..
 FUNCTIONAL ANALYSIS

MARSHALL H. STONE

First Ramanujan visiting professor (1963)
at Matscience

THE INSTITUTE OF MATHEMATICAL SCIENCES, MADRAS-4, INDIA.

Distinguished Service Professor of Mathematics, University of Chicago, Chicago, U.S.A.

CHAPTER 1.

1. Introduction:-

Semi-metric and metric spaces are obtained by imposing, on the basic set we deal with, a 'distance function' having the properties of Euclidean distance. Thus, let X be our basic set; suppose that to every pair of points $x, y \in X$, there corresponds a real number $d(x, y)$ such that (x, y, z are elements of X) :
(i) $d(x, x)=0$
(ii) $d(\mathbf{x}, \mathrm{y}) \geqslant 0$
(iii) $d(x, y)=d(y, x)$
and

$$
\text { (iv) } d(x, z) \leqslant d(x, y)+d(z, y)
$$

The last requirement is the familiar triangle inequality (the sum of two sides of a triangle is not less than the third), while the others have even more obvious interpretations.

We now find that the above set of requirements is equivalent to a subset of itself, namely, just (i) and (iv) taken together. On setting $x=y$ in (iv), we obtain $d(y, z)$ $\leqq d(z, y)$; the reverse inequality is obtained by interchanging y and z; thus we have (iii). We then obtain (ii) by taking $z=y \quad$ in (iv) and using (i) and (iii). This fact makes it easier for us to verify in a given situation whether the pair (x, d) , where d is a real-valued function defined for every pair (x, y) of points of X, is indeed a semi-metric or metrip space in the sense of the following.

Definition: 1 space (X, d) is a semi-metric space if d satisfies conditions (i) and (iv) above; if, further, d has the property
(v) $d(x, y)=0 \Rightarrow x=y$,
then (X, d) is a metric space.
For exhibiting the connection between semi-metric and metric spaces, we shall require the concepts and result that follow, which find application in a wide variety of mathematical problems.

2. Equivalence classes and partitions; conversion of a semi-

 metric space into a metric space:Let S be any set, and let a relation \equiv between members of S have the following properties:
(i) $\quad X \equiv X$ (reflexivity)
(ii) $x \equiv y \Rightarrow y \equiv x$ (symmetry)
(iii) $x \equiv y, y \equiv z \Rightarrow x \equiv z \quad$ (transitivity).

Then, \equiv is called an equivalence relation, and if $X \equiv Y$ we soy that X and Y are equivalent (to each other),

Defining a partition of S as a collection of (pairwise) disjoint subsets of "' S whose set-union is S, we have the

Theorem: Every equivalence relation sets up a martition, and conversely.

Proof: Let \equiv be an equivalence relation. Then, for $x \in S$, let S_{x} be the set of all y such that $y \equiv x$. It is easy to verify that, for any pair $x, y \in S, S_{x}$ and S_{y} are either identical or disjoint (in other words, if one point of S_{X}
belongs to S_{y}, then $S_{x}=S_{y}$). The distinct sets $S_{x}, x \in S$ constitute a partition of S : we call them the equivalence classes (corresponding to this particular equivalence relation). The elements of S belonging to the same equivalence class are equivalent to one another; and any two elements taken one each from any two distinct equivalence classes are non-equivalent. Conversely, given any partition of S, let, us write $X \equiv y$ if x and y are in the same subset of the partition. Then, 三 is easily verified to be an equivalence relation. The theorem is proved.

Let now (x, d) be a semi-metric space. Let us write $y \equiv x$ if $d(x, y)=0$. Then, \equiv is an equivalence relation. Denote the set of equivalence classes by \bar{X}, and the class cores pending to an element x (the class S_{x} above) by \bar{x}. Then we remark that $\bar{x}_{1}=\bar{x}_{2}, \bar{y}_{1}=\bar{y}_{2} \Rightarrow d\left(x_{1}, y_{1}\right)=d\left(x_{2}, y_{2}\right)$; for $d\left(x_{1}, y_{1}\right) \leq d\left(x_{1}, x_{2}\right)+d\left(x_{2}, y_{1}\right) \leq d\left(x_{1}, x_{2}\right)+d\left(x_{2}, y_{2}\right)+d\left(y_{2}, y_{1}\right)=d\left(x_{2}, y_{2}\right.$, and, to obtain the reverse inequality, we have only to interchange the subscripts 1 and 2 . Hence, the following definition of \bar{d} is unambiguous.

$$
\bar{d}(\bar{x}, \bar{y})=d(x, y) .
$$

It is now easy to verify that (\bar{X}, \bar{d}) is a metric space. Thus, we have ''converted'' an arbitrary semi-metric space into a metric space, the elements of the latter being the members of a suitably chosen partition of the former.
3. Examples:

1) The most familiar examples of metric spaces are the Euclidean spaces with the usual distance function. If we take the Euclidean plane and define the distance between two elements $\left(x_{1}, y_{1}\right)$ and $\left(x_{2}, y_{2}\right)$ as $\max \left\{\left|x_{1}-x_{2}\right|,\left|y_{1}-y_{2}\right|\right\}$ or as $\left|X_{1}-X_{2}\right|$; we obtain a semi-metric space in each case.
2) A more sophisticated example, of great interest and importance, is the following: Let T be an arbitrary set. Consider the set X of all bounded real-valued (or of all bounded complex-valued) functions x on T; if x, y be any two such functions, define

$$
d(x, y)=\sup _{t \in T}|x(t)-y(t)|
$$

Then (X, d) is a metric space.
Proof: Clearly, $d(x, x)=0$. If $d(x, y)=0$, then $x(t)-y(t)=0$ for every t, i.e., $x=y$. Finally,

$$
\begin{aligned}
|x(t)-z(t)| \leqslant & |x(t)-y(t)|+|z(t)-y(t)| \\
\leqslant & \sup |x(t)-y(t)|+\sup |z(t)-y(t)| \\
& \text { for every } t
\end{aligned}
$$

$\Rightarrow \sup |x(t)-z(t)| \leqq \sup |x(t)-y(t)|+\sup |z(t)-y(t)|$.
3) More generally, let $\left(X_{t}, d_{t}\right)$ be a metric space for every $t \in T$. Consider the set X of all mappings x from T to $\bigcup_{t} X_{t}$ such that $x_{t}=x(t) \in X_{t}$.

Let us define, for any pair

$$
d(x, y)=\sup _{t \in T} d{ }_{t}\left(x_{t}, y_{t}\right)
$$

where, to avoid the value ∞ for d, we assume that $d\left(x_{1} x_{0}\right)<\infty$ for some fixed $x_{0} \in X$ and for all $x \in X$. L Note that, in Ex. 2, every $\left(X_{t,} d_{t}\right)$ is the real line with the usual distance, and the zero function plays there the role of the present $X_{0}-T$ Then (X, d) is a metric space, the proof running along lines parallel to those in Ex. 2.
4) Instead of considering junctions X on T with $\sup |x(t)|<\infty \quad s$ in Ex. 2, we may consider measurable fund tions x on T such that $\int|x(t)| d t<\infty$. If on the set X of such functions, we define a distance function $d(x, y)=\int|x(t)-y(t)| d t$, then (x, d) is a semi-metric space, In general, it is not already a metric space, since the integral of a non-negative function can be zero without the function being necessarily identically zero.
5) In Ex. 4, we may even replace the integral by an ''upper integral''. Sunpose, for any complex-valued function $X(t)$, not necessarily measurable, we define

$$
\bar{\int}|x(t)| d t=\inf \left\{\int \phi(t) d t \mid \phi \text { is measurable and } \phi(t) \geqslant(x(t) \mid\}\right.
$$

It follows at once from the definition that if $|x(t)| \leq|y(t)|$ for (almost) all t_{3} then $\bar{\int}|x(t)| d t \leq \bar{\int}|y(t)| d t$: we shall refer to this property as the monotonicity-oroperty of $\bar{\int}$.

In general, the ad itivity property of the integral is not possessed by $\bar{\int}$. It is also clear that if $|x|$ is measurable, then $\bar{\int}|x|=\int|x|$

Now consider the sat X of all real-valued (or of all complex-valued) functions x on T such that $\bar{\int}|x(t)| d t$ $<\infty$. Let, for $x, y \in X, \quad d(x, y)=\bar{\int}|x(t)-y(t)| d t$. Then (X, d) is a semi-metric space.

Proof: Since the zero-function is measurable, $\bar{J} 0$ $=\int 0=0$, and so $d(x, x)=0$.

If X_{1}, X_{2} be any two elements of X, then, corresponding to any $E>0$, there exist measurable functions ϕ_{1}, ϕ_{2} such that $\phi_{j} \geq\left|x_{j}\right|$ and $\bar{\int}\left|x_{j}\right| \geq \int \phi_{j}-\frac{\epsilon}{2}$, for $\bar{j}=1, \varepsilon$. Hence, $\bar{j}\left|x_{1}\right|+\bar{\zeta}\left|x_{2}\right| \geq \int\left(\phi_{1}+\phi_{2}\right)-\epsilon$

$$
\geqslant \int\left|x_{1}+x_{2}\right|-\epsilon \quad, \text { since } \quad \phi_{1}+\phi_{2} \geq\left|x_{1}\right|+\left|x_{2}\right| \geq\left|x_{1}+x_{2}\right|
$$

Since $\epsilon>0$ is arbitrary, it follows that

$$
\bar{\int}\left|x_{1}\right|+\bar{\int}\left|x_{2}\right| \geq \bar{\int}\left|x_{1}+x_{2}\right| \quad(* *)
$$

The triangle inequality follows at once from this on setting

$$
x_{1}=x-y_{1} \quad x_{2}=y-z
$$

6) We may generalize the situation in Ex. 5 in the same way as Ex. 2 was generalized to Ex. 3. Let $\left(X_{t}, d_{t}\right)$ be a (semi-) metric space for every $L \in T$. Consider the set X of all mappings x from T to $U X_{t}$ such that

$$
x_{t}=x(t) \in X_{t}, \text { satisfiting } \quad \bar{\int}_{t} d_{t}\left(x_{t}, x_{t}^{0}\right) d t<\infty \quad l
$$

for some fixed x^{0}. It is clear that x° itself belongs to X

If we define, for $x, y \in X, d(x, y)=\int d_{t}\left(x_{t}, y_{t}\right) d t$, then (X, d) is a semi-metric space. (In general, it is not a metric space even if every $\left(X_{t}, d_{t}\right)$ is.)
proof: Since $d_{t}\left(x_{t}, x_{t}\right)=0$ for avery t, and the zero-function is measure lo, it follows that $d(x, x)=0$.

$$
\begin{aligned}
\text { Also, for } x, y, z & \in X, \\
d(x, z) & =\int d_{t}\left(x_{t}, z_{t}\right) d t \\
& \leq \int\left[d_{t}\left(x_{t}, y_{t}\right)+d_{t}\left(z_{t}, y_{t}\right)\right] d t
\end{aligned}
$$

by virtue of the triergle-inequality for each d_{t} and the mono-tonicity-property of $\bar{\int}$; by $\left(*^{*}\right)$ above, the last expression

$$
\begin{aligned}
& \leqslant \bar{\int} d_{t}\left(x_{t}, y_{t}\right) d t+\int d_{t}\left(z_{t}, y_{t}\right) d t \\
& =d(x, y)+d(z, y)
\end{aligned}
$$

4. Comparison of two metric spaces: Congruences:

A mapping form one metric space (X, d) to another (X^{\prime}, d^{\prime}) is called a congruence if it is onto and distance-preserving. It follows that the mapping is also one-one; if two elements $X, Y \in X$ have the same image (i.e.) $X^{\prime}=y^{\prime}$, then $d(x, y)=d^{\prime}\left(x^{\prime}, y^{\prime}\right)=0 \Rightarrow x=y \quad$. Hence every congruence has an inverse, which is itself a congruence, as is easily verified.
it follows, in particular, that the solf-congruencesof any given metric space form a group under the usual composition operation. It is, however, not an easy task to determine this group for an arbitrary metric space; in the Euclidean case, linear transformations, ie. translations, rotations and their combinations, constitute examples of self-congruences.

