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Abstract

We study the irreducible complex representations and conjugacy classes of
general linear groups over principal ideal local rings of length two with a fixed
finite residue field. We construct a canonical correspondence between the
irreducible representations of all such groups which preserves dimensions and
a canonical correspondence between the conjugacy classes of all such groups
which preserves cardinalities. For general linear groups of order three and
four over these rings, we construct all the irreducible representations. We
show that the the problem of constructing all the irreducible representations
of all general linear groups over these rings is not easier than the problem of
constructing all the irreducible representations of the general linear groups
over principal ideal local rings of arbitrary length in the function field case.
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Chapter 1

Introduction

1.1 Overview

Let F be a non-Archimedean local field with ring of integers O. Let ℘ be the
unique maximal ideal of O and π be a fixed uniformizer of ℘. Assume that
the residue field O/℘ is finite. The typical examples of such rings of integers
are Zp (the ring of p-adic integers) and Fq[[t]] (the ring of formal power
series with coefficients over a finite field). We denote by O` the reduction
of O modulo ℘`, i.e. O` = O/℘`. Let Λk denote the set of partitions with
k parts, namely, non-increasing finite sequences (`1, `2, . . . , `k) of positive
integers, and let Λ = ∪Λk. Since O is a principal ideal domain with a unique
maximal ideal ℘, every finite O-module is of the form ⊕ki=1O`i , where `i’s
can be arranged so that λ = (`1, `2, . . . , `k) ∈ Λk. Let Mλ = ⊕ki=1O`i and

Gλ,F = AutO(Mλ).

We write Gλ instead of Gλ,F whenever field F is clear from the context.
If Mλ = On` for some natural number n, then the group Gλ consists of
invertible matrices of order n with entries in the ring O`, so we use the
notation GLn(O`) for Gλ in this case.

The representation theory of the finite groups Gλ has attracted the at-
tention of many mathematicians. We give a brief history of this problem.
Green [Gre55] calculated the characters of the irreducible representations
of GLn(O1). Several authors, e.g., Frobenius [Fro96], Rohrbach [Roh32],
Kloosterman [Klo46a, Klo46b], Tanaka [Tan67], Kutzko [Kut73],
Nobs [Nob76], Nobs-Wolfart [NW74], Nagornyi [Nag76] and Stasinski [Sta08]
studied the representations of the SL2(O`) and GL2(O`). Nagornyi [Nag78]
obtained partial results regarding the representations of GL3(O`) and
Onn [Onn08] constructed all the irreducible representations of the groups
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2 Introduction

G(`1,`2). Recently, Avni-Klopsch-Onn-Voll [AKOV09] have announced re-
sults about the representation theory of the groups SL3(Zp).

In another direction, it was observed that, being maximal compact sub-
groups, GLn(O) play an important role in the representation theory of the
groups GLn(F ). Further, every continuous representation of GLn(O) fac-
tors through one of the natural homomorphisms GLn(O)→ GLn(O`). This
brings the study of irreducible representations of groups GLn(O`) to the
forefront. Various questions regarding the complexity of the problem of
determining irreducible representations of these groups were asked. For
example Nagornyi [Nag78] proved that that this problem contains the ma-
trix pair problem. Aubert-Onn-Prasad-Stasinski [AOPS] proved that, for
F = Fq((t)), constructing all irreducible representations of GLn(O2) for all
n is equivalent to constructing all irreducible representations of Gλ,Fqm ((t))

for all λ and m (see also Section 3.2).
Motivated by Lusztig’s work for finite groups of Lie type, Hill [Hil93]

partitioned all the irreducible representations of groups GLn(O`) into geo-
metric conjugacy classes and reduced the study of irreducible representations
of GLn(O`) to the study of its nilpotent characters. In later publications
[Hil94, Hil95a, Hil95b], he succeeded in constructing many irreducible repre-
sentations (namely strongly-semisimple, semisimple, regular etc.) for these
groups. Following the techniques used in the representation theory of groups
GLn(O1) and GLn(F ), various notions like cuspidality and supercuspidal-
ity were introduced for representations of GLn(O) (for more on this see
[AOPS]), but a complete understanding of the irreducible representations of
the groups GLn(O`) for ` ≥ 2 remains elusive.

From the available results, it was observed that methods of constructing
irreducible representations of groups Gλ do not depend on the particular
ring of integers O, but depend only on the residue field. This led Onn to
conjecture [Onn08, Conjecture 1.2] that

Conjecture 1.1.1 The isomorphism type of the group algebra C[Gλ] de-
pends only on λ and q = |O/℘|.

1.2 The Main Results

We discuss the method of constructing complex irreducible representations
of the groups GLn(O2) with the help of Clifford theory and reduce this
problem to constructing irreducible representations of certain subgroups of
GLn(O1). This enables us to give an affirmative answer to the above conjec-
ture for GLn(O2). The groups GLn(O2), for distinct rings of integers O are
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not necessarily isomorphic, even when the residue fields are isomorphic. For
example; for a natural number n and a prime p, the group GLn(Fp[[t]]/t2) is
a semi-direct product of the groups Mn(Fp) and GLn(Fp), but on the other
hand GLn(Zp/p2Zp) is not unless n = 1 or (n, p) = (2, 2), (2, 3) or (3, 2)
(Sah [Sah77, p. 22], Ginosar [Gin01]). Our main emphasis is on proving
that all of their irreducible representations can be constructed in a uni-
form way. We also succeed in showing that representation theory of groups
Gλ,Fqm ((t)) plays a vital role in representation theory of groups GLn(O2) for
any O, in the sense that if we know irreducible representations of the groups
Gλ,Fpm ((t)) for all positive integers m, we can determine all the representa-
tions of GLn(O2).

More precisely, let F and F′ be local fields with rings of integers O and
O′ respectively such that their residue fields are finite and isomorphic (with
a fixed isomorphism). Let ℘ and ℘′ be the maximal ideals of O and O′
respectively. As described earlier, O2 and O′2 denote the rings O/℘2 and
O′/℘′2 respectively. We prove

Theorem 1.2.1 There exists a canonical bijection between the irreducible
representations of GLn(O2) and those of GLn(O′2), which preserves dimen-
sions.

Definition 1 (Representation Zeta function) Let G be a finite group. The
representation zeta function of G is the function

RG(D) =
∑
ρ∈IrrG

Ddim ρ ∈ Z[D]

In view of the above definition, Theorem 1.2.1 implies that

Corollary 1.2.2 The representation zeta functions of GLn(O2) and
GLn(O′2) are equal.

In other words, the representation zeta function depends on the ring only
through the order of its residue field.

Concerning the complexity of the problem of constructing irreducible
representations of groups GLn(O2), we obtain the following generalisation
of [AOPS, Theorem 6.1].
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Theorem 1.2.3 Let O be the ring of integers of a non-Archimedean local
field F , such that residue field has cardinality q. Then the problem of con-
structing irreducible representations of the following groups are equivalent:

1. GLn(O2) for all n ∈ N.

2. Gλ,E for all partitions λ and all unramified extensions E of Fq((t)).

We construct all the irreducible representations of GL2(O2), GL3(O2)
and GL4(O2). As mentioned earlier, the representation theory of GL2(O2)
is already known. Partial results regarding the representations of GL3(O2)
have been obtained by Nagornyi [Nag78] but the representation theory of
GL4(O2) seems completely novel. We find that

Theorem 1.2.4 The number and dimensions of irreducible representations
of groups GL3(O2) and GL4(O2) are polynomials in Q[q].

This theorem proves the strong version of Onn’s conjecture [Onn08, Con-
jecture 1.3] for the groups GL3(O2) and GL4(O2).

The equality of the number of irreducible representations with the num-
ber of conjugacy classes for finite groups suggests that the question of deter-
mining irreducible representations is in some sense parallel to the question
of finding conjugacy classes of these groups. Just like the problem of repre-
sentations of groups Gλ, the problem of finding conjugacy classes of these
groups is also very hard. The complexity of this problem for groups GLn(O`)
is best described by quoting Hill [Hil95a] from one of his publications,

One cannot expect to find a good general description of the conjugacy
classes of GLn(O`). For, if one did have a classification of all the conjugacy
classes for groups GLn(Õ`) for all ` ≥ 1 then one would also have a classifi-
cation of the indecomposable Õr-lattices for all cyclic p-groups. One knows
from Gudivok-Pogorilyak [GP89] that this is a wild problem.

Nevertheless, the classification problem of similarity classes of matrices
over rings has been studied by many authors. We give a brief history of this
problem. The similarity classes of GLn(O1) are well understood in terms of
their rational canonical forms for a long time and are discussed, for example
in Dickson [Dic59]. Davis [Dav68] has shown using Hensel’s method, that
two matrices in Mn(Z/p`Z) which are zeroes of a common polynomial whose
reduction modulo p has no repeated roots are similar if and only if their
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reductions modulo p are similar. In a similar direction, using an extension
of the Sylow theorems, Pomfret [Pom73] has shown that matrices in GLn(O`)
whose orders are coprime to the characteristic of the residue field are similar
if and only if their images in GLn(O1) similar. Given any two matrices α
and α′ in SLn(Zp), Appelgate and Onishi [AO82] have given an explicit
method to determine a positive integer ` such that α and α′ are conjugate
in SLn(Zp) if and only if they are conjugate in SLn(Z/p`Z), thereby reducing
the conjugacy problem in the uncountable group SLn(Zp) to a finite one.
Nechaev [Nec83] has classified the similarity classes in the case n = 3 and ` =
2 and generalising his result Avni-Onn-Prasad-Vaserstein [AOPV09] have
classified the similarity classes of groups GL3(O`) and M3(O`). Motivated
by Theorem 1.2.1, our next question concerns the class equations of groups
GLn(O`) for distinct ring of integers O. With all the notations as above, we
prove

Theorem 1.2.5 There exists a bijection between the conjugacy classes of
group GLn(O2) and those of GLn(O′2) which preserves the sizes of conjugacy
classes.

In other words, class equation depends on the ring only through the order
of its residue field.

1.3 Organization of the thesis

Chapter 2 is devoted to the discussion of a few basic results, for example
we recall Clifford theory from the representation theory of finite groups and
review the similarity classes ofMn(Fq). At the end of this chapter we discuss
the centralizer algebras of matrices, namely the set of matrices that commute
with a given matrix. We describe explicitly the centralizer of certain specific
matrices in Mn(Fq), and in GLn(Fq). We also discuss a few general results
regarding the centralizers of matrices over arbitrary rings. All the results
discussed in this chapter are either well known or are elementary in nature.

In Chapter 3, we set up basic notation that we use throughout the thesis
and discuss the action of groups GLn(O2) on the characters of a normal
subgroup K = Ker(GLn(O2) 7→ GLn(O1)). With the help of results of
Chapter 2, we prove Theorems 1.2.1 and state a few corollaries. At the end
of this chapter we prove the Theorem 1.2.3, which concerns the complexity of
the problem of determining irreducible representations of groups GLn(O2).

