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Lectare 1. 23rd February, '63.

ON INFINITE SYSTEMS OF LINEAR DIFFERENTIAL EQUATIONS

At the outset, we review owr knowledge concerning the solu-
tions of ordinary differential equations of the form y'= fit,y)
as the natmre of f 1is increasingly specialized. Here t 1is

a real variable and y 1is an n-dimensional complex vector, each

)

component of which is a function of t; if y = (yl, o 3 veey yn

then we define the norm of y according to: ||yl] =_i' ly |.

(For convenience, we shall refer to these systems of differential
equations as !''finite systems’', in the sequel.)

Next, we shall consider certain special cases of differential
equations of the Kolmogorov type which arise in the study of some
stochastic processes by way of illustrating how many of the pro-
perties of the solutions in the above case (where ¥y has a finite
number of components) fall to hold in the case where the components
of y are denumerable.

I. Let y’= f(t,y) where f 1is given to be continuous in
t and y in a region D containing the voint (ty , Yo ) where
Yo = ¥ (t, ) according to the prezeribed ''initial condition'!.
The following features characterize this ease:

(1) existence of solutions: there exists at least one

solution in a region of the form |t —t,| <7,

'y =gl < 85
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(2) holding of the »parity principle: the solutions are
defined beth for t < tj,and for t > t,; and

(3) the solutions inwolve arbitrary constants (as ®pposed
to arbitrary functions, as in the case of partial
di fferential equations, or, even, infinite systems of
linear differential equations, as we shall see below).

IT. If, in (I), Lipschitz's condition be also satisfied,

namely, that for all (t, y;) € D, (t, v5) € D, we have

Sty ) = Tty W) MEie gy =y g
for some constant C > O, .then
(4) the solution is unique.

ITI. 1If the differential equation is a linear homogeneous
equation: y’ = A (t) y, where t ©belongs to some open inter-
val I, and A {£) = (ajk(t)) is a n x n matrix, each element of
which is a continuous function of t over I, so that we have n

equations:
; T

e Q?y<(i) ih‘(t> fov' 1 SiEmn

!\/:‘]

¥

then Lipschitz' condition is satisfied (over every bounded sub-
interval of I) and we have:

(5) there is no rull solution other than the trivial solutior

i.e., 1f a solution vanishes for some [ € I, then it

is identically zero; and
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(é) the set of possible solutions on I (correspé&nd-
ing to the various possible initial conditions) form
an n-dimensional vector-space over the complex field.

(0Ofcourse, there is a unique solution corresponding

to every given iritial condition, by property (4) above).

(1e) " If, iﬁ (II1), A (D) 1s anslytle, then

(7) the solutions are analytic;

(8) we have permanence of the functional equafion: analy-
tic continuations of the solutions continue to satisfy
the same differential equation-; and

(9) the singularities of the solutions are fixed: namely,
those of A (t) plus the point at infinity.

(v) If, further, A(t) is entire, then

(10) the solutions are entire functions also.
(VI) 1If, in particular, A(t) = A = (ajk), a constant

matrix, then the solution 1s an exponential function, wiz.,

\ 5 g s
(BL) N(h ) e exp LoE—to) Al YIE) -
Here exp B = R + 23§f| (5*/K,3 denotes the exponential
matrix of the matrix B (This is well-defined for any square-

matrix B), B being the identity matrix.

Having recapitulated the salient features of the solutions
of "fiqgte systems'! of differential equations, we now turn to th:
cases where y has, not a finite, but a denumerable, set of compo-
nents. We consider the simplest case, of linear differential

é‘uations of the form:
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(1) ©Note first that problems of convergence of the RHS
can arise. Even if such problems are absent, others arise, even

in comparatively trivial cases; for example, let

b P @0 BT o A R e
. p ) e R
where the J (¢) are given to be real. Then § §%U§;yk®ye
2 :

