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2
f» S(M is equal to 1 when F(X) is a scalar field and it is

a matrix when ‘:(7) is a vector field-.

We can write the same transformation in an

aother form using
!
the equation X

T x or Y= T x¢

"

as

\:—/ <><,> .

{1

SN F (T x)

3
We can replace X by x and write

Fx) = S(NFF(T x)

e
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Sec.l.2

Lorentz Transformations

Let |K and ' be two reference systems moving with
constant velocity with respect to eacch other. We call an 'event'

or a world »oint the set of space-time coordinates

P = {xyzt% (1.4)

" ®@ T ®

\
P
A
X

Let the directions of the axes of I< ang I’ be narallel and

X axes coincide and are narallel to the rela-

S BRI R

such that X ang

tive velocity (se~ fig.l.2. Consider twn voints ¥  ard 1;
a.
i -

con:ected by light signal. Tet P and P

EX7 2 {E awsd {;‘?/ 2 :t in the reference system
K and {xyz 4% and 7 ;‘9;{ z

in the reference system K'.

have conrdinates

The = : distance between P and P can be measured in K

in two ways:

R N S IR SR T

A% = (=) 4 (y-TY 4+ (2=

i
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and o2
2 — — ’ -
4" = <t t) , ez (1.6)

\ Y2 p
These twd eauations for d (the squhre of the Sﬁair:gdistance
i gives the eqguation
% "Ayz - L\\/L — yaN 21 +Q“E‘2 = O
; w‘r\?ve VAN xl < ( X - i)z

14
¥his equation is vedd in < . In the reference system L

the corresonding equatio~ is

_AaxT - oyt - A 22 +at? =0

since the velocity of light is the same in the two inertial

frames K and (<’ and equals unity in our unit' system.

.ot us denote thece

Jds? = A+? ~ax*—a yrtoa®

- 2 2 2 2
i - ' - ] -\ -—C.\2
de i A<t A X Y (1.7)

It is obvious that ds — O imnlies
{ BN O a — '\: '
ds > ? L in both cases.

Also the quantities ds ana s are infinitesimal of the

same order. So dg and dg’ should be connected hy the

equation 0(3 i o ds”

| Since K and <’
are on an aqual footing ds! = a s is also
true. So a = *1

&
,_‘,,,___hilillll] TATET 1T 25 5w oo
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OnlY '{_‘ /\
i1s valid as the groun of transformation
is continuous and cornected.

Integrating the equations ds = ds’
we get
Sds = \/‘Axlﬂé\\/“’ A2 T ot
P, '
./t)'

p3
2 t
: g)dsl < N _~A\/«Z- 't +at

We conclude that 4 dimensional distance is a constant.

FS 2
As? = ~(axtragte 22 - ot

w K

_(axT +ay’ cozt-oet))

on K!

(L.9)
It is pcssfble to fi~d a reference fr-ame in which the two

events ?ﬁ and fPl have the same time only if

s AsT= _(ax*rayt+ ax —ath)

e AERTXINNTAA DA 130



These two events are connected by snace line distance.

similarly it is vossible to find a reference-frame in which

the two events ?ﬁ and i:; occur at the same pnlace only if
Ast =z O

(1.11)

The two events are now connected by time like distances.
Let us take for one event the coordinates

and consider all ~ossible events with respect to this..

A TR S TR S

/“(.,
PR 4+
T\W \*Q{"k’!’ Vﬂ«
B fult <9
&4}‘ wlTure ‘ 0;‘\)(,
€, 4~
%
> A Pac e Ox 1\
T‘lmﬁp . @JQQ
y pe st
+
S
&
Fig.1.3

The four dimensional distance from the origin is given by the

invariant s? - £2 - xT- vt~ 2®

___——&I]]ilﬂ*!‘!:nnnmm M ricirra




we can affix sign to the quantity

> = \{4:14_ xE = ‘72-— z . e take +the

positive sign for the roat whenever the noint is ip t-e unver
half »nlane and negative sign for the root whenever the event 1is
in the lower half plare.

Hoving done this we make the followving <tatements.

(9 s* s O connects all those events with the origin which
can be reached by a light signal. We call s = &

the light cone! |

(11) ¢? > 0 if S» O) the event is in the forwsrd T1ight
cone;if 5 <O , the event is in the hackward light cone. :
they

Since all transformations ferm a c¢onnected cortinuous groun
cannot transform an avent from the forward light cone to the
backward light cone.

The space=-like 9oints cannot be connected to +the »rigir hy
light signal. 3o only those events in the backward light cone
have an influence on O  /and ©O can have influence on the
events in the forward light cone. ™he snace like vnoint= cannot

interact with O . This is called the condition of causality.

Problems:

1

1. Define proner time of & moving body tobe the time shown
by & clock which moves with that bhody. Use the invariance of
ast to establish the 1lifetime >f a narticle measured ™y a
clock in the lab system,
(a) if the -article moves with constant velocity

(b) if the narticle moves arbitrarily

(%)  Ic the light quantum a stable narticle?




Solution 1.

CREATION

’p(wzt)
T
DECAY
ot '{—')‘/-"“ —- >
Q(% y'= ,
/
v

In the lab system we find the distance hetween creatinn and

decay

-2 1~Q 1“41 2
g{l} '§‘2 = 2 £ —_ ¢\ X Y 2

but in the particles system

ES
A

since there it is at rest.

B - 2 N 2

Hepnce _ AN St Sl T Al A B2
Nt Sl

FANE OHET

- Nt [ — (3%
L 3

where ﬁb is the velocity of the »narticle in the lab svstem.

(a) ‘67_’— t.l = <—tz_”{|> \J [ — gl

s
L | Jr d* J -9

Y

=
,-t
I
t
-
1
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Solution 2:

3unoose tf quantum were instable then a lifetime should be
definable and the only invariant way to da=fine a lifetime is to
measure it in the rest system of the narticle (i.e. its nrorer
time) Such a rest system does not exist by the constancy »f the

light

Even formally
[

}
lifetime = +, — X,
2
Sl D) -
- gince (‘5 = 1 and (JC 2 — {\) = O (the observed
i lifetime in the lab), G- 4./ ) is indeterminite.
; t he

zherqfareAquestion is senseless for all particles »f zero mass.

The Iorentz tfansformation from one inertial frame to ahother

igertial frame

We define T = t Now

As? e - (X" +ay™ + o +aT?)

" This is a quadratic form in four dimensional svnace (fx Yz %)

and is left invariant by the transformation sought,
Leaving:ghe trivial trarnsformation viz. trénslatipns, the
only continuous connected transformation leaving this quadr--~tic
sSpa

form invariant is the rotation in the four dimensionC&EZt us
suspress the Y and T coordinates in the discussion. This
means that the relative velocity is Uarailel to the X axes
which are themselves sarallel and that we omit the three dimen-

sional snace rotations.

BiEssBERSRECEERRl atan R SRS RBUaRORNNg:



> K

The general rotation of this space can be written as

Y =

= Xy K = TS
. ! 1..12
v o= x sha + T s A ( )
The origin in the K’ frame has the coordinates ®' =0
and this is.represented in [ frame by the coordinates
given by \
®o= - T Sih A
(1.13)
T‘: NC(QU’JO‘ )25_::_%0(
C
But as the origin of < moves with constant veiocity
X
in the direction
A
X = (5{ = ?_l
L
X . N &
T
(1.14)
So we get from (1.13) and (1.14)
\IGPJV\O’\: LG
(
i .
= ==z == = ¥
s [ +tan* = J [ ~p*
S'k’\d - M
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Hence the transformation is
X = a’()(‘-f- (S"C)
y = Y S SR

> = A (1.16)
t = ¥« +—§ 1)
GCeneral transformation
A @
~®
’(‘b S
>
— -,
The vector  #' can be s»lit into two parts X
4 .

narallel to (5

i
>, —_>
and the vector 7<.L erpandicular to (5
—3r
X

so> that >, > .
P X} -+ 4
- -
-z B
noo- K e (1.17)
[¢ x
e, o —>, . (g
x, = X 2
—_
Only x'{

.§

14
1s transformed and X4 remains unaltered by the
Lorentz transformation.

!

We write the equations

P ’ :' X
X N L

AT 153 13 TR REAEEVEN I AT LI ENY 1YW
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and
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Inverse transformatlon

- —
To g+t the inverse eauation we int-rchange X and X
—> —
and change @ = ~—i3 . We have
2= % o+ prl AL opF - %) (1,19)
-
£ o= (e X
To verify this out G” o , vo=) . We get
;?' - :: ond t' =t which is true.

-

95

sc. 1.

Lorentz Contraction

Iorentz contraction is based on the measurements of length

as the s»nace distance between two »oints at the same time.

‘-) '
Ax = ox + gx(;{—r G a% 4 at)

At = ¥(ate 4 _ﬁa?>

But as the two eventsz are sbserved at the same time in theAere—

rence system K ,

At =0
—
—>
20 A+ = - P ox
Substituting this in the first eaquation we get
= S - x

L AAEET R RRERR &)
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bd

~20 the generalized formula for Tor~ntz contraction is

= - > a7 —>,) (1.21)
A x = A x — %'X-H((Z'Ax
1t s poreld (o fx' we find
- >, oY
A x = A X < |’— ‘O/‘- -f—T {22>

_ A = < | . (v—ncb«m)

- - ¥ ¥*

s

b
(1.22)
L N

Time Dilation
A

When the clock in the <’ system is at rest

(_\;' =0 90 that
J

At = y(at) | (1.23)

and N
A X = (5(2)’/,\{’) = B At

Bquation (a) expresses the time dilation since ¥ 2 |

The second equation simply sajrs that the clock in the 1’

-~
system is moving with velocity (b as seen from the system

< which is obvious.

T13 003,000 11 L1 » s
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ation of velocities:
Transform

From the formula

- . P "y
S 2 LR (e

4+ = ¥ (Jc'w— 7‘*

of
we have by taking differ=ntialsAboth sides
- - ‘
— X Cdx  + d}t)
—?(
s . a7 cpulam f o)
‘ T i)
o= (At + P
By division we get ;
- *_b: —> \” .CL__‘:"_: __‘_‘)
. . F+ Folar b ar
d€ =
v (o pr F)
I S
q—:f +F3'b’<z’+r@ i +‘>
= -~ —>
U’( |+ G' v
(1.25)
- e - ' -
“wWhen v is ” to G ) g is e @.and

I I 1 1113320132 3 amEEe 1 FI 100 LTI L F1 11T KT 00s
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Using g}z _ (3/45‘)( ?f~‘>
WL
we have
B A i O ) B o
T (v +1)
? v+ b (1.75)
| + (5\5'

When the velocities are small we neglect Gy ,

o~ v -i—,@ in the nonrelativistic

When U':@ ]
vie B 2P d

—_—— — N , Gs P'* 1
(+1;‘G (“*@z)

(L.27)

20 1 {5 the maximum velocity vpossihle nhysically.

Now choose the coordinates such that (—2) vofnts in the
sositive X direction and that ~' 1liss in the X'y

—..*
nlane. Then v 1lies in the XV

T®

nlane.

N

y©

Y

Transformation of angles

T 14 S s a e FFF LT A1 10102111111 111213




From the eqn. N N ,l,-—_é?;’ - 0
- v+ b -

A ¥ (1+ &-37)

we get
- (Szb’.z. ' ] ¥
) vies O + T vieas 8 + P -
Ux = Vs = \

¥ (( + @' coc 5')

B’(’U'CDS B+ G)
v (1 4+ o cos B

1l

(1.28)
_visin O
'\fj T U san B K({*‘Q)U‘C,DS@')
- v! sin ©f
tn © " ¥(vieso' +8) (1.29)

This gives the transformation of the angles of a velocity.

L 70)
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Chapter 2.

Choice of units

Before actually going to the discussion of the choice
of units, we observe that the Gquantities which made their

frequent presence in the study of elementary particle ph&sics

are the velocity of light the Planck®s constant
and the mass of the nucleon . If y
and denote the dimensionless numbers indicating

the numerical value of these constants in a given syster of
units, then the clementary-particle-system of units is

defined by

Hence we use the bracket to denote the measure which
is dimensionless. Some people take the physical quantities
znd equal to unity. 3But let us teke the

numerical values equal to unity.

Let be the units of mass, length and
time in our unit system which we have to distinguish from

units.

»' 3 T
b K EERRE L et N L R T T
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We have

s
\?
/S'Ar\
~
Q
3

\ gw

t cqgs sece
1 2. = (=) i)
< = g Cgs sec

we find by solving for mo , o , and t.

mo = M=), 9m

b

brb tom mMa sk

-2
_ (v.e72)-10 qam

1}

£ (=%
Q° M - "“M cm sroton Comnton wave
‘ € leys length

pd <O-7—“> : (L;l; Cm.
()
t o 0 Mt ¢ g soe ~ the time in which

light trave'ls one sroton compton wave length
' _ 2%
=(0-07)y 10 "sec.

This has the consequence that new mass, length and time are

numerically measured in multi-les of the nroton mass.

Tet o be the mass of a carticle theme~ po= G My

The comnton wave length of this sarticle is then .

\
5\ A et “/5" = /V\ ot D Q
' pe () M C (ry °°

v

: U
i

TV 37388 8E45¥ 111 17
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c

and therefore the nume rical value of the comnton wave length

becomes {
<>X}"~> = o

gimilarly, a time is attached to it

£ - - = L 4,
o (,A)!"[Cl (M)

\
<f:»3 = (;3

and any given length and time can be expressed by choosing the
apnropriate value of (FJ

Constancy of the velocity of light: It is a very imnortant

fact that the velocity of light in vacuum is constant in all the
inertial frames. This fact leads to the formula & = mc* . |
The correctness of the formula € = mc? in the low
energy nuclear nhysics has been successfully verlfied with an

1
accuracy of /:oco
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Four Vectors and Invariants

L]

Any set of four quantities transforming like

-

—9
ds = SLcUr , dx 75 under Lorentz transformation

. 2 k2 k.S
are called four vectors. As the line element ds® = de-dx

is left invariant by Lorentz transformation for #&ny four vector
Q- d° |
-‘7 T— .

is a Lorentz invariant quantity. Concider two

four vectors P and Q . Now T+ Q can be »nroved

/

to be four vector as the Iorentz transformation is a 1irear

transformation. So

(? "’Q)z - P+ QC + 27 -Q 15 invariant -

P Q2 are invariants.
- So P-Q is also invariant 3.1 )
~ I
(), T is & taree vector. The correcsnonding four
i < “ = - d SR
vector is d’%/df—c where d T
Here X is f+. ;75 . d’x/d'c is four vec tor
d ¥ is a four vector and dT  is an invariant
guantity.
¢ -y - (v, 7P
C{ T - \/ X } ,(é

p 1 = invariant

.
2 T TIsge33aprersrsacrartasr s e as a1 rrrrrures




; In the rest system of the narticle” G =0 and '
] ¥ = , %0 vis . €orresnonding to the three
- .
momentum ™ % we have the four momentum v V ,
mV = 4 ¥m, ¥ Emi. Let us find what is the four
component w ¥
2
™
\ L pa
Vi-
= ™ E -+
+ Llh?'*tt,

- E

We recognize the fourth comoonent to be the energy. M 1is the

rest energy.

. P = ™m V = {mb’,m??ﬁ}

]
o
(7
-
vy

IR I s sussasrsersasnacasssraeracassosn I ———




USE OF INVARIANTS

The concest of invariants wonderfully simnlifies *the calcu-~
tation of guantities and some examples are cited helow.

If a question is of such a nature that its answer will be
the same, no matter in which Lorc.tz system one starts, then it
must be possible to fsrmulate the answer entirely with the help
of these invariants which one can build with the availahle four
vectors. One then finds the answer in a particular lLorentz
system which one can choose freely and in such a way that the

;-1 answer is there obvious or most easy. One looks then how the
invariants apoear in this sarticular system,expresses the answer
ty> the oroblem by these invariants and one has found at the same

time already the general answer.

Examnle 1: . rentre of momentum energy and the velocity of the

centre of momentum

Let two narticles in some Torentz system (eg..
lab system) have four momenta *} and F%_ and macses M

and Yn .
PR

v

s s 18, R

BRI I DY i T v masmr aramamcr s cosmn s m s nn s mn e
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We-ask the followinz question-what is the <. ™.
energy &= . This question must have an answer indenendent
of the Toicaitz system in which ¢ and P, are given. It
must be possible to be built from the invariants

2
P2,

P’L‘L - m .

<

P'R, &y (P.+Pz§1 oY ( P\‘Pz>l

Let us denote the centre >f mass quantities with an arterisi. jn

-3 » R
.M. cystem P 4 r - O

E—:“ S
P+ P {J £+ €, ). <>‘§

Hernce

(prar )
Cp, +P. )"

E% = <§:.*+ 81*>2

|

i)

2 . .
since (P-+'P13 is invariant. We can define total mass

of the system by the square of the total momentum
2 2 2

p? = (p+p) = ™M = E

2 -
<?.+Z;> - C Pr+Fl>2 = invariant 4. 1)

Kinematically the system can be replaced by a single warticle

with four momentum ¥ and mass ™M . We can con-
sider P and P, themselves resresenting a system of
particles.

I Y st n s mr e i Xk A R E XA LI TAIE LA e
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The Velocity of the Centre of Momentum

P LMY, Msz% = {LE’FK

- = —> —>
6 < P = ___._—.__P‘ + T_\_)l’_.
C-m E‘ 6\ - $7_
(4&2)
We illustrate the above formulas by calculating the effect o -

the motinn of the hound pueleons in nuclei (1) when it is
parallel to an incoming beam of 25 Gev (11) when it
is antipara’lel to the same beamn.

Let ¢, and €. be the energies in the 1ab system of the

sroton from the heam and the »roton in bhe nuclei.

-2

e’ (pepY = PRI T PP

A y v
- YY),? i Vﬂ:’ + 2 . %, = 2 \/(g'z_ m;L)(EL -m11‘)

—

- sign for narallel motior~ and + sign for antinarallel motion.

