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Abstract

Complex systems, whether integrated circuits, food webs, transportation networks,
social systems, or the biochemical interactome of a living cell, all behave in ways
that cannot be fully explained by analyzing their constituent parts in isolation. Un-
derstanding the emergent behavior of such nonlinear systems, which is more than
just an aggregate of the properties of their components, require novel integrative
approaches. Many of these systems can be represented as networks, consisting
of a large number of nodes connected via directed or undirected links. The re-
cent discovery of the existence of universal principles underlying these complex
networks that occur across widely differing domains in the biological, social and
technological arenas have spurred the interest of physicists in trying to understand
such principles using techniques from statistical physics and non-linear dynamics.
In this thesis we look at how the structure of a network, as characterized by the
connection topology, governs its dynamical behavior, and conversely, how the dy-
namical processes taking place on the network affects its structure (e.g., stability
considerations constraining the evolution of the network towards specific topolo-
gies). In particular, we focus on modularity, i.e., the existence of groups whose
nodes are more densely connected to each other than to nodes in other groups, and
hierarchy, i.e., the nested arrangement of connection topology into several layers.
Both of these mesoscopic organizational structures are observed in many complex
networks that occur in reality.

We begin with a short overview of the physics of complex networks in Chap-
ter 1. In the first few sections, we introduce important concepts and definitions
that are used throughout the thesis. This is followed by a brief discussion of some
of the commonly used network models found in the literature. Next, we analyze
a simple model of modular random networks in Chapter 2 and show that it has
structural properties similar to many real-world networks. We also examine the ef-
fect of modular structure on dynamics occurring over the network by studying the
phenomena of synchronization, diffusion and spin-ordering on the network model.
We show that for all these different varieties of dynamical processes modularity
gives rise to the same characteristic signature of multiple distinct time scales. In
Chapter 3, we explore how modularity can arise in networks as an outcome of

evolution in the presence of multiple co-existing constraints. As an example, we



demonstrate the emergence of modular organization upon simultaneous optimiza-
tion of several structural and dynamical constraints to which many real networks
are subject. The minimal number of such constraints is found to be three, e.g.,
minimizing (a) average path length, (b) total number of links, and (c¢) probability
of local instability. The well-known connection topologies of star, chain and ran-
dom networks appear as limiting cases when one of these constraints is relaxed. In
Chapter 4, we introduce a model for hierarchical random networks and analyze
the effect of having multiple structural levels (or hierarchies) on different dynami-
cal processes. In general, making the previously introduced modular network more
hierarchical, has effects similar to increasing the number of structural modules. We
show that a generalization of the evolutionary model for modularity introduced in
the preceding chapter can also give rise to simple hierarchical ordering in a net-
work. In Chapter 5, we show that the modular structure of networks occurring
in reality can be uncovered from empirical data, namely the dynamical time-series
obtained from the component nodes. In particular, we have analyzed the personal
ties between individuals in primate troops, in terms of allogrooming behavior, in
order to deduce their social organization. Next, we reconstruct the network of in-
teractions among stocks in the Indian financial market by using spectral techniques
on the cross-correlations in their price variations. We identify modules correspond-
ing to groups of strongly interacting stocks. Using a multi-factor model, we show
that the emergence of such structures is an outcome of relatively stronger mutual
interactions between nodes belonging to the same business sector, as compared to
their susceptibility to common signals that affect the entire market. In Chapter 6
we look at the reverse problem of how network structure reflects the dynamics or
function of the system. We analyze the somatic neuronal network of the nematode
C. elegans, the only organism whose entire nervous system has been completely
mapped. We demonstrate that the network structure cannot be fully explained
on the basis of exclusively structural considerations, e.g., minimization of wiring
cost or maximization of communication efficiency, and give examples of how the
functional role of the system as an information processor in a noisy environment
can result in specific structural patterns. Finally, in Chapter 7, we conclude with
a general overview of our results on how the dynamics occurring on a network
is governed by specific structural features of the system, and in turn, affects the

evolution of ubiquitous structural patterns such as modularity and hierarchy.
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Introduction

In recent years, there has been a growing interest in the study of complex systems
which pervade all of science, from cell biology to ecology, and from computer sci-
ence to sociology [1, 2|. Instead of being a simple aggregation of a limited set of
linearly interacting units, most real world systems are made up of large number of
components, or agents, which interact in such a way that their collective behav-
ior is not a simple combination of the individual properties of their components.
Such emergence of system-level features is one of the characteristic indicators of a
complex system. Moreover, these systems are often seen to be self-organized as a
result of mutual interactions between their components rather than being ordered
by some external agency. Consequently, understanding the behavior of such a sys-
tem requires integrative approaches. One must understand not only the behavior
of its parts, but also, how they act together to give rise to the collective behavior
of the whole. One way of describing complex systems is modeling them mathe-
matically by using the framework of networks. In this approach, one focuses only
on the topology of interactions between the elements, providing a systems-level
perspective to the example under study [3, 4]. Such an analysis helps to reveal the
universal principles underlying their organization and function, despite the great
complexity and variety of these systems [5, 6].

In this chapter, we introduced the relevant concepts and definitions from net-
work science that we shall be using throughout the thesis. In Sec. 1.1, we first
define a set of terms to describe the complex networks and models to study such
systems. In Sec. 1.2, we give a brief overview of several types of complex networks

seen in real-world. In Sec. 1.3, the measurable properties of networks, such as,
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path length, clustering and degree distribution, are introduced. This is followed
by Sec. 1.4, in which we discuss models used for describing and analyzing complex
networks that are already extant in the literature. Finally, in Sec. 1.6, we present

an overview of the thesis, and the principal results of each chapter.

1.1 Complex networks

The different components or interacting units of a complex system when described
as a network, are represented by nodes or vertices, and the interactions or connec-
tions between the units are represented by edges or links between pairs of nodes.
Such networks provide a concise mathematical representation of the topology of
interactions between the components. Thus, understanding how social, biolog-
ical, and economic systems work may often depend partially on understanding
their patterns of interactions, i.e., the underlying networks. The graph theoretical
framework has provided the potential synergies among researchers across different
multidisciplinary fields to come and work together to solve apparently unrelated
problems.

Network architecture may have important functional consequences for the whole
system. For example, the topology of the network controls the rate at which in-
formation or diseases propagate through it [7, 8|, its robustness under attack or
failure of individual components [9], as well as, adaptation and learning processes
on it [10]. Recent work has pointed out the crucial role played by the network
structure in determining the emergence of collective dynamical behavior, such as,
synchronization of nodal activity. Hence, studying these patterns of interactions
between the components of a complex system can lead to a better understand-
ing of its dynamical and functional behavior, in addition to throwing light on the
evolutionary mechanism leading to it.

There are several reasons for the emergence and rapid development of this field.
Many of the insights and advances in this field are due to the recent availability
of large quantities of high resolution data from different systems. Obtaining such
empirical data has become possible because of technological advances. For exam-
ple, the network of social interactions among individuals can be constructed from

information about the calls they make using their mobile phones [11], leading to
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Figure 1.1: Representations of regular graph models: Nodes on (A) a 1-dimensional
lattice, (B) a 2-dimensional lattice, and, (C) a Bethe lattice or Cayley tree with nearest
neighbor connections.

better understanding of human social dynamics. There has also been remarkable
increase in computational power, using which regularities and patterns in large
data-sets can be determined. Another reason for the involvement of a large num-
ber of physicists in this field is that, statistical physics and non-linear dynamics can
be used to develop methods and techniques for analyzing and modeling complex
networks [12, 13].

The traditional approach in physics for describing an interacting system is
to use a lattice embedded in d-dimensional space. Each elements of the system
is located on a lattice site and interacts with neighboring sites within a range
r (= 1,2,--+). On such a regular network, all nodes have the same number of
neighbors (= (2r)?), where r is the range of interaction and d is the dimension
of the space on which the lattice is embedded [Fig. 1.1]. Another commonly used
graph in the literature is the Cayley tree or Bathe lattice, where each node has
the same number of neighbors but there are no cycles in the structure. At the
other extreme, we have the homogeneous random graph (also referred to as Erdos-
Renyi or ER graphs) where the edges between any pair of nodes are randomly
placed with probability p. However, networks occurring in the world around us
have structures that occur between these extremes and have properties that often

differ remarkably from both regular and random graphs [Fig. 1.2].
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1.2 Examples of complex networks

The empirical data for connectivity in real-world complex networks span several
disciplines. For the purpose of summarization, we loosely divide them into four cat-
egories: biological networks, social networks, technological networks and financial

networks.

Biological networks

A number of biological systems can be usefully represented as networks. Examples
of such networks occur at many different length scales. At the molecular level,
protein structure can be considered as a network where the residue atoms of two
amino acids are said to be connected if the Euclidean distance between them is less
than a threshold, so that there is a significant van der Waals interaction between
them [14]. On a slightly large length scale, we have the example of intra-cellular
signaling networks that allow extra-cellular stimuli at cell surface receptors to be
relayed to the nucleus by a sequence of enzyme catalyzed reactions [15]. Such a
network allows the cell to respond to specific stimuli with appropriate actions, such
as cell division, apoptosis, etc. Another example of an intra-cellular network that
is defined in terms of the existence of physical contacts between the constituents
of the network (rather than functional relations), is the protein interaction net-
work [16, 17]. At the inter-cellular scale, the most prominent example is that of
neuronal networks, involved in processing information vital to the survival of the
organism. Here, the nodes are neurons, and the links are electrical (gap junction)
or chemical (synapse) connections [18]. At even larger length scales, there are
ecological networks such as food webs [19], where the links correspond to trophic

relations between species (represented by the nodes).

Social networks

Social networks are probably the earliest empirical networks that have been ana-
lyzed in detail. Much prior to the recent excitement (starting from 1998) among
physicists about networks, sociologists had been constructing networks of social
contacts within small groups (such as ties of friendship within a school) in order

to understand how and why relations that define a society develop [23]. However,
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Figure 1.2: Examples of complex networks: (A) Internet at the Autonomous Server
level [20], (B) Food web at East River Valley [21] (nodes: species, links: trophic relation),
and (C) Metabolic network of E. coli [22] (nodes: metabolite, links: reaction).

such studies could not be extended to groups exceeding a few tens of individu-
als owing to limitations in the way data was collected, e.g., using questionnaires.
With the advent of online sites, such as Facebook, Orkut, etc., where information
about links between different individuals can be electronically gathered, it is now
possible to study contact networks in populations numbering thousands or more.
Moreover, such data also allows us to see how patterns in social ties develop over
time [24]. Similar detailed analysis has also been done for friendship networks, re-
constructed on the basis of frequency and duration of mobile phone conversations
between individuals subscribing to the same phone company [11|. The availability

of large computer databases have also allowed looking at other relational networks
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between people, such as those formed by collaborations between authors of scien-

tific papers [25].

Technological networks: Information transmission & Resource trans-

portation

One of the networks that has been the subject of numerous studies in recent times is
the Internet, which is composed of servers around the world exchanging enormous
volumes of information packets regularly [26]. It can be studied at the level of
individual routers, i.e., special purpose computers on the network that control the
movement of data. Alternatively, it can be analyzed at the level of autonomous
systems (AS), i.e., groups of computers within which communication is handled by
a local internal network, but between AS, data is transmitted over the Internet.
This physical network forms the backbone of another technological graph, the
World Wide Web [5]. This is a network of web-pages which are linked together by
hyper-links from one page to another.

Another class of technological networks is that formed by networks which al-
low transportation, either of resources or of people. One of the most important
examples is the electrical power grid, whose nodes are generators, transformers
and substations that are linked together by high-voltage transmission lines [27].
This network has been the focus of several studies which look at how local fail-
ures can lead to cascading failures resulting in overall or global catastrophic break-
downs. Transportation networks can also be defined in terms of the distinct modes
by which movement of individuals occur between different geographical locations.
The nodes are cities and towns, while the links may correspond to highways and
smaller roads (for the road transportation network [28|), trains (for the railway
network [29]) or flights (for the airline network [30]).

Financial networks

In the financial domain, one has the scope of looking at different types of net-
works including flow systems, such as the credit transfer network between banks,
where the nodes are financial institutions that are linked by exchange of loans
and debts [31]. Other examples include the graph of interacting stocks, where two

stocks in a financial market are connected if their price fluctuations are signifi-
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cantly correlated [32]. This network has often been used for the classification of
stocks into different business sectors and the identification of unrelated stocks for

the purpose of portfolio management [33].

1.3 Fundamental network concepts

Graph theory is the natural framework for the exact mathematical treatment of
complex networks. Formally, a complex network can be represented as a graph
which is defined in terms of a set of N vertices (or nodes) and E edges (or links).
Every edge corresponds to a specific pair of nodes in the graph. We shall use the

terms network and graph interchangeably in this thesis.

Adjacency Matrix

Any two nodes that are joined by a link are referred to as being adjacent or
neighboring. A complete description of the connection topology of a graph is
provided by a tabulation of every connected pair of nodes in it. Alternatively, this
information can be gleaned from its adjacency matrix. A matrix A = {a;;}nxn is
called the adjacency matrix of a graph G with N nodes, if the elements of A have
the following property:

(1.1)

1 if nodes ¢ and j are adjacent in G,
ij = .
0 otherwise.

This matrix is symmetric if the network is undirected, i.e., if a link between nodes
1 and 7 exists, so does a link between 7 and i. On the other hand, if the network is

directed, i.e., each link has an associated direction, then the matrix is asymmetric.

1.3.1 Measures for complex networks

Various properties of the connection topology for a complex network can be used
to characterize the system. Indeed, many local and global measures have been
introduced in the literature over the years, in order to unveil the organizational
principles of networks. Below, we describe some of the most commonly used mea-

sures.
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Degree

The simplest local characteristic of a node ¢ is its degree, k;, which is the total num-
ber of connections it has to other nodes. It can be calculated from the adjacency

matrix as

ki = ZAij- (1.2)

In the case of directed networks, the number of incoming (outgoing) edges of a
vertex is called its in-degree (out-degree). The mean degree (k) is the average of
k; over all nodes ¢ = 1,..., N in the graph. In an undirected graph, each edge
contributes to the degree of two nodes, so that (k) = %, where I/ and N are the
total number of links and nodes in the network, respectively. A node whose degree
is significantly large compared to the average degree of the network is termed as
a hub. A fully connected graph of N nodes with k; = N — 1 Vi is called a clique.
Most real-world networks are sparse such that their average degree is much smaller

compared to the corresponding clique [3, 4].

