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AbstratComplex systems, whether integrated iruits, food webs, transportation networks,soial systems, or the biohemial interatome of a living ell, all behave in waysthat annot be fully explained by analyzing their onstituent parts in isolation. Un-derstanding the emergent behavior of suh nonlinear systems, whih is more thanjust an aggregate of the properties of their omponents, require novel integrativeapproahes. Many of these systems an be represented as networks, onsistingof a large number of nodes onneted via direted or undireted links. The re-ent disovery of the existene of universal priniples underlying these omplexnetworks that our aross widely di�ering domains in the biologial, soial andtehnologial arenas have spurred the interest of physiists in trying to understandsuh priniples using tehniques from statistial physis and non-linear dynamis.In this thesis we look at how the struture of a network, as haraterized by theonnetion topology, governs its dynamial behavior, and onversely, how the dy-namial proesses taking plae on the network a�ets its struture (e.g., stabilityonsiderations onstraining the evolution of the network towards spei� topolo-gies). In partiular, we fous on modularity, i.e., the existene of groups whosenodes are more densely onneted to eah other than to nodes in other groups, andhierarhy, i.e., the nested arrangement of onnetion topology into several layers.Both of these mesosopi organizational strutures are observed in many omplexnetworks that our in reality.We begin with a short overview of the physis of omplex networks in Chap-ter 1. In the �rst few setions, we introdue important onepts and de�nitionsthat are used throughout the thesis. This is followed by a brief disussion of someof the ommonly used network models found in the literature. Next, we analyzea simple model of modular random networks in Chapter 2 and show that it hasstrutural properties similar to many real-world networks. We also examine the ef-fet of modular struture on dynamis ourring over the network by studying thephenomena of synhronization, di�usion and spin-ordering on the network model.We show that for all these di�erent varieties of dynamial proesses modularitygives rise to the same harateristi signature of multiple distint time sales. InChapter 3, we explore how modularity an arise in networks as an outome ofevolution in the presene of multiple o-existing onstraints. As an example, we6



demonstrate the emergene of modular organization upon simultaneous optimiza-tion of several strutural and dynamial onstraints to whih many real networksare subjet. The minimal number of suh onstraints is found to be three, e.g.,minimizing (a) average path length, (b) total number of links, and () probabilityof loal instability. The well-known onnetion topologies of star, hain and ran-dom networks appear as limiting ases when one of these onstraints is relaxed. InChapter 4, we introdue a model for hierarhial random networks and analyzethe e�et of having multiple strutural levels (or hierarhies) on di�erent dynami-al proesses. In general, making the previously introdued modular network morehierarhial, has e�ets similar to inreasing the number of strutural modules. Weshow that a generalization of the evolutionary model for modularity introdued inthe preeding hapter an also give rise to simple hierarhial ordering in a net-work. In Chapter 5, we show that the modular struture of networks ourringin reality an be unovered from empirial data, namely the dynamial time-seriesobtained from the omponent nodes. In partiular, we have analyzed the personalties between individuals in primate troops, in terms of allogrooming behavior, inorder to dedue their soial organization. Next, we reonstrut the network of in-terations among stoks in the Indian �nanial market by using spetral tehniqueson the ross-orrelations in their prie variations. We identify modules orrespond-ing to groups of strongly interating stoks. Using a multi-fator model, we showthat the emergene of suh strutures is an outome of relatively stronger mutualinterations between nodes belonging to the same business setor, as ompared totheir suseptibility to ommon signals that a�et the entire market. In Chapter 6we look at the reverse problem of how network struture re�ets the dynamis orfuntion of the system. We analyze the somati neuronal network of the nematodeC. elegans, the only organism whose entire nervous system has been ompletelymapped. We demonstrate that the network struture annot be fully explainedon the basis of exlusively strutural onsiderations, e.g., minimization of wiringost or maximization of ommuniation e�ieny, and give examples of how thefuntional role of the system as an information proessor in a noisy environmentan result in spei� strutural patterns. Finally, in Chapter 7, we onlude witha general overview of our results on how the dynamis ourring on a networkis governed by spei� strutural features of the system, and in turn, a�ets theevolution of ubiquitous strutural patterns suh as modularity and hierarhy. 7
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1Introdution
In reent years, there has been a growing interest in the study of omplex systemswhih pervade all of siene, from ell biology to eology, and from omputer si-ene to soiology [1, 2℄. Instead of being a simple aggregation of a limited set oflinearly interating units, most real world systems are made up of large number ofomponents, or agents, whih interat in suh a way that their olletive behav-ior is not a simple ombination of the individual properties of their omponents.Suh emergene of system-level features is one of the harateristi indiators of aomplex system. Moreover, these systems are often seen to be self-organized as aresult of mutual interations between their omponents rather than being orderedby some external ageny. Consequently, understanding the behavior of suh a sys-tem requires integrative approahes. One must understand not only the behaviorof its parts, but also, how they at together to give rise to the olletive behaviorof the whole. One way of desribing omplex systems is modeling them mathe-matially by using the framework of networks. In this approah, one fouses onlyon the topology of interations between the elements, providing a systems-levelperspetive to the example under study [3, 4℄. Suh an analysis helps to reveal theuniversal priniples underlying their organization and funtion, despite the greatomplexity and variety of these systems [5, 6℄.In this hapter, we introdued the relevant onepts and de�nitions from net-work siene that we shall be using throughout the thesis. In Se. 1.1, we �rstde�ne a set of terms to desribe the omplex networks and models to study suhsystems. In Se. 1.2, we give a brief overview of several types of omplex networksseen in real-world. In Se. 1.3, the measurable properties of networks, suh as,1



Chapter 1. Introdutionpath length, lustering and degree distribution, are introdued. This is followedby Se. 1.4, in whih we disuss models used for desribing and analyzing omplexnetworks that are already extant in the literature. Finally, in Se. 1.6, we presentan overview of the thesis, and the prinipal results of eah hapter.1.1 Complex networksThe di�erent omponents or interating units of a omplex system when desribedas a network, are represented by nodes or verties, and the interations or onne-tions between the units are represented by edges or links between pairs of nodes.Suh networks provide a onise mathematial representation of the topology ofinterations between the omponents. Thus, understanding how soial, biolog-ial, and eonomi systems work may often depend partially on understandingtheir patterns of interations, i.e., the underlying networks. The graph theoretialframework has provided the potential synergies among researhers aross di�erentmultidisiplinary �elds to ome and work together to solve apparently unrelatedproblems.Network arhiteture may have important funtional onsequenes for the wholesystem. For example, the topology of the network ontrols the rate at whih in-formation or diseases propagate through it [7, 8℄, its robustness under attak orfailure of individual omponents [9℄, as well as, adaptation and learning proesseson it [10℄. Reent work has pointed out the ruial role played by the networkstruture in determining the emergene of olletive dynamial behavior, suh as,synhronization of nodal ativity. Hene, studying these patterns of interationsbetween the omponents of a omplex system an lead to a better understand-ing of its dynamial and funtional behavior, in addition to throwing light on theevolutionary mehanism leading to it.There are several reasons for the emergene and rapid development of this �eld.Many of the insights and advanes in this �eld are due to the reent availabilityof large quantities of high resolution data from di�erent systems. Obtaining suhempirial data has beome possible beause of tehnologial advanes. For exam-ple, the network of soial interations among individuals an be onstruted frominformation about the alls they make using their mobile phones [11℄, leading to
2



Chapter 1. Introdution

A B CFigure 1.1: Representations of regular graph models: Nodes on (A) a 1-dimensionallattie, (B) a 2-dimensional lattie, and, (C) a Bethe lattie or Cayley tree with nearestneighbor onnetions.better understanding of human soial dynamis. There has also been remarkableinrease in omputational power, using whih regularities and patterns in largedata-sets an be determined. Another reason for the involvement of a large num-ber of physiists in this �eld is that, statistial physis and non-linear dynamis anbe used to develop methods and tehniques for analyzing and modeling omplexnetworks [12, 13℄.The traditional approah in physis for desribing an interating system isto use a lattie embedded in d-dimensional spae. Eah elements of the systemis loated on a lattie site and interats with neighboring sites within a range
r (= 1, 2, · · · ). On suh a regular network, all nodes have the same number ofneighbors (= (2r)d), where r is the range of interation and d is the dimensionof the spae on whih the lattie is embedded [Fig. 1.1℄. Another ommonly usedgraph in the literature is the Cayley tree or Bathe lattie, where eah node hasthe same number of neighbors but there are no yles in the struture. At theother extreme, we have the homogeneous random graph (also referred to as Erdos-Renyi or ER graphs) where the edges between any pair of nodes are randomlyplaed with probability p. However, networks ourring in the world around ushave strutures that our between these extremes and have properties that oftendi�er remarkably from both regular and random graphs [Fig. 1.2℄.
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Chapter 1. Introdution1.2 Examples of omplex networksThe empirial data for onnetivity in real-world omplex networks span severaldisiplines. For the purpose of summarization, we loosely divide them into four at-egories: biologial networks, soial networks, tehnologial networks and �nanialnetworks.Biologial networksA number of biologial systems an be usefully represented as networks. Examplesof suh networks our at many di�erent length sales. At the moleular level,protein struture an be onsidered as a network where the residue atoms of twoamino aids are said to be onneted if the Eulidean distane between them is lessthan a threshold, so that there is a signi�ant van der Waals interation betweenthem [14℄. On a slightly large length sale, we have the example of intra-ellularsignaling networks that allow extra-ellular stimuli at ell surfae reeptors to berelayed to the nuleus by a sequene of enzyme atalyzed reations [15℄. Suh anetwork allows the ell to respond to spei� stimuli with appropriate ations, suhas ell division, apoptosis, et. Another example of an intra-ellular network thatis de�ned in terms of the existene of physial ontats between the onstituentsof the network (rather than funtional relations), is the protein interation net-work [16, 17℄. At the inter-ellular sale, the most prominent example is that ofneuronal networks, involved in proessing information vital to the survival of theorganism. Here, the nodes are neurons, and the links are eletrial (gap juntion)or hemial (synapse) onnetions [18℄. At even larger length sales, there areeologial networks suh as food webs [19℄, where the links orrespond to trophirelations between speies (represented by the nodes).Soial networksSoial networks are probably the earliest empirial networks that have been ana-lyzed in detail. Muh prior to the reent exitement (starting from 1998) amongphysiists about networks, soiologists had been onstruting networks of soialontats within small groups (suh as ties of friendship within a shool) in orderto understand how and why relations that de�ne a soiety develop [23℄. However,4



Chapter 1. Introdution
A B
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Figure 1.2: Examples of omplex networks: (A) Internet at the Autonomous Serverlevel [20℄, (B) Food web at East River Valley [21℄ (nodes: speies, links: trophi relation),and (C) Metaboli network of E. oli [22℄ (nodes: metabolite, links: reation).suh studies ould not be extended to groups exeeding a few tens of individu-als owing to limitations in the way data was olleted, e.g., using questionnaires.With the advent of online sites, suh as Faebook, Orkut, et., where informationabout links between di�erent individuals an be eletronially gathered, it is nowpossible to study ontat networks in populations numbering thousands or more.Moreover, suh data also allows us to see how patterns in soial ties develop overtime [24℄. Similar detailed analysis has also been done for friendship networks, re-onstruted on the basis of frequeny and duration of mobile phone onversationsbetween individuals subsribing to the same phone ompany [11℄. The availabilityof large omputer databases have also allowed looking at other relational networks5



Chapter 1. Introdutionbetween people, suh as those formed by ollaborations between authors of sien-ti� papers [25℄.Tehnologial networks: Information transmission & Resoure trans-portationOne of the networks that has been the subjet of numerous studies in reent times isthe Internet, whih is omposed of servers around the world exhanging enormousvolumes of information pakets regularly [26℄. It an be studied at the level ofindividual routers, i.e., speial purpose omputers on the network that ontrol themovement of data. Alternatively, it an be analyzed at the level of autonomoussystems (AS), i.e., groups of omputers within whih ommuniation is handled bya loal internal network, but between AS, data is transmitted over the Internet.This physial network forms the bakbone of another tehnologial graph, theWorld Wide Web [5℄. This is a network of web-pages whih are linked together byhyper-links from one page to another.Another lass of tehnologial networks is that formed by networks whih al-low transportation, either of resoures or of people. One of the most importantexamples is the eletrial power grid, whose nodes are generators, transformersand substations that are linked together by high-voltage transmission lines [27℄.This network has been the fous of several studies whih look at how loal fail-ures an lead to asading failures resulting in overall or global atastrophi break-downs. Transportation networks an also be de�ned in terms of the distint modesby whih movement of individuals our between di�erent geographial loations.The nodes are ities and towns, while the links may orrespond to highways andsmaller roads (for the road transportation network [28℄), trains (for the railwaynetwork [29℄) or �ights (for the airline network [30℄).Finanial networksIn the �nanial domain, one has the sope of looking at di�erent types of net-works inluding �ow systems, suh as the redit transfer network between banks,where the nodes are �nanial institutions that are linked by exhange of loansand debts [31℄. Other examples inlude the graph of interating stoks, where twostoks in a �nanial market are onneted if their prie �utuations are signi�-6



Chapter 1. Introdutionantly orrelated [32℄. This network has often been used for the lassi�ation ofstoks into di�erent business setors and the identi�ation of unrelated stoks forthe purpose of portfolio management [33℄.1.3 Fundamental network oneptsGraph theory is the natural framework for the exat mathematial treatment ofomplex networks. Formally, a omplex network an be represented as a graphwhih is de�ned in terms of a set of N verties (or nodes) and E edges (or links).Every edge orresponds to a spei� pair of nodes in the graph. We shall use theterms network and graph interhangeably in this thesis.Adjaeny MatrixAny two nodes that are joined by a link are referred to as being adjaent orneighboring. A omplete desription of the onnetion topology of a graph isprovided by a tabulation of every onneted pair of nodes in it. Alternatively, thisinformation an be gleaned from its adjaeny matrix. A matrix A = {aij}N×N isalled the adjaeny matrix of a graph G with N nodes, if the elements of A havethe following property:
aij =

{

1 if nodes i and j are adjaent in G,
0 otherwise. (1.1)This matrix is symmetri if the network is undireted, i.e., if a link between nodes

i and j exists, so does a link between j and i. On the other hand, if the network isdireted, i.e., eah link has an assoiated diretion, then the matrix is asymmetri.1.3.1 Measures for omplex networksVarious properties of the onnetion topology for a omplex network an be usedto haraterize the system. Indeed, many loal and global measures have beenintrodued in the literature over the years, in order to unveil the organizationalpriniples of networks. Below, we desribe some of the most ommonly used mea-sures. 7



Chapter 1. IntrodutionDegreeThe simplest loal harateristi of a node i is its degree, ki, whih is the total num-ber of onnetions it has to other nodes. It an be alulated from the adjaenymatrix as
ki =

N
∑

j=1

Aij . (1.2)In the ase of direted networks, the number of inoming (outgoing) edges of avertex is alled its in-degree (out-degree). The mean degree 〈k〉 is the average of
ki over all nodes i = 1, . . . , N in the graph. In an undireted graph, eah edgeontributes to the degree of two nodes, so that 〈k〉 = 2E

N
, where E and N are thetotal number of links and nodes in the network, respetively. A node whose degreeis signi�antly large ompared to the average degree of the network is termed asa hub. A fully onneted graph of N nodes with ki = N − 1 ∀i is alled a lique.Most real-world networks are sparse suh that their average degree is muh smallerompared to the orresponding lique [3, 4℄.Degree distributionAlthough degree is a loal parameter, we an obtain information about the globaltopology of the network by looking at its degree distribution, pk, whih is the setof probabilities that a vertex has degree k = 1, 2, . . . , N − 1. A network havinga narrow degree distribution with a well de�ned mean and a small variane indi-ates that all its nodes are similar in terms of strutural importane, and that thenetwork an be well desribed by its average properties. However, many networksourring in reality are haraterized by a degree distribution whih deays as apower law:

pk ∼ k−γ , (1.3)with an exponent γ whose value is typially seen to range between 2 and 3. Thus,there is a signi�antly high probability of observing verties with large degreerelative to the network size [34℄. The power-law distribution implies that there isno harateristi sale for the degree of the nodes, so that this lass of networks isalso termed as sale-free networks. In addition to power laws, degree distributionsthat follow trunated power law or exponential distributions are also observed in8



Chapter 1. Introdutionmany networks ourring in nature and soiety [35℄.Path lengthA global measure of a network is provided by the shortest path length or distanebetween any pairs of nodes i and j. This is de�ned as the number of links thatmust be traversed to go from one node to another using the shortest route. Theaverage of shortest path lengths over all pairs of nodes in the graph, also knownas the harateristi path length, is an indiator of ompatness of the network. Itis de�ned as
ℓ =

1
1
2
N(N − 1)

∑

i≥j

dij, (1.4)where dij is the shortest path length from vertex i to j and N is the number ofnodes in the network. However, if the network onsists of disonneted parts, theabove de�nition gives in�nite ℓ. To avoid this problem one an de�ne ℓ on suhnetworks to be the harmoni mean of the shortest distane between all pairs:
E ≡ ℓ−1 ≡ 1

1
2
N(N − 1)

∑

i>j

1

dij
. (1.5)This is also termed as e�ieny of the network and is a measure of the speed withwhih information propagates over the network [36℄.Most real-world networks have been seen to exhibit the small world property,whih is related to the observation that one an reah a given node from the othernodes in a very small number of steps, on average. In reent years, the term small-world e�et has taken on a more preise meaning: networks are said to show thesmall-world e�et if ℓ sales logarithmially or slower with network size for �xedmean degree, 〈k〉 [4℄.DiameterAnother related measure for ompatness of the network is its diameter D, whihis de�ned as the longest of all the shortest paths in the network.

D = max{dij}, ∀ i-j pairs of shortest paths. (1.6)
9



Chapter 1. IntrodutionNetwork N 〈k〉 ℓ CProtein interation 2115 2.12 6.80 0.071Physis o-authorship 52909 9.27 6.19 0.56Internet 10679 5.98 3.31 0.39Marine food web 135 4.43 2.05 0.23Table 1.1: Properties of some real-world omplex networks: size (N), average degree(〈k〉), harateristi path length (ℓ) and average lustering oe�ient (C). (From Ref. [4℄)As the diameter and harateristi path length are related properties, sometimethese measures are used interhangeably to measure the network ompatness.ClusteringMany real networks have been shown to have a signi�ant transitivity in the patternof their onnetions, suh that, if the pairs of nodes i, j are onneted and the pair
j, k are also onneted, then so is the pair i, k. This is equivalent to having asigni�antly high frequeny of triangular strutures in the network [37℄. In suhirumstanes, the nodes of the network are said to be lustered. The ompatnessof the loal neighborhood for a node i is measured by the lustering index:

Ci =
2Ei

ki(ki − 1)
, (1.7)where, Ei is the number of edges among the ki neighbors of node i. Note that,

Ci = 1 if the neighbors of node i are fully interlinked, and Ci = 0 if none ofits neighboring nodes share any links with eah other. The average lusteringoe�ient for the entire network, C, is de�ned as the average of Ci over all thenodes in the network, i.e., C = 1
N

∑N
i=1 Ci.This average lustering oe�ient is a measure of the �liquishness" or loalompatness of a network. For di�erent real networks, C takes values whih areorders of magnitude larger than that of an equivalent random graph with thesame number of nodes and edges. If, in addition to the small world property, anetwork also possesses a high lustering oe�ient C, then it is termed as a small-world network (SWN). Many of the real world network are seen to belong to thislass [37, 38℄. 10



Chapter 1. Introdution1.4 Models of omplex networksOne way of understanding omplex networks observed in nature and soiety is toonstrut a minimal model that exhibits properties whih are similar to those ofempirial networks. Suh a network model an help to explain proesses by whihsuh systems evolve and also shed light on the funtion of the network. Further,a network model an be used for studying the dynamis on suh networks, e.g.,to understand how the proesses of synhronization and di�usion are a�eted bydi�erent network topologies [39, 40℄.1.4.1 Erdos-Renyi random networkThe earliest mathematially analyzed non-trivial network model in the literatureis that for an ensemble of homogeneous random graphs introdued by Erdos andRenyi [41℄. Starting from a set of N disonneted nodes, eah pair of nodes isonneted with a probability p. This simple model leads to a surprising list ofproperties, many of whih an be omputed exatly in the limit of large N . Fora sparse graph, if the average number of edges in the graph is a fration p of the
N(N − 1)/2 possible edges, then the average degree

〈k〉 =
2E

N
= p(N − 1). (1.8)The degree distribution an also be omputed, with the probability of a vertexhaving degree k being

pk =

(

n

k

)

pk(1 − p)n−k ≃ 〈k〉k exp−〈k〉

k!
. (1.9)The approximate equality, i.e., binomial distribution being approximated by aPoisson distribution, beomes exat in the asymptoti limit of large network size.These graph are therefore also known as Poisson random graph.The expeted struture of the random graph varies with the onnetion prob-ability p. For p = 0, there are no edges and the graph is termed an empty graph,whereas for p = 1, all possible edges exist and we get a omplete graph. As pinreases from 0, the edges join nodes together to form omponents, i.e., subsets of11



Chapter 1. Introdutionnodes that are onneted by paths through the network. Erdos and Renyi demon-strated that the random graph undergoes a phase transition at a ritial value of
pc = 1/N , from a low-density state in whih there are few edges and all ompo-nents are small to a high-density state in whih an extensive [i.e., O(n)℄ frationof all nodes are joined together in a single giant omponent. This omponent isa set of mutually reahable nodes, whereas the remainder of the nodes oupysmaller omponents. With inreasing p, the giant omponent aptures more andmore nodes of the graph. Another important feature is the ourrene of a seondonnetivity transition at pc1 = ln N/N . For p > pc1, all sites belong to a singleomponent (in the limit N → ∞), while for p < pc1 disjoint lusters an exist.These graphs have a low lustering oe�ient as the probability of onnetionbetween two nodes is p regardless of whether they have a ommon neighbor or not.Hene,