We have ™, = m, = 1
£, = 1.02 ( 6L = OhoYgy ez ‘Jo’uhd
. WAL
£, = \+25
P - a, 004
&S- 0 = 6y

G F-‘ = o4 677 - 5 .1
5.1 Q'nh“aowq”el
t;?"z - | 4+ 2 4 _‘) _
~ Z( 3 L = 1 = L 44, % Po’rra]’»e\'

L BB EE 5T S,




%f;

when the nucleon bound in the nuclel is at rest

oy R

e = 2 1x29
g nce sz -1 = 0
3
—
b eam =) nudet
g- 08 for antinarallel motion
L ——
(3 ? = 7.3 09 for nucleon at rest
6.1 O

for narallel motion

Let us calculate the energies of incoming »rotons to nroduce the
momentum

same centre of . .- . energles dOn nucleons at rest.

Now ¢, =1 . If the energy of the incoming nroton

which »rnduces there centre of mass energies on a nucleop at

rest is denoted g' then
x2
E > 2 4 L 8T, _
tS.2
2 - <G
et s g (' v) LG, &

3.6 for antinarallel motion
‘ ’ i )
g = 76 for nucle-n at rest

214 for narallel motion.

~This means that the 20 Mev nucleon motion is equivalent

ty about 5 Gev difference ir »rimary epergy!

SN s O nn i nnne—
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At the moint the >rotons meet in the opposite direc-

tion. Now the centre of momentum energy can be calculated

as follows

£, % = €

=
e 2 = (1 £t FETT)ETD

= _‘2(\4—{1—\—{1—)) = 4Tt
E—Cﬂ = ’Z."i
= gc?(r@\/

when we use the heam of 25 Gev

k¥ netic energy »rotonss

To »nroduce the same centre of momentum enevgy when one

swoton is at rest and a bean of srotons hitting it let €&

be the epergy of the nroton of the beam.

Now »
E e T 2(\+€"> , Sing EL:/\

£ EX-y

il
<

v J ERE L PR R T S




221’: 612‘7\
- 2702
Es 1251 Gev

50 we have to use two nrotons moving

to have great &

< mm

in the omnosite direction

LExamnle

Suvnose that a group of A nuc

leops (at rest as a whole
| 3 would interact

with an incoming n»roton of 25 Gev kinetic erergy.

What is the energy available for the nroduction of pvarticles

and
for kinetic erergy?

Put N~ Gov
‘We have the formula

_x ? ~
7L e,

n

s 2 € Lsa F m? ym >

Here
£ = i T A
m, s 1
E. = 26
SO
E(:‘“:’LQ‘ZLA—A'L%_,: (62A“‘A1+‘>
The available energy for oarticle oroduction € E,~CAt)
as ( A+ 1) nucleons should be conserved.
= = J%’iA.,'_Ai_H

— A+

a2 !ég ,1111'1]\]Iﬂlﬂ}?ﬁﬁﬁ{f{llllHllHIHHHH[HMn_ulnnlull-x;
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we shall give below numerical example

A l 1 2 5 10 20 40 100 00

E

5.35| 7.4 | 10,9 13.9 16.9 19.6 22.2 25

Examnle
=P
<:::::;”; what is the energy of varticle 2
R Y \
as seen from varticle 1. First
) kA
we collect the invariants P, p,* and P B
In the rest frame of the particle 1.
/ (. (T, 5
t),:(m,)O) b= X N
] ! -
P( Pz. - RAL [:1
’ 4 —
CZ pus P| PL = t_‘l
m(
= P"Pl ( P;P‘l iy \nva\rl"-\f)
m™m
’ s 2 _ 2 2
P, = &, — mMm,
z 2
. (p‘ F')_) - mom,
m"&

et Hi]!"]!l!mnmmnxxxxx;x TALTAFRIL1EALLETLELD
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The velocity Y,  of the particle 2 as seen from 1 is
-3 2, 2
z S
’\jz—_ kp"“l - (P"P'b) - my m,
(9 ‘ ~ L - . 3
b <P| Pz)

This relation is symmetric in the .suffdeces 1 and 2

which is true as the veloeity is only the relative velocity

The energy, momentum and velocity as seed from the centre of

momentum _system

i '
L) / we imagine a fictitious varticle M

Z
-whose four—mor wiun'ds
P=p+r

where  p  and [, are the four

momenta »f the two particles ¢ m, and Ty ) under considera-
tion.
To fot the anergy of the two particies in centre of mass
system we use the formula derived in the vrevious nrohlem..
Let us denote the centre of mass quantities with an asterick.

To find 2(_* )q*c. we concider the two particlesfﬂ , 74;

and calculate the quantities as seen by M, We have

- e

™~
1 P, LZ _ MlmLZ
\PL%\ - [Prd A =

B T 0 G DAL M*

N fp,mx

5. F P, P

BRI VY Y Yo vy o mas s c s m i e s %




P\ ‘71 =

2.
L] oo
= 2
We obtaln
2 ; 2@z .
2 2 2 }\/!~(lml‘mn.>
¢ M 4 (m -y ) *_
€ "< Lo &= 2. M

MQ - 2 m? (‘mnz *"m'zt’) +(m‘2__ Yh:):
= 4‘ M'L
(M (e I MO (>
- 4 Mq..
> 2 K
ci \F
42 T 57&
- L - 4
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CHAPTER &

TRANSFORMATION OF DIFFERENTIAL CROSS-SECTION

We want to define cross-sections; in an i-~variant way.
For this we have to analyse how cross-sections transform
from one ooordinate system to another’

Corcider two sets of coordinates

(x, .. X.) and (Y, ... Ya) . The

transformations from one set t> another is defined by the

sets of equations
X, = x. Cy - )

¢ ~ I

and its inverse

\/] =Y. (x\ T D)

Now the integral (Qf -f(x,.,. x“) o(x'..ofx.,
X

transform as

S( f( XCYm¥0) L 25 (y, -0 ) >

12‘/ @(x\-.y“) O(V q_'dy
5Cy -9y

(5.2)

G
)

E 1 1D L B ——
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where 121 is certain boundary in the X svace and
The

is the corresponding houndary in the Y

B‘( Xy - - X )

space.

has the following

Jacobian T
CXGTIERIR A
expression
DX\ B(XL Br‘(“
2, 2y, oy,
a<x\" ‘Xh) - (r, 3)
Y, »--v.) |
9)(‘ a)ﬁl axh
a)(h an a)’n
x =Y .,y 7T

In general transformations
t by the rule

are carried »ut then the Jacobian &8 g0

20y, - ¥ (5. 4)

1 1f the volume is preserved by the

a(X\-’ >‘/V\) 3 (x\ - - )(V\)
olz,-- z2,) RDIGAEEE Y. 3(z, ~-2,)
Putting X{ = Z¢ we get the identity
1 2(x, -~ »x) ICY,- - V) \ (5.5)
1 3y, —-y0) 20k X

The Jacobian is

transformanion.

axammm

T 1 . o
e RN VRS R R e u A NN R AR S AN RSN AR RN RN A RAAE



Examnles:
_.._—-—-—a——'——-

Notations and translations

]—.
5, The canonical transformations.

- 1f we take for 72¥ the volume clement in X
% space TQ) becomes the volume element in the ¥y space.
ECx oo xn) dx - dxs
:f|<)<\(\]."'jn) '“'Xy\(\/,-"\/n)>
a(?‘\”')"”) d d
2 (¢ Jooom e
7."“3&3
(5.6)

~ different ways -

We can look at this in tw
1. by takirg the special cass £ = comnstaX we have

.

D(x % Ay dy, (F.7)

&X\"'O‘Xw :>
9( YooY, o D)

\We canconsider the Jacohian to belong to the volume

element andinteroret the equation

‘f(xl"xhj AX\ “dXh: ‘?(x'c)” ”"(V‘(\/B> gg;‘i:yj"n) dy."d.\jm

function

'f(xt (7‘-‘\/"-) . x“(\/\"\/n)>
(5.8)

as defining a ne®
g(y,-- 1) =
- ﬁ(x.-' Yv\)

1¢ - T is the transformation we can write

gy = £
¢ 9 Cy) = 4?('T"y§

T

L RLILpREEE] GEE
lliﬂﬁmmtifl’lllllillll[,}ll“IIHHHl]li“lnlnnlx-x-
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which is the transformation law for a scalar function. The
function 53(y} has the same significance physically as ;ﬁ<x)

as they are related to one and the same volume element

(X, -+-X,
dX"'—dXV\ : . . i ) dy M d]n
cht.'-‘ y-n) ‘
(ii) Now dx, -« - dxy as well as O‘j‘ - dﬂ.n

might have corventént geometrical and/ar ohysical internreta-

tions. We then rclate the function

. . (X, ~=¥n)
'ﬁ(x;"'xn> -,to ‘ﬁ(‘xl(_‘ﬁ'jﬂ) "XV‘(Y.”yh)) -a(f/u _":7‘&)

We can now write the transformation equation as

_ (X, -2 %0 )
e x) o, e = Rlem) 57
with
(X,""V\) -
(\m n) s (.-~ Xn) Olx,-- 7n) (5.9)
NCRAEER! o
where we express X in terms of Y ’s 1n R.H.S.

Now the transformation of ccalar law function law dees not

hold. The functions £G60) , 9¢y) and ‘\(j) have the

nronerties of density functions.

LY
13 REE SRR e T B I

PYLFUEL LD LTL DA FLTTEEE LT T
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Example 1. Transformation to Polar coordinates

We may define a differential cross-section either by
the number of a definite kind of particlés (par event) goins:
into the volume element dp\ d»PZ (Jloa {n momentum
space or by the number going into the solid angle element
and having momentum bet P and p +dp . We call the
first quantity S¢ PP P

We have now the transformation equation

> S(P.(p9) bk 08 pod) (R RR)

_ O\Pdadq«‘
2P, 2P, O3 2(p 6 $)
(5.9)
we know
‘ dp, dp, dp, poaon B dp d6 d¢
The Jaco»ian is
a(pt’PL‘p_?) _ 2 . @
= p).mo,;?) = ‘o An (R. 10
We now define
?3 S< P' (Ped)),PL(PEM)))P;(p&@ 2
| apﬁh bf’3 b as th& new cross-
section and revlace sin 48dd vy o SL
We have the eqn.
53S(P‘P1i03> ’i _ 5—2—(7"([39(‘{>> d{ A L
o p. o cp ld”(’td"‘oz - 5 P
Py 2P 0Py P 2

ST LIV I 11 T TS O WREEER LT L LRL L PV L ELEH T D D D L D L i e L
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where

Z}ﬂT‘(P © ¢Q -~ k% Ef’s;(kP:FE.Fé:)
BPBQ Bp.apmaPB

4 = sm0d8d¢

(5.11)

mais is an intermediate way of explaining the transformation

A

equation.

-Example 2 Lorentz transformation

ILet us choose the coordinates such that the axes of the
system Kf are pnarallel to the axes in K and their rela-

tive velocity is parallel to the X = anis .

The Lorentz transformation can be wirtten as

Py b’(p{q{s E) bls ¥(p-PE)
b= b, bl= b (5.12)
Pl * ',l! Pr - P‘

e = ¥v(e'+pp) e = we-fp)

We introduce now polar coordinates
p= psal s d
Plt P LB sin b

P3 :p&m@

T A 1Y 0 ¥ 200t r i rmr o i a sk 2 R £ £k ot A A At
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\t
v
Y
=
o}
'—J
4

We find TR and b

b= ¢

Hence
PCOSS: b/(p’cm@ +©E()
fsm QG = P' i G
b b
(e + B e O

m
1

(5.13)

and the inverse transformation
s ® = wlpwo=— ()
bl om® = psm O |
&'~ P
£l < Y(E"@F“ﬂ 6) (5.13a)

are the other forms of the Toraontz transformation.

For the transformation of cross-section we require that

the number of narticlew going into the solid angle element ¢ (0.

and having momentum between P and Frfdp by the samne as
the number of narticles going int> the solid angle element gt
and with momentum but p’ and p’+—dk' .

So the transformation sho>uld be of the form

;?k ZQQ_QF)SdQ ’d%)Cifl — é}€J<P(@'¢J)(iP/A_ao
B 2p 20 E)p’BSL’

(5.14)

S AR LN R RERERR N REE o una s NN RSN RS F R RO RN RO PR R L
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This implies that

r(pbe _ Sei(plee) 2D
op oLt op'an’ 2(p )

(5.15)

> (pod

Ve have to calculate From
o( p’.n')

Pﬂ)—-? pBd) = (PPR) (P b ) (P o' 4)
< ( . ( ( < 4 (Ptﬂr>

we use the chain rule,*-

% 2

2 (p) >py 3 pos) 2pp.p) DRRP) Apoe)
° (p' ) 2¢p0¢) D) o(p/ PP 2(p' &' eD 2 plsy)

n

. * olpp.p) 2 \
= St ; dkak i |
n O P—:_ <n O > <P/P~_.'p2,) PS\hO T
_opt o 2lpppd

p* 2Cp/ byt )

i 2 3

.t E

P =

O,L(nl@ =

n (5.16)
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Here we have used the resglt

-1
3<P! P. F’s) _ oP, 3 D&
' - “‘, - X ‘(’(Z 51)/
2Cp PR 2P )
<
&
= L;.'
So ) ;
o« (pn)  sin © >" e volpn
dptoa! ‘—<Ef;—@' e 2p >
Also
¥ (& ad Fo(p o) olph)
26 3 > p oL 5(e” @)
where 7
20 ) dpa) 2P0
D<E'QB - Xplqy e an
_oopt e dp
p* &' de!
. opt e &
e F

+
T
L
5
O]
S’

IR AR Y1y xxx = s e o maes

aaxxv sl

(5.17)

(5.18)



{ =~
olpsy - P S
NEED p*
and
* [
~ ~ Z,
D & >n' o Post &
(5.19)
Aliter:

£ +4
Tet PQ(:pb P.Y%.F3> be.the number of particles

with four momentum, - Let.fv: { PD‘F % and

pt do = S po+ dp P +d7

If we make a Lorentz ttansformation this number should

be the same.

NG a4 = NG 4y

But as the TLorentz transformation is orthogonal transformation

(rotation) in the four space,

(P PP
Po Pr P P3) B W Y L dp
2(p, pplp,)
so N(p)= NG behaves Like  a scalar

under Torentz transformation. We now impose the restriction

that the narticles has mass Yh
N Cp) g(ﬁim?)dﬁp = N(Pﬁ X(pl-nﬁ) dqp

&
=4 I3 bRl R ey e s PR SR N R SN AR NN RE R RER R R PR L L
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as the rest mass is an invariant cuantity. Integrate oth

sides of this equation with resvact to p_  from O to o

(NG St dpdp < (NTpY 8 dp, A

Spo+ € D+ 8 ©D

yaa .
e = prrmr

S ) =

: (5.20)
f %1 So we get after integration
3 43y
'C” [ - . d
N(E,p) 9k - N(e'pDd b
l= ! e
' ?; The form of spectrum in different systems centre mass system

Consider the model whers the snectrum has a single peak

- 3 . .
- P and is zero oth=srwise. »*
® APy

T

TR SRS 00000000000 =
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. ¥ oF . .
In the polar coordinates P 69 the spectrum is nonvanisn-

ing only in a circular ring at

|

-3
*
if
~
X
N
+
=
w
N
+
N
i
~N

We mve to consider thres cases

w» vrLb, @ ol SN O SRt 2

Case 1

When  u <@ the Aistribution in the lah system
<

hes been drawn below

| 31 § 1 BF B U e e —— .
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gince no particle ~7oe€s wackwards inthe lab system there is a
. 1
maximum angle 8 < "5 For any angle

ma X ¢
there corressond two momenta.one large and one small. The
‘largefmomenbu\obvijusly cm;respond to particles going forward
in ¢c.m. system and the small momentum corresoonds to narticles
going backward.

Now Sor a given angle © < Una,

dg 1

I

dpdb

e

7 p
Case II Woen (b= U™
\th decreasirg (3 the maximum
1ab angle increases and rcaches %} for E':\j*

and the ring reaches the origin.

S :
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So we observe two sevarate Poaks in the lab systen for all

Ll
) C /ﬁ . Opne is at~ | high =2nergy and the other is
i ., high . .
at p=0. As @-); the/gnergy peak is shifted to zero
/\U)( p)

=
Case ITI PLu*

The ring has crossed the origin pP=0 and (70

lies inside the ring. There corresnords only one momentun for
every anglc and there is ordyone place in the energy snectrum

for -cvery angle.

N

N
m:

This last case occurs whenever the narticles have zero mass.

For v =C and F(C’

==
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A general spectrum we may imagine ‘to’ ‘be’ composed
of d&Q{a_ spectra which however are Ro longer isotropic
in the c.m.system, W%We draw in the c.m.system ring shaped

regisns (not neces=arily circular)

@
' J

In the lab system the distribution looks as shown in the

figure.

I
The neak is divided into two[peak is not divided.

The differential c1 .ss-secction as a funcgion of energy

isP%ted below

f.BummﬁiﬁiﬁﬁﬂﬂﬂlIHHHHHHHHHIJHHHmmmm———— *******
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<1Pc19

t

~p " >

\(Peak c"w’\o‘?s))v

~uantitative discussion af the tran=-

We now carry through the

..r
formation of the ernss-sections assuming § - shapad isogppic

distributien. We describe in terms of momentum as it trans-

form like a four vector under lorentz transformation.

