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Abstract

In this thesis we discuss some problems relating the properties of a set A and those of

A + A, when A is a subset of an abelian group.

Given a finite abelian group G and A ⊂ G, we say A is sum-free if the sets 2A

and A are disjoint.

In chapter 2 we discuss the problem of finding the structure of all large sum-free

subsets of G. We obtain the complete structure of all largest sum-free subsets of

G, provided all the divisors of order of G are congruent to 1 modulo 3. In the same

chapter we also give partial results regarding structure of all large maximal sum-free

subsets of G. We say a sum-free set A is maximal if it is not a proper subset of any

sum-free set. If there is a divisor of order of G which is not congruent to 1 modulo 3

then structure of all largest sum-free subsets of G was known before. Our results are

based on a recent result of Ben Green and Imre Ruzsa [GR05].

Let SF (G) denote the set of all sum-free subsets of G and the symbol σ(G) denotes

the number n−1(log2 |SF (G)|). In chapter 3 we improve the error term in asymptotic

formula of σ(G) obtained by Ben Green and Imre Ruzsa [GR05]. The method used is

a slight refinement of methods in [GR05].

In chapter 4 we discuss the following problem. Let A be an infinite subset of nat-

ural numbers. Suppose for all large natural numbers n the number of ways n can

be written as a sum of two element (not necessarily distinct) of A is not equal to 1,

then how “thin” can A be? The main result of this chapter is then an improvement

of a result of Nicolas, Ruzsa, Sárközy [NRS98] and methods we use are refinement of

methods developed in [NRS98]. A new ingredient used is an additive lemma proven by

means of graph theory.
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Chapter 1

Introduction

The theme of this thesis is the relation between the properties of a set A and those of

the set A + A, when A is a subset of an abelian group G.

Throughout chapters 2 and 3, G will denote a finite abelian group of order n and

exponent m. In these chapters we discuss some questions related to sum-free subsets

of G. We say that a set A ⊂ G is sum-free if the sets A and A+A are disjoint. In other

words, A ⊂ G is sum-free if there is no triplet (x, y, z) ∈ A × A × A with x + y = z.

We will presently describe the results of Chapter 2. To this end, we define the density

of a subset B of G to be |B|
|G| and denote it by α(B); write µ(G) to denote the density

of a largest sum-free subset of G.

The fundamental observation on sum-free subsets of an abelian group is that the in-

verse image of a sum-free subset under a homomorphism is also sum-free. Moreover,

if the homomorphism is surjective, then density of a sum-free subset and that of its

inverse image are the same. In particular, if f is a surjective homomorphism from G

onto Z/dZ, for some integer d ≥ 1 and if B is a sum-free subset of Z/dZ then f−1(B)

is a sum-free subset of G and α (f−1(B)) = α(B). For any integer d ≥ 1, the set Bd

comprising all integers in the interval ( d
3
, 2d

3
) under the canonical homomorphism from

Z onto Z/dZ is a sum-free subset of Z/dZ. The density of Bd =
[ d−2

3
]+1

d
. Consequently,
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for any finite abelian group G of exponent m, we have

µ(G) ≥ maxd|m
[d−2

3
] + 1

d
. (1.1)

It is known that this inequality is equality for all finite abelian groups. More precisely,

we have

Theorem 1.0.1. ([GR05]) Let G be a finite abelian group and m denote the exponent

of G. Then

µ(G) = maxd|m
[d−2

3
] + 1

d

This theorem was proven by Ben Green and Ruzsa [GR05] for groups G which are

of type III. We say G is of type III if every divisor of the order of G is congruent to

1 modulo 3. For all other groups the above theorem was already obtained by P.H.

Diananda and H. P. Yap [DY69]. Notice that, if G is of type III then it follows from

above theorem that µ(G) = 1
3
− 1

3m
.

The examples of sum-free sets given above and value of µ(G) suggest the following

question regarding the structure of all large sum-free subsets of G.

Question 1.0.2. Given a “large” sum-free subset A of G does there exist a surjective

homomorphism f : G → Z/dZ, a sum-free set B ⊂ Z/dZ such that A is a subset of

f−1(B) ?

Notice that if the answer of above question is in the affirmative, then trivially

Theorem 1.0.1 holds. The answer to this question is known to be in the affirmative

when G is not of type III ([GR05], [oHP04]) and A is a largest sum-free set. We

determine the structure of all largest sum-free subsets of all groups G of type III. When

G is of type III, 2 does not divide the order of G. Thus every divisor d of m is congruent

to 1 modulo 6 and d−1
6

is a non-negative integer. When G is of type III, Ben Green

and Ruzsa [GR05] proved the following result.

Theorem 1.0.3. ([GR05]) Let A be a sum-free subset of an abelian group G of type

III. Let η = 2−23. Suppose that α(A) ≥ µ(G) − η, then there exists a surjective

homomorphism γ : G → Z/qZ with q 6= 1 such that the following holds.

A ⊂ γ−1pq({l + j : 1 ≤ j ≤ 4l}),

where l = q−1
6

and pq : Z → Z/qZ is the natural projection.
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Let Il denote the set pq({l + j : 1 ≤ j ≤ 4l}), where l = q−1
6

. Let Hl, Tl denote the

sets pq({l + j : 1 ≤ j ≤ l}) and pq({4l + j : 1 ≤ j ≤ l}) respectively. In case q = m

the symbols I, H, T denote the sets Il, Hl, Tl respectively. Following the terminology

of [GR05] we call γ the special direction of the set A and q the order of γ.

We say a sum-free set is maximal if it is not a proper subset of any sum-free set.

In Chapter 2 we improve upon Theorem 1.0.3 and prove the following theorem.

Theorem 1.0.4. Let G be a finite abelian group of type III. Let A be a sum-free subset

of an abelian group G. Let n denote the order of G and m denote the exponent of G.

Let k = m−1
6

and η = 2−23. Suppose that α(A) > µ(G) − min(η, 5
42m

). Then there

exists a surjective homomorphism

f : G → Z/mZ

such that the following holds.

A ⊂ f−1p({2k + j : 0 ≤ j ≤ 2k + 1}),

where p : Z → Z/mZ is the natural projection. In case A is a maximal sum-free set,

then the following also holds.

f−1p({2k + j : 2 ≤ j ≤ 2k − 1}) ⊂ A

Notice that p({2k + j : 1 ≤ j ≤ 2k}) is a largest sum-free subset of Z/mZ. Let C

denote the set p({2k+j : 0 ≤ j ≤ 2k+1}) ⊂ Z/mZ. Then C is not sum-free. Therefore

Theorem 1.0.4 does not answer Question 1.0.2 affirmatively. In fact we shall show that

the answer of Question 1.0.2 is negative for all abelian groups G which are not cyclic

and of type III. While the set C is not sum-free, it is “almost” sum-free and the triplets

(x, y, z) ⊂ C3 with x+y = z are only (p(2k), p(2k), p(4k)), (p(2k), p(2k+1), p(4k+1)),

(p(4k), p(4k + 1), p(2k)), (p(4k + 1), p(4k + 1), p(2k + 1)). The homomorphism f as

required by Theorem 1.0.4 may be taken either γ or 2γ, where γ is a homomorphism

as given by Theorem 1.0.3. The main result of chapter 2 isTheorem 1.0.4. Using this

result we easily obtain the complete structure of all largest sum-free subsets of all finite

abelian groups G of type III.

We now summarise the method of proof of Theorem 1.0.4. Indeed, we first verify
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Theorem 1.0.4 when G = Z/mZ and classify all largest sum-free subsets of Z/mZ.

The proof of Theorem 1.0.4 is achieved by reducing the problem to classification of

all largest sum-free subsets of Z/mZ. To each A as in Theorem 1.0.4 we associate a

set L ⊂ Z/mZ which we show is a largest sum-free subset of Z/mZ. The structure

of L is determined by classification of all largest sum-free subsets of Z/mZ. Then

Theorem 1.0.4 follows from relation between the properties of A and those of L.

We describe association of set L ⊂ Z/mZ to a given “large” sum-free set A ⊂ G

and relation between properties of L and that of A. Let γ be the special direction of

the set A, Ai denote the set A ∩ γ−1{i} and αi = q
n
|Ai| where i ∈ Z/qZ. An idea that

we repeatedly use from [GR05] is that for any i, j ∈ Z/qZ, the sets Ai + Aj and Ai+j

are disjoint. This is an easy consequence of the fact that A is sum-free and is very

useful. This in particular implies that αi +α2i ≤ 1. An important property of set Il we

use is that it may be divided into 2l disjoint pairs of the form (i, 2i) with i ∈ Hl ∪ Tl.

This was exploited in [GR05] to prove Theorem 1.0.1 and also plays very important

role in our proof of Theorem 1.0.4. For example, using this we immediately deduce

that α(A) = 1
q

∑
i∈Z/qZ

αi = 1
q

∑
i∈Hl∪Tl

(αi + α2i) ≤ 2l
q
. This implies Theorem 1.0.1

for groups of type III. It also implies that if density of A is “large” then order of γ

is same as the exponent of G; that is q = m. To each A we associate the subset L of

Z/mZ comprising those i ∈ Z/mZ such that αi > 1
2
. It is then easy to show that L

is sum-free. In fact, for every i, j ∈ L it follows that Ai + Aj = γ−1{i + j} and hence

αi+j = 0. This is the relation between L and A which we use to prove Theorem 1.0.4.

To determine the cardinality of L we show that for every i0 ∈ H ∪T , exactly one of the

element of the pair (i0, 2i0) belong to L. We use the following argument. In case den-

sity of A is µ(G) then it follows easily that for every i0 ∈ H ∪T we have αi0 +α2i0 = 1.

Since the order of G is odd, therefore for any i ∈ Z/mZ we have that αi 6= 1
2
. Thus,

in case density of A is µ(G), it follows that the cardinality of L is 2k, where k = m−1
6

.

Using Kneser’s theorem we show that the same conclusion holds for any sum-free set

A with α(A) > µ(G) − 5
42m

.

We also exploit the properties of I frequently in classifying all largest sum-free subsets

of Z/mZ. Let E be a largest sum-free subset of Z/mZ; that is cardinality of E is 2k,

where k = m−1
6

. Further if we assume that E ⊂ I, then for any i0 ∈ H ∪T , exactly one

of the element of pair (i0, 2i0) belong to E. Using this it follows easily that E∩H is an
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arithmetic progression. The same conclusion holds for E ∩ T . After some calculations

we determine that either E = H ∪ T or that E is a subset of C, where C is the subset

of Z/mZ as defined above. Using this the structure of L is obtained and the proof of

Theorem 1.0.4 is completed.

In chapter 3 we consider the problem of counting the number of sum-free subsets

of G. Let SF (G) denote the set of all sum-free subsets of G and σ(G) denote the

number n−1(log2 |SF (G)|). We prove the following result.

Theorem 1.0.5. Let G be a finite abelian group of order n. Then we have the following

asymptotic formula.

σ(G) = µ(G) + O(
1

(lnn)1/27
).

Definition 1.0.6. Given a set B ⊂ G we say that (x, y, z) ∈ B3 is a Schur triple of

the set B if x + y = z.

Theorem 1.0.5 follows immediately from the following result and results of [GR05].

Theorem 1.0.7. There exist an absolute positive constant δ0 such that if F ⊂ G as

at-most δn2 Schur triples, where δ ≤ δ0. Then

|F | ≤ (µ(G) + Cδ1/3)n (1.2)

where C is an absolute positive constant.

The methods used are refinement of methods of [GR05] and an improvement of the

following results of Ben Green and Imre Ruzsa [GR05].

Theorem 1.0.8. ([GR05], Theorem 1.8. ) Let G be a finite abelian group of order n.

Then we have the following asymptotic formula.

σ(G) = µ(G) + O(
1

(lnn)1/2
).

Theorem 1.0.9. ([GR05], Proposition 2.2) Let G be an abelian group, and suppose

that F ⊆ G has at-most δn2 Schur triples. Then

|F | ≤ (µ(G) + 220δ1/5)n

Theorem 1.0.7 was proven in [GR05] if G is not of type III. More precisely,
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Theorem 1.0.10. ([GR05], Corollary 4.3.) Let G be an abelian group, and suppose

that F ⊆ G has at-most δn2 Schur triples. Then

|F | ≤ (max(
1

3
, µ(G) + 3δ1/3)n (1.3)

In case G is not of type III then µ(G) ≥ 1
3
. Therefore Theorem 1.0.10 implies Theo-

rem 1.0.7 immediately. In case G is of type III but exponent m of G is large, then too

Theorem 1.0.7 follows.

We presently summarise the method used to prove Theorem 1.0.7. Given any F as in

Theorem 1.0.9, Green and Ruzsa find a homomorphism γ : G → Z/qZ where q 6= 1 and

such that for any i /∈ Il, cardinality of set F ∩γ−1{i} is extremely “small”. Here Il is a

subset of Z/qZ as defined above just after the statement of Theorem 1.0.3. Then the

upper bound of
∑

i∈Il
|A ∩ γ−1{i}| is obtained in [GR05] to prove Theorem 1.0.9. We

use a refinement of arguments in [GR05] to improve upper bound of
∑

i∈Il
|F ∩γ−1{i}|

and obtain Theorem 1.0.7.

We describe the method to estimate
∑

i∈Il
|F∩γ−1{i}|. Let Fi denote the set F∩γ−1{i}.

Observe that
∑

i∈Il
|F ∩ γ−1{i}| =

∑
i∈Hl∪Tl

(|Fi| + |F2i|). Here Hl and Tl are subsets

of Z/qZ as defined above. Also observe that given any x ∈ Fi and an element z ∈
(x+Fi)∩F2i we have a Schur triplet (x, y, z) of set F . Now in case |Fi|+|F2i| ≥ n

q
(1+t),

then cardinality of (x + Fi) ∩ F2i is at-least tn
q

and we get at-least n
q
t|Fi| Schur triples

of F . Also |Fi| + |F2i| ≥ n
q
(1 + t) trivially implies that cardinality of Fi is at-least tn

q
.

Therefore it follows that for any i ∈ Z/qZ we have |Fi| + |F2i| ≤ n
q
(1 + (δ)1/2q) and

∑
i∈Hl∪Tl

(|Fi| + |F2i|) ≤ n
q
2l(1 + (δ)1/2q) ≤ n(µ(G) + (δ)1/2q). This bound was proven

in [GR05] to prove Theorem 1.0.9. We improve this bound by observing that given

any t > 0 if we consider the set L(t) = {i ∈ Hl ∪ Tl : |Fi| + |F2i| ≥ n
q
(1 + t)},

then for any i ∈ L(t), there are at-least n
q
t|Fi| Schur triplets (x, y, z) ⊂ F 3 with

x ∈ Fi. This follows from what we discussed above. The sets Fi and Fj are dis-

joint unless i = j. Therefore we get
∑

i∈L(t) |Fi| ≤ nqδ
t

. This in turn implies that
∑

i∈Il
|Fi| ≤ n

q

(
|L(t)| + q2δ

t
+ (2l − |L(t)|)(1 + t)

)
. Then choosing t = (δq)1/2 we get

that
∑

i∈Il
|Fi| ≤ n(µ(G) + 2δ1/2q1/2).

