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seT) is equal to 1 i.orhen ~()() is a scalar field ann tt ts

a matrix \oThen r-:(.x) is a vector field.

~!/ecan wri te the same transformation in another form using

the equation X' ~ ,. X or )( =- .-1 X'



Sec. 1. 8-
Lorentz Transf~rmation:

Let 1< and \< I be two reference systems moving with

car..st ant ve loc i ty ,,\ri th resl)ect t:> each other. l1e call an t event I

or a world point the set of space-time coordinates

{ ><y~-t~

'I Q y' ei
>- :>

~

X X'

I

Let the directlons of the axes of 1< and 1<" be Darallel Rnd

con.Jected by.light

('X), '2 -t ~ ~>VJ

K and

signal. Let P and

f;:;;.~!
{X'Y'Z'+"~ and

in the reference system

[x' y'z'-t' t



These tw::>eauations for
d7-

(the squhre of the s')at!!ni st anc e
"

gives the equation
4- )(2- D.. L. l[ + ~ i-"2. -= 0y b. £..

K'.In the reference system

,2.
- 6 X

L
6 y' -

2+ 4-t"'

K and ( I and equals 'Jni ty in our unit' system.

']..

d.t;.·

Al.so the quantities ds and d$"( are infinitesimal of ~l-ie

and d ~( should be connecten 1)y the

0\ ds



+
is valid 25 tae group of transformation

is c~ntinuous and connected.

we get
'i')

) cis ~

f X ,"2- ~ "2.__ 6.. - y'-

Ue c~nclude that 4 dimensional distance is a constant.

_ ( ~ X ~ +- A j4. +- ~ 2.. t... _ D t: 2..) I

~ K

It is possi'ole to fi~,d a reference f ame in l;/hichthe tl;/O
events ?i and 'r have the same time only if2.



These two events are connected by sryace line distance.
Similarly it is possible to find a reference· frame in which

'P"2. occur at the same place only if

-t
T~(Y1.Pl...~,k.t

~ulh'ye

I
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1~Z¥:':
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we can affix sign to the quantity
5 ::: ~ -t L. _ '/..'1.- _ -y 2. - Z:[

the li.ght cone I

(11) <;:2>0 if S) 0) -{~e event is in the f'or1v;.u'd lig'lt

the event is in the ~ackward light c~ne.
i:: he v

ISince all transformations f~·tm a cinnected corttnuous grou")
. A

~he sonee-like ~~ints cannot he connected to ~he origin hy

I light signal. So ~nly those event c: in the bacbT,'1rd lig;ht c')ne
.II

have an influence on 0) and 0 can have inf'luence on the

1. Define oro'Jer time of i71. moving body tobe the time sho1vn

by s. clock 1,rhtch moves ,vith that body. Use the invariance of

( a) if the Jarttcle moves Ivith corJst ant velocity

(b) if the ?artic1e moves arbitrarily



D ;,zcA'I

Q. ()'ol Y'"2' {-.) .,.J- - - -:>
I

but in the particles system
1.-

6$2. ""- L.\..tl

Hence jl ~ ~ + LJ '(1. + U ,,2~
6 -t' :: 6-t D-t:'l..

- 6- i:- f I - \.>"2-
-

~ is the ve l:Jci ty 0 f the -particle in

(tL-1:,) .~l-~~-t 1- t,'"2..

-1-' _ -I- I
'- 2. \.

{,- ett J i _\3'-

-{l



Sw!?ose 0' quantum 1"rereinstable then a lifetime should be

formally
= *- '-1.

lifetime in the lab),
thQ.

Therff~re question is senseless far all particles Jf zero mass.- A
rhe LoJrentz transformation from one inertial frame to another

(-t '2- - *- I') J I - ~l.

~ '2

( -f.-/

Thi s is a quadratic form in four dimensional space (x y '2 '(')

and is left invari ant by the trans fJrmation sOllght.
out

LeavingAthe trivial transformation viz. translatipns, the
only continuous connected transfn'mation leaving this quad""tic

s po.c.e, •
form invariant is the rotation in the f)ur dimensiong~Let us
su?press the y and Z coordinatps in the discussion. This



gtven by ,......,1y.. - - (. s,.\h ~-

><
(1.13)

"t ':('( 0<- ~ <:>l,
-:= e..tr:l

)
-::. -

L:

But as the origin of
)l.

in the direction
/\

U.
L

So we get from (1.13 ) and (1.14)

~ d. ::: /-- ~

0< - '::. ¥<:os =: J (4--{ M)" '"
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~ I -rJ..
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~ a::; - (1.15 )II+- -\-o-->?- fA
- "



x -;:. Q ( )( t + ~."*'J
y ::. yr Z :; "7.,.'
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-t :.. ~( -t' +~ XI)
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4 ~
Th~ vector / ' can be s)lit into two parts >< ,;""-)- --7' ~parallel to (3 and the vector )</ 'frpandicular to

~
j...

SJ that -'>- -~ ~y..( )(' +- ?<~
II

-? -+ ~

?< ,; --'!> r .'j.

- r- f.>'2. (1. 17)
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~,
~~ remains unalteren by the

~
X' .1



and ~
~ -t )~ '0 ( 'X/li)<f( - +-

'0 ( -t'
-':> -))

-t ~ + o ' >< '

-'"> (~ -~ -') ) -) ~
)(

~
~ ~£2"" \X f - f + '0f"2. f ()~

+ 01*

1.-Y =
(_ ~2

(0- r ') ( (J + 1 ')

0' "2.

1-k n c.€

-'i .,.
+ ~ Co t'

'01. P . ;?)y... - )<' i-
~+\

[*
-'> -;, )J-t ::: 0- + ( ~.

---.-DmlDlll'lfUllJlIllt.IllJUDIHJI rIllJ 11111111 I IIIr•••••n.- iiIiiiiiiliiiliiiiililii..-. •••••••••••••••••



, ~
To get the inver se 8C1uation 1118 int,~rch.ange X' and >,<

-;. .-(), -c. - r ~'P. haveand change r \J \Ai_

-?o,
'/.. -

~ ~)0(*- (6'x.

'1'0 ver-tfy this Dut ~"= 0 a -= Ve get)

~ -.,.
o...-.J -t.' -t true.)(' ::- X -= ",hich is

Lorentz CJntraction
Lorentz contraction is based on the measurements of length

~ (Y ~ ~ )+ (l, -lJ- a.. , 6 7<I + 6. t.'
\ 0' Y +1 IV

,6-t: - 0-
.....

~
~o 6- -t\ :: - ~'6 ')<'

-6 x'



'"So the generalized formula for Lorontz contraction is

-L(~ -7-)
0+1 r· /).x'

,
(1. 21 )

Equation (a) eXDresses the time dilation since 0 ~

Th~ second equation simply says that the clock in the 1('

sYstem is mc)ving with veloci ty ~ as seen from the sys tpm

1< which is obvious.



By division we get
~

0- (~:i ~.
0.:" +1)J¥ c;Jv-,I. I ~

-7 r <it'
1..T :. - ctt'

-t--~t --
0 (( r ~, )-t ,

~'

1- ~ --? +1)~ -7 ( ~ ' Vi
rv-' + rO- o' •. /

- -- o( ~ )\ -t" ~. v-'

-;
(1. 25)

-> -+- -I'

\Jhen v-' is "
to 0 'v- is JI~ ~ and

)

v' +
0'- 01

.
Vi ~o+

V- - Y +1-

O(~cy-I + !)



'If' + (O-I) 1f' +~~

0- ( (1v·f + 1)

Vhen the velociti..es are small we neglect ~ v' J

1J r---J 1/ I +~ in the nonrelativtstic

v'+0
I +vl

~

-7 1

;0 1 is the maximumvelocity possible physically.

Now choose the coordinates such that ~ points in the

)os1 tiv e X direction and that v' lir~s in the ?'.' y I

~
plane. 'Phen V- li~;s in the X y
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Chapter 2.

Choice of uni ts

Before actually going to the discussion of the choice
of units, we observe that the quantities which made their
frequent presence in the study of elementary particle physics
are the velocity of light the Planck's constant

and the mass of the nucleon If
and denote the dimensionless numbers indicating
the numerical value of these constants in a given system of
units, then the clementary-particle-system of units is
defined by

Hence we use the bracket to denote the measure which
is dimensionless. Some people take the physical quantities

~nd e4ual to unity. But let us take the
numerical values equal to unity.

Let be the units of mass, length and
time in our unit system which we have to distinguish from

uni ts.



= (Mf-egs gm

, 'l.

-t 1. "Y"'", Q", - ~)~jS~ -t~

'\
Q. (c)~

:: -\.0 c~ s

we find by solving for JYlo) eo

:= proton Comnton ,,,ave
length

- I~
. (0 c~ ...

~/~ J sre_\;1 ~ Cj".s _ the ti 11e in which

11ght trave'.s one Droton compton wave length

This has the c~nsequence that new mass, length and time are

numerically measured in 'Ilu1ti ',lps of the Droton mass.

Let""'" be the mass of a Jarticle the!ll",·ifA:. (r-) Mp

The com)ton 'Nave length of this )article is then

JmIIBUItIIIUlllfllllliJ •. _



and therefore the numrical vplue of the com~to~ wave l8ngth
(

(0-')

and any given length and time can be expressed bV choosing the
ap')ropriate value 0 f Cr')

Constancy of the velocity of light: It is a very imryortant
fact that the velocity of l.ight in vacuum is constant in all the
inertial frames. This fact leccds to the formula E:: me 2.
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Any set of four quantities transforming like

et-s ~ { c:*.,t".) ~} under Lorentz transformation
j"l. -1.1. d.~2,.

are called. fJur vectors. As the line element OS ~ ~ - /)(

is left invariant by Lorentz transformation for 6.oy four vector

Q'1 Q:l.
{- -

1~p- Q2 are invariants.

--7 M
~ c:-

eft is tl. t'1ree vector. The corresYJonding four

vector is dvf.(drc ,,-There d. '"C'1 ~ - d SR

Here X is [ ~L ;5 cL '1/ d-c is four vec tor

dx
d.-c - V - { '0/ yr l- -

V 7._
::. 02

-
C( J. ~"l.

- 1 ::: invariant-

lJ'JI'Tl"lilrlil~jt~J:!!E~~.J'l.f'L:I_-"I t: J 1:. •. 1 .T J • l.I J .I .1 1 f.1 'J L ~ I ',1 I •• .--------------
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In the re st system .) f the partie le' ~ ~ 0 and

c) = 1 , So V z. ~ 1 torre sDonding to the three
~

momentum yY1 ~ 'I/e have the four momentum Y(l V .1

/t1 V ~ \ 0 rn ) ~ ~ t'h 1. Let us find what is the fO'lr

cOID90nent -m 0

fYl ·0 yY)

YYl(\+
,?'Z

l- )- - - ...- -{I_~L d.

::: yYl + E + ...
kin •. -+'t.

- E-

/-p~ fY\ V - [ hi (( yn10~-

( ~

~
:: -( E f>



CHAPTER ,:--

Exarn:)le 1: Centre of momentum energy and the velocity of the

centre of mOMentum

1~ and \a?- and masses m~
and YlA, r t 1..



of the L.,)1 c::tz system in l.-rhich 'P, and P2. are given. It

must be possible to be built from the invariants

n2;rfl1.1-, I

P, P1-
Let:~s denote the centre ) f mass quantities '.ri th an aY'teri s1.,. j."

-? ~ ~ ~
C.M. :::ystem P, + p. :; ()

... -~
£,<>< -+ [!7.

tl,*+t-z.*) O~

~ (p I + P, ')1.

(p . b \.1.., is invariant.
I r I •. )

of the system by the square of the total momentum

nL _ ( '1:;::.. M .2 _ ~ .."...2-
,- . P, + F'L )

( )
2, ~ ~:<.

:: £' 1-+ 2:... - ( r, -+ p...J ~invariant

p~ themselves re~resenting a system of



We illusttate the above formulas by calculating the ef~ect 0

the motion of the boun~ nucleons in nuclei (1) w~en it is
parallel to an incoming beam of 25 G- '? v

be the energies in the lab svstem of the
,r,oton from the "tJeamand the 'iroton in hhe nucleL

~1 (p\+r~)).
.,

+- r~ 1- PI f-.-G: -;. - r,~ +-

- Yl1? + \tYJ1. + 2 £, Z7- -4--
2. je Q ,1- - m;'-)( £~z- - /71·2-)

- ~ I

_ sign for oarallel matior and + sign for antiDRrallel motton.