Consider the transformation

¥
P. 7 P
- ¥
Pa P2
by = w(px ™ )
2 P, + (5.21)
2 2 ’
» ¥ -2
R R 2 \
.EA ’:*‘ Pz="  _ 4 (where quantities with asteri<k

denote centre momentum quantities and those without asterisks

derote lab quantities) defires a sphere redius f>*

a S em the ean. > = 2
In the lab system the ean P‘ + P—._* + F3-y _ /‘
P

becomes

Pl (- PWEDN

| ;o(not
¥ loé’r
c*= ; P)"z‘t"?”ﬂl

t{)
16;:“ EESBRRRRE ciicg i pErioes rx
LA k ¥ CFFXEFIIILIEL 1z
Bk bk T1LE1 F¥LOElV}id R L1134 3T EAAEN
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So the sphere becomss & snheroid.

the, in
Consider Lp ne P. = Ps Jan &, 43' =

We have two solutions g = ,
3

for a given ©

b, b © ~(~__,_._~._—-§‘; e

| : 5 RS PELIFETES
. orers [Py OXEYEEED
Py 7 = |

eyt o ©)
(5.23"
The - © - angle is got when P~ b, +hat s when
w2
R - v Lt P
‘t&/\(\ 9 s “:'((5 5 ) ) U - ——E—'; (5.24)
-}l—l
or Yo @wo, = w_,____,.’\_f_,.,.———
(- v*?)
-
f@m@ - o0 when %:: e and & = VZ

R . N
There is no maximum angle when U P (é'

We can get the exnression for the angle in a simoler way

as follows

We attach to the 1lab system a fititious particle of the

same mass. This particle is at rest in the 1ab system and

has momentum  ~ 07 m in the c.m. system.
) . N . o :\
This is sern from the transformation 1"3 'K( - "' =)
Lot L - - - . -
P‘. S = o~ P"Z =0 2 ;/;3 e, y S

IR RSRER 1]}

DT TR LT e
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The maximum angle 6>mﬁy is given by the Langent cone
from the origin b = P = P, = © . to the ellinsoid
and in the c.m.system the corresponding tange t cone from the

noint — g [ to the schere

AN
)‘4-
p'
P
W
*
; ¥ R GO
- O 9 <97'Y‘(‘)() - «d,(z;m
We write
proa e = my T
> S
'K -
J "‘U’}LL
e . mu L oy
_ o 8 <9qu) = ([g ~ - X;—
(5.25)

This result leads to the following graphical contruction of
the figures.

Draw the elltpse and the civele corresponding to

the lab. and c.m. spectra. T> one angle in the lab.(angle
.bQ‘L’Lu'é'?'n P5 anis ard Ao ffvaight
e w o s.owvw oo o000 line leavigg  the ovigin )

-

=rd the corresponding two momenta (intersection of the ahove

stmight line with the ellipse))two angles and tw> momenta

correspond -~ ° .auch that for corresponding momenta

‘(.LQ co M powr orits - * a9y
P t, = P, alwavs.,

111111:1&3@335{3%@&1&1%“H'H.HIHIlH\IHHHHHHIHIH|”“[P—
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The me thod is an~licable

v

T W o R 7 T S D e e e Wi KK KR ER % mmLA w4 BN S L E b om ks xm e
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Can we actually 'see! the Torentz contraction?

)’A. ® _‘/'m@

g

v

X

We observe an event in two reference systems.

K’

K - the lab. system

- the rest system of the object

The Lorerntz transformation for an arbitrary four vector

x= T(x +¢t)

y = ¥ (5.26)
z = 2!
4+ = gy R
or
A x = V(Ax’-p(zzrt')
Ay = A v
Az = O

s 27( A4 -(—K;Q/V\')

A I B R L T DT R TR I D P E T U LR LR 0 DT ET LR
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Now the length Ax 1in the lab system ig defined through 4+t -=0
A 2 x(ox ¢ b(-kPax)
- Az B/<I“'Pz)

{
= = A X'
g

This is Lorentz contraction.
"\%

However, when we ‘observe  the object, the light pulse= do

not start at the same time, but are received at the same time.
Therefore the condition At=0 is not satisfled.
Therefore, do we ses anything other than the Lorentz contrac-
tion? |

What =~ we see

We consider a rectangular narallellopniped with length .QO
Q)_ . s0
breadth X, and helghtﬁL.HOW it is, beeosnssclear from the
following. We need not worry ourself about 'fa . We
at
assume that the cube is in flight/an angle /;3 = T—- A

We read off ffom the figure

by = s (pat, - 2=)

Calculate thb

Ay o= wo ot (Pt + tDoWd)

Ab, = ben?
(-POJ‘)V(

g

e iR R PR RLEE T v o rrsIne RN AR AR E DR AR LR R RN AR it
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Insert above

b o bo <{~—('C«o”67\

prl

wco’.s‘x)

i RIS Ao e o

FiNIay:
s b A Yy I AR IREETEE T L EEA I LAT I3 113 01 Pl I bl i1 i 111141011 1TREREE



When b > O

P o] the backside is visible
) (people see the backside)
\fhen kDP*°? L 0O the frontface is visihle

b OWien (> cos o

Length wise (lengthside) ¥:

9, = stme ((D oty +1)

A‘QQ, = s L <P<\th +Q>

. eosa
1*%@5%
g . sinx(Pfes +f -Pleosd)  gona
P ‘ l~§5107 A h L—Gcmux
¢ == = Js
ﬂo Si/h X ,
QP"’OI = b’(i--—ﬁuog = always /> O
Proposition:

The »rojection of the moving cube is the same as the

nrojection of a cube in the rest system. No Torentz contraftion®

I A a1
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For this purpose we consider the Aberration of light too (as

our aim)
@ - (D
R / "
o ) 91 >

acd i _—’I
N P A for, ¥
are th wave four-vector in (j> and (::) . From 5.26 we

get wnen © is the direction of observation,

L wead = o 5 (men0 =)
k ' = =W s G = — w =n O

J

' = b/(ﬂ(l‘{' (7)&)/3 e)

The last equation gives Doppler Effect. We divide the

I by II eqn. ahd obtain

_ B+ cos <m O
0039 = ; ‘ li/"\el )
- G O 7 (1-Peec©
AT w7 <|* @ Cod 9{)
o b+ oo © o sim O
p = ’ £un =
tos \ 4+ @ ws B > T+ coc )

w = w ¥ (‘ *‘(3 con E9>

sL e bESTERETY AxaEsssa
AIBAIBRIEATAESE A L3 22 LF AL 513115141530 i18LA31 sdirsazsnanm
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There we observe the body at an Qng-(@ © = 0 - o4 corresnondin

to an &ngle ©' in the rest system

Q | 9| (L"—COSO( )
= CosU =
7 L~ 5 con
/ﬁ.m
E /j‘ &h@‘ - &":/V\ °<
LEQRECRITRTY

s wx(l—(bmoi)

cog (TT=ot)z - con oA

, z sin (IT- o) = Sumad
Therefore one obtains with (2) and (3)

b b o B

H

7
- .I’!l]]I]]uumlmﬁﬂ;il}llllIllIl’llll],‘lllilll[Illlllllllllllllllllll-
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We see the cube at an angle T - X but the figure which we

see i the same as the one which would be observed'in the rest

system at an-angle Q' . One
€ 8‘ =0 when @ = ol Ko
YWnen E) ig very near 1, then o is very small

Wo¢5\“—»@fa' = Ji-p2

\ugusd = |- (31

Then

¢

w TP~ T w= e

At the angle the cube has its length turned »°".

Trom there we se~ more and more of the backside until it diap-

pears

e d
Y R 83T A A A AT TAFEEECELEELT LI L L L8046 L)L LIT 1% 15 k313 G rxexaasam
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II One can understand this also

The 'figure' travels with an electromagnetic wave .7 - - .

with wave vector

R - {w,g

and in every Lorentz system the wave fronts lie vperpendieular to h

9.
¥ew (we) get for any two*wog@points X, > X,
—,-
/_,\Sz = A{;?’— AN >t

We take the K-y plane on the wavesurface; therafore our

condition for the f'picture!

Az2=0 | At=0 0

AN “<Ax1 v '\\’l>

Liiiva
EFEEEEELIALIELLLET P I T LA LA hd F3 1 5014130 141 Lax e s ma
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However we could have obtained in the rest system the same figure-
condition in the v<- med coordinate system, since the wave-
points are pernendicular to the waveivector in every system.

/__\gz “»*(AX'--1 NN \/41> = - (AX’.‘”L\)'Z)

RBut As? is an invariant

Indeed the 'figure' is invariant, however under the condition,
we compare it essentially (with) a Iorentz cowvt. form.
The figure which we observe in the lab. system at angle Oz -
is the same as that which will be observed in the rest system at

—

an angle ©O' where 0~ - <A and ©/ are connected
by the :‘"Qbe{f“%oformula.

‘The light which will be radiated in the rest system in the
directisn of observation Q' comes at angle Q= M- K

in the lab. system

Sy xnnx
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III. TFinally we consider the effect of the transformation on a

differential cross-section:

We assume in the rest system, a body emitting isotronica-

1ly nonchromatic radiation o

]
/\y{Y

o

S
-

N

—

we have then according to (56.26)

R.o=v(k,' +Pow’)

Therefore the sphere will
A bx | T YA kw contract by a factor ¥

ellipsoid
G =

Middle point

b Z ‘! T Datés ~C/'\\)
", Mo - W F ( l+~G) forward in hoth system%ﬁz?\\m_/w/-~:
R TR T

hackward in both system.. -

MEXETr a2 = = e T A P e ;e
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hn,max + }?wav\h
2.

i
t|63/“’thercfore

f=r= _ N\ 29 /

N~ \\J\ ///

| TToeIT .é
S (NN

\
¢ -  —
WY
Part of the radiation (number of quanta-not energy) goes in

_ ! {
an angle ~$ ~ ~— ]~ 2 according to the
: A vt (R

above

The radiation which started out at angle N/, ap~ears in

the lab. system at an angle - %’j = Tps

Thne source of light which radiated isotropically in the rast
systom appears in the lab. system as reflector radiating all
the light strongly ir & sharnly defined cone in the forward
dircction (with higher frenuency) and radiating very little

in the backward direction (with lower frequency).
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1f we consider the fast moving body to be a distribution of
1ight points radiating isotropically 1in the rest system and
distributed over the surface 5f the body then the above conside-

rations hold for each there soints.
Therefore we | " hapnhen to see also a large part of the
radiation emitted in the paclward direction of the object since

in the lab. system it moves fyrward direction.

JLiE: s
AL R X B R T MR S XA XA X R AR R L R 61
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CHAPTER 6
THEORY OF SCATTERING

Consider the two »articles of four momentum [3\ and k,
being scattered to twd narticles of four momentum ’F; and —4(1
We use the convention all.-the four momenta p , k' P
ans K, are ingoing.. Ths has the advantage of taking into
account the cross reactions
Yo \ also as we can take any two oF
the four to be incoming and tha
other two outgoing with change
of the sign of four momenta to
P, represent ohysical particles.
In the case we first told we
have P and k. being scattergd to f&( and A:: where P '~ -P
kl:kz, {}l,_kl ) P;gnd 5 F:;Lare all vhysical.

The indenendent variables of scattering:

nout of the four momenta we can form 10 Iorentz invariants

“2 =
Thege are P, > F:’, l<‘l R P k, R P<1 )
PP Py L“. > P o <, kz : OQut of these 10
invariants . 7 o >

ll = 'P),L: m* > P“» e k"’— - “

are not useful as they are fixed narameters and so are not
varieble's. The remaining six invariants are indeed variahle
which crar be used to describe the scattering vprocess. Theyv

not al’lindependent as we have the four momentum conservation
requi _
equiirement P, * b, ko +k, =0

This . four-vector equation 1s equivaent to four simple equa-

thions. an the numher of ipndenendent variables reduces ©0 +-
& nly.
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We cannot select these twd> out ofthe-six arbitrarily.

Multiplying the conservation enuation
p, +p. + K +k. =0 (6.1)

by PP RORL Aoy ely
we have the four equations

b (Rt k)= ~pp-pp =M PR
b (ktkD = “Rp-RP =" PP 9

k\ (P\+PL> = B k\k\'kl k‘],.:— "P“L“ k\ kq,

b (pitrD = “hRk.- ok < -p- Rk,

From the first and second pair of equations follows

(P -p )k, +kD=0

(6.3)
(k)’hﬂzB(P-N}“Pb) =0
Adding and subtracting these two equations
2p k- 2p ke = © Lo pko=p ke
(6.4)

f

”LP‘I?L_,(‘ZP}/%,‘U )LQ Fi}‘?t:f%k»v




64

Thus 1f we take P1ko as one variable Pokq cann b
be taken. and if we take plkl as onevariable we cannot take
Poko as the other.
From the second pair in eq. (6.2) one gets
2
(ky + kg )(py + Pg ) = =2 = 2kqkg
Adding the first two 6f eq. (6.2) one gets,

(pp+ Py) (k¢ kg) = =2n® - 2p1p,

. 2
So, (-1/2) (k1 # ko) (p1+ p2) = 7 + Kiko
= n P1Pg
and 2 o
(1/2) (ky +kg)~ = (1/2) (p; +'Pg)
= p% gk, (6.5)
2

= B ¥ PPy
This shows that plpz and klk2 cannot serve as variahles
at the same time.
Also P k; + DPrkg = -m2>~ P1P, (6.6)

So if we take pjk; and ppke , then PPy cannot

be taken.S> also k, ko , since P1Po differs from
klk2 by a constant.
Thus we have to choose P1Ky and plkz for the
two variables.
The transition amplitude T (pl’pZ’kl’kz)

should be written as an invariant function,as the number of -
narticles is an invariant quantity. ©So T should be a func-

tio f two Lorentz scalars and .
ion of the tw Z S plkl plk2

[
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Choice of Lorentz frames

The most simple Lorentz

system is one in which ore of particles is at rest.

(A) Laboratory system. Here orne of the ingoing particles 1s at

rest. Bither P o o b = O
- -y > ~>
(B) Centre of mass system P+ R, = P + k.,
. - ~>, - ->
(C) Breit system k, + k. =0 o kR, = ks

We_shall calculate the scattering angle in the three different

Lorentz frames

a) Lab. system )

target sy
av”(:d—Q l)
, = (m, 0)
/ - - 7 . ,
1’\: (m) 0) Pll:- KEL\ ,P2_/> ‘q\ = (b)\ kl) kjl = (wz > Lp’.‘)
AN P ey -~ leb energy of the incoming varticles
™
¢ . Ppp' - Lab energy of the target narticle
<, =
™ after scattering
!
w,' = EjL - Lab energy of the scattered narticle
L ey

SN
!
J

L ilESE e e




Cos B = —
[kl Ik
{

P(nfl P"hPL _ k)! hL/

{

Jlokpr) (v = p2)

(pkXp k) = (REmM

- ( (6.8)
(PR )~ o) > ok )%

This can be expressed in terms «f the invariant scalars P 3
and P, ’?7_ .

(b) Centre »f momentum system

>

i
\W‘l

Y Y e ey 9 333 E T e LT XL T I P E LA L R4 02 11111 L L1 L E s aIsssnem



67

- —>
kRo+p = © , k. +) =0

(ko+p) = Ck'+p) =B

z { - )
QO\ +—il) = (Ldzj*"€1,> due to conservation of

energy

o (R VT = (R )

S g [M"—(mw«f‘][’v‘i‘(m‘”ﬂ
k- \ ‘ i 4 Mt

z
where : pql < <.P‘ + h.>

£3 we have found earlier.

We take (Fi +.k')2 S ( P!+ sz)z = A

as one of the two invariant scalars to describe the scattering.

(k‘* k’x‘)l = ZM'Z - 2wy +1‘E H?"‘ Cos Scm.
= 2( Iuc‘\. W+ kz s &cm >

Ly = kl 4—AKL
S

t

(ky-k.)*

We take + for the

pa kl ( Cos 9

o -\> =

other invariant scalar t- describe the scat-

» say ,

tering..

W= can exnress the momentum h in the Centre of momentum

AN 23 > xanxasamsnm nn s sx
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system in terms of s and t.

. - E/s - (m +MY“] (4~ Cm=p* ]

h ny, (6.10)

C. Breit system (Brick wall system).

—>

-
R4 R,

h%

. = T?.Pk’

R = (w, &)
ke

Je (w, <R)
Pz (€, B
P, = (£, Pn) (6.11)
Energy conservation gives
o, + €, 7 Wy + Ty
Dot since Wiz WL T oS
€, ¢+ €, = €
s that e l= 1Rl = b
omentum conservat}_.)on: N . s
R, +p, = p.+ Re
S Po-p - FS-R o= - 2k

= - T;’L-r F;’L = —p *p
180 - ©
(pox YR 4R = (28,42 ) (20,0) = 48w
+ = (k-kD" < (0,2%) (o, 2,72)
A S of the three

| momentum trancfer .
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we can now take (o and E ‘es the two independent variahles
to describ~ the scattering.
2
6 - L (P,+pbl)<k|+}?vl)
-t Sk +r )"
[(k, + k) (6.12)
The scattering angle for \hl particle is 180° by
definition '
The acattering for \p’ sarticle is found as follows.
2 - -
<F“ R = Zp (cos B, )
1 2 ¢ 2 ~
But (P, ~ P - ( Ry~ Ky ) ~ <, hence

e =
CAD&@B ~ + 2‘}))— (6-13\

't = 7»‘07’(0.)8(9‘3~\>
= ‘\E\l"’rﬂl

T T G T I AR R DL LR R A DD L E L E &1 3£ § 11 7



70

The Mandelstam Variables s, t, u.

As before, if we d> not consider the complications in the
scattering amplitude by the s in and isosvin of the interacting
narticles, then the momenta R( P, and kl , Pa comnletely deter-

mine the incoming and osut-going states respectively

We 1introduce the followihg three To-entz invariant variables.

A - (k’, i—P;)’L: (k. fPl)l

+ - (b xk) = (porp)”

w o= (kv p)t s (Rrp)”

and it is easy to check that

A‘V‘t +uw = 7_m1 + 1}"1

where m and (A are the masses of the two particles, s» that

out of the three variables s,t and u, >nly two of them are inde-

pendent. Now we ask what is the physical significance of these
variables. We will now see in the following that these variables
are the squares of the energies inthe centre of momentum sy-tem

in different channels of intrraction.