The following congruence of an arbitrary motric space is of especial interest and importance. $L_{e t}(X, l)$ be any metric space; let $T \equiv X$, and, for every $x \in X$, define a mapping f_{x} from T into the real number system according to

$$
f_{x}(t)=d(t, x)-d\left(t, x_{0}\right)
$$

where X_{0} is a fixed element of X. f_{x} is (a continuous function of t, as we shall see in chapter 3 , and is) bounded by $d\left(x, x_{0}\right)$ on account of the triangle inequality. Let $F=\left\{f_{x}: x \in X\right\}$. For any pair $f_{x}, f_{y} \in F$, define

$$
D\left(f_{x}, f_{y}\right)=\sup _{t}\left|f_{x}(t)-f_{y}(t)\right|=\sup _{t} \mid d(x, t)-d(y, t)
$$

since $|d(x, t)-d(y, t)| \leq d(x, y) \quad$ by the trioangle inequality and attains this value for $t=x$ (or y), it follows that $D\left(f_{x}, f_{y}\right)=d(x, y)$. This immediately implies that (F, D) is a metric space (a fact which follows directly from the definition of D also), and that $x \rightarrow f_{x}$ is a congruence maxing Thus, an arbitrary metric space (X, d) is congruent to a subset of the set of all bounded real-valued functions defined on X, with the distance function defined in Ex. ? of $\oint 3$.

This example can be refined to cover general topological spaces, leading to a relation between metric spaces and 'compact' topological spaces.

Chapter 2.

METRIC TOPOLOGY AID COMPLETION OF METRIC CDACDS

1. Open and closed sets, closure of a set:

Let (X, d) bo a metric space. We call the set $\left\{x: d\left(x, x_{0}\right)<\gamma\right\}$ an open spherical neighborhood of x_{0} of radius γ, and denote it by $S_{0}\left(x_{0}, \gamma\right) \cdots$ the subscript of S standing for 'open'.

Let $\left\{x_{n}\right\}$ be a sequence of points in X. We say that x. is a limit of the sequence $\left\{x_{n}\right\}$ if, given any open spherical neighbourhood of x, X_{n} belongs to it for all sufficiently large n. This is obviously equivalent to the requirement that $d\left(x_{n}, x\right) \rightarrow 0$ as $n \rightarrow \infty$. It follows that a.limit, $1 f$ it exists, is unique; for, if x and x^{\prime} are both limits, then $d\left(x, x^{\prime}\right)$ $\leq d\left(x, x_{n}\right)+d\left(x_{n}, x^{\prime}\right)>0$ as $n \rightarrow \infty$, so that $d\left(x, x^{\prime}\right)=$ or $x=x^{\prime}$. A subset Y of X is said to be open if it is the : union of open spheres. In particular, every ''open'" sphere is open in this sense.

Theorem $1 \quad Y$ is open iffevery point of Y has an open

 spherical neighbourhood $c y$.proof: If Y is open, then $y \in Y \Rightarrow y \in$ some $y p e n$ sphere $S_{0}\left(x_{0}, \gamma\right)=y \cdot \operatorname{Lot} r^{\prime}=r-d\left(x_{0}, y\right)$. Then $r^{\prime}>0$, and $S_{0}\left(y, r^{\prime}\right)=b_{0}\left(x_{0}, r^{\prime}\right) \in y$; for, if $x \in S_{0}\left(y, v^{\prime}\right)$, then $d\left(x, x_{0}\right) \leq d(y, y)+d\left(y, x_{0}\right)<r^{\prime}+d\left(y, x_{0}\right)=r$.

Conversely, if every point of Y has an open spherical neighbourhood contained in Y, then Y is just the union of all/open spheres.

A set of the form $\left\{x: d\left(x_{,} x_{0}\right) \leqslant r\right\}$ is called the closed spherical neighborhood of x_{0} of radius ry and is denoted by $S_{0}\left(x_{0}, r\right.$)

We introduce the notion of closed sets as complementary to that of open sets in the set-theoretic sense: thus, a set Z is closed iff its complement $C Z=x-z$ is open.

Theorem 2 Every 'closed' sphere is closed(in this sense):

Thus, the difference between sets S_{0} and S_{C}, apparently due to the absence and presence respectively of the sign of equality in their definitions, is in fact a 'topologi al' difference.

Proof: Let $y \in Y=C S_{c}(x, y)$. Then $d(x, y)>y$. If $r^{\prime}=d(x, y)-r$, then $r^{\prime}>0$ and the open sphere $S_{0}\left(y, r^{\prime}\right)$ is disjoint from $S_{c}(x, y)$; for, if z were to belong to both, we have $d(y, z)<r^{\prime}$ and $d(x, \bar{z}) \leq r$, so that

$$
d(x, y) \leq d(x, z)+d(y, z)<r+r=d(x, y)
$$

a contradiction. Hence every point of Y has an open spherical neighbourhood $\subset Y$, i.e., Y is open, by theorem 1.

Theorem 3 (Properties of open sets):

(i) The whole space X and the empty set ϕ are open.
(ii) An arbitrary union of open sets is open.
(iii) The intersection of two (and so of any finite number of) open sets is open.
proof: (i) X is the union of all the open spheres. ϕ contains no points, the ' ' if ' condition of Theorem I cannot be satisfied, and so ϕ is open.
(ii) The union of union of open spheres is itself a union of open spheres.
(iii) If A_{1} and A_{2} are two open sots and $x \varepsilon A_{1} \int_{A_{2}}$ then $S_{0}\left(x, \gamma_{j}\right) \subset A_{j}$ for some $\gamma_{j}>0(j=1,2)$, and so, if $r=\min \left(\gamma_{1}, \gamma_{2}\right)$, then $r>0$ and $x \in S_{0}\left(\gamma_{\gamma}\right) \in A_{1} \cap A_{2}$. Hence, by Theorem $1, A_{1} \cap A_{2}$ is open.

Note: In general, even a denumerable intersection of open sets need not be open: for example, consider the sequence $\left(-\frac{1}{n}, \frac{1}{n}\right)$ of open subsets of the real line. By set-complementation, we obtain the dual of the above theorem, namely,

Theorem 4 (Properties of closed sets):

(i) The whole space X and the empty set ϕ are closed.
(ii) An arbitrary intersection of closed sets is
closed.
(iii) The union of two (and so of any finite number of) closed sets is closed. Again we note that even a countable union of closed sets need not be closed.

Remark: In considering the implications of the concepts of 'open' and 'closed' sets, it is useful to have the Euclidean picture always in mind.

Let Z be any subset of X. By Theorem 4 (ii), the intersection of all the closed sets containing Z (there exists at least one such set, namely X itself) is closed. We call this set the closure of Z and denote it by \bar{Z}. It is clear that $\bar{z} \supset \bar{z}$ and is the 'smallest' closed set containing

Z．．It is also immediate that if $y \subset z$ ，then $\bar{y} \subset \bar{Z}$ ．

We now discuss two other interpretations of \bar{z} ， namely，as the set aZ of all＇＇accumulation points i of Z ， and as the set $s Z$ of ali＇sequential limit－－points＇of Z ． A point $x \in X$ is an accumulation－point of $\frac{7}{\hbar}$ iff， for every $\gamma>0, S_{0}(x, \gamma)$ has a nonempty intersection with Z ．It follows at once that every point of $\underset{z}{z}$ is an accumulation－point of Z ，ie．，$Z \subset a Z$ ．Indeed，we have Theorem 5：is＝ \bar{Z} ．PP：：If $x \in \bar{Z}$ and if，for some $\gamma>0$ ， $S_{0}(x, \gamma) \cap Z=\phi$ ，then $\mathcal{Z} \subset C\left[S_{0}(x, r)\right]$ ，a closed set，so that $\bar{z} \subset C\left[S_{0}(x, y)\right]$ ．Hence $x \in C\left[S_{0}(x, \gamma)\right]$ ，which is impossible．Hence $S_{0}(x, r) \cap z \neq \phi$ for any $r>0$ ， i．e．，$x \in a z$ ，so that $\bar{z}=a \bar{z}$ ．

Conversely，let $x \neq \overline{\text { 天 }}$ ．Then $C \overline{\bar{z}}$ being open， there exists a sphere $S_{0}(x, y)$ such that $S_{0}(x, y) \subset C \bar{Z}$ ．But d $\overline{\bar{Z}} E C \bar{Z}$ ，so that $S_{0}(x, \infty) \cap Z=\phi$ ．This means that $x \neq a z$ ，so that $\overline{\text { B }}$ 又a恐．Hence the theorem． A point $x \in X$ is called a sequential limit－point of Z if it is the limit of a sequence of points in Z ． We then have

Theorem 6：\quad s $\bar{z}=\overline{\bar{Z}}$
By theorem 5 ，it suffices to show that $s Z=a Z$
Let $x=\lim Z_{n}$ ，where every $z_{n} \in Z$ ．Then every open she－ rical neighbourhood of x contains a point Z_{n} for some n ，by definition of limit，so that it follows that $x \in a \frac{Z}{d}$ ，i．e．s $\begin{gathered}\text { Ca } \\ Z\end{gathered}$

To prove the converse relation, we require the Zermelo Axiom of choice: Given any collection of non-empty sets, we can select one element from each of these sets; in other words, a function f can be defined on a collection of non-omoty sets, $\left\{J_{t}: t \in T\right.$, in index set $\}$ such that, for each $t \in T$, $f\left(S_{t}\right) \in S_{t}$. (While the legitimacy of such an assumption in our tot logical apparatus has been questioned in some quarters, the axiom of choice plays a crucial role in many developments in modern mathematics.)

Let now $x \in a \frac{7}{k}$. Then every one of the sets $S_{0}\left(x, \frac{1}{n}\right) ? Z$ is non-empty, and, by the axiom of choice, we can pick a sequence $\left\{x_{n}\right\}$ of elements of X such that $x_{n} \in S_{0}\left(x, \frac{1}{n}\right) \cap Z$ It is clear that $x=\lim x_{n}$, ie., a sequential limit-point of Z. Hence $A \notin \times Z$, and the theorem is proved.
2. Completeness: For historical reasons, a sequence $\left\{x_{n}\right\}$ of points in (x, d) is said to be a Cauchy-sequence if $d\left(x, x_{n}\right)$ $\rightarrow 0$ as $m, n \rightarrow \infty$. While every sequence with a limit is a Cauchy-sequence (if $x=\lim x_{n}$, then $d\left(x_{m}, x_{n}\right) \leq d\left(x_{m}, x\right)$ $+d\left(x_{n}, x\right) \rightarrow 0$ as $\left.m, n \rightarrow \infty\right)$, it is not necessarily true that every Cauchy-sequence converges to a limit. The sot of rat oneal numbers, with the usual distare function, is a metric space in which not every Cauchy-sequence has a limit (take, for example, a sequence of rationaldconverging to $\sqrt{2}$). Thus we are lon to the

Definition: A metric space (X, d) in which every Cauchy-sequence has a limit is said to be complete.

We now proceed to show that any metric space can be ' 'completed'', that is, embedded, in a certain sense, in a complete metric space. For this purpose, we require the following definition and lemma.

Definition: $\quad Y \subset X$ is said to be dense in X if $\bar{y}=x$.