Chapter 4, is fully devoted to applications of Theorem 1.2.1. We begin
this chapter with a discussion regarding the relation between the representa-
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tion zeta functions of the groups GLn(O2) and those of centralizer subgroups
in GLn(O1). We then construct the irreducible representations of the groups
GL2(O2),GL3(O2), G(2,1,1), and GL4(O2) and describe their representation
zeta functions . In particular we prove Theorem 1.2.4.

In Chapter 5, we present the proof of Theorem 1.2.5. For the proof, we
use the analysis of centralizers from Chapter 2. At the end of this chapter,
which also happens to be our last chapter, we give a few interesting questions
naturally arising out of the work in this thesis.



Chapter 2

Preliminaries

In this chapter, we set up notation and discuss a few basic results that we
shall use in later chapters. In the first section, we recall two basic results
from representation theory. For basic definitions and other results of rep-
resentation theory we refer Curtis-Reiner [CR62] and Serre [Ser78]. In the
second section, we recall the structure theorem for Fq[t]-modules which are
finite dimensional as Fq-vector spaces and the primary decomposition of
matrices. The third section is devoted to the centralizer of a given matrix,
namely the set of matrices in Mn(Fq) and GLn(Fq) that commute with a
given matrix. We also discuss some results of a general nature in this section.

2.1 Preliminaries from Representation Theory

If G is a group we use Irr(G) to denote set of isomorphism classes of irre-
ducible representations of group G. Let N be normal subgroup of G. Then
G acts on Irr(N) by ρ 7→ ρg, where

ρg(x) = ρ(gxg−1), for all x ∈ N and g ∈ G.

The following theorem is known as Clifford Theory.

Theorem 2.1.1 Let G be a finite group and N be a normal subgroup. For
any irreducible representation ρ of N , let T (ρ) = {g ∈ G| ρg = ρ} denote
the stabilizer of ρ. Then the following hold

1. If π is an irreducible representation of G such that 〈π|N , ρ〉 6= 0, then
π|N = e(⊕ρ′∈Ωρ

′) where Ω is the orbit of ρ under the action of G on
Irr(N) and e is a positive integer.

7



8 Preliminaries

2. Suppose that ρ is an irreducible representation of N . Let

A = {θ ∈ Irr(T (ρ))|〈ResT (ρ)
N θ, ρ〉 6= 0}

B = {π ∈ Irr(G)|〈ResGNπ, ρ〉 6= 0}

Then
θ → IndGT (ρ)(θ)

is a bijection of A onto B.

3. Let H be a subgroup of G containing N , and suppose that ρ is an
irreducible representation of N which has an extension ρ̃ to H (i.e.
ρ̃|N = ρ). Then the representations χ ⊗ ρ̃ for χ ∈ Irr(H/N) are
irreducible, distinct for distinct χ and

IndHN (ρ) = ⊕χ∈Irr(H/N)χ⊗ ρ̃.

Proof: See for example, 6.2, 6.11, and 6.17 respectively in Isaacs [Isa76]. 2

Lemma 2.1.2 Let G be a finite group with two subgroups N and M , such
that N is normal in G and G = N.M . If ψ1 and ψ2 are one dimensional
representations of N and M respectively such that ψ1(mnm−1) = ψ1(n)
for all m ∈ M , n ∈ N and ψ1|N∩M = ψ2|N∩M , then ψ1.ψ2 defined by
ψ1.ψ2(n.m) := ψ1(n)ψ2(m) is the unique one dimensional representation of
G extending both ψ1 and ψ2

Proof: We prove that ψ1.ψ2 is a one dimensional representation of G.

1. ψ1.ψ2 is well defined: Suppose nm = n′m′, where n, n′ ∈ N and
m.m′ ∈M . Then n′−1n = m′m−1 ∈M ∩N .

ψ1.ψ2(nm) = ψ1(n)ψ2(m)
= ψ1(n′n′−1n).ψ2(mm′−1m′)
= ψ1(n′).ψ1(n′−1nmm′−1).ψ2(m′)
= ψ1(n′).ψ2(m′)
= ψ1ψ2(n′m′)

2. ψ1.ψ2 is a homomorphism:

ψ1.ψ2(nmn′m′) = ψ1.ψ2(nmn′m−1mm′)
= ψ1(n)ψ1(mn′m−1)ψ2(mm′)
= ψ1(n)ψ1(n′)ψ2(m)ψ2(m′)
= ψ1.ψ2(nm)ψ1.ψ2(n′m′)
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Thus ψ1.ψ2 is a well defined one dimensional representation of G. Let ν be
any other one dimensional representation of G extending ψ1 and ψ2. Then
ν(nm) = ν(n.1)ν(1.m) = ψ1(n)ψ2(m) for all n ∈ N and m ∈ M . This
proves the uniqueness of extension. 2

2.2 Primary Decomposition and Jordan Canonical Form

In this section we discuss the structure of Fq[t]-modules which are finite
dimensional as Fq-vector space and the primary decomposition of matrices.
We use this to describe Jordan canonical forms for the matrices whose char-
acteristic polynomials split over Fq. For this section, wherever required we
have reproduced material from the lecture notes of Prasad [Pra07], which
are available online.

Given a matrix A ∈ Mn(Fq), for every vector x ∈ Fnq and every poly-
nomial f(t) ∈ F[t] define f(t)x = f(A)x. This endows Fnq a structure of an
Fq[t] module, which we denote by MA.

The following Lemma, whose proof is quite straightforward, relates the
similarity problem for matrices with isomorphism problem for Fq[t]-modules.

Lemma 2.2.1 Two matrices A and B are similar if and only if the modules
MA and MB are isomorphic.

The next theorem discusses the structure of Fq[t]-modules.

Theorem 2.2.2 Let M be a Fq[t] module which is also a finite dimensional
Fq-vector space. For every monic irreducible polynomial f(t) ∈ Fq[t], let Mf

be the vector subspace consisting of elements m of M such that f(A)k.m = 0
for some integer k. Then Mf is Fq[t] submodule, non-zero for only finitely
many irreducible monic polynomials f(t) ∈ Fq[t], and

M = ⊕fMf ,

the sum being taken over all the irreducible monic polynomials f for which
Mf 6= 0.

Let f(t) ∈ Fq[t] be an irreducible monic polynomial.

Definition 2 (f-primary module) An Fq[t]-module M is called f-primary
if M = Mf .
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Theorem 2.2.3 (Structure of a Primary module) If MA is an f-primary
Fq[t]-module, then there exists a non-decreasing sequence of integers λ1 ≥
λ2 ≥ · · · ≥ λk such that

M ∼= Fq[t]/f(t)λ1 ⊕ Fq[t]/f(t)λ2 ⊕ · · · ⊕ Fq[t]/f(t)λk ,

where f(t)λ1+λ2+···+λk is the characteristic polynomial, and f(t)λ1 is the
minimal polynomial of A.

The preceding theorems are the Structure theorems for Fq[t]-modules. For
proofs, see Bourbaki [Bou03, A.VII.31]. We use these theorems to obtain
primary decomposition and Jordan canonical forms for matrices over Fq.
Notation: If Ai’s for 1 ≤ i ≤ l are matrices, then we denote by ⊕iAi the
block diagonal matrix 

A1 0 · · · 0
0 A2 · · · 0
...

...
. . .

...
0 0 · · · Al


We call this direct sum of matrices. In the same spirit, If A1,A2, . . . ,Al are
the sets of matrices then ⊕li=1Ai denotes the set of matrices {⊕li=1Ai| Ai ∈
Ai}.

Definition 3 (f-primary Matrix) A matrix with entries in Fq is called
f-primary if its characteristic polynomial is a power of f .

Theorem 2.2.4 (Primary Decomposition) Every matrix A ∈ Mn(Fq)
is similar to a matrix of the form

⊕fAf .

where Af is an f-primary matrix, and the sum is over the irreducible factors
of the characteristic polynomial of A. Moreover, for every f, the similarity
class of Af is uniquely determined by the similarity class of A.

Definition 4 (Split Matrix) A matrix with entries in Fq is called split if
its characteristic polynomial splits over Fq. By abusing notation, we also
say that the matrix splits over Fq.



2.2 Primary Decomposition and Jordan Canonical Form 11

Definition 5 (Elementary Jordan Blocks) For a natural number n and
an element a, elementary Jordan block Jn(a) is the matrix

a 1 0 0 · · · 0
0 a 1 0 · · · 0
0 0 a 1
...

...
. . . . . .

...
a 1

0 0 · · · 0 a


n×n

Theorem 2.2.5 (Jordan Canonical Form for Split Matrices) Every
split matrix A ∈ Mn(Fq), up to the rearrangement of the ai’s, is similar
to a unique matrix of the form

⊕iJλ(ai)(ai)

where λ(ai) = (λ1(ai), λ2(ai), . . . , λki
(ai)) is a partition and

Jλ(ai)(ai) =


Jλ1(ai)(ai) 0 · · · 0

0 Jλ2(ai)(ai) · · · 0
...

...
. . .

...
0 0 · · · Jλki

(ai)(ai)


and each Jλj(ai)(ai) is an elementary Jordan block with eigenvalue ai.

Proof: Let A be a split matrix with the characteristic polynomial (t −
a1)r1(t−a2)r2 . . . (t−al)rl and MA be the corresponding Fq[t]-module. Then
by Structure Theorem of Fq[t]-modules.

MA ∼= Ma1 ⊕Ma2 ⊕ · · · ⊕Mal

with each,

Mai
∼= Mλ1(ai)

ai
⊕Mλ2(ai)

ai
⊕ · · · ⊕Mλki

(ai)
ai

where, for i ∈ {1, . . . , l} and j ∈ {1, . . . , ki}, M
λj(ai)
ai

∼= Fq[t]/(t − ai)λj(ai)

for some partition {λ1(ai), λ2(ai), . . . , λki
(ai)}. For each Mλj(ai)

ai , choose the
basis {1, t− ai, (t− ai)2, · · · , (t− ai)λj(ai)−1}. Then Lemma 2.2.1 gives the
required results. 2
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2.3 Centralizers

In this section, we prove a few elementary results regarding centralizers,
namely the matrices that commute with a given matrix. In particular, for
a commutative ring R with identity, we describe explicitly centralizers of
specific matrices in Mn(R) and GLn(R) (see Lemmas 2.3.4 and 2.3.5).

Definition 6 (Centralizer of an element) Let L be a semigroup under
multiplication and l be an element of L. Assume that T is a subset of L.
Then centralizer of l in T , ZT (l), is the set of elements of T that commute
with l, i.e.,

ZT (l) = {t ∈ T | tl = lt}

Remark 1 If T is a group, then ZT (l) is a subgroup of T .

The proofs of Lemmas 2.3.1-2.3.4 involve simple matrix multiplications,
so we leave these for reader.