C = p =
〈k〉

N − 1
, (1.10)whih goes to zero as N−1 in the limit of large system size [37℄. To get an idea ofthe average path length for the graph, note that the mean number of neighbors ata distane ℓ away from a vertex in a random graph is 〈k〉ℓ, so that the value of ℓneeded to enompass the entire network is 〈k〉ℓ ≃ N . Thus a typial harateristidistane for the network is

ℓ = log N/ log〈k〉. (1.11)This saling is muh slower than that of a d-dimensional regular lattie where
ℓ ∼ N1/d. If the growth of ℓ(N) is slower than any positive power of N , it isreferred to as small-world e�et [42℄.The ease of analysis for random graphs has proven to be very useful in the earlydevelopment of the �eld. Although the average path length sales logarithmiallywith graph size and therefore, shows the small-world e�et, in almost all otherrespets the properties of random graphs do not math those of networks in thereal world. Their degree distribution is Poisson, whereas most real-world graphsseem to exhibit broader degree distributions. Also, the random graph laks learlyde�ned ommunities and the lustering oe�ient is usually far smaller than thatin omparable real-world graphs. The basi Erdos-Renyi model has been extendedin several ways, e.g., to exhibit a power law degree distribution pattern [43, 25℄.
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Figure 1.3: The Watts-Strogatz (WS) small-world network model, seen as an interpo-lation between a regular and a random network.However, these models do not desribe how real-world properties evolve dynam-ially, thus making them less useful in understanding the proesses of networkformation in the real world.1.4.2 Watts-Strogatz small-world networkSoial networks often show a high tendeny of being transitive, that is two peoplewho are friends have a high probability of having one or more mutual friends.This kind of lustering is not seen in random graphs, as mentioned previously.In 1998, Watts and Strogatz proposed a mehanism for generating small-worldnetworks with high lustering [37℄. This model is often termed as the WS-modeland the generative mehanism is as follows: A regular network is �rst onstrutedby arranging N nodes on a 1−d periodi lattie. Eah vertex is onneted to
k = 2z nearest neighbors within the range z, so that all nodes have the sameinitial degree. Next, one goes through eah edge, and with rewiring probability p,detahes the far side of the edge and reonnets it to a randomly hosen vertex(exluding self and multiple onnetions).Changing the rewiring probability p allows us to investigate the transition froma regular graph (p = 0) to a random graph (p = 1) (Fig. 1.3). Let us onsider �rstthe limit p = 0, where the network is regular and arranged on a ring. The shortest13



Chapter 1. Introdutionaverage path length for this system is ℓ ∼ N/4z for large N , and this grows linearlywith N . The lustering oe�ient Creg = (3z − 3)/(4z − 2) is onstant and tendsto 3/4 for large z. This large value indiates the presene of a signi�ant numberof triangular strutures in the network. On the other hand, for p = 1 we have therandom graph for whih ℓ ∼ lnN/ ln z and C ∼ 2z/N → 0 as N inreases. In theWS model, by hanging the rewiring probability one �nds that there is a broadrange of p, where ℓ ≈ ℓrand and C = Creg. Thus, globally the network has thesmall-world property of a random graph, while loally it is lustered like a regulargraph. This is beause the diameter ℓ drops rapidly when p inreases, as addingeven a few short-uts during the rewiring proess redues the average distanebetween any pair of nodes signi�antly. However, the lustering oe�ient
C =

3(k − 1)

2(2k − 1)
(1 − p)3, (1.12)of the network dereases very slowly with inreasing p [44℄.The WS-model was one of the �rst models that ould explain the o-existeneof high lustering and small-world e�ets. Further, this model introdued theonept of physial distane onstraints in network formation. For example, it iseasy to form a link between nodes whih are geographially lose to eah other.Although other variations of the WS network have been proposed, in all thesemodels the signature of a physial d-dimensional lattie is still observed, so that,shortuts our with higher probability between nodes that are physially loser.However, the onventional WS model does not exhibit a broad degree distribution,and the disovery of this latter feature in several real-world networks led to thenext breakthrough in the physis of omplex networks [34, 45℄.1.4.3 Barabasi-Albert sale-free networkFirst proposed to explain the degree distribution in itation networks [46℄, the ideaof preferential attahment has been redisovered reently by A-L. Barabasi and R.Albert (BA) in a network model that shows broad degree distributions desribedby a power law [34℄. They showed that the sale-free nature of these networks anoriginate from two generi features seen in many real-world networks,1. Growth: Networks are open systems with the number of nodes growing with14



Chapter 1. Introdutiontime (i.e., N inreases), and2. Preferential attahment : New nodes in the graph are not onneted randomlybut preferentially attah to existing nodes whih have high degree, therebymaking the degree of the latter even higher. This proess is sometimes re-ferred to as the rih getting riher phenomenon.If Π, the probability that the new node will be onneted to node i, dependslinearly on the degree ki of node i, i.e.,
Π(ki) =

ki
∑

j kj
, (1.13)then, it was shown that the model network evolves into a system with a sale-invariant degree distribution having an exponent γ = 3.As the degree distribution of the preferential attahment models math withthose ourring in real-world graphs, it suggests that real networks might have beengenerated by similar proesses. However, many networks in nature with a broaddegree distribution show deviations from a pure power-law, typially exhibiting anexponential uto� at high degrees:

pk = k−γφ(k/ξ) (1.14)where φ(k/ξ) is the uto� at some sale. In the ontext of the growing BA model,this phenomenon an be explained due to aging and saturation e�ets that limit thenumber of links a node an aquire. Thus, the preferential attahment funtion,
Π(ki) is nonlinear, following Π(ki) = f(ki)/

∑

j f(kj), where f(k) is an arbitraryfuntion, resulting in deviations from the power-law [47℄.The average path length ℓ of the BA network (γ = 3) grows as
ℓ(N) ∼ ln(N)

ln ln(N)
(1.15)with N slower than ln N , whih is also termed as ultra-small-world e�et [48℄. Thisindiates that the heterogeneous sale-free topology is more e�ient in bringingthe nodes loser than the homogeneous topology of random network. Other sale-free networks with 2 < γ < 3 have a muh smaller diameter, with ℓ ∼ ln ln(N),15



Chapter 1. Introdutionwhile for networks with γ > 3, the shortest path length ℓ ∼ ln(N) [49℄. Thelustering oe�ient of the BA model dereases with the network size, followingapproximately a power law, C ∼ N−0.75. While being slower than the 1/N deayobserved for C in random graphs, this is still di�erent from the behavior of small-world network models and real world networks, where C is independent of N [3℄.Further there is a strong orrelation between age and degree in this model whihis rarely seen in real-world systems. Moreover, only linear preferential attahmentgives a power-law degree distribution, that brings into question the general validityof this proess.1.5 Importane of mesosopi organization in om-plex networksIt has now been known for some time that the topologial struture of a networkan a�et the funtion of the system [6℄. E.g., it has been shown that the onne-tion arhiteture has important onsequenes on the funtional robustness of thenetwork and its response to external perturbations [50℄. This has led to a series ofstudies pointing to the ruial role played by the network topology in determiningthe emergene of olletive dynamial behavior [39, 40℄, suh as synhronization,di�usion, the spreading of ontagion suh as epidemis, information and rumors,et. To study this we need to go beyond the properties of single nodes and pairsof nodes, and onsider the mesosopi properties of networks (i.e., properties ofgroups or loal lusters in the network).MotifsNetwork motifs are patterns (sub-graphs) that our within a network muh moreoften than expeted in orresponding randomized versions. Most networks studiedin biology, eology and other �elds have been found to show a small set of networkmotifs whih our again and again. Eah lass of networks seems to display its ownset of harateristi motifs, e.g., motifs that are ommonly seen in food webs aredistint from the motifs seen in the geneti networks of di�erent speies. However,similar motifs are found in networks that have similar funtion, suh as informationproessing, even though they desribe elements as di�erent as biomoleules within16



Chapter 1. Introdutiona ell and synapti onnetions between neurons. These small iruits therefore anbe onsidered as simple building bloks from whih the network is omposed [51℄.ModularityLooking beyond small miro-level motifs, it has been observed that, at the meso-sopi level many of the networks in real-world have modular struture [52℄. Mod-ules or ommunities are subnetworks within the network, where onnetions aremore frequent between nodes within the same subnetwork than between nodes ofdi�erent subnetworks. The presene of modular struture may also alter the way inwhih dynamial proesses (e.g., spreading proesses, synhronization) unfold onthe network. With this realization many of reent studies have foused on modelsof modular networks and their inter-relation with the dynamial proesses takingplae on the network [53℄.HierarhyFurther, these networks have also been shown to have hierarhial organization,i.e., they are omposed of suessive interonneted layers or inter-nested ommu-nities [54℄. Hierarhy desribes the organization of elements in a network: hownodes link to eah other to form ommunities and how ommunities are joined toform the entire network. E.g., the metaboli network of several organisms an beorganized into highly onneted modules that hierarhially ombine into largerunits [55℄. The observed hierarhy also oinides with known metaboli funtions,indiating that there may be a funtional basis for suh meso-level organization.1.6 Overview of thesisThe aim of the present thesis is to look at the mesosopi organization of omplexnetworks. This is viewed from three perspetives: (i) the strutural propertiesof suh an organization, (ii) their role in dynamial proesses de�ned on suhnetworks, and (iii) the possible origin and evolution of suh strutures. These areomplemented by empirial analysis of networks ourring in reality that showsimilar organizational features.
17



Chapter 1. IntrodutionIn Chapter 2, we investigate the strutural and dynamial onsequenes ofmodular organization in networks. Using a simple model, we show that small-world networks an arise as an immediate result of modular on�guration. Wedemonstrate a distint dynamial signature for suh modular networks, namely, theexistene of multiple harateristi time sales in proesses as di�erent as synhro-nization, di�usion and spin-ordering. The dihotomy between fast intra-modulardynamis and slow inter-modular dynamis is diretly related to the topologialstruture of the model through the spetral properties of the network Laplaian.By verifying the existene of similar features in the empirially determined ortio-ortial networks in at and maaque brains, we propose that the modular networkmodel may better represent ertain natural systems reported to have small-worldproperties [56, 57℄.To understand the proess by whih networks evolve towards modular organi-zation, we note that they are subjet to multiple strutural and funtional on-straints. In Chapter 3, we onsider the partiular examples of (i) minimizing theaverage path length, (ii) minimizing the total number of links, while (iii) maximiz-ing robustness against perturbations in node ativity. We show that the optimalnetwork satisfying these three onstraints is modular, haraterized by the exis-tene of multiple sub-networks sparsely onneted to eah other. In addition, thesemodules have distint hubs resulting in an overall heterogeneous degree distribu-tion, as seen in many real networks [58℄.In addition to the existene of modular strutures, several networks in naturealso have these modules arranged in a hierarhial fashion. Therefore, we nextonsider a model for suh hierarhial modular networks in Chapter 4. We showthat a saling relation between the lustering and degree of the nodes is not a ne-essary property of suh networks, ontrary to what has been laimed reently. Weinvestigate the dynamial properties of suh networks, in partiular, the stabilityof (i) equilibria of network dynamis, and (ii) synhronized ativity. For both theseases, we �nd that inreasing modularity or the number of hierarhial levels tendto inrease the probability of instability. As both hierarhy and modularity areseen in natural systems, whih neessarily have to be robust against environmental�utuations, we show using a generalization of the model used in Chapter 3, howonstraints on ommuniation e�ieny and maximum degree an result in theemergene of hierarhial strutures [59℄. 18



Chapter 1. IntrodutionAfter having analyzed network models for understanding the dynamial onse-quenes of modularity and hierarhy in the preeding hapters, in Chapter 5 weonsider how their existene in omplex systems ourring in reality, an be un-overed from a knowledge of the olletive dynamis of the omponent nodes. We�rst demonstrate the possibility of reonstruting a network through an analysis ofthe time-series data of its omponents, by using the behavioral data of individualsbelonging to a troupe of maaque monkeys. To reonstrut a muh more omplexnetwork from dynamial information about its omponents, we onsider the exam-ple of �nanial markets. These omplex systems have many interating elements(traders and stoks) and exhibit large �utuations in their assoiated observableproperties, suh as stok prie or market index. By analyzing the ross-orrelationmatrix of stok prie �utuations through spetral tehniques, we reveal the under-lying network of interations between stoks in di�erent markets. We observe theexistene of modules whih approximately orrespond to spei� business setors.Using a multi-fator model, we suggest that the gradual emergene of modules, in-diating the strengthening over time of diret interations between related stoks,is a signature of market development [33℄.In Chapter 6, we onsider the reverse problem, i.e., we try to understand thefuntional signi�ane (arising out of the dynamial onsequenes) of the observedstrutural features. As an example, we onsider the somati nervous system ofthe nematode C. elegans. We determine the strutural modules of the neuronalnetwork, and show that suh an organization an only be explained if one onsideronstraints that are possibly related to the information proessing funtion of thesystem apart form stati onsiderations. A detailed analysis of the intra-moduledegree and partiipation oe�ient allows us to identify key neurons involved ininformation proessing tasks whih are veri�ed from earlier reports of experimentalstudies. We also show that the existene of a hierarhial struture in the nervoussystem has the funtional bene�t of reduing di�usive spread of ativity throughoutthe network (thus, ating as a noise �lter), while maintaining high ommuniatione�ieny between neurons [60℄.We onlude with a general disussion on how the dynamis ourring on anetwork is governed by mesosopi strutural features of the system, and in turn,a�ets the evolution of ubiquitous strutural patterns, suh as modularity andhierarhy. 19



2Modularity in omplex networks
In many natural situations, dynamis at the loal level may our over a verydi�erent time-sale ompared to proesses at the global level. Suh a temporalseparation is often desirable funtionally, e.g., for information proessing in thebrain. It requires synhrony between loal areas proessing spei� stimuli [61℄,but, global or very large sale synhrony is onsidered to be pathologial, as inepilepsy [62℄. Many systems in nature have network desriptions, with the onne-tion topology playing a ruial role in determining their dynamial behavior [12℄.Therefore, it is of onsiderable interest to understand how the strutural organiza-tion in omplex networks an give rise to dynamis at multiple disrete time-sales.As disussed in Chapter 1, a large lass of networks in nature have also beenreported to be small-world networks (SWN) [37℄, whih are haraterized by theoexistene of very high lustering among neighboring nodes and short averagepath length. The lustered struture of SWN distinguishes them from networkswith �small-world property� [38℄, whose average path length inreases slower thanany polynomial funtion of the system size. This latter feature is seen in randomgraphs, as well as, in most omplex networks [4℄. SWN have been reported ina variety of ontexts, inluding the brain [63℄, human soiety [64℄ and ellularmetabolism [65℄. Several models for SWN have been proposed [66℄, beginningwith a simple interpolation sheme between regular and random struture throughrewiring of links (the WS model) [37℄ [Fig. 2.1 (a)℄.In this hapter, we relate the independent properties of dynamial time-saleseparation and the lustered small-world property of many omplex networks, withthe ruial observation that suh systems often manifest modular struture [67℄.20



Chapter 2. Modularity in omplex networksModules are de�ned as subnetworks omprising of nodes onneted to eah otherwith a density signi�antly higher than that of the entire network. Modular stru-tures have been observed in a wide variety of ontexts, from ellular metabolism [68℄and signalling [69℄ to soial ommunities [70℄, internet [71℄ and foodwebs [19℄. Ourresults, therefore, suggest that the large number of instanes of SWN in the realworld is related to the ubiquity of modular strutures in omplex systems.In Se. 2.1, we introdue a simple model of modular networks. In Se. 2.2, weshow that these networks exhibit all the strutural harateristis of SWN. Suhmodular networks, in sharp ontrast to previous models of SWN, exhibit distinttime-sale separation in their dynamis, orresponding to fast intra-modular andslow inter-modular proesses. In Se. 2.3, we show the universality of this be-havior by using three very di�erent types of dynamis, viz., (i) the ordering ofspins through exhange interations, (ii) synhronization among relaxation osilla-tors and (iii) di�usion. In all ases, the modular on�guration allows oordinationwithin loal lusters to our muh more rapidly than global ordering. The our-rene of multiple disrete timesales in suh a wide variety of systems highlightsthe role of modularity in the dynamis on omplex networks. In Se. 2.4, we showthat these multiple timesales an be related to the Laplaian spetra of the net-work. We onlude by disussing in Se. 2.5 how identifying modular struturesis ruial for designing intelligent intervention strategies for omplex systems, e.g.,ontrolling epidemis.2.1 Modular random networks: A modelThe network model onsidered in this hapter follows diretly from the de�nitionof modular networks and onsists of N nodes arranged into m modules (similar tothe onstrution used, e.g., in Ref [52℄). Eah module ontains the same numberof randomly onneted nodes [Fig. 2.1(b)℄. The onnetion probability betweennodes belonging to the same module is ρi, and for those belonging to di�erentmodules is ρo. Thus, one of the key parameters de�ning the model is the ratioof inter- to intra-modular onnetivity ρo

ρi
= r ∈ [0, 1]. For r → 0, the networkgets fragmented into isolated lusters, while as r → 1, the network approahes ahomogeneous or Erdos-Renyi (ER) random network. The other parameter that

21



Chapter 2. Modularity in omplex networks

Figure 2.1: Shemati diagrams of (left) Watts-Strogatz model and (right) modularnetwork, with modules in the latter indiated by broken irles.together with r ompletely de�nes the modular network is its average degree (i.e.,the number of links per node),
〈k〉 =

ρi

m
[(N − m) + rN(m − 1)] . (2.1)2.2 Stati properties of modular networksTo look at the strutural properties of the model, we �rst onsider the ommu-niation e�ieny E for the entire system. This is a measure of the informationpropagation speed over the network and is de�ned as [36℄,

E ≡ ℓ−1 ≡ 1
1
2
N(N − 1)

∑

i>j

1

dij

, (2.2)where, dij is the shortest distane between nodes i and j. Note that, E is related tothe harmoni mean distane, ℓ, whih is a measure of the average path length. Wealso quantify the lustering within loal neighborhoods by measuring the oe�ient
C = (1/N)

∑

i 2ni/ki(ki−1), where ki and ni are the degree and the number of linksbetween the neighbors of node i, respetively. For the modular random network,
C = ρi(d

2
1 + (m − 1)d2

2) + (m − 1)ρo(2d1d2 + (m − 2)d2
2), (2.3)where, d1 = (N

m
− 1)ρi/〈k〉 and d2 = N

m
ρo/〈k〉 are the probabilities that a node hasa neighbor in the same or a di�erent module, respetively. Thus, if the number of22
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〈k〉 = 14). The data points are obtained by averaging over 100 realizations. Error barsare in all ases smaller than the symbols used. () The variation of modularity measure,
QM , with r for modular random networks (solid line) and with p for WS network (brokenline). The dotted line indiates QM = 0.7 and its intersetion with the other two urvesgives a pair of r and p values at whih we an ompare the two model networks.modules is large then, lustering is high at low values of r. As r is inreased in ourmodel, we observe an inrease in E while simultaneously C dereases [Fig. 2.2 (a)℄.The small-world property is assoiated with high values of both E and C, whihis indeed what is observed in our model for an intermediate range of r, exatly asin the WS model [Fig. 2.2 (b)℄.Next, we haraterize the model using a measure of modularity, Q [72℄. For agiven partition of the nodes of a network into m modules,

Q ≡
m

∑

s=1

[

ls
L
−

(

ds

2L

)2
]

, (2.4)where the total number of links in the network is L, and ls and ds are the linksbetween nodes and the total degree of all nodes belonging to module s, respe-tively. The largest modularity that is obtained from all possible partitions of the23



Chapter 2. Modularity in omplex networksnetwork is denoted by QM = max{Q}. A high value for QM is a neessary but notsu�ient ondition for a network to be modular, as there an be various regulargraphs having high QM value for whih the modules annot be identi�ed unam-biguously [73, 74℄. In partiular, for the WS small-world model, alulating QMyields high values although the modules are not de�ned in an unique manner. For aWS network de�ned on a ring of N nodes (eah onneted to 2z nearest neighbors)where a fration p of the links have been rewired,
Q = (1 − p)

(

2N − zm − m

2N
− 1

m

)

. (2.5)Here, the existene of m modules of equal size n = N/m were assumed for thealulation of Q. The maximum value QM = (1 − p)
[

1 −
√

2(z + 1)/N
]

, oursfor m∗ =
√

2N
z+1

and an be very high for low p. Similar high values of QM areobtained for modular random networks at low r, the modularity measure for suha system with N nodes being
Q =

(m − 1)[N(1 − r) − m]

m[N(1 − r + rm) − m]
. (2.6)Unlike the WS model, here the modules are pre-de�ned and Q does not needto be maximized with respet to di�erent hoies for partitioning the network.Fig. 2.2 () shows the variation of Q with r and p for the two lasses of small-worldnetwork models.Note that, WS networks are parametrized with respet to the rewiring prob-ability p, while modular random networks are de�ned in terms of r, the ratio ofinter- to intra-modular onnetivity. Therefore, in order to irumvent the di�-ulty in diretly omparing these two types of networks, in subsequent work wehave onsidered networks having the same N , 〈k〉 and Q. We observe that it isdi�ult to di�erentiate between WS and modular random networks from theirstrutural information only, by using any of the ommonly used stati measures.For example, on applying the k-lique (omplete subgraphs with k nodes) pero-lation luster tehnique used for deteting overlapping ommunities [75, 76℄, wefound large lusters to appear in both types of networks. This is beause the loallink density in both systems are muh higher than their overall onnetivity. 24



Chapter 2. Modularity in omplex networksOther measures suh as betweenness entrality (BC), edge lustering (EC), et.,also gave similar results for the two network models. The betweenness entralityof an edge (i.e., link) is de�ned as the number of shortest paths between pairsof verties that go through it. If there are more than one shortest path betweena pair of verties, eah path is given equal weight suh that the total weight ofall the paths is unity. The edges with maximum betweenness often at as thebridges between di�erent ommunity. So by removing the edges with maximumbetweenness entrality the modular struture an be determined [52℄. We �nd thatthis is indeed what happen for modular network. However, for Watts-Strogatz(WS) network, the shortuts or rewired links also have high edge betweenness.Thus, the above algorithm whih removes edges with high betweenness entralityause the removal of these shortuts, so that only the regular hain struture is left(Fig. 2.3). When further links are removed then the hain struture is divided intogroup of nodes (whih are roughly of equal size). Hene, applying this method todetermine modules in a network gives ommunity struture in both the ases.Instead of BC, other parameters like edge lustering an also be used to deter-mine the modular struture in a network [77℄. Edge lustering is de�ned, analogousto the node-lustering oe�ient, as the ratio of the number of triangles to whiha given edge belongs to the total number of potential triangles that might inludeit given the degrees of the adjaent nodes. More formally, for the edge onnetingnode i to node j, the edge lustering oe�ient is
C

