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Abstract

We study the complexity of graph isomorphism problem fotriet®d classes of graphs
and investigate the complexity of group theoretic problesiated to graph isomor-
phism. More specifically,

¢ We classify several problems closely related to the grapm@phism problem
in algorithmic group theory in the classes PZK and SZK (peokd with per-
fect/statistical zero-knowledge proofs respectivelyjoiPto this, these problems
were known to be in AMN coAM. As PZK C SZK € AM N coAM, we have a
tighter upper bound for these problems.

e We give a constant round perfect zero knowledge proof fogthap isomorphism
problem when the groups are given by their multiplicatidviéa. The prover and
the verifier in this proof system use only polylogarithmigahany random bits.
Motivated by this, we study honest verifier statistical zZenowledge (HVSZK)
proof where the prover, verifier and the simulator use paigtdchmic random-
ness and the protocol has polylogarithmically many roundfe. show that any
language having such a proof system also has an HVSZK proefemmot only
the prover, verifier and the simulator use polylogarithraicdomness but also has
polylogarithmic message size and oglyounds.

e We give a polynomial-time oracle algorithm for TournameminGnization that
accesses oracles for Tournament Isomorphism and Rigichdment Canoniza-
tion. Extending the Babai-Luks Tournament Canonizatiaggoathm [30], we
give annC**+losn) glgorithm for canonization and isomorphism testingkef
hypertournaments, where is the number of vertices antd is the size of hy-
peredges.

e We give an FPT algorithm for the bounded color class hypetgraomorphism
problem which has run-tim&2°® N°() whereb is the size of the largest color
class andV is the input size.

¢ \We prove that the isomorphism and canonization problem-fioee is in the class
StUL which is contained itUL. We also prove that the isomorphism problem for
k-path is complete fof. under disjunctive truth-table reductions computable in
uniform AC°.
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Introduction

Two graphsX; = (W4, Fy) and Xy, = (V% E5) areisomorphicif there is a bijection
from the vertex set; of the graphX; to the vertex set; of the graphX, that preserves
the edge relation. Given two graph§ and X, the problem of deciding if the two
graphs are isomorphic or not is knowng®sph isomorphism problemr GRAPH-ISQ
Graph isomorphism problem holds a unique place in the stfidpmputational com-
plexity. The exact complexity status GRAPH-ISQis still unresolved. We do not know
if GRAPH-ISOhas a polynomial-time algorithm. On the other h@RIAPH-ISOis very
unlikely to be NP-complete In practice graph isomorphism is not considered hard.
Indeed, there are several algorithms that performs veryimeiany instances of graphs
[84]. A theoretical justification of this fact comes from thesult of Babai, Erdds and
Selkow [26]. They proved that graph isomorphism can be destélinear time’ for
random graphsGRAPH-ISOis in the classbP, in fact it is low for the classP [18].
This means that even if we providgRAPH-ISOas an oracle to the complexity class
@P it does not help to increase the computational power of s c It was shown in
[18] that GRAPH-ISOis in the class SPP, which might be a much smaller class than
@P. GRAPH-ISOis not known to be hard for P. We only know tH@RAPH-1SOis hard
for the complexity clas®ET with respect to logspace computable reductions [105].
The complexity clasPET consists of all problems that are logspace reducible to the
problem of computing determinant ofiax n integer matrix.

Apart from its elusive complexity statuSRAPH-ISOIs also remarkable in one more
respect. It has generated several new concepts in compteeibry and it has been
used as non-trivial example of several ideas in complekigpty. For example graph

LIf GRAPH-ISOis NP-complete then the polynomial hierarchy collapsesécsecond level [35].
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isomorphism problem was one of the first concrete exampégsitmonstrated the ideas
behind Arthur-Merlin games, interactive protocol, zer@Whedge proof, lowness etc.

In the late 70’s and early 80’s Babai and Luks started apgly@sults from permu-
tation group theory and classification of finite groups talgtthe graph isomorphism
problem. Soon the effectiveness of this process becamerawichen Luks [80] came up
with his celebrated polynomial-time algorithm for boundéstjree graphs. The group
theoretic analogue @dRAPH-ISOis theset transporter probler(see [82]). In fact there
are several computational problems in permutation groeprihwhich resemble the
graph isomorphism problem e.g., coset intersection, gfaciorization, group conju-
gacy in permutation groups etc. These problems often shaimikar complexity status
asGRAPH-I1SQ For example, we do not know if there is a polynomial-timeoaiignm
for solving these problems and they are unlikely to be NPete. Moreover, solving
any of these problems would solve tG®APH-ISOproblem.

The study of computational aspects of group theory starey @arly. For example
computing a list of primitive and transitive permutatioogps of low order started dur-
ing the nineteenth century [97]. Examples of classicalltesn computational group
theory include Dehn’s algorithm [42] for solving word prebt for certain groups, Todd-
Coxeter algorithm [104] for coset enumeration, Knuth-Bgmerm-rewriting procedure
[73] etc. Any group can be represented as a permutation grpgpecifying its action
on a set. Computational aspects of permutation groups heste ftudied extensively
as a result of which it is one of the most developed area in coatipnal group the-
ory. Indeed, algorithmic permutation group theory is ridkhvits inventory of efficient
algorithms. A permutation grou@' is a subgroup ofym((2), whereSym(2) is the
group of all permutations of a finite s@twith n elements. Any subgrou@ of Sym(£2)
can be specified by a set of generators of §)2e). For example only two generators
can generate the whole grofipm(2). This compactness of representation makes the
task of algorithm design even more challenging. GeK Sym({2) be generated by a
setS. The runtime of an algorithm whose inpgtis given by the generating sétis
typically measured in terms ¢f| andn, wheren = |Q2]. The Schreier-Sims algorithm
[99] provided a basic building block in the design of algamit for permutation groups.
With the help of this algorithm membership testing, findihg brder of a permutation
can be performed in polynomial time.

The main surge in the study @bmplexityof permutation group problems came
after Luks’s polynomial-time algorithm for bounded deggeaphs. Problems like coset
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intersection, group conjugacy, permutation group isorhisip has been put in the class
NPNcoAM [23]. The problem of finding lexicographic leader in did@icoset was shown
to be NP-complete. Several restricted versions of the apmi@ems have polynomial-
time algorithms [82].

One of the most beautiful concepts in complexity theory i® Zaowledge proofs.
Zero knowledge proofs are interactive proof systems whieblve two parties, a prover
and a verifier. The prover wants to prove the validity of sorsgedtion. In doing so
both parties interact by sending messages. If the asséstreally valid the the prover
succeeds to convince the verifier with high probability. ®a tther hand if the asser-
tion is false then the verifier will be able to detect it witlghiprobability. Moreover
when the assertion is true, the verifier learns nothing ntwae what it can know with-
out the interaction with the prover. This, seemingly purzlicondition is known as
the zero knowledge condition. This condition is formalizsdrequiring a randomised
polynomial-time algorithm known as tlsemulator. The simulator camimicthe inter-
action between the prover and verifier. Depending on how teelsimulator “mimics”
the interaction, zero knowledge protocols can be of diffetgpes, e.g., perfect zero
knowledge, statistical zero knowledge and computatioead kKnowledge. Though the
zero knowledge condition initially seems strange, GoldseasMicali and Racoff ex-
hibited perfect zero knowledge proofs for Quadratic Ressity, Graph Isomorphism
[58].

By exhibiting a statistical zero knowledge proof for a congtiwnal problem one
can infer several interesting results about' the compyexiithe problem. For example,
a problem possessing statistical zero knowledge proofs &AM N coAM and thus is
unlikely to be NP-complete (see [4, 51, 94]).

Goldreich, Sahai and Vadhan [94, 57] have shown that tworalapuomise prob-
lems, Statistical Difference (SD) and Entropy Differen&D] are complete for the
class SZK of languages possessing statistical zero kngelpwbofs. In Chapter 2 we
show that several problems in permutation group theory btatestical zero knowledge
proofs. We exhibit the zero knowledge proofs by a unified arguat, by showing that
these problems are polynomial-time many-one reduciblagatsfical Difference (SD).

An ingenious valence reduction technique due to Zemlyadahgii 7] led to a mod-
erately exponentiatzp(c\/nlogn) time algorithm for the general graph isomorphism
problem (see [21]). To understa®RAPH-ISOmore clearly researchers have restricted
the problem to various special classes of graphs. Very efficilgorithms have been
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designed for restricted classes of graphs. The linear tigaithm for isomorphism of
trees is the first nontrivial example of such algorithm (s&@. [ Hopcroft and Wong
[67] gave a linear algorithm for planar graph isomorphismi8v4. Miller gave a
polynomial-time algorithm for testing isomorphism of baléd genus graphs. Babai,
Grigoryev and Mount gave a polynomial-time algorithm foubded eigenvalue mul-
tiplicity graphs [28]. Luks’s celebrated result for boudd#gegree graph isomorphism
came in 1982 [80]. Apart from time complexity, space comipyeand parallelizability
of GRAPH-ISOfor restricted classes of graphs have also been consideeethe years.
For example, Lindell gave a logspace algorithm for tree isigrhism [79], Miller and
Reif gave anAC' algorithm for planar graph isomorphism [89], Grohe and \teKy
gave a TC algorithm for isomorphism of bounded tree width graphs [60]Chapter 6
we study the space complexity bftree isomorphism and canonization and show that
k-tree isomorphism is in a class UL which is contained in the cladsl..

It is often the case that the input for a computational pnobé®mes with a param-
eter. For example, the vertex cover problem: Given a g@@nd an integek decide
if G has vertex cover of size. The natural parameter for this problem is the integer
k. The vertex cover problem has a simplén*) algorithm. However, this problem has
better algorithm with runtim&*n°M . If k is “small” this algorithm outperforms the
O(n*) algorithm. The goal of parameterized complexity is to sttitly feasibility and
intractability of parameterized problem. Developed by Dewand Fellows [44, 45] it
is a thriving field of research. fparameterized problens a language. C ¥ x N. A
parameterized probler is fixed parameter tractablé=PT) if given input(zx, k) there
is an f(k)n®™) algorithm to decide ifz, k) € L, wheref is some fixed function. Toda
presented an FPT-algorithm for chordal graphs where thenpeter is the maximum
size of the simplicial components [103]. Based on Toda's@ggh, in Chapter 5 we
present an FPT-algorithm for bounded color class hypelgisgmorphism with run-
time 0120 NO() where the parametéris the size of the largest color class aNdis
the input size.

Canonization or computing the canonical form of a graph isablem closely re-
lated to the graph isomorphism problem. Let G be a graph.chagsnction f is said to
becomplete invariantor the class G if for all graph& andY in G, f(X) = f(Y) ifand
only if X =Y. A complete invarianf is acanonizing functioff f(X) = X. Gurevich
proved that given a polynomial-time computable completarmant, a canonical form
can be computed in polynomial time [62].
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Several algorithms for graph isomorphism for restrictebses of graphs work ac-
tually by computing a canonical form or sometimes a complatariant. For exam-
ple the linear-time tree isomorphism algorithm (see [3]rkgoby computing a com-
plete invariant. This algorithm for tree isomorphism isibaly a variant of a more
general procedure called Weisfeiler-Lehmann algorftifitd1, 112]. The Weisfeiler-
Lehmann algorithm has been remarkably successful forrsplvie graph isomorphism
for several classes of graphs. Babai, Erdds and Selkow §%iltron isomorphism of
random graphs works by finding the canonical form of the gsapfhey showed that
one dimensional Weisfeiler-Lehman can produce canonicai for all butn /7 frac-
tion of graphs om vertices. Sometimes a process known as individualizabbovwed
by Weisfeiler-Lehman method can produce the canonical firgraphs, e.g., Zemly-
achenko’sexp(cy/nlogn) algorithm for graph canonization algorithm [117]. Grohe
and Verbitsky’s [60] TC algorithm for isomorphism of bounded tree width graphs also
works with the help of Weisfieler-Lehman algorithm. Spiemszano(”l/3 logn) algorithm
for isomorphism of strongly regular graphs also works byalty computing a canoni-
cal form. Babai and Luks’s'°e™ algorithm for tournament isomorphism is an example
where the canonization not only exploits the combinatqtaperties of the graph but
also heavily uses the structure of the automorphism grotipeo§raph.

In mathematics canonical forms are important objects. Gaabforms are impor-
tant tools to recognize if two mathematical structures ammilar” under some trans-
formation. For example Jordan canonical form for similartnoas, Hermite normal
form for unimodular transformations, Smith normal form foatrices over principal
ideal domains etc. It is clear that any polynomial-time cataple canonizing function
f for graphs would give a polynomial-time algorithm for graggbmorphism: Given
two graphsX andY’, computingf(X) and f(Y") would be sufficient as by definition
f(X) = f(Y)ifand only if X = Y. Itis an interesting open question if the other
direction is true, i.e., if canonical forms for graph can benputed in polynomial time
with the help of theGRAPH-ISOoracle. In Chapter 4 we study the relative complexity
of isomorphism and canonization for tournaments.

2Actually this more general procedure is calleadlimensional Weisfeiler-Lehmann algorithm (see
(38])
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1.1 Overview of the Thesis

Chapter2 — SZK Proofs For Black Box Group Problems.In this chapter we classify
several algorithmic problems in group theory in the clag38K and SZK (problems
with perfect/statistical zero-knowledge proofs resp@tyi). Prior to this, these prob-
lems were known to be in AM) coAM. As PZK C SZK C AM N coAM, we have a
tighter upper bound for these problems. Specifically:

e We show that the permutation group problems Coset Intesseddouble Coset
Membership, Group Conjugacy are in PZK. Further, the comples of these
problems also have perfect zero knowledge proofs (in trexditsense). We also
show that permutation group isomorphism for solvable gsogpn PZK. As an
ingredient of this protocol, we design a randomised alfarifor sampling short
presentations of solvable permutation groups.

e We show that the complement of all the above problems haveutment zero
knowledge proofs.

e We prove that the above problems faack-box groupsire in SZK.

¢ Finally, we also show that some of the problems have SZK podsawith efficient
provers in the sense of [86].

The results are reported in [10].

Chapter 3 — Limited Randomness Zero KnowledgeArvind and Toéran [19] showed
that group isomorphism problem where the groups are givethby multiplication
tables have public coin, constant round interactive prdoéne the random bits used by
the prover and verifier and the message size is polylogaigthmihe size of the input.
In this chapter we note that this problem actually has pedeoo knowledge proofs
where the prover and verifier use polylogarithmically maarydom bits and has constant
number of rounds. This motivates us to study statisticad k@owledge proofs where
the prover and verifier use polylogarithmic randomness aw Ipolylogarithmically
many rounds. We analyze the proofs of Goldreich, Sahai acithaf@[94, 57] in this
setting. They found two complete promise problems SD anddtfhie class statistical
zero knowledge and proved that any problem having stadistiero knowledge proof
also has a honest verifier statistical zero knowledge pratif @nly two rounds. We
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show that similar results can be shown for statistical zexm\kedge proofs which uses
polylogarithmic randomness and has polylogarithmicalgnsrounds. For example
every problem having such statistical zero knowledge pro@iolynomial-time many
one reducible to a problemSD' which has a two round honest verifier statistical zero
knowledge protocol where the randomness required is silfllpgarithmic. We also
prove that the protocol can be designed in such a way thabttheléngth of message
passed between the prover and the verifier is also polylibgaic. \We exhibit an honest
verifier statistical zero knowledge proof with small randass an@ rounds for group
isomorphism problem for groups given by their multiplicaittable as a corollary of this
general treatment.
Chapter 4 — Isomorphism and Canonization of Tournaments andHypertourna-
ments In this chapter we study the relative complexity of tournamisomorphism
and tournament canonization. We give a polynomial-timeleralgorithm for Tour-
nament Canonization that accesses oracles for Tournarsemolphism and Rigid-
Tournament Canonization. Extending the Babai-Luks Tomerst Canonization algo-
rithm [30], we give am©**+logn) glgorithm for canonization and isomorphism testing
of k-hypertournaments, whereis the number of vertices andis the size of hyper-
edges.

These results are reported in [15].
Chapter 5 — An FPT Algorithm for Bounded Color Class Hypergraph Isomor-
phism. In this chapter we present an FPT algorithm for testing isqiniem of two
colored hypergraph&; and X, where the parameter is the size of the maximum color
class. The run-time of our algorithm #2°®) N°() whereb is the size of the largest
color class andV is the input size. The algorithm uses coset intersectionrofijgs
whose orbits are bounded. Based on Luks’s algorithm [83]present an FPT algo-
rithm for finding the coset intersection of groups whosetsrare bounded by parameter
b.

The results of this chapter are based on [14].
Chapter 6 — Space Complexity ofc-tree Isomorphism and Canonization. K-trees
are natural generalization of trees [72]. A subgraph bfteee is a partiak-tree. The
class of partiak-tree coincides with the class of graphs with treewidth lamahbyk.
In this chapter we look at the problem of (ful}tree isomorphism. In this chapter we
show that isomorphism testing &ftrees is in the clasStUL(logn) (strongly unam-
biguous logspace). This bound follows from a determinikigspace algorithm that
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accesses a strongly unambiguous logspace oracle for ezampiitrees. Further we
give a logspace canonization algorithm fepaths.
These results are reported in [12].



SZK Proofs for Black Box Group
Problems

2.1 Introduction

In this chapter and the next we study the complexity of séggoap theoretic problems
that are related to graph isomorphism. More specifically vewg@ that these problems
have zero knowledge proof system.

Motivated by cryptography, zero knowledge proof systemeweroduced by Gold-
wasser et al [58]. Zero knowledge protocols are a special &fnnteractive proof sys-
tems in which the verifier gets no information other than thédity of the assertion
claimed by the prover. The notion of zero knowledge is forneal by stipulating the
existence of a randomized polynomial tisienulatorfor a given protocol. The simula-
tor, given some input of the protocol, outputs strings fwiltg a probability distribution
indistinguishable from the verifier's view of the interaxtibetween prover and verifier
for the given input. The notion of indistinguishability che further qualified. This leads
to different notions of zero knowledge protocols. The pcotes perfect zero knowledge
if the distribution produced by the simulator is identicatie verifier's view for all in-
puts. It isstatistical zero knowledgi the two distributions have negligible statistical
difference. Finally, the most liberal notion ¢@mputational indistinguishabilitwhere
the simulator’'s output distribution cannot be distingeidlirom the verifier’s view by
polynomial-size circuits.

Natural problems like Quadratic Residuosity and Graph m@imsm GRAPH-1SQ,
their complements, a version of the discrete log problermalidenown to have perfect
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zero-knowledge protocols. Some of these protocols havedi@uyptographic appli-
cations. For example, the Fiat-Shamir-Feige identificatioheme is based on the ZK
protocol for quadratic residuosity.

As a complexity class SZK is quite intriguing. It is closedden complement and is
contained in AMNCoAM. Itis open if SZK coincides with ANMicoAM. One approach to
studying SZK is to explore for new natural problems that riteins. Goldreich, Vadhan,
and Sahai [94, 57], investigating SZK, have shown that twiana&promise problems,
Statistical Difference (SD) and Entropy Difference (EDg abnmplete for SZK. We use
these to exhibit several natural group-theoretic problentsZK (and PZK) from the
area of black-box groups studied by Babai and SzemerédBP)3]t is shown in those
papers that most of these black-box group problems are imN&AM (some are in
AM N coAM).

In this chapter we put several group-theoretic problemgp&mutation groupsn
PZK, and for generablack-box groupsn SZK. The results of this chapter is based on
[10]t. We exhibit the zero knowledge proofs by a unified argumemiywing that an
appropriately defined group equivalence problem is redei¢dhStatistical Difference.
One problem that requires a different technique is solvpblenutation group isomor-
phism. Except for this problem all the other problems we @@eTsn permutation group
setting are harder than graph isomorphism problem and icathiext of zero knowledge
proof they share similar properties with graph isomorphmsablem. In fact, as we will
later see, that the properties of graph isomorphism prokiatare essential for its zero
knowledge proof is ‘captured’ by the group equivalence feob

We further prove that the complement of some of the abovelgnub has zero
knowledge proofs in liberal sense and also has concurrent@®wledge proofs.

Additionally, the group-theoretic NP problems that we ¢des also have zero-
knowledge protocols with efficient provers (in the sense afdiancio and Vadhan [86]).
They have efficient proofs of knowledge as they are redutih8D"'/2,

2.2 Preliminaries

We first recall some of the definitions about interactive pcot, zero knowledge etc.
There are few minor variants of these definitions availablde literature. We use the

After the publication of the conference version of [10], iasvbrought to our attention that related
work on some permutation group problems was done in [107], 108

10
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definitions of interactive protocol, interactive proofs.€rom [106].

Definition 2.2.1 (Interactive Protocol) An interactive protocols a pair of functions
(P, V). On inputz, theinteractionbetweenP andV is the following random process
(P, V)():

1. Uniformly choose random coing andry (infinite binary strings) forP and V'
respectively.

2. Repeat the following far=1,2, - - -

(@) Ifiisoddletm; = P(x,my, -+ ,m;_1;7p).
(b) Ifiisevenletn; =V (x,my, - ,m;_1;1v).

(c) Ifm; € {accept, reject, halt}then exitthe loop.

The stringm; is called theith message. If the last message farns accept (resp.
rej ect ), we say thatP acceptqresp. rejecty, and similarly forlV. We say that the
protocol ispolynomially boundedf there is a polynomiap(.) such that, on common
input z, at mostp(|z|) messages are exchanged and each is of length at pipg)
(with probability 1 over the choice ofp andrp).

Definition 2.2.2 A promise problenil is a pair (ITy, ITy) of two disjoint setdl, and
IIy. The sefly is the set of “yes instances” andy is the set of “no instances”.

A languagel can be viewed as the promise probl&im = (L, ¥* — L), whereX is the
alphabet.

Definition 2.2.3 (Interactive Proofs IP) Let (P, V') be an interactive protocol and let
IT = (Ily,IIy) be a promise problem(P, V') is said to be annteractive proof system
for IT with completeness errar: N — [0, 1] and soundness error : N — [0, 1] if
the following conditions hold:

1. (Efficiency) P, V) is polynomially bounded anid is polynomial-time computable.

2. (Completeness) lf € Ily, thenl” accepts with probability at least — ¢(k) in
(P, V)(z, 1%).

11
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3. (Soundness) if € I1y, then for anyP*, V' rejects with probability at least— s (k)
in (P*,V)(z,1%).

We require that(k) ands(k) be computable in timgoly(k) and thatl — c¢(k) > s(k)+
1/poly(k). If c¢(k) = 0 for all k¥ then we say that the system h@esfect completeness
IP is the class of all problems possessing interactive proofs.

Definition 2.2.4 Let (P, V') be an interactive protocol. Let,, - - - ,m, be all the mes-
sages exchanged betweBmandV” on inputz and letr be the substring of;, containing
all the random bits that” read during the interaction.

e V’sviewon common input is the random variableP, V') (z) = (my, - -+, my; 7).
e Thenumber of roundss ¢.
e Themessage sizis >°!_, |m|.

Definition 2.2.5 (Statistical Difference) Let X andY be two distributions on a finite
setS. Thestatistical differencéetweenX andY is

StatDiff(X,Y) = % Y |Pr(X =s)— Pr(Y =s)|.

seS

A distribution X on a finite setS' is said to bes-uniform if ﬁ(l —eg) < PriX =¢] <
‘—§|(1 +¢). If X ise-uniform on$S then StatDiff X, Ug) < £/2, whereUy is the uniform

distribution ons.

Definition 2.2.6 A functionf : N — N is negligibleif for all polynomialp : N — N

there existsy, such that for alln > ng f(n) < 5.

Definition 2.2.7 An interactive proof syste(, 1) for a promise problenil = (IIy, ITy)
is said to bestatistical zero-knowledge SZK for every randomized polynomial-time
interactive machiné’*, there is a probabilistic polynomial-time algorithi?* and a
negligible functioni: such that for allz € L andk > 0 the following two conditions
hold:

1. The machiné/* is useful i.e., on input(x, 1*), M* fails (and outputdail) with
probability at most.

12
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2. Letm*(x,1%) be the random variable describing the distribution i (z, 1%)
conditioned onV/*(z, 1%) # fail. Let(P,V)(x, 1¥) be theviewi.e., the messages
passed betweeR and V' during the execution of the protocol ands random
bits. Then

A = StatDiff(m* (z, 1%), (P, V)(z,1%)) < u(k).

When) = 0 for all x € L then the protocol iperfect zero-knowledge PZK

Definition 2.2.8 A promise problenmil = (Ily, I1y) is in the classhonest verifier sta-
tistical zero knowledge HVSZHK there is an interactive proof systef®, /) such that
there is a negligible functiop and a useful polynomial-time randomized algoritlsm
such that ifr € Iy then on inpu{z, 1%),

StatDiff(S(xz, 1%), < P,V > (z,1%)) < u(k),

whereS(z, 1*) is the output distribution of on input(z, 1*) conditioned orS(z, 1*) #
faal.

If u(k) = 0 for all k£ thenlII is said to be in the claskonest verifier perfect zero
knowledge HVPZK

A boolean circuitX : {0,1}™ — {0, 1}" induces a distribution ofi0, 1}" by the
evaluationX (=) wherex € {0, 1} is picked uniformly at random. We usé to denote
this distribution encoded by circuif.

Definition 2.2.9 SD*#) For constant®) < § < a < 1, the promise problerBD** =
(SD%’/B, SD?V’B) takes as input distributionX and Y given by circuits, and has “yes
instances”SD;"” and “no instances”SD};” defined as follows.

SD}” = {(X1, Xs) | SatDff( X1, X2) > a,

SDY = {(X,, X;) | StatDiff( X, X,) < 8}

The problenSD*%'/? is called thestatistical difference problemnd will be often
denoted as$SD.

The above problem is defined in terms of statistical diffeeenTheentropy differ-
ence problens a similar problem defined in terms of entropy differencg [%We recall
the definition of entropy below.

13
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Definition 2.2.10 (Entropy/Shannon Entropy) Let X be a distribution on a finite set
S. Theentropyof X, denotedH(X) is defined as

1

H(X)=> Pr[X = s]log P = o

ses
Definition 2.2.11 ED) The promise problem

ED = (EDy, EDy)

takes two distributionsy and Y encoded by boolean circuits as input and has “yes
instances"EDy and “no instances”E Dy defined as follows:

EDy
EDy

{(X1, Xo) [ H(X1)

1 H(XQ) + 1}.
{(X1, X5) | H(X3)

>
> H(Xl) + 1}

We recall some important results from [94, 56, 57, 106].
Theorem 2.2.12 (Goldreich-Sahai-Vadhan)94, 57]
(i) SD¥*'/3 andED are complete foBZK.
(i) SZKis closed under complement.
(i) HVSZK = SZK.
(iv) The complement of the proble®D"?, i.e.,SD' is in PZK.

We recall some basic group theory. l(@te a finite group an€ a finite nonempty
set. The action of the grou@ on the sef? is defined by a map : 2 x G — Q such
that for allz € Q (i) a(z,id) = z, i.e., the identityid € G fixes eachr € €, and (ii)
ala(z, g1),92) = a(x, g192) for g1, g € G,. We writex? instead ofa(z, g) when the
group action is clear from the context.

Definition 2.2.13 Let G be a finite group acting on a finite set For x € (2, its G-orbit
2% is the set
{yly € X,y = 27 for someg € G}.

Notice that() is partitionedinto orbits. When the group is clear from the conteXtis
called the orbit ofr.

14
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We write H < G whenH is a subgroup ofs. Thesymmetric groupn a finite sef
consisting of all permutations dnis denoted bysym(Q2). If Q@ = [n] = {1,--- ,n} we
write S, instead ofSym([n]). A finite permutation groug- is a subgroup ofym({2)
for somef).

The permutation grougeneratedy a subset C Sym(2) is the smallest subgroup
of Sym(2) containingS and is denoted byS). Each element of the grou(®) is
expressible as a product of elementsSof

The subgroug>® of G < S, that fixes each of1, ..., i} is apointwise stabilizer
subgroup. We have a tower of subgroupsdor

G=GY>cW>G® >...>q"V = {id}.

It is not difficult to see that the inde)¢—") : G] is at mostn. Let R; be a set of
complete and distinct coset representative&'f in G- for eachi. Then{J!'"|' R;
generates; and is known as atrong generating sdor G. Given a permutation € G

it is easy to check ifr € G®. It is also easy to check if two permutationso €
G are in the same coset 6fC+Y) in G, We just have to check if~'oc € G0+,
These observations yield a polynomial-time algorithm [@8, 53] to compute a strong
generating set of a permutation groGpwhich can be used to test in polynomial time
if ¢ € S, isin the group(S) < S,. Finally, it is sometimes the case that there is
an efficient algorithm for testing membership in a subgrélupf G whereG < S, is
given by a generating set, but no generating setfas given. By [98, 99, 53] we can
efficiently compute a generating set farif its index in GG is polynomially bounded.

Theorem 2.2.14 (Schreier GeneratorsyetG = (S) < S,,, H < G. LetR be a set of
coset representatives éf in G. Then

B={r'zrt|rr cRarecSINH
generated?. The generators i3 are calledSchreier generators

The algorithm in the above theorem computes a set of cosetseptatives: for the
subgroupH of G = (S). The algorithm makes:?|S| tests of membership i where
m = [G : H]. The setB of Schreier generators fdi can be of size polynomial im.
We can convert it to a®(n?) size generating set [98, 99, 53].
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A subgroupH of GG is normalin G, denotedH > G, if for all ¢ € G andh € H,
g 'hg € H. The idenity subgroup an@ are both trivial normal subgroups ¢f. A
groupG is simple if it has no nontrival normal subgroup. The subgrgenerated by
{zyz~ly~! | z,y € G} is the commutator subgrouf’ of G. Recall thatG’ is the
unique smallest normal subgroup 6fsuch thatG /G’ is commutative. The derived
series ofGisG > G' > G" > ---. We say( is solvableif this series terminates in
{id}. There are polynomial-time algorithms to compute the @etigeries and to test
solvability for permutation group§ given by generating sets (see e.g. [82]).

A composition seriesf G is a tower of subgroup§id} = G; <Gy < -+ - <Gy, = G
such thatz; /G, is simplefor each:. Recall that’ is solvable iffG; /G, is cyclic of
prime order for eachin any composition series far.

2.3 Chapter Overview

1. In Section 2.4 we
¢ Define a problem PGE.
e Prove that PGE polynomial-time many-one reduceSmo°.

PGE<P sD'".

e Define permutation group probler8§BSP-TRANSNdCONJ-GROUP Prove
that they are polynomial-time reducible to PGE.

SUBSP-TRANS<F PGE

CONJ-GRouP<P PGE

Since several permutation group problems are reducibigierS UBSP-TRANS
or CONJ-GROURhe above reductions imply that they are in PZK.

2. In Section 2.5 we proveGE has perfect zero knowledge proof in liberal sense.

3. In Section 2.6 we prove that the solvable permutationgreemorphism problem
is polynomial-time many-one reducible &D"°.
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4. In Section 2.7 we define the black box group problem GE. érov
GE <P sph/s,

We show that several black box group problems are polynetimed many-one
reducible to GE. As a consequence we deduce that they arekin SZ

5. In Section 2.8 we prove that several permutation grouplpms have concurrent
zero knowledge proofs.

6. In Section 2.9 we prove that several black box group probleave SZK proofs
with efficient prover.

Figure 2.1 we schematically represent the reductions arsewgral problems. For
the reductions among the permutation group problems séeT82 problem of decid-
ing if two groups given by their multiplication tables aremsorphic or not is denoted
as Grlso. We will study this problem in the next chapter.

2.4 Group Problems in PZK

In this section we show that various permutation group @oisl (not known to be in
P) are in PZK. Examples of such problems are Coset Intesgedbiouble Coset Mem-
bership, Conjugate Subgroups etc. We define these problelms (see [82] for more
details). These are all problems known to be harder GRAPH-1SQ

We prove the membership of all these problems in PZK by onermg¢mnesult. We
define a generic problem calldéermutation Group Equivalend@GE and show that
PGE is polynomial-time many-one reducibleS®"’. As SD'* ¢ PZK it follows that
PGE € PZK. The problem PGE is generic in the sense that all considproblems,
except the isomorphism problem, about permutation grotgp@ynomial-time many-
one reducible to PGE. Thus, it follows as a corollary thattladlse problems are in
PZK.

