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THE THEORY OF RIPRESENTATIONS_OF FINITE GROUPS

Introduction
’

The scope of these lectures delivered at The Institute of
Methematical Sciences, iladraes during the summer of 1962 is %o
develop the theory of representations cof finite groups and apply
it to the problem of classgification of eigenvalues of a quantum-
mechanicel system.

In developing the theory, stress iz laid more on the vector
space methods than on matrix-metheods. This is done on the belief
that sueh an approach gives beticr insight into the results of

‘ the representation theory, for which the trestment of Schur's
} Lemms and Burnside's Theorsm will bear testimony.

In preparing these lectures I have not hesitated to draw

J5 =

freely from the inspiring standard works of Hammermesh, Lyubarskii,
Heine and Van der Waerden.

1E is a pleasure to record here my grateful thanks to

Professor Alladi Ramskrishnan, Director of the Institute of

Mathematical Sciences, for his kind invitation to me to deliver
these lectures during summer 1962 and to the authorities of the
University of lMadras for kindly permitiing me to accept the

vtz tion.

S .Swaminathan.




Elements of Group Theory

The ce cent of a group is an abstraction of the algebraic
properties of numbers (in tzgers, rational numbers, real numbers
etc,)., When we analyse the propsrties of the operations of

addition and multiplication in these numbe: We find

that they uniformly satisfy certain laws ndependent

of the nature of the numbers =md the

in which the operation

is performed, A little reflection helps us to discern that
the system of all polynomials (of one varisble with s real or

behave inthe game way with respect

o)

complex coefficients) also
to the usual notion of operationg of addition and multiplication.
These observations lead us to consider a setgof elements whose
nature need not be specifica .1ly preassigned and introduce a
binary operation called '‘multiplicaetion' in it which satisfies
the following laws :
.

G 1 : The product of any two elements x y ¥ oof &
(which is the result of 'multiplying! x and y ) is 2lso an
element of G ., In general the order in which x and y are
multiplied matters, i.e. the products =xy and yxX may‘be

different,

G+ 2. 2 fesociatdve daw cifixy/z = x(yz) for'x, v, z, B C.
G- 3 : Existence of an identity : There is an element

of e of G called . the identity, which is such that
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(Note: x s S notation,for‘such eri element).,
The set G is called a group with respect mf to the
operation'multiplication' when Gl +o G4 are satisfied.
When the number of elements of ¢ isg finite, the groug
is said to be finite, otherwise infinite,fhe number of ele-

ments in a finite group G is called its order.

In Gl we noted that the order in which the elements

where it does not matter, i.e., Xy = yx , bothx representing

the same element of & ,the group is called commutative or

abelian (after the Norwegian mathemsticisn Abel).

(©)

The group operation can be called 'addition' instead
of 'multiplicétion'. If the additive terminology is used,
in G3 we demand the existence of ‘'zero' and in G4 , the
'negative', Hereagain, it is only a matter of nomenclature.,
Examples.
1. The set of 211 integers ( ~ve, o , +ve) under the
usual operation of addition.
2. The set of all rational numbers ( -ve, o , +ve) under

the usual opergtion of addition,




3« The set of sll positive non-zero rational numbers
under the usual operation of multiplication.

4. The gset of all recal rumbers under the usual operation
of addition, 2

5. The set of all complex numbers under the usual opera-
tion of addition.

6. The s
coefficients (or complex
of addition.

7.

et of all polynomials

coefficie

Transformation groups.

NG
in one variable with real
nts) under the nsuszl operation

S l.

Congider twosets and S

: . ; TR 1
By a transformation T (or a mapping) of S into 87, we
mean a rule which assigns to every element x of S , a unique
1 il ¥ T, o G . e
element X of /D G is the image of x under T . This
Gl R 2 ) 1 i
igadeneted by . x° =T 2) o x = % = P A=)
o N S _,l & r«l -3 » = + $
If every element x of S~ is the image of atleast
one x of £ , the transformation T - is said to be 'onto!'
. W )
l.€wy drom 8 Tonte i
= ?' - AR :
If every element x~ of 87 is the image of exactly
one element of S , the transformation is said to be one~to-one.

We may take S~ to be
Ct /
mations of 'a get 8 dnto -(or

can combine ®xwm twokx t©

tion TB of S into itself
™ ' m

T;S (.[-) Tz b J—l

T2 be thought of*as the

S ditself. Then we have transfor-
cnto) itself.In such a case we

to yield 2 third transformea-

by prescribing

(x)) for -« B -8,

produce' of Tl and T2.
R PRGN




Now consider the set Z of a1l transformations
of 2 set into itself under the operation of multiplication
as defined above., The axiomd &1 To &3 are satisfied.
G4 1is not satisfied in general. For thaet we need one-to-one
transformations.

The set of all one~-to-one transformations of a set
5 onto itself is a2 group under multiplication as defined
above.,

A one-to-one mapping of a set onto itsell is

called a permutation. When the zet consists of a finite

number of elements, a permutation can be written by putting
the elements of the set, which can be denoted by numbers
1, 2, 3 etec. in a row and their images below them., Thus

VA i SR (1 2 3
P = | Pr
o /

1l

S 2 : AL T 1

are two vermutations of a set consisting of three elements,

Their product dis defined to bhe the permutation

By, By LR 2 3}

\.3 2 L4
The product mR Byl P Zda ( s 3}
s 2 37

P : ol P . The set of all oe
Pl Py o PZ 1 The set of al rmutations forms
a group which 1is non-commutative,
This permutation group is also known as the symmetric

T i justification for this i WSS
rou S The justification for this ig as follow

5




Consider an eguilateral triangle Al A2 A3 with centre
(the centroid). Consider the set of six
geometrical transformations which turn the
triangle into a coincident position (with-
out necesssrily any vertex fixed).
= E e : kot 7 0
A positive (anti clockwise) rotation through 120~ about O
carries Al . AZ 2 AE into Aif A%, A respectively.
i i . A4 il = " 1 :/7\
Lenote this rotation by | {
9 1
) s = S e b e LS L S el o
A positive rotation through 240 about O carries
int z Ag « ~Der i i
Al, -A2’ A3 into AD, Az, Al Denote this rotatlon by
2 133
1 -
s 1 2
Lo e = 3 o} 0 g
A positive rotation through 0O (or 360°) about O
leavertevery vertex fixed. This rotation can be regarded
. / . fd 2
as an Identity rotation I = | 3}
Vigio s
" ] ) 0
Next consider a rotation through 180 about O Al,
bringing the triangle through positions out of the plane
of the paper. This carries Al Ay A3 into Al’ A3’ A
2 . : 2 \
Note this notation by ( 3‘
W I s
: gy T 7o I g 1
we have similar rotations \ ) about O A? and
SN .
l 2 7\i 1
7] ebout O L.
2B e revlices
m3 . Sy e e e N e
The six mmixxxr®m rotecions permute tae[ye%%ex of the
’
. LT 2
triangle in six possible ways. 3

Let us write I =(

¢ ERRE “ e

).

0

2'
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) ] 2 9%
Pl = / B o
2 # 1 &

i 2 3
2, = Pe
. (5 2 %
The product of any two of these as
successive performance gives usz &

a multiplication table for a2ll the

{!"’ 1 2 3"\ F i 2 3 \'\
B o) 37\ 5 2

=y E )
s T
defined above by taking
third rotation. We can form

different rotation thus:

. T P P, P P, P
i ot i P, B E 2
P, Py P, T P, P, P,
P, I, T P, 7, P, P,

oy e L} Py I By B

e P, Py P, P, P, T P
b i P, P P, T

1o read: £rom

look along the row marked

this teble the product P,. Pg (for example)

P5. Where these inte

Notice that the

from this

Similar congiderations on the permutativms of

-

consisting of

table.

group

5]
<L

we

1

an

¢

e, BT
Tind

axioms

| down the column marked
the product, namely P3°

can be verified directly

a set

n elements give us the symmetric group Sn.
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The symmetry groups are important in physics and chemistry.
The symmetry of a body is described by giving the set of all
transformations which preserve tlie distances between all
pairs of points of the body and bring the body into coinci-

> 5

dence with itself.For finite bhodies such transformations

are made up of either rotation through a definite angle

iR & avh'
about some axis or afeErer reflection in a plane. The follow-

ing situations sre some of those which are related to the
symnetry of the system in gquestion: The clasdification

of the spectralterms of a polyatomic molscule; the problem
of finding the vibration spectrum of the molecule; micros-
copic structure of crystals;. classification of electron
energy levels in a crystal. Howvever, we are not going into
the details of these here. An excellent treatment of the
symmetry groups is given in Chapter 2 of Morton Hamermesh:

Group Theorv and its applications to physical problems.
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2.1. Subgroups: A subset H of a group G can be a group
on its own right under the same operation. It is then called
a subgroup. Accordingly we have the following criterion for
a subgroup.
Theorem: A subset H of a group G 1s a subgroup if the
following conditias hold:

(1) 1f h, EH,h B H, then h,3h,€ H and (2)

2
p =1

if W€ H then h'e i

0]
=

(For finite groups, the second cordition is redundant.
Examples: (i) I:tegers € rational numbers <& real nos.
C? complex numbers, all considered as groups under the usual
operaticn of addition.

(ii) The positive rational numbers form a group under
multiplication, but is_not a subgroup of the additive group
of rationals.

(iii) Every group G has two trivial subgroups:
the gpoupx consistigg of the identity element alone and the

whole group G itself.

2. 2. (Cpclic groups: In any grouo & , the integral powers

m e :
a of an element a can be defined separately for positive,

zero and negative exponents. If m > O , we define

Rl . C / g
70 = e Qe on G OV t;"“‘kQO) ;a4 = & . =

{
7~
D

\
N

It can be easily seen that
- SRS 2y = 4
e = etV and ) -
But (abyw:# & I¥ in general. The equality holds if and only

if G is commutative.




2
Definition . Phe order of an element a 1in a group is the
least positive integer m sguch that al = e ;. il no pogitive
power of a equals e , tham a 1s said to be of infinite order.
A group G 1s cyelic if every element of G 1s the power of
some element a of G . a is said to generate‘the gronp.
For any group G , the powers of an element a form
a group which is fhe cyclic subgroup generated by a . Thus

the subgroup of integers within the group of real numbers is

a X¥®g cyclic subgroup of the reals.

2. 3. Homomornhism and Isomorphism. Suppese that there is

associated with each element a of a group G an element
b=f (a ) of another group H. The totality of elements
b = f (a) of the group H so obteined is denoted by £L6y. .
We say we are considering a mapping of the group G lnto
the group N . If every element of H 1s an element in f (G)
then the mapping is said to »e'»on-to'. 1In general f need
not preserve the operation of the group. Consider, for example,
the mapping f’: x =% x> . Since (x4 )2_75 X2 + Yz the
addition is not preserved by f .
When the group operation 1s preserved by a mapping

f , we call the mapping a homomorphism of G into H , i.e.

fs G+H 1is a homomorphism means
h

T Cae vy = . (o) Lty oF every XJ y B G

From the definition, we immediately have the result.
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Theorem. If f 1is a homomorphic mappihg of a group G into
a.group H , then the set f (G) 1is a subgroup of' H . It
should ve noted that a homomorphism of G 1into H maps the
identity of G 1into the identity of H a2nd the inverse of an
element of G into the inverse in H of the corresponding ele-
ment. By the_kernel of a homomorphism f &f G into H ,
we mean the set of all elements of G which are mapped into

the identity of H . The mappings which define a homomorphism
of a group into another need not be one-to-one, (Recall that

a mapping of a set G 1into a set H 1is one-to-one means

no two elements of G have the scme imace and every element
of H 1s the image of one (and only one) element of G ).

When a homomorphism is also a one-to-one mapping of G

into H , then we call it an isomorphism of G 1into H . The

groups G and f (G) are said to e isomorphic.. They are

not different algebraically, for every algebraic theorem, esta-

blished for G 1is automatically applicable to f (G) and also
to all groups isomorphic to G . From the point of view of
group theory, isomorphic groups are identical.
Examples.(1) The group §8q of permutations of three objects
(sce ng?g%e\I ) is homomorphic to the group H consisting of
the two numbers 1 and -1 . The operation in H 1s multi-
plication. The homomorphism is given by I - 1 , Pl'é Al
Bg. =1 iiaitrly, P o =g Gl =,
(2) In our discussion of the symmetric group g4
in Lecture I, we have actually shown that @§8o 1is isomorphic

to the group of rotation of an equitatdrial triangle.