(3)
ij =

z
(3)
ij + 1min(ki − 1, kj − 1)

,where z
(3)
ij is the number of triangles to whih that edge belong and min(ki − 1, kj − 1)is the maximal possible number of triangles. As edges that link di�erent ommuni-ties are unlikely to belong to many short loops, these edges have low EC. Therefore,removing the edges with low EC will reveal the ommunity struture as disjointsubsets if the underlying network struture is modular. However, in a WS networkthe shortuts have low EC, and hene the algorithm of removing low EC links willagain remove the shortuts resulting in a lattie struture. As above, on furtherremoval of links, the hain struture gets disrupted into disjoint groups of nodes.Hene, the WS network also appears to have a ommunity struture. 25



Chapter 2. Modularity in omplex networks
Removal of high BC or 

low EC edges

Emergence of Modules

Figure 2.3: Shemati diagram showing the e�et of removing edges with high between-ness entrality (BC) or low edge lustering (EC). For both WS (left) and modular (right)networks, the system gets divided into isolated ommunities (groups of nodes).2.3 Dynamis on modular networksSo far we had been onsidering exlusively the strutural aspets of small worldnetworks. However, apart from topologial struture, networks are often assoi-ated with ertain dynamis [6℄. As dynamis is often ruial for the funtioning ofmany systems, we now examine very di�erent dynamis on network models havingthe lustered small-world property. These dynamis range from nonlinear inter-ations (representative of olletive ordering in a network) to strongly nonlinearloal dynamis at eah node (as in relaxation osillators) with di�usive oupling.26
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A

B

Figure 2.4: Shemati diagram of (a) global ordering (M = 1, Mm = 1) and (b)modular ordering (M = 0, Mm = 1) in a modular network of Ising spins.2.3.1 Spin-Spin interation dynamisWe �rst onsider the e�et of modular organization on the emergene of olletivebehavior, a simple model of whih is the ordering of Ising spins arranged on anetwork. This system is desribed by the Hamiltonian,
H = −

∑

i,j

Jijσiσj , (2.7)where, σi, σj = ±1 are spins plaed on nodes i, j, and Jij is the ferromagnetioupling between them (= J > 0 if i, j are onneted and 0 otherwise). Start-ing from an initial random on�guration of spins on a modular random networkwith average degree 〈k〉, the system is allowed to evolve to its ground state us-ing Glauber dynamis. It orresponds to a globally ordered state [Fig. 2.4 (a)℄ if
T < Tc(= 〈k〉), the mean-�eld ritial temperature measured in units of J/kB (kB:Boltzmann onstant). We observe that the time (τgm) needed for magnetization
M =

∑N
i=1 σi/N to reah its high asymptoti value, diverges as r dereases. Thisis beause, at low r, the system remains for a long time in a state of modularordering [Fig. 2.4 (b)℄, where the spins in eah module are ordered but aligned inopposite diretions in di�erent modules resulting in an absene of global ordering.The loal order parameter, modular magnetization Mm = m

N
〈|

∑

i∈k σk
i |〉, where

σk
i is the i−th spin in the k-th module and the averaging is over all modules, ex-hibits onvergene to its asymptoti value over a time-sale τmm, whih is almost27



Chapter 2. Modularity in omplex networks

10
−3

10
−2

10
−1

10
0

10
0

10
2

10
4

r

τ  m
 (

M
C

 S
te

ps
) τ

 gm

τ
 mm

Figure 2.5: The two time-sales orresponding to loal ordering within a module (τmm)and global ordering over the entire network (τgm) for a modular random network of Isingspins (m = 16) at T = 6 as a funtion of r. (In all ases N = 512, 〈k〉 = 14).independent of r.Fig. 2.5 shows the existene of two time-sales whih diverge at low r indiat-ing the ordering proess within modules to be muh faster ompared to betweenmodules. At low temperatures, as the spins within eah module get ordered, dif-ferent modules may get aligned in opposite diretions. To ahieve global order,some of the modules need to turn all their spins, a proess that has a onsiderableenergy barrier. To ross this with thermal energy takes extremely long times, re-sulting in divergene of τgm. A similar investigation of the WS network shows onlyglobal ordering, with τgm diverging as p dereases. Related dynamial proesseswhere the appearane of distint time-sale events as a onsequene of modularnetwork struture have important funtional signi�ane, inlude the adoption ofinnovations [78℄, spread of epidemis [8℄ and onsensus formation [79℄.2.3.2 SynhronizationNext, we ompare the dynamis of synhronization in modular random and WSnetworks. We onsider a population of N oupled relaxation osillators (desribed
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ẋi = c

[

yi − xi +
x3

i

3

]

+

N
∑

j=1

Kij

ki
(xj − xi); (2.8)

ẏi =
−xi

c
. (2.9)Here, c is the ratio between time-sales of x and y. Kij = κAij is the ouplingbetween a onneted pair of osillators with strength κ, and A is the network ad-jaeny matrix, i.e., Aij = 1 if i, j are onneted and 0 otherwise. For networksof simple osillator models, the approah to synhronization exhibits temporallyvarying patterns that are intrinsially related to the underlying onnetion topol-ogy [53℄.We have analyzed the time-evolution to synhronization (i.e., xi = x, yi = y, ∀i)of these strongly non-linear osillators using the pair-orrelation funtion between29
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Chapter 2. Modularity in omplex networksGlobal synhronization is a slower proess, ourring over a time-sale tgs, withthe synhronized lusters remaining fairly stable in the intervening time-period.Fig. 2.7(a) shows the variation of these two time-sales with r, onverging whenthe network beomes homogeneous (as r → 1).In the real world, for many systems the oupling strength between nodes withinthe same module may di�er signi�antly from that between nodes belonging todi�erent modules. For example, a reent study of tie strengths in mobile ommu-niation networks [11℄ observed that links onneting di�erent ommunities tendto be weaker than links between members of the same ommunity, supporting awell-known hypothesis for soial networks [80℄. Hene we look at the e�et ofdi�erent strengths for inter-modular oupling (κinter) and intra-modular oupling(κintra) on the synhronization behavior of osillators on a modular network. Asthe inter-modular oupling strength beomes weaker relative to the intra-modularoupling, we observe the time-sales for modular and global synhronization to di-verge (Fig. 2.8, a). Thus, in real systems where inter-ommunity ties are relativelyweaker, the time-sale separation between loal and global events will be even moreprominent. On the other hand, as the inter-modular oupling strength beomeslarge, the two time-sales gradually onverge. As expeted, at very large values ofthe ratio κinter : κintra, global and modular synhronization our simultaneously.We have also looked at the more general ase of synhronization in the preseneof delays in the oupling [39℄. Even in the presene of delays, we observe distinttime-sales for modular and global events. If δt represents the delay period (i.e.,the time required for signals to travel from one node to another through a link),the oupling terms of Eq (2.8) beome:
N

∑

j=1

Kij

ki

[xj(t − δt) − xi(t)]. (2.10)For onstant delay (i.e., δt = onstant, for all pairs of onneted nodes), we observein Fig. 2.8 (b) that the time required for modular synhronization (τms) is shorterthan that required for global synhronization (τgs), although in general both arelonger than their orresponding values in the absene of any delay (δt = 0). Wealso onsider the ase where oupling delays are random and hosen from an uni-form distribution. As in the ase of oupling strengths κ, the delays may di�er for31
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Figure 2.8: (a) Dependene of the two time-sales orresponding to modular (tms)and global synhronization (tgs) on the ratio of the inter and intra modular ouplingstrengths (κinter/κintra). (b) The two synhronization time-sales shown as a funtion ofa onstant delay δt between any pair of onneted osillators. () Variation of tms and
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m = 16 and r = 0.02).onnetions between nodes belonging to the same module as opposed to those be-longing to di�erent modules. For example, this may arise if nodes within a moduleare geographially loser to eah other, relative to nodes in other modules. There-fore, we look at the ase when there is no oupling delay within a module, while,the delay for onnetions between osillators in di�erent modules is distributedover the interval [0, δtmax]. In Fig. 2.8 (), we observe that as in the ase of on-stant delay, the inter-modular synhronization takes signi�antly longer time thanintra-modular synhronization, emphasizing the generality of our results.2.3.3 Di�usionThe existene of suh distint time-sales as a onsequene of modular struturealso appears in other dynamial proesses, e.g., di�usion. Consider a disreterandom walk on a network, where the walker moves from one node to a randomlyhosen neighboring node at eah time step. We analyze the time-evolution of thedi�usion proess by obtaining the distribution of �rst passage times for random32
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Figure 2.9: The distribution of �rst passage times (FPT) for di�usion proess amongthe nodes in modular (m = 16, r = 0.02) and ER random networks. When the soureand the target nodes belong to the same module, the FPT has a muh higher probabilityof being small than when the nodes belong to di�erent modules. The distribution ofFPT for a homogeneous random network is also shown for omparison. This indiatesthe existene of two distint time sales for random spreading in modular networks, thedi�usive proess within a module taking plae muh faster ompared to di�usion betweenmodules. For all networks, N = 512 and 〈k〉 = 14.walkers to reah a target node in the modular random network, starting from asoure node [81℄. Fig. 2.9 shows that this distribution di�ers quite signi�antlydepending on whether the target node belongs to the same module as the sourenode or in a di�erent module. This again suggests two distint time-sales, withintra-modular di�usion ourring muh faster than inter-modular di�usion. Thisis onsistent with the results of Refs. [71, 82℄ where the degree of isolation ofa module was assessed by omparing the partiipation of its nodes in di�erentdi�usion modes, using the internet as an example.2.4 Linearized dynamis: Laplaian analysisTo understand the existene of two distint time sales in a modular network, weonsider the linearized dynamis around the synhronized state,
dθi

dt
= − κ

ki

∑

j

Lijθj , (∀i = 1, . . . , N) (2.11)
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(i 6= j). Solving in terms of the normal modes ϕi(t), we get
ϕi(t) =

∑

j

Bijθj = ϕi(0) exp−λit, (2.12)where λi are the eigenvalues of L
′

= D
−1

L (D being a diagonal matrix with
Dii = ki), and B is the matrix of its eigenvetors. All the eigenvalues are real as
L

′ is related to the symmetri normalized Laplaian L = D
1

2L
′

D
−1

2 through asimilarity transformation. Any di�erene in the time sales of the di�erent modesis manifested as gaps in the spetrum of L , revealing di�erent topologial salesof the network. The mode orresponding to the smallest eigenvalue is assoi-ated with global synhronization, while other modes provide information aboutsynhronization within di�erent groups of osillators. We observe a gap in theLaplaian spetrum for modular random networks that inreases with dereasingvalue of r [Fig. 2.10 (A-C)℄ indiating that the very di�erent time-sales for syn-hronization at the global and loal levels originate from the modular organization34



Chapter 2. Modularity in omplex networksof the network struture. This is further supported by the absene of a similargap in the Laplaian spetra for WS networks, shown at di�erent values of p inFig. 2.10 (D-F).To relate this analysis with the di�usion proess, we note that the transitionprobability from node i to j at eah step of the random walk is Pij = Aij/ki.This transition matrix P is related to the normalized Laplaian of the network as
L = I − D

1

2PD
−1

2 , where I is the identity matrix [71℄. The eigenvalues of P areall real, the largest being 1 while the others are related to the di�erent di�usiontimesales. As in the synhronization example, the spetrum of P for modularrandom network exhibits a gap re�eting the existene of distint timesales inthe system. Note that, although the above result stritly applies only when linearapproximation is valid, we observe the property of time-sale separation preditedfor modular networks to be a muh more general phenomenon. In partiular, thestrong nonlinear interations of the Ising model annot be even approximatelytreated by the Laplaian analysis. Nevertheless, we see almost idential behaviorfor all three proesses, indiating the universality of the dynamial signature ofmodular networks.2.4.1 Laplaian analysis of ortial networksIn order to provide empirial evidene for the above distintion between dynamialbehavior of the di�erent small-world models, we have onsidered the onnetivitydata for ortial areas in the brains of the at [83℄ and the maaque [84℄. Suhnetworks have been reported to have small-world strutural properties [63℄. Aspreviously mentioned, loal synhronization within a luster has funtional impor-tane in the brain, whereas global oherene of ativity may be undesirable. Thetheoretial arguments given above would, therefore, imply a modular struturalorganization for the onnetions between the ortial areas. This would be visiblymanifested through the existene of gaps in the Laplaian spetra of the empirialnetworks, whih is indeed what we observe [Fig. 2.11℄. This strongly suggests thatat least some of the empirially observed small-world networks that our in na-ture may be organized in a modular fashion, and thus, have signi�antly di�erentdynamial behavior from the WS or related models.
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Chapter 2. Modularity in omplex networksin the real world are subjeted [85℄. This is disussed in detail in Chapter 3 of thisthesis. The dynamial behavior of modular networks exhibits the striking featureof multiple, distinguishable time-sales orresponding to (a) fast intra-modular and(b) slow inter-modular proesses, whih is quite di�erent from the behavior seenin WS model of small-world networks.Empirial evidene for suh behavior in ortio-ortial networks indiate thatseveral systems for whih small-world properties have been reported may indeedhave modular organization with the assoiated dynamial signature. The inreas-ing reognition that small-world networks underlie proesses of vital importaneto soiety, suh as epidemis spreading through a few long-range links (e.g., theairline network that is instrumental in spreading a disease like SARS [86℄), makesit of vital importane to understand the strutural topology of a network thatis responsible for the SW property. As di�erent strutures an result in distintolletive dynamial behavior, it is important to go beyond marosopi measures(suh as average path length) and fous on the underlying arrangement of inter-ations in suh networks. This is essential for intelligent intervention to prevent aloal problem from rapidly evolving into a global threat as a result of unontrolledspreading through the network.
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3Evolution of modular networks
As modular strutures are ubiquitous in omplex networks, it is of immense interestto understand how suh systems an evolve towards a modular on�guration. Inmany of these networks, there is a signi�ant presene of hubs, i.e., nodes with largedegree or number of onnetions to other nodes. Hubs are ruial for linking thenodes in real networks, whih have extremely sparse onnetivity, with the proba-bility C of onnetion between any pair of nodes varying between 10−1 and 10−8 [4℄.By ontrast, random networks with suh small C are almost always disonneted.Hubs an also lead to the �small-world� e�et [37℄ by reduing the average pathlength of the network. We note that most modular systems are subjet to multiplestrutural and funtional onstraints. Examples of suh onstraints inlude theminimization of average path length, as well as, the total number of links, whilemaximizing robustness against perturbations in node ativity. In this hapter, weshow that the optimal networks whih satisfy all these three onstraints are har-aterized by the existene of multiple modules sparsely onneted to eah other.In addition, these modules have distint hubs resulting in an overall heterogeneousdegree distribution.The majority of previous studies on modular networks have been onernedwith methods to identify ommunity struture [52℄. There have been relativelyfew attempts to explain the potentially more interesting question of how and whymodularity emerges in omplex networks. Most suh attempts are based on thenotion of evolutionary pressure, where a system is driven by the need to adapt toa hanging environment [87, 88℄. However, suh explanations involve ompliatedadaptive mehanisms, in whih the environment itself is assumed to hange in a38



Chapter 3. Evolution of modular networksmodular fashion. Further, adaptation might derease onnetivity through biasedseletion of sparse networks, whih eventually results in disruption of the networkwith the modules beoming isolated nodes [87℄ or disonneted parts [89℄. Morereently, a soial network model has shown the emergene of isolated ommunitiesthrough the rearrangement of links to form groups with homogeneous opinion [90℄.A ruial limitation of these studies is that they almost always fous on a singleperformane parameter. However, in reality, most networks have to optimize be-tween several, often on�iting, onstraints. While strutural onstraints, suh aspath length, had been the fous of initial work by network researhers, there hasbeen a growing realization that most networks have dynamis assoiated with theirnodes [12℄. The robustness of network behavior is often vital to the e�ient fun-tioning of many systems, and also imposes an important onstraint on networks.Therefore, the role played by dynamial onsiderations in determining the topo-logial properties of a network is a hallenging and important question that opensup new possibilities for explaining observed features of omplex networks [91℄.In Se. 3.1, we propose a simple model for the emergene of modularity innetworks as an optimal solution for satisfying a minimal set of strutural andfuntional onstraints. We expliitly show this by performing a multi-onstraintoptimization with simulated annealing in Se. 3.2. In Se. 3.3, we show that whilerobustness is indeed neessary, it is not enough by itself to generate modularity,ontrary to what is generally believed. We end the hapter with a disussion inSe. 3.4, on how these modular networks are also struturally robust with respetto simultaneous targeted and random attaks.3.1 Constraints on networksCostNetworks are subjet to ertain strutural onstraints. One of the strutural on-straint is the need to save resoures, manifested in minimizing link ost, i.e., theost involved in building and maintaining eah link in a network [92℄. This resultsin the network having a small total number of links, L.
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Chapter 3. Evolution of modular networksE�ienyHowever, suh a proedure runs ounter to another important onsideration ofreduing the average path length ℓ, whih improves the network e�ieny byinreasing ommuniation speed among the nodes [36℄.The on�it between the above two riteria an be illustrated through theexample of airline transportation networks. Although, fastest ommuniation (i.e.,small ℓ) will be ahieved if every airport is onneted to every other through diret�ights, suh a system is prohibitively expensive as every route involves some ostin maintaining it. In reality, therefore, one observes the existene of airline hubs,whih at as transit points for passengers arriving from and going to other airports.StabilityAnother important onstraint is to derease the instability of dynamial statesassoiated with the network. We investigate the dynamial stability of a networkomposed of N nodes, whih are self regulating when isolated, by measuring thegrowth rate of a small perturbation x about an equilibrium state of the networkdynamis. Although the system an be nonlinear in general, the dynamis of suhperturbations are desribed by a linear system of oupled di�erential equations
ẋi =

∑N
j=1 Jijxj . The stability of the equilibrium is then determined by the largestreal part λmax of the eigenvalues for the matrix J representing the interationsamong the nodes. The perturbation deays if λmax < 0, and inreases otherwise,at a rate proportional to |λmax|. Thus, minimizing λmax makes the equilibrium lessunstable, whih is important for many systems inluding eologial networks [93℄.Here Jii = −1 ∀i suh that we only onsider instability indued through networkinterations. The o�-diagonal matrix elements Jij(∼ AijWij) inlude informationabout both the topologial struture of the network, given by the adjaeny matrix

A (Aij is 1, if nodes i, j are onneted, and 0, otherwise; Aii = 0 ∀i), as well as, thedistribution of interation strengths Wij between nodes. In our simulations, Wijhas a Gaussian distribution with zero mean and variane σ2; however, a nonzeromean does not qualitatively hange our results. For an Erdos-Renyi (ER) randomnetwork, J is a sparse random matrix, with λmax ∼ √
NCσ2 − 1, aording to theMay-Wigner theorem [93℄. Therefore, inreasing the system size N , onnetivity Cor interation strength σ, results in instability of the network. This result has been40



Chapter 3. Evolution of modular networksshown to be remarkably robust with respet to various generalizations [94, 95, 96℄.Further, for uniform oupling strength, λmax is inversely related to the epidemipropagation threshold for the network [97℄, and hene, minimizing λmax also makesthe network more robust against spreading of infetion.3.2 Modularity through multi-onstraint optimiza-tion3.2.1 Minimum link-ost onstraint (L = N − 1)For ER random networks, although ℓ is low, L is high beause of the requirement toensure that the network is onneted: L > N lnN [42℄. Introduing the onstraintof link ost (i.e., minimizing L) while requiring low average path length ℓ, leadsto a starlike onnetion topology (Fig. 3.1C). A star network has a single hub towhih all other nodes are onneted, there being no other links. Its average degree
〈k〉 ≈ 2 is non extensive with system size, and is muh smaller than a onnetedrandom network, where 〈k〉 ∼ ln N . However, suh starlike networks are extremelyunstable with respet to dynamial perturbations in the ativity of their nodes.The probability of dynamial instability in random networks inreases only withaverage degree (λmax ∼ √

〈k〉, sine 〈k〉 = NC), while for star networks it inreaseswith the largest degree, and hene the size of the network itself (λmax ∼ √
N). Toextend this for the ase of weighted networks we look at the largest eigenvalue of

J, λmax = −1 +
√

∑N
i=2 J1iJi1, the hub being labeled as node 1. The stability ofthe weighted star network is governed by ∑N

i=2 J1iJi1, whih is the displaementdue to a 1-dimensional random walk of N − 1 steps whose lengths are produts ofpairs of random numbers hosen from a Normal (0, σ2) distribution.Simulated annealingTo obtain networks whih satisfy the dynamial as well as the strutural onstraintswe perform optimization using simulated annealing, with a network having Nnodes and N − 1 unweighted links (the smallest number that keeps the network
41
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H with α.onneted). Having �xed L, the energy funtion to be minimized is de�ned as

E(α) = αℓ + (1 − α)λmax,where the parameter α ∈ [0, 1] denotes the relative importane of the path lengthonstraint over the ondition for reduing dynamial instability. Rewiring is at-tempted at eah step and is (i) rejeted if the updated network is disonneted, (ii)aepted if δE = Efinal −Einitial < 0, and (iii) if δE > 0, then aepted with prob-ability p = exp(−δE/T ), where T is the �temperature�. The initial temperaturewas hosen in suh a way that energetially unfavorable moves had 80% haneof being aepted. After eah monte arlo step (N updates) the temperature wasredued by 1% and iterated till there was no hange in the energy for 20 suessivemonte arlo steps. For eah value of α, the optimized network with lowest E wasobtained from 100 realizations. 42