Permutation group isomorphism problem requires a diffeag@proach. In fact, in
this chapter we show only for solvable groups that this grobis in PZK.

Recall that instances &D"° are pairs of circuit§X,, X;), whereX; : {0,1}" —
{0, 1}™ defines a probability distribution of0, 1}™, for uniformly distributed input in
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Statistical Zero Knowledge
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Figure 2.1: Schematic Diagram of Reductions.
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{0,1}™. The promise is that the statistical difference betwa&grand X, is 0 or 1 and
the problem is to determine which is the case. This is knowsetm PZK [106].

Definition 2.4.1 ThePermutation Group Equivalence Problem PI&iS inputs consist-
ing of 4-tuples(z,y,T, 7). HereT C S,. LetG = (T) . Thent : G x S — S'is
a polynomial-time computable group action@fon S, for someS C {0, 1}, where
m = n°®. More precisely, givep € G ands € S, the images™@ of s underg (which
we denote simply by) is polynomial-time computable. Finally,y € S.

ThePGEproblem is the followingromise problemgiven an input 4-tupléx, y, 7', 7)
with the promise that, y € S and thatr defines a group action d¢f") on S, the problem
is to decide ifr andy are in the samé&--orbit. l.e. isx9 = y for someg € G?

Theorem 2.4.2 PGEis polynomial-time many-one reducible$®"°.

Proof. Let(x,y,T,T)be an inputinstance of PGE such thay € S andS C {0, 1}™.
Define two circuitsX, 7, X, r : {0,1}* — {0,1}™, wherek is polynomial inn to
be fixed later. In the sequel we assume that it is possible iforamly pick a random
element from the sef] for each positive integergiven in unary? The circuitX, 7 on
input which is a random string € {0, 1}* will use r to randomly sample an element
from the groupGG = (T'). This is a polynomial-time procedure based on the Schreier-
Sims algorithm for computing a strong generating @gg R; for G, whereR; is a
complete set of distinct coset representative€6f in G- for eachi. Then we
can sample frondZ uniformly at random by picking;; € R; uniformly at random and
computing their producy, = zix5---x,-1. The circuitX, r then outputst? . By
constructiongzd- is uniformly distributed in the&-orbit of . Likewise the other circuit
X, r will output a uniformly distributed element of ti@&-orbit of y. SinceG defines a
group action orft, the two orbits are either disjoint or identical. In partemithe orbits
are identical if and only ifr = y¢ for someg € G. Thus, the statistical difference
betweenX, » and X, 1 is 0 or 1 depending on whether= y? for someg € G or not.
This proves the theorem. ]

We show that several permutation group problems are relducl®GE. There is a
table of reductions for permutation group problems in Lukgicle [82]. It suffices to
show that the following two “hardest” problems from thatleabre reducible to PGE
(apart from permutation group isomorphism which we consigdéhe next section).

2This assumption is required even for the PZK protocolGRAPH-ISQ
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Definition 2.4.3 The Subspace Transporter Probl&uBSP-TRANShas input consist-
ing of a subgroup of S, given by generating séf, a representationr : G —
GL(F7'), and subspaced’;, W, C [F;* given by spanning sets. The question is whether
Wi = W, for someg € G. Here the size of the finite field is a constant.

Notice here that by?’Y we mean the image of the subspage under the matrix
7(9)-

Definition 2.4.4 The Conjugacy of Groups Proble@ONJ-GROUPhas inputs consist-
ing of three permutation grougs, H,, H, in S,,, given by generating sets. The question
is whether there is @ € G such thatl{ = H, (whereH{ = g~1H,g).

Lemma 2.4.5

(@) LetF, be a fixed finite field. Given as inpit C F}, there is a polynomial-time
algorithm A4 that computes aanonical basi® of the subspacl’” spanned byX'.
The output is canonical in the following sense:Aifis given any spanning set of
W as input, the output ol will be B.

(b) Given as inputX C S, there is a polynomial-time algorithtd that computes
a canonical generating sét of the subgroug> generated byX. The output is
canonical in the sense that will output B, given any generating séf’ of G as
input.

Proof. First we prove (a). Order the elementsKyflexicographically. First, we search
for the least: such that there is a vectov,,...,v,) € W with v; = 1 (Notice that
vy, ...v;—1 have to be zero for all elements @f). For this we can use a polynomial-
time algorithm for testing feasibility of linear equatiooser F,. Having found:, we
search for the least,,; € I, such that; = 1. Sinceq is a constant we can do this
search with a constant number of similar feasibility tegtfter finding the leasv;,
we fix it and search similarly for the least,» and so on. Continuing thus, we can
compute the lex least nonzero elemantin 1. Next, in order to find a basis we look
for the least index > i such that there is a nonzero vectet,...,v,) € W with

v =vy = ... =0, = 0andv; = 1 again byO(n) feasibility tests. After finding,
we can again pick the lex least nonzero veatgmwith the property that thgth index is
the least nonzero coordinateuws. Continuing in this manner, we will clearly obtain a
basis{u;, us, ..., ux} of W. By our construction this basis is canonical.
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Now we prove (b). The algorithndl will compute a strong generating set frakh
for the groupG using the Schreier-Sims algorithm [82]. Then using the tlaat the lex
least element of a coseH (wherex € S,, andH < S,,) can be computed in polynomial
time [18] we can replace each coset representative in thegtrenerating set by the lex
least coset representative. This generating set is casddnyiconstruction. ]

Theorem 2.4.6 The problemsUBSP-TRANSand CONJ-GROUPare polynomial-time
many-one reducible tBGE

Proof. We first consideBUBSP-TRANS Let (T, S}, So, ) be an input. LetG = (T)
and Sy, S, C ;' be spanning sets df; and W, respectively. The representation
is given byr : ¢ — GL(Fy'). The reduction fromBUBSP-TRANSto PGE maps
(T, Sy, S, m) to (z,y, T, 7) wherex andy are the canonical bases fdr; and W, re-
spectively, in the sense of lemma 2.4.5. The Seh definition 2.4.1 corresponds to
the set of canonical bases of all possible subspacéy'ofThe group action is the
algorithm that givenB € S andg € G, first computes the set of vectorsg)(B).
Next, using the algorithm in Lemma 2.4:5computes the canonical basis of subspace
spanned byr(g)(B).

The reduction is similar foCONJ-GROUP Let (7', Sy, S2) be an instance c§ONJ-GROUR
whereT’, S; andS, generaté&r, H,, andH, respectively. The reduction mafs, S, S»)
to (x,y, T, 7) wherex andy are the canonical strong generating setsorand H re-
spectively in the sense of Lemma 2.4.5. The$at definition 2.4.1 is the set of canon-
ical strong generating sets for all subgroupspf The group actiorr is the algorithm
that givenB € S andg € G, applies the algorithrd in lemma 2.4.5 to compute the
canonical generating set for the subgroup generatedib\rg | © € B}. [ |

SinceSUBSP-TRANSand CONJ-GROUPare harder than several permutation group
problems w.r.t. polynomial time many-one reductions [82]mave the following.

Corollary 2.4.7 The problems of Set Transporter, Coset Intersection, Do@nset
Membership, Double Coset Equality, Conjugacy of Elemergstor Transporter etc
are all in PZK.
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2.5 Group Nonequivalence and PZK in liberal sense

It is not known (to the best of our knowledge) if $Dis in PZK. However, we observe
here that we need the following liberal definition of PZK, Aese only such PZK proto-
cols are known for even problems liRAPH-NONISOand Quadratic Nonresiduosity.

We show that Permutation Group NonequivaleR&E is in PZK in the liberal
sense. Consequently, the complement of problems condider@orollary 2.4.7 and
Theorem 2.4.6 are also in PZK (liberal sense).

Definition 2.5.1 (PZK (liberal sense))[58] An interactive protocol P, V) is perfect
zero knowledgéf for every probabilistic polynomial time interactive niage V* there
exists an expected polynomial-time algorithi such that for every: € L the random
variable (P, V*)(z) and M*(z) are identically distributed.

Notice that in this definition [58] of PZK the simulator is wged to be arexpected
polynomial timealgorithm that always outputs some legal transcript. Thiendien
we used in Section 2.4 is more stringent. It requires the lsitauto be worst case
polynomial time though it may sometimes fail.

A common generalization of several problems in PZK (libesise) iGE.

Theorem 2.5.2 PGEis in PZK in liberal sense.

The proof of this theorem is similar to [55] and some of thenteques are from
[54]. We first describe the PZK protocol.

2.5.1 Protocol

Input (zo, 21,7, 7) , whereT C S, generates the grou@, zo,z; € S andr is a
polynomial time computable group action@fon S.

V1 The verifier chooses randomly from{0,1}, ¢ randomly fromG = (T'). Let
s = xzj. The prover is supposed to téligivens. The verifier also choosqéi)
randomly’fromG andb; e.{O,l} for; = 0,1and: = 1,2,--- , k. Calculate
st = xgéa)b ands!” = xﬁé;b The verifier sends and the pairgs.”, s\") for
i =1,2,---k. The prover uses these pairs to check that the verifier iseatong.
We will later fix k.
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P1 The prover chooses a random subisef [k] and sends it to the verifier.

V2 The verifier supplie@j@ andb; foralli € I andj = 0,1. For alli € I, he
sends(d;, h;) whered; = b @ b; andh; = g_lgégbi. Thus, for an honest verifier
5&? = shi. (Note thatr9192 = (2:91)92)

. () . (i) . _

P2 If s # a0 ors” # 29, foranyi e I ors}; # s" foranyi € T thenrejectthe
input. Otherwise send such that there existg’ such thats = x% If no suchg
exists, then send = 0.

V3 If b = [ accept elsereject

Lemma 2.5.3 The above protocol is an interactive protocol with compietes error)
and soundness error less than or equal 1@.

If (2, 21,G,S) € PGE thenr, andz, are in different orbits. Thus, if is in the
orbit of one of them then it cannot be in the orbit of the otHemeent. Hence, the prover
will be able to tell from which distributior comes. Thus the verifier will accept.

If (z0,21,G,S) € PGE then the twa, andz; are in the same orbit. Thus, dfcan
come from one of the elements it can come from the other eleasewell. Thus any
prover can at best gue&sWe prove this formally as follows.

Let B be a random variable that takes values randomly and unijoinom {0, 1}.
Let £ be a random variable that takes values randomly and unijoimoim G x (G x
G'x{0,1})*. Let f be afunction whose domain{$, 1} x Gx (GxGx {0, 1})*xP([k]),
whereP([k]) is the power set df:]. The function on the valu@, g, { (4", ¢\", b:)}=_,, T)
produces the value

(%) (1) . . . . . .
3 3 7 7 (ip) ?
:Eg,{(xg? ’xngbi) le? [(g(()l)vg§ 1)7bi1)7(g(()2)7g§2)7bi2)7"' 7(gOp 7g§p)7bi1)]v

[(b D bjng*lgz%gh )v (b D bj27 9_191(>$2j2 )v T (b D qua g_lgég) )]

bjq

wherel = {iy, iy, ,i,} andl = {41, ja, -, ju}- SO,f(B, €, I) is a random variable
which behaves in the same manner as the venfievould have done on its random
coins(b, g, {(g\", ¢\, b;)}=_,) and index sef C [k] sent by the prover.
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Claim 2.5.4
PriB=0|f(B,E,I)=Tr|=PriB=1|f(B,&,1)="Tr]

where

Tr = [s,{(so) st s
[(h(oll)ah(lll)veh)v(h b2 h(m ’ 12) T 7(h(()1p)7hgzp)7eip)]
[(djis hji)s (djys gy), - (djys B, )]

is in the range of thef, I = {iy, iy, -+ ,i,} andl = {ji, j2, -+ ,j,}- (Here the prob-
ability is taken ove3 and £ and not on the index sét The claim is true of any index
set/).

PrOOf LetAOI - {<g {(90 791 ) ) )|f(0 9, {(90 7g1 ) ) §:171) = TT}
and A7 = {(g.{(s". 01" b)Y F (L g {(a” . 0" b)Yy T) = T}, We will
prove that Ag ;| = |A; ;|. Assuming this,

Prif(B,E,1)=Tr|B=0] = Pr[f(0,E,1)="Tr]
= Pr[€ e Ao
= Pri€e A
= Prif(B,E,1)=Tr|B=1].

Now applying Bayes’ theorem, we get the claim.

Now we prove thatAg ;| = |A;;|. Asx, andx; are in the same orbit, there exists
v € G such thate] = x,. We note thay - ~vg, (31", ¢\, b)) — (g{, g%, ;) for all
icTandforallj e’

(95,07,0) — (va5), 7 g, 1)

(05,99 1) — (v g, 79", 0)

is a bijection fromA4, ; to A, ;. O
Let R be a random process that on input sofii8, £, I) = T'r produces a number.
R acts as a proveP*. As the prover tries to findlfrom 7'r, R does so, too. The verifier
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accepts if the prover can correctly supply him thhat he chooses in stéfil. This
corresponds to the eveRt(f (B, £, 1)) = B. Hence, we calculat€r[R(f(B,E,1)) =
5.

PriR(f(B,&,1)) ZPT = B|f(B,£,I)=Tr]- Prlf(B,E, 1) =Tr].

Now,

Pr[R(Tr) = B|f(B,E,1)=Tr] = ZPr R(Tr)=bAB=0blf(B,EI)="Tr
= Zpr r) = b|Pr[B=0b|f(B,E,I) =Tr]
= 1/22137« f(B,Tr, 1)) = 1]

< 1/2. b

Thus,Pr[R(f(B,&,1)) = B] < 1/2. This proves that the soundness errogis /2
completing Lemma 2.5.3.

2.5.2 Simulator

We will prove that for any probabilistic polynomial time vigr V* there exists an
expected time simulatal/y - that produces the same distribution as the protocol does.
Let the input length be. Let ¢(n) be a polynomial bound on the running timelof.

S1 Choosew randomly from{0, 1}4(™). SimulateV* on the(zg,z;, G, S) using the
random coinsu. Let V* send(g, {(sff), s§> 7_,) to the prover.

S2 Choose a random subdetf [k]. Use it as the verifier's next input. Suppose the veri-

) (i)
fier sendq(g0 ) 9\ b:) Yier and{(d;, hi)},.7. The simulator checks i’ = =z

or s\ = :cl@b foralli e I orsfi) = shi for all i € 1. If any of these conditions is

violated then the simulator rejects and produces an outmardingly. Else step
S3

S3 Choose a random subgtof [k]. Again simulatd/* with the same random coin.
But now as the next input (i.e., corresponding to $2&p sendK to V*. Suppose
now, V* outputs{ (35", 3\, b;) }ier and{(di, ;) },cz-
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S3.1 In this step)My, - tries to find the correct orbit of.
Let for somei € I NK, d; = 0 ands™ = s, But ass! = xzé) (because
My« has passed step2), we must haves ~ x;,,. So, My« setsf = b;.
Similarly, if d; =1 andsh = ng-)’ My setsp =b,. Thecasefoi € IN K
and analogous conditions can also be dealt with similarly.

If no 3 is found go to stef®3otherwise go to stef4.

S3.2 In parallel find the correct orbit of using brute force algorithm. We can
assume that the brute force algorithm runs in t2A€’), whereA(n) is a
polynomial. If no correct? could be found sef = 0.

S4 Output the transcript.
Claim 2.5.5 The simulator)My - runs in expected polynomial time.

Proof. It is sufficient to prove that the expected number of timéss called is poly-
nomial. Letw be the random coin®™* uses. LetVN,, be the number of subsefson
which the simulator has to go to st&§3 i.e., these are the index set on which the con-
ditions checked by, - on stepS2 are true. Let us call these subsgtsood Clearly,

0 <N, <2k,

Case 1. N, > 2.

In this casePr[A randomly choosen subset K is good and K # I] = Nl

Thus, expected number of tim&s is called is

N, (N, —1\ "
+ o o < 3.

Case 2. N, = 1.

In this caseMy - moves to stefB3 only when the subset chosen at stelis
good. Thus, the probability of this eventj%. The brute force algorithm takes
time 22("), Thus, expected number of tim&s is called isQAQi"). So if we choose
k to be a polynomial greater thax{n), V* will be called at most constant number
of times. ( Note that the proof of Lemma 2.5.3 does not chaagthfs choice of

k)
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Case 3. N, = 0.

In this casé/* never reaches st&}B8 Thus,V* is called only onceld

Claim 2.5.6 Simulator’s output distribution and the verifiers view imdically dis-
tributed.

Proof. Same random coin for the verifier and same index set prodiazas transcript
in both the cases]
Combining Theorem 2.4.6 and Theorem 2.5.2 we obtain theviatig.

Corollary 2.5.7 The complement of the following problems ar®#K in liberal sense:
Set Transporter, Coset Intersection, Double Coset MerigrBouble Coset Equality,
Conjugacy of Elements, Vector Transporter.

2.6 Solvable Permutation Group Isomorphismis in PZK

In this section we considgrermutation group isomorphisRERM-ISQ given two sub-
groups(S), (I') < S, the problem is to test ifS) and(7") are isomorphic.
Remark. PERM-ISQOis in NPN coAM [82]. It is harder tharGRAPH-ISO[82] and
seems different in structure fro@RAPH-ISOor PGE. Like PGE if we try to formulate
PERM-ISOusing group action we notice that isomorphisms betweenggrate not per-
mutations on small domains (unlike PGE). Thus, we do not khow to prove certain
complexity-theoretic statements fBERM-ISOthat hold forGRAPH-ISQ E.g. we do
not know if it is in SPP or even low for PP [75], althou@RAPH-ISOis in SPP [18].
Indeed, we do not know PERM-ISQis in SZK.

However, in this section we show tHRERM-ISOfor solvable groups is reducible to
SDMY and is hence in PZK. We recall some group theoretic defirsgtion

Let X be a finite set of symbols andG (X ) be the free group generated iy

Definition 2.6.1 A pair (X, R) is a presentatiomf a groupG whereX is a finite set of
symbols andr is a set of words oveX U X! where eachw € R defines the relation
w = 1. The presentatio(X, R) defines’ in the sense thatr = F'G(X)/N, whereN
is the normal closure iF'G/(X) of the subgroup generated 8. The size of X, R) is

| X| 4+ > ,erlw]. Call (X, R) ashort presentatioof thefinite group G if the size of
(X, R)is (log |G|)°W.
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It is an important conjecture [27] that all finite groups hamert presentations. It
is known to be true for large classes of groups. In particulas easy to prove that
solvable finite groups have short presentations.

Notice that two groups are isomorphic if and only if they h#tve same set of pre-
sentations. Our reduction of solvable permutation groapisrphism taSD"? will use
this fact. Specifically, to reduce solvat®&RM-1SOto SD"? we give a randomized al-
gorithm A that takes as input the generating set of a solvable gtbgps,, and outputs
a short presentation far. We can consided (G) as a circuit with random bits as input
and a short presentation far as output. Clearly, it7 22 H then the circuits4(G) and
A(H) will output distributions with disjoint support. On the ethhand, ifG = H, the
circuits A(G) and.A(H) will compute identical probability distributions on theah
presentations (fofz and H).

We describeA in two phases. In the first phagecomputes a random composition
series for the input solvable group = (T") following some distribution. In the second

phase,A will deterministically compute a short presentation fousing this composi-
tion series. An ingredient fad is a polynomial-time sampling procedure fran\ N
whereL < S, and N < L are subgroups given by generating sets. We describe this
algorithm.

Lemma 2.6.2 (Sampling Lemma)Let . < S,, and N < L, where bothl. and N are
given by generating sets. There is a polynomial-time atbarithat samples fromh \ N
uniformly at randomith no failure probability.

Proof. LetL = (S) andN = (T'). Recall that applying the Schreier-Sims algorithm
we can compute a strong generating setffan polynomial time. More precisely, we
can compute distinct coset representatiRefor L in Lt~V for 1 < i < n— 1, where
L is the subgroup of. that fixes each of, 2, .. .,i. Notice that| ;| < n for eachi.
Thus, we have the tower of subgroups= L(® > LW > > 1) =1,

We can use the strong generating|se®; to sample uniformly at random froth as
explained in proof of Theorem 2.4.2. This sampling procedian be easily modified
to sample uniformly from’ \ {1}.

We will build on this idea, using some standard group-theom@gorithms from
[82] to sample uniformly fronl. \ N. SinceN < L each setVL(® is a subgroup of..
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Furthermore, for each

|NL(z'—1)| - |L(z'—1)| - -
- - n—1 .
|NL(z)| - |L(z)| -

Thus,L = NL©® > NL® > .. > NL®1 = 1 js also a subgroup tower with each
adjacent pair of subgroups of small index. Furtherméealso forms coset represen-
tatives for’vV L® in NLU~1, However,R;, may not be all distinct coset representatives.
Since we have the generating set f6£.%) (the union of7” and the generating set for
L®) we can find the distinct coset representatives in polynbimi@ by using member-
ship tests inVL®, using the fact that, y € R, are not distinct coset representatives for
NL® in NLO-Viff zy~' € NL, LetS; C R; be the distinct coset representatives for
eachi. Let|S;| = m; for eachi. We can ignore the indicesfor which S; has only the
identity element.

Now, each elementN € L/N can be expressed uniquely as

gN = (¢1N) -+ (gn_1N) = g1+ gn_1 N, whereg; € S;.

Partition the nontrivial elements df/N into setsV, = {g;---g,.1N | ¢; €
S;andg; # 1}. Clearly, L/N \ {IN} = |- V;. Furthermore, letVi| = (m; —
1) H;.:;Jri m; = N, for eachi. We can sample uniformly froriy; by uniformly picking
gi € Si\{l}andg; €r S;,j =i+1,...,n— 1. Thus, we can sample uniformly from
L/N by first picking: with probabilitym\[ﬁ and then sampling uniformly frori;.
Finally, to sample fron?. \ NN, notice that after picking the tuplg;, ..., g,_1) while
sampling fromV; we can pickz € N (by first building a strong generating set ).

Clearly,g = g; - - - gn_12, is uniformly distributed in_ \ N. ]

We now describe algorithmil. SupposeS is the input toA, whereG = (S) is a
solvable group. In Phase X first computes the derived seriggl} = G; <Gy <+ -+ <
G, = G of G (in deterministic polynomial time [82]).

Next, A(G) refines the derived series f6f into a random composition series by
inserting a chain of normal subgroups between consecutvepg of the series. It
suffices to describe this refinement 6t < GG, whereG’' = G,_; andG = G,. We can
refine eaclz; < G, similarly.

SupposeG/G'| = pi'ps?---pt = m, p1 < pa < --- < p. Using standard
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algorithms from [82] we can compute in polynomial time. Asm is smooth (all
p; < m) we can also factorizen in polynomial time to find they;. We will use the
ordering of thep;.

Let G’ = (T'). SinceG/G" is abelian, thep,-Sylow subgroup ofz/G’ is L/G’
whereL is generated by the union @fand{g™/*i" | g € S}.

Notice thatG’ <« L <« G. Applying Lemma 2.6.2,A can sample uniformly am €
L\ G'. As|L/G'| = p{*, the order ofxG’ is p! for somet # 0. Thist is easily
computed by repeated powering. Clean}ﬁ_lG’ is of orderp;. Letxz; = 27 and
defineN, = (T'U {x,}). Clearly,G’ is normal inN; and|N,/G’| = p,. SinceG/G’ is
abelian it follows that?’ <« Ny < L < G.

We now repeat the above process for the pair of grodpsndG. Using Lemma2.6.2
we randomly picke € L\ N; find the order; of xN; in G/N; and setr, = P
This will give us the subgroupy, generated by; andz,. Thus, we get the refinement
G' <Ny < Ny < L < G, where|N,/N;| = p;. Continuing thus, inyv; steps we obtain
the refinement

G'aN;<Ny<q---<aN,, =L<G.

Now, let M /G’ be thep,-Sylow subgroup of7/G’. We can find a generating set fbf
as before. Notice that <« M L <1 G. Thus, applying the above process we can randomly
refine the seried <1 M L into a composition series where each adjacent pair of groups
has indexps.

Continuing thus A refinesG’ < G into a random composition series betwe&eand
G'. This process can be applied to each gaiki G, in the derived series to obtain a
random composition series fof.

After phase 1, the computed composition seriesas described by a sequence
(x1, 29, -+ ,x,) Of elements fromG, where the composition series i < (x) <
(X1, 22) Q-+ < (21,29, -+, ) = G.

Observe that ity : G — H is anisomorphismanditl = Go <G <---<1G,,1 <
G,=Gandid=Hy<H,<---<1H,,_1 < H, = H are the derived series 6f and
H respectively, them must isomorphically mag:; to H; for eachi. Furthermore, if
(1,29, ,x,) describes a composition series f@rthen (¢(z1), ¢(z2), -+, d(zm))
describes a composition series @t Let X; denote the random variable according to
which x; is picked in the above description fof. Similarly, letY; denote the random
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variable for the groug . Itis easy to see thdtr|X; = ;| = Pr[Y; = ¢(z1)]. Now,

PriX; =21 <i<m]=Pr[X; =] [[PriX; =2l X; = 2;,1 < j <.
1=2
Notice that to construct; ., the algorithm refinegry, z, - - - , ;) <G;, whereG, is the
appropriate group in the derived series. Now, if the algonifindso(xy), ¢(z2), - - -, o(z;)
as the firstt components of the composition series fér then the next element is
obtained by refiningd¢(x1), ¢(x2), - - -, ¢(x;)) < H;, whereg : G; — H, is an iso-
morphism. Thus, it is easy to see that for 2 also we have

PriXy=uo; | X;=2;1<j<i] = PriYi=¢(x;)|Y,=¢(z;) 1 <j<i.

It follows that Pr(X; = x; 1 <i<m| = Pr[Y; =¢(z;) 1 <i<m)].
In the second phase, the algoritbdncomputes a short presentation férfrom its

composition series given by, zo, - - - , x,,). Letp, = |(x;)| and forj > 1,

p; = (21, 22, - - - 755j>\/|<5€1,5627 T 737j71>\-
Let the primes in this order g, ps, - - - , p,,, (NOt Necessarily distinct). Notice that each
g € G can be uniquely expressed @as- :cﬁgl,xf;jj, sl 0 < < py - 1.

A will compute the short presentation inductively. The ayslibgrougz;) has the
representatio X, R;) whereX; = {«a;} andR; = {of'}. We assume inductively
that (xq, zo, - -+ , z;) has the presentationX;, R;) whereX; = {ay, a9, - ,a;}. We
let X;11 = X; U{a;s1}. In order to defineR; . ; we notice thate; 1 (xq, -+ ,x;) =
(x1, -+, x)wi andal ' € (xy, 29, -+, 2;). Thus, the new relations (as explained
e.g. in[19]) are

T = Ui, Ui € (01, 29,0, 1)
Vi, 1 <J < 201 = Tig1Wigrj, Wip1,; € (T1, T2, -+, 2;)
To find u;,, notice that ifx € (xy,z,,---,2;) thenz belongs to one of the cosets
w2y, 29, ,xi1), j = 0,---,p; — 1. To find the exact cosetl can do mem-
bership tests:; ’x € (1,29, ,2;_1) for eachj. As all the primesp; are small,

this is a polynomial-time step, because membership tefdingermutation group can
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be done in polynomila time (cf. [82]). By repeating the same(f;, x5, - -, x;_1),
(z1,T9, -, Tia), - -+, (x1) the algorithm will be able to find,; = % ---z'". The
corresponding relation will be|' = aﬁi ..-al*. The algorithm can compute; . ;
and the corresponding relation similarly. Now,,; is just R; union the new rela-
tions. The number of relationB(i) for (x,z,,--- ,x;) follows the recurrence rela-
tionT(i+1) = T(i) +i+ 1, T(1) = 1. So, the number of relation i9(m?). But

m = O(log|G|). Hence the presentation is of polynomial length (more gedgiit

is O(m?)). Supposep : G — H is an isomorphism andy, - - -, z,,) describes a
composition series foz. Then(¢(z1),- -, ¢(z,,)) describes a composition series for
H.

We notice that the composition series f@described by, - - - , x,,) for G and the
composition series fol described by¢(x1),- -, ¢(x,,)) yield the same presentation.
This can be seen by observing that the process of obtainingandw;., ; is identical
in both the cases. Thus, whéh= H it follows that the distributions produced by(G)
and A(H) will be identical. On the other hand, & 2 H, A(G) and A(H) will have
disjoint support. We have proved the following.

Theorem 2.6.3 The problem of isomorphism testing of solvable permutajronips is
polynomial time many-one reducible D" and is hence ifPZK.

Remark. We can extend this result to show that isomorphism testingifoecognizable
permutation groups is also in PZK (see [96, Section 8.3] &indtions).

2.7 Black Box Group Problems

In this section we consider analogous problems over blaskgsoups [23, 32]. The
black-box group model essentially abstracts away thenatestructure of the group
into a “black-box” oracle that does the group operationortter to give uniform zero-
knowledge protocols we generalize PGE to black-box grotipsGroup Equivalence
ProblemGE. It turns out that the key difference from the results oftiea 2.4 is that
while permutation groups can be uniformly sampled by a patyial time algorithm,
there is no polynomial-timeniform sampling algorithm for black-box groups. How-
ever, the following seminal result of Babai for almost umifosampling from black-box
groups suffices to show that the considered black-box grooipigms are in SZK.
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Theorem 2.7.1[23] Let ¢,C > 0 be given constants, and let= N~¢ where N is
a given upper bound on the order of the grotip There is a Monte Carlo algorithm
which, given any set of generators@f constructs a sequence ©flog N) e-uniform
Erdos-Renyi generators at a cost@f(log N)®) group operations. The probability that
the algorithm fails is< N=¢.

If the algorithm succeeds, it permits the construction-ahiformly distributed ran-
dom elements aF at a cost ofO(log N) group operation per random element.

As the distribution ig-uniform, not perfectly uniform and the algorithm has certa
error probability, we do not get perfect zero knowledge @eots for GE. However, we
have the following.

Theorem 2.7.2 GE is reducible toSD"3 (relative to the black box group oracig).

Proof. The proof is similar to that of Theorem 2.4.2. We reduce GBB* for
some smalk;. Let (¢, z,y, T, 7) where elements of0, 1}? represents group elements,
T is the set of generating elements of grad@ndr is a polynomial time routine that
computes the group action and has access to the group daclée reduction maps
(¢, x,y, T, ) to the pair of circuitg X;, X5), both having access to the black box group
oracleB. The circuitX; sampleg; € G using Babai's algorithm. If the algorithm fails
the circuit setgy to be any fixed element @. Then it produces?. The circuitX; is
similarly defined fory. As in Theorem 2.4.2, we can argue that indy are not in the
same(-orbit the statistical difference between the two circuit be 1. But if they are

in the same orbit then we can verify that the statisticakdéhce is less than a chosen
small numbee;. We can make; close to the specified by Theorem 2.7.1 by repeating
Babai’s algorithm and thus reducing the error introduceel ufailure. Ase is inverse
exponential, we can make less than; ]

Theorem 2.7.3GE s in SZK? (whereSZK?” stands for SZK in which both prover and
verifier have access to the group oradh.

Proof. = The complexity class SZK is closes under complementat$agh. [ Thus,
SD?/31/3 ¢ SZK. Now suffices to observe that the proof [94] that’8D/? ¢ SZK
relativizes and that SB/? is trivially reducible to SB/*'/3. m
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As a corollary we also get that several problems consider¢®3] and some gen-
eralization of permutation group problems are in $ZR his partially answers an open
guestion posed in [23] whether the considered problemsna&ZK. However, we do
not know if the order verification problem and group isomaspifor black-box groups
are in SZK, although they are in AM coAM.

Corollary 2.7.4 Black box group membership testing, Disjointness of doabkets,
Disjointness of subcosets, Group factorization etc arfsZik”.

Proof. Let (¢,x,T") be an instance of black box group membership testing prgblem
whereq is the length of the strings encoding group elementgenerates the groug.
To reduce it to GE we notice thate G if and only if some elemente T andz are in
the same&~-orbit where the~ action is just right multiplication, i.ez? = gz.

Let (¢, s,t, A, B) be an instance of double coset disjointness, wiitre (A), K =
(B) and the problem is to decide HsK and HtK are disjoint. Here we notice that
HsK N HtK # ¢ iff s andt are in the samé/ x K-orbit where the action is defined
by 2(MF) = h=12k.