Lemma: Every closed subset of a complete metric space is complete.

Proof: If Y is closed, and $\left\{y_{n}\right\}$ is a Cauchy-sequence of elements in Y, then $\left\{y_{n}\right\}$ has a limit y in X. But, since $y=\bar{y}=s y$, it follows that $y \in Y$ (i.e.) $(Y d)$ is complete.

Theorem 7: Every metric space (x, d) can be 'completed' in the sense that there exists a congruence map of (X, d) onto a dense subset of a complete metric space.

Proof: We have seen (Chapter 1, $\{3$, Dx. 2) that the set \mathcal{F} of all bounded real-valued functions f on a set X constitute a metric space under the distance function

$$
D(f, g)=\sup _{x \in x}|f(x)-g(x)|, f, g \in \mathcal{F} .
$$

This metric space is, furthermore, complete: If $\left\{f_{n}\right\}$ be a Cauchy-sequence in 7 , then

$$
D\left(f_{m}, f_{n}\right)=\sup _{x}\left|f_{n}(x)-f_{n}(x)\right| \rightarrow 0 \text { as } m, n \rightarrow \infty
$$

This implies that, for every $x \in X,\left|f_{m}(x)-f_{x}(x)\right| \rightarrow 0$ as $m, n \rightarrow \infty$, so that, by the completeness of the real? number system, there exists a real number $f(x)$ for every X such that $f(x)=\lim _{n \rightarrow \infty} f_{n}(x)$. We now assert that f, as a function
of X, is also bounded: on account of $(*)$, there exists an integer N such that for $m, n \geq N$, sup $\left|f_{m}(x)-f_{n}(x)\right|<1$, so that $\left|f_{m}(x)-f_{n}(x)\right|<1$ for all $x \in X$. Setting $n=\mathbb{N}$ and letting $m \rightarrow \infty$ in this relation, we have, since rim $f_{n}(x)$ $=f(x)$, that $\left|f(x)-f_{N}(x)\right| \leq 1$. Also f_{N} is bounded, so that we have

$$
|f(x)| \leq\left|f(x)-f_{N}(x)\right|+\left|f_{N}(x)\right| \leq 1+\sup _{x}\left|f_{N}(x)\right|<\infty .
$$

Now, we have seen that (x, d) has a congruence-mapping onto a subset F of the set of 211 bounded, (continuous) ; real-valued functions with the same distance function as D above (Chapter 1, §4). But (F, D) is a subspace of the metric space (\mathcal{J}, D) above which is complete. By the lemma above, ($\overline{\mathbb{F}}, \mathrm{N})$, is also complete. Thus we have a complete metric space of which (F, D) is a dense subset congruent to the given metric space (X, d). The theorem is proved.

The question now arises as to whether the process of completion is unique in some sense. The answer, in the affirmative is given by

Theorem 8; If (X, d) and $\left(X^{\prime}, d^{\prime}\right)$ be two metric spaces and $Y_{L} Y^{\prime}$ are subsets of $X X^{\prime}$ respectively such that $\bar{y}=x, \overline{y^{\prime}}=x^{\prime}, \quad$ and $y \equiv y^{\prime}$, then $x \equiv x^{\prime}$.

We shall prove this by showing that every completion (in particular, the completion given in the proof of theorem 7) is equivalent to the canonical completion which we describe now.

Let (X, d) be a metric space, and let ζ be the set of all cauchy-sequences $\left\{x_{p}\right\}$. on ζ, define a distancefunction according to

$$
D\left(\left\{x_{p}\right\},\left\{y_{p}\right\}\right)=\lim _{p \rightarrow \infty} d\left(x_{p}, y_{p}\right) .
$$

The limit on the right exists because $\left|d\left(x_{p}, y_{p}\right)-d\left(x_{q}, y_{q}\right)\right|$

$$
\leq d\left(x_{p}, x_{q}\right)+d\left(y_{p,} y_{q}\right) \rightarrow 0 \text { as } p, q \rightarrow \infty \text {, so that }
$$

$$
d\left(x_{p}, y_{p}\right) \text { is a Cauchy-sequence of real numbers and so has a }
$$ real limit. It is easy to verify that (ζ, D) is a semi-metric space. In what follows, wo shall take it to have been converted into a metric space in the usual way (so that all equivalent Cauchy-sequences in X are identified, two Cauchy-sequences $\left\{x_{p}\right\}$ and $\left\{y_{p}\right\}$ being equivalent if $\left.\lim _{p \rightarrow \infty} d\left(x_{p}, y_{p}\right)=0\right)$, and shall continue to denote the derived metric space also by ($\zeta, D)$.

Now, we know br theorem 7 that there exists at least, one completion of (x, d). Let $\left(\overline{7}, d^{\prime}\right)$ be any completion of (x, d), with $\left(z, d^{\prime}\right) \stackrel{f}{\equiv}(x, d)$, where f is the congruencemapping, Given $\left\{x_{p}\right\} \in \zeta$, let $z_{p}=f\left(x_{p}\right)$ for every p; then $d^{\prime}\left(z_{p}, F_{q}\right)=d\left(x_{p}, x_{q}\right) \rightarrow 0$ as $p, q \rightarrow \infty$, so that $\left\{\frac{1}{2}\right\}$ is a Cauchy-sequence in \bar{z} and so has a limit $z \in \bar{Z}$. Consider the mapping F from ζ to \bar{T} given by $\left\{x_{p}\right\} \xrightarrow{F} Z$. The mapping is onto; for given $\in \bar{Z}$, by Theorem 6 , f $=\lim \exists_{n}$, where $z_{n} \in Z$, and if $x_{n}=f^{-1} z_{n}$ for every n, then $\left\{x_{1}\right\} \in \zeta_{6}$ is such that $F\left(\left\{x_{n}\right\}\right)=Z$. Also, it is distance-preserving, since $D\left(\left\{x_{p}\right\},\left\{y_{p}\right\}\right) \stackrel{r}{=} \lim d\left(x_{p}, y_{p}\right)$ $=\lim d^{\prime}\left(z_{p}, w_{p}\right)=d^{\prime}(z, w)$, where $w_{p}=f\left(y_{p}\right)$ and $W=\lim W_{p} \epsilon \bar{Z} \cdot$. Hence, $(\zeta, D) \xrightarrow{F}\left(\bar{Z}, d^{\prime}\right)$ is a congruence. Thus, every completion of (X, d) is equivalent to
$(\zeta ; D)$ ，and so any two completions are equivalent．This proves Theorem 8．（Note that ζ is now the set of all nonequivalent Cauchy－sequences，the members of the sequences being elements of
X ），and we have incidental 特 shown that (ζ, D) is a complete metric space．

Remark：In our procedure above，the completeness of the real number system plays a vital role．Our proof of the existence of a completion（Theorem 7）makes essential use of this；again， if we had to prove directly that the space (C, D) above is complete－－instead of making use of the fact that at least one completion of（ X, d ）exists－－then we would have to consider Cauchy－sequences of Cauchy－sequences of elements of X and thus repeat the fairly involved argument for the completeness of the real number system for the present situation．

Our discussions above indicate that questions of convex gene depend on what sets ane＇open＇rather than on the metric －underlying them．This suggests the generalization of the notion of convergence of sequences to spaces，whore there exists a system of＂＂pep＂sots with properties abstracted out of the metric case，but not necessarily defined through a metric－－the＂topological＂spaces．We shall refer te re these spaces again in the next chapter，

Chapter 3:

CONTINUITY AND GENERAL TOPOLOGICAL SPACES

Let f be a mapping of a metric space (X, d) into another $\left(X^{\prime}, d^{\prime}\right)$. We say that f is continuous at a point $X_{0} \in X$ if the images of points close to X_{0} are close to $f\left(x_{0}\right)$; precisely, if, given any $\epsilon>0$, there exists a $\delta=\delta\left(\epsilon, x_{0}\right)>0$ such that $d\left(x, x_{0}\right)<\delta \Rightarrow d^{\prime}\left[f(x), f\left(x_{0}\right)\right]<\epsilon$. In other words, we require that the inverse image of any given open sphere around $f\left(X_{0}\right)$ should contain some open sphere around X_{0}. We say that f is continuous if it is continuous at every point of X. It follows that, if f is continuous, then the inverse image of any open set is open: for, let $F^{\prime} \subset x^{\prime}$ be open and let $F=f^{-1}\left(F^{\prime}\right)$; if $x \in F$, then $x^{\prime}=f(x) \in F^{\prime}$, and so there exists an open sphere round X^{\prime} contained in $\mathcal{F}^{\prime} \Rightarrow$ by continuity of f, that there exists an open sphere round x contained in the inverge image of the former open sphere and so in $F \Rightarrow F$ is open.

Conversely, if the inverse image of any open set is open, then f is continuous. For, let x_{0} be any point of X and let us consider any open sphere round $f\left(X_{0}\right)$. Its inverse image is open, by assumption, and since X_{0} belongs to this inverse image, there exists an open sphere round X_{0} contained in it, ire., f is continuous at X_{0}.

Thus, the (global) continuity of f.implies and is implica by the inverse image of every open set being open. Since this property makes no reference to the underlying metrics, we find
that the notion of continuity can be generalized to mappings from one 'topological' space into another, where a 'topological' space is a set with a distinguished family of subsets called 'open' sets, satisfying the conditions given in the statement of Theorem 3 of Chapter 2. (By duality, it follows that we may equally well start from a distinguished fam ely of subsets given by 'closed sets' with properties as in the statement of Theorem 4 of Chapter 2.)

Continuity properties of the metric: Let a be any fixed element of X. Then the mapping $X \rightarrow d(x, a)$ of (x, d) into the real-number system (with the usual metric) is a continuous mapping. For, by the triangle inequality,

$$
\left|d(x, a)-d\left(x_{0}, a\right)\right| \leq d\left(x, x_{0}\right)
$$

It is even uniformly continuous in the sense that, given any $\in>0$, the inverse image of an 'open sphere' (reducing to an open interval) around $d\left(X_{0}, a\right)$ of radius \in contains an open sphere of radius δ independent of x_{0} around X_{0}. (We may take $\delta=\epsilon$ in this particular case.)

Again, consider the Cartesian product of the basic set of the given metric space with itself, and define $D\left[(x, y),\left(x^{\prime}, y^{\prime}\right)\right]=$ $=\max \left[d\left(x, x^{\prime}\right), d\left(y, y^{\prime}\right)\right]$, for $(x, y),\left(x, y^{\prime}\right) \in(x, x)$. Then $(X \times X, D)$ is a metric space, and the mapping $(x, y) \rightarrow d(x, y)$ of $(X \times X, D)$ into the real number system is continuous, and uniformly so, because of the relation

$$
\left|d(x, y)-d\left(x_{0}, y_{0}\right)\right| \leq d\left(x, x_{0}\right)+d\left(y, y_{0}\right) .
$$

In the course of the proof of Theorem 7 in Chapter ?, we have seen that the set \exists of all bounded real-valued functions f on a set X constitute a complete metric space under the dis-tance-function $D(f g)=\sup _{x}|f(x)-g(x)|$. We shall now show that the subset 6 of 7 , consisting of all bounded continuous functions on X, is closed, so that ($E D$) is itself a compote metric space. The proof is the same as that of the classical result that the limit function of a uniformly convergent sequence of continuous functions is itself continuous.

