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This is a serieg of 12 introductory lectures on Regge

Lﬁngn during the academic year 10 2-68.,_~__“7
poles and Their Tole in 11gn-energy diffraction soatterlﬂé/' In

these lectures we give a eri ical survey of the basic ideas of

a
the subject and of the experimental observstions from whibh these
i~
ideas stemn.
Lecture I is a general introduction to the idea of

complex angulsr momentum. In lectures II - V we ive an account
J¢ g g

i

3

iegge's original work on potential scattering, following

o

of

i

closely the paper by Bottino, Longoni, and Regge. ANuovo Cim.éz,iJ

954 (1962). Lectures VI - IX deal with high-energy

diffraction scatiering: starting with the work by A. Salam and

P.T . Matthews on dispersion relatiois and the optieal model of

L]
diffraction scattering we consider in detail the modification of
the semi-classical pi&uré proposed by Lovelace, and fi%ally see
how information shout the various Regge trajectories could be
obtained from sn analysis of high-enerzy data, if there were ho
branch cuts in the angular momentum plane.

Lecture X gives an aceount of the exyension (to Re £
<;“ -%)  of the Regge representation proposed by lMandelstams
w. follow closely Mandelagstm's paper ( Annals of Physics
9,354 (1961) ).

In lecture XI, we discuss in detzil the conjectumes by
Frautgchi, Gell-lann and Zacharisen on carrying over the re-
sults of potential scattering to g relativistié theory.

Finally, in lecture XII, we begin considering - how
Regge poles could be obtained from a relativistie theory.

After briefly indicating why one should introduce the concept of

Regge poles into a relativistic theory,




(ii)

we consider how voles arise naturally in a perturbation
theory. In conclusion we discuszs the possible role of Regge

o o

poles.ineleetrodynamics and weak interactions, presenting some
spesulation on
e shall deal with the various imvortant guestions ari-
sing in relation to Regge poleg and a rzletivistic theory in
future lectures. The recent Brookhsvern experiments showing that
the 7T P and kb diffraction peaks do not shrink make it very
likely that branch cuts in the anguliar momentum plane are im-
portant. We shall consider these in detail in future lectures.
ﬁh claim %o origi-
nality is made with regard to the material presented in these
lectures. Our purvose was to build a baskground that enables
one to understand the theoretical work on Regge poles, and we
have made free use of all the available sources. (4 list of

i Pages (iv) &lUx).-

references is given )

X .Raman.
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GENERAL INTRODUCTION,

In S-matrix theory, we are familiar with the idea of consider-
tng the scattering amplitude as a function of one or two complex
variables with well-defined singularities. 1In ootential theory, the
variables chosen are £L~and cos © ; 1in the relativistic theory,
they are J(f - E2 and t = the (4-momentunm tranﬁfer)z. The
S-matrix is physically defined only for real E and real e@os © s
thus to comsider it as a function of comnlex = and complex Cos @,

a prescription is needed to make the necessary analytic continuatiegn,
i.é. the various singularities in the oroduct of the E plane and
the dos © vplane must be known. We enquire whether it is meaningful
to consider a cOntinuatiAn in some pair of variables other than =&
and cos 6 . Regge showed that in potemtial scattering it 1is

useful to consider the scattering amnlitude as a function of a
complex energy and a complex angular mome ntum.

The utility. of such éonsiderations will be determined by thet»
success in explaining the different aspects of relativistic interac-
tions. In the first place a useful descrintion of the S-matrix is
one that predicts the behaviour of the scattering amplitude and gives

the observed bound states and resonanges.

The Concept of Complex Angular Momentum.

The consideration of the S-matrix S ({, =) as a function
of complex 2_ and complex ¥ mnay be lcokzd upon as a purely formal

eéxtension designed to give a more comvlete understanding of the proper

gties of the function 8 ( (,, s However, when complex values of

the variables are assoclated with a physical state,it is desirable to

Whave some internretation of the real and imaginary partsc?%haxmridﬂe




4 comnlex enersgy is a

P

System whose time deonendence is essential ( i,e. not just the stati-
)onary time-dependenca ex’:) BT nay be dest

tivistically) by a time-denendent wave egaation?

-

ek Yoon e ey L P &, €
H (G, t) ¥(3,6) =ik 2¥RY

(1)

ﬂSuooose the wave function represents the simnlest type of decaying

[state—— an oxnonentially der~sving stato: then the time denendence will

7y

[
Hbe eontained in a factor

é’c — < Tk

b

18]

F £

= ¢ (F)e , €= E+4T (e

fhus if one introduces the notion Af a compnlex energy, the time-depen<

dont (decaying)stg%e} may be ohtained as a solutinn of a stationary

1 £ YV
Wave equation with complex eispvaluosz

\

H(gy) y(3) = €¥(7)

A

: (3)
Faus the time-doendent Hamiltonian H, (E&, {j) has been renlaced

3

By an equivalent time-indevendent (i.c. 'stationaryt!) but non-Heraitian

£n
Haailtonlan, The real nart of the eiggvaluea f; gives the energy
to Pe associated with the system, while “he imaginary part is related

fhisiancertainly in *he time coordinate ("’) of the systean,
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t being the mean 1ife of the systen.

At first sight there seems to be no direct interpretation of
a complex angular momentum. This is partly because the angular
momentum ( J ) takes on only discrete values in gquantum mechanics.

First we note that angul..r momentum in classical mechanics 1

a continuous variable, taking nositive rezl values. It is only in
Q.M. that it is quantized. This is somewhat analogous to the
energy values of bound states (or more generally, those of a
particle in a finite box) being =2llowed a continuum of values in

>3
class¢“meche, but only a discreste set of values in N.M. For a

real particle occunying one of the discrete energvy levels EiJin

St
a box, the allowed momentum ﬁ7 is related to E, by
1%
{ 1 z
e G

w5 heing the mass o:
the particle. We can still conceive of particles with unphysical
energles (ot in the discrete s=2t) when they appear as exchénged
particles.

By a somewhat superficial analogy we may also conceive of
particles having physical values of J when they appear as
real particles but unphysical I values when they appear as

eﬁghanged particles.
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f;ternatively, if nne rasolves the éﬂnlitude corresnonding to the
exchange of an unphysiesal !j' value into its projections en physical
LT values, one‘may consider the exchange of a particle of unphysical
Qr as equivalant to the exchange of a family of particles of
ohysical ¢ .

Just as the real and imaginary values ol a complex energy are re-
ed to the expectation valges of a pa:» of canonically conjugate vari-
;ﬁles, viz. éi and € 3 “ho =2 of a compnlex angular momentum can be

I

lated to the expectation values of ér and which are can-
. k| e

cally conjugate.

Consider a wave ‘Tunction enrrosnounding to a state with a definite
=

av. egemnfunclion o3 IS ard T :
ar monentums ?.c.[x This ma7 he ss30ciated with » partiele moving

N

‘k..\,

B 3 closed orbit. The angle conrdiate of this narticle is comnletely

rtain; the wave function 1s »f tho “orm (assuming it to be axi-

tric)
T 4 _ ) e A 51 0 Lm, ¢
Ykp)db’ ¢/ =M Crllve 4;‘})3
(5)
R ?5 are cylinr}rﬂiﬂal coordinates, =and ’WL,‘K is the

alue of QL? i
‘ Z
a system whose J b j"ﬁ/ val ioe ar@ wacerswiQ, sea Qay AXveck

resentation

i

Y (.10 = ¢ ryye T !

L +uy
(M,y )95 (52a)




where the factor ebf expresses the fact that the particle
does not indefinitely go ar-und in the same arbit; as ;5 inereases,
%ie probability of the particle’is beins in the aerbit decreases; thus

on<e o
f$one may visualize an orbit oi(the forms shown (asmmpibtie orbits)

If we write

%(F?‘I«’?) = ﬁl""ffa‘g)'g | | (5b)

we obtain
" y P A wy o i '

_ ; o (5¢)

o iy A¢

A8 width of the state is thus @miversely related to the angle of

3% the nartial-wave Schrodinger equation

B L, e+ BB oo Jyeo =,
< )2 '

2

,6 a2 “(Ae-*j) »

Ja _Y_f A e

et

dp [t

[

i
i

i
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1 : | J
Start with a real value of 4 ., and thas of ﬁg . A small inc¢rase
P

i ) o 3
in E , whore pee R
4 s ..3:-3 o 20
\’ / iR E < pig
: | o2 7 oh
: 2 X :

f 0g d >

9}

thus becomes comnlex, Thus 3 comnlex value of %3 may be inter-

= v tl't
$3f V\’ ?
ted 1§Nd00nytﬁz state.

The diagrams shown above are reminiscent of the arbits made by
B8llites (or by comets, etc.). Thus Bt comnlex angular

mentum is just an anusual renresentation of something that is quite
Oonourd (e Ea.flakf
amilisr Sommerfeld znnlied it toi-the provggation of radio wavesi\

also e ( Ploed
potical 4:°°7 o*;wn- one thinks of a lisht ray following the sur-

of a smooth nhject for =~ome Aistance before energing as the

*acted ray.

'ﬂfThe examole ~7 ontical Aiffractinn .takes us to another rapre-
tion of scattering---that using theidea of the imnact parameuer.

a semi-classical victure comnlemontary to the anfular aoaens

:eqentation. Goldberger and Elankenbdck&f’have develaped =~ treat

ttering nhenomena that is a ganeralizatinn d?’thchinnw:tm

repraesentation,

onance may bco thought »f as a state in which two narticles

und each other “or some time and then senarate; thus we may

-

t a resonance may be described by a comnlex angnlar momentum.
-



Complex Angular Momentum =nd Comnogite Particles.

one must then consider the ex-
tes with different angular aomenta,

be annroximated by that due to the
angnlar mﬁnentumng , then may 2xnect

A
y in zeneral,gf will not have = »iysical value; moreover, itﬁ

hange »f 3 sinegle narticle o

with the momentum transfer carried by the exchan~ed state. Regge
@S are a generalization of these coanosite narticles; they have been

K

e s : o N
tiges called zeneralized hound ststes =nd respmnces.

it
e trcated in a rTelativistic field tiooryy perturbation theories
them secem to be unremorzalizable , It turns out that the

2tion of 3 comvlex angular momentum may resolve this difficulty.

2

nsider elastic ol “’al scattering, or the scattering of a

by a notential. The scattering amplitude may be represented

o0 («' g
= i by ajp'+ ) £ _—/“]' ‘o
q/ f SERNT PL (45 )s

A = cd p. -('6)




o ‘g e
Regze showed that this amplitude ecould be continued into
the complex «Q plane (keeping T or ) fixed) for Re )’{,§~ é, for a
certain class of potentials. 1In the f nlane, A (q;,41) has only
poles; for E < 0, the poles 11z on the real ,(, axis, whereas for
E > @, they are at comnlex .6 values. T.e amplitude may be written

in the form !
2

ol ~_ L4
:. Ala,4) = é/ lgjo (244() é € ~/] P&(%)
| -

_ Cu f}l(fe*’/[ ~’J Po (=% "-@@/

(/ /Sb”\”_[-[
—iits4e et of s 1("‘5 y, - sy

g (2040 e *j A =
f [R— — G

e ‘ Acnai4) e
E _

L g (3{ CE) @P(?) ) (—"y)

T e Y

S - = ()
[Ne: The colnr ¢ encickes Uu Pl dockuras, |

. The integrat -+ 0 as {4{/ 3/(4;%5@/—> e The pole contributions
survive as (4/\400. ‘4 (B) is the position of the 5 g
in the complex angular momentum plane. These noles are the
:i.Regge ]Poles‘,;; for B < 0, they correspond to hound states; for
E > 0, they corresnond to rasonances.

I Near a pole A =

7
L ’ - _
snimd ) tr(d-n) 1™ 7(8)

can write the pole terms in (7) as

ﬁ( ’P L@dg}" |
/? (ot -4 ) (st +4 +f)] . iy
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stiributiop od the s

S S M A s e ) -
n dntesor oy (. O ad some energy
. d

hutisn of the L °

W Chan, o £
: . Ch

=1 o s b :
3 ; o Cparblal wave (S

j : "} ; s N
[ /t K (o + L+

R e b

il d—; ce3i i
. TM' e ! \gw o o L
e i { ®oL, £) )j .
- 0 (104)

Thus when EW 79,

s is of the Breit-Wiener form with a width jf
@
- h b'»" (3

file nole in the p S S REE AT et
as a Pesgonance 1% Fh o mem % . i I oy
S L AL EW and widéth |

{ that for p

ingeroretod
Rezpem proved that

this to "o valid, j anst be nositive.



' Q@ g :}; _“J_ Mandelstam has
formula (7) nay he ovtended go that . N3y

the scattering ampnlitufe in the whole

cannot be extendad just hv movine the eontou

Angular Momentum in

plane,

r

Potential Scattering

1 -; -7y ;
fbound states and narrow resinances, R /’f&@-ci) ;} {J .« Thus
4 7y O
for s ¢ s o S | s C} g One oht-ing ag resonance, for é?Y\ ;’CD
for erb - C) s we mast have if},, oL = O in order %o get
8 bound state,
In the ahove, we must restrict surselves to a{ values such that

shown how the Ravgee

to th

0]

(33 -8-63)

&3t

e wo in notentisl scatrterine thet +ho
E was in potenti sen e ¢ that the
Bhgular monentum as s comnlex variasule was ©
Consider the nartia? wave I braiinear g
. .
potential \/(21‘)
" Iy \ II A
Dk, L) v(n) =
4 £ <

-l 2 .
ha = (L4

e pronerties of

utility of eonsidering the

i ol -
ot found out:
. o v
aatien. forg.central




3 ) (L e o S 1 e
L We shall choose the units ﬁizf e Loz J/Lv’ - /LL being the

reduced mass of the system.)

In the usual *theory, Xj ranges over the vslaes O

L e . . =
dlere we allow ;6 , and hence A s to range over the co Dg@ of coa-

plex numbers.
Weo have noted earlier that one of the chief gdefeects of psrtial wave

representstisn (with integral /ﬁ ) is that the partial wave sxpansion

o

1

convercsent oniy in a v2ry limite? domain and there-

(0]

@an b5 nroved to b

fore cannnt be directly made to incormorate the nronerties of She Man-

WLLND Aicpiol

Istgm ronresentatisng. We shall see that this d41f0iscity is overcome

£3

A is lowed to become compnlex: we shall nrove that for parti

O ES

~

claszecs of potentizls, the scattering amnlitnde may be nroved to bhe
By iically continuable for arbitrary momentam transfer; the analyiic

Rertics found for the scatterinz aavlitude will He seen

ot

o be egui-~

lent to those of the Mandelstam -enrcsentation, .

{5y
o
jory
aQ
«
P
€
2
)
=
e
+
5
(0]

ithe imnortant physieal nuantite thab is g

et
8¢ shift sHE Y, . The avienzi-n to eomnlex angular momentum -

Pe viewed 3s an intermolation of & {E} between the physical

wes at real, intesral {, . OF the different conceivable ways of

o

BPmang this interpolation, we shall he interested in those functions

R tic case, in functions ¢ (A) with certsin conlecturcd



In general, we are 'arterested, ohysically, in scatfgrine amplitudes

L certain analyticity

yrticn, A llmited nusber of soles and
fbranch cuts ave aliowed s thase msy be internreted as bound stsates (or

B orances or virtnal states) and thresholds (in ths relatiuwistic thenry)
3

@ ncctively,  To ohiats an analviic scattering awnlitude, we expect

3
3
ot
+
=
>
3
ot
3
J
T
b
L1
J
=]
<

have cortasin snalytieity nropertics.

~ &}

0 the fourier trans®sram »f the interaction must have corresponding

B l7ticity proverties; in tha aon-velativistic case, this Fourier trans-

B 1s just the votential, Alternatively, 1f the sc=ttering amnlitude
1

ERtlic Born annroximaticn has certain analytieity proverties, 1ts Taurier

ftansform, the vnotentialy must also have carvesnonding analyticity

ife consider the following class of nagewtials u(ﬁ) a2 2 B
Gu“b \/("j) which mav be exvanded in the faram

s

I

i . 3 = '/MJ’{Y
(g) = | T eV
o T

4

re. Moontinuous suvernosition of Yukawa na¥eritials. - This imff;ediatoly
s us that '\/{'-1}_, ) ean be continued into the half-plane

e . It has an essential singularity at

) 726 = s gn wao shall avold the Ye”e-half Ay—plane.

e also require that on any ray arg by = ?5 : fé

A

o
2

&2
value (,f; e /7:2 is execluded, : 4
i i ) oy
gausc for the Yukawa notential \/("a{) A # /’5« )




An immediaste guestion is

lFcnsform of the natential (2) 2 Define

[
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L
\
<
3
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E
N
A
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-.W;lm-mwdggﬁnaﬁcs.tbe hahaviour at the 9ri;inmw&i;ﬁl9_f%wggmiaaﬁgi

: SN
B behaviour at infinitvg

uT};:%E/ ¥7(3)#;@)
Sk 53;’5{?3_} P (2, %,%) =

ltose the boundacy condition

-

6T ol i b Nl S
,j: A A 9 X 5 /é, ) 5t ?\’ ‘/ A ;”\1 " '1 ,‘) §$ /2\' -3 -/é,’

onuntion (12),

(6a)

B and (6a) together may be exvressed by the integral equation

i O UInMeR O bl
Ciat e )
£x o A, %33 %’,)C? (’”7‘&5 K J

{(6b).

hore g? A S are soluti-na o' the Womogeneous" ennation

) ¢ c ( (6¢)

Wh i Pl ?%h} g {Fg/“” @;"¥ﬂ5ﬁj dsesthe Meorals fana |

I 4 = * in- the R, H.8., of €6b) 3 then

Q= gh . g 80 that (6a) 1s sarisfied.
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ipoly the overator D( A ,?%34§f; Y} tothe enaation (6h)

f where {J’ ('1 7 ~ [ @ Fog o Sepprs (Gl e S
Lo SSCRO R MR IS P et !
 For this, consifer the two equations

‘

\

: DA Myt ) o T =
Rond IR S e g LA R B

icp?y (1) by G (4,1 ) and (13) by, @4 )

ey e e //' 7{)/
)@ (3) — pty) & (a5
’)/la/ ”J/?'l

= J Glg, ) R(a) @l47) ag-
1 '

| G (4. %"

DO Aiy’) (%) =R ) g(4?)

(1)
(i1)

¢ subgtract.