Chapter 3. Evolution of modular networksEmergene of modular on�gurationAs an be seen from Fig. 3.1, modularity emerges when the system tries to satisfythe twin onstraints of minimizing ℓ as well as λmax. When α is very high (∼ 0.8)suh that the instability riterion beomes less important, the system shows a tran-sition to a starlike on�guration with a single hub. However, as α is dereased,the instability of the hub makes the star network less preferable and for interme-diate values of α, the optimal network gets divided into modules, as seen fromthe measure of network modularity, Q [98℄. To obtain a robust partitioning of thenetwork, we onsider modules to be ommunities de�ned in the strong sense, i.e.,eah node i belonging to a ommunity has more onnetions with nodes withinthe ommunity than with the rest of the network [77℄. The resulting modularitymeasure Qs is high for a modular network, whereas for homogeneous, as well as,for starlike networks, Qs = 0. To determine the ommunities, we1. Compute the betweenness measure for all edges and remove the one withhighest sore:2. (a) if it results in splitting the network (or subnetwork) into ommunitiesin the strong sense, then the resulting Qs is omputed;(b) if not, we go bak to step (1) and remove the edge with the next highestsore.The proess is arried out iteratively until all edges of the network have beenonsidered. Note that, in step (2a), heking whether the splitting results in om-munities in the strong sense is onsidered with respet to the full network. Weveri�ed these results by also alulating Qs with the network modules determinedthrough stohasti extremal optimization [99℄. The transition between modularand star strutures is further emphasised in the behavior of the degree entropyde�ned as
H =

N−1
∑

k

pk log pk, (3.1)where pk is the probability of a node having degree k. The network entropy pro-vides an average measure of the network's heterogeneity, sine it measures thediversity of the link distribution [100℄. Two extreme ases are the maximal valueand the minimal one. The maximum value is Hmax = log(N − 1) obtained for43



Chapter 3. Evolution of modular networks

−0.3 −0.2 −0.1 0 0.1 0.2 0.3 0.4
0

0.05

0.1

0.15

0.2

0.25

λ
 max 

P
( 

λ  m
ax

  )

m = 1
m = 2
m = 4
m = 8

0.02 0.03 0.04
0

1

σ2

P
st

ab
ili

ty

Figure 3.2: Probability distribution of λmax for a lustered star network (N = 256, L =
15N) with di�erent numbers of modules, m. Modules of equal size are onneted by singlelink between respetive hubs. Link weights Wij follow a Normal (0, σ2) distribution with
σ2 = 0.018. (Inset) Probability of stability [P (λmax < 0)℄ varying with σ2. Inreasing
m results in the transition to instability ourring at higher σ2, implying that networkstability inreases with modularity.
pk = 1

N−1
∀k = 1, 2, · · · , N − 1 and minimum value Hmin = 0 ours when

pk = 0, · · · , 1, · · · , 0. The emergene of a dominant hub at a ritial value of
α is marked by H reduing to a low value.Why modular on�guration evolves?To understand why modular networks emerge on simultaneous optimization ofstrutural and funtional onstraints we look at the hange in stability that ourswhen a star network is split into m modules, the modules being onneted throughlinks between their hubs. The largest eigenvalue for the entire system of N nodes isthe same as that for eah isolated module, λmax ∼ √

N/m, as the additional e�etof the few intermodular links is negligible. At the same time, the inrease in theaverage path length ℓ with m is almost insigni�ant. Therefore, by dividing thenetwork into a onneted set of small modules, eah of whih is a star subnetwork,the instability of the entire network dereases signi�antly while still satisfying thestrutural onstraints.
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√

〈k〉 is onstantw.r.t. m, we atually observe that inreasing m dereases stability (Fig. 3.4). Thisis beause when a network of size N is split into m modules, the stability ofthe entire network is deided by that of the most unstable module, ignoring thesmall additional e�et of intermodular onnetions. Thus, the stability of the47



Chapter 3. Evolution of modular networksentire network is deided by randomly drawing m values from the distribution of
λmax for the modules. Therefore, for modular networks it is more likely that apositive λmax will our, than for the ase of a homogeneous random network ofsize N [101℄. The derease of stability with modularity for random networks showsthat, in general, it is not neessary that modularity is always stabilizing and resultsin a robust network, as has sometimes been laimed [87℄.3.4 DisussionIn this hapter we have shown that modules of interonneted nodes an arise asa result of optimizing between multiple strutural and funtional onstraints. Inpartiular, we show that, by minimizing link ost as well as path length, whilesimultaneously inreasing robustness to dynamial perturbations, a network willevolve to a on�guration having multiple modules haraterized by hubs, that areonneted to eah other (Fig. 3.5). At the limit of extremely small L (total num-ber of links in the network), this results in bimodal degree distribution, that hasbeen previously shown to be robust with respet to both targeted and random re-moval of nodes [102℄. Therefore, not only are suh modular networks dynamiallyless unstable, but they are also robust with respet to strutural perturbations.In general, on allowing larger L, the optimized networks show heterogeneous de-gree distribution that has been observed in a large lass of networks ourring inthe natural and soial world, inluding those termed as sale-free networks [3℄.Thus, our results provide a glimpse into how the topologial struture of omplexnetworks an be related to funtional and evolutionary onsiderations.
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4Hierarhial organization in omplexnetworks
Complex networks exhibit many ommon organizational features at the mesosopilevel. Apart from modularity, whih has been disussed in the previous hapters,many systems also show hierarhial ordering of their nodes. In other words, theyare omposed of suessive layers of interonneted or nested ommunities. Suhstrutural hierarhy not only desribes how nodes link to form ommunities, butalso, how ommunities join with eah other to form the entire network whih mayexhibit multiple levels of larger meso-level strutures, suh as meta-modules. Inthe literature, often the terms hierarhy and modularity are used inter-hangeably,although, as shown in Fig. 4.1, they represent distint properties of the network.This onfusion in usage ould have stemmed from the fat that these two propertiesare found to oexist in many networks ourring in real life [55, 103, 69, 19℄, in-luding tehnologial networks suh as the Internet [8, 71℄ and biologial networks,like that of ortial areas in the mammalian brain [104℄.As disussed in the previous hapters, most omplex systems seen in real lifealso have assoiated dynamis [12℄. The strutural properties of suh networkshave been sought to be linked with their dynamial behavior [6, 105℄. In this on-netion, one of the questions of obvious signi�ane is whether there is a relationbetween the stability of the system dynamis (with respet to small perturbationsin the variables desribing the state of the nodes) and the spei� topologial ar-rangement of onnetions in the network. Suh robustness is neessary if omplexsystems are to survive in the noisy environment that haraterizes the real world.49
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l=2

l=3

l=4

l=1Figure 4.1: Shemati diagrams of (left) a modular network, with modules demaratedby broken irles, and (right) a hierarhial network with 4 levels, eah indiated by alevel number l.It has sometimes been argued that, networks with larger number of nodes, linksand stronger inter-onnetions are more stable [106℄. On the other hand, theo-retial results on the stability of model networks, e.g., the May-Wigner theorem,suggest the opposite [93℄. However, as these results are based on the study ofnetworks whose onnetion topology shows none of the strutures that are seenin real life networks, in partiular, modularity and hierarhy, it is of interest tosee whether introduing hierarhial organization and modular strutures an re-veal limitations in the validity of May-Wigner theorem. We study this problemby proposing a network model that exhibits both these properties and observingthe loal stability of the system dynamis with respet to perturbations. We alsoonsider the stability of synhronization over the network, as the issue of networksynhronization has assumed importane in reent years, owing to its onnetionwith, e.g., brain dynamis [104℄.In Se. 4.1, we desribe earlier models that have been proposed to desribe hier-arhial organization in networks, in partiular, the Ravasz-Barabasi deterministimodel [107℄. In Se. 4.2, we propose an alternate model that allows a detailedstudy of the relation between dynamial stability and hierarhial modular orga-nization of the network. We also show that the ourrene of a saling relationbetween lustering and degree of the nodes annot be onsidered as a signaturefor the existene of hierarhial modular struture. This is ontrary to what hasbeen laimed in Ref. [107℄ and taitly assumed in many subsequent studies [108℄.In Se. 4.3 we observe that both hierarhy and modularity atually inrease the50
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(a) n=0, N=5
(b) n=1, N=25 () n=2, N=125Figure 4.2: The Ravaz-Barabasi model of hierarhial sale-free network showing the�rst three steps in an iterative onstrution proedure leading to hierarhial networkstruture. (a) A fully onneted luster onsisting of N = 5 nodes, (b) a network with

N = 25 nodes, and () a network with N = 125 nodes. (From Ref. [107℄)instability ompared to an equivalent random network. This may appear ounter-intuitive as both these strutural properties are observed in networks ourring innature, whih neessarily have to be robust to survive environmental �utuations.However, as noted in the preeding hapter, the emergene of modular struturesan be understood as a response to multiple (and often on�iting) onstraintsimposed on suh networks [85℄. In Se. 4.4, we disuss how these observationsan be extended to explain the emergene of hierarhial organization in networks.We onlude with a short disussion of the importane of onstraints related tophysial spae on whih networks are embedded in Se. 4.5.4.1 Hierarhial networks: Ravasz-Barabasi modelOne of the most ited models for hierarhial modular networks is a deterministimodel proposed by Ravasz and Barabasi (RB) [107℄. This model generates a set51



Chapter 4. Hierarhial organization in omplex networksof inter-nested modules in a hierarhial fashion using a deterministi proedurethat has both high lustering (beause of the modular nature of the network atthe most fundamental level) and a sale-free degree-distribution.This model is onstruted as follows: Initially, a fully onneted luster of �venodes is onstruted (Fig. 4.2 a). Next, four replias of this hypothetial moduleare generated and the four external nodes of the repliated lusters are onnetedto the entral node of the old luster, obtaining a large 25-node module (Fig. 4.2 b).Subsequently, four replias of this 25-node module are generated, and the 16 pe-ripheral nodes are onneted to the entral node of the old module (Fig. 4.2 ),obtaining a new module of 125 nodes. These repliations and onnetion steps arerepeated, inreasing the number of nodes in the system by a fator of �ve at eahiteration.In the RB model, a saling relation is observed between the lustering oe�ientof a node C and its number of onnetions (i.e., degree) k:
C(k) ∼ k−1. (4.1)Similar relations were also observed in several real networks, suh as the web ofsemanti onnetions between two English words whih are synonyms [107℄. Thisourrene of the saling relation between lustering and degree of the nodes ina network has often been taken as a signature for the existene of hierarhialmodular struture in that network. However, reently, this saling relation wasshown to be atually an outome of degree-orrelation bias in the usual de�nitionof lustering oe�ient [109℄.It an be easily seen that this saling relation is not a neessary indiator forthe existene of either modularity or hierarhy. For example, onsider a modularnetwork onsisting of N nodes and m modules of equal size. Let eah node havedegree k, with the links initially ourring exlusively between nodes belonging tothe same module (i.e., the modules are isolated from eah other). To make thenetwork onneted we rewire a small fration of the links keeping the degree ofeah node �xed. Plotting lustering as a funtion of degree for this network willonly show vertial spread of points at a single node degree value. Let us onsideranother example, this time a hierarhial struture, viz., the Cayley tree with bbranhes at eah vertex. Again, it is easy to see that the lustering versus degree52
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2nm nodes to the existing network and, as above, add links between these two net-works with a probability ρ4 (≤ ρ3). Thus, to get a network with l = h hierarhiallevels, the above proedure is repeated h − 1 times. The �nal network ontains
M = 2h−1m number of modules. Note that, all onnetions between nodes aremade randomly. To redue the number of model parameters, we assume that the
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Chapter 4. Hierarhial organization in omplex networksonnetivities ρ1, . . . , ρh+1 are related as:
ρ2

ρ1
=

ρ3

ρ2
= · · · =

ρh+1

ρh
= r, (4.2)where, 0 ≤ r ≤ 1, the ratio of inter-modular onnetions between two suessivehierarhial levels, is a ontrol parameter. By varying r, one an swith betweenisolated modular (r = 0) and homogeneous random (r = 1) networks, with inter-mediate values of r giving hierarhial modular networks. We ompare betweennetworks having di�erent number of hierarhial levels h, keeping the total numberof modules M and average degree 〈k〉 �xed.To onsider the e�et of hierarhy in isolation, while keeping modularity �xed(e.g., as measured by the Newman modularity measure Q [72℄), we use a variant ofthe above model, where, ρ1 = onstant, while other onnetivities are still relatedby

ρ3

ρ2
= · · · =

ρh+1

ρh
= r. (4.3)This implies that the average number of intra-modular (〈kintra〉) and inter-modular(〈kinter〉) onnetions per node are also onstant 1.The stohasti onstrution proedure of this network, along with the abilityto vary modularity (by hanging r) independently of the number of hierarhiallevels (h), makes it an extremely general model. In addition, as it is hierarhialby onstrution, we an show that the riterion suggested in Ref. [107℄, namely,the saling relation between lustering and degree, is not a neessary onditionfor the existene of hierarhial modularity. As shown in Fig. 4.4 (left), when themodules are random networks, the saling relation is learly absent for our modelnetwork. To ounter the possible argument that this failure of the relation is dueto the non-sale-free degree distribution, we have also onsidered the ase whereeah of the modules is a BA network. For the entire network, although the inter-modular onnetions are made randomly, the degree distribution is still sale-free.Even for this ase, a lear saling relation between lustering and degree is absent(Fig. 4.4 (right)).1Note that, 〈kintra〉 = ρ1
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Figure 4.4: Clustering oe�ient Ci of the i-th node as a funtion of its degree ki for thehierarhial modular network model proposed here, where eah module at l = 1 is (left) arandom ER network and (right) a sale-free BA network. The di�erent symbols indiatenetworks with di�ering total number of hierarhial levels, h. For both types of networks,the total number of nodes is N = 8192 with average intra-modular degree, 〈kintra〉 = 10,inter-modular degree, 〈kinter〉 = 5, and the ratio of inter-modular onnetions betweentwo suessive hierarhial levels, r = 0.1. Note that, in neither ase is a saling relationobserved between Ci and ki, although the modules are arranged in a hierarhial mannerby onstrution.4.3 Dynamis on hierarhial networks4.3.1 Linear Stability of EquilibriaTo look at the e�et of hierarhy on network dynamis, we onsider the linearstability of an arbitrarily hosen equilibrium state for a set of oupled di�erentialequations de�ning the time-evolution of the system. For a network of N nodes,a dynamial variable xi is assoiated with eah node i. The state of the system,
x, an be haraterized by ẋ = f(x), where f is a general nonlinear funtion. Toinvestigate the stability around an arbitrary �xed point x

∗ (i.e., f(x)|x∗ = 0), wehek whether a small perturbation δx about x
∗ grows or deays with time. Thisperturbation evolves as

˙δx = Jx, (4.4)where, J is the Jaobian matrix representing the interations among the nodes:
Jij = ∂fi/∂xj |x∗ . As we are interested in the instability indued through theonnetions of the network, rather than the intrinsi instability of individual un-onneted nodes, we an (without muh loss of generality) set the diagonal element
Jii = −1. This implies that, in the absene of any onnetions, the nodes are self-55
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Figure 4.5: (Left) Probability distribution for the largest real part of the eigenvaluesof the Jaobian J , as a funtion of total number of hierarhial levels, h (the interationstrength parameter, σ2 = 0.05). (Right) Probability of stability for a hierarhial mod-ular network as a funtion of σ2, with di�erent symbols orresponding to di�ering totalnumber of hierarhial levels h. Link weights are hosen from a normal(0, σ2) distribu-tion. For all ases, the network onsists of N = 256 nodes with average intra-modulardegree, 〈kintra〉 = 10, inter-modular degree, 〈kinter〉 = 5, and the ratio of inter-modularonnetions between two suessive hierarhial levels, r = 0.1. At all hierarhial levels
l > 1, the network is split into two sub-networks. At l = 1, eah subnetwork is splitinto m modules (l = 0). Thus, N = 256 nodes are divided equally among 2h−1m = 16modules, with the four urves orresponding to (�) h = 4, m = 2, (▽) h = 3, m = 4, (⋄)
h = 2, m = 8, and (◦) h = 1, m = 16. Note that, inreasing h auses the transition toinstability to our at a smaller value of σ2, implying that inreasing hierarhy inreasesinstability.regulating, i.e., the �xed point x

∗ is stable. The behavior of the perturbation isdetermined by the largest real part, λmax, of the eigenvalues of J. If λmax > 0, aninitially small perturbation will grow exponentially with time, and the system willbe rapidly dislodged from the equilibrium state x
∗.The relation between the dynamial properties and the stati struture of thenetwork is provided by its adjaeny matrix A (with Aij = 1, if nodes i and j areonneted, and 0 otherwise). There is a diret orrespondene between the natureof the matries J (speifying the dynamial behavior of perturbation) and A (whihdetermines the struture of the underlying direted network), beause Aij = 0implies Jij = 0. In our model, we have generated Jij by randomly hoosing the non-zero elements from a Gaussian distribution with zero mean and variane σ2. ForErdos-Renyi (ER) random networks, J is an unstrutured random matrix and thelargest real part of its eigenvalues, λmax ∼ √

Nρσ2 −1, where ρ is the onnetivityof the network, and σ measures the dispersion of interation strengths [93℄. When56



Chapter 4. Hierarhial organization in omplex networksany of the parameters, N , ρ, or σ, is inreased, there is a transition from stabilityto instability. The ritial value at whih the transition to instability ours is
σc ∼ 1/

√
Nρ. This result, implying that omplexity promotes instability, has beenshown to be remarkably robust with respet to various generalizations [94, 95, 96,110℄.Here, using the above formalism, we examine the e�et of hierarhy on thestability of equilibria when one of the network parameters (namely, σ) is varied.We study the ritial value at whih the transition to instability ours, σc, as afuntion of the total number of hierarhial levels, h, keeping the total number ofmodules M �xed. We �nd that, with inreasing h, the distribution of λmax shiftstowards more positive values (Fig. 4.5, left). As the system beomes unstable when

λmax > 0, it follows that the probability of stability for the network dereases withinreasing number of hierarhial levels (Fig. 4.5, right).4.3.2 SynhronizationIt is of interest to look not only at the stability of equilibria for network dynamis,but also at the stability of synhronized ativity in networks. Let us onsider anetwork of N idential osillators. The time-evolution of this oupled dynamialsystem is desribed by:
ẋi = F(xi) + ǫ

n
∑

j=1

LijH(xj). (4.5)Here, xi is a variable assoiated with node i; F and H are evolution and outputfuntions, respetively; ǫ is the strength of oupling; and L is the Laplaian matrix,de�ned as: Lii = ki, the degree of node i, Lij = −1 if nodes i and j are onneted,
0 otherwise. It has been shown that the linear stability of the synhronized state
xs (=x1 = . . . = xN ) an be determined by diagonalizing the variational equation(Eq. 4.5) into N bloks of the form, ẏi = [DF (s)+ǫλiDH(s)]yi, where yi representdi�erent modes of perturbation from the synhronized state. This is also referredto as the master stability equation [105℄. These equations have the same formbut di�erent e�etive ouplings αi = ǫλi. The synhronized state is stable, i.e.,the maximum Lyapunov exponent is in general negative, only within a boundedinterval [αA, αB] [111℄. Let the eigenvalues of the Laplaian matrix be arranged57
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〈kintra〉 = 10 and inter-modular degree, 〈kinter〉 = 5. At all hierarhial levels l > 1, thenetwork is split into two sub-networks. At l = 1, eah subnetwork is split into m modules(l = 0). Thus, N = 256 nodes are divided equally among 2h−1m = 16 modules, with thefour urves orresponding to (�) h = 4, m = 2, (▽) h = 3, m = 4, (⋄) h = 2, m = 8,and (◦) h = 1, m = 16. Note that, inreasing the number of hierarhial levels leads todivergene of the eigenratio, implying that synhronization beomes harder to ahieve.as 0 = λ1 < λ2 ≤ · · · ≤ λn. Then, requiring all e�etive ouplings to lie withinthe interval αA < ǫλ2 ≤ · · · ≤ ǫλN < αB, implies that a synhronized state islinearly stable, if and only if, λN/λ2 < αB/αA. Thus, a network having a smallereigenratio λN/λ2, is more likely to show stable synhronized ativity.Here, we obtain the eigenvalues of the Laplaian L for a hierarhial modularnetwork (Fig. 4.6, left) and observe the eigenratio λN/λ2 as a funtion of ratio ofthe inter-modular onnetions between two suessive hierarhial levels, r, and thetotal number of hierarhial levels, h. First, keeping the number of hierarhiallevels �xed, we vary the parameter r. We �nd that with dereasing r, i.e., asthe number of onnetions between two suessive hierarhial levels derease, theinstability of the synhronized state inreases. Next, keeping the total number ofmodules �xed we inrease the number of hierarhial levels (h) in the network.Fig. 4.6 (right) shows that as the number of hierarhal levels of the network isinreased, λ2 dereases, resulting in an inreasing eigenratio. Thus, arranging themodules of a network in a hierarhial fashion also makes a network di�ult to
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Level 3Central Node

Level 2Level 1

Figure 4.7: Shemati diagram of an optimal tree struture with minimum average pathlength, where the highest degree (kmax = 3) of the network is �xed. The entral nodeand the three di�erent levels (l = 1, 2, 3) indiate a hierarhial organization.synhronize.4.4 Evolution of hierarhy in omplex networksIn the preeding hapter we have shown using a model, how modular networkan emerge in the real world through multi-onstraint optimization. In this se-tion, we generalize this model to understand how optimizing for ertain oexistingonstraints on system performane an lead to hierarhial on�guration of thenetwork.The network onstraints onsider here are similar to the ones in the previoushapter:1. Minimizing the average path length: This is essential for rapid transportationof resoures or propagation of information within a network. Further, in thepresene of noisy information hannels, signals are likely to be degradedduring transit between nodes. In suh a system, reduing the average pathlength of the network will also inrease the robustness of the system.2. Minimizing the total number of links in the system: Generally, eah link in59