Lemma 2.3.1 Let R be a commutative ring with unity and a and b be two
elements of R such that a − b is invertible in R. Assume that A and B
are two upper triangular matrices such that all the diagonal entries of A are
equal to a and those of B are equal to b. Then there does not exist any
non-zero matrix X over R such that XA = BX.

Lemma 2.3.2 Let R be commutative ring with unity. Let a1, a2, . . . , al
be elements of R such that for all i 6= j, ai − aj is invertible in R. Let
A = ⊕li=1Ai be a square matrix of order n, where Ai’s are upper triangular
matrices of order ni. Assume that all diagonal entries of Ai are equal to ai.
Then,

ZGLn(R)(A) = ⊕li=1ZGLni (R)(Ai)

Definition 7 (Principal Nilpotent Matrix) A square matrix of order n
is called Principal Nilpotent, if it is

Nn =


0 1 0 · · · 0
0 0 1 0 0
...

. . . . . .
...

0 · · · 0 1
0 · · · 0 0


n×n
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In the sequel we use the notation Nn for the principal nilpotent matrix
of order n.

Let n1, n2, . . . , nl be a sequence of natural numbers, such that n = n1 +n2 +
· · ·+nl. Let R be a commutative ring with unity and let A = ⊕li=1Nni . We
now describe the centralizer algebras ZMn(R)(A).

Definition 8 (Upper Toeplitz Matrix) A square matrix of order n is
called Upper Toeplitz, if it is of the form

a1 a2 · · · an−1 an
0 a1 a2 an−1
...

. . . . . . . . .
...

· · · a1 a2

0 · · · 0 0 a1


n×n

Lemma 2.3.3 Let R be a ring with unity. Assume that Nn and Nm are
principal nilpotent matrices of order n and m respectively. Then the matrices
X over R such that XNm = NnX are of the form

X =



[
0n×m−n Tn×n

]
if n ≤ m

[
Tm×m

0n−m×m

]
if n ≥ m

where, for a natural number s, Ts×s is an upper Toeplitz Matrix of order s
over the ring R.

This Lemma motivates the following definition of rectangular upper
Toeplitz matrix.

Definition 9 (Rectangular Upper Toeplitz Matrix) A matrix of or-
der n×m, over a ring R is called a Rectangular upper Toeplitz matrix if it
is of the form

[
0n×m−n Tn×n

]
if n ≤ m or

[
Tm×m

0n−m×m

]
if n ≥ m

where Ts×s, for a natural number s, is the upper Toeplitz matrix of order s.
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Lemma 2.3.4 Let n1, n2, . . . , nl be a sequence of natural numbers, such that
n = n1 + n2 + · · · + nl. Let R be a commutative ring with identity and let
A = ⊕li=1Nni. Then the centralizer, ZMn(R)(A) of A in Mn(R) consists of
matrices of the form 

Tn1×n1 Tn1×n2 · · · Tn1×nl

Tn2×n1 Tn2×n2 · · · Tn2×nl

...
...

...
Tnl×n1 Tnl×n2 · · · Tnl×nl


where Tni×nj for all i, j are rectangular upper Toeplitz matrices.

Definition 10 (Block Upper Toeplitz Matrix) Let Tni×nj be a rectan-
gular upper Toeplitz matrix of order ni × nj, over the ring R. A matrix of
the form 

Tn1×n1 Tn1×n2 · · · Tn1×nl

Tn2×n1 Tn2×n2 · · · Tn2×nl

...
...

...
Tnl×n1 Tnl×n2 · · · Tnl×nl


is called block upper Toeplitz matrix of order (n1, n2, . . . , nl) over the ring
R.

In the following lemma we relate the group of automorphisms Gλ,Fq((t))

with the centralizers in GLn(Fq).

Lemma 2.3.5 Let A = ⊕ki=1Nλi
and λ = (λ1, λ2, . . . , λk) be a partition.

Then the following groups are isomorphic:

1. The group of automorphisms, Gλ,Fq((t)) = AutO(Oλ1⊕Oλ2⊕· · ·⊕Oλk
).

2. The centralizer ZGLn(Fq)(A).

3. The set of invertible block upper Toeplitz matrices of order (λ1, λ2, · · · , λk)
over Fq.

Proof: Lemma 2.3.4 implies that groups (2) and (3) are actually equal. We
prove isomorphism between (1) and (3). Every f ∈ Gλ can be thought as
an invertible matrix of the form

f11 f12 · · · f1k

f21 f22 · · · f2k
...

...
...

fk1 fk2 · · · fkk
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with each fij ∈ EndO(Oλi
,Oλj

). Hence it is enough to prove that there
is an isomorphism between EndO(Oλi

,Oλj
) and the group of rectangular

Toeplitz matrices of order λi × λj over Fq taking composition to matrix
multiplication. We prove isomorphism only for λi = λ1 and λj = λ2 with
λ1 ≥ λ2, leaving the rest to the reader.

Let Tλ1,λ2 be the set of rectangular upper Toeplitz matrices of order
λ1 × λ2 over Fq. Define a map EndO(Oλ1 ,Oλ2)→ Tλ1,λ2 by

f 7→
[

0(λ1−λ2)×λ2
A

]
λ1×λ2

where

A =


a1 a2 · · · aλ2−1 aλ2

0 a1 a2 aλ2−1
...

. . . . . . . . .
...

· · · a1 a2

0 · · · 0 0 a1


λ2×λ2

,

and the elements a1, a2, . . . , aλ2 are determined by the expression f(1) =
a1 + a2π + · · · + aλ2π

λ2−1. It is straightforward to see that this map gives
the required isomorphism. 2

Another description of centralizers of a matrix A in Mn(Fq) is the
following: each X ∈ ZMn(Fq)(A), defines an Fq[t]-module endomorphism
φX : MA → MA given by φX(m) = X(m). The map X 7→ φX gives an
isomorphism

ZMn(Fq)(A) ∼= EndFq [t](M
A,MA) (2.3.1)

A consequence of Lemma 2.3.5 is the following,

Theorem 2.3.6 Let f(t) be an irreducible polynomial of degree d in Fq[t],
and suppose that for some matrix A and λ = (λ1, λ2, . . . , λk) ∈ Λk,

MA ∼= Fq[t]/f(t)λ1 ⊕ Fq[t]/f(t)λ2 ⊕ · · · ⊕ Fq[t]/f(t)λk .

Let Tλ(F ) denote the set of block upper Toeplitz matrices of order λ =
(λ1, λ2, . . . , λk) over F . Then

1. ZGLn(Fq)(A) ∼= Gλ,F
qd ((t)) as groups.

2. ZMn(Fq)(A) ∼= Tλ(Fqd) as rings.

This theorem follows easily from Lemma 2.3.5 and the following Theorem.
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Theorem 2.3.7 Let f(t) ∈ Fq[t] be an irreducible polynomial of degree n
and let E denote the field Fq[t]/f(t). Then the rings Fq[t]/f(t)r and E[x]/xr

are isomorphic.

Proof: For the proof we need the following well known Lemma,

Lemma 2.3.8 (Hensel) Let f(t) be an irreducible polynomial over Fq[t].
Then, for each positive integer r, there exists qr(t) ∈ Fq[t] such that qr(t) ≡
t(mod f(t)), and f(qr(t)) ≡ 0(mod f(t)r).

Proof of Lemma: The proof is by induction on r. When r = 1, take q1(t) = t.
Suppose that qr−1(t) ∈ Fq[t] such that

qr−1(t) ≡ t (mod f(t)) and f(qr−1(t)) ≡ 0 (mod f(t)r−1).

Then by using the Taylor expansion, for any g(t) ∈ Fq[t],

f(qr−1(t) + f(t)r−1g(t)) ≡ f(qr−1(t)) + f(t)r−1g(t)f ′(qr−1(t)) (mod f(t)r).

qr−1(t) ≡ t (mod f(t)), implies that f ′(qr−1(t)) ≡ f ′(t) (mod f(t)). Since
f ′(t) is not divisible by f(t) and f(t) is irreducible, there exists r(t), s(t) ∈
Fq[t] such that f ′r + fs = 1, which means that f ′(t)r(t) ≡ 1 (mod f(t)).
Since f(qr−1(t)) ≡ 0 (mod f(t)r−1), there exists f1(t) ∈ Fq[t] such that

f(qr−1(t)) = f(t)r−1f1(t)

When g(t) = −f1(t)r(t) and qr(t) = qr−1(t) + f(t)r−1g(t), one has

qr(t) ≡ t (mod f(t)) and f(qr(t)) ≡ 0 (mod f(t)r)

This completes the proof of the lemma.

Let qr(t) be as in Hensel’s lemma. Then δ(y) = qr(t) and δ(x) = f(t)
gives rise to a well-defined ring homomorphism

δ : Fq[x, y]/(f(y), xr)→ Fq[t]/f(t)r

Since qr(t) ≡ t (mod f(t)) and both qr(t) and f(t) lie in the image of δ and
hence t also lies in the image of δ. Therefore δ is a surjective map. Further,
both Fq[x, y]/(f(y), xr) and Fq[t]/f(t)r are nr dimensional Fq-vector spaces.
Therefore δ is an isomorphism of rings. 2

Lemma 2.3.9 For A as in the Theorem 2.3.6,

dimFq(ZMn(Fq)(A)) = d(λ1 + 3λ2 + · · ·+ (2k − 1)λk)
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Proof: Follows easily from (2.3.1) and Theorem 2.3.6. 2

Definition 11 (Companion Matrix) Let f(t) = tn − an−1t
n−1 − · · · −

a1t− a0. Then the companion matrix of f is the n× n matrix

Cf =


0 0 · · · 0 a0

1 0 · · · 0 a1

0 1 · · · 0 a2
...

...
. . .

...
...

0 0 · · · 1 an−1


We use Theorem 2.3.7 to give another canonical form of matrices.

Theorem 2.3.10 (Block Jordan Canonical Form) Let A ∈ Mn(Fq).
Then A can be written as a block diagonal matrix with blocks of the form

Jr(f) =



Cf I 0 · · · 0 0
0 Cf I · · · 0 0
0 0 Cf · · · 0 0
...

...
...

. . .
...

...
0 0 0 · · · Cf I
0 0 0 · · · 0 Cf


rd×rd

where d is the degree of f , an irreducible factor of the characteristic polyno-
mial of A, Cf is the companion matrix of f , and r is a positive integer. Up
to rearrangement of blocks, this canonical form is unique.

