J vector of th,-, wei.ght

If 8.11 t hr:; 1.{(:; igh t s rYL

1m
of';:'. r-cpr-r sr nt a t i on are knowr wi t h

their multiplicity
be use d

4. 1"'" • •~JlmenS10n

N (f/\~) -= n
(l 0( +

dGfinitjon of ~h0 contr~gr8diGrt r2presGntati~~s with no~plcx

conjug~tc matrices.

r . spect t o t.h= or i gi n in tl1:-, wrLgh t SP:1CC'.

gradient is rc~l qrd thore is R necess~ry and sufficiert
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,';E'crvr a l :tr:"icturc of mer- is too r n f'r ac t jo n w i th demomi nat.o r

£ + -1 • arrd eel '1 1 t h.e nu.nc r nto r S ar c " qui val cnt modulo .t + 1 .

2. The Q fUW-'ilIT'('nt,:l doml r.an t "[eights of Ae, can bf::

wr i t t.e n D.S

R. -= J-

[(e+1-j)L c,
R = 1

R::: Q+1

J L eR J
~-=J+1

J
Tho numbe r o f i.Jclghts equivale."t to L is given by tho nu-nbc r

o f independGnt permut.:',tions of thc com']onents of L!- r-. '-~
, • C)·

the numb= r of r:onbinations C; J-..(. +- 1

£ -t1-J-

C ~ -t 1

L

C e~+1

J-', (~+ 1- J--)!
~
,-' .

It fo 110'.·] '3 t h.it all thr

~J- is g l vo n by

d-e {+ 1

»ie ight:-: AT'r

of
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4. The two fundamental representations
have t nc same dimension. It is o asy to verify that the \veigilts
diagrams car be deduced to each othrr by a symmetry with
respect to the origin in the weight

('"""1 J- I' t+1- do-presentations ~ and ~

s p ace , The fundame fita l 1'('-

are contragradient re-

pre se nt ation s.
In tho C2,38 '4he re £, is a del t -+-1 :::: ~R 1, t h« f'uno a-

mental reprcsentqtion {:I t1. is equivalent to its contra-
gradient and can be chosen as real.

5. '.,Je de fine a 3 Sex, , a permutation, e Lernr nt of the

So(::::
(1)2-)··'t }~+i)

( 0( 1)0( ;2. J • • • • ) o( R, + i)
All the equivalent simple weights of 2 fundamental representa-
tion r.} d fr are educed rom ~- by an operation
of the 'vf'ylgroup. ';.Ie t.hen obtain?
of pJ-;

for the character

satisfies the usual conditionvhcr e the \TC cto r
R~£-+1
L

R-:::1
Cfl< ::: 0 . It is then easy to verify on the explicit

eXDr~ssion the relation
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6. W2 now consider an irreducible representation, c~arac-

terized by its highest weight

L --
In order to calculate the dimensi6n of thp reprpsentattoD, we

are first interested with thp positive roots cXmn (n > YVl.)

and the vector K , previously de f'Lnc d is given by :

t~ -;;c [£/2. ]

L l: £ - z. ~") ( eR + 1 - e t+ 1-~~J
R::o

\'e have successively

(cXmn) R) -

(eXmn L-.)
)

(n- m)(e).e)
J.. -::: r'l-1

( I. /\j--)(-e)e)
J- -= m

The dimension of the irrnducible representation

is obtained by using the lveyl formula:

J- ~ n-1

J~m/\j- )
h~ m

N (A1)~.4)"· 1 A'i-) = n (1 -+
'm (r1.

7. "t., ]2Tticular Lnt e r c st t ng c a sc cor r-e soonds to all Aj 's

equal to z()ro except two A 1 - /\ £ =- 1 . Thp highest

weight is simply:

L (~ 0 ... , 0 1)=s >! i >:»
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All the equivalent weights of the highest woight are the

Q (.£ -t 1) non vanishing roots
/

The dimension of the r eor o sent at.Lo n is o b t al ne d from the

pr-evi o us formula

and turns out to be equal to t.he d.imrns i or- of the I~e., Lie

a l gebr a. Such ~l r e pr cse nt at.Lo n is c a l Lod t.he adjoint represen-

t at i o n 0 f the Li r- a Ige br a and the weight diagr run is simply the

The character of the adjoint renresentation is given by

8. It is e 83y to Sh01,[, by usi ng the de fini t ion 0 f the

highest weights, that t hc r epr-e se nt at.Lor s J)N (~1/>t2/''') Ae.-1 )~J2)
and J:/'( At) At-1 }. '. ·)1\2)~1) aro contragradient r ep r o se nt.a t t o n s ,

It follows that only symm~tric representations, defined

by are equivalent ta their contragradier:t

r c pre s"'-:;n t at Lo n s ,

9. Li0 algebra Ai
From a ~Gdago~ical point of view, it is interesting to

use the gc n=r a l Language for t.ho 1ITel1 known results of the Ai
Li~~ aLg e br».

:.'1(::; have one f'undrime nt al '2-dime ns iona1 repr" sent atLo n J the

spinor rc oro se nt at i on 0 f the Li e alga br a, and t h(' fundament 81

weight 10:
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In figure 1, ,.;e have represented the wei ght d.iagr am of the

f'und ament al r-Ilptlesentation and the three roots of the ~ i

Lie algebra

6

Figure 1
Fundamental representation

D2(1)

The irreruribl,:; representation :nN (A) of hl ghost weight
i.

L = ~L tas the dimension:

1 + :A
All the weights are sim~le

\"i th M..:::.). ,).-2... .,. ') -;A,
I ) J

~N(,)
.J-.I /\ is given by:

and 0 f the general form L -= r Li-
The character of the representation

In the usual language, A =- 2T where "J" is the spin asso-

ciated to the irreuCible re~resentation of the rotation groury.
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10. Lie al[;ebr(":: j,2.-
There oxl s t tvo 3-<limensLnlal contragradiert fundamental

represent;cltions. The funda.rnental dominant 1ATt'ights are given hv

c 1
3 [ ~e 1 - (e~ + e~) J

L2- =- ~ [( e 1 + e.z) - ~ e3 J

The corres~onding two dimenSional weight diagrams are drawn in

Figures 2 and 3 and locatnrl with respect to the root

diagram. of the adjoint representc~tion.

