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Abstract

An important class of force generating mechanisms in living cells involves the con-

trolled polymerization and depolymerization of biological macromolecules, such as

Microtubules. There has been much activity in trying to understand the mechanism

by which a microtubule alternates between polymerization and depolymerization.

While several interesting hypotheses have been made over the last decade or so,

progress has been slow due to the absence of a microscopic model which can properly

explain the various observed properties of the microtubule.

In this thesis we try to constuct a microscopic model for the microtubule which

can reproduce the experimentally observed structures. The basic subunit of our

model is the tubulin heterodimer, and we construct the microtubule by arranging

13 protofilaments in a cylindrical lattice. Each subunit of the microtubule lattice

is connected to its four nearest neighbours by springs, and the energetics penalises

deviations from the equilibrium bond length or the equilibrium bond angle both in

the horizontal and vertical directions. There is also an energy cost for deviations

from the perfect square topology between the bonds. In addition, we incorporate a

self-avoiding energy term for the lateral and longitudinal bonds.

Having defined our model, firstly we study the elastic response of our model to

small deformations. Specifically, we determine the torsional and tilt moduli of our

model microtubule. We also study the equilibrium structures generated by Monte-

Carlo and Brownian Dynamics simulations in different regimes of the parameters of

our model both at zero and at finite temperatures. Finally, we try to provide a future

direction for further work that needs to be done within the scope of the model.
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Chapter 1

INTRODUCTION

Cells are the basic components of all living organisms. To function properly, cells

must be able to interact efficiently with their environment. Each cell must be able

to handle a diverse array of spatial and mechanical functions for the organism to

survive. The system of filaments which helps the cell in these functions is known as

the cytoskeleton (Alberts et al., 2002).

In eucaryotic cells, there are three fundamental types of cytoskeletal filaments,

microtubules, actin filaments, and intermediate filaments. Of these, in this thesis, we

shall be concerned with microtubules only. Microtubules are responsible for various

cell functions, including the beating of cilia and flagella, the formation of bundles

that serve as tracks for the transport of materials in neuronal axons, and transport

of membrane vesicles in the cytoplasm. Microtubules rearrange themselves to form

the mitotic spindle during cell division and are also responsible for the arrangement

and segregation of chromosomes during meiosis and mitosis. Microtubules also direct

cell movement and can serve purely structural functions such as providing resilience

to certain blood cells (Lodish et al., 1995).



Figure 1.1: An electron micrograph picture of microtubule. (Reproduced from Lodish
et.al. Chapter 23)



A microtubule(MT) is a polymer whose basic subunit is a tubulin heterodimer. The

tubulin heterodimers are arranged in a cylindrical tube about 24 nm in diameter. The

tubulin subunits arranged end-to-end form a structure known as the protofilament

and the MT can then be thought of as being formed by these protofilaments arranged

around a cylinder (Figure 1.2).

The basic subunit for a MT is the tubulin heterodimer which is composed of two

globular proteins, the a and {3tubulin monomers (Figure 1.3). Each tubulin monomer

is a globular protein about 4 nm in diameter, and the heterodimer is thus 8 nm long.

Each heterodimer binds two molecules of GTP (Guanosine Triphosphate) nucleotide,

one each by the a and {3monomers. The difference between the two subunits lies in

their ability to hydrolyze this bound GTP molecule. The GTP-binding site located

on the a-tubulin binds GTP irreversibly and does not hydrolyze it, whereas the GTP-

binding site located on the {3-tubulin binds GTP reversibly and hydrolyzes it to GDP.

The second site, on the {3-tubulin is known as the exchangeable site because GDP can

be displaced by GTP. The interactions responsible for holding the a and {3subunits

together are very stable and the heterodimer cannot usually be broken up into its

constituent monomers.

The tubular form of MTs is maintained by lateral and longitudinal interactions be-

tween the tubulin heterodimers. The longitudinal contacts between the heterodimeric

subunits arrange them into a single column, the protofilament, and the protofilaments

form lateral contacts to close into the required tubular structure. Inside a cell, usually

13 protofilaments combine to form a MT although deviations from this number are

possible. In vitro, the MTs can have a variable number of protofilaments but the aver-

age number, in this case also, is around 13. Experiments reveal that the arrangement

of heterodimers in adjacent protofilaments is slightly staggered, thus causing the MT

to be arranged in a helical lattice. The protofilaments fit together laterally such that

the neighbouring subunits follow three-start (or five-start) helices, i.e. during each

complete turn of the helix the pitch of the helix rises by three (or five) subunits.

An interesting consequence of the heterodimeric structure of the MT is that it
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Figure 1.2: The organisation of subunits in a microtubule (Reproduced from Lodish
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lends to the microtubule a certain structural polarity, depending on which monomer,

the a or the f3 is exposed at the end of the tube. The end with the a-monomer

exposed is known as the '-'end, and the f3-tubulin end is known as the '+'end, the

two ends differing in their rates of assembly. In vitro, MTs self-nucleate and grow

from both ends, with the plus end growing more quickly. In vivo, the MTs nucleate

from a Microtubule Organising Centre (MTOC) present in the cell such that the

minus end remains anchored to the MTOC.

