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Abstract

In this thesis we study the polynomial identity testing peob and its connection to
several other important complexity-theoretic problemse &nsider polynomial iden-
tity testing problem over commutative and noncommutativadets of computation.
We obtain efficient randomized identity testing algorithweiofinite rings. We establish
connections between ideal membership problem and ideasityng and as a byproduct,
we get new understanding of identity testing for depth-8wts. Over noncommutative
model, we give new efficient deterministic identity testargd polynomial interpolation
algorithms for small degree and sparse polynomials. R&latedentity testing, we ob-
tain interesting derandomization consequences of thatleal Lemma in the context
of circuit size lower bounds. We also obtain a query efficigmantum algorithm for
testing if a given polynomial is an identity (i.e zero at &ktpoints) for a given ring. We
summarize the main results of the thesis.

Algorithmic results over finite ring :

Givene > 0, we show are-uniform randomized polynomial-time algorithm to sam-
ple from finite black-box rings. This is similar in spirit tcaBai’s efficient randomized
sampling algorithm for finite black-box groups [Bab91]. Wetain a polynomial-time
quantum algorithm to compute a basis representation foaekddox ring. Using this
result, we give a polynomial-time quantum algorithm to tekether a given black-box
ring is a field. Computing the basis representation is basdtl@sampling algorithm.

Given a polynomialf(zy, zs, - - - ,x,) by an arithmetic circuit” over any finite
commutativering R (with unity), we give a randomized polynomial-time algbrit to
testif f = 0in R[xy, 29, -+ ,x,]. Similar results were known over fields (Schwartz-
Zippel Lemma [Sch80, Zip79]) and ov&ynZ [AB03] for n composite.

Ideal membership and polynomial identity testing Given a polynomialf by an
arithmetic circuitC, and a monomial idedl by a set ofconstantihumber of monomials
as generators, we give a randomized polynomial-time algorto test iff € 1. This
algorithm is analogous to the randomized Schwartz-Zipgstl for polynomial identity
testing. We show that the problem is coNP-hard when the nuofagenerators of the
given monomial ideal is not a constant. In that case, we showpper bound in the
counting hierarchy.

Given a monomial ideal generated by a constant number of monomials, and a
polynomial f computed by a depth 3 circuit with bounded top gate fan-ingwe a



deterministic polynomial-time algorithm to test ff € 7. The algorithmic ideas are
from [KSO7], but the correctness proof is new and based om@Bbasis theory. This
approach gives us a different understanding of the idetessing algorithm for such
circuits.

Noncommutative polynomial identity testing We give a deterministic polynomial-
time algorithm for identity testing ohoncommutative circuitsomputing sparse and
small degree polynomials. Before our work, in the nonconating model, determin-
istic polynomial-time identity testing algorithm was knowior noncommutative arith-
metic formulas [RS05]. Our algorithm uses new ideas frono@atta theory. We give
a deterministic polynomial-time interpolation algoritHor a sparse and small degree
noncommutative polynomial given by either an arithmeticuit or by a black-box.

Isolation lemma and polynomial identity testing We establish connection be-
tween derandomization of the isolation lemma and circaé ®wer bounds. We formu-
late a reasonably restricted version of the isolation lerantbshow that a subexponential-
time (non black-box) derandomization (of this version) liep eitherNEXP ¢ P/poly
or permanent has no polynomial-size noncommutative aatlogircuit. Our result can
be considered similar in flavour to the result of Impagliakabanets [KI03].

We show that a strongebl@ck-boy derandomization of the same version of the
isolation lemma means that an explicit polynomial in the ommative model has no
subexponential-size arithmetic circuit. The proof idebased on the results on pseudo-
random generators for arithmetic circuits [Agr05].

Query complexity of multilinear identity testing :

Consider any finite ring? (commutative or noncommutative) and any multilinear
polynomial f(xy, x9, -+ , x,,) OVErR[xy, X9, -« - , &) OF R{x1, 2o, - - , 2., } (i.€. €ither
z;, x; are commuting or noncommuting). We consider the problerasifrig whetheyf
is anidentityfor R, (i.e. f(ay, as, - - ,a,,) = 0forall a; € R), whenm is small (ideally
a constant).

Given a black-box ring? by an additive generating set and a multilinear polyno-
mial f(z1,xe,- -, x,,) OVer R, we give a quantum algorithm of query complexity (i.e.
number of oracle access)(k+1), wherek is the number of generators fé.

For a lower bound, we show a reduction from a variant of Golfisroblem (well
studied in quantum computation) to our problem. The reductises ideas from au-
tomata theory.
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Introduction

The basic goal of complexity theory is to prove nontrivialpep and lower bounds
for time and space required for computational problems. ravipg upper and lower
bounds, the representation of the input problem and the atatipnal model play a
crucial role. In algebraic complexity theory the most natumodel of computation is
the arithmetic circuit. An arithmetic circuit over a fieldasdirected acyclic graph with
internal nodes labelled as addition)(and multiplication &) gates. The circuit takes as

input the indeterminates,, - - - , z,, and constants from a field. Following the addi-
tion and multiplication operations, the circuit computgzoéynomial in the underlying
polynomial ringF[zy, xo, - - - , x,,]. It is not difficult to see that a small size (i.e of poly-

nomial size) arithmetic circuit can compute a polynomialihg exponential number
of monomials. Also if the circuit size is, the degree of the output polynomial can be
exponential irs.

One of the central problems in algebraic complexity theerhe Polynomial Iden-
tity Testing ProblemRIT):

Given an arithmetic circuit’ over a fieldF with set of indeterminates,, =, - - - , .,
can we check efficiently wheth&r computes the identically zero polynomial in the
polynomial ringF|xy, zo, - - - , x,] ?

A randomized polynomial-time algorithm (more preciselg@aRP algorithm) for
this problem is known due to the well-known Schwartz-Zippemma (see [MRO1,
pp.165] and [Sch80, Zip79]). The main challenge is to comevitp a deterministic
polynomial-time (or at least subexponential-time) altjori. Over the year®IT has
played a significant role in our understanding of importammplexity theoretic and
algorithmic problems. Well-known examples are the randechiNC algorithms for the
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matching problem in graphs [Lov79, MVV87], and the AKS priityatest [AKS04].
The PIT problem has also played an indirect role in importamplexity results such
aslP = PSPACHLFK92, Sha92] and the proof ¢fCPtheorem [ALM"98]. ! The AKS
primality testing algorithm was achieved by derandomizsgecial instancef identity
testing. Due to its important connection with many centnallgems in complexity
theory,PIT has received good attention from theoretical computensei€@ommunity
over the years.

The initial line of research in this area was towards redytie number of random
bits in the generaPIT problem. We briefly mention the major results. The random-
ized identity testing algorithm based on Schwartz-Zippetima is simple to describe
[MRO1, pp.165]: letC' be the input arithmetic circuit of size computing a polyno-
mial f(xy,z0, - ,x,) € Flxy, 29,2, Of total degree at most. The idea is
to fix a subsetS C T of size at leastd and randomly substitute; € S for x;.
Then if f is not an identically zero polynomial, Schwartz-Zippel L guarantees
that f(ay,as, - ,a,) = 0 with probability at mostl/2. So we get a randomized
polynomial-time (one sided-error) test with success pbdlip at leastl /2. The proba-
bility of success can be boosted up by independent repeaagésidf the experiment. If
we want a success probability at least ¢ for a givene > 0, the running time and the
number of random bits used in this algorithm &se-log 1)°™) and(n(log d+log 1)).
Chen and Kao in [CK0O0] came up with a different idea for idigrtesting over the field
of rational numberg). There, idea is to randomly substitutes eaglby anirrational
numberfrom a set of suitable size. As one can not substitute and atsgo circuit
over irrational numbers, they used a rational approxinmatezhnique to suitably ap-
proximate the irrationals used. The number of random bigsl iy their algorithm is
> Nogd;] (d; is the degree of; in f) which is better than the randomness used in
Schwartz-Zippel algorithm. The running the of their algfom is poly(n, d, %), where
d is the total degree of the polynomial. If the size of the inputuit is s, then the
total degreel can be of exponential ig, and hence the running time of their algorithm
is 20(s+log ) | ater, Lewin and Vadhan extended the algorithm of Chen-tafinite
fields with similar running time and usage of randomness RV9inally, Agrawal
and Biswas [ABO03] used ideas fro@hinese Remainderingnd came up with an im-
proved algorithm. In some sense, algorithm of Agrawal-Biswakes a bridge between

In the sense that properties of low-degree multivariatgmparhials are crucial to these proofs.
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the algorithms of Schwartz-Zippel and Chen-Kao-Lewin{vaia combining the best of
them in terms of running time and randomness. The running tfrtheir algorithm is
(s +log £)°M overQ and(s + log ¢ + log £)°) over a finite fieldF,. The amount of
random bits used i§_)"_, [log d;].

Till today, Agrawal-Biswas algorithm remains the most ééiit algorithm for gen-
eral PIT in terms of randomness and running time. But the algorithfari$rom being
deterministic polynomial-time or even deterministic syfx@nential-time.

Another important research direction in algebraic comipjeis to prove explicit
lower bounds, i.e to prove that an explicit function is hayxcompute by a small size
arithmetic circuit. A concrete goal is to show that the welblwvn permanent polynomial
of an x n matrix can not be computed by a polynomial {ihsize arithmetic circuit.
But just like in other computational models, the progresprioving lower bounds in
arithmetic circuit model is also very limited. NontriviaWer bounds are only known for
some restricted classes of arithmetic circuits. In the chgeneral arithmetic circuits,
the best known size lower bound $¥n log d) for computing an explicit polynomial
in n indeterminates and of degréqStr73a, BS83, BCS97]. Grigoriev and Karpinski
[GK98] show exponential size lower bound for depth-3 arigim circuits oveffinite
fields Later, the lower bound result was extended to algebrasraftions over finite
fields [GR98]. Shpilka and Wigderson show quadratic lowerrubfor depth-3 circuits
over characteristic zero [SWO01].

The problem of identity testing and proving lower bounds aerad two seemingly
different important problems in algebraic complexity theontil Impagliazzo and Ka-
banets showed an interesting connection between them [KIBpagliazzo-Kabanets
[K103] show that giving a deterministic polynomial-timev@n subexponential-time)
identity testing algorithm will yield strong lower boundslhey also show a partial
converse: assuming lower bounds they show a subexporéntgldentity testing al-
gorithm.

As it is widely believed that proving strong lower boundsiitrametic circuit model
is a very hard problem, the result of Impagliazzo and Kalsmseggests that derandom-
izing the polynomial identity testing (in general) is alseeaty hard problem. So the nat-
ural research direction that one can think of is to find effit@éeterministic algorithms
for identity testing of restricted classes of arithmeticcuaits. Also, towards proving
lower bounds, the first task is to prove nontrivial lower bdsirior restricted classes
of arithmetic circuits. In last few years, plenty of resuiesve appeared in both direc-

3
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tions. Dvir and Shpilka [DS06], showed a connection betwaarstruction of Locally
Decodable Codes (LDC) and identity testing of depthiBX: circuits. Using explicit
bounds from LDC, they were able to bound the rank of the lif@ans of an identically
zero XIIY circuit. Using that, they give a polynomial-time identigsting algorithm
for multilinear X113 circuits with bounded fan-in top gate. They also show a quasi-
polynomial time identity testing algorithm fotIIX circuits with bounded fan-in top
gate. Later, Kayal and Saxena improved the result givingterghénistic polynomial-
time identity testing algorithm foEIIX. circuits with bounded fan-in top gate [KS07].
Their algorithm is based on application of Chinese Remaindén local rings Saxena
[Sax08] show efficient identity testing algorithm for dej@ldiagonal circuits.

The algorithms of Dvir-Shpilka [DS06], Kayal-Saxena [K$@nhd Saxena [Sax08]
are non black-box, i.e their algorithms look into the stauetof the given circuit. For
the black-box case, Karnin and Shpilka [KS08] recently iowerthe situation giving
a quasi-polynomial time identity testing algorithm f6fI> circuits with bounded top
gate fan-in. Their algorithm runs in polynomial time if thiectiit is multilinear. The al-
gorithm crucially uses the rank upper bound of identicadlya2 113 circuits obtained in
[DS06] and a suitable application of an explicit extractonstruction for affine sources
[GRO5]. Very recently, Shpilka and Volkovich consider itigntesting of read-once
polynomials [SV08]. An arithmetic circuit’(zy, xo, - - - , x,,) iS a read once formula if
each variable:; occurs at most once in the leaf afds a formula. The polynomial that
C computes is called a read-once polynomial. Shpilka-Valkdowonsider arithmetic
circuits which are sums df read-once formulas for a constant They give an algo-
rithm for identity testing of such circuits with running tem®®**). They also consider
the problem in a black-box setting. Using depth reductiehmégue, they give an iden-
tity testing algorithm of running time°(@++*) whered is the depth of the circuit. In
particular ifd is a constant, their algorithm runs in polynomial time.

Towards proving lower bounds, in a seminal work, Raz has shitwsat anymulti-
linear formulathat computes the determinant or permanentofxan matrix, must be
of sizenf¥°s™ [Raz04]. Subsequently, using ideas similar to [Raz04],emesults for
explicit lower bounds are discovered [Raz06, RSY07, RY0S8].

More recently, a result of Agrawal and Vinay [AV08] improvesr understanding
about identity testing and lower bounds for general arittier@rcuits. Intuitively, their
results indicates that proving strong lower bounds or (Blaax) derandomization of
polynomial identity testing for depth-4 arithmetic cirtslis as hard as for arbitrary

4
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depth arithmetic circuits. More formally they show, if a pobmial f(z1, xs,- - , ;)
of degreed = o(n) can be computed using an arithmetic circuit of stzg+dle?),
then f can be computed by a depth-4 circuit of similar size and tharidor the mul-
tiplication gates are(d). Towards identity testing they show that a complete blaak-b
derandomization of polynomial identity testing for degtleircuits will give a deter-
ministic n°°&™) time identity testing algorithm for arbitrary arithmetioauits. The
proof idea is based on a depth reduction technique for aeticrgircuits introduced in
[AIMV98].

All the results that we have mentioned so far are over cormguget of variables,
l.e.z;z; = z;x;. In the noncommutative model of computation, we considéyrmmi-
als over the noncommutative riff{ z1, o, - - - , x, } With z;z; # z;z; (for i # j). The
problem of Polynomial Identity Testing and proving lowernds are analogously de-
fined over noncommutative model and well studied too. Thedignificant size lower
bound result was shown by Nisan in [Nis91]. Nisan proved #mt noncommutative
arithmetic formulafor permanent must be of exponential size. So far this is #st b
known lower bound result in the noncommutative model.

Turning to identity testing, Bogdanov and WedBWO05] show a randomized poly-
nomial time identity testing algorithm for noncommutateiecuit computing small de-
gree polynomial. Their algorithm shows a reduction from cmnmutative to com-
mutative identity testing using a well-known theorem of Asar and Levitzki [AL50].
Amitsur-Levitzki’'s theorem allows them to evaluate theagicircuit over random points
from a suitable small dimension matrix algebra o¥eif the output polynomial is not
identically zero then the result of [AL50] guarantees thahwigh probability the cir-
cuit evaluates to nonzero.

Raz and Shpilka [RS05] came up with first deterministic polyial-time identity
testing algorithm for arithmetic formulas ovB{z,, x5, - - , z,}. They use ideas from
[Nis91] to convert a noncommutative formula to an equivaégebraic branching pro-
gram (ABP) and give a deterministic identity test for suchPsB

1.1 Thesis Outline

The basic goal of this thesis is to continue the study of Rmtyial Identity Testing prob-
lem (and also some closely related problems) over commatatid noncommutative
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models and its connection with other important problemsomglexity theory. Here,
we highlight the main results of the thesis. Subsequemtlsection 1.2, we describe the
results and the organization of the thesis in detail.

A basic algebraic structure that keeps recurring in manyiepns related to iden-
tity testing is a finite ring (for example see [AS05] and [KHOTt motivates the follow-
ing natural question: Given an arithmetic circGitover a finite commutativang with
unity, can we efficiently test whethér computes an identically zero polynomial? We
give a randomized polynomial-time algorithm for this prel.

We study the connection of identity testing problem withald@embership testing,
which is another important problem in algebraic complestitgory. We show that un-
der certain restrictions about the underlying circuits afehls, the complexity of the
two problems are closely related. A main result is a new (avsbibly simpler) proof
of Kayal-Saxena’s identity testing algorithm for depthiuaits. Our proof technique
departs from local ring theoretic technique (used in [K$@nHd uses simple ideas from
Grobner basis theory.

Then we turn to noncommutative polynomial identity testprgblem. We show
a deterministic polynomial-time identity testing algbrit for noncommutative circuits
computingsparseand small degree polynomials. Our algorithm uses new ideasdu-
tomata theory. In fact, we give a deterministic polynontiale algorithm to interpolate
polynomials computed by such circuits.

We study the connections between the well known Isolatiamr@ (introduced in
[MVV8T7]) and circuit lower bounds. We prove thatagn black-boxderandomization
of certain restricted version of the isolation lemma yidlser bound consequence in
the noncommutative model which is analogous to the resuiinpfigliazzo-Kabanets
[KI103]. We also show that a strongdslack-boy derandomization implies exponential
circuit size lower bound for an explicit multilinear polymal in commutative model.

Finally, we study the complexity of testing whether a giveypomial is aniden-
tity for a finite ring R (which can be commutative or noncommutative). We assume
that, the input ring is given by an additive set of generatorg the ring operations are
performed through a ring oracle. We are interested in uppeéd@awver bounds for the
query complexity (number of accesses to the ring oraclehefproblem. In the case
when the input polynomial depends only on a few variablesd(ig a constant), we
show a quantum algorithm of query complexity sublinear i ¢ize of the generating
set. Algorithmic ideas of our algorithm are based on the turaralgorithm for Group

6
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Commutativity Testing by Magniez and Nayak [MNO7]. For praya lower bound, we
show a reduction from a variant of the collision problem (@¥his well-studied in quan-
tum computation) to our problem. To the best of our knowledge quantum algorithm
for testing polynomial identities was never studied before

1.2 Results and the Organization of the Thesis

Now, we describe the main results of each of the chapterseofhtbsis in detail. The
technical contents of the thesis are organized in the fatigive chapters.

1.2.1 Algorithmic Problems over Finite Rings

We study some algorithmic problems over black-box ringsacBlbox rings are finite
rings given by a set of generators and the ring elements aeded as binary strings.
The ring operations are performed through an oracle. Thekidax model for repre-
senting the finite ring is motivated by the black-box modelffoite groups which is
well studied in algorithmic group theory [Bab91, BS84].

The first result that we show is a randomized polynomial-tameost uniform sam-
pling algorithm from finite rings. A crucial part of the algithm is to compute an addi-
tive generating set for the given rif&, +, ). The input generating set fét generates
R using both« and+. The second result is a quantum polynomial-time algoritom t
compute a basis representation for the finite black-box ringihe algorithm uses the
sampling algorithm as a subroutine to compute an additiveiging set. Then, suit-
ably using ideas from the hidden subgroup problem frame@ehich is well studied in
guantum computation), we can compute a basis representati®. As an application
of this result, we show how to test whether a given black-bog is a field. We give a
guantum polynomial-time algorithm for this problem.

Next, we study the Polynomial Identity Testing problem ofieite commutative
rings with unity. We prove an analogue of Schwartz-Zippeiinea over finite com-
mutative rings. Suppose the input polynomial is given asaakbbox. Then, using a
Schwartz-Zippel analogue, we show a randomized polynetimed algorithm for iden-

2For a commutative ringz, e, ez, - e, is a basis ifR = Z,,e1 ® Zp,ea ® -+ @ Zy, e}, and
eiej = 21;:1 aijeer, Wherea; o € Zy, .
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tity testing over finite rings satisfying some particulaoperty. 3 More interestingly,
over anyarbitrary commutative ring with unity, we show a randomized polyndriiae
identity testing algorithm when the input polynomial is givas ararithmetic circuit
For the underlying ring, we assume that the ring operatioagparformed through an
oracle. The results of this chapter are reported in [ADMOBLIS08].

1.2.2 Ideal Membership and Polynomial Identity Testing

We study connections between ldeal Membership problem atgh&mial Identity
Testing. The Ideal Membership Problem is the following:

Let] = (g1,99, - ,g¢) be anideal in the polynomial rin§[xy, =, - - - , x,] gener-
ated by the polynomialgy, ¢, - - - , g;,, Whereg; € Flxy, 29, ,x,]. Also, letf €
Flxg, z9,--- ,x,] be a given polynomial. The ideal membership problem is tb tes
whetherf € I, i.e whether there exists polynomialg as, - - - ,ap in Flay, zo, -+ | 2]
such thatf = a1g1 + asgs + - - + apg,?

We consider the input polynomigl be given by an arithmetic circuit and a mono-
mial ideal given by a set of constant number of monomials agiggors. In this case,
we show that the complexity of monomial ideal membershijnslar to that of polyno-
mial identity testing. We give a randomized polynomial-¢imonomial ideal member-
ship testing algorithm which is analogous to the randompgnomial identity testing
algorithm using Schwartz-Zippel Lemma.

Extending the result further, we show that if the number afagators of the given
monomial ideal is not a constant, then the problem is coN#:-h@/e show an upper-
bound for this problem in the counting hierarchy.

We consider monomial ideal membership problem, where thetipolynomial f
is computed by a depth-XIIX circuit with bounded fan-in output gate, and the ideal
is generated by constant number of monomials. We show tkeatdmplexity of ideal
membership problem in this case is essentially same asftiaggrdity testing ofX 11X
circuits with bounded fan-in output gate, which is known &ity deterministic polyno-
mial time [KSO07]. In fact the algorithm of [KS07] can be ditlycapplied to our case.
But what is more interesting is that, we can develop the #lyorand its correctness
proof based on Grobner basis theory. We believe this appisaomewhat simpler and

30ur algorithm works when the characteristics of the locadjrcomponents of the given ring, are
suitably large depending on the degree of the given polyabmi
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direct compared to the analysis of [KSO7]. Moreover, thigegius a different under-
standing of the identity testing algorithm for such cirsuifThe results of this chapter
are reported in [AMO7].

1.2.3 Noncommutative Polynomial Identity Testing

We give a deterministic polynomial-time algorithm for iegtif a sparse noncommu-
tative polynomial having small degree (i.e the degree imbed by a polynomial), is
identically zero. The polynomial is given by an arithmeticcait or by a black-box.
Prior to our work, in noncommutative model, deterministidymomial-time algorithm
was known only for noncommutatifermulas[RSO05].

We also show a deterministic polynomial-time interpolatadgorithm for sparse
and small (bounded by a polynomial) degree noncommutatypmials given by a
black-box. For identity testing and interpolation, we amsuthat we can evaluate the
given black-box polynomial over any matrix algebra.

Finally, we give an efficient deterministic reconstructiaigorithm for black-box
noncommutative algebraic branching programs. Our blankrbodel assumes that we
can query for the output adny gateof the algebraic branching program, not just the
output gate. Our algorithm is based on the algorithm of RazSpilka [RS05].

The main idea behind most of the results in this part of theithis the selection of
a small set of matrices (of small dimension) and then to ealthe given polynomial
over those matrices as input. For identity testing and patiation, the selection of a
small sized matrix family crucially uses the fact that thadi-box polynomial is sparse
and of small degree. The construction of such matrices dses ifrom automata theory.
The results of this chapter are reported in [AMSO08].

1.2.4 Derandomizing the Isolation Lemma and Lower Bounds fo
Circuit Size

We study the connections between derandomizing the Iealdtemma and proving
circuit lower bounds. Originally the Isolation Lemma wastfmlated and proved in the
seminal paper of Mulmuley, Vazirani and Vazirani [MVV87]. eMriefly recall their
result.

Let U be a set of size+ and F be any collection of subsets 6f. Let w be any
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random weight assignment to the elementé/dfom [2n]. Then the Isolation Lemma
states that with high probabilityx 1/2), there will be a unique minimum weight set in
F.

Over the years, this result has found several importantiggipns in complexity
theory. To state a few, a randomized NC algorithm for findirgfgct matching in
graphs, proving NLC UL /poly e.t.c. Also it is known that suitably derandomizing (i.
choosing the weight functiom deterministically) some restricted version of the isola-
tion lemma will suffice to prove a NC algorithm for matchingh(eh is an outstanding
open problem in complexity theory) and NL UL.

Here we note that, in general the isolation lemma can not bendemized com-
pletely. The reason is that there are too ma#y)(possible different set systems for
U. More precisely, the following is observed in [AgrO7]: Theolation Lemma can
not be fully derandomized if we allow weight functions: U — [n¢] for a constant
(i.e. weight functions with a polynomial range). More folllgafor any polynomially
bounded collection of weight assignme#ts; } ;c|,c1) with weight ranggn|, there ex-
ists a familyF of [n] such that for allj € [n°!], there exists two minimal weight subsets
with respect tow;. So the real question is whether we can derandomize a particu
application of the isolation lemma, which is highly problspecific.

We show that derandomizing reasonably restricted versibtise isolation lemma
implies circuit size lower bounds. We derive the circuit eavbounds by examining
the connection between the isolation lemma and polynomiéaitity testing. We give a
newrandomized polynomial-time identity test for noncommu&circuits computing
small degree polynomials. Our algorithm is based on thaisw lemma and automata
theoretic ideas used for noncommutative sparse polynadaatity testing. Conceptu-
ally, our algorithm is very different from the algorithm obBdanov and Wee [BWO05].
Using this result and the result of Impagliazzo-Kabanet®3 we show that deran-
domizing the isolation lemma implies noncommutative airsize lower bounds. For
the commutative case, a stronger derandomization hypethAkd@ws us to construct an
explicit multilinear polynomial that does not have subaxgatial size commutative cir-
cuits. The proof technique is based on Agrawal’s work on geeandom generator for
arithmetic circuits [Agr05]. The restricted versions oétisolation lemma we consider
are natural and would suffice for the standard applicatidniseisolation lemma. The
results of this chapter are reported in [AMO8].

10
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1.2.5 Quantum Query Complexity of Multilinear Identity Testing

We study the complexity of testing whether a given multéinpolynomial is andentity
for a given ring. To make the problem more specific, fiét, x5, - - - , x,,,) be a mul-
tilinear polynomial overany finite ring R. The variables can be either commuting or
noncommuting. Can we test efficiently wheth@rn,, as,- -+ ,a,,) = 0 foralla; € R

? Notice that testing whethégf(ay, as,- - ,a,,) = 0 for all a; € R is different from
testing whetherf (z, zo, - - - , z,,,) is anidentically zero expressiofwhich is the Poly-
nomial Identity Testing Problem) for the ring[x,, s, - - - , z.,] (Whenz;, z; commute)

or R{zy, 22, -+ ,x,} (Whenz;, z; do not commute). To see the difference, consider
the following simple example: leR be any finite commutative ring an8{z;, x}

is noncommutative polynomial ringe{, zo do not commute). Then the polynomial
f(z1,x9) = x129 — xomq IS @n identity forR but it is not an identically zero expression
for R{zy, xs}.

In general the problem of testing whether a polynomial isdamiity for a ring is
NP hard. In our setting, we consider the input riRgs given by a set of additive
generators and the ring operations are performed bggaoracle We are interested
only in thequery complexitpf the problem i.e the number of accesses to the ring oracle.

For smallm (ideally constant), we give a quantum algorithm of query ptaxity
O(km+1) for testing whetherf (21, zs, - - - , x,,) is an identity forR. Thus the query
complexity of our algorithm is sublinear in the number of geators. The algorithmic
ideas of our algorithm is inspired by the quantum algoritlumdgroup commutativity
testing [MNO7]. The main technical tools used in our algoritare a generalization of a
group theoretic result by Pak [Pak00] and Szegedy'’s resultpuantum random walks
[Sze04].

Towards a quantum lower bound for this problem, we show aatémlufrom a vari-
ant of Collision Problem (well studied in quantum compwatisee [AS04]) to our
problem. This reduction uses automata theoretic ideasmbdtave used for noncom-
mutative polynomial identity testing. The results of thimpter are reported in [AM09].