Disjointness of double coset and group factorization argvedent becauséf s N
Kt# ¢iff HNKts™! # ¢iff ts™' € KH.

Let (¢, z, A, B) be an instance of Group factorization, whéfe= (A), H = (B).
The problem is to decide it € GH. We notice thatrt € G H iff = and the identity
elemente are in the samé&' x H-orbit. The group action is defined a¥"® = ¢g—'zh.

|

2.8 Concurrent Zero Knowledge

Dwork, Naor and Sahai [46] defined the notion of concurrend k@owledge in which
several execution of the protocol occurs concurrentlys B much stringent condition
to demand that a protocol should be zero knowledge evenri r@ several execution
of the protocol concurrently, which can very well be condlby a single adversarial
verifier.

In a concurrent interaction a verifiéf can interact with the prover as follows: The
verifier sends a paifm, s) wherem is the message for sessien The proverP acts
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independently in all sessions. The message passing cestumitil the verifier sends
(end, ), wherea = accept or reject. So, the transcript looks like

[(mh Sl)apla (m27 52)71727 ) (mta St)apta (end, Oé)]

The verifiers view P, V)(x) on inputx is the transcript along with the random bits used
by the verifier.

The protocol is said to be zero knowledge if it remains zerovledge under con-
current interaction. In [85], Miccianccio, Ong, Sahai aratiian proved

Theorem 2.8.1[85] SD"'/2? has concurrent zero knowledge proof system.

Combined with Theorems 2.8.1, 2.6.3, 2.4.2 and the factdbaturrent zero
knowledge is closed under polynomial time many one redoctie get the following
corollary immediately:

Corollary 2.8.2 The complement of the following problems has concurret keowl-
edge proofs: Set Transporter, Coset Intersection, Douldee€ Membership, Dou-
ble Coset Equality, Conjugacy of Elements, Vector TrangpoBolvable Permutation
Group Isomorphism.

2.9 SZK Proof with Efficient Provers

An important question is whether we can design SZK protowadtls efficientprovers

for all problems in SZK. A notion of efficient provers, consrdd useful for problems

in SZKN NP, is where the prover has to be a randomized algorithm #eabcess to an
NP witness for an instanceof a language in SZKNP. This question is studied in [86]
where it is shown thaBD"“/2 has such an SZK protocol. Consequently, any problem
polynomial-time many-one reducible 8D"!/2 also has such efficient provers.

As a consequence of Theorem 2.7.2 where we show that Groupdience for
black-box groups is reducible ®D"1/3 it follows from Corollary 2.7.4 and the above-
mentioned result of [86] that all NP problems consideredentfen 2.7 have SZK pro-
tocols with efficient provers.

Theorem 2.9.1 Black box group membership testing, Double coset memiperShb-
coset intersection, Group factorization etc areNi® N SZK” and have SZK protocols
with efficient provers.

35



Chapter 2. SZK Proofs for Black Box Group Problems

2.10 Concluding Remarks

In this chapter we show that SZK (and PZK) contains a host afrahcomputational
black-box problems (respectively permutation group peoid). As complexity classes
SZK and PZK are quite intriguing. We do not known anythingdmay the containment
PZK C SZK C AM N coAM and the closure of SZK under complement. In this context
it is interesting to note that all considered permutatiarugrproblems (except solvable
group isomorphism) are known to be low for PP: we can put PGERPR using the
methods of [18, 75]. Could it be that the class PZK (or even Bi&Kow for PP? We
make a final remark in this context. The SZK-complete probkmropy Difference
(ED) is complete even for “nearly flat” distributions, whéfflatness” is a technical
measure of closeness to the uniform distribution [106]. & eonsider ED with the
stronger promise that the two input distributions argform on their supporthen we
can prove that the problem is low for PP.
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3.1 Introduction

Two groups(G; and GG, are isomorphi¢ denotedG; =2 G, if there is a bijection
¢ : G; — Gy such thaty(gg') = o(g)o(¢') for all g, ¢" € G;. If the G; andG, are
two finite permutation groups given by their generating #ets deciding iiG; = G is
known aspermutation group isomorphism problgfAERM-1SO). Graph isomorphism
problem (GI) is polynomial-time Turing reducible to perratibn group isomorphism
problem. The problem PERM-ISO is in NiFcoAM [82]. We considered a special case
of PERM-ISO in Chapter 2 when the input permutation grougssaivable. In this
chapter we consider the problem of deciding if two finite gr@given by theimultipli-
cation tablesare isomorphic. This problem is polynomial-time many-oeéucible to
the graph isomorphism problem. We give a zero knowledgeopaobtfor this problem
where the number of random bits used by the prover and thBeras only polyloga-
rithmic. The contribution of this chapter is that we give adty of limited resource zero
knowledge proofs that is based on the work of Goldreich, EatéVadhan [94, 57].

Definition 3.1.1 (Grlso)
Input: The multiplication tables of two finite groujés, and G, of ordern.
Decide: If G; andG5 are isomorphic.

It was shown in [19] that Griso has a constant round, pulio-interactive pro-
tocol. The total size of the messages exchanged betweemdher@nd the verifier in
the interactive protocol in [19] is only polylogarithmiccithe verifier uses only poly-
logarithmically many random bits. In this chapter we giveZKRprotocol for Griso
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while maintaining all these properties, namely our PZK pcot has constant number
of rounds, the prover and the verifier use only polylogarittaity many random bits
and the total message size is polylogarithmic. This mawais to study problems that
have zero knowledge protocols where the useantilomness is limitedMore precisely,
we investigate statistical zero knowledge protocols whibeeprover, verifier and the
simulator use only polylogarithmic randomness.

We define a classHVSZK which consists of all promise problems having honest
verifier statistical zero knowledge protocols where thevproverifier and the simulator
use polylogarithmic randomness and have polylogarithmiolmers of rounds. We ana-
lyze the techniques developed by Goldreich, Sahai and Vef#i#g 57] in this setting.
In their seminal work they proved that SZK has complete poid SD and ED. They
gave an honest verifier statistical zero knowledge prottmoED which has onlytwo
rounds Since SD is complete for SZK, it implies that every problenSZK has an
honest verifier statistical zero knowledge proof with onptrounds. In this chapter
we prove that every problem having an honest verifier stediistero knowledge proof
where the prover, verifier and the simulator use polylogaritally many random bits
and the protocol has polylogarithmically many rounds als® &n honest verifier statis-
tical zero knowledge protocol where not only the number ofdam bits used by the
prover and the verifier is polylogarithmic but also thessage sizs only polylogarith-
mic and thenumber of roundss two.

As a result of this we conclude that Griso has an honest vesfaistical zero
knowledge proof where the number of random bits requireaiglpgarithmic and has
2 rounds.

3.2 Preliminaries

We recall some definitions that we will be using in this chapte

Definition 3.2.1 (Support) Let X be a distribution over a finite séf. Thesupportof
X, denotedSupg X) is the set

{z eU | Pr[D =z| > 0}.

Definition 3.2.2 Let X andY be two distributions over finite set andi/, respec-
tively. Thetensor producbf X andY is a distribution, denoted’ ® Y, over the set
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U, x U, defined as follows
PriX®Y = (z,y)] = PriX =z|.Pr[Y =y|.

We define®’ X asX @ X. Inductively®" X = ®" ' X ® X. Itis easy to check
that H X ®Y) = H(X)+H(Y), where H is the Shannon entropy (see Definition 2.2.10).

Definition 3.2.3 A family?# of function from a finite seb to a finite setR is 2-universal
if forall x,y € D, x # y and foralla,b € R,

1
Prpey[h(z) = aandh(y) =b] = P
The set of all affine linear functions froF'(2)™ to GF'(2)™ is a2-universal family
of hash functions from0, 1} to {0, 1}™ and is denoted b#,, ,,. A functionh € H,, .,
is of the formh(z) = Az +bwhereA is ann x m 0-1-matrix andb is an bit 0-1 vector.

Thus, to describe any function #,,, ,, we needmn + n) bits.

3.3 Group Isomorphism

In this section we present a PZK protocol for isomorphism @iugs given by their
multiplication table. The protocol broadly follows the g$an [19, 20].

Before that we need the conceptanfbe generating-sequencesLet G be a group
and letC = (¢, -, gx) be a sequence @felements of7. Thecubegenerated by the
sequencé’ is the set

. The sequencé€' is called acube generating-sequence G = Cube(C'). The follow-
ing theorem is due to Erdés and Rényi [47].

Theorem 3.3.1 LetG be a finite group witl elements and lét be an integer such that
k > logn+loglogn—+2log % +5. Letgy, - - -, gr. be sampled uniformly at random from
G. Then

Pr[C'is a cube generating sequence & > 1 — o.
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In the above theorem if we piok= 4 logn then
Pr[Cis a cube generating sequencer> 1 — 1/n.

Following [19, 20], we now describe a way of embedding theugrstructure of a
finite groupG with n elements in a sef as follows. Let¢ : G — S be an injec-
tive map. Then the elements ofG) C S naturally inherits the group structure 6f
as follows. Letr,y € ¢(G), thenz.y = ¢(¢ ' (x)o " (y)). LetC = (g1, , g)
be a cube generating sequencechf We define¢c : G — {0,1}* as follows.
dc(g) = (€1, -+ ,e,) where(ey,-- -, ¢,) is the lex-least element if0, 1}* such that
g=gi' g Thus,oc(G) C {0, 1}* gets a group structure whose multiplication ta-
ble is defined viar.y = éc (o5 (z)95' (v)). Notice that giverC of lengthk = 41ogn,
the mapp can be computed in polynomial time.

Now we are ready to give the PZK protodd?, V') for group isomorphism of two
groupsG,, G given by their multiplication table. The protocol is sinrila flavor to
the PZK protocol for graph isomorphism and given in Protdcdh Protocol 1P stands
for prover anav for verifier.

Protocol 1 Protocol for Griso

1 P: Pickk = 4logn random elementg,, - - - , g, from G,. If C = (g1, -+, gx) iS not
a cube generating sequence, then send ‘FAIL to the verifigherwise do the
following. Computep as defined above. Send the multiplication for the group
H = ¢c(Go).

2 V:If P sends ‘FAIL then reject. Otherwise pidkuniformly at random from{0, 1}
and send to P.

3 P: Send an isomorphismfrom G, to H.

4 V: Check ifr is indeed an isomorphism fro, to H. If 7 is an isomorphism then
accept otherwise reject.

Notice thatH is always isomorphic t6-,. If Gy = G, then the only way the prover
could fail to convince the verifier is that he fails to obtaicube generating sequence
for G,. The protocol has completeness error at migst. On the other hand iz,

IS not isomorphic ta=; then no matter what strategy a provetr takesH will not be
isomorphic to one of the grougs, or G;. Thus, depending on the verifier's random
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choice he will be caught at least half the times. Therefdre, protocol has soundness
error at most /2.

In Simulator 2 we present a simulator to demonstrate thattieeactive protocol is
actually a perfect zero knowledge protocol. In Simulator'2,is an arbitrary verifier.
Notice that even if the simulator does not get a cube gemgragquence it does not fail.
It merely simulated’* on ‘FAIL'. The real failure of the simulator may occur only at
the last step of Simulator 2.

Simulator 2 Simulator for Protocol 1

| Pickb uniformly at random fron{0, 1}. Pickk = 4logn random elementg,, - - - , gx
from Gy,

Il If C'=(g1,---,gx)is notacube generating sequence, then,

e Send ‘FAIL to the verifier.
e Simulatel’* on ‘FAIL, let s be the response of the verifier.
e Output('FAIL, s).

[IlIf a cube generating sequencas found do the following.

e Computep as defined above. Let be the group o (G,) defined by
the embedding..

e SimulateV* on H. Let ¢ be the response of the verifier. We may assume
thatc € {0, 1}.

e If ¢ # b then the simulator fails. Otherwise it outpufs, ¢, ¢ ).

The statistical difference between the verifier's view amelgimulator’s output con-
ditioned on the event that the simulator does not fail is zaA@nce the protocol is
perfect zero knowledge. The analysis is exactly as in theflat GRAPH-ISOe PZK
(see [54, Section 4.3.2]).

In the next theorem we list the properties of the protocol taedsimulator.

Theorem 3.3.2 The problenGriso has aPZK proof systen{P, V') with the following
properties:

1. The prover and the verifier on inp(&,, G;) use polylogarithmic randomness
(O(log” n) bits, wheren = |Gy|).
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2. If a randomized polynomial-time algorithi* acting as a verifier uses polylog-
arithmic randomness then the simulator while simulafifigalso uses polyloga-
rithmic randomness.

3. The number of round in the protocolds

4. The message exchanged is polynomial in the size of the inpu

Proof. In step 1 of Protocol 1 the prover picks= 4log n random elements fror&,.
SinceG has sizen, each element of7, is encoded a&)(logn) bit string. Hence, the
randomness used by the provetifiog” n).

To simulatel’* the simulator supplies random coinsitoé. It also uses random bits
for its own purpose. The simulator us@$log® n) bits of randomness in step | for its
own purpose. Except for that it needs random bit only to sateldl*’s random coins.
Thus, if V* uses polylogarithmic randomness the the simulator alss pslkylogarith-
mic random bits.

From the description of Protocol 1 it is clear that the nundfepunds is3 and the
message size is proportional to the size of the multiplicetables of7, andG;. m

In the following sections we will see how to reduce the messaze of such protocol
in a generic way. We will actually reduce the message siza bbaest verifier statistical
zero knowledge protocol where the randomness complexpplidogarithmic and the
number of rounds is also polylogarithmic. More preciselg,stnow that every language
having an honest verifier statistical zero knowledge prtadiere the prover, verifier
and the simulator use polylogarithmic randomness and higéogarithmic number of
rounds also has an honest verifier statistical zero knowelgutgof where the prover,
verifier and the simulator use polylogarithmic randomneiss, message size is also
polylogarithmic and the number of rounds is only constant.

3.4 Limited Randomness Zero Knowledge

Next we define the notion of limited randomness zero knowdeds we shall see there
are several possibilities of defining the notion of limiteshdomness zero knowledge
protocols. Recall that a randomized algorithiis said to bausefulif for every inputz,
Pr[A(x) = fail] < 1/2.
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Definition 3.4.1 Let R, M, E : N — N be functions on natural numbers. A promise
problemIl = (Ily,Ily) is in the classsHVSZK(R, M, E) if there is an interactive
proof systen{ P, V') such that on inputz, 1*) andn = |x| + k the followings hold:

1. Each ofP andV uses at mosD(R(n)) random bits.
2. The total message length is at mogtV (n)).
3. Number of message exchanged is at rog#i(n)).

4. Zero Knowledge:There is a negligible functiop and a useful polynomial-time
randomized algorithn® such that ifr € ITy then on inputz, 1*)

e S uses at mosb(R(n)) random bits.
e StatDiff(S(x, 1%), (P, V)(z, 1%)) < u(k), whereS(z, 1¥) is the output dis-
tribution of S on input(z, 1*) conditioned orS(x, 1¥) # fail.
If (k) = 0 for all k£ thenIl is said to be iIBHVPZK(R, M, E).

Note that the completeness and soundness conditions foibmwthe definition of
interactive proof systems (see Definition 2.2.3). We workhwhe above definition
of honest verifier zero knowledge protocol in this chaptee &so define three more
notions of zero knowledge based on the randomness used pyaver, verifier and the
simulator.

Definition 3.4.2 SZK(R, M, E)) For functionsk, M, E : N — N, a promise prob-
lemIl = (Ily, I1y) is in the classSZK(R, M, E) if there is an interactive proof system
(P, V) such that on inputz, 1¥) andn = |z| + k the followings hold:

1. Each ofP andV uses at mosD(R(n)) random bits.
2. The total message length is at moOst\V/ (n)).
3. Number of message exchanged is at roqgi(n)).

4. Zero KnowledgeFor every probabilistic polynomial-time algorithii* there is
a useful polynomial-time randomized algorittifhsuch that ifx € IIy then
StatDiff(S*(x, 1), (P, V) (x, 1¥)) < u(k) for some negligible functiop (which
may depend ofv*), where S*(x, 1¥) is the output distribution of5* on input
(z,1%) conditioned onS* (z, 1%) # fail.
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If (k) = 0 for all k& thenIl is said to be iIlPZK(R, M, E).

We compare this definition with the previous definition. Imstdefinition we allow
S* to use as much randomness as required provided it is polatigrnounded whereas
in Definition 3.4.1 the simulator can use at maXtk(n)) random bits. Here we only
impose the condition that the prover and the verifier in theractive protocol P, V)
use at mosO(R(n)) random bits.

Definition 3.4.3 (3SZK(R, M, E) Limited) ForfunctionsR, M, E : N — N, a promise
problemIl = (Ily, IIy) is in the class3SZK(R, M, E) if there is an interactive proof
system{ P, V) such that on inputz, 1¥) andn = |z| + k the followings hold:

1. Each ofP andV uses at mosD(R(n)) random bits.
2. The total message length is at moOst\V/ (n)).
3. Number of message exchanged is at roggi(n)).

4. Zero Knowledge:For every probabilistic polynomial-time algorithii* there is
a useful polynomial-time randomized algorittifhsuch that ifz € IIy then

e StatDiff(S*(z, 1%), (P, V) (z,1%)) < u(k) for some negligible functiom
(which may depend oi ), where S*(x, 1¥) is the output distribution of
S* on input(x, 1¥) conditioned on5*(x, 1) # fail..

e S*uses at mosb(R(n)) random bits.

Here the verified* may use any amount of randomness provided it is polynomially
bounded but the simulator has to run only with polylogariitatly many random bits.

Definition 3.4.4 Weak3SZK(R, M, E') Weak Limited) Forfunctionsk, M, E : N —
N, a promise probleril = (Ily, [Iy) isin the classMeak3SZK(R, M, E) if there is an
interactive proof systerf’, V) such that on inputz, 1¥) andn = |x| + k the followings
hold:

1. Each ofP andV uses at mosbD(R(n)) random bits.
2. The total message length is at moOst\V/ (n)).

3. Number of message exchanged is at rog#i(n)).
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4. Zero Knowledgefor every probabilistic polynomial-time algorithin* that uses
at mostO(R(m)) random bits on inputs of length there is a useful polynomial-
time randomized algorithr* such that ifz € IIy then

e StatDiff(S*(z, 1%), (P, V))(z,1%)) < u(k) for some negligible functiop
(which may depend ol %), where S*(z, 1*) is the output distribution of
S* on input(x, 1¥) conditioned onS*(x, 1¥) # fail.

e S*uses at mosD(R(n)) random bits.

This definition differs from the previous definition in the yvdhat here the simula-
tor works only for verifier that uses small randomness. Tidusions below follows
directly from the definitions.

Theorem 3.4.5 e (SZK(R, M, E) C WeakSZK(R, M, F).
o Weak#SZK(R, M, E) C SHVSZK(R, M, E).
e BSZK(R,M,E) C SZK(R, M, E).

We would often uséog®, poly to denote function®g®(z) andp(x), wherep(z) is
some polynomial. E.g., bySZK(log®, poly, 3) we mean the clas$SZK(log“(.), p(.), 3)
for some polynomiap(.)

We notice from Section 3.3 that Grlso is in the class PBRKV/, E) where R is
polylogarithmic, M is polynomial andE = 3. Observe that if the we repladé* in
Simulator 2 by the provelr” of Protocol 1 then we get the following theorem.

Lemma 3.4.6 Griso € SHVSZK (log?, poly, 3).

Next we define a version of SD (see Definition 2.2.9) for whicé tircuits that
encode the distributions have only polylogarithmic marpuirbits.

Definition 3.4.7 (3SD')) For a constant: > 0 the promise problem

pSD) = (S, HSDIY)
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takes two distributionsy and Y encoded by boolean circuits as input and has “yes
instances”ﬁSD@ and “no instances"ﬁSDﬁ? defined as follows:

BSD(YC) = {(X1,Xy) | StatDiff(X;, X3) > 2/3 number of inputs td{; and
X, is at mostlog® n wheren = max{ size ofX;, X,}}.

BSDES) = {(X1,X,) | StatDiff(X;, X3) < 1/3 number of inputs td(; and
X, is at mostlog®n wheren = max size ofX;, X, }}.

A problem ED of similar flavour which involves entropy of thisibutions instead
of statistical difference was defined in [94]. Below we defihe restricted version of
the problem where the input pair of circuits has polylodpmic many input bits.

Definition 3.4.8 (3ED'”) For a constant: > 0 the promise problem
BED® = (BED}’, BEDY)

takes two distributionsy and Y encoded by boolean circuits as input and has “yes
instances”ﬁEDgf) and “no instances”ﬁEDSﬁ) defined as follows:

BEDY = {(X1,X5)| H(X1)>H(Xs)+ 1 number of inputs to(; and

X is at mostlog®n wheren = max size ofX;, Xy} }.
ﬁEDg\‘? = {(X1,X2) | H(X32)>H(X;)+ 1 number of inputs td; and

X, is at mostlog®n wheren = max size ofX;, X,}}.

3.5 Results of this Chapter

In this section we prove the main results of this chapter. Vge$how that the problem
3SD' is in the class3HVSZK(log?®,10g®®, 2). Next we prove that any language
L in the classBHVSZK(log™, poly,log™) is polynomial-time many-one reducible to
BED" for some constant= ¢; + ¢, +O(1). Finally we prove that the promise problem
BED' is polynomial-time many-one reducible 8D\’ wherec’ = O(c). As a conse-
quence we obtaiBHVSZK (log®", poly,log™) C BHVSZK (logP1e2) JogPertea) 9)
i.e., every problem ilBHVSZK(log™, poly,log®) has a polylogarithmic randomness
honest verifier statistical zero knowledge protocol witnstannhumber of rounds where
the total size of the messages exchanged is only polyldgaict
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Our approach is to analyze the techniques in [94, 57] for ithédd randomness
setting. The proof techniques developed by Goldreich, iSafé Vadhan in [94, 57]
involves extensive manipulations with distributions. Thain hurdle to make the proofs
in [94, 57] work in limited randomness setting is to make shed¢ the randomness used
does not blow up while manipulating the distributions. Wgoalvant to keep the total
size of the messages exchanged polylogarithmic. This ithanaspect in which our
goal differs from that in [94, 57] where the message size ig polynomially bounded.

We design a procedure calledtput bit reductioralgorithm. Given a pair of circuits
(X1, X2) which has polylogarithmically many input bits, this algbm produces an-
other pair of circuit{Y;, Y3) such that StatDiffY7, Y5) is close to StatDiffX;, X5) but
the number of output bits df; andY5 is polylogarithmic. In some sense the message
size corresponds to the number of output bits of certaimtg@ppearing in [94, 57] and
the techniques of Goldreich, Sahai and Vadhan for maniigjalistributions are often
dependent on the number of output bits. Thus, as we will seeare detail, to con-
trol the message size it is important to apply output bit oéidm algorithm. In a loose
sense whenever the randomness requirement or the meszagensl to go beyond the
polylogarithmic bound we apply the output bit reductionaalthm.

The outline of the rest of the chapter is as follows.

e In Section 3.5.1 we give AHVSZK(log®'?,10g®@, 2) protocol for3SD®. We
also present the output bit reduction algorithm that pressestatistical difference.

e In Section 3.5.2 we show that ever problemARVSZK(log®, poly,log®) is
polynomial-time many-one reducible fED'® wherec = ¢; + ¢, + O(1).

e In Section 3.5.3 we give a polynomial-time many-one reducfrom SED' to
3SD'“) wherec’ = O(c). We also present the the output bit reduction algorithm
that preserves entropy difference.

3.5.1 SHVSZK Protocol for 5SD

We will show that3SD'¥ € SHVSZK(log?, 1log®@,2). We will eventually use a
protocol and the corresponding simulator used by Sahai authan in [94]. But we
cannot directly use their protocol as the prover and veiitfiginat protocol exchange the
outputs of the circuits which in general could be as larg®és) wheren is the size
of the circuits. To avoid this problem we will obtain a pair@fcuits from the given
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input circuits that has almost the same statistical diffeeeas the input circuits but has
polylogarithmically many output bits.

Theorem 3.5.1 (Output Bit Reduction) Let X; and X, be two circuits encoding dis-
tributions whereX; and X, have at mosbg* n input bits where: = max Sizg X ), SizgY')}.
Let StatDiff(X;, X3) = d. Then in time polynomial in we can compute two circuil§
andY> with the following properties.

o (1—¢)d < StatDiff(Y,Y5) < (1 —€)d + ¢ wheree = 2710,
e Y; andY; has at mostog® n input and output bits.

Proof. The algorithm uses fingerprinting by primes. Ret be positive numbers to be
fixed later. Fori € {1,2} we describe the circul;.

The circuitY; picks a list oflog” n randomlog? n bit numbers. Then using AKS
primality testing [1] it picks the first prime numbe@ppearing in the list. If the list con-
tains no prime number the circuit outputs “fail”. Otherwissamples the distribution
encoded by the circuik; by first picking alog®n bit numbers and then evaluating the
circuit X; ons. Letx = X;(s). The circuitY; then outputgx modr, r).

Notice that the number of output bits Bf is 2 log” n and the number of input gates
is log n + log*t7 n.

Let

Supd X1) U Supg Xs) = {x1, -+ ,xar}.

A crucial observation is that/ < 2.2,
We say that a primg is goodif

x; —x; #70modpforall 1 <i < j <M.

The numbers;; — z; can have at modbg(2.2!°¢°") = log®n + 1 prime factors. So,
L M .
among alllog® n bit prime numbers at mo% 5 (log®n + 1) primes are not good.

Notice that
M c 2log® n+2 c
5 (log®n + 1) < 2% log®n.
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By prime number theorem there are at Ie%cgé%, log? n bit prime numbers

. L 23108° " 1097 23log®n
Prlrisnotgood | ris primg < Stown < Sootown (3.2)
g n
Let po = Pr[no primes could be found< (1 — 1%) . Thus we have
og?n
1 log*~% n
Po < (5) : (3.2)
Let{ry,--- 7} be the primes that amot goodand let{r;.4, - - - ,rx } be the good

primes. Fori = 1,2 the circuitY; outputs “fail” only when no prime is found. Thus,
the probability that; fails is py. Letp;; be probability that’; outputs(z; modr;, ;)
foralliandj = £+ 1,---, K. Similarly, we can defing;; as the probability thal>
outputs(z; modr;,r;) for all  andj = £+ 1,---, K. Sincer; is a good prime, for
j=k+1,--- , Kwehaveforaliandj =%k +1, .-, K,

Dij = PT[Xl = xZ]Pr[the prime: Tj]

Forr;, j < k let the possible outputs He.;,r;), -, (2,5, 7;). Eachz; is z; modr;
for possibly more than one,. Letp;; (¢;;) be the probability that; (resp.Y3) outputs
(2i5,r;)forallj=1,--- kandi=1,--- ;.

Next we calculate StatDift;, Y3).

kol M K
StatDiff(Y1, Y2) = 1/2 | (po — po) + Z Z pij — @ijl + Z Z pij — @

J=i =1 i=1 j=k+1
We notice that
M K
123750, 3k P — 4
K M
=1/23 01 D [Pr[Xa = @] Prir;] — Pr{Xs = ;] Pr{r]|

= Ef:kdrl PT[T]'](S
— (1-P)s

[112]1‘) m(x) is the number of primes less thanthen0.922 < ;;(i)z which impliesr(z) > = (see
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whereP = p, + Z?:i > i1 Dij = Z?:i >_it1 Gij + Po-
Now,

1/222‘7%_%”:UQ(P—pO)Zi:‘pij/(P—po)_q@'j/(P—poﬂ

j=i 1=1 j=i 1=1

Notice that>>*_, S pyy = 320, 77 4 = P — po. Thus we have

kol
0< 1/222 pij — @il < (P — po)-

j=i i=1

Combining the above we obtain,
(1 — P)é < StatDiff(Y1,Ys) < (P —po) + (1 — P)d < P+ (1 — P)é.
Next we approximate the value &f.
P = Pr[ris notgood| r is prim¢g + Pr[No prime could be found

From Equation 3.1 and 3.2 we obtain

2310gcn 1 oA
P S 20.910g"n + (5) ¢

If we chooser = c+1and\ =0+ 2 = c+ 3 thenP < 27 forn > 100. Observe
that the choice ok ando does not depend upon the input size as long as the input size
is more thatl00 which we may assume without loss of generality.

With this parameters it is easy to see that the number of iapdtoutput bits ot}
andY; is at mostlog™ n. n

We state the following easy corollary.

Corollary 3.5.2 Let X; and X, be two circuits encoding distributions with at most
log® n input bits wheren = max{Sizg X, ), Sizg X,) }. SupposeStatDiff( X, Xs) = 6.
Let (Y3, Y5) be the output of the output bit reduction algorithm of Theo@5.1. Then,

e StatDiff(Y7,Y5) < 0.334 whend < 1/3.

e StatDiff(Y7, Y2) > 0.666 whend > 2/3.
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Polarization

Sahai and Vadhan [94] gave a polynomial-time process thasta pair of circuits\;
and X, as input and outputs a new pair of circuifsandY; that have negligible statisti-
cal difference ifX; and X, have “small” statistical difference. On the other hand’if
and X, have “large” statistical difference thén andY; will have statistical difference
almost close td. We state the properties of the algorithm precisely in the theeorem.

Lemma 3.5.3 (Sahai-Vadhan [94])Let o, 8 € [0, 1] be two constants such that >
3. Then there is a polynomial-time algorithRolarize, 5 that on input(X;, X, 1%),
where X; and X, are two circuits encoding distribution, outputs a pair ofatiits
(Y1, Y5) such that

e StatDiff(X;, X,) > o = StatDiff(Y;,Y>) > 1 — 5 and
StatDiff( X, X») < § = StatDiff(¥;,Ys) < 5.

e The number of input (output) bits of circuits andY; is at mosen(4k)“k log, (4k)
(resp. 2m(4k)klog, (4k)), wheren (resp. m) is the maximum number of in-
put (resp. output) bits of the circuit&; and X,, A\ = min{a?/3,2} andC =
max{log,z s, (1/6),log2(1/5)}-

Sahai and Vadhan gave a proof system for SD and a corresgpsidinlator in [94]
(see [106, Section 3.1.1]). This proof system is cabbegdic proof systemThe basic
proof system was used along with polarization to give thd #\aSZK proof for SD.
We will also use their the proof system as a subroutine in theopol for 3SD'). For
the sake of completeness we describe the basic proof systerotocol 3.

Protocol 3 Basic HVSZK Proof System for SD
Input: (X3, X3) with n input andm output gates.

1 V: Choosé € {1, 2} uniformly at random. Obtain a sampigrom X, by pickingr
uniformly at random fron{0, 1}" and lettingz = X,(r). Sendz to P.

2 P If Pr(X; =z] > Pr[X, = z] seta = 1 otherwisex = 2. Senda to V.

3 V:If a = b accept. Otherwise reject.

Simulator 4 exhibits the zero knowledge property of Prot8co
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Simulator 4 Simulator for Protocol 3
Input: (X, X,) with n input andm output gates.

1 Choosé € {1, 2} uniformly at random. Chooseuniformly at random from{0, 1}"
and letr = X, (r).

2 Let a=b;

3 Output (x,a;b,r)

Lemma 3.5.4 ([94]) Let StatDiff( X, z5) = §. Then the prover strategy in Protocol 3
makes the verifier accept with probability + §)/2 and no prover can succeed with
greater probability.

The output of the simulator algorithm in Simulator 4 hasistatal difference exactly
(1 —9)/2 from the verifier's view.

Now present the honest verifier protocol for the proble8D' in Protocol 5. Let
d > 1 be a parameter in Protocol 5.

Protocol 5 Protocol for3SD
Input: (Xl, Xo, 1k)

1 Both parties apply output bit reduction algorithm of Thenrd.5.1 on(X, X;) to
obtain circuits(Y7, Y5).

2 Both parties apply Polarizggs .33 of Lemma 3.5.3 on inputY;, Yz, 1'9*1) to
obtain circuits(Z,, Z,).

3 Both parties execute Protocol 3 on the common inpglit Z,). V accepts or rejects
according to Protocol 3.

Notice that at the first step of the protocol we use the outpuetuction algorithm.
This is done to ensure that the prover and verifier do not exgdenessage of large size.
It is in this respect that the above protocol differs from pietocol for SD in [94]. In
Simulator 6 we present the simulator for Protocol 5. det 1 be the same parameter
used in Protocol 5.

