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Synopsis

This thesis studies the statistical mechanics of pressurized ring polymers. These

can be thought of as simple low-dimensional models for the understanding of vesi-

cle shapes and phase transitions, a classic problem first studied several decades

ago in the context of the shapes of red blood cells. The problem of vesicle shapes

was originally studied by Helfrich and Canham and others, who described such

shapes in terms of the energy minimising configurations of a curvature Hamil-

tonian, under the constraints of fixed enclosed volume and surface area. Shape

changes arise when solutions of the Euler-Lagrange equations representing distinct

shapes exchange stability. However, the non-linearity of these equations, if no spe-

cial symmetries are assumed, necessitates purely numerical approaches. Further,

while the curvature modulus in bilayer lipid membrane systems is often large, so

that thermal fluctuations about the minimum free energy structure may be ig-

nored, the more general problem of understanding the thermodynamics of such

shape transitions is a formidable one.

In view of the complexity of the full three dimensional problem, it is instructive

to analyse the equivalent problem in two dimensions. Such an approach yields

useful understanding about the full problem in three dimensions, besides being

interesting in its own right. The two-dimensional variant of the vesicle problem was

first studied by Leibler, Singh and Fisher, who modeled vesicles as polymer rings

of fixed contour length, whose enclosed area is constrained through a coupling to a

pressure difference term. In addition, the bending rigidity of the polymer ring plays

a crucial role in determining the shape of the ring. The problem is characterised

by the existence of a continuous phase transition at zero pressure that separates a

branched polymer phase from an inflated phase, with the ring being described by

a self-avoiding walk at the transition point.

Another interesting version of the two-dimensional vesicle problem is obtained

by studying the behaviour of lattice polygons. The polygon models the vesicle

perimeter and is situated on an underlying lattice with the excluded volume pa-

rameter set by the lattice spacing. The analogy with the vesicle case is obtained by

studying the variation of area with pressure for a polygon with a fixed perimeter.
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In chapter I of this thesis, the Introduction, we provide a brief review of the

literature regarding fluid vesicles. We also summarise known results for different

classes of models for two-dimensional vesicles, including the self-avoiding and self-

intersecting cases, and lattice polygon models. The chapter-wise summary of the

results obtained in this thesis is presented below.

Pressurised Semiflexible Self-Intersecting Polymer Rings

The model for the two-dimensional vesicle as described above presents many diffi-

culties for analytic studies, arising principally from the self-avoidance constraint.

In Chapter 2 of this thesis, we study a related class of models in which the polymer

ring is allowed to intersect itself, and the pressure term is conjugate to an algebraic

or signed area. While the flexible chain problem was studied earlier, we investigate

the effects of semiflexibility in this inextensible self- intersecting ring problem.

The flexible chain problem is characterised by a continuous phase transition at a

critical value of an appropriately scaled pressure, separating collapsed and inflated

regimes of the ring. We show that this transition survives for non-zero values of the

bending rigidity and obtain an analytic form for the phase boundary separating

the collapsed and inflated phases in the scaled pressure – bending rigidity plane.

We propose simple Flory theories to obtain exponents in different regimes for

this model. The predictions of simple Flory approaches appear to be exact in this

case, and demonstrate the power of such simple scaling arguments. We reproduce

exact results for the flexible chain by using an analogy with the quantum mechan-

ical problem of an electron moving in a magnetic field applied transverse to the

plane of motion. We then incorporate semiflexibility in both the continuum and

lattice models through scaling arguments, obtaining very good agreement with

numerics. The numerical data was obtained through Monte Carlo simulations of

both the continuum and lattice models. In addition, for the lattice polygons, ex-

act numerical data is also obtained through the exact enumeration method, which

explicitly counts the total number of allowed polygons, and hence the partition

function.

We also perform several mean-field approaches to this model. We discuss how

different mean-field approximations, motivated by physical arguments, model the

behaviour of the system in different regimes of parameter space. A mean-field
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approach where the inextensibility constraint is satisfied exactly but the closure

condition is satisfied only on average yields better results in the large pressure

regime whereas one in which the closure condition is satisfied exactly but the

inextensibility constraint is satisfied in a mean-field sense is better suited for the

low-pressure regime.

The usefulness of these results for more realistic systems lies in the fact that

self-intersections are irrelevant in the large pressure limit. The results obtained at

large pressures should therefore apply both qualitatively and quantitatively to the

more realistic case of a pressurised self-avoiding polymer.

Asymptotic Behaviour of Lattice Polygons

In Chapter 3, we study the related problem of the asymptotic behaviour of the

area of lattice polygons in the inflated phase. Although motivated by the fluid

vesicle problem, the result presented in this work has a much wider applicability.

The study of lattice polygons weighted by area and perimeter is a central problem

in lattice statistics and combinatorics. Lattice polygons have been used to model

vesicles, cell membranes, emulsions, polymers and percolation clusters.

In our work we considered inflated polygons of fixed perimeter. We calculate

the area analytically for two special cases of lattice polygons - convex and column-

convex lattice polygons using the Wulff construction, a variational approach using

simple combinatorial arguments and the Euler-Lagrange equation. The asymptotic

behaviour was observed to coincide for both classes of polygons. We therefore

conjecture that overhangs are not important in the inflated regime, and hence that

self avoiding polygons should have the same asymptotic behaviour. We obtain, in

the inflated limit, p̃ = pN ≫ 1, the asymptotic behaviour of the area to be,

〈A〉 =
N2

16

[

1 − 32π2

3p̃2
+

64

p̃2
Li2 (1 − α)

]

, (1)

where Li2 is the dilogarithm function

Li2(x) =
∞
∑

m=1

xm

m2
, (2)

and, α = e−2J characterizes the bending rigidity of the polygon. This was verified
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numerically using exact enumeration and lattice Monte Carlo methods. The data

matches the predicted form to a high degree of accuracy. We also show numerically

that self intersections were irrelevant in the inflated regime. These results continue

to remain valid in the presence of a non-zero bending rigidity.

Finite Pressure Phase Transition in Self-Avoiding Rings

In Chapter 4, we revisit the classic problem of self-avoiding two-dimensional poly-

mer rings originally studied by Leibler, Singh and Fisher. In their original work

they described a scaling regime around zero pressure, with a phase transition sepa-

rating branched polymer behaviour from the expanded phase. However, as Maggs

et. al. subsequently showed, the right extrapolation predicts that area grows as

the cube of the system size for large pressures. The expanded regime is thus sim-

ply inaccessible in scaling arguments based on the fixed point at zero pressure, the

validity of the scaling assumptions of LSF being confined to the small pressure

regimes.

Since at sufficiently large pressure values, a pressurised polymer must have an

area which grows as the square of the number of monomers, the LSF approach

must be suitably modified to allow for the existence of a swollen phase. We show

that indeed, a large pressure inflated regime can be described, not in terms of

the scaling variable used by LSF, but in terms of a scaled pressure variable, in

the limit that pressure goes to zero and system size goes to infinity keeping the

product finite.

In this scaling regime, we observe a new phase transition at a finite non-zero

value of the scaled pressure, distinct from the zero pressure continuous phase tran-

sition. The order of the phase transition depends on the exact model used to

represent the two-dimensional ring. When the beads are connected by harmonic

springs with a hard cut-off at the maximum value of the bond length, we observe

a first order transition separating the self-avoiding phase from the fully inflated

phase. However, if the beads are connected by springs with a logarithmic potential

such that the potential becomes infinite at the maximal bond length, the order of

the phase transition changes, and there is now a continuous second order transition

between the two phases.

The problem is studied through a careful scaling analysis and the scaling pre-
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dictions are verified by extensive Monte Carlo simulations. Thus our work shows

that there a new scaling regime in a scaled pressure variable, and that such a

scaling regime describes a phase that is inaccessible to the LSF scaling function.

Further, we prove the existence of a new finite pressure phase transition in this

regime.
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1
Introduction

1.1 Amphiphilic membranes

Amphiphilic molecules are lipids that consist of two distinct parts, a hydrophilic

head and a hydrophobic tail. Such molecules self-assemble into a remarkable va-

riety of structures. A common structure formed by amphiphilic molecules is a

bilayer, in which the hydrophobic tails of the two layers are in contact with each

other, exposing the hydrophilic heads to the solution. In a solution, these bilayers

typically close on themselves to form fluid vesicles. This further reduces the hy-

drophobic energy cost by not exposing any free hydrophobic edges to the solution.

Although the bilayer itself is very thin, of the order of nanometers, the vesicles

themselves can be huge, reaching dimensions of 100 micrometers. Such vesicles

are soft, exhibiting a huge variety of shapes depending on external parameters

such as temperature and osmotic pressure. Vesicles are ubiquitous in biological

systems, playing a role in a wide range of functions such as trafficking in cells, and

the segregation of different biochemical components. There has also been a huge

interest in them from a condensed matter point of view because of their unique

material properties and the enormous number of shapes and shape transitions that

they exhibit. Fluid vesicles are toy models for actual biological vesicles. However,

it should be remembered that real biological membranes are enormously complex

structures that consist not only of these amphiphilic molecules but also of a variety

of other molecules such as proteins and cytoskeltal filaments. Hence, the results

obtained from a physical study of fluid vesicles should be applied judiciously to

real biological systems.
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Chapter 1. Introduction

1.2 Theory of vesicle shapes

The shapes of fluid vesicles are fundamentally different from ordinary interfaces

since they are determined by the curvature free energy, and not by interfacial

surface tension. This accounts for the great variety of shapes observed in vesicles, in

contrast to the spherical shapes governed by isotropic surface tension. The theory

of equilibrium shapes of fluid vesicles was worked out by Canham [8], Helfrich

[23] and Evans [11] who realised that such shapes could be understood in terms of

energy minimising configurations of a curvature hamiltonian, under the constraints

of fixed enclosed volume and surface area.

The vesicle membrane is conventinally modeled as a two-dimensional sheet,

that is, it is assumed that the membrane thickness is much smaller compared to

the dimensions of the vesicle and also its fluctuations. The free energy of such

a fluid membrane is determined by its shape alone. The shape is denoted as a

geometrical surface. The curvature of the surface can then be described by two

quantities, the mean curvature H and the gaussian curvature K. The free energy

of the surface is then given by

Hel =

∫

S

dA
[κ

2
(H − H0)

2 + κ̄K
]

. (1.1)

Here dA is the area element and the coefficients κ and κ̄ are known as the rigidity

and the Gaussian rigidity respectively. The parameter H0 represents the sponta-

neous curvature of the membrane.

The equilibrium shapes can then be calculated from a variational approach. If

the vesicle is assumed to be incompressible and impermeable, the minimization

problem to solve is

δHel = 0, (1.2)

under the constraints, A = const and V = const. The major success of such

an approach was that it was able to reproduce the discocyte shapes that were

observed in red blood cells (RBC). Also changing the physical parameters induced

transitions among the various shapes.

Such a purely mechanical analysis is insufficient to understand the full be-

haviour of fluid vesicles if the rigidity parameter κ is of order kBT . In this case

2



Chapter 1. Introduction

Figure 1.1: Demonstration (1) of a budding transition; (2) symmetric-asymmetric
reentrant transition; (3) discocyte-stomatocyte transition. Vesicles of DMPC in
water: the reconstructed trajectories in (v,m) space correspond to the dotted
lines in the previous figure. From K. Berndl, J. Käs, R. Lipowsky, E. Sackmann,
U. Seifert, in L. Peliti (ed.) Biologically Inspired Physics (New York: Plenum,
1991).

3



Chapter 1. Introduction

thermal fluctuations play an important role in the full description of the shape of

vesicles. In order to understand the full thermodynamic behaviour such vesicles,

we need to write down the partition function and then determine the relevant

thermodynamic averages. The partition function in this case is given by,

Z =

∫

D~r exp[−Hel/kBT ]δ(...), (1.3)

where the integration is done over all possible configurations of random surfaces

and the delta function enforces the necessary constraints, such as those of constant

area and constant volume. This partition function is hard to evaluate, and thus

the problem of shape transitions in fluid vesicles is a formidable one.

1.3 Two-dimensional vesicles

Given the complexity of understanding the full solution of the three-dimensional

vesicle problem, one studies comparatively simpler systems that may nevertheless

illuminate many features of the full system. One obvious simplification to make

is to consider the statistical mechanics of two-dimensional vesicles, in which the

vesicle is modeled as a polymer ring embedded in two-dimensions. The first studies

of this type of model were carried out by Leibler, Singh and Fisher (LSF)[27].

LSF model the two-dimensional vesicle as a ring of N impenetrable circular

beads of diameter a. The chain is self-avoiding, i.e. the beads cannot overlap

each other. The centers of the beads are connected by tethers of length l0 > a.

The tethers also have an upper bound on their length, l0 < 2a to enforce the

self-avoidance constraint. The two key features of the problem are the presence

of a curvature term in the energy and a finite pressure difference ∆p between the

interior and the exterior of the ring due to the osmotic pressure. A net outward

pressure which tries to inflate the ring corresponds to a positive ∆p, while a net

inward pressure which tries to collapse the ring corresponds to a negative ∆p.The

bending energy in the LSF model is given by

Eb =
κ

a

N
∑

i=1

(1 − cos θi), (1.4)

4
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where κ is the bending rigidity, and θi is the angle between the ith and (i + 1)th

bonds. The pressure couples to the area of the ring, via

Ep = A∆p. (1.5)

The system is characterised by a continuous phase transition at ∆p = 0, which

separates a branched polymer phase for negative pressures from an infalted phase

for positive pressures. At the transition point the ring is described by a self-

avoiding walk. LSF performed Monte Carlo simulations to study the variation of

the size and enclosed areas for the different parameter regimes described by the

pressure and the bending rigidity.

For the problem with zero bending rigidity, κ = 0, with a non-dimensionalised

pressure defined by p = ∆pa2/kBT , the radius of gyration RG and the area A are

described by the scaling relations,

R2
G ∼ N2νX(pNφν), A ∼ N2νAY (pNφν), (1.6)

and the various exponents were found through simulations to be, 2ν = 0.755 ±
0.018, and ν/νA = 1.007 ± 0.013, which suggests that ν = νA. Also, it was found

that φ = 2.13 ± 0.17. This is close to the theoretically expected value of φ = 2,

which can be argued from the fact that the pressure couples to the area, and the

area scales as A ∼ N2ν . Thus the only combination in which the pressure enters

the scaling function should be x ∼ pN2ν .

Thus, at the crtical point p = 0, the polymer ring behaves like a self-avoiding

walk. LSF determined the values of the scaling functions at this point to be

X(0)/a2 = 0.116 ± 0.008 and Y (0)/a2 = 0.29 ± 0.02. They thus concluded that

there was no area collapse at this point, for which A/R2
G → 0 as N → ∞. For

negative values of the pressure, p < 0, there is a deflated regime and the ring

collapses to form a branched polymer phase. The scaling functions in this regime

were found to behave as X(x) ≈ X−/xσ and Y (x) ≈ Y−/xτ , where, σ = 0.13±0.05

and τ = 0.25 ± 0.04. These values are consistent with a branched polymer phase

in the negative pressure regime.

For positive values of the pressure, p > 0, the chain assumes a stretched config-

uration. This inflated regime should also be characterised by definite scaling laws.

5
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Figure 1.2: Scaling plots and vesicle configurations for rigidity κ = 0 : (a)
log10(A/N2ν) and (b) log10(R

2
G/N2ν) vs log10 |pNφν | with 2ν = 1.51 and φ = 2.13.

Inset shows samples for N = 60 with (i) p = 0, (ii) p = −1.25. Reproduced from
Leibler, Singh and Fisher [27].

For large values of ∆p, the vesicles approach a circular shape, and thus one has

A ∼ R2
G. This implies that

X(x) ≈ X+x2ω, Y (x) ≈ Y+x2ω, (1.7)

as x → ∞. In addition, due to the circular nature of the vesicle at high pressure,

the relation

π̃ ≡ 〈A〉
〈R2

G〉
→ Y+

X+

≈ π (1.8)

6
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should hold asymptotically as x → ∞. Although LSF could not access this regime

due to equilibration issues, they conjectured that the area should follow the scaling

relation, A ∼ N2p(1/ν)−1. This implies a value of ω = 1/6. However, a later analysis

due to Maggs et. al. [31] showed that this value was in fact erroneous and the

stretched regime in this case should be described by ω = 1/2.

We now reproduce the derivation of this ω = 1/2 result as presented in Ref. [31].

We write down the relevant terms in the free energy function in the positive pres-

sure region, where the chain is in an inflated state. One contribution to the free

energy is from the pressure difference term,

Fp = −∆pA ≈ −π∆pR2, (1.9)

where the assumption made is that the shape of the vesicle in the inflated regime

can be approximated by a circle of radius R, and hence that the area can be

expressed as A ∼ πR2. The term opposing this in the free energy represents the

streching free energy of the polymer chain. In the inflated regime, the perimeter

of the vesicle is highly streched and we can represent the perimeter by m linear

and independant segments each consisting of M = N/m beads. The length of each

segment is given by RM = 2πR/m. The probability distribution for a self-avoiding

walk with an end-to-end vector ~RM is given by [13]

P(~RM) ≈ M−dνP (RM/āM ν), (1.10)

where P is an universal scaling function. For large values of the argument, the

behaviour of the scaling function is given by [13]

P (y) ∼ exp(−cdy
δ), with δ =

1

1 − ν
, y ≫ 1 (1.11)

where cd is some constant. The stretching free energy for any one segment is then

given by,

FM ≈ cdkBTRδ
M/āδM δν . (1.12)

The full stretching free energy for the entire chain is then given by

FN ≈ mFM ≈ c̄dkBTRδ/aδN δν , (1.13)

7
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Figure 1.3: Scaling plot of data for the area and square radius if gyration of two-
dimensional vesicles of N beads demonstrating the asymtotically linear behavior
of the scaling functions X(x) and Y (y) for π〈R2

G〉 and 〈A〉 respectively. Units of
a2 have been used for R2

G and A. Note that the plot for y = 〈πR2
G〉/(N − n0)

2ν

has been shifted upwards by ∆y = 1/2 for clarity. The asymptotically negligible
N shifts n0 ≈ 0.5 and n+

0 = 9 have been incorporated to hasten convergence when
N → ∞ at fixed x. Reproduced from Maggs et. al. [31].

where, c̄d ≈ (2πa/ā)δcd, is independent of the number of segments m. The full free

energy in the stretching limit is then given by

F = FN + Fp ∼
Rδ

N δν
− pR2. (1.14)

The average value of the radius of the ring can now be found by minimizing the

free energy as a function of R. This gives,

〈R(N, p)〉 ≈ N ν+pω, (1.15)

where,

ν+ =
ν

2ν − 1
, ω =

1 − ν

2ν − 1
. (1.16)

8
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For two-dimensions, we have ν = 3/4. This gives the values ν+ = 3/2 and ω = 1/2.

Thus, this implies that in the inflated regime, the area of the rings should scale as

〈A〉 ∼ 〈R2〉 ∼ N3p. (1.17)

Thus in the inflated regime of this scaling limit, the area of the ring grows as N3

and not N2 as suggested in Ref. [27]. Simulation data that confirm these exponents

is shown in Fig. 1.3. These exponents, however, are valid only in the scaling regime

about the p = 0 transition. When the ring inflates to its maximal size, 2πR ≈ Na,

these relations will no longer be valid and the radius of the ring must necessarily

scale with the number of monomers. Thus this analysis is valid only in the regime

N3/2 ≪ p ≪ N−1. (1.18)

Later in this thesis, we shall revisit the scaling hypothesis for the truly inflated

regime and attempt to provide a coherent description of the ring in this region.