11



Algorithmic Problems over Finite Rings

2.1 Introduction

Finite rings often play an important role in the design ofoaithms for algebraic prob-
lems. Berlekamp’s randomized algorithm for factoring @aniate polynomials over fi-
nite fields is a classic example [Ber67, vzGGO03]. More rdgeas explained in [AS05],

the celebrated AKS primality test [AKS04] can be cast in g+iheoretic framework.

Lenstra’s survey [Len92] gives other algorithmic examples shown in [AS05, KS06]

that the Graph Isomorphism problem is polynomial-time mang reducible to the Ring
Isomorphism Problem. Further, itis shown in [KS06] thatltiteger Factoring problem
is randomized polynomial-time Turing reducible to finding isomorphism between
two finite rings.

As pointed out in [AS05], the representation of the finitegris crucial to study
algorithmic problems over finite rings. For tpelynomial representatioaf finite rings
it is shown that the ring automorphism problem (to test weethgiven finite ring has
a nontrivial automorphism) is NP-hard and the ring isomaphproblem is coNP-
hard [ASO5, Theorem 1]. In thieasis representatio(defined in section 2.2), the ring
isomorphism problem is in NP coAM [KS06].

In this chapter, we explore the complexity of ring-theargtroblems where the fi-
nite rings are given by black-boxi.e, by a ring oracle. We give the formal definitions
in Section 3.2. In a sense, a black-box ring is represemtdte®. This model is mo-
tivated by finite black-box groups introduced by Babai andrSerédi [BS84, Bab92]
and intensively studied in algorithmic group theory.

We show a polynomial-timguantumalgorithm to obtain a basis representation for

12
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a given black-box ring. Thus, up to quantum polynomial-tithe two representations
are equivalent. A key procedure we use is an almost-unifamdam sampling algo-
rithm for finite black-box rings. Our algorithm is quite sife@s compared to Babai's
sampling algorithm for black-box groups [Bab91].

It is an open question whether there is a randomized polyaletinne algorithm to
recover a basis representation from the black-box orache rmain obstacle iaddi-
tive independence testing a black-box ringR: givenry,ry,--- 1, € R is there a
nontrivial solution toZﬁzo x;r; = 0 wherex;’s are integers. There is no known classi-
cal polynomial-time algorithm for this problem. Howevétrfiis nicely into the hidden
subgroup problem framework and we can solve it in quanturgrfmohial-time as the
additive structure of? is an abelian group. As a further application of the sampling
algorithm, we obtain a quantum polynomial-time algorittontesting whether a given
black-box ring is a field (Sections 2.5). The problem is insgiby primality testing: a
positive integemn is prime if and only if the ringZ,, is a field. In primality testing the
ring Z,, is given explicitly (because is the input), whereas in our problem we consider
black-box rings.

The second problem that we study in this chapter is the coatplef polynomial
identity testing problemRIT) (which is also the main theme of this thesis) over finite
rings . We first explain the motivation behind studying thenptexity of polynomial
identity testing over rings. An important problem in comgidnal algebra is ideal
membership testing [Sud98, CLO92]. Suppdse F[zy,---,x,] is an ideal gener-
ated by polynomialgy,--- ,g, € Flay, -+ ,z,] tand f € Flzy, -+, 2,]. The ideal
membership problem is to test whethfere 1. In general the ideal membership prob-
lem is EXPSPACE-complete [MM82, May89]. We observe a cotinedetween ideal

membership and identity testing problem. UetC F[zy,---,x,] be an ideal gener-
ated by polynomialg,,--- , g, € Flzy,---, 2] andf € F[xq,--- ,x,]. Observe that
f € I'ifand only if f is identically zero in the rindF[zy, - - - , x| /I)[Tks1, - -+ 5 20

Thus, ideal membership is easily reducible to polynomiahidty testing when the co-
efficient ring isF[xq, - - - , xx|/I. Consequently, identity testing for the coefficient ring
Flxy,-- -, zx] /I is EXPSPACE-hard even when the polynomyias given explicitly as

a linear combination of monomials (we continue to study threnections between ideal
membership and polynomial identity testing problem in Gbaf).

ll.e] = {Z::l fzgz | Vl,fl S F[$1,$2, s ,IEn]}

13
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This raises the following question about the complexityrof for the polynomial
ring R[xq,- -+, x,], whereR is a commutative ring with unity. How does the complexity
depend on the structure of the riY We give a precise answer to this question in this
chapter. We show that the algebraic structuré:o$ not important. It suffices that the
elements ofR have polynomial-size encoding, and w.r.t. this encodirggrthg opera-
tions can be efficiently performed. This is in contrast torihg [z, - - - , x|/ I: there
are a double exponential number of elements of polynomgdedeinF |z, - - - , 2] and
the ring operations iz, - - - , 2] /I are essentially ideal membership questions and
hence computationally hard.

More precisely, we study polynomial identity testing fort@hcommutative ring$z,
where we assume that the elementgoére uniformly encoded as strings {0, 1}™
with two special strings encodingand 1, and the ring operations are carried out by
gueries to theing oracle In other words, we assume the ring is presented as a black-
box ring. Before our work, randomized polynomial-time aitjon for identity testing
was known over the ring,,, for m composite [ABO3].

For identity testing algorithms, we consider only finite gomtative ring with unity.
Although in the identity testing algorithm we do not reguivause the full power of the
sampling algorithm mentioned above, but a crucial part isaimple almost uniformly
from the set of multiples of unity. We discuss it in more ddtaihe subsequent sections.

2.2 Preliminaries

A finite ringis a triple(R, +, ), whereR is a finite nonempty set such th@, +) is a
commutative group an@R, *) is a semigroup, such thatdistributes over addition. A
subring R’ is a subset of? that is a ring under the same operations. ket R. The
subringgeneratedy S is the smallest subringS) of R containingS. Thus, if R = (5)
then every element ak can be computed by an arithmetic circuit that takes as ifput t
generators frony' and has the ring operatioarsandx as the gate operations. It is easy
to see that every finite ring has a generator set of size at mlogt| R|.

A ring oracle R takes queries of the forrfe, v, +), (z,y,*), (z,addiny, where
x,y are strings ofequal length(saym) over ¥ = {0,1}. The response to each of
these queries is either a string of lengthor a symbol indicating invalid query. We
assume that the additive and multiplicative identity (if/jpof the ring are encoded by

14
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two special strings. Ring oracle also allows to query forabditive and multiplicative
identities.

Let R(m) be the set ofc € ¥™ for which (z,addinV is a valid query. ThemR
is a ring oracle ifR(m) is either empty or a ring with ring operations described by
the responses to the above queries. The orBotkefines the finite ringg(m). The
subrings ofR(m), given by generator sets will be callbthck-box rings To keep the
description simple, without mentioning the tetstack-box ringsexplicitly, sometime
we say that the input ring is given by a set of generators aaditiy operations are
performed through an oracle. Throughout this thesis, wehseéermsblack-box ring
andring given by an oracléenterchangeably.

A basis representatioof a finite ring R [Len92, KS06] is defined as follows: the
additive groug R, +) is described by a direct SUOR, +) = Zy,e1 BZy,e2®- - -DZy, €4,
where/; are the additive orders @f. Multiplication in R is specified by the products
ee; = > py %kjek, for1 < ¢,7 < n, wherev;;, € Z,, are the structural constants
defining R.

2.2.1 Structure of Finite Rings

We recall some facts about the structure of finite commugatings. Details can be
found in excellent texts, such as [McD74, AM69]. Letbe any commutative ring. A
nonempty subset of R is anideal of R if I is closed under ring addition and for all
re Rael,rael.

A commutative ringR with unity is alocal ring if R has auniquemaximal ideal
M. An elementr € R is nilpotentif »™ = 0 for some positive integet. An element
r € Ris aunitif itis invertible (rr’ = 1 for some element’ € R). Any element of a
finite local ring is either a nilpotent or a unit. An ide&ls aprime idealof R if ab € [
implies eithera € I orb € I. For finite commutative rings, prime ideals and maximal
ideals coincide. These facts considerably simplify thelgwf finite commutative rings
(in contrast to infinite rings).

Theradical of a finite ring R denoted byrRad R) is defined as the set of all nilpotent
elements, i.e

RadR) ={re R|3n>0s.tr" =0}

The radicalRad R) is an ideal ofR, and it is the unigue maximum ideal / is a
local ring. Letm denote the least positive integer such that for every reipiot € R,

15
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r™ = 0, i.e (RadR))™ = 0. Let R be any finite commutative ring with unity and
{Py, P,,---, P;} by the set of all maximal ideals d@f. Let R; denotes the quotient ring
R/P™for1 < i < (. Then, it is easy to see that eahis a local ring and?;/ P/"

Is the unique maximal ideal iR;. We recall the following structure theorem for finite
commutative rings.

Theorem 2.2.1 ([McD74], Theorem V1.2, page 95) et R be a finite commutative ring.
ThenR decomposes (up to order of summands) uniquely as a direcotlowal rings.
More precisely

R=R &Ry & - © Ry,

viathe mapp(r) = (r+P",r+Py",--- ,r+P;"),whereR, = R/P™andP;,1 <i </(
are all the maximal ideals aR.

It is easy to see that is a homomorphism with trivial kernel. The isomorphigm
naturally extends to the polynomial ring[x;, z», - - - , z,,|, and gives the isomorphism

Qg : Rlxy, x9, -+ x| — @f:1Rz‘[$1,!E2, e Ty

2.2.2 Results from Quantum Computation

In this section we briefly recall some well known algorithmésults from quantum
computation. These results will be useful in the proof of drieen 2.4.1 in Section 2.4.
An excellent source for details of most of these resultsageht by Nielsen and Chuang
[NCO00].

We start by recalling thelidden Subgroup ProblefiNC00, pp240] (HSP): Lefi =
(91,992, -, gr) be afinite abelian group group aid < G be a subgroup of (which
is hidden). LetX be a finite set ang : G — X be a function such that is constant
on the cosets of the subgroup and distinct across each cosets. A standard fact in
quantum computation is that a quantum algorithm can acfesa a suitable oracle
Ur : |g)|h) — |g)|h @ f(g)) for g € G andh € X. Here we assume suitable binary
encodings for the elements K. The problem is to find a generating set for

It is well known that the Hidden Subgroup Problem can be sblvequantum
polynomial-time. The algorithmic ideas are similar to thw8Bs polynomial time quan-
tum algorithms for Integer Factoring and Discrete Loganitbroblem [Sho97].

A well-known application of Hidden Subgroup Problem is @wler Finding Prob-
lem([NCOO, pp 240-242] and [CMO01]). L&t be a finite abelian black-box group (w.l.g
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assume additive) given by a set of generatorsaaad’ be a given element. The Order
Finding problem is to find the minimum integesuch that-a = 0 (r is the order of: in
(z). The problem of finding the order fits nicely into the framekvof Hidden Subgroup
Problem. To see this, lef, be a function fron”Z — G such thatf,(z) = za. Now
fa(x) = fu(y) ifand only if z — y € rZ. The hidden subgroup i& = rZ. Finding the
generator for’ (which isr) is same as finding the order @f Hence the Order Finding
Problem can also be solved in quantum polynomial-time ushegsolution of Hidden
Subgroup Problem.

2.3 Random Sampling from a Black-Box Ring

In this section we present a simple polynomial-time sangpéfgorithm that samples
almost uniformly from finite black-box rings. L&t be a black-box ring generated by
S. More precisely, any element &f can be generated from the element$afsing ring
addition and multiplication.

We will describe a randomized algorithm that takeas input and with high prob-
ability computes aradditive generating set’ for (R, +). l.e. every element oR is
expressible as a sum of elementgof

Remark 2.3.1 In general, for a ringR, a generating set and an additive generating
setT can be different. Consider the following example. For tmgyik = Z,[z]/(z® +
x+ 1), S = (1,x) is a generating set using and x. However,S is not an additive
generating set.

Using a additive generator sétfor R, it turns out that we can easily sample from
(R,+). We start by defining formally the notion of almost unifornmgaing from R.

Definition 2.3.2 Let R be a black-box ring given by a set of generathrande > 0 be
a given constant. The elementsfofre uniformly encoded oved, 1}™. Ane-uniform
sampling algorithm forR is a randomized polynomial-time algorithwh (that takes as
input .S, €) such that for any: € R:

1—¢€/2
|R|

1+¢€/2
Rl

< ProlgA outputsr] <

where the probability is over the internal coin tossesiofThe algorithmA runs in time
poly(m, |S|,log 7).

17
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In the following lemma, we show an almost uniform samplingoaithm from a
black-box ringR given by a set of additive generators.

Lemma 2.3.3 Let R be a finite black-box ring given by an additive generatorBet
{r1,79,- -+, 7} and the elements at are encoded uniformly ovei0, 1}". Then for
a givene > 0, there is a polynomial-time-uniform sampling algorithm fo? using
O(n(m + log 1)) ring additions andD (n(m + log 1)) random bits.

Proof. Letky, ks, -, k, be the additive orders dfry,rs,--- ,7,} in R. Define the
onto homomorphisra : Zy, X Zy, x - - - X Ly, — Rasé(x1,xa, -+ ,Tp) = Y 1y T4T5.
Suppose we casruniformly sample fron¥, x Zy, x - - - X Zy, . Let(z1, zq,- -+, x,) be
a sample point fronZ,, x Z, x --- x Zy, . Since¢ is an onto homomorphisng; *(r)
has the same cardinality for eachc R. More precisely, the cardinality gf!(r) is
equal to the cardinality of the kernel of the homomorphisrilencef (z1, o, - - - , ;)
is ane-uniformly distributed random element from

Thus, it suffices to show that we can almost uniformly sammenfZ,, x Zj;, x
.-+ X Zx,. Notice that we do not know thig’s. But we know an upper bound, namely
2™, for each ofky, ks, ..., k,. Take a suitably largéd/ > 2™ to be fixed later in the
analysis. The sampling is as follows: pi¢k;, s, - - - ,x,) uniformly at random from
[M]™ and outpudy  z;r;. Let(ay,aq, - ,a,) € Zg, X Ly, X -+ X Zy, and let,

P =Prolz; = a; mod k;, 1 <i <mn.

The z; for whichz; = a; mod k; are precisely;, a; + k;, -+ ,a; + ki | (M — a;) /k;].
n 4 n 1+1\/I—"li n . .
Let M/ = [(M —a;)/k;). ThenP =TT, 22 < [T, —— = [, A (1+252).

Using the fact thak; < 2™, we getP <[], %(1 + %)-

On the other hand, itis easy to check tHat> 7 [T,(%5%) > T[,(1/k)(1—45) >

(1 =37 II; #- ChoosingM = [(2"*!)/¢], we can see that,

- ¢ 14 ¢
2 S P S 2.
|R| |R|

The number of ring additions requireddn log M) which is of O(n(m + log 1)). To
computez;r; we use a standard doubling algorithm and thus make at mdst; «;)
queries to the ring oracle, which is bounded®glog M). Also it is easy to see that the
number of random bits used is 6fn(m + log 1)). u
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Let R = (S) be a black-box ring. Denote b§ the additive subgroup ofR, +)
generated by. |.e. R is the smallest additive subgroup(@?, +) containingS. Notice
that R could be a proper subset & andR need not be a subring & in general.

Lemma 2.3.4Let R = (S) be a black-box ring, and? be the additive subgroup of
(R, +) generated bys. ThenR = R if and only if R is closed under the ring multipli-
cation: i.e. Rr C R for eachr € S.

Proof. If R = R then the condition is obviously true. Conversely, notica fhr C R
for eachr € S implies thatR is closed under multiplication and henBe= 2. =

Theorem 2.3.5There is a randomized algorithm that takes as input a blazk-ting
R = (S) (the elements ak are uniformly encoded ovel0, 1}™) and with high proba-
bility computes an additive generating set fét, +) and runs in time polynomial in the
input size.

Proof. The algorithm starts witls' and proceeds in stages by including new randomly
picked elements into the set at every stage. Thus, it commutequence of subsets
S=5CS C...CS, wherel will be appropriately fixed in the analysis. Léf;
denote the additive subgroup generated additivel§fpr eachi. Notice thatf; = R.
We now describe stageof the procedure where, give#), the algorithm will compute
Si+1. First, notice that for each € S, H;r is a subgroup of R, +) that is additively
generated by{zr | x € S;}. Thus, we can use Lemma 2.3.3d¢aniformly sample
(for a givene) in polynomial time an element;, from H;r, for eachr € S. We now
define the sef;,; = S; U {z;. | r € S}. Clearly, if¢ is polynomially bounded then the
above sampling procedure outp$tsin polynomial time. It thus remains to analyze the
probability thatS, additively generategR, +).
Claim. For ¢ = 4m + 1 the probability thatS, additively generateéR, +) is at least
1/3 — d(¢), whered(e) will be appropriately fixed in the analysis.
Proof of Claim: The proof is a simple application of Markov inequality. Wisfirecall
Markov inequality from [MRO1, pp 46].

Markov Inequality: LetY be a random variable that takes only non-negative val-
ues. Then for any positive number

Y]

ProdY > t] < —
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E]Y] is the expectation of the random variable

We define indicator random variablgs 1 < i < 4m as follows:Y; = 1 if H; =
H;,, and H; # R, andY; = 0 otherwise. LetY’ = Z;*ZYZ-. First, we bound the
expected value of eachi. If H; = R then clearlyE[Y;] = 0. Supposed; # R. By
Lemma 2.3.4, there is an € S such thatd;r ¢ H;. As H;r is an additive group it
follows that H;r N H; is a proper subgroup off;r and henceH;r N H;| < |H;r|/2.
Therefore, for &-uniformly sampled: € H;r the probability that it lies inf; is at most
1/2(1 + ¢/2) (use Lemma 2.3.3). So, Proh = 1] < Probz;, € H;] < 1/2(1 +¢/2)
Putting it together, we get = E[Y] < 2m(1 + ¢/2). Now, by Markov inequality
ProY > 3m| < p/3m < 2/3(1 +€¢/2).

So, for the proof of the claim, we takiée) = ¢/3. n

Combining Theorem 2.3.5 with Lemma 2.3.3, we immediatelgmithe main the-
orem of this section.

Theorem 2.3.6 There is a polynomial-time almost uniform sampling alduritfrom
black-box rings that takes as inpfit= (S) ande > 0, runs in time polynomial in input
size andog(1/¢) and outputs ar-uniform random element from the rirg

Let R = (ry,79,...,7,) be ablack-box ring with elements encoded as string¥'in
Examining the proof of Theorem 2.3.5 it is easy to see thateslement- € R can be
computed by an arithmetic circuit,. that takes as input the generateysr, . .., r,, and
has gates labelleg¢t andx corresponding to the ring operations, such thatvaluates
to r, and the size of the circui®,. is O(m3n?). This is analogous to the reachability
lemma for finite black-box groups [BS84]. We briefly explane tproof.

Lemma 2.3.7 (ring reachability lemma) Let R = (ry, o, ..., r,) be a black-box ring
with elements encoded as stringift. For everyr € R there is an arithmetic circuit
C, of sizeO(m3n?) that has gates labelled by ring operatiomsand x, takes as input
ri,7a, ..., , and evaluates to.

Proof. LetS = (ry,re,---,7,). We analyze the proof of Theorem 2.3.5 to construct
the arithmetic circuiC,. It is convenient to think o, as having two par€, andC’ .

C' takes as inputn and generators; € S and compute an additive set of generators
T for R. The input toC, are the generators froffi and the output is. From the
Theorem 2.3.5, it is clear tha'| = O(mn). SoC. can be easily implemented using

20



Chapter 2. Algorithmic Problems over Finite Rings

O(m?n) gates. To find the size af’,, we carefully analyze the number of arithmetic
operations required to construct $gt; from S;. The number of generators B) is at
mostni. We need to compute elements from the groupd;r wherer € S; (recall
thatS; = S). More precisely, we need to computesums of the formzriesi x;r; and

x; < 2™, This can be easily implemented usifigmn?i) arithmetic operations Thus
the total number of arithmetic operations involVgl’ ™ O (mn2i), which isO(m?3n?).
This completes the proof. [ |

2.4 Quantum Algorithm for Finding a Basis Represen-
tation

In this section we describe a quantum polynomial-time allgor that takes a black-box
ring and computes a basis representation for it. The algang Monte Carlo with small
error probability.

Theorem 2.4.1 There is a quantum polynomial-time algorithm that takesackibox
ring as input and computes a basis representation for thg vith small error proba-
bility.

Proof. Let R = (S) be the input black-box ring. By the algorithm in Theorem 2\8e
first compute an additive generating $et,ro,--- ,r,} for R. Then we compute the
additive orders{d;, ds, - - - ,d,} of {ry,rs,--- ,r,} in the abelian groupR, +). This
step nicely fits into the hidden subgroup problem framewohkctv is well studied in
quantum computation. To be more precise, efficient quantlatisn is known for the
following problem [M0s99]:

LetG = (g1, 90, - - , gn) b€ afinite abelian black-box group such that the elements
of G are uniformly encoded ovdi0, 1}™. Then, given an elementc G, one can find
the order ofz in G in quantum polynomial-time?

The algorithmic ideas for solving this problem are simitattte quantum polynomial-
time algorithm for integer factoring [Sho97] (see the d&sian in section 2.2.2). Mosca’s
PhD thesis gives a self-contained solution for this prolMms99, Section 2.8.2, 2.8.3].

2We always use standard doubling algorithm to compyite.
3Notice that we do not knoG| but we know an upper bound thigt| < 2.
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The next step is to extract additively independerdetT” of generators from the
additive generating s€try, 7o, -+ ,7,}. A generating sefe;,es, -+ , e} for R is an
additively independemfenerating setift = Z,,,ey ®Z,,e2®- - - ®Zy,, e, Wheren,’s are
the additive orders of;’s. Recall from the definition of basis representation of &din
ring (defined in section 2.2) that such a generating set a\wajsts.

The way to compute such a generating set is well known in quamcomputation.
Details can be found in in [CMO1, section 5] and also in MosdhD thesis [M0s99,
section 2.8.3]. The idea is to first decompd$g +) as the direct sum of its Sylow
subgroups. This decomposition uses ideas similar to Shtg@rithm [Sho97]. Then
each of the Sylow subgroups can further be decomposed m&ctdum of cyclic groups
by solving instances of the hidden subgroup problem.

Let the additively independent set of generators computepiantum polynomial-
time (as explained) b& = {r,7,---,7,}. To get the structural constants of the
basis representation it remains to express the produttdor r,’ € T, as integer
linear combinations of elements df We can again use Shor’s period-finding quantum
algorithm to compute the additive ordéof /. Let {d;,d,,--- ,d,} are the orders of
the generators . Then, we define ahomomorphigm ZyxZ; x---xZ;, — (R, +)
asp(a,ay,ag, -+ ,ap) = —arr’+2§:1 a;7;. Again using the polynomial-time quantum
algorithm for Hidden Subgroup Problem [IMS03], we can findaaldlitive generating
set for Kefy). Let M be the integer matrix whose columns are the generators ¢fier
(here we think of the column vectors as integer vectors). Adw step is to compute
a basis for Kefp) from its set of generators. We use ideas similar to that deetin
[CMO1, Theorem 7]. LetV;, be the correspondingermite Normal Fornfor M that
can be computed in deterministic polynomial time (see [8¢cip® 45-59] or [KB79]).
The integer linear span of the column vectors\f is same as that af/.

Let the (1, 1)" entry of M), beu and the column vectors d¥/,, arev,, vy, - - , vy.
Any vectorv in the column space af/, looks like,v = Zf:1 1iv;, wherey; € 7Z and
the 1™ entry ofv is yiu.

To express’ as a integer linear combination of the basis elements, ficesfto
seek for a vector of the fornw, z1, zo,-- -, z,) in the column space of M where
w = 1modd. Thus it is necessary that, the, 1) entry of M, (which is u) has
to be an invertible element in the ririy;. Let A be the inverse ofi modulod. l.e
uX = 1 mod d. If (' is the first column of\/,,, it is easy to see thai(; is a solution of
the form(1, y1, 4o, -+ ,y¢) inthe ringZy x Z; x - - - x Z,, using which we can express
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rr’ as an integer linear combination of the basis elements. ]

2.5 Testing if a Black-Box Ring is a Field

In this section we describe a simple quantum polynomiaktatgorithm that takes a
black-box ring as input and tests if it is a field. This resalt ®e seen as a sort of gener-
alization of primality testing: the ring., is a field if and only ifn is a prime. However,
the black-box setting for the problem presents obstadlesfihding the additive order
of elements in a finite ring, that seem hard for classicaldoamzed) polynomial-time
computation.

Theorem 2.5.1 There is a quantum polynomial-time algorithm with smalbeproba-
bility for testing if a given black-box ring is a field.

Proof. Let R be the input black-box ring. Applying the quantum polynolrtiae
algorithm in Theorem 2.4.1 we obtain with high probabilithasis representation for
R: (R, +) = Zm,e1 D L,e2 @ -+ - B Ly, €, ANAese5 = D11 VijkChs Yijh € L,

Clearly, R is a field only if allm;’s are equal to a primg. Using the AKS primality
testing [AKS04] (or one of the polynomial-time randomizex$ts) we check ip is
prime. If not then the input is rejected. Thus, the basisasgmtation can be written as
(R,+) =Fpe1 ®@Fpes @ --- ® Fpe,.

We next compute the minimal polynomial ef overF,. 4 This can be easily done
in deterministic polynomial time. We explain it briefly. Nog that|R| = p", so the
degree of the minimal polynomial ef is less tham.

To check whethee; has a minimal polynomial of degree we seek for a solution
ag,a, - ,a;_1 € F,suchthat] = ag+ae, +---+a;_1¢,”'. Now using the relations
for the structural constrains, we can write the powers, &sF,-linear combinations of
e1, €2, -, e,. Also, one can easily identify the representation of théyufil) in R as a
linear combination ok, e, - - - , e,,. TO find that, writel = z1e; + x9e0 + - - - + 60,
wherez; € F, are the unknowns. Now fare {1,2,---  n}, we multiply both sides of
the equation by, and use the relationse; to construct the following equation:

Liey+ Liey +---+ Lie, =0,

4The minimal polynomiah(z) € F,[z] of an element over the fieldF, is a degreel polynomial
such thatn(e) = 0 ande does not satisfy any polynomial of degree less tthan
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where L are the linear forms im, x,- -+ ,z, overF,. Now, settingL: = 0 for
s € {1,2,--- ,;n}and: € {1,2,---,n} gives linear constraints far,, zs,- - , z,,
which we can easily solve.

Now, the problem of finding the unknowns, a,, - - - ,a;_1 (we thinkay, = ao - 1

and use the representationloin terms of the basis elements) boils down to solving a
system of linear equations ovgf, which can be done in deterministic polynomial time.
To compute a minimal polynomial fer, we need to find leagte [n — 1].

Suppose the minimal polynomial fer is m, (z) with degreed;. Then in determin-
istic polynomial time we can test ifi, () is irreducible ovelif, [vzGGO03]. If it is not
then the inpufR is rejected. Otherwise,

Fp(el) = {CLQ +are; + aQef + -+ ad1,1€?171| for 1 <i<d; — 1, a; € Fp}

[, (e1) is isomorphic to the finite field,[x] / (m, (x)) which is isomorphic td q, . Also,
notice that{1, e, - - - , e "'} is a basis for the fiellf (e, ) and each of the basis elements
can be expressed as a linear combination,0#,, - - - | e,, using the pairwise multipli-
cation relations between’s.

With the above step as the base case, inductively we asswanattthei-th step
of the algorithm we have computed the finite fiéld= F,(ey,es,...,¢;) contained
in R with a basis{v,, vs,--- , vy} for F overF,, where each is expressed asB,-
linear combination of e, ez, -+ ,e,}. Letd = [[,_, d:, whered, is the degree of
the minimal polynomial ok, overF(ey, ..., e,_1) for eacht. By induction hypothesis
Fp(er, e, -+ ,€) = Fpa. ASvy,v9,--- , v is a basis foif,(eq, . . ., e;), it is clear that
Fp(ei,...,e;) 2 Fp. SOk = d.