71

s is the (c.m, energy)2 if R,,fﬁ or b;, F, are

incoming; this we call as bhe s-channel

+ = (c.m.energy)2 if ( k. k. ) or o, P)
are incoming. this we call as the t-channel.
and Y = (c.m.enwrgy)1 if (k. ,F@B or <ik») p, ) are
incoming.

This we ca'l as the u-channel,

To be more clear, let us take a anecific examnle of the vlon-
nucleon system. If we denote the nion-momenta Dy h\ and kL
and the nucleon momenta by P, and Pz then the three di “ferent

channels mentioned above are given by the following orocesses:

T + N —>T + N . st 0+N T +N(s-channel)

T % - 5 N 4+ N (t-channel)

and T o+ N —> T +N (u-channel)
The scattering amplitude can thus be expressed as a function of
these three variables (though only two are indenendent). The
scattering am>litude T(s,t,w) can be proved to be an
analytic function of the three variables s,t, andu. for all the
values of these three variasles comnlex, negative,.etc. This,
1f we know the scattering amnlitude over a small region of energy

and momentum transfer, then the amoplitude may in nainciple,

be determined at all energies and angles since T—< s, t, w D
unet ion o F

is analytic. That T(si,y) s an ﬂrﬂhkch\ s,t, andu means that

the nshysfcal scattering amplitude is the limitting value of the

genzral function when these variadles become real,
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Mandelstam Triangle

We now recall an elementary theorem on triangles, If
9. > 9., » 9. are the distances of the sides a,h,c of a

triangle from any poiht 0O, then

03 4'5910 . CﬂQZQF‘: a’L\a—FEL\"’_‘FC%C

t

b and %C

are the three altitudes of the triangle (to the sides a, » and

~where ¥ is the araa of the tnzngle and Aa ,%

¢ respectively). Dividing by c we get

z 9 -+ E— gb + 9( h kc

C a <

Comparing this equation with eqn.
Ar t o+ w o= 20w +p7) (6.14)

We find that we need only t> identify

%— (-:fo = L 5 oy a = A ') gc -

h, = 2 (m>+p)

(4

so that any point in the nlane(s,t,u) =zatisfies eq. &.'«

It is serhass most natural and convenient t> take an equilatersl

triangle.

It is =asy to find out the vhysical region in a given

channel (sa,; s-channel) Wy studying the range of values which +--
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sther varisbles can take. TFor examnle, in the s-channel,

A = sg. of c.m. energy in the s-channel

i

(k,+p)* = ki tp- +2kp

- -
'+ A" +z(w£ - k- PT)

v

W ppE o 2w E 4LRT

h

> (mep)”
—-ﬁ —
b (0B ko= (SR L K= P
€« (B -k) = -2& (- w0
—_ -
(where (;;‘= ‘kx‘ = K > © <« angle between K, and_Ei

It is assumed here that the outgoing particles have the same

masses as the incoming ones).

and we know that

[A— (nq+ﬂ)i]i~é - (mfﬂ\i]

2

K ™
so that
Ca - 0 s - (fh~M5L7
—t - \LA (M-F/"\i (C&Q@~l>

and since <o © is rzal only when
o L esw
the two limits of t are giv-n by
~ 1 N':O
.tWM = o when G
ety ] s L B W

Pran =
Thus for given s, the ean. for H 1is a hynerbola with two

branches.

Now let us find out the asyumptotes of this hynerbola. We
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Physical regions of s, t, u = channels in symmetrical represen—
tation when m =p, Every point in the plane satisfies

s+ t+u = 4m*,

S=2(m2+ 4 2)

\'\ / @7
s=£rr\1+ & )2\\ Y,

The physical regions when m > 4 o
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Chapter 7, Phase space considerafions

The phase space trlays zn important role when we consider
o system with infinite numberrof freedom. The behaviour of a
given syster is made up of two factors, one arising from kine-
matical phase space, which has its uprer hand when the number of
particles with which the system is composed is very large, the
other arises from the dynamics of the interaction between parti-
cles, which is essentially important when only few particies
determine the behaviour of the systerm,

Thus we see that when the degrees of freedom are very
large, any process is more governed by kinematical aspects, the
4dynamiai aspects only alter some constants or few parameters
characteristic of the system, This is no longer true when the
number of degrees of frerdcm 1is very small, This is incomplete
analogy with classical statistical mechanics., In statistical
mechanics, the only dyemical rart is the weak Van def Wuals
forces. All the rest is Just kinematics, i.e. the consideration
of the phase space. The dynamics enter into picture only in the
determination of certain constants characteristic of the systeam
(e.g. specific heat, etc). Only when we study thc system when
the degrees of freedom are small (say when the system is at‘a

low temperature), do these dynamical aspects take their lead
over kinematical aspects.

In elementary particle physics, where the nurber of degracs
we cannot expect the phase-space to decide everything about tho
system allowing the dynamics to creep through only in detemmining

few constants. Neverthelcss, the considerations of phase spzce

sive us a statistical description of the system supposed on which
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is the dynamics of the system, so that any deviation from the
statistical energy =nd momentum distribution of the system
gives us some ideas about the dynamics of the system, .

Phase Space in Quantum Mechanics

It is now familiear that most of the physical information
of a system i: contained in the t-Matrix. Let us., =, "~~~
have é pure initial stute | £> formed out a superposition of
states forming a complete orthonormal bosis in Hilbert space.

Let us scy that this state is prepared at a time T when the
particles are fur apart and free and do not interact with each
other, After some time say at time T =0 , they all come into
the sphere of influcnce ef cach other.‘They remain interacting
in this space—tire region and then move apart with a di fferent
complexion (as a result of the interacction that has taken place)
after some time, say at time T. Let the final state, which 1s
again a stete (containing purticles which are free and, far

away ffom the space-time region of interaction) of free particles
at time T be lL’>> . Of course, the complexion \L'>
has resulted from (D due to the specific form of interaction
Our finderstanding about the dynamics of the system lies gssend: .
tially in our finding out what has happened in the interzction
region, Howcver, it is very clear, that the state L2 hes
resulted from the state lp} and therefore should be related

to that by s unitary transfommation (in the limit of T > ©° )

That is

oy = S D (7.1)

i3 R CEKALLEELE XX L
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S does not depend on the state [t > . It then repre—
sents just thc dynamical behaviour. Assuming that S is known,
et us calcul-te the probsbility of finding a final stete | £ >

at a time T . That is

v o< sl

« T

- eelsio)” (7.2)

The initial state [{D> is usuclly a two particle state

in clementary particle physics, while the final state is,in
general, a many particle state. The initial and final charac-
terized by z set of complete quantum numbers, say, four momen=
turn, spin, nucleon number etc. Let us mow take the simplest

case of scalar particles. Then
le> = \P\ ’Pl\/
> S\h Py Y (7.3)

TS NN A A

corresponding to a two—particle initial state and many particle
finzl state.

Eq.(7.2) gives the probubility for the two particle state (>
s CQead X ftwoug),\ scattevimg , to on V\-Par‘t\'cbe el

2tol l“ > e
¢ (7.4)

2
P (1—> £y = ‘<f’x"“"h'\5(l“«Px>l
op - dp’
If the number of particles is large, then even the knowledge

of & becomes useless, since the calculation becomes unwieldly
Even when n is not very lerge, it is usu. 1 to average out the

unwanted degress of fre-dom,

e LT,
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Suppose wc are intercsted in the momentum distribution
of one set of particles for all orientations of the rest of
the particles. We usually average over the things which we
are not explicitly interested.

Let be 2 well-defined set of final states
— c | 7
M 1 | £ >L5 (7.5)

Disregarding sny nomalization factor, the probability that

the #nitial state ({> pgoes over into any one state (£>

of the se¢t |= is given by
o S , | 2
P? —_ l <P\-~~\?"°‘P‘P~e>‘
fof "
- 4 (7.6)
2 (ot“n'nd P l(ﬁt-mszp. m(l -'
=
where | denotes the region of phase space in which we are
interested. We find that
\<P,'~~~P“’\5HJ.P1>|2
4 D 2z a
= 8 ( PL'-,')_&) S<P|{' Ph,lp\ P“,,) ll g([o’ —m-.
et (7.7)

where the function {5 ig no morc restricted to energy and

momentum conservations, Thus,
/P‘(F ol jd”p'/-‘ AH Ph, TT g (‘0‘17- VY\‘););L
S L p - ) S (pr-p/) Pir)

(7.8)
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The question is what therfunrtfon S 1s? The factorTT-g<\F1fﬁki>
has been intrcduced for ccnvenisnce. Since Tz is relativie~
tic invariant and the function S 1is invariant, the othker facters
have to be invariant too. Averaging the function S over

P P . we can write (7.8) as

(SR [

RN PR S A

= < !
s (Z P/ PoPy)
(7.9)
where S, dcpends only on p, and P,
and no more on the final momenta P’ . This averaging is

(8

justified by the assumption that when is very large, ©S
does not depend strongly on the dynamic deteils of the interac—
tion. The set of final states considered F , may be any domain .
For instance, if ¥ is restrict d to |

- - B v (7.10)

\ {P»o‘ﬁ}

1 )

and leaving it unrestricted in the other momenta, this will lead
to the momentum distribution of particle 1, specifying two three—

momenta gives angular correlations ete.

From eq.(7.8) we find that the dynarics is contained in the
factor S < b, - - Ph’\ P‘¢11> while the rest is just kine-

matics. This rest is called the "phase-space factor".
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[}

(7.11)

and ¥ is called the "rcgion of phase space"., If F is de-
fined in an invariznt wey then Ry  is a relativistic inva—
riant. If there is no restriction on the range F of

integration, then I? is called the "phase~space integral,

Sec, 7.2 Statistical Theory

In the last leéture, we saw, how when the number of parti-
cles is large, the dinamics gets =veraged cxcept for one or two
important pur.rmeters. The whole dynamics is contained in the
function., S < p,‘i.- Flﬁ(\ P T%.D . It is reclly diffi-
cult to know what this function is. However, in most cases,
even,an approximate idea of this function may give some insight
to the physical problem, Or at least one can understand the
peculier behaviour of the &~ function by observing its deviation
from a smooth statistical bchaviour, -

In most caoses, what we want to know is the total prob:—
bility for an n—particle final sti.te, and the momentum spectrum,
of the particles. Let us assume that all the ny—particles are

of the sume type. The probability for v\ particles to be
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present in the final state is

P |1 S (p7- ) @'
T s erenen) (R R RR)

- S, ({‘% S(p=m?) de—j 39(?}; ELR-@

(7.12)

wpere we denote by S, , the weighted average of the S—func-
Eib; S ( P P | P, P,‘> over the whole phase space,

It is clear that S, is a function of m (the number of parti
cles) so that for sufficiently large ™M , the interaction will

not have a big influence on this function (except when m is very
small).+

The momentum spectrum of any particle (say particle 1 in the

final stute) is given by

P(FNLR < S, (

’
- o
‘

5
(1 sCptmd) d*p:
T S(E )

B P . . . .
This is the basic idea of Femi's statistical model.

Ref, E, Fermi Progr. Theoret. Physics, §, 570, (1950),
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By noticing that

we can write (7.19a) as

|
P(g) @ < S, (P 2P

2 &

g ‘ S(p=m d'p S(A_P_,_uv.h»)

-

d?>p\' ggh ( Eﬁl> g?h

(7.12v

_ —

The average S. <t2') now not only depends on WM but depends
s—*

also on 'P‘ . The phase-space integral does not depend

~on the vector ﬁ; but depends dnly on its magnitude if we

choose the over—all centre of momentum frame., The dependence

-
on direction P, /is essentielly giver by S. . The momen--

tunm disgribution of this singled—out particle

oy 3> d
(B ) d*p ¢ S0 ) f f R
= (7.13)

where an average has been performed over the directions other

than that of particle 1. The kinematical factor fp(tl T?“_\
essentially detemines the spectrun, The range of =’ 1is

given by
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Z { E - (m 4+ - L) é - rY\fl

(7.14)

The equality in (7.14) gives the raxirum value of ﬁ?

We can only szy th-t the phesc space factor already
contains az cert-in arount of information. The influence oOn
the dynamical aspects bocomrs less important the more we averags.
Thus, the study of phasc-spuce fictor is worthwhile, parficularly
when not too many particles are invelved., The phase space
factor gields 2 back ground (the behaviour of the system when
the matrix element is a constant) {rom which every significant

dynamic property should exhibit itself clerrly.

Inveriant and non—invariant phse-space

In the last section we saw that the probability for

particles to be presént on the final state is

— v AE“i, )
Poec 5o (i TE (S~ er)

Invariant Phase space

e T & 83y - p)sREE)

' J
- I

Non-invariant phasc space

(7.15)

It chould be noticed that in the first step of Bq.(7.158), o
( ‘| X

the function SO B e ) ie cveraged out and Is

eEETET SLETIELFEXEE L AL




taken eut of the integr:1l sigr, while in the second step of

Eq.(7.15), we have =1lso teken the mean value of

ij\ ~ -1 -

Lj»l C ) ) (say)

,Q
W}
TN
ol

1H

Denoting the product

S, (7.16)

N
5
N
i
e’
(
i

we sce that in the centre of momentum frame two egquivalent

description er.erge.

_ - =1
< =S I = .
Fx\ =< “h ‘2\« - 5"\ <!‘(:.2\LL> F\»\
- 7
= Sa 0 (7.17)
We sece that while both S. and ?»\ are independently
Lorentz invuriant, only the product S,/ e is Lorentz

inveriant,

-~ and S, , and those of

n

|

%)

In addition, the dimensions of
?h and P»\ di ffer by a factor (Q‘P\Cfﬁy)“ as is

obvious from the very definition of S, and e A

rough estimatiom of this factor may be obtained as follows:

y
) - T
<H 25;) ~s <Jl 2E; )

<
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T 2. ~ 2™ TT E.
. L:(
(W

Here &. msy be culculated from the sssumption of equiparti-
tion of kinetic cncrgics,

Y\
— ~ 3
E. ~ m. + (G 3 )
430
.
Thus the invariant phase space T?h is defined as

[ w
R,<P)m,)--~mn> = j‘ﬂ dqu S( Pf—m?)

[

n .15a)
gq(z b - Pt,-t,n) e
jov 4

. ™

where 1 Lis the total four momentum of the system.

[t

The non—invzriant phase space f is defined (in thec
‘l’\

C.M. system) as

™M 's

g)v‘ (E)m,mh> = (ﬁ dl\i?k g<G “J’ie_f) %3<ZF\>’>

"

(7.18

where [ is the total c.m. ere rgy of the whole system and

£, = \/H’_\: ll A

is the encrgy of the particle

‘
-

Fermi has formulated his statisticzl theory in temms of the
non—inveriant phase spacc

¢ . It is, however, more custo-
n

m.ry nowedays to use the inviriant phase space both in statis—
tical theory c:oleculations -nd in finding the back-ground from

which the dynamic properties should exihibit themsclves.

As
ro0n as. one sticke to oo, frame,

both o geriptions becoma
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comrletely cquivalent (except for dimensions of }?h snd f’ ).
L 2a}

It should be mentioned that zs long as we wish to use the

relutivistic fomula . = J \E% >+ om0 for the

energy of the particles, both thec fact that these integrals beca -
very much complicnted when rmore then thrse particles Lre involved
Analytical formulas can be obtzined if either of the limiting

cases,

— 2.
m . + UZ;L. non~rclativistic

/8 - QW\
<
™S4

ultra—~relativi:-
tic

is reached for each particle in the intcgral. However, numerical
integrations ars simpler in the irveoriant phase space, because
the Lorentz invsriznce lec..ds to o recurrence formula, We recall

“the definition of 'R . the inveriant phasc space (7.15a)

Let us now separate out the V\ﬁ‘ integration from thisy we get,

'Qv\ (P) m‘,v'" m“-)
- ﬁ‘ﬁ ap, SCIF - m;) s'(S p, - (P m)”;
1 1
6 (p-m)d b

=\
J

- 8(}3:" m,.m} ‘j% V)Y\

il
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when the two fasctors inside the paraznthesis arc by definition

R)n—\ (CP“P“> AN W]h_\) . Hence

@,&P; M-

>
Mﬂ) = g i;’;\ 'Rh\, <T=~ PY\ ‘,mx-nmn_')

where we have used the relation

" We now use

cm sys tem

Using

S(p=mr)dip, -

—
the relstivistic invaricnce te calculate ‘.(<“ in the

3
and ‘<\ﬂ,-\ in the systemn where

(P-Fa)= (&:0)
c (p- ph?l : (E-Gﬁ7x‘<g>~\::y

= <E"Gn)l - \-T;:ll

it

= = l?nll +om

we obtuin the recurrence formula

w. (e

™, --- mﬂ

Q \—‘5 \L'\'V\’\x
Pv\ o) W‘\,YYM,‘_, mn_—\>

Jd’ = ,
( = (P\w—t <\/ EX 4= 2€ \m )
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To start with. one may define o single-particle rhase-space 1n

its rest frame as

- £p S(e-J1pr o) 8 (R
Roo: e EE

& CE—m)
h 2

(7.16c)

Quite similerly one can czlculate T?.L etc,

Sec, 7.4

Invariant Mass Distributions

We saw in the preceding sections that the deviation (experi-
mentally found) from the statistical unifomm behaviour of the
function S <: b .| b, (1L> ~ could give us some infor
sotion about the dynamics of the cystem, In other words= the una-
walous behaviour of the function ‘ng may give us an idea
about the striking and dominant dyhamics of the system, We ghall
now discuss (the striking exemple of the discovery of the
@ —meson) how z dynamicsl property of a system exhibits itself
from the background of pure phasc space.