For non-zero values of the bending rigidity κ, the shape of a vesicle is determined

by the interplay between two length scales, the rigidity length lκ = κ/kBT , and an

expansile length l2p = kBT/∆p. For small positive values of κ and ∆p > 0, the only

effect is a rescaling of the effective bead size a, while with increasing κ, one enters a

stiff regime. More marked effects are observed in the negative pressure regime ∆p <

0. Here, with increasing values of κ, the many sharp bends which characterise the

branched polymer phase become energetically unfavourable. When ρ∗ ≡ (lκl
2
p)

1/3 ≤
L, one observes well-defined equilibrium shapes as found in red blood cells [27].

Moreover, LSF also observed a striking dynamic phenomena, in which at ∆p < 0

and for some range of κ or T , the vesicle shape shape exhibited a nonlinear flickering

phenomena which is also seen in RBCs. The vesicle oscillated between two or more

characteristic cytotype shapes, spending large times in any one shape followed by

a quick transition to another characteristic shape. The typical vesicle shapes and

the nonlinear flickering phenomena as seen in the simulations are shown in Fig. 1.4.

In addition to scaling exponents, another important quantity that helps to

quantify the shape of the vesicle is the anisotropy ratio. For a given shape of a

vesicle, if the minimum and maximum eigenvalues of the radius of gyration tensor

9
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Figure 1.4: Vesicle cytotypes for (a) p = −1.25 as lκ/a ≡ κ/akBT increases;
(b) lκ/a = 50; and (c) as a function of time t, fpr p = −0.075 and lκ/a = 10.
Reproduced from Leibler, Singh and Fisher [27].

are denoted by RG,min and RG,max respectively, then the anisotropy can be defined

as

Σ̃ = 〈
R2

G,min

R2
G,max

〉. (1.19)

Another definition alternatively used in the literature is to define

Σ =
〈R2

G,min〉
〈R2

G,max〉
. (1.20)

For the LSF model, variation of the anisotropy Σ was measured as a function of

the scaling variable x ∝ pNφν , with φ = 2 and ν = 3/4 [7]. In the limit N → ∞,

10



Chapter 1. Introduction

the asymptotic values in the various regimes were found to be

Σ0 = 0.393 ± 15, p = 0, (1.21)

Σ− = 0.230 ± 10, p = −∞, (1.22)

while in the inflated regime Σ+ = 1 for p = +∞ corresponding to circular vesicle

shapes. They found that the anisotropy values changed continously from these

asymptotic values as the scaling variable x was varied continuously.

In Chapter 4 of this thesis, we shall make a detailed study of the inflated phase

of self-avoiding rings. We determine the relevant pressure variable that descibes

the ring in the inflated phase and address the question of whether there is any

interesting behaviour as a function of this suitably defined scaled pressure.

1.4 Lattice vesicles

One interesting version of the vesicle problem is to study the behaviour of lattice

polygons. The polygon is assumed to lie on an underlying lattice and thus the

excluded volume parameter is set by the lattice spacing. The lattice polygon is

taken to model the perimeter of the vesicle and one can then ask similar questions

as is posed for the continuum case, such as the variation of the area with the

pressure. The polygon can be taken to be self-avoiding, which then defines the

analog of the LSF model in the lattice case.

We shall briefly review here the basic known results for lattice polygons. Let

pN(A) denote the number of polygons of perimeter N enclosing an area A. The

basic quantity is then the perimeter and area generating function G(x,q), or the

‘grand partition function’, defined as

G(x, q) =
∑

N,A

pN(A)xNqA, (1.23)

where, x and q are the fugacities associated with the perimeter and area respec-

tively. Identification with the vesicle problem is achieved by recognising the area

fugacity to be the exponential of the pressure, q ≡ ep. The thermodynamical

properties of polygons can thus be determined by studying the behaviour of this

11
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generating function about its singular points.

We can also define the perimeter generating function and the area generating

function as

PN(q) =
∑

A

pN(A)qA, (1.24)

SA(x) =
∑

N

pN(A)xN . (1.25)

The perimeter generating function PN(q) is the lattice equivalent of the partition

function for the continuum version of the vesicle problem. For this generating

function, it can be shown that one can define a free-energy like limit [15],

κ̃(q) ≡ lim
N→∞

PN(q)

N
. (1.26)

More specifically, one can show [15] that κ̃(y) exists and is finite for all values of

y ≤ 1. In this region, κ̃(y) can be shown to be log-convex and continuous. For

the region y > 1, this free-energy function κ̃(y) is infinite. The average area as a

function of the area fugacity (or equivalently, pressure) q, is defined as

〈A〉N(q) =

∑

N ApN(A)qA

∑

N pN(A)qA
≡ ∂ log PN(q)

∂ log q
. (1.27)

The area function is then defined as kN(q) = 〈A〉N (q)
N2 . In the region q > 1, for

asymptotically large polygons, we can show that the area function is finite and has

the value 1/16, i.e.

lim
N→∞

〈A〉N(q)

N2
=

1

16
. (1.28)

This value is independent of q and the qualitative change occurs for all q > 1. This

implies that for any infinitesimal pressure p > 0 in the thermodynamic limit, the

vesicle inflates to a square configuration.

The two-variable generating function can then be written in terms of the single

variable generating functions as

G(x, q) =
∑

N

PN(q)xN =
∑

A

SA(x)qA. (1.29)
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The phase diagram for this model in the two-dimensional phase space defined

by the two fugacities was first studied by Fisher, Guttmann and Whittington

[15]. They showed that for all q < 1, G(x, q) converges for x < e−κ̃(q) while for

q > 1, G(x, q) converges only if x = 0. For q < 1 and x < e−κ̃(q), the generating

function is dominated by polygons of minimal area and one obtains branched

polymers in this region. This phase is known as the compact phase. For q > 1

and x > e−κ̃(q), we have a single convoluted polygon that fills the entire lattice

like a closed Hamiltonian walk. This phase is called the seaweed phase. At q = 1,

one obtains standard self-avoiding polygons (SAP), while for positive q, q > 1, the

polygons enter an inflated phase, where the shapes become approximately squares.

The average area in this regime scales as the square of the perimeter, as discussed

previously. This phase diagram of lattice polygons is shown in Fig. 1.5.

The phase boundary in the region q < 1, x > xc terminates at a bicritical

point at (xc, 1). The phase boundary is characterised by a logarithmic singularity,

when approached from below. Around this bicritical point, one expects a generic

scaling form of the perimeter and area generating function to hold. Remarkably,

this scaling function was computed exactly through q-algebraic techniques [39]

and also verified through a field-theoretic approach [9] to be the logarithm of an

Airy function, in what is one of the very few known examples of an exact scaling

function for a nontrivial isotropic critical point.

In the vicinity of the bicritical point ((x, q) → (x−
c , 1−)), the perimeter and area

generating function is expected to display a scaling behaviour of the form [39, 40]

G(x, q) ∼ G(reg)(x, q) + (1 − q)θF

(

xc − x

(1 − q)φ

)

, (1.30)

where G(reg) is the regular part of the generating function at the bicritical point

and F (S) is the scaling function with critical exponents θ, φ. In analogy with the

case of simpler polygon models, such as staircase polygons, the perimeter and area

generating function for rooted self-avoiding polygons (SAPs that pass through a

given point) is assumed to satisfy an q-algebraic functional equation of arbitrary

degree N,
N
∑

n=1

∑

k1,...,kn

(x, q)
n
∏

i=1

G(qkix, q) = b(x, q). (1.31)
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Figure 1.5: Plot of the phase boundary qc(x), or, equivalently, xc(q): solid squares;
the curve is merely a guide to the eye. The series expansions for the generating
function G(x, q) converge on the origin side of the phase boundary and on the ver-
tical piece at q = 1; this region defines the droplet or compact phase. For q > 1 the
polygons are higly expanded; for q < 1 but above the phase boundarym a seaweed-
like phase is anticipated. The broken curves denote upper and lower bounds for
the phase boundary. Reproduced from Fisher, Guttmann and Whittington [15].

This assumption then implies that the scaling solution F(s) for rooted SAPs follows

the Riccati differential equation with a solution

F (r)(s) ∝ d

ds
ln Ai(s) (1.32)

where Ai(s) is the Airy function, and also leads to values of the critical exponents as

θ = 1/3, φ = 2/3. The scaling function of general (unrooted) self-avoiding polygons

can then be determined from the rooted polygon answer through integration. The

singular part of the generating function is given by [40]

G(sing)(x, q) ∼ (1 − q)F

(

xc − x

(1 − q)2/3

)

+ C(q), (x, q) → (xc, 1), (1.33)
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where C(q) is a constant of integration given by

C(q) ∼ (1 − q) ln(1 − q), (1.34)

and the scaling function is given by

F (s) ∝ ln Ai(a). (1.35)

Extensive numerical analysis was used to verify this form of the scaling function. It

was subsequently pointed out [9], that the emergence of the Airy function can also

be understood from a field-theoretic approach, in which the crossover from self-

avoiding loops to branched polymers is analyzed from each end, using the methods

of continuum field theory.

There has also been some work on the asymptotic behaviour of the scaling

function in the inflated regime, q > 1. For the perimeter generating function

PN(q), it was shown that for SAPs in two-dimensions [35]

PN(q) = A(q)qN2/4(1 + O(ρN)), as n → ∞, (1.36)

for some 0 < ρ < 1. The leading asymptotic behaviour of PN(q) is given by

PN(q) =
(1 + O(ρN))

(q−1; q−1)4
∞

∞
∑

k=−∞
qk(n−k). (1.37)

Here,

(x; q)m =def

m
∏

k=1

(1 − xqk−1) (1.38)

is the standard q-product notation.

The polynomial A(q) has different expressions Ao(q) and Ae(q) when N is

restricted to subsequences with N being odd or even respectively. Explicit expres-

sions for these coefficients can be calculated as

Ao(q) =

∑∞
k=−∞ q−(k+1/2)2

(q−1; q−1)4
∞

(1.39)

Ae(q) =

∑∞
k=−∞ q−k2

(q−1; q−1)4
∞

. (1.40)
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There is an essential singularity in both the A(q) functions as q approaches 1 from

above. It was shown that [35]

A(q) ∼ Ao(q) ∼ Ae(q) ∼
1

4
(
ǫ

π
)3/2e2π2/3ǫ as q → 1+, (1.41)

where ǫ = ln(q).

In Chapter 3 of this thesis, we shall provide an analytic calculation for the area

of lattice polygons in the inflated regime. We derive the result exactly for convex

and column-convex polygons, and it is found to hold true for self-avoiding polygons

also, thus providing one of the few analytic results for self-avoiding polygons.

1.5 Self-intersecting rings

The two-dimensional self-avoiding model as introduced by Leibler, Singh and

Fisher [27] although much simpler than the full three-dimensional problems, still

admits no analytic approach, due to the self-avoiding nature of the beads. Rudnick

and Gaspari [42] noted that relaxation of the self-avoiding constraint simplified the

problem such that it became analytically tractable. Such a model, although phys-

ically unrealistic, yields useful insight into the self-avoiding problem. Further, in

certain regimes, such as the inflated ring regime of the LSF problem, it is expected

that the self-avoidance does not an important role and hence in such a scenario,

the present model serves as a useful approximation to the true answer.

The Rudnick Gaspari (RG) model is pictured as a closed ring consisting of

N linear links. The links are allowed to intersect each other. In the absence

of a pressure differential, the length of the links or bonds follow simple gaussian

statistics. If the mean length of a link is denoted by ∆2, then the probability

distribution governing the length of a link η is then given by

P (η) =

(

1

∆2π

)1/2

exp(−η2/∆2). (1.42)

Note that in this model, the length of the links are not bounded and they can

stretch to infinte length. We shall refer to this model as the Extensible Self-

Intersecting (ESIR) model. The probability distribution of any shape specified by
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a set of displacements ηα is then given by the product

N
∏

α=1

2
∏

i=1

P (ηαi), (1.43)

where the sum over i is due to the fact that the bonds are in fact two-dimensional

vectors. In the presence of a non-zero osmotic pressure difference ∆p between the

inside and the outside of the ring, there is an additional Boltzmann factor

exp

(

∆pA

kBT

)

, (1.44)

where A denotes the oriented or signed area enclosed by the ring. Thus in this

case, the area of the ring can in fact be zero or negative. The replacement of

the true area by the signed area is an important approximation of this model.

However, this substitution is not expected to affect the results for large positive

pressures, since intersections of the ring are not expected to persist in this regime.

However, negative pressure are inaccessible in this model, since changing the sign

of the pressure is equivalent to changing the sense of the area vector, without any

real change in the shape of the ring. The fact that the ring is closed implies that

the sum of the bond vectors should be zero, which leads to the two constraint

equations
N
∑

α=1

ηαi = 0 i = 1, 2. (1.45)

The full probability distribution can then be written as

P (η1, η2, ...) =
1

Z
exp

(

−
∑

α

(η2
αx + η2

αy) +
p

2

∑

α,α′

ηαxηαyφ(α − α′)

)

, (1.46)

where, p is defined as the dimensionless pressure p ≡ ∆2(∆p/kBT ) and φ is the step

function. The quantity Z is the partition function for the problem and normalizes

the probability. The addition of the pressure differential leaves the gaussian form of

the probability distribution unaltered and hence the partition function and other

thermodynamic quantities can be calculated exactly. The normalization can be
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calculated to be [18]

Z−1 =
∏

k

(

1 − p2

4k2

)

,

=
sin πx

x
, (1.47)

where, x = pN/4π. Thus the model predicts that the area of the vesicle blows up

to infinity at a critical value of the pressure, pc = 4π/N . The expectation value

for the mean square radius of gyration RG can be calculated to be

〈R2
G〉 =

∆2

πpc

(

1

x2
− π

x

1

tan πx

)

. (1.48)

Thus if we define a scaled pressure as p̂ = pN/4π, then in this scaled pressure

axis, there occurs a phase transition at a constant value p̂ = 1 independant of the

system size at which the area of the ring blow up. Such a finite pressure transition

is a new feature of this model, in variance with the results of the LSF model, where

only a zero pressure transition was found. We shall revisit this result in the context

of the LSF model and its variants in our thesis.

The ESIR model has the drawback that the inflated regime is inaccessible

because the ring blows up to infinity at the critical point. This is an artefact

of the infinite extensibilty of the constituent links of the model, which is clearly

unphysical. A more physically realistic model would have to take into account the

fact that the bonds should have a maximum bond length and thus should reach

some maximum possible area in the inflated regime. To incorporate this fact, we

define a modified version of the ESIR model, in which the polymer ring is modelled

as a closed, freely-jointed chain of N monomers where the monomers are connected

by rigid links of length l [21]. This is called the Inextensible Self-Intersecting Ring

(ISIR) Model. The probability of a specific configuration ηj is then denoted by

P (ηj, p) ∝ epA[ηj ]

N
∏

j=1

δ(|ηj − ηj−1| − 1), (1.49)

where, as in the ESIR model, the area A is the geometric or signed area of the

ring, and l ≡ 1 is defined as the unit length. The model was analysed in the mean-
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Figure 1.6: Mean area (scaled by Amax) as a function of pressure (scaled by pc), as
obtained by the zeroth-order transfer-matrix calculation (solid curve), mean-field
approximation (dashed curve), and MC simulations for N = 1600 (error bars).
Reproduced from Haleva and Diamant [21].

field limit, where the rigid rods were replaced by harmonic springs, and the spring

constant λ was determined self-consistently in the mean-field spirit by setting the

average link length to 1. The partition function can be calculated using the same

method as the ISIR model to be

Z(p,N, λ) =
1

λN

Np

4λ sin(Np/4λ)
. (1.50)

The mean area is then determined by differentiating with respect to the pressure

p,

〈A(p,N, λ)〉 =
∂ ln Z

∂p
=

1

p
− N cot(Np/4λ)

4λ
. (1.51)

The spring constant is determined from the consistency equation

〈(ηj − ηj−1)
2〉 = − 1

N

∂ ln Z

∂λ
= 1. (1.52)

It can be shown that in the thermodynamic limit, N ≫ 1, the spring constant λ
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Chapter 1. Introduction

can be described by the continuous but non-analytic function [21]

λ(p̂, N → ∞) =

{

1 p̂ < 1 ,

p̂ p̂ > 1 .
(1.53)

Thus for this model also, there exists a phase transition about the critical pressure

value p̂ = pN/4π = 1. In the thermodynamic limit, the behaviour of the area

around the critical point can be obtained as

〈A〉 =















N
4π

1
p̂(1−p̂)

p̂→1−−→ N
4π

1
1−p̂

, 1 − p̂ ≫ N−1/2 ,
N3/2

4π
, |1 − p̂| ≪ N−1/2 ,

N2

4π
p̂−1

p̂

p̂→1+

−→ N2

4π
(p̂ − 1), p̂ − 1 ≫ N−1/2.

(1.54)

Thus there is a continuous phase transition with mean-field exponents across the

critical point p̂ = 1 with the vesicle going from a crumpled phase below the tran-

sition to an inflated phase above the transition. This result was also verified

using transfer matrix calculations and Monte Carlo simulations [21] as is shown in

Fig. 1.6.

In addition to characterising the area transition across the critical point, it

is also interesting to look at some quantitative measures of shape in the various

regimes. Rudnick and Gaspari [17, 18] calculated two such measures, the radius of

gyration RG and the asphericity A2 for the ISIR model. The basic quantity that

contains information about the shape of the ring is the radius of gyration tensor,

defined in a compact form as [16]

Tij = ∆2
∑

αβ

aαβηαiηβj, (1.55)

with the elements of the symmetric matrix aαβ defined by

aαβ =
1

(N + 1)2
α(N + 1 − β) α > β,

aαβ =
1

(N + 1)2
β(N + 1 − α) β > α. (1.56)

For a two-dimensional system, the gyration tensor is a 2 × 2 matrix with two

eigenvalues λ1 and λ2. A quantitative estimate of the mean size of the ring is then
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provided by the radius of gyration defined as

R2
G = λ1 + λ2. (1.57)

A measure of the deviation of the average shape from the circle is provided by the

asphericity, defined as

A2 =
(λ1 − λ2)

2

(λ1 + λ2)2
. (1.58)

For the ISIR model, expressions for these two shape measures can be calculated

analytically [18]. While the expression for the radius of gyration was provided in

Eq. 1.48, the asphericity can be calculated to be

A2 =

8
p4 − N2

6p2 − 2N
p3 tan(Np/4)

− 8
p4 − N2

6p2 + N2

2p2 sin2(Np/4)

. (1.59)

The asphericity has a value of A2 = 1/3 for zero pressure and approaches zero as

we approach the critical pressure pc as the vesicle become more and more circular.

Additional studies on asphericity measures have also been performed for polymer

rings by incorporating semiflexibility effects [1, 28].

We study Self-intersecting rings in Chapter 2 of our thesis. While the phase

transition at a finite value of the scaled pressure has been studied in this case,

there have not been detailed studies on how semiflexibility affects the transition.

We study the self-intersecting ring through both lattice and continuum models

and characterise the phase boundary in the bending rigidity – pressure plane,

through scaling analysis, mean field theories, Monte Carlo simulations and exact

enumeration for the lattice model. We introduce a new approach to the mean

field theory in this case, and this method reproduces the simulation results to high

accuracy in the inflated phase.
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2
Self-intersecting Polymer Rings

2.1 Introduction

In the Introduction (Sec. 1.5) we introduced the general model for self-intersecting

rings. These systems present an analytically tractable model which helps us to

understand the more complex problem of self-avoiding rings. In addition, as noted

previously, in the regime where self-avoidance is not important, the results for

self-intersecting rings present an useful approximation to the true answer.

