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ON ANGULAR MOMENTUNM

Lecture 1.

According to the quantum theory the angular momentum of
a system is quantized and an eigen state of angular momentum
has two eigen values 1} s - associated with it, JLJfJ denotingt
the square of the angular momentum and m the projection along
an arbitrary direction usually chosen as the z-axis; the allow-
ed values of J Dbeing all non-negative integers and half-
integers and for a given J the allowed values of m Dbeing

&, J")" Uﬂ*')‘J « This can be shown to be a conseguence

of the sommutation relations

(\\JX’,I-‘J b L 2 {;J J)'JTi ‘ = { “TX ){J—i )3‘)«} - l¥~a (1)
}.j“, jx.sz 20 i " L
satisfied by the components J, J,, J. of the angular momentum

iy
e

operator |

The further development of the gquantum theory of angular
momentum rests basically on two concepts (1) the addition of two
anguaar momenta and (2) the transformations produced under

rotations of the coordinate system.

il 4, and 4 are the anguler momentum operators
(each obeying the commutztion relations (1) ') associated with

two systems one easily verifies that the totel angular momentum
..~§

-

J defined by

T

b wads of & Ry
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itation relationships ana that

X ; .
J, T, j”TLﬁsz form a set of commuting operators while
W AT T also form obvicusly a commuting set of
2 < 7 e | =
operators. It therefore follows that we can either have states

[v\,h, HD’ which are eigen states of the first set of operators

+ 1 N,
or equally well the eiger Jt~tusgi‘ A :,‘#> :.ij'mw/|)b )
O\. 1 /_,\(’ aws s St el the g0 ¢ wi
of the zecond set of|states | . ) jnyand {J, » S, 5
A B / ! Sl LR A S
ve

describe the same system it should be possible to express any
state of one set as a linear superposition of the states of
the second set. Thus

P e e nL' CCapa s my m ) om0 "D (3)

and

Mym>b,m,y = ¥ CC 0wy ) ] 3,05 b (1)
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The transformation coefficients are referred to
Clebsch-Gordon coefficients end we shall for the present
state that these coefficien

(1) are real (hence the appearance of the same co-

efficients in the inverse cxpansion also),

(2) vanish if wy %+, A ¥ (hence the summation
) S i
in (3) over only one of the variables yn 5 and we choose

also not to write ¥r within the ( symbol as

i CJ\)Lngmlfn‘nUwhehvver no confusion arikes



(3)' vanish if J 1lies outside {J,+J,) U 70, -+, =4 |-

L
{or af 4.4 ) do not form a triangle) and also if
1

and (4) satisfy the following cymunetrfjeerr-}erl (g

j o 1 = ";?-’. ‘"J
} (d) C( JI)(_ —), 7"}“\’ -"f';) = [&"\‘,) ‘L" C()L)‘J; '77‘)1-}“’)

5 il o T 5. )
Cade 2 SRR R SR e o i ’:'-(_),)&),_;-mfma__—m) e
J % v .
and (C) C (J\)L )) )Yl\n')‘—h'\) ;k‘..\) ) &/‘z._{.t_%> -"(.! ‘J‘ _), ;-7’.", A L" 3*."»')

>~ 1
Uodedd 1)

which are sufficient to derive any further symmetry property,e.g.

3 y

C<J\ J,) . m vy vn) = l 2 ) -
e /KT >((s.s

M, w5 q)
obtained using (a) and (c). A-gtu
‘}7"‘ 3
C{ 1 e ) 2 (ﬂ)J P, (5 e)
(z)4)) ¢
which is obtained using (c) and noting that C.[J“f) m o)z | .

From (S &) we have

' ) 1)~
((.“)\Jz ) ()C') = k—l)“’*)}_ J( ij})

i } (4, I-‘]\

and since | is an integer (half integery cannot obviously

have zero Drojectjon) .
g Lide b )—,'\f;,)‘)‘*"’““ c(J,),);00)
and therefore

i
St i tans ) =0
el ) unless J, +J,+/J ~is even. (5 f)

We note that the Clebsch-Gordon transformation describes,

given J. , J, the change of basis from m, m, %o J . or

vicéd wersa. The states L;‘)Z J o y form a complete ortho-

gonal set and arenormalised if I},*n\) ¢kﬁﬁk\)& m ) are



4
normalised. The unitarity of the transformation ig explicitly

expressed through

}% CLhuadmymum) 00320 m, mgm)= SJJV (6)
and

20, ((JI}LJ; m, m)ﬁ Q(JgJy.); ™ ?ﬁ,_mj;‘g); i’ (7)
J W
“\Ih\"t m, = m! assures Jm = wm! in (6) while there is no
summation over  in (7) since = ¥m,f M, given m, m,
Also since - v/ f ) i implies - ;
™oz meml | by gy 1 8 il

The Clebsch-Gordon coefficients are the basic quantities

which occur even when we are coupling many angular momentﬁ, the x
Ed
various quantities ¥mown as the Racah soefficien ts, J nd |

symbols etc. being certain aggregates comprising of a number
of Clebsch-Gordon coefficients.
We shall therefore take up & detailed study of the

ions employed in the

}I.

coupling of two angular momenta the convent
definition of the Clebsch-Gordon coefficients and their evalua-
tion etc. later.

Let us now consider the behaviour of the angular momentum

states \j yﬂ;> under rotavions of the coordinate system. The

operator = representing rotations has the general form

- 53 \
R = eqh ?)g (8)

representing a rotation through an angle 6 =zbout a given
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cand J is the angular momentum operator., It

2

direction

-

i
{
is clear from (8) that | commutes with 7 “ and heunce J* ig

a good quantum number unde r rotation

| oy : ,
| I~ \Jm) e >E, O FRYimy 1)m )

— oy VE RS
il 1 20 | Jom' /7 (9)
fer 770 LA 7/
N
where the states ‘) w7 refer to the original coordinat

system and we denote { yyn| K |)wm, Dby the symbol j)y
™ mn
referred to as the rotation matrices.
In other words, we can consider the various states

k)yﬁ> for a given j to be a set of (23+41) quantities trans-

forming under rotations according to the D1 rule (9).
™ m
In fact we define a set of (2 k +1) quantities (whether

states or operators) which transform under rotations according
: - K k

to (9) as the components of spherical tensor 'CV of rank

The motivation for this notion arises inview of the consi-

derable simplification resulting in the evaluation of the

i 3
matrix elements <) | ol Jmy of an operatoer 0 TDvetween

angular momentum states if D 1is a spherical tensor O‘V .

In such a case we have a powerful result which asserts that

the \;j'+\) {2 R 301 ;)+2) elements are related to each othe
- ‘n\RC?\A“ﬂ)W
through Clebsch-Gordon co fficients an Qllt is enough to know

any one of them to determine the rest. This is the Wi

1=

Eckart theorem which states that
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<J/ ')m| l Qc I Jm) = C L~ K ™ "-1/M)'<Jr‘3‘1b

where<J’H C*‘“ )P is a quantity independent of the projection

by 10
() (10)

quantum numbers, referred to as the reduced matrix element,
which is usually evaluated by calculating L.H.S. for a chosen
~ / e st s : X
T, & DL and dividing by the corresponding Clebsch-Gordon
coefficient. The theorem also tells us that the matrix elements
: - \ I . !
vanish when w4 ¢ % m or if J - do not form a

triangle.

Examples of commonly occurring spherical tensor operators
J

are:
(1) the angular momentum operators J, T J_, defined by
J4 = F 214y
which form a spherical tensor of rank 1 . Since
(RS <
<~)}h \J \)?’h?j h\g :q; 1

o m m S

CLs1d e mem) Gl TH I
Ty =8

Bubstituting for the Clebsch-Gordon coefficient. The linear

el

combinations of the spinmatrices 67+k, a defined a% above

provide a particular example and

Lol Lo =2 i =703

(13)



B T

8 7
! = - ; :
. since y; a~ are the matrices of the spin operator.
2
(2) The spherical harmonics V(?r are obviously the
components of a spherical tensor of rank { .
(3} The components e, A, of a vector %
defined as in (11) 3
¥ 3 5 S N <5 Qa Lrﬂl
b ST =il == e >/l 1A T .
¥ . LA
o .
A ~ %k
e TR ) B ' (14)
form a spherical tensor of rank 1.
(4) The components Y7+' , V@ of the gradient

operator defined similerly form also a spherical tensor of
rank 1,

Apart from these, various technigues are used in calcula-
tions involving angular momentum states,to express a given

operator in terms of spherical tensor operators, for e.g.

o — Ly ’; o 0 0 OF P REPL
Qx\; L Ren = (z:_i( “ U+) ;’ﬂ,g\!z'p) ¢ (5 0)
'3‘(‘)4,‘ ; D"V (8, 4 )
by b gelka) 2EV Y (88 )y (68 (s)

where %Q ( p.ﬂ) are the spherical Bessel functions and e
' o e &
is the angle betweenl&(é@:jbmw_ﬁ(ﬁ»g%%).
[.\ ¥ 4 )
We shall consider examples of the use of these concepts

in the next lecture.




ceciure. 2 @

The magnetic dipole moment operator Ax of a particle

l_‘L

possessing orbital and spin angular moment
. e =
= G- - <

= L Lo+ S

) 7

where [_ and d are the orbitsl and spin angular momentum

(16)

operators. If T - (1) and [ > /. ---are spherical tensors

of rank = , it is easily seen that a linear combination

SR - B
T ey QS S Miras
W "f ! ir( J (17)
is also a spherical tensor of rank k3 thus ]Zﬂ ig 2 spherical

tensor of rank 1 . To evaluate the expectation value of this
g

P

operator for a state of orbital angular momentum sping
total angular momentum | and projection WM we make use of
a result known as the Projection thecorem for first rank tensors

which states that

/ ? ! ; R W - =,
Qm' | Ty limdy=m [T, m QIT- Ty

YO i+ (18)
Therefore . . -
/g iy <) --},”I' Skl sy _)n < L‘-— V- S e \ b
(&fﬁJbﬁ ﬁ'hﬁg]m): SIIAN NI N 2 VAN m_*m5+ﬁjt)b?i/

Vs +0)

since

A R

T H.,gjm/ = s K& dmor ¢ 4 d 3wy 2 ;5(;%+n,,f£f,!n\)dc

A

we have

P A i 55 (W A | C » \ia G
i e b LT VO B+ 0T (19)
| ek LT = APSF )

i

J L) -
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The electric quadrupole moment operator (Q of a distri-
e . g3 iy x5 A t !
bution of charge is (wW.r.-t & Fovemn e ilgn)

C) Tot vy Yo o (R 0) (20)

& being the polar angle. Obviousgly ( 1is a spherical tensor

\\
of rank ; and operates only on the orbital angular state
whereas the system may also possess gpin. In an actual case

th

)

situation is further complicated in that the distribution is
due to more than a single particle when the operator (Q for the
system will be defined as

Q:ZQ() (21)
(Y

[1n v1rtue of (17)

v

a sphericel tensor of rank 2 . However
the Wigner-Eckart theorem is a result derived from transformation
properties under rotation and therefore we cen formally write
LS |} Qi ey = Gkl e ) s m G

' (22)
where \ )y denote eigen states of total angular momentum
of the system. Substituting the value of the Clebsch-Gordon

coefficient

<\jm’ CK\)T>\> &, - ‘m;" JOiry) 2 <J “ QU J
[J(in)fij=q}([}rgn'l (53}

The values{ ) ) | I Vos> ana o) Q 1)) 7 are usually
given as the magnetic dipole moment and electric quadrupole moment.
We shall now consider the detadled evaliuation of the

matrix element of an operator () between states [‘j,JZ.j77u7

when the operator iz a spherical tensor of rank }i and projec—

tion <D' and operates only on one of the sub-systems;say 1 .
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S
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m

s WHJOW(”\‘%ﬁL 'C’k"}WVV’*)<\ }hth, {54)

by Wigner-Eckart theorem. We canwrite the L.H.S. explicitly as

5 % i By A o Y R B e L S
25 A ( vy Jl J s 7!:‘ l'a'.v e ) \ >" 3:_] i3 f" '* (v\ : ,"/,k /3; }!,)' J‘ 7 'L)
Y‘f‘\_‘ }h/ 74 /
' 5 ;{ bl e e ' l.l';',"f7i'
- < - bt ’ ;
et (3 3wy 6L n, )
}h\ ')n; : -
{ G ’ ! ? 4 ;\ ) (
X ek } Y i y)<,J‘NO “J\/ {q‘f-!J/,\ ’
S b"L}Y

gpplying the Wigner-Eckart theorem once again. Multiplying now

L.H.§. and R.H.S. of (24) by € (J k2 [ my m')  and summing

over <, and using (6) we obtain

Fi / % t k i 2 - Pl 2
B, Vo T > = L Ll iuim omom)
|

ACIIRIrmPm') C( J\Lg)“;thfb ™))
" el e ofp s &,
i i J.g 3 - )r'fl ™ ) < “ J'/) é)k )‘-‘
We use the symmetry property ( 5 a ) on the first and the fourth
Clebsch-Gordon coefficients in the above equation and defining

a quantity

TS TR TR I i o e N Y
’ T i

LD ) d mpm, m, ) €Ly, 0,5y m)
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we have

J,’?’J ".é )‘ .’3.} o

<J'J‘ Jl” Ot{(utlji);j> = k=1) L{-;" L

/

< (9,0, 8 k)

¥

N B b e x
|)’<'i=” & |\‘=)/ OI J! (26 8.)

vz 42

: w R
which expresses the reduced metrix element of U (1) between
states of total angular momentum in terms of the reduced matrix
element o£ g)“(u between states of the sub-system 1 . By a

similar procedure we can show

W } / k
B, )0 T

v B : it RN SR
EERYERGCTRE SUEN AT BN
' ¢26 D)
The quantity ~U~ ( J ), J S ) JL«) referred to as

] 718 4

the recoupling coefficientx which by definition(25) is a product

of four Clebsch-Gordon coefficients summed over two independent
5?\,113‘.".—'(1 K\\,\;‘l
Lquantum numberslwhiol would be read as J, JL coupling to form

J

to form ),

|, coupled/with J_ forms SRR S J5 coupling

—

3 and ), );¢ couple to formg !-- which corresponds

to two ways of coupling D peir by pair to form J .

£

~In fzot if we denote by MJ:);)):;.BH Yoy and ), O‘?ﬁ))zg‘)h\>

the total angular momentum states formed according to the two

schemes outlined above, thejéoupling coefficients can be
defined as the transformation coefficients connecting the two

sets of states

'@')2>)‘L Jg)my = Z*“1rk 33, ) 955 3, ag) IJ‘(L55)<L5 }r{)
s (27)
;’(VY‘-i& J‘f‘ }‘_*_l ,'4}\ N lryx » A e (an ol )"\L )’"‘/\JL ,ﬂ“ ; frv g
.-J’,)L+), "'1,* );—J' j"}"’-.);:‘JI ’

&vlr - = (~H
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The order of coupling should also be borne since any change
S

would contribute a phase factor according to (5 a ). It is

clear from (25) that thege coefficients are real and since

“L}‘-()‘\)g’.}/s 7)11j3:;}?<J|();) )1‘,)"}\)’:\‘) "! } _gl_,r.;

o L 2 \ >

(27 a )

could be considered to be the matrix element of the identity

operator (which is spherical tensor of rank © ) between states
\,!;.} 1ts dependence on' tvhe projection quantum numbers is

L] +
CQJ0J:m0)=) and hence the absence of ™ within the symbol. From

(25 ) it is clear that if any one of "5 PN TP cdy )5

PR
R, )

coefficient vanishes., The coefficients satisfyv the orthogonality

or J, J,; ) do not form a triangle, the recoupling

\ha

> &
< 2

conditions
L N S N L s 5 Y &
3'__ 59 “1a ‘.3) 2 ( i oI 5 JJiL)¢3>— 6L:J13(28 a)

E2

43 dpd TVl Ly ) e
ZU( edlsd e e ) U s 0 0, gg,éj,’l (28 b )

The Racah coefficients W ( J, ), ) ) ), J,,) defined by
: )’ J Ea = < <2

L@J,Lm,‘)(é}‘;:}f\ W (J,J, ) 3 h e s 50, b ) (29)

&

exhibit the symmetry propertiesm more elegantly

Wlo L cd;eq): Wlba de ef) B,
= Wled at ed) (30 b )

(30 o'}

ce+{i-bo¢
== W {ae +d; ) (30 a )

+

7

b? C3 2 (Li (6228 (‘/-xk ontumm M oy et

€1 n (;{ H/\__(’ k‘—"*"\; = '_’(}_:'\v’\ - n (_; ~,‘) "‘{‘. S GArERL  Cin \J_ ‘hh":) ';‘l ([f\g__ I(/\_; 1gh A f_:_L.: el
\ £ e



e ol T ¢ z
= [ W (b ¢pyad) (30 e)
which would be deduced from (25), (29) and (5). Clearly if

J or J. or J. 1s gzero he recoupling coefficients
\ 2 2 : &

reduce to unityvsy and together with (30) we have

i g '[‘— ) ('I I 4 ‘ﬂ Zihd
W ( Ck e l‘ J ) ) s X b ol v -;,‘...' ,k i ol v ,\ y
| @ bvis] 2 i (30

As an example of th
derived above, let us consider the evaluation of the matrix
element for the rhoto production of ti -mesons from a bound

nucleonwhich has the form
s o wo T S T AL AT
<L ‘/;- T l[. aor 2 ) ex bl kR I =’1/\

S

(32)

where K and J do not operate on the nucleon states.
We easily verify thet o 4 can be written as
LY 97 ' where ¢ and K, are defined as in (11) and
Bz ,01 p i | e
2 and

(14). We make use of the expansion (15) for €

observe that i o B }l‘fk‘) do not obviously operate on the

angular momentum states of the nuclecn. To bring (32) into a
form so as to enable applicati £ (26) and (27) we introduce

a complete set of states l IL_/; 5{{ ) /7 between the two
operators ((} ¥ o 1 ) emd € x| ((k 7‘Z}thus expressing (32) as

7 > < Lii/: im |7 '\-*';A:.T O .,l;‘ L"/}f T M !!>
Ty = . 5 -

¢ Y, " l\-, (é T —‘ : : vl 3 5 z-—,.,‘, i { A 7 i '\/j i \t;:‘ Y --\
% <l._ AR L4757 ;-,pf...f\h) 2 et X—-_,(“‘k/’ék)‘(«r!*-"nlliq)f°/;"’4/
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Substituting now for the matrix elements of @;L and VQ
using (27) and (26) respectively we have (32) as

1Tz <m<m> LY Ly T "\/c-m )

™ =~

L+ , i

f s ey s \ . Tl b _/ \
A z C 7 ‘{ ) 5 ™M n/ ( i 3 G L,l-- (_ / L ,) J L—I)
3 08 Y

Z

d

T i ' c
* { I - N/ ) 2 K
| < " '*n’#”')omﬁmlM—m\'N

A VLEE T b, 4]

)f)’§ 'j"i (l ‘1)

(34)
The summation over L” drops since the matrix elements of
e £ b
(07.£ + 4 ) contributes a d o and ™ is fixed

bt

1 1 S .
by M = ™M+ m The summation—em over A is also unneces-

and e Bummaheon ooty m Y e shon (e d

saryisinceyﬁf;& is fixed by m 4 fr = M ~/v « The summation

over A is also limited to \L -L | to/ L+ L'. (f;c(p,)
denotes the matfix element of the spherical Bessed functions

between initial and final rsdial states.We shall consider in

)

the next lecture the evaluation of the reduced matrix element

{ L’N‘Vz | LY and we have used (13) for <)£n o Z'> .
It is clear 2lso that the reduced matrix element
< l,&)l QW\X-§J> of the guadrupole moment overator of % a

single bound particle with spin is
2""4 Tk Y
<" 53 Q\l N vy Lyzsge)
« ol L7 (353

using (26); and the phase factor is 1 since {4 4- | is

an integer.