Proof: By the structure theorems of Fq[t]-modules, we can assume that A is
f -primary, for some irreducible monic polynomial f . Let E = Fq[x]/f(x).
By the structure theorems and Theorem 2.3.7, there exists a partition λ
such that

MA ∼= E[y]/yλ1 ⊕ E[y]/yλ2 ⊕ · · · ⊕ E[y]/yλt

In the notation of the proof of Theorem 2.3.7, let θ(t) = t− q(t), where we
write q for qi for some i. Then θ(t) ∈ (f(t)). But θ /∈ (f(t))2, for if it did,
we would have

f(t) = f(θ(t) + q(t))
∼= f(q(t)) + θ(t)f ′(q(t)) mod (f(t)2)
= 0 mod(f(t)2),
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a contradiction. Therefore, θ(t) = αf(t), where α is unit in Fq[t]/f(t)λi . In
the isomorphism

Fq[t]/(f(t)r)→ E[y]/yr = Fq[x, y]/(yr, f(x))

t 7→ αy+ x. Since A acts by t, with respect to the basis of E[y]/yλi over Fq
given by

(αy)λi−1, (αy)λi−1x, . . . , (αy)λi−1xd−1,
(αy)λi−2, (αy)λi−2x, . . . , (αy)λi−2xd−1,

...
... . . .

...
1, x, . . . , xd−1

The matrix of multiplication by t = αy + x is Jλi
(f).

2

Definition 12 (Regular Matrix) A matrix over Fq is called regular, if
its characteristic polynomial is equal to its minimal polynomial.

Definition 13 (Simple matrix) A matrix is called simple if its charac-
teristic polynomial is irreducible.

In the following theorem, we determine the centralizer algebra of regular
matrices.

Theorem 2.3.11 Let A ∈ Mn(Fq), then centralizer ZMn(Fq)(A) of A in
Mn(Fq) is the algebra Fq[A] if and only if A is regular, and in this case,
dimFqZMn(Fq)(A) = n. Furthermore, the centralizer ZMn(Fq)(A) is a field if
and only if A is simple.

Proof: Let p1(t)a1p2(t)a2 . . . pk(t)ak be the characteristic polynomial of A,
where p1(t), p2(t), . . . , pk(t) are distinct irreducible polynomials in Fq[t]. If
A is regular, by the structure theorems of Fq[t]-modules,

MA ∼= Fq[t]/(p1(t))a1 ⊕ Fq[t]/(p2(t))a2 ⊕ · · · ⊕ Fq[t]/(pk(t))ak .

Then

Fq[t]/(p1(t))a1⊕Fq[t]/(p2(t))a2⊕· · ·⊕Fq[t]/(pk(t))ak ∼= EndFq [t](M
A,MA).

Therefore by (2.3.1), dimFq(ZMn(Fq)(A)) = n. The algebra Fq[A] ⊆ ZMn(Fq)(A).
If A is regular then dimFq(Fq[A]) = n. Therefore Fq[A] = ZMn(Fq)(A).
Conversely if A is not regular then by using Lemma 2.3.9, it is easy to see
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that dimFq(ZMn(Fq)(A)) is strictly greater than n, furthermore in this case
dimFq(Fq[A]) is strictly less than n. This proves the first part of the theo-
rem. Further, if A is simple then by (2.3.1) its centralizer algebra is a field.
Conversely assume that A is not simple. Without loss of generality we can
assume that A is f -primary. For, if not then for distinct polynomials f and
f ′, End(Mf ,Mf ′) = 0 implies that centralizer algebra is not a field. The
result for f -primary case follows from part(1) of Theorem 2.3.6.

2

Another proof of this lemma, which does not use language of modules,
is presented in Suprunenko-Tyshkevich [ST66].

In the next theorem, we give the centralizers of primary matrices which
are in their block Jordan canonical form.

Theorem 2.3.12 Let λ = (λ1, λ2, . . . , λt) be a partition and A = ⊕ti=1Jλi
(f),

where f is an irreducible polynomial and Jλi
(f) is as described in The-

orem 2.3.10. Then the centralizer of ZMn(Fq)(A) consists of block upper
Toeplitz matrices of type (λ1, λ2, . . . , λl) over the ring Fq[Cf ].

Proof: In the proof of Theorem 2.3.10, a linear endomorphism of⊕li=1E[y]/yλi

commutes with matrix A if and only if it is an Fq[t]-module homomorphism,
and hence, if and only if it is E[y]/yr-module homomorphism, which just
means that it commutes with the matrices of multiplication by x and y,
namely with the matrices

⊕li=1α
−1


0 I 0 · · · 0
0 0 I · · · 0
...

. . . . . . . . .
0 0 · · · 0 I
0 0 0 · · · 0

 and ⊕li=1


Cf 0 0 · · · 0
0 Cf 0 · · · 0
...

. . . . . . . . .
0 0 · · · Cf 0
0 0 0 · · · Cf


Any matrix commuting with these two matrices is easily seen to be block
upper Toeplitz matrix of type (λ1, λ2, . . . , λl) with entries as matrices com-
muting with Cf . Since f is irreducible, by Theorem 2.3.11 any matrix
commutes with Cf if and only it belongs to Fq[Cf ] 2
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Chapter 3

Representations of GLn(O2)

In this chapter, we apply Clifford theory to the groups GLn(O2) to prove
Theorem 1.2.1 and a few corollaries. We then prove Theorem 1.2.3, which
concerns the complexity of the problem of constructing all the irreducible
representations of the groups GLn(O2).

Throughout this chapter, by a character we mean a one dimensional
representation, unless stated otherwise. For any abelian group A, we denote
by Â the group of its characters. Recall from Chapter 1, that F is a non-
Archimedean local field with ring of integers O, ℘ is the unique maximal
ideal of O and π is a fixed uniformizer of ℘. Further O` denotes the reduction
of O modulo ℘`, i.e. O` = O/℘` and the residue field O1 = O/℘ is assumed
to be finite of cardinality q, so we also occasionally use the notation Fq for
the residue field.

3.1 Proof of Theorem 1.2.1:

Let κ : GLn(O2)→ GLn(O1) be the natural quotient map and K = Ker(κ).
Then A 7→ I + πA induces an isomorphism Mn(O1)→̃K. Fix a non-trivial
additive character ψ : O1 → C∗ and for any A ∈ Mn(O1) define ψA : K →
C∗ by

ψA(I + πX) = ψ(Tr(AX)).

Then A 7→ ψA gives an isomorphism Mn(O1)→̃K̂. The group GLn(O2) acts
on Mn(O1) by conjugation via its quotient GLn(O1), and therefore on K̂.

21
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For α ∈ GLn(O2) and ψA ∈ K̂, we have

ψαA(I + πX) = ψA(I + παXα−1)
= ψ(Tr(Aκ(α)Xκ(α)−1))
= ψ(Tr(κ(α)−1Aκ(α)X))
= ψκ(α)−1Aκ(α)(I + πX) (3.1.1)

Thus the action of GLn(O2) on the characters of K transforms to its con-
jugation (inverse) action on elements of Mn(O1). To prove the theorem,
we apply Clifford Theory (Theorem 2.1.1) to the group G = GLn(O2)
and normal subgroup N = K. Recall that for any character ρ ∈ K̂,
T (ρ) = {g ∈ GLn(O2) | ρg = ρ} is the stabilizer of ρ in GLn(O2). By
(3.1.1), for each ψA ∈ K̂,

T (ψA) = κ−1(ZGLnO1(A)) (3.1.2)

Fix a section s : O1 → O2 of the natural quotient map O2 → O1 such
that s(0) = 0 and s(1) = 1. By applying s entry-wise, we obtain a map
s : Mn(O1)→Mn(O2). Observe that the restriction of s to GLn(O1) defines
a section of κ. For any matrix A ∈ Mn(O1), let ZGLn(O2)(s(A)) be the
centralizer of s(A) in GLn(O2).

Lemma 3.1.1 Assume that A is a split matrix and is in its Jordan canon-
ical form, then

ZGLn(O1)(A) = κ(ZGLn(O2)(s(A)))

Proof: Let α = κ(t) for some t ∈ ZGLn(O2)(s(A)). Then by definition, t
satisfies ts(A) = s(A)t, which along with the fact that κ is a homomor-
phism implies κ(t)A = Aκ(t). Hence α = κ(t) ∈ ZGLn(O1)(A). This proves
κ(ZGLn(O2)(s(A))) ⊆ ZGLn(O1)(A). For the reverse inclusion, since A is a
split matrix, by Theorems 2.2.4 and 2.2.5,

A = ⊕li=1Ai

where each Ai is a split primary matrix and is of the form

Ai = ⊕lij=1Jλij
(ai)

with ai’s being distinct elements of the field O1. By using s(0) = 0 and
s(1) = 1, we obtain s(Ai), for all i is an upper triangular matrix with all
diagonal entries equal to s(ai) and s(A) = ⊕li=1(s(Ai)). Further ai 6= aj
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imply that s(ai)− s(aj) are invertible elements of the ring O2. Therefore by
Lemma 2.3.2,

ZGLn(O2)(s(A)) = ⊕li=1ZGLni (O2)(s(Ai)) (3.1.3)

Since we also have

ZGLn(O1)(A) = ⊕li=1ZGLni(O1)
(Ai),

it is sufficient to prove ZGLn(O1)(A) ⊆ κ(ZGLn(O2)(s(A))) when A is a split
primary.
Split Primary Case: Now we may assume that A is a split primary matrix
and is in its Jordan canonical form. Theorems 2.2.4 and 2.2.5 give that A =
aIn + (⊕ti=1Nni) for some a ∈ O1. Let α ∈ ZGLn(O1)(A), by Lemma 2.3.5,
α is an invertible block Toeplitz matrix of order (n1, n2, ...., nt) over the
ring O1. Our choice of section s ensures that, s(A) = s(a)In + (⊕ti=1Nni),
and s(α) is an invertible block Toeplitz matrix of order (n1, n2, . . . , nt) over
the ring O2. But then by Lemma 2.3.4 s(α) ∈ ZGLn(O2)(s(A)). Hence
α = κ(s(α)) ∈ κ(ZGLn(O2)(s(A))). 2

From the proof of above lemma we obtain,

Corollary 3.1.2 If A is a split matrix and is in its Jordan canonical form,
then α ∈ ZGLn(O1)(A) if and only if s(α) ∈ ZGLn(O2)(s(A)).

Corollary 3.1.3 If A is a split matrix and is in its Jordan canonical form,
then T (ψA) = KZGLn(O2)(s(A)).

Proof: The inclusion T (ψA) ⊆ KZGLn(O2)(s(A)) follows from (3.1.2) and
Lemma 3.1.1. 2

Proposition 3.1.4 For a given A ∈Mn(O1), there exists a character χ of
T (ψA) such that χ|K = ψA (such a character χ is called an extension of
ψA).