Though the results of Chapter 2 and Chapter 3 are related to sum-free sets, these

chapters can be read independently. There are some common definitions which are
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used in both chapters. However for the convenience of the reader, we repeat these

definitions. Apart from these definitions, only the value of µ(G) is required in both

chapters.

In Chapter 4, we discuss the following problem. In this chapter we set G = Z and

A an infinite subset of N, where N denote the set of all natural numbers. If A is an

infinite subset of N then we set

A(x) = {a ≤ x : a ∈ A}.

Let r(A, n) denote the number of solutions of the equation

n = ai + aj, where ai ≤ aj, ai, aj ∈ A.

Nicolas, Ruzsa, Sárközy [NRS98] asked if r(A, n) is even for all sufficiently large natural

numbers then what can be said about |A(X)| as X → ∞. They proved the following

result.

Theorem 1.0.11. [NRS98] If A is an infinite subset of N such that r(A, n) 6= 1 for

all sufficiently large natural numbers n, then

lim sup |A(x)|
(

ln ln x

ln x

)3/2

≥ 1

20
.

They also gave an example of a set A such that r(A, n) 6= 1 for all sufficiently large

natural numbers n and |A(x)| � (ln x)2 . We show the following:

Theorem 1.0.12. There exists an absolute constant c > 0 with the following property:

for any infinite subset A of N such that r(A, n) 6= 1 for all sufficiently large natural

numbers n, we have

|A(x)| ≥ c

(
ln x

ln ln x

)2

for all x sufficiently large.

Notice that the condition r(A, n) 6= 1 is much weaker condition than the condi-

tion r(A, n) is even. Therefore, one will expect that one should be able to improve the

above results considerably under the assumption r(A, n) is even for all sufficiently large

natural numbers. However no such result is known. There has been lot of progress in

case r(A, n) is replaced by p(A, n) where p(A, n) is the number of partition of n into
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parts from A.

The methods we use to prove Theorem 1.0.12 are refinements of methods used

in [NRS98] to prove Theorem 1.0.11. Given a sufficiently large Y we may assume that

|A(Y )| ≤ (ln Y )2. Since otherwise the conclusion of Theorem 1.0.12 holds trivially.

We show under this additional assumption, the number of elements of A contained

in the interval [b, b(ln Y )11) ⊂ (
√

Y , Y ) is at-least c ln Y
ln ln Y

, where b is a real number

and c is a positive absolute constant. Then Theorem 1.0.12 follows by noting that if

Y is sufficiently large then for some positive absolute constant c the interval [
√

Y , Y )

contains at-least c ln Y
ln lnY

disjoint intervals of the form [b, b(ln Y )11).

Using ideas from [NRS98] we construct a sequence BY of elements of A not exceeding√
Y satisfying certain special properties. Moreover the number of terms in sequence

BY is at-least c lnY
ln lnY

. We choose a ∈ [b, b(ln Y )10) ∩ A such that the interval (a − b, a)

does not contain any element of the set A. Let S denote the set of elements of A in the

interval [b, b(∈ Y )11) and s denote the cardinality of S. Let S1 and S2 denote the sets

of elements of A in the intervals [b, a) and [a, b(ln Y )11) respectively and let s1 and s2

denote the cardinalities of S1 and S2 respectively. We then have s = s1 + s2. For each

term bi ∈ BY let ni = a + bi. From the assumption that r(A, n) 6= 1 for all sufficiently

large natural numbers, it follows that for each bi ∈ BY there are pairs (ci, di) with

di ≥ ci, of elements of A distinct from the pair (a, bi) such that ni = ci + di. Let P1

denote the set of those pairs (ci, di) with di < a and P2 the set of those pairs (ci, di)

with di > a. Let p1 and p2 denote the cardinalities of P1 and P2 respectively. We then

have p1 +p2 = |BY |. It is easy to see that di ≤ b(∈ Y )11. It was shown in [NRS98] that

the mapping φ that associates (ci, di) to di maps P2 into S2 and is injective. Therefore

we have that s2 ≥ p2. It was also shown in [NRS98] that P1 ⊂ S1 × S1. From this it

follows that s1 ≥ p
1/2
1 . We show that s1 ≥ cp1. For this we associate a graph G to

P1. The edges of G are in one-one correspondence with elements of P1 and number

of vertices of G is at-most 2s1. We observe another property of the sequence BY and

show that G does not have any even closed trail. We show that number of edges in a

graph G not having any even closed trail is at-most cn , where n is number of vertices

of G. This shows that s1 ≥ cp1. Therefore, s = s1 + s2 ≥ c(p1 + p2) ≥ c lnY
ln lnY

.

Theorem 1.0.12 is the main result in [BP04].



Chapter 2

Large Sum-free sets in abelian

group

2.1 Introduction and statements of result

Throughout this chapter G will denote a finite abelian group of order n. If A is a

subset of G then we say that A is sum-free if the equation x + y = z has no solution

with (x, y, z) ∈ A × A × A. We say that A is maximal sum-free if it is not a proper

subset of any sum-free set. In this chapter we shall discuss the following question:

Question 2.1.1. Find a “structure” of all “large” maximal sum-free subsets of G.

In this regard we prove Theorem 2.1.10, Theorem 2.1.12 and Theorem 2.1.13. The

results are based on Theorem 2.1.14 which is a recent result of Ben Green and Imre

Ruzsa [GR05]. Our results give complete structure of all largest sum-free subsets of all

finite abelian groups G, in case any divisor of order of G is congruent to 1 modulo 3.

Before stating our results and previously known results related to the above ques-

tion, we shall explain what do we mean by “large” and what sort of ’structure” does

one may expect?

To understand the meaning of large in the above question, we need to understand

the following question.
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Question 2.1.2. What is the cardinality of a largest sum-free subset of G ?

Definition 2.1.3. (i) Given any finite abelian group K and a set A ⊂ K, we define

the density of the set A to be |A|
|K| and denote it by α(A).

(ii) We use µ(G) to denote the density of a largest sum-free subset of G.

We say a sum-free set A ⊂ G is large if the density of the set A is close to µ(G);

that is µ(G) − α(A) is “small”.

The value of µ(G) is now known for any finite abelian group G [GR05].

Theorem 2.1.4. ([GR05], Theorem 2) Let G be a finite abelian group and m be its

exponent. Then the value of µ(G) is given by the following formula.

µ(G) = maxd|m

[
d−2
3

]
+ 1

d

The following facts are straightforward to check.

(i) For any positive integer d, we have the natural projection pd : Z → Z/dZ. Let

the set Bd ⊂ Z/dZ be the image of integers in the interval ( d
3
, 2d

3
] under the map

pd. Then it is straightforward to check that Bd is sum-free and density of the set

Bd is given by

α(Bd) =

[
d−2
3

]
+ 1

d
.

(ii) For any positive integer d, there is a surjective homomorphism f : G → Z/dZ if

and only if d divides the exponent of the group G.

(iii) For any positive integer d and a surjective homomorphism f : G → Z/dZ, the

set A = f−1(Bd) is a sum-free subset of G and α(A) = α(Bd).

Therefore, the following result follows.

Theorem 2.1.5. ([GR05]) Given any finite abelian group G, there exists a sum-free

set A ⊂ G, a surjective homomorphism f : G → Z/dZ (where d is a positive integer),

a sum-free set B ⊂ Z/dZ; such that the following hold.

(i) A = f−1(B).
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(ii) The density of A is µ(G).

Now, regarding the structure of large sum-free subsets of G we may ask the following

question.

Question 2.1.6. Let A be a “large” sum-free subset of G. Then given any such set

A, does there always exist a surjective homomorphism f : G → Z/dZ (where d is some

positive integer) and a sum-free set B ⊂ Z/dZ, such that the set A is a subset of the

set f−1(B)?

Before discussing this question we describe the value of µ(G) more explicitly by

dividing the finite abelian groups in the following three classes.

Definition 2.1.7. Suppose that G is a finite abelian group of order n.

(i) If n is divisible by any prime p ≡ 2(mod 3) then we say that G is type I. We say

that G is type I(p) if it is type I and if p is the least prime factor of n of the form

3l + 2. In this case the value of µ(G) is equal to 1
3

+ 1
3p

.

(ii) If n is not divisible by any prime p ≡ 2(mod 3), but 3|n, then we say that G is

type II. In this case the value of µ(G) is equal to 1
3
.

(iii) The group G is said to be of type III if all the divisor of n (order of G) are

congruent to 1 modulo 3. Let m be the exponent of G. In this case the value of

µ(G) is equal to 1
3

− 1
3m

. We also note the fact that if G is a group of type III

then any subgroup as well as quotient of G is also a type III group.

Remark 2.1.8. We note the fact that if G is a type III group and d is any divisor of

m, then d is odd and congruent to 1 modulo 3. Therefore, d is congruent to 1 modulo

6 and d−1
6

is a non negative integer.

Theorem 2.1.4 was proven for type I and type II groups by Diananda and

Yap [DY69]. For some special cases of type III groups it was proven by various

authors ( see [Yap72, Yap75, RS74] ). For an arbitrary abelian groups of type III the

proof of Theorem 2.1.4 is due to Ben Green and Ruzsa [GR05].

Hamidoune and Plagne [oHP04] answered the Question 2.1.6 affirmatively when
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|A| ≥ |G|
3

, in the case |G| is odd. In case |G| is even they answered the Question 2.1.6

affirmatively if |A| ≥ |G|+1
3

. In case G = (Z/2Z)r with r ≥ 4 and |A| ≥ 5.2r−4 then

Davydov and Tombak [DT89] showed that answer of this question is affirmative. Re-

cently Lev [Lev05] answered this question affirmatively in the case when G = (Z/3Z)r

(with an integer r ≥ 3) and |A| > 5
27

3r. Lev [Lev] has also characterised the sum-free

subsets A of Z/pZ when p is prime and |A| > 0.33p.

Notice that none of the above mentioned results tells us anything related to the Ques-

tion 2.1.6, in case G is a finite abelian group of type III and G is not cyclic. In case G

is cyclic the answer of Question 2.1.6 is obviously affirmative. In case G is not cyclic

and of type III, Theorem 2.1.10 shows that the answer of Question 2.1.6 is negative.

For the rest of this chapter unless specified differently, G shall denote a finite abelian

group of type III and of order n. The symbol m shall denote the exponent of G and

k = m−1
6

.

Remark 2.1.9. If G is an abelian group of type III and m is exponent of G, there

exist S ⊂ G and C ⊂ G such that S and C are subgroups of G, C is isomorphic to

Z/mZ and G = S ⊕ C. In case G is not cyclic, S will be a nontrivial subgroup of G.

Let p : Z → Z/mZ be the natural projection from the group of integers to Z/mZ.

Theorem 2.1.10. Let G be a finite abelian group of type III. Let m denote the exponent

of G and k = m−1
6

. Suppose G is not a cyclic group and S, C are nontrivial subgroups

of G such that G = S ⊕ C, and C is isomorphic to Z/mZ. Let g : C → Z/mZ be an

isomorphism. Let J be any proper subgroup of S and b is any element belonging to S.

Then consider the following two examples:

(i) The set A = ((J + b) ⊕ g−1p({2k})) ∪ (S ⊕ g−1p({2k + j : 1 ≤ j ≤ 2k − 1}) ∪
((J +2b)c ⊕ g−1p({4k})). (Here for any set D ⊂ S the symbol Dc denotes the set

S \ D.)

(ii) The set A = ((J+b)⊕g−1p({2k}))∪((J−2b)c⊕g−1p({2k+1})∪(S⊕g−1p({2k+j :

2 ≤ j ≤ 2k − 1})) ∪ ((J + 2b)c ⊕ g−1p({4k})) ∪ ((J − b) ⊕ g−1p({4k + 1})).

Let A be any of the set as above. Then the following holds.
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(i) The set A is a sum-free subset of G and α(A) = µ(G).

(ii) For any positive integer d, there does not exist any surjective homomorphism

f : G → Z/dZ, a sum-free set B ⊂ Z/dZ, such that the set A is a subset of

the set f−1(B).

We got to know the above examples from certain remarks made in [GR05] about the

group (Z/7Z)r.

We prove that if G is a type III group and A is a sum-free subset of G of largest

possible cardinality then either A is an inverse image of a sum-free subset of a cyclic

quotient of G or A is one of the set as given in Theorem 2.1.10.

Definition 2.1.11. Given a sum-free set A ⊂ G , a surjective homomorphism h : G →
Z/dZ the following definition and notations are useful.

(i) For any i ∈ Z/dZ the symbol A(h, i) denote the set A ∩ h−1{i}.

(ii) For any i ∈ Z/dZ we define α(h, i) = d
n
|A(h, i)|.

(iii) Let l = d−1
6

and pd : Z → Z/dZ be the natural projection. The sets

Hd, Td, Md, Id ⊂ Z/dZ denote the following sets.

Hd = pd{l + j : 1 ≤ j ≤ l}
Md = pd{2l + j : 1 ≤ j ≤ 2l}
Td = pd{4l + j : 1 ≤ j ≤ l}
Id = pd{l + j : 1 ≤ j ≤ 4l}

(iv) The symbol H, T, M, I denote the sets Hm, Tm, Mm, Im respectively. The symbol

p denotes the map pm.

Theorem 2.1.12. Let G be a finite abelian group of type III. Let A be a sum-free

subset of an abelian group G. Let n denote the order of G and m denote the exponent

of G. Let k = m−1
6

and η = 2−23. Suppose that α(A) > µ(G)−min(η, 1
9m

). Then there

exists a surjective homomorphism

f : G → Z/mZ
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such that the following holds.

A ⊂ f−1p({2k + j : 0 ≤ j ≤ 2k + 1}). (2.1)

Further the following also holds.

(i) For all i ∈ p({2k + j : 2 ≤ j ≤ 2k − 1}) the inequality α(f, i) ≥ 1 −
m (µ(G) − α(A)) holds.

(ii) α(f, 2k) + α(f, 4k) ≥ 1 − m (µ(G) − α(A)).

(iii) α(f, 4k + 1) + α(f, 2k + 1) ≥ 1 − m (µ(G) − α(A))

(iv) If A is maximal then

f−1p({2k + j : 2 ≤ j ≤ 2k − 1}) ⊂ A

Using Theorem 2.1.12 the following theorem follows easily.

Theorem 2.1.13. Let A be a sum-free subset of an abelian group G of type III. Let the

symbol m denote the exponent of G and k = m−1
6

. Let the density of the set A be equal

to µ(G) and f : G → Z/mZ be a surjective homomorphism as given by Theorem 2.1.12.

Let the set S denote the kernel of f and C be a subgroup of G such that G = S ⊕ C.