We have m, ::: yY1 •. - 1-

E, ":- 1 0"2- ( .0 L.. - Qr.J)Y'f'1 ~
b eJ1AN;(.-

c.J. - -+ ;l.'::;-
Y\U r ec. (JY1 )

-

f= ,'-- ( ~
O,ol;

(. ').- -
\ = Co 1')-....

{£>I ~ ~ ~ 67)

~2.. ~( 1+ '210 + es .1. )t;. -::. ::::

r ~) .."2. qnhpo'ro,/I-e(

L.. L,t.,. ~ f<n'60 JI·d



when the nucleon b~und in the nuclei is at rest
•

~ ~f:::...

C 'l- I
G - ..:; ()

"

2· 0 &

7 . 3 5
6 I 0

for anti-')ara1lelmotiori

Let us calculate the energies of incoming ryrot~ns to DrOGUce the

which ~roduces there centre of mass energies on a nu~leon at

re st is denoted £' then
~2 2.E - + '2 [, L.2..-

l
,,~. 2

'" 2. ( \) ::- ~4
1 2:'

..1.

G": ~ .r G C; .~

~

3 I , lD for anti')ara1lel motion
t,' - 2'=:> for nucleiD at rest-

for 'Jarallel motion.21, t1

This means that the ?,0Mev nucleon motion is equivalent
t)· about t:::'"r dOff . ij \~ v 1 erenee lr 'Jrmary energy}

tunHnUlmiJifUUm IIliBIlIliIlllIllIIIII J llllllllJ-I----~-



tion. Now the centre of momentum energy can be calculated

2 (\ -+ ~'2- -+c;:.'1.. -J)

T9 ]roduce the same centre of momentum ene··!!,y ,.,hen ODe

;Jlt'oton is at rest and a beam of Drot)nS hitting it let E I
I

be: the energy of the proton of the be am.

N:::;lw
't 2 (\ + £' ,') ~E:.c,"", :; S t'net> Gl-I

~ 0·, c: 0



Sup'Jose that a group of A nucleons (at rest as a whole

would interact with an incoming 'Jroton of 25 Gev kinetic energy.

for kinetic eDergy?

Ve have the formula

f", '" Y'Y'Jj - A-

'Y)'} •. - 1-
£ 7~

.,.. Lb

The available energy for particle production E::; ~»t - (A +1)

0..$ (().._Ir \) nucleons should be conserved.

J si A +A'2 -}-I



A 1 2 5 10 20 40 100

E 5.35 7.4 10.9 13.9 16.9 19.6 22.2

(E' -?)
\ 2 )P-z..

Pt' 10].
,

['2..= YYl,

t.
1

::: P,/, Pt...1

m
E l 2.



-> 1'2..
p. .•..

-:l
. P,*,) - tI1 ~ m ~

(}> I ' t-'~):L

-p :: t:', + r 1-

where Pare t"1e f')ur2.p( and

ow;;J yn ':1.momenta ')f the t'.·l0 particles M f

t ion.

To find ~, * )~'tc:. we cOD~ider the t1,J'Ouarticles M
\. -)

and calculate the quantities as seen by M. 4e have

*"·-f -i. -
h . 1Jrl

'2
yY1'<-I?· r-\ I ~

M2.

{I'. 'P; ) '- _ M '2

('P . ~1



~ [ c p, + r~ ')~

M 2+ ('r'Y)? - YY' .:. )

'2_ fV"

:2 . '). ), l. ~_ J'-~- (rn 1- m;:-
) "1. - 2...t1

M~- '2. M Z (V1J,2.. ••. (rJ?-L-) + (YrI,2. - y71-....•. y-
L

1
M7..

_ [C /"1 '< ... (1'Yl\ + YY12. ,)2] [M1
'- (Yh,- Yl?~ )"LJ

L4 M't.



TRANSFORMATION 9F DIFFER~NTIAL CROSS-SECTION

We want to define cr~ss-sections; in an i~variant way.

F:>r this we have to analyse hJ'''' cross-sections transform

transformations from one set tJ another is defined ~y the

x. =~ x. (•..

'1. ( )(, ... )(¥> ')
J

.1 ;<.~ (':1, -, ':1 •• )

C)(I-,_. y~)

~ (y, • ~~~')



is the corresponding boundary in the y
(} (;>(, -~
d (y, --

o(-z. - . ., )I •••• V\

~(x\~-)<",)

"?>( '1, ~ ~ 'j~')

"
I C)X, dt X'1. "d;c",

""3 y, C'I, "0 YI

are carried)ut then the Jacobian is got by the rule

2>(;(,-- .Xh)

()( Y I •.. -':1••.)

~(Y\--'::JY"I)

~(z.\~ -1..,,)

"2;('1,--'1.,,)

d(;;>(,· x •..)

The Jacobian is 1 if the volume is 9reserved hy the



2. The canonical transformations.

If we take for 1?>f the volume e!-s'1lent in '/.

s9ace 1 'R) becomes the volume element in the y snace.

::.f I (X \ ( "'J I ••• 'j'r\) ~- - X Y' ( "i, - - - j Y\ ) )

0(1\ ..-,>( •• )

'O( J' -- 'j")<)

We can look at this i.n tW"J C\iffersnt 1,rays -

1. by taking the special cas? +,::: t.OY1sta~ we have

d ( X. ) ;("}. ,-- )<'" 1
~ ( "- ''j ..... , ).1,) "). I J -

element and inter'Jret the eauation

P( 1 P( ) O(.x,--,' •..') d
1 X

1
--)!',,) cX, --dx",::: -r X,(y) ~·;<V1(Y) ---- dy.- :J(J ( J ... j n) , .-.,

g ( 'j \ - - y V\ ') _ -f ( .x, (, I -' y to) -' ';< '" ( Y, -- Y ",))

+ ('l<, - - >{",)

4?( )()
-f(T~'!)



which is the transformation lavl fJr a scalar function. The

function 9(1) has the same significance physica1.ly as rex)
as they are related to one and the same volume el_ement

~(~I-··X.)

'd( ':J, --~ 'Jon )

cJx,--- J.xy\

might have convent~nt geometrical and/Gr physical intefureta-

O(K.--tn)

d( ,/, -. '1>1 )

a( XI - - }l(,,)
'()( lj, -' j •.)

in terms of 'j. IS in R.H. S.,
Now the transformation of scalar law function law dees not



We may define a differential cross-section either by

the number of a definite kind of ?articles (p~r event) gOi1~

and having momentum bet rand
first quantity S ( PI P'"I- p~)

We have now the transformation equation

::: ~) S ( PI (p fJ<P), P'l- ( ~J & cp)J)~lP () 1»)
2> PlOP •.. 0 P3

~(PI P,-P3) d..pded~
?J(p $ </»

2> (P, y..,p,)

oCp;OJ4)

11le now de fine

'd
3

S ( P. (p e~)JP/pf)tf:»1 Pi (p D~ _~

d P, () P.. 0 P3 l'
section and replace stn& d~J~
\Ie have the eqn.

C)~S(PI Pl.. F~)j
~ PI ?>p,- OP3- (API dr~o.'P3

by d.JL



~\}(e 0 t)
a p "6SL

2} s- C P,P L p~)
6 PlOP •.. OP3

\.II~ are parallel to the axes in k and their rela-

Pl ~ ~ (r.•'+ 0 E!)

1\.:: P"l-(

f?1 "Cf.'

p~= O(p:~-~E)

P•.1 ~. f~
P/ =P.
E' :: 0(<:- ~r3)

PI = p~~ (~ ~
P'2.:: p .~fr8 SI'" e-1>

t-\ -= r~l9



r (=- P,(
4? - cP'

F C.vs D :::

p~~ G .".

c:b

E. ::

o( pi CQ"j (9 + ~ E1
)

pi ~-; (9 r

4>'
DC G:' -+ ~ 1"1 UY:l 81

)

and the inverse trans f:Jrmation

pI (.0":) 8' ~ oC p coo t9- (1 ~)

pi S-vnG' -= 10 . (9,SMJ

~I -:.. ep
Sl Y(f- - ~

p CNv) 0) (5.13a)
:::

are the other forms of the Lor.Clntz transformation.

For the transformation of cross-section we require that

the number 0 f ')art ic lew going into the so lid angle element d IL
and having momentum bsbtleen p and p+etp by the sane as

the number of oarticles gJing int) the solid angle ele"'l2nt d.Jl'

and wi th momentum but p' and pI +- d jo'

So the trc:m s formation sl1)uld be :)f the form

0'1 (Ie p 8 <1» . d..p d .Q

op()SL

-iL- (f I ( pI (9' cp/) ettl oL.n.'
o pIa SLI



0") \J ( P e 1:') _
c>p 2;11.

~-\f' ( p ( t> I ~/)

or' c1J2.'

() el'l 51.')
,

?> ( 10 ...fl- )

d (p-Sl.)

o (r'..n.')

~

a (pA) (> (p.st..) d{ r0~) () Cp,P"!f>l) 'be R( P{ p)() 0( p' F.JltfJ)
::

'0 (p'SL') ~(pt<)t) "b(PI P). P1. '> (j (p/ Pl' P:/ o (pI e' ~I) 0( pl.LI)

\ 2> ( PiP" P3 ) 12 \- ~~Yl B p" S'll1 e p $\ 11 0'
..s\ rd;/- ~ (p/p;.fp~/)

p,2. o(p, P~P3)-:: p'Z ?J(plplpt)
I ). "0

r,"2 E.
::

r'"2- f:;..i
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Here we have used the reslU..~t

C>( PI Pl. r')') OP::,
O-r~

"0 6:1

- - --
;:, ( P,' Pl.' P3')

- o ~ fop)/

-= 0' + ~\'
•..IC.

E.
-- S'

~'l. ~ ( ( pf -Sl')

d p( onl

~~v ( E (-ll l) i- IT ( P D:)
::;:

oE''dSL' ~f0..fL

where
~( t5L. ') ~( pJ2) ?>( pI 52')

--o(~' 51'} OCpr .QI) o(~'nl)

=. p':; lZ c{r
10"1- ~i JG'

pl2. - I

"::.
G. E:::

r2- 1,;;' pi

- (p~~)~



()(p-Q)

o(E..5[')

l ~-t. P ~ t Po ~ ~

i; +£~1

o (P~P,' p: r3' )

N (pL; N '(P:)



h from 0 to 00
It>

t:J "D + G. ) -I- 6 (f?.) - (;)

2- ce-- -e "' .,.1 rl. t- Yn 1.-

P ¥- ~ Po'* and is zero 'Jth'?rwtse.
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b.*' k:\. ~In the polar cO:Jrdinates ,- C/

p* - Po*-

p* *V-7--- r-- .-
•••..}l,- '\rp~? + m'l..(:::.

F~ J rl~~-+ p<-
~ •.. -L p~

~t.
-.- f

v- * < r::>\c M

('l) \1 1\-'> rs
) \ -C"""

;·Jhm \J:;( < IS the di stri bu tion i.n thr.; la1
-) svsten

'\ c ""

h2s been cra1Nn below



Since no ?article ~oes bac~wards inthe lab system ~here is a

there corres;Jond two mO'TIenta one large and one s'!lall. The
I

large1 momentuJr-obviJusly ca1!'re spond to particles going for"rard

in c.m. system and the small mom0ntum corresponds to ~arttc'es

BlUlIlIInmHDIUU1HIIIH 1111/11 j II J 11111111111111111
•••••• ---~ --- --

\iith decreasing ~ the maximum

~::'\5~

» r

\,fhen \S::- U*

lab angle increases and reachos Tf for--~
and the ring reaches the origi.n.



high ~nergy and t08 othp~ ts
peak is shifted to zero

f"C p)

every angle and there is odyone place in the energy snectrum
for'every an~le.

and ~ < ('



A general spectrum "'Te may imagine ''to':KQ' composed

the Deak is divider into twoI?eak is not divided.

The di fferent in 1 C! •~s- section as a func§ion 0 f energy

i s P~;\)tted below

.UlfllllJUlUllllnnlllJl HIIIII UIllllll! ~J111111111111 JllIlI-" --- ••••.....---------



c -1'1 'i. 'f S f. h'I

~Oy (; ~ ~ 8 i(•.
L~~ t''jJkt •.••..•

+:- '" yC., )('•.d (-1

We n:::>wearry through the iuant i tati ve eli sellS sion 0 f tlJ.e tran~-..,.
6-shaped isotonic,,-

distributi~n. He describe in terms of momentum as it trans-

form like a four vector under Lorentz trcnsformation.