Proceeding inductively, at thet 1-th step we again compute the minimum polyno-
mial m;(z) of e;;, over the fieldF = F,(ey, e2,- - - ,€;). To check whethet; ., has a
minimal polynomial of degreg overF, write,

J—1
j l
ngrl - Z Lf(vla (% T 7vd)6i+17
=0
whereL,'s are linear formsimy, vy, - - - , vg OVerF,, i.e Ly(vy, va, - - - ,vq) = Z?Zl TyVj,
wherez,; are the unknowns. Notice that, by induction hypothesis, ey have the
representations af, (for 1 < s < d) as linear forms iy, e, - - - , e, OVerF,.
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Now, following the algorithm already mentioned above, ie&sy to see that this
computation will also boil down to solving a system of lineguations oveF,. Also,
we will similarly be able to check in polynomial time whethdée obtained minimal
polynomial is irreducible oveF,. [vzGGO3].

We continue this procedure forsteps and if in none of the steps the above algorithm
rejects the input, we conclude thats a field. Clearly, if the basis representation for
is correct (which it is with high probability), the algorithwill correctly decide. =

In the above theorem the power of quantum computation is asBdto recover a
basis representation f@t. If R is already in basis representation then field testing is in
P. We now give a classical complexity upper bound for the tiesting.

Theorem 2.5.2 Testing if a black-box ring is a field is M N coNP,

Proof. A finite ring R = (ry,...,r,) is not a field if and only if it has zero divisors:
nonzero elements, b € R whose productb = 0. An NP test for this would be to guess
small circuitsC, andC}, (using Lemma 2.3.7) for zero divisossandb verifying their
productab = 0 using the black-box oracle. Thus the problem is in coNP.

We now show that the problem is in AM. Our goal is to compute sidgepresenta-
tion for R in AM. The rest is clear from the proof of Theorem 2.5.1.

Merlin will send a basis representation fBrto Arthur as follows: Merlin sends a

basis{ui, us, - - - ,us} for (R, +) in terms of the given set of generators. More precisely,
Merlin sends{u,, us, - - - , u,} as small arithmetic circuits which take as inputs the gen-
eratorsry, ry, - - -, r,. Again, this is always possible due to Lemma 2.3.7. Also,lMer

sends each generatoras a linear combination of the elemenit$s and the pairwise
product relations,;u; as a linear combination of;’s.

Arthur can now easily verify thaftu,, us, - - - ,u;} is @ generating set fak. For that
Arthur verifies that each of the generatersan be obtained from the linear combination
of u,’s (that Merlin has sent) correctly and that the producttretes «,u; are correct.
Arthur needs to make queries to the ring oracle.

It remains to verify thau,, us, - - - , u;} is additively independenMerlin sends the
additive ordermn of u;'s. Using AKS primality testing [AKS04], Arthur verifies tha
is prime and checksi : pu; = 0. Now, to verify that{wu,, us,--- ,u,} are additively
independent it suffices to check that the additive groRp+) = (uq, ug, - -+ , uy) is of
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orderp’. By a result of Babai [Bab92], order verification of blackdmgroups is in AM.
This protocol can clearly be applied & ]

2.6 Schwartz-Zippel Lemma over Finite Rings

In the rest of the sections of this chapter, we study the Rwiyal Identity Testing
(PIT) over finite commutative ring with unity. We start by definiRglynomial Identity
Testing problem over finite ring.

Let R be a finite commutative black-box ring with unity. L&tbe a given arithmetic
circuit with internal nodes labelled by andx gates, that takes as inputs indeterminates

x1,T9, -, T, and elements from the ring. Using the+ andx gatesC computes a
polynomial f(xy, z9, -+ ,x,) in R[xy, 29, - ,z,]. The identity problem is, gives
and an oracle foR, test whetheyf = 0in R[xq, o, -+, z,)].

In this section, we first give a generalization of Schwarigpél Lemma [MRO1]
to finite commutative rings and apply it for identity testinafblack-box polynomials
in Rlxy,---,z,|, whereR is a finite commutative ring with unity whose elements are
uniformly encoded by strings frof0, 1} with a special string denote unity, and the
ring operations are performed by a ring oracle.

2.6.1 The Schwartz-Zippel Lemma

We observe the following easy fact about zeros of univanaignomials over finite
commutative rings with unity.

Proposition 2.6.1 Let R be a finite commutative ring with unitycontaining a fieldr
such thatl € F. If f € R[z] is a nonzero polynomial of degreethen f(a) = 0 for at
mostd distinct values of € F.

Remark 2.6.2 It is easy to find examples of finite commutative ridgvith unity 1
such thatR contains a fieldF" and1 € F. Consider the following example. L&t =

F, x I, for a primep. Notice thatR is not an integral domain as it has zero-divisors
((1,0) - (0,1) = (0,0)). Consider the set of elemerfis= {(i,7) | 0 < ¢ < p—1}. Itis
easy to see thaf forms a field under ring addition and multiplication.
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Proof. (of Proposition 2.6.1)

Supposeus, as, - - ,aq41 € F are distinct points such thgt(a;) = 0,1 < i <
d + 1. Then we can writef(z) = (x — ay)q(x) for q(x) € Rz]. Dividing ¢(z) by
T — ay yieldsq(z) = (x — a2)¢'(z) + q(az), for someq'(z) € R[x]. Thus, f(x) =
(x —a1)(x — a9)d'(x) + (x — a1)q(az). Puttingxz = ay in this equation givesa, —
ay)q(az) = 0. But (a2 — a1) is nonzero in the field and hence is invertible and
(ay —ay)(ag — a;) = 1. Multiplying by (a; — a;)~" we getg(az) = 0. Consequently,
f(z) = (x—ay)(z—az2)d (x) in R[z]. Applying this argument successively for the other
a; finally yields f () = g(z) [[Z} (z — a;) for some nonzero polynomiglz) € R[z].
Sincerjll(x — a;) is @ monic polynomial, this forcedeg(f) > d + 1 which is a
contradiction. n

Using Proposition 2.6.1 we describe an easy generalizafitiee Schwartz-Zippel
lemma to finite commutative rings with unity containing adiel

Lemma 2.6.3 Let R be a finite commutative ring withsuch thatk contains a field®
with 1 € F. Letg € R[zy, 2, - -, x,] be any polynomial of degree at mastlf g # 0,
then for any subset of F we have

d
ProbllGA,---,anGA[g(a’h Ao, ,CLn) = 0] < W
Proof. We need to show that the numbertuples(a,---,a,) € A™ such that
glay,as, -+ ,a,) = 0is at mostd|A["~!. The proof is by induction om. The base

casen = 1 involves a univariate polynomiai(z,) in R[z;| and follows directly from
Proposition 2.6.1. As induction hypothesis suppose therlarholds for multivariate

polynomials inn — 1 indeterminates. Writg(z1, xs, - ,x,) asg(zy, e, -+ ,x,) =
Z?:o 2t gi(x1, 29, ,2,_1), Wherek < d is the largest exponent af,, in g with
nonzero coefficiend, and eacly; € R[zy, xo,- - ,x,_1]. Sinceg, # 0 anddeg(gx) <

d—k, by the induction hypothesis there are at mdstk)| A|" 2 tuples(ay, - - - ,a,_1) €
A"t such thay(ay, -+ ,a, 1) = 0. Let

E1 = {(ala U 7a’n> | gk<a’17 o 7a’n*1) = 0}
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Then|E,| < (d — k)| A|"~*. Now consider the univariate polynomial,

k
g(.’,lfn) = Zx;gi(ah g, - - 7an71)
=0

in R[.I‘n] for (CLl, s ,CLnfl) e AL,
If gr(ai,as, - ,a,_1)isS nonzero thef(x,,) is a nonzero polynomial. Let

By = {(ar, -+, an) | §(xn) # 0 @ndg(an)) = 0}.

It follows from Proposition 2.6.1 thd#,| < k| A"
Since{(ay, -+ ,ay) | g(ay,--- ,a,) =0} C E; U E,, we obtain the required bound

{(ay, - an) [ glar, -+, an) = O} < |Er+] Ey| < (d—k)[ A" +k|A]"" = d|A]""
This completes the proof. [ |

In general Lemma 2.6.3 is not useful, because the given fingg? may not contain
a large finite fieldF containingl. We explain how to get around this problem for finite
commutative local rings. Because of the structure theor@n 2it suffices to consider
local rings.

Let R be a finite local ring with unity given by a ring oracle. Suppdbke char-
acteristic of R is p* for a primep. If the elements ofk are encoded {0, 1}™ then
2™ upper bounds the size @®. Let M > 2™, to be fixed later in the analysis. Let
U = {ce|0 < ¢ < M}, wheree denotes the unity ak. We will argue that, for a suitable
M, if we samplece uniformly from U then(c mod p)e is almost uniformly distributed
in Zye = {xe|0 < z < p— 1}. Pickz uniformly at random frono0, 1,--- , M — 1] and
outputze. Leta € Z, andP = Prolz = a mod p]. Thex for whichz = a mod p are
a,a+p, - a+p[F=¢]. LetM' = [¥=¢]. ThenP = M'+1/M < - (1+37). Clearly,
P> %( — %). For a givere > 0, chooseM = 2™ /e, Then% <P< ”p# So
(z mod p)e is 5-uniformly distributed inZ,e.

Lemma 2.6.4 Let R be a finite local commutative ring with unityand of characteristic
p® for a primep. The elements ok are encoded using binary strings of length Let
g € R[zy, 9, -+, x,] be apolynomial of degree at mesande > 0 be a given constant.
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If g #£ 0, then
d
Prob“eU,...@"eU[g(al, ag, - - - ,an) = 0] S 5(1 + _),
whereU = {ce |0 < c < M} and M > 2™ /e,
Proof. Consider the following tower of ideals inside:
R2OpR2Op’RD - 2 p*R={0}.

Let k£ be the integer such thate p*R[zy, - -+, 2, \ p* ' R[xy, - -+, z,]. Write g = pFg.
Consider the ring/ = {r € R | p"r = 0}. Clearly, is an ideal ofR. Let S =
R/(I + pR) which is a finite commutative ring with unity+ (1 + pR).

We claim that;j is a nonzero polynomial i§[z1, - - - ,z,,]. Otherwise, lej € (I +
pR)[xy, -, x,). Write § = g1 +go, Whereg, € [z, - - -, x,] andgy € pR[xy, - - - , 2]
Thenp*§ = p*g, asp*g; = 0. Butg, € pR[zy, - -, x,], which contradicts the fact that
k is the largest integer such thatc p*R[z1,- - ,z,]. Thusg is a nonzero polynomial
in S[zy,---,z,]. Now we argue that' contains the finite field',, and then using the
Lemma 2.6.3, the proof of the lemma will follow easily. To seeopy ofFF, inside S,
it is enough to observe thdi + (I + pR) | 0 < i < p — 1} as a field is isomorphic
to IF, and contains the unity of. Clearly the failure probability for identity testing of
gin R[xy,---,x,] is upper bounded by the failure probability for the identiégting
of g in S[xy,---,z,]. Consider the natural homomorphism: U — F,, given by
¢(ce) = cmod p. Thus if we sample uniformly frond/, using¢, we cans-uniformly
sample fronF,. Notice that for any € F,, =2 < Prob,cz,, [z = b mod p] < ”Tf/Q

p
Now using the Lemma 2.6.3, we conclude the following :

IA

Prob;lelﬁ‘p...bne]li‘p [g(bl, Tty bn) - 0]

< —(1+5
p

ProbzleU,azeU---aneU[g(ala o an) = 0]

whereb; = a; mod p. The additional factor of1 + §) comes from the fact that we
are only sampling-uniformly fromIF,,. This can be easily verified from the proof of
Lemma 2.6.3. Hence we have proved the lemma. [ |
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Again, the above result is only useful for large primesin particular, we get a
constant success probabilityuf> kd for a constant:.

2.7 Randomized Polynomial Identity Testing over Finite
Rings

In this section we study the identity testing problem oveatdicommutative ring oracle
with unity. For the input polynomial, we consider both bldwx representation and cir-
cuit representation. First we consider the black-box c@se.identity testing algorithm
is a direct consequence of Lemma 2.6.4.

Theorem 2.7.1Let R (which decomposes into local rings @$_, ;) be a finite com-
mutative ring with unity given as a oracle. Let the input pagnial f € R[z,- - , x,]
of degree at most be given via black-box access. Supp@iss is of characteristig;".
Lete > 0 be a given constant. l§; > kd for all 4, for some integek > 2, we have a
randomized polynomial time identity test with success qiodhy 1 — %(1 +5).

Proof. Consider the natural isomorphig]m Rlzy, w0, 2] — ®f_ Riwy, 20, -+, ).
Let o(f) = (fi,fo, -, fo). If f 2 0thenf; # 0 for somei e [(], wheref; €
R;[x1, 29, -+, x,]. Fix such an. Our algorithm is a direct application of Lemma 2.6.4.

DefinelU = {ce | 0 < ¢ < M}, assign values for the;'s independently and uniformly
at random from/, and evaluatg¢’ using the black-box access. The algorithm declares
f # 0if and only if the computed value is nonzero. By Lemma 2.6, @lgorithm

outputs the correct answer with probability- < (1 +§) > 1 — 1(1+§). ° ]

The drawback of Theorem 2.7.1 is that we get a randomizechpatyal-time algo-
rithm only whenp; > kd.

However, when the polynomigl is given by an arithmetic circuit we will get a
randomized identity test that works for all finite commutatrings given by oracle.
This is the main result in this section. A key idea is to applg transformation from
[ABO3] to convert the given multivariate polynomial to a vaiiate polynomial. The
following lemma has an identical proof as [ABO3, Lemma 4.5].

SNotice that we have to compute using the ring oracle for addition iR. Starting withe, we need
to add itc times. The running time for this computation can be madenpmiyial inlog ¢ by writing ¢ in
binary and applying the standard doubling algorithm.
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Lemma 2.7.2 Let R be an arbitrary commutative ring anfl € R|xy, 2o, ,x,] be
any polynomial of maximum degrele Consider the polynomiaj(z) obtained from
f(x1, @9, -, x,) by replacingz; by 2@t je g(z) = f(x,x@D ... g+

Thenf = 0 overR[zy, - - -, x,] if and only ifg = 0 over R[z].

By Lemma 2.7.2, it suffices to describe the identity test fanaariate polynomial
in R[x] given by an arithmetic circuit. Notice thatdfeg(f) = d then we can bound
deg(g) by d(d + 1)"~! which we denote byD. Our algorithm is simple and essentially
the same as the Agrawal-Biswas identity test over the fimgeZ,, [ABO3].

Recall the definition ot/[z] in the proof of the Theorem 2.7.1:

U={ce|0<c< M}

We will randomly pick a monic polynomiaj(z) € Ul[z| of degree[log O(D)]. Then
we carry out a division of (x) by the polynomial(z) over the ringR[x] and compute
the remainder(z) € R[z]. Our algorithm declareg to be identically zero if and only
if r(z) = 0. Notice that we will use the structure of the circuit to camyt the division.
At each gate we carry out the division. More precisely, ifitlyguts of a+ gate are the
remainders (z) andry(x), then the output of this- gate isry + ro. Similarly if r; and
ro are the inputs of a gate, then we divide, (z)r(z) by ¢(x) and obtain the remainder
as its output. Crucially, sincg(z) is a monic polynomial, the division algorithm will
make sense and produce unique remainder evB[xifis not a U.F.D (which is the case
in general).

The pseudocode of the identity testing algorithm is giveAlgorithm 1. Our algo-
rithm takes as input an arithmetic circgitcomputing a polynomiaf € R[xq, z, - - , )]
of degree at most and ane > 0.

We will now prove the correctness of the above randomizedtigjetest in Lem-
mas 2.7.3, 2.7.4, and 2.7.5.

Lemma 2.7.3 Let R be a local commutative ring with unity and of characterigiic
for some primey and integera > 0. Letg be a nonzero polynomial i[z] such that
g € pPR[x] \ pP R[z] for k < o Let] = {r € R | p*r = 0}, g = p*§ wherej & pR
andq is a monic polynomial irR[z]. If ¢ dividesg in R, theng dividesg in R/(I + pR).

Proof. As ¢(z) dividesg(z) in R[x], we havey(z) = ¢(x)q:(z) for some polynomial
¢1(z) € R[z]. Supposg(z) = ¢(z)q(x) + r(z) in R[z] where the degree of(z) is
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Algorithm 1 The Identity Testing algorithm
1: procedurel denti tyTesti ng(Ce)
2: fori=1,ndo

3: x; — ) > Univariate transformation

4: end for

5: g(x) — C(a, 2@+ .. gd+)"h)

6: D —d(d+ 1)~ > The formal degree of(z) is at mostD

7: Choose a monic polynomialz) € Ulz] of degreeflog 1227 uniformly at ran-
dom.

8: Divide g(z) by ¢(x) and compute the remaindefz). > The division algorithm

uses the structure of the circuit.
o: if (z) = 0 then

10: C computes a zero polynomial.

11: else

12: C' computes a nonzero polynomial.
13: end if

14: end procedure

less than the degree gfz). Also note that the division makes sense even over the ring
asq(z) is monic. We want to show thatz) € (I + pR)[z]. We have the following
relation inR[z]:

9=qq =p"g=p"qq+p'r.

So,p*r = q(q1 — p*q). If (1 — p*q) # 0in R[z], then the degree of the polynomial
q(q1 — p*q) is strictly more than the degree gfr asq is monic and degree @fis more
than the degree of. Thus(qq; — p*qq) = 0 in R[z] forcing p*r = 0 in R[z]. So
by the choice off, we haver(z) € I[z]. Thusr(z) € (I + pR)[z]. Notice that in
Lemma 2.6.4, we have already proved that) % 0 in S[z], whereS = R/(I + pR).
Also ¢ is nonzero inS|z] as it is a monic polynomial. Hence we have proved thia)
dividesg(x) overS|x]. n

The following lemma is basically Chinese remainderingota@tl to our setting.

Lemma 2.7.4 Let R be alocal ring with characteristig®. Letg(x) € p*R[z]\p* ™ R[x]
for somek > 0. Letg(z) = p*g(x) andI = {r € R | p*r = 0}. Suppose, (z), g2(z)
are two monic polynomials ovét|x| such that each of them divideén R|[x]. Moreover,
suppose there exist polynomials:), b(z) € R[z] suchthatug;+bg = 1in R/(I+pR).
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Theng, g, dividesj in R/(I + pR).

Proof. By Lemma 2.7.3, we know that andg, divide § in R/(I + pR). Letj = qi¢i
andg = ¢2¢> in R/(I + pR). Letg = gags +7in R/(I + pR). S0,§ = q1¢203 + @17
Substitutingg.g» for g, we getq:(g2 — q1g3) = qir. Multiplying both side bya and
substitutingiqy (z) = 1 — bgy, we getpla(g, — qiqs) +br] = . lf r 2 0in R/(I +pR),
we arrive at a contradiction singeis monic and thus the degree@fa(g. — q1¢3) + br]
is more than the degree of [ |

Let f(z) be a nonzero polynomial iR[z] of degree at mosD. The next lemma
states that, if we pick a random monic polynomjat) € Ulx] (recall thaty = {ce | 0 <
¢ < M}) of degreed ~ log O(D), with high probabilityg(x) will not divide f(x).

Lemma 2.7.5 Let R be a commutative ring with unity. Suppogér) € R[z] is a
nonzero polynomial of degree at madstande > 0 be a given constant. Choose a
random monic polynomiaj(z) of degreed = [log 1227 in U[z]. Then with probability

1—e
at least'—, ¢(x) will not divide f () over R[z].

Proof. Let R = P, R, is the local ring decomposition ak. As f is nonzero in
R[z], there existg such thatf; = ¢,(f) is nonzero inR,[z]. Clearly, we can lower
bound the required probability by the probability that= éj(q) does not dividef; in

R;[z]. Let the characteristic aR; is p®. If ¢; divides f; in R;[z], then it also divides

A A

over R;/(1; + pR;). Itis shown in the proof of Lemma 2.6.%, C R;/(I; + pR;).

Now the number of irreducible polynomials i), of degreed is at Ieastpd%pm. Let
t = =2 etg(x) = Y0 bia' + 2 € F,[z] be a monic polynomial. Now if a

monic polynomialP(z) of degreed is randomly chosen frorty[z] then, ProbP(z) =
G(x) mod p| = H?;(}L(]\Xﬁ")/““ > 25(1 = 37)". Again, choosing\l > d2"*!/e, we
get ProthP(z) = ¢(x) mod p] > (1 — ¢/2)/p®.

So, the probability thag; is an irreducible polynomial iff",[z] is at least/(1 —
€)/p? > (1 —¢€)/2d. Let f; € p*R;[z] \ p"™'R;[z]. So we can writef; = p*f’,
wheref’' € R;[z] \ pR;[z]. By the Lemma 2.7.3;; dividesf’ in R/(I; + pR). Also,
by Lemma 2.7.4, the number of different monic polynomialattare irreducible in
[F, and dividesf’ in Rj/(fj + pR;) is at mostD/d. In the sample space fat, any
monic polynomial of degre€ in R;/(I; + pR;) occurs at mos(% + 1) times. So

the probability that a random monic irreducible polynomjatill divide f is at most
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(D/ACADT Dy 4 1yd ~ 3D g d ic pol iale U hich
——p—— < ga(l+ 3)* < . So arandom monic polynomial € [z] (whic

is irreducible inF, with reasonable probability) will not dividég(z) with probability at

12D‘|

T |- |

least > — % > =¢ford > [log

The correctness of Algorithm 1 and its success probabibtiow directly from
Lemma 2.7.3, Lemma 2.7.4 and Lemma 2.7.5.

In particular, by Lemma 2.7.5, the success probability af @algorithm is at least
1;, wheret = [log %1. As 1; is an inverse polynomial quantity in input size and
the randomized algorithm has one-sided error, we can bbesiuccess probability by
repeating the test polynomially many times. We summarisaeisult in the following

theorem.

Theorem 2.7.6 Let R be a finite commutative ring with unity given as an oracle and
f € R[z] be a polynomial, given as an arithmetic circuit. Then in rarmdzed time
polynomial in the circuit size anlbg |R| we can test whethef = 0 in R[z].

Randomized polynomial-time identity testing fpre R[z4, - - - , z,| given by arith-
metic circuits, follows from Theorem 2.7.6 and Lemma 2.7.2.

Theorem 2.7.7 Let R be a commutative ring with unity given as an oracle. fdte a
polynomial inR[xy, s, - - - , x,| Of formal degree at most, is given by an arithmetic
circuit over R. Then in randomized time polynomial in circuit size dog|R| we can
test whetherf = 01in Rlxy, zo,- - , x,].
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ldeal Membership and Polynomial
ldentity Testing

3.1 Introduction

For a fieldF letF[xq, s, - - - , z,,] be the ring of polynomials ovéf with indeterminates
Ty, %9, , T, Let T C Flxy, zo,---,x,] be an ideal given by a finite generator set
{91, 92, -+ ,g,} of polynomials. The? = {>'_, a;¢; | a; € Flay, 2, ,z,]}, and
we write/ = (g1, 92, , gr)-

Given an ideall = (g1,¢2,---,g,) and a polynomialf € Flxy, 2z, - ,x,] the
Ideal Membershiproblem is to decide if € I.

Ideal Membership Testing is a fundamental algorithmic pwbwith important
applications [CLO92]. In general, however, Ideal MembgysFesting is highly in-
tractable. The results of Mayr and Meyer show that it is EX&RSE-complete [MM82,
May89]. Nevertheless, because of its important applioatialgorithms for this prob-
lem are widely studied, mainly based on the theory of Grobases (see [CLO92] and
[vzGGO03)).

In this chapter we study interesting connections betweeal ldlembership problem
and Polynomial Identity Testing. In particular we will sjuthe connection between
Monomial Ideal Membership and Polynomial Identity Testiiipe study of monomial
ideals is central to the theory of Grobner bases [CLO92].dctiBn 3.2 we explain this
in more detalil.

Supposd = (my,ma, -+ ,my) is a monomial ideal iff [z, 2o, - - - , ,,] generated
by the monomialsn;. In contrast to the general ideal membership problem,ngsti
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membership in the monomial ideélis trivial for a polynomialf € Flzy, zo, - , x,]
that is given explicitly as ari-linear combination of monomials. We only need to
check if each monomial occurring ifiis divisible by some generator monomtal.
However, as we show in this chapter, the problem become®siieg whenf is given
by an arithmetic circuit. In that case, it turns out that thelgbem is tractable wheh

is a constant and its complexity is similar to that of polynaindentity testing. Given

a monomial ideal = (mq, mo,--- ,m,) for monomialsm; € F[z,---,z,] and an
arithmetic circuitC' overF defining a polynomiaf € F[xq,zo, - - - , z,], theMonomial
Ideal Membershiproblem is to decide if € I. Note that, whenever there is an ideal
given by a generating set of monomials or polynomials (inegah), we will always
assume that the exponent of any variable that appears inesiajen is given in unary.

We study different versions of the problem by placing resitsns on the arithmetic
circuit C' and the number of monomials generating the idealWe also consider a
more general version of the problem where we are allowed lgaljk-box access to the
polynomial f. The main results of this chapter are as follows.

We show a randomized test for Monomial Ideal Membership whés given by
an arithmetic circuit and = (m;, mao,--- ,my) for constants. This is analogous to
the Schwartz-Zippel randomized polynomial identity t&3tH80, Zip79]. Wherk is
unrestricted, we show that the problem is coNP-hard, butre@ble to show an upper
bound in the counting hierarchy.

The identity testing problem foEIIX: circuits has recently attracted a lot of re-
search [DS06, KS07, KS08]. The main open problem is whettezetis a deterministic
polynomial-time identity test foEIIX circuits. For the special case bfiI> circuits
with bounded fan-in output gate Kayal and Saxena [KSO7]rzgave an ingenious
deterministic polynomial-time test. Analogous to theisuk, we consider monomial
ideal membership, whergis computed by &IIX circuit with bounded fan-in output
gate, andl = (mq,ms,---,my) for constantt. Using the algorithm of [KS07] we
give adeterministicpolynomial-time algorithm for this Monomial Ideal Membkig
problem. More interestingly, we develop the algorithm asccorrectness proof based
on Grobner basis theory. We believe this approach is somesuingler and direct as
compared to [KSO7]. It avoids properties such as Chinesairataring in local rings
and Hensel lifting that is used in [KS07]. As a byproductsthives us a different
understanding of the identity testing algorithm of [KS07].
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3.2 Preliminaries

We develop the rudiments of Grobner basis theory. Detaitsbheafound in the texts
[CLO92, vzGGO03] and Madhu Sudan’s notes [Sud98].

Let z denotes indeterminatdsey, o, - - - ,z,,}. Let F[z] denotes the polynomial
ring Fzy, 2o, -+ ,x,]. For a commutative ring?, a subring/ C R is anideal of R
if IR C R. The Hilbert basis theorem [CLO92, Theorem 4, pp.74] stias any
ideal I of Flzy, zo, - - - , z,,] is finitely generatedl.e. we can expresb= {>_._, p;g; |
pi € Flzy, 29, -+, x,]}, Where the finite collection of polynomia{g, g2, - - - ,g-} isa
generating set (or basis) fér

The notion of monomial ordering is key to defining GrobnerdsasWe restrict
ourselves to théexicographic monomial orderingvhich we define below. Fofi =
(aq,aa,- -+, ) € N, we denote the monomial™ 252 - - - 22~ by z*.

Definition 3.2.1 Leta = (ay, a0, , ) @and 3 = (By, Ba,- -+, 3,) € N*. We say
a > 3 if, in the vector difference — 3 € N", the left-most nonzero entry is positive.
We sayz® > z” (equivalentlyz’® < z%) if a > 3.

The lexicographic monomial ordering naturally fixes a legdnonomiall M ( f) for
any polynomialf. Let LC( f) denotes the coefficient dfM ( f). Then thdeading term
of fis LT(f) = LC(f)LM(f). Using the monomial ordering, we state the general
form of the division algorithm oveF|[xq, o, - - - , 7,

Theorem 3.2.2[CLO92, Theorem 3, pp.61let f € F[z| and (fi, f2, -, fs) be an
ordereds-tuple of polynomials iff[z]. Thenf can be written asf = a; fi + axfo +
-+ ayfs + r, wherea;, r € F[z], and eitherr = 0 or r is anF-linear combination of
monomials, none of which is divisible by anylaf ( f1), LT (fs),- -, LT(f5).

