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Abstract

In this thesis we study the polynomial identity testing problem and its connection to

several other important complexity-theoretic problems. We consider polynomial iden-

tity testing problem over commutative and noncommutative models of computation.

We obtain efficient randomized identity testing algorithm over finite rings. We establish

connections between ideal membership problem and identitytesting and as a byproduct,

we get new understanding of identity testing for depth-3 circuits. Over noncommutative

model, we give new efficient deterministic identity testingand polynomial interpolation

algorithms for small degree and sparse polynomials. Related to identity testing, we ob-

tain interesting derandomization consequences of the Isolation Lemma in the context

of circuit size lower bounds. We also obtain a query efficientquantum algorithm for

testing if a given polynomial is an identity (i.e zero at all the points) for a given ring. We

summarize the main results of the thesis.

Algorithmic results over finite ring :

Givenǫ > 0, we show anǫ-uniform randomized polynomial-time algorithm to sam-

ple from finite black-box rings. This is similar in spirit to Babai’s efficient randomized

sampling algorithm for finite black-box groups [Bab91]. We obtain a polynomial-time

quantum algorithm to compute a basis representation for a black-box ring. Using this

result, we give a polynomial-time quantum algorithm to testwhether a given black-box

ring is a field. Computing the basis representation is based on the sampling algorithm.

Given a polynomialf(x1, x2, · · · , xn) by an arithmetic circuitC over any finite

commutativering R (with unity), we give a randomized polynomial-time algorithm to

test if f ≡ 0 in R[x1, x2, · · · , xn]. Similar results were known over fields (Schwartz-

Zippel Lemma [Sch80, Zip79]) and overZ/nZ [AB03] for n composite.

Ideal membership and polynomial identity testing: Given a polynomialf by an

arithmetic circuitC, and a monomial idealI by a set ofconstantnumber of monomials

as generators, we give a randomized polynomial-time algorithm to test iff ∈ I. This

algorithm is analogous to the randomized Schwartz-Zippel test for polynomial identity

testing. We show that the problem is coNP-hard when the number of generators of the

given monomial ideal is not a constant. In that case, we show an upper bound in the

counting hierarchy.

Given a monomial idealI generated by a constant number of monomials, and a

polynomialf computed by a depth 3 circuit with bounded top gate fan-in, wegive a
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deterministic polynomial-time algorithm to test iff ∈ I. The algorithmic ideas are

from [KS07], but the correctness proof is new and based on Gröbner basis theory. This

approach gives us a different understanding of the identitytesting algorithm for such

circuits.

Noncommutative polynomial identity testing: We give a deterministic polynomial-

time algorithm for identity testing ofnoncommutative circuitscomputing sparse and

small degree polynomials. Before our work, in the noncommutative model, determin-

istic polynomial-time identity testing algorithm was known for noncommutative arith-

metic formulas [RS05]. Our algorithm uses new ideas from automata theory. We give

a deterministic polynomial-time interpolation algorithmfor a sparse and small degree

noncommutative polynomial given by either an arithmetic circuit or by a black-box.

Isolation lemma and polynomial identity testing: We establish connection be-

tween derandomization of the isolation lemma and circuit size lower bounds. We formu-

late a reasonably restricted version of the isolation lemmaand show that a subexponential-

time (non black-box) derandomization (of this version) implies eitherNEXP 6⊂ P/poly

or permanent has no polynomial-size noncommutative arithmetic circuit. Our result can

be considered similar in flavour to the result of Impagliazzo-Kabanets [KI03].

We show that a stronger (black-box) derandomization of the same version of the

isolation lemma means that an explicit polynomial in the commutative model has no

subexponential-size arithmetic circuit. The proof idea isbased on the results on pseudo-

random generators for arithmetic circuits [Agr05].

Query complexity of multilinear identity testing :

Consider any finite ringR (commutative or noncommutative) and any multilinear

polynomialf(x1, x2, · · · , xm) overR[x1, x2, · · · , xm] or R{x1, x2, · · · , xm} (i.e. either

xi, xj are commuting or noncommuting). We consider the problem of testing whetherf

is anidentityfor R, (i.e.f(a1, a2, · · · , am) = 0 for all ai ∈ R), whenm is small (ideally

a constant).

Given a black-box ringR by an additive generating set and a multilinear polyno-

mial f(x1, x2, · · · , xm) overR, we give a quantum algorithm of query complexity (i.e.

number of oracle access)O(k
m

m+1 ), wherek is the number of generators forR.

For a lower bound, we show a reduction from a variant of Collision Problem (well

studied in quantum computation) to our problem. The reduction uses ideas from au-

tomata theory.
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1
Introduction

The basic goal of complexity theory is to prove nontrivial upper and lower bounds

for time and space required for computational problems. In proving upper and lower

bounds, the representation of the input problem and the computational model play a

crucial role. In algebraic complexity theory the most natural model of computation is

the arithmetic circuit. An arithmetic circuit over a field isa directed acyclic graph with

internal nodes labelled as addition (+) and multiplication (×) gates. The circuit takes as

input the indeterminatesx1, · · · , xn and constants from a fieldF. Following the addi-

tion and multiplication operations, the circuit computes apolynomial in the underlying

polynomial ringF[x1, x2, · · · , xn]. It is not difficult to see that a small size (i.e of poly-

nomial size) arithmetic circuit can compute a polynomial having exponential number

of monomials. Also if the circuit size iss, the degree of the output polynomial can be

exponential ins.

One of the central problems in algebraic complexity theory is the Polynomial Iden-

tity Testing Problem (PIT):

Given an arithmetic circuitC over a fieldF with set of indeterminatesx1, x2, · · · , xn,

can we check efficiently whetherC computes the identically zero polynomial in the

polynomial ringF[x1, x2, · · · , xn] ?

A randomized polynomial-time algorithm (more precisely aco-RPalgorithm) for

this problem is known due to the well-known Schwartz-ZippelLemma (see [MR01,

pp.165] and [Sch80, Zip79]). The main challenge is to come upwith a deterministic

polynomial-time (or at least subexponential-time) algorithm. Over the yearsPIT has

played a significant role in our understanding of important complexity theoretic and

algorithmic problems. Well-known examples are the randomized NC algorithms for the
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Chapter 1. Introduction

matching problem in graphs [Lov79, MVV87], and the AKS primality test [AKS04].

The PIT problem has also played an indirect role in importantcomplexity results such

asIP = PSPACE[LFK92, Sha92] and the proof ofPCPtheorem [ALM+98]. 1 The AKS

primality testing algorithm was achieved by derandomizingaspecial instanceof identity

testing. Due to its important connection with many central problems in complexity

theory,PIT has received good attention from theoretical computer science community

over the years.

The initial line of research in this area was towards reducing the number of random

bits in the generalPIT problem. We briefly mention the major results. The random-

ized identity testing algorithm based on Schwartz-Zippel Lemma is simple to describe

[MR01, pp.165]: letC be the input arithmetic circuit of sizes computing a polyno-

mial f(x1, x2, · · · , xn) ∈ F[x1, x2, · · · , xn] of total degree at mostd. The idea is

to fix a subsetS ⊆ F of size at least2d and randomly substituteai ∈ S for xi.

Then if f is not an identically zero polynomial, Schwartz-Zippel Lemma guarantees

that f(a1, a2, · · · , an) = 0 with probability at most1/2. So we get a randomized

polynomial-time (one sided-error) test with success probability at least1/2. The proba-

bility of success can be boosted up by independent repeated trials of the experiment. If

we want a success probability at least1− ǫ for a givenǫ > 0, the running time and the

number of random bits used in this algorithm are(s+log 1
ǫ
)O(1) andΩ(n(log d+log 1

ǫ
)).

Chen and Kao in [CK00] came up with a different idea for identity testing over the field

of rational numbersQ. There, idea is to randomly substitutes eachxi by an irrational

numberfrom a set of suitable size. As one can not substitute and compute a circuit

over irrational numbers, they used a rational approximation technique to suitably ap-

proximate the irrationals used. The number of random bits used by their algorithm is
∑n

i=1⌈log di⌉ (di is the degree ofxi in f ) which is better than the randomness used in

Schwartz-Zippel algorithm. The running the of their algorithm is poly(n, d, 1
ǫ
), where

d is the total degree of the polynomial. If the size of the inputcircuit is s, then the

total degreed can be of exponential ins, and hence the running time of their algorithm

is 2O(s+log 1
ǫ
). Later, Lewin and Vadhan extended the algorithm of Chen-Kaoto finite

fields with similar running time and usage of randomness [LV98]. Finally, Agrawal

and Biswas [AB03] used ideas fromChinese Remainderingand came up with an im-

proved algorithm. In some sense, algorithm of Agrawal-Biswas makes a bridge between

1In the sense that properties of low-degree multivariate polynomials are crucial to these proofs.
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the algorithms of Schwartz-Zippel and Chen-Kao-Lewin-Vadhan combining the best of

them in terms of running time and randomness. The running time of their algorithm is

(s + log 1
ǫ
)O(1) overQ and(s + log q + log 1

ǫ
)O(1) over a finite fieldFq. The amount of

random bits used is
∑n

i=1⌈log di⌉.
Till today, Agrawal-Biswas algorithm remains the most efficient algorithm for gen-

eralPIT in terms of randomness and running time. But the algorithm isfar from being

deterministic polynomial-time or even deterministic subexponential-time.

Another important research direction in algebraic complexity is to prove explicit

lower bounds, i.e to prove that an explicit function is hard to compute by a small size

arithmetic circuit. A concrete goal is to show that the well known permanent polynomial

of a n × n matrix can not be computed by a polynomial (inn) size arithmetic circuit.

But just like in other computational models, the progress inproving lower bounds in

arithmetic circuit model is also very limited. Nontrivial lower bounds are only known for

some restricted classes of arithmetic circuits. In the caseof general arithmetic circuits,

the best known size lower bound isΩ(n log d) for computing an explicit polynomial

in n indeterminates and of degreed [Str73a, BS83, BCS97]. Grigoriev and Karpinski

[GK98] show exponential size lower bound for depth-3 arithmetic circuits overfinite

fields. Later, the lower bound result was extended to algebras of functions over finite

fields [GR98]. Shpilka and Wigderson show quadratic lower bound for depth-3 circuits

over characteristic zero [SW01].

The problem of identity testing and proving lower bounds remained two seemingly

different important problems in algebraic complexity theory until Impagliazzo and Ka-

banets showed an interesting connection between them [KI03]. Impagliazzo-Kabanets

[KI03] show that giving a deterministic polynomial-time (even subexponential-time)

identity testing algorithm will yield strong lower bounds.They also show a partial

converse: assuming lower bounds they show a subexponential-time identity testing al-

gorithm.

As it is widely believed that proving strong lower bounds in arithmetic circuit model

is a very hard problem, the result of Impagliazzo and Kabanets suggests that derandom-

izing the polynomial identity testing (in general) is also avery hard problem. So the nat-

ural research direction that one can think of is to find efficient deterministic algorithms

for identity testing of restricted classes of arithmetic circuits. Also, towards proving

lower bounds, the first task is to prove nontrivial lower bounds for restricted classes

of arithmetic circuits. In last few years, plenty of resultshave appeared in both direc-
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tions. Dvir and Shpilka [DS06], showed a connection betweenconstruction of Locally

Decodable Codes (LDC) and identity testing of depth-3ΣΠΣ circuits. Using explicit

bounds from LDC, they were able to bound the rank of the linearforms of an identically

zeroΣΠΣ circuit. Using that, they give a polynomial-time identity testing algorithm

for multilinearΣΠΣ circuits with bounded fan-in topΣ gate. They also show a quasi-

polynomial time identity testing algorithm forΣΠΣ circuits with bounded fan-in top

gate. Later, Kayal and Saxena improved the result giving a deterministic polynomial-

time identity testing algorithm forΣΠΣ circuits with bounded fan-in top gate [KS07].

Their algorithm is based on application of Chinese Remaindering in local rings. Saxena

[Sax08] show efficient identity testing algorithm for depth-3 diagonal circuits.

The algorithms of Dvir-Shpilka [DS06], Kayal-Saxena [KS07] and Saxena [Sax08]

are non black-box, i.e their algorithms look into the structure of the given circuit. For

the black-box case, Karnin and Shpilka [KS08] recently improve the situation giving

a quasi-polynomial time identity testing algorithm forΣΠΣ circuits with bounded top

gate fan-in. Their algorithm runs in polynomial time if the circuit is multilinear. The al-

gorithm crucially uses the rank upper bound of identically zeroΣΠΣ circuits obtained in

[DS06] and a suitable application of an explicit extractor construction for affine sources

[GR05]. Very recently, Shpilka and Volkovich consider identity testing of read-once

polynomials [SV08]. An arithmetic circuitC(x1, x2, · · · , xn) is a read once formula if

each variablexi occurs at most once in the leaf andC is a formula. The polynomial that

C computes is called a read-once polynomial. Shpilka-Volkovich consider arithmetic

circuits which are sums ofk read-once formulas for a constantk. They give an algo-

rithm for identity testing of such circuits with running time nO(k2). They also consider

the problem in a black-box setting. Using depth reduction technique, they give an iden-

tity testing algorithm of running timenO(d+k2) whered is the depth of the circuit. In

particular ifd is a constant, their algorithm runs in polynomial time.

Towards proving lower bounds, in a seminal work, Raz has shown that anymulti-

linear formulathat computes the determinant or permanent of an × n matrix, must be

of sizenΩ(log n) [Raz04]. Subsequently, using ideas similar to [Raz04], more results for

explicit lower bounds are discovered [Raz06, RSY07, RY08].

More recently, a result of Agrawal and Vinay [AV08] improvesour understanding

about identity testing and lower bounds for general arithmetic circuits. Intuitively, their

results indicates that proving strong lower bounds or (black-box) derandomization of

polynomial identity testing for depth-4 arithmetic circuits is as hard as for arbitrary
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Chapter 1. Introduction

depth arithmetic circuits. More formally they show, if a polynomialf(x1, x2, · · · , xn)

of degreed = o(n) can be computed using an arithmetic circuit of size2o(d+d log n
d
),

thenf can be computed by a depth-4 circuit of similar size and the fan-in for the mul-

tiplication gates areo(d). Towards identity testing they show that a complete black-box

derandomization of polynomial identity testing for depth-4 circuits will give a deter-

ministic nO(log n) time identity testing algorithm for arbitrary arithmetic circuits. The

proof idea is based on a depth reduction technique for arithmetic circuits introduced in

[AJMV98].

All the results that we have mentioned so far are over commuting set of variables,

i.e.xixj = xjxi. In the noncommutative model of computation, we consider polynomi-

als over the noncommutative ringF{x1, x2, · · · , xn} with xixj 6= xjxi (for i 6= j). The

problem of Polynomial Identity Testing and proving lower bounds are analogously de-

fined over noncommutative model and well studied too. The first significant size lower

bound result was shown by Nisan in [Nis91]. Nisan proved thatany noncommutative

arithmetic formulafor permanent must be of exponential size. So far this is the best

known lower bound result in the noncommutative model.

Turning to identity testing, Bogdanov and Wee in[BW05] show a randomized poly-

nomial time identity testing algorithm for noncommutativecircuit computing small de-

gree polynomial. Their algorithm shows a reduction from noncommutative to com-

mutative identity testing using a well-known theorem of Amitsur and Levitzki [AL50].

Amitsur-Levitzki’s theorem allows them to evaluate the given circuit over random points

from a suitable small dimension matrix algebra overF. If the output polynomial is not

identically zero then the result of [AL50] guarantees that with high probability the cir-

cuit evaluates to nonzero.

Raz and Shpilka [RS05] came up with first deterministic polynomial-time identity

testing algorithm for arithmetic formulas overF{x1, x2, · · · , xn}. They use ideas from

[Nis91] to convert a noncommutative formula to an equivalent algebraic branching pro-

gram (ABP) and give a deterministic identity test for such ABPs.

1.1 Thesis Outline

The basic goal of this thesis is to continue the study of Polynomial Identity Testing prob-

lem (and also some closely related problems) over commutative and noncommutative
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Chapter 1. Introduction

models and its connection with other important problems in complexity theory. Here,

we highlight the main results of the thesis. Subsequently, in section 1.2, we describe the

results and the organization of the thesis in detail.

A basic algebraic structure that keeps recurring in many applications related to iden-

tity testing is a finite ring (for example see [AS05] and [KS07]). It motivates the follow-

ing natural question: Given an arithmetic circuitC over a finite commutativering with

unity, can we efficiently test whetherC computes an identically zero polynomial? We

give a randomized polynomial-time algorithm for this problem.

We study the connection of identity testing problem with ideal membership testing,

which is another important problem in algebraic complexitytheory. We show that un-

der certain restrictions about the underlying circuits andideals, the complexity of the

two problems are closely related. A main result is a new (and possibly simpler) proof

of Kayal-Saxena’s identity testing algorithm for depth-3 circuits. Our proof technique

departs from local ring theoretic technique (used in [KS07]) and uses simple ideas from

Gröbner basis theory.

Then we turn to noncommutative polynomial identity testingproblem. We show

a deterministic polynomial-time identity testing algorithm for noncommutative circuits

computingsparseand small degree polynomials. Our algorithm uses new ideas from au-

tomata theory. In fact, we give a deterministic polynomial-time algorithm to interpolate

polynomials computed by such circuits.

We study the connections between the well known Isolation Lemma (introduced in

[MVV87]) and circuit lower bounds. We prove that a (non black-box) derandomization

of certain restricted version of the isolation lemma yieldslower bound consequence in

the noncommutative model which is analogous to the result ofImpagliazzo-Kabanets

[KI03]. We also show that a stronger (black-box) derandomization implies exponential

circuit size lower bound for an explicit multilinear polynomial in commutative model.

Finally, we study the complexity of testing whether a given polynomial is aniden-

tity for a finite ringR (which can be commutative or noncommutative). We assume

that, the input ring is given by an additive set of generatorsand the ring operations are

performed through a ring oracle. We are interested in upper and lower bounds for the

query complexity (number of accesses to the ring oracle) of the problem. In the case

when the input polynomial depends only on a few variables (ideally a constant), we

show a quantum algorithm of query complexity sublinear in the size of the generating

set. Algorithmic ideas of our algorithm are based on the quantum algorithm for Group

6



Chapter 1. Introduction

Commutativity Testing by Magniez and Nayak [MN07]. For proving a lower bound, we

show a reduction from a variant of the collision problem (which is well-studied in quan-

tum computation) to our problem. To the best of our knowledge, the quantum algorithm

for testing polynomial identities was never studied before.

1.2 Results and the Organization of the Thesis

Now, we describe the main results of each of the chapters of the thesis in detail. The

technical contents of the thesis are organized in the following five chapters.

1.2.1 Algorithmic Problems over Finite Rings

We study some algorithmic problems over black-box rings. Black-box rings are finite

rings given by a set of generators and the ring elements are encoded as binary strings.

The ring operations are performed through an oracle. The black-box model for repre-

senting the finite ring is motivated by the black-box model for finite groups which is

well studied in algorithmic group theory [Bab91, BS84].

The first result that we show is a randomized polynomial-timealmost uniform sam-

pling algorithm from finite rings. A crucial part of the algorithm is to compute an addi-

tive generating set for the given ring(R, +, ∗). The input generating set forR generates

R using both∗ and+. The second result is a quantum polynomial-time algorithm to

compute a basis representation for the finite black-box ring. 2 The algorithm uses the

sampling algorithm as a subroutine to compute an additive generating set. Then, suit-

ably using ideas from the hidden subgroup problem framework(which is well studied in

quantum computation), we can compute a basis representation for R. As an application

of this result, we show how to test whether a given black-box ring is a field. We give a

quantum polynomial-time algorithm for this problem.

Next, we study the Polynomial Identity Testing problem overfinite commutative

rings with unity. We prove an analogue of Schwartz-Zippel Lemma over finite com-

mutative rings. Suppose the input polynomial is given as a black-box. Then, using a

Schwartz-Zippel analogue, we show a randomized polynomial-time algorithm for iden-

2For a commutative ringR, e1, e2, · · · , ek is a basis ifR = Zn1
e1 ⊕ Zn2

e2 ⊕ · · · ⊕ Znk
ek and

eiej =
∑k

ℓ=1
aijℓeℓ, whereaijℓ ∈ Znℓ

.

7
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tity testing over finite rings satisfying some particular property. 3 More interestingly,

over anyarbitrary commutative ring with unity, we show a randomized polynomial-time

identity testing algorithm when the input polynomial is given as anarithmetic circuit.

For the underlying ring, we assume that the ring operations are performed through an

oracle. The results of this chapter are reported in [ADM06, AMS08].

1.2.2 Ideal Membership and Polynomial Identity Testing

We study connections between Ideal Membership problem and Polynomial Identity

Testing. The Ideal Membership Problem is the following:

Let I = 〈g1, g2, · · · , gℓ〉 be an ideal in the polynomial ringF[x1, x2, · · · , xn] gener-

ated by the polynomialsg1, g2, · · · , gℓ, wheregi ∈ F[x1, x2, · · · , xn]. Also, let f ∈
F[x2, x2, · · · , xn] be a given polynomial. The ideal membership problem is to test

whetherf ∈ I, i.e whether there exists polynomialsa1, a2, · · · , aℓ in F[x1, x2, · · · , xn]

such thatf = a1g1 + a2g2 + · · ·+ aℓgℓ?

We consider the input polynomialf be given by an arithmetic circuit and a mono-

mial ideal given by a set of constant number of monomials as generators. In this case,

we show that the complexity of monomial ideal membership is similar to that of polyno-

mial identity testing. We give a randomized polynomial-time monomial ideal member-

ship testing algorithm which is analogous to the randomizedpolynomial identity testing

algorithm using Schwartz-Zippel Lemma.

Extending the result further, we show that if the number of generators of the given

monomial ideal is not a constant, then the problem is coNP-hard. We show an upper-

bound for this problem in the counting hierarchy.

We consider monomial ideal membership problem, where the input polynomialf

is computed by a depth-3 ΣΠΣ circuit with bounded fan-in output gate, and the ideal

is generated by constant number of monomials. We show that the complexity of ideal

membership problem in this case is essentially same as that of identity testing ofΣΠΣ

circuits with bounded fan-in output gate, which is known to be in deterministic polyno-

mial time [KS07]. In fact the algorithm of [KS07] can be directly applied to our case.

But what is more interesting is that, we can develop the algorithm and its correctness

proof based on Gröbner basis theory. We believe this approach is somewhat simpler and

3Our algorithm works when the characteristics of the local ring components of the given ring, are
suitably large depending on the degree of the given polynomial.
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direct compared to the analysis of [KS07]. Moreover, this gives us a different under-

standing of the identity testing algorithm for such circuits. The results of this chapter

are reported in [AM07].

1.2.3 Noncommutative Polynomial Identity Testing

We give a deterministic polynomial-time algorithm for testing if a sparse noncommu-

tative polynomial having small degree (i.e the degree is bounded by a polynomial), is

identically zero. The polynomial is given by an arithmetic circuit or by a black-box.

Prior to our work, in noncommutative model, deterministic polynomial-time algorithm

was known only for noncommutativeformulas[RS05].

We also show a deterministic polynomial-time interpolation algorithm for sparse

and small (bounded by a polynomial) degree noncommutative polynomials given by a

black-box. For identity testing and interpolation, we assume that we can evaluate the

given black-box polynomial over any matrix algebra.

Finally, we give an efficient deterministic reconstructionalgorithm for black-box

noncommutative algebraic branching programs. Our black-box model assumes that we

can query for the output ofany gateof the algebraic branching program, not just the

output gate. Our algorithm is based on the algorithm of Raz and Shpilka [RS05].

The main idea behind most of the results in this part of the thesis is the selection of

a small set of matrices (of small dimension) and then to evaluate the given polynomial

over those matrices as input. For identity testing and interpolation, the selection of a

small sized matrix family crucially uses the fact that the black-box polynomial is sparse

and of small degree. The construction of such matrices uses ideas from automata theory.

The results of this chapter are reported in [AMS08].

1.2.4 Derandomizing the Isolation Lemma and Lower Bounds for

Circuit Size

We study the connections between derandomizing the Isolation Lemma and proving

circuit lower bounds. Originally the Isolation Lemma was formulated and proved in the

seminal paper of Mulmuley, Vazirani and Vazirani [MVV87]. We briefly recall their

result.

Let U be a set of sizen andF be any collection of subsets ofU . Let w be any
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random weight assignment to the elements ofU from [2n]. Then the Isolation Lemma

states that with high probability (≥ 1/2), there will be a unique minimum weight set in

F .

Over the years, this result has found several important applications in complexity

theory. To state a few, a randomized NC algorithm for finding perfect matching in

graphs, proving NL⊆ UL/poly e.t.c. Also it is known that suitably derandomizing (i.e

choosing the weight functionw deterministically) some restricted version of the isola-

tion lemma will suffice to prove a NC algorithm for matching (which is an outstanding

open problem in complexity theory) and NL⊆ UL.

Here we note that, in general the isolation lemma can not be derandomized com-

pletely. The reason is that there are too many (22n
) possible different set systems for

U . More precisely, the following is observed in [Agr07]: The Isolation Lemma can

not be fully derandomized if we allow weight functionsw : U → [nc] for a constantc

(i.e. weight functions with a polynomial range). More formally, for any polynomially

bounded collection of weight assignments{wi}i∈[nc1 ] with weight range[nc], there ex-

ists a familyF of [n] such that for allj ∈ [nc1], there exists two minimal weight subsets

with respect towj. So the real question is whether we can derandomize a particular

application of the isolation lemma, which is highly problemspecific.

We show that derandomizing reasonably restricted versionsof the isolation lemma

implies circuit size lower bounds. We derive the circuit lower bounds by examining

the connection between the isolation lemma and polynomial identity testing. We give a

newrandomized polynomial-time identity test for noncommutative circuits computing

small degree polynomials. Our algorithm is based on the isolation lemma and automata

theoretic ideas used for noncommutative sparse polynomialidentity testing. Conceptu-

ally, our algorithm is very different from the algorithm of Bogdanov and Wee [BW05].

Using this result and the result of Impagliazzo-Kabanets [KI03], we show that deran-

domizing the isolation lemma implies noncommutative circuit size lower bounds. For

the commutative case, a stronger derandomization hypothesis allows us to construct an

explicit multilinear polynomial that does not have subexponential size commutative cir-

cuits. The proof technique is based on Agrawal’s work on pseudorandom generator for

arithmetic circuits [Agr05]. The restricted versions of the isolation lemma we consider

are natural and would suffice for the standard applications of the isolation lemma. The

results of this chapter are reported in [AM08].
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1.2.5 Quantum Query Complexity of Multilinear Identity Testing

We study the complexity of testing whether a given multilinear polynomial is anidentity

for a given ring. To make the problem more specific, letf(x1, x2, · · · , xm) be a mul-

tilinear polynomial overany finite ringR. The variables can be either commuting or

noncommuting. Can we test efficiently whetherf(a1, a2, · · · , am) = 0 for all ai ∈ R

? Notice that testing whetherf(a1, a2, · · · , am) = 0 for all ai ∈ R is different from

testing whetherf(x1, x2, · · · , xm) is anidentically zero expression(which is the Poly-

nomial Identity Testing Problem) for the ringR[x1, x2, · · · , xm] (whenxi, xj commute)

or R{x1, x2, · · · , xm} (whenxi, xj do not commute). To see the difference, consider

the following simple example: letR be any finite commutative ring andR{x1, x2}
is noncommutative polynomial ring (x1, x2 do not commute). Then the polynomial

f(x1, x2) = x1x2 − x2x1 is an identity forR but it is not an identically zero expression

for R{x1, x2}.
In general the problem of testing whether a polynomial is an identity for a ring is

NP hard. In our setting, we consider the input ringR is given by a set ofk additive

generators and the ring operations are performed by aring oracle. We are interested

only in thequery complexityof the problem i.e the number of accesses to the ring oracle.

For smallm (ideally constant), we give a quantum algorithm of query complexity

O(k
m

m+1 ) for testing whetherf(x1, x2, · · · , xm) is an identity forR. Thus the query

complexity of our algorithm is sublinear in the number of generators. The algorithmic

ideas of our algorithm is inspired by the quantum algorithm for group commutativity

testing [MN07]. The main technical tools used in our algorithm are a generalization of a

group theoretic result by Pak [Pak00] and Szegedy’s resultson quantum random walks

[Sze04].

Towards a quantum lower bound for this problem, we show a reduction from a vari-

ant of Collision Problem (well studied in quantum computation, see [AS04]) to our

problem. This reduction uses automata theoretic ideas thatwe have used for noncom-

mutative polynomial identity testing. The results of this chapter are reported in [AM09].
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2
Algorithmic Problems over Finite Rings

2.1 Introduction

Finite rings often play an important role in the design of algorithms for algebraic prob-

lems. Berlekamp’s randomized algorithm for factoring univariate polynomials over fi-

nite fields is a classic example [Ber67, vzGG03]. More recently, as explained in [AS05],

the celebrated AKS primality test [AKS04] can be cast in a ring-theoretic framework.

Lenstra’s survey [Len92] gives other algorithmic examples. It is shown in [AS05, KS06]

that the Graph Isomorphism problem is polynomial-time many-one reducible to the Ring

Isomorphism Problem. Further, it is shown in [KS06] that theInteger Factoring problem

is randomized polynomial-time Turing reducible to finding an isomorphism between

two finite rings.

As pointed out in [AS05], the representation of the finite ring is crucial to study

algorithmic problems over finite rings. For thepolynomial representationof finite rings

it is shown that the ring automorphism problem (to test whether a given finite ring has

a nontrivial automorphism) is NP-hard and the ring isomorphism problem is coNP-

hard [AS05, Theorem 1]. In thebasis representation(defined in section 2.2), the ring

isomorphism problem is in NP∩ coAM [KS06].

In this chapter, we explore the complexity of ring-theoretic problems where the fi-

nite rings are given by ablack-boxi.e, by a ring oracle. We give the formal definitions

in Section 3.2. In a sense, a black-box ring is representation free. This model is mo-

tivated by finite black-box groups introduced by Babai and Szemerédi [BS84, Bab92]

and intensively studied in algorithmic group theory.

We show a polynomial-timequantumalgorithm to obtain a basis representation for
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a given black-box ring. Thus, up to quantum polynomial-time, the two representations

are equivalent. A key procedure we use is an almost-uniform random sampling algo-

rithm for finite black-box rings. Our algorithm is quite simple as compared to Babai’s

sampling algorithm for black-box groups [Bab91].