Chapter 4. Hierarhial organization in omplex networksa system has some assoiated resoure ost. Thus, a network having a largenumber of links will inur a high ost in terms of overheads for maintainingthe onnetions.3. Minimizing the largest degree (kmax) of the network: This is assoiated withreduing ongestion in any node, a riterion that is important in transporta-tion and information networks. E.g., in information transfer networks like theInternet, unless the maximum degree is limited within a reasonable bound,the hub nodes are likely to get logged with inoming pakets. In soial net-works, this is related to the limited attention that eah individual an givetowards maintaining eah additional soial tie owing to time onstraints. Inaddition, for general dynamial systems, derease in kmax is assoiated withinreasing linear stability for the network dynamis.As simultaneously optimizing a network for all three of the above onstraintsis a di�ult problem, we �rst onsider a network having N nodes and N − 1links (the minimum number required to maintain onnetivity) that automatiallysatis�es the onstraint of minimum link ost. We simplify the problem further byonsidering the largest degree of the network, kmax, to be �xed, and seek to obtainthe tree struture whih has minimum average path length. Suh a network an beonstruted as follows: (i) hoose a node to be the entral node for the network andattah kmax nodes to it. Thus, there will be kmax nodes in the �rst layer whih areloated unit distane from the entral node, (ii) add kmax − 1 nodes to eah of thenodes in the �rst layer, (iii) ontinue this proedure until the presribed numberof nodes in the network is ahieved. In suh a network all the nodes exept thosein the outer layer have degree kmax.To prove that the above algorithm generates a network whih has the shortestaverage path length for a given value of kmax we use the method of indution. Fora network with kmax +1 nodes, the algorithm generates a star on�guration wherethe entral node is onneted to the other kmax nodes. This has, by onstrution,the least average path length (≃ 2) among all possible network on�gurations withthe same number of nodes and links. Thus, for the set of kmax nodes belonging tothe �rst layer (l = 1) of the model network, the algorithm guarantees the shortestaverage path length. Let us now onsider nodes belonging to layers beyond the�rst one. If two nodes, i and j, are at same level n, then the distane between60



Chapter 4. Hierarhial organization in omplex networksthese two nodes is given by
d(i, j) = 2 + d(p(i), p(j)), (4.6)where p(i) and p(j) are the parents of nodes i and j respetively, i.e., the nodesin level n − 1 to whih i and j are onneted. It is obvious that if d(p(i), p(j))is minimum, so is d(i, j), as the inrement of 2 is the least possible length [=

d(i, p(i)) + d(j, p(j))℄ that one needs to add to the distane between the parents of
i and j to obtain d(i, j).Let us next onsider the ase when the nodes are not at same level, e.g., letnode i be at level m and node j be at level n < m. Thus, the shortest distanebetween the jth node and a node in level m is m − n. Therefore, the distanebetween nodes i and j is given by

d(i, j) = (m − n) + d(pm−n(i), j). (4.7)where (pm−n(i) is a (m − n)-th grandparent of node i, whih ours in the level
m − (m − n) = n. As the nodes pm−n(i) and j our at the same n-th level,for whih d(pm−n(i), j) has been shown to be minimal by the argument in theprevious paragraph, d(i, j) is minimum even when they belong to di�erent levels.Thus, the network onstruted by the algorithm proposed above will have theminimum average path length for a �xed maximum degree among all possiblenetwork on�guration with same number of nodes and links (Fig. 4.7).We now alulate how the number of levels in the hierarhial tree is related tothe maximum degree kmax. The total number of nodes in a model network with rlevels, onstruted aording to the above algorithm, is given by,

f(kmax, r) = 1 + kmax + kmax(kmax − 1) + · · ·+ kmax(kmax − 1)r−1

=
kmax(kmax − 1)r − 2

kmax − 2
. (4.8)Thus, the total number of nodes in the network, N , will be bounded by f(kmax, r) ≤

N ≤ f(kmax, r − 1). For large r and kmax, we an replae the above relation withan equality, giving r = log N
log(kmax−1)

. This expression for the number of hierarhiallevels, r, expressed in terms of network size and maximum degree an be onsidered61
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Figure 4.8: Variation of the largest degree, kmax, for the optimal network with theparameter α for a network with N = 256.as a measure of the average path length for the network. Thus, the onstraint ofminimizing the path length is seen to be equivalent to a onstraint ditating theminimization of the number of levels.So far, we had been onsidering the simple problem of a network with �xedlargest degree kmax. To onstrut networks that simultaneously satisfy the on-straints on minimum number of levels and least maximum degree, we de�ne a ost(or energy) funtion in terms of r and kmax:
E = αkmax + (1 − α)

log N

log(kmax − 1)
. (4.9)Here, the parameter α ∈ [0, 1] determines the relative importane of the onstrainton largest degree with respet to that on the number of hierarhial levels. Forany spei�ed value of α, the optimal network is the one whih has minimum E.Note that, for a network with �xed N , as r is expressed in terms of kmax, the ostis exlusively a funtion of the largest degree. Therefore, to obtain the minima of

E, we an di�erentiate it with respet to kmax and by equating the result to 0, weobtain the following impliit relation for the optimal value of kmax:
(1 − α)

α
log N = (kmax − 1) [log(kmax − 1)]2 . (4.10)Thus, for a given N and α, using the above relation we an obtain the kmax for a62



Chapter 4. Hierarhial organization in omplex networksnetwork whih is the optimal on�guration that simultaneously satis�es the on-strains spei�ed above. Fig. 4.8 indiates that as α → 0, the optimal network hasa star on�guration, while for α = 1, it is a 1-dimensional hain. At intermediatevalues of α, the network will resemble the hierarhial on�guration shematiallyshown in Fig. 4.7.4.5 DisussionIn Chapter 2, we have shown that modularity in random networks leads to higherprobability of instability for the equilibria of the network dynamis. The workpresented here is an extension and generalization of the above result, demonstratingthat inreased number of hierarhial levels also tend to destabilize these equilibria.Moreover, the same phenomena is observed for the stability of synhronized ativityin a network with respet to both inreasing modularity, as well as, hierarhy. Thisraises the question of how an systems with hierarhial modular strutures existin nature, where they have to be robust enough to survive onstant environmental�utuations. To answer this, we note that many onstraints operate on networksourring in real life, suh as, the minimization of (a) resoure ost for maintaininglinks and (b) the time required for ommuniating between nodes, in addition to() the linear instability of equilibria, whih together an make modular networksthe optimal on�guration [85℄.However, while this an explain the ubiquity of modularity, it does not answerthe question of why hierarhial organization is so ommon in nature. The fatthat tree-like networks with extensive rami�ations our so often in the ontextof resoure transport (e.g., the irulatory system in plants and animals), suggeststhat additional onstraints related to the funtional goal of maintaining steady �owat high �ux may be at work in this ase. One suh onstraint is the need to redueongestion at any point in the system, whih is equivalent to minimizing the largestdegree in the network. We have shown that introduing this onstraint, an lead tonetworks with hierarhial organization, when operating in onjuntion with thepreviously introdued onstraints on resoure ost for links, and ommuniationtime between nodes. Another possible andidate for a onstraint that may giverise to non-trivial mesosopi organization is the need to minimize wiring ost, the
63



Chapter 4. Hierarhial organization in omplex networkstotal geographi length for all links in the network [92℄. This is appliable whenthe network is embedded on physial (as opposed to topologial) spae, so thatthe wiring ost an been de�ned as the sum of the Eulidean distanes betweenall onneted pairs of nodes. As many of the networks that show hierarhialorganization (suh as the Internet and the network of ortial areas in the brain)indeed our on a physial spae, with the geographi link ost being related tothe metri distane between nodes, this is a possibility that is worth pursuing.
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5Inferring network struture fromdynamis
Having analyzed several network models for understanding the dynamial onse-quenes of modularity and hierarhy, in this hapter we onsider how their existenein real-world omplex systems an be inferred from the knowledge of dynamis ofthe omponent nodes. We �rst demonstrate the possibility of reonstruting net-works through an analysis of the temporal information on interations between itsomponents, by using the behavioral data of individuals belonging to a troop ofmaaque monkeys. This example shows that the knowledge of dynamis of a sys-tem an reveal its underlying modular network struture, whih has been veri�edby later �eld observations. To reonstrut a muh larger network from the time-series data of its omponents, we onsider the example of �nanial markets. Theseomplex systems have many interating elements and exhibit large �utuations intheir assoiated observable properties, suh as stok prie or market index.In Se. 5.1 we analyze the struture of a bonnet maaque soial organization.Using data on their grooming and approah behavior, we determine the networkof interations between the individuals omprising a troop. We �rst show thatgrooming frequeny, grooming time and approah frequeny between eah pair, allhave exponential distributions. We were able to determine the distint groups inthe soial network of female maaques, whereas that for the males do not show anysuh unambiguous struture. Next, we onsider the Seyfarth model, a theoretialmodel for reproduing the patterns of soial behavior observed in a primate troop.We verify the e�ay of the model in explaining the observed group behavior and65



Chapter 5. Inferring network struture from dynamislook at possible ausative fators behind female grooming interation.In Se. 5.2, by analyzing the ross-orrelation matrix of stok prie �utuationsthrough spetral tehniques, we reveal the underlying network of interations be-tween stoks in di�erent markets. We �nd that emerging markets (e.g., NSE ofIndia) exhibit stronger orrelations ompared to developed markets (e.g., NYSE ofUSA). In Se. 5.3, we show through a simple multi-fator model, that most of theobserved orrelations among stoks in emerging markets are due to e�ets ommonto the entire market (e.g., external signals suh are news breaks or intrinsi globalsignals suh as market indies). Coversely, orrelations arising through diret inter-ations between related stoks (e.g., between those belonging to the same businesssetor) are weak. Our results suggest that the emergene of an internal struture,omprising multiple groups of strongly oupled omponents, is a signature of mar-ket evolution. This work also has rami�ations for other similar omplex systemsthat develop over time, as our analysis provides tools for distinguishing dynamialorrelations that arise as a result of mutual interations between nodes, as opposedto those arising through a ommon response to a global signal.5.1 Determining the soial organization of BonnetMaaques5.1.1 Soial struture in primatesPrimates are among the most soial of all mammalian speies, bonding togetherfor the purpose of survival. Suh bonding between pairs of individuals is extremelyimportant in terms of inreasing the ohesiveness of the group. This has imme-diate relevane in making the group more e�etive in gathering food, protetingthemselves from predators, and, other funtions that are vital for survival. Thus,the pattern and quality of soial interations among the individuals have a diretimpat on the funtional properties of the system. Primates do not interat atrandom but rather has ertain harateristi patterns of soial behavior. Thesemay be invariant with respet to group size, age, omposition and habitat quality.Indeed, suh patterns de�ne the struture of soial organization in the speies.A ommonly observed behavior that is often used to infer suh patterns is that66



Chapter 5. Inferring network struture from dynamisof grooming between individuals. As opposed to on�it or aggressive behavior,grooming is indiative of ooperative behavior. In addition to its bene�t in remov-ing eto-parasites, grooming results in the formation and fostering of a�liativerelationships between individuals that ould help them in other spheres of ativity,suh as building a oalition against a third (possibly more powerful) individual.Another ommon soial interation among primates that is indiative of therelative status of two individuals is their behavior when one animal approahesthe other. It is seen that the aggressive approah of one individual is reiproatedby the retreat of the other individual, a pattern that is almost invariant over timefor the pair involved. As the diretion of suh approah-retreat interations isrelatively stable over time, one an therefore de�ne relative dominane betweenthe two individuals. Moreover, these dominane relations are also transitive, i.e.,if A is dominant to B and B is dominant to C, A is invariably dominant to C. Thus,the members of a primate troop an be arranged in a linear dominane hierarhy,with a rank assoiated with eah individual. Usually, �eld studies onentrate onthe soial interations between members of the same sex in a troop, as male-femaleinterations involve additional fators. Thus, the data for soial interations in agroup of primates is olleted for the two subsets: one of all female members andthe other of all male members.To understand grooming behavior, simple mathematial models of interationsbetween individuals in a group have been proposed. These interations de�nethe soial network of the primate troop. R. M. Seyfarth has introdued one suhtheoretial model to understand ertain features that are ommonly observed inthe grooming behavior of adult female primates aross several speies, viz., (i)higher ranked individuals reeive more grooming than others, and, (ii) majority ofgrooming ours between individuals of adjaent rank. Using this model, whereevery individual follows the same strategy in hoosing grooming partners, Seyfarthhas shown that relatively omplex features of soial behavior an be explained interms of simple priniples governing the ations of individuals.5.1.2 Bonnet MaaquesIn the work reported here, we shall be fousing on one partiular primate speies,the bonnet maaque (Maaa radiata), whih is the most ommonly observed pri-67



Chapter 5. Inferring network struture from dynamismate in peninsular India. Members of this speies usually live in large troopsontaining multiple males and females of 8 to 60 individuals, where the adult indi-viduals develop strong a�liative relationships with eah other [112℄. Female bonnetmaaques usually remain with the group in whih they are born throughout theirlives. As adults they form stable matrilineal dominane hierarhies, with daugh-ters having dominane ranks just below those of their mothers. Among sisters,dominane is ordered in a reverse hronologial order, with the youngest being themost dominant. The lose a�liative relations between females is demonstratedthrough high levels of allogrooming 1 exhanged between both genetially relatedand unrelated individuals aross the dominane hierarhy.In ontrast to females, adult (as well as juvenile) bonnet maaque males usuallyemigrate from the troops in whih they were born. Another marked di�erenefrom the females is that adult males form unstable dominane hierarhies. Bydiret aggression and formation of oalitions, maaque males may move up fromlow ranks oupied while very young to relatively high positions when they aremature and in peak physial ondition. Conversely, older maaque males may slipdown the hierarhy to lower ranks. Although, just as their female ounterparts,maaque males also demonstrate high levels of allogrooming and other a�liativebehavior towards eah other, in marked ontrast to females, there is absene ofany orrelation between individual dominane ranks and the levels of a�liativebehavior displayed or reeived.5.1.3 Desription of the datasetThe analysis presented here is based on data aquired in the �eld by the groupof Prof. Anindya Sinha (NIAS, Bangalore) through demographi monitoring andbehavioral observations on a troop of bonnet maaques inhabiting 1 square km ofdry deiduous srubland and mixed forests in the GKVK ampus of the Universityof Agriultural Sienes in Bangalore, India. The original observations were arriedout for over 1200 hours on two troops oupying adjaent overlapping home rangesduring Marh 1993-September 1995. We have seleted the larger of these twogroups for our analysis, whih onsisted of 12 adult males and 11 adult females.Data olleted inlude information about (i) allogrooming frequeny GF (measured1Grooming performed by one individual on another is alled allogrooming 68
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Chapter 5. Inferring network struture from dynamisTable 5.1: Modular deomposition of the male and female bonnet maaque soial net-works, indiating the membership of individuals in di�erent modules. Eah individualis indiated by a number that orresponds to its rank in the linear dominane hierar-hy, with `1' orresponding to the most dominant. The number of ommunities obtainedis indiated by m, whereas the maximum modularity of the empirial network and theorresponding randomized network is represented by Q and Qrand respetively.Gender Type Q m Qrand Modular identityFemale GF 0.121 2 0.081±0.017 (1 2 3 4 5 10) (6 7 8 9 11)GT 0.140 2 0.098±0.021 (1 2 3 4 5 10) (6 7 8 9 11)AF 0.110 2 0.073±0.020 (1 2 3 4 5 10) (6 7 8 9 11)Male GF 0.085 2 0.130±0.025 (1 2 3 4 9 12) (5 6 7 8 10 11)GT 0.165 4 0.137±0.024 (1 2 3) (4 5) (6 8 10) (7 9 11 12)AF 0.240 4 0.143±0.025 (1 2 3 6 7) (4 5 8) (9 11) (10 12)
to links with other nodes whih belong outside the ommunity. We determine themodules by obtaining the optimal partitioning of the network, that orrespondsto the partition having the maximum value of the modularity measure Q [98℄.Table 5.1 indiates the di�erent ommunity strutures obtained for both the maleand female maaque network by applying this method.For the female maaques, the ommunities determined from the three di�erentsoial networks (de�ned in terms of GF, GT and AF) are idential, indiating thatthis modular struture is signi�ant and might be observed in other soial behavior.This is veri�ed by subsequent �eld observations arried out at a later period (endof 1995) when it was seen that the female maaques had split into two distinttroops, with the membership of eah exatly mathing the results of our networkanalysis. However, for male maaques, the modular deomposition yields di�erentommunities aording to the type of soial network used. To hek the statistialsigni�ane of the determined ommunity struture, we ompare the partitioningof the empirial network with its randomized version. The randomized networksare obtained by shu�ing the weights of the links. The average Qrand for 100 suhrealizations is ompared with the Q of the empirial network. The result againsuggests that, while the modular deomposition of the female network is indeedsigni�ant, this is not so for the male network.
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∑
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i =

∑
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Chapter 5. Inferring network struture from dynamis5.2 Reonstruting the internal struture of a �-nanial marketIn order to reonstrut a muh larger network from the time-series data of itsomponents, we now onsider the example of �nanial markets. By analyzingthe ross-orrelation matrix C of stok prie �utuations in the National StokExhange (NSE) of India, we unover the struture of interations between thestoks that are traded in that market.5.2.1 Finanial market: A omplex systemFinanial markets an be onsidered as omplex systems having many interatingelements and exhibiting large �utuations in their assoiated observable properties,suh as stok prie or market index [113, 114℄. The state of the market is governedby interations among its omponents, whih an be either traders or stoks. Inaddition, market ativity is also in�uened signi�antly by the arrival of externalinformation. Statistial properties of stok prie �utuations and orrelations be-tween prie movements of di�erent stoks have been analyzed by physiists in orderto understand and model �nanial market dynamis [115, 116℄. The �utuationdistribution of stok pries is found to follow a power law with exponent α ∼ 3, theso-alled �inverse ubi law� [117, 118℄. This property is quite robust, and has beenseen in developed as well as emerging markets [85℄. On the other hand, it is not yetknown whether the ross-orrelation behavior between stok prie �utuations hasa similar universal nature. Although the existene of olletive modes have beeninferred from the study of market dynamis, suh studies have exlusively fousedon developed markets, in partiular, the New York Stok Exhange (NYSE).To unover the struture of interations among the elements in a �nanial mar-ket, physiists primarily fous on the spetral properties of the orrelation matrix ofstok prie movements. Pioneering studies investigated whether the properties ofthe empirial orrelation matrix di�ered from those of a random matrix that wouldhave been obtained had the prie movements been unorrelated [119, 120℄. Suhdeviations from the preditions of random matrix theory (RMT) an provide luesabout the underlying interations between various stoks. It was observed that,
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Chapter 5. Inferring network struture from dynamiswhile the bulk of the eigenvalue distribution for the orrelation matrix of NYSE andTokyo Stok Exhange follow the spetrum predited by RMT [119, 120, 121, 122℄,the few largest eigenvalues deviate signi�antly from this. The largest eigenvaluehas been identi�ed as representing the in�uene of the entire market, ommonfor all stoks, whereas, the remaining large eigenvalues are assoiated with thedi�erent business setors, as indiated by the omposition of their orrespondingeigenvetors [123, 121℄. The interation struture of stoks in NYSE have beenreonstruted using �ltering tehniques implementing matrix deomposition [124℄or maximum likelihood lustering [125℄.While it is generally believed that stok pries in emerging markets tend to berelatively more orrelated than the developed ones [126℄, there have been very fewstudies of the former in terms of analyzing the spetral properties of orrelationmatries [127, 110, 128, 129℄. Here, we analyze the ross-orrelations among stoksin the Indian �nanial market, one of the largest emerging markets in the world.5.2.2 The �nanial market dataThe National Stok Exhange (NSE) is the largest stok market in India. Wehave onsidered the daily losing prie data of 201 stoks (see Table I) traded inNSE from Jan 1996 to May 2006, whih orresponds to 2607 days. This data isobtained from the NSE web-site [130℄. The seleted stoks were traded over theentire period 1996-2006 and had the minimum number of missing data points (i.e.,days for whih no prie data is available). For omparison we also onsider thedaily losing prie of 434 stoks of NYSE belonging to the S&P 500 index overthe same period as the Indian data. However, the total number of working days isslightly di�erent, viz., 2622 days. This data was obtained from the Yahoo! Finanewebsite [131℄. In all our analysis, while omparing with the NSE data, we haveused multiple random samples of 201 stoks eah, from the set of 434 NYSE stoks.5.2.3 The Return Cross-Correlation MatrixTo observe orrelation between the prie movements of di�erent stoks, we �rstmeasure the prie �utuations suh that the result is independent of the saleof measurement. If Pi(t) is prie of the stok i = 1, . . . , N at time t, then the77
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Figure 5.7: The probability density funtion of the elements of the orrelation matrix
C for 201 stoks in the NSE of India and NYSE for the period Jan 1996-May 2006. Themean value of elements of C for NSE and NYSE, 〈Cij〉, are 0.22 and 0.20 respetively.(logarithmi) prie return of the ith stok over a time interval ∆t is de�ned as

Ri(t, ∆t) ≡ ln Pi(t + ∆t) − ln Pi(t). (5.1)As di�erent stoks have varying levels of volatility (measured by the standarddeviation of its returns) we de�ne the normalized return,
ri(t, ∆t) ≡ Ri − 〈Ri〉

σi

, (5.2)where σi ≡
√

〈R2
i 〉 − 〈Ri〉2, is the standard deviation of Ri and 〈. . .〉 representstime average over the period of observation. We then ompute the equal timeross-orrelation matrix C, whose element

Cij ≡ 〈rirj〉, (5.3)represents the orrelation between returns for stoks i and j. By onstrution, Cis symmetri with Cii = 1 and Cij has a value in the domain [−1, 1]. Fig. 5.7 showsthat, on the average orrelation among stoks in NSE is larger ompared to thestoks in NYSE. This supports the general belief that developing markets tend tobe more orrelated than developed ones. To understand the reason behind thisexess orrelation, we perform an eigenvalue analysis of the orrelation matrix.
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Chapter 5. Inferring network struture from dynamis5.2.4 Spetral properties of orrelation matrixIf the N return time series of length T are mutually unorrelated, then the resultingrandom orrelation matrix is alled a Wishart matrix, whose statistial propertiesare well known [132℄. In the limit N → ∞, T → ∞, suh that Q ≡ T/N ≥ 1, theeigenvalue distribution of this random orrelation matrix is given by
Prm(λ) =