Degree distribution

Although degree is a local parameter, we can obtain information about the global
topology of the network by looking at its degree distribution, p,, which is the set
of probabilities that a vertex has degree k = 1,2,..., N — 1. A network having
a narrow degree distribution with a well defined mean and a small variance indi-
cates that all its nodes are similar in terms of structural importance, and that the
network can be well described by its average properties. However, many networks
occurring in reality are characterized by a degree distribution which decays as a

power law:
PE ~ k’_’y, (13)

with an exponent v whose value is typically seen to range between 2 and 3. Thus,
there is a significantly high probability of observing vertices with large degree
relative to the network size [34]. The power-law distribution implies that there is
no characteristic scale for the degree of the nodes, so that this class of networks is
also termed as scale-free networks. In addition to power laws, degree distributions

that follow truncated power law or exponential distributions are also observed in
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many networks occurring in nature and society [35].

Path length

A global measure of a network is provided by the shortest path length or distance
between any pairs of nodes ¢ and j. This is defined as the number of links that
must be traversed to go from one node to another using the shortest route. The
average of shortest path lengths over all pairs of nodes in the graph, also known
as the characteristic path length, is an indicator of compactness of the network. It
is defined as .

(= m;dij, (1.4)
where d;; is the shortest path length from vertex ¢ to j and N is the number of
nodes in the network. However, if the network consists of disconnected parts, the
above definition gives infinite £. To avoid this problem one can define ¢ on such

networks to be the harmonic mean of the shortest distance between all pairs:

I 1 1
E=1( _%N(N_l);dij. (1.5)
This is also termed as efficiency of the network and is a measure of the speed with
which information propagates over the network [36].

Most real-world networks have been seen to exhibit the small world property,
which is related to the observation that one can reach a given node from the other
nodes in a very small number of steps, on average. In recent years, the term small-
world effect has taken on a more precise meaning: networks are said to show the
small-world effect if ¢ scales logarithmically or slower with network size for fixed

mean degree, (k) [4].

Diameter

Another related measure for compactness of the network is its diameter D, which

is defined as the longest of all the shortest paths in the network.

D =max{d,;}, V i-j pairs of shortest paths. (1.6)
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Network N (ky |/ C
Protein interaction 2115 | 2.12 | 6.80 | 0.071
Physics co-authorship | 52909 | 9.27 | 6.19 | 0.56
Internet 10679 | 5.98 | 3.31 | 0.39
Marine food web 135 4.43 1 2.05 | 0.23

Table 1.1: Properties of some real-world complex networks: size (N), average degree
((k)), characteristic path length (¢) and average clustering coefficient (C'). (From Ref. [4])

As the diameter and characteristic path length are related properties, sometime

these measures are used interchangeably to measure the network compactness.

Clustering

Many real networks have been shown to have a significant transitivity in the pattern
of their connections, such that, if the pairs of nodes i, j are connected and the pair
J,k are also connected, then so is the pair 7, k. This is equivalent to having a
significantly high frequency of triangular structures in the network [37]. In such
circumstances, the nodes of the network are said to be clustered. The compactness

of the local neighborhood for a node i is measured by the clustering index:

2F;

Ci= ki(k; — 1)

(1.7)
where, F; is the number of edges among the k; neighbors of node 7. Note that,
C; = 1 if the neighbors of node i are fully interlinked, and C; = 0 if none of
its neighboring nodes share any links with each other. The average clustering
coefficient for the entire network, C, is defined as the average of C; over all the
nodes in the network, ie., C' = vazl C;.

This average clustering coefficient is a measure of the “cliquishness" or local
compactness of a network. For different real networks, C' takes values which are
orders of magnitude larger than that of an equivalent random graph with the
same number of nodes and edges. If, in addition to the small world property, a
network also possesses a high clustering coefficient C, then it is termed as a small-
world network (SWN). Many of the real world network are seen to belong to this
class [37, 38|.

10
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1.4 Models of complex networks

One way of understanding complex networks observed in nature and society is to
construct a minimal model that exhibits properties which are similar to those of
empirical networks. Such a network model can help to explain processes by which
such systems evolve and also shed light on the function of the network. Further,
a network model can be used for studying the dynamics on such networks, e.g.,
to understand how the processes of synchronization and diffusion are affected by

different network topologies |39, 40].

1.4.1 Erdos-Renyi random network

The earliest mathematically analyzed non-trivial network model in the literature
is that for an ensemble of homogeneous random graphs introduced by Erdos and
Renyi [41]. Starting from a set of N disconnected nodes, each pair of nodes is
connected with a probability p. This simple model leads to a surprising list of
properties, many of which can be computed exactly in the limit of large N. For
a sparse graph, if the average number of edges in the graph is a fraction p of the
N(N —1)/2 possible edges, then the average degree

(k) = 22 = p(N - 1) (18)

The degree distribution can also be computed, with the probability of a vertex

having degree k being

n kex —(k)
P = (k)pk(l —p)" (@Tp. (1.9)

The approximate equality, i.e., binomial distribution being approximated by a
Poisson distribution, becomes exact in the asymptotic limit of large network size.
These graph are therefore also known as Poisson random graph.

The expected structure of the random graph varies with the connection prob-
ability p. For p = 0, there are no edges and the graph is termed an empty graph,
whereas for p = 1, all possible edges exist and we get a complete graph. As p

increases from 0, the edges join nodes together to form components, i.e., subsets of

11
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nodes that are connected by paths through the network. Erdos and Renyi demon-
strated that the random graph undergoes a phase transition at a critical value of
pe = 1/N, from a low-density state in which there are few edges and all compo-
nents are small to a high-density state in which an extensive [i.e., O(n)| fraction
of all nodes are joined together in a single giant component. This component is
a set of mutually reachable nodes, whereas the remainder of the nodes occupy
smaller components. With increasing p, the giant component captures more and
more nodes of the graph. Another important feature is the occurrence of a second
connectivity transition at p.; = In N/N. For p > p., all sites belong to a single
component (in the limit N — oo), while for p < p.; disjoint clusters can exist.
These graphs have a low clustering coefficient as the probability of connection
between two nodes is p regardless of whether they have a common neighbor or not.

Hence,

C:p:r(k—)l’ (1.10)

which goes to zero as N~! in the limit of large system size [37]. To get an idea of
the average path length for the graph, note that the mean number of neighbors at
a distance ¢ away from a vertex in a random graph is (k)¢ so that the value of ¢
needed to encompass the entire network is (k)¢ ~ N. Thus a typical characteristic

distance for the network is
¢ =log N/log(k). (1.11)

This scaling is much slower than that of a d-dimensional regular lattice where
0 ~ NY If the growth of ¢/(NN) is slower than any positive power of N, it is
referred to as small-world effect [42].

The ease of analysis for random graphs has proven to be very useful in the early
development of the field. Although the average path length scales logarithmically
with graph size and therefore, shows the small-world effect, in almost all other
respects the properties of random graphs do not match those of networks in the
real world. Their degree distribution is Poisson, whereas most real-world graphs
seem to exhibit broader degree distributions. Also, the random graph lacks clearly
defined communities and the clustering coefficient is usually far smaller than that
in comparable real-world graphs. The basic Erdos-Renyi model has been extended

in several ways, e.g., to exhibit a power law degree distribution pattern [43, 25]|.

12
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Regular Network Small-World Network Random Network
= O<p<1 p=1

p=0

Figure 1.3: The Watts-Strogatz (WS) small-world network model, seen as an interpo-
lation between a regular and a random network.

However, these models do not describe how real-world properties evolve dynam-
ically, thus making them less useful in understanding the processes of network

formation in the real world.

1.4.2 Watts-Strogatz small-world network

Social networks often show a high tendency of being transitive, that is two people
who are friends have a high probability of having one or more mutual friends.
This kind of clustering is not seen in random graphs, as mentioned previously.
In 1998, Watts and Strogatz proposed a mechanism for generating small-world
networks with high clustering [37]. This model is often termed as the WS-model
and the generative mechanism is as follows: A regular network is first constructed
by arranging N nodes on a 1—d periodic lattice. Each vertex is connected to
k = 2z nearest neighbors within the range z, so that all nodes have the same
initial degree. Next, one goes through each edge, and with rewiring probability p,
detaches the far side of the edge and reconnects it to a randomly chosen vertex
(excluding self and multiple connections).

Changing the rewiring probability p allows us to investigate the transition from
a regular graph (p = 0) to a random graph (p = 1) (Fig. 1.3). Let us consider first

the limit p = 0, where the network is regular and arranged on a ring. The shortest

13
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average path length for this system is ¢ ~ N/4z for large N, and this grows linearly
with N. The clustering coefficient Ciee = (32 — 3)/(42 — 2) is constant and tends
to 3/4 for large z. This large value indicates the presence of a significant number
of triangular structures in the network. On the other hand, for p = 1 we have the
random graph for which £ ~In N/Inz and C' ~ 2z/N — 0 as N increases. In the
WS model, by changing the rewiring probability one finds that there is a broad
range of p, where ¢ ~ l,,,q and C = Cie. Thus, globally the network has the
small-world property of a random graph, while locally it is clustered like a regular
graph. This is because the diameter ¢ drops rapidly when p increases, as adding
even a few short-cuts during the rewiring process reduces the average distance

between any pair of nodes significantly. However, the clustering coefficient

o 3=1)

- ma —p)?, (1.12)

of the network decreases very slowly with increasing p [44].

The WS-model was one of the first models that could explain the co-existence
of high clustering and small-world effects. Further, this model introduced the
concept of physical distance constraints in network formation. For example, it is
easy to form a link between nodes which are geographically close to each other.
Although other variations of the WS network have been proposed, in all these
models the signature of a physical d-dimensional lattice is still observed, so that,
shortcuts occur with higher probability between nodes that are physically closer.
However, the conventional WS model does not exhibit a broad degree distribution,
and the discovery of this latter feature in several real-world networks led to the

next breakthrough in the physics of complex networks [34, 45].

1.4.3 Barabasi-Albert scale-free network

First proposed to explain the degree distribution in citation networks [46], the idea
of preferential attachment has been rediscovered recently by A-L. Barabasi and R.
Albert (BA) in a network model that shows broad degree distributions described
by a power law [34]. They showed that the scale-free nature of these networks can

originate from two generic features seen in many real-world networks,

1. Growth: Networks are open systems with the number of nodes growing with
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time (i.e., N increases), and

2. Preferential attachment: New nodes in the graph are not connected randomly
but preferentially attach to existing nodes which have high degree, thereby
making the degree of the latter even higher. This process is sometimes re-

ferred to as the rich getting richer phenomenon.

If TI, the probability that the new node will be connected to node ¢, depends

linearly on the degree k; of node i, i.e.,
(k) = Zk—k (1.13)
5%
then, it was shown that the model network evolves into a system with a scale-
invariant degree distribution having an exponent v = 3.

As the degree distribution of the preferential attachment models match with
those occurring in real-world graphs, it suggests that real networks might have been
generated by similar processes. However, many networks in nature with a broad
degree distribution show deviations from a pure power-law, typically exhibiting an

exponential cutoff at high degrees:

pe =k o(k/E) (1.14)

where ¢(k/€) is the cutoff at some scale. In the context of the growing BA model,
this phenomenon can be explained due to aging and saturation effects that limit the
number of links a node can acquire. Thus, the preferential attachment function,
II(k;) is nonlinear, following II(k;) = f(k:)/>_; f(k;), where f(k) is an arbitrary
function, resulting in deviations from the power-law [47].

The average path length ¢ of the BA network (y = 3) grows as

In(N)

((N) ~ (N (1.15)

with N slower than In N, which is also termed as ultra-small-world effect [48]. This
indicates that the heterogeneous scale-free topology is more efficient in bringing
the nodes closer than the homogeneous topology of random network. Other scale-

free networks with 2 < v < 3 have a much smaller diameter, with ¢ ~ Inln(N),
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while for networks with v > 3, the shortest path length ¢ ~ In(N) [49]. The
clustering coefficient of the BA model decreases with the network size, following
approximately a power law, C' ~ N7%7_ While being slower than the 1/N decay
observed for C' in random graphs, this is still different from the behavior of small-
world network models and real world networks, where C' is independent of N [3].
Further there is a strong correlation between age and degree in this model which
is rarely seen in real-world systems. Moreover, only linear preferential attachment
gives a power-law degree distribution, that brings into question the general validity

of this process.

1.5 Importance of mesoscopic organization in com-

plex networks

It has now been known for some time that the topological structure of a network
can affect the function of the system [6]. E.g., it has been shown that the connec-
tion architecture has important consequences on the functional robustness of the
network and its response to external perturbations [50]. This has led to a series of
studies pointing to the crucial role played by the network topology in determining
the emergence of collective dynamical behavior [39, 40|, such as synchronization,
diffusion, the spreading of contagion such as epidemics, information and rumors,
etc. To study this we need to go beyond the properties of single nodes and pairs
of nodes, and consider the mesoscopic properties of networks (i.e., properties of

groups or local clusters in the network).

Motifs

Network motifs are patterns (sub-graphs) that occur within a network much more
often than expected in corresponding randomized versions. Most networks studied
in biology, ecology and other fields have been found to show a small set of network
motifs which occur again and again. Fach class of networks seems to display its own
set of characteristic motifs, e.g., motifs that are commonly seen in food webs are
distinct from the motifs seen in the genetic networks of different species. However,
similar motifs are found in networks that have similar function, such as information

processing, even though they describe elements as different as biomolecules within
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a cell and synaptic connections between neurons. These small circuits therefore can

be considered as simple building blocks from which the network is composed [51].

Modularity

Looking beyond small micro-level motifs, it has been observed that, at the meso-
scopic level many of the networks in real-world have modular structure [52|. Mod-
ules or communities are subnetworks within the network, where connections are
more frequent between nodes within the same subnetwork than between nodes of
different subnetworks. The presence of modular structure may also alter the way in
which dynamical processes (e.g., spreading processes, synchronization) unfold on
the network. With this realization many of recent studies have focused on models
of modular networks and their inter-relation with the dynamical processes taking

place on the network [53].

Hierarchy

Further, these networks have also been shown to have hierarchical organization,
i.e., they are composed of successive interconnected layers or inter-nested commu-
nities [54]. Hierarchy describes the organization of elements in a network: how
nodes link to each other to form communities and how communities are joined to
form the entire network. E.g., the metabolic network of several organisms can be
organized into highly connected modules that hierarchically combine into larger
units [55]. The observed hierarchy also coincides with known metabolic functions,

indicating that there may be a functional basis for such meso-level organization.