(iii)
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i Mk ¢ ,-%f) on this we obtain

and (6d) is »raved,

Boundary conditiong at the Origin,

fmnose the following boundsry condition at the sriging

-
Y, e

A

aA ’5 — O

aust ~hoose D (A) %_) 13 ) such that % +é_

'»on of the equation D (,\J #, "c* @ {’)'; éé) %) = e
the simplest chnice is _ 8 e
, : L 0(17 4)‘1

is a malu-
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i Wl da )i = - 24

sfore, the integral cqumtisn is ( g 3 e (e n%j“;\é{”uw(io;c‘ <f e

L Lw\)
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s 42 \ L 5 A J L 1 ; i SRS B , 2
") Y FA T e
Vi) <

2 /i 2 ! e - A 3
[Viw)-£"1 7 (A, R ajolu .

s ’
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i
\
)
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i
Ao
N
4
o

pol-

(7)

2

or q: be the free solutinsn (i.e. when V=@ ) of (1),
. O 5

(2)

'g, i Z > 7 i /7
(4 +L 24 + -2 X(z) =0,
s A Sl e |

(Ra)
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e find that the substitution (2 ) = /Lz’L Y (”-?6/ A (8b)
ey V< «&7 , reduces (7) s (7a})i
: I
he golution of (7) with the nronerty -, —— / "2"
,...7 O
H
/ s = (80)
A : { S
= o I L
¥ ¥, (R
since
bl
e . } R |
= oL
J;\ (4Zf) R SS e eT f’ (A - | [ 2 / L/b//
o? T /) -+ 4)
! - )
P & ) G s 70(9)
R v c ’y —
\_/\4—!) (1 L0 4
* ey
/ S i i 2¢
e,/,\ (’@/ — i T S el U A < - g 9
i T e SR e Y s
fl- satisfy the intecral equation (7) with V=0 , we must take

the constant C in. (8 e¢) to be

i TR T
- (gd)

Th 2 i.,-’ — b} b ) ke ) o € S R
. us I'O ek e A& { (A-»‘—/) 4() J;\ (’)%7) *3/? 20/3' /é i

- \ § s -
Supnose we Ireat \/C/l)f ) as 2 verturbation; we can find solutions of

| 3 g - St e
R o = Ve

(10)

: ) + "
with the boundary condition ;7-/\ % /’2( as 45 e Al O A (a0a)

Bor o know that 910) with the R.H.8. =0 ® “is satisfied by
A+ Y
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. (Comsitte 1t Trom the walues
4} =0 s 8ince it 1s a constant.)
lioting that 77(}“/~

-+
o s

('f~;c) T /{san Tr>c y , We obtain

fhe integral equation:

w;(%ajézg<ﬁ$)‘“3RC£%JJ;>?%“)]'

Vi (2, k,u),
b, Aaing geven Ay rgn (9dy adova.
llote:~ Equatinn {1

{1} s invariant ander

() N o~ o~ X

) =~k

that the overations (a)

(10¢)

and- {b) result in a soirtion

X . , fes ) : et
Which is the same as the solutinn L[ A 4Qﬁ A ) P Thls will

ity in <he A plane or 4% plane

gmakking the passage from .A to




or 4% to -4%~. This, in turn, devends on the boundary condi-

tions imnosed on the di

in goneral, we my note that the possible singularities in %

of the solutions o the sguation

9 2 /3‘ 2— ~T‘,- } A0z o \
d oy + [ £ -V 3 vy -0

cients of g{-%l/p{iy an] )& in the differential equation; imposing

a boundary condition will select s vartic4lar solution that may or mav
not have all the noszible singularities. .
: gt
On the other hand, the analytiecity in ,A and 4%‘
odrvious

from the differential equntion: it will be more anonropriate

to consider the infegral equation whieh includes both the differentisl

3 P S o R T B o = .
nd the btoundary conditions,

equation :

aJ)

Tor equation (10a), (10h) above, since the soundary condition
does not involve 4% - and since the coefilcients of y& anc L.fqﬂi%r
Rare analytic in R, we may exnect that ,% e will not in-

¥ 5 3 4&

-volve - ecrossing ahy singularities in the R plana. and .ience that
ey / ‘.\ —— A/ ’ s T y -4 o o~ =~
gp (A, '& S e A P ( Uy , Y ) vives the same salution,
On the other hand, 4 = - ) wiil zive a different solution, as
is evident from the liditing form asg 1% — 0 .
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5
b
X&
oo
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o
S
(6]
)
D
n
o
=
Ay
3
By
—f
ct
=
(]
O
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e
0q
[
3
.

if R{ A A (izel Ry Pir -

is irregular at 4 = C fointe 18 . A /%f . ) for
7, O
fe A > (or at least for Re

N
I




e 1ine }?e A=D s the solutions “ ( A, ﬁj/ﬁ) and
qﬁ (_,- A, ?p\ ;45‘) cross and exchanege thelr roles, On this line,
( + ﬂWv A JQ'. \}
AL - l: e s ~
? ; A ‘2, S )

fhus both solutions have an oscillatory character f

e’note that i /i(P (A,)‘E(?/é, )'; Cfr}("?-)] #() /IB/)]: ~J a3

Roundary Conditions at Infinity.

L Define . - 6» (2, &, %) as that solution which behaves

—e,xf_') (-—L"ﬁ\ 4[) for larze /y B

Write the dirfferential eguation (1le) as

L 0] §04,0) = Vi O [f k)

. : (11)
) e /] 3 i = C_% ’}/
Impose the boundary condition (% (/\ 5 /f%,/%/) FRaHl T

I3 T )
@5 P e (11a)

Taking the two indevendent snlutions an(k@-c&%/) and -@xjp(—t'&—g)

E= A .
of A ) : - O and noting that
. J ‘_,4;-2 -+ %{ J{ ‘? 9 g g

b pabe, L R

ithe integral equation incornorating (11) and (1la) is(fv' aﬁ:«..r?,x»fx),
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Let {? ( A, N . A ) = the solution with &he potential
- 5 s 7 ¥ o /
Vo 4D . As in (8) — (Rb), we may again obtain ﬁp
nAS e
the solutisns with the asymnlotic behaviour €

LS

giitched off,

ffessel's equation;

§ are
‘ Ly '57. : 2\ 2 4
BV RN Ty M ()
Sty |
—> € P 0(,5"./5, — Lo
(11c)

H@wkﬁﬁ
functiong of the first
and second kinds respectively . We nole (Chal
() A+f ry A ik c432
H, (&y) (#%) € U (a+4g [2241]
[
N s { - o j
ER dp — LT A+ Sy
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(114)
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Uy (a5 aati] aoky

- kg 4 4 LA
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3 0 AJ fn«,’“\“ =
. 3

(11e)




y ivag o

[{ and Iqé being the confluent hypergeometric functions of *he
3rd kind.
(Ref. Morse and Peshbach, Vol,

1
The Wronskien of () (2,
he Wronskien 5 / / ‘)?’ ;3 rd, H A ﬁ,?

R P
. o widT be e
¢ J ey . ’
TrA Ty
thus the Wronskian o7 the tws solutin-s ,%' is jI,<%§, “ i
8 4 b4

Thus in terms of the free solutioni, we may write the inteegral equation,

(11)

. : Al AT
dnalyvtic properties of 14’ L 3\54%21;
V

(1

In the #& nlane, W ( A, LA has a branch-point az
o A e )i TR R
g st

« Thus, although the diff-

erential equstion is symmetric under ﬁ.—i ,.4% s, the soluzion

; =T yep kel e .
fOuRe™ 0 50 K setulin L0040y ).

This is the evident from the asymnlotic form of the free solution at

[43,—-7 ol




SR 4,

6 (4, -%"26"'7}, P s

The Wronskian of the 4wo golnkbi-ng ig <4 K

or a hermitian Hamiltonian, i.,e. for a \/(7L) that is real

z1]

for neal n (fj?()) s We can prove that

s ) . e e X 5 &
cp()\,fx,%‘/\j a0 ATl ,;)

- and N ¥ ¥
g(A %) i ’{j/ (.A¥)“’k‘9/‘()

But in order to extend the analytic n»nroperties, /%/, will be allow

ed to be comnlex in the following.

The dgost FPunctions and analvtieity dn A.‘#&

Ihe Jost function may be defined as the Wronskian of two solutions
of the scattering equation, where one is défined by *the boundary condi-
tion at the origin and the other by the boundary condition at infinity.
In eontrast to the Wronskian of two solutions defined by boundary condi
tions either at the origin or at infinity (which are 2 A and‘QLJQres-
nectively) which do not contain any information absut the potential,
the Jost functinsn ig characteristic of the notential. /glven ‘the Jost
Rlunction, the S-matrix 1s completely determined,

We havg nroved in an earlier lecturc that the Jost function 1s als
the Fredholm determinant of the scettering integral equation"(written

as a Fredholm squation},




In the next lecture, we shall examine in detail the propertiass of

the Tost function and its relstion to the S-matrix.

LECTIRE ITI. 04-7-1962.)

Camplex ®ngular ¥omentum in Potential Scattering

We define the Jost function F‘(;Ay #1/) as the Wronskilan
ol b

(1)
. P
Any vair of indenendent solutinns of the scattering euqation form a
linearly indenendent set in terms »f which every other solution may ba

expressed as a linear combination, Thus we may write:

(M t4) = AL(A4k,4) + Bf(a, k.4,
(2)

(e mra) CH(nd,4) +D f(a,~k,4)
4,B,C,0 are indenendent of ff s but in general will devend on A and

.

Subgtitute (2) 1into- (1),

PSSR

Fla, k) = Qu%;ii‘ ~ 3k 3B

o

' Similarly , F(;\)~4.C”~.): Jod A 3 F(‘“A k)‘ LA D (3)
0&.7\,9( 2 )-—/&):Jk'kc"




Thus

g (3, &145) :'"2--!:2« /1' LA fiia, R, ) = F(;\,-«&)% () (?)JJ
t R i e

e 'ﬁave 02)\ =y [ CF {i"‘a;%,/ g, ) P & (' ay 'k/’u')‘]
s ( [ /: (if') ’ __,&J = L/“A,‘. b S . ,/4)[4) = A, “’}?{)J;

F >k F(-ak) — F(r,4) F(-3,~k) = 4c%kA.

(2) may be inverted to give

? 1,10 o fi [Fm,gﬁ-‘) (A, fa)—FO,R)P(-a,k,4)]

0, #,4) = sk [Flrt) (0, k)= FA-R) g Gk )]

(6)
The E£rec Jost Func™ .1as8.
When VY= ¢ 3
: A Y gg;iké—]
| 2o “/(Cg,7/)4]
(7)
s this is indovendent of 15 , 1t may be evaluated at 4. = .

that (4 P37 tes [ +T(
noting at -Akﬂ§/~% VFI;/ o Ld%? ~?(A+ﬁ)]’ af4 2ed.
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exp [- T (A-4)]
complex variables

4% ol s

(8)

A o - Af
Rl 2T TGy (X A
22 o

1
the 2

i (}\) ’f?.) as a function of

Congidering
fiasy aitbranch neint: at

A)-4Q , We see

thia it
the Jost functions are multi-valued in 4& -

Connection hetween the Jost function and the

S-matrix.
{-- ,\' n
( Al 2 = =0) of the regular free

The asyamvntetic behaviour

Bsolution is
> % ¥ E s B )
S -JA(&'E’)

*Lf"f{“ T [% 2 - 71; ()_%)] ,

=)

has the asymptotic behaviour

The regular solution for V #0

,4) = [FOR) $00,4,4) - F(a4) L5, hpi0 ]
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ﬂ Z_ F (A, 4?\) € e T -R) € é/‘]
d e G e TR R » , |
PR Ol L F(O%) scn [’:1%»21_. Z(-4)+ $(a, %) ]

I (10)

F (/\‘ e ,f/{) (11)

f g ‘
‘ \S(‘A,"m) = {f())&) \D/)(b [(,‘T'T(A“‘J—)HJ
f F(x,-4) (12)
*-- i3 - .
Analytic Properties of the Partial Wave Functions.
We must find out when the nartiasl waves @ (A, 'ﬁ,%) exist
and what are thiér analytic properties. The method adopted is the

following:

o

:3} Obtain a Tormal iferated solution of the integral equation and exa-
mine the analyticity properties of each therm; deduce the domain of ana-
Blyticity of the solution (it will "o at least as large as the inter-
getion of thé anslyticity domains of the individnal terms.)

g) Place bounds on the solution in such a way that the series converges

niformgly inside the domain of analyticity.

The results obtained are as follows:

~

& P (s k) and . & P (3, R, 4] are (1) Inte-

J ) a A i
gral functions of fi (i.e. rogular for all A  except for an essen-

c\“{
I
|

ffial singularity at K = oo )

11) analytic in for He A 70 : the expansion slro 2o

ferges for T A = o (for special vntentials, the region of analy-
ticity mav be extended to the left of Re A=o ) _ &7,




it N . 3 . {5 .
iii) @ (A, R,a ) gis analytic in A and -R in the
/] ; 7 -N
topolngical nroduct of the -R nlane ( excl, 2 = o2 ) and the right

half A - nlsne { R A e ) 5 it is continuous for Ke A =,

5
(1T1) ”J’ (A, R, 4 ) is analytic in A asi K in the tonolo-
gical product o7 the )\ plane f(exel, A = o9 ) and the lower half
£
&"Dlane (In R < O Y5 it is eentinous for jm /“% — C.

eroof:

1) Consider the integral equation

; (A)&)/z) 5 %o C;\ﬂ/ky’la’/)'L = K/-/'\‘J ‘Pﬁ !) %(A)'%j%/)dé’/

then |9 054 ] & g0 00kl

et (g, (a,%,4)] < M(A, Hog) - &1 (a4 = T Rt

Then <%

s * Py [ ' i< (-,

Gf{"\J&(g"{)l S o A ‘ e J
where o

l'<</y?/%//> = / L(AJ//)QJ/%/}

By iteration, we may obtain, /

4
i ¢

. .
B Bl e e [y ’){W(ww
(A)‘k:"ﬂ! \g [+%{ } \(/ér"zf__, *y 4{ 7 ,5; el

j M&) i qu', e_{.'( (5[;
g el«am{iu\»g (e g{'élfful« cn Mgt R 2 f‘
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This natta regorous nrooi; however it enables us, to understand

T

that the iterated series wonld converse 17 the integral in {14

1t
LS
e
|-
(9}
o
o
o
>

ded.

Consider the intesral equation (7) of Lecture II.

N Eat A Ak

St (BCENES o

&

o b

> l’
A, 2, L

e
)

ﬁel"es %O ( ;\, k 12\/\ = 43’/\ o = M <AJ % ’4"(/

We note that since o< @ < :

P f{ '{ { i [
Y e ~, .
:5 2 w s when BE A O , ( as the maximum value of

is 4K ). Considering potentials that Tall off at least as fost as

i/&bz , we have
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ff\/(’}u) - )FQ / \< C = D ol

(e
i-€ 2

S )
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s
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where % is finite, D is the upper limit of /%‘ and C,F are

constants,

4’ %/ ;\+T‘" , A -t A +L
{K(;\;’k;"b) Of»u,l T T o j . b
Lol 2-3 AL
o ¥ iy n

" o
= 3 € 7 =
- R T = Em
(A L ¥k 'JC €[l
which is bounded when G-#: o sy 1.e. when the notential falls

off more rapidly than ’/nl_ p

Thus @ (;," £ ; /z‘) ‘s bounded Tor all finite R when
R{ >0 -« Therefo-e, ¥ (Aj ’%,flx) is an integral
function of # , analytic in the half-plane R€ A > O

L]

8 similar method may be used %5 derive the same analytic propertie

e (2, o) L
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To prove (II).
Consider the integral equatizs (11b) »f Lezture I1:

s

(2 %73) = S ,.L‘k : ;€ S p—u&(f«fg.y.

[ 74 es Vo bd fo{ »*‘6“!9( 47}}\ - K
R
e %0 (A;& y ¥/ = £ L = M 11)

“ £ {wiv&(ﬁ_g B {

2K (Fea ) _ 20 (ReR) (Fey )
f [ — <€ < o [

2
= . (2% a4

Bhich 1s bounded i.e. b ¢s K < E.a_constg4t>
if S +* < O . (Note: (}‘-43) s
‘For notentials decrcasing at least as femias /o ¢ >

A §i P / 0(/J A = : 4 ol 2
NGRS R LBy e
% Y . 2

| b ¥




which is bounded for finite X

+ O
'g CA)'?Q‘)"X)

Thus is

LECTURE IV.

! //‘A / 3
s R FO 5 and
an integral funetion of 2 , analytic

in the half-plane Im £ < ¢ . It can be proved to be conti-
auous for ﬂm & e
A similar method may be used for %h:e other intes»31l 2quation.s.
We note that in the above, we have considered <%~ real only.: “In
the next lectue we shall show how to continue 7;5 P A L) into
‘the hal7-vlane = O : we shall éeﬁuce the analyticity
emain of the Jost function F (-?‘) &) in the /& plan-,

(13-9-162,)

Complex Angular Morentun snd Potential Scattering,
from the ardyticity domains (I} and (II) of P { ﬂ)kﬂu
: / ;o3 o Ty 3 o AT e T
and ,6, ()\) 1% O, given in the last lecture, we can deduct
e domain of analyticlty of the Jost funetion .
A DI ¢ L - a (.- > ‘
F (A, R ) 1is analytic in A , % in the intersectio
+3 3 Al & o ‘1/ 3 0 // ’k 1
Bf the analyticity domains of P (A, R, %) {5 (A R 8)
/ { P 3 / ," 4 i i he et
A,%,/z,) s 2o g 808 ey (A, R, ,_av,/\ s 1.0. in the product
2 T o 7 { .
of the half-»nlanes Re A >0 gm ,,k et % :
, )
It is continuous on the boundaties oy R T S0 4% ’ﬂé A S
t has 2 branch noint at ’& A .
s
,//, Section by Section by
- i :K plane
‘ et - L o —alis
'& x_ A~ plane (ve- fo~ eonst) r _

\'-t./\

-

— e
J

/

/

/

P

va

s

411\“?((0




Y enlarge the analyticity domain of ;),’ (A, # .,’3/) , consider

y
{
the Schrodinger eugation (&) of Lecture II alsn-s 3 ray '3 = pL

-
ct
o )
(0]
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.
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.d" (/K el ) /2 YA e
— (T iy + =Rl W R i
de o

| : :
7
-~ (23)
By nroceeding as Tor the orizinal Schrodinger equation, we shall
functions . 2 ' é 4 )
‘ ¢i",\’1"??/ 3 U‘(A7/<‘lap ?
nd 2 new Jost fTunction = \7\ ”4,) x

We wish te find out how the new functinrs are related to the analy-
; . ~ - : g irn o / ;

ic continunations o7 the old functinns S i‘) '”’k',} ? (/\., ”% % )
’ \ ¥ ] 3 =, # =

nd e il A, * ) with 43’ et

-+

fle general solution of (1) will have the asymnlotie bchavisur

\._/Ip"|fz a ‘L—/klf:

> 3 ’). : /.7 '; A ; S
‘ ¢( ’/\7 /k!'-ﬂ() ~ o (o) € & i y P g
o (2a)
g\( (}}%M F) as the solution of (1) with the
\

=t
g,( % Righi) ' dmaa g v e

(2b)
all o—
e solution . % (/\ 5 fc, 4;/ ) y which may be esn®irned into the half-

R.e 41 2 O may bfé exneessed in temm'ih.limquy inde~
“ ¥ € e ’VQ”Y :

ndent solutiosns € ns




(3}

We must find (%) ang e e S

i their, consider

g

“ ‘..% s L}&‘ A

fokq) < A 8 " 4B
— (3a)

L

B know that if a function A/ (g/\ is an analytic functiosn in a =&
3 and bounded on the boundary

72 then 1+ts 13+t is the
zxney 4¥ S 5 aﬂﬁcfs,;:fj s then its lizit iIs the same gs

5[ - ob along any rav in this sectnr (*his may »e oroved by a

Piiformal transformation o7 lontel's Theorean, Re?, Tifchmarsh : Theory

~LR-
function T? (A, 2,0} € is analytic in the domain
Y\

/% 7 & , and is continuous and bounded if

he ray 3?n/% = () is just s ﬁ%glane

herefore g C)) &j 1) £ Font, Vi gt P < AR g(w) along
iy ray in the sector O\ ot A W L.e. é;COZ)

B be indevendent i o .
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Ly A, ’k A ) e S ! 7 (5)

8 the 1limit dlong any ray nust

E ’5/ {2, #{J/ﬁ/ G o A 2 )

el e (6)

° s - s
S ‘6!(3, ¥£17 F’} is the =372 ~s the analytic continuation

ot & (k)/ﬁ3/%) .
De of 12) with the boundary condition at j335 0_) .

e h:ve A . p
i / /\ 2 o} E >3 o O
L) s a A (d ) =y =
QF: ¥ |

b G (A

K B s F 20

1

g -

B 2 0, %,0) = 27 TR g(a k) S

gen, from the delinition of
& s /
’\ 5 3 o o (S ) e
Fp(k. 'f{;)\ % £ X [ k"y%)
(8)

<o

We earlier nrovéﬁ that the nld Jost function (defined in terms of

A ,‘% from the Schrodinger ~quation in /%/ Y is.analytic "in



g,m, «& < © and Ko A =0 . Arplying the sane reason-

1 . ) -~ (£t 2 . 3 . o '44 %
ing but working in terms of 'Fs.’ and [ instesd of & and »é/, we obta-

in that the new Jost function ‘:(.’L\ £ ig analytiec in
t s i k 7

n /', - = . 7 G Lo
ono 2, <o , Ke?d »e , Ry =he )
ja={ < ‘7T,,f:—i . s~ Thus F{x, R, ) anst thus be analy-

© tha rind S R ST :

Fic in all domaing of
tha unlen 2F all thess donsipsSiisiEnG

4
A\
3
-

’F{ plane cut along the nogitire inmavinary axis. ,
Thus F();,ff'{ ) 1s analgtic in the product »f the
half‘—ﬁlane s Ko X 20 with the k-' plane cut along the nosi-
tive gw A& SR Detaile;ﬂ studv shows ( as we have shown
;in previous lectures on the notential ) that the cut starts from

” v . -
éy»«, R = ¥4 y where ‘M is defined from

o
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il - 1472 .
e SR

4
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m 70
-/:(A) - ,’ * 1z analytic !n the product of the

half-nlane Re A >0 with the %'olane cut along the negative

B {"\ axis fron jw‘ i = - e (o Qo toe ~ ol

o

The branch point of ./: (}*;:. 474 } ak #{ =0 .
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?(fﬂ 1_')2_9 4 | is ningle-valued in /& s We have from

he definition of f (> + ) #a (9/)) p Ry
. = X J

e

4 —Jum = ~ : 7
),&-& ) f'p()j% e — o COS(TT X ) = {i’\'; ')%_-Q TTJ

{10a)

and

3 4 A T
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Consider the integral equatisn Tor
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8 same equation could be written for 4 e % s 4 )
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Putting o Gt A Rl - L , We wan write
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Thus the nranerties (9a), (9b) nold for the 1@(7’9“&!”—5)
alsn and hence also "or the e (A, #{) A :
The branch noint at & e is thus seen to be purely kinema-

fical, i.e. indevendent of the interaction, since it plays the same
role in fad (.}\, ,k) and A (: A, 'ﬂk) . On the
pther hand, the heanck iine in F(/A,k) frowu ffwx f = 1;_
to 30\/\ ’k T < is dynanical, i,e, it depends on the inter-
@ction ( or the notantial ).