1.3 Dynamic Instability of Microtubules

The ability of the microtubules to grow and shrink very rapidly is critical for the

efficient performance of the diverse functions of the MT. Thus a MT can have large

scale length fluctuations which are comparable to the size of the MT itself. The

microtubule can, under appropriate conditions constantly switch between assembly

and disassembly states. This phenomenon of out-of-equilibrium aggregation is termed

as "dynamic instability" (Mitchison and Kirschner, 1984). In all cases, microtubule

growth is slow, and shrinking is rapid. Thus, a plot of the length of a microtubule with

time resembles a sawtooth, and this apparently random phenomenon occurs both in
vivo and in vitro. In a small region of the cell, at the same tubulin concentration, some

microtubules will be growing longer, while others will be shrinking in length. Also,

a single MT, over a period of time will go from the growing to the shrinking phases

and vice versa. The transition from growth to shrinkage is termed as "catastrophe",

whereas the reverse process of transition from shrinkage to growth is termed "rescue"

(Dogterom and Leibler, 1993).

In vitro and in vivo, MTs polymerize by the addition of tubulin heterodimers.

At the point of addition, the tubulin dimer is liganded with two molecules of GTP,

but after incorporation into the MT lattice, the dimer is liganded by one molecule of

GTP and one molecule of GDP, due to the hydrolysis of the GTP molecule liganded

to the exchangeable site (E-site) at the f3-monomer. It is now believed that this

hydrolysis causes a straight-to curved configurational change in the dimer (Caplow

et al., 1994; Hyman et al., 1995). However, due to the constraints of the MT lattice,



this curved configuration cannot be achieved, and the excess energy is stored in the

MT's wall (Fygenson, 2001), thus poising the MT towards depolymerization (Janosi

et al., 2002). The process ofrescue is not particularly well understood, but is believed

to take place in a random manner.

1.4 The physics of Microtubule dynamics

There is as yet no comprehensive understanding of the phenomenon of dynamic in-

stability of microtubules, or of the reasons why it makes transitions from the growth

to the shrinkage states or vice versa. The dynamic instability process is evidently a

non-equilibrium phenomena and as such can be studied using the methods of non-

equilibrium statistical mechanics. Physical models of microtubule structure may help

to elucidate the energetics of the MT lattice, and explain open problems such as how

a microtubule is stabilised, or provide an explanation for the process of rescue.



Chapter 2

CAP MODELS FOR
MICROTUBULES

2.1 Necessity for a stabilising cap

The processes of growth and shrinkage of microtubules do not occur by the same

method. Growing microtubules display sheets of various lengths, widths, and curva-

tures at their extremities. On the other hand, depolymerization experiments reveal

that microtubules depolymerize by release of short protofilament segments in a highly

curved conformation. The present understanding of these phenomena is as follows:

MTs polymerize from tubulin dimers liganded with two units of GTP, but after assim-

ilation into the MT lattice, the dimers contain one unit of GTP and one unit of GDP,

due to the hydrolysis of the GTP molecule on the E-site of the JJ-tubulin to GDP.

This hydrolysis is believed to cause a straight-to-curved configurational change of the

dimer. Thus the bulk of the MT lattice has a hidden intrinsic curvature, a hypothesis

which is supported by the curved configuration of the oligomers released from the

depolymerizing microtubule ends. This intrinsic curvature is unable to manifest itself

in the MT because the protofilaments are bound laterally to each other in the MT

wall, and the sheet of protofilaments curves laterally strongly to form the MT. Thus

a microtubule has opposing intrinsic curvatures, the lateral curvature that favours



the formation of the tube, and the longitudinal curvature that prefers the protofila-

ments to be curved outside the tube. The resultant tube is the result of these two

Jpposing curvatures, and mathematically, the sheet is said to have a negative Gaus-

3ian curvature. The hidden intrinsic longitudinal curvature poises the MT towards

depolymerization and thus there must be some sort of "cap" at the end of the MT

lattice which binds together the tube and allows polymerization to take place. The

exact nature of this stabilising cap is not known for sure and has generated a lot of

debate since the early days of dynamic instability. There are a lot of candidates for

the stabilising cap and in this chapter we will be reviewing the main proposals.

2.2 The GTP cap Model

The GTP cap model was proposed originally by Mitchison and Kirschner (1984). This

model proposes that transitions between the growth and shrinkage state occur due

to competition between assembly and GTP hydrolysis. A growing MT assembles by

the addition of tubulin subunits containing GTP molecules, which is then hydrolysed

to GDP. According to the GTP cap model, a growing MT has a cap of GTP at its

ends which is due to the time taken for the GTP molecules to hydrolyse to GDP.

If hydrolysis overtakes the addition of new GTP tubulin, the cap is gone and the

microtubule passes to the depolymerizing state, which is known as the catastrophe

(Figures 2.1,2.2). Thus according to this hypothesis, the hydrolysis of GTP to GDP

is the rate limiting process that pushes the MT towards depolymerization. Although

it is clear that GTP-hydrolysis precedes disassembly, it is not clear whether it is this

process which is the rate determining step (Flyvbjerg et al., 1996).

Also there is a debate on the size of the GTP cap that is required to stabilise the

microtubule. Experimentally, it is found that when MTs are grown in pure GTP-

tubulin solutions at various constant concentrations, the frequency of catastrophes

is one every few minutes and decreases with increasing concentration. This suggests

that the stabilising cap is longer and hence less apt to be lost at larger concentra-

tions. On the other hand, in dilution experiments, the concentration of tubulin is

abruptly reduced to zero, resulting on catastrophes within seconds, independent of
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from Alberts et. al. Chapter 16)



the initial concentration. This suggests that the cap is short and independent of the

concentration at which it is formed. Thus, it is not clear whether, if the GTP cap

model is correct, it would require a long cap or whether a small cap would suffice.

Recent results seem to indicate that if the stabilising cap is indeed a GTP cap, then

a small ( even single-layer) cap would suffice to stabilise the MT lattice (Caplow and

Shanks, 1996).