Existing results by Rudnick and Gaspari [42, 18] and Haleva and Diamant

[21] showed the presence of a continuous phase transition separating collapsed and

inflated phases of the self-intersecting ring. However, these studies were done for

flexible polymers, and since bending rigidity often plays an important role in the

context of biological systems, it is important to study how the transition is affected

or modified by the the presence of semiflexibility.

Furthermore, existing mean-field approaches to the self-intersecting ring prob-

lem [21] do not yield quantitatively correct answers for the area in the inflated

phase. In this chapter, we present an alternative mean-field approach which gives

the correct asymptotic behaviour for the area, even in the presence of nonzero

bending rigidity.

We incorporate a bending rigidity cost into the ISIR model (Sec. 1.5) and ask

whether the continuous phase transition seen for the flexible self-intersecting rings

persists in this case. We show that there is indeed a phase transition in this case

also, and characterise the nature of the phase boundary separating the collapsed

and inflated phase as a function of the pressure and the bending rigidity.
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Chapter 2. Self-intersecting Polymer Rings

Figure 2.1: The collapsed to inflated phase transition as the pressure is increased.
The different panels correspond to (a) J = 0, p < pc; (b) J = 2, p < pc; (c) J = 0,
p = pc; and (d) J = 0, p > pc.

In the model proposed in this chapter, bending rigidity is incorporated into

the ISIR model along standard lines for semiflexible polymers. We retain the

coupling of the signed pressure to the algebraic area noting, as argued in [21], that

this difference, while vastly increasing the tractability of the problem, makes little

difference to computations within the inflated phase.

2.2 Definition of the model

The model is defined as follows. Consider a closed chain of N monomers in two

dimensions. Let the positions of the jth particle be denoted by the vector ~rj and the

corresponding tangent vectors by ~tj = ~rj+1 −~rj, j = 1, 2, . . . , N. For a closed ring,

~rN+1 = ~r1, or equivalently,
∑

i
~ti = 0. The algebraic or signed area As enclosed by
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Chapter 2. Self-intersecting Polymer Rings

the ring is given by

As =
1

2

N
∑

i=1

(~ri × ~ri+1) · ẑ =
N
∑

j=1

j−1
∑

k=1

(~tk × ~tj) · ẑ. (2.1)

As can be either positive or negative.

Coupling this algebraic area to pressure, we obtain the energy term,

Hp = −pAs. (2.2)

Importantly, p → −p is a symmetry of the model, since the pressure term couples to

the signed area. The bending energy cost can be written down following standard

procedures as

Hb = −J

N
∑

i=1

t̂i · t̂i+1, (2.3)

where J is the continuum bending rigidity and t̂ is the unit vector in the direction

of ~t. The inextensibility condition is imposed through

|~ri − ~ri−1| = |~ti| = a = 1. (2.4)

Since the tangent vectors have unit norm, we can represent them as ~ti = (cos θi, sin θi),

where θ ∈ [0, 2π). In terms of these variables, the partition function is

Z =

∫

∏

i

dθi

N−1
∏

j=0

(

j−1
∏

k=0

e
p
2

sin(θk−θj)

)

eJ cos(θj−θj+1). (2.5)

We shall refer to this model as the “continuum model".

We also study a lattice version of the same problem with the particles con-

strained to lie on the vertices of a two dimensional square lattice. The model

remains essentially the same except for restrictions on the angles θi. Now θi is only

allowed to take values 0, π/2, π, and 3π/2, such that all the particles are on the

vertices of the square lattice. We will refer to this version as the “lattice model”.

We discuss the differences and similarities between the two versions.

We use a combination of analytic and numerical methods to study these models:

Flory type scaling theory for the scaling of the area as a function of pressure,
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Chapter 2. Self-intersecting Polymer Rings

Monte Carlo simulations for different pressures and bending rigidities, mean field

approaches and exact enumerations.

In Fig. 2.1 we show typical configurations obtained from Monte Carlo simu-

lations of the continuum model in four limits. These are configuration snapshots

across the collapsed to inflated phase transition, for different values of the bending

rigidity J of the continuum model, as the pressure p is varied. Fig. 2.1(a) shows

the collapsed phase for the case where the bending energy is zero, while Fig. 2.1(b)

illustrates a typical ring configuration at an intermediate value of the bending

rigidity, but still within the collapsed regime. In Fig. 2.1(c), we show a typical

configuration close to the transition between collapsed and inflated phases. Last,

Fig. 2.1(d) illustrates the fully inflated ring.

We summarise our main results below. We show that there is a continuous

phase transition in the scaled pressure p̂ (= Np/4π) – bending rigidity (J) phase

diagram, which separates a collapsed phase in which area ∝ N , from an inflated

phase in which area ∝ N2 (see Fig. 2.2). The p → −p symmetry implies the

symmetry of the phase boundary upon reflection across the p = 0 axis, as shown

in Fig. 2.2. The phase boundary for the continuum model is obtained as p̂c =

[I0(J)− I1(J)]/[I0(J)+ I1(J)], where I(J)’s are the modified Bessel functions. For

the lattice model, the phase boundary is obtained as p̂c = e−J .

These results are obtained by incorporating the effects of a nonzero J into the

known exact solution for the J = 0 case, through a scaling argument. For the

collapsed phase, the free energy for nonzero J is calculated by the same method.

In the inflated regime, we resort to mean field approximations. We employ two

types of mean-field theories: In the first, the inextensibility constraint is satisfied

exactly but the closure condition is satisfied only on average. In the second, we

impose the closure condition exactly but satisfy the inextensibility constraint only

on average. The dependence of the area on p̂ for p̂ → ∞ is calculated. The

behaviour near the transition line is obtained through a Flory type scaling theory.

The rest of the chapter is organised as follows. Section 2.3 contains the details

of the numerical methods used, including the Monte Carlo and exact enumeration

algorithms. In Sec. 2.4, we discuss a Flory-type scaling theory valid for the semi-

flexible case. Also, here we use the analogy between the extensible polymer and the

quantum mechanical problem of the motion of an electron in a magnetic field to

reproduce the solution of the problem for J = 0 and p̂ < p̂c. Section 2.5 describes
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0
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pN
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Scaling

Meanfield
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Collapsed

Figure 2.2: The phase boundary between collapsed and inflated phases for a semi-
flexible polymer ring as obtained by two different methods, a scaling analysis based
on Flory-type arguments and mean-field theory. Note that the p → −p symmetry
of the model implies the symmetry of the phase boundary upon reflection across
the p = 0 axis. Thus, negative and positive values of the scaled pressure are
equivalent, since the pressure term couples to the signed area and not to the true
area.

mean-field approaches to this problem: (a) a simple density-matrix based single-

site mean-field approach which captures the properties of the inflated phase to

very high accuracy but is inadequate for the collapsed phase, (b) a less accurate

harmonic spring mean-field theory, which is capable of describing both collapsed

and inflated phases, and finally, (c) other variational choices that we tried using

different zeroth order hamiltonians. In Sec. 2.6, we discuss the behaviour around

the critical point in greater detail. Sec. 2.7 contains results for the asymptotic

behaviour of the area as well as a description of the appropriate scaling function

for the area in the lattice case, as a function of N . Section 2.8 contains a summary

and conclusions.
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(a)

(b)

Figure 2.3: A schematic representation of the Monte Carlo moves: (a) single flip;
and (b) global flip.

2.3 Numerical method

In this section, we describe the numerical methods used. For the continuum version

of our model, we use Monte Carlo simulations (described in Sec. 2.3.1) while for

the lattice problem, we use an exact enumeration scheme (described in Sec. 2.3.2).

The analytic results we obtain for our model, described in later sections, provide

useful benchmarks for the numerical work.

2.3.1 Monte Carlo Simulations

The algorithm for the Monte Carlo simulation of the continuum model consists of

two basic moves[26, 46]: a single particle flip and a global flip. In the single particle

flip, a particle is picked at random and reflected about the straight line joining

its two neighbours (see Fig. 2.3(a)). The move is accepted using the standard

Metropolis algorithm. Since the energy computation involves only nearby sites,

the move is efficient and fast. In the global flip, two particles of the ring are chosen

at random and the section of the ring between them is reflected about the line

joining the two particles (see Fig. 2.3(b)). The energy calculation now involves
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O(N) particles and is thus computationally expensive. However, the global move

is crucial to the study of the case where J 6= 0, since single particle moves alone

are insufficient for equilibration in this case.

In the simulations, one Monte Carlo step is defined as one global move and

N single particle moves made by selecting at random particles to be updated.

This step is then repeated until the system equilibrates. This algorithm is ergodic

within the initially chosen set of tangent vectors [26]. The initial configuration was

chosen to be a regular N-sided polygon, but we verified that random configurations

also gave the same results. Thermodynamic quantities are measured from averages

taken over independent configurations in equilibrium.

We performed Monte Carlo simulations across a range of pressures for different

values of J and system size. The system size varied from N = 64 to N = 2000.

Typically each parameter value was run for 4× 106 Monte Carlo steps. We waited

typically for 106 steps for equilibration, averaging data over the remaining steps

using independent configurations. We verified that changing the interval between

two measurements did not change the results. In all the figures shown, the error

bars on computed quantities are smaller than the sizes of the symbols used.

2.3.2 Exact enumeration

We first describe the algorithm for the case J = 0. Consider a random walk starting

from the origin and taking steps in one of the four possible directions. For each

step in the positive (negative) x-direction, we assign a weight e−Py (ePy), where y

is the ordinate of the walker. Multiplying these weights, it is easy to check that

the weight is ePA for a closed walk enclosing an area A.

Let TN(x, y) be the weighted sum of all N -step walks from (0, 0) to (x, y). It

then obeys the recursion relation,

TN+1(x, y) = e−PyTN(x − 1, y) + ePyTN(x + 1, y)

+TN(x, y − 1) + TN(x, y + 1), (2.6)

with the initial condition

T0(x, y) = δx,0δy,0. (2.7)

Finally, TN(0, 0) gives the partition function of the ring polymer on a lattice.
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For the semiflexible case, the recursion relation given above must be modified,

since the ring is no longer a simple random walk but a walk with a one step memory.

We convert it into a Markov process as follows. Let TN(x, y; x′, y′) be the sum of

weights of all walks reaching (x, y) in N steps but having been at (x′, y′) at the

previous step. These TN ’s are now a Markov process and depend only on TN−1’s.

The recursion relations are then straightforward to write down. They are given by,

TN+1(x, y; x − 1, y) = e−Py
[

TN(x − 1, y; x − 2, y) + e2JTN(x − 1, y; x, y)

+eJTN(x − 1, y, x − 1, y + 1) + eJTN(x − 1, y; x − 1, y − 1)
]

,

TN+1(x, y; x + 1, y) = ePy
[

e2JTN(x + 1, y; x, y) + TN(x + 1, y; x + 2, y)

+eJTN(x + 1, y; x + 1, y + 1) + eJTN(x + 1, y; x + 1, y − 1)
]

,

TN+1(x, y; x, y − 1) = eJTN(x, y − 1; x − 1, y − 1) + eJTN(x, y − 1; x + 1, y − 1)

+e2JTN(x, y − 1; x, y) + TN(x, y − 1; x, y − 2),

TN+1(x, y; x, y + 1) = eJTN(x, y + 1; x − 1, y + 1) + eJTN(x, y + 1; x + 1, y + 1)

+TN(x, y + 1; x, y + 2) + e2JTN(x, y + 1; x, y).

(2.8)

The partition function for the polymer problem can be expressed as a sum over

areas and bends consistent with a given value of the area, i.e.,

ZN = TN(0, 0) =
∑

A,B

CN(A,B)epA+JB, (2.9)

where CN(A,B) counts the number of closed paths of area A in a walk of length

N which have B bends.

We count up to N = 150 for different values of J . The only limiting factor in

going to larger N values is computer memory.

2.4 Flory-type Scaling Analysis

Flory type scaling theory provides a useful tool to capture the scaling behaviour of

systems whose free energy reflects a competition between two or more terms. Such

a scaling theory was proposed for the ISIR model in Ref. [21]. A transition from
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a collapsed to an inflated state was predicted to occur at a critical value of the

pressure, whose magnitude scaled with system size as N−1. We show how these

arguments may be extended to the semiflexible case, deriving expressions for the

change in the critical point and scaling as a function of the bending rigidity.

The free energy consists of three terms describing (i) the entropy of the ring,

(ii) the pressure differential and (iii) inextensibility of the bonds. When J = 0,

these terms were argued to be R2/N , −PR2 and R4/(4N3) for a ring of size R

[21]. With semiflexibility, we show that a similar scaling form holds except for J

dependent prefactors. Thus, the free energy takes the form

F = Fentropic + Fpressure + Finextensibility,

∼ 4πR2

N
[α(J) − p̂] +

β(J)R4

N3
. (2.10)

where we have defined p̂ = Np/4π, and α and β depend on J .

It is easily seen that a system described by such a Flory theory undergoes a

continuous transition when the R2/N term changes sign. This occurs at a critical

scaled pressure p̂c(J) which varies with J as

p̂c(J)

p̂c(0)
=

α(J)

α(0)
. (2.11)

When p̂ < p̂c(J), then the area follows random walk statistics with 〈A〉 ∼ N .

In this regime the R4/N3 term is not important. For non-zero values of J , there

exists a persistence length lp, and for length scales much larger than this length,

the problem reduces to that of a freely jointed ring with an effective number of

monomers given by N/lp. Thus, we conclude that

〈A(J,N, p̂)〉 =
N

p̂c(J)
f

(

p̂

p̂c(J)

)

, p̂ < p̂c (2.12)

where f(x) is a scaling function. The scaling function f(x) and p̂c can be deter-

mined from the solution of the extensible chain with zero bending rigidity. This is

discussed later in Sec. 2.4.3. This gives

p̂c = 4πα(J), (2.13)
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Figure 2.4: Area versus pressure curves for three J values for p̂ < p̂c. The points
correspond to the continuum case while the solid curves correspond to the lattice
case. The inset shows the collapse when the curves are scaled as in Eq. (2.12).
The f(x) curve in the inset represents the scaling function of Eq. (2.14). The main
figure shows data for both N = 60 (triangles) and for N = 100 (squares), while
the inset shows only the N = 100 data for clarity.

and

f(x) =
1

4πx
− cot(πx)

4
. (2.14)

An equivalent approach to this transition is obtained by reinstating factors of the

bond length a and kBT in the Flory estimate above. It is easy to see that the

transition occurs when the “pressure length” (p̂a)−1, measuring the length scale at

which the contribution of the pressure term in the free energy becomes significant,

becomes of order the persistence length lp ∼ Ja.

Numerical confirmation of Eqs. (2.12) and (2.14) is provided in Fig. 2.4. The

inset shows that the curves for different J collapse onto a single curve when scaled

as in Eq. (2.12).

When p̂ = p̂c, the scaling is determined by the R4/N3 term. Thus, 〈A〉 ∼
N3/2/

√

β(J). Thus,

〈A(J)〉
〈A(0)〉 =

√

β(0)

β(J)
. (2.15)

To test Eq. (2.15), we compare the Flory prediction with the enumeration results

for the area in the lattice model. As can be seen from Fig. 2.5, there is good

agreement for small values of J but the data starts to deviate away from the
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Figure 2.5: Comparison of the area ratio 〈A(J)〉/〈A(0)〉 at the critical point with
the scaling prediction (see Eqns. (2.15)) for the lattice (Eq. (2.32)) and continuum
(Eq. (2.27)) models. The scaling prediction is satisfactory for small J but deviates
as J increases. For the continuum simulation we used N = 150, while the points
for the lattice calculation were obtained through a finite-size scaling of the values
obtained from N = 80, 90, ..., 150.

predicted curve as J increases.

When p̂ > p̂c(J), the ring is in an inflated state, with the area 〈A〉 ∼ N2.

To obtain an accurate description of this regime, we would need to keep higher

order terms such as R6/N5 and so on. One thus expects that the lattice and the

continuum problems should differ considerably in this regime.

We now derive expressions for α(J) and β(J) in both the continuum and lattice

cases. This is done by considering a semiflexible chain subjected to an external

force. We obtain a perturbative solution for the partition function in the limit of

small forces. From the partition function, we obtain the free energy of the ring.

By comparing this with the form of Eq. (2.10), the values of α(J) and β(J) can

be obtained.
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2.4.1 Continuum Case

Consider a semiflexible chain of N monomers. When the chain is pulled by a force
~f , the partition function is given by

Z(J, ~f,N) =

∫ N
∏

j=1

dt̂j eJt̂j ·t̂j+1 e
~f ·t̂j . (2.16)

We work in the limit of small forces, treating the J term exactly. We consider

the f term as a perturbation on the zeroth order partition function [ f = 0 in

Eq. (2.16)], given by

Z0(J,N) = [2πI0(J)]N , (2.17)

where I0(J) is the modified Bessel function of the first kind of order 0.

Expanding the exponential in the force, we obtain,

exp

(

N
∑

j=1

~f.t̂j

)

= exp(
N
∑

j=1

f cos θj)

= 1 + f

N
∑

j=1

cos θj +
f 2

2

N
∑

j,k=1

cos θj cos θk

+
f 3

6

N
∑

j,k,l=1

cos θj cos θk cos θl

+
f 4

24

N
∑

j,k,l,m=1

cos θj cos θk cos θl cos θm + . . . (2.18)

Now, the terms containing odd powers of cos θ average to zero w.r.t. the zeroth

order hamiltonian, and so we are left with

exp(
N
∑

j=1

~f.ûj) ∼= 1 +
f 2

2

N
∑

j,k=1

cos θj cos θk

+
f 4

24

N
∑

j,k,l,m=1

cos θj cos θk cos θl cos θm. (2.19)

We now average each term with respect to the zeroth order Hamiltonian. On

computing the averages, and expanding as a series for small values of f , the par-
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tition function is obtained as

ln Z(J, f,N) = ln Z0 + Nb2f
2 + Nb4f

4 + O(f 6), (2.20)

where the coefficients b2 and b4 are given by

b2 =
I0 + I1

4(I0 − I1)
, (2.21)

b4 =
b2
2

4

[

2I2

I0 − I2

− I0 + 3I1

I0 − I1

]

. (2.22)

The In’s are modified Bessel functions of the first kind. Their J dependence has

been suppressed in the equation above.

The mean end-to-end distance in the limit of small force is obtained from

R ∼ ∂ ln Z/∂f :
R

N
= 2b2f + 4b4f

3 + O(f 5). (2.23)

Solving for f from Eq. (2.23), we obtain

f =
1

2b2

R

N
− b4

4b4
2

(

R

N

)3

+ O

(

(

R

N

)5
)

. (2.24)

The Flory free energy F (R) = − ln Z + fR, then reduces to

F (R) = − ln Z0 +
1

4b2

R2

N
− b4

16b4
2

R4

N3
− pR2. (2.25)

Comparing with Eq. (2.10), the factors α(J) and β(J) are obtained as

α(J) =
1

4π

I0 − I1

I0 + I1

J→∞−→ 1

16πJ
, (2.26)

β(J) = 4π2α(J)2

[

I0 + 3I1

I0 − I1

− 2I2

I0 − I2

]

J→∞−→ 7

64J
.