Lecture ITI.

Vector 3paces

/
already be familiar

ct

£2% 3.1. The concept of av ecto

L

mus

to. students from mech-nics. Force, di

n

pla

O
D

ment, veloclty
acceleration, electric intensity are familiar examples to
students of theoretical »nhysics. Let us consider 'force!' as a ¥
-vector in detail. Two forces fy and fg acting on a

particle are represented by vectors emenating from the origin

1
¥

and terminating at the points whose rectangular coosrdinates

&)

are’ (. X 5 Fsi, 22). The resultant force is denoted by

- fl'+ fg . and is known to "e represented by the vector,emana-
ting from the origin which is the diagonal of the parallelo-
gram having the two tiven vectors as sides. The coordinates

of the end point of fl + f9 are the sum of the corresponding

coordinates of fl and fg S

This is the familiar naralleldgram law of addition of vectors.
Another familiar operatiorn on the vectors is that »f multiply-
ing by a real number (or scalar). Thus k fl is a vector
having the same direction as fl if k 1is positive or the
opposite direction if k 1is negative and :aving a length
equal to | k | times that of fy] . We may write
k fl = B 2T g R ST ). To make this valid for k = O
we define k fl k® to »e the zero vector, namely, the single
point the origin.
It is clear from these operations that the rature of the

quantity represented by a vector has nothing to d> «ith the
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operations themselves. S5ots yf numbers, subject to the
operations kREXE &as described rbove will completely define
the force or any one of other quantities nmentioned amve.
Consequently we may simply take 2 set of numbhess as a vector.
Generalisation of this roncent and its study is the

scope of the theory of vector spaces. We briefly sum uo the
main results needed for o2ur purnoses. The generallsatisn

can de made in two directions. Firstly we may consider

N -coordinates instead of Bx . Thﬁs we take an ordered

3 ~ £ 3
set of n numbers, like grEiy Ly oy s Xy )

A

to be a vector. & is called an n-triple. The n-triples
leylize the spaceo.

eyl f ; :
said-+to foem-an n-dimensional geometry.

WUWNAC

of real numbers ié
The operation of additisn and scalar multiplication follow
the same pattern as in the case of 3-triples. Secondly,
the numbers used in defining a vector need not always be
real numbers. The vector operations depend only on the
corresponding operations of the numbers used. So we may
take comnlex numbers instead of reals, or more generally
elements from a field ¥ . ( A set F 1is said to be a’
field, when tiese two operations + and X defined in it
such that (i) under + , it is an abelian group, (ii) the
non-zero (zero of + ) elements form an abelian group under
¥ y and (iii) the two operations distribute each other,

oot il a X b4 E)=

Q)

¥'b + axXe. fora,'b, ¢

& F ). Thus we may consider the set of all n-triples

S vl Xy Fady Fag s owie Xp )

where each x5 1s chosen from a field F. Denoting this set
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by L) (F) , we define the vector ovperations of zddition
and sca'ar multiplication by elements of F , which satisfy
the usual laws. We give now the ahstract definition of a
vector space.

Definition. A Veelor space .V over a field “ B 15 a

set of elements called vectors, such that any two vectors
. and @ determine a unique vector o .+ g as sum and

that &any vector o« 1in V and a scalar k from F define
a scaiar product, denoted by k « with the following

properties.:

1. V 1is an abelian group under addition.

2. (X+8 )=k x+Xkg and (k+ k') &=k ﬁk%k'xA

T 2

B, (e k) L=k L& =) - and 1. = e
]

for any k , k¥ in F and @&, g'4in V..
Examples: (1) The totaliﬁy of 1 xn matrices over F ,
the addition and scalar multiplicatio>n being the correspond-
ing matrix operations,
(2) The set of all functions of a real variahble over

the interval ( 0 , 2 ) , under pointwise addition and scalar
muultiplication; The sum W of functions f and g is
given by h(x)=f(®w) +g (x)and ¥ k.f is given

by kL ( x ) “for every real X .

2,.2. 'Sub-spaces:

A subset g A of a vector spac

i

\

V (F ) is called
a subspace (more accurately a sub-vector space or a vector
subspace) when it is itself a vector space over F with

respect to the addition and scalar multiplication of ,V ( F ) ¥
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Any subset need not be a subspace. It is easy to see from
the definition that a necessary and dufficient corddition for
a subset A to a subspace is that the sum 6f any two vectors
of A has in A and the secalar multiple of any vector of A is
also a vector of A~
Note the similiarity of the definition to that of a
subgroup. In fact, the subspace A 1is a subgroup of V under
addition. -As am example, the vectors of the form ( 0, X5 ,.

0 and = x4 Y constitute a subspace of V, (F) for any field F.

4
LR G §t be vectors helonging to V(F)
then the vector S given by
SR A e B N DT B 0D
<5
whers . b oo, kL are scalars from F , must also belorg

o e {F ). § s said to be a linear combination of giﬁdl
1

1
(i=1,2 .. t). Consider the set L of all
linear combinations of gig"s .This set is obhtained by giving
all possible values to the k's from F in (1) above. The
Sobs S B iy obviously a subspace of V(F). It is sald to be

spanned by or generated by the vectors .

2.3. Linear indevnendence and Hasis..

Vectors TGS S oY 1 s S belonging to V(F)

are called lineerly devendent if there exist scalars ki ,

i R kt not all zero, such that

-‘r---"f,’*if‘gg‘:o sl s o fad

=3 AN

kgl + R3S,

where the 1'0' on the right denotes the zero vector.




15
If no such scalars exist, the set g[}fz) ...,_ft

is called 1linearly independent, i.e. when (2) implies every

ki is zero. Consider the vectors ¢ = i TR - ENETE A T

£, = (0,1, 0, &,=(2, 0, 2) in 3-dimension~1 space.

Tghey are linearly dependent »Hecruse
3 s b

N
‘;é: Gt SO > 1

This merely means that they are coplanar. Linear depends

Q)

v
ance is a generalisatior of 'coplanarity'. On the other hand,
the vectors 51 and §2 of this exsmple are linearly inde-
pendent..
Basis. A basis of a vector space is a linearly independ-

- ant subset whic spans the whole space.

A vector space iscalled finite-dimensional if it has

a basis consisting of ‘a finite number of elements.
The following is an important theorem of the theory
of vector spaces. We mention it without prosf.
Theorem: My two bases of a firite-dimensional vector
space have the same-number O elements;
Hence we define the invariant number of vectors
in a basis of a finite-dimensional vector space to be its
dimension.
b
Let (g, %y « - « % ) be a dasis of a vector space
over complex numbers. Then every vector o« of the space can
be expressed in the form o« = x; o + Xp oo + « 0o * X, oy .
Since this expression is unicue (because of linear indenendence)
we say that the numbers (X7, X2, + » Xp ) are the coordi-

nates of the vector « with reference to the basis

it ol a i e ).
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Example : Phe vectors (1, 0, 0), (0, 1, 0) and (0, O, 1)
form a basis for the 3-dimensional é@tclidean space. Take any
vector, say (1, 2, 3). It can be written

(L2 By s (1, 0,000 £0, 1 90 v (0,0, 158

Operators..

It is usual to refer to a masning of a vector space into
itself as an operator on thé space.
| An operator T o#fl a vector svace is said to be linear
when T (< +B8) =T () + T %3) and T (k « =k T {a)
wehere «, 8 denote vectors of the space.

Corresvonding to a basis of the vector space, a linear

operator can be expressed as a matrix. The matrix is obtained
by expressing the transformé of every coordinate. It should be

noted that the matrix depends on the choice of the basis. -

Scalar procducts: With each pair of vectors (X , y) of a vector

space over complex numbers, we assdciate a complex number which
we denote by (x, y) and call the scalar product of x and y when
it satisfies the following conditions:
L) Euly x)*, where * denotes complex eonjugate
(2, ky) =k (%, y).
(x1 + %55 ¥) = (%, 7) + (x5, ¥)
=40 = 8 orily 1f x = O.

U on
“‘.’4
e
N’
v
&)
9
o
(01
e Y
>
>
g
|

The length of a vector is the squares root of (x, x). -
The scalar product of two vectors is independent of the choice
of 2 basis.

Two vectors are said to »e orthogonal when their scalar pro=

sdilen 1.5 2P0k,
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Lecture 4.

Renresentations of finite groups

4.1. Group Representations.

Among the epplications cof group thsory to physics the

mExa®r host importent is the apnlication of theory of repre-

with the homomorphic mappings

=
D
Q

sentations, which is.concerne
of a groyup on all possible groups of linear operators. Such
mappings arise naturally when various types of symmetry are
considered.
Consider the set of operators A,, B, ... 1n a vector
space L . This set is a group when we take the product of
operators A and B to be the single operator
CX = A (Bg ) for all x € L.
The identity of the group is the unit operator which leaves
all vectors in L unchaﬁged.
Now let G %e any group. Tet it »e mapped homomorphically
on a group of operators D (G) in a vector space L . The

operator group D(G) 1is called a representation of g G in

the resresentation snace L . The dimension @ n \of the

vector space L 1s called the dimension of the reoresenta-
tion. To gach elsment g of G there is an operator
D (g) of 1L into itself which corresponds to g 1in the

group D (G). If clements of G , we have

(0)0]
O
i)
Qu
(e
W
L

)

D (gh} < D (m). D (Mg = [Die) 1Ty

)
D (e) = E (the identity operator).
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A linear representation is & representation in terms of

linear operators. We shall study only linear representations ..

So we sihell mean always linear reoresentations when we talk

of representations in this course. We have seen that cor-

responding to a basis in ths

0

pace L°, the linear operators

.

on L can ve described by maitrices. The dimension being
n , to each linear operator, there-is an n x x matrix,
@ so that there i= a homomorphic menning of D (G) on a
‘ group of (n x n ) matrices. If we consider the direct
homomorphism of G 1into the maftrix group thus obtained,

we nave & matrix revnresentation of this group G . Obviously

the matrices should he non-singular and such that

A

i e T B L I
et ! .‘11' —]C -y &3—\ "):[‘?’“.YL.
el - e :
;D{J(Jn) z 7‘qu&(§)hb;j(h)

K

when the homomorphism on D(G) reduces to =n isomorphism,
the representation is said to be faithful.
Examples: 1. Let G be an arbitrary group. To each element
g of G assign the unit operator E of a certain space

L . We o>fain a renresentation called the identity repre-
sentation.

2. Let G be the group of spatial translations along

z-axis and L 2 one-dimensional snace. Corresvonding to a

translation of magnitude « , assoniate the operator of
multinlication by the number et k « for some fixed k.

' We obtain a one-dimensional representation of the group of

] translations.
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4.,2. Bguivalent resresentsations.

We are interested in 2numeratirg 211 the nossible repre-

1

sentations of a given groun. In studying this two corcepts

play a fundamental roles the concent of eacuivalence of reore-

D

sentations and the conec f

nt of reducibility of a representation.
Given a ropresentation D (G) of a &lement G , we
‘ can construct any number of new resrcsentations of G . Let
‘ A be any non-singuler line=r operator of L izto 1tself.
Assign to € g€ G, the operator D, (9) = AD (g) A~L,
The correspondanca of*jé DA (g) is a representation of G.

‘1 For ],,A(%luh) = AD(:;';“}L)Av‘ ey ! T'(f},)'th_)m) A"
= ADGHA LA DA
= \DA(QI) s DA(C?u_)
Any two renresentations of the group which are connected
by & relation of the type D, (G) = AD (G) A~L are called
eguivalent. All representations which are equivalent to a
given one are equivalent to one another. Hence all the
“ representations of a given group G can be split ihto classes
of mutually equivalent resoresentations. It is enough to speci-
fy any one representation of each class. Accordingly the
problem of finding 211 representations is reduced!to the mofe
limited ons of findirz all mutually non-equivalént represen-
tations.
If we consider the corr=sponding matrices of the
equiwalent representations, we haver;( n xn ) matrix

%Dij(g);corresponding to the operator D (g) with reference

- . to a given basis of L , while the matrix corresponding to’
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the operator D(g) with reference to 2 given hasis of L
while the matrix corresponding to D, ey -ds
A Dyy (8) S
whiqh is otained from Dij (g) by a similarity transfor-
mation by A . The equivalent re rassentation can be regarded

as obtained by changing the hasis 1 L. in accordance with

=

the relation
= AX

in which the vectors x, y, of L are related by the matrix

A

A. I = = (?/
e e 1 -1 : ﬂ

y ds given by 7. 5 (A Dy (BJA ) Ve o o il

J ],s\)-( NG

In other words the transition to an & J
/

i ; / et
equivalent renr~sentation corres»onds X r: /

to replescing the components of vectors in the representation
space of the matrices Dij (g) by new components in
accordance with y = A x , where A 1is a non=singular matrix..

