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Abstract

We study the general theory of relativity and the scalar-tensor theory in general D

dimensions stressing on cosmology and the static spherically symmetric Schwarzschild

solution. First we deal in brief with general relativity. Different aspects in the scalar-

tensor theory like conformal transformation and geodesic equation in different confor-

mal frames are then discussed. We take a specific form of the generalised Brans-Dicke

action and workout the solutions to the field equations in the cases of cosmology and

Schwarzschild metric. A set of constraints are imposed on the free function 'ljJ( cp) of

the action under consideration. We look at the implications of these constraints on
the two cases studied.



JDfTtD @r5J@ Qu fT~ B' fT~ U1lUru Ca:JfTl.~ u fT(b) LDrD(!)JtD coriJCffi6UfT~ - QL6lir B' fT~ CffifTL U fTl.'I-6lir

D-U rf1LDfTliOTr5Jffi61fl611, ~6lJlirLcl1lUru LDrD(!)JtD coriJCLl4& coriJQu rf1&ffi£1- @ItD LDL rf1& coriJ6l.IfT~ 5- 61flB'ruL

~~6l.IffiC@:J&ffifTffiU U14&@6lirC[DfTtD.

<!p~£1ru QUfT~ B'fT~U1lU61fl6UUU!h61 ffi@&ffiLDfTffi& ffifT6lJlir@C[DfTtD. coriJCffi6UfT~-

QL6lirB'fT~ CffifTLUfTL.146lir uruC6l.I(!)J Cfn.(!)Jffi61fl611(~~fT[JmrLDfTffi, ffi6lirUfT~LDru 14[JfT6lircoriJU~CLDB'6lil

LDrD(!)JtD WClUfTQL@I& B'LD6lirU fT(b) ) ~[JfTtiJ@C[DfTtD. Qu fT~ U1C[J6lircoriJ-QL&Cffi

QB'lU£16lir §@ @!D1UU1LL 6l.I146l.1tD 6l(b)~~& QffifT6lJlir(b) UrnL B'LD6lirUfT(b)ffiC@:J&ffifTliOT~

~~6l.Iffi61fl611( ~6lJlirLcl1lUru LDrD(!)JtD coriJ6l.IfT~5-61flB'ruL. QLDLrf1&) QU(!)J@Q[DfTtD. @@

@!D1UU1LL ffiL(b)UUfT(b)ffi61fl611 'l/J(¢)-6lir tE~ cl1~&@Q[DfTtD. CLDrDffi6lirL @[J6lJlir(b)

.r5I61fl6Uffi6"1f1ru, @.Ji>~& ffiL (b)u U fT(b)ffi6"1f16lir(!:p6UtD Qu [DU U (b)@6lir[D <!P146l.1ffirn ~[J fTlUU U (b)@6lir[DliOT.



.>~~:;~;r:,,~~7;~"_'",
-•......\'. -- \.

ol.':\.'
~..._. : .-

"- .
/ .....-

Acknow ledgement

I thank my guide Dr. S. Kalyana Rama for the help and encouragement that he has

provided during the the work.

A special word of thanks to T. Muthukumar and R. Parthasarthi, for their help in

preparing the Tamil abstract for the thesis.

Finally I must thank the institute and its academic and administrative members for

providing excellent academic atmosphere and facilities for research work.



Contents

1 INTRODUCTION
1.1 Theories of Gravity .
1.2 What is the Scalar-Tensor theory?
1.3 What is the thesis about?

2 GENERAL RELATIVITY
2.1 The Action Formulation of Gravity .....

2.1.1 The Action and Einstien's Equation.
2.1.2 The Stress-Energy Tensor
2.1.3 Geodesic Equation

2.2 Cosmology.........
2.2.1 The Metric ....
2.2.2 Einstein's Equations
2.2.3 The Equation of State
2.2.4 Solution of Einstein's Equations .

2.3 The Schwarzschild Solution
2.3.1 The Metric .....



The Brans-Dicke Model .

3.1.1 Original Brans Dicke Formalism.

3.1.2 Generalised Brans Dicke Theory

Conformal Transformations . . . . . . .

3.2.1 A bit about conformal transformations.

3.2.2 The Physical and Einstein frames.

3.2.3 A specific form of the action ....

4 COSMOLOGY AND SCHWARZSCHILD SOLUTION IN SCALAR

TENSOR THEORY 28
4.1 Cosmology in Scalar-Tensor Theory . ........ 28

4.1.1 Equations of motion in the P frame . . . . . 29
4.1.2 The equations and solutions in the E frame 29
4.1.3 The Big Bang singularity ... 30
4.1.4 Constraints .......... 32
4.1.5 Novel features of the solution 32

4.2 The Schwarzschild solution . 33
4.3 Another interesting result ...... 37

5 SUMMARY AND CONCLUSIONS 38

6 APPENDIX 40
6.1 Chapter 2 .......... 40

6.1.1 Action Formulation 40
6.1.2 Cosmology ..... 41
6.1.3 Schwarzchild Solution. 44

6.2 Chapter 3 ............... 45





List of Tables



Chapter 1

INTRODUCTION

1.1 Theories of Gravity

The General Theory of Relativity proposed by Albert Einstein is a theory dipped

in aesthetic beauty. It is a geometrical theory of space time that has changed the

very nature of our thinking. The theory is also successful in describing the present

day observed universe. But there is no reason to believe that it is the one and only

theory of gravitation. Many alternative theories of gravity have been proposed after

the formulation of the general theory of relativity. And many of those have been

discarded on grounds on feasibility.

For a gravitational theory to be viable it must satisfy a set of basic criteria.

• Completeness

The theory under consideration must be capable of predicting from first prin-

ciples the outcome of any experiment of interest .

• Self consistency

The prediction of every experiment should be unique in the theory. That is

to say that the results of the same experiment calculated in two different yet

equivalent methods should always yield the same answer. The system of math-

ematical equations proposed should also be consistent.



• Relativistic Theory

The laws of physics (non gravitational) in the theory should reduce to the

laws of special relativity when we consider gravitational effects "turned off" in

comparison to other types of interactions.

In the limit of weak gravitational fields and non relativistic motion the theory

under consideration must reproduce Newton's laws.

The above set of fundamental criteria are obtained from the Dicke framework for

analyzing experimental tests (Dicke, 1964). Apart from the mathematical constraints

imposed by the set of criteria above Dicke also imposed two physical constraints.

The most successful theories of gravity satisfy these two constraints along with

(obviously) the first set. The scalar-tensor theory ,the theory under consideration in

this thesis, is among those successful theories of gravity.