Theorem 3.5.5 For everyd > 1, Protocol 5 along with Simulator 6 exhibits thasD'®
is in BHVSZK (1og?“+?  10g?*9 2) with completeness errar/2°s"* and soundness
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Simulator 6 Simulator for Protocol 5
Input: (Xl, Xo, 1k)

1 Apply Output bit reduction Theorem 3.5.1 ¢/, X,) to obtain circuitgY, Y3).

2 Apply Polarize gss,0.33: of Lemma 3.5.3 on inputY;, Y, 1'9°%~1) to obtain circuits
(Z1, Zs).

3 Run the simulator algorithm 4 oi¥;, Z,) and output whatever it outputs.

error 1/2 + 1/2'°5"* and the simulator deviation in Simulator 6lig2!s" .

Proof. By Theorem 3.5.1 the number of input and output bits of BgtlandY; is at
mostlog® n wheren = max{SizeX,), Sizg X,)}. Notice if (X, X,) € BSD@ then

by Corollary 3.5.2 StatDiffY;, Y5) > 0.666 and if (X, X,) € BSD}? then StatDiffY;, Y3) <
0.334. When the prover, verifier in Protocol 5 or the simulator im8iator 6 polarize
(Y1, Y5) to obtain(Z;, Z,) it will have the following property:

. . 1
If (Xla X2) is an uyes” instance then Stat[ﬁﬂ’l, ZQ) >1-— W and
. . 1
If (X, X5)is a“no” instance then StatD{ff;, 7,) < stk _ 1"

The completeness and soundness of the protocol follows lfiemma 3.5.4. Moreover
the number of input bits af; andZ, will be at most

2(log™ n)(log? k)[4 log” k]* log, 5(4log™ k),

which is less thar2® log*™%(n 4 k). We can also check that the number of output
bits is at mose? log* ™% (n 4 k). The number of random bits used in Protocol 5 and
Simulator 6 is same as the number of input bit¥phnd Z; plus one. Also the message
size is just one bit more than the number of output bits candZ,. This concludes the
proof. [ |

Corollary 3.5.6 The promise problemdSD' is in SHVSZK (log®,10g? 2).

Proof. In Theorem 3.5.5 if we puf = 2 we observe that the completeness error and
the soundness error of Protocol 5 dr&'°s’* and1/2 + 1/2'°5’* respectively. The
simulator deviation in Simulator 6 i‘ks/2‘°g2 ¥ which is a negligible function. [ |
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3.5.2 Every problem inSHVSZK (log®, poly, log®™) reduces toSED")

We will prove that every problem ifHVSZK (log® , poly, log®) is reducible tg3ED)

for some suitable choice ef We adopt the following assumptions from [106]. Let
IT = (Ily, IIy) be a promise problem iAHVSZK(log™, poly,log™). Let (P,V') be a
zero knowledge proof system forand letS be the simulator. We assume without loss
of generality that the first message is sent by the prévand the last message is sent
by the verifierl and it is the random bits used bYy (The verifier may be assumed to
have decided whether to accept or reject just before renge#tie its random bits). By
definition the simulator simulates the verifier's coin. Thievealing random bits by

at the end does not affect the zero knowledge condition.

Let R(n) be a bound on the number of random coins used by the verifierprt:i
of lengthn. The last message of is theseR(n) random coins. Lef\/(n) be a bound
on the total length of the messages passed between the pmdehe verifier and let
E(n) be a bound on the number of messages sent from the verifiez fwolver. Notice
that the total number of messages exchanged between ther @od the verifier is at
most2E(n). We also assume that the protocol has soundness and congsigterror
less thang;. Let D(n) = E(n) log™ ™" n. Since by definition the simulator deviatipn
Is a negligible function we assume that< mm{ﬁ, ¢} wheree is a small constant
that will be fixed later. Without loss of generality we canwsg R(n) < O(log™ (n)),
M(n) < O(poly(n)) and2E(n) < O(log®(n)).

Fortnow [51] pointed out that the simulator distributiowveg enough information
about the “yes” and “no” instances. The simulator outputlmamhought of as an inter-
action between girtual proverand avirtual verifier. In the “yes” instances either i) the
simulator outputs accepting conversation with high pratgtor ii) the virtual verifier
behaves like the real verifier. On the other hand if both afé¢heonditions are true in the
“no” instances then the virtual prover will be able to cornerthe real verifier with high
probability. The goal is to separate the “yes” instancesiftioe “no” instances based on
the simulator output. To define the notion of virtual prover take the simulator distri-
bution. The simulator distribution naturally defines a @sxwhich is called simulator
based prover in [51] (see [106]).

Forj < 2E(n), we refer to a tuple of stringg = (my, mo,---,m;;7) as a (par-
tial) conversation transcript if the even-numbered messagy (including an accept or
reject message) correspond to whatvould have sent given the odd-numbered prover
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messages specifiedjnand the random coins

For aninpute let.S(z); and(P, V')(z); denote the first messages exchanged. When
the input is clear from the context we will sometimes denbgse asS; and (P, V),
respectively.

Definition 3.5.7 Let~ be a conversation history consisting of the fizéstnessages and
x be an input. Thesimulation based proveP, outputs “fail” if the simulator S has
~ as a prefix of an output with probability otherwise it outputsy with probability
Pa = PrS(z)2it1 = (o, 7) [ S(z)2 = 7].

To show that SD is complete for SZK, Goldreich, Sahai and ¥adB4, 57] proved
several results bounding the relative entropy of the sitouldistribution and the veri-
fier's view. We observe that these results work in the limi@alomness setting with a
few modifications.

The next lemma measures the closeness between the distbabtained from the
simulator and simulation based prover and real verifierauigon.

Lemma 3.5.8 [57]

E(n)

RelEnt(S(x), (P, V)(x)) = R(n) = S_ [H(S(2)a:) — H(S(2)2i1)]

i=1

Next we state a bound faRel Ent(S(z), (Ps, V)(z)) in terms of statistical differ-
ence between the verifiers view and simulator distributier.that we need the follow-
ing well know fact (see [106]).

Fact 3.5.9Let X and Y be two distributions on universd, let D = SupgX) U
SuppY’). Then

[H(X) — H(Y)| < log(|D — 1])d + Hy(9)
whered = StatDiff(X,Y).

A lemma similar to the next lemma appears in [57]. We get thevang version by
using the limited randomness properties.

Lemma 3.5.10Letd(x) = StatDiff(S(z), (P, V)(x)). Then

E(n)

R(n) = Y [H(S(x)es) = H(S(2)2i-1)] < 2E(n) [§(2)O(log™ n) + Ha(5)]

i=1
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Proof. LetS be a perfect simulator fqP, V). In that case the simulation based prover
is P itself. We apply Lemma 3.5.8 to get

R(n) + 20" (1) H(P,V):) - = R(n) + 22" (-1 H(S))

= Rel Ent(S, (P, V))

=0.
So, we have
R(n) + Y75 (1) H(S) < R(n) + 25 (1) H((P, V);)
+ S 2EMWH(S,) — H((P,V),)|
< 0+ M HS) — H(P, V)
< 2BE(n)[6(x)O(log® n) + Ha(6)).

Recall that the prover, verifier and the simulator use at rgBig® n) random bits.
Therefore, the support ¢f, and(P, V), have size at mo°(e" "), Thus,|SupgS;) U
Supf (P, V);)| < 200ee” m) The last inequality is obtained by applying Fact 3.m9.

Definition 3.5.11 (Relative Entropy) Let X andY be two distributions on a finite set
S. Therelative entropypetweenX andY’, denotedRelEnt X, Y) is defined as

RelENtX,y) = Y Pr(X = s

seS

We define theinary relative entropyor p, ¢ € [0, 1] by

1—
RelEnt(p, q) = plogg + (1 —p)log 1 P

Lemma 3.5.12[see [4, 106]] Letp denote the probability that outputs an accepting
transcript on inputz, let g be the maximum probability, taken over all provers that
V accepts in(P*,V)(x), and assume that > ¢. Then,

RelEnt(S(x), (Ps,V)(z)) > RelEnty(p, q).

We are finally ready to give the reduction frdin= (II,-, IIy) to SED“. The first
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distribution is

The second distribution is

Y=Y10Y,®Y;,

whereY], Y, andYs is defined as followsY; = S1®S5®- - -®Sag(m)—1. The distribution
Y5 just outputsR(n) — 7 random bitsY; runs the simulato$ for 8 In(D(n) + 2) times
independently. Recall thd(n) = F(n) log®*! n. If the verifier rejects the majority of
the transcripts, it output®(n) +2 random bits. Otherwise it outputs fixed strinfytl”.

Since the simulator uses at magtlog® n) random bits, the number of random bits
used by the circuifX is O(E(n)log™ n). Similarly, the number of random bits used by
the circuitY” is at most

O(E(n)log™ n) + R(n) — 7+ 81In(D(n) + 2)O(log™ n) + D(n) + 2.

Notice thatR(n) < O(log® n), E(n) < O(log®n). Therefore, the random bits
used by both the circuits is at mdsig®*2+*°W ». Thus, if we takec = ¢; + ¢ +
O(1) then the next two claims show that the promise problém= (Ily,Ily) €
BHVSZK (log®", poly, log®?) is polynomial-time many-one reducible fED.

Claim 3.5.13 If z € IIy thenH(X) > H(Y) + 1.
Proof. By Lemma 3.5.10

H(Y1) + R(n) — H(X) < 2E(n) [nO(log™ n) + Hy ()] -

As 1 is small we may assumesk:) < V1. This is where we use the assumption that
< min{ﬁ, ¢} whereD(n) = E(n)log™ ™" n. We also use the fact that the total size
M (n) of the messages is more than the numbet) of messages sent from verifier to
the prover. Thus we have

H(Y1) + R(n) —H(X) <2E(n) [ﬁ()(logcl n) + E(nﬁw(n)]

<A4.

Next we bound the entropy 0f;. In “yes” instancess outputs rejecting transcript
with probability at mos2—4° + . < 1/4. By Chernoff bound the probability that the
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majority of the transcripts are rejecting is

p < exp [—2 .8In(D(n) +2) (Z) ] < D) 12

Using standard facts about entropy we get

H(Y3) < p[D(n) + 2]+ (1 —p).0+ Ha(p) < 2.

Thus we have ') < H(X) + 1. ]

Claim 3.5.14 If 2 € ITy thenH(Y) > H(X) + 1.

Proof. We show that either B7) +H(Y5) > H(X)+1or H(Y3) > H(X)+ 1. Suppose
that the simulator outputs accepting conversation wittbabdlity < 1/4. By Chernoff
bound the probability — p that the majority of the transcripts are accepting is

1—p<exp [—2 .8In(D(n) +2) <i) ] < D12

Using standard facts we get
H(Y3) > p[D(n) +2] > D(n) +1 > H(X) + 1.

Recall thatX uses at mosO(£(n)log™ n) random bits which implies that (X) <
O(E(n)log® n) < E(n)log” ™ n = D(n).

Now suppose that the simulator outputs accepting trartseiip probability at least
1/4. Then by Lemma 3.5.12 the relative entropy betwéeand (P;, V') is at least
RelEnt(1/4,27°) > 8. Thus by Lemma 3.5.82(n) — H(X) +H(Y};) > 8. This gives
us

H(Y1) +H(Y2) > R(n) — 7+ 8+ H(X) — R(n) = H(X) + 1.

Theorem 3.5.15Every problem irBHVSZK (log®, poly, log®) is polynomial-time many-
one reducible tgED'® wherec = ¢; + ¢, + O(1).
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3.5.3 BEDY reduces to3SD

We prove that3ED reduces ta3SD“) where¢ = O(c). First we design a new
output bit reduction algorithm. In general a circuit of sofesize NV could have as many
as©(N) output bits. This new output bit reduction algorithm, givero distributions
encoded by boolean circuifs, and X, where the number of input bits &f; and X5 is
polylogarithmic inN = max{Sizeg X}), Sizg X,)} computes two new circuit®; and
Y5 such that their entropy difference is close to the entroffedince betweerX; and
X5 but the number of input bits and output bits¥gf andY; is polylogarithmic in/V.
Finally we use the techniques developed by Goldreich andhafad57] on the output
bit reduced circuits to get the final circuits which has thepuieed statistical difference.

The output bit reduction for ED also uses the same idea ofjamigeing by primes
of suitable size as in Lemma 3.5.1.

Theorem 3.5.16 (Output Bit Reduction for Entropy Difference) Let X; and X, be
two circuits encoding distributions whefé, and X, have at most = log® V input bits
whereN = max{Sizeg X}), Sizg X,)}.

Then in time polynomial iV we can compute two circuitg; and Y, with the fol-
lowing properties.

o If H(X)
If H(X,)

(X2) + 1 thenH(Y;) (Ys) + 1.

> H > H
> H(X;) 4+ 1thenH(Ys) > H(Y;) + 1
e The number of input and output bits Bf and Y, is at mostog® N .

Proof. From the two circuitsX; and X, we first construct two circuitgl; and A,
respectively as follows:

A= 28X,
Ay = 28X,

Thus,
H(A;) > H(A2) +8 ifH(X;)

>H(X;)+1 and, (3.3)
H(Ay) > H(A;) +8 ifH(Xy) > H(X;) + 1. (3.4)

The circuitsA; and A, have at mos&n input gates.
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The circuit description is same as in the proof of Theorem13Fori = 1,2 we
describe the circuit®; below. Let\ ando be positive numbers which will be fixed later.

The circuitY; picks a list oflog* N randomlog® N bit numbers. Then using AKS
primality testing [1] it picks the first prime numbe@ppearing in the list. If the list con-
tains no prime number the circuit outputs “fail”. Otherwissamples the distribution
encoded by the circuiX; by first picking alog® N bit numbers and then evaluating the
circuit X; ons. Letz = X;(s). The circuitY; then outputgz modr, r).

Notice that the number of output bits df is at most2log” N and the number of
input bits is at moss log® N + log* ™ N.

Let

SuppA;) U SupgAs) = {xy, -+ ,zp}-

Observe thatl/ < 2.2%".
We say that a primg is goodif

z;—x; #0modpforalll <i<j <M.

The numbers:; — z; can have at mosbg(2*"*!) = 8n + 1 prime factors. So, among
o M .
all log” N bit prime numbers at mo% 5 ) (8n + 1) primes are not good.

Notice that

( ;W ) (8n+1) < 8M>n.

By prime number theorem (see [113]) the numberlog” N bit prime numbers is
. log? N
approxmatelyfogTN.

: : . 8M?nlog” N
Prlrisnotgood| r is primg < ng—fzgv (3.5)
. log* N
Letpo = Pr[no primes could be found< (1 - log+N> . Thus we have
1 log* =% N
po < (5) : (3.6)
Let{ry,---, 7} be the primes that arot goodand let{r;. 1, - - - , 7k} be the good

primes. When no prime is found the circuit outputs “fail”. &probability that; fails is
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po- Letp;; be probability that; outputs(z; modr;,r;) foralliandj =k +1,--- | K.
Similarly, we can defing;; as the probability thalt’ outputs(z; modr;, ;) for all i and
j=k+1,--- ,K.Then, foralliandj =k +1,---, K,

pij = Pr[A, = z;]Pr[the prime= r;]
¢ij = Pr[A; = z;]Prthe prime= 1]

Forr;, j < kletthe possible outputs be,;, ), - - -, (21,5, 7;). Eachz; isz; modr,
for possibly more than one,. Letp;; be the probability that; outputs(z;;, ;) for all
j=1---,kandt = 1,---,1;. Similarly, letg;; be the probability that’, outputs
(zij,rj)forallj=1,--- Jkandi=1,--- ;.

Next we calculate K;) and HY3) in terms of HA;) and H A,) respectively.

1 kol 1 M K
ij

1
j=i i=1 i=1 j=k+1 Pij

We notice that

M K K M
Zi:l Zj:k+1 pij log i = Ej:k-i—l Ei:l PriA; = .Z'Z‘]PT[T]‘] log WM

— Ef:kﬂ S M Pr[A; = x;]Pr[r;] log 7PT[A11:M
+ 30, Pr{Ay = @] Y5y, Prir]log Y

= Z]K:kﬂ Pr{r;H(A;) + Z]K:kJrl Prir;]log #rj]

= H(Al)(l—P)JFZJK:kHPT[Tj] 10g#m

whereP = p, + Zj::z Eijﬂ Pij =Ppo + Z_];:z Z?:l ij-
Let,
Zy = polog s + 0 Yo piglog -
Zy:=polog L+ 37, >y i log s
Let D, be a distributiononasé& = {a;; | j =1,--- ,k; i =1,--- ,;} U{ao}
with Pr[D; = ag] = po/P and Pr[D, = a;;| = p;;/P. Similarly we defineD, onD
with Pr[Dy = ag| = po/P andPr[D, = a;;] = ¢;;/P. Itis easy to check thattD;) =
log P + +Z;. Similarly, H(D,) = log P + +Z,. This gives,Z; = PH(D,) + Plog &
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andZ, = PH(D) + Plog +. Thus, we get

1

H(Y1) = H(A;)(1 — P)+ PH(Dy) + Plog% + Z Prir;]log W

j=k+1

and

H(Y) = H(A5)(1 — P) + PH(D,) + Plog% + Z Prlr;]log %M.

The distributionsD; and D, has supports of size at mastk + 1. Hence we have
0 < H(Dy),H(Dy) <log(MEk + 1). Finally we get,

=
=<
|
=
S
v

(1 — P)[H(A)) — H(Ay)] — Plog(Mk + 1) (3.7)
H(Y2) — H(Y) > (1 — P)[H(As) — H(A;)] — Plog(Mk + 1) (3.8)

From Equation 3.5 and 3.6 we get

P = Pr[risnotgood| ris prime}| + Pr[No prime could be found

8M3nlog® N 1\log* =7 N
S 2log? N + (5)

Using the upper bound®/ < 2%"*! andk < 8M?n (recall thatk is the number of
primes that are not good) amd= log® N we get
8M2nlog® N + (l)logAﬁ’N

9log? N 2

8.216108°(N)+2 |go¢ N 1og® N 1\log*~* N
2log? N + (5)

P

D+ (§)os
(l)log"*C*lN + (1>logA*"N
2 2

IA AN IA

We also have

log(MFk +1) < log(281e"(N)+18 216108 (N)+2 oo V)
< lOg 22510gc N

< log®™* N, for large enoughV.
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Thus we get,
Plog(Mk +1) < [(1)les” "N 4 (L)log’ 7" N]1oget! N, for large enoughV.

If we chooser = ¢+ 3 and\ = o + 2 = ¢ + 5 then this quantity is at mosdt/8
for large enoughV. Observe that the choice afando does not depend upon the input
size as long as the input size is sufficiently large which wg assume without loss of
generality. Thus, from Equations 3.7 and 3.8 we have

HY)) —H(Y:) > (1—1/8).8 —1/8>1whenHA;) — H(4,) >8  (3.9)
H(Ys) — H(Y:) > (1—1/8).8 — 1/8 > 1when HA,) — H(4,) > 8. (3.10)

Using Equations 3.3 and 3.4 we have,

IfH (X))
If H(X2)

(X2) + 1then HY;) > H(Y3) + 1.

>H
> H(X;) + 1then HY,) > H(Y7) + 1.

Finally, with the choice ot and )\ it is easy to see that the number of input and
output bits ofY; andY; is at mostog® N. n

Let (X, X5) be an instance q(fED(C) with each circuits having at most= log® N
input bits whereV = max{Sizg X, ), Sizg X,)}. We use output bit reduction algorithm
of Theorem 3.5.16 to obtain a pair of circuifs;, Y>) such that they have at most =
log®* N input and output bits. Now the technique of Goldreich andh#ad[57] can
be applied directly to these circuits. For the sake of cotepless, we reproduce their
entire argument. Lef = 9pm?2. We will fix p later. LetZ, = ®7Y; andZ, = ®1Y5.
These two circuits has at most = 9p1og” N input gates and output bits. Fraf and
Zs,, two circuits A; and A, can be constructed as follows. L&, ., be a2-universal
family of hash functions.

Ay

e Pickr uniformly at random from{0, 1}™, letz = Z,(r).
e Picth uniformly at random fron#o,,: ..

e Picky according to the distributiod,.
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e Output(z, h, h(r,y)).
Ay

Pick z according to the distributio#;.

Pict 2 uniformly at random fronfs,,/ .

!

Pick z uniformly at random fron{0, 1}™ .

Output(z, h, z).

Notice that the above two circuit$; and A, use at most2m’ + 3)m’ random bits.
It is easy to verify that2m’ 4 3)m’ < 243p% log'™® N.

Theorem 3.5.17 (see [106, Section3.4.4HH(X;) > H(X,)+1 thenStatDiff(A;, Ay) >
1 —0(277). If H(X3) > H(Y) + 1 thenStatDiff(A;, Ay) < Q(277).

Let p be a sufficiently large constant. From the above theorenedsy to see that if
(X1, X,) € BEDY then(Ay, Ay) € BSDY” and if (X1, X,) € BEDY then(Ay, A,) €
3SD) whered = 19¢ (Notice, for a fixed constant, 243p%log™™ N < log'® N).
Thus, we obtain the following theorem.

Theorem 3.5.18 The problem3ED reduces to3SD') whered = 19c.

3.6 Conclusion

In this chapter we proved that every problem havitttVSZK(log™ , poly, log™) proof
system also has BHVSZK (log®+<2) 1og@1+<2) 9) proof system. As a corollary we
obtain the following.

Corollary 3.6.1 The problenGrisois in SHVSZK(log®, log®, 2) for some constant

Proof. By Lemma 3.4.6 Grisee SHVSZK(log?, poly, 3). Using the above argument
we obtain Grlsos SHVSZK(log?®, 1og”® 2). Hence, the result follows. m

Remark 3.6.2 We note that using result similar to Theorem 3.5.1 direatlyhie pro-
tocol we can design a statistical zero knowledge proof sygero knowledge against
any verifier as in Definition 3.4.2) faGriso with polylogarithmic randomness, small
message size and constant i@®rJso € SZK((log™,log™, ¢) for some constants c;
andc,.
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Isomorphism and Canonization of
Tournaments and Hypertournaments

4.1 Introduction

Computing canonical forms for graphs (and other combimatand algebraic struc-
tures) is a fundamental problem. Graph canonization, itiquéar, is very well-studied
for its close connection to Graph IsomorphiSRAPH-ISQ Let G denote all simple
undirected graphs om vertices. A mapping : G — G is acanonizing functiorior G
ifforall X, X' € G: f(X)= X andf(X) = f(X')ifand only if X; = X,. l.e., f as-
signs acanonical formto each isomorphism class of graphs. For instance, we caredefi
f(X) as the lexicographically least graph isomorphickto This particular canonizing
function is computable in ARP by prefix search, but it is known to be NP-hard to com-
pute [30, 82] for certain graph orderings. A specific ordgrf graphs that makes the
problem NP-complete is described in [30, Section 3.1].

It is a long-standing open question, whether thersoisiecanonizing function for
graphs that is polynomial-time computable. No better botivah FAP is known
for general graphs (for any canonizing function). It is easgee thaGRAPH-ISOis
polynomial-time reducible to graph canonization. It is atriguing open question if
the converse reduction holds in general. However, for aagubclasses of graphs for
which graph isomorphism has an efficient algorithm theresisally an accompany-
ing efficient canonization algorithm [30]. Specifically, wWe not know of any natural
subclass of graphs for which graph isomorphism is in polylabtime and graph canon-
ization is not known to be solvable in polynomial time. Howgwor hypergraphs with
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n vertices there is a°™ time isomorphism algorithm but no canonization algorittsm i
known with the same running time [83]. Very recently, Babad &odenotti [25] have
shown a20**v) iIsomorphism testing algorithm for hypergraphs with hypges of
size bounded by. Here too it is open if canonization can be don&ift time.

The Results of This Chapter

In this chapter we study the complexity of canonization aadiorphism of tournaments
as well as hypertournaments. A central motivation for oudgis the question whether
T-CANON is polynomial-time reducible tdOUR-ISQ While we are not able to settle
this question we prove an interesting weaker reSTHCANON has a polynomial-time
oracle algorithm with oracle access TOUR-ISO and an oracle for canonizinggid
tournamentsRigid tournaments have no nontrivial automorphism. Itpsmwhether a
similar result holds for general graphs.

The other result in this chapter is a?***l¢™) algorithm for canonization and
isomorphism of-hypertournaments which builds on [30] and uses quite idiffeprop-
erties of the automorphism groups of hypertournaments.

Our approach is based on the techniques of the seminal ppabai and Luks [30].
In the sequel we explain the group-theoretic setting in sdetail since we will use their
approach and methods.

Group Theoretic Preliminaries

In this chapter we need some more group theoretic concegd144, 82]) along with
those discussed in Chapter2.

Definition 4.1.1 A permutation grougs < Sym(V) is said to betransitiveon V' if
v¥ =V forvelV.

Let G < Sym(V) be a transitive permutation group. A nonempty suliset V' of
points is called & -blockif either BY = B or BY N B = (), for eachg € G. For any
transitive groug~, clearly the whole sét” and the singleton sefs.}, « € V' are blocks;
these are known as tlevial blocks ofG.

Definition 4.1.2 A transitive permutation grou < Sym(V) is said to beprimitive if
it does not have any nontrivial blocks. Otherw(seas said to bamprimitive.
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Let G < Sym(V) be transitive. Notice that a subsBt C V' is a G-block if and
only if BY is a G-block for everyg € G. It can be easily seen that the collection
of blocks{B?Y : g € G} forms a partition of\”. This collection of blocks is called
the B block system Notice that the permutation grou@ acts transitively on the3
block system (since every € G naturally maps blocks to blocks and the action is
obviously transitive). A nontrivial blocks C V' is called amaximal blockf there is no
nontrivial block B’ C V such thatB C B’. In this case, we say that t&-block system
{BY : g € G} is amaximal block system

For a transitive grou: < Sym(V), let B and B’ be twoG-blocks inV' such that
B C B'.Then the collection of block§B? : g € G, BY C B'} is actually a partition of
B

A G-block B C V is amaximal subbloclof a G-block B’ if B ¢ B’ and there is
no G-block C' such thatB ¢ C' C B'. Let B and B’ be G-blocks. A chainB = B, C
..+ C B, = B’ is amaximal chainof GG-blocks betwee3 and B’ if for all i, B; is a
maximal subblock of3;, ;.

Let B and B’ be twoG-blocks such thaB C B’. The B-block system oB’ is the
collection

{BY: g€ GandB? C B'},

which forms a partition of3’. Hence| B| divides|B’|.
A structure treeof (G is a rooted tree whose nodes are labeled’Bylocks such that:
1. The root is labeledl.

2. The leaves are labeled with singleton dets, v € V.

3. For each internal node labeled BY; the labels of its children constitutefablock
system ofB’, whereB C B’ is a maximal block contained iB’.

There is a natural action @f on each level of a structure treg:c G maps a node
r tor’ in a level iff there is a=-block B such that the labels of andr’ are B and BY
respectively. Furthermore, the action@fon the children of each node in the tree is
primitive.

If G < Sym(V) has orbits, ..., V,, thestructure forests a collection of structure
treesT, ..., T,, whereT; is the structure tree of the transitive actiontobn V.
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For a permutation group: < Sym(V) and a subset of pointA C V, the set
stabilizersubgroup forA is

Ga={geG|A=A}.

The Babai-Luks canonization procedure

We are now ready to describe the Babai-Luks machinery frddh48d recall some of
their results in a form that is useful to us.

Let X = (V, E) be a graph. Ley € Sym(V) be a permutation. The action gfon
X produces the grap? = (V, £Y9) whereE? = {(u?,v9) | (u,v) € E}. The graph
XY is sometimes denoted g$X). Let G < Sym(V). Let G be any class of graphs
(directed or undirected) each of which is defined on vertéX'salVe say that the class
of graphsg is closed under=-isomorphismgf for every permutatiory € G and graph
X € Gwe haveX¥Y € G.

Let G be any class of graphs closed undérsomorphisms. FoX;, X, € G with
vertex sefl”, we sayX; is G-isomorphicto X5, denoted byX; =, X, if X, = X7 for
someg € G.

Call CF; : ¢ — G acanonizing functiow.r.t to G, if CF;(X) =4 X, for every
X € G,andX; = X, ifand only if CF;(X;) = CFs(X32), for X;, X5 € G. When the
groupG is Sym(V), we writeCF(X) instead ofCF;(.X).

Given a canonizing functio@F; we define a canonizing functia@F;,, with respect
to a cosetGo of G asCFq,(X) = CF,-14,(X7). Notice that ifG is closed undets
isomorphisms theg? is closed undes—!Go isomorphisms. We will sometimes denote
CFgo(X) asCH X, Go).

Next, we define thecanonical labeling cose€L(X,Go) as{r € Go | X =
CFgr(X)}. Itis easy to see that CQIX, Go) = (G N Aut(X))r = Aute(X)n for
anym € CL(X, Go), where Aug(X) = Aut(X)NG. lLe.

Aute(X) ={g€ G| X9 = X}.

We also notice that CLX, Go) = 0CL(X?, 0 'Go).

Babai and Luks [30] gave a canonizing algorithm that explthie group structure of
(. The algorithm is recursive and works by a divide-and-ca@ngirategy on the group
(. The divide-and-conquer is based on a structure forest affe now briefly describe
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the algorithm of Babai-Luks that computes the canonicatliag coset CILX, Go) of
a graphX with respect to a coséio.

The first step is to bijectively encodevertex graphX as a binary string:.. To be
specific, we can choose the lengthencoding obtained from the adjacency matrix as
the concatenation of its rows. Thus, for< i, 5 < n we havez(i, j) = 1 if and only
if (¢,j) € E(X). Then permutations € Sym(V) acts on such strings naturally by
sending it tar?, where foralll <i,j <n

w?(i,57) = (i, j).

Let m = n% We can think of the given permutation groGp= (g;, -, gx) as
a subgroup ofS,, acting on them-bit binary strings as described above, whérg)
indexes into then-bit binary stringz. The natural ordering ofil, - - - ,m} induces an
ordering on the subsets ¢t,--- ,m}. Thus, we can talk about the fir&torbit A; C
[m] according to this ordering. Let; = [m] \ A;. The algorithm computes Gk, Go)
recursively as Cle|4,, CL(z]4,, Go)), wherezx| 4, is the substring of induced byA,;.
Thus, in general we need to compute(€lL4, Go), whereA C [m] is aG-stable subset
each element off mapsA to A. Let CLy(z, Go) = CL(z|4, Go).

If |A| = 1 we define Cly(z, Go) = Go. The nontrivial case is whefi acts transi-
tively on A. Then, w.r.t. the natural ordering dm| we can compute the first maximal
G-block system onA in polynomial time. LetH be the set stabilizer of this block
system. Let{r;}*_, be a set of coset representativestbin G. Let Go = U¥_ Ho;
whereo; = o7;. Recursively compute Cl(z, Ho;) = H,p; for all i. Then sort the
cosets so that”* = 27 = ... = gfs < gfstt < ... < gPr. Output Cly(z, Go) =
(Hy, {pipy ' Yizi) -

This, in a nutshell, is the Babai-Luks canonization aldgomnit(we explain the algo-
rithm with more details in Section 4.3). Clearly, we can rgaaahe canonical labeling
coset for the given grapi from the corresponding coset Ct, Go) for its string en-
codingzx. A detailed analysis of the algorithm can be found in [30].

Definition 4.1.3 A finite groupG is in the classl', if every nonabeliancomposition
factor of the groug” embeds in the permutation growp.

In other words, all nonabelian composition factors of a gréue I'; can be seen as
subgroups ob,. A crucial result of [30] is that the above string canoniaatalgorithm
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for computing Cl{z, Go) runs in polynomial time itz € T, for a constantl. We state
this result in the form of a theorem useful to us for graphs.

Theorem 4.1.4 Babai-Luks Theorem:lf G < §,, is a permutation group in the class
['; (i.e. all nonabelian composition factors Gfare subgroups of,), then a canonical
labeling coset of a binary string € {0,1}™ w.r.t a cosetGo of S,,, can be found in
timem¢, wherec depends only on.

Theorem 4.1.4 crucially uses the fact that primitive subgeoof.S,, in I'; are of
size bounded by, [90, 115, 24, 78].