Recently there has also been a debate as to the actual chemical composition of

the cap at the end of the MT. Certain experiments seemed to suggest that instead of

GTP, it is actually a GDP-P(i) (GDP + inorganic phosphate) complex that serves

as the cap. Thus, according to this point of view, microtubules are capped with a

tubulin-GDP-P(i) subunit at the end of its 13 protofilaments and this is responsible

for stabilising microtubules in the growth phase. It was concluded that P(i) in ter-

minal tubulin-GDP-P(i) subunits does not exchange with the solvent (Panda et al.,

2002). However, contrary results from other experiments put a doubt on the ability

of tubulin-GDP-P(i) subunits to stabilise microtubules (Caplow and Fee, 2003).

2.3 The Structural cap Model

The structural cap model proposes that there is scope for stabilising the microtubule

lattice if the structure at the ends of the MT is slightly different from that along

the length of the tube. This is possible because there is a scope for stress-release

at the ends due to bending of the protofilaments as an expression of the hidden

intrinsic curvature of MT walls. Experiments on growing microtubules show that the

ends of growing MTs are heterogeneous during assembly, ranging from blunt ends to

long curved extensions up to several micrometers in length. Microtubule assembly

therefore seems to occur by addition of tubulin subunits to curved sheets that close

into a tube (Chretien et al., 1995).

Studies of microtubule dynamics have shown that catastrophes are suppressed

by increasing growth rate (Mi tchison and Kirschner, 1984). On the other hand,

structural studies reveal that the length of the sheets at the ends of the MT increases

with increasing growth rate (Chretien et al., 1995). These two facts taken together



seem to indicate that longer sheets at the end of growing microtubules correlate with

increased stability of the MT (Figure 2.3). Furthermore, the lengths of the sheets at

any particular tubulin concentration are variable from microtubule to microtubule,

suggesting a stochastic rate of tube closure. Thus, if the sheet were, on an average,

shorter, there would be more chance that during a stochastic period of closure, the

tube closes all the way to the end. If closure of the tube to the end of the MT simulated

catastrophe, a stochastic rate of tube closure would then determine a stochastic rate

of catastrophes. This model is known as the Structural cap model because it predicts

that the dynamic properties of microtubules are regulated by the structure at the

microtubule ends and not simply by the rate constants of addition of GTP tubulin

and GDP tubulin (Hyman and Karsenti, 1996). A possible explanation of why tube

closure triggers microtubule depolymerization is that the sheet has an inherently

stable configuration, while the tube is inherently unstable. Thus when tube closure

occurs, if sufficient GTP is hydrolysed, then this can trigger depolymerization.

However, as proposed by Janosi et. al. (Janosi et al., 2002), stress release does

not require a complicated end structure such as sheet like extensions at the end of the

MT. Blunt MT ends can also lower their elastic energy by adopting a relaxed configu-

ration, plus- and minus-ends alike. This local relaxation amounts to a structural cap,

and is independent of the chemical composition of the MT ends. The MT is modelled

as a two-dimensional elastic sheet with opposite intrinsic curvatures (Janosi et al.,

1998). Janosi et. al. use a filament model to show that this elastic tube is capped

by a structure different from its bulk: it displays a structural cap. They also propose

the existence of a so-called "third state" or quiescent state, in which the microtubule

neither grows nor shrinks. When GTP-liganded tubulin is lost from the ends, the MT

is left in the meta-stable state that results due to the competition between the two

opposing curvatures. This state leaves for the depolymerizing state only when a ran-

dom thermal excitation pushes it over the barrier toward depolymerization. They also

propose a possible mechanism for "rescue", the transition from the depolymerization

state to the polymerizing state. They propose that the phenomenon of rescue occurs

due to random thermal fluctuations. Since thermal fluctuations can remove energy

from the system apart from adding energy to the system, and both these processes



Figure 2.3: Experimental picture of MT end. The ends range from blunt to long,
narrow tips, formed by sheets of microtubule wall. (Reproduced from Janosi et. al.,
1998)



2.4 A Combination of Conformational and GTP

It is possible that the stabilising cap is a combination of both the structural and

the GTP caps. According to this hypothesis, the structural cap contributes to the

microtubule stability by allowing for a more relaxed structure near the ends of the

MT. However, even with the structural cap, it is possible that the ends of the curved

sheets contains a few layers of GTP molecules, which also contribute to the stability

of the microtubule, thus forming the mixed GTP-conformational cap (Tran et al.,

1997). However, if the GTP molecules do indeed occur at the ends of the curved

sheets, it should be noted that their only direct effect is on the sheet, while the sheet

contributes to the stability of the microtubule (Chretien et al., 1999). In fact, within

their filament model, Janosi et. al. (2002) show that the GTP cap stabilises an MT

simply by being intrinsically straight, and it does this quite efficiently, exponentially

in the cap size.



Chapter 3

MATERIALS AND METHODS

We have carried out Monte-Carlo (MC) and Brownian Dynamics (BD) simulation

of the MT lattice and studied the equilibrium structure both at zero temperature

and at finite temperatures, with special emphasis on the structure at the ends of the

microtubule. Such simulations should be able to determine whether stress release

occurs at the ends of the microtubule by protofilament bending and hence provide a

test for the Structural Cap Model.