/ .\/
/ 2.-

(' ",~1 ~

\\ .:1(\· /'
3 \

i_._~

.,.-1 •~;r gur e 2

Fif-~ur(.; 3
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1'Je 1Ni II denote in the follo'_ring the two fundamental

representations by i and ~ and the adjoint representation by~

~. The c har ac t cr s of these t.hr ee re'Jresentatlons are given

by

.L sr1 1. ~l. 1 f.3
E:: +€ +e
-l <-Pl - L f,., - 1. <f\e +e .i-+e

:::: Q., -l- ~[Cos (~I - ~ 2) + Cas (~2-- C(J3) +~'5(t93 - crJ

X(:,)cy)

wi th q> 1 -+ Cf'2- + 'f::, =- 0 .

The dimension of the irreducible representation

])1'1 (1\1>A1.,) is given by the symmetric formula:

(A + A~)N (>-1;A2.) =(1+-)-,1)(1+Al-) 1+ 1;(,.

Only the repr~entations :D ( A),A) are equivalent to

their contragradient and the dimension is then g Iven by:

N (A)A) (1+ A)'

11. Lie Algebra '.}j 3

There exist three fundamental re;'Jresentations associated

to the following fundamental dominant ·.reights =
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l ~
1

[ ::~Se 1 - c e~ + e3 + e4-) J_.
- 4-

I ~

A [(e1+e~)- (e3-+-e4)]I
'::t ~

'1..w

~ C 1 [( e 1 +e~+ e 3 ) 384J! -
4

1 3
The representations 17 nnd"p are t wo 4-dimonsional contra-

gradient; reoresentations and ~~ is a6'-'-dimensional r eor e se nta-

tion equivalent to its contragradient.

The adjoint representation ~(ltO,l) is is-dimensional

as the Lie aLgebr a A 3'

The dimension of the irreducible representation

J)N(:A1)~2.) /\3)i5 given by:

12~ Lie algebra., A5"
There exist fj_ve fundamental r eor e serrt at.Lon s associated

to the fo llowing f'und ament e.I dominan t vIe ight s ,

) '1L 1 -- [s e 1 - ( e:z + e3 -+ e4 + es-+ eb)]
b

- ~ [~(e1+e:(J -(e3+ e4+E's-+e{')J

~[(ei+e;("+e~)- (e4+eS- +e6)]

~[(e1 +eZ-\~e3+e4)- ~(eS-+e,,)J

i- [ Ce 1 + e.z + e3 + f4- + eS) - 6 8b J£

,2.,
L
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1_,·1 .r.....nd I' 5" .~.r c twoThe rODresentations '. rue • 6-dimr~sion~1 contr2gr~-
-,2 I' 4-t- arid rdient representations. ThE rc~resentations

are t wo is-dimensional contragr:~di0nt representations. ThR
~

reprc;sentCltion r - is a 2(Jl-dililensior:al representatton equi-

valent to its contragradient. Tho adjoint rCDresentation

])(1,0,0,0,1) is 3.5-di~()rsi:)n2.L The (lj,"'l.E:[}slon of the f r+o du..

ci b l o ::"Gnrc:scntatton ]) N (/\ 1, )2. As )4, .\) is given by

N (I' 1 .' A 2 \ 1\ 3 , ;\ L/ ))\ 5 ) ( 1 + ,A 1 ) ( 1+ A'; f I -+- A 3) (/1 + A 4 K 1 -I- .\ c;) .

, ( 1 + ;\ If:' 2 ) ( 1 +/~~\ 3 ) ( 1 + ;\~+;' 4-X 1 + A4- +:~).
( 1+ A if ~L "'\t 1+ "~;+ ~l ~l t, )( 1+ ;>', -j- A; ~ i\ 5) .
(1-1' /\,~ ~, ~ A, ~ /\4)(H/l2~i\3+A"+i\")(1+ ),1-1"),-1'71>'+)4+),51

4 + ~ )
B. Li G A.lge br 2. .J3.t

1. The fundc~mGntal dominant wetghts of B
tcan be written as

~:;:J--

L ekR =- 1

h....".t
-::0 ~ "8 f:'2- L-<.

k:: 1

L.l.ndc,~ental rSDresentctions, Fl J- ~ lilt tr

as highest ',[eights.the I J-'
L "s

.~. The T'{·:;yl group is the set of permutat.io(1S of the

components o f c~weight w l t h an ar'Jitrary number of chRnges of

s Lgr-. It fol101,r:~ that ;::11 'Il...:ight diagrams are invariant under
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a symmetry with respect to the origin in the weight space ~nd
all representations are equivalent to their contragradient re-
presentation. As another consequence, all the char3cters are
real numbers.

3. Tile cow c a.l.cu Let.ethe dimension of the irredUCibln

by

J)N ().,1, ),2 .: "', At). The vector R is given
R ~ Q

K - I L (:t t + 1 - :<, R) 8k2... R..::1

repre sentation

The positive roots are 0(J-) ~ i J and .
1>1i th 0 < 1 < J--

vJe have succe ssIvely:
,t- 1

~ A.( + L Ak:L J.-

9 - 1

At + L x, +
L

L

and the dimension N (/\1»),2.) .. ') AQ.) is finally given by
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4. The fundampntal representation is' called

the vector rS0resentation of the Lio algebra Bt
s ion of 1'1r is given by the gc nor al formula:

The wo igh t s of tho 'lector representation are the :t~ s Lrno l,e
,1weights equivalent to ~ and the s Lmo Lo weight YYl -= 0 '

The character of the vector representation is th0n

given by:

R= t
X V ( g) - 1 + ~L Cos Cf ~

R -::: 1

5. The fundame nt aI repre se nt at i on pi is called the

spinor representation of t~e Lie algebra ~L
.Q,

of ~ is given by tho general formula

dnYl ~t::: ;tQ

The d.l mens l on

The weights of the sninor representation are the

INGights equivalent to Lt
6. The fundamental represent.ation r.2... has its weight·

simple

diagram identical to the r oot diagram of the Lie a'lge or a J3.e,

and it f'o Ll.ovs thnt r-'J.. is the adjoint representation. 'I'he

dimension is given by the genor al formula:
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and the char ac t e r j o f the adjoint r epr e se nt at ion is simplv:

k:~ ~

A ,; ( (1)- f;;: + z L
R " 1

Co 5 (f R ,+ 4 L C.os CY'J Grs C?~
J<k.

7. Lic llgcbra

Th0 fu~d8mental weight of the v0ctor and spinor renresen-
tations ars given by

e i

The corres~onding two dimensional weight diagrams are drawn
in Figures 4 and·~ and located wi th r esoect to the root diagram
of the adjoint representation.