1.2 What is the Scalar-Tensor theory?

The fundamental building block of the general theory of relativity is the metric tensor

field g/-LV which is a tensor of rank two. So the theory can be called a tensor theory.

The so called Scalar-Tensor theories contain a metric tensor field along with another

dynamical scalar field (as the name suggests) coupled to it. So far there is no exper-

iment which reveals or rejects the existence of the scalar field but there are several

which place limits on the theory.

This sort of a theory was first proposed by Jordan (Jordan, 1949) who showed

that the scalar field introduced could describe a time varying gravitational "constant"

which was in keeping with Dirac's argument that the gravitational constant should

be time dependent (Dirac, 1937). But the theory involved a non conservation of



energy momentum tensor and was severely criticized on those and other grounds. A

subsequent reformulation removed most of these objections (Jordan, 1959) but the

theory still could not incorporate non relativistic matter successfully.

Brans and Dicke continued the work in the field (Brans and Dicke, 1961; Dicke,

1961; Dicke, 1962) and gave a complete and interesting version of a scalar-tensor

theory. The motivation for their work was the lack of experimental evidence for the

Strong Principle of Equivalence(SPE) of general relativity. The Brans-Dicke theory,

as it came to be known, was constructed without taking SPE into account. In this

theory the gravitational constant was replaced with the reciprocal of a scalar field. It

was a generalization of general relativity (in the limit where the dimensionless Brans

Dicke parameter goes to infinity we get back general relativity as we shall see in the

main body of the thesis) and its predictions matched with the existing experimental

results.

The very existence of a viable alternative to general theory of relativity led to more

work in the field (Bergmann, 1968; Wagoner, 1970; Nordtvedt, 1970; Bekenstein,

1977) and the generalisation of the BD theory. This generalised theory has been

applied to various cosmological and astrophysical aspects in (Bekenstein and Meisels,

1978) and many other papers.

In current context, the generalized BD theory appears naturally in supergravity ,

Kluza-Klein theories and in all the known effective low energy string theory actions.

In this thesis we look at the generalised Brans-Dicke theory or the Scalar Tensor theory

in general D dimensions. We are particularly interested in the case of cosmology and

the static spherically symmetric Schwarzschild solution.

In order to give a picture of the differences between standard general theory of

relativity and the scalar-tensor theory we present at first GTR in D dimensions with

focus on cosmology and the Schwarzschild solution.

In the next chapter, we go on to give a brief description of the BD theory and its

generalised version. Conformal transformations and the aspect of physics in different



conformal frames are briefly visited. The particular framework we are working in

is explicitly stated and the relations with the standard generalized BD model are

established. We then take a passing glance at low energy string theory.

In Chapter 4, we refocus our attention on cosmology and the Schwarzschild so-

lution this time in the scalar-tensor theory. We see that the Big Bang singularity

persists in BD theories as well as in low energy string theory. In the Schwarzschild

case there is the new feature of an extra essential singularity which is absent in GTR.

We propose a set of constraints on the free function of the system 'I/J (<p) and study

the two systems under consideration. Some interesting results are obtained.

We conclude with a brief summary. An Appendix is included which .contains var-

ious useful formulae and a few of the skipped steps in various calculations performed

in the main body of the text.



Chapter 2

GENERAL RELATIVITY

We would be presenting in later chapters changes that are seen to Einstein's General

Theory of Relativity, when we include the effects of the scalar field <I>,ina few partic-

ular cases.In this chapter we give an overview of those examples in GTR.The theory

is considered in general D dimensions.

2.1 The Action Formulation of Gravity

To arrive at the equations determining the gravitational field we need to determine

first the action 59 of the field. The required equations can then be obtained by varying

the sum of the field plus the material particles. It can be shown (Landau and Lifshitz,

1951) that the form of this action would be

Here R is the Ricci scalar, G is the gravitational constant and 9 is the determinant

of the metric. The above action is called the Einstein-Hilbert action. Together with

the matter action the total action of a system can be written as



where M represents the matter fields, minimally coupled to the metric. An example

to make the notation clear:

Scalar field: M = cPm

Sm(cPm,g/11/) = J ddX-J=g [~g/11/8/1cPm81/cPm - V(cPm)]

In this thesis we choose the signature of the metric to be (- + + + ..) and define

the Ricci tensor to be

The equations of motion are obtained from the least action principle 6"(S9 + Sm) =

O. The variations with the gravitational field i.e. g/11/ will generate the gravitational

field equations and the variation with the other field variables present in the matter

action gives the other field equations.

The variations give

where T/11/ is called the stress energy tensor of the matter fields and is defined as

2 6"Sm
T/11/ = --v=g 6"g/11/

The gravitational field equations thus read

1
R/11/ - "2 Rg/11/ = 87fGT/11/

This is the famous Einstein's Equation, the basic equation of the general theory of
relativity.

In empty space T/11/ = 0, the equations of the gravitational field reduce to



This does not mean that in vacuum spacetime is fiat,- for that we would require the

stronger condition R~va = o. The divergence of the energy momentum tensor is zero.1

Thus the divergence of the left side of eq (2.8) must be zero. This is actually the case

because the Reimann tensors obey an identity called the Bianchi identity

where; implies covariant differention. This equation under two contractions with the

metric can be brought to the form

which is called the contrancted Bianchi identity.

So eq.(2.1O) is essentially contained in the field equations (2.8). Eq.(2.10) is an

expression of the law of conservation of energy and momentum. This contains the

equations of motion of the system which the particular TJ.Lv describes. Thus the

gravitational field equations also contain the equations of matter that produce the
field.

For complete determination of the distribution and motion of matter it is necessary

to add to them the equation of state of the matter, i.e. a relation between the pressure

and energy-density. This must be given along with the field equations.

2.1.2 The Stress-Energy Tensor

In this section we present a few explicit examples of stress tensors for particular
matter fields.

IThe matter action is invariant under diffeomorphisms. For such actions TJl-v is always conserved
by the virtue of the matter field equations.



We would also require a stress energy tensor for macroscopic bodies ( treated

to be continuous). This is what is given by the Perfect fluid model. The perfect

fluid model is largely a phenomenological model. So attempts to derive it from

an action principle are not physical. The energy momentum tensor in this case

is defined as

here p and p are the energy density and pressure of the perfect fluid respectively.

