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iAbstratBiologial loks are found everywhere in the natural world. Fromiradian (day-night) rhythms to paemakers of the heart, biologialloks are an essential part of the smooth funtioning of living or-ganisms. They are omposed of mirosopi loks whih operate atthe ellular level. The marosopi lok funtions by synhronisa-tion of these smaller units through interell oupling. These lokskeep time with amazing regularity even in the fae of random exter-nal �utuating e�ets or internal noise whih are ubiquitous in thenatural world. In order to attempt to understand the robustness ofsuh loks against stohasti e�ets, a model geneti iruit alledthe repressilator was onstruted as a simple lok. The motivationis to �nd generi features whih underlie the operation of omplexbiologial loks in a simple model. In this thesis, we review pre-vious work done on single repressilators as well as on repressilatorsoupled by the quorum sensing mehanism. We perform numerialsimulations to study the properties of a mathematial model of therepressilator. We suggest a new mehanism by whih repressilatoriruits an be oupled. Numerial simulations of two repressilators,oupled by our mehanism, show attrative phase synhronisationwhen their natural frequenies are idential. When the natural fre-quenies are distint, our results rule out entrainment and seem toindiate the absene of phase-loking.
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Chapter 1IntrodutionThe Duth physiist Christiaan Huygens is most well known for his disoveryof the pendulum lok. He is less well known as the disoverer of a ratherinteresting and urious phenomenon pervading in pendulum loks. The yearis 1665, the month is a old February, and Huygens is on�ned to his bed withsome small ailment. With nothing better to do, he falls into an idle study of thetwo pendulum loks hanging side by side on the wall�loks he had reentlybuilt. Curiously, he observes that the loks are running in exat synhrony.This synhronisation lasts for as long as he wathes the loks. Intrigued, hegets up and deliberately desynhronises them. To his astonishment, they fall instep one again after some time and stay in mutual synhrony. Huygens thentries another approah. He shifts one lok to another part of the room�thewall opposite to the �rst lok. This time the two loks fail to marh together�Huygens observes one losing about �ve seonds per day relative to the other.Thus he onludes that the two loks synhronise through tiny oupling forestransmitted through air or the wall to whih they were attahed[12℄.Huygens' aidental observation has reated what is now known as the the-ory of oupled osillators1. Suh oupled osillators are ubiquitous in the naturalworld. In fat, every human being has a proliferation of suh oupled osilla-tors. Paemaker ells in the heart, insulin-sereting ells in the panreas, neuralnetworks in the brain and spinal ord are all examples. These olletions ofosillators perform suh diverse and fundamental physiologial funtions suhas pumping blood throughout the body or regulating the level of hormones in1An osillator is any system that exeutes periodi behaviour.1



2 CHAPTER 1. INTRODUCTIONthe blood. They enable the performane of basi jobs suh as breathing, run-ning or hewing[12℄. It is also very muh possible that not all biologial oupledosillators need to be on�ned within the same organism. A superb example ofthis is in ongregations of synhronously �ashing �re�ies. Another example is a

Figure 1.1: Thousands of �re�ies �ash in unison in this time-exposure of anoturnal mating display. Eah inset has its own rhythm, but they synhronisewith the others through its nearest neighbours' rhythms. Piture from the paperby Strogatz and Stewart[12℄group of rikets that hirp in absolute (and sometimes maddening) synhrony.In order to understand how oupled osillators work together, it is importantto understand how a single osillator operates. A pendulum is a good exampleof a single harmoni osillator. A harmoni osillator is a linear osillator.



3Its amplitude is �xed by initial onditions while its frequeny an be variedby hanging the values of the parameters (the length of the pendulum, forexample). Amplitude and frequeny an be tuned independent of eah other forsuh osillators. However, a biologial osillator is a non-linear osillator andits amplitude and frequeny annot be varied indepent of eah other. It is dueto non-linearity that it is neessary to thoroughly understand the mehanismby whih a single osillator operates.Coupled osillators an synhronise in a variety of possible ways. In thease of two oupled osillators, phase-loking2 an be brought about in twoways�synhrony and anti-synhrony[12℄. In the former ase, the phase di�er-ene between the osillations of the two osillators are ompletely in phase, i.e.their relative phase is zero. In the latter ase, the relative phase di�erene is
π. These two phenomena are also known as attrative and repulsive entrain-ment3[5℄. It is to be remembered however that if two osillations are phaseloked it does not mean they are synhronised. Only if the phase di�erenebetween the two osillators is 0 or π an they be alled synhronised. If thephase di�erene should fall between these two values, the osillations are sim-ply phase-loked, and not synhronised in the tehnial sense[12℄[5℄. However,this is a matter of onvention. Other authors[10℄ use the words `phase-loking'and `synhronisation' equivalently. Perhaps it would be better to say that thereis `phase-synhronisation' if there is `phase-loking'[8℄. In this thesis, we haveadopted the Kuramoto and Strogatz viewpoint and have meant `omplete syn-hronisation', i.e. phase-loking by 0 or π when we speak of 'synhronisation'.A nie example of attrative and repulsive oupling in the natural world iskangaroos and humans running[12℄. The hind legs of kangaroos fall in step asit runs, showing attrative oupling, whereas a human runs on alternating legsdisplaying repulsive oupling. Three or more oupled osillators show even morediverse behaviour. Three osillators an ouple in four ways: all in phase; all outof phase by π/3; two in phase and the third out of phase by any value and �nallytwo out of phase by π and the third going twie as fast. The �nal pattern is ex-hibited by a man walking slowly with the help of a walking stik. His legs have2A de�nite phase di�erene existing between osillators with the same patter of osillation3Entrainment is a term used by Yoshiki Kuramoto that means the same thing as synhro-nisation in the sense we use it here, whih is phase synhronisation with a phase-di�erene of
0 or π.



4 CHAPTER 1. INTRODUCTIONa π phase di�erene, while his walking stik has a frequeny double that of hislegs (see �gure 1.2). Another important lass of osillatory phenomena sharedby many living organisms in the biologial world are iradian rhythms[1℄[5℄.Ciradian rhythms are approximately 24-hour yles in the biohemial, physi-ologial or behavioural proesses of living beings. Under normal environmentalonditions, suh osillations are synhronised by periodi external fores asso-iated with the sunrise-sunset yle. However, it has been observed that suhosillations ontinue taking plae (albeit with a slight deviation form their 24-hour yle) even if the periodi driving fores are removed. This leads to theonlusion that there are limit-yle osillators in-built into living organism. Inthe mirosopi domain, these onsist of a olletion of mutually oupled andsynhronised (or at least phase-loked) ellular osillators.A very interesting aspet of synhronisation among oupled osillators is thatthe onset of synhrony an be treated as a phase-transition4[5℄. In natural sys-tems, a olletion of oupled osillators are very seldom exatly idential�thereremain some (small) di�erene between them, mostly in the form of a range ofnatural frequenies for the olletion. Additionally, environmental e�ets areever-present, and these e�ets an introdue di�erent responses from otherwiseidential osillators. Thus suh osillators a�eted by random external e�etsform a statistil ensemble. The external stohasti perturbations an be detri-mental to the attainment of mutual entrainment[5℄. Contrary to this, oupledosillators have the tendeny to ahieve mutual entrainment. These two oppos-ing e�ets play against eah other in driving the phase transition of the systemfrom a non-entrained to an entrained state[5℄.Synhronisation is ontrolled by two independent aspets�the properties ofthe single osillator and the number of osillators that are oupled. Stohasti-ity, both internal and external, a�et the time-keeping ability�or the stability ofosillation�of a single osillator. It is primarily the number of osillators whihdetermine the time-keeping ability�the stability of synhronisation�of a ol-letion of osillators. We use a master equation approah in order to aountfor internal noise, external random in�uenes and the e�et of varying numberof osillators. In the limit of small �utuations we reover the deterministi4A rapid hange of a system from one state to another for a very small hange in ontrolparameter(s)
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Figure 1.2: Di�erent examples of phase-loking in the natural world�man andkangaroo. Figure from the paper by Strogatz and Stewart[12℄



6 CHAPTER 1. INTRODUCTIONdesription.The outline of the thesis is as follows. We have studied the repressilatorwhih a simple model lok onstruted using a negative feedbak geneti ir-uit. The motivation is to �nd generi features whih underlie the operationof omplex biologial loks in a simple model. We have reviewed previouswork done on single repressilators as well as on repressilators oupled by thequorum sensing mehanism. Chapter 2 ontains a desription of the repressi-lator as well as a review of experimental results regarding the operation of therepressilator. Chapter 3 reviews the mathematial models (both deterministiand stohasti) used to model the repressilator as well as omputer simulationresults of those models. Chapter 4 ontains our analysis of the repressilator.We have performed numerial simulations to study the properties of existingdeterministi and stohasti mathematial models of the repressilator. We havealso suggested a new mehanism by whih repressilator iruits an be oupledand have performed numerial simulations of two repressilators oupled by ourmehanism in order to study entrainment between the two osillators.