Iterative Canonization

A finite relational structureX is a tuple(D, Ry, -- - , R;) whereD is a finite set called
domain andRy, - - - , R, are relations orD with arity a4, - - - , a; respectively. The finite
relational structureX’ = (D, Ry, --- , R;) has bounded arity if for all, a; < ¢ wherec
IS some constant.

Let X = (D,Ry,---,R;) be a finite relational structure wher, has aritya;
andg € Sym(D) be a permutation. We can define the relational strucfife=
(D,R{,---,R])whereR! = {(d{,---,dj.) | (di,---,dqs,) € R;}. Arelational struc-
tureY = (D,S;,---,5) is said to be isomorphic if to( if there is a permutation
g € Sym(D) such thatX¥ = Y. Once we have the notion of isomorphism and group
action on relational structures we can easily define cambfocm and canonical label-
ing coset as we did before for graphs.

Let X = (D, Ry, Ry) be a finite relational structure with domain and two rela-
tions R; and R, with arity a; anda, respectively. LetX; = (D, R;) and X, = (D, Ry)
be two relational structures derived fram. Let CL,(X;,Go) = Hyp; be the canon-
ical labeling coset ofX; w.r.t. some coset:oc and some canonical for@F,. Further
CLy(Xy, Hyp1) = Hapo be the canonical labeling coset af, w.r.t H,p; and some
canonical fornCF,. Then we can defin& 2 to be the canonical for@F( X, Go) of X
with respect tazo. The canonical labeling coset CK, G'o) of X w.r.t this canonical
form will be Hyps.

Lemma4.1.5Let X = (D, Ry, R,) be a finite relational structure. Then the above
process defines a correct canonical form.
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Proof. LetX = (D, Ry, Ry) andY = (D, S, S2) be two relational structures where
R; andS; have aritya; and R, andS; have aritya,. Let X andY be G isomorphic via
an isomorphismr € GG. We also assume the following.

CLl(Xl,GO') :H1p1 CLl(}/l,GO') :ngl

4.1
CLQ(XQa H1P1) = Hypo CLQ(YQ>L1§1) = L&

where X, = (D, Ry), Xo = (D,Ry), Y1 = (D,S;) andY, = (D,S,). Notice
that 7 is an isomorphism betweei; andY; and betweenX, andY;. We need to
prove thatX” = Y%, The relational structurex?' and Y} are isomorphic via
isomorphismp; '7¢;. Observe thap, ' Hipy = Aut(X{') N o 'Go and& ' L& =
Aut(YS) No 'Go. But X = Y{'. Hence,pi'Hipy = &'L1&. Notice that
p7imé € Aut(XPY) N o Go. This impliesCRy (X4, py Hipy) = CRy(Y3E, €71 L16y).
HenceR, = S5*. As, CLy(Xy, Hip1) = p1CLy(X5", py Hypy) and Cly(Ya, L&) =
GCLy (Y3, &7 Li&r) we havep, = piy and&, = &6 wherey € CLy(X5*, py ' Hipy)
andd € CLy (Y5, &7 Ly&). ButasRe = S5 andny, 6 € Aut(X?) = Aut(Y{) we
will have R?> = S%2. This proves thak”> = Y. n

Remark 4.1.6 1. Theorem 4.1.4 yields arf’°™ algorithm for Tournament Can-
onization, T-CANON, and Tournament IsomorphishOUR-ISO[30]. The algo-
rithm exploits the fact that automorphism groups of toureats are solvable and
hence inl'; ford = 1.

2. We note that Theorem 4.1.4 is applicable to any finite ie@hal structureX =
([n], Ry, Ra, ..., Ry) with relations R; of bounded arity. Such structures can be
easily encoded as binary strings of lengitfi("), as described above for graphs.
Thus, Theorem 4.1.4 can be applied to canonize such reidtsructures in poly-
nomial time w.r.t. coset&c whereG € T'y.

4.2 Gadget construction for Tournaments
We first recall the definition of tournaments.

Definition 4.2.1 (tournament) A directed grapi” = (V, A) is atournamenif for each
pair of distinct vertices:, v € V, exactly one ofu, v) or (v, u) isin A.
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Let 7 = (V, A) be a tournament. We say the the verteis anin-neighbor(out-
neighbo) of a vertexu if (v,u) € A (resp. (u,v) € A). Thein-degredout-degreg
of a vertexv is the number of in-neighbors (resp. out-neighborsy.ofA tournament
T = (V, A) is calledregular if each vertex ofl" has the same in-degree.Tlf= (V, A)
is a regular tournament with vertices then the in-degree and out-degree of a vertex
is (n — 1)/2 andn must be an odd number.

In this section, we explain some polynomial-time redudiooncerningf OUR-ISO
that are useful for our algorithm presented in Theorem 4.8.8ey technique here is
“fixing” nodes in a tournament. A nodein a graphX is afixpointif v™ = v for every
7 € Aut(X). By thefixingof v in X we mean a construction that modifi&sto another
graphX’ using a gadget so thatis forced to be fixed inX’. We will describe a gadget
construction for fixing several nodes in a tournament sotti@tesulting graph is again
a tournament. We use it to show that a colored version of Bouent Isomorphism is
polynomial-time many-one reducible TWUR-ISQ

LetT) = (W4, Ay) andT; = (V4, Ay) be two tournaments whose vertices are colored.
The color-tournamentisomorphism problem is to decidg é&nd7; are isomorphic via
an isomorphisny that preserves the vertex color. lheand¢(v) have the same color
for each vertexo € V;. As a consequence, we derive some observations related to
tournament isomorphism and automorphism (Theorem 4.2&{uufor canonization.
Let uy, us, - - - ,u; be the nodes of a tournamérit= (V) A) that we want to fix. The
gadget we use is shown in Figure 4.1. Call the resulting tmment?”.

Figure 4.1: Vertex Fixing.

Here, vy, vs, -+ ,v;.3 arel + 3 new vertices used in the gadget. Notice thais
the unique vertex that beats all other vertice§'ofFor2 < j <[+ 1, v; beatsy, for
k> j, and beats all the vertices @fexceptu;_,. Vertexv, , beatsy,, 3, and bothv,,
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andv; 3 beat all vertices of". The thick edge between andT indicates that, beats
all the vertices off". All thick edges have similar meaning.
More precisely” = (V', A’) whereV’ =V U {vy, - - - , v,43} and we can write the
edge set as
A =AUA UA,U As,

whereA; = {(vj,w) |2 <j <L k#jtU{(uj,vj1)|j=1,---,1},
Ay = {(v1, ur), (Vig2, up), (g3, ux) | 1 < k <1}, and
As ={(vj,vk) | J <k}
Lemma 4.2.2 Any automorphism of” fixes{uy, ug, - - - , u;}.

Proof. Notice thatv, vy, v3, - - -, v; are the unique vertices of in-degree, 3, - - - , [,
respectively. Hence they are fixed by any automorphisffi'ofAlso, v;,; andv;,, are
the only vertices of in-degrdet 1. But, the directed edge, 1, v;.2) forces the fixing
of these two vertices by all automorphisms. As; has a unique incoming edge from
u;, 1 <1 <, each ofuy, us, - - - , uy is fixed by all automorphisms d&f'. n

Search and decision f@RAPH-ISOare known to be polynomial-time equivalent
to computing a generating set for the automorphism groug Aubf a graphX. We
show similar results for tournaments. In fact, we give a galregproach to proving this
equivalence for any class of graphs and apply it to tournasnen

For a class of graphg, let GRAPH-ISQ; denote the decision problem:

GRAPH-ISQ; = {(X1, X») € G x G | X3, X, are isomorphit.

Two vertex-colored graphsX,, X, € G are said to be isomorphic if there is a color
preserving graph isomorphism between them.@-&RAPH-ISQ; be the corresponding
decision problem. The graph automorphism problem@gy; = {X € G | X has
a nontrivial automorphisin For X € G, let AUT; be the problem of computing a
generating set for the automorphism groupXof The following theorem is easy to
prove using standard techniques from [76].

In this chapter, vertex and edge colorings are simply laéfsout any constraints like proper ver-
tex/edge colorings etc.
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Theorem 4.2.3Let G be any class of graphs. [-GRAPH-ISQ; is polynomial-time
many-one reducible t6RAPH-ISQ; then

1. GAg is polynomial-time Turing reducible BRAPH-ISQ;.

2. Search version d6RAPH-ISQ; is polynomial-time Turing reducible to decision
version ofGRAPH-ISQ;.

3. AUTg is polynomial-time Turing reducible t8RAPH-I1SQ;.

Proof. 1. LetX € G be the given graph. In order to check if there is an automsmphi
of Aut(.X') that maps vertex to vertexv, we construct two colored graph§, and X,
from X as follows: X, is a copy ofX in which « is colored red and all other vertices
are colored blue, and’, is a copy ofX in which v is colored red and all other vertices
are colored blue. Clearly,.X,, X,) € C-GRAPH-ISQ; iff some automorphism o’
mapsu to v. As C-GRAPH-ISQ; is reducible taGRAPH-ISQ;, we can test whether some
automorphism ofX’ mapsu to v via a polynomial-time many-one (or Turing) reduction
to GRAPH-ISQ;. Note thatX has a nontrivial automorphism iff for some pair of distinct
verticesu andv, X, and X, are isomorphic. Putting it together gives us a polynomial-
time Turing reduction fronGA; to GRAPH-ISQ;.

2. Itis easy to see that the reduction of search version tsidecversion can be
done using the same idea as described in the proof of part 1.

3. Let X be an instance oAUT;. The goal is to compute a generating set for
Aut(X) in polynomial time usingC-GRAPH-ISQ; as oracle. This construction follows
the standard way of building a strong generating set foK Xytby collecting all coset
representatives for a pointwise stabilizer tower (see,[82]). We give a brief outline.
Let Gy = Aut(X) andV (X) = [n]. We will construct a tower of subgrougg > G; >
.-+ > G,_1 = {1} by their generating sets, whete = {g € Gy | j9 = j,1 < j < i}.
Supposes is a generating set far; and{g;, g2, - - - , g;} are coset representatives®f
inG;_1. ThenSU{g1, g2, - - , g¢} iS @ generating set far;, ;. Furthermore/ < n—i+1
as the distinct coset representatives must im@pdifferent points. Thus, the set of all
coset representatives gives a generating setGfoof size O(n?). Now we describe
how to compute the coset representativeg/pfn G;_;. Notice that finding the coset
representatives is equivalent to testingif ; N Aut(X') has an automorphism that maps
itokforak > i+ 1. We can reduce this ©0-GRAPH-ISQ; as follows: Take two copies
X; and X, of X. Pick vertext > 7+ 11in X,. Forl < j <i—1,inbothX; and X,
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color the vertex using colorj. Next, color both € V(X;) andk € V(X5) using color
i. The remaining vertices of botki; and X, are colored). Clearly, X; = X, iff kisin
the orbit of:. We can test this with a query ®RAPH-ISQ;, and by part 2 we can find
the actual isomorphism. This gives us a distinct coset sgmtative corresponding to
Continuing thus, we can find all coset representatives.rylehis is a polynomial-time
oracle procedure with queries GRAPH-ISQ;. |

We now showC-TOUR-ISO < TOUR-ISQ, implying that tournaments satisfy the
conditions of Theorem 4.2.3.

Theorem 4.2.4 Color tournament isomorphism problem is polynomial timengaane
reducible to tournament isomorphism problem.

Proof. Let T}, T, be tournaments with vertices colored usingjstinct colors{c;}!_,.
Let C; denote the set of vertices colored with Our reduction transform®, and T
into uncolored tournaments’ and7’ such thatl} = T, if and only if 7] = T'. The
construction for7; is depicted in Figure 4.2 (to avoid clutter, we do not showtlad
edges).

Figure 4.2: Colored to Uncolored Tournament.

We first construct a tournameht from 73 by addingl new verticesu,, - - - , u; and
new edges. We describe the new edgeg|inVertexu, beats the vertices in each color
classC; with j # 4, andu; is beaten by all vertices in color cla€$. Forl < < j </,
vertexu,; beats vertex;; in the tournament. Likewise, the tournament; is obtained
from T by introducing new vertices;, vo, - - - , v;. The vertexv; beats the vertices in
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each color clas§’; with j # ¢, andu, is beaten by all vertices in color claé. For
1 <i < j <l vertexy; beats vertex.

Now, using the gadget of Lemma 4.2.2, wedix us, - - - , u; in 7]. Call the resulting
tournament}’. Similarly, 7% is obtained froni’, by fixing verticesvy, v, - - - , v; USing
the gadget of Lemma 4.2.2.

By the construction in Lemma 4.2.2, any isomorphism fréthto 77 is forced
to mapu; to v; for eachi. Hence, this isomorphism will induce a color-preserving
isomorphism fronil; to 75. Conversely, any color-preserving isomorphism fréprto
T, can be extended to an isomorphism fr@ihto 75 that mapsu; to v; for eachi. It
follows that the colored tournamerits and7;, are isomorphic if and only if] = T .

|

4.3 Canonical Labeling of Tournaments

We first recall an important fact about tournaments and theneoment canonization of
Babai and Luks. This fact is stated in [30] for instance, bstems folklore. We also
recall the easy proof.

Lemma 4.3.1 The automorphism group of a tournament has an odd numbereef el
ments.

Proof. LetT = (V, A) be a tournament. IfAut(7")| is even then by Cauchy’s theorem
Aut(7T') has a permutatiom of order2. Letr = C - - - C; be the decomposition afas a
product of disjoink-cycles. Suppos€; = (u,v). Then the permutation maps(u, v)

to (v, u). But either(u,v) € A or (v,u) € A. Hencer cannot be a an automorphism
and|Aut(7")| must be odd. n

A celebrated group theory result is the Feit-Thompson adigotheorem whose
statement we recall below.

Theorem 4.3.2 ([49]) Every odd order group is solvable.
The following corollary is an easy consequence of Lemmd4Bd Theorem 4.3.2.

Corollary 4.3.3 The automorphism group of a tournament is solvable.
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As mentioned in Remark 4.1.6, ari?(°e™) algorithm for tournament canonization
is described based on their string canonization resukdtiatTheorem 4.1.4.

Theorem 4.3.4[30, Theorem 4.1]There is ann©(°s™ algorithm for T-CANON, the
Tournament Canonization problem.

We sketch the proof of Theorem 4.3.4 as we need the main ideas:

Let7 = (V, A) be a tournament witi/| = n. The tournamerit’ is regular if every
vertex has the same outdegree. It is easy to observé tigtegular implies: is odd
and every vertex has both indegree and outdegree eqé‘@lto

If the input tournament’ is notregular, the algorithm will partitionV asV =
Uk Vi, whereV; C V is the subset of vertices with out-degreevhereV; is empty if
there are no vertices of outdegreandk is the maximum outdegree ifi. LetT; be
the tournament induced By,. Using Theorem 4.1.4 the algorithm recursively computes
CL(T;,Sym(V;)) = Hip;, for all i, whereH; = Aut(7;). Then, we set

CL(T,Sym(V)) = CL(T,H;p; x Haps x --- x Hip) = CL(T, Hp),

whereH < Sym(V) is the product groupgf; x Hs X --- x H, andp € Sym(V) is the
k-tuple (p1, p2,- -+, px), Wherep; € Sym(V;).

Importantly, as eacl#/; is solvable,H is also a solvable group. Thus, CL Hp)
can be computed in polynomial time by Theorem 4.1.4.

If ¢(n) is the running time bound, then for this stage of computaitisatisfies the
recurrence relationt(n) = Y25, t(n;) + n°1), wheren,; = |Vj|.

The more difficult case is wheh is aregular tournament. For each € V, the
algorithm will canonize the tournament withas the first vertex. Among the canonical
forms thus obtained, the algorithm will pick the lexicognagally least. The algorithm
proceeds as follows forac V: PutV’ = V'\ {v} and letl” be the tournament induced
by V'. We have the partitiolr’ = V/ UV, whereV] is the set of n — 1) /2 vertices that
beatv andV} is the set of n — 1)/2 vertices beaten by. Let the tournaments induced
by V/ andV; be T] and T}, respectively. Next, the algorithm recursively computes
CL(T},Sym(V!)) = Hip; for i = 1,2. Again using Theorem 4.1.4, the algorithm will
compute CLT, Sym(V’)) = CL(T,H;p; x Hypo) to get the canonical labeling coset
with v as the first vertex. As mentioned, the algorithm repeatsptasess for all the
verticesv € V. From among these cosets, we compute G, Sym(V)) as the union
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of those cosets that give rise to the lex-least canonicalitadp. It can be shown that this
union must paste into a coset of the form Afo [30]. For this case, the recurrence
relation for the time boundn) satisfies the recurrence relation

t(n) = n(2t(nT_1) +nW),

Solving the two recurrence relations ft(m) yields the running time bound®(°s™)
[30].
Wreath Product

Here we recall the notion of wreath product of two groups t#ltnaturally appear in
the proof of our result.

Definition 4.3.5 Let X < Sym(V) andY < Sym([¢]) be two groups. Thereath prod-
uctof X andY’, denotedX Y, is a group with elementS(z1, - - - , xp,y) | 21, -+ , 2 €
X andy € Y} and the binary operation

(xlu e 73:373/)(3:/17' T 7x/£7y/) - (xlxllyu e 73:5:6/@1/73/3//)'

As a setX ! Y is same as the direct produst’ x Y, but it differs in the group
operation in the sense that the elemegrfrom Y permutes the indices ak*. We

have to be careful about the indices. Notice that - - - , z/,y) (2o, -+ , 2}, y) =
(12 oy -+, Texpye, yy') @ANANOL (2120y, - -+, o2}y, yy'). The inverse of an element
(z1,-,20,y) € XY is (z1}, -, 2,y 1) whereo = y~!. The wreath product

X 1Y defines a natural action on the détx [¢] as follows: Let(a,:) € V x [¢] and
(@1, ,20,y) € XY then

(a’ Z’)(ﬂﬁlw TeY) ((lxi, Z’y).

It is easy to check that the above definition is indeed a gratipra Moreover, this
action embeds( Y in Sym(V x [¢]). ThusifG = (V x [{], E) is a (di)graph then for
all elementsr € X 'Y we can talk about the gragh™ in the usual way.

Fact 4.3.6 Let H be a group andV be a normal subgroup off. ThenH is solvable if
and only if bothH /N and N are solvable.
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Let X < Sym(V) andY < Sym([(]) be solvable groups. Notice thaf’” =
X% x {id} is a normal subgroup of 1 Y, whereid is the identity element of . Notice
also thatX  Y/X ¥ = H. Thus by Fact 4.3.6 we get the following lemma.

Lemma 4.3.7 If X < Sym(V)andY < Sym([¢]) are solvable groups th& ;Y is also
solvable.

The result

We are now ready to describe our result in this section. Astioeed in the introduc-
tion, we are motivated by the problem whether Graph Cantinizés polynomial-time
Turing reducible to Graph Isomorphism.

Since the general problem seems difficult to approach, wee riie question for
the more restricted case of tournaments: can tournameohization T-CANON be
polynomial-time Turing reduced to Tournament IsomorphiSMR-ISO? Even for this
restricted problem we do not know the answer. However, wearsakne progress on the
problem by giving a polynomial-time oracle algorithm fDICANON that accesses ora-
cle TOUR-ISOwith an additional oracle for canonizimgyid tournaments. Thus, canon-
izing rigid tournaments seems to be the bottleneck in redGICANON to TOUR-ISQ
Let RT-CANONdenote the functional oracle for computing the canonicahfof a rigid
tournament. Since rigid tournaments have trivial autorhisp groups, notice that the
canonical form trivially gives the canonical labeling cbas well.

We believe this weaker result is interesting and throws sbghe on the original
problem. One interpretation of our result is that rigid ttaments are the hardest in-
stances of canonization. We do not know if a similar resuldfidor general graphs.
We make crucial use of Theorem 4.1.4 and the fact that thareurfthism groups of
tournaments is solvable.

We start with a definition.

Definition 4.3.8 A tournament is calledertex transitivaef for all pair of verticesu, v
there is an automorphism of 7" such that,™ = v.

Naturally a vertex transitive tournament is regular.

Theorem 4.3.9 There is a polynomial-time oracle algorithm farCANON that ac-
cesses oracles farOUR-1ISOandRT-CANON.
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Proof. Let7 = (V, A) be the input tournament to be canonized. Denote-BANON(T")
the function computing the canonical labeling cose{CISym(V)) of T', whereV is
the vertex set of . It has the following recursive description:

T-CANON(T):

1. Orbit computing: With oracle queries tdOUR-ISOand using the vertex fixing
technique of Theorem 4.2.3 we can compute a polynomial ®pergting set for
Aut(T'). Then, we can compute in polynomial time the partitiof’afto Aut(7")-
orbits in polynomial time using standard permutation grteghniques [82, 76].

2. If orbits are singletons: This happens precisely whéhis a rigid tournament. In
this case we query tHrRT-CANON oracle to obtain a canonical form fér. Notice
that in this case the canonical labeling cose{'CISym(V)) is a singleton since
Aut(7T') has only one element.

3. Single orbit: If V' has only one orbit w.r.t. AYT") then the tournament igertex-
transitive AsT is vertex-transitive it follows thdl is regular.

In this case, we can takany one vertex of 7" and make it the first vertex of
the canonical form. Lef, denote the tournament induced by = V' \ {v}.

We recursively find the canonical labeling cosetipfwith respect tdSym(V)’,
whereV’ = V' \ {v}. A crucial point is that it suffices to compute this for any
one vertexv. The reason, as we will prove in Claim 4.3.10, is that doing th
for any other vertex: will give rise to the same canonical form since there is an
automorphism that mapsto v. (We observe that this is not true in the case of
regular tournaments that are not vertex transitive. Ingdeedecall from our proof
sketch of Theorem 4.3.4 thatrecursive calls are made in the regular case. This
step makes a crucial difference to the running time we obtain

The vertexv defines the partitior’ = V; U V5, wherel] is the set of all vertices
that beat in the tournameni” and V5 is the set of all vertices beaten byin 7.
As T isregular|Vi| = |V,| = (n —1)/2. Suppose the tournaments induced/fy
andV; areT; andT, respectively. Recursively computé p; := T-CANON(7})
and Hyp, := T-CANON(T3).

Now, applying Theorem 4.1.4, we compuleCANON(T,) = CL(T,, Hip; X
Hsps). The algorithm of Theorem 4.1.4 runs in polynomial time athbfd, and
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H, are solvable groups, being automorphism groups of tourngsnd his gives
the canonical ordering fdf,. Placingv as the overall first vertex gives the canon-
ical ordering forl". LetT” denote the resulting tournament (which is the canonical
form for T'). Finally, the canonical labeling coset is easy to comprgmfl’ and

T with queries torTOUR-ISOby applying Theorem 4.2.3.

. Nonrigid with more than one orbit: This is the general case when there are more
than one orbit and’ is not rigid. LetO,, O,, - - - , O, be the orbits of" (computed
using queries tdOUR-ISOas explained in the first step).

[Case (@) Let T; be the tournament induced liy;, for 1 < i < /. We
first consider the case that yields an easy recursive steppoSa not alll; are
isomorphic to each other (which we can easily find with queteeTOUR-ISO.
Then we partition the set of orbit3; into £ collectionsS;, Ss, - - - , Sy, where for
eachs;

0;, 0, € S, iff T; isomorphic tal,.

We assume thalF(7") < CH7") forall 7" € S; andT” € S; for all i < j where
we compare two graphs lexicographically. Note t68&(7") andCFT") can be
computed recursively.

Now, forl < i < k, Ietif} denote the tournament induced by the union of all the
orbits in S;.

For each, the algorithm recursively computes the canonical lalggdwsetH; p; :=

A~

T-CANON(T;).

Then, by applying Theorem 4.1.4 the algorithm computes treradl canon-
ical labeling coset as QII', Hp) — where H = H; x Hy x --- x H and
p = (p1, -+, pr). This can be computed in polynomial time by Theorem 4.1.4
because eacH; is solvable, being the automorphism group of a tournament.

[Case (b] We are now in the case when the tournaméhntsiduced by the
orbit O; of T are all isomorphic, fot < ¢ < /. This is the more interesting case:

SinceT; are induced by orbits they are all regular tournaments. elgng is odd
for eachi. Furthermore, alD; are of same size sin@e are all isomorphic. Thus,
|O;| = t for eachi, wheret is an odd positive integer. Rename the vertice®jn
arbitrarily (say in lex order) by (a, i) | a € [t]} = [t] x {i} so that the tournament
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T is on vertex seft] x [¢] andT; is on vertex seft] x {i}. Forl <i < ¢, letT!
denote the tournament obtained frdirby renaming each vertex, i) € [t] x {i}
by a so thatV (T}) = [t].

From the/ orbits of 7', we will construct a new tournamefit with vertex set
[(]. Forl < i < ¢, the vertexi of T represent orbi©;. We still have to define
the edges of/. To that end, letX;; denote the directed bipartite graph between
orbits O; and O, (whose edges are the original tournament edges)OAand

O; are orbits of AutZ’) and|O;| = |O;|, the directed bipartite graph;; has the
following property: there is a positive integey; such that, in the grapi;;, the
indegree of each vertex i; is a;; and the outdegree of each vertexnis «;.
Since, for eachi, |O;| = t andt is odd,t — «;; # «;;. The edges of are now
defined as follows: fol < i # j < ¢, (i,7) is an edge i if ¢t — ;> «j,
otherwise(j, i) is an edge ir7. We call7 theshrunktournament.

The idea here is to obtain the canonical formloby relabeling the orbits and
inside each orbit by relabeling the vertices. In other wovdwill pick the canon-
ical form from the se{7" | § € Sym([t]) ¢ Sym([¢])}. (Notice that sincd’ is a
tournament orf¢] x [¢], the action oSym([t]) ¢ Sym([¢]) is well defined orfl").

We first recursively compute the canonical labeling cogéts; for each tour-
nament7/, 1 < i < ¢. Note thatH; < Sym([t]) ando; € Sym([t]). As all
the tournament§? are isomorphic they will have the same canonical faFm
We can easily verify that; ' H,o; = Aut(T). Next we recursively compute the
canonical labeling cosetfp := T-CANON(7) of the shrunk tournament. No-
tice that Hp is a coset ofSym([¢]). If 7 is the canonical form ofl” then we
havep'Hp = Aut(T). Finally, we compute the canonical form &f with re-
spect to AutT’) ? Aut(7) using Babai-Luks algorithm (Theorem 4.1.4), where
¢ = (01, ,00,p). By Lemma 4.3.7 AutT’) 2 Aut(7) is solvable and hence
Babai-Luks algorithm will run in polynomial time. Let the tmut of Babai-Luks
algorithm be the cosef'r. Then the recursive step returgis'Gr. ( More pre-
cisely, it returns the canonical labeling coset by retuygin' G¢ as the group and
¢! as the coset representative.)

This completes the description of the tournament canogiaigorithm. It is easy to
see from the above description that the running time is putyially bounded. We prove
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the correctness of the algorithm through a series of claimosiathe different steps of
the algorithm.
We establish the correctness of Step 3 in the next claim.

Claim 4.3.10 Let u, v be two vertices in a vertex transitive tournamént= (V, A).
Then the canonical form computed in Step 3 by fixing veriexsame as the canonical
form computed by fixing vertex

Proof of Claim Let 7 be an automorphism of the vertex transitive tournaméstich
thatr(u) = v. LetV, = V' \ {u} andV, = V' \ {v}. LetT, andT, be the tournaments
induced byV, andV, respectively. Clearlyyr is an isomorphism betweéR, andT,.
Let V// be the set of vertices beaten byandV, be the set of vertices that beain the
tournament’,. As defined in the algorithnij; andV5; are the vertex sets that are beaten
by v and beab respectively ifl,.

Let 77, and T} be the sub-tournaments @f, induced byV/ and V] respectively.
Similarly, 77 andT; are the sub-tournaments 6f induced byl;, andV; respectively.
Notice thatr is an isomorphism betweéf{ and7; and also betweef; andTs.

Suppose we run the algorithm by fixinginstead ofv in step 3. It will recur-
sively compute CLT7, Sym(V})) = H}p} and CL T3, Sym(V})) = Hipl,, whereH| =
Aut(7T]) and H, = Aut(T3). Next it will compute CUT,,, H{p) x Hjp,). Similarly, if
the algorithm fixes then it computes CLI,,, H1p1 x Hsps) WwhereH; = Aut(7}) and
H, = Aut(T3).

Since7] and7; are isomorphic# is an isomorphism), inductively it follows that
the algorithm computes the same canon for them whigh(ig,) = g (77) = T,. Fur-
thermore, it is easy to see that the automorphism grodp o§ Aut(T;) = p; 'Hip, =
P H py

Similarly, T, andT; are isomorphic (again via). Thus, inductively it follows that
the algorithm computes the same canon for them whigh(i8,) = p,(Ty) = T, and
the automorphism group @f, is Aut(Ty) = p, ' Hapy = ply "Hbphy.

Let H = Hy x Hy andp = (p1, p2). Similarly, letH' = H{ x Hjandp = (p}, ).

It follows from the above that ' Hp = p'~'H'p' = Aut(T;) x Aut(Ts).

We need to prove that we obtain the same tournament as cahtorim for bothT,

andT,. That is, we need to show that

CHT,, H'p') = CHT,, Hp).
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By definition of canonical form with respect to cosets we have

CHT,, H'p) = CKT!, p~'H'p') and
CHT.,,Hp) = CHT},p~'Hp).

As explainedp'Hp = p'~'H'p' = Aut(T,) x Aut(T). Thus if we show that some
permutationr in Aut(7',) x Aut(Ty) mapsI”’ to T* then the above equality will follow
from Theorem 4.1.4.

But, 7" andT? are isomorphic via isomorphispj '7p. Furthermore, it is easy to
check thap 'mp € Aut(T;) x Aut(Ts). This completes the proof of this claim. m

Claim 4.3.11 The algorithm correctly computes the canonical form7oin Step 4
Case(a).

Proof of Claim Let 77 be an isomorphic copy df. Let 7 be an isomorphism forri’
to7". LetOy,---,0, andOy,-- -, O, be the orbits ofl" andT” respectively. Lefl;
be the tournament defined in Step 4 Caselay, ¢« < k. Similarly we defineTi’ for
T',1 < i < k. Clearly, for each the tournamentgf”i andif}’ are also isomorphic via
isomorphismr. Let T-CANON(T}) = Aut(T})p; andT-CANON(T!) = Aut(1!)p,. Let
CF(T}) = CH(T!) = X,.

Let H denote the group AU} ) x Aut(73) x --- x Aut(T},) andp = (p1,- - , pr)-
Similarly, letH’ denote the group AU x Aut(7}) x - - - xAut(T}) andp’ = (o, - - - , pl.).

We need to show thatF(T, Hp) andCF(1", H'p') are identical. By definition of
canonical form with respect to a coset we have

CHT,Hp) = CFT*,p~'Hp)and
CHT',H'p)) = CFT" o~ H'p).

Now, it is easy to see that the groups' Hp andp’~' H'p’ are identical: in fact, it is the
product AutX;) x --- x Aut(X}) of the automorphism groups of the tournamamt
1<i<k.

Thus, it will follow from Theorem 4.1.4 thatF(T, Hp) = CF1", H'p') if we show
that there is a permutatiane Aut(X;) x - - - x Aut(X}) such that is an isomorphism
from the tournament” to 7", Indeed, it is easy to see that'xp’ is an isomorphism
from T to 7", and the permutatiop'7p’ is in Aut(X,) x --- x Aut(X}). m
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Claim 4.3.12 The algorithm correctly computes the canonical form7bin Step 4
Case(b).

Proof of Claim Let 77 andT;, be two tournaments isomorphic via isomorphisrauch
that Step 4 Case(b) is applied to both of them for canonizatrmductively assume that
the algorithm correctly works for smaller tournaments. Wi stow that the algorithm
produces the same canonical form for béthand 7.