':t '1 :4
h* +h¥'" ~-
\'\ I'... i"- P'3 __ ".____________ \ (where quanti ties with asteri c;k

/O~ 11

denote centre momentum quantities and those without asterisks

r*
':l. "2- ;;I

PI -*' + P•..)f- +}'-'3 -¥- ~ 1
~;>~~

denote lab quanti tie s~ de fif'0S a s~Jh0re redius

(r; - \> oE~YZ
02

~¥~
+



+F- - ,
3

~ 0' E. ,.<. ~ \l~~<f IG ".~'l","" ( l-l- (r" -0,:'- 6>X f~L ~~ "1:_ ~1.~ "L)

( I+ <r '- f:evn'l- () )

)

(5. 23.~.

r +- = p_ ) *h~1 \.~,,,,hen

't.lJ~
\CM-,-\.- f9 ~ _-----

WO-y. 0\ ~L_ V*"L)

tCVr-, G = CXl when ~ ;::
TT/

and e ~ /2..,

There is no maximum angle i.rhen "V ~ > r
We can get the exuression for the angle in a simuler wS[

same mass. This particle is at rest in the lab system and
has momentum --'~ C"rY\ in the c.m. s'ystem.
This is se(~n from the tY'8rsformCl.tioDr)~-=c rf( fJ-?;, - \~, t:=.)

, 'UUnUDllUnlffflUm Ilflf 1tl1l1 II II! IIJ 11111 III 11 J1111111111-&--------



m 1/';<- y.*o \

J I· - v"'~t.

the lab. and c.m. spectra. TJ one angle in the lab. (angle
.bQi.-lul'-e... P~ o>"i~ <hc/. -t\..J ri;:yo\.'3'\'It'
( . . " ,- .) ". .. '.'.' line Ie aVi.gg -lh~ (J -rl 5 ' 1'1 )

2nd the corresponding tw:) momenta (intersection of th.e a1Jove

the elli~se) two angles and tWJ momenta. )

;>5uch that for corres.p0nding mOffiPnta

ftllfllHUlJIlJ 1IIIIIInti j I1II1I 'III" 11111



1J ~~> 0..for ,~ also.



y ®

'- -..- =======::::===4:")-
)(

'tie observe an event in t".fJrefer-ence systems.

1< ' - the rest system of the object
K - the lab. sY3tem

y. = --0 ( X' + \3 -t I)

"
" I') - )

6. X:: '(( A x' + ~ 4,,<::1)

6'; '":;6.'j1

6. -+ - oC 6, -{I T ~ l4 X')

IUUIUIUlllUUIlUliUUlIHlI II 111111111 t III filii j IIIIIIIIIIIIIIIIIUI _



L\ ~ : 0(h )<' + \) (- ~b r')

6A' 0( 1_ ~2)

_\ 6.. X'
()

This is 1~rentz contraction.

There fore, do 1,ve see anything other than the Lorentz contrac-

t ion?

following. ''le need DCltworry ourself about
at

assume that the cube is in night/ an angle

t Fy'0J
C alcula te A..L.u •...~



~ - Co:; d--

l-~0J)ol-



b fyoj > 0 the backside is visible
(pe::>ple see the backside)

bp-roj ( 0 the frJntface is visible

h > 0 when (Z > Go r oZ('"oJ ,..... ~

Length wise (lengthside) !:

SlJh d-, (\) 6*-~+R)

GO s 0( (r ~\'t-
Q

+- Q )

Q Co~ ~

~ - ~Cos 0\

~-~-~-~-~-J1.f~of- +12 - pi Co-J 0<)
I - \> (-f.n ()',

-' Q<) \)

I,) s{m eX
o (j- ~ co S oZ)

Qp :::

6+Q -
, .
'l

::-

Q
f

~

~
::.

Q p . ::
'1-0\

projection of a cube in the rest system. No T.J)rentz contrfif'tion<)



F~r this ?urpose we consider the Aberration of light too (as

get J when G is the direction of observation,

~ I

'j

o W (Ii- () (~ 9)

u c p ~ Ier Effect. lITe divide the

I by II eqn. abd obtain
_ \S +- C0S e' $:Aft' e'

O(I-~t-o~ 9')

(/0 I (f (I - ~ ~ Q I)

\::> + Co:> <9
\ + (6 C<n 8 oC \ + \3 (AJ.( (9 )

0J Cl (\+ (3 C-o-J e)



There we observe the body at an C\.Y19 (12 9 .::T\ - ~ corresnondirg

to an 61'\<) I~ e' in the re st system

ICos e :::

br . I 9'-=- b ~
...,.....,1 0

SZ F . ::- 90 ~.M G'
'YOJ



We see the cube at an angle iT - c( , but the figure 1N'hich 'N'e

see is the same as the Joe 11{hichI\T)uld ')8 Jbserved' in the re st

\..Inen ? is very n,e?ar 1, then

0( b v=:- Ii - GUs"':;

1- \2'2

At the angle the cube has its length turned) f' '-.



~
and in every Lorentz Syst'?ID the vJavefr)nts lie perpendicular to ~

9-
New (we) get for any tT,f;J 'worl!ipoints

I'-

X~'1 plane on the ,,]avesurfacej ther,:;fore our

/~t -::..0 so

(6. .x L -+ /~ 'J'" )



bvt'" 6.S1 is an invariant
Indeed the 'figure' is invariant, however under the conqition,

an angle e I where 9 ~ iT - oJ.....

by th . CI. b-£ -< '( 9- "'- ~ 0 f.... 1e ," : ormu a.



We ass~~e in the rest system, a bony emitting isotro~ica-
11y nonchromntic radiation Wi

h.
y

,

R'I :::- R I
Y

Therefore the sphere 14'i11
6-

~)(
- ~ 6-

~)( I
contract by a fac+:or 't'~

ellipsoid
o...~ oGJ'

w' '0 ( 1+ rJ
Wi o(- I'\-~)



+ ~XIV'l'V\h 0
?-... ~p'0'(.1) 'there fore

radiation (number of quanta-not energy)

< (() I \ r.-rr;:" I rV ~ r-../ -. ~,~ I_~L according~o 0

G/-:l.. ap~ears in

The source of li.ght ,,,hich radiatec1 isotropic8.lly in the rp.st

syst"m a:Jp,?ars in the lab. system a-s re flector radi ating all

the light str:Jngly it' a sharply ce Hned cone in the for~"ard

direction (with higher frenucncy) and radiating very little

in the bacl'.:ward direct i.on (I.-,ith lower frequency).





and k,
-I-<

7-

P,
being scattered to tW-J ')articles of four momentwn _p and

1-

We use the convention altAhe four momenta p \) k, 1-''2..

and k').. are ingoing.' This has the advantage of taking into

other two outgoing with chrrnge

of the sign of four momenta to

have In
1"1

k~~f~2 .

In the case we first told we
J. _ (
i.:J- "There D' - -r, ,.being scattered to 'P~ and

1"+ k 1> 'and.', t,' are all physic al-
l" I) I ) 1"'1-l z.. -'

indeDendent Variables of scattering:

GOut of the four momenta we can form 10 Lorentz invari:=mts

\=<7., ~ "2- .... k, k"J,..The~e are p, k\ 1-< PI F,
) ) ) J-

PI P •., ~'-k f'l.- ~L ) k, k£ . Out of these 10I j

k2 ~ kl.1. :::
'-I

are not useful as they are fixed parameters and so are not

varlilb1:e's. The remaining six invariants are indeed vart a1;le

which C'ar be used to describe the scattering process. 'T'hey ,>,

tltions. So She niJrri';.cr of indelendcnt variables rerJucec; to t--
0: nly.

IiI;'J.:LI::I:X:I1t1t1h:LXn:J!;I.;JlifLr.IJ.'I_IJ ..flJ J 1,1 I' III I 1 I I II I 1,1 I I I J l J I I I J J I •..J 11J ••••.•• ---------------~-



We cannot select these tW) out ofth~'Bix arbitrarily.
Multiplying the conservation enuation

by P \ /:> 'l.. ) k. I ) R.•.. AIACCJ2/Y.:" \I -€ ~1 )
we have the four equations

F I ( R.-t k~ ) ~ - P,P I - PI P'- ~ - hlL. - P r~
p_>-- ( ~, T k-J - - p~P1-- R Pl := -M'- - PI P1. (6.?,)

'LPI k- 2 I 0 -
(>-1- R1- -::

I ~

"\ n k U .
i- f, ~p ~ ::::

LQ- -., -/

P: k, ~ r~_ k '-

PiP 1- :< r)~R I



P2k2 as the other.
From the sec)nd pair in eq.(6.2) onp gets

2(k1 + k2 )(P1 + P2 ) ::::-2~ - 2k1k2Adding the first two &f eq. (6.2) one gets,

(-1/2) (k1 +:. k2)(P1+ P2) ::::fJ'-2+ k1k2
2:::: m + P1P2

and 2(1/2) (k1 (1/2) ·2+k2) :::: (PI + P2)
:::: ~,L2 + k1k2

(6.5)
2

:::: m + P1P2
This shows that P1P2 and k1k2 cannot serve as variaJ,les

2::::-m

be taken. S::>also k1k2 sinee
k1k2 by a constant.

Thus we have tJ choose P1k1

PIP2 differs from

two variables.
The transition amplitude T (P1,P2,k1,k2)

should be 1"rritten as an invari.ant function I as the number of



of the ingoing particles is atr~ 0I""::" I --

Laboratory system. Here
rest. Either P: _ 0

(B) Centre of mass system

o;':'e
or

-'>- -
r.J ..... + R .•.

~ ~
jQ. = k2.

-~ ~
I? -+ \"?
\ \ \

We shall calculate the scattering angle in the three different
Lorentz frames

k' ( )) _<...)' I
1. - 2.) p•.

P ¥?, Lab energy of the inc!)ming partie 18S
(A_' I =: -::

YYi

(2-
, Lab energy of the target narticle

0- P,P'- -::=.

'rn after scattering

t:J, ~1.'
'lv\_



66

~ I ~ ,~ - [A) I ~) 7-' - \ kI,H ~ ~\ ~ f) ~
\ R! \:;- i C0? - fA '1.

! t<,~I =- J UJ~L - f-t'-

(PI k ,)( r. R~) - (~, R'L') M '2-

-
((PI ~1)2__

(6.8)
mj.~'-)1/2, ( (PI ~~)L_ YY1~t'•.)y~

This Can be eXDressed in terms ,'.+: -the invariant scalars h j,.,
- ',- I I( \

and PI k?1...

\~J ~ \ ~~\ ~ ~
( ~"I \ ~ !IJ~II -= R I



67
4 -'!> ~ ~

~\ --t- P :;:.0 r-<:z.. + Fl.' ':=. 0
. I

( R, + PI )~ (
, )7.. 2.-

-: R + P I ~ f
't. L en-

lw, + '[,)2. ~ (w •.'+t'L-1)'2... due to c::mservation ,of
energy

l~, (JTi~+ r-~ +,1kl. -I- rn't.)L:: (Ik ,"l. + r<- +J~I"Lrml.)"2-

k'

LM~- (Yh ~~)~J[M7-_ (rn-V')'-]

~ \"11.

1 Z.+ ~

:: t
J say,

We take t fJr the other invariant scalar t) describe the scat-

tering •.

\'1,;; can eXDress the momentum R



l~-(mt-fA'),--ll4 - (Y\')-~'l'-l

LJ .~

c. Breit syste~ (Brick wall system).

~l= (w) ~)

~' - (w; -~)-..
PI ::: (E1 ) r;:)

('f: ....)
..,

P<...
, :::. pi)

).

Energy conservation gives
fA; I + 'i I ~ (.,) 2- +- '£ 1-

£ ..•.~ ~

RI '::: ~

- -'>
-::: p....~ ~

-'> ~ :<tr~......I - R, ::

( PI ~ r.>",,' ') ( R \ + ~"I ') _ (L. f )~ -t r:. '). (2 w > 0 )

1: ~ U<1-k •.')" - (OJ2~).(D,z-k)

i 7"~. \? _ ~-square 0 f the three
- L{ \ P, - I.momentum tran sfer .