It is an open question whether there is a randomized polynomial-time algorithm to

recover a basis representation from the black-box oracle. The main obstacle isaddi-

tive independence testingin a black-box ringR: given r1, r2, · · · , rk ∈ R is there a

nontrivial solution to
∑l

i=0 xiri = 0 wherexi’s are integers. There is no known classi-

cal polynomial-time algorithm for this problem. However, it fits nicely into the hidden

subgroup problem framework and we can solve it in quantum polynomial-time as the

additive structure ofR is an abelian group. As a further application of the sampling

algorithm, we obtain a quantum polynomial-time algorithm for testing whether a given

black-box ring is a field (Sections 2.5). The problem is inspired by primality testing: a

positive integern is prime if and only if the ringZn is a field. In primality testing the

ring Zn is given explicitly (becausen is the input), whereas in our problem we consider

black-box rings.

The second problem that we study in this chapter is the complexity of polynomial

identity testing problem (PIT) (which is also the main theme of this thesis) over finite

rings . We first explain the motivation behind studying the complexity of polynomial

identity testing over rings. An important problem in computational algebra is ideal

membership testing [Sud98, CLO92]. SupposeI ⊂ F[x1, · · · , xn] is an ideal gener-

ated by polynomialsg1, · · · , gr ∈ F[x1, · · · , xn] 1 andf ∈ F[x1, · · · , xn]. The ideal

membership problem is to test whetherf ∈ I. In general the ideal membership prob-

lem is EXPSPACE-complete [MM82, May89]. We observe a connection between ideal

membership and identity testing problem. LetI ⊂ F[x1, · · · , xn] be an ideal gener-

ated by polynomialsg1, · · · , gr ∈ F[x1, · · · , xk] andf ∈ F[x1, · · · , xn]. Observe that

f ∈ I if and only if f is identically zero in the ring(F[x1, · · · , xk]/I)[xk+1, · · · , xn].

Thus, ideal membership is easily reducible to polynomial identity testing when the co-

efficient ring isF[x1, · · · , xk]/I. Consequently, identity testing for the coefficient ring

F[x1, · · · , xk]/I is EXPSPACE-hard even when the polynomialf is given explicitly as

a linear combination of monomials (we continue to study the connections between ideal

membership and polynomial identity testing problem in Chapter 3).

1I.e I = {
∑r

i=1
figi | ∀i, fi ∈ F[x1, x2, · · · , xn]}.
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This raises the following question about the complexity ofPIT for the polynomial

ring R[x1, · · · , xn], whereR is a commutative ring with unity. How does the complexity

depend on the structure of the ringR? We give a precise answer to this question in this

chapter. We show that the algebraic structure ofR is not important. It suffices that the

elements ofR have polynomial-size encoding, and w.r.t. this encoding the ring opera-

tions can be efficiently performed. This is in contrast to thering F[x1, · · · , xk]/I: there

are a double exponential number of elements of polynomial degree inF[x1, · · · , xk] and

the ring operations inF[x1, · · · , xk]/I are essentially ideal membership questions and

hence computationally hard.

More precisely, we study polynomial identity testing for finite commutative ringsR,

where we assume that the elements ofR are uniformly encoded as strings in{0, 1}m
with two special strings encoding0 and1, and the ring operations are carried out by

queries to thering oracle. In other words, we assume the ring is presented as a black-

box ring. Before our work, randomized polynomial-time algorithm for identity testing

was known over the ringZm for m composite [AB03].

For identity testing algorithms, we consider only finite commutative ring with unity.

Although in the identity testing algorithm we do not requireto use the full power of the

sampling algorithm mentioned above, but a crucial part is tosample almost uniformly

from the set of multiples of unity. We discuss it in more detail in the subsequent sections.

2.2 Preliminaries

A finite ring is a triple(R, +, ∗), whereR is a finite nonempty set such that(R, +) is a

commutative group and(R, ∗) is a semigroup, such that∗ distributes over addition. A

subringR′ is a subset ofR that is a ring under the same operations. LetS ⊂ R. The

subringgeneratedby S is the smallest subring〈S〉 of R containingS. Thus, ifR = 〈S〉
then every element ofR can be computed by an arithmetic circuit that takes as input the

generators fromS and has the ring operations+ and∗ as the gate operations. It is easy

to see that every finite ringR has a generator set of size at mostlog |R|.
A ring oracle R takes queries of the form(x, y, +), (x, y, ∗), (x, addinv), where

x, y are strings ofequal length(say m) over Σ = {0, 1}. The response to each of

these queries is either a string of lengthm or a symbol indicating invalid query. We

assume that the additive and multiplicative identity (if any) of the ring are encoded by
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two special strings. Ring oracle also allows to query for theadditive and multiplicative

identities.

Let R(m) be the set ofx ∈ Σm for which (x, addinv) is a valid query. ThenR

is a ring oracle ifR(m) is either empty or a ring with ring operations described by

the responses to the above queries. The oracleR defines the finite ringsR(m). The

subrings ofR(m), given by generator sets will be calledblack-box rings. To keep the

description simple, without mentioning the termblack-box ringsexplicitly, sometime

we say that the input ring is given by a set of generators and the ring operations are

performed through an oracle. Throughout this thesis, we usethe termsblack-box ring

andring given by an oracleinterchangeably.

A basis representationof a finite ringR [Len92, KS06] is defined as follows: the

additive group(R, +) is described by a direct sum(R, +) = Zℓ1e1⊕Zℓ2e2⊕· · ·⊕Zℓnen,

whereℓi are the additive orders ofei. Multiplication in R is specified by the products

eiej =
∑n

k=1 γk
ijek, for 1 ≤ i, j ≤ n, whereγijk ∈ Zℓk

are the structural constants

definingR.

2.2.1 Structure of Finite Rings

We recall some facts about the structure of finite commutative rings. Details can be

found in excellent texts, such as [McD74, AM69]. LetR be any commutative ring. A

nonempty subsetI of R is an ideal of R if I is closed under ring addition and for all

r ∈ R, a ∈ I, ra ∈ I.

A commutative ringR with unity is a local ring if R has auniquemaximal ideal

M . An elementr ∈ R is nilpotent if rn = 0 for some positive integern. An element

r ∈ R is aunit if it is invertible (rr′ = 1 for some elementr′ ∈ R). Any element of a

finite local ring is either a nilpotent or a unit. An idealI is aprime idealof R if ab ∈ I

implies eithera ∈ I or b ∈ I. For finite commutative rings, prime ideals and maximal

ideals coincide. These facts considerably simplify the study of finite commutative rings

(in contrast to infinite rings).

Theradical of a finite ringR denoted byRad(R) is defined as the set of all nilpotent

elements, i.e

Rad(R) = {r ∈ R | ∃n > 0 s.trn = 0}

The radicalRad(R) is an ideal ofR, and it is the unique maximum ideal ifR is a

local ring. Letm denote the least positive integer such that for every nilpotentr ∈ R,
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rm = 0, i.e (Rad(R))m = 0. Let R be any finite commutative ring with unity and

{P1, P2, · · · , Pℓ} by the set of all maximal ideals ofR. Let Ri denotes the quotient ring

R/P m
i for 1 ≤ i ≤ ℓ. Then, it is easy to see that eachRi is a local ring andPi/P

m
i

is the unique maximal ideal inRi. We recall the following structure theorem for finite

commutative rings.

Theorem 2.2.1 ([McD74], Theorem VI.2, page 95)LetR be a finite commutative ring.

ThenR decomposes (up to order of summands) uniquely as a direct sumof local rings.

More precisely

R ∼= R1 ⊕R2 ⊕ · · · ⊕ Rℓ,

via the mapφ(r) = (r+P m
1 , r+P m

2 , · · · , r+P m
ℓ ), whereRi = R/P m

i andPi, 1 ≤ i ≤ ℓ

are all the maximal ideals ofR.

It is easy to see thatφ is a homomorphism with trivial kernel. The isomorphismφ

naturally extends to the polynomial ringR[x1, x2, · · · , xn], and gives the isomorphism

φ̂ : R[x1, x2, · · · , xn]→ ⊕ℓ
i=1Ri[x1, x2, · · · , xn].

2.2.2 Results from Quantum Computation

In this section we briefly recall some well known algorithmicresults from quantum

computation. These results will be useful in the proof of Theorem 2.4.1 in Section 2.4.

An excellent source for details of most of these results is the text by Nielsen and Chuang

[NC00].

We start by recalling theHidden Subgroup Problem[NC00, pp240] (HSP): LetG =

〈g1, g2, · · · , gk〉 be a finite abelian group group andK < G be a subgroup ofG (which

is hidden). LetX be a finite set andf : G → X be a function such thatf is constant

on the cosets of the subgroupK and distinct across each cosets. A standard fact in

quantum computation is that a quantum algorithm can accessf via a suitable oracle

Uf : |g〉|h〉 → |g〉|h ⊕ f(g)〉 for g ∈ G andh ∈ X. Here we assume suitable binary

encodings for the elements inX. The problem is to find a generating set forK.

It is well known that the Hidden Subgroup Problem can be solved in quantum

polynomial-time. The algorithmic ideas are similar to the Shor’s polynomial time quan-

tum algorithms for Integer Factoring and Discrete Logarithm problem [Sho97].

A well-known application of Hidden Subgroup Problem is theOrder Finding Prob-

lem([NC00, pp 240-242] and [CM01]). LetG be a finite abelian black-box group (w.l.g
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assume additive) given by a set of generators anda ∈ G be a given element. The Order

Finding problem is to find the minimum integerr such thatra = 0 (r is the order ofa in

G). The problem of finding the order fits nicely into the framework of Hidden Subgroup

Problem. To see this, letfa be a function fromZ → G such thatfa(x) = xa. Now

fa(x) = fa(y) if and only if x− y ∈ rZ. The hidden subgroup isK = rZ. Finding the

generator forK (which isr) is same as finding the order ofa. Hence the Order Finding

Problem can also be solved in quantum polynomial-time usingthe solution of Hidden

Subgroup Problem.

2.3 Random Sampling from a Black-Box Ring

In this section we present a simple polynomial-time sampling algorithm that samples

almost uniformly from finite black-box rings. LetR be a black-box ring generated by

S. More precisely, any element ofR can be generated from the elements ofS using ring

addition and multiplication.

We will describe a randomized algorithm that takesS as input and with high prob-

ability computes anadditive generating setT for (R, +). I.e. every element ofR is

expressible as a sum of elements ofT .

Remark 2.3.1 In general, for a ringR, a generating setS and an additive generating

setT can be different. Consider the following example. For the ringR = Z2[x]/〈x3 +

x + 1〉, S = 〈1, x〉 is a generating set using+ and ∗. However,S is not an additive

generating set.

Using a additive generator setT for R, it turns out that we can easily sample from

(R, +). We start by defining formally the notion of almost uniform sampling fromR.

Definition 2.3.2 LetR be a black-box ring given by a set of generatorS, andǫ > 0 be

a given constant. The elements ofR are uniformly encoded over{0, 1}m. Anǫ-uniform

sampling algorithm forR is a randomized polynomial-time algorithmA (that takes as

inputS, ǫ) such that for anyr ∈ R:

1− ǫ/2

|R| ≤ Prob[A outputsr] ≤ 1 + ǫ/2

|R| ,

where the probability is over the internal coin tosses ofA. The algorithmA runs in time

poly(m, |S|, log 1
ǫ
).
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In the following lemma, we show an almost uniform sampling algorithm from a

black-box ringR given by a set of additive generators.

Lemma 2.3.3 Let R be a finite black-box ring given by an additive generator setT =

{r1, r2, · · · , rn} and the elements ofR are encoded uniformly over{0, 1}m. Then for

a givenǫ > 0, there is a polynomial-timeǫ-uniform sampling algorithm forR using

O(n(m + log 1
ǫ
)) ring additions andO(n(m + log 1

ǫ
)) random bits.

Proof. Let k1, k2, · · · , kn be the additive orders of{r1, r2, · · · , rn} in R. Define the

onto homomorphismξ : Zk1×Zk2×· · ·×Zkn −→ R asξ(x1, x2, · · · , xn) =
∑n

i=1 xiri.

Suppose we canǫ-uniformly sample fromZk1×Zk2×· · ·×Zkn . Let (x1, x2, · · · , xn) be

a sample point fromZk1 × Zk2 × · · · × Zkn . Sinceξ is an onto homomorphism,ξ−1(r)

has the same cardinality for eachr ∈ R. More precisely, the cardinality ofξ−1(r) is

equal to the cardinality of the kernel of the homomorphismξ. Hence,ξ(x1, x2, · · · , xn)

is anǫ-uniformly distributed random element fromR.

Thus, it suffices to show that we can almost uniformly sample from Zk1 × Zk2 ×
· · · × Zkn. Notice that we do not know theki’s. But we know an upper bound, namely

2m, for each ofk1, k2, . . . , kn. Take a suitably largeM > 2m to be fixed later in the

analysis. The sampling is as follows: pick(x1, x2, · · · , xn) uniformly at random from

[M ]n and output
∑

xiri. Let (a1, a2, · · · , an) ∈ Zk1 × Zk2 × · · · × Zkn and let,

P = Prob[xi ≡ ai mod ki, 1 ≤ i ≤ n].

Thexi for which xi ≡ ai mod ki are preciselyai, ai + ki, · · · , ai + ki⌊(M − ai)/ki⌋.
Let M ′

i = ⌊(M −ai)/ki⌋. ThenP =
∏n

i=1
M ′

i+1

M
≤
∏n

i=1

1+
M−ai

ki

M
=
∏n

i=1
1
ki

(1+ ki−ai

M
).

Using the fact thatki ≤ 2m, we getP ≤∏n
i=1

1
ki

(1 + 2m

M
).

On the other hand, it is easy to check that,P ≥ 1
Mn

∏

i(
M−ai

ki
) ≥

∏

i(1/ki)(1− ai

M
) ≥

(1− 2m

M
)
∏

i
1
ki

. ChoosingM = ⌈(2m+1)/ǫ⌉, we can see that,

1− ǫ
2

|R| ≤ P ≤ 1 + ǫ
2

|R| .

The number of ring additions required isO(n log M) which is ofO(n(m + log 1
ǫ
)). To

computexiri we use a standard doubling algorithm and thus make at mostO(log xi)

queries to the ring oracle, which is bounded byO(logM). Also it is easy to see that the

number of random bits used is ofO(n(m + log 1
ǫ
)).
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Let R = 〈S〉 be a black-box ring. Denote bŷR the additive subgroup of(R, +)

generated byS. I.e. R̂ is the smallest additive subgroup of(R, +) containingS. Notice

thatR̂ could be a proper subset ofR, andR̂ need not be a subring ofR in general.

Lemma 2.3.4 Let R = 〈S〉 be a black-box ring, and̂R be the additive subgroup of

(R, +) generated byS. ThenR̂ = R if and only ifR̂ is closed under the ring multipli-

cation: i.e.R̂r ⊆ R̂ for eachr ∈ S.

Proof. If R̂ = R then the condition is obviously true. Conversely, notice that R̂r ⊆ R̂

for eachr ∈ S implies thatR̂ is closed under multiplication and henceR̂ = R.

Theorem 2.3.5 There is a randomized algorithm that takes as input a black-box ring

R = 〈S〉 (the elements ofR are uniformly encoded over{0, 1}m) and with high proba-

bility computes an additive generating set for(R, +) and runs in time polynomial in the

input size.

Proof. The algorithm starts withS and proceeds in stages by including new randomly

picked elements into the set at every stage. Thus, it computes a sequence of subsets

S = S1 ⊆ S2 ⊆ . . . ⊆ Sℓ, whereℓ will be appropriately fixed in the analysis. LetHi

denote the additive subgroup generated additively bySi for eachi. Notice thatH1 = R̂.

We now describe stagei of the procedure where, givenSi, the algorithm will compute

Si+1. First, notice that for eachr ∈ S, Hir is a subgroup of(R, +) that is additively

generated by{xr | x ∈ Si}. Thus, we can use Lemma 2.3.3 toǫ-uniformly sample

(for a givenǫ) in polynomial time an elementxir from Hir, for eachr ∈ S. We now

define the setSi+1 = Si ∪ {xir | r ∈ S}. Clearly, if ℓ is polynomially bounded then the

above sampling procedure outputsSℓ in polynomial time. It thus remains to analyze the

probability thatSℓ additively generates(R, +).

Claim. For ℓ = 4m + 1 the probability thatSℓ additively generates(R, +) is at least

1/3− δ(ǫ), whereδ(ǫ) will be appropriately fixed in the analysis.

Proof of Claim:. The proof is a simple application of Markov inequality. We first recall

Markov inequality from [MR01, pp 46].

Markov Inequality: Let Y be a random variable that takes only non-negative val-

ues. Then for any positive numbert,

Prob[Y ≥ t] ≤ E[Y ]

t
.
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E[Y ] is the expectation of the random variableY .

We define indicator random variablesYi, 1 ≤ i ≤ 4m as follows:Yi = 1 if Hi =

Hi+1 andHi 6= R, andYi = 0 otherwise. LetY =
∑4m

i=1 Yi. First, we bound the

expected value of eachYi. If Hi = R then clearlyE[Yi] = 0. SupposeHi 6= R. By

Lemma 2.3.4, there is anr ∈ S such thatHir 6⊆ Hi. As Hir is an additive group it

follows thatHir ∩ Hi is a proper subgroup ofHir and hence|Hir ∩ Hi| ≤ |Hir|/2.

Therefore, for aǫ-uniformly sampledx ∈ Hir the probability that it lies inHi is at most

1/2(1 + ǫ/2) (use Lemma 2.3.3). So, Prob[Yi = 1] ≤ Prob[xir ∈ Hi] ≤ 1/2(1 + ǫ/2)

Putting it together, we getµ = E[Y ] ≤ 2m(1 + ǫ/2). Now, by Markov inequality

Prob[Y ≥ 3m] ≤ µ/3m ≤ 2/3(1 + ǫ/2).

So, for the proof of the claim, we takeδ(ǫ) = ǫ/3.

Combining Theorem 2.3.5 with Lemma 2.3.3, we immediately obtain the main the-

orem of this section.

Theorem 2.3.6 There is a polynomial-time almost uniform sampling algorithm from

black-box rings that takes as inputR = 〈S〉 andǫ > 0, runs in time polynomial in input

size andlog(1/ǫ) and outputs anǫ-uniform random element from the ringR.

LetR = 〈r1, r2, . . . , rn〉 be a black-box ring with elements encoded as strings inΣm.

Examining the proof of Theorem 2.3.5 it is easy to see that every elementr ∈ R can be

computed by an arithmetic circuitCr that takes as input the generatorsr1, r2, . . . , rn and

has gates labelled+ and∗ corresponding to the ring operations, such thatCr evaluates

to r, and the size of the circuitCr is O(m3n2). This is analogous to the reachability

lemma for finite black-box groups [BS84]. We briefly explain the proof.

Lemma 2.3.7 (ring reachability lemma) Let R = 〈r1, r2, . . . , rn〉 be a black-box ring

with elements encoded as strings inΣm. For everyr ∈ R there is an arithmetic circuit

Cr of sizeO(m3n2) that has gates labelled by ring operations+ and∗, takes as input

r1, r2, . . . , rn and evaluates tor.

Proof. Let S = 〈r1, r2, · · · , rn〉. We analyze the proof of Theorem 2.3.5 to construct

the arithmetic circuitCr. It is convenient to think ofCr as having two partC
′

r andC
′′

r .

C
′

r takes as inputm and generatorsri ∈ S and compute an additive set of generators

T for R. The input toC
′′

r are the generators fromT and the output isr. From the

Theorem 2.3.5, it is clear that|T | = O(mn). SoC
′′

r can be easily implemented using

20



Chapter 2. Algorithmic Problems over Finite Rings

O(m2n) gates. To find the size ofC
′

r, we carefully analyze the number of arithmetic

operations required to construct setSi+1 from Si. The number of generators inSi is at

mostni. We need to computen elements from the groupsHir wherer ∈ S1 (recall

thatS1 = S). More precisely, we need to computen sums of the form
∑

ri∈Si
xiri and

xi ≤ 2m. This can be easily implemented usingO(mn2i) arithmetic operations2. Thus

the total number of arithmetic operations involved
∑O(m)

i=1 O(mn2i), which isO(m3n2).

This completes the proof.

2.4 Quantum Algorithm for Finding a Basis Represen-

tation

In this section we describe a quantum polynomial-time algorithm that takes a black-box

ring and computes a basis representation for it. The algorithm is Monte Carlo with small

error probability.

Theorem 2.4.1 There is a quantum polynomial-time algorithm that takes a black-box

ring as input and computes a basis representation for the ring with small error proba-

bility.

Proof. LetR = 〈S〉 be the input black-box ring. By the algorithm in Theorem 2.3.5 we

first compute an additive generating set{r1, r2, · · · , rn} for R. Then we compute the

additive orders{d1, d2, · · · , dn} of {r1, r2, · · · , rn} in the abelian group(R, +). This

step nicely fits into the hidden subgroup problem framework which is well studied in

quantum computation. To be more precise, efficient quantum solution is known for the

following problem [Mos99]:

Let G = 〈g1, g2, · · · , gn〉 be a finite abelian black-box group such that the elements

of G are uniformly encoded over{0, 1}m. Then, given an elementa ∈ G, one can find

the order ofa in G in quantum polynomial-time.3

The algorithmic ideas for solving this problem are similar to the quantum polynomial-

time algorithm for integer factoring [Sho97] (see the discussion in section 2.2.2). Mosca’s

PhD thesis gives a self-contained solution for this problem[Mos99, Section 2.8.2, 2.8.3].

2We always use standard doubling algorithm to computexiri.
3Notice that we do not know|G| but we know an upper bound that|G| ≤ 2m.
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The next step is to extract anadditively independentsetT of generators from the

additive generating set{r1, r2, · · · , rn}. A generating set{e1, e2, · · · , ek} for R is an

additively independentgenerating set ifR = Zn1e1⊕Zn2e2⊕· · ·⊕Znk
ek whereni’s are

the additive orders ofei’s. Recall from the definition of basis representation of a finite

ring (defined in section 2.2) that such a generating set always exists.

The way to compute such a generating set is well known in quantum computation.

Details can be found in in [CM01, section 5] and also in Mosca’s PhD thesis [Mos99,

section 2.8.3]. The idea is to first decompose(R, +) as the direct sum of its Sylow

subgroups. This decomposition uses ideas similar to Shor’salgorithm [Sho97]. Then

each of the Sylow subgroups can further be decomposed into direct sum of cyclic groups

by solving instances of the hidden subgroup problem.

Let the additively independent set of generators computed in quantum polynomial-

time (as explained) beT = {r̂1, r̂2, · · · , r̂ℓ}. To get the structural constants of the

basis representation it remains to express the productsrr′, for r, r′ ∈ T , as integer

linear combinations of elements ofT . We can again use Shor’s period-finding quantum

algorithm to compute the additive orderd of rr′. Let {d̂1, d̂2, · · · , d̂ℓ} are the orders of

the generators inT . Then, we define a homomorphismϕ : Zd×Zd̂1
×· · ·×Zd̂ℓ

→ (R, +)

asϕ(a, a1, a2, · · · , aℓ) = −arr′+
∑ℓ

j=1 aj r̂j . Again using the polynomial-time quantum

algorithm for Hidden Subgroup Problem [IMS03], we can find anadditive generating

set for Ker(ϕ). LetM be the integer matrix whose columns are the generators of Ker(ϕ)

(here we think of the column vectors as integer vectors). Thenext step is to compute

a basis for Ker(ϕ) from its set of generators. We use ideas similar to that described in

[CM01, Theorem 7]. LetMh be the correspondingHermite Normal Formfor M that

can be computed in deterministic polynomial time (see [Sch98, pp 45-59] or [KB79]).

The integer linear span of the column vectors ofMh is same as that ofM .

Let the(1, 1)th entry ofMh beu and the column vectors ofMh arev1, v2, · · · , vℓ.

Any vectorv in the column space ofMh looks like,v =
∑ℓ

i=1 µivi, whereµi ∈ Z and

the1th entry ofv is µ1u.

To expressrr′ as a integer linear combination of the basis elements, it suffices to

seek for a vector of the form(w, x1, x2, · · · , xℓ) in the column space of Mh, where

w ≡ 1 mod d. Thus it is necessary that, the(1, 1)th entry of Mh (which is u) has

to be an invertible element in the ringZd. Let λ be the inverse ofu modulod. I.e

uλ ≡ 1 mod d. If C1 is the first column ofMh, it is easy to see thatλC1 is a solution of

the form(1, y1, y2, · · · , yℓ) in the ringZd×Zd̂1
×· · ·×Zd̂ℓ

, using which we can express
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rr′ as an integer linear combination of the basis elements.

2.5 Testing if a Black-Box Ring is a Field

In this section we describe a simple quantum polynomial-time algorithm that takes a

black-box ring as input and tests if it is a field. This result can be seen as a sort of gener-

alization of primality testing: the ringZn is a field if and only ifn is a prime. However,

the black-box setting for the problem presents obstacles, like finding the additive order

of elements in a finite ring, that seem hard for classical (randomized) polynomial-time

computation.

Theorem 2.5.1 There is a quantum polynomial-time algorithm with small error proba-

bility for testing if a given black-box ring is a field.

Proof. Let R be the input black-box ring. Applying the quantum polynomial-time

algorithm in Theorem 2.4.1 we obtain with high probability abasis representation for

R: (R, +) = Zm1e1 ⊕ Zm2e2 ⊕ · · · ⊕ Zmnen, andeiej =
∑n

k=1 γijkek, γijk ∈ Zmk
.

Clearly,R is a field only if allmi’s are equal to a primep. Using the AKS primality

testing [AKS04] (or one of the polynomial-time randomized tests) we check ifp is

prime. If not then the input is rejected. Thus, the basis representation can be written as

(R, +) = Fpe1 ⊕ Fpe2 ⊕ · · · ⊕ Fpen.

We next compute the minimal polynomial ofe1 overFp. 4 This can be easily done

in deterministic polynomial time. We explain it briefly. Notice that|R| = pn, so the

degree of the minimal polynomial ofe1 is less thann.

To check whethere1 has a minimal polynomial of degreej, we seek for a solution

a0, a1, · · · , aj−1 ∈ Fp such thatej
1 = a0+a1e1+ · · ·+aj−1e

j−1
1 . Now using the relations

for the structural constrains, we can write the powers ofe1 asFp-linear combinations of

e1, e2, · · · , en. Also, one can easily identify the representation of the unity (1) in R as a

linear combination ofe1, e2, · · · , en. To find that, write1 = x1e1 + x2e2 + · · ·+ xnen,

wherexi ∈ Fp are the unknowns. Now fori ∈ {1, 2, · · · , n}, we multiply both sides of

the equation byei and use the relationseiej to construct the following equation:

Li
1e1 + Li

2e2 + · · ·+ Li
nen = 0,

4The minimal polynomialm(x) ∈ Fp[x] of an elemente over the fieldFp is a degreed polynomial
such thatm(e) = 0 ande does not satisfy any polynomial of degree less thand.
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whereLi
s are the linear forms inx1, x2, · · · , xn over Fp. Now, settingLi

s = 0 for

s ∈ {1, 2, · · · , n} and i ∈ {1, 2, · · · , n} gives linear constraints forx1, x2, · · · , xn,

which we can easily solve.

Now, the problem of finding the unknownsa0, a1, · · · , aj−1 (we thinka0 = a0 · 1
and use the representation of1 in terms of the basis elements) boils down to solving a

system of linear equations overFp, which can be done in deterministic polynomial time.

To compute a minimal polynomial fore1, we need to find leastj ∈ [n− 1].

Suppose the minimal polynomial fore1 is m1(x) with degreed1. Then in determin-

istic polynomial time we can test ifm1(x) is irreducible overFp [vzGG03]. If it is not

then the inputR is rejected. Otherwise,

Fp(e1) = {a0 + a1e1 + a2e
2
1 + · · ·+ ad1−1e

d1−1
1 | for 1 ≤ i ≤ d1 − 1, ai ∈ Fp}.

Fp(e1) is isomorphic to the finite fieldFp[x]/〈m1(x)〉which is isomorphic toFpd1 . Also,

notice that{1, e1, · · · , ed1−1
1 } is a basis for the fieldF(e1) and each of the basis elements

can be expressed as a linear combination ofe1, e2, · · · , en using the pairwise multipli-

cation relations betweenei’s.

With the above step as the base case, inductively we assume that at thei-th step

of the algorithm we have computed the finite fieldF = Fp(e1, e2, . . . , ei) contained

in R with a basis{v1, v2, · · · , vk} for F over Fp, where eachvi is expressed as aFp-

linear combination of{e1, e2, · · · , en}. Let d =
∏i

t=1 dt, wheredt is the degree of

the minimal polynomial ofet overF(e1, . . . , et−1) for eacht. By induction hypothesis

Fp(e1, e2, · · · , ei) ∼= Fpd. As v1, v2, · · · , vk is a basis forFp(e1, . . . , ei), it is clear that

Fp(e1, . . . , ei) ∼= Fpk . Sok = d.

Proceeding inductively, at thei + 1-th step we again compute the minimum polyno-

mial mi+1(x) of ei+1 over the fieldF = Fp(e1, e2, · · · , ei). To check whetherei+1 has a

minimal polynomial of degreej overF, write,

ej
i+1 =

j−1
∑

ℓ=0

Lℓ(v1, v2, · · · , vd)e
ℓ
i+1,

whereLℓ’s are linear forms inv1, v2, · · · , vd overFp, i.eLℓ(v1, v2, · · · , vd) =
∑d

j=1 xℓjvj ,

wherexℓj are the unknowns. Notice that, by induction hypothesis, we already have the

representations ofvs (for 1 ≤ s ≤ d) as linear forms ine1, e2, · · · , en overFp.
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Now, following the algorithm already mentioned above, it iseasy to see that this

computation will also boil down to solving a system of linearequations overFp. Also,

we will similarly be able to check in polynomial time whetherthe obtained minimal

polynomial is irreducible overFpd [vzGG03].

We continue this procedure forn steps and if in none of the steps the above algorithm

rejects the input, we conclude thatR is a field. Clearly, if the basis representation forR

is correct (which it is with high probability), the algorithm will correctly decide.

In the above theorem the power of quantum computation is usedonly to recover a

basis representation forR. If R is already in basis representation then field testing is in

P. We now give a classical complexity upper bound for the fieldtesting.

Theorem 2.5.2 Testing if a black-box ring is a field is inAM ∩ coNP.

Proof. A finite ring R = 〈r1, . . . , rn〉 is not a field if and only if it has zero divisors:

nonzero elementsa, b ∈ R whose productab = 0. An NP test for this would be to guess

small circuitsCa andCb (using Lemma 2.3.7) for zero divisorsa andb verifying their

productab = 0 using the black-box oracle. Thus the problem is in coNP.

We now show that the problem is in AM. Our goal is to compute a basis representa-

tion for R in AM. The rest is clear from the proof of Theorem 2.5.1.

Merlin will send a basis representation forR to Arthur as follows: Merlin sends a

basis{u1, u2, · · · , uℓ} for (R, +) in terms of the given set of generators. More precisely,

Merlin sends{u1, u2, · · · , uℓ} as small arithmetic circuits which take as inputs the gen-

eratorsr1, r2, · · · , rn. Again, this is always possible due to Lemma 2.3.7. Also, Merlin

sends each generatorri as a linear combination of the elementsui’s and the pairwise

product relationsuiuj as a linear combination ofui’s.