Let g : C → Z/mZ be an isomorphism obtained by restricting f to the subgroup C.

Then there exist J a subgroup of S and b ∈ S such that one of the following holds:

(i) The set A = f−1p ({2k + j : 1 ≤ j ≤ 2k}).

(ii) One of the set A or −A is equal to the following set

(
(J + b) ⊕ g−1p({2k})

)
∪
(
f−1p({2k + j : 1 ≤ j ≤ 2k − 1})

)
∪((J+2b)c⊕g−1{4k}).

(Here and in the following for any set D ⊂ S the symbol Dc denotes the set

S \ D.)

(iii) The set A is union of the sets f−1p({2k + j : 2 ≤ j ≤ 2k − 1}),

(J + b) ⊕ g−1p{2k}, (J + 2b)c ⊕ g−1p{4k},
(J − b) ⊕ g−1p{4k + 1}, (J − 2b)c ⊕ g−1p{2k + 1}.
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The proof of Theorem 2.1.12 is based on the following result of Ben Green and

Ruzsa [GR05].

Theorem 2.1.14. ([GR05], Proposition 7.2.) Let A be a sum-free subset of an abelian

group G of type III. Let η = 2−23. Suppose that α(A) ≥ µ(G) − η, then there exists a

surjective homomorphism γ : G → Z/qZ with q 6= 1 such that the following holds.

A ⊂ γ−1Iq.

We require the following definitions and notations.

Definition 2.1.15. Let A be a sum-free subset of G and α(A) ≥ µ(G) − η, then we

choose a γ a surjective homomorphism from Z to Z/qZ with q 6= 1 and A ⊂ γ−1Iq.

Following the terminology of [GR05] we call γ the special direction of the set A and

q the order of special direction. We use the symbols αi and Ai to denote the number

α(γ, i) and the set A(γ, i) respectively. We use symbol S to denote the set ker(γ) and

Si to denote γ−1{i}.

Remark 2.1.16. Notice that in case G = (Z/7Z)r, Theorem 2.1.14 is equivalent to

Theorem 2.1.12, as in this special case l + 1 = 2l.

2.2 Plan of the proof

Let H(A) be the largest subset of G such that H(A)+A = A. The set H(A) as defined

is called period or stabiliser of the set A. For any set A as in Theorem 2.1.10 we prove

that H(A) = J where J is as in Theorem 2.1.10. Using this Theorem 2.1.10 is easy to

prove.

Let A be as in Theorem 2.1.12 and γ be the special direction of A. The main dif-

ficulty in proving Theorem 2.1.12 is to prove the existence of a homomorphism f such

that (2.1) holds. For this we show the following.

(i) The order of the special direction of A is m.

(ii) We define the set L = {i ∈ Z/mZ : αi > 1
2
}. We show that for any i, j ∈ L,

αi+j=0. In particular the set L is a sum-free subset of Z/mZ. Moreover, the

cardinality of L is 2k = 2m−1
6

; that is L is a largest sum-free subset of Z/mZ.
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(iii) We describe all the largest sum-free subset of Z/mZ which are subsets of I. Using

Theorem 2.1.14 this characterises all the largest sum-free subsets of Z/mZ. This

determines the structure of L and the proof of Theorem 2.1.12 is completed.

There are two facts which we use repeatedly. One is that for any i, j ∈ Z/qZ the sets

A(γ, i) + A(γ, j) and A(γ, i + j) are disjoint. Another is that for any divisor d of m,

the set Id is divided into 2d−1
6

disjoint pairs of the form (i, 2i) with i belonging to the

set Hd ∪ Md.

2.3 Stabiliser of largest sum-free subset

In this section we shall give the proof of Theorem 2.1.10. Any abelian group acts on

itself by translation. Given any set B ⊂ G we define the set H(B) to be those elements

of the group G such that the set B is stable under the translation by the elements of

the set H(B). In other words, the set H(B) = {g ∈ G : g + B = B}. For any set B

the set H(B) is a subgroup.

Let G be an abelian group of type III and let A ⊂ G be as in Theorem 2.1.10. To

prove Theorem 2.1.10 we shall prove the following

Lemma 2.3.1. Let S and C be as in Theorem 2.1.10 and πC : G → G/S = C be the

natural projection. Then the set πC(H(A)) = {0}.

Proof. Since πC is a homomorphism and H(A) is a subgroup of G, the set πC(H(A))

is a subgroup of M. Since H(A) + A = A by the definition of H(A), it follows that

πC(H(A))+πC(A) = πC(A). Therefore, the set πC(A) is a union of cosets of πC (H(A)).

Therefore, the cardinality of the subgroup πC(H(A)) divides the cardinality of the set

πC(A). Since the set πC(H(A)) is a subgroup of C, it is also true that |πC(H(A))|
divides m. This implies that |πC(H(A))| divides gcd(|πC(A)|, m). Now if A is a set

as in Theorem 2.1.10 (i) then the cardinality of the set πC(A) is equal to 2k + 1 and

if A is a set as in Theorem 2.1.10 (ii) then the cardinality of the set πC(A) is equal

to 2k + 2. Since m = 6k + 1 it follows that in first case the number gcd(|πC(A)|, m)

divides 2 and in the second case it divides 5. But as G is type III group, any divisor

of m which is not equal to 1 is greater than or equal to 7. Hence gcd(|πC(A)|, m) = 1



Chapter 2 LARGE SUM-FREE SETS 17

for any of the set A as in Theorem 2.1.10. This forces |πC(H(A))| = 1 and hence the

lemma follows.

Proposition 2.3.2. Let A be any of the set as in Theorem 2.1.10 and S be a subgroup

of G, J be a proper subgroup of S as in Theorem 2.1.10. Then the stabiliser of the set

A is equal to the set J .

Proof. Using the previous lemma it follows that H(A) + ((J + b) ⊕ g−1{2k}) = (J +

b) ⊕ g−1{2k}. This implies that H(A) + J + b = J + b. This implies that H(A) ⊂ J .

But it is straightforward to check that J +A = A. Therefore, it follows that J = H(A),

proving the claim.

Proof. of Theorem 2.1.10:

(i) This is straightforward to check.

(ii) Suppose A is one of a set as in Theorem 2.1.10. Suppose the claim is not true

for this set. Then there exist a positive integer q, a surjective homomorphism

f : G → Z/qZ, a sum-free set B ⊂ Z/qZ such that the set A is a subset of

f−1(B). Since from (i), the set A is a sum-free set of largest possible cardinality,

it follows that the set A = f−1(B). Therefore, the kernel of f is a subset of H(A).

Therefore, we have the following inequality

|H(A)| ≥ n

q
. (2.2)

But from Proposition 2.3.2 the stabiliser of the set A is J which is a proper

subgroup of S. Since m is the exponent of G it follows that q is less than or equal

to m. Therefore, we have the following inequality

|H(A)| < |S| =
n

m
≤ n

q
(2.3)

This contradiction proves the claim.
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2.4 Order of the special direction

Let A be a sum-free subset of G and α(A) > min(η, 5
42m

). Let γ be the special direction

of the set A as given by Theorem 2.1.14. In this section, we shall show that the order

of γ is equal to m. The proof of this result is inherent in [GR05]. We reproduce the

proof here for the sake of completeness.

Lemma 2.4.1. ([GR05], Lemma 7.3. (ii) ) Let A be a sum-free subset of the group

G. Let g be any surjective homomorphism g : G → Z/dZ, where d is a positive integer.

Then for any i ∈ Z/dZ, the following inequality holds.

α(g, i) + α(g, 2i) ≤ 1 (2.4)

Here α(g, i) is a number as defined in section 2.1.

Proof. For any i ∈ Z/dZ, let the set A(g, i) be as defined in section 2.1. The fact that

g is a homomorphism implies that the set A(g, i)+A(g, i) is a subset of the set g−1{2i}.
The fact that the set A is sum-free implies that the set A(g, i)+A(g, i) is disjoint from

the set A(g, 2i). Therefore, we have the following inequality.

|A(g, i) + A(g, i)| + |A(g, 2i)| ≤ |g−1{2i}| (2.5)

The claim follows by observing that the set A(g, i) + A(g, i) has cardinality at least

|A(g, i)|.

The following lemma is straightforward to check, but is very useful.

Lemma 2.4.2. Let d be a positive integer congruent to 1 modulo 6. Let d = 6l+1. Let

the set Id, Hd, Md, Td are subsets of the group Z/dZ as defined in section 2.1. The set

Id is divided into 2l disjoint pairs of the form (i, 2i) where i belongs to the set Hd ∪ Td

and 2i belongs to the set Md.

Proposition 2.4.3. Let A be a sum-free subset of an abelian group G, of type III. Let

m be the exponent of G and α(A) > min(η, 5
42m

). Let γ : G → Z/qZ be the special

direction of the set as given by Theorem 2.1.14. Then the order of γ = q = m.

Proof. Since G is type III group, therefore any prime divisor of the order of G is greater

than or equal to 7. Therefore, if q is not equal to m, then

q ≤ m

7
.
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Using Theorem 2.1.14 we have the following equality for the density of the set A.

α(A) =
1

q

∑

i∈Z/qZ

αi =
1

q

∑

i∈Iq

αi

Now, from Lemma 2.4.2, it follows that

α(A) =
1

q

∑

i∈Hq∪Mq

(αi + α2i) ≤
1

q

∑

i∈Hq∪Mq

1.

Since the cardinality of the set Hq ∪ Mq is equal to q−1
3

, it follows that

α(A) ≤ 1

q

q − 1

3
≤ 1

3
− 7

3m
.

But the last inequality above is contrary to assumption that

α(A) > µ(G) − 5

42m
>

1

3
− 7

3m
.

Hence the lemma follows.

2.5 Element with large fibre

Given a set A ⊂ G such that α(A) ≥ µ(G) − min(η, 5
42m

), from Theorem 2.1.14 and

Proposition 2.4.3 it follows that γ is a surjective homomorphism from G to Z/mZ such

that A is a subset of the set γ−1(I), where γ is the special direction of the set A and

I is a subset of Z/mZ as defined in section 2.1. Then we define L ⊂ Z/mZ as follows.

L = {i ∈ Z/mZ : αi >
1

2
}

We say that the fibre of an element i ∈ Z/mZ is large if i belong to the set L. It is

clear that L is a subset of the set I. In this section, we shall show that the set L is a

sum-free subset Z/mZ and the cardinality of the set L is 2k, where k is equal to m−1
6

.

The fact that the set L is sum-free is a consequence of the following folklore in additive

number theory. We give a proof of the following lemma for the sake of completeness.

Lemma 2.5.1. (folklore) Let C and B be subsets of a finite abelian group K such that

min(|C|, |B|) > 1
2
|K|. Then C + B = K.
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Proof. Suppose there exist x ∈ K such that x does not belong to C +B. This is clearly

equivalent to the fact that C ∩ (x−B) = φ. But this means that |K| > |C|+ |x−B| >

|K|. This is not possible. Hence the lemma is true.

Lemma 2.5.2. For any two elements i, j ∈ L, we have αi+j = αi−j = 0. In particular

the set L is sum-free.

Proof. The fact that γ is a homomorphism implies that the set Ai + Aj is a subset of

the set Si+j. Take any x ∈ Si, y ∈ Sj. Let C = Ai − x and B = Aj − y so that we have

the sets C and B are subsets of group S. Then applying Lemma 2.5.1 it follows that

C + B = S. Therefore, we have Ai + Aj = Si+j. The fact that A is sum-free implies

that Ai+j ∩ (Ai + Aj) = φ. Since we have shown that the set Ai + Aj = Si+j, it follows

that the set Ai+j = φ. In other words it follows that αi+j = 0. From similar arguments

it also follows that αi−j = 0.

Now we shall show that the cardinality of the set L is equal to 2k. For this we

require the following Lemma.

Lemma 2.5.3. Let A, G, be as in theorem 2.1.12. Let m be the exponent of the group

G and I, H, T, M are the subsets of Z/mZ as defined in section 2.1. Let m = 6k + 1.

Let g be a surjective homomorphism g : G → Z/mZ such that the following holds.

A ⊂ g−1(I).

Then we have the following inequality

α(g, i) + α(g, 2i) ≥ 1 − m(µ(G) − α(A)), ∀i ∈ H ∪ T. (2.6)

Proof. From the assumption on the homomorphism g it follows that the density of the

set A satisfy the following equality

α(A) =
1

m

∑

i∈I

α(g, i)

Now from Lemma 2.4.2, it follows that the set I is divided into 2k disjoint pairs of the

form (i, 2i) where i belongs to the set H ∪ T . Therefore, it follows that

α(A) =
1

m

∑

i∈I

α(g, i) =
1

m

∑

i∈H∪T

(α(g, i) + α(g, 2i)).



Chapter 2 LARGE SUM-FREE SETS 21

Now using Lemma 2.4.1 it follows that for any i0 ∈ H ∪ T the following inequality

holds

mα(A) ≤ 2k − 1 + α(g, i0) + α(g, 2i0).

From this the required inequality follows for any i0 belonging to the set H ∪ T after

observing that µ(G) = 2k
m

.

We need the following well known theorem due to Kneser.

Theorem 2.5.4. (Kneser) Let C, B be subsets of a finite abelian group K such that

|C + B| < |C| + |B|. Let F = H(C + B) = {g ∈ G : g + C + B = C + B} be the

stabiliser of the set C + B. Then the following holds

|C + B| = |C + F | + |B + F | − |F |.

In particular the set F is a nontrivial subgroup of K and

|F | ≥ |C| + |B| − |C + B|. (2.7)

For the proof of this theorem one may see [Nat91].

Lemma 2.5.5. Let A, G, be as in theorem 2.1.12, γ be as provided by Theorem 2.1.14

and H, T, M be as defined earlier. Then the following holds

(i) For any i ∈ H ∪ T if αi ≤ 1
2

then α2i > 1
2
.

(ii) The cardinality of the set L is equal to 2k.

Proof. (i) Suppose the claim is not true. Then there exist i0 ∈ H ∪ T such that

αi0 ≤ 1

2
(2.8)

α2i0 ≤ 1

2
. (2.9)

Then from (2.6) it follows that

αi0 >
1

2
− 5

42
(2.10)

α2i0 >
1

2
− 5

42
. (2.11)
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Take any x ∈ Si0 and consider the set Ai0 − x. Then invoking (2.5) and us-

ing (2.11), it follows that

|(Ai0 − x) + (Ai0 − x)| = |Ai0 + Ai0| ≤ |S| − |A2i0 | < (
1

2
+

5

42
)|S| (2.12)

Therefore, using (2.10) it follows that

2|Ai0 − x| = 2|Ai0| > 2(
1

2
− 5

42
)|S| > |(Ai0 − x) + (Ai0 − x)| (2.13)

Let F denote the stabiliser of the set (Ai0 − x) + (Ai0 − x). We can apply

Theorem 2.5.4 with C = B = Ai0 − x and using (2.7), (2.12), (2.13) we have the

following inequality

|F | >

(
1

2
− 15

42

)
|S| =

1

7
|S|. (2.14)

Therefore, the cardinality of the group S/F is strictly less than 7. But since S

is a group of type III, the group S/F is also of type III. Hence it follows that

S = F . Therefore, the stabiliser of the set Ai0 − x is equal to the group S. This

implies that the set Ai0 = Si0 . This is in contradiction to the assumption that

αi0 ≤ 1
2
. Hence the claim follows.