The proof of the theorem is constructive. We give an inteitutline of the proof.
Let f denotes the ordering of the polynomigiss: f = (fi, f2,---, fs). The proof
describes a division algorithm Dividg; f) which first sortsf by the monomial order-
ing. The algorithm proceeds iteratively. It tries to elimia the leading monomial in the
current remainder by attempting to divide it with tliés in the given order. Th¢; that
succeeds is the first one whose leading monomial dividesstiding monomial of the
current remainder. Finally, the remaindethat survives has the above property. The
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algorithm is guaranteed termination as the monomial ongeis a well ordering. The
following time bound for Divid¢f; f) is easy to obtain.

Fact 3.2.3 [Sud98, Section 6, pp.12-Fhe running time of Dividg; f) is bounded by
O(s I, (d; + 1)°W), whered; is the maximum degree of among the polynomials

f7f17f27"' 7fs-

If the remainder output by Dividé f; f) is zero then clearly € (fi,--- , f,). How-
ever, in general, Dividg'; f) need not produce zero remainder evefi i (fi, -, f,)
as the order of division is important. Thus, it cannot bedlyeused as an ideal mem-
bership test. In order to ensure this property, we deingner basegwith respect to
the lexicographic monomial ordering).

Definition 3.2.4 Fix < as the monomial ordering, and l6tC F|z] be any ideal. Then
the polynomialsy;, ¢, - - - , g, form aGrobner basigor J if J = (g1,92,-- -, gs) and
(LT(g1),---,LT(g;)) = (LT(J)),where(LT(J)) is the ideal generated by the leading
terms of the polynomials is.

The following lemma states that the general division altponi of Theorem 3.2.2
carried out w.r.t. a Grébner basis results in a unique redealinregardless of the order
in which division is applied.

Lemma 3.2.5 [Proposition 1, pp.79][CLO92] Let: = {fi, fo, -, fs} be a Grobner
basis for an ideal C F[z] and f € F[z]. Then there is aniquepolynomialr € F|z]
such thatf can be written asf = a, f1 + asfo+- - -+ asfs +r, fora; € F[z], and either
r = 0 orr is anF-linear combination of monomials, none of which is divigilly any
of LT(fy), LT(fs),---,LT(fs). In particular, for every orderingof G, r is the unique
remainder when Dividg/, g) is invoked.

By Lemma 3.2.5, for an ideal and a polynomialf, we can indeed test if € J
given a Grobner basig = {f,, f,--- , f,} for J. We need to compute Divid¢; f)
and check if the remainder is zero.

The following theorem gives us an easy to test sufficient tmmto check if a given
generating set for an ideal is already a Grébner basis.

Theorem 3.2.6 [CLO92, Theorem 3, Proposition 4, pp.1QH8t/ be a polynomial ideal
given by a basig’ = {g1,¢92,--- ,gs} such that all pairsi # j LM(g;) and LM (g;)
are relatively prime. Thery is a Grébner basis for.
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Recall from the introduction thatraonomial ideals an ideal generated by a finite set
of monomials inF[z]. Indeed, by Dickson’s Lemma, an ideal generated by an arpitr
subset of monomials is also generated by a finite subset obmias and hence is a
monomial ideal. We recall the formal statement of Dicksd®ama.

Lemma 3.2.7 (Dickson’s Lemma)[CLO92, Theorem 5, pp.69] Any monomedid =
(z¢ | eZ™) in F[z] can be written down in the forth= (z%, 22, ... %) for somes.
In particular, I has a finite monomial basis.

An interesting property of monomial ideals is the following

Lemma 3.2.8 [CLO92, Lemma 2, Lemma 3, pp.67-6B¢t I = (my, mo,--- ,my) be
a monomial ideal and’ € F[z|. Thenf € I if and only if each monomial of is in I.

Furthermore, a monomiak is in the ideal! if and only if there exist € [s], such that
m; dividesm.

An immediate consequence of Lemma 3.2.8 is that we can tdst@mministic poly-
nomial time if an explicitly given polynomiaf € F[z] is in a monomial ideal..

3.3 Monomial Ideal Membership

In this section we consider monomial ideal membership whés given by an arith-

metic circuit. We show that the problem can be solved in ramded polynomial time

if number of generators for the monomial ideal is a constant. Wheh is not a con-

stant we show that it is coNP-hard and is contained in c6AMVe leave open a tight
classification of the complexity of this problem.

Lemma 3.3.1Let, I = (my,mq,---,my) be a monomial ideal ifF[z;, xq,- - , ;).
Fori € [k], letm; = z{"x5? - - x%n. Letv be ak-tuple given byo = (ji1, 2, -+, Ji)s
wherej; € [n]. Define the ideall, = (2", -+ ,z;”*). Thenf € I if and only if,

Vo € [n]*, f € I,

Proof. Let f € I. So f can be written ag = pymy + usms + - - - + ppmy, Wherep; €
[F[z] for all i. Then clearlyvv € [n]*, f € I,. To see the other direction, suppgse I.
Write f = ¢ My + oMy + - - - + ¢, M, wherel;'s are the monomials of andc; € F
are the corresponding coefficients. A I, there is g € [t], such thatV/; ¢ I. Thus,

39



Chapter 3. Ideal Membership and Polynomial Identity Tegstin

for all i € [k], m; does not dividel/;. So each of then,’s contains some;,, such that
the exponent of,, is greater than the exponentof in M;. Let{(;,0s,--- ,(;} bek
such indexes. Now consider the idéal wherew = (¢4, (s, - -, ¢;). By Lemma 3.2.8,
M; & I; and hencef ¢ I;. ]

Using Lemma 3.3.1, we generalize the Schwartz-Zippel Lermfondolynomial
Identity Testing to a form tailored for Monomial Ideal Mentbkip.

Lemma 3.3.2Let f € Flxy, 2o, - ,x,| be a polynomial of total degre¢ and I =
(', 257, -+, 2}¥) be a monomial ideal (as described in Lemma 3.3.1). Fix a finite
subsetS C IF, and letry, s, - - - , r,,_;, be chosen independently and uniformly at random
from S. Then,

d

Prob.,eslf(z1, o, -+ a1,y ) €L f € 1] < —-.

N
Proof. First we writef = > a3 - al* fo(@pi1, -+, 20), Whereo = (ji, -+, ji)-
Any term in the above expression with > e; is already inf. Thus, it suffices to
consider the sunf of the remaining terms. More precisely, Ldt= [e; — 1] x [es —
1] x -+ x [ex — 1]. We can writef = Y, a1 - 2 fo(wpsn, - - ,2,) Wheres =
(J1, 2, , jr) € A. As f ¢ I, not all f; are identically zero. Choose and fix one such
u. By the Schwartz-Zippel lemma [Sch80, Zip79],

Prob.es(fa(ri,ro, -+ s rnk) =0 | fa(Trir, Ty, 20) £ 0] < %
Notice that for anyo = (jy, ja, - - - , ji) € ‘A, the monomiak?* - - - z7* is notinI. Thus,
flzy, 29, Tp, 71,72, Tpg) €1

if and only if,

\V/T}, f@(rlv ro, - 7rn—]€) =0.

But fi(r1,72, -+ ,mn—k) = 0 with probability at mostl//|S|. This completes the proof.
|

Now using Lemma 3.3.2, we prove the following theorem.
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Theorem 3.3.3Let f € [F[z] be given by an arithmetic circui® of sizes and the ideal
I = (my,ms,--- ,my) generated by monomials;’'s wherek is a constant. For such
instances Monomial Ideal Membership can be solved in ramzenpolynomial time
(in n°®) time).

Proof. First, we construct all the ideal§], | v € [n]*} as described in Lemma 3.3.1.
Then for each sucli;, we check if f € [;. The correctness of the algorithm fol-
lows from Lemma 3.3.1. Lef; = (7', 25°,---,2}*). To checkf € I, we as-
sign random values to,., 4, - - - , z,, from S and then evaluate the circuit in the ring

R = Flxy,xq,- -+ ,x1]/I;. TO evaluate the circuit iR, we need to compute each gate
operation moduldy, starting from the input gates. Notice that,(@§', 25> - - - , %) is

a Grobner basis fof;, by Lemma 3.2.5 the actual order in which we evaluate thesgate
is not important. Lete = Zfﬂ e;. Then it is easy to see that the running time of the
algorithm is polyn, s, e*) (notice that;,’s are in unary). Furthermore, by Lemma 3.3.2,
the success probability of the algorithm is seen to>be— (d/|S|) whered is the total
degree off. Thus it is enough to consider sampling from a Set.t, |S| = 2d using

O(nlog d) random bits which is polynomial in the input size. u

When the monomial idedlis not generated by a constant number of monomials the
monomial ideal membership problem is coNP hard over any.field

Theorem 3.3.4 Given a polynomialf as an arithmetic circuit, and a monomial ideal
I = (my,mq,---,my) (kis not a constant), it isoNRhard to test whethef € 1.

Proof. Indeed, we prove the coNP-hardness everf fgiven by all¥ arithmetic circuit.
First we consider the case when the figlts Q. We give a reduction from8-CNF. Let
F = CiANCyA---ANCyis a3-CNFformula over{xy, 2o, - - - , x, }, with C; are the clauses.
Introduce new variable§y, yo, - - - ,y, } for {z1, zo, - - - , Z,,}. Next, we encode each of
the clause as a linear form (sum of variables). For exampl€; i= x; V x5 V T3
then we encode it ag; + =5 + y3. Thus we get a polynomial' corresponding td" :
C(z,y) = Hf:1 L;(z,y) , whereL;’s are the linear form corresponding 4. Clearly,
C(z,y) represents &X circuit. Define a monomial ideal, = (z;y; | 1 < i < n). It
follows that, if /' is satisfiable then not all the monomials@fare inI. In that case
C ¢ I by Lemma 3.2.8. Conversely assume thag /. That means(' has at least one
monomialm such that» does not contain both; andy; for any:. Thus, the variables
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of m correspond to a satisfying assignment fo¢set the variables those are notinto
zero).

Now, let the characteristic of the field be finite. The onlygglahe proof differs from
the above is, we need to encode each clause as a sum of allsememials represent-
ing the satisfying assignment of that clause. For examplegssignmen{1,0,1} of
{1, z9, x3} corresponds to a monomiajysxs. Thus a clausé€’; = x; Vv z, V 3 will be
encoded as a sum of all possible monomials exggptz;. Note that the polynomial’
corresponding td’ is represented by HX:II circuit. The rest of the argument follows
exactly as above. ]

Next, we show an upper bound for Monomial Ideal Membershipmtine number
of monomial generators is not restricted to a constant.

Theorem 3.3.5For F = Q, Monomial Ideal Membership is toAM'™" where the input
monomial ideall = (my,ms,--- ,my) is given by a list of monomials anfl € F|z]

is given by an arithmetic circui. For F = F,, Monomial Ideal Membership is in
coNPVI0d,P

Proof. For the first partF = Q and letC' be the input arithmetic circuit computinge
F[z] and the monomial idedl is (mq, ms, - - -, my). We’'ll show thatNonmembership
is in AMTT. 1t suffices for the AMT algorithm to exhibit a nonzero monomial of
f such thatm ¢ (my,ms,---,my). l.e.m; does not dividen fori = 1,2,--- k.
The base AM machine (call it/) will guess such a monomiah = x7* 25 - - -z by
nondeterministically picking the tuple;,--- ,e,) € N" and check thatn; does not
divide m for all . It remains to verify thain is a nonzero monomial of. W.l.o.g.
we can assume thgt e Z[z]. We will describe a BPEP algorithm that takes as input
(C,m) and makes ong-P query to decide ifn is a nonzero monomial iff.

Write f as afinite sunf = 3. co2®. Since the input td’ are the indeterminates
and constants, the numbetsare bounded in absolute value ®¥§, where the size of
K € Z7" in binary is bounded by some polynomial in input size. Now,okseerve that
c: # 0if and only if m occurs inf, wheree = (ey, ez, - ,e,). The BPP machine
guesses a random primeof polynomial size, where the size is chosen suitably, so
thatc: # 0 if and only if ¢; # 0 mod p with high probability. Now we define the
#P query that the BPP machine will make by defining a suitablendEhineN. The
input to IV is the triple(m, C, p) and the number of accepting paths has the property
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accy(m,C,p) = c; mod p. Such an NP machind” would clearly suffice. We now
define the NP maching'.

W.l.o.g. we can assume that each gaté€'dfias fan-in two and is either a multiply
gate or a plus gate. Suppose theretgous gates irC. The NP machineV nondeter-
ministically branches int@’ computation paths, where on each path it picks exactly one
of the two inputs to the plus gate. As a result, on each oRthmomputation pathgv
has picked a multiplicative subcircuit 6f. Letr € {0, 1}' denote such a computation
path of NV and letC. denote the corresponding multiplicative subcircuit’af Notice
that eachC,, defines a monomial with a coefficieatm.., and fromC. in determinis-
tic polynomial time we can compute,, andc, mod p. Next, machineV proceeds as
follows: if m, = m then N extendsr into ¢, mod p accepting computation paths, and
otherwiseN rejects alongr. Clearly,accy(m, C,p) = ¢z mod p.

For the second part whén= F, the proof is similar. The crucial difference is that
we do not need to evaluate the circuit modulo a randomly ahpsene. Furthermore,
we only need the number of accepting paths\omodulop. Hence a MogP oracle
suffices with an NP base machine. ]

3.4 Monomial Ideal Membership for X113 circuits

Consider instancesf, I) of Monomial Ideal Membership whergis given by a>XII%

circuit with top gate of bounded fan-in add= (my, ms,- -, m;) @ monomial ideal
for constantc. By Lemma 3.3.1 this problem reduces to testing i in a monomial
ideal of the form/ = (27", x5, - - - , 2}*). As the quotient ring¥ [z, zo,- - ,z|/] IS @
local ring andf € I if and only if f = 0 over the local rindf[x1, 25, - - - , zx] /I we can
apply the Kayal-Saxena deterministic identity test [KS@f] suchXIIX circuit over
local rings to check this in overall time polynomial in the circuit size.

However, in this section we develop the algorithm and itsexiness proof based
on Grobner basis theory. The algorithm is essentially frs#8(J7]. But the Grobner
basis approach is somewhat simpler and direct. It avoidsking properties such as
Chinese remaindering in local rings and Hensel lifting. @dded bonus is that we get
a different correctness proof for the Kayal-Saxena idgteist.

IMore precisely, over local rings that allow polynomial-grarithmetic in them.
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Definition 3.4.1 A XIIX circuit C' with n inputs over a field® computes a polynomial
of the form:C (w1, xa, -+, @) = 31y [152, Lij (@1, 22, - -+, x,,), Wherel is the fan-in
of the topX gate, andd; are the fan-ins of thé differentIl gates andZ;;’s are linear
forms ovefF[xy, zo, - - -, ).

First, we transform the circui€’ into another circuitC’ as follows: LetL;; =
> iy ey + B for oy, B € F. We replace each sudhy; by Lj; = > )" ager, + By,
wherey is a new indeterminate. Letbe the maximum of the fan-ins of thé gates.
For all gate of fan-ind; introduced — d; new input fan-in wires each carrying

Proposition 3.4.2 For [ = (27", 25, -- , ;%) and aXII¥ circuit C defined as above,
C e lifandonlyifC’ € (ai,25*, -,z y — 1).

Notice that in the process of making this transformationrégseilting ideal is not a
monomial ideal any more.

Thus, we can assume that in the ciradiitself everyL;; is of the form>"} | oy,
and the degree of the polynomial computed at dadate isd. We can naturally asso-
ciate toL;; its coefficient vectofa, as, - - - , o) € F™. A collection of linear forms is
independenif their coefficient vectors forms a linearly independeriting™.

First we fix some notation. LeR denote the polynomial rin@|xy, 2o, - -, x],
wherek will be clear from the context wher® is used. Fory = (1, €542, ,€) €
Nk letz* denotex}’ ;"% - - - 25, The only monomial ordering we use is the lex-
ordering defined in Definition 3.2.1 w.r.t. the ordey < z, < --- < z,. We can
consider anf € Flxq,---,z,] as a polynomial inR[x1, Tkio, - ,x,]. More pre-
cisely, we can writef = 3 _ .- Az2%, whereA; € Flxy, 2o, 23] \ {0}. Let
a; be such that* is the lex-largest term such thdt;, # 0. Then we denote th&-
leading termA, z** of f by LTx(f). Likewise,LMg(f) = z** andLCg(f) = Ag, is
the R-leading monomial andk-leading coefficient off. For anyf,g € Flzy,- -, x,],
itis clear thatL Mg(fg) = LMr(f)LMr(g), LCr(fg) = LCr(f)LCr(g).

Let f € Flay, -+, 2z, andl = (f1, fo,---, fe) be an ideal such that eagh is
in Flxq, 29, - -+, 2x]. Then the following easy lemma states a necessary and euffici
condition for f to be in/.

Lemma 3.4.3Let / C F[z] be an ideal generated by the polynomidls f5, - - , fo
such that for alli € [¢], f; € F[xy, 29, -+, z%]. Letg be any polynomial iff[z]. Write
9= aenn—r AzZ%. Theng € I ifand only if for all@, A5 € 1.
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Consider polynomialg§, g € F[xq,zs,- -, 2z,,] and an ideal such thaty € (I, f).
The following useful lemma gives a sufficient condition pander which the remainder
r obtained when we invoke Divide; f) (of Theorem 3.2.2) is in the idedl

Lemma 3.4.4Let] = (f1, fo, -, f¢) be an ideal inF[zy,--- , x,] where the gener-
ators f; € Flzy,---,x;]. Let R denotes the polynomial ring[x,--- ,zx]. Suppose
f is a polynomial such that M ( f) contains only variables frofizy. 1, g12, -+, s}
(i.e. LM(f) = LMg(f)). Then for any polynomigj in the ideal(I, f) we can write
g = qf + r for polynomialsg andr such that- € I and no monomial of is divisible
by LM(f).

Proof. The lemma is an easy consequence of the properties of théelalgorithm
explained in Theorem 3.2.2. Notice that Divigef) will stop with a remainder poly-
nomialr such thaty = ¢f + r with the property that no monomial efis divisible by
LM(f). However, we only know that € (I, f), because both andqf are in(/, f).
We now show that must be in/. First, as- € (I, f) we can writer = Zfﬂ a; fi+af,
for polynomialsa; anda. Following Lemma 3.4.3, we write; = ) _ a5z for each
iand alsoa = ) a;z*. Notice that we can assunag ¢ I for all nonzeroa;. Oth-
erwise, we can move that term to thé a; f; part. SinceL M (f) does not divide any
monomial ofr, it follows thatL. M (a f) does not occur in a nonzero termvofTherefore,
LT(af) must be cancelled by some terngff:1 a; f;. Clearly, LT (af) is of the form
c-azz* for somea, 3, whereLC(f) = c € Fandaz = LCg(a). Now, in Zle a; f; the
coefficient ofz® is Zle aia fi Which must be equal tec - a3. Sincec ¢ F it follows
thatas is in I contradicting the assumption that none of the nonzerig in /. =

Again, letl = (f, fs,-- -, f¢) suchthatthd; are inF|xy, 25, - - - , x;]. Consider two
polynomialsf andg such thatL M ( f) contains only variables fromy, 1, xy o, - , 2,
and eitherLM (f) > LM (g) or LMg(f) = LMg(g) andLCg(g) € I. Theng is in the
ideal (I, f)ifand only ifg € I.

Lemma3.4.5Let] = (fy, fo, -+, fo) be anideal inF[zy, - - -, x,] such that eacly;
isinFlxy, 29, ,x,] = R. Suppose is a polynomial such that M (f) is over the
variables only from{zy.1, xg 12, -+ ,x,} (i.e. LM (f) = LMg(f)). Then for any poly-
nomialg such that eithed. M (f) > LM/(g), or LMg(f) = LMg(g) and LCg(g) € I,
gisintheideal(/, f) if and only ifg is in the ideall.
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Proof. Supposeg € (I, f) andg ¢ I. We can writeg = a + bf, for polynomials
a andb, wherea € I. Also, we can assume that¢Z I, for otherwiseg € I and we
are done. Leb = > . .-k s, Whereby € Flzy, x5, , ;] and we can assume
bs ¢ I for all @ (otherwise we can move that term as partpfNotice thatLTxz(bf) =
LTg(b) - LTR(f) = cbgLMg(b)LMRg(f) = cbzz” for somey and for some;, where
c = LCg(f) € F. Sinceb; ¢ I itfollows thatLCr(bf) & I. Writea = > _n—r @aT®.
By Lemma 3.4.3n € I implies eachus; € I. In particular,a; € I and isnot equal
to —LCg(b- f) = —cbs asbs ¢ I. Thus, the monomialMz(bf) survives ina +
bf. It follows that LMg(g) = LMg(a + bf) > LMg(bf) > LMg(f) which forces
LMg(f) = LMg(g) and LCr(g) € I by assumption. 1b ¢ R thenLMg(b- f) >
LMEg(f) which impliesLMg(g) > LMg(f) contradicting assumption. if € R then
LTr(g) = LTgr(a+ bf) = (ag + b)LMg(f) for someag, which forcesh € I because
both LTr(g) andas € 1. u

Let I C Flxy,---,z,) be an ideal and, g» are two polynomials such thgt is
in the ideals(/, g;) and (I, g2). Using some Grobner basis theory we give a sufficient
condition on/, g; andg, under which we can infer thgtis in the ideak 1, g, g»).

Lemma3.4.6Let] = (fi, fo,- -+, fe) be an ideal ofF|xy, 2o, - - - ,z,], wheref; are
polynomials inF[zy, x5, - - - , x;]. Supposey; and g, are polynomials such thaty, =
Hfil(xkﬂ — «;), Where eachy; is a linear form overzy, z,, - - - , xx, and the leading

term LT (g;) of g; has only variables froMzy. o, xx13,- -+ ,z,}. Thenf € (I, g1go) if
andonlyiff € (I,¢,) and f € (I, g).

Proof. The forward implication is obvious. We prove the reversection. Suppose
fe{l,giyandf € (I,g0). As f € (I, go), we can writef = a + bgs, Wherea € I and
b is an arbitrary polynomial. Notice that it suffices to prawe is in the ideal(7, g;¢2).
Now, sincef € (I, g;) anda € [ it follows thatbg, = f —a € (I, ¢1). By applying
Lemma 3.4.4 to ideal and polynomialy; observe that we can write, = ag, + [,
where 5 is a polynomial in/ such that none of the monomials gfis divisible by
LT(gy). We have the following equation [[%2, (z1+1 — ;) = agi + 5.

Substitutingr,.+1 = a; in the above equation, we g@tg1)|z,.,—a; = —Blap1=as-
Notice thatLT' (g1 (s, ,—a,) = LT'(g1). This is becausd,T(g,) contains variables only
from xy.o,- - -, z,. Thus the above substitution implies,

LT(5|9%+1:C¥1) - _LT((agl)|$k+1:Oé1) - _LT(a|$k+1:C¥1) ' LT(gl|xk+1:Oé1)
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and,
LT<g1|$k+1=a1> = - LT(a|$k+1:a1> ' LT(gl)'

Thus LM (g;) divides LM (f3|.,,,-a,). On the other hand, sindeM (g,) does not
divide any monomial of3, LM (g;) cannot divide any monomial afM (5],,,,—a,) S
the substitution only introduces variables frégm, - - - | x;. }. This gives a contradiction
unlessf|,, . ,—a, = 0, whichin turnimpliesx|,,,,—., = 0.

Thus we have proved thét, 1 —«;) is a factor of bothy andf. This leads us to the
following similar identity:b - H?;(xkﬂ — ;) = 101+ b, whereoy = o/ (241 — o)
and 3, = (B/(zrs1 — aq). Clearly, by repeating the above argument we finally get,
b= d'g; + 3, for some polynomials’ and 5’ wherea = o'g; and = 3'g,. Putting
it together we getg, = o'g192 + B'g2 = &'g192 + B. As 3 € I, it follows thatbg, is in
the ideal(], g1g2). This completes the proof. [ |

Let/ = (P, P, -, P,) beanidealiff[zy,--- ,z,|suchthat’, € Flxy, zy, - , 2]
and LT (P;) = x% for eachi. Fori # j the leading term&T(P;) = 2% andLT(P;) =
xf" are clearly relatively prime. Therefore by Theorem 3.2.&liows that{ P, P, - - - , P}
is in fact a Grébner basis fdr. We summarize this observation.

Lemma 3.4.7 Let] = (P, P,,--- , P,) be anideal inF|xy, - - - , z,| such that eactP;
is iNFlxy, 29, - -+, ;) and LT(P;) = z*. Then{P;},cp is a Grobner basis fof.

Let f € F[xq,x9,- -+, zx] be a given polynomial and be the maximum ofleg( f)
anddeg(P;),1 < ¢ < k. We can invoke Dividéf; P, P> --- , P,) (Theorem 3.2.2) to
test whetherf € I. By Fact 3.2.3 the running time for this testigd").

Now we state the main theorem of this section.

Theorem 3.4.8LetC € F[xq,z2 -+ , x,| be given by &I13(¢, d) circuit for a constant
¢andl = (my,ms,---,my) be a monomial ideal for constaht For such instances,
Monomial Ideal Membership can be checked in determinigiigrnpmial time. Specifi-
cally, the running time is bounded fpoly(n, dm**{6k),

By Lemma 3.3.1 it clearly suffices to give a polynomial-tineeministic algorithm
for testing if aXIIX (¢, d) circuit C' is in a monomial ideal of the fornw (", - - - , z;*).
As explained in the beginning of this section, we transfdmndircuitC' to C’ in which
all linear forms are made homogeneous using a new indetateyjpandC' € I if and

47



Chapter 3. Ideal Membership and Polynomial Identity Tegstin

onlyif C" € (z1*,--- ,z*,y — 1). Infact, in the following theorem we prove a stronger
result which along with Lemma 3.3.1 yields Theorem 3.4.8.

Theorem 3.4.9 LetC be a giver:IIX (4, d) circuitforaconstant and! = (P, P, - - - , Py)
be anideal inf[zy, - - -, x,] suchthatP, € Flzy, zo, - - - ,x;] and LT (P,) = = for each

i. Further, supposé; < dfor all i € [k]. Then testing it € I can be done determinis-
tically in time poly(dme=itr}),

Proof. We first describe the algorithm and then prove its correasti@ad running time
bound.

As explained in the beginning of the section, we can assuieathlinear forms
appearing inC' are homogeneous ard itself is a homogeneous degrégolynomial.
By Lemma 3.4.7, the generating set fois a Grobner basis. L&t (zq,zs, -+, z,) =
S, T Foralli € [¢], T, = szl L;;, whereL;;'s are the linear forms over the ring
Flay, zo, -+, 2]

If ¢ =1, thenC = T;. Letg(zy, 9, - ,zx) be the product of those linear forms
of 77 using only variables fronfzy, x5, - - - , 1 }. Clearly,g(z1, xo, - - - , 25) has at most
d* monomials. We explicitly compute by multiplying out all such linear forms. By
Lemma 3.4.3, clearlg’ € I ifand only if g € I, which can be checked in time poif)
following the Fact 3.2.3.

So assumé > 1. If all the linear forms appearing iy, 15, - - - , T, are only over
{x1, 29, -+ ,xx}, then again the ideal membership testing is easy. Becaudeneé
poly(d*) we can writeC itself as arfF-linear combination of monomialsiny, s, - - - , z;,
and apply Fact 3.2.3 to check/ffe I in time poly(d*).

Now we consider the general case. By inspection we can vadk’E = 3,77 where
the 3; are products of linear forms over only, z», - - - , x;, whereas each linear form
in T/ involves at least one other variaBfldf 3; € I (which we can test in polynomial
time using Fact 3.2.3) we drop the teffhfrom the sume:1 T;. This enables us to
write C'asC = GT] + .15 + - - - + B, 1), for somem < ¢, where we have assumed
for simplicity of notation thats; ¢ I for first m terms.

As before, letR = Fxy, xq, -, xx]. W.l.0.g, assume thatMg(T]) > LMg(T})
foralli € [2,3,---,m]. We can determiné&Tx(7/) for eachT in polynomial time
since they are given as product of linear forms. Thiud{z(7?) > LMgz(C). Now,

2If there are no linear forms contributing to the proddg{respectively]?) we will setit tol.
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letr € R be the coefficient ol Mz(77) in C. We can compute in polynomial time
by computing the coefficient; of LMz (1Y) in eachT] and computing: = >~ | 5;7;.
Then we check that € I (which is a necessary condition forto be in/ by Lemma 3.4.3).
By Fact 3.2.3 we can cheake I in time poly(d®). Itis clear that, eithef. My (T7) >
LMg(C) or LMg(T]) = LMg(C) andr € I. Thus, by Lemma 3.4.5; € I if and
onlyif C' e (I,17).