Figure 4

Figure 5



Xv (cg) -- i -\-~(eelS (Sf 1 -+ b)s Cf2 )

4- CD~ q 1 Ces~-z., :lv

~- + ~(~J U?1+ ce: g,;/..) + 4c~ 'f1 Co( tfz,

The dimension of the irreducible reprf-'sentatiol1! ])N (;A1
J

A;1.,)
is given by the formula

Q..:......_LieAlgebra Ce
1. The ti fundamental dom i n an t we i ght s of CR., can 1)8

wri t ren as
k. -=- J-

,:- e R
R. z; 1

L_; 2".)t<J - } )

J-L =

'Ie; have .1 funorlmp,ntEll representatlons p J--- wi th the L!', s
I

as their highest weights. I
2. As in the can of the ~Q Lie algebra, RII the re- I

presentations are equivalent to their contragradient represcnta-

tion 2nd all the characters are real numbers.

3. 1tJe toO,,., calculate the dimension 0 f th- irre duc i ble

r o ')re sent at i on .DN ( A1) .::12.) ... )A~) • The vector -n is give n by:

R -= e
T-? - ~ (Q+1-~)e~

I~:c.: 1

Ii
I
i
I

:1
~I
I

:1
i
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The positive roots nre
.with O<l<j-o::. Q... We have successively:

cr - 1 i

~ AR+~L~I<.
l J-

J.. -1

L Ai<(oet-J-)L)

(fJ-, L)

4. ,,1-The dimension of the fun~2m~ntal reprpsentation ~
is given by the general formula to be

-1
d l{)It ~ - =- ,~, ~

The weights are the ~e simple weights equivalents to
The ch ar act.er of ~ 1. is given by

R-Q,
X 1 (LP) - ~ L em lfk.

1<::, 1

.'5. 'I'ho d.ime rs Lo n of the f'und eracnta I rGpresenta,tion T A.

is obtained using the general formu la
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For the re or c scntati or,

dim

6. The adjoint rCDres~ct&tion h~s its highGst weight
given by LA-=-
'D(2,O,rJ) ..... ~O)

th~ irrGduciblr ~eprrS2nt~tio~
w~i~ht di~grRm coincirtcs wi~h

N (2,0) 0) . ' , . '» 0)"= ~ ( ~ t -+ 1)

The c har ac t e r of the adjo i nt repr2SGntRti.on L; giv0n hy:
t:

xA(q;) I em C9R -4 ~ Cos tpJ-- c~ CfRQ + :;(, T
~ J-.( b.

7. Lie algebra. C8
The fun d amc nt ,"11 we ig ht s ar>

l L1 -- e1.--

L2 - eiT e 1-1-
6

~
L - <21 + €::2. -\- e3

six dimensional thr

second one 14-dimonsion21 ard the t~ird
J)(J"O .0)

om' 35-di'nlC ns i ona 1..

adjoint rcpr,-sr nt ~tion

i.

i.-

t
:)

:1



D-Lie lUge bra 1)..e.

1. The f'und ame nt a l domi nrnt '{eights of .J)t CAn h0'

wr i t te n as:
I:<=J-

I
,} L ek J--=1)2).··)e-~L

~:::1

L!-'\ 1 (<?1+e2,-~I" + e,Q +- et- ')
') -1..,..~.

Le- i (e 1 + + e~_1- e,t)<: e ~+ ...
~

- .c
~

We havs
j-

wi th the L !sf'und ement al repr('s8nt.qtions

2S the highest weights.

2. The ~ileyl group is t hs se t of all pe rmutat i.o o s of the

components of the ~eights with an even number of ch~ngps of
1:t, 71£-2-

sign. Th(; fundamental r c or e sent att or.s P )P .: .... ) rare

all equivalent to their contragradient reoresentation. The
same result is also true for r- Q -1 and "P t if P.. is an =ve n

number. Jut ~f t
rr t-lsentatiom ~ and

is an ode' number, t ho f'undarne rrt aL reDre-

r-= e ~re contragradient r epr e scn t at l o ns ,

I.'. i

~Ir,
'~

I.
iif,
I
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3. \ok no",' c a.Lc uLat e t.ho dimension o f the irreducl"Jlc

representation :Dk4
( A~., ;'2.) 0', '1~Q). '1.'h8 vnctor'n is givpn bv:

R::- ,e
K - L t « - k) e"

I-=< =. 1

with o ; i < if ::. jL We have successively:

~ - 1-

~ Ak -t A.e.-1 + ~(1-<tJQ))'£

"L

d--1
~ A~ +.
l-

is called thp

vector r·~'presentation of the Lie a l.r cbr a Thp. dimensi.on
\T~

of r is given by t h« geO(;ral formula:

dIM p ' ~!2
I'he 1Nelghts of the vector r epr-e se nt at.t on ar'e th= ~ R, s l mnl e

Itweights cquiv8lent to ~
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The charncter of the vector representation is given by:

k -=- .f.

~ (C9) - :t L Cos ~ R
1<:::1

5. mh( fu.ndarnentalrepr~~sentations

are c al l.e d the two spinor representations of the L1e e.Lge br a

::DQ. and they GTe inequivB.lent representations. rhe dimen-
r€-1 -rt

s ion 0 f r- and r is the same, due to the symrno t r-y 0 f

N(A1,A2.,I·"~.Q_1/\9.)tn the exchange of ~€-1 and IIQ :

. ~-1 l e
cliwl F -= diyY1 ~ =;(.,.

The weights of the s~inor representations are thr simple weights

equivalent to the hl gho s t weight L! _1 and L! .
6. The fundarn';ntal representation r 2- has a weight

dLagr am identical to tho roo t di agr am of the Lie algebra "De
r-1..,

and it follows that is the adjoint representation. The

dimension is given by the general formula

The character of the adjoint representation is:

7. Lic algebra D4

The fund2m;..:;ntal r '::;pr2sent2tions are de f'Lne d by the f'unrt a-

mental domina~t weights!
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e, 1

e1 + eL

- ~( c , + e:0 +..e 3 + e4 )

- 1(e 1 -I- e-').. + e 6 - €4-)

?L~

1
Th,o ve c t.o r r.rpr-c sent at t on P r::nd the two s o i nor rcprcs0nte>-

tt o n s r 3 ",tnG r- 4 2.r2 8-dimensioo:~.1 r-o pr-o sc nt.at t o n , Thr 20-

j 0 i 0 t r e.9r C?s '"n tat i 0 0 is :.t ~ - d i:;;~0 s i 00 a1.

giVGD by:

X H ( cp) = 4 [ I + Co:, CPl CtJI, f~,+ CDs ~i (0<,(93 -+ Co" q:\C.os t.f4, + us l)/2 G::, ~3 +
Qe:s 1fl Co~ CJl4 + Cas Lf3 CDS (94 J

%5 ( cp) = S [ ere ~ ~, WS If:l.. Co~ Cfl; C;: S ~ -to 'Ln ct. ;; ;y, (FL, 1.M" Cf3 ))V)\ ~ 4 J
.<. .2 -<:z. ~ 2 Z T

'Y (((») =
f\."), ')

I
II



- 116

VIJ.. Ex[:;nplf2s of ~';;.~:)licC1ti.')D of i he theory of ch'=:.rnct",rs

1. ';;Jc i g ht di ;c:,gr =ms 0 f A 2., .