Now that it is enough that we know one rejsresentation
in each eclass of equivalent representations, we look for
one which has simple and useful form for manipulations.

A unitary representation}by which we mean a representatibn
whose matrix is unitary, is ons such re resentation. The
question arises whether ecach class of equivalent representa-

tations of a group G will contain a unitary representa-

tions. For finite groups the answer is yes as is Hroved

in the following theorem.
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4,3. ‘Theorem. Every revresentation of a finite group is

equivalent to a unitary representation.

Proof's For a pair of vectors x, y of the repr~sentation

space L (2) we tonstruct the expression

J

Pyt = ) (g, Baa)

6?
where m 1is the order of the group and the summation

extends to all elements'of G . The numher ? n, vy g satisfies

2ll the requirements for a scelar product viz., we easily

verify ‘

b he sl s q,x.;* where X x denotes complex
con‘ugate.

2) %x)dy}: *{ x, 9} for all « & C

1 { i ~ VA L
3) SL ll—k X'L'; L; 3 = 1 )(V)\‘} Ls e \1"1 ) ,j’_&

AP aaet 2 o el | = only 1T 20

"For any element (fixed) a of G , we have

B B b

I (DU})D(C\)?L > '_DLCD)D(L\) L,717

s
R aal o R

a being fixed, as g runs through all elements of G , so

does g a , hence the expression on the right is simply

i}?;(jj(@qup(@)}). Hence {j}@q3<)1n“)}§ “{x,y} ---T
wnich means the onerators of the renresentation D(G) are
unitary wiﬁh reference to ths scalar product { 1 but not
with reference to ( . ).

Next we consider a set of vectors uy which are
orthogmmax normal with reference to the original scalar
product (. 9., and a sel vy which are orthonormal with

referonce to the new scalar product ¢ ¥ . This means
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Let T Dbe the linear operator which takes the w's to the s

T = ';ILL
Since Tl w2l = n 2 Tug = 2
STl r e S Sxpwy, 2w}
o ~ P
RIS o WS oy e
= }'_ -. P 5 e i: J_j
e , *
- Z \12 l;})\;;.: s }
L e
- : S
N %;JLU s
it X
— e o : 7
— Z: >CL %,}) E ) ILS
d ) ;
= S *< Tpe A4 Fre
= }.zl" {L ?_ J\‘) )L.)_g
J
5 &
B B s e 2.7 xF g luius e (X))
( : jt

L __,LJ_)

We now consider the equivalent renresentation defined by
:D(f)) il D(f;»)T
and find that :
(T DT T~ED<3)T\/) - { DY)Tx, Duyz“ g T conn b ol
- - L9 Desl T
= 3T Ty} pon I
=N D s L
Hence D' (g) 1s unitary with reference to the original
scalar product ( ) and this is equivalent to D (g) . Hence

the theorem. {Using the matrices of the representation,

we can prove the theorem by forming a Hermitian matrix H

which i3 the sum over the groun of the Product of each matrix

by its adjoint and by diagonalising it and finding the inverse

? o :
square root, H = 27 1,L;W\T . It is shown that suc-
i"_ 1 s v

cessive similarity transformation of the :DE by the

matrix U which diagnolises H and by d 1/2 the sq.root
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b

of Aiagonal from of [H{ , produces & renresentati-n which is uni-

tarity | . If certain additional restrictions are imnored this

theorem remains true for infinite =z roups whole elements denend on

a parameter. An instance in which it is not true 1s the 4 x 4

Lorentz zroup -

LEC TIRE 5.

Reduciblility and Irreduecihility of Representationg

5.1, Reducibility of Representations.

The concept of reducihility »f a representati~n arises when
we attempt to exvress a given representation of a3 group G in
terms »f 'simnler' representations. The natural idea of simpli-

s low adimension

city here is that such a representation should haveAas possible

consider, for examnle, a three dimensional representation D of

a group G, whose matrix is of the form

/ Q. @—C E € \‘

{; Cr 'lL : f(,' ) e _(I)
\ R Dl E e Rl e

% O 0 e

The product of two such matrices is again a matrix of the same

form, e.2. the oroduct for ( - 1 and 2 will be

a,t(L"__ + L"!C)_ (A,‘ e—'?"?’ f" jz‘ q’lel—# (r’-f‘)_'*- QI?L \\

C; lq 5 dIC'L (.,‘ e/’Lf du((a",?_ Clez"’d’fﬁ)_‘*—fiﬁ'z_

'
|
!
I
|
— - = - — = - =
!
}
!
/



e

/ . i
Now the matriees ( 2 f(" \}
o I

providie us with a two Aimensional representation, while these in

in the unper left-hand corner

the lower risht-hand corner as (4;) 2ive a one-dimensional re-
presentation,

We say that the 3-dimensional representati-n is reducible to
two lower dimensional (viz., 2 and? J1-4im) reoresentations,

Now in ceneral a renresentation may nnt bhe of the form(_I)
while an equivalent renresentation nhtained from it hy a simila-
rity transformation may he »f this form. Then it will not be imm:
ediately annarent that the representatiosn is made un of lower din.
ensional »nes.

In zeneral, if we can find a hasis in which all the matrices

Deg) of an n-Ailmensional representation can he hrought. #imul-

‘D) ' Aw)

i i
:D(?—) = ! - )

L 9, D) p |

A\ *

taneously to the form

where 1)1(?J are ™ XM™M matrices, Jf'(?) are
(M=) x pn-w»§matrices). A(j) is a ™ X ( .- ") - rectangula
matrix, and O denntes the (M~ ) X na matrix whose elements
are all zero, then we say that the rebresentatian :D(?) is re~
Aucihle.

Tt is clear that ,ﬁj(?) and .If(y) are m~dimensional and

tw-—vWJ -1imensional renresentatinns for the matrix oroduct

¢ Dy Dk 1 gy ALY + AT (R) \

Dighy'=:Deg)Dib) = {1 LS
, | () D" ’
\ O i D (j:‘D (h) ‘

T —
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has the same from as (31).

A 2=
It may hanven that we can further split T (9) and D (9)

such that
B ! (=5 i ", \
7/ D2(q) | Ag) ‘\ /.y(;) - AT(g)
N i |
”D(j) % ’ - - —_ = = ! : (t/’\): (& (i ..‘_. --’- _—
: ' \ / \ n D (9) /}
\\ A | L) (5) A C s o

and continue the ,norocess, which olearly comei to an end, since the

representations are finite dimensional.
/ M A l'.

s

The orizinal revnresentatinn can be [

. . - 5| ‘-\L"
expressed interms of lower ones as ( C\K.JJ g
| e
shown in the matrix aside, where we\ ., 4 ! 7]}
i . \ \ "“‘%’1
have hlocks of matrices along the \ ~ . /
diagonal, zero-matrix hlocks in the \ L e

left=-hand lower corner and non-zero rectumgular

matrices in.the unner rizht hand corner. The

Yy

renresentations DQQ) mﬁq\},,,) Dk(g) are irreducihle repre-

sentation of Aimensions i, Mo, - o) My Whene 2 M = 7L

=5
We have introduced the concent »f reducibility interms of
matrix renresentations. Let us see what it means in the repnre-
sentati~n space | . Consider the 3-dimensional representations
given in (I) ahove, a gcain. The effect of the matrix on a vector

in the subspace of L spanned hy the first two comnonents alone

1\

g, as‘in [ o P [1 ax, -,

T

<
J

: C)(I—(.olll
2

\ Ol/ O

(&

0
Gl
I




S

to yield a vector in the same suhsnace. In other words the twon-
dimensional subspace is invariant under all the transfogmations

(linear overators) of the =zroun., But, since

/ \ / e \
/ a A e : . T
5 | ¥ SE

‘ J {} O } - { j‘ o

I \ !

\ 0 o (J / \ X o \ 1L i :(3 /
the subspace spanned hy the third component alone (which is com-
plementary to the nther suhspace) is not invariant under the groi

Now takinz the general case, sunnose the representation

can he written

1 \ \
/ D (9 Aq)

‘ =
( - i -’_' Epiigc
I o

el G

the suhsnace of the first mm-components, where UL is the dim-
ension of J)(?) is left invariant, while the comnlementary sub

spacepf N-™ Aimensions is not, for

g , ; k1
gyl As) ) [ x ) DX
__,_,_,,-,.'@;3’ T 0.
\ ! v | \
L e . o
while



e

So 1n the zeneral case, We can say that the representatiosn is

reducible,  if there exists some subspace of dimension M. < 7L
which is invariant under all the transformationsgof the group, If
there is no prover suhspnace which is invariant the representation
ts irreducitle. ‘

It mizht haopen that, in the ahove, all A(4) , that is,
all the rectanzular matrices the risht of the diagonal blocks,
are alsn zern matrlces, so that =~ 4 ¢ i

/ D) i ) \\
A ,} o :DL( —\ ©

! / ! E \;1
D(9) ? s \ S 9y

: ‘ x 0 0 5 3]

|

0l
O | If(j) ‘K : L //
‘ g% ) - ﬁ

The representation is then said to be fully-reducible, (or comple

~N

i

tely reducihle).

In this case the comnlementary subsnace should also he in-
variant, When the renresentation is unitary this is always the
case., This is mroved in the following theorem,

5.2. Theorems: Let 1D be a unitary reducihle representation of

a group G in theé space L. and let Lw . be an invariant subspace

Then the suhsnace L2 . the orthosonal comvnlement of Lq }4ai501n—
. -

Variant,

et e i e e e

: L
Proofs Heal e by 'Y 51—1;, o Then 11 A9y icie L/
; } . . .
and so (D {g) x, 4) =0 » But since D 1is unitary,

Thars frve (x , Dig)y) = O
o) o)

: : 5 , i
which means x 1is orthogonal to D(4) Y, or Dig)y we.€ o,
T { . . .
Hence L 5 is invariant under D(9) . Theorem is

proved,
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In the case of fully reducible representations, the represen-
tation space 1s decomnosed in to mutually orthogonal invariant sut
svaces. | - L 4t i fhe - F. case of ThwuruwIl.. In the general
case}

2 L'+LI_+.“‘——{'£--",'A,

— =

each L . transformingaccordim to irreducihle representation of

o
X

G. Also the revnresentation I>(3) itself can be written

‘. s L e T.\h }\,

I
.a
ey
NS
L
3
1

. ; Dig)y’
Where each 5'(%) is irreucible. Amonz the L 44) 3 there
may he several which are equivalent to one another (for this, of
course, they must have the ssme Aimensions). Since equivalent

imredicibhle renresentations are not counted as distinct, we may

write
. i

A — :
D2 a™® 6,0 + ... 4+a,D

-
e i ~

where the a;%s are positive intesers,
Combining the Theorem (of last lecture) on fikite groups and the
ahove theorem we see that:

Rvery (finite dimensional) representation o7 a finite zroup

is either irredmcible or can be decompnsed into a sum of irredu-

cible representations, Also in the case of finite groups reducit

lity imnlies fully reducihility and since we are studing finite

i\

grouns snly we will not make a distinetion.

LECTURE 6,

Schur's Lemma.

6.1, Schur's Lemmaa Irreducihle represantations have a series ¢

proverties which render them very valuahle in avnplications and

simplify their determination,




We shall derive a necessary and sufficient condition for a
representation to be reducihle,

o\ 1 c
¢ K O \
tfe agree to eall the diazonal matrixi S e } with
Ny it =3
identical elements P~

on the principal 4iazosnal, a multinle of
the unit matrix written L7

In matrix overatisns, K1 be-
haves like the numher |

.