Arthur can now easily verify that{u1, u2, · · · , ul} is a generating set forR. For that

Arthur verifies that each of the generatorsri can be obtained from the linear combination

of uj ’s (that Merlin has sent) correctly and that the product relationsuiuj are correct.

Arthur needs to make queries to the ring oracle.

It remains to verify that{u1, u2, · · · , ul} is additively independent. Merlin sends the

additive orderp of ui’s. Using AKS primality testing [AKS04], Arthur verifies that p

is prime and checks∀i : pui = 0. Now, to verify that{u1, u2, · · · , uℓ} are additively

independent it suffices to check that the additive group(R, +) = 〈u1, u2, · · · , uℓ〉 is of
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orderpℓ. By a result of Babai [Bab92], order verification of black-box groups is in AM.

This protocol can clearly be applied toG.

2.6 Schwartz-Zippel Lemma over Finite Rings

In the rest of the sections of this chapter, we study the Polynomial Identity Testing

(PIT) over finite commutative ring with unity. We start by definingPolynomial Identity

Testing problem over finite ring.

Let R be a finite commutative black-box ring with unity. LetC be a given arithmetic

circuit with internal nodes labelled by+ and∗ gates, that takes as inputs indeterminates

x1, x2, · · · , xn and elements from the ringR. Using the+ and∗ gatesC computes a

polynomialf(x1, x2, · · · , xn) in R[x1, x2, · · · , xn]. The identity problem is, givenC

and an oracle forR, test whetherf ≡ 0 in R[x1, x2, · · · , xn].

In this section, we first give a generalization of Schwartz-Zippel Lemma [MR01]

to finite commutative rings and apply it for identity testingof black-box polynomials

in R[x1, · · · , xn], whereR is a finite commutative ring with unity whose elements are

uniformly encoded by strings from{0, 1}m with a special stringe denote unity, and the

ring operations are performed by a ring oracle.

2.6.1 The Schwartz-Zippel Lemma

We observe the following easy fact about zeros of univariatepolynomials over finite

commutative rings with unity.

Proposition 2.6.1 Let R be a finite commutative ring with unity1 containing a fieldF

such that1 ∈ F. If f ∈ R[x] is a nonzero polynomial of degreed thenf(a) = 0 for at

mostd distinct values ofa ∈ F.

Remark 2.6.2 It is easy to find examples of finite commutative ringR with unity 1

such thatR contains a fieldF and1 ∈ F. Consider the following example. LetR =

Fp × Fp for a primep. Notice thatR is not an integral domain as it has zero-divisors

((1, 0) · (0, 1) = (0, 0)). Consider the set of elementsS = {(i, i) | 0 ≤ i ≤ p− 1}. It is

easy to see thatS forms a field under ring addition and multiplication.
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Proof. (of Proposition 2.6.1)

Supposea1, a2, · · · , ad+1 ∈ F are distinct points such thatf(ai) = 0, 1 ≤ i ≤
d + 1. Then we can writef(x) = (x − a1)q(x) for q(x) ∈ R[x]. Dividing q(x) by

x − a2 yields q(x) = (x − a2)q
′(x) + q(a2), for someq′(x) ∈ R[x]. Thus,f(x) =

(x − a1)(x − a2)q
′(x) + (x − a1)q(a2). Puttingx = a2 in this equation gives(a2 −

a1)q(a2) = 0. But (a2 − a1) is nonzero in the fieldF and hence is invertible and

(a2− a1)
−1(a2− a1) = 1. Multiplying by (a2− a1)

−1 we getq(a2) = 0. Consequently,

f(x) = (x−a1)(x−a2)q
′(x) in R[x]. Applying this argument successively for the other

ai finally yieldsf(x) = g(x)
∏d+1

i=1 (x − ai) for some nonzero polynomialg(x) ∈ R[x].

Since
∏d+1

i=1 (x − ai) is a monic polynomial, this forcesdeg(f) ≥ d + 1 which is a

contradiction.

Using Proposition 2.6.1 we describe an easy generalizationof the Schwartz-Zippel

lemma to finite commutative rings with unity containing a field.

Lemma 2.6.3 Let R be a finite commutative ring with1 such thatR contains a fieldF

with 1 ∈ F. Letg ∈ R[x1, x2, · · · , xn] be any polynomial of degree at mostd. If g 6≡ 0,

then for any subsetA of F we have

Proba1∈A,··· ,an∈A[g(a1, a2, · · · , an) = 0] ≤ d

|A| .

Proof. We need to show that the number ofn-tuples(a1, · · · , an) ∈ An such that

g(a1, a2, · · · , an) = 0 is at mostd|A|n−1. The proof is by induction onn. The base

casen = 1 involves a univariate polynomialg(x1) in R[x1] and follows directly from

Proposition 2.6.1. As induction hypothesis suppose the lemma holds for multivariate

polynomials inn − 1 indeterminates. Writeg(x1, x2, · · · , xn) asg(x1, x2, · · · , xn) =
∑k

i=0 xi
ngi(x1, x2, · · · , xn−1), wherek ≤ d is the largest exponent ofxn in g with

nonzero coefficientgk, and eachgi ∈ R[x1, x2, · · · , xn−1]. Sincegk 6= 0 anddeg(gk) ≤
d−k, by the induction hypothesis there are at most(d−k)|A|n−2 tuples(a1, · · · , an−1) ∈
An−1 such thatgk(a1, · · · , an−1) = 0. Let

E1 = {(a1, · · · , an) | gk(a1, · · · , an−1) = 0}.
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Then|E1| ≤ (d− k)|A|n−1. Now consider the univariate polynomial,

ĝ(xn) =

k
∑

i=0

xi
ngi(a1, a2, · · · , an−1)

in R[xn] for (a1, · · · , an−1) ∈ An−1.

If gk(a1, a2, · · · , an−1) is nonzero then̂g(xn) is a nonzero polynomial. Let

E2 = {(a1, · · · , an) | ĝ(xn) 6= 0 andĝ(an)) = 0}.

It follows from Proposition 2.6.1 that|E2| ≤ k|A|n−1.

Since{(a1, · · · , an) | g(a1, · · · , an) = 0} ⊆ E1 ∪E2, we obtain the required bound

|{(a1, · · · , an) | g(a1, · · · , an) = 0}| ≤ |E1|+|E2| ≤ (d−k)|A|n−1+k|A|n−1 = d|A|n−1.

This completes the proof.

In general Lemma 2.6.3 is not useful, because the given finiteringR may not contain

a large finite fieldF containing1. We explain how to get around this problem for finite

commutative local rings. Because of the structure theorem 2.2.1, it suffices to consider

local rings.

Let R be a finite local ring with unity given by a ring oracle. Suppose the char-

acteristic ofR is pα for a primep. If the elements ofR are encoded in{0, 1}m then

2m upper bounds the size ofR. Let M > 2m, to be fixed later in the analysis. Let

U = {ce | 0 ≤ c ≤M}, wheree denotes the unity ofR. We will argue that, for a suitable

M , if we samplece uniformly from U then(c mod p)e is almost uniformly distributed

in Zpe = {xe|0 ≤ x ≤ p− 1}. Pickx uniformly at random from[0, 1, · · · , M − 1] and

outputxe. Let a ∈ Zp andP = Prob[x ≡ a mod p]. Thex for whichx ≡ a mod p are

a, a+p, · · · , a+p⌊M−a
p
⌋. LetM ′ = ⌊M−a

p
⌋. ThenP = M ′+1/M ≤ 1

p
(1+ 2m

M
). Clearly,

P ≥ 1
p
(1− 2m

M
). For a givenǫ > 0, chooseM = 2m+1/ǫ. Then1−ǫ/2

p
≤ P ≤ 1+ǫ/2

p
. So

(x mod p)e is ǫ
2
-uniformly distributed inZpe.

Lemma 2.6.4 LetR be a finite local commutative ring with unity1 and of characteristic

pα for a primep. The elements ofR are encoded using binary strings of lengthm. Let

g ∈ R[x1, x2, · · · , xn] be a polynomial of degree at mostd andǫ > 0 be a given constant.
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If g 6≡ 0, then

Proba1∈U,··· ,an∈U [g(a1, a2, · · · , an) = 0] ≤ d

p
(1 +

ǫ

2
),

whereU = {ce | 0 ≤ c ≤M} andM > 2m+1/ǫ.

Proof. Consider the following tower of ideals insideR :

R ⊇ pR ⊇ p2R ⊇ · · · ⊇ pαR = {0}.

Let k be the integer such thatg ∈ pkR[x1, · · · , xn] \ pk+1R[x1, · · · , xn]. Write g = pkĝ.

Consider the ring,̂I = {r ∈ R | pkr = 0}. Clearly, Î is an ideal ofR. Let S =

R/(Î + pR) which is a finite commutative ring with unity1 + (Î + pR).

We claim that̂g is a nonzero polynomial inS[x1, · · · , xn]. Otherwise, let̂g ∈ (Î +

pR)[x1, · · · , xn]. Write ĝ = g1+g2, whereg1 ∈ Î[x1, · · · , xn] andg2 ∈ pR[x1, · · · , xn].

Thenpkĝ = pkg2 aspkg1 = 0. But g2 ∈ pR[x1, · · · , xn], which contradicts the fact that

k is the largest integer such thatg ∈ pkR[x1, · · · , xn]. Thusĝ is a nonzero polynomial

in S[x1, · · · , xn]. Now we argue thatS contains the finite fieldFp, and then using the

Lemma 2.6.3, the proof of the lemma will follow easily. To seea copy ofFp insideS,

it is enough to observe that{i + (Î + pR) | 0 ≤ i ≤ p − 1} as a field is isomorphic

to Fp and contains the unity ofS. Clearly the failure probability for identity testing of

g in R[x1, · · · , xn] is upper bounded by the failure probability for the identitytesting

of ĝ in S[x1, · · · , xn]. Consider the natural homomorphismφ : U → Fp, given by

φ(ce) = c mod p. Thus if we sample uniformly fromU , usingφ, we canǫ
2
-uniformly

sample fromFp. Notice that for anyb ∈ Fp,
1−ǫ/2

p
≤ Probx∈ZM

[x ≡ b mod p] ≤ 1+ǫ/2
p

.

Now using the Lemma 2.6.3, we conclude the following :

Proba1∈U,a2∈U ···an∈U [g(a1, · · · , an) = 0] ≤ Probb1∈Fp···bn∈Fp[ĝ(b1, · · · , bn) = 0]

≤ d

p
(1 +

ǫ

2
),

wherebi = ai mod p. The additional factor of(1 + ǫ
2
) comes from the fact that we

are only samplingǫ
2
-uniformly from Fp. This can be easily verified from the proof of

Lemma 2.6.3. Hence we have proved the lemma.
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Again, the above result is only useful for large primesp. In particular, we get a

constant success probability ifp ≥ kd for a constantk.

2.7 Randomized Polynomial Identity Testing over Finite

Rings

In this section we study the identity testing problem over finite commutative ring oracle

with unity. For the input polynomial, we consider both black-box representation and cir-

cuit representation. First we consider the black-box case.Our identity testing algorithm

is a direct consequence of Lemma 2.6.4.

Theorem 2.7.1 Let R (which decomposes into local rings as⊕ℓ
i=1Ri) be a finite com-

mutative ring with unity given as a oracle. Let the input polynomialf ∈ R[x1, · · · , xn]

of degree at mostd be given via black-box access. SupposeRi’s is of characteristicpαi
i .

Let ǫ > 0 be a given constant. Ifpi ≥ kd for all i, for some integerk ≥ 2, we have a

randomized polynomial time identity test with success probability 1− 1
k
(1 + ǫ

2
).

Proof. Consider the natural isomorphism̂φ : R[x1, x2, · · · , xn]→ ⊕ℓ
i=1Ri[x1, x2, · · · , xn].

Let φ̂(f) = (f1, f2, · · · , fℓ). If f 6≡ 0 then fi 6≡ 0 for somei ∈ [ℓ], wherefi ∈
Ri[x1, x2, · · · , xn]. Fix such ani. Our algorithm is a direct application of Lemma 2.6.4.

DefineU = {ce | 0 ≤ c ≤ M}, assign values for thexi’s independently and uniformly

at random fromU , and evaluatef using the black-box access. The algorithm declares

f 6≡ 0 if and only if the computed value is nonzero. By Lemma 2.6.4, our algorithm

outputs the correct answer with probability1− d
pi

(1 + ǫ
2
) ≥ 1− 1

k
(1 + ǫ

2
). 5

The drawback of Theorem 2.7.1 is that we get a randomized polynomial-time algo-

rithm only whenpi ≥ kd.

However, when the polynomialf is given by an arithmetic circuit we will get a

randomized identity test that works for all finite commutative rings given by oracle.

This is the main result in this section. A key idea is to apply the transformation from

[AB03] to convert the given multivariate polynomial to a univariate polynomial. The

following lemma has an identical proof as [AB03, Lemma 4.5].

5Notice that we have to computece using the ring oracle for addition inR. Starting withe, we need
to add itc times. The running time for this computation can be made polynomial in log c by writing c in
binary and applying the standard doubling algorithm.
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Lemma 2.7.2 Let R be an arbitrary commutative ring andf ∈ R[x1, x2, · · · , xn] be

any polynomial of maximum degreed. Consider the polynomialg(x) obtained from

f(x1, x2, · · · , xn) by replacingxi by x(d+1)i−1
i.e g(x) = f(x, x(d+1), · · · , x(d+1)n−1

).

Thenf ≡ 0 overR[x1, · · · , xn] if and only ifg ≡ 0 overR[x].

By Lemma 2.7.2, it suffices to describe the identity test for aunivariate polynomial

in R[x] given by an arithmetic circuit. Notice that ifdeg(f) = d then we can bound

deg(g) by d(d + 1)n−1 which we denote byD. Our algorithm is simple and essentially

the same as the Agrawal-Biswas identity test over the finite ring Zn [AB03].

Recall the definition ofU [x] in the proof of the Theorem 2.7.1:

U = {ce | 0 ≤ c ≤M}.

We will randomly pick a monic polynomialq(x) ∈ U [x] of degree⌈log O(D)⌉. Then

we carry out a division off(x) by the polynomialq(x) over the ringR[x] and compute

the remainderr(x) ∈ R[x]. Our algorithm declaresf to be identically zero if and only

if r(x) = 0. Notice that we will use the structure of the circuit to carryout the division.

At each gate we carry out the division. More precisely, if theinputs of a+ gate are the

remaindersr1(x) andr2(x), then the output of this+ gate isr1 + r2. Similarly if r1 and

r2 are the inputs of a∗ gate, then we divider1(x)r2(x) by q(x) and obtain the remainder

as its output. Crucially, sinceq(x) is a monic polynomial, the division algorithm will

make sense and produce unique remainder even ifR[x] is not a U.F.D (which is the case

in general).

The pseudocode of the identity testing algorithm is given inAlgorithm 1. Our algo-

rithm takes as input an arithmetic circuitC computing a polynomialf ∈ R[x1, x2, · · · , xn]

of degree at mostd and anǫ > 0.

We will now prove the correctness of the above randomized identity test in Lem-

mas 2.7.3, 2.7.4, and 2.7.5.

Lemma 2.7.3 Let R be a local commutative ring with unity and of characteristicpα

for some primep and integerα > 0. Let g be a nonzero polynomial inR[x] such that

g ∈ pkR[x] \ pk+1R[x] for k < α. Let Î = {r ∈ R | pkr = 0}, g = pkĝ whereĝ 6∈ pR

andq is a monic polynomial inR[x]. If q dividesg in R, thenq dividesĝ in R/(Î +pR).

Proof. As q(x) dividesg(x) in R[x], we haveg(x) = q(x)q1(x) for some polynomial

q1(x) ∈ R[x]. Supposêg(x) = q(x)q̄(x) + r(x) in R[x] where the degree ofr(x) is
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Algorithm 1 The Identity Testing algorithm
1: procedureIdentityTesting(C,ǫ)
2: for i = 1, n do
3: xi ← x(d+1)i−1

⊲ Univariate transformation
4: end for
5: g(x)← C(x, x(d+1), · · · , x(d+1)n−1

).
6: D ← d(d + 1)n−1. ⊲ The formal degree ofg(x) is at mostD
7: Choose a monic polynomialq(x) ∈ U [x] of degree⌈log 12D

1−ǫ
⌉ uniformly at ran-

dom.
8: Divide g(x) by q(x) and compute the remainderr(x). ⊲ The division algorithm

uses the structure of the circuit.
9: if r(x) = 0 then

10: C computes a zero polynomial.
11: else
12: C computes a nonzero polynomial.
13: end if
14: end procedure

less than the degree ofq(x). Also note that the division makes sense even over the ring

asq(x) is monic. We want to show thatr(x) ∈ (Î + pR)[x]. We have the following

relation inR[x]:

g = qq1 = pkĝ = pkqq̄ + pkr.

So,pkr = q(q1 − pkq̄). If (q1 − pkq̄) 6≡ 0 in R[x], then the degree of the polynomial

q(q1 − pkq̄) is strictly more than the degree ofpkr asq is monic and degree ofq is more

than the degree ofr. Thus(qq1 − pkqq̄) ≡ 0 in R[x] forcing pkr = 0 in R[x]. So

by the choice of̂I, we haver(x) ∈ Î[x]. Thusr(x) ∈ (Î + pR)[x]. Notice that in

Lemma 2.6.4, we have already proved thatĝ(x) 6≡ 0 in S[x], whereS = R/(Î + pR).

Also q is nonzero inS[x] as it is a monic polynomial. Hence we have proved thatq(x)

dividesĝ(x) overS[x].

The following lemma is basically Chinese remaindering tailored to our setting.

Lemma 2.7.4 LetR be a local ring with characteristicpα. Letg(x) ∈ pkR[x]\pk+1R[x]

for somek ≥ 0. Letg(x) = pkĝ(x) and Î = {r ∈ R | pkr = 0}. Supposeq1(x), q2(x)

are two monic polynomials overR[x] such that each of them dividesg in R[x]. Moreover,

suppose there exist polynomialsa(x), b(x) ∈ R[x] such thataq1+bq2 = 1 in R/(Î+pR).
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Thenq1q2 dividesĝ in R/(Î + pR).

Proof. By Lemma 2.7.3, we know thatq1 andq2 divide ĝ in R/(Î + pR). Let ĝ = q1q̄1

andĝ = q2q̄2 in R/(Î + pR). Let q̄1 = q2q3 + r in R/(Î + pR). So,ĝ = q1q2q3 + q1r.

Substitutingq2q̄2 for ĝ, we getq2(q̄2 − q1q3) = q1r. Multiplying both side bya and

substitutingaq1(x) = 1− bq2, we getq2[a(q̄2− q1q3)+ br] = r. If r 6≡ 0 in R/(Î +pR),

we arrive at a contradiction sinceq2 is monic and thus the degree ofq2[a(q̄2−q1q3)+br]

is more than the degree ofr.

Let f(x) be a nonzero polynomial inR[x] of degree at mostD. The next lemma

states that, if we pick a random monic polynomialq(x) ∈ U [x] (recall thatU = {ce | 0 ≤
c ≤M}) of degreed ≈ log O(D), with high probability,q(x) will not divide f(x).

Lemma 2.7.5 Let R be a commutative ring with unity. Supposef(x) ∈ R[x] is a

nonzero polynomial of degree at mostD and ǫ > 0 be a given constant. Choose a

random monic polynomialq(x) of degreed = ⌈log 12D
1−ǫ
⌉ in U [x]. Then with probability

at least1−ǫ
4d

, q(x) will not dividef(x) overR[x].

Proof. Let R ∼=
⊕

i Ri is the local ring decomposition ofR. As f is nonzero in

R[x], there existsj such thatfj = φ̂j(f) is nonzero inRj [x]. Clearly, we can lower

bound the required probability by the probability thatqj = φ̂j(q) does not dividefj in

Rj [x]. Let the characteristic ofRj is pα. If qj dividesfj in Rj [x], then it also divides

overRj/(Îj + pRj). It is shown in the proof of Lemma 2.6.4,Fp ⊂ Rj/(Îj + pRj).

Now the number of irreducible polynomials inFp of degreed is at leastp
d−2pd/2

d
. Let

t = pd−2pd/2

d
. Let q̂(x) =

∑d−1
i=0 bix

i + xd ∈ Fp[x] be a monic polynomial. Now if a

monic polynomialP (x) of degreed is randomly chosen fromU [x] then, Prob[P (x) ≡
q̂(x) mod p] =

Qd−1
i=0 ⌊(M−bi)/p⌋+1

Md ≥ 1
pd (1 − 2m

M
)d. Again, choosingM > d2m+1/ǫ, we

get Prob[P (x) ≡ q̂(x) mod p] ≥ (1− ǫ/2)/pd.

So, the probability thatqj is an irreducible polynomial inFp[x] is at leastt(1 −
ǫ)/pd > (1 − ǫ)/2d. Let fj ∈ pkRj [x] \ pk+1Rj [x]. So we can writefj = pkf ′,

wheref ′ ∈ Rj [x] \ pRj [x]. By the Lemma 2.7.3,qj dividesf ′ in R/(Îj + pR). Also,

by Lemma 2.7.4, the number of different monic polynomials that are irreducible in

Fp and dividesf ′ in Rj/(Îj + pRj) is at mostD/d. In the sample space forq, any

monic polynomial of degreed in Rj/(Îj + pRj) occurs at most(M
p

+ 1)d times. So

the probability that a random monic irreducible polynomialq will divide f is at most
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(D/d)(M
p

+1)d

Md ≤ D
dpd (1 + 1

d
)d < 3D

d2d . So a random monic polynomialq ∈ U [x] (which

is irreducible inFp with reasonable probability) will not dividef(x) with probability at

least1−ǫ
2d
− 3D

dpd > 1−ǫ
4d

for d ≥ ⌈log 12D
1−ǫ
⌉.

The correctness of Algorithm 1 and its success probability follow directly from

Lemma 2.7.3, Lemma 2.7.4 and Lemma 2.7.5.

In particular, by Lemma 2.7.5, the success probability of our algorithm is at least
1−ǫ
4t

, wheret = ⌈log 12D
1−ǫ
⌉. As 1−ǫ

4t
is an inverse polynomial quantity in input size and

the randomized algorithm has one-sided error, we can boost the success probability by

repeating the test polynomially many times. We summarise the result in the following

theorem.

Theorem 2.7.6 Let R be a finite commutative ring with unity given as an oracle and

f ∈ R[x] be a polynomial, given as an arithmetic circuit. Then in randomized time

polynomial in the circuit size andlog |R| we can test whetherf ≡ 0 in R[x].

Randomized polynomial-time identity testing forf ∈ R[x1, · · · , xn] given by arith-

metic circuits, follows from Theorem 2.7.6 and Lemma 2.7.2.

Theorem 2.7.7 Let R be a commutative ring with unity given as an oracle. Letf be a

polynomial inR[x1, x2, · · · , xn] of formal degree at mostd, is given by an arithmetic

circuit overR. Then in randomized time polynomial in circuit size andlog |R| we can

test whetherf ≡ 0 in R[x1, x2, · · · , xn].
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3
Ideal Membership and Polynomial

Identity Testing

3.1 Introduction

For a fieldF let F[x1, x2, · · · , xn] be the ring of polynomials overF with indeterminates

x1, x2, · · · , xn. Let I ⊆ F[x1, x2, · · · , xn] be an ideal given by a finite generator set

{g1, g2, · · · , gr} of polynomials. ThenI = {
∑r

i=1 aigi | ai ∈ F[x1, x2, · · · , xn]}, and

we writeI = 〈g1, g2, · · · , gr〉.
Given an idealI = 〈g1, g2, · · · , gr〉 and a polynomialf ∈ F[x1, x2, · · · , xn] the

Ideal Membershipproblem is to decide iff ∈ I.

Ideal Membership Testing is a fundamental algorithmic problem with important

applications [CLO92]. In general, however, Ideal Membership Testing is highly in-

tractable. The results of Mayr and Meyer show that it is EXPSPACE-complete [MM82,

May89]. Nevertheless, because of its important applications, algorithms for this prob-

lem are widely studied, mainly based on the theory of Gröbnerbases (see [CLO92] and

[vzGG03]).

In this chapter we study interesting connections between Ideal Membership problem

and Polynomial Identity Testing. In particular we will study the connection between

Monomial Ideal Membership and Polynomial Identity Testing. The study of monomial

ideals is central to the theory of Gröbner bases [CLO92]. In Section 3.2 we explain this

in more detail.

SupposeI = 〈m1, m2, · · · , mk〉 is a monomial ideal inF[x1, x2, · · · , xn] generated

by the monomialsmi. In contrast to the general ideal membership problem, testing
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membership in the monomial idealI is trivial for a polynomialf ∈ F[x1, x2, · · · , xn]

that is given explicitly as anF-linear combination of monomials. We only need to

check if each monomial occurring inf is divisible by some generator monomialmi.

However, as we show in this chapter, the problem becomes interesting whenf is given

by an arithmetic circuit. In that case, it turns out that the problem is tractable whenk

is a constant and its complexity is similar to that of polynomial identity testing. Given

a monomial idealI = 〈m1, m2, · · · , mr〉 for monomialsmi ∈ F[x1, · · · , xn] and an

arithmetic circuitC overF defining a polynomialf ∈ F[x1, x2, · · · , xn], theMonomial

Ideal Membershipproblem is to decide iff ∈ I. Note that, whenever there is an ideal

given by a generating set of monomials or polynomials (in general), we will always

assume that the exponent of any variable that appears in a generator, is given in unary.

We study different versions of the problem by placing restrictions on the arithmetic

circuit C and the number of monomials generating the idealI. We also consider a

more general version of the problem where we are allowed onlyblack-box access to the

polynomialf . The main results of this chapter are as follows.

We show a randomized test for Monomial Ideal Membership whenf is given by

an arithmetic circuit andI = 〈m1, m2, · · · , mk〉 for constantk. This is analogous to

the Schwartz-Zippel randomized polynomial identity test [Sch80, Zip79]. Whenk is

unrestricted, we show that the problem is coNP-hard, but we are able to show an upper

bound in the counting hierarchy.

The identity testing problem forΣΠΣ circuits has recently attracted a lot of re-

search [DS06, KS07, KS08]. The main open problem is whether there is a deterministic

polynomial-time identity test forΣΠΣ circuits. For the special case ofΣΠΣ circuits

with bounded fan-in output gate Kayal and Saxena [KS07] recently gave an ingenious

deterministic polynomial-time test. Analogous to their result, we consider monomial

ideal membership, wheref is computed by aΣΠΣ circuit with bounded fan-in output

gate, andI = 〈m1, m2, · · · , mk〉 for constantk. Using the algorithm of [KS07] we

give adeterministicpolynomial-time algorithm for this Monomial Ideal Membership

problem. More interestingly, we develop the algorithm and its correctness proof based

on Gröbner basis theory. We believe this approach is somewhat simpler and direct as

compared to [KS07]. It avoids properties such as Chinese remaindering in local rings

and Hensel lifting that is used in [KS07]. As a byproduct, this gives us a different

understanding of the identity testing algorithm of [KS07].
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3.2 Preliminaries

We develop the rudiments of Gröbner basis theory. Details can be found in the texts

[CLO92, vzGG03] and Madhu Sudan’s notes [Sud98].

Let x̄ denotes indeterminates{x1, x2, · · · , xn}. Let F[x̄] denotes the polynomial

ring F[x1, x2, · · · , xn]. For a commutative ringR, a subringI ⊆ R is an ideal of R

if IR ⊆ R. The Hilbert basis theorem [CLO92, Theorem 4, pp.74] statesthat any

idealI of F[x1, x2, · · · , xn] is finitely generated. I.e. we can expressI = {
∑r

i=1 pigi |
pi ∈ F[x1, x2, · · · , xn]}, where the finite collection of polynomials{g1, g2, · · · , gr} is a

generating set (or basis) forI.

The notion of monomial ordering is key to defining Gröbner bases. We restrict

ourselves to thelexicographic monomial orderingwhich we define below. For̄α =

(α1, α2, · · · , αn) ∈ Nn, we denote the monomialxα1
1 xα2

2 · · ·xαn
n by x̄ᾱ.

Definition 3.2.1 Let ᾱ = (α1, α2, · · · , αn) and β̄ = (β1, β2, · · · , βn) ∈ Nn. We say

ᾱ > β̄ if, in the vector differencēα − β̄ ∈ Nn, the left-most nonzero entry is positive.

We say,̄xᾱ > x̄β̄ (equivalently,̄xβ̄ < x̄ᾱ) if ᾱ > β̄.

The lexicographic monomial ordering naturally fixes a leading monomialLM(f) for

any polynomialf . LetLC(f) denotes the coefficient ofLM(f). Then theleading term

of f is LT (f) = LC(f)LM(f). Using the monomial ordering, we state the general

form of the division algorithm overF[x1, x2, · · · , xn].

Theorem 3.2.2 [CLO92, Theorem 3, pp.61]Let f ∈ F[x̄] and (f1, f2, · · · , fs) be an

ordereds-tuple of polynomials inF[x̄]. Thenf can be written as,f = a1f1 + a2f2 +

· · ·+ asfs + r, whereai, r ∈ F[x̄], and eitherr = 0 or r is anF-linear combination of

monomials, none of which is divisible by any ofLT (f1), LT (f2), · · · , LT (fs).

The proof of the theorem is constructive. We give an intuitive outline of the proof.

Let f̄ denotes the ordering of the polynomialsfi’s: f̄ = (f1, f2, · · · , fs). The proof

describes a division algorithm Divide(f ; f̄) which first sortsf by the monomial order-

ing. The algorithm proceeds iteratively. It tries to eliminate the leading monomial in the

current remainder by attempting to divide it with thefi’s in the given order. Thefi that

succeeds is the first one whose leading monomial divides the leading monomial of the

current remainder. Finally, the remainderr that survives has the above property. The
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algorithm is guaranteed termination as the monomial ordering is a well ordering. The

following time bound for Divide(f ; f̄) is easy to obtain.

Fact 3.2.3 [Sud98, Section 6, pp.12-5]The running time of Divide(f ; f̄) is bounded by

O(s
∏n

i=1(di + 1)O(1)), wheredi is the maximum degree ofxi among the polynomials

f, f1, f2, · · · , fs.

If the remainderr output by Divide(f ; f̄) is zero then clearlyf ∈ 〈f1, · · · , fs〉. How-

ever, in general, Divide(f ; f̄) need not produce zero remainder even iff ∈ 〈f1, · · · , fs〉
as the order of division is important. Thus, it cannot be directly used as an ideal mem-

bership test. In order to ensure this property, we defineGröbner bases(with respect to

the lexicographic monomial ordering).