Supposd; has the orbit®),,, - - - , Oy, under the action of Ayf}). Similarly, sup-
poseT; has orbitsOsy, - - -, Og. Let |Oy;| = |Oq;| = t for all i and j. We assume
that the the tournamenfg§ and 7, have same vertex s@ x [(| and fors = 1,2,
Os = [t] x {i} . LetTyy, -+, Ty, andTyy, - - - , Ty, be the tournaments induced by the
orbits O, - -+ , 01, andOsq, - - - , Oq, respectively. Fos = 1,2 andi = 1,--- ,/ let
T!. be the tournament obtained frafy; by renaming each vertex, i) by a. Since we
are in Step 4 Case(b), all the tournaméfits - - - , 77, 15, - - - , T, will be isomorphic
to each other. The isomorphisimwill map orbits to orbits. Letr € Sym([¢]) be such
thatm(O1;) = Oy+. Letrwl = 7 |p,,. HenceTy; will be isomorphic to7,;+ via ). Let
m; @ [t] — [t] be the isomorphism frori’; to 77 . which corresponds ta; (i.e., if
mi(a,i) = (b,i*) thenm;(a) = b). Let H,o, be the canonical labelling coset 8f;
fors =1,2andi = 1,--- , /. Since these tournaments are isomorphic they will have
same canonical forri’. Let T, and 75 be the shrunk tournaments obtained fr@m
and 7, respectively. Clearlyl; and7; are isomorphic via isomorphist. Let 7 be
the canonical form off; and7;. Also assume thatl,p; and H,p, are the canonical
labeling cosets of; and7; returned by the recursive step of the algorithm. Notice that
o7 Hipy = p; ' Haps = Aut(T). While canonizingl}; the algorithm canonizeE®* with
respect to Autl’) : Aut(7) and while canonizing? it canonizes/5> with respect to the
same group AUt)  Aut(7) where¢; = (o1, - -+ , 010, p1) @ndEy = (a1, - -+, 0ag, p2)-
Hence it is enough to prove thaf' and75> are isomorphic via Af") : Aut(7) iso-
morphism. Observe thdt"' andT5* are isomorphic viay := & (my, - -+ , 7wy, 7)€3. SO,

~ ~

it is enough to prove that € Aut(7") : Aut(7). But

-1 -1

N
1101_17T1”1_1021f’1_1’*’ o ’Uupflﬁzﬁflazznflm pL TP2).

v=(o

Itis easy to see that '7p, € Aut(T). Leti*r = j, theny := U_i,IWZPIIUQZPIIﬁ =
1401
al‘jleazﬁ. The tournament$; andTéjﬁ are isomorphic via isomorphismy (by def-

inition of 7;’'s and ). The tournament§7; and TQ’jﬁ are mapped to their canonical
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form T by the isomorphisms;; ando,;+ respectively. This gives < Aut(T). Thus,

v e Aut(T) 1 Aut(T). n
The overall correctness of the algorithm follows from theqds of the above claims.
We now analyze the running time. L&Y{n) bound the running time. In Step 1,

we compute the orbits in polynomial time with queries to T@UR-ISO oracle. If

the tournament is rigid then we canonize it with a single guerRT-CANON. The

remaining steps involve recursive calls. The recurrentaioa for 7'(n) in Step 3 is

T(n) =2T((n—1)/2) +n°M, and in Step 4 Case(b) it is given Bn) = (T (n/¢) +

T(n/t) +n°® for £ > 1 andt > 1 because we need to compute the canonical labeling

coset for¢ tournaments induced hy//-sized orbits and the shrunk tournament of size

¢ = n/t. For Step 4 Case (a), the recurrenc@’is) = >, T'(n;) + n°W. It follows

by induction thatl'(n) = n°®. In each step the application of Theorem 4.1.4 takes

polynomial time because the permutation group used is @walvable. |

As mentioned in the introduction, it seems unlikely that diteen 4.3.9 can be shown
for general graphs using the same methods. This is becauseduction crucially
uses the fact that the automorphism group of tournamentsadwable, enabling us to
repeatedly use the algorithm of Theorem 4.1.4 with a polyimbtime bound. In case
of general graphs, it is unlikely that in the intermediategsts of recursion we will have
groups inl’, to effectively apply Theorem 4.1.4.

4.4 Hypertournament Isomorphism and Canonization

In this section we study isomorphism and canonization oehqurnaments using the
method of Babai and Luks.

Hypertournaments are a generalization of tournaments awd been studied by
graph theorists (see e.g. [63]). We recall the definition.

Definition 4.4.1 (:-Hypertournament) Given positive integers andk, a k-hypertournament
T onn vertices is a paifV, A) wherel is a set ofn. verticesand A is a set ofk-tuples

of vertices calledrcsso that for each subsét € (‘;) A containsexactly oneof the (!
many)k-tuples whose entries belong $0

In general,Hypergraph IsomorphisniHGI) is easily seen to be polynomial-time
many-one equivalent to Graph Isomorphism: given a hypplgkawith n vertices and
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m hyperedges we can represent it uniquely as a bipartite graplith »n vertices on
one side andn vertices on the other (see Section 5.1 for more details).s;Tkimown
complexity-theoretic upper bounds fGRAPH-ISOlike NP N coAM [31] apply toHGI.

However, consider an instanceteGl: (X, X,), with n vertices andn hyperedges
each. The reduction tGRAPH-ISOmaps it to a pair of graphg&yy, Y;) with vertex
sets of sizen + n. The best known isomorphism testing algorithm due to Luk$ an
Zemlyachenko (see [30]) which has running timé" 121Vl (|1/| is the size of the vertex
set 1) will take time ¢V ("™ 0mn) \when combined with the above reduction and
applied toHGI. In [83] a different, dynamic-programming based algorithith running
time 2°™ is developed.

We study the analogous question for hypertournaments gnseaition. The main
motivation is to see ik-hypertournaments have enough structure like tournansents
that the Babai-Luks method and Theorem 4.1.4 in particuder loe applied to ob-
tain an efficient algorithm. We note here that it is not knowmYPER-TOUR-ISO
is polynomial-time reducible tdOUR-ISQ We considelk-Hypertournament Isomor-
phism HYPER-TOUR-ISQ) and give amC*+*+loen) algorithm for the problem fok-
hypertournaments, for eadh In fact, we actually give am®**+lsm) algorithm for
the corresponding canonization problem. We first estals@he observations about
automorphisms of-hypertournaments. The next lemma generalizes the factsual
tournaments have automorphism groups of odd order.

Lemma 4.4.2 For k > 2, the automorphism grouput(7") of a k-hypertournament”’
has the following property: for any prime factprof £ it holds thatp does not divide
the size oAut(7).

Proof. LetT = (V,A). Fork = 2, T'is a usual tournament and in this case it is a
well-known fact that Aut7") has odd cardinality.

Suppose > 2 andp is any prime factor ok. Suppose divides Au{T’). Letw €
Aut(T") be an ordep element (which must exist by Cauchy'’s theorem for finite gju
Sincer € Sym(V), we can write it as a product of disjoiptcycles,m = C,Cy - - - Cy,
where the remaining — p/ elements o¥” are fixed byr. Letk/p = t. If k£ < plthen let
S = U'_,C;. Notice thatr mapsS to S. Now, suppose € A is the unique hyperedge
of the tournament on thie element sef. Thene™ # e, sincer reordersthe sequence
defining hyperedge. Thus,e™ is not a hyperedge df, contradictingr € Aut(7).
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In the other case, ik > p/, chooseS’ as any subset of size — p¢ of then — pl
points fixed byr, and letS = S’UC, U --- U Cy. Again, lete € A be the hyperedge
defined by this subsef. Again, notice that™ is not a hyperedge df’, sincer will
reorder the sequence definiagThis contradicts the assumption that there is an grder
elementr € Aut(7T). u

Recall that asectionof a groupG is a quotient group of some subgroup®@f A
section that is a simple group issanple sectionSimple sections ofr are precisely the
composition factors of subgroups Gf

An easy corollary of the above lemma is the following. Redadit the alternating
group A;. is the subgroup ob}, consisting of all even permutations (permutations that
can be written as a product of an even number of transposj)tion

Corollary 4.4.3 For k > 2, the automorphism grouput(7") of a k-hypertournament
T does not have the alternating groufy as section.

Proof. Supposéd/K is a section of5. l.e. H is some subgroup @i and K is some
normal subgroup of{. Since|H | divides|G|, it follows that|H /K| also dividegG|.
Thus, the order of a section 6f must divide|G|.

Now, suppose to the contrary thd, is a section of Autl’), whereT is a k-
hypertournament for some > 2. Then|A,| divides|Aut(T")|. As |A;| = (k!)/2,
it follows that k! divides2|Aut(7)|. It implies thatk must divide|Aut(T")|, as2 is a
factor of (k — 1)!. Hence, each prime factor éfdivides|Aut(7")|, which contradicts
Lemma 4.4.2. |

Definition 4.4.4 [78] A finite groupG is said to be a groupot involvingthe alternating
group Ay, if A, does not occur as a section of the grap

Denote byC, the class of finite group& not involving A,. The clas<’;, is known
to be closed under taking subgroups, quotients and extengi8].

Notice that by Corollary 4.4.3, the automorphism group(Atof anyk-hypertournament
T does not involved,, and hence Ayfl") € C,. This property is crucial for our canon-
ization algorithm. We recall a celebrated result alqmirnitive permutation groupseot
involving A,. We state the theorem from [78], which is a strengthenindhefdriginal
result due to Babai et al [24].
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Theorem 4.4.5[24, 78] Letk be a positive integer an@ < S,, be aprimitive groupin
Cy (i.e. G is a group not involvingd,), then|G| is bounded by.©®*).

Let T = (V, A) be ak-hypertournament with vertices. We define thedegreeof
a vertexv € V as the numbed; of hyperedges in whiclr occurs at theth position,
1 < i < k. Thus, to eachh € V we can associate idegree vecto(d;, d, . .., dy),
which is ak-tuple of nonnegative integers such that d; < (7_,).

We sayT is aregular k-hypertournament if every vertexc V' has the same degree

vector(dy, dsy, . .., dy).

Proposition 4.4.6 Let T' be ann-vertex regulark-hypertournament where the degree
vector of eachy € V is (dy, ds, ..., dy).

1L nYr di=k(}).

2. d; = (}) for each.

Proof. To see the first part, notice thzagf:l d; adds up the terms of the degree vector
(dy,dy, ..., dy) for all then vertices inV. That amounts to counting times each of
the (}) hyperedges of'. To see the second part, notice that in (fiehyperedges every
vertexv € V occurs as théth vertex in exactlyl; hyperedges. Thusd; = (}). =

An edge-colored:-hypertournament is A-hypertournamenl’ = (V, A) such that
its edges are colored withcolors for some positive integer More precisely, the edge-
coloring is given by a mapping: A — {1,2,--- ,r} that assigns to each edge one-of
different colors.

Two edge-colored-hypertournament®; and7; are isomorphic if there is a bijec-
tionvy : V(1T1) — V(T3) such that C V(7}) is a hyperedge iff} if and only if ¢(e)
is a hyperedge iff; and bothe and(e) have the same color. Canonical forms for
k-hypertournaments are defined in the usual manner undectioa af the permutation
groupSym(V).

We will actually consider the more general problem of isopmsm and canon-
ization of an edge-colored-hypertournament” = (V, A). An important step in our
algorithm will be the application of the Babai-Luks algbrit Theorem 4.1.4 ta-
hypertournaments. Léf = (V, A) be an edge-colored-hypertournament an@ <
Sym(V) be any permutation group.
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For eachi, 1 < i < r, we encode thé&" color class:—!(i) C A as a binary string;
of lengthk!(}). The stringp; is indexed by thé:!(}) differentk-sequences of vertices
from V', wherep;[S| = 1 if and only if S € A;. Hence the entire hypergraghgets
encoded as the binary stribgp, - - - b, of Iengthr.k!(Z) = m. We consider this string
to be indexed byi, S) wherel <i < r andS is an ordered-sequence of vertices.

The subgroug- < Sym(V) has a natural action on the ordefedequences under
whichS' = (v, vg, - -+ ,vg) iIsmapped t&? = (v7,vg,--- ,v7) byo € Sym(V). Under
this action,c maps the index:, S) to (i, S7) for each color andk-sequencé.

Therefore, we can considéfas a subgroup &f,, acting on length binary strings.
Putting it together, we get an instance of string canoropato which Theorem 4.1.4
is applicable. Notice that i € C,, then by Theorem 4.4.5 the string canonization
algorithm of Theorem 4.1.4 will run in tima°®*). Hence, we have the following as an
immediate corollary of Theorems 4.1.4 and 4.4.5.

Corollary 4.4.7 Given ak-hypertournameni’ = (V, A) with edges colored by col-
ors, a subgrouggy < Sym(V) such thatG € C;, and ac € Sym(V) the edge-colored
k-hypertournament’ can be canonized undé¥s action in time(r.£!(}))°*). In par-
ticular, the canonical labeling cos@L (T, Go) can be computed in®**) time.

The main question then is how do we reduclypertournament canonization to
a case where we have in place a permutation group tfpso we can invoke Theo-
rem 4.1.4. We are now ready to prove the main result of thissec

Theorem 4.4.8 There is am©**+losn) time algorithm for canonizing edge-coloréd
hypertournaments. As a consequence, isomorphism testirigHypertournaments is
in nO**+losn) time,

Proof. We first give a description of the canonization algorithrhjah is recursive. Let
T = (V, A) be the input edge-coloreghypertournament.

Algorithm Description.

Casel {k = 2}: If k£ = 2 then we can invoke the Babai-Luks canonizing algorithm
(Theorem 4.3.4) that runs in time’(s™),

Casel { Vertex partitioning by degree vectdrs The algorithm carries out this step
for k > 2:
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If T"is not regular, partitio as,V =V, UV, U---UV,,, whereV; (1 <i <m)is
the set of all vertices having the same degree vector, wherddgree vectors are sorted
in lexicographic order. For < i < m, letT; be thek-hypertournament induced By.
We recursively compute GIZ;, Sym(V;)) for all i. Let CL(T;, Sym(V;)) = H;p; where
H; = Aut(T;) andp; € CL(T}, Sym(V;)).

SinceH; are the automorphism groups of edge-coldtduypertournaments, notice
that H; € C, by Corollary 4.4.3. Letd denote the group producdf; x --- x H,,
andp = (p1,---,pm). Then we set CIZ, Sym(V)) = CL(T,Hp). Notice that by
Corollary 4.4.7, we can compute CL, Hp) in time n®**).

Repeated application of this phase eventually reducesitieal k-hypertournament
into anordered sebdf regulark-hypertournaments, and it suffices to canonize each reg-
ular k-hypertournament in this list. In the next phase we explaegdanonization of
regulark-hypertournaments.

Case2 {Regulark-hypertournament phake Supposel’ = (V, A) is a regulark-
hypertournament. I = 2 then we invoke Case 0.

Suppose: > 2. The algorithm will maken = |V| recursive calls, one for each
vertexv € V. In the call corresponding tg, the algorithm places as the first vertex in
the canonical ordering and recurses on smaller hypertments. Finally, the algorithm
picks the ordering that is lexicographically least amoreg#n orderings.

We now describe the recursive call that placess the first vertex of the ordering.
Usingv, the algorithm will decompose thehypertournament’ into an edge-colored
(k — 1)-hypertournament” onn — 1 vertices and &-hypertournament” onn — 1
vertices.

The edge-coloredk — 1)-hypertournamenf” = (V’, A") is defined as follows:
V' =V \ {v}. Forl < i < k, the set of hyperedges; (coloredi) consists of all
(7~} sequences of length-1 obtained by taking each of tHg; ) hyperedges of
containingy at theith place and droppingfrom the sequence. The set of all hyperedges
is thedisjoint union A’ = U*_, A;. Notice thatl” is a(k — 1)-hypertournament that is
edge-colored using colors.

Next we definel” = (V' A”) with vertex setl’’. Let A” denote all hyperedges of
T not containing. ThenT” = (V' A”) is ak-hypertournament on — 1 vertices.

First, the algorithm will recursively canonize the edgésced (k—1)-hypertournament
T'. Let CL(T",Sym(V')) = Gp. By Corollary 4.4.3,G € C;_;. Now, the algo-
rithm invokes Corollary 4.4.7 and applies the Babai-Lukgodathm to directly can-
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onizeT” w.r.t. the cosetGp in time n°**). Suppose that algorithm returns the coset
CL(T",Gp) = H,T, for vertexv. From the set of verticeB we can pick the subsét
such that for each € S the canonical labeling cosét, 7, gives the lexicographically
least tournament. Clearly, these cosBts,, v € S must paste together into a single
coset AutT’)r, which is CL(T", Sym(V)), wherer can be chosen as for some fixed

v € S, and a generating set for AUt) is the union of generating sets féf,, v € S and
the set{7, 7! | u,w € S}.

Correctness.

We argue the correctness of the above canonization algohithinduction ork and
n. As the base case, notice that the algorithm correctly wiankd = 2 and for alln as
that is the edge-colored tournament canonization algorj80] (see Theorem 4.3.4).

As induction hypothesis, suppose the canonization algoritvorks correctly for
all edge-colored-hypertournaments fof < k. Further, suppose the algorithm works
correctly for all edge-colorefl-hypertournaments with fewer tharvertices.

For the induction step Iéf' = (V, A) be an edge-colorek-hypertournament on
vertices withk > 2. The algorithm will either apply the steps in Case 1 or in Case
We need to argue correctness for both cases.

Case 1. Suppose Case 1 is applied to thdypertournameni’ = (V, A) onn ver-
tices. This is the case whéh is not regular and the vertex set is partitionedias=
U™, V;, where eachV; is a vertex subset of all vertices with the same degree vec-
tor and the index is the sorted order of the degree vectors. By induction Hypot
esis, for thek-hypertournament§; induced byV; the algorithm correctly computes
CL(T;,Sym(V;)) = Hip, whereH; = Aut(T}) andp; € CL(T}, Sym(V;)). Thereafter,

the algorithm invokes the Babai-Luks string canonizatilgoathm on7T” encoded as a
string and the product of coselt p; x - - - x H,,p,,. Thus the correctness of the induc-
tion step for this Case 1 follows from Theorem 4.1.4.

Case 2. Next, suppos€’ is a regulark-hypertournament, which means that Case 2 is
appliedtoit. Letl; = (V, A;) andT, = (V, A;) be two isomorphié-hypertournaments
on n vertices to which Case 2 of the algorithm is applied. We neeshbw that the
algorithm produces the same canonical form for BBtland7;. Lety : V — V be an
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isomorphism froni’; to 7.

Recall that the algorithm works as follows in Case 2: Let tipui be7; andv € V
be a vertex. The algorithm computes an edge-col¢ked 1)-hypertournament’ on
V\{v} and the remaindér-hypertournamerit;’ on '\ {v}. Recursively, the algorithm
canonized] and using the resulting canonizing coégp, the algorithm canonizes
(by applying Theorem 4.1.4). Ldfl(”) denote the:-hypertournament obtained by the
algorithm by pickingv € V as the first vertex. The algorithm carries out these steps for
eachv € V and picks the lexicographically least among them as thergaaloform.

In order to show thaf; and7; result in the same canonical form, we claim it suf-
fices to argue thaf” and7,*") are the samé-hypertournaments whetg"") is
the canonical form obtained by the algorithm by pickin@) as the first vertex while
canonizing7,. For, if the muItisets{{Tf”) | v e V}} and{{TQ(w(”)) | v e V}}are
the same, then clearly the lexicographically least elemrthe sets are the same (with
multiplicity).

Thus, it suffices to show that” = 7). Sincey : V — V is an isomor-
phism fromT; to T3, notice that) will also be an (edge-color preserving) isomorphism
between thék — 1)-hypertournament$] and7’;, whereT, is the edge-coloretk — 1)-
hypertournament obtained by the algorithm when canoniZingy placingv (v) as
the first vertex. Hence, by induction hypothesis the algamiwill compute the same
canonical forms foff{ and7;. More preciselyg, (17) = o,(13) for anyo;, € G1p; and
o9 € Gops WhereGyps is the canonical labeling coset obtained by the algorithritlevh
canonizing7,. Therefore, canonizin@]’ using coset:,p; and canonizind/; using
cosetG,po Will also result in the samg-hypertournaments by Lemma 4.1.5. Putting it
together it follows thaTl(”) = TQW’(”)). This completes the correctness proof.

Running Time.

To analyze the running time, létn, k) denote the running time taken by the algo-
rithm for n-vertex k-hypertournaments. We claim that the following two recnoes
hold for Cases 1 and 2 respectively:

t(n, k) SO (V] k) 4 nO) Case 1 and > 2
’[’L’ —
n(t(n — 1,k — 1) +n°*)) Case 2 and > 2
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First, notice that(n, 2) = n®°e™ using [30] for the base cage= 2. For Cases 1 and
2 the recurrence relation follows directly from the algomit description; the additive
term ofn®**) in the two cases is a consequence of Theorem 4.4.7.
The claimed time bound(n, k) = n©**+ls") s the solution for this recurrence.
|

Remark 4.4.9 Finally, analogous to Theorem 4.3.9, we note that it is daesio can-
onizek-hypertournaments in polynomial time with queriesktbypertournament iso-
morphism and rigid:-hypertournament canonization. The details of this reiducare
quite similar to the proof of Theorem 4.3.9.
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An FPT Algorithm for Bounded Color
Class Hypergraph Isomorphism

5.1 Introduction

We recall that hypergraphis an ordered paiX = (V, E) whereV is the vertex set
and £ C 2V is the edge set. Two hypergrapis = (Vi, E;) and X, = (V3 E»)
are said to besomorphi¢ denotedX; = X,, if there is a bijectionp : V; — 1}
such thate = {uy,---,w} € Eyif and only if ¢(e) = {p(uy),---,o(u)} € En.
Given two hypergraphs&(; and X, the hypergraph isomorphism problem (HGI) is to
decide ifX; = X,. Graph isomorphism (Gl) is obviously polynomial-time rethle to
HGI. Conversely, HGI is also known to be polynomial-timeueile to Gl: Given two
hypergraphsy; = (V1, F1) andX, = (14, E5) as instance for HGI, the reduced instance
of GI consists of two corresponding bipartite graphsandY; defined as follows. The
graphY; has vertex set; W £, and edge seb (Y;) = {{v,e} | v € V},e € E; andv €
e}.! Similarly Y, has vertex set, W £, and edge seb(Y;) = {{v,e} | v € Vs, e €
E,andv € e}. Clearly, the hypergraphX; and X, are isomorphic if and only if
Y, &Y.

We now define bounded color class hypergraph isomorphistolgaro (BCHGI),
which is the main problem of interest for this chapter.

Definition 5.1.1 (BCHGI) Input: Two hypergraphs\; = (V, E;) and X, = (V, E»)
whereV = C, ¥ - - - W C,, and for eachi, |C;| < b.

1Given two setC and D the disjoint union ofC' and D is denoted ag§’ & D.
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Decide If there is an isomorphism form X; to X, such thatw € C; if and only if

The bounded color class graph isomorphism graph isomarpbieblem (BCGI) is
the analogous problem where instead of hypergraphs we hapbg Frust, Hopcroft
and Luks gave a polynomial-time algorithm for BCGI [53] witinning time20 () o),
wheren is the number of vertices aridis the size of the largest color class. Although
HGI is polynomial time many-one reducible to Gl, the redortwe described above
does not impose any bound on the size of the color classe® dfiplartite graphg’.
More specifically, in the bipartite grapli, the vertex partition corresponding to the
edges of the hypergrapi, does not get partitioned into classes of size bounded by
any function oft since the hyperedges are mbnconstansize, in general. Thus, the
polynomial-time algorithm for BCGI cannot be applied to thmunded color class hy-
pergraph isomorphism problem (BCHGI) to get a polynomialetalgorithm.

However, an algorithm for BCHGI with running time of the forn?®) was shown
in [17], wheren is the number of vertices ammdounds the color classes. This algorithm
basically applies Luks’ seminal result [80] showing that et stabilizer problem with
respect to a class of grotijy can be solved in time®®). Recall that a finite groug is
said to be in the clask, if every nonabeliancomposition factor of7 is isomorphic to
some subgroup of the symmetric grobip

Parameterized Complexity and Isomorphism Testing

Parameterized Complexity is a fundamental strategy fomgpwith intractability. Pio-
neered by Downey and Fellows in [44], it is a flourishing aréeesearch (see, e.g. the
monographs [45, 50]). Fixed parameter tractability pregid notion of feasible compu-
tation less restrictive than polynomial time. It providetheoretical basis for the design
of new algorithms that are efficient and practically usetul $mall parameter values.
We quickly recall the rudiments of this theory relevant foe fpresent chapter. More
details (especially on the levels of the W-hierarchy) w#l given in the next section
(see also [45, 50]).

Computational problems often have inputs consisting of tweonore parts where
some of these parts typically take only small values. Formgaa, an input instance of
the vertex cover problem i&=, k), and the task is to determine if the graghhas a
vertex cover of sizé. A similar example is thé-clique problem where again an input
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instance is a paifG, k) and the problem is to test if the graphhas a clique of sizé.
For such problems an exhaustive search will take tinie*), wheren is the number
of vertices inG. However, a finer classification is possible. The vertex cpveblem
has an algorithm running in tim@»°M (even in timeO(1.2738% 4 kn) [41]), whereas
no algorithm is known for thé-clique problem of running timé&(n°®)). Thus, if the
parametek is such that: < n, then we have a faster algorithm for thesertex cover
problem than is known for thie-clique problem.

In their seminal work, Downey and Fellows [44, 45] also depeld a theory of
intractability for parameterized problems as a tool to sifgsparameterized problems
according to their computational hardness. The W-hiegaconsists of the leveld/[¢],

t > 1, together with the two class&8[SAT] andW/|P] and we have the inclusions

FPTC W[1] C W[2] C --- C W[SAT] C W[P|.

Since Graph Isomorphism has no known polynomial time allgorifor general class
of graphs, one approach is to study isomorphism testingdecial classes of graphs.
Often these special classes are defined by bounding somle gaag@meter. For exam-
ple, by bounding the maximum degree, or treewidth, or geriubeograph by some
constanb we get degreé-graphs, or treewidtlh-graphs, or genuggraphs respectively.
Thus, these natural graph parameters give rise to paraeesterersions of the graph
isomorphism problem. Interestingly, the best known isqggham testing algorithms
for graphs with bounded degree [80], bounded treewidthlgggp4], and for bounded
genus graphs [87] all have worst-case running time boittl whereb is the parameter
andn is the number of vertices.

It is an interesting open question if Gl has FPT algorithmhwispect to any of
the aforementioned parameters. We know that Gl is unlikelye hard for NP [4]. It
would be interesting to know if these parameterized vesswinGl are W[1]-hard or
fixed parameter tractable.

Though there are several open problems regarding the parasgecomplexity of
graph isomorphism problem with respect to natural paramseta the positive side we
note that some FPT algorithms have been obtained for grapioighism with parame-
ters tree-distance width [116], maximum size of the simalicomponents [103], apart
from the result of Furst et al [53] on bounded color classes.
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The results

In this chapter we present an FPT algorithm for bounded abésis hypergraph isomor-
phism that runs in timé!2°®) NO() whereb is the size of the largest color class aNd
is the sum of number of vertices and edges.

We will use as subroutine some FPT algorithms for certaiampaterized permuta-
tion group theory problems. In Section 5.3 we define perrartagroups with acolor
class bound Following Luks’s method [83], we design an FPT algorithm éoset
intersection of permutation groups where the parametdreiscolor class bound. We
also give an FPT algorithm for set transporter problem. §€hgoblems are formally
defined in Section 5.3). While the parametrized complexifyesmutation group prob-
lems, for different parameters, can be interesting in ite aght, it could be applicable
to graph isomorphism. For example, an FPT algorithm for g#tdransporter problem
with respect to groups i, with b as parameter, will result in an FPT algorithm for
iIsomorphism testing for graphs of maximum degbewhich is a major open problem.
The parametel is a different natural parameterization for permutatioougr problems.

5.2 Preliminaries

While designing the FPT algorithm for bounded color claspdrgraph isomorphism
we will have to handle multihypergraphs: these are hypeftgavhere the edge setis a
multiset (each edge occurs with a multiplicity). Two muitergraphsX; = (V4, E1)
and X, = (1%, Ey) are isomorphic via an isomorphismif e € F; has the same multi-
plicity as¢(e) in Es.

Apart form the basic permutation group theory introducetth@preliminary section
of Chapter 2 we need the following two definitions for this tea.

Definition 5.2.1 For a permutationr € Sym(2) andC C ) we defineC™ = {a2™ |
x € C}. For a permutation grougr < Sym(2), a subset” C Q is called G-stableif
Cm=Cforall 7 € G.

Definition 5.2.2 For a groupG < Sym(€2) and a set’ C (), thestabilizer subgroupf
G that stabilizesC, denoted7, is defined as

Go={reG|C™=C.
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5.3 Permutation Group Problems

We say that a groupr < Sym(€2) hascolor class bouna if each G-orbit is of size
bounded by. Equivalently,Q2 can be partitioned into a disjoint union of color classes
C1 ¥ - (), where eactrolor classC; is G-stable andC;| < b. In this section we
describe FPT algorithms for some permutation group probletmere the parameter is
the color class bound for the input groups. Given- (S) by generating sef, since the
orbits of G can be computed in polynomial time we can testihas color class bound
b in polynomial time.

The basic idea in solving these group-theoretic problemaspaterized by the color
class bound is to tackle one color class at a time. In someesareswill restrict the
problem to a particular color class and solve the problentHat color class and then
proceed to the next color class.

5.3.1 Set Transporter

First we define the set transporter problem for general ption groups.

Definition 5.3.1 (Set Transporter)

Input : A groupGG < Sym(€2) given by generating set,€ Sym(£2) and two subsets
Iy, 11, C Q.

Output : (G2)i, -1, = {z € Gz | 117 =11,}.

For general permutation groups, it is known that Graph Ispimsm is polynomial-
time reducible to Set Transporter. However, we are inteceist Set Transporter param-
eterized by the color class bound.

Definition 5.3.2 (Bounded Color Class Set Transporter BC-TRRNS)

Input : A groupG < Sym(f2) given by a generating set whete= C, W --- W C,,
and for each, C; is G-stable,z € Sym({2) and two subsetH, I1, C €.

Parameter : b = max{|Ci|, - ,|Ci|}.

Output : (G2)i, 1, = {z € Gz | 117 =11}

The FPT algorithm for solving BC-TRANS works by restrictitige problem to a
particular color class, solving it, and then proceedinght® next color class. The re-
stricted version of the problem is defined as follows.
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Definition 5.3.3 (Restricted BC-TRANS)

Input : A groupG < Sym(C W D) given by a generating set wheféand D are
G-stable,z € Sym(C @ D) and two subsetH,, II, C C.

Parameter : b = |C/|.

Output : (G2)i, 11, = {z € Gz | 117 =11},

Theorem 5.3.4LetG < Sym(C W U) be a group given by a generating set aficbe
G-stable withh = |C]. Letz € Sym(CwU) be a permutation antl,, I, be two subsets
of C. Then(Gz)m, 11, can be computed in tin®’ ®)n°M wheren = |C| + |U].

Proof. Let G, be the stabilizer subgroup 6f that stabilizedI,, i.e., G, = {z €
G | II7 = II,}. SinceC is G-stable the sell, can only move to a subset of sizé, |
contained inC'. Thus,

(G, : G < (‘r[fﬂ) <2

Also note that giverr € G, it only takesO(n) time to check ifr € Gy, .

As discussed in the priliminary section of Chapter 2, a setoskt representatives
{p1,---,p:} of Gy, in G can be computed in tim&’®n°1), By Theorem 2.2.14 a set
of generators can also be computed in t2fi&)n°M) . Using Schreier-Sims methology,
the number of generators can be reduced’tby computing a strong generating set for
G, also in time20®)p0M),

We write

Gz =G, p1zW--- WG, pz.

The algorithm next picks the cosét;, p;~ that send$l, to I1, if there is any such coset
and outputs that coset otherwise it outputs the empty set. ]

Remark 5.3.5 The groupGry, that is output by the algorithm stabilizes aGystable
setF.