Chapter 2The Repressilator
2.1 IntrodutionSailing ships in the 16th and 17th entury faed a singularly di�ult naviga-tional problem. Navigators in the Age of Sail were experts in �nding out theurrent latitude of their ship, but it was the aurate determination of theurrent longitude that foxed them. One solution was to have two loks onboard�one kept at Greenwih time and the other kept at ship time aordingto the positioning of the sun at zenith, whih was marked as noon. The di�er-ene in time between the two loks would give the urrent longitude. However,di�erenes in temperature and rough sea onditions played havo with the a-urate time-keeping abilities of the two loks. Errors in determining longitude,however small time-wise, would translate into big di�erenes in atual distane.For instane, one degree longitude approximately equals 111 km at the equator.One degree is also equivalent to four minutes of time (24× 60/360). So an errorof a mere four minutes in timekeeping would translate into an error of 111 kmor 69 miles or 60 nautial miles. This might seem small in the vast oeans, butthis error tended to aumulate. Consequentially, people were lost at sea. Theneed of the hour was to build an aurate and robust lok whih would keepperfet time in fae of even a thundering hurriane. The British governmento�ered an inredible ¿20, 000 (about ¿6 million at present) for the building ofthis lok. John Harrison was the man who did it[11℄.The point of this is that John Harrison was able to make a lok that keptaurate time even in the fae of severe weather onditions like rolling seas and7



8 CHAPTER 2. THE REPRESSILATORtemperature di�erenes. The lok is an osillator, and the weather onditionsare stohasti perturbations that tend to fore the lok to run inorretly. Asimilar problem is faed by biologial osillators. Stohastiity is inherent inthe natural world, and noise is a onstant hindrane to the suitable workingof any biologial osillator. However, in spite of this, the familiar biologialosillators in the brain or the paemaker of the heart are inredibly robust andkeep aurate time. If they had been unable to do so, life as we know it mightnot have survived. So the question is, what is it that lends robustness to thesenatural osillators? To study this question, physiists have made a (sort of a)`spherial ow' model�a simple lok, onstruted out of three genes onnetedto eah other in a negative feedbak iruit. This is the Repressilator. It wasMihael Elowitz and Stanlislas Leibler[3℄ who �rst proposed and onstrutedsuh a model in the baterium Esherihia oli.2.2 Desription of a repressilator2.2.1 Generi Shemati DesriptionA gene is a segment of DNA1 that odes for a partiular protein or RNA2. It isthe smallest unit of an organism that is still able to ontain and transfer genetiinformation. The genes, loated on the hromosomes, ontain the informationfor the prodution of proteins. Gene expression is a proess through whiha gene produes protein, and onsists of two sub-proesses: Trasription andTranslation. Transription is the prodution of messenger RNA from the genes,while translation is the onversion of mRNA into protein.
Figure 2.1: Shemati desription of a repressilator (�gure from [3℄)1DNA: deoxyribonulei aid2RNA: ribonulei aid



2.2. DESCRIPTION OF A REPRESSILATOR 9Figure 2.1 desribes the repressilator shematially. A repressilator has threegenes a, b and c along with the orresponding proteins they express: A, B and
C. These proteins at as repressors, i.e. they repress or inhibit the rate ofexpression of the gene next in line. For example, protein A represses gene b,slowing down the prodution of protein B. This inhibitory e�et inreases asthe onentration of the protein inreases. Similar to A repressing b, B represses
c and �nally C represses a to omplete the yle. Hene it is a negative feedbakloop. For example, if we were to start out with a bit of A and no B or C, andif these genes were not onneted, then the onentrations of eah of A, B and
C would keep on inreasing sine the rate of expression is onstant. The onlyhek to this would then be the natural degradation of the proteins (maybe intotheir onstituent amino aids), whih is also always present at a onstant rate.However, one they are onneted, a high onentration of A would derease theexpression rate of b, whih would derease the onentration of B. This wouldthen let c express at a faster rate, whih would inrease the onentration of C.This would ultimately result in a heking e�et on the prodution of A, whihwould have to derease. Then b would be freer and B would inrease, dereasing
C and inreasing A again. Hene, the yle would start one again. Osillationsan be expeted, and are found, in the onentrations of the proteins in thesteady state (i.e. after a transient state).2.2.2 Elowitz and Leibler's onstrutionThe repressilator reated by Elowitz and Leibler is desribed thus (see �gure2.2). TetR, λI and LaI are the three proteins that are expressed by theirparent genes tetR, I and laI. The gene laI is obtained from E. oli, tetRfrom the tetrayline-resistane transposon3 Tn10 and I from λ phage. Theprotein LaI inhibits the expression of the gene tetR. The protein TetR in turninhibits the expression of the gene I while protein λI inhibits the expression oflaI, thus ompleting the yle. So it is a negative feedbak iruit, whih ouldlead to osillations, as we shall see. A green �uoresent protein (GFP) is usedto detet the onentration levels of the repressilator omponents. In the seond�gure it an be seen that TetR inhibits GFP, so that derease in intensity of3A transposon is a disrete piee of DNA that an insert itself into other DNA sequeneswithin the ell



10 CHAPTER 2. THE REPRESSILATOR

Figure 2.2: Diagram of the repressilator showing the genes and the proteins thatmake up the repressilator (�gure from [6℄)the GFP as seen by an optial mirosope indiates high onentration of TetR.The experiment performed by Elowitz and Leibler showed osillations in theonentrations of the proteins with time periods greater than ell-division time,implying that the state of the osillator is transmitted through generations.2.3 Experimental Results: Elowitz and LeiblerElowitz and Leibler built their repressilator in the bateria E. oli, and used GFPto observe the presene (or absene) of osillations. Sine single ells had noapparent means to ahieve or maintain synhrony, individual ells were isolatedunder the mirosope and the their �uoresent intensity was studied as theseells grew into small two-dimensional miro-olonies onsisting of hundreds ofprogeny ells. The graph shows temporal osillations in GFP �uoresene inten-sity with a time-period of roughly 150 minutes, whih happened to be almostthree times as large as ell-division time-sales. Snapshots of a miroolony ofbateria are given in �gure 2.3, while the �uoresene intensity of the markedell against time is given in �gure 2.4.Looking at the graph (�gure 2.4), one an see that the time-period of os-illations is around 150 mins (peak-to-peak). The bars at the bottom of thegraph show that septation4 ours about three times per osillation yle on av-erage, that is, with a time period of about 50 mins. This onforms to standard4Septation means ell-division



2.3. EXPERIMENTAL RESULTS: ELOWITZ AND LEIBLER 11
Figure 2.3: Snapshots of a miroolony of E. oli taken in (a) �uoresene and (b)bright-�eld. The arrows indiate the ell under observation (�gure from [3℄).

Figure 2.4: Osillations in GFP �uoresene intensity (bars at the bottom indiateseptation events) (�gure from [3℄)ell-division time-periods. Therefore it is seen that the state of the network istransmitted to its o�springs despite there being noise in the form of stohasti�utuations in the dynamis of the ellular lok. However, signi�ant di�er-enes in period and amplitude of the osillator were observed in the osillatoroutput. These di�erenes were seen among ells in di�erent lineages (desendedfrom di�erent anestors) or among the ells in one lineage, whih are alledsiblings (see �gure 2.5).Elowitz and Leibler onlude that it is possible to design and onstruta new arti�ial geneti osillator with new funtional properties from generiomponents. It might then be possible to attempt to understand the designpriniples of more omplex osillators suh as the iradian osillator using thesimple repressilator model. However, as opposed to the robust behaviour ofthe iradian lok, the behaviour of the repressilator (aording to the theseexperimental results) seemed to be noisy and variable.
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Figure 2.5: Top left �gure shows phase delays after septation among siblingells (blue and green) relative to the referene ell(red). Top right �gure showsthat phase is maintained but amplitude varies greatly after septation. Bottomleft �gure is for redued period (green) and long delay(blue). Bottom right�gure shows large variations in period and amplitude. The top two �gures andthe bottom left �gure show the variation of osillation among ells of the samelineage. The bottom right one shows the variations between ells of di�erentlineages. Figures from [3℄.