Next, we group the linear forms ih]: let, 7 = T1,T's - - - T3, such that for all
i€ t],

Ty = (Li +ma) (L +ma2) -+ (Li + mys, ),

where{L;}!_, aredistinct linear formsn F[zy,, - - - , z,] andm;;’s are linear forms in
Flxy,- - -, zx]. Notice that the polynomialg;; are relatively prime to each other.

We next compute linear transformationgo, oo, - - - , 0y} from F™ to F™ with the
following property: fori € [t], o; fixes{z;}%_,, mapsL; to z;,, and maps the variables
Trpy2, This, - , T, t0 SOMe suitable linear forms in such a way thatis an invertible
linear transformation. Ad,;'s are over{zyy, - ,x,}, it iS easy to see that sueh
exist and are easy to compute.

Let C; = Zje[é}\{l} T;. Fori € [t], let Cy; = 0;(C4) and letl;; be the ideal
(I,0;(Ty;)). The algorithm will now recursively check for each of thél>(¢ — 1, d)
circuits Cy;, thatCy; is in the ideall,; and declare” € [ if and only if Cy; € Iy; for
each.

Notice that the ideal;; has generating set = {P, P», -+, Py, Px11}, Where
Piy1 € Flog,xo, -+ 231 aNdLM (Pyyq) = xZ’f:f. By Lemma 3.4.7(7 is a Grébner
basis for/y;.

The correctness of the algorithm follows directly from tbédwing claim.

Claim3.4.10 Foreachs: 1 < s <tC € (I,T11T12---T1,) ifand only ifCy; € I, for
1< <s.
In particular,C € (I,T7]) ifand only ifC}; € I ; for 1 <i <t.

Proof of Claim: The forward implication is easy: ' € (I, 11,72 - - - T1,) then clearly
C € (I,Ty;) foreachl < i < s. As eacho; is an invertible linear map it follows in
turn thato,(C) € (I,0,(T3;)) = I;; for 1 < i < s. SinceCy; = 0;(C) — 04(T7) and
0:(Th) € (0;(Ty,)) itfollows thatCy; € I; for 1 <i < s.

We prove the other direction of the claim by induction©rnThe base case= 1 is
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trivial. Inductively assume it is true for— 1. l.e. if Cy; € I;; for1 < i < s — 1 then
Ce (I, Ty Tis-1))-

We now prove the induction step fer Suppose’; € I;; for1 < i < s. Let
T = Ty Ty --Tys-1). By induction hypothesis we hawe < (I, T). Furthermore,
Cis € I implies by definition that” € (I,T;,). Now we apply the linear map, to
obtainc,(C) € (I,05(T)) andos(C) € (I,05(T's)). The maps, ensures that 7' (7}5)
is of the formxging“. Furthermore, by the definition of it follows that LT (¢4(7)) has
only variables in{zy o, - - ,x,}. Lettingg; = 04(T) andg, = o4(7}s) in Lemma 3.4.6,
it follows immediately that,(C) € (I,04(T - T3,)) which implies the induction step
sinceoy is invertible.

Claim 3.4.11 The above algorithm runs in tingoly(n, d™x{+}),

Proof of Claim: To analyze the running time, we need to observe the followaogr-

rence relation : lef’(¢,n) is the time required to test € I. It is easy to see from
the description of the algorithm thaf;(¢,n) < tT'(¢ — 1,n) + poly(n,d*). Hence

T(¢,n) = poly(n, d™>{4*}) ast = O(d). m

Theorem 3.4.8 is an immediate consequence of Theorem &dt9.= (0), Theo-
rem 3.4.8 is actually the Kayal-Saxena deterministic test anew proof.

3.5 Monomial Ideal Membership for black-box polyno-
mials

In Theorem 3.3.3 we have shown that monomial ideal membkeishin randomized
polynomial time whery € FF[z] is given as an arithmetic circuit and the monomial ideal
is given by a constant number of generator monomials. We maw shat even iff is
accessed only viallack-box if the degree off is polynomial in the input sizere can
still solve monomial ideal membership in randomized polwyied time (assuming is
generated by constant number of monomials). In [BOT88],-Beiand Tiwari gave an
interpolation algorithm for sparse multivariate polynaisiover integers. Our algorithm
is an easy application of their result. We first recall theguit in a form suitable for us.

Theorem 3.5.1[BOT88] Let f € Z[xy, s, - ,x,] be at-sparse multivariate poly-
nomial given as a black-box (hysparse we mean the number of monomialg iis
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bounded byt), d be the degree of, andb be a bound on the size of its coefficients.
There is a deterministic algorithm that queries the bladk-bor values off on different
inputs and reconstructs the entire polynomjfah timepoly(¢, n, d, b).

Ben-Or and Tiwari’s result directly gives a deterministadymomial time algorithm
for Monomial Ideal Membership whehis at-sparse black-box polynomial ovér and
I is any monomial ideal. The algorithm simply reconstrutend checks if each of its
monomials is in/.

Next, supposeg’ is a black-box polynomial of small degree ahds a monomial
ideal generated by constant number of monomials.

Theorem 3.5.2Let f € Z[z] of degreel given as a black-box such thiats a bound on
the size of its coefficients. Suppdse (m;, mo,-- -, my) for constantc. Then we can
test if f € I in randomized tim@oly(n*, d*, b).

Proof. By Lemma 3.3.1, it suffices to give a randomized polynomiaktalgorithm
for testing if f € I, wherev € [n]F. W.l.o.g. assumd; = (2§, 252, - -, 7). Fix

S =1{1,2,---,s} and assign random values= {ry,rg, -+ , 7y} t0 {xpy1, -+ , 2}
from S. Note thatf(xy, s, -, 25, 7) is ad®-sparse polynomial. By Theorem 3.5.1
we can reconstruct(x,, zs, - - - , g, 7) in poly(n, d*, b) time. Letg(zy, x9,- - ,21) =
f(zq, 29, -, zg, 7). Our randomized algorithm declar¢gsc I; if each monomial ofy
isin I. By Lemma 3.3.2, it follows that the success probabilityto# algorithm is at
leastl — ‘%'. So itis enough to considéfr = {1,2, - - - , 2d} and the number of random
bits used i) (nlogd). u

3.6 Bounded variable Ideal Membership

In this section we discuss our results for the ideal memligergtoblem when/ =
(f1, -+, fm) such thatf; € F[zq,---, x| for a constant and the polynomialf is
given by an arithmetic circuit. We call this varidmunded variable Ideal Membership

A pioneering result in polynomial Ideal Membership testimglermann’s algorithm
that is based on the following theorem.
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Theorem 3.6.1[Her26, Sud98, Hermann’s Theoref@pnsider the multivariate poly-
nomialsf, fi1, fa, - -+, fn € Flz1, 29, -+ , ;] such that,

max{deg(fl)v deg(fQ)v Y 7deg(fm)7 deg(f)} <d.

If fisintheideall = (fi, f2,-- -, fm) thenf can be expressed gs= """ | g;f; where
deg(g;) < (2d)*" for eachi.

Suppose' is given explicitly as arff-linear combination of terms. Using the bounds
of Hermann’s theorem, Hermann'’s algorithm treats the aoeffts ofg; as unknowns
and does membership testing (i, f2,- - - , fin) Dy solving a system of linear equa-
tions withm(24)**" unknowns. This can be solved using Gaussian eliminatioimia t
mO(l)(Qd)O(kT“).

Similarly, for an explicitly givenf € Flxy,---,2,], n > k, using Lemma 3.4.3
we can apply Hermann’s algorithm to test if membershigfah (f1, fo, -+, fm) IN
time polynomial in the size of andm®®(2d)°*2")_ If k is a constant, this gives a
polynomial running time bound.

A natural question here is the complexity of Ideal Membeysiihen f is given by
an arithmetic circuit whose membership we want to test ialide= (f1, fo, -, fin),
wheref; € Flxy,- -, z;] for constant. Recall thatin Theorem 3.3.3 we showed a sim-
ilar problem formonomialideals with constant number of monomials is in randomized
polynomial time. In this section we will restrict ourselvisspolynomialsf computed
by arithmetic circuits of polynomial-degree in the inputesi We can follow essentially
the same proof idea in Theorem 3.3.3. Notice that [ if and only if f = 0 in the ring
Rlxgi1, Thro, -, xn) WhereR = Flxq, zo, - -+, xx] /1. We recall the following results
(Proposition 2.6.1 and Lemma 2.6.3) from Chapter 2.

Proposition 3.6.2 Let R be a finite commutative ring with unitycontaining a fieldr
such thatl € F. If f € R[z] is a nonzero polynomial of degrekthen f(a) = 0 for at
mostd distinct values of. € F.

Lemma 3.6.3 Let R be a finite commutative ring with unitycontaining a fieldf such
thatl € F. Letg € R[xy, 9, - , 2, be any polynomial of degree at makstlf g £ 0,
then for any finite subset of F we have

d

Pr0b116A7'~'7am€A[g(a’17 Ay - 7am) =0 | g ?‘é 0] S W
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Now we describe our ideal membership test: Edte a finite field. Choose and fix
S C F of size2d and randomly assign values frasito the variables iz, - -, 2, }.
Notice thatf, given by a polynomial degree arithmetic circdit is in I if and only if
f=0intheringR[xy 1, Tpio, - -, T, WhereR = Flxzy, xo, - -, x|/, Since the given
generating set fof uses only variables,, - - - , z,. After the random substitution we
are left with an arithmetic circuit’(z, - - - , z;). Notice that, by Lemma 3.6.3jf ¢ [
thenC’(z,--- ,x,) ¢ I with probability at leastl /2. We now need to test whether
the polynomial computed bg” is in I. As C’ is of polynomial degree andk is a
constant, we can explicitly written down the polynomidhat it computes asB-linear
combination of at most* monomials. We are now left with the problem of testing if
r € (f1,--, fm) Which we can do in polynomial time using Hermann'’s algoritas
k is a constant. It is easy to that, same arguement works Wherman infinite field, in
particularF = Q.

Now, we consider the case when the input polynonfiae Z[x,zy, -, x,] is
given by a black-box and the degree fois at mostd. Let I = (fi, fo, -, fim) be
the given ideal whergf; € Zlxy, x5, -+ ,2]. So,f € Iifand only if f = 0 in
Rlxpi1, Thro, -, xn) WhereR = Zlxy, xo,- -+ , 2] /1. Choose and fi¥ C Z of size
2d and randomly assign values@. 1,z 2, -+ ,x, from S. Let g(zq, 2o, - ,2%) =
f(x1, 29, -+ ,x1,a), wherea € S" " be a substitution fofzy,,---,x,). Again, by

Lemma 2.6.3, iff ¢ I theng(xy,zy,--- , ) Z 0in R with probability at least /2.
Notice thatg is d*-sparse polynomialk(is a constant). Also, ib be the size of the
coefficients off, the size of the coefficients gfare bounded by poly, d). So, using
Theorem 3.5.1, we can interpolate the polynomiak a sum of monomials in polyno-
mial time. Now, as before, using Hermann’s algorithm we @Bt whethely € I in
polynomial time.

Finally, we consider the case whenis given by aXII¥ (¢, d) circuit C' with fan-
in of output gate {) a constant. We can easily argue by following the algoritihm i
the proof of Theorem 3.4.9 that we can test in deterministignromial time whether
f € I. We briefly describe the algorithm. As before,= (fi, fo, -, fm), Where
fi € Floy, @, 7] andk is a constant. Le€ = Y0 | T = Si [0, Ly. If
¢ =1,thenC = T). Let g(x1,xs,- - ,xx) be the products of those linear forms using
only variables fromey, s, - -+, z,. By Lemma 3.4.3(C € ['ifandonlyifg € I. We
write g explicitly as a sum of at most* monomials. Now, using Hermann’s algorithm
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we can test whether € I in deterministic polynomial time alsis a constant

Again, the case that > 1 andT; € F[zy,x9, -, 2], can be handled easily using
Hermann’s algorithm.

Now we consider the general case when= (3, T/, whereg; is the product of the
linear forms overry, z,, - - -,z and each linear form iff] involves at least one other
variable. We follow the algorithm described in the proof @mhma 3.4.9 closely. It is
easy to see that whenever we reduce the problem size by neghayproduct gaté’;,
we grow the corresponding ideal by putting a new polynonmdis generating set.

Following the proof of Lemma 3.4.9 step by step, it is cleat the will end up with
the problem of testing if a polynomiglgiven by alIX circuitis in anidealgy, - - - , gu),
whereg; are all inF[zy, - - - , x;] for a constant andw is a polynomial in the input size.
Invoking Hermann'’s algorithm, we can check this in time galyd®®"), which is
a polynomial time bound asis constant. We summarize this result in the following
theorem.

Theorem 3.6.4Let] = (f, fo, -, ) e anideal inF|xy, 2o, - - - , x,] Where each
fi € Flay, zo, - -+ , 23] for constant. If f be a polynomial given by an arithmetic circuit
of polynomial degree, then in randomized polynomial timeca test iff € I. This
result holds even if is given by a black-box and the degreefois polynomial in the
input size. Further, iff is given by a113(¢, d) circuit with ¢ constant, then we can test
whetherf € I in deterministic polynomial time.

3.7 ldentity Testing for a restricted class ofXIIXII cir-
cuits

In this section, we examine the possibility of extending (KHto certain depth 4 cir-
cuits. We consider certain restrictedI>_1I circuits with the top: gate having bounded
fan-in.

Any XIIXTI circuit is of the formC' = 37, T;, with T; = []7_, Py, for poly-
nomialsP;;. We now define a restricted class of depth 4 circuits which emote by
YIXII(¢,d, ¢). A circuit C' is in this class if

3The set of polynomialgy, fo, - - - , . is not a Grébner basis fdrin general. So we can not invoke
Divide algorithm directly.
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(&) The fan-ir¢ of the outputs gate is a constant.

(b) Foreach variable;, occurring inF;;’s, the term of maximum;, degree is a power
of z;, only.

(c) Any variablez;, occurs in at most different P;; for any: € [¢], wherec is also a
constant.

(d) Furthermore, each;; contains at most different variables.

We show that the bounded variable Ideal Membership probtenXfI¥I1(¢, d, c)
circuits can be solved in polynomial time. As a consequene®itain a deterministic
polynomial-time identity testing algorithm for such cirtsu The key observation is the
next lemma which generalizes Lemma 3.4.6.

Lemma 3.7.1Let] = (fi, fo,- -+, fe) be an ideal ofF|xy, 2o, - - - , z,]|, where f; are
polynomials inF|xy, - - - , 2x]. Suppose; and g, are the polynomials such that:

1. LM(gy) = «f*, wherei € {k+ 1,k +2,--- ,n}.
2. LM (g2) < LM(g1) and LM (go), LM (g;) are relatively prime.
Thenf € (I,g1) and f € (I, go) ifand only if f € (I, g192).

Proof.  The reverse implication is obvious. We prove the forwangeation. As
LM(g2) < LM(gy) and LM (g2), LM (g,) are relatively prime, it follows thag, <
Flay, zo, -+, 2 1]

As f € (I,g5), we can writef = a + bgs, Wherea € [ andb is an arbitrary
polynomial. Furthermore, by Lemma 3.4.4 we can wbige = «ag; + 4, with § € [
such that no monomial of is divisible by LT (g;). Thusg, dividesag; + 3. Letp be
any irreducible factor of,. As the ideal(p) generated by the polynomigalis a prime
ideal of R = Fxy, 9, -+ ,x;_1], the quotient ringD = R/(p) is an integral domain.
As p dividesag,; + S, it follows thatag; = —f3 in D[x;]. We will now argue thati and
a must be both zero i®[z;], which will imply that p divides botha and 3. Note that
LMp(B) = —LMp(«) - LMp(g:) (by comparing their:; degrees in the rind|[x;]).
But LMp(g1) = LM(g,) = = from the statement of the lemma. Considerihgs a
polynomial of R[z;], notice that5 has degree strictly less thansince LM (g;) = xf

does not divide any monomial ¢f. Sincep € R = Flxy, zo, -+, x;_1], it follows that
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[ as a polynomial oD|x;] also has degree strictly less thn Thus,LMp(g;) can not
divide LMp(/3). The only possibility left is thatr = 5 = 0 in D[z;], which implies that
p dividesa andg.

This leads us to the following similar identityy, = «191 + (1, wherea; = o/p
andpg; = (3/p. Clearly, by the same argument applied to each irreducédof of g,
(with repetition) we finally geb = o’¢; + 3/, for polynomialsa’ and 5’ wherea = o/ gy
andjs = ('g,. Putting it togetherhg, = o'g1 - go + /g0 = &'g1 - g2 + 3. As 5 € 1, it
follows thatbg, is in the ideak 1, g, g-). This completes the proof. |

Now we present the polynomial time algorithm for boundedalae ideal member-
ship instancesf, ), where the polynomiaf is given by a>II>11(¢, d, ¢) circuit. The
polynomial-time identity test foEIIXT1(¢, d, ¢) circuits is a corollary.

Theorem 3.7.2LetC be a given-IIXII(¢, d, ¢) circuitand I = (f1, fo, -, fm) DE @n
ideal inTF[xq, - - - , x,] such that eaclf; € F[zy, xs, - - - , xx] wherek is a constant. Then
testing ifC' € I can be done deterministically in tinpaly(n, d).

Proof. We first writeC = T; + 15 + - - - + T, where eacll; = H;l:l P;;. The case
¢ = 1 and the case when eathis only over indeterminates,, - - - , z;, can be directly
handled using Hermann'’s algorithm (Theorem 3.6.1), in tirolg(d2").

We describe the general case. et F(z, 2o, - - -, xx]. We can writeC' = 5,7} +
BoTy + -+ + BT, for somem < ¢, wheref; € Randg; ¢ I, and7; are nontrivial
polynomials inR[zg11,- -+, x,]. We can easily determinBTr(7}) for eachZ] from
the polynomialsP;;, and rearrange th&! so thatLMg(T]) > LMg(Ty) > --- >
LMg(T!,). * Thus, LMgp(T]) > LMgr(C). The coefficient of LMg(T}) in C'is
also easily computable in polynomial time: we find the cogdfity; of LMz(T7) in
T/ fori = 1,2,---,m. Note thatr = ", 5;7:. If r # 0 then notice that ¢ I
impliesC ¢ I. We check ifr € I using Hermann’s algorithm (Theorem 3.6.1) in
time poly(d®"). We need to continue the testife I. That means eithekMy(T7) >
LMg(C) or LMg(T]) = LMg(C) andr € I. By Lemma 3.4.5C" € [ if and only if
>ims BT € (1, TY).

Next, we group the factorB;; occurring in7] according to the leading monomials.
Let 7}, be the product of all factor#;; of 77 such thatL A (P;) is a power ofz,., for
r=k+1,k+2,---, x,. Foranindex if there are no such factor3 ; then set}, = 1.

“Notice the conditior{b) in the definition ofSIIXTI(, d, c) circuit.
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Thus we havd]| = H:f:kH T, where some of the factof§, arel and can be ignored.
Clearly, for allTy, # 1 andT}, # 1 we haveLM (T},) > LM(Ty,) if r > s.

LetC, =Y ", 5;1]. For each such thafl, # 1, let I;, denote the ideall, T, ).
Notice thatT}, is a polynomial over at most different variables. The algorithm recur-
sively checks ifC’; is in the ideall;, for each ideal,, and declare§’ € [ if and only if
C, € I; for eachi. Notice thatC is aXIIXII(¢ — 1, d, c) circuit and the generators of

I,;'s are now ovek + ¢? indeterminates (at most) which is still a constant.

Claim3.7.3 Cy, = >, 5,T] € (I,T7) if and only if C, € I, for eachr such that
Tlr # L.

Proof of Claim: We first write'7} asT = Ty;, T, - - - Thi,, Where allTy;; # 1. Letting
g2 = Ty, Ty, -+ Ty, , andg; = Ty;, in Lemma 3.7.1, we get that, € (I,7]) =
(I,g201) ifand only if Cy € I;, andCy € (I,Ty;, 11, -+ T, ,). A similar repeated
application of Lemma 3.7.1 yieldS, € (I,17) if and only if C;, € (I, Ty;,) for each
j=1,---,t. Thiscompletes the correctness proof of the algorithm.

We now show that the time bound is poly d™*={¢2*}). Let T'(¢, d, n) denote the
time taken to test it € 1. The algorithm description implies the following recurcen
relation for7" from which the running time bound is immediate.

dT(¢,d, n) + poly(n,d®) if £ > 1;

T(€7 d7 n) S k .
poly(n, d*") if £ =1.
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Noncommutative Polynomial Identity
Testing

4.1 Introduction

In this chapter we study polynomial identity problem ovencommutative model. To
begin with, we state the identity testing problem over noncwtative model. LeC”
be a given arithmetic circuit computing a polynomjain the noncommutative ring
F{z1, 2, -+ ,2,} whereF is a field andr;, z; do not commute fo¥ # j (i.e. z;,x; —
z;x; # 0). Is there an efficient algorithm to test whetlfes= 0 in F{x, z9,--- , 2,} ?

As shown by Nisan [Nis91] in noncommutative algebraic cotapan, proving
lower bounds is somewhat easier. Using a rank argument Nigarshown exponen-
tial size lower bounds for noncommutative formulas (andaoommutative algebraic
branching programs) that compute the noncommutative pegntar determinant poly-
nomialsin the ring{xy, - - - , z,,} wherez; are noncommuting variables. Thus, it seems
plausible that identity testing in the noncommutativeisgtbught to be easier too. In-
deed, Raz and Shpilka in [RS05] have shown that for noncormatformulas (and
algebraic branching programs) there is a deterministigrgohial-time algorithm for
polynomial identity testing. However, for noncommutatvesuits the situation is some-
what different. Bogdanov and Wee in [BWO05] show using Amikavitzki’'s theorem
that identity testing fopolynomial degreenoncommutative circuits is in randomized
polynomial time. Basically, the Amitsur-Levitzki theoreatfiows them to randomly as-
sign elements from a matrix algebid, (F) for the noncommuting variables, where
2k exceeds the degree of the circuit.
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Our main contribution is the use of ideas fr@atomata theoryo design new effi-
cient (deterministic) polynomial identity tests fooncommutativ@olynomials. More
precisely, given a noncommutative circditxy, - - - , x,) computing a polynomial of
degreed with ¢t monomials inF{xy,--- ,z,}, where the variables;, are noncommut-
ing, we give a deterministic polynomial identity test thatecks ifC' = 0 and runs in
time polynomial ind, |C|, n, andt. The main idea in our algorithm is to think of the non-
commuting monomials over the as words and to design finite automata that allow us
to distinguish between different words. Then, using theneation between automata,
monoids and matrix rings we are able to deterministicallyod® a relatively small num-
ber of matrix assignments for the noncommuting variabletetmde ifC' = 0. Thus, we
are able to avoid using the Amitsur-Levitzki theorem. Intlaesing our automata theory
method we can easily give an alternative proof of (a weakengion of Amitsur-Levitzki
which is good enough for algorithmic purposes as in [BWO5lekample.

Our method actually works in a black-box setting. In factiegi a noncommuting
black-box polynomialf € F{x,--- ,z,} of degreal with t monomials, which we can
evaluate by assigning matricesitg we can reconstruct the entire polynomjah time
polynomial inn, d andt.

Furthermore, we also apply this idealtlack-boxnoncommuting algebraic branch-
ing programs. We extend the result of Raz and Shpilka [RS@%]iling an efficient
deterministic reconstruction algorithm for black-box nommuting algebraic branch-
ing programs (wherein we are allowed to only query the ABRriput variables set to
matrices of polynomial dimension). Our black-box modeluasss that we can query
for the output ofany gateof the ABP, not just the output gate.

4.2 Noncommutative Polynomial Identity Testing

Recall that ararithmetic circuitC' over a fieldF is defined as followsC' takes as inputs,
a set of indeterminates (either commuting or noncommuitamg)) elements fronk as
scalars. Iff, g are the inputs of an addition gate, then the output wilfbeg. Similarly
for a multiplication gate the output will bgg. For noncommuting variables the circuit
respect the order of multiplication. An arithmetic circista formula if the fan-out of
every gate is at most one.

Noncommutative identity testing was studied by Raz and I8apn [RS05] and
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Bogdanov and Wee in [BWO05]. In the Bogdanov-Wee paper, thegidered a polyno-
mial f of small degree ovef{z,--- ,z,}, for afieldF, given by an arithmetic circuit.
They were able to give a randomized polynomial time algarifor the identity testing
of f. The key feature of their algorithm was a reduction from rmmmutative identity
testing to commutative identity testing which is based otaasic theorem of Amitsur
and Levitzki [AL50] about minimal identities for algebras.

Raz and Shpilka [RS05] give a deterministic polynomialgiaigorithm for non-
commutative formula identity testing by first converting@iogeneous formula into a
noncommutative algebraic branching program (ABP), as dofidis91].

In this section we study the noncommutative polynomial idgriesting problem.
Using simple ideas from automata theory, we design a newrdetistic identity test
that runs in polynomial time if the input circuit is sparsedaof small degree. Our
algorithm works with only black-box access to the noncomngupolynomial, and we
can even efficiently reconstruct the polynomial.

We will first describe the algorithm to test if a sparse polymal of polynomial
degree over noncommuting variables is identically zereenle give an algorithm that
reconstructs this sparse polynomial. Though the lattertresbsumes the former, for
clarity of exposition, we describe both. Furthermore, weertbat we can assume that
the polynomial is given as an arithmetic circuit over a figld

In the case of commuting variables, [BOT88] gives an intkfon algorithm that
computes the given sparse polynomial, and thus can be usédefttity testing. It is
not clear how to generalize this algorithm to the noncommiugaetting. Our identity
testing algorithm evaluates the given polynomial at spgc¥iell-chosen points in a
matrix algebra (of polynomial dimension over the base fieddich that any non-zero
sparse polynomial is guaranteed to evaluate to a non-zetmixratione of these points.
The reconstruction algorithm uses the above identitynigstigorithm as a subroutine
in a prefix-based search to find all the monomials and theificesnts.

We now describe the identity testing algorithm informa@ur idea is to view each
monomial as a short binary string. A sparse polynomial, beisgiven by a polynomial
number of such strings (and the coefficients of the corredipgrmonomials). The algo-
rithm proceeds in two steps; in the first step, we construmallset of finite automata
such that, given any small collection of short binary stsiref least one automaton from
the set accepts exactly one string from this collectionhedecond step, for each of the
automata constructed, we construct a tuple of points oveataxralgebra oveF such
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that the evaluation of any monomial at the tuple ‘mimics’ the of the corresponding
string on the automaton. Now, given any non-zero polynorfiiaf small degree with
few terms, we are guaranteed to have constructed an autordtsolating’ a string
from the collection of strings corresponding to monomialg.i We then show that eval-
uating f/ over the tuple corresponding t# gives us a non-zero output: hence, we can
concludef is non-zero. We now describe both algorithms formally.

4.2.1 Preliminaries

We first recall some standard automata theory notation {seexample, [HU78]). Fix
a finite automatoM = (Q, d, g0, ¢¢) Which takes as input strings 0, 1}*. @ is the
set of states ofl, 0 : @ x {0,1} — @ is the transition function, angh andg; are the
initial and final states respectively (throughout, we ordpsider automata with unique
accepting states). For each lettet {0, 1}, letd, : Q@ — @ be the function defined by:
d(q) = 6(q,b). These functions generate a submonoid of the monoid of atitfons
from @ to Q. This is the transition monoid of the automatdnand is well-studied
in automata theory: for example, see [Str94, page 55]. We aefime the0-1 matrix
M, € FIRIxIQl a5 follows:

1 if 05(q) = ¢,
0 otherwise.

My(q,q") = {

The matrix), is simply the adjacency matrix of the graph of the functignAs the
entries of)M, are only zeros and ones, we can consitdgrto be a matrix over any field
F.