(2.27)

2.4.2 Lattice Case

For a lattice polygon, where each individual step can point only in four directions,

we solve the problem of a semiflexible chain subject to an external force using the
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exact 4 × 4 transfer matrix. The transfer matrix in this case is given by

T =













eJ+f ef/2 e−J ef/2

ef/2 eJ e−f/2 e−J

e−J e−f/2 eJ−f e−f/2

ef/2 e−J e−f/2 eJ













(2.28)

We determine the largest eigenvalue up to order f 4, and hence calculate the par-

tition function:

ln Z(J, f,N) = N

[

ln(2 + e−J + eJ) +
eJ

4
f 2

+
1

192
(eJ − 3e3J)f 4 + O(f 6)

]

. (2.29)

We then follow the same procedure as for the continuum case, finding R/N in

terms of f , inverting this equation to find f , and finally using this expression to

compute the free energy. We thus obtain

F (R) = e−J R2

N
+

[

1

12
e−3J(3e2J − 1)

]

R4

N3
. (2.30)

The expressions for α(J) and β(J) are then

α(J) =
1

4π
e−J , (2.31)

β(J) =
1

12
e−3J(3e2J − 1). (2.32)

2.4.3 Analytic answer for the collapsed phase

We shall now, for the sake of completeness, reproduce the exact result for the J = 0

case. It is known that the problem of self-intersecting polymers in two dimensions

with no bending rigidity (J = 0) is analogous to the quantum mechanical prob-

lem of an electron moving in a magnetic field applied transverse to the plane of

motion[12]. Using this analogy, analytic expressions for the partition function Z
and CN(A), the number of closed walks of area A can be obtained.

First, recall that when an electron goes around a magnetic field, it picks up a

35



Chapter 2. Self-intersecting Polymer Rings

phase factor proportional to the flux enclosed by the path. This flux is proportional

to the product of the strength of the magnetic field times the algebraic area enclosed

by the loop. The propagator then is the sum over all such loops. This suggests

that by a suitable mapping of the magnetic field to the pressure in the polymer

problem, we can derive the partition function for the polymer from the quantum

mechanical propagator for the electron problem.

Now, for an electron of charge e and mass m in a constant external magnetic

field B, in the z direction, the kernel can be written as [12],

K(~x, ~x′; t, 0) =
( m

2πih̄t

)

(

ωt/2

sin ωt/2

)

× exp

(

imω

2h̄

{

ω

2
cot

ωt

2
[(x′ − x)2 + (y′ − y)2] ω(xy′ − x′y)

})

,

(2.33)

where, ω = eB
mc

.

Since we are interested in the case when the electron returns to the origin, we have,

K(0, 0; t, 0) =
( m

2πih̄t

)

(

ωt/2

sin ωt/2

)

. (2.34)

Now, in the quantum mechanical problem, when the particle goes around in a

complete loop, it picks up a flux given by

Φ =
ıeBA

h̄c
. (2.35)

Thus to make the mapping to our problem, we need, t → −it to map the quantum

mechanical Schrodinger equation to the classical diffusion equation, and

ıeB

h̄c
= p (2.36)

and

ω =
eB

mc
= −ı

ph̄

m
. (2.37)

Also, the time t in our case corresponds to the length of the polymer N .
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The propagator is thus given by

K(0, 0;−iN) =
1

4π

eB

h̄c

1

sinh ωN/2
. (2.38)

Substituting for ω, we obtain the partition function as

Z =
1

4π

p

sin ph̄N
2m

. (2.39)

By comparing with the diffusion equation for a particle in two-dimensions, we

see that h̄
2m

= 1
4
. Substituting this in the partition function and normalising

appropriately, we finally obtain the partition function as

Z =
4N

4π

p

sin pN
4

. (2.40)

To calculate the number of paths for a given area A, CN(A), we note that

Z =

∫ ∞

−∞
CN(A)epA =

1

4π

p

sin ph̄N
2m

. (2.41)

Thus CN(A) is given by,

CN(A) =

∫ ∞

−∞

dk

2π

4N−1k

π sinh
(

kN
4

)e−ıkA. (2.42)

On performing this integration we obtain,

CN(A) =
4N

N2
sech2 2πA

N
. (2.43)

On the lattice, since we actually measure CN(A)∆A, we obtain,

CN(A)∆A =
4N+1

2N2
sech2 2πA

N
. (2.44)

This gives for the area

〈A〉 =
1

p
− N

4
cot(

Np

4
). (2.45)

The free energy will have a singularity at p = 4π/N . Below this p, the ex-
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pressions are valid for both the continuum case and the lattice. Exactly the same

expression has been obtained by using the harmonic spring approximation [42].

The expression for area matches both the simulation and lattice data quite closely

for low pressures, as can be seen from Fig. 2.4.

Moreover, if we recall the Flory prediction that by rescaling area and pressure

by p̂c(J), we can obtain the results for non-zero values of the bending rigidity from

the answer of the problem with J = 0, we see that the above analysis also predicts

the area expression for nonzero values of J .

2.5 Mean Field Theory

In this section we present mean-field theories to calculate the dependence of area

on pressure and bending rigidity. In Sec. 2.5.1, we address the ISIR model (J = 0).

The mean field theory presented in [21] performs poorly with respect to the Monte

Carlo data when p̂ > p̂c. Here, we present an improved variational mean field which

reproduces the behaviour of the area above the transition very accurately. It also

yields the correct asymptotic behaviour for the area in the limit of high pressures.

In this approach, the constraint of fixed link length in treated exactly while the

closure constraint is satisfied in a mean field sense. However, such a mean-field

theory fails to describe the collapsed phase, also yielding incorrect results for the

case of nonzero J .

In Sec. 2.5.2, we generalise an earlier mean field theory for the freely jointed

chain to include semi-flexibility, imposing the constraint of fixed bond length via a

Lagrange multiplier [21]. The closure condition is imposed exactly. We thus derive

expressions for the average area of the ring for all pressures and bending rigidity.

In Sec. 2.5.3, we present an alternate approach to variational mean field theories

to that discussed in Sec. 2.5.1, obtained by computing averages with respect to a

simple zeroth order hamiltonian. We also discuss different initial choices for the

variational approach, and determine which of these match the simulation data

best.
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Figure 2.6: Comparison of Monte Carlo data with the two meanfield results for the
flexible (J = 0) case, where meanfield A presents the results of the density-matrix
approach and meanfield B that of the harmonic springs approach. The density
matrix-based mean-field approach provides an accurate description of the area for
p̂ > p̂c.

2.5.1 Density matrix mean-field for flexible polymers

In variational theory, a trial density matrix ρ is chosen to approximate the actual

density matrix[10]. The variational parameters are determined by minimising the

variational free energy Fρ with respect to the parameters. The simplest mean-

field theories assume a trial density matrix that is a product of independent single

particle matrices, i.e,

ρ =
∏

j

ρj, (2.46)

where ρj is the single particle density matrix of particle j. The variational mean-

field free energy is

Fρ = 〈H〉ρ + T
∑

j

Trρj ln ρj. (2.47)

The variational form for the density matrix should satisfy the constraint Tr ρj = 1.

We choose the single particle density matrix based on the high pressure limit.

In this limit, the ground state of our Hamiltonian is a regular N-gon, where the

angle of the jth tangent vector is θj = 2πj/N . The single particle density matrix

has a delta function peak at this value. At intermediate pressures, we therefore
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take the form of the density matrix to be a gaussian of width σ (the variational

parameter) centred about 2πj/N :

ρj(θj) =
1√

2πσ erf[π/
√

2σ]
exp

[

−(θj − 2πj
N

)2

2σ2

]

, (2.48)

where the normalisation ensures that Tr ρj = 1 and erf(x) is the error function

defined as

erf(x) =
2√
π

∫ x

0

e−t2 dt. (2.49)

Using this form of the density matrix, the averages are obtained as,

〈cos θj〉 = K(σ) cos(
2πj

N
,

〈sin θj〉 = K(σ) sin(
2πj

N
,

〈ρj ln ρj〉 = −1

2
+

e
π2

2σ2
√

π
2

σ erf( π√
2σ

)
+ ln[

1√
2πσ erf( π√

2σ
)
], (2.50)

where

K(σ) =
e−σ2/2

[

erf[(π − ıσ2)/
√

2σ] + erf[(π + ıσ2)/
√

2σ]
]

2 erf[π/
√

2σ]
. (2.51)

The variational free energy is then given by,

Fρ

N
= −p

4
cot
( π

N

)

K(σ)2 + J cos

(

2π

N

)

K(σ)2

−1

2
+

√
π exp(π2/(2σ2))√
2σ erf[π/

√
2σ]

− ln

(√
2πσ erf[

π√
2σ

]

)

, (2.52)

where we have used the identity,

N−1
∑

j=0

j−1
∑

k=0

sin

[

2π

N
(j − k)

]

=
N

2
cot(

π

N
). (2.53)

When N ≫ 1, the pressure and bending terms in Eq. (2.52) can be combined,

and the problem is equivalent to one of a flexible polymer (J = 0) with an effective

pressure p̂eff = p̂ + J .

The variational parameter σ is chosen to be the σ∗ that minimises Fρ in
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Figure 2.7: Comparison of Monte Carlo data with the two mean-field approaches
for the case J = 1.

Eq. (2.52). This is done numerically. The average area, equal to −∂Fρ/∂p, is

then given by

〈A〉 =
N

4
cot
( π

N

)

K2(σ∗)
N→∞−→ N2

4π
K2(σ∗). (2.54)

We now derive the asymptotic behaviour of area in the limit of high pressures.

We work in the limit when N is large. For large pressures, we expect that σ∗ tends

to zero. In this limit

K(σ) ≈ e−σ2/2, σ → 0. (2.55)

and the variational free energy is then given by

Fρ(σ) = N

[

−(p̂ + J)e−σ2 − ln(
√

2πσ) − 1

2

]

, (2.56)

where p̂ = Np/(4π). Solving dFρ/dσ∗ = 0, it is straightforward to obtain

σ∗ =
1√
2p̂

+
1 − 2J

4
√

2p̂3/2
, p̂ → ∞. (2.57)

The area then reduces to

〈A〉
N2/4π

→ 1 − 1

2p̂
+

4J − 1

8p̂2
, p̂ → ∞. (2.58)
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For flexible polymers ( J = 0), this mean-field theory reproduces the p̂ > p̂c

behaviour very accurately. It also obtains the correct asymptotic behaviour. In

Fig. 2.6, we compare the Monte Carlo data for J = 0 with the results of the above

mean field theory and contrast it with the meanfield theory of Ref. [21].

The density matrix mean-field however, fails to correctly obtain the behaviour

for non-zero values of the bending rigidity. It predicts a first order transition for

J ≥ 1, in disagreement with results from scaling theory. We compare the results

of this mean field with the Monte Carlo data in Fig. 2.7 for a system with J = 1.

This mean-field approach then predicts a transition at p̂ = 0. The discrepancy

between the two curves increases for larger values of J .

We now describe an alternative mean-field approach to this problem which

extends the harmonic spring-based mean field theory of Ref. [21] to non-zero values

of J .

2.5.2 Harmonic spring mean-field for semiflexible polymers

We follow the approach of Ref. [18] wherein the rigid links between particles are

replaced by extensible springs. The spring constant λ of the springs is identified

with a Lagrange multiplier, chosen so that the mean length of a spring equals unity

[21].

Consider a partition function for N particles given by,

Z=

∫

d~tj exp

[

p

2

∑

k<j

~tk × ~tj + J
∑

j

t̂j · t̂j+1−λ
∑

j

~t2j

]

. (2.59)

Note that while pressure couples to ~t, the bending rigidity couples to the unit

vectors t̂. We make the approximation of replacing t̂ by ~t. This makes the problem

analytically tractable.

Expanding the tangent vectors in Fourier space as,

t̂xj =

√

2

N

∑

k

[Ak cos(jk) + Bk sin(jk)],

t̂yj =

√

2

N

∑

k

[A
′

k cos(jk) + B
′

k sin(jk)], (2.60)
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where k = 2πl/N , l = 1, 2, · · · , N . The partition function then reduces to

Z =
∏

k

∫

dAkdA
′

kdBkdB
′

k

e−(λ−J cos k)(A2
k+B2

k+A
′

k

2
+B

′

k

2
)e

p
k
(BkA

′

k−AkB
′

k). (2.61)

By completing the squares, this integral can be written as a gaussian integral and

hence can be calculated exactly. This gives

Z =
∏

k

1

λ − J cos k
×
[

1 − p2

4k2(λ − J cos k)2

]2

. (2.62)

The parameter λ∗ is determined by equating the mean square link length to one,

i.e

− 1

N

∂ lnZ
∂λ

= 1. (2.63)

This gives

N =
N
∑

l=1

1

λ∗ − J cos(2πl
N

)

[

1+
2p̂2

l2[λ∗ − J cos(2πl
N

)]2−p̂2

]

, (2.64)

where p̂ = pN/4π.

When J = 0, the first factor in Eq. (2.64) becomes independent of l, and then

the resultant expression can be evaluated exactly. Hence, an analytic expression

for λ∗ can be obtained in this case [21]. For J 6= 0, this is no longer possible, and

for finite system sizes the resultant equation must be solved numerically. When

N ≫ 1, it is still possible to extract the behaviour of the system analytically.

We now determine the phase boundary from Eq. (2.64). We will consider the

limit N ≫ 1. First, note that λ∗ − J cos(2πl/N) 6= 0 for all l. For positive λ∗, this

gives the condition that λ∗ > J . Second, consider the term in the denominator for

l = 1. It is (λ∗ − J)2 − p̂2. If we assume that λ∗ is continuous in p̂, we have the

second constraint that λ∗ > J + p̂.

Setting x = l
N

and converting the first sum in Eq. (2.64) to an integral, the
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equation for λ∗ reduces to

1 =
1√

λ∗2 − J2
− 1

N(λ∗ − J)

+
2

N(λ∗ − J)

∞
∑

k=1

(

p̂

λ∗ − J

)2k
1

2k − 1
+ O(

1

N2
). (2.65)

The sum in Eq. (2.65) is convergent if the ratio p̂/(λ∗ − J) < 1. In this case, we

keep only the first term on the right hand side of Eq. (2.65). This gives,

λ∗ =
√

1 + J2, for p̂ < p̂c. (2.66)

The critical pressure is obtained when the ratio p̂/(λ∗ − J) becomes equal to

1, i.e.

p̂c(J) = λ∗ − J =
√

1 + J2 − J. (2.67)

For large values of J , this goes as p̂c(J) ∼ 1/2J , which differs by a factor of 2 from

the answer obtained by scaling arguments [see Eq. (2.26)].

We shall now estimate λ∗ in the different scaling regimes. We assume that λ∗

is a non-decreasing function of p̂ (as in J = 0). Then, since we have the constraint

of λ∗ > p̂ + J , the ratio p̂/(λ∗ − J) must continue to remain at 1 for p̂ > p̂c. Thus,

above the critical point, we obtain

λ∗ = p̂ + J, for p̂ > p̂c. (2.68)

However, a simple substitution of Eq. (2.68) in Eq. (2.64) for p̂ > p̂c does not

satisfy Eq. (2.64). We therefore need to calculate the correction term arising from

large but finite N . We start by considering Eq. (2.64). The first term can be

summed exactly, giving

N

(

1 − 1√
λ2 − J2

)

=
N
∑

l=1

1

λ − J cos(2πl
N

)

2p̂2

l2(λ − J cos(2πl
N

))2 − p̂2
. (2.69)
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We calculate the finite size corrections to λ∗ as follows. Let

λ∗
p̂≥p̂c

= p̂ + J − δ. (2.70)

When δ → 0, the main contribution to the left hand side of Eq. (2.69) comes from

the l = 1 term. The contribution from other l is convergent as δ → 0. Expanding

the right hand side as a series in δ, we obtain

−1

δ
= N

[

1 − 1
√

p̂2 + 2p̂J
− δ(p̂ + J)

(p̂2 + 2p̂J)3/2

]

. (2.71)

The δ independent term in the right hand side of Eq. (2.71) is nonzero for p̂ > p̂c

and is equal to zero for p̂ = p̂c. Thus, when p̂ > p̂c, we keep only the first term in

the right side, while at p̂ = p̂c, we need to keep the second term too. Solving for

δ, we obtain,

δ =











1√
N

1
(1+J2)1/4 , p̂ = p̂c,

1
N

√
p̂2+2p̂J√

p̂2+2p̂J−1
, p̂ > p̂c.

(2.72)

We are now in a position to calculate the mean area 〈A〉 from ∂ lnZ
∂p

. This gives,

〈A〉 =
Np̂

2π

N
∑

l=1

1

l2(λ∗ − J cos(2πl
N

))2 − p̂2
. (2.73)

The numerical values obtained for λ are then substituted in this equation to get

the corresponding value of the area. We can, however, analytically determine the

scaling behaviour of the area in the limit of large system sizes from the values of

λ calculated above.

For p̂ < p̂c, we have,

〈A〉 ≃ Np̂

2π

N
∑

l=1

1

l2(
√

1 + J2 − J cos(2πl/N))2 − p̂2
(2.74)

At the critical point, we obtain, from Eqns. (2.71) and (2.73),

〈A〉 = N3/2 (1 + J2)1/4

4π
, p̂ = p̂c. (2.75)
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Similarly, for pressures greater than the critical pressure, we obtain, from Eqns. (2.68)

and (2.73),

〈A〉
N2/4π

= 1 − 1
√

p̂2 + 2p̂J

p̂→∞−→ 1 − 1

p̂
+

J

2p̂2
, p̂ > p̂c. (2.76)

This mean field theory reproduces the qualitative behaviour of the simulation

data correctly. It predicts a continuous transition for all J , unlike the density

matrix field theory. However, there is a quantitative disagreement with the data.

This can be seen by comparing the results of this mean-field theory with the

simulation data in both the flexible (Fig. 2.6) and semi-flexible (Fig. 2.7) polymer

cases.

2.5.3 Other variational approaches

An equivalent approach to variational mean field theory other than the density

matrix formulation presented in Sec. 2.5.1 is the Hamiltonian approach, in which

the averages of the full Hamiltonian H are computed with respect to some simpler

zeroth level Hamiltonian H0 which can be evaluated exactly. It can be shown [10]

that the true free energy F is always less than or equal to a variational free energy

defined as

Fv[h] = F0 + 〈H −H0〉0, (2.77)

where F0 is the free energy corresponding to the zeroth level hamiltonian and h is

the set of parameters which characterises the zeroth order hamiltonian H0. The

values of the parameters are then to be determined by minimising the free energy

with respect to these parameters.

The hamiltonian for our system is given by

H = −p

2

N−1
∑

j=0

j−1
∑

k=0

(t̂k × t̂j) − J
N−1
∑

j=0

(t̂j.t̂j+1)

= −p

2

N−1
∑

j=0

j−1
∑

k=0

sin(θj − θk) − J
N−1
∑

j=0

cos(θj+1 − θj)

It was observed that the results of the density matrix approach can be exactly
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reproduced by choosing a zeroth order hamiltonian as

H0 = −h

N−1
∑

j=0

cos(θj −
2πj

N
), (2.78)

where h is an unknown variational parameter denoting the magnitude of the ex-

ternal field. This observation also makes sense physically since it is clear from the

form of the zeroth order hamiltonian that this ansatz ensures that the individual

angles θj are directed along 2πj/N , which is also the main input of the density

functional mean field theory as described in Sec. 2.5.1.

The variational free energy in this case is given by

Fv = −N ln(2π)−N ln(I0(h))− pN

4

I2
1 (h)

I2
0 (h)

cot(
π

N
)−NJ

I2
1 (h)

I2
0 (h)

cos(
2π

N
) +Nh

I1(h)

I0(h)
.

(2.79)

The value of the variational parameter h is to be determined by solving the equation

∂Fv[h]

∂h
= 0, (2.80)

and ensuring that the solution satisfies

∂2Fv[h]

∂2h
≥ 0. (2.81)

It is clear from the form of the variational free energy Eq. 2.79 that for N ≫ 1, the

pressure and bending rigidity can be combined into an effective pressure p̂eff =

p̂ + J , which was the case for the density matrix approach also, as was seen from

Eq. 2.52.