Our model consists of tubulin subunits placed along a cylindrical lattice. The coor-

dinates of the centre of each subunit is specified, and 13 units are placed on a single

ring. The MT is then constructed by placing 'n' such rings on top of each other. Each

unit is connected by springs to its four nearest neighbours, two on either side of the

same ring, and the two at the top and bottom of the two adjacent rings. The springs

in the horizontal direction differ from those in the vertical direction in their nature,

spring constants, and equilibrium distances. The bonds have a preferred bond length

and preferred bond angles both in the lateral and longitudinal directions. The pre-

ferred bond angles in the lateral direction ensures that the units close around to form

a cylinder. The preferred bond angle in the vertical direction, if present, expresses

the fact that the microtubule has an intrinsic curvature in the longitudinal direction



due to conformational changes on hydrolysis of the GTP molecules. This intrinsic

curvature can also be set to zero in order to model MTs constituted of material with

zero internal curvature. The springs along the lateral direction can be either linear or

non-linear in nature, and the differences, if any between the two cases can be stud-

ied. In addition, we introduce an explicit term that enforces self-avoidance in the

MT lattice. Also we add an energy term that penalises deviations from the square

topology of the lattice and study the combined effects of these various terms on the

equilibrium structure of the microtubule. For the time being, we neglect the helical

character of the microtubule but this can be accommodated through a straightforward

generalisation of the approach presented here.

The various interactions between the tubulin subunits of the microtubule are

modelled in the following way:

Figure 3.1: A schematic figure showing the different springs connecting the atoms in
the MT lattice and the various lengths and angles

• Within anyone given ring, the angle between two adjacent bonds (a three-body

interaction) has a preferred value, with the energy cost being quadratic in the

difference of the cosines. Then, if the bond angle is "e" and the equilibrium

value is "eo", the energy can be written as,

1 2
E1at,bending = 2 K1at,b (case - caseo)



~
• Within anyone given ring, the bond length between two atoms has a preferred

value, and the energy cost can be either linear or non-linear in the deviation.

Linear spring:

If the bond length is "l" and the equilibrium length is "lo", the energy can

be written as,
1 )2E1at,stretching = "2 K1at,s (l - lo

Nonlinear spring:

If the bond length is "l" and the equilibrium length is "lo", the energy can

be written as,

This form of the energy implies that a displacement which increases the

bond length from its equilibrium value is penalised less than one which

decreases the bond length.

• Between any three adjacent rings, the bond angles between two adjacent bonds

has an optimum value, and the energy cost is quadratic in the difference between

the cosines. Then, if the bond angle is cP, and the equilibrium value is cPo, the

energy can be expressed as

1 2
E1ong,bending = "2KIOng,b(COScP - COScPO)

• The bond length between two corresponding subunits in two adjacent rings has

an equilibrium value do (say), and the energy cost is quadratic in the difference.

Then, if the actual bond length is d, the energy is,

1 2
E1ong,stretching = "2KIOng,s(d - do)



• With the inclusion of an explicit self-avoidance term in the model, the stretching

energy costs are modified and can be expressed as,

Eseli-avoiding _ E KSA
lat,stretching - lat,stretching + ~

Eseli-avoiding E KSA
long,stretching = long,stretching + ~

• The square lattice connected by springs has an inherent instability (Plischke

et al., 1999) in the ground state in that it has infinitely degenerate ground

state configurations which can be accessed by gradually deforming the square

into a parallelogram and squishing it correspondingly. In order to break this

degeneracy, we add an energy term in our model that penalises deviations from

the square topology of the lattice bonds. Thus if we consider any particle in

the lattice, it has 4 bonds with its four nearest neighbours. If we denote the

angles that these bonds mutually make amongst themselves as 'T], (,~, and X

respectively, then the energy cost of deviations from the perfect square topology

can be expressed as

1
Etopology = 2" Ktopo.

1f 1f
x [(COS'T] - COS"2)2 + (cos( - COS"2)2

1f 1f+ (COS~ - COS"2)2 + (COSX - COS"2 )2]

The final structure of the microtubule lattice is then determined by the competi-

tion between the above listed energy terms.

3.2 The principle of Monte-Carlo simulations

The properties of many molecular systems can be described by a separable Hamilto-

nian of the general form

where Ek and Ep are the kinetic and potential energies and q and p denote the position

and momentum vectors of the system. This hamiltonian function forms the basis for

Me simulations applied to estimate various properties of large molecular systems.



The MC estimates must emulate a probability density function p(q, t) or p(q, p, t)
appropriate for a statistical ensemble. MC simulations must generate an ensemble

around a statistical equilibrium. The equilibrium ensemble regime is appropriate

when p(X, t) = Po(X) for some t > to, where X represents the collective phase space

vector of the system. The ensemble average is then considered as an estimate for the

time average (which may be much more difficult to follow), a statement of the Ergodic

hypothesis. In this statistical equilibrium case, the rule that generates Xn+1 from Xn

need not have a clear physical interpretation. However, to be useful for sampling, the

rule must ensure that the starting distribution p(X, t) should tend to the stationary

density Po(X) and that the system be ergodic (i.e. over time, the system should visit

all phase space cells with equal probability).

The probability density function for the canonical ensemble is proportional to the

Boltzmann factor,

where E is the total energy of the system and f3 = (1/ k B T) .

Hence for two system states X and X', the corresponding probability ratio is

p(X)
p(X') = exp( -f3I:::::.E),

(A(x)) = J p(x)A(x)dx.

The Metropolis algorithm described below is used to generate an appropriate Markov

chain from which the expectation value of A is calculated as

1 M
(A(x)) = lim M I)A(Xi))

M--+oo
i=l

Metropolis described an efficient and elegantly simple procedure for the canon-

ical ensemble. In mathematical terms, we generate a Markov chain of molecular



states Xl, X2, X3, ... constructed to have the limiting distribution p(X). In a Markov

chain, the outcome Xn+l depends only on Xn. The Metropolis algorithm constructs

a transition matrix for the Markov chain that is stochastic and ergodic so that the

limiting distribution for each state Xi is Pi = p(Xi) and thereby generate a phase

space trajectory in the canonical ensemble.