Sunvose now that we

have a reducihle renvesentation of a
finite group G, for example, a renresentation whose matrices
can he written in the form

' -1
Deg) = X [ A@), By, Ceplx

where by [A%;B@§CQJJ we denote the quasi-diagonal matrix
/
f Hl
\\ t};‘b'» and X 1is some matrix. Ferm the matrix
C)._.ii—;“
s/
8]

where the inner matrix is ouasi-diazonalwith the same structure as
[AB3DB), Ci9] . Tt is not hard tose that Y

commutes with all
the matrices Pig)

; since

-1 -1 . = — ’) »
Digy VY - ")(rf—\(m.\ Blay Ctay 3 X X?LL, i._r:j W‘J_]X
Al [ g e e 7 -
- - —
) 7. A
= X[,A-(C’\{ "»())}\ ‘Il)l‘\)\x

We can chonse L;‘f,’hm distinct g5 that the matrix is not
a multinle of the unit matrix.

S» we have nroved the result that



If a representation consisting »f matrices .}(?\ is redncible
then ‘there exists a matrix Y which is not a multinle of the unit
matrix and which c?mmutes with all the matrices j}(%) .

The converse of this is also true and we shall prove it in the
following form which is known asia lemma of gchur,

- 7.
€

S

6.2, Schur's Lemma I: If a renrescntation 2(3).

of a eroun G is irreducihle, then every linear onerator A

comnuting with all the operators (%) is a multiple of the unit
overator. In other words from the relation :
Digy A = ADI)
" . r. .
we have the equality A = AE where A is a number and E

Js " EhaSEnlE iapenator.

Proof: A heinz a non-singular linear operator, it has at le

ot

one eigzen-value. Let us dennte 1t hy X . Let Ll » denote
the 'subsnace of eizenvectors of the overators A which correspond

to the nuaher A . Thus, we have

L A X. T aglh oy =% 0

| - - ()

(—

Avidently the suhsvace L. ‘s not emnty, other wise A would

=3

not 'be an eiszenvalue. We shall show that the suhspace L

X

is invariant. Take x ¢ L, , anl let (9) be one of the ope-

-

rators o7 the irreducihle renresentatinns. Consider the vector

AD(_Z)X, . We h-ve
H’\(r\'\( i ,)/)".‘_/ = l,) 2 = /\T\ (,>’\’“:
|
Thus 73C7\7c is an eizen vectonr »° the onerator A and corres-

ponds to the eisenvalue , . In other words, the vector Drsyx

is comtained in {_; which proves that [/, is an invariant sub-

i




H
space. Now since D 4) is irreducihle, 'L, must be trivial, eit

emnty nr the whole snace., Since L, 1is not empty, we ohtain
Ly = I . So the equation III Ax = A x is valid for
alll » ¢ | which means that A -2\¢ ,/Pfoﬁng the lemma.

Thus we see that a necessarv and sufficient condition for a
reoresentation to he irrdiadible is that there should exist no
matriscaatherstihgn aimaErix of the fora hﬂI, which commutes with

all the matrices of the renresentation.

|
It should he ohserved that Schur's Lemmafis true for both

finite and infinite zrouns.
5

6.3. Abelian egrouns; Let G he an ahelian zroup. Subpvose
- = - + 1 : - = - s €3
T %[,J)ﬁdﬂﬂeno“e the matrices corresnondine to elements % 9,

of G 1in some revresentation. Then since the vroducts 4,9,

. ' S 55 00

a ima Na Da dq D4 Ve

and ¥, 9, have imazes Vg Via and, ‘W respectivel;
it follows that :D?iT?;,:'fazn,D?i : so that the matrices for-
minz a representation of an Abhelian zroup commute, Suppose the

renresentatinﬁ?is unitary, . ( we take G to he not necessarilj
finite ). Then from matrix theory we know that there exists a
unitary transformation 1J such thatrall matrices LIEPQWJ_\

have a nurely dia~sonal form so that there exists an eduvalent

renresentation

',! Lok . »
U U Sl by, kg ]

o

consisting of Aiagonal matrices., Thus, in this case, the revore-

L
sentatinon reduces t» YL one-dimensional representations, k?
(= ny. In other words, by using a unitary matrix,
e A Tl | o

every anitary renresentation of an abelfian sroun can he transformec

into an equivalent set of one-dimensional renresantations.



The followinz nronf skows how 211 matrices ean bhe 'simaltanenusly

. . - A R . A 4
reduced to diagonal form so as to yleld ‘one-dimensionjrepresentationg

Theorem: All unitary irreduéible renresgntatinns of an_Ahelian zroun

are_one-dimensional. .
Proof: Consider any representati-n 1) . (37, 'Lﬁ(k)' R Pk
abelisn erodp e, L5 7y 5 é‘”) o All matrices are

unitary. Now we know that any unitary mastrix can be reduce?l to dia-

gonal form hy another unitary natrix.
1N s ; -
Let U D) U = Dg) he the diazonal matrix
/’ /\' \ | ‘\\
\
/ )
b S \

/ % { \\

b ¥ N by / \
/ >i \
[ Ay
.f L
{ ( . j
A g : /

\_\ \\v/ ’2_

\ ' /

\ - /
N\,
X, : : /
Put KTQ!IM!\)KI - (k) . Since G 1is ahelian

D L‘;‘) \D‘i"\)

; [
= D' D) .
Now the left side of this equation is just the matrix ]}'(h)with eac]

row multiplied hy the corresnondine >, . of Ifﬂ%)while the rizht

side is jf(k) with each e¢nlumn multinlied hy the éoffesoonding )\ﬂi

of 7‘;‘:‘/0” . Thus l?’()-( ) e e S g dn the - H

-

and j—HL roWs of 7D'(4) are unequal. Thus ‘D{é&) has the form
/] ~‘:) ’ -~



% e s
| i
!
i t !
i - — e
| ;
| :
1 i
/ '-.
\ b S s j
‘\ Sl
: \
\
7
| j »

q !
where hlocks corresnond to equal 4iazonal elements of 'D(?)

Now D) can he reduced ts diagonal form hy a transfor

.I_:;“ i

tian. "Dih) U with ];J als» havineg the form ahove.

This will nnt alter f?{}\Pncause we are makinsg transformations
® J

hetween rows having the same A,.. .. Thus hoth Dig)and DKL)
can *e reduced similtanenusly to dAiaconal form. Similarly all

sther matrices can he reduced, Hence pronf:

-

"

My

LECTURE 7.

Orthoganality Theorem T

7, Lo Graoup functions:? Definition; If to each element »f a groun

G a certain real or conmnlex number fﬁsz;) is assigned it is
2 ‘
said that/function is defined on the aroup.
Let "D ‘Be- any (reducihie ar irreducihle) Y.-dimensional reonr

senfation of a zrHrun G in a certain space | ., Consider the matri

‘D‘J(*%\ cnarresnoniinT t5 some bhasis in L . The elements
:D Tt =4 z ¥ d‘_: \A.L)..-)\-'/\/‘«




S

3 = | 4
form 'a set af M ‘mroun functisns »n G. They satlisfy the import-

ant alzebraic relatinns 2
ST L Coan s )
A o N ; ! { } e &
h\;(?!\" [k T i

which is 2nly a restatement of the homomorphism character of the
renresentation,

7.2. Scalar nroduct: We “efine the scalar nroduct of two group fun:

ctions <s(4) and s (q) by the exnressinn

The functinns <$>(g\ and V/{})are orthozonal when their scalar
7 ) ; arrnnzonas

product vanishes.

We can now state and nrove the Tirst »rthogonality theoren.

7.3. Orthozonality Theorem I. -The irreduecible representation D

o

% o
of v dimensions generates Y. mutnally orthoeonal functions

D‘;‘(?) TPl e L L R Y Y N N

3 )

i & @

dac _}/";.,;, ) : >“/8J\}/

m_. %} :‘5 Ot\, = ey ‘—’ \.. B "}
% (i

s, KA accKka Lelta 7[ e toon .

Pronf: We use Schur's Lemma Iinikke proof. Tet B he any linear

!
i

. . N
onerator actinz in the same space L. as the operators Jw(ﬁ}.

o

fine an nnerator hy the formula

7

\\"
3 7 R e e -
) DD

(]

ZraEl

0
D

With such a definition we verify easily that A comautes with all
the onerators j)(fj) . ~™r let D(h)he any operator of the re-

presentgtion,




el

i
J>
=
b
S

since for a fixed L\ ’ q&x,runs through all the elements of G,

Hence »v Schur's Lemma I, A dis a multivnle of the identify opera-

tor A = )\E} =

| 5 ’ e ) s
o el BD(g') = NBYE
1

where ohvinusly A Adevends on B.

A Dy

Let us nass from this onerator equatione to the corresnondinz

matrix elements

’ i S e sy, e

where we have used the summation convention ever twice reneated

indices. Since Df(q) is unitary,




7’
e e ; = < ¥ F
J/..“n'> - e R ST i F £y ) .
15; '* \L‘ 5t | = 2 "0 {
R T
I ¢ -k A \, : ™ )
. 3 I | i
(1) \
So ° - hecomes :

1.8.,

We put {'i}) in 0 0P

both sides.

o p e T,
T ANIB ) S i (gD -1\
b :\ \b /M = RanY -_——/ ~ bs L ) e (_¢ / ) I/)!{\;
SN
' ) = N
= i ) ot -}'> K.
= e D i ) 5
YA Zr e ( 7 ) v (3 9&(‘)
G eG
= 'S D =
Al T Py i < Palie e
e e s E i g a‘/,\, (T = Al ¢ R s T T e '
3 RNAE AL —— Dl - =[5 =N —
- — i ’& R v }("b 2 "}'
YA 8 ‘ \/ ‘ '

So A(B)= —}‘; Dol o
Rememberinz that B was arbitrarily-chosm, we can'zake B so that

A / T ¥ . /
A labasaas K 2L '{". = (}

7

’P \
Lo - N
o 1}(\ (i\, / 5 M N
: G il s~ g e,

—R 7% SRpS \(‘M >\(h\-— ""E'/,
then b : X’tg, U

Hence, from (II1) we have

('/'Ll,” \“/:]J/) s gL' S'L/}/'

which comnletes the pronf.

-
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Remarks: (1) The theorem can “e expressed in a- form without the
PR : . { -
use of scalar nroducts thus: o ‘Lﬂ,’kj}> is the matrix which
; . ‘. 4 A
is an L -1imensional, irreucihle, umitary wevresentation of G&.
then el
B :[) : ‘::‘“”‘("’3’ P e e
/ ‘ n) 17 % ~CRE e P L TR
/; : R | - V//‘./ ; C q 1‘/
&g L 7 L ) ¥l VAT
7 €6 '

(2) The maximum numher sf linearly indenendent group functiosns on
a groun G of order vn 15 egual to »y . In faet we can take

v linearly independent functions defined hy

4'”.1[1‘), . ™M 7‘,—./)1),4-17\,

ani express any zrou»n functisn in terms of these.
Since mutually orthnzonal functisns are linearly independent

we nust have
w < n

S~

LECTURE 8,

Schur's Lemma IT ani Second Orthnzonality Theorem,

iq

—

R Gy -—\L o .
Q:1. Schur's Lemma II. Let L ‘%land T (%) be two non-equiva-

lent irreducihle representations of a sroun G. The onerators

hose of D (9) in the space L2

i
D (4) act in the svace L, , &

4

transforms vectors »f 1—2-into LI

5

l_.lo

If the linear onerator A whic

satis“ies the commutahility relati:

it
W
3

D'GYA = A-DQ) (He&

then 1t vanishes identically..i;ec A &= 0,




S i
- . . /
Proof: - Let M, and M., denote the dimensinsns sf L, , and
Ly §859Q})1 L T N,y Let M denste the. snhavace 0f LjY s

; " ' ; : ¢
which contains all vectors »f L, , which are imazes of vectors

of I‘E hy sl e, :

ke show that M is invariant for all the omerators j)'(?> N

Y| 2 L
X, €M then T(3) X, = D(yp)Axr,= ADTg) A,

Since T‘(jfls irreducihle, this means that M coincides with2~‘

or ig nuil,

Now  daann M <= N, g 7, and so M cannot be equal to qu
Therefore M should »e null, i.e,, ¥ consists to of null vectors,
i.,e, A amust he the zero ovnerator. A= O

Cagse(ii): v, = .. Lwanﬂ L 5 have the same number of dimen-

N3
' .

sions, (Wow the Overator /A should he singular, If 1t were non-

; - TR ! g ;
sinaular A exlsts, then; commuting relation sives

Dleay = A D) A
: SO
which means that ;fﬁ(()) is equivalent to \i)f?)) contrary to

hynothesis). Now A can be exvresse? as.a (M x",) - matrix

Whlch is singnlar and so will transform veectors of L, into these
& 7[: ’

a8 ~—~_>> , such that the imaze snace is of lesser dimensinn.- Hence

A M < T an1 the argument of case (i) apnlies.