1.6 Overview of thesis

The aim of the present thesis is to look at the mesoscopic organization of complex
networks. This is viewed from three perspectives: (i) the structural properties
of such an organization, (ii) their role in dynamical processes defined on such
networks, and (iii) the possible origin and evolution of such structures. These are
complemented by empirical analysis of networks occurring in reality that show

similar organizational features.
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In Chapter 2, we investigate the structural and dynamical consequences of
modular organization in networks. Using a simple model, we show that small-
world networks can arise as an immediate result of modular configuration. We
demonstrate a distinct dynamical signature for such modular networks, namely, the
existence of multiple characteristic time scales in processes as different as synchro-
nization, diffusion and spin-ordering. The dichotomy between fast intra-modular
dynamics and slow inter-modular dynamics is directly related to the topological
structure of the model through the spectral properties of the network Laplacian.
By verifying the existence of similar features in the empirically determined cortico-
cortical networks in cat and macaque brains, we propose that the modular network
model may better represent certain natural systems reported to have small-world
properties [56, 57|.

To understand the process by which networks evolve towards modular organi-
zation, we note that they are subject to multiple structural and functional con-
straints. In Chapter 3, we consider the particular examples of (i) minimizing the
average path length, (ii) minimizing the total number of links, while (iii) maximiz-
ing robustness against perturbations in node activity. We show that the optimal
network satisfying these three constraints is modular, characterized by the exis-
tence of multiple sub-networks sparsely connected to each other. In addition, these
modules have distinct hubs resulting in an overall heterogeneous degree distribu-
tion, as seen in many real networks [58].

In addition to the existence of modular structures, several networks in nature
also have these modules arranged in a hierarchical fashion. Therefore, we next
consider a model for such hierarchical modular networks in Chapter 4. We show
that a scaling relation between the clustering and degree of the nodes is not a nec-
essary property of such networks, contrary to what has been claimed recently. We
investigate the dynamical properties of such networks, in particular, the stability
of (i) equilibria of network dynamics, and (ii) synchronized activity. For both these
cases, we find that increasing modularity or the number of hierarchical levels tend
to increase the probability of instability. As both hierarchy and modularity are
seen in natural systems, which necessarily have to be robust against environmental
fluctuations, we show using a generalization of the model used in Chapter 3, how
constraints on communication efficiency and maximum degree can result in the

emergence of hierarchical structures [59].
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After having analyzed network models for understanding the dynamical conse-
quences of modularity and hierarchy in the preceding chapters, in Chapter 5 we
consider how their existence in complex systems occurring in reality, can be un-
covered from a knowledge of the collective dynamics of the component nodes. We
first demonstrate the possibility of reconstructing a network through an analysis of
the time-series data of its components, by using the behavioral data of individuals
belonging to a troupe of macaque monkeys. To reconstruct a much more complex
network from dynamical information about its components, we consider the exam-
ple of financial markets. These complex systems have many interacting elements
(traders and stocks) and exhibit large fluctuations in their associated observable
properties, such as stock price or market index. By analyzing the cross-correlation
matrix of stock price fluctuations through spectral techniques, we reveal the under-
lying network of interactions between stocks in different markets. We observe the
existence of modules which approximately correspond to specific business sectors.
Using a multi-factor model, we suggest that the gradual emergence of modules, in-
dicating the strengthening over time of direct interactions between related stocks,
is a signature of market development [33].

In Chapter 6, we consider the reverse problem, i.e., we try to understand the
functional significance (arising out of the dynamical consequences) of the observed
structural features. As an example, we consider the somatic nervous system of
the nematode C. elegans. We determine the structural modules of the neuronal
network, and show that such an organization can only be explained if one consider
constraints that are possibly related to the information processing function of the
system apart form static considerations. A detailed analysis of the intra-module
degree and participation coefficient allows us to identify key neurons involved in
information processing tasks which are verified from earlier reports of experimental
studies. We also show that the existence of a hierarchical structure in the nervous
system has the functional benefit of reducing diffusive spread of activity throughout
the network (thus, acting as a noise filter), while maintaining high communication
efficiency between neurons [60].

We conclude with a general discussion on how the dynamics occurring on a
network is governed by mesoscopic structural features of the system, and in turn,
affects the evolution of ubiquitous structural patterns, such as modularity and

hierarchy.
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Modularity in complex networks

In many natural situations, dynamics at the local level may occur over a very
different time-scale compared to processes at the global level. Such a temporal
separation is often desirable functionally, e.g., for information processing in the
brain. It requires synchrony between local areas processing specific stimuli [61],
but, global or very large scale synchrony is considered to be pathological, as in
epilepsy [62]. Many systems in nature have network descriptions, with the connec-
tion topology playing a crucial role in determining their dynamical behavior [12].
Therefore, it is of considerable interest to understand how the structural organiza-
tion in complex networks can give rise to dynamics at multiple discrete time-scales.

As discussed in Chapter 1, a large class of networks in nature have also been
reported to be small-world networks (SWN) [37], which are characterized by the
coexistence of very high clustering among neighboring nodes and short average
path length. The clustered structure of SWN distinguishes them from networks
with “small-world property” [38], whose average path length increases slower than
any polynomial function of the system size. This latter feature is seen in random
graphs, as well as, in most complex networks [4]. SWN have been reported in
a variety of contexts, including the brain [63], human society [64] and cellular
metabolism [65]. Several models for SWN have been proposed [66], beginning
with a simple interpolation scheme between regular and random structure through
rewiring of links (the WS model) [37] [Fig. 2.1 (a)].

In this chapter, we relate the independent properties of dynamical time-scale
separation and the clustered small-world property of many complex networks, with

the crucial observation that such systems often manifest modular structure [67].
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Modules are defined as subnetworks comprising of nodes connected to each other
with a density significantly higher than that of the entire network. Modular struc-
tures have been observed in a wide variety of contexts, from cellular metabolism [68]
and signalling [69] to social communities [70], internet [71] and foodwebs [19]. Our
results, therefore, suggest that the large number of instances of SWN in the real
world is related to the ubiquity of modular structures in complex systems.

In Sec. 2.1, we introduce a simple model of modular networks. In Sec. 2.2, we
show that these networks exhibit all the structural characteristics of SWN. Such
modular networks, in sharp contrast to previous models of SWN, exhibit distinct
time-scale separation in their dynamics, corresponding to fast intra-modular and
slow inter-modular processes. In Sec. 2.3, we show the universality of this be-
havior by using three very different types of dynamics, viz., (i) the ordering of
spins through exchange interactions, (ii) synchronization among relaxation oscilla-
tors and (iii) diffusion. In all cases, the modular configuration allows coordination
within local clusters to occur much more rapidly than global ordering. The occur-
rence of multiple discrete timescales in such a wide variety of systems highlights
the role of modularity in the dynamics on complex networks. In Sec. 2.4, we show
that these multiple timescales can be related to the Laplacian spectra of the net-
work. We conclude by discussing in Sec. 2.5 how identifying modular structures
is crucial for designing intelligent intervention strategies for complex systems, e.g.,

controlling epidemics.

2.1 Modular random networks: A model

The network model considered in this chapter follows directly from the definition
of modular networks and consists of N nodes arranged into m modules (similar to
the construction used, e.g., in Ref [52]). Each module contains the same number
of randomly connected nodes [Fig. 2.1(b)]. The connection probability between
nodes belonging to the same module is p;, and for those belonging to different
modules is p,. Thus, one of the key parameters defining the model is the ratio
of inter- to intra-modular connectivity % =r € [0,1]. For r — 0, the network
gets fragmented into isolated clusters, while as » — 1, the network approaches a

homogeneous or Erdos-Renyi (ER) random network. The other parameter that
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Figure 2.1: Schematic diagrams of (left) Watts-Strogatz model and (right) modular
network, with modules in the latter indicated by broken circles.

together with r completely defines the modular network is its average degree (i.e.,

the number of links per node),

(k) = %[(N—m) +rN(m—1)]. (2.1)

2.2 Static properties of modular networks

To look at the structural properties of the model, we first consider the commu-
nication efficiency E for the entire system. This is a measure of the information

propagation speed over the network and is defined as [36],

B e
NN —1) & dy’

1
2

E=¢"

(2.2)

1>7

where, d;; is the shortest distance between nodes ¢ and j. Note that, £ is related to
the harmonic mean distance, ¢, which is a measure of the average path length. We
also quantify the clustering within local neighborhoods by measuring the coefficient
C = (1/N)>,2n;/ki(k;—1), where k; and n; are the degree and the number of links

between the neighbors of node 7, respectively. For the modular random network,
C = pild2 + (m — V&) + (m — 1)py(2dsdy + (m — 2)d3), (2.3)

where, di = (X —1)p;/(k) and dy = L p,/(k) are the probabilities that a node has

a neighbor in the same or a different module, respectively. Thus, if the number of
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Figure 2.2: Communication efficiency E (empty circle) and clustering coefficient C'
(filled circle) for (a) modular random network with m = 16 modules as a function of r and
(b) Watts-Strogatz (WS) network as a function of rewiring probability p (N = 512 and
(k) = 14). The data points are obtained by averaging over 100 realizations. Error bars
are in all cases smaller than the symbols used. (c¢) The variation of modularity measure,
Qr, with r for modular random networks (solid line) and with p for WS network (broken
line). The dotted line indicates Qs = 0.7 and its intersection with the other two curves
gives a pair of r and p values at which we can compare the two model networks.

modules is large then, clustering is high at low values of . As r is increased in our
model, we observe an increase in E while simultaneously C' decreases [Fig. 2.2 (a)].
The small-world property is associated with high values of both E and C', which
is indeed what is observed in our model for an intermediate range of r, exactly as
in the WS model [Fig. 2.2 (b)].

Next, we characterize the model using a measure of modularity, @ [72]. For a

given partition of the nodes of a network into m modules,

where the total number of links in the network is L, and [, and d, are the links
between nodes and the total degree of all nodes belonging to module s, respec-

tively. The largest modularity that is obtained from all possible partitions of the
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Chapter 2. Modularity in complex networks

network is denoted by Q) = max{Q}. A high value for @) is a necessary but not
sufficient condition for a network to be modular, as there can be various regular
graphs having high )5, value for which the modules cannot be identified unam-
biguously [73, 74]. In particular, for the WS small-world model, calculating @,
yields high values although the modules are not defined in an unique manner. For a
WS network defined on a ring of N nodes (each connected to 2z nearest neighbors)

where a fraction p of the links have been rewired,

2N = zm = m 1). (2.5)

=(1-— S
Q=(1-p) ( o —
Here, the existence of m modules of equal size n = N/m were assumed for the

calculation of (). The maximum value @ = (1 — p) [1 —/2(z+ 1)/N] , occurs

2N
z+1

obtained for modular random networks at low r, the modularity measure for such

for m* = and can be very high for low p. Similar high values of @)y, are

a system with N nodes being

(m—1[N(1 —7r)—m)]
m[N(1 —r+rm) —m]

Q- (2.6)
Unlike the WS model, here the modules are pre-defined and () does not need
to be maximized with respect to different choices for partitioning the network.
Fig. 2.2 (¢) shows the variation of () with r and p for the two classes of small-world
network models.

Note that, WS networks are parametrized with respect to the rewiring prob-
ability p, while modular random networks are defined in terms of r, the ratio of
inter- to intra-modular connectivity. Therefore, in order to circumvent the diffi-
culty in directly comparing these two types of networks, in subsequent work we
have considered networks having the same N, (k) and ). We observe that it is
difficult to differentiate between WS and modular random networks from their
structural information only, by using any of the commonly used static measures.
For example, on applying the k-clique (complete subgraphs with k& nodes) perco-
lation cluster technique used for detecting overlapping communities [75, 76|, we
found large clusters to appear in both types of networks. This is because the local

link density in both systems are much higher than their overall connectivity.
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Chapter 2. Modularity in complex networks

Other measures such as betweenness centrality (BC), edge clustering (EC), etc.,
also gave similar results for the two network models. The betweenness centrality
of an edge (i.e., link) is defined as the number of shortest paths between pairs
of vertices that go through it. If there are more than one shortest path between
a pair of vertices, each path is given equal weight such that the total weight of
all the paths is unity. The edges with maximum betweenness often act as the
bridges between different community. So by removing the edges with maximum
betweenness centrality the modular structure can be determined [52]. We find that
this is indeed what happen for modular network. However, for Watts-Strogatz
(WS) network, the shortcuts or rewired links also have high edge betweenness.
Thus, the above algorithm which removes edges with high betweenness centrality
cause the removal of these shortcuts, so that only the regular chain structure is left
(Fig. 2.3). When further links are removed then the chain structure is divided into
group of nodes (which are roughly of equal size). Hence, applying this method to
determine modules in a network gives community structure in both the cases.

Instead of BC, other parameters like edge clustering can also be used to deter-
mine the modular structure in a network [77]. Edge clustering is defined, analogous
to the node-clustering coefficient, as the ratio of the number of triangles to which
a given edge belongs to the total number of potential triangles that might include
it given the degrees of the adjacent nodes. More formally, for the edge connecting

node 7 to node j, the edge clustering coefficient is

(3)
o P N
Z] mln(kl - 1, k] - 1)’

3
ij
is the maximal possible number of triangles. As edges that link different communi-

where z'?) is the number of triangles to which that edge belong and min(k; — 1, k; — 1)
ties are unlikely to belong to many short loops, these edges have low EC. Therefore,
removing the edges with low EC will reveal the community structure as disjoint
subsets if the underlying network structure is modular. However, in a WS network
the shortcuts have low EC, and hence the algorithm of removing low EC links will
again remove the shortcuts resulting in a lattice structure. As above, on further
removal of links, the chain structure gets disrupted into disjoint groups of nodes.

Hence, the WS network also appears to have a community structure.
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Removal of high BC or
¢ low EC edges

* Emergence of Modules *

Figure 2.3: Schematic diagram showing the effect of removing edges with high between-
ness centrality (BC) or low edge clustering (EC). For both WS (left) and modular (right)
networks, the system gets divided into isolated communities (groups of nodes).