.omentum cJnservatiJD;
~ -R, -;- 'P,



to describn the scattering.
<-l) ~ .-1:; ( ~ I +- Rv') ~

(P, -t p,-I)( RI ~ R",')
J(~I +p')"J.

\, ,
\7



As before, if "\-Ie dJ not ~onsider the complications in the

scattering amplitude by the ~) in and isosoin of the intera~ting

,articles, then the momenta ~ p and k_ b com,letAly deter-I > , •.. J r 2...

::z.

( k, ) I.. ( RL t-P2-),6 - +- PI ;:

( b, I ~.~t ( p,
"2..

-t ::. -\- -=- + P•. )

L.m'1.. + 2r-L

where m and fA are the masses of the h-lo particles, s") ti1at

ou±. of the three variaJ:)l.e s s, t and u,)nly t1ATOof them are inde-

pendent. Now we ask l,.,rhat is the physical significance of these

variables. I;]"" \-li11 now see in the folloHi'1g that these variables



'2..
S is the (c.m. energy) ~1- I P2. are

-t :z ( k I I R1- ) ( PI' p,- )::. (c.m.energy) if or\.

are incoming. thi s 1!lP call as the t-channeL
~ (k I I /:;?-) ( ~~ "and \J. -:: (c.m.enf'rgy) if or , PI ) are

To be mGre cl~ar, let us take a s~ecific exam91e of the pion-
nucleon system. If we denGte the uion-momenta by R\ and k~
and the nucl.eon momenta by Pi and P2 then the three di -"ferent
channels mentioned above are given by the following Drocesses:

IT + N ~~1T'" N 6f fT-rN ~ (H-N(s-channel)
(t-channel)

and momentum transfer, then th~ amDlltude may in pntnciple,
be determined at all energie sand ang' e s since T ( s/t I UI. ')

~w" c 1" ~ trr"I 0 {-

is analytic. That T(S,-tjL{; ·~s 0.1'\ orc:,f,Ac/,-- s,t, andu means that
the!hys~c al scattering amplltude is thf--'limi tting value of the



IL

~6 now recall an elementary theorem on trian~les, If

30.. ) 9b ) 9~ are the distances of the Bioes a,1-:>,cof a

triangle from any point 0, then

bh +C~be

where F is the araa 0 f the tlli,ngle and hfA ' hb \ . and he
are the three altitudes of the triangle (to the si.0es a, ') and

c respectively). Dividing by c INe g,?t

0-. b gb 9c. ~ h- g~ + -+ cc. G

so that any point in the nlane(s)t,u)3atisfies eq. '-.''1
It is JerhaJs most natural ann c:)nvenient tJ take an equilateral



other variables can take. For exam')le, in the s-channel,

A -:::; sq. of c.m. energy in the s-channel

::: 1'(\"1 rf'-1.. +- '2 u.> £ -+ 2.. t;z .•...

~ (WI T fA )2-

) ~,-'= (f:) r-t)

~ ~
angle between b, and ~1,.

[j'j _ (Yn +1\ )'2-J [ lJ - (Yn -JA) "t-l
Lj~

\4 - (Yl1 +;VI ')"'JC b - (vn -fA) l. J (CC;J 9 _ I)
21':.

-J- - 0 whenLi'v'CV)t -

-t = _fP-(rr'+f")c..7[s-(t"Y'~tA)1-1 wltv",~,h ~
Thus for given s? the eqn. for -e is



,
I S==4m. 2

/,

I '1//1/;;// //
I . II/®;' 1/

tation when m == p. •
s + t + u :: 4m~.

u=2(m2;t-1J- 2)
\

\ ,
\

The physical regions when m > 1.1. •



matical phase space, which has its upper hand when the number of
particles with which the system is composed is very large, the
other arises from the dynamics of the interaction between parti-'

;

cles, which is essentially important when only few particles
determine the behaviour of the syste~.

large, any process is more governed by kinematical aspects, the
dynamiai aspects only alter some constants or few parameters

number of degrEEs of freedcm is very small. This is incomplete
analogy with classical statistical mechanics. In statistical
mechani cs, the only dJl1illlical 1 art is the weak Van der ~'h;.als
forces. All the rest is just kinematics, i.e. the consideration
of the phase space. The dynamics enter into picture only in the

(e.g. speci fic heat, etc). Only when we study thr: system when
the degrees of freedom are small (sc~ywhen the system is at a

low temperature), do these dynamical aspects take their lead
over kinematical aspects.

In elementary particle physics, where the nUlrber of degre;cs

systEm allowing the dynamics to cree.p through only in dctennining
few constants. NeVErtheless, the considerations of phase space



is the dynamics of the system, so that any deviation from the

statistical energy and momentum distribution of the system

gives us some ideas about the dynamics of the system.

Phase SpacE_in Quantum Mechanics

states forming a complf'te orthonormal b,.,sis in Hilbert Space.

Let us sC,y that this state is prepared at a time T when the

particles arG fLir apart and free and do not interact with each

other. After some time /say at time T ~ 0 , they all come into

the sphere of influence ef each other. They remain interacting

in thi.s spac~tirre region and then move apart with a different

complexion (as a result of the interaction that has taken place)

after some time, say at time T. Let the final state. which is

again a stc:cte (containing }?urticles whi ch are freE and, far

aw~y ffom the space-time region of interaction) of free particles

at time T be \ l. I> Of course, the complexion \ l I>

Our t.1nderstanding about the dynamics of the system lies essenot-,'

tially in our finding out what has happen~d in the interaction

IL) and therefore should be related

to that by a unitary transfonnation (in the limit of T ~ <YJ)

That is



S does not depend on the stE:.te IL. >
sents just the dynamic:,l behaviour. Assuming that S is known,

let us calcu12te the probability of finding a final state \~>

...
":. \(~\S\~)\
(i.) is usu2lly a two particle state

in elementary particle physics, while the final state is,in

general, a many particle state. The initial and final chara0=

teri zed by a set of complete quantum numbers, say, fourmomen=

turn, spin, nucleon number etc. Let us new take the simplest

l~> ::. \ PI Jp •. )

I~,> :::. S \ ~, p•.'> (7.3)

If) I ' r I Pn/);;; p -,\ :> •.•

corresponding to a two-particle initial statc and many particlE

Eq. (7.2) gi vas till probu.bili ty for th,= two particle state \ i:. >
-t.D QC'o.d) Hwov3 h sco.tt~y~/'\.9 h) c<", •.•-p'l'(i;'cLe ~h~e
•.-ta-t e li > ;

--p ( 'l --7 -+- ') -= I ( 'I'l' -- f\.: \ s ( f' t ~\.) I L (
7

•4 )
01r:--- dp",'

If the number of particles is L,rge, tl1en even the knowlc dge

since the CCtlculation becomes unwieldly

Even when n is not very lc,rge, it is US11 1 to avorage out the

JIIUII1JD:UUIUIlr.UtH I till U 1111J 1IIIIIIJJI'l'l"••••••••••••••••••••••



Disregarding any normalization factor, the probability that

the ini ti al sta to (l. > foes ove r into anyone sta te I~>
is given byof the set I-=-

'P
f

oC ~
L
fc r

f d- 'I I _ _ d-'; h I ( I , I > t 2. (7 • f)) .fPI ,-'" PI - - rh . S I Pi P•.
F

denotes the region of phasE space in which we are

..n-
II

i.:: I

S (p,2_m:)
(7.7)

v"

~4 ( 1"1 r,'- (PI+P,-J) ~ (k'--R,'\ hP,)



The question is Wh2~tthe~~un(·1t~lon & is? The factor -r.r t;( Pi..,_'LvYl~'-).

where Sh depends only on P, cmd p~

and no more on the final momenta p, I This averaging is
l

justified by the assumption thp,t when h is very large, S

does not depend strongly on the dynamic detClils of the intsrac-

tion. The set o~ final states considered ~ , may be any domain,

J'3 -> 1,
r j
i

and leaving it unrestricted in the other momenta, this will lead

to the momentum di stri buti on of pClrti cle I, speci fying two three-

From (iq.(7.8) we find that the dynarr.i cs is contained in the

factor S ( PI f p",' \ PI p-- ) while the rest is just kintF"- . -
matics. Thi s rest is called the lIphas e- space facto r" .



t(r-: ~--j ..(\

b ~( f pi - '"::::. IT ~( "2 m') PI - p~) - ~pi _ II &t:J I

~:: \
~ "':. I l':\

F

and F is called the "r,gion of phase space". If r- is de-

riant. If there is no restriction on the range r of

in tegra ti on ~ then R is called the "phase-space integral".

In the last lcc'ture, we saw, how when the number of parti~

cles is lc:.rge, the d: nami cs getsc'vG raged Gxcept for one or two

S ( I

'.....I P . - . _
\ , '

P 10. .~
'< )

cult to know what this function is. However, in most cas.es,

even.an approximate idea of this function may give some insifht

In most cc.se., whC:,.tWf, \.,rl:int to know is the total prob:~~

bil i ty for an n-particlc fined sL te, and the momentum spcctrurr.

of the parti cle s. Let us as ~umGthLtt all the 1\ -parti cle s [;re



~ (P:~-rt1t) d1p,
I.

~ 'i(t P
j
' - P, - ~_•.) S ( F, '-- p,; I R R)

J: ,

where we denote by S'n , thG weighted average of the S-funC"~

li~~ S ( PI 1 P,,' \ ~\ p~ )

cles) so that for sufficiently large 'Y\ , the interaction "Ij 1:

not have a big influence on this function (except when 1'\ is very
+

sme.ll) •

,
final st~te) is given by

-p ( P J ) d~ r: \ oC
I \

(~' \PI' --)

f II ~( p:'"- me') ,C P,'
1.::1. [; Cf P

i
- {p - ~f»

j:::L

(7.12a)
+ This is the basic idea of Fermi·s statistical model.

Ref. E. Fermi Progr. Theoret. Physics, 5, 570, (1950).



s"" (p: I) now not only depends on Y'\

The phase-space integr~l does not depend
but depends ilinlyon its magnitude if we

~r I is essentially giver by
I

turn dis,tributi on of thi s sjngled-out parti cle

where an average has been performed over the directions other
than that of particle 1. The kinematical factor /{=\" I" R"'_\



~
( ) PI'The eQuali ty in 7.14 gives the L axinum value of

1'hus, the study of ph;::,S8 c_ sIac", L.ctor is worthwhi Ie, parti cul2.rly

when not too many partjclcs are involved. The phase space

--
2.-V\ ([;-I~f., ')

~---------_.-/
Non-invariant phase space

'~'. ( j-' l-..J 1..J - -
'. '

F /! p \') I
, y, \ \ •. L . .'