Note that to prove that ζ is closed, it is (necoscary and) sufficient to prove that its 'sequential-limit-points' belong to it. Let $\left\{f_{n}\right\}$ be a sequence in ζ_{0} converging to f (in f_{1}) in the sense that $D\left(f_{n}, f\right) \rightarrow 0$ as $n \rightarrow \infty$. Given any $\epsilon>0$, there exists $\mathbb{N}=\mathbb{N}(\epsilon)$ such that $D\left(f_{n}, f\right)<\epsilon$ for $n \geq N$. Hence, for all X, and for any given X_{0}, we have

$$
\begin{aligned}
& \left|f_{N}(x)-f(x)\right|<\epsilon \\
& \left|f_{N}\left(x_{0}\right)-f\left(x_{0}\right)\right|<\epsilon
\end{aligned}
$$

Since f_{N} is continuous, wave, for all x such that $d\left(x, x_{0}\right)<\delta=\delta\left(x_{0}, \epsilon\right)$ that $\left|f_{N}(x)-f_{N}\left(x_{0}\right)\right|<\epsilon$. Hence it follows from these three inequalities that $\left|f(x)-f\left(x_{0}\right)\right|<3 \in$ if $d\left(x, x_{0}\right)<\delta$. Since $\epsilon>0$ is arbitrary, it follows that f is continuous at x_{0}, and, since $x_{0} \in X$ is arbitray, that f is continuous.

We saw in $\oint 4$ of Chapter 1 , that a metric $\operatorname{space}(x, d)$ is congruent to a certain subspace (F, D) of the metric space ($7, D$) of all bounded real-valued functions on X itself
with

$$
D(f, g)=\sup _{x} p|f(x)-g(x)|
$$

for $f . g \in \exists_{1}$ The elements of F were the functions $\left\{f_{X}, x \in X\right\}$, where $f_{x}(t)=d(t, x)-d\left(t, x_{0}\right), x_{0} \in X$ fixed, $t \in X$ We now know that every f_{x} is in fact continuous, so that we can assert that every metric space is congruent to a certain sot of bounded continuous real-valued functions defined on it.

The mapping $x \rightarrow f_{x}$ of (x, d) onto (F, D) is itself a continuous mapping, as indeed any congruence mapping of one metric space onto another is.

Chapter 4:

MONOIDS, GROUP G AND MORDHICMS.

In what follows, we shall work under the general setup of a 'monoid' and, as occasion arises, specialize our results to groups.

A monoid is n algebraic system consisting of a basic set X and a binary operation defined on it. (A binary operation on X is a mapping of $X \times X$ into X, ie., an association, with every pair X, y-- in that order -- of elements of X, an element f of X). We shall usually call the binary operation as multiplication (if we use additive terminology, we may call it summation).

If the multiplication is associative, i. ., if, for all $x, y, z \in X$, we have $(x y) z=x(y z)$, then the monoid is an associative monoid.

There are certain mappings of a monoid into itself which are definable in terms of the multiplication operation. We shall
denote br λ_{x} the mapping given by $y \rightarrow x y$ and call it leftmultiplication by $x_{\text {; }}$ similarly, P_{x} will denote the manning $y \rightarrow y x$ and is called right-multiplication by x. Certain questions which may be posed immediately concerning these mappings are: when is λ_{x} one-one and when is λ_{x} onto? And similarly for P_{x}. We have:
λ_{x} is one-one inf $x y=x y \Rightarrow y=y^{\prime}$ for ally. A sufficient condition for this is that left-cancellation of x be possible;

$$
\lambda_{x} \text { is onto inf } x y=z \text { has a solution } y \text {, for }
$$

every $z \in X$, and similar (dual) results hold for P_{X}. The two questions posed above are thus linked to equations in one unknown in the multiplicative system. I In the first case, we require that the only solution of $x y^{\prime}=x y$ (in the unknown y^{\prime}) be $y^{\prime}=y$; in the second, that $x y=z$ solvable. 7 We also note that, in the presence of left-cancellation of x, if a solution for the equation $x y=z$ exists (given $x, z \in X$), then it is unique: for, $x y=x y^{\prime}(=z) \Rightarrow y=y^{\prime}$.

A group may be defined as an associative monoid X in which, for any $x, z \in X$, the equations $x y=z$ and $y x=A$ are solvable in X. Then, we have:
(1) there exists a unique element e (the identity or neutral element) such that

$$
x e=e x=x
$$

for all $x \in X$
(2) to every $x \in X$, there corresponds a unique element X^{-1} called the inverse of X such that

$$
x x^{-1}=x^{-1} x=e \quad ; \quad \text { and }
$$

(3) the solutions for $x y=z$ and $y x=z$ are unique (in fact, the left- and right-cencellation laws hold).

Proof: (1) Let a be an arbitrary but fixed element of X. Tho equation $e a=a$ has a solution e. Also, for any x, there exists a sur that $\alpha y=x$. Then $\in x=e(a y)$ $=(e a) y=x_{y}=x$, so that $e^{x}=x$ for all x. Also the equation $a e^{\prime}=a$ has a solution e^{\prime}, and, for any x, there exists a \neq such that $z a=x$. Then $x e^{\prime}=\left(z_{a}\right) e$ $=f\left(a e^{\prime}\right)=7 a=x$, so that $x e^{\prime}=x$ for all x. Then

$$
\begin{aligned}
\epsilon & =e^{\prime} \quad\left(\text { since } x e^{\prime}=x \text { for all } x\right) \\
& =e^{\prime} \quad\left(\text { since } e^{x}=x \text { for all } x\right)
\end{aligned}
$$

so that there exists an element e such that $X e=e x=X$ for $11 X$. The same argument shows that ϵ is unique.
(2) The equations $x y=e$ and $x x=t$ have solutions. Then, we have $y=e y=(z x) y=z(x y)=z e=z \quad$ so that $\dot{x} y=y x=e \quad$. If y^{\prime} be any element with this property, then $y^{\prime}=y^{\prime} e=y^{\prime}(x y)=\left(y^{\prime} x\right) y=t y=y \quad$. Hence there exists a unique inverse for
(3) $x y=z$ and $y x=z$ have unique solutions because the cancellation laws hold: if $x y=x y^{\prime}$, then leftmultiplying by $x^{-\quad}$, we have $y=y$; similarly, right_multiplication by x^{-1} in the relation $y x=y^{\prime} x$ gives $y=y^{\prime}$.

Conversely, in an associative monoid with properties (1) and (2) above, wo have that $x y=z$ has the solution $y=x^{-z}$ and $y x-z$ hes tho solution $y=7 x^{-1}$. Thus

We obtain two equivalent definitions of a group.
In the calculation of inverses, wo te two points of importance: (1) $\left(x^{-1}\right)^{-1}=x$ itself and $(0)(x y)^{-1}=y^{-1} x^{-1}$.

The associate momoid of transformations of a set. If f be a mapping form a set S_{1} into a set S_{2}, f from S_{2} into S_{3}, then we define the composition $g \times f$ as the mapping of S_{1} to S_{3} given by $(g x f)(x)=f(f(x))$. If h be a mapping of S_{3} into S_{4}, then we have $k \times(g \times f)=(h \times g) \times f$ in the sense that each maps $x \in S_{1}$ into the same element $h(g(f(x)))$ of S_{4}. In particular, this is true of transformations of a given sot X (mappings of X into itself) which ones constitute an associative monoid under the composition operation. In the case where X is itself a monoid, this monoid contains all the left- and rightmultiplications. We find that if X is an associative monoid, then $\lambda_{x x^{\prime}}=\lambda_{x} x \lambda_{x^{\prime}} \quad$ and $P_{x x}=P_{x} \times P_{x} \quad$ (we may thus say that, in this case, the $\lambda_{x}{ }^{\prime}$ ' combine like their indices and the $f_{x}{ }^{*}$ like their indices reversed). Let us examine when the mapping $x \rightarrow \lambda_{x}$, from a monoid into its monoid of transformations, is on -one. We must have that for $x \neq x$, there exists at least one y such that $x y \neq x y$, i.. , that the $\left\{P_{y}\right\}$ form a sararating family of transformations. LA family 7 of mappings of a given sot S into a given set S^{\prime} is a separating family if, for any pair of distinct elements s_{1}, s_{2} of S, them exists at least one member $f \in \mathcal{H}_{\mathcal{H}}$ such that $f\left(s_{1}\right) \neq f\left(x_{2}\right)-7$ A sufficient condition for this is that the right cancellation law hold for some particular element of X.

In the case of a group, it follows that $x \rightarrow \lambda_{x}$ is a one-one mapping (The mappings λ_{x} of X into itself are all oneone and onto), and $x y$ corresponds to $\lambda_{x} x \lambda_{y}$. λ_{e} is the identity mapping and $\left(\lambda_{x}\right)^{-1}$, the inverse mapping of the oneone, onto mapoing λ_{x}, is the same as $\lambda_{\left(x^{-1}\right)}$. In other words, $\left\{\lambda_{x}\right\}$ is itself a group, which is isomorphic to the given group in the sense of the definition which shortly follows.

MORPHISMS FOF MONOIDS: Suppose we have two monoids, the operation in each being called multiplication, and that there exists a mapping ϕ from one into the other such that it predserves products (i.e.) $\phi(x y)=\phi(x) \cdot \phi(y)$ for all x, y in the domain-monoid of ϕ. Then ϕ is called a morohism.

If ϕ is an onto mapping, in addition, we call it a homomorphisn. A one-one homomorphism is called an isomorphism: it is clear that an isomorphism has an inverse mapping which itself is an isomorphism. Thus the relation of 'isomorphism' is a symmetric one.

A morphism of a monoid into itself is called an endomorphism. An endomorphism-isomorohism is called an automorphism.

It is clear that the composition of two morphisms is a morphism; of two endomorphisms, an endomorphism; and of two homomorphisms, a homomorphism.

Defining a sub-monoid of a monoid as a subset closed under the operation of the monoid (the 'product' of any two olements of the subset should again be in tho subset), we see that the image of a monoid under a morohism to another monoid is a
submonoid of the later. (We remark that in the case of a group, a sub-monoid need not be a sub-group: for instance, in the group of all real numbers under addition, the positive numbers form a submonoid but not a subgroup.)

Theorem: The homomorphic image of a group is a group. (If we map a group into a monoid by means of a morphism, the image-set is itself a group).

Proof: If ϕ be the morphism, then $e^{\prime}=\phi(e)$ plays the role of the identity and $\phi\left(x^{-1}\right)$ is the inverse of $\phi(x)$.

In what follows, we examine homomorphic images in greater detail.

The structure of the homomorphic image of a monoid and of a group: Let X, X^{\prime} be two monoids and let X^{\prime} be the homomorphic image under ϕ of X. Consider the relation \equiv on X given by $x \equiv y$ if $\phi(x)=\phi(y)$. This is an equivalence relation with the further property that $x \equiv x^{\prime}, y \equiv y^{\prime} \Rightarrow x y \equiv x^{\prime} y^{\prime}$. This property enables us to define, in an un-ambiguous manner, a product between equivalence classes according to $[x][y]=[x y]$ The mapping $\phi(x) \rightarrow[x]$ is also one-one, and so defines an isomorphism between X^{\prime} and the set of all equivalence classes $[X]$,. Thus, every homomorphic image of a monoid is isomorphic to the set of equivalence classes (with a suitable binary operation defined on it) corresponding to a certain equivalence relation.