Q

2π

√

(λmax − λ)(λ − λmin)

λ
, (5.4)for λmin ≤ λ ≤ λmax and, 0 otherwise. The bounds of the distribution are given by

λmax,min = [1 ± (1/
√

Q)]2. We now ompare this with the statistial properties ofthe empirial orrelation matrix for the NSE. In the NSE data, there are N = 201stoks eah ontaining T = 2606 returns; as a result Q = 12.97. Therefore, itfollows that, in the absene of any orrelation among the stoks, the distributionshould be bounded between λmin = 0.52 and λmax = 1.63. As observed in devel-oped markets [119, 120, 121, 122℄, the bulk of the eigenvalue spetrum P (λ) forthe empirial orrelation matrix is in agreement with the properties of a randomorrelation matrix spetrum Prm(λ), but a few of the largest eigenvalues deviatesigni�antly from the RMT bound (Fig. 5.8).However, the number of these deviating eigenvalues are relatively few for NSEompared to NYSE. We verify that, these outliers are not an artifat of the �nitelength of the observation period, by randomly shu�ing the return time series foreah stok, and then re-alulating the resulting orrelation matrix. The eigenvaluedistribution for this surrogate matrix mathes exatly with the random matrixspetrum Prm(λ), indiating that the outliers are not due to �measurement noise�but are genuine indiators of orrelated movement among the stoks. Therefore,by analyzing the deviating eigenvalues, we may be able to obtain an understandingof the struture of interations between the stoks in the market.Properties of the �deviating� eigenvaluesThe largest eigenvalue λ0 for the NSE ross-orrelation matrix is more than 28times greater than the maximum predited by RMT. This is omparable to NYSE,where λ0 is about 26 times greater than the random matrix upper bound. Upontesting with syntheti US data ontaining same number of missing data points as79
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C for NSE (left) and NYSE (right). For omparison, the theoretial distribution preditedby Eq. (5.4) is shown using broken urves, whih overlaps with the distribution obtainedfrom the surrogate orrelation matrix generated by randomly shu�ing eah time series.In both �gures, the inset shows the largest eigenvalue.in the Indian market, we observed that λ0 remains almost unhanged omparedto the value obtained from the original US data. The orresponding eigenvetorshows a relatively uniform omposition, with all stoks ontributing to it and allelements having the same sign (Fig. 5.9, a). As this is indiative of a ommon fatorthat a�ets all the stoks with the same bias, the largest eigenvalue is assoiatedwith the market mode, i.e., the olletive response of the entire market to externalinformation [119, 121℄.Of more interest for understanding the market struture are the intermediateeigenvalues, i.e., those ourring between the largest eigenvalue and the bulk of thedistribution predited by RMT. For the NYSE, it was shown that orrespondingeigenvetors of these eigenvalues are loalized, i.e., only a small number of stoks,belonging to similar or related businesses, ontribute signi�antly to eah of thesemodes [123, 121℄. However, for NSE, although the Tehnology and the IT & Tele-om stoks are dominant ontributors to the eigenvetor orresponding to the thirdlargest eigenvalue, a diret inspetion of eigenvetor omposition does not yield astraightforward interpretation in terms of a related group of stoks orrespondingto any partiular eigenvalue (Fig. 5.9). This implies that distint groups, whosemembers are mutually orrelated in their prie movement, do exist in NYSE, whiletheir existene is far less lear in NSE.To obtain a quantitative measure of the number of stoks ontributing to a giveneigenmode, we alulate the inverse partiipation ratio (IPR), de�ned for the ktheigenvetor as Ik ≡

∑N
i=1[uki]

4, where uki are the omponents of eigenvetor k. An80
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√

N for all i, has
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√

2(1 − Cij). These areused to onstrut a minimum spanning tree, whih onnets all the N nodes ofa network with N − 1 edges suh that the total sum of the distane betweenevery pair of nodes, ∑

i,j dij, is minimum. For the NYSE, suh a onstrution hasbeen shown to luster together stoks belonging to the same business setor [32℄.However, as seen in Fig. 5.11, for the NSE, suh a method fails to learly segregateany of the business setors. Instead, stoks belonging to very di�erent setors areequally likely to be found within eah luster. This suggests that the market modeis dominating over all intra-setor interations.5.2.5 Filtering the data using spetral statistisThe above analysis suggests the existene of a market-indued orrelation arossall stoks, whih makes it di�ult to observe the orrelations that might be due tointerations between stoks belonging to the same setor. Therefore, we now usea �ltering method to remove market mode, as well as the random noise [124℄. Theorrelation matrix is �rst deomposed as
C =

N−1
∑

i=0

λiuiu
T
i , (5.5)
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C = C
market + C

group + C
random

= λ0u0u
T
0 +

Ng
∑

i=1

λiuiu
T
i +

N−1
∑

i=Ng+1

λiuiu
T
i , (5.6)
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group in the former shows a signi�antly trun-ated tail. This indiates that intra-group orrelations are not prominent in NSE,whereas they are omparable with the overall market orrelations in NYSE. Itfollows that the olletive behavior in the Indian market is dominated by exter-nal information that a�ets all stoks. Correspondingly, orrelations generated byinterations between stoks, as would be the ase for stoks in a given businesssetor, are muh weaker, and hene, suh orrelated setors would be di�ult toobserve.5.2.6 The network of stok interationsWe indeed �nd this to be true when we use the information in the group orrelationmatrix to onstrut the network of interating stoks [124℄. The adjaeny matrix
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group by usinga threshold cth suh that Aij = 1 if Cgroup
ij > cth, and Aij = 0 otherwise. Thus,84
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Chapter 5. Inferring network struture from dynamisother via a few links only, whereas in the earlier period the lusters are muh morehomogeneous. This implies that as the Indian market is evolving, the interationsbetween stoks are tending to get arranged into learly identi�able groups. Wepropose that suh strutural re-arrangement in the interations is a hallmark ofemerging markets as they evolve into developed ones.5.3 Model of Market DynamisTo understand the relation between the interation struture among stoks andthe eigenvalues of the orrelation matrix, we perform a multivariate time seriesanalysis using a simple two-fator model of market dynamis. We assume thatthe normalized return at time t of the ith stok from the kth business setor anbe deomposed into (i) a market fator rm(t), that ontains information or signalommon to all stoks, (ii) a setor fator rk
g (t), representing e�ets exlusive tostoks in the kth setor, and (iii) an idiosynrati term, ηi(t), whih orrespondsto random variations unique for that stok. Thus,

rk
i (t) = βirm(t) + γk

i rk
g (t) + σiηi(t), (5.7)where βi, γk

i and σi represent relative strengths of the three terms mentioned above,respetively. For simpliity, these strengths are assumed to be time independent.We hoose rm(t), rk
g (t) and ηi(t) from a zero mean and unit variane Gaussian dis-tribution. We further assume that the normalized returns ri, also follow Gaussiandistribution with zero mean and unit variane. Although the empirially observedreturn distributions have power law tails, as these distributions are not Levy sta-ble, they will onverge to Gaussian if the returns are alulated over su�ientlylong intervals. The assumption of unit variane for the returns ensures that therelative strengths of the three terms will follow the relation:

βi
2 + (γk

i )2 + σi
2 = 1. (5.8)As a result, for eah stok we an assign σi and γi independently, and obtain βifrom Eq. (5.8). We hoose σi and γi from a uniform distribution having width δand entered about the mean values σ and γ, respetively. 86
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i from the above model. These Ksetors are omposed of n1, n2, . . . , nK stoks suh that n1 + n2 + · · · + nK = N .The olletive behavior is then analysed by onstruting the resultant orrelationmatrix C and obtaining its eigenvalues. Our aim is to relate the spetral propertiesof C with the underlying struture of the market given by the relative strengthof the fators. We �rst onsider the simple ase, where the ontribution due tomarket fator is negleted, i.e., βi = 0 for all i, and the strength of setor fatoris equal for all stoks within a setor, i.e., γk

i = γk, is independent of i. In thisase, the spetrum of the orrelation matrix is omposed of K large eigenvalues,
1 + (nj − 1)(γj)2, where j = 1 . . .K, and N −K small eigenvalues, 1− (γj)2, eah87



Chapter 5. Inferring network struture from dynamiswith degeneray nj −1, where j = 1 . . .K [133℄. Now, we onsider nonzero marketfator whih is equal for all stoks i.e., βi = β for all i, and the strength of setorfator is also same for all stoks, i.e., γk
i = γ (independent of i and k). In this asetoo, there are K large eigenvalues and N − K small eigenvalues. Our numerialsimulations suggest that the largest and the seond largest eigenvalues are

λ0 ∼ Nβ2,

λ1 ∼ nl(1 − β2), (5.9)respetively, where nl is the size of the largest setor, while the N − K smalldegenerate eigenvalues are 1−β2−γ2. We now hoose the strength γk
i and σi froma uniform distribution with mean γ and σ respetively and with width δ = 0.05.Fig. 5.14 shows the variation of the largest and seond largest eigenvalues with σand γ. The strength of the market fator is determined from Eq.5.8.Note that, dereasing the strength of the setor fator relative to the marketfator results in dereasing the seond largest eigenvalue λ1. As Q = T/N is �xed,the RMT bounds for the bulk of the eigenvalue distribution, [λmin, λmax], remainunhanged. Therefore, a derease in λ1 implies that the large intermediate eigen-values our loser to the bulk of the spetrum predited by RMT, as is seen in thease of NSE. The analysis of the model supports our hypothesis that the spetralproperties of the orrelation matrix for the NSE are onsistent with a market inwhih the e�et of information ommon for all stoks (i.e., the market mode) isdominant, resulting in all stoks exhibiting a signi�ant degree of orrelation.5.4 DisussionIn this hapter, we have reonstruted networks from two types of empirial data.First, we have analyzed the struture of bonnet maaque soial organization asan example of a soial network. We determine the interation network by usingdata on grooming behavior, an a�liative interation that is frequently observedbetween primate individuals. We show that weights of the links in this network(i.e., grooming strength) has an exponential distribution, indiating that the in-terations in suh a soial network is very di�erent from other real-world omplexnetworks. This may be due to the limited time for performing spei� ats that88



Chapter 5. Inferring network struture from dynamisonstrains the interation behavior of the agents in a soial network. Further, thefemale maaque network shows a distint and unambiguous ommunity struture,with the di�erent ommunities mathing exatly with the splitting of the troopobserved in a subsequent �eld study. In order to understand how relatively simplepriniples governing the strategy of individuals for seleting interation partnersmay be used to explain the omplex soial struture of non-human primate groups,we onsider the Seyfarth model. By using the bonnet maaque data, we testedthe basi priniples of the model, whih gives a set of strategi rules that governsthe interations of eah individual. Based on our results, we have indiated howthese priniples an be possibly modi�ed so that the model an better representthe patterns of soial behavior in the bonnet maaque.Next, we analyze the market interation struture and demonstrate that thestoks in an emerging market are muh more orrelated than in developed mar-kets. Although, the bulk of the eigenvalue spetrum of the orrelation matrix ofstoks C in an emerging market is similar to that observed for developed markets,the number of eigenvalues deviating from the upper bound predited by randommatrix theory are smaller in number. Further, most of the observed orrelationsamong stoks is found to be due to e�ets ommon to the entire market, whereasorrelations due to interations between stoks belonging to the same businesssetor are weak. This dominane of the market mode relative to modes arisingthrough interations between stoks makes an emerging market appear more or-related than developed markets. Using a simple two-fator model, we show thata market fator, that is dominant relative to the setor fator, results in spetralproperties similar to that observed empirially for the Indian market. Our studyhelps in understanding the evolution of markets as omplex systems, suggestingthat strong interations may emerge within groups of stoks as a market evolvesover time. How suh self-organization ours and its relation to other hangesthat a market undergoes during its development, e.g., large inreases in transa-tion volume, is a question worth pursuing in the future with the tools available tophysiists.This hapter also makes a signi�ant point regarding the physial understand-ing of markets as omplex dynamial systems. In reent times, the role of theinteration struture within a market in governing its overall dynamial propertieshas ome under inreasing srutiny. However, suh intra-market interations a�et89



Chapter 5. Inferring network struture from dynamisvery weakly ertain market properties, whih is underlined by the observation ofidential �utuation behaviour in markets having very di�erent interation stru-tures, viz., NYSE and NSE [85, 134℄. For the purpose of explaining features suhas the prie �utuation distribution, the system an be onsidered to be a singlehomogeneous entity responding only to external signals. This suggests that theearlier approah for studying �nanial markets that ignored their internal stru-ture and onsidered pries to be essentially exeuting random walks in responseto independent external shoks [135℄, may still be onsidered to be aurate forexplaining market �utuation phenomena. In other words, omplex interatingsystems like �nanial markets an have simple mean �eld-like desription for someof their properties.

90



6Role of network struture in systemfuntion
6.1 IntrodutionThe relatively simple nervous systems of invertebrate organisms provide vital in-sights into how nerve ells integrate sensory information from the environment, re-sulting in a oordinated response. Analysing the intermediate or mesosopi levelof organization in suh systems is a ruial step in understanding how miro-levelativity of single neurons and their interations eventually result in maro-levelbehavior of the organism [136℄. The nematode Caenorhabditis elegans is a modelorganism on whih suh an analysis an be performed, as its entire neuronal wiringlayout has been ompletely mapped [18℄. This information enables one to trae infull the ourse of ativity along the neuronal network, from sensory stimulation tomotor response [137℄. We study its somati nervous system, omprising 282 neu-rons that ontrol all ativity exept the pharyngeal movements. This an lead to anunderstanding of the ommand and ontrol proesses ourring at the mesosopilevel that produe spei� funtional responses, inluding avoidane behavior andmovement along a hemial gradient. The neuron loations as well as their on-netions being ompletely determined by the geneti program, are invariant arossindividual organisms. Further, unlike in higher organisms, the onnetions do nothange with time in the adult nematode. In ombination with the possibility of ex-perimenting on the role of single neurons in di�erent funtional modalities, theseinvarianes allow one to uniquely identify the important neurons in the system91



Chapter 6. Role of network struture in system funtionhaving spei� behavioral tasks.The reent developments in the theory of omplex graphs has made availablemany analytial tools for studying biologial networks [4, 3℄. The initial emphasiswas on developing gross marosopi desriptions of suh systems using measuressuh as average path length between nodes of the network, the lustering amongnodes and the degree sequenes. However, suh global haraterizations of sys-tems ignore signi�ant loal variations in the onnetion topology that are oftenfuntionally important. Therefore, investigating the network at a mesosopi levelwhih onsider the broad patterns in the inhomogeneous distribution of onne-tions, may reveal vital lues about the working of an organism that ould be hiddenin a global analysis. Further, these large-sale features help in understanding howoordination and integration ours aross di�erent parts of the system, in ontrastto a study of mirosopi patterns omprising only a few neurons, e.g., motifs [138℄.The existene of modules, marked by the ourrene of groups of densely on-neted nodes with relatively fewer onnetions between these groups [52℄, providesa natural meso-level desription of many omplex systems [67℄. Modular orga-nization in the brains of di�erent speies have been observed, both in funtionalnetworks derived from EEG/MEG and fMRI experiments and in strutural net-works obtained from traing anatomial onnetions [139℄. The funtionally de-�ned networks, where di�erent brain areas, eah of whih omprise a large numberof loalized groups of neurons, are onsidered to be linked if they are simultaneouslyative, have been shown to be modular for both human [140℄ and non-human [141℄subjets. Trat-traing studies in the brains of at [83℄ and maaque [142℄ havealso revealed a modular layout in the strutural inter-onnetions between di�erentbrain areas. However, as neurons are the essential building bloks of the nervoussystem, ideally one would like to explore the network of interonnetions betweenthese most basi elements. In the extremely ompliated mammalian brains, it isso far only possible to analyze suh networks for extremely limited regions thatdo not give a piture of how the system behaves as a whole [143℄. The relativesimpliity of the nervous system of C. elegans allows a detailed analysis of the net-work, de�ned in terms of both eletrial (gap juntional) and hemial (synapti)onnetions between the neurons (Fig. 6.1).The ubiquity of modularity in brain networks leads to the obvious questionabout how to explain the evolution of suh a strutural organization [58℄. One92
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Figure 6.1: (a) Shemati diagram of C. elegans, indiating the di�erent ganglia. (Inset)Shemati representation of onnetivity between the neurons, partitioned into a stronglyonneted omponent (SCC), an in-omponent (IN), and an out-omponent (OUT). Adireted path exists from any neuron in IN to any neuron in OUT through neurons inSCC, all of whose members an be reahed from eah other. The large SCC suggests thatit is possible to transfer signals between almost all neurons of the network. The IN andOUT omponents have only 1.5% and 0.5%, respetively, of the 279 onneted neuronsin the somati nervous system. (b, ) The onnetivity matrix orresponding to the (b)Synapti and () Gap-juntional onnetions between the somati system neurons. In all�gures, the partition symbols orrespond to (G1) Anterior, (G2) Dorsal, (G3) Lateral,(G4) Ventral, (G5) Retrovesiular, (G6) Posterolateral, (G7) Preanal, (G8) Dorsoretaland (G9) Lumbar ganglion, and (G10) the Ventral ord.possible reason for the existene of modular arhiteture is that they may re-sult in low average path length (whih is assoiated with high e�ieny of signalommuniation) and high lustering (that allows loal segregation of informationproessing) in networks [56℄. An alternative possibility is that segregation of neu-rons into spatially loalized ommunities minimizes the total ost assoiated withthe wiring length (the physial distane spanned by onnetions between neurons).This ost arises from resoures assoiated with fators suh as wiring volume aswell as metabolism required for maintenane and propagation of signals aross long93



Chapter 6. Role of network struture in system funtiondistanes [144℄. Developmental onstraints, suh as the lineage relations betweendi�erent neurons may also play an important role in determining the network topol-ogy [145℄. In addition, the existene of empirially determined iruits responsiblefor spei� funtions (suh as, movement assoiated with exploratory behavior,egg laying, et.) in the C. elegans nervous system, raises the intriguing possibilitythat struturally de�ned modules are assoiated with de�nite funtional roles [146℄.The invariant neuronal onnetivity pro�le of C. elegans allows us to explore theontributions of the above mentioned strutural, developmental and funtionalonstraints in governing the mesosopi organization of the nervous system.In Se. 6.2, we begin our analysis of the organization of the C. elegans nervoussystem by identifying struturally de�ned modules in the network of neurons linkedby synapses and gap-juntions. Next, we investigate whether the observed modu-lar struture an be explained by using arguments based on universal priniples.Suh riteria, whih inlude minimizing the ost assoiated with neuronal onne-tions [144, 147℄ and their geneti enoding [148℄, or, dereasing the signal propa-gation path [149, 150℄, have reently been proposed to explain observed patternsof neuronal position and onnetivity. We determine the role of physial proximitybetween a pair of neurons in deiding the onnetion struture, by investigatingthe orrelation between their spatial positions and their modular membership. Wealso ompare these modules with the existing lassi�ation of the nematode ner-vous system into several ganglia, as the latter have been di�erentiated in termsof anatomial loalization of their onstituent neurons. Results from the aboveanalysis suggests that resoure onstraints suh as wiring ost annot be the soledeiding fator governing the observed meso-level organization. We also show thatthe modules annot be only a result of the ommon lineage of their member nodes.It is natural to expet that the struture of the nervous system is optimizedto rapidly proess signals from the environment so that the organism an takeappropriate ation for its survival [151℄. By looking at the deviation betweenthe atual network and a system optimized for maximal ommuniation e�ienyin onjuntion with minimum wiring ost, we infer the existene of additionalfuntional onstraints related to proessing of information (i.e., other than simplesignal transmission). This is further supported by the observation of relativelyhigh lustering in C. elegans neuronal network as ompared to other informationnetworks (e.g., eletroni logi iruits [152℄). As lustering inreases the wiring94



Chapter 6. Role of network struture in system funtionost, while not assisting e�ient ommuniation, its presene in a system that hasevolved under intense ompetition for survival may imply a key role for lusteringin proessing information. By looking at the orrelation between loal as well asglobal onnetivity pro�les with individual node harateristis, we observe thatthe nematode nervous system is signi�antly di�erent from designed systems, in-luding other information networks ourring in the tehnologial domain, e.g., theinternet. Further, in ontrast to previous observations on the similarity betweenbiologial signalling networks having di�erent origins [153, 154℄, we �nd that theC. elegans neuronal network has properties distint from at least one other bio-logial network that is involved in signalling tasks, namely the protein interationnetwork [155, 156℄.Thus, the analysis of the network at the mesosopi level provides an appro-priate framework for identifying the roles that di�erent lasses of onstraints (de-velopmental, strutural and funtional) play in determining the organization of anervous system. It also allows us to infer the existene of riteria related to pro-essing of information governing the observed modular arhiteture in C. elegansneuronal inter-onnetions. Our results provide the means for identifying neuronshaving key roles in the behavioral performane of the organism exlusively fromanatomial information about their strutural onnetivity. Our results an helpexperimentalists in fousing their attention to a selet group of neurons whih mayplay a vital part in some, as yet undetermined, funtion.In Se. 6.3, we investigate the hierarhial organization of the nematode neu-ronal network. We fous on the possible funtional advantages of hierarhialstruture and investigate its role in information proessing. We show that theore-periphery struture of the network exhibits evidene of hierarhial ordering.By using a simple model for suh networks, we see that suh strutures leads tosigni�ant redution in the spread of loal ativity throughout the network whilemaintaining the ommuniation e�ieny almost unhanged.6.2 Modularity in the C.elegans nervous systemIn order to investigate the modular organization of a network, we need to �rst iden-tify the modules. We perform this on the C. elegans neuronal network by arrying
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Chapter 6. Role of network struture in system funtionout an optimal partitioning of the network, whih orresponds to the maximumvalue of modularity parameter, Q. We use the generalization of a method intro-dued in Refs. [157, 158℄. For a direted and weighted network, the modularityan be de�ned as
QW ≡ 1

LW

∑

i,j

[

Wij −
sin

i sout
j

LW

]

δcicj
, (6.1)where, LW =

∑

i,j Wij is the sum of weights of all links in the network (Wij is theweight of the link from neuron j to neuron i), and the weighted in-degree and out-degree of node i are given by sin
i =