:D3(~)())

L - 13(=<.e1-<2:;:z-r,23)

~\ //"\ / /

~\~-,/--- - ,- - _\~'@t<- ---
/ \ / \ F:VlJ/ \,J / \

/ \ / \
/ \ " \

\

D?>(o)1)

I
/

I
\ /

- "- - -"'- - - -
I

/

/
I

j)10 (0,3)

L ~(e1+e.(.-:L.E~:;)
\
\

\
bf----------------vl

]) z7(.l.- J ?,,)

L = ~ (e1-E':t)

'.

j,
"f
~!

j

II
I.;
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In Fig. 6 we have given the we i ght diagroms of the re-
presentation of SU3. The weight space is two dimensional.
ThG highest weight for each representation is indicnterl
below the di.agr ams , It is seen that not all the weights of
the representations 8 and 27 are simple. The zero weight in
t he '8' repr~?sentation h as mu Ltlol Lc i t.y 2. I\Thilethe zero
we!ght of 127: has mtiltiDlicit~ 3. A rule about the multi-
pl!citr of the weights is that the multiolicity of weights or
hexagons (boundary of weights) within hexagons goes on increas-
ing by one till we reach a triangle, their it remains the same.

2. Characters of AZ

The characters of the diffprent renresentatton of '2
can be found once the weights ar-e given. In this case s lnc«
the weights are given in a two dimpnsional planA we have the
relation

'f)C1 -t _ 0

The n \ATe have

h 13' (~Lf1- Lf '.-- i.r~)+ e X ~ 1.3 (:~ 4'~ - Lf1 - <f?JrE?)l r <:

-+ e)(p ~, (~Lp~ - LR~ - LP1)
making a. chango. of v ari nblcs

if:.:, - LP1 q;3
CRI ~ lfo ~::.",

4?~- l(J~, cf'1

'.~

i
i.r:
1
;
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~i!hich still pr'e se rve s ttw r e Lat Lo n ':
-, ;,

'lie have
,

A3 ( 4) - f<){,I~~ (4~-<.1)3)--+ e» p 13 ( 41- cr:) +

+~Xp ~ ( cp, -¢~)

~rlc aLso 0 bt .'-~i[1

X-1o(4) -= 1+ ~[CoSCP1 + evs, cp~,+ CDs43 1 'I'

-+- ~~p 1. (cV.2- ~) + exp i (4\-1>1) + exp 1 (¢1-<P~")

X 10 ( ¢~) -=- 1 + ~,[ Cas cr1 + Cv~' cP~ -f· C.-e<;: cP3] -t

-+ e;t p 1( ~3- ~ ~J+ {J~_p 1( 4>, - ~3) -+ ex p 1( ck - cP1)
-x,

~F
~!,

t
i"l,'!'.,
I~r
I:,

i'liii
~+
I),'jr-



L.:.. \z. ( e 1 + e~.+ e 3, + e4)

- 119 -

3. Fundame.!l!:.2.J_iieigh,t._diagr;:~'11sof D4

The weight· sp acc is four dLmor.s.i onal 1tli t h basi s eJ-
(} _1) :2) "2.,) 4- ). '1ihe f'und ament aI r epr e sent.at Lons with

the ir corre spondi ng highe st 1t1e ight s L are

C rasp

:J) ( 0) 0) 1)0)

L e1 + e~
4, Fundamental characters of D4

Knowing the highest weights the char ac t.e r s for the

d.l I'f'e r e rit r-opr e se nt at l on can be Lmmeoi at.e Ly wrLt t on down:

CDS. 4=>1 - q;~- (P3+ cP+
')
/V

The highest weights of the two sDinor renresentations differ

only in the sign of e4- and hence their characters di f'fer

only in the sign of CP4
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,<\1sowe have

'5. Inclusion ,SU(3 )/23 C SO(8):

a) 1\2cc' D4
It is

?Sp' and
seen from section (4) that the represent2tions

are inequivalent if one considers all
orthogonal t r an sf'or'ma t i o ns , However using the charqcters one
c an show that if one r e st.r i ct s to t.ho transformation co nt alne d
in the sub-algebra of D4, the three eight dimensional
representd.tions C(5Sp ) ~Sp I and ca V are equivalentqn(l
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irreducible and th?t the adjoint rCDresentation 28p of D4

is reducible according to
28 K =-7 8 E8 10 E) 10.

The inclusion A2 C D4 is realized by the projectior of
the four dimensioned weight diagrams on the two d.t men s.ionaj

plane defined by choosing anyone of the four 0's to be
zero and the sum 0 f the other three equal to z er-o , For con-
venience, (to study the inclusion A2 ~ D4), we choose

CP'l + ¢';J. + 1>.3 = 0

Then we have

Similarly
(cp) of A~
~ X~(~) and )C V (cf') ~ A~ (cP)

Thus the thr0~ 8 dimensional reprnsentatlon of D4

are eq~ivalcnt and irreducible with reSDcct to the ~2 sub-
algebra. Further \ve have

+ C.05 CP1 -+ CDs. CP.o +

of A .
l
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Thus it is seen thrrt for A2 r:::. ~4

•
J 8 >8v8 J 8sp'==? 8

8 @ 10 EB 10

If o ne de fines Del< as the covering group of D44
algebra their

* 64D4 / Z2 ::::(

One can realize three isomorphic but inequivalent grouns of
this ty oe ( 44 sp , '~4Sf>t and ..6..4;; by considering the
tonsorial powers of the eight dimensional representations

85pt and ~v respectively. Further we have

f"'V <:'0 ( 8 )

Where SO(8) is the orthogonal group on the t';tghtdimensional
SDaCG? .64 contains
representation '8'

SU3 / Z3 as a subgroup. Thr adjoint
of SU3 / Z is :1 selfcontragradient3

renresentation andean be descrlbed by 8 x 8 unltary uni-
modular roalmtrtrice s which form a subsot of 8 x 8

unimodular orthogonal matrices of SO(8).
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,~. 1'f: consider an uni t ar-y r e or-c scntat t on
/i1,_
q is equivalentU (0.")