2.3 Dynamics on modular networks

So far we had been considering exclusively the structural aspects of small world
networks. However, apart from topological structure, networks are often associ-
ated with certain dynamics [6]. As dynamics is often crucial for the functioning of
many systems, we now examine very different dynamics on network models having
the clustered small-world property. These dynamics range from nonlinear inter-
actions (representative of collective ordering in a network) to strongly nonlinear

local dynamics at each node (as in relaxation oscillators) with diffusive coupling.
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Chapter 2. Modularity in complex networks

Figure 2.4: Schematic diagram of (a) global ordering (M = 1, M,, = 1) and (b)
modular ordering (M = 0, M,, = 1) in a modular network of Ising spins.

2.3.1 Spin-Spin interaction dynamics

We first consider the effect of modular organization on the emergence of collective
behavior, a simple model of which is the ordering of Ising spins arranged on a

network. This system is described by the Hamiltonian,
H=-— Z Jijo-io-ja (27)
i,

where, 0;,0; = £1 are spins placed on nodes %, j, and J;; is the ferromagnetic
coupling between them (= J > 0 if i, j are connected and 0 otherwise). Start-
ing from an initial random configuration of spins on a modular random network
with average degree (k), the system is allowed to evolve to its ground state us-
ing Glauber dynamics. It corresponds to a globally ordered state [Fig. 2.4 (a)] if
T < T.(= (k)), the mean-field critical temperature measured in units of .J/kp (kp:
Boltzmann constant). We observe that the time (7,,) needed for magnetization
M = vazl oi/N to reach its high asymptotic value, diverges as r decreases. This
is because, at low r, the system remains for a long time in a state of modular
ordering [Fig. 2.4 (b)|, where the spins in each module are ordered but aligned in
opposite directions in different modules resulting in an absence of global ordering.
The local order parameter, modular magnetization M,, = 2(|>._, oF|), where
oF is the i—th spin in the k-th module and the averaging is over all modules, ex-

hibits convergence to its asymptotic value over a time-scale 7,,,,, which is almost
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Figure 2.5: The two time-scales corresponding to local ordering within a module (7,,,,,)
and global ordering over the entire network (74,,) for a modular random network of Ising
spins (m = 16) at 7' = 6 as a function of 7. (In all cases N = 512, (k) = 14).

independent of r.

Fig. 2.5 shows the existence of two time-scales which diverge at low r indicat-
ing the ordering process within modules to be much faster compared to between
modules. At low temperatures, as the spins within each module get ordered, dif-
ferent modules may get aligned in opposite directions. To achieve global order,
some of the modules need to turn all their spins, a process that has a considerable
energy barrier. To cross this with thermal energy takes extremely long times, re-
sulting in divergence of 7,,,. A similar investigation of the WS network shows only
global ordering, with 7,,, diverging as p decreases. Related dynamical processes
where the appearance of distinct time-scale events as a consequence of modular
network structure have important functional significance, include the adoption of

innovations [78|, spread of epidemics [8] and consensus formation [79].

2.3.2 Synchronization

Next, we compare the dynamics of synchronization in modular random and WS

networks. We consider a population of N coupled relaxation oscillators (described
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Figure 2.6: Time evolution of (top) the fraction of synchronized nodes fsyn. and (bot-
tom) the number of synchronized clusters for ER random, WS small-world (p = 0.2) and
modular random networks (r = 0.02). For all cases, N = 512 and (k) = 14. Unlike
the ER and WS networks, the synchronization in modular networks (m = 16) occur in
two distinct steps. Local synchronization within nodes belonging to the same module
is achieved relatively fast and is then followed by global synchronization. The two time
scales corresponding to synchronization within modules (t,,s) and synchronization over
the entire network (t4s) are shown in the magnified view (inset).

by a fast variable z and a slow variable y) which evolve as

3 N K..
P = cly—a; + i Ly — xi); (2.8)
3 Ky
7j=1
ji = . 2.9
y . (2.9)

Here, c is the ratio between time-scales of z and y. K;; = kA;; is the coupling
between a connected pair of oscillators with strength x, and A is the network ad-
jacency matrix, i.e., A;; = 11if 4,j are connected and 0 otherwise. For networks
of simple oscillator models, the approach to synchronization exhibits temporally
varying patterns that are intrinsically related to the underlying connection topol-
ogy [53].

We have analyzed the time-evolution to synchronization (i.e., x; = z, y; = y, Vi)

of these strongly non-linear oscillators using the pair-correlation function between
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Figure 2.7: (a) Comparison of synchronization between modular random networks
(m = 16) and WS networks of relaxation oscillators (Eq. 2.9) with ¢ = 2 and x = 1.5.
(N =512, (k) = 14). In modular networks, the two time scales corresponding to intra-
modular (¢,,s) and global or inter-modular (¢4s) synchronization are shown as a function
of r. The WS model exhibits only the time-scale corresponding to global synchronization
(inset). Averaging has been done over random initial values and network realizations.
(b) The Laplacian spectral gap between the m-th and (m + 1)-th eigenvalues increases
with decreasing r, shown for different system sizes with the number of modules m = 16.

oscillator phase angles 6 [= arctan(y/z)|, pi;(t) = (cos[6;(t) — 6;(¢)]), where (...)
is an average over random initial conditions. By introducing a threshold 7', the
correlation matrix is converted into a dynamic connectivity matrix Dy(T") (D;; = 1,
if p;; > T, and = 0, otherwise). The ratio of non-zero elements of D to the total
number of elements gives the fraction of synchronized nodes, fs,., which increases
to 1 with time as the system converges to global synchronization. Conversely, the
number of distinct synchronized communities (i.e., the disconnected clusters in D)
decreases from N to 1 (Fig. 2.6).

As expected, we observe global synchronization to be extremely rapid in ER
random networks, while, for WS networks it occurs relatively slowly. By contrast,
in random modular networks, the synchronization occurs over two distinct time-
scales, as reflected by the occurrence of a plateau with non-zero values of the two
synchronization measures, fs,,. and number of synchronized clusters. At the rel-
atively shorter time scale of t,,,, disconnected clusters are observed to form in D
corresponding to the structural modules of the network. Thus, local synchroniza-

tion among the nodes belonging to the same module is achieved relatively quickly.
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with

the synchronized clusters remaining fairly stable in the intervening time-period.

Global synchronization is a slower process, occurring over a time-scale t,
Fig. 2.7(a) shows the variation of these two time-scales with r, converging when
the network becomes homogeneous (as r — 1).

In the real world, for many systems the coupling strength between nodes within
the same module may differ significantly from that between nodes belonging to
different modules. For example, a recent study of tie strengths in mobile commu-
nication networks [11] observed that links connecting different communities tend
to be weaker than links between members of the same community, supporting a
well-known hypothesis for social networks [80]. Hence we look at the effect of
different strengths for inter-modular coupling (Kinser) and intra-modular coupling
(Kintra) On the synchronization behavior of oscillators on a modular network. As
the inter-modular coupling strength becomes weaker relative to the intra-modular
coupling, we observe the time-scales for modular and global synchronization to di-
verge (Fig. 2.8, a). Thus, in real systems where inter-community ties are relatively
weaker, the time-scale separation between local and global events will be even more
prominent. On the other hand, as the inter-modular coupling strength becomes
large, the two time-scales gradually converge. As expected, at very large values of
the ratio Kipier : Kintra, global and modular synchronization occur simultaneously.

We have also looked at the more general case of synchronization in the presence
of delays in the coupling [39]. Even in the presence of delays, we observe distinct
time-scales for modular and global events. If d¢ represents the delay period (i.e.,
the time required for signals to travel from one node to another through a link),

the coupling terms of Eq (2.8) become:

3 [/i] (25 (t — 6t) — :(8)]. (2.10)

N
j=1
For constant delay (i.e., 0t = constant, for all pairs of connected nodes), we observe
in Fig. 2.8 (b) that the time required for modular synchronization (7,,s) is shorter
than that required for global synchronization (7,5), although in general both are
longer than their corresponding values in the absence of any delay (6t = 0). We

also consider the case where coupling delays are random and chosen from an uni-

form distribution. As in the case of coupling strengths x, the delays may differ for
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Figure 2.8: (a) Dependence of the two time-scales corresponding to modular (,,s)
and global synchronization (tys) on the ratio of the inter and intra modular coupling
strengths (Kinter /Kintra)- (D) The two synchronization time-scales shown as a function of
a constant delay dt between any pair of connected oscillators. (c) Variation of ¢,,s and
tgs with random inter-modular coupling delays, that are distributed uniformly between
[0, 0tmaz]- In this case, there is no delay for intra-modular couplings. Note that, T, is
the time-period for an uncoupled relaxation oscillator. (In all cases N = 512, (k) = 14,
m = 16 and r = 0.02).

connections between nodes belonging to the same module as opposed to those be-
longing to different modules. For example, this may arise if nodes within a module
are geographically closer to each other, relative to nodes in other modules. There-
fore, we look at the case when there is no coupling delay within a module, while,
the delay for connections between oscillators in different modules is distributed
over the interval [0, 0t4,]. In Fig. 2.8 (c), we observe that as in the case of con-
stant delay, the inter-modular synchronization takes significantly longer time than

intra-modular synchronization, emphasizing the generality of our results.

2.3.3 Diffusion

The existence of such distinct time-scales as a consequence of modular structure
also appears in other dynamical processes, e.g., diffusion. Consider a discrete
random walk on a network, where the walker moves from one node to a randomly
chosen neighboring node at each time step. We analyze the time-evolution of the

diffusion process by obtaining the distribution of first passage times for random
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Figure 2.9: The distribution of first passage times (FPT) for diffusion process among
the nodes in modular (m = 16,7 = 0.02) and ER random networks. When the source
and the target nodes belong to the same module, the FPT has a much higher probability
of being small than when the nodes belong to different modules. The distribution of
FPT for a homogeneous random network is also shown for comparison. This indicates
the existence of two distinct time scales for random spreading in modular networks, the
diffusive process within a module taking place much faster compared to diffusion between
modules. For all networks, N = 512 and (k) = 14.

walkers to reach a target node in the modular random network, starting from a
source node [81]. Fig. 2.9 shows that this distribution differs quite significantly
depending on whether the target node belongs to the same module as the source
node or in a different module. This again suggests two distinct time-scales, with
intra-modular diffusion occurring much faster than inter-modular diffusion. This
is consistent with the results of Refs. [71, 82] where the degree of isolation of
a module was assessed by comparing the participation of its nodes in different

diffusion modes, using the internet as an example.

2.4 Linearized dynamics: Laplacian analysis

To understand the existence of two distinct time scales in a modular network, we

consider the linearized dynamics around the synchronized state,

do;

K .
E__k_izLl-jej,(vz:1,...,N) (2.11)
J
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Figure 2.10: Rank index i plotted against the inverse of the corresponding eigenvalue
of the Laplacian matrix . for modular random network (m = 16) at different r (A-C)
compared with that of WS network at different p (D-F), indicating the existence of a
distinct spectral gap in the former at low r (N = 512, (k) = 14).

where L is the Laplacian matrix of the network, with L; = k; and L;; = —A;;

(1 # j). Solving in terms of the normal modes ¢;(t), we get

pi(t) =D Byt = i(0) exp ", (2.12)
j

where \; are the eigenvalues of L' = D~'L (D being a diagonal matrix with
D;; = k;), and B is the matrix of its eigenvectors. All the eigenvalues are real as
L' is related to the symmetric normalized Laplacian & = D:L'D*® through a
similarity transformation. Any difference in the time scales of the different modes
is manifested as gaps in the spectrum of .Z, revealing different topological scales
of the network. The mode corresponding to the smallest eigenvalue is associ-
ated with global synchronization, while other modes provide information about
synchronization within different groups of oscillators. We observe a gap in the
Laplacian spectrum for modular random networks that increases with decreasing
value of r [Fig. 2.10 (A-C)] indicating that the very different time-scales for syn-

chronization at the global and local levels originate from the modular organization
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of the network structure. This is further supported by the absence of a similar
gap in the Laplacian spectra for WS networks, shown at different values of p in
Fig. 2.10 (D-F).

To relate this analysis with the diffusion process, we note that the transition
probability from node i to j at each step of the random walk is P;; = A;;/k;.
This transition matrix P is related to the normalized Laplacian of the network as
¥ =1-D2PD=, where I is the identity matrix [71]. The eigenvalues of P are
all real, the largest being 1 while the others are related to the different diffusion
timescales. As in the synchronization example, the spectrum of P for modular
random network exhibits a gap reflecting the existence of distinct timescales in
the system. Note that, although the above result strictly applies only when linear
approximation is valid, we observe the property of time-scale separation predicted
for modular networks to be a much more general phenomenon. In particular, the
strong nonlinear interactions of the Ising model cannot be even approximately
treated by the Laplacian analysis. Nevertheless, we see almost identical behavior
for all three processes, indicating the universality of the dynamical signature of

modular networks.

2.4.1 Laplacian analysis of cortical networks

In order to provide empirical evidence for the above distinction between dynamical
behavior of the different small-world models, we have considered the connectivity
data for cortical areas in the brains of the cat [83] and the macaque [84]. Such
networks have been reported to have small-world structural properties [63]. As
previously mentioned, local synchronization within a cluster has functional impor-
tance in the brain, whereas global coherence of activity may be undesirable. The
theoretical arguments given above would, therefore, imply a modular structural
organization for the connections between the cortical areas. This would be visibly
manifested through the existence of gaps in the Laplacian spectra of the empirical
networks, which is indeed what we observe |Fig. 2.11]. This strongly suggests that
at least some of the empirically observed small-world networks that occur in na-
ture may be organized in a modular fashion, and thus, have significantly different

dynamical behavior from the WS or related models.
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Figure 2.11: The adjacency matrix showing connections between different cortical areas
in the cat (top left, N = 65) and macaque (top right, N = 47) cerebral cortex. The broken
lines indicate clusters of cortical areas (labelled I-IV') that are densely connected within
themselves. This structural division reflects, to some extent, the functional segregation
among the different cortical areas (e.g., visual, somatosensory, etc.). The rank-ordered re-
ciprocal eigenvalues of the corresponding Laplacian matrices (bottom) show well-defined
spectral gaps, consistent with the existence of a modular structure for the cortico-cortical
networks.