A natural vector-space to consider here is the space Sm} of
& S ‘L
3

all convergent sequences, with the supremum norms l]; yk§ [] =

AN

SEP l Yk l. If we take {yk (O)( to be in va% ; then the

solution-vactor zyk(t)g belongs to - i“{% for £ Oy “but in

v

. for 5 > 0 (the only exceptional

general does not belong to {wx
case being the case where Yk (0) = 0 for all k after a certain
stage). The equation thus fails to obey the par ty principle,
concerning itself only with the ''past't ( t < O ) and refusing
to heve apything to 'do with the ftrfuturetrt (£ >0,

| (2) An example where we have better-behaved solutions is
the infiéite—dimensional analog - of the ''finite system!'! given
by y'=Ay. Instead of A bPeing an n x n matrix, it now takes
the form of a doubly-infinite array, A = (ajk); Tyt = CEOE R

We consider the set of all such !''matrices'' A for which ||a]l] =

sup . 2iii;‘ ‘“jkw) is finite; if AB be defined as
( =y Gjpbpy) » then [1aBl] < 1Al 1Bl and || || may

be taken as a norm in the set of such matrices. TFor such a matrix

A, exp (#t) makes sense when defined analogously to the case where




Ais a (nxn ) metrix, and then the infinite system of
differential equations given by ¥' = A Y where A is a constant
matrix has the analog— of the !'exponential solution'' as its
solution, i.e., the solution is y (t) = exp zA (t—-to)ﬁ_ o ¥ATs) .
NOTE: Infinite ''Stochastic matrices'' A have the property
|| A]] <o §in fact, || A || = 1 in such cases), and so our
analysis above applies to themnm.

(3) We finally consider Kolmogorov's differential equations
Y'(t) = A Y(t), where A and Y are maftrices and Y' is the matrix
of derivatives. A is not an arbitrary matrix but should be such
that ajj < .0 2 for every j, 23k ; 0 for j + k, and % ajk
(These imply that every E \ajklis convergent, but not necessarily

<0

that ||A|l| is finite). A solution Y(t) will be acceptable (from

the probabilist's point of view) if 1t satisfies the following
conditionsy 1f Y (L) = (pjk(t))’ then we must have O é pjk(t)é 3
§ pjk(t) é T, and'gﬂ((t) A'Sjk (the Kronecker delta function) as
£ 0

(Such solutions have been discussed by -W. Feller and J:L.
Doob (around 1940) and by W. Ledermann and G.E. Reuter). In our

discussion of the following specialcases, we do not eonfine our-

selves to acceptable solutions.
O

(I) gé(k>%{<yKHW-: = 3M(ﬁ);
Nz Kay

oot




The corresponding matrix A has ths form

0O
!
P 0 =0 ! 3 ; -
¢ O C -l = 3 e
e B i 5 = ~ L
o
If z Qé Aecndtes the se=t of all Bequences éan% such that

= lan\ < co, then we require that the solution { HW\(E)g < 2Q?§-

Let it be given that { Yp(o)f e (¢} . The following ele-
< X
gant solution is due to Reuter. Set 42k&w(tﬂ = Zf(k+n J“(k).
(Then, the sequence- g %,Q(P\é is not only in the space >~
gvﬂoz of convergent null sequences, 1i.e., the space of all
sequences converging to zero, bat is even of bounded variation

. il R § e e iy | :
since = | £y b M- ;:\YKU)}A\OO). Let ws assume

further that the Sk are differentiable with respect -
to t. (We knew only that their sucessive differences, the Y (t)

are differentiable)., Then we have the relations:

N

f ]'/ e SRS I e i
- (0wl 2,7, 022, ©

\l< Koy L
which gives

b
N

{ks + I< :_7‘:;‘;?:‘3 £ jvl /\{\4, (&\‘H) 'ZKﬂ(E) —‘\:u al( (<,

icesy, gz, (W\+ {2, (L) 1s independent of k and so = {({),

say. Let us take £ ¢ Lo w] , the elass of all Lebessue

integrable functions over [0 w | . Then for 0 < t <w , we

have on integration




LD & Lk @u%)(U»k)
%K(H - %‘Q(o) e 3- 5 e £(w du

0O

Kt TR e B
Bk(h): %k" (0) ¢ _f lde e g ¢ b,e Jf(“)(g

The obtained set of values é ﬂytk)f'satisfy the condition
{ﬁK(L-v} & {Q% for t # 0, and further Y (€) — Y (o) as
t -+ 0+ . The presenge of the kernel [ |— ea““t{] vanishing