It is useful to write the above in the form



Spp = -m J dx/1 dxv

g/1VdI dt dt

In general relativity its equation of motion derived from the variation of the above

action is given by a geodesic. The variation yields

This is the geodesic equation. Note that the integrand in the action is the measure of

the distance between any two spacetime points. A geodesic thus connects two points

on a curved geometry by the shortest ( or longest) possible path. A particle in free

fall will follow the geodesics of the spacetime. The importance of eq.(2.19) lies in the

fact that it tells us how the trajectory of a test particle would be when we consider

general relativity.

Newtonian Limit:
In the limit of weak fields and non relativistic particles the geodesic equation

should yield Newton's gravitational laws.

Now at first we quantify our assumptions

(1) Weak Field limit



I dx
i

I « 1
dt

dxv dxA

f~t=>fIJ. -- ~
VA dt dt

With these assumptions eq.(2.19) reduces to

d2xi .

dt2 + qt = 0

Let us turn our attention briefly to D=4. For spacetime outside a spherically

symmetric body of mass M the metric (this is the Schwarzchild solution which will

be discussed later) is given by

2GM 2GM .ds2 = -(1 - --)dt2 + (1- __ )-ldr2 + r2(d()2 + sm2 ()dq})
r r

where G is the gravitational constant.

So, Vn = -~M and this gives



where F is the radial force and m the mass of the test particle. This is the very

familiar form of the Newton's law of Gravitation between two bodies of mass m and

M separated by a distance of r.

2.2 Cosmology

All study of Cosmology is based on the hypothesis called the Cosmological Principle

which says that our Universe is spatially homogeneous and isotropic. On a large scale

(typically a distance of thousand Megaparsecs) our observed universe is so to a very

high accuracy. The formulation of the Cosmological Principle allows us to write down

the most general form of the metric as

ds2 9 J1.V dxJ1. dxv

- dt2 + a2(t) (1 ~r~r2 + r2 dDb_2) ,

where a(t) is an unknown function of time known as the cosmic scale factor. k is

a constant which by a suitable choice of the units of r can be chosen to have the

values +1, 0, -1. This constant determines the spatial curvature and the values +1,

0, -1 correspond to open, flat and closed universes. This metric is known in cosmology

as the Friedmann Robertson Walker metric. There is overwhelming experimental

evidence that our universe is spatially flat. In view of that, throughout this thesis we

would be working with k = O.

where SJ1.V is the source term. If we assume the universe to have a stress tensor of the

ideal fluid form, then



Ttt P (2.30)

To.. pgij (2.31)~J

1
(2.32)Stt (D _ 2) [(D - 3)p + (D - l)p]

Sij
gij(P - p)

(2.33)-
(D - 2)

Using the above equations and the forms of the Ricci tensor components given in

the appendix, - eqs(6.9) and (6.10) we arrive at

a(D - l)(D - 2)-
a

0,2
(D - l)(D - 2)-

a2

As stated before along with this we would need another equation ,- the equation

of state,to solve the system of equations. It is useful to have an equation for evolution

of the mass density. This can be obtained directly from the above equations or from

the fact that the stress energy tensor TJ.LI/ is covariantly conserved. The equation we
get is

. a
P + (D - 1) (p + p)-

a

In general, the energy density p will include contributions from various distinct com-

ponents. In cosmology the important aspect is how p evolves as the universe expands.

Often the individual components (labelled here by i) have very simple equations of

state of the form

with Wi as a constant.

Plugging in the equation of state into the evolution equation of p , - i.e. eq.(2.36)

we find that the energy density has a power law dependence on the scale factor,



The simplest example of a component of this type is a set of massive particles

with negligible relative velocities, known in cosmology as dust. For this form

(For a derivation of the equations of state for dust and radiation see the Appendix.)

A cosmological constant which is equivalent to vacuum energy would not change

as the universe expands, so

Restrictions on energy density:

The ranges of values of Pi that are allowed will obviously depend on the theory of

the included matter fields. Still if we wish to make any statement about it we could

look to the energy conditions,- especially the dominant energy condition(DEC).

DEC states that Tf.Lvl/)v ~ 0 and T;lf.L is nonspacelike for any null vector lw This

essentially implies that energy flow does not occur faster than the speed of light

(Hawking and Ellis, 1973). For a perfect fluid Tf.Lv these two requirements imply that



IType of Matter ~ Wi W
dust 0 D-3

radiation ~ DD-3
cosm const. -1 0

p > 0 and Iwl~l
or p < 0 and W = -1.

So, a negative energy density is only allowed if it is in the form of a cosmological

constant.

Here, in the above discussion the conventional DEC has been somewhat modified

(Carroll, 2001) by using null vectors 1J-l rather than the conventional null and timelike

vectors which rules out , without any physical reason, a negative cosmological con-

stant.

• Qualitative Aspects

Before going into the exact solutions let us first examine a few important qual-

itative features of the solutions of the equations. The first striking result is

that the universe cannot be static provided p > 0 and P2:0. This follows from

eq.(2.34) which tells us that a < O. Thus the universe must always be expanding

( a > 0) or contracting (a < 0) with the possible exception when the expansion

goes over to a contraction. The distance between all isotropic observers changes

with time but there is no preferred centre of this expansion or contraction. The

expansion of the universe has been confirmed by experimental observation (red

shift of distant galaxies).



Given that the universe is expanding and that ii < 0 according to the theory

it must have been expanding faster as one goes back in time. If the universe

had always expanded at its present rate, then at a time T = a/a ago we would

have a = O. Since its expansion was faster the time taken was even less. Thus,

under the assumption of homogeneity and isotropy GTR makes the remarkable

prediction that at a time less than T = a/a the universe was in a singular state,

- the distance between all space time points was zero and the density of matter

and curvature of space time was infinite. This is referred to as the Big Bang

Singularity.

Near this extreme state the theory of general relativity breaks down on account

of strong quantum phenomenon. Theories like String theory and Quantum

gravity may resolve these difficulties.

Now for the explicit solutions of the field equations. For a general case, where

Pi ex: a-ni ,the dependence of the scale factor and Ricci scalar on time is

Ct2/n

(1 - w)
4---C2

(1 + w)2

(2.40)

(2.41 )

As t -t 0 which in turn implies a -t 0 , we encounter a curvature singularity.

The coordinate invariant quantities ,- the scalars created out of the various

curvature tensors and their derivatives all blow up at at this point. (Exception:

for radiation the Ricci scalar is zero.)

The Einstein's equations even for empty space being non linear are notoriously diffi-

cult to solve. The case of the static spherically symmetric field produced by a spheri-

cally symmetric body at rest can however be solved without too much difficulty. This

solution was first arrived at by K.Schwarzschild and is named after him.