Lecture e

Any rotation R of a coordinate system 1is usually spec
fied by giving the Buler angles o , F s of
the transformation is from(Xy Y. 1: } to (X, V_ 2. )

in space and if \X;K Yo Z, ) denotes the roteting coordinate

A liCh

4

system and ( X Y Z ) and (X Y < J gsome fixed fremes in
space, we have in this order:

(1) a rotation sbout the 4. axis through an angle 4
oty

O(g,( \,f,,.! 4,‘): (XL \//I. 21 ) ::.___? f\,X . ‘x/‘”_’l Z%} 2 (X/y, i ZT
(2) a rotation about the Y. exis through an angle 5
7. ety y ) ;
XaYnza) = (v 25y (v v, 2y =(x " ¥ =y’ 2"
and (3) a rotation about the Z, axis again through an angle Y

Writing for convenience (X7 Y3 2¢ )= (X Y%/, we have
the operator R in the form

.. AT . T ‘4
- R LT ROL B,7)

,j-‘k Y j';._‘f' el T PR I N (36)
_ el Bl
And the states (‘ﬁ % and operators () in the two frames are
related through

W‘;—E HCHE SRRl (37)

7 = !
2 L0 2 8
R A (38)
Using (38) now we can write

"( i 7] et T o ! A
e {Jz = _e \63_;\/./ Q ’ZJZ
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and again

BT T e
T AT SR -

- @ e o e AR

Z

thus obtaining from (36) an alternative form for K (d~E'5)

as _
—-.[,x\).i

ey ) - ¢

-~ T

which we shall use later. For the present we observe that
- WL B8 s B N L% )
Hmyr = K(Apy)Umy =5 D (xpy) ')

8 5 ! lh'm (40)

which in particular gives

Ykm(6,¢) S Y (¢,(?1¢) an‘(U}U

s { ~ o
™! ™ m ' "™ 0 LT ,,/
LL It )L : 4
3> (dog): ( +l) Yo (8 ,8)
(41)

Let us consider the effect of operating by R (& F,Y)
on both sides of (4). Since
[3ym% a)m_)_(_, = Dmy T,

we have

B 5D ) 1im s | S

')h/ qn/ 'h')‘m }‘n 2.
'} : ¢

¥ - S /
R ™M m
j%h%>on R.H.S. using (3) and equating co-

Expressing \J, )

2.

efficients, we obtain



8,

) 18 ,
b (dpr) D At o o 0 vk (1 PRENE
%;TS\ RY) m,vh:_o(pm A i 2_..)!
> GO0 d5m ) w ) D) (o pr)(42)
™ m
which is known as the Clebsch-Gordon series.

In a similar way operating by K on (3) and expressing

’j]J‘:‘)}?g> on L.H.S. in terms of f}} yh;/ ijép;?> using (3)

and equating coefficients we have

: ’ B 5 \
C(JM;}_);M\%L%)D,(0'\,5'f€w:/' 2000 i i)
i ; %‘x’)‘f) )’,"x )
« 2,?(0«55) D ~py)
and multiplying both sides by sides by ¢ (J j éj 2™y

summing over T, and using (6) we obtain

ST a5 _
b (o - > L . S
L Cdprds 2 2O L) mw, m) (0L i)

), 7;7)1 ‘ T

A 3 j
} ’ \\ 2 .
: ? Capn) D2 pr) (g 4 )
' n, !r\' ng_

which is referred to as the inverse Clebsch-Gordon series,

which cen also be obteined from (42) transferring the Clebsch-

Gordon coefficients to the L.H.S. using (6) twice. Successive

application of (42 a ) enables one, in principle, to evaluate

the rotation matrices i)i ( & ﬁyjfor all J 1if it is known
’ ™ m e
for one (non-zero) I .

Returning now to (42) and specialising to the case
) j |

7“\.: M,z 0 - mwe obtain, using (41) a coupling rule for

spherical harmonics

0 v
ERIN éaié.‘—“\w')u ( '
y?fm‘ P ﬁLmA,#) = ;{u 4T'(Z£cﬂ)ﬁj (kfwlll)rmthbd
Ci
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The distinction between (43) and (4) should be clear: The

states

11, { L_Q m y arenot

(6,¢,),6,9.)

& . #) , the depend

&, ¢,)

V., [ & 4) even if the arguments
™ ”)/"} e

Y and Y tend to the sams value
il }"" KL,')?‘(-—
ence of |l ¢ {34 % on the arguments

AR LATEY S

: L

)(H ,,’%L‘ is defined only through (3). (42 a ) can also

"be specialised usin% (41) to give

,ﬁﬂﬁﬁ)%.»h

2041

6/‘),@2

¢ ( Lot £, ‘”"‘?;) ( (evlz 1;77’.'77);‘@)

PM m
+

X ‘
w by b 4 < A
« D (beg) D /f*;m (eJ( 43 a )

/

‘/“““l > I‘h 'r\ __»),hl

Considering now the natrlx element

<L R

& Z}; L_+!)‘ (2_;21,)

Q'L

.ﬁk

e P —

AT 2 24

i if N/ 55 4 : i % i
Yl'( ' ’/}) /Q«m{ »',‘/'_) \/LM { i'»’;%’j./’-mfﬂfff#%c(}/

) |
J"c (et smm) c(Lee' 00)

on account of the orthonormsl 1ty of the gherical harmonics. Or

B [Rwe

=1 k), y by ‘the rule

(7% x

H

¥
\ R Y RVEST) .
i J /i'm‘(e"/(/ /Q,Mirij/) oF
"*yz ‘ '
C(LEL;mmm') c(LAL;00)
(44)
8
"’) g SR
: (44 a )
'H/ k

We define cor“posulo“ of two spherical tensors T i,

ke \

R

Y

g ‘M%): "_ (45)

l

which is easily seen to be a sphericsl tensor of rank R .



Cénversely

S CN I R
;

B\ CV;__ ., (45 o

)]
Nt

1t is of interest in sone cases to calculate nmatrix element

" of the type <:J\JLIJ:%J§ (F%\x}gﬁkﬁ»g"‘
; "'1

2

U

-
Q
T
{2

J A, Clearly the reduce
7

matrix element 4

2 \—;: ( / _;‘ }":\ J : y m ’:‘ '}Y\I , <'.)IJ‘ I\. “ & k ‘.'\
[;Y' i\ s ™G m N z_lm) {q/(!)z_)u,)z)%\/
m M, G m e T B G W)
/ j et i ! ! i g H 1
O 6 e e sy mym ) ( (J k.); m 9 Yni)
X < )Il ™ k

j I
. B ! [ CP; l)1m6>
X (I ) ; v, f ‘I T ‘h | N

< T2 l).zr“‘_a/
£ (46)
which can be written using Vigner-Eckart theorem as
] ol YL
kg k(LT TR
L | [ 4 Vel ) 47
i 2 G

where

B
B k-2

2 FirE (J‘)L-J y Ty T, }n) LAZ)
J/ )I‘l[ |‘Y§'\ Lo i i <
UG

z WY ,
* LR R W) G )
A R T i e W e g e kzjz') , 4y ™)
| R B e e o
is referred to as the “4-J coefficient which can also be

* "O d.ASL\ "'!ij\.ufb\, ;{—5 &res {»\)n:\"-,‘”n,ﬁ"l;f ("-J X}“rv\lrﬁ’f

b1 - : e H I '
z R [ 3+ Cekrp (2aivn (2] [R kR
b S HE R
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gefined, as iri the case of recoupling coefficients, to be the

transformation coefficient between statgrl(J“‘j )2(’3 ))44J7§/
( : which are eilge sta g of

and‘(?,)l))”3Q2)v>))2ﬂA )}n/> whichk are eigen states of total

angular momentum of a system consisting of four angular momenta

constructed in two-different ways of coupling them two by two

013 2 4 ) 1y om0y = 2 [ )J [602)35 021,
| (49)"

In going from (46) to (47) the summation over say 7” drops

J?ﬁ?

gince it is determined by %ﬂ,y—‘vlz 'h7f and we have replaced the
summation over 7y) by the equivalent summation over Wh to make
comparison with the definition (4“) trensparent. We also see

that in R.H.S. of (48) we have four independent projection ‘

%MJleuw« numbers while the summation is only on three which

corresponds to the appesrance of  in the definition (49) visz.,
TSN
- &
- At o
B3 9 3| = <Righis lad) oy I 1Q122)..05 W
J\gj‘éol

but the/efficient however does not depend on ‘hq as can be seen
by considering the r.h.s. of (49 a ) (as we did in the case of
recoupling coefficients ) to be the matrix element of the

7

identity operator between states !J }n;> o« It ig ' elear from

(48) that these coefficients are real which consequently imposes

the symmetry property

I \ |
ki AN :
B3 i b 0 ) (50)
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and further symmetry properties could be deduced usging (48) and
(5) for e.g.

L Jiy P P s
= ¥ \')l ‘f )2 v i‘?‘ &
33 J"’r )3¥ D - )L %T/( H"D [ )3(})

.2,. ) .

b If we consider two particles with spin and ), JL denote their

orbital angular momenta and.~33 J#_ their spins the wave func-

if ;tions on L,H.S, and R.H.S. of (49) represent respectively the

J-J coupllng @nd L.8. coupling wave functiong of the system

—'v'\_!.rr&_\

and the Y- sym%é&s are referred to as the L S—JJ transforma-

tion coefficients.
It is clear from the definition (45) that if R,= R,

one of the possible values of KR is zero Whegé it defines a

gscalar

, I
R L R
Sl ¥ s v
- e —, R-% sk
= /_K) (¢R+)y T(v l*?/
using (5 e ). ¢onve“tlonally the ”huntlty

_('_'D_R"/““' T *k) " 2_()) T}ép -: KT kZ'T"?\)('sz)

is referred to as the scaler product of two spherical tensors

(of equal rank). In particular one can easily verify that the

R

: . - e _
scalar product of two veftors Hﬂ and %, as defined above

3 . o =M g
- 1n the spherical basis is identical with the usual n, » o, 5 we

shall use the brackets ( . ) to denocte the scalar product in

spherical basis.’
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spherical. basis.

To specialise (47) now to the case A }2 zKeand k=9
we shall write
33 )w )33
s )y, ) o
o Z¢<pfh)ha%)'J Yl (3,0, ()

2= \f) /29 (28] {\} J;/) )2) ),‘i' ) | }ﬂ\
)lsty )51'7“ i Y) i LE\EJ .

5 / ; ot 5 A \ i
™ %)ikjkjjjy)lzg) g )‘)ZQIJL))JHJSZL)WQ

3 B '
e < Q) )2) )!a .{\)g ‘) )3%)?;) \ Q‘ )3) )!; Q‘z )‘f) )L\; Jm)y

!

% <-U)5(h N))2¥ ’qu)w)}(gz%) )]BQPJ%))lV Jhﬂ>

(33)
and change the order of coupling in the second element of
)2 ,.&H and )z . )Q thereby acquring phase factors

k‘))z+J3q')zsg ~and (_{)%fjx”jz%respeotively. Since the
angular momentum states with différcnt Jof a composite system
are ofthogonal to each other irresgspective of the manner in which
the constitutent angular momenta are coupled, the second element

in (53) contains = é,

) o It dg ellear now. from
'}23 \ 22 ’r

inspection that
I
O e

—

e ST 2y e s,

1) i
\' ‘U-(JI)J_J )343)12,‘)23J

x 1 (353 )33.7)2 2 Jay) (54)
3 8 N )g‘, i g )ZBL;)
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which is a useful expansion of the 9 J —coefficients in terms

of the recoupling coefficients. Using the expansion (54) and

(30 £ ) in (47) we have

TR R e T m D e e
R T (1) % TkL(l}) ] 31&\)} = 0y (=) \*UUx);uzn/}/‘“

x2d,+117% U (J’KJ'_J;;),’JL) ONT zh (; :zz“ »

Evan e L
= SRl ) o SR MR T S £
j&’—w)um.) ) 4 J! u; AT h 3y
v | FCAsl Tl )y (558
or using the definition (52) Ry=k,= Kk

3 ) ;
‘ ‘7{_),})2J/ T (1) T (L) ”J\)L ’/JJ JY" h—(’) ) ’2-))())

: 1 "—K '—.)/ ! & /
SJJ, Bt el /iJ:l i R R

i

I TR > R TN 0 e 5

which find many applications, as we shall see later.
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LECTURE_IV

We have already defined a set of 2 h-\-\ quantities ]%

thich transform under rotation as

‘2{ i —-—k e b \k ___k
) - R (To(n)) = qz/ Pojigy To@
&)
o form a spherical tensor of rank R ; K (TQk/) being
TN S '
f : 37

| AR ey AR k
and R(T%)‘ R ‘q/R %T%: O (38)
] To see how the 2 k*}"’ quantities <k’c‘/! transform under
rotations, we observ e from (8), (36) or (39) that
e '
s (56)%

and since the scalar nroduct < k cz/ l j{’CV> = [ is invariant
)

under rotations of coordinate system, R”‘ - R ) is the aporopriate

onerator to effect transformation of " MQ " gstates under rotations.

- i N
| §hﬁ/l = l{kﬁr/l £

(57)
~ % and consequently 2
D (xpr) = : R o S
777'7)1 /ﬁ/ JDM 77)/ ( J ﬂj 9/) ey
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—'Z.<b\cl/ k?/'><{’<1/l

(58)
| Making use of the reoresentation (39) for R (0< {5 3/) we can
{jit'e

] ioU”n , —(ﬁ:r ~t
px) Lim' (& P | omye

L)

“ &m (59)

,(/s)e

“B matrices d, (B) can be evaluated for J = ‘/ , for example,

2e
expanding C,)( P(—((&JT) in power series, introducing complete set of

‘tates Z }—— < Y m \ in between overators ('):f , Tepnlacing

4 ‘ J\1 ‘ yL > by the Panli spin matrices (-~ and using the
.\ oner‘ty i 2 e ‘ we obtailn
| /
£ " —a/'f’\
& GS B/ "r) e
d*(p) G e
E |
A YN ERA
(60)
: (—-—\/ g 4 / 3
where the rows and columns are numbered &0 2 and we easily ,

l. J
rify that the rotation matrices :E%/“m( A (Jj zf‘) have the symmetrv



| x
J T =-m J

I e i (
-?'n!%(ﬁ‘)( ‘b ) ( ) _"ml'" @D,) .

] )

 least for J = /2_ . We can now show that since (61) holds for
1 | . :

g - /z. it holds for allj/fnr, we can construct any D%! from

RS/
D" A by reveated avnlications of the inverse Clebsch=-Gordon series

Let (61) hold for J = J, ))L . Takingz the comnlex conjusgate of

Qa) and using (61) on R.H.S. We have since the C's are real

;D;,("ﬂﬁb’)*:— 2 L CC L S m)C(J)Jmmn\
-~

’hv mi
' )
“77) M; -Mm ) AR
x__,) ’ 3_ Z 2 "’(O D )
e rv‘m;q,fw
{
==l e ZQ"/ (/)) -m, =M, ~ )
m/ mi
.)'f')z.‘)
X(=n"" C(},)z_);~m Lt )%’(ﬁhﬂf)l} (o(ﬂf)
v 1 —ml—“m
{
"M -
e > (dpr)
...77) BE
ince ’)\‘(ﬂ’?ﬁ :7)(\’ and 'm\+77,2_=-m and XR¥

sing (5b). We can write one of (.__ ) Ji+)o-) G} Q,,,)‘J g ~)3
‘jnce J T ) Lg-_} is an intezer so that (61} follows on using (42a)
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- - J
) replace the double summation on R.H.S. by D / (A @"{)
» - -m

Makine use of the above result we write (58) as

v
1) ftﬂ// = Z()(Rf | ;(o((w)
(62)

fand we observe that the set of quantities & )Ci/ ( R (f/ , transform

}‘s totations as a spherical tensor of rank k , which we shall denote

T k‘ so that
| ; e + k
,__, B : l! 7 q/ k

(63)

Ee
! ‘i/ l %> . We can generalise and define the hermii
o

Hian conjugate soherical tensor | (,;/ of a given spherical tensor

k e
T through (63) and T! R transforms accordings to

2 R e
@,( I) = %—/ :_*Dnj/ o T+7/(L) (64)

o y L vk T .
Ak
- o) ol R
( 3! R C?/k Y )J : (64)
which is simoly the hermitian conjugate of (Qa),

Let us now consider a matrix element < j },q l O ‘f/ SJ e >

of a soherical tensor onerator O a(/ betweer argular momentum states.

~r

1f O h‘ is an onerator operating or the states and does not depend o~

any external orient§tions, the matrix element is simnly a number and
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For wxample, the ovcrators T or V
=4

' J YY\> are such oneratoLs wnereas

:,‘iariant under totations.

y . operating on
{m
vhere H is an evxternal field, is not since in thatcase the matrix
ey

= ‘Jm_> ' H and hence transforas like

‘ ? ] )‘m> being numbers.

lement is <J/m, k
vector, the matrix elements

B/Uk <QgJMlL S(Q/\JW‘> in a scalar since both

2Ly
, L. and S operate on the states and L S‘ does not 4 epend on any

xternal (to the system renresented by the states) orlentatlons.