Furthermore, for any = wyws - - - wy, € {0, 1}* we define the matrid/,, to be the
matrix producth/,,, M, - - - M,,, . If w is the empty string, defing/,, to be the identity
matrix of dimension@| x |Q|. For a stringw, leté,, denote the natural extension of the
transition function tav; if w is the empty stringy,, is simply the identity function. It is
easy to check that:

1 if d,(q) = ¢,

, 4.1)
0 otherwise.

My(q,q") = {

Thus, M,, is also a matrix of zeros and ones for any stringAlso, M,,(qo, gf) = 1 if
and only ifw is accepted by the automatahn
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4.2.2 The output of a circuit on an automaton

Now, we consider the ring{z,, - - - , z,,} of polynomials with noncommuting variables
x1,--+,x, over a fieldF. Let C' be a noncommutative arithmetic circuit computing
a polynomialf € F{zy,---,z,}. Letd be an upper bound on the degreefof We
can consider monomials over the noncommuting variabjes - , z,, as strings over an
alphabet of sizex.. For our construction in Section 4.2.3, it is convenientrioasle the
variablesz; in the alphabe{0, 1}. We do this by encoding the variabie by the string

v; = 010, which is basically a unary encoding with delimiters. Chgagach monomial
over thex;’s of degree at mosi maps uniquely to a binary string of length at most
d(n+2).

Let A = (Q, 0, qo, ¢7) be afinite automaton over the alphaletl}. With respect to
automatond we have matriced/,, € FI?/xI9l as defined in Section 4.2.1, where each
v; is the binary string that encodes. We are interested in the output matrix obtained
when the inputs; to the circuitC' are replaced by the matricé$,,. This output matrix
is defined in the obvious way: the inputs &8 x |Q| matrices and we do matrix addition
and matrix multiplication at each addition (resp. multglion) of the circuitC. We
define theoutput ofC' on the automatomn! to be this output matrid/,,;. Clearly, given
circuit C' and automatom!, the matrix/,,, can be computed in time pdly’|, | A, n).

We observe the following property: the matrix outpus,; of C' on A is determined
completely by the polynomigl computed by('; the structure of the circuit’ is other-
wise irrelevant. This is important for us, since we are ontgiested iry. In particular,
the output is alway8 when f = 0.

More specifically, consider what happens wh&rcomputes a polynomial with a
single term, sayf(xy,--- ,x,) = czj, ---xj,, With a non-zero coefficient € F. In
this case, the output matrix/,,; is clearly the matrivaj1 "'Mvjk = c¢M,,, where
. Is the binary string representing the monomial - - - x;,. Thus, by
Equation 4.1 above, we see that the entfy,,(qo, ¢r) is 0 when A rejectsw, andc
when A acceptsw. In general, suppos€' computes a polynomiaf = 25:1 cim;
with ¢ nonzero terms, where € F \ {0} andm,; = H;l;l r;,, whered; < d. Let
Wi =y Uy, denote the binary string representing monomial Finally, let S/ =
{ie{l,---,t} | Aacceptsv;}.

U):’Ujl""Uj 5

Theorem 4.2.1 Given any arithmetic circui€’ computing polynomiaf € F{zy,--- ,z,}
and any finite automatod = (@, 9, qo, ¢r), then the outpud/,,, of C' on A is such that
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Mout(QOu Qf) = Zi65£ Ci-

Proof.  The proof is an easy consequence of the definitions and thygepres of
the matricesM,, stated in Section 4.2.1. Note thaf,,, = f(M,,,---,M,, ). But
f(My,, -+, M,,)=>"_ ¢;M,,, wherew; = v;, - - iy, is the binary string represent-
ing monomialn;. By Equation 4.1, we know that/,,, (¢, gr) is 1 if w; is accepted by
A, and0 otherwise. Adding up, we obtain the result. ]

We now explain the role of the automatdrin testing if the polynomiaf computed
by C' is identically zero or not. Our basic idea is to try and desagnautomatori
that accepts exactly one word from among all the words thatespond to the non-
zero terms inf. This would ensure that/,.:(qo, ¢r) is the non-zero coefficient of the
monomial filtered out. More precisely, we will use the abdvedrem primarily in the
following form, which we state as a corollary.

Corollary 4.2.2 Given any arithmetic circui€’ computing polynomiaf € F{z,--- ,z,}
and any finite automatod = (Q, 4, qo, ¢), then the outpub/,,, of C' on A satisfies:

(1) If Arejects every string corresponding to a monomiafithen,,;(qo, ¢f) = 0.

(2) If Aaccepts exactly one string corresponding to a monomig) then\ . (qo, q5)
is the nonzero coefficient of that monomialfin

Moreover,M,,,; can be computed in timeoly(|C|, | A|, n).

Proof. Both points {) and @) are immediate consequences of the above theorem. The
complexity of computing\/,,,; easily follows from its definition. [ |

Another interesting corollary to the above theorem is thiefang.

Corollary 4.2.3 Given any arithmetic circui€’ overF{z,, - - - , z,,}, and any monomial
m of degreed,,,, we can compute the coefficientofin C in timepoly(|C|, d,, n).

Proof. Apply Corollary 4.2.2 withA being any standard automaton that accepts the
string corresponding to monomial and rejects every other string. Clearly,can be
chosen so thatl has a unique accepting state add = O(nd,,). n

Another way to interpret the result of Corollary 4.2.3 is tbkowing,
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Corollary 4.2.4 Given an arithmetic circuiC overF{zy, - - ,z,} and a monomiain
of degreed, there is an uniform way to generatealy(|C|, d, n) size boolean circui€”
that decides whether is a nonzero monomial i@'.

Proof. The boolean circui€”’ simply implements the algorithm described in the proof
of Corollary 4.2.3. ]

Remark 4.2.5 Observe that Corollary 4.2.3 is highly unlikely to hold iretbommu-
tative settingF|xy,---,z,|. For, in the commutative case, computing the coefficient
of the monomiak; - - - z,, in even an arbitrary product of linear formig,/; is at least

as hard as the permanent problem owgrwhich is#P-complete wher® = Q. To
see this consider & x n integer matrixA = (a;;); e Consider the polynomial
f(xr, 29, w,) = T, (30)-, aiz;). The permanent ofl is the coefficient of the
monomialr,zy - - -, in f.

Corollary 4.2.2 can also be used to give an independent pfomfwveaker form of
the result of Amitsur and Levitzki that is used by Bogdanod &vee in [BWO05]. We
state the theorem of Amitsur and Levitzki.

Theorem 4.2.6 [AL50] Let M,(F) denotes thel x d matrix algebra over the field'.
Then,M,(F) does not satisfy any non-trivial polynomial identity of nem< 2d.

In particular, it is easy to see that the algebfa[F) of d x d matrices over the field
F does not satisfy any nontrivial identity of degreei. To prove this, we will consider
noncommuting monomials as strings directly over thietter alphabe{z, .-, z,}.
Supposef = >'_, ¢;m; € F{xy,---,x,} is a nonzero polynomial of degree d.
Clearly, we can construct an automatBrover the alphabefz,, - - - , z,} that accepts
exactly one string, namely one nonzero monomial, say, of f and rejects all the
other strings ovefzy, - - -, x,}. Also, B can be constructed with at masstates. Now,
consider the output/,,,; of any circuit computing’ on B. By Corollary 4.2.2 the output
matrix is non-zero, and this proves the result.

4.2.3 Construction of finite automata

We begin with a useful definition.
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Definition 4.2.7 Let W be a finite set of binary strings and be a finite family of finite
automata over the binary alphabgi, 1}.

e We say thatd isisolatingfor W if there exists a stringy € W and an automaton
A € A such thatA acceptsw and rejects alkw’ € W\ {w}.

e We say thatd is an(m, s)-isolating familyif for every subselV = {wy, -, w,}
of s many binary strings, each of length at mastthere is a4 € A such that4
Is isolating forv.

Fix parametersn, s € N. Our first aim is to construct afm, s) isolating family
of automataA, where both|.4| and the size of each automaton.ihis polynomially
bounded in size. Then, combined with Corollary 4.2.2 we halable to obtain deter-
ministic identity testing and interpolation algorithmstire sequel.

Recall that we only deal with finite automata that have unigeeepting states. In
what follows, for a stringv € {0, 1}*, we denote by.,, the positive integer represented
by the binary numeralw. For each prime and each integerc {0,--- ,p — 1}, we
can easily construct an automatdp; that accepts exactly thosesuch thatr,, = i (
mod p). Moreover,A,; can be constructed so as to havstates and exactly one final
state.

Our collection of automatal is just the set ofd,,; wherep runs over the first few
polynomially many primes, ande {0, - - - , p—1}. Formally, letN denote(m+2)(3) +
1; Ais the collection of4, ;, wherep runs over the firstv primes and € {0, --- ,p—1}.
Notice that, by the prime number theorem, all the primes eh@bove are bounded in
value by N2, which is clearly polynomial inn ands. Hence,|.A| = poly(m, s), and
eachA € A is bounded in size by poly, s). In the following lemma we show that
is an(m, s)-isolating automata family.

Lemma 4.2.8 The family of finite automatal defined as above is am, s)-isolating
automata family.

Proof. Consider any set of binary stringsiV of length at mostn each. By the
construction of4, A,; € A isolatesWW if and only if p does not dividen,,, — ny,

for somej and allk # j, andn,, = i ( mod p). Clearly, if p satisfies the first

of these conditions; can easily be chosen so that the second condition is satisfied
We will show that there is some prime among the fiksprimes that does not divide
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P =[], 4(nw, — ny,). This easily follows from the fact that the number of distinc
prime divisors of? is at mostog | P|, which is clearly bounded bfyn +2)(5) = N —1.
This concludes the proof. [ |

We note that the aboven, s)-isolating family.4 can clearly be constructed in time
poly(m, s).

4.2.4 The identity testing algorithm

We now describe the identity testing algorithm. Kébe the input circuit computing a
polynomialf overF{z,,--- ,z,}. Lett be an upper bound on the number of monomials
in f, andd be an upper bound on the degreefofAs in Section 4.2.2, we represent
monomials over, - - - , x,, as binary strings. Every monomial jhis represented by a
string of length at mosi(n + 2).

Our algorithm proceeds as follows: Using the constructibibection 4.2.3, we
compute a family4 of automata such thad is isolating for any setV with at most
t strings of length at most(n + 2) each. For eacld € A4, the algorithm computes
the output)M,,, of C on A. If M, # 0 for any A, then the algorithm concludes
that the polynomial computed by the input circuit is not itieally zero; otherwise, the
algorithm declares that the polynomial is identically zero

The correctness of the above algorithm is almost immediate Corollary 4.2.2. If
the polynomial is identically zero, it is easy to see thatdlgorithm outputs the correct
answer. If the polynomial is nonzero, then by the constomctf .4, we know that
there existsd € A such thatd accepts precisely one of the strings corresponding to the
monomials inf. Then, by Corollary 4.2.2, the output 6fon A is nonzero. Hence, the
algorithm correctly deduces that the polynomial compusaubit identically zero.

As for the running time of the algorithm, it is easy to see thatfamily of automata
A can be constructed in time pdt n,t). Also, the matricesV/,, for eachA (all of
which are of size polf, n, t)) can be constructed in polynomial time. Hence, the entire
algorithm runs in time pol§/C/|, d, n, t). We have proved the following theorem:

Theorem 4.2.9 Given any arithmetic circuiC' with the promise thatl computes a
polynomial f € F{xy,---,x,} of degreed with at mostt monomials, we can check,
in time poly(|C|, d, n,t), if f is identically zero. In particular, iff is sparse and of
polynomial degree, then we have a deterministic polynctima algorithm.
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In the case of arbitrary noncommutative arithmetic cigujBWO05] gives a ran-
domized exponential time algorithm for the identity tegtproblem. Their algorithm
is based on the Amitsur-Levitzki theorem, which forces tthentity test to randomly
assign exponential size matrices for the noncommutingueées since the circuit could
compute an exponential degree polynomial. However, nétiaeTheorem 4.2.9 gives
a deterministic exponential-time algorithm under the addal restriction that the input
circuit computes a polynomial with at mastponentiallymany monomials. In general,
a polynomial of exponential degree can have a double expiahenmber of terms.

4.2.5 Interpolation of noncommutative polynomials

We now describe an algorithm that efficiently computes thmeenoymutative polynomial
given by the input circuit. LeC, f,¢ andd be as in Section 4.2.4. LéV denote the
set of all strings corresponding to monomials with non-zsefficients inf. For all
binary stringsw, let A,, denote any standard automaton that accepénd rejects all
other strings. For any automatehand stringw, we let[A],, denote the automaton that
accepts those strings that are accepted layd in addition, contain as a prefix. For a
set of finite automatal, let [4],, denote the sef[4],, | A € A}.

We now describe a subroutif@st that takes as input an arithmetic circagltand
a set of finite automata and returns a field elemeatc F. The subroutindest will
have the following properties:

(P1) If Ais isolating forl¥/, the set of strings corresponding to monomialg jrihen

a # 0.

(P2) In the special case whesd| = 1, and the above holds, thenis in fact the
coefficient of the isolated monomial.

(P3) IfnoA € A accepts any string i/, thena = 0.

We now give the easy descriptiondést ( C, A) :

For eachA € A, the subroutin@est computes the output matri¥, of C' on A. If
there is and € A such thatV/;}, (¢3', ¢7') # 0, then for the first such automatohe A,
Test returns the scalan = M, (qi', ¢f'). Here, notice thag', ¢/ denote the initial
and final states of the automatdn If there is no such automatoh € A is found, then
the subroutine returns the scalar
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It follows directly from Corollary 4.2.2 thaTest has Properties (P1)-(P3). Fur-
thermore, clearlyTest runs in time poly|C]|, ||.A||), where||.A|| denotes the sum of
the sizes of the automata. i.

Let f € F{xy,---,z,} denote the noncommuting polynomial computed by the in-
put circuitC'. We now describe a recursive prefix-search based algofittusrpolate
that takes as input the circuitand a binary string, and computes all those monomials
of f (along with their coefficients) which containas a prefix when encoded as strings
using our encoding; — v; = 01°0. Clearly, in order to obtain all monomials ¢fwith
their coefficients, it suffices to run this algorithm with= ¢, the empty string.

In what follows, let4, denote thgm, s)-isolating automata family 4, ;} as con-
structed in Section 4.2.3 with parametets= d(n + 2) ands = ¢. As explained in
Section 4.2.3, we can computg in time poly(d, n, t).

Supposef is the polynomial computed by the circdit We now describe the algo-
rithm | nt er pol at e( C, u) formally (Algorithm 1).

The correctness of this algorithm is clear from the corress$rof thelTest subrou-
tine and Lemma 4.2.8. To bound the running time, note thaalperithm never calls
Interpolate on a stringu unlessu is the prefix of some string corresponding to a
monomial. Hence, the algorithm invokeésterpolate for at mostO(td(n + 2)) many
prefixesu. Since||[Ao]u.o|| and|A,| are both bounded by paly, n, ¢) for all prefixesu,
it follows that the running time of the algorithm is pol¢’|, d, n, t). We summarize this
discussion in the following theorem.

Theorem 4.2.10Given any arithmetic circui’ computing a polynomiaf € F{zy, - ,z,}
of degree at most and with at most monomials, we can compute all the monomials of
f, and their coefficients, in timgoly(|C|, d, n, t). In particular, if C computes a sparse
polynomialf of polynomial degree, thefican be reconstructed in polynomial time.

4.3 Interpolation of Algebraic Branching Programs over
Noncommuting Variables

In this section, we study the interpolation problem for klkox Algebraic Branching
Programs (ABP) computing a polynomial in the noncommugating F{x1, - -- , z,}.
We are given as input an ABP (defined beldw)n the black-box setting, and our task
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Algorithm 2 The Interpolation algorithm

1. procedurel nt er pol at e(C,u)

2:

o0

9:
10:
11:
12:
13:
14:
15:
16:
17:
18:
19:

N g Rw

a,a o 0.
a «— Test (C,{A.}) > A, is the standard automaton that accepts anly
if a = 0then
Break. > u can not corresponds to a monomialfof
else
Output (u, «). >« is the binary encoding of a monomial gfwith
coefficienta
end if
Now the algorithm find all monomials (along with their coeiffiat)
containingu0 or 1 as prefix in the binary encoding.
if |u| = d(n+ 2) then
Stop.
else
o «—Test (C, [AO]uO), o' —Test (C, [AO]ul)
end if
if o/ # 0 then
| nt er pol at e(C, u0). > There is some monomial i extendingu0
end if
if o # 0 then
| nt er pol at e(C,ul). > There is some monomial ifi extendingu1
end if

20: end procedure
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is to output an ABPP’ that computes the same polynomial s To make the task
feasible in the black-box setting, we assume that we arevatldo evaluaté at any of
its intermediate gates.

We first observe that all the results in Section 4.2 hold utiteassumption that the
input polynomialf is allowed onlyblack-box accesdn the noncommutative setting, we
shall assume that the black-box access allows the polyhaonige evaluated for input
values from an arbitrary matrix algebra over the base fielt is implicit here that the
cost of evaluation is polynomial in the dimension of the neas. Note that this is a
reasonable noncommutative black-box model, because ifane=galuatef only over
[F or any commutative extension Bf then we cannot distinguish the non-commutative
polynomial represented bfrom the corresponding commutative polynomial. We state
the black-box version of our results below.

Theorem 4.3.1 (Similar to Theorem 4.2.1)Given black-box access to any polynomial
f= Zle cimy; € F{xy,--- ,z,} and any finite automatod = (@, J, o, ¢r), then the
outputM,,,, of f on A is such thatM,..(qo, ¢r) = Ziesﬁ i, WhereSf1 ={i|1<i<

t and A accepts the string); corresponding ton; }

Here the output of polynomigl on A is defined analogously to the output of a circuit
on A in Section 4.2.2.

Corollary 4.3.2 (Similar to Corollary 4.2.3) Given black-box access to a polynomial
finF{zy,---,z,}, and any monomiakh of degreel,,, we can compute the coefficient
of min f in timepoly(d,,, n).

Finally we have,

Theorem 4.3.3 (Similar to Theorem 4.2.10)Given black-box access to a polynomial
finF{xy,---,x,} of degree at most and with at most monomials, we can compute
all the monomials of, and their coefficients, in timgoly(d, n, t). In particular, if f is

a sparse polynomial of polynomial degree, then it can benstracted in polynomial
time.

Our interpolation algorithm for noncommutative ABPs is imated by Raz and Sh-
pilka's [RS05] algorithm for identity testing of ABPs oveomcommuting variables. Our
algorithm interpolates the given ABP layer by layer usinggisldeveloped in Section 4.2
(principally Corollary 4.3.2).
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Definition 4.3.4 [Nis91, RS05] An Algebraic Branching Program (ABP) is a died
acyclic graph with one vertex of in-degree zero, called therse, and a vertex of out-
degree zero, called the sink. The vertices of the graph argtipaed into levels num-
beredo, 1,-- - ,d. Edges may only go from levito leveli + 1 fori € {0,--- ,d — 1}.
The source is the only vertex at leveand the sink is the only vertex at levél Each
edge is labeled with a homogeneous linear form in the inptitdées. The size of the
ABP is the number of vertices.

Notice that an ABP with no edge between two verticesdv on levelsi andi+1 is
equivalent to an ABP with an edge fromto v labeled with the zero linear form. Thus,
without loss of generality, we assume that in the given AB&tdhs an edge between
every pair of vertices on adjacent levels.

As mentioned before, we will assume black-box access torjet IABP P where
we can evaluate the polynomial computedMat any of its gates over arbitrary matrix
rings overF. In order to specify the gate at which we want the output, vaexnthe
gates ofP with a layer number and a gate number (in the layer).

Based on [RS05], we now defindRaz-Shpilka basifr the level; of the ABP. Let
the number of nodes at thigh level beG; and let{py, ps, - - - , g, } be the polynomials
computed at the nodes. We will identify this set of polyndsniith theG; x n* matrix
M; where the columns of/; are indexed by:’ different monomials of degreg and
the rows are indexed by the polynomials The entries of the matri®/; are the cor-
responding polynomial coefficients. A Raz-Shpilka basi $&t of at most-; linearly
independent column vectors &f; that generates the entire column space. Notice that
every vector in the basis is identified by a monomial.

In the algorithm we need to compute a Raz-Shpilka basis ay éxeel of the ABP.
Notice that at the leve) it is trivial to compute such a basis. Inductively assume we
can compute such a basis at the leveDenote the basis b, = {vy,vo, -+, vk, }
wherev; € F%, andk; < G;. Assume that the elements of this basis corresponds to the
monomials{my, ms, - -- ,my, }. We compute a Raz-Shpilka basis at the levell by
computing the column vectors corresponding to the set ofamsals {m;z} jc(k,,scn)
in M, ., and then extracting the linear independent vectors out ehth Computing
these column vectors requires the computation of the caftic of these monomials,
which can be done in polynomial time using the Corollary 2Z.3otice that we also
know the monomials that the elements of this basis correbspmn
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We now describe the interpolation algorithm formally. Asntiened before, we will
construct the output ABP”’ layer by layer such that every gate®fcomputes the same
polynomial as the corresponding gatefin Clearly, this task is trivial at levél.

Assume that we have completed the construction up tolevel. We now construct
leveli + 1. This only involves computation of the linear forms betwémnrel: and level
i + 1. Hence, there arg; < G, vectors in the Raz-Shpilka basis at thie level. Let
the monomials corresponding to these vector&3be {m,,--- ,my, }. Fix any gateu
at leveli + 1 in P, and letp, be the polynomial compute at this gate/tn Clearly,

G;
pu =Y 0l
j=1

wherep; is the polynomial computed at thi¢h gate at level, and/; is the linear form
labeling the edge between thi#h gate at level andw.
We have,
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wherec,, anda, denote the vectors of field elemer(téﬁ))j and (aéj))j respectively.
Note thata, denotes a vector of unknowns that we need to compute. Eacbmiah
mx, in the above equation gives us a linear constrain.gn However, this system
of constraints is exponential in size. To obtain a feasiloleit®n for {a}.cp.), we
observe that it is sufficient to satisfy the constraints egponding only to monomials
mx, wherem € B. All other constraints are simply linear combinations afdd and
are thus automatically satisfied by any solution to these.

Now, form € B ands € {1,--- ,n}, we compute the coefficients ofz, in p, and
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those ofm in each of thep;'s using the algorithm of Corollary 4.3.2. Hence, we have
all the linear constraints we need to solve fat }.c,,). Firstly, note that such a solution
exists, since the linear forms in the black box ABRjive us such a solution. Moreover,
any solution to this system of linear equations generaesdame polynomial, at gate

u. Hence, we can use any solution to this system of linear emmsaas our linear forms.
We perform this computation for all gatesat the: + 1st level. The final step in the
iteration is to compute the Raz-Shpilka basis for the léwvell.

We can use induction on the level numbers to argue corresiofethe algorithm.
From the input black-box ABR>, for each levek, let Pj;,1 < j < G} denote the
algebraic branching programs computed Bywith output gate as gatgin level k.
Assume, as induction hypothesis, that the algorithm hagpatea linear forms for all
levels upto level and, furthermore, that the algorithm has a correct Razlshpiasis
for all levels upto level. This gives us a reconstructed ABP upto leveli with the
property, forl < k <, each ABPP},,1 < j < G, computes the same polynomials
as the corresponding;, 1 < j < Gy, whereP}, is obtained fromP’ by designating
gate; at levelk as output gate. Under this induction hypothesis, it is ctbat our
interpolation algorithm will compute a correct set of linéarms between levelsand
i + 1. Consequently, the algorithm will correctly reconstructABP P’ upto leveli + 1
along with a corresponding Raz-Shpilka basis for that level

We can now summarize the result in the following theorem.

Theorem 4.3.5Let P be an ABP of size and depthd over F{xz, xs,- - ,z,} given
by black-box access that allows evaluation of any gate @r inputsz; chosen from a
matrix algebral/ (F) for a polynomially bounded value bf Then in deterministic time
poly(d, s, n), we can compute an ABP such thatP’ evaluates to the same polynomial
aspP.

4.4 Noncommutative Identity Testing and Circuit Lower
Bounds

In Section 4.2 we gave a new deterministic identity test foraommuting polynomials

which runs in polynomial time for sparse polynomials of paynially bounded degree.
However, the real problem of interest is identity testing folynomials given by

small degree noncommutative circuits for which Bogdanos Wee [BWO05] give an
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efficient randomized test. When the noncommutative cirisuit formula, Raz and Sh-
pilka [RS05] have shown that the problem is in determiniptitynomial time. Their

method uses ideas from Nisan’s lower bound technique focommmutative formulae
[Nis91].

How hard would it be to show that noncommutative PIT is in datristic polyno-
mial time for circuits of polynomial degree? In the commutative case, Impagliarzb
Kabanets [KI03] have shown that derandomizing PIT impliesuit lower bounds. It
implies that eitheNEXP Z P/poly or the integer Permanent does not have polynomial-
size arithmetic circuits.

We observe that this result also holds in the noncommutsaétteng. I.e., if noncom-
mutative PIT has a deterministic polynomial-time algamtthen eitheNEXP & P/poly
or thenoncommutativ®ermanent function does not have polynomial-size noncommu
tative circuits.

As noted, in some cases honcommutative circuit lower boanel®asier to prove
than for commutative circuits. Nisan [Nis91] has shown exgrdial-size lower bounds
for noncommutative formula size and further results arenknéor pure noncommu-
tative circuits [Nis91, RS05]. However, proving superpaynial size lower bounds
for general noncommutative circuits computing the Permahas remained an open
problem.

The noncommutative Permanent functiBarm(xy,--- ,z,) € R{xy,--- ,x,} IS
defined as .
Perm(zy,-++,x,) = > [[#i00);

where the coefficient rind? is any commutative ring with unity. Specifically, for the
next theorem we consider integer permanentRie Z.

Theorem 4.4.11f PIT for noncommutative circuits of polynomial deg@éry, - - - , z,,) €
Z{xy,--- ,x,} is in deterministic polynomial-time then eitheEXP < P/poly or the

noncommutativePermanent function does not have polynomial-size noncaativel
circuits.

Proof. SupposeNEXP C P/poly. Then, by the main result of [IKW02] we have
NEXP = MA. Furthermore, by Toda’s theorem MAC PP¢"™z where the oracle
computes the integer permanent. Now, assunRingfor noncommutative circuits of
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polynomial degree is in deterministic subexponentialetinve will show that the (non-
commutative) Permanent function does not have polynosiz#-noncommutative cir-
cuits. Suppose to the contrary that it does have polynosiza-noncommutative cir-
cuits. Clearly, we can use it to compute the integer permaaewell. Furthermore, as
in [KIO3] we notice that the noncommutativex n Permanent is also uniquely char-
acterized by the identitigs, (z) = = andp;(X) = Z;Zl x;pim1(X;) for 1 < i < m,
whereX is a matrix ofi? noncommuting variables any; is its j-th minor w.r.t. the first
row. l.e. the polynomialp;,1 < i < n satisfy these: identities ovemoncommuting
variablesz;;, 1 < ,j < n if and only if p; computes the x i permanent of noncom-
muting variables. The rest of the proof is exactly as in Inlipago-Kabanets [KI03].
We can easily describe an NP machine to simulaté&’P computation. The NP ma-
chine guesses a polynomial-size noncommutative circuiPfem onm x m matrices,
wherem is a polynomial bound on the matrix size of the queries madeercompu-
tation of the P°"z machine. Then the NP machine verifies that the circuit coagput
the permanent by checking thenoncommutativelentities it must satisfy. This can be
done in SUBEXP by assumption. Finally, the NP machines usesitcuit to answer
all the integer permanent queries that are made in the catipatof P2 machine.
Putting it together, we gs®MEXP C NSUBEXP which contradicts the nondeterministic

time hierarchy theorem. |
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Derandomizing the Isolation Lemma and
Lower Bounds for Circuit Size

5.1 Introduction

We recall the Isolation Lemma from [MVV87]. Lét| denote the sefl,2,---  n}.
Let U be a set of size andF C 2V be any family of subsets df. Letw : U — Z7

be a weight function that assigns positive integer weigbtthe elements of/. For

T C U, define its weightw(T') asw(T) = ) ., w(u). Then, the Isolation Lemma
guarantees that for any family of subs&t®f U and for any random weight assignment
w : U — [2n], with high probability there will be a unique minimum weiglet inF.