(ii) The set I is divided into 2k disjoint pairs of the form (i, 2i) with i ∈ H∪T . From

(i) it follows that at-least one element of any such pair belongs to the set L. The

claim follows since we have shown that the set L is sum-free and is a subset of

the set I.

From Lemma 2.5.2 and Lemma 2.5.5 the following proposition follows

Proposition 2.5.6. (i) The set L is a sum-free subset of Z/mZ of cardinality 2k.

The set L is a subset of the set I.

(ii) For any two elements i, j ∈ L, we have αi+j = αi−j = 0.

2.6 Sum-free subset of cyclic group

Let the group Z/mZ be of type III group and m = 6k + 1. In this section we shall

characterise all the sets E ⊂ Z/mZ such that the set E is sum-free and |E| = 2k. From
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Theorem 2.1.14 it is sufficient to characterise those sets E which are subset of the set

I.

Lemma 2.6.1. Let E ⊂ Z/mZ be a sum-free set. Let the group Z/mZ be of type

III and the cardinality of the set E be 2k, where k is equal to m−1
6

. Let H, T, M, I be

subsets of Z/mZ as defined in section 2.1 and the set E is a subset of the set I. Then

for any element y belonging to the set M exactly one of the element of the pair ( y
2
, y)

belongs to the set E.

Proof. This is straightforward from the fact that the set I is divided into 2k disjoint

pairs of the form ( y
2
, y) with y belonging to the set M and the assumption that the set

E is a sum-free set and a subset of the set I.

We have the natural projection p from the set of integers to Z/mZ.

p : Z → Z/mZ

Since the restriction of map p to the set {0, 1, 2, · · · , m − 2, m − 1} ⊂ Z is a bijection

to the group Z/mZ ( as a map of the sets) we can define

p−1 : Z/mZ → {0, 1, 2, · · ·m − 1}

in an obvious way.

The following lemma is straightforward to check.

Lemma 2.6.2. (i) The set H is equal to the set −T .

(ii) The set M is equal to the set −M .

(iii) The set I is equal to the set −I.

(iv) For any set B ⊂ Z/mZ the set B ∩ T is same as the set −((−B) ∩H). Also the

set p−1(B ∩ T ) = m − p−1((−B) ∩ H).

(v) The set H + H as well as the set T + T are subsets of the set M .

(vi) Given any even element y belonging to the set p−1(M) the element p(y)
2

belong to

the set H. Also the element p−1(p(y)
2

) is equal to the element y
2
.

(vii) Given any odd element y belonging to the set p−1(M) the element p(y)
2

belong to

the set T . Also the element p−1(p(y)
2

) is equal to the element y+6k+1
2

.
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(viii) Given any two elements x, y belonging to the set ∈ p−1(H) which are of same

parity, the element p−1(p(x+y)
2

) = x+y
2

and the element x+y
2

belongs to the set

p−1(H). Moreover if x is strictly less than y then the following inequality holds.

x <
x + y

2
< y

Lemma 2.6.3. Let E be a set as above. Then the following holds.

(i) Given any two elements x, y which belong to the set p−1(E ∩H) and are of same

parity, the element x+y
2

belong to the set p−1(E ∩ H).

(ii) Given any two elements x, y which belong to the set p−1(E∩H) and are of different

parity, the element x+y+6k+1
2

belong to the set p−1(E ∩ T ).

(iii) Given an element x belonging to the set p−1(E ∩ H) and an element y belonging

to the set p−1(E ∩ T ), the element p(x)−p(y)
2

belong to the set p−1(E ∩ (H ∪ T )).

(iv) Any two consecutive element of the set p−1(E ∩H) (or of the set p−1(E ∩T ) )are

of different parity.

Proof. Since the set E is sum-free, it follows that given any two elements x, y belonging

to the set p−1(E), neither the element p(x) + p(y) nor the element p(x) − p(y) belong

to the set E. Using this we prove all the claims.

(i) Under the assumption, the element p(x) + p(y) belong to the set M . From

Lemma 2.6.1 it follows that the element p(x) + p(y)
2

belong to the set E. Also

the element p−1(p(x) + p(y)) is equal to x + y and is even. Therefore, invoking

Lemma 2.6.2 it follows that the element p−1
(

p(x) + p(y)
2

)
is equal to x+y

2
and

belong to the set p−1(H). Hence the claim follows.

(ii) Under the assumption, the element p(x) + p(y) belong to the set M . From

Lemma 2.6.1 it follows that the element p(x) + p(y)
2

belong to the set E. In this

case the element p−1p(x+ y) is equal to the element x+ y and is odd. Therefore,

invoking Lemma 2.6.2 it follows that the element p−1
(

p(x) + p(y)
2

)
is equal to the

element x+y+6k+1
2

and belongs to the set p−1(T ). Hence the claim follows.

(iii) Under the assumption, the element p(x) − p(y) belong to the set M . Therefore,

the claim follows invoking Lemma 2.6.1.
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(iv) Let the set p−1(E∩H) = {x1 < x2 < · · · < xh}. Suppose there exist 1 ≤ i0 ≤ h−1

such that the element xi0 and the element xi0+1 have same parity. Then from

(i) it follows that the element
xi0

+xi0+1

2
belong to the set p−1(E ∩ H). From

Lemma 2.6.2 the following inequality also follows.

xio <
xio + xio+1

2
< xio+1

But this contradicts the fact that the elements xio and xio+1 are consecutive

elements of the set p−1(E∩H). Therefore, the claim follows for the set p−1(E∩H).

Replacing the set E by the set −E, it follows that any two consecutive element

of the set p−1 ((−E) ∩ H) are also of different parity. Noticing that the set

p−1(E ∩ T ) = m− p−1 ((−E) ∩ H), the claim follows for the set p−1(E ∩ T ) also.

Proposition 2.6.4. Let E be a set as above then the following holds.

(i) The set p−1(E ∩ H) as well as the set p−1(E ∩ T ) is an arithmetic progression

with an odd common difference.

(ii) The following inequality holds.

|E ∩ T | − 1 ≤ |E ∩ H| ≤ |E ∩ T | + 1 (2.15)

Proof. Let the set p−1(E ∩ H) = {x1 < x2 < · · · < xh}.

(i) In case the cardinality of the set E ∩ H is less than or equal to 2, the claim

is trivial for the set p−1(E ∩ H). Otherwise for any 1 ≤ i ≤ h − 2, consider

the elements xi, xi+1, xi+2, then from Lemma 2.6.3 it follows that the parity of

elements xi and xi+1 are different. For the same reason the parity of elements

xi+1 and xi+2 are different. Therefore, the parity of elements xi and xi+2 are

same. Therefore, from Lemma 2.6.3 it follows that the element xi+xi+2

2
belong to

the set p−1(E ∩ H). But from Lemma 2.6.2 the following inequality follows.

xi <
xi + xi+2

2
< xi+1

Hence it follows that for any 1 ≤ i ≤ h − 2

xi + xi+2

2
= xi+1.
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This is equivalent to the fact that the set p−1(E∩H) is an arithmetic progression.

It also follows that the common difference is odd. The claim for the set p−1(E∩T )

follows by replacing the set E by the set −E.

(ii) From Lemma 2.6.3 it follows that the set

{x1 + x2 + 6k + 1

2
<

x2 + x3 + 6k + 1

2
< · · · <

xh−1 + xh + 6k + 1

2
} ⊂ p−1(E∩T ).

(2.16)

Therefore, it follows that

|E ∩ T | ≥ |E ∩ H| − 1.

Replacing the set E by the set −E, it also follows that

|E ∩ H| ≥ |E ∩ T | − 1.

Hence the claim follows.

2.6.1 max(|E ∩ H|, |E ∩ T |) ≥ 2

Proposition 2.6.5. Let E be a set as above and H, T, M as defined above.

(i) Suppose the inequality min(|E ∩ H|, |E ∩ T |) ≥ 2 is satisfied. Then the set

p−1(E ∩ H) and the set E ∩ T are arithmetic progression with same common

difference d(H, E) = d(T, E) = d(E)( say ).

(ii) Suppose the inequality min(|E ∩ H|, |E ∩ T |) ≥ 2 is satisfied. The set p−1(Ec ∩
M) is an arithmetic progression with common difference d(E), where d(E) is a

positive integer given by (i).

(iii) Suppose the cardinality of the set p−1(E ∩ H) (resp. p−1(E ∩ T ) ) is equal to 2

and the cardinality of the set p−1(E ∩ H) (resp. p−1(E ∩ T ) ) equal to 1, then

the set p−1(Ec∩M) is an arithmetic progression with common difference d(H, E)

(resp. d(T, E) ) which is equal to 1.

(iv) Let the inequality max(|E∩H|, |E∩T |) ≥ 2 be satisfied. Then the set p−1(Ec∩M)

is an arithmetic progression with common difference equal to 1.
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Proof. (i) We discuss the two cases.

Case 1: max((|E ∩ H|, |E ∩ T |) ≥ 3.

Under the assumption, either the inequality |E ∩ H| ≥ 3 holds or the inequality

|E ∩ T | ≥ 3 holds (both the inequalities may also hold). Since the claim holds

for the set E if and only if it holds for the set −E, it is sufficient to prove the

assertion under the assumption that the inequality |E ∩ H| ≥ 3 holds.

Now from Proposition 2.6.4 it follows that the sets p−1(E ∩ H) and E ∩ T are

arithmetic progression. Let the set

p−1(E ∩H) = {x1 < x1 + d(H, E) < x2 +2d(H, E) < · · · < x1 +(h− 1)d(H, E)}.

Then from (2.16) it follows that the following set

{x1 +
d(H, E) + 6K + 1

2
, x1 +

d(H, E) + 6K + 1

2
+ d(H, E)}

is a subset of the set p−1(E ∩ T ). From this the following inequality follows

immediately

d(H, E) ≤ d(T, E).

In the case the cardinality of the set E ∩ T is equal to 2 it also follows that the

set

{x1 +
d(H, E) + 6K + 1

2
, x1 +

d(H, E) + 6K + 1

2
+ d(H, E)}

is equal to the set p−1(E ∩ T ). Hence the claim follows in case the cardinality

of the set E ∩ T is equal to 2. Suppose the cardinality of the set E ∩ T is also

greater than or equal to 3, then replacing the set E by the set −E, it follows that

d(H,−E) ≤ d(T,−E).

Since the numbers d(H,−E) and d(T,−E) are equal to the numbers d(T, E) and

d(H, E) respectively, the claim follows.

Case 2: |E ∩ H| = |E ∩ T | = 2.

Let the set p−1(E ∩ H) = {x, y} and the set p−1(E ∩ T ) = {z, w}. Then from

Lemma 2.6.3, it follows that the parity of the elements x and y are different and

the element x+y+6k+1
2

belong to the set p−1(E ∩ T ). Since we are not assuming

that z < w, we can assume without any loss of generality that the element

x + y + 6k + 1

2
= z.
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For the similar reason the element z+w−6k−1
2

belong to the set p−1(E ∩T ) and we

can assume without any loss of generality that the element

z + w − 6k − 1

2
= x.

Therefore, it follows that

w − z = x − y.

This proves the claim.

(ii) First we notice that the claim is true for the set E if and only if it is true

for the set −E. This is because the sets (−E)c and M are equal to the sets

−(E)c and −M respectively. Therefore, the set p−1(Ec ∩ M) is same as the

set 6k + 1 − p−1((−E)c ∩ M). Therefore, replacing the set E by the set −E if

necessary we may assume that the following inequality holds.

|E ∩ H| ≥ |E ∩ T |.

Let the smallest member of p−1(E ∩H) be x so that p−1(E ∩ H) = {x + jd(E) :

0 ≤ j ≤ h − 1}. Using (2.16) it follows that the set

{a + jd(E) : 0 ≤ j ≤ h − 2} where a = x + 3k +
d(E) + 1

2
, (2.17)

is a subset of p−1(E ∩ T ) and its cardinality is h − 1. Since the cardinality of

p−1(E ∩ T ) is at-most h and since p−1(E ∩ T ) is in arithmetic progression with

common difference d(E), it follows that it is a subset of {a + jd(E) : −1 ≤
j ≤ h − 1}. On the other hand, p−1(Ec ∩ M) is the disjoint union of {2x :

x ∈ p−1(E ∩ H)} and {2x − 6k − 1 : x ∈ p−1(E ∩ T )}. Therefore, we have

{2x+ jd(E) : 0 ≤ j ≤ 2h−2} ⊂ p−1(Ec∩M) ⊂ {2x+ jd(E) : −1 ≤ j ≤ 2h−1}.
From this the claim is immediate.

(iii) It is sufficient to prove the assertion in the case the cardinality of the sets p−1(E∩
H) and p−1(E ∩ T ) are equal to 2 and 1 respectively. In the other case then the

assertion follows by replacing the set E by the set −E. Suppose the set p−1(E∩H)

is {x, y} and p−1(E ∩ T ) is {z}. Then it follows that the element 2z − 6k − 1 is

equal to the element x+y. It also follows that the set p−1(Ec∩M) is {x, x+y, 2y}.
Hence the assertion follows.
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(iv) Replacing the set E by the set −E we may assume |E∩H| ≥ 2. From (i), (ii) and

(iii) we know that the set p−1(Ec∩M) is an arithmetic progression with common

difference equal to d(H.E) which is an odd positive integer. Suppose the assertion

is not true, then it means that d(H, E) ≥ 3. Then the smallest element of the set

p−1(E∩H) (let say x) is less than or equal to 2k−3. This implies that k is at-least

3. It also follows that the cardinality of the set {2k+1, 2k+2, 2k+3}∩(E∩M) ≥ 2.

But since x ≤ 2k − 3, the set {x + 2k + 1, x + 2k + 2, x + 2k + 3} is a subset

of the set p−1(M) and contains at-least 2 elements of the set p−1(Ec ∩ M). But

this contradicts the fact that the set p−1(Ec ∩M) is in arithmetic progression of

common difference d(H, E) which is at-least 3. Hence the claim follows.

Definition 2.6.6. We shall say that a set B ⊂ Z is an interval if either it is an

arithmetic progression with common difference equal to 1 or the cardinality of the set

B is equal to 1.

Proposition 2.6.7. Let E be a set as above. Suppose max(|E ∩H|, |E ∩ T |) ≥ 2 then

E = H ∪ T .