U+ (oJ,
Ifgro 111)

to its contragradtent reDrescntation there p-xlst

ca constant m~trix such that

- 1
C V ( Ct) C, for all

+ U~1T'Taking into account the uni tari t.y pr opcrt y wr l tten as U =::
)

we also obtain,

uThe transformations leave invariant a bt Lt n=ar form

in the N =d l mensl ona l repre sentation space VN
2. By using a rp"presentation of t h= Lie aLgr-br a with

N >\ N hermi ti.an matri ce s , the trans rormat.t on IJ (ct)

can be written as

(J
Cl t sand the are rea 1 nar ame t (:r s.,

For the co ntr agr ad tent r eor-o SF? nt at ion, ~oJ(~ havr-:

vx IeXp1 n"I l. \..J\/ \r

~Nit h

, ,+
C..JIf the representations u and

ex l st a matrix C such that
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for all the generators of the Lie algebra.

3. The properties of t ho mat r ix can be obtained

by iterating the basic relation. Without loss of generalitv,

C can be chosen as unitary and using the Schur lemma, we

can e as i Ly pr-ovo t he following relations;

T E,. C +' E1.. C

~

C - c -=- 1-

c:c)( r ryr ::t.
81E2,IS c C == E2T C -=

where E ~ -= + 1 and E~ -=- ± 1 ,

If a real re cr e se nt.at t on can be used for
."!!"

Cmatrix can be chosen as real ( E.1.., = 1 ) and is 11n

orthogonal matrix:

f
'f'C -= -t- e C 4- - C

cc* I

4. The Schur Frobeius classificatioQ:

An irreducible re':)res0ntation belongs to the clas~

A= 0 if it Loave s I nvar-t ant r e snect l ve Lv :1\ - 1-

a

b

c

).. :. a symmetrical bi Linear form (f 1 = + t)
). -= 0 no bi 1in e ar form

A -::.-1 an ant t symnet r i oal biliwar form (E~:: -1)
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5. A .Y) lie at Lon:
As a consequence of t.he pr ooe r t t e s of t.h« fun0~1.rne[1t2tl

renresentations of the sim?lc Li~ grou~s obtain0d in the nrevious
se ctt ons , all the Lr re duc Lb l.o rC'~Jr'.3sentations of .Be) ee.) J)A.-Q.

belong to the classes A = r, 1.

I.'

1
j
1\ .
;
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Chanter 6
TENSOR !iLGEBR.A OF 1::[8 TJIJ'JE.AR GROTJP.

r , Generalitles

1. If \-1
• I

is a sub group 0 f 0J ,the Lr reduc vo le
representations of G can be ei t her irreducible reprpsenta-
tions of H or r-e duc lb Ie into 2, direct sum of irrp~11"ible
representations of H

2. The irreducible rSDreqentations of a comuact semi-
s l np l.e gr-oup C", can be t a're n as unitary. 'T'hpunitary matrices
of a I'\{ dimensional representation of GJ generate a sub-
grouD of the unitary grou?

3. It follows that the irreducible reuresentatiors of
a compact semi-simple group can be studied from the

1
. ~:

irreducible representations of the unitary groups.
The importance of the tensor algebra of the unitary

group is essentially due to this Dro~erty.
4. It is conveDient for sirn"Jlicity to sneak the

language of the general linear group (,3' L (I),~.) instead of
that of the unit ary group .:; ·f~:. R~. As it has be shown
in the previous chapter the two languages are eqUivalent from
the point of view of irreducible re'oresGntations.
II. Irreducible Re'Oresentations of GL(n,R):

:} 1. liVE; co n si der a Y'L -dim'Jnsional real vector "''OPee

and the dual real gctor "'')ace
space of the linear forms on ~. The elements of E are C811ed
contr avari ant VE ctor s and the element s 0 f E~ covar i art vp~tor s

:: .

I
I
'I

i
"
~
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is an '~lpment of
of 'Tj' •

..1 0

~).\..(':... ,.,
t r'

"

"

L1 the ·C:2.m:; "'ay, it is 'easy to introduce covariant t e n so r s ~'s
. f ".../L. (2) -v

E: ~. <Z; (\!

now consider the general linpar grouD dt(n,R1

the \-c Le.ne n t:' of
8f £Q L. (;)J

3. :~~e

and mixed tensors as the elements

and the Ucimo dul ar 110e ar tr ans f'orrna t ion S:-;t(h ,':;.

The irredlciblc tensors can bn as~ociated in a onp-to-
one corrcs1ondan~e to the irreducible re~resentations of the
permutation grOUD. ~6 donrt give the ?roof of t~is imDortant
result.

o Lem en ts C-I rgrouo 0 i' P
the Young tab lr-s ar.d the Young (H1!,I':rams.

non nog~tivp integer
numbers such thpt:

with the r~striction

, . I
r1 -' I..1

,
'l
·1

~.

l,,'
:
I

ii

I
i'
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1:1 o t ho r t.er-m s , it is 2.. par t t tio n of t he numh= r- p
a S0t of ~ boxes

'ct.in the j. \ row

The ass)cif.t0ct Young diagram is
rows wi th L) ddivided in 'Y\

[ ],2./.1., J)
~ -=- b. oJ) -=- it-

[4, 2) 0 ••~.

p - b n:.. 4--

Figur<? 1
Young die-grams

5. TIe now sO b ack t o a contravariant tensor of o rde r
t.ho dimension o f F' bei.ng precisely 'YV • The Young

table dpscribes a symmetry of thp tensor and the ~roprrti0Q are
the fo 1 1O1.if 1ng :

~ the indices associated to 68.ch box of 8. hortzonta1
tow are symm~trized

b the indicrs 2ssociatl~ to rach ~ox of q vertical

'.

column are anti symmetrized.
For instance, a comi lcta jy s,Y"l'rh'::.rizedtptlsor of rank P is
;'ls:~ciat,odto t:le oar tt t io n f I :.. \::> -1- ~ .:: J)::... .. ,.- :: r- -::.C

and the ~orres~otlding YJung rli~gram has only one row.

