
SOME COMPLEXITY THEORETIC ASPECTS OF

GRAPH ISOMORPHISM AND RELATED

PROBLEMS

By

Bireswar Das

THE I NSTITUTE OF M ATHEMATICAL SCIENCES, CHENNAI .

A thesis submitted to the
Board of Studies in Mathematical Sciences

In partial fulfillment of the requirements

For the Degree of

DOCTOR OF PHILOSOPHY

of

HOMI BHABHA NATIONAL INSTITUTE

April 2010

Homi Bhabha National Institute

Recommendations of the Viva Voce Board

As members of the Viva Voce Board, we recommend that the dissertation prepared by
Bireswar Das entitled “Some Complexity Theoretic Aspects of Graph Isomorphism
and Related Problems” may be accepted as fulfilling the dissertation requirement for the
Degree of Doctor of Philosophy.

Date :
Chairman and Convener: V. Arvind (IMSc)

Date :
Member : Samir Datta (CMI)

Date :
Member : Meena Mahajan (IMSc)

Date :
Member : N. S. Narayanaswamy (IITM)

Date :
Member : C. R. Subramanian (IMSc)

Final approval and acceptance of this dissertation is contingent upon the candidate’s
submission of the final copies of the dissertation to HBNI.

I hereby certify that I have read this dissertation preparedunder my direction and
recommend that it may be accepted as fulfilling the dissertation requirement.

Date :
Guide : V. Arvind

DECLARATION

I, hereby declare that the investigation presented in the thesis has

been carried out by me. The work is original and the work has not

been submitted earlier as a whole or in part for a degree/diploma

at this or any other Institution or University.

Bireswar Das

To my parents.

ACKNOWLEDGEMENTS

First of all I like to express my deepest gratitude to V. Arvind for supervising my

work. It has been a wonderful experience to work with him. I cannot overemphasise his

contribution to my research work. I am deeply indebted to himfor his advice, encour-

agement and support.

It has been a pleasure to work with Johannes Köbler. A large part of my research has

been done jointly with him. I like to thank him for so many research discussions and his

immense help and hospitality during my visit to Humboldt Universität, Berlin.

I am thankful to Kamal Lodaya, Meena Mahajan, R. Ramanujam, Venkatesh Raman

and C. R. Subramanian for teaching me theoretical computer science and for the friendly

and open research atmosphere that they have nurtured at IMSc.

I was fortunate to enjoy the hospitality of Jacobo Torán during my visit to University

of Ulm. I thank him for inviting me to University of Ulm and forthe wonderful research

experience. I wish to thank Peter Bro Miltersen for his help and support to visit Århus

University.

I wish to thank Piyush Kurur, Partha Mukhopadhyay, N. Narayanan, Prajakta Nimb-

horkar, Raghavendra Rao, Somnath Sikdar, Srikanth Srinivasan and Fabian Wagner for

many helpful discussions and suggestions.

A special thanks to the IMSc football team for making my stay at IMSc enjoyable.

Finally, I thank my parents and sister for their help and patience during the time I

have been working on this thesis.

Abstract

We study the complexity of graph isomorphism problem for restricted classes of graphs

and investigate the complexity of group theoretic problemsrelated to graph isomor-

phism. More specifically,

• We classify several problems closely related to the graph isomorphism problem

in algorithmic group theory in the classes PZK and SZK (problems with per-

fect/statistical zero-knowledge proofs respectively). Prior to this, these problems

were known to be in AM∩ coAM. As PZK ⊆ SZK ⊆ AM ∩ coAM, we have a

tighter upper bound for these problems.

• We give a constant round perfect zero knowledge proof for thegroup isomorphism

problem when the groups are given by their multiplication tables. The prover and

the verifier in this proof system use only polylogarithmically many random bits.

Motivated by this, we study honest verifier statistical zeroknowledge (HVSZK)

proof where the prover, verifier and the simulator use polylogarithmic random-

ness and the protocol has polylogarithmically many rounds.We show that any

language having such a proof system also has an HVSZK proof where not only

the prover, verifier and the simulator use polylogarithmic randomness but also has

polylogarithmic message size and only2 rounds.

• We give a polynomial-time oracle algorithm for Tournament Canonization that

accesses oracles for Tournament Isomorphism and Rigid-Tournament Canoniza-

tion. Extending the Babai-Luks Tournament Canonization algorithm [30], we

give annO(k2+logn) algorithm for canonization and isomorphism testing ofk-

hypertournaments, wheren is the number of vertices andk is the size of hy-

peredges.

• We give an FPT algorithm for the bounded color class hypergraph isomorphism

problem which has run-timeb!2O(b)NO(1) whereb is the size of the largest color

class andN is the input size.

• We prove that the isomorphism and canonization problem fork-tree is in the class

StUL which is contained inUL. We also prove that the isomorphism problem for

k-path is complete forL under disjunctive truth-table reductions computable in

uniformAC0.

6

Contents

1 Introduction 1

1.1 Overview of the Thesis . 6

2 SZK Proofs for Black Box Group Problems 9

2.1 Introduction . 9

2.2 Preliminaries . 10

2.3 Chapter Overview . 16

2.4 Group Problems in PZK . 17

2.5 Group Nonequivalence and PZK in liberal sense 22

2.5.1 Protocol . 22

2.5.2 Simulator . 25

2.6 Solvable Permutation Group Isomorphism is in PZK 27

2.7 Black Box Group Problems . 32

2.8 Concurrent Zero Knowledge . 34

2.9 SZK Proof with Efficient Provers .35

2.10 Concluding Remarks . 36

3 Limited Randomness Zero Knowledge 37

3.1 Introduction . 37

3.2 Preliminaries . 38

3.3 Group Isomorphism . 39

3.4 Limited Randomness Zero Knowledge42

3.5 Results of this Chapter . 46

3.5.1 βHVSZK Protocol forβSD(c) 47

3.5.2 Every problem inβHVSZK(logc1, poly, logc2) reduces toβED(c) 54

3.5.3 βED(c) reduces toβSD(c′) . 59

3.6 Conclusion . 64

4 Isomorphism and Canonization of Tournaments and Hypertournaments 65

4.1 Introduction . 65

4.2 Gadget construction for Tournaments 71

4.3 Canonical Labeling of Tournaments 76

i

Contents

4.4 Hypertournament Isomorphism and Canonization 86

5 An FPT Algorithm for Bounded Color Class Hypergraph Isomorphism 95

5.1 Introduction . 95

5.2 Preliminaries . 98

5.3 Permutation Group Problems . 99

5.3.1 Set Transporter . 99

5.3.2 Coset Intersection . 101

5.4 FPT Algorithm for Colored Hypergraph Automorphism and Isomorphism105

6 Space Complexity of K-tree Isomorphism and Canonization 109

6.1 Introduction . 109

6.2 Preliminaries . 111

6.3 k-Tree Canonization . 112

6.4 k-Path Canonization . 124

6.5 Remarks . 131

ii

List of Figures

2.1 Schematic Diagram of Reductions. 18

4.1 Vertex Fixing. 72

4.2 Colored to Uncolored Tournament. 75

iii

1
Introduction

Two graphsX1 = (V1, E1) andX2 = (V2, E2) are isomorphicif there is a bijection

from the vertex setV1 of the graphX1 to the vertex setV2 of the graphX2 that preserves

the edge relation. Given two graphsX1 andX2 the problem of deciding if the two

graphs are isomorphic or not is known asgraph isomorphism problemor GRAPH-ISO.

Graph isomorphism problem holds a unique place in the study of computational com-

plexity. The exact complexity status ofGRAPH-ISOis still unresolved. We do not know

if GRAPH-ISOhas a polynomial-time algorithm. On the other handGRAPH-ISOis very

unlikely to be NP-complete1. In practice graph isomorphism is not considered hard.

Indeed, there are several algorithms that performs very well in many instances of graphs

[84]. A theoretical justification of this fact comes from theresult of Babai, Erdös and

Selkow [26]. They proved that graph isomorphism can be tested in ‘linear time’ for

random graphs.GRAPH-ISOis in the class⊕P, in fact it is low for the class⊕P [18].

This means that even if we provideGRAPH-ISOas an oracle to the complexity class

⊕P it does not help to increase the computational power of the class. It was shown in

[18] that GRAPH-ISO is in the class SPP, which might be a much smaller class than

⊕P. GRAPH-ISOis not known to be hard for P. We only know thatGRAPH-ISOis hard

for the complexity classDET with respect to logspace computable reductions [105].

The complexity classDET consists of all problems that are logspace reducible to the

problem of computing determinant of an× n integer matrix.

Apart from its elusive complexity status,GRAPH-ISOis also remarkable in one more

respect. It has generated several new concepts in complexity theory and it has been

used as non-trivial example of several ideas in complexity theory. For example graph

1If GRAPH-ISOis NP-complete then the polynomial hierarchy collapses to the second level [35].

1

Chapter 1. Introduction

isomorphism problem was one of the first concrete examples that demonstrated the ideas

behind Arthur-Merlin games, interactive protocol, zero knowledge proof, lowness etc.

In the late 70’s and early 80’s Babai and Luks started applying results from permu-

tation group theory and classification of finite groups to study the graph isomorphism

problem. Soon the effectiveness of this process became evident when Luks [80] came up

with his celebrated polynomial-time algorithm for boundeddegree graphs. The group

theoretic analogue ofGRAPH-ISOis theset transporter problem(see [82]). In fact there

are several computational problems in permutation group theory which resemble the

graph isomorphism problem e.g., coset intersection, groupfactorization, group conju-

gacy in permutation groups etc. These problems often share asimilar complexity status

asGRAPH-ISO. For example, we do not know if there is a polynomial-time algorithm

for solving these problems and they are unlikely to be NP-complete. Moreover, solving

any of these problems would solve theGRAPH-ISOproblem.

The study of computational aspects of group theory started very early. For example

computing a list of primitive and transitive permutation groups of low order started dur-

ing the nineteenth century [97]. Examples of classical results in computational group

theory include Dehn’s algorithm [42] for solving word problem for certain groups, Todd-

Coxeter algorithm [104] for coset enumeration, Knuth-Bendix term-rewriting procedure

[73] etc. Any group can be represented as a permutation groupby specifying its action

on a set. Computational aspects of permutation groups have been studied extensively

as a result of which it is one of the most developed area in computational group the-

ory. Indeed, algorithmic permutation group theory is rich with its inventory of efficient

algorithms. A permutation groupG is a subgroup ofSym(Ω), whereSym(Ω) is the

group of all permutations of a finite setΩ with n elements. Any subgroupG of Sym(Ω)

can be specified by a set of generators of sizeO(n). For example only two generators

can generate the whole groupSym(Ω). This compactness of representation makes the

task of algorithm design even more challenging. LetG ≤ Sym(Ω) be generated by a

setS. The runtime of an algorithm whose inputG is given by the generating setS is

typically measured in terms of|S| andn, wheren = |Ω|. The Schreier-Sims algorithm

[99] provided a basic building block in the design of algorithm for permutation groups.

With the help of this algorithm membership testing, finding the order of a permutation

can be performed in polynomial time.

The main surge in the study ofcomplexityof permutation group problems came

after Luks’s polynomial-time algorithm for bounded degreegraphs. Problems like coset

2

Chapter 1. Introduction

intersection, group conjugacy, permutation group isomorphism has been put in the class

NP∩coAM [23]. The problem of finding lexicographic leader in double coset was shown

to be NP-complete. Several restricted versions of the aboveproblems have polynomial-

time algorithms [82].

One of the most beautiful concepts in complexity theory is zero knowledge proofs.

Zero knowledge proofs are interactive proof systems which involve two parties, a prover

and a verifier. The prover wants to prove the validity of some assertion. In doing so

both parties interact by sending messages. If the assertionis really valid the the prover

succeeds to convince the verifier with high probability. On the other hand if the asser-

tion is false then the verifier will be able to detect it with high probability. Moreover

when the assertion is true, the verifier learns nothing more than what it can know with-

out the interaction with the prover. This, seemingly puzzling, condition is known as

the zero knowledge condition. This condition is formalizedby requiring a randomised

polynomial-time algorithm known as thesimulator. The simulator canmimicthe inter-

action between the prover and verifier. Depending on how wellthe simulator “mimics”

the interaction, zero knowledge protocols can be of different types, e.g., perfect zero

knowledge, statistical zero knowledge and computational zero knowledge. Though the

zero knowledge condition initially seems strange, Goldwasser, Micali and Racoff ex-

hibited perfect zero knowledge proofs for Quadratic Residuosity, Graph Isomorphism

[58].

By exhibiting a statistical zero knowledge proof for a computational problem one

can infer several interesting results about‘ the complexity of the problem. For example,

a problem possessing statistical zero knowledge proofs is in AM ∩ coAM and thus is

unlikely to be NP-complete (see [4, 51, 94]).

Goldreich, Sahai and Vadhan [94, 57] have shown that two natural promise prob-

lems, Statistical Difference (SD) and Entropy Difference (ED) are complete for the

class SZK of languages possessing statistical zero knowledge proofs. In Chapter 2 we

show that several problems in permutation group theory havestatistical zero knowledge

proofs. We exhibit the zero knowledge proofs by a unified argument, by showing that

these problems are polynomial-time many-one reducible to Statistical Difference (SD).

An ingenious valence reduction technique due to Zemlyachanko [117] led to a mod-

erately exponentialexp(c
√
n logn) time algorithm for the general graph isomorphism

problem (see [21]). To understandGRAPH-ISOmore clearly researchers have restricted

the problem to various special classes of graphs. Very efficient algorithms have been

3

Chapter 1. Introduction

designed for restricted classes of graphs. The linear time algorithm for isomorphism of

trees is the first nontrivial example of such algorithm (see [3]). Hopcroft and Wong

[67] gave a linear algorithm for planar graph isomorphism in1974. Miller gave a

polynomial-time algorithm for testing isomorphism of bounded genus graphs. Babai,

Grigoryev and Mount gave a polynomial-time algorithm for bounded eigenvalue mul-

tiplicity graphs [28]. Luks’s celebrated result for bounded degree graph isomorphism

came in 1982 [80]. Apart from time complexity, space complexity and parallelizability

of GRAPH-ISOfor restricted classes of graphs have also been considered over the years.

For example, Lindell gave a logspace algorithm for tree isomorphism [79], Miller and

Reif gave anAC1 algorithm for planar graph isomorphism [89], Grohe and Verbitsky

gave a TC1 algorithm for isomorphism of bounded tree width graphs [60]. In Chapter 6

we study the space complexity ofk-tree isomorphism and canonization and show that

k-tree isomorphism is in a classStUL which is contained in the classUL.

It is often the case that the input for a computational problem comes with a param-

eter. For example, the vertex cover problem: Given a graphG and an integerk decide

if G has vertex cover of sizek. The natural parameter for this problem is the integer

k. The vertex cover problem has a simpleO(nk) algorithm. However, this problem has

better algorithm with runtime2knO(1). If k is “small” this algorithm outperforms the

O(nk) algorithm. The goal of parameterized complexity is to studythe feasibility and

intractability of parameterized problem. Developed by Downey and Fellows [44, 45] it

is a thriving field of research. Aparameterized problemis a languageL ⊆ Σ × N. A

parameterized problemL is fixed parameter tractable(FPT) if given input(x, k) there

is anf(k)nO(1) algorithm to decide if(x, k) ∈ L, wheref is some fixed function. Toda

presented an FPT-algorithm for chordal graphs where the parameter is the maximum

size of the simplicial components [103]. Based on Toda’s approach, in Chapter 5 we

present an FPT-algorithm for bounded color class hypergraph isomorphism with run-

time b!2O(b)NO(1) where the parameterb is the size of the largest color class andN is

the input size.

Canonization or computing the canonical form of a graph is a problem closely re-

lated to the graph isomorphism problem. Let G be a graph class. A functionf is said to

becomplete invariantfor the class G if for all graphsX andY in G,f(X) = f(Y) if and

only if X ∼= Y . A complete invariantf is acanonizing functionif f(X) ∼= X. Gurevich

proved that given a polynomial-time computable complete invariant, a canonical form

can be computed in polynomial time [62].

4

Chapter 1. Introduction

Several algorithms for graph isomorphism for restricted classes of graphs work ac-

tually by computing a canonical form or sometimes a completeinvariant. For exam-

ple the linear-time tree isomorphism algorithm (see [3]) works by computing a com-

plete invariant. This algorithm for tree isomorphism is basically a variant of a more

general procedure called Weisfeiler-Lehmann algorithm2 [111, 112]. The Weisfeiler-

Lehmann algorithm has been remarkably successful for solving the graph isomorphism

for several classes of graphs. Babai, Erdös and Selkow [26] result on isomorphism of

random graphs works by finding the canonical form of the graphs. They showed that

one dimensional Weisfeiler-Lehman can produce canonical form for all butn−1/7 frac-

tion of graphs onn vertices. Sometimes a process known as individualization followed

by Weisfeiler-Lehman method can produce the canonical formof graphs, e.g., Zemly-

achenko’sexp(c
√
n logn) algorithm for graph canonization algorithm [117]. Grohe

and Verbitsky’s [60] TC1 algorithm for isomorphism of bounded tree width graphs also

works with the help of Weisfieler-Lehman algorithm. Spielman’snO(n1/3 logn) algorithm

for isomorphism of strongly regular graphs also works by actually computing a canoni-

cal form. Babai and Luks’snlogn algorithm for tournament isomorphism is an example

where the canonization not only exploits the combinatorialproperties of the graph but

also heavily uses the structure of the automorphism group ofthe graph.

In mathematics canonical forms are important objects. Canonical forms are impor-

tant tools to recognize if two mathematical structures are “similar” under some trans-

formation. For example Jordan canonical form for similar matrices, Hermite normal

form for unimodular transformations, Smith normal form formatrices over principal

ideal domains etc. It is clear that any polynomial-time computable canonizing function

f for graphs would give a polynomial-time algorithm for graphisomorphism: Given

two graphsX andY , computingf(X) andf(Y) would be sufficient as by definition

f(X) = f(Y) if and only if X ∼= Y . It is an interesting open question if the other

direction is true, i.e., if canonical forms for graph can be computed in polynomial time

with the help of theGRAPH-ISOoracle. In Chapter 4 we study the relative complexity

of isomorphism and canonization for tournaments.

2Actually this more general procedure is calledk-dimensional Weisfeiler-Lehmann algorithm (see
[38])

5

Chapter 1. Introduction

1.1 Overview of the Thesis

Chapter2 – SZK Proofs For Black Box Group Problems.In this chapter we classify

several algorithmic problems in group theory in the classesPZK and SZK (problems

with perfect/statistical zero-knowledge proofs respectively). Prior to this, these prob-

lems were known to be in AM∩ coAM. As PZK ⊆ SZK ⊆ AM ∩ coAM, we have a

tighter upper bound for these problems. Specifically:

• We show that the permutation group problems Coset Intersection, Double Coset

Membership, Group Conjugacy are in PZK. Further, the complements of these

problems also have perfect zero knowledge proofs (in the liberal sense). We also

show that permutation group isomorphism for solvable groups is in PZK. As an

ingredient of this protocol, we design a randomised algorithm for sampling short

presentations of solvable permutation groups.

• We show that the complement of all the above problems have concurrent zero

knowledge proofs.

• We prove that the above problems forblack-box groupsare in SZK.

• Finally, we also show that some of the problems have SZK protocols with efficient

provers in the sense of [86].

The results are reported in [10].

Chapter 3 – Limited Randomness Zero Knowledge.Arvind and Tóran [19] showed

that group isomorphism problem where the groups are given bytheir multiplication

tables have public coin, constant round interactive proof where the random bits used by

the prover and verifier and the message size is polylogarithmic in the size of the input.

In this chapter we note that this problem actually has perfect zero knowledge proofs

where the prover and verifier use polylogarithmically many random bits and has constant

number of rounds. This motivates us to study statistical zero knowledge proofs where

the prover and verifier use polylogarithmic randomness and have polylogarithmically

many rounds. We analyze the proofs of Goldreich, Sahai and Vadhan [94, 57] in this

setting. They found two complete promise problems SD and ED for the class statistical

zero knowledge and proved that any problem having statistical zero knowledge proof

also has a honest verifier statistical zero knowledge proof with only two rounds. We

6

Chapter 1. Introduction

show that similar results can be shown for statistical zero knowledge proofs which uses

polylogarithmic randomness and has polylogarithmically many rounds. For example

every problem having such statistical zero knowledge proofis polynomial-time many

one reducible to a problemβSD(c) which has a two round honest verifier statistical zero

knowledge protocol where the randomness required is still polylogarithmic. We also

prove that the protocol can be designed in such a way that the total length of message

passed between the prover and the verifier is also polylogarithmic. We exhibit an honest

verifier statistical zero knowledge proof with small randomness and2 rounds for group

isomorphism problem for groups given by their multiplication table as a corollary of this

general treatment.

Chapter 4 – Isomorphism and Canonization of Tournaments andHypertourna-

ments In this chapter we study the relative complexity of tournament isomorphism

and tournament canonization. We give a polynomial-time oracle algorithm for Tour-

nament Canonization that accesses oracles for Tournament Isomorphism and Rigid-

Tournament Canonization. Extending the Babai-Luks Tournament Canonization algo-

rithm [30], we give annO(k2+logn) algorithm for canonization and isomorphism testing

of k-hypertournaments, wheren is the number of vertices andk is the size of hyper-

edges.

These results are reported in [15].

Chapter 5 – An FPT Algorithm for Bounded Color Class Hypergraph Isomor-

phism. In this chapter we present an FPT algorithm for testing isomorphism of two

colored hypergraphsX1 andX2 where the parameter is the size of the maximum color

class. The run-time of our algorithm isb!2O(b)NO(1) whereb is the size of the largest

color class andN is the input size. The algorithm uses coset intersection of groups

whose orbits are bounded. Based on Luks’s algorithm [83], wepresent an FPT algo-

rithm for finding the coset intersection of groups whose orbits are bounded by parameter

b.

The results of this chapter are based on [14].

Chapter 6 – Space Complexity ofk-tree Isomorphism and Canonization.K-trees

are natural generalization of trees [72]. A subgraph of ak-tree is a partialk-tree. The

class of partialk-tree coincides with the class of graphs with treewidth bounded byk.

In this chapter we look at the problem of (full)k-tree isomorphism. In this chapter we

show that isomorphism testing ofk-trees is in the classStUL(log n) (strongly unam-

biguous logspace). This bound follows from a deterministiclogspace algorithm that

7

Chapter 1. Introduction

accesses a strongly unambiguous logspace oracle for canonizing k-trees. Further we

give a logspace canonization algorithm fork-paths.

These results are reported in [12].

8

2
SZK Proofs for Black Box Group

Problems

2.1 Introduction

In this chapter and the next we study the complexity of several group theoretic problems

that are related to graph isomorphism. More specifically we prove that these problems

have zero knowledge proof system.

Motivated by cryptography, zero knowledge proof systems were introduced by Gold-

wasser et al [58]. Zero knowledge protocols are a special kind of interactive proof sys-

tems in which the verifier gets no information other than the validity of the assertion

claimed by the prover. The notion of zero knowledge is formalized by stipulating the

existence of a randomized polynomial timesimulatorfor a given protocol. The simula-

tor, given some input of the protocol, outputs strings following a probability distribution

indistinguishable from the verifier’s view of the interaction between prover and verifier

for the given input. The notion of indistinguishability canbe further qualified. This leads

to different notions of zero knowledge protocols. The protocol isperfect zero knowledge

if the distribution produced by the simulator is identical to the verifier’s view for all in-

puts. It isstatistical zero knowledgeif the two distributions have negligible statistical

difference. Finally, the most liberal notion iscomputational indistinguishabilitywhere

the simulator’s output distribution cannot be distinguished from the verifier’s view by

polynomial-size circuits.

Natural problems like Quadratic Residuosity and Graph Isomorphism (GRAPH-ISO),

their complements, a version of the discrete log problem areall known to have perfect

9

Chapter 2. SZK Proofs for Black Box Group Problems

zero-knowledge protocols. Some of these protocols have found cryptographic appli-

cations. For example, the Fiat-Shamir-Feige identification scheme is based on the ZK

protocol for quadratic residuosity.

As a complexity class SZK is quite intriguing. It is closed under complement and is

contained in AM∩coAM. It is open if SZK coincides with AM∩coAM. One approach to

studying SZK is to explore for new natural problems that it contains. Goldreich, Vadhan,

and Sahai [94, 57], investigating SZK, have shown that two natural promise problems,

Statistical Difference (SD) and Entropy Difference (ED) are complete for SZK. We use

these to exhibit several natural group-theoretic problemsin SZK (and PZK) from the

area of black-box groups studied by Babai and Szemerédi [23,32]. It is shown in those

papers that most of these black-box group problems are in NP∩ coAM (some are in

AM ∩ coAM).

In this chapter we put several group-theoretic problems forpermutation groupsin

PZK, and for generalblack-box groupsin SZK. The results of this chapter is based on

[10]1. We exhibit the zero knowledge proofs by a unified argument, showing that an

appropriately defined group equivalence problem is reducible to Statistical Difference.

One problem that requires a different technique is solvablepermutation group isomor-

phism. Except for this problem all the other problems we consider in permutation group

setting are harder than graph isomorphism problem and in thecontext of zero knowledge

proof they share similar properties with graph isomorphismproblem. In fact, as we will

later see, that the properties of graph isomorphism problemthat are essential for its zero

knowledge proof is ‘captured’ by the group equivalence problem.

We further prove that the complement of some of the above problems has zero

knowledge proofs in liberal sense and also has concurrent zero knowledge proofs.

Additionally, the group-theoretic NP problems that we consider also have zero-

knowledge protocols with efficient provers (in the sense of Micciancio and Vadhan [86]).

They have efficient proofs of knowledge as they are reducibleto SD1,1/2.

2.2 Preliminaries

We first recall some of the definitions about interactive protocol, zero knowledge etc.

There are few minor variants of these definitions available in the literature. We use the
1After the publication of the conference version of [10], it was brought to our attention that related

work on some permutation group problems was done in [107, 108].

10

Chapter 2. SZK Proofs for Black Box Group Problems

definitions of interactive protocol, interactive proofs etc. from [106].

Definition 2.2.1 (Interactive Protocol) An interactive protocolis a pair of functions

(P, V). On inputx, the interactionbetweenP andV is the following random process

(P, V)(x):

1. Uniformly choose random coinsrP andrV (infinite binary strings) forP andV

respectively.

2. Repeat the following fori = 1, 2, · · ·

(a) If i is odd letmi = P (x,m1, · · · , mi−1; rP).

(b) If i is even letmi = V (x,m1, · · · , mi−1; rV).

(c) If mi ∈ {accept, reject, halt} then exit the loop.

The stringmi is called theith message. If the last message formP isaccept (resp.

reject), we say thatP accepts(resp. rejects), and similarly forV . We say that the

protocol ispolynomially boundedif there is a polynomialp(.) such that, on common

input x, at mostp(|x|) messages are exchanged and each is of length at mostp(|x|)
(with probability1 over the choice ofrP andrB).

Definition 2.2.2 A promise problemΠ is a pair (ΠY ,ΠN) of two disjoint setsΠY and

ΠN . The setΠY is the set of “yes instances” andΠN is the set of “no instances”.

A languageL can be viewed as the promise problemΠL = (L,Σ∗ − L), whereΣ is the

alphabet.

Definition 2.2.3 (Interactive Proofs IP) Let (P, V) be an interactive protocol and let

Π = (ΠY ,ΠN) be a promise problem.(P, V) is said to be aninteractive proof system

for Π with completeness errorc : N −→ [0, 1] and soundness errors : N −→ [0, 1] if

the following conditions hold:

1. (Efficiency)(P, V) is polynomially bounded andV is polynomial-time computable.

2. (Completeness) Ifx ∈ ΠY , thenV accepts with probability at least1 − c(k) in

(P, V)(x, 1k).

11

Chapter 2. SZK Proofs for Black Box Group Problems

3. (Soundness) Ifx ∈ ΠN , then for anyP ∗, V rejects with probability at least1−s(k)
in (P ∗, V)(x, 1k).

We require thatc(k) ands(k) be computable in timepoly(k) and that1−c(k) > s(k)+

1/poly(k). If c(k) = 0 for all k then we say that the system hasperfect completeness.

IP is the class of all problems possessing interactive proofs.

Definition 2.2.4 Let (P, V) be an interactive protocol. Letm1, · · · , mt be all the mes-

sages exchanged betweenP andV on inputx and letr be the substring ofrV containing

all the random bits thatV read during the interaction.

• V ’s viewon common inputx is the random variable〈P, V 〉(x) = (m1, · · · , mt; r).

• Thenumber of roundsis t.

• Themessage sizeis
∑t

i=1 |mi|.

Definition 2.2.5 (Statistical Difference) LetX andY be two distributions on a finite

setS. Thestatistical differencebetweenX andY is

StatDiff(X, Y) =
1

2

∑

s∈S
|Pr(X = s)− Pr(Y = s)|.

A distributionX on a finite setS is said to beε-uniform if 1
|S|(1 − ε) ≤ Pr[X = s] ≤

1
|S|(1+ ε). If X is ε-uniform onS then StatDiff(X,US) ≤ ε/2, whereUS is the uniform

distribution onS.

Definition 2.2.6 A functionf : N → N is negligibleif for all polynomialp : N → N

there existsn0 such that for alln > n0 f(n) <
1

p(n)
.

Definition 2.2.7 An interactive proof system(P, V) for a promise problemΠ = (ΠY ,ΠN)

is said to bestatistical zero-knowledge SZKif for every randomized polynomial-time

interactive machineV ∗, there is a probabilistic polynomial-time algorithmM∗ and a

negligible functionµ such that for allx ∈ L andk > 0 the following two conditions

hold:

1. The machineM∗ is useful, i.e., on input(x, 1k), M∗ fails (and outputsfail) with

probability at most1
2
.

12

Chapter 2. SZK Proofs for Black Box Group Problems

2. Letm∗(x, 1k) be the random variable describing the distribution ofM∗(x, 1k)

conditioned onM∗(x, 1k) 6= fail. Let〈P, V 〉(x, 1k) be theview i.e., the messages

passed betweenP andV during the execution of the protocol andV ’s random

bits. Then

λ = StatDiff(m∗(x, 1k), 〈P, V 〉(x, 1k)) ≤ µ(k).

Whenλ = 0 for all x ∈ L then the protocol isperfect zero-knowledge PZK.

Definition 2.2.8 A promise problemΠ = (ΠY ,ΠN) is in the classhonest verifier sta-

tistical zero knowledge HVSZKif there is an interactive proof system(P, V) such that

there is a negligible functionµ and a useful polynomial-time randomized algorithmS

such that ifx ∈ ΠY then on input(x, 1k),

StatDiff(S(x, 1k), < P, V > (x, 1k)) ≤ µ(k),

whereS(x, 1k) is the output distribution ofS on input(x, 1k) conditioned onS(x, 1k) 6=
fail.

If µ(k) = 0 for all k thenΠ is said to be in the classhonest verifier perfect zero

knowledge HVPZK.

A boolean circuitX : {0, 1}m −→ {0, 1}n induces a distribution on{0, 1}n by the

evaluationX(x) wherex ∈ {0, 1}m is picked uniformly at random. We useX to denote

this distribution encoded by circuitX.

Definition 2.2.9 (SDα,β) For constants0 ≤ β < α ≤ 1, the promise problemSDα,β =

(SDα,βY ,SDα,βN) takes as input distributionsX and Y given by circuits, and has “yes

instances”SDα,βY and “no instances”SDα,βN defined as follows.

SDα,βY = {(X1, X2) | StatDiff(X1, X2) ≥ α},

SDα,βN = {(X1, X2) | StatDiff(X1, X2) ≤ β}.

The problemSD2/3,1/3 is called thestatistical difference problemand will be often

denoted asSD.

The above problem is defined in terms of statistical difference. Theentropy differ-

ence problemis a similar problem defined in terms of entropy difference [57]. We recall

the definition of entropy below.

13

Chapter 2. SZK Proofs for Black Box Group Problems

Definition 2.2.10 (Entropy/Shannon Entropy) LetX be a distribution on a finite set

S. TheentropyofX, denotedH(X) is defined as

H(X) =
∑

s∈S
Pr[X = s] log

1

Pr[X = s]
.

Definition 2.2.11 (ED) The promise problem

ED = (EDY ,EDN)

takes two distributionsX and Y encoded by boolean circuits as input and has “yes

instances”EDY and “no instances”EDN defined as follows:

EDY = {(X1, X2) | H(X1) ≥ H(X2) + 1}.
EDN = {(X1, X2) | H(X2) ≥ H(X1) + 1}

We recall some important results from [94, 56, 57, 106].

Theorem 2.2.12 (Goldreich-Sahai-Vadhan)[94, 57]

(i) SD2/3,1/3 andED are complete forSZK.

(ii) SZK is closed under complement.

(iii) HVSZK = SZK.

(iv) The complement of the problemSD1,0, i.e.,SD1,0 is in PZK.

We recall some basic group theory. LetG be a finite group andΩ a finite nonempty

set. The action of the groupG on the setΩ is defined by a mapα : Ω × G −→ Ω such

that for allx ∈ Ω (i) α(x, id) = x, i.e., the identityid ∈ G fixes eachx ∈ Ω, and (ii)

α(α(x, g1), g2) = α(x, g1g2) for g1, g2 ∈ G,. We writexg instead ofα(x, g) when the

group action is clear from the context.

Definition 2.2.13 LetG be a finite group acting on a finite setΩ. For x ∈ Ω, itsG-orbit

xG is the set

{y|y ∈ X, y = xg for someg ∈ G}.

Notice thatΩ is partitionedinto orbits. When the group is clear from the contextxG is

called the orbit ofx.

14

Chapter 2. SZK Proofs for Black Box Group Problems

We writeH ≤ G whenH is a subgroup ofG. Thesymmetric groupon a finite setΩ

consisting of all permutations onΩ is denoted bySym(Ω). If Ω = [n] = {1, · · · , n} we

write Sn instead ofSym([n]). A finite permutation groupG is a subgroup ofSym(Ω)

for someΩ.

The permutation groupgeneratedby a subsetS ⊆ Sym(Ω) is the smallest subgroup

of Sym(Ω) containingS and is denoted by〈S〉. Each element of the group〈S〉 is

expressible as a product of elements ofS.

The subgroupG(i) of G ≤ Sn that fixes each of{1, . . . , i} is apointwise stabilizer

subgroup. We have a tower of subgroups forG

G = G(0) ≥ G(1) ≥ G(2) ≥ · · · ≥ G(n−1) = {id}.

It is not difficult to see that the index[G(i−1) : G(i)] is at mostn. Let Ri be a set of

complete and distinct coset representatives ofG(i) in G(i−1) for eachi. Then
⋃n−1
i=1 Ri

generatesG and is known as astrong generating setfor G. Given a permutationπ ∈ G

it is easy to check ifπ ∈ G(i). It is also easy to check if two permutationsπ, σ ∈
G(i) are in the same coset ofG(i+1) in G(i). We just have to check ifπ−1σ ∈ G(i+1).

These observations yield a polynomial-time algorithm [98,99, 53] to compute a strong

generating set of a permutation groupG which can be used to test in polynomial time

if g ∈ Sn is in the group〈S〉 ≤ Sn. Finally, it is sometimes the case that there is

an efficient algorithm for testing membership in a subgroupH of G whereG ≤ Sn is

given by a generating set, but no generating set forH is given. By [98, 99, 53] we can

efficiently compute a generating set forH if its index inG is polynomially bounded.

Theorem 2.2.14 (Schreier Generators)LetG = 〈S〉 ≤ Sn, H ≤ G. LetR be a set of

coset representatives ofH in G. Then

B = {r′xr−1 | r, r′ ∈ R, x ∈ S} ∩H

generatesH. The generators inB are calledSchreier generators.

The algorithm in the above theorem computes a set of coset representativesR for the

subgroupH of G = 〈S〉. The algorithm makesm2|S| tests of membership inH where

m = [G : H]. The setB of Schreier generators forH can be of size polynomial inm.

We can convert it to anO(n2) size generating set [98, 99, 53].

15

Chapter 2. SZK Proofs for Black Box Group Problems

A subgroupH of G is normal in G, denotedH � G, if for all g ∈ G andh ∈ H,

g−1hg ∈ H. The idenity subgroup andG are both trivial normal subgroups ofG. A

groupG is simple if it has no nontrival normal subgroup. The subgroup generated by

{xyx−1y−1 | x, y ∈ G} is the commutator subgroupG′ of G. Recall thatG′ is the

unique smallest normal subgroup ofG such thatG/G′ is commutative. The derived

series ofG is G � G′
� G′′

� · · · . We sayG is solvableif this series terminates in

{id}. There are polynomial-time algorithms to compute the derived series and to test

solvability for permutation groupsG given by generating sets (see e.g. [82]).

A composition seriesofG is a tower of subgroups{id} = G1�G2� · · ·�Gm = G

such thatGi/Gi+1 is simplefor eachi. Recall thatG is solvable iffGi/Gi+1 is cyclic of

prime order for eachi in any composition series forG.

2.3 Chapter Overview

1. In Section 2.4 we

• Define a problem PGE.

• Prove that PGE polynomial-time many-one reduces toSD1,0.

PGE≤P
m SD1,0.

• Define permutation group problemsSUBSP-TRANSandCONJ-GROUP. Prove

that they are polynomial-time reducible to PGE.

SUBSP-TRANS≤P
m PGE,

CONJ-GROUP≤P
m PGE.

Since several permutation group problems are reducible to eitherSUBSP-TRANS

or CONJ-GROUPthe above reductions imply that they are in PZK.

2. In Section 2.5 we provePGE has perfect zero knowledge proof in liberal sense.

3. In Section 2.6 we prove that the solvable permutation group isomorphism problem

is polynomial-time many-one reducible toSD1,0.

16

Chapter 2. SZK Proofs for Black Box Group Problems

4. In Section 2.7 we define the black box group problem GE. Prove

GE≤P
m SD1,1/3.

We show that several black box group problems are polynomial-time many-one

reducible to GE. As a consequence we deduce that they are in SZK.

5. In Section 2.8 we prove that several permutation group problems have concurrent

zero knowledge proofs.

6. In Section 2.9 we prove that several black box group problems have SZK proofs

with efficient prover.

Figure 2.1 we schematically represent the reductions amongseveral problems. For

the reductions among the permutation group problems see [82]. The problem of decid-

ing if two groups given by their multiplication tables are isomorphic or not is denoted

as GrIso. We will study this problem in the next chapter.

2.4 Group Problems in PZK

In this section we show that various permutation group problems (not known to be in

P) are in PZK. Examples of such problems are Coset Intersection, Double Coset Mem-

bership, Conjugate Subgroups etc. We define these problems below (see [82] for more

details). These are all problems known to be harder thanGRAPH-ISO.

We prove the membership of all these problems in PZK by one general result. We

define a generic problem calledPermutation Group EquivalencePGE and show that

PGE is polynomial-time many-one reducible toSD1,0. As SD1,0 ∈ PZK it follows that

PGE∈ PZK. The problem PGE is generic in the sense that all considered problems,

except the isomorphism problem, about permutation groups are polynomial-time many-

one reducible to PGE. Thus, it follows as a corollary that allthese problems are in

PZK.

Permutation group isomorphism problem requires a different approach. In fact, in

this chapter we show only for solvable groups that this problem is in PZK.

Recall that instances ofSD1,0 are pairs of circuits(X0, X1), whereXi : {0, 1}n −→
{0, 1}m defines a probability distribution on{0, 1}m, for uniformly distributed input in

17

Chapter 2. SZK Proofs for Black Box Group Problems

SD
1,0

Graph Isomorphism GI

SD
2/3,1/3

Factorization
 Group

Double Coset
 Disjointness

Membership

B
la

ck
 B

ox
 G

ro
up

 P
ro

bl
em

s

GE

SD
1,1/3

 Conjugacy in
Symmetric Group

Group Iso
 Solvable

Transporter
 Vector

PGE

CONJ−GROUPSUBSP−TRANS

P
er

m
ut

at
io

n
G

ro
up

 P
ro

bl
em

s

Conjugacy of Elements

 Set Transporter,
Double Coset Equality,

St
at

is
ti

ca
l Z

er
o

K
no

w
le

dg
e

P
er

fe
ct

 Z
er

o
K

no
w

le
dg

e

GrISOGroup Iso, Table format

Figure 2.1: Schematic Diagram of Reductions.

18

Chapter 2. SZK Proofs for Black Box Group Problems

{0, 1}n. The promise is that the statistical difference betweenX0 andX1 is 0 or 1 and

the problem is to determine which is the case. This is known tobe in PZK [106].