2.5 Discussion

In this chapter, we have shown that modular networks, where links within each
module are much more numerous than those between different modules, can exhibit
all the structural features associated with small-world networks even in the absence
of a regular lattice substrate. By using a simple model, where nodes connect to each
other at random within each community, we show that a modular organization can
give rise to static properties (such as clustering or communication efficiency) almost
identical to the widely-used WS model for small-world networks [56]. Note that, it
is the modular organization which is crucial here, as the network structure within
each module is irrelevant for our conclusions to be valid. Such modularity may arise

in nature through multi-constraint optimization to which most networks occurring
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in the real world are subjected [85]. This is discussed in detail in Chapter 3 of this
thesis. The dynamical behavior of modular networks exhibits the striking feature
of multiple, distinguishable time-scales corresponding to (a) fast intra-modular and
(b) slow inter-modular processes, which is quite different from the behavior seen
in WS model of small-world networks.

Empirical evidence for such behavior in cortico-cortical networks indicate that
several systems for which small-world properties have been reported may indeed
have modular organization with the associated dynamical signature. The increas-
ing recognition that small-world networks underlie processes of vital importance
to society, such as epidemics spreading through a few long-range links (e.g., the
airline network that is instrumental in spreading a disease like SARS [86]), makes
it of vital importance to understand the structural topology of a network that
is responsible for the SW property. As different structures can result in distinct
collective dynamical behavior, it is important to go beyond macroscopic measures
(such as average path length) and focus on the underlying arrangement of inter-
actions in such networks. This is essential for intelligent intervention to prevent a
local problem from rapidly evolving into a global threat as a result of uncontrolled

spreading through the network.
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Evolution of modular networks

As modular structures are ubiquitous in complex networks, it is of immense interest
to understand how such systems can evolve towards a modular configuration. In
many of these networks, there is a significant presence of hubs, i.e., nodes with large
degree or number of connections to other nodes. Hubs are crucial for linking the
nodes in real networks, which have extremely sparse connectivity, with the proba-
bility C' of connection between any pair of nodes varying between 10~ and 1078 [4].
By contrast, random networks with such small C" are almost always disconnected.
Hubs can also lead to the “small-world” effect [37] by reducing the average path
length of the network. We note that most modular systems are subject to multiple
structural and functional constraints. Examples of such constraints include the
minimization of average path length, as well as, the total number of links, while
maximizing robustness against perturbations in node activity. In this chapter, we
show that the optimal networks which satisfy all these three constraints are char-
acterized by the existence of multiple modules sparsely connected to each other.
In addition, these modules have distinct hubs resulting in an overall heterogeneous
degree distribution.

The majority of previous studies on modular networks have been concerned
with methods to identify community structure [52|. There have been relatively
few attempts to explain the potentially more interesting question of how and why
modularity emerges in complex networks. Most such attempts are based on the
notion of evolutionary pressure, where a system is driven by the need to adapt to
a changing environment [87, 88]. However, such explanations involve complicated

adaptive mechanisms, in which the environment itself is assumed to change in a
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modular fashion. Further, adaptation might decrease connectivity through biased
selection of sparse networks, which eventually results in disruption of the network
with the modules becoming isolated nodes [87] or disconnected parts [89]. More
recently, a social network model has shown the emergence of isolated communities
through the rearrangement of links to form groups with homogeneous opinion [90].

A crucial limitation of these studies is that they almost always focus on a single
performance parameter. However, in reality, most networks have to optimize be-
tween several, often conflicting, constraints. While structural constraints, such as
path length, had been the focus of initial work by network researchers, there has
been a growing realization that most networks have dynamics associated with their
nodes [12]. The robustness of network behavior is often vital to the efficient func-
tioning of many systems, and also imposes an important constraint on networks.
Therefore, the role played by dynamical considerations in determining the topo-
logical properties of a network is a challenging and important question that opens
up new possibilities for explaining observed features of complex networks [91].

In Sec. 3.1, we propose a simple model for the emergence of modularity in
networks as an optimal solution for satisfying a minimal set of structural and
functional constraints. We explicitly show this by performing a multi-constraint
optimization with simulated annealing in Sec. 3.2. In Sec. 3.3, we show that while
robustness is indeed necessary, it is not enough by itself to generate modularity,
contrary to what is generally believed. We end the chapter with a discussion in
Sec. 3.4, on how these modular networks are also structurally robust with respect

to simultaneous targeted and random attacks.

3.1 Constraints on networks

Cost

Networks are subject to certain structural constraints. One of the structural con-
straint is the need to save resources, manifested in minimizing link cost, i.e., the
cost involved in building and maintaining each link in a network [92]. This results

in the network having a small total number of links, L.
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Efficiency

However, such a procedure runs counter to another important consideration of
reducing the average path length ¢, which improves the network efficiency by
increasing communication speed among the nodes [36].

The conflict between the above two criteria can be illustrated through the
example of airline transportation networks. Although, fastest communication (i.e.,
small ¢) will be achieved if every airport is connected to every other through direct
flights, such a system is prohibitively expensive as every route involves some cost
in maintaining it. In reality, therefore, one observes the existence of airline hubs,

which act as transit points for passengers arriving from and going to other airports.

Stability

Another important constraint is to decrease the instability of dynamical states
associated with the network. We investigate the dynamical stability of a network
composed of N nodes, which are self regulating when isolated, by measuring the
growth rate of a small perturbation x about an equilibrium state of the network
dynamics. Although the system can be nonlinear in general, the dynamics of such
perturbations are described by a [linear system of coupled differential equations
T = Zjvzl Jijz;. The stability of the equilibrium is then determined by the largest
real part Anax of the eigenvalues for the matrix J representing the interactions
among the nodes. The perturbation decays if A\.x < 0, and increases otherwise,
at a rate proportional to |Amax|. Thus, minimizing \,,,, makes the equilibrium less
unstable, which is important for many systems including ecological networks [93].

Here J; = —1 Vi such that we only consider instability induced through network
interactions. The off-diagonal matrix elements J;;(~ A;;W;;) include information
about both the topological structure of the network, given by the adjacency matrix
A (A;;is 1, if nodes 7, j are connected, and 0, otherwise; A;; = 0 Vi), as well as, the
distribution of interaction strengths W;; between nodes. In our simulations, W;;
has a Gaussian distribution with zero mean and variance o?; however, a nonzero
mean does not qualitatively change our results. For an Erdos-Renyi (ER) random
network, J is a sparse random matrix, with Apax ~ vV NCo? — 1, according to the
May-Wigner theorem [93]. Therefore, increasing the system size N, connectivity C

or interaction strength o, results in instability of the network. This result has been
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shown to be remarkably robust with respect to various generalizations [94, 95, 96].
Further, for uniform coupling strength, \,,.. is inversely related to the epidemic
propagation threshold for the network [97], and hence, minimizing \,,., also makes

the network more robust against spreading of infection.

3.2 Modularity through multi-constraint optimiza-

tion

3.2.1 Minimum link-cost constraint (L =N — 1)

For ER random networks, although ¢ is low, L is high because of the requirement to
ensure that the network is connected: L > NInN [42]. Introducing the constraint
of link cost (i.e., minimizing L) while requiring low average path length ¢, leads
to a starlike connection topology (Fig. 3.1C). A star network has a single hub to
which all other nodes are connected, there being no other links. Its average degree
(k) =~ 2 is non extensive with system size, and is much smaller than a connected
random network, where (k) ~ In N. However, such starlike networks are extremely
unstable with respect to dynamical perturbations in the activity of their nodes.
The probability of dynamical instability in random networks increases only with
average degree (Amax ~ 1/ (k), since (k) = NC'), while for star networks it increases
with the largest degree, and hence the size of the network itself (Amax ~ V'N). To
extend this for the case of weighted networks we look at the largest eigenvalue of
J, M = =1+ sz’]\i2 J1iJi1, the hub being labeled as node 1. The stability of
the weighted star network is governed by Zf\iz J1;Ji1, which is the displacement
due to a 1-dimensional random walk of N — 1 steps whose lengths are products of

pairs of random numbers chosen from a Normal (0,0?) distribution.

Simulated annealing

To obtain networks which satisfy the dynamical as well as the structural constraints
we perform optimization using simulated annealing, with a network having N

nodes and N — 1 unweighted links (the smallest number that keeps the network
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Figure 3.1: The optimized network structures for a system with N = 64 nodes and
L = N — 1, at different values of a: (A) 0.4, (B) 0.775 and (C) 1. For o = 0 the optimal
network is a 1-dim chain. (Bottom) The modularity Qs of the optimized network for
different o, when each module is a community defined in the strong sense. The transition
to star configuration occurs around « ~ 0.8, as observed in the variation of degree entropy
H with a.

connected). Having fixed L, the energy function to be minimized is defined as
E(a) = al + (1 — @) Amax,

where the parameter « € [0, 1] denotes the relative importance of the path length
constraint over the condition for reducing dynamical instability. Rewiring is at-
tempted at each step and is (i) rejected if the updated network is disconnected, (ii)
accepted if 0F = Efina — Einitia < 0, and (iii) if £ > 0, then accepted with prob-
ability p = exp(—dE/T), where T is the “temperature”. The initial temperature
was chosen in such a way that energetically unfavorable moves had 80% chance
of being accepted. After each monte carlo step (N updates) the temperature was
reduced by 1% and iterated till there was no change in the energy for 20 successive
monte carlo steps. For each value of «, the optimized network with lowest E was

obtained from 100 realizations.
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Emergence of modular configuration

As can be seen from Fig. 3.1, modularity emerges when the system tries to satisfy
the twin constraints of minimizing ¢ as well as A\ya. When « is very high (~ 0.8)
such that the instability criterion becomes less important, the system shows a tran-
sition to a starlike configuration with a single hub. However, as « is decreased,
the instability of the hub makes the star network less preferable and for interme-
diate values of «, the optimal network gets divided into modules, as seen from
the measure of network modularity, @ [98]. To obtain a robust partitioning of the
network, we consider modules to be communities defined in the strong sense, i.e.,
each node ¢ belonging to a community has more connections with nodes within
the community than with the rest of the network [77]. The resulting modularity
measure (), is high for a modular network, whereas for homogeneous, as well as,

for starlike networks, Qs = 0. To determine the communities, we

1. Compute the betweenness measure for all edges and remove the one with

highest score:

2. (a) if it results in splitting the network (or subnetwork) into communities

in the strong sense, then the resulting @), is computed;

(b) if not, we go back to step (1) and remove the edge with the next highest

score.

The process is carried out iteratively until all edges of the network have been
considered. Note that, in step (2a), checking whether the splitting results in com-
munities in the strong sense is considered with respect to the full network. We
verified these results by also calculating (), with the network modules determined
through stochastic extremal optimization [99]. The transition between modular
and star structures is further emphasised in the behavior of the degree entropy
defined as

N-1

H=> pylogp, (3.1)
P

where py is the probability of a node having degree k. The network entropy pro-
vides an average measure of the network’s heterogeneity, since it measures the
diversity of the link distribution [100]. Two extreme cases are the maximal value

and the minimal one. The maximum value is Hp., = log(/N — 1) obtained for
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Figure 3.2: Probability distribution of Apax for a clustered star network (N = 256, L =
15N) with different numbers of modules, m. Modules of equal size are connected by single
link between respective hubs. Link weights W;; follow a Normal (0, 0?) distribution with
02 = 0.018. (Inset) Probability of stability [P(Amax < 0)] varying with o2. Increasing
m results in the transition to instability occurring at higher ¢, implying that network
stability increases with modularity.

D = ﬁ Vk = 1,2,---, N — 1 and minimum value H,; = 0 occurs when
pr = 0,---,1,---,0. The emergence of a dominant hub at a critical value of

« is marked by H reducing to a low value.

Why modular configuration evolves?

To understand why modular networks emerge on simultaneous optimization of
structural and functional constraints we look at the change in stability that occurs
when a star network is split into m modules, the modules being connected through
links between their hubs. The largest eigenvalue for the entire system of N nodes is
the same as that for each isolated module, Apax ~ 1/ N/m, as the additional effect
of the few intermodular links is negligible. At the same time, the increase in the
average path length ¢ with m is almost insignificant. Therefore, by dividing the
network into a connected set of small modules, each of which is a star subnetwork,
the instability of the entire network decreases significantly while still satisfying the

structural constraints.
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Figure 3.3: Probability distribution of Apax for clustered star networks (N = 256, L =
15N) having four modules with different types of intermodular connectivities (A), (B) and
(C), which are represented schematically here. Link weights W;; have a Normal (0,0?)
distribution with o = 0.018.

3.2.2 Relaxing the link-cost constraint (L > N — 1)

The above results were obtained for a specific value of L (= N — 1). We now
relax the constraint on link cost and allow a larger number of links than that
strictly necessary to keep the network connected. The larger L is manifested
as random links between nonhub nodes, resulting in higher clustering within the
network. Even for such clustered star networks, Amax increases with size as v/ N, and
therefore, their instability is reduced by imposing a modular structure (Fig. 3.2).
The effect of increasing the number of modules, m, on the dynamical stability of
a network can be observed from the stability-instability transition that occurs on
increasing the network parameter o keeping N, C' fixed. The critical value at which
the transition to instability occurs, o., increases with m (Fig. 3.2, inset) while ¢
does not change significantly. This signifies that even for large L, networks satisfy
the structural and functional constraints by adopting a modular configuration.
As L is increased, we observe that the additional links in the optimized network
occur between modules, in preference to, between nodes in the same module. To
see why the network prefers the former configuration, we consider three different

types of intermodular connections: (A) only the hub nodes of different modules
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Figure 3.4: Probability distribution of A\pax for random networks (N = 256, L = 15N)
as a function of the number of modules, m, which are connected to each other by single
links. Link weights W;; follow Normal (0,0?) distribution with ¢ = 0.03. The inset
shows the probability of stability [P(Amax < 0)] varying with 2. Increasing m results
in transition to instability at lower o2, indicating that increasing modularity decreases
stability for random networks.

are connected, (B) nonhub nodes of one module can connect to the hub of another
module, and (C) nonhub nodes of different modules are connected. Arrangement
(B) where intermodular connections that link to hubs of other modules actually
increase the maximum degree in the modules, making this arrangement more un-
stable than (A). On the other hand, (C) connections between nonhub nodes of
different modules not only decrease the instability (Fig. 3.3), but also reduce /.
As a result, the optimal network will always prefer this arrangement (C) of large

number of random intermodular connections over other topologies for large L.