us

gt = b enablesﬂto assert the existence everywhere in ( G, )

of y\; G , even 1n the case where f(uj merely belongs to
{ [O,u[} and is not necessarily continuous there. On substi-
tution, we find that the obtained set of values i;ny%qg satisfy
the given differential equation, so that in deed they constituté
a solution thereof. In general va? (k) exists only almost
everywhere on (O,\g) and y;’(&) does not exis£ (unless we
impose further restrictions on § ).

Then we have a solution-system depending on an arbitrary
function (and not mereiy on arbitrary constantss c¥. property
(3) of finite systems). For t < O, in general, g yk(k)} does
not belong to E'Q}) depending on the constants ZZK(OX} . TFor

such t, again, not only absolute convergence of the series




ié: NK(t)’ but even ordinary convergence fals to hold. . Thus,
property (2) of finite systems fails to hold. Properties (4)
and (5) also fail to hold, since there are infinitely many null
solutions in view of the arbitrariness of f o L& :g is taken
to be an analytic function, then (7) holds, but not in general.

9) cannot hold, since the arbltrary again affects the singu-
’ ) 511g

larities, (10) certainly does not hold, and so neither does (11)-.

‘Phus, here we have an almost perfect example of violation of the

conditions satisfied by solutions of finite systems.

(II) We can generalize the situation in (I) by weighting
the Y K(k)>5 with suitable coefficients other than unity on
the RHS's of the equations.

(IITI) Birth-and-death processes: These are represented by

=~

f 'Kolmogorov matrices!'! which have all entries zero except for
those on the main diagonal and on fhe diagonals immediately above
and below it. A typical Kolmogorov matrix is the following: the
entries on the main diagonal are the negatives of the natural
numbers in successin; on the diagonal just below it are the na-
tural numbers in suecessién. ., and on the diagonal just above it

are all 1l's., The corresvonding system of differential equations

is:

[
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We are not concerned here with solutions acceptable to probabi-
listg (i.e., corresponding to a birth-and-death stochastic
process), but with all solutions. If we take y’(t) PR G W
( a real=valued function having derivatives of all orders, for
all t = I:), then the system can be solved completely in terms
of f(t), Wy successively computing .yL(t), Ys(k)) ,,,,,, ¢
. . 7 __. — :

If the polynomials P (\)= (R LT x_ys)-“---- [Tecal 21 R
denote the polynomials satisfying the relation
<1 ’PC

[

'Y 2 ?L

Wy
1
>

;l
: i
! i
| !

!
’ 1
! I
! |
; |
| P

where B 1is the Kolmogorov-matrix we are considering, then we

can write the solution-system symbolically as ¢
- P d4_
0= (B (] 5o
s

The solution-system is thus not unique sinee fie C is at our

choice. In particular, we may specifically require that f and

all its derivatives ¥anish at the origin,
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Lecture 2 24th February L1963.

ON THE COMMUTATOR ZQUATION IN BANACH ALGEBRAS

1. The Commutator Onerator:

The object of this lecture is to discuss some properties
of the commutator equation and apply them to some lirnear diffe-

rential equations in Banach Algebras (see (3)).

'Let ﬁj be a non-comuutative Banach zlgebra with identity
element e. Let a be an element of B not belonging to the
centre of B, i.e., a does not commute with every element of B.