Definition 2.4.1 ThePermutation Group Equivalence Problem PGEhas inputs consist-

ing of 4-tuples(x, y, T, τ). HereT ⊂ Sn. LetG = 〈T 〉 . Thenτ : G × S −→ S is

a polynomial-time computable group action ofG on S, for someS ⊆ {0, 1}m, where

m = nO(1). More precisely, giveng ∈ G ands ∈ S, the imagesτ(g) of s underg (which

we denote simply bysg) is polynomial-time computable. Finally,x, y ∈ S.

ThePGEproblem is the followingpromise problem: given an input 4-tuple(x, y, T, τ)

with the promise thatx, y ∈ S and thatτ defines a group action of〈T 〉 onS, the problem

is to decide ifx andy are in the sameG-orbit. I.e. isxg = y for someg ∈ G?

Theorem 2.4.2 PGEis polynomial-time many-one reducible toSD1,0.

Proof. Let (x, y, T, τ) be an input instance of PGE such thatx, y ∈ S andS ⊆ {0, 1}m.

Define two circuitsXx,T , Xy,T : {0, 1}k −→ {0, 1}m, wherek is polynomial inn to

be fixed later. In the sequel we assume that it is possible to uniformly pick a random

element from the set[i] for each positive integeri given in unary.2 The circuitXx,T on

input which is a random stringr ∈ {0, 1}k will use r to randomly sample an element

from the groupG = 〈T 〉. This is a polynomial-time procedure based on the Schreier-

Sims algorithm for computing a strong generating set
⋃n−1
i=1 Ri for G, whereRi is a

complete set of distinct coset representatives ofG(i) in G(i−1) for eachi. Then we

can sample fromG uniformly at random by pickingxi ∈ Ri uniformly at random and

computing their productgr = x1x2 · · ·xn−1. The circuitXx,T then outputsxgr . By

construction,xgr is uniformly distributed in theG-orbit of x. Likewise the other circuit

Xy,T will output a uniformly distributed element of theG-orbit of y. SinceG defines a

group action onS, the two orbits are either disjoint or identical. In particular, the orbits

are identical if and only ifx = yg for someg ∈ G. Thus, the statistical difference

betweenXx,T andXy,T is 0 or 1 depending on whetherx = yg for someg ∈ G or not.

This proves the theorem.

We show that several permutation group problems are reducible to PGE. There is a

table of reductions for permutation group problems in Luks’article [82]. It suffices to

show that the following two “hardest” problems from that table are reducible to PGE

(apart from permutation group isomorphism which we consider in the next section).

2This assumption is required even for the PZK protocol forGRAPH-ISO.

19

Chapter 2. SZK Proofs for Black Box Group Problems

Definition 2.4.3 TheSubspace Transporter ProblemSUBSP-TRANShas input consist-

ing of a subgroupG of Sn given by generating setT , a representationτ : G −→
GL(Fmq), and subspacesW1,W2 ⊆ Fmq given by spanning sets. The question is whether

W g
1 =W2 for someg ∈ G. Here the sizeq of the finite field is a constant.

Notice here that byW g
1 we mean the image of the subspaceW1 under the matrix

τ(g).

Definition 2.4.4 TheConjugacy of Groups ProblemCONJ-GROUPhas inputs consist-

ing of three permutation groupsG,H1, H2 in Sn, given by generating sets. The question

is whether there is ag ∈ G such thatHg
1 = H2 (whereHg

1 = g−1H1g).

Lemma 2.4.5

(a) LetFq be a fixed finite field. Given as inputX ⊂ Fnq , there is a polynomial-time

algorithmA that computes acanonical basisB of the subspaceW spanned byX.

The output is canonical in the following sense: ifA is given any spanning set of

W as input, the output ofA will beB.

(b) Given as inputX ⊂ Sn, there is a polynomial-time algorithmA that computes

a canonical generating setB of the subgroupG generated byX. The output is

canonical in the sense thatA will outputB, given any generating setX ′ ofG as

input.

Proof. First we prove (a). Order the elements ofFq lexicographically. First, we search

for the leasti such that there is a vector(v1, . . . , vn) ∈ W with vi = 1 (Notice that

v1, . . . vi−1 have to be zero for all elements ofW). For this we can use a polynomial-

time algorithm for testing feasibility of linear equationsoverFq. Having foundi, we

search for the leastvi+1 ∈ Fq such thatvi = 1. Sinceq is a constant we can do this

search with a constant number of similar feasibility tests.After finding the leastvi+1

we fix it and search similarly for the leastvi+2 and so on. Continuing thus, we can

compute the lex least nonzero elementu1 in W . Next, in order to find a basis we look

for the least indexj > i such that there is a nonzero vector(v1, . . . , vn) ∈ W with

v1 = v2 = . . . = vj−1 = 0 andvj = 1 again byO(n) feasibility tests. After findingj,

we can again pick the lex least nonzero vectoru2 with the property that thejth index is

the least nonzero coordinate inu2. Continuing in this manner, we will clearly obtain a

basis{u1,u2, . . . ,uk} of W . By our construction this basis is canonical.

20

Chapter 2. SZK Proofs for Black Box Group Problems

Now we prove (b). The algorithmA will compute a strong generating set fromX

for the groupG using the Schreier-Sims algorithm [82]. Then using the factthat the lex

least element of a cosetxH (wherex ∈ Sn andH ≤ Sn) can be computed in polynomial

time [18] we can replace each coset representative in the strong generating set by the lex

least coset representative. This generating set is canonical by construction.

Theorem 2.4.6 The problemsSUBSP-TRANSand CONJ-GROUPare polynomial-time

many-one reducible toPGE.

Proof. We first considerSUBSP-TRANS. Let (T, S1, S2, π) be an input. LetG = 〈T 〉
andS1, S2 ⊂ Fmq be spanning sets ofW1 andW2 respectively. The representation

is given byπ : G −→ GL(Fmq). The reduction fromSUBSP-TRANSto PGE maps

(T, S1, S2, π) to (x, y, T, τ) wherex andy are the canonical bases forW1 andW2 re-

spectively, in the sense of lemma 2.4.5. The setS in definition 2.4.1 corresponds to

the set of canonical bases of all possible subspaces ofFmq . The group actionτ is the

algorithm that givenB ∈ S andg ∈ G, first computes the set of vectorsπ(g)(B).

Next, using the algorithm in Lemma 2.4.5,τ computes the canonical basis of subspace

spanned byπ(g)(B).

The reduction is similar forCONJ-GROUP. Let(T, S1, S2) be an instance ofCONJ-GROUP,

whereT ,S1 andS2 generateG,H1, andH2 respectively. The reduction maps(T, S1, S2)

to (x, y, T, τ) wherex andy are the canonical strong generating sets forH1 andH2 re-

spectively in the sense of Lemma 2.4.5. The setS in definition 2.4.1 is the set of canon-

ical strong generating sets for all subgroups ofSn. The group actionτ is the algorithm

that givenB ∈ S andg ∈ G, applies the algorithmA in lemma 2.4.5 to compute the

canonical generating set for the subgroup generated by{g−1xg | x ∈ B}.

SinceSUBSP-TRANSandCONJ-GROUPare harder than several permutation group

problems w.r.t. polynomial time many-one reductions [82] we have the following.

Corollary 2.4.7 The problems of Set Transporter, Coset Intersection, Double Coset

Membership, Double Coset Equality, Conjugacy of Elements,Vector Transporter etc

are all in PZK.

21

Chapter 2. SZK Proofs for Black Box Group Problems

2.5 Group Nonequivalence and PZK in liberal sense

It is not known (to the best of our knowledge) if SD1,0 is in PZK. However, we observe

here that we need the following liberal definition of PZK, because only such PZK proto-

cols are known for even problems likeGRAPH-NONISOand Quadratic Nonresiduosity.

We show that Permutation Group NonequivalencePGE is in PZK in the liberal

sense. Consequently, the complement of problems considered in Corollary 2.4.7 and

Theorem 2.4.6 are also in PZK (liberal sense).

Definition 2.5.1 (PZK (liberal sense)) [58] An interactive protocol(P, V) is perfect

zero knowledgeif for every probabilistic polynomial time interactive machineV ∗ there

exists an expected polynomial-time algorithmM∗ such that for everyx ∈ L the random

variable〈P, V ∗〉(x) andM∗(x) are identically distributed.

Notice that in this definition [58] of PZK the simulator is required to be anexpected

polynomial timealgorithm that always outputs some legal transcript. The definition

we used in Section 2.4 is more stringent. It requires the simulator to be worst case

polynomial time though it may sometimes fail.

A common generalization of several problems in PZK (liberalsense) isPGE.

Theorem 2.5.2 PGEis in PZK in liberal sense.

The proof of this theorem is similar to [55] and some of the techniques are from

[54]. We first describe the PZK protocol.

2.5.1 Protocol

Input (x0, x1, T, τ) , whereT ⊆ Sn generates the groupG, x0, x1 ∈ S and τ is a

polynomial time computable group action ofG onS.

V1 The verifier choosesb randomly from{0, 1}, g randomly fromG = 〈T 〉. Let

s = xgb . The prover is supposed to tellb givens. The verifier also choosesg(i)j
randomly fromG andbi ∈ {0, 1} for j = 0, 1 and i = 1, 2, · · · , k. Calculate

s
(i)
0 = x

g
(i)
0

0⊕bi ands(i)1 = x
g
(i)
1

1⊕bi . The verifier sendss and the pairs(s(i)0 , s
(i)
1) for

i = 1, 2, · · ·k. The prover uses these pairs to check that the verifier is not cheating.

We will later fix k.

22

Chapter 2. SZK Proofs for Black Box Group Problems

P1 The prover chooses a random subsetI of [k] and sends it to the verifier.

V2 The verifier suppliesg(i)j and bi for all i ∈ I and j = 0, 1. For all i ∈ I, he

sends(di, hi) wheredi = b ⊕ bi andhi = g−1g
(i)
b⊕bi . Thus, for an honest verifier

s
(i)
di

= shi . (Note thatxg1g2 = (xg1)g2)

P2 If s(i)0 6= x
g
(i)
0
bi

or s(i)1 6= x
g
(i)
1

1⊕bi for anyi ∈ I or s(i)di 6= shi for anyi ∈ I thenreject the

input. Otherwise sendβ such that there existsg′′ such thats = xg
′′

β . If no suchβ

exists, then sendβ = 0.

V3 If b = β accept, elsereject.

Lemma 2.5.3 The above protocol is an interactive protocol with completeness error0

and soundness error less than or equal to1/2.

If (x0, x1, G, S) ∈ PGE thenx0 andx1 are in different orbits. Thus, ifs is in the

orbit of one of them then it cannot be in the orbit of the other element. Hence, the prover

will be able to tell from which distributions comes. Thus the verifier will accept.

If (x0, x1, G, S) ∈ PGE then the twox0 andx1 are in the same orbit. Thus, ifs can

come from one of the elements it can come from the other element as well. Thus any

prover can at best guessb. We prove this formally as follows.

Let B be a random variable that takes values randomly and uniformly from {0, 1}.

Let E be a random variable that takes values randomly and uniformly from G × (G ×
G×{0, 1})k. Letf be a function whose domain is{0, 1}×G×(G×G×{0, 1})k×P([k]),

whereP([k]) is the power set of[k]. The function on the value(b, g, {(g(i)0 , g
(i)
1 , bi)}ki=1, I)

produces the value

xgb , {(x
g
(i)
0
bi
, x

g
(i)
0

1⊕bi)}ki=1, [(g
(i1)
0 , g

(i1)
1 , bi1), (g

(i2)
0 , g

(i2)
1 , bi2), · · · , (g

(ip)
0 , g

(ip)
1 , bi1)],

[(b⊕ bj1 , g
−1g

(j1)
b⊕bj1

), (b⊕ bj2, g
−1g

(j2)
b⊕bj2

), · · · , (b⊕ bjq , g
−1g

(jq)
b⊕bjq)]

whereI = {i1, i2, · · · , ip} andI = {j1, j2, · · · , jq}. So,f(B, E , I) is a random variable

which behaves in the same manner as the verifierV would have done on its random

coins(b, g, {(g(i)0 , g
(i)
1 , bi)}ki=1) and index setI ⊆ [k] sent by the prover.

23

Chapter 2. SZK Proofs for Black Box Group Problems

Claim 2.5.4

Pr[B = 0|f(B, E , I) = Tr] = Pr[B = 1|f(B, E , I) = Tr]

where

Tr = [s, {(s(i)0 , s
(i)
1)}ki=1,

[(h
(i1)
0 , h

(i1)
1 , ei1), (h

(i2)
0 , h

(i2)
1 , ei2), · · · , (h(ip)0 , h

(ip)
1 , eip)]

[(dj1, hj1), (dj2, hj2), · · · , (djq , hjq)]]

is in the range of thef , I = {i1, i2, · · · , ip} andI = {j1, j2, · · · , jq}. (Here the prob-

ability is taken overB andE and not on the index setI. The claim is true of any index

setI).

Proof. LetA0,I = {(g, {(g(i)0 , g
(i)
1 , bi)}ki=1)|f(0, g, {(g(i)0 , g

(i)
1 , bi)}ki=1, I) = Tr}

andA1,I = {(g, {(g(i)0 , g
(i)
1 , bi)}ki=1)|f(1, g, {(g(i)0 , g

(i)
1 , bi)}ki=1, I) = Tr}. We will

prove that|A0,I | = |A1,I |. Assuming this,

Pr[f(B, E , I) = Tr|B = 0] = Pr[f(0, E , I) = Tr]

= Pr[E ∈ A0,I]

= Pr[E ∈ A1,I]

= Pr[f(B, E , I) = Tr|B = 1].

Now applying Bayes’ theorem, we get the claim.

Now we prove that|A0,I | = |A1,I |. As x0 andx1 are in the same orbit, there exists

γ ∈ G such thatxγ1 = x0. We note thatg 7→ γg, (g(i)0 , g
(i)
1 , bi) 7→ (g

(i)
0 , g

(i)
1 , bi) for all

i ∈ I and for allj ∈ I

(g
(j)
0 , g

(j)
1 , 0) 7−→ (γg

(j)
0 , γ−1g

(j)
1 , 1)

(g
(j)
0 , g

(j)
1 , 1) 7−→ (γ−1g

(j)
0 , γg

(j)
1 , 0)

is a bijection fromA0,I toA1,I . 2

Let R be a random process that on input somef(B, E , I) = Tr produces a number.

R acts as a proverP ∗. As the prover tries to findb fromTr, R does so, too. The verifier

24

Chapter 2. SZK Proofs for Black Box Group Problems

accepts if the prover can correctly supply him theb that he chooses in stepV1. This

corresponds to the eventR(f(B, E , I)) = B. Hence, we calculatePr[R(f(B, E , I)) =
B].

Pr[R(f(B, E , I)) = B] =
∑

Tr

Pr[R(Tr) = B|f(B, E , I) = Tr] · Pr[f(B, E , I) = Tr].

Now,

Pr[R(Tr) = B|f(B, E , I) = Tr] =
∑

b

Pr[R(Tr) = b ∧ B = b|f(B, E , I) = Tr]

=
∑

b

Pr[R(Tr) = b]Pr[B = b|f(B, E , I) = Tr]

= 1/2
∑

b

Pr[R(f(B, T r, I)) = b]

≤ 1/2.

Thus,Pr[R(f(B, E , I)) = B] ≤ 1/2. This proves that the soundness error is≤ 1/2

completing Lemma 2.5.3.

2.5.2 Simulator

We will prove that for any probabilistic polynomial time verifier V ∗ there exists an

expected time simulatorMV ∗ that produces the same distribution as the protocol does.

Let the input length ben. Let q(n) be a polynomial bound on the running time ofV ∗.

S1 Choosew randomly from{0, 1}q(n). SimulateV ∗ on the(x0, x1, G, S) using the

random coinsw. LetV ∗ send(g, {(s(i)0 , s
(i)
1 }ki=1) to the prover.

S2 Choose a random subsetI of [k]. Use it as the verifier’s next input. Suppose the veri-

fier sends{(g(i)0 , g
(i)
1 , bi)}i∈I and{(di, hi)}i∈I . The simulator checks ifs(i)0 = x

g
(i)
0
bi

or s(i)1 = x
g
(i)
1

1⊕bi for all i ∈ I or s(i)di = shi for all i ∈ I. If any of these conditions is

violated then the simulator rejects and produces an output accordingly. Else step

S3.

S3 Choose a random subsetK of [k]. Again simulateV ∗ with the same random coinw.

But now as the next input (i.e., corresponding to stepP1), sendK to V ∗. Suppose

now,V ∗ outputs{(g̃(i)0 , g̃
(i)
1 , b̃i)}i∈K and{(d̃i, h̃i)}i∈K .

25

Chapter 2. SZK Proofs for Black Box Group Problems

S3.1 In this stepMV ∗ tries to find the correct orbit ofs.

Let for somei ∈ I ∩K, d̃i = 0 andsh̃i = s
(i)
0 . But ass(i)0 = x

g
(i)
0
bi

(because

MV ∗ has passed stepS2), we must haves ∼ xbi . So,MV ∗ setsβ = bi.

Similarly, if d̃i = 1 andsh̃i = s
(i)
1 ,MV ∗ setsβ = bi. The case fori ∈ I ∩K

and analogous conditions can also be dealt with similarly.

If no β is found go to stepS3otherwise go to stepS4.

S3.2 In parallel find the correct orbit ofs using brute force algorithm. We can

assume that the brute force algorithm runs in time2Λ(n), whereΛ(n) is a

polynomial. If no correctβ could be found setβ = 0.

S4 Output the transcript.

Claim 2.5.5 The simulatorMV ∗ runs in expected polynomial time.

Proof. It is sufficient to prove that the expected number of timesV ∗ is called is poly-

nomial. Letw be the random coinsV ∗ uses. LetNw be the number of subsetsI on

which the simulator has to go to stepS3, i.e., these are the index set on which the con-

ditions checked byMV ∗ on stepS2 are true. Let us call these subsetsgood. Clearly,

0 ≤ Nw ≤ 2k.

Case 1:Nw ≥ 2.

In this casePr[A randomly choosen subset K is good and K 6= I] = Nw−1
2k

.

Thus, expected number of timesV ∗ is called is

1 +
Nw

2k

(

Nw − 1

2k

)−1

≤ 3.

Case 2:Nw = 1.

In this caseMV ∗ moves to stepS3 only when the subsetI chosen at stepS1 is

good. Thus, the probability of this event is1
2k

. The brute force algorithm takes

time2Λ(n). Thus, expected number of timesV ∗ is called is2Λ(n)

2k
. So if we choose

k to be a polynomial greater thanΛ(n), V ∗ will be called at most constant number

of times. (Note that the proof of Lemma 2.5.3 does not change for this choice of

k)

26

Chapter 2. SZK Proofs for Black Box Group Problems

Case 3:Nw = 0.

In this caseV ∗ never reaches stepS3. Thus,V ∗ is called only once.2

Claim 2.5.6 Simulator’s output distribution and the verifiers view is identically dis-

tributed.

Proof. Same random coin for the verifier and same index set producessame transcript

in both the cases.2

Combining Theorem 2.4.6 and Theorem 2.5.2 we obtain the following.

Corollary 2.5.7 The complement of the following problems are inPZK in liberal sense:

Set Transporter, Coset Intersection, Double Coset Membership, Double Coset Equality,

Conjugacy of Elements, Vector Transporter.

2.6 Solvable Permutation Group Isomorphism is in PZK

In this section we considerpermutation group isomorphismPERM-ISO: given two sub-

groups〈S〉, 〈T 〉 ≤ Sn the problem is to test if〈S〉 and〈T 〉 are isomorphic.

Remark. PERM-ISOis in NP∩ coAM [82]. It is harder thanGRAPH-ISO[82] and

seems different in structure fromGRAPH-ISOor PGE. Like PGE if we try to formulate

PERM-ISOusing group action we notice that isomorphisms between groups are not per-

mutations on small domains (unlike PGE). Thus, we do not knowhow to prove certain

complexity-theoretic statements forPERM-ISOthat hold forGRAPH-ISO. E.g. we do

not know if it is in SPP or even low for PP [75], althoughGRAPH-ISOis in SPP [18].

Indeed, we do not know ifPERM-ISOis in SZK.

However, in this section we show thatPERM-ISOfor solvable groups is reducible to

SD1,0 and is hence in PZK. We recall some group theoretic definitions.

LetX be a finite set of symbols andFG(X) be the free group generated byX.

Definition 2.6.1 A pair (X,R) is a presentationof a groupG whereX is a finite set of

symbols andR is a set of words overX ∪ X−1 where eachw ∈ R defines the relation

w = 1. The presentation(X,R) definesG in the sense thatG ∼= FG(X)/N , whereN

is the normal closure inFG(X) of the subgroup generated byR. The size of(X,R) is

|X| +∑w∈R |w|. Call (X,R) a short presentationof thefinite groupG if the size of

(X,R) is (log |G|)O(1).

27

Chapter 2. SZK Proofs for Black Box Group Problems

It is an important conjecture [27] that all finite groups haveshort presentations. It

is known to be true for large classes of groups. In particular, it is easy to prove that

solvable finite groups have short presentations.

Notice that two groups are isomorphic if and only if they havethe same set of pre-

sentations. Our reduction of solvable permutation group isomorphism toSD1,0 will use

this fact. Specifically, to reduce solvablePERM-ISOto SD1,0 we give a randomized al-

gorithmA that takes as input the generating set of a solvable groupG ≤ Sn and outputs

a short presentation forG. We can considerA(G) as a circuit with random bits as input

and a short presentation forG as output. Clearly, ifG ≇ H then the circuitsA(G) and

A(H) will output distributions with disjoint support. On the other hand, ifG ∼= H, the

circuitsA(G) andA(H) will compute identical probability distributions on the short

presentations (forG andH).

We describeA in two phases. In the first phaseA computes a random composition

series for the input solvable groupG = 〈T 〉 following some distribution. In the second

phase,A will deterministically compute a short presentation forG using this composi-

tion series. An ingredient forA is a polynomial-time sampling procedure fromL \ N
whereL ≤ Sn andN � L are subgroups given by generating sets. We describe this

algorithm.

Lemma 2.6.2 (Sampling Lemma)LetL ≤ Sn andN � L, where bothL andN are

given by generating sets. There is a polynomial-time algorithm that samples fromL\N
uniformly at random (with no failure probability).

Proof. Let L = 〈S〉 andN = 〈T 〉. Recall that applying the Schreier-Sims algorithm

we can compute a strong generating set forL in polynomial time. More precisely, we

can compute distinct coset representativesRi for L(i) in L(i−1) for 1 ≤ i ≤ n−1, where

L(i) is the subgroup ofL that fixes each of1, 2, . . . , i. Notice that|Ri| ≤ n for eachi.

Thus, we have the tower of subgroupsL = L(0) ≥ L(1) ≥ . . . ≥ L(n−1) = 1.

We can use the strong generating set
⋃

Ri to sample uniformly at random fromL as

explained in proof of Theorem 2.4.2. This sampling procedure can be easily modified

to sample uniformly fromL \ {1}.

We will build on this idea, using some standard group-theoretic algorithms from

[82] to sample uniformly fromL \N . SinceN � L each setNL(i) is a subgroup ofL.

28

Chapter 2. SZK Proofs for Black Box Group Problems

Furthermore, for eachi

|NL(i−1)|
|NL(i)| ≤ |L(i−1)|

|L(i)| ≤ n− i+ 1.

Thus,L = NL(0) ≥ NL(1) ≥ . . . ≥ NL(n−1) = 1 is also a subgroup tower with each

adjacent pair of subgroups of small index. Furthermore,Ri also forms coset represen-

tatives forNL(i) in NL(i−1). However,Ri may not be all distinct coset representatives.

Since we have the generating set forNL(i) (the union ofT and the generating set for

L(i)) we can find the distinct coset representatives in polynomial time by using member-

ship tests inNL(i), using the fact thatx, y ∈ Ri are not distinct coset representatives for

NL(i) inNL(i−1) iff xy−1 ∈ NL(i). LetSi ⊆ Ri be the distinct coset representatives for

eachi. Let |Si| = mi for eachi. We can ignore the indicesi for whichSi has only the

identity element.

Now, each elementgN ∈ L/N can be expressed uniquely as

gN = (g1N) · · · (gn−1N) = g1 · · · gn−1N, wheregi ∈ Si.

Partition the nontrivial elements ofL/N into setsVi = {gi · · · gn−1N | gj ∈
Sj andgi 6= 1}. Clearly,L/N \ {1N} =

⊎n−1
i=1 Vi. Furthermore, let|Vi| = (mi −

1)
∏n−1

j=i+imj = Ni for eachi. We can sample uniformly fromVi by uniformly picking

gi ∈ Si \ {1} andgj ∈R Sj, j = i+ 1, . . . , n− 1. Thus, we can sample uniformly from

L/N by first pickingi with probability Ni

|L|/|N |−1
and then sampling uniformly fromVi.

Finally, to sample fromL \ N , notice that after picking the tuple(gi, . . . , gn−1) while

sampling fromVi we can pickx ∈ N (by first building a strong generating set forN).

Clearly,g = gi · · · gn−1x, is uniformly distributed inL \N .

We now describe algorithmA. SupposeS is the input toA, whereG = 〈S〉 is a

solvable group. In Phase 1,A first computes the derived series{id} = G1�G2 � · · ·�
Gz = G of G (in deterministic polynomial time [82]).

Next, A(G) refines the derived series forG into a random composition series by

inserting a chain of normal subgroups between consecutive groups of the series. It

suffices to describe this refinement forG′
�G, whereG′ = Gz−1 andG = Gz. We can

refine eachGi �Gi+1 similarly.

Suppose|G/G′| = pα1
1 p

α2
2 · · · pαl

l = m, p1 < p2 < · · · < pl. Using standard

29

Chapter 2. SZK Proofs for Black Box Group Problems

algorithms from [82] we can computem in polynomial time. Asm is smooth (all

pi ≤ n) we can also factorizem in polynomial time to find thepi. We will use the

ordering of thepi.

Let G′ = 〈T 〉. SinceG/G′ is abelian, thep1-Sylow subgroup ofG/G′ is L/G′

whereL is generated by the union ofT and{gm/pα1
1 | g ∈ S}.

Notice thatG′
� L � G. Applying Lemma 2.6.2,A can sample uniformly anx ∈

L \ G′. As |L/G′| = pα1
1 , the order ofxG′ is pt1 for somet 6= 0. This t is easily

computed by repeated powering. Clearly,xp
t−1
1 G′ is of orderp1. Let x1 = xp

t−1
1 and

defineN1 = 〈T ∪ {x1}〉. Clearly,G′ is normal inN1 and|N1/G
′| = p1. SinceG/G′ is

abelian it follows thatG′
�N1 � L�G.

We now repeat the above process for the pair of groupsN1 andG. Using Lemma 2.6.2

we randomly pickx ∈ L \ N1 find the orderps1 of xN1 in G/N1 and setx2 = xp
s−1
1 .

This will give us the subgroupN2 generated byN1 andx2. Thus, we get the refinement

G′
� N1 � N2 � L � G, where|N2/N1| = p1. Continuing thus, inα1 steps we obtain

the refinement

G′
�N1 �N2 � · · ·�Nα1 = L�G.

Now, letM/G′ be thep2-Sylow subgroup ofG/G′. We can find a generating set forM

as before. Notice thatL�ML�G. Thus, applying the above process we can randomly

refine the seriesL �ML into a composition series where each adjacent pair of groups

has indexp2.

Continuing thus,A refinesG′
�G into a random composition series betweenG and

G′. This process can be applied to each pairGi � Gi+1 in the derived series to obtain a

random composition series forG.

After phase 1, the computed composition series forG is described by a sequence

(x1, x2, · · · , xm) of elements fromG, where the composition series isid � 〈x1〉 �
〈x1, x2〉� · · ·� 〈x1, x2, · · · , xm〉 = G.

Observe that ifφ : G→ H is an isomorphism and ifid = G0 �G1 � · · ·�Gm−1 �

Gm = G andid = H0 �H1 � · · ·�Hm−1 �Hm = H are the derived series ofG and

H respectively, thenφ must isomorphically mapGi to Hi for eachi. Furthermore, if

(x1, x2, · · · , xm) describes a composition series forG then(φ(x1), φ(x2), · · · , φ(xm))
describes a composition series forH. LetXi denote the random variable according to

which xi is picked in the above description forG. Similarly, letYi denote the random

30

Chapter 2. SZK Proofs for Black Box Group Problems

variable for the groupH. It is easy to see thatPr[X1 = x1] = Pr[Y1 = φ(x1)]. Now,

Pr[Xi = xi 1 ≤ i ≤ m] = Pr[X1 = x1] ·
m
∏

i=2

Pr[Xi = xi|Xj = xj , 1 ≤ j < i].

Notice that to constructxi+1 the algorithm refines〈x1, x2, · · · , xi〉�Gj , whereGj is the

appropriate group in the derived series. Now, if the algorithm findsφ(x1), φ(x2), · · · , φ(xi)
as the firsti components of the composition series forH, then the next elementyi is

obtained by refining〈φ(x1), φ(x2), · · · , φ(xi)〉 � Hj, whereφ : Gj −→ Hj is an iso-

morphism. Thus, it is easy to see that fori ≥ 2 also we have

Pr[Xi = xi | Xj = xj 1 ≤ j < i] = Pr[Yi = φ(xi) | Yj = φ(xj) 1 ≤ j < i].

It follows thatPr[Xi = xi 1 ≤ i ≤ m] = Pr[Yi = φ(xi) 1 ≤ i ≤ m].

In the second phase, the algorithmA computes a short presentation forG from its

composition series given by(x1, x2, · · · , xm). Let p1 = |〈x1〉| and forj > 1,

pj = |〈x1, x2, · · · , xj〉|/|〈x1, x2, · · · , xj−1〉|.

Let the primes in this order bep1, p2, · · · , pm (not necessarily distinct). Notice that each

g ∈ G can be uniquely expressed asg = xlmm , x
lm−1

m−1 , · · · , xl11 , 0 ≤ li ≤ pi − 1.

A will compute the short presentation inductively. The cyclic subgroup〈x1〉 has the

representation(X1, R1) whereX1 = {α1} andR1 = {αp11 }. We assume inductively

that 〈x1, x2, · · · , xi〉 has the presentation(Xi, Ri) whereXi = {α1, α2, · · · , αi}. We

let Xi+1 = Xi ∪ {αi+1}. In order to defineRi+1 we notice thatxi+1〈x1, · · · , xi〉 =

〈x1, · · · , xi〉xi+1 andxpi+1

i+1 ∈ 〈x1, x2, · · · , xi〉. Thus, the new relations (as explained

e.g. in [19]) are

x
pi+1

i+1 = ui+1, ui+1 ∈ 〈x1, x2, · · · , xi〉
∀j, 1 ≤ j ≤ i xjxi+1 = xi+1wi+1,j, wi+1,j ∈ 〈x1, x2, · · · , xi〉

To find ui+1 notice that ifx ∈ 〈x1, x2, · · · , xi〉 thenx belongs to one of the cosets

xji 〈x1, x2, · · · , xi−1〉, j = 0, · · · , pi − 1. To find the exact cosetA can do mem-

bership testsx−ji x ∈ 〈x1, x2, · · · , xi−1〉 for eachj. As all the primespi are small,

this is a polynomial-time step, because membership testingfor permutation group can

31

Chapter 2. SZK Proofs for Black Box Group Problems

be done in polynomila time (cf. [82]). By repeating the same for 〈x1, x2, · · · , xi−1〉,
〈x1, x2, · · · , xi−2〉, · · · , 〈x1〉 the algorithm will be able to findui+1 = xlii · · ·xl11 . The

corresponding relation will beαpi+1

i+1 = αlii · · ·αl11 . The algorithm can computewi+1,j

and the corresponding relation similarly. Now,Ri+1 is just Ri union the new rela-

tions. The number of relationsT (i) for 〈x1, x2, · · · , xi〉 follows the recurrence rela-

tion T (i + 1) = T (i) + i + 1, T (1) = 1. So, the number of relation isO(m2). But

m = O(log |G|). Hence the presentation is of polynomial length (more precisely it

is O(m3)). Supposeφ : G −→ H is an isomorphism and〈x1, · · · , xm〉 describes a

composition series forG. Then〈φ(x1), · · · , φ(xm)〉 describes a composition series for

H.

We notice that the composition series forG described by(x1, · · · , xm) forG and the

composition series forH described by(φ(x1), · · · , φ(xm)) yield the same presentation.

This can be seen by observing that the process of obtainingui+1 andwi+1,j is identical

in both the cases. Thus, whenG ∼= H it follows that the distributions produced byA(G)

andA(H) will be identical. On the other hand, ifG ≇ H, A(G) andA(H) will have

disjoint support. We have proved the following.

Theorem 2.6.3 The problem of isomorphism testing of solvable permutationgroups is

polynomial time many-one reducible toSD1,0 and is hence inPZK.

Remark. We can extend this result to show that isomorphism testing form-recognizable

permutation groups is also in PZK (see [96, Section 8.3] for definitions).

2.7 Black Box Group Problems

In this section we consider analogous problems over black-box groups [23, 32]. The

black-box group model essentially abstracts away the internal structure of the group

into a “black-box” oracle that does the group operations. Inorder to give uniform zero-

knowledge protocols we generalize PGE to black-box groups:theGroup Equivalence

ProblemGE. It turns out that the key difference from the results of Section 2.4 is that

while permutation groups can be uniformly sampled by a polynomial time algorithm,

there is no polynomial-timeuniform sampling algorithm for black-box groups. How-

ever, the following seminal result of Babai for almost uniform sampling from black-box

groups suffices to show that the considered black-box group problems are in SZK.

32

Chapter 2. SZK Proofs for Black Box Group Problems

Theorem 2.7.1 [23] Let c,C > 0 be given constants, and letε = N−c whereN is

a given upper bound on the order of the groupG. There is a Monte Carlo algorithm

which, given any set of generators ofG, constructs a sequence ofO(log N) ε-uniform

Erdos-Renyi generators at a cost ofO((log N)5) group operations. The probability that

the algorithm fails is≤ N−C .

If the algorithm succeeds, it permits the construction ofε-uniformly distributed ran-

dom elements ofG at a cost ofO(log N) group operation per random element.

As the distribution isε-uniform, not perfectly uniform and the algorithm has certain

error probability, we do not get perfect zero knowledge protocols for GE. However, we

have the following.

Theorem 2.7.2 GE is reducible toSD1, 1
3 (relative to the black box group oracleB).

Proof. The proof is similar to that of Theorem 2.4.2. We reduce GE toSD1,ǫ1 for

some smallǫ1. Let (q, x, y, T, τ) where elements of{0, 1}q represents group elements,

T is the set of generating elements of groupG andτ is a polynomial time routine that

computes the group action and has access to the group oracleB. The reduction maps

(q, x, y, T, τ) to the pair of circuits(X1, X2), both having access to the black box group

oracleB. The circuitX1 samplesg ∈ G using Babai’s algorithm. If the algorithm fails

the circuit setsg to be any fixed element ofG. Then it producesxg. The circuitX2 is

similarly defined fory. As in Theorem 2.4.2, we can argue that ifx andy are not in the

sameG-orbit the statistical difference between the two circuitswill be 1. But if they are

in the same orbit then we can verify that the statistical difference is less than a chosen

small numberǫ1. We can makeǫ1 close to theε specified by Theorem 2.7.1 by repeating

Babai’s algorithm and thus reducing the error introduced due to failure. Asε is inverse

exponential, we can makeǫ1 less than1
3
.

Theorem 2.7.3 GE is in SZKB (whereSZKB stands for SZK in which both prover and

verifier have access to the group oracleB).

Proof. The complexity class SZK is closes under complementation [94]. Thus,

SD2/3,1/3 ∈ SZK. Now suffices to observe that the proof [94] that SD2/3,1/3 ∈ SZK

relativizes and that SD1,1/3 is trivially reducible to SD2/3,1/3.

33

Chapter 2. SZK Proofs for Black Box Group Problems

As a corollary we also get that several problems considered in [23] and some gen-

eralization of permutation group problems are in SZKB. This partially answers an open

question posed in [23] whether the considered problems are in SZK. However, we do

not know if the order verification problem and group isomorphism for black-box groups

are in SZK, although they are in AM∩ coAM.

Corollary 2.7.4 Black box group membership testing, Disjointness of doublecosets,

Disjointness of subcosets, Group factorization etc are inSZKB.

Proof. Let (q, x, T) be an instance of black box group membership testing problem,

whereq is the length of the strings encoding group elements,T generates the groupG.

To reduce it to GE we notice thatx ∈ G if and only if some elementt ∈ T andx are in

the sameG-orbit where theG action is just right multiplication, i.e.,zg = gz.

Let (q, s, t, A,B) be an instance of double coset disjointness, whereH = 〈A〉,K =

〈B〉 and the problem is to decide ifHsK andHtK are disjoint. Here we notice that

HsK ∩ HtK 6= φ iff s andt are in the sameH ×K-orbit where the action is defined

by z(h,k) = h−1zk.

Disjointness of double coset and group factorization are equivalent becauseHs ∩
Kt 6= φ iff H ∩Kts−1 6= φ iff ts−1 ∈ KH.

Let (q, x, A,B) be an instance of Group factorization, whereG = 〈A〉, H = 〈B〉.
The problem is to decide ifx ∈ GH. We notice thatx ∈ GH iff x and the identity

elemente are in the sameG × H-orbit. The group action is defined asz(g,h) = g−1zh.

2.8 Concurrent Zero Knowledge

Dwork, Naor and Sahai [46] defined the notion of concurrent zero knowledge in which

several execution of the protocol occurs concurrently. It is a much stringent condition

to demand that a protocol should be zero knowledge even if there are several execution

of the protocol concurrently, which can very well be controlled by a single adversarial

verifier.

In a concurrent interaction a verifierV can interact with the prover as follows: The

verifier sends a pair(m, s) wherem is the message for sessions. The proverP acts

34

Chapter 2. SZK Proofs for Black Box Group Problems

independently in all sessions. The message passing continues until the verifier sends

(end, α), whereα = accept or reject. So, the transcript looks like

[(m1, s1), p1, (m2, s2), p2, · · · , (mt, st), pt, (end, α)].

The verifiers view〈P, V 〉(x) on inputx is the transcript along with the random bits used

by the verifier.

The protocol is said to be zero knowledge if it remains zero knowledge under con-

current interaction. In [85], Miccianccio, Ong, Sahai and Vadhan proved

Theorem 2.8.1 [85] SD1,1/2 has concurrent zero knowledge proof system.

Combined with Theorems 2.8.1, 2.6.3, 2.4.2 and the fact thatconcurrent zero

knowledge is closed under polynomial time many one reduction we get the following

corollary immediately:

Corollary 2.8.2 The complement of the following problems has concurrent zero knowl-

edge proofs: Set Transporter, Coset Intersection, Double Coset Membership, Dou-

ble Coset Equality, Conjugacy of Elements, Vector Transporter, Solvable Permutation

Group Isomorphism.

2.9 SZK Proof with Efficient Provers

An important question is whether we can design SZK protocolswith efficientprovers

for all problems in SZK. A notion of efficient provers, considered useful for problems

in SZK∩NP, is where the prover has to be a randomized algorithm that has access to an

NP witness for an instancex of a language in SZK∩NP. This question is studied in [86]

where it is shown thatSD1,1/2 has such an SZK protocol. Consequently, any problem

polynomial-time many-one reducible toSD1,1/2 also has such efficient provers.

As a consequence of Theorem 2.7.2 where we show that Group Equivalence for

black-box groups is reducible toSD1,1/3 it follows from Corollary 2.7.4 and the above-

mentioned result of [86] that all NP problems considered in Section 2.7 have SZK pro-

tocols with efficient provers.

Theorem 2.9.1 Black box group membership testing, Double coset membership, Sub-

coset intersection, Group factorization etc are inNP∩ SZKB and have SZK protocols

with efficient provers.

35

Chapter 2. SZK Proofs for Black Box Group Problems

2.10 Concluding Remarks

In this chapter we show that SZK (and PZK) contains a host of natural computational

black-box problems (respectively permutation group problems). As complexity classes

SZK and PZK are quite intriguing. We do not known anything beyond the containment

PZK ⊆ SZK ⊆ AM ∩coAM and the closure of SZK under complement. In this context

it is interesting to note that all considered permutation group problems (except solvable

group isomorphism) are known to be low for PP: we can put PGE inSPP using the

methods of [18, 75]. Could it be that the class PZK (or even SZK) is low for PP? We

make a final remark in this context. The SZK-complete problemEntropy Difference

(ED) is complete even for “nearly flat” distributions, where“flatness” is a technical

measure of closeness to the uniform distribution [106]. If we consider ED with the

stronger promise that the two input distributions areuniform on their supportthen we

can prove that the problem is low for PP.