The Metropolis algorithm generates a trial Xi+l from Xi by a system-appropriate

random perturbation and accepts the state if the corresponding energy is lower. If

however, E(Xi+l) > E(Xi), then the new state is accepted with probability p =

exp( -j3~E), where ~E = E(Xi+l) - E(Xi) > 0, by comparing p to a uniformly

generated number on the (0:1) interval. In this manner, states with lower energies

are always accepted but some states with higher energies have a nonzero probability

of acceptance too. Consequently, the sequence tends to regions of configuration space

with low energies, but the system can always escape to other energy basins.

3.3 The principle of Brownian dynamics

The basic equation behind the Brownian Dynamics simulation is the Langevin Equa-

tion of motion. The Langevin equation is a stochastic differential equation in which

two force terms have been added to Newton's second law of motion to approximate

the effects of the neglected degrees of freedom. The effects of the solvent molecules

not explicitly present on the system being simulated would be approximated in terms

of a frictional drag on the solute as well as random kicks associated with the thermal

motions of the solvent molecules. Thus the Langevin equation of motion is New-

ton's second law with three forces acting on the particles: viscous damping, random

thermal noise, and a systematic force. Then, Langevin's equation for the motion of

particle i is:

where,

F/(t) is the systematic force on the ith particle at time t, i.e., the force on the ith



particle due to all other particles explicitly present in the system;

ff[ (t) is the random force on the ith particle at time t used to induce thermal fluc-

tuations in the energy of the particle;

vi (t) is the velocity of the ith particle at time t;

ri is the coefficient of friction for the ith particle.

This equation can be factored as

dme-rt/m_[ert/mv] = FT + FS
dt

and has the general solution:

v(t) = e-rt/m [v(O) + ~ it erS/m(FT(s) + FS(S))dS]

If we assume that the random force is a white noise process, then its correlation can

be described by:

Then, the correlation in particle velocities can be expressed as:

(v(t1)V(t2)) = v2(O)e-r(t1+t2)/m + ~ [e-rltl-t21/m _ e-r(h+t2)/m]
2rm

To obtain the mean kinetic energy, we take t1 = t2 = t. This gives,

A(v2(t)) = v2(O)e-2rt/m + -[1 _e-2rt/m]
2mr

At equilibrium, i.e. in the limit t -+ (X) this value approaches

2 A
(v (t)) = 2mr

Now, from the equipartition theorem, we know (v2) = k~T.

Thus, we obtain, A = 2rkBT.

Then, the random force is described by the variance



which is a statement of the fluctuation-dissipation theorem. At thermal equilib-

rium, the strength of the random thermal noise must be proportional to the frictional

damping constant. Alternately, if the friction coefficient is known, the width of the

distribution sets a temperature scale in the problem.

For the Brownian Dynamics simulation, we work in the overdamped limit, i.e. we

assume that the acceleration of each particle is zero. Then, putting iJ = 0, in the

Langevin equation, we get,

Jow, we start with an initial configuration of the particles (n x 13). Then, we

calculate the systematic force (FS) on each particle due to all the other particles.

We then generate a random force (FT) from a Gaussian distribution and calculate

the velocity on each particle in accordance with the formula given above. Then we

update the position of each particle according as,

where the time-step tlt is chosen such that a typical displacement in one time-step is

a small fraction of the interparticle spacing. The system is then allowed to evolve over

a period of time until a equilibrium structure is generated and then the properties of

the equilibrium structure was studied.



3.4 Finite temperature simulations: Setting the

temperature scale

When performing the finite temperature simulations, it is important to know what

the typical temperature scale of the system is. If the temperature of the system is

too high, thermal fluctuations will be too high and this can destroy the order of the

microtubule. Again, for too low temperatures, the system can take very long time to

equilibrate and can thus take an inordinate amount of computing time.

To calculate the typical temperature scale of the system, we consider anyone

particle, and the four neighbouring particles it is bonded to (refer to figure 3.1).

We calculate the effective potential at the central particle due to its neighbouring

particles. The effective spring constants for small displacements of the central particle

about its equilibrium position is obtained from the value of the second derivative of

the effective potential about the equilibrium position.

EOl = ~Klat,s[J(x - Xl)2 + (y - Yl)2 + (z - Zl)2 - af
E03 = ~Klat,s[J(x - X3)2 + (y - Y3)2 + (z - Z3)2 - a]2

1 1 V 2E02 = 2KIOng,s[ (x - X2)2 + (y - Y2)2 + (z - Z2)2 - b]

-~KI2ong,s[J(x - X2)2 + (y - Y2)2 + (z - Z2)2 - b]3
1

+ 2Klong,s[ J(x - X2)2 + (y - Y2)2 + (z - Z2)2 - b]4

E04 = ~KI~ng,s[J(x - X4)2 + (y - Y4)2 + (z - Z4)2 - b]2

1 2 V 3-2KIOng,s[ (x - X4)2 + (y - Y4)2 + (z - Z4)2 - b]
1

+2Klong,s[J(x - X4)2 + (y - Y4)2 + (z - Z2)4 - b]4

Assume, K1at,s = KI~ng,S = Klong,s = Klong,s = 1.