Considering now the matrix elements ( J '}m \ O ¥ J}ﬂ>

vich are scalars we observe that esch is also a proeduct of three svherical

5 / .
tensors of “ankJ }z and J respectively. By virtue of (45a) we see that

R
O \ )m > is a linear combination of spherical tensors
t‘*‘ank s )+h )-\-k—l) f@tvv)lJ~k]viz.,
ZC('?JK)CT/MM) (O XT)M i

and the matrix element itself)a

: K
B ) = L)
JES RPN Y

™

P linear combination of spherical tensors of rank(

‘But we already knww that this can only be of rank zero beinz a scalar

/ ’
" and therefore K can only take the value J’ so that the matrix element

' is the zéro rank spherical tensor

(-Q (J Jo o e Y (R ‘V’"’”)<7jjx(0 XTJ))

and using (5e) the above can be written as
))
B iy %M)<Q’ YOXTJ))

20+ |

0

(65)
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_!om which it is clear that the matrix elements vanish if Y 4 #M
: i r J h J do not form a triangle and that the dependence of
Lé matrix element on the pnrojection quantum numbers could be factored.
yf in the form of a clebsch-Gbrdon coef?icient; which isvsimply the
igner-Eckart theorem, *

We can also rewrite (65) using (5a) so that we can identify the

sduced matrix element in (10) as

<J “O | } <( T x Lok TJ))>

(66)

(66a)
ising  (52)

% .14 arriviné at this result above we have used the symmetry (5e)

of the Clebsh-Gordon coefficients and (61) which was obtained using

the reality of the Clebséh—Gordon coefficients, boéh of which we have

ot as yet jusfified. However (6e) and (61) could be obtained from basic
onsiderations (see Lectures H)il) so that the above is quite an adequate

iroof of the theoremnm,
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LECTURE V

As a good exercise in the comnosition of spherical tensors, we shall
nsider now the multipole expansion of a vertex field, in particular
e electro macgnetic field,

B ascalar fiela B (7,0,8) satistying
B Vi gmop) + kg (xep) =0

as soluti-~ns ofthe fora

¢Q,%(tn 8pg)= :‘E‘Q (k") Ye M( &,¢) - (e8)

(67)

re '&'( L R m) are svherical Bessel or Neumann functions of
rder A or a linear combination of both. ¢Q m( n & Q() are
> - —p
vearly eigen states of orbital angular momentum —E = —L ;? X V, L€ .
5
L =
s G
Li‘ ¢Qm o ')’Y)' ﬁﬁm
(69)
Q
and have parity (—-U
3 s ’ e
; TT o 4
f,00T-0,44m) <" 4, (nop)
« ,—* =
LR A
I plane wave solution S of (67) could be expanded using the
Rayliegh expansion of a nlena wave as
G T —_
{ Rer Y2 ¥ (g £ \
e = 4m) L ) 4 (k) T lefo)

S (71)
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o A L

e © is the angle between /1\ and /’L and we can choose the direc-
i 5
tion of k as the Z- axis without loss of generality so that (71)re-

present an e xpansion of the r)lane wave solution in terms of angular mo-

ientum and parity states. Our object now is to set un (1) the angular

, A —
lomentum and parity eigen states of a vector field A (71 e ¢)

(72)

and (ii) to expand a plane wave solution of (72) 1in terms of these

solutions. TFor this nurnose we ohserve that

B | |
Axop) = T A (nog)+T Adnep)+k frop)

(73)

ean also be written as

S e g
/L‘: “L/O/ ) it /
(n 6 ¢) are the components of ?(TL e;ﬁ) in

‘where A
I)CMare the unit vectors in svherical

P spherical basis U /)

7(1-\ ¥ ﬁrj

l Shat.
= R
v ?Co (732)

We also observe that under a transformatisn of the coordinate system

— :
A C?L e 525) under goes changes due to two reasons (1) since the comn-

- ponents A)L, Aj ) A~ form a vector in space and (2) due to the

change in the variahleé . This could conveniently be deseribed if we allow

|
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e unit vectoss undergo the necessary chanzes to account for (1) trea-

ing A}L (rge, g{) by, Aj (ﬁe;ﬁ) and A &[}1 & Q{) as three func-
lons of %1 o6 ¢ which transform suitably to account for (2), .For, the

B of transformation on a veetor ,
ad e — — =
G S R SN O e o
A== L o

(74)

: !
pean be described either by sperifying the new components ¢ \gj 2’

t the vector on the basis vectors 0.5 s k. or by finding a new
A

—_ / v —
asls G 7 '/ ? ’ in terms of which the components of /v re-
ain the same 7(,} ?/ ¥ . Thus we describe the transformation of a

getor field as

T A (n@¢)+ ,47(71991)—\-]? A,(16¢) )
DU A0’ £ T Uy (o794 R A 0

=l Ay (7 6¢)+7/A?’(w%) + ‘E’A%_'(%e,e{)

(75)

(P % A Oeg) =
: L LR

M J o 2
=) Al (e
S _ Z 9(,% P ;A)
n opherical basis. £4
In particular under rotations, one can by explicit constructiosn show
hat the basis vectors 9(/% tran8form for infinitisimal rotations

ike a spherical tensorof rank 1, Since, the matrices of the angular
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lonentum onerators j- :7; And. j’ are just af—] times the corr-

gsponding matrices (i.e.in the same renresen+atlon) for resnectlve infini-

iisimal rotations, we can consider ,/—| times the infinitisimal rota-

: \ v

fion matrices for 9( as the 3 x 3 matrices of an 'angular momentum?®
—>

onerator 5' whose eigen states )Q(ﬁb are, Viz.,

it

9 {
5 19”& R

[

o | )
2 7‘“ M 7w~ (76)
and we call ¥ vector field a spin 1 field. Also (72) ilmplies that each
_ = A
somvonent of A (n & ¢) satisfies an equation of the type (67)

and consequently have solutions of the “orm (68) which are eigenstates of

2 —
L. and L_'2 .. And since (31 & ¢ ) consists of nroducts of
/
the type s i olog i - ing
yD }xgvn ( n,9—¢’) ;Kﬁb we can in a nology with the_ijuollnj
of two angular momenta define a total angular momentum operator
of the vector field as

= 7 2
J L+ (77)*

(!

, y
The linear combination (7R3) of terms /-\;( m(”9 }5) 9(/(& which is a

vector in space is not (always) an eizen state of j’L'and. :r2: and clearly

?he snherical'tensor

: « |
Mgi“}f)—- L CCQ )W&M) Yem(e,?’) 7(/‘“ (78)

T

* The commubition relations (1) themselves revresent a generalisation
of the classical concept of angular momentum as the moment of momentum,
the precise nature o the zeneralisation physically being to identify
the anzular momentum operaor of a system with 4=7 times the infinitisimal

rotation onerator for the system,

A
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8 the prover quantity we are looking for: dabtit should immediately »eo
een that (78) 1is not a vector in space though it can be written the
orn ? X 4+ 7‘& - —k} 2. ;‘(? Z g¢being, in general, comnlex*,

he arrow on top of 'Ekﬁerely indicates that we are coupling a spherical
ensor of rank 1 i.,e. a spin 1 field and it is in this sense that (73)
8 a solution of the vector field. In what follows we Arop the arrow
ince we are considering only a spin 1 field, to avoid confussion with a
@ysicalvector.

It is obvious from (78) that we can have J = <Q1-I) 1-or 4.4

.r.with a given J we can have three snherical tensors ji)e M

h8h f = J¥1 e § el i Sl "~ , The spherical tensors |,
_ CARPERY d+1M
and T, have clearly the same parity while T'J =T

‘)/-)'—I)M

Phas parity opposite to this so that we have two eizen states of total

ngular momentum and parity with same ) butt opnosite parity JJ. Viz.,

AJW(Mhegé) o e I (e Ty (e, p)

nd AM,M(HVO = G ;.Hr(jk ") —U)g?&“}Jr C—~|1)(ﬁd>TJ )(-@'/f) 5k

* An inﬁeresting particular example is the case

—
iT’O‘gG,;é) = i CC11o, m-mp) }’m/b“,%) 'X-,n
(78a)
- (78b)

the spherical symmetry of which follows from the fact it is invariant under

'btations ( J being zero)-A‘physical situation correspnding to the above

ls the case of the couldml~ force field ?("L e )d) due to a charsze
placed at the origin:

— R — _?
F(meg) v =z, = - 4 T iael)

n 0 (78¢)
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fihich are solutions of (72), the coefricients C:‘) C, and C# to

¢ determined aporopriate to the nhysical situation under consideration.

Let us now apvoly the abhove considerations to the electromagnetic

ficld defined by Maxwell's equatlons for the electric and magnetic field
g ‘—9

-‘{rengths E and }+

0E . TxT
rE

dH

o
Lo :VX—E—{—.’LT;’J

~
17'.
e
¥

—hf
v X

B

(T

(80)

E i

.._?
% - S :6?

—> -
here fDand\} are the electric charge and current densities and m
ie distrizgfion of magnetisation at the source.
_fpotentials A and ¢ are defined throuch

- >

e AT o
> 2y I
F -

- The vector and scalar

1
hich however ds not determine the field Strengths eosnnletely since we
an add a vector field {7 )( generated out of a scalg field y to?
n1d still obtain the same E and —}:F . Replacing A by J; + Vy,
X satisfied-

. —>
7 4o _-5LW — T A4
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(82)
d if we restrict the arbitraryness in A to the family of ‘x 3
ich Satlalles (82) = O the field is said to be in the Lorentz zauze
en A and ¢ gatisfy
2 Pl
oA - - (Pt
(83)
V 2
ether_v_gth p
_9
V- A+ %% Sl
ich is referred to as the Lorentz condition.
For 1 source free monochromatic field (i.e
—~ ¥
(ﬁb‘fé Gt A(hﬂgl) e
1n¢ the frequency) (83) reduce to
R & 2
ViAGoy)+ RN (nep) =0
o (84a)
; ¥ 2 - o
Vg nep)+ kREg(neg) =0 o
= 3 :
B, VA (rop) +1 kR @(2pp)=0
. (84c)

< 0
ere () = k ’ kbeinq the wave nuamber.
We are now concerned with the solutions of {84) which are eizen states
' angular momentum and narity. The solutions of (84a) are clearly of the

m (79) which are referred t o as the: multipole solutinsns of order J



WEE- L

and usually the let*er | 1is used in literature instead of J ) The first
pe of the solutions (79) i3 referred to as the magnetic multipole solu-

ions and the second one as the electric multipole golution

()
A (neg) = CT (rkn) Toimled)

(85a)

A(e) (7LG¢) { ILﬁwchfo LL+lM(6 }) (85b)
ORI R

t should be noticed that corresponding to both the solutions, there will
—— ‘___?_

B electric as well as magnetic field strengths (= and | determined

(81a)

2 9
.
I

J

m
e
-
=]

he solutions of Qécorrpsoonﬁlno to the solutions (86) of /% being detera

ined through (84c) which we shall calculate in the next lecturs to be

¢(m>cﬁ9¢) Foil (868)

L M
(e)(‘ﬂe) el ) (89)
ﬁ 2 L+ *C ( ) J@@”L
(86b)
;1ch clearly 4o not involve the unit vectors, ‘¢ being sc;xlaz::__>
We see from (30) that the eletric and magnetic fields and {1

f they are eiszen states of narity, must always have opnosite parity so

hat the names 'eldctric! and 'amsgnetic! to the two solutions in (85) are
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poronriate to the evtent they are solutions of opvosite narity. Since

’

Bit is found that for small values of {2 o7 RS lz n << |

le electric field Eli'z:) derived from A é_h;;)) is much
naller comnaved tn the H LM) derived from the same and similarly
b, (e) (@

HLM £« ELm) fov R << , the first of

fie solutions in (85) is refereed to as the 'magnetic! multipole solu-

ions and the second as the 'electric! multivole solution.,

LECTIRE VI

We have already pointed out that AJ 0 M(n 6‘95) could be
. i 4
itten in the form 7 'Z:t}) ‘J + }2 2 so that we can
W define quantities 1like v ’ A . or _\7 X A

] the usual way if v is a vector or avaln, in ceneral, a quanmty

iich can be written in the form L V - ) VL] + )’L Y3
,it*nq,
| o = T (21 w MJI ()
)y (1890 ;:e(hﬂ) e z (21)5m-pM)] éfu)(éﬂ%
} the Torm
i s /
LCN)) (AJQM)
: //v s (87a)
lh,), - 0070 D R o))

’j have by (5")

- 5= Vel by e oy,

o et UF s |
i’/\U) " (JQM)T\, J



2 - 0
_% CCOlyym pn) V/@ ;e(m)yuﬁf,f)

(89)
ing (8%). In particular, therefore,
L = Z (O memy T (6.,
B Jim s A /4"1@( “7') yem‘/‘* J (89a)

ere the comvonents of the gradient overator in spherical basis is de-

ned as usual.

J

m—

{2 : & ‘
..—%

X
N

) evaluate (89a), it is convenient to write the overator K7‘ , using
e identify |
— — = — — 7
X(5{{ xv) = K (h'V)"(}_g )V (50)
k [ -3 —y —"“?‘ Tl sl
£ —*}"L"i S)L (71 V) X XQI XV)S
" E S e
7‘(.1 % QL S FR XL% AAl)

i » e
n terms of the operators ;g%ﬁ. and | __ which operate respectively on

he radial and angular narts only. Also from (74) and (14) we can write

he vector }L as

- p
P - (T Ty N Fop |
M | . (742)



- Sheng
qif e AXB where A and [
: ——

Prents of C , (where ( y = A\I @

‘exnressed in the spherical bhasis as

are two vectors, the com-

= =y g
a3
50 ) A%By@ ete.) could-
- A AL A
/~-— (ﬁ /u('.(lll)/\ﬁ)/u)_,}/“') /U”;B/u
ich is readily verified. Thus from (21) we have

)—C

Dl W W (
X/u’ (N //]\AJ_/)/Q;D’) 1

i (92)

i (93)
Wsing (74a) and (92).

To evaluate (89a) now we have to evaluate

% g\e((im)f_((_mj /u‘/ul/u) \/!/(S‘{U L/VL\/(Lﬁyﬁj

(94)
_'  have
L Vo (ag) = CU2IL:mpmmen) A (¢¢) v
Qo) = COLLtmpmep) Y Lo f)
i ‘.!.ng’the Wigner-Eckart theorem and (12) since t"_ i3 the component of

bital angular momentum operator [ . Therefore’ "(9#)?(:31:1 be written as



S s

B =L (kY 60V, o8
+J_’£ 5 (m)ZC(m BoMo ) ST
x (L]0, M,u mmy,(em(wﬂ

wm‘*
g Q*USing the coupling rule (43) we canwrite (96) as

F éB(Z—QH) o

T2 4 1)

X[_—-— &Q(f&n) C ((IZ/;M'/LL.M)
+ ‘f-}zkkn)}g(éﬂ)zc('” o M)

v(Lie, m,uL)C(Q %T/‘»L/**M)]%

ing the symmetry property (5a) we canwrite

C(‘”)‘ /LLIIQZ—-P”) :(:'l) C(_HU/U»J_/U», /U.) and we can

Phow express
B2 LU po g ) CCtnt s mp (018 ™ g i, m)
| = (A e e M) o8

4 * Since we have from (27)

(97\

B, ), ), mm) (), )05 mpm, m,)

Z_'U’(J ) )J j 23)([1) )23)?7) m)

xC(JJZJ m, M, yin, M)
(Continued on nex§(gqa)

C....



have thus

£+l

S(“”‘ \/Jz{ﬁ%) /QZ_ c(ie; mwM)c(Qlﬂ 00)
| -

PB4+ vt of
ALY

(99)8

ntd. or8vious Paze) )
ating coefficients of } J, Yh,? lJz m2> ‘ J3 M3> | 4

th sides of (27)., We can now multiply (98a) by C(Jijg Jl;«" 'mlm3 )

d sum over W]3 to obtain,

- C(J;J}le;m\hz)C(JlLJB '\);’m;*mlmj 77))
J
K LU ds 0255 mam, ) = Un(d ) 1, 50, 0%)

/
x (] ? BT ”h'”5+”g)“ﬂb)

ng the unitarity condition (6) on risht hand side.

(99) holds clearly with any arbitrary ¢(7L) instead of ;e ( }z;—c)
nee we have not made use of the special form of the radial function

| _ !
ywhere so far, Al80-ths~suamitioh 3vers, £ 1is only ,Q’: £~}— l

vce C ('({ [/} 300) = O by (5‘ 'Jt') Substituting for

1 0+ | a
-.: (Q R OO) (——[:l.) C(W f OO)‘ “( )
: | (101)



- A

A
G Yy fu), Qﬁ J

S
can write (99) as

} U+
Lo v@mww:(m‘ rimper
. xi-—%/%(ﬁ)y(egj)
AN A

G ettt Bt

(10?)

Bicovion- 2057 4 pyien
- YRS
* ) (- L)pey] (i’iiﬁ,) ,
X C(H—I » fe M- M m)%éem@),%
( ) (EG{ 4"(*))%(71)2(201” LC ((r-l)')f)’m’-/u/m) |
X%")Mﬁ) X-/w
(104)

ng (103) an%}the symmetry groperties (5¢) and (563).in that order and
(f) -——|+I 0__ ‘ (_)2/“: I}Mbelng integer.

ﬁg (78) in (104) we have

(continued next nzze)



nd consequently (39)Jis,

W A = (2l gy 00)(80&% 1—@3@%/}:;@)

2J+ |

g X ;{Q(R”) ,\/JM(B/SZ)
(100)

8ing azain the unitarity property (6). Tt is clear from (100) that

1 RS 0
V ALU"\ (106a)
%nce C (L | L 500 ) =0 , |. Dbeinz integer. Substituting in
100) for the Clebsch-Gordon and recoupling coefficient using (101) (102)

: At ,
o () - 2) 5000, et

(106b)

V- A i i el +Ml (

£t L) (@ )&,\f“‘)ym Lo )= L]
(106¢)

e now make use of the property,

;ﬁntinued nrevious Paze)

- I __J{___ (1°7)

¢(’C)Yg ¢) 2-,(-1—! —-—)¢(91) l+!m

| d

2“.) (a'ﬁ _,,,,f",?TH 220

(105)

quations (013) and (905) are alternate forms of what is referred to
8 the gradient formula,



A
|
sy S\A(U 3 ;&/\(7() (107)

atisfied by &A ( R IL) so that we can rewrite (106) as
- : |
VA LiM -

| A |
CAQAR = (20 kA Vg A om

(1083)
A Lt

R L+
so that (86)

. ' B e ' |

AL(nep) = (——_—l) k ;L(R’l) x-'\fle ¢) - (108c)
) ~—

Wb T e

The expressions (85) and (86) are required

ron (84c) we have
follows from (108) and (85).
golutions (Viz eizen states of ansular momentum and parity) of the elec-

C) C+) C"‘

tromagnetic field in the Lorentz zenze, the constants
to be determined from the physicsl situation the field is to represent.

For examvle, if the field is to revresent photons* we can immediately im-

pose that the field should be transverse. The transversality condition

:ould be written as

o 4 |
| R A (K@klgbk) =0 \ o

- —
where A (k 6( ¢k> is the Fourier transfora of /..\ ()1 6¢) in to momentum

space, The condition corresvonding to (10°9) in configuration spape 1is

* Tt should however be nointed onut thel AY’Iéﬁjcannot be considered the
wave function of a photon in confizuration space since photons can never
be (wealized and consequently no probability inter,p_;‘etatian can be given to
the wave function; but the Fourier transform of A (X gg) in momentum |

space im a good wave function of a ohoton,
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V- R(neg)

(110)

o i —)
0d clearly (110) restricts the (gauge) arbitrariness in A to a sub

lass of the Lorentz gause which is termed the solenoidal guage. (84c),

ith (110) implies that ?d =0 in the solenoidal zuaze. Imvosing

his restriction on (86b) we have

: \
i ~<z‘:—.)"