Cage (1iijeeni. sv . A7ain we rememher that & 1s sinzula

J

Let W Adenote the sursnace »f [, consigtine of these vectors whie

are transformed into the zero wector of "L, by 4.
(el i | ‘ | Q = /o N7 L 2
Ay CUERE i U0 I SR N P E i e A e

Since A 1s sinsular, N ig not null. f.e,, o \N’#~C3 . N

= s
i1s dnvariapnt relstive to the operator Dig) . Por,we must
)] /
show thal Whsh v - W - D (e % s also-in N, i.e.
e LA /.‘ > b 9
Nty bn e Gtk DT, T AN~ O B Aage il
£ b '7} ) 4 Qe J - A \ % BTG S — ( S ¥ P e s e 5 A

. - Since Uzq{}) is irreducihle, N should - .
Coincide with L,  this means every overator of ["1 13 taken to
zerns> by A, for which A ouzht to be zers itself,

Schur's Le@ma LT is proved,

We can nrove the Second arthosonality Theorem now usinz the second

Lemma »f Schur

8.2  Seecond Orthoesonaglity theorem.

1 0
The functions, D) "9} <enerated hy the irreucihle representati
’ = A
~ P . Lk R
D (9 ) are orthogonal to functinns 7 { ) senerated hy any
R - .

A

other non-equivalent irreduci»le renresentation D (F)

N

( ey - — i A\
J/('i) : DA3y)-=0

vy

Proof: The proal is analosnus to that of the first orthogonality

theorem, We take an arhitrary linear operator B which transforms

/
vectors of L, ints L(; .  4s hefore we define the overator

!




i e 4 " 5
1 s P2 S e e s o S
7T B ) / SElea ) e 2 \j
. YR :
= Iy 3
PRelsy

A satisfies the commutine relatinn

—~ A - o

o DA = L TR ) B H D)D)

75N
v 2E

L TSR ). D ny)) Dlh)
n ,
e

= A D (h)

Consequently by Schur's Lemma II, A vanishes. It follows that

Y D"(?) B Ceity =0

nAa
FE€G
- 2
: Z L " R el Ry
v gl J/\, /) ({ ) f) ) J/ ( i - z
X I R b AR b ’
PRt
—_—

) | ) 2Hp
i : (-
\\ Y\ %r.(7 . \/\
4| 7 -
oY iR ol 5 =0
v ( ‘_‘. i)( .")‘l 7 7(())
5 B 20! b= O
As hefnre we chonse R gsuch that R;, =L d Azt pr) ant =
4 - i i
otherwise} B2 that ( E\xiﬁ ]D;¥=3 =0 . «s . Hence proof,

8.3 From the orthoeonality thevmpems we can immediately deduce
that the number of non-eqnuivalent irreduelble renresentations of a

finite group shnuld he finlte. For, sunnose D'  is an arbltrary

-
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irreducihle representatinsn and hy varyinz M we nhtain all such re

presentations which are not equivalent to ~ne another. Let

—~ M S

note the dimensiosn of }}/ «- Then we have - N, . group functions
& i
‘D‘j (5) ‘ﬁ*“;) e R (VI which are orthozonal to one
? L £
S R, e : .
another and the srouo functions 2 (%) v (7 =) 2., .My,

’

of annther such renresentation. We have already remarked abnw®e tha

the number »f linesarely indenendent orthozonal group functions for

a finite group of order "™ shoull he less than m. . Thus

1
B R
s ,
which means that, the VLFLG) heipg integral, must be finite in

numbher.

Actually the inequality above can he 'shown to reduce an equali

The proof »f this reqiires the intmoduction of t wo more concepts,

tha t. »f character of a group and of regular revresentations to whi

we shall now turn our attention.

8+4 Characters Let TD(y) and Tﬁcﬁ\)he two mnequivalent irreducible

[

representations »f oriers ﬁ and ﬁ/ respnectively of a groun G,

e denonte hy'X(?\and jL(g)the traces.»f the matrices i>hf(29

and 7/ (9 i.e, the sum »f their diazonal elements:
V"LJ al
b s
, < / .
Y (a — R X " ) = '
((4) = D65 X9) =2 Dy (D
129 K=I

i
the numhers X (4) and X.i¢)are calledl the eharacters of the reore-
: 7

.

sentations V) (.

—~

garand T his

—
i

—
Sy
~

.

L=




AT -

Equivalent representations have identical charactefs., For, if C

)

be any matrix ((:

f

Lo 23 I &
J,\f N
NS

— > [

s I_/_, ‘y_;_»( %) ®
i

P = / o . - o SE
L a '_, /- 23 = —_— 8 g; Tl
/ \,)LJ L ll)”(_"’) = - f‘v’ LV(_‘!']/"
7 -

Whence

Sumainz theis formula osver -1 anl K  we ohtain-

B e
L X’( ﬁ) /< (a ) = T e I)

Similarly from the second »rthonality theﬁrén, we have

Y. Batay Do lg) = o




R

Summing tjos formula over + and K , we o>btain

Z M)y T = 0 @

o
O

{11, and (IT) are the nsrthogonality relati-ns for characters.

They can be used t> prove somc theorems absut charscters.

Theorem : . .. A necessary and sufficient conditinn for two hﬁeducil
representations to be equivalent is thet their characters be iden-
tical.

Proof: We have alr-ady seen that equivalent representations whether
reducible or not have the same characters. Hence the necessity of t
condition. For sufficiency, suppose for irreducible representatione
have the same characters, i.e, ¥ (g) = Xf(g). for all 9,6 G..

Then by ‘(I) we have % (&) X/ (@) =m - -----(h)

n et

If the representations were / equivalent then (II) gives

T Kdg) Kig) =0
g

contrad ilcting (TIIY. Hence they shoruld be cquivalent.

LECTURE 9.
= e Rl

4
Regular representations and Burnsides. Theorem.

9,1. Burnsides Theorem

As a preliminary to this Theonrem we first prove the follow-
ing theorem:

Theorems: The set of functions

=4 g .
Dij (g) e v, 0y 1, = 1,2,e...0)

generated by all non-equivalent irreducible representations, of a

(
"
y



|

|

I
>
00

i

finite gooup G, where g denotes the number of such representa-
tions and My the ordér of the representation D%, is a basis

of the veetor space of all group functions.

Procafs  Toc prawmeRCllc"we consider representationsof §  over. the
vector space of all group functions an G, and introdues the notion
of a rarrlar representation.

To each of 9€G, conslder the overator R(g) acting in the vee-

tor space L of grouvo functions, given by far ¥/ E5

R(g) V (h) = w(gh) = #(h) Yay) 3
Y}(gh) is considered =s a function >f h and, in general, differs
from the function \?(h). To see that the correspondenee g-R(g)
1s a homoruorphism of G on the group of operators over L, we

have

[R(EY'R(8) | () = RE)-[ Ry ()] = R(&H y(gh) = ¥(&kh)
= R(Ek) 'y (0).

Thus R(g) is a repre

1)}

entation of G over L. This representation
1s called the regular representation.

Since every representation of G can be expressed as a2 sum of

)

¢f

ifﬁﬁucible representations,R (g) dan be written
1 =P
R(g) = D (&) +eeeotM@)te....+B(e) D (4)
where each Dd(g) is reduecible. The snace L 1s correspondingly
split into subspaces thus:
L = L, + LQ+....+Lq'+.....+Lp
where L°< is the subspace of L 1left invariant by D
°<1>°( -1>°< denot is i We shall
Now let @1y Poye----- » O o denote a basis in L, We shall



show that sach

F e gy N Y can be exvressed interms of the

grour functions D gencrated by imecducible representation D

. = : <
Fpr this consider Ryg) as ovaerating on = ¢ .

el b & sk - k -
But L_D $W+Dd;+D._#]&A®§' = 17wﬂ@; which means % should be 2
/ ¥

function in Ly et A =30 |l @% . @y is the K-th coordinate

kS

M : X, < . : A .
of X w.r,t. the basis é®h y 5o 20 geveluate 4t, consider the matrix

Soen (g) Q% = L .

'. L %
"\ e i |
i \ ’
i : T ol i ) i
SRRN = e RN oI e L
§ 24 2] : i ; Qp
i i K
E : )
t S ) ~plec) ! . j
| ; x
1
\ L U e i

= - A ~ - ¥
- iy L B } fa )
i } i “
h=“ q C<
Therefore L= B D g )
e Tae =t A e~

But R(2) @ﬁ (1) is, by definition of R(g), @f {eh) Hehoe

I ¥ iz ’ ’
C = ¢ S &

|
; LN

X 2l o of o
WPy ()= X Dy, () b (&)

J ‘g = »‘l k

Thus ®? can be expressed in terms 2f the group funetions generated

by the irreducibk r@mesentatign i

N VA



R

Now 'any function on the group- G can be expressed as a linear

combination of functions belonging to a basis of L, and each
basis--function of L can be cxpressed in terms of group funcgion
«;J (g) generated by some irreducibl e revresentation, it follows
that any group function can certaintely be expressed in terms of

D

group functions generated by irrcducible representations of G.

Since any two groun functioned generated by ineducible repre-
sentations are orthogonal, the set of éuch group functions 15
linearly independent and we have just now seen how this set
spaas. the vector space of groun functions on G. Hence the set
"is a basis of this vector space, and the proof of the theorem
is complete.

It follows from this theorem- that the number of the functions
belonging to the set of all group functions generated by all in-
educible representations 7w 0of G 1s the number of dimen-
sion of L, which is m , the order of the group G, since we have
already seen that the msximum humber of lin. independent functions
on ¢ 1s m.. On the other hand the total number of functions gene-
rated by the ineducible representations is equal to the sum of the
square of the dimensionalities of these representations.. We thus

obtain theiresuilt that

2 2 2
Ny #Ng.....4+ n5 = m,
i.e., the sum of the squares of the number of dimension of all in-

educible non-equivelent representations is equal to the order of

the group. This result is known us Burnside's Theoremn.
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LECTURE 10.

The classification of states of a2 guantum mechanical systom.

In th?s lecture, we ‘discuss  the application of the represen-
tation theory to classification of states of quantum mechanical syst
Ep follow closely the trestment ia YMeinns Group Theory 1n quantum
mechanics.

1@k Symmvtry transformations.

We begin with a consideration of how symmetry ovroperties of
a physical system are expressed mathematically. Supvpose a body with
a point P on it is rotatzd about a point 0. If P has coordinatss
gt T the opoint P/ to which it goas after a clockwise

rotation by angle o a2bout the 4-axis is given by

B
=

W = Xcgs ot = Ygeln «
rzf =X ¢unX + Ywas ¥ s AL
2% = 7

|
&
s
ol
SR

Instead of a rotation like this, we can keep the body (and so P)
7 © y

fixed and change the axes of rafaersnce suitably ‘so that . P. has
‘ the coordinates
coordinates ( X, ¥ "2 ) with reference to the new axes, °

d

tion These two points of view are

U]

i given by the absve aqu

o)
\.f)

important in mathematics speceially in geometry. The single
transformation (1) can bz regarded cither as a change in coordinates
of a noint when we rotate = body by an angle —<«, or change in
thecoordinates of a fixed point whaen the axes are rotated by an
angle +<,

If we consider a perfertly round plate without any markings

BN

only, we say it is symmetrical about a vertical axls through its
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centre, say Z-axis, sinc2 we cannot recognise a rotation after
it is performed. On the osther hand for a fixed posltion of the
plate, we could also sazy that the various ohysical provnerties

such as moments of incrtia @ sboutX— v— and Z— axes must be the

(U

same, no matter how thess s2xss @re chosen. This latter can be
regarded as a mathematical exnrcssion of the symmetry of the plate.