2.4. QUORUM SENSING 132.4 Quorum SensingElowitz and Leibler's results show that there are signi�ant variation in fre-queny and amplitude among di�erent repressilators. The problem with usinga small number of biologial osillators is that stohasti �utuations (noise)tend to dominate the osillations preventing mutual entrainment or e�etivesynhronisation. Interell oupling is a way to address these issues. But howwould one ouple di�erent ells (repressilators)? A possible answer is throughquorum sensing.2.4.1 What is Quorum Sensing?Bateria an ommuniate with eah other by releasing and deteting `signallingmoleules' within their environment. The term `quorum sensing' is used to de-sribe the phenomenon whereby the aumulation of signalling moleules enablea single ell to sense the number of bateria (ell density). However, in thenatural environment, di�erent lasses of bateria may use di�erent signallingmoleules, so that ommuniation is possible only within the same lass of ba-teria.Quorum sensing allows bateria to ommuniate with eah other and o-ordinate their behaviour. Conditions in the natural world hange often andquikly, and quorum sensing allows bateria to respond speedily and adaptthemselves to the hange in order to survive. For example, disovery of a soureof nutrients needs to be ommuniated quikly to the entire baterial popula-tion for �rst laim. Also, on�it with other organisms might be neessary forseuring laim over the soure of nutrients. Co-ordination of behaviour (timingaggression and defene) is done using quorum sensing. Again hemials like an-tibiotis are toxi to the bateria. Detetion and avoidane of regions with hightoxiity onentration (for the bateria) is essential for survival. Additionally,it is very important for pathogeni5 bateria during infetion of a host (e.g. hu-mans, other animals or plants) to o-ordinate their virulene in order to esapethe immune response of the host and establish a suessful infetion.5A pathogen (from Greek pathos, su�ering/emotion, and gene, to give birth to), infetiousagent, or more ommonly germ, is a biologial agent that auses disease or illness to its host.



14 CHAPTER 2. THE REPRESSILATOR2.4.2 Using Quorum Sensing in RepressilatorsJordi Garia-Ojalvo, Mihael Elowitz and Steven Strogatz[4℄ have used the ideaof quorum sensing to ouple di�erent non-idential and noisy repressilators.They have shown through omputational modelling that it is possible for anensemble of unorrelated repressilators to ahieve mutual entrainment througha phase transition, i.e. a sudden shift to mutual entrainment as a funtion of ell-density. Additionally, they have shown that oupling via quorum sensing analso make the ensemble of repressilators robust against stohasti �utuations.2.4.3 Coupling Mehanism
Figure 2.6: Mehanism for oupling repressilators using the auto-induer (�gurefrom [4℄)Cell membranes are usually very seletive about letting in or letting outmoleules. It is not usually possible for proteins to diretly di�use out of ellmembranes and interat with other proteins form other ells. As a result, somenew exhange omponent needs to be introdued into a repressilator ell inorder to enable oupling. The diagram above desribes the system proposedby Garia-Ojalvo, Elowitz and Strogatz. They have used the quorum sensingmehanism of the baterium Vibrio �sheri, whih is a bioluminient organismthat lives in symbiosis with ertain marine hosts forming part of speialisedlight-emitting organs. The protein LuxI synthesises a small moleule alledthe auto-induer (AI). This is the ritial oupling omponent as the AI is themoleule that an di�use through ell membranes. Another protein LuxR bindswith this AI and indues some genes to transribe reating ertain enzymesthat ultimately lead to the emission of light. Garia-Ojalvo et al. have plaedthe protein LaI of the original repressilator under the ontrol of the LuxR-AI



2.4. QUORUM SENSING 15omplex as well as plaing LuxI under the ontrol of another opy of LaI. Themodel is desribed in more detail thus.
• The protein LuxI synthesises the autoinduer AI whih an di�use throughell membranes
• The protein LuxR binds to AI: the LuxR-AI omplex indues the expres-sion of a seond opy of the gene laI
• The expression of the gene luxR is ontrolled by the original protein LaI
• A seond feedbak loop appears in the ell
• Inreased LaI onentration inhibits the rate of expression of the genestetR and luxI
• Dereased LuxI onentration dereases onentration of LuxR-AI om-plex
• Dereased LuxR-AI onentration dereases laI onentration
• The two LaI transripts are assumed to be idential2.4.4 ConlusionsA desription of the mathematial modelling as well as the simulation results byGaria-Ojalvo et al. is given in the next hapter. Brie�y, what they onlude isthat quorum sensing an be an espeially e�etive method of interell oupingbetween repressilators, and this an lead to global synhronisation among ahighly heterogeneous ensemble of repressilators. Also, they found that suh anensemble is also robust to random phase drifts of the individual osillators due tonoise[4℄. It is an interesting result and seems to suggest that the problems faedby Elowitz and Leibler[3℄ using a single repressilator with noise an be resolvedby using a large number of repressilators oupled by quorum sensing, even in thepresene of noise. The positive e�et of oupling is one of the points by whihthis model di�ers from the original design of the repressilator, whih had onlynegative feedbak, and it is possible that suh positive feedbak is instrumentalin providing mutual entrainment and robustness against stohastiity. However,it is to be remembered (as Garia-Ojalvo, Elowitz and Strogatz themselves admit



16 CHAPTER 2. THE REPRESSILATORin their paper) that quorum sensing is but one of the many di�erent ways ofoupling ells together. Examples given in their paper inlude the oupling inthe sinoatrial node6 of the heart whih is eletroni and is mediated by gapjuntions. Also, in the suprahiasmati nulei7 of the mammalain iradianpaemaker, oupling is proposed to our due to the di�usion of an inhibitoryneurotransmitter.Thus suh examples of naturally ourring robust loks annot be modelledby the mehanism proposed by Garia-Ojalvo et al.. A lose analog as mentionedin the paper might be in metaboli synhrony observed in yeast ells. So theproposed system only partially re�ets the natural world. However, it is truethat the variability of types of interell oupling in naturally ourring osillatorsis too great to allow for an e�etive model by any single simple mehanism. Fromthat viewpoint, the work done by these three researhers is important. However,aording to a private ommuniation from Mukund Thattai, experimentalistshave so far been unable to reprodue the simulation results given above. Apossible reason for this is that the strength of interell oupling by quorumsensing might not be strong enough to overome noise and �utuation e�ets.

6The sinoatrial node of the heart is what is ommonly known as the paemaker. It isresponsible for maintaining sinus rhythm, that is the regular beating of the heart.7The suprahiasmati nuleus is a bilateral region of the brain loated in the hypothalamusresponsible for arrying out iradian rhythms within the body.



Chapter 3Mathematial Modelling3.1 IntrodutionThe dharma of physiists is to model physial systems (simple or ompliated)and the tool that is used to ahieve suh ends is Mathematis. However, solvingmathematial equations an sometimes be impossible due to non-linearity of theequations or the omplexity of the problem. Computer simulations then ometo the resue. The repressilator too has been modelled mathematially.[3℄[6℄[4℄Elowitz and Leibler, in addition to performing experiments, also modelled therepressilator mathematially[3℄. They used deterministi modelling using thehemial kinetis approah whih involved Mihaelis-Menten dynamis that reg-ulate the rate of formation and reations of enzymes. They also modelled therepressilator stohastially, and used the Gillespie algorithm[2℄ to solve it. AdielLoinger and Ofer Biham[6℄ hose to adopt the rate equation approah for thedeterministi ase and the master equation approah for the stohasti ase.Finally, Garia-Ojalvo, Elowitz and Strogatz[4℄ modelled the quorum sensingproblem using the Mihaelis-Menten approah. They also added a Gaussiannoise omponent of the Ornstein-Uhlenbek type[9℄ to model the stohasti ase.3.2 Elowitz and Leibler's model3.2.1 Deterministi: Mihaelis-Menten KinetisThe dynami variables in this model are the repressor proteins and the mRNAmoleules. As de�ned earlier in Chapter 2, gene expression is a ombinationof two proesses: transription, in whih a gene produes messenger RNA, and17



18 CHAPTER 3. MATHEMATICAL MODELLINGtranslation, in whih proteins are produed from mRNA. Eah of the threeproteins/mRNA moleules were onsidered to be identially behaved. Thereare six oupled �rst-order di�erential equations.
dmi

dt
= −mi +

α
(

1 + pn
j

) + α0 (3.1)
dpi

dt
= −β (pi − mi) (3.2)The indies i and j run from 1 to 3. Here i =laI, tetR, I, while j =I,laI,tetR.The quantities pi and mi are the onentrations of the repressing protein andthe mRNA respetively and suitably normalized (`onentration' here meansthe average opy number1 per ell). The parameter α + α0 is the rate of pro-dution of the protein in absene of the repressing protein. In the presene ofa repressor the rate drops to α