Proof: It follows from (3.1.1) that orbits of the action of GLn(O2) on K
are the same as orbits of Mn(O1) under the action of GLn(O1), namely the
similarity classes. It is easy to see that, if we can extend the character ψA
from K to T (ψA), then we can extend any ψA′ in the orbit of ψA under the
action of GLn(O2) on T (ψA). So to prove the proposition, it is enough to
choose A as a representative of similarity class of Mn(O1) and to extend the
corresponding character ψA from K to T (ψA). We prove existence of this
extension in three steps:
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Step 1: A is Split Primary

Let A be a split primary matrix with unique eigenvalue a ∈ O1. Replace A
by a matrix in its similarity class of the form ⊕li=1Jλi

(a), where each Jλi
(a)

is an elementary Jordan block.
We define a character ψa : O1 → C∗ by ψa(x) = ψ(ax). The map

x 7→ 1+πx gives an isomorphism from O1 onto the subgroup 1+πO1 of the
multiplicative group O∗2. Choose χ ∈ Ô∗2 such that χ(1+πx) = ψa(x) for all
x ∈ O1. Define a character χ̃ : ZGLn(O2)(s(A))→ C∗ by χ̃(x) = χ(det(x)).

Lemma 3.1.5 The character χ̃ of ZGLn(O2)(s(A)) satisfies

χ̃|K∩ZGLn(O2)(s(A)) = ψA|K∩ZGLn(O2)(s(A))

Proof: By Lemma 2.3.5, K ∩ ZGLn(O2)(s(A)) = I + πZMn(O1)(A). If X =
(xij) ∈ ZMn(O1)(A), then by Lemma 2.3.4, X is a block upper Toeplitz
matrix. Therefore Tr(AX) = a(x11 + x22 + · · ·+ xnn). We have

ψA(I + πX) = ψ(Tr(AX))
= ψ(a(x11 + x22 + · · ·+ xnn))
= χ(det(I + πX)) = χ̃(I + πX)

2

Applying Lemma 2.1.2 to the group T (ψA) with its subgroups K and
ZGLn(O2)(s(A)), and characters ψ1 = ψA and ψ2 = χ̃ we obtain that the
character ψA.χ̃ is an extension of ψA from K to T (ψA).

Step 2: A is split

Let A be a split matrix with distinct eigenvalues a1, a2, . . . , al. Then by
Theorem 2.2.4, A can be written as ⊕li=1Ai, where each Ai is a split primary
matrix, say of order ni, and has a unique eigenvalue ai. We may assume
that each Ai is in its Jordan canonical form. Then by (3.1.3),

K ∩ ZGLn(O2)(s(A)) = ⊕li=1(K ∩ ZGLni (O2)(s(Ai)))

As in the Step 1, define the characters χ̃i of ZGLni (O2)(s(Ai)) such that

χ̃i|K∩ZGLni (O2)(s(Ai)) = ψAi |K∩ZGLni (O2)(s(Ai))

Then χ̃ = χ̃1 × χ̃2 × . . . χ̃l is a character of ZGLn(O2)(s(A)), such that

χ̃|K∩ZGLn(O2)(s(A)) = ψA|K∩ZGLn(O2)(s(A))

Again by Lemma 2.1.2, ψA.χ̃ is an extension of ψA from K to T (ψA).
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Step 3 : General case

Let Õ1 be a splitting field for the characteristic polynomial of A and let Õ2

be the corresponding unramified extension of O2. Let K̃ = Ker(GLn(Õ2)→
GLn(Õ1)) under the natural quotient map, and ψ̃ : Õ1 → C∗ be a character
such that ψ̃|O1 = ψ. Then ψ̃A : K̃ → C∗, defined by

ψ̃A(I + πX) = ψ̃(Tr(AX))

is a character of K̃. Let T̃ (ψA) be the stabilizer of ψ̃A in GLn(Õ2). Since
A splits over Õ1, by Step 2, there exists a character χ̃ : T̃ (ψA) → C∗, such
that

χ̃|K̃ = ψ̃A.

Define a character χ : T (ψA)→ C∗ by χ = χ̃|T (ψA). Then χ is an extension
of ψA to T (ψA). This completes the proof of Proposition 3.1.4. 2

Fix an extension χA of ψA from K to T (ψA) and let S denote the
set of similarity classes of Mn(O1). By (3.1.2), the groups T (ψA)/K and
ZGLn(O1)(A) are isomorphic. Therefore by Clifford Theory, there exists a
bijection between the sets∐

A∈S
{Irr(ZGLn(O1)(A))} ←→ Irr(GLn(O2)), (3.1.4)

given by,

φ 7→ IndGLn(O2)
T (ψA) (χA ⊗ φ). (3.1.5)

As [GLn(O2) : T (ψA)] = [GLn(O1) : ZGLn(O1)(A)], this already proves
that there exists a bijection between the sets Irr(GLn(O2)) and Irr(GLn(O′2))
which preserves dimensions. To prove that this bijection is canonical we need
to do little more work.

Let O′ be the ring of integers of another non-Archimedean local field
F ′, such that residue fields of both O and O′ are isomorphic. We fix an
isomorphism φ between their residue fields. From now onwards we shall
assume that section s : O1 → O2 satisfies s(0) = 0 and s|O∗

1
is multiplica-

tive. The existence and uniqueness of this section is proved in, for example,
Serre [Ser79, Prop. 8]. In the sequel, this unique section will be called the
multiplicative section of O1 (or of O∗1) (depending on the domain). Given
above isomorphism φ,

Lemma 3.1.6 There exists a canonical isomorphism between groups Ô∗2
and Ô′∗

2 .
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Proof: Let s : O∗1 → O∗2 and s′ : O′∗
1 → O

′∗
2 be the multiplicative sections of

O∗1 and O′∗
1 respectively. Then the following exact sequences split,

0 // O1 i
// O∗2 // O∗1 //

s
jj 1

0 // O′1 i′
// O′∗

2
// O′∗

1
//

s′ss
1

The uniqueness of the sections s and s′ implies the existence of a unique
isomorphism f : O∗2 → O

′∗
2 such that f ◦ s = s′ ◦ φ and f ◦ i = i′ ◦ φ. This

gives a canonical isomorphism between Ô∗2 and Ô′∗
2 . 2

Let K ′ = Ker(GLn(O′2)→ GLn(O′1)). Then

K ∼= K ′ ∼= Mn(O1)

hence the set {ψA | A ∈ Mn(O1)} can also be thought as the set of charac-
ters of K ′. Let T ′(ψA) denote the stabilizer of character ψA in GLn(O′2). By
(3.1.2), groups T ′(ψA)/K ′ and T (ψA)/K are canonically isomorphic. Fur-
ther to prove that there exists a canonical bijection between Irr(GLn(O2))
and Irr(GLn(O′2)), it is sufficient to prove that for a given A ∈ Mn(O1), and
an extension χA : T (ψA) → C∗ of ψA, there exists a canonical extension
χ′A : T ′(ψA) → C∗ of ψA from K ′ to T ′(ψA). For that, in steps 1 and 2 of
the proof of Proposition 3.1.4, choose the character of O′∗

2 by using the given
character of O∗2 and canonical isomorphism between Ô∗2 and Ô′∗

2 ; the rest
of the argument follows easily for these steps. For step 3, any isomorphism
between Õ1 and Õ′1 that extends φ : O1 → O′1 is defined uniquely up to
an element of the Galois group. To complete the proof for this step, we
observe that, if ψ̃ is an extension of ψ from O1 to Õ1 and γ is an element
of Galois group Gal(Õ1/O1) then by definition (ψ̃ ◦ γ)A = ψ̃A ◦ γ where
on the right side γ is thought as scalar matrix with all its diagonal entries
equal to γ. Choose χ̃A an extension of ψ̃A from K̃ to T̃ (ψA) and let γ̃ be
a lift of γ from Gal(Õ1/O1) to Gal(F̃/F), which takes the maximal ideal of
Õ to itself (for existence of this see [MR067, p. 26]), then χ̃ ◦ γ̃ (again γ̃ is
thought as scalar matrix with diagonal entries equal to γ̃) extends ψ̃A ◦ γ.
The restrictions of χ̃A and χ̃A ◦ γ̃ to T (ψA) coincide. This completes the
proof of Theorem 1.2.1.

Corollary 3.1.7 The isomorphism type of group algebra C[GLn(O2)] de-
pends only on the cardinality of the residue field of O.

This can be restated as,
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Corollary 3.1.8 The number and dimensions of irreducible representations
of groups GLn(O2) depends only on the residue field.

The equivalence between number of conjugacy classes and irreducible rep-
resentations further gives,

Corollary 3.1.9 The number of conjugacy classes of groups GLn(O2) de-
pend only on the cardinality of residue fields.

Remark 2 In Chapter 5, we will sharpen this result by showing that the
class equation of GLn(O2) depends only on the cardinality of the residue
field.

3.2 Complexity of the problem

In this section we comment on the complexity of the problem of constructing
all the irreducible representations of GLn(O2).

In this context, Aubert-Onn-Prasad-Stasinski have proved the following
([AOPS, Theorem 6.1])

Theorem 3.2.1 Let F = Fq((t)) be a local function field. Then the prob-
lems of constructing all the irreducible representations of the following are
equivalent:

1. G2n,F for all n ∈ N.

2. Gkn,F for all k, n ∈ N.

3. Gλ,E for all partitions λ and all unramified extensions E of F .

Proof: Clearly (3) =⇒ (2) =⇒ (1), we prove that (1) =⇒ (3). The
group G2n,F is semi-direct product of GLn(O1) by Mn(O1). By Clifford
theory the problem of constructing the irreducible representations of G2n,F

is equivalent to the problem of constructing irreducible representations of
the centralizers in GLn(O1) of characters of Mn(O1). By (3.1.2) these are
the same as the centralizers ZGLn(O1)(A), for A ∈Mn(O1). The result now
follows from (2.3.1) and Theorem 2.3.6. 2

The above, combined with Theorem 1.2.1, proves the following,
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Theorem 3.2.2 Let O be the ring of integers of a non-Archimedean local
field F , such that the residue field has cardinality q. Then the problems of
constructing irreducible representations of the following groups are equiva-
lent:

1. GLn(O2) for all n ∈ N.

2. Gλ,E for all partitions λ and all unramified extensions E of Fq((t)).



Chapter 4

Applications

In this chapter, we discuss a few applications of the theory developed so far.
In particular, we discuss the relation between the representation zeta func-
tion of GLn(O2) and those of centralizers in GLn(O1). We also construct all
the irreducible representations of the groups GL2(O2), GL3(O2), GL4(O2)
and obtain their representation zeta functions.

Recall the following definition from Chapter 1,

Definition 14 (Representation Zeta function) Let G be a finite group. The
representation zeta function of G is the function

RG(D) =
∑
ρ∈IrrG

Ddim ρ ∈ Z[D]

4.1 Representation zeta function of GLn(O2)

Let S be the set of similarity classes of Mn(O1). From (3.1.5) it is clear
that representations of centralizers play an important role in determining
irreducible representations of GLn(O2). Moreover we obtain the following
relation between their representation zeta functions.