Definition 3.2.4 Fix < as the monomial ordering, and letJ ⊆ F[x̄] be any ideal. Then

the polynomialsg1, g2, · · · , gt form a Gröbner basisfor J if J = 〈g1, g2, · · · , gs〉 and

〈LT (g1), · · · , LT (gt)〉 = 〈LT (J)〉, where〈LT (J)〉 is the ideal generated by the leading

terms of the polynomials inJ .

The following lemma states that the general division algorithm of Theorem 3.2.2

carried out w.r.t. a Gröbner basis results in a unique remainderr regardless of the order

in which division is applied.

Lemma 3.2.5 [Proposition 1, pp.79][CLO92] LetG = {f1, f2, · · · , fs} be a Gröbner

basis for an idealJ ⊆ F[x̄] andf ∈ F[x̄]. Then there is auniquepolynomialr ∈ F[x̄]

such thatf can be written as,f = a1f1 +a2f2 + · · ·+asfs + r, for ai ∈ F[x̄], and either

r = 0 or r is anF-linear combination of monomials, none of which is divisible by any

of LT (f1), LT (f2), · · · , LT (fs). In particular, for every orderinĝg of G, r is the unique

remainder when Divide(f, ĝ) is invoked.

By Lemma 3.2.5, for an idealJ and a polynomialf , we can indeed test iff ∈ J

given a Gröbner basis̄f = {f1, f2, · · · , fs} for J . We need to compute Divide(f ; f̄)

and check if the remainder is zero.

The following theorem gives us an easy to test sufficient condition to check if a given

generating set for an ideal is already a Gröbner basis.

Theorem 3.2.6 [CLO92, Theorem 3, Proposition 4, pp.101]LetI be a polynomial ideal

given by a basisG = {g1, g2, · · · , gs} such that all pairsi 6= j LM(gi) andLM(gj)

are relatively prime. ThenG is a Gröbner basis forI.
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Recall from the introduction that amonomial idealis an ideal generated by a finite set

of monomials inF[x̄]. Indeed, by Dickson’s Lemma, an ideal generated by an arbitrary

subset of monomials is also generated by a finite subset of monomials and hence is a

monomial ideal. We recall the formal statement of Dickson’sLemma.

Lemma 3.2.7 (Dickson’s Lemma)[CLO92, Theorem 5, pp.69] Any monomial idealI =

〈x̄ē | ēZn〉 in F[x̄] can be written down in the formI = 〈x̄ᾱ1 , x̄ᾱ2 , · · · , x̄ᾱs〉 for somes.

In particular, I has a finite monomial basis.

An interesting property of monomial ideals is the following.

Lemma 3.2.8 [CLO92, Lemma 2, Lemma 3, pp.67-68]Let I = 〈m1, m2, · · · , ms〉 be

a monomial ideal andf ∈ F[x̄]. Thenf ∈ I if and only if each monomial off is in I.

Furthermore, a monomialm is in the idealI if and only if there existi ∈ [s], such that

mi dividesm.

An immediate consequence of Lemma 3.2.8 is that we can test indeterministic poly-

nomial time if an explicitly given polynomialf ∈ F[x̄] is in a monomial idealI.

3.3 Monomial Ideal Membership

In this section we consider monomial ideal membership whenf is given by an arith-

metic circuit. We show that the problem can be solved in randomized polynomial time

if number of generatorsk for the monomial idealI is a constant. Whenk is not a con-

stant we show that it is coNP-hard and is contained in coAMPP. We leave open a tight

classification of the complexity of this problem.

Lemma 3.3.1 Let, I = 〈m1, m2, · · · , mk〉 be a monomial ideal inF[x1, x2, · · · , xn].

For i ∈ [k], let mi = xei1
1 xei2

2 · · ·xein
n . Let v̄ be ak-tuple given bȳv = (j1, j2, · · · , jk),

whereji ∈ [n]. Define the ideal,Iv̄ = 〈xe1j1
j1

, · · · , xekjk
jk
〉. Thenf ∈ I if and only if,

∀v̄ ∈ [n]k, f ∈ Iv̄.

Proof. Let f ∈ I. Sof can be written asf = p1m1 + u2m2 + · · ·+ pkmk, wherepi ∈
F[x̄] for all i. Then clearly∀v̄ ∈ [n]k, f ∈ Iv̄. To see the other direction, supposef 6∈ I.

Write f = c1M1 + c2M2 + · · ·+ ctMt, whereMi’s are the monomials off andci ∈ F

are the corresponding coefficients. Asf 6∈ I, there is aj ∈ [t], such thatMj 6∈ I. Thus,
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for all i ∈ [k], mi does not divideMj . So each of themi’s contains somexℓi
such that

the exponent ofxℓi
is greater than the exponent ofxℓi

in Mj . Let {ℓ1, ℓ2, · · · , ℓk} bek

such indexes. Now consider the idealIw̄, wherew̄ = (ℓ1, ℓ2, · · · , ℓk). By Lemma 3.2.8,

Mj 6∈ Iw̄ and hencef 6∈ Iw̄.

Using Lemma 3.3.1, we generalize the Schwartz-Zippel Lemmafor Polynomial

Identity Testing to a form tailored for Monomial Ideal Membership.

Lemma 3.3.2 Let f ∈ F[x1, x2, · · · , xn] be a polynomial of total degreed and I =

〈xe1
1 , xe2

2 , · · · , xek
k 〉 be a monomial ideal (as described in Lemma 3.3.1). Fix a finite

subsetS ⊆ F, and letr1, r2, · · · , rn−k be chosen independently and uniformly at random

fromS. Then,

Probri∈S[f(x1, x2, · · · , xk, r1, r2, · · · , rn−k) ∈ I | f 6∈ I] ≤ d

|S| .

Proof. First we writef =
∑

v̄ xj1
1 · · ·xjk

k fv̄(xk+1, · · · , xn), wherev̄ = (j1, · · · , jk).

Any term in the above expression withji ≥ ei is already inI. Thus, it suffices to

consider the sum̂f of the remaining terms. More precisely, LetA = [e1 − 1] × [e2 −
1] × · · · × [ek − 1]. We can writef̂ =

∑

v̄∈A xj1
1 · · ·xjk

k fv̄(xk+1, · · · , xn) wherev̄ =

(j1, j2, · · · , jk) ∈ A. As f̂ 6∈ I, not allfv̄ are identically zero. Choose and fix one such

ū. By the Schwartz-Zippel lemma [Sch80, Zip79],

Probri∈S[fū(r1, r2, · · · , rn−k) = 0 | fū(xk+1, xk+2, · · · , xn) 6≡ 0] ≤ d

|S| .

Notice that for anȳv = (j1, j2, · · · , jk) ∈ A, the monomialxj1
1 · · ·xjk

k is not inI. Thus,

f(x1, x2, · · · , xk, r1, r2, · · · , rn−k) ∈ I

if and only if,

∀v̄, fv̄(r1, r2, · · · , rn−k) = 0.

But fū(r1, r2, · · · , rn−k) = 0 with probability at mostd/|S|. This completes the proof.

Now using Lemma 3.3.2, we prove the following theorem.
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Theorem 3.3.3 Letf ∈ F[x̄] be given by an arithmetic circuitC of sizes and the ideal

I = 〈m1, m2, · · · , mk〉 generated by monomialsmi’s wherek is a constant. For such

instances Monomial Ideal Membership can be solved in randomized polynomial time

(in nO(k) time).

Proof. First, we construct all the ideals,{Iv̄ | v̄ ∈ [n]k} as described in Lemma 3.3.1.

Then for each suchIv̄, we check iff ∈ Iv̄. The correctness of the algorithm fol-

lows from Lemma 3.3.1. LetIv̄ = 〈xe1
1 , xe2

2 , · · · , xek
k 〉. To checkf ∈ Iv̄, we as-

sign random values toxk+1, · · · , xn from S and then evaluate the circuitC in the ring

R = F[x1, x2, · · · , xk]/Iv̄. To evaluate the circuit inR, we need to compute each gate

operation moduloIv̄, starting from the input gates. Notice that, as〈xe1
1 , xe2

2 · · · , xek
k 〉 is

a Gröbner basis forIv̄, by Lemma 3.2.5 the actual order in which we evaluate the gates

is not important. Let,e =
∑k

i=1 ei. Then it is easy to see that the running time of the

algorithm is poly(n, s, ek) (notice thatei’s are in unary). Furthermore, by Lemma 3.3.2,

the success probability of the algorithm is seen to be≥ 1− (d/|S|) whered is the total

degree off . Thus it is enough to consider sampling from a setS s.t, |S| = 2d using

O(n log d) random bits which is polynomial in the input size.

When the monomial idealI is not generated by a constant number of monomials the

monomial ideal membership problem is coNP hard over any field.

Theorem 3.3.4 Given a polynomialf as an arithmetic circuit, and a monomial ideal

I = 〈m1, m2, · · · , mk〉 (k is not a constant), it iscoNP-hard to test whetherf ∈ I.

Proof. Indeed, we prove the coNP-hardness even forf given by aΠΣ arithmetic circuit.

First we consider the case when the fieldF is Q. We give a reduction from3-CNF. Let

F = C1∧C2∧· · ·∧Cℓ is a3-CNFformula over{x1, x2, · · · , xn}, with Ci are the clauses.

Introduce new variables{y1, y2, · · · , yn} for {x̄1, x̄2, · · · , x̄n}. Next, we encode each of

the clause as a linear form (sum of variables). For example, if C1 = x1 ∨ x2 ∨ x̄3

then we encode it asx1 + x2 + y3. Thus we get a polynomialC corresponding toF :

C(x̄, ȳ) =
∏ℓ

i=1 Li(x̄, ȳ) , whereLi’s are the linear form corresponding toCi. Clearly,

C(x̄, ȳ) represents aΠΣ circuit. Define a monomial ideal,I = 〈xiyi | 1 ≤ i ≤ n〉. It

follows that, if F is satisfiable then not all the monomials ofC are inI. In that case

C 6∈ I by Lemma 3.2.8. Conversely assume thatC 6∈ I. That means,C has at least one

monomialm such thatm does not contain bothxi andyi for anyi. Thus, the variables
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of m correspond to a satisfying assignment forF (set the variables those are not inm to

zero).

Now, let the characteristic of the field be finite. The only place the proof differs from

the above is, we need to encode each clause as a sum of all sevenmonomials represent-

ing the satisfying assignment of that clause. For example, an assignment{1, 0, 1} of

{x1, x2, x3} corresponds to a monomialx1y2x3. Thus a clauseC1 = x1∨x2∨ x̄3 will be

encoded as a sum of all possible monomials excepty1y2x3. Note that the polynomialC

corresponding toF is represented by aΠΣΠ circuit. The rest of the argument follows

exactly as above.

Next, we show an upper bound for Monomial Ideal Membership when the number

of monomial generators is not restricted to a constant.

Theorem 3.3.5 For F = Q, Monomial Ideal Membership is incoAMPP where the input

monomial idealI = 〈m1, m2, · · · , mk〉 is given by a list of monomials andf ∈ F[x̄]

is given by an arithmetic circuitC. For F = Fp, Monomial Ideal Membership is in

coNPModpP.

Proof. For the first part,F = Q and letC be the input arithmetic circuit computingf ∈
F[x̄] and the monomial idealI is 〈m1, m2, · · · , mk〉. We’ll show thatNonmembership

is in AMPP. It suffices for the AMPP algorithm to exhibit a nonzero monomialm of

f such thatm 6∈ 〈m1, m2, · · · , mk〉. I.e. mi does not dividem for i = 1, 2, · · · , k.

The base AM machine (call itM) will guess such a monomialm = xe1
1 xe2

2 · · ·xen
n by

nondeterministically picking the tuple(e1, · · · , en) ∈ Nn and check thatmi does not

divide m for all i. It remains to verify thatm is a nonzero monomial off . W.l.o.g.

we can assume thatf ∈ Z[x̄]. We will describe a BPP#P algorithm that takes as input

〈C, m〉 and makes one#P query to decide ifm is a nonzero monomial inf .

Writef as a finite sumf =
∑

ᾱ∈Nn cαx̄ᾱ. Since the input toC are the indeterminates

and constants, the numberscᾱ are bounded in absolute value by2K , where the size of

K ∈ Z+ in binary is bounded by some polynomial in input size. Now, weobserve that

cē 6= 0 if and only if m occurs inf , whereē = (e1, e2, · · · , en). The BPP machine

guesses a random primep of polynomial size, where the size is chosen suitably, so

that cē 6= 0 if and only if cē 6= 0 mod p with high probability. Now we define the

#P query that the BPP machine will make by defining a suitable NPmachineN . The

input to N is the triple(m, C, p) and the number of accepting paths has the property
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accN(m, C, p) = cē mod p. Such an NP machineN would clearly suffice. We now

define the NP machineN .

W.l.o.g. we can assume that each gate ofC has fan-in two and is either a multiply

gate or a plus gate. Suppose there aret plus gates inC. The NP machineN nondeter-

ministically branches into2t computation paths, where on each path it picks exactly one

of the two inputs to the plus gate. As a result, on each of the2t computation pathsN

has picked a multiplicative subcircuit ofC. Let π ∈ {0, 1}t denote such a computation

path ofN and letCπ denote the corresponding multiplicative subcircuit ofC. Notice

that eachCπ defines a monomial with a coefficientcπmπ, and fromCπ in determinis-

tic polynomial time we can computemπ andcπ mod p. Next, machineN proceeds as

follows: if mπ = m thenN extendsπ into cπ mod p accepting computation paths, and

otherwiseN rejects alongπ. Clearly,accN(m, C, p) = cē mod p.

For the second part whenF = Fp the proof is similar. The crucial difference is that

we do not need to evaluate the circuit modulo a randomly chosen prime. Furthermore,

we only need the number of accepting paths ofN modulop. Hence a ModpP oracle

suffices with an NP base machine.

3.4 Monomial Ideal Membership for ΣΠΣ circuits

Consider instances(f, I) of Monomial Ideal Membership wheref is given by aΣΠΣ

circuit with top gate of bounded fan-in andI = 〈m1, m2, · · · , mk〉 a monomial ideal

for constantk. By Lemma 3.3.1 this problem reduces to testing iff is in a monomial

ideal of the formI = 〈xe1
1 , xe2

2 , · · · , xek
k 〉. As the quotient ringF[x1, x2, · · · , xk]/I is a

local ring andf ∈ I if and only if f ≡ 0 over the local ringF[x1, x2, · · · , xk]/I we can

apply the Kayal-Saxena deterministic identity test [KS07]for suchΣΠΣ circuit over

local rings1 to check this in overall time polynomial in the circuit size.

However, in this section we develop the algorithm and its correctness proof based

on Gröbner basis theory. The algorithm is essentially from [KS07]. But the Gröbner

basis approach is somewhat simpler and direct. It avoids invoking properties such as

Chinese remaindering in local rings and Hensel lifting. Theadded bonus is that we get

a different correctness proof for the Kayal-Saxena identity test.

1More precisely, over local rings that allow polynomial-time arithmetic in them.
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Definition 3.4.1 A ΣΠΣ circuit C with n inputs over a fieldF computes a polynomial

of the form:C(x1, x2, · · · , xn) =
∑ℓ

i=1

∏di

j=1 Lij(x1, x2, · · · , xn), whereℓ is the fan-in

of the topΣ gate, anddi are the fan-ins of thek differentΠ gates andLij ’s are linear

forms overF[x1, x2, · · · , xn].

First, we transform the circuitC into another circuitC ′ as follows: LetLij =
∑n

t=1 αijtxt + β for αijt, β ∈ F. We replace each suchLij by L′
ij =

∑n
t=1 αijtxt + βy,

wherey is a new indeterminate. Letd be the maximum of the fan-ins of theΠ gates.

For aΠ gate of fan-indi introduced− di new input fan-in wires each carryingy.

Proposition 3.4.2 For I = 〈xe1
1 , xe2

2 , · · · , xek
k 〉 and aΣΠΣ circuit C defined as above,

C ∈ I if and only ifC ′ ∈ 〈xe1
1 , xe2

2 , · · · , xek
k , y − 1〉.

Notice that in the process of making this transformation theresulting ideal is not a

monomial ideal any more.

Thus, we can assume that in the circuitC itself everyLij is of the form
∑n

t=1 αtxt

and the degree of the polynomial computed at eachΠ gate isd. We can naturally asso-

ciate toLij its coefficient vector(α1, α2, · · · , αn) ∈ Fn. A collection of linear forms is

independentif their coefficient vectors forms a linearly independent set in Fn.

First we fix some notation. LetR denote the polynomial ringF[x1, x2, · · · , xk],

wherek will be clear from the context whereR is used. Forα = (ek+1, ek+2, · · · , en) ∈
Nn−k, let x̄ᾱ denotexek+1

k+1 x
ek+2

k+2 · · ·xen
n . The only monomial ordering we use is the lex-

ordering defined in Definition 3.2.1 w.r.t. the orderx1 < x2 < · · · < xn. We can

consider anf ∈ F[x1, · · · , xn] as a polynomial inR[xk+1, xk+2, · · · , xn]. More pre-

cisely, we can writef =
∑

ᾱ∈Nn−k Aᾱx̄ᾱ, whereAᾱ ∈ F[x1, x2, · · · , xk] \ {0}. Let

ᾱ1 be such that̄xᾱ1 is the lex-largest term such thatAᾱ1 6= 0. Then we denote theR-

leading termAᾱ1 x̄
ᾱ1 of f by LTR(f). Likewise,LMR(f) = x̄ᾱ1 andLCR(f) = Aᾱ1 is

theR-leading monomial andR-leading coefficient off . For anyf, g ∈ F[x1, · · · , xn],

it is clear thatLMR(fg) = LMR(f)LMR(g), LCR(fg) = LCR(f)LCR(g).

Let f ∈ F[x1, · · · , xn] and I = 〈f1, f2, · · · , fℓ〉 be an ideal such that eachfi is

in F[x1, x2, · · · , xk]. Then the following easy lemma states a necessary and sufficient

condition forf to be inI.

Lemma 3.4.3 Let I ⊆ F[x̄] be an ideal generated by the polynomialsf1, f2, · · · , fℓ

such that for alli ∈ [ℓ], fi ∈ F[x1, x2, · · · , xk]. Letg be any polynomial inF[x̄]. Write

g =
∑

ᾱ∈Nn−k Aᾱx̄ᾱ. Theng ∈ I if and only if for all ᾱ, Aᾱ ∈ I.
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Consider polynomialsf, g ∈ F[x1, x2, · · · , xn] and an idealI such thatg ∈ 〈I, f〉.
The following useful lemma gives a sufficient condition onf under which the remainder

r obtained when we invoke Divide(g; f) (of Theorem 3.2.2) is in the idealI.

Lemma 3.4.4 Let I = 〈f1, f2, · · · , fℓ〉 be an ideal inF[x1, · · · , xn] where the gener-

ators fi ∈ F[x1, · · · , xk]. Let R denotes the polynomial ringF[x1, · · · , xk]. Suppose

f is a polynomial such thatLM(f) contains only variables from{xk+1, xk+2, · · · , xn}
(i.e. LM(f) = LMR(f)). Then for any polynomialg in the ideal〈I, f〉 we can write

g = qf + r for polynomialsq andr such thatr ∈ I and no monomial ofr is divisible

byLM(f).

Proof. The lemma is an easy consequence of the properties of the Divide algorithm

explained in Theorem 3.2.2. Notice that Divide(g; f) will stop with a remainder poly-

nomialr such thatg = qf + r with the property that no monomial ofr is divisible by

LM(f). However, we only know thatr ∈ 〈I, f〉, because bothg andqf are in〈I, f〉.
We now show thatr must be inI. First, asr ∈ 〈I, f〉 we can writer =

∑ℓ
i=1 aifi + af ,

for polynomialsai anda. Following Lemma 3.4.3, we writeai =
∑

ᾱ aiᾱx̄ᾱ for each

i and alsoa =
∑

ᾱ aᾱx̄ᾱ. Notice that we can assumeaᾱ 6∈ I for all nonzeroaᾱ. Oth-

erwise, we can move that term to the
∑

aifi part. SinceLM(f) does not divide any

monomial ofr, it follows thatLM(af) does not occur in a nonzero term ofr. Therefore,

LT (af) must be cancelled by some term of
∑ℓ

i=1 aifi. Clearly,LT (af) is of the form

c ·aβ̄ x̄ᾱ for someα, β, whereLC(f) = c ∈ F andaβ̄ = LCR(a). Now, in
∑ℓ

i=1 aifi the

coefficient ofx̄ᾱ is
∑ℓ

i=1 aiᾱfi which must be equal to−c · aβ̄ . Sincec ∈ F it follows

thataβ̄ is in I contradicting the assumption that none of the nonzeroaγ̄ is in I.

Again, letI = 〈f1, f2, · · · , fℓ〉 such that thefi are inF[x1, x2, · · · , xk]. Consider two

polynomialsf andg such thatLM(f) contains only variables fromxk+1, xk+2, · · · , xn

and eitherLM(f) > LM(g) or LMR(f) = LMR(g) andLCR(g) ∈ I. Theng is in the

ideal〈I, f〉 if and only if g ∈ I.

Lemma 3.4.5 Let I = 〈f1, f2, · · · , fℓ〉 be an ideal inF[x1, · · · , xn] such that eachfi

is in F[x1, x2, · · · , xk] = R. Supposef is a polynomial such thatLM(f) is over the

variables only from{xk+1, xk+2, · · · , xn} (i.e.LM(f) = LMR(f)). Then for any poly-

nomialg such that eitherLM(f) > LM(g), or LMR(f) = LMR(g) andLCR(g) ∈ I,

g is in the ideal〈I, f〉 if and only ifg is in the idealI.
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Proof. Supposeg ∈ 〈I, f〉 andg 6∈ I. We can writeg = a + bf , for polynomials

a andb, wherea ∈ I. Also, we can assume thatb 6∈ I, for otherwiseg ∈ I and we

are done. Letb =
∑

ᾱ∈Nn−k bᾱx̄ᾱ, wherebᾱ ∈ F[x1, x2, · · · , xk] and we can assume

bᾱ 6∈ I for all ᾱ (otherwise we can move that term as part ofa). Notice thatLTR(bf) =

LTR(b) · LTR(f) = cbβ̄LMR(b)LMR(f) = cbβ̄ x̄γ̄ for someγ̄ and for somebβ̄ , where

c = LCR(f) ∈ F. Sincebβ̄ 6∈ I it follows thatLCR(bf) 6∈ I. Writea =
∑

ᾱ∈Nn−k aᾱx̄ᾱ.

By Lemma 3.4.3,a ∈ I implies eachaᾱ ∈ I. In particular,aγ̄ ∈ I and isnot equal

to −LCR(b · f) = −cbβ̄ as bβ̄ 6∈ I. Thus, the monomialLMR(bf) survives ina +

bf . It follows thatLMR(g) = LMR(a + bf) ≥ LMR(bf) ≥ LMR(f) which forces

LMR(f) = LMR(g) andLCR(g) ∈ I by assumption. Ifb /∈ R thenLMR(b · f) >

LMR(f) which impliesLMR(g) > LMR(f) contradicting assumption. Ifb ∈ R then

LTR(g) = LTR(a + bf) = (aᾱ + b)LMR(f) for someaᾱ, which forcesb ∈ I because

bothLTR(g) andaᾱ ∈ I.

Let I ⊆ F[x1, · · · , xn] be an ideal andg1, g2 are two polynomials such thatf is

in the ideals〈I, g1〉 and〈I, g2〉. Using some Gröbner basis theory we give a sufficient

condition onI, g1 andg2 under which we can infer thatf is in the ideal〈I, g1g2〉.

Lemma 3.4.6 Let I = 〈f1, f2, · · · , fℓ〉 be an ideal ofF[x1, x2, · · · , xn], wherefi are

polynomials inF[x1, x2, · · · , xk]. Supposeg1 andg2 are polynomials such that:g2 =
∏d2

i=1(xk+1 − αi), where eachαi is a linear form overx1, x2, · · · , xk, and the leading

termLT (g1) of g1 has only variables from{xk+2, xk+3, · · · , xn}. Thenf ∈ 〈I, g1g2〉 if

and only iff ∈ 〈I, g1〉 andf ∈ 〈I, g2〉.

Proof. The forward implication is obvious. We prove the reverse direction. Suppose

f ∈ 〈I, g1〉 andf ∈ 〈I, g2〉. As f ∈ 〈I, g2〉, we can writef = a + bg2, wherea ∈ I and

b is an arbitrary polynomial. Notice that it suffices to provebg2 is in the ideal〈I, g1g2〉.
Now, sincef ∈ 〈I, g1〉 anda ∈ I it follows that bg2 = f − a ∈ 〈I, g1〉. By applying

Lemma 3.4.4 to idealI and polynomialg1 observe that we can writebg2 = αg1 + β,

whereβ is a polynomial inI such that none of the monomials ofβ is divisible by

LT (g1). We have the following equationb ·
∏d2

j=1(xk+1 − αj) = αg1 + β.

Substitutingxk+1 = α1 in the above equation, we get(αg1)|xk+1=α1 = −β|xk+1=α1 .

Notice thatLT (g1|xk+1=α1) = LT (g1). This is because,LT (g1) contains variables only

from xk+2, · · · , xn. Thus the above substitution implies,

LT (β|xk+1=α1) = −LT ((αg1)|xk+1=α1) = −LT (α|xk+1=α1) · LT (g1|xk+1=α1)
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and,

LT (g1|xk+1=α1) = − LT (α|xk+1=α1) · LT (g1).

ThusLM(g1) dividesLM(β|xk+1=α1). On the other hand, sinceLM(g1) does not

divide any monomial ofβ, LM(g1) cannot divide any monomial ofLM(β|xk+1=α1) as

the substitution only introduces variables from{x1, · · · , xk}. This gives a contradiction

unlessβ|xk+1=α1 = 0, which in turn impliesα|xk+1=α1 = 0.

Thus we have proved that(xk+1−α1) is a factor of bothα andβ. This leads us to the

following similar identity:b ·
∏d2

j=2(xk+1−αj) = α1g1 +β1, whereα1 = α/(xk+1−α1)

andβ1 = β/(xk+1 − α1). Clearly, by repeating the above argument we finally get,

b = α′g1 + β ′, for some polynomialsα′ andβ ′ whereα = α′g2 andβ = β ′g2. Putting

it together we getbg2 = α′g1g2 + β ′g2 = α′g1g2 + β. As β ∈ I, it follows thatbg2 is in

the ideal〈I, g1g2〉. This completes the proof.

LetI = 〈P1, P2, · · · , Pk〉 be an ideal inF[x1, · · · , xn] such thatPi ∈ F[x1, x2, · · · , xi]

andLT (Pi) = xdi
i for eachi. For i 6= j the leading termsLT (Pi) = xdi

i andLT (Pj) =

x
dj

j are clearly relatively prime. Therefore by Theorem 3.2.6, it follows that{P1, P2, · · · , Pk}
is in fact a Gröbner basis forI. We summarize this observation.

Lemma 3.4.7 Let I = 〈P1, P2, · · · , Pk〉 be an ideal inF[x1, · · · , xn] such that eachPi

is in F[x1, x2, · · · , xi] andLT (Pi) = xdi
i . Then{Pi}i∈[k] is a Gröbner basis forI.

Let f ∈ F[x1, x2, · · · , xk] be a given polynomial andd be the maximum ofdeg(f)

anddeg(Pi), 1 ≤ i ≤ k. We can invoke Divide(f ; P1, P2 · · · , Pk) (Theorem 3.2.2) to

test whetherf ∈ I. By Fact 3.2.3 the running time for this test isO(dk).

Now we state the main theorem of this section.

Theorem 3.4.8 LetC ∈ F[x1, x2 · · · , xn] be given by aΣΠΣ(ℓ, d) circuit for a constant

ℓ andI = 〈m1, m2, · · · , mk〉 be a monomial ideal for constantk. For such instances,

Monomial Ideal Membership can be checked in deterministic polynomial time. Specifi-

cally, the running time is bounded bynkpoly(n, dmax{ℓ,k}).

By Lemma 3.3.1 it clearly suffices to give a polynomial-time deterministic algorithm

for testing if aΣΠΣ(ℓ, d) circuit C is in a monomial ideal of the form〈xe1
1 , · · · , xek

k 〉.
As explained in the beginning of this section, we transform the circuitC to C ′ in which

all linear forms are made homogeneous using a new indeterminatey, andC ∈ I if and
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only if C ′ ∈ 〈xe1
1 , · · · , xek

k , y− 1〉. In fact, in the following theorem we prove a stronger

result which along with Lemma 3.3.1 yields Theorem 3.4.8.

Theorem 3.4.9 LetC be a givenΣΠΣ(ℓ, d) circuit for a constantℓ andI = 〈P1, P2, · · · , Pk〉
be an ideal inF[x1, · · · , xn] such thatPi ∈ F[x1, x2, · · · , xi] andLT (Pi) = xdi

i for each

i. Further, supposedi ≤ d for all i ∈ [k]. Then testing ifC ∈ I can be done determinis-

tically in timepoly(dmax{ℓ,k}).

Proof. We first describe the algorithm and then prove its correctness and running time

bound.

As explained in the beginning of the section, we can assume that all linear forms

appearing inC are homogeneous andC itself is a homogeneous degreed polynomial.

By Lemma 3.4.7, the generating set forI is a Gröbner basis. LetC(x1, x2, · · · , xn) =
∑ℓ

i=1 Ti. For all i ∈ [ℓ], Ti =
∏d

j=1 Lij , whereLij ’s are the linear forms over the ring

F[x1, x2, · · · , xn].

If ℓ = 1, thenC = T1. Let g(x1, x2, · · · , xk) be the product of those linear forms

of T1 using only variables from{x1, x2, · · · , xk}. Clearly,g(x1, x2, · · · , xk) has at most

dk monomials. We explicitly computeg by multiplying out all such linear forms. By

Lemma 3.4.3, clearlyC ∈ I if and only if g ∈ I, which can be checked in time poly(dk)

following the Fact 3.2.3.

So assumeℓ > 1. If all the linear forms appearing inT1, T2, · · · , Tℓ are only over

{x1, x2, · · · , xk}, then again the ideal membership testing is easy. Because, in time

poly(dk) we can writeC itself as anF-linear combination of monomials inx1, x2, · · · , xk

and apply Fact 3.2.3 to check iff ∈ I in time poly(dk).

Now we consider the general case. By inspection we can write eachTi = βiT
′
i where

theβi are products of linear forms over onlyx1, x2, · · · , xk, whereas each linear form

in T ′
i involves at least one other variable.2 If βi ∈ I (which we can test in polynomial

time using Fact 3.2.3) we drop the termTi from the sum
∑ℓ

i=1 Ti. This enables us to

write C asC = β1T
′
1 + β2T

′
2 + · · ·+ βmT ′

m for somem ≤ ℓ, where we have assumed

for simplicity of notation thatβi 6∈ I for first m terms.