(1+pn
j )

+ α0, where the �rst term gives the e�etof the onentration of the repressor protein modi�ed by the Hill oe�ient n,and α0 is the `leakiness quotient' that desribes translation rate independent ofthe repressor. So the proess of gene expression in the repressilator iruit isdivided into two parts: the rate part that is modi�ed by the onentration ofthe repressor and the other part that is not. The parameter β is the ratio of thedeay rates of the protein and the mRNA. The normalization of the protein andmRNA onentration are thus: mi is normalized by the translation e�ienywhih is the average number of proteins produed per mRNA moleule, while
pi is normalized by the quantity Km (alled the Mihaelis onstant) whih isthe number of repressor neessary to half-maximally repress a promoter (i.e. anmRNA moleule whih performs translation). The Hill oe�ient is a measureof the degree of ooperativity of the attahing moleules (here the repressors).A Hill oe�ient of 1 indiates that the e�et of binding a repressor does notdepend on the number of repressors already present. A Hill oe�ient greaterthan one indiates positive ooperativity so that the e�et of the binding of eahnew repressor is enhaned by the number of repressors already bound. A Hilloe�ient less than one indiates the the e�et of existing repressors dereasesthe e�et of eah new binding.1Copy number means the average number of moleules of a gene per genome ontained ina ell. Genome is the omplete pakage of geneti material for a living thing. A opy of thegenome is found in most ells.
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Figure 3.1: Osillation in the levels of the three repressor proteins in the deter-ministi ase. The inset shows the normalized autoorrelation funtion of the�rst protein. The parameter values used by Elowitz and Leibler were as follows:average translation e�ieny = 20 proteins per transript, Hill oe�ient n = 2,protein half-life = 10 minutes, mRNA half-life = 2 minutes, Km = 40 repressorsper ell (�gure from [3℄).

Figure 3.2: Analysis of the stability of the steady state against parameters βand α × Km. Stable and unstable regions in the β-α parameter spae withrespet to the steady state are shown. The ross mark in the unstable region ofthe graph orresponds to the parameter values of �gure 3.1. It is in the unstablesteady state that osillations our (�gure from [3℄).The shaded region in �gure 3.2 shows the region of parameter spae for whihosillations take plae.3.2.2 Stohasti: Gillespie AlgorithmElowitz and Leibler used the Gillespie SSA algorithm[2℄ to solve for the stohas-ti ase (following the Gillespie presription[2℄). Parameter values used werehosen keeping in mind that they approximately be similar to those hosen inthe deterministi ase. The output was the following �gure.It an learly be seen (�gure 3.3) that there are osillations whih persist,but there is large variability. As a result, the autoorrelation time is �nite
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Figure 3.3: Osillation in the levels of the three repressor proteins in the stohas-ti ase (y-axis is proteins per ell). The inset shows the normalized autoor-relation funtion of the �rst protein. A similar set of values of parameters tothose of �gure 3.1 were used (�gure from [3℄).(approximately two periods). So stohastiity seems to be a nuisane for regularosillations in the single repressilator both experimentally (see Chapter 2) andin simulations.In this model, osillations are not seen if the Hill oe�ient is taken as 1.this means that a single repressor attahed to eah transript arries out thejob of repression. This is alled non-ooperative binding. As the Hill oe�ientis inreased to 2, osillations are observed for suitable values of the parametersonly if the mRNA level is inluded. For Hill oe�ient 3 or larger, osillationstake plae even if the mRNA level is not inluded in he analysis. This seems toshow that there is positive ooperativity in the system.3.3 Loinger and Biham's modelAdiel Loinger and Ofer Biham have reently studied[6℄ the repressilator throughomputer simulations. In the Elowitz-Leibler model, osillations were not ob-served for Hill oe�ient n = 1, even if the mRNA level was inluded. However,Loinger and Biham have attempted to hek for osillations without oopera-tive binding (n = 1) using the following relassi�ations of proteins and ignoringthe mRNA level. They have subdivided the proteins into two types: free andbound. As mentioned earlier, a protein represses the next gene and slows downits rate of expression. Loinger and Biham theorise that in order to bring aboutits repressive ation on the gene next in line, a protein needs to be bound tothe gene. If a protein expressed by a gene is not bound to the gene next inline, it is then onsidered to be `free' and `inative'. If it is bound, then it is



3.3. LOINGER AND BIHAM'S MODEL 21onsidered to be arrying out repression and is labelled `bound' or `ative'. Theword `binding' implies that the protein has bound itself to the mRNA next inline and is inhibiting transription, whih e�etively represses expression. Theabsene of ooperative binding also means that there is only one binding siteper mRNA moleule (or gene).The present problem an be studied both deterministially and stohasti-ally. We begin by studying the deterministi ase.3.3.1 Deterministi treatmentThe onentration2 of the ith protein pi is subdivided into the above-mentionedtwo lasses:a) Free (or inative) : pf
ib) Bound (or ative) : pb
iOf ourse pi = pf

i + pb
i , with i going from 1 to 3.ProessesThe proesses involved in the time-evolution of the two lasses of proteins arethus:1. Degradation: Both the free and bound proteins degrade at ertain rates.The parameter γf represents the rate of degradation of the free proteins,while the parameter γb indiates the rate of degradation of the boundproteins.2. Expression: Free proteins are expressed from their parent genes at a on-stant rate g, while the rate of prodution is repressed by the previousbound protein. The word `previous' implies that if it is the rate of pro-dution of the ith protein under onsideration, then the (i − 1)th proteinwill be alled the `previous' protein. Bound proteins annot be diretlyexpressed by genes.3. Exhange of protein lasses: Free and bound proteins an onvert betweenthemselves. The proess of a free protein onverting into a bound one is2As de�ned earlier, `onentration' here means the average opy number per ell



22 CHAPTER 3. MATHEMATICAL MODELLINGalled `binding' and the proess of a bound proteins onverting into a freeprotein is alled `unbinding'.a) Binding: Free proteins attah themselves to vaant binding sites andonvert to bound proteins. This is the only way bound proteins areformed. The rate of suh onversion depends on the number of ur-rent free proteins as well as on the number of urrent vaant bindingsites. The latter an be reinterpreted as the number of urrent boundproteins if the number of binding sites is held onstant. A point tobe remembered is that a free protein an only bind to the gene (thatis, the mRNA) next in line. This means that the ith free protein anonly bind to the (i+1)th vaant binding site. Free TetR for exampleannot bind itself to laI, but an bind to λ I.b) Unbinding: Bound proteins an unbind themselves from the mRNAand beome free proteins. The rate of suh onversion depends onlyon the number of urrent bound proteins, as there is no limit to thenumber of free proteins.Rate EquationsThe above proesses give rise to six di�erential rate equations (two for eah ofthe three proteins). They are (the index i goes over 1, 2 and 3):
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i (3.4)Always pi = pf

i + pb
i , with i going from 1 to 3.We look at the two equations term by term.

• Equation (3.3)a) First term:The �rst term g(1 − pb
i−1) represents the rate of expression of the

ith free protein. As mentioned earlier, g is the onstant rate of ex-pression. Here we have normalised the number of binding sites per



3.3. LOINGER AND BIHAM'S MODEL 23ell per protein. Therefore the expression (1 − pb
i−1) is equal to thenumber of vaant binding sites of the previous ((i−1)th) protein andindiates the e�et of repression by the previous protein. More thevalue of the (1 − pb

i−1) expression, lesser is the repression on the ithprotein.b) Seond term:The seond term γfpf
i gives the degradation of the free protein at arate determined by the parameter γf .) Third term:The third term α0p

f
i (1 − pb

i) is a bilinear term. It is the bindingterm, and indiates the rate of binding of the free protein to a vaantbinding site. This term depends on the free protein onentrationas well as the number of vaant binding sites of the urrent (ith)protein. More the value of this expression, greater is the probabilityof onversion of a free protein into a bound one.d) Fourth term:The fourth term α1p
b
i is a linear term. It is the unbinding term, andindiates the unbinding of the bound proteins from the binding sites,onversion into free proteins and freeing up of the binding sites. Thisterm only depends on the bound protein onentration as there is nolimit on the number of free proteins. More the value of the expression

pb
i , greater is the possibility of unbinding.