We have 208 (2,4 )
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We may define the
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values
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(13b)

then

may bhe zonsidered to be a generalization of the
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Ja2]
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rivas the effective range expansion).

)
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y and it 1s even in 4%.




We also hawe

Iso, from the relation
1) Fronk) — FO o) Flo,-k) = 4oak,

g ohtsin

: CTTA i
RS Ok) —e S0 R) =

F(>,k-e"t") )

nd F L’ A, ;&-g“'") ' are both de“ined; we must

hen )\ is pure imaginary ( so that
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Comrlex_an~ulan Momentum =24 Potential Seattering. (dowl7d).

5

few masult= ahout the asymnlotic behawisu= of

Bhe phase shift, obtained by an eviension »f the W.K,Bs. mathod to com-

irst mention 1

=

?x@. ) >0 (1)
3 k) ey in

more precisz~ resgnuli is that To~ laree ‘1 s, the Born anpro-

rimation is wve=+.reliable
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lare 4, the wave Tunctlinn lics almost entirely aniside the PO~
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3
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m
el
A
)
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fde
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is therefore affected wo-+ 1little by it. . CF - ?o




ALY

yvernocition of Yukawa
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o~ f
SB ~ 9 S
9
S
or large A .
o “:J%} BB e 7AW R
Ayt 2/

SCR. kI

he Poles of

7,

) Consider physical values of

(1) nvoles at f= (N Co
t i
bonnd states,
(ii) poles at L = -1 9

" yirtiaal states "
S5 - 7 n
Etiii) opoles for J.. R K C

Brrosnonding t~ re=nonances.

5€f the imaginary axis.

L1S 2 =

0 noles

poLon

n the unner hal?-/& plene, there can be

Tla

tha Born formula gi

JJe; @

(3)

(4)

Then in the complOX<¥k—plane,

and nositive ) corresponding to

"gnti-»~und states™ ' or

1 RQ ’&s s 9

Potes vn the

“‘4 -plane.
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Consider physical values of 4@ y han in tha comnlex A -plane,

e can be poles oaly when  Jpa X ¢ , ¢alled " the shadow

Biact that noles may occur only in the uvnaer-rai A4 - nlane for

.

ftial scattering will be »roved later. In relativistic scattering,

Be is 3lso the »ossibility of »noles on the &g A axis ~——C.D.D.

i at which 4 = o0O and SNy B = LS (In poten-

CA ,'K’) as a functinn of two
Iplex —~ariahles ) 3 -ﬁi 5 the existence 50 poles in 'sectidons:
fie topological oroduct of the )K and 4% spaces by particular
nes imnlies that S_ff%; %L) has certain singular surfaces
Panalvtic comnktion. ).

We now ask what arz the domains of holomarnhy »f .Sb(‘zj'ﬂ{) 5
Alternatively, what are *the restrictions on the position of the sin-
larities. We shal’ “dearive the restrictions immosed =»v the continuity
lation. There mav nlsn be Turther restrictions imnosed by the special

o

fertics of

a pazticular Becential,
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7 and (f»k will both vanish at 4 = O nd g = o
Ro 2, e 8. » SO erko D
From the Schrodinger equations for ¢ and :r* s We can easily
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0 5 j/\
l v i \ / o )2
e ) i e
e e R e T
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O JO o |
o fﬁ“z vk
O £
(8)
B H. S =" (4, ,
oL k _ ) 4 )
btain, notine Shat %U = (%Q = ( Re Ko ) (S 4 a)} :
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beach intecrand is ~z'iive definite, this equation will be consistent

Ly if (3m’fz'o/ ('Re 'k, J ; - and (."JW‘. ?‘xu) (739 /13.)

e
) have the same sign, i.e. 37 Ke £ ard 4. 25
le the same sign.- Thus a pole cannot o=zur at As ., &o bf
: ) A . . : . .
Re 45 and Jwr A, have onnosite signs, i.e, the domains

-

( Re . >0 ( r Ro# O 2
1 and [ = 4% ~

(10)
3Wv/Aa<o‘ (9}%3070 S

: r “ = g

& two domains o7 holomarnly »f ~ (f Iy ) : . They have 2
ymer h i whe b, — é — -

gmmon boundary at  Re %, = O ; L Sy




- ShAE

Bonsiter the variables F - ‘*r"\ = L‘\ [t (11)

I" -
ltuts on the Imazinary 4@ - axis map on to the part

- 'Jf._z of the negative real axis. Regge also showed
L ; a2
‘ 5 ' is meromorvtie in the plane cut along the
- (E”’S) ﬁ 5

flive real axis
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Since dE Ny s W Ll : (13)

ﬁ <<F30 on the real axis there will he no poles if

is a large enough (real) nezative mamber, as noles could then

I
ir only for negative EE ( and the number 41 .of bound states is

ited for the class of potentials considered; so fSO can be chosen
G

8 more negative than the value corresnonding to the 9, ~ bound state).,

. ) D = ~ .ty
real domain K ( E 9;.) s, consisting of the product of

5

< B and o Y e )
B <o 4 e O A <
3 domain »f holomorphy of S f E,*&J} and is a c~ommon

b A . 7 n - - TY L ¢

ndary o€ the domains U amd L. Ine domain V' of 4 T ean
Bnlarcad by analytic coupletion to give the complete holomorpnhy doaain
2 (A, %) :

Por this change variables from EZQFS to

¢ ( -
‘.——,—. - T jf :F""'go %

A% E_}’VZ

(14)

s mavning takes JW\, = )\{ & on to f)}m W —>o )
?nm/g e onto 4w A ] , and the doamain
on to the domailn
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5 (15)
here 5 denotes S ian [ and S " donotes S in NS

+ . s
ST(W,4) = S (W, 4)ir W, 1ie .in R(,Db).

issume that the integrals convarge,

When 3 5 <0 F{trw, ,}_;‘5’(/’3/ is holomarnhic
in i . When /:,95 %, o B . F(EWMY{GJ J is holomar-
Phic in W, , £r . Theratore R W, i’) ) is holomerphic for

W= §wo o i Eh when ﬂm o and

13 shnyw that asa 2 W,‘ﬂ‘) ig an anaivSic eontinuation of S(V‘/}b,‘)
F.Drove that
P tor W, b, € R(Wosdo) | #(50,50)= ST (5w, 74/
(16)
b) for ﬂm W.= &= 34,\{} 5 F >0 R '6(,70)
F(f & \/\/9 sr{') = T+('€WJ E"(I’) ;
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) is proved similarly.
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This resnlt is a special case ?f‘i{giaser's theorems:

Sunncse a functing F(/t,), .5 ) i3 holomarphic in tk

two ovmen domains
I 4, < Z

Dg_ - { J

(\J .g’h/\ 07(3 J f\. gm /5/& A

Z

7 %W\-/%l kg Z
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Separated by the common boundary
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\ ¢

SR
1 ng/}z’_:(’ -

7
- { 4 : i Toymamal ke s hou! C
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SV G e e o
0 <ot LT
)

s (0 Qg A, - assnn




L858 =

The Analyticity Domain of the Scattering‘émnl‘;_turﬂe.

lotations

: b i
A = E = (7% ) = ”0( ('S (Ko 31 L oL ‘v‘f: (e Lo ?j =

;IA = fo Z:‘- l@"&/} '2 = L 'k ?,,3‘,(7;, & ,Sj (> (he ff(/wcvﬁ-é (18)

(_" 2 3*‘?}«0%{' - ’f.‘v-! A - G;ic()’\ 5"F-Q"‘}L A

£i) zg’ (A, t) is unitary:

f(f,es6) = #.ng*(%,wg@”/f

‘€ (\' H , wsO@ eosl — oin b, S/a:.&ﬂpj & e

(12)

This may be proved from the nartial ws7e expansion when all the Jf Bs

are real, i.e. when V(%) 14 & real Tunctisn of 'é/ .
(1) /gf/\ q(' ) is analytic at least in the Lehmann ellipse in the
v
oS (9 nlane.
f’e {'- /s = Cos @ ’ Wbu[ﬁ; (9 L"/O'VVV/’/\-';C‘)/ )

£ N 'g = cos (Re &) . cosh (ImeE) — Lot (@QJ: Cenm ﬁ»(;‘?%‘ﬁ;

S S (29)
The family of lines gw\ £ = constant zive the fanily of ellipses
L o
)"' _*_ ‘\é/ R — ]
S T Y i : i
coch (It Alnrh (Sn & =
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while the family of lines Re 8 = constant ¢ive the hyperbola

g 3 :
. T — & g 11 .
cos? &R~€ @) Aiad ( Reo ®J
(21b)
LG ~>

Analyticity in the Lahmann ellinse ;é analyticity iaside the elli-
nse defined by

9nm 9 = £t ’”LZ -

Jie

A ' (22)

where 4is defined by the lower bound in the »otential
- ,

via) = [ Tl £ 4
J 5o

e
3
Writing cosh o = [+ =
SR
(22a)
the Lehmann ellinse may be defined by
@ww g < &
(22b)

Consider the partial wave exnansinn

v
J{e4) e 2 ae) Pily)

(23)
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If this Lecendre exnansion convarces L[or Jd’ = pais g /5/ 5
o

them it converzes inside an ellivse passing thr~ush 1 and =with

gOC[ at -, , and 1%t renresents an analytic

function therae., (Neumann's Expansion Theorsa,)

More precisely,

s ~ad

L& @ﬂ St for large {) 5
ithen the exnansisn converges inside the ellinza iwﬁ < oL ’

Far large { , the nhase shift may be annrnoximated hy the Born

aooproximatinn

L
5 5t Lol + ; ,
St A atea ) mde,

(24)

so that

E T g"('ﬂ/‘ .} -e :
e > g = /\J/XCYV%( X - (25)

Exterigion of the anaiyticity domain in the €©5 6 viane.

By renlacing the »nartial wave exnansion by the Regge intecral re-

ipresentatisn in terms of comnlex A , the analyticity “omain of

.g (E 5 €S 9) may be enlarzed beyond the Lahmann ellipsec
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where ( 1is the contour shown in +he _ plane.
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&
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noles crossed in the gaurse of this deforma-
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The of and (3, will be functions of [ . For large A
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B g
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cos(TA)
(31)
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Along the contour C ’ Re A = .”;'f sun €
Thus (31) 1is bounded for any <os & such that Re©@ 7O
‘P)‘»" (%) 1is an integral function in J( : the
53

integramnd in (238) 1is a continious function of A  ( or of ok by

and the integral itself converges.
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.. The singularities of % ( E,co50) ol eos B will
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g just the singularities of i 8.
y 2 737’§~ oS o) n cos

2

he. the scatterine amnlitude 8 (E, tosE et € plant

111 be analytic in the o5 & - plarne
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b 4 5 S L S
it f rom + ol gkl along .
: ' Analyticity
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The cut actually begins at f I

N =24Q;
e Lehmann ellivse. S ‘
Since : 'P = — :2/;{ ( I e 6‘) :

> S 5
‘46 (‘/ 3( ) will be, analytic in the C’~'plane cut

> y Just putside.

'rwl to 4+ oo along the resl axis,
This is the same as the shalyticity in C’ conijectured by Mandel-

tam 2 e

palyticity in '& ror_fixed €
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[souh) = g ) [S(-3,40-1]

& : - (Y A - ;& : , ;
o ‘ie Sy S (-A,&)T - |
| e (< A

-

bR

~“ 25%1 » + XUWMTA)

(337



' [- (‘);ﬁ) S li(ﬂy'&J A Qlf,A4%

———

bF (-, - &) E G, k) F(a, k) F-3,-+)
i o 3 CROA B /
j¢ S SR e B A

s

Z: L)\% ‘e
F (A, -k )F(-2, -%y

N

= 4 N
=) g o)

(34)

pm the expressinns for the free Jost functions, we obtain,
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fr - ;\ e Fi ) =
Auvne T A 4 Bh. g :
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(33a)
nd (32) becomes
5 - L i 12 ) -
— R
[ D Foll 2y =R ) F, (~),J<)J
| F(;\)"k) F("})"’k)
| (35)

The function inside the square brackets in ¢33a) and (35) does not

have any cut in g‘m ’?1 ol O 2 .
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Also, for real ( A Fcos ©) . - g v

oes not introduce any singularity in HM, j/& >0 y Since

P

g ( ced 6) has only a cut from -— o< to ‘—-/ -
Thus (,&) cojﬁ) has only poles in 9m % -6
Pr unphysical values »f 3 , ,g'(—ﬁ s casif | is regular in
i‘gTW ‘& 70 s Tor vphysical ‘i,e, halfeintegral) values of A4 ,
,ern ave simnle nnles (with L:-j:l:’ %’ Bt 1)) in the unner halfl /k"

1ahe), corresnonding to the hound s tates, Pd» the class of Yukawa
Pptentials, the number of these »nles is finite,

The analvticity in C proved above, comhined with the single-
jariable dis»ersion relation ( in A ) is equivalent to the Mandelstam

representation ( for scattering by the class of notentialsy
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Seatterineg and Reggo Poles:
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Trtal ecrnss-gsactinsns te2nd t- reach enerzy-irdependent behaviour,

. they avpnrcach constant values, with increasing energy., They rousghl,

square of ‘the total c.m. energy of 4 and B. A ] "reier

0

Aﬂ' is thé plon compton wavelength

Scattering at high enercies is characterised by smooth variations
fith respect to energyv, in contrast t» the numerous resonances found at
B cheroy in strongly interascting systems., At present there 1s no
Bvidence of any very-hizh-energy resonances., The 3-matrix as a whole
Boens to have a simnle Torm =t verv hish energies,

A1l elastic cross-sections show the characteristis diffraction

Btorn with a “orward neak, The earlier 4data suggeste’ that the width

9f the neak when nlotted as a functior of the momentum transfer was
Berly indenendent »7 theensrgy and was of the order of "™ _ . 4dlso,

Eal

It o5 noticed *hatapart fron the Aif“raction peak, the elastlc scatter-
Recent data in PP scattering indicate that theve is a shrinking

B the diffraction peak with increasing encrgh, For ’ﬁTP scattering

.




-

shrinking has not yat been obhservel, Probably exneriments at

t hicher enerziocs are neede?,

rin
At high enerzies, *he elast litude is largely imaginary. In

N Beatterine, this dis frue T2g sbout 1.5 Gev Hpwards,
BFor not too lar e energies, norinheral ®»raulae seem to give the

4 : L2} . b >
@i cross-sections well, They alge give ths cross-sections for in-

ffic oroces=es woll, nainly “or these nroceases Tor which there are

L (,\_-"_ < ‘W-w/s 7
iel]l~sen-rated Tovwaprd an? hackwsrd cones, i.e. when the two-centres

B valid,

Can these “acts he correlatel by a sianle theory?
Consider 2 -» 3 scatiering of equal-aass varticles; for the present,

e arc taken to he spibless partislés,
7 o

3 - [

I = (b ¢ b S = b
7/0“, A xJ‘,T !t 3 Iz

i

e (1)
b N 2 Ez (p-ts) =-bhrm L = »é)

.9

shall “irst see how the Aif7ractien sastterine of = elementary parti-
L ~
ecan he formulate’ theoretically, followimg the treatment af P.T.

Bhcws =7 A, Salam. 6onazider the S-matrisex

FEER T e =
bf . ¢ L { QL :F) A (3)

Binitarity Condition may be written

Ny — T ta s e i !
2 = T @T)" S ko) o

y In terms of 2-varticle channels o (in the 2-particle axproximation),

A

o, 0 T(e) [o,00 = 5 <, o, d > <0, &[T 0m) " 57,7 T
: £
[ L o> <a(,ﬁ//o<‘, 0)(5)
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2,cx>> is the state 1n a snherical wave renresentation;
. ‘«0, i A
[y ot Z e R e T /..,L-f;,(lfzﬂ«-égq)
’&_7L
{0(9 9> is the stats in a vlane wave renresentation

A'<<a58/ﬁ)ﬁ>> = Jﬁ+1/&(wj@)

- (6)
1sider the partial wave exnansion of T(E)®
o FlE s 2ud,
- DR o e o
,‘Z;U £=o . ’(/ Ce)
(7)

high enerzi8s, there 1s a larze number of open inelastic channels,
the energy will bhe ahove a number of =ulti-narticle thresholds.

gse nmay be taken into account hy egiving <§g an imaginary part:

51& = Ay + Py (8)

P larze inelasticity, /3@ will be l1sree, thusg
3;, - ifit
e amplitule is properrtional to i , that is, it is purely imazinary
1 /f(:E) i i 7~(5J , for larce [ . (o0
‘have

3 L{ l/' -~ e Rt _‘_‘.Ax,i' p
R« T-Qm) " s (PP TT [, D= &% (e) SFE
(.214-%) (10)

B= the relative momentum in the c.m.s.

Vdﬂrd/d’ﬁ_ ped %E/ (K, O T [a, 0]

(11)
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:(j:)z / % b (e, Pilere) (2

(11a)
We have, froam the vnartlal-wave exnansion,
cLa'(E) o ’ / — . ] 2
iJh T P e 2 &J
d O prl 2 Gl il (11b)

this equatiop, revilace <, by an integral over the immact parameter

defined by L = 4P y

‘rather, 6 o {p*l ) : ke
(GQ/JQ..)MQZ-PZ)

(12)
ing the fact that
e i 3 ;
?,e(m'g) = / (ke -6 , for small & (13)
obtain
72 i '2
a aid / RS . 1
Yo p /J&% I (bl s &) & b
e . :
' : (14)
ér,.r':’{'c/
or a 'black‘ tareet, tazken - & ‘nlack’ snhern
Cl4}_:: i & <R
e O = 6 772
(15)
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fich is the usual Aiffraction foramula. The first ainimum is at

: (17a)
y in terms of €, at f} = Py o T (17b)

if'?eak width" may be definel by ¥ R corresponds to the radius

[
Bthe interaction. Thus‘the widlth of the ﬂiffraction peak is inversely
oportional to the raiius of the interaction, for scattering by a black
tical sphere.

e range R of the interaction may be connected with the (4-momentum

2
ansfer) Aﬁﬁj' in the interaction roughly by a relation of the type

2
2
: R 2
15 the width of the diffrictisn peak may he ~iven “tm-tevms of 7\ by “say-
. : : : ' 2
g that thHe forward diffraction peak worresponds ts valueg of Y5 “Tess tha

ge value Adl A g 45‘,(/1
‘ ; ~ )

= betme tebated th themass of the hhehiest particle that may be exch-
set In the internctbqn."Thuswforcﬁy“scﬁtterimg; W& dxm et

z 3
AL By
Experimentally, there is no reason why elementary narticles should be

Ve 1ike black spheres; however, we may expect that
T g e

fing an average value of the relevant g (,é <4 )to be a, one ob-
1 g, P ==

ins

A p - . f Z 2
_.'.éfr S /R N A Pl szj_ oz,x;';ﬂi’fﬁ% a
M sin @ < C-- (@Y

s crlled tHe opsrity’ parmeter,.
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flles the main Aiffraction peak, there are also a series of subsidiary
fraction peaks.

Semi~Elgstiec or Charse-Exchanze Aiffractinsn Scatterine.