The spherical symmetry of the field means that the metric must be same for all the

points located at equal distances from the centre. In Euclidean space this distance is

the radius vector but in a non-Euclidean spacetime which is the case in presence of a

gravitational field,- there is no such quantity with all the properties of the Euclidean

radius vector. The static condition means that with a static coordinate system, the

gJ.lV are independent of time and gti = O. The most general form for ds2 compatible

with spherical symmetry is

where U,V,W are all functions of r alone.

Here we choose the form to be

The nonzero connection terms and the relevant Ricci tensor components are listed in

the appendix. There are only three independent components of the Ricci tensor [ eqs

(6.12),(6.13),(6.14) ]. The (D - 2) components in the solid angle dDD-2 are related to

one another. This is again gievn in the appendix explicitly (see eqs(6.15)). We may

replace r by any function of r without disturbing the spherical symmetry. Using this

freedom we can effectively set h = r. We wish to find the vacuum solutions which

in this case is known as the Exterior Schwarzschild Solutions. The equations to solve

are (2.9). The relevant field equations are

f'2(r) f"(r) f'(r)g'(r) (D - 2)g'(r)
--------------=0
4j2(r) 2f(r) 4f(r)g(r) 2rg(r)

2f"(r) f'(r) g'(r) 1
f'(r) - f(r) + g(r) + 2(D - 2)~ = 0

(D _ 3) 1 - 9 (r) _ g' (r) _ l' (r) = 0
rg(r) 2g(r) 2f(r)



f(r)

g(r)

1_ (O)D-3
r

1_ (O)D-3
r

(2.47)

(2.48)

In the weak field limit,- i.e. for large values of r , we saw previously, one gets the

Newtonian approximation. The Newtonian limit gives

where V is the potential energy. When we consider the case of potential far away

from a spherical body of mass m the limit will give

2Gm
gtt = -[1+ --]rD-3

So comparing with equation(2.47) we see that rf-3 = 2Gm.

The complete solution is

The solution holds outside the surface of the body producing the field where there is

no matter. Thus it holds fairly accurately outside the surface of a star.

The solution at first glance seems to have two singular points,- r = a and rD-3 =

2Gm. Of these the latter is a coordinate singularity, i.e. choosing suitable coordinates

makes the singularity disappear.2 The r = a singularity however cannot be avoided

by any such coordinate transformation and is an essential singularity in the geometry

of spacetime.



Chapter 3

SCALAR TENSOR THEORY OF
GRAVITY

In this chapter we look at the novel features of the scalar tensor theory also known

as the generalised Brans Dicke theory. Many new features arise with the inclusion of

the scalar field ¢.

Inspired probably by the work of Paul Dirac on the time varying gravitational fields

(Dirac, 1937), a graduate student, Brans and his advisor Dicke (Brans and Dicke,

1961) proposed their now famous model. They replaced the gravitational constant

G with the reciprocal of a scalar field ¢. The action that they wrote down for their

theory was

1 J d ~ (V¢)2 J d ~
SED = -167r d Xy -g(¢R - w-¢-) + d Xy -g .em

where w is a constant. The primary role of the scalar field introduced according to the

authors was the determination of the local value of the gravitational constant. The

terms in the Lagrangian density involving the matter fields in Eq.(2.2) and Eq.(3.1)



are identical. So, the equation of motion of the matter fields in a given predetermined

metric field are one and the same. The difference arises in the gravitational field

equations.

A variety of theories of gravity have been proposed in which like in the above case

in addition to the metric a dynamical scalar field is introduced (Bergmann, 1968;

Wagoner, 1970; Nordtvedt, 1970; Bekenstein, 1977). The generalisation of the Brans

Dicke model is achieved by the transformation of the constant w into a function of

the scalar field variable X. In a further generalisation a cosmological function ,\(X)

can also be added. The reformulated action now looks like

1 J d r-;:,( w (X) 2 J d r-;:,
SgBD = -- d Xv -g XR - -(V'X) + 2X'\(X)) + d Xv -gLm

16n X

Varying the action with respect to gJ.L1/and X we arrive at the field equations which

read

where TJ.LI/ is given by eq(2.7). In this thesis we would not be interested in the

cosmological function and would proceed setting it to zero. The somewhat simplified

field equations now take the form

1 -2 1 2
RJ.LI/ - "2R9J.L1/ - X w(X)(V' J.LXV'I/X - "2gJ.LI/(V'X) )

1
+X-1(V' J.LV'I/X - "2gJ.L1/V'2X) = 8nx-1TJ.L1/

2 1( 2 d w(X) XV'X + - V'X) -In(-) + --R = 0
2 dX X 2w(X)



For the original Brans-Dicke theory (i.e. where w is a constant), in the limit

w -+ 00, the theory reduces to general relativity. In particular, for large current

values of w, the theory make predictions for all gravitational situations differ from

the general relati vi ty values at most by corrections of 0 (1/ w ). The same limit w -+ 00

yields GR in the generalized theories too, but under a few conditions. For details see

(Will, 1992).

By putting in the scalar field into the action as a replacement for the gravitational

constant we have nonminimaly coupled it to gravity. If we wish to put this nonmin-

imal coupling term into another form we need to apply a conformal transformation.

This comes about from the fact that general relativity is not invariant under confor-

mal transformations. 1 Among the infinitely many conformal frames we would be

interested in the Einstein frame and the so called Physical frame.

We saw in the previous section that the scalar field which was not coupled to the

initial matter Lagrangian couple to matter finally through the field equations. By

applying conformal transformations and moving from one conformal frame to another

the nature of initial coupling of the scalar field to both the gravitational and matter

Lagrangians would change, as would the equations of motion governing the system.

From a completely technical point of view solving these equations in some particular

frame often becomes simpler and by applying the inverse transform we could always

get back to the original frame of interest. A conformal transformation transforms a

metric gJ.LV to another metric g*J.LV according to the rule

1If two metrics are related by a conformal transformation their causal structures are identical
(Wald, 1984).



where ~(x) is an arbitrary function of the spacetime coordinate x. This is equivalent

to the transformation applied to a line element

Here we limit ourselves to transformations which preserve the positive sign of the line

element and hence use ~2(X) instead of any arbitrary function ~(x) of the space-

time variable. This transformation is essentially different from a general coordinate

transformation. The above transformation (3.8) implies that under it the change of

distance of any two spacetime points differs from point to point on the spacetime

manifold. The change is also independent of direction and hence isotropic. As a re-

sult, the transformation preserves the angle between any two vectors. This is what is

meant by "conformal". The relevant formulae for the transformation of a few metric

dependent quantities are given below

The two conformal frames of interest as mentioned before are the so called Physical(P)

and Einstein(E) frames.