As before, letR = F[x1, x2, · · · , xk]. W.l.o.g, assume thatLMR(T ′
1) ≥ LMR(T ′

i )

for all i ∈ [2, 3, · · · , m]. We can determineLTR(T ′
i ) for eachT ′

i in polynomial time

since they are given as product of linear forms. Thus,LMR(T ′
1) ≥ LMR(C). Now,

2If there are no linear forms contributing to the productβi (respectively,T ′

i ) we will set it to1.
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let r ∈ R be the coefficient ofLMR(T ′
1) in C. We can computer in polynomial time

by computing the coefficientγi of LMR(T ′
1) in eachT ′

i and computingr =
∑m

i=1 βiγi.

Then we check thatr ∈ I (which is a necessary condition forC to be inI by Lemma 3.4.3).

By Fact 3.2.3 we can checkr ∈ I in time poly(dk). It is clear that, eitherLMR(T ′
1) >

LMR(C) or LMR(T ′
1) = LMR(C) andr ∈ I. Thus, by Lemma 3.4.5,C ∈ I if and

only if C ∈ 〈I, T ′
1〉.

Next, we group the linear forms inT ′
1: let, T ′

1 = T11T12 · · ·T1t, such that for all

i ∈ [t],

T1i = (Li + mi1)(Li + mi2) · · · (Li + misi
),

where{Li}ti=1 aredistinct linear formsin F[xk+1, · · · , xn] andmij ’s are linear forms in

F[x1, · · · , xk]. Notice that the polynomialsT1i are relatively prime to each other.

We next computet linear transformations{σ1, σ2, · · · , σt} from Fn to Fn with the

following property: fori ∈ [t], σi fixes{xi}ki=1, mapsLi to xk+1 and maps the variables

xk+2, xk+3, · · · , xn to some suitable linear forms in such a way that,σi is an invertible

linear transformation. AsLi’s are over{xk+1, · · · , xn}, it is easy to see that suchσi

exist and are easy to compute.

Let C1 =
∑

j∈[ℓ]\{1} Tj. For i ∈ [t], let C1i = σi(C1) and letI1i be the ideal

〈I, σi(T1i)〉. The algorithm will now recursively check for each of theΣΠΣ(ℓ − 1, d)

circuitsC1i, thatC1i is in the idealI1i and declareC ∈ I if and only if C1i ∈ I1i for

eachi.

Notice that the idealI1i has generating setG = {P1, P2, · · · , Pk, Pk+1}, where

Pk+1 ∈ F[x1, x2, · · · , xk+1] andLM(Pk+1) = x
dk+1

k+1 . By Lemma 3.4.7,G is a Gröbner

basis forI1i.

The correctness of the algorithm follows directly from the following claim.

Claim 3.4.10 For eachs : 1 ≤ s ≤ t C ∈ 〈I, T11T12 · · ·T1s〉 if and only ifC1i ∈ I1i for

1 ≤ i ≤ s.

In particular,C ∈ 〈I, T ′
1〉 if and only ifC1i ∈ I1i for 1 ≤ i ≤ t.

Proof of Claim:The forward implication is easy: ifC ∈ 〈I, T11T12 · · ·T1s〉 then clearly

C ∈ 〈I, T1i〉 for each1 ≤ i ≤ s. As eachσi is an invertible linear map it follows in

turn thatσi(C) ∈ 〈I, σi(T1i)〉 = I1i for 1 ≤ i ≤ s. SinceC1i = σi(C) − σi(T1) and

σi(T1) ∈ 〈σi(T1i)〉 it follows thatC1i ∈ I1i for 1 ≤ i ≤ s.

We prove the other direction of the claim by induction ons. The base cases = 1 is
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trivial. Inductively assume it is true fors − 1. I.e. if C1i ∈ I1i for 1 ≤ i ≤ s − 1 then

C ∈ 〈I, T11T12 · · ·T1(s−1)〉.
We now prove the induction step fors. SupposeC1i ∈ I1i for 1 ≤ i ≤ s. Let

T = T11T12 · · ·T1(s−1). By induction hypothesis we haveC ∈ 〈I, T 〉. Furthermore,

C1s ∈ I1s implies by definition thatC ∈ 〈I, T1s〉. Now we apply the linear mapσs to

obtainσs(C) ∈ 〈I, σs(T )〉 andσs(C) ∈ 〈I, σs(T1s)〉. The mapσs ensures thatLT (T1s)

is of the formxdeg T1s

k+1 . Furthermore, by the definition ofσs it follows thatLT (σs(T )) has

only variables in{xk+2, · · · , xn}. Lettingg1 = σs(T ) andg2 = σs(T1s) in Lemma 3.4.6,

it follows immediately thatσs(C) ∈ 〈I, σs(T · T1s)〉 which implies the induction step

sinceσs is invertible.

Claim 3.4.11 The above algorithm runs in timepoly(n, dmax{ℓ,k}).

Proof of Claim: To analyze the running time, we need to observe the followingrecur-

rence relation : letT (ℓ, n) is the time required to testC ∈ I. It is easy to see from

the description of the algorithm that,T (ℓ, n) ≤ tT (ℓ − 1, n) + poly(n, dk). Hence

T (ℓ, n) = poly(n, dmax{ℓ,k}), ast = O(d).

Theorem 3.4.8 is an immediate consequence of Theorem 3.4.9.For I = 〈0〉, Theo-

rem 3.4.8 is actually the Kayal-Saxena deterministic test with a new proof.

3.5 Monomial Ideal Membership for black-box polyno-

mials

In Theorem 3.3.3 we have shown that monomial ideal membership is in randomized

polynomial time whenf ∈ F[x̄] is given as an arithmetic circuit and the monomial ideal

is given by a constant number of generator monomials. We now show that even iff is

accessed only via ablack-box, if the degree off is polynomial in the input sizewe can

still solve monomial ideal membership in randomized polynomial time (assumingI is

generated by constant number of monomials). In [BOT88], Ben-Or and Tiwari gave an

interpolation algorithm for sparse multivariate polynomials over integers. Our algorithm

is an easy application of their result. We first recall their result in a form suitable for us.

Theorem 3.5.1 [BOT88] Let f ∈ Z[x1, x2, · · · , xn] be a t-sparse multivariate poly-

nomial given as a black-box (byt-sparse we mean the number of monomials inf is
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bounded byt), d be the degree off , and b be a bound on the size of its coefficients.

There is a deterministic algorithm that queries the black-box for values off on different

inputs and reconstructs the entire polynomialf in timepoly(t, n, d, b).

Ben-Or and Tiwari’s result directly gives a deterministic polynomial time algorithm

for Monomial Ideal Membership whenf is at-sparse black-box polynomial overZ, and

I is any monomial ideal. The algorithm simply reconstructsf and checks if each of its

monomials is inI.

Next, supposef is a black-box polynomial of small degree andI is a monomial

ideal generated by constant number of monomials.

Theorem 3.5.2 Letf ∈ Z[x̄] of degreed given as a black-box such thatb is a bound on

the size of its coefficients. SupposeI = 〈m1, m2, · · · , mk〉 for constantk. Then we can

test iff ∈ I in randomized timepoly(nk, dk, b).

Proof. By Lemma 3.3.1, it suffices to give a randomized polynomial time algorithm

for testing if f ∈ Iv̄, wherev̄ ∈ [n]k. W.l.o.g. assumeIv̄ = 〈xe1
1 , xe2

2 , · · · , xek
k 〉. Fix

S = {1, 2, · · · , s} and assign random valuesr̄ = {r1, r2, · · · , rn−k} to {xk+1, · · · , xn}
from S. Note thatf(x1, x2, · · · , xk, r̄) is a dk-sparse polynomial. By Theorem 3.5.1

we can reconstructf(x1, x2, · · · , xk, r̄) in poly(n, dk, b) time. Letg(x1, x2, · · · , xk) =

f(x1, x2, · · · , xk, r̄). Our randomized algorithm declaresf ∈ Iv̄ if each monomial ofg

is in I. By Lemma 3.3.2, it follows that the success probability of the algorithm is at

least1− d
|S| . So it is enough to considerS = {1, 2, · · · , 2d} and the number of random

bits used isO(n log d).

3.6 Bounded variable Ideal Membership

In this section we discuss our results for the ideal membership problem whenI =

〈f1, · · · , fm〉 such thatfi ∈ F[x1, · · · , xk] for a constantk and the polynomialf is

given by an arithmetic circuit. We call this variantbounded variable Ideal Membership.

A pioneering result in polynomial Ideal Membership testingis Hermann’s algorithm

that is based on the following theorem.
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Theorem 3.6.1 [Her26, Sud98, Hermann’s Theorem]Consider the multivariate poly-

nomialsf, f1, f2, · · · , fm ∈ F[x1, x2, · · · , xk] such that,

max{deg(f1), deg(f2), · · · , deg(fm), deg(f)} ≤ d.

If f is in the idealI = 〈f1, f2, · · · , fm〉 thenf can be expressed asf =
∑m

i=1 gifi where

deg(gi) ≤ (2d)2k
for eachi.

Supposef is given explicitly as anF-linear combination of terms. Using the bounds

of Hermann’s theorem, Hermann’s algorithm treats the coefficients ofgi as unknowns

and does membership testing in〈f1, f2, · · · , fm〉 by solving a system of linear equa-

tions withm(2d)k2k
unknowns. This can be solved using Gaussian elimination in time

mO(1)(2d)O(k2k).

Similarly, for an explicitly givenf ∈ F[x1, · · · , xn], n > k, using Lemma 3.4.3

we can apply Hermann’s algorithm to test if membership off in 〈f1, f2, · · · , fm〉 in

time polynomial in the size off andmO(1)(2d)O(k2k). If k is a constant, this gives a

polynomial running time bound.

A natural question here is the complexity of Ideal Membership whenf is given by

an arithmetic circuit whose membership we want to test in ideal I = 〈f1, f2, · · · , fm〉,
wherefi ∈ F[x1, · · · , xk] for constantk. Recall that in Theorem 3.3.3 we showed a sim-

ilar problem formonomialideals with constant number of monomials is in randomized

polynomial time. In this section we will restrict ourselvesto polynomialsf computed

by arithmetic circuits of polynomial-degree in the input size. We can follow essentially

the same proof idea in Theorem 3.3.3. Notice thatf ∈ I if and only if f ≡ 0 in the ring

R[xk+1, xk+2, · · · , xn] whereR = F[x1, x2, · · · , xk]/I. We recall the following results

(Proposition 2.6.1 and Lemma 2.6.3) from Chapter 2.

Proposition 3.6.2 Let R be a finite commutative ring with unity1 containing a fieldF

such that1 ∈ F. If f ∈ R[x] is a nonzero polynomial of degreed thenf(a) = 0 for at

mostd distinct values ofa ∈ F.

Lemma 3.6.3 LetR be a finite commutative ring with unity1 containing a fieldF such

that1 ∈ F. Letg ∈ R[x1, x2, · · · , xm] be any polynomial of degree at mostd. If g 6≡ 0,

then for any finite subsetA of F we have

Proba1∈A,··· ,am∈A[g(a1, a2, · · · , am) = 0 | g 6≡ 0] ≤ d

|A| .
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Now we describe our ideal membership test: LetF be a finite field. Choose and fix

S ⊆ F of size2d and randomly assign values fromS to the variables in{xk+1, · · · , xn}.
Notice thatf , given by a polynomial degree arithmetic circuitC, is in I if and only if

f ≡ 0 in the ringR[xk+1, xk+2, · · · , xn] whereR = F[x1, x2, · · · , xk]/I, since the given

generating set forI uses only variablesx1, · · · , xk. After the random substitution we

are left with an arithmetic circuitC ′(x1, · · · , xk). Notice that, by Lemma 3.6.3 iff 6∈ I

thenC ′(x1, · · · , xk) /∈ I with probability at least1/2. We now need to test whether

the polynomial computed byC ′ is in I. As C ′ is of polynomial degreed andk is a

constant, we can explicitly written down the polynomialr that it computes as aF-linear

combination of at mostdk monomials. We are now left with the problem of testing if

r ∈ 〈f1, · · · , fm〉 which we can do in polynomial time using Hermann’s algorithmas

k is a constant. It is easy to that, same arguement works whenF is an infinite field, in

particularF = Q.

Now, we consider the case when the input polynomialf ∈ Z[x1, x2, · · · , xn] is

given by a black-box and the degree off is at mostd. Let I = 〈f1, f2, · · · , fm〉 be

the given ideal wherefi ∈ Z[x1, x2, · · · , xk]. So, f ∈ I if and only if f ≡ 0 in

R[xk+1, xk+2, · · · , xn] whereR = Z[x1, x2, · · · , xk]/I. Choose and fixS ⊂ Z of size

2d and randomly assign values toxk+1, xk+2, · · · , xn from S. Let g(x1, x2, · · · , xk) =

f(x1, x2, · · · , xk, ā), whereā ∈ Sn−k be a substitution for(xk+1, · · · , xn). Again, by

Lemma 2.6.3, iff 6∈ I theng(x1, x2, · · · , xk) 6≡ 0 in R with probability at least1/2.

Notice thatg is dk-sparse polynomial (k is a constant). Also, ifb be the size of the

coefficients off , the size of the coefficients ofg are bounded by poly(b, d). So, using

Theorem 3.5.1, we can interpolate the polynomialg as a sum of monomials in polyno-

mial time. Now, as before, using Hermann’s algorithm we can test whetherg ∈ I in

polynomial time.

Finally, we consider the case whenf is given by aΣΠΣ(ℓ, d) circuit C with fan-

in of output gate (ℓ) a constant. We can easily argue by following the algorithm in

the proof of Theorem 3.4.9 that we can test in deterministic polynomial time whether

f ∈ I. We briefly describe the algorithm. As before,I = 〈f1, f2, · · · , fm〉, where

fi ∈ F[x1, x2, · · · , xk] andk is a constant. LetC =
∑ℓ

i=1 Ti =
∑ℓ

i=1

∏d
j=1 Lij . If

ℓ = 1, thenC = T1. Let ĝ(x1, x2, · · · , xk) be the products of those linear forms using

only variables fromx1, x2, · · · , xk. By Lemma 3.4.3,C ∈ I if and only if ĝ ∈ I. We

write ĝ explicitly as a sum of at mostdk monomials. Now, using Hermann’s algorithm
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we can test whether̂g ∈ I in deterministic polynomial time ask is a constant.3

Again, the case thatℓ > 1 andTi ∈ F[x1, x2, · · · , xk], can be handled easily using

Hermann’s algorithm.

Now we consider the general case whenTi = βiT
′
i , whereβi is the product of the

linear forms overx1, x2, · · · , xk and each linear form inT ′
i involves at least one other

variable. We follow the algorithm described in the proof of Lemma 3.4.9 closely. It is

easy to see that whenever we reduce the problem size by removing a product gateTi,

we grow the corresponding ideal by putting a new polynomial in its generating set.

Following the proof of Lemma 3.4.9 step by step, it is clear that we will end up with

the problem of testing if a polynomialg given by aΠΣ circuit is in an ideal〈g1, · · · , gw〉,
wheregi are all inF[x1, · · · , xt] for a constantt andw is a polynomial in the input size.

Invoking Hermann’s algorithm, we can check this in time poly(w, dO(t2t)), which is

a polynomial time bound ast is constant. We summarize this result in the following

theorem.

Theorem 3.6.4 Let I = 〈f1, f2, · · · , fm〉 be an ideal inF[x1, x2, · · · , xn] where each

fi ∈ F[x1, x2, · · · , xk] for constantk. If f be a polynomial given by an arithmetic circuit

of polynomial degree, then in randomized polynomial time wecan test iff ∈ I. This

result holds even iff is given by a black-box and the degree off is polynomial in the

input size. Further, iff is given by aΣΠΣ(ℓ, d) circuit with ℓ constant, then we can test

whetherf ∈ I in deterministic polynomial time.

3.7 Identity Testing for a restricted class ofΣΠΣΠ cir-

cuits

In this section, we examine the possibility of extending [KS07] to certain depth 4 cir-

cuits. We consider certain restrictedΣΠΣΠ circuits with the topΣ gate having bounded

fan-in.

Any ΣΠΣΠ circuit is of the formC =
∑ℓ

i=1 Ti, with Ti =
∏d

j=1 Pij, for poly-

nomialsPij . We now define a restricted class of depth 4 circuits which we denote by

ΣΠΣΠ(ℓ, d, c). A circuit C is in this class if

3The set of polynomialsf1, f2, · · · , fm is not a Gröbner basis forI in general. So we can not invoke
Divide algorithm directly.
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(a) The fan-inℓ of the outputΣ gate is a constant.

(b) For each variablexk occurring inPij ’s, the term of maximumxk degree is a power

of xk only.

(c) Any variablexk occurs in at mostc differentPij for anyi ∈ [ℓ], wherec is also a

constant.

(d) Furthermore, eachPij contains at mostc different variables.

We show that the bounded variable Ideal Membership problem for ΣΠΣΠ(ℓ, d, c)

circuits can be solved in polynomial time. As a consequence we obtain a deterministic

polynomial-time identity testing algorithm for such circuits. The key observation is the

next lemma which generalizes Lemma 3.4.6.

Lemma 3.7.1 Let I = 〈f1, f2, · · · , fℓ〉 be an ideal ofF[x1, x2, · · · , xn], wherefi are

polynomials inF[x1, · · · , xk]. Supposeg1 andg2 are the polynomials such that:

1. LM(g1) = xdi
i , wherei ∈ {k + 1, k + 2, · · · , n}.

2. LM(g2) < LM(g1) andLM(g2), LM(g1) are relatively prime.

Thenf ∈ 〈I, g1〉 andf ∈ 〈I, g2〉 if and only iff ∈ 〈I, g1g2〉.

Proof. The reverse implication is obvious. We prove the forward direction. As

LM(g2) < LM(g1) andLM(g2), LM(g1) are relatively prime, it follows thatg2 ∈
F[x1, x2, · · · , xi−1].

As f ∈ 〈I, g2〉, we can writef = a + bg2, wherea ∈ I and b is an arbitrary

polynomial. Furthermore, by Lemma 3.4.4 we can writebg2 = αg1 + β, with β ∈ I

such that no monomial ofβ is divisible byLT (g1). Thusg2 dividesαg1 + β. Let p be

any irreducible factor ofg2. As the ideal〈p〉 generated by the polynomialp is a prime

ideal ofR = F[x1, x2, · · · , xi−1], the quotient ringD = R/〈p〉 is an integral domain.

As p dividesαg1 + β, it follows thatαg1 = −β in D[xi]. We will now argue thatβ and

α must be both zero inD[xi], which will imply thatp divides bothα andβ. Note that

LMD(β) = −LMD(α) · LMD(g1) (by comparing theirxi degrees in the ringD[xi]).

But LMD(g1) = LM(g1) = xdi
i from the statement of the lemma. Consideringβ as a

polynomial ofR[xi], notice thatβ has degree strictly less thandi sinceLM(g1) = xdi
i

does not divide any monomial ofβ. Sincep ∈ R = F[x1, x2, · · · , xi−1], it follows that
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β as a polynomial ofD[xi] also has degree strictly less thandi. Thus,LMD(g1) can not

divideLMD(β). The only possibility left is thatα = β = 0 in D[xi], which implies that

p dividesα andβ.

This leads us to the following similar identity:bg′
2 = α1g1 + β1, whereα1 = α/p

andβ1 = β/p. Clearly, by the same argument applied to each irreducible factor ofg2

(with repetition) we finally getb = α′g1 +β ′, for polynomialsα′ andβ ′ whereα = α′g2

andβ = β ′g2. Putting it together,bg2 = α′g1 · g2 + β ′g2 = α′g1 · g2 + β. As β ∈ I, it

follows thatbg2 is in the ideal〈I, g1g2〉. This completes the proof.

Now we present the polynomial time algorithm for bounded variable ideal member-

ship instances(f, I), where the polynomialf is given by aΣΠΣΠ(ℓ, d, c) circuit. The

polynomial-time identity test forΣΠΣΠ(ℓ, d, c) circuits is a corollary.

Theorem 3.7.2 LetC be a givenΣΠΣΠ(ℓ, d, c) circuit andI = 〈f1, f2, · · · , fm〉 be an

ideal inF[x1, · · · , xn] such that eachfi ∈ F[x1, x2, · · · , xk] wherek is a constant. Then

testing ifC ∈ I can be done deterministically in timepoly(n, d).

Proof. We first writeC = T1 + T2 + · · · + Tℓ, where eachTi =
∏d

j=1 Pij. The case

ℓ = 1 and the case when eachTi is only over indeterminatesx1, · · · , xk can be directly

handled using Hermann’s algorithm (Theorem 3.6.1), in timepoly(d2k
).

We describe the general case. LetR = F[x1, x2, · · · , xk]. We can writeC = β1T
′
1 +

β2T
′
2 + · · · + βmT ′

m for somem ≤ ℓ, whereβi ∈ R andβi 6∈ I, andT ′
i are nontrivial

polynomials inR[xk+1, · · · , xn]. We can easily determineLTR(T ′
i ) for eachT ′

i from

the polynomialsPij, and rearrange theT ′
i so thatLMR(T ′

1) ≥ LMR(T ′
2) ≥ · · · ≥

LMR(T ′
m). 4 Thus,LMR(T ′

1) ≥ LMR(C). The coefficientr of LMR(T ′
1) in C is

also easily computable in polynomial time: we find the coefficient γi of LMR(T ′
1) in

T ′
i for i = 1, 2, · · · , m. Note thatr =

∑m
i=1 βiγi. If r 6= 0 then notice thatr /∈ I

implies C /∈ I. We check ifr ∈ I using Hermann’s algorithm (Theorem 3.6.1) in

time poly(d2k
). We need to continue the test ifr ∈ I. That means eitherLMR(T ′

1) >

LMR(C) or LMR(T ′
1) = LMR(C) andr ∈ I. By Lemma 3.4.5,C ∈ I if and only if

∑m
i=2 βiT

′
i ∈ 〈I, T ′

1〉.
Next, we group the factorsPij occurring inT ′

1 according to the leading monomials.

Let T1r be the product of all factorsP1j of T ′
1 such thatLM(P1j) is a power ofxr, for

r = k+1, k+2, · · · , xn. For an indexr if there are no such factorsP1j then setT1r = 1.

4Notice the condition(b) in the definition ofΣΠΣΠ(ℓ, d, c) circuit.
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Thus we haveT ′
1 =

∏n
r=k+1 T1r, where some of the factorsT1r are1 and can be ignored.

Clearly, for allT1r 6= 1 andT1s 6= 1 we haveLM(T1r) > LM(T1s) if r > s.

Let C1 =
∑m

i=2 βiT
′
i . For eachr such thatT1r 6= 1, let I1r denote the ideal〈I, T1r〉.

Notice thatT1r is a polynomial over at mostc2 different variables. The algorithm recur-

sively checks ifC1 is in the idealI1r for each idealI1r and declaresC ∈ I if and only if

C1 ∈ I1i for eachi. Notice thatC1 is aΣΠΣΠ(ℓ − 1, d, c) circuit and the generators of

I1i’s are now overk + c2 indeterminates (at most) which is still a constant.

Claim 3.7.3 C1 =
∑m

i=2 βiT
′
i ∈ 〈I, T ′

1〉 if and only if C1 ∈ I1r for eachr such that

T1r 6= 1.

Proof of Claim: We first writeT ′
1 asT ′

1 = T1i1T1i2 · · ·T1it , where allT1ij 6= 1. Letting

g2 = T1i1T1i2 · · ·T1it−1 andg1 = T1it in Lemma 3.7.1, we get thatC1 ∈ 〈I, T ′
1〉 =

〈I, g2g1〉 if and only if C1 ∈ I1it andC1 ∈ 〈I, T1i1T1i2 · · ·T1it−1〉. A similar repeated

application of Lemma 3.7.1 yieldsC1 ∈ 〈I, T ′
1〉 if and only if C1 ∈ 〈I, T1ij〉 for each

j = 1, · · · , t. This completes the correctness proof of the algorithm.

We now show that the time bound is poly(n, dmax{ℓ,2k}). Let T (ℓ, d, n) denote the

time taken to test ifC ∈ I. The algorithm description implies the following recurrence

relation forT from which the running time bound is immediate.

T (ℓ, d, n) ≤
{

dT (ℓ, d, n) + poly(n, d2k
) if ℓ > 1;

poly(n, d2k
) if ℓ = 1.
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4
Noncommutative Polynomial Identity

Testing

4.1 Introduction

In this chapter we study polynomial identity problem over noncommutative model. To

begin with, we state the identity testing problem over noncommutative model. LetC

be a given arithmetic circuit computing a polynomialf in the noncommutative ring

F{x1, x2, · · · , xn} whereF is a field andxi, xj do not commute fori 6= j (i.e. xixj −
xjxi 6= 0). Is there an efficient algorithm to test whetherf ≡ 0 in F{x1, x2, · · · , xn} ?

As shown by Nisan [Nis91] in noncommutative algebraic computation, proving

lower bounds is somewhat easier. Using a rank argument Nisanhas shown exponen-

tial size lower bounds for noncommutative formulas (and noncommutative algebraic

branching programs) that compute the noncommutative permanent or determinant poly-

nomials in the ringF{x1, · · · , xn}wherexi are noncommuting variables. Thus, it seems

plausible that identity testing in the noncommutative setting ought to be easier too. In-

deed, Raz and Shpilka in [RS05] have shown that for noncommutative formulas (and

algebraic branching programs) there is a deterministic polynomial-time algorithm for

polynomial identity testing. However, for noncommutativecircuits the situation is some-

what different. Bogdanov and Wee in [BW05] show using Amitsur-Levitzki’s theorem

that identity testing forpolynomial degreenoncommutative circuits is in randomized

polynomial time. Basically, the Amitsur-Levitzki theoremallows them to randomly as-

sign elements from a matrix algebraMk(F) for the noncommuting variablesxi, where

2k exceeds the degree of the circuit.

58



Chapter 4. Noncommutative Polynomial Identity Testing

Our main contribution is the use of ideas fromautomata theoryto design new effi-

cient (deterministic) polynomial identity tests fornoncommutativepolynomials. More

precisely, given a noncommutative circuitC(x1, · · · , xn) computing a polynomial of

degreed with t monomials inF{x1, · · · , xn}, where the variablesxi are noncommut-

ing, we give a deterministic polynomial identity test that checks ifC ≡ 0 and runs in

time polynomial ind, |C|, n, andt. The main idea in our algorithm is to think of the non-

commuting monomials over thexi as words and to design finite automata that allow us

to distinguish between different words. Then, using the connection between automata,

monoids and matrix rings we are able to deterministically choose a relatively small num-

ber of matrix assignments for the noncommuting variables todecide ifC ≡ 0. Thus, we

are able to avoid using the Amitsur-Levitzki theorem. Indeed, using our automata theory

method we can easily give an alternative proof of (a weaker) version of Amitsur-Levitzki

which is good enough for algorithmic purposes as in [BW05] for example.

Our method actually works in a black-box setting. In fact, given a noncommuting

black-box polynomialf ∈ F{x1, · · · , xn} of degreed with t monomials, which we can

evaluate by assigning matrices toxi, we can reconstruct the entire polynomialf in time

polynomial inn, d andt.

Furthermore, we also apply this idea toblack-boxnoncommuting algebraic branch-

ing programs. We extend the result of Raz and Shpilka [RS05] by giving an efficient

deterministic reconstruction algorithm for black-box noncommuting algebraic branch-

ing programs (wherein we are allowed to only query the ABP forinput variables set to

matrices of polynomial dimension). Our black-box model assumes that we can query

for the output ofany gateof the ABP, not just the output gate.

4.2 Noncommutative Polynomial Identity Testing

Recall that anarithmetic circuitC over a fieldF is defined as follows:C takes as inputs,

a set of indeterminates (either commuting or noncommuting)and elements fromF as

scalars. Iff, g are the inputs of an addition gate, then the output will bef + g. Similarly

for a multiplication gate the output will befg. For noncommuting variables the circuit

respect the order of multiplication. An arithmetic circuitis a formula if the fan-out of

every gate is at most one.

Noncommutative identity testing was studied by Raz and Shpilka in [RS05] and
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Bogdanov and Wee in [BW05]. In the Bogdanov-Wee paper, they considered a polyno-

mial f of small degree overF{x1, · · · , xn}, for a fieldF, given by an arithmetic circuit.

They were able to give a randomized polynomial time algorithm for the identity testing

of f . The key feature of their algorithm was a reduction from noncommutative identity

testing to commutative identity testing which is based on a classic theorem of Amitsur

and Levitzki [AL50] about minimal identities for algebras.

Raz and Shpilka [RS05] give a deterministic polynomial-time algorithm for non-

commutative formula identity testing by first converting a homogeneous formula into a

noncommutative algebraic branching program (ABP), as donein [Nis91].

In this section we study the noncommutative polynomial identity testing problem.

Using simple ideas from automata theory, we design a new deterministic identity test

that runs in polynomial time if the input circuit is sparse and of small degree. Our

algorithm works with only black-box access to the noncommuting polynomial, and we

can even efficiently reconstruct the polynomial.

We will first describe the algorithm to test if a sparse polynomial of polynomial

degree over noncommuting variables is identically zero. Then we give an algorithm that

reconstructs this sparse polynomial. Though the latter result subsumes the former, for

clarity of exposition, we describe both. Furthermore, we note that we can assume that

the polynomial is given as an arithmetic circuit over a fieldF.

In the case of commuting variables, [BOT88] gives an interpolation algorithm that

computes the given sparse polynomial, and thus can be used for identity testing. It is

not clear how to generalize this algorithm to the noncommutative setting. Our identity

testing algorithm evaluates the given polynomial at specific, well-chosen points in a

matrix algebra (of polynomial dimension over the base field), such that any non-zero

sparse polynomial is guaranteed to evaluate to a non-zero matrix at one of these points.

The reconstruction algorithm uses the above identity testing algorithm as a subroutine

in a prefix-based search to find all the monomials and their coefficients.

We now describe the identity testing algorithm informally.Our idea is to view each

monomial as a short binary string. A sparse polynomial, hence, is given by a polynomial

number of such strings (and the coefficients of the corresponding monomials). The algo-

rithm proceeds in two steps; in the first step, we construct a small set of finite automata

such that, given any small collection of short binary strings, at least one automaton from

the set accepts exactly one string from this collection; in the second step, for each of the

automata constructed, we construct a tuple of points over a matrix algebra overF such
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that the evaluation of any monomial at the tuple ‘mimics’ therun of the corresponding

string on the automaton. Now, given any non-zero polynomialf of small degree with

few terms, we are guaranteed to have constructed an automaton A ‘isolating’ a string

from the collection of strings corresponding to monomials in f . We then show that eval-

uatingf over the tuple corresponding toA gives us a non-zero output: hence, we can

concludef is non-zero. We now describe both algorithms formally.