Lemma 5.1.1 (Isolation Lemma) [MVV87] Let U be an universe of size andF be
any family of subsets of/. Letw : U — [2n] denote a weight assignment function to
elements ot/. Then,

Proh,| There exists a unique minimum weight setA >

DO | =

where the weight functiow is picked uniformly at random.

In the seminal paper [MVV87], Mulmuley et al apply the isatat lemma to give
a randomized NC algorithm for computing maximum cardigatiatchings for general
graphs (also see [ARZ99]). Since then the isolation lemnsafband several other
applications. For example, it is crucially used in the probtthe result that NLC
UL /poly [RAOQ] and in designing randomized NC algorithms forelar representable
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matroid problems [NSV94]. It is also known that the isolatiemma can be used
to prove the Valiant-Vazirani lemma that SAT is many-oneucble via randomized
reductions to USAT.

Whether the matching problem is in deterministic NC, andtwdeNL C UL are
outstanding open problems. Thus, the question whetherstiiation lemma can be
derandomized is clearly important.

As noted in [Agr07], it is easy to see by a counting argumeat the isolation
lemma can not be derandomized, in general, because thet€' @@t systems-. More
formally, the following is observed in [AgrO7].

Observation 5.1.2[Agr07] The Isolation Lemma can not be fully derandomized if we
allow weight functionsv : U — [n€] for a constantc (i.e. weight functions with a
polynomial range). More precisely, for any polynomiallyunded collection of weight
assignmentgw; };cpne1] With weight ranggn], there exists a family of [n] such that
for all j € [n“], there exists two minimal weight subsets with respeat;to

However that does not rule out the derandomization of angiagpeasage of the
isolation lemma. Indeed, for all applications of the ismiatemma (mentioned above,
for instance) we are interested only in exponentially mastysgstemsF C 2V,

We make the setting more precise by giving a general framewkix the universe
U = [n] and consider am-input boolean circuiC' where sizéC') = m. The set2V
of all subsets ol is in a naturall-1 correspondence with the lengthbinary strings
{0,1}™: each subset C U corresponds to its characteristic binary stringe {0, 1}"
whosei'" bitis 1 iff i € S. Thus then-input boolean circuiC”’ implicitly defines the set
system

Fo={5Cn]|Clxs) =1}

As an easy consequence of Lemma 5.1.1 we have the following.
Lemma 5.1.3 LetU be an universe of sizeandC' be ann-input boolean circuit of size

m. LetFo C 2V be the family of subsets 6f defined by circuiC. Letw : U — [2n)]
denote a weight assignment function to elements. dfhen,

Proh, [ There exists a uniqgue minimum weight sefy >

)

DO | =

where the weight functiom is picked uniformly at random.
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Furthermore, there is a collection of weight functions; } 1 <;<,(m,»), wherep(m, n)
is a fixed polynomial, such that for eadfy there is a weight functiom; w.r.t. which
there is a unique minimum weight seta.

Proof. The proof of the first part follows directly from the Isolati Lemma. To prove
the second part, we use simple probabilistic argument. &ep;, w,,--- ,w; are
randomly picked weight assignment functions from- [2n]. We need to fix suitably
in the analysis. For a particular boolean ciratiibf sizem, the probability that none
of the w;'s gives a unique minimum weight set i is < 5; (directly using Isolation
Lemma). Notice that the number efinputs boolean circuits of size is 200" 1e™)
(m > n). So the probability that none of the’s gives unique minimum weighk. for
some circuitC, is at mostzo(";w. So the probability that for any circuit, there exists
i € [t] such thatw; gives a uniqgue minimum weight set i is at leastl — w
Choosingt = cmlog m for a suitable constant > 0, the above probability is nonzero.

Thus we choosg(m, n) = cmlogm. u

Lemma 5.1.3 allows us to formulate two natural and reasendbiandomization
hypotheses for the isolation lemma.

Hypothesis 1. There is a deterministic algorithi, that takes as inpyt’, n), whereC'
is ann-input boolean circuit, and outputs a collection of weightdtionsw,, wo, - - - , w;
such thatw; : [n] — [2n], with the property that for some; there is a unique mini-
mum weight set in the set systefix.. Furthermore,A; runs in time subexponential in

sizgC).
Hypothesis 2. There is a deterministic algorithp, that takes as inpyin, n) in unary
and outputs a collection of weight functions, w,, - - - , w, such thatw; : [n] — [2n],

with the property that for each size boolean circuitC' with n inputs there is some
weight functionw; w.r.t. which F- has a unique minimum weight set. Furthermode,
runs in time polynomial inn.

Clearly, Hypothesis 2 is stronger than Hypothesis 1. It dasa “black-box” de-
randomization in the sense thdj efficiently computes a collection of weight functions
that will work for anyset system iV specified by a boolean circuit of size.

Notice that a random collectiom, - - - , w; of weight functions will fulfil the re-
quired property of either hypotheses with high probabilifus, the derandomization
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hypotheses are plausible. Indeed, it is not hard to see titabte standard hardness
assumptions that yield pseudorandom generators for demsimchg BPP would imply
these hypotheses. We do not elaborate on this here. Our gmilig in this chapter are
the following consequences of Hypotheses 1 and 2.

Theorem 5.1.4 Hypothesis 1 implies that eith&iEXP ¢ P/poly or the Permanent does
not have polynomial size noncommutative arithmetic ciscui

Theorem 5.1.5Hypothesis 2 implies that for almost all there is an explicit multi-
linear polynomialf,, (z1,xs, - ,2,) € F[xy, 29, -, z,] in commutingvariablesx;
(where by explicit we mean that the coefficients of the polyabf,, are computable by

a uniform algorithm in time exponential t) that does not have commutative arithmetic
circuits of size2°™ (where the fieldF is either the rationals or a finite field).

The first result is a consequence of a new randomized idaesting algorithm for
noncommutative circuits of small degree that is based oristhlation lemma. This
algorithm is based on automata theoretic ideas introduceéchiapter 4. Then using
Theorem 4.4.1, we get this result.

As a consequence of Hypothesis 2 we are able to show thatfarsaklln there is
an explicit multilinear polynomiaf,, (z1, xs, - - - , 2,) € Flzy, 29, -, 2,] in cOmmuting
variablesz; that does not have commutative arithmetic circuit of 92&). This is a
fairly easy consequence of the univariate substitutioa @ed the observation that for
arithmetic circuits computing multilinear polynomialsewan efficiently test if a given
monomial has a nonzero coefficient (Lemma 5.4.1). Techyitaik result is similar in
flavour to the Agrawal’s result that a black-box derandommzaof PIT for a class of
arithmetic circuits via pseudorandom generators will skomilar lower bound [Agr05,
Lemma 5.1].

Klivans and Spielman [KS01] apply a more general form of #aation lemma to
obtain a polynomial identity test (in the commutative ca3é)s lemma is stated below.

Lemma 5.1.6 [KSO1, Lemma 4]Let L be any collection of linear forms over vari-
ableszy, z, - - -, z, with integer coefficients in the randé, 1,--- , K'}. If eachz; is
picked independently and uniformly at random frém1, - - - , 2Kn} then with proba-
bility at least1/2 there is a unique linear form fror@' that attains minimum value at

(21,7 2n)-
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We can formulate a restricted version of this lemma simitatkémma 5.1.3 that
will apply only to sets of linear formg, accepted by a boolean circuit. More pre-
cisely, an integer vectdivy, - - - , ;) such thaty; € {0,---, K} isin L if and only if
(v, -+, ) is accepted by the boolean circait

Thus, for this form of the isolation lemma we can formulatether derandomiza-
tion hypothesis analogous to Hypothesis 2 as follows.

Hypothesis 3. There is a deterministic algorithpd; that takes as inputn, n, K') and
outputs a collection of weight functions,, w,, - - - ,w; such thatw; : [n] — [2Kn],
with the property that for any size boolean circuiC that takes as inputyy, - - - , o)
with «; € {0,---, K} there is some weight vectar; for which there is ainiquelin-
ear form(ayq, - - - , a,,) accepted by which attains the minimum vaIuE;?:1 w;(j)ay.
Furthermore A3 runs in time subexponential in siZg).
We show that Hypothesis 3 yields a lower bound consequendhdanteger per-

manent which is similar to Impagliazzo-Kabanets resulOf)I

Remark 5.1.7 Notice that derandomizing the isolation lemma in specifigliaptions
like theRNC algorithm for matchinggMVV87] and the containmemiL C UL /poly
[RAOQ] might still be possible without implying such circuit sipgvkr bounds.

5.2 Randomized Noncommutative ldentity Testing

We now describe a new randomized polynomial-time idenést for noncommutative
circuits of small degree based on the isolation lemma. Thionceptually quite dif-
ferent from the randomized identity test of Bogdanov and Y@&05]. The design of
our algorithm uses automata theoretic ideas describeceisdhtion 4.2.1 and section
4.2.2 of Chapter 4. In Chapter 4, we consider automata oedbittary alphabef0, 1}.

In this section we will consider automata over the alphabet {zy,zs, -+, x,}. It

is easy to see that all the results of section 4.2.1 and settih?2 of Chapter 4 are true
even over an arbitrary finite alphabet and henc&ea {zy, zs, - - , x, }.

Theorem 5.2.1Let f € F{xy,xs,---,2,} be a polynomial given by an arithmetic
circuit C' of sizem. Letd be an upper bound on the degree fof Then there is a
randomized algorithm which runs in tinp®ly(n, m, d) and can test whethef = 0.
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Proof. Let[d] = {1,2,---,d} and[n] = {1,2,--- ,n}. Consider the set of tuples
U = [d] x [n]. Letv = z;,x;, - - - x;, be @a nonzero monomial gf. Then the monomial
can be identified with the following subsgf of U :

Sv = {(Lil)v (27i2>7 U 7(t7 Zt>}

Let F denotes the family of subsets Gfcorresponding to the nonzero monomials
of f i.e,
F ={S, | vis anonzero monomial iffi}.

By the Isolation Lemma, we know that if we assign random wisidiom [2dn| to
the elements of/, with probability at least /2, there is a unique minimum weight set
in F. Our aim will be to construct a family of small size automataieh are indexed by
weightsw € [2nd?] and¢ € [d], such that the automatof, , will precisely accept all
the strings (corresponding to the monomial®f lengtht, such that the weight &f,, is
w. Then from the isolation lemma we will argue that the autamabrresponding to the
minimum weight will precisely accept only one string (moriath Now forw € [2nd?],
andt € [d], we describe the construction of the automatbp; = (@, %, 46, qo, F)
as follows: Q = [d] x [2nd?*| U {(0,0)}, ¥ = {z1, 29, - , 2.}, @0 = {(0,0)} and
F ={(t,w)}. We define the transition functioh: Q) x ¥ — Q,

wherelV is the random weight assign to+ 1, j). Our automata family4 is simply,
A= {A,;|w e [2nd*],t € [d]}.

Now for each of the automat4,, , € .A, we mimic the run of the automatot,, , on the
circuit C' as described in Section 4.2.2. If the output matrix corragdpw to any of the
automaton is nonzero, our algorithm declafeg 0, otherwise declares = 0.

The correctness of the algorithm follows easily from thddson Lemma. By the
Isolation Lemma we know, on random assignment, a uniqué setF gets the min-
imum weightw,,,;, with probability at leasti/2. Let.S corresponds to the monomial
T, iy - - T;,. Then the automatoA,, .
Furthermore, as no other setimget the same minimum weight,,

¢ accepts the string (monomiat), z;, - - - x;,.
¢ rejects all the

miny
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other monomials. So thgy, ¢f) entry of the output matrix/,, that we get in running
Ay,.... On C is nonzero. Hence with probability at least2, our algorithm correctly
decides thatf is nonzero. The success probability can be boosted to arstaiarby
standard independent repetition of the same algorithnalliyjnt is trivial to see that the
algorithm always decides correctly fif= 0. ]

5.3 Proof of Theorem5.1.4

We are now ready to prove our first result. Suppose the denaizdton Hypothesis 1
holds (as stated in the introduction): i.e. suppose theaedsterministic algorithr,
that takes as inpuiC, n) whereC' is ann-input boolean circuit and in subexponential
time computes a set of weight functions, w,, - - - , wy, w; : [n] — [2n] such that the
set systen¥ defined by the circui€’ has a unique minimum weight set w.r.t. at least
one of the weight functions,.

LetC' (x4, x9, - - - , x,) be a noncommutative arithmetic circuit of degreleounded
by a polynomial in siz&”"). By Corollary 4.2.3, there is a deterministic polynomial-
time algorithm that takes as inpGt and a monomiat of degree at most and accepts
if and only if the monomialn has nonzero coefficient in the polynomial computed by
C'. Moreover by corollary 4.2.4, we have a uniformly generabedlean circuitC
of size polynomial in sizg”") that accepts only the (binary encodings of) monomials
xi, %, - - Xy, k < d that have nonzero coefficients in the polynomial computed'by
Now, as a consequence of Theorem 5.2.1 and its proof we hdegeaministicsubex-
ponential algorithm for checking i’ = 0, assuming algorithmd,; exists. Namely,
we compute the boolean circuit from C” in polynomial time. Then, invoking algo-
rithm A4; with C' as input we compute at most subexponentially many weigldtioms
wi, - - ,ws. Then, following the proof of Theorem 5.2.1 we constructabieomata cor-
responding to these weight functions and evaldéten the matrices that each of these
automata define in the prescribed manner. By assumption algmsithm A, if C" Z 0
then one of these); will give matrix inputs for the variables;, 1 < j < n on which
(' evaluates to a nonzero matrix. Now the proof of the theordtavis directly from
Theorem 4.4.1.
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5.4 Proof of Theorem5.1.5

In Corollary 4.2.3, we already have observed that given ecommutative circuit”'
computing a small degree polynomjabnd a monomial, there is an easy uniform way
to check whethem is a nonzero monomial iif. Interestingly, for commutative case
we can get similar result when the circdit computes a multilinear polynomial. As
this idea is useful in the proof of our main result, we staté prove it formally in the
following lemma.

Corollary 5.4.1 Given a commutative arithmetic circuit overF[zy,- - ,x,], with the
promise thatC' computes anultilinear polynomial, and any monomiat = [Lics @i
whereS C [n], we can compute the coefficientsafin C' in time poly(|C|,n). Fur-
thermore, there is an uniform way to generate a boolean tir€tiof sizepoly(|C|, n)
such that”"’ takes as input description 6f andm and decides whethen is a nonzero
monomial inC.

Proof. Letm =[], ¢ ; be the given monomial. The algorithm will simply substitute
y (a new variable) for each; such thati € S and0 for eachz; such that ¢ S and
evaluate the circui€' to find the coefficient of the highest degreeyof The boolean
circuit C’ is simply the description of the above algorithm. It is cldaat C’ can be
uniformly generated. |

Now we are ready to prove our main result. We will pick an appeaie multilinear
polynomial f € F[xy, 2o, -, z,] Where:

f($1,$2,"' ,xn) = Z CSH%,

SCln] €S

where the coefficientss € [F will be determined appropriately so that the polynonfial
has the claimed property.

SupposeA; runs in timem* for constantc > 0, wherem denotes the size bound
of the boolean circuit” defining set systenf-. Notice that the number of weight
functions output byA, is bounded byn©.

The total number of coefficientss of f is 2. For each weight functiom; let
(w1, ,w;,) be the assignments to the variablesFor each weight functiom;, 1 <
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i <t we write down the following equations

f(ywh% ywi’Qu e 7ywi$n) = 0.

Since f is of degree at most, and the weightsy; ; are bounded byn, it is clear
that f (yvi1, y®i2, - - - y¥in) is a univariate polynomial of degree at mest in y. Thus,
each of the above equations will give rise to at n¥stlinear equations in the unknowns
cs.

In all, this will actually give us a system of at madsi?m® linear equations oveF
in the unknown scalarss. Since the total number of distinct monomialis and2”
asymptotically exceeds® for m = 2°™, the system of linear equations hasaatrivial
solution in thecg providedm = 2°™. Furthermore, a nontrivial solution feg can be
computed using Gaussian elimination in time exponential in

We claim thatf does not have commutative circuits of sizé™ over F. As-
sume to the contrary that (z1,- - - ,x,) is a circuit for f(zy,--- ,x,) of size 20,
By Lemma 5.4.1 notice that we can uniformly construct a baoleircuitC' of size
m = 2°M that will take as input a monomidl[,_¢ z; (encoded as an bit boolean
string representing as a subset ofin]) and test if it is nonzero irC’ and hence in
f(xy, - @)

Assuming Hypothesis 2, let, - -- ,w, be the weight functions output by,Xor
input (m, n). By Hypothesis 2, for some weight functian there is a unique monomial
[[;cs®jsuchthad ;_qw; ; takes the minimum value. Clearly, the commutative circuit
C' must be nonzero on substituting for z; (the coefficient ofy>ses ™7 will be
nonzero). Howeverf evaluates to zero on the integer assignments prescribeltithg a
weight functionsw,, - - - , w;. This is a contradiction to the assumption and it completes
the proof.

Remark 5.4.2 We note that Hypothesis 2 also implies the existence of ditiexmly-
nomial in noncommuting variables that does not have nonaatatiwe circuits of subex-
ponential size (we can obtain it as an easy consequence abthes proof).

5.5 Consequence of Derandomization Hypothesis 3

We now show that the derandomization Hypothesis 3 yieldshaemguence exactly simi-
lar to the result of [KIO3]. It particular, we get lower boufat integer permanent (under
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the assumption thaEXP ¢ P/poly ) rather than some explicit function that we proved
in Theorem 5.1.5.

Theorem 5.5.11f a subexponential-time algorithimd; satisfying Hypothesis 3 exists
then identity testing ove£ is in SUBEXPwhich implies that eitheNEXP ¢ P/poly or
the integer Permanent does not have polynomial size ariibroiecuits.

Proof. Using Lemma5.1.6 itis shown in [KS01, Theorem 5] that themerandomized
identity test for small degree polynomials @z, - - - , x,,], where the polynomial is
given by an arithmetic circuit’ of polynomially bounded degree The idea is to pick
a random weight vectow : [n] — [2nd] and replace the indeterminate by 3",
whered is the total degree of the input polynomial. As the cirailihas small degree,
after this univariate substitution the circuit can be estd in deterministic polynomial
time to explicitly find the polynomial iny. By Lemma 5.1.6 it will be nonzero with
probability 1 /2 if C computes a honzero polynomial.

Coming to the proof of this theorem, NEXP ¢ P/poly then we are done. So,
SupposeNEXP C P/poly. Notice that given any monomiaf” - - - 2= of total degree
bounded byl we can test if it is a nonzero monomial 6fin exponential time ( explic-
itly listing down the monomials of the polynomial computegl @). Therefore, since
NEXP C P/poly there is a polynomial-size boolean circditthat accepts the vector
(dy,--- ,dy) iff 29 .. -z is a nonzero monomial in the given polynomial (as required
for application of Hypothesis 3).

Now, we invoke the derandomization Hypothesis 3. We canyapi@ Klivans-
Spielman polynomial identity test, explained above, toatithmetic circuitC' for each
of thet weight vectorsuy, - - - , w; generated by algorithtd; to obtain a subexponential
deterministic identity test for the circuit by the properties ofd;. Now, following the
argument of Impagliazzo-Kabanets [KIO3] it is easy to dethat the integer Permanent
does not have polynomial size arithmetic circuits. [ |

Remark 5.5.2 Although the permanent is a multilinear polynomial, noticat Hypoth-

esis 2 does not seem strong enough to prove the above thebhemeason is that the
arithmetic circuit for the permanent that is nondetermiiially guessed may not be
computing multilinear polynomial and hence the applicatid Lemma 5.4.1 is not pos-
sible. There does not appear any easy way of testing if thesgglecircuit computes a
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multilinear polynomial. The only known efficient test forltinearity is randomized
[FGL™96] and that is not enough for our purpose.

5.6 Derandomizing Valiant-Vazirani Lemma ?

Another classic result in complexity theory that is clogelhted to the Isolation Lemma
is the well known Valiant-Vazirani Lemma. Motivated by tr@mection of the isolation
lemma and circuit lower bound we ask similar question in tr@ext of Valiant-Vazirani
lemma, whether derandomizing similar restricted versadtise Valiant-Vazirani lemma
also implies circuit lower bounds. We first recall the VatiMazirani lemma as stated
in the original paper [VV86].

Lemma 5.6.1LetS C {0,1}'. Supposev;, 1 < i < t are picked uniformly at random
from {0, 1}'. For eachi, letS; = {v € S | vaw; = 0,1 < j < i} and letp,(S) be the
probability that|S;| = 1 for somei. Thenp,(S) > 1/4.

Analogous to our discussion in Section 5.1, here too we casider the restricted
version where we considef: C {0,1}" to be the set ofi-bit vectors accepted by a
boolean circuit”' of sizem. We can similarly formulate derandomization hypotheses
similar to Hypotheses 1 and 2.

We do not know if there is another randomized polynomial idgnest for non-
commutative arithmetic circuits based on the Valiant-¥@zi lemma. The automata-
theoretic technique of Section 5.2 does not appear to wqrkciScally, given a matrix
h : F3 — F%, there is no deterministic finite automaton of size poly:) that accepts
z € Fy if and only if A(x) = 0.
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Quantum Query Complexity of
Multilinear Identity Testing

6.1 Introduction

For any finite ring(R, +, -) the ring R[xy, x5, - - - , x,,] IS the ring of polynomials in
commuting variables, z,, - - - , z,,, and coefficients irR. The ringR{z, x2, -+ , T}
is the ring of polynomials where the indeterminategare noncommuting.

For the algorithmic problem we study in this chapter, we assthat the elements
of the ring (R, +, ) are uniformly encoded by binary strings of lengthand R =
(r1,re, -+, 1) IS given by an additive generating get, o, - - - , 7 }. That s,

R= {Zairi | a; € Z}.

Also, the ring operations ak are performed by black-box oracles for addition and mul-
tiplication that take as input two strings encoding ringnedmts and output their sum
or product (as defined in Chapter 2). Also, we assume thatdhe @ement of? is
encoded by a fixed string. We now define the problem which waystuthis chapter.

The Multilinear Identity Testing Problem ( MIT): The input to the problem is a black-
boxringR = (ry,-- -, rx) given by an additive generating set, and a multilinear pelyn
mial f(z1,- - ,x,) (inthe ringR[zy, - - - , x| or the ringR{zy, - - - ,z,,}) that is also
given by a black-box access. The problem is to tegtig anidentity for the ring R.
More precisely, the problem is to testfifa, as, - - - ,a,,) = 0 for all a; € R.
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A natural example of an instance of this problem is the batampolynomialf (z1, ;) =
1Ty — x9xq1 OVEr the ringR{xy, x2}. This is an identity fork precisely whenR is a
commutative ring. Clearly, it suffices to check if the gemnersi commute with each
other, which gives a naive algorithm that mak&s:?) queries to the ring oracles.

Given a polynomiaff (x4, - - - , x,,) and a black-box ring? by generators, we briefly
discuss some facts about the complexity of checking ¥ 0 is an identity forR.
The problem can be NP-hard when the number of indeterminaissinbounded, even
when R is a fixed ring. To see this, notice that a 3-CNF formélar,, - - - ,z,) can
be expressed as@(n) degree multilinear polynomiaf(x1, zs, - - - , z,) overFy, by
writing F' in terms of addition and multiplication ové,. It follows that f = 0 is an
identity for F, if and only if F' is an unsatisfiable formula. However in this chapter we
focus only on the upper and lower bounds ondliery complexityf the problem.

In our query model, each ring operation, which is performegd Query to one of the
ring oracles, is of unit cost. Furthermore, we consider eaetuation off (ay, - - - , a,,)
to be of unit cost for a giveninput, - - - ,a,,) € R™. This model is reasonable because
we considern as a parameter that is much smaller tkhan

The starting point of our study is a result of Magniez and NapgdMNO7], where
the authors study the quantum query complexity of group catativity testing: Let
G be a finite black-box group given by a generating geys, - - - , g, and the group
operation is performed by a group oracle. The algorithmsk s to check ifG is
commutative. For this problem the authors in [MNO7] give amgfum algorithm with
query complexityO(k?*?log k) and time complexityO(k*?log® k). Furthermore,
a Q(k*3) lower bound for the quantum query complexity is also showie Tain
technical tool for their upper bound result was a method ahg@ation of random walks
first shown by Szegedy [Sze04]. More recently, Magniez et BMINRSO7] discovered
a simpler and improved description of Szegedy’s method.

Our starting point is the observation that Magniez-NayakiitefMNO7] for group
commutativity can also be easily seen as a commutativityfdesirbitrary finite black-
box rings with similar query complexity. Furthermore, as mentionedlier, notice
that the commutativity testing for a finite ring coincidestiwtesting if the bivariate
polynomial f(x1,x2) = x129 — zox; iS @n identity for the ring. Sincg(xq, z,) is a
multilinear polynomial, a natural question is, whethestapproach would extend to
testing if any multilinear polynomial is an identity for avgn ring. Motivated by this
connection, we study the problem of testing multilineaniitees for any finite black-
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box ring.

The upper bound result in [MNO7] is based on a group-theoidethma of Pak
[Pak00]. Our (query complexity) upper bound result takeamaogous approach. The
main technical contribution here is a suitable generabpadf Pak’s lemma to a multi-
linear polynomial setting. The multilinearity conditioscrucially required. The rest of
the proof is a suitable adaptation of the Magniez-Nayakltesu

For the lower bound result, we show a reduction to a somewbet general version
of MIT from a problem that is closely related to tieCOLLISION problem studied in
quantum computation. Tha-COLLISION problem is the following. Given a function
fA12,--- k} — {1,2,---  k} as an oracle and a positive integer the task is to
determine if there is some element in the rang¢ wfith exactlym pre-images.

We define then-SPLIT COLLISIONproblem that is closely related ba-COLLISION
problem. Here the domaifl, 2, - - - | k} is partitioned inton equal-sized intervals (as-
sumek is a multiple ofm) and the problem is to determine if there is some elemengin th
range off with exactly one pre-image in each of theintervals. We show a reduction
from m-SPLIT COLLISIONto a general version ofiiIT. There is an easy randomized re-
duction fromm-COLLISION problem tom-SPLIT COLLISIONproblem. The best known
quantum query complexity lower bound for-COLLISION problem isQ(kg) [AS04]
and thus we get the same lower bound for the general versisfiTothat we study.
Improving, the current lower bound far-COLLISION is an important open problem in
quantum computation since last few years.

Our reduction for lower bound is conceptually differentfré¢he lower bound proof
in [MNO7]. It uses ideas from automata theory to construatigable black-box ring.
We recently used similar ideas in the design of a deternenggtlynomial-time algo-
rithm for identity testing of noncommutative circuits coatimg small degree sparse
polynomials [AMSO08].

6.2 Black-box Rings and the Quantum Query model

We briefly explain the standard quantum query model. We rgatiié definition of
black-box ring operations by making them unitary transfations that can be used in
quantum algorithms. For a black-box riffgy we have two oracle®), and O} for

TAmbainis in [Amb07] show a quantum query complexity uppemumd of O(k™/™+1) for
mM-COLLISION problem.
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addition and multiplication respectively. For any two riagments, s, and a binary
stringt € {0,1}" we haveO%|r)|s) = |r)|r + s) andOR|r)|s)|t) = |r)|s)|rs @ 1),
where the elements @t are encoded as strings{f, 1}". Notice thatD¢, is a reversible
function by virtue of( R, +) being an additive group. On the other ha(#, -) does not
have a group structure. Thus we have magereversible by defining it as aplace
function O} : {0,1}*" — {0,1}**. Whenr or s do not encode ring elements these
oracles can compute any arbitrary string.

The query model in quantum computation is a natural extensiclassical query
model. The basic difference is that a classical algorithrarigs deterministically or
randomly selected basis states, whereas a quantum aftgardth query a quantum state
which is a suitably prepared superposition of basis sta@sgt query model closely
follows the query model of Magniez-Nayak [MNO7, Section]2.Bor black-box ring
operations the query operators are simply andO}; (as defined above). For an arbi-
trary oracle functionf’ : X — Y, the corresponding unitary operatoiQs : |g)|h) —
lg)|h @ F(g)). In the query complexity model, we charge unit cost for alginmery to
the oracle and all other computations are free. We will agstimat the input black-box
polynomial f : R™ — R is given by such an unitary operatgy.