(,II 2- ~ l\ - \ P
"",':I ) h

Lorentz inv;c;rj_ant, only the prod_uct S'V" f
'"

5'
h

S'
"

(

0'\ )_\!!, 1.f c.
c -
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f
'"' } V\

n 1&· ~ 2'" IT ~.
L ..-....~ '-

,-::; , :.":: ,

V\

'1 InS )
j : I

VI

where Pi is the tot,s.l four momentum of the system,'l:.uto. L
The non-invi::riant ph,::st3 space f", is defined (in

C.11 • sYstem) as

P (E 'M •.• vn )
)", )" '"

where E is the total c.m. (::n, rgy of the whole system ani



comrlstely equivalent (exe cpt for dimensions of R....und f",)'

It should be mentioned that 2S long as WE wish to use the

very much compli c;::ted when rLore th~"n three particles ,.<re involv:::d

Analytical formulas can be obt~inGd if Gither of the limiting

lp: \'1--2Yh

ul tra-relativi.: '
tic

Y\

-II

1?
1\",

h\(~: Pj - (P- r~))}

~(r;- m~L-) (ft e~



when the two factors inside tho paranthesis arc by definition

We now use the re~.tivistic invari~nce to calcul~te r< in the
\ "

c.m. sy.3 ten and 1< "'-\
(e- P-n)=

e c: - (? - rh !"l.. :

(E. J 0')

(E -En )~ - ( ~ ~ ~ ')~

\
~ 1"'-(E- G n ) "l.. r.. \

'1,,_\ (J E
2 +"'> H JIP,!" +"<

'fYl"VYl-,.,--- fYln_,)



1<,

We saw in the preceding sections that the deviation (experi-
mentally found) from the statistical uniform behaviour of the

now di scuss (the striking example of the M scovery of the
~) -meson) how a dynamic&l property of a system Gxhibits itself

,me cont;:liningQ parti cles ( 9 < h) and the othc r contains the:;



e
Pe. := L

l ::.\

M 1-

-11-9

If everything is governed by pure phase space what is the

probability that the SQUD.reof the rest masS Mpz. liesbet~

weGn M'2 and t11. + d M 7..? For this we will have to cnl='

cultlte the mass distribution. If this mass distribution (which

f ~(x - 2) 'S ( z. - y '> d 7_

(; 4 ( I p. - -p) as
J

p. - p) ~
J

v (p. Yl1 ., _ yYJ )1\ n ~) ('\

(~(I(p-p~-f P
j
]

) J~R.~\

Q-I Ip -
Q



Introducing 5. fa.ctor 1 of the fonn
co

_ ~ ~ ( ML _ PQ'l-) d M 2

in (7.18a), we get
1<", (? ; (Yl, ---YYl'V) )

::f c1 IVJ 1- [\ b~ (P - p~- ,i P; )J j J =-e'H
o

.0 (p. vY) .-. yY) ')
,\V\ ;) \ T!

cfi

~c1M'-R --f» (r; M VY\ •• - Y\r, \1'''2+1 ,- ,..,)

1) (? . YY) ••• rn. \1\ Q. fl.. j \ f. )

'R",_Q,+I ( P; M) Yl'IO+t

th G re are Y'\ - Q

.- - rl) )) ....•

system of parti cles -y'y), .. ' r'i-e



RQ (rR..~ Y'!1, "-- m}() describEs the intrrnal sit\lation of

Pthe 'particle' with total momentum Q which is made up

by particlGs m, --- m.Q Eq.(7.19) alre8dy gives the

mass distribution, Bec,mse R-n ( P ; "YY'I, --' 'M" ) is to bG

considered as a simple; constant: we !Yay divide by it and obtain

';} (D . 1M ""'" - - V\rI \ RIt ( Pn • YY) I - _.- m ()'\
KY\.Q-}I r J J ''',er\ " "'.,.., I J<. l( ~)

(r· \'1 yY) -.- m ') R 17 (Pa :rn .-- YY). \• ) .Q-\-\ Y1 .-\. Jl I ., )

'R V1 ( r~YYl I - - - m'" ) (7• 21)

becomr,s zero at thE. two limits where
e-

M _. No _. L Y'I1~

c ::: I

'"
E <- t<\ -? TYl i

J = £t\



1 :> 1'1
I

hi stogram of the mass di stri bution of 3 pi ons wi t], total charge

zero was eomp:-Hedwith the FciSS distribution (7.21) and a sharp

pec:k like the one in Fig. (1) was found. This is then interpreted

-21..
~ \ 0 sec. I t would be he.rd to observe such a parti cle

directly~ the deviations from pure phase space have lead to its

di scovery.



Production of bound-states in high-energy collisons+

In the second. ry be8.ITis.oncrging froIL targets hi t by hi gh
energy ( -::::::::.2~30 Gev) protons one observes deuteroDs, ~ I-I and '3 W(2

of surp ri singly hi gh momsn tCi. Until roc ently, it was net cle:ir
whether tho elementary deuteron production of the kind

would be of any importance t !::~ll.Now its presence has been
estublished expErimentally in a hydrogen bubble chamber by
B. &ech~ i--..i.ornat Brookhaven (1). Tbe experiment WilS done wi th

by using statistical
(J(d+\TJ
()(d+'2..il)

p+p

We shall make the hypothesis that the statistical theory is a
suitable tool to calculate the production of compound particlfi

in this particular case.
(1)B. S echi '::'~orn: A~ st I'ac-t-;-'1a-.S-h-l-' n-g-t-Q-n-A-F-S-"-I-\[ "'--~e-tl--'n-"-g-(-A-p-r-i-1-1-9-6-2-)--

BUll.&~.Phys.uoc.l~ 349 (1962)
+ For a full discussion of this theory and further referenCEs S8'
R.Hagedorno Nuovo Cirn.25 (1962) 1017.



very small region n of int(orClction~ then it must be created

in a stc,tG of Gxtr· me contrD.etion. Lst ~ d be the WnVG func~"

tion of the dcuteron. Then ~ the prob;bi Ii ty of the deuteron m
be found in the volume iL is

ThUS, if JL is the "n,':lturcll tr,teraction voltm:e".

where VJ is the deutsron volume.

Intuitively the idee is that in a nucleon-nucleon colliSDno

in which sGv(~rs.l p2.rticles are rroduccr'l, two of the final nucleons

cun en:crge in a bound state onl: if extremely favourable kine-

mati c2l condi tions &rc fulfilled. Namely, the binding em ergy

of the deuterm is so smGll in comparison with the usual k'.nec::atic

(nergics of the final particles that one feels it will not be

strong enough to bi r·d the two nucleons togsth er, GXC cpt i f th~'Y



thL~t they fly nerrly V.r;-o.llel and wi th practically equal veloci-

ties and would-Cshould thore be ~ binding force or not)-stay

arc small, they must be

contained in th~t re~ion

where the momenturr di stri-

ti. on and only in those few c::"ses, where, al re::ldy for pure st., t s -

tic21 reasons, two nu~~eons happEn to star together, can tha

small force bet\ve:!) thcri corn:: intc action. Either jt Ie ds th:~1

weight for <'rE".nucleors (which occasionally might have smc,ll

re12t-ive momc..nta) or it le ds tr: iCl bound state. As thi s latt()r

spJ.ce, in which this ]d.nE':ms.ticl condition is fulfilled-but, si··co

it describes :1 bound state, it is entir,:;ly somEthing new and lns

its own statistical weight as a new channel.

We now calculate the prob bility for two nucleons W Elli( r~G

I



(M1 ;'YYJ.\l-\-1 --' m,.,)

1:
Q

(YY) I •. ' - rn..Q )

\I ( ?; (I'1-G,-t: •.')::. E- d ~I PIE,G2. I

, I ----")

) i\ (M-&,-GL) dG\ d 1'''1
""- - \:>(""1'-1 at \V\1::.2.



E- d. (;, = P, 0Jp1
\

2.nd -> ~
----. - P'"L-

~ rc.mPI
-,:.

-
-=- b -::.. ccn-.E: \

'L.

c<)

W11-_.my\)~ TI ~ (olt1 JM1--~V'A •..)RY\_\ (M'~"3,--YY)Y]_,~t)
1-'fY\

( -;;:> + -.-.,.\"1-
. f-J, P..)

\r \,--)."' .
.,

:J.re tc~ken in the two body rest frame.

where M (r) is given by (7.24) \Je now picture the producttr')"}

of .s. deuterm in the followjrg way.



~ (p) for the

p in terrati on, whi ch limi ts p to those vr::.lues whi ch are in

2ccordnnce with the deuteron structure ( p is the magni tude of

v (r» is essentially the Fouri er transform of the

v( p) ~ 0

b RV\ (Yh\ .--y() ....•,~)
00

( G ) Md. rrL,,' - - ~I' ) r f- (f;» pL tip
R ...._ \ ~lT J p1.+ WI":l...:::.

0

(7.26)

RIM r (~)_._) has been taken out
'\-\ '"

This aver!lge vCllu0 should clearly be thE'; rU1SS of the deuteron

Md,. It ren1'lins to GV l~lD..te the p -inter-ral. Let the

structure of the deuteron be roughly descri b.d by



Q/X P ( -

(-



with the invariant phase space, the S~De role as the interaction

volume Sl.. does in the non-invs.riant fonnulation. From(7.26c.)

get
y\-'l. r ~'l.. (2.n) 'S]

K L E VJ R"'_I

1<..,_1

1«1.. (2. II')3

-f; VJ

K~ is defined by this equation.

W~now translD to thi s to the non-invariant fomulation. As the

calcuL:ted probabili ti es must be the S:lmGin both di scripti ons.

we have quite generally

(
-.J"1- )V\
(~fT»

K. Y\ and (
.fl )Y\

(21,,' (1."( '2 flnalogues of S'I-\
used in a previous section of this

ter. The invari ant phase-space f? h B.nd the non-inv~~riant f",
are related to e~ch other by

I



102
Y'

)_ •... d'J-')

K", ~
6~ ( p- ~ p. ) d ~ 'P"-- '2. G \ t \? 1'"\

\ ~ :: \
J - -

'"
-II

The r:.. (. ~~re defined by this equntior and physicc:lly they:,rt;

mc::.;n energies of the particles. This, if different sorts of

particles arc presGnt~ le~:ds then to the correspondence

(LIi)"3 I<J

'2 G~

(2- 'tl '):, (2 iI ) 3 1< <-

'1..GJ G VJ



The deuterons are non-relatj vj ~ti c in the c.m.) Then, using

again the correspo~dGnce between ( and st we obtain

si derati on just carri ed through aims rather to show, if th e

statistic;:;l theory (with the above deuteron interaction volume)

gN es unexpectedly large numbers of deuterons in high energy

arg'lli'Ilcnt leads to 0Ycictly the forruL:. used. Then the unexpectcHy

large number of deuterons (in experiment and in c ..l culation)

mechcmism, but it is wrong in gues::,ing how often in the 'Jver"~f?

the specic.l kinemo.t:'c:.l condi ti ons re mct.



In the technique of the Dalitz plot, one looks for the
deviation of the function S( P,":-P':\Pll::>~) from its statisti-
cal behaviour. If there is an anamalous behaviour (by which, we
mean deviation from the statistical behaviour) of the function S,
we may be able to say something about the structure of the dyna-
mics. This method has beer applied with success to the case of
Gj -meson, for example.

Let h - (G ~ > ~.:) be the four momenta of the
three pions in the decay

J q R ((vi ') -rn . 'h/,- m ~ )

~ ( M - (G,'" G ~ + G"3 D ~:? ( ~ + r.t t P: )
7 -) /~ -?- i3-'>

rJ p, (} p~ P3

where M is the mass of the W -meson and EI, E0,' ~3 are the
energies of the three ,ions coming out. The enprgy momentum
conservation tells us that

~ -'). -...;")

PI t 'P.. -r r~ ~ 0

b, + t:<. -I- b"1 ::. M
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The differential invariant phase space given by (7.?8) depends on
three momenta, that 1s, n1n~ variables; while (7.29) puts four
constraints on them. Even then, we are left with five variables,
namely El, E2, E3 and the two angles between the directions of
three pions in the final state, for example. However, one maY
reduce the number of variables by intr3grating over the unwa.rted

the angles and considers EI, E2, E3 as the three variablGs. By
equation (7.29) M = E + E2 to E3 , so that of the three E1, E2I
and E3 , only two of them are 1ndep3 ndent. rile want no~.,to

"") ~ ")-">

d PI cl p~
s>E\E .•..f:-~

G~ " ~ I f)~/2 2-
+YrI

- J[ p, 1- P:J?- +~1- (7.30)

Jlp\2 /-). I~ + ~Pl\l ,;:1l.&J ~
"l...

+ -r Y"I1~ I P1..

m ==

~ ::::

-'> -,
PI and P1-

mass of the pion
angle between the

-to
and p~

are arbitrary.
~--+

Replace now d ~

~directions of P,
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depend on the dir0ction any more we can replace
471" p_2 d P

I I

r '&( 1'1- CE\+E- .•.-t~~)) ~n'2.p~ Gtp\ p~cJ.p"}.. d (c<p4»
J ~~1f:""(==-3

~

~ ( M - t-l-f- .•.-l~"l') PI P•. t::(E).. db/df:L
d (000. q~)

PI (Jpl~ SjqG·,

p~ dvb... ==- l;L cl ~2.

01:: \I\rl~-t ~2

G: 1- c: Ir-g I<- + 'Y), <-

->p... arbi trary).( ~ andPc
Then

eLl- R
~

n'2
-::-

G= 3

PIP). ~ (r~~~1-&<-~{?1) dE-,dG2 cI(;~~)d M

(7.32)

d(G-,+G~ -t(;:3)
cJ (,-..$ q,

d ( ,/\P: \L_ + \ R \'l. + "2 P Ir~~ (p -+ ;n~)

d c.e.s~



Thus, Equation (7.32) becomes
:; '-1'1. PI p.... c;1 SJ d &').. 63_

P, f\.

constant independent of
EI and E2

distribution, every deviation would be due to the matrix elemont,
if we could be sure that all events we use to plot the experi-

However, there is ah,ays a consi derable back ground 0 f (37f)

states which accidentally (from JUre phase space c0nsiderations)
have just the mas s M ~

statistical curVe. Any significant deviation from the constant
(EI E2) distribution can come only from those lying well above
the statistical curve. As for as the G0 -meSon is concerned,
this was in fact sufficient to determine its snin and narity with
a rather good reliability.