This result applies to a group, of course. But we can then say something more about the equivalence classes above. We need the concept of an invariant or normal subgroup: a subgroup Y of a group X is said to be invariant if $x \in X, y \in Y \Rightarrow x y x^{-1} \in{ }^{y}$

Now, in the case of a group, consider $[e]$, the equivalence class containing the identity e. If $x \equiv k$, $y \equiv e \quad$, then $y^{-1} y \equiv y^{-1}$ or $y^{-1} \equiv e \quad$ and so
$x y^{-1} \equiv e^{2}=e$, showing that $[e]$ is a subgroup. LHere we use the fact that $Y \subset X$ is a sub-group if and only if for any $x, y \in Y, \quad x y^{-1} \in Y$ also. 7 Again if $X \in X$ and $y=$ then $x y=x, x y x^{\prime} z x=e \quad$ shows that $[e]$ is invariant. $[\epsilon]$ is called the 'Kernel' of the homomorphism. Furthermore, $x \equiv y$ iff x e C, and $[r]=L 0]=[C] x$, where x A (respectively $A x$) denotes the set obtained by left-(right-)multiplying the elements of A by $*$. Thus every homomorphic image of a group is isomorphic to the set of equivalence classes defined by a certain equivalence relation, where, moreover, the kernel of the homomorphism, $[\epsilon]$ is an invariant subgroup. We shall call the latter set the quotient-group of X relative to $[\epsilon]$.

Conversely, given any invariant subgroup Y of X, we can define an equivalence relation on X compatible with the group product. Let x By iffy $c y$ then, 三 is an equivalence relation such that $x \equiv x, y \equiv y \Rightarrow x y \equiv x y$ For, $(x y)\left(x y^{1}\right)^{-1}$ xy $\left(y^{1}\right)^{-1}\left(x^{\prime}\right)^{-1}=x\left(x^{1}\right)^{-1} \cdot(x) j\left(y^{\prime}\right)^{-1}\left(x^{\prime}\right)^{-1}$; Now, $X\left(x^{\prime}\right)^{-1} \in Y$, and, since $y\left(y^{\prime}\right)^{-1} \epsilon y, x^{\prime} \in x, Y$ invariant $\Rightarrow x^{\prime} y\left(y^{\prime \prime}\right)^{-1}\left(x^{\prime}\right)^{-1} \in y$, we have that $x y=x^{\prime} y^{\prime}$ from the above. Hence we can define a product on the set of equivalence classes unambiguously according to; $[\|[y]=[x y]$, and $x \rightarrow[x]$ is a homomorphism of X onto this set of equivalence classes (with this operation).

Thus, every homomorphic image of a group y is isomorphic to the 'quotient-group of X relative to some inveriant sub-group of X, and, conversely, every such 'quotientgroup is a homomorohic image of X.

Chapter 5:

$\frac{\text { RINGS, AND ENDOMORPHISMS OT ABELTAN GROUPS; }}{\text { IMAGES OF A RING }}$

Endomorphisms of Abelian groups, and rings with unit: For the mappings d, ψ, \ldots an arbitrary set X into a monoid, we can define a composition operation according to

$$
(\psi \psi)(x)=\psi(x): \psi(x),
$$

so that the set of all such mappings becomes a monoid with this operation.

In particular, consider the mappings of a monoid X into itself; let us examine conditions under which the composttion of two endomorphisms of $X \quad$ will again be an endomorphism. If ϕ and ψ be two endomorphisms, then we have

$$
\begin{aligned}
& (\phi \psi)(x y)=\phi(x) \psi(x)=[\phi(x) \phi(y) \cdot[\psi(x) \psi(y)] \text { while } \\
& (d \psi)(0) \cdot(4) j=[4(1) \psi(1:] \quad[q(y), \psi(y)]
\end{aligned}
$$

so that we can assert that $\not \subset \psi$ is also an endomorphism if the (operation on the) given monoid is associative and commutative; in general, however, we cannot do so.

Relations between the operations x and .: Let f, be transformations of the monoid X. Consider $+(\nmid, X)$

We have

$$
[\nmid x(\psi x)](x)=4\left[\left(\psi_{0} x\right)(x)\right]=\{[\psi(x) x(x)]
$$

In case is an endomorphism, tho last expression

$$
=d(\psi(x) \phi(x(x))=(\phi x \psi)(x) \cdot(\phi+x)(x)=[(\phi x \psi) \cdot(\psi x x)](x)
$$

so that

$$
\begin{equation*}
f x(\psi, x)=(\phi x \psi) \cdot(\phi x x) \text { in tho case where } \tag{1}
\end{equation*}
$$

ϕ is an endomorphism.
On the other hand, without any restrictions on ϕ, ψ,
X, we have

$$
\begin{aligned}
{[(\psi x) \times d](x) } & =(\psi x)(\phi(x))=\psi(x(x)) \cdot x(\phi(x)) \\
& =[(\psi x d)(x)] \cdot[(x \times \phi)(x)] \\
& =[(\psi x \phi) \cdot(x \times \phi)](x)
\end{aligned}
$$

so that

$$
\begin{equation*}
(+x) \times 4=(3 \times 4) \cdot(x \times+) \tag{2}
\end{equation*}
$$

(1) and (2) are distributive laws; in particular they are valid on the set of endomorphisms of X.

Let now X be an Abelian group; we shall find it converient to write it in additive notation and correspondingly to use + instead of . to denote the operation, introduced above, on mappings: thus $(\psi+\psi)$ is defined according to:
$(\psi+\psi)(\psi)=\psi(x)+\psi(x)$, for transformations $\&, \psi$ of X. We shall call $\& x \psi$ the product of ϕ and $\psi \cdot$

Since $(X,+)$ is associative and commutative, it follows, from what we saw above, that the sum of two endomornhisms, on X is an endomorphism; so is the ''product!' of two, since

$$
\begin{aligned}
(\phi x \psi)(x+y) & =\phi(\psi(x+y))=\phi(\psi(x)+\psi(x)) \\
& =\phi(\psi(x)+\phi(\psi(x))=(\phi x \psi)(x)+(\psi \times \psi)(y) .
\end{aligned}
$$

Thus, the set 6 of endomorphisms of an Abelian group $(x+)$ form an algebraic system with two binary operations + and x -- a diploid. Indeed we can assert something more, namely,

Theorem: $\quad\left(\varepsilon_{,}+, x\right)$ is a ring with unit.

Proof:
 (1) $(\varepsilon,+)$ is an Abelian group: $(\varepsilon,+)$ is

 associative and commutative since $(X,+)$ is. Also, if θ denotes the endomorphism which maps every element of X into the neutral element of X, we find that $(\phi+\Theta)(x)=\phi(x)+\theta(x)$ $\doteq \phi(x)[=(\theta+\phi)(x ;]$, so that $\phi+\theta=\phi(-\omega+\phi)$, for all $\phi \in$. Also, for $\psi \in \varepsilon_{0}$, if - ϕ is defined according to $(-d)=-\phi(x)$, then $-\phi(\varepsilon$ also and is the negative of ϕ in the sense that $\phi+(-\phi)$ $=(-\phi)+\phi=\theta$.We have already seen that
(2) x is associative, and
(E) the two distribution laws hold (where x distributes +).

Finally,
(4) if \mathcal{E} bo the identity-mapping of X onto itself, thorn, for all $\phi<\varepsilon, \varepsilon \times \phi=\phi \times \varepsilon=\phi$ Thus, $(\varepsilon,+, x)$ is a ring with unit.

We now proceed to show they the converse is also true, i.e., every ring with unit is isomorphic to a ring of endomorphisms (not necesserily the ring of endomorphisms i.e., the ring of all the endomorphisms) of an Abelian group, namely, the aditfive group of tho ring. Let $(X,+$,$) be a ring with unit; con-$ sider the set of mappings $\left.\sum_{x}: \phi_{x} X\right\}$, where ϕ_{t} is given by: $\quad,(y)=x y$ (left-multiplication by $*$). We note the following facts:
(1) ψ_{x} is an endomorphism since

$$
\phi_{x}(y+z)=x(y+z)=x y+x z=\phi_{x}(y)+\phi_{x}(z)
$$

(2)

$$
\begin{aligned}
& \phi_{x+x^{\prime}}=\phi_{x}+\phi_{x^{\prime}}, \text { since } \\
& \begin{aligned}
\phi_{x+x^{\prime}}(y) & =(x+x) y=x y+x^{\prime} y=\phi_{x}(y)+\phi_{x^{\prime}}(y) \\
& =\left(d_{x}+d_{x^{\prime}}\right)(y)
\end{aligned}
\end{aligned}
$$

(3) $\phi_{x x^{\prime}}=d_{x} x \psi_{x^{\prime}}$, since

$$
\begin{aligned}
f_{x x^{\prime}}(y) & =x x^{\prime} y=x\left(x^{\prime} y\right)=x\left(f_{x}^{\prime}(y)\right) \\
& =\phi_{x}\left(d_{x}^{\prime}(z)\right)=\left(d_{x} x \phi_{x^{\prime}}\right)(y)
\end{aligned}
$$

Thus the mapping $x \rightarrow \phi_{x}$ is a morphism of the given ring into the ring of endomorphisms of the Abolian group $(X,+)$. We now show that this mapping is one-one (though not necessarily onto). Since the given ring has a unit t, if $\psi_{x}=\phi_{X^{\prime}}$, then
$x=\Phi_{x}(t)=\left\{_{x}(t)=x^{\prime}\right.$. Thus tho mapping is an isomorphism onto a ring of endomorphisms of $(X,+)$, and our assertion is proved.

The case of a ring without unit: We shall now show that an arbitrary ring $c a n$ be embedded in a ring with unit, whence it will follow from the above that any ring is isomorphic to a ring of endomorphisms of an abelian group. We first take a few preliminary remarks.

In a monoid (using additive notation), we can define positive integral multiples of any element \neq recursively according to $1 *=*,(n+1) x=n+*$. We may then define $0 x=\Theta$ and $(-n) x=-n *$, where θ is the neutral element, in the case where the monoid is a group. In the case of an associative monoid, it will follow that for all pasilive integers m and n, end, in the case of a group, for all integers m and n, that $(m+n)$ $=m$ * $+n$ *

In the case of a ring $(X,+, \cdot)$, the above relation obviously holds; furthermore, we have, for all integers m, n, and any pair of elements $x, y \leqslant x,(m x) \cdot(n y)=m n(x y) \cdot$ Now consider the set \mathcal{X} of all pairs (m, x) with m an integor and $x \in X$. Define the operations + and . on H according to

$$
\begin{aligned}
& (m, x)+(x, y)=(n+n, x+y) \\
& (m, x) \cdot(x, y)=(m n, m y+n x+x \cdot y)
\end{aligned}
$$

It is easily verified that $(t,+, \cdot)$ is a ring, and that
the mapping $\quad x \rightarrow(0, x)$ is an isomorphism between X and the subring of ${ }^{*}$ consisting of all elements (σ) with \& X. Further, ($1, \theta$) plays the role of a unit in \mathcal{X}, where θ is the neutral element of X. Thus we have embedded $(X,+, 0)$ into a ring with unit. Tho latter ring, as we know, is isomorphic to ring of endomorphisms of its own (Abolian) additive group. Hence the given ring is isomorphic to a sub-ring of this ring of adomornhisms.

The homomorphic image of a ring; As in the care of monoids and groups, it is true that the image of a diploid under a morphism is a diploid, and, of a ring, a ring. We now examine a question similar to what we have answered for groups, namely, the characterization of all homomorphic images of a ring.

Let $\left(X_{1}^{\prime}+,{ }^{\prime}\right)$ be the homomorphic image under of the ring $\left(X_{1}+, \cdot\right)$. Let K be the subs st of X consisting of all elements $x^{*} \in X$ such that $\phi(x)=\epsilon^{\prime}$, the neutral element of X^{\prime} (incidentally, we note that $\phi(\theta)=\theta^{\prime}$): we call K the Kernel of the homomorphism. We have:

K is a two-sided ideal of X.

By a two-sided ideal $\rho^{\prime} Y$ of X, we mean a subset of X such that (i) $(Y,+)$ is an Abelian group; and (ii) if $\lambda \in X$, $y \in Y$, we have $x y \in Y, y H \in Y$.
proof: If $x \in K, y \in K$, then $x-y \in K$, since $\phi(x-y)=\phi(x)-\phi(y)=\epsilon-\epsilon=\epsilon$; hence $(K,+)$ is a sub-group of $(X,+)$.