We also tried different choices for the zeroth order hamiltonian in order to see

whether the result might be improved. However, it was found that, among the

various choices that we used for the zeroth order hamiltonian H0, the best results

we obtained by our original choice, where the individual angles of the tangent

vectors are constrained to point along specific direction, as described in Eq. 2.78.

One obvious choice for the zeroth order order hamiltonian might seem to be

to constrain the difference in angles between adjacent tangent vectors, instead of

constraining the angles of the individual tangent vectors. We assume that the
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angles between adjacent tangent vectors to have a value of 2π/N . The zeroth

order hamiltonian in this case can be written as

H0 = −h
N−1
∑

j=1

cos
[

(θj+1 − θj) −
2π

N

]

. (2.82)

Using this choice for the zeroth order hamiltonian, the variational free energy is

obtained as

Fv = (N − 1) ln[I0(h)] − pN

2

I2
0 (h)I1(h) sin(2π/N)

I2
0 (h) − 2I0(h)I1(h) cos(2π/N) + I2

1 (h)

− NJ
I1(h)

I0(h)
cos(

2π

N
) + Nh

I1(h)

I0(h)
. (2.83)

As is immediately clear from the form of the variational free energy, the pressure

and bending rigidity terms cannot be combined in the limit of large N, as was done

for Eq. 2.52 and Eq. 2.79. Thus, this variational approach cannot yield the correct

asymptotic result.

Another ansatz tried out was to define the zeroth order hamiltonian as the sum

of cross products of nearest neighbour tangent vectors. This is then given by

H0 = −h

N−1
∑

j=1

sin(θj+1 − θj). (2.84)

However, the variational free energy computed with respect to this hamiltonian did

not succeed in explaining the observed variation of the average area as a function

of the pressure. Thus, within the range of choices that we tried for the variational

approach, the best results were obtained in the case when the individual tangent

vectors were constrained to lie, on average, along specified directions, as described

in this section as well as Sec. 2.5.1.

2.6 Scaling and Critical Exponents

The order parameter that describes the collapsed to inflated phase transition is

the ratio of the area to the maximum area. When N ≫ 1, the ratio is zero below

the transition and non-zero above it. The behaviour near the transition line can
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Figure 2.8: Area collapse for flexible and semiflexible polymers around the critical
point. This verifies Eq. (2.85). The data is for N = 80, 100, 120, 140, 150 for the
lattice problem.

be described by the scaling form

〈A〉
Amax

≃ N−φβg
[

(p̂ − p̂c)N
φ
]

, (2.85)

where φ, β are exponents and g(x) is a scaling function. When x → 0, then g(x) →
constant. When x → ∞, then g(x) ∼ xβ. When x → −∞, then g(x) ∼ 1/x [see

Eqs. (2.12) and (2.14)]. This immediately implies that

φ(1 + β) = 1. (2.86)

To obtain the one independent exponent, we resort to the scaling theory (see

Sec. 2.4). At p̂c, 〈A〉/Amax ∼ 1/
√

N . At the critical point, the area scales as N3/2.

Combining with Eq. (2.86), we obtain φ = 1/2 and β = 1. These exponents are

independent of J .

In Fig. 2.8, we show scaling plots when area is scaled as in Eq. (2.85) with φ

and β as above for the cases J = 0 and J = 0.5. The excellent collapse shows that

the Flory type scaling theory gives the correct exponents.

We now look at the fluctuations. Consider the compressibility χ defined as

χ =
1

A

∂〈A〉
∂p

. (2.87)

49



Chapter 2. Self-intersecting Polymer Rings

0

0.002

0.004

0.006

χ
/N

χ
/N

−1 0 1

(p̂ − p̂c)
√

N(p̂ − p̂c)
√

N

0.001

0.004

−1 1

Figure 2.9: The scaling plots for compressibility χ when scaled as in Eq. (2.89).
The data is for the lattice model with J = 0.5 and J = 0 (inset). The system sizes
are N = 80, 100, 120, 140, 150.

When p̂ < p̂c, χ can be calculated from Eqs. (2.12) and (2.14) to be

χ = − 1

p̂2
+

π2

p̂2
c sin2(πp̂/p̂c)

, p̂ < p̂c. (2.88)

Thus, χ diverges as (p̂c − p̂)−2 below the transition point. The behaviour near the

transition point is described by the scaling form

χ ≃ Nφγh
[

(p̂ − p̂c)N
φ
]

, (2.89)

where h(x) is a scaling function and φ = 1/2. When x → 0, then h(x) → constant.

When |x| ≫ 1, then h(x) ∼ x−γ. Comparison with Eq. (2.88) gives γ = 2.

In Fig. 2.9, we plot the compressibility scaled as in Eq. (2.89) for two different

values of J . A good collapse is obtained again showing that the Flory type scaling

theory gives the correct exponents. Similar, but noisier data can be obtained for

the continuum model. We thus conclude that the introduction of semiflexibility

does not affect any of the exponents describing the transition.

2.7 The lattice problem

In this section, we present some additional enumeration results for the lattice

problem. Consider the scaling theory presented in Sec. 2.4. The inextensibility of
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Figure 2.10: Collapse of the EN(A) for different values of N when plotted against
A2/N3. The data is for the lattice model with J = 0.

the polymer was captured by the R4/N3 term for a polymer of extent R. This was

obtained from a calculation based on the extension of a polymer under a force.

Here we present numerical evidence supporting this.

Let PN(A) be the probability (at P = 0) that a walk of length N encloses an

area A. In Appendix 2.4.3, we obtain [see Eq. (2.44)]

PN(A) =
1

N
I

(

A

N

)

, A,N → ∞,
A

N
fixed. (2.90)

where the scaling function I(x) is given by

I(x) = π sech2(2πx). (2.91)

We consider the corrections to the scaling form in Eq. (2.90). Let

EN(A) =
NPN(A)

I(A/N)
. (2.92)

Scaling theory predicts that EN(A) should be a function of one variable A2/N3.

This is verified in Fig. 2.10 where ln EN(A) is plotted against A2/N3 for a range

of system sizes.

We also study the behaviour of area when p̂ is very large. When p̂ ≫ 1, the

behaviour is seen to differ from the continuum version of the problem. It can be
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shown to be[32]

1 − 〈A〉
Amax

∼ 1

p̂2
, p̂ → ∞. (2.93)

This should be contrasted with the continuum case which varied as 1/p̂. In

Fig. 2.11, we show numerical confirmation of the prediction of Eq. (2.93).

2.8 Conclusions

In this chapter, we have proposed and studied lattice and continuum models for

self-intersecting pressurised semi-flexible polymers. Our work generalises results of

Ref. [21] to include a bending rigidity. A simple variational mean-field approach

provides very accurate fits to the Monte Carlo data for this problem in the absence

of semi-flexibility. The mean-field approach for J = 0 [42, 18, 21] was generalised to

the semiflexible case. The phase boundary between collapsed and inflated phases

as well as expressions for the area as a function of p and J in the different phases

were obtained analytically.

We have shown that the essence of the physics is captured through simple

Flory approximations. The scaling predictions of the Flory theory were verified

numerically for both the lattice and continuum cases.

We have also investigated the behaviour of the system in the extreme limits

of a fully pressurised polymer ring and a collapsed configuration. For the fully
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Figure 2.11: The asymptotic behaviour of area in the limit of large p̂ as computed
for the lattice model. The curves are straight lines when plotted against 1/p̂2.
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pressurised ring, we deduce the leading order asymptotic behaviour of the area

in both the continuum and lattice cases. The collapsed phase was studied using

the mapping to the quantum mechanical problem of an electron confined to two

dimensions and placed in a transverse magnetic field[12]. The analytic results thus

obtained fit the data accurately.

The usefulness of these results for more realistic systems lies in the fact that

both the restriction to the signed area as well as allowing for self-intersections at

no energy cost are irrelevant in the large p limit. The results obtained at large p

should therefore apply both qualitatively and quantitatively to the more realistic

case of a pressurised self-avoiding polymer, where the pressure term couples to the

true physical area and not to the signed area. This is the LSF model [27]. The

approach presented here is thus also useful in understanding the behaviour of a

larger class of models, some of which are more physical in character, but which

lack the analytic tractability of the model proposed and studied here.
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3
Asymptotic behaviour of pressurized

lattice polygons

3.1 Introduction

The study of lattice polygons weighted by area and perimeter is a central problem

in lattice statistics and combinatorics. Lattice polygons have been used to model

vesicles [27, 15], cell membranes [43], emulsions [44], polymers [36] and percolation

clusters [37]. In several cases, exact generating functions for classes of such poly-

gons have been obtained. In the introduction (Sec. 1.4) we provided an overview

of lattice polygons and the previous work done in this field. Also, a survey of

different kinds of lattice polygons and a review of related results can be found in

Refs. [5, 45].

In this chapter, we study the asymptotic behaviour of the area enclosed by

inflated polygons of fixed perimeter. We calculate the area for two special cases of

lattice polygons - convex and column-convex lattice polygons. We then conjecture

the appropriate form for the area of self-avoiding polygons in the inflated phase.

We first summarise known results for the problem of pressurised polygons,

based on the generating function

G(µ, p) =
∑

A,N

CN(A)epAµN , (3.1)

where CN(A) is the number of self-avoiding polygons of perimeter N and area

A, weighted by a chemical potential µ. Here p is the pressure which couples to
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the area A. Exact solutions exist for G(µ, p) when CN(A) is restricted to convex

polygons [29, 4, 3] or to column-convex polygons [6]. However, a general solution for

self-avoiding polygons is unavailable. Exact enumeration results for self-avoiding

polygons exist for all N up to N = 90 and for all A for these values of N [25].

A transition at p = 0 separates a branched polymer phase when p < 0 (for µ

sufficiently small) from an inflated phase when p > 0. At p = 0, the problem

reduces to that of the enumeration of self-avoiding polygons. The scaling function

describing the scaling behaviour (for p < 0) near the tricritical point p = 0 and

µ = κ−1, where κ is the growth constant for self-avoiding polygons, is also known

exactly [39, 9, 38].

Less is known about the inflated phase obtained for positive pressures p > 0.

However, this phase is of physical interest in the case of two-dimensional vesicles,

or equivalently pressurised ring polymers [27, 42, 18, 21, 32]. In the calculations

described in this chapter, we consider the partition function

ZN(p, J) =
∑

A,b

CN(A, b)epA−Jb, p > 0, (3.2)

where CN(A, b) is the number of self-avoiding polygons of area A with b bends. A

bending energy cost J per bend is introduced to incorporate semi-flexibility.

Some rigorous results exist for ZN(p, 0) when p > 0. Ref. [35] proved that

ZN(p, 0) = A(p)epN2/16(1 + O(ρN)) as N → ∞, (3.3)

for some 0 < ρ < 1, with A(p) some function of p. This result holds in the limit

where N → ∞ keeping p fixed. However, as we argue in Sec. 3.2, the relevant

scaling limit in the inflated regime is p → 0, N → ∞ keeping p̃ = pN finite.

The central results of the chapter are the following: We calculate expressions

for the area for convex [see Eq. (3.28)] and column-convex [see Eqs. (3.48), (3.52)

and (3.54)] polygons. In the limit p̃ ≫ 1, we show that for both convex and

column-convex polygons, the area is given by,

〈A〉 =
N2

16

[

1 − 32π2

3p̃2
+

64

p̃2
Li2 (1 − α)

]

+ O(e−p̃/8), (3.4)

55



Chapter 3. Asymptotic behaviour of pressurized lattice polygons

where Li2 is the dilogarithm function

Li2(x) =
∞
∑

m=1

xm

m2
, (3.5)

and, α = e−2J . We argue that this result should also extend to the self-avoiding

case and test this conjecture numerically.

The chapter is organised as follows. In Sec. 3.2, we present a justification of

the scaling limit we consider using a simply Flory-type argument. Sections. 3.3

and 3.4 contain the calculation of the area for convex and column-convex polygons

respectively. Section 3.5 contains the numerical analysis of self-avoiding polygons

and self intersecting polygons. A brief summary of our results and conclusions is

presented in Sec. 3.6.

3.2 Scaling in the inflated regime

The inflated regime of self-intersecting pressurised polygons has been well studied

in the continuum [42, 18, 21, 32]. In this case the appropriate scaling variable

is obtained by scaling the thermodynamic pressure with the system size, taking

p → 0, N → ∞ keeping p̃ = pN finite. A typical configuration in the inflated

phase has no self-intersections. Thus, we expect that the above scaling should also

hold for self-avoiding polygons.

This choice of the scaling variable can be motivated by simple scaling argu-

ments. The pressure contribution to the free energy in the inflated phase is given

by

F = −pA ≈ −pR2 ≈ −pN2, (3.6)

since 〈R〉 ∼ N in this regime. However, the free energy of a polygon of perimeter

N , being an extensive variable, scales linearly with N . In order to make these two

energies comparable, the pressure should scale inversely with N , i.e. p ∼ 1/N .

In Fig. 3.1, we show the variation of 〈A〉/Amax with pressure p, where Amax =

N2/16 is the maximum possible area. The data points collapse onto one curve

when p is scaled as p̃ = pN . The data is obtained from exact enumerations of

self-avoiding polygons on the square lattice [24].
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Figure 3.1: The variation of area with pressure p for self avoiding polygons on a
square lattice. Inset: When plotted as a function of the scaling variable p̃ = pN ,
the area curves for different values of N collapse onto each other. The system sizes
used are N = 50, 60, 70, 80, 90. The data is generated from exact enumerations of
the polygons on the square lattice [24].

3.3 Convex Polygons

In this section we calculate the equilibrium shape and area of a convex polygon

when p̃ > 0. Convex polygons are those polygons which have exactly 0 or 2

intersections with any vertical or horizontal line drawn through the midpoints of

the edges of the lattice (see Fig. 3.2). We calculate the area by determining the

shape of the convex polygon that minimises the free energy at fixed perimeter,

generalising the calculation presented in Ref. [37].

The perimeter N of a convex polygon is the same as that of its bounding

box, which, in general, is a rectangle. The equilibrium shape should however be

invariant about rotations by angle π/2. The bounding box of the equilibrium shape

is thus a square of side N/4. We can now calculate the shape in the first quadrant,

obtaining the shapes in other quadrants by symmetry.

Consider a coarse grained shape y(x) in the first quadrant with endpoints at

(0, N/8) and (N/8, 0). The free energy functional for this curve y(x) can be written
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y

x

Figure 3.2: A representative diagram of a convex polygon. Any vertical or hor-
izontal line (thick dashed lines) intersects the convex polygon at either 0 or 2
points.

as

L[y(x)] =

∫ N/8

0

dx σ(y′)
√

1 + y′2 − p̃

N

∫ N/8

0

dx y, (3.7)

where σ(y′) is the free energy per unit length associated with a slope y′ and p̃ is

the scaled pressure. The shape is then obtained obtained from Eq. (3.7) through

the Euler Lagrange equation (Wulff construction) [41],

d

dx

d

dy′

[

σ(y′)
√

1 + y′2
]

= − p̃

N
. (3.8)

The free energy can be calculated using a simple combinatorial argument. Consider

all possible paths starting from (0, y) and ending at (x, 0) with only rightward

and downward steps. The weight of a path is exp(−Jb), where b is the number
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Figure 3.3: A schematic diagram of a convex polygon. We determine the equation
of the bounding curve in the first quadrant.

of bends. When x, y ≫ 1, the weighted sum of these paths will be equal to

exp[−
√

x2 + y2σ(y′)], where y′ is the mean slope of the path.

Let C(x, y) be the sum of weighted walks constructed as above. Such walks may

be enumerated by splitting the path into sequences of rightward and downward

steps and associating the bending energy term to a sequence of downward (y) steps

begun and terminated by a step to the right. Then

C(x, y) =
∑

y1,y2,...,yX

∏

i

Wi δ
[

∑

yi − y
]

, (3.9)

where Wi is the weight associated with the ith step, which is given by

Wi = [α(1 − δyi,0) + δyi,0], (3.10)
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and α = e−2J , with J being the cost of each π/2 bend. The delta function enforces

the constraint that the steps taken in the y-direction must total y. The summation

is over all possible numbers of steps taken in the y direction at steps 1, 2 . . . x.

Performing a discrete Laplace transform, we obtain

∑

y

C(x, y)ωy ≈
[

1 + αω + αω2 + · · ·
]x

,

=

[

1 − (1 − α)ω

1 − ω

]x

. (3.11)

For large x, y, the inverse Laplace transform can be calculated using the saddle

point approximation. This gives

σ(y′) =
−f(ω∗)
√

1 + y′2
, (3.12)

where

f(ω) = y′ ln(ω) + ln[1 − (1 − α)ω] − ln(1 − ω), (3.13)

and ω∗ satisfies
df

dω

∣

∣

∣

∣

ω∗

= 0. (3.14)

This gives,
df

dω

∣

∣

∣

∣

ω∗

=
y′

ω∗ +
α − 1

1 − (1 − α)ω∗ +
1

1 − µ
= 0 (3.15)

This implies,

ω∗ =
−2y′ + α + αy′ +

√

−4y′α + α2 + 2α2y′ + α2y′2

2y′(α − 1)
(3.16)

Substituting Eqs. 3.12 and 3.13 into the Euler-Lagrange equation (Eq. 3.8), we

get,
d

dx

d

dy′ [−y′ ln ω∗ − ln[1 − (1 − α)ω∗] + ln(1 − ω∗)] = − p̃

N
. (3.17)

Integrating, we obtain,

ln ω∗ =
p̃x

N
+ c. (3.18)
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Substituting the form of ω∗ from Eq. 3.16, we obtain,

−2y′ + α + αy′ +
√

−4y′α + α2 + 2α2y′ + α2y′2

2y′(α − 1)
= Cep̃x/N . (3.19)

On simplifying, we get,

y′(x) =
αcep̃x/N

(cep̃x/N − 1)(1 + cep̃x/N(α − 1))
. (3.20)

Integrating once more, we obtain for the equilibrium curve,

y(x) =
N [ln(cep̃x/N − 1) − ln(1 + cep̃x/N(α − 1))]

p̃
+ c1,

⇒ c1e
p̃y/N =

cep̃x/N − 1

1 + cep̃x/N(α − 1)
. (3.21)

If we define the scaled coordinates X and Y as X = x/N and Y = y/N , the shape

satisfies the equation

cep̃X + cc1e
p̃(X+Y )(1 − α) − c1e

p̃Y = 1. (3.22)

Now, symmetry requires that the equilibrium curve be invariant under interchange

of X and Y , X ↔ Y . This implies that we must have

c1 = −c, (3.23)

and the equilibrium shape can be written as

cep̃X − c2ep̃(X+Y )(1 − α) + cep̃Y = 1. (3.24)

The remaining constant can be fixed by the boundary condition that y(x = N/8) =

0. This gives,

cep̃/8 − c2ep̃/8(1 − α) + c = 1,

⇒ c =
(1 + e−p̃/8) ±

√

(1 + e−p̃/8)2 − 4e−p̃/8(1 − α)

2(1 − α)
(3.25)
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Figure 3.4: Shape of the convex polygon as obtained from Eq. (3.24) for polygons
with J = 1. The different shapes correspond to pressure values p̃ = 1.0, 10.0, 50.0,
with the outer shape corresponding to largest pressure.

The sign is resolved by noting that the minus sign yields the correct asymptotic

behaviour for the area. Thus, finally, we get the constants as,

c =−c1 =
(1 + e−p̃/8) −

√

(1 + e−p̃/8)2 − 4e−p̃/8(1 − α)

2(1 − α)
, (3.26)

The shapes for different values of the scaled pressure are shown in Fig. 3.4 for a

convex polygon with J = 1.