4.2.1 Preliminaries

We first recall some standard automata theory notation (see,for example, [HU78]). Fix

a finite automatonA = (Q, δ, q0, qf) which takes as input strings in{0, 1}∗. Q is the

set of states ofA, δ : Q × {0, 1} → Q is the transition function, andq0 andqf are the

initial and final states respectively (throughout, we only consider automata with unique

accepting states). For each letterb ∈ {0, 1}, let δb : Q→ Q be the function defined by:

δb(q) = δ(q, b). These functions generate a submonoid of the monoid of all functions

from Q to Q. This is the transition monoid of the automatonA and is well-studied

in automata theory: for example, see [Str94, page 55]. We nowdefine the0-1 matrix

Mb ∈ F|Q|×|Q| as follows:

Mb(q, q
′) =

{

1 if δb(q) = q′,

0 otherwise.

The matrixMb is simply the adjacency matrix of the graph of the functionδb. As the

entries ofMb are only zeros and ones, we can considerMb to be a matrix over any field

F.

Furthermore, for anyw = w1w2 · · ·wk ∈ {0, 1}∗ we define the matrixMw to be the

matrix productMw1Mw2 · · ·Mwk
. If w is the empty string, defineMw to be the identity

matrix of dimension|Q| × |Q|. For a stringw, let δw denote the natural extension of the

transition function tow; if w is the empty string,δw is simply the identity function. It is

easy to check that:

Mw(q, q′) =

{

1 if δw(q) = q′,

0 otherwise.
(4.1)

Thus,Mw is also a matrix of zeros and ones for any stringw. Also, Mw(q0, qf ) = 1 if

and only ifw is accepted by the automatonA.
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4.2.2 The output of a circuit on an automaton

Now, we consider the ringF{x1, · · · , xn} of polynomials with noncommuting variables

x1, · · · , xn over a fieldF. Let C be a noncommutative arithmetic circuit computing

a polynomialf ∈ F{x1, · · · , xn}. Let d be an upper bound on the degree off . We

can consider monomials over the noncommuting variablesx1, · · · , xn as strings over an

alphabet of sizen. For our construction in Section 4.2.3, it is convenient to encode the

variablesxi in the alphabet{0, 1}. We do this by encoding the variablexi by the string

vi = 01i0, which is basically a unary encoding with delimiters. Clearly, each monomial

over thexi’s of degree at mostd maps uniquely to a binary string of length at most

d(n + 2).

Let A = (Q, δ, q0, qf ) be a finite automaton over the alphabet{0, 1}. With respect to

automatonA we have matricesMvi
∈ F|Q|×|Q| as defined in Section 4.2.1, where each

vi is the binary string that encodesxi. We are interested in the output matrix obtained

when the inputsxi to the circuitC are replaced by the matricesMvi
. This output matrix

is defined in the obvious way: the inputs are|Q|×|Q|matrices and we do matrix addition

and matrix multiplication at each addition (resp. multiplication) of the circuitC. We

define theoutput ofC on the automatonA to be this output matrixMout. Clearly, given

circuit C and automatonA, the matrixMout can be computed in time poly(|C|, |A|, n).

We observe the following property: the matrix outputMout of C onA is determined

completely by the polynomialf computed byC; the structure of the circuitC is other-

wise irrelevant. This is important for us, since we are only interested inf . In particular,

the output is always0 whenf ≡ 0.

More specifically, consider what happens whenC computes a polynomial with a

single term, sayf(x1, · · · , xn) = cxj1 · · ·xjk
, with a non-zero coefficientc ∈ F. In

this case, the output matrixMout is clearly the matrixcMvj1
· · ·Mvjk

= cMw, where

w = vj1 · · · vjk
is the binary string representing the monomialxj1 · · ·xjk

. Thus, by

Equation 4.1 above, we see that the entryMout(q0, qf) is 0 whenA rejectsw, andc

when A acceptsw. In general, supposeC computes a polynomialf =
∑t

i=1 cimi

with t nonzero terms, whereci ∈ F \ {0} andmi =
∏di

j=1 xij , wheredi ≤ d. Let

wi = vi1 · · · vidi
denote the binary string representing monomialmi. Finally, letSf

A =

{i ∈ {1, · · · , t} | A acceptswi}.

Theorem 4.2.1 Given any arithmetic circuitC computing polynomialf ∈ F{x1, · · · , xn}
and any finite automatonA = (Q, δ, q0, qf), then the outputMout of C onA is such that

62



Chapter 4. Noncommutative Polynomial Identity Testing

Mout(q0, qf) =
∑

i∈Sf
A

ci.

Proof. The proof is an easy consequence of the definitions and the properties of

the matricesMw stated in Section 4.2.1. Note thatMout = f(Mv1 , · · · , Mvn). But

f(Mv1 , · · · , Mvn) =
∑s

i=1 ciMwi
, wherewi = vi1 · · · vidi

is the binary string represent-

ing monomialmi. By Equation 4.1, we know thatMwi
(q0, qf) is 1 if wi is accepted by

A, and0 otherwise. Adding up, we obtain the result.

We now explain the role of the automatonA in testing if the polynomialf computed

by C is identically zero or not. Our basic idea is to try and designan automatonA

that accepts exactly one word from among all the words that correspond to the non-

zero terms inf . This would ensure thatMout(q0, qf) is the non-zero coefficient of the

monomial filtered out. More precisely, we will use the above theorem primarily in the

following form, which we state as a corollary.

Corollary 4.2.2 Given any arithmetic circuitC computing polynomialf ∈ F{x1, · · · , xn}
and any finite automatonA = (Q, δ, q0, qf), then the outputMout of C onA satisfies:

(1) If A rejects every string corresponding to a monomial inf , thenMout(q0, qf ) = 0.

(2) If A accepts exactly one string corresponding to a monomial inf , thenMout(q0, qf )

is the nonzero coefficient of that monomial inf .

Moreover,Mout can be computed in timepoly(|C|, |A|, n).

Proof. Both points (1) and (2) are immediate consequences of the above theorem. The

complexity of computingMout easily follows from its definition.

Another interesting corollary to the above theorem is the following.

Corollary 4.2.3 Given any arithmetic circuitC overF{x1, · · · , xn}, and any monomial

m of degreedm, we can compute the coefficient ofm in C in timepoly(|C|, dm, n).

Proof. Apply Corollary 4.2.2 withA being any standard automaton that accepts the

string corresponding to monomialm and rejects every other string. Clearly,A can be

chosen so thatA has a unique accepting state and|A| = O(ndm).

Another way to interpret the result of Corollary 4.2.3 is thefollowing,
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Corollary 4.2.4 Given an arithmetic circuitC overF{x1, · · · , xn} and a monomialm

of degreed, there is an uniform way to generate apoly(|C|, d, n) size boolean circuitC ′

that decides whetherm is a nonzero monomial inC.

Proof. The boolean circuitC ′ simply implements the algorithm described in the proof

of Corollary 4.2.3.

Remark 4.2.5 Observe that Corollary 4.2.3 is highly unlikely to hold in the commu-

tative settingF[x1, · · · , xn]. For, in the commutative case, computing the coefficient

of the monomialx1 · · ·xn in even an arbitrary product of linear formsΠiℓi is at least

as hard as the permanent problem overF, which is#P-complete whenF = Q. To

see this consider an × n integer matrixA = (aij)i,j∈[n]. Consider the polynomial

f(x1, x2, · · · , xn) =
∏n

i=1(
∑n

j=1 aijxj). The permanent ofA is the coefficient of the

monomialx1x2 · · ·xn in f .

Corollary 4.2.2 can also be used to give an independent proofof a weaker form of

the result of Amitsur and Levitzki that is used by Bogdanov and Wee in [BW05]. We

state the theorem of Amitsur and Levitzki.

Theorem 4.2.6 [AL50] Let Md(F) denotes thed × d matrix algebra over the fieldF.

Then,Md(F) does not satisfy any non-trivial polynomial identity of degree< 2d.

In particular, it is easy to see that the algebraMd(F) of d× d matrices over the field

F does not satisfy any nontrivial identity of degree< d. To prove this, we will consider

noncommuting monomials as strings directly over then letter alphabet{x1, · · · , xn}.
Supposef =

∑t
i=1 cimi ∈ F{x1, · · · , xn} is a nonzero polynomial of degree< d.

Clearly, we can construct an automatonB over the alphabet{x1, · · · , xn} that accepts

exactly one string, namely one nonzero monomial, saymi0 , of f and rejects all the

other strings over{x1, · · · , xn}. Also,B can be constructed with at mostd states. Now,

consider the outputMout of any circuit computingf onB. By Corollary 4.2.2 the output

matrix is non-zero, and this proves the result.

4.2.3 Construction of finite automata

We begin with a useful definition.
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Definition 4.2.7 LetW be a finite set of binary strings andA be a finite family of finite

automata over the binary alphabet{0, 1}.

• We say thatA is isolatingfor W if there exists a stringw ∈W and an automaton

A ∈ A such thatA acceptsw and rejects allw′ ∈W \ {w}.

• We say thatA is an(m, s)-isolating familyif for every subsetW = {w1, · · · , ws}
of s many binary strings, each of length at mostm, there is aA ∈ A such thatA

is isolating forW .

Fix parametersm, s ∈ N. Our first aim is to construct an(m, s) isolating family

of automataA, where both|A| and the size of each automaton inA is polynomially

bounded in size. Then, combined with Corollary 4.2.2 we willbe able to obtain deter-

ministic identity testing and interpolation algorithms inthe sequel.

Recall that we only deal with finite automata that have uniqueaccepting states. In

what follows, for a stringw ∈ {0, 1}∗, we denote bynw the positive integer represented

by the binary numeral1w. For each primep and each integeri ∈ {0, · · · , p − 1}, we

can easily construct an automatonAp,i that accepts exactly thosew such thatnw ≡ i (

mod p). Moreover,Ap,i can be constructed so as to havep states and exactly one final

state.

Our collection of automataA is just the set ofAp,i wherep runs over the first few

polynomially many primes, andi ∈ {0, · · · , p−1}. Formally, letN denote(m+2)
(

s
2

)

+

1;A is the collection ofAp,i, wherep runs over the firstN primes andi ∈ {0, · · · , p−1}.
Notice that, by the prime number theorem, all the primes chosen above are bounded in

value byN2, which is clearly polynomial inm ands. Hence,|A| = poly(m, s), and

eachA ∈ A is bounded in size by poly(m, s). In the following lemma we show thatA
is an(m, s)-isolating automata family.

Lemma 4.2.8 The family of finite automataA defined as above is an(m, s)-isolating

automata family.

Proof. Consider any set ofs binary stringsW of length at mostm each. By the

construction ofA, Ap,i ∈ A isolatesW if and only if p does not dividenwj
− nwk

for somej and all k 6= j, andnwj
≡ i ( mod p). Clearly, if p satisfies the first

of these conditions,i can easily be chosen so that the second condition is satisfied.

We will show that there is some prime among the firstN primes that does not divide
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P =
∏

j 6=k(nwj
− nwk

). This easily follows from the fact that the number of distinct

prime divisors ofP is at mostlog |P |, which is clearly bounded by(m+2)
(

s
2

)

= N−1.

This concludes the proof.

We note that the above(m, s)-isolating familyA can clearly be constructed in time

poly(m, s).

4.2.4 The identity testing algorithm

We now describe the identity testing algorithm. LetC be the input circuit computing a

polynomialf overF{x1, · · · , xn}. Let t be an upper bound on the number of monomials

in f , andd be an upper bound on the degree off . As in Section 4.2.2, we represent

monomials overx1, · · · , xn as binary strings. Every monomial inf is represented by a

string of length at mostd(n + 2).

Our algorithm proceeds as follows: Using the construction of Section 4.2.3, we

compute a familyA of automata such thatA is isolating for any setW with at most

t strings of length at mostd(n + 2) each. For eachA ∈ A, the algorithm computes

the outputMout of C on A. If Mout 6= 0 for any A, then the algorithm concludes

that the polynomial computed by the input circuit is not identically zero; otherwise, the

algorithm declares that the polynomial is identically zero.

The correctness of the above algorithm is almost immediate from Corollary 4.2.2. If

the polynomial is identically zero, it is easy to see that thealgorithm outputs the correct

answer. If the polynomial is nonzero, then by the construction of A, we know that

there existsA ∈ A such thatA accepts precisely one of the strings corresponding to the

monomials inf . Then, by Corollary 4.2.2, the output ofC onA is nonzero. Hence, the

algorithm correctly deduces that the polynomial computed is not identically zero.

As for the running time of the algorithm, it is easy to see thatthe family of automata

A can be constructed in time poly(d, n, t). Also, the matricesMvi
for eachA (all of

which are of size poly(d, n, t)) can be constructed in polynomial time. Hence, the entire

algorithm runs in time poly(|C|, d, n, t). We have proved the following theorem:

Theorem 4.2.9 Given any arithmetic circuitC with the promise thatC computes a

polynomialf ∈ F{x1, · · · , xn} of degreed with at mostt monomials, we can check,

in time poly(|C|, d, n, t), if f is identically zero. In particular, iff is sparse and of

polynomial degree, then we have a deterministic polynomial-time algorithm.
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In the case of arbitrary noncommutative arithmetic circuits, [BW05] gives a ran-

domized exponential time algorithm for the identity testing problem. Their algorithm

is based on the Amitsur-Levitzki theorem, which forces the identity test to randomly

assign exponential size matrices for the noncommuting variables since the circuit could

compute an exponential degree polynomial. However, noticethat Theorem 4.2.9 gives

a deterministic exponential-time algorithm under the additional restriction that the input

circuit computes a polynomial with at mostexponentiallymany monomials. In general,

a polynomial of exponential degree can have a double exponential number of terms.

4.2.5 Interpolation of noncommutative polynomials

We now describe an algorithm that efficiently computes the noncommutative polynomial

given by the input circuit. LetC, f, t andd be as in Section 4.2.4. LetW denote the

set of all strings corresponding to monomials with non-zerocoefficients inf . For all

binary stringsw, let Aw denote any standard automaton that acceptsw and rejects all

other strings. For any automatonA and stringw, we let[A]w denote the automaton that

accepts those strings that are accepted byA and in addition, containw as a prefix. For a

set of finite automataA, let [A]w denote the set{[A]w | A ∈ A}.
We now describe a subroutineTest that takes as input an arithmetic circuitC and

a set of finite automataA and returns a field elementα ∈ F. The subroutineTest will

have the following properties:

(P1) IfA is isolating forW , the set of strings corresponding to monomials inf , then

α 6= 0.

(P2) In the special case when|A| = 1, and the above holds, thenα is in fact the

coefficient of the isolated monomial.

(P3) If noA ∈ A accepts any string inW , thenα = 0.

We now give the easy description ofTest(C,A):

For eachA ∈ A, the subroutineTest computes the output matrixMA
out of C onA. If

there is anA ∈ A such thatMA
out(q

A
0 , qA

f ) 6= 0, then for the first such automatonA ∈ A,

Test returns the scalarα = MA
out(q

A
0 , qA

f ). Here, notice thatqA
0 , qA

f denote the initial

and final states of the automatonA. If there is no such automatonA ∈ A is found, then

the subroutine returns the scalar0.
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It follows directly from Corollary 4.2.2 thatTest has Properties (P1)-(P3). Fur-

thermore, clearlyTest runs in time poly(|C|, ||A||), where||A|| denotes the sum of

the sizes of the automata inA.

Let f ∈ F{x1, · · · , xn} denote the noncommuting polynomial computed by the in-

put circuitC. We now describe a recursive prefix-search based algorithmInterpolate

that takes as input the circuitC and a binary stringu, and computes all those monomials

of f (along with their coefficients) which containu as a prefix when encoded as strings

using our encodingxi 7→ vi = 01i0. Clearly, in order to obtain all monomials off with

their coefficients, it suffices to run this algorithm withu = ǫ, the empty string.

In what follows, letA0 denote the(m, s)-isolating automata family{Ap,i} as con-

structed in Section 4.2.3 with parametersm = d(n + 2) ands = t. As explained in

Section 4.2.3, we can computeA0 in time poly(d, n, t).

Supposef is the polynomial computed by the circuitC. We now describe the algo-

rithm Interpolate(C,u) formally (Algorithm 1).

The correctness of this algorithm is clear from the correctness of theTest subrou-

tine and Lemma 4.2.8. To bound the running time, note that thealgorithm never calls

Interpolate on a stringu unlessu is the prefix of some string corresponding to a

monomial. Hence, the algorithm invokesInterpolate for at mostO(td(n + 2)) many

prefixesu. Since||[A0]u0|| and|Au| are both bounded by poly(d, n, t) for all prefixesu,

it follows that the running time of the algorithm is poly(|C|, d, n, t). We summarize this

discussion in the following theorem.

Theorem 4.2.10Given any arithmetic circuitC computing a polynomialf ∈ F{x1, · · · , xn}
of degree at mostd and with at mostt monomials, we can compute all the monomials of

f , and their coefficients, in timepoly(|C|, d, n, t). In particular, if C computes a sparse

polynomialf of polynomial degree, thenf can be reconstructed in polynomial time.

4.3 Interpolation of Algebraic Branching Programs over

Noncommuting Variables

In this section, we study the interpolation problem for black-box Algebraic Branching

Programs (ABP) computing a polynomial in the noncommutative ringF{x1, · · · , xn}.
We are given as input an ABP (defined below)P in the black-box setting, and our task
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Algorithm 2 The Interpolation algorithm
1: procedureInterpolate(C,u)
2: α, α′, α′′ ← 0.
3: α← Test(C, {Au}) ⊲ Au is the standard automaton that accepts onlyu
4: if α = 0 then
5: Break. ⊲ u can not corresponds to a monomial off
6: else
7: Output (u, α). ⊲ u is the binary encoding of a monomial off with

coefficientα
8: end if

Now the algorithm find all monomials (along with their coefficient)
containingu0 or u1 as prefix in the binary encoding.

9: if |u| = d(n + 2) then
10: Stop.
11: else
12: α′ ←Test(C, [A0]u0), α′′ ←Test(C, [A0]u1).
13: end if
14: if α′ 6= 0 then
15: Interpolate(C, u0). ⊲ There is some monomial inC extendingu0
16: end if
17: if α′′ 6= 0 then
18: Interpolate(C, u1). ⊲ There is some monomial inC extendingu1
19: end if
20: end procedure
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is to output an ABPP ′ that computes the same polynomial asP . To make the task

feasible in the black-box setting, we assume that we are allowed to evaluateP at any of

its intermediate gates.

We first observe that all the results in Section 4.2 hold underthe assumption that the

input polynomialf is allowed onlyblack-box access. In the noncommutative setting, we

shall assume that the black-box access allows the polynomial to be evaluated for input

values from an arbitrary matrix algebra over the base fieldF. It is implicit here that the

cost of evaluation is polynomial in the dimension of the matrices. Note that this is a

reasonable noncommutative black-box model, because if we can evaluatef only over

F or any commutative extension ofF, then we cannot distinguish the non-commutative

polynomial represented byf from the corresponding commutative polynomial. We state

the black-box version of our results below.

Theorem 4.3.1 (Similar to Theorem 4.2.1)Given black-box access to any polynomial

f =
∑t

i=1 cimi ∈ F{x1, · · · , xn} and any finite automatonA = (Q, δ, q0, qf), then the

outputMout of f on A is such thatMout(q0, qf) =
∑

i∈Sf
A

ci, whereSf
A = {i | 1 ≤ i ≤

t andA accepts the stringwi corresponding tomi}

Here the output of polynomialf on A is defined analogously to the output of a circuit

onA in Section 4.2.2.

Corollary 4.3.2 (Similar to Corollary 4.2.3) Given black-box access to a polynomial

f in F{x1, · · · , xn}, and any monomialm of degreedm, we can compute the coefficient

of m in f in timepoly(dm, n).

Finally we have,

Theorem 4.3.3 (Similar to Theorem 4.2.10)Given black-box access to a polynomial

f in F{x1, · · · , xn} of degree at mostd and with at mostt monomials, we can compute

all the monomials off , and their coefficients, in timepoly(d, n, t). In particular, if f is

a sparse polynomial of polynomial degree, then it can be reconstructed in polynomial

time.

Our interpolation algorithm for noncommutative ABPs is motivated by Raz and Sh-

pilka’s [RS05] algorithm for identity testing of ABPs over noncommuting variables. Our

algorithm interpolates the given ABP layer by layer using ideas developed in Section 4.2

(principally Corollary 4.3.2).
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Definition 4.3.4 [Nis91, RS05] An Algebraic Branching Program (ABP) is a directed

acyclic graph with one vertex of in-degree zero, called the source, and a vertex of out-

degree zero, called the sink. The vertices of the graph are partitioned into levels num-

bered0, 1, · · · , d. Edges may only go from leveli to leveli + 1 for i ∈ {0, · · · , d − 1}.
The source is the only vertex at level0 and the sink is the only vertex at leveld. Each

edge is labeled with a homogeneous linear form in the input variables. The size of the

ABP is the number of vertices.

Notice that an ABP with no edge between two verticesu andv on levelsi andi+1 is

equivalent to an ABP with an edge fromu to v labeled with the zero linear form. Thus,

without loss of generality, we assume that in the given ABP there is an edge between

every pair of vertices on adjacent levels.

As mentioned before, we will assume black-box access to the input ABPP where

we can evaluate the polynomial computed byP at any of its gates over arbitrary matrix

rings overF. In order to specify the gate at which we want the output, we index the

gates ofP with a layer number and a gate number (in the layer).

Based on [RS05], we now define aRaz-Shpilka basisfor the leveli of the ABP. Let

the number of nodes at thei-th level beGi and let{p1, p2, · · · , pGi
} be the polynomials

computed at the nodes. We will identify this set of polynomials with theGi× ni matrix

Mi where the columns ofMi are indexed byni different monomials of degreei, and

the rows are indexed by the polynomialspj . The entries of the matrixMi are the cor-

responding polynomial coefficients. A Raz-Shpilka basis isa set of at mostGi linearly

independent column vectors ofMi that generates the entire column space. Notice that

every vector in the basis is identified by a monomial.

In the algorithm we need to compute a Raz-Shpilka basis at every level of the ABP.

Notice that at the level0 it is trivial to compute such a basis. Inductively assume we

can compute such a basis at the leveli. Denote the basis byBi = {v1, v2, · · · , vki
}

wherevj ∈ FGi , andki ≤ Gi. Assume that the elements of this basis corresponds to the

monomials{m1, m2, · · · , mki
}. We compute a Raz-Shpilka basis at the leveli + 1 by

computing the column vectors corresponding to the set of monomials{mjxs}j∈[ki],s∈[n]

in Mi+1 and then extracting the linear independent vectors out of them. Computing

these column vectors requires the computation of the coefficients of these monomials,

which can be done in polynomial time using the Corollary 4.3.2. Notice that we also

know the monomials that the elements of this basis correspond to.

71



Chapter 4. Noncommutative Polynomial Identity Testing

We now describe the interpolation algorithm formally. As mentioned before, we will

construct the output ABPP ′ layer by layer such that every gate ofP ′ computes the same

polynomial as the corresponding gate inP . Clearly, this task is trivial at level0.

Assume that we have completed the construction up to leveli < d. We now construct

level i + 1. This only involves computation of the linear forms betweenlevel i and level

i + 1. Hence, there areki ≤ Gi vectors in the Raz-Shpilka basis at theith level. Let

the monomials corresponding to these vectors beB = {m1, · · · , mki
}. Fix any gateu

at leveli + 1 in P , and letpu be the polynomial compute at this gate inP . Clearly,

pu =

Gi
∑

j=1

pjℓj

wherepj is the polynomial computed at thejth gate at leveli, andℓj is the linear form

labeling the edge between thejth gate at leveli andu.

We have,

pu =

Gi
∑

j=1

pjℓj

=

Gi
∑

j=1





∑

m:|m|=i

c(j)
m m





(

n
∑

s=1

a(j)
s xs

)

=
∑

m:|m|=i,s

mxs

(

Gi
∑

j=1

c(j)
m a(j)

s

)

=
∑

m:|m|=i,s

mxs〈cm, as〉

wherecm andas denote the vectors of field elements(c
(j)
m )j and (a

(j)
s )j respectively.

Note thatas denotes a vector of unknowns that we need to compute. Each monomial

mxs in the above equation gives us a linear constraint onas. However, this system

of constraints is exponential in size. To obtain a feasible solution for {as}s∈[n], we

observe that it is sufficient to satisfy the constraints corresponding only to monomials

mxs wherem ∈ B. All other constraints are simply linear combinations of these and

are thus automatically satisfied by any solution to these.

Now, for m ∈ B ands ∈ {1, · · · , n}, we compute the coefficients ofmxs in pu and

72



Chapter 4. Noncommutative Polynomial Identity Testing

those ofm in each of thepi’s using the algorithm of Corollary 4.3.2. Hence, we have

all the linear constraints we need to solve for{as}s∈[n]. Firstly, note that such a solution

exists, since the linear forms in the black box ABPP give us such a solution. Moreover,

any solution to this system of linear equations generates the same polynomialpu at gate

u. Hence, we can use any solution to this system of linear equations as our linear forms.

We perform this computation for all gatesu at thei + 1st level. The final step in the

iteration is to compute the Raz-Shpilka basis for the leveli + 1.

We can use induction on the level numbers to argue correctness of the algorithm.

From the input black-box ABPP , for each levelk, let Pjk, 1 ≤ j ≤ Gk denote the

algebraic branching programs computed byP with output gate as gatej in level k.

Assume, as induction hypothesis, that the algorithm has computed linear forms for all

levels upto leveli and, furthermore, that the algorithm has a correct Raz-Shpilka basis

for all levels upto leveli. This gives us a reconstructed ABPP ′ upto leveli with the

property, for1 ≤ k ≤ i, each ABPP ′
jk, 1 ≤ j ≤ Gk computes the same polynomials

as the correspondingPjk, 1 ≤ j ≤ Gk, whereP ′
jk is obtained fromP ′ by designating

gatej at levelk as output gate. Under this induction hypothesis, it is clearthat our

interpolation algorithm will compute a correct set of linear forms between levelsi and

i + 1. Consequently, the algorithm will correctly reconstruct an ABPP ′ upto leveli + 1

along with a corresponding Raz-Shpilka basis for that level.

We can now summarize the result in the following theorem.

Theorem 4.3.5 Let P be an ABP of sizes and depthd over F{x1, x2, · · · , xn} given

by black-box access that allows evaluation of any gate ofP for inputsxi chosen from a

matrix algebraMk(F) for a polynomially bounded value ofk. Then in deterministic time

poly(d, s, n), we can compute an ABPP ′ such thatP ′ evaluates to the same polynomial

asP .

4.4 Noncommutative Identity Testing and Circuit Lower

Bounds

In Section 4.2 we gave a new deterministic identity test for noncommuting polynomials

which runs in polynomial time for sparse polynomials of polynomially bounded degree.

However, the real problem of interest is identity testing for polynomials given by

small degree noncommutative circuits for which Bogdanov and Wee [BW05] give an

73



Chapter 4. Noncommutative Polynomial Identity Testing

efficient randomized test. When the noncommutative circuitis a formula, Raz and Sh-

pilka [RS05] have shown that the problem is in deterministicpolynomial time. Their

method uses ideas from Nisan’s lower bound technique for noncommutative formulae

[Nis91].

How hard would it be to show that noncommutative PIT is in deterministic polyno-

mial time forcircuits of polynomial degree? In the commutative case, Impagliazzoand

Kabanets [KI03] have shown that derandomizing PIT implies circuit lower bounds. It

implies that eitherNEXP 6⊆ P/poly or the integer Permanent does not have polynomial-

size arithmetic circuits.

We observe that this result also holds in the noncommutativesetting. I.e., if noncom-

mutative PIT has a deterministic polynomial-time algorithm then eitherNEXP 6⊆ P/poly

or thenoncommutativePermanent function does not have polynomial-size noncommu-

tative circuits.

As noted, in some cases noncommutative circuit lower boundsare easier to prove

than for commutative circuits. Nisan [Nis91] has shown exponential-size lower bounds

for noncommutative formula size and further results are known for pure noncommu-

tative circuits [Nis91, RS05]. However, proving superpolynomial size lower bounds

for general noncommutative circuits computing the Permanent has remained an open

problem.

The noncommutative Permanent functionPerm(x1, · · · , xn) ∈ R{x1, · · · , xn} is

defined as

Perm(x1, · · · , xn) =
∑

σ∈Sn

n
∏

i=1

xi,σ(i),

where the coefficient ringR is any commutative ring with unity. Specifically, for the

next theorem we consider integer permanent, i.eR = Z.

Theorem 4.4.1 If PIT for noncommutative circuits of polynomial degreeC(x1, · · · , xn) ∈
Z{x1, · · · , xn} is in deterministic polynomial-time then eitherNEXP 6⊆ P/poly or the

noncommutativePermanent function does not have polynomial-size noncommutative

circuits.

Proof. SupposeNEXP ⊂ P/poly. Then, by the main result of [IKW02] we have

NEXP = MA. Furthermore, by Toda’s theorem MA⊆ PPermZ, where the oracle

computes the integer permanent. Now, assumingPIT for noncommutative circuits of
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polynomial degree is in deterministic subexponential-time, we will show that the (non-

commutative) Permanent function does not have polynomial-size noncommutative cir-

cuits. Suppose to the contrary that it does have polynomial-size noncommutative cir-

cuits. Clearly, we can use it to compute the integer permanent as well. Furthermore, as

in [KI03] we notice that the noncommutativen × n Permanent is also uniquely char-

acterized by the identitiesp1(x) ≡ x andpi(X) =
∑i

j=1 x1jpi−1(Xj) for 1 < i ≤ n,

whereX is a matrix ofi2 noncommuting variables andXj is itsj-th minor w.r.t. the first

row. I.e. the polynomialspi, 1 ≤ i ≤ n satisfy thesen identities overnoncommuting

variablesxij , 1 ≤ i, j ≤ n if and only if pi computes thei × i permanent of noncom-

muting variables. The rest of the proof is exactly as in Impagliazzo-Kabanets [KI03].

We can easily describe an NP machine to simulate a PPermZ computation. The NP ma-

chine guesses a polynomial-size noncommutative circuit for Perm onm×m matrices,

wherem is a polynomial bound on the matrix size of the queries made inthe compu-

tation of the PPermZ machine. Then the NP machine verifies that the circuit computes

the permanent by checking them noncommutativeidentities it must satisfy. This can be

done in SUBEXP by assumption. Finally, the NP machines uses the circuit to answer

all the integer permanent queries that are made in the computation of PPermZ machine.