Consider the scatterinz of systems like (b7b> which are not in
k isospin statess Then there will be elastic ani charse-exchange

ittering, 1In terms of isospin eisenstates,

K§ (T = §<€‘f1> s Tiens = 12‘ o(I€L 71, 5

ﬁc & (19)
%? (XL . dgc
(19a)
d (- / A & i (20)

If the scatterine amnlituioc is the same for =211 I?

3 . == 1 D[L. =
<_‘F(T!u> s /r ZJO{I ,.«E{p_

&

5

ﬁ ) o e ’ CY =
r charge-exchanze scatterine , -f F L. .= <E;{'TI - 9

in, general, anoraciable charze-exchanze scatterin-s is exvected.

SOK,z%' = /le s IJ_,
2
O elas. P, + Py |
(21)
P a black sphere, this ~ J . Nl
ar |
perimental data in this cornection are not very clear, For,Scattering,
: \ - Lol” Gt
i Dardel's experiments seem to show that o;/ ~, @i/
2 i3




The energy-denenience of chafge-exchanqe scattering is imoortant§
it will enable us to find out whether high-energy 4iffraction scatter-
g is Aominated by the exchange of a particle with the quantum nuabers
fthe vacuum - the "Pomeranchuk pole."

We now try to see if the observedl features of elastic diffraction
lattering at high energies can be obtsined from a relativistic theory.

e may recollect that the ohserved fact that the dif fracted elastic
plitude is lareely imaginary implies that the 1iffraction scattering

} accompanied by scatterinz int» a large number of coupled channels.

lus we expect that Feynman iiagrams »f the type shown below:

fe the ones that determine elastic Ailfraction scattering.

Y ow -
We < .~ show, following'Maghows anl Salam, that from dispersion
8lations, it 1s possible to Aerive =n approxinaté exoression for high-
flergy elastic scatterinz that is of the diffractinsn form,

Normalize | so that
g')WT T-(:z.eo(’)d_;-e

A

(22)
hus, in the high-energy 1i:it ( 5'77‘V'),
3ww e c“ B
_ (22a)
mﬁi;f;T’l A)¢% *’/“
5 2
/&2__, [F (Mt ] ]/ fo (M=) J N
3 S, Li—- A S E o o=
G o
E LR E SR S - LW ol
=



o

Tat ol 6L~ B4 42
(= T = e
(23)
) obtain g T , write a 1ispersion relation for fixed, small
t e o for the function
TCL(A Ltk
- 5

supersnthl, € ol el s bF o SRRl Lo iy
ere A, and W, are the thresholdmencrgies in the & and w

iannels respectively.

r larze f)OSb‘tw/ﬂ A (and freté larse nezative (. , since
B we = 1(‘“’%/4“))1

=
- (2w g O S .
'gf,
)
T 8 i
q 5 K/z A o >/ /"(/LJ
@c//$> (U’ il (w




: g
‘enerzies) will be unaportant.
a T
/&

) determine for larece

lation for fixed y

ahd nezative.

- the singularity in the first inteeral.

= e (ﬁ4L+/A%) +'ﬁLQJ/g

D 7. B

' may expect that the main contribution comes from the neighbourhono?d

We ‘have assumed that at such

gh energies there are no resona cesy, so that nole terms (occuming at

Also neglect the 2nd integral over w« ,

P.)

se the single-variabhle dispersion

A g * .
B (6 - 4 RLot gl
— S
B
il
+ _‘L I~ L av L +
am J flade
Ce
2 /
e R Bl T
; 2 i
* v j = (26)
U e
B .>'7 M 2 y the physically imnortant value of £ are small
1 3
hof the order of = .
1S oz R et

3

whieh is large compared

first nole term may be evpected to dominates; thus we have
9

' 2 -
P‘Q/ I A( € 5 U.«) = —”"‘?’_7“' e ? o
- “+. A <
I i (27)
| 19
E &(,&,W) AL j:‘j ‘l/(,//vz"fJ O(é/
/z (LL(: ”M'y/z TT : (<$/—);>C)'/L( u_c..(,{)‘/z (’& /.—,é ) 2 4
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e

o T, 2 L WL

2t
:‘ 4 n ‘/2] 6 : O(A/
R 2. (e
A X (30)
) = T(s, 8 T [+ L
_ (/wL/L‘) 1
(31) .
larze % f(/s) ~ &«5{ Q )
8 for L — Lo 3
God T ( :
Re ’T — comals . ’ (32)
: :
Ter o ey (12
. 2
bt ( e 3 it /
e 25 T 06
At AZH&) (\f'/WZ ) e

gives an angular Aisti#ibution which is sharply neaked near

j!‘ o & 2 2 il 3 ' o
1= O i oK 4%0”( gl ety TRIS (

rresnonding to a forward neak of ancular width

9 ¥k : ~ —’Ie'é‘ = (34)
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Is may be written in the 3iffraction form
,v ~ l

i &R
. Thus the above crule avnroximation to the dispersion relations gives

b R y}y being the ranze of the interaction,

scattering that is of the classical Aiffractisn form.

We must now ask how the ontical'theory of diffraction\scattering
Tees with.experiment;

Th8 2-parameter optical theory ahove can be made to fit the facts
irly well for TTb and bb scatterinqg if we take

RM//W;@ML A el e

8 value of € corresponiing to the first minimum outside the forward

E 1s C ‘ifs Z

| L A /4/,

# objections to this theory are:

In this aporoximation (i.e. without introducins any additional
ameters), it is not clear how one could modify the theory so as to

i i1 of the secondary peaks which result from the sharp boundary of
pdiffraction region and are unohysical.

" The theory =ives too larze a value for the wide-angle scattering,

il if only an averase value is taken for the latter. Introﬂu&tionof
8s like peripheral collistons does not reduce it sufficiently,

' The assumption that the amplitude is pure imazinary means that

has certain analytic properties ( As a consequence of the Mandelstam
fbsentation); The ontical anproximation amplitude does not have these
lytic provertiess

‘Recent experiments show a behaviour o7 the 4iffraction peaks with
feasing energy which contradicts what is to be expected from a simnle

cal picture.
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- Experiments onf;b scattering show that the tbtal cross-section

.~  a constant, ahont 40 wl’, from 10-28 Gev (lab), but the width

the diffeaction peak 'iecroases loparlthmcally with increasing )3

x (6 X (C) L
b A Seer AT e e T

farce ¢ , QMB A varles dittle with % 4 as

d
: s
T [ %] =i ; A
d A A .
4(0) = 1 leads to O/CA ~, constant at high energy.

The width of the Aiffraction peak may be defined as the change
t>n [for ¢ O required forthe amplitule or cross-section to come

n to some specified fraction of its veak value, say -~ , for

Yv
ed O .
| ~ ‘ ot g 8
B Al DAt B € o

) fcrOJA
A()Seo) G (3 (o) € ’ C:f (6} = )8

A(A)k'} :'/( A()B_;O)'

n

‘QO’%/)\/SD>/€U%/./S€)';‘£]?/W

E«ﬂj [{52?) — [O((G')’_!J ﬂrcyj) = &c}w

g SR (’/o) : e

= ey
fog, % W@(Lu
he physical region, t < o ; - ; < o

Rif é’_ﬁ_ > 0 in this region, then *(C1) R o(’(o) £
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t‘ decreases to more nezatiue values, o<(€/ﬁ) also Hecreases,
4 conversely,
From the expeession above, cﬂ(t]/)ﬂecreases 1ogarithmically with
3 thus for small tll y
putting |
“¢) = ofo) +é”,<fc_°§)
At/ g

~ K (o) + Ck / '

ﬁwl k.l where oy constant,
EI also decreases lozarithmically with increasing P PR S @he

idth of the 4iffraction pattern decreases as __! .

SQL also 4 ecreases lozarithmically. 3‘A

$1s shrinking of the 4iffraction peak, i.e. the decrease in f;wV“)(,

xan increase in R, the size of the 4iffracting object, or the ransge
ithe ihteraction responsible for the diffraction., One might say that
uihigher enersies, the long-range peripheral interactions become more

Qnortant.

But the total cross-section also remains constant, Since

| :_(?ﬁﬁ7<z) 5@,) 5 meané that with increasing energy, the opatity
Q&ameter a most decrease, i.e. the d4iffracting object must become more
nd more trensparent, Such an abserping snhere whose radius and trans-
arency increase with energy cannot he ohtained from any simpnle

lassical picture. It is, however, naturally explained by a vpicture

h terms of Regge voles, first nut forward by Lovelace.
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LECTURE VIT.

High-Eneregy Diffraction Scattering and Regge Poles.
(Con(’dj

Last time we comvared the obhserved features of high-energy d4iffra-

‘bn scattering and noted in what resnects the optical model was defec-
ive,
As we showed in an earlier lecture, for potential scattering, the
cattering gmplitude has the asymptotic behaviour
Pilast) R G st

(1)
e domain of interest in Aiffraction scattering is that of high enersgy
l.e. larze s) and low momentum transfer (i.e. small t). Mandelstam
‘ﬁnted out that in relativistic 2 «hody scattering with crossing

fmetry, the domain (€ — o , Which is the domain of interest in

1) s corresponds to hizh energy in the third crossed reaction,

hlus one may conjecture that, in the relativistic case, the asyaptotic

ghaviour at high energy would be

&
A.ng(#) =~ ﬁ(() /g&() A = 0

(2)
'¢Q§> must be complex in the double spectral region | j?,Q/U‘
Writing
L) Row(6) (L G ot Log 2T
A ol £
D
(2a)

s notice that the Aouble spectral function oseillates. Mandelstam also
QWGd that these oseillations »f the 4Aouble spnectral function were im-
rtadt in resolving the »nroblem of Aivergence due to bad asymptotic

haviour.
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1
o

Q‘ﬁ
e
i
b

PERE for fixed € . (3)
f(})/7t) behaved badly. as C‘“’) 0 ) for éome value

( This would mean divergence at high enerzies in the crossed
fetion, ) Then if (47 ) 411 not oscillate, the integral would
111 Aiverge at larze £ , but of Jo(/&g 0/} does oscillate then there
é nossibility that a cancellation removes the divergence, and we obtakn
amplitude with an asymntotic behavisur that Aevends on . This is

f we obtain with a Rezze type of behaviour. \

According to (2a), the amnlitude and frequency of the oscillations
trease with enerzys thus the nositive and nezative veaks in the double
etral function in  (3) will tend to -anc~1lds ( ,&/-,§ ) be-

les larser, i.e. as & is further -n  ‘urther removed from the double
etral region, Thus wide-an:le scznterwnz would be strongly suppressed,
we Poles:

We have seen that for elastiec scohferinz of a particle by a potential,

Gt
be) - [ AwerB

i Ao T oL

_é’f& / > _wﬁycﬁQJ

5 e e e
+ LZ s e v B (4)
1l states occur when [E <o y 201 Lo (E€./ e ,l 3 (5)
RO e e

P the bound state, the amvnlitude 13 e2vnected to be Aominated by the

Esoonding nole term, and is of the Tornm

ol D Pe (ca®)

-

oot " (Ex) (E- Eg) (5a)
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sonances occur when for [ > o 3

pe“uﬁ@) SRl B O, .
(6)
d the amvlitude is of the Breit-Wizber form
(EQ) ) P@ (cot 9) ; /YL
([:’~ E£) 4 Bt o ) J
i
(6a)
ere
P
dC Ezk
(6b)
o
(A“ > 0 : Po(("b) ~ % . ; the integral
0 as 45"9& or faster, and the nole terms dominate,

If, for some energy, the contribution of the pole with the maxz,

ne of &K Aominates, the ampnlituie will be

ey L E )

A(4,E) = pive) 4
| %

Al T, (E)

(7)

Sunnose we consider the regzion where one nole is dominantj; say

—_—

oL (E) =

from unitarityv, the S-matrix :3 satisfies

SEe) S = ).

(8)



% B

| ¥

B 5 - by Oﬁ(ﬁ = e2xp ("ZCJL >
| g = o () o oo
EE 52 = - ang [:z“@(A{]~

S the various values of 5«6 : wherie B 9, 1,2, -~ would be given

i

(9a)

‘the angles shown in the fizure (e.z. see Lovelace: Nuovo Cim, ?5) 730

(ﬁui)

Sot— S E \ o
¢ 77 é 31 7~
e Sa e e

' £ varies, the position of the nole, & (E) , varies.. When

: 0((6) - fb' ) g = 90° , ani we have a resonance for
S5l : Ll
e width s Wy (- T e ' may be pictured
v Q@)//Czjz ( Qecx)-jlig may be picture

yfhe "angular velocity" of the vnole at resonance. Tt can be zero
ly for a point on the real axis, for which 52/;; - ) &
The result obtained by generalising (9a) to the case of several

les is

g { S e w Fuik ) d(”)}

(10)




where d(ﬁ) is deteramined by the condition that as { - +o0 3 5—8 >0
When only a finite number of voles is included, their positions
0<C(;5) can be deduced from the nhysical 5%/ and conversely. How-
gver, a finite number of nolee cannot reproduce the correct centrifugal
barrier; thus the above will not be valid when the contrifugal barrier
fs important, i.e. for small SQ/ ‘
Also above the inelastic thresholl, the above representation
84/ = - gu‘u%/ [:,e «o((A)_] is nnt valid because the pole and zer
are then not at conjugate voints. For a resonance, now, the pole, phy-
isical voint ani zero must all the lie on a straigzht line (in the,zeplane
But the vole determines the asymptotic behaviour.

C.,D,D. Poles: If for G s a Regge pole crosses the

real J@ - axls near a physical »noint (inteqra].iz ), then ék =0 " at

that point; NS S . These correspond to C.Dgf. zeros; in

the Jost representation of S-matrix in terms of'the ratio F A gi
___(_J__))
F:(jxv’Jk/

both t he numerator and denominator have a zero. C.D.D zeros corresnond
to poles that are independent of the dynamics of the seattering system;
‘they may be interpreted as unstable particles independent of the forces
responsible for the scattering but having the same quantum numbers és
the scattering system.
' Since a notential, by definition, includes only the interaction,
there can be no C.D.D. zero in potential scattering; thus here, all
Regge noles must have 3m~ £ }C)» »

For E i s all poles lie on the real axis; they correspond

to bound states, if A (A) 1s at a physical value.

Generglisation to Relativistic Seattering

Conslder slgcstic scattering; take 1T 71 scatterinz as an example.




- Bl

"  Scattering:

P!’)—P‘Lt ,73"’}7‘4 )‘5"_7
i)z, /I\(’ /3_;«‘

Consider the { channel. Because the pions are bosons, the ampli-

fide will be even or odd under [ & 3 (or § <> th )

gecording as the isospin is even or odd.. (Here, 4§ = ( b“+}9%)ls
{

IR (ﬁf(aj) o

‘TI (,3’ 6) w)

"

Alr,3) + A(t,w)

31/43(6)2( (th,m) (/4#6’ )
5 Ag ‘7){7’( )4»4”%7)( )

i,e. only even or odd Ag waves appear according as (f’l) 1s even

C“’é'm

or odd.

Suppnose we assume that as for a notential, ﬁhe single particle
states and resonant states with the same quantum numbers occurring in

a particular scatterinz system are dynamically related (assuming there
are no C,D.D. ppoles), then we may conjecture that the scattering ampli-
tude is given by an expression analogous to that for notential scatter-

ing, At high enerzies, nole terms will again Adominate.
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) = 2 pA0 [p e («Hs e
i L‘TTO((,(L) P (" ( J
l CTTO(h((-—)‘] P a ) - -t

1 ﬁc(") [l i oL A0 (er Od,

g8 w 1s the vion mass and é;t is the scattering angle in the

lannel.
| /

| un'o(’(li]
: sc%w i [:1_1'43 is known as the "signature" of the Regge
lajectory o{¢(ﬁ) . Such a factor is expected for all (2-particle)

atterinsg amplitudes, as the presence &f an exchange potential will
ve rise to a term that alternates in sign at successive physical ;T
lues.

Bound states occur when

Re o(g(t)s) v —@)

46 must be even or odd according to the signature of the trajec-

Ty ol;(m e Ll k. i
i very high energles, again

5 Coc (6
b)) . 5 Pl [1+¢ ‘(jf(

t . (€) ¢
TT K.,
ol wi B el I
' the signature 1s positive for all Regge trajectorles *that a1 2 -wm oA~y
h%ﬁ‘tuu' i T
i L and ek [
pissart has proved that for .

Suppose elastic scattering st very hicgh energies is dominated by
single pole term. This pole must have the maximum value of () 5
( - 0 , of all the possible poles, in order that /&dc(t)
afAimun. Ex.v((t)] L4 . We notice that 1f we take this
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inant nole to have (X(0) = | , then the Pomeranchuk theorem
gonstancy of total cppss-sections 1is fulfilled;

; For émw 'T(Aao,) e ‘5C793 3

85 that

i

W T e
A do T(250)

1 BB doe e, () /g%[t/ dv(u‘__/
4 Auvn Tolof €) ‘ = ﬁ?(t),ﬁ 4

—

Coo

1 it is thus alteactive to assume that such a nole called the Pomer-
Quk (P) -~ dominates very high energy scattering. Chew and Frautschi
lBrpret this by saying that strong interactions saturate unitarity =--

! they have the maximum strength_coﬁ%stent with unitarity ( since

Q) Bas this maximum value) =-- Fhe Pfinciole of Maxﬁﬁ@ streneth for

ong Interactions.

. We also obtain

oLp (L)

1T¢ L LJgP(OJ A , which is pure imaginary,
:ﬁ?(o)‘ = O"M(od) 3
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The Pomeranchuk nole must have the quantum numbers of the vacaua,

: 0, = 0, B=0, 4— + 1 , in order that it dominate high-energy scatt-

ring In all systems. It is taken to have an even signature, as it

s z:;.O and is assumed to occur in 71 T scattering.

Immediate consequences of the ahove hypotheses are that

(1} The 1st Pomeranchuk theorem holis,

(11) Different scattering systems will show the same high-energy
behaviour (for only the counling to the Pomeranchuk trajec-
tory can be dAifferent; oLP(f’) is always the same).

' (111) The 2n1 Pomeranchuk theorem, that
(Tag - G}xﬁ ) = 0.5 B = o0
' particle and anti-narticle scatterine cross-sections are the same,

1ds,

‘ ”The last can be seen the follows. |
N~ AR is just the 2nd crossed reaction, or the  reaction,if
} —» AB 1is the 4 reaction,

) = fel [Pocpw (0:) ¥ T (—ear®) ]

9 ST oL,PQU

P, (con €)  has a branch cut in the o —plane from o = -0

#s in the A channel, where  cof B S

-quz >/ ,) ALY

; ¢
ly the 2nd term in ( ) contributes to QWVT:

doo T= =B Py o) (ene) .-

the (i channel, where b = - }:%’— e

ly the 1st term in ( ) contributes, and

At
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( for okpited 2O

1s - o , the total cross-seetions (related to Yo~ T by the
ontical theorem) will be the same in the A and » channels, i.e. for
('A.*—B) and (A+§) elastic Scattering,

Wetherell has analysed the '9{:» scattering data and deduced the form
of the dependence of o(f‘,((') on (.

We have already noted that

&
SRSl
~ ...L 4/""‘/; 2 =
5 ’W/ ( = 7 /O_Z;L, 73("“ i’
L A LaS A >0,
E %o, gl ety

where »g(/s o) is the "form factor" for Aiffraction scatteringz.
To find the natﬁe of % (/)ﬂ') s plot QL,U_: as a function

nf tfor fixed 4 « A rapid increase in the slogg of the curves is
fbtaineﬂ. on a logarithmic nlot. It is found that at large /Sj % (aj (j
lepends mainly on (Tand varies Jittle with 4 .