We define two operations

La_L1] = X (left-multiplication by a)
and Rc¢[351= X @, (right-multiplication by a)
The operators b and R are obviously bounded ovnerators and

J a a

belong to the operator-algebre 6f<63) of bounded orerators

over B.

tot ‘L, we defined by: Cp [2]2 ax-a = L [x]-Fio

Then %? is the commutator-onerator. Being obviously hounded

A :
< \\(, ‘k E.ZJ{i\i) s CkL is alson an elewent of 5(0{)
2. Spectral Relations:

ct

With a is associs

.;)
W

ted its ‘'Spectrum' g(@), nanely, the
set of all complex numbers >\ for which >\Q.,CP)
singular (has no inverse). In other words, if ES denote the
algebra of singular elements of B, 6’(0_)::. }—A\ Ao~ Q. € S} ;
The operators 1_Q/and \Q, also have  svectra associated with
them as members of & (/R). denoted by & (L and 6’(R\

a L cio O = (\D)) >Ll LA Y -G n NGy

respectively.
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Then we have ‘
theorem 1: (1) &6 (a)= o( R@> - ((La)
(1) (Ca) & s7(a) —(a)=]d=f

Proof: (i) is almost trivial:; if Ne — o ¢ S (\e~q)ﬁ(:j

A, b &

5

cannot be solved for general values of )’ ; and So Y€ S)

o]

or L has the same sonectral! value.

(i1) is not so simple. This has been proved by
Frobenius for the snectrum of matrices. For the general case,
we have to use Gelfand's, theory of commutative rings. The
operators R and La, commute and we can find a commutative
sub-algebra of E((B) which contains Ca, and has the same spectral
relations as in E(/B) . I©rom Gelfand's theory for this com-
mutative sub-algebra, (H) will follow for the general case.

We omit the details here.

It follows that O 1s a possible eigen-value of (.
Let ?(Ok) be any polynomial in CL . T\hen, clearly, ' )
C& [’P(G\)]:O, L-Ql}”h is an eigen-value and P(Cb) is an eigen-

function belonging to it. Therefore, ) belongs to the point-

spectrum ’F5~[(ﬂ}. It can be shown that 5’[(;{] fF éo} :
Our next result considers the case when B is a prime ring
in the sense of N.Jacobson, i.e., if, for given 1_)3 c le
% ZY = O for all Ze (B , then either x = O or y = 0
(The ring of bounded infinite matrices we considered in
Lecture 1 of this series is an example of a prime ring).

Theorem 2: Let B be a prime ring. If & and @ belong to

?6—(«1), then (o{-—-— (5) belongs to ‘Pr [C (a)] g
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- . s ok 2
Proof’: If o= f the result is obvious. i1 5{;:{3)
e = |
there exist non- null elements X,y such that AE=0X and
fja :;@j . B being a prime ring, there exists £ & B such
1= Zr N =
that -7 :F 0 . Now
@ty (% 2 e

LZY
since ¥ %j ‘1‘:@ ) -/\— ‘\) L r\\:{ :

In the case of matrices, every element of the spectrum of
a is an eigen-value so that every value &-—fB 1is an eigen-
. !

- value of Cbk? and the spectrum of Cq’is contained hﬂi(d_wg;
So, it follows from the two theorems above, that every value
Gﬂ-— @) is an eigen-value and so, in Theorem 1 (ii), equality
holds.

Theorem 3:

C

The eigen-vectors of Vva are nil-notent elements of B when

they do not belong to the eigen-value 0.

We recall that X 1is 'nil-potent! i1if there exists a posi-
tive integer N such thst 1 =

swmose X0 it he Pr[Ca],be, Culxd =M%, or Gxta=)

e 3 > 2
= < % z i
Then, ka % J = Ax— LG T X —XxXaAX + XaX— L @

i (C;\x_——?( Gy Feih % (G\vaa\) = 2\ X~

e P LS B
Bo 59 X < ‘ﬂ“\_C“J and ¥ 1is an eigen-vector, or x = O
In the latter case, we are through. - Otherwize, 1_ #1() and
we form O —X . and proceed iA the same way, getting succes-

sively in case x &s not nil-potent

2 3 n N n
Ckx'g.._ A i U G e, (Rl R N x

J
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But, CGL is a bounded overator, and K\CWl
all spectral values ﬁl of C&L must satis

LY if&
But, in the above process, we must have lﬂ,)\ =

niA] > 2 Halj
for all sufficiently large n since >\ ﬂf 0O 5. and soyx #Hust be
nil-potent.