Suppose, in o process, v particlecs are present in the
final stote. Let us divide these mn particles into two groups.

enc containing @ particles (Q-< W) and the othcr contains the

rest. Bach group has = tectal four momentum and rest massg

s s = .
s AEARAAI AT IAI MIIIEEEEE LA XN ES L LA e 1 L1 T 1510 1L 13 MeW




n
- . 2 kS
(Pn'/q ) LS:;Q+‘ PL ) MV\‘Q ~ TDVX-—J

(7.17)

If everything is governcd by pure phase space what is the
probability that the square of the rest mass MQL lies bet—
ween M’ ana M* + dM* 7 . For this we will have to cal~
culste the mass distribution. If this mass distribution (which
we calculite from the phase space) is compared with the experi-
mental one, any significant deviation has to be interpreted
as an indication for a dynsmic. 1 irregularity.

We now calculate the rass Jistribution. oince

Sy = | 8GeadB(zoy) d=

b
™

, can write ¢ ( S p. - ’P) as

J
(> p-P)- So(," P, $( P (P-T)

J=Q+i ¢

8L‘( PQ‘ Jz: P)

\ J

and obtein

K. (Pim, - ma)
pod “f 1o~ _ > ) ':“‘ 2 a 4 i
§&<' ¥ Pi“PJj[bJ%(Pj ij& P
2 , ,
s Cprem) 4 4

~
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Introducing & factor 1 of the fom
oo v
b ™
[~

in (7.18a), we get
Pn (P RALE "‘mvx)
N 4 =3 ST S m~)
d M [S 6 (P- PQ ',Z—.(JH P)) ]l e+ P
5 (P -M,") d"pjd“ﬂ

H
ov’\g\

e[ §setre 200 T stpmey ate |

(7.18b)
This is a convolution integral over two invariant phase space

_ integrals and therefore we have a gencral recurrence formula,

R“ ( Py, - Wi )

o2

(7.19)
= ng)Q <P Mmoo W.»,\B !
o ’QQ< DQ Tm -~-mg>

RY\~Q’+| (P,’ M, mo, o mv.) describes a situation in which

there are wn- Q particles My, , - Yh with one
*Jurped’ particle of mass M = ?1,1 (representing the
syster of particles v -~ 77, as onc single kinematica

CESERFRENGIE SN INN SN NGNSV NRENRSRERNNY

L4
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object) .

IRQ<Y}j m'~~rnp) describes the int<rmal situwation of
the 'particle' with total momentum F} which is made up
by particles ™, --- My | 1q.(7.19) alresdy gives the
mass distribution. Because TQY\ (Y33 Y, s My, ) is to be

considered as a simplc constant, wc ray divide by it and obtain

?w~Q+\(P;TqJWWf\r"“Tn) ﬁﬁ <T% :Yh,~w>ny>

A
i
o Ra(P s, - ML)

— '\ - (7.20)

from which it follows that the probability distribution

P(MYa M7* is given by

Pr)aM* = ?a‘Q+\QP;M>“%+\"'WN)I?2<PQ;”W”'MJ>
R, (Psm o) (7.21)

The general fomm of the mess dis tribution (7.21) is clear. It

becomas zero at the two limits where

2
M = = 2. g

- =
i

(

“

(1

and where

Moeom, - B2
J:,Q«H
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and is positive in between. We expect the distribution like

Fig,(1)
(),

™ . l“’l |"1‘ & M

The W=-meson has been discovered in this way. An experimental
histogram of the mass distribution of 3 pions with total charge
zero was compared with the russ distribution (7.21) and a sharp
pe:k like the one in Fig.(1) was found. This is then interpretcd
as an unstable bound state of threc¢ mesons and called thectimeson
From the width of the pezk one can conclude that the life time

is o~ \o"ll‘sec. It would be hard to observe such a particle.

directly, the deviations from pure phase space have lead to its

discovery.
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Se¢.7.5

Production of bound=-statcs in high-energy collisonst

In the second. ry beams.emerging from targets hit by high
energy ( = 20-30 Gev) protons onc observes deuterons, 3 and 3 He
of surprisingly high moments, Until recently, it wazs nd clesr

whether thc elementary deuteron production of the kind
b +N = d+ pions + othirs

would be of any importance :t =11, Now its prescnce has been
estoblished experimentally in a hydrogen bubble chamber by

B, Sech.i—2om at Brookhaven(l)n The experiment was done with
2,0 Gev primzry protons and gives a deuteron production cross—

section in agrecment with the onc predicted by using statistical
e ( d+7)
o (d+2T)

theory for 2.3 Gev primary cnergy while the ratio

is experimentzlly sbout four times smaller than the one predicted.
In this discussion,let us limit oursclves only torrocesses of

the kind

bap - d+ G- T (7.22)

We shall make the hypothesis that the statistical theory is =z

suitable tool to calculzte the production of compound particlcs

and derive the consequences of this supposition. Secordly, we

shall critic.lly discuss the validity of the statistical theoory

in this particular case.

(1)B,Sechi-zorn: Abstract Washington APS Meeting (April 1962)
Bull. Am.Phys.Soc.7, 349 (19 28

+ For s full discussion of this thcory and further references sef
R.Hagedorn. Nuovo Cin,25 (1962) 1017.

IR : =
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If such a bound statc cf nass FT is te be created in »
very small region (L of intcraction, then it must be cfeated
in & stcte of cxtr me contraction. Let q/d be the wave func-
tion of the deutercn. Then, the probrobility of the deuteren to

be found in the volume (L is

|, GO LR

—

Thus, if {)} is the "natural irteraction volume",
3
q —
~~ ——
L 3 ( P

then for the deuteron production one should use

_ €U )2 —~ . él;
Ly = ﬂgl%' & =Ry (7.23)

where VA is the deutsron volume,

Intuitively the ideces is that in a nuclecn-nuclecn collidon.
in which severul particles are rroduced, two of the final nuclsons
cun emerge in o bound state onl: if extremely favourable kine-

matical conditions are fulfilled. Namely, the binding emergy

of the deuterm is so small in compariccn with the usual kinewatic
‘nergies of the finzl particles that one feels it will not be
%; strong enough to bird the two nuclecns together, except i1f they

zecidentslly are created in states of almost eyual momenta-such

I TH I TI IV IR FREREL I 1 1 g L1 1 T L L 4 D
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that they fly ne-rly p:srallcl and with practically equal veloci-
ties and would-(should therc be =z binding force or not)-stay

near together for same time in any case. (See fig.(2).

The conditicn for this is

|G | -rfva\rnQ,

that the relative morenta
are small, thcy must be
conteincd in that region

where the monentur distri--

bution of the nucleons in
the deutercn is essentially
Fig (2D
di fferent from zerc. From
this point of view th< phase space governs essentially the sitnun-
tion and only in those few cases, where, z2lready for pure stut's -
tical reasons, two nudlccons happen to stay together, can the

small force betwern ther come intc action., Either it le ds thmn
not to a bound state—this case is contained in the statistical
wcight for fres nuclecrs (which coccasicnally might have smoll
relutive momenta) or it le ds tr a bound state. As this latter
case s#rises, from the camc kincmatical situstion #s the case of
small relative moment in the free nucleon c se, its probability
can be calculated by determining that part of the total phase
space, in which this Finemsatic:l condition is fulfilled-but, sirce
it describes a bound state, it is entirely something new and has
its own statistical wcight as & new channel,

We now calculate the prob. bility for two nucleons to emarge

with . small relative momentum. Let us fomulcte this here
using the inv.riint ph-=ce space description (discussed in earlic?

scctions ¢f this chopter) which is more elegmnt.
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The invariznt phasc-cpace density can be written

‘:Y\< { )l"!,"""'\)
)] 2 b S ‘) rn.— d(' r,) .15 )
- & é(‘ ( l J’) 'l-l - ( < - < } ¢ (/

where 12 is the total four-momentum of all n particlss,
Let us divide the particles irtc two groups one with particles
C= by - Q , the other containing the rest, In the previous

section, we saw. that in the overall C.,M.system we can write the

recurrence fomula (7.19)

(Pw,\ Goom o mv\‘>~, g dMl QV\;Q+\‘ <M1 My 7 mﬂ)

(PQ ( m t T m/e )

We apply this formuls tc the case g =2 ; ™M =L m

MQ = M . Thsn with E = ’ H;\ \L+m1 we obtszin

LF IR
‘ \ = s \).L.b'\ , @
R,L(m , M, m'z_’) = §&< ™M \(L‘I‘Llj) S( PI \P.,_> m?
L(” g g (M \E‘-Gl) p‘Ld}o.
- ! L‘{G\GZ G.t;; \\\/ :—}i

S cEELEEREPLRREEELEE LIS IN RN ARSI -~~~ -
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where we have used the relations

&, de‘ = p' dJ?"l

—y - o

P| = — Pﬁ' - ch

E:\ = bl = L:Cm
Hence

ﬁ%,\(e o, - ) 2 T §<OLM JML~(—4m"'> Ry (Mg =m L 5E)
L

(7.24)

Now the invariant mass of the twe corsidered particlesm, and M f
is ?

M7 s (GveY — (B o+ B

NS L (mt 4 \?3:\7“)

L3

(7.25)

-

if & and r§ .re t:ken in the two body rest frame, Thercfcre

ws obtain the formula

e R
cdp o
Rt ) = [ B (0 ms ) e
O

where P](p> is given by (7.24) We ncow picture the producticrn

of & deuterm in the followig way.




We introduce in (7.26a) a weignt fictor  § () for the

P integration, which limits [? tc those values which are in
accordance with the deuteron structure ( p is the magnitude of
momentun of cither nucleon in the rest system of the deuterons,
As the two nucleons corsidered stny near to each other because
of their limited relative momentum, the nucleur forces between
them can act, whilc between all thé other particles they do not
since these particles rapidly re .ch large wutual distances,

Thercfore, in the cnergy balances, the potential cnergy of these
two nuclecns must be taken into acccunt, This can be done roughly
by replacing

My — MR+ v ) - M

where V (p) is cssentially the Fourier transfom of the
potential V(v) and V(}O) é O fcr 2ll reclevant momenta .
With these two.changes we obtzin the "paértid phase space”

for deutercn production

% RV‘\ (m\ AL ,E\)
£(p) p*
Roo (E.My e wmy) G ) s

(7.26)

\d

*
Here the function f??vw <\ﬂ4 Py .. > has been taken cut

of the integral at some average value
MR < MR+ VIR)
This avergge value should clrarly be the rmass of the deuteron

qu> . It remains to cvaluate the F;-integral. Let the

structure of the deuteéron be rcughly described by

SEE USRS AEES LRSI RN S NS AR RN SRR R R S | .
U
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A

VAN

It does not matter in this consideration thzt this is a bad

wave function. We define the volume of the deuteron by

Vg = 4 ("L exp <‘{YTE)°""
- <er \rf>3/}'

The corresponding momentum distribution will be governed by the

Fourier transform of r%/'z namely

Pi
Pl s exp (- )

With this —F(~p§ we obtoin for the integral (7.26)
00

2 Pt
47§ Poexp (- Z/ ) 4
° \fplwtm‘
~ 2"" 3/1' _‘_.
~ (2] L
o G
) E vy
Here ég

. <> kS
is some mean value of \/‘;:#::;;* . [As

extends from zerc tc about i/g' only, we have & ?!fh-]
Therefore,

SR, (S = 2R (M e )

o (7.26)

A N SR AR AR R T 1 A LT L1
-
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We now consider the prcbability for finding w particles,

two of which are in a bound state, this is given by
P, (8 = KOSR (m e (7.27)

where K is a certain parameter which plays in the formalism

U

with the invariant phase space, thc same role as the interaction
volume ) does in the non-inv:rient formulation. From(7.262)

and (7.27) we get .
o N x> 1
Ph 'd (E> = K“ —é.: \/A PH‘I

_ ' C(7.272)

= K l<d th

i K> (2’
kg N =
= \/o\

K, is defined by this equation.
Wg now translate this tc the non-invariant forrulation. As the
cazlculated probzbilities must be the same in both discriptions,

we have quite generally

. £ >V‘
'Ph = KK " = < (?ﬂ)" P

n

S\" <=
Incidentally K" and 62;;;) gt e analogues of O
and S respectively used in a previous section of this éh;r~

-
ter, The invariant phase-space K. =nd the non-invariant f;

are rclated tce emch other by




= 3
’ L d’p --d e,
R, = S sT{P- E%;; P ) 2, - 26,
G f;—)
SR §g~(P~ZP;)d3Bl—O' .
T 2 €

\
(5

The &: uare defined by this equatior and physically they =re

moun energies cof the particles. This, if different scrts of

particles are prescnt, lezds then to the correspondence

K:‘ »S\LC

- - >
2. (éW)
Rewriting (7.27a) in the non-invarient fomulztior, we obtain
with this correspondence
n-%
3 -
v, d <2W) <2ﬁ)3 el
(7.27b)
3
(2) KJ
Qy 2 =
L&y

(2n)® (2+)° K?

Since E X » was the average energy of a nucleon in thc
deutercn while Gy is the average energy of the deutsron in
the c.m. system of tho yvi -particles, we have roughly

Ed::’l

M

22 Lvn
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The deutercns are non-relativictic in the c.m,) Then, using

again thc corresporndence between [ and <L we cbtain

{

v, (7.232)

2. &=

_ PR
= F o \/d

With . being the natural interactions volume. The con-
sideration just carried through sims rather to show, if the
statistical theory (with the above deuteron interaction veclume)
giv es unexpectedly large numbers of deutsrons in high cnergy

P- P collisions, then this is not in contradiction with
the intuitive argument that the deuterons will appezr only if
the kincematic:l conditions faveur it. In fict. we have just
shown that the quantitative fomulstion of this intuitive
argument leads to evsctly the fomuls used, Then the unexpectadily
large number ¢f deuterons (in experiment and in c.lculation)
only teaches us thot our intuiticn is right, concerning ths
mechenism, but it is wreng in guessing how often in the sversgs
the special kinematic:ul cenditions - re met,

For a detailed -ccount of the computation made =znd fit
with experiments the rezder is -dvised to refer tc R,Hagedom,

Nuove Cim,25, (1962) 1017,

CLIESE A A AI ISR AS PR S LRI RN R FI LT 4 41 VL1 F 110310 teaaw ——
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Sec. 7.6

The Dalitz Plot

In the technique of the Dalitgz plot, one looks for the
deviation of the function S( P - P, ik, p. ) from 1ts statisti-
cal behaviour. If there is ar anamalous behaviour (by which, we
mean deviation from the statistical behaviour) of the function S,
we may be able to say something about the structure of the dyna-
mics. This method has been applied with success to the case of
{3 -meson, for example.

Let P.o= (l§¢ ,'BC‘) be the four momenta of the

three pions in the decay
o =+ gty 57 4 40

The differential invariant phase space giving the momentum dlstri-

bution in the (3 -rest frame is
AR (M. moma)
— ~ — 3 - — -
= E(ﬂ4-ﬁbvﬂru+bgb %éC ﬁ'*&,+P}>

- 2 > E
d?r)| O‘Jpz. d P_?
TR &, (7.28)

where M 1is the mass of the (O -meson and E., E,, B_ are the

1’ 3
energies of the three nions coming out. The energy momentum
conservation tells us that
; - N N
Poot P o+ =

-~

O
E+b, + &4 = M (7.29)
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The differential invariant phase space given by (7.98) depends on
three momenta, that is, nine variables; while (7.29) outs four

constraints on them. Even then, we are left with five variables,
namely E

Egs E5 and the two angles between the directions of

1’ 3
three pions in the final state, for examnle. However, one may
reduce the number of variables by intesgrating over the unwarted
informations.

In the Dalitz plot, what one does, is to integrate over

the angles and considers El’ E2, EB as the threec variables., 3By
equation (7.29) M = El + E2 + E3 y SO that of the three El’ E2

and "Eg , only two of them are independent. We want now to
calculate the distribution func¥ion of any two of the three.
energles (El’ Ez): (say). TFrom (7.28) by integration over =5

we obtain

d6R = % (M- (8 +5.+ey)

Sy = JTE; 2 +m™
«M; +—f3ijl+mt (7.20)

B BT T

mass of the pion

d™p d”p,
FE, 6.5y

Rlene +m>

=
i

-
il

_’\'

angle between the directions of P,
»

and P, N

Now -3. and fi are arbitrary. Replace now d P,

by ZTTPJ‘d4a_d.(an(b) and perform the first angular integ-

ration. Sihce the second angular integration is not going to
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——-).
depend on the direction any more we can replace d?’ P. by
47 £ 2dp, . Hence we obtain
. | M~ (& +E&, 4+ . -
4 R - ( BUM-CErearin)) o bX i B b d (oo d)
T, 6y
- il o _ \
) ' S (M-&-6.-%:) p R &6 dEJE,
6,6, d (cos 4
since
P.dp, s &.dE,
P Ouﬂ = €.dlk, (7.31)
- JIE 2
:f"m
( (—3" and Ei arbitrary).
Then

d* R = S \'\‘ PP, S(M—EWEL—E3> dg\(JGz d (con q“>

g“ PP, S <M~ G,\(_«,,Gz)de,dGz "'(““”)JM

(7.32)
Now
q M - d (G, + G, +E3)
d ce o O{. > S c(>

w& -~ d <\[l‘5|} \l+ l _l;::\q- +F2P,P,_co&4> *+'hqr">
o o4 o Cosd

= : : = P Pl (7.32)

- 2. - Z Pl PL -

i=
‘\fz
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Thus, Equation (7.32) becomes

2 N &
(33 plP}.
= T* dE\dEz
(7.34)
Thercfore, the probability distribution we wish is
P(E‘\@u)detdc’l =~ (comw) d/E"tOVEl (7.35)
That 1s
&, &L = constant independent of
PCE 3 - (7.35a)
By and EP .