Theorem 5.3.6 Let G < Sym({2) be a group given by a generating set. SuppQse
Cy W --- W, such that eaclt’; is G-stable. Letz be a permutation irffym({2) and
I, andII, be two subsets ¢b. Then(Gz), .11, can be computed in timz’®)pOW
whereb = max|C4|, -, |Cp|}-

2There can be at most one such coset.
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Proof. Let Hgi) = (; n1II; and Hgi) = C;NIl. LetGy = G andzy, = z. For
i=1,---,m compute
Giz; = (Giflzifl)

() )

using the algorithm of Theorem 5.3.4. By Remark 5.3.5 thegsulpsG; computed
by the algorithm will stabilize the setS; for each: andj. Thus, by Theorem 5.3.4
computingG, z; from G;_1z,_; will take time 2°®)n°%(M)  Hence, the overall running
time is alsa20®n°®  Notice thatll; = TI{" w - - - wI{™ andIl, = TI{" & - - - W TI{™.
Furthermore, for eachandz € G,,z,, we have(Hg“)x = HS). Hence it is easy to see
thatG,,.z,, = (G2)11, 11, ]

Definition 5.3.7 (Bounded Color Class Set Stabilizer BC-STB)

Input: A groupG < Sym(2) given by a generating set wheie= C, 0C, - - WO,
and for each, C; is G-stable,z € Sym({2) and a subsetl C (.

Parameter : b = max{|Ci|, - ,|Ci|}.

Output: (Gz)g ={z € Gz | II* =11}.

If we setll; = IT andIl, = IT in Definition 5.3.2 of BC-TRANS, we get BC-STAB
problem. Thus, by Theorem 5.3.6 this problem can also beedatvtime2°® poly(n)
wheren = [Q].

Corollary 5.3.8 The problem BC-STAB can be solved in t2f€)poly(n).

5.3.2 Coset Intersection

The coset intersection problem in its full generality is deél as follows.

Definition 5.3.9 (Coset Intersection)

Input : Two groupsG, H < Sym({2) be given by generating sets andy €<
Sym(£2).

Output : Gz N Hy.

Graph Isomorphims is known to be polynomial-time reductbl€oset Intersection
[82] since Coset Intersection is polynomial time many-omaealent to Set Transporter.
However, the known polynomial-time reduction between ¢hgoblems increases the
parameter value; it is not a paramterized reduction [45]er&fore, we cannot invoke
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the algorithm for BC-TRANS to given an FPT algorithm for ther@metrized version of
the coset intersection problem which we will define. In ti@stin we present an FPT
algorithm for BC-INTER. This algorithm will be used to soltlee bounded color class
hypergraph isomorphism problem.

Definition 5.3.10 (BC-INTER)

Input: LetQ =Ciu---WC,. LetG, H < Sym({2) be given by their generating
sets such that for eachC; is bothG-stable andH -stable,x, y € Sym(€2). Let|C;| < b
for all i.

Parameter : b = maxX|Cy|,- -, |Cp|}-

Output : Gz N Hy.

Let L = G x H < Sym(f2) x Sym(?) = G. Letz = (z,y) € G. Letll =
{(a,a) | a € Q}. Notice that(Lz)y = {x € Lz | II* = II} projected to the first
or second coordinate Sz N Hy. Since this is an instance of BC-STAB we could use
Corollary 5.3.8 to computélz)r;. Unfortunately, such an algorithm for would take time
20(0*),0() since the groufd has color class size bourd (and notb). Nevertheless,
using a different algorithm we can still solve the problem@#»n°™ time.

Lemma 5.3.11 (Lz)y; can be computed in tin@®),n0M),
Proof. The main claim required to prove the lemma is stated below.

Claim5.3.12 Let); = Cw U andQ,; = DW V. LetL < Sym(€;) x Sym(£2) be
given by generating set such th@tand D are L-stable. Letz € Sym({2; x ). Let
I1 C C x D. Then(Lz)y can be computed in tim&’®)n°M) wheren = ;] + [y
andb = max{|C|, |D|}.

Before proving the above claim, we apply it to prove the lemMé& will use the
following two consequences of Claim 5.3.12.

Claim5.3.13 LetQy, = CiW---wCrandQy, = DW V. LetL < Sym(€2;) x Sym(£2y)
be a permutation group given by a generating set, suchffhanhd eachC; are L-stable
sets. Letz € Sym(2; x Q9) andIl C Oy x D. Then(Lz) can be computed in time
200)n00W whereb = max{|D|,|Cy|,- - ,|Ci|} andn = || + [Qs].
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Proof. We define the setd; = I1 N (C; x D). We will repeatedly apply Claim 5.3.12.
To start off we first computé.; z; = (Lz),. Then we apply Claim 5.3.12 to compute
Liz; = (Li—1zi—1)n, from L;_yz;_; fori = 2,--- /m. By Claim 5.3.12 it follows
that the time taken for this computation8®n°M), We claim that for alli, L;z; =
(L2)11,w..wm;- This follows form the fact that(Lz)m,w...wm,_, )i, = (L2)1mw.wm,- ThUS
at the end of the computation we halg z,, = (L2)m,w...wm1,, = (L2)n. n

Claim5.3.14 LetQ; =CiW---wCrandQy = Dy W--- W D,,. LetL < Sym(;) X
Sym(€2,) be a permutation group give by a generating set such that éaand each
D; is an L-stable subset. Let € Sym(£2; x €;) andIl C €, x Q. Then(Lz);; can be
computed in im@®®n°W whereb = max{|C;|, | D;|};; andn = || + |Q].

Proof. Definell; = (C; w---w () x D; for j = 1,---,m. We can successively
computel;z; = (L;j_1z;1)n, for j = 1,--- ,m, by Claim 5.3.13. Finally, we observe
thatL,,z,, = (L2). u

The proof of the lemma now follows easily by settiftg = (2, = C; W --- W ), In
Claim 5.3.14.

To prove Claim 5.3.12 we use ideas from [83]. In [83], the autlefines a version of
set transporter problem and gives an algorithm that can sy @aodified to be applied
in the parametrized setting. The parametrized versioneoptbblem is defined below.

Definition 5.3.15

Input: Let); = CwWU andQy, = DWW V. LetL < Sym(€) x Sym(€2;) be given
by generating set such that and D are L-stable. Let: € Sym(€2;) x Sym(2,). Let
[TeCxDand® C & x ¥ C (' x D. We also assume thal = L.

Parameter : b = max{|C|, |D|}.

Output: (Lz)p[®] = {x € Lz | (IINO)* =11NO~*}.

We can observe from [83] thal z);[©] can be computed in timz?®)n°") where
n = || + |Q2]. For the sake of completeness we now give a proof. We modikgsu
proof slightly to suit the current parametrized setting.

We assume without loss of generality thét and| V| are powers oR. If not, we
can add some more points @nandW¥ and letZ act trivially on these points. This will
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increase the size of the input only by a factordofThese extra points can be removed
easily from the algorithm’s output.

SinceLg = L we have®” = ©* for all z € Lz. If (Lz);[©] is not empty then for
z,y € (Lz)n[©] we have(IINO)* = 1IN O* = (IINO)Y and hencgLz)[O] is coset
of Line. For simplicity we will denotg Lz)[O] by (Lz)[©].

If TN O] # |IIN % then(Lz)[O] is empty.

Let|IINO| = [IIN©O* = 1. LetlIN O = {u} andII N ©* = {v}. Let L, be the
stabilizer of the point,: which can be computed using Schreier-Sim method. Then we
can expres$, as the disjoint union of cosets as

L=L,x1¥Y---W L,z

and
Lz=L,x1z¥---W L,x12

We pick the subcosédt, x; z (if there is any) that maps to v.

Next we assum@l N ©| = [IINO% > 1. If |®| > 1 we pick®; C ® such that
|®y| = |®|/2 and let®; = &, x ¥. Otherwise if|¥;| > 1 then we pick¥; C ¥ such
that|¥,| = |¥|/2 and let®; = ¢ x V. In both the cases we Ié; = © \ O;.

. P -

Let M = Le,. Notice that[L : M] < ( ||<1>| ) < 290 when we choose to divide

2
V]

2] which is still less tharR?®),

the setd. If we divide the setl then[L : M| <

2
We write L as the disjoint union of the cosets bf
L=MyWw- &My

and
Lz = MyzW--- & My,z.

As discussed in the preliminary section of Chapter 2, thod®osition ofLz can be
computed in time°®»n°W ysing Schreier-Sims methodology. Sintestabilizeso,
(My;2)[©1] will be a coset.

We use the following relation to setup the recursive calls

(My;z)[0] = ((My;2)[61])[O]
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Finally we paste the answers to the subprobléidg, z)[O] to get(Lz)[O].
(L2)[0] = Uiy (My;z)[0]

Clearly the running time i8°®)p0M),

Putting it together, we have shown the following.

Theorem 5.3.16 There is a2°®n°M time bounded FPT algorithm foBC-INTER,
wheren = |Q].

5.4 FPT Algorithm for Colored Hypergraph Automor-
phism and Isomorphism

We will give an FPT algorithm for finding the automorphismgpaf a hypergraph (i.e.,
a set of generators for the automorphism group) which hasimgrtime (b!)2°® NO(1)
whereb is the bound on the size of the color classes ahd the sum of number of
vertices and edges.

Our algorithm is a dynamic programming algorithm. The sobfgms of this dy-
namic programming algorithm will involve multi-hypergfag For this reason we be-
gin with a multihypergraphX = (V, E) whereV is partitioned into color classes
Cy, -+, Cp. We assume that;| < b for all .

We first partition the edges into different sets of edgeswratall blocks. We define
these more formally.

Definition 5.4.1 We say two edges, e, € E arei-equivalentand writee; =; e if
elﬂC'j:egﬂCj, 1§j§l

For eachi this defines an equivalence relation. Thugquivalence partitiong’ into
equivalence classes that we term(&@sblocks 1 < i < m. Notice that-equivalence is
a refinement of-equivalence fof > j. Thus, ife; ande, are in the saméi)-block then
they are in the samgj)-block for all j < 7.
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The algorithm proceeds in stages.

Stage 1. The first stage corresponds to the last color clastet A and A’ be two(m)-
blocks. The(m)-blocks A and A" induce two multihypergraphs andY” on the vertex
set C,, respectively. The algorithm will find the set of isomorphs#t0,,(Y,Y”)
between these two multihypergraphs. Notice that foral, € A, e;NC,, = eoNC,, =
a, for somea C C,,. Similarly, for allej, e}, € A', i NC,,, = e, N C,, = d’. Thus
the multihypergraph” induced byA on C,,, has only one edge with multiplicity |A|.
Similarly, Y’ has one edge with multiplicity4d’|. Recall thatA and A" may themselves
be multisets. HenceA| and| A’| are their sizes as multisets.

Clearly, IS0,,(Y,Y'") = ¢ if |A| # |A’|. Otherwise,[SO,,(Y,Y’) C Sym(C,,)
will be the coset that mapsto «’. Notice that this is a set transporter problem and can
be solved in time°® by Theorem 5.3.6. For all pairs ¢fn)-blocks A and A’, the
dynamic programming algorithm stores the 680,,,(Y, Y”) in a table wheré” andY”’
are the multihypergraph induced bByand A’ respectively.

Stagem — i + 1. Them — i + 1th stage of the algorithm handlég-blocks. Let
A and A’ be two(i)-blocks. LetY andY”’ be the multihypergraphs induced blyand
A’, respectively, on the vertex sét U --- U C,,. Thus,V(Y) = C;U---U(C, and
EY)={{enC;Uu---UC,, | e € A}}. The multihypergraply’ = (V(Y”), E(Y’)) is
similarly defined.

In this stage the algorithm will compute the co$80;(Y,Y”) of all isomorphisms
betweenY andY” and store the result in thel, A’) entry of the dynamic progamming
table. We explain how the computation is done.

Clearly I50;(Y,Y") is empty if the size of the multiedge s€i§Y") and E(Y”) of
these two multihypergraphs differ. Suppds@’) andE(Y’) has same size as multisets.
Foralle;,e; € Alete;NC; = eoNC; = a, andfor alle), e, € A’ lete/NC; = e,bNC; =
a'. LetS C Sym(C;) be the set consisting of permutations that mapa’. If S is empty
then so i7.SO;(Y,Y”). Suppose is nonempty. Lep be a permutation o@’; . U- - - U
C,, that mapsy” to Y’ isomorphicallywhen restrictedo color classeg’; 1, -, C,,.
Let ' € S be any permutation. Then, becausand A’ are(i)-blocks we havép, ') €
ISO;(Y,Y"), where(p, p') denotes the permutation obtained by extendingth o’ on
the color clasg’;.

The (i)-block A can be partitioned int¢: + 1)-blocks Ay, - -, Ax. Similarly, A’
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can be partitioned int¢; + 1)-blocks Af,--- , A},. For eachj, the (i + 1)-block A;

induces a multinypergraph; on the color classe§’.,--- ,C,,. More specifically,
V(Z;) =CipnU---UC, andE(Z;) = {{eNV(Z;) | e € A}}. Similarly, letZ}, be
the multinypergraph induced by tfie+ 1)-block A’

If & # k' thenISO;(Y,Y”") = (). Supposé = k'. For eachs andt the algorithm has
already computed in Stage — i the cosel SO, (Z,, Z};) and stored it in the table. We
can use these cosets to efficiently compid®;(Y,Y”). Leta;, = e N C;11, e € Ay and
a, =€ NCiq, e € Al Foreachp € Sym(C;,,) the algorithm will do the following.

If {a1,---,a}” # {a},-- -, a}} thendiscard the and move to the next permutation
in Sym(Ciy1). Otherwise let] = a/ ;) where the permutation : [k] — [k] is the
corresponding mapping of indices from thie+ 1)-blocks Ay, - - -, A, to A}, --- | Aj.
Let the coset of isomorphismds$S O, (Z;, Z;(j)) be denoted by

Hir(yojn(y = 150i11(Z;, Zp ).
Now, applying Theorem 5.3.16 the algorithm can computeritersection

H,0, = M_1 Hin(0jn(5)-

As k < 2° notice that the algorithm of Theorem 5.3.16 will take timeubded by
20() NO) | Next the algorithm will paste these cosets for all the déffeép € Sym(Ci, ;)
to form a single coset

Ho = Upesym(Cii1) Hp0p-

ConsiderS x Ho. Itis clear thatS is a coset and x Ho contains/ SO;(Y,Y”). Cru-
cially, sinceA and A’ are both()-blocks it follows that/ SO;(Y,Y’) = S x Ho. Thus,
the algorithm has computed O; (Y, Y') and will store it in the table corresponding to
the entry(A, A).

We analyze the running time at this stage. The number of blatlkany stage is
bounded by the number of edgesXf Thus, them — i+ 1)th stage takes time bounded
by 6120 NO() ' where the! factor is because we cycle through all the Sym(Ci, ;).

Finally, in themth stage the algorithm will process all the pairs(oj-blocks in
the same way as described above. In order to computeXuhe algorithm does the
following.

Let A, ---, Ay be the(1)-blocks and lety, - - -, Y} respectively be the multihy-
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pergraphs induced off; U --- U C,,. Leta; = e N C; wheree € A;. Notice that a
permutatiorp € Sym(C;) may or may not induce a permutation on the{ggt - - - , a }
depending on whethdi,, - - - , ax}” = {ay,--- ,a;} ornot. If pinduces a permutation,
let7 € S) be the permutation, i.ea;, = ar(;). L&t Hjr(jy0jr(j) = SO (Y}, Yx(;)). The
algorithm then computes

Hyo, = mé?:lHﬁr(j)gjﬂ(j)'

Finally, the algorithm pastes thesg o, to get the automorphism group
Aut(X) = Upesym(cr) Hpop-

It is easy to check that the algorithm takes tibt’®) N©(U) time to compute AutY).

Theorem 5.4.2Let X = (V, E) be a colored hypergraph with" = C; W --- w C,,
where(C; is colored with colori and |C;| < b for all i. Let N be the sum of number of
vertices and edges of. GivenX as input there is an algorithm that computegt(X)

in timeb!1200) yOO),

Next we indicate how the above algorithm can be easily matlifiegive isomor-
phisms algorithm for colored hypergraphs with same runtimg. LetX = (V) E)
and X’ = (V', E’) be two colored hypergraphs. Without loss of generality wsiase
V=V =CuW---w(C, whereC; is theith color class. As before we partition the
edges of both the hypergraphs irfig-block for alli. Again we computd SO;(Y,Y”)
whereY andY’ are multihypergraphs induced I63)-block pair(A, A’), with the only
difference that the block comes form hypergrapi and A’ form X’. In the final step
we compute the set of isomorphisffO (X, X’) from X to X’. Thus we have

Theorem 5.4.3Let X = (V) FE) and X' = (V, E’) be two colored hypergraphs with
V =Ci ¥ C, where(; is colored with colori and |C;| < b for all i. Let N
be the sum of number of vertices and edgeX ofGiven X and X’ as input there is

an algorithm that computes the sefO(X, X’) of isomorphism formX to X’ in time
p120®) NOO),
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Space Complexity of K-tree Isomorphism
and Canonization

6.1 Introduction

It often turns out that NP-hard graph problems when resuli¢o the class opartial
k-treesfor constant have efficient polynomial-time algorithms [33, 95]. Pdrficrees
are also known as the class of graphs of treewidtliror constant;, in general, they
are known aounded treewidth graphdormal definitions are given in Section 6.3).
Bodlaender [34] gave the first polynomial-time algorithm festing the isomorphism
of partialk-trees. Bodlaender’s algorithm, based on dynamic progragpmuns in time
O(nk+45),

Our interest is in @omplexity-theoreticharacterization of Graph Isomorphism for
partial k-trees using space bounded complexity classes. We explaimotivation
for studying the space complexity &ftree isomorphism. On the one hand, we have
Lindell's result [79, 69] that tree canonization is complér deterministic logspace,
which tightly characterizes the complexity of both isontugm and canonization of
trees. What about partid-tree isomorphism? The recent T@pper bound for iso-
morphism of partialk-trees by Grohe and Verbitsky [60] raises the question ahout
tight complexity-theoretic classification of the probleliis tempting to conjecture that
partial k-tree isomorphism should also be complete for determiisgspace, just like
ordinary tree isomorphism. However, the best known conmpdound for even rec-

Provided that the tree is given in the pointer notation; gisire parenthesis notation the problem is
NC'-complete [37, 69].

109



Chapter 6. Space Complexity of K-tree Isomorphism and Caation

ognizing partialk-trees is LOGCFL (the class of decision problems that arsgage
many-one reducible to CFLs) [110].

The TC bound of [60] suggests that we can put the problem in a natoraplexity
class contained in TClike LOGCFL or DET, or perhaps somewhere in the logspace
counting hierarchy. The logspace counting classes, inted in the seminal paper
[7], contain many natural problems sitting in K@nd have been used to characterize
most natural problems in NGsatisfactorily from a complexity-theoretic viewpoint. A
comprehensive study can be found in Allender’s surveylerfi].

The content of this chapter is based on [12]. In this chapteskow thatull k-tree
canonization is in FNL . Recall that theanonization problenfor graphs is to produce
acanonical formCF(X) for a given graphX such thatCF(X) is isomorphic toX and
CF(X,) = CHXy) for any pair of isomorphic graph¥; and X,. It is easy to see that
Graph Isomorphism i4C° reducible to Graph Canonization. However, in general it is
not known if the two problems are even polynomial-time eglant.

Interestingly, the NL oracle required fdrtree canonization is a language com-
puted by an NL machiné/ that is strongly unambiguousfor any two configura-
tionsz andy of machineM there is at most one computation path frento y. The
class of languages accepted by such NL machines is deRote&PACE (log n) (StUL
for short) by Allender and Lange [6]. As shown in [&JtUL is in fact contained in
DSPACHlog® n/ loglog ), improving the DSPACHog? n) bound given by Savitch’s
theorem. Furthermore, the complexity cl&¥ L is closed under complementation and
even closed under logspace Turing reductions [36, Coyoll&t. Thus, it follows that
k-tree isomorphism is istUL. The classStUL is not known to be contained in L.
In fact, it contains the classLIN of unambiguous linear languages [36] which is not
known to be inL.

Recently, based on similar approach it has been showikitrat isomorphismis in
L [74]. In Section 6.5 we briefly sketch their algorithm.

We note that parallel algorithms are known fetree isomorphism. For example,
in [59] a processor efficienaC? algorithm was given fok-tree isomorphism. Since
StUL C UL € NL C AC!, our upper bound is tighter than previously known bounds
from a complexity-theoretic perspective.

We also look into the problem of canonizikgpaths, a special case bitrees, and
give a logspace canonization algorithm fepaths. We show that-path isomorphism
is complete for L.
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6.2 Preliminaries

In this chapter, for a grapi’, let VV(X') denote its vertex set and(.X ) denote its edge
set. The sefw € V(X) | {v,w} € E(X)} of all neighborsof v € V(X) is denoted
by N(v). For a subset/ C V(X), we useX[U] to denote thénduced subgrapbf X,
whereV (X [U]) = U andE(X[U]) ={e € E(X) |e C U}.

Next we recall some complexity classes defined by circuitssmme space bounded
classes.

A languaged is in the complexity class NGresp.AC") if there is a uniform family
of circuits{C, },, of depthO(log’ n) and sizepoly(n) with internal AND, OR andNOT
gates with bounded (resp. unbounded) fan-in that accept€’ is the extension aAC’
where we additionally allow unboundédA JORITY gates.

The complexity clasd. consists of all languaged accepted by a deterministic
O(logn) space bounded Turing machine. NL is defined in the same waygibg non-
deterministic machines. FL is the class of all functions patable by a deterministic
O(log n) space bounded Turing machine.

A nondeterministic Turing machin&/ is calledunambiguousif for any inputz, it
has at most one accepting computation path.

M is said to beeach-unambiguousit is unambiguous and for any input there is
at most one computation path from the starting configuratamy other configuration.

M is said to bestrongly unambiguous it is unambiguous and for any pair of con-
figurationsu andv of M there is at most one computation path frarto v.

A mangroves a directed acyclic graph such that there is at most onetdulgath
from i to j for any two nodeg andj in the graph. In other words, a directed graph
is a mangrove if and only if for any nodethe subgraph induced hy and all nodes
reachable fromu is a rooted directed tree.

Note that an unambiguous machifé is strongly unambiguous if and only if its
configuration graph is a mangrove.

A languageA is in the clas$JL (RUL, StUL) if there is anO(log n) space bounded
unambiguous (reach-unambiguous, strongly unambiguesisectively) Turing machine
acceptingA. Itis well known that

NC! C . C StUL C RUL C UL C NL C AC! C TC' C NC2.
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The following result of Allender and Lange [6] shows that Bavs log® n space deter-
ministic simulation of NL can be improved fét UL andRUL.

Theorem 6.2.1[6] StUL C RUL C DSPACHIlog®n/loglogn).

6.3 k-Tree Canonization
We define the classes bftrees and partidt-trees in the following definition (see [65]).

Definition 6.3.1 The class ofk-treesis inductively defined as follows.
e A clique withk vertices g-clique for short) is &-tree.

e Given ak-tree X’ with n vertices, a-tree X withn-+1 vertices can be constructed
by introducing a new vertex and picking ak-clique C' in X’ and then joiningy
to each vertex. in C. Thus,V(X) = V(X') U{v}, E(X) = E(X') U {{u,v} |
ue C}.

A partial k-treeis a subgraph of &-tree.

Before we go into thé-tree canonization we notice that the following charazggion
of k-trees gives a logspace algorithm for recognizirgees.

Definition 6.3.2 [72] Let X = (V, F) be a graph. A subsef of V' is called avertex
separatofor two nonadjacent vertices, v € V, if in the subgraph o induced by the
vertex sef” — S the two vertices:, v are in different connected components. A vertex
separatorsS for u, v is called minimal, if no proper subset of is a vertex separator
for w andv. A subsetS C V is aminimal vertex separataf S is a minimal vertex
separator for some pair of verticesv € V.

Lemma 6.3.3 [40] A graph X withn > k vertices is &-tree if and only if

e every pair of nonadjacent verticesand v has ak-clique as a minimal vertex
separator and

e [/(X) contains exactl)('g) + k(n — k) edges.
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It is easy to see that the two conditions of Lemma 6.3.3 canhieeked in logspace.
Hence, from now on we can assume that the input grapis a k-tree. Further we
assume that’(X) = {1,...,n}.

Our algorithm fork-tree canonization works by reducing the problem to the prob
lem of canonizing certain labeled trees that encode es$amtbrmation abouk-trees.
Our initial goal is to define this labeled tree. For this we tiseconcept of the layer
decomposition of &-tree with respect to a bage This concept was introduced in [71]
for testing isomorphism in hookup classes. Subsequehtgs used in [39, 59] for the
design of efficienk-tree isomorphism algorithms.

Definition 6.3.4 (cf. [71, 59])Let X = (V, E) be ak-tree and letB C V be ak-clique
in X. Then theB-decompositiorof G is the sequence of sef¥0), ..., B(p) such that
B(0) = Bandp = max{i > 0 | B(i) # (0}, whereB(i + 1) is inductively defined by

B(i+1)={v eV — BJi] | N(v) N BJi] is ak-clique}.
Here, B[i| denotes the unioB[:] = B(0) U --- U B(3).

The setB(i) is called theith layer of theB-decomposition ofX . Intuitively, the layers
of the B-decomposition indicate the order in which vertices cowddadded taX when
we choosé3 as the initialk-clique. More precisely, starting with thietree X, = X[B],
Xi;+1 = X[B]i + 1]] can be constructed frol¥; = X[B]i]] by adding the vertices in
B(i+1) to X;. Recall that can be added t&; if and only if the setV(v) N BJi] of v's
neighbors inB[i], henceforth denoted h¥;(v), induces &-clique in X;. In [71], this
setV;(v) is called thesupportof v € B(7)).

If this process is successful, i.e., if each verticeX'as covered by some layé?(i),
thenB is called aaseof X (cf. [71]).

We first show that an¥-clique B in X can be used as a base for construcfin(see
Lemma 6.3.8).

Definition 6.3.5 A vertexv of ak-tree X is calledsimplicial, if N(v) induces a:-clique
in X.

Claim 6.3.6 Anyk-tree X withn > k + 2 vertices has at least two nonadjacent simpli-
cial vertices.
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Proof. The proof is by induction om. If n = k + 2, then X is obtained from a
(k + 1)-clique X’ by choosing &-cliqgue C' in X’ and introducing a new nodewhich

is joined to each vertex iv. Letw be the unique vertex iX’ not covered by”. Then

u andv are two nonadjacent simplicial verticesih For the inductive step assume that
X hasn > k + 2 vertices. ThenX has been obtained fromkatree X’ by introducing a
new nodev and joining it to each vertex in &-clique C of X’. Clearly,v is simplicial

in X. Further, by the induction hypothesis; has two nonadjacent simplicial vertices
u; andusy. Sinceu; anduy, are nonadjacent, at least one of them does not beloag to
and therefore it is also simplicial iX . ]

Claim 6.3.7 Let B be ak-clique of ak-tree X withn > k + 1 vertices. ThernX has a
simplicial vertexv ¢ B.

Proof. If n = k + 1, then the only vertex not i is simplicial. Ifn > k£ + 1, then
Claim 6.3.6 guarantees the existence of two nonadjacemlisial vertices that cannot
be both inB. ]

Lemma 6.3.8 For any k-tree X = (V| F)) and anyk-clique B, the B-decomposition
forms a partition ofl/.

Proof. The proof is by induction on. The base case = £ is clear. For the inductive
step assume that > k£ + 1 and letB(0),..., B(p) be theB-decomposition ofX. By
Claim 6.3.7,X has a simplicial vertex not in B. It is easy to prove thak’ — v is a
k-tree and hence, by the induction hypothesis, Bhdecomposition3’(0), ..., B'(p’)

of X — v forms a partition o — {v}. Now leti > 0 be the minimum integer such that
N(v) C B'[i]. Thenitfollows thatB(i + 1) = B'(i + 1) U {v} and B(j) = B'(j) for
all j # i+ 1, implying thatl” = Blp|. ]

The following properties of th&-decomposition have been proved in [71].

Proposition 6.3.9 If B is a base for a-tree X = (V, E), then theB-decomposition
B(0),..., B(p) has the following properties.

1. Any two vertices irB(i), ¢ > 1, are nonadjacent. Hencey; ;(v) = N;(v) for
any vertexw € B(7).
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2. Any vertex € B(i), i > 2, has a unique neighbof(v) € B(: — 1), called the
fatherof v w.r.t. B.

In order to efficiently compute information on the-decomposition of &-tree X
we use a directed graph(.X, B) which is defined as follows (whenevér and B are
clear from the context we simply write instead ofD (X, B)). D has the vertex set

V(D) ={B}U{(C,v) | v ¢ CandCU{v}isa(k+ 1)-clique inX}
and the vertices ab are joined by the directed edges in the set

E(D) ={(B,(B,v)) | (B,v) € V(D)} U
{(Co), (C ) |ve ' W gC,|CNC'| =k —1}.

This means that il we provide a transition froriC', v) to (C’, v") if C” can be obtained
from C' by replacing some vertexe C by v, i.e.,C’ = (C'— {u}) U{v}. Our next aim
is to show thatD is a mangrove (see Lemma 6.3.12).

Claim 6.3.10 For any vertexo € B(i),7 > 1, D has a directed path of lengthfrom B
to (Nl',l(’l}), U).

Proof. We prove the claim by induction ol The base case= 1 is clear. For the
inductive step assume thate B(i), i > 2 and letf(v) € B(i — 1) be the father of
v. By the induction hypothesis it follows thd? has a directed path of lengih— 1
from B to (N;_o(f(v)), f(v)). Clearly, f(v) € N;_1(v) andv ¢ N;_o(f(v)). Further,
since f(v) is the only vertex inV;_;(v) belonging toB(i — 1), the remainings — 1
vertices belong td3[i — 2| and, as they are also neighborsfa@t), they belong to the
supportV;_»(f(v)) of f(v). This shows thaD has an edge frorV;_»(f(v)), f(v)) to
(Ni—1(v),v). n

Claim 6.3.11 If D has a directed pat®, (C}, v1), ..., (Ci_1,v;-1), (C,v) of lengthi >
1 from B to some vertexC, v), thenv € B(i) andC = N;_1(v) C BU {vy,...,v;_1}.

Proof. Again the proof is by induction on If £(D) contains the edgéB, (B, v)),
then clearlyv € B(1) via the supporiVy(v) = B.
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For the inductive step let us assume tiatCy, vq),...,(Ci_1,v-1), (C,v) is a
directed path of length > 2 from B to (C,v). Then by the induction hypothesis it
follows thatv;,_; € B(i—1) viathe supporf’;_; = N, o(v;_1) € BU{vy,...,v;_2}. AS
N;_o(vi—1) = N;_1(v;_1) by part 1 of Proposition 6.3.9, this implies th@t ; contains
all neighbors ofv;_; in B[i — 1]. Sincew is a neighbor ofy;_; that does not belong
to C;_1, v cannot be inB[i — 1]. As ((Ci_1,v;—1),(C,v)) € E(D), it follows thatC'
is obtained fromC;_; by replacing some vertex in C;_; by v; 4, i.e.,C = (C;_; —
{u})U{v;i.1} € BU{wy,...,v;_1}. Hence, all vertices i@’ belong toB[i — 1] and
are adjacent te, implying thatv € B(i) via the supportV; ;(v) = C (notice that
C' € N;_1(v) would implywv ¢ Bl[p]). u

Lemma 6.3.12 For any k-clique B in a k-tree X, the graphD (X, B) is a mangrove.

Proof. We first show thatD = D(X, B) does not have different paths fromto the
same nod¢C, v).

By Claim 6.3.11, all paths fron® to (C, v) have the same length. In order to derive
a contradiction let be minimal such that there are two different paths

B, (C1,v1),...,(Ci—1,vi-1), (C,v) and

B, (Crv1), - (Ciopyvia), (Cv)

of lengthi from B to some nodéC,v). Thenv;_; andv,_, must be different, since
otherwise Claim 6.3.10 implies thét_, = N;_o(v;—1) = N;_o(vi_,) = C!_,, contra-
dicting the minimality of the path length But now Claim 6.3.11 implies that_, and
v,_, both belong toB(i — 1) as well as to the suppoét of v, contradicting part 2 of
Proposition 6.3.9.

To complete the proof suppose there are different direcatlasbetween two nodes
(C,v)and(C",v") in D(X, B). Then we would also have different directed paths be-
tween the two nodeS and(C’,v') in D(X, C), contradicting the argument abowe.

Now letT" = T'(X, B) be the subgraph ab(X, B) induced by the vertices reachable
from B. Then Lemma 6.3.12 implies thatis a directed rooted tree with roét.