We may write
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e 3 [olp(C) - Vj
A (5 ,
AL .
- 0 ’ o((t) —> ¢ ; thus the devendence of do on
_ ol
jecomes very weak as é — 0 .

| Lng{%/%:) = by FO 4 2[oofti-1] Gy :

EU%,<f&T‘> (S & pldted as a function of 3 for fixed C ’
J/{//

ith values taken from exveriment, we expect a family of straight lines
for Aifferent ( , each with a slope 2{}1p(f)"(] ‘ . The data
an be fitted only very roughly by straight lines: the result

s as shown in the fisure. L

[
0‘1:(('—) seems to —3 —f
as (j“') e . O Ml’;t

he Problem of the Ghost

For the Pomeranchuk trajectory, K ( e O) = | , and QL_Q_L >0
d((..(

’1-' C <0 . Tor some [ = G RO , we will have x(t=G) =0

g =0 1is physical for nositive signature, this will give a pole ii

s

he_physical region of the scattering amplitude. ( ' 3
Sinee (hu  pole  would cottesphena L a

R~ = iy " -~ - ™ S - ~

g 'Lf,{ W\JFL‘;V , e .('yv:.a.SS) 2
Tl S La this 'szhost!'! state causes an apparent difficulty.

iﬂl-Mann pointed out that this Aifficulty could be got rid of by posti
ating that the counline of all particles to this ghost® vanlshed as
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t -, y leee  g() - 0 as (- [, . Then the

ghost state would be decoupled from all physical systems and there woul:
be no problem. It has also been pointed out that this is similar to mar

nuclei lacking a lowest zero-spin stafte and is not an unnatural occurrer

LECTURE VIIT,

High-Energy Diffraction Scattering and Regge Poles,

| Last time we saw how the hypnothesis of Regge poles could be genera-
lized to a relativistic system andi how the hynothésis of the Pomeranchul
pole with the quantum numbers of the vacaum would explain the broad
features of very high-energy scattering, We also saw how the trajectory
‘aﬁp(?) coul? be inferred from a study of PP scattering data at very
high enercies,

ToReday we shall look at ﬂ-h/ diffraction séattering above a few
Bevy '

The main observed features of ﬂfd scattering gt about 5 Gev are a
Qery sharp forward neak coﬁtaining about 95% of the events between

A B = | and eA 8 = 0.09, and thus very little wide-angle
ccatterinz;- ‘

i} fof;;rd peak may be ohtained by the exchanze of a 2 state,
but this would still give too larse a scatterings at angles off the for-
ward direction. Lovelace showed how the Rezze pole hypothesis gives

a good fit to hish energy g N  scattering,

If the amnlitude is nure imazinary, it will satisfy a dispersion

elation for larsze b .
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20 0
T(s,0,0) = ¢ Ps, 7 oh” 4 Pﬁ.(fhwy.d‘*/
a C/’(: + Tr J B L
U"H/w)z

w'- w

(1)

orward acattering corresponding to [t’f small, W > -~ s 80 thati (1)

~, " the 1Ast tern

Jackward scatterins corresnonding to \w\ small, L= -0 -y ~50 that (1)
=% the 2nd term

kperimentally, backward scattering is negligible. Thus the R.H.S. of

1) may be annroximated hy the first intesral.

Consider the N scattering amplitudes
T;—"ﬁ-&(CY’GUB i

' - 42

have

Aw-b) = AV + A7
A (W—#P> e AH)___ A(")

(3)

milarly for the B3 .

i iy ) )
r the reaction T 4T —> NN : A ’ A &

ar~ the ampli-
des for the | =0 anda I = ! states respectively.

Thus in 17 N scattering, A(“ will zet a pole centribution
secattering via exchange of a3 1-0 nparticle, which may be the

B C pole or the Pomeramchuk, while A(") has a pole in €  corres-

md to the exchange »f a [ = | particle, which may be the P meson




For WTWQ scattering, :
Su ‘/ 3/.’,
R e AT

|

N

[
sk
3>
NS
|
UJ‘% %)
P
=

AC
(4)

unose we assume an asymptotic Resoe bhehavionur:
&) +) oy i)
Ll S S

ixnerimentally, one ohserves that the i gl and WT"b
;fferentialfcrass~sectians behave similarly at momenta ;7 2Gev/c (Lah).
This may he either hecause one of the two terms ,A(+) and /%t”)

Is small compared to the other or because bhoth the amnlitudes /xtw~and
A"’ are similar in their varistion with energy.

If one assumes that the vacuum trajectory makes thé dominant con-
ribution to /X(*), and the j7 to /\ﬁﬁ , then one might expect
'ﬁt either the j7 is coﬁbled auch more weakly than the Pomaranchuk (P).
‘ cfot) is very similar to c(vﬁﬁ) , or both. There seems to
%evidence for the 1st hypothesis; little is known about OEF(P) ’
rcept that op(e) = 0,03 to 0.4 and A (me*) =1. The slopes
f all the known trajectorics seem to be similar.

The exchanze of a 2ar resonance of soin J , or 'spin’'e(t) ,

‘ﬂl give rise to the followinz asyaptotic hehaviour of A4 and B:

A ~%w%) R o A
| — :

b / GURY|
E B Pd,,(&ﬂgﬁ) Rl ol X a0
T

£ -1 (5)
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We may write

AEE o pel A

() — |

5

(6)
We note that in terms of the amnlitudes (Q, and ,@, defined by CGLN,
A ‘ i/ 2 .

A - ?‘:\' (%‘*fz’—) ) |

- 04 £ - L.
P T (@ 62—)

Sﬂ
(7)

Thus By v e in (6) will, in gzencral, be different.
, Consider the coherent and spin=-flin amplitudes {%j%r{defined by

(8)
where N is a unit vector parallel to (&‘,X%_&)
: > :
R, and &5 being the initial and final c.x -momenta.
One also defines
- ) iy
E oot o Lo, ) a
’ as . a
S o ;
LG = 3 A O, (8b)
, — -
G%% " beinz the anzle between '%; and 4&§ .

It is useful to note the different notations used.

Mandelstam uses
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oy o
7 o
T = G gk (51 v ) C—C_Y\“ ' ) o s
7«‘»?1; zcx«?{f
2 [a+ o *’U)J ST e )
(Rd)
e have
el (W-m) 3} — L [A+558]
- g W (9)
- - (E-m { M+ (wHm) Bj s [ A +J3.3]
Y
| e
B - ? { [(E+w) v—(EWW) % J Pl

| 3,3
* [(Bomy (Wom) + 7, (Ev)(wrn) ] B

‘é-l; [ (f-en0) A% X (r+cm(9)3]9 as b — o0

}

Z:%/["{—A*HBJD Al 4 3 o

(10a)

. |

) - 4 = (C’V‘“) [ Ak L) -BJ ?f:r'r [—/—\-9— ﬁ.:ﬁjj
oA & = 2

doe "y € (Ob)




We als» have L =

Aim G

5
(11
Thus . S
Sl e LAY
£ (3, - A flCi v
, i
£ ; o [04(6) i ]
?()S’L) - zg—lq—veiﬂ A - ﬁ‘(t)
(12)
For initially uqnolarised nucleons,
o ( z % 2
g
2 ) R 7 £) —
Sl R R O e
(13)

9 £ O in the ohysical regionj thus, in this region, o {€) is real.

Lehmann showed that from the fixed ( dispersion relations, one

Re P\\t) ST Lgt‘/i: ““‘i} Jan 5 {1

4,

SO e T R
; (1a8)
e 2E8(E) — |
2 : ;{U:) - (15)
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According to the Mandelstam representatinng o A and ngj

tisf‘y dispersion relations with cuts »n hoth sides. However, nezlect
)f backward scatterinz leaves us with only 1 branch-cut, from

E. e s

where
| L /g,[,b—r3f‘1~3] ;
)
P Qw+z)]£@-—(m 1)]
(17)
. where we have taken v _ =X et
Wb »gvow'{,- | L
Jw T, £, o R _;_f P8, &
Tt TR
/- €
| (:O
But
- Reotc)
VA = Re ﬁ\ﬂt)' A S [Cg»wvo() Cz&)’% A)] -+
’ © |
+ %ﬁlﬂ.’) AR“L ced [@wﬂ) (&%4)]4
bl o () Piceli | Aok
imilarly for i«v—B gt AMCL k(L) aebhra J
'hus we may exvpect that g/w» ﬁ,(‘:) and oLG'/ satisfy diswersi

relations in [ with the same cut.
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e

.d =

WMoy i CUS’Y\W’M/’W aelo Lion
s S et
, ,fiﬁiilf;_ilff% g

v G
- E.(5) o TR

: di . :
fice the square of YW | will have the same cuts as B - §

Normaily, there would be the difficulty of finding out P(,/S,U

the unrnysical region hefore being able to calculate Ao in the
' - ' A
¥sicol region, Use of a conformal mapping technique enables us to

5 . — . . d
cLis gf b, 5 in the unphysical region from the measured
flics of 5(:‘(,{, /C{ n ¢ Dy an extranslation to €& S o .
Top thic 5% the chearved 1ues of do functi £ th
For this, plot the observed values ot L as 2 function o e
arizhlio e
/ :‘ = ,/
i _____-..__,.—-—————-———’—"‘_—:r"'
g e o e —¢ Sy
Poal Ve o Ve
L (19)
Lo iz defined hy (1Y),

B the interior of the cirels [+» ! = |
1 “i ot
! o 4
owrn, (113 the physical regiocn.in U in®o
- i Lo eman K n o< f
i U i vhe .._aujvl\).._b 8 I " %

. . AL gy ; < & STl Ce Lo
B the cut in C /‘/ Ve into the circie {’z,f = | .
~J

The double svectral function p(.ayﬁ' ) , i.e. the discontinuity
{ .

Pss the cut in o+ , is just the imaginary part on the unit circle

re-
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Thus & must be analytic in ) inside the unit circle.

d 1
le procedure for extrapolation:

i) Plot the experimental points as a function of AL
) Fit these points by a function of v analytic in (1] < ;
Calculate the imaginary vart on the circle W\,(t-] 'y and

) transform this imaginary part back as a “mnction of E to get

he double svectral function, using the inverse mapving

t :r —4b i
U ~WL ) (20)

The extravolation is not unique, hut hounds can be pnlaced on the

rrors.

;sults of the extranolation:

The data can he fitted as indicated ahove hy a Gaussian form

AT = a  wxp [’(/mzj 3
A (21)

here O = 31.49 A/ an and A4 = ((6- 94 0- % ) « There is
sharp forward peak for cen @ » 6- 9484,
The final result ohtained by apnroximatinz o (&) and p(?)

y polynomials in Vk- , and (notinz that 6(t> varies much more
1 o ()
fowly than b ) approximating (3(t) by a constant, is

iy
(22)

The formula above has heen obtained from &0~ at 5 Gev. and
. v
R at different enerzies. The formula fits d¢/ypnat other enerzies

ery well. However, at lower energies ( ,_ 2.5 Gev/e), wide - angle
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tterine sets in, presumably owinz t» the contributiosns of Regge poles
er than the Pomeranchuk pole.

The width of the forward veak decreases as _& increases.

Thus this 2-parameter theory zives a much better fit to the data

in the optical model; it thus sunvorts the z~neral hypothesis of the

le of Rezze noles (and in particular of the dominance of a sinzle pole
hizh enerzies) in diffraction scattering.

pcts of Tovelace's Theorys- (1) The approximation ﬁ(t)cc a con=

ant has no justification, (ii) It was later nointed out that the ex-

anolation vinlated dhe Regze condition

| %>o, 6<t<LI/‘*2)
ich can he proved in field theory.
One of the main results of Lovelac@s* extrapolation was the predic-
on of'a possible T - © D-wave 4T Tresonance bhelow an energy of [V*"
A D-wave 7711 Tesonance is exvected on other =zrounds: a) The Pomer-
chuk trajectory, if taken to be aporoximately a straight time, would
g8 throuzsh J =— 2 at about 1.2 Bev,

Analysis of the small phase shifts in pion-nucleon scattering leads
to exvect a D-wave I: — O resonance,

An. I-: 0 resonance at ahout 1.2 Bev has been reported at the
RN conference, 1962, If it has J = 2, it could be the D-wave
ge on the vacuum tréjectory. (Lovelace has also speculated that if
Ji:: 2 resonance exists, it may be a strongly counled heavy 3ra-
tion, which would =ive rise to a strong, short-ranze "gravitational"
ﬁce,) ‘
The hypothesis of the dominance of one vpole at very high enersies

es not help us to understand the differences between the behaviaour of
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ie anplitudes of different reactions. We shall see in the next lecture
the total cross-sections for different reactions may be compared to
ive us information ahout the Req%e trajectories of the ABC‘pole;iand

e ¢J and 'F mesons; they indicate that an additional '¥acuum' tra-

s .
ectory 7 may also exist,
LECTURE_IX

High-Enercsy Diffraction Scattering and Rezze Poles (Cont'd)

First we shall briefly summarise the details of the high-energy data

(Ref: S.Drell: Proc Aix-en-Provence Conforence, 19613
and A.M.Wetherell: Proc.Phys.Soc. 80, )

_j>b scattering: _
bt is a constant = 40 I from 10Gev to 20 Gev,

(1) 5
ey

nd annears to he sn heyond 104 Gev from cosmic ray exneriments.,

(ii) CTLZQ ~ 9 wlr at 25 Gev. The diffPaction peak in elstic

icattering becomes narrower with increasinz enercgy.

0,5, cr‘ﬁﬁ at " J& = =1 Gev/c is less than 2 X 107% o its

forward value for E%)(QGL) =24 Gev.

br the same value of £ . 1t is .~ 2X 107° of 1ts forward value

FE. = 6 Gev.

Scattering:

CT&t <&{E> is still slowly decreasinz with increasinz eners:
hom 52 wdr at 13 Gev to 46 ,{; at 20 Gev. The asymptotic Pomeranchuk

limit does not seem to have been reached yet.

o L . o~*MJJ and <T‘££ all decrease with increasing

nergy; this is difficult to understand.
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' (1) One may ask whéether the decrease itself may he caused by the

ge behaviour. Udgaonkar suzzestoed that the decrease may be due the
. ADC pole, but this would require too large a coupling strength for

ABC pole.

(1i) The decrease may be a result of the contribution of the higher

ips |

(ii1) The pnion itself may he a Regéé pole; this would result in a
decrne x5 . £Q

ﬁrithmicﬁin the one-pion exchange contrihution to o=~ gy Similar

e ot |

ture.

g‘Cﬂ' is still falling slowly at the hizhest energies observed.

&(iﬁ Gev) O%,km&. (in mb) <Y;f;(in mb) <g:4k <§§;hﬂ%)
6 29 | 27 2
10 : 27 25 2
16 25
The table zives the 7T+b and T{jﬁ total cross-sectionsj; their

ference is not accurately known, but seems to be slowly decreasgéng
srdine to recent data ( §f. S.Drgll: CERN conf,, 1962)

(T‘@LCﬂ'F) decreases from 5 mb in the 5 Gev region to 4 amb at
Gev, The angular‘distributian regsembles that of diffraction scatter-
¢_with the forward neak narrowinz as the energy 1is increased.

' Strance-particle oroduction cross-sections are less than 3 mb; de-.
i@d data are not available.. The f<%'? total cross-section seeams to

pach a constant, while the K™p total cross-section is still

’ing. -
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In the various reactiosns in which the total cross-sections have

ot become constant at the hishest enerzies observed, one generally

*YS that the energy is not hiszh enouszh for the Pomeranchuk theorems

0 be apnlicable. Can anything can be inferred from the wayvthe cross-
ections vary? Udzaonkar showed that informa@ion ahout Rezze trajec-
ory other than the Pomeranchuk could he deduced from the variation of
e cross-sectionz,

| We have already seen how, once we find a reaction in which the
émeranchuk limit is attained, we can use it to find 04?(§) s
sher reactions in which the 1limit is observed to be attained could
hen be used to verify the hynothesis of the dominance of the Pomeran-
huk pole and check the shape of dhp(ﬁ) Iy

When the enerzy is not sufficiently high, the effect of poles
ther than the Pomeranchuk will he apnreciable; as CX?<6,)is known,
nformation about these other voles may be oHaineé by subtractiong

In a Rezze theory, the objecti¥e is to find all the o(;(k/ and
5&?3 « Theoretically not much work has been done on these., How-
yer Chew and Trantschi conjectured that the ckc(t) may all have the
&mﬁle form of straight lines. They have made a plot of J vs. F42
éb-all the known stronzly interactinz narticles and resonances shown
n the next page.. Assdming that all these particles are ?evée poles
hat move with energy, particles with the same 1ntexna1 quantum numbers

‘ f—mvk\‘)\[ ard G-patsly
ge.ﬁbaryon no. B, strangeness S, isospin Lr;are joined by a tra-

A

ictory. e.zZ. The nuclenn and the third pion-nucleon resonance are
ssumed to lie on a straight-iina~trajeetnry;-with =5 ¥8=0, B=-1.
lnilarly the A\ omdthe Yz (at I8D5 Mev) =nd-Tne VR 1A

% lie on a straight line trajectory with I== 0, -B= 1,8 == -1.-
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The K and the K* may also be joined by a straight line. Al-

houzh the Chew-Frautschi plot is only a conjecure, it is useful in
hat it provides a theoretical backzround azainst which all data on
ezze poles may he viewed., <Lt gives a rouzh idea of the slope of the
rajecories and suzgests where we may look for new narticles. FMor in-
tance, as pointed out inlan earlier lecture, the Pomeranchuk trajec-
ory nasses througzh J = 2 at a»out 1.2 Bev.. 4n I = 0 resonance at
bout 1,25 Bev has heen found; it would be some sunmort for the Rezge
ole hynothesis if this turns out to have J = 2.

We may note the following features »f the Chew-Frautschi plot,

A1l trajectories have rouchly the same slope, of ~ 1 Gevy

Sk 2 9
From the relation 0(4 <°L+Ji) /OL'P = R where R

dk,ﬁkq};gfgﬁ

is the {a¢yuxqb Rod <sﬂaf ke, Pk sl AT e one may say
that all particles-have the same 'size!,
Successive Darticleé on the same trajectory obey the interval rule

J = 2, The spacinz in V“} is about 2 (Gev)?
Only one particle on each trajectory is stahle, as expected.
The vacoum trajectory lies the highestfvas one zoes lower, one gets
furthsr away from the vacuum guantum numbers. One may associate
maximum "coherence" (leading to max., scatterinz in the forward direc
tion) with the exchanze of the guantum numbers »f the vacuumj this
is true of 1T gscattering (as may be seen from the crossing matrix
and may be assumed to he a 3o§§;al ovrovnerty. (iv) is consistent with
this, as the vacuum trajectory lies the hizhests’it is the only one
that reaches the Proissart limit,

It is clear that one can obtain only discrete points on the trajec-

ries from the mass snectrum of varticles and resonances. By studying
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ie forward and backward peaks in scétterinq, we can tracé out nafts of
e curve (x&t) s as we saw in connection with Wetherell's work on pp
catterineg.,

We shall now consider how information ahnut the various trajectories
ay bhe inferred. The sources are the variation with energy (at high
aergies):(i) differential cross-section in the Torward and backward
irections, and (i1) total cross-sections

Consider the amnlitudes A: A+' for pion~-nucleon scattering,

- 5
AT = .;[Avi_/x/zj)
NG gi[A'/z+2A3/zJ
will have contributions from the exéhange of I = 1, G=1 trajec-
ories, presumahly mainly the'F trajectory. A+ will receive contri-
gions of I = 0, G =~1 trajectories, like the Vacuuyaand ABC

rajectories.

The optical theorem zives

3&[“(“/?)‘%0‘“(‘“*@] < :{—jL G, /3('*(@-/0/)

L
L{otnp) —ctp) = L 4 A (e=0),
9
I
ere QUL = the pion lah. momentunm,
Iote:
A R s i
RV,
s ) — > at hizh energies.)
B k- gy :
o (wp)— latp) o 4 _
il

SUT Pl AT p 60 T Ak )

nce ol (o) =t
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The ABC virtual state occurs near A ~ bel y SR8 0
ere, We may exvnect that 0('/1\3(" (o) 2 0O. .

B oGy G = et é—

8uch a fit was ohtained empirically by Lindarbaum et al,

liote: There is a close relation between T —g g 7r scattering and

the ABC and vacuum poles,)

Rezardinz the ja trajectory, we knew that oﬁ,(gq/béj = 13
Bo(2=0) <1 .
lecent data on the decrease of [/cr»(r(ﬂfj — o (n*h) ;7 with in-
reasing energy indicates that ” c(f(o) (3 to 0.4
Considering the various 5=0 mesons P, 4BC, P, ¢, 1, T , ...

he may renresent any high-enerzy total cross-section as

~JEe e ~[1—ot (2]
()5) y P’u* P‘wvj) : ] J =5 C{Jw/?.i el o

The larzer the value of & , the more fanidly does the series con-
freces,

®or the various cross-sections, we ohtain
9

i

, o(w(e)—l S ‘ (o) —
= o(e2) = T €E, %;}’ A > opl) ™ g l

: —rC,q (B = s
25“\ = fgs J,;,r{)(/lm) i Tr(/:\BCg (’%‘) e

a (- + : ool 2)~ WL o Lz D7
el e R (»é_ A
i (i) Bt C:ﬂ” CJM'? 1 e i éAEt%L(Av) %
: : o) !
P 2 O( ..u( 9L = f A ( o) - dAB'\'
() & T € 9 (_/_S/) * s o
Sduge o C?’%b“\f(%J + T Cpge 8 (I, i
o(‘*){i“)"’ ol (o)~ | d%d)"/

‘ : ”1 _ L 2 P
LCRETIE UG S WS PRI PP 1 4
fri. 5.Dadl . dERW g jquz]
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To find the different narameters, one starts with scatterinz data

we ahout 2 Gev and tries to fit the data to the ahove expressions.:
bindividual eontributions of different Regze trajectories may be is-

m . 3
ited hy takingz suitahle con¥ributiosns of the cross-sections.