Generally the symmctry

O

f & nhysical asystem is manifested mathematiesz

cally in the equations »f the system by the invariance of symmetry

{15}

transformations.” When a trensformation such as (1) is =applied to

f:

a differential equation, its effect on the differential operators

and on the functions in the equations - 7 - ] " - are different.
Consider the effect of such a transformation on the time-in-

dependent Sehrodinze® cquetion
where H 1s the Hamiltonian ooecrator, E the energy value be-

longing to the eigenfunction V. %

The Hamiltonian for an =tom witin v electrors: considering the

nucleons as fixed and spin ignored, is
1 " V¥ v
v = - 7 -

2 - i i e e sy
' t=i Lo S 4
5 {J = i
where W, Adstthelndss of the slectron, € the charge on the

photon,” and



St 1, oy 15508
<7 - S e =
PNE ¢ ) Lf ) ' I‘
e 0 IR SRl S N e
% 5 L
Y S ¢ — X 2 + i 7 S A i
: {-‘ - - L ) ) [~ ) A A : i
J ! v
When the trensform~ticon (1) is .applied, » we find that
<7 7L '?_*,-L' &g ~ L
A CAER B - o d EECRIN RGN
X, Y .37/
G
- y"l, > e e
T K e S

llence, substituting in the expression for the Hamiltonian, we see

that it has precisely the sime form as before.

Hxiyu,,20) = H—(X()“Y:)Z;>

d5 1is expressed by saying that the transformation (1) leaves
fvariant, 1.e.' (1) is a symmetry transformation of H.

But when (L) is applied to WV | the eigen function of . Hp
B general, (1) doos not loave it invariant. Consider for in-

Fa)

Bence the 2 i wave funections

~
S i &

w

hydrogen atom,

<

ST N e R LS PO e E e

fi€re .-) id a function of  the wmodulus of the position



o T

=4 frw)ch nges into (xas £ —Y Suingl ) £(R) which is obviously
different functional form.

Thus the Schrodinger squation

Moy, zw ok 2 e B P 30EE)

changes into A o i F s s
: pEiog S o il Rl e i D O )

Ly (/ L A LA e 2 7

where \, has a different functional form, in general)ffom that
ofF NFl- . If follows that the symmctry transformation of a

Hamiltonian can be used to r-late the different eigen functions

of one energy level to one another and hence label them and dis-

)

cuss the degeneracy of the levels.
The transformation (1) is not the only one for which H

ls invariant. There

fav)

ire other The transformation

\U

Ly Y., Z e SORE LI NS ¢ = e
which is a permutati of the coordinates of 1 and 2, is also a
symmetry transform~-tion of H. Similarly any permutation of the
coordinates of (DEL;'EQ, Gy is a symmetry trénsformatian.
The inverse transformation defined by

Bl X g N s o Z - foriall L

As an cxample of a transformation whieh is not symmetric for
H we may cit> the transformation to cylindrical polar, coordinates

given by ;= Ricu@- w2 R zal, s

A = Rt R ] ik

\?\'



10:2 Theorems All’ the symmetry tronsformations »f a Hamiltonian

form a groun.

Taking the product of 2 symmatric transformstionsto be their
successive apnlications, it is clear that (1) such a product 1s also
a symmetry transformation, (1i) the identity transformation is zX=zx
a symmetry transformation and (iii) the inverse of a symmetry trans-
formation is also a symmetry transformation is also a symmetry trans-
formation.

There is no certain method of finding out all the symmetry
transformations of a given hamiltonian. - One generally arrives at a
subgroup of the group of all such transformations. Some 2f the sy-
mmetry transformations may not be obvious. For certain systems,
some of the more subtle ones have been discovered recently (See
for example Tauch and Rolmlich, Theory of Photons and Tlectrons,

1955, Add.Wesley, p. 143; Baker, Phy. Rev. 103, 1119, 1956).

10.3 Example. Consider three nrotons fixed at the vpoints
- — ) ‘
= ~ 4 / ; —
¥ =l posdiialein s ¥, A sbe s eha e ) T e (36 g o)
2 41} 3

forming an equilateral triangle sbout the origin. The Hamiltonian

for one electron moving the field of the three protons is

| o e AL < e =
1’# el =y i e S e o A g e i

- ek =R = ;
LA R (Rl s L




B

The symmetry of thilis system is closzly related to that of an

oone molecule or that of an ion situated between thyewaler mole-

cules in a hydrated crystal of a salt . The physical system has
the same rotational symmetry as for an equilaterial triangle. We
have discussed the groun of rotations of an cquilaterial triangle
which leave the triangle invariant in lecturel.

The group G of rotations with

1
reference to the adjoining figure -
o
has elements
*{W\\\ “."’ {
A, B, K’ L, M, E, Tﬁjhere \\/\ ‘ =
A: rotation of 120° about x-axis / ol i paieth L
Bs .o G407 (o 120" }. 2botit , \\
i 5 - 1 8 FAu ! S
AR 180° about OR =xis * 4
L: . e 1800 .. Ol . s E L‘
Ms o 180O P Oonm' <.
Be i oO (or 3603) about any axis (no, rotation).

when the transformations for these rotations are written down, w8

have

E: ( X‘) 4“12) = (X/ \/1 Z

B¢ o shE e s ) S B o= —l L LY
4= —Ltydx+Lly e




L x = x4+ LV3Y Ms X'z = X- 2y3Y
bt r SR I 4 ¢ s SUUCR i~ ‘\
\3,: -:J}K""E_Y T e E\IV—' /

1. 7

o - = -7

Zj "',__’:_, e Y

It can be easily verified that these transformations are symmetry

LY

transformations.
We shall find the representations of this group G.

Consider the transformations above overating in the functions

5
X2 X

DRSSy
.

/
L A |
i is the effect of A -on the vectori

|
i \ - =
L A ) \re)
2z 755

We can write this as

- i - 3 =
A e ra s e il e
/" ¥ -
A o ¥y i i Vz—" N ) S d L} C
}

7

Corresponding to A we can t=ke the representation matrix as

—

T .
. Y \
/ { v
/ . = 2
i > =
{ >
! oo A
i

I\‘)‘“\\; b
L -

Where we have transfered the matrix of A. Actually the functions

d;efw.} ?,Q‘T' are only auxilary for the finding »f the repre-

sentation. The representationg is obtained by considering linear



-

: - A
transformation in the vactor spacs generated by =« € and \#Q
These functions are called a basis of the representationi Obviously

there can. be other bases for the renresepcation,

We can : amerate” o+ thetrapsiormetion A, B, ete. on
s =Ty ; .
the funetion. 72 & al1p and gencrate a revresentation A of

1 X 1 matrices. - The matrices are no>t all different.” Then there
is the identity representatiosn 3? which associstes the 1 X 1

X N
matrix (1) with every element. The imducible representations of

the group « G are, thus,

Repre-
sentation

=
=
e}

/ i’_ 8] \ S "'_—5 o ! Nae —C R R ‘L . anl e J- %

faa iy Eaa E = ; 3 == Teun

‘r-: { ! | > 4 ! 2 |\

1 i i :. ' !l

- ‘. /} ! ‘}‘ ! e i /l ! \/1 i !
vV A ~ Lo Tt - g o

\_ O l / \ = 4 J :— 2 ._,/’ : e 2. ,'/

4 ! f * b B S S e
A ‘ i '
B s S R i el R e ke EI R (SRS
9 ] j | / J I

e can prove thet [" is ineducible as followss-

If [' were reducible, it would have to be reducible into two
e-dimensional representations, so that it would be possible to
ind two vectors in a space ( 3, 09), Lo ¢ end §, a form

gsis for [ such that each of the vectors is invariant under the



o BA

growp G. It 1s, therefore, sufficient to prove that there 1s no
vector = Cyd1¢ Cobs which is invariant uncer - all transformations
of the group.

Applying the transformatison K to @1@2, we have

Ride = o p CIVE SR G e
Suppose there exists a vector ¢ = o g ey by which 1s invariant

under all transformations of G. Then

I< # = ’; f.}:

f
/ & constant. Then

( = s G i — Yor ) « <
K< &, Cy, ¢y = AtCce, + Cy 42)

Thoont Keyg — ¢ .= 7c el o e / o
Either !
¥z i) Cv b0 €y = C
oL e Eerale - fg Ly

The invariant vector musg be ¢ or 05 . But amy other representa-
tion, say A, shows that this cannot be so. Hence no invariant vector
exists, and so [ is irreducible.

110.4.. We can now state the applications to quantum mechanics of the
representation theory for the classification of eigen-values.

.heorem: If a Hamiltonian is invariant under a grouo G of sym-
_etry transformations, then the eigenfunctions belonging to one
nergy level form a basis for a resresentation of G. :

If T 1is a symmetry transformatior belonging to G,applying i«

o the equation g E (9 » we get

Ht't2) = Ev/(ay whews Ty = .



e ‘ L ’ * : ‘

' ds also an eigenlfunction of H helonging to E.
Any eigenfunction belonging to E 1s trsnsformed by T to another
eigen funetion belong to B, Alss dF w0y are two such

functions then  <¢¥: * ¢y Vo is also such a function.

Therefore all elgen functinsns belonging to one energy level
form a vector space which is invariant under (9) and is therefore
a basis for = representation of G.

Thus we can label and describc an cnergy level (3nd its eigen-
fgnctions)simply by naming the renresentation associated with it.
This, of course, does not Tell us everything about eigen-fuhections,
expecially numerical calculations, but it does indicate the symmetry
properties.

For example consider the lithium atom with 3 electrons, Its
Hamiltonian 1s invariant under 53 , the group of permutationsof

the electron coordinates. (X,, 4% ,%,) ~¥ e R O

L%, 22,) — \ijjjlzjy a“?'l%;,zx> e e X’;)yh)_,k') where
g y k 1s some permutation of 1,2,3, 5313 isomorphic to the
triangle

group G we had for the oqﬁiaternl / ‘and therefore any represen-
Frition of -G is mls0 a representation of “5; .  Thus 55 has 3
different (non-equivalent) irmeducible revresentations Iﬁ; tz,b4)
and 8‘ . By the theorem the @igunﬂ”unctians associated with one
tnergy level form an invariant vector space under the group S,
and this vector spéoe can be reduced into subsvaces each of which

ftransforms acorling to one of the representations [ A and b .
Lo

i wave function transforming secording to the representation A
D i \SSF

ils anti-symmetric in the usual quantum mechanical sense, i.e., it



- BB =
' H
It is known experimentally that the anti-symmotric states corres-
ponding to A1 are the only ones ovel fogn& 1in nature. So that
thig -s =" 1.z ouk of the wav§ funetlons @c¢9féiﬁ¢o tréducibla repre-
sentations of ?5 is very important.
Corollarys If 'a Hamiltowniar is dnvariant under a groub G

of transformations, then eigenfunctiosns of the Hamiltonian transform=

1
L

" ing acdlufb one irredueible renrcsentation of G belong to the
same energy level.

For, from the theorsm, the voctor space of elgenfunctions belong-
1ihg _ %o one level is either ﬂT@duéibla or reducible to subspneces
each of which is invoriant under an ireeducible renresentation. If 7
thus never happens that eigen-functionﬁbelangiaa the same in?éuciblw

vector space belong to different levels.

The question now aris=s whether eiganfunctians belonging to
di fferent irreducible vector spaces zlways belong to different
levels. 1In general the answer is necgative. - However, 1f we find
several irreducible vector spaccs to be associoted with each energy

level in a systematic way, thore must be some symmetry property

which accounts for this de

@

naracy. - Hence 1f we include all possi-

om

ble symmetry transformation in ths group G, we would expect diff-
erent irreducible vector spaccs to have different energy levels,
§simply because no symmetry nronerty;left. This conclusion 1s borne

out by experience. Nevertheless a few accidential degenercies remain.

E0.5 The effect of perturbations:

T

We conslder nextithiesciassification of energy levels and eigen-

functions of a complicated Hemiitonian H, which can be written




H E I'% [ &3 '4 “‘" =

where H, 1s a simpls part, and P;;: that due to a perturbs=tion.

V)

He 1s taken to> be simpler in the sense that it has a higher degree

4

of symmetry than H. For inst=ance it is casier to caleulate the

Q

)

enargy levels of an electron in a spherically symmetric potential
than in a potential varying in somec dizections. It H. has a
higher symmetry than H then thce energy levels of H. are more

G degenerate, beczuse there are more symmetry transformations to make

more eigenfunctions to have the same energy. The effect of !4p

can be taken to bel%plit these lavels. The degree of such splitting
b ls limited by the number of irrcducible eomponents of the renresen-
'tation corresponding to an energy level of H . This is made
orecice in the following result.

If H . H, and H, are all invariant under a groun G of sym=—
y fg e

metry transformations, and if the eigenfunctions of an energy level
of H_, transform accl t> the renresentation

; + iy

i RO TR L S where DN, are ixmeducible components
B D ., then the greatest snlitiing that 5‘; can cause is into
levels.