3.3 Robustness and modularity

Our observation that both structural and dynamical constraints are necessary for
modularity to emerge runs counter to the general belief that modularity necessar-
ily follows from the requirement of robustness alone, as modules are thought to
limit the effects of local perturbations in a network. To further demonstrate that

the three constraints are the minimal required for a network to adopt a modular
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Star Network

Chain
Random Network
Modular Network

Stability

Figure 3.5: Schematic diagram indicating the types of optimal networks obtained by
satisfying different constraints. Each vertex represents networks obtained by satisfying a
pair of constraints indicated on the two sides of the triangle that meet at that vertex. Note
that, modular networks emerge by optimizing all three constraints, viz., cost, efficiency
and stability, indicated by the three arms of the triangle.

configuration, we remove the hub from a clustered star while ensuring that the net-
work is still connected. This corresponds to the absence of the link cost constraint
altogether and the optimal graph is now essentially a random network.

To see why modularity is no longer observed in this case, we consider the
stability of an ER random network on which a modular structure has been imposed.
A network of N nodes is divided into m modules, connected to each other with
a few intermodular links. We then consider the stability-instability transition of
networks for increasing m, with the average degree, (k) kept fixed. Although from
the May-Wigner theorem, it may be naively expected that o, ~ 1/ \/@ is constant
w.r.t. m, we actually observe that increasing m decreases stability (Fig. 3.4). This
is because when a network of size NN is split into m modules, the stability of
the entire network is decided by that of the most unstable module, ignoring the

small additional effect of intermodular connections. Thus, the stability of the
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entire network is decided by randomly drawing m values from the distribution of
Amax for the modules. Therefore, for modular networks it is more likely that a
positive Apnax Will occur, than for the case of a homogeneous random network of
size N [101]. The decrease of stability with modularity for random networks shows
that, in general, it is not necessary that modularity is always stabilizing and results

in a robust network, as has sometimes been claimed [87].

3.4 Discussion

In this chapter we have shown that modules of interconnected nodes can arise as
a result of optimizing between multiple structural and functional constraints. In
particular, we show that, by minimizing link cost as well as path length, while
simultaneously increasing robustness to dynamical perturbations, a network will
evolve to a configuration having multiple modules characterized by hubs, that are
connected to each other (Fig. 3.5). At the limit of extremely small L (total num-
ber of links in the network), this results in bimodal degree distribution, that has
been previously shown to be robust with respect to both targeted and random re-
moval of nodes [102]. Therefore, not only are such modular networks dynamically
less unstable, but they are also robust with respect to structural perturbations.
In general, on allowing larger L, the optimized networks show heterogeneous de-
gree distribution that has been observed in a large class of networks occurring in
the natural and social world, including those termed as scale-free networks [3].
Thus, our results provide a glimpse into how the topological structure of complex

networks can be related to functional and evolutionary considerations.
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Hierarchical organization in complex

networks

Complex networks exhibit many common organizational features at the mesoscopic
level. Apart from modularity, which has been discussed in the previous chapters,
many systems also show hierarchical ordering of their nodes. In other words, they
are composed of successive layers of interconnected or nested communities. Such
structural hierarchy not only describes how nodes link to form communities, but
also, how communities join with each other to form the entire network which may
exhibit multiple levels of larger meso-level structures, such as meta-modules. In
the literature, often the terms hierarchy and modularity are used inter-changeably,
although, as shown in Fig. 4.1, they represent distinct properties of the network.
This confusion in usage could have stemmed from the fact that these two properties
are found to coexist in many networks occurring in real life [55, 103, 69, 19, in-
cluding technological networks such as the Internet [8, 71] and biological networks,
like that of cortical areas in the mammalian brain [104].

As discussed in the previous chapters, most complex systems seen in real life
also have associated dynamics [12|. The structural properties of such networks
have been sought to be linked with their dynamical behavior [6, 105]. In this con-
nection, one of the questions of obvious significance is whether there is a relation
between the stability of the system dynamics (with respect to small perturbations
in the variables describing the state of the nodes) and the specific topological ar-
rangement of connections in the network. Such robustness is necessary if complex

systems are to survive in the noisy environment that characterizes the real world.
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=2

) =1

Figure 4.1: Schematic diagrams of (left) a modular network, with modules demarcated
by broken circles, and (right) a hierarchical network with 4 levels, each indicated by a
level number /.

It has sometimes been argued that, networks with larger number of nodes, links
and stronger inter-connections are more stable [106]. On the other hand, theo-
retical results on the stability of model networks, e.g., the May-Wigner theorem,
suggest the opposite [93]. However, as these results are based on the study of
networks whose connection topology shows none of the structures that are seen
in real life networks, in particular, modularity and hierarchy, it is of interest to
see whether introducing hierarchical organization and modular structures can re-
veal limitations in the validity of May-Wigner theorem. We study this problem
by proposing a network model that exhibits both these properties and observing
the local stability of the system dynamics with respect to perturbations. We also
consider the stability of synchronization over the network, as the issue of network
synchronization has assumed importance in recent years, owing to its connection
with, e.g., brain dynamics [104].

In Sec. 4.1, we describe earlier models that have been proposed to describe hier-
archical organization in networks, in particular, the Ravasz-Barabasi deterministic
model [107]. In Sec. 4.2, we propose an alternate model that allows a detailed
study of the relation between dynamical stability and hierarchical modular orga-
nization of the network. We also show that the occurrence of a scaling relation
between clustering and degree of the nodes cannot be considered as a signature
for the existence of hierarchical modular structure. This is contrary to what has
been claimed in Ref. [107] and tacitly assumed in many subsequent studies [108].

In Sec. 4.3 we observe that both hierarchy and modularity actually increase the
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(c) n=2, N=125

(b) n=1, N=25

Figure 4.2: The Ravaz-Barabasi model of hierarchical scale-free network showing the
first three steps in an iterative construction procedure leading to hierarchical network
structure. (a) A fully connected cluster consisting of N = 5 nodes, (b) a network with
N = 25 nodes, and (c) a network with N = 125 nodes. (From Ref. [107])

instability compared to an equivalent random network. This may appear counter-
intuitive as both these structural properties are observed in networks occurring in
nature, which necessarily have to be robust to survive environmental fluctuations.
However, as noted in the preceding chapter, the emergence of modular structures
can be understood as a response to multiple (and often conflicting) constraints
imposed on such networks [85]. In Sec. 4.4, we discuss how these observations
can be extended to explain the emergence of hierarchical organization in networks.
We conclude with a short discussion of the importance of constraints related to

physical space on which networks are embedded in Sec. 4.5.

4.1 Hierarchical networks: Ravasz-Barabasi model

One of the most cited models for hierarchical modular networks is a deterministic

model proposed by Ravasz and Barabasi (RB) [107]. This model generates a set
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of inter-nested modules in a hierarchical fashion using a deterministic procedure
that has both high clustering (because of the modular nature of the network at
the most fundamental level) and a scale-free degree-distribution.

This model is constructed as follows: Initially, a fully connected cluster of five
nodes is constructed (Fig. 4.2 a). Next, four replicas of this hypothetical module
are generated and the four external nodes of the replicated clusters are connected
to the central node of the old cluster, obtaining a large 25-node module (Fig. 4.2 b).
Subsequently, four replicas of this 25-node module are generated, and the 16 pe-
ripheral nodes are connected to the central node of the old module (Fig. 4.2 ¢),
obtaining a new module of 125 nodes. These replications and connection steps are
repeated, increasing the number of nodes in the system by a factor of five at each
iteration.

In the RB model, a scaling relation is observed between the clustering coefficient

of a node C' and its number of connections (i.e., degree) k:
C(k) ~ k1. (4.1)

Similar relations were also observed in several real networks, such as the web of
semantic connections between two English words which are synonyms [107]. This
occurrence of the scaling relation between clustering and degree of the nodes in
a network has often been taken as a signature for the existence of hierarchical
modular structure in that network. However, recently, this scaling relation was
shown to be actually an outcome of degree-correlation bias in the usual definition
of clustering coefficient [109].

It can be easily seen that this scaling relation is not a necessary indicator for
the existence of either modularity or hierarchy. For example, consider a modular
network consisting of N nodes and m modules of equal size. Let each node have
degree k, with the links initially occurring exclusively between nodes belonging to
the same module (i.e., the modules are isolated from each other). To make the
network connected we rewire a small fraction of the links keeping the degree of
each node fixed. Plotting clustering as a function of degree for this network will
only show vertical spread of points at a single node degree value. Let us consider
another example, this time a hierarchical structure, viz., the Cayley tree with b

branches at each vertex. Again, it is easy to see that the clustering versus degree
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Figure 4.3: Schematic diagram of the hierarchical modular network model (left) with
the modules occurring at the various hierarchical levels (1) indicated by broken lines, and
the corresponding adjacency matrix (right) where p; indicates the density of connections
within and, p;41, between the different modules at each level [.

curve will not show the characteristic scaling seen for the RB model. In fact, in the
next section, we show that even for networks where both hierarchy and modularity
are present, it is not necessary that this scaling relation between clustering and

node degree will hold.

4.2 Hierarchical modular networks: A model

Here we propose a general model for networks having modular as well as hierarchi-
cal structure. Let us begin with a modular network consisting of m modules, each
containing n nodes. The connectivity (i.e., the probability of a link between any
pair of nodes) within each module is p;, while the connectivity between modules
is p2 (< p1). We now introduce hierarchy by adding another set of m modules
(each having n nodes) with the same p; and p,. The nodes belonging to these
two different sets of modules are now connected, but with a probability ps (< pa).
The resulting network has 2nm nodes and [ = 2 hierarchical levels (Fig. 4.3). To
increase the number of hierarchical levels to [ = 3, we add a similar network with
2nm nodes to the existing network and, as above, add links between these two net-
works with a probability p, (< ps3). Thus, to get a network with [ = h hierarchical
levels, the above procedure is repeated h — 1 times. The final network contains
M = 2" !'m number of modules. Note that, all connections between nodes are

made randomly. To reduce the number of model parameters, we assume that the
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connectivities py, ..., ppy1 are related as:
P2 _Ps _ _Prrl_ (4.2)
P P2 Ph

where, 0 < r < 1, the ratio of inter-modular connections between two successive
hierarchical levels, is a control parameter. By varying r, one can switch between
isolated modular (r = 0) and homogeneous random (r = 1) networks, with inter-
mediate values of r giving hierarchical modular networks. We compare between
networks having different number of hierarchical levels h, keeping the total number
of modules M and average degree (k) fixed.

To consider the effect of hierarchy in isolation, while keeping modularity fixed
(e.g., as measured by the Newman modularity measure @ [72]), we use a variant of

the above model, where, p; = constant, while other connectivities are still related
by

P2 Ph

This implies that the average number of intra-modular ((kina)) and inter-modular

Ps _ . _ Pt (4.3)

({Kinter)) connections per node are also constant .

The stochastic construction procedure of this network, along with the ability
to vary modularity (by changing r) independently of the number of hierarchical
levels (h), makes it an extremely general model. In addition, as it is hierarchical
by construction, we can show that the criterion suggested in Ref. [107], namely,
the scaling relation between clustering and degree, is not a necessary condition
for the existence of hierarchical modularity. As shown in Fig. 4.4 (left), when the
modules are random networks, the scaling relation is clearly absent for our model
network. To counter the possible argument that this failure of the relation is due
to the non-scale-free degree distribution, we have also considered the case where
each of the modules is a BA network. For the entire network, although the inter-
modular connections are made randomly, the degree distribution is still scale-free.

Even for this case, a clear scaling relation between clustering and degree is absent
(Fig. 4.4 (right)).

'Note that, (kintra) = p1 (% -1
(Rinter) = Npz [ 2572 47 (1) o022 (1) 4001 (1),
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Figure 4.4: Clustering coefficient C; of the i-th node as a function of its degree k; for the
hierarchical modular network model proposed here, where each module at [ = 1 is (left) a
random ER network and (right) a scale-free BA network. The different symbols indicate
networks with differing total number of hierarchical levels, h. For both types of networks,
the total number of nodes is N = 8192 with average intra-modular degree, (kintra) = 10,
inter-modular degree, (kinter) = 5, and the ratio of inter-modular connections between
two successive hierarchical levels, r = 0.1. Note that, in neither case is a scaling relation
observed between C; and k;, although the modules are arranged in a hierarchical manner
by construction.

4.3 Dynamics on hierarchical networks

4.3.1 Linear Stability of Equilibria

To look at the effect of hierarchy on network dynamics, we consider the linear
stability of an arbitrarily chosen equilibrium state for a set of coupled differential
equations defining the time-evolution of the system. For a network of N nodes,
a dynamical variable x; is associated with each node i. The state of the system,

x, can be characterized by x = f(x), where f is a general nonlinear function. To

investigate the stability around an arbitrary fixed point x* (i.e., f(x)|x= = 0), we
check whether a small perturbation dx about x* grows or decays with time. This

perturbation evolves as
ox = Jx, (4.4)

where, J is the Jacobian matrix representing the interactions among the nodes:
Jij = 0fi/0x;

connections of the network, rather than the intrinsic instability of individual un-

<<~ As we are interested in the instability induced through the

connected nodes, we can (without much loss of generality) set the diagonal element

J;i = —1. This implies that, in the absence of any connections, the nodes are self-

55



Chapter 4. Hierarchical organization in complex networks

‘ ‘ = ‘ = 4 1F o 8= ) 1
5 . o h=1,m=16 t!} EPA—.
N ¢ h=2,m=8 1 DU
“v,\ _ _ 08 N 4 -h=2,m=8 |
4 *',F. g. v h=3,m=4 - E\\ -v-h=3,m=4
—~ i = h=4,m=2 . RN — = —h=4,m=2
g3 v¥ . { Zzos i ]
/ il
= or ;\' & i\\
T2 e ™ o 04 “E
] \{
e'n \
1t 1 (S ] 02 gi
' o, k)
: So8ancnnscnssnannsd ~E
Y . . 7 ok il
-0.2 -0.1 0 )\0.1 02 03 04 0.03 0.04 0.05 0.06 0.07 0.08
max 02

Figure 4.5: (Left) Probability distribution for the largest real part of the eigenvalues
of the Jacobian J, as a function of total number of hierarchical levels, h (the interaction
strength parameter, 02 = 0.05). (Right) Probability of stability for a hierarchical mod-
ular network as a function of o2, with different symbols corresponding to differing total
number of hierarchical levels h. Link weights are chosen from a normal(0,c?) distribu-
tion. For all cases, the network consists of N = 256 nodes with average intra-modular
degree, (kintra) = 10, inter-modular degree, (kinter) = 5, and the ratio of inter-modular
connections between two successive hierarchical levels, » = 0.1. At all hierarchical levels
[ > 1, the network is split into two sub-networks. At [ = 1, each subnetwork is split
into m modules (I = 0). Thus, N = 256 nodes are divided equally among 2"~'m = 16
modules, with the four curves corresponding to () h =4, m =2, (V) h =3, m =4, (o)
h =2, m =38, and (o) h =1, m = 16. Note that, increasing h causes the transition to
instability to occur at a smaller value of o2, implying that increasing hierarchy increases
instability.

regulating, i.e., the fixed point x* is stable. The behavior of the perturbation is
determined by the largest real part, An.x, of the eigenvalues of J. If A\, .« > 0, an
initially small perturbation will grow exponentially with time, and the system will
be rapidly dislodged from the equilibrium state x*.