[J(x - XI)2 + (y - YIP + (Z - zd2 - a]
(x - Xl)

x -~~~~~~~~~~~~~~~~~~~~--=
J(x - xd2 + (y - yd2 + (z - ZI)2

[
(X - xd ] 2

J(X - xd2 + (y - YIP + (Z - zd2

+ [J(x - xd2 + (y - YI)2 + (Z - ZI)2 - a]
J(x - xd2 + (y - YI)2 + (z - zd2

_ [[J(X - XI)2 + (y - yd2 + (z - zd2 - a](x - XI)2]
[(X - xd2 + (y - YIP + (z - zd2J3/2

xi
J(x - XIP + (y - YIP + (z - ZI)2

J(x - XIP + (y - YIP + (z - zd2 - a+ -- ------------------------------------------
J(x - XI)2 + (y - yd2 + (z - zd2

xi[ J(x - XI)2 + (y - YIP + (z - ZIP - a]
[(X - XI)2 + (y - YI)2 + (z - zd2J3/2

fJ2 EOI I
~ fPx 0

Similarly,

82 E031 _ x~
--0 -;::\2 - ,u X a

{[J(x - X2)2 + (y - Y2)2 + (z - Z2)2]

3
- 2[J(x - X2P + (y - Y2P + (z - Z2)2f

+ 2[ J(x - X2)2 + (y - Y2)2 + (z - Z2)2j3}
(x - X2)

x -~~~~~-=--=--=--=--=-===========
J(x - X2)2 + (y - Y2)2 + (z - Z2)2

On differentiating again and finally expanding about the equilibrium position, we

8E02

8x



( xi ~ x~) + (x~; x~)
/);1 (say)

( yi ~ y~) + (y~ ; Yl)
/);2 (say)

( zi ~ z~) + (z~ ; zl )
/);3 (say)

The effective spring constants /);1, /);2 and /);3 are a measure of the response of the

system to small deviations from the equilibrium position. Thus for deviations Llx,

Lly, Llz from the equilibrium position, the energy cost is

This energy introduces a temperature scale in the system according as E rv kBTch

and this characteristic temperature provides an estimate of the temperature at which

finite temperature simulations are to be performed.



Chapter 4

ELASTIC RESPONSE OF THE
TUBE

In this chapter, we will subject the microtubule lattice to small deformations about

its equilibrium position and study the elastic response of the tube to such small

deformations. We shall calculate the free energy of the tube within our model as a

function of the displacements and hence determine the elastic moduli of the tube.

To calculate the ela:stic response, we will choose the following version of our model.

We will consider the tube to have a zero intrinsic curvature in the longitudinal direc-

tion, i.e. we assume that successive bonds along the longitudinal direction prefer to

align themselves along a straight line. Also, we assume that the adjacent subunits

on any given horizontal ring are attached to each other using linear springs. We con-

sider the zero temperature equilibrium structure (Figure 5.4) and then measure the

response to small deviations about this structure.

Firstly, we consider a "torsional deformation" of the structure. A torsional defor-

mation is one in which, although the rod remains straight, each transverse section

(i.e. in our model, each ring) is rotated through some angle relative to those below

it (Landau and Lifshitz, 1986). If the cylinder is long, even a slight torsion causes



sufficiently distant cross-sections to turn through large angles. The generator of the

sides of the cylinder, which are originally parallel to the axis, become helical in form

under torsion.

Let us define the torsion angle 7, which is the angle of rotation per unit length

of the tube. This means that two neighbouring rings at a distance dz will rotate

through a relative angle d¢ = 7 dz. The torsional deformation itself is assumed to be

small. Within our model, this constraint is satisfied by ensuring that the maximum

angular displacement, which occurs at the topmost ring of the tube, is a fraction of

the equilibrium value of the inter-particle angle.

The torsional energy per unit length of the tube is given as ~C72, where the

constant C measures the response of the tube to the torsional deformation and is

called the "torsional rigidity" of the tube. The total energy of the tube is then equal

to the integral
1J 2Ftube = 2" C7 dz,

taken along the length of the tube.

Now, in the case under study, one end of the tube is held fixed and the external

forces act only to the other end. These forces are such that they cause only a twisting

of the tube, and no other deformation such as bending. We expect that, in such

a case, the torsion angle 7 is constant along the tube (Landau and Lifshitz, 1986).

Then, if the length of the tube is L, the total angle of rotation of the upper end of

the tube relative to the lower end is 7L. The free energy is then,

1 2
Ftube = 2"C7 L

From this equation if all the other values are known, the torsional rigidity can be

calculated.

To calculate this rigidity, firstly, we plot the values of the energy for different

system sizes for a fixed value of the torsional angle (7 = 0.0001). From the graph

(Figure 4.1), it appears that the energy per unit length stabilises near the region n

(number of rings in the tube) ~ 400, and we choose to work with n=500 for further

calculations. Then, with n = 500, we plot the Energy per unit length (ElL) against

the value of the torsion angle 7 (Figure 4.2). The value of the torsional rigidity is



obtained by plotting i~ against T (Figure 4.3) and reading off the value at which the

plot stabilises.

Then, we plot the graph of i~2against T for different values of the various spring

constants. Specifically, we vary the longitudinal stretching spring constant K1ong.,s

(Figures 4.4), and the topology preserving spring constant Ktopo (Figures 4.5). The

curves for different values of the parameters K1at.,b, K1at.,s and K1ong.,b are identical,

because these springs remain at their equilibrium positions under the torsional dis-

placement.
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Now consider a tilt deformation of the structure. A tilt deformation is defined as one,

in which, each transverse section is shifted in a particular direction by some small

amount relative to those below it. Thus the resultant structure is a tube whose axis

is a straight line which is tilted at some constant angle with respect to the axis of the

unperturbed cylinder.