36

3
Limited Randomness Zero Knowledge

3.1 Introduction

Two groupsG1 andG2 are isomorphic, denotedG1
∼= G2, if there is a bijection

φ : G1 −→ G2 such thatφ(gg′) = φ(g)φ(g′) for all g, g′ ∈ G1. If theG1 andG2 are

two finite permutation groups given by their generating setsthen deciding ifG1
∼= G2 is

known aspermutation group isomorphism problem(PERM-ISO). Graph isomorphism

problem (GI) is polynomial-time Turing reducible to permutation group isomorphism

problem. The problem PERM-ISO is in NP∩ coAM [82]. We considered a special case

of PERM-ISO in Chapter 2 when the input permutation groups are solvable. In this

chapter we consider the problem of deciding if two finite groups given by theirmultipli-

cation tablesare isomorphic. This problem is polynomial-time many-one reducible to

the graph isomorphism problem. We give a zero knowledge protocol for this problem

where the number of random bits used by the prover and the verifier is only polyloga-

rithmic. The contribution of this chapter is that we give a theory of limited resource zero

knowledge proofs that is based on the work of Goldreich, Sahai and Vadhan [94, 57].

Definition 3.1.1 (GrIso)

Input : The multiplication tables of two finite groupsG1 andG2 of ordern.

Decide: If G1 andG2 are isomorphic.

It was shown in [19] that GrIso has a constant round, public-coin interactive pro-

tocol. The total size of the messages exchanged between the prover and the verifier in

the interactive protocol in [19] is only polylogarithmic and the verifier uses only poly-

logarithmically many random bits. In this chapter we give a PZK protocol for GrIso

37

Chapter 3. Limited Randomness Zero Knowledge

while maintaining all these properties, namely our PZK protocol has constant number

of rounds, the prover and the verifier use only polylogarithmically many random bits

and the total message size is polylogarithmic. This motivates us to study problems that

have zero knowledge protocols where the use ofrandomness is limited. More precisely,

we investigate statistical zero knowledge protocols wherethe prover, verifier and the

simulator use only polylogarithmic randomness.

We define a classβHVSZK which consists of all promise problems having honest

verifier statistical zero knowledge protocols where the prover, verifier and the simulator

use polylogarithmic randomness and have polylogarithmic numbers of rounds. We ana-

lyze the techniques developed by Goldreich, Sahai and Vadhan [94, 57] in this setting.

In their seminal work they proved that SZK has complete problems SD and ED. They

gave an honest verifier statistical zero knowledge protocolfor SD which has onlytwo

rounds. Since SD is complete for SZK, it implies that every problem in SZK has an

honest verifier statistical zero knowledge proof with only two rounds. In this chapter

we prove that every problem having an honest verifier statistical zero knowledge proof

where the prover, verifier and the simulator use polylogarithmically many random bits

and the protocol has polylogarithmically many rounds also has an honest verifier statis-

tical zero knowledge protocol where not only the number of random bits used by the

prover and the verifier is polylogarithmic but also themessage sizeis onlypolylogarith-

micand thenumber of roundsis two.

As a result of this we conclude that GrIso has an honest verifier statistical zero

knowledge proof where the number of random bits required is polylogarithmic and has

2 rounds.

3.2 Preliminaries

We recall some definitions that we will be using in this chapter.

Definition 3.2.1 (Support) LetX be a distribution over a finite setU . Thesupportof

X, denotedSupp(X) is the set

{x ∈ U | Pr[D = x] > 0}.

Definition 3.2.2 Let X andY be two distributions over finite setsU1 andU2 respec-

tively. Thetensor productof X andY is a distribution, denotedX ⊗ Y , over the set

38

Chapter 3. Limited Randomness Zero Knowledge

U1 × U2 defined as follows

Pr[X ⊗ Y = (x, y)] = Pr[X = x].P r[Y = y].

We define
⊗2X asX ⊗X. Inductively

⊗kX =
⊗k−1X ⊗X. It is easy to check

that H(X⊗Y) = H(X)+H(Y), where H is the Shannon entropy (see Definition 2.2.10).

Definition 3.2.3 A familyH of function from a finite setD to a finite setR is 2-universal

if for all x, y ∈ D, x 6= y and for alla, b ∈ R,

Prh∈H[h(x) = a andh(y) = b] =
1

|R|2 .

The set of all affine linear functions fromGF (2)m toGF (2)n is a2-universal family

of hash functions from{0, 1}m to{0, 1}m and is denoted byHm,n. A functionh ∈ Hm,n

is of the formh(x) = Ax+ b whereA is ann×m 0-1-matrix andb is an bit 0-1 vector.

Thus, to describe any function inHm,n we need(mn + n) bits.

3.3 Group Isomorphism

In this section we present a PZK protocol for isomorphism of groups given by their

multiplication table. The protocol broadly follows the steps in [19, 20].

Before that we need the concept ofcube generatingk-sequences. LetG be a group

and letC = (g1, · · · , gk) be a sequence ofk elements ofG. Thecubegenerated by the

sequenceC is the set

Cube(C) = {gǫ11 , · · · , gǫkk | ǫi ∈ {0, 1}}.

. The sequenceC is called acube generatingk-sequenceif G = Cube(C). The follow-

ing theorem is due to Erdös and Rényi [47].

Theorem 3.3.1 LetG be a finite group withn elements and letk be an integer such that

k ≥ log n+log logn+2 log 1
δ
+5. Letg1, · · · , gk be sampled uniformly at random from

G. Then

Pr[C is a cube generating sequence forG] > 1− δ.

39

Chapter 3. Limited Randomness Zero Knowledge

In the above theorem if we pickk = 4 logn then

Pr[C is a cube generating sequence forG] > 1− 1/n.

Following [19, 20], we now describe a way of embedding the group structure of a

finite groupG with n elements in a setS as follows. Letφ : G −→ S be an injec-

tive map. Then the elements ofφ(G) ⊆ S naturally inherits the group structure ofG

as follows. Letx, y ∈ φ(G), thenx.y = φ(φ−1(x)φ−1(y)). Let C = (g1, · · · , gk)
be a cube generating sequence ofG. We defineφC : G −→ {0, 1}k as follows.

φC(g) = (ǫ1, · · · , ǫk) where(ǫ1, · · · , ǫk) is the lex-least element in{0, 1}k such that

g = gǫ11 · · · gǫkk . Thus,φC(G) ⊆ {0, 1}k gets a group structure whose multiplication ta-

ble is defined viax.y = φC(φ
−1
C (x)φ−1

C (y)). Notice that givenC of lengthk = 4 logn,

the mapφC can be computed in polynomial time.

Now we are ready to give the PZK protocol(P, V) for group isomorphism of two

groupsG0, G1 given by their multiplication table. The protocol is similar in flavor to

the PZK protocol for graph isomorphism and given in Protocol1. In Protocol 1P stands

for prover andV for verifier.

Protocol 1Protocol for GrIso

1 P: Pick k = 4 logn random elementsg1, · · · , gk fromG0. If C = (g1, · · · , gk) is not
a cube generating sequence, then send ‘FAIL’ to the verifier.Otherwise do the
following. ComputeφC as defined above. Send the multiplication for the group
H = φC(G0).

2 V: If P sends ‘FAIL’ then reject. Otherwise pickb uniformly at random from{0, 1}
and sendb to P.

3 P: Send an isomorphismπ fromGb toH.

4 V: Check ifπ is indeed an isomorphism fromGb toH. If π is an isomorphism then
accept otherwise reject.

Notice thatH is always isomorphic toG0. If G0
∼= G1 then the only way the prover

could fail to convince the verifier is that he fails to obtain acube generating sequence

for G0. The protocol has completeness error at most1/n. On the other hand ifG0

is not isomorphic toG1 then no matter what strategy a proverP ∗ takesH will not be

isomorphic to one of the groupsG0 or G1. Thus, depending on the verifier’s random

40

Chapter 3. Limited Randomness Zero Knowledge

choice he will be caught at least half the times. Therefore, the protocol has soundness

error at most1/2.

In Simulator 2 we present a simulator to demonstrate that theinteractive protocol is

actually a perfect zero knowledge protocol. In Simulator 2,V ∗ is an arbitrary verifier.

Notice that even if the simulator does not get a cube generating sequence it does not fail.

It merely simulatesV ∗ on ‘FAIL’. The real failure of the simulator may occur only at

the last step of Simulator 2.

Simulator 2 Simulator for Protocol 1

I Pickb uniformly at random from{0, 1}. Pickk = 4 logn random elementsg1, · · · , gk
fromGb.

II If C = (g1, · · · , gk) is not a cube generating sequence, then,

• Send ‘FAIL’ to the verifier.

• SimulateV ∗ on ‘FAIL’, let s be the response of the verifier.

• Output(′FAIL ′, s).

III If a cube generating sequenceC is found do the following.

• ComputeφC as defined above. LetH be the group onφC(Gb) defined by
the embeddingφC .

• SimulateV ∗ onH. Let c be the response of the verifier. We may assume
thatc ∈ {0, 1}.

• If c 6= b then the simulator fails. Otherwise it outputs(H, c, φC).

The statistical difference between the verifier’s view and the simulator’s output con-

ditioned on the event that the simulator does not fail is zero. Hence the protocol is

perfect zero knowledge. The analysis is exactly as in the proof thatGRAPH-ISO∈ PZK

(see [54, Section 4.3.2]).

In the next theorem we list the properties of the protocol andthe simulator.

Theorem 3.3.2 The problemGrIsohas aPZK proof system(P, V) with the following

properties:

1. The prover and the verifier on input(G0, G1) use polylogarithmic randomness

(O(log2 n) bits, wheren = |G0|).

41

Chapter 3. Limited Randomness Zero Knowledge

2. If a randomized polynomial-time algorithmV ∗ acting as a verifier uses polylog-

arithmic randomness then the simulator while simulatingV ∗ also uses polyloga-

rithmic randomness.

3. The number of round in the protocol is3,

4. The message exchanged is polynomial in the size of the input.

Proof. In step 1 of Protocol 1 the prover picksk = 4 logn random elements fromG0.

SinceG0 has sizen, each element ofG0 is encoded asO(logn) bit string. Hence, the

randomness used by the prover isO(log2 n).

To simulateV ∗ the simulator supplies random coins toV ∗. It also uses random bits

for its own purpose. The simulator usesO(log2 n) bits of randomness in step I for its

own purpose. Except for that it needs random bit only to simulateV ∗’s random coins.

Thus, ifV ∗ uses polylogarithmic randomness the the simulator also uses polylogarith-

mic random bits.

From the description of Protocol 1 it is clear that the numberof rounds is3 and the

message size is proportional to the size of the multiplication tables ofG0 andG1.

In the following sections we will see how to reduce the message size of such protocol

in a generic way. We will actually reduce the message size of an honest verifier statistical

zero knowledge protocol where the randomness complexity ispolylogarithmic and the

number of rounds is also polylogarithmic. More precisely, we show that every language

having an honest verifier statistical zero knowledge protocol where the prover, verifier

and the simulator use polylogarithmic randomness and has polylogarithmic number of

rounds also has an honest verifier statistical zero knowledge proof where the prover,

verifier and the simulator use polylogarithmic randomness,the message size is also

polylogarithmic and the number of rounds is only constant.

3.4 Limited Randomness Zero Knowledge

Next we define the notion of limited randomness zero knowledge. As we shall see there

are several possibilities of defining the notion of limited randomness zero knowledge

protocols. Recall that a randomized algorithmA is said to beusefulif for every inputx,

Pr[A(x) = fail] ≤ 1/2.

42

Chapter 3. Limited Randomness Zero Knowledge

Definition 3.4.1 LetR,M,E : N −→ N be functions on natural numbers. A promise

problemΠ = (ΠY ,ΠN) is in the classβHVSZK(R,M,E) if there is an interactive

proof system(P, V) such that on input(x, 1k) andn = |x|+ k the followings hold:

1. Each ofP andV uses at mostO(R(n)) random bits.

2. The total message length is at mostO(M(n)).

3. Number of message exchanged is at mostO(E(n)).

4. Zero Knowledge:There is a negligible functionµ and a useful polynomial-time

randomized algorithmS such that ifx ∈ ΠY then on input(x, 1k)

• S uses at mostO(R(n)) random bits.

• StatDiff(S(x, 1k), 〈P, V 〉(x, 1k)) ≤ µ(k), whereS(x, 1k) is the output dis-

tribution ofS on input(x, 1k) conditioned onS(x, 1k) 6= fail.

If µ(k) = 0 for all k thenΠ is said to be inβHVPZK(R,M,E).

Note that the completeness and soundness conditions followfrom the definition of

interactive proof systems (see Definition 2.2.3). We work with the above definition

of honest verifier zero knowledge protocol in this chapter. We also define three more

notions of zero knowledge based on the randomness used by theprover, verifier and the

simulator.

Definition 3.4.2 (SZK(R,M,E)) For functionsR,M,E : N −→ N, a promise prob-

lemΠ = (ΠY ,ΠN) is in the classSZK(R,M,E) if there is an interactive proof system

(P, V) such that on input(x, 1k) andn = |x|+ k the followings hold:

1. Each ofP andV uses at mostO(R(n)) random bits.

2. The total message length is at mostO(M(n)).

3. Number of message exchanged is at mostO(E(n)).

4. Zero Knowledge:For every probabilistic polynomial-time algorithmV ∗ there is

a useful polynomial-time randomized algorithmS∗ such that ifx ∈ ΠY then

StatDiff(S∗(x, 1k), 〈P, V 〉(x, 1k)) ≤ µ(k) for some negligible functionµ (which

may depend onV ∗), whereS∗(x, 1k) is the output distribution ofS∗ on input

(x, 1k) conditioned onS∗(x, 1k) 6= fail.

43

Chapter 3. Limited Randomness Zero Knowledge

If µ(k) = 0 for all k thenΠ is said to be inPZK(R,M,E).

We compare this definition with the previous definition. In this definition we allow

S∗ to use as much randomness as required provided it is polynomially bounded whereas

in Definition 3.4.1 the simulator can use at mostO(R(n)) random bits. Here we only

impose the condition that the prover and the verifier in the interactive protocol(P, V)

use at mostO(R(n)) random bits.

Definition 3.4.3 (βSZK(R,M,E) Limited) For functionsR,M,E : N −→ N, a promise

problemΠ = (ΠY ,ΠN) is in the classβSZK(R,M,E) if there is an interactive proof

system(P, V) such that on input(x, 1k) andn = |x|+ k the followings hold:

1. Each ofP andV uses at mostO(R(n)) random bits.

2. The total message length is at mostO(M(n)).

3. Number of message exchanged is at mostO(E(n)).

4. Zero Knowledge:For every probabilistic polynomial-time algorithmV ∗ there is

a useful polynomial-time randomized algorithmS∗ such that ifx ∈ ΠY then

• StatDiff(S∗(x, 1k), 〈P, V 〉(x, 1k)) ≤ µ(k) for some negligible functionµ

(which may depend onV ∗), whereS∗(x, 1k) is the output distribution of

S∗ on input(x, 1k) conditioned onS∗(x, 1k) 6= fail..

• S∗ uses at mostO(R(n)) random bits.

Here the verifierV ∗ may use any amount of randomness provided it is polynomially

bounded but the simulator has to run only with polylogarithmically many random bits.

Definition 3.4.4 (Weak-βSZK(R,M,E) Weak Limited) For functionsR,M,E : N −→
N, a promise problemΠ = (ΠY ,ΠN) is in the classWeak-βSZK(R,M,E) if there is an

interactive proof system(P, V) such that on input(x, 1k) andn = |x|+k the followings

hold:

1. Each ofP andV uses at mostO(R(n)) random bits.

2. The total message length is at mostO(M(n)).

3. Number of message exchanged is at mostO(E(n)).

44

Chapter 3. Limited Randomness Zero Knowledge

4. Zero Knowledge:For every probabilistic polynomial-time algorithmV ∗ that uses

at mostO(R(m)) random bits on inputs of lengthm there is a useful polynomial-

time randomized algorithmS∗ such that ifx ∈ ΠY then

• StatDiff(S∗(x, 1k), 〈P, V 〉(x, 1k)) ≤ µ(k) for some negligible functionµ

(which may depend onV ∗), whereS∗(x, 1k) is the output distribution of

S∗ on input(x, 1k) conditioned onS∗(x, 1k) 6= fail.

• S∗ uses at mostO(R(n)) random bits.

This definition differs from the previous definition in the way that here the simula-

tor works only for verifier that uses small randomness. The inclusions below follows

directly from the definitions.

Theorem 3.4.5 • βSZK(R,M,E) ⊆ Weak-βSZK(R,M,E).

• Weak-βSZK(R,M,E) ⊆ βHVSZK(R,M,E).

• βSZK(R,M,E) ⊆ SZK(R,M,E).

We would often uselogc, poly to denote functionslogc(x) andp(x), wherep(x) is

some polynomial. E.g., byβSZK(logc, poly, 3)we mean the classβSZK(logc(.), p(.), 3)

for some polynomialp(.)

We notice from Section 3.3 that GrIso is in the class PZK(R,M,E) whereR is

polylogarithmic,M is polynomial andE = 3. Observe that if the we replaceV ∗ in

Simulator 2 by the proverV of Protocol 1 then we get the following theorem.

Lemma 3.4.6 GrIso∈ βHVSZK(log2, poly, 3).

Next we define a version of SD (see Definition 2.2.9) for which the circuits that

encode the distributions have only polylogarithmic many input bits.

Definition 3.4.7 (βSD(c)) For a constantc > 0 the promise problem

βSD(c) = (βSD(c)
Y , βSD(c)

N)

45

Chapter 3. Limited Randomness Zero Knowledge

takes two distributionsX and Y encoded by boolean circuits as input and has “yes

instances”βSD(c)
Y and “no instances”βSD(c)

N defined as follows:

βSD(c)
Y = {(X1, X2) | StatDiff(X1, X2) ≥ 2/3 number of inputs toX1 and

X2 is at mostlogc n wheren = max{ size ofX1, X2}}.
βSD(c)

N = {(X1, X2) | StatDiff(X1, X2) ≤ 1/3 number of inputs toX1 and

X2 is at mostlogc n wheren = max{ size ofX1, X2}}.

A problem ED of similar flavour which involves entropy of the distributions instead

of statistical difference was defined in [94]. Below we definethe restricted version of

the problem where the input pair of circuits has polylogarithmic many input bits.

Definition 3.4.8 (βED(c)) For a constantc > 0 the promise problem

βED(c) = (βED(c)
Y , βED(c)

N)

takes two distributionsX and Y encoded by boolean circuits as input and has “yes

instances”βED(c)
Y and “no instances”βED(c)

N defined as follows:

βED(c)
Y = {(X1, X2) | H(X1) ≥ H(X2) + 1 number of inputs toX1 and

X2 is at mostlogc n wheren = max{ size ofX1, X2}}.
βED(c)

N = {(X1, X2) | H(X2) ≥ H(X1) + 1 number of inputs toX1 and

X2 is at mostlogc n wheren = max{ size ofX1, X2}}.

3.5 Results of this Chapter

In this section we prove the main results of this chapter. We first show that the problem

βSD(c) is in the classβHVSZK(logO(c), logO(c), 2). Next we prove that any language

L in the classβHVSZK(logc1, poly, logc2) is polynomial-time many-one reducible to

βED(c) for some constantc = c1+c2+O(1). Finally we prove that the promise problem

βED(c) is polynomial-time many-one reducible toβSD(c′) wherec′ = O(c). As a conse-

quence we obtainβHVSZK(logc1, poly, logc2) ⊆ βHVSZK(logO(c1+c2), logO(c1+c2), 2)

i.e., every problem inβHVSZK(logc1 , poly, logc2) has a polylogarithmic randomness

honest verifier statistical zero knowledge protocol withconstantnumber of rounds where

the total size of the messages exchanged is only polylogarithmic.

46

Chapter 3. Limited Randomness Zero Knowledge

Our approach is to analyze the techniques in [94, 57] for the limited randomness

setting. The proof techniques developed by Goldreich, Sahai and Vadhan in [94, 57]

involves extensive manipulations with distributions. Themain hurdle to make the proofs

in [94, 57] work in limited randomness setting is to make surethat the randomness used

does not blow up while manipulating the distributions. We also want to keep the total

size of the messages exchanged polylogarithmic. This is another aspect in which our

goal differs from that in [94, 57] where the message size is only polynomially bounded.

We design a procedure calledoutput bit reductionalgorithm. Given a pair of circuits

(X1, X2) which has polylogarithmically many input bits, this algorithm produces an-

other pair of circuits(Y1, Y2) such that StatDiff(Y1, Y2) is close to StatDiff(X1, X2) but

the number of output bits ofY1 andY2 is polylogarithmic. In some sense the message

size corresponds to the number of output bits of certain circuits appearing in [94, 57] and

the techniques of Goldreich, Sahai and Vadhan for manipulating distributions are often

dependent on the number of output bits. Thus, as we will see inmore detail, to con-

trol the message size it is important to apply output bit reduction algorithm. In a loose

sense whenever the randomness requirement or the message size tend to go beyond the

polylogarithmic bound we apply the output bit reduction algorithm.

The outline of the rest of the chapter is as follows.

• In Section 3.5.1 we give aβHVSZK(logO(c), logO(c), 2) protocol forβSD(c). We

also present the output bit reduction algorithm that preserves statistical difference.

• In Section 3.5.2 we show that ever problem inβHVSZK(logc1 , poly, logc2) is

polynomial-time many-one reducible toβED(c) wherec = c1 + c2 +O(1).

• In Section 3.5.3 we give a polynomial-time many-one reduction fromβED(c) to

βSD(c′) wherec′ = O(c). We also present the the output bit reduction algorithm

that preserves entropy difference.

3.5.1 βHVSZK Protocol for βSD(c)

We will show thatβSD(c) ∈ βHVSZK(logO(c), logO(c), 2). We will eventually use a

protocol and the corresponding simulator used by Sahai and Vadhan in [94]. But we

cannot directly use their protocol as the prover and verifierin that protocol exchange the

outputs of the circuits which in general could be as large asΘ(n) wheren is the size

of the circuits. To avoid this problem we will obtain a pair ofcircuits from the given

47

Chapter 3. Limited Randomness Zero Knowledge

input circuits that has almost the same statistical difference as the input circuits but has

polylogarithmically many output bits.

Theorem 3.5.1 (Output Bit Reduction) LetX1 andX2 be two circuits encoding dis-

tributions whereX1 andX2 have at mostlogc n input bits wheren = max{Size(X),Size(Y)}.

LetStatDiff(X1, X2) = δ. Then in time polynomial inn we can compute two circuitsY1
andY2 with the following properties.

• (1− ǫ)δ ≤ StatDiff(Y1, Y2) ≤ (1− ǫ)δ + ǫ whereǫ = 2−10.

• Y1 andY2 has at mostlog3c n input and output bits.

Proof. The algorithm uses fingerprinting by primes. Letλ, σ be positive numbers to be

fixed later. Fori ∈ {1, 2} we describe the circuitYi.

The circuitYi picks a list oflogλ n randomlogσ n bit numbers. Then using AKS

primality testing [1] it picks the first prime numberr appearing in the list. If the list con-

tains no prime number the circuit outputs “fail”. Otherwiseit samples the distribution

encoded by the circuitXi by first picking alogc n bit numbers and then evaluating the

circuitXi ons. Let x = Xi(s). The circuitYi then outputs(x modr, r).

Notice that the number of output bits ofYi is 2 logσ n and the number of input gates

is logc n+ logλ+σ n.

Let

Supp(X1) ∪ Supp(X2) = {x1, · · · , xM}.

A crucial observation is thatM ≤ 2.2log
c n.

We say that a primep is goodif

xi − xj 6= 0 modp for all 1 ≤ i < j ≤M.

The numbersx1 − xj can have at mostlog(2.2log
c n) = logc n + 1 prime factors. So,

among alllogσ n bit prime numbers at most

(

M

2

)

(logc n+ 1) primes are not good.

Notice that
(

M

2

)

(logc n+ 1) ≤ 22 log
c n+2 logc n.

48

Chapter 3. Limited Randomness Zero Knowledge

By prime number theorem there are at least2log
σ n

logσ n
, logσ n bit prime numbers1.

Pr[r is not good | r is prime] ≤ 23 log
c n logσ n

2log
σ n

≤ 23 log
c n

20.9 log
σ n
. (3.1)

Let p0 = Pr[no primes could be found] ≤
(

1− 1
logσ n

)logλ n

. Thus we have

p0 ≤
(

1

2

)logλ−σ n

. (3.2)

Let {r1, · · · , rk} be the primes that arenot goodand let{rk+1, · · · , rK} be the good

primes. Fori = 1, 2 the circuitYi outputs “fail” only when no prime is found. Thus,

the probability thatYi fails is p0. Let pij be probability thatY1 outputs(xi modrj, rj)

for all i andj = k + 1, · · · , K. Similarly, we can defineqij as the probability thatY2
outputs(xi modrj, rj) for all i andj = k + 1, · · · , K. Sincerj is a good prime, for

j = k + 1, · · · , K we have for alli andj = k + 1, · · · , K,

pij = Pr[X1 = xi]Pr[the prime= rj]

qij = Pr[X2 = xi]Pr[the prime= rj]

For rj, j ≤ k let the possible outputs be(z1j , rj), · · · , (zljj, rj). Eachzsj is xi modrj
for possibly more than onexi. Let pij (qij) be the probability thatY1 (resp.Y2) outputs

(zij , rj) for all j = 1, · · · , k andi = 1, · · · , lj.
Next we calculate StatDiff(Y1, Y2).

StatDiff(Y1, Y2) = 1/2



(p0 − p0) +

k
∑

j=i

lj
∑

i=1

|pij − qij |+
M
∑

i=1

K
∑

j=k+1

|pij − qij |





We notice that

1/2
∑M

i=1

∑K
j=k+1 |pij − qij |

= 1/2
∑K

j=k+1

∑M
i=1 |Pr[X1 = xi]Pr[rj]− Pr[X2 = xi]Pr[rj]|

=
∑K

j=k+1Pr[rj]δ

= (1− P)δ

1If π(x) is the number of primes less thanx then0.922 ≤ π(x)
x/ ln x which impliesπ(x) ≥ x

log x (see
[113]).

49

Chapter 3. Limited Randomness Zero Knowledge

whereP = p0 +
∑k

j=i

∑lj
i=1 pij =

∑k
j=i

∑lj
i=1 qij + p0.

Now,

1/2
k
∑

j=i

lj
∑

i=1

|pij − qij | = 1/2(P − p0)
k
∑

j=i

lj
∑

i=1

|pij/(P − p0)− qij/(P − p0)|

Notice that,
∑k

j=i

∑lj
i=1 pij =

∑k
j=i

∑lj
i=1 qij = P − p0. Thus we have

0 ≤ 1/2
k
∑

j=i

lj
∑

i=1

|pij − qij| ≤ (P − p0).

Combining the above we obtain,

(1− P)δ ≤ StatDiff(Y1, Y2) ≤ (P − p0) + (1− P)δ ≤ P + (1− P)δ.

Next we approximate the value ofP .

P = Pr[r is not good | r is prime] + Pr[No prime could be found]

From Equation 3.1 and 3.2 we obtain

P ≤ 23 log
c n

20.9 log
σ n

+ (
1

2
)log

λ−σ n

If we chooseσ = c+1 andλ = σ+2 = c+3 thenP ≤ 2−10 for n > 100. Observe

that the choice ofλ andσ does not depend upon the input size as long as the input size

is more that100 which we may assume without loss of generality.

With this parameters it is easy to see that the number of inputand output bits ofY1
andY2 is at mostlog3c n.

We state the following easy corollary.

Corollary 3.5.2 Let X1 andX2 be two circuits encoding distributions with at most

logc n input bits wheren = max{Size(X1),Size(X2)}. Suppose,StatDiff(X1, X2) = δ.

Let (Y1, Y2) be the output of the output bit reduction algorithm of Theorem 3.5.1. Then,

• StatDiff(Y1, Y2) ≤ 0.334 whenδ ≤ 1/3.

• StatDiff(Y1, Y2) ≥ 0.666 whenδ ≥ 2/3.

50

Chapter 3. Limited Randomness Zero Knowledge

Polarization

Sahai and Vadhan [94] gave a polynomial-time process that takes a pair of circuitsX1

andX2 as input and outputs a new pair of circuitsY1 andY2 that have negligible statisti-

cal difference ifX1 andX2 have “small” statistical difference. On the other hand ifX1

andX2 have “large” statistical difference thenY1 andY2 will have statistical difference

almost close to1. We state the properties of the algorithm precisely in the next theorem.

Lemma 3.5.3 (Sahai-Vadhan [94])Letα, β ∈ [0, 1] be two constants such thatα2 >

β. Then there is a polynomial-time algorithmPolarizeα,β that on input(X1, X2, 1
k),

whereX1 and X2 are two circuits encoding distribution, outputs a pair of circuits

(Y1, Y2) such that

• StatDiff(X1, X2) ≥ α⇒ StatDiff(Y1, Y2) ≥ 1− 1
2k

and

StatDiff(X1, X2) ≤ β ⇒ StatDiff(Y1, Y2) ≤ 1
2k

.

• The number of input (output) bits of circuitsY1 andY2 is at most2n(4k)Ck logλ(4k)

(resp. 2m(4k)Ck logλ(4k)), wheren (resp. m) is the maximum number of in-

put (resp. output) bits of the circuitsX1 andX2, λ = min{α2/β, 2} andC =

max{logα2/β, (1/β), log2(1/β)}.

Sahai and Vadhan gave a proof system for SD and a corresponding simulator in [94]

(see [106, Section 3.1.1]). This proof system is calledbasic proof system. The basic

proof system was used along with polarization to give the final HVSZK proof for SD.

We will also use their the proof system as a subroutine in the protocol forβSD(c). For

the sake of completeness we describe the basic proof system in Protocol 3.

Protocol 3Basic HVSZK Proof System for SD
Input : (X1, X2) with n input andm output gates.

1 V: Chooseb ∈ {1, 2} uniformly at random. Obtain a samplex fromXb by pickingr
uniformly at random from{0, 1}n and lettingx = Xb(r). Sendx to P.

2 P: If Pr[X1 = x] > Pr[X2 = x] seta = 1 otherwisea = 2. Senda to V.

3 V: If a = b accept. Otherwise reject.

Simulator 4 exhibits the zero knowledge property of Protocol 3.

51

Chapter 3. Limited Randomness Zero Knowledge

Simulator 4 Simulator for Protocol 3
Input : (X1, X2) with n input andm output gates.

1 Chooseb ∈ {1, 2} uniformly at random. Chooser uniformly at random from{0, 1}n
and letx = Xb(r).

2 Let a=b;

3 Output (x,a;b,r)

Lemma 3.5.4 ([94]) Let StatDiff(X1, x2) = δ. Then the prover strategy in Protocol 3

makes the verifier accept with probability(1 + δ)/2 and no prover can succeed with

greater probability.

The output of the simulator algorithm in Simulator 4 has statistical difference exactly

(1− δ)/2 from the verifier’s view.

Now present the honest verifier protocol for the problemβSD(c) in Protocol 5. Let

d ≥ 1 be a parameter in Protocol 5.

Protocol 5Protocol forβSD(c)

Input : (X1, X2, 1
k).

1 Both parties apply output bit reduction algorithm of Theorem 3.5.1 on(X1, X2) to
obtain circuits(Y1, Y2).

2 Both parties apply Polarize0.666,0.334 of Lemma 3.5.3 on input(Y1, Y2, 1log
dk−1) to

obtain circuits(Z1, Z2).

3 Both parties execute Protocol 3 on the common input(Z1, Z2). V accepts or rejects
according to Protocol 3.

Notice that at the first step of the protocol we use the output bit reduction algorithm.

This is done to ensure that the prover and verifier do not exchange message of large size.

It is in this respect that the above protocol differs from theprotocol for SD in [94]. In

Simulator 6 we present the simulator for Protocol 5. Letd ≥ 1 be the same parameter

used in Protocol 5.

Theorem 3.5.5 For everyd ≥ 1, Protocol 5 along with Simulator 6 exhibits thatβSD(c)

is in βHVSZK(logO(c+d), logO(c+d), 2) with completeness error1/2log
d k and soundness

52

Chapter 3. Limited Randomness Zero Knowledge

Simulator 6 Simulator for Protocol 5
Input : (X1, X2, 1

k).

1 Apply Output bit reduction Theorem 3.5.1 on(X1, X2) to obtain circuits(Y1, Y2).

2 Apply Polarize0.666,0.334 of Lemma 3.5.3 on input(Y1, Y2, 1log
dk−1) to obtain circuits

(Z1, Z2).

3 Run the simulator algorithm 4 on(Z1, Z2) and output whatever it outputs.

error 1/2 + 1/2log
d k and the simulator deviation in Simulator 6 is1/2log

d k.

Proof. By Theorem 3.5.1 the number of input and output bits of bothY1 andY2 is at

mostlog3c n wheren = max{Size(X1),Size(X2)}. Notice if (X1, X2) ∈ βSD(c)
Y then

by Corollary 3.5.2 StatDiff(Y1, Y2) ≥ 0.666 and if(X1, X2) ∈ βSD(c)
N then StatDiff(Y1, Y2) ≤

0.334. When the prover, verifier in Protocol 5 or the simulator in Simulator 6 polarize

(Y1, Y2) to obtain(Z1, Z2) it will have the following property:

If (X1, X2) is an “yes” instance then StatDiff(Z1, Z2) ≥ 1− 1

2log
d k − 1

and

If (X1, X2) is a “no” instance then StatDiff(Z1, Z2) ≤
1

2log
d k − 1

.

The completeness and soundness of the protocol follows fromLemma 3.5.4. Moreover

the number of input bits ofZ1 andZ2 will be at most

2(log3c n)(logd k)[4 logd k]4 log1.3(4 log
d k),

which is less than29 log3c+6d(n + k). We can also check that the number of output

bits is at most29 log3c+6d(n + k). The number of random bits used in Protocol 5 and

Simulator 6 is same as the number of input bits ofZ1 andZ2 plus one. Also the message

size is just one bit more than the number of output bits ofZ1 andZ2. This concludes the

proof.

Corollary 3.5.6 The promise problemβSD(c) is in βHVSZK(logO(c), logO(c), 2).

Proof. In Theorem 3.5.5 if we putd = 2 we observe that the completeness error and

the soundness error of Protocol 5 are1/2log
2 k and 1/2 + 1/2log

2 k respectively. The

simulator deviation in Simulator 6 is1/2log
2 k which is a negligible function.

53

Chapter 3. Limited Randomness Zero Knowledge

3.5.2 Every problem inβHVSZK(logc1, poly, logc2) reduces toβED(c)

We will prove that every problem inβHVSZK(logc1, poly, logc2) is reducible toβED(c)

for some suitable choice ofc. We adopt the following assumptions from [106]. Let

Π = (ΠY ,ΠN) be a promise problem inβHVSZK(logc1, poly, logc2). Let (P, V) be a

zero knowledge proof system forΠ and letS be the simulator. We assume without loss

of generality that the first message is sent by the proverP and the last message is sent

by the verifierV and it is the random bits used byV (The verifier may be assumed to

have decided whether to accept or reject just before revealing the its random bits). By

definition the simulator simulates the verifier’s coin. Thus, revealing random bits byV

at the end does not affect the zero knowledge condition.

LetR(n) be a bound on the number of random coins used by the verifier on inputx

of lengthn. The last message ofV is theseR(n) random coins. LetM(n) be a bound

on the total length of the messages passed between the proverand the verifier and let

E(n) be a bound on the number of messages sent from the verifier to the prover. Notice

that the total number of messages exchanged between the prover and the verifier is at

most2E(n). We also assume that the protocol has soundness and completeness error

less than 1
240

. LetD(n) = E(n) logc1+1 n. Since by definition the simulator deviationµ

is a negligible function we assume thatµ ≤ min{ 1
D(n)

, ǫ} whereǫ is a small constant

that will be fixed later. Without loss of generality we can assumeR(n) ≤ O(logc1(n)),

M(n) ≤ O(poly(n)) and2E(n) ≤ O(logc2(n)).

Fortnow [51] pointed out that the simulator distribution gives enough information

about the “yes” and “no” instances. The simulator output canbe thought of as an inter-

action between avirtual proverand avirtual verifier. In the “yes” instances either i) the

simulator outputs accepting conversation with high probability or ii) the virtual verifier

behaves like the real verifier. On the other hand if both of these conditions are true in the

“no” instances then the virtual prover will be able to convince the real verifier with high

probability. The goal is to separate the “yes” instances from the “no” instances based on

the simulator output. To define the notion of virtual prover we take the simulator distri-

bution. The simulator distribution naturally defines a process which is called simulator

based prover in [51] (see [106]).

For j ≤ 2E(n), we refer to a tuple of stringsγ = (m1, m2, · · · , mj ; r) as a (par-

tial) conversation transcript if the even-numbered messages inγ (including an accept or

reject message) correspond to whatV would have sent given the odd-numbered prover

54

Chapter 3. Limited Randomness Zero Knowledge

messages specified inγ and the random coinsr.

For an inputx letS(x)i and〈P, V 〉(x)i denote the firstimessages exchanged. When

the input is clear from the context we will sometimes denote these asSi and 〈P, V 〉i
respectively.

Definition 3.5.7 Letγ be a conversation history consisting of the first2i messages and

x be an input. Thesimulation based proverPs outputs “fail” if the simulatorS has

γ as a prefix of an output with probability0 otherwise it outputsα with probability

pα = Pr[S(x)2i+1 = (α, γ) | S(x)2i = γ].

To show that SD is complete for SZK, Goldreich, Sahai and Vadhan [94, 57] proved

several results bounding the relative entropy of the simulator distribution and the veri-

fier’s view. We observe that these results work in the limitedrandomness setting with a

few modifications.

The next lemma measures the closeness between the distributions obtained from the

simulator and simulation based prover and real verifier interaction.

Lemma 3.5.8 [57]

RelEnt(S(x), 〈Ps, V 〉(x)) = R(n)−
E(n)
∑

i=1

[H(S(x)2i)− H(S(x)2i−1)].

Next we state a bound forRelEnt(S(x), 〈Ps, V 〉(x)) in terms of statistical differ-

ence between the verifiers view and simulator distribution.For that we need the follow-

ing well know fact (see [106]).

Fact 3.5.9 Let X and Y be two distributions on universeU , let D = Supp(X) ∪
Supp(Y). Then

|H(X)− H(Y)| ≤ log(|D − 1|)δ + H2(δ)

whereδ = StatDiff(X, Y).

A lemma similar to the next lemma appears in [57]. We get the following version by

using the limited randomness properties.

Lemma 3.5.10 Let δ(x) = StatDiff(S(x), 〈P, V 〉(x)). Then

R(n)−
E(n)
∑

i=1

[H(S(x)2i)− H(S(x)2i−1)] ≤ 2E(n) [δ(x)O(logc1 n) + H2(δ)] .

55

Chapter 3. Limited Randomness Zero Knowledge

Proof. LetS be a perfect simulator for(P, V). In that case the simulation based prover

is P itself. We apply Lemma 3.5.8 to get

R(n) +
∑2E(n)

i=1 (−1)i+1H(〈P, V 〉i) = R(n) +
∑2E(n)

i=1 (−1)i+1H(Si)

= RelEnt(S, 〈P, V 〉)
= 0.

So, we have

R(n) +
∑2E(n)

i=1 (−1)i+1H(Si) ≤ R(n) +
∑2E(n)

i=1 (−1)i+1H(〈P, V 〉i)
+
∑2E(n)

i=1 |H(Si)− H(〈P, V 〉i)|
≤ 0 +

∑2E(n)
i=1 |H(Si)− H(〈P, V 〉i)|

≤ 2E(n)[δ(x)O(logc1 n) + H2(δ)].

Recall that the prover, verifier and the simulator use at mostO(logc1 n) random bits.

Therefore, the support ofSi and〈P, V 〉i have size at most2O(logc1 n). Thus,|Supp(Si)∪
Supp(〈P, V 〉i)| ≤ 2O(logc1 n) The last inequality is obtained by applying Fact 3.5.9.

Definition 3.5.11 (Relative Entropy) LetX andY be two distributions on a finite set

S. Therelative entropybetweenX andY , denotedRelEnt(X, Y) is defined as

RelEnt(X, y) =
∑

s∈S
Pr[X = s] log

Pr[X = s]

Pr[Y = s]
.