If we now nlot the experimental distribution against a constant
distribution, every deviation would be due to the matrix elemant,
1f we could be sure that all events we use to plot the experi-~
-mental distribution are coming from genuine <« - 3¢ decay.
However, there is always a considerable back ground of (37)
states which accidentally (from oure phase space considerations)
have just the mass M., ;3 these are those 1ying below the
statistical curve. Any significant deviation from the constant
(B, By) distribution can come only from those lying well above
the statistical curve. As for as the &S -meson 1s concerned,
this was 1n fact sufficient to determine its svuin and parity with

a rather good reliability.
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The triangular plot.

Instead of plotting only E;  and one can as well

™
,_12 bl

plot all the threec By, By and E3 with a constraint El+ Bt Tg=1

This is just similar to what we did in the case of Mandelstam
variables A +t and U with .6 ++t+ U = 4n2. In this

Dalitz plot, we choose an equilateral triangle of hight
M- 3m = < €. % &+ 53) = 0 (say) where €, = (F-m

are the kinetlc erergies and Q 1s the total kinetic energy

1

R

o

2
Any point in the triangle can now be characterized by
the three distances &, , &, and €3 of the polnt from the
sides. Alternatively, one can introduce polar eoordinates as
well. At the centre of the triangle €, =&, = &, = q%é

Any other point can be snecified by 1its distance f’ from the

origin and the angle 4) given by figure above. Now
f\f g("}'PC’OSQ{)»)
3
2o S(1e e ) (7.76)

€y 7 %(!+F@S+>
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where Cb: ) cbl and <#3 are the angles which the

vector makes with the three medians of the triangle and
R e L N
Then where do the physical events lie ? There should be some
boundary within which all physical events 1lie. Let us now find
some restrictions on the distribution of events inside this
triangle.
No physical event can 1lie in a corner of our tri-
angle, because this would mean that ©, =0,
€, = &; =0, That is, particles 2 and 3
are atfrest while narticle 1 carries the whole
energy. However, this can not happen, since the

: - - -~>
momentum conservation tells that potp, t P, = 1.

We shall now derive the boundary curve outside of which no evept

- can lie. From momentum conservation we have,
- - \2 - \*
P, + ra P

- - 2
P

pUE R T2 R s B
qu_g,p,‘l‘;o}l - Q’O’}Dz Cos ©

4 p""pll o™ O = <P12 {’P—,,L""F_;' )z

Since s ® < 1 for ohysical events, we have the irequalitv

(Pl’z + P: _ P;L>i g L‘ P’? P,_z (7.37)
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Also we know that

p.z': .- =<8’\:"‘”">2 -t =g 42mE

(9

Equation (7.37) becomes

4 (Ef+2m2.>($:+2m 8L>

> [(E 2 42m e )+ (Bl +2mE) +(€:+‘Zm€7j).

2

That 1is

Zl [(g‘£131 +L|M'L g'{"z. +Qm€,£z(§, -—i-é-,_)]

~+ 2 a
% {Q oy E:LL _(_Q:' *2-*“(&*5;*52_)! (7.28)
Now
z 2 '
£l wgl ey =(Ers ) - 2(g, 5,4 €, 2+,

2

i

Q - 2(T, %, + ¢ 2N “'*‘83 gn)
T : |
<.f, - %[“P(mw.+cOs¢L>+f1®SCh'WO"J

€r 2y ° 9—-[!+ e (s dy ven §) 4P s gy o8 ]

™

a
¢, ¢, - 4

- ['I‘f Pes ¢ +cosd,) + F}Qﬁ<b605¢(}

o
RR e A LT g [3 *ZP(Qﬂ‘h'*@w41+ca:¢>
+P1(C/0§ &, o5 + CoS $_ cos ¢y
tews ¢ cos4>'> ]

- Ifaee) « (0]
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(7.39)
since o
os & + oz b, T <o ¢ =0
- ?y
ot Cos b+ casd o +°os<{>w04>, -2
Finally we get for the right hand side of equation (7.38)
2
. 1 \
R .
E) l + S; '+':LVV’QQ
‘Thae left hand side of Equation (7.38) becomes
a . 1
4 (€ 41m )T, +2m E,)
cfere o i e
(7.40)
.
substituting for (& 2 +& ~€5") ana (€, +&,~ &)
from equation (7.36) finally we get for equation (7.38) (for the
boundary curve given by the equality)
2 2
e (e e ™ a2 TP s 2] - (2-0)
(7.41)
&
qa = /M

which can be brought to the form

2 1
Fo= 7 o S (7.42)
(2__ Qﬁwi (( T P CA}SS Qb)

LA A R AT, 5 e R
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Points corresponding to physiczl events must be always inside
the boundary curve defined by (7.42). Let us discuss this curve

in the two limiting cases.

T« = Q/M =0 (non-relativistic case)

Q/M = 1 (ultra relativistic case).

v

«

Yonrelativistic case:- T~ z o - e = 1

This defines an inscribad circle since for b =7 (for
the point lying along the < O meridian, one gets gg = 0 3
hence the circle touches the sides of the triangle.

Ultra relativistic case: o = 1 + 2 02 cws3p +3p2-1=20

Since cos 3 ¢ = (,0534> ‘3Ca$¢, this gives

2 (fooes $) 438 (- 2pwug) -1 =0

The solutior of this equation is

This is a straight linc inscribed. Since thers is symmetry about
a rotation of 2’700; the boundary curve in the ultrarelativistic .
case 1s an inscribed triangle.

The curves for the other cases O < ¢ < | lice in
between the inscribsd cireile and the inscribed triangle.

Let us now see the kinematic situation in differcnt

regions of the Dulitz tringle.




ultrareslativistic
3 E:>>m

non-relati-
vistic

£, <m

'L o
It is obvious from the figure that therec is a sextant symmetry <o

that 1t is sufficient to consider events in one sixth of the
Dalitz friangle (say in the region between symmetry lines 'a and
b ).

The centrs of the triangle corresponds to three eQuél
kinetic energies and hence through equal momenta:. Thus one may
picture this situation by saying that the three particles coulr
have flown off from the centre of the triangle toward the three

corners.

(At the centrs)

The line centres

a 1s a symmetry line along which
€5€3= '\—{(Q"Z\\)

-
-

Eaaxxw B L I R I I R
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© . = /3 the centre and for € ( = 0 the boundary curve

For

1s reached. Hence this symmetry line corresponds to

o ¢, & Q%&

= T ; whereas

b is a symmetry line along which

£3 varies between Q / 3 at the centre and max value which is
given by the intersection of b 1line with the boundary,
At ths boundary curve, the three momenta are collinear

2
at the contre

On the intersec-~

between
centre and boundary tion of line a
( a ) with the boundary.

|
2 w 4 -
-‘-’ \ o H P
> famaaoed >
k/// 3 27
1 L
o X betwaen at the intersection
at the centre centre and boundary of b with the

boundary.

(b))
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3
7_\
2 3
at the intersec-
tion with a '
between the intersec- at the intersec-

tions with a and b tion with b,

On boundary line betwean a  and b ,

If the situation would be governed by pure kinematics,
the distribution of events inside the boundary curve of the
Dalitz triangle should be a constant corresponding to wher~ an
event lies, we may conclude what situations are favoured or
forbidden by the matrix element when the experimental distri-
bution is not & constant. For the case of o -meson, this

technique has worked very well,

T ).1}3,}113111;!33&1&51“1.1HIlH-IHHilIHHHHHI‘I""_
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Sec,Z,Z

Application of Phase Space Methods towUnstable
Particles

In a production process, along with stable particles, thay:
may also be unst:ble particles which decay so fast that we ob- |
serve only their decay prcducts. The problem is this, suppose
we know the cnergy spectrum of the decaying particle in cver-all
centre-of-momentum frame., What will be the cnergy spectrum of the
decay products in the same frame of reference? For this we will
have to know the angular distribution of decaying particle and
those of the decay products in the rest frame of the decaying
particle., This is a re.lly complicated to find. Instead,
we consider the decaying particle which.isotropically distributed -
in the C.M. frume and is unpolarized. Then, to a very good
degree of approximation, the decaying particlec is going to decay
isotropically. Suppose we consider two and three-body decays of
unstable particles., In the case of two-tody decuys, the matrix
element detemmines the life-time and if this is small, then ths
cnergy spectrum of the decay products is essentially going tc he
determined by pure kinematics. However in the case of threc-
body decay, the encrgy distribution of the decaying particles
does depend on the matrix element, Thereforc, in this case, we
have to make assumptions about the matrix element and check the

results against an experimental result (Dalitz plot for example)
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The kinematical problem with whiéh we have tc work is a)first
calculate the momentum spectra of the decay products in the
rest frame of the decaying particle. b) For = given C,M.momen-
turn of the initial particle, Lorentz tfansform these spectra
tothe C.M. frime and c¢) integrate over the initial particle
spectrun with the condition that the energy of the decay pro-
ducts, as seen from the C.M., frame lics between n and Y\—\rd)’(

Two-Body decay

m* — m, g

Let <€ x , F”‘) be the four momentum of m
in the C,M, frame

Let (Qi , P, > be the four momentum of either of the

decay product in the rest frame of ™ *

Let QQ be the totsl energy of either of the decay product

in the C,M. frame

e
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We first calculate the snergy T{Q assuming that m* has a four

¥ *¢ -;‘,1.>
momen tum P o= (‘?. , P and ™M, has (in the rest
frame of M™ ) the four mementum, 5 = (QQ , TZ) Then the
C.M, can be thought of as a fictitious particle, which in the rest
* s —.
of ™~ has the four momecntum P.= e ., P
Therefore, in the " rest frame we heve: |
] -
@ particle PZ = (EQ R )o)
- (7 4
CM.perticle P - (g%, - p*)
<

We know that if T)Q and T)CM are the four-momenta of any two
particlcs in any Lorentz fromeg the cnergy of the particle 1, scen

from "particle C,M.," is

PPCM % ‘_>“->,4~
n, s Aot :’\"<€Q£ TP >

2 ™

where @ 1is the angle betwcen F’ and p*¥ . The
momentum {E‘ and the c<ncrgy £: of the decay products
seen from the M rest frame are fixed by threc masses

M * R m} . #Ne know then

B e UG,
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2 -2
{'m *"_ (m 2 +m;3q [Ww*L— (m[v’vﬂzf

e (m ¥ m, s ) =

] ) - )
Eg (m)me :'mj> = T ®
(7.40)
N
¥ . om7 +<m3 'm2>
gj (’TY, )m‘e ) mj) - ’2)’() 3

The situation now is as follows.

W *(€*)de" 1s the probability that the particle yn" has an
energy betwwen £* and £ +d ¢

The probability that the particle Yh/Q is emitted at an angle

Q to the M* direction is
W, (©) dcond = 3 d(c O
@ ( *) d is the prob<bilityr that the ™
\V‘/!z M Mg M & ¢bili a My

particle has an cnergy (C.M.energy) bstween n and v} + dvl ,

\,\/2(‘2\(»'() is now celculatcd by finding the prob-bi- g
lity for the w # particle toc hove n cnergy E% and multiply-
ing it by the probability for the *rr\z particle tc go in a dirac-
tion making an angle @ with the yn * dircetion and integrating
over €% and ©  under the condition that the W, particlc

has an energy Y in the C,M, frame
@ ¢ -
W, (0 = gdg* o (s W T(E) F(1-1,)

€% €y + pip cesE
) o

Fae

o 2 n
JerT |
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The g(vl - V\Q) assures that the ™M particle has an snergy

1 in the C., M, frame

g\/\I;\(q) dy = g\,\/"‘(g"’) de™ (7.4

We carry out the integral (7. «48) by using
o
S(a-bx) = T S Cx=-%)
We then get
4+
2) * ¥ ¢ T g e
\/\/( w ™m dz.x- W _—EE >,-_ dxg)H\m'] 22
( 2. P ' \/Z*‘ —YT\* ’ ‘O /89(- _ m#r
-
(7.49)
X = OS5 6
The second integral gives one when
N o *
w7y — Ty L
il g \ (7.5 0)

AL Z \

\\\ p‘*l—‘m"

>+ *
Solving this for €™  we get two values £, and £, Dbetwson

which &% has to lie to sitisfy BEq.§7.47).

\/\/CL) ( ’ ‘X‘) n TS EQT L ) w* ( Z%L)
i wm, - -m = A
L {l AR Q’PG’ﬂ*/YﬂQ,”’-’j) g d€ E3Tym
Cﬂa

ST TR T v
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EZ < YY\'*J m/o ‘mJ>
)
wm > + Y fnr 2
) LS [gﬂ(m* memdn T p(m™ g my) \/n;—m/zj

Three-body-decay

* . ™m
m———>m2+YYIJ+— R

can be reduced to a two-body decay

* N _
m oy o+

where

m.+m <M L m*m (7.5 2)
i E Jie e

A
We have to celeulate the proability distribution P(M; ) A
< a1

for the three body decay
We must first use the two-body fomula with a given quk
LT
and integrate it over ™" after multiplimtion with P(N; )

Jk
We the:efore have,
N X
y . Yn
VV( <“ ;n& mjvnk )
(m*=my)
- @) . / * b
= 9. / m, M. m”7) d N,
g P Wo (1 me M w?) oI
(mxm)”

. (7.5

AR R FEF R b E b LTINS RN RN R PR RO RSNV E RN R RS EY
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The superscripts (2) znd (3) denote the two-body and three-bedy
deczy spectra, The only task which remains is to make use of
the eq (7.2 0 to calculate P<Mj(<> explicitly. From

C7.2+v) we have

R <M* Mjk ’m!Z) l??—( ’\/IJ'k m;m k>

R’a(m*-m,? 'm.l' mk

POM; ) =

(7.54)

where Qz and ‘\?3 are invariant phase spaces fer 2 and 3

particles respectively, It can be shown that

«, (m >, Mjk ) =5

™! *

P = P( *:M]km?)

3

Therefore.
- P(M, )=

1

;2 | { '
Ry ) (F) Plm = 15 me) B, o

Jk

(7.5¢)
Finglly we obtain

&)
W, (nsmymm, m=)

- 1r 2 | | * . ) - Y
i KRy ngJk m> M P<W ~>Mka/‘>t)<MJ(:*mJ.mk/

J ik
e >
m w W *(E™)
X - X d & s
2 PO M, ) N
€.

B A A I A NN IS I R T F R E A I3 AR R 1 11541404

111111111111
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Hence

)] B
\,\/X (n;mxmjmkm")
Yﬂ+TM2
T
p:s(*’“*.mxmjka d M P(M'mj m")

™Ay
>

Yo e W eM
o JEXTo et

&

By interchanging Q with j and k one can obtain the other two

spectra,

T lﬂ-ﬂﬂiﬁi‘ﬂiﬂﬁﬁﬂiullllIHHIIIHIHIHHHHHIHHIIIIIIIII_
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CHAPTER 8

Relativistic Notszstion

The contravariant four vcetors x and p arc defired zs

._.3
x = (t, %)
(8.1)
-3
p= (&, )
The metric tensor th-t we use is
[
) [T % - O
8 ___Cj -~ \ , (8.2)
py -
. 0 -
Then the covariant components are obtained as
Xpw= 9 X7 = (€. -%) :

Using the metric in «ny tensar, any irdex con be raised or lowe 24
In particular

g P

I

1§}
O
=
v
O
¥
-
i
\/

> e

(8,4)

Pifi

1ﬂilliﬂ]ﬂiﬂ]§l¥ﬂﬂ””lHI'HIIIIHIHIHHHIH-HHIHIIII"_
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scular product of two four vectors (say p and
is
A /M — L
P X = FM X f = P qy},.\. X - r: X))
- =2
= k& T - X
(8.5)
Also
2 - 7 - |7 - 2
z = & - = ™
P P P SN (8.6)
- ' .
Ir F (% x ) is ean invariant function, so alse  is
_ ok
- = - X
- b dx’zinveriant (8.7)
O XY '
Therefore,
__5; - BM are contravariant
‘b)(f,b components
(8.8)
b are covariant
>x - Df*- carponents
In our metric
P) 2
r* m———
2 - 27 . ( ot / ° ‘a§>
X,
,4
b)\"* - M~ 2t o X

. mumﬁmﬁmﬁﬁﬂimlHJHIH!,!H‘ll!l‘m—

(8.9)

¥)
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Defining the Klein-Gordon operator as

(8,10)

in our metrie,

The electromagnetic ficld tensor is dcfired as

Hz - H\/ (8»11)

D EYE =0




\ —
Ff/\ = q}/\(b )
_ - MY
I
YN _
\ . = ﬂ)}P F
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PV

for

for
foe

’-A,

}A = 7-/ 3
’A: [®)

V: i,Z,Z

It looks that the shadcd portion changes sign

Py
\»F A v

- < - Y
= T.6 F

t

G

2L 3

\
\

N

\

i
\

\

\
NN

A

\\ \

\\\ \\\\
\&\\\\

DA

R

L—’J‘/ T O

Por p= hud

(8,13)
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CHAPTER 9

Polarization of Particles in clecctromagnetic field

Let us consider a particle with spin g~ . The compo-
nent ¥y of this epin .long some given direction (say S is the
unit vector in this direction) & ,will have (2 ¢ + 1)
possible cigenvilues ranging from v = o to m= - o
Suppose we do the sare for a besm of particles (having spin
having some frequency distribution \N/(‘Eg nw) . The averces
orer this distribution -is

G—' .
<(‘rt,g> - z W (2 m)m (6.17)
Yn = @ '
This is the expectaticn vglue of the spin carponcnt in the
“dircction ET . Fror correspondence principle, we know,
that the expectation v.lue of any guantur mechanical operater
corresponds tc o clascical cbservable and thus obeys scme classi -

>

Is zero for 211 choices of direction o , then the beam is

O

—
cal eynation of motion. If the sxrectaticn value <\5"‘

unpolarized. Jf this is not the same,then therc oxists a cer-
F 4 —
B tain direction €, =along which this expectation is a maximum

(corresponding te the mayimur alligrment of spins). Thus,
Ca.e> W (&2 - s (.2
YA M
LS Lo