The functions ¢) could for all calculatidnal purnoses be

(111a)

considered as wave Lunctlons for the photon and with such usaze in mind
From (85) therefore

we impose that the solutiins be normalised to unity.

el = 1 et =0 B

are normalised as }@ m denote normalised sphereal

(111 B)

since TL A M

harmonics and y[b
?;Q R9E)denote normalised radial function, From (111A4) and (111B)

are unit vectors in snherical basis; and also

wa have
=i

_ L Vs
C::+(§1)
: £
C—l: —< 41

choosing the constants to bhe real.

{112

Choosing also CW {0 we have

(n)  oF = |
ALW§KQ¢)“ ;L(Ré)TILwKG?) (113)



I)M
(114)
(115)
(11¢€)
ging the definitions (81) we have now
e — e
H o= 7 A
— . Lo
Folompi ot L{ A
nd written explicitly
™ neg) = (k[ (= (k
‘_ LM i lL+I) J 91') L 1_<“
| ( + (ZUJ :;\(p”)TL(HMVJ
g
o EZl_ e 55)
(117)

HfM(he¢)~ sE Gl TG
=-E (% (nog)

calculation using (92) and the sradient formula. It is clearly a
pronerty of the source free Maxwell's eauatlons that if -Eﬁ and .Fr
are solutions then tti el H F%d SO < ,E_ are also solutions,
: Eii » Hy4 are said to be ?daalt fields to and)4 . We there-

fare see form (117) that 'electric! and 'magnetic! multipole solutions

are dual to each other.
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The set of solutions (113)..(116) form a comnlete set of angular

mentum and varity solutions for the transverse electro-magnetic field
ry;and they represent only two indevendent linear combinations of the

Q,
with sgme | which

ree spherical tensors TL LM TL RaRY
8 orthogonal to each other.

We can néw form a third independent (i.e. orthogonal both to (223)
(114)) linear combination of the T—L )\ ’,5 y Which clearly wilh
!t satisfy the trans¥ersality cqndltion,AreLerred to as the 1nngitudinal

Pultivole solution:

(2) :
A‘Lm(xey): Q\L_H) %L(/( ) TLL#!M ¢)

¥ (il_ﬂ) lm ") LL’M)

| { |
he scalar potential ¢L$\4) ﬁﬁﬁ) corresnondinz to the above solution

(118)

s form (84c) and {108)

(( i « A _
¢L )(ﬁ6¢)== i (hh),ﬁwﬁéfv (119)
low the set of solutions (113),(114),(115),(116),(118) and (119) form a
Noevmad Lot 6’(%
omnlete ortho;en&%Asol ions of the elﬂctromarnetlc field equations (83)
Lorentz zuage and any general solution A(){ 8/23) and ¢(T(9¢) could

be expanded in terms of these states.

o
ﬁ(neﬁ): Z [QLM mt b W ALy T A@ ]

B ron)- = Aum pY, i

where G- b CL M and  d are avoropriate coefficients.In

_ L2 LM LM
particular if the field is transverse C, ., = 0 CiL,w1 for all L,M.

i

Lm



- 49 -

LECTIRE VIT

£ .8

. We shall now take uonmroblem ( [/ ) viz.,. that of the expansion

(83) in terms of the multinole solutions (177)

'a plane wave solutions of

3) (114) (117) and (118) .
} 7’ k' b and if we chonse - a woordinate system

A
‘ = s
ch that the Z axis lies a’~-7 the directiosn of propagation R , then

The plane wave solution of (83) is of

e form

learly lp( is the unit vector representing lonzitudinal »~lari-

ition and l;x correspond to left and rizht circular polarisationsX*

3] ng (71 )

[ L od Xl . fgn
X'u R-% __Q(_ﬁ)a. Z (Q(;_(ua) Fo(R)Y, Cedly
A+l ‘
(LM) gz__t @Qr é(kn)LC(“/\ o/t)T(9¢7+
A= (121)

sing the inverse of (78). Substituting for thes values of the Clebsch-

ordon coefficients,

C ( Q| Q; O /» ) = i%y;;r P { >0
(,('Q«’Qf’SO/V\) :[Q+2 JK- ‘F‘W /\A =~
‘ 2 (2 0+41) .
N : (122)
C(Uittr; opm) :<E—Qj;_;) bv 1 =0

1 R =
 Usually ~7 («- p-A =" ) ¢ used to denote the unit vectors for*es—

onding to left and right circular nolarisations, 1n which case — X
nd o are the deswred unit vectors which co1ld collectively be

gnresentéd as "}&ﬁ ?: for transverse fields.

| o T AR 0

»_e A ’r9\a, aw%ﬁ Irehnton, R and ) im he (,ov\/m)\wf{}yfw
/: a,o.g-v\j D ‘H’r\ﬂ- \;M’L ﬁ/\:zp:g/g AIE H oo Mw(./g(e ,j) Q D
howre e Ww@_ndﬂﬁ- 9«{5 T }u ¢U\ v alfs (|2 6)ant (25)-



L
X Sy Y
CC([,(_};O/(,\): ‘(:{(::!)/2 ’gW /LL::D
e have for tranverse waves
\ ""\l .._x. l' & ’ \/2_
XV = («3\) J€<K’) E‘/‘*)@Iﬂ) T(X/u,

e

= (¢
“i( f‘2> z~H 4 , @ E",Q,M](IZS)

The summation over { extends from 1 to ¢¢ in the first term (sincef)»O)
ed in the

from Q toog in the 2nd term and essentially from 2 to

third term in (123), s» that

\X Q“—E.% 2 @Tr‘/l [Z (- o ,))/L (r \
EE et [ £,

L‘.-._“_i. ‘ /\&
4 (124)

changing the summation variahle A; o | 4 - in the first term

o= L+ in the second and L = ¢~ 1in the third terms.

Which can be rewrlitten as
i 00

— /-‘ it
- (il i +) [t/u) k) T,

!

+ )% f DT, (Z._L_) FoT |




@W) (2 L—~\)
[/u A (rwdﬁ—-c A (’xe;é)]

| (125)
Using (113) and (114). For longitudinal polarisation
B
\ ( R.% W : . v
X e ==l e Y@ﬁﬁ pad ¥ 4 -4
0 . .(Jﬂj (%} gQ' )*}\ ) 'Q+QQ¢> -ngto
A (156
from (B1) and (122). We can rewrite (126) as
‘f»+ »
‘*’(:"W) Z ﬁL;,’ R NI
| k.= ) p)
"% Lt ’/
B ¢ (k2 ) (Lt
L=0 & 4 )( ) “’L ’0]
(127
- and we can trivially extend the summation over L_ in the first term to
- include =0 , 50 that
N ,
L k.o y X L=t @

\ ' )
— 2 g { ~ "..u
(XQ £ "Q’.TT) Wl \Z L+ ) (?‘IQW)
L=y
(128)

using (116).

Expressions (125) and (128) represent respectively the expansions
of transverse and longiduiinal plane wave solutions of the vector-gzten-

e

tial in terms of multipole colutionsrand (71 ) itself represents 2»° oX-

pansioh of a vlane wave solution of the scalar potential in terms of its



wltinole solutions (118). These expressinns however refer to a co-

ordinate svstem in wnich the dlre%§1on of vropagation is along the Z-
axis, If ‘2 sakes polar anglaes un §%me other frame of reference

A

the svherical tensors ~T3 L wm in the two frames are connected by

( L J ;
—nQﬁqME: - Z'I>L¢ R»N—B(mﬁ&¢4

Yoy I

(40a)*
s0 that we hawve for right and left circular polarice@ waves
*-—7_?
> I LR -5 _

Pp(regc =X, e TR T P
w e Tk oo™ o
=@m) "2 2 v (@) ‘&¢ ﬂ),& i eg)

s M= oh

-FL/* A (”M)] (129)

For the longitudinal comnonentz

N B e = v
Baros) = 4" T F 0T o™ D a4
L=0o pm=-L Mo K %

(130)
And, o
grop) = 4m)t I E (e w300 g
.T)z ' L-o Mn=--L
¢ (weﬁ)
(131)

- gives the expansion for the scalar potential,
The ahove expansions are useful in considering for example, the ele-

_ctromagnetlc transitions between nuclear states whose matrlx elements

e e e e et L

== .
\A C A/t ys A A gy




s v A ‘ ; ”ﬂ> where :EV denotes

4 =
the nucleon current-ch-rze densit J ?
)

-y
 and 4 the four vector A4¢,

and ’J_N“ A = J,V o ? ¢ From (129) it follows that-emi-
ssion or ahsorption of radlatlon is not possihle from a nuclear state
with angular momentum J = 0 transition to another state also
with h’ =0 since the avnpropriate multinole.expansion starts with
- | ~ and - A LM is clearly a svherical temser of rank
L_ from (89). However (O — & transitions can oczur throucgh

longitudinal and scalar comvonents whose multivole expansions (130),(131)
start with {_;:(] when no radiation is emitted or absorbed; one such
example beingz internal conversion,

We shall now take up for consideration the formulae (47) and (55)

derived earlier and before we take un examples of thelr use let us con-

e

| sider the scalar product ]A « B of two first rank tensor operators
¥ = = e
A'B“ LGy Ay B
=g f fu
B particular /l may~ioth be the angular anomentum onerator J it-

self ségéﬁgk the matrix eiement
! — /] »
(J mlt T‘?lJ’b‘\} :"(jm IJ—)—lJm>:C§J/SMm/ J(i+1)

(132)

can also be written as

L
%/ /LLQU <)TH|J ldm' > L )m IJ_N’JM)
introducing a complete set of states ‘J hﬁ,> and since

b

(133)

= be J.fb - '(134)) 3% beineg hermitian., (133) can be

written as



-

| o o
:%%fgﬁ\1ﬂkwbﬂ)<JmlJN{va

(135)

o €l ol w) (i s jum) [<J) Tltj)‘l

(136)
usinz the Wigner-Echart theorem. On account of the unitarity of the
Clebsch-Gordon transformation, the ~hove is simply i(J NT )] j>.(2“
and is equal to | C)'H) by (132). Therefore,

QN1 = 30+ (137)

apart from an hase factor,
|4 ybp a L —>

Ifiwe now consider the case when ~ne ~° -1e onejvz;tors, say}B S )
and A is an arbitrary first ran& tensor operator T , the dilagonal

matrix element <\,, ™M \ ? \ J7h> can be written as

Zzu“@m RESRETI SR DT i

1ntrod'1cino' a comnlete set »f ststes and since TMcmnects only states

(I34)and
of same J A Us1nffJ(the Wigner-Eckart theorem (138) is

Z/ Zk——l) CCIIJ;™ pum) AT
m’ A
e ™ (1 m'/mfo llﬂ;J)n

: 39
Hﬁ\@ (o YL *ﬂ'u_ {- (1 » )

which can he written using Gor—ani—teh)- as

z (JHTHJ><JHI.T”J>}* %14o>
— <J“T%J> J(J_H)/\{}”J_”J> (141)




Wit should be noticed that the transition from (1392) to (140).and (141)
, . 8 5 :
is possible only for matrix elements 7 ( 0 ) diagonal in o

Using Wizner-Eckart theoren

L R e =TT Y

(142)
he?efore using (141) for L.H. g , we have
J(H")Q“T“Q\/:(J”"’,]j W)
OVTH l ><) =
7)) ! )
Lo AT el
‘and multiplying both sides by -0 31 m AL'Yh/,) we have
—
O\ T, 1im) = O | T )y GULT-TVY
JC (143)
which is ¥x the projection thesron far "irst rank tensors and holds only

for diaz~nal (in J ) elements of any arbitrary first rang tensor onerator

| : |
Y. . In general the "T’ may connect states J with statesJ

/4

and o Tt- 1av olehry thatin the A™ye prosT  we trde made © °

s

1A

 usenbfabndy the  Wizgbr-Eckuitetheoren qmdﬁmﬁbhunitariiv'%fﬁthe‘Clebsch=”

gordon trahnsformation.” i~ ~77"

" LEC MIRE VIII

As a simple example of the use of (55) we can evaluate the matrix

element <~£.X iy ' " F| L 3)) encountered in the evaluation of

the magnetic moment

(L 8y || TS 1s))= —U‘(JUJ x5 08) KA LI\ s | 8)

(185)
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Iry, in gwneral

Corne
')
.
Coe
]
<y
ah

‘)‘)_J>": ‘U”(J‘{J )L;Jljz.) gJJ’/ng
¢ e I
X JJ,(J,H) N1 03 1)

/
J.Jl

(145)

thich can also be evaluated (as inlecture 2) writine

i '—'i_ = - En ol

Jye -)LU‘),? \2_—)> = "i_ L) (,H'l) "”J;[.)lf’) —)L()L'H)] (146)

and we can indirectly -evaluated from (145) = (146) the recouplinz co-

efficient

- OREN SRR 3L Ll e

245 ER) ) a0 (147)

Or
Jit).) 30+ =J,0,11) =1, ()11
X, D@ ) 1,0, 40 @0,+1)

(148)

(39,00, 10) =(

Using (29) and (304)

Let us consider the scalar »roduct

. { e

. (% (Q' ¢\) 3 y@ (92_ ¢L)) :7)0}:‘ E‘) \/Q,n(ogi¢4> \67;\92- ¢2) (149)
which is obivously a spherical tensor of rankzero and thus invariant
under totations, Let us consider a néw orientation of the coordinate
system wuch that the new Z. axis lies ahong the direction (Q\.ﬂ’ ) in

fhe old system\be now (B 7 ) so that the invariant quantity (149) now is
)

=ip % L



m 'Q-m % Zﬁ_— )Oe)sz)
QQf) 5 : i
=~ ‘jgf}f‘ Py L 688 6

- e it v s |
ol ok %ti’) 'YQ}J"DJ?’Q“&%)

(150)
where é, the ansle hetween the two direct’ nc (9 ﬁs ) and (@)2_ ¢

is clearly an invariant under rota®tions. ( cy 90 ) ( 65 Cé ) can clearly

be any two directizns makinz an “nw*eebetween them and (150) is referred

to as the snherical harmonie addition thporem.

We shall ndw t=4s up an imnsrrant application of the foramulae (55)

as also (47), to ~valuate the aacriz eloment, of interaction between two

. particles: which is referred o 3 the enceriy matrix. If the interaction

‘; (‘3 4 ) between narticles 1 and 2 is central 1.e.

V(l;l): \/(I_L) ﬁ? (\/}1 +l-~__,,..

2.97‘91?_&0’3-@

(151)
. _ =y 2y
69 beinz the anzle between the nosition coordinates }Tl and }(L

of the particles and in »narticular , AHf \/ { 7\> [

= s we have
7
V(n) = Clatiain
,LC Fﬁf} 2 -é—fco%e])’z. = 5L {-:D —-;;‘) B (w36)
911 7 Ny (152)

-

We now assert that any well-behaved function of the form (151) could be

expanded in terms of the Lescnlre nolgnominals E(Cﬁ’g e) so that

s



o BE

o
Vi) = (Z dy (ny,,) P lome)
i .

 (153)

where J n H - are tn he determined from = knowledge of
¢ = Z

V(’l) . To aevaliate matrix elementsa <j 1/ jzl: }”\/(71)“ Jl Jl’-)>

far central interacti~ns we use (150) to exnress &.)Q (Uﬂ p) in (153)
Iin terms of the arguments’ (l—’}\’," \ , (@2_‘ ;52_) of particlés 1 and. 2

respectively so that

V(D = 2 Jelngd (o sy Cony)

C=9 : (154)
where g |
o o
(Y{gg)= [ ¥, (28
’m( } ’\j Z Q}—E /K 173 )

(155)
and usin- (55h) _
LIV Do) = S /T ¢ |

aff s, !‘3“’/'::02-’\JQ Jyﬁa)>
A :O .
¢ cijf%i e - / /
x 2,11 L);_J‘ﬂAJ)L #i 0y Jz)
x <IN el iy O @) o) e

/
<J " CQ ” J> are easily evaluated using (44) if J and J/ refer to
" 2
the orbital states or using (26a) if y )-! refer to the total angular
nomentug, (1.e orbital+ snin) states 57 the individual particles.

< JQ (71‘ qf)) denotes the matrix element of T( (ﬁ!ﬁz)betWeen
} [os
‘the radial wave functions ¢l(°}'(,) 752(“71) and ¢,/(h) ¢Z/ (5’12) 5% of



the 2 particle system i,o.
< \ (7, 91:_)\) = FQ
f”:"'&f‘t; g " do, ¢’*) qu) T, O,
o X (Zgi (n) &,(n) (157)

and is known as the zenevalisad Slater integral, the method being due
to slater who apolied it to atomiec problems where Vq@3>i§°<'%6 .y

For the evaluation of the dier-v matrix in nuclear problemns we have
fiot only to consider central interactinns (tnown as Wigner interactions)‘
Pbut also exchange and snin-denendent interactinsns as well as non-central!
‘intergctions. e have three types of exchange interactions (1) space
exahanze (or Majorana interaction béq) (2) spin exchanze (Bartlett in-b
teraction VE3 ) and (3) spaee-and spin exchange (or Heisenberg interacs
tion VH ). If PM) P (g) . denote the space and spin ex-

12
change onerators resnectively

\/M (.\)l) : VM Eh ?(ﬁ.)

| <)
\/B‘ (,\Dl) : \/“ (ﬂ/ P\z} (158)
A | : Gy p (s
3 Vi (l)z)‘: Vi p?
where

Plz(.ﬁ) kP(-;T}i ;’?LJ e \P(;l?jl)
(g) NL(} 2) = ()C (2 )

The two particle wave T'nctinn H) (1,2) is a vroduct of a space
wave function U (}” ﬁ‘)spln wave _unctlon(>( (1,2) and an 1sotonic
2 1

spin wave function CC’(I . By Pawli principle, Q{(l 2) must bhe anti-



- BT ive

‘symmetric. i.e.

'P(h) P(/‘S) f)C(') \f(' 2_) - + f(l ,)\_ %(l )
where ‘P’g) ff((;z) = _‘ZJI)

(150)

8 is the isotopin spin exchanze operator. Since the operation of any of

the exchanze ovnerators twjpice leads to identify we have using 9159)

U 58 o)
?'l )2 = ?17_ (159a)

the operation on Y beinz understood, so that we can write

Vi (152) = =V, (0 Py

If wa consider the two particle system in L_-SE' couplineg the spin-

(160)

orbit wave fumction is of the form

lLsam) = ZM SRR W c(LSJ'MMM)

L
where 1» Qz_ are the individual orbital angular momenta of the particles

and PIZQU P,g) operate only on | fL Q L ML> and | % ‘/, ™M >

)
respectively,
The isotonic snin wave functian47f(1,2) is azain of the form
Voo
b 48 Ay
isotopic spin being in all its operations similar to angular momentum

. and ;ﬂgFjooerates only on this state.