We define thebinary relative entropyfor p, q ∈ [0, 1] by

RelEnt2(p, q) = p log
p

q
+ (1− p) log

1− p

1− q
.

Lemma 3.5.12 [see [4, 106]] Letp denote the probability thatS outputs an accepting

transcript on inputx, let q be the maximum probability, taken over all proversP ∗, that

V accepts in(P ∗, V)(x), and assume thatp ≥ q. Then,

RelEnt(S(x), 〈PS, V 〉(x)) ≥ RelEnt2(p, q).

We are finally ready to give the reduction fromΠ = (ΠY ,ΠN) to βED(c). The first

56

Chapter 3. Limited Randomness Zero Knowledge

distribution is

X = S2 ⊗ S4 ⊗ · · · ⊗ S2E(n).

The second distribution is

Y = Y1 ⊗ Y2 ⊗ Y3,

whereY1, Y2 andY3 is defined as follows.Y1 = S1⊗S3⊗· · ·⊗S2E(n)−1. The distribution

Y2 just outputsR(n)− 7 random bits.Y3 runs the simulatorS for 8 ln(D(n) + 2) times

independently. Recall thatD(n) = E(n) logc1+1 n. If the verifier rejects the majority of

the transcripts, it outputsD(n)+2 random bits. Otherwise it outputs fixed string “fail”.

Since the simulator uses at mostO(logc1 n) random bits, the number of random bits

used by the circuitX isO(E(n) logc1 n). Similarly, the number of random bits used by

the circuitY is at most

O(E(n) logc1 n) +R(n)− 7 + 8 ln(D(n) + 2)O(logc1 n) +D(n) + 2.

Notice thatR(n) ≤ O(logc1 n), E(n) ≤ O(logc2 n). Therefore, the random bits

used by both the circuits is at mostlogc1+c2+O(1) n. Thus, if we takec = c1 + c2 +

O(1) then the next two claims show that the promise problemΠ = (ΠY ,ΠN) ∈
βHVSZK(logc1, poly, logc2) is polynomial-time many-one reducible toβED(c).

Claim 3.5.13 If x ∈ ΠY thenH(X) ≥ H(Y) + 1.

Proof. By Lemma 3.5.10

H(Y1) +R(n)− H(X) ≤ 2E(n) [µO(logc1 n) + H2(µ)] .

As µ is small we may assume H2(µ) ≤
√
µ. This is where we use the assumption that

µ ≤ min{ 1
D(n)

, ǫ} whereD(n) = E(n) logc1+1 n. We also use the fact that the total size

M(n) of the messages is more than the numberE(n) of messages sent from verifier to

the prover. Thus we have

H(Y1) +R(n)− H(X) ≤ 2E(n)
[

1
D(n)

O(logc1 n) +
√

1
E(n)M(n)

]

≤ 4.

Next we bound the entropy ofY3. In “yes” instancesS outputs rejecting transcript

with probability at most2−40 + µ ≤ 1/4. By Chernoff bound the probabilityp that the

57

Chapter 3. Limited Randomness Zero Knowledge

majority of the transcripts are rejecting is

p ≤ exp

[

−2 . 8 ln(D(n) + 2)

(

1

4

)2
]

≤ 1

D(n) + 2
.

Using standard facts about entropy we get

H(Y3) ≤ p[D(n) + 2] + (1− p).0 + H2(p) ≤ 2.

Thus we have H(Y) ≤ H(X) + 1.

Claim 3.5.14 If x ∈ ΠN thenH(Y) ≥ H(X) + 1.

Proof. We show that either H(Y1)+H(Y2) ≥ H(X)+1 or H(Y3) ≥ H(X)+1. Suppose

that the simulator outputs accepting conversation with probability ≤ 1/4. By Chernoff

bound the probability1− p that the majority of the transcripts are accepting is

1− p ≤ exp

[

−2 . 8 ln(D(n) + 2)

(

1

4

)2
]

≤ 1

D(n) + 2
.

Using standard facts we get

H(Y3) ≥ p[D(n) + 2] ≥ D(n) + 1 ≥ H(X) + 1.

Recall thatX uses at mostO(E(n) logc1 n) random bits which implies that H(X) ≤
O(E(n) logc1 n) ≤ E(n) logc1+1 n = D(n).

Now suppose that the simulator outputs accepting transcript with probability at least

1/4. Then by Lemma 3.5.12 the relative entropy betweenS and 〈Ps, V 〉 is at least

RelEnt2(1/4, 2−40) ≥ 8. Thus by Lemma 3.5.8,R(n)−H(X) +H(Y1) ≥ 8. This gives

us

H(Y1) + H(Y2) ≥ R(n)− 7 + 8 + H(X)− R(n) = H(X) + 1.

Theorem 3.5.15Every problem inβHVSZK(logc1 , poly, logc2) is polynomial-time many-

one reducible toβED(c) wherec = c1 + c2 +O(1).

58

Chapter 3. Limited Randomness Zero Knowledge

3.5.3 βED(c) reduces toβSD(c′)

We prove thatβED(c) reduces toβSD(c′) wherec′ = O(c). First we design a new

output bit reduction algorithm. In general a circuit of sizeof sizeN could have as many

asΘ(N) output bits. This new output bit reduction algorithm, giventwo distributions

encoded by boolean circuitsX1 andX2 where the number of input bits ofX1 andX2 is

polylogarithmic inN = max{Size(X1),Size(X2)} computes two new circuitsY1 and

Y2 such that their entropy difference is close to the entropy difference betweenX1 and

X2 but the number of input bits and output bits ofY1 andY2 is polylogarithmic inN .

Finally we use the techniques developed by Goldreich and Vadhan [57] on the output

bit reduced circuits to get the final circuits which has the required statistical difference.

The output bit reduction for ED also uses the same idea of fingerprinting by primes

of suitable size as in Lemma 3.5.1.

Theorem 3.5.16 (Output Bit Reduction for Entropy Difference) Let X1 andX2 be

two circuits encoding distributions whereX1 andX2 have at mostn = logcN input bits

whereN = max{Size(X1),Size(X2)}.

Then in time polynomial inN we can compute two circuitsY1 andY2 with the fol-

lowing properties.

• If H(X1) ≥ H(X2) + 1 thenH(Y1) ≥ H(Y2) + 1.

If H(X2) ≥ H(X1) + 1 thenH(Y2) ≥ H(Y1) + 1

• The number of input and output bits ofY1 andY2 is at mostlog3cN .

Proof. From the two circuitsX1 andX2 we first construct two circuitsA1 andA2

respectively as follows:

A1 = ⊗8X1

A2 = ⊗8X2

Thus,

H(A1) ≥ H(A2) + 8 if H(X1) ≥ H(X2) + 1 and, (3.3)

H(A2) ≥ H(A1) + 8 if H(X2) ≥ H(X1) + 1. (3.4)

The circuitsA1 andA2 have at most8n input gates.

59

Chapter 3. Limited Randomness Zero Knowledge

The circuit description is same as in the proof of Theorem 3.5.1 For i = 1, 2 we

describe the circuitsYi below. Letλ andσ be positive numbers which will be fixed later.

The circuitYi picks a list oflogλN randomlogσN bit numbers. Then using AKS

primality testing [1] it picks the first prime numberr appearing in the list. If the list con-

tains no prime number the circuit outputs “fail”. Otherwiseit samples the distribution

encoded by the circuitXi by first picking alogcN bit numbers and then evaluating the

circuitXi ons. Let x = Xi(s). The circuitYi then outputs(x modr, r).

Notice that the number of output bits ofYi is at most2 logσN and the number of

input bits is at most8 logcN + logλ+σ N .

Let

Supp(A1) ∪ Supp(A2) = {x1, · · · , xM}.

Observe thatM ≤ 2.28n.

We say that a primep is goodif

xi − xj 6= 0 modp for all 1 ≤ i < j ≤M.

The numbersx1 − xj can have at mostlog(28n+1) = 8n + 1 prime factors. So, among

all logσN bit prime numbers at most

(

M

2

)

(8n+ 1) primes are not good.

Notice that
(

M

2

)

(8n+ 1) ≤ 8M2n.

By prime number theorem (see [113]) the number oflogσN bit prime numbers is

approximately2
logσ N

logσ N
.

Pr[r is not good | r is prime] ≤ 8M2n logσN

2log
σ N

. (3.5)

Let p0 = Pr[no primes could be found] ≤
(

1− 1
logσ N

)logλN

. Thus we have

p0 ≤
(

1

2

)logλ−σ N

. (3.6)

Let {r1, · · · , rk} be the primes that arenot goodand let{rk+1, · · · , rK} be the good

primes. When no prime is found the circuit outputs “fail”. The probability thatYi fails is

60

Chapter 3. Limited Randomness Zero Knowledge

p0. Let pij be probability thatY1 outputs(xi modrj, rj) for all i andj = k + 1, · · · , K.

Similarly, we can defineqij as the probability thatY2 outputs(xi modrj, rj) for all i and

j = k + 1, · · · , K. Then, for alli andj = k + 1, · · · , K,

pij = Pr[A1 = xi]Pr[the prime= rj]

qij = Pr[A2 = xi]Pr[the prime= rj]

Forrj , j ≤ k let the possible outputs be(z1j , rj), · · · , (zljj, rj). Eachzsj isxi modrj
for possibly more than onexi. Let pij be the probability thatY1 outputs(zij , rj) for all

j = 1, · · · , k and i = 1, · · · , lj. Similarly, let qij be the probability thatY2 outputs

(zij , rj) for all j = 1, · · · , k andi = 1, · · · , lj.
Next we calculate H(Y1) and H(Y2) in terms of H(A1) and H(A2) respectively.

H(Y1) = p0 log
1

p0
+

k
∑

j=i

lj
∑

i=1

pij log
1

pij
+

M
∑

i=1

K
∑

j=k+1

pij log
1

pij

We notice that

∑M
i=1

∑K
j=k+1 pij log

1
pij

=
∑K

j=k+1

∑M
i=1 Pr[A1 = xi]Pr[rj] log

1
Pr[A1=xi]Pr[rj]

=
∑K

j=k+1

∑M
i=1 Pr[A1 = xi]Pr[rj] log

1
Pr[A1=xi]

+
∑M

i=1 Pr[A1 = xi]
∑K

j=k+1 Pr[rj] log
1

Pr[rj]

=
∑K

j=k+1 Pr[rj]H(A1) +
∑K

j=k+1 Pr[rj] log
1

Pr[rj]

= H(A1)(1− P) +
∑K

j=k+1Pr[rj] log
1

Pr[rj]

whereP = p0 +
∑k

j=i

∑lj
i=1 pij = p0 +

∑k
j=i

∑lj
i=1 qij .

Let,
Z1 := p0 log

1
p0

+
∑k

j=i

∑lj
i=1 pij log

1
pij

Z2 := p0 log
1
p0

+
∑k

j=i

∑lj
i=1 qij log

1
qij

Let D1 be a distribution on a setD = {aij | j = 1, · · · , k; i = 1, · · · , lj} ∪ {a0}
with Pr[D1 = a0] = p0/P andPr[D1 = aij] = pij/P . Similarly we defineD2 onD
with Pr[D2 = a0] = p0/P andPr[D2 = aij] = qij/P . It is easy to check that H(D1) =

logP + 1
P
Z1. Similarly, H(D2) = logP + 1

P
Z2. This gives,Z1 = PH(D1) + P log 1

P

61

Chapter 3. Limited Randomness Zero Knowledge

andZ2 = PH(D2) + P log 1
P

. Thus, we get

H(Y1) = H(A1)(1− P) + PH(D1) + P log
1

P
+

K
∑

j=k+1

Pr[rj] log
1

Pr[rj]

and

H(Y2) = H(A2)(1− P) + PH(D2) + P log
1

P
+

K
∑

j=k+1

Pr[rj] log
1

Pr[rj]
.

The distributionsD1 andD1 has supports of size at mostMk + 1. Hence we have

0 ≤ H(D1),H(D2) ≤ log(Mk + 1). Finally we get,

H(Y1)− H(Y2) ≥ (1− P)[H(A1)− H(A2)]− P log(Mk + 1) (3.7)

H(Y2)− H(Y1) ≥ (1− P)[H(A2)− H(A1)]− P log(Mk + 1) (3.8)

From Equation 3.5 and 3.6 we get

P = Pr[r is not good | r is prime}] + Pr[No prime could be found]

≤ 8M2n logσ N
2logσ N + (1

2
)log

λ−σ N

Using the upper boundsM < 28n+1 andk < 8M2n (recall thatk is the number of

primes that are not good) andn = logcN we get

P ≤ 8M2n logσ N
2logσ N + (1

2
)log

λ−σ N

≤ 8.216 logc(N)+2 logcN logσ N
2logσ N + (1

2
)log

λ−σ N

≤ 217 logc N

2log
σ N + (1

2
)log

λ−σ N

≤ (1
2
)log

σ−c−1N + (1
2
)log

λ−σ N

We also have

log(Mk + 1) ≤ log(28 log
c(N)+18.216 log

c(N)+2 logcN)

≤ log 225 log
cN

≤ logc+1N, for large enoughN .

62

Chapter 3. Limited Randomness Zero Knowledge

Thus we get,

P log(Mk + 1) ≤ [(1
2
)log

σ−c−1N + (1
2
)log

λ−σ N] logc+1N, for large enoughN.

If we chooseσ = c + 3 andλ = σ + 2 = c + 5 then this quantity is at most1/8

for large enoughN . Observe that the choice ofλ andσ does not depend upon the input

size as long as the input size is sufficiently large which we may assume without loss of

generality. Thus, from Equations 3.7 and 3.8 we have

H(Y1)− H(Y2) ≥ (1− 1/8).8− 1/8 ≥ 1 when H(A1)− H(A2) ≥ 8 (3.9)

H(Y2)− H(Y1) ≥ (1− 1/8).8− 1/8 ≥ 1 when H(A2)− H(A1) ≥ 8. (3.10)

Using Equations 3.3 and 3.4 we have,

If H(X1) ≥ H(X2) + 1 then H(Y1) ≥ H(Y2) + 1.

If H(X2) ≥ H(X1) + 1 then H(Y2) ≥ H(Y1) + 1.

Finally, with the choice ofσ andλ it is easy to see that the number of input and

output bits ofY1 andY2 is at mostlog3cN .

Let (X1, X2) be an instance ofβED(c) with each circuits having at mostn = logcN

input bits whereN = max{Size(X1),Size(X2)}. We use output bit reduction algorithm

of Theorem 3.5.16 to obtain a pair of circuits(Y1, Y2) such that they have at mostm =

log3cN input and output bits. Now the technique of Goldreich and Vadhan [57] can

be applied directly to these circuits. For the sake of completeness, we reproduce their

entire argument. Letq = 9ρm2. We will fix ρ later. LetZ1 = ⊗qY1 andZ2 = ⊗qY2.

These two circuits has at mostm′ = 9ρ log9cN input gates and output bits. FromZ1 and

Z2, two circuitsA1 andA2 can be constructed as follows. LetH2m′,m′ be a2-universal

family of hash functions.

A1:

• Pick r uniformly at random from{0, 1}m′

, letx = Z1(r).

• Picth uniformly at random fromH2m′,m′.

• Picky according to the distributionZ2.

63

Chapter 3. Limited Randomness Zero Knowledge

• Output(x, h, h(r, y)).

A2:

• Pickx according to the distributionZ1.

• Picth uniformly at random fromH2m′,m′.

• Pick z uniformly at random from{0, 1}m′

.

• Output(x, h, z).

Notice that the above two circuitsA1 andA2 use at most(2m′ + 3)m′ random bits.

It is easy to verify that(2m′ + 3)m′ ≤ 243ρ2 log18cN .

Theorem 3.5.17 (see [106, Section3.4.4])If H(X1) ≥ H(X2)+1 thenStatDiff(A1, A2) ≥
1− O(2−ρ). If H(X2) ≥ H(Y) + 1 thenStatDiff(A1, A2) ≤ Ω(2−ρ).

Let ρ be a sufficiently large constant. From the above theorem it iseasy to see that if

(X1, X2) ∈ βED(c)
Y then(A1, A2) ∈ βSD(c′)

Y and if (X1, X2) ∈ βED(c)
N then(A1, A2) ∈

βSD(c′)
N wherec′ = 19c (Notice, for a fixed constantρ, 243ρ2 log18cN ≤ log19cN).

Thus, we obtain the following theorem.

Theorem 3.5.18The problemβED(c) reduces toβSD(c′) wherec′ = 19c.

3.6 Conclusion

In this chapter we proved that every problem havingβHVSZK(logc1 , poly, logc2) proof

system also has aβHVSZK(logO(c1+c2), logO(c1+c2), 2) proof system. As a corollary we

obtain the following.

Corollary 3.6.1 The problemGrIso is in βHVSZK(logc, logc, 2) for some constantc.

Proof. By Lemma 3.4.6 GrIso∈ βHVSZK(log2, poly, 3). Using the above argument

we obtain GrIso∈ βHVSZK(logO(2), logO(2), 2). Hence, the result follows.

Remark 3.6.2 We note that using result similar to Theorem 3.5.1 directly in the pro-

tocol we can design a statistical zero knowledge proof system (zero knowledge against

any verifier as in Definition 3.4.2) forGrIso with polylogarithmic randomness, small

message size and constant i.e.,GrIso ∈ SZK((logc1 , logc2 , c) for some constantsc, c1
andc2.

64

4
Isomorphism and Canonization of

Tournaments and Hypertournaments

4.1 Introduction

Computing canonical forms for graphs (and other combinatorial and algebraic struc-

tures) is a fundamental problem. Graph canonization, in particular, is very well-studied

for its close connection to Graph IsomorphismGRAPH-ISO. Let G denote all simple

undirected graphs onn vertices. A mappingf : G −→ G is acanonizing functionfor G
if for all X,X ′ ∈ G: f(X) ∼= X andf(X) = f(X ′) if and only ifX1

∼= X2. I.e.,f as-

signs acanonical formto each isomorphism class of graphs. For instance, we can define

f(X) as the lexicographically least graph isomorphic toX. This particular canonizing

function is computable in FPNP by prefix search, but it is known to be NP-hard to com-

pute [30, 82] for certain graph orderings. A specific ordering of graphs that makes the

problem NP-complete is described in [30, Section 3.1].

It is a long-standing open question, whether there issomecanonizing function for

graphs that is polynomial-time computable. No better boundthan FPNP is known

for general graphs (for any canonizing function). It is easyto see thatGRAPH-ISOis

polynomial-time reducible to graph canonization. It is an intriguing open question if

the converse reduction holds in general. However, for natural subclasses of graphs for

which graph isomorphism has an efficient algorithm there is usually an accompany-

ing efficient canonization algorithm [30]. Specifically, wedo not know of any natural

subclass of graphs for which graph isomorphism is in polynomial time and graph canon-

ization is not known to be solvable in polynomial time. However, for hypergraphs with

65

Chapter 4. Isomorphism and Canonization of Tournaments andHypertournaments

n vertices there is a2O(n) time isomorphism algorithm but no canonization algorithm is

known with the same running time [83]. Very recently, Babai and Codenotti [25] have

shown a2Õ(k2
√
n) isomorphism testing algorithm for hypergraphs with hyperedges of

size bounded byk. Here too it is open if canonization can be done in2o(n) time.

The Results of This Chapter

In this chapter we study the complexity of canonization and isomorphism of tournaments

as well as hypertournaments. A central motivation for our study is the question whether

T-CANON is polynomial-time reducible toTOUR-ISO. While we are not able to settle

this question we prove an interesting weaker result:T-CANON has a polynomial-time

oracle algorithm with oracle access toTOUR-ISO and an oracle for canonizingrigid

tournaments. Rigid tournaments have no nontrivial automorphism. It is open whether a

similar result holds for general graphs.

The other result in this chapter is annO(k2+logn) algorithm for canonization and

isomorphism ofk-hypertournaments which builds on [30] and uses quite different prop-

erties of the automorphism groups of hypertournaments.

Our approach is based on the techniques of the seminal paper of Babai and Luks [30].

In the sequel we explain the group-theoretic setting in somedetail since we will use their

approach and methods.

Group Theoretic Preliminaries

In this chapter we need some more group theoretic concepts (see [114, 82]) along with

those discussed in Chapter2.

Definition 4.1.1 A permutation groupG ≤ Sym(V) is said to betransitiveon V if

vG = V for v ∈ V .

LetG ≤ Sym(V) be a transitive permutation group. A nonempty subsetB ⊆ V of

points is called aG-block if eitherBg = B or Bg ∩ B = ∅, for eachg ∈ G. For any

transitive groupG, clearly the whole setV and the singleton sets{u}, u ∈ V are blocks;

these are known as thetrivial blocks ofG.

Definition 4.1.2 A transitive permutation groupG ≤ Sym(V) is said to beprimitive if

it does not have any nontrivial blocks. OtherwiseG is said to beimprimitive.

66

Chapter 4. Isomorphism and Canonization of Tournaments andHypertournaments

Let G ≤ Sym(V) be transitive. Notice that a subsetB ⊆ V is aG-block if and

only if Bg is aG-block for everyg ∈ G. It can be easily seen that the collection

of blocks{Bg : g ∈ G} forms a partition ofV . This collection of blocks is called

theB block system. Notice that the permutation groupG acts transitively on theB

block system (since everyg ∈ G naturally maps blocks to blocks and the action is

obviously transitive). A nontrivial blockB ⊂ V is called amaximal blockif there is no

nontrivial blockB′ ⊂ V such thatB ⊂ B′. In this case, we say that theB-block system

{Bg : g ∈ G} is amaximal block system.

For a transitive groupG ≤ Sym(V), letB andB′ be twoG-blocks inV such that

B ⊂ B′.Then the collection of blocks{Bg : g ∈ G,Bg ⊆ B′} is actually a partition of

B′.

A G-blockB ⊂ V is a maximal subblockof aG-blockB′ if B ⊂ B′ and there is

noG-blockC such thatB ⊂ C ⊂ B′. LetB andB′ beG-blocks. A chainB = B0 ⊂
· · · ⊂ Bt = B′ is amaximal chainof G-blocks betweenB andB′ if for all i, Bi is a

maximal subblock ofBi+1.

Let B andB′ be twoG-blocks such thatB ⊂ B′. TheB-block system ofB′ is the

collection

{Bg : g ∈ G andBg ⊂ B′},

which forms a partition ofB′. Hence|B| divides|B′|.
A structure treeofG is a rooted tree whose nodes are labeled byG-blocks such that:

1. The root is labeledV .

2. The leaves are labeled with singleton sets{v}, v ∈ V .

3. For each internal node labeled byB′, the labels of its children constitute aB block

system ofB′, whereB ⊂ B′ is a maximal block contained inB′.

There is a natural action ofG on each level of a structure tree:g ∈ G maps a node

r to r′ in a level iff there is aG-blockB such that the labels ofr andr′ areB andBg

respectively. Furthermore, the action ofG on the children of each node in the tree is

primitive.

If G ≤ Sym(V) has orbitsV1, . . . , Vr, thestructure forestis a collection of structure

treesT1, . . . , Tr, whereTi is the structure tree of the transitive action ofG onVi.

67

Chapter 4. Isomorphism and Canonization of Tournaments andHypertournaments

For a permutation groupG ≤ Sym(V) and a subset of points∆ ⊂ V , the set

stabilizersubgroup for∆ is

G∆ = {g ∈ G | ∆g = ∆}.

The Babai-Luks canonization procedure

We are now ready to describe the Babai-Luks machinery from [30] and recall some of

their results in a form that is useful to us.

LetX = (V,E) be a graph. Letg ∈ Sym(V) be a permutation. The action ofg on

X produces the graphXg = (V,Eg) whereEg = {(ug, vg) | (u, v) ∈ E}. The graph

Xg is sometimes denoted asg(X). Let G ≤ Sym(V). Let G be any class of graphs

(directed or undirected) each of which is defined on vertex set V . We say that the class

of graphsG is closed underG-isomorphismsif for every permutationg ∈ G and graph

X ∈ G we haveXg ∈ G.

Let G be any class of graphs closed underG-isomorphisms. ForX1, X2 ∈ G with

vertex setV , we sayX1 isG-isomorphictoX2, denoted byX1
∼=G X2 if X2 = Xg

1 for

someg ∈ G.

Call CFG : G → G a canonizing functionw.r.t toG, if CFG(X) ∼=G X, for every

X ∈ G, andX1
∼=G X2 if and only if CFG(X1) = CFG(X2), for X1, X2 ∈ G. When the

groupG is Sym(V), we writeCF(X) instead ofCFG(X).

Given a canonizing functionCFG we define a canonizing functionCFGσ with respect

to a cosetGσ of G asCFGσ(X) = CFσ−1Gσ(X
σ). Notice that ifG is closed underG

isomorphisms thenGσ is closed underσ−1Gσ isomorphisms. We will sometimes denote

CFGσ(X) asCF(X,Gσ).

Next, we define thecanonical labeling cosetCL(X,Gσ) as {τ ∈ Gσ | Xτ =

CFGσ(X)}. It is easy to see that CL(X,Gσ) = (G ∩ Aut(X))π = AutG(X)π for

anyπ ∈ CL(X,Gσ), where AutG(X) = Aut(X) ∩G. I.e.

AutG(X) = {g ∈ G | Xg = X}.

We also notice that CL(X,Gσ) = σCL(Xσ, σ−1Gσ).

Babai and Luks [30] gave a canonizing algorithm that exploits the group structure of

G. The algorithm is recursive and works by a divide-and-conquer strategy on the group

G. The divide-and-conquer is based on a structure forest ofG. We now briefly describe

68

Chapter 4. Isomorphism and Canonization of Tournaments andHypertournaments

the algorithm of Babai-Luks that computes the canonical labeling coset CL(X,Gσ) of

a graphX with respect to a cosetGσ.

The first step is to bijectively encoden-vertex graphX as a binary stringx. To be

specific, we can choose the lengthn2 encoding obtained from the adjacency matrix as

the concatenation of its rows. Thus, for1 ≤ i, j ≤ n we havex(i, j) = 1 if and only

if (i, j) ∈ E(X). Then permutationsσ ∈ Sym(V) acts on such stringsx naturally by

sending it toxσ, where for all1 ≤ i, j ≤ n

xσ(iσ, jσ) = x(i, j).

Let m = n2. We can think of the given permutation groupG = 〈g1, · · · , gk〉 as

a subgroup ofSm acting on them-bit binary strings as described above, where(i, j)

indexes into them-bit binary stringx. The natural ordering on{1, · · · , m} induces an

ordering on the subsets of{1, · · · , m}. Thus, we can talk about the firstG-orbit A1 ⊆
[m] according to this ordering. LetA2 = [m] \A1. The algorithm computes CL(x,Gσ)

recursively as CL(x|A2 ,CL(x|A1, Gσ)), wherex|Ai
is the substring ofx induced byAi.

Thus, in general we need to compute CL(x|A, Gσ), whereA ⊆ [m] is aG-stable subset:

each element ofG mapsA toA. Let CLA(x,Gσ) = CL(x|A, Gσ).
If |A| = 1 we define CLA(x,Gσ) = Gσ. The nontrivial case is whenG acts transi-

tively onA. Then, w.r.t. the natural ordering on[m] we can compute the first maximal

G-block system onA in polynomial time. LetH be the set stabilizer of this block

system. Let{τi}ki=1 be a set of coset representatives ofH in G. Let Gσ = ∪ki=1Hσi

whereσi = στi. Recursively compute CLA(x,Hσi) = Hiρi for all i. Then sort the

cosets so thatxρ1 = xρ2 = · · · = xρs < xρs+1 ≤ · · · ≤ xρk . Output CLA(x,Gσ) =

〈H1, {ρiρ−1
1 }si=1〉ρ1.

This, in a nutshell, is the Babai-Luks canonization algorithm (we explain the algo-

rithm with more details in Section 4.3). Clearly, we can recover the canonical labeling

coset for the given graphX from the corresponding coset CL(x,Gσ) for its string en-

codingx. A detailed analysis of the algorithm can be found in [30].

Definition 4.1.3 A finite groupG is in the classΓd if every nonabeliancomposition

factor of the groupG embeds in the permutation groupSd.

In other words, all nonabelian composition factors of a group G ∈ Γd can be seen as

subgroups ofSd. A crucial result of [30] is that the above string canonization algorithm

69

Chapter 4. Isomorphism and Canonization of Tournaments andHypertournaments

for computing CL(x,Gσ) runs in polynomial time ifG ∈ Γd for a constantd. We state

this result in the form of a theorem useful to us for graphs.

Theorem 4.1.4 Babai-Luks Theorem:If G ≤ Sm is a permutation group in the class

Γd (i.e. all nonabelian composition factors ofG are subgroups ofSd), then a canonical

labeling coset of a binary stringx ∈ {0, 1}m w.r.t a cosetGσ of Sm, can be found in

timemc, wherec depends only ond.

Theorem 4.1.4 crucially uses the fact that primitive subgroups ofSm in Γd are of

size bounded bymO(d) [90, 115, 24, 78].

Iterative Canonization

A finite relational structureX is a tuple(D,R1, · · · , Rl) whereD is a finite set called

domain andR1, · · · , Rl are relations onD with arity a1, · · · , al respectively. The finite

relational structureX = (D,R1, · · · , Rl) has bounded arity if for alli, ai ≤ c wherec

is some constant.

Let X = (D,R1, · · · , Rl) be a finite relational structure whereRi has arityai
and g ∈ Sym(D) be a permutation. We can define the relational structureXg =

(D,Rg
1, · · · , Rg

l) whereRg
i = {(dg1, · · · , dgai) | (d1, · · · , dai) ∈ Ri}. A relational struc-

ture Y = (D,S1, · · · , Sl) is said to be isomorphic if toX if there is a permutation

g ∈ Sym(D) such thatXg = Y . Once we have the notion of isomorphism and group

action on relational structures we can easily define canonical form and canonical label-

ing coset as we did before for graphs.

Let X = (D,R1, R2) be a finite relational structure with domainD and two rela-

tionsR1 andR2 with arity a1 anda2 respectively. LetX1 = (D,R1) andX2 = (D,R2)

be two relational structures derived fromX. Let CL1(X1, Gσ) = H1ρ1 be the canon-

ical labeling coset ofX1 w.r.t. some cosetGσ and some canonical formCF1. Further

CL2(X2, H2ρ1) = H2ρ2 be the canonical labeling coset ofX2 w.r.t H1ρ1 and some

canonical formCF2. Then we can defineXρ2 to be the canonical formCF(X,Gσ) of X

with respect toGσ. The canonical labeling coset CL(X,Gσ) of X w.r.t this canonical

form will beH2ρ2.

Lemma 4.1.5 Let X = (D,R1, R2) be a finite relational structure. Then the above

process defines a correct canonical form.

70

Chapter 4. Isomorphism and Canonization of Tournaments andHypertournaments

Proof. LetX = (D,R1, R2) andY = (D,S1, S2) be two relational structures where

R1 andS1 have aritya1 andR2 andS2 have aritya2. LetX andY beG isomorphic via

an isomorphismπ ∈ G. We also assume the following.

CL1(X1, Gσ) = H1ρ1 CL1(Y1, Gσ) = L1ξ1

CL2(X2, H1ρ1) = H2ρ2 CL2(Y2, L1ξ1) = L2ξ2
(4.1)

whereX1 = (D,R1), X2 = (D,R2), Y1 = (D,S1) and Y2 = (D,S2). Notice

that π is an isomorphism betweenX1 andY1 and betweenX2 andY2. We need to

prove thatXρ2 = Y ξ2. The relational structuresXρ1
2 and Y ξ1

2 are isomorphic via

isomorphismρ−1
1 πξ1. Observe thatρ−1

1 H1ρ1 = Aut(Xρ1
1) ∩ σ−1Gσ and ξ−1

1 L1ξ1 =

Aut(Y ξ1
1) ∩ σ−1Gσ. But Xρ1

1 = Y ξ1
1 . Hence,ρ−1

1 H1ρ1 = ξ−1
1 L1ξ1. Notice that

ρ−1
1 πξ1 ∈ Aut(Xρ1

1) ∩ σ−1Gσ. This impliesCF2(X
ρ1
2 , ρ

−1
1 H1ρ1) = CF2(Y

ξ1
2 , ξ−1

1 L1ξ1).

HenceRρ2
2 = Sξ22 . As, CL2(X2, H1ρ1) = ρ1CL2(X

ρ1
2 , ρ

−1
1 H1ρ1) and CL2(Y2, L1ξ1) =

ξ1CL2(Y
ξ1
2 , ξ−1

1 L1ξ1) we haveρ2 = ρ1γ andξ2 = ξ1δ whereγ ∈ CL2(X
ρ1
2 , ρ

−1
1 H1ρ1)

andδ ∈ CL2(Y
ξ1
2 , ξ−1

1 L1ξ1). But asRρ1
1 = Sξ11 andγ, δ ∈ Aut(Xρ1

1) = Aut(Y ξ1
1) we

will haveRρ2
1 = Sξ21 . This proves thatXρ2 = Y ξ2 .

Remark 4.1.6 1. Theorem 4.1.4 yields annO(log n) algorithm for Tournament Can-

onization,T-CANON, and Tournament IsomorphismTOUR-ISO [30]. The algo-

rithm exploits the fact that automorphism groups of tournaments are solvable and

hence inΓd for d = 1.

2. We note that Theorem 4.1.4 is applicable to any finite relational structureK =

([n], R1, R2, . . . , Rℓ) with relationsRi of bounded arity. Such structures can be

easily encoded as binary strings of lengthnO(1), as described above for graphs.

Thus, Theorem 4.1.4 can be applied to canonize such relational structures in poly-

nomial time w.r.t. cosetsGσ whereG ∈ Γd.

4.2 Gadget construction for Tournaments

We first recall the definition of tournaments.

Definition 4.2.1 (tournament) A directed graphT = (V,A) is a tournamentif for each

pair of distinct verticesu, v ∈ V , exactly one of(u, v) or (v, u) is inA.

71

Chapter 4. Isomorphism and Canonization of Tournaments andHypertournaments

Let T = (V,A) be a tournament. We say the the vertexv is an in-neighbor(out-

neighbor) of a vertexu if (v, u) ∈ A (resp. (u, v) ∈ A). The in-degree(out-degree)

of a vertexv is the number of in-neighbors (resp. out-neighbors) ofv. A tournament

T = (V,A) is calledregular if each vertex ofT has the same in-degree. IfT = (V,A)

is a regular tournament withn vertices then the in-degree and out-degree of a vertexv

is (n− 1)/2 andn must be an odd number.

In this section, we explain some polynomial-time reductions concerningTOUR-ISO

that are useful for our algorithm presented in Theorem 4.3.9. A key technique here is

“fixing” nodes in a tournament. A nodev in a graphX is afixpoint if vπ = v for every

π ∈ Aut(X). By thefixingof v in X we mean a construction that modifiesX to another

graphX ′ using a gadget so thatv is forced to be fixed inX ′. We will describe a gadget

construction for fixing several nodes in a tournament so thatthe resulting graph is again

a tournament. We use it to show that a colored version of Tournament Isomorphism is

polynomial-time many-one reducible toTOUR-ISO.

LetT1 = (V1, A1) andT1 = (V1, A1) be two tournaments whose vertices are colored.

The color-tournament isomorphism problem is to decide ifT1 andT2 are isomorphic via

an isomorphismφ that preserves the vertex color. I.e.v andφ(v) have the same color

for each vertexv ∈ V1. As a consequence, we derive some observations related to

tournament isomorphism and automorphism (Theorem 4.2.3) useful for canonization.

Let u1, u2, · · · , ul be the nodes of a tournamentT = (V,A) that we want to fix. The

gadget we use is shown in Figure 4.1. Call the resulting tournamentT ′.

u1

u2

ul−1

ul

2vvl+2vl+3 vl+1 1vlv

T

Figure 4.1: Vertex Fixing.

Here,v1, v2, · · · , vl+3 are l + 3 new vertices used in the gadget. Notice thatv1 is

the unique vertex that beats all other vertices ofT ′. For2 ≤ j ≤ l + 1, vj beatsvk for

k > j, and beats all the vertices ofT exceptuj−1. Vertexvl+2 beatsvl+3, and bothvl+2

72

Chapter 4. Isomorphism and Canonization of Tournaments andHypertournaments

andvl+3 beat all vertices ofT . The thick edge betweenv1 andT indicates thatv1 beats

all the vertices ofT . All thick edges have similar meaning.

More precisely,T ′ = (V ′, A′) whereV ′ = V ∪ {v1, · · · , vl+3} and we can write the

edge set as

A′ = A ∪ A1 ∪A2 ∪ A3,

whereA1 = {(vj, uk) | 2 ≤ j ≤ l, k 6= j} ∪ {(uj, vj+1) | j = 1, · · · , l},

A2 = {(v1, uk), (vl+2, uk), (vl+3, uk) | 1 ≤ k ≤ l}, and

A3 = {(vj , vk) | j < k}.

Lemma 4.2.2 Any automorphism ofT ′ fixes{u1, u2, · · · , ul}.

Proof. Notice thatv1, v2, v3, · · · , vl are the unique vertices of in-degree0, 2, 3, · · · , l,
respectively. Hence they are fixed by any automorphism ofT ′. Also, vl+1 andvl+2 are

the only vertices of in-degreel + 1. But, the directed edge(vl+1, vl+2) forces the fixing

of these two vertices by all automorphisms. Asvi+1 has a unique incoming edge from

ui, 1 ≤ i ≤ l, each ofu1, u2, · · · , ul is fixed by all automorphisms ofT ′.

Search and decision forGRAPH-ISOare known to be polynomial-time equivalent

to computing a generating set for the automorphism group Aut(X) of a graphX. We

show similar results for tournaments. In fact, we give a general approach to proving this

equivalence for any class of graphs and apply it to tournaments.

For a class of graphsG, let GRAPH-ISOG denote the decision problem:

GRAPH-ISOG = {〈X1, X2〉 ∈ G × G | X1, X2 are isomorphic}.

Two vertex-colored graphs1 X1, X2 ∈ G are said to be isomorphic if there is a color

preserving graph isomorphism between them. LetC-GRAPH-ISOG be the corresponding

decision problem. The graph automorphism problem is:GAG = {X ∈ G | X has

a nontrivial automorphism}. For X ∈ G, let AUTG be the problem of computing a

generating set for the automorphism group ofX. The following theorem is easy to

prove using standard techniques from [76].

1In this chapter, vertex and edge colorings are simply labelswithout any constraints like proper ver-
tex/edge colorings etc.

73

Chapter 4. Isomorphism and Canonization of Tournaments andHypertournaments

Theorem 4.2.3 Let G be any class of graphs. IfC-GRAPH-ISOG is polynomial-time

many-one reducible toGRAPH-ISOG then

1. GAG is polynomial-time Turing reducible toGRAPH-ISOG.

2. Search version ofGRAPH-ISOG is polynomial-time Turing reducible to decision

version ofGRAPH-ISOG.

3. AUTG is polynomial-time Turing reducible toGRAPH-ISOG.

Proof. 1. LetX ∈ G be the given graph. In order to check if there is an automorphism

of Aut(X) that maps vertexu to vertexv, we construct two colored graphsXu andXv

from X as follows:Xu is a copy ofX in which u is colored red and all other vertices

are colored blue, andXv is a copy ofX in which v is colored red and all other vertices

are colored blue. Clearly,(Xu, Xv) ∈ C-GRAPH-ISOG iff some automorphism ofX

mapsu to v. As C-GRAPH-ISOG is reducible toGRAPH-ISOG, we can test whether some

automorphism ofX mapsu to v via a polynomial-time many-one (or Turing) reduction

to GRAPH-ISOG. Note thatX has a nontrivial automorphism iff for some pair of distinct

verticesu andv, Xu andXv are isomorphic. Putting it together gives us a polynomial-

time Turing reduction fromGAG to GRAPH-ISOG.

2. It is easy to see that the reduction of search version to decision version can be

done using the same idea as described in the proof of part 1.

3. Let X be an instance ofAUTG. The goal is to compute a generating set for

Aut(X) in polynomial time usingC-GRAPH-ISOG as oracle. This construction follows

the standard way of building a strong generating set for Aut(X) by collecting all coset

representatives for a pointwise stabilizer tower (see, e.g. [82]). We give a brief outline.

LetG0 = Aut(X) andV (X) = [n]. We will construct a tower of subgroupsG0 ≥ G1 ≥
· · · ≥ Gn−1 = {1} by their generating sets, whereGi = {g ∈ G0 | jg = j, 1 ≤ j ≤ i}.