We then call this 'S' s the degrec of polarization., Now we

define the polarizetion vector S as
- —> N -
S = Q,J )
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—
Since S is definced in terms of expectaticn values, it should
obey a classic.l equation of motion, From classical physics wc
know that in the rest syster of the particles considered this

equation of motion is

d < 3 x )
S . < - C
at
where G¢- 1s the magnetic moment of the particle con-
2
sidered , 9 1is the geomognetic fictor, Il /fzn7 for
charged particles., In Dirac theory g = 2 , but in quantum

electrodynamics correetions are obtazined such that g +2

for e¢lectrons snd muons

The¢ problan now is whether we czn generalize this equation
of motion (¢.4) intc = covarisnt ecquation of motion by defining
a polarization four vector, Viz,,
: - suchthat in tle rest freme it
= (S°S>
is svace-like
Thet is,

S (o)3) 2.9)

Since degrec of polarization is an invari.nt quantity (also

{
casily secn from eq.(S.4) by sc&larﬁmultiplying both sides with

wui,

) w¢ have

i

SRR o (£,6)

x = . KX Eix s xs o mnmaxs —_—
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If polarization four vector can =t all be defined, it is reczlly
nat obvious hew its time componcnt should be zero in the rest
freme. Thereferc, owr task is to ss¢ whether such o definition
for the polarization four vector S=(s-,%) with Sw: (O,?ﬁ
is consistent with cquations of motion,

The nztural gencralization of Ey.(2.4) for polarization

four-vcetor will be

d 5
dT

S

where T is the proper tims of the rarticle S is the

polarization feour vector te be feund. 2 will then depend upon
(1) the polerizatinm fourvector S gencralizing Ey.(S.4) (2)

the electrom: gnetic tensor F;L, which will be antisymmetric

-

gencralizing 4 occurirg in e4.(9.4) and (3) the four velocity
vector Vo, F;v has the well-known form

o = e, e, ]
‘.E\‘( O H’s ‘HL (9.7)
A . —<J .
r i ~G1 - Hy O H, ) = ) H‘Q
, - ok o~
\;c—:z H, o - H, Q_,J I = £

The four ¥elocity has the fom

/ -> N\ .
Vo= (%, 07 ) (2.8a)
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which in the rost frame re-ds as

Ve = (1, 0) Ic.8b)

We =l s¢ know that

- = |
g? ~ ((;) :> (¢.5)
so thut
(sv). = ©O (9.9)
tince SV is an inv.riant, in any frume

BV O (2.¢2)

(&)

Differentisting this wo get

< d . d S N, (2.10)

L/
dt 4t

Bg. (€.10) in the rest frame becomes

(¢.11)
(;‘ So - _ S‘ c—%/
At ax
since Vs : (L{))
d & Fd A7
and i._: . < —S.L ,( >
at ¢t i ul
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)

v >
:<~S%ﬂﬂﬂ°5xH>

/’\
Q

fr‘m
~___
Y

i1
VS
»‘L]%
Q.1 Q.
ey

(e.12)

using eq.(9.11) .nd the squotion of motion in the rost frame,

n.mecly
o s = -
—_— : g M S x H
d. & ~ e (2.4)
Now the cov riant gen-ralizution ccnsists in
\ , d d
=] g e e = b n G
(1) replacing s by it (denct cd by )
(2) ST
R T e A N
Also
= =
<SF> = Se X H
R
Therefore, from c¢q.(9.12) we have
s _ _‘h I, i (9. 13)
Ne notice that S‘Q is (a) hcmogcneous =nd linesr in S

(b) linear in and  (3) lincer in  \/ since V is = func-

tion of F + Thc only non-constant four vectors that can e

fomed out S =, \ and V' satisfying all the four cendi-

ions mentionsd shove aro

YT EEELET L I TN 1T 10 1T 10T £ e ——
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SF o, visVv) | v(sEv) (9.14)

A product S¥ V  isnd pemitted since this is nd

lincar in *  (ncticing that ' 1is = function of F )

A product SV F is e¢ither o scalar cr a tensér and thcre-
fore is not . llowed,

The most gencral form for N is therafore

é: a SE 4+ b V(sV) + cV(SF V) (9.15)

To detemin: the constants a,b and ¢ we go tc the rest freme of

Eq,(9.15) und comparc it with eq. (S.13). That is

Sk = <a<SF)Q° Felsv)y + c(se)y o‘(sr),?>

IR}

<—30 ) wo(“ﬂa)

b = - | ) a = - c = 9 M

(we have tacitly as:zumed that 9 ps 1s a constant and docs n-ot

undergo any ch.nge under Lorentz transformation),

Finzlly e¢q.($.15) becomes

S 9p. [s7 - veeen] - visy) ($.16)

This is a uniquc genralizotion of Eq.(¢.13) in the rest freme,

. \
Suppese S centains sn overall .ddition constant multiplying 14
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Since a2 constant docs not undergo any-: chang ¢ under Lorentz trens-
formation, it ould be present in :§R also. However the fom
of S, given by (9.13) docs nct contain sny overall constant,
Thus, therc cznnct be any cverall multiplicative constant, There
c:n be no multirplicative four vector in (¢.16) sinCeiéi will
then nc longer be a four vecter., Let us sce whether there can be
any four vcetcr addcd tc e¢.(€.16). This is not possible sinc:
this sdded four vector should be (©, 0) irn the rest frame as
dictated by eq.(£.13) and remains as (o, o) thrcughéut since the
Lorentz transfomation censidered here is homogenccus. Thus.,
w& have proved that S given by eq.(¢.16) is the most gencral
send unique goncralization of cq. (€,13),
In such a generalization, we heve not complicated the problem
by taking a morec gen<ral classic:d equatioﬁ including clectric
moement and quadruple meoments,

In = hcmogencous field, the equation of motion of a cherged

particle cun bs verifised to be

[ e -
- - = =V} ¢,
VAR = (FVv) (¢.17)
In this case, from (¢.16) using (€.17) we got

(¢.18)
Putting 9 uy, 9 f%; for churged particles we have
S : gk, SF + (2,*0- 5)%) \/(SFVj
= K. {9SF - (g-2) VEE \/)]
- (9.19
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We have to check fer the consis teney of these formrulass

SZ < (“ S‘I)
(9.20)
SV = O

with our feour vector o |

From (9.16) we gct

)

SV = g K, rSF\/ -—v"‘(SFv)l -V (sv)

%
= - (sv) simer Vo= |
Thercfors S v o+ 5\/ = O
S VvV o= cons tant

€,21)
We see thus. since \V/ 1s a fcur vector, S defined in
€4, (€.58) is . four vector spdidn particulsr the constant crrirg

in ¢y, (€.21) is zero since Sr\ = (O, ?) and \/F\, = (\lJ 0)
Thus

SV =0

Furthermore, mvltiplying eq.(¢.1¢) with S, we get

sSs

7l

Polr-9) sv (sEV)

= Q
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where we have used the fact

$F S =Qsince F is antisymmetric

and SV =0 by eq.(9.22)
T - . Y :
SS =SS = 7 % (ss)
\
d_ )

Thus eq.(9.20) is cm sistent with the gen:ralized cgquation of

motion (2.18). Thus & defined in ¢q.(9.19) is a four vector.

L AT A AT AWAE AT EIEILNSLLY LAL LXA 4 5a k% As
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Sec,9.2
In the last section, we proved that the generalized

polarization vector defined earlier is in fact a four vector andg

we could also generalize the equation of motion in a covariant way.
Let us now see how this polarization four vector looks like in the
lab. frame, for instance, where the electromagretic field is simply
described, though, of course; only the polarization four vector

in the rest frame has a direct significance to the word polarization,

Let us start with the polarization four vector in the rest frmreng
BN
- 0 |
S, - (0.3)

Now make s Lorentz transfomation on this to get the polarization,

four vector in the lab., frame, We get,

S, - (Se , S)

-

- - - > ¥ 22 :>_
(vF5,. Sevd X B

{1

1

_}

where (% is the velocity of the rolarized beam in the lab.frame.

. L . 2 o % 2
Une more thing which we know is that Se = S = — A =
invariant, so that

2 2 2 1
SL = Z>°L_ — 1S - -s':invariant
or
s 5.0 U
\ L > o SL = o L K
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AN

-S-,R )1

),

= A+ <?§
N “Jll—élllg’gfzcﬁk Or
= A 2 X N cos = OR

. a4 e e or)

—.}
where @Q is the angle between the directions @ ard Sg

and we have used the fact that

Se *~ *AQ = g - g\,ﬂ)i
(T, 17 =« A?
"Thus
EA P G A ALY

Suppose Cos Or = O . Then if Z(L >> , We see that

— 2 . . . 2
S._’ is directly rroportional to 3 (Reremter that
) ’ = = . : .
¥ = T:?‘— , B=u in our units), For massless particles.
2 Z = >~ -
hwever, ~>=z p" =1 and hence ¥ — ©° | Therefore in
such case, we will have to -dopt a different method., From the
-~
L4
genceral expression for S , namely
N — ~ U'L - >
S\- - S\? * (B ( @'SR

T+
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-

it is obvious that S_ depen’'s on the direction of

the secord tem.). buproce now ¥ o> 1 so that

> 2 =
S 3 ()
S\, Q G ( X 4+t R

1671

Thercfore, in this cese,

o b
\

“ is parallel to (5

@ (from

e S 3 = =
©- Sk D0 and is antiparaliel when G Se <O ., The

angle € _ Dbetween the Jirections of S. and

is not very large) ic given by

- -
Cog® @L = Cos? <S(. p) P)

(-2
Tk )
> = 2
A
—_ - — 2
From the expressions for 5, | @ and ' SP‘
already written down. we get,
~ oL
- - =% >
S. = Ss t B o~ €Sk
- - 2 T - > = -
@'i: EE (% 3+ (6 5a)
¥+l

1
™~
o(
i
NI
7N
%
%
b
N
+
~
0
U7
P
-

(when ¥

which we have

PERERERIERS i kb an il SS SN RENENE]



141

) o
But s - Al<‘+5Fw=19R>
x; , - _ ¥ s’ @x
, Cos . \ n 2),7_%1 oasl QR
:

Let us now introduce the concept of helicity here,
Jefine helicity I as the component of polarization
along the direction of flight. Then

(G- E) L se L L3R
h - @ T TR T TR

o
>
&
h
v

7
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This shav s that polarizatior of a beam has a physicul mearireg
only in the‘rest system. That is, the polarizatior vector

-
depends on ¢ both in direction and magritude.

Sec, 9,3 The rate of change of polarization

The polarization is deteminred completely wher we know

-
5« ; Sz(4,n ) is a forr vector.So ¢* = Lorentz
invariant scalar. Also gr - - A% is constant as
2
j%\ ST o= Q whicth follows from the equation of motion. The
¥

degree of polarization is unaltered when the beam of particles
o through electromagnetic fields where the inhomogenity can be
neglected. We are covicevned with the < i¢vection of the
polarization at any time.

To fix the polarization vector whose magnitude is constart
we want two angles., We can rrove that only one anrle is relevant.
nanely the angle which it makes with the direction of motion,

-
Je take unit vector ¢ in the dtvection of motion and
-

-
another unit vector perypmdicular tofsuch that S. ic in the
- -~
plane of @ and n .
E— We have
et T -+ .
<

n /R _g; @/B

)
)
N
[
4
D
o}
+
>
A
3
]
3
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— —
@Q_ is the angle between SQ and <

R ¥ Y+‘
= A(%?fc,os?vp , R Cos©5 +w 500 Bq
i

+2 B2 e

2 L .
Se ‘L 41 = 3 { 4
T &) a,_[_‘
= [ 8
L0
S < ,gc" ¥ s O X E\"c,o; QR J«?yai/h @R>
L~ \‘3 > R
= X LQO_SBR & 4 N sm P
where R
Le (0% ,%x8) N - (0,mM)
L’a: ,\j'2 - —\
= >
L~ = O- we-m = O
L Vv = <VDK)K€>\>‘(U)5‘({): 0
Ny o= (e, R) (i 7f) = O




144

Differentiating U= NT = -1 | we gat
[ = N T:l -~ O
Differentiating LN = O , we 3:2*
LN = < N L

We can introduce the expression for 5L~ in the

equations of motion

5: gp, 5F 4 (8- aw) visEw

5 [L ot 9'2 T!;Af:/k 91’{ -+ ep(NW’Gﬁ_LWGR)

| IR

Pl

. gp. SF o+ (% - agp)v(sEV)

= b {}3]‘*0<pr5 6 ‘f‘NF—g.;,\@R)
(G pa- &)Y V(LEY cos Bt NFY aim Op)

So the equation to be co sidered is
L cosQp + N tin 8 T Og (NG Op —L ar Og)
3 Re (LF_QOQER +—Nf—‘/~,£m6R)

— (Gpam 2 YV(LFV o3 O +NFV sin 8,

Multiply by N from the right to eet

° .- , . ] - R I
L. N Can U e O R o (S"Q = CJ ;A‘o - rN Lo \.)':2

& = (N - gu L FN
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We would have got the same equation on multiplying the

original equation by L

. - - y = ” ‘§>
Lz(%@ﬁef} L-(Y’“’”) Ryt Te
. S5 s T _ __;; e
LN = O - e€-%n ¥ ty e = e-n
To get S e use the exprescion for V  where
-
v (5, ¥p <)
5 - - .v - _:_?- .
V:(zr) \(ﬁ@+(x(5)3>
VNET - ¥P o
: SO he S - _g_"'
§ usirg \/ = - % Vv which was
% proved inthe previous section,

Introducing the expression for l_ N in the eqwmtion for

£ i

we get

@
=

él’{ = - % Jé; NFv  — ﬂﬁQLFN

) Swnee = <s

1% . -
- ;;\& VFN - jyo LrN

entigsymmel~vic,




i)
i
I

3N7- + (’_“LN?

1!

N ‘:(‘—C:":\ e?XT—T)

i

TLevP*(oT? l\

it

Zv-gpl = S5, en)-g9u(en 2w

= \6[;%‘ Ip.b . el §—3M]

.

Inserting this expression the equatior for GP become 8
19 (2 2)(sp.p - )+ (9 8) - B

This is valid for any particle with ragnetic moment 9p, 6 and

charge @ . If the charge e £0

gp.o - gls=)e

d 6 - : N
el “5:[(6-" (of = 7p) +<9-z>e-uxa]
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- - - 9/ 2 - =
9% - & |(2.2) BT 203
at A ‘ ?
- — , - d Eg
E and H are homogeneous fields in te lab system . g

is independent of the degree of polurization, L1lso GR. is an

invariant and ic ex ressed in tems of invariant guantities VFN
1Y i

and LFN. We have chosen the suitable reference system— here the

lab system=for its erxyression,

Consider the equation

= ——— E'V\ (5

- { _ Y/ - -~
d‘ @R - e > T \_3 2) - /6‘1 -+ (3_2,) g e H X‘V]
d+ 2

i
A

which is true when e £ 0

Remarks

i

. — -
1, When H  1s parettllce the second temm venishes,

2. shen b > o the first ter goes to infinity. This means

1f the particlie is at rest it gets acceclorated instantareously.

The (7R also changes instentaneously,
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Problem I.

Je £hall now give & full discuscion when

—5 b d -
Exe = H xe =0

: We first verify whether the condition
i 2 3 2
: E X =MHxe =0 i1e¢ corpatible with the ecuation of
motion v& - O 3_{_\1 always., That is,we have to check
q e T
: whether 8y _ o - Bx o is conserved for all time,
+ >
c . e = £ . e -
ax T Vr RVE = LY fEe & A F ARl
- > =
at  t=t, l 3 x W and & x M Writing
;—> - & e at t st we have
d Vv - R,
—— = —Q:- K L KZ &= ; & Q]
dT m

=t ,

At the same time from

-

\/:<z§)ﬂ%'€) ' \/’:(2} , By S 4 ‘é(%’ﬁ)>

p
BEquating these two expression for N we have
N - .= -
Coee (RS + (¥p) &
Tither 2|l e or 2= o . dince
o= .2 =0 So © cannot be
}

pavallel 4, T without being zero.
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'

te. @ T O at =+, . Similarly we can prove all the

1 4

fan. % 3
other time derivatives are zero gt *© = te. S0 ® is const:nt,
3 - - -
Exe =W xe == QO is conserved at z11 times,

From the equation for @R

A0 (. qup- L) +(gp- ST -1«
FE R RRAE N S °

| = - =
We see A Op =0 as £ =€ e is dv
AX
~ -, — —y
and Q- H Xw as W

@. R 1s constant.

S ;A( L e Og + N oain O, + éR(Ncm@ng:»@@)

= A <6 = E B , RT3 ET by 4 OpnIH f.m«OR)

-
i
‘
-
N
-«
{

o . : AR P ) 7-

g . The sec ond of these expressions 1s

obtained by substituting

_ ~
= (L:'Y\, " X H
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and similar other expressions for |~ , ete: , inthe

expansion for S

Thus ¢ omparing the two expressions for $S ’

we have

s Zey(, @)
N - %rAQQ':x:)

These equations state that [ changes because the particle
1s accelerated and that \| precesses in a left secve and

-
with constant angulsr frequency around (

an LA
ot at N's
-3 - . -
A,/\ = = g—i ?XH
- -
V| Ly = QMo W]
V. - X
Also since ® is constast
: -
and $#0O , A process
-
about < which is constant
K —e
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Problem 2

- > e
e chall consider the case & = O, H *nxe

= H

(a) We check whether the above conditions are conserved

7]
e o l&-n +@g-» @
@
The equation of motion is
(v 3 > (pr)
Also \,V(h’) e (BY) + 2 (p¥
’/ - £
N -V F
> S =
- %K<(gc;»9,e+csgx?>

- %K(O)[&H?>

Comparion of these different expression for V  gives
;5 e - — - = . = ‘— '
€ =L uw , m 2 Llivw , (BY) =0
at a time t.
-~
d_?:Q_H’;‘? -
a t my e

turns around with

frequency e H/vnaf in a left gcvow way.
= -? Therefore the condition
- -0 -
" ///2'\ W= H (Ve v )
5 2 -
] and =0 1is corser-
ved,
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The frequency e /my is called Lamo r's frequency.