We now define the tilt variable a which is a measure of the shift per unit length

of the tube. Thus the centres of mass of two neighbouring rings are shifted by an

amount dr = a dz. The variable a is chosen such that the amount the particles are

shifted by in the topmost layer is a fraction of the radius of the tube.

The tilt energy per unit length of the tube is given by ~Cta2, where the constant

Ct measures the response of the system to a tilt deformation and is called the "tilt

modulus" of the system. The total energy of the system is then given by

1J 2Etube ="2 Cta dz

along the length of the tube. Moreover, as before, if the tilt variable a is a constant,

then the total energy of the tube can be written as

1 2
Etube = "2Cta L

where L is the total length of the tube.

To determine the tilt modulus, we follow the same procedure as before. Firstly,

we plot the energy per unit ring against the number of rings (Figure 4.6) and from

there determine the n at which to perform subsequent calculations (n=500). Then,

given this n, we plot the energy per unit length against the tilt variable a (Figure

4.7) and also i~2against a (Figure 4.8) from which plot we determine the value of

the tilt modulus. Then again as before, we study the variation in the tilt modulus

for different values of K1ong.,s (Figure 4.9) and Ktopo. (Figure 4.10).
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Chapter 5

ENERGY AND STRUCTURE IN
DIFFERENT REGIMES

In this chapter, we shall look at the structures generated in different regimes of our

model. The main results presented in this chapter are due to Monte-Carlo simulations.

The results of Brownian Dynamics simulations are summarized in the last section.

Firstly, the microtubule was assumed to have a zero intrinsic curvature along the

longitudinal direction. The bonds in the horizontal direction, i.e. along any given ring

were assumed to be connected by non-linear springs. Then a zero temperature Monte-

Carlo was carried out to generate the equilibrium structure. The initial configuration

was a straight tube with all atoms at their equilibrium positions. As expected, the

energy stayed at its minimum value (Figure 5.1) and the resultant structure was a

straight un distorted tube (Figure 5.2).
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Now, the microtubule was assumed to be connected along horizontal rings by linear

bonds. The intrinsic curvature is again zero and the simulation is carried out at

zero temperature. The initial configuration is the same as in the previous section

and again, the energy plot remained constant (Figure 5.3) and the structure was a

straight undistorted tube (Figure 5.4).

The MT is again assumed to have zero longitudinal curvature and the subunits on

any given ring are assumed to be connected by non-linear springs. A Monte-Carlo

simulation is carried out at finite temperatures and the equilibrium structure was

generated. The initial configuration was a straight tube with all particles at their

zero temperature equilibrium positions. The energy vs. time plot is shown (Figure

5.5) and the equilibrium structure was a fairly straight tube with some displacements

due to the thermal noise (Figure 5.6).

5.1.4 Finite temperature, linear spring

As in the previous subsections, we again consider a MT with zero intrinsic curvature

in the longitudinal direction. The horizontal springs are assumed to be linear and

the system is allowed to relax at a finite temperature. The energy plot is generated

(Figure 5.7) and the structure, as in the non-linear case, is an almost straight tube

with slight displacements from the equilibrium position (Figure 5.8).
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Let us now consider a microtubule lattice that has a non-zero intrinsic curvature in

the longitudinal direction, i.e. the bond angle between two successive bonds prefers

to have a certain non-zero value. We assume that the horizontal bonds are connected

by a non linear spring. We now allow the lattice to relax to its minimum energy

configuration at zero temperature. The resultant graph is shown (Figure 5.9) and

the structure that results (Figure 5.10) is a compromise between the two opposing

curvatures. This competition is expected to manifest itself near the free end of the

tube. Indeed, the structure obtain does in fact show that the structure near the

ends is different from that in the bulk of the tube but the desired "flowering out"

of the protofilaments could not be observed. Rather, a zig-zag pattern emerged in

the protofilaments, with adjacent units on a ring also preferring to be in an "in-out"

position. This is because we sought by introducing non-linear springs to make it

more favourable for the horizontal bonds to increase in length but that also allows for

relaxing by adopting the zig-zag structure, which is what the results seem to indicate.

5.2.2 Zero temperature, linear spring

Now, we consider a tube with non-zero intrinsic curvature but with the horizontal

bonds now connected by linear springs. We again allow the tube to relax to its

minimum energy configuration at zero temperature. We find the energy plot (Figure

5.11) and the equilibrium structure (Figure 5.12), as in the non-linear case, consists

of a zig-zag pattern of tubulin near the free end of the MT. The linear spring implies

that within the non-zero curvature, bending in towards the axis is equivalent in energy

to bending outwards, thus producing the resultant structure.
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We now consider a tube with a non-zero intrinsic curvature and with non-linear

springs connecting the subunits in a ring and allow it to relax at a finite temperature.

The energy curve is plotted (Figure 5.13) and the equilibrium structure is generated

(Figure 5.14). The lattice shows considerable buckling throughout the length of the

tube although angle variations are more pronounced near the ends of the tube.

Finally, we consider the case of the MT lattice with non-zero intrinsic curvature and

with horizontal bonds connected through linear springs. Again a finite temperature

Monte-Carlo was performed and the energy plot was obtained (Figure 5.15). The

equilibrium structure (Figure 5.16) again shows a considerable distortion throughout

the tube.
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5.3 Radius profiles

To obtain a feel for the structures that are generated by the above simulations, we

trace the radius profile of the equilibrium structures that are obtained in the various

cases. For the zero curvature case (Figure 5.17), while the zero t~mperature radii are

perfectly constant, the finite temperature structures shows fluctuations on either side

of the equilibrium positions.