SupposeS is a generating set forGi and{g1, g2, · · · , gl} are coset representatives ofGi

inGi−1. ThenS∪{g1, g2, · · · , gℓ} is a generating set forGi−1. Furthermore,ℓ ≤ n−i+1

as the distinct coset representatives must mapi to different points. Thus, the set of all

coset representatives gives a generating set forG0 of sizeO(n2). Now we describe

how to compute the coset representatives ofGi in Gi−1. Notice that finding the coset

representatives is equivalent to testing ifGi−1∩Aut(X) has an automorphism that maps

i to k for ak ≥ i+1. We can reduce this toC-GRAPH-ISOG as follows: Take two copies

X1 andX2 of X. Pick vertexk ≥ i + 1 in X2. For1 ≤ j ≤ i − 1, in bothX1 andX2

74

Chapter 4. Isomorphism and Canonization of Tournaments andHypertournaments

color the vertexj using colorj. Next, color bothi ∈ V (X1) andk ∈ V (X2) using color

i. The remaining vertices of bothX1 andX2 are colored0. Clearly,X1
∼= X2 iff k is in

the orbit ofi. We can test this with a query toGRAPH-ISOG, and by part 2 we can find

the actual isomorphism. This gives us a distinct coset representative corresponding tok.

Continuing thus, we can find all coset representatives. Clearly, this is a polynomial-time

oracle procedure with queries toGRAPH-ISOG.

We now showC-TOUR-ISO≤P
m TOUR-ISO, implying that tournaments satisfy the

conditions of Theorem 4.2.3.

Theorem 4.2.4 Color tournament isomorphism problem is polynomial time many-one

reducible to tournament isomorphism problem.

Proof. Let T1, T2 be tournaments with vertices colored usingl distinct colors{ci}li=1.

Let Ci denote the set of vertices colored withci. Our reduction transformsT1 andT2
into uncolored tournamentsT ′′

1 andT ′′
2 such thatT1 ∼= T2 if and only if T ′′

1
∼= T ′′

2 . The

construction forT1 is depicted in Figure 4.2 (to avoid clutter, we do not show allthe

edges).

1
u

2
u

u
l

T

1

2

C

C C
l

Figure 4.2: Colored to Uncolored Tournament.

We first construct a tournamentT ′
1 from T1 by addingl new verticesu1, · · · , ul and

new edges. We describe the new edges inT ′
1. Vertexui beats the vertices in each color

classCj with j 6= i, andui is beaten by all vertices in color classCi. For1 ≤ i < j ≤ l,

vertexui beats vertexuj in the tournamentT ′
1. Likewise, the tournamentT ′

2 is obtained

from T2 by introducing new verticesv1, v2, · · · , vl. The vertexvi beats the vertices in

75

Chapter 4. Isomorphism and Canonization of Tournaments andHypertournaments

each color classCj with j 6= i, andui is beaten by all vertices in color classCi. For

1 ≤ i < j ≤ l, vertexvi beats vertexvj .

Now, using the gadget of Lemma 4.2.2, we fixu1, u2, · · · , ul in T ′
1. Call the resulting

tournamentT ′′
1 . Similarly,T ′′

2 is obtained fromT ′
2 by fixing verticesv1, v2, · · · , vl using

the gadget of Lemma 4.2.2.

By the construction in Lemma 4.2.2, any isomorphism fromT ′′
1 to T ′′

2 is forced

to mapui to vi for eachi. Hence, this isomorphism will induce a color-preserving

isomorphism fromT1 to T2. Conversely, any color-preserving isomorphism fromT1 to

T2 can be extended to an isomorphism fromT ′′
1 to T ′′

2 that mapsui to vi for eachi. It

follows that the colored tournamentsT1 andT2 are isomorphic if and only ifT ′′
1
∼= T ′′

2 .

4.3 Canonical Labeling of Tournaments

We first recall an important fact about tournaments and the tournament canonization of

Babai and Luks. This fact is stated in [30] for instance, but it seems folklore. We also

recall the easy proof.

Lemma 4.3.1 The automorphism group of a tournament has an odd number of ele-

ments.

Proof. Let T = (V,A) be a tournament. If|Aut(T)| is even then by Cauchy’s theorem

Aut(T) has a permutationπ of order2. Letπ = C1 · · ·Cl be the decomposition ofπ as a

product of disjoint2-cycles. SupposeC1 = (u, v). Then the permutationπ maps(u, v)

to (v, u). But either(u, v) ∈ A or (v, u) ∈ A. Henceπ cannot be a an automorphism

and|Aut(T)| must be odd.

A celebrated group theory result is the Feit-Thompson odd-order theorem whose

statement we recall below.

Theorem 4.3.2 ([49]) Every odd order group is solvable.

The following corollary is an easy consequence of Lemma 4.3.1 and Theorem 4.3.2.

Corollary 4.3.3 The automorphism group of a tournament is solvable.

76

Chapter 4. Isomorphism and Canonization of Tournaments andHypertournaments

As mentioned in Remark 4.1.6, annO(log n) algorithm for tournament canonization

is described based on their string canonization result stated in Theorem 4.1.4.

Theorem 4.3.4 [30, Theorem 4.1]There is annO(logn) algorithm for T-CANON, the

Tournament Canonization problem.

We sketch the proof of Theorem 4.3.4 as we need the main ideas:

Let T = (V,A) be a tournament with|V | = n. The tournamentT is regular if every

vertex has the same outdegree. It is easy to observe thatT is regular impliesn is odd

and every vertex has both indegree and outdegree equal ton−1
2

.

If the input tournamentT is not regular, the algorithm will partitionV asV =

∪ki=1Vi, whereVi ⊂ V is the subset of vertices with out-degreei, whereVi is empty if

there are no vertices of outdegreei andk is the maximum outdegree inT . Let Ti be

the tournament induced byVi. Using Theorem 4.1.4 the algorithm recursively computes

CL(Ti, Sym(Vi)) = Hiρi, for all i, whereHi = Aut(Ti). Then, we set

CL(T, Sym(V)) = CL(T,H1ρ1 × H2ρ2 × · · · ×Hkρk) = CL(T,Hρ),

whereH ≤ Sym(V) is the product groupH1 ×H2 × · · · ×Hk andρ ∈ Sym(V) is the

k-tuple(ρ1, ρ2, · · · , ρk), whereρi ∈ Sym(Vi).

Importantly, as eachHi is solvable,H is also a solvable group. Thus, CL(T,Hρ)

can be computed in polynomial time by Theorem 4.1.4.

If t(n) is the running time bound, then for this stage of computationit satisfies the

recurrence relation:t(n) =
∑k

i=1 t(ni) + nO(1), whereni = |Vi|.
The more difficult case is whenT is a regular tournament. For eachv ∈ V , the

algorithm will canonize the tournament withv as the first vertex. Among the canonical

forms thus obtained, the algorithm will pick the lexicographically least. The algorithm

proceeds as follows for av ∈ V : PutV ′ = V \{v} and letT ′ be the tournament induced

by V ′. We have the partitionV ′ = V ′
1 ∪V ′

2 , whereV ′
1 is the set of(n−1)/2 vertices that

beatv andV ′
2 is the set of(n− 1)/2 vertices beaten byv. Let the tournaments induced

by V ′
1 andV ′

2 be T ′
1 andT ′

2, respectively. Next, the algorithm recursively computes

CL(T ′
i , Sym(V′

i)) = Hiρi for i = 1, 2. Again using Theorem 4.1.4, the algorithm will

compute CL(T, Sym(V′)) = CL(T,H1ρ1 × H2ρ2) to get the canonical labeling coset

with v as the first vertex. As mentioned, the algorithm repeats thisprocess for all the

verticesv ∈ V . From among thesen cosets, we compute CL(T, Sym(V)) as the union

77

Chapter 4. Isomorphism and Canonization of Tournaments andHypertournaments

of those cosets that give rise to the lex-least canonical labeling. It can be shown that this

union must paste into a coset of the form Aut(T)σ [30]. For this case, the recurrence

relation for the time boundt(n) satisfies the recurrence relation

t(n) = n(2t(
n− 1

2
) + nO(1)).

Solving the two recurrence relations fort(n) yields the running time boundnO(logn)

[30].

Wreath Product

Here we recall the notion of wreath product of two groups thatwill naturally appear in

the proof of our result.

Definition 4.3.5 LetX ≤ Sym(V) andY ≤ Sym([ℓ]) be two groups. Thewreath prod-

uctofX andY , denotedX ≀Y , is a group with elements{(x1, · · · , xℓ, y) | x1, · · · , xℓ ∈
X andy ∈ Y } and the binary operation

(x1, · · · , xℓ, y)(x′1, · · · , x′ℓ, y′) = (x1x
′
1y , · · · , xℓx′ℓy , yy′).

As a setX ≀ Y is same as the direct productXℓ × Y , but it differs in the group

operation in the sense that the elementy from Y permutes the indices ofXℓ. We

have to be careful about the indices. Notice that(x1, · · · , xℓ, y)(x′1σ , · · · , x′ℓσ , y′) =

(x1x
′
1yσ , · · · , xℓx′ℓyσ , yy′) andnot (x1x

′
1σy , · · · , xℓx′ℓσy , yy′). The inverse of an element

(x1, · · · , xℓ, y) ∈ X ≀ Y is (x−1
1σ , · · · , x−1

ℓσ , y
−1) whereσ = y−1. The wreath product

X ≀ Y defines a natural action on the setV × [ℓ] as follows: Let(a, i) ∈ V × [ℓ] and

(x1, · · · , xℓ, y) ∈ X ≀ Y then

(a, i)(x1,··· ,xℓ,y) = (axi , iy).

It is easy to check that the above definition is indeed a group action. Moreover, this

action embedsX ≀ Y in Sym(V × [ℓ]). Thus ifG = (V × [ℓ], E) is a (di)graph then for

all elementsπ ∈ X ≀ Y we can talk about the graphGπ in the usual way.

Fact 4.3.6 LetH be a group andN be a normal subgroup ofH. ThenH is solvable if

and only if bothH/N andN are solvable.

78

Chapter 4. Isomorphism and Canonization of Tournaments andHypertournaments

Let X ≤ Sym(V) andY ≤ Sym([ℓ]) be solvable groups. Notice thatX〈ℓ〉 :=

Xℓ× {id} is a normal subgroup ofX ≀ Y , whereid is the identity element ofY . Notice

also thatX ≀ Y/X〈ℓ〉 ∼= H. Thus by Fact 4.3.6 we get the following lemma.

Lemma 4.3.7 If X ≤ Sym(V) andY ≤ Sym([ℓ]) are solvable groups theX ≀Y is also

solvable.

The result

We are now ready to describe our result in this section. As mentioned in the introduc-

tion, we are motivated by the problem whether Graph Canonization is polynomial-time

Turing reducible to Graph Isomorphism.

Since the general problem seems difficult to approach, we raise the question for

the more restricted case of tournaments: can tournament canonizationT-CANON be

polynomial-time Turing reduced to Tournament IsomorphismTOUR-ISO? Even for this

restricted problem we do not know the answer. However, we make some progress on the

problem by giving a polynomial-time oracle algorithm forT-CANON that accesses ora-

cleTOUR-ISOwith an additional oracle for canonizingrigid tournaments. Thus, canon-

izing rigid tournaments seems to be the bottleneck in reducingT-CANON to TOUR-ISO.

Let RT-CANONdenote the functional oracle for computing the canonical form of a rigid

tournament. Since rigid tournaments have trivial automorphism groups, notice that the

canonical form trivially gives the canonical labeling coset as well.

We believe this weaker result is interesting and throws somelight on the original

problem. One interpretation of our result is that rigid tournaments are the hardest in-

stances of canonization. We do not know if a similar result holds for general graphs.

We make crucial use of Theorem 4.1.4 and the fact that the automorphism groups of

tournaments is solvable.

We start with a definition.

Definition 4.3.8 A tournament is calledvertex transitiveif for all pair of verticesu, v

there is an automorphismπ of T such thatuπ = v.

Naturally a vertex transitive tournament is regular.

Theorem 4.3.9 There is a polynomial-time oracle algorithm forT-CANON that ac-

cesses oracles forTOUR-ISOandRT-CANON.

79

Chapter 4. Isomorphism and Canonization of Tournaments andHypertournaments

Proof. LetT = (V,A) be the input tournament to be canonized. Denote byT-CANON(T)

the function computing the canonical labeling coset CL(T, Sym(V)) of T , whereV is

the vertex set ofT . It has the following recursive description:

T-CANON(T):

1. Orbit computing: With oracle queries toTOUR-ISOand using the vertex fixing

technique of Theorem 4.2.3 we can compute a polynomial size generating set for

Aut(T). Then, we can compute in polynomial time the partition ofV into Aut(T)-

orbits in polynomial time using standard permutation grouptechniques [82, 76].

2. If orbits are singletons: This happens precisely whenT is a rigid tournament. In

this case we query theRT-CANONoracle to obtain a canonical form forT . Notice

that in this case the canonical labeling coset CL(T, Sym(V)) is a singleton since

Aut(T) has only one element.

3. Single orbit: If V has only one orbit w.r.t. Aut(T) then the tournament isvertex-

transitive. AsT is vertex-transitive it follows thatT is regular.

In this case, we can takeany one vertexv of T and make it the first vertex of

the canonical form. LetTv denote the tournament induced byV ′ = V \ {v}.

We recursively find the canonical labeling coset ofTv with respect toSym(V)′,

whereV ′ = V \ {v}. A crucial point is that it suffices to compute this for any

one vertexv. The reason, as we will prove in Claim 4.3.10, is that doing this

for any other vertexu will give rise to the same canonical form since there is an

automorphism that mapsu to v. (We observe that this is not true in the case of

regular tournaments that are not vertex transitive. Indeed, we recall from our proof

sketch of Theorem 4.3.4 thatn recursive calls are made in the regular case. This

step makes a crucial difference to the running time we obtain.)

The vertexv defines the partitionV ′ = V1 ∪ V2, whereV1 is the set of all vertices

that beatv in the tournamentT andV2 is the set of all vertices beaten byv in T .

As T is regular,|V1| = |V2| = (n− 1)/2. Suppose the tournaments induced byV1

andV2 areT1 andT2 respectively. Recursively computeH1ρ1 := T-CANON(T1)

andH2ρ2 := T-CANON(T2).

Now, applying Theorem 4.1.4, we computeT-CANON(Tv) = CL(Tv, H1ρ1 ×
H2ρ2). The algorithm of Theorem 4.1.4 runs in polynomial time as bothH1 and

80

Chapter 4. Isomorphism and Canonization of Tournaments andHypertournaments

H2 are solvable groups, being automorphism groups of tournaments. This gives

the canonical ordering forTv. Placingv as the overall first vertex gives the canon-

ical ordering forT . LetT ′ denote the resulting tournament (which is the canonical

form for T). Finally, the canonical labeling coset is easy to compute fromT and

T ′ with queries toTOUR-ISOby applying Theorem 4.2.3.

4. Nonrigid with more than one orbit: This is the general case when there are more

than one orbit andT is not rigid. LetO1, O2, · · · , Oℓ be the orbits ofT (computed

using queries toTOUR-ISOas explained in the first step).

[Case (a)] Let Ti be the tournament induced byOi, for 1 ≤ i ≤ ℓ. We

first consider the case that yields an easy recursive step. Suppose not allTi are

isomorphic to each other (which we can easily find with queries to TOUR-ISO).

Then we partition the set of orbitsOj into k collectionsS1, S2, · · · , Sk, where for

eachSi
Oj, Om ∈ Si iff Tj isomorphic toTm.

We assume thatCF(T ′) < CF(T ′′) for all T ′ ∈ Si andT ′′ ∈ Sj for all i < j where

we compare two graphs lexicographically. Note thatCF(T ′) andCF(T ′′) can be

computed recursively.

Now, for 1 ≤ i ≤ k, let T̂i denote the tournament induced by the union of all the

orbits inSi.

For eachi, the algorithm recursively computes the canonical labeling cosetHiρi :=

T-CANON(T̂i).

Then, by applying Theorem 4.1.4 the algorithm computes the overall canon-

ical labeling coset as CL(T,Hρ) — whereH = H1 × H2 × · · · × Hk and

ρ = (ρ1, · · · , ρk). This can be computed in polynomial time by Theorem 4.1.4

because eachHi is solvable, being the automorphism group of a tournament.

[Case (b)] We are now in the case when the tournamentsTi induced by the

orbitOi of T are all isomorphic, for1 ≤ i ≤ ℓ. This is the more interesting case:

SinceTi are induced by orbits they are all regular tournaments. Hence |Oi| is odd

for eachi. Furthermore, allOi are of same size sinceTi are all isomorphic. Thus,

|Oi| = t for eachi, wheret is an odd positive integer. Rename the vertices inOi

arbitrarily (say in lex order) by{(a, i) | a ∈ [t]} = [t]×{i} so that the tournament

81

Chapter 4. Isomorphism and Canonization of Tournaments andHypertournaments

T is on vertex set[t] × [ℓ] andTi is on vertex set[t] × {i}. For1 ≤ i ≤ ℓ, let T ′
i

denote the tournament obtained fromTi by renaming each vertex(a, i) ∈ [t]×{i}
by a so thatV (T ′

i) = [t].

From theℓ orbits of T , we will construct a new tournamentT with vertex set

[ℓ]. For 1 ≤ i ≤ ℓ, the vertexi of T represent orbitOi. We still have to define

the edges ofT . To that end, letXij denote the directed bipartite graph between

orbitsOi andOj (whose edges are the original tournament edges). AsOi and

Oj are orbits of Aut(T) and|Oi| = |Oj|, the directed bipartite graphXij has the

following property: there is a positive integerαij such that, in the graphXij, the

indegree of each vertex inOi is αij and the outdegree of each vertex inOj is αij.

Since, for eachi, |Oi| = t andt is odd,t − αij 6= αij. The edges ofT are now

defined as follows: for1 ≤ i 6= j ≤ ℓ, (i, j) is an edge inT if t − αij > αij,

otherwise(j, i) is an edge inT . We callT theshrunktournament.

The idea here is to obtain the canonical form ofT by relabeling the orbits and

inside each orbit by relabeling the vertices. In other wordswe will pick the canon-

ical form from the set{T θ | θ ∈ Sym([t]) ≀ Sym([ℓ])}. (Notice that sinceT is a

tournament on[t]× [ℓ], the action ofSym([t]) ≀ Sym([ℓ]) is well defined onT).

We first recursively compute the canonical labeling cosetsHiσi for each tour-

namentT ′
i , 1 ≤ i ≤ ℓ. Note thatHi ≤ Sym([t]) andσi ∈ Sym([t]). As all

the tournamentsT ′
i are isomorphic they will have the same canonical formT̂ .

We can easily verify thatσ−1
i Hiσi = Aut(T̂). Next we recursively compute the

canonical labeling cosetHρ := T-CANON(T) of the shrunk tournament. No-

tice thatHρ is a coset ofSym([ℓ]). If T̂ is the canonical form ofT then we

haveρ−1Hρ = Aut(T̂). Finally, we compute the canonical form ofT ξ with re-

spect to Aut(T̂) ≀ Aut(T̂) using Babai-Luks algorithm (Theorem 4.1.4), where

ξ = (σ1, · · · , σℓ, ρ). By Lemma 4.3.7 Aut(T̂) ≀ Aut(T̂) is solvable and hence

Babai-Luks algorithm will run in polynomial time. Let the output of Babai-Luks

algorithm be the cosetGπ. Then the recursive step returnsξ−1Gπ. (More pre-

cisely, it returns the canonical labeling coset by returning ξ−1Gξ as the group and

ξ−1π as the coset representative.)

This completes the description of the tournament canonizing algorithm. It is easy to

see from the above description that the running time is polynomially bounded. We prove

82

Chapter 4. Isomorphism and Canonization of Tournaments andHypertournaments

the correctness of the algorithm through a series of claims about the different steps of

the algorithm.

We establish the correctness of Step 3 in the next claim.

Claim 4.3.10 Let u, v be two vertices in a vertex transitive tournamentT = (V,A).

Then the canonical form computed in Step 3 by fixing vertexu is same as the canonical

form computed by fixing vertexv.

Proof of Claim Let π be an automorphism of the vertex transitive tournamentT such

thatπ(u) = v. LetVu = V \ {u} andVv = V \ {v}. Let Tu andTv be the tournaments

induced byVu andVv respectively. Clearly,π is an isomorphism betweenTu andTv.

Let V ′
1 be the set of vertices beaten byu andV ′

2 be the set of vertices that beatu in the

tournamentTu. As defined in the algorithm,V1 andV2 are the vertex sets that are beaten

by v and beatv respectively inTv.

Let T ′
1, andT ′

2 be the sub-tournaments ofTu induced byV ′
1 andV ′

2 respectively.

Similarly, T1 andT2 are the sub-tournaments ofTv induced byV1, andV2 respectively.

Notice thatπ is an isomorphism betweenT ′
1 andT1 and also betweenT ′

2 andT2.

Suppose we run the algorithm by fixingu instead ofv in step 3. It will recur-

sively compute CL(T ′
1, Sym(V′

1)) = H′
1ρ

′
1 and CL(T ′

2, Sym(V′
2)) = H′

2ρ
′
2, whereH ′

1 =

Aut(T ′
1) andH ′

2 = Aut(T ′
2). Next it will compute CL(Tu, H ′

1ρ
′
1 × H ′

2ρ
′
2). Similarly, if

the algorithm fixesv then it computes CL(Tv, H1ρ1 ×H2ρ2) whereH1 = Aut(T1) and

H2 = Aut(T2).

SinceT ′
1 andT1 are isomorphic (π is an isomorphism), inductively it follows that

the algorithm computes the same canon for them which isρ1(T1) = ρ′1(T
′
1) = T 1. Fur-

thermore, it is easy to see that the automorphism group ofT 1 is Aut(T 1) = ρ−1
1 H1ρ1 =

ρ′−1
1 H ′

1ρ
′
1.

Similarly, T ′
2 andT2 are isomorphic (again viaπ). Thus, inductively it follows that

the algorithm computes the same canon for them which isρ2(T2) = ρ′2(T
′
2) = T 2, and

the automorphism group ofT 2 is Aut(T 2) = ρ−1
2 H2ρ2 = ρ′−1

2 H ′
2ρ

′
2.

LetH = H1 ×H2 andρ = (ρ1, ρ2). Similarly, letH ′ = H ′
1 ×H ′

2 andρ′ = (ρ′1, ρ
′
2).

It follows from the above thatρ−1Hρ = ρ′−1H ′ρ′ = Aut(T 1)× Aut(T 2).

We need to prove that we obtain the same tournament as canonical form for bothTu
andTv. That is, we need to show that

CF(Tu, H
′ρ′) = CF(Tv, Hρ).

83

Chapter 4. Isomorphism and Canonization of Tournaments andHypertournaments

By definition of canonical form with respect to cosets we have

CF(Tu, H
′ρ′) = CF(T ρ

′

u , ρ
′−1H ′ρ′) and

CF(Tv, Hρ) = CF(T ρv , ρ
−1Hρ).

As explainedρ−1Hρ = ρ′−1H ′ρ′ = Aut(T 1)×Aut(T 2). Thus if we show that some

permutationτ in Aut(T 1)×Aut(T 2) mapsT ρ
′

u to T ρv then the above equality will follow

from Theorem 4.1.4.

But, T ρ
′

u andT ρv are isomorphic via isomorphismρ′−1
1 πρ. Furthermore, it is easy to

check thatρ′−1
1 πρ ∈ Aut(T 1)× Aut(T 2). This completes the proof of this claim.

Claim 4.3.11 The algorithm correctly computes the canonical form ofT in Step 4

Case(a).

Proof of Claim Let T ′ be an isomorphic copy ofT . Let π be an isomorphism formT

to T ′. Let O1, · · · , Oℓ andO′
1, · · · , O′

ℓ be the orbits ofT andT ′ respectively. LetT̂i
be the tournament defined in Step 4 Case(a),1 ≤ i ≤ k. Similarly we defineT̂ ′

i for

T ′, 1 ≤ i ≤ k. Clearly, for eachi the tournamentŝTi and T̂ ′
i are also isomorphic via

isomorphismπ. Let T-CANON(T̂i) = Aut(T̂i)ρi andT-CANON(T̂ ′
i) = Aut(T̂ ′

i)ρ
′
i. Let

CF(T̂i) = CF(T̂ ′
i) = Xi.

LetH denote the group Aut(T̂1)× Aut(T̂2) × · · · × Aut(T̂k) andρ = (ρ1, · · · , ρk).
Similarly, letH ′ denote the group Aut(T̂ ′

1)×Aut(T̂ ′
2)×· · ·×Aut(T̂ ′

k) andρ′ = (ρ′1, · · · , ρ′k).
We need to show thatCF(T,Hρ) andCF(T ′, H ′ρ′) are identical. By definition of

canonical form with respect to a coset we have

CF(T,Hρ) = CF(T ρ, ρ−1Hρ) and

CF(T ′, H ′ρ′) = CF(T ′ρ′, ρ′−1H ′ρ′).

Now, it is easy to see that the groupsρ−1Hρ andρ′−1H ′ρ′ are identical: in fact, it is the

product Aut(X1) × · · · × Aut(Xk) of the automorphism groups of the tournamentXi,

1 ≤ i ≤ k.

Thus, it will follow from Theorem 4.1.4 thatCF(T,Hρ) = CF(T ′, H ′ρ′) if we show

that there is a permutationσ ∈ Aut(X1)×· · ·×Aut(Xk) such thatσ is an isomorphism

from the tournamentT ρ to T ′ρ′. Indeed, it is easy to see thatρ−1πρ′ is an isomorphism

from T ρ to T ′ρ′ , and the permutationρ−1πρ′ is in Aut(X1)× · · · × Aut(Xk).

84

Chapter 4. Isomorphism and Canonization of Tournaments andHypertournaments

Claim 4.3.12 The algorithm correctly computes the canonical form ofT in Step 4

Case(b).

Proof of Claim Let T1 andT2 be two tournaments isomorphic via isomorphismπ such

that Step 4 Case(b) is applied to both of them for canonization. Inductively assume that

the algorithm correctly works for smaller tournaments. We will show that the algorithm

produces the same canonical form for bothT1 andT2.

SupposeT1 has the orbitsO11, · · · , O1ℓ under the action of Aut(T1). Similarly, sup-

poseT2 has orbitsO21, · · · , O2ℓ. Let |O1i| = |O2j| = t for all i and j. We assume

that the the tournamentsT1 andT2 have same vertex set[t] × [ℓ] and for s = 1, 2,

Osi = [t] × {i} . Let T11, · · · , T1ℓ andT21, · · · , T2ℓ be the tournaments induced by the

orbitsO11, · · · , O1ℓ andO21, · · · , O2ℓ respectively. Fors = 1, 2 andi = 1, · · · , ℓ let

T ′
si be the tournament obtained fromTsi by renaming each vertex(a, i) by a. Since we

are in Step 4 Case(b), all the tournamentsT ′
11, · · · , T ′

1ℓ, T
′
21, · · · , T ′

2ℓ will be isomorphic

to each other. The isomorphismπ will map orbits to orbits. Let̂π ∈ Sym([ℓ]) be such

thatπ(O1i) = O2iπ̂ . Let π′
i = π |O1i

. HenceT1i will be isomorphic toT2iπ̂ via π′
i. Let

πi : [t] −→ [t] be the isomorphism fromT ′
1i to T ′

2iπ̂ which corresponds toπ′
i (i.e., if

π′
i(a, i) = (b, iπ̂) thenπi(a) = b). Let Hsiσsi be the canonical labelling coset ofT ′

si

for s = 1, 2 andi = 1, · · · , ℓ. Since these tournaments are isomorphic they will have

same canonical form̂T . Let T1 andT2 be the shrunk tournaments obtained fromT1
andT2 respectively. ClearlyT1 andT2 are isomorphic via isomorphism̂π. Let T̂ be

the canonical form ofT1 andT2. Also assume thatH1ρ1 andH1ρ1 are the canonical

labeling cosets ofT1 andT2 returned by the recursive step of the algorithm. Notice that

ρ−1
1 H1ρ1 = ρ−1

2 H2ρ2 = Aut(T̂). While canonizingT1 the algorithm canonizesT ξ11 with

respect to Aut(T̂) ≀Aut(T̂) and while canonizingT2 it canonizesT ξ22 with respect to the

same group Aut(T̂) ≀Aut(T̂) whereξ1 = (σ11, · · · , σ1ℓ, ρ1) andξ2 = (σ21, · · · , σ2ℓ, ρ2).
Hence it is enough to prove thatT ξ11 andT ξ22 are isomorphic via Aut(T̂) ≀ Aut(T̂) iso-

morphism. Observe thatT ξ11 andT ξ22 are isomorphic viaγ := ξ−1
1 (π1, · · · , πℓ, π̂)ξ2. So,

it is enough to prove thatγ ∈ Aut(T̂) ≀ Aut(T̂). But

γ = (σ−1

11ρ
−1
1
π
1ρ

−1
1
σ
21ρ

−1
1 π̂ , · · · , σ−1

1ℓρ
−1
1
π
ℓρ

−1
1
σ
2ℓρ

−1
1 π̂ , ρ

−1
1 π̂ρ2).

It is easy to see thatρ−1
1 π̂ρ2 ∈ Aut(T̂). Let iρ

−1
1 = j, thenµ := σ−1

1ℓρ
−1
1
π
ℓρ

−1
1
σ
2ℓρ

−1
1

π̂ =

σ−1
1j πjσ2jπ̂ . The tournamentsT ′

1j andT ′
2jπ̂

are isomorphic via isomorphismπj (by def-

inition of πj ’s and π̂). The tournamentsT ′
1j andT ′

2jπ̂ are mapped to their canonical

85

Chapter 4. Isomorphism and Canonization of Tournaments andHypertournaments

form T̂ by the isomorphismsσ1j andσ2jπ̂ respectively. This givesµ ∈ Aut(T̂). Thus,

γ ∈ Aut(T̂) ≀ Aut(T̂).

The overall correctness of the algorithm follows from the proofs of the above claims.

We now analyze the running time. LetT (n) bound the running time. In Step 1,

we compute the orbits in polynomial time with queries to theTOUR-ISO oracle. If

the tournament is rigid then we canonize it with a single query to RT-CANON. The

remaining steps involve recursive calls. The recurrence relation for T (n) in Step 3 is

T (n) = 2T ((n− 1)/2) + nO(1), and in Step 4 Case(b) it is given byT (n) = ℓT (n/ℓ) +

T (n/t) + nO(1) for ℓ > 1 andt > 1 because we need to compute the canonical labeling

coset forℓ tournaments induced byn/ℓ-sized orbits and the shrunk tournament of size

ℓ = n/t. For Step 4 Case (a), the recurrence isT (n) =
∑k

i=1 T (ni) + nO(1). It follows

by induction thatT (n) = nO(1). In each step the application of Theorem 4.1.4 takes

polynomial time because the permutation group used is always solvable.

As mentioned in the introduction, it seems unlikely that Theorem 4.3.9 can be shown

for general graphs using the same methods. This is because our reduction crucially

uses the fact that the automorphism group of tournaments aresolvable, enabling us to

repeatedly use the algorithm of Theorem 4.1.4 with a polynomial time bound. In case

of general graphs, it is unlikely that in the intermediate stages of recursion we will have

groups inΓd to effectively apply Theorem 4.1.4.

4.4 Hypertournament Isomorphism and Canonization

In this section we study isomorphism and canonization of hypertournaments using the

method of Babai and Luks.

Hypertournaments are a generalization of tournaments and have been studied by

graph theorists (see e.g. [63]). We recall the definition.

Definition 4.4.1 (k-Hypertournament) Given positive integersn andk, ak-hypertournament

T onn vertices is a pair(V,A) whereV is a set ofn verticesandA is a set ofk-tuples

of vertices calledarcsso that for each subsetS ∈
(

V
k

)

,A containsexactly oneof the (k!

many)k-tuples whose entries belong toS.

In general,Hypergraph Isomorphism(HGI) is easily seen to be polynomial-time

many-one equivalent to Graph Isomorphism: given a hypergraphX with n vertices and

86

Chapter 4. Isomorphism and Canonization of Tournaments andHypertournaments

m hyperedges we can represent it uniquely as a bipartite graphY with n vertices on

one side andm vertices on the other (see Section 5.1 for more details). Thus, known

complexity-theoretic upper bounds forGRAPH-ISOlike NP∩ coAM [31] apply toHGI.

However, consider an instance ofHGI: (X1, X2), with n vertices andm hyperedges

each. The reduction toGRAPH-ISOmaps it to a pair of graphs(Y1, Y2) with vertex

sets of sizem + n. The best known isomorphism testing algorithm due to Luks and

Zemlyachenko (see [30]) which has running timec
√

|V | lg |V | (|V | is the size of the vertex

set V) will take time c
√

(m+n) lg(m+n) when combined with the above reduction and

applied toHGI. In [83] a different, dynamic-programming based algorithmwith running

time2O(n) is developed.

We study the analogous question for hypertournaments in this section. The main

motivation is to see ifk-hypertournaments have enough structure like tournamentsso

that the Babai-Luks method and Theorem 4.1.4 in particular can be applied to ob-

tain an efficient algorithm. We note here that it is not known if HYPER-TOUR-ISO

is polynomial-time reducible toTOUR-ISO. We considerk-Hypertournament Isomor-

phism (HYPER-TOUR-ISOk) and give annO(k2+logn) algorithm for the problem fork-

hypertournaments, for eachk. In fact, we actually give annO(k2+logn) algorithm for

the corresponding canonization problem. We first establishsome observations about

automorphisms ofk-hypertournaments. The next lemma generalizes the fact that usual

tournaments have automorphism groups of odd order.

Lemma 4.4.2 For k ≥ 2, the automorphism groupAut(T) of a k-hypertournamentT

has the following property: for any prime factorp of k it holds thatp does not divide

the size ofAut(T).

Proof. Let T = (V,A). For k = 2, T is a usual tournament and in this case it is a

well-known fact that Aut(T) has odd cardinality.

Supposek > 2 andp is any prime factor ofk. Supposep divides Aut(T). Let π ∈
Aut(T) be an orderp element (which must exist by Cauchy’s theorem for finite groups).

Sinceπ ∈ Sym(V), we can write it as a product of disjointp-cycles,π = C1C2 · · ·Cℓ,
where the remainingn−pℓ elements ofV are fixed byπ. Letk/p = t. If k ≤ pℓ then let

S = ∪ti=1Ci. Notice thatπ mapsS to S. Now, supposee ∈ A is the unique hyperedge

of the tournament on thek element setS. Theneπ 6= e, sinceπ reordersthe sequence

defining hyperedgee. Thus,eπ is not a hyperedge ofT , contradictingπ ∈ Aut(T).

87

Chapter 4. Isomorphism and Canonization of Tournaments andHypertournaments

In the other case, ifk > pℓ, chooseS ′ as any subset of sizek − pℓ of then − pℓ

points fixed byπ, and letS = S ′ ∪ C1 ∪ · · · ∪ Cℓ. Again, lete ∈ A be the hyperedge

defined by this subsetS. Again, notice thateπ is not a hyperedge ofT , sinceπ will

reorder the sequence defininge. This contradicts the assumption that there is an orderp

elementπ ∈ Aut(T).

Recall that asectionof a groupG is a quotient group of some subgroup ofG. A

section that is a simple group is asimple section. Simple sections ofG are precisely the

composition factors of subgroups ofG.

An easy corollary of the above lemma is the following. Recallthat the alternating

groupAk is the subgroup ofSk consisting of all even permutations (permutations that

can be written as a product of an even number of transpositions).

Corollary 4.4.3 For k > 2, the automorphism groupAut(T) of a k-hypertournament

T does not have the alternating groupAk as section.

Proof. SupposeH/K is a section ofG. I.e.H is some subgroup ofG andK is some

normal subgroup ofH. Since|H| divides|G|, it follows that |H/K| also divides|G|.
Thus, the order of a section ofG must divide|G|.

Now, suppose to the contrary thatAk is a section of Aut(T), whereT is a k-

hypertournament for somek > 2. Then |Ak| divides |Aut(T)|. As |Ak| = (k!)/2,

it follows that k! divides2|Aut(T)|. It implies thatk must divide|Aut(T)|, as2 is a

factor of (k − 1)!. Hence, each prime factor ofk divides|Aut(T)|, which contradicts

Lemma 4.4.2.

Definition 4.4.4 [78] A finite groupG is said to be a groupnot involvingthe alternating

groupAk if Ak does not occur as a section of the groupG.

Denote byCk the class of finite groupsG not involvingAk. The classCk is known

to be closed under taking subgroups, quotients and extensions [78].

Notice that by Corollary 4.4.3, the automorphism group Aut(T) of anyk-hypertournament

T does not involveAk and hence Aut(T) ∈ Ck. This property is crucial for our canon-

ization algorithm. We recall a celebrated result aboutprimitive permutation groupsnot

involvingAk. We state the theorem from [78], which is a strengthening of the original

result due to Babai et al [24].

88

Chapter 4. Isomorphism and Canonization of Tournaments andHypertournaments

Theorem 4.4.5 [24, 78]Letk be a positive integer andG ≤ Sn be aprimitive groupin

Ck (i.e.G is a group not involvingAk), then|G| is bounded bynO(k).

Let T = (V,A) be ak-hypertournament withn vertices. We define thei-degreeof

a vertexv ∈ V as the numberdi of hyperedges in whichv occurs at theith position,

1 ≤ i ≤ k. Thus, to eachv ∈ V we can associate itsdegree vector(d1, d1, . . . , dk),

which is ak-tuple of nonnegative integers such that0 ≤ di ≤
(

n−1
k−1

)

.

We sayT is aregulark-hypertournament if every vertexv ∈ V has the same degree

vector(d1, d2, . . . , dk).

Proposition 4.4.6 Let T be ann-vertex regulark-hypertournament where the degree

vector of eachv ∈ V is (d1, d2, . . . , dk).

1. n
∑k

i=1 di = k
(

n
k

)

.

2. di =
1
n

(

n
k

)

for eachi.

Proof. To see the first part, notice thatn
∑k

i=1 di adds up the terms of the degree vector

(d1, d2, . . . , dk) for all then vertices inV . That amounts to countingk times each of

the
(

n
k

)

hyperedges ofT . To see the second part, notice that in the
(

n
k

)

hyperedges every

vertexv ∈ V occurs as theith vertex in exactlydi hyperedges. Thus,ndi =
(

n
k

)

.

An edge-coloredk-hypertournament is ak-hypertournamentT = (V,A) such that

its edges are colored withr colors for some positive integerr. More precisely, the edge-

coloring is given by a mappingc : A→ {1, 2, · · · , r} that assigns to each edge one ofr

different colors.

Two edge-coloredk-hypertournamentsT1 andT2 are isomorphic if there is a bijec-

tion ψ : V (T1) → V (T2) such thate ⊂ V (T1) is a hyperedge inT1 if and only if ψ(e)

is a hyperedge inT2 and bothe andψ(e) have the same color. Canonical forms for

k-hypertournaments are defined in the usual manner under the action of the permutation

groupSym(V).

We will actually consider the more general problem of isomorphism and canon-

ization of an edge-coloredk-hypertournamentT = (V,A). An important step in our

algorithm will be the application of the Babai-Luks algorithm Theorem 4.1.4 tok-

hypertournaments. LetT = (V,A) be an edge-coloredk-hypertournament andG ≤
Sym(V) be any permutation group.

89

Chapter 4. Isomorphism and Canonization of Tournaments andHypertournaments

For eachi, 1 ≤ i ≤ r, we encode theith color classc−1(i) ⊂ A as a binary stringbi
of lengthk!

(

n
k

)

. The stringbi is indexed by thek!
(

n
k

)

differentk-sequencesS of vertices

from V , wherebi[S] = 1 if and only if S ∈ Ai. Hence the entire hypergraphT gets

encoded as the binary stringb1b2 · · · br of lengthr.k!
(

n
k

)

= m. We consider this string

to be indexed by(i, S) where1 ≤ i ≤ r andS is an orderedk-sequence of vertices.

The subgroupG ≤ Sym(V) has a natural action on the orderedk-sequencesS under

whichS = 〈v1, v2, · · · , vk〉 is mapped toSσ = 〈vσ1 , vσ2 , · · · , vσk 〉 byσ ∈ Sym(V). Under

this action,σ maps the index(i, S) to (i, Sσ) for each colori andk-sequenceS.

Therefore, we can considerG as a subgroup ofSm acting on length-m binary strings.

Putting it together, we get an instance of string canonization to which Theorem 4.1.4

is applicable. Notice that ifG ∈ Ck, then by Theorem 4.4.5 the string canonization

algorithm of Theorem 4.1.4 will run in timemO(k). Hence, we have the following as an

immediate corollary of Theorems 4.1.4 and 4.4.5.