The relation between the dynamical properties and the static structure of the
network is provided by its adjacency matrix A (with A;; = 1, if nodes 7 and j are
connected, and 0 otherwise). There is a direct correspondence between the nature
of the matrices J (specifying the dynamical behavior of perturbation) and A (which
determines the structure of the underlying directed network), because A;; = 0
implies J;; = 0. In our model, we have generated J;; by randomly choosing the non-
zero elements from a Gaussian distribution with zero mean and variance 0. For
Erdos-Renyi (ER) random networks, J is an unstructured random matrix and the
largest real part of its eigenvalues, Amax ~ \/ Npo? — 1, where p is the connectivity

of the network, and o measures the dispersion of interaction strengths [93]. When
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any of the parameters, N, p, or o, is increased, there is a transition from stability
to instability. The critical value at which the transition to instability occurs is
0. ~ 1/y/Np. This result, implying that complexity promotes instability, has been
shown to be remarkably robust with respect to various generalizations [94, 95, 96,
110].

Here, using the above formalism, we examine the effect of hierarchy on the
stability of equilibria when one of the network parameters (namely, o) is varied.
We study the critical value at which the transition to instability occurs, o, as a
function of the total number of hierarchical levels, h, keeping the total number of
modules M fixed. We find that, with increasing h, the distribution of \,,,, shifts
towards more positive values (Fig. 4.5, left). As the system becomes unstable when
Amaz > 0, it follows that the probability of stability for the network decreases with

increasing number of hierarchical levels (Fig. 4.5, right).

4.3.2 Synchronization

It is of interest to look not only at the stability of equilibria for network dynamics,
but also at the stability of synchronized activity in networks. Let us consider a
network of N identical oscillators. The time-evolution of this coupled dynamical

system is described by:

& = F(x;) + €Y LyH(x;). (4.5)

j=1

Here, z; is a variable associated with node 7; F' and H are evolution and output
functions, respectively; € is the strength of coupling; and L is the Laplacian matrix,
defined as: L;; = k;, the degree of node ¢, L;j = —1 if nodes ¢ and j are connected,
0 otherwise. It has been shown that the linear stability of the synchronized state
xs (=r1 = ... = xy) can be determined by diagonalizing the variational equation
(Eq. 4.5) into N blocks of the form, y; = [DF(s)+eX\;DH (s)]y;, where y; represent
different modes of perturbation from the synchronized state. This is also referred
to as the master stability equation [105]. These equations have the same form
but different effective couplings o; = e)\;. The synchronized state is stable, i.e.,
the maximum Lyapunov exponent is in general negative, only within a bounded

interval [aa, ap] [111]. Let the eigenvalues of the Laplacian matrix be arranged
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Figure 4.6: (Left) Probability distribution of eigenvalues of the Laplacian L, as a
function of the total number of hierarchical levels, A (r = 0.1). (Right) The ratio of
the largest eigenvalue (Ay) to the second smallest eigenvalue (A2) as a function of r,
the ratio of inter-modular connections between two successive hierarchical levels, with
different symbols corresponding to differing total number of hierarchical levels h. For
all cases, the network consists of N = 256 nodes with average intra-modular degree,
(kintra) = 10 and inter-modular degree, (kinter) = 5. At all hierarchical levels [ > 1, the
network is split into two sub-networks. At [ = 1, each subnetwork is split into m modules
(I =0). Thus, N = 256 nodes are divided equally among 2"~'m = 16 modules, with the
four curves corresponding to (O) h =4, m =2, (V) h=3, m =4, (¢) h=2, m =8,
and (o) h =1, m = 16. Note that, increasing the number of hierarchical levels leads to
divergence of the eigenratio, implying that synchronization becomes harder to achieve.

as 0 = A\ < Ay < -+ < \,. Then, requiring all effective couplings to lie within
the interval ay < €edg < -+ < €Ay < ap, implies that a synchronized state is
linearly stable, if and only if, Ay /A < ap/cvs4. Thus, a network having a smaller
eigenratio Ay /g, is more likely to show stable synchronized activity.

Here, we obtain the eigenvalues of the Laplacian L for a hierarchical modular
network (Fig. 4.6, left) and observe the eigenratio Ay /Mg as a function of ratio of
the inter-modular connections between two successive hierarchical levels, r, and the
total number of hierarchical levels, h. First, keeping the number of hierarchical
levels fixed, we vary the parameter r. We find that with decreasing r, i.e., as
the number of connections between two successive hierarchical levels decrease, the
instability of the synchronized state increases. Next, keeping the total number of
modules fixed we increase the number of hierarchical levels (k) in the network.
Fig. 4.6 (right) shows that as the number of hierarchal levels of the network is
increased, \o decreases, resulting in an increasing eigenratio. Thus, arranging the

modules of a network in a hierarchical fashion also makes a network difficult to
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Level 1 Level 2

Central Node Level 3

Figure 4.7: Schematic diagram of an optimal tree structure with minimum average path
length, where the highest degree (kjq. = 3) of the network is fixed. The central node
and the three different levels (I = 1,2, 3) indicate a hierarchical organization.

synchronize.

4.4 Evolution of hierarchy in complex networks

In the preceding chapter we have shown using a model, how modular network
can emerge in the real world through multi-constraint optimization. In this sec-
tion, we generalize this model to understand how optimizing for certain coexisting
constraints on system performance can lead to hierarchical configuration of the
network.

The network constraints consider here are similar to the ones in the previous

chapter:

1. Minimizing the average path length: This is essential for rapid transportation
of resources or propagation of information within a network. Further, in the
presence of noisy information channels, signals are likely to be degraded
during transit between nodes. In such a system, reducing the average path

length of the network will also increase the robustness of the system.

2. Minimizing the total number of links in the system: Generally, each link in
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a system has some associated resource cost. Thus, a network having a large
number of links will incur a high cost in terms of overheads for maintaining

the connections.

3. Minimizing the largest degree (k,q.) of the network: This is associated with
reducing congestion in any node, a criterion that is important in transporta-
tion and information networks. E.g., in information transfer networks like the
Internet, unless the maximum degree is limited within a reasonable bound,
the hub nodes are likely to get clogged with incoming packets. In social net-
works, this is related to the limited attention that each individual can give
towards maintaining each additional social tie owing to time constraints. In
addition, for general dynamical systems, decrease in k., is associated with

increasing linear stability for the network dynamics.

As simultaneously optimizing a network for all three of the above constraints
is a difficult problem, we first consider a network having N nodes and N — 1
links (the minimum number required to maintain connectivity) that automatically
satisfies the constraint of minimum link cost. We simplify the problem further by
considering the largest degree of the network, k,,.., to be fixed, and seek to obtain
the tree structure which has minimum average path length. Such a network can be
constructed as follows: (i) choose a node to be the central node for the network and
attach k,,,, nodes to it. Thus, there will be k,,,, nodes in the first layer which are
located unit distance from the central node, (ii) add k.. — 1 nodes to each of the
nodes in the first layer, (iii) continue this procedure until the prescribed number
of nodes in the network is achieved. In such a network all the nodes except those
in the outer layer have degree k4.

To prove that the above algorithm generates a network which has the shortest
average path length for a given value of k,,,, we use the method of induction. For
a network with k,,.. + 1 nodes, the algorithm generates a star configuration where
the central node is connected to the other k,,,, nodes. This has, by construction,
the least average path length (~ 2) among all possible network configurations with
the same number of nodes and links. Thus, for the set of k,,,, nodes belonging to
the first layer (I = 1) of the model network, the algorithm guarantees the shortest
average path length. Let us now consider nodes belonging to layers beyond the

first one. If two nodes, ¢ and j, are at same level n, then the distance between
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these two nodes is given by

d(i, j) = 2+ d(p(i), p(4)), (4.6)

where p(i) and p(j) are the parents of nodes ¢ and j respectively, i.e., the nodes
in level n — 1 to which i and j are connected. It is obvious that if d(p(i), p(j))
is minimum, so is d(i, ), as the increment of 2 is the least possible length [=
d(i,p(i)) +d(j,p(7))] that one needs to add to the distance between the parents of
i and j to obtain d(i, j).

Let us next consider the case when the nodes are not at same level, e.g., let
node ¢ be at level m and node j be at level n < m. Thus, the shortest distance
between the jth node and a node in level m is m — n. Therefore, the distance

between nodes ¢ and j is given by

d(i, j) = (m —n) +d(p™ (i), j). (4.7)

where (p™~"(i) is a (m — n)-th grandparent of node i, which occurs in the level
m — (m —n) = n. As the nodes p™ "(7) and j occur at the same n-th level,
for which d(p™~"(i),j) has been shown to be minimal by the argument in the
previous paragraph, d(i,j) is minimum even when they belong to different levels.
Thus, the network constructed by the algorithm proposed above will have the
minimum average path length for a fixed maximum degree among all possible
network configuration with same number of nodes and links (Fig. 4.7).

We now calculate how the number of levels in the hierarchical tree is related to
the maximum degree k,,,,. The total number of nodes in a model network with r

levels, constructed according to the above algorithm, is given by,

f(kmama T) =1 + kmax + kmaa:(kmax - ]-) + -+ kmaa:(kmax - ]-)r_l
kmaz<kma:v - 1)7’ - 2
kmaz - 2 .

(4.8)

Thus, the total number of nodes in the network, N, will be bounded by f(knas, ) <

N < f(kmaz,™ — 1). For large r and k,,,,, we can replace the above relation with
log N
log(kmaz—1) "
levels, r, expressed in terms of network size and maximum degree can be considered

an equality, giving r = This expression for the number of hierarchical
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Figure 4.8: Variation of the largest degree, kj,qz, for the optimal network with the
parameter « for a network with N = 256.

as a measure of the average path length for the network. Thus, the constraint of
minimizing the path length is seen to be equivalent to a constraint dictating the
minimization of the number of levels.

So far, we had been considering the simple problem of a network with fixed
largest degree k... To construct networks that simultaneously satisfy the con-
straints on minimum number of levels and least maximum degree, we define a cost

(or energy) function in terms of r and kg,

log N

E = Oékmax + (1 — a)m

(4.9)
Here, the parameter « € [0, 1] determines the relative importance of the constraint
on largest degree with respect to that on the number of hierarchical levels. For
any specified value of «, the optimal network is the one which has minimum F.
Note that, for a network with fixed N, as r is expressed in terms of £,,,., the cost
is exclusively a function of the largest degree. Therefore, to obtain the minima of
E, we can differentiate it with respect to k.., and by equating the result to 0, we
obtain the following implicit relation for the optimal value of k,,,.:

0= 9 100 N = (s — 1) J08(Emas — 1), (4.10)

Thus, for a given N and «, using the above relation we can obtain the k,,,, for a

62



Chapter 4. Hierarchical organization in complex networks

network which is the optimal configuration that simultaneously satisfies the con-
strains specified above. Fig. 4.8 indicates that as a — 0, the optimal network has
a star configuration, while for o = 1, it is a 1-dimensional chain. At intermediate
values of «, the network will resemble the hierarchical configuration schematically

shown in Fig. 4.7.

4.5 Discussion

In Chapter 2, we have shown that modularity in random networks leads to higher
probability of instability for the equilibria of the network dynamics. The work
presented here is an extension and generalization of the above result, demonstrating
that increased number of hierarchical levels also tend to destabilize these equilibria.
Moreover, the same phenomena is observed for the stability of synchronized activity
in a network with respect to both increasing modularity, as well as, hierarchy. This
raises the question of how can systems with hierarchical modular structures exist
in nature, where they have to be robust enough to survive constant environmental
fluctuations. To answer this, we note that many constraints operate on networks
occurring in real life, such as, the minimization of (a) resource cost for maintaining
links and (b) the time required for communicating between nodes, in addition to
(c) the linear instability of equilibria, which together can make modular networks
the optimal configuration [85].

However, while this can explain the ubiquity of modularity, it does not answer
the question of why hierarchical organization is so common in nature. The fact
that tree-like networks with extensive ramifications occur so often in the context
of resource transport (e.g., the circulatory system in plants and animals), suggests
that additional constraints related to the functional goal of maintaining steady flow
at high flux may be at work in this case. One such constraint is the need to reduce
congestion at any point in the system, which is equivalent to minimizing the largest
degree in the network. We have shown that introducing this constraint, can lead to
networks with hierarchical organization, when operating in conjunction with the
previously introduced constraints on resource cost for links, and communication
time between nodes. Another possible candidate for a constraint that may give

rise to non-trivial mesoscopic organization is the need to minimize wiring cost, the

63



Chapter 4. Hierarchical organization in complex networks

total geographic length for all links in the network [92|. This is applicable when
the network is embedded on physical (as opposed to topological) space, so that
the wiring cost can been defined as the sum of the Euclidean distances between
all connected pairs of nodes. As many of the networks that show hierarchical
organization (such as the Internet and the network of cortical areas in the brain)
indeed occur on a physical space, with the geographic link cost being related to

the metric distance between nodes, this is a possibility that is worth pursuing.
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Inferring network structure from

dynamics

Having analyzed several network models for understanding the dynamical conse-
quences of modularity and hierarchy, in this chapter we consider how their existence
in real-world complex systems can be inferred from the knowledge of dynamics of
the component nodes. We first demonstrate the possibility of reconstructing net-
works through an analysis of the temporal information on interactions between its
components, by using the behavioral data of individuals belonging to a troop of
macaque monkeys. This example shows that the knowledge of dynamics of a sys-
tem can reveal its underlying modular network structure, which has been verified
by later field observations. To reconstruct a much larger network from the time-
series data of its components, we consider the example of financial markets. These
complex systems have many interacting elements and exhibit large fluctuations in
their associated observable properties, such as stock price or market index.