RGLn(O2)(D) =
∑
A∈S

RZGLn(O1)(A)(D[GLn(O1):ZGLn(O1)(A)]) (4.1.1)

where, [GLn(O1) : ZGLn(O1)(A)] = [GLn(O2) : T (ψA)] is the index of
ZGLn(O1)(A) in GLn(O1). Following Green [Gre55], a similarity class c of
Mn(O1) can be denoted by the symbol

c = (. . . , fνc(f), . . .)

29
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where f is an irreducible polynomial appearing in the characteristic polyno-
mial of c and νc(f) is the partition associated with f in the canonical form
of c.

Let c = (. . . , fνc(f), . . .). Let d be a positive integer, and let ν be a
partition other than zero. Let rc(d, ν) be the number of f appearing in the
characteristic polynomial of c with degree d and νc(f) = ν. Let ρc(ν) be the
partition

{n, n, . . . , n︸ ︷︷ ︸
rc(n,ν)

, n− 1, n− 1, . . . , n− 1︸ ︷︷ ︸
rc(n−1,ν)

, . . .}

Then two classes b and c are of the same type if and only if ρb(ν) = ρc(ν) for
each non zero partition ν. By abusing notation we shall also say matrices
of class c and d have same type.

Let ρν be a partition-valued function on the nonzero partitions ν (ρν
may take value zero). The condition for ρν to describe a type of Mn(O1) is∑

ν

|ρν ||ν| = n

The total number t(n) of functions ρν satisfying above expression is inde-
pendent of q, and so is the number of types of Mn(O1) (for large enough q).
The following lemma (which is easy) underlines the importance of types in
the calculation of the representation zeta functions of the groups GLn(O2):

Lemma 4.1.1 If matrices A and B in Mn(O1) are of same type then their
centralizers are isomorphic.

Let T denote the set of representatives of types of Mn(O1) and for each
A ∈ T , let nA be the total number of similarity classes of type A. The
expression (4.1.1) simplifies to

RGLn(O2)(D) =
∑
A∈T

nARZGLn(O1)(A)(D[GLn(O1):ZGLn(O1)(A)]) (4.1.2)

Summarising the discussion so far, to determine the irreducible representa-
tions of groups GLn(O2), it is sufficient to determine the representations of
the centralizers ZGLn(O1)(A) where A varies over the set of types of Mn(O1).
But determining representations of groups ZGLn(O1)(A) for general n is still
an open problem. We discuss representations of these groups for n = 2,
n = 3, and n = 4.
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Table 4.1: Group GL2(O2)

Type Number of similarity Isomorphism type Index
classes of given of centralizer [GL2(O1) : ZGL2(O1)(A)]

A type (nA) ZGL2(O1)(A)„
ρa 0
0 ρa

«
q GL2(O1) 1

„
ρa 0
0 ρb

«
1
2
q(q − 1) O∗

1 ×O∗
1 q(q + 1)

„
ρa 1
0 ρa

«
q O∗

2 q2 − 1

„
σa 0
0 σaq

«
1
2
q(q − 1) F∗

q2 q2 − q

The element ρ and σ are primitive elements of Fq and Fq2 respectively, such
that ρ = σq+1.

4.2 Representations of GL2(O2)

The irreducible representations of groups GL2(O2) are already described by
Nagornyi [Nag76] and Onn [Onn08]. Since it falls out of our discussion very
easily and is used in representation theory of groups GL4(O2), we add its
brief description also. For representation theory of groups GLn(O1), we
refer Green [Gre55] and Steinberg [Ste51]. In Table 4.1 we describe types of
M2(O1) (set of 2×2 matrices over O1) with their centralizers. To determine
centralizers, wherever required, we have used Theorems 2.3.11 and 2.3.6.

Table 4.1 provides complete data required for the groups GL2(O2). By
4.1.2, we obtain the following representation zeta function for GL2(O2):

RGL2(O2)(D) = qRGL2(O1)(D) +
1
2
q(q − 1)3Dq(q+1) + q2(q − 1)Dq2−1

+
1
2
q(q + 1)(q − 1)2Dq2−q (4.2.1)

where

RGL2(O1)(D) = (q − 1)D + (q − 1)Dq +
1
2
(q − 1)(q − 2)Dq+1

+
1
2
q(q − 1)Dq−1 (4.2.2)

is the representation zeta function of the group GL2(O1) (see Steinberg [Ste51]).
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4.3 Representations of GL3(O2)

In this section we describe representations of groups GL3(O2). Partial re-
sults in this direction are already given by Nagornyi [Nag78]. In Table 4.2
we describe the types in M3(O1) and their centralizers.

The irreducible representations of all the centralizers appearing in Ta-
ble 4.2 except G2,1 are either very easy or well known. Onn [Onn08, The-
orem 4.1] has described all the irreducible representations of groups G(`,1)

for ` > 1. As a consequence, we have

Lemma 4.3.1 The representation zeta function of the group G(2,1) is

RG(2,1)
(D) = (q − 1)2D + (q2 − 1)Dq−1 + (q − 1)3D.q

Collecting all the pieces together, we obtain the expression for represen-
tation zeta function of GL3(O2):

RGL3(O2)(D) = qRGL3(O1)(D) + q(q − 1)2RGL2(O1)(Dq
2(q2+q+1))

+
1
6
q(q − 2)(q − 1)4Dq3(q+1)(q2+q+1) +

q2(q − 1)3Dq2(q3−1)(q+1) + qRG(2,1)
(D(q3−1)(q+1))

+q3(q − 1)Dq(q3−1)(q2−1)

+
1
2
q2(q − 1)2(q2 − 1)Dq3(q3−1)

+
1
3
q(q2 − 1)(q3 − 1)Dq3(q−1)2(q+1) (4.3.1)

where,

RGL3(O1)(D) = (q − 1)D + (q − 1)Dq2+q + (q − 1)Dq3

(q − 1)(q − 2)Dq2+q+1 + (q − 1)(q − 2)Dq(q2+q+1)

+
1
6
(q − 1)(q − 2)(q − 3)D(q+1)(q2+q+1)

+
1
2
q(q − 1)2D(q−1)(q2+q+1)

+
1
3
q(q − 1)(q + 1)D(q+1)(q−1)2 (4.3.2)

as obtained by Steinberg [Ste51].
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Table 4.2: Group GL3(O2)

Type Number of similarity Isomorphism type Index
classes of given of centralizer [GL3(O1) : ZGL3(O1)(A)]

A type (nA) ZGL3(O1)(A)0@ ρa 0 0
0 ρa 0
0 0 ρa

1A q GL3(O1) 1

0@ ρa 0 0
0 ρa 0
0 0 ρb

1A q(q − 1) O∗
1 ×GL2(O1) q2(q2 + q + 1)

0@ ρa 0 0
0 ρb 0
0 0 ρc

1A 1
6
q(q − 1)(q − 2) O∗

1 ×O∗
1 ×O∗

1 q3(q + 1)(q2 + q + 1)

0@ ρa 1 0
0 ρa 0
0 0 ρb

1A q(q − 1) O∗
1 ×O∗

2 q2(q3 − 1)(q + 1)

0@ ρa 1 0
0 ρa 0
0 0 ρa

1A q G(2,1) (q3 − 1)(q + 1)

0@ ρa 1 0
0 ρa 1
0 0 ρa

1A q O∗
3 q(q3 − 1)(q2 − 1)

0@ ρa 0 o
0 σa 0
0 0 σaq

1A 1
2
q2(q − 1) O∗

1 × F∗
q2 q3(q3 − 1)

0@ τ 0 0
0 τbq 0

0 0 τbq2

1A 1
3
q(q2 − 1) F∗

q3 q3(q − 1)2(q + 1)

The elements ρ, σ and τ are primitive elements of Fq, Fq2 and Fq3 respec-
tively, such that ρ = σq+1 = τ q

2+q+1.



34 Applications

4.4 Representations of GL4(O2)

In this section we discuss representation theory of groups GL4(O2). Table 4.3
describes the data required for it.

In Table 4.3, we give all the data required for the representations of
GL4(O2). Among the centralizers appearing in this Table only the results
regarding the representations of the group G(2,1,1) are not clear from our dis-
cussion so far. We follow a method of Uri Onn to compute the representation
zeta function of this group.

The following proposition (belonging to the theory of finite Heisenberg
groups) is a part of Proposition 8.3.3 of Bushnell-Fröhlich [BF83].

Proposition 4.4.1 Let N be a normal subgroup of G, with V = G/N an
elementary finite abelian p-group so also viewed a finite dimensional vector
space over Fp. Let χ : N 7→ C∗ be a nontrivial character such that G stabi-
lizes χ. Assume furthermore that hχ(g1N, g2N) = 〈g1N, g2N〉χ = χ([g1, g2])
is an alternating nondegenerate bilinear form on V . Then there exists a
unique irreducible representation ρχ of G such that ρχ|N is χ-isotypic. More-
over, dim(ρχ)2 = [G : N ].

Proof: Let V1 be a maximal isotropic subspace of V under hχ and let G1 be
its inverse image in G. Then G1 is a maximal abelian group in G. Choose
a character χ1 of G1 such that χ1|N = χ. Define

ρχ = IndGG1
(χ1).

Then dim(ρχ) = [G : G1] = [G : N ]
1
2 . Let g ∈ G1, g /∈ N , Then, using the

formula for the induced representation,

Tr(ρχ(g)) =
∑

x∈G/G1

χ1(x−1gx) = χ1(g)
∑

x∈G/G1

hχ(x, g)

Now, x 7→ hχ(x, g) is a non-trivial character of G/G1, and the sum is there-
fore zero; Tr(ρχ(g)) = 0 for g ∈ G1, g /∈ N . Since V1 is maximal isotropic
space, so same result holds for g ∈ G, g /∈ G1. On the other hand, if n ∈ N ,
then Tr(ρχ(n)) = χ(n).deg(ρχ). Thus ρχ|N is a multiple of χ. Moreover,∑

g∈G
Tr(ρχ(g))Tr(ρχ(g−1)) = |G|

Thus ρχ is irreducible. Above calculation of character ρχ implies that it does
not depend on the choice of G1 and χ1 so IndGN (χ) = [G : N ]1/2ρχ. Further
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Frobenius reciprocity implies that ρχ is the only irreducible representation
of G whose restriction to N contains χ.

2

Lemma 4.4.2 The representation zeta function of the group G(2,1,1) is

RG(2,1,1)
(D) = (q − 1)2RGL2(O1)(Dq

2
) + (q − 1)R(O2

1×O2
1)oG(1,1)

(D),

where

R(O2
1×O2

1)oG(1,1)
(D) = R(1,1)(D) + 2(q − 1)Dq2−1 + (q − 1)2D(q2 − 1)q

+(q + 2)D(q2−1)(q−1). (4.4.1)

Proof: Using the notation in the proof of Lemma 2.3.5, let H be the kernel
of map G(2,1,1) → G1 ×G(1,1),

g 7→
(
g11(mod℘),

(
g22 g23
g32 g33

))
.