• Equation (3.4)a) First term:The �rst term α0p
f
i (1−pb

i ) is the bilinear binding term, as desribedearlier.b) Seond term:The seond term α0p
f
i (1 − pb

i) is the linear unbinding term, as de-sribed earlier.) Third term:



24 CHAPTER 3. MATHEMATICAL MODELLINGThe third term γbp
b
i gives the degradation of the bound protein at arate determined by the parameter γb.It is seen that adding equations (3.3) and (3.4) gives the rate equations forthe whole protein pi.

dpi

dt
= g(1 − pb

i−1) − γfpf
i − γbp

b
i (3.5)Figure 3.4 shows the proesses involved and the funtion of eah term in therate equations 3.3 and 3.4.

Figure 3.4: Shemati diagram showing the various proesses involved and thefuntion of eah term in the rate equations 3.3 and 3.4.3.3.2 Stohasti treatmentThe repressors and the binding sites often appear in low opy numbers. Asa result, the osillations are noisy and irregular[7℄. Therefore the repressilator



3.3. LOINGER AND BIHAM'S MODEL 25iruit annot be fully analysed by using the deterministi rate equations ap-proah. It is neessary that we swith to a stohasti approah, and performour analysis using master equations.Markov ProessesMaster equations are valid for Markov proesses[9℄ only. A Markov proess isde�ned as a stohasti proess with the property that for any set of n suessivetimes (that is, t1 < t2 < . . . < tn) one has
P1|n−1 (yn, tn | y1, t1; y2, t2; . . . ; yn−1, tn−1) = P1|1 (yn, tn | yn−1, tn−1) (3.6)The state n is de�ned as the state of the system when the variable Y takesthe value yn at time tn. P1|n−1 and P1|1 denote onditional probabilities. P1|n−1is the probability density of the variable Y to have taken the value yn at time

tn, given that it had taken the values yn−1 at time tn−1, yn−2 at time tn−2 andso on upto y1 at time t1. P1|1 is the probability density of the variable Y to havetaken the value yn at time tn given the value yn−1 at time tn−1. P1|1 is alsoalled the transition probability. The left-hand side of the equation representsthe transition probability of a system at the state n given all the previous statesin the system's path through phase spae. The right hand side denotes thetransition probability of the system at state n given the state n − 1.The above relation implies that the onditional probability density at tn,given the value yn−1 at tn−1, is uniquely determined and is not a�eted by anyknowledge of the values at earlier times. This means that the evolution of thesystem at a ertain time-step for a disrete Markov proess depends only on thevalue of the system variable at the previous time-step and not on any of thepreeding time-steps. In other words, the system has no memory.Master EquationsLet the range of the system variable Y be a disrete set of states n (as de�nedearlier). Then we an write the master equation as:
dpn

dt
=

∑

n′

{

Wnn′ pn′ (t) − Wn′n pn (t)

} (3.7)The quantity Wnn′ is the transition probability per unit time from state n′to state n, while the quantity Wn′n is the transition probability per unit time



26 CHAPTER 3. MATHEMATICAL MODELLINGfrom state n to state n′. The quantity pn (t) is the probability of the systemto be in state n at time t, while the quantity pn′ (t) is the probability of thesystem to be in state n′ at time t. The LHS dpn/dt denotes the time evolutionof the probability of the system to be in state n at time t. The sum is over allthe states n′ 6= n.The master equation is thus a gain-loss equation for the probabilities ofseparate states n. The �rst term in the equation, Wnn′pn′ (t), is the gain ofstate n due to transitions from all other states n′. The seond term in theequation, Wn′npn (t) is the loss due to transitions from state n into other states
n′. Also, the transition probability is positive or zero for all ases where theinitial and �nal states are unequal; that is, Wnn′ ≥ 0 when n′ 6= n. Of ourse,terms with n = n′ do not ontribute to the sum.Loinger-Biham master equationsIn the stohasti desription, we denote the number of the ith free protein by nf

i ,and the number of the ith bound protein by nb
i . We onsider the time evolutionof the probability distribution funtion P

(

nf
1 , nf

2 , nf
3 , nb

1, n
b
2, n

b
3

). This is theprobability for a ell to inlude nf
i opies of the ith free protein and nb

i opiesof the ith bound protein. The quantity nf
i an take values 0, 1, 2 . . ., while thequantity nb

i an only take values 0, 1, sine we have assumed a single bindingsite. Our master equation will therefore be
Ṗ (nf

1 , nf
2 , nf

3 , nb
1, n

b
2, n

b
3)

=
∑

i=1,2,3

{

g
(

1 − nb
i−1

)

[

P
(

. . . , nf
i − 1, . . . , nb

1, n
b
2, n

b
3

)

− P
(

~nf , ~nb
)

]

+ γf

[

(nf
i + 1)P

(

. . . , nf
i + 1, . . . , nb

1, n
b
2, n

b
3

)

− nf
i P

(

~nf , ~nb
)

]

+ α0

[

(nf
i + 1)nb

iP
(

. . . , nf
i + 1, . . . , nb

i − 1, . . .
)

− nf
i (1 − nb

i)P
(

~nf , ~nb
)

]

+ α1

[

(1 − nb
i)P

(

. . . , nf
i − 1, . . . , nb

i + 1, . . .
)

− nb
iP

(

~nf , ~nb
)

]

+ γb

[

(nb
i + 1)P

(

nf
1 , nf

2 , nf
3 , . . . , nb

i + 1, . . .
)

− nb
iP

(

~nf , ~nb
)

]

} (3.8)The expression ~nf = (nf
1 , nf

2 , nf
3 ), while the expression ~nb = (nb

1, n
b
2, n

b
3).Therefore, the expression P

(

~nf , ~nb
)

= P
(

nf
1 , nf

2 , nf
3 , nb

1, n
b
2, n

b
3

).Lets look at equation (3.8) term by term.
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• LHS:This term is the time evolution of the probability distribution funtion

P
(

nf
1 , nf

2 , nf
3 , nb

1, n
b
2, n

b
3

) de�ned earlier.
• RHS: First term:This term (

g
(

1 − nb
i−1

)

[

P
(

. . . , nf
i − 1, . . . , nb

1, n
b
2, n

b
3

)

− P
(

~nf , ~nb
)

]) rep-resents the hange of one ith free protein and is the stohasti equivalentof the rate of expression of the ith free protein. The term g
(

1 − nb
i−1

)

[

P
(

. . . , nf
i − 1, . . . , nb

1, n
b
2, n

b
3

)] implies the transition of the system froma state having one less ith free protein to the urrent state, while the otherterm g
(

1 − nb
i−1

) [

P
(

~nf , ~nb
)] implies the transition of the system fromthe urrent state to another state having one less ith free protein. It repre-sents, like equation (3.7), a gain-loss senario. The expression g

(

1 − nb
i−1

)is the transitions probability and plays the roles assigned to Wnn′ as wellas Wn′n in equation (3.7). The expression P
(

. . . , nf
i − 1, . . . , nb

1, n
b
2, n

b
3

)takes the plae of pn′ in equation (3.7) while P
(

~nf , ~nb
) substitutes pn.

• RHS: Seond term:This term γf

[

(nf
i + 1)P

(

. . . , nf
i + 1, . . . , nb

1, n
b
2, n

b
3

)

− nf
i P

(

~nf , ~nb
)

] rep-resents the deay of the free protein. The state (. . . , nf
i +1, . . . , nb

1, n
b
2, n

b
3)is the initial state while (~nf , ~nb) is the urrent state. The transition fromthe initial to the urrent state is aompanied by the transition probabil-ity γf (nf

i + 1), while the reverse transition is weighted by the transitionprobability γfnf
i .

• RHS: Third term:This term (

α0

[

(nf
i + 1)nb

iP
(

. . . , nf
i + 1, . . . , nb

i − 1, . . .
)

− nf
i (1 − nb

i )P
(

~nf , ~nb
)

])is equivalent to the unbinding term. The transition from state (. . . , nf
i +

1, . . . , nb
i −1, . . . ) to the urrent state (~nf , ~nb) means that one free proteinis dereased and one bound protein is inreased. This is weighted by thetransition probability α0(n

f
i +1)nb

i . The reverse transition is weighted bythe transition probability α0n
f
i (1 − nb

i).
• RHS: Fourth term:
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α1

[

(1 − nb
i)P

(

. . . , nf
i − 1, . . . , nb

i + 1, . . .
)

− nb
iP

(

~nf , ~nb
)

])is equivalent to the binding term. The transitions take plae betweenstates (. . . , nf
i − 1, . . . , nb

i + 1, . . . ) and (~nf , ~nb) whih is the urrent state.Evidently, the number of free proteins inrease by one and the number ofbound proteins derease by one in the `forward' proess, while the oppositehappens in the `reverse' proess. The `forward' or `gain' proess is weightedby α1(1 − nb
i ) while the reverse has the transition probability α1n

b
i .