In Sec. 5.1 we analyze the structure of a bonnet macaque social organization.
Using data on their grooming and approach behavior, we determine the network
of interactions between the individuals comprising a troop. We first show that
grooming frequency, grooming time and approach frequency between each pair, all
have exponential distributions. We were able to determine the distinct groups in
the social network of female macaques, whereas that for the males do not show any
such unambiguous structure. Next, we consider the Seyfarth model, a theoretical
model for reproducing the patterns of social behavior observed in a primate troop.

We verify the efficacy of the model in explaining the observed group behavior and
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look at possible causative factors behind female grooming interaction.

In Sec. 5.2, by analyzing the cross-correlation matrix of stock price fluctuations
through spectral techniques, we reveal the underlying network of interactions be-
tween stocks in different markets. We find that emerging markets (e.g., NSE of
India) exhibit stronger correlations compared to developed markets (e.g., NYSE of
USA). In Sec. 5.3, we show through a simple multi-factor model, that most of the
observed correlations among stocks in emerging markets are due to effects common
to the entire market (e.g., external signals such are news breaks or intrinsic global
signals such as market indices). Coversely, correlations arising through direct inter-
actions between related stocks (e.g., between those belonging to the same business
sector) are weak. Our results suggest that the emergence of an internal structure,
comprising multiple groups of strongly coupled components, is a signature of mar-
ket evolution. This work also has ramifications for other similar complex systems
that develop over time, as our analysis provides tools for distinguishing dynamical
correlations that arise as a result of mutual interactions between nodes, as opposed

to those arising through a common response to a global signal.

5.1 Determining the social organization of Bonnet

Macaques

5.1.1 Social structure in primates

Primates are among the most social of all mammalian species, bonding together
for the purpose of survival. Such bonding between pairs of individuals is extremely
important in terms of increasing the cohesiveness of the group. This has imme-
diate relevance in making the group more effective in gathering food, protecting
themselves from predators, and, other functions that are vital for survival. Thus,
the pattern and quality of social interactions among the individuals have a direct
impact on the functional properties of the system. Primates do not interact at
random but rather has certain characteristic patterns of social behavior. These
may be invariant with respect to group size, age, composition and habitat quality.
Indeed, such patterns define the structure of social organization in the species.

A commonly observed behavior that is often used to infer such patterns is that
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of grooming between individuals. As opposed to conflict or aggressive behavior,
grooming is indicative of cooperative behavior. In addition to its benefit in remov-
ing ecto-parasites, grooming results in the formation and fostering of affiliative
relationships between individuals that could help them in other spheres of activity,
such as building a coalition against a third (possibly more powerful) individual.

Another common social interaction among primates that is indicative of the
relative status of two individuals is their behavior when one animal approaches
the other. It is seen that the aggressive approach of one individual is reciprocated
by the retreat of the other individual, a pattern that is almost invariant over time
for the pair involved. As the direction of such approach-retreat interactions is
relatively stable over time, one can therefore define relative dominance between
the two individuals. Moreover, these dominance relations are also transitive, i.e.,
if A is dominant to B and B is dominant to C, A is invariably dominant to C. Thus,
the members of a primate troop can be arranged in a linear dominance hierarchy,
with a rank associated with each individual. Usually, field studies concentrate on
the social interactions between members of the same sex in a troop, as male-female
interactions involve additional factors. Thus, the data for social interactions in a
group of primates is collected for the two subsets: one of all female members and
the other of all male members.

To understand grooming behavior, simple mathematical models of interactions
between individuals in a group have been proposed. These interactions define
the social network of the primate troop. R. M. Seyfarth has introduced one such
theoretical model to understand certain features that are commonly observed in
the grooming behavior of adult female primates across several species, viz., (i)
higher ranked individuals receive more grooming than others, and, (ii) majority of
grooming occurs between individuals of adjacent rank. Using this model, where
every individual follows the same strategy in choosing grooming partners, Seyfarth
has shown that relatively complex features of social behavior can be explained in

terms of simple principles governing the actions of individuals.

5.1.2 Bonnet Macaques

In the work reported here, we shall be focusing on one particular primate species,

the bonnet macaque (Macaca radiata), which is the most commonly observed pri-
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mate in peninsular India. Members of this species usually live in large troops
containing multiple males and females of 8 to 60 individuals, where the adult indi-
viduals develop strong affiliative relationships with each other [112|. Female bonnet
macaques usually remain with the group in which they are born throughout their
lives. As adults they form stable matrilineal dominance hierarchies, with daugh-
ters having dominance ranks just below those of their mothers. Among sisters,
dominance is ordered in a reverse chronological order, with the youngest being the
most dominant. The close affiliative relations between females is demonstrated
through high levels of allogrooming ! exchanged between both genetically related
and unrelated individuals across the dominance hierarchy.

In contrast to females, adult (as well as juvenile) bonnet macaque males usually
emigrate from the troops in which they were born. Another marked difference
from the females is that adult males form unstable dominance hierarchies. By
direct aggression and formation of coalitions, macaque males may move up from
low ranks occupied while very young to relatively high positions when they are
mature and in peak physical condition. Conversely, older macaque males may slip
down the hierarchy to lower ranks. Although, just as their female counterparts,
macaque males also demonstrate high levels of allogrooming and other affiliative
behavior towards each other, in marked contrast to females, there is absence of
any correlation between individual dominance ranks and the levels of affiliative

behavior displayed or received.

5.1.3 Description of the dataset

The analysis presented here is based on data acquired in the field by the group
of Prof. Anindya Sinha (NIAS, Bangalore) through demographic monitoring and
behavioral observations on a troop of bonnet macaques inhabiting 1 square km of
dry deciduous scrubland and mixed forests in the GKVK campus of the University
of Agricultural Sciences in Bangalore, India. The original observations were carried
out for over 1200 hours on two troops occupying adjacent overlapping home ranges
during March 1993-September 1995. We have selected the larger of these two
groups for our analysis, which consisted of 12 adult males and 11 adult females.

Data collected include information about (i) allogrooming frequency GF (measured

!Grooming performed by one individual on another is called allogrooming
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Figure 5.1: The social network of (a) female and (b) male members of the bonnet
macaque troop, where the interaction strength between each pair of individuals is deter-
mined by their corresponding grooming frequency (GF).

for every pair of giving and receiving individuals as grooming bouts/hour), (ii)
allogrooming time GT (measured for the pair of giving and receiving individuals
in terms of hours) and (iii) approach frequency AF (measured as the number of

approaches initiated by one individual towards another per hour).

5.1.4 Distribution of interaction strengths

We have constructed the network of social interactions in the macaque troop by
using the data described above, where nodes represent the individual members, and
links represent the relation between them in terms of GF, GT or AF (Fig. 5.1).
Note that, the network is directed as, in general, the relation between a pair of
individuals is not symmetric. For example, the time spent by individual ¢ in
grooming individual j may not equal the time j spends in grooming ¢. FEach link
of the network has an associated weight, w;;, which is proportional to GF, GT or
AF, depending on which relation is being used to construct the social network.
We first consider the distribution of weights in the links of the network. For
many complex networks occurring in the real world, this distribution is seen to
have either a power-law (e.g., in air-transportation network), or a log-normal (e.g.,

in the international trade network) nature. This is indicative of significant levels
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Figure 5.2: The distribution of interaction strengths, defined in terms of (a) grooming
frequency (GF), (b) grooming time (GT), and (c) approach frequency (AF), for both the
female and male macaque social networks. The data indicates an exponential nature for
all three distribution.

of heterogeneity in the interaction strengths of the network. For social networks,
quantifying the strength of interactions is often not possible, which makes the de-
termination of the link weight distribution for such systems a very difficult problem.
Fortunately, in the case of macaque social network, the interaction strengths can
be quantified in terms of their grooming and approach behavior. Fig 5.2 indicates
that for both the male and female networks, the strength distribution seems to
decay exponentially. The implication of relative homogeneity in the link weights
suggests that this social network is very different in this respect from the networks
mentioned above. Moreover, the relatively fast decay in the distribution of link
weights for the males indicates a weaker degree of social interactions among them

as compared to the females.

5.1.5 Community structure in macaque social network

We next test the utility of a network description in allowing us to infer the existence
of subsets whose members are strongly bound to each other. This is possible
through the determination of community structure in the network and verifying it
with empirically observed behavior. We have attempted partitioning the network
into several closely knit communities (or modules) using GF, GT and AF. The
community in a weighted network is defined as a group of nodes that are strongly

interconnected, i.e., have links among themselves with higher weights, as compared
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Table 5.1: Modular decomposition of the male and female bonnet macaque social net-
works, indicating the membership of individuals in different modules. Each individual
is indicated by a number that corresponds to its rank in the linear dominance hierar-
chy, with ‘1’ corresponding to the most dominant. The number of communities obtained
is indicated by m, whereas the maximum modularity of the empirical network and the
corresponding randomized network is represented by @) and Q..nq respectively.

Gender Type Q m Qrand Modular identity
Female GF 0121 2 0.081£0.017  (1234510) (6789 11)
GT 0.140 2 0.098£0.021  (1234510) (6789 11)
AF 0110 2 0.073£0.020  (1234510) (6780911)
Male  GF 0085 2 0.130£0.025 (1234912) (567810 11)
GT 0165 4 0.137£0.024 (123) (45) (6810) (79 11 12)
AF 0240 4 0.143+0.025 (12367) (458) (9 11) (10 12)

to links with other nodes which belong outside the community. We determine the
modules by obtaining the optimal partitioning of the network, that corresponds
to the partition having the maximum value of the modularity measure @) [98].
Table 5.1 indicates the different community structures obtained for both the male
and female macaque network by applying this method.

For the female macaques, the communities determined from the three different
social networks (defined in terms of GF, GT and AF) are identical, indicating that
this modular structure is significant and might be observed in other social behavior.
This is verified by subsequent field observations carried out at a later period (end
of 1995) when it was seen that the female macaques had split into two distinct
troops, with the membership of each exactly matching the results of our network
analysis. However, for male macaques, the modular decomposition yields different
communities according to the type of social network used. To check the statistical
significance of the determined community structure, we compare the partitioning
of the empirical network with its randomized version. The randomized networks
are obtained by shuffling the weights of the links. The average Q;.,q for 100 such
realizations is compared with the @) of the empirical network. The result again
suggests that, while the modular decomposition of the female network is indeed

significant, this is not so for the male network.
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Figure 5.3: Relation between the rank of a macaque with (a) grooming received, G,
(b) grooming given, GY, and (c) the ratio G" /GY.

5.1.6 From individual strategy to social behavior

In this section we focus exclusively on the female members of the troop, as their
dominance hierarchy is stable unlike that for the males. Here, we investigate how
the observed interaction structure can arise from a common set of strategies or
principles governing the selection of interaction partner, that are followed by each
individual member of the troop. Using our data, we test the theoretical model

proposed by Seyfarth for describing social behavior in monkeys.

Seyfarth model

In this model, a number of adult females are arranged in a linear rank order that
defines priority of access to resources. Some of the individuals are related to each
other in terms of common ancestry. Every individual follows the same behavioral
strategy, viz., distribute half of their grooming among close relatives (kin), and,
the other half among unrelated animals in direct proportion to their ranks (with
the most dominant animal getting top preference). Using this strategy, every
individual is allowed to interact with others, each pursuing her goal within the

constraints imposed by competition. After a period of interactions, the pattern
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Figure 5.4: Relation between the rank of a macaque with (a) the frequency of approach
received per hour, A™ and (b) the frequency of approach initiated per hour, A9Y.

of grooming behavior is obtained which is then compared with data from actual
groups. Simulations of the model show that the network structure constructed on
the basis of the interactions are relatively unaffected by variation in the number of
kin, group size, the amount of time available for grooming, or the relative strength

of an individual’s attraction to kin and her attraction to those of higher status.

Testing the Seyfarth model

We have tried to verify the basic principles of the Seyfarth model by testing it using
the bonnet macaque dataset. We first calculate the grooming given and received
by each macaque. For an individual ¢, the grooming received is the weighted in-
degree, G| = Zj w;;, while the grooming given is the weighted out-degree GY =
>, wi;. We find that, apart from the highest ranked macaque, grooming received
by all other individuals is approximately the same (Fig. 5.3). This is in significant
contrast to the prediction of the Seyfarth model, according to which the grooming
received should increase with rank. Next, we look at the variation of grooming
given by the macaque with its rank. Except for the two highest ranked macaques,
GY9 decreases with rank, indicating the competition among individuals. By plotting
the ratio of grooming received to the grooming given by a macaque, G"/GY, along
with its rank, we show that: (i) for the upper part of the dominance hierarchy

there is a positive correlation, but (ii) for lower ranking females, the correlation
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Figure 5.5: Relation between rank difference of macaque with (a) average grooming
received, (G"), from low rank individual and (b) average grooming given, (GY), to the
low rank individual. The curves are the best fit for the data and indicate negative
correlation.

between rank and G"/GY is not obvious.

Next, we look at a different type of social interaction, namely the frequency
of approach behavior between individuals. In Fig. 5.4, we plot the number of
times an individual is approached per hour, A", against its rank and find them to
be uncorrelated. However, when we plot the frequency of approaches initiated per
hour, A9, against the rank of the individual, we find significant positive correlation.
This indicates that the higher ranking females approach most other members of
the group, but the reverse does not happen.

Next, we test the reciprocity assumption of Seyfarth model in the grooming be-
havior of macaque, according to which each individual regardless of its own rank
always tries to groom the highest ranked individual who is available. Here, we test
it against an alternative hypothesis, that an individual may choose a grooming
partner who is ranked higher according to the preceding strategy, but, chooses
randomly when the available partners are all ranked lower than it. In Fig. 5.5, we
plot the amount of grooming received by a higher ranked individual from a lower
ranked partner, against their rank difference. We compare this to the grooming
given by a higher ranked individual to a lower ranked partner. In both of these
cases, we find that as the rank difference increases, the amount of grooming de-

creases. However, grooming received by a higher ranked individual from one at a
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Figure 5.6: Relation between the kinship distance, Kgis, between macaque individuals
with (a) average grooming, (G), and (b) average rank difference, Rgjst.

lower rank shows a steeper decay compared to the corresponding data for groom-
ing given. This indicates that during the quest for grooming partners, a macaque
individual may be using the following guiding principles: (i) rank is more impor-
tant while grooming a higher ranked individual, but (ii) it is less significant when
grooming a lower ranked macaque. This indicates the non-reciprocal nature of
social ties in this system.

Finally, we look at the role of kinship distance betwe