11 IJ
I3,C),o,n J

~ ~? t'J "3. 4
Figu~e. 2

1



of t ho comoLo t e Iy svrnmrt r i c a ' ti?'1::ors.
n

is ti"'? comb i nrt i on number ( , '\_
I

Th0 dimonsion of

- 1~9 -

associnted to the 'Jartition ..- f I' --: I '-. ,

"p :: .:

Figure 3.

of the c')Jll'Jlc+elyar.t tsynmc t ri (":>.1 tensors. The d i.mcns 'i vn 0 f
'\

!1
\-t '.-

\... -v , I) f co u r '"P, i_ t

of order

D.
\ i

Ii

the Drcvious res~lts can be extended in
t::nsor o f order e Lcme r.t of

t .')('

I
iwo as so-r
i
I
,I:

I,
!
i

followinG way. To e.'ch partition of th~ number
ciate a set of Don positive integ'r nu~bers



l.[i th t ho r,'c;tri.ction

,i- - Y\

d --I

T' he cor~~sponding Young di~~r~m

into .--- ]- jrows with

130 -

I
is c:: 3':t o f :V boxo r (1tvir(>j

If;"
row

l-+-+1
/1 . r,.' ":""(.-

For a mixed tensor,

tL '// t <, . , I~ //
L

s uc n th.rt

"
; -\
;~ ,J

2~ofF<. - P
\-, -, t
i-; ,

c i at.es to each p=rt i t to c of \_)

in~Gger nU'Tlbcrs

c 0, 0- J, -j J
J ) - J

r=+ e r.V

arid V
ono ~c;C"'0-

8. so t 0 f Y\
I
Ialgr-br!Jic I
I,

'i

__ c(}
}- J+ I
t\ I '

Thi-'c c or rcs pond i ng Young ·iiagram is t he n immediately dr awn by

using the prpvi:)us r~sults.

I
I
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i--~r
+-----/

I !

I ',r· i--,- --- '--. / U- ') "V:: k...•••••••....• 1

I.~
L_

('; -- j

Figure 6
-(oung di agr ams for mixed tensors

7. We Rre row inter~stcd with the completely anti-
symmetrized one cemponc nt tensor of crder 'Y'l

Let us introduce in C- a basis {: j the cor+c soonrt-
'.

ing basis A r; @')"\
be written within L~__ can pxterior t0nsorial

products as:

1{e con sider :'11 linearly indeDPndent vGctors )( '-
, =! :) ) o f E

the completely antisymmetrized product

:x X
~ _ -"( ) .. I.. ,,'\ '-- -- 0 I ,/\:,) .' \

is the only lincilrly indeDennent clement of A L ell
!,
I·

.\By usinr the c)~rjinat0s

c ~)
1;--
- Ir-. i.

"\.

Ii.,.(1/';
" 1)( 1.1

( 'n)..J 1:
i~
I!
",,

We immodiptcly ~bt~in
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is the Dsrmutation of par i t.y

D i : 'i .',/~x-
" 1.1) .11) (,

The bracket is simDly the dGt0rminant

0,---.
10' i 'j ,

OJ!.
( ..
L ,L

».
( 2)

, •• /J

o P'-1/'1 ~·2..A' 1 , • /) e·..,1

LIe now po r fo rm n. r e gu l sr Line ar t r an s f'or mat Lon Ln , re-
A ofpresented by the element

__ I

-c
., (K,)

By using the previous results

/ -/ l

:1/ l A X(" .. , ,~ J \ ,.'j"( \11
. 'I. ) (\) ).

!

!
j
I,I

.' "xl
( "" ) t

'j

"I- / \,. ...•

)\ 1 "\ I 1 /\U) ."\

and finally,

'. ,-

-_/ \
-v II·.'L i

I (·Y.)/

If !10W, A is an unimodular matrix, element of the sppcial

S' L( ~rv) f(;) the quanti ty Det (j j( I o , o, )( \
'-' (\) ( 1.) ('I Y

line ar group
i s an i nv C'J.r i ant .

!,
I
~.

,I
t,
i
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1. 'de h:1V':' j u s t SC'('} that for th' unimocJul:}r Lt nr ar

tr~nsformati~ns of E(n,~), the one com00ncnt r0DrpscrtRtton

L ' I, II
J

r e pr e =ont at ion r:

are e qu lv a Lont.. It! a more G e ne r al "'<J,Y t hr t vo ineqnivalent

representations of ~L(n,R),
and

. ; Il h't

are eq~ivalent in SL(h,R) if and only if

where S is an algebraic i nt s gel' number inn8'Jendent of J
In Jarticular, in SL(h,R)) th>? two representnti.ons

I
and

are eauivalent and with r0snect to unimodular transformatIons,

any t e n so r is e qu iv a le nt t') 8. contravariant t e nsor "lith t-n. --:::=-_ O.

2. It is convenient t) introduce the ccmo l ote Iy anti-

""lsymmetrical tensor of order I fl
r
'~

/

',,-- ~;--·I, ~-2 ce,; fi no d 'by

XCS)
In t hf s 1aneLl.age, ',TC; h2VC:

D-e l-: (
X(I) )( CL )

\

c);y

)I l
f • ,

I

I
I
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The determinant is t nvar i ant under unimodular transformations

but t r-an s ro rme vith a f;ictor for alIA, C ~L ( n, R) .

In the same i..my, the quantity:

r
(- • I 1

II::J1
. , ..

transforma like Cl cov ar i ant vo c t.o r of
.1f,--

C under Ur:ij1rnorJular!-

transformations. A straightforward gen~ralization of this

result is t ho fo Ll ow.lng yt he two irreducibln repr0sentations

of GL(h, R):

L :h, fl. and L \- 'I:) .\-2-1- S) -"., f'Y)+S]
. I )

are rqui v a'l errt for un1tt'odular trans formations but we h'lve to

add an extra factor (D.c). A )'! if now J~ is an plement of

the general linear group.

3. As a consequence, an irreduCible representation

of ~LCh,R) is also an irreducible representation of SL(h>R).

Itis then sufficient to study the irreduciblr renresentation

of ~L(h~R) and with the Drevious statement we are at1e to

deduc e a2.1 the irreduciblc; representations of ctL(h" R).

Such a. result 'vas ,:-;xDected bec au se the homomorphism

from I,jL(o.,11:) into ,3L(n,R) is a central homoao r oht sm.