Also, if $x \in X, y \in K$, then $\phi(x y)$
$=\phi(x) \cdot \phi(y)=\phi(y) \cdot \theta^{\prime}=e^{\prime}$. Similarly, $\phi(y x)=\theta^{\prime}$ also. Hence

F if and y^{*}. both belong to k.
Now, let us define $x=y$ iff $\phi(x)=\phi(y)$, ie., iff $x-y \in k$. Then this is an equivalence relation, and if we denote the quivalence class containing ${ }^{*}$ by $[x]$, as usual, we find that w can unambiguously define operations + and . over the sot of $[x]^{\prime}$ ' according to

$$
\begin{aligned}
& {[x]+[y]=[x+y]} \\
& {[x][y]=[x y]}
\end{aligned}
$$

For, $x \equiv x^{\prime}, y \equiv y^{\prime} \Rightarrow\left(x^{\prime}+y^{\prime}\right)-(x+y)=\left(x^{\prime}-x\right)+\left(y^{\prime}-y\right) \in K$, since $\left(x^{\prime}-x\right) \in K,\left(y^{\prime}-y\right) \in K$, and $(K,+)$ is a group, so that $\quad x^{\prime}+y^{\prime} \equiv x+y$. And, $x \equiv x^{\prime}, y \equiv y^{\prime} \Rightarrow x y-x^{\prime} y^{\prime}$ $=x\left(y-y^{\prime}\right)+\left(x-y^{\prime}\right)$ JfK since K is a two-sided ideal and $y-y^{\prime} \in K$, $x-x^{\prime} \in K$, so that $x y \equiv x^{\prime} y^{\prime}$.

Thus the mapping $\phi(x) \longrightarrow[x]$ gives us an isomorphism of $\left[X^{\prime},+, \cdot\right]$ onto the above ring of equivalence classes, showing that every homomorphic image of a ring is isomorphic to a certain ring of equivalence classes which is the difference-ring relative to a two-sided ideal of the ring, namely, the kernel of the homomorphism. (We have also incidentally proved the converse, namely, that on a difference-ring relative to any two-sided ideal, addition and multiplication can be defined suitably and unambiguously to make it a homomorphic image of the given ring.)

Chapter 6:

MODULES ATT VECTOR-SYSTEMS

The most satisfactory way of defining a module is to consider it as comprising an Abelian group $(X,+)$ written addtively, together with a distinguished sub-ring R_{0} of its ring of endomorph \mathbb{R}, so that, for any $\notin \in \lambda, r_{0} \in \lambda_{0}$, we have $\gamma_{c} * \in X$, (R itself may be trivial and consist, for instance, meroly of 'multioles' of the identity manning.)

In the case where \mathbb{R}_{0} is a divison-ring (ie., a ring in which the non-neutral elomonts form a group under multinlication), we obtain a vector-system (over Re); in particular, if R_{0} is a field, ie., a commutative divicion-ring, If a sub-group Y of X is left invariant by (all the members of) R_{0}, then $\left(y, R_{0}\right)$ is called a sub-module of $\left(X, R_{0}\right)$. A sub-module $\left(y, R_{0}\right)$ defines an equivalence relation on (X, \mathbb{R}_{0}) according to

$$
x \equiv y \longleftrightarrow x-y<Y
$$

which has the further property that $x \equiv y \Rightarrow r_{0} x \equiv r_{\text {. }} y$ for $211 r_{0} \in R_{0}$, For, $x=y \Rightarrow x-y \in Y \Rightarrow \gamma_{0}(x-y) \in Y$
$\Rightarrow r_{0} x-r_{0} y \in y \Rightarrow r_{0} x=r_{0} y$. The equivalence classes therefore form a module, with $\gamma[x]$ being defined as $\left[r_{0} \times\right]$: this module is called the difference-module of X relative to the sub-module Y.

Suppose $\left(X, R_{0}\right)$ and $\left(X_{1}^{\prime}, R_{0}^{1}\right)$ are two modules, where \mathbb{R}_{0} is isomprhtc to $\mathbb{R}_{0}^{!}$(in particular, they may be identical). Then a mapping ψ from the first into the second is called a
morphism if
(1) $\phi(x+y)=\phi(x)+\phi(y)$,
(2) $\phi\left(r_{0} x\right)=\gamma_{0} \phi(x)$.

As before, the image of a module under a morphism is again a module. It is clear th the difference-module of a module relative to a sub-module is a homomorphic image of the given module.

Characterization of homomorphs of a module: Suppose $\left(x, R_{0}\right)$ is mapped homomorphically by ϕ onto a module $\left(X^{\prime}, R_{0}^{\prime}\right)$. Consider the 'Cornel'' $K=\left\{x: q(x)=\theta^{\prime}\right\}$. Then, $x \in K \Rightarrow \phi\left(r_{0} x\right)=r_{0}^{\prime} \phi(x)=r_{0}^{\prime} \theta^{\prime}=\theta^{\prime}$, so that $\gamma_{0} x \in K$ also, ans consequently K is a sub-module of X. We cen form the 'difference-module' of X relative to K Consisting of the equivalence classes corresponding to the relation given by $x \equiv y \Rightarrow x-y \in K$, which is again a module over the same $R_{0}, r_{0}[x]$ being the equivalence class $\left[\gamma_{0} x\right]$. Each homomorphic image of a module is then seen to be isomorphic to the difference-module of the given module with respect to a partiocular sub-module.

A more usual method of presenting modules and vectorspaces is by means of the theory of groups with operators. We start with a group X (written additively) and a sot Ω of 'operators'. We consider mappings of $\Omega \times \times$ into X. We denote the image of the pair $((\alpha, x)$ by αx and we link the mopping to the group-operation by the requirement.

$$
\alpha(x+y)=\alpha x+\alpha y .
$$

In other words, we require that, for fixed α, the mapping $\left\{\lambda_{\alpha}: X \rightarrow X\right\}$ be an endomorphism of the given group. The correspondence $X_{:} \rightarrow \lambda_{\alpha}$ will be one-one iff $\alpha x=\beta x$ for all $x \Rightarrow \alpha=\beta$; in other words, if $\alpha \neq \beta$, there must exist some x such that $\alpha X \neq \beta x$.

Now, two natural compositions for the operators are given by:

$$
\begin{aligned}
& +:(\alpha+\beta) *=\alpha x+\beta x, \\
& x:(\alpha x \beta) x=\alpha(\beta x) .
\end{aligned}
$$

If the original group be Abelian, then the set Ω of operators can be enlarged into a ring by adjoining to it a null operator $(\mathbb{H}$ and the operators $\{-\alpha \mid \alpha \in \Omega\}$, where, for all $x \in X$, (本 $x=\theta$ and $(-\alpha) x=-\alpha x$. The correspondence $\alpha \rightarrow \lambda_{\alpha}$ will be one-one, for $\alpha x=\beta x$ for all $x \longleftrightarrow$ $(\alpha-\beta) x=0$ for all $x \leftrightarrow \alpha-\beta=(\oplus)$. Further, it is a homomorphism since $\lambda_{\alpha+\beta}=\lambda_{\alpha}+\lambda_{\beta}$ and $\lambda_{\alpha, \beta}=\lambda_{\alpha} x \lambda_{\beta}$ and so is an isomorphism. Thus, the set of operators Ω of an Abelian group with operators cen always be enlarged to a ring of operators which is isomorphic to a ring of endomorphisms of the basic group. This fact provides the connection between groups-with-operators and modules.

Vector-systoms: In this case, the distinguished subring \mathbb{R}_{0} has an identity which we shall denote by $e \quad$ (ia., $e \alpha_{0}=\alpha_{0} e=\alpha_{0}$ for $\alpha_{0} \in R_{0}$). It does not, however, follow that e $x=X$ for all $x \in X$. If wo consider the set Y
of elements y satisfying the relation $e y=y$, we get a submodule (Y, \mathcal{R}_{0}) such that t acts as th identity on Y. LIfe $y \in Y$, then $e y=y \Rightarrow e\left(r_{0} y\right)=\left(e r_{i}\right) y=r_{0} y ;$ and, by definition, e acts as the identity mapping on Y. $\bar{\nabla}$ Now, any element H of X can be represented as

$$
x=e x+(x-e x)
$$

The elements $\{e * \mid * \in X\}$ form the above module; if $\mathbb{N}=$ $\{x-e x \mid x \in X$, , then it is clear that $N=\{Z \in X \mid e Z=\epsilon\}$, so that \mathbb{N} is obviously a module and e acts as an annihilator on N. Hence X is the direct sum: of two modules, Y and N. If we now replace X by the difference-module $\bar{X}=X \in N$, which will be isomorphic to y, the identity element of R_{0} cancides with the identity mapping on \bar{X} and the usual properties of vector-systems follow $(x, y \in X)$:

$$
\begin{aligned}
x(x+y) & =\alpha x+\alpha y \\
(\alpha+\beta) x & =\alpha x+\beta x \\
\alpha(\beta x) & =(\alpha) x \\
\epsilon x & =x
\end{aligned}
$$

These properties are enough to make the correspondence $\alpha \rightarrow \lambda_{\alpha}$ (where λ_{α} is the mapping $\quad x \rightarrow \alpha x$) an isomorphism. For, $\alpha x=\theta \quad$ either $\alpha=(\leftrightarrow)$, the null-mapping; or $\alpha \neq(H)$, in which case α^{-1}, exists and we have $x=e x=\left(\alpha^{-1} \alpha\right) x$ $-\alpha^{-1}(\alpha x)=\theta$. Hence, a 'vector-system (over a division ring)' is indeed an Abelian group together with a certain division-ring of endomorphisms thereof.

Remark: Te mention in passing that the modules we have considered above are the so-called left modules'; modules comprising an Abelian group ($X,+$) together with a distinguished sub-ring \mathbb{R}_{0} of its ring of endomorphisms R such that for any $X \in X, r_{0}<R_{0}$, we have $\not r_{0} \in X$ are called rightmodules". It suffices to consider only one kind since the properties of the other will be meraly duals of those of this kind. Sometimes it is useful to deal with 'bi-modules', i.e., modules with one ring of left-multiplications and mother ring of rightmultiplications.

Commutant of subsets of Ω in a module $\left(x, Q_{0}\right)$: Tet X be an Mbelian group and \mathbb{R} the ring of its endomorphisms: Let R_{0} be a distinguished sub-ring of $\mathbb{R} \cdot\left(X, R_{0}\right)$ is then a module, by definition.

For any subs it A of R, we define the commutant A^{1} of A according to

$$
A^{\prime}=\left\{\alpha \in \mathbb{R} \mid \alpha \beta=\beta \alpha \text { for all } \beta \in A \cup R_{0}\right\} \text {. }
$$

It follows that \mathbb{R}_{0}^{\prime} is precisely the set of all endomorphisms of the module $\left(X, R_{0}\right)$, remembering that α is an endomorphism iff (1) $\quad \alpha(x+y)=\alpha x+\alpha y$ for all $x, y \in X$, and (2) $\alpha\left(\gamma_{0} x\right)=\gamma_{0}(\alpha x)$ for all $x \in x_{,} \gamma_{0} \in \mathbb{k}_{0}$. These endomorphisms. are called linear operators or linear transformations, especially in connection with vector-systems. It follows at once from the definition that (I) A'C R_{0}^{\prime} and (2) $\Lambda \in B \Rightarrow A^{\prime} \supset B^{\prime}$. Horse, every member of A^{\prime} is an endomorphism of the module; furthermore, as is easily verified, A' is indeed a ring of endomorphisms of the module. In particular,
\mathbb{R}_{0}^{\prime} is the ring of endomorphisms of the module, and A^{\prime}, consequently, is a sub-ring of this ring. We further have
(3) $A \cap R_{0}^{!} \subset A^{\prime \prime}$

Proof: $A^{\prime \prime}=\left\{\alpha \in R \mid \alpha \beta=\beta \alpha\right.$ for all $\left.\beta \in A \cup R_{0}\right\}$. If $\alpha \in A \cap R_{0}^{\prime}$ and $\beta \in A^{\prime} \cup R_{0}$, it is clear that $\alpha \beta=\beta \alpha$; so that the assertion follows.