The triangular plot.
Instead of plotting only EI and ~2' one can as wpll

plot all the three El, E2 and E with a constraint El+ E~~~2~M.
3

This is just similar to what we did in the case of Mandelstam
variables /.l t and 1). lt1i th ..6 + --t -J; l...t -= 4 m2, In thi s
Dalitz plot, we choose an equilateral triangle of hight
M - 3m -= (£, + £'1.+ z:~)= Q (say) where €i.::: (~- m)
are the kinetic erergies and Q is the total kinptic energy

1 A

fJ
2-

Any point in the triangle can nOl"be characterized by
the three distances E I J ~ 2 and ~"3 of the point from the
sides. Alternatively, one can introduce polar ~oordinates as

Any other point can be sn8cified by its distance f from the
origin and the angle cP given by figure abov8.

~l
{:::(, ( \-}- P GUS <PI)~ -
3

~1.. ::..
~ ( + p 0.Y) +a- )

t:;z; ::.. ~(I + P <:us f )I



where rh. _hLY, ) l.f-'L

109
and cP 3

Sl ~ £3 = o. That is, particles 2 and 3
are at~rest .hile ~article 1 carries the whole
energy. However, this can not happen, since the

-.;> -"> -')

momentum conservation tells that PI"" P"'/.. + p?, ~ 0.

"2 'J..
P, -+- Pz-



Also we know that
2p~ -= G ,,1- _ 'YYI'L ~ (c,,;+ h»

Equation (7.37) becomes
'-f (E ~ + 2 yY) ~ ,) ( ?: 7-

L + 2- "" E•..)

~ [(1:." -+'-~ £,) +(£~ f-'-""T:.)

~.'c · ~1.rl'p( ws to +c", 4J + f'<os+, Cu? <1>.]

c t:, ' ~ [ 1+ f'Cws 4. += of) -t-( fuS f, eN 4>J

f 3 ~ I = ~ [ I T f' (OJ t + CoS " ,) '" f'-C~5 ~ 6>, of, 1
',Z:. t £.~£3+l3£" ~"tl3t2.p(eos <P, + c..,~ef_ + Cos <p)

+ p2 ( Co. ~ I CDS cP..... + Gor ~'"L- GoS cP

T "'-' <p <..."" q, ,) J
- ~ [ '3 t 1- P ( 0) -+ r~("/~)]



£1£z+f?-f:!,T
c; tlc.. )

Q'- l3 4- 3 ~2 J-C{

et [ t -t- P:]
(7.39)'= 2>

since c.::, So ep
Cos 4>, ;- Co~ cI>'l... T ':::: 0

Co! t, Co.3 q,"\.. + G..-""'..S<p ••• (p~ ~ +c:os ep CUJ ~ I - 3/'2.-

right hand side of

:-) + 2m QT'"[j" ( I +
hand side of Equation (7.38)

~ (£,'2 +Lvr, $?,)( r: r'lYh ["1-)
:: r[',"---+- [~- 'G; + '2. ~ (E I .J. £::, - 'L"!> 2]L I (7.40)

Substituting for (t:, L + C'1,.L."""" (,"2...) and (e, + 8.1.. ..•••.. E3)

from equation (7.36) finally we get for equation (7.38) (for the
boundary curve given by the equality)

f 1. f< ~-111 t- ()L) "- -I- 'L (if' Co, '3.1>J ~ (2 - trY'"



Points corrosponding to physical 8vents must be always inside
the boundary curve definod by (7.42). Let us discuss this curve

4> := 7r (for

<t:. := 0 ;
3

hence the circle touches the sides of the triangle.
Ultra relativistic case: cr-:: '\ : '2 p~ c.os '3<P t '3p"2. - 1 -= (:)

Since Ca s. S </:> -=- (I (.os?' ~ - ~ c:.<::>.5,e.P, this gives

This is a s"traight line inscribed. Since there is symmetry about
a rotation of 270°; the boundary curve in the ultrarplativistlc .



~
non-relati-
vistic

E.. «(Y\..

ultrarelativistic
£~ »YY\

'l.
It is obvious from the figure? that there is a sextant symmetry ,so

picture this s1tUatlon by saying that the three particles coulr

have flown off from the centre of the triangle toward the three

\ Q



:B'or t:, \ == 0/3 the centr,? and for
is reached. Hencp this symmetry line corrGsponds to

o ~ <C\ ~ G.)I']

£ 3 varies between Q / 3 at the centre and ffinx value which is
given by the intersection of b line with the boundary.

1.

at the c-'ntre
between

centre and boundary
( a )

On the int0rspc-
tion of line a
with the boundary.

:> \ ...,
) :::::;J ••••••••

"} '2..~

1-

bet\oJ'Jen
centre and boundary

at the intersection
of b 1,Tith the

boundary.



at the intersec-
tton with a

between th8 intnrS8c-
tions with a and b

at the intersec-
tion withb.

If thG situation would be governec by pure kinematic~,
the distribution of events inside the boundary curve of the
Dalitz triangle should be a constant corresponding to wher~ an



Aprlication of Phase Space Methods to Unstable., -_ uw _

Particles

In a production process, along wi th stable particles, th''3:T';
may also be unst~ble particles which decay so fast that we ob-
serve only their decay products. The problem is this, suppose
we know the energy spectrum of the decaying particle in ever-all

decay products in the same frame of reference? For this we will
have to know the angular distribution of decaying particle and
those of the decay products in the rest frame of the decaying
particle. This is ,1 re.....lly canplicatcd to find. Instead,
we consi der the decaying pc~rticle whi ch isotropically distributcd
in the C.M. frcillleand is unpolarized. Then, to a very good
degree of approximation, th€ decaying particle is going to decay
isotropically. Suppose we consider two and three-body decays of
unstable particles. In thE; case of two-tody deCAyS, the matrix
element determines the life-time and if this is small, then thG
energy spectrum of the decay products is essentially going te ~G

determined by pure kinen~&tics. However in the case of three-
body decr:ty,the enc rgy distribu tion of the decnying particles
does depend on the matrix element. Therefore, in this casG, we
have to maks assumpti ons about the matrix elerr:entand check the

results against an experimental result (Dalitz plot for ex&mpl~)



calculate the momentum spectra of the decay products in the
rest frame of the decaying particle. b) For a given C.M.momen-
turn of the initial particle, Lorentz transform these spectra
tothe C.M. frc.mE and c) integrate over the ini tial particle
spectrum with the condition that the enorgy of the decay pro-
ducts, as seen from the C.H. frame li(,5 between yt and Y(.-'rdyt

Two-Body decay

Let ~~ be the total energy of either of the decay product
in the C.M. frame

TYJ.
J



We fl rst calculate the snergy 'l. assuming that m* has Cl. four

( 4) JL
p "* -=. ~ ~~) F ~ and

C.M. can be thought of as Cl. fictitious particle, which in the rest

of 1YI * has the four momentum ~ 1'1 -= ( £ *.J - V)
Therefore, in the TY\?-'- rest frame we hc::.ve:

Q parti cle Pj:::-. (£Q ) ~ )

? ~(C*)-;~)
eM

We know that if PQ and 'Pc rJ\

particles in any Lorentz fr.me:" the energy of the particle I, seen

from "particle C.H. II is

I

m*

--"; --;;: .•..

where <21 is the angle between p and p*" The

momentum \pl and the (energy z- of the decay products,

DnnurmmlllnUHllUlllllU II !11l I t1/1 fIll 1IIIII
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[-Y'tI *'"2._ (Yy\ 2 -to m j ')~"4 erh -14-~ (rYJ.( - Ylf)2.J ~

L..I YY) '* "2...

IYI >~1. + ('Dl j?. _ Y'rlQ
4)

'2. rn *
The situation now is as follows.

\t./~(E~)d(.,'l-iS the probability that the particle rn* has an

energy betwwen f..~ and f. yl- + d ~ I~

The probabili ty th?t the particle; YY1-t i. S 8mitted at an 8.ngle

o to the V'r\* direction is

\-<~(0) d CQ'::) 9

(2.) ( * '\ d
WR,. /'YJ J yYle ) in ) 1. is the prob'cbility that tho 7'Y1Q

particle has an energy (C.H.crlcrgy) bC'tween YL
('4\( )

W9- '- 1.
Ii ty for the i'Y\ l- parti cle to hc:ve r*c:... and multipl y-

ing it by the probabi Ii ty for thf, Y7\ Q. parti cle to go in a di r,?c-

t1 on In aking an angle Q wi th the m ~ 0.1rection and integrating

) d £, *" at (u.nQ) W ~~( £ y:.) ~ ( '1 - 1 t )

c .,!- r n J... h '}.!. h C\
C 0::. "- I ,~ \--t C'.a.s '0

m +,.

P
)(-

::



The ~ ( 'I - yt e) assures that the l'Y\,{. particle has an enErgy

1. in the C.H. fri:JI]8

We carry out the int0gral (7."::1 ~ )

- \ ~

Solving thi s for ~ ~

which ~* has to Us to

~,
and £: I betwi:'5C'XJ



yYJ* ---7 YY1 + yYj. + mJ..,.Q J r-<..

can be reduced to a two-body decay

M.
J k

m. -+ Yi'1 ~ M.J t:: J I.••.
\. yY)*- mQ.

for the thrcG body decay

We must first use the two-body fonJmla with a given ttt.J j..

and integrate it oYerN~'--'aftermultiplicction with P(I"'" '),
I \ J k J ~

lv-I 31 ("l' Y\1 m. yY\ Y'fl """)R.. } f.. J k

(m*-rYl
Q

j")..

\ PC IVI· )J J~

(1'l1;+YYlI<)~



dec:::y spectra. The only task which remains is to make use of

the Qq (7,2 I) to c-',lcuL.te P (Mj k) explici tly. From

( 7 _ 2. \ ) we have

where Rand R 3 are inv(clriant phase spaces for 2 and 3':l..

particles respectively. It can be shown that

-reM. )~
J I"

\

:2 I I
J M , yY\ '*- --pr-

j k J k

'.t./ * ( ( ~)
-ft.- 'J!.-L_ m.,lC.7..

•£ o-Y-





i)
)

-I 0
9fAY

G fAY= J ::::
-\

0 -\

(i:,-x)

o )



F (xJ.- ;) IIf .•. is en invari?J1t function, so Cl_So

or_IV l'nv r rl' "n t-- O.X ;: . G. •..•.

o XV

0 of--"- are contravari ant::.
?'J)(fA- components

~
df"

are covariant
2> X /A.

-:;.. carponents

In our metric

0 ol"- e ~ ~/- " o't ) -
~ )< /'-

-

d '2JfJ' ( d C> ) (8.9)::: ~ ~t 0)(~.xl-'-



"0
/A

p-

o :::. ()

'"::\L. \77-r)
-::.

CJ -e-

(---
EI 0 15.,,- 5

) - Ex

y "'-
I- /=- !-" v Hz. - H'I~ --= 0

[E_Y - H - 0
I~ j,-

H'( -Hx~r;7.,.

p - J.p) ;:)y F f' t)· ofA 1-
up :: 0

1~ \- + c +

j' ~ ( P f'~)
(8.12)-- J



fov t" = 0

F
fA C} F p~=
v vp

F
)) t.•..