We shall show later (lecture ‘i ) that the interfhanze of arguments
in a st‘?'te dl‘) Jgid YY\> results in (1) hit),-] U i )'m> which
Ut ev\&
is also pela%edf£3X%he symmetry pronerty (5a). Tms F\(5t>

o L+, —
Plz \’Qllz_L ML> e Rn“/‘zl l Q}l,z LML>

M\m P?’h)ﬁ;_ fé:(“') QSL("%Z-) = ¢ {914.) ¢ (1'11{/\

vk Hre anquwwwMng40fiAdbi WﬂW—AwJAMV¢£m
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W/ 2)) L) ST ) T Vb2 + (60 + 4,000
MQ LL/L samst)Tmy

59 Ly 555/ ZQ Q L”(U \/ (71 \! l) \/6(@.&(_) VH{?QM VL>(161)

Whioh”bein? thé matriréledent of assum ‘6f centra¥ interactioma can be

evaluated as described earlie;f We also see that for a symmetrie¢ (under
exchange 1,2) orbital state the contributions of VE5(71) and Vl}(%)
add up while for an antisymmetric orbital State ‘vg(ﬁ>and bq*[j)oppose
each other. The energy matrix of exchanze interaé;ions in J..J coup-
ling could also be obtained from (161) applying the L_—-SJ J~J trans-

formation, i.e. by -expressing the states

s lie. )LQ;')SWQ

9
. J,_"

(162)
An explitit representation for the spin (or isotopic spin) exchanse
ooerator F>é;would be ziven in terms of the Papli spin matries CF*
—

operating on particle 1 and AT operatlng on. 2

&
A et A
s ]
< ot _ (163) -
: A
To verify that (163) operating on any state ;( T Zaéth/ (2)

|
leads to I%y)vj (2) }%>'%q/ (1), we can write

— id
q7°612_ :L"%(O*‘WL 0, + G, C“‘r)“f’g.)—z

where o L Oy 'O ) (O 0
& = L0t )

g

and consequently

*TP\«L nadml vn*’qv A i the {Trm‘% b adene mm?m

NI (RPN BB {{ J//- \*,l el '**M




ol ‘/ Vz
q % = s =D
%!/2. %_\/L 2 =

50 that 1 we consider

t gl ol e T4 5,

— D (ot o 07T 0 G (D TR ()
Wwe see by direct calculation that for all the vpossible 4.states with
n = 271,

4 central spin-denendent interaction is of the zeneral foram.

V2= Y, 00 V00 (@ )

the evaluation of the matrix elements of which can for example be made

m = t:ﬁéﬂ the ahbove leads to the desired result.

(164)

:rewriting (164) as

S o o L e RS

Uisng (163), or more directly noting that,

Vo) & P i
(5 %SG RN sy =15 & - 2 8 b
-' (165)
The spin denendent term adds uv to the Wizner interaction for triplet
‘states and opnoses the same for singlet sta£es.

Tnder charze indevendence, we have uniquely two types of non-central

interactions (1) the vector interaction

V(e T E

r
(166)



here

-
L, = Gi\ “?‘7—) X @7"—}{.)
(166a)

s the orbital.anzular momentum operator referring to the relative mo-

tion between the two particles and

ok — =
> A
5 el : (166b)

'is the total spin onerator,

and (2) the tensor interaction ‘

le ) 2 ) Sz S
where V
o
S @';Z)ng"h) e 4—/—3-})
lz_ ?LZ 32 \l 2
(167a)
,ftj beine the relative coordinate
____? ._?
h = 91‘—' ?}:?2_
(167Db)

Ts evaluate the matrix element for the vector interaction, we observe X

that \/(;71) Ln'is a first rank soherical-teniig overator operating

on the spatial part of the wave function and S obviously is a first

rank tensor noerator over s»in snace. Therefore,

(U TMly T S LsTm)
:’-/iij}' T e (L'JIV(N)—L;N REHLY

}
(168)




Wlsinz (55b), But

| <is) = S 4z 8,

(169)

ir the vector interactisn is zero in sin~-let states and we have for

/
L - L_ which is usually of interest,

(L1 mv T, R L) == 7 Uit LKUEAD

. J(J'H)’L/L’)‘ ) AR
2 L) ARVoT ‘1”]*)

(171)
using (147).
LECTURE IX,
| To evaluate <Q 2, L”\/(ﬂ) L‘L“ /Q Q L> in
(168) we ohserve that
oy =
1_91 = {_, L, — %, % b, X t%
gy G 0 i P
= [ - Rxp, ~ P
(172)
so that

O U IVT ) 400 = <0 L) T4, 4,1
— &L VAR b+ TR 16D
= (R s DR R
=L NV R xp + B AR LD

r3)
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ULl | G, Ly JLiLs)
— <Q ,/ Q;_ % V(%) S -ij u 6F T XTR),_/S” /Q;QA,L;

(174)
g statesg ~»f sauze i, l:)7, and L_ only and \/ (71)

being scalar connects states of = me | only. The reduced matrix
Blement in the first tara can he =valuated using (156) and therefore we

have only to nvaluate the second tora in (174), For this we replace
1_—9 v — /0' -
P . G RV 4 and recallin: the erpression (92) for the vector

oroduct of two vectors in soherical basis, we hove

A gEhe i GRS S ST AT
/;“ M :

: c/’ ) vu.)w«zc 2) 7,00 §
B (175)

=z orve) o) ]
(176)

the eomnonants er£¥fr9t,‘\/’/k‘ of a vector ]L
y =

. the udafinition (155) and using

where we have writ®~n
in spherical basiz »s T C‘| usir
the notation of (45) to exoreséu;he ~~mpoasition - spherical tensors.
‘n the second term of (176), thereby

Ghanplng the order of eounl’nf
\% (") suing (154) we have,

acquiring o nezative sign and exnanding

V(7)) 2 +9u><'w§ = aE | Jg(f‘1 * )CC OX Cafz))

x | n, (¢ (a)><x7(2-)/>/(;‘97 @Zé')xch)) ]
(177)

e o s S —,

>

P e



5

4

x e )

kpressing ( C Q-‘. J C (2) ) in terms of ( C il
‘ of zero rank

sin> the definitinn (58) and writing the product T’ /J,

ind Tirst rank tensors as ( ‘T' v 20 i | )! we can rewrite (177) as
| g
=7 ""9 = o r~\ i:.;._ = o . ,C ‘
) S5 B B iz 35 T O n ) v 2 TaT
S A 2D 2 y =
' / { 7} e _‘ 1\_4 l
/ Gt b Y e
i o s ‘ Mo

[ ¥ Bl R0 i |
=%, cpxe @) 7% C. (2)
L)X @/ OxC () " e

We observe that each o thHo terms in {398y is a fiyst rank spherical

tensor ohtained aftér counlinz Tour sphavical tensors, and since the

counling law (45) for snherical tensnrs is i75tial to the counling law

te can use (49) to reexp*oss (178) as
L+ {4+

= A[EE- éz;: ::é 7y \Lu) 21_ ;L__ tﬂ j({) ’ZZ+-
" = a1 5 5’

(3) for angular momenta,

3 % |
[ C fs)X((:\) X((K(Z)YVO_};)
/

& /LA‘

(KC (i) 3/ (l///'l‘( ( () X ¢ ()) )

(179)
and now each term »f (178) has the form »7 2 spherical tensor of rank |

; 4 .
compoasec ~f two svherical tensors of - vapi 3 and & 4 OO8 operating

on particle 1 only and the rtrar onerating on narticleg only sO that we

can aonly (47) to evaluate the = ryriy elemnent
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gL ven s R B Rl W0
¢ L o gy SR IS
ZZ }jAgf {: I l ( ! o \K -
q[—— f=g B A 8 &40 ! éi/ LD <V ST+

‘% o

% of :
5 / Q . , /'/ N3\ d g i€ /
JRCH (QORAO) M ENE M ISP LN K

= <f (C (Dxv Q) ) ’H\/ sz_/ 9(( (f(z)x(i(;)')'g')( x”zﬂ
A ¢I‘/W') ¢2_<Q14)

; (180)

remembering that the operation of E% over the radial wave functions also

should be taken into account. The quentity

| (}ijz‘x (jt>k w A-H s o S }q}

R @Q+)2 my my ’"L

(181)
(155). Bxpressinz the pro-

expressing the CL,& back into the y s using

the two spherical harmonics using ¢43) and performing the sum

§ T CCUls ymyman) D3
% m 42 1'41)

/
%C(OI,Q;OO)((QW?m.%j”))yw 32)
: ,“r;l 2

duct of

over m \ using (6)

Rt

43C2.Q+1)



B

=2 (LN e C;\n

(183)

o
the reduced matrix element of (183) hatween states { 3 Q’/ is

I ; prr s ' e
i x ' P = () 0%00) ClUIA;00) ——-«72;;"
2 X+
(184)
“ing‘(44a)
We can also write :
xv)M = 2 4 PRSI Copy Vi

M using (108)

0 A | |
XV)MXZ él(ﬂ);ZC(Ql);mNM)_c;
2—Q +,3/) (((Qn } 61 i ] ff) >/ (E{f' ——,)§é/q/

ti mn,rﬁM
y
<2Q| |)

. g
G my ) ) L ,mﬁkm* —i‘f)@(l)]

(185)

¢

B exoressing C:e as }/ using (1545 ) and counlinz the two spherical

armonics using (43) we have the ahove as
=2 C(Uix;mp ™M)
e @

> v, S -l
X [U(.,‘H) As C_(‘Q‘ | Q_,ar!_', ™m, /4)%(2!(/4_9 i

¥

- -
‘ ()/ ( \>‘r“-/l/*<x i/ L e e i{_(\ "_ {
\ Ta bt 3 .

N T
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% C(Q)Qiﬂaé—/u)oo)c(g)QQT’;Q/ST"JmI*f'L;ﬁ"’"mI)X
: S L e,

X <H.7L— '»JZJ ¢l (%)
J“(ﬁl)%ﬂf(zl|Qf437%fﬂ) Z;G;QL+DTX£(Qv£14;QJ;OcQ

x C (0, 04,2 m %ﬁ}&,M#“m)yz e
N
L m)]

W56) could azain be written usin? (5a) as

(186)

Syt~ )) Rprhel

"/E—Q% C(QQ,H L' ;00) D ©

o & AN O B ;}M)((Q‘Jr‘ 1 £>mﬁf’°/'m h+m)
v (] 1 e
(1 )\me&M)( 31/

A

M 1

~U41-n) A-14L-
‘Z_ L, C(QJQ," OO)Q') 8) {

g A 2ot

X-%%C(Q‘\ QFWSV”H*) ((ﬂl“{)iﬂ()fwﬂfPUT“)M*W“D

x CO x5 pomm) (B4 ﬁ_s_w:..f)J
7T
o :fﬁ\/ﬂ) Ye/

‘,M+"m,

(187)




-

Whd performing now the summation over N using (98b) we have

g A
( XXZ)M ﬁxﬂ)§é£f¢) :Eﬁ(lik AhvﬂYW7nﬁM>
| X # . /

i Ir . ‘
D, X’f% lLUU‘M'Q;Q\-H,/\)H—Lﬂ CAALH 1"00)

et

~'U’(MM £l
) 2(%4(<£ 2! ‘ Q OO)

(Lt J?ﬁ()}j& (o#)

(188)

Mso that
'"/2.

. | /” ((,Qx V)”\Hﬂ& = D) @_ﬁ 1)
[ U L5 5 100) (G5 0) “,(éi.ﬂ-é) |

— U, 100 'A)c(H 40T, “1

Q'f A- f

, | (189)
' Usine (184) and (189) in (180) and.writlnz
) e gl N
fra (\\) ok O“J
I A gk ;
o 4 5 (190)

A2 (R H ,
i 6:[)&7 NS 1) & (l ol smn L)

(191)




] sing (54) and (30f), we have

(L ) 5505+ gl Gt L)

{ A ’S‘.gl E L Q L
- ‘3‘§:EU S ol 8. g/ & N2 A%

{=0 8:;3_{?;("-1 L’( (1_

—

- 'SUIEPERES AI)L(GIX oo)C(Q/SQH )Jll+

1 @)

X gbhif@‘f UG A 50 8 ) (4 L3, 415 00)

b A
X<Jg(9‘!)hl>ﬁ!('—0[j(/1_%))
w0 AU L, 50 L Al e (40,4, 2] sne) i
- 4l
# A Jgltia, ) % (5&; l{?_)%

ot g (,jl
~<({f&"00)CCQ 5L BOO)J@Z,Q (2 2+ 1)

XV g {M 0 w100 L 80

X <]-((h1)7‘(1) %,7_(%\-‘ _il_‘)>
-,\[£ U’(L | LA 15 4) C(Q ‘0,1, £iz00)

X<T (r,m) "1(7.@ 5 —‘——)>J

(192)




Mihere the quantities <f F: (91\ 9(L ) are defined similar to (157)

The first term in (174) on using (156) is explicitly,

& T z_w i (0o Lo )

2.4, +1
'@L)(li*‘) ( zﬂ)@fﬂ) W NS
4/47” @Q‘H)_\ T (2 ;_ﬂ) [:, (4 /M))O())

x (2,41 :00) <{;jk;>

o4
el
= RTRGY ol
Lo W ) f&:.oL ) J;

ﬂ\'ff

X C(Q,Qﬂf;&o)(xvzﬁgzﬁoQ) g

ITCQQLJZyQK)

(193)

so that the desired matrix element,

(LU VO T 4,00

/ n . / .
The case f‘ = Q, it »kz, = fz_ and L- = L is usually of

,(1935 2 (192) »». s (194]

interest in spectroscopy when only even /L terms contribute to (193)

/ ) ‘
In (192) the e :./k term contributes zero in seneral, %
G e Dl OOT T O

LECTURE X,

The tensor interaction between +wo nucleons is of the form

- o A e T R
Vo= S N 5 T ST ST i
=5, MU = W (1) B e

where S\L is clearly the scalar product

e (3 ﬁ P (195)




i

of two cartesign tensors of rank 2

% i s RIS Pl
oL B £ B 3: g”((ﬁ "It ieg)

and Sd{b i g &{3 | (197)

constructed resvwectively out of the cartesian comnonents of the relative

- . . 7";;?
e

position vector »{ and the spin onerators /Sl "

of the two

' particles. ‘

Allowing ourselves a little diw~zression it may be vosinted out that
a corresnondence conld he establshed between the comoonents_of the

2nd rank tensor ,A B and the comvonents of the rank 2 spherical
tensor ({\‘ X fgf) as we have previosuly done in the case of zero
and first rank tensoﬁﬁb Vi L3 »y the scalar and vector products
respectively ( (52) and (92) )

It is easily seen that

! ;
Qoo @xe), = By (hxBornio )+ d% n e, 09

Returninz to our oroblem, we bhall rirst exvpress 5‘2; as a scalar

product of snherical tensor onerators,'writing
1 — | | T

(&) = Gl (A x ')

using (52) and

B R)(Feei) = 3l x ol wny©)
9 (1o O(199)

8 x A | R

k?io o ((,x 9, X(h x ) )0

fene
L]

. R
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s in ({7Ci.) and using (S'IT) for the 9-J coefficient

) —? 3‘?) Z—»\/lf‘ﬂ U(\'oh h;(@ xx' X@Tx%))

(201)

i ' : o : & (g1 } R —5
] % 2R+l C(l ko) n (&&x&_) X ¢ (,1)><%)
.o U( ‘ l 0 (25 h \) —_—‘U—(H PO;hl) = | in virtue of (29)

Mand (30a) and usinz (|¥3) for ( /-L‘)( 71"
| R is now () and 2 only,

)!1 Clearly the summation over

~ S Thus,
@7}?)(? e [ ﬁﬁ)*ffc(nz co\(S(“xc )
i ; (2030
S O CCIT00) <5<L)>< Cz(ﬁ)),,
| : ‘ (204)
" (_2,) ot \ (\2“
| where O il (}g, X }élyjfk (205)

is clearly a soherical tensnr overator of rank 2 over spin space. We

| can also write

TR
Cl;oo) /w()

(n xn)

’r(z-

= 17_ [(}1 ><7u)/“"r(?1 /‘LZ) Cﬂ X)IJ
| = (?Tl * ) ]
= da Lc(uz oo)%_ﬂl ROE i (z)}
- 25 M(C Coiwe 6a)) I

(206)



- e

so that we can express

VT - (;(CL). S(Z_)J

(207)

@) ; ‘
E#:/L = Vlgzzi [E:(‘I'Z;‘DO) { ?7‘2—Cﬁ¢(0 %’?&f Ci;(a) %

pey > '
S (R C,(z))/u] (08

: is clearly a svherical tensor_ ,of rank 2 over orhital spmace. A matrix

element of V' in L;*S couplinz can now he written usingz (f)glgas

| W) Us'T)v, @ L) Ls Ty
5, U2 31500 4™
X <" y‘SQ’WQ (209)

since Slz' being a spherical tensor of rank 2 can connect only

5 = | 5 S/::J . Thus the tensor interaction is effective only in
trivlet states and also it does not contribute to sinzlet triplet transi-
tions, where as the vector force would allow such-‘a transition, for exam-

nle, in collisions, The quantity

CRAIR ‘é.‘é!>f[f\/qzlf Ans b, ><x0 8, n/>

i L ’

(210)
using (4r7) and is
3 jo/L |
&" L\’ \12' :
42 4; Lio (211)*
¥ If Inst~ad 6T & X we have (G 4. tne value wili be Tour times
I )72 SR

as much.
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To calculate the reduced matrix element <,Q: Q)./L/ “ xé‘) “’Q\ﬂ'?_@

 Jean exvand V( 7L} in terms of PQ(MQD as in (}5%), so that
nr .

S
—

P ko
X B‘N,ZC;(D i ka(z)j c(112;00)

2
‘ !

A
@ - 7\7(7";,7“2.> (C h(o s (p(l))

S ACURNET E:wm m Th(mn)%z >

/

' Az k=i
R 0
[ ( i ((& CUK(()\V \Y
o ; |
; T - QT |
Cl v}l {202& T
+ . O)/g: U o 3 | h(ﬁ,))

b 2
(@kw e ))8}( ¢ tz@)/u g ]‘K(h‘gng(@pa) xc(z)) X C Z\)m

(213)

We can write

R Rk ) Pk .
L\ ° B U) [L‘k Uﬁ ,) gy U(\‘sz;;s_z
S

-%/31




AR 7 7 s

kins the symmetry and (54) of the CZ—J coefficients. Similarly

¥k h,o:\
. o

(o ko by A 5 )
AR 2

%@ @2“\ W({xRk 20; zh) [25+)
(2k+)

' sing (5"4) and” (30). Thus,

;;C@)“ gi | R+ - |
| j,ﬁf*;: oy tu. 00)3;(.( ot 22tl ¢ (R 135 00)

X § 753, O, (e heo xe “))
o (k+/s) 2 (‘n.)m)(C Rep x(g()) i

, 3+ R-s
)

U (1 R2als 50 ¢ (kiss00) C(R1400)
« (02 x Btay)”
). |

| n
using ('S’a) and Cha!ﬁnq_ the order o7 couuliw=z ip the last %ora. From

(214)

(214) the matrix element

(AEL Hﬁmq



< s

2 4
- Z [(CHZ_ Jdoy ﬁC(RL/& 00)

‘2:0 A= ho2
q | b <
X §<(}\l \ﬁ i ;>{—‘6 R. ZL;] AEQC(&,,2<Q OQ)
Z e K € ’QL?{XL;OO)
R ik ¥
+<?12 J}L(m)m_)/( &{ £ z}(’f} C(Q R A
. ot R ‘L |
X(:(fléxl; 4

l
S S T G, 1) pi__, hJ“'*'
LR h\

X ie /s"z\jf(izl/voo) CCMA"’OO)&—’)AM
SR w0 T
{A A ’z.(f(t"zs)(, oo)C(i X/ez;oi)? o

P

using (/_ﬂ) and since

@ etyey = L’ = LY =[28 et 0o)
k & i at / ‘-h‘*} (216a) °
=tIC (0 & A V
‘ (216h) &
¥ using (l,.]_fq)_and _(‘;"().'
The summation over is (275} is rastricted clearly to a few

terms by the various Clersch=Gord-n ~neffinients.