In particular, (4) if $A \in Q_{0}^{\prime}$, then $A \in A^{\prime \prime}$: B_{0}^{r}
(1) above, $A^{\prime} \subset R_{0}^{\prime}$ and so, applying (1) to A^{\prime}, we have $A^{\prime} \subset\left(A^{\prime}\right)^{\prime \prime}$. Again, $A^{\prime} \subset A^{\prime \prime} \Rightarrow\left(A^{\prime}\right) \equiv\left(A^{\prime}\right)^{\prime}$, by (?). Now, it is almost at once obvious that $\left(\Lambda^{\prime}\right)^{\prime \prime}=$ ($\left.\Lambda^{\prime \prime}\right)^{\prime}$ '; denoting this set by A''', we have:(5) for all sets $A \subset R_{0}^{\prime}, A^{\prime}$ $\equiv A^{\prime \prime}$.

In particular, again, if $A \subset A^{\prime}$, so that A is commutative (in fact, for $A \subset Q_{0}^{\prime}$ to $b=$ commutative, it is both necessary and sufficient that $A \subset A^{\prime}$, as is easily verified), we have $\mathcal{R}_{0}^{\prime} \supset A^{\prime} \supset A$ by (1), so that $A \in \Lambda^{\prime \prime}$ and $\Lambda^{\prime}=A^{\prime \prime \prime}$, by (4) and (5) respectively.

Abelian sets: Set Λ with the above property: $\Lambda \subset \Lambda^{\prime}$ are called Abelian sets. (According to what we have seen above, $Q_{0}^{\prime \prime}$ is an Abelian set.)

An Abelian set A is maximal Abelian if $B \subset B^{\prime}, B D A$
$\Rightarrow B=\Lambda$. Abelian sets are obviously commutative; their most
important properties include the following two:
(1) For an Abelian set \wedge to be maximal Abelian, it
is necessary and sufficient that $A^{\prime}=\Lambda$
Proof: If $A=A$!, then suppose $B \subset B^{\prime}, B \supset A$. Then.
$A \subset B \subset B^{\prime} \subset \Lambda^{\prime}$, so that $\Lambda=\Lambda^{\prime} \Rightarrow B=\Lambda^{\prime}$.
If $A \neq \Lambda^{\prime}$, then Λ being contained in Λ^{\prime}, there
exists an element α belonging to Λ^{\prime} but not to Λ. We as ert that $B=A \cup\{\alpha\}$ is an Abelian set. For, if $\beta \in B$. and $\gamma \in B \cup R_{0}$, we must have either (i) $\beta \in B \in A^{\prime}$, and $\gamma \in A \cup \mathbb{R}_{0}$ or (ii) $\beta \in A$ and $\gamma=\alpha \in A^{\prime}$, or (iii) $\beta=\gamma=\alpha$, and in all these cases $\beta \gamma=\gamma \beta$ so that $B \subset B^{\prime}$. Since B includes A in the strict sense, Λ is not maximal Abelian.
(2) If \wedge is Abelian, then there exists a maximal Aphelian

set containing A.

If $A=A^{\prime}$. by (1), the assertion is trivially true. Hence we need only consider the case $A \neq{ }^{\prime}$ '. Let ' B be the class of all sets B such that $\wedge \subset B \subset B^{\prime} \subset A^{\prime}: B$ is not empty, since A belongs to it. We introduce a partial ordering on : B namely, the ordering by inclusion. If $\{B \lambda, \lambda \in \Delta\}$ be a chain (linearly ordered subset of $(\beta$) then it has an (in fact, a least) upper bound, namely, $U\{B \lambda: \lambda \in \Delta\}$. For denoting this set by B, we have to show that $B \subset B^{\prime}$, ie., if $\beta \in B$ and $\gamma \in B \cup R_{0}$, then $\beta \gamma=\gamma \beta$. But $\beta \in B_{\mu}$ and $\gamma \in B_{\nu} \cup R_{0}$ for some $\mu, \gamma \in \Delta$, so that $\beta \in \cdot B_{\lambda}$ and $\gamma \in B_{\lambda} \cup \mathbb{R}_{0}$, where ${ }^{B} \lambda$ is the larger of the two sets $\beta^{B} \mu$. and ${ }^{B}{ }_{\nu}$ (remembering that they are members of aa chain). But, since $B \dot{\lambda}$ is an Abelian set, $\beta \gamma=\gamma \beta$, and so $\$<B^{\prime}$. Hence, by Zorn's axiom, B has a maximal element, i.e., there exists a set B_{0} such that
$A \subset B_{0} \subset B_{0}^{\prime} \subset A^{\prime}$ and if B be any sot with the same property and such that $B \Rightarrow B_{0}$, then $B=B_{0}$. This implies that $B_{0}=B_{o}^{\prime}$, since, otherwise, our construction in the proof of Property (I) applies, and we car find a set $B_{o} U\{\alpha\}$ which is also melian. Hence A is contained in a maximal Abelian set.

This result has important applications in the theory of operators. For instance, following Jon Neumann, we may call a set A a factor if $A=A^{\prime \prime}$ and $A \cap A=R_{0}^{\prime \prime}$. (If A is a factor, obviously so is f'.) There exists a theory of decomposition of rings into 'factors'.

Remark: $B y$ definition, $R_{0}^{\prime \prime}=R_{0}^{\prime} \cap\left\{\alpha \mid \alpha \beta=\beta \alpha\right.$ for all $\left.\beta \in \mathbb{R}_{0}^{\prime}\right\}$ the set of all linear operators which commute with ovory linear operator: this, by definition, is the center of the ring \mathbb{R}_{0}^{\prime}.

Semi-metrics and metrics on groups: right-invariance:
Suppose we have a group which is at the same time a (semi-) metric space. Mathematical systems of interest are those in which the group operation and the distance function are suitably connected. We may, for instance, require that the group product be contrnous and/or that the inverse be continuous. Or we may replace a given distance function by another, topologically equivalent to it, but more closely connected in some manner to the group operation.

In all the discussions that follow, we assume d to be a right-invariant semi-metric, i.e., for all $x, y, z \in X$, $d(x, y)=d(x z, y z)$. Whatever be $Z \in X, d(x z, y z)$ can be made arbitrarily small by making $d(x, y)$ small enough:
in other words, left multiplication in the group is uniformly contincous. (We are not in a position to say anything about the continuity of right-multiplication.)

Theorem I If d is a right-invariant metric, then $Z Y$ is jointly continuous in x and y iff it is continuous for each x at $y=0$ 。

Proof: The 'only if' part is immediate, since $x y$ jointly continuous in x and $y \Rightarrow$ for och fixed $x, d(x y, x e)$ ic small if $d(y, e)$ ic small. Here we do not need the right-invariance of d.

$$
\begin{array}{r}
\text { If } x y \text { is continuous at } y=e \text { for each fixed } \\
d(x y, x y)=d\left(x^{\prime} y^{\prime} y^{-1}, x\right)=d\left(x \cdot x^{-1} x^{\prime} y^{\prime} y^{-1}, x\right)
\end{array}
$$

By our hypothesis, this is small if $d\left(x^{-1} x^{\prime} y^{\prime} y^{-1}, \dot{o}\right)$ is small. But the last expression $=d\left(x^{-1} x^{\prime}, y\left(y^{\prime}\right)^{-1}\right)$ by right-invariance,

$$
\begin{aligned}
& \leqslant d\left(x^{-1} x^{\prime}, e\right)+d\left(y\left(y^{\prime}\right)^{-1}, e\right) \\
& =d\left(x^{-1} x^{\prime} x^{\prime \prime}, x^{-1}\right)+d\left(y, y^{\prime}\right) \text { by right-invariance. }
\end{aligned}
$$

Again, by our hypothesis, the first member of the last expression is small if $d\left(x^{\prime} x^{-1}, e\right)$ is small, ie., if $d\left(x^{\prime}, x\right)$ is small (by right-invariarce). Hence it follows that $d\left(x^{\prime} y^{\prime}, x y\right)$ is small if $d\left(x, x^{\prime}\right)$ and $d\left(y, y^{\prime}\right)$ are small, i.e., $x y$ is jointly continuous in x and y.

Theorem 2: If d is right-invariant and $x y$ is jointly continuous in x and y, then the inverse is continuous:

Proof: $d\left(x^{-1}, y^{-1}\right)=d\left(x^{-1} y, e\right)\left[=d\left(e, y^{-1} x\right)\right]$ by right invariance. $d\left(x^{-1} y, e\right)=d\left(x^{-1} y, x^{-1} x\right) \quad$: is small, by jointcontinuity of $x y$, if $d(y, x)$ is small.

The converse is also true, namely,
Theorem 3: If d is right-invariant and the inverse
is continuous, then $x y$ is jointly continuous in x and y.
By theorem 1, it suffices to show that for each fixed X,
$x y$ is continuous at $y=e$, i.e., that $d(x y, x)$ is small if $d(y, e)$ is. But, by continuity of inverse, $d(x y, x)$ is small if $d\left(y^{-1} x^{-1}, x^{-1}\right)$ is small, io., (by right-invariance) if $d(e, y)$ is small, since $d\left(y^{-1} x^{-1} x^{-1}\right)=d\left(y^{-1} x^{-1} x y, x^{-1} x y\right)$.

Theorem 4: If $x y$, for every fixed y, and x^{-1} are continuous in X, then $y X$, for every fixed Y, is also contnous in X.

Proof: For fixed $y, y x=\left(x^{-1} y^{-1}\right)^{-1}$ is continuous in $x^{-1} y^{-1}$ (by continuity of inverse), which is continuo aus in x^{-1}, which again is continuous in X.

We can also prove Theorem 3 with the help of Theorem 4. In the presence of a right-invariant $d, x y$ is continuous in x for each fixed y (in fact, uniformly for all y) since $d\left(x y, y^{\prime}, y\right)=d\left(x, x^{\prime}\right)$. Then the as sumption of Theorem 3 imply (by Theorem 4) that, for fixed y, $y x$ is continuous in x, or, what is the same, $x y$ is continuous in y for fixed x. Since $d\left(x y, x^{\prime} y^{\prime}\right) \leq d\left(x^{\prime} y^{\prime}, x y^{\prime}\right)+d\left(x y^{\prime}, x y\right)=d\left(x^{\prime}, x\right)+d(x y, x y)$ it follows that it is small if $d\left(x, x^{\prime}\right)$ and $d\left(y, y^{\prime}\right)$ are small, as desired to prove.

Thus, under right-inveriance of d, joint continuity of $x y$ in x and y is equivalent to continuity of x^{-1} in x.

Semi-norms and norms corresponding to right-invariant distance functions: Let d be a right-invariant semi-metric on
a group X. We can make some special constructions using the fact that $d(x, y)=d\left(x y^{-1}, e\right)$ and consequently the function of two variables, d, can be replaced by a function of a single variable as follows: define $N(z)=d(z, e)$. Then $d(x, y)=N\left(x y^{-1}\right)=N\left(y x^{-1}\right) \cdot \mathbb{N}$ has the following properties derived from corresponding properties of d :
(1) $N(x) \geqslant 0$, and $N(e)=0$
(2) $\mathbb{N}\left(x^{-1}\right)=\mathbb{N}(x)$
(3) $N(x y) \leq N(x)+N(y)$.