3lysis of the data:

Tirst we note that the differénce G*(};b) - Gf(fgﬁ) , which
ﬁue to the & and_F , 1s about 20 mb at 10 Gev, whereas the difference
é”P) B is due to the—Y abo¥e, is only about

n@ at 10 Gev., Thus we may expect that we can ignore the ¢ trajectory
interpretinz the kt», k;— difference. (Better still, we could take

e difference between ¢ (pd) and o(pd) in which the p con-
ibution is compnletely eliminated).

Comparison with experiment zi¥es (o) = 0.4, which agrees with
¢ Chew-Frautschi plot.

,‘However; if we interpret the pb and p Jp cross-sections as a result
fthe Pomwgranchuk and « trajectories, the qdesfion arisess Why 1s the
served k?P total cross-section = an energy-independent 40 mb from
Gev to 23 Gov ? |
From the exvpressions for the total cross-section, we would expect
at the pp and @)ocross-sections would anproach the Pomeranchuk limits
mnetrically from bhelow and.ahove"resnectively. Why do the observed
bss-sections hehave différently ?

This difficulty would be resolved if we ?ostulate a third trajec-
fy__7'/., with the quantum numbers of the vacuum, the same coupling
rength as the « , and with <%?,[0) = (o) © 0,4, but with a
ignature onposite to‘that af the & . At el : this\would con-
ibute an imazinary part to the amplitude that would just cancell the

jntribution of the « in theﬁ}vamplitude but add to it in thé%k>amnlitude




o

this wonld explain the constancy of the Pb total cross-section., The
w7/

eal parts 57 the amplitude cominz from the 2 and P largely add in

t)P scattering, resulting in 10% increase in O, (pp)  abou€ the

bptical theory value at 20 Gev,

7
We now ask: TIsa new [
]

particles ? It presumably cannot be identified with the ABCﬁ meson,

trajectory needed or is it one of the old

1S 0(p/(0) ~ 0.4, and we expect OC*BC

1BC trajectory turns around and comes back into the nhysical region

() < O , unless the

ok o) R 044,

It may he that additional trajectries are not really necessary.
Inclusion of correctinn terms to the asymptotic behaviour of'ﬁi_(aﬂéﬂv)

it not too larze values of % may account for the discrepancies.

Now consider the K+Yo ~and K p total cross@sections. Thir
jifference must be due to the W 3 it is consistent with ¢ (o) = 0.4.
The l<+b cross-section is a constant =~ 18 mb at enerzies aghova,5 Gev;
thus azain there must he a cancellatinn bhetween the and'P’éontributiOlg.

his requires that '%WVV = o'k s Where. %'?’M is
%/C—“ M %/z,,;. i<

the strenzth of the counlinz of the T>/ trajectory to the nucleon, ete.

The > will not contribute to ﬂtjp scattering owing to its
lezative G parity. Thus we expec t that the 1T*k and 77’#
ross-sections should hoth decrease towards the Pomeranchuk limit, due

1o the P/ contrihution; this is what is obhserved. Thus the TTtﬁp Cross-~

T

gections sumnort the postulate of a trajectory, In fact, .the first

ugcestion for another vacuum trajectory with K (o) :{ég was put for-
ard by K.Izi. ufho observed that dispersion relations for @N forward
; one

cattering (without char-ze-exchanze) with - - subtraction corr. to the

bmeranchuk contributisn led to an anpreciable disorenancy between theory

nd experiments,
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I7 the P’/ exists, it is iaportant to see whether of, . passes

P
irouzh zeroy givinz rise to a "Ghost" which must be zot rid of as before
: ‘,i-iflvtw'ﬁ e (_'_/;\}kpf\fm B8 e Sih L < o(rf {o6.55=< 6;"('0&%‘« ’bﬂ‘ra.

Ahout the 5; trajectory, little is known besides that its cauplinz

trenzth is much smaller than that of the «w . The ﬂ**o R H—F
iffercnce is due +o the ¢ ahoyes; it indicates o<j,(<>) % 0,3 tor 054,
te difference o~(pn) — o (bp) =ets contributions from the p and
he - T 3 the pion has a lower trajectory and presumably zives a much
@aller contribution, Thus we expect that the(}?w ~»kk} difference
as the same sizn as the [/QT*y%}_,<ﬁ h) ] difference,

Faissner's exneriments on ﬂ‘W; char>c-exchange scattering at

| Gev/c show the presence of a sharp pelk for events with A“t| < 150

lev/c. The total elastic cross-section of 110-45 mbh azrees with
i + R o
he theoretical estimate from the observed (ﬂ"k) 9 (TT+?_)
jifference 1if o (o) =0-4 ad O, Re gt 5
)0 ? ¢ e
Mahn's exveriments on _})w ~»ﬂ}7 (charze-exchanze) elastic sca-

fterine 2ive an (elastic) cross-section of about 100 u4*. The angular

—

iistribution is roughly isotropiec up to [t] = o20ev2 at a lab. energ;

of 25 Gev, The cross-section is an order »” mapnitude greater than that
expected from the ’ f o(np) = o (pp) S [mE.

[t is similar to that expected from the exchanve of an unregzgeized »nion,
Lookinz briefly at KN cross-sectiﬁns, we note that the following

gomhinations =et con*“ributinns from the trajectories indicated.

Er(K*b)- G{KTn]_j {

[t — (<) ] @

[e(kKh) —~ s (kTp) ] P,
1

[t <Th) + o(c™p)] P aEG
Lo‘(K¢h)+'G“(k+“)J F} AB&)“Q
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lhe Nucleon as a Rezze pole: Blankenbecler and Goldberzer speculated
hat the nucleon may lie on a Rezze trajectory. This may -he tested by
jetermining whether the differential cross-sectinsn near the backward
firection, for a fixed value of (A ;, is independent of A (as it would
for an unrevgeized nucleon) or whether it decreases with increasing
A (as it would if the nucleon were a Rezze nole),

, . 2 Lotyy(w) =1 .
Grihov pointed out that the factor A : in
the backward peak would give rise to ravnid osillations in the angular
pattern of the veak., The oscillatinns increase as W increases (i.e.
3s one zets closer to the “~ckward direction),
TV*% backward scatterinz zets contributions from hoth N exchan

exchanze,
s . = AR L \/){
Finally we consider the ~eaction P e p+1 . The
; : a N

Pomeranchuk can =zive rise to vnroduction of only the 2nd and 3rd pien
esonances (with I = 3)B thus »nroduction of the (3,30 resonance should
jecrease with increasing enerzy, as comvared to the hizher resonance, as
geems to he ohserved. [(In Fb scattering at hiszh energies, a no., of
junps are ohserved in the crcss-sectinn, corr. to nroduction of the re-
jonances. The (393) bump disannears as the enerzy increases. )
Production of the (8,3) resonance will take place at lower enerzies

jia the nion trajectory,

The above has heen studied hy FfautSChi’uﬁ"*_ﬂbT(B%OAT»S aond Worg s
Cvo\-v of ?Mﬂb“»‘ U v WA) coﬁ—vﬁnms S z@eww\ sLuouu/f/ G\J Cald/w\c,lé
1%

&

5 i 5’)9\;‘( ‘Quw\‘,y\a‘,\‘ D) e )-“_,QK 3 el A ,p,;v/{ a0 QL'W\,{‘ j-a'v (o9 b yore st
; : Vg 2 ¢

Y

2 { i T | L vhan R (e tobisra b sivolin ridiv.




iy Lo

A general criticlsm ts be made of all the above is that if branch
cuts in _Q, exist, as suggested by Amati, Fubini et al, their effect
would mask the contributions of all poles other than the Pomeranchuk

th would nrevent the determination of all hut the vacuum trajectory.
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LECTURE X.
AN_EXTENSION 07 THE REGCE REPRESENTITION |

‘r[ T#\LS ‘((Ctu.f{’. (fas&ﬂj foi’ﬁows S H&M-O‘-C-es(—ﬂMf AMM? PHY:’B 51‘5—(' (IC?(,Z

The original Regge revpresentation of the partial wave expansion

as an integral plus nole terms, viz.

R, %) = z (22+1) Alk,0) Po (%)

o ey
faua i) ALk L) Pel=4)
¢ AL"V\/"[T% =
A (1b)
| ‘j° M (AA+) A (54£74/) 7k’< 4 ) "
| i it
(o0 — /)
D R Ry (&) &J (—4)
Ke ol 7-—/{‘{ ACrv TTXy, S
(1c)
j vas restricted to Re £ ?7"f% , for only then did the "back-

zround integral" in equation (lc) converse, :

Ror ¢ - Ball sy sie s v ol i isien) toey B o “(2)
<~/5 ) 3 F@'l T '

and the bhackzground integral .~ 2 s as 115 oG -

Lol et
fut for (  — N ?€<’AX) ~ 2 £ . (3)
ind the integral diversges as (1] = oo .

Thus the renresentation (lc) must he modified hefore the contour

can be shifted to the left of the line Re & = —

vab
2,
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This modification is aghieved »y intrnducinz the Legendre functions
of the 2nd Rind, Q& (_,V) , which have the fbllowing properties:
; 1 tic in th -pl fr —
1) QX, (_.4*) s analy c~ in the /3 plane cut Som -1 to

L along the real axis . i :
.
_.' :‘1 _ oC

2) The discontinuity across the cut is siven by Disg

Dise gl L i Bl i o

s (4a)

=~ &C(Aw ‘TT‘(;),QJ,Q(.") 5o Meikhg de (ab)

where Dise @,(-x ) = Y {-n+ve) - Qy(-x-C€), (ac)

3) QQ (45) s W functiﬁn of 46 in the entire
£ -plane, The polde ave ay 2 =l =2,—3,

R . S S S
b oL aoc,ﬂﬂ' a0
: N,;J'e gol' £d<a,
Belw)ie. o fEited vl 8 D
Alnard “ Trm(”% reaqnd
(6)
E -~ e B P Tl g i oY\ o e S i § {
(7)

' | Pol) Qy (
The funection 2 B 2, % [ o
4&»‘”  qrcos L J 4Z &

(%3)
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Eor all ,@ s positive or nezative

) = 2' (28+) A(%, L) Pﬂ,(”zf) +
2 (_,,)/e' 3.4 A('ka‘e"é’) Q/e’;-‘(‘t") ki

B - a0 (

(9)
The mofified formula obhtained is '
| -+b°"
B - j’ AL (204 A (A, ﬂ)[ Rl nguj-
‘ Acrettd W o
__,,LOG
: = 3 i .
R [ lg a UL S e SR R el
=0 2
25, (aett) B; (&) A;r) ol M
-4 AU"/'TTOQ TT cod T o
(10)

The inteszratiosn contour may now he moved to the 1é8t, to h?;:-.-,L)
The extra terms to he added are the noles of A (’kye) crossed
‘the contour (which results in the summation in the last term ef

0) beinz over 'R!LOCC b s L. ) and the poles of

[ Pl Q-

ot 1 ces L
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{

iThe latter noles occur at £ = - 5 s 7L intesgral; the residues

n-
at these onles are (f,‘yn ' CQ (4%;) .' They thus zive

ffise to the additional terms
- a

_‘;Z} ‘?? C—‘) ogn,, /4‘ (4%5*'7l'“é:) ész—if (1?,),

| N-1 e [ e
'__..Z ;—r—-{r —~l) 37\,, A (’k, ’n-E) Q..y\,w-é (?) &

wanest (5 [ Lﬁ; <L< N3

| o

;PJ being the integer ¢ This just cancels the

first (ﬁJ ) terms of the first summation 1n equation (10)

| The result is :

/ : ’L‘\—bQ&

N - f d (2t Ak, [W W Q)

g7 :u Ain né r cos T4
—f-ueh

12 (v (R [ lw Qm,w)]

(11)
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In this expansion, the "backzround" terms, iiei the integral and
the first sum, decrease at least as fast as 15‘1' y as [4 | = om,
‘while the Resze pole terms (in the last sum) 2o as 7& s as[fr(~9oo,

We enquire what haonené to the hackzsround terms as G—L_) - -0
The background term does not — O as (— L ) ooy w0 TG g

— O, it could he nroved that Dise-  A(R,%) across the cut
for 4 5 was analytic, which is not true if /%(f%,léc)
has a Mandelstam renresentation,

As the hackground term does not vanish as (T'L PRI 3

the last sum in equation (11) is an asymptotic series.

Also, because of the pnroperties of 4 every term of
’ T ézidr( 1{) ’ y

the series

(2t +1) /?c(k)[ Lot Qe;g (-4 }

u€7,L) ACWTT(X(: .—rr Q‘M/n’a:

has a cut in from -1 to cO along the real axis. However,

the scattering amnlitude /% ("&, A}) has a cut starting from

/4¥ = 479.7’ , as seen earlier,

Consider the partial-wave Schrondinzer equation for scattering

by a potential \/(19 s

> s (12)

viw - [Z(JZW + V@@ ]y¥mzo.

OR
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Take the class of notentials which can he expanded intos a power

series:

| o w— |
V(I) = Vi ik
n =0

'(13)

Rezze showed that the snlutinn of (12) was an analytic function

of ‘e for Re £y "‘-fz s and that the  scattering amvnlitude

was a meromornlic function of JZ in this half-vlane. We wish to
extend these results into the whole ,@,—plane. For this, first note
that equation (12) is invariant under ¢ —5 — f— | P 1 <

the boundary condition at the origin will he different; the two solu-

3
+ |
7C‘€ at the origin (¢ = 0 )
Phus the two solutions coincide at K = <—Zé LG me e B et

solution can be continued into the half-plane Rg £ < —-é. , B

_4
tions behave like X and

shall obhtain the 2nd solution.
To find whether the first solution can »e analytically continued

into the left half-nlane, we solve the equation by a power series.

Dols B Gi) L= p) B

R /wvws’fv% 1 (14)
2 i

'%()(z_) ~ £ as 3 — o y . Lop ,ﬂ{ positive.

‘The sign of the exvonent is chnsen so that it hecomes a decreasing ex-

noential when R = Chk, < 7O -
56("') obeys the equatinn

| | o0 n-|
W) + 3k p(x) - L 000 — (Z W Jp=o0

(15}
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A+

o<
47(25) =t

(16)

Suhstituting (26) into (15), we ohtain the recursion relation

B s (sr5-1) — LB+ ] 4 Jeh (Btn-t) @y
o

“,5/’, S Goolir 8
Mnm =0 i o RE (17)

Pr - O § only the 1at term éontributes,

Py R S Y

ok A e A+ o -—-ﬂ/

Whichever snlution we start with, all the higher terms can he calculater
guccessively. The only sinsularities these terms can have in the finit:
; ot Aa&f,(wturtfs

nart of the JZ—~pﬂane are poles at the negative integerskwhere the
coefficient of CLybvanishes;

If 9, 1s sufficiently large, we can find an 1} (for civen
,€> such that

/ 5L9L4-f / <t [tl_
=N b

(39) ..
First, sunpose the last term (which 1s a sam:of a series) in (15) has

bnly a finite number of terms.

By, S gl 2 Uin QXsie 1= m
b (Ot A T e




- 118 -

For o1 sufficiently larce,

&, o _-_7,&_%_ :
a/%,-! o
and thus the ahowe assertion is proved,
When \/(?9) ::,£§§; 1§m9C7\d[ contains an infinite number

- of terms, for a supernosition of Yukawa potentials, these terms decrease
with %V 1like ;ﬁf, and thus the same result holds.
Thus the powef series solution for cp(yk) gonverges for all
i& and X and conver?%s uniformly w.r.t. /Q in any region of
the (/-plane. Therefore, since the individual terms are meromorphic
in the whoie 2/ -plane, so is the whole series (because of the uni-
- form convergence). Then we can prove that the scattering amplitude

' is meromorphic in JZ in the whole Xl—nlane.

- e
" Behaviour of the Scattering Amplitude for Re £ < W

Althougzh, in zeneral, the scatterin: amplitude for £ and -4~ |
are unrelated, as they corresvond to solutions with d4ifferent boundary

conditions, we can require that

' “"Q) e A (,%, -4~ ") for 4 half-intesral 7)64‘/@ <_él
= %A («%, —,Q.«—I) &H £ intezral. ¥ (20)
For half-integral or integral 1& less than -+, the solution
. +{
behaving at the orizin like ;CQ’ does not exist, for 1in the power
series for q}(%) . the coefficients C%LQ{»/ and hicher

order coefficients hecome infinite. (For the solution behaving like

;,C*Q)f‘ gt the origin, 2= £ | .. The coefficient




e

of CLJL in the recursion relatinn (17) is then

= (QL+1+n) s ,
which is zdro for oy = M e L e L

R Y-y =82 , 93 Bysmf= fuan F0O.

- A11 the hizher order cnefficients Oy

@+ﬂ'/) = R4 =0 for %71{3; g .« Thus to

are also infinite, as

. define a power-series solution, we must multinly the whole series by
|

. a factor which is equal to zero at negative half-integral and integral

{
han .- Ly —m—— s hi
Ja (less than %), €8 =0 F(ﬂ+~§) | This leaves
unaltered the analytic properties »f and the value of the scatter-

ing amolitude(as Fe wove fumeliom g aiwadj(AWJ&C@IMizifémifo%faeébf)
For negative integral 5T half intezral ﬁ,) all the coefficients
un to CLIKQ}*Z ' would he zero and higher order coefficients
‘would*be finite.
In the corresnonding positive solution (ohtained hy the change
£/~’ "Q - ) the same holds true for the corresponding eoefficiaents

i.e. all the coefficients un to g4 are zero and higher order

5 )

coefficients are finites

The scattering amplitude is related to the wave function by

AC’&:'Q—) = F(’Qt‘“’%) {Uﬁ‘e
=HEBE Y,
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\ — R cnd —ond e :
fhen L — » € asp T _ebr‘e , for half-integr

N

—-— L 5 for integral.

e ; =g = L e vy

Thus 1t is zenerally possible to requivre the relation (20) be-

tween the scattering amplitudes for ,f and — ¢ _ . However, if
Cevms add

B

3

.4Q passes through such a value that t{£.€¢sf' 3 (2(-2

..

the recursion relation ( ) ) will leave (A determined,

_ : 2121 —1
To study this situation, consider ¥alues of £ 1in the neighbour-

100d of an integral or half-integral value ,ﬁo z ,Z::(<go‘*éilk)

j
ay. , The coefficient of i i
»zdk g n (17) will also be smally &

5>
b guw °S" e 5%,,{,’%’;,;!,_ Carans e (J1).
ow vary fi, around o o This would zive rise to rapid chanzes

X g1a1-1
Thus for zﬂ-f, sihall, we can et any desired change in the coeffi-

and higher order terms.

ients by moving J{,around /ﬁéov. If 7L hehaves gsymptotically like
obel;%x + @g’d&w s tha ratio ﬁ/da can he varied as
esired by mdvine {2 around 4é@A. In particular, ﬁ&x_ can be made
ero and the amplitude A has a pole at that point (since there is

nly an outgoing wave)., ( A different way of seeing this is that the
plution with the required houndary condition at theorigign is now also
he solution that behaves like ‘e&k% at infinity and since the ?ost
) hhm/l:(Q;h) is the Wronskden of just these two solutions, we have

| LQ,*l) =0 , and 4 has a pole.}

The residue at the ahove pole pends to zero as 12 tends towards
ipezative integer or half-integer. At these points the symmetry

elation (20) does not hold.
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Consider the behaviour of the Rezze poles when \/’ is small or

(ﬁi’ large. Then the recursisn felation (17) hecomes

[(/ng,) (3 +5-1) «—,é’(QJr')J a, + o4 (/:4’51»1) o, = o

If JZ is a nezative intezer, the solution hehaving as 15:”4/ at

the origin (i.e. with,ﬁ::/i ) will terminate at /30 y as sz =0,
: +1
. since </b—r7k 5] b) f is then = O s and the coefficient of @

(e s &
1s non-zers. Thus the solution {/(x) = ¢ ()€ _

will behave like 43é 4 at infinity. Azain the residue at this
'pole? vanishesJ since 411 is a nezative integer., But as \/ is
increased or [ﬂb’ reduced, Regze poles appear at values removed from
the negative inte?er values of ,6
Since the »ole farthest to the right dominates the asymptotic be-

haviour, we have the result that as \/gis increased from zero or as

1Jh,{ is Aecreased from 1nf1nity, the scat+er1nv amplitude be-
jLhaves as C@n/ . This is what one oxpecus from the Born annrox1mat10r
For an attractive potential, the »noles mave to the right as x/ is
increased or Hkl decreased and the asymptotic Wehaviour 1s stronger the

in the 1limitine vase. For a ren%dsive pontential it is weaker.