Then

H = I +

 ℘ ℘ ℘
O1

O1


The centre of H, i.e. Z(H) ∼= O1. Firstly we claim that H has q − 1 ir-
reducible representations of dimension q2 which lie above the non-trivial
characters of Z(H). We identify Z(H) with its dual by z 7→ ψz(.) =
ψ(Tr(z.)). H stabilizes these characters of Z(H) and furthermore, each of
the non-trivial characters gives rise to an alternating non-degenerate bilinear
form 〈h1Z(H), h2Z(H)〉ψz = ψ(Tr(z[h1, h2])) on H/Z(H). Proposition 4.4.1
gives q − 1 pairwise inequivalent irreducible representations of dimension
|H/Z(H)|1/2 = q2. This proves the claim. Furthermore, the group G2,1,1

stabilizes each of these representations of H. Let ρχ ∈ Ĥ be such a repre-
sentation lying over a non-trivial character χ ∈ Ẑ(H). We claim that the
representation ρχ can be extended to G(2,1,1). Let H i = Z(H) × O1 × O1

be the pre-image in H of the maximal isotropic subgroup O1 × O1 for the
above bilinear form. Let χi be any extension of χ to H i. Indeed the sub-
group G2 ×G(1,1) stabilizes both H i and χi. Let χ̃ be an extension of χ to
G2×G(1,1). Then by Lemma 2.1.2, χi.χ̃(a.b) = χi(a)χ̃(b) for all a ∈ H i and
b ∈ G2 × G(1,1) is a well defined linear character of H i.(G2 × G(1,1)). By
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the proof of Proposition 4.4.1, ρχ does not depend on the choice of isotropy
group and the extension χi. Therefore for the induced representation

ρχi = ind
H.G2×G(1,1)

Hi(G2×G(1,1))
(χi),

ρχ ≤ ρχi , and as dimρχ = dimρχi = q2 we conclude that ρχi is an extension
of ρχ to G(2,1,1). By the Clifford theory, it follows that all the representa-
tions of G(2,1,1) which lie above ρχ are of the form {ρχi .φ |φ ∈ G(2,1,1)/H}.
Hence the contribution to representation zeta function of G(2,1,1) from these
representations is (q − 1)RO∗

1×GL2(O1)(Dq
2
). The remaining representations

correspond to representations of H whose central character is trivial, that
is, representations pulled back from ((O2

1 ×O2
1) oG(1,1))×O∗1. The action

of G(1,1) on O2
1 ×O2

1 is given by(
1

D

) (
1 πv
w I

) (
1

D−1

)
=

(
1 πvD−1

Dw I

)
,

After a choice of identification of O2
1 × O2

1 with its dual: 〈(v̂, ŵ), (v, w)〉 =
ψ(vv̂ + wŵ), we get

g−1(v̂, ŵ) = (D−1v̂, ŵD), where g =
(

1
D

)
,

and the orbits and stabilizers of this action are given by are given by

Orbits Stabilizers

(1)
[(

0
0

)
,

(
0 0

)]
G(1,1)

(2)
[(

0
0

)
,

(
O2

1 \ 0 0
)]

O1 oO∗1

(3)
[
O2

1 \
(

0
0

)
,

(
0 0

)]
O1 oO∗1

(4)
[
O2

1 \
(

0
0

)
,

(
0 O∗1

)]
O1

(5)
[
O2

1 \
(

0
0

)
,

(
u∗ O1

)]
, u∗ ∈ O∗1 O∗1

Collecting all the pieces we get the desired result. 2
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We obtain the following representation zeta function of GL4(O2):

RGL4(O2)(D) = qRGL4(O1)(D)

+qRG(2,1,1)
(D(q2+1)(q3−1)(q+1))

+qRG(2,2)
(Dq(q4−1)(q3−1)) + qRG(3,1)

(Dq2(q4−1)(q3−1)(q+1))

+q4(q − 1)Dq3(q4−1)(q3−1)(q2−1) + q3(q − 1)3Dq4(q4−1)(q3−1)(q+1)

+q(q − 1)2RG(2,1)
(Dq3(q2+1)(q+1)2(q3−1))

+q(q − 1)2RGL3(O1)(Dq
3(q+1)(q2+1))

+
1
2
q(q − 1)RGL2(O1)×GL2(O1)(Dq

4(q2+1)(q2+q+1))

+q2(q − 1)2RGL2(O1)(Dq
4(q2+q+1)(q4−1))

+
1
2
q3(q − 1)3Dq4(q+1)(q4−1)(q3−1)

+
1
2
q(q − 1)3(q − 2)RGL2(O1)(Dq

5(q+1)(q2+1)(q2+q+1))

+
1
2
q2(q − 1)4(q − 2)Dq5(q2+1)(q+1)2(q3−1)

+
1
24
q(q − 1)5(q − 2)(q − 3)Dq6(q3+q2+q+1)(q+1)(q2+q+1)

+
1
2
q2(q − 1)(q2 − 1)RGL2(O1)(Dq

5(q2+1)(q3−1))

+
1
2
q3(q − 1)2(q2 − 1)Dq5(q3−1)(q4−1)

+
1
4
q2(q − 1)4(q2 − 1)Dq6(q+1)(q2+1)(q3−1)

+
1
2
q(q − 1)RGL2(Fq2 )(Dq

4(q−1)(q3−1))

+
1
2
q3(q − 1)2(q + 1)Dq4(q4−1)(q3−1)(q−1)

+
1
8
(q2 − q)(q2 − q − 2)(q2 − 1)2Dq6(q2+1)(q3−1)(q−1)

+
1
3
q2(q − 1)(q2 − 1)(q3 − 1)Dq6(q4−1)(q2−1)

+
1
4
q2(q2 − 1)(q4 − 1)Dq6(q−1)(q2−1)(q3−1) (4.4.2)
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Where,

RGL4(O1)(D) = (q − 1)D + (q − 1)Dq(q2+q+1) + (q − 1)Dq2(q2+1)

+(q − 1)Dq3(q2+q+1) + (q − 1)Dq6

+(q − 1)(q − 2)D(q+1)(q2+1) + (q − 1)(q − 2)Dq(q+1)2(q2+1)

+(q − 1)(q − 2)Dq3(q+1)(q2+1)

+
1
2
(q − 1)(q − 2)(q − 3)D(q+1)(q2+1)(q2+q+1)

+
1
2
(q − 1)(q − 2)(q − 3)Dq(q+1)(q2+1)(q2+q+1)

+
1
24

(q − 1)(q − 2)(q − 3)(q − 4)D(q+1)2(q2+1)(q2+q+1)

+
1
4
q(q − 1)2(q − 2)D(q−1)(q+1)(q2+1)(q2+q+1)

+
1
3
q(q − 1)2(q + 1)D(q−1)2(q+1)2(q2+1)

+
1
2
(q − 1)(q − 2)D(q2+1)(q2+q+1)

+
1
2
(q − 1)(q − 2)Dq2(q2+1)(q2+q+1)

+(q − 1)(q − 2)Dq(q2+1)(q2+q+1)

+
1
2
q(q − 1)2D(q−1)(q2+1)(q2+q+1)

+
1
2
q(q − 1)2Dq(q−1)(q2+1)(q2+q+1)

+
1
8
q(q − 1)(q + 1)(q − 2)D(q−1)2(q2+1)(q2+q+1)

1
4
q2(q − 1)(q + 1)D(q+1)(q−1)3(q2+q+1)

+
1
2
q(q − 1)Dq2(q−1)2(q2+q+1)

+
1
2
q(q − 1)D(q−1)2(q2+q+1) (4.4.3)

(See Steinberg [Ste51]) and RG(2,1)
(D), RG(3,1)

(D), RG(2,1,1)
are described in

Lemmas 4.3.1 and 4.4.2.
This completes our discussion regarding representations of groups GL2(O2),

GL3(O2) and GL4(O2).

Remark 3 The representation zeta function RG(D) for D = 1 gives the
number of conjugacy classes of G. From above, we can easily obtain the
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number of conjugacy classes of groups GL2(O2), GL3(O2) and GL4(O2).
Number of conjugacy classes of GL2(O2) and GL3(O2) is already known,
see Avni-Onn-Prasad-Vaserstein [AOPV09].
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Table 4.3: Group GL4(O2)

Type Number of similarity Isomorphism type Index
classes of given of centralizer [GL4(O1) : ZGL4(O1)(A)]

A type (nA) ZGL4(O1)(A)0BB@
ρa 0 0 0
0 ρa 0 0
0 0 ρa 0
0 0 0 ρa

1CCA q GL4(O1) 1

0BB@
ρa 0 0 0
1 ρa 0 0
0 0 ρa 0
0 0 0 ρa

1CCA q G(2,1,1)
(q2 + 1)(q3 −
1)(q + 1)

0BB@
ρa 0 0 0
1 ρa 0 0
0 0 ρa 0
0 0 1 ρa

1CCA q G(2,2) q(q4−1)(q3−1)

0BB@
ρa 0 0 0
1 ρa 0 0
0 1 ρa 0
0 0 0 ρa

1CCA q G(3,1)
q2(q4 − 1)(q3 −
1)(q + 1)

0BB@
ρa 0 0 0
1 ρa 0 0
0 1 ρa 0
0 0 1 ρa

1CCA q O∗
4

q3(q4 − 1)(q3 −
1)(q2 − 1)

0BB@
ρa 0 0 0
0 ρa 0 0
0 0 ρa 0
0 0 0 ρb

1CCA q(q − 1) GL3(O1)×O∗
1 q3(q+1)(q2+1)

0BB@
ρa 0 0 0
1 ρa 0 0
0 0 ρa 0
0 0 0 ρb

1CCA q(q − 1) G(2,1) ×O∗
1

q3(q2 + 1)(q +
1)2(q3 − 1)

0BB@
ρa 0 0 0
1 ρa 0 0
0 1 ρa 0
0 0 0 ρb

1CCA q(q − 1) O∗
3 ×O∗

1
q4(q4 − 1)(q3 −
1)(q + 1)

0BB@
ρa 0 0 0
0 ρa 0 0
0 0 ρb 0
0 0 0 ρb

1CCA 1
2
q(q − 1) GL2(O1)×GL2(O1)

q4(q2 + 1)(q2 +
q + 1)
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Type Number of similarity Isomorphism type Index
classes of given of centralizer [GL4(O1) : ZGL4(O1)(A)]

A type (nA) ZGL4(O1)(A)0BB@
ρa 0 0 0
1 ρa 0 0
0 0 ρb 0
0 0 0 ρb

1CCA q(q − 1) O∗
2 ×GL2(O1)

q4(q2 + q +
1)(q4 − 1)

0BB@
ρa 0 0 0
1 ρa 0 0
0 0 ρb 0
0 0 1 ρb

1CCA 1
2
q(q − 1) O∗

2 ×O∗
2

q4(q + 1)(q4 −
1)(q3 − 1)