To see the truth of this ststc&ent-, consider the eigenfunctions
d energy leVQLE of the Hamiltonian

i3 L

U e

i

here € varies continudusly from O to 1. This can be thoughtof
s a mathematical {device or even sometimes physically achigved by

leducing the perturbing magnetic field to zero steadily.



For an € &% 0y let: &} be an cnergy lavel. The eigenfunctions
| A
| of this level transform accy t5 cgﬂpﬂ*me lucible representation D(g)

or according to a reducible reprceantation D%+ D% ete., 1f G
does not contain all the symmetry elements >f H.'

A

As € 18 ¥aried eontiniaously, the cnergy levels and eigen~

functions also> very continuously and thz reprasentation D y SLC.

cannot change disfontinuously to some different (say non-equivalent)

representation. So when € -%0, severa pnergias coalesce 1into one
sha TR 5 .

so that the rpprbSbnuutian D+ D+ ......+D of the composite

4 te) ')
level corresponds exactly to the components Df ? I oaR ety 2D,

which have coalesced. "Looking at this the other way round, we can

4

say that the degenerate level is split by H, ~ 1into a maximum of "

- i) )
levels associated with the n-irreducible components D\ to- D

2

Examples Consider a free hydrogen atom withiglectran In Zplewel

The Hamiltonain is b
r: b A " x
§ PRSI AL - il R T

84

where V(y) 1is the spherically symmetric pﬁfential due to the proton.

The P-elgenfunctions have the form

‘

b e R RO T LS D s (R :

where 4(~) is some function of . If the atom is placed in an

Electric potential \, (¥} with trigonal symmetry, i.e., given rise
Bl A
e

. : o 0,
to by three atoms in an =quilat-ral Anmuxng»

o y
s % N

R

I, H,, Hp are 2ll invariant under the group of rotationz K,,-
i the free state, i.e., in the absence of M\, the three eigen-

i i 3
inctions all have the same cnergy (This 1s because the hamiltonian

B, is invariant’upnder all rotation and it can be shown that the



ol T

P functions transform aeadtng to an irreducihl- roepresentation of the
|

Protation group s> that they belongz to the same 1sval). However

)

I ,w',.‘ A ‘(/ 4 & = i Y i N
they transform accji to the reducible representation AN = | + J of

Bthe group G. ., So we may expect Hp to split the trinly degenerate
i i
level of hc £> a non-degencrate lavel o 2nd a doubly degenerate
it
level | .
B RRIRK R i kiaade i dow ek 23 K&k
\
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ELEMENTS OF LiE GRCUPS AID TIT ATGEBRAS.

s

1. Lide group.

)

s o4 . Jaa s = s
a set G of elements which posseses o

m

An sbstract group i

-

a

binary law of compositionm,Such that

(i) for any two elements = , b of & , a.b. is an element

(Taial s bl Sc Sarein 6, 8B e o= lae By oy
(iii) there exists an element I in G such that whatever
be: g TimatGsy ae Tiec L. 8 = g,
(iv) for each element a in G , there exists an element
a of G such that a.a = a .a = I

( Condition (ii) 2 is known as t

he agsociative law for the

binary operation. 'I' 1is called the identity element of G

and a - the inverse of a . . |

If whatever be a, b in a group G , ab ba , then G
is said to be abelian.

A topXoZogical space ig a set certain subjects of which

are designated as ‘'open', the 'open subsets satisfying the

following condition

T

(i) The intersection of any finite number of open subsets

i

(d))]

operi,
(ii) The union of any number of open sk subsets is open,
(1iii) The empty subset and the whole space are open,

(iv) to each pair of distinct points ~  there are open

sets containing them which do not intersect.



%
A set G of elements is a Gopological group I if

subseds U , V .containing 2 , b respectively
such that UV & W iie. vhotever be x in
Mig 0oy A Nl it xg o da i inT .

(b) If a is in G , then for every open set V

S ;
containing =2 there exigt open sets U

b 31 TT—l . 3 '
containing a such that U -V ( i.e. whatever
i -1 . . L
be x in U, x Sl L

A topological group G is cnlled o Lie Grou g At

the following contions (i) and (ii) are satisfied

i) A coordirase system can be introduced in G .

7

By this we mean that to every r-triple ( sl A RAR T S o]

an open sets containing ( o, ... , 0 ) of & r-dimensional
enclideaxwapace we can assoclate an element s 1n an open
set U of G containing I 1in a one-one bieontinuous
manner that the r-triple ( 0y o« 4, 0) corresponds to I,

( 1 Ly

S e s e Fapeealllan. cOOFC

I 'end containcd in. U %0 that whatcver be 8, t  in W ,
St . ds lal oo h o T e doorcarabes- of ‘sJt are
funetions ef The eooerdingszy oi & ond the coordinates of
i g ; h Ky
t o  Thuggs s.t. = u and u ; the X coordi-

nate of u ,



o : st o _
’g (A_: )/& :t) 4')\' ) O’\: R) ,,7\(

A
(ii) ®he function g & is differentiable an arbitrary

finite number of times with spect to the parsmeters; s
Y ‘ it
eee 5 S. 3 tl o s e e el
The number r is called th 5 A
For scke of brevity, we writ 2 Es
A ol i x
vy ! AR T =
q L : ) ) T )Y’ (1)

Zelgitruchlureeons tanios

& : i oL
5 (\ L A Skl e e S G J
: 5 21 =iy S
TR O T ST SR AR A B o (2)
In view of (ii) din the definiton of a Lie Group,
e 3 . ] : : .
we can develop : % as a Taylor's series which we give below

with summation convention as

f‘OL( /§’>' T >/41 3 t\) D L*

o R ‘ R NN R % Y
el e Y /&“rw%/s“()
A
If AA = I, then from (3) we can manage to get
th g At .
the oordinate A in terms of the coordinates of

O]

= X N L
A === R ,/% d.‘\—- C:L _\{ ?\ : /g = & & ( 4)



t ). Then from (3) and (4) we obtain ’
ol L
AL Ay = Ay s o (5)
o _
The corsbants '/{{aV for A, [(by . =¥ varying from

1, ‘eve ¢ T areicalled the structiure constapis lof G /. From

(3) and (5) we cen deduce that T _ a’ a2 . Hence
i S /L(W-‘ <o /[
%Y & s
/c°< y i | (6)
. (5'\ = — A \(f’l,

From the associate law for &G , we can deduce another

(T

condition on the i structure ccnstants of G. If s, t, u
are in G Ha el ol S e LRl
Jy%/s" e 7 0 (ef. (1)
,u) = §2 (A, 42 £ ) Gt
Substituting (3). - for the elements of third order in
<

the equation (which is identically fuifilled inthe first and

o

s 5 D
seconc order), we have for the coefficient of A" T w 3

the relation

H -
B ByE S PhY 3@ " “vﬁ$(7)

¢ "
As MXBY‘S = — k\y,ﬁ 5 etc., the right hand side vanishes when
summed with respect to wnile the left hand side in view

of (6) becomes

o A:U‘ e
EoME T

i
A
PN

bt ”
4
A

F\
\

O
w®
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N.B. The structure congtants depend on the coordinate system

chosen for the euclidean space.

3. Lie Algebra.,

N

Let 9 be the r-cdimensional vector space in which

o
s}

the following operation of composition of vectors is defined:

(1)  +t6 every pair E y ® of wvectors, there corres-

ponds a vector A = {ﬂ T : —91 called the Lie bracket of
€ gt |
(ii) [ E ', -‘C-\mi\ =T '/Clﬁ-\o_& = <, Lgl >‘Y)l’.\+ /flL 3‘)”):&
when ~C, , /C‘l are constants and A SRR
~

vector addition,
(111) E E)ﬂj "”E BpEN = 0
(1) [ T3, 40095333 +1 0,209} =0

for any triple £ , ™M , % , (This property

is known as the Jacobi identity.) Then 9 is called

a Lie Algebra,

Let ieo(% y A =1, i LN be a basis for ‘g.
i . > :
Then \__Q/})QJX“- s /anhY Qa( (written with summation conven-

] ¥ 3 3 2 3 °«
tion) for a suitable choice of T’ cormstants /(_’(5,', g
ol e " ol .
; (g, o werying from 1 to v L o ?) are
L
called the structure cors tznts of 9 (These obviously depend

on the choices of the .basias).



N e 3 ,
B ctaciy, if 0 AL oay S are v~ constants
. / ™ \ - - ." . (“
shatisfying (2) and (b), then by defining ]ﬁ @ 4 ‘S: vE
N
and extending by linearity the breacket
/

C
Q* * U A AT {_ . N« Ao o Ps e

i g 2 is & basi:, we get a Lie algel

-
(4
<
)
o
o~
0
2
-~

¥
] e C /
which C} ﬂz are the structure constants. Phus-a lLie
b} A
v

4,  The Lie Algebra of a ITie Group.

A collection ( ( A(T) ) of elements in a Lie group G
{

depending continucusly on e resl oarameter ( varying on a
i

real interval such that g QoY= Ree

!._
}_l
9y}
(@)
o
’_4
D
(o
1y}
o
i5
i
<
lo
l..].
=

et
()
()]
Focd
8
&Y
H
(.}
()}
)
=l
<
ot
=
(2]
e
e
e
4]
(¢)
fat
(]
v
@
—~
-~
o
N
S
ooy
ay)
(4]
™

tangent if the demivatives

y A~ . 5
e d.ﬁg(”)\l_oex1st, The
3

r-vector whose components are ‘go~ ol Bode wisan b
is called the tangent vector of the curve in question.

Thus we agcociate with a r-dimensional Lie group & ,

r-dimensional vecltor space :( composed of all tangents to

i

the curves in & . This association can be shown to be independ-
ent in a natural manner of the chcice of 2 basis for the

gives the coordinates of elements of G .

euclidian space which

£t

(e

9 ‘Y) arec tengents to the curves /S(T/) y %.(Tx)'

respectively and if uj’L) is the curve such that



7
Wty = ALD). Eiy

, the tangent %y .to WiT) 4is

g,iven b:y’ % = ‘z — N) °
With the seme notations as in previous para let cv( )

be the curve such that
QV(l) 2 N e e e

g S A Lk_t) { AL L% )

Introducing the et [ the T

% :
. Teo BE TS ny en s
let L¢3 b& the fTangen

(®)
(J

g ety

of @ (T ) . We define a

bracket operstior® on @i kkus 3 Ber B, o an (} define
— ; -

= . i = . - g
L =) Y?J =3 “ G ned as sbove,

We can check up that the bracket operation defined on

59 satisfies the conditions of a Lie algebra. Further the
structure coustants of the Lie algebra sre the same as those
of the Lie group G in corresponding coordinates. Jﬁz ig

called the Lie algebra of the Lie . group G .

_ LS e r
We quote Lieis Fundomental Theorem @

To every Lie group there corresponds a Lie algebra of

l.de

same dimension; conversely, every Lie algebra determines unique

upto 'locel isomsphism' a Lie group (ecf. Pontrjagin).

and Algehras.

abelisn group. For an abelian

group, inview of (6) in &. 2, 2ll structure constants are

A coummutative Lie alzebra 18 one Whkevt the bracket of

any two elements is O .. The structure constant: of a commuta-




: & Vitdat i i , L e
A subgrovp of a group & i3 a nern-void subset which

g, 4 a0t A IR (e o
with respect to the induced

invaeriant subgroup < R SR
. a ~1 :
G A e R is con

’

51
s
(@]

A subring of
with respect to vector addit
ion. An ideal J

'g} and

By = simple sroup,

whatever o irn

any invariant subgroup other
identity element, considered

i e Ty
a.Lf>: I'a

T

ion

o
ope

subgroup such that whatever be x
S s = ] ey
vEined 1n 8] .

is a subgroup of

&

which

Ho)a:

: 1

3 closcd

=

E} is a subring of such that
G e ) is in J .

> mean g group which does not contain

then the whole group and the

&8 subgroups.. A group is semi-

simple if it does mot conteineny abelian invariant subgroup.
The Lie (3 glgebra of a simple (respectively semi-
-
simple) Lie group is itseli szid to be simple (semi-gimple).