In fact, from Claims 6.3.10 and 6.3.11 it is immediate thatpbbgjecting the first
component out from the nodeé€’, v) € V(T') we get exactly the tre€'(X) defined in
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[71]. There, the following labeling with respect to a bijectt : B — {1,2,...,k} has
been defined.

Let (C,v) be a node ir{". W.l.0.g. suppose that' = {v;,...,v,} whereC N B =
{v1,...,v,} for somem < k. Notice that by part 1 of Proposition 6.3.9, the- m
vertices inC' — B belong tok — m different layersB(iy), ..., B(ix_,). Then vertex
(C,v) is labeled by the s€tf(v1),...,0(vn), k4 i1, ..., k+ig_m}-

We denote the tre@ together with this labeling b¥'(X, B, §). The following the-
orem is due to [71].

Theorem 6.3.13Let X and X’ be twok-trees, letB be a base forX and letd : B —
{1,...,k} be a bijection. ThenX and X’ are isomorphic if and only if there exists a
baseB’ for X’ and a bijectiond’ : B’ — {1,...,k} such that the two labeled trees
T(X,B,0)andT(X’, B',0") are isomorphic.

The proof of Theorem 6.3.13 crucially hinges on the fact #ath isomorphic copy”

of the labeled tred’(X, B, ) provides enough information to reconstructfrom 7"

up to isomorphism. To see why, for> 1 let B; be the set of vertices df’ that have
distancei from the root of7” and letp be the maximum distance of any vertexiih
from the root. Then starting with f-clique X, we can successively add in parallel all
the vertices € B; to X;_; fori = 1,...,p. The crucial observation is that the labeling
{6(v1),...,0(vm), k+i1,..., k+ix_,} Of the nodev in 7" tells us to which vertices in
X;_1 vertexv should be connected (recall that Claim 6.3.11 guarantegsthvertices
in the support of a node either belong to the base or lie ondltefpom the root to that
vertex in the corresponding tree).

To canonizek-trees we use Lindell’s [79] deterministic logspace camnation algo-
rithm for trees which can be made to work for any labeled treedmstructing gadgets
for labels. More precisely, consider the algoritihthat on input &-tree X computes
the canon of all labeled tre€8(X, B, ¢) for all k-cligues B in X and all bijections
0 : B — {1,...,k} and picks the lexicographically least among them. Then Theo
rem 6.3.13 implies that

e if two k-treesX and H are isomorphic then any tree of the foffii X, B, 0) is
isomorphic to some tree of the forfi( H, B’, §') and

e if X andH are non-isomorphic then no tree of the foffttlX, B, 6) is isomorphic
to some tree of the forf'(H, B', 0').
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Hence,A outputs the same tréefor bothk-treesX andH if and only if X andH are
isomorphic, implying that! computes a complete invariant fbitrees.

Furthermore, as explained above, the outputfreé A on inputX provides enough
information to reconstruck from 7" in logspace up to isomorphism. The combination
of A with this reconstruction procedure thus yields the destaatbnization algorithm
A’ for k-trees. It remains to show that can be implemented in FEY". In the next
lemma we show that the labeled tréésX, B, #) can be computed in logspace relative
to some oracle istUL. The following claim provides this oracle.

Claim 6.3.14 The problem of deciding whether a ver{€x v) of D has distance from
Bisin StUL.

Proof. The algorithm tries to guess a path of lengtfiom B to (C,v) in the tree
T = T(X, B). For that, starting with verte®, it iteratively guesses a next no@e’, v’)
and checks iff" provides an edge from the actual node to that node. If aisézps the
algorithm reachefC, v) then it accepts, otherwise it rejects. Clearly, the algamituns
in logspace since it has to store only two node¥ @ind some counters. Siné¥ X, B)
is a mangrove by Claim 6.3.12, it is easy to see that the camfiigm graph is also a
mangrove. |

Lemma 6.3.150n input ak-tree X, a k-clique B and a bijectiord : B — {1,...,k},
the labeled tre€l'( X, B, ) can be computed in logspace relative to some oracle in
StUL.

Proof. The algorithm for generating = 7'(X, B, 0) first outputsV (T") by checking
for each nod€C, v) in V(D) whether it is reachable from8 by using theStUL oracle
of Claim 6.3.14. If so, it computes the label(@f, v) by recomputing the layer numbers
of all the vertices inC' (again using th&tUL oracle). Finally, for each distinct pair of
nodes inV/ (7') it checks whethep provides a directed edge between them. m

This shows that the algorithm described above can indeed be implemented in logspace
relative to some oracle istUL. Hence, we can state our main result.

Theorem 6.3.16 For each fixed: there is a canonizing algorithm fdr-trees that runs
in FLStVE,
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As StUL is closed under logspace Turing reductions [36, Coroll&iy\le immediately
get the following complexity upper bound for testing isopitism fork-trees.

Corollary 6.3.17 The isomorphism problem fértrees is inStUL.

Let X be ak-tree. Letyp : V(X) — C be a coloring ofX, whereC' is a set
of colors. LetB be ak-clique of X andd : B — {1,---,k} be a bijection. We
define a rooted labeled tréé = T'(X, ¢, B, ) as follows. The vertices and edges
of T(X, ¢, B,0) are same as df (X, B,#). The only difference betweeh(X, B, 0)
andT(X, ¢, B,0) is in the labelling. The root of (X, ¢, B, #) is labeled by the set
{(8(v),¢(v)) | v € B}. Let(C,v) be anode inl. LetC = {vy,...,v;} where
CNB={v,...,v,} forsomem < k. Suppose thé — m vertices inC' — B belong
to k — m different layersB(iy), . . ., B(ix_). Then verteXC, v) is labeled by the tuple

({(0(v1), @(v1)), -+, (O(vm), @(vm)), i1, -+ s ik}, ¢ ().

Theorem 6.3.18Let X = (V. E) and X' = (V', E’) be twok-trees. Letp : V — C
and¢’ : V' — C be two colorings of the graph¥ and X' respectively. LeB3 be ak-
clique of X andf : B — {1,--- , k} be a bijection. ThetX and X’ are isomorphic as
colored graphs if and only if there is/aclique B’ and bijectiony’ : B" — {1,--- ,k}
such thatl'( X, ¢, B, ) is isomorphic tol'( X', ¢', B, 0').

Proof. If X andX’ are isomorphic as colored graphs via the isomorphism
7: V(X)) — V(X'

then it is easy to check thai(X, ¢, B, ) is isomorphic tol'(X’, ¢, 7(B), ") where
¢ : 7(B) — {1,---,k} is the bijection which satisfieg (v') = 6(r—1(v')) for all
v € 7(B).

For the other direction suppogé= T'(X, ¢, B,0) andT’' = T(X', ¢', B',¢') are
isomorphic for somek-clique B’ and bijection¢’ : B" — {1,--- ,k} via the iso-
morphism7. We define a map : V(X) — V/(X’) as follows. Let(C,v) be
a vertex of I'(X, ¢, B,0). Let7((C,v)) = (C’",v’). Then definer(v) = o’. Let
v € B. The root of 7" will have (6(v), ¢(v)) in its label. AsT and7” are isomor-
phic their their roots get same color. So, there will be soemexv’ € B’ such that
@' (v"), ¢’ (V) = (0(v), ¢(v)). Then definer(v) = v'. We will prove by induction on
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the number of the vertices ofX that if 7" and7” are isomorphic them is an isomor-
phism betweerX and X'’ that preserves color.

The base casei(= k) is easy. So, we assume> k. As the height of the tree
corresponds to the number of layers 6.3.10 and siheeT'(X, ¢, B, 0) is isomorphic
to7" =T(X', ¢, B',0"), X and X’ will have same number of layers with respect to
B and B’ respectively. LetB(0),---,B(p) andB’(0),---, B'(p) be the layers of{
and X’ respectively. Lev € B(p) be a simplicial vertex inX. Let (C,v) be the node
containingu in 7. Let7((C,v)) = (C’,v'). Itis clear thatl (X — {v}, ¢ [v_1), B,0) =
T(X,9,B,0) — {(C,v)} will be isomorphic to7'(X" — {v'},¢" vy, B, 0) =
T(X',¢',B',0)—{(C"v')} viaT restricted to the nodes @f(X — {v}, ¢ |v_vy, B,0).
So, by induction hypothesis | _(,, will be an isomorphism betweeN — {v} and
X" —{v'}. Now, 7(v) = o' by the definition ofr (remember7((C,v)) = (C’,v")).
Notice that¢(v) = ¢(v'). ThusT preserves color, as by induction hypothesis:_,;
preserves color.

Let {v,w} € E. By induction hypothesis, it is enough to proye(w), 7(v)} € E.
Supposev € B(0) = B. Then asg is simplicialw € C. Hence(C, v) gets(d(w), ¢(w))
in its label. The nod€¢C”’, v’) can get this label only from(w). Thus,7(w) € C’" and
{r(w), 7(v)} = {7(w),v'}} € B(X").

Let w € B(i), wherei > 0. Letu € B(p — 1) be the father ofv in the B-
decomposition of. Let (C,,u) be the node iff" corresponding ta:.. Similarly, let
u' € B'(p — 1) be the father o’ in the B’-decomposition ofX” and (C,, u) be the
node in7” corresponding ta/’. As7((C,v)) = (C’,v’), the isomorphisnt must also
map the only neighbo{C,,, u) of (C,v) to the only neighbotC,,, u’) of (C’,v'), i.e.,
7((Cy,u)) = (Cyp,u’). Thus,7(u) = u'. If w = w then, by the above reasoning
{r(v),7(w)} = {v', v} € E'. If w # uthenw € B(i) where0 < i < p— 1. Let
(Cy,w) be the node ofl” that corresponds ta. Let7((Cy,,w)) = (Cy,w’). So,
7(w) = w’. AsT is an isomorphism betweéeh and7”, the distance ofC,,, w) from
the root of 7" must be same as the distance(6f,,,w’) from the root of7’. Thus
by Claim 6.3.10 and 6.3.14’ € B’(i). Notice that aw, v}, {u,v} € E andv is
simplicial, {u,w} € E. Hence by induction hypothes{s (u), 7(w)} = {v’,w'} € E'.
As v has the neighbow in ith layer(C, v) gets: in its label. Thus, the image”’, ')
of (C,v) underT must also get in its label. So there must be somé < B’(i) which
is adjacent ta’. Butw” must be adjacent ta’ also, because’ is simplicial andu’ is
adjacent taw’. By Proposition 6.3.9, the verteX cannot have two neighbos’ and
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w” in the same layet. So we must have’ = w”. Hence{r(v),7(w)} = {v/,w'} =
{v,w"} € E.

Theorem 6.3.19Let X be ak-tree andy : V(X) — C be a coloring of the vertices
of X. Then the canonical form of the colored grafhcan be computed iRL>V",

Proof. The algorithmA to canonize a colorekl-tree again uses Lindell’s deterministic
logspace algorithm to canonize labeled tr&&sy, ¢, B, 0) for all k-cliguesB of X and

all bijectionsf : B — {1, - - - , k} and take the least among them. As a consequence of
Theorem 6.3.18, this will give complete invariant. But fotine complete invariant the
canon of the colored grapk can be computed in logspace. The only question is how
to producel' (X, ¢, B, 0) form the colored graptk. But this problem is again reduces

to deciding the layer number of a vertexn X in the B-decomposition ofX. The layer
number ofv can be found irbtUL as in Claim 6.3.14. The labeled tré& X, ¢, B, 0)

can be found in a similar way as in Lemma 6.3.15. ]

An automorphisnof a graphX = (V, ') (possibly colored) is a bijectiof: V' —
V that is an isomorphism fak to itself (in case of colored graphs the isomorphism is
color preserving). An automorphisgris nontrivial if for some vertex of X, {(v) # v.
If X has no nontrivial automorphism then the graph is caligid. It is easy to see that
the set of all automorphisms of a grafihforms a group under composition. We denote
this group byAut(X). Next we list some problems related to automorphism.

Definition 6.3.20 GA) Input: A graphX = (V, E).
Problem:Decide if X has a nontrivial automorphism.

Definition 6.3.21 SAutg Input: A graph X = (V| E) and a list of pairs of vertices

(uhvl)a Tty (Ul, Ul)-
Problem:Decide if X has an automorphistsuch that (u;) = v; fori =1,--- |l

Definition 6.3.22 AUTO) Input: A graphX = (V, E).
Problem:Compute a generating set for the automorphism grdup(X') of X.
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Definition 6.3.23 SAUTO) Input: A graphX = (V| E) and a list of pairs of vertices
(uhvl)a ) (Ul, Ul)-

Problem:Compute an automorphisgrof X such that (u;) = v; fori =1,--- [, if
there is any such automorphism, otherwise output “does xist’e

Let X = (V = {1,--- ,n}, E) be a graph. Observer thatn <% SAutg since a
logspace machine can query the oracleSautowith (X,4,j) forall1 <i < j <n
and accept if any of the query is answered yes.

Lemma 6.3.24 SAuto <X AUTO.

Proof. Let X = (V, F) be a graph. We first sho@Auto <% AUTO. Let

(X, ((ul, Ul), Cey (ul, Ul)))

be an instance dfAuto. We form a colored grapl” by taking two disjoint copies of
X. In the first copy we color vertex; using colorc;, and in the second copy we color
vertexwv; using colore; for i = 1,...,1, where the colorg, ..., ¢ are distinct. We
can now quenAUTO for inputY” to get a generating set for Ait). By construction,
(X, ((u1,v1),- .., (u,v))) is a yes instance dAutoif and only if there is a generator
mappingu; to v; fori = 1,...,[. A logspace machine can easily check for this by
examining the generators.

Lemma 6.3.25 AUTO <% SAUTO.

Proof. LetX = (V = {1,---,n}, F) be agraph. Le = Aut(X) be the automor-
phism group ofX. Let G® denote the subgroup 6t which fixes the vertices, - - - .1,
i.e., each elementin G satisfies the property = jforallj =1,--- 4. ClearlyG®
is a subgroup of/“~Y. Thus we get a tower of subgroups

<id>=GrV<...<GW<qgiV<...<q®W<qg0 =¢qg

whereid is the identity permutation. A logspace machine starts @it which
is identity. Suppose the machine has output a generating(‘dor G. We describe
how the machine will augmerft® with the coset representatives of the coset/6f
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in G, Each coset of7® in G¢~Y corresponds to a vertekwherei is moved all
the permutation in that coset. LetG". .- ¢,,G® be the cosets off®) in GOV,
NoticeGt~Y = GYU¢,GYU- - Uy, GY. To find the coset representatives the oracle
for SAUTO can be queried with the instan¢&, (1,1),---, (i — 1,7 — 1), (4, 4)) for all

j >1i. Letforj = j1,-- -, j. the oracle outputs the permutations: - - , 7,,,. (For some
query the oracle may output “does not exists”). The germagaget forG¢—1) will be

SO U{r,---,7.}. Whenever a query is answered by a permutatidhe permutation

7 is written on the output tape by the machine. The machinelnasmcompute AytX)

by outputting the coset representativesdf in GV~ Y fori =n—1,---, 1. m

The set of all isomorphisms foro¥ to CH X ) is calledCanonical Labelling Coset
CL. It can be checked that the CL is of the form A¥t)£, whereg is some isomorphism
from X to CF(X). So, the canonical labeling coset CL of a grapitan be computed
easily if some membef of CL and the automorphism group Auf) is known.

Definition 6.3.26 CL-Cose) Input: A graphX = (V, E).
Problem:Compute the canonical labeling cogéit of X .

Definition 6.3.27 COLOR-CR Input: A graphX = (V, E) be a colored graph.
Problem:Compute an isomorphism froi to CF(X ), i.e., compute a member of the
canonical labeling coset of the colored gragh

Remark 6.3.28 Notice thatCOLOR-CPis neither a language nor a (single valued) func-
tion (same input might have different output). It is badicalsearch problem. We sub-
sequently assume that any oracle @&®LOR-CPactually computes &nction, i.e., an
input has unique output.

Next we show that a logspace machine can s8WeTOf it has access to an oracle
for COLOR-CP

Lemma 6.3.29 SAUTO <% COLOR-CP

Proof. Let(X, ((u1,v1),---,(u;,v;))) be ainstance BAUTOwhereX = (V| E)isa
graph anduy, - - - ,u;, vy, -+, v € V. Let X; be the graphX with uq,--- , 4, colored
with colorscy, - - - , ¢ respectively. Similarly, letXs be the graphX with vy, --- |y,
colored with colorsy, - - - , ¢; respectively. A logspace machine queries the oracle for
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COLOR-CPwith X; and.X, and checks if the two canonical forms are the same. Notice
that it requires several queries to do this because thet @sallquery cannot be stored.
If they two canonical forms are same then the machine preadmezbmpute the required
automorphism. Lef; be an isomorphism from the colored gragh to its canonical
form CF(X;) and let¢, be an isomorphism fornX, to CF(X,). Then it is clear that

¢ = €6 mapsuy; tow; fori = 1,--- 1. The logspace machine finds the image of all
vertex under the mag. To know where a vertex goes under the permutatignit first
queries the oracle fatOLOR-CPwith X; and finds the placement = ¢(u). Next it
queriesCOLOR-CPwith X, and finds the preimage= &, ' (v') of v'. It can then output
the information that: is mapped ta under¢ and proceeds to find the image of the next
vertex undeg. ]

As AUTO <% SAUTO andSAUTO <% COLOR-CPwe get the following.
Lemma 6.3.30 AUTO <% COLOR-CP

If the canonical placement and the automorphism group ofplgcan be computed
the it readily gives a solution ©OL-Coset From Lemma 6.3.30 we an deduce the lemma.

Lemma 6.3.31 CL-Coset<k COLOR-CP

Our algorithmA for canonizing colored:-trees can be easily modified to give an
algorithm which gives the canonical placement as followshilé/canonizing a color
k-tree X the algorithm has to keep track of the verticesxoand the corresponding ver-
tices of the labelled tre® (X, ¢, B, ). Also, Lindell's deterministic algorithm for tree
canonization can be easily modified to give a logspace dhgorfor canonical place-
ment of trees. In fact Lindell's algorithm implicitly compas the canonical placement
of a tree. Hence by the above lemma we get the theorem.

Theorem 6.3.32For any fixedk, the problenCL-Cosetfor k-trees is inStUL.

6.4 k-Path Canonization

A k-path is a special type df-tree. The subgraphs éfpaths are called partiatpaths.
They coincide with the graphs giathwidthat mostk [92]. In [61] a polynomial time
algorithm for subgraph isomorphism for bounded pathwid#pbs was given. Here we
look at the space complexity of the canonization problenikfpaths.
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Definition 6.4.1 Aninterval graphis a graph whose vertices can be put in one to one
correspondence with a set of open intervals on the real luwhghat two vertices are
adjacent if and only if the corresponding intervals have a&mpty intersection.

Definition 6.4.2 [72] A k-pathis a k-tree which is an interval graph.

An alternative constructive definition éfpaths is given in [61]. The idea is to restrict
the choice of thé-clique used as support for adding a new vertex dependinigeosip-
port of the previously added vertex. The restriction candst described by maintaining
the notion ofcurrent clique

Initially the starting clique is the current cligue. When ennvertex is added it is
joined to each vertex in the current clique. After addingriber vertex the current clique
may remain the same (in that case the new vertex added besimggcial) or it may
change by dropping a vertex and adding the new vertex in themuclique. Clearly,
when a vertex is dropped it cannot come back in the curremqaeli

The difference between the definition/ofree and the constructive definition bf
path is that fork-trees a new vertex can be joined to dmglique when expanding a
k-tree, whereas fok-paths a new vertex can only be added to the current clique of a
k-path.

From this constructive definition éfpaths the following characterization fpaths
in the terminology of Section 6.3 can be obtained. Recaltl élwaterpillar is a rooted
tree in which each node has at most one child that is not a leaf.

Lemma 6.4.3 A k-tree X is a k-pathif and only if for some bas& of X, the tree
T(X, B) is acaterpillar

Proof Sketch Assume thatX = (V, E) is ak-path and letC;, i = k,...,n — 1,
be the current-clique that has been used as support for adding vestexto X; =
X[{v1,...,v;}], whereCy, = {vy, ..., v} is the initial k-clique. Notice that’; # C;
impliesC; # C; for all 7 > 4. Now it is easy to verify thal’ = T'(X,(,) is a
caterpillar with vertice€’, (Ck, vg11), - - -, (Cn_1, v,) containing for eacty > k with
C; = Cj the edg€Cy, (Cy, v,41)) and for each pait, j with C; # C;, = C; the edge
((Ci, vis1), (O, vj41))-

For the other direction assume that= 7'( X, B) is a caterpillar and |eB(0), ..., B(p)
be theB-decomposition of. We callv € V' — B a leaf node if(N;_,(v), v) is a leaf
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in 7. Now we can order the vertices &f in such a way that all the vertices ()
precede the vertices iB(i + 1) and within each layeB(:), i > 0, the leaf nodes come

first. Letvy,...,v, be such an ordering. Then it is easy to verify that we can cocist
X from the initial k-tree X}, = X[B] = X[{v1,...,v}| by successively adding the
verticesv; 1 to X; = X[{vy,...,v;}] usingN;(v;11) as the current clique. ]

Let X = (V, E) be ak-path. Letp : V' — C be a coloring of its vertices, wher&
is a set of colors. To canonize the given colofepath X we use a similar approach
as the one that we used in Section 6.3 for colorddees. In fact, the only difference
is that now our algorithmd additionally checks for each bagewhetherl'(X, B) is a
caterpillar. Notice that this can easily be done in logsec®llows.

Starting with the root3 as the current node, the algorithm verifies that the current
node has at most one child’, v") in T'(X, B) that is not a leaf and then proceeds with
(C',v') as the next current node (if the current node has two or mandeads children,
the algorithm detects thdt( X, B) is not a caterpillar).

As soon as the algorithm reaches a node that has only leavelsildsen it de-
cides thatfl'( X, B) is a caterpillar and starts to compute the canons of theddlietes
T(X, ¢, B, ) for all bijectionsd : B — {1,..., k} as explained in Section 6.3.

Since for a caterpilla’( X, B) the oracle described in Claim 6.3.14 is clearly de-
cidable in logspace, the algorithmworks in logspace. The output of the algorithin
will be a canonical invariant, but as mentioned in Sectid) é.canonical form ofX
can be computed in logspace form this canonical invariamasTwe have the following
theorem.

Theorem 6.4.4Let X = (V,E) be ak-path for some fixed. Let¢ : V — C
be a coloring of its vertices. Then the canonical form of toed graphX can be
computed irL.

As a consequence of the above theorem we get the result.

Corollary 6.4.5 For each fixed: there is a logspace canonizing algorithm foipaths.
Hence, the isomorphism problem foipaths is inL.

Here also we note that the above canonization algorithm eamdxdified easily to
give a logspace algorithm fatOLOR-CPfor k-paths. Hence by Lemma 6.3.31 we
deduce tha€'LCoset for k-paths is in FL.
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Corollary 6.4.6 For any fixedk, computing the canonical labelling coset of-gath is
in FL.

We know that the problen®A logspace disjunctively reduces to the problem of
deciding if two colored graphs are isomorphic. Hence, ashanaorollary of Theo-
rem 6.4.4 we get

Corollary 6.4.7 Given ak-path X deciding if X has nontrivial automorphism, i.e., the
GA problem fork-paths is inL.

Next we will prove thatk-path isomorphism is complete far under disjunctive
truth-table reductions computable in unifoth€’, which we denote in the sequel by
<A To do this we will give a<2“” reduction from the followind.-complete problem
[48] to k-path isomorphism.

Definition 6.4.8 (Order between Vertices(ORD))Input: A directed pathX = (V =
{v1,---,v,}, E) given by its adjacency list and two verticgsv; € V.
Problem:Decide ifv; < v; in the total order induced o by the directed edges.

Our reduction is essentially based on the reduction of ORDe&e isomorphism
problem shown in [69].

Let (X, v;, v;) be an input instance of ORD. Without loss of generality weuass
thatv, andwv,, are the vertices with indegree zero and outdegree zeroatasgg. We
assume that; andv; are different fromy, andv,.

Now, consider a newndirectedgraph X’ obtained fromX by coloring the vertex
v; red, vertexv; green and the last vertey, is colored blue, and by dropping the edge
directions. Defing(}) pairs of undirected graphX,, for 1 < p < ¢ < n, where
eachX, , has vertex sefvy,--- ,v,} and edge sef{v,,, vy11} | 1 < m < n —1}.
Furthermore, inX, , the nodev, is colored redy, is colored green and the last vertex
v, is colored blue. Clearly,X, v;, v;) is a yes instance of ORD if and only if the colored
graphX’ is isomorphic taX, , for somel < p < ¢ < n.

Next we construct-paths corresponding to the grapisand.X, ,. First we show
how to construct &-path H = (V’, E’) corresponding toX’. It will have the following
vertex set

V,:VU{I’7k_1}u{a’l|l:172}u{bl|l:1774}U{Cl|l:1778}
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We will define the graph using current cliques. Before thatie#ne the following sets.

Ll — {Ull}a Ull =
form <k, L,, = {v,,---, v, } whered(v,, v, ) = mand(v,,v,,,) € E
form >k, L,, = {v, -, v, } whered(vi,v;, ) = mand(v,,v;,,,) € E

The sequence of current cliqueshfi is the following:
{1, k—=1}UL,{2,--- Jk—=1}ULg, - {k—=1}U Ly, Lg, -+, Ly.

Let C,,, be the clique in the above sequence whe@pears for the first time. Also
let C,,,, be the clique where; appears for the first time. We attach the vertieeanda,
to the cliqueC,,,, andby, - - - , by to the current clique,,,,. We attach, - - - , cg to the
clique L,,. This completes the description of thepath H’. Notice that to computé/’
it is not necessary to compute the ggt- - - , L,, or the current cliqgue sequence. Given
any two vertexu andv in V' it is sufficient to know if the distance between them is less
thank in the directed graptX. This computation can be done AC°.

Next we construct &-path 4, , = (V', E, ,) which corresponds to the grap#, ,.
The vertex set’’ is same as the vertex set Bf. We will define the graph using current

cliques.
Let
R, = {Ul}
form <k, R, ={v1, - ,0m}
form >k, Ry, = {vm—ks1, " 0m}

The sequence of current cliqueshf) , is the following
{1,---,k—=1}URy,{2,-- ,k—1}URy,--- {k—1}URy_1, Ry, -, Ry.

We attach the vertices, anda, to the cligueR, and the vertices,, - - - . b, to the
clique R,. We attachc,,--- ,cg to the cliqueR,. Again we notice that7,, can be
computed inAC°.

It is easy to see that ik’ and X, , are isomorphic then so até’ and 4, ,. For
the other direction we will use Theorem 6.3.13. It= {1,--- ,k — 1} U {v;}. The
treeT = T(H, B, 0) is a caterpillar wheré : B — {1,--- , k} is defined as follows:
0(i) =ifori=1,---  k—1andf(v;) = k. The caterpillar will have two legs at the
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node corresponding to the vertex four legs at the node corresponding to the vertex
and eight legs at node corresponding;jo Let7,, = T'(H,,, B’,0") for someB’ and

¢'. ForT and7, , to be isomorphi@’ must be same &s. This caterpillar will have two,
four and eight legs at nodes corresponding to the vertigeg andv,, respectively. Now
itis easy to see that #/’ andH,, , are isomorphic theX’ and X, , are also isomorphic.

Theorem 6.4.9 For eachk, k-path isomorphism is complete fhrundergcf?CO reduc-
tion.

We have seen in Corollary 6.4.7 that €aa problem fork-path is inL. Here we will
prove that the problem is in fact complete ioundergg‘co reduction. We will do this by
showing that the ORD problefiC® disjunctively reduces to thie-path automorphism
problem. Let(X,v;,v;) be an instance of ORD. Again, we will use the idea of the
colored graphs{’ andX, ,. Let H, , be the colored graph obtained by fusing the vertex
vy of the graphsY” and.X,, ,. Notice that, , has a nontrivial automorphism if and only
if (X,v;,v;) is an “yes” instance of ORD. Next we will construct:gpathC,, , which
will represent the grapli/, ,. We will constructC), , using the idea of current cliques.
We assume without loss of generality thahas indegreé, v,, has out degree and the
distances from, to v; andv; are more that + 1. We also assume that the distance
betweery; andv; is more thar2. As before we define the following sets

Ry ={v}
form <k, R,={v, - ,om}
form >k, Ry, = {vm_rs1, *,Um}-

and the sets

Ll - {Uh}u Ull = U1
form S k7 Lm - {Ulm T 7Ulm} Whered(”h Ulm) =m and(vl;ﬂ Ulp+1> eL
form >k, L, = {v, -, v, } whered(vi, v, ) = mand(v,,v;,,,) € E

The vertex set of’, , is

V=Aw;|i=1-- ,ntU{vy|i=i--- ,nfU{-k—1---,2k+1}.
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For integers: ,b wherea < b let [a, b] denote the intervé]i | i = a to b}. The sequence
of current cliques is as follows.

Ly, -+, Ly, Ly,

Ly U{-k—1}Ly oU[-k—1,—k],--- , L1 U[-k—1,-3],

[k —1,-2],- -, [k+2,2k+ 1],

[k+3,2k+ 1] U Ry, [k + 4,2k + 1] U Ry, [2k, 2k + 1] U Ry_o, {2k + 1} U Ry,
Ry, - R,.

Let L;, be the first set in the sequence wherappears and let,, be the first set
wherev; appears. Notice that;,_, and L;,,, are the two sets just before and after
the setL,, in the sequence. We connect vertexto all the vertices in the set;,, we
connect the vertices, andus to the cliques.;, ; andL;, ., respectively. Similarly we
connect the vertices,, w, andwj to all the vertices of the cliqueB,, R,_; andR .,
respectively.

We have to prove thaf), , has a nontrivial automorphism if and only/f, , has a
nontrivial automorphism for some ¢ wherep < p + 1 < ¢. For that we use the next
theorem. The proof of the theorem is similar to Theorem 8.3.1

Theorem 6.4.10Let X be ak-tree. LetB be a clique inX and¢ : B — {1,--- k}
be a bijection. ThenX has a nontrivial automorphism iff there is a cliqu& and
bijection¢’ : B" — {1,---,k} such thatB’ # B or B = B’ butf(v) # ¢'(v) for
somev € B = B’ andT' (X, B, §) is isomorphic tal'(X, B, ¢').

Suppos&’, , has a nontrivial automorphism. To apply Theorem 6.4.10 vo®stB
to be{1,-- -, k} andd to be identity. Notice that for any other cliqig, 7'(C, ,, B, ¢)
(for any @) will have different height. This force8’ to be same a®. It is not hard to
prove that the only choice @f that can give nontrivial automorphismid4i) = k+1—i.
But then this will forcef, , to have nontrivial automorphism. The other direction is
similar. If H,, , has a nontrivial automorphism then so d6gs. This can be seen again
using Theorem 6.4.10 by taking = B’ = {1,--- ,k},0(i) =iandd'(i) = k + 1 —i.
As before the graphy, , can be computed iAC°.

Theorem 6.4.11The Auto problem fork-paths is complete fok. under gdACO reduc-
tion.
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6.5 Remarks

Building on the ideas described in this chapter, Kobler amdhrkert recently gave a
logspace algorithm fok-tree isomorphism [74]. Their result along with Theorem.®.4
implies that the:-tree isomorphism is hard of logspace. In this section wetioeithe
salient points of their algorithm. See [74] for details.

In Section 6.3 (page 115) we defined a mangrbN&’, B) and from that we defined
a treeT'(X, B) in page 116. In [74], instead of doing that they define theofeihg
graph.

Definition 6.5.1 ([74]) Let X = (V, E) be ak-tree. Thetree representatidfi(.X) of X
is defined by

V(T(X))={M CV | Misak-clique or a(k + 1)-clique}
BE(T(X)) = {{ M1, Mo} CV | My C My}

They prove that the tree representation is actually a tred (aus the name tree
representation) and it can be computed in logspace.

Theorem 6.5.2 ([74]) Let X be ak-tree. Then
e The tree representatiofi( X)) of X is a tree.

e The tree representatiofi(.X ) can be computed iRL.

Later they define a scheme for labelling the nodes of the gpeesentation which
is similar to7'(X, B, 0) in Section 6.3 (page 117) which preserves isomorphism. The
labelling scheme is shown to be computable in logspace. gites the logspace algo-
rithm for k-tree isomorphism.
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