Of c our sa , the representations [-'I +5, \-2+'), ., ,.+".;+(-]
have the same di rnens Lon io.d~p~ndent of ,S'.£.

,

I
I

./

I,i;
'i[I
J
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t n be charac~2riz d
numbc r s ,

(h--lj non n gative

It i:, convE:r~i-;ntt) \AJor1\:w ith the r 8'Jrcscn t at.Lon

and co nve r s c Ly
}.. I) '2/" . 'Y).- I

L-
P -:d

mhe r~,presentation ( 1\1, ) '2 r

contravari ant tensor 0 f order
\.:. 'Y) - ,

p=- 2
"

, J - I

can be associatpd to a

given by

The representations rzR
R: I

with all the
I

SequC11 to zero,
cxc e p t }I f:(, ::... ,

to nsor 0 f orderR
corresDonds to a completely antisymmcttical

i f \ - 1- (- hi''''' I"~ I)::' . ::, '" _. J .. T",',-. v·\" ,I' >( •

of the Iund amen t aI r-c pr o s n t at i on
The dimc~sio0 of this representation is

f"r· "

V>
C fYI'\' as the nimer1sion

algebra dl sc u s sed in Ch ap t.e r IV.
"_~_ i \

and \- ar8 isomorohic and mor
of the irreducible r oresentation
is simoly given by

f - ~\ ..\
I ,- ,,

L L-
ei .~ I

of the A '1,\-1

thrlt
Li'"

br shown

.t.' ) -k r
'Y,' a
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y} dimensional J'undamr-n t a L rcprpsrntationFor t n st nncs, tho

t\. L 1-
I "Y\-I) r is associatert to the vsctors of ~ and thRof

contragradient representation to th VEctors of

also as como l e t e Ly ant.Lsyrmne t.r-Lz.od co nt.r avor-i an t tenc;orc; of'

o r de r n -1..

IV. _t,DJOINT REPRf:SENTAl'IOH

1. The Lie algebra of the g cDr-ral Lt n=ar g r oun (G,L(hi,R)

is the so t of ''(\ L infinitesimal generators X 0' It has

been shown thus the linear combination X ----
with all the generators.

The I,L_ I generators

the s imp l e Lie algebra of type

group ,~L([),H).

\1[(: also con s i de r a sub-algebra of /\.'t~__I

-Xp- of trace zero, genprat(;A 1~ -, of the special linear

infinitesimal generators L_
() and the comrnutation Law s

[ l~(/-J C
-C LL f - f '-r.- (J)

Of course, this sub-algebra C8.n be /\ '11 _. \ itself.

The adJ"oint re~resentation of the Lie algebra A\ --n - \2.

D (! / () , can be associated, from the nr=v Lo us

results of s0ction III) to an irreduci~le mixed ten~or of

order 9" or e qu iv al.en t Iy , to 2, cov ar l nrrt tensor of order h-lOl•.

We now study the mixed tensor of order two.
. k

3.~hG second 'order mix8d tensor ~
.. -+- (J-

mE?nt s 0 f [..:- g L Let usn 0 1"r con s i. de r t h f'

2re the o2le-

t Lo n wi th uni tary mat.r t ce s of the Li - 2lgcbra 1\ .y, -- J
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utJ + ==-

The infinitesimal generators can bo rGpresantpd ~y hermitic
matrices fa1 Low i ng

. \. \U _. 1 -+ l 'C, ;~ (
. )~; --
~I =-1--

where E \ is a set of r ea l i n f'Ln l t.c si ma'l o ar amet er s rlnr'
+-

"-I - /-,i>- /: f

is tr an 3 formed, according to

and, for i nf'Ln.l tos ima'l t r an s f'or mat Lon , \oJ'e obtain

i
l

c'r'Y'l

c:J I -
(]

and after reduction
k h

~
'/Yl

k F' e ( YYI [ Y(l ;; ( <'(~ I

L
-- r:

~ ,\'

r"'
,

X( -I ,j I ?-
L ,j,- t C. L --' / -Yy\

? = j J Y\ y\...
J J

From the previous expression w:. Lmrae di a t c Ly verify- the ln-
Y.:,

variance of t ho 't r-aco of .,\-.
)

J

....
~ t t~;

~ lz
,- d-J

'(.

7
4. We now consider the qUAntities

-I c -) J 7.\ ~. '

~-----~~ -- L [ J \.,-- '----cr (\J( .,
J
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I

The t r an s fo r nn t Lon Lavs of the f~S are de duc e d from tho se

of the '~ k I

" S") J
the Li 2 sub~algebra we obtain,

, taking into 2rcount the commutAtion

laws 0 f

c. r(/:,.
~() 'i t

,.,
~ \
2.

In t he b as Ls of the , 1$1~"o
of the Lie a l go br a L Lo-J

, the infinitesimal generators

are representod by the structurr

constant,' of this Lie a1gobra

C -. 1~
This result can bo also interpreted as a consequence of the

J c.co bi ide nt i fy s ati s f'i e d by the structure const ants. 'I'he
TSr

dimension of the representation is thE" d imen s i.o n of th(:>/algc!'Ira

and we havs extracted the adjoint re nr-ose n t at.Lon of tho 11,?

algebra.

The adjoint r0~r0sunt~tion is irreducible if and only
'L

if the Lie':tlgebra is sLmoLe , For Ln st anco , the 'Y) --,

q uant I ties

are a basis of the adjoint reprpsentation of St(h,R)
'1--

5. The 11 component s 0 f the S8 cond order mixed te nso r

have bepn reducec'l in UtE' fo 1101.;ing way:

b
'I" '( f<,Th8 invariant t r ac e

(.I

a
} R )Zy( 7 ~. I ct -- c" \ {yo ( 'Jb The ,y1 --I components of trace ) - -zero J 'n d J
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~

7.7"/"
," -/" 0 ••• • •••••• - •••••• /

">: '-:.,-.:-:.

is the following

r-

v ~ ?RODUCT OF REPRF.S?'!'-:TA::'LOL

'I'I.e reduction of a pr-o duc t of rC'Jresnntation is the
detcrminRttor of the irreducible components .of a tpnsor.