The area of the convex polygon is obtained from the equilibrium shape as

〈A〉 = 4N2

∫ 1/8

0

Y dX, (3.27)

where the factor of 4 corresponds to the four quadrants. Doing the integration, we
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Figure 3.5: Area of a convex polygon from Eq. 3.28.

obtain

〈A〉 =
N2

16

[

−8 ln(c)

p̃
+

64

p̃2

(

Li2[c] − Li2[c ep̃/8]

+ Li2[c(1 − α)ep̃/8] − Li2[c(1 − α)]
)]

, (3.28)

where Li2 is the dilogarithm function. The area as predicted by this equation is

plotted in Fig. 3.5.

The asymptotic behaviour for large p̃ may be calculated from Eqs. (3.26) and

(3.28). When p̃ ≫ 1, the constant c can be written as,

c = e−p̃/8 + O(e−p̃/4). (3.29)

Substituting into Eq. (3.28), we obtain

〈A〉 =
N2

16

[

1 − 32π2

3p̃2
+

64

p̃2
Li2 (1 − α)

]

+ O(e−p̃/8). (3.30)

When J = 0, the last term on the right hand side of Eq. (3.30) is zero and the

relation reduces to

〈A〉 =
N2

16

[

1 − 32π2

3p̃2

]

+ O(e−p̃/8), J = 0. (3.31)
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y

x

Figure 3.6: A representative diagram of a column-convex polygon. Any vertical
line intersects the convex polygon at either 0 or 2 points.

3.4 Column-Convex Polygons

In this section, we calculate the shape and area of a column-convex polygon when

p̃ > 0. Column-convex polygons are those polygons which have exactly 0 or 2

intersections with any vertical line drawn through the midpoints of the edges of

the lattice. There, is however, no such restriction in the horizontal direction (see

Fig. 3.6). We calculate the area by determining the shape of the column-convex

polygon that minimises the free energy for a fixed perimeter.

The perimeter of a column-convex polygon has no simple relation to its bound-

ing box. We thus introduce a chemical potential µ that couples to the perimeter N .

Consider a shape y(x) with endpoints at (−βN, 0) and (βN, 0). The free energy
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Figure 3.7: A schematic diagram of a column-convex polygon. We determine the
equation of the bounding curve in the upper half plane.

functional for this curve y(x) is given by

L[y(x)] =

∫ βN

−βN

dx σ(y′)
√

1 + y′2 − p̃

N

∫ βN

−βN

dx y, (3.32)

where, p̃ is the scaled pressure, p̃ = pN . As before, σ(y′) represents the free energy

per unit length associated with a slope y′. The Euler-Lagrange equation then gives

the shape of the curve equilibrium curve y(x).

The free energy may be calculated as follows. Consider all paths starting from

(0,0) to (x, y). Let C(x, y) be the weighted sum of all paths. Then, we obtain

C(x, y) =
∑

y1,y2,...,yX

∏

i

Wi δ
[

∑

yi − Y
]

, (3.33)
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where Wi is the weight associated with the ith step and equals

Wi = µ|yi| [α(1 − δyi,0) + δyi,0] µ. (3.34)

Converting the δ-function in Eq. (3.33) into an integral, we obtain

C(x, y) =
1

2π

∫ 2π

0

dse−isy
∏

i

∑

yi

µ|yi|+1eisyi [α(1 − δyi,0 + δyi,0)],

=
1

2π

∫ 2π

0

dse−isy [f(µ, α, s)µ]x , (3.35)

where

f(µ, α, s) =
∑

y

µ|y|eisy[α(1 − δy, 0) + δy,0],

= 1 +
αµeis

1 − µeis
+

αµe−is

1 − µe−is
,

=
1 + (1 − 2α)µ2 + µ(α − 1)(eis + e−is)

(1 − µeis)(1 − µe−is)
. (3.36)

When y ≫ 1, Eq. (3.35) may be evaluated by the saddle point method. De-

noting y/x by y′, we obtain

σ(y′) =
1

√

1 + y′2
[is0y

′ − ln µ − ln f(µ, α, s0)] , (3.37)

where s0 is the saddle point and is given by,

d

ds0

ln f(µ, α, s0) = iy′. (3.38)

Substituting the expression for σ(y′) into the Euler-Lagrange equation (Eq. (3.8))

and using Eq. (3.38) we integrate once to obtain an equation for y′. This gives

y′ =
µ(α − 1)(ce−p̃x/N − c−1ep̃x/N)

1 + (1 − 2α)µ2 + µ(α − 1)(ce−p̃x/N + c−1ep̃x/N)

+
µce−p̃x/N

1 − µce−p̃x/N
− µc−1ep̃x/N

1 − µc−1ep̃x/N
. (3.39)
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The constant of integration c is fixed by the condition that the slope of the equi-

librium curve is 0 (y′ = 0) at x = 0. From Eq. 3.39, we then obtain,

0 =
µ(α − 1)(c − c−1)

1 + (1 − 2α)µ2 + µ(α − 1)(c + c−1)
.

⇒ (1 − α)(c − c−1)

1 + (1 − 2α)µ2 + µ(α − 1)(c + c−1)
=

c − c−1

(1 − µc)(1 − µc−1)
. (3.40)

Thus we can have either

c − c−1 = 0,

⇒ c = ±1. (3.41)

or,

(1 − α)(1 − µc)(1 − µc−1) = 1 + (1 − 2α)µ2 + µ(α − 1)(c + c−1),

⇒ µ2 = 1. (3.42)

Since µ cannot be a constant, the constant of integration is given by Eq. 3.41. We

now need to determine the sign of the constant. This is done by noticing that the

equilibrium curve y should have a maximum at x = 0, (see Fig. 3.7), i.e.

y′′∣
∣

x=0
< 0. (3.43)

Differentiating Eq. 3.39, we obtain,

y′′∣
∣

x=0
= −2p̃cµ

N
[

(α − 1)

1 + (1 − 2α)µ2 + 2µ(α − 1)c
+

1

(1 − µc)2
]. (3.44)

If we consider the case, α = 1 (J = 0), we obtain

y′′∣
∣

x=0

α=1
= −2p̃cµ

N

1

(1 − µc)2
, (3.45)

which is less than zero if c = 1. On the other hand, if we consider the case α = 0

(J = ∞), we obtain

y′′∣
∣

x=0

α=0
= −2p̃cµ

N
× 0 = 0. (3.46)
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If we now consider the variation of this second derivative at x = 0 as a function of

α, we obtain,

∂

∂α

[

y′′∣
∣

x=0

]

= − 2p̃cµ(1 − µ2)

N [1 + (1 − 2α)µ2 + 2µ(α − 1)c]2
, (3.47)

which is less than zero for all α if c = 1. Thus, this second derivative is a mono-

tonically decreasing function of α when c = 1, and since we have shown that this

derivative is zero for α = 0 and negative for α = 1, it follows that it must be less

than zero for all all values of α. Thus the constant of integration is given by c = 1.

We can now integrate once more to obtain the equation of the equilibrium curve

as

Y (X) = (3.48)

−c1

p̃
+

1

p
ln

[

(1 − µep̃X)(1 − µe−p̃X)

1 + (1 − α)µ2 + µ(α − 1)(ep̃X + e−p̃X)

]

.

As before, X and Y are defined as X = x/N and Y = y/N . The constant of

integration c1 is fixed by the boundary condition y(x = βN) = 0. This gives,

c1 = ln
(1 − µep̃β)(1 − µe−p̃β)

1 + (1 − α)µ2 + µ(α − 1)(ep̃β + e−p̃β)
. (3.49)

The parameter β that determines the endpoint of the curve is still undeter-

mined. It is chosen to be that β that minimises the free energy. The Lagrangian L0

for this curve Y (X) is given by substituting Eqs. (3.48) and (3.49) into Eq. (3.32):

L0 = 2βN

∫ 1

0

dz (3.50)

[

ln
(1 − µep̃zβ)(1 − µe−p̃zβ)

1 + (1 − α)µ2 + µ(α − 1)(ep̃zβ + e−p̃zβ)
− ln µ

]

.

The parameter β satisfies the equation

dL0

dβ
= 0. (3.51)
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This gives

g(µ, J) ≡ eβ0p̃ =
1 − µ + µ2 − µ3(1 − 2α)

2µ[1 + µ(α − 1)]
(3.52)

+

√

(1 − µ2)[1 − 2µ + µ2(1 − 2α)][1 − µ2(1 − 2α)]

2µ[1 + µ(α − 1)]
.

The chemical potential µ is determined by the constraint that total perimeter

is N . This is equivalent to

µ
dL0

dµ
= −N

2
. (3.53)

µ then satisfies the equation,

− p̃

4
= ln

1 − µg

g − µ
− ln g (3.54)

+
2 − a√
a2 − b2

ln
(a + b)(g + 1) +

√
a2 − b2(g − 1)

(a + b)(g + 1) −
√

a2 − b2(g − 1)
,

where a and b are given by

a = 1 + (1 − 2α)µ2, (3.55)

b = 2µ(α − 1). (3.56)

This solves the equilibrium macroscopic shape completely. The shapes given by

Eq. (3.48) are plotted in Fig. 3.8 for column-convex polygons with J = 1.0.

We now determine the asymptotic behaviour of area when p̃ ≫ 1. This corre-

sponds to the limit µ → 0. In this limit, g(µ, J) can be expanded as

g(µ, J) =
1

µ
− α + α(α − 1)µ − α(α − 1)2µ2 + O(µ3). (3.57)

and Eq. (3.54) reduces to

µ = e−p̃/8 + O(e−p̃/4). (3.58)

Substituting the values of g(µ, J) and µ from Eqs. (3.57) and (3.58) into Eq. (3.50),

we can obtain the Lagrangian in the (µ,N) coordinates to be

L0(µ,N) =
p̃N

32
+

2N

p̃
[Li2(1 − α) − π2

6
] + O(e−p̃/8). (3.59)
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Figure 3.8: Shape of the column-convex polygon as obtained from Eq. (3.48) for
polygons with J = 1. The different shapes correspond to pressure values p̃ =
3.0, 10.0, 50.0, with the outer curve corresponding to the largest pressure. Both
the X and Y axes are scaled by β.

The Lagrangian in the (p̃, N) coordinates can then be obtained by a Legendre

transformation as

L0(p̃, N) = L0(µ,N) + ln(µ)
N

2
, (3.60)

=
−p̃N

32
+

2N

p̃
[Li2(1 − α) − π2

6
] + O(e−p̃/8),

(3.61)

when p̃ ≫ 1.
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Figure 3.9: Area of a column-convex polygon from Eqs. 3.48, 3.52 and 3.54.

The area enclosed by the column-convex polygon is

A = −2N
∂L0

∂p̃
, (3.62)

=
N2

16

[

1 − 32π2

3p̃2
+

64

p̃2
Li2(1 − α)

]

+ O(e−p̃/8),

(3.63)

where the factor 2 in Eq. (3.62) accounts for the lower half plane. Interestingly,

Eq. (3.63) is identical to Eq. (3.30) which is the asymptotic area expression for

convex polygons.

3.5 Self-avoiding and self-intersecting polygons

In this section, we study the asymptotic behaviour of self-avoiding and self-intersecting

polygons. An analytic calculation along the lines of those presented for convex and

column-convex polygons is not possible for self-avoiding polygons. However, we

argue as follows: Convex polygons have no overhangs and the shape has four

cusps. Introducing overhangs in one direction gives column convex polygons, re-

ducing the number of cusps by two. Remarkably, the asymptotic behaviour of the

area in the column-convex case [Eq. (3.63] coincides with that for convex polygons
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Figure 3.10: The asymptotic behaviour of the area for self-avoiding (SAP) and self-
intersecting polygons (SIP). The solid lines correspond to the theoretical prediction
of Eq. (3.64). The data is in good agreement with Eq. (3.64).

[Eq. (3.30)]. It is therefore plausible that introducing overhangs in both directions

does not affect the asymptotic behaviour of the area, but merely removes the re-

maining two cusps, yielding a smooth shape. We therefore conjecture that the

asymptotic behaviour of the area of self-avoiding polygons is given by

〈A〉 =
N2

16

[

1 − 32π2

3p̃2
+

64

p̃2
Li2 (1 − α)

]

, p̃ ≫ 1. (3.64)

For self-intersecting polygons in the inflated phase, it is expected that the

typical shape of the polygon does not intersect itself. Therefore, we argue that the

area of self-intersecting polygons should also have the same asymptotic behaviour

as in Eq. (3.64).

These conjectures may be verified numerically. When J = 0, the area of self-

avoiding polygons may be obtained using exact enumeration data on the square

lattice [25]. This data is available for lengths up to N = 90 [24]. When J 6= 0,

there is no exact enumeration data available. We therefore resort to Monte Carlo

simulations. We shall briefly describe the Monte Carlo algorithm in the next

subsection. The system size used was N = 800.

For self-intersecting polygons, the area may be computed using exact enumer-

72



Chapter 3. Asymptotic behaviour of pressurized lattice polygons

ation methods. We briefly describe the algorithm for the case J = 0. Consider a

random walk starting from the origin and taking steps in one of the four possible

directions. For each step in the positive (negative) x-direction, we assign a weight

e−py (epy), where y is the ordinate of the walker. The weight is then epA for a

closed walk enclosing an area A. Let TN(x, y) be the weighted sum of all N -step

walks from (0, 0) to (x, y). It obeys the recursion relation,

TN+1(x, y) = e−pyTN(x − 1, y) + epyTN(x + 1, y)

+TN(x, y − 1) + TN(x, y + 1), (3.65)

with the initial condition

T0(x, y) = δx,0δy,0. (3.66)

For non-zero values of J , the ring is now a walk with a one-step memory, as

explained in Chapter 2 (Sec. 2.3.2). As discussed in Sec. 2.3.2 this can be converted

to a Markov process and the corresponding recursion relations are given by Eq. 2.8.

Finally, TN(0, 0) gives the partition function of the self-intersecting polygons on a

lattice. We used exact enumeration data up to N = 150.

In the case of all exact enumeration data, for each pressure point, we extrap-

olated to N → ∞ using finite size scaling. For each pressure value, we determine

the quantity Ω = 1 − A/Amax as a function of the systemsize N . This is assumed

to have a correction with systemsize as

ΩN = a +
b

N
. (3.67)

Using data for two N values, we can evaluate a as a function of N .

ΩN+2 = a +
b

N + 2
,

ΩN−2 = a +
b

N − 2
. (3.68)
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This gives for a and b,

aN =
(N + 2)ΩN+2 − (N − 2)ΩN−2

4
,

bN =
(ΩN−2 − ΩN+2)(N + 2)(N − 2)

4
(3.69)

Now using this value of a as a function of N for each pressure value, we do a further

fit of the form

aN = λ +
β

Nγ
. (3.70)

This is fitted numerically and the resulting answer λ is plotted as a function of

the pressure. The results of the numerical analysis is shown in Fig. 3.10. The

numerical data agree very well with the theoretical prediction.

3.5.1 Monte Carlo Algorithm

The Monte Carlo algorithm we used to simulate lattice polygons follows the one

described by Madras, Orlitsky and Shepp [30]. We shall now briefly describe this

algorithm.

The lattice polygon is placed on a background grid which maintains a record

of whether a specific site is empty or occupied. This ensures that checking for self-

avoidance is a local operation. We start from some initial configuration, which was

usually chosen to be a square, but it was verified that the results are independent of

the starting configuration. The algorithm consists of two basic moves, the inversion

move (Fig. 3.11) and the reflection move (Fig. 3.12). To determine which move is to

be performed, we randomly select two monomers. If the monomers are separated

by a distance of
√

2a, where a is the lattice spacing, i.e. the two randomly selected

points are separated by a lattice diagonal, then both moves are possible and we

choose either of them with a probability of 1/2. If this condition is not satisfied,

however, then only the inversion move is possible.

If the two randomly chosen points are designated by k and l, the inversion

move consists of rotating the section of the polygon between k and l about the

midpoint of the line joining the two points k and l. The endpoints themselves

remain unaffected by the transformation. The reflection move consists of reflecting

all the points between k and l about the perpendicular bisector of the line kl. As
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l

k

O

l’

k’

Figure 3.11: The inversion move for lattice polygons. All lattice points which lie
between the two points k and l are rotated by 180o about the point O.

l

k k’

l’

Figure 3.12: The reflection move for lattice polygons. All lattice points which lie
between the two points k and l are reflected about the perpendicular bisector of
the line joining the two points.

for the inversion move, the endpoints are unaffected by the operation. It can

be explicitly shown that a combination of these two moves leads to an ergodic

sampling of the phase space for two-dimensional SAWs [30].

Once we perform the relevant move, we find out the new positions of the polygon

on the background grid. If the relevant sites were unoccupied previously, then the

move is a valid one, and we can accept or reject in accordance with the Metropolis

criterion. We let the system equilibrate for 4× 106 steps and then run for 6× 106

steps to calculate the thermodynamic averages.
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3.6 Conclusions

We now summarise the basic results of this chapter. For different types of polygons,

we studied the dependence of area on pressure, in the inflated regime. For convex

and column-convex polygons, we calculated the area using the Wulff construction.

We found analytic expressions for these two classes of polygons for all positive

values of p̃, where p̃ = pN in the limit p → 0, N → ∞, keeping pN fixed.

The asymptotic behaviour in the limit p̃ ≫ 1 was observed to coincide for both

classes of polygons. We therefore conjectured that overhangs are not important in

the inflated regime, and hence that self avoiding polygons should have the same

asymptotic behaviour. This was verified numerically. We also showed numerically

that self intersections were irrelevant in the inflated regime. These results continue

to remain valid in the presence of a non-zero bending rigidity.

Interestingly, the asymptotic behaviour for continuum ring polymers differs

from that of lattice polygons. In the continuum, the analogous relation for the

area of pressurised rings is asymptotically [21, 32]

〈A〉
Amax

−→ 1 − 2π

p̃
, p̃ ≫ 1. (3.71)

This difference between continuum and lattice models is physically sensible in the

expanded limit, since curvature in the lattice case is concentrated in local regions

with π/2 bends but is delocalised along the contour in the continuum case.

While our conjectured result for self-avoiding polygons is in good agreement

with numerical data, it would be of interest to have a mathematically rigorous

derivation of this result. It may be possible to extend the methods of Ref. [35] to

this problem.
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4
Self-Avoiding Rings

4.1 Introduction

The shapes of three-dimensional fluid vesicles can be understood in terms of the

energy minimizing configurations of a simple curvature Hamiltonian for a closed

surface, computed under the constraints of fixed enclosed volume and surface area

[8, 23, 11]. The full three-dimensional problem can be studied only numerically[2,

34, 19]. However, equivalent models in one lower dimension should provide useful

insights into the three-dimensional case. Among the simplest of such models is a

model of a self-avoiding polymer ring, whose enclosed area is constrained through

a coupling to a pressure difference term [27, 14, 7, 15].

In the corresponding self-intersecting ring problem, defined by relaxing the

self-avoidance constraint, Rudnick and Gaspari [42, 18] showed that there occurs

a phase transition at a fixed value of the scaled pressure p̂ = pN . However, it has

been the general belief that no such transition at non-zero pressure occurs in the

case of polymer rings with self-avoidance, with the area generally believed to swell

gradually with increasing pressure [31, 22]. Leibler, Singh and Fisher [27] showed

that there exists a continuous phase transition at zero pressure, p = 0, which

separates the collapsed phase from the inflated phase. However, their study failed

to address satisfactorily the behaviour of the scaling functions for large arguments.