Proof. From Lemma 2.6.1, the conclusion of proposition is equivalent of the assertion

that p−1(Ec ∩ M) = p−1(M). Let y be the smallest member of p−1(Ec ∩ M) and

it’s cardinality is s. Then using Proposition 2.6.5 it follows p−1(Ec ∩ M) is equal to

{y + j : 0 ≤ j ≤ s − 1}. Suppose the claim is not true. Therefore, at least one of

the element of the set {2k + 1, 4k} belong to the set p−1(E). The assumption of the

proposition is satisfied for the set −E as well and the conclusion is true for the set E

if and only if it is true for the set −E. Therefore, replacing the set E by the set −E

if necessary we may assume that the element 2k + 1 belong to the set p−1(E). Using

this we prove the following.

Claim: p−1(E ∩ H) = p−1(H).

Let x be the smallest member of p−1(Ec ∩ M) and it’s cardinality is h. Then using

Proposition 2.6.5 it follows p−1(E ∩ H) is equal to {x + j : 0 ≤ j ≤ h− 1}. Therefore,

it is sufficient to show that x + h − 1 is 2k and x is k + 1.

Claim The largest element of p−1(E ∩ H) is 2k.
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Suppose x + h − 1 is not equal to 2k. Since the set E is sum-free, it follows that

{2x + j : 0 ≤ j ≤ 2h− 2} is a subset of p−1(Ec ∩M). As x + h− 1 is not 2k, therefore

2x+2h belong to p−1(E ∩M). Therefore, y + s− 1 ≤ 2x+2h− 1. Since 2k +1 belong

to the set p−1(E) it also follows that x+h−1+2k+1 belong to the set p−1(Ec). Since

x + h− 1 < 2K, we have x + h− 1 + 2k + 1 belong to the set p−1(Ec ∩M). Therefore,

it follows that x + h − 1 + 2k + 1 ≤ 2x + 2h − 1 which implies x + h − 1 ≥ 2k. Since

x+h−1 belong to the set p−1(H), it follows that x+h−1 = 2k. This is contradictory

to the assumption x + h − 1 6= 2k. Therefore, x + h − 1 is 2k.

Claim The smallest element of p−1(E ∩ H) is k + 1.

Now, we will show that x is k + 1. Since we have shown that p−1(E ∩ H) = {x + j :

0 ≤ j ≤ 2k − x}, using Lemma 2.6.3 it follows that {x + j : 3k + 1 ≤ j ≤ 5k − x} is

a subset of p−1(E ∩ T ) and it’s cardinality is h − 1 = 2k − x. The set p−1(E ∩ T ) is

an interval and it’s cardinality is at most h + 1. Therefore, we have that p−1(E ∩ T )

is a subset of {x + j : 3k − 1 ≤ j ≤ 5k − x}. But in case {x + 3k − 1, x + 3k + 1} is

a subset of p−1(E ∩ T ), from Lemma 2.6.3 it follows that x − 1 belong to p−1(E ∩ T ).

This contradicts that x is the smallest element of p−1(E ∩ H). Therefore, p−1(E ∩ T )

is a subset of {x + j : 3k ≤ j ≤ 5k − x}. Therefore, the least element of p−1(E ∩ T ) is

either x + 3k or x + 3k + 1.

Case The least element of p−1(E ∩ T ) is x + 3k.

In this case the element x + 3k − 2k = x + k does not belong to the set p−1(E).

Since x belong to p−1(H), the element x + k belong to p−1(M). Therefore, in case

x+k is even, the element x+k
2

belong to the set p−1(E ∩H) . But if x+k is even, then
x+k

2
< x. This contradicts the assumption that the element x is the least element of

p−1(E∩H). In case x+k is odd, then the element x+k+6k+1
2

belong to the set p−1(E∩T ).

Now in case x is not k + 1 then x ≥ k + 2 and the inequality x+k+6k+1
2

< x + 3k is

satisfied. This contradicts that x + 3k is the least element of p−1(E ∩ T ). Therefore,

x has to be k + 1 in this case.

Case The least element of p−1(E ∩ T ) is x + 3k + 1.
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In this case the element x + k + 1 belong to the set p−1(Ec ∩ M). Then again if

x is not k + 1, this leads to a contradiction.

Therefore, p−1(E ∩ H) = H. The assumption of proposition can hold only in case

k ≥ 2. In that case k + 1 and the element k + 2 belong to p−1(H) = p−1(E ∩ H).

Therefore, the element 2k+3 does not belong to p−1(E) and invoking Lemma 2.6.1 the

element p−1p
(

2k+3
2

)
= 4k + 2 belong to p−1(E ∩ T ). But since by assumption 2k + 1

belong to the set p−1(E), this contradicts that the set E is sum-free. Therefore, finally

it follows that the set p−1(Ec ∩ M) = M and hence the proposition follows.

2.6.2 max(|E ∩ H|, |E ∩ T |) ≤ 1

Replacing the set E by the set −E if necessary we may assume that the following

inequality holds.

|E ∩ H| ≥ |E ∩ T |

Then we have the following three possible cases.

(i) The equality |E ∩ H| = |E ∩ T | = 1 holds.

(ii) The cardinality of the sets E ∩ H and E ∩ T are 1 and 0 respectively.

(iii) The equality |E ∩ H| = |E ∩ T | = 0.

Proposition 2.6.8. Let E, H, T, M be as above. If |E ∩ H| = |E ∩ T | = 1, then the

set p−1(E) = {2k} ∪ {2k + 2, 2k + 3, · · · , 4k − 2, 4k − 1} ∪ {4k + 1}.

Proof. Let the set (E ∩ H) = {x} and the set (E ∩ T ) = {y}. From Proposition 2.6.1

the set Ec ∩ M = {2x, 2y} and the set p−1(Ec ∩ M) = {p−1(2x), p−1(2y)}. We claim

that

Claim : x = -y.

Proof of claim: From Proposition 2.6.1 it follows that the element −y+x
2

belongs to

the set E ∩ (H ∪ T ). Now if p−1(−y) and p−1(x) have same parity then the element

p−1(−y+x
2

) belongs to the set p−1(E ∩ H). But as the element p−1(x) is the only ele-

ment belonging to the set E ∩H, in this case the claim follows. Otherwise the element
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−y+x
2

belongs to the set E ∩ T and hence is equal to y. Also then p−1(−x) and p−1(y)

have different parity and the element −x+y
2

is equal to x. But this implies after simple

calculation that x = 9x. As m is odd this is not possible. Hence the claim follows.

Next claim is

Claim: p−1(x) = 2k

Proof of claim: Suppose not, then p−1(y) is also not equal to 4k + 1. Therefore, the

element 2k +1 belong to the set p−1(E). This implies that the element p−1(x)+2k +1

belongs to the set p−1(Ec∩M). The element p−1(x)+2k +1 also satisfy the inequality

p−1(x) + 2k + 1 > 2p−1(x). Therefore, the element p−1(x) + 2k + 1 = p−1(2y). Since

y = −x, it follows that p−1(2y) = 6k + 1 − 2p−1(x). Therefore, we have 3p−1(x) = 4k.

This is possible only if k is divisible by 3. It is easy to check that case k = 3 is not pos-

sible. So we may assume that k is greater than 3 and is divisible by 3. As k is strictly

greater than 3 therefore p−1(x) = 4k
3

6= k + 1 and hence 2k + 2 belong to the set E.

Also we have the inequality 4k
3
≤ 2k−2. Therefore, the element p−1(x)+2k+2 belong

to the set Ec ∩ M . Therefore, the elements p−1(x) + 2k + 1 as well as p−1(x) + 2k + 2

belong to the set p−1(Ec ∩M) and neither of these elements are same as 2p−1(x). This

implies that the cardinality of the set p−1(Ec ∩ M) is greater than or equal to 3. This

is not possible. Hence the claim follows.

Now the proposition follows immediately.

Proposition 2.6.9. Let E be a set as above, then following holds. If |E ∩H| = 1 and

|E ∩ T | = 0 then we have the set p−1(E) = {2k, 2k + 1, · · · , 4k − 2, 4k − 1}.

Proof. Suppose the set {x} is p−1(E ∩ H). The claim is immediate from the assertion

x = {2k}. Suppose the assertion is not true. Since we have assumed |E∩T | = 0, using

Lemma 2.6.1 it follows that 2k + 1 belong to the set p−1(E). Therefore, if x 6= {2k},
then x + 2k + 1 belong to the set p−1(M) and actually belong to p−1(Ec ∩ M). But

trivially p−1(Ec ∩ M) = {2x} and the element x + 2k + 1 is not equal to 2x. Hence

there is a contradiction and the claim follows.

The following proposition is trivial.

Proposition 2.6.10. Let E be a set as above. In the case |E ∩ H| = |E ∩ M | = 0,

then E = M
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Therefore, from Proposition 2.6.7, 2.6.8, 2.6.9 the proof of Theorem 2.1.13 in case

G is cyclic follows. That is the following result follows.

Theorem 2.6.11. Let G be a cyclic abelian group of type III. That is G = Z/mZ.

Let k = m−1
6

. Let E be a sum-free subset of G of density µ(G). Then there exist a

surjective homomorphism f : G → Z/mZ such that one of the following holds.

(i) The set E = f−1(M).

(ii) The set E is equal to f−1p({2k} ∪ {2k + j : 2 ≤ j ≤ 2k − 1} ∪ {4k + 1}).

(iii) The set E or the set −E is equal to f−1p({2k} ∪ {2k + j : 1 ≤ j ≤ 2k − 1}).

Proof. From Theorem 2.1.14, it follows that there exist a surjective homomorphism

g : G → Z/mZ such that the set E is a subset of the set g−1(I). Then in case

max(|g(E) ∩ H|, |g(E) ∩ T |) ≥ 2, from Proposition 2.6.7 we have g(E) = H ∪ T .

Therefore, taking f = 2g it follows E = f−1(M). In the other cases taking f = g, the

claim follows from Proposition 2.6.8, 2.6.9, 2.6.10.

2.7 Sum-free subsets of general abelian group of

type III

Proof. of Theorem 2.1.12: Let γ be a special direction of the set A. Then from Propo-

sition 2.4.3 it follows that order of γ is equal to m. We have also from Theorem 2.1.14

it follows that A is a subset of γ−1(I). Let L ⊂ Z/mZ as defined in section 2.5. Then

from Proposition 2.5.6 we have that L is a sum-free subset of Z/mZ and it’s cardinality

is 2k. Then from propositions 2.6.7, 2.6.8, 2.6.9, 2.6.10 it follows that p−1(L) is one of

the following set.

Case 1: p−1(L) = p−1(H ∪ T ).

In this case, we easily check that given any element i ∈ Z/mZ such that i does not

belong to the set L, there exist x, y ∈ L such that either i = x + y or i = x − y.

Therefore, invoking Proposition 2.5.6, it follows that for any i ∈ Z/mZ which does not

belong to L, the number αi = 0. Therefore, A is a subset of γ−1(I). Hence f = 2γ is

a surjective homomorphism from G to Z/mZ and moreover

A ⊂ f−1{M}.
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Case 2: p−1(L) = {2k} ∪ {2k + j : 2 ≤ j ≤ 2k − 1} ∪ {4k + 1}.
In this case again, given any element i ∈ Z/mZ such that i does not belong to the set

L, there exist x, y ∈ L such that either i = x + y or i = x− y. Therefore, taking f = γ

we have

A ⊂ f−1p(2k) ∪ f−1p({2k + j : 2 ≤ j ≤ 2k − 1}) ∪ f−1p(4k + 1).

Case 3: Either p−1(L) or p−1(−L) is {2k} ∪ {2k + j : 1 ≤ j ≤ 2k − 1}.
In both these cases, given any element i ∈ Z/mZ such that i does not belong to the

set L, there exist x, y ∈ L such that either i = x + y or i = x − y. Therefore, taking

f = γ the claims follows.

A ⊂ f−1p(2k) ∪ f−1p({2k + j : 2 ≤ j ≤ 2k − 1}) ∪ f−1p(4k + 1).

Case 4:p−1(L) = p−1(M).

In this case, given any i ∈ Z/mZ which does not belong to {2k + j : 0 ≤≤ 2k + 1}
there exist x, y ∈ L such that either i = x + y or i = x − y. Therefore, taking f = γ

we have

A ⊂ f−1p({2k + j : 0 ≤ j ≤ 2k + 1})

Therefore, in all the cases there exist a homomorphism f : G → Z/mZ such that

A ⊂ f−1p({2k + j : 0 ≤ j ≤ 2k + 1}).

Now the claims (i), (ii), (iii) follows invoking Lemma 2.5.3. The claim (iv) follows

observing that the set A ∪ f−1p({2k + j : 0 ≤ j ≤ 2k + 1} is also a sum-free set.

Now we prove Theorem 2.1.13.

Proof. of Theorem 2.1.13: Let f be a surjective homomorphism from G to Z/mZ

given by Theorem 2.1.12. Since m is the exponent of group G and f is a surjective

homomorphism to Z/mZ there exist a subgroup C of G such that G = S ⊕ C where

S is a kernel of f . Therefore, f restricted to C is an isomorphism from C to Z/mZ.

We denote this restriction by g. Since α(A) = µ(G) it follows from Theorem 2.1.12 we

have

f−1p({2k + j : 0 ≤ j ≤ 2k + 1}) ⊂ A.
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Also the following equalities hold.

|A(f, 2k)| + |A(f, 4k)| =
n

m
(2.18)

|A(f, 4k + 1)| + |A(f, 2k + 1)| =
n

m
(2.19)

Now A(f, 2k)+A(f, 2k) is a subset of f−1{4k} and it is disjoint from A(f, 4k). There-

fore, the following inequality follows.

|A(f, 4k)| ≤ n

m
− |A(f, 2k) + A(f, 2k)| = |A(f, 4k)|+ |A(f, 2k)| − |A(f, 2k) + A(f, 2k)|

Hence we have

|A(f, 2k) + A(f, 2k)| = |A(f, 2k)|. (2.20)

For any i ∈ Z/mZ there exist Xi ⊂ S such that A(f, i) = Xi⊕g−1{i}. Then from (2.20)

it follows that |X2k + X2k| = |X2k|. Therefore, either X2k = φ or there exist J1 a sub-

group of S and an element b1 ∈ S such that X2k = J1 + b1. Similar arguments implies

that either X4k+1 = φ or there exist J2 a subgroup of S and an element b2 ∈ S such

that X4k+1 = J2 + b1. Then there are three possibilities.

Case 1: Both the sets X2k and X4k+1 are empty sets.

In this case from (2.18) and (2.19) it follows X2k+1 = S and X4k = S. Hence A is

f−1(M).

Case 2: Exactly one of the sets X2k and X4k+1 is an empty set.

Replacing the set A by −A if necessary we may assume that X4k+1 is an empty set.

Since the set A is sum-free it follows that X4k is a subset of (J1 + 2b1)
c. From (2.18)

it follows trivially that X4kis (J1 + 2b1)
c.