-fey 0---=- r ~
F

v/J'- {oY" I) 2, '3- - r ~-

~

F lAV t"d-v fY I" :: ()
F -:: '1r-r F ...•_.

t'--
-- "F IA v f-e-r t->-::.. I) '1, ~



F f''' 3lJp \=
PI-"

:::::
"»

t F "VIA f..-v » :- \)

-;: -~ )),.... f.-.- }J .: 'JoL/ ~



Let us consider a particle with spin a- The compo-

nent Yn. of this spin ,--.long some given dj rection (s,~y e is the

Wi 11 ho..vG (2. \l + I )

possible (;i genv,':lue s l',mging from Yh - v to m:= - cr

&uppose WE do thE SDF:C for () bt;c.m of pcHticles (having spin

having some frequency di stri bution \r.-/ ( t )I'Y\) • The averci1"

(]Ier this distribution." is

uI \ri ( ~ J rY' ) Yn

m=-cl

This is the Expectation vqi.luG of the spin carponcnt in thc:'
-+

direction e From correspondence principle, we know,

that the f3xpectation v.lue of any 4uanturr mechanical operator

corresponds to 2. clas::ical cbsErvo..ble cc!"1d thus obeys seInG classi-

eal el{uation of motion. If the exrcctaticn vc.Llue <;, ~>
unpolarized. tf th:i s is not tho same, then there Gxists 2. CGr-

~.

tain direction eo along which this GxpectnUor: :is a maximum

(corresponding tc th e maxirnw alIi gnment 0 f spins). Thus,

o~s-scr
We then call this 'b' hS the degree of polarization. Now we

~,

define the po12riz~tion vector S as



is thfS magneUc momont of the particle con=·
'2/~ ::;- 12m for

The problEm now is whether we c~m Feneralize this equation

of motion (9.4) intc :J. cov':rLmt equation of motion by defining

$ - (s .. -S)

(0) 1)

5ince degree of polarizc,tion is ::m invtri~nt i.1.uantity (also
( 'JGesily seem from 8q.(9.4) by sC'.brmultiplying both si.des with
I,

-4
S ) Wi.:; have

~ ,"2-
'So I- I



polariz8.Uon fCl.lr vector to be fcund. Z will th::m depend upon

(1) the polccrtz'':lUR fOur'IGctor S gcnc;ralizing Eli. (9.4) (2)

thE; electrom: gnetic tensor F~)..l which will be antisymmetric ..
-7

generalizing 1-1 occurirg in eq. (£.4) and (3) the four veloci ty

v . r;y has the well-known feIm

r-- <. J - 1-1 ~

\I ~ (OJ r '0 )



(s v) I" -=

Since S V

(I I"}"·
,J 1,.- )



d -'», .s
J d ..t- \~

cJV
Jt

Now the cov. riEcnt gene: rali Z~..:.tien ccnsi st s in
d. d-

rcpl&cing J;t by d C (denot cd by a.

(~SR x ~ )

:lG notice th:;t

(b) linear in

.
S'f2.

r-- s.nd

S 1::- \f
}' )

.
V sa ti s fying :ill tho four condi-



\1 ( S \/; \f( S F V)

.
S ~ v .

Vis 3. functi on of F" )

A product s;-' V F is ci ther c~scalar or a tensor an::l thcrc-
fore is not~llowed.

b V( SY) + C' V(SF V)

To detennin,..:: the constants Cl, band c wo go to ths rest frE,IDeof

Eq.(9.15) und compare it with sq. (£.13), That is

().(s r)i~..L 6 ( s v) 0 + c (S' F) 0
f '- I~ R

(-

b:: - I

undergo my ch,nge under Lor'entz 'transformation).

Finally eq. (S.15) becomes

V(SV)

c\ uni clUe Fen, rali zr.,tion of Eq. (S .13) in the rest frcJnc.
c..\

S ccntains L:n ov:-r:111,dcU tion constant multiplying i~.,..



Since a constant docs not undergo ,my'. chang G under .Lorentz tnms-

formation~it ::hould be. present in $l~ also. However' the- fom

of S R given by (9.13) docs net contc:,i.n ,my ovorall constant.

Thus, there cannot be any cvcrall multiplicative constant. There

any four vGctcr adced tc eq. (9.16). Thi s is not possible sine ..~

thi s :::-.ddcdfour vector should be (0) 0) in the rest frame as

dictated by eq.(S.13) and remains as (0,0)

.
we;have proved thut $

In such a genEralization, we have not complicated the problem

by taking a mor,~ genu~al clas si cd equ:otion including Glcctri c

( F \/)



sv

.
SV

( s v)

..
sv +sv ::::C}

s~ :: (0,5)



Clnd S\I c:: 0 by eq.(S.22)
• - I

J..
(Ss)SS ~ S 3 - - -- l. '*C

\
.d- ( $ ~) 0... - d'C '=?..

Thus eq. (9.20) is em sistent wi th tho gen raH zed aquation cf
motion (9.18). Thus $ defined in eq.(9.19) is a four vector.



we could also generaltze the equati on of mob on in a covariant way_

Let us now see how this po'larization four vector looks like in the

lab. frame, for instance, where the electromagretic field is simply

desc ri bed~ though, of course, only the polar; za ti on four vector

in the rest frame has a direct signifi can, e to the word polari Zr;;t-ion.

Let us staI't wi th the polari za ti on four vector in the rest fran e SR.

( 0 l t)

( Yo
-) )S ~ S'L

"'-
\~

(o~ '4' ....:,. "2- ~ -> )-'> «
S~ Srt + ~ ~. S,~

I y+\

~
where 0 is the velocity of the polarized beam in the lab.frame.

O "", 2 ....1 '2... _.1'1
ne mOI'e thing which we know is that :>f? ::-::>L -= /i -::

invariant, so that

I -? \"l 1
S 1-= - S ::. invarian t

S 1..
0<..



Hence lSJ1 ~2 (O~S)R)?:::;. +

6'2. l~\L (4 ( '- OR- + 01.. f3> S R co~-

~2.. 01- f->l. ... '2.. ()(~...l.. GoS-= , /.::)

Z\"l- ( \ + ol.~2. 2- OR)t...os
--=-

4 ~

where 8R is the angle betwEEn the di rections ~ and SR
and we have used the fact that

S 1 •... '2 cJ (SR r-R. -..-6 ::-

{tR \[ .::. ~4

Thus

tiL \L r\'- (
'L p~ CaS'2. f:) f. )~ I +0

0'- » '(
is directly proportional to ~2. (Rerrerrber that

I.f"l- ::: ~2.. ":" 1 and hence

such case, we "l'Till have to c,dopt a dif'ferent method. From the

+ 0



.....,} ....:;.

it is obvious that S I- dev:n s on the (]irec ti on of \b (from

Therefore, in
~ -4

~'SR>O
~

angle 0 L between the ~~irecU ons 0 f S',... and

is not very large) is given by

co~ L G L

~ -»
From the exrre~;::jons for 51_, ~

already written down. we get,

l~. I~and ~~ \ whiCh we have

~ 7......,..-+
~ G \> S~
\- () -'v- \

( -~. S R ) t (~.SR)



OL 1 GQC,.A)~

:z. (~ -:::. GeS L O"l-~" "l.
~R

, .L <...0::-
I



onlJC in the rest sys tern. That is, the polari za ti or vector
~

depfnds on ~ both in c1i rec tj on and nagni tude.

$ 2..:: Lorentz

invariant scalar. Also
d '2S ': 0 which follows from the equation of motion. The
d't

degree of polarjzation is unaltered when the beam of particles

~
Ie take unit vector e in the j'l'(~<1c()", of motion and

~ 4-
anothe r uni t vector pe:rp:ndi cular to A 2uch that S;\... j:: in the

~-
plane of e

...•. ~
YI • Q

4'2.
Q ---



~
"1 r<. ; s the angle between SR anr'1

f.;L..0'-: (\2.._ I

0'2- t'L. Y:)'- - (
+\ "'" ~0 .••.I <r + \

where
~~ I oe ') ~

L.:. ( N -,. (O,Y\)

L~ ~ N'2 ::: - \

1)-
~ '-'> 0l-N -:: 0' ~. n ::

L V ':: (\->o ) '( ~) ( 0 ) (s r> 0•.

N V - ( 0 , ~) .( 0-) 00) "=- 0



· .LN-=- - NL-

Ttle can ir:troduce the expresslon for S L

eCiuations of motion

S:: ~ )",~s F + (t - :3 V,,) V ( SF If)

T N~' 0,,<. + Gp (Ncfl"Op-L~eR)l
..J

c.v.> & ~ + N ~ .s.:'--", e K')

_( g ~,,_ ~ ') V ( L. ~ v 0.>s f) (>" + N F V /'.w.n E> R )!

8 = L N1:<



:,ve would have got the same equation on Inul tiplying the

original equation by L

(~. •. ~)0-. y' --":;'Q. y + -.r- eL ~ \V U j Q \J

.LN
-7> •

To get .Q we use the expression for V where

\I-c; (0) D\J~)
. (~)

'( p ~ + (of-'')' ~ )V --
.. -'>" ~

VN ~ ~ <r\-> n <2
. E' I

NFV.. j -
L N VN -:: - r~~ \0 Y'Y1

. Q whichusing \/::: - FV w~cct...,
~

.
Introduci ng the expression for 1_ t-J in thE eqm tion for.

8R we get

.
91"<. ~

I
(6 NFV



(F Nj/J- -=. F ~v N v

jJ-::'.o ) (r-:t\/)~ =- r:-cvNv

-ok N-=. - r I.•.

-1 4
=: E' Y\

r" c:.. \ Q-= l\i ') I "::;
r- I uN'

J
•..

- ( I. 1'1- I- r h

-:. -H N'l + H')..N13

- ( H X -;)- I

(- ~ 4 ~ ~ )
Ih~y€,.(O"X' r: \'-1. - G • 'f\ -- -n X H-

,

Insertir:.g thjs eNpression the equatior, for e R becomE'Jil

dOn :.-(E;;,,\(qLJ~-~)+(QU-~)~' H)(~
d.i:: _ J - r 0 \v' yY) ~ J I 0 Y'I"\

Thi s is v ali d for any pa rti c Ie 116 th IT agn eti c moment , {-f 0 () and

ch&rge e. I f the charge E;':f:: D

!j }J" \) 0: <j ( 2~~ ) ()

:~R 0 ~€",~e.~)("l ~ - Yf'» + (9-2) ~ . Ih~



( s - '2 ') - ~ 0<-
f->

is independent of the degree of polari za ti on. I.lso BR is an

invariant and i~ expressed :i.n t6illS of imrartant quantitie:: VFN

and LFN. We have chosen the suj table referen(>G system-hsre thG

[
(\ 9/'~ '4- ,,'3 - '2) _ go 1-

E-h (3. . ( ).~ • -+/-I \I/;}-+- '3-2. '<:: /\ J

is pn,,,lIrl I,,~the second teml v",nishes.

if the particle is at rest it gets accelorated jnstanta~eously.

The e~ also changes inst",ntar:eously.



,Ie .shall now give ci

--f -? ~
EXI;:: ::- H

We first verify whether the condition
~ ~ ~ -').

G X ~ "" \--\ 7< Q ~ 0 i EO con-pati ble wi.th the ec.•.uation of

motion vI=" :: .'(0 d,V
e de-

whether ->.. -?> ~ --;.eXH "'- Q ~ ex e

dV l~-' -) e y, tJ1V e. VF ~ Q ~ €- e E: -+ ~- ~ • -:::

d.'L """

~
~ ~ ~

at i: :=. t~ ~ 1-1 and ~ )( "J.-.l ';Jri ting
-p -). at "t..-.::. -to we havet.X. ~ ~ e

.
Equating these two expression for \I

e.;: E ~ - ('i~)" ~ + (·cr(,:>') ~

Sither ~ II e or ~;: C)

-
-"). 2. 1 -"> -e =- e..-e ~0

pQ".II~\ {o~"; without being zero.

.
So :e: cannot be



-.:0,.
other time derivatives are zero at t::. t 0 So Q..

.~ ~ -'> -'>
t=: y e. -= H x e -:: 0 is conserved at all times.

From the equation for G R

dOl'<
.y -4 -')

vve see - 0 as 6. ~ E e is lv Y'

d:F -

~ -'> -4 ->'> I( ~
and Q , H X'Y' as H -e

'I..Q _ e I~ is constant.

The see ond of these expressions 1s

obtained by substituting

V::N •Nr=- - --

(~-Y\ ~
x i=i)--::::

)
Y\



.
expansion for S

.
Thus comparing the two expressions for ~

These e~uations state that L changes because the particle

is accelerated and that 1\J precesses in a left $<"YE> 'v..{ and
-+-

wi th constant angular frequency around H

IN
'Is'

~ caf40 ~ ~
;\ :::- )')xH~.

~ (\H

\~\ -)

~Ho \H::.(A) ":.
y

Also since f) i s consta~t
....l)

and <;:/= 0 ~ .11 Proc es~;

whi ch is constant

~--e~
r--



....". 4

"de shall consider the case E.::: 0 I H

The eCiuation of motion is

\1 :=. ( '() ~ C ~ 't) i- e? ( r)'))
\1- eVr--

yY\

te>
d~-~t -4

e turns around wi th

~ H/'Yno in a left ~cy..ovJ

Therefore the condition
~ - H("h) y~~)

and '0." 0 is corser-



e ~f Iy"Y\?f is called Lamo' r' s frequency.

ar.d direction of polarization
L>\q fc<J-I ~ ..•qJ.-h ~"> £..