In the case of structures with non-zero longitudinal intrinsic curvature (figure

5.18), the radius profiles of the zero temperature configurations also deviate away

from a perfect cylinder. For both the linear and the non-linear case, the distance

from the central axis begins to change near the end of the tube in a zig-zag fashion,

with the last ring being further away from the central axis. The finite temperature

structures also display similar behaviours and additionally also displays fluctuations

throughout the tube.



Curvature Energy costs

We also plot the curvature energy costs in the longitudinal direction. For the case of

a tube with zero intrinsic curvature (Figure 5.19), the zero temperature energies are

constant, while the finite temperature configurations show random fluctuations.



For tubes with non-zero intrinsic curvatures (Figure 5.20), the zero temperature

structures also lower their curvature energies by aligning themselves at suitable angles

near the end of the tube. The finite temperature structures, as usual, show a similar

behaviour near the ends and fluctuations throughout the tube.

linc-ur0--.

l



5.5 Brownian Dynamics simulations

Brownian dynamics was also used to simulate the different regimes as mentioned in

the earlier sections. For the case of a tube with zero intrinsic curvature, and at zero

temperature, and with either linear or non-linear springs connecting the bonds in

the lateral direction, for initial configuration of a perfectly straight tube, the energy

plot, as in the Monte-Carlo case (Figures 5.1, 5.3), is a perfectly straight line and

the resulting structure is a perfectly straight tube with all atoms at their individual

equilibrium positions. Now for the case of a tube with zero intrinsic curvature taken

at finite temperatures, for small values of the topology preserving spring constant,

the energy plot stabilises at extremely high values of the energy, where all cylindrical

structure is lost. An intermediate configuration shows that the cylinder starts twisting

along its entire length (Figure 5.21), and then gradually collapses. It is conjectured

that the twisted state of the tube represents a local energy minima, the barrier for

getting out of which towards the actual minima is very high and may not achievable

by a local algorithm such as Brownian Dynamics. However for large enough values

of the spring constant Ktopo., the tube does stabilise (Figure 5.22) and results in a an

almost straight configuration with some very small fluctuations (Figure 5.24).

For the case of the tube with a non-zero intrinsic curvature, even the zero tem-

perature simulations escape into a region where the topology of the microtubule is

not preserved. Again as before, we may stabilise the MT both at zero and finite

temperatures (Figure 5.23) by increasing the topology preserving spring constant to

a high enough value. The structures obtained are similar to Figure 5.24 in that they

are almost straight.



Figure 5.21: A view of a twisted intermediate structure before the MT collapses when
the value of Ktopo. is small (zero curvature)





Chapter 6

CONCLUSIONS AND FUTURE
DIRECTIONS

In this thesis, we have developed a model for the microtubule that seeks to pre-

dict equilibrium structures based on microscopic interactions between the constituent

tubulin heterodimers. We modelled the interactions based on expectations regarding

the MT structure as known from experiments.

We have outlined a method and calculated the response of the microtubule lattice

with zero intrinsic curvature and at zero temperature to small deformations about

the equilibrium structure. In particular, the torsional and tilt moduli of the tube

were calculated and their behaviour with changing model parameters (such as the

various spring constants) were studied. We propose in the future to standardise

the values obtained for the elastic moduli in this thesis with their experimentally

determined values so that we can estimate the relationship of the values of various

physical quantities obtained within our model to the actual physical values.

Central to the motivation for developing this microscopic model for microtubules

was to generate the equilibrium structures that are observed experimentally. Specif-

ically, one major aim is to see if a structural microtubule cap develops as a result

of opposing curvatures of the microtubule lattice and to what extent it stabilises the

MT. The simulation results of Chapter 5 indicate that our model gives sensible struc-

tures when the tube is intrinsically straight. However, as is seen from the results,



it is not yet clear how to enforce a non-zero longitudinal intrinsic curvature into our

microscopic model. We hope to be able to find an efficient way to incorporate these

opposing intrinsic curvatures into our model and then generate sensible equilibrium

structures. With the help of the standardised model parameters, we can then find

the actual energetics of the equilibrium structure and compare it to experiments.

Models such as these can be used to predict many aspects of microtubule dynamics

which are currently inaccessible in experiments. Such models, although simplified, are

powerful in that they can encapsulate the important contributions to the stability of

the microtubule structure. In the future, we hope to develop microscopic models for

microtubule dynamic instability as well as to investigate such interesting phenomena

such as role of microtubule associated proteins and drugs such as colchicine and taxol

in selectively stabilising and destabilising microtubules.



Appendix 1

I Parameter description I Notation 1 V_a_Iu_e __
Equilibrium radius of a ring To 10.0
Equilibrium bond length for the lateral bond lo 4.786
Equilibrium bond length for the vertical bond do 2.0
Equilibrium bond angle in lateral direction () ~1r

U
Equilibrium bond angle in vertical direction cP o (zero curv.) or

~ (non-zero curv.)
Spring constant for lateral spring Klat.,s 1.0
Spring constants for longitudinal spring K1 1.0

lang.,s
K[ang.,s (if NL) 1.0
Klano. s (if NL) 1.0

Force constant for angular deviations
in the lateral direction Klat.,b 1.0
Force constant for angular deviations
in the longitudinal direction Klang.,b 1.0
Force constant for self-avoiding potential KSA 1.0
Force constant for topology preserving force Ktapa. 10.0

50.0 (for stable BD)
Friction coefficient r 2.0
Width of Gaussian distribution for A 0.02
finite temperature simulations
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