Corollary 4.4.7 Given ak-hypertournamentT = (V,A) with edges colored byr col-

ors, a subgroupG ≤ Sym(V) such thatG ∈ Ck, and aσ ∈ Sym(V) the edge-colored

k-hypertournamentT can be canonized underGσ action in time(r.k!
(

n
k

)

)O(k). In par-

ticular, the canonical labeling cosetCL(T,Gσ) can be computed innO(k2) time.

The main question then is how do we reducek-hypertournament canonization to

a case where we have in place a permutation group fromCk so we can invoke Theo-

rem 4.1.4. We are now ready to prove the main result of this section.

Theorem 4.4.8 There is annO(k2+logn) time algorithm for canonizing edge-coloredk-

hypertournaments. As a consequence, isomorphism testing for k-hypertournaments is

in nO(k2+logn) time.

Proof. We first give a description of the canonization algorithm, which is recursive. Let

T = (V,A) be the input edge-coloredk-hypertournament.

Algorithm Description.

Case0 {k = 2}: If k = 2 then we can invoke the Babai-Luks canonizing algorithm

(Theorem 4.3.4) that runs in timenO(logn).

Case1 { Vertex partitioning by degree vectors}: The algorithm carries out this step

for k > 2:

90

Chapter 4. Isomorphism and Canonization of Tournaments andHypertournaments

If T is not regular, partitionV as,V = V1 ∪ V2 ∪ · · · ∪ Vm, whereVi (1 ≤ i ≤ m) is

the set of all vertices having the same degree vector, where the degree vectors are sorted

in lexicographic order. For1 ≤ i ≤ m, let Ti be thek-hypertournament induced byVi.

We recursively compute CL(Ti, Sym(Vi)) for all i. Let CL(Ti, Sym(Vi)) = Hiρi where

Hi = Aut(Ti) andρi ∈ CL(Ti, Sym(Vi)).

SinceHi are the automorphism groups of edge-coloredk-hypertournaments, notice

thatHi ∈ Ck by Corollary 4.4.3. LetH denote the group productH1 × · · · × Hm

andρ = (ρ1, · · · , ρm). Then we set CL(T, Sym(V)) = CL(T,Hρ). Notice that by

Corollary 4.4.7, we can compute CL(T,Hρ) in timenO(k2).

Repeated application of this phase eventually reduces the originalk-hypertournament

into anordered setof regulark-hypertournaments, and it suffices to canonize each reg-

ular k-hypertournament in this list. In the next phase we explain the canonization of

regulark-hypertournaments.

Case2 { Regulark-hypertournament phase}: SupposeT = (V,A) is a regulark-

hypertournament. Ifk = 2 then we invoke Case 0.

Supposek > 2. The algorithm will maken = |V | recursive calls, one for each

vertexv ∈ V . In the call corresponding tov, the algorithm placesv as the first vertex in

the canonical ordering and recurses on smaller hypertournaments. Finally, the algorithm

picks the ordering that is lexicographically least among thesen orderings.

We now describe the recursive call that placesv as the first vertex of the ordering.

Usingv, the algorithm will decompose thek-hypertournamentT into an edge-colored

(k − 1)-hypertournamentT ′ on n − 1 vertices and ak-hypertournamentT ′′ on n − 1

vertices.

The edge-colored(k − 1)-hypertournamentT ′ = (V ′, A′) is defined as follows:

V ′ = V \ {v}. For 1 ≤ i ≤ k, the set of hyperedgesAi (coloredi) consists of all
1
k

(

n−1
k−1

)

sequences of lengthk−1 obtained by taking each of the1
k

(

n−1
k−1

)

hyperedges ofT

containingv at theith place and droppingv from the sequence. The set of all hyperedges

is thedisjoint unionA′ = ∪ki=1Ai. Notice thatT ′ is a (k − 1)-hypertournament that is

edge-colored usingk colors.

Next we defineT ′′ = (V ′, A′′) with vertex setV ′. LetA′′ denote all hyperedges of

T not containingv. ThenT ′′ = (V ′, A′′) is ak-hypertournament onn− 1 vertices.

First, the algorithm will recursively canonize the edge-colored(k−1)-hypertournament

T ′. Let CL(T ′, Sym(V′)) = Gρ. By Corollary 4.4.3,G ∈ Ck−1. Now, the algo-

rithm invokes Corollary 4.4.7 and applies the Babai-Luks algorithm to directly can-

91

Chapter 4. Isomorphism and Canonization of Tournaments andHypertournaments

onizeT ′′ w.r.t. the cosetGρ in time nO(k2). Suppose that algorithm returns the coset

CL(T ′′, Gρ) = Hvτv for vertexv. From the set of verticesV we can pick the subsetS

such that for eachv ∈ S the canonical labeling cosetHvτv gives the lexicographically

least tournament. Clearly, these cosetsHvτv, v ∈ S must paste together into a single

coset Aut(T)τ , which is CL(T, Sym(V)), whereτ can be chosen asτv for some fixed

v ∈ S, and a generating set for Aut(T) is the union of generating sets forHu, u ∈ S and

the set{τuτ−1
w | u, w ∈ S}.

Correctness.

We argue the correctness of the above canonization algorithm by induction onk and

n. As the base case, notice that the algorithm correctly worksfor k = 2 and for alln as

that is the edge-colored tournament canonization algorithm [30] (see Theorem 4.3.4).

As induction hypothesis, suppose the canonization algorithm works correctly for

all edge-coloredℓ-hypertournaments forℓ < k. Further, suppose the algorithm works

correctly for all edge-coloredk-hypertournaments with fewer thann vertices.

For the induction step letT = (V,A) be an edge-coloredk-hypertournament onn

vertices withk > 2. The algorithm will either apply the steps in Case 1 or in Case2.

We need to argue correctness for both cases.

Case 1. Suppose Case 1 is applied to thek-hypertournamentT = (V,A) on n ver-

tices. This is the case whenT is not regular and the vertex set is partitioned asV =

∪mi=1Vi, where eachVi is a vertex subset of all vertices with the same degree vec-

tor and the indexi is the sorted order of the degree vectors. By induction hypoth-

esis, for thek-hypertournamentsTi induced byVi the algorithm correctly computes

CL(Ti, Sym(Vi)) = Hiρi, whereHi = Aut(Ti) andρi ∈ CL(Ti, Sym(Vi)). Thereafter,

the algorithm invokes the Babai-Luks string canonization algorithm onT encoded as a

string and the product of cosetsH1ρ1 × · · ·×Hmρm. Thus the correctness of the induc-

tion step for this Case 1 follows from Theorem 4.1.4.

Case 2. Next, supposeT is a regulark-hypertournament, which means that Case 2 is

applied to it. LetT1 = (V,A1) andT2 = (V,A2) be two isomorphick-hypertournaments

on n vertices to which Case 2 of the algorithm is applied. We need to show that the

algorithm produces the same canonical form for bothT1 andT2. Letψ : V → V be an

92

Chapter 4. Isomorphism and Canonization of Tournaments andHypertournaments

isomorphism fromT1 to T2.

Recall that the algorithm works as follows in Case 2: Let the input beT1 andv ∈ V

be a vertex. The algorithm computes an edge-colored(k − 1)-hypertournamentT ′
1 on

V \{v} and the remainderk-hypertournamentT ′′
1 onV \{v}. Recursively, the algorithm

canonizesT ′
1 and using the resulting canonizing cosetG1ρ1 the algorithm canonizesT ′′

1

(by applying Theorem 4.1.4). LetT (v)
1 denote thek-hypertournament obtained by the

algorithm by pickingv ∈ V as the first vertex. The algorithm carries out these steps for

eachv ∈ V and picks the lexicographically least among them as the canonical form.

In order to show thatT1 andT2 result in the same canonical form, we claim it suf-

fices to argue thatT (v)
1 andT (ψ(v))

2 are the samek-hypertournaments whereT (ψ(v))
2 is

the canonical form obtained by the algorithm by pickingψ(v) as the first vertex while

canonizingT2. For, if the multisets{{T (v)
1 | v ∈ V }} and{{T (ψ(v))

2 | v ∈ V }} are

the same, then clearly the lexicographically least elements in the sets are the same (with

multiplicity).

Thus, it suffices to show thatT (v)
1 = T

(ψ(v))
2 . Sinceψ : V → V is an isomor-

phism fromT1 to T2, notice thatψ will also be an (edge-color preserving) isomorphism

between the(k − 1)-hypertournamentsT ′
1 andT ′

2 whereT ′
2 is the edge-colored(k − 1)-

hypertournament obtained by the algorithm when canonizingT2 by placingψ(v) as

the first vertex. Hence, by induction hypothesis the algorithm will compute the same

canonical forms forT ′
1 andT ′

2. More precisely,σ1(T ′
1) = σ2(T

′
2) for anyσ1 ∈ G1ρ1 and

σ2 ∈ G2ρ2 whereG2ρ2 is the canonical labeling coset obtained by the algorithm while

canonizingT ′
2. Therefore, canonizingT ′′

1 using cosetG1ρ1 and canonizingT ′′
2 using

cosetG2ρ2 will also result in the samek-hypertournaments by Lemma 4.1.5. Putting it

together it follows thatT (v)
1 = T

(ψ(v))
2 . This completes the correctness proof.

Running Time.

To analyze the running time, lett(n, k) denote the running time taken by the algo-

rithm for n-vertexk-hypertournaments. We claim that the following two recurrences

hold for Cases 1 and 2 respectively:

t(n, k) =

{

∑m
i=1 t(|Vi|, k) + nO(k2) Case 1 andk > 2

n(t(n− 1, k − 1) + nO(k2)) Case 2 andk > 2

93

Chapter 4. Isomorphism and Canonization of Tournaments andHypertournaments

First, notice thatt(n, 2) = nO(log n) using [30] for the base casek = 2. For Cases 1 and

2 the recurrence relation follows directly from the algorithm description; the additive

term ofnO(k2) in the two cases is a consequence of Theorem 4.4.7.

The claimed time boundt(n, k) = nO(k2+logn) is the solution for this recurrence.

Remark 4.4.9 Finally, analogous to Theorem 4.3.9, we note that it is possible to can-

onizek-hypertournaments in polynomial time with queries tok-hypertournament iso-

morphism and rigidk-hypertournament canonization. The details of this reduction are

quite similar to the proof of Theorem 4.3.9.

94

5
An FPT Algorithm for Bounded Color

Class Hypergraph Isomorphism

5.1 Introduction

We recall that ahypergraphis an ordered pairX = (V,E) whereV is the vertex set

andE ⊆ 2V is the edge set. Two hypergraphsX1 = (V1, E1) andX2 = (V2, E2)

are said to beisomorphic, denotedX1
∼= X2, if there is a bijectionφ : V1 −→ V2

such thate = {u1, · · · , ul} ∈ E1 if and only if φ(e) = {φ(u1), · · · , φ(ul)} ∈ E2.

Given two hypergraphsX1 andX2 the hypergraph isomorphism problem (HGI) is to

decide ifX1
∼= X2. Graph isomorphism (GI) is obviously polynomial-time reducible to

HGI. Conversely, HGI is also known to be polynomial-time reducible to GI: Given two

hypergraphsX1 = (V1, E1) andX2 = (V2, E2) as instance for HGI, the reduced instance

of GI consists of two corresponding bipartite graphsY1 andY2 defined as follows. The

graphY1 has vertex setV1 ⊎ E1 and edge setE(Y1) = {{v, e} | v ∈ V1, e ∈ E1 andv ∈
e}.1 Similarly Y2 has vertex setV2 ⊎ E2 and edge setE(Y2) = {{v, e} | v ∈ V2, e ∈
E2 andv ∈ e}. Clearly, the hypergraphsX1 andX2 are isomorphic if and only if

Y1 ∼= Y2.

We now define bounded color class hypergraph isomorphism problem (BCHGI),

which is the main problem of interest for this chapter.

Definition 5.1.1 (BCHGI) Input : Two hypergraphsX1 = (V,E1) andX2 = (V,E2)

whereV = C1 ⊎ · · · ⊎ Cm and for eachi, |Ci| ≤ b.

1Given two setC andD the disjoint union ofC andD is denoted asC ⊎D.

95

Chapter 5. An FPT Algorithm for Bounded Color Class Hypergraph Isomorphism

Decide: If there is an isomorphismφ formX1 toX2 such thatv ∈ Ci if and only if

φ(v) ∈ Ci.

The bounded color class graph isomorphism graph isomorphism problem (BCGI) is

the analogous problem where instead of hypergraphs we have graphs. Frust, Hopcroft

and Luks gave a polynomial-time algorithm for BCGI [53] withrunning time2O(b2)nO(1),

wheren is the number of vertices andb is the size of the largest color class. Although

HGI is polynomial time many-one reducible to GI, the reduction we described above

does not impose any bound on the size of the color classes of the bipartite graphsYi.

More specifically, in the bipartite graphYi, the vertex partition corresponding to the

edges of the hypergraphXi does not get partitioned into classes of size bounded by

any function ofb since the hyperedges are ofnonconstantsize, in general. Thus, the

polynomial-time algorithm for BCGI cannot be applied to thebounded color class hy-

pergraph isomorphism problem (BCHGI) to get a polynomial-time algorithm.

However, an algorithm for BCHGI with running time of the formnO(b) was shown

in [17], wheren is the number of vertices andb bounds the color classes. This algorithm

basically applies Luks’ seminal result [80] showing that the set stabilizer problem with

respect to a class of groupΓb can be solved in timenO(b). Recall that a finite groupG is

said to be in the classΓb if every nonabeliancomposition factor ofG is isomorphic to

some subgroup of the symmetric groupSb.

Parameterized Complexity and Isomorphism Testing

Parameterized Complexity is a fundamental strategy for coping with intractability. Pio-

neered by Downey and Fellows in [44], it is a flourishing area of research (see, e.g. the

monographs [45, 50]). Fixed parameter tractability provides a notion of feasible compu-

tation less restrictive than polynomial time. It provides atheoretical basis for the design

of new algorithms that are efficient and practically useful for small parameter values.

We quickly recall the rudiments of this theory relevant for the present chapter. More

details (especially on the levels of the W-hierarchy) will be given in the next section

(see also [45, 50]).

Computational problems often have inputs consisting of twoor more parts where

some of these parts typically take only small values. For example, an input instance of

the vertex cover problem is(G, k), and the task is to determine if the graphG has a

vertex cover of sizek. A similar example is thek-clique problem where again an input

96

Chapter 5. An FPT Algorithm for Bounded Color Class Hypergraph Isomorphism

instance is a pair(G, k) and the problem is to test if the graphG has a clique of sizek.

For such problems an exhaustive search will take timeO(nk), wheren is the number

of vertices inG. However, a finer classification is possible. The vertex cover problem

has an algorithm running in time2knO(1) (even in timeO(1.2738k+ kn) [41]), whereas

no algorithm is known for thek-clique problem of running timeO(no(k)). Thus, if the

parameterk is such thatk ≪ n, then we have a faster algorithm for thek-vertex cover

problem than is known for thek-clique problem.

In their seminal work, Downey and Fellows [44, 45] also developed a theory of

intractability for parameterized problems as a tool to classify parameterized problems

according to their computational hardness. The W-hierarchy consists of the levelsW [t],

t ≥ 1, together with the two classesW[SAT] andW[P] and we have the inclusions

FPT⊆ W[1] ⊆ W[2] ⊆ · · · ⊆ W[SAT] ⊆ W[P].

Since Graph Isomorphism has no known polynomial time algorithm for general class

of graphs, one approach is to study isomorphism testing for special classes of graphs.

Often these special classes are defined by bounding some graph parameter. For exam-

ple, by bounding the maximum degree, or treewidth, or genus of the graph by some

constantb we get degree-b graphs, or treewidth-b graphs, or genus-b graphs respectively.

Thus, these natural graph parameters give rise to parameterized versions of the graph

isomorphism problem. Interestingly, the best known isomorphism testing algorithms

for graphs with bounded degree [80], bounded treewidth graphs [34], and for bounded

genus graphs [87] all have worst-case running time boundnO(b) whereb is the parameter

andn is the number of vertices.

It is an interesting open question if GI has FPT algorithm with respect to any of

the aforementioned parameters. We know that GI is unlikely to be hard for NP [4]. It

would be interesting to know if these parameterized versions of GI are W[1]-hard or

fixed parameter tractable.

Though there are several open problems regarding the parametrized complexity of

graph isomorphism problem with respect to natural parameters, on the positive side we

note that some FPT algorithms have been obtained for graph isomorphism with parame-

ters tree-distance width [116], maximum size of the simplicial components [103], apart

from the result of Furst et al [53] on bounded color classes.

97

Chapter 5. An FPT Algorithm for Bounded Color Class Hypergraph Isomorphism

The results

In this chapter we present an FPT algorithm for bounded colorclass hypergraph isomor-

phism that runs in timeb!2O(b)NO(1) whereb is the size of the largest color class andN

is the sum of number of vertices and edges.

We will use as subroutine some FPT algorithms for certain parameterized permuta-

tion group theory problems. In Section 5.3 we define permutation groups with acolor

class bound. Following Luks’s method [83], we design an FPT algorithm for coset

intersection of permutation groups where the parameter is the color class bound. We

also give an FPT algorithm for set transporter problem. (These problems are formally

defined in Section 5.3). While the parametrized complexity of permutation group prob-

lems, for different parameters, can be interesting in its own right, it could be applicable

to graph isomorphism. For example, an FPT algorithm for the set transporter problem

with respect to groups inΓb, with b as parameter, will result in an FPT algorithm for

isomorphism testing for graphs of maximum degreeb, which is a major open problem.

The parameterb is a different natural parameterization for permutation group problems.

5.2 Preliminaries

While designing the FPT algorithm for bounded color class hypergraph isomorphism

we will have to handle multihypergraphs: these are hypergraphs where the edge set is a

multiset (each edge occurs with a multiplicity). Two multihypergraphsX1 = (V1, E1)

andX2 = (V2, E2) are isomorphic via an isomorphismφ if e ∈ E1 has the same multi-

plicity asφ(e) in E2.

Apart form the basic permutation group theory introduced inthe preliminary section

of Chapter 2 we need the following two definitions for this chapter.

Definition 5.2.1 For a permutationπ ∈ Sym(Ω) andC ⊆ Ω we defineCπ = {xπ |
x ∈ C}. For a permutation groupG ≤ Sym(Ω), a subsetC ⊆ Ω is calledG-stableif

Cπ = C for all π ∈ G.

Definition 5.2.2 For a groupG ≤ Sym(Ω) and a setC ⊆ Ω, thestabilizer subgroupof

G that stabilizesC, denotedGC , is defined as

GC = {π ∈ G | Cπ = C}.

98

Chapter 5. An FPT Algorithm for Bounded Color Class Hypergraph Isomorphism

5.3 Permutation Group Problems

We say that a groupG ≤ Sym(Ω) hascolor class boundb if eachG-orbit is of size

bounded byb. Equivalently,Ω can be partitioned into a disjoint union of color classes

C1 ⊎ · · · ⊎ Cm, where eachcolor classCi isG-stable and|Ci| ≤ b. In this section we

describe FPT algorithms for some permutation group problems where the parameter is

the color class bound for the input groups. GivenG = 〈S〉 by generating setS, since the

orbits ofG can be computed in polynomial time we can test ifG has color class bound

b in polynomial time.

The basic idea in solving these group-theoretic problems parameterized by the color

class bound is to tackle one color class at a time. In some sense, we will restrict the

problem to a particular color class and solve the problem forthat color class and then

proceed to the next color class.

5.3.1 Set Transporter

First we define the set transporter problem for general permutation groups.

Definition 5.3.1 (Set Transporter)

Input : A groupG ≤ Sym(Ω) given by generating set,z ∈ Sym(Ω) and two subsets

Π1,Π2 ⊆ Ω.

Output : (Gz)Π1→Π2 = {x ∈ Gz | Πx
1 = Π2}.

For general permutation groups, it is known that Graph Isomorphism is polynomial-

time reducible to Set Transporter. However, we are interested in Set Transporter param-

eterized by the color class bound.

Definition 5.3.2 (Bounded Color Class Set Transporter BC-TRANS)

Input : A groupG ≤ Sym(Ω) given by a generating set whereΩ = C1 ⊎ · · · ⊎ Cm
and for eachi, Ci isG-stable,z ∈ Sym(Ω) and two subsetsΠ1,Π2 ⊆ Ω.

Parameter : b = max{|C1|, · · · , |Cm|}.

Output : (Gz)Π1→Π2 = {x ∈ Gz | Πx
1 = Π2}.

The FPT algorithm for solving BC-TRANS works by restrictingthe problem to a

particular color class, solving it, and then proceeding to the next color class. The re-

stricted version of the problem is defined as follows.

99

Chapter 5. An FPT Algorithm for Bounded Color Class Hypergraph Isomorphism

Definition 5.3.3 (Restricted BC-TRANS)

Input : A groupG ≤ Sym(C ⊎ D) given by a generating set whereC andD are

G-stable,z ∈ Sym(C ⊎ D) and two subsetsΠ1,Π2 ⊆ C.

Parameter : b = |C|.
Output : (Gz)Π1→Π2 = {x ∈ Gz | Πx

1 = Π2}.

Theorem 5.3.4 LetG ≤ Sym(C ⊎ U) be a group given by a generating set andC be

G-stable withb = |C|. Letz ∈ Sym(C⊎U) be a permutation andΠ1,Π2 be two subsets

ofC. Then(Gz)Π1−→Π2 can be computed in time2O(b)nO(1) wheren = |C|+ |U |.

Proof. Let GΠ1 be the stabilizer subgroup ofG that stabilizesΠ1, i.e.,GΠ1 = {x ∈
G | Πx

1 = Π1}. SinceC is G-stable the setΠ1 can only move to a subset of size|Π1|
contained inC. Thus,

[GΠ1 : G] ≤
(

b

|Π1|

)

≤ 2b.

Also note that givenx ∈ G, it only takesO(n) time to check ifx ∈ GΠ1 .

As discussed in the priliminary section of Chapter 2, a set ofcoset representatives

{ρ1, · · · , ρt} of GΠ1 in G can be computed in time2O(b)nO(1). By Theorem 2.2.14 a set

of generators can also be computed in time2O(b)nO(1). Using Schreier-Sims methology,

the number of generators can be reduced ton2 by computing a strong generating set for

GΠ1 also in time2O(b)nO(1).

We write

Gz = GΠ1ρ1z ⊎ · · · ⊎GΠ1ρtz.

The algorithm next picks the cosetGΠ1ρiz that sendsΠ1 toΠ2 if there is any such coset2

and outputs that coset otherwise it outputs the empty set.

Remark 5.3.5 The groupGΠ1 that is output by the algorithm stabilizes anyG-stable

setF .

Theorem 5.3.6 LetG ≤ Sym(Ω) be a group given by a generating set. SupposeΩ =

C1 ⊎ · · · ⊎ Cm such that eachCi is G-stable. Letz be a permutation inSym(Ω) and

Π1 andΠ2 be two subsets ofΩ. Then(Gz)Π1−→Π2 can be computed in time2O(b)nO(1)

whereb = max{|C1|, · · · , |Cm|}.

2There can be at most one such coset.

100

Chapter 5. An FPT Algorithm for Bounded Color Class Hypergraph Isomorphism

Proof. Let Π(i)
1 = Ci ∩ Π1 andΠ

(i)
2 = Ci ∩ Π2. Let G0 = G and z0 = z. For

i = 1, · · · , m compute

Gizi = (Gi−1zi−1)Π(i)
1 −→Π

(i)
2

using the algorithm of Theorem 5.3.4. By Remark 5.3.5 the subgroupsGi computed

by the algorithm will stabilize the setsCj for eachi andj. Thus, by Theorem 5.3.4

computingGizi from Gi−1zi−1 will take time 2O(b)nO(1). Hence, the overall running

time is also2O(b)nO(1). Notice thatΠ1 = Π
(1)
1 ⊎ · · · ⊎Π

(m)
1 andΠ2 = Π

(1)
2 ⊎ · · · ⊎Π

(m)
2 .

Furthermore, for eachi andx ∈ Gmzm we have(Π(i)
1)x = Π

(i)
2 . Hence it is easy to see

thatGmzm = (Gz)Π1−→Π2 .

Definition 5.3.7 (Bounded Color Class Set Stabilizer BC-STAB)

Input : A groupG ≤ Sym(Ω) given by a generating set whereΩ = C1⊎C2 · · ·⊎Cm
and for eachi, Ci isG-stable,z ∈ Sym(Ω) and a subsetΠ ⊆ Ω.

Parameter : b = max{|C1|, · · · , |Cm|}.

Output : (Gz)Π = {x ∈ Gz | Πx = Π}.

If we setΠ1 = Π andΠ2 = Π in Definition 5.3.2 of BC-TRANS, we get BC-STAB

problem. Thus, by Theorem 5.3.6 this problem can also be solved in time2O(b)poly(n)

wheren = |Ω|.

Corollary 5.3.8 The problem BC-STAB can be solved in time2O(b)poly(n).

5.3.2 Coset Intersection

The coset intersection problem in its full generality is defined as follows.

Definition 5.3.9 (Coset Intersection)

Input : Two groupsG,H ≤ Sym(Ω) be given by generating sets andx, y ∈
Sym(Ω).

Output : Gx ∩Hy.

Graph Isomorphims is known to be polynomial-time reducibleto Coset Intersection

[82] since Coset Intersection is polynomial time many-one equivalent to Set Transporter.

However, the known polynomial-time reduction between these problems increases the

parameter value; it is not a paramterized reduction [45]. Therefore, we cannot invoke

101

Chapter 5. An FPT Algorithm for Bounded Color Class Hypergraph Isomorphism

the algorithm for BC-TRANS to given an FPT algorithm for the parametrized version of

the coset intersection problem which we will define. In this section we present an FPT

algorithm for BC-INTER. This algorithm will be used to solvethe bounded color class

hypergraph isomorphism problem.

Definition 5.3.10 (BC-INTER)

Input : LetΩ = C1 ⊎ · · · ⊎ Cm. LetG,H ≤ Sym(Ω) be given by their generating

sets such that for eachi Ci is bothG-stable andH-stable,x, y ∈ Sym(Ω). Let |Ci| ≤ b

for all i.

Parameter : b = max{|C1|, · · · , |Cm|}.

Output : Gx ∩Hy.

Let L = G × H ≤ Sym(Ω) × Sym(Ω) = G. Let z = (x, y) ∈ G. Let Π =

{(a, a) | a ∈ Ω}. Notice that(Lz)Π = {x ∈ Lz | Πx = Π} projected to the first

or second coordinate isGx ∩ Hy. Since this is an instance of BC-STAB we could use

Corollary 5.3.8 to compute(Lz)Π. Unfortunately, such an algorithm for would take time

2O(b2)nO(1), since the groupL has color class size boundb2 (and notb). Nevertheless,

using a different algorithm we can still solve the problem in2O(b)nO(1) time.

Lemma 5.3.11 (Lz)Π can be computed in time2O(b)nO(1).

Proof. The main claim required to prove the lemma is stated below.

Claim 5.3.12 Let Ω1 = C ⊎ U andΩ2 = D ⊎ V . LetL ≤ Sym(Ω1) × Sym(Ω2) be

given by generating set such thatC andD areL-stable. Letz ∈ Sym(Ω1 × Ω2). Let

Π ⊆ C × D. Then(Lz)Π can be computed in time2O(b)nO(1) wheren = |Ω1| + |Ω2|
andb = max{|C|, |D|}.

Before proving the above claim, we apply it to prove the lemma. We will use the

following two consequences of Claim 5.3.12.

Claim 5.3.13 LetΩ1 = C1 ⊎ · · · ⊎Cl andΩ2 = D ⊎ V . LetL ≤ Sym(Ω1)× Sym(Ω2)

be a permutation group given by a generating set, such thatD and eachCi areL-stable

sets. Letz ∈ Sym(Ω1 × Ω2) andΠ ⊆ Ω1 × D. Then(Lz)Π can be computed in time

2O(b)nO(1) whereb = max{|D|, |C1|, · · · , |Cl|} andn = |Ω1|+ |Ω2|.

102

Chapter 5. An FPT Algorithm for Bounded Color Class Hypergraph Isomorphism

Proof. We define the setsΠi = Π ∩ (Ci ×D). We will repeatedly apply Claim 5.3.12.

To start off we first computeL1z1 = (Lz)Π1 . Then we apply Claim 5.3.12 to compute

Lizi = (Li−1zi−1)Πi
from Li−1zi−1 for i = 2, · · · , m. By Claim 5.3.12 it follows

that the time taken for this computation is2O(b)nO(1). We claim that for alli, Lizi =

(Lz)Π1⊎···⊎Πi
. This follows form the fact that((Lz)Π1⊎···⊎Πi−1

)Πi
= (Lz)Π1⊎···⊎Πi

. Thus

at the end of the computation we haveLmzm = (Lz)Π1⊎···⊎Πm = (Lz)Π.

Claim 5.3.14 LetΩ1 = C1 ⊎ · · · ⊎ Cl andΩ2 = D1 ⊎ · · · ⊎Dm. LetL ≤ Sym(Ω1)×
Sym(Ω2) be a permutation group give by a generating set such that eachCi and each

Dj is anL-stable subset. Letz ∈ Sym(Ω1 ×Ω2) andΠ ⊆ Ω1×Ω2. Then(Lz)Π can be

computed in time2O(b)nO(1) whereb = max{|Ci|, |Dj|}i,j andn = |Ω1|+ |Ω2|.

Proof. DefineΠj = (C1 ⊎ · · · ⊎ Cl) × Dj for j = 1, · · · , m. We can successively

computeLjzj = (Lj−1zj−1)Πj
for j = 1, · · · , m, by Claim 5.3.13. Finally, we observe

thatLmzm = (Lz)Π.

The proof of the lemma now follows easily by settingΩ1 = Ω2 = C1 ⊎ · · · ⊎ Cm in

Claim 5.3.14.

To prove Claim 5.3.12 we use ideas from [83]. In [83], the author defines a version of

set transporter problem and gives an algorithm that can be easily modified to be applied

in the parametrized setting. The parametrized version of the problem is defined below.

Definition 5.3.15

Input : LetΩ1 = C ⊎ U andΩ2 = D ⊎ V . LetL ≤ Sym(Ω1)× Sym(Ω2) be given

by generating set such thatC andD areL-stable. Letz ∈ Sym(Ω1) × Sym(Ω2). Let

Π ∈ C ×D andΘ ⊆ Φ×Ψ ⊆ C ×D. We also assume thatLΘ = L.

Parameter : b = max{|C|, |D|}.

Output : (Lz)Π[Θ] = {x ∈ Lz | (Π ∩Θ)x = Π ∩Θx}.

We can observe from [83] that(Lz)Π[Θ] can be computed in time2O(b)nO(1) where

n = |Ω1|+ |Ω2|. For the sake of completeness we now give a proof. We modify Luks’s

proof slightly to suit the current parametrized setting.

We assume without loss of generality that|Φ| and |Ψ| are powers of2. If not, we

can add some more points onΦ andΨ and letL act trivially on these points. This will

103

Chapter 5. An FPT Algorithm for Bounded Color Class Hypergraph Isomorphism

increase the size of the input only by a factor of4. These extra points can be removed

easily from the algorithm’s output.

SinceLΘ = L we haveΘx = Θz for all x ∈ Lz. If (Lz)Π[Θ] is not empty then for

x, y ∈ (Lz)Π[Θ] we have(Π ∩Θ)x = Π∩Θz = (Π∩Θ)y and hence(Lz)Π[Θ] is coset

of LΠ∩Θ. For simplicity we will denote(Lz)Π[Θ] by (Lz)[Θ].

If |Π ∩Θ| 6= |Π ∩Θz| then(Lz)[Θ] is empty.

Let |Π ∩ Θ| = |Π ∩ Θz| = 1. LetΠ ∩ Θ = {u} andΠ ∩ Θz = {v}. LetLu be the

stabilizer of the pointu which can be computed using Schreier-Sim method. Then we

can expressL as the disjoint union of cosets as

L = Lux1 ⊎ · · · ⊎ Luxk

and

Lz = Lux1z ⊎ · · · ⊎ Luxkz

We pick the subcosetLuxiz (if there is any) that mapsu to v.

Next we assume|Π ∩ Θ| = |Π ∩ Θz| > 1. If |Φ| > 1 we pickΦ1 ⊂ Φ such that

|Φ1| = |Φ|/2 and letΘ1 = Φ1 × Ψ. Otherwise if|Ψi| > 1 then we pickΨ1 ⊂ Ψ such

that |Ψ1| = |Ψ|/2 and letΘ1 = Φ×Ψ1. In both the cases we letΘ2 = Θ \Θ1.

LetM = LΘ1 . Notice that[L : M] ≤
(

|Φ|
|Φ|
2

)

≤ 2O(b), when we choose to divide

the setΦ. If we divide the setΨ then[L :M] ≤
(

|Ψ|
|Ψ|
2

)

which is still less than2O(b).

We writeL as the disjoint union of the cosets ofM

L =My1 ⊎ · · · ⊎Myt

and

Lz =My1z ⊎ · · · ⊎Mytz.

As discussed in the preliminary section of Chapter 2, this decomposition ofLz can be

computed in time2O(b)nO(1) using Schreier-Sims methodology. SinceM stabilizesΘ1,

(Myiz)[Θ1] will be a coset.

We use the following relation to setup the recursive calls

(Myiz)[Θ] = ((Myiz)[Θ1])[Θ2]

104

Chapter 5. An FPT Algorithm for Bounded Color Class Hypergraph Isomorphism

Finally we paste the answers to the subproblems(My1z)[Θ] to get(Lz)[Θ].

(Lz)[Θ] = ∪ti=1(Myiz)[Θ]

Clearly the running time is2O(b)nO(1).

Putting it together, we have shown the following.

Theorem 5.3.16There is a2O(b)nO(1) time bounded FPT algorithm forBC-INTER,

wheren = |Ω|.

5.4 FPT Algorithm for Colored Hypergraph Automor-

phism and Isomorphism

We will give an FPT algorithm for finding the automorphism group of a hypergraph (i.e.,

a set of generators for the automorphism group) which has running time(b!)2O(b)NO(1)

whereb is the bound on the size of the color classes andN is the sum of number of

vertices and edges.

Our algorithm is a dynamic programming algorithm. The subproblems of this dy-

namic programming algorithm will involve multi-hypergraphs. For this reason we be-

gin with a multihypergraphX = (V,E) whereV is partitioned into color classes

C1, · · · , Cm. We assume that|Ci| ≤ b for all i.

We first partition the edges into different sets of edges thatwe call blocks. We define

these more formally.

Definition 5.4.1 We say two edgese1, e2,∈ E are i-equivalentand writee1 ≡i e2 if

e1 ∩ Cj = e2 ∩ Cj, 1 ≤ j ≤ i.

For eachi this defines an equivalence relation. Thus,i-equivalence partitionsE into

equivalence classes that we term as(i)-blocks, 1 ≤ i ≤ m. Notice thati-equivalence is

a refinement ofj-equivalence fori > j. Thus, ife1 ande2 are in the same(i)-block then

they are in the same(j)-block for all j < i.

105

Chapter 5. An FPT Algorithm for Bounded Color Class Hypergraph Isomorphism

The algorithm proceeds in stages.

Stage 1.The first stage corresponds to the last color classm. LetA andA′ be two(m)-

blocks. The(m)-blocksA andA′ induce two multihypergraphsY andY ′ on the vertex

setCm respectively. The algorithm will find the set of isomorphisms ISOm(Y, Y
′)

between these two multihypergraphs. Notice that for alle1, e2 ∈ A, e1∩Cm = e2∩Cm =

a, for somea ⊆ Cm. Similarly, for all e′1, e
′
2 ∈ A′, e′1 ∩ Cm = e′2 ∩ Cm = a′. Thus

the multihypergraphY induced byA onCm has only one edgea with multiplicity |A|.
Similarly,Y ′ has one edge with multiplicity|A′|. Recall thatA andA′ may themselves

be multisets. Hence,|A| and|A′| are their sizes as multisets.

Clearly, ISOm(Y, Y
′) = φ if |A| 6= |A′|. Otherwise,ISOm(Y, Y

′) ⊆ Sym(Cm)

will be the coset that mapsa to a′. Notice that this is a set transporter problem and can

be solved in time2O(b) by Theorem 5.3.6. For all pairs of(m)-blocksA andA′, the

dynamic programming algorithm stores the setISOm(Y, Y
′) in a table whereY andY ′

are the multihypergraph induced byA andA′ respectively.

Stagem − i + 1. Them − i + 1th stage of the algorithm handles(i)-blocks. Let

A andA′ be two(i)-blocks. LetY andY ′ be the multihypergraphs induced byA and

A′, respectively, on the vertex setCi ∪ · · · ∪ Cm. Thus,V (Y) = Ci ∪ · · · ∪ Cm and

E(Y) = {{e∩Ci ∪ · · · ∪Cm | e ∈ A}}. The multihypergraphY ′ = (V (Y ′), E(Y ′)) is

similarly defined.

In this stage the algorithm will compute the cosetISOi(Y, Y
′) of all isomorphisms

betweenY andY ′ and store the result in the(A,A′) entry of the dynamic progamming

table. We explain how the computation is done.

Clearly ISOi(Y, Y
′) is empty if the size of the multiedge setsE(Y) andE(Y ′) of

these two multihypergraphs differ. SupposeE(Y) andE(Y ′) has same size as multisets.

For alle1, e2 ∈ A let e1∩Ci = e2∩Ci = a, and for alle′1, e
′
2 ∈ A′ let e′1∩Ci = e′2∩Ci =

a′. LetS ⊆ Sym(Ci) be the set consisting of permutations that mapa toa′. If S is empty

then so isISOi(Y, Y
′). SupposeS is nonempty. Letρ be a permutation onCi+1 ∪ · · · ∪

Cm that mapsY to Y ′ isomorphicallywhen restrictedto color classesCi+1, · · · , Cm.

Let ρ′ ∈ S be any permutation. Then, becauseA andA′ are(i)-blocks we have(ρ, ρ′) ∈
ISOi(Y, Y

′), where(ρ, ρ′) denotes the permutation obtained by extendingρ with ρ′ on

the color classCi.

The (i)-block A can be partitioned into(i + 1)-blocksA1, · · · , Ak. Similarly, A′

106

Chapter 5. An FPT Algorithm for Bounded Color Class Hypergraph Isomorphism

can be partitioned into(i + 1)-blocksA′
1, · · · , A′

k′. For eachj, the (i + 1)-block Aj
induces a multihypergraphZj on the color classesCi+1, · · · , Cm. More specifically,

V (Zj) = Ci+1 ∪ · · · ∪ Cm andE(Zj) = {{e ∩ V (Zj) | e ∈ A}}. Similarly, letZ ′
j′ be

the multihypergraph induced by the(i+ 1)-blockA′
j′.

If k 6= k′ thenISOi(Y, Y
′) = ∅. Supposek = k′. For eachs andt the algorithm has

already computed in Stagem− i the cosetISOi+1(Zs, Z
′
t) and stored it in the table. We

can use these cosets to efficiently computeISOi(Y, Y
′). Let as = e∩Ci+1, e ∈ As and

a′t = e′ ∩ Ci+1, e′ ∈ A′
t. For eachρ ∈ Sym(Ci+1) the algorithm will do the following.

If {a1, · · · , ak}ρ 6= {a′1, · · · , a′k} then discard theρ and move to the next permutation

in Sym(Ci+1). Otherwise letaρj = a′π(j) where the permutationπ : [k] −→ [k] is the

corresponding mapping of indices from the(i + 1)-blocksA1, · · · , Ak to A′
1, · · · , A′

k.

Let the coset of isomorphismsISOi+1(Zj, Z
′
π(j)) be denoted by

Hjπ(j)σjπ(j) = ISOi+1(Zj, Z
′
π(j)).

Now, applying Theorem 5.3.16 the algorithm can compute the intersection

Hρσρ = ∩kj=1Hjπ(j)σjπ(j).

As k ≤ 2b, notice that the algorithm of Theorem 5.3.16 will take time bounded by

2O(b)NO(1). Next the algorithm will paste these cosets for all the differentρ ∈ Sym(Ci+1)

to form a single coset

Hσ = ∪ρ∈Sym(Ci+1)Hρσρ.

ConsiderS×Hσ. It is clear thatS is a coset andS×Hσ containsISOi(Y, Y
′). Cru-

cially, sinceA andA′ are both(i)-blocks it follows thatISOi(Y, Y
′) = S ×Hσ. Thus,

the algorithm has computedISOi(Y, Y
′) and will store it in the table corresponding to

the entry(A,A′).