G Some Provperties

T

Lie Algebras.,

Let Ej be a Lie zlgebra with structure constants
S et
;‘{TJ> ’ e 5 gy vy rvanging from 1 to r . We define
the symmetric tencor ;;ug',jggg_s

Theorem 1. - (Cartan's crite

sufficient condition
CLQt\ %rth

By a2 Linezr Li

is that

3
=

(1)

rionf The necessary and
Lie algebra ] be cemi-simple

mean 2 Lie

elements of which are linesr

operators acting on & vector space.



Lemma Let (g be a Lie azlgebrz and A an element

§7 Define for each X in E?, A ( ¥ ) a8 the elemen

‘l% x\ of C]. Then f A (X) is a linear operator on the

and only if A& ccommutltes with each element of (j) .
With ususl scdition oif operators snd definin he bracket

of two operators defimed in the 2bove lemma as the operator

&

J

defined by the braecket of the wlements determining them wecan
prove that such operators constitute a (linear) Lie algebra.
As a semi-simple Lie zlgebra cammot contain a commutatinte ideal,

it follows that such

V)

f B R ; - :
Lie algebrs is identical with the Lie

algebra constituted by the operators A ( X ). Hence we have

Theorem 2 . Every semi-gsimple Lie zlgébra is z linear

Lie algebra.-
For linear operators we have the ususl product operator
L
which is an associatve operation., Thus in cny semi-simple

\

Lie algebra we have an agsociative product denoted by

We now define the CasimirForm of 2 semi-simple Lie algebra f}
L | GERI A G st L E 2
Let g be normalized cofactorz of det g
i L
(ef. (1) above), i.2. Q' g — K7 . As e} e
i il \j e ; -laﬂz\#-o
gtu exiziy

The guadrsastic fnrm,




(o]

v s < R T n
(‘:’vﬂ@r@ Qg{ A & 18 L Ae 855 0CLe e

-
is called the Casimir Form of _ Y.
Themrem 3. (Casimir). The cssimir form F  of & semi-
simple Lie algebra commutes with every element equl-

" . e \
valently, | \y 3 cr\ =3 : e
The follecwing theorem relates geml-simple Lie algebras

to simple ones.

Theorem 4. (Cartan) Every semi-simple Lie algebre is &

'dir-ct sum' of 211 its simple ideals.

7. The 8tandard Form of a Semi-simple Lie Algebra.

Let {3 be a Lie algebra cf dimension r . Consider the
eigen value problem of the operator A (%) defined in the
Lemma in §. 6 . i.e. A (Xx) = Ky 21 ="1"X . 1% the

secular eg

}’_V
<
)
i
}.J
S
ES
Q
)
e
[
e
D]
3
)
4
o
3
b’
(4]
9]
(N
o]
P
{97}
e}
}.J
L
(&)
o
H
O
(@)
ot
w
~-
ct
5
@)
s

we have r 1linearly independent eigen vectors which can be
used as & bagis for the vector space underlying gf, If,
however, the secular equation has degenerate roots, r

linearly independent vectors may not exist. Hence, a coordi-

nate system for g cennot be =2rrived at by the above method.

But for semi-simple Lie zlgebras we have the following

roduct referred to abové)



Theorem (Cartan ) : For a semi-simple Lie

if we chocose

the meximum number of distinet roots (which we

the root, there exist corresponding to this root, *

eigen vectors any two of which conmute.

The number
We shall chooge as basis the /k, linear
eigen vectors (soy) Hy , oo 5 Ho
degenerate root F’ =0 o ...2 together with
linearly independent eigen vactors
corresponding to the distinct roots , [g',

The comnutational relations for Hl ,

E ,E{g,

[Hb) HKK AR,

clhel sl ds 'noe
J4of

4 T T oaf <
oy ' iz ; : ' T
T =05 ZE > /Ca‘(‘,-:!\jd{l W

secular equation of

arly

~ . - . - e e " .- 735 A
; SRR s AT . SN .8

gigebra . _ f}
A (x) has

can),the only

ig the multiplicity of

independent

(2)

t a vanishing root

(3)

(4)

(L‘i\) (}T,+d+{§
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Further, [ (\) \\.‘\] T (5)
[‘\) Eo(]:CXEO(~ (6)

As A is a eigenvector of [j A, X
- DN (7)

From (6), (7) and (2), it follows that

8. The concept of Root and Schouten Dingrams.,

The form in (8) of sec., 7 is called a root of the
semi-simple Lie algebra j‘ It can be trought of as a vector
in a K ~dimensionsl vector space.

Let o, (8 be vectors. (o4 () denotes their scalar

product.

Theorem 1. If ol snd (4 are two roots of Ej, then.

(o S B : . - 9 (=) .
2_&,_£:l is an integer and (5 — T—S—i—’ax is a root.
(x> ' Lot ot

Theoren 2. Let X , (! Dbe two roots and ‘¢ angle
-+ 1 ma > 1 S & 2
between them., Then £ cen have only the values 0, 30, 45,

o
60 and 90 ., Further the ratio of the lengths of the two vectors

20 it o) o)
" N {, are 2 dor S0 g2 Tor s 48 L n0 L Ter, 60
and indeterminate for 90 . 1If Y¥=0, o = El .

By a Schoten diagram of a vector diagram we mean the

graphical representation of the root vectors of gg o AL
simple Lic algebras (end hence simple Lie groups) can be derived

from these diagrams.
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E

- The diagrams, the only »ocaible,

are given belows

9. The classification of Simple Lie

> Algebras.

diagrams. Let be an integer

3

be classi

fied by their -Schouben

¢ 3 ’
end £y , an orthonormal

basis im a A ~-dimensionsl vector space.we have the following
classcs of vector diagyems and hence simple Lie groups:

- ®

A’Q : The collection of k4(£4i)

e ]
(. Q\-—Q"L{ Of LT’E

algebra is Q;+\)Qﬂ~l

unit vectors €, .

For 2/ =

( c
Consists of S'i'Q;% and

. L 5 1 .
numbecring 2 Q o The dimension of the

7l 3

P e S e e T
Another generalisation of

differences
The dimension of the

we get the diagrem A2.

¢
’

SR - . /
)iQL = E}’(_% L)K:L,)Q
b
is Bam W)

algebra

BZI consists of
)

There are however just five excepticdns:

Gl L <f % 5)



25 F4 s . The ‘diagrom of 34 with 16 more vectcrs
.‘i(;:c‘i e, +¢:+¢,) . (Total 48 vectors and
> '/

¢q |y
igns positive

72 and dimen-—

4, E7 ¢ The diagram A7 and the vectors
{ VL i~ c 3 P L —+ £ —+ %
i(t(,jxlik—_‘,eqﬁgsi’eb——'a‘( Gg—)

whew we teke four positive and four negative signs
lumbers of vectors 126 and dimension 133.
5« B, ¢ The dlagram Dg and the vectors
"‘i{ie\‘i‘pzi@_‘;i‘@qj?gifk’:ﬁejieg>

with each sign occurring ar even number of times.
There are 240 vertors and dimension of algebra is
248.

Rezalizations of the groups A

i3
A £ £
D re the so-called classical groups.

£

10. . Representation of TLie Groups and Lie Algebras.:

(

Let G Dbe a Lie group. If to each element of
\? £
G we can associate o linear overator (((g) cf a certain
n-dimensiongl vector zpace V such that to 81 ¢ &5

T .

IS5 a

in G the cperator T @g\,T”(%LD corresponds and the asso-
) is further continuous, then

ciation g - Ty

(]

| n—-dimensional representation of G .

(




4l

@

Let f} be a Lic algebra. If to each element £ of ff
4-
U

we can associate an operator A ( = ) acting on V such tha

A (

{4
4
wy 3
e
il
=
T A —~
Wy
b
o
e

then A  is said to be 3 gpresentation of .
Theorem 1 ., Let G be a Lie group and J its Lie

algebra. Then any represcentation of G gives rise to a repre-

matrizes L

P

which are such that L Je, R 1= ¢ 2 being the

i S
Two representations ? -‘>x— Ay ( 3) ’ % - A;z,( E’)

of a Lie Algebra are \{ulvulcnbLtn ere is en operator U such

that U A ( § ) Ut = &, ( & ) whatever be

-ible
A representation F —y A(Z) is reduc . if the opera-

wy

V. . -
tors A ( é‘ ) leave a proper subspece of ;invariant. If a
N

representation A _is reducible, there is an equivalent repre-

sentation A~ such that for each %, A ( £ ) has the
matrix form. P D ) A not reducible representa-
&) -
tion 4s called dirreducible.
_ Sl Vi 5= A i > - i
A representation g — Rz is decomposable

if the operators A ( E ) leave a two mutually orthogonal Awk-

spaces which together span the whole space V, inveriant,
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If a representation A 1is decomposcble then there is an

; : - 1 e e 0
equivalent representation A such that for each 7z , A ( g)
has the matrix form N B N

o&}

11, Decomposability of Representations o
2L

Lie Algbkera.

We give the steps tc the result thit every finite dimen-
sional representation of a semi-simple Lie Algebra can be
decomposed into irreducible ones.

Theorem 1. (Broucr). If all representations of a Lie

algebra of the form

wheye A 1is an irreducible representation are decomposable,
then all finite dimensional representations are decomposable.
3 o} 3 X 4- £ Tm

Theorem 2, The clgenvzlue of the _2simir form (cf.
s. 6 ) defined for any semi-gimplc Lie algebra is different
from zero for every non-trivial finite dimensional irreducible
representation of the Lie algebra
ation of Schur's lemma, we get.

Theorem 3. Every finite dimensional representation

of a semi-gimple Lie algesbra czn be decomposed into irreducible

represerntations,
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12. -The concept of weight.
Consider a2 n-dimensicnal matrical representation of

a semi simple Lie algebre Sj « The réprcosentation is completely

specified by r motrices (¥ being dimension.of ) D

which satisfy the cquation

y s
when //ﬁ-€T arc the structure corstents. of f?

Let us cexprese the represcntation with respect to the
standard form of 2 semi simple Lie algebra ’ s dis-
cussed in §{7 o With notetion as in that section, let

/ / =7
3 S elare Hé& : er ,fo + -~ be the mtrices in the

,’ E;’IJE{L/'

representation correcponding teo the basis H\),,_}\Xe
Let u be a simultoneous eigen vector of the matrices
5 & s
H| s «» ; Hy 50 that b= e et e the
){ -vector whose ccmponents cre ( My 5 ees s nlﬁ )
e Ve chov e e (e B |

weight of -the eigen vector u .

Theorem 1. ZEvery representation has atleast one weight.

O

Thearem 2. A veet u of weight m which is a

n B k k
up of weights m , m 79 ¢

.
5
;
T
bl
=
o
=t
<3
P |
=
o
l’)
u

b
for cach k , must vanish.
Theorem 3. There exist at the most n 1linearly inde-

pendent weights corresponding to a representation.
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i
neorem 4. If uw is a vector of weight m , then t;(ub
and ¥§L\L have wei;hts m and m + d, respectively where

iﬁ=(di) and LHL)Ed]:: K by (Cf.g'q)



Sheorem 5.. If a representation is irrcducible, then
' -
all the h\/ 's can be simultoneously expressed in dizgonal
forn,
my = 3 Q\/'f(\"‘ )
Theorem 6., For any weight m and root o
(At )
A "‘«( v ) g ¢
is an integer and m - “>_ 7 © is a weight.
(o
Theorcm 7. The szt of 2ll weights is invariant under the

group S of transformations gererated by the reflections

with respect to the hyperplancs passing

O

through the origin

and perpendicular to the roots.

13. The classification of Irreducible Representations.

Two weights arc said to be eguivalent if they can be ob-
tained from esch othe rby transformetions belonging to the
group S in Theorem 7 (sec. 12). A weight is positive if the
first non-vanishing component is poszitive. One weight is higher
thon the other W their differcrnce is positive. A weight
higher than its equivalent(is said to be dominant. A weight
is said to be gimple if it belongs to only one eigenvector.

Iheorem 1. If a representation is irreducible, then it
highest weight is simple.

Thecrem 2. Two irreducible reprcsentations are equivalent,
if their highest weights

Theorecm 5. For every Lie algebra of rank K(cf. S.7)

(called fund:mental dominant
weights) so that every dominant weight 1sLnon-negcflve integra

) > ' 2 el 3
there are ﬂﬁ dorilnant vwolghis

linear combination of then
Theorem 45 There exist { fundamentsl irreducible repre-
B Aé_ which have the fundcmental weights