∑

j Wij and sout
i =

∑

j Wji, respetively. Theoptimal partitioning of the network is the one whih maximizes the modularitymeasure Q (or QW ). We obtain this by �rst de�ning a modularity matrix B,
Bij = Wij −

sin
i sout

j

LW
. (6.2)To split the network, the eigenvetors orresponding to the largest positive eigen-value of the symmetri matrix (B + B

T) is alulated and the ommunities areassigned based on the signs for the elements of the eigenvetor. A repeated bise-tion method is then used to suessively divide the obtained groups. The proessterminates when further division does not inrease the modularity of the network.We have onsidered di�erent ases orresponding to the di�erent types of neu-ronal onnetions (viz., gap juntion, synapti and their ombination) and thenature of suh onnetions (viz., weighted or unweighted by the number of eahtype of onnetion). While the gap juntional network is undireted, both thesynapti as well as the ombined network is direted. For eah type of network,the maximum modularity value QM and the number of partitions for whih thisvalue is obtained, are given in Table 6.1. While using only the gap juntions frag-ment the network into as many as 15 modules, when we onsider either synapsesalone or the ombination of both types of onnetions, the number of modulesobtained is muh less. In the remainder of this hapter, we have onsidered theombined network of synapses and gap juntions, unless otherwise stated. Thisis a weighted network where the link weights orrespond to the total number ofsynapti and gap juntion onnetions from one neuron to another.The high value of QM and dense inter-onnetivity within modules (Fig. 6.2(left)) suggest that the network has a modular organization. We further validate96
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Chapter 6. Role of network struture in system funtionTable 6.1: The modularity of the network is measured using the parameter Q, whihrequires a knowledge of the partitions or ommunities whih divide the network. Weobtain the modularity measure, Qg, on assuming the ommunities to orrespond to theganglia. Its positive values indiate that neurons in the same ganglion have high den-sity of inter-onnetions. We have also obtained Q by determining the modules of thenetwork using a spetral method, the orresponding values being indiated by QM . Therelatively high values of QM ompared to Qg, indiates that the ganglia do not mathwith this optimal partitioning of the network. Both measures, Qg and QM , as well asthe number of modules, nM , have been obtained for both unweighted and weighted net-works onsisting of either gap juntions or synapses or both. We alulate the overlapbetween the ganglioni and the optimal partition of the network using the normalizedmutual information index, I. For the ase of perfet math between the two, the index,
I = 1, whereas if they are independent of eah other, I = 0. The measured values of
I indiate that the overlap between the di�erent modules and the anatomially de�nedganglia is not signi�ant. The modular nature of the somati nervous system is empha-sised by omparing the empirial network with networks obtained by randomizing theonnetions, keeping the degree of eah neuron �xed. The mean and standard deviationof the modularity Qrand

M and the orresponding number of partitions mrand
M are shownfor both weighted and unweighted networks, and for the di�erent types of onnetions.For all ases, the randomized networks show a signi�antly lower modularity than theempirial network.Network Unweighted Weighted

Qg QM mM NMI Qg QM mM NMIGap Jn 0.2069 0.6297 11 0.3264 0.1700 0.6566 15 0.3473Synapti 0.1487 0.3491 2 0.2572 0.2106 0.4720 4 0.3137Combined 0.1687 0.3776 3 0.3057 0.2031 0.4910 6 0.3763between neurons would imply that suh ganglia would be distinguished by havinga signi�antly high density of onnetions between their onstituent neurons. We,therefore, verify whether the onnetivity inside eah ganglion is high ompared tothe orresponding randomized networks. This is done by measuring the modularityvalue Qg, with eah ganglion assumed to be a true network module. We �nd that,although Qg is nonzero whih indiates that the neurons inside a ganglia do indeedhave a higher onnetion density than the overall network, it is not as high as themaximum QM possible, obtained for the optimal partition (Table 6.1). We havealso alulated the normalized mutual information index, NMI, to measure theoverlap between the optimal partitioning of the network into modules and thedi�erent ganglia. Note that, in the ase of perfet math, NMI = 1, while it is
0, if there is no math. The low values for NMI given in Table 6.1 suggest that99



Chapter 6. Role of network struture in system funtionthe omposition of the di�erent ganglia is quite distint from that of the modulesfor the optimal partitioning of the neuronal network. This is shown expliitly inFig. 6.4 (a), indiating that most ganglia are omposed of neurons belonging tomany di�erent modules.We have used this modular deomposition spetrum of eah ganglion (i.e., thedistribution of the neurons of the ganglion into the m di�erent modules of theoptimal partition) to de�ne a metri for inter-ganglioni distane in an abstrat
m-dimensional �modular� spae. Thus, if two ganglia have a similar modular de-omposition pro�le, then they are lose to eah other in the �modular� spae andhave low modular distane (Fig. 6.4, b). This is then ompared with the physialdistane between ganglia, measured as the average separation between the ell bod-ies of all pairs of neurons i and j, where i, j belong to di�erent ganglia (Fig. 6.4, ).The omparison of the two matries shows that there are indeed ertain similari-ties between these two di�erent onepts of distane. For example, the �ve ganglialoated in the head (G1-G5) luster together, as do the three loated towards thetail (G7-G9). This observation is in aord with previous reports whih use thenotion of wiring ost for explaining (to a ertain extent) the observed relative po-sitions of the ganglia. However, when we onsider the orresponding dendrogramsthat indiate the relative loseness of the di�erent ganglia in physial spae andin �modular� spae, we observe signi�ant di�erenes between the two: gangliawhih are lose to eah other in physial spae may not be neighbors in terms oftheir modular spetra. This reiterates our previous onlusion that wiring ostminimization, whih is related to the physial distane between neurons, is not adominant fator governing the organization of C. elegans somati nervous system.6.2.2 Modules and ell lineageAs developmental proesses are believed to play a signi�ant role in determiningthe struture of the nervous system, we also onsider the alternative hypothesisthat the strutural modules re�et a lustering of neurons that are related in termsof their lineage. Lineage of a ell is the pattern of suessive ellular divisions thatour during its development. This is invariant in C. elegans, allowing one totrae the individual developmental history of eah ell in order to identify theell-autonomous mehanisms and ell-ell interations. We measure the average100
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Chapter 6. Role of network struture in system funtionin the exploration iruit, although F6 is loser to F5 in terms of their modularspetra (distane = 0.18 ) than it is to F4 (distane =0.26 ) of whih F6 is a sub-set. This implies that these two iruits F5 and F6 are strongly onneted, therebyindiating the inter-relation of the orresponding funtions. Indeed the feeding be-havior of C.elegans is known to be regulated in a ontext-dependent manner by itsnervous system whih integrates external signals, suh as, the availability of foodand the nutritional status of the animal, to diret an appropriate response [169℄.The mode of loomotion is also determined by the quality of food [170℄. It isapparent that, integration of multiple behaviours is essential to feeding regula-tion [171℄, suh as avoidane of high CO2 onentrations by satiated animals [172℄.Furthermore, F2 is seen to be loser to these iruits, whih is signi�ant in lightof previous experimental observation that presene of food (as deteted throughhemosensory neurons) modulates the egg-laying rate in C. elegans [162, 173℄.6.2.4 Funtional role of di�erent neuronsIn this subsetion, we establish the funtional importane of spei� neurons byinvestigating the role played by them within their module, and ompare it withtheir role in the entire network. To parametrise this, we use (i) the partiipationoe�ient, P , whih is a measure of how dispersed the onnetions of a node areamong the di�erent modules, and, (ii) the within-module degree, z, that indiatesthe number of onnetions a node has to other members of its module. For eahnode i, we an de�ne its partiipation oe�ient Pi as
Pi = 1 −

m
∑

s=1

(

κi
s

ki

)2

, (6.3)where κi
s is the number of links to nodes in module s ki =

∑

s κi
s is its degree. Thus,the partiipation oe�ient of a node is ∼ 1 if its links are uniformly distributedamong all modules and = 0 if it only links to nodes within its own module. Thewithin-module degree, z, distinguishes nodes that play the role of hubs in theirown module from non-hub and peripheral nodes. For the i-th node, it is de�nedas

zi =
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si
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si〉2j∈si

, (6.4)
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Chapter 6. Role of network struture in system funtionwhere κi
s is as de�ned above and the average 〈· · · 〉j∈s is performed over all nodesin the module s.A node having a low within-module degree is alled a non-hub node (z < 0.7).Suh nodes an be further lassi�ed aording to their fration of onnetions withother modules, whih following Ref. [156℄ are lassi�ed as: (R1) ultra-peripheralnodes (P ≤ 0.05), having onnetions only within their module, (R2) peripheralnodes (0.05 < P ≤ 0.62), whih have a majority of their links within their module,(R3) satellite onnetors (0.62 < P ≤ 0.8), with many links onneting nodesoutside their modules and (R4) kinless hubs (P > 0.8), whih form links uniformlyaross the network. Hubs, i.e., nodes having a large number of onnetions tonodes within their module (z ≥ 0.7), are further sub-divided aording to theirpartiipation oe�ient into (R5) provinial hubs (P ≤ 0.3), with most onnetionswithin their module, (R6) onnetor hubs (0.3 < P ≤ 0.75), with a signi�antfration of links distributed among many modules and (R7) global hubs (P >

0.75), whih onnet homogeneously to all modules. This lassi�ation allows usto distinguish nodes aording to their di�erent roles as brought out by their intra-modular and inter-modular onnetivity patterns.We will now use the above methodology on the C. elegans network in orderto identify neurons that play a vital role in oordinating ativity through shar-ing information (either loally within their ommunity or globally over the entirenetwork). Fig. 6.7 shows the omparison between the empirial network and aorresponding randomized network (obtained by keeping the degree of eah node�xed). We immediately notie that the randomized network does not have anynodes having the roles R1 and R5, indiating that the modular nature of theoriginal network has been lost. In fat, in the randomized system, most nodeshave higher partiipation oe�ient, with a large majority being satellite onne-tors (R3). More interesting is the fat that, the empirial neural network doesnot posses any neuron having the global roles played by R4 and R7, whereas therandomized network does. This implies that modular identity in the C. elegansneuronal network is very pronouned.It is possible to relate the intra- and inter-modular onnetivity patterns of aneuron with its role in the funtioning of the worm nervous system. For example,neurons having the role of provinial hubs may be involved in loal oordinationof neural ativity, while, the onnetor hubs may be responsible for integration of105
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Figure 6.7: (Left) The within module degree z-sore of eah neuron in the empirialneuronal network is shown against the orresponding partiipation oe�ient P . Thewithin module degree measures the onnetivity of a node to other nodes within its ownmodule, while the partiipation oe�ient measures its onnetivity with neurons in theentire network. (Right) The orresponding result for a randomized version of the C. ele-gans network where the degree of eah neuron is kept unhanged is also shown. Neuronsbelonging to the di�erent regions in the P − z spae are ategorised as: (gray) �ultra-peripheral nodes,� i.e., nodes with all their links within their module, (blue) �peripheralnodes,� i.e., nodes with most links within their module, (pink) �nonhub onnetor nodes,�i.e., nodes with many links to other modules, (green) �nonhub kinless nodes,� i.e., nodeswith links homogeneously distributed among all modules, (yellow) �provinial hubs,� i.e.,hub nodes with the vast majority of links within their module, (red) �onnetor hubs,�i.e., hubs with many links to most of the other modules, and (white) �global hubs,� i.e.,hubs with links homogeneously distributed among all modules. The neurons ourringas onnetor hubs are identi�ed in the �gure. Most of these neurons our in di�er-ent funtional iruits indiating the lose relation between funtional importane andonnetivity pattern of individual neurons.loal ativities to produe a oherent response of the entire system. This hypothesisis supported by the observation that, all ommand interneurons (of the lass AVA,AVB, AVD, AVE, PVC), whih ontrol forward and bakward loomotion of theworm by regulating motor output, play the role of onnetor hubs. In fat, outof the 23 neurons in the lass R6, 20 are known to belong to di�erent funtionaliruits. Among the rest, although DVA is not part of any known iruit, ithas reently been identi�ed as being involved in mehanosensory response. In its106



Chapter 6. Role of network struture in system funtionabsene, the frequeny and magnitude of the tap-indued reversal as well as theaeleration magnitude is diminished [168℄. The two remaining neurons, AVKLand SMBVL, have not been impliated so far in any known funtional iruit.However, their ourrene in this lass suggests that they may be important forsome, as yet unknown, funtion. This is a potentially interesting predition thatmay be veri�ed in the laboratory.The signi�ane of these results is underlined by a omparison with the ran-domized network. For instane, in the random realization shown in Fig. 6.7 (b),of the 49 neurons playing the role of onnetor or global hubs, less than half (viz.,23) atually belong to any of the known funtional iruits. The appearane ofmost of the ommand interneurons in the high-z region of both the empirial andrandomized networks indiates that their high overall degree is responsible for theirobserved role of �onneting hubs".We now turn to the 28 neurons whih play the role of provinial hubs. Half ofall the inhibitory D-lass motorneurons (viz., DD1-DD3 and VD1-VD6) are foundto belong to this lass. This is signi�ant as these neurons have already beenimpliated in the ability of the worm to initiate bakward motion. While theyalso ontribute to forward loomotion, previous experiments have shown that theyare not ruial for it [174℄. This �ts with our hypothesis that, R5 neurons areimportant for loal oordination but may not be ruial for the global integrationof ativity. A pair of exitatory B-lass motorneurons that sustain oordinatedforward loomotion in the worm also appear as provinial hubs. Of the remain-ing R5 neurons, 9 have been previously identi�ed to belong to various funtionaliruits. It will be interesting to verify the funtional relevane of the remaining8 neurons (OLLL/R, RMDVL/R, SMDVR, RIH, RMDDL/R) in the laboratory.Thus, overall, we �nd a very good orrelation between the onnetivity patternand the funtional importane of di�erent neurons.An analysis of neurons having di�erent roles in terms of their membership in thedi�erent ganglia indiates that the lateral ganglion provides the majority of neuronsating as onnetor hubs (R6). This is onsistent with an earlier study [175℄ wherethis ganglion was found to at as the link between the neuronal groups responsiblefor sensory proessing and motor response. The orresponding randomized net-work, while also showing many neurons from the lateral ganglion, have signi�antrepresentation from other ganglia too (e.g., the retrovesiular ganglion). 107



Chapter 6. Role of network struture in system funtionWe have also arried out an analysis of the probability of onnetions betweenneurons having di�erent roles, relative to the randomized network, in an attempt toompare with other networks whih are involved in transportation and informationpropagation. However, we do not �nd any signi�ant overlap of the nematodenervous system with networks in either of these two lasses, suggesting that the C.elegans neuronal network does not belong exlusively to either lass of networks.This assumes signi�ane in light of reent work distinguishing information (orsignalling) networks, suh as the Internet and protein interatome, on the onehand, and transportation networks, suh as metaboli and airport networks, onthe other, into two lasses [156℄.6.2.5 Wiring ost vs ommuniation e�ienyIn this subsetion, we investigate ertain global properties of the C. elegans neuralnetwork in order to determine its di�erenes with other lasses of networks. Wealso seek to asertain the possible onstraints whih might have given rise to theobserved network topology.We have already shown that wiring ost minimization, is at best, only a partialdetermining fator for network struture in this system. A reent study [149℄ haslaimed that neuronal networks minimize the length of proessing paths (i.e., theaverage number of links onneting any given pair of neurons) rather than mini-mizing the total wiring length or the average physial distane between onnetedneurons. Thus, we now look at the ommuniation e�ieny of the network, asmeasured by the harmoni average network path length between all pairs of neu-rons. As inreasing the e�ieny inevitably results in inreasing the wiring ost,we analyze how the performane of the network as an information propagation sys-tem ompetes with the resoure ost involved in setting up the required number ofonnetions. This ost is measured as the Eulidean length between the ell bod-ies of all onneted pairs of neurons (orresponding to the dediated-wire modelof Ref. [144℄). It has been shown that the positions of the subset of sensory andmotor neurons diretly onneted to sensory organs and musles, respetively, anbe determined quite aurately by minimizing their total wiring ost [147℄. As ourfous is on the onnetion struture of the neuronal network, we keep the neuronpositions �xed and, thus, our study does not onsider the wiring ost involved in108
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Chapter 6. Role of network struture in system funtionde�nition of wiring ost as the sum of all Eulidean distanes between onnetedell bodies may be a gross over-estimate of the atual wiring ost. Thus, we on-sider an alternative measure, where, the wiring ost for onneting to a spei�neuron is taken to be the Eulidean length between the neuron's ell body andthose of the farthest neurons it is onneted to. The simple one-dimensional sim-pli�ation of the C. elegans body that we have used here ignores distane along thetransverse plane. Thus, this measure is atually an under-estimate of the atualwiring ost, and should provide an insightful omparison with the above measureobtained from the dediated-wire model. Fig.6.8 shows that wiring ost inreaseswith ommuniation e�ieny for the randomized networks, whih is qualitativelysimilar to the relation obtained using the preeding de�nition for wiring ost. Inthis ase also, we �nd that the empirial C. elegans network has a muh lower e�-ieny than would be expeted from its wiring ost alone. This observation suggeststhe presene of other onstraints, possibly related to information proessing, thatare responsible for the observed global properties of the network.6.2.6 Possible existene of information proessing onstraintIn this subsetion, we explore further the possibility that the additional onstraintsgoverning the topologial struture of C. elegans nervous system may be relatedto information proessing, rather than onstraints arising from information (orsignal) propagation, whih are quanti�ed by measuring ommuniation e�ieny.The property of information proessing, i.e., the ative transformation of signalsinto responses, di�erentiates the neuronal network from other well-studied net-works where e�ieny is of paramount importane, suh as the internet and air-port transportation network. While fast ommuniation of information betweendi�erent neurons is ertainly an important funtional riterion, we explore the pos-sibility that the neuronal network may be di�erent from networks whih are onlyoptimized for maximum ommuniation e�ieny.First, we look at the overall network struture, by deomposing the network intoa strongly onneted omponent (SCC), within whih it is possible to visit any nodefrom any other node using direted links, an inward omponent (IN) and outwardomponent (OUT), onsisting of nodes from whih the SCC an be visited or whihan be visited for the SCC, respetively, but not vie versa. In addition, there are110
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Figure 6.9: (Left) The average betweenness entrality, 〈BC〉, and (right) the averagenearest neighbor degree, 〈knn〉 of eah node as a funtion of its total degree, 〈k〉 =
〈kin + kout〉. Betweenness entrality is a measure of how frequently a partiular nodeis used when a signal is being sent between any pair of nodes in the network using theshortest path. In ase of the internet, BC of nodes inreases with its degree whih issought to be linked with its information transport property. In C. elegans, although BCinreases with degree, this inrease is not signi�ant when ompared to the randomizedversion of the network. In the ase of the relation between the average onnetivity ofnearest neighbors of a node with its total degree k, we note that for both the internet andprotein interation network, knn dereases with k as a power law. This means that lowonnetivity nodes have high degree nodes as their neighbors and vie-versa. However, inthe ase of C. elegans, this relation is not very apparent and insigni�ant in omparisonwith the randomized version of the network. In both �gures, error bars indiate thestandard deviations alulated for 103 random realizations. These results suggest thatthe C.elegans network forms a lass distint from the lass of networks optimized onlyfor signal propagation.omponents disonneted from the SCC, i.e., nodes whih annot be visited fromSCC nor an any visits be made to SCC from there (Fig. 6.1). A omparison ofthe C. elegans neuronal network with a similar deomposition of the WWW [176℄reveals that while in the latter the di�erent omponents are approximately of equalsize, the SCC of the nervous system omprises almost the entire network. Thus,any node an, in priniple, a�et any other node in the nervous system, suggestingthe importane of feedbak ontrol for information proessing.Next, we onsider the relation between two fundamental properties of the net-work: the degree of nodes and their Betweenness Centrality (BC), whih har-111



Chapter 6. Role of network struture in system funtionaterizes the importane of a node in information propagation over the network.The Betweenness Centrality of a node i is de�ned as the fration of shortest pathsbetween all pairs of nodes in the network that pass through i [177℄. We observethat for both the C. elegans neuronal network and its randomized versions, thedegree of a node and its BC are strongly orrelated, i.e., highly onneted nodesare also the most entral (Fig. 6.9, left). This is similar to what has been observedin the internet [178℄, where the highest degree nodes are also those with the high-est betweenness [179℄, but in sharp ontrast to the airport transportation network,where non-hub nodes (low degree) may have very large BC [180℄.However, the C. elegans neuronal network di�ers from both the internet andthe protein interation network (PIN), whose primary funtion is to allow signalpropagation between nodes, in terms of the variation of the degree of a node iwith the average degree of its neighboring nodes, 〈knn〉. While in the internet andPIN, 〈knn〉 deays as a power law with node degree, in the neuronal network, thisdependene is very weak (Fig 6.9, right). This implies that unlike the internet andPIN, the C. elegans nervous system does not have multiple star-like subnetworks.Further, it is signi�antly di�erent from the airport transportation network, wherethe high degree nodes are losely onneted among themselves showing an assor-tative behavior [30℄. Thus, we believe that these results strengthen our laim thatthere are additional onstraints governing the nervous system onnetion topologyin C. elegans, whih are unrelated to wiring ost, lineage or ommuniation e�-ieny. As the prinipal funtion of the system is to proess information, this leadsus to onjeture that it is this that provides the additional onstraints leading tothe observed organization of the nematode neuronal network. We further explorethis possibility using a simple model of hierarhial networks in the next setion.6.3 Role of hierarhial organization in neuronalnetworksAs seen from the preeding analysis, it seems that the primary funtional role ofnervous system is to proess information about the sensory environment so as toallow the organism to at appropriately for survival. Apart from the speed of signalpropagation between various elements of the nervous system, the survival suess112