• RHS: Fifth term:This term (

γb

[

(nb
i + 1)P

(

nf
1 , nf

2 , nf
3 , . . . , nb

i + 1, . . .
)

− nb
iP

(

~nf , ~nb
)

]) rep-resents the deay of the bound protein. The transition is between states
(nf

1 , nf
2 , nf

3 , . . . , nb
i + 1, . . . ) and the urrent state. Here the number ofbound proteins derease or inrease by one for the forward and reverseproesses. The weights are γb(n

b
i + 1) and γbn

b
i respetively.We have made an analysis of the repressilator using the Loinger-Biham rateequations as well as the master equations. The results are given in the nexthapter.



3.4. QUORUM SENSING MODEL 293.4 Quorum sensing model3.4.1 Model (without stohastiity)The model used by Garia-Ojalvo et al.[4℄ (refer to hapter 2) in desribing theirmodel of interell oupling through quorum sensing makes use of Mihaelis-Menten kinetis in the same spirit as Elowitz and Leibler. The equations formRNA have terms representing degradation of mRNA and repression by pro-teins. The term for the laI gene is also modi�ed by the AI onentration.mRNA equations
dai

dt
= −ai +

α

1 + Cn
i

(3.9)
dbi

dt
= −bi +

α

1 + An
i

(3.10)
dci

dt
= −ci +

α

1 + Bn
i

+
κSi

1 + Si

(3.11)Here ai, bi and ci are the onentrations in the ith ell of the mRNA tran-sribed from genes tetR, I and laI respetively. The orresponding proteinonentrations are given here by Ai, Bi and Ci respetively, keeping in mindthat the two opies of LaI are assumed to be idential. The quantity Si is theonentration of AI. The Hill oe�ient n indiates (as usual) the level of oop-erative binding. The model is non-dimensionalised by measuring time in units ofmRNA lifetime whih is assumed equal for all genes. The protein levels as wellas the AI levels are normalised by their Mihaelis onstants (as de�ned earlierin setion 1 of this hapter). The parameter α is the dimensionless transriptionrate in absene of repressors (equal to α + α0 from setion 1 of this hapter),while κ is the maximal ontribution to laI transription in the presene ofsaturating amounts of AI.Protein equationsThe equations for the rate of hange of protein onentrations are given next.
dAi

dt
= β (ai − Ai) (3.12)



30 CHAPTER 3. MATHEMATICAL MODELLINGThe equations for Bi and Ci are similar with bi and ci respetively (for the
ith ell). The parameter β is the ratio of protein and mRNA degradation rates(i.e. the lifetime of mRNA divided by the lifetime of the protein). The mRNAonentrations here have been resaled by their translational e�ieny whih,as de�ned earlier in setion 1, is the average number of proteins produed permRNA moleule.AI equationsThe equations for AI has terms representing degradation, prodution and inter-ell di�usion.

dSi

dt
= −ks0Si + ks1Ai − η(Si − Se) (3.13)The �rst term on the right is the degradation term with the deay oe�ient

ks0. The seond term is the synthesis term while the third term is the interelloupling term. The lifetimes of TetR and LuxI are assumed to be equal andas a result the onentration of TetR (Ai) also desribes the onentration ofLuxI here. The oe�ient of the oupling term η = σA/Vc = δ/Vc where
σ represents the permeability of the ell membrane, A is the surfae area ofthe ell membrane and Vc is the volume of the ell.The three parameters havebeen non-dimensionalised by time-resaling. The quantity Se represents theextraellular onentration of AI. Its dynamial equation is

dSe

dt
= −kseSe + ηext

N
∑

j=1

(Sj − Se) ≡ −kseSe + kdiff (S̄ − Se) (3.14)Here ηext = δ/Vext. Vext is the total extraellular volume, and the barrepresents averaging over all ells. The di�usion rate is given by kdiff = ηextNand the degradation rate is given by kse. N is the total number of ells.In the above model, variations in ell density are ignored the onentrationof AI is assumed uniform throughout the experimental substrate.



3.4. QUORUM SENSING MODEL 31Order parameterFinally, an order parameter3 is de�ned as a measure of phase transition betweenunsynhronisation and mutual entrainment.The quantity bi(t) is the onentration of mRNA in the ith ell. The averageof this over all ells is given by
M(t) = (1/N)

n
∑

i=0

bi(t) (3.15)The order parameter R is de�ned as the ratio of time-variane of M(t) andthe variane of bi averaged over i. So it is basially the ratio of the time-varianeof the ell-average of the signal (bi(t)) and the ell-variane of the time-averageof the signal.
R =

〈M2〉 − 〈M〉2

〈b2
i 〉 − 〈bi〉2

(3.16)If the signals are ompletely synhronized, then bi(t) = bj(t) = b(t) ∀i, j ⇒

M(t) = b(t). Sine all the signals are equal, 〈b(t)〉 = 〈b̄(t)〉 (time-averaging andell-averaging ommute), and hene R = 1 for omplete synhronization. Foromplete unsynhronisation, the signals are ompletely unorrelated and as aresult the 〈M2〉 = 〈M〉2 ⇒ R = 0.If R is plotted against some ontrol parameter, a sudden hange in its valuefrom 0 to 1 will indiate phase transition.The ontrol parameter is given by the quantity Q whih is de�ned as
Q =

Nδ/Vext

kse + Nδ/Vextwhere δ = σA. It is assumed that the extraellular volume Vext >> Vc, the in-dividual ellular volume. Aording to this de�nition, if Nδ/Vext << kse whihis the degradation rate of the extraellular AI, then Q is linearly proportionalto the ell density (sine the permeability σ, the area A and the extraellulardegradation rate kse an be assumed onstant). So Q takes the role of theontrol parameter against whih the order parameter R is plotted.3An order parameter is a useful measure of phase transition. The value of the orderparameter varies with some ontrol parameter and hanges at a phase transition.
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Figure 3.5: Order parameter against Q for the deterministi ase.ResultsSimulations arried out by Garia-Ojalvo, Elowitz and Strogatz yielded thefollowing results. Figure 3.6 shows that synhronization inreases as the elldensity inreases.Figure 3.5 gives a plot of the order parameter against ell density. It showsthat there is a phase transition to synhronization. The parameter ∆β is thespread in parameter values. So Garia-Ojalvo et al. found that there is syn-hronisation if the number of ells oupling together inreases. Also, there isa phase transition to mutual entrainment, whih from the �gure (f), seems tous to be of the attrative type (as de�ned in hapter 2) as there is no phasedi�erene between the osillations.3.4.2 Model with stohastiityExtrinsi noise was modelled into the parameter β by adding a Gaussian noiseterm to it: β → βi + ξµi(t), where i is the ell-index and µ is the protein-index.The term ξµi(t) was a Gaussian orrelated noise of the Ornstein-Uhlenbek typewith zero mean and orrelation 〈ξµi(t)ξνj(t
′)〉 = δµνδij (D/τ) exp (−|t − t′|/τ).The noise is unorrelated between ells and between genes in eah ell. Theintensity is D and autoorrelation time is τ . Plots of power spetrums of mRNAonentration as well as order parameter are given in �gure 3.7.
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Figure 3.6: Figures in the left olumn are frequeny histograms for di�erentells. The �gures in the right olumn are signals for di�erent ells plottedagainst time. Values of Q are 0.4 in the top row, 0.63 in the middle row and
0.8 in the bottom row. The other parameter values used are α = 216, κ = 20,
n = 2.0, ks0 = 1, η = 2.0 and ks1 = 0.01. The lifetime ratio is hosen froma random Gaussian distribution of mean 1 and standard deviation ∆β = 0.05.Figures from[4℄.
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Figure 3.7: Figure on the left gives the power spetrum of the mRNA onen-tration bi(t) averaged over 100 repressilators plotted with oupling strength asparameter.Q = 0 for urve 1 and Q = 1 for urve 2. Noise broadening is seenfor the zero-oupling urve (urve 1) while the peaks are far sharper for �niteoupling (Q = 1 for urve 2). The value of the noise intensity is D = 0.4 forboth urves (�g. 3.7). Figure on the right gives the order parameter vs noiseintensity. τ = 15min, η = 10 and ∆β = 0. The other parameters have the samevalue as in �gure 3.6. Figures from[4℄.3.4.3 ConlusionGaria-Ojalvo, Elowitz and Strogatz observed[4℄ that in their stohasti quo-rum sensing model, synhronisation and oherene is ompletely lost as thenoise intensity inreases beyond a ertain value (D ≃ 0.75 as seen from �gure3.7), no matter the oupling strength. If the noise intensity remains below thatritial value then a �nite value of the oupling strength an bring about syn-hronisation. However, they have not studied the e�et of internal noise on theosillations.