The action (3.2) that we have been dealing with so far is the action in the P frame.

The scalar field is nonminimally coupled with gravity and the matter action couples

to system only through the metric. In general relativity the matter couples to gravity



in the same way and that is the reason behind calling the frame Physical. Now let

us take the action in the P frame and perform a conformal transformation on it such

that X~2 = 1. So the first term in the action becomes

So as in the Einstein-Hilbert action, the scalar field is no longer nonminimally coupled

to gravity. By E frame, we would be referring to this particular frame. It is worth

noting here that the matter Lagrangian no longer couples via only the metric,- the

scalar field is now present in the coupling in a specific manner which reflects what

the theory looks like in other conformal frames. So the theory in this frame is not a

trivial case of general relativity in the presence of a scalar field. The action in the E

frame looks like the following

- 1 J d r-:::- 1 2 -2fSE - -161f d Xv -9*(R* - 2('V*cP) ) + Sm(M, e 9*lw)

where the notation of the matter action is the one used in eq.(2.3)

The geodesic equations in the two frames

The geodesic equations in the two frames give us a clear picture of the difference

of the two frames and also tell us why the P frame is so called.

In the P frame the coupling of the matter to the system as seen above is only

through the metric. So the test particle couples to gravity only via 9J.L1/ as in general

relativity. The geodesic equation thus remains the same. We use uJ.L = d:: and rewrite

eq(2.19) as

duJ.L- + rJ.L ul/u>' = 0dt 1/>'

We now look at the E frame. From eq.(3.8) we have

dt*
dt

=} uJ.L

(3.14)

(3.15)



dl). = 01). dxu = 1).2 f uU
dt* Oxu dt* J U *

So putting in eqs(3.16) and (3.9) into eq (3.13) gives us the geodesic equation in

the E frame which now reads

du~ rJ.L v A _ j v J.L jJ.L v
-d + *VAu* u* - Vu* u* - U*VU*

t*
The right hand side of the eq (3.17) is no longer zero and that is an indicator

to the fact that the test particle in the E frame follows a path different to the P

frame. The effect of the scalar field on the test particle manifests itself in the E frame

whereas there is no departure from the standard GR path of the test particle in the

P frame.

Newtonian limit:

We do an analysis similar in lines to that in sec(2.1.3) to get at the ewtonian

limit in the two frames. As in sec(2.1.3) we will do the analysis in D = 4.

In the P frame the previous analysis goes through identically.

Let us see what changes take place in the E frame. With the restrictions imposed

as before eq(3.17) reduces to

where we choose j = krp (This is the case in low energy String theory which will be

discussed later).

As before we take the 4 dimensional Schwarzchild solution . Here rp = rp (r ). So in

this context in the presence of a scalar field in the E frame Newton's law in modified

to

F = _GMma _ kma drp
r2 dr

where ma is the mass of the test particle. We see that in the absence of the scalar

field (k = 0) the ewton's law in the two frames would look the same. The same is

true if the scalar field was a constant.



In this thesis we would use a particular form for the action in the physical frame. (The

motivation for this is to reach the precise for of the action(3.12)after transformation

to the E frame which might otherwise involve some function of <p before the kinetic

term). In this section we state that action and the relations with the previous action

(3.2) for the P frame. Using a few examples we try to give a clear picture of the

mapping. The equations of motion for this particular action are presented after that.

Here oj, = d'I/J
'+'I{J dI{J

We have two actions for the P frame viz. Eq(3.2) and Eq(3.21). We compare

the two equations to get the following results

D-2
exp(-2 -)?jJ

~ {I _ (D - 1) (D - 2) ?jJ2}
2 2 I{J

2 {I _ (D - 1)(D - 2) ?jJ2}
(D - 2)2?jJ~ 2 I{J

1

(3.22)

(3.23)

x
w(x) 2
~XI{J

2

n(x)X~
X

<p = J dX~

where n(X) = 2(w(X) + ~~=;l)·



1.We first consider a functional form of w (X) and find the function 'ljJ(<p)

1 2 (D - 1)
-X2 (D - 2)
X+c

2
(D _ 2) In(<p - c)

k<p

e(D-2)krp/2

-(D - l)(D - 2)k2 + 2
(D - 2)2k2

This is the form of'ljJ(<p) for the prototype Brans-Dicke model. Putting k = 1

we get

D(D - 3)
(D - 2)2

which reduces to w(X) = -1 for D=4.

Putting k = 0 we see that w(X) blows up. This is what we expect as for k = 0

the scalar field decouples from gravity and we get the case of general relativity

in the presence of a scalar field. And w -+ 00 is the limit where the Brans-Dicke

theory reduces to general relativity.

3. This one would be of importance later.

-AJ<p2 + C

e -)..(D-2)J rp2+c/2

cl(lnx?
(In X)2 + C2

cl(lnx? (D - 1)
(lnx)2 + C2 (D - 2)



Varying the actions (3.21) and (3.12) with the metric and the scalar field we get

the equations of motion of the system. We consider only the vacuum solutions

in this thesis.

The Physical Frame:

In the P frame the equations of motion take the following form (see Appendix

for details)

D - 2 1
RJ1.v = (-2-)'l/J<P\1J1.\1vCP+ 2'l/J<p<p9J1.v(\1cp)2

D-2 1 2 1
+ [(-2-)('l/J<P<P - 2'l/J<p) + 2]\1J1.CP\1vCP (3.27)

\12cp + (D; 2)'l/J<p(\1cp)2 = 0 (3.28)

In the E frame the equations of motion simplify significantly when we consider

the vacuum solutions.

(3.29)

(3.30)

2R*J1.v - \1*J1.cp\1*vCP

\1;cP

(3.31)

(3.32)

• Low Energy String Theory

In low energy String Theory, the graviton dilaton part of the theory can be

derived from the spacetime action (Polchinski, 1998) given below



D-2(--)'Ij; = -2cp
2

-~{1 _ (D - l)(D - 2) = 4
2 2

RJ.LV + 2\7 J.L\7 vCP = 0

\72cp - 2(\7cp)2 = 0

(3.34)

(3.35)

The field equations match the string equations as expected. D = 10 the pre-

diction of Super-symmetric String theory that manifests itself here. We are

unaware of the significance of this result,- if there are any.