In a more or less similar manner, we prove that if;\eﬂarﬂii]
and /& - Tir [Cé] with y as an

eigen-vector, then either >\+‘ﬁk € r?g_{(m1 or XYy =0-

with X as an eigen-vecto

(0)¢]
)

(

D

4

3. Integral Reoresentation of Resolvents:

Next supnose \ )\ ~ Q}klaﬂ\. "le solve the equation
)\y o Ca»[j)] —~ X . The =zolution 1s called the Resolvent
% 30 o : .

of (%L and is denoted by K NS Cas'l,. Yu.L.Daletski (1) has
Eiven a formula for the solution from which the resolvent of CQ'
can be read off.

Let Vj be 2 contour consisting of one or more closed recti-

<
fiable curves such that ¢(a) lies in the interior of E; at a
. o r I ! A

distance ( from g ity bounds a closed region DOg
namely the interior of \L plus. i ts boundary. Thilsi resion ks
closed and contains a finite number of maximal components. It

is bounded and we may assume that it is contained in the disk

which contains ¢ (a). Tet

M

{

(0N
R
™

>
00
L~

This is also a closed

and bk lstlecated lm the disk

N < 2 (fali+E)

|
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Finally, let /\: G4 Zi ), the complement of Za ¢« This 15 an

£
open set, in general not connected, which contains the set

\Al > 2 Chall £ 6)

We now form thes double integral
b o 1 SRR JMJ@

T b oy SRR

R S s SURS BEET: ¥ 3

wb;r“ >\€1/\ The #@integral exXists since

(‘ i
fhei T
£y £

the denominator is

, 2° = Ty
not zomgAfor X € 6"§>é [2 ) e /\F
Theorsm 4: For X ¢ A N
oy REAYRED 4446
L= enath Ve TR 8
Jlisanial v galation of }\1/; \‘j :;(‘- ¢
Droggf’s The operator ~AT- (b R cen he apnli~d upd-r

tha integral éign} wstrng

(Ne- @) R(d,a) = ¢e= R(B,o) (ge—-9a),
|

' R(Ma}zﬁﬁﬂ)dg
o Lo e T R A
: (2n0)* &'Q g}é Ao+

. ilSwég;H"ﬂj (62 az.c!

we have

4¢

The first term on the right reduces to j since

@m)" [ R(s,a)dd =
s
’




while the last two are zero, since the resolvent.is analytic

]

and the Cauchy-theory apnlies %to Ban

Qo

ich Alzebra<valued functions.

v

The first follows from the fact that; in the neighhourhood of

i~

the point at infinity, K ( o) = é% + qu + ﬂ;,~+---— -
= i ol

while the second follows from the fact that the number of

)\+~§' and A — &

times Tg is described in relation to
is Zefo.'

Dalet sky has generalized this formula in many directions
and has al=o- given some annlicetions.

The solvability of an equation of the type

\ b S C [“( i \\/

plays a decisive role in the Frobenius-“chur theoyj of linear
differential equations. This was sointed out for the matrix
case, in 1930, by J.A.Lappo-Danileuski.

Consider the equation

2(4/42) = f(2)u.

S 3 = 1 + 3l%te i = ;
In the matrix case, we take vj\\p) = i Qe 27,
where Uq is ah- nxn matrix.  The sclution 1s of the form

R
(;fﬁ Cp 2 ,> Z Y . In the general crse, we take

CLV to be an element of the Banach algebra B. Then we have
49 A
Sy p e} 'z Ke + 6y ke+6t

B : e
Take &o =i L Then 'k @ —“oLK-Cka0 e Iz Caoj a,K .
In particular, e - QO C{ Al C(”g — Q/‘ Co . The
RHS is kpmown since 4G . — ¢ . If na integer belowmse ta Cf(icq'\
Q)
these equations can be solved, and the resulting series gives 3

solutien.