LECTURE XI.

e e .+ e 2.

We shall now »rie”lv %fake ur the hazin question of coupling of two

ngular momenta. Frr counleiones: we rae2ll “ha* -~ commutation rela-

ionship (1) would be equivalentiy he written in the form

%, Je]- £ T (7, 7]

nd

[—J' It 2l =0 (217)

j—i - \) P :f:_ L Td/ ‘ (218)*

Setting up matriv ornrosent-tions of, (217) in a basis in which
2 [ n
TJ T% are diazonal o ~d gl 1 B ol 3 shows that \J‘f' increase
or decrease respective’ - thn eizen value of by unity; and _
P L by unity; [ =2l

gives a differance cauaztion from which we deduce that

[KImet1 7y U] ™= (03 m) O tma) (219)

where } 1s the maxiauam value amonast 1N , the eizen values of 3;.

(219) al=» anahles identiticati-n of J (J+\) as the:.eigen value

| % Z 4 S - ety g e g
of N :yi; +,-E:x i P G W It is clear that (219) does

not give the nhase of the matrix olements of :Tif and since this cannot

be ascertained from any other cn-sidarations eilther, it"is conventionally

chossen to e real and vpositive (convention 1). E

For a ~>nposite system corgiatins of two comnonents we define the
angular -momentum 'J' by (2) 4rd fron the “undamental prinecipnles of quantum

mechanics we have the ernansions

9923 = 25 ¢ Oouimmam) Vimpllomdis

l ma

* tn he distinzuisled from ]
S, ot Ty




‘J,'Tr‘:-\‘(_;“,,)%/f K 2 C*(J)) mmlmjh)zjm)

(4)

The nronertry (2) Af the =2p-"Tin‘aonts i35 easl'y obtained by opera-
fnz both sides Bf the exvancion by :I}i S Jz_z_ . The
Yaximum value of )  dannot hoe )\‘)’+Jl) since ostherwise we showgd
Hso have m o> ) ), "t Yy can at the ost be J ¥ ),

¢ i \ - = 1:‘ ti: 2ok
orresponding to By T S5 e Ji ™ = *)1"“)2.. we
ave only one state ! } .}, 7 Vs da 7 in the nroduct svace and
i il

i
e verify that this is =lso 2n 2izenstates »7 J with J = )\4—3}

Since the sta*rs ; J . 15 Jl ™ma arne normalised and
! : ' ¢ ®
e want the states | J, ), 2‘»17 also t> he nor:alised the co-
; . . [ 3 i \\
etficient C (J\Jz. ) e 0) o J.Z J )-}— )l ) aust have modulus

unity and azain by convention the nhase is chosen tp be zcro, since this

phase could not be detormined Trom any other cons . iersacion cither (con-
vention ITI)., Thus, -
IJI ‘)z_ ')if); J;"/"Jz) T ]). J:) l :‘L‘)L>
(220)

With ™M = J +)) -1 we can have two states ') J ‘))_>
| and\ ) § )2_ )2~3\ from which we cen have two independent

linear c',)fnn:s'zatidns one corregoonding to J - 3 \—)—)2__ and another
] J = — an? 3o on. Since the total number of states
ot th );“‘)z. )
in the oroduct snace is (01 ) —ﬂ’) (2\)2.1,') and for each \j we

nust have (i J +]) st- tﬁs\) +)

(XJ,+v) (mﬁo 7_ @3+

’h«n




rom which one can arcue that JM'Y) has to be lji"_‘)z_‘ A
ence the nroverty 3.

Opemting on equation (3) on hoth sides b J. = T

D g qua (3) S y J :t : :]-)++Jl

s have

WOFmOEme)| Ime) = 1 € (00205m, m,m)
, "

XE N/r@,q:*ﬂw(),i:ma-ln) | v 777,‘t~3>‘§ )2.7”2.>

+ J@_; m;)(hfh)zﬂj bz“‘”ﬁ‘-l} “,%,32
(222

f‘ le can now expnress ‘J ™m j’—‘> on T..77.3. Hsing (4) and equating
' coefficients of ( j\ 771‘> ‘ 1)2. ™, » we ohtairn

Q=) (0+m+1) C*(J, J)5my mym U

- OJ@ A ‘\'W;)(Jy“m\ﬂ) C( HUSHCIRIL IR

- :
" mf@; my)(Jam ) C (Jl 1L mym A m ) (o)

I and

'f J(‘rm)() mH) < u J2d5 My My M=)

v‘\) Q \“?m/&., it m) COsmi) m, m )

+1JLZ W)t 1Y C(dyazds mnymsyiom | 224

%




w BE -«

Which t’vrether show that 1f the coefficients with a particular valueg
j M are real (for given \) ) 3 ) then 3ll the coefficients have
) 1L — t 8 557 hs

) be rea or J = J’ 'T' )L at least we therefore assert that
1 the coefficients must bhe real on aceou t of (220),

st

Overating (3) hy \)‘9_ , for examvle, we have

—

W7 doma T 0wy My (005 mimm)

P C(J,jl)/‘°m,7nm)<>,w, n|T)5 ] 4 )y dm)

=m (L4 0); mmym) (228
We have at our dismnzal the ( i e éé ¢66) commutation

b
arelationshins between tho guantities — 2- T_z— TL 5V T
i i o 4’ 5 3 > =

. X Jez e
o ‘J‘_‘, jZ_ i j:t takinz matrix renresontations nf which yvield however
B — ) b

bnly the information that
(i) all these 12 onerat-rs conent states of same ) J onliy
(ii) Tl% ):D__Z_ connect -~iates \ ))‘\2_ ) 3w> with same yp
only while J—l + F: 4 connect states \J) )lj"‘>

Ay s
3
!

résnecti\'relff to } ‘)j ')Z \ ™ 4+ \> only.’ 3
(11i) the matrix elements < 3 0% 1 m } J‘% ’J) ) J o

(i.e, between same ) ) a: . real, which can also be seam on
writing .

-~ 2
Jy = T)%<j\,z ) e SR Y g

(226)
and taking matrix elements
v \ o R el
. o o
— Ll Y 2 )l b

X,
Pl
f
|
|
|
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: " #nd so onyand does not allow determiniation of <J) L\)M\J— I) )Z)m>

which is' of 1nteresu

We can, however, elicit some further i-formation from the recursion

elations (223) or (224). Puttin- J' :J& : J'_—-.ojw\‘ ==zt

| in (223) we have

CC 3 UJ') ¥ B M]"\'

e

w“ﬁ’)‘H o)- -‘CC\) JD )M/Jam/)o)

(228)

EY
J=-m
/‘

C(JJO;%,—»M):&}-D (J)O )-1)

;The cenitarity of the Clehsch-Gordon *“1nsf'>rfr~‘* on (1} imposes
J

T |cCiyos m-m)iT= |

M= -

. € 3

asap leCives a,-0))=

using (220), Or, we have

(229)

CCyons o) Sims |
: A © (230)

Therefore, from (229)

C(J) O;"fn)~‘77’))

tl
Cp)
o
(

=5

J()
T
e
\_

N o) +1

This tosether with the pronerty (éf) of tha rothation matrices en-

(231)

ables us to prove the rosult (65-). (é‘) is a br3ic pronerty which
can be nhtained (refer rext lecture) _~devusudsul ufey wonnidargtions |

of the Clebschi-Gordon vuveffivienia, We can therefore W’I‘l?e !




r[JJ Som |7, | J))m>«decﬂW@Q

e 1) =138 11mm ) SN
1 nd clearly‘ffi connext =tates \) Qb J"f ’) J and J-\;

To calenlate the coefficients occuring in (232) we nbserve that for
= J+) _
CAI I+i 5 1 d Jn) = |
]
HMfrom (220) and '~ can calculste all other coc”fisients with \} = J-+]

usinz the recursi~~ »~.s* ans.

Specialising (223) we ontain (for J > 0D )

N2 c(1d)s0d9)+@acily; i)

(233)

which tozether with the cenitarity

\C (1303 o)J))Zﬂc(: i 4-,,)—5&){,2;_
determines

| .
ECndn g il e 0GR
| ? I J-¥l (235)

: SQf'
CC\JJ;ojj):-ijﬁ o §10)
(5()

apart from an unspecifled nhase factor < .common to all the

(234)

(236)

/
eoefficients with J = J ;3 all the coeffieients with t: J
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eing determined in terms of (235) and :236) throuch the recursiosn rela-

fons,

In a similar way we can azain specialise (223) to give for j é3J'-r(J‘
: )-.*.

W2 CC139-15 =0 3,00 155 (1,950 16,)-100

(?375

WP T (50,09, 30 1 EETT) el =120
(238)

and unitarity requires
. Z : 3
| 2=t s - 15050) HCO;\J—.’S JERIPEDY

2
GG 2 = =
M From (237), (238) and (229) we have :

C(T'J)J’Jg- MU ___-H"~' )

(240)

| M”()
CQljJ))*‘ A “DJ"D )\jj( )_”) ) (241)

9 l (EO‘-
CC'J)W)")‘))‘Z")\S):‘A/’)_(—ZJ-TU : (242)

and all other coefficients with ) = )-) can now be deteramined.

using the recursion relations,
e
In fact the orocedure out-lined ahove is quite zenral and one can

ohtain all the C (_J .) ) M \?n2,9n> 5 in the ahove fashion ex-

cept for the amhiskity in nhase.




K

C T

If, for examnle, <J l,jlo-) T i,m \ j‘% 1 J‘ ) ) ’)ﬂ>

re real then it is clear from (225) =14 (220) that all the Clebsch-

.+ hordon coefficients have to be real. We have already seen that the

commutation relations do not 4aterumire < ) )a. J/m l-f)% \J, )2 Jm>

: akinz use of (232) we can only ﬂetorminof<:‘} j:*}’ :}3 y J\>!‘ 2

(244)
obtained on takinz matrix ~onresentatisn of
2 2 o -
(2433)
and _
(2443)

Therefore, again by convention, all matrix elements<:uh Jz:jj:tb“I
{:ylar \ S‘)qur;>are chosen to be real and vositive (ponvenkionn IIT).

Consequently,



ST -

(1) all Clebsch-Gordon c~afficierts are real

(ii) all matrix elements <J J J-‘f— 37; I:I—Q.Z J el J )’nz

e real and negative, since all o7 dwconal matrix elements of J

e zero. Remindinz ourselves that when we write a statep J
J U D
e first number J. y dengtesthe ‘ei~nn value/\ol oneratlm7 on

dce 1, the second ) that of J.“ ete, so th-t if we now call
irle Z

Bace 1 as svace 2 and vi~ze versa Jn will now renresent the eizen-

<.
i ; 2
alue of T “ and J the eizen value of J°° and therefore the to-
i ! \\1_
Wal state will he writter as /‘Jz_Jl J hﬁ/’ . And as a result

f the above conventisn wa Tind

since L.H.S. is always nositive and F.H,S. nez=tivs) But,

s .
| {(J\Jﬁdj:lm‘f)','%ﬂ,)l)mﬂ SN Jt‘m)%:&\3tﬁmjL

(245)

8ince the Clehsch-Gord~n transformation is unitary. Therefore,

Jid2 dmim| 37| U, oy = =L dphdat il o by e

(246)

@le have, from (220) that for )= J,*}*J)

\J Fa )*\'3 )+)L> \\) J>§.-§2.)2_>: bz_), )1*)2 )!Hz>

and using (7°3) we find that all states with J -~ “;i"'))_
satisfy
e, Sk ) ) )
l)‘)l;-“!*-’L’ W> *«"‘;9)7_7 «i'T)ZDWs
' (247)

Therefore, to satisfy (24€) witn ):: J,‘f”);_*‘! we must have

iy
H



- S0

Bt = = L

(248)
* Wapd extending the argument upto any | ; we have
p;s) J’W\>:._U L S 3 T
| ,_ nr esquivalently, -
ok { , D e i
C\.J}J";‘J)‘ml ™M) = L _;
' ' 22 mymn
.. (250)

¥ which is just the spgmmetry prozerty (52%. The L,H.S, in (242) ig elearly

P’Z l J1 )2. ) ‘\7\> and (249) is just the result mtilised in
Lecture 8., Usinz (250) in (4§) we obtain now the familiar ({0 ).




— .——?-——}
We recall now that J = —( L X VT in particular satisfies

Bhe commutatinon relations (1) and that correspondingly we have eigenstates

f 'U"z and :EE

xplicit spartiel revraesentatinr,

G (2t U ” (v gs
’y&e)yf):&-v R {;(Me)e

for intezer values of J only which also have the

(251)

¢
Jyhara wo wo L& instaed »f ) in conformity wit% nermal usage-and
1}’" %’ are the gssnsiated Legendre molyromials: while for half
Jintagrsl values »f j , the overators ss also the eigen states do not
admit of such a s»atisl represestation. If howsver we denote by DCWF

the twe eizemstatas ) 4 %// andl + - %-X with g} and

14

PR
B+_ X’f' then

(252)

and 2 V) ‘/2_ [ (\/\,r. g = (X, f\*]

clearly provide a convenient rapresentation of the ovnerator t]’ over

spin %+ space.and thre operator

2 - ,\ e ,
:T > 'j-ﬁ \‘j.;;l: -1 T \}4.- J” = h«(’\ ‘f‘l) (253)

where

k_—-_ “"i [k-_ajt 5 ‘:x,a__]

P




O -

Lo

. Let us nnw c¢onsider monnmiagls 27 the form %4_ Y « Opera-
—
Wins »- 3—2 and | of (233) and (252) we zce that a ()é B is

n eizenstate of J .- ’T_ with ei.en values /Qtoy)(@-/»@ /) and

Y

. =~
Y (Cl« ﬂﬁ) resvectively. Or, clearly (x J+“m LXJ m are
Wigen states - T_ \T’% with cizen values ._) ™ . To satisfy

BE1ls> (219) we chasidaer giantities

4 N J N

/[i(j 771) ; y nﬁ) _] Bl - (254)

hich for ail nurmoses hehzve like st:=tes IJ m > with respect
2

~to the anzular m~-mentum overators (252). (254) is referred to as the

splnorial renresentation 27 arzular momentum states. Which we now use

" to zive matrix renresentation to the rotation ooerators R (0(63 Y)

~ JIf we denote . m(pa(gbf) ?me> (Jm> we have

(255)

Mand in particular for O(: y: (O , we canwrite using ( eo )

{
= Xy &8 — % mnp

=G %m“/—f—}(_w{?%




(256)
Lfrom which one dbtnins, \
J Ym0 4
d%{ (@) = [(J L n") Z(»j*m ( Jq_)
m Uwyi S = M ‘
J-m'-¢- ™ 4m L) =205 - m
) (wpf ( )
| (257)
JdClearly from (257) all matrix elemen's ( §€) N
P Q -2 4
?n( @) m! )) dm/fm (@)
(258)
| Also, from (25%)
J % b
d%/ (T) <€ Ol ik
_ : ' (259)
and &J [ h(ﬁn’ - -U “H—m} g%/ 7 :
e w TRl ';‘f“'”" M, AR qV\OWL l\/ U =, St

) -‘ ™ /'y e L T . ™ > CL{;; af.Jw AT e el AL i D
/ : . :
—_— — — = = = . —
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H;o that representing a rotatinon through jl?T' about the)(.axis as two

m———

‘ “iSuccessive rotations through [| , we have

J B T 2
L or)= x4 d)m) oy

o M
(261)
and since
. | | ‘
J =L M J - m

D, (Agy)=2 "% d, /p)e 4
e / 2 /\@

y T om ™
. Wie see that while a rotation through jl/f loaves an integral spin state

dinvariant, a rotation through Z*—Tf‘ is necessary to restore a half
Jintesral state hack to the same phase.

Let us now write

J S
Dm/* (&@X) — u/% w/(_-—lf).—@)_ ()
_ (T | )
- c Ci5n ‘hn’(_ f‘) <
/ s
Lol S
—e djﬁ (B) e 7
m m (262)

using (268).

We can write now usir~ (259) -nd (260)

4 ()= & Aoy (por *(M@\

}“{) m _ _
-(SJ J oaﬁ.p (p) = @) C{ %)/

—




E
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- «4s0 that we can now write (262) as

———

:in,%(no&p?{) v: &) mg (s py)

N?m -m (264 )

which iz just the result (Q[ ) ised earlier, Thw Wizner-Eckart Theorem
and the unitarity of t:e Clehsch-Gordon transformation were sufficint

(refer Lecture 7) to prove the PrOJc:twon theorem, which we now make use

of to evaluate <;J \) \ m )l J’:Z ] J 'JZV)WV> occuring in (243)

Vo oy = 2 [iGw+)
< %‘\T “)) m/ JUH){ATT*J ()Ei’)(zclﬂ

and comsequently,

‘ }
UESIEA Y

!“() U\‘f ;k)’}_ - J (/1‘“)]
A ,\/ ) (+ 1)

(2€6)

Usineg (265) and (268) in (243) and (7?4) we have
) ,,7'
e
}\\)

Kiaine Dw~s—m,+») 2,027 ’

o 304D

/J . J~i;f7;”],)L




j—¥ - 4 =
.?f QR J>—-\<JJ 43, J7f

BICEUE: NeRD —J;_(w)}
4J (J+1)*= ! @%M*d

from which one can solve for the two unknowns

[, 34 T3] = | 623 04im0,)
- o Ly (2d41)

X 4/(\‘ L‘jl-}' “’)) (J"’”)L‘f| +J)

ot 3 - TR CTED

A (54 (2940

(267)

x J@” et d ey ()4 J-J)

(2€8)

Multiplying (267) and (268) by C’( J 5.]4" and
| ; @ao) 240 242)
C C ) ‘ )"' 3 m ()) resnectively (obtained from )\ ) ete.)
and choosing the resultinz quantities to be »Hositive (by convention III)

U.lfv
and substituting in (225) one ~htains the rewision relation

C C,~Jl Jo J+1y ™ mym) V[£;+'h"+;)<v'””'fd>
(&J+1)(I+1)

Y0 3w T 3,32_3>
+CCJ 5 7y mym) | Qv»)()m)(u ) ,,‘,.