Chapter 4

COSMOLOGY AND
SCHWARZSCHILD SOLUTION
IN SCALAR TENSOR THEORY

We have so far looked at the Scalar Tensor theory in general. In this chapter we

look at the two particular examples that were presented in the chapter on general

relativity viz., cosmology and the Schwarzschild solution. We would as stated before

only be interested in the vacuum solutions in this thesis. Some interesting results

are obtained as we look at the properties of these solutions. The analysis of the

novel properties given here are a higher dimensional extension of (Kalyana Rama and

Ghosh, 1996; Kalyana Rama, 1996).

4.1 Cosmology in Scalar-Tensor Theory

In this section we investigate how cosmology changes from the usual general relativis-

tic case with the inclusion of the coupled scalar field. First we look at the equations

of motion in the P frame. Then we move to the more convenient E frame and find

solutions for the differential equations. The Ricci scalar is calculated in both the E

and P frames. Then we impose certain conditions on the form of the function 'IjJ( <p)

and study the features of the resulting solution.



We already have the form of the Ricci tensor for the FRW metric (2.28) in D dimen-

sions. The Appendix gives the explicit derivation and the nonzero components of R/l-v
are given by Eqs (6.9) and (6.10). From the previous chapter we have the form of

the equations of motion in the P frame i.e. Eqs (3.27) and (3.28). Putting all these

together we get the equations for cosmology. Here the scalar field is taken to be a

function of time alone.

acp D - 2 .2
(D - 1)- + (--)1/J <p = 0a 2 cp

1 acp
2(D -l)(D - 2)1/Jcp-;;

~{(D - l)1/Jcpcp+ {I - (D - 1)2(D - 2) 1/J~} }cp2

_(D - 2)01' acp _ ~ol, 1i-!2
2 'Pcp a 2 'Pcpcpy

a
(D - 1)-

a

ii 0,2
- + (D - 2)-
a a2

We here have three equations and two unknowns. The Bianchi identity links these

equations. So, in effect we can use any two equations to get at the solutions. The

third becomes a constraining equation which determines the system uniquely. The

fact that the Bianchi identities link the equations can be clearly seen if we differentiate

the left hand side of say eq( 4.4) and use any two of the other equations to explicitly

calculate the value,- which obviously is zero as the eq (4.4) suggests.

The equations of motion for vacuum get simplified in the E frame. Using the eqs(3.31)

and (3.32) and the form of the Ricci tensor components or equivalently setting 1/J( <p) =

o in (4.1),(4.3) and (4.4) we get



Atl/CD-l)
*

(4.8)

(4.9)

where A,m,<po are all constants and E = ±l. The third equation behaves as a con-

straint and gives

Note that by definition m is always positive.

The solutions thus are

The conformal transformation thus relates the cosmic times and scale factors of the

two frames. The relations are

!!!= e-'l/J/2 , a = a*e-'l/J/2;
dt*



Using the formula (3.10) from the previous chapter and putting in the fact that

f = 2'I/J(cp), we get

R eVJ(cp)(R*+ (D - 1)\7:'I/J -l(D - 1)(D - 2)g*J1.v\7 J1.'I/J\7v)

::::} R eVJ(cp)R*{1 + 2(D -1)'l/Jcpcp - ~(D -1)(D - 2)'I/J~} (4.15)

here we also use the equations of motion of the E frame.

Again the form of R for cosmology (see Appendix (6.11)) together with (4.10)

gives us the form of the Ricci scalar in the E frame.

R = _(D - 2)C2

* D-1 *

Low Energy String Theory

As seen before we can go to the picture of the low energy string theory where

with k = -4/(D - 2)

With the above choice the cosmic time and scale factors in the two frames can

now be explicitly related

a*e-k4J/2

t;-Ekm/2
----+c
1- Ekm/2

(4.18)

(4.19)

where c is a constant. So now we can have an explicit solution for the Ricci scalar in

the P frame

So we see that at t* -7 0 the physical curvature scalar diverges (for positive values

of the exponent which implies Ikml :::;2). In the same limit the physical time reaches

a constant value. Here we encounter a physical curvature singularity. This is the

same as the singularity encountered in general relativistic cosmology,- the Big Bang

Singularity. The physical cosmic time cannot be extended beyond this. The reason

for this is that t* cannot be extended to negative values which is not allowed.



The constraints we impose on the on the function 'I/J (rp) are (the motivation of this

particular choice will become clear in (Kalyana Rama and Ghosh, 1996))

(1) 'l/Jen)(rp) ~:~ isfinite'Vn2':l

(2) lim 'I/J(rp) = -Alrpl
cp-t±oo

Here A is a positive constant.

The two constraints mean that there is a finite upper bound on 'I/J( rp) .

There are many functions which have the above properties. For example in Sec(3.2.3)

the third example ( 'I/J(rp) = - A J rp2 + c ) dealt with such a function. We would be

interested in the general properties of any such function.

We will look at how the constraints imposed on 'I/J( rp) lead to interesting results in

cosmology. Putting in the constraint (2) into (4.11) we get As t --700

Again eq(4.21) tells us that e-1/J/2 2': e-1/Jmax/2 > O. So invoking eq(4.14) we see

that the physical time t is a strictly increasing function of t*.

We look at the two limiting cases now.

The limit t* --7 00

Using eqs we get

2 tl+>.m/2
2 + Am *
Atn+>.m/2

*
-{I - ~(D - l)(D - 2)A2}(~ = ~)t;e2+>.m)

(4.24)

(4.25)

(4.26)



The limit t* -+ 0

Using eqs we get

2___ t1->..m/2 for Am =1= 2
2 - Am *
lnt* for Am = 2
Atn->..m/2

*
1 D- 2-{1- 2(D -l)(D - 2)A2}(D _1)t:;(2->..m)

(4.28)

(4.29)

(4.30)

(4.31)

So, for Am 2: 2 which in turn implies A 2: 2(cg~N' as t* -+ 0 we get

As t* -+ 0 we can now continue the physical time indefinitely into the past. At

this limit as in the t* -+ 00 limit the physical scale factor becomes infinite. Keeping

in mind the upper bound imposed on 'l/J(<p) from (4.14) we can see that the scale

factor never hits zero for any value of the physical time. 'l/Jep and 'l/Jepeparealso finite.

The curvature scalar in the P frame ,thus also remains finite for all t. This result is

interesting and should be studied further.

Here we go straight to the equations of motion in the E frame and solve them. The

Ricci scalar is then calculated for both the E and P frames and we see the novel

feature of the theory.