Chapter 4
Our Analysis of theRepressilator
4.1 Overview of Work DoneOur study of the repressilator began with the single repressilator. The �rst jobwas to non-dimensionalize the rate equations given by Loinger and Biham[6℄.Our study was without ooperative binding i.e. with the Hill oe�ient set to 1.Then we simulated the equations to get onentration vs time graphs for eahprotein, free or bound. All simulations (inluding these and subsequent ones)were done in Matlab. After the simulation of the onentration for di�erentvalues of the remaining parameters, we moved on to simulations of amplitudes,frequenies and waveforms of the protein onentrations against varying pa-rameters. We found de�nite regions of parameter spae for whih there wereosillations, as indiated by the above studies of amplitudes and frequenies.The waveforms also di�ered with parameter values, but were overall loser tosinusoids than relaxation types. These were for the deterministi ase. For thestohasti ase, we simulated the master equations given by Loinger and Bihamusing the Gillespie algorithm[2℄ and obtained osillation graphs vs time. Finally,we went on to two repressilators oupled by AI and simulated onentrations vstime graphs and phase di�erenes to �nd out the type of entrainment.35



36 CHAPTER 4. OUR ANALYSIS OF THE REPRESSILATOR4.2 Single Repressilator: Deterministi4.2.1 Non-dimensionalizationWhy?One of the problems faed while setting values of parameters to be used insimulations is a baseline to ompare them with. The usual modus operandi isto non-dimensionalize them against some parameter. This not only redues thenumber of parameters in the problem, it also serves a guideline for interpretationof the values of the parameters.How?The parameters in the equations are the following (as de�ned in hapter 3):
• The expression onstant g: This is the onstant rate of expression of theproteins in the absene of repressors.
• The free-protein degradation onstant df (previously γf )
• The bound-protein degradation onstant db (previously γb)
• The binding onstant α0

• The unbinding onstant α1We non-dimensionalize the Loinger-Biham equations by the parameter g andget the following:
dpf

i

dτ
= (1 − pb

i−1) − d̃fpf
i − α̃0p

f
i (1 − pb

i) + α̃1p
b
i (4.1)

dpb
i

dτ
= α̃0p

f
i (1 − pb

i) − α̃1p
b
i − d̃bpb

i (4.2)wherea) τ = tgb) d̃f = df/g) d̃b = db/gd) α̃0 = α0/ge) α̃1 = α1/g



4.2. SINGLE REPRESSILATOR: DETERMINISTIC 374.2.2 Simulation of Conentrations vs TimeWe simulated the onentrations of the proteins vs time for di�erent values ofthe parameters using the RK41 algorithm with adaptive time stepping. Thetime of running the simulation was hosen to have approximately 20 or morestable osillation yles. The graphs are given in �gure 4.1.The values of the parameters are the saled non-dimensionalized `tilde' valuesof the parameters (we are removing the tilde forthwith for ease of understanding�now onwards the non-tilde versions will mean the non-dimensionalized param-eters). So the system was run with some initial onentration of the �rst freeand bound proteins (p1(0) = 1.7) and zero onentration of the others. [Note:the `�rst' protein ould be either of the three (TetR, I or LaI)�the equationsare symmetrial with respet to that℄.It should be noted that the osillations, while not relaxational, are not ex-atly sinusoidal either. This issue will be studied more losely in the setion onwaveforms.Further graphs of onentration vs time have also been plotted for varyingvalues of parameters. We do not inlude them here.4.2.3 Waveform analysisWe have plotted the onentration of the �rst bound protein (`�rst' merelymeans it has some starting onentration) for varying values of the degradationparameters df and db. The plots are given in �gures 4.2, 4.3 and 4.4. Lookingat these �gures, we see a lear trend. For low values of df , the waveforms are`top-heavy' with a sort of a plateau at the rests and a spike at the troughs.This is true even for higher values of db if df be low. For higher values of df ,the waveforms move loser to a sinusoidal shape.
1RK stands for Runge-Kutta
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Figure 4.1: The �gure on the top gives free protein onentration vs time show-ing approximately 10 yles. The �gure at the bottom gives bound proteinonentration vs time showing approximately 10 yles. The di�erent oloursindiate the di�erent protein onentrations. The parameter values used were
df = 0.06, db = 0.06, α0 = 10, α1 = 0.2. The initial values of the protein on-entrations were pf

1 (0) = 0.7, pf
i (0) = 0.0 for i = 2, 3; pb

1(0) = 1.0, pb
i (0) = 0.0for i = 2, 3.
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Figure 4.2: Waveform of �rst bound protein for df=db=0.06
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Figure 4.3: Waveform of �rst bound protein for df=0.06, db=0.36
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Figure 4.4: Waveform of �rst bound protein for df=0.36, db=0.244.2.4 Amplitude analysisThis analysis was done in the following way. The signal was �rst detrended2and then the absolute value of the signal was taken. Finally a linear �t was doneon the signal and the y-interept was taken. It is quite possible that there are�utuations at high frequenies but the variations in protein onentration areminimal. This analysis gives an idea of the `amount' of �utuations present inthe osillations. We have plotted the interepts obtained in the way desribedagainst the deay parameters df and db.Figure 4.5 is a san of the interept against db for �xed value (0.06) of df . Itan be seen from this �gure that there is substantial amplitude for a large rangeof db (range of db in �gure is 0.02 to 0.60). However, this is for small df = 0.06.We have done a san for the interept against both db and df and 3D plot is2Detrending means setting the mean to zero. This will simply shift the x-axis higher inthe graphs.
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Figure 4.5: San of the interept against the parameter db for df = 0.06given in �gure 4.6, and the top-view is given in �gure 4.7.

Figure 4.6: 2D san of the interept against the parameters df and db. Theparameter values are non-saled values. The ranges of both db and df are 0.02to 0.58 in steps of 0.04 after saling by g.
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Figure 4.7: Top-view.of the 2D san of the interept against the parameters dfand db. The parameter values are non-saled values. The ranges of both db and
df are 0.02 to 0.58 in steps of 0.04 after saling by g.So we see that there are signi�ant osillations for a ertain region of the pa-rameter spae of df and db. For low df , there are osillations almost throughoutthe range of db. But in the higher regime of df values, osillations are found forshorter and shorter ranges of db values. At quite high df > 0.52, there are nosigni�ant osillations at all.So we onlude that the amplitude of osillationsof the �rst bound protein are ontrolled more by the value of the degradationonstant of the free proteins than that of the bound proteins.4.2.5 Frequeny analysisNatural frequenies of osillations are very important when trying to synhroniseosillators. A study of the frequenies of the osillations of proteins of a singlerepressilator is done next. There are two ways of �nding out the frequenyof a time-dependent signal. The �rst involves �nding the Fourier transform ofthe signal. The power spetrum of the Fourier transformed signal gives thedominant frequeny. This is the frequeny obtained from the Fourier transformanalysis. Call it ωFT . The other method involves taking the Hilbert transformof the signal. The Hilbert transformed signal is now multiplied by ı and added



42 CHAPTER 4. OUR ANALYSIS OF THE REPRESSILATORto the original signal to give the `analyti signal'. The phase of this analytisignal, when di�erentiated, gives the frequeny. Call it ωHT . The �nal aeptedfrequeny (ω) is the mean of these two frequenies ω = (ωFT +ωHT )/2. A moredetailed desription of the Hilbert analysis is given in the Appendix..
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Figure 4.8: San of the frequeny against the parameter db for df = 0.06. Therange of db is 0.0 to 1.0 (saled) for df = 0.06.The interesting thing to observe is that the frequenies seem to rise graduallywith inreasing db upto 0.56, where it suddenly dips to a very low value. Nearthe edge of the range the frequeny is very lose to zero. The following graph(�gure (4.9)) is the 3D plot against both df and db. Figure 4.10 is the top-view.The 3D plot of the frequeny san against df and db (�gs 4.9 and 4.9) showsa sharp region where there are �nite frequenies. The 2D plot (�g. 4.8) as wellas the �rst 3D plot (�g. 4.9) shows that the frequeny inreases gradually with
db and then falls sharply. This fall happens at lower and lower values of db asthe value of df inreases. At higher values of df , there is a very small range of
db for whih there are �nite frequenies. This behaviour is qualitatively similarto the behaviour of the amplitudes.
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Figure 4.9: 2D san of the frequeny against the parameters df and db. Therange of db is 0.02 to 0.70 at intervals of 0.02, while that for df is 0.02 to 0.58at intervals of 0.04.