In later work, Maggs et. al., [31] showed that applying scaling arguments

consistently yields A ∼ N3. Thus, since a phase in which A ∼ N2 must describe

the physical state of a pressurized polymer at sufficiently large pressure values,

the expanded regime is inaccessible in arguments based on scaling about the fixed
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point at p = 0, the validity of the scaling assumptions of LSF being confined to

the regime in which p << 1/N .

In this Chapter, we shall study in detail the behaviour of the polymer ring in

the inflated phase in an appropriate scaling limit. We study a wide class of models

for self-avoiding ring polymers. We show that, by defining an appropriately scaled

pressure variable p̂ = pN , an additional fixed point separating a weakly inflated

from a strongly inflated phase becomes manifest at a constant value of the scaled

pressure p̂c. In the rest of this chapter, we shall study the behaviour of the system

around this new fixed point and characterise the nature of the phases on either

side of the transition.

4.2 General model and results

The original model of LSF considers a system of N beads of diameter a connected

by tethers with a maximum length R0 < 2a. This constraint on the maximum

length, while bestowing a certain advantage in maintaining the self- avoiding con-

dition, obscures certain interesting features of the self-avoiding ring. In addition,

modeling the connections between the beads as tethers is a rather special scenario.

We use a more generalised model for the self-avoiding ring, beads of diameter a

connected by springs of maximum length R0, where a < R0 ≤ ∞. We also use

different potentials V (x,R0) for the springs connecting the beads, and comment

on the changes in the results obtained for different spring potentials. In Section 4.4

we shall provide a much more detailed description of the models we study.

We now provide a summary of the main results of our analysis. The original

work of by Leibler, Singh and Fisher [27] and later study by Maggs et. al. [31]

showed that there is a continuous second order phase transition at p = 0 from a

branched polymer configuration to an inflated regime where 〈A〉 ∼ pN3. At the

transition point, the ring is described by self- avoiding walk statistics, 〈A〉 ∼ N3/2.

The area around p = 0 is described by

〈A〉
N3/2

= f(pN3/2). (4.1)

Maggs et. al. showed that the scaling function for positive pressures may be
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written in the form,

f(x) = a + bx, (4.2)

which reproduces both the N3/2 scaling at p = 0 and the N3 scaling for large values

of the argument.

Since in the truly inflated regime, the area must scale with N2, the pressure

in this regime must scale as 1/N in order for the Maggs analysis to hold. In fact,

it is the scaled pressure p̂ ∼ pN which is the relevant variable in this regime. In

order to take into account finite size corrections, we define the scaled pressure as

p̃ =
p

4
cot
( π

N

)

N→∞−→ pN

4π
. (4.3)

We now summarize our basic results:

• For point particles connected by quadratic springs, i.e. V (x) = 1
2
kx2, the

area diverges at a finite value of the scaled pressure, p̃ = k/2.

• If there is a finite maximum extension R0, then there is a transition such

that limN→∞
R0→∞

A
Amax

is zero below the transition and non-zero above it.

• This transition separates a weakly expanded phase, in which the area scales

as N2, but is otherwise insensitive to the value of the cutoff scale R0 - which

represents the maximum bond-length, from a strongly expanded phase, in

which the area scales as (NR0)
2.

• Depending on the form of the potential, the transition between the weakly

expanded and strongly expanded phases can be either first-order or continu-

ous.

• For large R0, this transition, if continuous, can be characterized through the

scaling form for the average area:

〈A〉
N2

∼ Rθ1
0 f((p̃ − p̃c)R

θ2
0 ). (4.4)

where we estimate the values θ1 ≈ 0.67 ± 0.1 and θ2 ≈ 1.33 ± 0.1 from

simulations. Note that the high pressure limit of the area implies that the
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condtion θ1 + θ2 = 2 must always be satisfied. For p̃ > p̃c, we show that
〈A〉
N2 ∼ (1 − 1/p̃)R2

0, while for p̃ < p̃c, we have 〈A〉
N2 ∼ (p̃c − p̃)−θ1/θ2 .

• The transition can be characterized as a shape transition, in terms of the

asphericity A2 which measures the deviation away from spherical symmetry.

Below the transition, the asphericity is found to be independent of R0. while

above the transition it scales as R2
0.

• The transition can also be studied in terms of the variation of the angle

between neighbouring bonds, θ. This goes from some intermediate value be-

low the transition to the maximum possible value corresponding to a regular

polygon shape above the transition.

• For a model with a finite value of the bead diameter to the maximum bond

length ratio, a/R0, there is a sharp crossover from the weakly to the strongly

expanded phase. The phase transition then occurs if we take the limit

R0/a → ∞.

Physically, this implies a scenario in which the ring expands without feeling

the effect of the maximum extension R0 below the transition, and feels it as soon

as it reaches the critical pressure.

4.3 Scaling analysis

In this section, we shall present Flory-type scaling arguments for the self-avoiding

rings. We follow the spirit of the scaling arguments that predict the finite pressure

transition for self-intersecting rings, and then examine the corresponding predic-

tions for the self-avoiding ring case.

The relevant terms in the Flory-type free energy are the contributions from self-

avoidance, the pressurisation energy, the entropic term and the stretching energy.

Thus the free energy can be written as,

F ≃ FSA + Fpressure + Fentropy + Fstretching, (4.5)

≃ FSA − pR2 +
R2

N
+ Fstretching,
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The stretching free energy depends on the maximum bond length R0. The exact

dependence can be computed from the form of the potential between the bonds

and it can be shown to be of the form Fstretching = R4

R2
0N3 (See Sec. 4.7) . Aside from

the self-avoiding term, the remaining terms are exactly the same contributions that

occur for the self-intersecting ring. As in that case, we can combine the second

and third terms by defining a scaled pressure, p̃ = pN ,

F ≃ FSA +
R2

N
(1 − p̃) +

R4

R2
0N

3
. (4.6)

This leads us to expect that a phase transition occurs at some constant value of

the scaled pressure pN .

In order to compute the exponents predicted by such a scaling analysis on either

side of the transition, we need to estimate the contribution from the self-avoidance

term.

The usual contribution from the self-avoidance is written as FSA = N2/R2,

which is estimated by assuming the N monomers to be distributed uniformly over

a region of extent R, giving rise to a monomer density of ρ = N/R. The free

energy is then estimated from FSA =
∫

ρ2dV , where dV is the volume element.

This form of the free energy then predicts a transition at p̃c but with different N

exponents on either side of the transition. This predicts,

〈A〉 ∼ 〈R2〉 ∼











N3/2/
√

1 − p̃, p̃ < p̃c

N5/3R
2/3
0 , p̃ = p̃c

N2R2
0(p̃ − 1), p̃ > p̃c

(4.7)

This form of the free energy thus fails to capture the fact that the area goes as N2

on either side of the transition, instead yielding different exponents in the three

regimes. Interestingly, however, this does predict the divergence of the area with

pressure below the transition point correctly (Eq. 4.25). Also, this yields the

correct dependence of the area on the maximum bond length R0 in all the three

regimes (Eq. 4.26).

A fully consistent scaling analysis should yield the fact there is no different N

scaling on either side of the transition. This can be obtained by assuming that the

contribution to the free energy from self-avoidance can be written as FSA = N2/R.
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This term can be interpreted if we assume that the polymer conformations are

confined to a tube of diameter d, with d independant of R. This form of the free

energy predicts for the area,

〈A〉 ∼ 〈R2〉 ∼











N2

(1−p̃)2/3 , p̃ < p̃c

N2R
4/5
0 , p̃ = p̃c

N2R2
0(p̃ − 1), p̃ > p̃c

(4.8)

Thus, both of the above Flory-type scaling theories predicts the existence of

a transition at a critical value of the scaled pressure. However the N2 scaling on

either side of the transition implies that the fluctuations are confined to within an

annulus independent of the radius of the ring.

4.4 Definition of Models

The original version of the LSF models the self-avoiding ring as a system of N

beads of diameter a connected by tethers with a maximum length l0 < 2a. This

constraint on the maximum length ensures that the self-avoiding nature of the

ring is preserved. However, such a model has the difficulty that the minimum

area allowed due to the finite diameter and the maximum area possible due to the

length of the tether, are very close in value. This tends to make finite size effects

more pronounced and the interpretation of various results may become ambiguous.

In order to conclusively prove the presence of a finite pressure transition, we study

the self-avoiding ring problem in the context of slightly different models, which

differ in the nature of the beads as well as the nature of the bonds between them.

4.4.1 Model A: Infinitely Extensible self-avoiding ring with

point beads connected by quadratic springs.

The first model we study is a self-avoiding generalisation of the Rudnick Gaspari

Model for self-intersecting rings [42, 18]. In this model, the polymer ring is consti-

tuted of N monomer beads of radius zero, connected by springs which can extend
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to infinity in accordance with a quadratic spring potential,

V (r) =
1

2
kr2, (4.9)

where r is the separation between two monomers.

The self-avoiding nature of the ring is taken into account by ensuring that the

springs never intersect each other. It is known that the size of such non-intersecting

polymer rings of zero thickness scale with the chain length N in the same way as a

self-avoiding polymer with a finite excluded-volume [20, 33]. Thus we expect that

the results obtained within this model will translate more generally into the case

for self-avoiding polymer rings. However, as in the Rudnick-Gaspari Model, the

absence of any upper cutoff on the spring length implies that it is not possible to

access the truly inflated regime within this model.

4.4.2 Model B: Self avoiding ring with point beads con-

nected by quadratic springs with a finite cutoff.

In order to access the inflated phase of the polymer ring, we need to impose an

upper cutoff R0 on the length of the springs connecting the monomers in the

spring, and this sets an upper bound on the maximum area accessible by the ring,

Amax ≃ NR2
0

4 tan( π
N

)
. In this model, we achieve this by defining the spring potential to

be infinity beyond the cutoff length R0. Thus in this model, the spring potential

is given by

V (r) =
1

2
kr2, r < R0 (4.10)

= ∞, r ≥ R0.

The monomers are still point particles and self-avoidance is enforced by ensuring

that the springs never intersect each other.

The spring constant k is a parameter of the model, and the critical pressure

value can be determined as a function of this parameter from a simple T = 0 calcu-

lation. This can be seen easily by combining the contributions of the pressurization
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energy and the spring energy. The pressurization energy is given by,

Fpressure = −pA = −4π2p̃
R2

N
. (4.11)

The spring energy is given by,

Fspring = N
1

2
k
(2πR

N

)2
= 2π2k

R2

N
. (4.12)

Adding these terms yield,

Fpressure + Fspring = 2π2[−2p̃ + k]
R2

N
, (4.13)

which then gives an expression for the critical pressure as a function of the spring

constant,

p̃c =
k

2
. (4.14)

As a special case of this model, if the spring constant vanishes, k = 0, then we

have a self-avoiding ring with point particles connected by tethers.

4.4.3 Model C: Self avoiding ring with point beads con-

nected by springs with a logarithmic potential.

In this version of the model, we again modify the infinitely extensible version of

the self-avoiding ring, as defined in Model A, to introduce an upper cutoff length

R0 on the springs. In this case, the upper bound is introduced by replacing the

quadratic potential of the springs by a logarithmic potential which diverges as the

length of the springs approaches R0 while reducing to the quadratic potential for

small values of the spring length. This is the Finitely Extensible Nonlinear Elastic

(FENE) model for the polymer ring. The spring potential is thus now given by

V (r) = −R2
0 ln

(

1 − r2

R2
0

)

, r < R0 (4.15)

= ∞, r ≥ R0

As in the case of Models A and B, the monomers constituting the ring are point

objects and the self-avoidance constraint is also satisfied in a similar manner.
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4.4.4 Model D: Self-avoiding ring with finite beads con-

nected by springs.

The final model we study defines a more general model for self-avoiding rings. The

ring is modeled as N self-avoiding beads of diameter a connected by springs with a

maximum length R0. Self-avoidance is ensured by ensuring that no bead overlaps

with each other as well no bonds intersect each other. The spring potential is a

simple quadratic potential with a cutoff at the maximum bond length R0, i.e.,

V (r) =
1

2
kr2, r < R0 (4.16)

= ∞, r ≥ R0.

The controlling parameter in this model is the ratio of the bead diameter to the

maximum bond-length,

0 ≤ δ ≡ a

R0

< 1. (4.17)

In the limit δ = 0, we recover the model with point beads, whereas for δ > 0.5,

we obtain the analog of the LSF model, albeit with springs instead of tethers. In

this regime, self-avoidance of beads automatically implies self-avoidance of springs.

Thus for δ > 0.5, only bead intersections are important, while below this point,

both bead and bond intersections play a role in maintaining self-avoidance.

The spring constant is chosen to be k = 2, noting that the results for other

values of k may be obtained by simply rescaling the pressure axis as p̂ → 2p̂/k.

4.5 Monte Carlo algorithm

In this section, we will provide a detailed description of the Monte Carlo algorithm

used to simulate the self-avoiding ring. The initial configuration is chosen to be

a regular polygon of side l = qR0 (see Fig. 4.1 ), where, a/R0 < q ≤ 1. It was

verified that different initial conditions produce the same results.

In order to efficiently compute self-intersection checks for beads and bonds,

we place the polymer ring onto a background lattice. For the bead-spring model,

the background lattice is a square lattice with sides a/
√

2, which ensures that

at most only one bead can occupy one background square. For the models with
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Figure 4.1: Schematic representation of initial configuration.

point particles, we choose appropriate sizes for the background grid, so that only

few grids need to be checked in order to ensure self-avoidance. Typically, for

simulations above the transition pressure, we choose grid squares with size R0,

while below the transition, the square has sides of order 1.

The basic Monte Carlo move consists of of picking any one bead at random

and giving it an arbitrary kick (Fig. 4.2). The magnitude of the kick is chosen

randomly between 0 and some parameter A, and the direction chosen to be some

random angle between 0 and 2π. The parameter A is tuned such that roughly

about half of all attempted moves are accepted.

The first check we perform is to ensure that the new bond lengths after the kick

do not exceed the maximum bond length R0 or becomes smaller than the diameter

of the bead a. Since perturbing a single bead implies that only two bond lengths

are modified in a move, this is a local check.

If the bond length constraint is satisfied, next we check that the new bead

position does not overlap with any of the existing bead positions. We determine

the new position of the perturbed bead with respect to the background grid. If the

new grid square on which the bead is situated is already occupied, we reject the

move. Furthermore, for the eight nearest neighbour grid boxes, we check if they

are occupied, and if they are, then we ensure that the distance between the center
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Figure 4.2: A sample attempted move.

of that bead and the perturbed bead is greater than the bead diameter (Fig. 4.3).

The background grid thus reduces the self-avoidance check of the beads also to a

local operation.

After ensuring that beads do not overlap, we need to check that the bonds do

not intersect each other. At every point in the simulation, we keep track of the

maximum bond length in the system. Then for a given grid size, this gives a radius

within which we need to check the grids for intersecting bonds. For each of the two

bonds which are affected by the perturbation, we calculate the point of intersection

with all the bonds which lie within the radius as determined by the maximum

bond length, except the nearest neighbour ones. If the point of intersection lies

on the bond itself, we reject the attempted move (Fig. 4.4). Since this check is

potentially more time consuming than the other checks, in the simulations, this

check is performed only if the previous two checks have been satisfied.

Depending on which of the models described in Section 4.4 we are interested in

simulating, we may or may not need all of the above checks. Only Model D, the

generalised self-avoiding ring, needs all three checks, any of the others requiring

only a subset of the three.

After we have verified that the attempted move satisfies all the relevant con-

straints, we calculate the energy of the new configuration. The total energy is the
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Figure 4.3: An attempted move violating self-avoidance of beads.

sum of the pressure contribution and the appropriate spring energy for the model.

The move is accepted or rejected by the Metropolis algorithm. If the change in

energy due to the perturbation is ∆E, then the move is accepted with a probability

prob = min(1, e−∆E/kBT ). (4.18)

which is the Metropolis acceptance rule. If the move is rejected, then we restore

the perturbed bead to its old coordinates before the kick.

The simulation is allowed to run for T1 Monte Carlo steps in order to allow

the system to equilibrate before we start to take measurements of the various

quantities we are interested in. After equilibration, the simulation is run for a

further T2 steps where we take measurements. Typically, T1 ∼ 107 steps while

T2 ∼ 5 × 107, although the exact values may depend on the system size being

simulated. Reading are typically taken at a gap of 2 − 5 Monte Carlo steps to

ensure that different readings are not correlated.
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Figure 4.4: An attempted move violating self-avoidance of bonds.
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Figure 4.5: A snapshot of an actual configuration below the finite pressure transi-
tion. This configuration was obtained for the generalised self-avoiding ring, Model
D.

Figure 4.6: A snapshot of an actual configuration above the finite pressure transi-
tion. This configuration was obtained for the generalised self-avoiding ring, Model
D.

90



Chapter 4. Self-Avoiding Rings

4.6 Results

4.6.1 The order parameter

The phase transition from the weakly inflated to the strongly inflated phase is

studied in terms of the area order parameter. We define the order parameter as

the ratio of the average area to the maximum allowed area, Φ = A/Amax. Here,

Amax = 1
4
NR2

0 cot( π
N

). In the thermodynamic limit, defined as the double limit

N → ∞ and R0 → ∞, this order parameter should be zero below the transition

p̃ < p̃c and nonzero above it.

A second order continuous phase transition is characterised by a peak of the ap-

propriately defined susceptibility at the transition point p̃c. The area susceptibility

is defined as

χ =
1

A

∂〈A〉
∂p̃

=
〈Φ2〉 − 〈Φ〉2

N〈Φ〉 . (4.19)

There exists a continuous phase transition as a function of the maximum bond

length R0 in several of the models we study. The order parameter around the

critical point can then be described by a scaling function of the form

Φ = Rθ1
0 f((p̃ − p̃c)R

θ2
0 ). (4.20)

Similarly, the susceptibility collapse around the transition can be described by a

scaling function

χ = Rζ1
0 f((p̃ − p̃c)R

ζ2
0 ). (4.21)

We provide estimates of the various critical exponents from the Monte Carlo sim-

ulation.

4.6.2 Characterising the shape

This phase transition at a finite value of the critical pressure has implications for the

shape of the ring on either side of the critical point. For low values of the pressure,

below the transition point, the ring has an aspherical shape. Immediately above

the transition, the ring assumes the shape of a regular N -gon. Any subsequent

increase of the pressure inflates the ring as a whole without changing the overall
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shape.

θ

Figure 4.7: The angle between two neighbouring bonds.

The shape of the ring can be characterised by the gyration tensor. In particular,

the sum of eigenvalues of the gyration tensor gives the radius of gyration for the

configuration, while the difference between the eigenvalues measures the asphericity

of the shape. The gyration tensor is defined as,

Tα,β =
1

N

N
∑

i=1

(Xi − XCG)(Yi − YCG), (4.22)

where, (XCG, YCG) represents the coordinates of the center of mass of the polymer

ring. If we denote the eigenvalues of the gyration tensor as λ1 and λ2, the radius

of gyration and the two-dimensional asphericity are defined as

R2
g = λ1 + λ2 (4.23)

A2 =

(

λ1 − λ2

λ1 + λ2

)2

(4.24)

The asphericity is 0 for a perfectly spherical shape and 1 for a rod-like shape. We

find that the asphericity is non-zero below the transition and goes to zero above

it.

In addition to the asphericity, the extended shape of the ring above the transi-

tion can also be inferred by studying another property, the ratio of the average area

to the average perimeter squared. If the ring assumes a circular shape with radius

R, the quantity area by perimeter squared reaches its maximum value, 1/4π. This

is borne out by our simulations which shows that the ratio 4πA
P 2 is less than 1 below
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the transition and becomes 1 immediately above it.