Referring to the Appendix eqns(6.12), (6.13) and (6.14) and also invoking (3.31)

and (3.32) we can arrive at the required field equations.

21" (r ) l'(r ) g' (r ) h' (r )
f'(r) - f(r) + g(r) + 2(D - 2) h(r)



1'2(r ) 1" (r ) l'(r )g' (r )
---2------
j2(r) f(r) f(r)g(r)

g' (r ) h' (r ) h" (r )
-2(D - 2) h(r)g(r) - 4 h(r)

(D - 3)(1 - g(r)h'2(r)) - g(r)h(r)h"(r)
_ ~ g' (r ) h' (r) _ 9 (r ) h (r ) h' (r )l'(r )

2 2f(r)

<p"+ ~{ l'(r) + g' (r) + 2 (D _ 2) h' (r ) } <p'
2 f(r) g(r) h(r)

One can simplify (4.34) by using (4.33). This gives

_ (D _ 2){ h' (r) (g' (r) _ l'(r )) + 2 h" (r ) }
h(r) g(r) f(r) h(r)

f(r) za
g(r) Zb

h2(r) r2Zq

e<P-<Po Zp

(4.38)

(4.39)

(4.40)

(4.41)

a = 1- (D - 3)q

b=l-q
2p2-- + {(D - 3)q - 2}q = 0;

D-2

(4.43)

(4.44)

(4.45)

As before it suffices to solve any three of the four differential equations. The

remaining one is dependent through the Bianchi identities. The relation between

p and q obtained from that equation acts as the constraining equation of the

system. Note that if p = 0 then



From eq(4.45) the bounds on q and hence on bare

2
0<_ q <--- D-3

2
1---< b <1D-3-

-1 < a ~ 1

(4.4 7)

(4.48)

For the case of the Schwarzschild solution in the scalar-tensor theory in the E

frame all the Ricci tensor components except R*rr are zero. The Ricci scalar is

given by

JLVR rrR
g* *JLV= g* *rr

( )1 12
9 r 2ep

Putting in values from (4.39) and (4.41) we get

(4.49)

(4.50)

This diverges at r ---* 0 and r ---* ro. So for the scalar tensor theories of gravita-

tion we get an extra essential singularity for the Schwarzchild metric, which is

absent for the standard Schwarzschild solution.

• Imposing the constraints

We concentrate on the singularity at r = roo. Referring to (4.41) we see that:

At r = ro

p > 0 ~ Zp ---* 0 ~ ep ---* - 00

p < 0 ~ Zp ---* 00 ~ ep ---* +00

(4.52)

(4.53)

The Ricci scalar in the P frame invoking eq(4.15) and (4.51) is

R = e7/J(cp) ~p2 Z12Zb-2{1 + 2(D - l)'ljJcpcp - ~(D - l)(D - 2)'ljJ~}



The singular behaviour of the scalar is due to the piece e1/J(c.p)Zb-2. So in order

that there is no singularity we must have

lim e1/J(c.p)Zb-2 = finite
Ic.pl-+oo

and 'ljJc.p, 'ljJc.pc.pmust also be finite.

Now let us impose the constraints set in the previous section. (The first

constraint in this particular case could have been limited to n = 2. How-

ever their necessisity is obvious if one considers higher curvature invariants like

(nablaJLR) (nablaJL R) , [nablaJL(nablaR)2][nablaJL(nablaR?J etc. and require that

they are not divergent at r = rD.)

Z-Ipi
-l.cl(b-2)e Ipi

(4.56)

(4.57)

lim e1/J(c.p)Zb-2 = e-1c.pI(A- ~;n
1c.p 1-+00

2-b
Ipi

l+q

J( D~2)q{2 - (D - 3)q}

The right hand side of A (4.60) minimizes for q

minimum value in we get

2(D - 1)
(D - 2)



4.3 Another interesting result

As we have seen the constraints impose a finite upper bound 'ljJmax on 'ljJ( <p). So for

at least one finite value of <p, say <Pc, where 'ljJ( <p) is maximum and ~~ = O. We have

seen in section(3.2.3) how the various quantities are related to the original form of

the generalized Brans-Dicke theory. We had seen the Brans-Dicke function is given

by

2 {_ (D - 1) (D - 2) 0/,2 }
WBD(X) = (D _ 2)2'ljJ~ 1 2 'f/cp

In this limit the general theory of relativity emerges as the theory of gravitation

in the present epoch. For the case D = 4 i.e. for our observed universe, recent exper-

iments set the lower bound on the Brans-Dicke function at W > 3.6 X 103 (Eubanks,

1999). So eq. (4.63) is a desireable feature.

This interesting feature arises naturally from the constraints imposed and is an

added bonus. But issue of how the present day corresponds to the limit <p -+ <Pc

requires further study.



Chapter 5

SUMMARY AND
CONCLUSIONS

In this thesis we have looked at the Scalar-Tensor theory of gravity in general di-

mensions. The general theory of relativity which is the standard theory of gravity

was first examined. We developed the Einstein equation from the invariant D di-

mensional Einstein Hilbert action. Cosmology and the static spherically symmetric

Schwarzchild solutions were dealt with in detail.

Next we turned our attention to Scalar tensor theories and discussed the prototype

Brans-Dicke theory and its generalisation. Conformal transformations were dealt with

in brief and we spoke of the Physical and Einstein conformal frames and looked at the

geodesic equations in them. Then the specific form of the action we work with was

given along with the relations of the our parameters with the standard case illustrated

with examples. The equations of motion in both the P and E frames were derived.

The next chapter contained the main ingredients of the thesis. We first as in

the chapter on general relativity looked at the specific cases of cosmology and the

Schwarchild solution.In the case of cosmology the Big bang singularity persisted in

the theory. We imposed two constraints on the function 'ljJ( <p) and investigated the

consequence. We saw that with these the scale factor does not vanish for any value

of the physical time which in itself can be extended to -00. The Ricci scalar also

remained finite for all time.



In the Schwarzchild solution the Ricci scalar was found to have an extra singularity

at the Schwarzchild radius (r = ro) as compared with the GR case. The constraints

imposed got rid of that extra singularity as well and the lower limits imposed on A in

both cases were found to be the same.

The fact that the Ricci scalar remains finite and the cosmic time can be extended

without bound is indeed a remarkable result and the indications are that the Big bang

singularity in the limited context of the theory discussed may be absent. But, that

requires all curvature invariants to be finite. We have not taken up this issue in the

thesis. It is also essential to note that the cases considered were vacuum solutions.