(b) .
dbr _e Yy = @M g

for a charged particle., Right hand side i1s positive for 93>z

and negative for G < 2 and zero for 9=2 . But

always the right hand side is & constant. So the angle between

the direction of motion and direction of polarization is con-
incyeast s wita 92

stantly deereasing for a L2 ,/\and remains the same for g=24 .

This is independent of the velocity of the particle. The

particle move around a circle and turn around orcce€ in the

time T = q”‘v'/wa = 2% ma’/eH> as @ and R
rotate with angular frequency de Mo
FraR

After one turn the ‘2 retums to its old positidn

the change in the angle, QQ , say 4O O, given by

= 7T %&R :‘Zﬂ“b’(% ""{>

is the chinge in the directionx of polarization per turn.

In the figure we

have assumed 9> 2

This fact can be used to find the ﬂ factor of the Moo
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Problem 3

In the case of a fictitious particle with spin and

with @ #O  but without magnetic moment (g = ©)  one sees
that V

S
4__3 - _e <~ e-n - {?, hl:f'w
dt "~ ¢

Physical intuition tells us, however,
that the polarization should not change if there is no ragnetic
moment show that there is no contradiction.

Since F)R is the angle between polarization and the
direction of motion and since we expect the polarization Sr?
to remain constant

» W have t~ show that the change « @O.is

brought about by the change in the direction of motion,

§ é?x nT)

m
+

(a) dv av | i,
AV - S 6 ; ¥y e = .

Denoting 'j%_ by  prine U7)

\/: (N\Kﬁ\ R . )

N : ~ 7

Vs oy vl o= (¥, gy e + e (PY)
Comparing the two expression for /' we get

e =2 .7

Further

|

(¢ r




154

This we have got by
comparing the time components,

By comparing khe space components

-
e (@ .p3xn) = pye’s @ (6
L ' p
— >y =
. a4 @ 3 -fre -
e ¢ F—F@ s )
(Eb"és": %Lg,ﬁﬂ{zgfﬂ—'QCE‘;)Y

The Case of Mass Zero

The polarization four vector

- TR
et ) - T )
. —_— - R
N THE AR, AR*G{(&\ B-Pr,
does not work when ¥ »°° , But ¥ ¥ 00 as mass zero

particles moves with unit velocity.
qu is now meaningless. Also the polarization bds meaningful
only ir the rest system of the particle which we cannot reach by
Lorentz transfommatim. So the whole concept fails when v —©
Yet particles with nass zero and spin F O exists,
The problem cen be solved by replacing the four veétor

V by four momentum P in the abcve analysis. For
r P

Pf«: wM < (E‘, }\2) even far w=0 | S0 let us multiply S/,\
by Y and call it W, . '
- < = > 2 ‘>) L S ‘j
Q / = ———— G ') ( oo e i ()Q )(
m{P Y
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(b) At a given instant 4ccwe take in the lab system a constant

four vector A = S (4.,) . Then /\:Lms@-\fNS(nQ
since Q (o) = QR

Az Uimo v N'gn 0 + 8/(New O =L sn O

= O
A > Gawsternt

Multiplying by N  the last equation becomes

9 = NU = T - =

for NN =0 CoNt=—1 LN =0
Using the expression for < calculated in (a) »
o' = - ‘% [};_éz A e xH-

This shows Q' = ng/o{(‘ .

\,\(,,b exists even when ™M —=>0

¥e R Goag = 5.3)

/[ = (m A Y AR Y t e A :
A N 5 ' ' ® ¥+ I |
W, ~ transfoms like a four vector,

W.(mso) = a5 <e)
- A PM (rrz O)

SRS

e

We call A the degree of polarization and find

N\
e

m=0 wh = 5 p”r :
|

w'w = oaw’p. o~ s plp, =0 ‘E

# p Mo . ;Mé
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Since \/\/)U_ and Pt’* arc four vectors A 1is invari:nt.

The divectien of polarization is cither // to thec momentum
oy amt(,paya!l-?( lo romentum (s o) -

(when ADO )/\This divect ey is the sare for all Lorentz

system and we call T A the helicity,\«l’e do not need any egua-

tion for the polarization. We can apply this to light quanta.
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Sec,9.4

Relation between polarization four-vector and angular
momentum tensor

If we recall the definition of polarization in quantum
mechanics (as the maximum value of the expectation value of the
spin) which obeys classical equations of motion, it is very
natural to expect a relation between the polarization four vector

and angular mcmentunm,

Suppose we consider a system of ™N spinless particles of

mass Yy, with coordinates am momenta
o

The angular momentum of the system is then

M P E:(Xcrkbf" Xcv PLM)

Pov A 0,1,2,3 Lz paryicle label
k. €= BRECYE

The time cpmponent of MPY is then

r

MU tZ<P,k~X¢kE)
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In the rest system, namely when p. = O we obtain

(MLO‘Q){Q{L' - - ( Xl\‘ g;)ves‘t

This quantity should remain constant in time. So, we now define

in the rest system the four vector

t 2
(xM), = ’c,*z“‘g? Zxcéa

Since this is defined invariantly, we can Lorentz transfomm

this to any frame of reference so that

¥t o= L. (XM‘)&

ACHE S8)

o

3}

This ¥ "™ will be different from the one which we may obtain

after Lorentz transforming each X(p! and - p M and then con-
‘L x ) ok
structing A . However, we define it in the
above wa to pnsuyY@ L hat X ¢S a -rouv vecdor. Naow in
rest system (iWwhen 2 -0 ), we may introduce new coordinates
P. 3
I . . .
X, ce by megsuring all distances from the centre of gravity

(We call it as centre of gravity because in the non-relativistic

limit 2 ONE. 2 XMy
s €, > m,
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i
(x4)
J'ca
Xg J
AN
Origin of CG Frame
Origin of

rest frame

It is obvious that

(xi)Rz Xt (xi)CG

It should be noted that (x4) has no time canponents.
CG v

The angular momentum tensor then becomes

S (5 p” - <7 e,

¥

(1 7),

™1

7] v__,“” M)
(xr o= x4

A TSI
We find that when the frare and centre of gravity frame

coincide, then
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Fron the equation

MK = ST 4+ L

[2R%

by multiplying by F), on both sides and using the fact that
<MY Pv = O we get

§]

M™ P, L™ P,

[V R my
Thus, [?, serves to project out the L part from M .

The projection of L’W is carried out as follows;

We introduce the completely antisymmetric tensor T

py P
d rank four
+ i£ (rvep o) is even
< =
A -1 ¥ (pveos) isodd

Even ov odd refer to the number of permutation operation one
has to perfom on (0 1,2,3) to get (,.n» pe) . If two of the

indiees are equal then :

E}*"F"‘ 3 O if two of the indices are equal .

E;Av(-’cr = - E‘»Pﬂ_rﬁ




162

Furthennore, the metric tensor 9 g changes the sign only

when the index is 1,2,3; it does not change sign if the index

is 0, With Er\*?“‘ we define the four component objects
»® AR e Vv T
\/\/ = 2 Q”PU‘ P MP
\ m
= - » (o
2 Lo o P> S

\W " ™ = ~ p?

N
T
+}

We have the first equation since E is actually a pro-

jection operator for

i et » e & e, e {

Evee P (x*pT-x"pf) =0
%‘ by the antisymmetric property of % . Suppose we go to the f
% rest frame, then, i
E 1] o { o ,

(W), = L €2 (P>sf?)

1 R 2 S0 o 'R

= O

;§: since Er*vr - O if any two of the indices are the

S~
<
~Z

©

¢,
-

Cope (P°sF7)

&
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i

(W),

N

M ( SS«){)

“
3
~
N
<
~

(W),

Therefore,

(Nj%)k = ™m ( O, g2® ) 33‘1 S'2>R

H

™ < 5") i

(o, ss)

1]

" -
Thus, (\A/ > is & three vector (Th SQ ) whose three compo-

nents are m times the componcnts of intrinsic angular momentum
tensor. Thus, though bJ transfoms as a four vector and S”
as a tensor, in the rest frame they have such a relation.

Suppose these N spinless particles collapse together (so

that we czn no longer talk about the constituénts!) to fom a
single-like particle of mass m A marentum P and intrinsic angular
momentum or spin g™, It should be clearly understood that we
are only giving an analogy; by this ¥kind of argurent, one cannot

obtain the half integr:sl spin values even by invoking quantum
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mechanics. The quantum mechanical spin does indeed behave as our

S*¥ : in particular obcys the master equatim

Srv'ov‘o

[T
Thus, S cannot be undcrstood from our knolwedge on structure

of rotation of the partiche

If for example, consider an electron as a rotating sphere
of mass ™ , moment of inestial e m oyt o= 1 and
angular momentum. S = ..'{1”5:* = Lu] . where &) is the

angular velocity given by 'U'/T (and v is the velocity at its

equator, Then

v (d‘;‘) = % (k/m)

Putting ~ = QL/MC{ one finds
v 5 |- 5
< :“*;i)‘ CREA 7

which contradicts velocity,
We now have got a projection operator tc project out the
% Mo
S¥Y part of M PY (the L part vanishing because of the

antisymmetric property of & ) as

" =
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Thus, since §"” satisfies this covariant equation,

(SPL)& : ,,‘:;’1 €' (Pow?)

o3

¥

e emem (5™ = (S$)k

‘ wmn* o3
<.oh) o EOb (prwi)y =0, s &uh . 6
/;‘ S R - Y\nl o o P W ) @ , S\-hCQ ot
?'§ Introducing the expression
: ;
t
wh - L € xp o Poom
j 4 oy |
E for \J in the expression for S. we get
ST e (Geoelloel, et ) MeT
' - 2m™ o [ X

= ST oMo

<
.
9
4
%
T
b
£

‘§ where

A | [ @ o

2 = (“ L < < PP >‘>

: ’ po Zm e re e

1 & p 2 vt co

Thus <2 e 6~ is the required yrojection operator that projects

the <V from M"Y . The expression for $"” is indeed

consis tent with the eyuatim

st P o

o

AR EARERD AT EIEELAL LI AL LA 1P LADI L1 PRI AT I It s A A AN
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since
oy

, 3 q

& < E

A f Y pPo

because of the iisymmetry o £ .

Thus, we have zchieved the foilowing thing: We have expressed
M"Y , the angular momentur tensor as

MM\) - LMV + Spv

(™Y : orbitalpart
oy . .
S : Intrinsic part

Only sH survives in the (.G, systen and even for S “y_only the
components SL%, Ssl) gt are different from zero., The above
considerztions hold for a single particle with guin, -
Let us now turn to the case of & systam of particles with
spin. Le£ cachn particle in the systar have
momentun P , mass w , coordinate X" and
total anguler momentum M s (x ™ p7 - X”)JQ +S™ . e

totd ansfular momentum of the¢ system is

g = < M v -t
M = E 1\","\) < 2_ (X.\"P‘U- X, P_ﬂ)"r S»\
L - ot *
(=t VR
~ ~
[V Y TRV}
S N A R
A
[ <o
. ' . " L
This separation, hawever, is not useful because L alrecdy

contains an orbital syin pait, the spin due to orbital motion of

particles relutive to the centre of gravity. Thus M e is
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actually.
§v < M M v “> Ry MY
- 4 — = b
M X v X ' ov ki Val Sphin
L\ — B

™~ ' Wy
> b
Lzt

If we really want 2 nice separation between orbital angular

momentum snd s.in, we write the above equation

Suv - M/uv

MH.U _ LM‘J

\l

My

where now [ rert does not include

~! W
s s 2 S M
- Layb'\4‘al
Lzt

For the systm as 2 wholc, then MY

M\
that S’Av can be defined in a covaricent way, but not S

>
- separately (unless we know 6orbital!)°

_ ( XM Pv -~ )(U P,u)

s
DYb‘\*'GIQ and
(%
S
Yospin
[e
L are known,
J
Sp,:u\
To ¥row < M
A ovbital

of course, we need to have .n ides of the individual particles.

Thus, from the ch T cteristics of the system us a whole, 1t is

ja W

pocesible to separ te only S

O'VLJ] ‘(A‘

+ s

$PAw
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1A

£

Let us now sce the affect of our projection operator Z

on MY now. We have,

Opo\'\

e ¢ _ .
2 e M7 Z Co <{— S oibidat >

Iz

"P( GYiD\

My £ 6 Y . ¢ o6
Aaf co e

Py ’ N 0 <Yen >
= S OV\—-.'Lxl. +<z o S o}g}h

}A'\)

This reduction is because of the property of ) 2 o

namely

PV « - AV
. Z e M ‘ = 5 ﬂ"oild

e

-
However, we do not know anything abot its effect on > i

' %
The last temm, in general, is not cqual to S Spin -

(¥, s Yp, =0 |

o)gih

But,’
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iy
since iD

N

Also we have

st P = (TS R

Therefore, in general

— Ky Nl L QM
2 oo S i kA Phin

;i g Pq e G ;& S;Mv

e s

P> ;
Sy, o

MY
The reason for this is the following. Writing ™M as

'A\)‘ R M\) > MY
M ) L + S ovhidal + S Sbin
, /
We see that by going to the C.G,.systen we can make the time
components of only <L~”y + S vai)>to vanish so that
oYh o

KLMV 4 S“\:Tb(}al >P‘)‘l cc = O
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78%
Hewerer, in the C.G.system (S ob ) . will lmve a time
p 1

pv > >
L
component so that <3 Apin " c. T O i

. . . My . . .
This is again because, S L”Y' will have a zero time compo-
ot
] b “v . .
nent in the rest system of 3 . Thus (S < ) will have zero time
R.

% - .
component, But <§L g > is obtained by Lorentz transfom-

¢ &
v
ing (S'( 2 ) Q so that it will.in general, have a time
component, Thuc, it seems that for a system of spinning particles
the separation of L."7 and S is difficult. Hw ever,

therecare some exceptions, the cases in which the individual
momenta of all the N particles are known (a) If only very few
partiches are present, e.g. [ > WM+ and (b) if we have a
beam of like particles with equal sharp momentum the schere works,
In the cese (b),if we kriow the total momentum P, we do know alou*®
the individual momenta (since the N particles have equal momente

in this casg, so that
.))
< > = O
oYbital =

since in this system all the particles are at rest., and mo ocrbits’
motion around the origin cxists. 4nd since not only all rarticlcs
together, but as well each individunal particle will at rest, each

g . . . R
(3 opin ) : will have no time amponents in their own rast

H\)
frames, so that 2 Sj )2 has no time canponent,
- {
)




171

Thus, in the rest frame

(M”)a _ (L“)@ -+ (SW )Q

SN
= <LMV>R ﬁ\(j?: Sjﬁv)a

By a Lorentz transformati on, we can get

O Nale

MM‘) = L_Mv 0

“pin
since

v M
- — ,
<<~J n\»~,\of>ﬁ =0 — <S Bin any frame

= O
orhilal
The projection operator works heres
1Y ) MY T
ST p L NS(STRT) o
ﬂp“h v J— J v .

because

(l

Py

ANY

if the N particles have the same
moment um and

Also




nv

This is true since Z can be written in the form
fd‘
M | p G A bN
» = . € 3 PX P
' N
o
= — < —
2wt oL * 6 ™ N

_ \ gP\V 2(2’ Po( ]’3)\

2N =B XPG_

since P = N b (for particles with equal momenta)

My vy
Z thus projects aut each S . ~ and thus the aim
?G‘ J ‘fpuh

[PRY)
S M . E SI.
Pin f Fi
Thus, for a systenw consisting of like particles with spin, it is
[YQ ¥
possible to sepcrate the true spin part from orbital part L
My 7% M
so that O and W =mJ3 defined ¢ rlier can be used
describe the state of polarization of the partifle. However,
. ny " 7
it - only M (and not S¥ or L. ) is conserved,
Since in quantum mechanics s beazmof like particleswith
sharp momentumis described as 2 plane wave, we expect a close
relation between ST and SM and quantum mechanical operators.
We shall explicitly write down this rel:stion for the case of

Dirac particles.
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We choose a

ce

particuler retresentation of 1 4 relation.

e )= 297

in which the ocomponents of spinors naturally split up into two

large and two smull ones in the non-relativistic limit

- 6‘1{
k

O

o~
=
i
s
C

O t
5 -
¥ h “?75 T <‘\ <)‘>
\ © !
G =
! ()
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‘ .
B~ are (4 x 4) nutrices and g-'s =are (2 x 2) matrices,

For free particles.

r\!/(x): (-\PX U(P\)
U,
(» 5
Uq
- -3

uyl - o p <U>
Uc' - E+W u"'

where U\‘<P) )1&1 (p'> are abitrary. Consider two classes

of op:rators

o f ' v
e = [ ]
O |
O - g o - |
> = LYY oy : (_\ 0) .
R - ke G*k o
2 AR i <o ~<rk>
ol O @k)
o = 1 o
va O
)l: - G“Q o
o ) <o ¢Q>
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We will
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< A

S G
[t
now show that S and

«nd S™” respectively.

= 2Ty = Ty

, Jj = \p LU'Q

A M

S’J\)

are identical with our

Since these two are covariant, it is sufficient to show

the relationin the rest frame where W,

From the

Hence

Moreover,

definition for S s and ¢ 's
(Z 'o) U, ) <
. ML )
<z (>> - <T0 k>
R R

{

AN
9
-
~
2

i
%
¥

Us

U

, U, = O

it is obvious that

)

O
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Hence

, |
wy ~ .

Thus in the rest frame &«nd hence in all frames we have the corres-

pondence

I e s ?} [KH, 3’1\

A I AN FARDEAOXEES R AL L > n z Lx X 4 2 422 12 8204302202 0add? hmemm .