We analyze the running time at this stage. The number of blocks at any stage is

bounded by the number of edges ofX. Thus, the(m− i+1)th stage takes time bounded

by b!2O(b)NO(1), where theb! factor is because we cycle through all theρ ∈ Sym(Ci+1).

Finally, in themth stage the algorithm will process all the pairs of(1)-blocks in

the same way as described above. In order to compute Aut(X) the algorithm does the

following.

Let A1, · · · , Ak be the(1)-blocks and letY1, · · · , Yk respectively be the multihy-

107

Chapter 5. An FPT Algorithm for Bounded Color Class Hypergraph Isomorphism

pergraphs induced onC1 ∪ · · · ∪ Cm. Let aj = e ∩ C1 wheree ∈ Aj . Notice that a

permutationρ ∈ Sym(C1) may or may not induce a permutation on the set{a1, · · · , ak}
depending on whether{a1, · · · , ak}ρ = {a1, · · · , ak} or not. Ifρ induces a permutation,

let π ∈ Sk be the permutation, i.e.,aρj = aπ(j). LetHjπ(j)σjπ(j) = ISO1(Yj, Yπ(j)). The

algorithm then computes

Hρσρ = ∩kj=1Hjπ(j)σjπ(j).

Finally, the algorithm pastes theseHρσρ to get the automorphism group

Aut(X) = ∪ρ∈Sym(C1)Hρσρ.

It is easy to check that the algorithm takes timeb!2O(b)NO(1) time to compute Aut(X).

Theorem 5.4.2 Let X = (V,E) be a colored hypergraph withV = C1 ⊎ · · · ⊎ Cm

whereCi is colored with colori and |Ci| ≤ b for all i. LetN be the sum of number of

vertices and edges ofX. GivenX as input there is an algorithm that computesAut(X)

in timeb!2O(b)NO(1).

Next we indicate how the above algorithm can be easily modified to give isomor-

phisms algorithm for colored hypergraphs with same runningtime. LetX = (V,E)

andX ′ = (V ′, E ′) be two colored hypergraphs. Without loss of generality we assume

V = V ′ = C1 ⊎ · · · ⊎ Cm whereCi is theith color class. As before we partition the

edges of both the hypergraphs into(i)-block for all i. Again we computeISOi(Y, Y
′)

whereY andY ′ are multihypergraphs induced by(i)-block pair(A,A′), with the only

difference that the blockA comes form hypergraphX andA′ formX ′. In the final step

we compute the set of isomorphismISO(X,X ′) fromX toX ′. Thus we have

Theorem 5.4.3 Let X = (V,E) andX ′ = (V,E ′) be two colored hypergraphs with

V = C1 ⊎ · · · ⊎ Cm whereCi is colored with colori and |Ci| ≤ b for all i. LetN

be the sum of number of vertices and edges ofX. GivenX andX ′ as input there is

an algorithm that computes the setISO(X,X ′) of isomorphism formX toX ′ in time

b!2O(b)NO(1).

108

6
Space Complexity of K-tree Isomorphism

and Canonization

6.1 Introduction

It often turns out that NP-hard graph problems when restricted to the class ofpartial

k-treesfor constantk have efficient polynomial-time algorithms [33, 95]. Partial k-trees

are also known as the class of graphs of treewidthk. For constantk, in general, they

are known asbounded treewidth graphs(formal definitions are given in Section 6.3).

Bodlaender [34] gave the first polynomial-time algorithm for testing the isomorphism

of partialk-trees. Bodlaender’s algorithm, based on dynamic programming, runs in time

O(nk+4.5).

Our interest is in acomplexity-theoreticcharacterization of Graph Isomorphism for

partial k-trees using space bounded complexity classes. We explain our motivation

for studying the space complexity ofk-tree isomorphism. On the one hand, we have

Lindell’s result [79, 69] that tree canonization is complete for deterministic logspace,1

which tightly characterizes the complexity of both isomorphism and canonization of

trees. What about partialk-tree isomorphism? The recent TC1 upper bound for iso-

morphism of partialk-trees by Grohe and Verbitsky [60] raises the question abouta

tight complexity-theoretic classification of the problem.It is tempting to conjecture that

partialk-tree isomorphism should also be complete for deterministic logspace, just like

ordinary tree isomorphism. However, the best known complexity bound for even rec-

1Provided that the tree is given in the pointer notation; using the parenthesis notation the problem is
NC1-complete [37, 69].

109

Chapter 6. Space Complexity of K-tree Isomorphism and Canonization

ognizing partialk-trees is LOGCFL (the class of decision problems that are logspace

many-one reducible to CFLs) [110].

The TC1 bound of [60] suggests that we can put the problem in a naturalcomplexity

class contained in TC1 like LOGCFL or DET, or perhaps somewhere in the logspace

counting hierarchy. The logspace counting classes, introduced in the seminal paper

[7], contain many natural problems sitting in NC2 and have been used to characterize

most natural problems in NC2 satisfactorily from a complexity-theoretic viewpoint. A

comprehensive study can be found in Allender’s survey article [5].

The content of this chapter is based on [12]. In this chapter we show thatfull k-tree

canonization is in FLNL. Recall that thecanonization problemfor graphs is to produce

a canonical formCF(X) for a given graphX such thatCF(X) is isomorphic toX and

CF(X1) = CF(X2) for any pair of isomorphic graphsX1 andX2. It is easy to see that

Graph Isomorphism isAC0 reducible to Graph Canonization. However, in general it is

not known if the two problems are even polynomial-time equivalent.

Interestingly, the NL oracle required fork-tree canonization is a language com-

puted by an NL machineM that is strongly unambiguous: for any two configura-

tionsx andy of machineM there is at most one computation path fromx to y. The

class of languages accepted by such NL machines is denotedStUSPACE(log n) (StUL

for short) by Allender and Lange [6]. As shown in [6],StUL is in fact contained in

DSPACE(log2 n/ log log n), improving the DSPACE(log2 n) bound given by Savitch’s

theorem. Furthermore, the complexity classStUL is closed under complementation and

even closed under logspace Turing reductions [36, Corollary 15]. Thus, it follows that

k-tree isomorphism is inStUL. The classStUL is not known to be contained in L.

In fact, it contains the classULIN of unambiguous linear languages [36] which is not

known to be inL.

Recently, based on similar approach it has been shown thatk-tree isomorphism is in

L [74]. In Section 6.5 we briefly sketch their algorithm.

We note that parallel algorithms are known fork-tree isomorphism. For example,

in [59] a processor efficientAC2 algorithm was given fork-tree isomorphism. Since

StUL ⊆ UL ⊆ NL ⊆ AC1, our upper bound is tighter than previously known bounds

from a complexity-theoretic perspective.

We also look into the problem of canonizingk-paths, a special case ofk-trees, and

give a logspace canonization algorithm fork-paths. We show thatk-path isomorphism

is complete for L.

110

Chapter 6. Space Complexity of K-tree Isomorphism and Canonization

6.2 Preliminaries

In this chapter, for a graphX, letV (X) denote its vertex set andE(X) denote its edge

set. The set{w ∈ V (X) | {v, w} ∈ E(X)} of all neighborsof v ∈ V (X) is denoted

byN(v). For a subsetU ⊆ V (X), we useX [U] to denote theinduced subgraphof X,

whereV (X [U]) = U andE(X [U]) = {e ∈ E(X) | e ⊆ U}.

Next we recall some complexity classes defined by circuits and some space bounded

classes.

A languageA is in the complexity class NCi (resp.ACi) if there is a uniform family

of circuits{Cn}n of depthO(logi n) and sizepoly(n) with internalAND ,OR andNOT

gates with bounded (resp. unbounded) fan-in that acceptsA. TCi is the extension ofACi

where we additionally allow unboundedMAJORITY gates.

The complexity classL consists of all languagesA accepted by a deterministic

O(logn) space bounded Turing machine. NL is defined in the same way by using non-

deterministic machines. FL is the class of all functions computable by a deterministic

O(logn) space bounded Turing machine.

A nondeterministic Turing machineM is calledunambiguous, if for any inputx, it

has at most one accepting computation path.

M is said to bereach-unambiguousif it is unambiguous and for any inputx, there is

at most one computation path from the starting configurationto any other configuration.

M is said to bestrongly unambiguousif it is unambiguous and for any pair of con-

figurationsu andv of M there is at most one computation path fromu to v.

A mangroveis a directed acyclic graph such that there is at most one directed path

from i to j for any two nodesi andj in the graph. In other words, a directed graph

is a mangrove if and only if for any nodeu the subgraph induced byu and all nodes

reachable fromu is a rooted directed tree.

Note that an unambiguous machineM is strongly unambiguous if and only if its

configuration graph is a mangrove.

A languageA is in the classUL (RUL, StUL) if there is anO(logn) space bounded

unambiguous (reach-unambiguous, strongly unambiguous, respectively) Turing machine

acceptingA. It is well known that

NC1 ⊆ L ⊆ StUL ⊆ RUL ⊆ UL ⊆ NL ⊆ AC1 ⊆ TC1 ⊆ NC2.

111

Chapter 6. Space Complexity of K-tree Isomorphism and Canonization

The following result of Allender and Lange [6] shows that Savitch’s log2 n space deter-

ministic simulation of NL can be improved forStUL andRUL.

Theorem 6.2.1 [6] StUL ⊆ RUL ⊆ DSPACE(log2 n/ log log n).

6.3 k-Tree Canonization

We define the classes ofk-trees and partialk-trees in the following definition (see [65]).

Definition 6.3.1 The class ofk-treesis inductively defined as follows.

• A clique withk vertices (k-clique for short) is ak-tree.

• Given ak-treeX ′ withn vertices, ak-treeX withn+1 vertices can be constructed

by introducing a new vertexv and picking ak-cliqueC in X ′ and then joiningv

to each vertexu in C. Thus,V (X) = V (X ′) ∪ {v}, E(X) = E(X ′) ∪ {{u, v} |
u ∈ C}.

A partialk-treeis a subgraph of ak-tree.

Before we go into thek-tree canonization we notice that the following characterization

of k-trees gives a logspace algorithm for recognizingk-trees.

Definition 6.3.2 [72] LetX = (V,E) be a graph. A subsetS of V is called avertex

separatorfor two nonadjacent verticesu, v ∈ V , if in the subgraph ofX induced by the

vertex setV − S the two verticesu, v are in different connected components. A vertex

separatorS for u, v is called minimal, if no proper subset ofS is a vertex separator

for u and v. A subsetS ⊆ V is a minimal vertex separatorif S is a minimal vertex

separator for some pair of verticesu, v ∈ V .

Lemma 6.3.3 [40] A graphX with n > k vertices is ak-tree if and only if

• every pair of nonadjacent verticesu and v has ak-clique as a minimal vertex

separator and

• E(X) contains exactly
(

k
2

)

+ k(n− k) edges.

112

Chapter 6. Space Complexity of K-tree Isomorphism and Canonization

It is easy to see that the two conditions of Lemma 6.3.3 can be checked in logspace.

Hence, from now on we can assume that the input graphX is a k-tree. Further we

assume thatV (X) = {1, . . . , n}.

Our algorithm fork-tree canonization works by reducing the problem to the prob-

lem of canonizing certain labeled trees that encode essential information aboutk-trees.

Our initial goal is to define this labeled tree. For this we usethe concept of the layer

decomposition of ak-tree with respect to a baseB. This concept was introduced in [71]

for testing isomorphism in hookup classes. Subsequently, it was used in [39, 59] for the

design of efficientk-tree isomorphism algorithms.

Definition 6.3.4 (cf. [71, 59])LetX = (V,E) be ak-tree and letB ⊆ V be ak-clique

in X. Then theB-decompositionofG is the sequence of setsB(0), . . . , B(p) such that

B(0) = B andp = max{i ≥ 0 | B(i) 6= ∅}, whereB(i+ 1) is inductively defined by

B(i+ 1) = {v ∈ V − B[i] | N(v) ∩ B[i] is ak-clique}.

Here,B[i] denotes the unionB[i] = B(0) ∪ · · · ∪B(i).

The setB(i) is called theith layer of theB-decomposition ofX. Intuitively, the layers

of theB-decomposition indicate the order in which vertices could be added toX when

we chooseB as the initialk-clique. More precisely, starting with thek-treeX0 = X [B],

Xi+1 = X [B[i + 1]] can be constructed fromXi = X [B[i]] by adding the vertices in

B(i+1) toXi. Recall thatv can be added toXi if and only if the setN(v)∩B[i] of v’s

neighbors inB[i], henceforth denoted byNi(v), induces ak-clique inXi. In [71], this

setNi(v) is called thesupportof v ∈ B(i)).

If this process is successful, i.e., if each vertices ofX is covered by some layerB(i),

thenB is called abaseof X (cf. [71]).

We first show that anyk-cliqueB inX can be used as a base for constructingX (see

Lemma 6.3.8).

Definition 6.3.5 A vertexv of ak-treeX is calledsimplicial, if N(v) induces ak-clique

in X.

Claim 6.3.6 Anyk-treeX with n ≥ k+2 vertices has at least two nonadjacent simpli-

cial vertices.

113

Chapter 6. Space Complexity of K-tree Isomorphism and Canonization

Proof. The proof is by induction onn. If n = k + 2, thenX is obtained from a

(k + 1)-cliqueX ′ by choosing ak-cliqueC in X ′ and introducing a new nodev which

is joined to each vertex inC. Let u be the unique vertex inX ′ not covered byC. Then

u andv are two nonadjacent simplicial vertices inX. For the inductive step assume that

X hasn > k + 2 vertices. ThenX has been obtained from ak-treeX ′ by introducing a

new nodev and joining it to each vertex in ak-cliqueC of X ′. Clearly,v is simplicial

in X. Further, by the induction hypothesis,X ′ has two nonadjacent simplicial vertices

u1 andu2. Sinceu1 andu2 are nonadjacent, at least one of them does not belong toC

and therefore it is also simplicial inX.

Claim 6.3.7 LetB be ak-clique of ak-treeX with n ≥ k + 1 vertices. ThenX has a

simplicial vertexv /∈ B.

Proof. If n = k + 1, then the only vertex not inB is simplicial. If n > k + 1, then

Claim 6.3.6 guarantees the existence of two nonadjacent simplicial vertices that cannot

be both inB.

Lemma 6.3.8 For any k-treeX = (V,E) and anyk-cliqueB, theB-decomposition

forms a partition ofV .

Proof. The proof is by induction onn. The base casen = k is clear. For the inductive

step assume thatn ≥ k + 1 and letB(0), . . . , B(p) be theB-decomposition ofX. By

Claim 6.3.7,X has a simplicial vertexv not inB. It is easy to prove thatX − v is a

k-tree and hence, by the induction hypothesis, theB-decompositionB′(0), . . . , B′(p′)

of X − v forms a partition ofV −{v}. Now leti ≥ 0 be the minimum integer such that

N(v) ⊆ B′[i]. Then it follows thatB(i + 1) = B′(i + 1) ∪ {v} andB(j) = B′(j) for

all j 6= i+ 1, implying thatV = B[p].

The following properties of theB-decomposition have been proved in [71].

Proposition 6.3.9 If B is a base for ak-treeX = (V,E), then theB-decomposition

B(0), . . . , B(p) has the following properties.

1. Any two vertices inB(i), i ≥ 1, are nonadjacent. Hence,Ni−1(v) = Ni(v) for

any vertexv ∈ B(i).

114

Chapter 6. Space Complexity of K-tree Isomorphism and Canonization

2. Any vertexv ∈ B(i), i ≥ 2, has a unique neighborf(v) ∈ B(i − 1), called the

fatherof v w.r.t.B.

In order to efficiently compute information on theB-decomposition of ak-treeX

we use a directed graphD(X,B) which is defined as follows (wheneverX andB are

clear from the context we simply writeD instead ofD(X,B)). D has the vertex set

V (D) = {B} ∪ {(C, v) | v 6∈ C andC ∪ {v} is a(k + 1)-clique inX}

and the vertices ofD are joined by the directed edges in the set

E(D) = {(B, (B, v)) | (B, v) ∈ V (D)} ∪
{((C, v), (C ′, v′)) | v ∈ C ′, v′ 6∈ C, |C ∩ C ′| = k − 1}.

This means that inD we provide a transition from(C, v) to (C ′, v′) if C ′ can be obtained

fromC by replacing some vertexu ∈ C by v, i.e.,C ′ = (C −{u})∪{v}. Our next aim

is to show thatD is a mangrove (see Lemma 6.3.12).

Claim 6.3.10 For any vertexv ∈ B(i), i ≥ 1,D has a directed path of lengthi fromB

to (Ni−1(v), v).

Proof. We prove the claim by induction oni. The base casei = 1 is clear. For the

inductive step assume thatv ∈ B(i), i ≥ 2 and letf(v) ∈ B(i − 1) be the father of

v. By the induction hypothesis it follows thatD has a directed path of lengthi − 1

from B to (Ni−2(f(v)), f(v)). Clearly,f(v) ∈ Ni−1(v) andv 6∈ Ni−2(f(v)). Further,

sincef(v) is the only vertex inNi−1(v) belonging toB(i − 1), the remainingk − 1

vertices belong toB[i − 2] and, as they are also neighbors off(v), they belong to the

supportNi−2(f(v)) of f(v). This shows thatD has an edge from(Ni−2(f(v)), f(v)) to

(Ni−1(v), v).

Claim 6.3.11 If D has a directed pathB, (C1, v1), . . . , (Ci−1, vi−1), (C, v) of lengthi ≥
1 fromB to some vertex(C, v), thenv ∈ B(i) andC = Ni−1(v) ⊆ B ∪ {v1, . . . , vi−1}.

Proof. Again the proof is by induction oni. If E(D) contains the edge(B, (B, v)),

then clearlyv ∈ B(1) via the supportN0(v) = B.

115

Chapter 6. Space Complexity of K-tree Isomorphism and Canonization

For the inductive step let us assume thatB, (C1, v1), . . . , (Ci−1, vi−1), (C, v) is a

directed path of lengthi ≥ 2 from B to (C, v). Then by the induction hypothesis it

follows thatvi−1 ∈ B(i−1) via the supportCi−1 = Ni−2(vi−1) ⊆ B∪{v1, . . . , vi−2}. As

Ni−2(vi−1) = Ni−1(vi−1) by part 1 of Proposition 6.3.9, this implies thatCi−1 contains

all neighbors ofvi−1 in B[i − 1]. Sincev is a neighbor ofvi−1 that does not belong

to Ci−1, v cannot be inB[i − 1]. As ((Ci−1, vi−1), (C, v)) ∈ E(D), it follows thatC

is obtained fromCi−1 by replacing some vertexu in Ci−1 by vi−1, i.e.,C = (Ci−1 −
{u}) ∪ {vi−1} ⊆ B ∪ {v1, . . . , vi−1}. Hence, all vertices inC belong toB[i − 1] and

are adjacent tov, implying thatv ∈ B(i) via the supportNi−1(v) = C (notice that

C (Ni−1(v) would implyv /∈ B[p]).

Lemma 6.3.12 For anyk-cliqueB in a k-treeX, the graphD(X,B) is a mangrove.

Proof. We first show thatD = D(X,B) does not have different paths fromB to the

same node(C, v).

By Claim 6.3.11, all paths fromB to (C, v) have the same length. In order to derive

a contradiction leti be minimal such that there are two different paths

B, (C1, v1), . . . , (Ci−1, vi−1), (C, v) and,

B, (C ′
1, v

′
1), . . . , (C

′
i−1, v

′
i−1), (C, v)

of lengthi from B to some node(C, v). Thenvi−1 andv′i−1 must be different, since

otherwise Claim 6.3.10 implies thatCi−1 = Ni−2(vi−1) = Ni−2(v
′
i−1) = C ′

i−1, contra-

dicting the minimality of the path lengthi. But now Claim 6.3.11 implies thatvi−1 and

v′i−1 both belong toB(i − 1) as well as to the supportC of v, contradicting part 2 of

Proposition 6.3.9.

To complete the proof suppose there are different directed paths between two nodes

(C, v) and(C ′, v′) in D(X,B). Then we would also have different directed paths be-

tween the two nodesC and(C ′, v′) in D(X,C), contradicting the argument above.

Now let T = T (X,B) be the subgraph ofD(X,B) induced by the vertices reachable

fromB. Then Lemma 6.3.12 implies thatT is a directed rooted tree with rootB.

In fact, from Claims 6.3.10 and 6.3.11 it is immediate that byprojecting the first

component out from the nodes(C, v) ∈ V (T) we get exactly the treeT (X) defined in

116

Chapter 6. Space Complexity of K-tree Isomorphism and Canonization

[71]. There, the following labeling with respect to a bijection θ : B → {1, 2, . . . , k} has

been defined.

Let (C, v) be a node inT . W.l.o.g. suppose thatC = {v1, . . . , vk} whereC ∩ B =

{v1, . . . , vm} for somem ≤ k. Notice that by part 1 of Proposition 6.3.9, thek − m

vertices inC − B belong tok − m different layersB(i1), . . . , B(ik−m). Then vertex

(C, v) is labeled by the set{θ(v1), . . . , θ(vm), k + i1, . . . , k + ik−m}.

We denote the treeT together with this labeling byT (X,B, θ). The following the-

orem is due to [71].

Theorem 6.3.13LetX andX ′ be twok-trees, letB be a base forX and letθ : B −→
{1, . . . , k} be a bijection. ThenX andX ′ are isomorphic if and only if there exists a

baseB′ for X ′ and a bijectionθ′ : B′ → {1, . . . , k} such that the two labeled trees

T (X,B, θ) andT (X ′, B′, θ′) are isomorphic.

The proof of Theorem 6.3.13 crucially hinges on the fact thateach isomorphic copyT ′

of the labeled treeT (X,B, θ) provides enough information to reconstructX from T ′

up to isomorphism. To see why, fori ≥ 1 let Bi be the set of vertices ofT ′ that have

distancei from the root ofT ′ and letp be the maximum distance of any vertex inT ′

from the root. Then starting with ak-cliqueX0 we can successively add in parallel all

the verticesv ∈ Bi toXi−1 for i = 1, . . . , p. The crucial observation is that the labeling

{θ(v1), . . . , θ(vm), k+ i1, . . . , k+ ik−m} of the nodev in T ′ tells us to which vertices in

Xi−1 vertexv should be connected (recall that Claim 6.3.11 guarantees that all vertices

in the support of a node either belong to the base or lie on the path from the root to that

vertex in the corresponding tree).

To canonizek-trees we use Lindell’s [79] deterministic logspace canonization algo-

rithm for trees which can be made to work for any labeled tree by constructing gadgets

for labels. More precisely, consider the algorithmA that on input ak-treeX computes

the canon of all labeled treesT (X,B, θ) for all k-cliquesB in X and all bijections

θ : B → {1, . . . , k} and picks the lexicographically least among them. Then Theo-

rem 6.3.13 implies that

• if two k-treesX andH are isomorphic then any tree of the formT (X,B, θ) is

isomorphic to some tree of the formT (H,B′, θ′) and

• if X andH are non-isomorphic then no tree of the formT (X,B, θ) is isomorphic

to some tree of the formT (H,B′, θ′).

117

Chapter 6. Space Complexity of K-tree Isomorphism and Canonization

Hence,A outputs the same treeT for bothk-treesX andH if and only ifX andH are

isomorphic, implying thatA computes a complete invariant fork-trees.

Furthermore, as explained above, the output treeT ofA on inputX provides enough

information to reconstructX from T in logspace up to isomorphism. The combination

of A with this reconstruction procedure thus yields the desiredcanonization algorithm

A′ for k-trees. It remains to show thatA can be implemented in FLStUL. In the next

lemma we show that the labeled treesT (X,B, θ) can be computed in logspace relative

to some oracle inStUL. The following claim provides this oracle.

Claim 6.3.14 The problem of deciding whether a vertex(C, v) ofD has distancei from

B is in StUL.

Proof. The algorithm tries to guess a path of lengthi from B to (C, v) in the tree

T = T (X,B). For that, starting with vertexB, it iteratively guesses a next node(C ′, v′)

and checks ifT provides an edge from the actual node to that node. If afteri steps the

algorithm reaches(C, v) then it accepts, otherwise it rejects. Clearly, the algorithm runs

in logspace since it has to store only two nodes ofT and some counters. SinceD(X,B)

is a mangrove by Claim 6.3.12, it is easy to see that the configuration graph is also a

mangrove.

Lemma 6.3.15 On input ak-treeX, a k-cliqueB and a bijectionθ : B → {1, . . . , k},

the labeled treeT (X,B, θ) can be computed in logspace relative to some oracle in

StUL.

Proof. The algorithm for generatingT = T (X,B, θ) first outputsV (T) by checking

for each node(C, v) in V (D) whether it is reachable fromB by using theStUL oracle

of Claim 6.3.14. If so, it computes the label of(C, v) by recomputing the layer numbers

of all the vertices inC (again using theStUL oracle). Finally, for each distinct pair of

nodes inV (T) it checks whetherD provides a directed edge between them.

This shows that the algorithmA described above can indeed be implemented in logspace

relative to some oracle inStUL. Hence, we can state our main result.

Theorem 6.3.16For each fixedk there is a canonizing algorithm fork-trees that runs

in FLStUL.

118

Chapter 6. Space Complexity of K-tree Isomorphism and Canonization

AsStUL is closed under logspace Turing reductions [36, Corollary 15], we immediately

get the following complexity upper bound for testing isomorphism fork-trees.

Corollary 6.3.17 The isomorphism problem fork-trees is inStUL.

Let X be ak-tree. Letφ : V (X) −→ C be a coloring ofX, whereC is a set

of colors. LetB be ak-clique ofX andθ : B −→ {1, · · · , k} be a bijection. We

define a rooted labeled treeT = T (X, φ,B, θ) as follows. The vertices and edges

of T (X, φ,B, θ) are same as ofT (X,B, θ). The only difference betweenT (X,B, θ)

andT (X, φ,B, θ) is in the labelling. The root ofT (X, φ,B, θ) is labeled by the set

{(θ(v), φ(v)) | v ∈ B}. Let (C, v) be a node inT . Let C = {v1, . . . , vk} where

C ∩ B = {v1, . . . , vm} for somem ≤ k. Suppose thek −m vertices inC − B belong

to k−m different layersB(i1), . . . , B(ik−m). Then vertex(C, v) is labeled by the tuple

({(θ(v1), φ(v1)), · · · , (θ(vm), φ(vm)), i1, · · · , ik−m}, φ(v)).

Theorem 6.3.18LetX = (V,E) andX ′ = (V ′, E ′) be twok-trees. Letφ : V −→ C

andφ′ : V ′ −→ C be two colorings of the graphsX andX ′ respectively. LetB be ak-

clique ofX andθ : B −→ {1, · · · , k} be a bijection. ThenX andX ′ are isomorphic as

colored graphs if and only if there is ak-cliqueB′ and bijectionθ′ : B′ −→ {1, · · · , k}
such thatT (X, φ,B, θ) is isomorphic toT (X ′, φ′, B′, θ′).

Proof. If X andX ′ are isomorphic as colored graphs via the isomorphism

τ : V (X) −→ V (X ′)

then it is easy to check thatT (X, φ,B, θ) is isomorphic toT (X ′, φ′, τ(B), θ′) where

θ′ : τ(B) −→ {1, · · · , k} is the bijection which satisfiesθ′(v′) = θ(τ−1(v′)) for all

v′ ∈ τ(B).

For the other direction supposeT = T (X, φ,B, θ) andT ′ = T (X ′, φ′, B′, θ′) are

isomorphic for somek-cliqueB′ and bijectionθ′ : B′ −→ {1, · · · , k} via the iso-

morphismτ . We define a mapτ : V (X) −→ V (X ′) as follows. Let(C, v) be

a vertex ofT (X, φ,B, θ). Let τ((C, v)) = (C ′, v′). Then defineτ(v) = v′. Let

v ∈ B. The root ofT will have (θ(v), φ(v)) in its label. AsT andT ′ are isomor-

phic their their roots get same color. So, there will be some vertexv′ ∈ B′ such that

(θ′(v′), φ′(v′)) = (θ(v), φ(v)). Then defineτ(v) = v′. We will prove by induction on

119

Chapter 6. Space Complexity of K-tree Isomorphism and Canonization

the numbern of the vertices ofX that if T andT ′ are isomorphic thenτ is an isomor-

phism betweenX andX ′ that preserves color.

The base case (n = k) is easy. So, we assumen > k. As the height of the tree

corresponds to the number of layers 6.3.10 and sinceT = T (X, φ,B, θ) is isomorphic

to T ′ = T (X ′, φ′, B′, θ′), X andX ′ will have same numberp of layers with respect to

B andB′ respectively. LetB(0), · · · , B(p) andB′(0), · · · , B′(p) be the layers ofX

andX ′ respectively. Letv ∈ B(p) be a simplicial vertex inX. Let (C, v) be the node

containingv in T . Let τ ((C, v)) = (C ′, v′). It is clear thatT (X−{v}, φ |V−{v}, B, θ) =

T (X, φ,B, θ) − {(C, v)} will be isomorphic toT (X ′ − {v′}, φ′ |V ′−{v′}, B
′, θ′) =

T (X ′, φ′, B′, θ′)−{(C ′, v′)} via τ restricted to the nodes ofT (X−{v}, φ |V−{v}, B, θ).

So, by induction hypothesisτ |V−{v} will be an isomorphism betweenX − {v} and

X ′ − {v′}. Now, τ(v) = v′ by the definition ofτ (remember,τ ((C, v)) = (C ′, v′)).

Notice thatφ(v) = φ(v′). Thusτ preserves color, as by induction hypothesisτ |V−{v}

preserves color.

Let {v, w} ∈ E. By induction hypothesis, it is enough to prove{τ(w), τ(v)} ∈ E ′.

Supposew ∈ B(0) = B. Then asv is simplicialw ∈ C. Hence(C, v) gets(θ(w), φ(w))

in its label. The node(C ′, v′) can get this label only fromτ(w). Thus,τ(w) ∈ C ′ and

{τ(w), τ(v)} = {τ(w), v′}} ∈ E(X ′).

Let w ∈ B(i), wherei > 0. Let u ∈ B(p − 1) be the father ofv in theB-

decomposition ofX. Let (Cu, u) be the node inT corresponding tou. Similarly, let

u′ ∈ B′(p − 1) be the father ofv′ in theB′-decomposition ofX ′ and(Cu′, u) be the

node inT ′ corresponding tou′. As τ ((C, v)) = (C ′, v′), the isomorphismτ must also

map the only neighbor(Cu, u) of (C, v) to the only neighbor(Cu′, u′) of (C ′, v′), i.e.,

τ ((Cu, u)) = (Cu′ , u
′). Thus, τ(u) = u′. If w = u then, by the above reasoning

{τ(v), τ(w)} = {v′, u′} ∈ E ′. If w 6= u thenw ∈ B(i) where0 < i < p − 1. Let

(Cw, w) be the node ofT that corresponds tow. Let τ ((Cw, w)) = (Cw′, w′). So,

τ(w) = w′. As τ is an isomorphism betweenT andT ′, the distance of(Cw, w) from

the root ofT must be same as the distance of(Cw′, w′) from the root ofT ′. Thus

by Claim 6.3.10 and 6.3.11w′ ∈ B′(i). Notice that as{w, v}, {u, v} ∈ E andv is

simplicial,{u, w} ∈ E. Hence by induction hypothesis{τ(u), τ(w)} = {u′, w′} ∈ E ′.

As v has the neighborw in ith layer(C, v) getsi in its label. Thus, the image(C ′, v′)

of (C, v) underτ must also geti in its label. So there must be somew′′ ∈ B′(i) which

is adjacent tov′. But w′′ must be adjacent tou′ also, becausev′ is simplicial andu′ is

adjacent tov′. By Proposition 6.3.9, the vertexu′ cannot have two neighborsw′ and

120

Chapter 6. Space Complexity of K-tree Isomorphism and Canonization

w′′ in the same layeri. So we must havew′ = w′′. Hence{τ(v), τ(w)} = {v′, w′} =

{v′, w′′} ∈ E ′.

Theorem 6.3.19LetX be ak-tree andφ : V (X) −→ C be a coloring of the vertices

ofX. Then the canonical form of the colored graphX can be computed inFLStUL.

Proof. The algorithmA to canonize a coloredk-tree again uses Lindell’s deterministic

logspace algorithm to canonize labeled trees,T (X, φ,B, θ) for all k-cliquesB ofX and

all bijectionsθ : B −→ {1, · · · , k} and take the least among them. As a consequence of

Theorem 6.3.18, this will give complete invariant. But formthe complete invariant the

canon of the colored graphX can be computed in logspace. The only question is how

to produceT (X, φ,B, θ) form the colored graphX. But this problem is again reduces

to deciding the layer number of a vertexv in X in theB-decomposition ofX. The layer

number ofv can be found inStUL as in Claim 6.3.14. The labeled treeT (X, φ,B, θ)

can be found in a similar way as in Lemma 6.3.15.

An automorphismof a graphX = (V,E) (possibly colored) is a bijectionξ : V −→
V that is an isomorphism forX to itself (in case of colored graphs the isomorphism is

color preserving). An automorphismξ is nontrivial if for some vertexv of X, ξ(v) 6= v.

If X has no nontrivial automorphism then the graph is calledrigid. It is easy to see that

the set of all automorphisms of a graphX forms a group under composition. We denote

this group byAut(X). Next we list some problems related to automorphism.

Definition 6.3.20 (GA) Input: A graphX = (V,E).

Problem:Decide ifX has a nontrivial automorphism.

Definition 6.3.21 (SAuto) Input: A graphX = (V,E) and a list of pairs of vertices

(u1, v1), · · · , (ul, vl).
Problem:Decide ifX has an automorphismξ such thatξ(ui) = vi for i = 1, · · · , l.

Definition 6.3.22 (AUTO) Input: A graphX = (V,E).

Problem:Compute a generating set for the automorphism groupAut(X) ofX.

121

Chapter 6. Space Complexity of K-tree Isomorphism and Canonization

Definition 6.3.23 (SAUTO) Input: A graphX = (V,E) and a list of pairs of vertices

(u1, v1), · · · , (ul, vl).
Problem:Compute an automorphismξ ofX such thatξ(ui) = vi for i = 1, · · · , l, if

there is any such automorphism, otherwise output “does not exist”.

Let X = (V = {1, · · · , n}, E) be a graph. Observer thatGA ≤L
T SAuto, since a

logspace machine can query the oracle forSAuto with (X, i, j) for all 1 ≤ i < j ≤ n

and accept if any of the query is answered yes.

Lemma 6.3.24 SAuto≤L
T AUTO.

Proof. LetX = (V,E) be a graph. We first showSAuto≤L
T AUTO. Let

(X, ((u1, v1), . . . , (ul, vl)))

be an instance ofSAuto. We form a colored graphY by taking two disjoint copies of

X. In the first copy we color vertexui using colorci, and in the second copy we color

vertexvi using colorci for i = 1, . . . , l, where the colorsc1, . . . , cl are distinct. We

can now queryAUTO for input Y to get a generating set for Aut(Y). By construction,

(X, ((u1, v1), . . . , (ul, vl))) is a yes instance ofSAuto if and only if there is a generator

mappingui to vi for i = 1, . . . , l. A logspace machine can easily check for this by

examining the generators.

Lemma 6.3.25 AUTO ≤L
T SAUTO.

Proof. LetX = (V = {1, · · · , n}, E) be a graph. LetG = Aut(X) be the automor-

phism group ofX. LetG(i) denote the subgroup ofG which fixes the vertices1, · · · , i,
i.e., each elementg inG(i) satisfies the propertyjg = j for all j = 1, · · · , i. ClearlyG(i)

is a subgroup ofG(i−1). Thus we get a tower of subgroups

< id >= G(n−1) ≤ · · · ≤ G(i) ≤ G(i−1) ≤ · · · ≤ G(1) ≤ G(0) = G

whereid is the identity permutation. A logspace machine starts withG(n−1) which

is identity. Suppose the machine has output a generating setS(i) for G(i). We describe

how the machine will augmentS(i) with the coset representatives of the cosets ofG(i)

122

Chapter 6. Space Complexity of K-tree Isomorphism and Canonization

in G(i−1). Each coset ofG(i) in G(i−1) corresponds to a vertexj wherei is moved all

the permutation in that coset. Letg1G(i), · · · , gmG(i) be the cosets ofG(i) in G(i−1).

NoticeG(i−1) = G(i)∪g1G(i)∪· · ·∪gmG(i). To find the coset representatives the oracle

for SAUTO can be queried with the instance(X, (1, 1), · · · , (i− 1, i− 1), (i, j)) for all

j > i. Let for j = j1, · · · , jm the oracle outputs the permutationsτ1, · · · , τm. (For some

query the oracle may output “does not exists”). The generating set forG(i−1) will be

S(i)∪{τ1, · · · , τm}. Whenever a query is answered by a permutationτ , the permutation

τ is written on the output tape by the machine. The machine can thus compute Aut(X)

by outputting the coset representatives ofG(i) in G(i−1) for i = n− 1, · · · , 1.

The set of all isomorphisms formX to CF(X) is calledCanonical Labelling Coset

CL. It can be checked that the CL is of the form Aut(X)ξ, whereξ is some isomorphism

from X to CF(X). So, the canonical labeling coset CL of a graphX can be computed

easily if some memberξ of CL and the automorphism group Aut(X) is known.

Definition 6.3.26 (CL-Coset) Input: A graphX = (V,E).

Problem:Compute the canonical labeling cosetCL ofX.

Definition 6.3.27 (COLOR-CP) Input: A graphX = (V,E) be a colored graph.

Problem:Compute an isomorphism fromX to CF(X), i.e., compute a member of the

canonical labeling coset of the colored graphX.

Remark 6.3.28 Notice thatCOLOR-CPis neither a language nor a (single valued) func-

tion (same input might have different output). It is basically a search problem. We sub-

sequently assume that any oracle forCOLOR-CPactually computes afunction, i.e., an

input has unique output.

Next we show that a logspace machine can solveSAUTO if it has access to an oracle

for COLOR-CP.

Lemma 6.3.29 SAUTO≤L
T COLOR-CP.

Proof. Let (X, ((u1, v1), · · · , (ul, vl))) be a instance ofSAUTO whereX = (V,E) is a

graph andu1, · · · , ul, v1, · · · , vl ∈ V . LetX1 be the graphX with u1, · · · , ul colored

with colors c1, · · · , cl respectively. Similarly, letX2 be the graphX with v1, · · · , vl
colored with colorsc1, · · · , cl respectively. A logspace machine queries the oracle for

123

Chapter 6. Space Complexity of K-tree Isomorphism and Canonization

COLOR-CPwith X1 andX2 and checks if the two canonical forms are the same. Notice

that it requires several queries to do this because the result of a query cannot be stored.

If they two canonical forms are same then the machine proceeds to compute the required

automorphism. Letξ1 be an isomorphism from the colored graphX1 to its canonical

form CF(X1) and letξ2 be an isomorphism formX2 to CF(X2). Then it is clear that

ξ = ξ1ξ
−1
2 mapsui to vi for i = 1, · · · , l. The logspace machine finds the image of all

vertex under the mapξ. To know where a vertexu goes under the permutationξ it first

queries the oracle forCOLOR-CPwith X1 and finds the placementv′ = ξ(u). Next it

queriesCOLOR-CPwith X2 and finds the preimagev = ξ−1
2 (v′) of v′. It can then output

the information thatu is mapped tov underξ and proceeds to find the image of the next

vertex underξ.

As AUTO ≤L
T SAUTOandSAUTO≤L

T COLOR-CPwe get the following.

Lemma 6.3.30 AUTO ≤L
T COLOR-CP.

If the canonical placement and the automorphism group of a graph can be computed

the it readily gives a solution toCL-Coset. From Lemma 6.3.30 we an deduce the lemma.

Lemma 6.3.31 CL-Coset≤L
T COLOR-CP.

Our algorithmA for canonizing coloredk-trees can be easily modified to give an

algorithm which gives the canonical placement as follows. While canonizing a color

k-treeX the algorithm has to keep track of the vertices ofX and the corresponding ver-

tices of the labelled treeT (X, φ,B, θ). Also, Lindell’s deterministic algorithm for tree

canonization can be easily modified to give a logspace algorithm for canonical place-

ment of trees. In fact Lindell’s algorithm implicitly computes the canonical placement

of a tree. Hence by the above lemma we get the theorem.

Theorem 6.3.32For any fixedk, the problemCL-Cosetfor k-trees is inStUL.

6.4 k-Path Canonization

A k-path is a special type ofk-tree. The subgraphs ofk-paths are called partialk-paths.