Putting it together, we getNEXP⊆ NSUBEXP which contradicts the nondeterministic

time hierarchy theorem.
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5
Derandomizing the Isolation Lemma and

Lower Bounds for Circuit Size

5.1 Introduction

We recall the Isolation Lemma from [MVV87]. Let[n] denote the set{1, 2, · · · , n}.
Let U be a set of sizen andF ⊆ 2U be any family of subsets ofU . Let w : U → Z+

be a weight function that assigns positive integer weights to the elements ofU . For

T ⊆ U , define its weightw(T ) asw(T ) =
∑

u∈T w(u). Then, the Isolation Lemma

guarantees that for any family of subsetsF of U and for any random weight assignment

w : U → [2n], with high probability there will be a unique minimum weightset inF .

Lemma 5.1.1 (Isolation Lemma) [MVV87] Let U be an universe of sizen andF be

any family of subsets ofU . Let w : U → [2n] denote a weight assignment function to

elements ofU . Then,

Probw[ There exists a unique minimum weight set inF ] ≥ 1

2
,

where the weight functionw is picked uniformly at random.

In the seminal paper [MVV87], Mulmuley et al apply the isolation lemma to give

a randomized NC algorithm for computing maximum cardinality matchings for general

graphs (also see [ARZ99]). Since then the isolation lemma has found several other

applications. For example, it is crucially used in the proofof the result that NL⊂
UL/poly [RA00] and in designing randomized NC algorithms for linear representable
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matroid problems [NSV94]. It is also known that the isolation lemma can be used

to prove the Valiant-Vazirani lemma that SAT is many-one reducible via randomized

reductions to USAT.

Whether the matching problem is in deterministic NC, and whether NL ⊆ UL are

outstanding open problems. Thus, the question whether the isolation lemma can be

derandomized is clearly important.

As noted in [Agr07], it is easy to see by a counting argument that the isolation

lemma can not be derandomized, in general, because there are22n
set systemsF . More

formally, the following is observed in [Agr07].

Observation 5.1.2 [Agr07] The Isolation Lemma can not be fully derandomized if we

allow weight functionsw : U → [nc] for a constantc (i.e. weight functions with a

polynomial range). More precisely, for any polynomially bounded collection of weight

assignments{wi}i∈[nc1 ] with weight range[nc], there exists a familyF of [n] such that

for all j ∈ [nc1 ], there exists two minimal weight subsets with respect towj.

However that does not rule out the derandomization of any special usage of the

isolation lemma. Indeed, for all applications of the isolation lemma (mentioned above,

for instance) we are interested only in exponentially many set systemsF ⊆ 2U .

We make the setting more precise by giving a general framework. Fix the universe

U = [n] and consider ann-input boolean circuitC where size(C) = m. The set2U

of all subsets ofU is in a natural1-1 correspondence with the lengthn-binary strings

{0, 1}n: each subsetS ⊆ U corresponds to its characteristic binary stringχS ∈ {0, 1}n
whoseith bit is 1 iff i ∈ S. Thus then-input boolean circuitC implicitly defines the set

system

FC = {S ⊆ [n] | C(χS) = 1}.

As an easy consequence of Lemma 5.1.1 we have the following.

Lemma 5.1.3 LetU be an universe of sizen andC be ann-input boolean circuit of size

m. LetFC ⊆ 2U be the family of subsets ofU defined by circuitC. Letw : U → [2n]

denote a weight assignment function to elements ofU . Then,

Probw[ There exists a unique minimum weight set inFC ] ≥ 1

2
,

where the weight functionw is picked uniformly at random.
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Furthermore, there is a collection of weight functions{wi}1≤i≤p(m,n), wherep(m, n)

is a fixed polynomial, such that for eachFC there is a weight functionwi w.r.t. which

there is a unique minimum weight set inFC .

Proof. The proof of the first part follows directly from the Isolation Lemma. To prove

the second part, we use simple probabilistic argument. Supposew1, w2, · · · , wt are

randomly picked weight assignment functions fromU → [2n]. We need to fixt suitably

in the analysis. For a particular boolean circuitC of sizem, the probability that none

of thewi’s gives a unique minimum weight set inFC is ≤ 1
2t (directly using Isolation

Lemma). Notice that the number ofn inputs boolean circuits of sizem is 2O(m log m)

(m ≥ n). So the probability that none of thewi’s gives unique minimum weightFC for

some circuitC, is at most2
O(m log m)

2t . So the probability that for any circuitC, there exists

i ∈ [t] such thatwi gives a unique minimum weight set inFC is at least1 − 2O(m log m)

2t .

Choosingt = cm log m for a suitable constantc > 0, the above probability is nonzero.

Thus we choosep(m, n) = cm log m.

Lemma 5.1.3 allows us to formulate two natural and reasonable derandomization

hypotheses for the isolation lemma.

Hypothesis 1. There is a deterministic algorithmA1 that takes as input(C, n), whereC

is ann-input boolean circuit, and outputs a collection of weight functionsw1, w2, · · · , wt

such thatwi : [n] → [2n], with the property that for somewi there is a unique mini-

mum weight set in the set systemFC . Furthermore,A1 runs in time subexponential in

size(C).

Hypothesis 2. There is a deterministic algorithmA2 that takes as input(m, n) in unary

and outputs a collection of weight functionsw1, w2, · · · , wt such thatwi : [n] → [2n],

with the property that for each sizem boolean circuitC with n inputs there is some

weight functionwi w.r.t. whichFC has a unique minimum weight set. Furthermore,A2

runs in time polynomial inm.

Clearly, Hypothesis 2 is stronger than Hypothesis 1. It demands a “black-box” de-

randomization in the sense thatA2 efficiently computes a collection of weight functions

that will work for anyset system in2U specified by a boolean circuit of sizem.

Notice that a random collectionw1, · · · , wt of weight functions will fulfil the re-

quired property of either hypotheses with high probability. Thus, the derandomization
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hypotheses are plausible. Indeed, it is not hard to see that suitable standard hardness

assumptions that yield pseudorandom generators for derandomizing BPP would imply

these hypotheses. We do not elaborate on this here. Our main results in this chapter are

the following consequences of Hypotheses 1 and 2.

Theorem 5.1.4 Hypothesis 1 implies that eitherNEXP 6⊂ P/polyor the Permanent does

not have polynomial size noncommutative arithmetic circuits.

Theorem 5.1.5 Hypothesis 2 implies that for almost alln there is an explicit multi-

linear polynomialfn(x1, x2, · · · , xn) ∈ F[x1, x2, · · · , xn] in commutingvariablesxi

(where by explicit we mean that the coefficients of the polynomial fn are computable by

a uniform algorithm in time exponential inn) that does not have commutative arithmetic

circuits of size2o(n) (where the fieldF is either the rationals or a finite field).

The first result is a consequence of a new randomized identitytesting algorithm for

noncommutative circuits of small degree that is based on theisolation lemma. This

algorithm is based on automata theoretic ideas introduced in Chapter 4. Then using

Theorem 4.4.1, we get this result.

As a consequence of Hypothesis 2 we are able to show that for almost alln there is

an explicit multilinear polynomialfn(x1, x2, · · · , xn) ∈ F[x1, x2, · · · , xn] in commuting

variablesxi that does not have commutative arithmetic circuit of size2o(n). This is a

fairly easy consequence of the univariate substitution idea and the observation that for

arithmetic circuits computing multilinear polynomials, we can efficiently test if a given

monomial has a nonzero coefficient (Lemma 5.4.1). Technically this result is similar in

flavour to the Agrawal’s result that a black-box derandomization of PIT for a class of

arithmetic circuits via pseudorandom generators will showsimilar lower bound [Agr05,

Lemma 5.1].

Klivans and Spielman [KS01] apply a more general form of the isolation lemma to

obtain a polynomial identity test (in the commutative case). This lemma is stated below.

Lemma 5.1.6 [KS01, Lemma 4]Let L be any collection of linear forms over vari-

ablesz1, z2, · · · , zn with integer coefficients in the range{0, 1, · · · , K}. If eachzi is

picked independently and uniformly at random from{0, 1, · · · , 2Kn} then with proba-

bility at least1/2 there is a unique linear form fromC that attains minimum value at

(z1, · · · , zn).
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We can formulate a restricted version of this lemma similar to Lemma 5.1.3 that

will apply only to sets of linear formsL accepted by a boolean circuitC. More pre-

cisely, an integer vector(α1, · · · , αn) such thatαi ∈ {0, · · · , K} is in L if and only if

(α1, · · · , αn) is accepted by the boolean circuitC.

Thus, for this form of the isolation lemma we can formulate another derandomiza-

tion hypothesis analogous to Hypothesis 2 as follows.

Hypothesis 3. There is a deterministic algorithmA3 that takes as input(m, n, K) and

outputs a collection of weight functionsw1, w2, · · · , wt such thatwi : [n] → [2Kn],

with the property that for any sizem boolean circuitC that takes as input(α1, · · · , αn)

with αi ∈ {0, · · · , K} there is some weight vectorwi for which there is auniquelin-

ear form(α1, · · · , αn) accepted byC which attains the minimum value
∑n

j=1 wi(j)αj.

Furthermore,A3 runs in time subexponential in size(C).

We show that Hypothesis 3 yields a lower bound consequence for the integer per-

manent which is similar to Impagliazzo-Kabanets result [KI03].

Remark 5.1.7 Notice that derandomizing the isolation lemma in specific applications

like theRNC algorithm for matchings[MVV87] and the containmentNL ⊆ UL/poly

[RA00] might still be possible without implying such circuit size lower bounds.

5.2 Randomized Noncommutative Identity Testing

We now describe a new randomized polynomial-time identity test for noncommutative

circuits of small degree based on the isolation lemma. This is conceptually quite dif-

ferent from the randomized identity test of Bogdanov and Wee[BW05]. The design of

our algorithm uses automata theoretic ideas described in the section 4.2.1 and section

4.2.2 of Chapter 4. In Chapter 4, we consider automata over the binary alphabet{0, 1}.
In this section we will consider automata over the alphabetΣ = {x1, x2, · · · , xn}. It

is easy to see that all the results of section 4.2.1 and section 4.2.2 of Chapter 4 are true

even over an arbitrary finite alphabet and hence onΣ = {x1, x2, · · · , xn}.

Theorem 5.2.1 Let f ∈ F{x1, x2, · · · , xn} be a polynomial given by an arithmetic

circuit C of sizem. Let d be an upper bound on the degree off . Then there is a

randomized algorithm which runs in timepoly(n, m, d) and can test whetherf ≡ 0.
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Proof. Let [d] = {1, 2, · · · , d} and [n] = {1, 2, · · · , n}. Consider the set of tuples

U = [d]× [n]. Let v = xi1xi2 · · ·xit be a nonzero monomial off . Then the monomial

can be identified with the following subsetSv of U :

Sv = {(1, i1), (2, i2), · · · , (t, it)}.

Let F denotes the family of subsets ofU corresponding to the nonzero monomials

of f i.e,

F = {Sv | v is a nonzero monomial inf}.

By the Isolation Lemma, we know that if we assign random weights from [2dn] to

the elements ofU , with probability at least1/2, there is a unique minimum weight set

in F . Our aim will be to construct a family of small size automata which are indexed by

weightsw ∈ [2nd2] andt ∈ [d], such that the automatonAw,t will precisely accept all

the strings (corresponding to the monomials)v of lengtht, such that the weight ofSv is

w. Then from the isolation lemma we will argue that the automaton corresponding to the

minimum weight will precisely accept only one string (monomial). Now forw ∈ [2nd2],

and t ∈ [d], we describe the construction of the automatonAw,t = (Q, Σ, δ, q0, F )

as follows: Q = [d] × [2nd2] ∪ {(0, 0)}, Σ = {x1, x2, · · · , xn}, q0 = {(0, 0)} and

F = {(t, w)}. We define the transition functionδ : Q× Σ→ Q,

δ((i, V ), xj) = (i + 1, V + W ),

whereW is the random weight assign to(i + 1, j). Our automata familyA is simply,

A = {Aw,t | w ∈ [2nd2], t ∈ [d]}.

Now for each of the automataAw,t ∈ A, we mimic the run of the automatonAw,t on the

circuit C as described in Section 4.2.2. If the output matrix corresponding to any of the

automaton is nonzero, our algorithm declaresf 6= 0, otherwise declaresf ≡ 0.

The correctness of the algorithm follows easily from the Isolation Lemma. By the

Isolation Lemma we know, on random assignment, a unique setS in F gets the min-

imum weightwmin with probability at least1/2. Let S corresponds to the monomial

xi1xi2 · · ·xiℓ . Then the automatonAwmin,ℓ accepts the string (monomial)xi1xi2 · · ·xiℓ.

Furthermore, as no other set inF get the same minimum weight,Awmin,ℓ rejects all the
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other monomials. So the(q0, qf) entry of the output matrixMo, that we get in running

Awmin,ℓ on C is nonzero. Hence with probability at least1/2, our algorithm correctly

decides thatf is nonzero. The success probability can be boosted to any constant by

standard independent repetition of the same algorithm. Finally, it is trivial to see that the

algorithm always decides correctly iff ≡ 0.

5.3 Proof of Theorem 5.1.4

We are now ready to prove our first result. Suppose the derandomization Hypothesis 1

holds (as stated in the introduction): i.e. suppose there isa deterministic algorithmA1

that takes as input(C, n) whereC is ann-input boolean circuit and in subexponential

time computes a set of weight functionsw1, w2, · · · , wt, wi : [n] → [2n] such that the

set systemFC defined by the circuitC has a unique minimum weight set w.r.t. at least

one of the weight functionswi.

Let C ′(x1, x2, · · · , xn) be a noncommutative arithmetic circuit of degreed bounded

by a polynomial in size(C ′). By Corollary 4.2.3, there is a deterministic polynomial-

time algorithm that takes as inputC ′ and a monomialm of degree at mostd and accepts

if and only if the monomialm has nonzero coefficient in the polynomial computed by

C ′. Moreover by corollary 4.2.4, we have a uniformly generatedboolean circuitC

of size polynomial in size(C ′) that accepts only the (binary encodings of) monomials

xi1xi2 · · ·xik , k ≤ d that have nonzero coefficients in the polynomial computed byC ′.

Now, as a consequence of Theorem 5.2.1 and its proof we have adeterministicsubex-

ponential algorithm for checking ifC ′ ≡ 0, assuming algorithmA1 exists. Namely,

we compute the boolean circuitC from C ′ in polynomial time. Then, invoking algo-

rithmA1 with C as input we compute at most subexponentially many weight functions

w1, · · · , wt. Then, following the proof of Theorem 5.2.1 we construct theautomata cor-

responding to these weight functions and evaluateC ′ on the matrices that each of these

automata define in the prescribed manner. By assumption about algorithmA1, if C ′ 6≡ 0

then one of thesewi will give matrix inputs for the variablesxj , 1 ≤ j ≤ n on which

C ′ evaluates to a nonzero matrix. Now the proof of the theorem follows directly from

Theorem 4.4.1.
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5.4 Proof of Theorem 5.1.5

In Corollary 4.2.3, we already have observed that given a noncommutative circuitC

computing a small degree polynomialf and a monomial, there is an easy uniform way

to check whetherm is a nonzero monomial inf . Interestingly, for commutative case

we can get similar result when the circuitC computes a multilinear polynomial. As

this idea is useful in the proof of our main result, we state and prove it formally in the

following lemma.

Corollary 5.4.1 Given a commutative arithmetic circuit̂C overF[x1, · · · , xn], with the

promise thatĈ computes amultilinear polynomial, and any monomialm =
∏

i∈S xi

whereS ⊆ [n], we can compute the coefficient ofm in C in time poly(|Ĉ|, n). Fur-

thermore, there is an uniform way to generate a boolean circuit C ′ of sizepoly(|C|, n)

such thatC ′ takes as input description ofC andm and decides whetherm is a nonzero

monomial inC.

Proof. Let m =
∏

i∈S xi be the given monomial. The algorithm will simply substitute

y (a new variable) for eachxi such thati ∈ S and0 for eachxi such thati 6∈ S and

evaluate the circuit̂C to find the coefficient of the highest degree ofy. The boolean

circuit C ′ is simply the description of the above algorithm. It is clearthat C ′ can be

uniformly generated.

Now we are ready to prove our main result. We will pick an appropriate multilinear

polynomialf ∈ F[x1, x2, · · · , xn] where:

f(x1, x2, · · · , xn) =
∑

S⊆[n]

cS

∏

i∈S

xi,

where the coefficientscS ∈ F will be determined appropriately so that the polynomialf

has the claimed property.

SupposeA2 runs in timemc for constantc > 0, wherem denotes the size bound

of the boolean circuitC defining set systemFC . Notice that the numbert of weight

functions output byA2 is bounded bymc.

The total number of coefficientscS of f is 2n. For each weight functionwi let

(wi,1, · · · , wi,n) be the assignments to the variablesxi. For each weight functionwi, 1 ≤
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i ≤ t we write down the following equations

f(ywi,1, ywi,2, · · · , ywi,n) = 0.

Sincef is of degree at mostn, and the weightswi,j are bounded by2n, it is clear

thatf(ywi,1, ywi,2, · · · , ywi,n) is a univariate polynomial of degree at most2n2 in y. Thus,

each of the above equations will give rise to at most2n2 linear equations in the unknowns

cS.

In all, this will actually give us a system of at most2n2mc linear equations overF

in the unknown scalarscS. Since the total number of distinct monomials is2n, and2n

asymptotically exceedsmc for m = 2o(n), the system of linear equations has anontrivial

solution in thecS providedm = 2o(n). Furthermore, a nontrivial solution forcS can be

computed using Gaussian elimination in time exponential inn.

We claim thatf does not have commutative circuits of size2o(n) over F. As-

sume to the contrary that̂C(x1, · · · , xn) is a circuit for f(x1, · · · , xn) of size 2o(n).

By Lemma 5.4.1 notice that we can uniformly construct a boolean circuitC of size

m = 2o(n) that will take as input a monomial
∏

i∈S xi (encoded as ann bit boolean

string representingS as a subset of[n]) and test if it is nonzero in̂C and hence in

f(x1, · · · , xn).

Assuming Hypothesis 2, letw1, · · · , wt be the weight functions output by A2 for

input (m, n). By Hypothesis 2, for some weight functionwi there is a unique monomial
∏

j∈S xj such that
∑

j∈S wi,j takes the minimum value. Clearly, the commutative circuit

Ĉ must be nonzero on substitutingywi,j for xj (the coefficient ofy
P

j∈S wi,j will be

nonzero). However,f evaluates to zero on the integer assignments prescribed by all the

weight functionsw1, · · · , wt. This is a contradiction to the assumption and it completes

the proof.

Remark 5.4.2 We note that Hypothesis 2 also implies the existence of an explicit poly-

nomial in noncommuting variables that does not have noncommutative circuits of subex-

ponential size (we can obtain it as an easy consequence of theabove proof).

5.5 Consequence of Derandomization Hypothesis 3

We now show that the derandomization Hypothesis 3 yields a consequence exactly simi-

lar to the result of [KI03]. It particular, we get lower boundfor integer permanent (under
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the assumption thatNEXP 6⊂ P/poly ) rather than some explicit function that we proved

in Theorem 5.1.5.

Theorem 5.5.1 If a subexponential-time algorithmA3 satisfying Hypothesis 3 exists

then identity testing overZ is in SUBEXPwhich implies that eitherNEXP 6⊂ P/poly or

the integer Permanent does not have polynomial size arithmetic circuits.

Proof. Using Lemma 5.1.6 it is shown in [KS01, Theorem 5] that thereis a randomized

identity test for small degree polynomials inQ[x1, · · · , xn], where the polynomial is

given by an arithmetic circuit̂C of polynomially bounded degreed. The idea is to pick

a random weight vectorw : [n] → [2nd] and replace the indeterminatexi by yw(i),

whered is the total degree of the input polynomial. As the circuitĈ has small degree,

after this univariate substitution the circuit can be evaluated in deterministic polynomial

time to explicitly find the polynomial iny. By Lemma 5.1.6 it will be nonzero with

probability1/2 if Ĉ computes a nonzero polynomial.

Coming to the proof of this theorem, ifNEXP 6⊂ P/poly then we are done. So,

supposeNEXP ⊂ P/poly. Notice that given any monomialxd1
1 · · ·xdn

n of total degree

bounded byd we can test if it is a nonzero monomial ofĈ in exponential time ( explic-

itly listing down the monomials of the polynomial computed by Ĉ). Therefore, since

NEXP ⊂ P/poly there is a polynomial-size boolean circuitC that accepts the vector

(d1, · · · , dn) iff xd1
1 · · ·xdn

n is a nonzero monomial in the given polynomial (as required

for application of Hypothesis 3).

Now, we invoke the derandomization Hypothesis 3. We can apply the Klivans-

Spielman polynomial identity test, explained above, to thearithmetic circuitĈ for each

of thet weight vectorsw1, · · · , wt generated by algorithmA3 to obtain a subexponential

deterministic identity test for the circuit̂C by the properties ofA3. Now, following the

argument of Impagliazzo-Kabanets [KI03] it is easy to derive that the integer Permanent

does not have polynomial size arithmetic circuits.

Remark 5.5.2 Although the permanent is a multilinear polynomial, noticethat Hypoth-

esis 2 does not seem strong enough to prove the above theorem.The reason is that the

arithmetic circuit for the permanent that is nondeterministically guessed may not be

computing multilinear polynomial and hence the application of Lemma 5.4.1 is not pos-

sible. There does not appear any easy way of testing if the guessed circuit computes a
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multilinear polynomial. The only known efficient test for multilinearity is randomized

[FGL+96] and that is not enough for our purpose.

5.6 Derandomizing Valiant-Vazirani Lemma ?

Another classic result in complexity theory that is closelyrelated to the Isolation Lemma

is the well known Valiant-Vazirani Lemma. Motivated by the connection of the isolation

lemma and circuit lower bound we ask similar question in the context of Valiant-Vazirani

lemma, whether derandomizing similar restricted versionsof the Valiant-Vazirani lemma

also implies circuit lower bounds. We first recall the Valiant-Vazirani lemma as stated

in the original paper [VV86].

Lemma 5.6.1 Let S ⊆ {0, 1}t. Supposewi, 1 ≤ i ≤ t are picked uniformly at random

from {0, 1}t. For eachi, let Si = {v ∈ S | v.wj = 0, 1 ≤ j ≤ i} and letpt(S) be the

probability that|Si| = 1 for somei. Thenpt(S) ≥ 1/4.

Analogous to our discussion in Section 5.1, here too we can consider the restricted

version where we considerSC ⊆ {0, 1}n to be the set ofn-bit vectors accepted by a

boolean circuitC of sizem. We can similarly formulate derandomization hypotheses

similar to Hypotheses 1 and 2.

We do not know if there is another randomized polynomial identity test for non-

commutative arithmetic circuits based on the Valiant-Vazirani lemma. The automata-

theoretic technique of Section 5.2 does not appear to work. Specifically, given a matrix

h : Fn
2 → Fk

2, there is no deterministic finite automaton of size poly(n, k) that accepts

x ∈ Fn
2 if and only if h(x) = 0.
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6
Quantum Query Complexity of

Multilinear Identity Testing

6.1 Introduction

For any finite ring(R, +, ·) the ringR[x1, x2, · · · , xm] is the ring of polynomials in

commuting variablesx1, x2, · · · , xm and coefficients inR. The ringR{x1, x2, · · · , xm}
is the ring of polynomials where the indeterminatesxi are noncommuting.

For the algorithmic problem we study in this chapter, we assume that the elements

of the ring (R, +, ·) are uniformly encoded by binary strings of lengthn and R =

〈r1, r2, · · · , rk〉 is given by an additive generating set{r1, r2, · · · , rk}. That is,

R = {
∑

i

αiri | αi ∈ Z}.

Also, the ring operations ofR are performed by black-box oracles for addition and mul-

tiplication that take as input two strings encoding ring elements and output their sum

or product (as defined in Chapter 2). Also, we assume that the zero element ofR is

encoded by a fixed string. We now define the problem which we study in this chapter.

The Multilinear Identity Testing Problem ( MIT): The input to the problem is a black-

box ringR = 〈r1, · · · , rk〉 given by an additive generating set, and a multilinear polyno-

mial f(x1, · · · , xm) (in the ringR[x1, · · · , xm] or the ringR{x1, · · · , xm}) that is also

given by a black-box access. The problem is to test iff is an identity for the ringR.

More precisely, the problem is to test iff(a1, a2, · · · , am) = 0 for all ai ∈ R.
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A natural example of an instance of this problem is the bivariate polynomialf(x1, x2) =

x1x2 − x2x1 over the ringR{x1, x2}. This is an identity forR precisely whenR is a

commutative ring. Clearly, it suffices to check if the generators commute with each

other, which gives a naive algorithm that makesO(k2) queries to the ring oracles.

Given a polynomialf(x1, · · · , xm) and a black-box ringR by generators, we briefly

discuss some facts about the complexity of checking iff = 0 is an identity forR.

The problem can be NP-hard when the number of indeterminatesm is unbounded, even

whenR is a fixed ring. To see this, notice that a 3-CNF formulaF (x1, · · · , xn) can

be expressed as aO(n) degree multilinear polynomialf(x1, x2, · · · , xn) over F2, by

writing F in terms of addition and multiplication overF2. It follows thatf = 0 is an

identity for F2 if and only if F is an unsatisfiable formula. However in this chapter we

focus only on the upper and lower bounds on thequery complexityof the problem.

In our query model, each ring operation, which is performed by a query to one of the

ring oracles, is of unit cost. Furthermore, we consider eachevaluation off(a1, · · · , am)

to be of unit cost for a given input(a1, · · · , am) ∈ Rm. This model is reasonable because

we considerm as a parameter that is much smaller thank.

The starting point of our study is a result of Magniez and Nayak in [MN07], where

the authors study the quantum query complexity of group commutativity testing: Let

G be a finite black-box group given by a generating setg1, g2, · · · , gk and the group

operation is performed by a group oracle. The algorithmic task is to check ifG is

commutative. For this problem the authors in [MN07] give a quantum algorithm with

query complexityO(k2/3 log k) and time complexityO(k2/3 log2 k). Furthermore,

a Ω(k2/3) lower bound for the quantum query complexity is also shown. The main

technical tool for their upper bound result was a method of quantization of random walks

first shown by Szegedy [Sze04]. More recently, Magniez et al in [MNRS07] discovered

a simpler and improved description of Szegedy’s method.

Our starting point is the observation that Magniez-Nayak result [MN07] for group

commutativity can also be easily seen as a commutativity test for arbitrary finite black-

box rings with similar query complexity. Furthermore, as mentioned earlier, notice

that the commutativity testing for a finite ring coincides with testing if the bivariate

polynomialf(x1, x2) = x1x2 − x2x1 is an identity for the ring. Sincef(x1, x2) is a

multilinear polynomial, a natural question is, whether this approach would extend to

testing if any multilinear polynomial is an identity for a given ring. Motivated by this

connection, we study the problem of testing multilinear identities for any finite black-
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box ring.

The upper bound result in [MN07] is based on a group-theoretic lemma of Pak

[Pak00]. Our (query complexity) upper bound result takes ananalogous approach. The

main technical contribution here is a suitable generalization of Pak’s lemma to a multi-

linear polynomial setting. The multilinearity condition is crucially required. The rest of

the proof is a suitable adaptation of the Magniez-Nayak result.

For the lower bound result, we show a reduction to a somewhat more general version

of MIT from a problem that is closely related to them-COLLISION problem studied in

quantum computation. Them-COLLISION problem is the following. Given a function

f : {1, 2, · · · , k} → {1, 2, · · · , k} as an oracle and a positive integerm, the task is to

determine if there is some element in the range off with exactlym pre-images.

We define them-SPLIT COLLISIONproblem that is closely related tom-COLLISION

problem. Here the domain{1, 2, · · · , k} is partitioned intom equal-sized intervals (as-

sumek is a multiple ofm) and the problem is to determine if there is some element in the

range off with exactly one pre-image in each of them intervals. We show a reduction

from m-SPLIT COLLISIONto a general version ofMIT . There is an easy randomized re-

duction fromm-COLLISIONproblem tom-SPLIT COLLISIONproblem. The best known

quantum query complexity lower bound form-COLLISION problem isΩ(k
2
3 ) [AS04]

and thus we get the same lower bound for the general version ofMIT that we study.

Improving, the current lower bound form-COLLISION is an important open problem in

quantum computation since last few years.1

Our reduction for lower bound is conceptually different from the lower bound proof

in [MN07]. It uses ideas from automata theory to construct a suitable black-box ring.

We recently used similar ideas in the design of a deterministic polynomial-time algo-

rithm for identity testing of noncommutative circuits computing small degree sparse

polynomials [AMS08].

6.2 Black-box Rings and the Quantum Query model

We briefly explain the standard quantum query model. We modify the definition of

black-box ring operations by making them unitary transformations that can be used in

quantum algorithms. For a black-box ringR, we have two oraclesOa
R and Om

R for

1Ambainis in [Amb07] show a quantum query complexity upper bound of O(km/m+1) for
m-COLLISIONproblem.
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addition and multiplication respectively. For any two ringelementsr, s, and a binary

string t ∈ {0, 1}n we haveOa
R|r〉|s〉 = |r〉|r + s〉 andOm

R |r〉|s〉|t〉 = |r〉|s〉|rs ⊕ t〉,
where the elements ofR are encoded as strings in{0, 1}n. Notice thatOa

R is a reversible

function by virtue of(R, +) being an additive group. On the other hand,(R, ·) does not

have a group structure. Thus we have madeOm
R reversible by defining it as a3-place

function Om
R : {0, 1}3n → {0, 1}3n. Whenr or s do not encode ring elements these

oracles can compute any arbitrary string.

The query model in quantum computation is a natural extension of classical query

model. The basic difference is that a classical algorithm queries deterministically or

randomly selected basis states, whereas a quantum algorithm can query a quantum state

which is a suitably prepared superposition of basis states.Our query model closely

follows the query model of Magniez-Nayak [MN07, Section 2.2]. For black-box ring

operations the query operators are simplyOa
R andOm

R (as defined above). For an arbi-

trary oracle functionF : X → Y , the corresponding unitary operator isOF : |g〉|h〉 →
|g〉|h⊕ F (g)〉. In the query complexity model, we charge unit cost for a single query to

the oracle and all other computations are free. We will assume that the input black-box

polynomialf : Rm → R is given by such an unitary operatorUf .

All the quantum registers used during the computation can beinitialised to|0〉. Then

a k-query algorithm for a black-box ring is a sequence ofk + 1 unitary operators and

k ring oracle operators:U0, Q1, U1, · · · , Uk−1, Qk, Uk whereQi ∈ {Oa
R, Om

R , OF} are

the oracle queries andUi’s are unitary operators. The final step of the algorithm is to

measure designated qubits and decide according to the measurement output.

6.3 Quantum Algorithm for Multilinear Identity Test-

ing

In this section we describe our quantum algorithm for multilinear identity testing (MIT ).