0BB@
ρa 0 0 0
0 ρa 0 0
0 0 ρb 0
0 0 0 ρc

1CCA 1
2
q(q − 1)(q − 2) GL2(O1)×O∗

1 ×O∗
1

q5(q + 1)(q2 +
1)(q2 + q + 1)0BB@

ρa 0 0 0
1 ρa 0 0
0 0 ρb 0
0 0 0 ρc

1CCA 1
2
q(q − 1)(q − 2) O∗

2 ×O∗
1 ×O∗

1
q5(q2 + 1)(q +
1)2(q3 − 1)

0BB@
ρa 0 0 0
0 ρb 0 0
0 0 ρc 0
0 0 0 ρd

1CCA 1
24
q(q − 1)(q −

2)(q − 3)
O∗

1×O∗
1×O∗

1×O∗
1

q6(q3 +q2 +q+
1)(q + 1)(q2 +
q + 1)

0BB@
ρa 0 0 0
0 ρa 0 0
0 0 σb 0
0 0 0 σbq

1CCA 1
2
q2(q − 1) GL2(O1)× F∗

q2
q5(q2 + 1)(q3 −
1)

0BB@
ρa 0 0 0
1 ρa 0 0
0 0 σb 0
0 0 0 σbq

1CCA 1
2
q2(q − 1) O∗

2 × F∗
q2

q5(q3 − 1)(q4 −
1)

0BB@
ρa 0 0 0
0 ρb 0 0
0 0 σc 0
0 0 0 σcq

1CCA 1
4
q2(q − 1)2 O∗

1 ×O∗
1 × F∗

q2
q6(q + 1)(q2 +
1)(q3 − 1)

0BB@
σa 0 0 0
0 σaq 0 0
0 0 σa 0
0 0 0 σaq

1CCA 1
2
q(q − 1) GL2(Fq2 ) q4(q−1)(q3−1)

0BB@
σa 0 0 0
0 σaq 0 0
1 0 σa 0
0 1 0 σaq

1CCA 1
2
q(q − 1) Fq2 × F∗

q2
q4(q4 − 1)(q3 −
1)(q − 1)

0BB@
σa 0 0 0
0 σaq 0 0
0 0 σb 0
0 0 0 σbq

1CCA 1
8
q(q − 1)(q2 − q − 2) F∗

q2 × F∗
q2

q6(q2 + 1)(q3 −
1)(q − 1)
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Type Number of similarity Isomorphism type Index
classes of given of centralizer [GL4(O1) : ZGL4(O1)(A)]

A type (nA) ZGL4(O1)(A)0BB@
ρa 0 0 0
0 τb 0 0
0 0 τbq 0

0 0 0 τbq2

1CCA 1
3
q2(q2 − 1) O∗

1 × F∗
q3

q6(q4 − 1)(q2 −
1)

0BB@
ωa 0 0 0
0 ωaq 0 0

0 0 ωaq2
0

0 0 0 ωaq3

1CCA 1
4
q2(q2 − 1) F∗

q4
q6(q − 1)(q2 −
1)(q3 − 1)

The elements ρ, σ, τ , and ω are primitive elements of Fq, Fq2 , Fq3 and Fq4
respectively, such that ρ = σq+1 = τ q

2+q+1 = ωq
3+q2+q+1 and σ = ωq

2+1.



Chapter 5

Conjugacy classes of
GLn(O2)

In this chapter, we prove Theorem 1.2.5. At the end of this chapter, we give
a few natural questions regarding conjugacy classes of the groups Gλ which
arise from the discussion in this thesis.

5.1 Proof of Theorem 1.2.5

Throughout this chapter, by canonical form of a matrix, we mean its block
Jordan canonical form (see Theorem 2.3.10).

Lemma 5.1.1 Let X ∈ GLn(O1) be in its canonical form. Then there
exists a section s : GLn(O1) → GLn(O2) of the canonical surjective map
κ : GLn(O2) → GLn(O1) such that for all Y ∈ ZGLn(O1)(X), we have
s(Y )s(X) = s(X)s(Y ). Further, this section is canonically defined on the
centralizer ZGLn(O1)(X).

Proof: We prove it in two steps:

Step 1: X splits: If the matrix X splits its block Jordan canonical form
is the same as its Jordan canonical form.

We use the canonical multiplicative section s of O1 entry-wise to obtain
a canonical section s : GLn(O1) → GLn(O2) of κ. By Lemmas 2.3.2 and
2.3.3, if Y ∈ ZGLn(O1)(X), then it is in block Toeplitz form. Since s satisfies
s(0) = 0 and s(1) = 1, s(X) is again in Jordan canonical form and s(Y ) is
in block Toeplitz form. Applying Lemmas 2.3.2 and 2.3.3 once again, we see
that s(X) and s(Y ) commute.

43
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Step 2: X does not split: In this case, X is a block diagonal matrix with
blocks of the form

Jr(f) =



Cf I 0 · · · 0 0
0 Cf I · · · 0 0
0 0 Cf · · · 0 0
...

...
...

. . .
...

...
0 0 0 · · · Cf I
0 0 0 · · · 0 Cf


rd×rd

where d is the degree of f , an irreducible factor of the characteristic poly-
nomial of X, Cf is the companion matrix of f , and r is a positive integer.
Up to rearrangement of blocks, this canonical form is unique. For distinct
irreducible polynomials f and f ′

HomFq [x](Fq[x]/f(x),Fq[x]/f ′(x)) = 0.

Therefore there does not exist any nonzero matrix A such that ACf = Cf ′A.
Since we are interested only in the centralizer of X, so we may assume that
X = ⊕li=1Jλi

(f).

Let Õ1 be the splitting field of f(x) and Õ2 be the corresponding unram-
ified extension of O2. Then by Theorem 2.3.11, Õ1

∼= O1[Cf ]. Taking s as
before, we also have Õ2

∼= O2[s(Cf )]. These isomorphisms allows us to view
GLt(Õ1) and GLt(Õ2) as subgroups of GLn(O1) and GLn(O2) consisting of
block matrices with blocks in O1[Cf ] and O2[s(Cf )] respectively. By The-
orem 2.3.12, the centralizer ZGLn(O1)(X) consists of block upper Toeplitz
matrices of order (λ1, λ2, . . . , λl) over the ring O1[Cf ], hence is a subgroup
of GLt(Õ1). As an element of GLt(Õ1), the matrix X splits over Õ1. There-
fore by Step 1, there exists a canonical section s̃ : GLt(Õ1)→ GLt(Õ2)

GLt(Õ2) //
� _

��

GLt(Õ1)
s̃qq

� _

��
GLn(O2)

κ // GLn(O1)

such that for all Y ∈ ZGLn(O1)(X), s̃(X)s̃(Y ) = s̃(Y )s̃(X). Then any section
GLn(O1)→ GLn(O2) extending s̃ satisfies the required condition. 2

Proof of Theorem 1.2.5 Any conjugacy class of GLn(O2) under the natu-
ral quotient map maps onto a conjugacy class of GLn(O1). Let C denote the
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set of conjugacy classes of GLn(O1). As representatives of conjugacy classes,
we take matrices in their block Jordan canonical forms and therefore may
assume that C is the set of such matrices. For each X ∈ C, let AX denote
the set of conjugacy classes of GLn(O2) that maps onto the conjugacy class
of X. Then

Conjugacy classes of GLn(O2) = ∪X∈CAX .

Similarly, for the group GLn(O′2), let A′
X denote the set of conjugacy

classes that maps onto the conjugacy class of X in GLn(O1). We claim:
for all X ∈ C, there exists a canonical bijection between AX and A′

X which
preserves the sizes of conjugacy classes.

For given X ∈ C, we choose sections s : GLn(O1) → GLn(O2) and
s′ : GLn(O1)→ GLn(O′2) as in Lemma 5.1.1.

Let g = s(A)i(B) then

gs(X)i(Y )g−1 = s(A)i(B)s(X)i(Y )i(B)−1s(A)−1

= s(A)s(X)s(X)−1i(B)s(X)i(Y )i(B)−1s(A)−1

= s(A)s(X)s(A)−1s(A)s(X)−1i(B)s(X)i(Y )i(B)−1s(A)−1

= s(A)s(X)s(A)−1i(A(X
−1
B + Y −B))

In particular, if gs(X)i(Y1)g−1 = s(X)i(Y2), then A commutes with X, and
therefore, by Lemma 5.1.1 s(A) commutes with s(X). Therefore, s(X)i(Y1)
and s(X)i(Y2) are conjugate if and only if

Y2 = A(X
−1
B + Y1 −B) (5.1.1)

for some A ∈ ZGLn(O1)X and B ∈Mn(O1). Also, a necessary and sufficient
condition that g commutes with s(X)i(Y ) is

A ∈ ZGLn(O1)X and Y = A(X
−1
B + Y −B) (5.1.2)

The conditions (5.1.1) and (5.1.2) are the same whether we work in GLn(O2)
or in GLn(O′2). Let i′ : Mn(O1) → GLn(O′2) be the inclusion map. By
(5.1.1), s(X)i(Y1) and s(X)i(Y2) are conjugate if and only if s′(X)i′(Y1) and
s′(X)i′(Y2) are conjugate. Therefore, the map from AX to A′

X taking the
conjugacy class of s(X)i(Y ) to the conjugacy class of s′(X)i′(Y ) is a well
defined size preserving bijection of conjugacy classes. �
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5.2 Further questions on conjugacy classes

From our discussion on irreducible representations and conjugacy classes of
groups GLn(O2), we observed that both representation zeta function and
class equations of the groups GLn(O2) depend on the ring O only through
the order of residue field. This suggests that in other places where results
have been proved for representations, they should also be tractable for con-
jugacy classes. So we are tempted to ask the following questions for the
conjugacy classes of the more general groups Gλ.

Question 5.2.1 Does the class equations of groups Gλ,F depend on ring of
integers of F only through the order of its residue field?

This is a question parallel to the Onn’s Conjecture 1.1.1.
Since we are able to give precisely all the representations of groups

GL4(O2), we may hope that following question is also tractable (though
we have not been able to answer it so far)

Question 5.2.2 What are the conjugacy classes of groups GL4(O2).

In this thesis we did not look at the questions regarding finding the
explicit class equations of groups GLn(O2) but we expect that doing calcu-
lations to find the class equations explicitly may be an interesting question
in itself. Another interesting question is regarding the complexity of the
problem of finding conjugacy classes of these groups. Motivated by Theo-
rem 1.2.3, we ask

Question 5.2.3 Are the problems of finding the conjugacy classes of fol-
lowing groups related, if yes how?

1. G2n,Fq((t)) for all n ∈ N.

2. Gkn,Fq((t)) for all k, n ∈ N.

3. Gλ,E for all partitions λ and all unramified extensions E of Fq((t)).

4. G2n,F for any non-Archimedean field F .
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