We now go back to equation (11).

ARE -4 )
The Regge nole terms 5: ( . -(FZ) 25 — ol =
i%c+h)ﬁt'b ' :
Cos T &

can at first sigcht become infinite at nezative half-integral values
of o also, Howdver, at these values, either
(1) the residue at the »ole vanishes, and the amplitude remains finite

OR




S ava .

(11) two Regze voles with the same residue pass simultaneously througk

.@o and —£ - | s and they cancel, since
t )*[ﬂ’eo”') ] =0 , and there is no infinity.

Thus the scattering amplitude becomes infinite only at positive

integral 'e s Wwherle we have a hound state.

We may expect that at least part of the above may hold in a

relativistic case,

LECTURE XTI,

Experimental Consequeﬁbs of the Hypothesis of Regse ®oles
[ =

We shall hegin hy summarising wvarious results we have obtained in

earlier lectures.

Consider a general two-hody reaction

R PR e
(1)

In the relativistic case we conjecture that the behwviour of the in-

variant scatterinz amnlitude ,A («%,fj at large _4 1s of the form

s p.6) [1xeT ] R 0o

Ain TTXK CU) (2)
of the

where the sign inside the brackets is known as the "signature™

Regze traijectory .
(2) may be interoreted as expressing that in the Regge formalism,

the scattering is expressed as a sum of pole terms, each of which corr-
gsponds to the exchanze of the set of the nossible particle combina-
tions with given internal quantum numbers ﬂ) :89 I, S;

and G (..II. is the parity). As we have mentioned earlier, each

¢
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pole term renresents the exchance of 3 coherent superposition of an-
éular momentum s tates, which mav be expressed as the exchange of an
equivalent unvhysical energy-denendent spin OQQC) i

The .eonjecture in the relativistic case may be expressed 1in the
form of a sét of rules for wiriting the contribution of a given Regge

- Pi~ys Rev (26 , 22eu(1abd)

pole term (ref, Frautsch??%%ell—Mann, and Zachaff%sanx). This re-
places the set of rules that one uses in writing the‘contribution
of pole terms in Feynuan perturbation theory.
Rule 1, Consider a complete set of linearly independent invariant
scattering amnlitudes f\(zy(i) free of kimematical singularities
and zeros in £ and t .

Rule_2. For the t‘ -reaction, take any set of values of the conserved
quantum numbers jB) ]'9.§,(?9 ¢ 5irl ex@ept J . As a function
of o , consider the contribution to the amplitudes f%é of a
_hypothetical egbﬁnged 'narticla! with these quensum numbers (and
Brbitrary 'mass! M), For each /%; , this contribution wigg‘be a

sum of terms containing Legendre 7Tun2t’ons 725(}iﬁ) and‘F%/(ik).(
At larze 3 , each such Tunction of ‘)CC is asymptotic to a power
of & , with the exnonent varyins with 4 like ( 3—% consl ol

4
Thus the contribution to f&d is of the form

(?;/’ 2/l”) / o S - Oa
o 0 b i y A B
v (C/’ M 2)
g !
“where the (¢ are constants determined hy the reaction in question.

oL for in*teeral snin (in the (f reactions)

W

Rule 3. ‘Irite J

and 3

8]

5(-—%—‘5 61)% half-integral s’f.uw o




S

Make an analytical continnation to complex ¢ . Then.each

Regge term devends on % as stated in Rule 2 (when .8 = €9 ), where

ok now depends on ¢ , and with ‘__Eiéi. replaced by
Bl _ ot (el i
__e 3
e ; C-((, / o) R s s .
pETEE < « BHEach Regze term is associgted

with a particular set of conserved quantun numbers in the (o re-
action and with a definite sigﬂetnre‘%ﬁ '3 the lat*er can be + |
or =1 for each set of quantum numbers. Whan ,% =l s DOleg

occur at even o 3 for Jﬁ o Famf poles are at odd o(¢ ,

%4
Yor a reaction in which a given set of guantum numbers can be

exchanced, the amplitude will contain the corresponding Regge term)

e.g. fhe'sef of quantum numbers characterising the vaceum can
occur in aqr7m , TN , NNV | KN, etc. scattering;
hence the vacdum Res~e term will nccur in all these. The. residues
ﬁ(g§ will be different in all these reactions. An important
factorization property of these residues has been conjectured by
Gell-Mann and independently by Griho¥ and Pomeranchuks This has
been proved for notentials. When ¢ takes physical values, the
residue %?@:) factors into the counling streﬁ%hs of the trajectory
o (€] to the tnitial and final states

in the C - channel,

The Factorization Hynothesis: The conjecture is that this factori-

sation proverty holds all along the Ragse trajectory, i.e. even at

unvhysical values of L




~ s

We have certain situations in which the counling stre%%hs of

a given Regge trajectory to all nossible systems must vanish at

same value of 6. « We have already mentioned the example of the
"ghost" in the Pomeranchuk trajectory which arises because C&A}Z)
becomes zero at a negative valucg of t , and we have a physical
state with negative (mass)g + In nuclear physics also one has
systems with ground state spin 2. At G =iy g , where

EO is the energy of the c¢round state, o = 2. Suv-ose Oé(t/ cor
tinues to decrease as C7 do?zases. Then 1t atlains the vhysical
value KX = O below the ground state: this difficulty would be
resolved if the residue vanished at this noint. We also note in
passing that this »roperty of the residue vanishing at particular
values of ;T’ is something we have already encountered in a different
context, viz. at negative half-intecral 45 for a potential. (See

the last lecture,)

Comparison between polelogy in dispersion theory and Regge

polology.
A Regge pole must zive the same result as a nole contribution
in disversion theory when the tréjocfsry crosses a physical point.
This gives a relation between the residues at the Regge pole and

the coupling constants in perturbation theory.
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The nole term in dispersion theory is ' géﬁv/{é

A s ,EAPQ %??D Eb(wi@); : F

U'* o ) - .
nf B !
T - S et R for a slightly gnstable

Farticle TD~.

The vole term in the Regee formalism isvat a physical value of & |

-
@]
-4

ek T

A= _pO Lixe .JE(MC_) -
3 Aun ’Tfol.(t)

() P
R ﬁ/\cw@_ .ﬁ‘“»’ (el
 Re o’ (b, Jo[t-mt]

(t SR ¢
where ﬁA(‘TK’ ROJA e G g o -/ 'B‘DT&?( ) 5

by the factorization hynothesis, and

9. C : Fr /(‘E )
/yy\l = ol 3 # =
& L Re ot* (o)
ey =< '  oloUond . aks )
Comparisons Disf. Theary k‘3?L(D Vi gotn
: i. ot ()
(1) The counling Strenghhs: : ?, S ?ﬁ | /?ﬁd?~ J F%KDTi o
AP d3DP ; 7’}'2-‘20(;(('5)
(i) The "propagator": \
’—»I)err Raot ()
PR e . R
4

£ - { An Tl (&)
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(111) Asymptotie behaviour: o
Disversion theory: A = ,@(()/g 5 as 3 = XL

; o
Regge formalism: /l\ N =X () /SO(( )

ﬁa}'\'!—boc’
At a physical nole only do these coincide.

(Ref. S.Drell: Report at CERN Conf,, 19620

Exe1 T 9T Scattering:

According to Rule 1, take the indepenient amnlitudes as the cSespin
I by 7

eigenamplitudes T ( 3,0) L = ©,142 | Gonsider the set

of quantum numbers | - | , A= -1 Cr= +{(with 3 =0 y S =0 ).

As we saw in an earlier lecture (on diffraction scattering), the bo-

son nature of pions requires that the signature /j = --1.%‘;{ foeii
Rule 2. The exchange of a particle with the above guantum numbers
contributes the following to the Saspin eigen-amplitudes in the

8 ~channel:

-

o

Ti = P ()(t) c
T - AT ,___/_J,__._.__—;—-" 8
T | (-7

(:vvwv
Rule 3 For large or large % the Regge suarm has the
s s e B (,/ b

form \/”O( ((:/'
=l ol e = ) FERE
_—_( A < ‘ o C ((~) "
f 2 Acn oret (O
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7L.a§e frings
The index JQ in o(j>(ﬁ / indicates that we are =~f® -

to a particular trajectory (characterised by a particular set of

quan tum humbers) — the ,F trajectory. From the observed JQ re-

sonancegs we require ﬁx,ca () =] at t = ?ﬂyz >
Deflne the dlme031onless quantity L€/ by
&
e - W:{r L (€ ) b))
(2w )
In the neighhourhood of b & '”“?Z , the contribution of the

Regge term is apvroximately

—2{ A ié(mfz) G 2
= _ _ = 5
{ 77/6? (': — o : -+ ¢ IP fo

-~

b ~ _ 7, /AMZ - — T =
where Cf = Ke OCP( f) 2 If' g OCF(W\?)

In dispersion theory,‘the exchanze of an unstable _? would

give the contrihution

& z £y,
2 Y > ad (’WL ‘4%{{ ("’I)
[_.‘,J " O R Gl e

P F

[ j v g .
"‘> TR IE
i t—omt 4o Temy




w G -

Comparison zives

U
'6’(Wwp) o,
A = 4y
qT/Gip fFam 0
i = =] — 7-' WL ;
2
The counling constant Y;TTTT may bhe related apnroximately
to the observed width T by
f
3/.
T e Gk ot N
WA - T Sy
S el R (LR i
4N
’W\-F
Thus we obtain
3
WIP (W\/;"meﬁz) - 74'\,;,
M == 5

() | 4%

(The assumptions involved are . ¢
dewa v wan

(i) The decay node O =2 dartis - e , SO that T} x:7tP~¢Jﬁj

(11) T’)o is small,)

The contribution of the j> trajectory to the charge-exchange cross-

section will be

do - Ao 9 . o %
— L™ "? S % Fff( n'K )(-——)— . -

wrhent ' Care (€ <
F oSO Ol e o
prml€) = "Tr/ pr (O :

/& (:'V\_, WOL F( [-‘j’:




]

2 2
The factor 3 comes from the coefficient (==2) = (1)~., The factori-

sation hynothesis gives

2
o o RO 7 i et ] :
ar® = Frypne © = (Ganp ]

The contribution of a Pomeranchiuk pole to 779 scattering may

be written down similarly as

[j - P 4 & & (6
( ”&hL | i Prm

j )‘\L"V\:’TO( P (L }

C(p(t) 2 al € 20 ; thus the Pomeranchuk
pole dominates the forward nure elastic scattering if there is no
other vole with o (©¢) = /. As we have scen in an earlier lecture,
the dominance of the Pomeranchuk leads to

(i) The pure imaginary nature of the scattering amplitude:
£y

7’1(‘&70) 55w —’[' ]L 6 /&?ﬂﬁ'(g)’

[

(ii) the constancy of the total 77 7T cross—-section:

DT ’33" 4 il g o RS,

T AP &

(ii1) the shrinking of the diffractinn peak with increasing energy-




e
& 7 e (3

— /;m € ) »Q-«Kfj) [— )

where
TP i (( ) B I - ( ¢
TN /6 17 ';Dﬂ o '

97 7T scattering (in the _A channel) is symmetric in (and w

l1.e. in the forward and backward
Ti N S8cattering
7+ N
2 g
o

BX. 2,

P

charge index

Write the amnlitude as

+ B"Lg

g o

Rnle 1. Choose the amnlitudes a

Forward Scattering:

Rule 2. As before consider the sets of quantum numbers
: |53 . W
1) I': !9 Ji = /!9 G = ) (with ‘H:O, = (o
and (1 I=ze, It = 4/, Tr o= R fy !

+ U
A s, el 4 o A
a < 2

v B[] (A0 |
|

= 151~

> 2

Jot B2

e/ O(P/ ey 4«?,(2:ivL)‘/ )

_‘d1dp(6/

(’/—/-f
,deu‘ﬁ‘o%ft)

directions.

™+ N
CU/ (>
O"/

?:i] 4

-

o ,,

s A

A
and B“”

Tirst consider (i), i.e. the jD-trajectory.

)

n)
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The amnlitudes in the {* channel 71+ “’N’V*’&T

written in terms of partiagl waves as "

M, T B
A(ﬂ) = . -+ V’?T <7 L

may be

. el 6 I

(2
P.,_‘/(_" G, i

TR |
i L = 4 ’\/,CU; e e \ f?:— oy /3
Befle s g e o

vy Kev  fae G o)
; Re Jyze (1960 ]
CU( and y%_ being the initial and finasl c.m. momenta in

T+T — N+ N

s CF )
/\Q+)and .B( ° ecorrespond to a nure _Z': ©  state in

: : (= il X :
this channel; thus only A7 and BY 7 receive contributions

from the 7 = | P trajectory.

The evchange of a single angular:
momentum j/ gives the contributinon

!
|

; Lop Wi ey P /("f))
g s X9 fra b i Wi )
(=) _,,\l VP ()L ) S S :/‘ e ) {_.H - m.}\/) ¢ (. 7
A — L - ( + ¥ 1\/ i no
j— /Xv : 5
t-u s




2 7 iy
where QCG — e (9(’ = o ()3 e W I b )
2q/. P
We have _ :
P«J (%(' ) - A 3 5 wd 0O

-

ij,/()‘c) o }/gg'/ grn o T 0

Rule 3, gives

: L .;L?\t‘,f' ) ‘ \a\{?(‘i ) - 5
s 5
—~ olyit) /&_ (‘i’/’w} (¢) ] e
"B(_')-—% !__{L:no!y(b Aty =L (27
Q awn T OLJ,((',} L. Mu,) o deeglt) ,6* np oY

There are 2 unknown functions of (7 corresponding to the two possi-
ble states in the AN  systen.

Ty /i Z
Evaluating these functions & ) at - T Wy gives

A(fj)(l 1 (),'\/\ fl)

7T éf

4o ()

T <Y




The asynptotlc no-spin-{1is and spin~Tlis awplitudes ares

a) Lo Spin-flin:

» N /A g (1)
= (/z i - )L" | Qwﬁ4f+m
4 A\ :

b) Spin-flip

9~ <A +/$/2~D)

,»ﬂ g ,
)
o 7'(;‘_7? < - ) <jnm n~ ) QW“’T( (” ’6’3{))—# e

J A T p

Tne charge-exchange cross-scction is

o
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The factorisation hypnothesis ~ives

, J AT
f}ﬁw(() = G?ﬁﬁﬁf ST

We would obtain a)ﬁimilar expression for nucleon-nucleon charge-

exchange scattering (assuninz it to be dominated by the f’), with
2

Thus we would obtain the followinz relations for the charge-exchange

cross-sectionsse
b
i il i SHine
TT N vl N

Now consider the set of quantum numbers (ii), corresnonding to
- -} > (+
the Pomeranchuk, This contributes only to /&( and ~8( ),
4" ) ("“"/
The resultant. asymntotic forams for /\& ’ , DB ana

(— S
@ﬁ9<%Qf)may be ~btained by makine the replacements A" '= - A

() ¢
+ (- : \ = i - ; { ¢
:BL‘) - "B( ' ? "g £ /g 2 % . (N ’szu ) - o ')

ete, in the asymntotic forms given above

At very high energies,

C*) WES |
‘g = CEE; L 4§? (o) —+ -

g
- (+ ) {t )
) T (*) ;
CT28£ = T T = /@‘ (0) e
Ny | i
AIU“’U-I p-] . e . > o
St s Tor pure elastic scattering, is ziven by an expression
AL
analogous to do above, with the renlacements <XP—ecx? .
At .

e tC. ..




Turning to hackward TN scattering, the lack of
symmetry between the t and u channels leads to a difference
between forward snd backward scattering. It is a zeneral feature
of meson-baryon scattering that the t+ channel will have noles
with B= 0 i.e. meson noles, while the u channel
will have noles with B =1 | 5,e. haryon noles. As the limit
1 smally, 3 —» oC eoprresnonds to hackward scatterinz, the baryon
noles will be detected in the 'hackward =~ pea K -

Thus the nuclenn and nion-nualeon resonancss will contri-

e A2, v Y, ¥ el

bute poles in %ackwa“diﬂvﬂ”“*+0“*wo NS ’ e KWV
See-t Heven a2 AL T\+(\/—‘K'f. 4

ﬁﬁ?gfﬁéﬂﬁggihaﬂd a1 rectWﬂﬂ ete.

Consider backward, 7TV scattering,

R2le 1:
* )
Choose the A and B ‘amnlitudes as hefore.
Rule 2:

Write down the nartiasl-wave sxmansion in the n channel.

= W'“W _\L;v, - |
e [{(Tf[ e {«\2—} s ‘!
: Y e f
S e - f e |
4 JART " PO g RS |
C+\,W ,eﬂo £+ X ,('f‘--_L’/’kl’ |
)
- ) 7 D ) AW ’
- zg,:: {2§,<1§?*.*’&£-%> e S ] _} 7

7

B~ . / / f
Lm.[[f'fW\ g‘ % = - ,{H'j

:L\T\"[%—i\; i

£ o '
{ <7 i D ‘. :‘{‘
Y tfz‘((ﬁ«"t}e‘-f) Py ¢

' (;L,}S &

o
o 1 4 D d
{ _')‘ L"l i “S f [
o Pt oo s V- 2

Ma

|
o}
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where gb« refers to the states j = f%i pﬂﬁ 3

to states with _4 :,Q~ - . Thus a 'Pwrtlclo' with spnin j

&) ;
and Wass' M nontrlhutn~ to the u channel the *ollowine nole

terms:
(1) To vartial waves ﬁ = ﬁb+”é :
only gQ* contrihutes
Thus
- ! _\'M (j 6 Wernn s P/ ]
= — : (e
A w Mt e ( )+ et (21 6,)

R ’MZ[”Z:T;W (emﬁ )+-——~ < Pé-kl— (cwﬁ)
U~ E

(ii) To nartial waves X = 4 -
only '€¢+ contributes

Thus

 - el R [Vg:“’\p? I ((:(AQ' )+ W l} 77 C&ﬂau.)j

14 — Vi

i i R ;
LL'—M Zt—kw\« 4+ % ( \@"‘) E‘;AN‘D PZ{ (,@49.4..{]

W,z 6 Ao a1l retor to the variashles in the u channel,
22w J

»/ . . 3
A marticle with (B~ /1, 5 0o ) and jiven soin j and

varity TT will con*rihute to onlv one of “rs nartial waves
I 2+
{ (
- i 5}1« -— il
i+ i 2

e
e
s such that (L =&

J
as the a N relative narity is odAd.

Thus a narticular nole term will be cheracterised by only

4 ; \
one constant [ded ),
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g =

y i v
Noting that P? (e Ou) ~ 3 (AR - wely

we can obtain the asymntotic behaviour.