Case 3: Both the sets X2k and X4k+1 are not empty sets.

Then arguing as in case 2 it follows that X4k is (J1 + 2b1)
c and X4k+1 is (J2 + 2b2)

c.

The assumption that A is sum-free implies that X4k+1 is a subset of (X2k + X2k+1)
c.

This means

J2 + b2 ⊂ (J1 + b1 + (J2 + 2b2)
c)c.

This implies,

(J2 + b2)
c = J1 + b1 + (J2 + 2b2)

c.

Therefore, we have

J1 + b1 ⊂ J2 − b2. (2.21)
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Since X2k is a subset of (X2k + X2k+1)
c, same argument implies that

J2 + b2 ⊂ J1 − b1. (2.22)

From (2.21) and (2.22) we have J1 + b1 = J2 − b2. Hence J1 = J2. This proves the

theorem.

2.8 Remarks

In case G is of type I(p) group and A is a maximal sum-free subset of G such that

α(A) > 1
3
+ 1

3(p+1)
then α(A) = µ(G). For the proof of this one may see [GR05]. But in

case G is of type III, there exist A such that A is a maximal sum-free set of cardinality

µ(G)n − 1. For this consider the following example.

Example. Let G = (Z/7Z)2 and π2 : G → Z/7Z be a natural projection to second

co-ordinate. Then let

A = π−1
2 {3} ∪ (0, 2) ∪ (1, 2) ∪ (π−1

2 {4} \ {(0, 4), (1, 4), (2, 4)}).

If A is as in the above example, then A is a maximal sum-free subset of cardinality

µ(G)n − 1. Therefore, Theorem 2.1.12 does not give complete characterisation of all

large maximal sum-free subsets of G.

In general Hamidoune and Plagne [oHP04] have studied (k, l) free subsets of finite

abelian groups. For any positive integer t we define tA by

tA = {x ∈ G : x =

t∑

i=1

ai, ai ∈ A ∀i}.

Given any two positive integers we say A is (k, l) free if kA ∩ lA = φ. In case k − l ≡
0(mod m), where m is the exponent of G, then it is easy to check that there is no

set apart from empty set which is (k, l) free. To rule out such cases, one assume

that gcd(|G|, k − l) = 1. We denote the density of the largest (k, l) free set by λk,l.

Hamidoune and Plagne [oHP04] conjectured the following.

Conjecture. Let G be a finite abelian group and m is the exponent of G. Let k, l be

positive integers such that gcd(|G|, k − l) = 1. Then the density of largest (k, l) free
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set is given by the following formula.

λk,l = maxd|m
[d−2
k+l

] + 1

d

They [oHP04] proved the above conjecture in case when there exist a divisor d0

of m such that d0 is not congruent to 1 modulo k + l. In this situation they also

showed that given any (k, l) free set of density λk,l, there exist a positive integer d, a

surjective homomorphism f : G → Z/dZ, a set B ⊂ Z/dZ such that B is (k, l) free

and A = f−1(B). That is any (k, l) free set of density λk,l is an inverse image of a (k, l)

free subset of a cyclic group. One may ask the following question:

Question 2.8.1. Let G be a finite abelian group and m is the exponent of G. Suppose

k, l are positive integers such that all the divisors of m are congruent to 1 modulo k + l

and gcd(k − l, |G|) = 1. Is it true that any (k, l) free set of density λk,l is an inverse

image of a (k, l) free set of a cyclic group?

We have already seen that the answer of the above question is negative in case

k = 2 and l = 1. The following arguments show that the answer of the above question

is negative for an arbitrary value of k provided l = 1.

In case all the divisors of m are congruent to 1 modulo k + l, it is easy to check that

maxd|m
[d−2
k+l

] + 1

d
=

[m−2
k+l

] + 1

m
.

Now consider the following example.

Example. Let G be a finite abelian group and m is the exponent of G. We further

assume that G is not cyclic. Let k be a positive integer such that gcd(|G|, k − 1) = 1

and all the divisors of m are congruent to 1 modulo k + 1. Then G = S ⊕ Z/mZ with

S 6= {0}. Let q = [m−2
k+1

]. Let x ∈ Z/mZ such that (k − 1)x ≡ 1 + q(mod m). Let J be

any proper subgroup of S and

A = (J ⊕ {x}) ∪ (S ⊕ {x + 1, x + 2, · · · , x + q}) ∪ (J c ⊕ {x + q + 1}).

If A is as in the above example then it is easy to check that A is (k, 1) free and

density of A is
m−2

k+1
+1

m
. Hamidoune and Plagne [oHP04] also proved the above conjecture

for all cyclic groups. Using this and following the arguments as in section 2.3 it follows

that stabiliser of A is J . This shows that if A is the set as in above example then A is

not an inverse image of any (k, 1) free subset of a cyclic group.
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Asymptotic formula for number of

sum-free subsets

3.1 Introduction

Let G be a finite abelian group of order n. A subset A of G is said to be sum-free if

there is no solution of the equation x + y = z, with x, y, z belonging to the set A. Let

SF (G) denotes the set of all sum-free subsets of G. In this chapter, we discuss the

question of determining the cardinality of SF (G).

Definition 3.1.1. (i) Let µ(G) denote the density of a largest sum-free subset of

G, so that any such subset has size µ(G)n.

(ii) Given a set B ⊂ G we say that (x, y, z) ∈ B3 is a Schur triple of the set B if

x + y = z.

Observing that all subsets of a sum-free set are sum-free we have the obvious inequality

|SF (G)| ≥ 2µ(G)n (3.1)

Let the symbol σ(G) denote the number n−1(log2 |SF (G)|). Then from (3.1) it follows

trivially that σ(G) ≥ µ(G).

In this chapter we prove the following two results. Theorem 3.1.2 follows immediately

from Theorem 3.1.3 and a result from [GR05], namely Theorem 3.1.7. The methods

used to prove Theorem 3.1.3 are a slight refinements of methods in [GR05].
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Theorem 3.1.2. Let G be a finite abelian group of order n. Then we have the following

asymptotic formula

σ(G) = µ(G) + O(
1

(lnn)1/27
).

Theorem 3.1.3. There exist an absolute positive constant δ0 such that if F ⊂ G as

at-most δn2 Schur triples, where δ ≤ δ0, then

|F | ≤ (µ(G) + Cδ1/3)n, (3.2)

where C is an absolute positive constant.

Earlier Ben Green and Ruzsa [GR05] proved the following:

Theorem 3.1.4. ([GR05], Theorem 1.8. ) Let G be a finite abelian group of order n.

Then we have the following asymptotic formula

σ(G) = µ(G) + O(
1

(lnn)1/45
).

Theorem 3.1.5. ([GR05], Proposition 2.2) Let G be an abelian group, and suppose

that F ⊆ G has at-most δn2 Schur triples. Then

|F | ≤ (µ(G) + 220δ1/5)n. (3.3)

The following theorem is also proven in [GR05].

Theorem 3.1.6. ([GR05], Corollary 4.3.) Let G be an abelian group, and suppose

that F ⊆ G has at-most δn2 Schur triples. Then

|F | ≤ (max(
1

3
, µ(G) + 3δ1/3)n. (3.4)

Theorem 3.1.3 follows immediately from Theorem 3.1.6 in the case µ(G) ≥ 1
3
. In

the case µ(G) < 1
3
, Theorem 3.1.3 again follows immediately from Theorem 3.1.6 in

the case δ is not very “small”. In the case δ is small we require Lemma 3.2.3 where an

estimate is done differently than in [GR05]. For the rest of results we require to prove

Theorem 3.1.3, the methods used are completely identical as in [GR05], but the results

used are not identical.

For proving Theorem 3.1.2 we use the following result from [GR05].
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Theorem 3.1.7. ([GR05], Proposition 2.1’) Let G be an abelian group of cardinality

n, where n is sufficiently large. Then there is a family F of subsets of G with the

following properties

(i) log2 |F| ≤ n(ln n)−1/18;

(ii) Every A ∈ SF(G) is contained in some F ∈ F ;

(iii) If F ∈ F then F has at-most n2(ln n)−1/9 Schur triples.

Theorem 3.1.2 follows immediately from Theorem 3.1.7 and Theorem 3.1.3. We shall

reproduce the proof given in [GR05]. If n is sufficiently large as required by Theo-

rem 3.1.7 then associated to each A ∈ SF (G) there is an F ∈ F for which A ⊂ F . For

a given F , the number of A which can arise in this way is at most 2|F |. Thus we have

the bound

|SF (G)| ≤
∑

F∈F
2|F | ≤ |F|maxF∈F |F |

Hence it follows that

σ(G) ≤ µ(G) + C
1

(ln n)1/27
+

1

ln n1/18
. (3.5)

But from (3.1) we have the inequality σ(G) ≥ µ(G). Hence Theorem 3.1.2 follows.

In order to prove Theorem 3.1.3 we shall require the value of µ(G), which is now

known for all finite abelian groups. In order to explain the results we need the follow-

ing definition.

Definition 3.1.8. Suppose that G is a finite abelian group of order n. If n is divisible

by any prime p ≡ 2(mod 3) then we say that G is type I. We say that G is type I(p) if

it is type I and if p is the least prime factor of n of the form 3l + 2. If n is not divisible

by any prime p ≡ 2(mod 3), but 3|n, then we say that G is type II. Otherwise G is

said to be type III. That is the group G is said to be of type III if and only all the

divisors of n are congruent to 1 modulo 3.

The following theorem is due to P. H. Diananda and H. P. Yap [DY69] for type I

and type II groups and due to Green and Ruzsa [GR05] for type III groups.
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Theorem 3.1.9. ([GR05], Theorem 1.5.) Let G be a finite abelian group of order n.

Then the following holds.

(i) If G is of type I(p) then µ(G) = 1
3

+ 1
3p

.

(ii) If G is of type II then µ(G) = 1
3
.

(iii) If G is of type III then µ(G) = 1
3
− 1

3m
, where m is the exponent of G.

3.2 Cardinality of almost sum-free set

In case the group G is not of type III it follows from Theorem 3.1.9 that µ(G) ≥ 1
3

and hence Theorem 3.1.3 follows immediate using Theorem 3.1.6. Therefore we are

required to prove Theorem 3.1.3 for type III groups only.

For the rest of this chapter G will be a finite abelian group of type III and m shall

denote the exponent of G. The following proposition is an immediate corollary of

Theorem 3.1.9 and Theorem 3.1.6.

Proposition 3.2.1. Let G be an abelian group of type III. Let the order of G be n and

the exponent of G be m. If F ⊂ G as at-most δn2 Schur triples then

(i) |F | ≤ (µ(G) + 1
3m

+ 3δ1/3)n.

(ii) In the case δ1/3m ≥ 1 then |F | ≤ (µ(G) + 4δ1/3)n, that is Theorem 3.1.3 holds

in this case.

Therefore to prove Theorem 3.1.3 we are left with the following case.

Case: The group G is an abelian group of type III, order n and exponent m. The

subset F ⊂ G has at most δn2 Schur triples and δ1/3m < 1.

Let γ be a character of G and q denote the order of γ. Given such γ we define

Hj = γ−1(e2πij/q). We also denote the set H0 = ker(γ) by just H. Notice that H is a

subgroup of G and Hj are cosets of H. The cardinality of the coset |Hj| = |H| = n
q
.

The indices is to be considered as residues modulo q, reflecting the isomorphism

G/H ≡ Z/qZ. For any set F ⊂ G we also define Fj = F ∩ Hj and αj = |Fj|/|Hj|.



Chapter 3 Asymptotic formula 42

Proposition 3.2.2. Let G be a finite abelian group of order n. Let F be a subset of

G having at most δn2 Schur triples where δ ≥ 0. Let γ be any character of G and q be

its order. Also let Fi and αi be as defined above. Then the following holds.

(i) If x belongs to Fi and y belongs to Fj then x + y belongs to Hi+j.

(ii) The number of Schur triples {x, y, z} of the set A with x belongs to Fl, y belongs

to Fj and z belongs to Fj+l is at least |Fl|(|Fj| + |Fj+l| − |H|). In other words

there are at least αl(αj + αj+l − 1)(n
q
)2 Schur triples {x, y, z} of the set F with x

belongs to the set Fl.

(iii) Given any l ∈ Z/qZ such that αi > 0, it follows that for any j ∈ Z/qZ the

inequality

αj + αj+l ≤ 1 +
δq2

αl

(3.6)

holds.

(iv) Given any t > 0, we define the set L(t) ⊂ Z/qZ as follows. The set

L(t) = {i ∈ Z/qZ : αi + α2i ≥ 1 + t}.

Then it follows that
∑

i∈L(t)

αi ≤
δq2

t
(3.7)

Proof. (i) This follows immediately from the fact that γ is an homomorphism.

(ii) In the case |Fl|(|Fj|+ |Fj+l| − |H|) ≤ 0, there is nothing to prove. Hence we can

assume that the set Fl 6= φ. Then for any x which belongs to the set Fl, the sets

x+Fj ⊂ Hj+l. Since the set Fj+l is also a subset of Hj+l and |Fj|+|Fj+l|−|H| > 0,

it follows that

|(x + Fj) ∩ Fj+l| = ||Fj| + |Fj+l| − |(x + Fj) ∪ Fj+l| ≥ |Fj| + |Fj+l| − |H|.

Now, for any z belonging to the set (x + Fj) ∩ Fj+l there exist y belonging to Fj

such that x + y = z. Hence the claim follows.

(iii) From (ii) there are at least αl(αj +αj+l−1)(n
q
)2 Schur triples of the set F . Hence

the claim follows by the assumed upper bound on the number of Schur triples of

the set F .
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(iv) For any fixed i ∈ L(t), taking j = l = i in (ii), we get there are at least αit(
n
q
)2

Schur triples {x, y, z} of the set F with x belonging to the set Fi. Now for given

any two i1, i2 ∈ L(t) such that i1 6= i2 ,the sets Fi1 and Fi2 have no element in

common. Therefore there are at least t(n
q
)2

∑
i∈L(t) αi Schur triples of the set F .

Hence the claim follows.

Since the order of any character of an abelian group G divides the order of group

and G is of type III, the order q of any character γ of G is odd and congruent to 1

modulo 3. Therefore q = 6k + 1 for some k ∈ N. Let I, H, M, T ⊂ Z/qZ denote the

image of natural projection of the intervals {k + 1, k + 2, · · · , 5k − 1, 5k}, {k + 1, k +

2, · · · , 2k− 1, 2k}, {2k + 1, 2k + 2, · · · , 4k− 1, 4k}, {4k + 1, 4k + 2, · · · , 5k− 1, 5k} ⊂ Z

to Z/qZ. Then the set I is divided into 2k disjoint pairs of the form (i, 2i) where i

belongs to the set H ∪ T .

Lemma 3.2.3. Let G be a finite abelian group of type III and order n. Suppose that

F ⊂ G has at-most δn2 Schur triples. Let γ be a character of G. Let the order of γ be

equal to q = 6k + 1. Then the following inequality holds.