}+))




='CCJI)~JHM’MLM)
SR SVATRTERAYA

(269)
where the reduced matrix elements are ziven by (266), (267) and (268)

with phase factor -{r 1s

The basic recursion relatinns (113) (9\0‘2/*) and (269) are suffi-
cient to derive (Racah) a zeneral expression for the Clebash-Gordon

coafficients.. From the form of the relation X ) one can write

3,05 mme m) = (07 L (e, 5 )

;Q‘*”‘*J L Uart m )|, QT@L } /o
Q=m0 Qo)) (H-m)l

(270)

so that

f( ™y m, el :Q LTt (JZ"M’-)‘JQ(%I%HJJ”)

~ Qﬁmﬂ)(h*’mﬁ +(m i5my 30 m)

(271)

Q-?h)Q)er )5 (mymy s Im+)
CM,M—) Jm) = £(m ™, 3 )m)

(272)

——’4




- B

/
are the recursion relations satisfied by the tg' £ . Putting YY);:J'

'in (272) we see that /@ (%\ ™, 5 J‘m) is independent of 'yn)b
=3
so that

S(mimy s 0)) = A

From (271) we now have

+(M,ML; ) )A) = [Qﬁm)ﬁ)(b-m)_)-Q,w}»,ﬂ)(),—nj
| XAJ’

(273)

(2748)

1 and azain using the ahove and (271)

L2 (m my 5 00-2) = (023 w0, 1)(Jstm, 190y, ) ()
L —2()mat ) Or®2) Oyt mir) (-,

"!'(J‘-Hm ,H) ( hTmy+2) (')‘~m?)(),—7h,~;)J Ar'jﬁ
(275)

and so on

(o, ) )-w) = A Z(}-—z)‘t( %) Q}“m\)!
| iy Q’*%)!Q
X Qﬁmﬁ%}i@ﬁh%ﬁ“’ﬁ ’ <)l”7°°>_)l

(= L gmmzu-t) 1 (o, )]
hﬂ(%éct) (276)

Using (270), (276) and (2731Xwitk1?h ::\J we have since

CQ [ J"} m‘mzj ):O“T*’:]ati")r)qhip b B A‘j and AJ+’




|
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LU +dar2) O J)@»H—)zf—/)(lﬁzdﬁ’)] :

r \ 4
g L)+l =

| LJ+3 AJ + |
(277)
which together with (2A0D) <ives
AJ'Z-[Q%)+U< JﬁJz~Dl &
Qﬁ')z 1) ‘H) l Q;‘i‘) ~)2)J, (J 'f")z_"),)/o
(278)

Thus, one has finally.

C(J,) 5 MM, n) = [@\)‘H)C.)W)l-))’ | 5
Ditetd o) 1030 )l))()—y}_)\

[Q ‘/ (U - ) | ()- ?”JLCJ%»\),X\

| (\5\+’Yn!) ()J_'Tm; >L
|y EGI)J{”M% U:/"f my+t) L L ()t - el s) €)1
Gl )‘?f)~é)( op’m;—t) ( ~J+”m+/7(279)

where as also in (276) the summatio-n is over all integer values consistent

with the factional notation the factorial of a negative number heing

meaningless.,
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LECTURE XITT

In our considerations of the angular momentum states !J ?w£>
s» far we have been chnosinz a direction in space called the ;Z- axis
th8 projection alonz which tozether with the magnitude of the anzular
momentum vector was quantised. The question naturally aridesowhether
In faét-théresextsts any preferential direction in space to be called
oy~ eXample

the jf-axis in delaing with physical systems. Ifla system is in state

"J,4> with respect to & ¥ - axis, the angular momentum of the
system is 'oriented'™ along this direction‘in which case the system is
said to be polarised. If, on the other-hand, the system has no preferred
directions in space, then there is equal orobability for finding the

system in any of the CZ.J +“) states ‘-1771> (reflerred to an ar-

bitrary Z  axis); when the system is-said to be Bnpolarized. We

have also a third (or more zeneral) alternative in which, referred to a

conveniently fixed £ axix, each state ' J m> has a probébility F’Yr\

assigned to it, > F}q sy 1; the first two cases beinz now the
: ( .
particular cases when L g 5‘ and I respectively,

We also know from hasic princinles that 17 a system, 1s in a stati-
onary state 'e(;> y say, then it can be wirtten as a superposition of a

complete set of basic states / ﬁ ij? of the system i,.e.,

* In quantum theory, we know the direction of angular momentum is
unobservable; even in the case of maximum mrojection ™M = J
the anzular momentum vector can »nly he ~-nsidered to precess a-
round the F axis, making an angle @ /ith it
i

6:6«5‘ . ~ ( for 1ar-ze& .

T e
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l

7 A

Sbat

€2 = 2 |p1) <pil %)

-8
so that ‘(f @l{ ‘ 4 >>’ is the probability for the system be-

(280)

ing found in state ‘ ?(}’. The distinctinon between the two must how-
ever he clear; what we considered formerly is a case 05 statistical
distiibution while (280) is a quantum mechanical (or coherent) super-
nosition of states. If we have nnw probabilitdes FU' assigned to the
states ‘ o(}>'fdrmin' also a compnleta set, FJ can be considered to
form a diagonal matrix <°(J /P l «t> = hj SLJ in the ‘9(}
renresentation, and is referred t» as the density matrix ? « Trans-

forming the matrix g) intn the \ ﬁ3;> representation

<@m \?)@O = ?:. §}<FJ>,,I°<J><DQ o] p< /ﬁ,)
@) representa-

tion, Thus, in particular, an assignment of probabilities F) to

it clear that 4? is not necessarily diasonal in the

states ' bl?7£> hecomes for example under rotation a matrix with
off diagonal elements, and the concept of the dertsity matrix can be used
to represent a shtistical distimibution in any reference frame, thpough

1t should be diazonalised to allow intervretatlion of the elements as

A cal T :
probaﬁ:’iclities(ff‘f A Pa) L'U’L cal (WW/»H)

If we now consider an overator C} of the systen, <<§(Jl C) )c{!i}

represents the expec.atisn value of the ovnerator between states oK

and since the system has nrobabhilitg F{j to be in state ‘O<j;> .

2 Stpfofia ) ¢



t— . > - e —_—

. - P

raprosents the 'averaze exvectation value', denoted by < O> s of the

operator C) . We also see that g
o) = Z <510V )b = 3T Z b &l g ploleya
SZ T Lol 0 B0l Ol B
(?O) (281)

1 and is independent of the renresontaticn ased, as one might expect.

Let us consider now scatterias: Trom atates l o ;>> (the 2J~f 1
two particjple statos, “or eramnle correspondinz to ;Ea 2+ pro-
jection states of tot~l an-ular momentusm | ) which are weighed with
prohabilities FD' + " The cross-section {ﬁ.du summe:’ over all initial

J

and final states is

da=c LI KTl PR LT i bl

~

PR

mlf SEE (T ¢ T‘T):C \/T+T>

(282)
where 'T' represents the scatterinz matrix and C. 1is the constant
of proportionality. On the other hand summine only over the initial
states, the probability for transition int~» a3 final state ’ CK&}:} is

65 1] i)

and if (asz)denotes the density mat»ix after scattering

Coal €08) [y ) = ZKANTTL 01 Gty o] o)

PEEN }e/vunmi ind L\vate (283)
St x" il

Bilnin o
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%here we have now written the density aatrix ? .before collision as
F ( () 4 Lo avold econfussion, The statistical distributions

hefore and after the transition are not, in gzeneral, the same. We also

lobserve that ”rr G (’?) is not necessarily unity even though
—T”J G’( P(Q}l. It is glear, however that tbe unnormallsed den=--

sity@matrlx <’(_}) can b~ normalised by demdding 1t by, 1ts own trace,
Tw € (%) . Thusn to accomadate the possibility of dealing with

unnormalised density matrices we rewrite the equations (281), (283) and (377

(282) as
M(O?
<O> Ty ¢

€(§» e €<()_T* (285)
does Tt e

(284)

_ | = C — :
T £ v (1) (om0

The density matrix -g) is obvinsuly a hermitian matrix, It is of

order Y1 o4 wWhere N i3 the aamber of the basic states and consequen-
: L .
tly could be expressed as a line:r combination of M independent matrices

e

(of order W\ ) which may he chosen suitably

{ [T (287)

The linear indenendence »f the base matrices is expressed by the

'orthogonality' relation

b~ o
bY"j” (}S oehs /) =N éi&az)
o z/@ T R N R

Mg (8 ING e v de

(2838)

% 3

; . ¥ L . - e/ 45 \ :
- EP SO s D \/ W = s
{ 3 e Cce S PN N2 Wangsd Al AL R
IATE 2 o - e 4 < 4 earvy
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suitably norwtalisine the bhase matrices.

Since thg averaze expectation value of é;ﬁ*
Mo T RSk o
(Sshr=s ST . M G
Ty € Ty
oL Tmeiih : s
a oy, P T
or 71 :
e - %5 TIOR8
o G B G
M. ez :
Ore: of the \Sp&'can always ba chosen to be the nnit matrix I, .
so that '

O Tzf 1+ /{:&f! @ i

(290)
which nrovides a representation for the density matrix in terms of a

J set of M1 -] matrices (which may be chosen to corresnond to the matrices

= 3
of M\ - | 1linearly independent operators on the system) and ( Y] — 1)
Pﬁ> A el g AWl . et :
pnarameters, < < o 3 By i .
In varticular, for examnle for spin + particles in the linear mo-

mentum revresentation the density matrix is 2 x 2 matrix which can be

w-ritten f~llowing (290) as

B IR e

where “33 <<,T__>

i chosing the § i to be the 2 Panli snin matrices ( 03( )
) 2

(291)
(292)
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i ; I
Thus ziven the paTfameters ‘ X FK} ?%}‘ the state of polarisation

of the spin % system is completely sperified and since the spin operators
—

| transform like components of an axial voetor, 17 is also an axial

| vactor agnd is referred to as the 'molarisation vector!. Since CE() 6‘7

are non-diagonal, to diagonalise the density matrix one has obvisouly

to find the coordinate svstem in which P

{

is alonz the 55-axis,

‘ |
when we have the prohabilities assoeia*ted with the states l %i )4177

and \k{_ )——)§> respectively as 4 5 [X and | P. so.

.
that ’P t:?‘ : is clearly w3
{ number of particles (number of particles
with spin upn) T with spin down)

Total nuaber of particles

igdﬁhe ensembie. The systém is said to be polarised along the direction

? s P being the dezree of nolarisatinn. Ir P‘/ - * )?: \
2
and the system is comonletely nolarised; if k>>, -~ }; :;‘) W then
Sfchas

0
h 1

’FD:: C) , and the system is unpolarised.

Since U. -, 6- are hermitlan it is dkear from (2%)))@512.) that -

XH7VY 2
‘PX PV )‘Pi; are real. In fact, to determine a N Xy density matrix

we need clearly 732- Y parameters which may be coaplex plus N —|
2_ 2
real parameters, so that Mnr_ \ is the total number ~f real parameters °
M\ . :
=8 be speecified, . Fhe yn%_\ psrameters (:S‘// nay in seneral be compleX

when, however, not all of them will be indevendent though the hSﬁL are

linearly independent.

X
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@
Let us now consider scatterimz »f s beam of snin 4 particles
; : . o X i
(polarised alons 3 uzit veectsm ! 1nsnace wlth a desree »f polarisa-

tion T> ) by a tarcet epin zers system, We have from(??i)and (293)

—
the »nolarisation T&B after scattarine as
> S >
i? o T7L(UW¥) 7 S ‘&g"fyy
I () T (T'éi‘ﬁ”f)

1

. (294)

and the differential dcatterins erodss-section

i Vf 6;

"+ - CTq HoT = _+
Ar:ﬁa€; SIm@ Y+ W23
: (295)
If P‘ k are the momen*a »f the narticles bhefore and after sca-

ttering, one can arcue (from ‘ry-rianca considerations) that T aust

have the form

T= Flo)r 6lo) @ 5h = Floyra) @5

© Tt ¥(206),

o
S |

where F and G are funetions ~thie zeatterinz angle é}‘, and also
energy, Usinz ®296) we find fron «(295) and (294) respectiv ely that

. E 4
for an unpnlarised ’aciient ‘ﬁqﬂ,~the Aifferential cross-sectinn

G—{D) (9) and molarizeting P(O)( 8,) ‘
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() [ T
d0%0,)= L LiFcey + |66,
(297)
and
...,9
k,
L)
—
My
(298)
(299)
|
(300)
7 i
-7 s T
A ‘v+ ( CT‘,(.A Xﬁ) (30]3‘
) and consequently
£

, in gzeneral, Note
and soon,
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The nolarisation arises, clearly due tn the inferference between the
spin-dependent and svnin-indemendent terms in T and is Derpenilcular

5 the vlane »f scatterinz, TUsinz (298) to de”ine a3 quantity ‘P (E»

‘f" o e .I" # W —1—\
we can wr1telhh6ﬁ¢105°¢$ectloﬂ’W?Qé}ég e LRt T e aren
/ » 5 ~ ’
tlmaiweyar-a] CaaTianceimrs Sgpn, P~ stasacanasiac 0008Y g

d ey = LIFl% (a1*] (145 P

= S UFGIHG ) (1 P p)

where 46 is the anzle totween f( anA 7% . Thus, for scattering

taking place in a3 plane contairinz the (incident) oolarisation vector,

we have the same d4ifTerential scattering cross-sectinn as we would

have with an unnnlarised heoam; the cross~section reaching the extrem
!N

values A (Jz%‘) 3 = P,I\'{' —,)g , corresvonding to @ = o ) \go

in a plane pernendicular *» the incident polarisatinn vector. A4s a

corollary we see that with narticles nnlarised alonz the directinn

of motion the cross-sectisn is the same as with unnolarised particles,

~__, ;

(,Q)

the nolarisation (6;)aTt2r stattering is however different.
~*¥, A
The pnlarisatinn 'P¥)(9;) nroduced as a3 result of scattering

i

an unnoalarised heam :ives rise, after & gsecon? ascatterinz (through

632.) under identieal conlitions, *t» the cross-sectinn

d ¥ (60..p) = < [[F(o) ™6 (e,)lj
x (14 P, ©,) ! )(O)( ))
< (18 6V 56 o))t P8 PO18,) @t 8)  caoo
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R.%By  —

-—h? s X I~

Where fﬁ is the ancle hetween 7\{ and }72' - ﬁ’ R ¥ bL
| K% k|

~bhein~ the momentum after the second scatering, In particular if the
two scatteringg take place in the same plane (303) shows clearly a

richt-left asymmotry

%Af%k ’ 6
F (@ ), = & (Ircenl 4{(7@,_) )Ui (e,/ P(}(éL))

= EE
4 < -
N F” % mw«&nﬂémﬁvu %hm&
nd 4ol 510 v (17 P0G, P06, {aer)a”*?“'

‘iT the flrst scattering is to the left, One experimentally determines
|

( from these expressions, (203 or (201), (305) the desree of polarisa-
f tian F)kx%é)nrqduﬂoﬂ by the joat+e" ng, for example, by choosing

’ ta, = 6) = and thus uwndlg ( ‘)/é)J ‘ | .

-

P after twn scatteringsis

L

The polarisation

clearly

o+, : '.__. 3\ ,.~+/ - S 23 \'
‘? 3 Trc,h (8,_/; ] _eb} ?‘j—i' imf!/GL)O"P,(GJT?@QEL;

% £ 1 i { o - =) \ ,
T8 T T et T s T7e) @0 (O,JTT/@LX

——

\

\ SR | (306)

\ " and \{1 particular for incident unnolarised narticles

“‘?( O) ' ‘&‘T\/ O o Féj.r:(k 4) &) - G/X" /9-) P( )( )
-P - p— . foe ) { 2/ = .A(':‘w n {8 |
by . | F e\ 46 (6] *

= @
iﬁx 2 m(F(ﬁ)Cﬂ /”JI—)L)(? ,)xmj

H‘—(v@“ csot RO )56 ra)

The form (9?1) of -the d u51+y Matrixeean qlso he used to describe

the nolarisation »f »nhotons (in linear nﬂnentun reoresentation) thouzh

the spif of the photon is | since for a (real) photon there are only

£
&
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omla

two allowed (transverse) states and consequently one needs a '2 x 2
density matrix, Labhellins the rows ani cecnlumns by twn orthozonal

\ ufd ;
linear polarised s tatos %’ %J

| ’, any oure state g{ of the photon can

bhe written as

A e Pl udg | (308)

and (A revnresented *y the density matrix

. X% ‘ ’
Q A, Q, K, Qj—
g =

Q, aF 0, q

(309)

in the %{) \Pl. renresentation and the "gf/§ are
L : - i 310
<I = R0 o, % T N
< L " (311)
d;> = N aE ey A, = F | )
(218
et #* T A «

<<r—k> = ea; +ajaf = P

ani : (313)

P ~ WY
<<Ty> & ((Ql“"i : ‘-"~2_r"‘=»)f~ P3
Thouzh we are working in Z. by 8 repretentation, it shoulq be
¢ remembered that we are dealinr with a spin | fio2ld, and %ﬂ V%_
transform like (two of the) cnmnonents of a vector and cossequently

the transformation matrix, for example, for a rotation through e

about the Airectinon »f nropazation is

(‘Jl/ ()Gig 3, )Z\fn/w‘ ) \Pl 1

Y, —smo ol Y,

(£314)
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and c@wx4€1ﬂAcw
/ : ‘ .

~S$\MB  (pf B - Ane Lode

(/\)y\ Hv\,{ 6 G. Jvurr -W\ \L&\_Q, «"'A(m QQ{) wﬁw W\aﬁ‘ (2143)

the parameters ;_) Y f) and F transform under the above chanze

ol

of frame according to

—— oy

; l !
1 | &0 O I
oy O Wi20 Sm2p O Fﬁ

ll S
P, 0 ~Sunzd Wip P
Ty s g O Pzﬂ

Obvicusly T  and T? are invariant under tVn particular transforma-

3 -

(315)

/
tinn chosen and for 2 rotatinn throush f}/ [ S P . We
T L / p
alsn observe that the narameters P‘ Fa,Pg for photons do not trans-
7

form like components of a2 vector. Ir we now'chnose I to be pronortional

to the intensity »f the “oam (when *the Adensity matrix will howevershe

unnormalised) the four narametors Z-) ’P, P, [é admit respectively
J 7

of the physical inter»»etatisn as (1) the total intensity (2) the

Aifference intensity along ‘41 }PL directions (3) the d4ifference in

intemsities alonz directinns inclined at an angle E7 to \P \P

(4) the dif<erence hetwsen the intensities of the left? olrcular and

right circular comnonents. "mese narameters are referred to as the

dtekes narameters. The same annlies w.r.t. any general density matrix

6 e t: {i + #) %l_;{’ (a1

where #3 Fj are the statistical weishts attached to the pure states

0‘ w
- .
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/ / '
¢ l,,
S{ and beinz orthnzonal to .
s v
To represent density matrices of systems of hizher angular momen-
' yu
tum, say 4 , we need clearly ( J«%l) linearly indenendent
b2
onerators f)/ dincluding unit opevator, if chosen to be one of the

st

We ohserve that a snherical tensor onerator 1T~ 2o:f‘ rank

‘2 ))Q‘: C)),),,kiii“i, can connect states l J Vh:> of the system
andl ( as we have seen in considerinz additinsn »f angular momenta) since
with each F{ we can havo Cé. P—f)/ operators we can consider the
C% J+) ( l.j-JL) such operators “T‘ti with ({ ranging form
O to 2\) to form the ™“asis onerators, A4nd J/ can huild this set of
bggis onerators in terms of the an~ular momentum onerator 3‘ for the

system, by defining f»r examnle

(?J

(318)

where CXj - are the s»lid harmonics
R.Y

%iz Y (%) = (-}L)K \/- e, )

i< . (319)

>/h\ﬁ{6§é) denotins, as usual, the nnrmalised snherical harmonics.