Chapter 6. Role of network struture in system funtionTable 6.2: The average direted path length within and between the sub-populations ofsensory, motor and inter-neurons (ℓ) and the orresponding fration of neuronal pairs forwhih a direted path does not exist (F∞) are ompared with the randomized versionsof the network. The olumns and rows indiate the neuronal types for the pre- and post-synapti ends of a pair, respetively. The empirial network shows a relatively higheronnetivity from sensory to both inter- and motor neurons, and from inter- to motorneurons, as ompared to the reverse diretions. For random networks, the average valueis shown with the standard deviation given in parenthesis.Neuron Empirial networkSensory Motor Inter
ℓ F∞ ℓ F∞ ℓ F∞Sensory 3.46 10.24 4.75 27.96 3.37 23.04Motor 3.00 1.87 3.79 20.88 2.74 15.72Inter 2.86 5.88 4.05 24.31 2.72 18.96Neuron Randomized networkSensory Motor Inter
ℓ F∞ ℓ F∞ ℓ F∞Sensory 3.05 ± 0.03 9.37 ± 0.69 3.38 ± 0.04 24.43 ± 0.90 2.90 ± 0.03 22.25 ± 0.58Motor 2.83 ± 0.02 2.12 ± 0.52 3.16 ± 0.03 18.10 ± 0.83 2.68 ± 0.02 15.91 ± 0.42Inter 2.64 ± 0.02 6.03 ± 0.40 2.97 ± 0.03 21.53 ± 0.77 2.50 ± 0.02 19.06 ± 0.33of an organism in the wild is ruially dependent on the spei�ity of responseto the relayed stimulus. This latter riterion is neessary for the robustness ofinterpretation and proessing of sensory information. It requires a high degreeof ontrol and oordination of ativity in the network, in order to hannel thesignals through a limited part of the system, and preventing a loal stimulationfrom spreading into an overall exitation of the entire system. A simple shemafor a nervous system of an organism that has to exeute a number of behavioraltasks would be one having a parallel set of neurons arranged into several levels.This onstitutes a hierarhial system, eah element of whih is unambiguouslyassigned to a distint layer of a given rank [181℄. The original notion of hierarhialinformation proessing, e.g., that proposed by Hubel and Wiesel to explain theprogressive inrease in omplexity of the reeptive �eld properties in the visualortex [182, 183℄, had suggested a simple feed-forward sheme.To ompare this simpli�ed system with the atual neuronal network, we �rstfous on the diretionality of onnetions between the di�erent neuron types,viz., sensory, motor and inter-neurons. As gap juntional onnetions are undi-reted and ommuniation through them is muh slower than that via hemialsynapse [184℄, we have initially onsidered only the synapti network for our anal-113
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Figure 6.10: (Left) Satter plot of the net di�erene between inoming and outgoingsynapti onnetions of a neuron as a funtion of its total synapti degree. Di�erentneuron types, viz., sensory, motor, inter, motor-sensory and motor-inter, are indiatedby di�erent symbols. The sensory and motor neurons have relatively higher out- andin-degrees respetively, whereas inter-neurons do not show any onsistent pattern. Thisis onsistent with the overall direted nature of information �ow from sensory to motorlayers as expeted in a neuronal network. (Right) Gap-juntional degree as a funtionof the total synapti degree, indiating that neurons with large number of synapses alsohave many gap juntional onnetions.ysis. Table 6.3 shows the average length, ℓ, of direted paths within and betweenthe di�erent ategories of neurons, as well, as the fration of neurons (F∞) of agiven type that are unreahable from other neurons in the same or di�erent ate-gory. We observe that there is indeed an asymmetry in these properties of diretedpaths between the di�erent neuronal types, indiating a preferred diretion of in-formation �ow from sensory to motor neurons via inter-neurons. However, there isfar more onnetivity in the reverse diretion than would be expeted for a simplehierarhial system having a feed-forward arhiteture.These reverse (or feedbak) onnetions are presumably responsible for theontrol of motor response, as well as, for the various kinds of assoiative and non-assoiative learning reported for C. elegans [185℄. To explore in detail the feedbakonnetivity, we re-alulate F∞ from motor to sensory neurons after removingthe inter-onnetions among the motor neurons. The inrease in the unreahablefration from ∼ 28% to ∼ 66% indiates that, the feedbak from motor to sensoryneurons our pre-dominantly through a few key motor neurons whih send on-114



Chapter 6. Role of network struture in system funtionnetions to various inter- and sensory neurons, and to whih other motor neuronsare onneted. In addition, if we also remove the diret feedbak onnetions fromthe motor to sensory neurons, as well as, the inter-onnetions among the sensoryneurons, the orresponding F∞ inreases to 71.6%. This suggests that these short-uts from motor to sensory neurons are not essential for feedbak ommuniation,beause the dominant ontribution to the reverse �ow of information from theoutput to input layers is through inter-neurons.Another feature of the empirial network that suggests it does not follow astritly hierarhial sheme having a sequene of several learly de�ned levels be-tween the input and output layers, is the existene of diret links from sensoryto motor neurons. Sensory neurons have short direted paths to almost all motorand inter-neurons, with only the neurons AINL, PVDR, SDQR and DVB beingunreahable from any sensory neuron. The shortest direted path length to a mo-tor or inter-neuron from at least one sensory neuron (if a path exists) does notexeed 3, with 111 paths of length 1, 66 having length 2 and 8 having length 3.This is onsistent with the fat that C. elegans neurons do not, in general, useregenerative ation potentials to ommuniate with eah other, whih implies thatsignals will dissipate in transit unless the neurons are onneted via short paths.The diretionality of the empirial network an be explained to an extent asan outome of the degree sequene of the di�erent ategories of neurons. Thisis done by omparing with the degree-onserved random networks, whih showsimilar asymmetry in the direted onnetivity between the various neuronal types.This suggests that the di�erenes in the in-degree and out-degree between sensory,motor and inter-neurons aount for most of the variation in ℓ and F∞ seen in theatual data. Fig 6.10 (left) expliitly shows that the sensory and motor neuronsdi�er from eah other in having relatively higher number of outgoing and inomingonnetions, respetively. In ontrast, inter-neurons do not show any spei� biasin terms of in-degree and out-degree. Moreover, we �nd that, neurons having highsynapti degree also tend to have high gap-juntional degree (Fig. 6.10, right).6.3.1 Core-periphery organization of the nervous systemThe above analysis suggests that the organization of the C. elegans neuronal net-work is muh more omplex than that of a simple feed-forward information proess-115
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Figure 6.11: Shemati diagram showing the k-ore deomposition of a direted net-work. The k-ore of a graph is de�ned as the largest subgraph where every node hasat least k links. For eah hoie of k, we determine the k-ores by iteratively pruningall nodes with degree lower than k and the links assoiated with them. For diretednetworks, the k-ore obtained is di�erent depending on whether one is onsidering thein-degree or the out-degree of the nodes.ing network. The relatively high density of reurrent onnetions among the inter-neurons (Cinter−inter = 0.068, ompared to Csensory−sensory ≈ Cmotor−motor = 0.026)suggests that the empirial network may have a hierarhial arrangement onsist-ing of a densely onneted ore omprising mostly inter-neurons and a sparselyonneted periphery whih is populated predominantly by sensory and motor neu-rons. To establish this, we analyze the network using k-ore deomposition. The
k-ore of a graph is de�ned as the largest subgraph where every node has at least
k links. For eah hoie of k, we determine the k-ore by iteratively pruning allnodes with degree lower than k and their assoiated links. For a direted network,the k-ore obtained depends on whether one is onsidering the in-degree or theout-degree of the nodes. Thus, eah node of the in-degree k-ore of a graph hasat least k inoming links and eah node of the out-degree k-ore of a graph has atleast k outgoing links (Fig. 6.11).Our results show that there is indeed a set of inter-nested ores in the C.elegans nervous system, going upto 7 orders for ores de�ned in terms of out-degree. The omposition of the ores aording to di�erent neuron types is evenmore illuminating (Fig. 6.12 A,B). While the innermost ore de�ned in terms ofin-degree onsist almost entirely of motor and inter-neurons, those de�ned in termsof out-degree are dominated by sensory and inter-neurons. The intersetion of theinnermost ores for in- and out-degree has 25 neurons, omprising of one sensory(AQR), two motor (RIML/R) and 22 inter-neurons. While RIML/R belong to116
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Chapter 6. Role of network struture in system funtionthrough the neurons belonging to the innermost ores. As BC is related to degree,whih is used for performing ore-deomposition, this relation is not entirely unex-peted. However, the random networks generated by preserving degree sequeneshow a onsistently lower BC at any given ore order ompared to the empirialnetwork, suggesting that the presene of neurons with high entrality is signi�-ant. This may have funtional importane in terms of information proessing,with all signals being hannelled through a small group of �ore� neurons insteadof propagating through several distint pathways between the sensory organs andmusles.6.3.2 Hierarhial struture and noise �lteringIt is important to onsider why a nervous system as simple as that of C. elegans re-quires entralized proessing, when, in priniple, a set of semi-independent parallelpathways (e.g., re�ex ars) onneting dediated sensory and motor neurons viaspei� interneurons, ould have also been viable. To understand the advantagesof the former model of information proessing, we propose the hypothesis thatit redues the unontrolled spreading of exitation globally through the network(as would have been the ase for a non-hierarhial network) while having highe�ieny for signal propagation between any pair of neurons. As C. elegans usesgraded potential neurons, the transfer of ativity is well desribed by a di�usiveproess. We therefore use di�usion to measure the extent of passive spreadingof exitation in the network by onsidering the eigenvalues of the orrespondingLaplaian matrix.For a di�usion proess, the mixing rate is de�ned as ν = ln µ−1, where
µ = max{1 − λ2, λN − 1}, (6.5)and λ1 . . . λN are the eigenvalues of the normalized laplaian matrix L . The mix-ing rate is faster in networks where the eigenvalues of L are onentrated loseto 1. A omparison of the spetral distribution for the Laplaian of the empirialnetwork with that of the degree-onserved randomized ensemble (Fig. 6.13) showsthat the smallest non-zero eigenvalue is three times larger in the latter. As thiseigenvalue is related to the inverse of the dominant time-sale for di�usion, it sug-118
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ρ1

ρ2

= ρ2

ρ3

= · · · =
ρl−1

ρl
= q. Thus, by varying q, the density of onnetions in thedi�erent levels an be hanged. When q = 1, the system is a homogeneous randomnetwork, while for q > 1 it has a ore-periphery struture with an inter-nestedarrangement of densely onneted layers.By onstrution, the inter-onnetion density is highest among the nodes inthe �entral kernel" of the network, and gradually dereases outward. The modelnetwork has a ore-periphery organization similar to that of the nematode network,as observed by performing a k-ore deomposition and omparing the onnetiondensities between the two systems for eah ore order. Fig. 6.14 (C,D) shows themodel network for two di�erent values of l (number of levels) at a given value of

q (the ratio of onnetion densities between subsequent levels). For small l, thenetwork is relatively undi�erentiated. With inreasing l, the hierarhial struture120
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Chapter 6. Role of network struture in system funtion6.4 DisussionIn this hapter, we have arried out a detailed analysis of the mesosopi stru-ture in the onnetion topology of the C. elegans neuronal network. Inferring theorganizing priniples underlying the network may give us an understanding of theway in whih an organism makes sense of the external world. We have fousedprimarily on the existene of modules, i.e., groups of neurons having higher on-netion density among themselves than with neurons in other groups. Presene ofsuh mesosopi organization naturally prompts us to ask the reasons behind theevolution of these features in the network.There have been reent attempts at explaining neuronal position and struturallayout of the network by using stati onstraints, suh as wiring eonomy and om-muniation path minimization. Although we �nd that membership of neurons inspei� modules are orrelated with their physial nearness, the empirial networkis sub-optimal in terms of both the above-mentioned onstraints. By omparingthe system with other omplex networks that have been either designed or haveevolved for rapid transportation while being subjet to wiring eonomy, we �ndthat the C. elegans nervous system stands apart as a distint lass. This suggeststhat the prinipal funtion of neuronal networks, viz., the proessing of informa-tion, distinguishes it from the other networks onsidered, and plays a vital rolein governing its arrangement. Considering the importane of this onstraint inensuring the survival of an organism, it is natural that this should be key to theorganizing priniples underlying the design of the network. The intimate relationbetween funtion and struture of the nervous system is further brought out by ouruse of strutural analysis to distinguish neurons that are ritial for the survivalof the organism. In addition to identifying neurons that have been already empiri-ally impliated in di�erent funtions (whih serve as a veri�ation of our method),we also predit several neurons whih an be potentially ruial for ertain, as yetunidenti�ed, funtions.When we ompare the nervous system of C. elegans with the brains of higherorganisms, we observe the modular organization of the latter to be more promi-nent [188℄. For example, the network of ortial areas in the at and maaquebrains exhibit distint modules [104, 56℄, with eah module being identi�ed withspei� funtions [189, 63℄. A possible reason for the relatively weak modular stru-122



Chapter 6. Role of network struture in system funtionture in the nematode ould be due to the existene of extended proesses for theneurons of C. elegans. Many of these span almost the entire body length, an e�etthat is enhaned by the approximately linear nature of the nematode body plan.As a result, onnetions are not onstrained by the physial distane between somaof the neurons, as would be the ase in mammalian brains. It is apparent thatsuh onstraints on the geographial distane spanned by links between nodes (viz.,ost of wiring length) an give rise to lustering of onnetions among physiallyadjaent elements. In addition, the small nervous system of C. elegans, ompris-ing only 302 neurons, laks redundany. Therefore, individual neurons may oftenhave to perform a set of tasks whih in higher organisms are performed by severaldi�erent neurons. Thus, funtional modularity is less prominent in the nematode,as some neurons belong to multiple behavioral iruits.Another prinipal distintion between the C. elegans nervous system and thebrains of higher organisms suh as human beings, is the relative high onnetivityin the former (the onnetion density being C ∼ 0.1). By ontrast, the onnetanefor human brain is around 10−6 [190℄, whih leads us to the question of how om-muniation e�ieny an remain high in suh a sparsely onneted network. It ispossible that the more intriate hierarhial and modular strutures seen in thebrains of higher organisms is a response to the above problem. The fat that therate at whih the number of neurons N inrease aross speies, is not mathedby a orresponding inrease in the number of links (whih inreases slower than
N2) implies the existene of onstraints on the latter, whih is a resoure ost inaddition to the earlier mentioned ost of wiring length.The funtion of information proessing implies an underlying hiererahy, thatimposes a diretion to the �ow of signals in the system, from the input to theoutput. In real networks, this hierarhial sheme an be obsured by the pres-ene of feedbak and onnetions that span several levels. In partiular, for C.elegans, we �nd that it is di�ult to distinguish its somati nervous system froman unstrutured network by analysing the properties of direted paths between thesensory, inter and motor neurons. However, the inherent struture of the networkis manifested as a sequene of nested ores of suessively higher inter-onnetiondensities. Our results showing inreasing entrality for higher order ores, as wellas, the varying omposition of the in- and out-degree ores in terms of di�erentneuronal types, reveal the hierarhial nature of the system whih is impliit in123



Chapter 6. Role of network struture in system funtionthe ore-periphery organization.Many omplex networks ourring in nature are often referred to as havinghierarhial struture, although, there are no generally aepted measure of thedegree of hierarhy present in a system. This is partly beause hierarhy an havedi�erent onnotations. E.g., while some studies onsider the presene of inter-nested modules to be the signature of hierarhial organization [107, 191, 192, 188,59℄, other papers have onsidered the presene of distint layers in a network to beessential for the existene of hierarhy [193, 54, 194℄. In the present paper, in thespirit of neuronal information proessing, we adopt the usage of hierarhy in thesense of multiple levels of proessing, with information �owing from the sensory(input) to the motor (output) layer through inter-neurons.We propose that a hierarhial network, whih has a dense ore and an overallsparse struture, possesses high ommuniation e�ieny, and at the same time,relatively low di�usion rate, implying that neuronal networks have evolved subjetto the onstraint that a stimulation should not result in non-spei� global ati-vation of the network. This requires that while ommuniation between a givenpair of neurons should be fast, enabling a rapid response to sensory stimulus, itshould also be robust to environmental and internal noise, so that perturbationsan remain loalized in the system, preventing indisriminate ativation of the en-tire network from a spei� stimulus. The above analysis suggests that informationdoes not di�use passively throughout the network, but is guided towards a entralgroup of densely interonneted neurons, where it is proessed and appropriateommands are sent to motor-neurons for initiating musular ation.
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7Conlusions
Physiists look for universal priniples that are valid aross many di�erent sys-tems, often spanning several length or time sales. While the domain of physialsystems has often o�ered examples of suh widely appliable `laws', soial, eo-nomi and biologial phenomena tended to be, until quite reently, less fertile interms of generating similar universalities. However, this situation has hanged af-ter the study of omplex networks emerged into prominene. While the existeneof omplex networks in various domains has been known for some time, the reentexitement among physiists has to do with the disovery of ertain key universalpriniples governing the behavior of systems whih had previously been onsideredvery di�erent from eah other.7.1 Struture of networksComplex networks exhibit a variety of strutural features. One of the most intrigu-ing properties of many networks observed in nature and soiety is the ourrene ofmodular struture. Suh strutural modularity may also be onneted to funtionalmodules, whih are independent subsystems responsible for di�erent tasks, as seenin many biologial systems. Another ubiquitous property of omplex networks isthe ourrene of �small-world" behavior along with high lustering between thenodes. Both modularity and lustered small-world properties have been observedin a wide range of networks, from those involved in metabolism and signalling inbiologial ells, to the set of ortio-ortial onnetions in the brain, interationsin soial groups, the internet and food webs. In this thesis, we have shown that125



Chapter 7. Conlusionsthe above properties, previously onsidered to be independent, are in fat relatedto eah other. This shows how the mesosopi organization of a network an haveunexpeted onsequenes for its global features.7.2 Dynamis on networksNetworks often have assoiated dynamis, with variables assoiated with eah nodeevolving over time. Examples inlude, the variation in the populations of di�erentspeies in an eologial network, the hanging metabolite onentrations in el-lular networks, et. Thus, fous of reent work in the area of omplex networkshas shifted from purely strutural aspets of the onnetion topology to investigat-ing their role in determining the dynamial behavior of the network. It has beenfound that spei� strutural properties of networks an have novel funtionalonsequenes, e.g., the absene of threshold for the propagation of epidemis insale-free networks. In this thesis, we have not only looked at how network stru-ture a�ets dynamis, and hene its funtion, but also the reverse problem of howfuntional riteria an onstrain the topologial properties of a network. In par-tiular, we have investigated (i) how mesosopi features, suh as modular andhierarhial organization, a�et the nature of dynamis on the network, and (ii)how dynamial onsiderations onstrain the network struture, suh that it evolvestowards a modular or a hierarhially ordered on�guration.7.3 From struture to dynamisWe have shown that the dynamial behavior of modular networks are strikingly dif-ferent from previously proposed small world network (SWN) models, suh as, theWatts-Strogatz model. Modularity results in time-sale separation between fastintra-modular and slow inter-modular proesses. As dynamis at the loal andglobal levels have di�erent onsequenes in most natural systems, the temporalseparation between proesses ourring at di�erent sales, through modular orga-nization, highlights the importane of suh network strutures. We have demon-strated the universality of this dynamial signature of modular networks with threevery di�erent proesses: (i) spin ordering, (ii) synhronization among non-linear126



Chapter 7. Conlusionsosillators, and (iii) di�usion. We have also shown this dynamial signature ofmodular networks in the ortio-ortial networks for at and maaque. This sug-gests that many of the reported SWNs in nature are possibly better representedby a modular network model. We have also investigated the onnetion betweenstrutural features and funtional objetives of the somati nervous system for thenematode C. elegans. Aording to our results, the anatomial struture of theneuronal network an be only partly explained by stati riteria, suh as, wiringost minimization and maximum ommuniation e�ieny. This indiates the ex-istene of other important onstraints, possibly related to the funtional task ofinformation proessing, that determine the wiring diagram of the nervous system.We have shown that the network an be deomposed into modules, whih an bepartially orrelated with funtional iruits. Further, the nervous system has ahierarhial ore-periphery organization, with inner ores having higher density ofonnetions. We have shown that suh an arhiteture redues the unontrolledspreading of ativity in the network, thus ating as a noise �lter, while retaininghigh ommuniation e�ieny.7.4 From dynamis to strutureWe have also onsidered how the existene of various strutural features in real-world omplex systems an be unovered from the knowledge of olletive dynamisof the nodes. We have reonstruted the network of soial interations in a troopof bonnet maaques by analyzing their allogrooming behavior. This allows usto obtain an understanding of soial organization in primates using observationaldata, the equivalent of whih would be very di�ult to obtain for human groups.We have also examined whether the omplex features of soial behavior an beexplained in terms of basi priniples governing individual interations, using asimple theoretial model proposed by Seyfarth. Next, we have investigated thenetwork struture of interations between stoks in �nanial markets. By analyzingthe ross-orrelation matrix of prie �utuations among stoks in the NationalStok Exhange (NSE) of India, we show that this emergingmarket exhibits strongorrelations ompared to developed markets, suh as the New York Stok Exhange(NYSE). We have shown this to be due to the dominant in�uene of a ommon
127



Chapter 7. Conlusionsmarket mode on the di�erent stok pries. In omparison, interations betweenrelated stoks, e.g., those belonging to the same business setor, are muh weaker.This lak of distint setor identity in emerging markets is expliitly shown byreonstruting the network of mutually interating stoks. We have shown this tobe a result of the relative weakness of intra-setor interations, ompared to theresponse to signals ommon to the entire market, by modeling stok prie dynamiswith a two-fator model. Our results suggest that the emergene of a omplexinternal struture, omprising multiple groups of strongly oupled omponents, isa signature of market development.7.5 Evolution of robust networksMost networks around us did not originate in the form we see them today, buthave emerged through a proess of gradual evolution. We have shown using modelsthe evolution of some of the ommonly observed strutural features in naturallyourring networks. For this, we have taken into aount the fat that, most suhsystems have to optimize between several, often on�iting, onstraints, whih maybe stati, as well as, dynamial in nature. In partiular, most networks need to havehigh ommuniation e�ieny and low onnetivity, while being stable with respetto dynamial perturbations in the nodes. Our results show that, the simultaneousoptimization of all three onstraints an result in networks with modular struture,where eah module possesses a prominent hub. As these evolved systems alsoexhibit heterogeneous degree distribution, our �ndings have impliations for a widerange of systems in the biologial and tehnologial domains where similar featureshave been observed.
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