If d is a metric, then we have further,
(4) $N(x)=0 \Rightarrow H=\epsilon$.

A real-valued function \mathbb{N} defined on a group and having properties (1) - (3) above is called a semi-norm; if it satisfies (4) also, then it is a norm. Thus every right-invariant (semi-) metric induces a (semi-) norm. Conversely, given a (semi-) norm on a group, we can introduce a distance d recording to $d(x, y)=N\left(x y^{-1}\right)$; d is also right-invariant, $2 s$ on immediate consequence of the definition. Thus, a (semi-) norm is equivalent to a right-invariant (semi-) metric.

Let us assume that \mathbb{N} is a semi-norm on a group X. The set $Y=\{x \mid N(x)=0\}$ is a subgroup; for, if $N(x)=F(y)=0$, then $0 \leq \mathbb{N}\left(x y^{-1}\right) \leq N(x)+N\left(y^{-1}\right)=N(x)+N(y)=0$, showing that if $x, y \in Y$, then so does $x y^{-1}$. The relation 三 on X defined by $x \equiv y$ iff $x y^{-1} \in \mathbb{N}$ is then an equivalence relation such that, if $x \equiv y$, then $x z \equiv y z$ for all t. Confider
the set of equivalence classes $\bar{X}=\{[x] \mid x \in X\}$: Er each $Z \in X$, the mapping $P_{z}:[x] \rightarrow[x \neq]$ is a one-one mapping of \bar{X} onto itself. 7 we may now define \bar{a} on $\bar{X} \times \bar{X}$ according to $\bar{d}([x],[y])=d(x, y)$ - this definition being unambiguous -- and \bar{N} according to $\bar{N}([x])=N(x)$. $\overline{\mathrm{d}}$ has the property $\bar{d}([x z],[y z])=\bar{d}([x],[y])$. In general, \bar{X} is not a group, but (\bar{X}, \bar{d}) is a metric space. In the case where Y is an invariant subgroup of X (in particular, if X is Abelian), we know that \bar{X} is a group and that the above construction defines a right-invariant metric \bar{d} and an equivalent norm $\overline{\mathbb{N}}$ on this group.

Let now H be an invariant subgroup of a group G with a right-invariant semi-metric d and the equivalent seminorm \mathbb{N}. Let

$$
\bar{N}(x)=\inf _{z \in H} N(x z)\left[\begin{array}{l}
=\inf \\
z \in H
\end{array} N\left(x z^{-1}\right) \text { obviously }\right]
$$

$\overline{\mathrm{N}}$ is a semi-norm. For,
(i) $\overline{\mathbb{N}}(e)=0 \quad($ take $z=e$ to get $0 \leq \bar{N}(e) \leq 0)$.

$$
\inf \mathbb{N}\left(x \cdot x^{-1} z^{-1} x\right)=\overline{\mathbb{N}}(x)
$$

$$
\ddot{t} \in H
$$

since $\left\{x^{-1} z^{-1} x \mid x \in G\right.$ fixed, $\left.z \in H\right\}=H, \quad H$ being an invariant sub-group.

$$
\text { (iii) } \begin{aligned}
\bar{N}(x y) & =\inf _{z \in H} \mathbb{N}(x y z)=\inf ^{z} \mathbb{N}\left(x w \cdot\left(w^{-1} y z\right)\right. \\
& \leq N(x w)+N\left(w^{-1} y z\right) \\
& =N(x w)+N\left(y \cdot y w^{-1} y z\right) .
\end{aligned}
$$

By the invariance of $H, y^{-1} w^{-1} y \in A$ and, there fore, so no ns $y^{-1} w^{-1} y z:$ call it u. Note that since W and z are 'independent, variables, so are w and u. Given $\varepsilon>0$ there exist $w, u \in H$ such that $N(x w) \leq \mathbb{N}(x)+\varepsilon / 2$ and $N(y u) \leqslant \bar{N}(y)+\varepsilon / 2 ;$ since $\varepsilon>0$ is arbitrary, it then follows that $\bar{N}(x y) \leq \bar{N}(x)+\bar{N}(y)$. Hence our assertion.

Consider the set $\{x: \bar{N}(x)=0\}$. This is
a subgroup (as we have already noted for the case of an arhitrary semi-norm). $\quad *$ belongs to this sot $\longleftrightarrow \inf _{z \in H} N\left(x z^{-1}\right)=0$ $\longleftrightarrow \inf _{z \in H} d(x, z)=0 \longleftrightarrow x \in \bar{H} \quad$, the closure of H. (under the metric topology induced by N.). Hence it follows that \bar{H} is a sub-group, but we do not know whether it is invariant or not. If, however, the group product is jointly continuous (equivalently, if the inverse is continuous), then, $\neq \bar{H}$ can be approached by a sequence $z_{n} \in H, x z_{n} x^{-1} \in H \in \bar{H}$ for every n, and, by the continuity of the product and the fact that \bar{H} is closed, we have $x \not x^{-1} \in \bar{H}$ for arbitrary $x \in G$, showing that \bar{H} is invariant in this case. Since $\bar{H}=\{x \mid \bar{N}(x)=0\}$, we can carry out the construction of the metric space of equivalence classes, exhibited above. Denoting it by $G / \overline{\mathrm{H}}$ (as usual) and the seminorm induced by \vec{N} on this space by \bar{N}, we have the Theorem: If (G, d) is a complete metric space, so is

($G / \overline{\mathrm{H}}, \overline{\bar{N}})$.

Proof: We have to show that if $\overline{\mathbb{N}}\left(x_{m} x_{n}^{-1}\right) \rightarrow 0$ as $m, n \rightarrow \infty$, then there exists x such that $\overline{\mathbb{N}}\left(x_{n} x^{-1}\right) \rightarrow 0$
as $n \rightarrow \infty$ provided that N has the same property. We can find
a sequence $\left\{x_{n} n_{p}\right\}$. such that $\bar{N}\left(x_{n}{ }_{p+1} *_{n_{p}}^{-1}\right)<2^{-p-1}$ for all
p. Denoting x_{n} by y_{p}, we have $\bar{N}\left(y_{p+1} y_{p}^{-1}\right)<2^{-p-1}$. By the definition of \bar{N}, there exists $u_{p} \in H$ such that

$$
\begin{aligned}
& N\left(y_{p+1} y_{p}^{-1} u_{p}\right)<\bar{N}\left(y_{p+1} y_{p}^{-1}\right)+2^{-p-1}<2^{-p} \text {. Let } \\
& z_{p+1}=\left(y_{p+1} y_{p}^{-1} u_{p}\right) \cdot\left(y_{p} y_{p-1}^{-1} u_{p-1}\right) \ldots . .\left(y_{2} y_{1}^{-1} u_{1}\right) .
\end{aligned}
$$

Then, for $q \geq p$, we have

$$
z_{q+1}^{z^{*}} \underset{p+1}{-1}=\left(y_{q+1} y_{q}^{-1} u_{q}\right) \cdot\left(\cdots\left(y_{p+2}^{y_{p+1}} u_{p+1}\right)\right.
$$

and

$$
N\left(z_{q+1}^{z_{p+1}^{-1}}\right) \leqslant \sum_{k=p+1}^{q} N\left(y_{k+1} y_{k}^{-1} u_{k}\right) \leq \sum_{k=p+1}^{q} 2^{-k}<2^{-p}
$$

Hence, (X, N) being a complete metric space, $Z q+1$ converges to some element z of X. Let y be such that $z=y y_{1}^{-1}$. Then $N\left(y_{y} y_{1}^{-1} z_{p+1}^{-1}\right) \leq 2-p$, as seen by letting $q \rightarrow \infty$ in the last relation above. Now,

$$
\begin{aligned}
y_{y_{1}^{-1}}^{z_{p+1}^{-1}} & =y_{y_{1}}^{-1}\left(u_{1}^{-1} y_{1} y_{2}^{-1}\right)\left(u_{2}^{-1} y_{2} y_{3}^{-1}\right) \cdots\left(u_{p}^{-1} y_{p} y_{p+1}^{-1}\right) \\
& =y y_{p+1}^{-1} y_{p+1}\left[\left(y_{1}^{-1} u_{1}^{-1} y_{1}\right)\left(y_{2}^{-1} u_{2}^{-1} y_{2}\right) \cdots\left(y_{p}^{-1} u_{p}^{-1} y_{p}\right)\right] y_{p+1}^{-1} \\
& =y y_{p+1}^{-1} w_{p}
\end{aligned}
$$

where, by the invariance of $H, W_{p} H$. Hence,
by definition of

$$
\begin{aligned}
& \bar{N}\left(y y_{p+1}^{-1}\right) \leq N\left(\begin{array}{ll}
y & \left.y_{p+1}^{-1} w_{p}\right)
\end{array}\right. \\
& =N\left(y y_{1}^{-1} z_{p+1}^{-1}\right) \leq 2^{-p} \rightarrow 0 \text { as } p \rightarrow \infty \text {. }
\end{aligned}
$$

Hence $\left\{y_{p+1}\right\}$ converges to y (relative to $\overline{\mathbb{N}}$). It follows that so does the original sequence $\left\{x_{n}\right\}$.

Semi-norms on vector-systems: Suppose we have a vectorsystem over the real or complex field, or over the division-ring of quaternions; in all these cases, we can define an ' 'absolute value' ' or ' 'modulus' ' for the elements of the field or divisionring, i.e., for the 'scalars'". Suppose further that a realvalued function N is, defined on the vector-system having the properties (α denoting a scalar and X a vector):

$$
N(x) \geq 0, \quad N(\theta)=0, \quad N(-x)=N(x), \quad N(\alpha x) \cdot=|\alpha| N(x)
$$

and $N(x+y) \leqslant N(x)+N(y)$.

Then N is called a semi-norm; if, further, $N(x)=0 \Rightarrow x=0$, then \mathbb{N} is a norm.

Suppose \mathbb{N} is a semi-norm on a vector-system of one of the above kinds. $H=\{X \mid N(X)=0\}$ is a vector-subsystem (*)ab-space ' ' ${ }^{\prime}$) of the given system. In particular, as a subset a additive group, it is a sub-group of an Abelian group and so invariant. Hence the construction described ahove, of \bar{N} from N, applies and $\bar{H}=\{x \mid \bar{N}(x)=0\} \cdot \overline{\mathrm{N}}$ has the further property that $\bar{N}(\alpha x)=|x| \bar{N}(x)$, and the difference system of G relative to \bar{H} is itself a vectorsystem (with the same scalars) and is a normed one with norm $\overline{\bar{N}}$ given by $\overline{\bar{N}}([\notin])=\bar{N}(x)$. If the original system
is complete, so is G / \bar{H}, according to what we have said earlier.

Norms in terms of suitable subsets of the vector-systems: Consider the set $\{x: N(x) \leq 1\}$. Geometrically, this is a symmetric and convex set: for, $N(x) \leqslant 1$ implies that $N(-x) \leq 1 ;$ and $N(x) \leq 1, N(y) \leq 1$, $0 \leq \alpha \leq 1, \alpha+\beta=1$ implies that $\mathbb{N}(\alpha x+\beta y) \leq$ $\alpha N(x)+\beta N(y) \leq \alpha+\beta=1$.

Conversely, if a symmetric and convex subset K of a
vector-system is given, then a norm N can be so defined on the system that $\{x \mid N(x)<1\} \subset K \subset\{x \mid N(x) \leq 1\}$, In fact, it is even possible to omit the symmetry requirement and merely require that K include the origin and be convex.