5k∑

i=k+1

αi ≤ 2k + 2δ1/2q3/2 (3.8)

Proof. The set I = {k + 1, k + 2, · · · , 5k} is divided into 2k disjoint pairs of the form

(i, 2i) where i belongs to the set H ∪ T . Therefore it follows that

5k∑

i=k+1

αi =
∑

i∈H∪T

(αi + α2i) (3.9)

Given a t > 0 we divide the set H ∪ T into two disjoint sets as follows. We define the

set

S = {i ∈ H ∪ T : αi + α2i ≤ 1 + t}

and

L = {i ∈ H ∪ T : αi + α2i > 1 + t}.

Therefore the sets S and L are disjoint and the set H ∪T = S ∪L. Therefore it follows

that ∑

i∈H∪T

(αi + α2i) =
∑

i∈S

(αi + α2i) +
∑

i∈L

(αi + α2i). (3.10)
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From (3.7) we have the following inequality

∑

i∈L

αi ≤
δq2

t
.

Since for any l ∈ Z/qZ, the inequality αl ≤ 1 holds trivially. It follows that

∑

i∈L

(αi + α2i) ≤ |L| + δq2

t
. (3.11)

Also the following inequality

∑

i∈S

(αi + α2i) ≤ |S| + |S|t (3.12)

holds just by the definition of the set S. Therefore from (3.9), (3.10), (3.12), (3.11) it

follows that
5k∑

i=k+1

αi ≤ |L| + δq2

t
+ |S| + |S|t ≤ 2k + qt +

δq2

t
. (3.13)

Now choosing t = (δq)1/2 the lemma follows.

Remark 3.2.4. The sum appearing in last lemma was estimated as 2k + (δ)1/2q2

in [GR05]. There the estimate αi + α2i ≤ (δ)1/2q is used to estimate the right hand

side of (3.9).

Notice that Lemma 3.2.3 holds for any character γ of a group G of type III. We

would like to show that given F ⊂ G having at most δn2 Schur triples and also as-

suming that (δ)1/3m < 1 where m is the exponent of G, there is a character γ such

that αl ≤ C(δq)1/2 i ∈ {0, 1, 2, · · ·k} ∪ {5k + 1, 5k + 2, · · · , 6k} where C is an absolute

positive constant, q is the order of γ and k = q−1
6

. To be able to do this we recall the

concept of special direction as defined in [GR05]. The method of proof of this part is

completely identical as in [GR05], though the results are not.

Given any set B ⊂ G, and a character γ of G we define B̂(γ) =
∑

b∈B γ(b). Given a

set B ⊂ G fix a character γs such that ReB̂(γ) is minimal. We follow the terminology

in [GR05] and call γs to be the special direction of the set B.

The following Lemma is proven in [GR05].

Lemma 3.2.5. ([GR05], Lemma 7.1, Lemma 7.3. (iv)) Let G be an abelian group of

type III. Let F ⊂ G has at most δn2 Schur triples. Let γs be a special direction of the

set F . Let α denotes the number |F |
|G| . Then the following holds.
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(i) ReF̂ (γs) ≤
(

δ
α(1−α)

− α2

α(1−α)

)
n.

(ii) In case δ ≤ η/5, then either |F | ≤ (µ(G))n or the following inequality holds.

q−1

q−1∑

j=0

αj cos(
2πj

q
) +

µ(Z/qZ)2

1 − µ(Z/qZ)
< 6δ. (3.14)

Proof. (i) The number of Schur triples in the set F is exactly n−1
∑

γ(F̂ (γ))2F̂ (γ).

This follows after the straightforward calculation, using the fact that
∑

γ

γ(b) = 0 if b 6= 1, (3.15)

and is equal to n if b = 1 where 1 here denotes the identity element of the group

G. Therefore using the assumed upper bound on the number of Schur triples in

the set F it follows that

n−1
∑

γ

(F̂ (γ))2F̂ (γ) = n−1
∑

γ 6=1

(F̂ (γ))2F̂ (γ) + n−1F̂ (1))2F̂ (1) ≤ δn2,

Where γ = 1 is the trivial character of the group G. Since n−1(F̂ (1))2F̂ (1) =

(α)3n2, it follows that

n−1ReF̂ (γs)
∑

γ 6=1

(F̂ (γ))2 ≤ n−1
∑

γ 6=1

(F̂ (γ))2F̂ (γ) ≤ (δ − α3)n2

Since using (3.15) it follows that
∑

γ 6=1(F̂ (γ))2 = α(1− α2)n2, the claim follows.

(ii) We have ReF̂ (γs) = |H|∑j αj cos(2πj
q

). Therefore in the case |F | ≥ µ(G), then

from (i) it follows that

q−1

q−1∑

j=0

αj cos(
2πj

q
) ≤ δ

α(1 − α)
− α2

α(1 − α)
(3.16)

q−1

q−1∑

j=0

αj cos(
2πj

q
) +

µ(G)2

1 − µ(G)
≤ δ

α(1 − α)
(3.17)

Since from Theorem 3.1.9 that µ(G) ≥ µ(Z/qZ) it follows that

µ(G)2

1 − µ(G)
≥ (µ(Z/qZ))2

1 − µ(Z/qZ)
.

The claim follows using this and the fact that µ(G) ≥ 1
4
, which implies that

δ
α(1−α)

≤ 6δ.
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Proposition 3.2.6. Let G be an abelian group of type III. Let n and m denote the

order and exponent of G respectively. Let F ⊂ G has at most δn2 Schur triples and

δ1/3m ≤ 1. Let |F | ≥ µ(G)n. Let γs be a special direction of the set F and q be the

order of γs. Let q = 6k +1 and αi be as defined above. There exist an positive absolute

constants q0 and δ1 such that if q ≥ q0 and δ ≤ δ1, then the following holds

αi ≤ c(δq)1/2 for all i ∈ {0, 1, · · · , k − 1, k} ∪ {5k + 1, 5k + 2, · · · 6k − 1}, (3.18)

where c is a positive absolute constant.

Proof. If F ⊂ G be the set as given, then −F ⊂ G is also a set which satisfies the

same hypothesis as required in the statement of proposition. It follows from definition

of special direction that if γ is a special direction of F then γ is also a special direction

of −F . It is also the case that |Fj| = |(−F )−j|. Therefore to prove the proposition it

is sufficient to show that

αi ≤ c(δq)1/2 for all i ∈ {0, 1, · · · , k − 1, k}

for some positive absolute constant c.

Let S = q−1
∑q−1

j=0 αj cos(2πj
q

) + µ(Z/qZ)2

1−µ(Z/qZ)
. Then from Lemma 3.2.5 we have that

S ≤ 6δ. (3.19)

Let for some l ∈ {0, 1, · · · , k− 1, k}, αl > c(δq)1/2 (where c is a positive number which

we shall choose later), then we shall show that this violates (3.19), provided q and c

are sufficiently large and δ is sufficiently small. For this we shall find the lower bound

of M = q−1
∑q−1

j=0 αj cos(2πj
q

).

Let γj denote
(αj+αj+l)

2
. Then we have

M =
1

q2 cos(πl
q
)

q−1∑

j=0

αj

(
cos

(2j + l)π

q
+ cos

(2j − l)π

q

)
.

That is we have

M =
1

q cos(πl
q
)

q−1∑

j=0

γj cos
(2j + l)π

q
(3.20)

Notice that cos(πl
q
) is not well defined if we consider l as an element of Z/qZ. This

is because the function cos(πt
q
) as a function of t is not periodic with period q but is

periodic with period 2q. But we have assumed that l ∈ {0, 1, · · · , k − 1, k}, therefore
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the above computation is valid.

Since δ1/2q3/2 ≤ δ1/2m3/2 < 1 is true by assumption, recalling Lemma 3.2.2 it fol-

lows that

2γj = αj + αj+l ≤ 1 +
1

c
δ1/2q3/2 ≤ 1 +

1

c
, for any j ∈ Z/qZ (3.21)

and
∑

j

γj =
∑

j

αj ≥ µ(G)n ≥ 2k. (3.22)

The inequality (3.22) follows from the assumption that |F | ≥ µ(G)n.

Let tc denote the number 1 + 1/c. Let E(c, q) denote the minimum value of
∑q−1

j=0 γj cos (2j+l)π
q

subject to the constraints that 0 ≤ γj ≤ tc
2

and
∑

j γj ≥ 2k.

The function f : Z → R given by f(x) = cos( (q+x)π
q

) is an even function with period

2q. Also for 0 ≤ x ≤ q we have the following

f(0) < f(1) < f(2) < f(3) < · · · < f(q − 1) < f(q) (3.23)

Now to determine the minimum value of E(c, q), we should choose γj to be as large

as we can when the function cos 2j+l
q

takes the small value. Now we have the two

cases to discuss, the one when l is even and when l is odd. Now the image of function

g : Z/qZ → R given by g(j) = cos (2j+l)π
q

is equal to {f(x) : x is even } in case l is odd

and is equal to {f(x) : x is odd } in case l is even. From this it is also easy to observe

that the number of j ∈ Z/qZ such that the function cos 2j+l
q

is negative is at most q+1
2

.

Now let − q−1
2

− l ≤ j ≤ q−1
2

− l so that −q ≤ 2j + l ≤ q. Now in case l is odd then

consider the case when γj = tc
2

if

2j + l = q − [
k

tc

1

2
], . . . , q − 2, q, q + 1, . . . , q + [

k

tc
− 1

2
] and γj = 0 otherwise. (3.24)

The condition 2[ k
tc
− 1/2] + 1 ≥ q+1

2
ensures that in the above configuration for all

possible negative values of cos (2j+l)π
q

the maximum possible weight tc
2

is chosen. This

condition can be ensured if q ≥ 11 by choosing c ≥ c1 where c1 is sufficiently large

positive absolute constant. Therefore after doing a small calculation one may check

that for c ≥ c1 the following inequality

E(c, q) ≥ −tc
sin

2π[ k
tc
− 1

2
]

q

2q sin π/q cos πl/q
− 1

q
(3.25)
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holds. In case l is even and c ≥ c1 then choosing γj = tc
2

if

2j + l = q − [
k

tc
], . . . , q − 1, q + 1, . . . , q + [

k

tc
] and weights 0 otherwise, (3.26)

we get that the following inequality

E(c) ≥ −tc
sin

2π[ k
tc

]+1

q

2q sin π/q cos πl/q
− tc

q
(3.27)

holds. Using this we get

S ≥ −tc
sin

2π[ k
tc

]

q

2q sin π/q cos πl/q
+

µ(Z/qZ)2

1 − µ(Z/qZ)
when l is even and (3.28)

S ≥ tc
sin

2π[ k
tc
− 1

2
]

q

2q sin π/q cos πl/q
− 1

q
+

µ(Z/qZ)2

1 − µ(Z/qZ)
when l is odd. (3.29)

(3.30)

Now as q → ∞ right hand side of (3.28) as well as (3.29) converges to the

−tc
sin 2π

3tc

2π cos πl
q

+
1

6

Then let η = 2−20, then there exist positive absolute constants c2 and q0 such that for

all c ≥ c2 and q ≥ q0 we get that

S ≥ − 1

2π
+

1

6
− η = 8δ1 say . (3.31)

The above quantity is strictly positive absolute constant. Then if δ < δ1, this contra-

dicts (3.19). Hence the lemma follows.

To complete the proof of Theorem 3.1.3, we require the following result from [GR05].

Lemma 3.2.7. ([GR05], Proposition 7.2 ) Let G be an abelian group of type III and

n , m be its order and exponent respectively. Let F ⊂ G has at most δn2 Schur triples,

with δ1/3m < 1. Let q be the order of special direction such that q ≤ q0, where q0 is

a positive absolute constant as in Lemma 3.2.6. Also assume that δ ≤ η
q5 = δ2, where

η = 2−50, then either |F | ≤ µ(G)n or αi ≤ 64δ1/3q2/3.

Let δ1 and δ2 be as in Lemma 3.2.6 and Lemma 3.2.7 respectively. Then we take

δ0 = min(δ1, δ2) in Theorem 3.1.3. As we remarked above that in case G is not of type
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III, Theorem 3.1.3 follows immediately from Theorem 3.1.6. Combining Lemma 3.2.3,

Lemma 3.2.6 and Lemma 3.2.7, Theorem 3.1.3 follows in the case G is of type III

and δ1/3m < 1. In case G is of type III and δ1/3m > 1, Theorem 3.1.3 follows from

Proposition 3.2.1.



Chapter 4

On an additive representation

function

Let N denote the set of all natural numbers. If A is an infinite subset of N then we set

A(x) = {a ≤ x : a ∈ A}.

Let r(A, n) denote the number of solutions of the equation

n = ai + aj, where ai ≤ aj, ai, aj ∈ A.

Here and in what follows A will always denote an infinite subset of N such that there

exists a natural number n0(A) such that

r(A, n) 6= 1 for n ≥ n0(A).

Also a0(A) shall denote the least natural number such that a0(A) ∈ A and a0(A) ≥
n0(A). Regarding such sets, Nicolas, Ruzsa, Sárközy [NRS98] proved the following

theorem.

Theorem. If A is an infinite subset of N such that r(A, n) 6= 1 for all sufficiently large

natural numbers n, then

lim sup |A(x)|
(

ln ln x

ln x

)3/2

≥ 1

20
.

They also gave an example of a set A such that r(A, n) 6= 1 for all sufficiently large

natural numbers n and |A(x)| � (ln x)2 . In this chapter we shall show the following:
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Theorem 4.0.8. There exists an absolute constant c > 0 with the following property:

for any infinite subset A of N such that r(A, n) 6= 1 for all sufficiently large natural

numbers n, then

|A(x)| ≥ c

(
ln x

ln ln x

)2

for all x sufficiently large.

Theorem 4.0.8 follows from Proposition 4.0.14 by noting that if Y is sufficiently

large then for some positive absolute constant c the interval [(Y )
1

2 , Y ) contains at least

c
(

lnY
ln ln Y

)
disjoint intervals of the form [b, b(ln Y )11).

Apart from the arguments used in proving Lemma 4.0.13, the rest of arguments used

in this chapter are as in [NRS98]. Lemma 4.0.13 improves inequality (4.1) of Proposi-

tion 4.0.12 and this improves result of Proposition 4.0.12 and gives Proposition 4.0.14.

As remarked above Theorem 4.0.8 is an immediate corollary of Proposition 4.0.14.

The sequence BY constructed in Lemma 4.0.11 is a slight modification of analogous

sequence constructed in [NRS98] (see page number 304 of [NRS98]).

Lemma 4.0.9. For all real numbers x > a0(A) the interval (x, 2x] contains an element

of the set A.