Another direct measure of the shape change on either side of the fixed point is

provided by studying the variation of the angle included between two neighbouring

bonds, denoted by θ (Fig. 4.7). Across the transition, the angle goes from some

intermediate value to the regular polygon value, θmax = π − 2π
N

.

4.6.3 Model A results

Fig. 4.8 shows the divergence of the area with the scaled pressure for Model A.

In this model, there is no upper bound on the maximum length of the springs

joining the monomers and the area diverges as we approach the critical point. The

susceptibility also diverges as we approach the critical point. This is shown in

Fig. 4.9.
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Figure 4.8: The divergence of the area as a function of the scaled pressure for
the model with infinitely extensible springs, Model A. This is the self-avoiding
version of the Rudnick-Gaspari model. The average area diverges as the pressure
approaches the critical pressure.
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Figure 4.9: The area susceptibility as a function of the scaled pressure for the
model with infinitely extensible springs, Model A. The susceptibility diverges as
the pressure approaches the critical pressure.
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4.6.4 Model B results

In Fig. 4.10, we plot the order parameter, the ratio of the average area to the

maximum area as a function of the scaled pressure for Model B, point particles

connected by quadratic springs. For a fixed value of the spring constant k, there

is a transition at a fixed value of the scaled pressure. The order parameter is zero

(provided R0 → ∞), below the transition and non-zero above it, showing a first

order like jump at the transition point.
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Figure 4.10: The order parameter plot for the model with quadratic springs with
a maximum allowed length, Model B. The maximum bond length is R0 = 10 for
all models. The order parameter is zero below the transition and rises up sharply
above it, approaching the maximum value, where 〈A〉 approaches Amax. The figure
shows the order parameter plot for three different values of the spring constant k.

As can be seen from Fig. 4.10, as we decrease the spring constant k, the critical

pressure also decreases. We plot the value of the critical pressure as a function of

the spring constant in Fig. 4.11, verifying the linear relationship given by Eq. 4.14.

Fig. 4.12 shows the probability distributions for the order parameter for model

B at three different values of the scaled pressure. For pressure values smaller than

or greater than the critical pressure, the probability distribution is sharply peaked

about the most probable pressure value. However at the critical pressure, all area

values become equally likely and the probability distribution becomes flat. This

curve is plotted at a spring constant value of k = 2, but similar behaviour is
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Figure 4.11: The variation of the critical pressure as a function of the spring
constant for Model B. The critical pressure values were were determined from data
for systems with N = 16 and R = 10.

observed for other values of the spring constant also.

In Fig. 4.13 we show the susceptibility plot with pressure for Model B, point

particles connected by quadratic springs. There is a non-trivial N scaling at the

transition point suggestive of a first order transition even when R0 is finite.

In Fig. 4.14, we plot the asphericity as a function of the scaled pressure p̃ for

Model B, point particles connected by quadratic springs. The asphericity is non-

zero below the transition and zero beyond it, demonstrating that the ring becomes

roughly circular beyond the transition point.

Another quantity that characterises the shape of a two-dimensional object is

the ratio of the area to the perimeter squared. If the shape is circular and radius

of the circle is R, the perimeter is P = 2πR while the area is A = πR2. Thus

the ratio A/P 2 should go to 1/4π, or 4πA/P 2 should go to one. This behaviour is

demonstrated for Model B in Fig. 4.15.
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Figure 4.12: The probability distribution plots at three different pressures for the
model with quadratic springs with a maximum allowed length, Model B. The spring
constant is chosen as k = 2. The data shown is for N = 64 and R0 = 10. For
pressure values far away from the transition, both below and above the critical
pressure, the probability distribution is sharply peaked about the most probable
area value. However, at the transition point, the probability distribution is flat,
indicating that all values of the area are equally sampled at the transition point.
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Figure 4.13: The susceptibility plot for different values of N for Model B, quadratic
springs with a cutoff R0 = 10, and spring constant k = 2. There is a nontrivial
scaling with system size at the transition.
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Figure 4.14: The asphericity plot on either side of the transition for the model
with quadratic springs, Model B, with R0 = 30 and k = 2. The shape becomes
circular above the transition and consequently the asphericity becomes zero.
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Figure 4.15: Ratio of area to perimeter squared for Model B. The maximum bond
length is R0 = 30 and the spring constant is k = 2. Above the transition, this
ratio becomes 4π, indicating that the shape is a regular N -gon in this regime.
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4.6.5 Model C results

In Fig. 4.16 we plot the corresponding order parameter plot for Model C, point

particles connected by logarithmic springs. The order parameter is zero below the

transition and nonzero above it, in the limit that R0 → ∞. However, unlike the

quadratic potential case, the transition in this case is second order, with the order

parameter showing no jump at the critical point.
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Figure 4.16: The order parameter plot for the model with logarithmic springs with
a maximum allowed length, Model C. The maximum bond length used is R0 = 30.
The order parameter is zero below the transition and nonzero above it.

In order to study the dependence of the area on the system size N below the

transition, we plot the area after subtracting the contribution at zero pressure as a

function of the scaled pressure. The contribution at p = 0 scales differently with N

and hence subtracting out this contribution gives cleaner statistics. This is shown

in Fig. 4.17 for Model C, point particles connected by logarithmic springs. The

data shows that the area scales with the square of the system size, 〈A〉 ∼ N2 even

below the transition.

It is also interesting to study how the area diverges with pressure as we approach

the critical point. It is found that the divergence of the area, in the limit R0 → ∞
can be described by

〈A〉 ∼ 1

(p̃c − p̃)η
, (4.25)
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Figure 4.17: The area collapse as a function of the scaled pressure p̃ after subtract-
ing out the contribution at p = 0 for the model with logarithmic springs with a
maximum allowed length, Model C. The maximum bond length used was R0 = 30.
As discussed in text, area goes as N2 below the finite pressure transition also.

with η ≃ 0.5± 0.1 from simulation data. This behaviour is illustrated in Fig. 4.18.

Since there is no transition as a function of the system size, the susceptibility

behaviour should not show any non-trivial scaling form. This is verified in Fig. 4.19

for Model C for three different system sizes.

Although the area scales as the square of the system size throughout the inflated

phase, the scaling with the maximum extension R0 of the bonds differs on either

side of the transition. Below the transition, the area is independant of R0, while

in the strongly inflated phase, the area scales with R2
0 as well as N2. Around the

transition point then, the area can be collapsed by a single scaling form. This is

shown in Fig. 4.20 for Model C with a system size N = 512. The scaling equation

that collapses data for different values of R0 around the critical point is given by

〈A〉 ∼ Rθ1
0 f [(p̂ − p̂c)R

θ2
0 ], (4.26)

with θ1 ≃ 0.67 ± 0.1 and θ2 ≃ 1.33 ± 0.1.

The scaling collapse of the susceptibility for Model C, with systems of the

same system size (N = 512) but different maximum bond lengths R0 is shown in
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Figure 4.18: The divergence of area with pressure near the critical point for a
range of system sizes and maximum bond lengths. The data is for the model with
logarithmic springs, Model C.

Fig. 4.21. The scaling equation is given by Eq. 4.21. The critical exponents are

found to be,

ζ1 = ζ2 ≃ 1.33. (4.27)

In Fig. 4.22 we show the variation of asphericity for different values of the

system size. The asphericity goes from being non-zero below the transition to

zero above it, indicating that the configuration is spherically symmetric above the

critical pressure. Below the critical pressure, the asphericity goes as the inverse of

the system size.

In Fig. 4.23, we study the dependence of the asphericity on the maximum bond

length R0 above the critical pressure. The inverse of the asphericity is found to

scale as the square of maximum extension, A−1
2 ∼ R2

0. The data shown is for Model

C. The inset shows the unscaled plots for the asphericity.

Fig. 4.24 plots the ratio 4πA/P 2 as a function of the pressure. As discussed

earlier, this quantity also measure the shape of the ring. As expected this ration

goes to 1 above the transition point, indicating that the shape becomes circular

beyond this point.

The angle between two neighbouring bonds also undergoes a transition at the

critical pressure, rising from an intermediate value to the maximum value π−2π/N .
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Figure 4.19: The variation of χA with p̃ for different N . The data is for the
logarithmic spring model, Model C, with R0 = 30. The curves collapse on top of
each other.

This behaviour is shown in Fig. 4.25.

The radius of gyration, Rg provides a measure of the size of the ring. If we

subtract the contribution at p = 0, we can easily see that the square of the radius

of gyration scales with the square of the system size. This behaviour is expected,

since the average area, which is of the order of R2
g, is known to scale as N2. This

is shown in Fig. 4.26 for Model C.
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4.6.6 Model D results

For the generalised self-avoiding ring problem, as defined by Model D, different

limits may be explored by tuning the parameter δ = a/R0. We do this by fixing

the bead diameter a = 1.0 and then varying R0 and looking at the order parameter.

For large values of R0, there is a discrete jump at a critical pressure p̂c. As we

decrease the value of R0, the jump becomes progressively less pronounced until

for very small values of R0, R0 = 2a, the order parameter curve does not appear

to show any discontinuities. This is shown in Fig. 4.27. In order to understand

the full features of the problem, we plot the susceptibilities for different values of

R0. For R0 = 2a, the susceptibility peak scales as pN3/2, the LSF scaling variable

(see Fig. 4.28). When plotted against p̂ = pN , the peaks shift toward zero with

increasing system size. This is shown in the inset of Fig. 4.28. The opposite limit

is demonstrated in Fig. 4.30 for R0 = 30a, where the susceptibility peak clearly

scales as a function of p̂ ∼ pN . For intermediate values of R0, say R0 = 3a, we

observe two coexisting peaks in the susceptibility plot. This is shown in Fig. 4.29.

The peak on the right scales as pN whereas the peak on the left scales as pN3/2.

This is shown in the inset of Fig. 4.29. Although an apparent discontinuity exists

for R0 ≥ 3, the fact that all the curves appear to have a common intersection

point as well as the observation of a large pretransitional variation, suggest that

this may be a sharp crossover. Since there is good evidence for a transition in the

limit of zero bead size (as in models A, B and C), it would seem that there is a

singularity only in the limit a/R0 → 0, corresponding either to a vanishing bead

size or the limit when R0 → ∞.
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4.7 Discussion

Clearly, in the light of the different results presented in the previous section, we

need to provide a modified approach to the scaling description that can explain the

observed facts. The results of the previous section shows that the scaling variable

pN is the correct choice to describe the system in the inflated phase.

At a constant value of this scaled pressure, p̃c, we show that there exists a phase

transition in the limit that N → ∞, R0 → ∞, while any finite value of R0 shows

a crossover effect. We obtain a scaling form for the area as well the susceptibility

that describes the behaviour of the system about the transition. This transition

is analogous to the finite pressure transition observed in the self-intersecting case,

although here, unlike in the original transition, the N exponent is identical on

both sides of the transition. The transition separates a weakly inflated phase,

where although the area scales as N2, there is no dependence on the maximum

bond length R0, from a strongly inflated phase, where the area scales as (NR0)
2,

where NR0 can be thought of as the maximum perimeter. In this strongly inflated

phase, the shape of the ring is a regular polygon, and the fluctuations about this

shape are in the form of breathing modes, involving the contraction and expansion

of the ring as a whole while maintaining the regular polygon nature.

The behaviour of the area above the transition, in fact, can be computed by

a simple analytic calculation. In this regime, as noted, the shape of the polygon

ring is simply a regular polygon. The free energy in this regime is given simply by

the sum of the pressure energy and the spring energy of the regular polygon.

F = −pA + SpringEnergy(Regular polygon), (4.28)

where, p is the pressure and A is the area of the polygon. For a regular polygon

of side a, the area is given by,

A =
1

4
Na2 cot(

π

N
), (4.29)

while the maximum possible area is given by,

Amax =
1

4
NR2

0 cot(
π

N
), (4.30)
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where R0 is the maximum allowed bond length. If we consider that the spring

energy is given by the logarithmic potential,

V (a) = −R2
0 ln
(

1 − a2

R2
0

)

= −R2
0 ln
(

1 − A

Amax

)

, (4.31)

then the free energy can be written as,

F = −pA − NR2
0 ln
(

1 − A

Amax

)

. (4.32)

The average area is obtained by solving the equation dF
dA

= 0 for A. This gives,

p =
4 tan(π/N)

1 − 〈A〉
Amax

. (4.33)

Defining the scaled pressure as,

p̃ =
1

4
p cot(

π

N
), (4.34)

111



Chapter 4. Self-Avoiding Rings

we obtain,

p̃ =
1

1 − 〈A〉
Amax

. (4.35)

Note that this definition for p̃ is in fact the correct one, reducing to the usual

p̃ = pN
4π

for large system sizes. The average area is then given by

〈A〉
Amax

= 1 − 1

p̃
. (4.36)

This prediction turns out to be very accurate in predicting the behaviour of the

area for large pressures, extending almost upto the critical pressure for large R0.

This is illustrated in Fig. 4.31.

The critical pressure can be determined by using a scaling approach similar to

the one used to derive the contributions to the free energy in the self-intersecting

ring case (Sec. 2.4.1). Assuming that the spring potential is described by a loga-

rithmic potential

V (a) = −R2
0

∆2
ln
(

1 − a2

R2
0

)

, (4.37)

the partition function Z for a ring of N monomers can be written down as

Z1/N =

∫ R0

0

da

∫ 2π

0

dθ ae−V (a)efa cos θ. (4.38)

On performing the integrals and expanding as a series in f , we obtain,

Z1/N =
R2

0∆
2

2(R2
0 + ∆2)

+
f 2

4

R4
0∆

4

2R4
0 + 6R2

0∆
2 + 4∆4

+
f 4

64

R6
0Γ(1 + R2

0/∆
2)

Γ(4 + R2
0/∆

2)
+ ... (4.39)

The mean end-to-end distance in the limit of small force is obtained from R ∼
∂ ln Z/∂f and this is then inverted to give an expression for f as a function of

R/N . The free energy is then given by,

F (R) = − lnZ[f(R)] + f.R,

=
R2

N∆2

(

1 +
2∆2

R2
0

)

+
R4

2N3R2
0∆

2

1 + 2∆2/R2
0

1 + 3∆2/R2
0

. (4.40)

In addition, there are contributions from the self-avoidance FSA and the pressur-
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ization term Fpressure = −pR2 ∼ − p̃R2

N∆2 . Thus the full free energy is given by

F = FSA +
R2

N∆2

(

1 +
2∆2

R2
0

− p̃
)

+
R4

2N3R2
0∆

2

1 + 2∆2/R2
0

1 + 3∆2/R2
0

. (4.41)

This form of the free energy then predicts the transition pressure as a function of

the maximum bond length R0 as

p̃c(R0) = 1 +
2∆2

R2
0

. (4.42)

If we then define the scaled pressure as p̃ = p cot(π/N)

4(1+ 2∆2

R2
0

)
, the transition pressure

can be seen to be exactly p̃c = 1.0 for all values of R0.

4.8 Conclusion

In conclusion, we have shown that models which are physically more appealing

generalizations of the LSF model can be shown to have a genuine phase transition

at non-zero p̃. We have demonstrated this through a careful study of the area

scaling on both sides of the transition, as well as through a study of geometrical

properties of the ring polymer.

For the LSF model, our data indicate that there is no such finite pressure

transition. We ascribe this to the fact that the LSF model is defined such that

only the intersection of the discs is relevant, since the cutoff-scale R0 is of order

the size of the disc a. However, in the limit that R0 ≫ a, the transition can

be clearly seen - first as a sequence of two peaks in the area susceptibility as a

function of pressure, with the lower peak sharpening and moving towards p = 0

if the definition p̂ = pN3/2 is used. The second peak, located at p̂ = pN = 1,

becomes sharper if pN scaling is used. At values of R0 ≫ a, only the peak at

p̃ = 1 is seen, and a generic transition transition is obtained.

The new results of this chapter also include the following: we have demon-

strated that the phase transition in the simple Rudnick-Gaspari model survives

the incorporation of self-avoidance. Interestingly, the transition is also shown to

occur at precisely the same value of the scaled pressure as in the self-intersecting

model. We have also shown that first-order transitions between weakly inflated
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and strongly inflated phases of the ring polymer are generic and can be obtained

in a sequence of models which generalize the LSF model to include a more realistic

interactions between different monomers of the polymer. The fact that simple mod-

els for two-dimensional pressurized polymer rings can yield first-order transitions

does not seem to have been noticed in the literature before.
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5
Conclusion

In this thesis we have studied the properties of different models for pressurised

polymer rings. We study polymer rings with and without self-avoidance, and also

investigate the effects of semiflexibility on the system behaviour.

Firstly, we have looked in detail at the problem of self-intersecting rings with

semiflexibility. While this problem had been studied earlier for flexible ring poly-

mers and a phase transition was known to exist separating a collapsed phase from

an inflated phase, a detailed study of the effects of nonzero bending rigidity on the

phase diagram is important since semiflexible effects are important for any real

biological polymer. We calculated the phase boundary in the presence of non-zero

bending rigidity using scaling arguments. We studied both lattice and contin-

uum ring polymers and established the fact that below the transition the lattice

structure of the ring does not affect the average properties of the system. The

lattice model has the advantage that the various possible configurations can be

enumerated exactly and hence the partition function can be calculated with high

accuracy. We also extended the previously known mean field calculations using

Lagrange multipliers for the semiflexible case. We performed mean field calcula-

tions, and showed that using a suitable ansatz for the ground state hamiltonian,

we can reproduce the properties of the system with a greater accuracy than the

previous mean field theory. We also characterised the critical exponents around

the finite pressure transition.

In the case of lattice polymers, we computed the area of the convex and col-

umn convex polygons using analytic methods. Interestingly, it turned out that the

asymptotic area of both classes of polygons is the same in the limit of large pres-
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sures. This suggests that overhangs are not important in the inflated phase, and

hence we conjectured that the same area formula should be valid in the case of self-

avoiding polygons also in the limit of large pressures. We verified this hypotheses

using numerical techniques, Monte Carlo and lattice enumeration for both flexible

and semiflexible polymers. The asymptotic area is found to be given by

〈A〉 =
N2

16

[

1 − 32π2

3p̃2
+

64

p̃2
Li2 (1 − α)

]

+ O(e−p̃/8), (5.1)

where Li2 is the dilogarithm function

Li2(x) =
∞
∑

m=1

xm

m2
, (5.2)

and, α = e−2J , and J is the bending energy cost. This analysis was performed

for polygons of fixed perimeter, and then we calculated the average area as a

function of the pressure. However, the converse case is also interesting. It would

be instructive to repeat the calculation for polygons with a fixed area but variable

perimeter. If the convex and column convex polygons have the same asymptotic

behaviour in this case also, then the self-avoiding polygon answer can be obtained

using a similar reasoning.

Finally in the thesis, we looked at self-avoiding polymer rings. The canonical

model in this case is the Leibler, Singh, Fisher Model which shows a continuous

phase transition at zero pressure, separating a branched polymer phase from an

inflated phase. We study a generalised model for self-avoiding rings, and consider

the question of whether there exists a finite pressure phase transition in a scaled

pressure variable similar to the self-intersecting case. The answer is that there does

exist a phase transition, but it is a subtle effect in that the transition does not

occur with system size but rather with the maximum bond length parameter R0.

Further, depending on the potential used for interactions between the constituent

monomers, the transition can be either first order or continuous. We characterise

the exponents at the transition and provide an explanation of the behaviour we

see in terms of a shape transition. The system is found to be in the inflated regime

throughout, but beyond the transition switches to a regular polygon configuration.

Further fluctuations are akin to breathing modes, which do not change the overall
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shape. This transition has not been reported for self-avoiding rings in the literature.
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