In. particilar
e 0 _ | N .
’ 0 e

(31%.3)

: T

&)ﬁ&
, e e 318.2) .
: R
S Mg o gt J+)) :
&) (J+) (318.3)

,_{
1

o
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and so on, and the chnice of the factors in (318) azreecs with the

a : 0 . Tl e}
choice of unit operator as ‘T.o . Tor J= 43_ however, ‘1ikb
of (318) is not Jigst Oﬁ/"“ but

oL [
| = S q :

M ﬁ:g Mo . (825)
| L %eipbe polarisatinn of 1eut°vnns, for examnle the density matrlx
* b5
: 4? aould te represented in terms of 'T' 1" —r
; . Y
; and thus »nne has, ¥n this case, to specify 9 parameters.

1
; In zeneral, we can write (in onerator form)
2. J
€=2‘ o _Z&;/T — k
y o
J+ k=g ¥ %
(321)

L4

and a comnlete description o7 the ensemble is =ziven either by giving

<9 ﬁr‘by*euééiﬂfnc the (;L J-kl) + parameters, 1—*2 >>

1n any vpartiecular frame, are snme times referred to as
- v/

'tensor mnoments'. A4 gnecific advantaze in c¢hoosing the basis overa-
| tors as spherice’ tensor onerators lies clearly in the fact that
under rotations »f enordinate system the transformation »f the den-
sity matrix is simnly desired hy JlJ kl kL )<
G (o p1) £ = - Z L D «py)
AN ¥
R=0 §=—hf=k I}

. Ty T8, G
oF LN7YL414mﬁ ¢ m e —Qm«vn 2 zw) M Hao ran B yttom
Re ponamekns are QM{WW hm,qwmww
oz P R oy

- e T ~»z)fr ) Bzia)

v e 4

o . = ;:‘ "/
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If 6) is dAiaznonalisahle, the diazonal elements, as mentioned
earlier, could he interpreted as the statistical weishts associated

with the various Suhstates refeftred to the marticular EE' axiss in

which case the system i3 said tn bhe oriented with resnect to that
by .
axis, If <i§ O/> is non-vanishinz the system is said t» be pola=

rised ahout the axis ani the pnhlarisation ‘Pj:is defined in terms of

<T‘0>

D . f | ooy
‘I' i3 :)i:f—v <T) (323)

h?

ani if N denntes g unit hector x¥one. this axis,

5 l __.—->
PI = P'I . (324)

1s refapred to as the nolarisatin-n veectosr., It 1s readily geen that

(323) and (324) a~ree with the earlier definitinns in the case of enin

4 particles. 1Alsn

i - v LT P (322a)

fen
. o 5 . S %
clearly renresents the rati~ »f'the avédraze snin aldng the axis of

nnlarisation to the actual snin, lies between | to» 4 | , and is

zero for random nrientation, i.e. for b = ';;£==¢~ . - Ity how=
’ s 2) ¢+l -

ever, t77n is quadraticmll: denendent on M , f}.vanisbes clearly but

b  : o0 :
™ .
The system is then said t» he alizpned which is conveniently described

by Aefining

i - Z:L.j)f'\ {Te)

2o\
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(325
which avain lies hetween an- and is zero for random orien-

bation:

Lecture 15

Cﬁnsiﬂeﬁin: an 'oriented! system with snin J we observe
that to svecify the state ~* nolarisation »f the system, we need
smeclfy osnly 3 J varameters <—T 9h> i (::f) boeve s 2
in the frame »* reference in which the density matrix is diagonal.
Thites s eauivalent t» snecli®yiny the L) statistieal weizhts F%n
for the 21 J41 states, the (;L\J+() H\ weizht being deter-
mined my normalisation. Trom (2%1) and (318) it is clear that these

two sets Hf narameters are connccted throuzh

&

B - bR (R -

(326)

where ?%h (;t/) 1s the Lezendre nﬁlynom;a% of order ~ )\(:J7777
1s identical amart from factors with [ ( J i{ 1 ?ru))n) ‘Therefore”

the related guantities

Bk(J) = %(ZK*UZ”C(J kjl"’”) Pm

(B0
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are sometimes nsed to gneecity the state of nolarisation of an oriented

system and are recferred to '~rientatiosn parameters!., The nuantities

- ;/2_ '\
(_2” J'¥L> Egj{ ( J) are Fano's 'statistical tensors!

L i J=-m
(%R(jjz 2. }%((J)hfmf”ﬁ (328)

which azain orovide a convenient descrintisn 5f the state »f polari-
an -
sation o7/t'srianted! system,

Let us consider, as an examnle, the orohlem »* radiation emitted

hy 'sriented! nuclei »f snin J in Accaving from states \Q(\j7y,TTi>

to states l o(}lehI ﬂ‘{>i4he”e 'Trl 77" are varities of the initial
and final states anAd c( dennte nther quantim numhers characterising
the states. The matrix element for the prncess as pointed out earlier
(lecture 7), is

Ly ) ] ::? ----- o : -
<°<J'MTY 1T A | L am T
‘ (329)
It [E) E /are the enerzies o7 the initial and final states resnoec-
’

tively, Ef-— F = ki e t@zgfﬂe?zy of the photon, which may he
, b
enitted alon~ a Airectinn &{ (hh‘ B, QS ) « Tn calculate the
it k_

angular 4istributinn
< w’(@h ¢k): ¢ -.—'—' Z_ ‘é’J/W!W’Iﬁ{’?)dJ%T%me
N

c)_n:

(330)

s
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,J7

where ¢ is a constant »f provortionality A\ can c¢onveniently be
exnressed in termso® the multinole sslytions nsinz the comnlex conju-

, o L
Ze of (129) (for (jfi) - Ko 7 ) so that anzular momen-
b

tum anAd varity conservatiosnsg reduce (2%29) tn a few terms of the tyve

4 -
:—(:z i) JL(‘)L"Z Fi DM/«( >5 eh ¢k

ij,:F\ ({9 c”iLgEﬁaﬂgz)-4~2L *+L£<,€hi Q%{)

lj>L (332%

*NOTE: The an=zu 1ar momentum conser v_tion limit the contributing
multinoles to the ﬁrdorq b= ) =3 s s anJbit gince . Tow s

b T ol
is a svheriecsal tensor of rank | . Out of these, the parity conser-
vation selects only

)= -

(1) those electric mnltinnles satisfying
—”-—k“'l,} L: ﬁ/
and (ii) those macgnetic multinoles which satisfy
M=t o/
Aol _

B 2 (50) Tox 5 iy we nhserve that Jﬂ have
narity (-1) and NoOA N

) [ : S
A Lw LTV, TT-8 T+ §) =(~1) AL”:) (?1 9}1)

(e) LH (333)
it e, e ALM) (s 6f) :

(334)

for riceht circular »r left circular volarised radiation where

bf}' M ( e ¢% \ are the nure
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: M
multipsle terms and 6(7]— i (¥}h~>¢@&-) are the interferance
terms; the summation over L_ and Ll heinz over the allowed multi-
pole transitinons,

L

Considerint a pure 2 - pole term
z e
W) s cenlwnyz T @mD £, 9 k)
. = j} ™ ==] Jﬁ&/

XD (}z%féh)zc JLj ™ - Mm)}'t

<[ g A oG

) 3 A9 um) (6]
W@U (335)

usinz (62) ani Wizner-Eckart theorem and since with 2 Tiven L_

we can have »onlv either an electric multinsle transition »r 4

magnetic multinole transition. The term within bhrackets is clearly

a number and is indenendent ~»7 ( G}F\ gﬁh. ) s» that we shall

£ovm
, 3 Q0fm
BT, oo oty Co m(aL R,
y
3 “ okJT(’>\ ani since the shape »f the Aistribution is the *

same for dther electric or magnetic multinole transitions, we shall

simnly write



s

fa
& ”%m— A

X L C(LLYs M- m)c(Lu) e —/«A))(kaéﬁ@

i §C<JLH%,—”‘)%’)§

(336)
usinz (264) ani the Clebsch-Gordon series (42). Also from (42a)

and (43a)

"D:)O(% A&h?p) i Pq) (Mek) ‘ (337)

we can alsn express

C:(: LAy an—wx) (:<‘3 S g oy =, 7”!)
)' m / 'l e 1y /
e (WL m)C(LL?;M)-@
_\‘m ; 7 T - /
B 25 :
£ /LL‘H 2; U3V L L&)

X CQ ke "7?”"/7"” ~m) ()R W)J‘W’J—m)

(338)

usinz (51) ani (9%a). Usinz (5¢) and (338) in (326) we have

9 L
i (b, 8,) = &, E_:_J b Eto Py (wse, ) x




X %U (J I, L; L s) C(LLVS/LQ)”/A)

’— Z.J “H ( ) ZJ'H
’\/ ZL+) NZ s

KLCCJL =M ) (L A} -l m~m)

Xeldsv; n—m) 6))

|
The summatinn over ¥ is cleavly ng) by unitarity, (6)

sn that usinz (29) and (30)
/ 2115

'LL ' ¢ ;A
(e, )= a o "eime g P

L

W<LJMJJSWJ)C(LL1H.Avﬁ%)

- J)-m
X%(ﬂ) PM(,(MV; ™, -m)

(335
3
which is on usin= (32%)

6

o (o ) b 2 6,00) Py Cirey)

XWwlLty): m’) CCLLY; /u,;m

(34C°
o
wam~ €WmLHﬂ .
where Q&L~ is a constant ;L.': CKL <fl) + )
and is 1ndependent of }4/, (340) is independent of (k‘ .-and we

alsn ohserve that the statistical wei~hinz of the 1nlt¢al nueloan
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states affect the an-ular distributiosn and »nolarisation of the

emitted radiation nnt Airectly in terms »of t) bagt throush
ertain moment (i ‘) f
certain moments T\v (\) 21 " .

(1) sunmdse the initial nuclems is randomly oriented

OY’ L o Jfl____. Then,
e élxjﬁ*\ J=1n :

s C) CCUVsm-m)

which can he written usin~ (5e) as

e | BaGd a m,-m)c(ﬂo;w)%)

2J+1 m
255 | | |
- Vo f\})_‘)ﬂ _ (241)
usinz (6). That is, onlv the zerneth moment is nonvapishing and

consequently (since 1>6 ((f?f«@ﬁi‘):; ' ) the anzular
Aistribution W) fk ({}kl:> is gmherically symmetriéi alsn since

L
(hy (5a))

CLLLOS o) = C(LL 05 -4 m)

the intensities »f the left circular and rizht circular comnonents
are equal.

(i1) sunpnse the initial nucleus is orfemted hut the polarisa-
tion of the radiation is not ohserved. Summinz over fAJ in (340)

we have usin~z (53)



._ =
R ) wila)= 1y 5 (. (i)
M=-1,) Vzo
AN (LL gy yd)clhew;a,-) P, (o)

—

V7
X2 1+ @) j

i.e. Only the even statistic&#l tens»ors contri™ute to the angular

(342)

Aistribhutinn (342)

(iii) Rewritine, for convenience, (340) as
+ &Y
= 4 ’j:j / £,
u}‘— ( eh) V20 ( ) '& U PU ( C@“SQ’Z) (343)
wore A fo Gy () R(LLw ) C(LLs i)

(344) we see that Tor even Y terms’
WH -
L£6k>: U)L(QQor that the even ) terms in (343) are volarisation

insensitive. Exnressing,

o e R el ) F EA
L (61) l)@wmv R é&)”}w‘)?ﬂ/m%)

= (o Wt/ odd
(/@/L ( Or) X WL (@1)

oYy . :
we see that LK71~ ({}hbj has a forward-hackward symmetry

5 .

(or ‘foére and aft symmetry) ahout {} — Y40 (since ?D ({ng
, hl C¥ VQW&Aﬂ-

eontain only even nowers of CE?% G}k\ ). When pnlarisation »f the
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emitted radiation is not observed (case ii) (A)L-éﬁli): LC71’ (fn%)
and consequently the Adistri»ution shows a fore and aft symmetry.

We see also that the de~ree »7T circular polarisation »f the emitted

radiation is

+l |
b (8y,) - 7 (H)
o () +w /T (o)

s d ,
()\9()._ &(6-12)/\%
W, ({ﬁa

+ W'Lil(%) — Uy (o)
o o ( 61) e

Cfmsﬁe“ln7 the interferance teras

MTLU(£w¢r) 2(5Rek2~ <ML h ) P } (347)

it is clear that they are azain "? the form (336)

(345)

I

e

L ST e e
W (b )= AL Lo el e

J i bi il
rRCLLL Y h-m) e (Ll y, s ) DOOQL%%J

XC(JLJJWnHWNi)CCJL/y;anfmlyma (348)
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ALl = Gm) Gup Gl )™ ¢ Re [t )
0796 - Q 9% (%
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. (349) of g7
and in terms of C;?z)<l) as/
L
(@) Q; 2 6, ()P, (ws9,)
LL k. V=| L)
i /
X \/\)(LLJJ;w)J) c(tLv: /‘irk)
(350)
The matrix elementsin (349) cm either (i) he hnth magnetic
or electric transitiosns in which case (349) is independent of the
photon nolarisatinn »r (ii) may he of noposite kind in which case
(349) will he ﬁ“ ; ﬂenéniinq on the circular aolarisatidn; in any
case, since <}°L"! occurs nutside the 'l) sumnatisn the discuséion
ahove with resnect t» the nure multinole terms holds alsn in the
case of the interfersnce terms and consequently for the whole
raiiation emitted. It is, however, found sufficient to consider
the lowest L = i)_.}’\ mostly, (there mav be nther selectinn-rules
forhiddinz the transition) »r the twns 1owest multipnle terms in
(332) to ohtain the %isfrihution, the transition prohability decrea-~

sing raniily with inemeasinz multinole ordier. T» obtain the angular

Aistrihution of radistisn polarigeAd lineraly a suitarle linear

eomhination of the twn cirecular nolarisations should he taken in the




matrix element staze (31). Ohservation of linear pnlarisation
orovides informatinsn sn the electric ~r maznetic character of the

radiafion,

‘l‘
|




S >

Professor Alladi

et
(5]
[©)
05
}
&)
H
~
o
<t
o
H
@
Ui
(62)
t+
QJ
o
c+
S5

Ramakrishnan's sugcestion as an intreoductor Y course of talks to

m,’ co;¢ca’1;w

. 1 an grately indebted to him for his keen inte-
rest and kind encouracement. Discussgions with my esteemed

V.Devenathan have been helpful to

friends Mr.K.Venkatesazn

clarify some points and I apprecisgte the eooperation of

Mr.K.Ananthenareyan, Mr.K.Reman, Mr.T.S.Ss nthenam and Mr.R.K.Umerjee

I wigh fto acknowledge with thanks the av ward of a senior
research fellowship of the Department of Atcmic Energy (Government

of India).

1) U and G.Raceh: Irreducible Tensorisl Sets (Academic Press)

tleory of Anguler Homentum (John Wiley)

v
|—-4

3) A.R.Edmonds: Angular lMomentum in Quantum Mechanics (Princeton)
LectureIl

5) B.Feenberg: HMucleon shell structure (Princeton)

6) V.Devanathan and G.lamachendran, MNuc. Phys.38, 654 (1962)
Lecture IV: "
This proof of Wigner-Ekart theoren is in effect similar to that
given in Ref., 1) . put in more femiliar language

Lecture V

7) V.F.Weisskopf: Relativistic Quantum mechanics (CERI)



- 125

¢ '
ladi Ramakrishnan: Elementary Particles and Cosmic Rays
(Pergamon 1962)

9) Akhiezer and V.B.Berestetsky: “uaruum electrodynamics Partl
(Offlce cf the Technical Servicesgy
Department of TCommerce Was

hlrJuOM Duls

Lecture VII: This simp»le proof of thé Projection Theorem follows
as a continuation of the arguments given in Lecture IV.

Lectures VIII, IX and X:
10) G.Racach: Group Theory and Spectroscopy Lectures delivered at

the g?qtliuté ofor advanced Study, Princeton 1951 (CERN reprint)
see ails
11) Igal Talmi; Helv. Phys. Act. 25, 185 (1952)

u 12) R.Thieberger: Nue. Phys 2, 533 (1956/6) |

«

13) M.Moshinsky: Nuc. Phys 8 19 (1958) 13, 104 (1959) i
and

14) T.A.Brody sndé M.Moshinsky: Tables of Transfarmation brackets
' . - —_
(Monografias del Institute de Tigica, Mexicc , 1960)

{

~

15) J.Hope end L.¥.Longdon, Phys.Rev. 102,%124, (1956)
16) Igal Talmi, Phys.Rev. 89, 1065 (195%)

17) J.Hove and L.¥.Longdon Phys.Hev. 101, 710 (1956)

see also
| 18) D.R.Inglis, Phvs. Rev. 82, 181 (1951)
f and ‘ ‘ :
f 19) G.Racah, Phys. Rev. 78, 662 (4950). .

Lectures XI and XIT

see also

20) E.V.Condon and G.H.Shortly: The Theory of Atomie Spectra
(Cambridge) .

.

21) G.Racah, Phys. Rev. 62, 438 (1942)




A —

- 126 -

Lectures XIF+ XIV and XV.
see also
?Q)L.Wolfenateinp Ann. Rev. Nuc. Sc. 6, 43 (1956)

23) U.Fano, Rev. of Modern Physics 29, 74 (1957)

24) J.Hamilton: The Theory of Blementary Particles (Cxford 1961)

25) @ Breit and J.S5.lic Intosh, Handbuch der Physik Vol. XLI

(Spinger-verlas)
26) W.H.McMaster, Rev. llodern Phys. 33, 8 (1961)
27) G.R.Satcheler, Oak hidge Nationzl Lab. Report ORNL-2861(1960)

28) R.J.Blinstovle and lM.A.Grace: ‘andbuch der Physik Vol.XLII
' (Springer-verlag)

29) M.E.Rose: Lectures in Theoreticsl Physics 2 (W.A.Benjamin)

see also k

30) S.A.Moszkowski, Beta snd Gamma ray spectroscony Ch.XIII
; (North-Hollend)

and _ .

31) M.B.Rose; Phys. Rev.108, 362 (1957)

—————a Y
32) S.R..¢ Groot and H.A.Tolhock, Beta and Gamma ray spectroscepy

Ch. XIX (III) (North-Holland)