Matter in the form of dust and radiation needs to be incorporated to make the analysis

realistic. We are hoping to work on these aspects in the very near future. Another

issue that needs to be resolved is the point discussed at the end of the fourth chapter.

We saw that the high value of the BD function (w (X)) in D=4 as predicted by current

experiments arises naturally out of our theory. But why the value of the scalar field

in the current epoch should be such that the function 'l/J( <p) maximises is not resolved

and requires more analysis.



Chapter 6

APPENDIX

Throughout the thesis various steps have been omitted in view of making reading

easier. In this chapter the calculations of those skipped portions are included.

6.1 Chapter 2

• The explicit forms of r~v , R~vK, and RJ.Lv

r~V ~i'''(Ov9J.L'' + 0J.L9"v - O,,9J.Lv)

R~vK, OVr~K, - OK,r~V + rZK,r~1)- rZVr~1)
RJ.Lv OAr~V - OVr~A + rZVr~1) - rZAr~1)

(6.1)

(6.2)

• The explicit form of TJ.Lv from the matter action:

5Sm = 5f ddxv=g .em

40



Jdd (Ov=g£m 0 Ov=g£m)O /J,V

X ogJLV - ox>. O( ogJLV / ox>') 9

J ddX ~(v=g TJLv) ogJLV

2

v=g

• The Derivation of r~v and RJLv for FRW

We have seen that the metric can be chosen of the form

Here t is a cosmic time coordinate; i and j run over the D - 1 space coordinates

and 9ij is the metric for a D - 1 dimensional maximally symmetric space.

The non vanishing terms of the Affine connection are

r~j aagij

r~j
a

(6.5)-0'a tJ

r~j -kr ..
tJ

a
- (D - 1)-

a
a

Now, itj is the Ricci tensor for the (D - 1) dimensional maximally symmetric

space (Weinberg, 1972). For such spaces the curvature tensors take simplified



~j

~j

k(D - 1)9ij

[k(D - 1) + (aii + (D - 2)O,2)]9ij

glJ.V RlJ.v = It Rtt + gij ~j

ii 0,2 k2

(D - 1)[2- + (D - 2)- + (D - 2)- ]
a a a

~j

R

ii
- (D - 1)-

a
[(aii + (D - 2)O,2)]9ij

ii 0,2
(D - 1)[2- + (D - 2)-]

a a2

(6.9)

(6.10)

(6.11)

Let us consider in (D - 1) spatial dimensions, a container enclosing a perfect

gas such that one of its surfaces is perpendicular to one of the axes say Xl'

Velocity of a gas molecule in space is given by

where VXi are the components in the respective directions. For the sake of

simplifying the symbols,- let us call VXi = u The change in u is brought about

by reflections on the surface perpendicular to Xl' Change of momentum after

reflection for a molecule of mass m is 2mu. If there are nu such molecules



striking unit area of the surface per unit time, - the total change of momentum

per unit area per unit time i.e. the average pressure is

Now the velocities in this particular direction need to be summed over. So if

nUi particles move with velocities Ui where we only consider particles moving in

positive Xl axis, then the pressure is given by

p 2m LnUiui2

1 -
2m x 2nu2

Note that the factor of ~ comes in because we consider only the molecules

moving along the positive Xl axis. So the pressure along this axis is given by

which will be the same as the pressure along all other axis and hence the pressure

in general is given by

p mnu2

1 -2
(D _l)mnv

where V;12 = V;22 = ... = VX;_12 = (D~I)172 with 172the mean square of the total

velocity. So,



Now velocity of light,c=l. So for non relativistic particles or dust, ;;2 « 1 or
;;2 rv O. So,

For relativistic particles or radiation, the energy density (p) is the mass density

in the Natural units (i.e here with c=l). And ;;2 = 1.

1
Prad (D - l)P

6.1.3 Schwarzchild Solution

dr2 + r2dn~_2

d012 + sin2 01d022 + ...
+ sin2 01 sin2 O2,,sin2 On-3dOn-2

+ sin2 01.. sin2 On_2d¢;2

dVn rn-1dr sin 01 sin2 O2,,, sinn-2 On-2d01d02dOn-2d¢;

• on-zero Connection terms

r;t f'(r)
2f(r)
1r~t 2g(r)!'(r)

r~r g'(r)
2g(r)

roo - 9 (r )h (r )h' (r )

r¢4> - 9 (r )h (r )h' (r) sin 2 0

r~o h'(r)
h(r)

r~4> h'(r)
h(r)

r:4> - cos 0 sin 0

rt4> cotO



The other non zero terms are in the ones which come from the symmetric solid

angle part and will not be needed in calculation as they would be depend on

feo or some term of that type and would be taken care of by the inverse metric.

~[2g( )I"(r) _ g(r)f'2(r)
4 r fer)

h'(r)+ J'(r) (g'(r) + 2(D - 2)g(r) h(r))]

1'2 (r ) l' (r )g' (r ) 1" (r )
---

4j2(r) 4f(r)g(r) 2f(r)
_ (D _ 2) [h' (r )g' (r) _ h" (r ) ]

2h(r)g(r) her)
(D - 3)(1 - g(r)h'2(r)) - g(r)h(r)h"(r)

_ ~g'(r)h'(r) _ g(r)h(r)h'(r)1'(r)
2 2f(r)

ROlOl sin 2
() Roo

R0202 sin2 ()lRolOl

sin2 ()D-5ROD_SOD_S

sin2 ()D-4ROD_40D_4

6.2 Chapter 3



1 D - 2
RJ1.v - 2R9J1.v = (-2-)'l/Jq/V'J1.'lv¢ - 9J1.v'l2¢)

+ [(D; 2)('l/J</J</J_ D; 2 'l/J~) + ~{l _ (D - 1)2(D - 2) 'l/Jn]'l J1.¢V

_ [(D; 2) ('l/J</J</J_ D; 2 'l/J~) + l{1- (D - 1)2(D - 2) 'l/Jn]9J1.v('l

{ (D - l)(D - 2) .1.2} 2,1.. (D - 2).1. R1- 2 'f/</J '1 'f/ + -2- 'f/</J

1 (D - l)(D - 2) 2 D - 2 2+ 2[{1 - 2 'l/J</J}(-2-)'l/J</J - (D - l)(D - 2)'l/J</J'l/J</J</J]('l¢) = 0

Using the trace formula, the equations of motion simplify somewhat and become

of the form (3.27) and (3.28).
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