1. S0cond Order t'ensor s ,

;iJ<~ first co ns i dc r the C"l.SP of ~~contravariant tensor.
T11.3 indices can b,? symmetrized and c:mtisymmetrized f'o Llowt ng

thu decom'Josition of th0 teosorial 9roduct into a symmetrical
and an exterior product

y

In terms 0 f Young eli agr 1.1:13, we hRve:

and the corrrsDondance

co r r e spends to )l X).. with p(l.'l+l )
cornoo no nt sI v' ..-

"'2-

co r-r-e spo nd s to l( , ,1 '(2. 1;{i t h 'neh-I' comoone r ts.....2-~J
111

In the gener2l linear group the oroduct of reprrsentatians is
written a.s

. ' oJ ex) t:
L'! o ,',

_ • J " (=: \ " "J." ,.
_/ .'

and in the special linear group, thp copresponding expresQion 1s
';)(1 , I~. ~ . , i (j) G) i) ( ',c . i ,C ') 7_\) (J, CJ' ,t , ,.) G)f)( I,::) . r." . ~ )

The s amo r e su.Lts can o as i Iy br- obt atno c for covar t ant so eond
order tensors using

8 '~( 'xX I c-: ~.( ..- 1:-. / X ;:... ~ 1\ 1'- .; ----
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and we 'obtain the same Dxnressions for the product of thn c~ntra-
gr2di~nt representations

Ln f\I(' R~Uj . n, ...j and for 'st(h, R)

,) Q j)(CO"" o.:,\) ==- })(~ ",',c-"ol)@D{C,,,,J) (0,' , ;

The case of a mixed second order tensor has bren stu~l~d with
some details in the previous sectior. In trrms of product of
representations we obtain simply in GLtn,~).
[1.,,0"',.,0,oJ (i) [o.,r;,,' ,0,.,-'] -=_ [o~o),.,·OJoJ0

-.
L-; Ii' . " D.I .. I !

) ~ ~. I) D{ I (J) LC) D (1, 0 ' , , 0, ~,J) ('.. (I, !' 0, 0 (,,>!y~)( 0" 0 ' r , r;). -, :; ) 0,/ . .' -'C f2:"

2. Third orner contravariant tensor:
l'Je use the rnr thod of the Young di agr am s and I!le have only

three possibilities

with h (l1~'l') (h+2)
(6

-n(n2-1)
3-

n(lli-ll) lh-2,)

6

comnonents

with components

with comDooents

can bo re ached in t.wo di fferent ways and
we obtain the foLl.owing reduc t i oo in C:L(n., R)

I .

'" ~
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ll,(> . ,

r:,' .. .,.
I '-.'Y ~'.J

• ,J J __ [

arid in ~)L(n,;R'l we have

.1)( I,C;O' ,0) Q 1)( I/0 c ...• C)(t).D(I,/' i'\» ::- D(3,(),"")0~D(,)"O,'Q)
6.') D(c;o,)\;O.,'D)

3. General Case

Let us c8nsider two irreducible reprpsentations [f]
and ['j:'] of GL(n,R). It is always pos sibLe to introduce

the representations L +1 and t.. ~ IJ equivalent in 8L(YI,iR)

re spect ive Ly to . - 'J' and [".f., i -I and such that 'f)'; ~~.: :.:...0L.{- .Y J

He are then working wi th repre se nt at ion s L+ J arid [~J
a s so cLat.e d to ccnt.r-av ar t ant tensors where all the t'd IS anr'

\5 ~ are positive. The best way to reduce the nroduct

[\} (;?;ll \'J is co use the Young diagrams fo Ll.ow l nn t.ho Li t t Lewood

method.

.' ,
The [ _~-J di agr am h2S 5\ boxe s c{ ,f~ bcxe s p

.-J-J boxe s Y , e t.c , The bcxe S 0 r the di agrp,m [-t J are

to the dl agr am [.~ IJ in the following way.

Q. With theC\'" s , He form a new young diagram, rye Lud-

ing the case Hhere two boxe s c< are in the same

column.

b itJi th the ~ Is , v.!8 form a n=w Young diagram, =xc Lud-

ing the fir st rmtl and the case where two boxe s (3

are in t ho same column.

r •
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I Is With the '0 S we form a n0w Young diagram, pxclud-

ing the first and the 50 cond rows and the case wherp
'\ ")

t~.,o boxes .\ are in t h« same column.

and so an wi th all the bo xos 0 f the di ag r am [ J- J
4. P.s an examp Lo, the Littlewood method o an b0 used to

reduce the product of two adjoint re~resentations of the Lip
algebra )\ "." -I The result, written in G~(~,~) is the

following

ll.O",,,O,-ll ® LI,D, .. "o,-ij
==- [C'J" ,. eJ 8 ~ (/,0) -' . D, - 0

~,O,' .,0" I.··\'~ + [1,1-,0 .. " DJ- 'J.) £') \1,( c ",.0 -i,-I)

~L (n, R)) we 0 bt ai n G c'i, (; ,~~~!2 :J J I

J) ( IJ (' -' :,. , , n , I) 0 D ( i ,c. "I U J I) :::::...j) ("'" c) (f) .~D ( j J ! .. t ) ) I)

G) D ( ;), o .' ()) IJ) cf) i) ( (i • I}.-'l I , i () ()) ED [) ( C, 1/' " ' o, '"f )

Ef) i)( 11, 0 ., •c,:) )

The di~ension of these irreducible representations can be

calculated using the general formula given in the Chanter XV.

We add the symbol S or A according as the renrpspntation

enters in the symmetrical or in the ant Lsymmot r-t cal part 0 f

the product
N"([;.,"o):::. i
N ( I, C . , , 0-, 1) .::'1I·

L_I
t ",'

f\r ( )) C . ,; DJ " t) := ~ ( "'j .-- i{) (YI:.') .
-~ 1

\\1 l0 • I J' . I LJ.• 2) -=- J... (,,(." _ 4) ( )~~-I )

4 ::)
f'{ ( C,.1 J 0 ' I I c-' I, r:) ::-. .1 ~(or! _ ?,) ~ IL. (1) ~.!)

'-+ '
\.

;:. ~ (''Y).I)rn(''f\+5')

s

s
5 (\~vd A

l'~

.~



I
J

r

- 143 -

The repr'8~L!tations bo i ng oenotr?d by their dim8nsionallt,v,

],re 0bt sei n

l~·~
r~.3
(

f: L)

(' - t--:-
- ~I

- I 6).~ ~~.to ?> S- tt»8();'1~bC' cD!~q 674("-
-' Cl.

Excepted the case , the adjoint representation is

present in ~oth the symmetrical 8nd thp antisYMmptrical part

of the pr-o duc t ef tC) adjoint r cpr e sent at t ons.