C? t.... 2. and remains the same
..J 'I'-.

the velocity of the particle.
stantly de~reasing for
This is independent of

for 5:;"2..

The

T:: '2.\T!w ::
"

-? -?
as e and Y1

rotate with angular frequency J -';.
~·e -::.

ctt ")'\'10

After one turn the -) returns to its old posi tit>n~

f)
R

() R (0)/::) G R ~ G R ( T)

,. 0SR :::'2 Tt¥( ; -I)

In the figure we
have assumed 9") L •

This fact can be used to find the :1 factor of the ~



but wi thout magnetic moment (9 = 0)

Physical intuition tells us, however9

that the polarization should not change if there is no rragnetic

moment sh ow that there is no contradiction.

Since 8R is the angle between polarization and the

direction of motion and since we expect the polarization S R

to remain constant • UJtf have t ,') show that the change ~'" (.\~is

brought about by the change in the direction of motion.

\I ::;.d V
dlC

Denoting c{ by r-i.m-(" \ ' ')
6.+

v-:. (0\ 'oft')
\1;;: G V (-= G ( ()' I \S '0 ~ f + e: (\-> ~ ~)

Comparing the two expression for \/' we get

~ -::> ->at "'=. G- . e ~W)

Further

(~ yy - ot
- (!

-> -'> ,
-'2 (;" . Q

'":;

1"Y\



T h12 polari zation four vector
S y. ~ (0f ~~R

particles moves with unit velocity.
-)

~Q is now meaningless. Also the polarization ~s meaningful

Vf by four momentum ?f'

'P t"- ~ m\/ ~ (2) -;) even fer
by '1h and call it W fA •



(b) At a giv8n instant t we take in the lab system a constant
C'

Al

=-

9' -- INL =
N 1... =- - \ Lf'J'=O

]

-'»Using the expression for c<. I calculated in (a)
->:. ~ ~le x H· n

\rJ r- transfonns liEe a four vector,

the degre( of polarization and find

\IV fA- ~ P fJ'./.J

-" -~.,
S .: 4 -e

'vV " W :::
I"

/Jwr pv



W and
t'-

Pf" arc four vectors ~

The cl.Av,<ci; I)" of polari zation is either II to the momentUm
«'< O/Y\ t ~l"QYC< II? ( t-o rT"-<> VY...R "" -Lv...,., (s ( 0') •

(when ~ '> () )f\This r)~"Y,<c+;1Jh is the same for all Lorentz

sys tern and W6 call ~ 4 the heli ci ty. Vi;; do not need any 8Ciua-

tion for the polarization. ~'16 can apply this to light quanta.



Relation bet~een polarization four-vector and angular
momenturn tensor

spin) which obeys classical e\.i.uations of moUon, it is very

natural to expect a relation betW8en the polarization four vector

Suppose we cor"'sider a system of N spinless particles of

mass YY].wi th coordinates am momenta
'-

x' r- :::
L

M /""-).)

l' I- e::. I 1 ?>
I \ ~ j'

M ~'U is then



In the rest systern,namely when 2: P~

This quantity should remain constant in time. So, we now define
in the rest system the four vector

Since this is defined inv~riantly, we can Lorentz transform
this to any frame of reference so that

( )(~)
R

X. IA and
\

P.fV-
. L

after Lorentz transforming each
~ ; ~~)structing I: '. t i' .

a..bove way ~.9 enSlJ;.,-Q thO-'t
rest system (when ~~( '=- 0 ), we

\/. P-
/I., <: c- by m eas1Jring all distances from the centre of gravi ty

However we define it in the
x •.•. i. '5' 0. -t<) vy vec.-1o,. "-,ow i l'\

may introd1.1Cenew coordinates

~ X € •. \. ---7'
2- ~ .~



It should be noted that (x ) has no time ccrnponents.
1 CG

The angular momentum tensor then becomes

;- (Xl-' to)' _)!.")l l-"" )CG.-
+ (xlApV_ ><»P~)R



s yv +

by multiplying by fv on both sides and using the fact that

S fA-V P v -= 0 we get

I-'\>
Thus, Pv serves to project out the L part from

T L ,..Y
he projection of is carried out as folloWli1:

We introduce the completely antj.symmetric tensor

cf rank four

:f (r)J f iJ) i s odd

i + (~1) F <r) is even

Even O~ odd refer to the number of permutation operation one

has to pErfonn on (0,1,2,3) to get (t-"v fIT") • If two of the

indi~es are equal then;



Furthermore, the n-;etrictensor Cj pv changes the sign only
when the index is 1,2,3; jt does not change sign if the index
is O. With ~ we define the four component objects,..v r lr

\r/ }A
, ~f-A- pV M f'J"l:t ~ v ~ 0-

I [
/A pY S f Ii-:: 1..

l.J f' (l'"

by the anti symmetric property of £

.l



ry\ (

(\,J/J..)f< is a three vector (l'YI SR) whose three compo-
nents are m times the components of intrinsic anrular momentum

I-" c""'"tensor. Thus, though \,J transfom s as a four vector and .v

as a tensor, in the rest frame they have such a relation.
Suppose these N spinless particles collapse together (so

that we c~n no longer talk about the constituents!) to fom a
single-like particle of mass m ,mar;entum P and intrinsic angular
manentum or spin S /-A'll. It should be clearly understood that we
are only giving an analogy, by this kind of argument, one cannDt
obtain the half integrc.J-spin values even by invoking quantum



mechanks. The qunntum mechanical spin dOGS indeed behave as our

'S pov in particular obeys the master equatim

c ~)I

Thus, ~

1/ r; m yl..
:: 1 and

wI ~ where c..) is the

v- is the velocity at its

angular manentum. S;:.!.... {:~ --
1-

angular veloci ty given by V!...•(and

equator. Then

v- : -1/~ ( i) ~ s/ ( iy~y-)4

Putting ...,
:: e.<- I Y'f\ C 1 one finds

V 5" (~ ) t;
;</?l'7 'i/~~ '::0 -C. t., l;?"'-

l.f

whi ch contradi cts veloci ty.

We now have got a projoction operator to project out the

c:: ~)) pa·rt 0 f M fA Y ( th e L '"v h b..) part vanis ing ecauss of the



Thus, since S..,.lJ satisfies this covariant equation,

(' 1'1.

o~

£ 0 ~
o L.

for \,J in the expression for S~A'V we get

S
f-A"

( ~\m~

}A)J P-> pd.. ? >-J N f~~ t: £o<r> ). ftr'

fAY

Thus ~ (' 0-

the 'S t'Y from

( ~ ~~
y"-' <L ~ -pO< pA)<t-
O'-~ ).(-'r

Y,v ( p~p,) )...oZ.

<t: ~ (?a-~~ -"2 V"Y)2..

M ~v • The expression for

S /-"V n 0
1~)..I -



since

~
/.A V

£
\6 po( 0Pv --

O\~ ~f'1)

because of the ~isymmetry if E
Thus, we have i;chieved the following thing~ We have expressed

M"'''''' . the angular, momenturr, tensor as
M JAV ..•. L ~.IV +

S j...lV

L f-AV : orbi tal part

S
j...l),)

Intrinsi c part~

<"' ",,,, / 0;:- pv onlv t1.:"lC,Only;) survives in the C. G. systcn: and (,ven for.,J -.J-

Let us now turn to the Celse of a system of particles with

spin, Let each }icTticle in the system have

(
,.... Y

x P

N N lAY

~
/"V "' (x. H I:> .'"

» pf ) + ~.1'1 -= "- - x· \... "I.
~ % t

,
\. =. \

tJ N

'1 L~),) + ~ 'S~
1-''\1

..
~~\ \.:.'

contecins an orbi tal S} in pout, the sf-in due to orbi tal motion of

p&rticlrcs rel""tiv6 to the centre of ?r2.vity. Thus M r)) is



M ~v - (x fA pH •...XVp~) -+-
\..

-V,•....,
lAY

~ L ~
'\..:: I

If \'ie relllly want a nice sepc•.rQtion bstwcen orbital angular

mOll.onturnand sin ~ wo write the above e·4ud.tion

M'"'V. L/"v
can be defined tn a covD.rL~nt 1..-a¥,

j.A .) ..'

Sorbita.l:). To

are known, ro
)..{v

but not b :;p :~

. c- fA))know ~ l !oyb: -'0

of' cour S8, we need to have.,n id e:" of the tndi viduiil particles"

Thus, from thr ch r cteristics of the syst(~m "~S a whole, it is



M .-'Let us now SGe the effect of our projection ope rator I
f' i-

,...,.IAV

.). <r-th,lcJ

r' \?cr
However, we do not know anything abml!: its effect on ~

"'P'"
The last term , in general, is not equal to ~ f'V

~"jn
But, .

(2: )fA'»
S f'eJ

P", - 0-
fo ""pih



~~V 0>"S
pe- PpI""

~
fAV

MfCl
f~

M~V
The reason for this is the following. Writing as

j-AV
L

:1e see that by going to the C.G.systEI11 we can make the time

components of only (It'').l + S' "::~ttl')to ve-mish so that



HC~C7er, in the C.G.system

component so that (-S /AV h'
11 I"" '"

will have a zero time compo-

Thus (s ~V)R~ill have zero tinl":

is obtained by Lorentz transform-component. But

ing (5( p,,) R:.

therec_are some exceptions, the cases ·in whi ch the individual

momenta of all the N parti cles are knmm (a) I f only very few

beam of like particles with equill sharp momEntum the scheDe work"'.

In the c,:;se (b) ,if we kr;ow the tonal mor;.entumP. we do know alD1)'-

the individual momenta (since the N particles have equal moment2

(s

motion around. the origjn Gxists. imd since not only all IB rticlc.3

together, but as well each individual particle will at rest, each

(S P:PII'\ ) l will have no time cooponents in their own rest.



Thus, in the rest frame

(L"V)(? ($ JA),I

) I~(M ~~)~ - + r:l PI h

(L HV) R -t( " \ ~»)..;. L ...:J • R.-
j )

- > ( S ::Lilol) in any frame -=: 0

N L (S .1-' V P 1")
J )..I

j

?v

p :: Pv if the N particles have the same
1.J N



<) r" 'V
~ thus projects aut eachfO'""

j

Thus~ for a syst,r, consisting of like particlE:s with spin, it is

L
JA-V

possi ble to sepc.ratc the true spin part from orbi tal part
/'-IV ,... rJ.A

so that Sand \;..,,1 =. m..) defin(,d c rH er can be us ed 10

describe the state of polarization of the partifle. However,

M fA.V ~ lJ'v or Lf/'Vit only (and not ~ r ) is conserved.

S,.,....
and quantum mechanical operators,



We choose 3 particuler rcprE:sentation of ~ relation.

'2 9 ,-\)

in which the romponcnts of spinors naturally spli t up into two

lar£GaTId two smull ones in the non-relativistic limit

s
- Dlt)

, (~ ~)'6 ":: L

()' :;. [~ ~J .,

()k - [: -~J-

Q1. - l~:J-



\o ~are (4 x 4) rr:citrices and v'~ (He (2 x 2) matrices.

For free particles.

. - , I:> x U ( p)~

(~~)
-> - (~~)::. 0- . P
E -t 'YYl

where v t ( ~) ) (A '), (f'?) arE abi trary. Gonsi der two clas ses

of operators

2- M- y'S (jl-'--- •...

,

L (} I."~ a->J]CJ t" v -..~ '1...

~
0

~ () ~ C'" \} (~\ ~)- -- -

~
R 0) k (~.~,)- 0 :.- \.

Dl~ (~,:k)0- :: 1.

I
ii,

() ; I::. (~~:d~



J

l:?f

S IJ. \.>

<::" )...t S /J vWe will now shQ1,{that -.J and C.~reidentical with 01Jr

S)-J- C MlJ
old c.•.nd.;) respecti vely.

for """ J..- a.nd t'I- I SFrom the definition L..'" \I

Hence <I b)R "::. <o-l) k),~ - 0-

Moreover,

<~k>~ ....--------... (~JLA ~~ ~ <;)~::x- . U •.-...... ---

~ <<Jk)R
< (j j \~> ---------....

cr~ (~J~ U,),l "U'l.*
I~ -------....:-
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