Our algorithm is motivated by (and based on) the group commutativity testing algo-

rithm of Magniez and Nayak [MN07]. We briefly explain the algorithm of Magniez-

Nayak. Their problem is the following: given a black-box groupG by a set of generators

g1, g2, · · · , gk, the task is to find nontrivial upper bound on the quantum query complex-

ity to determine whetherG is commutative. The group operators (corresponding to the

oracle) areOG andOG−1.
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Note that for this problem, there is a trivial classical algorithm (so as quantum) of

query complexityO(k2). In an interesting paper, Pak showed a classical randomized

algorithm of query complexityO(k) for the same problem [Pak00]. Pak’s algorithm

is based on the following observation ([Pak00, Lemma 1.3]):Consider a subproduct

h = ge1
1 ge2

2 · · · gek
k whereei’ s are picked uniformly at random from{0, 1}. Then for any

proper subgroupH of G, Prob[h 6∈ H ] ≥ 1/2.

One important step of the algorithm in [MN07] is a generalization of Pak’s lemma.

Let Vℓ be the set of all distinct elementℓ tuples of elements from{1, 2, · · · , k}. For

u = (u1, · · · , uℓ), definegu = gu1 · gu2 · · · guℓ
. Let p = ℓ(ℓ−1)+(k−ℓ)(k−ℓ−1)

k(k−1)
.

Lemma 6.3.1 [MN07] For any proper subgroupK of G, Probu∈Vℓ
[gu 6∈ K] ≥ 1−p

2
.

As a simple corollary of this lemma, Magniez and Nayak show in[MN07] that, if G

is non abelian then for randomly pickedu andv fromVℓ the elementsgu andgv will not

commute with probability at least(1−p)2

4
. Thus, for non abelianG there will be at least

(1−p)2

4
fraction of noncommuting pairs(u, v). Call such pairs asmarked pairs. Next,

their idea is to do a random walk in the space of all pairs and todecide whether there

exists a marked pair. They achieved this by defining a random walk and quantizing it

using [Sze04]. We briefly recall the setting from [MN07, Section 2.3], and the main

theorem from [Sze04], which is the central to the analysis ofMagniez-Nayak result.

Quantum Walks

Let P be an irreducible and aperiodic Markov chain on a graphG = (V, E) with n ver-

tices. A walk following such a Markov chain is always ergodicand has unique stationary

distribution. LetP (u, v) denote the transition probability fromu → v, andM be a set

of marked nodes ofV . The goal is to make a walk on the vertices ofG following the

transition matrixP and decide whetherM is nonempty. Assume that every nodev ∈ V

is associated with a databaseD(v) from which we can determine whetherv ∈ M . This

search procedure is modelled by a quantum walk. To analyze the performance of the

search procedure, we need to consider the cost of the following operations:

Set up Cost (S):The cost to set upD(v) for v ∈ V .

Update Cost (U):The cost to updateD(v), i.e. to update fromD(v) to D(v′), where

the movev → v′ is according to the transition matrixP .

Checking Cost (C):To check whetherv ∈ M usingD(v).
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The costs are specific to the application for e.g. it can be query complexity or

time complexity. The problem that we consider or the group commutativity problem

of Magniez-Nayak, concern about query complexity. The following theorem due to

Szegedy gives a precise analysis of the total cost involved in the quantum walk.

Theorem 6.3.2 [Sze04] LetP be the transition matrix of an ergodic, symmetric Markov

Chain on a graphG = (V, E) andδ be the spectral gap ofP . Also, letM be the set of

all marked vertices inV and|M |/|V | ≥ ǫ > 0, wheneverM is nonempty. Then there is

a quantum algorithm which determines whetherM is nonempty with constant success

probability and costS + O((U + C)/
√

δǫ). S is the set up cost of the quantum process,

U is the update cost for one step of the walk andC is the checking cost.

Later, Magniez-Nayak-Ronald-Santha [MNRS07] improve thetotal cost of the quan-

tum walk. We state their main result.

Theorem 6.3.3 [MNRS07] LetP be the transition matrix of a reversible, ergodic Markov

Chain on a graphG = (V, E) andδ be the spectral gap ofP . Also letM be the set of

all marked vertices inV and |M |/|V | ≥ ǫ > 0, wheneverM is nonempty. Then there

is a quantum algorithm which determines whetherM is nonempty and in that case finds

an element ofM , with constant success probability and cost of orderS + 1√
ǫ
( 1√

δ
U +C).

S is the set up cost of the quantum process,U is the update cost for one step of the walk

andC is the checking cost.

The analysis of Magniez-Nayak [MN07] is based on Theorem 6.3.2. For our prob-

lem also, we follow similar approach.

6.3.1 Query Complexity Upper Bound

Now we describe our quantum algorithm forMIT . Our main technical contribution is

a suitable generalization of Pak’s lemma. For anyi ∈ [m], consider the setRi ⊆ R

defined as follows:

Ri = {u ∈ R | ∀(b1, · · · , bi−1, bi+1, · · · , bm) ∈ Rm−1, f(b1, · · · , bi−1, u, bi+1, · · · , bm) = 0}

Clearly, if f is not a zero function fromRm → R, then|Ri| < |R|. In the following

lemma, we prove that iff is not a zero function then|Ri| ≤ |R|/2.
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Lemma 6.3.4 Let R be any finite ring andf(x1, x2, · · · , xm) be a multilinear polyno-

mial overR such thatf = 0 is not an identity forR. For i ∈ [m] define

Ri = {u ∈ R | ∀(b1, · · · , bi−1, bi+1, · · · , bm) ∈ Rm−1, f(b1, · · · , bi−1, u, bi+1, · · · , bm) = 0}.

ThenRi is an additive coset of a proper additive subgroup ofR and hence|Ri| ≤ |R|/2.

Proof. Write f = A(x1, · · · , xi−1, xi, xi+1, · · · , xm) + B(x1, · · · , xi−1, xi+1, · · · , xm)

whereA is the sum of all the monomials off containingxi andB is the sum of the

rest of the monomials. Letv1, v2 be any two distinct elements inRi. Then for any fixed

ȳ = (y1, · · · , yi−1, yi+1, · · · , ym) ∈ Rm−1, consider the evaluation ofA andB over the

points(y1, · · · , yi−1, v1, yi+1, · · · , ym) and(y1, · · · , yi−1, v2, yi+1, · · · , ym) respectively.

For convenience, we abuse the notation and write,

A(v1, ȳ) + B(ȳ) = A(v2, ȳ) + B(ȳ) = 0,

whereȳ is an assignment tox1, x2, · · · , xi−1, xi+1, · · · , xk andv1, v2 are the assignments

to xi respectively. Note that, asf is a multilinear polynomial, the above relation in turns

implies thatA(v1 − v2, ȳ) = 0.

Consider the set̂Ri, defined as follows: Fix anyu(i) ∈ Ri,

R̂i = {w − u(i) | w ∈ Ri}.

We claim thatR̂i is an (additive) subgroup ofR. We only need to show that̂Ri is closed

under the addition (ofR). Consider(w1 − u(i)), (w2 − u(i)) ∈ R̂i. Then(w1 − u(i)) +

(w2 − u(i)) = (w1 + w2 − u(i))− u(i). It is now enough to show that for anȳy ∈ Rm−1,

f(w1 + w2 − u(i), ȳ) = 0 (note thatw1 + w2 + u(i) is an assignment toxi). Again using

the fact thatf is multilinear, we can easily see the following:

f(w1 + w2 − u(i), ȳ) = A(w1, ȳ) + A(w2, ȳ)− A(u(i), ȳ) + B(ȳ)

and,

A(w1, ȳ) + A(w2, ȳ)−A(u(i), ȳ) + B(ȳ) = A(w2, ȳ)− A(u(i), ȳ) = 0.

Note that the last equality follows becausex2 andu are inRi. Hence we have proved
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that R̂i is a subgroup ofR. SoRi = R̂i + u(i) i.e. Ri is a coset ofR̂i insideR. Also

|Ri| < |R| (f is not identically zero overR). Thus, finally we get|Ri| = |R̂i| ≤ |R|/2.

Our quantum algorithm is based on the algorithm of [MN07]. Inthe rest of the

chapter, we denote bySℓ the set of allℓ size subsetsof {1, 2, · · · , k}. We follow a

quantization of a random walk onSℓ×· · ·×Sℓ = Sm
ℓ . Foru = {u1, u2, · · · , uℓ}, define

ru = ru1 + · · ·+ ruℓ
. Now, we suitably adapt Lemma 1 of [MN07] in our context.2

Let R be a finite ring given by a additive generating setS = {r1, · · · , rk}. W.l.o.g.

assume thatr1 is the zero element ofR. Let R̂ be a proper additive subgroup of(R, +).

Let j be the least integer in[k] such thatrj 6∈ R̂. SinceR̂ is a proper subgroup ofR,

such aj always exists.

Lemma 6.3.5 Let R̂ < R be a proper additive subgroup ofR and T be an additive

coset ofR̂ in R. ThenProbu∈Sℓ
[ru 6∈ T ] ≥ 1−p

2
, wherep = ℓ(ℓ−1)+(k−ℓ)(k−ℓ−1)

k(k−1)
.

Proof. Let j be the least integer in[k] such thatrj 6∈ R̂. Fix a setu of sizeℓ such

that1 ∈ u andj 6∈ u. Denote byv the set obtained fromu by deleting1 and inserting

j. This defines a one to one correspondence (matching) betweenall such pair of(u, v).

Moreoverrv = ru + rj (notice thatr1 = 0). Then at least one of the elementru or rv is

not inT . For otherwise(rv − ru) ∈ R̂ implying rj ∈ R̂, which is a contradiction.

Therefore,

Probu∈Sℓ
[ru ∈ T | j ∈ u xor 1 ∈ u] ≤ 1

2
.

For any two indicesi, j,

Probu∈Sℓ
[i, j ∈ u or i, j 6∈ u] =

ℓ(ℓ− 1) + (k − ℓ)(k − ℓ− 1)

k(k − 1)
= p.

Thus,

Probu∈Sℓ
[ru ∈ T ] ≤ (1− p)/2 + p ≤ (1 + p)/2.

This completes the proof.

Let T = Ri in Lemma 6.3.5, whereRi is as defined in Lemma 6.3.4.

2Notice that in [MN07], the author consider the set of allℓ tuples instead of subsets. This is important
for them as they work in non abelian structure in general (where order matters). But we will be interested
only over additive abelian structure of a ring and thus orderdoes not matter for us.
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Supposef = 0 is not an identity for the ringR. Then, using Lemma 6.3.5, it is easy

to see that, foru1, u2, · · · , um picked uniformly at random fromSℓ, f(ru1, · · · , rum) is

non zero with non-negligible probability. This is analogous to [MN07, Lemma 2]. We

include a proof for the sake of completeness.

Lemma 6.3.6 Let f(x1, · · · , xm) be a multilinear polynomial (in commuting or non-

commuting indeterminates) overR such thatf = 0 is not an identity for the ringR.

Then,

Probu1,··· ,um∈Sℓ
[f(ru1, · · · , rum) 6= 0] ≥

(

1− p

2

)m

.

Proof. For i ∈ [m], let Ri be the additive coset defined in Lemma 6.3.4. The proof is

by simple induction onm. The proof for the base case of the induction (i.e form = 1)

follows easily from the definition ofRi and Lemma 6.3.5. By induction hypothesis

assume that the result holds for allt-variate multilinear polynomialsg such thatg = 0

is not an identity forR with t ≤ m− 1.

Consider the given multilinear polynomialf(x1, x2, · · · , xm). Then, by Lemma 6.3.4,

Rm is a coset of an additive subgroup̂Rm insideR. Pickum ∈ Sℓ uniformly at random.

If f = 0 is not an identity onR then by Lemma 6.3.5 we getrum 6∈ Rm with proba-

bility at least1−p
2

. Let g(x1, x2, · · · , xm−1) = f(x1, · · · , xm−1, rum). Sincerum 6∈ Rm

with probability at least1−p
2

, it follows thatg = 0 is not an identity onR with prob-

ability at least 1−p
2

. Given thatg is not an identity forR, by induction hypothesis

we have that, Probu1,··· ,um−1∈Sℓ
[g(ru1, · · · , rum−1) 6= 0] ≥

(

1−p
2

)m−1
. Hence we get,

Probu1,··· ,um∈Sℓ
[f(ru1 , · · · , rum) 6= 0] ≥

(

1−p
2

)m
, which proves the lemma.

We observe two simple consequences of Lemma 6.3.6. Notice that 1−p
2

= ℓ(k−ℓ)
k(k−1)

.

Letting ℓ = 1 we get 1−p
2

= 1/k, and Lemma 6.3.6 implies that iff = 0 is not an

identity for R thenf(a1, · · · , am) 6= 0 for one of thekm choices for theai from the

generating set{r1, · · · , rk}.
Lettingℓ = k/2 in Lemma 6.3.6, we get1−p

2
≥ 1/4. Hence we obtain the following

randomized test which makes4mmk queries.

Corollary 6.3.7 There is a randomized4mmk query algorithm forMIT with constant

success probability, wheref is m-variate andR is given by an additive generating set

of sizek. This can be seen as a generalization of Pak’sO(k) query randomized test for

group commutativity.
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We use Lemma 6.3.6 to design our quantum algorithm. Technically, our quantum

algorithm is similar to the one described in [MN07]. The Lemma 6.3.6 is used to guar-

antee that there will at least
(

1−p
2

)m
fraction ofmarked pointsin the spaceSm

ℓ i.e. the

points wheref evaluates to non-zero. The underlying graph in our random walk is a

Johnson Graph and our analysis require some simple modification of the analysis de-

scribed in [MN07].

Random walk onSℓ

Our random walk can be described as a random walk over a graphG = (V, E) defined

as follows: The vertices ofG are all possibleℓ subsets of[k]. Two vertices are connected

by an edge whenever the corresponding sets differ by exactlyone element. Notice that

G is a connectedℓ(k− ℓ)-regular Johnson graph, with parameter(k, ℓ, ℓ− 1) [BCN89].

Let P be the normalized adjacency matrix ofG with rows and columns are indexed by

the subsets of[k]. ThenPXY = 1/ℓ(k− ℓ) if |X ∩Y | = ℓ−1 and0 otherwise. It is well

known that the spectral gapδ of P (δ = 1− λ, whereλ is the second largest eigenvalue

of P ) is Ω(1/ℓ) for ℓ ≤ k/2 [BCN89]. Now we describe the random walk onG.

Let the current vertex isu = {u1, u2, · · · , uℓ} and ru = ru1 + ru2 + · · · + ruℓ
.

With probability 1/2 stay atu and with probability1/2 do the following: randomly

pick ui ∈ u andj ∈ [k] \ u. Then move to vertexv such thatv is obtained fromu by

removingui and insertingj. Computerv by simply subtractingrui
from ru and adding

rj to it. That will only cost2 oracle access. Staying in any vertex with probability1/2

ensures that the random walk is ergodic. So the stationary distribution of the random

walk is always uniform. It is easy to see that the transition matrix of the random walk

is A = (I + P )/2 whereI is the identity matrix of suitable dimension. So the spectral

gap of the transition matrixA is δ̂ = (1− λ)/2 = δ/2.

The query complexity analysis is similar to the analysis of Magniez-Nayak. But to

fit it with our requirement, we need some careful parameter setting. We include a brief

self-contained proof.

Theorem 6.3.8 Let R be a finite black-box ring given as an oracle andf(x1, · · · , xm)

be a multilinear polynomial overR given as a black-box. Moreover let{r1, · · · , rk}
be a given additive generating set forR. Then the quantum query complexity of testing

whetherf is an identity forR, is O(m(1 + α)m/2k
m

m+1 ), assumingk ≥ (1 + 1/α)m+1.
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Proof. Setup cost(S):For the quantum walk step we need to start with an uniform dis-

tribution onSm
ℓ . With eachu ∈ Sℓ, we maintain a quantum register|du〉 that computes

ru. So we need to prepare the following state|Ψ〉:

|Ψ〉 =
1

√

|Sm
ℓ |

∑

u1,u2,··· ,um∈Sm
ℓ

|u1, ru1〉 ⊗ |u2, ru2〉 ⊗ · · · ⊗ |um, rum〉.

It is easy to see that to compute anyruj
, we needℓ− 1 oracle access to the ring oracle.

Since in each ofm independent walk, quantum queries over all choices ofu will be made

in parallel (using quantum superposition), the total querycost for setup ism(ℓ− 1).

Update cost(U):It is clear from the random walk described in the section 6.3.1, that

the update cost overSℓ is only2 oracle access. Thus for the random walk on Sm
ℓ which

is just m independent random walks, one on each copy of Sℓ, we need a total update

cost2m.3

Checking cost(C):To check whetherf is zero on a point during the walk, we simply

query the oracle forf once.

Recall from Szegedy’s result [Sze04] (as stated in Theorem 6.3.2), the total cost

for query complexity isQ = S + 1√
δ̂ǫ

(U + C) where ǫ =
(

1−p
2

)m
is the propor-

tion of the marked elements and̂δ is the spectral gap of the transition matrixA de-

scribed in section 6.3.1. Combining together we get,Q ≤ m

[

(ℓ− 1) + 3√
δ̂ǫ

]

. From

the random walk described in the section 6.3.1, we know thatδ̂ ≥ 1
2ℓ

. Hence,Q ≤

m

[

(ℓ− 1) + 3
√

2ℓ

( 1−p
2 )

m
2

]

. Notice that, 1−p
2

= ℓ
k

(

1− ℓ
k

1− 1
k

)

. Substituting for1−p
2

we get,

Q ≤ m

[

(ℓ− 1) + 3
√

2km/2 1

ℓ
m−1

2 ( k−ℓ
k−1)

m/2

]

. We will choose a suitably smallα > 0 so

that k−1
k−ℓ

< 1 + α. Then we can upper boundQ as follows:

Q ≤ m

[

(ℓ− 1) + 3
√

2 · (1 + α)m/2km/2 1

ℓ
m−1

2

]

.

Now our goal is to minimizeQ with respect toℓ andα. For that we chooseℓ = kt

where we will fix t appropriately in the analysis. Substitutingℓ = kt we get,Q ≤
m
[

(kt − 1) + 3
√

2 · (1 + α)m/2t1/2k
m−(m−1)t

2

]

. Choosingt = (m/(m + 1)), we can

3In [MN07] the underlying group operation is not necessarilycommutative (it is being tested for
commutativity). Thus the update cost is more.
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easily see that the query complexity of the algorithm isO(m(1 + α)m/2k
m

m+1 ). Finally,

recall that we need choose anα > 0 so thatk−1
k−ℓ
≤ 1 + α. Clearly, it suffices to choose

α so that(1 + α)ℓ ≤ αk. Lettingℓ = km/m+1 we get the constraint(1 + 1/α)m+1 ≤ k

which is satisfied ife(m+1)/α ≤ k. We can chooseα = m+1
ln k

.

Remark 6.3.9 The choice ofα in the above theorem shows some trade-offs in the query

complexity between the parametersk andm. For constantm notice that this gives us an

O(km/m+1) query complexity upper bound for the quantum algorithm, which is similar

to the best known query upper bound form-COLLISION [Amb07], when the problem

instance is a functionf : [k]→ [k].

Generalized Multilinear Identity Testing ( GMIT): We now consider a variant of the

MIT problem, which we callGMIT (for generalized-MIT ).

Let f : Rm → R be a black-box multilinear polynomial. Consider anyadditive

subgroupA of the black-box ringR, given by a set of generatorsr1, r2, · · · , rk, so that

A = {
∑

i βiri | βi ∈ Z}. TheGMIT(R, A, f) problem is the following: test whether a

black-box multilinear polynomialf is an identity forA. In other words, we need to test

if f(a1, · · · , am) = 0 for all ai ∈ A.

It is easy to observe that the quantum algorithm actually solvesGMIT and the cor-

rectness proof and analysis given in Theorem 6.3.8 also holdfor GMIT problem. We

summarize this observation in the following theorem.

Theorem 6.3.10LetR be a black-box finite ring given by ring oracles andA = 〈r1, r2, · · · , rk〉
be anadditive subgroupof R given by generatorsri ∈ R. Let f(x1, x2, · · · , xm) be a

black-box multilinear polynomialf : Rm → R. Then there is a quantum algorithm

with query complexityO(m(1 + α)m/2k
m

m+1 ) for theGMIT(R, A, f) problem (assuming

k ≥ (1 + 1/α)m+1).

6.4 Query Complexity Lower Bound

In this section we show thatGMIT problem of multilinear identity testing for addi-

tive subgroups of a black-box ring (described in Section 6.3.1), is at least as hard as

m-SPLIT COLLISION(again,m-SPLIT COLLISIONproblem is defined in Section 6.1).

Also, the well-knownm-COLLISIONproblem can be easily reduced tom-SPLIT COLLISION
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problem using a simple randomized reduction. In the following lemma, we briefly state

the reduction.

Lemma 6.4.1 There is a randomized reduction fromm-COLLISIONtom-SPLIT COLLISION

with success probability at leaste−m.

Proof. Let f : [k] → [k] be a ’yes’ instance ofm-COLLISION, and supposef−1(i) =

{i1, i2, · · · , im}. To reduce this instance tom-SPLIT COLLISION, our idea is to pick a

randomm-partitionI1, I2, · · · , Im of the domain[k] with each|Ij | = k/m (for simplic-

ity assume thatm dividesk). Using a standard counting argument, it is easy to see that

ij ’s will be placed in different blocks with high probability.In particular for a random

partitionP, we show the following:

p = ProbP [ For eachj ∈ [m], i′js are placed in different blocks] ≥ e−m.

Let A be the total number of possible partitions. It is easy to see that,A = k!
((k/m)!)m .

Call a partition good ifij ’s are placed in different blocks. Again, by a counting

arguement, the total number of good partitionsB = m!(k−m)!
((k/m−1)!)m . Thenp = B/A =

(k/m)m

( k
m)

. Now using,
(

k
m

)

≤ ( ek
m

)m, we getp ≥ e−m. That completes the proof.

Consequently, showing a quantum lower bound ofΩ(kα) for m-COLLISION will

imply a quantum lower bound ofΩ(kα/em) for m-SPLIT COLLISION. It will also show

similar lower bound forGMIT because of our reduction.

If f : [k] → [k] is an instance ofm-SPLIT COLLISIONproblem, then the classical

randomized query complexity lower bound isΩ(k). This is observed in [MN07] for

m = 2. Due to our reduction, we get similar randomized query complexity lower bound

for GMIT.

Currently the best known quantum query complexity lower bound form-COLLISION

problem isΩ(k2/3) (in the casem = 2) [AS04]. Thus we obtain the same explicit lower

bound form-SPLIT COLLISIONproblem due to the random reduction fromm-COLLISION

to m-SPLIT COLLISION. It also implies quantum query complexity lower bound for

GMIT.

Our reduction fromm-SPLIT COLLISION to GMIT problem is based on automata

theoretic ideas which we have used in Chapter 4 and Chapter 5.
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Theorem 6.4.2 Them-SPLIT COLLISIONproblem reduces toGMIT problem for addi-

tive subgroups of black-box rings.

Proof. An instance ofm-SPLIT COLLISION is a functionf : [k] → [k] given as an

oracle, where we assume w.l.o.g. thatk = nm. Divide {1, 2, · · · , k} into m intervals

I1, I2, · · · , Im, each containingn consecutive points of[k]. Recall from Section6.1 that,

f is said to have anm-split collision if for somej ∈ [k] we have|f−1(j)| = m and

|f−1(j) ∩ Ii| = 1 for each intervalIi.

Consider the alphabetΣ = {b, c, b1, b2, · · · , bm}. Let A = (Q, Σ, δ, q0, qf ) be a

deterministic finite state automaton that accepts all stringsw ∈ Σ∗ such that eachbj , 1 ≤
j ≤ m occurs at least once inw. It is easy to see that such an automaton with a single

final stateqf can be designed with total number of states|Q| = 2O(m) = t. W.l.o.g. let

the set of statesQ be renamed as{1, 2, · · · , t}, where1 is the initial state andt is the

final state.

For each lettera ∈ Σ, let Ma denote thet × t transition matrix forδa (as defined

in Section 4.2.1 and used in Section 5.2 for any arbitrary alphabetΣ). Since eachMa

is a t × t 0-1 matrix, eachMa is in the ring Mt(F2) of t × t matrices with entries from

the fieldF2. Let R denote thek-fold product ring(Mt(F2))
k. Clearly, R is a finite

ring (which is going to play the role of the black-box ring in our reduction). We now

define an additive subgroupT of R, where we describe the generating set ofT using the

m-SPLIT COLLISIONinstancef .

For each indexi ∈ [k], define ank-tupleTi ∈ R as follows. Ifi 6= f(i), then define

Ti[i] = Mb, Ti[f(i)] = Mbj
(wherei ∈ Ij) and and for each indexs 6∈ {i, f(i)} define

Ti[s] = Mc. For i = f(i), defineT [i] = Mbj
(i ∈ Ij) and the rest of the entries asMc.

The additive subgroup ofR that we consider isT = 〈T1, T2, · · · , Tk〉 generated by the

Ti, 1 ≤ i ≤ k.

Furthermore, define twot×t matricesA andB in Mt(F2) as follows. LetA[1, 1] = 1

andA[u, ℓ] = 0 for (u, ℓ) 6= (1, 1). For the matrixB, let B[t, 1] = 1 andB[u, ℓ] = 0 for

(u, ℓ) 6= (t, 1).

Claim 6.4.3 Let w = w1w2 · · ·ws ∈ Σ∗ be any string. Then the automatonA defined

above acceptsw if and only if the matrixAMw1Mw2 · · ·MwsB is nonzero.

Proof of Claim: By definition of the matricesMa, the (1, t)th entry of the product

Mw1Mw2 · · ·Mws is 1 if and only if w is accepted by A. By definition of the matri-

cesA andB the claim follows immediately.
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Now, consider the polynomialP (x1, x2, · · · , xm) with coefficients from the matrix

ring R defined as follows:

P (x1, x2, · · · , xm) = Āx1x2 · · ·xmB̄,

whereĀ = (A, A, . . . , A) ∈ R andB̄ = (B, B, · · · , B) ∈ R arek-tuples ofA’s and

B’s respectively. We claim that the multilinear polynomialP (x1, x2, · · · , xm) = 0 is an

identity for the additive subgroupT if and only if f has nom-split collision.

Claim 6.4.4 P (x1, · · · , xm) = 0 is an identity for the additive subgroupT = 〈T1, · · · , Tk〉
if and only iff has nom-split collision. In other words,GMIT(R, T, P ) is an ‘yes’ in-

stance if and only iff has nom-split collision.

Proof of Claim:Supposef has anm-split collision. Specifically, letij ∈ Ij (1 ≤ j ≤ m

and i1 < i2 < · · · < im) be indices such thatf(i1) = · · · = f(im) = ℓ. In the

polynomialP , we substitute the indeterminatexj by Tij .

ThenP (Ti1, Ti2 , · · · , Tim) = ĀMB̄, whereM = Ti1 · · ·Tim . M is a k-tuple of

t × t matrices such that theℓth component ofM is
∏m

j=1 Mbj
whereij ∈ Ij . Since

bi1bi2 · · · bim ∈ Σ∗ is a lengthm-string containing all thebj ’s it will be accepted by the

automaton A. Consequently, the(q0, qf)
th entry of the matrixM , which is the(1, t)th

entry, is1 (as explained in Section 4.2.1). It follows that the(1, 1) entry of the matrix

AMB is 1. HenceP = 0 is not an identity over the additive subgroupT .

For the other direction, assume thatf has nom-split collision. We need to show that

P = 0 is an identity for the ringT . For anym elementsS1, S2, · · · , Sm ∈ T consider

P (S1, S2, · · · , Sm) = ĀS1S2 · · ·SmB̄. Since EachSj is anF2-linear combination of the

generatorsT1, · · · , Tk, it follows by distributivity in the ringR thatP (S1, S2, · · · , Sm) is

anF2-linear combination of terms of the formP (Tk1, Tk2, · · · , Tkm) for somem indices

k1, · · · , km ∈ [k]. Thus, it suffices to show thatP (Tk1, Tk2 , · · · , Tkm) = 0.

Let T̂ = Tk1Tk2 · · ·Tkm . Then, for eachj ∈ [k] we haveT̂ [j] = Tk1[j]Tk2 [j] · · ·Tkm[j].

Sincef has nom-split collision, for eachj ∈ [N ] the set of matrices{Mb1 , Mb2 , · · · , Mbm}
is notcontained in the set{T1[j], T2[j], · · · , Tk[j]}. Thus,T̂ [j] = Tk1 [j]Tk2 [j] · · ·Tkm [j]

is a product of matricesMw1Mw2 · · ·Mwm for a wordw = w1w2 · · ·wm that is not ac-

cepted by A. It follows from the previous claim thatAT̂ [j]B = 0. Hence we have,

P (Tk1, Tk2 , · · · , Tkm) = 0, which completes the proof.
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Chapter 6. Quantum Query Complexity of Multilinear Identity Testing

In Section 6.3.1, we have already shown a quantum algorithm of query complexity

O(k
m

m+1 ) for MIT (m is a constant). This bound holds as well forGMIT. We conclude

this section by showing that any algorithm of query complexity q(k, m) (q is any func-

tion) for GMIT will give an algorithm of similar query complexity form-COLLISION

problem. In particular an algorithm forGMIT of query complexityko(m/m+1) will im-

prove the best known algorithm form-COLLISION problem due to Ambainis [Amb07].

The following corollary is an easy consequence of Theorem 6.4.2.

Corollary 6.4.5 Let f : [k] → [k] be an instance ofm-SPLIT COLLISION problem

andGMIT(R, T, P ) be an instance ofGMIT problem, where the multilinear polynomial

P : Rm → R andT is an additive subgroup ofG given byk generators. Then, if we

have a quantum algorithm of query complexityq(k, m) for GMIT problem, we will have

a quantum algorithm form-SPLIT COLLISIONwith query complexityO(q(k, m)).

Proof. Let A be an algorithm forGMIT with quantum query complexityq(k, m).

Given an instance ofm-SPLIT COLLISION, the generators for the additive subgroupT

is indexed by1, 2, · · · , k (as defined in the proof of Theorem 6.4.2). Also, define the

polynomialP (x1, x2, · · · , xm) So the inputs of ourGMIT problem are1, 2, · · · , k and

P . Using the algorithmA, we define another algorithmA′ which does the following.

When i ∈ [k] is invoked byA for the ring operation, the algorithmA′ constructs the

generatorTi by making only one query to the oracle forf . One more query to thef -

oracle is required to erase the output. Moreover, ifA wants to check whether the output

of the ring operation is a valid generator (sayTj for somej), then alsoA′ uses just two

queries to the oracle off . Thus we have an algorithmA′ for m-SPLIT COLLISIONwith

query complexity4q(k).

Recall that the best known lower bound form-SPLIT COLLISIONproblem isΩ(k2/3).

Then, combining Theorem 6.4.2 and Corollary 6.4.5, we getΩ(k2/3) quantum query

lower bound forGMIT problem.
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