All the quantum registers used during the computation canibalised to|0). Then
a k-query algorithm for a black-box ring is a sequence:of 1 unitary operators and
k ring oracle operatorstiy, Q1, Uy, - - -, Ux_1, Qk, Uy, Where@,; € {O%,O%,Or} are
the oracle queries and,’s are unitary operators. The final step of the algorithm is to
measure designated qubits and decide according to the regasut output.

6.3 Quantum Algorithm for Multilinear ldentity Test-
ing

In this section we describe our quantum algorithm for maki&r identity testingMIT).

Our algorithm is motivated by (and based on) the group coratiwtly testing algo-
rithm of Magniez and Nayak [MNO7]. We briefly explain the alglom of Magniez-
Nayak. Their problem is the following: given a black-box gpa~ by a set of generators
g1, 92, , gk, the task is to find nontrivial upper bound on the quantumyjaemplex-

ity to determine whethefr is commutative. The group operators (corresponding to the
oracle) are)s andOg-1.
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Note that for this problem, there is a trivial classical ailtfon (so as quantum) of
query complexityO(k?). In an interesting paper, Pak showed a classical randomized
algorithm of query complexity) (k) for the same problem [Pak00]. Pak’s algorithm
is based on the following observation ([Pak00, Lemma 1.8nsider a subproduct
h = ¢7'g5* - - - g;F wheree;” s are picked uniformly at random frog®, 1}. Then for any
proper subgroupf of G, Prodh ¢ H] > 1/2.

One important step of the algorithm in [MNO7] is a generdl@aof Pak’s lemma.

Let V, be the set of all distinct elementtuples of elements from1,2,---  k}. For
=1+ (k=0)(k—L—1)
k(k—1) .

u=(uy,---,up), defineg, = gu, - Guy - - - gu,- LELP =

Lemma 6.3.1 [MNO7] For any proper subgrougs” of G, Proh,cy, (g, & K] > 1%7’

As a simple corollary of this lemma, Magniez and Nayak shojiiNO7] that, if G
is non abelian then for randomly pickedandv from V), the elementg, andg, will not
commute with probability at Ieaéi%)Q. Thus, for non abelianr there will be at least
% fraction of noncommuting pairéu, v). Call such pairs asarked pairs Next,
their idea is to do a random walk in the space of all pairs amtetmde whether there
exists a marked pair. They achieved this by defining a randatk and quantizing it
using [Sze04]. We briefly recall the setting from [MNO7, $exat2.3], and the main
theorem from [Sze04], which is the central to the analysislafiniez-Nayak result.

Quantum Walks

Let P be an irreducible and aperiodic Markov chain on a gréph (V, E') with n ver-
tices. A walk following such a Markov chain is always ergoala has unique stationary
distribution. LetP(u,v) denote the transition probability from — v, andM be a set
of marked nodes oV. The goal is to make a walk on the vertices(ofollowing the
transition matrixP and decide whethe¥/ is nonempty Assume that every nodec V/
is associated with a datababév) from which we can determine whether M. This
search procedure is modelled by a quantum walk. To analyz@dihformance of the
search procedure, we need to consider the cost of the folipaperations:

Set up Cost (S)The cost to set up(v) forv € V.

Update Cost (U)The cost to updat®(v), i.e. to update fronD(v) to D(v"), where
the movev — v’ is according to the transition matrik.

Checking Cost (C)To check whether € M usingD(v).
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The costs are specific to the application for e.g. it can beyguemplexity or
time complexity. The problem that we consider or the groumcwitativity problem
of Magniez-Nayak, concern about query complexity. Theolwlhg theorem due to
Szegedy gives a precise analysis of the total cost involvéiae quantum walk.

Theorem 6.3.2[Sze04] LetP be the transition matrix of an ergodic, symmetric Markov
Chain on a graphz = (V, E)) and ¢ be the spectral gap aP. Also, let)M be the set of
all marked vertices iV and|M|/|V'| > € > 0, wheneverM is nonempty. Then there is
a quantum algorithm which determines whetléris nonempty with constant success
probability and costs + O((U + C)/+/d¢). S is the set up cost of the quantum process,
U is the update cost for one step of the walk @&d the checking cost.

Later, Magniez-Nayak-Ronald-Santha [MNRSOQ7] improvetial cost of the quan-
tum walk. We state their main result.

Theorem 6.3.3[MNRSO07] LetP be the transition matrix of a reversible, ergodic Markov
Chain on a graphG = (V, E) andé be the spectral gap aP. Also letM be the set of
all marked vertices i and|M|/|V| > € > 0, wheneverM is nonempty. Then there
is a quantum algorithm which determines whethéis nonempty and in that case finds
an element of/, with constant success probability and cost of orfer ﬁ(%U +0C).

S is the set up cost of the quantum procésss the update cost for one step of the walk
andC' is the checking cost.

The analysis of Magniez-Nayak [MNO7] is based on Theoren?6.Bor our prob-
lem also, we follow similar approach.

6.3.1 Query Complexity Upper Bound

Now we describe our quantum algorithm fdiT. Our main technical contribution is
a suitable generalization of Pak’s lemma. For any [m], consider the seR; C R
defined as follows:

Ri = {u c R|V(b1, s ,bifl,bzqu, s ,bm) c Rmil,f(bl, s ,bi,l,u, bfL'Jrl" N ,bm) = 0}

Clearly, if f is not a zero function fronk™ — R, then|R;| < |R|. In the following
lemma, we prove that if is not a zero function thejR;| < |R|/2.
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Lemma 6.3.4 Let R be any finite ring and (z1, z, - - - , x,,) be a multilinear polyno-
mial over R such thatf = 0 is not an identity forR. For i € [m| define

Ri = {U €ER | \V/(bl, e 7bi—1abi+17 e 7bm) € Rm_la f(bla e 7bi—17u7 bi+17 e 7bm) = 0}
ThenR; is an additive coset of a proper additive subgrougiadnd henceR;| < |R|/2.

Proof. Write f = Az, , %1, i, Tiv1, -+ ) + B(x1, -+, Ti1, Tiv1, T

where A is the sum of all the monomials gf containingz; and B is the sum of the
rest of the monomials. Let;, v, be any two distinct elements iR;. Then for any fixed
7= (y1,"  ,¥Yi-1,Yi+11,  ,Ym) € R™ 1, consider the evaluation of and B over the

POINtS(y1, - - -, Yie1, U1, Yit1,* » Ym) ANA(Y1, -+, Yim1, V2, Yi1, - - -, Ym) FESPECLively.
For convenience, we abuse the notation and write,

A(vr, ) + B(y) = Av2,9) + B(y) =0,

wherey is an assignmenttoy, xo, - - -, x;_1, 41, - - , ) andvy, v, are the assignments
to x; respectively. Note that, gsis a multilinear polynomial, the above relation in turns
implies thatA(v; — vy, y) = 0.

Consider the sek;, defined as follows: Fix any” € R;,

We claim thatR; is an (additive) subgroup dt. We only need to show thdt; is closed
under the addition (of?). Considen(w; — u®), (wy — u®) € R;. Then(w; — u®) +
(wy — u) = (wy +wy —u®) —u, Itis now enough to show that for agyc R,
fwy +wy —u®, 7) = 0 (note thatw, + w, + ¥ is an assignment tg;). Again using
the fact thatf is multilinear, we can easily see the following:

Flw +wz —u,5) = A(wy, §) + A(wz, 5) — A, 5) + B(y)
and,
Alwy, §) + A(wz,5) — A", g) + B(y) = A(wz,5) — A", ) = 0.
Note that the last equality follows becauseandu are inR;. Hence we have proved
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that B, is a subgroup of?. SoR; = R; + vV i.e. R; is a coset ofR; inside R. Also
|R;| < |R| (f is not identically zero oveR). Thus, finally we getR;| = | ;| < |R|/2.
| ]

Our quantum algorithm is based on the algorithm of [MNO7]. the rest of the
chapter, we denote by, the set of all¢ size subsetof {1,2,---,k}. We follow a
quantization of a random walk oy x - - - x Sy = S}*. Foru = {uy, us, - - - ,u,}, define
T = Tu, + -+ + 7u,. NOW, we suitably adapt Lemma 1 of [MNO7] in our contekt.

Let R be a finite ring given by a additive generating Set {ry,--- ,r}. W.L.o.g.
assume that, is the zero element k. Let & be a proper additive subgroup @R, +).
Let j be the least integer ifk] such that-; ¢ R. SinceR is a proper subgroup o,
such aj always exists.

Lemma 6.3.5Let R < R be a proper additive subgroup @t and T be an additive

. — L(0— k—0)(k—{—
coset offt in R. ThenProbcs, [r, & T] > 132, wherep = Lt e-0br-l),

Proof. Letj be the least integer ifk] such that~; ¢ R. Fix a setu of size/ such

thatl € v andj ¢ u. Denote byv the set obtained from by deletingl and inserting

j. This defines a one to one correspondence (matching) bewllemrch pair of(u, v).

Moreoverr, = r, + r; (notice that-; = 0). Then at least one of the elementor r, is

notin7. For otherwisér, — r,) € Rimplyingr, € R, which is a contradiction.
Therefore,

N | —

Probes,[ru € T|j € uxorl € u] <
For any two indices, j,

0W0—1)+ (k=0 (k—(—1)

Probes,[i,7 € wori,j & u] = k1) =p.
Thus,
Probes,[r. € T < (1 —p)/2+p < (1+p)/2.
This completes the proof. ]

LetT = R; in Lemma 6.3.5, wher®; is as defined in Lemma 6.3.4.

°Notice that in [MNO7], the author consider the set ofédiliples instead of subsets. This is important
for them as they work in non abelian structure in general (@loeder matters). But we will be interested
only over additive abelian structure of a ring and thus odiess not matter for us.
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Suppose’ = 0 is not an identity for the ring?. Then, using Lemma 6.3.5, it is easy
to see that, fot;, us, - - - , u,, picked uniformly at random fron%,, f(r.,, - ,ru,,) IS
non zero with non-negligible probability. This is analogda [MNO7, Lemma 2]. We
include a proof for the sake of completeness.

Lemma 6.3.6 Let f (x4, - ,z,) be a multilinear polynomial (in commuting or non-
commuting indeterminates) ové& such thatf = 0 is not an identity for the ringR.
Then,
1—p\™
Prob,, ... wnes, [f(Tuys - 5 Tu,) # 0] > (?) .
Proof. Fori € [m], let R; be the additive coset defined in Lemma 6.3.4. The proof is
by simple induction omn. The proof for the base case of the induction (i.erfoe 1)
follows easily from the definition of?; and Lemma 6.3.5. By induction hypothesis
assume that the result holds for aNariate multilinear polynomialg such thaty = 0
is not an identity forR with ¢t < m — 1.
Consider the given multilinear polynomiélx,, zs, - - - , z,,,). Then, by Lemma6.3.4,
R,, is a coset of an additive subgrod, insideR. Picku,, € S, uniformly at random.
If f = 0is not an identity onk then by Lemma 6.3.5 we get,, ¢ R,, with proba-
bility at least’52. Let g(xy, w2, -+, Tme1) = f(21,* , Tn_1,Tu,,). SiNCEr,,, € Ry,
with probability at Ieastl%’, it follows thatg = 0 is not an identity onR with prob-
ability at Ieastl%p. Given thatg is not an identity forR, by induction hypothesis

_pym—1
we have that, Pra... ., es,[9(ru, s 7uny) # 0] > (52)" . Hence we get,
Prob,, ... unes, [f (Tuys++ » ) # 0] > (552)™, which proves the lemma. m
We observe two simple consequences of Lemma 6.3.6. Notixté—}ﬁ = %

Letting/ = 1 we get% = 1/k, and Lemma 6.3.6 implies that jf = 0 is not an
identity for R then f(ay,--- ,a,) # 0 for one of thek™ choices for the:; from the
generating sefrq, - -« ,ry}.

Letting? = k/2 in Lemma 6.3.6, we gét;—p > 1/4. Hence we obtain the following
randomized test which maké&mk queries.

Corollary 6.3.7 There is a randomized™mk query algorithm forMIT with constant
success probability, wherg is m-variate andR is given by an additive generating set
of sizek. This can be seen as a generalization of Pak(¢) query randomized test for
group commutativity.
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We use Lemma 6.3.6 to design our quantum algorithm. Teclyicar quantum
algorithm is similar to the one described in [MNO7]. The Lemf3.6 is used to guar-
antee that there will at Ieaﬁ%’)m fraction of marked pointsn the spaces;” i.e. the
points wheref evaluates to non-zero. The underlying graph in our randotk saa
Johnson Graph and our analysis require some simple modificat the analysis de-
scribed in [MNO7].

Random walk on S,

Our random walk can be described as a random walk over a graph(V, £') defined
as follows: The vertices df are all possiblé subsets ofk]. Two vertices are connected
by an edge whenever the corresponding sets differ by exang#yelement. Notice that
G is a connected(k — ¢)-regular Johnson graph, with parameer?, ¢ — 1) [BCN89].
Let P be the normalized adjacency matrix@fwith rows and columns are indexed by
the subsets dk|. ThenPyy = 1/4(k—¢) if | X NY| = ¢ — 1 and0 otherwise. Itis well
known that the spectral gaypof P (6 = 1 — A, where) is the second largest eigenvalue
of P)is(1/¢) for ¢ < k/2 [BCN89]. Now we describe the random walk 6h

Let the current vertex i& = {uy,ug, -+ ,u} andr, = ry, + ry, + -+ + 1y,
With probability 1/2 stay atu and with probabilityl /2 do the following: randomly
pick u; € wandj € [k] \ u. Then move to vertex such thaw is obtained from. by
removingu, and insertingi. Computer, by simply subtracting.,, from r,, and adding
r; to it. That will only cost2 oracle access. Staying in any vertex with probabilitg
ensures that the random walk is ergodic. So the stationatyitalition of the random
walk is always uniform. It is easy to see that the transitiatnir of the random walk
is A = (I + P)/2 wherel is the identity matrix of suitable dimension. So the spéctra
gap of the transition matrid isd = (1 — \)/2 = §/2.

The query complexity analysis is similar to the analysis @igvliez-Nayak. But to
fit it with our requirement, we need some careful parametiinge We include a brief
self-contained proof.

Theorem 6.3.8 Let R be a finite black-box ring given as an oracle afidy, - - -, z,,)
be a multilinear polynomial oveR given as a black-box. Moreover Iéty,--- 7}
be a given additive generating set fBr Then the quantum query complexity of testing
whetherf is an identity forR, is O(m(1 + a)™/2k=+1), assuming: > (1 4 1/a)™"".
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Proof. Setup cost(S)For the quantum walk step we need to start with an uniform dis-
tribution onS}". With eachu € S,, we maintain a quantum registel,) that computes
r.. SO we need to prepare the following stabe:

1
v) = D funru) ® fuz ) © - ).

155"

14

UL,U2, UM ESY

It is easy to see that to compute any, we need’ — 1 oracle access to the ring oracle.
Since in each ofn independent walk, quantum queries over all choiceswill be made
in parallel (using quantum superposition), the total queerst for setup isn(¢ — 1).
Update cost(U):It is clear from the random walk described in the sectionl§ Bat
the update cost ove, is only 2 oracle access. Thus for the random walk ¢ghvéhich
is justm independent random walks, one on each copyofa® need a total update
cost2m.?
Checking cost(C):To check whethef is zero on a point during the walk, we simply
query the oracle fof once.
Recall from Szegedy'’s result [Sze04] (as stated in Theore2) the total cost
for query complexity isQ) = S + ﬁ(U + C) wheree = (£2)™ is the propor-

2
tion of the marked elements andis the spectral gap of the transition matrixde-

scribed in section 6.3.1. Combining together we get< m [(é — 1)+ \;’5_} From

the random walk described in the section 6.3.1, we know &hat % Hence,Q <

3v/20 : 1-p _ ¢ (1=% - 1-

m {(é -1)+ W} Notice that, 5 = (1_%). Substituting for=% we get,

Q<m {(6 —1)+ &/ﬂ;m/zW} . We will choose a suitably smadl > 0 so
V=

that% < 1+ «. Then we can upper bourigl as follows:

Q<m [(E —1)+3vV2-(1+ a)m/%m”#} :

Now our goal is to minimize&) with respect to and«. For that we choosé = £f
where we will fix ¢ appropriately in the analysis. Substitutiig= k' we get,Q <

m—(m—1)t

m (k' —1) +3v2- (1 +a)™/?t/2k~——=|. Choosingt = (m/(m + 1)), we can

3In [MNO7] the underlying group operation is not necessaciynmutative (it is being tested for
commutativity). Thus the update cost is more.
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easily see that the query complexity of the algorithr®{sn(1 + a)m/ka%). Finally,
recall that we need choose ar> 0 so that% < 1+ a. Clearly, it suffices to choose
a so that(1 + a)¢ < ak. Letting? = k™/™*! we get the constrair{l + 1/a)™ ! < k

which is satisfied i1/ < k. We can choose = “-t1. n

Remark 6.3.9 The choice of in the above theorem shows some trade-offs in the query
complexity between the parametérandm. For constantn notice that this gives us an
O(k™/m+1) query complexity upper bound for the quantum algorithmctvig similar

to the best known query upper bound fofCOLLISION [AmbO07], when the problem
instance is a functiorf : [k] — [k].

Generalized Multilinear Identity Testing (GMIT): We now consider a variant of the
MIT problem, which we calcMIT (for generalizedvIT).

Let f : R™ — R be a black-box multilinear polynomial. Consider aagditive
subgroupA of the black-box ringR, given by a set of generatorsg, r, - - - , r, SO that
A={>", 0| B € Z}. TheGMIT(R, A, f) problem is the following: test whether a
black-box multilinear polynomiaf is an identity forA. In other words, we need to test
if f(a1,---,an)=0foralla, € A.

It is easy to observe that the quantum algorithm actuallyessMIT and the cor-
rectness proof and analysis given in Theorem 6.3.8 also fool@MIT problem. We
summarize this observation in the following theorem.

Theorem 6.3.10Let R be a black-box finite ring given by ring oracles and= (rq,rq, - -+, 7ry)
be anadditive subgroupf R given by generators; € R. Let f(zy, 29, -+ ,x,,) be a
black-box multilinear polynomiaf : R — R. Then there is a quantum algorithm
with query complexity) (m (1 + a)m/Qk#) for theGMIT (R, A, f) problem (assuming

k> (14 1/a)™™).

6.4 Query Complexity Lower Bound

In this section we show thaMIT problem of multilinear identity testing for addi-
tive subgroups of a black-box ring (described in Section1§,3s at least as hard as
m-SPLIT COLLISION (again,m-SPLIT COLLISION problem is defined in Section 6.1).
Also, the well-knowrm-COLLISION problem can be easily reducediteSPLIT COLLISION
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problem using a simple randomized reduction. In the follmpemma, we briefly state
the reduction.

Lemma 6.4.1 There is arandomized reduction fromCOLLISIONto m-SPLIT COLLISION
with success probability at least™.

Proof. Let f : [k] — [k] be a’yes’ instance ah-COLLISION, and supposé¢ (i) =
{1,129, , i, }. TO reduce this instance to-SPLIT COLLISION our idea is to pick a
randomme-partition/y, I», - - - , I, of the domaink] with each|/;| = k/m (for simplic-

ity assume thatn dividesk). Using a standard counting argument, it is easy to see that
i;'s will be placed in different blocks with high probabilityn particular for a random
partitionP?, we show the following:

p = Probp[ For eachy € [m], ;s are placed in different blocks ¢ ™.

Let A be the total number of possible partitions. Itis easy tokag i = W

Call a partition good ifi;'s are placed in different blocks. Again, by a counting
arguement, the total number of good partitidhis= % Thenp = B/A =
E/mI” Now using,(¥) < ()™, we getp > e~™. That completes the proof. m

()

Consequently, showing a quantum lower bound20f*) for m-COLLISION will
imply a quantum lower bound &t(k*/e™) for m-SPLIT COLLISION It will also show
similar lower bound foGMIT because of our reduction.

If f:[k] — [k]is an instance ofn-SPLIT COLLISIONproblem, then the classical
randomized query complexity lower boundS¥k). This is observed in [MNO7] for
m = 2. Due to our reduction, we get similar randomized query caxipl lower bound
for GMIT.

Currently the best known quantum query complexity lowemnzbior m-COLLISION
problem isQ(k2/3) (in the casen = 2) [AS04]. Thus we obtain the same explicit lower
bound form-SPLIT COLLISIONproblem due to the random reduction framrCOLLISION
to m-SPLIT COLLISION It also implies quantum query complexity lower bound for
GMIT.

Our reduction fromm-SPLIT COLLISIONto GMIT problem is based on automata
theoretic ideas which we have used in Chapter 4 and Chapter 5.
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Theorem 6.4.2 Them-SPLIT COLLISIONproblem reduces t&MIT problem for addi-
tive subgroups of black-box rings.

Proof. An instance ofn-SPLIT COLLISIONis a functionf : [k] — [k] given as an
oracle, where we assume w.l.o.g. that nm. Divide {1,2,---  k} into m intervals
L, L, ---,I,, each containing consecutive points dk|. Recall from Section6.1 that,
f is said to have am:-split collision if for some;j € [k] we have|f~!(j)| = m and
|f~1(j) N I;| = 1 for each interval;.

Consider the alphabél = {b,c,b1,bs,--- ,b,}. Let A = (Q,%,9,q,q7) be a
deterministic finite state automaton that accepts allgsine ¥* such that each;, 1 <
j < m occurs at least once . It is easy to see that such an automaton with a single
final stateg; can be designed with total number of stai@s = 2°™ = t. W.l.o.g. let
the set of state§ be renamed a$l, 2, - - - , ¢}, wherel is the initial state and is the
final state.

For each letter, € X, let M, denote the x t transition matrix ford, (as defined
in Section 4.2.1 and used in Section 5.2 for any arbitrarpaet>). Since each\/,
is at x t 0-1 matrix, each)/, is in the ring M(F,) of ¢ x ¢ matrices with entries from
the fieldF,. Let R denote thek-fold product ring(M,(F,))*. Clearly, R is a finite
ring (which is going to play the role of the black-box ring iaraeduction). We now
define an additive subgroupof R, where we describe the generating set’afsing the
m-SPLIT COLLISIONinstancef.

For each index € [k], define ark-tupleT; € R as follows. Ifi # f(i), then define
Ti[i] = My, Ti[f(i)] = M,, (wherei € I;) and and for each index¢ {i, f(i)} define
Ti[s] = M.. Fori = f(i), defineT[i] = M,, (i € I;) and the rest of the entries a.
The additive subgroup ak that we consider i§" = (T3, 15, - - - , T}) generated by the
T,,1<i<k.

Furthermore, define twiox ¢t matricesA andB in M, (TF;) as follows. LetA[1,1] = 1
andA[u, ¢] = 0 for (u, ) # (1,1). For the matrixB, let B[t, 1] = 1 and B|u, ¢] = 0 for
(u, 0) # (t,1).

Claim 6.4.3 Letw = wyw, - - -w, € ¥* be any string. Then the automaténdefined
above accepts if and only if the matrixAM,,, M., - - - M,,, B IS nonzero.

Proof of Claim: By definition of the matrices\Z,, the (1,¢)"* entry of the product
My, M,, ---M,, is 1 if and only if w is accepted by A. By definition of the matri-
cesA andB the claim follows immediately.
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Now, consider the polynomidP(xy, zs, - - - , x,,) With coefficients from the matrix
ring R defined as follows:

P(l’l,l’g,“‘ 7xm) = Axle"'xmBa

whereA = (A, A,...,A) € RandB = (B, B,---,B) € R arek-tuples ofA’s and
B’s respectively. We claim that the multilinear polynomidlzy, =5, - - - , z,,,) = 0is an
identity for the additive subgroup if and only if f has nom-split collision.

Claim 6.4.4 P(xy,--- ,x,) = 0isanidentity for the additive subgrodp= (T}, - - - , T}.)
if and only if f has nom-split collision. In other wordsGMIT (R, T, P) is an ‘yes’ in-
stance if and only if has nom-split collision.

Proof of Claim:Supposef has ann-split collision. Specifically, let; € I; (1 < j <m
andi; < iy < --- < i,) be indices such thaf(i;) = --- = f(i,,) = ¢. In the
polynomial P, we substitute the indeterminatg by 7 .

ThenP(T;,,T;,, -+ ,T;,) = AMB, whereM = T;, ---T;, . M is ak-tuple of
t x t matrices such that thé" component of/ is [[", M,, wherei; € I;. Since
bi, b, -+ b, € £* is a lengthm-string containing all thé;’s it will be accepted by the
automaton A. Consequently, tiig, ¢;)™ entry of the matrix)/, which is the(1,¢)"
entry, is1 (as explained in Section 4.2.1). It follows that tfie 1) entry of the matrix
AMB is 1. HenceP = 0 is not an identity over the additive subgroiip

For the other direction, assume tifatas namn-split collision. We need to show that
P = 0 is an identity for the ring’". For anym elementsS;, Sy, -+, S,, € T consider
P(Sy, 82, ,Sm) = AS S, - - - S, B. Since Eactp; is anF,-linear combination of the
generatorgy, - - - , Ty, it follows by distributivity in the ringR that P(S;, Ss, - - -, S,,) IS
anlFy-linear combination of terms of the for(7y,, Tk, - - - , Tk,,) for somem indices
ki,---, ky € [k]. Thus, it suffices to show th&(7y,, Tx,, - -, Tk,,) = 0.

LetT = Ty, Ty, - - - Ty,.. Then, foreaclj € [k] we havel'[j] = T, [j] Tk, 1] - - - Tk, [1]-
Sincef has nan-split collision, for eacly € [N] the set of matrice§M,,, My,, - -+, M, }
is notcontained in the setTy [j], To[5], - - - , Tk[j]}. Thus,T'[j] = Th, [1]1Tkuld] - - - T 4]
Is a product of matriced/,,, M, - - - M, for awordw = wyws - - -w,, that is not ac-
cepted by A. It follows from the previous claim thatf[j]B = 0. Hence we have,
P(Ty,, Ty, -+, Tx,) = 0, which completes the proof. n
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In Section 6.3.1, we have already shown a quantum algorithguery complexity
O(k=+1) for MIT (m is a constant). This bound holds as well &IT. We conclude
this section by showing that any algorithm of query comgiexik, m) (q is any func-
tion) for GMIT will give an algorithm of similar query complexity fan-COLLISION
problem. In particular an algorithm f@MIT of query complexityk°(™/m+1) will im-
prove the best known algorithm fer-COLLISION problem due to Ambainis [Amb07].
The following corollary is an easy consequence of Theoreh26.

Corollary 6.4.5 Let f : [k] — [k] be an instance om-SPLIT COLLISION problem
andGMIT (R, T, P) be an instance a&MIT problem, where the multilinear polynomial
P : R™ — R andT is an additive subgroup aff given byk generators. Then, if we
have a quantum algorithm of query complexity, m) for GMIT problem, we will have
a quantum algorithm fom-SPLIT COLLISIONwith query complexity) (¢(k, m)).

Proof. Let.A be an algorithm foIGMIT with quantum query complexity(k, m).
Given an instance ah-SPLIT COLLISION the generators for the additive subgrdlip
is indexed byl, 2, --- | k (as defined in the proof of Theorem 6.4.2). Also, define the
polynomial P(xz1, xs, - - - , x,,) SO the inputs of ouGMIT problem arel, 2, --- |k and
P. Using the algorithmA, we define another algorithtd’ which does the following.
When: € [k] is invoked by.A for the ring operation, the algorithtd’ constructs the
generatorl; by making only one query to the oracle fér One more query to th¢-
oracle is required to erase the output. Moreoved Wants to check whether the output
of the ring operation is a valid generator (séyfor somej), then alsaA’ uses just two
queries to the oracle gf. Thus we have an algorithpd’ for m-SPLIT COLLISIONwith
query complexitylq(k). [ |

Recall that the best known lower bound feSPLIT COLLISIONproblem isQ(k2/3).
Then, combining Theorem 6.4.2 and Corollary 6.4.5, we(Q@t/?) quantum query
lower bound foIGMIT problem.
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