For Regge trajoctorics with an gven signature, o€ must be

an even inteecer for the nole terms. Tor the vartial wave

1 - J+8 = oL+ | , the narity is (__',).J?u__(‘”oc

which is nositive, while for the partial wave J§ _ 4t iee
L E]

the narity is negative. The reverse holds zood for an odd

\

signature trajectory. Thus for a trajectory with even signature

and vositive »narity, only the A = ‘j + + partial wave

7
<.

or {% contributes, 9iving an asymontotic behaviougy

: ki B ALE . o« ()
/Qm*3+'< I+ < ) (__;i__n _> (W -y ) L)+ -
: \

! e Tha
2 Aln T o (V) 2 Ty s

L‘ﬁdt‘*’) P : .
y ol (e
B (‘ e (;f““;;f‘*”/) : SRS o U
Y/

B T L Qm,

Tor a trajectory with 244 siznature and odd narity also, only g%
contributex, and the asvantotic hehavirus is obtained by merely
altering the signature factor ahove to me -+3Lﬂ'x(“”;f

On the other hand, for trajectories with an even_signature

and negative narity, or with an odd Séanature and positive narity,

only the £ = j,-i partial wave or ’giff contributes,

and the asymntotic behaviour is given hv renlacing (W= )
ahove hy (W-i' nn ) I A N o s dxa\%w\/,& Lig /&ur«\ Jf’/" o-v-sL

e v te cotrecl Agnatinre  Laiaber .
§ J
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Consider the contrihution of the N with 7J- 4 Ef_é
and  +vut narity, the N ¥ at 1238 Mev  with et wola 2
X ¥ o 2

and 44¢ mnarity (?& ) the N a+ 1520 Mev with j«/é ’ﬁ
¥ ¥
and _ vt varity ( /) and the T N TR ob eRelie e
o = 5/1 3 i = ¢§~ anl + u‘@ narity (&5/

' ¥ ¥

TN s o = 0, M N s s = e

¥ ¥

4La4 ol i1 sy ani the N has o = 2. We can assume

¥ ¥
that the A and N~ both bolonz to the same trajectory,

which has I::% , an even signature and nositive narity. This

= 1
will contribute onlv to the %i) nartial wave, with a factor

[ ; . :
s, from isosnin, The u»ver signs (j;) refer

to the BRosnin decomnosition., Note that +he crossing matrix

+
between the s and 11 channels is civen byZTA ‘] Zf 2:}[?43/
g e s

The }V’¥ , helongine to an odd signature and

(+

" ! . . \=x/

positive vnarity trajectory, contrihutes onlv to the P+
partial wave, with a factor [—fi] ; and the p/¥Y

with an o417 signature and nezative varity, contributes to the

(13 . S I
nartial wave with a Tactor — .
g pars J

The residues 3 at the ohysical noints may be related

to the counlinz constants of disnersion theory,

@5 T, (’(WU WIS = %/
rrrO(/ O(,(‘&)[ 3 /\//\/’ﬁ’
— Wy
KN,®N Scattering, and Agsociated Production

An analysis similar to the a*ove may be carried out for

KN and XN scattering.




In KN scattering, we have the "P? )9 5 and <¢&J noles

in the t channel which deteraine the forward scattering. The

| A Uonge ~ el

f) and ¢« have odd siznature and odd narity. The | . o, ety
Sy . . o i ) 7y / -
amnlitude will be dominated bhv the F and ¢ and a« P if one
OJ'\'?,( w“.e.y(;gvmmg,e (e.e.)
exists, while the ammlitude will be determined mainly by
the f trajectory. ™e fagl.c-€. amnlitude will be similar
to that in 7N secattering, but the n.c£ .amplitude will

be more comnlicated,

The hackward scattering would he determined by the l\_, and

. ¥
2 noles and the varinus \( resonances. One may exnect
posilcve
an even signature trajectory with/oaritv_ S=-y and L =0 carrying
\ ,'

the _A and the Y:xy .at 1215 Mev, an even signature, vositive
parity [T =1, §=~/ trajectory with thelz' _ 3 an odd signa-
ture, negative narity - Cg S=-| trajoctorvlwith the

d'?’/a. Y, ¥ at 1520 Mev, etc., The snins and narities of the
¥ v, and the KX ol 155081580 Mev are not yet ewtablished.
(The last would sive a [ = 2 barvon trajectory).

N A
In KN scattering, one has the same »oles in the t channel

+/\/ ,QIXLSE ;
and none in the u channel, wnless some K resonanece ¢ - 7 =
Associated production w4+ AN — K+ Y wonld be
o P . . ¥ .
~governed in the forward direction hy the K trajectory

with odd siznature, odd varitv, S= 4 / and I:-fi (and by
other nossible (/{frr) resonances) and in the backward directinn

by the A’ ﬁ7 and the various Y* trajectories. o
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We may also consider reactions involving photons, e.g.

Y+ A — "/'T‘!’I\,’, 3 )/—l—/\/ S
coviespand tna " ) enl
These agre similar o tqo/reac 1ons with drilineid pnions exvent
that in the forward direction the 47 and K trajectories

resnectively would also contriktute, (Wote that these additional

:
E Ea
contributions must vanish at the ovhysical noints o ”%(
U8 &
and = L regnactively, bv angalar momentum conservation

Barvon - Baryon Scattering.

We micht take as examdles /V-A scatterinz and A |V scatteri

The nrohlem is comnlicated hy the nrasence of the s»ins,

Rulesg 1: :
Juted (o N sealfoing and € for AN ]
Snin alone zivens 5 indenendent qmaLituﬂoqund “nr NN
scatterine, this 1s doubled hy the isosnin, L et /Amnlj—
g /,_e_ ,.{ Ak o /sz L"K"W“& a \)w\-ux»f
tudes free 5f kinematical sinenlarities =2 i~ s gk s il o

combination 9¢ the helicity amnlitudes.

The connlete analysis has been =iven hv'%e&E-ManmL,
and bylItzykson and Jacob,; we shall congider this in a later
lecture. A rouzh treatment which assumes that the main features

!
do not devend much on the gpin was given bvfﬁadiiaannoa, Rarita

and Phillins ( /P’e\\)”\ Rev: (iq.(,{. ;{ : (%3 (1962) :

they fit the dats assumine that forward NN acattering is domi-
/

nated hy the P7 w and P trajectories, Ve have discussed

this in an earlier lecture.
Inclusion of snin effects leads to »nredictions regarding

the nolarisation nroduced (ref. Y HAarna : r&jxlﬁﬁd L‘a’-* 943
/ Clb

A sinzle Reece trajectorv dAors not 2ive rise to any nolarigation
} L

(with intially unvolarised nucleons); any »olarisation oroduced

b R i TR = & L.
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would thus he evidence “or the vnrescnce of 2 or more Regge éra-
jectorias,
The nolarized eross-section at a3 Tixed (smq 1) value of

t is nredicted to decrease with incrasasing energy. (Eg J(@)k‘”“

OA!’)X

/1‘( e

uAﬁﬁ/,ﬂcattoving is svmmetrical in the t and u channels and

hence in the forward and bhackward directions. However, it is

not so with NN scatterine., j% scatterine with Rezze noles has

heen studied by various pooﬁlc‘gé,g.SLP{Cwaww ° Rw' Theor . ?kﬁ’i
Uaed)--
orward NN scattering will be determined by the same

poles as NN scattering, with certain differences in sizn that we

discussed earlier in connection with hich-energv diffraction

~—

scattering. Backward)V)J scatterin~ mav show the deuteron tra-
jectory, with odd sisnature, vositive narity, B=2 ,I=

3 ; [¢ . " s
The virtual singlet So state with even sicenature, nositive

parity, r=1(?) may also annear.

( : : : 4 2 ’
Rewge voles in res~tions involving the scgttering of oL'3

etc. are heing studied.
artiel

) ,
Inelastic reactiosns (with nroduction)

The abov7e conjectures mav be evtended to reactions in which
3 or more particles are nroduced, nrovided these are characterise
by sharnly senarated forward and hackward cones at high energies
(as seems to be trne). This was “irst done by T?rad—tschd:9

Contogouris and Wone for the resction N+ N — nyrn ¥




Consgidering resctions like

N+N = N+ N+ nr N T+ N = V4 - A TT
y+ N = N+ T

one exvects that the conjectures will be more nesrly valid the
better nroduction rasctions cgpn be annrovimated hy & = 2
reactiosns. That is, as 20inted out hv Tralltschi Qt' aﬂb,

we can carry over the original conjectures to reactions like

Ne Voo NEN T e N e VT
’;'f\//‘*”\/“'iﬂ' . - g+t D

nroviied these ocenr mainly as isohar nroduction: .

¥ ¥
N+ N = NtN T+ N = a+ N,
Y
=3 I\/x-‘f'i\/&( ))‘,L/\/
s l\/}(
g

Frapttschi, Ebntogouris and "on<¢ have aftteunted to fit the data
for  MEN - A/.(,,\/J‘( with “ne Pomeranchsk trajectory and
I trajectory reswectivelv “or nwoduetion of the T - b&
ondl T2 3 resonancos,
One mi?&ﬁ snecilate whetiner the akove can he generalised to
any reantion in which there =~c wall-senarated forward and back-
ward cones Jnot necessarily correlated as isobars). This wonld

reqnire us to de“ine 3 counlinz 2 2 Regre trajectory to more than

2 particles.
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In the next lecture we shall besin a study of Regze ndles

in a relativistic theorv, i.e. S-matrix theory and perturba-

tion theory.




i
%) e

— &9
T/

COMPLEX ANGULAR MOMENTUM TN A RELATIVIATIC THWORY

So far we have seen how a Regge behaviour, vproved for
~ scattering by a wide class of potentials, could be conjectured
to hold for a general two-body relativistic scattering problem,
leading to definite predictione about the asymptotic behaviour
of cross-sections. "' shall now see how much of this conjecture
can be proved in the relativistic v=sa.

We shall consider (a) Regge poies in relation to
perturbation theory, and (b) Regge poles from the Mandelstam
representation.

One tries to take uver the roncept of a Regge behaviour
into a relativistic theory by coupling the Regege representation
with the idea of crossing symmetry. The bechaviour of the scatter-
ing amplitude A (s, t) at large t 1s given ac

/-\<,27t) ~ B(») (jd(/s) . € — o0, /Sg(;xed,,
Crossing symmetry impnlies th=t ths »chaviour at large s 1is
A(4,0)  ~ g A% g o b fixed,

The question of the asymptofic b~haviour of the
amplitude is crucial in a dispersion theory. Two types of
difficulties arise in this connection:

1) When a particle of spin > 1 1s exchanged in two-body

scattering, the amplitud~ diverges at large =nergy, as it is of

the form A(g,t) . P (e )
2
and , Goams 3 — “”9ﬁ
i . <
Plen8) ~ 4 5 T




- 146 =
2) The Gribo¥ paradox:

(Ref. Froissart's lectur~s at the International
Enen 4y

Atomi%(ﬁuéney Seminar, Trieste, 1962)

The observed behaviour of the scattering ¢ross-sections
at high energies was exnlained by Pomeranchuk on the basis of a
semi-classical diff-rastion picture which implies the assumption

s A2t~ i (e Sy

GriboY pointed out that such a picture was not consistent with
the requirements of analyticity and unitarity imnlied by the

Mandelstam representation: Using (1) and unitarity, the double

spectral function}:{%gt) can be caleculated; the result obtained

ts Gye) ~ adega (f0] - ()

However, (1) implies that hp(<u")f~g$ 3%vf@ﬁ) , which is not
consistent with (?). This is the Gribo¥ paradox. The paradoX
shows that the o0ld diffraction model for high-energy scattering
is not valid; it would be resolved if the amplitude had an
asymptotie behaviour i)

A3 t) ~pl 3T

with « ft) real and < 1 for t < o ané complex for f;; a:  this
is just the Regge bzshaviour. |

One may try to prove that a scatfering amplitude
satisfying some restrictions of analyticity and unitarity must
have a Regze behaviour. Work on this h=as done by Borut and
Zwanziger, Bardac@ér, Oehme and by Mecndelstam.

We shall consider the following topic=:

A) Regge poles from Perturbation Thsory.
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B) Regge poles from the Mandelstam representation.
The following questions immediately arise:
1) How does one define a continuation of the amnlitude to complex
E in a way that is unigque and preserves unitarity?
2) Does the scattering amplitude A& (8,2') have oniy poles in
complex,ﬁ y Or alsd other types of singularities, esp.
branch cuts? And morc svecifically, what are the domains of
holomorphy and meromornhy of* A (s,fe)?
3) What is the rclation between analyticity in angular momentum
and the analyticity in s and t imnlied by the Mandelstam
r « representation? Can perturbation theory zive us a clue to
the analyticity of the amplitude in { ?

We shall first ask what is the relation of Regge poles
to high-energy. behaviour in perturhation theory. The question of
obtaining a Regge behaviour from unitarity and analyticity we
shall consider lat=ar.

One of the questions emnhasized by Chew and Frautschil in

: pasntocles
their early speculations on R.grs polss was whother the Various/<
could be distinguished as elementary or .on-elgmentary.

The exchange of a single narticle of spin &Zgives an
amplitude that behaves as sl for large s, izbeing a fixed number
independent of t. The exchange of a single Regge vole would give

' A 1)
an amplitude that behaves asymntotically as s «( .

By obtaining
the vower «(¥) from the nesk width in forward or backward
di ffraction scattering and examining whetner it is a constant

= ) ) or whether it varies with t, one mzy deduce whether the
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exchanged particle is an elementary particle or whether it is a
Regge pole. ZfIf no distinctior betwsen elementary and non-element
ary particles is possible, all particles must be Regge poles. /

The argument given abov: has the fallacy that it is only

the lowest order contribution — the 'pole term'—that behaves
asymptotically as ?SQ with {, fixed. Highcor order contributior
may add so as to give a behaviour s e fact, Amati,
Fubini et al showed that the ladder diagrams in high-energy scatte
ing sum to give a Rcgge behaviour. Lé%y suggested that the radia-
tive corrections to electron scattering when summed are equivalent
to the contribution of an exchanged positronium pole._1)

This suggests that perturbation th~ory, when considered to
all orders, leads quite generally to a Rcgge behaviour of the
scattering amplitude. We shall pnrove this, following the method
given by Pol%inghorne. 2)

First we note the difference between stating that a
scattering amplitude has a R2ggc behavour and the statement that
this Reg.e behavi our corresnonds to the 'reggeisation' of some
particular elementary particle nole. The first statement seems
to be true in a large number of cases; however, in most of theze,
the Regge poles lle (for large B) at - wl, ~2S -8, The
second statement would imply much more and requires that some of
the Regge poles obtained by summing perturbation theory would lie

a

at = 0, 1, ete, .... depending on the particle exchanged,
have the properties expected of Rcgge trajectories corresnonding
to elementary particles.

}) Phys. Rev . Lot ﬁ_,335(’q“7
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The simplest way to think of an elementary particle as a
member of a Rogge trajsctory is in the framework of a theory in
which all particles are composit:, which i1s the basis of the boot-
strap philosophy.of Chew, Z.chariasen and Zemach and others. 1In
such a framework, one can think of elementary particle Regge tra-
jectories as composite states formed of suitable components (e.g.
the nucleon trajectory may be a pion—nuCléon comnosite state bound
by the exchange of N*, N* 7, etc...... &s given by the ladder

diagrams in the .3 channel (in the limit t —=op, fixed B )

ﬂk,: gj’ i —+'iji[;;§i—]j;jr o

W

N
E&N _ £o o, A foxwl
LT jond Tvie i
A 19 b S

N L

i‘»’.n%c‘gx |- Lo

The exchange of such a composite nuclecon would then be represented

by the crossed diagrams

N
;‘> N IEL)'—'-‘"V-*;T‘. %“jﬂ/ 3 ,\/ ADF
e e e

!

{—,L? i ! l ¢ = d g A
A—:) 57—)-0—7( ra N e, ’ &
’ Y,
N Q\Q?Luhaﬂg

O"hd' ‘Q” Dﬂ,d}x}v%}/’v

GQll-Mann/:# 1 have suggested that the nucleon may be reggeized in

an essentially different way that does not correspond to its being

v
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a composite state. According to them the iteration of the Born
approximation, i.e., the sect of ladder diagrams may, in the

limit A —e0, t fixéd, be equivalent to the exchange of a

nucleon trajectory. ZfThCy find that this hapvens only when
\/u"“\,\% \{)
thp meson inwlved is a ve ctor mcsoé#;*ﬁv not when it is a

l
— M, b0
pseudoscalar meson. /Y fh /aW’Tj:-* A% f:ﬁr*
NM‘ \ A d .

If this is provéd it Jould mean that even when the
nucleon is considered as mxx an elementary particle, the
effect of radiative corrections wouldbe to make it behave as
a Regge trajectory. If this turns out to be a correct picture
of elementary particle Rcg_ e trajectories, then it would seem
to be in contradiction to the view that all particles are
composite,

We now consider the question of high-energy behaviour
in perturbation theory. We shall follow the method given by
Polkinghorne for finding the asymptotic bechaviour of a class

of Feynman diagrams.
=y uﬂ(‘,«,i}q,ﬂ'b anﬁ” oL

We consider the class of ladder diagrams shown, taking
b ¢

all the particles to be scalar, and assuming triginear (Yukawa)
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non-derivative ,couplings.

' N
\\1/:-& U \\”jf R
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The ~ diagrams may be defined as the class of diagrams
with a two-particle intermediate state in the t-channel and
any number of particles in the s-channel intermediate state,

but being such that no two lines cross.

The pole diagram (i) gives a contribution with the
asymptotic behaviour ”U,AO o constant, for s -+oo0 and t
fixed, as the exchanged particle is spinless. If the total
amplitude (i.e. the sum over z2ll Feynman diigrams\ has the
asymptotic behaviour Afs, ) ~ B (t) 4 Q(t)j ('gxxtk

. e Wl
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we may write ﬁkt)‘é — ﬁ SR, y <ﬁhere «, 1s the
integgr nearest to « (o),)
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The first term would correspond to the pole contribution if
<o = 0.

If we find that higher-order Feynman diagrams contribute
terms to thé amnlitude that bsh=ve asymptotically like s 0 logs,
g %O log2 By i Bt , then we may conclude that the pole

of fig. (1).is 'reggeised' by the higher-order corrections.

However, if the amplitude has a Regge behaviour,

A (s, ) = Bty s @), (1)
S—0
and «o is not zero but some negative number)qb = =1l. =2, ete. ,

as happens in potential scattering, then this does not correspond

to any particle being reggeised.

Take the 4th order contribution of fig.(1i). The

Feynman integral for this may be written

L :
M = i’ J OQ,D('. Jy:x(1 A1 21) (
/éqT’_ o ’ [/’]L‘

where
Fog) w2k (o by F oS by f
F: (oéb) — 204 3 :) F{
&
3 = P’+-QL : N ) P
¢ = Lo((-focs) ST, oLy A
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This may be simplified to give

2 | (
3 A o G G
: | e i) )
where D =1D(s, t, «) = -/:0<'\D"j/?> + o, g v -+ o 7

what is the asymptotic behaviour of

E ?
dot, .- Ao, . & {1 ~Zat, )— : e PRE 2
j 2 ; /o/ 7‘3*’.’3 +d,u,,t+ 0(/(0( & "'M/J

Polkinghorne has given the following methoc of findlng this.
We want the limit of M(s, t) for fixed t as s-o&
If the coefficient of s i®vthe denominator, viz.,
X1 X3 , did not vanish on part of the boundary of the domain of

integration (eg. if thzwigmits of integration had been 2 and 3/)
) ‘

“the integral would have the asymptotic behaviour — .

/g.‘l
However, when « = 0, %3 = v, the coefficient of s vanishes;
this results in the integral decreasing less rapidly as s = cao
L—if the coefficient vanished in some point within the region of

integration but not on the boundary, the asymptotic behaviour

would still be iz " 7. The asymptotic behaviour is thus determined
by the contribution of a small region near % = o. «g = o. This is
G.
] —= Auwidj * T3 nuttin d, = 9, = o in
AZEd [o<‘o<3/$+ci»(°‘z ‘-D"WUJ ki e 1 g

all but the fir st term of the denominator. Thus

= @() doot, el 1 L
@ ) cx o< -+ oiJ

[

"fcd"(‘/» 6 o __.'_ﬂ‘q C;+ —'SC ,___D‘_?-'—"Q)’%A >
" o(\/l(—+1 T 5 & O( ety

Thus the 4th order diagram gives a contribution that behaves as

;% ﬁ“%'A for s —+o00, This will zvidently not reggeise the
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pole (with spin o) in second order. We may say that the radiative

corrections considered here will not reggeize the spin zero pole
in the second order diagram. 1I{ thesc were the only radiative
corrections permissible, the pole would then correspond to & fixed
telementary particle!' pnole.

We may ask what is .the nature of the radiative correc-
tions required to reggeize “he »ole considered above.

Before considering that, we briefly give ths result

obtained by summing the ladder diagrams to all orders.. The

result is sty
Al . o AT
where G perat
AE) = -+ (‘32 k)
2
i O = :
and

( J | Aoy Aoty 3 (' =i iy

KE) = —, - 5

e [ty oty 3 — (et o) |

We note the following: '
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