Proof. Let a be the largest element of A not exceeding x. Then a ≥ a0(A) so that the

integer n = a + a is > n0(A). It now follows that there is a pair (c, d), with c ≤ d, of

elements of A distinct from the pair (a, a) such that n = c+d. Since d ≥ c this implies

that d > a whence d > x by the choice of a. Clearly we have d ≤ n = a + a ≤ 2x. In

summary, we have verified that the element d of A lies in (x, 2x].

l-good interval: An interval I = [k, k + l] is defined to be l-good if I ∩ A = {k + l};
that is, it is of length l, the last element is in A and no other element is in A.

Lemma 4.0.10. Let Y be a sufficiently large real number and |A(Y )| ≤ (ln Y )2.

Then for any real number b such that 1 ≤ b ≤ Y
2(ln Y )10

there exists b-good interval

in [b(ln Y )5, 2b(ln Y )10].

Proof. We consider interval C = [b(ln Y )5, b(ln Y )10]. Then the length of C is at

least 1
2
b(ln Y )10 for all Y sufficiently large, but

|C ∩ A| ≤ |A(Y )| ≤ (ln Y )2 <
1

2
(ln Y )10.
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Therefore there exists in C a closed interval I of length b and void of A. Moving I

to right till it hits A, we get a b-good interval I ′. Using Lemma 4.0.9 it follows that

I ′ ⊂ [b(ln Y )5, 2b(ln Y )10].

Lemma 4.0.11. Let Y be a sufficiently large real number and |A(Y )| ≤ (ln Y )2. Then

there exists an increasing sequence {b1, b2, . . . , bm} = BY of elements of A not exceeding√
Y and satisfying the following properties:

(i) For each 1 ≤ i ≤ m − 1, bi+1 ≥ bi(ln Y )5.

(ii) For each 1 ≤ i ≤ m− 1, [bi+1 − bi, bi+1) does not contain an element of the set A.

(iii) The number of terms m of sequence BY is at least c ln Y
ln lnY

where c is a positive

absolute constant.

Proof. We shall define BY = {b1, b2, . . . , bi, . . .} recursively. We set b1 = a0(A). Sup-

pose b1, b2, . . . , bi have been determined and bi ≤ 1
2

√
Y

(ln Y )10
then applying Lemma 4.0.10

we choose the smallest a ∈ [bi(ln Y )5, 2bi(ln Y )10] such that [a− bi, a) does not contain

any element of A. We set bi+1 to be a. The recursion is terminated if bi > 1
2

√
Y

(ln Y )10
.

Let BY be a sequence constructed in manner described above. Clearly, (i) and (ii)

hold for each 1 ≤ i ≤ m − 1. Further for each i we have that

bi+1 ≤ 2bi(lnY )10 < bi(ln Y )11

whence by induction bm < a0(A)(ln Y )11m. Since recursion terminates at bm we have

bm > 1
2

√
Y

(ln Y )10
. These remarks imply (iii).

In what follows, BY will denote the sequence constructed as in the proof of

Lemma 4.0.11.

Proposition 4.0.12. Let Y be a sufficiently large real number and |A(Y )| ≤ (ln Y )2.

Let b be any real number such that [b, b(ln Y )11) ⊂ (
√

Y , Y ). Then the number of

elements of A contained in the interval [b, b(ln Y )11) is > c( ln Y
ln lnY

)
1

2 where c is a positive

absolute constant.
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Proof. Lemma 4.0.10 implies that there is an element a of the set A lying in the interval

[b, 3b(ln Y )10) such that the interval [a − b, a) does not contain any element of A. We

choose one such a.

Let S denote the set of elements of A in the interval [b, b(ln Y )11) and s denote the

cardinality of S. Let S1 and S2 denote the sets of elements of A in the intervals [b, a)

and [a, b(ln Y )11) respectively and let s1 and s2 denote the cardinalities of S1 and S2

respectively. We then have s = s1 + s2.

For each i, 1 ≤ i ≤ m, let ni = a+bi, where BY is a sequence supplied by Lemma 4.0.11.

Since each ni ≥ Y 1/2, we see that when Y is sufficiently large, each ni is ≥ n0(A). For

each i we then choose a pair (ci, di), with di ≥ ci, of elements of A distinct from the

pair (a, bi) such that ni = ci + di. For each i we then have either di < a or di > a. Let

P1 denote the set of those pairs (ci, di) with di < a and P2 the set of those pairs (ci, di)

with di > a. Let p1 and p2 denote the cardinalities of P1 and P2 respectively. We then

have p1 + p2 = m.

If (ci, di) is in P1 we have ci ≤ di < a − b and hence that di ≥ ci = a + bi − di ≥
a − (a − b) = b. In other words, ci and di are elements of S1. It follows that S1 × S1

contains P1. Consequently, we have that s2
1 ≥ p1 or that

s1 ≥ p
1/2
1 . (4.1)

If (ci, di) is in P2 we have a < di. Further, we have that

ci + di = a + bi ≤ 3b(ln Y )10 + Y
1

2 ≤ 3b(ln Y )10 + b ≤ b(ln Y )11, (4.2)

and hence that di ≤ b(ln Y )11. It follows that the mapping φ that associates (ci, di)

to di maps P2 into S2. Let us verify that φ is injective. Suppose to the contrary that

(ci, di) and (cj, dj) are elements of P2 such that di = dj and i < j. Then

cj ≥ cj − ci = bj − bi ≥ bj − bj−1 . (4.3)

Also cj < bj because cj + dj = a + bj and dj > a. It follows that the element cj of A

lies in the interval [bj − bj−1, bj) contradicting (ii) of Lemma 4.0.11. The injectivity of

φ implies that s2 ≥ p2.

In summary we have verified that

s = s1 + s2 ≥ p
1/2
1 + p2 ≥ p

1/2
1 + p

1/2
2 ≥ (p1 + p2)

1/2 ≥ m1/2 (4.4)
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from which the proposition follows on recalling (iii) of Lemma 4.0.11.

Corollary. There exists an absolute constant c > 0 with the following property: For

any infinite subset A of N such that r(A, n) 6= 1 for all sufficiently large natural numbers

n , we have:

|A(Y )| ≥ c (
ln Y

ln ln Y
)

3

2 .

Proof. The corollary follows from Proposition 4.0.12 on noting that if Y is sufficiently

large then for some positive absolute constant c the interval [(Y )
1

2 , Y ] contains at-least

c ln Y
ln lnY

disjoint intervals of the form [b, b(ln Y )11).

Result in Proposition 4.0.12 can be improved and we have Proposition 4.0.14. Rest

of arguments being the same, Proposition 4.0.14 follows by improving inequality 4.1

in Proposition 4.0.12 using Lemma 4.0.13. We shall first just state Lemma 4.0.13 and

deduce Proposition 4.0.14. Later we shall prove Lemma 4.0.13 which require a few

other Lemmas.

Lemma 4.0.13. With notations and assumptions as in Proposition 4.0.12 we have

|[b, a) ∩ A| ≥ c |P1|, where c is a positive absolute constant.

Proposition 4.0.14. Let Y be a sufficiently large real number and |A(Y )| ≤ (ln Y )2.

Let b be any real number ≥ 1 such that [b, b(ln Y )11) ⊂ (
√

Y , Y ). Then the number of

elements of A contained in the interval [b, b(ln Y )11) is > c( ln Y
ln ln Y

) where c is an positive

absolute constant.

Proof. Notice that assumptions of Propositions 4.0.12 are satisfied here. Then arguing

as in proof of Proposition 4.0.12 and using Lemma 4.0.13 in place of inequality 4.1

Proposition 4.0.14 follows.

Lemma 4.0.15 and 4.0.17 are required for proving Lemma 4.0.13.

Lemma 4.0.15. Let BY = {b1, b2, . . . , bm} be a sequence as constructed in

Lemma 4.0.11. Suppose
∑n

i=1 xibi = 0 where 1 ≤ n ≤ m and xi ∈ {1,−1, 0, 2,−2} for

all 1 ≤ i ≤ n. Then xi = 0 for all i.



Chapter 4 Addive representation function 55

Proof. Suppose it is not true and there exist sequence {xi} such that
∑n

i=1 xibi = 0

where 1 ≤ n ≤ m and xi is not zero for some i. Without loss of generality we may

assume that xn 6= 0. Then

xnbn =

n−1∑

i=1

−xibi.

As n < m < |A(Y )| < (ln Y )2 so bn ≤ |xnbn| < 2(lnY )2bn−1. But by construction of

BY , bn ≥ (ln Y )5bn−1. Hence there is a contradiction.

Let us recall some definitions from graph theory which we need for our purpose.

A graph G consists of a finite nonempty set V = V (G) of vertices together with a

prescribed set X of unordered pairs of elements of V . Each pair x = {u, v} is an

edge of G and is said to join u and v. Notice that a graph thus defined is a finite

undirected graph without multiple edges but may have loops. A walk of a graph G

is an alternating sequence of vertices and edges v1, x1, v2, . . . , vn−1, xn−1, vn, beginning

and ending with vertices, in which each edge joins two vertices immediately preceding

and following it. It is closed if v1 = vn. It is a trail if all the edges are distinct. By an

even closed trail we shall mean a trail which is closed and have even number of edges.

A cycle is a closed trail in which all the vertices are distinct. Two trails which define

the same subgraph are considered equivalent and are not distinguished.

Lemma 4.0.16. Let G be a graph with no loops and no even closed trails. Then any

two distinct closed trails in G are disjoint, that is, if T1, T2 are two distinct closed

trails in G and V (T1), V (T2) denote the set of vertices in T1, T2 respectively then

V (T1) ∩ V (T2) = ∅.

Proof. Suppose it is not true. Then there exist two distinct closed trails T1, T2 in G

such that V (T1) ∩ V (T2) = Vc (say) 6= ∅. As T1, T2 are two distinct trails so there

is an edge in at-least one of them which is not common to both of them. Say x is

one such edge and without loss of generality we may assume it is in T1. Suppose

T1 = v1, x1, v2, x2, v3, . . . , vi, xi, vi+1, . . . , vn−1, xn, vn. As Vc 6= ∅ so we may assume that

v1 = vn ∈ Vc. Then if we choose vl ∈ V (T2) nearest to left of x and vr ∈ V (T2)

nearest to right, in sequence for T1 thus considered, then only vertices which T =

vl, xl, vl+1, . . . , vr−1, xr−1, vr share with T2 are vl and vr. ( It is possible that vl is same

as vr. ) Also then by choice of x, vl, vr the trail T doesn’t have any common edge with

T2. As vl, vr ∈ V (T2) so there is a trail T ′′ in T2 starting from vl and ending with vr.
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Now by choice of T we have that Tu = T ∪ T ′′ is a closed trail. Also again by choice

of T we have that Tr = (T2 \ T ′′) ∪ T is another closed trail. ( Notice that it may be

so that (T2 \ T ′′) is empty but that doesn’t affect our arguments.) Now it’s clear that

either Tu or Tr has an even number of edges depending on whether number of edges of

T and T ′′ have same parity or different parity. But this is contrary to assumption that

G has no even-closed trail.

Lemma 4.0.17. Let G be a graph with n vertices and having no loops. Further assume

that G has no even closed trail. Then number of edges in G, say e(G), is at most 2n.

Proof. It is clearly enough to prove lemma in case when G is connected. From previous

lemma no closed trail in G has a proper closed sub-trail. This implies that any closed

trail is a cycle and any two cycles are disjoint. So G can’t have more than n cycles.

Now we shall show that d(G) = e(G)− number of vertices is at most n and this proves

the lemma. If we shrink all cycles in G to get new graph G′ then G′ has no cycle and

is connected. So G′ is a tree. But then d(G′) = −1. Also as cycles in G are disjoint

so d(G) = d(G′) + number of cycles in G. This implies that d(G) ≤ n − 1.

Lemma 4.0.13. With notations and assumptions as in Proposition 4.0.12 we have

|[b, a) ∩ A| ≥ c |P1|,

where c is a positive absolute constant.

Proof. From Proposition 4.0.12 we recall that the set P1 consists of pairs (cj, dj) of

elements of the set A such that cj ≤ dj < a. Also for each pair (cj, dj) belonging to

the set P1 there is exactly one term bj of the sequence BY such that cj + dj = a + bj.

Let S1 denote the set of elements of A lying in interval [b, a), that is, S1 = [b, a) ∩ A.

Then it was shown in Proposition 4.0.12 that P1 ⊂ S1 × S1.

We shall construct a graph G associated to the set P1. As P1 ⊂ S1 × S1 we define

f1 : P1 → S1 and f2 : P1 → S1 by f1(ci, di) = ci , f2(ci, di) = di. The set of vertices

of graph G, let say V , consists of those elements v of S1 such that either v belongs to

image of f1 or of f2. Then we have following upper bound on number of vertices of G.

|V | = n ≤ |Image of f1| + |Image of f2| ≤ 2|S1| = 2|[b, a) ∩ A|. (4.5)
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The set of edges of G ( say X ) consists of those unordered pair {v1, v2} of V such that

either (v1, v2) or (v2, v1) ∈ P1. In other words two vertices v1 and v2 are joined by an

edge if and only if either (v1, v2) or (v2, v1) ∈ P1. The graph G thus constructed satisfy

following properties:

(i) There is a natural one-one correspondence between edges of G and elements of

P1.

(ii) If x is an edge in G joining vertices v1 and v2 then there is a term bx in the

sequence BY such that v1 + v2 = a + bx.

(iii) For two distinct edges x and y, the corresponding bx and by given as above are

distinct.

All these properties are easily verified using definition of G and P1. So (i) in particular

implies that number of edges in G is same as number of elements in P1. Then to prove

the Lemma it is enough to show that

number of edges in G = e(G) ≤ cn for some positive absolute constant c. (4.6)

Now G can have at most n loops. So if we remove all loops from G to get another

graph G1 then to show (4.6) it is enough to show that

e(G1) ≤ cn for some positive absolute constant c .

We claim that G1 doesn’t have any even closed trail. Then using claim and

Lemma 4.0.17 we have (4.6).

Suppose claim is not true and G1 has an even closed trail

T = v1, x1, v2, x2, v3, . . . , vi, xi, vi+1, . . . , v2m−1, x2m−1, v2m, x2m, v1

where vi is a vertex of G and xi is an edge joining vertices immediately preceding and

following it. Also by definition of trail we have, for 1 ≤ i, j ≤ 2m and i 6= j, xi 6= xj.

Then using property (ii) of G we have

vi + vi+1 = a + bi, where 1 ≤ i ≤ 2m − 1

v2m + v1 = a + b2m,
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where bi ∈ {bi} for all 1 ≤ i ≤ 2m. Further using property (iii) of G it follows that for

1 ≤ i, j ≤ 2m and i 6= j we have bi 6= bj. Now we have

2m−1∑

i=1

(−1)i(vi + vi+1) =

2m−1∑

i=1

(−1)i(a + bi) (4.7)

v2m + v1 = a + b2m (4.8)

Adding (4.7) and (4.8) we get

0 =
2m∑

i=1

(−1)ibi

which is a contradiction to Lemma 4.0.15.
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