They coincide with the graphs ofpathwidthat mostk [92]. In [61] a polynomial time

algorithm for subgraph isomorphism for bounded pathwidth graphs was given. Here we

look at the space complexity of the canonization problem fork-paths.

124

Chapter 6. Space Complexity of K-tree Isomorphism and Canonization

Definition 6.4.1 An interval graphis a graph whose vertices can be put in one to one

correspondence with a set of open intervals on the real line such that two vertices are

adjacent if and only if the corresponding intervals have a nonempty intersection.

Definition 6.4.2 [72] A k-pathis ak-tree which is an interval graph.

An alternative constructive definition ofk-paths is given in [61]. The idea is to restrict

the choice of thek-clique used as support for adding a new vertex depending on the sup-

port of the previously added vertex. The restriction can be best described by maintaining

the notion ofcurrent clique.

Initially the starting clique is the current clique. When a new vertex is added it is

joined to each vertex in the current clique. After adding thenew vertex the current clique

may remain the same (in that case the new vertex added becomessimplicial) or it may

change by dropping a vertex and adding the new vertex in the current clique. Clearly,

when a vertex is dropped it cannot come back in the current clique.

The difference between the definition ofk-tree and the constructive definition ofk-

path is that fork-trees a new vertex can be joined to anyk-clique when expanding a

k-tree, whereas fork-paths a new vertex can only be added to the current clique of a

k-path.

From this constructive definition ofk-paths the following characterization ofk-paths

in the terminology of Section 6.3 can be obtained. Recall that a caterpillar is a rooted

tree in which each node has at most one child that is not a leaf.

Lemma 6.4.3 A k-treeX is a k-path if and only if for some baseB of X, the tree

T (X,B) is a caterpillar.

Proof Sketch. Assume thatX = (V,E) is a k-path and letCi, i = k, . . . , n − 1,

be the currentk-clique that has been used as support for adding vertexvi+1 to Xi =

X [{v1, . . . , vi}], whereCk = {v1, . . . , vk} is the initialk-clique. Notice thatCi 6= Ci+1

implies Cj 6= Ci for all j > i. Now it is easy to verify thatT = T (X,C1) is a

caterpillar with verticesCk, (Ck, vk+1), . . . , (Cn−1, vn) containing for eachj ≥ k with

Cj = Ck the edge(Ck, (Ck, vj+1)) and for each pairi, j with Ci 6= Ci+1 = Cj the edge

((Ci, vi+1), (Cj, vj+1)).

For the other direction assume thatT = T (X,B) is a caterpillar and letB(0), . . . , B(p)

be theB-decomposition ofX. We callv ∈ V − B a leaf node if(Ni−1(v), v) is a leaf

125

Chapter 6. Space Complexity of K-tree Isomorphism and Canonization

in T . Now we can order the vertices ofX in such a way that all the vertices inB(i)

precede the vertices inB(i+ 1) and within each layerB(i), i > 0, the leaf nodes come

first. Letv1, . . . , vn be such an ordering. Then it is easy to verify that we can construct

X from the initial k-treeXk = X [B] = X [{v1, . . . , vk}] by successively adding the

verticesvi+1 toXi = X [{v1, . . . , vi}] usingNi(vi+1) as the current clique.

Let X = (V,E) be ak-path. Letφ : V −→ C be a coloring of its vertices, whereC

is a set of colors. To canonize the given coloredk-pathX we use a similar approach

as the one that we used in Section 6.3 for coloredk-trees. In fact, the only difference

is that now our algorithmA additionally checks for each baseB whetherT (X,B) is a

caterpillar. Notice that this can easily be done in logspaceas follows.

Starting with the rootB as the current node, the algorithm verifies that the current

node has at most one child(C ′, v′) in T (X,B) that is not a leaf and then proceeds with

(C ′, v′) as the next current node (if the current node has two or more non leaf children,

the algorithm detects thatT (X,B) is not a caterpillar).

As soon as the algorithm reaches a node that has only leaves aschildren it de-

cides thatT (X,B) is a caterpillar and starts to compute the canons of the labeled trees

T (X, φ,B, θ) for all bijectionsθ : B −→ {1, . . . , k} as explained in Section 6.3.

Since for a caterpillarT (X,B) the oracle described in Claim 6.3.14 is clearly de-

cidable in logspace, the algorithmA works in logspace. The output of the algorithmA

will be a canonical invariant, but as mentioned in Section 6.3, a canonical form ofX

can be computed in logspace form this canonical invariant. Thus, we have the following

theorem.

Theorem 6.4.4 Let X = (V,E) be a k-path for some fixedk. Let φ : V −→ C

be a coloring of its vertices. Then the canonical form of the colored graphX can be

computed inL.

As a consequence of the above theorem we get the result.

Corollary 6.4.5 For each fixedk there is a logspace canonizing algorithm fork-paths.

Hence, the isomorphism problem fork-paths is inL.

Here also we note that the above canonization algorithm can be modified easily to

give a logspace algorithm forCOLOR-CPfor k-paths. Hence by Lemma 6.3.31 we

deduce thatCLCoset for k-paths is in FL.

126

Chapter 6. Space Complexity of K-tree Isomorphism and Canonization

Corollary 6.4.6 For any fixedk, computing the canonical labelling coset of ak-path is

in FL.

We know that the problemGA logspace disjunctively reduces to the problem of

deciding if two colored graphs are isomorphic. Hence, as another corollary of Theo-

rem 6.4.4 we get

Corollary 6.4.7 Given ak-pathX deciding ifX has nontrivial automorphism, i.e., the

GA problem fork-paths is inL.

Next we will prove thatk-path isomorphism is complete forL under disjunctive

truth-table reductions computable in uniformAC0, which we denote in the sequel by

≤AC0

d . To do this we will give a≤AC0

d reduction from the followingL-complete problem

[48] to k-path isomorphism.

Definition 6.4.8 (Order between Vertices(ORD))Input: A directed pathX = (V =

{v1, · · · , vn}, E) given by its adjacency list and two verticesvi, vj ∈ V .

Problem:Decide ifvi < vj in the total order induced onV by the directed edges.

Our reduction is essentially based on the reduction of ORD totree isomorphism

problem shown in [69].

Let (X, vi, vj) be an input instance of ORD. Without loss of generality we assume

thatv1 andvn are the vertices with indegree zero and outdegree zero respectively. We

assume thatvi andvj are different fromv1 andvn.

Now, consider a newundirectedgraphX ′ obtained fromX by coloring the vertex

vi red, vertexvj green and the last vertexvn is colored blue, and by dropping the edge

directions. Define
(

n
2

)

pairs of undirected graphsXp,q for 1 ≤ p < q < n, where

eachXp,q has vertex set{v1, · · · , vn} and edge set{{vm, vm+1} | 1 ≤ m ≤ n − 1}.

Furthermore, inXp,q the nodevp is colored red,vq is colored green and the last vertex

vn is colored blue. Clearly,(X, vi, vj) is a yes instance of ORD if and only if the colored

graphX ′ is isomorphic toXp,q for some1 ≤ p < q < n.

Next we constructk-paths corresponding to the graphsX ′ andXp,q. First we show

how to construct ak-pathH = (V ′, E ′) corresponding toX ′. It will have the following

vertex set

V ′ = V ∪ {1, · · · , k − 1} ∪ {al | l = 1, 2} ∪ {bl | l = 1, · · · , 4} ∪ {cl | l = 1, · · · , 8}

127

Chapter 6. Space Complexity of K-tree Isomorphism and Canonization

We will define the graph using current cliques. Before that wedefine the following sets.

L1 = {vl1}, vl1 = v1

for m ≤ k, Lm = {vl1 , · · · , vlm} whered(v1, vlm) = m and(vlp, vlp+1) ∈ E

for m > k, Lm = {vl1 , · · · , vlk} whered(v1, vlk) = m and(vlp, vlp+1) ∈ E

The sequence of current cliques inH ′ is the following:

{1, · · · , k − 1} ∪ L1, {2, · · · , k − 1} ∪ L2, · · · , {k − 1} ∪ Lk−1, Lk, · · · , Ln.

LetCm1 be the clique in the above sequence wherevi appears for the first time. Also

letCm2 be the clique wherevj appears for the first time. We attach the verticesa1 anda2
to the cliqueCm1 andb1, · · · , b4 to the current cliqueCm2 . We attachc1, · · · , c8 to the

cliqueLn. This completes the description of thek-pathH ′. Notice that to computeH ′

it is not necessary to compute the setL1, · · · , Ln or the current clique sequence. Given

any two vertexu andv in V it is sufficient to know if the distance between them is less

thank in the directed graphX. This computation can be done inAC0.

Next we construct ak-pathHp,q = (V ′, Ep,q) which corresponds to the graphXp,q.

The vertex setV ′ is same as the vertex set ofH ′. We will define the graph using current

cliques.

Let
R1 = {v1}
for m ≤ k, Rm = {v1, · · · , vm}
for m > k, Rm = {vm−k+1, · · · , vm}.

The sequence of current cliques inHp,q is the following

{1, · · · , k − 1} ∪R1, {2, · · · , k − 1} ∪R2, · · · , {k − 1} ∪ Rk−1, Rk, · · · , Rn.

We attach the verticesa1 anda2 to the cliqueRp and the verticesb1, · · · , b4 to the

cliqueRq. We attachc1, · · · , c8 to the cliqueRn. Again we notice thatHp,q can be

computed inAC0.

It is easy to see that ifX ′ andXp,q are isomorphic then so areH ′ andHp,q. For

the other direction we will use Theorem 6.3.13. LetB = {1, · · · , k − 1} ∪ {v1}. The

treeT = T (H,B, θ) is a caterpillar whereθ : B −→ {1, · · · , k} is defined as follows:

θ(i) = i for i = 1, · · · , k − 1 andθ(v1) = k. The caterpillar will have two legs at the

128

Chapter 6. Space Complexity of K-tree Isomorphism and Canonization

node corresponding to the vertexvi, four legs at the node corresponding to the vertexvj

and eight legs at node corresponding tovn. Let Tp,q = T (Hp,q, B
′, θ′) for someB′ and

θ′. ForT andTp,q to be isomorphicB′ must be same asB. This caterpillar will have two,

four and eight legs at nodes corresponding to the verticesvp, vq andvn respectively. Now

it is easy to see that ifH ′ andHp,q are isomorphic thenX ′ andXp,q are also isomorphic.

Theorem 6.4.9 For eachk, k-path isomorphism is complete forL under≤AC0

d reduc-

tion.

We have seen in Corollary 6.4.7 that theGA problem fork-path is inL. Here we will

prove that the problem is in fact complete forL under≤AC0

d reduction. We will do this by

showing that the ORD problemAC0 disjunctively reduces to thek-path automorphism

problem. Let(X, vi, vj) be an instance of ORD. Again, we will use the idea of the

colored graphsX ′ andXp,q. LetHp,q be the colored graph obtained by fusing the vertex

v1 of the graphsX ′ andXp,q. Notice thatHp,q has a nontrivial automorphism if and only

if (X, vi, vj) is an “yes” instance of ORD. Next we will construct ak-pathCp,q which

will represent the graphHp,q. We will constructCp,q using the idea of current cliques.

We assume without loss of generality thatv1 has indegree0, vn has out degree0 and the

distances fromv1 to vi andvj are more thatk + 1. We also assume that the distance

betweenvi andvj is more than2. As before we define the following sets

R1 = {v1}
for m ≤ k, Rm = {v1, · · · , vm}
for m > k, Rm = {vm−k+1, · · · , vm}.

and the sets

L1 = {vl1}, vl1 = v1

for m ≤ k, Lm = {vl1 , · · · , vlm} whered(v1, vlm) = m and(vlp, vlp+1) ∈ E

for m > k, Lm = {vl1 , · · · , vlk} whered(v1, vlk) = m and(vlp, vlp+1) ∈ E

The vertex set ofCp,q is

V = {wi | i = 1, · · · , n} ∪ {vi | i = i, · · · , n} ∪ {−k − 1, · · · , 2k + 1}.

129

Chapter 6. Space Complexity of K-tree Isomorphism and Canonization

For integersa ,b wherea < b let [a, b] denote the interval{i | i = a to b}. The sequence

of current cliques is as follows.

Ln, · · · , Lk+1, Lk,

Lk−1 ∪ {−k − 1}, Lk−2 ∪ [−k − 1,−k], · · · , L1 ∪ [−k − 1,−3],

[−k − 1,−2], · · · , [k + 2, 2k + 1],

[k + 3, 2k + 1] ∪ R1, [k + 4, 2k + 1] ∪ R2, [2k, 2k + 1] ∪ Rk−2, {2k + 1} ∪ Rk−1,

Rk, · · ·Rn.

Let Li1 be the first set in the sequence wherevi appears and letLi2 be the first set

wherevj appears. Notice thatLi2−1 andLi2+1 are the two sets just before and after

the setLi2 in the sequence. We connect vertexu1 to all the vertices in the setLii , we

connect the verticesu2 andu3 to the cliquesLi2−1 andLi2+1 respectively. Similarly we

connect the verticesw1, w2 andw3 to all the vertices of the cliquesRp, Rq−1 andRq+1

respectively.

We have to prove thatCp,q has a nontrivial automorphism if and only ifHp,q has a

nontrivial automorphism for somep, q wherep < p + 1 < q. For that we use the next

theorem. The proof of the theorem is similar to Theorem 6.3.13.

Theorem 6.4.10LetX be ak-tree. LetB be a clique inX andθ : B −→ {1, · · · , k}
be a bijection. ThenX has a nontrivial automorphism iff there is a cliqueB′ and

bijection θ′ : B′ −→ {1, · · · , k} such thatB′ 6= B or B = B′ but θ(v) 6= θ′(v) for

somev ∈ B = B′ andT (X,B, θ) is isomorphic toT (X,B′, θ′).

SupposeCp,q has a nontrivial automorphism. To apply Theorem 6.4.10 we chooseB

to be{1, · · · , k} andθ to be identity. Notice that for any other cliqueB′, T (Cp,q, B′, θ′)

(for anyθ′) will have different height. This forcesB′ to be same asB. It is not hard to

prove that the only choice ofθ′ that can give nontrivial automorphism isθ′(i) = k+1−i.
But then this will forceHp,q to have nontrivial automorphism. The other direction is

similar. IfHp,q has a nontrivial automorphism then so doesCp,q. This can be seen again

using Theorem 6.4.10 by takingB = B′ = {1, · · · , k}, θ(i) = i andθ′(i) = k + 1− i.

As before the graphCp,q can be computed inAC0.

Theorem 6.4.11TheAuto problem fork-paths is complete forL under≤AC0

d reduc-

tion.

130

Chapter 6. Space Complexity of K-tree Isomorphism and Canonization

6.5 Remarks

Building on the ideas described in this chapter, Köbler and Kuhnert recently gave a

logspace algorithm fork-tree isomorphism [74]. Their result along with Theorem 6.4.9

implies that thek-tree isomorphism is hard of logspace. In this section we mention the

salient points of their algorithm. See [74] for details.

In Section 6.3 (page 115) we defined a mangroveD(X,B) and from that we defined

a treeT (X,B) in page 116. In [74], instead of doing that they define the following

graph.

Definition 6.5.1 ([74]) LetX = (V,E) be ak-tree. Thetree representationT (X) ofX

is defined by

V (T (X)) = {M ⊆ V |M is ak-clique or a(k + 1)-clique}

E(T (X)) = {{M1,M2} ⊆ V |M1 (M2}

They prove that the tree representation is actually a tree (and thus the name tree

representation) and it can be computed in logspace.

Theorem 6.5.2 ([74]) LetX be ak-tree. Then

• The tree representationT (X) ofX is a tree.

• The tree representationT (X) can be computed inFL.

Later they define a scheme for labelling the nodes of the tree representation which

is similar toT (X,B, θ) in Section 6.3 (page 117) which preserves isomorphism. The

labelling scheme is shown to be computable in logspace. Thisgives the logspace algo-

rithm for k-tree isomorphism.

131

Bibliography

[1] M. Agrawal, N. Kayal, and N. Saxena. PRIMES is in P.Annals of Mathematics.

Second Series, 160(2):781–793, 2004.

[2] M. Agrawal and N. Saxena. Automorphisms of Finite Rings and Applications to

Complexity of Problems. InSTACS, pages 1–17, 2005.

[3] A. Aho, J. Hopcroft, and J. D. Ullman.The Design and Analysis of Computer

Algorithms. Addison-Wesley, Reading, MA, 1974.

[4] W. Aiello and J. Håstad. Statistical zero-knowledge languages can be recognized

in two rounds.Journal of Computer and System Sciences, 42(3):327–345, June

1991.

[5] E. Allender. Arithmetic circuits and counting complexity classes. In J. Krajíćek,

editor, Complexity of Computations and Proofs, Quaderni di Matematica, vol-

ume 13, pages 33–72, Seconda Universita di Napoli, 2004.

[6] E. Allender and K.-J. Lange. RUSPACE(log n) ⊆ DSPACE(log2 n/ log logn).

Theory of Computing Systems, 31(5):539–550, 1998. formerly Mathematical

Systems Theory.

[7] E. Allender and M. Ogihara. Relationships among PL, #l, and the determinant.

RAIRO: R. A. I. R. O. Informatique Théorique et Applications, 30(1):1–21, 1996.

[8] S. Arnborg and A. Proskurowski. Linear time algorithms for NP-hard problems

restricted to partialk-trees.Discrete Appl. Math., 23:11–24, 1989.

[9] S. Arnborg and A. Proskurowski. Canonical representations of partial 2-trees and

partial 3-trees.BIT, 32:197–214, 1992.

[10] V. Arvind and B. Das. SZK Proofs for Black-Box Group Problems. Theory

Comput. Syst (Conference version appeared in CSR’06), 43(2):100–117, 2008.

[11] V. Arvind and B. Das. Limited Randomness Statistical Zero Knowledge. In

Preparation, 2009.

132

Bibliography

[12] V. Arvind, B. Das, and J. Köbler. The Space Complexity ofk-Tree Isomorphism.

In Takeshi Tokuyama, editor,Algorithms and Computation, 18th International

Symposium, ISAAC 2007, Sendai, Japan, December 17-19, 2007, Proceedings,

volume 4835 ofLecture Notes in Computer Science, pages 822–833. Springer,

2007.

[13] V. Arvind, B. Das, and J. Köbler. A Logspace Algorithm for Partial 2-Tree Can-

onization. In Edward A. Hirsch, Alexander A. Razborov, Alexei L. Semenov, and

Anatol Slissenko, editors,Computer Science - Theory and Applications, Third In-

ternational Computer Science Symposium in Russia, CSR 2008, Moscow, Russia,

June 7-12, 2008, Proceedings, volume 5010 ofLecture Notes in Computer Sci-

ence, pages 40–51. Springer, 2008.

[14] V. Arvind, B. Das, J. Köbler, and S. Toda. An FPT Algorithm for Bounded Color

Class Hypergraph Isomorphism.Manuscript, 2009.

[15] V. Arvind, B. Das, and P. Mukhopadhyay. On Isomorphism and Canonization

of Tournaments and Hypertournaments. In Tetsuo Asano, editor, Algorithms and

Computation, 17th International Symposium, ISAAC 2006, Kolkata, India, De-

cember 18-20, 2006, Proceedings, volume 4288 ofLecture Notes in Computer

Science, pages 449–459. Springer, 2006.

[16] V. Arvind, B. Das, and P. Mukhopadhyay. The Complexity of Black-Box Ring

Problems. In Danny Z. Chen and D. T. Lee, editors,Computing and Combina-

torics, 12th Annual International Conference, COCOON 2006, Taipei, Taiwan,

August 15-18, 2006, Proceedings, volume 4112 ofLecture Notes in Computer

Science, pages 126–135. Springer, 2006.

[17] V. Arvind and J. Köbler. On Hypergraph and Graph Isomorphism with Bounded

Color Classes. In Bruno Durand and Wolfgang Thomas, editors, STACS 2006,

23rd Annual Symposium on Theoretical Aspects of Computer Science, Marseille,

France, February 23-25, 2006, Proceedings, volume 3884 ofLecture Notes in

Computer Science, pages 384–395. Springer, 2006.

[18] V. Arvind and P. Kurur. Graph isomorphism is in spp. InFOCS, pages 743–750,

2002.

133

Bibliography

[19] V. Arvind and J. Torán. Solvable group isomorphism is (almost) in NP inter-

sect coNP. InAnnual IEEE Conference on Computational Complexity (formerly

Annual Conference on Structure in Complexity Theory), volume 19, 2004.

[20] V. Arvind and J. Torán. The complexity of quasigroup isomorphism and the

minimum generating set problem. InISAAC, pages 233–242, 2006.

[21] L. Babai. Moderately exponential bound for graph isomorphism. In Ferenc Géc-

seg, editor,Proceedings of the 1981 International FCT-Conference on Funda-

mentals of Computation Theory, volume 117 ofLNCS, pages 34–50, Szeged,

Hungary, August 1981. Springer.

[22] L. Babai. A Las Vegas-NC Algorithm for Isomorphism of Graphs with Bounded

Multiplicity of Eigenvalues. InProceedings of the 27th Annual IEEE Symposium

on Foundations of Computer Science, FOCS’86 (Toronto, Canada, October 27-

29, 1986), pages 303–312. IEEE, IEEE, 1986.

[23] L. Babai. Bounded round interactive proofs in finite groups. SIAM J. Dis-

crete Math., 5(1):88–111, 1992, February.

[24] L. Babai, P. J. Cameron, and P. P. Pálfy. On the order of primitive groups with

restricted nonabelian composition factors.Journal of Algebra, 79:161–168, 1982.

[25] L. Babai and P. Codenotti. Isomorphism of hypergraphs of low rank in moderately

exponential time. InProceedings 39th Ann. IEEE Symp. on Theory of Computing,

pages 667–676. IEEE Comp. Soc. Press, 2008.

[26] L. Babai, P. Erdös, and S. M. Selkow. Random graph isomorphism.SIAM Journal

on Computing, 9(3):628–635, August 1980.

[27] L. Babai, A. J. Goodman, W. M. Kantor, E. M. Luks, and P. P.P’alfy. Short

presentations for finite groups.Journal of Algebra, 194(1):79–112, 1997.

[28] L. Babai, D. Y. Grigoriev, and D. M. Mount. Isomorphism of graphs with

bounded eigenvalue multiplicity. InProceedings of the 14th Annual ACM Sym-

posium on Theory of Computing, STOC’82 (San Francisco, CA, May 5-7, 1982),

pages 310–324, New York, 1982. ACM, ACM Press.

134

Bibliography

[29] L. Babai and L. Kǔcera. Canonical labelling of graphs in linear average time.In

20th Annual Symposium on Foundations of Computer Science, pages 39–46, San

Juan, Puerto Rico, 29–31 October 1979. IEEE.

[30] L. Babai and E. M. Luks. Canonical labeling of graphs. InProceedings of the

15th Annual ACM Symposium on Theory of Computing, STOC’83 (Boston, MA,

May 25-27, 1983), pages 171–183, New York, 1983. ACM, ACM Press.

[31] L. Babai and S. Moran. Arthur-Merlin games: A randomized proof system, and

a hierarchy of complexity classes.Journal of Computer and System Sciences,

36(2):254–276, April 1988.

[32] L. Babai and E. Szemerédi. On the complexity of matrix group problems I. In

25th Annual Symposium on Foundations of Computer Science, pages 229–240,

Singer Island, Florida, 24–26 October 1984. IEEE.

[33] H. L. Bodlaender. Dynamic programming on graphs with bounded treewidth.

In T. Lepistö and A. Salomaa, editors,Automata, Languages and Programming,

15th International Colloquium (ICALP), volume 317 ofLecture Notes in Com-

puter Science, pages 105–118, Tampere, Finland, 11–15 July 1988. Springer-

Verlag.

[34] H. L. Bodlaender. Polynomial algorithms for graph isomorphism and chromatic

index on partialk-trees.Journal of Algorithms, 11(4):631–643, December 1990.

[35] R. B. Boppana, J. Håstad, and S. Zachos. Does co-NP have short interactive

proofs?Inf. Process. Lett., 25(2):127–132, 1987, May.

[36] G. Buntrock, B. Jenner, K.-J. Lange, and P. Rossmanith.Unambiguity and few-

ness for logarithmic space. In Lothar Budach, editor,Proceedings of Fundamen-

tals of Computation Theory (FCT ’91), volume 529 ofLNCS, pages 168–179,

Berlin, Germany, September 1991. Springer.

[37] S. R. Buss. Alogtime algorithms for tree isomorphism, comparison, and canon-

ization. In Georg Gottlob, Alexander Leitsch, and Daniele Mundici, editors,Kurt

Gödel Colloquium, volume 1289 ofLecture Notes in Computer Science, pages

18–33. Springer, 1997.

135

Bibliography

[38] Jin-Yi Cai, Martin Fürer, and Neil Immerman. An optimallower bound on the

number of variables for graph identification.Combinatorica, 12(4):389–410,

1992.

[39] N. Chandrasekharan. Isomorphism testing ofk-trees is in NC, for fixedk. Infor-

mation Processing Letters, 34(6):283–287, 28 May 1990.

[40] N. Chandrasekharan and S. S. Iyengar. NC algorithms forrecognizing chordal

graphs and k trees.IEEE Trans. Computers, 37(10):1178–1183, 1988.

[41] J. Chen, I. A. Kanj, and G. Xia. Improved parameterized upper bounds for vertex

cover. In R. Kralovic and P. Urzyczyn, editors,Mathematical Foundations of

Computer Science MFCS, volume 4162 ofLNCS, pages 238–249. Springer, 2006.

[42] M. Dehn. Über undedliche diskontinuierlich gruppen.Math. Ann., 71:116–144,

1911.

[43] R. Diestel.Graph theory. Springer-Verlag, New York, 2 edition, 2000.

[44] R. G. Downey and M. R. Fellows. Fixed-parameter tractability and completeness

I: Basic results.SIAM Journal on Computing, 24(4):873–921, August 1995.

[45] R. G. Downey and M. R. Fellows.Parameterized Complexity. Springer, 1999.

[46] C. Dwork, M. Naor, and A. Sahai. Concurrent zero-knowledge. InProceedings

of the 30th Annual ACM Symposium on Theory of Computing, STOC’98 (Dallas,

Texas, May 23-26, 1998), pages 409–418, New York, 1998. ACM Press.

[47] P. Erdös and Rényi. Probabilistic methods in group theory. Journal d’Analyse

Mathématique, 14(1):127–138, 1965.

[48] K. Etessami. Counting quantifiers, successor relations, and logarithmic space.

Journal of Computer and System Sciences, 54(3):400–411, 1997.

[49] W. Feit and J. Thompson. Solvability of groups of odd order. Pacific Journal of

Mathematics, 13:775–1029, 1963.

[50] J. Flum and M. Grohe.Parameterized Complexity Theory. Springer-Verlag, 2006.

136

Bibliography

[51] L. Fortnow. The complexity of perfect zero-knowledge.ADVCR: Advances in

Computing Research, 5, 1989.

[52] M. Fürer. Graph Isomorphism Testing without Numerics for Graphs of Bounded

Eigenvalue Multiplicity. InProceedings of the 6th Annual ACM-SIAM Sympo-

sium on Discrete Algorithms, SODA’95 (San Francisco, California, January 22-

24, 1995), pages 624–631, Philadelphia, PA, 1995. ACM SIGACT, SIAM, Soci-

ety for Industrial and Applied Mathematics.

[53] M. Furst, J. Hopcroft, and E. Luks. Polynomial-time algorithms for permutation

groups. InProceedings of the 21st Annual IEEE Symposium on Foundations of

Computer Science, FOCS’80 (Syracuse, NY, October 13-15, 1980), pages 36–41.

IEEE, IEEE, 1980.

[54] O. Goldreich.Foundations of cryptography. Cambridge University Press, 2001.

[55] O. Goldreich, S. Micali, and A. Wigderson. Proofs that yield nothing but their

validity or all languages in NP have zero-knowledge proof systems.Journal of

the ACM, JACM, 38(3):691–729, July 1991.

[56] O. Goldreich, A. Sahai, and S. Vadhan. Honest-verifier statistical zero-knowledge

equals general statistical zero-knowledge. InProceedings of the 30th Annual

ACM Symposium on Theory of Computing (STOC-98), pages 399–408, New

York, May 23–26 1998. ACM Press.

[57] O. Goldreich and S. Vadhan. Comparing entropies in statistical zero knowledge

with applications to the structure of SZK. InProceedings of the 14th Annual

IEEE Conference on Computational Complexity (CCC-99), pages 54–75, Los

Alamitos, May 4–6 1999. IEEE Computer Society.

[58] S. Goldwasser, S. Micali, and C. Rackoff. The knowledgecomplexity of interac-

tive systems.SIAM Journal of Computing, 18(1):186–208, 1989.

[59] J. G. Del Greco, C. N. Sekharan, and R. Sridhar. Fast parallel reordering and

isomorphism testing of k-trees.Algorithmica, 32(1):61–72, 2002.

[60] M. Grohe and O. Verbitsky. Testing graph isomorphism inparallel by playing a

game. In Michele Bugliesi, Bart Preneel, Vladimiro Sassone, and Ingo Wegener,

137

Bibliography

editors,Automata, Languages and Programming, 33rd International Colloquium,

ICALP 2006, Venice, Italy, July 10-14, 2006, Proceedings, Part I, volume 4051

of Lecture Notes in Computer Science, pages 3–14. Springer, 2006.

[61] A. Gupta, N. Nishimura, A. Proskurowski, and P. Ragde. Embeddings of k -

connected graphs of pathwidth k.Discrete Applied Mathematics, 145(2):242–

265, 2005.

[62] Y. Gurevich. From invariants to canonization.Bulletin of the EATCS, 63, 1997.

[63] G. Gutin and A. Yeo. Hamiltonian paths and cycles in hypertournaments.Journal

of Graph Theory, 25(4):277–286, 1997.

[64] M. Hall, Jr. The Theory of Groups. The Macmillan Company, New York, NY,

USA, 1959.

[65] F. Harary and E. M. Palmer. On acyclic simplicial complexes. Mathematica,

15:115–122, 1968.

[66] C. M. Hoffmann.Group-Theoretic Algorithms and Graph Isomorphism, volume

136. Springer, Berlin, Heidelberg, 1982.

[67] J. E. Hopcroft and J. K. Wong. Linear time algorithm for isomorphism of planar

graphs. InProceedings of the 6th Annual ACM Symposium on Theory of Comput-

ing, STOC’74 (Seattle, WA, April 30 - May 2, 1974), pages 172–184, New York,

1974. ACM, ACM Press.

[68] A. Jakoby and M. Liskiewicz. Paths problems in symmetric logarithmic space.

In 29th International Colloquium on Automata, Languages,andProgramming,

ICALP’02, volume 2380 ofLecture Notes in Computer Science, pages 269–280,

2002.

[69] B. Jenner, J. Köbler, P. McKenzie, and J. Torán. Completeness results for graph

isomorphism.J. Comput. Syst. Sci., 66(3):549–566, 2003.

[70] N. Kayal and N. Saxena. On the ring isomorphism and automorphism problems.

In IEEE Conference on Computational Complexity, pages 2–12, 2005.

138

Bibliography

[71] M. M. Klawe, D. G. Corneil, and A. Proskurowski. Isomorphism testing in

hookup classes.SIAM J. Algebraic Discrete Methods, 3:260–274, 1982.

[72] T. Kloks. Treewidth — computations and approximations, volume 842 of

LNCS. Springer-Verlag, Berlin-Heidelberg-New York-London-Paris-Tokyo-

Hong Kong-Barcelona-Budapest, 1994.

[73] D. E. Knuth and P. B. Bendix. Simple word problems in universal algebras. In

J. Leech, editor,Computational Problems in Abstract Algebra, pages 263–267.

Pergamon, New York, 1970.

[74] J. Köbler and S. Kuhnert. The isomorphism problem fork-trees is complete for

logspace.ECCC, TR09-053, 2009.

[75] J. Köbler, U. Schöning, and J. Torán. Graph Isomorphismis Low for PP. In

STACS, pages 401–411, 1992.

[76] J. Köbler, U. Schöning, and J. Torán.The graph isomorphism problem.

Progress in Theoretical Computer Science. Birkhäuser Verlag, Boston-Basel-

Berlin-Stuttgart, 1993.

[77] H. W. Lenstra, Jr. Algorithms in algebraic number theory. Bulletin of the Ameri-

can Mathematical Society, 26:211–244, 1992.

[78] M. Liebeck and A. Shalev. Simple groups, permutation groups and probability.

Journal of Amer. Soc., 12:497–520, 1999.

[79] S. Lindell. A logspace algorithm for tree canonization. In Proceedings of the 24th

Annual ACM Symposium on Theory of Computing, STOC’92 (Victoria, British

Columbia, Canada, May 4-6, 1992), pages 400–404, New York, 1992. ACM

SIGACT, ACM Press.

[80] E. M. Luks. Isomorphism of graphs of bounded valance canbe tested in poly-

nomial time. Journal of Computer and System Sciences, 25(1):42–65, August

1982.

[81] E. M. Luks. Lectures on Polynomial-Time Computation inGroups. Technical

Report NU-CCS-90-16, 1990.

139

Bibliography

[82] E. M. Luks. Permutation groups and polynomial-time computation, in groups and

computation.DIMACS series in Discrete Mathematics and Theoretical Computer

Science, 11:139–175, 1993.

[83] E. M. Luks. Hypergraph isomorphism and structural equivalence of Boolean

functions. InProceedings of the 31st Annual ACM Symposium on Theory of

Computing, STOC’99 (Atlanta, Georgia, May 1-4, 1999), pages 652–658, New

York, 1999. ACM Press.

[84] B. D. McKay. Practical graph isomorphism.Congressus Numerantium, 30:45–

87, 1981.

[85] D. Micciancio, S. J. Ong, A. Sahai, and S. Vadhan. Concurrent zero knowl-

edge without complexity assumptions.Electronic Colloquium on Computational

Complexity (ECCC), (093), 2005.

[86] D. Micciancio and S. P. Vadhan. Statistical zero-knowledge proofs with efficient

provers: Lattice problems and more. In Dan Boneh, editor,Advances in Cryptol-

ogy - CRYPTO 2003, 23rd Annual International Cryptology Conference, Santa

Barbara, California, USA, August 17-21, 2003, Proceedings, volume 2729 of

Lecture Notes in Computer Science, pages 282–298. Springer, 2003.

[87] G. L. Miller. Isomorphism testing for graphs of boundedgenus. InProceedings

of the 12th Annual ACM Symposium on Theory of Computing, STOC’80 (Los

Angeles, CA, April 28-30, 1980), pages 225–235, New York, 1980. ACM, ACM

Press.

[88] G. L. Miller. Isomorphism of k-contractible graphs. A generalization of bounded

valence and bounded genus.Information and Control, 56(1/2):1–20, Jan-

uary/February 1983.

[89] G. L. Miller and J. H. Reif. Parallel tree contraction, part 2: Further applications.

SIAM J. Comput., 20(6):1128–1147, 1991, December.

[90] P. P. Pálfy. A polynomial bound for the orders of primitive solvable groups.J.

Algebra, pages 127–137, 1982.

140

Bibliography

[91] E. Petrank and G. Tardos. On the knowledge complexity ofNP . In 37th Annual

Symposium on Foundations of Computer Science, pages 494–503, Burlington,

Vermont, 14–16 October 1996. IEEE.

[92] A. Proskurowski. Maximal graphs of path-widthk or searching a partialk-

caterpillar.Technical Report UO-CIS-TR-89-17, 1989.

[93] O. Reingold. Undirected ST-connectivity in log-space. In Harold N. Gabow

and Ronald Fagin, editors,Proceedings of the 37th Annual ACM Symposium on

Theory of Computing (STOC 2005), 2005, pages 376–385. ACM, 2005.

[94] A. Sahai and S. Vadhan. A complete promise problem for statistical zero-

knowledge. InProceedings of the 38th Annual Symposium on Foundations of

Computer Science (FOCS-97), pages 448–457, Los Alamitos, October 20–22

1997. IEEE Computer Society Press.

[95] P. Scheffler and D. Seese. A combinatorial and logical approach to linear-time

computability. InEuropean Conference on Computer Algebra (EUROCAL’87),

volume 378, pages 379–380. Springer-Verlag, 1987.

[96] A. Seress.Permutation Group Algorithms.Cambridge Univ. Press, August 2003.

[97] M. W. Short.The Primitive Soluble Permutation Groups of Degree less than256,

volume 1519 ofLecture Notes in Math.Springer-Verlag, Berlin, Heidelberg, New

York, 1992.

[98] C. C. Sims. Computational methods in the study of permutation groups. InCom-

putational problems in abstract algebra, pages 169–183, Oxford, 1970. (Oxford,

1967), Pergamon Press.

[99] C. C. Sims. Some group theoretic algorithms. In A. Dold and B. Eckmann,

editors,Topics in algebra, volume 697 ofLecture Notes in Math., pages 108–

124, Berlin, Heidelberg, New York, 1978. (Canberra, 1978),Springer-Verlag.

[100] D. A. Spielman. Faster isomorphism testing of strongly regular graphs. InPro-

ceedings of the 28th Annual ACM Symposium on Theory of Computing, STOC’96

(Philadelphia, Pennsylvania, May 22-24, 1996), pages 576–584, New York,

1996. ACM Press.

141

Bibliography

[101] T. Thierauf and F. Wagner. The isomorphism problem forplanar 3-connected

graphs is in unambiguous logspace.Technical Report: TR07-068, Electronic

Colloquium on Computational Complexity (ECCC), 2007.

[102] T. Thierauf and F. Wagner. The isomorphism problem forplanar 3-connected

graphs is in unambiguous logspace. In Susanne Albers and Pascal Weil, editors,

25th Annual Symposium on Theoretical Aspects of Computer Science, STACS’08,

volume 08001 ofDagstuhl Seminar Proceedings, pages 633–644, 2008.

[103] S. Toda. Computing automorphism groups of chordal graphs whose simplicial

components are of small size.IEICE Transactions, 89-D(8):2388–2401, 2006.

[104] J. A. Todd and H. S. M. Coxeter. A practical method for enumerating cosets of a

finite abstract group.Proc. Edinburgh Math. Soc., 5:26–34, 1936.

[105] J. Torán. On the hardness of graph isomorphism.SIAM J. Comput., 33(5):1093–

1108, 2004.

[106] S. Vadhan. A study of statistical zero-knowledge proofs. PhD The-

sis, http://www.eecs.harvard.edu/s̃alil/papers/phdthesis-abs.html, 1997.

[107] O. Verbitsky. On the double coset membership problem for permutation groups.

In Algebraic structures and their applications, Proceedingsof the 3rd inter-

national algebraic conference held in framework of the Ukrainian mathemati-

cal congress (Kiev, 2001), pages 351–363, Institute of Mathematics, Ukrainian

Academy of Sciences (2002), 2001.

[108] O. Verbitsky. Zero-knowledge proofs of the conjugacyfor permutation groups.

Visn. L’viv. Univ., Ser. Mekh.-Mat. (Bulletin of the Lviv University, Series in Me-

chanics and Mathematics), pages 195–2005, 2003.

[109] Joachim von zur Gathen and Jürgen Gerhard.Modern Computer Algebra. Cam-

bridge University Press, New York, 2nd edition, 2003.

[110] E. Wanke. Bounded tree-width and LOGCFL.Journal of Algorithms, 16(3):470–

491, May 1994.

[111] B. Weisfeiler. On construction and identification of graphs. Lecture Notes in

Mathematics, 558, 1976.

142

Bibliography

[112] B. Weisfeiler and A. A. Lehman. A reduction of graph to acanonical form and

algebra arising during this reduction (in russian).Nauchno-Technicheskaya In-

formatsia, Seriya 2, 9:12–16, 1968.

[113] E. W. Weisstein. Prime number theorem.From MathWorld–A Wolfram Web

Resource. http://mathworld.wolfram.com/PrimeNumberTheorem.html.

[114] H. Wielandt.Finite Permutation Groups. Academic Press, New York, 1964.

[115] T. R. Wolf. Solvable and nilpotent subgroups ofGL(n, qm). Can. J. Math.,

pages 1097–1111, 1982.

[116] K. Yamazaki, H. L. Bodlaender, B. de Fluiter, and D. M. Thilikos. Isomorphism

for graphs of bounded distance width.Algorithmica, 24(2):105–127, 1999.

[117] V. Zemlyachenko, N. Kornienko, and R. Tyshkevich. Graph Isomorphism Prob-

lem (Russian). InThe Theory of Computation I, Notes Sci. Sem LOMI, 118, 1982.

143