Hille (3) has congidered

S ; i P o

of 6'(&03 sueh that K f =
following the Frobenius method.

case where the

values W} ﬁ

L . are poles of R ( x} C())

In this connection, the work

of 8.H. foguel (2) is of "importanca He showed, among other
. b | o ml . 5 2 3 ~ l/ { \, P ‘) Vo s A
thingo i that 14 "9\ and {; are noles 28 KR{A,% ] 0l orders fK
. . : & PR ! » z

and ., Trespectively, then { &~ u) ig 2 pole of order = -+ﬂ =4

i f ) B \ o i
If several choices of X and @ give the same @%-ﬁ)? then
the order does not exceed ‘maX L/&f*?i7’{>’ Hille has shown
that if Bris a orime ring, then the order eguals mexX Lf«)+/ﬁl—g .
4, Unbounded Ojrerators:

I@ﬂ;;Kt@ a Benach space, A a linear unbounded operator

whose domain and range lie in ¥. Further let the spectrum cf(A)

be limited to a horizontal half-stri

e R and

w denote

\
A

distance between )\ Srel S
Let j{x) be the Algevra of 1
X onto X. Fur S (%) we consid
AT — AT+ TA
The solution of Daletzky can e .ap
integral
2 R

D, Say, ?j) with R()\} §F

<1

lies outside ¥  and & the
nezr bounded operators of

the cneratdor- equation

so that we have the

p) S R(g




—

r

18 a-eurve

integral appears

We

cannot

work

Yu.L.DALETSKI!

S.R. FOGIEL :
EINAR HILLE :

from

further with ‘A under the integral’ sign,

L

- tg ~cd in

SR T i

ral exists atmost as a Cesuchy's princinal
%, 5
denominator A— &4+ cannot be got rid of as
convergence nrovneriiss.
annly this to the Helsenberg's equation
//‘ 1458 / A
D B
STAEAY 15 Bk i K /_4,2“‘;1 L) bl
R'E]F‘D'_\Ti'r\]’szl‘\
On the asymototic solution of a vector
differential equation, Doklady Akad.Nauk,
SSSR 22 (1953), 881-384. (Russian)
Sums and oroducts of commuting spectral
operators, Ark.Mat.3, (41) 1957, 449-46l.

Linear Differential Equations in Banach
Alzebras, Proceedings of the 1960 interna-
tLomgl ?fﬁQODlAm on Linear Spaces, Jerusalem
published by Pergamon- Press, 196l.




Lecture 3

GREEN'S TRANSFORMS AND THRIR APPLICATIONS T4 DROBLEMS

CONNECTTD WI H ORDINARY LINEAR SESOMD ORDER DIFFERTN-
LAY, MQUATTONS

Intpolu, ion: In studying the solutions of linear second

order differential equations (D.E.'s), ornc c=n obtain much
information direetly from the equation without the use of

expliecit representation=.of the soiutions. This observation

U
H
2
pe
r——;
49
=
09)]
&
X
192}

goes bask to Stmrm and Liouvilla They used

Q
i
L
)
(i1
s
()]

quadratic ldentities obtaine squation, to prove
oscillation theorems. In their discussions, all the variables
antering into the differential scuation as well as the parameters

W e to use such identities

Q)

re real. Sporadic attempts were mad
also for-complex values of the variables or parameters. Thus,
for instance, the proof that the Bessel function :Ei<55> has

nly 1 due to ™.Schafheitlin (TTher die

=

Gaussche §#J Besselscne Differ-nti Eleichung, Journal fur

die rcine g W > ¥athematik, Vol.ll4, 1895), is hased
on this ides. Likewise, such an identity pnlays an important
role in Hermann “eyl's dizcussionrn of singulat® hound-ry-value

problems (1).

®

1918-1927, E.Hill

for comnlex valuas
of the variables (see, for instance, (2)), If the differential

equation is

where ( (Z) 1s holomorpniec in a domain D, then we call the



relation i 5 5

o e : e , o SRR
@ (G905 0] [ te i« el fejde o

the Green!

1671
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7
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This techniqgue
21 many eouations well-known
in Mathemstical Physics, such as those of Bessel, Hermite-Weber,
Laguerre, Legendre and Mathieu. 1In a later naper (8), the same
identity was used to study the solutions of the equation

where and F are realavalued but )\ is complex. Finally, in

an address to the Edinburgh Mathematical Congress in 1958,
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