Figure 4.10: 2D san of the frequeny against the parameters df and db. Therange of db is 0.02 to 0.70 at intervals of 0.02, while that for df is 0.02 to 0.58at intervals of 0.04.4.3 Single Repressilator: StohastiThe stohasti simulations are done by solving the Master Equation (eq. 3.8)using the Gillespie algorithm[2℄.
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Figure 4.11: Free protein opy number vs time. α0 = 10.0, α1 = 0.2, df = db =
0.06, initial �rst free protein number f1(0) = 10.0, initial �rst bound proteinnumber b1(0) = 1.0, other initial numbers equalling zero. Time of runningis tmax = 1500 timesteps. Maximal opy number is ∼ 20 − 25 with ∼ 10osillations in 1500 time steps.

Figure 4.12: Free protein opy number vs time. α0 = 10.0, α1 = 0.2, df = db =
0.12, initial �rst free protein number f1(0) = 10.0, initial �rst bound proteinnumber b1(0) = 1.0, other initial numbers equalling zero. Time of runningis tmax = 750 timesteps. Maximal opy number is ∼ 10, with ∼ 10 − 15osillations in 750 time-steps.A omparison of �gures 4.11, 4.12, 4.13 and 4.14 exhibit the e�et of hangingthe value of the deay parameters on the frequeny and maximal opy number.It is seen that as the values of the deay parameters inrease the frequeny
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Figure 4.13: Free protein opy number vs time. α0 = 10.0, α1 = 0.2, df = db =
0.03, initial �rst free protein number f1(0) = 10.0, initial �rst bound proteinnumber b1(0) = 1.0, other initial numbers equalling zero. Time of runningis tmax = 3000 timesteps. Maximal opy number is ∼ 35 − 40, with ∼ 10osillations in 3000 time-steps.

Figure 4.14: Free protein opy number vs time. α0 = 10.0, α1 = 0.2, df = db =
0.01, initial �rst free protein number f1(0) = 50.0, initial �rst bound proteinnumber b1(0) = 1.0, other initial numbers equalling zero. Time of running is
tmax = 3000 timesteps. Maximal opy number is ∼ 100, with ∼ 8 osillationsin 8000 time-steps.inreases but the maximal opy number dereases, and vie versa.



46 CHAPTER 4. OUR ANALYSIS OF THE REPRESSILATORWe an summarize the qualitative e�ets of the parameters thus:
• Inreasing deay parameters inreases frequenies but dereases maximalopy number.
• Dereasing deay parameters dereases frequenies but inreases maximalopy number.
• Changing the initial opy number has no qualitatively disernible e�et.
• Changing the binding parameter has no qualitatively disernible e�etother than a very slight hange in maximal opy number.
• Dereasing the unbinding parameter inreases the maximal opy numberslightly. However, inreasing it dereases the maximal opy number some-what.Apart from the e�ets of hanging the deay parameters, the other e�etswere not very pronouned and in a stohasti system, more rigorous and arefulanalysis is required to pinpoint the e�ets. The graphs plotted for examiningthe hange of the binding and unbinding parameters are not given here.4.4 Two Coupled RepressilatorsThe oupling is, as desribed in Chapter 3, done by exhange of the autoinduerAI between ells. This is the quorum sensing mehanism. We have modi�ed theLoinger-Biham rate equations is the following way to introdue the e�et of AIoupling.4.4.1 Modi�ation to Loinger-Biham rate equationsWe have two repressilator ells. Our equations for the proteins are
dpf

11

dt
= g(1 − pa

i−1) − γfpf
i − α0p

f
i (1 − pa

i ) + α1p
a
i + (pf

11/p11)g1 a1 (4.3)
dpa

12

dt
= α0p

f
i (1 − pa

i ) − α1p
a
i − γapa

i + (pa
11/p11)g1 a1 (4.4)
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11 is the onentration of the �rst free protein of the �rst ell, pb

11is the onentration of the �rst bound protein of the �rst ell and pf
11 is thetotal onentration of the �rst protein of the �rst ell. The modi�ation terms

(pf
11/p11)g1 a1 and (pa

11/p11)g1 a1 are parametrized by g1. These two termsdesribe the oupling between the seond feedbak loop to the �rst (refer tothe desription in setion 2.4.3). So g1 an be alled the intraell ouplingparameter.The rate equations of the AI onentrations are given thus:
da1

dt
= −g2a1 + g3p12 − g4(a1 − a2) (4.5)

da2

dt
= −g2a2 + g3p22 − g4(a2 − a1) (4.6)Here p12 is the seond protein in the �rst ell and p22 is the seond proteinin the seond ell. The parameter g2 is the degradation rate of the AI, g3 isthe indution rate quanti�ed by the onentration of LuxI whih is taken to bethe same as that of TetR, following the method adopted by Loinger and Bihamand desribed earlier in hapter 3. The interell oupling parameter is g4 andthe terms −g4(a1 − a2) and −g4(a2 − a1) ensure that AI always di�uses out ofa ell having higher onentration into the other one.4.4.2 EntrainmentWe need to onsider a few ases here.(A) No intraell or interell oupling.In this ase we will reprodue the results of setion 1 for eah ell, andwe will not expet the osillations to be entrained exept for the trivialase of same parameters (i.e. same natural frequenies) and same initialonditions.(B) No interell oupling, but �nite intraell ouplingWe still do not expet entrainment. However the results, while indepen-dent ell-wise, will not be expeted to reprodue the single repressilatorases. There is essentially nothing muh of interest here. However, theimportant ase is the next one.



48 CHAPTER 4. OUR ANALYSIS OF THE REPRESSILATOR(C) Finite interell and intraell ouplingThis will have three sub-ases:(a) Same initial onditions and parameters: It will a trivial ase and theosillations are expeted to perfetly entrain.(b) Di�erent initial onditions, same parameters: The natural frequen-ies are same but the initial onditions are di�erent. Still, we expetentrainment as di�erent initial onditions should not a�et the phasedi�erene between the ells. however, they might, and it needs to belooked into. The question will be whether the entrainment will beattrative or repulsive.() Di�erent initial onditions and parameters: This is the real deal. Thetwo ells will have di�erent natural frequenies. The study will bearried out using di�erent values of the interell oupling parameter
g4.4.4.3 ResultsCase (A)We get the graph (�g. 4.15) keeping initial onditions and parameter valuessame for both repressilators.As the onentration graph (�g. 4.15) indiates and the phase urve graph(�g. 4.16) on�rms, the two repressilators behave exatly equally. This is whatwas expeted, and this is simply a onsisteny hek. [Note: We have �xedthe values of the df and db parameters at 0.24 eah to keep the individualfrequenies near the entre of the osillatory region.℄ Next we hange the initialonditions. We �nd no entrainment (�gs. 4.17 and 4.18) although we do havephase-loking..Case (B)Here we introdue �nite intraell oupling. We expet no entrainment. We getnone. Figures 4.19 and 4.20 attest to that. There is phase-loking. There is notmuh di�erene between phase-diagrams 4.18 and 4.20, the former with zerointraell oupling and the latter with low intraell oupling (g1 = 0.2).
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Figure 4.15: First bound protein onentration vs time for two unoupled re-pressilators without intraell oupling. The onentrations are indiated bythe blue line (for one repressilator) and red dots (for the other). Parameters
α0 = 10.0, α1 = 0.2, df = db = 0.24, g1 = 0.0, g2 = g3 = 0.2, g4 = 0.0 for bothrepressilators. Initial onditions pf

11(0) = 0.5, pf
12(0) = 0.5.
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Figure 4.16: Phase urve of the �rst bound protein onentration of the twounoupled repressilators without intraell oupling. Parameters α0 = 10.0, α1 =
0.2, df = db = 0.24, g1 = 0.0, g2 = g3 = 0.2, g4 = 0.0 for both repressilators.Initial onditions pf

11(0) = 0.5, pf
12(0) = 0.5. There is lear entrainment.
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Figure 4.17: First bound protein onentration vs time for two unoupledrepressilators without intraell oupling. Parameters α0 = 10.0, α1 = 0.2,
df = db = 0.24, g1 = 0.0, g2 = g3 = 0.2, g4 = 0.0 for both repressilators. Initialonditions pf

11(0) = 0.5, pf
12(0) = 1.0.
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Figure 4.18: Phase urve of the �rst bound protein onentration of the twounoupled repressilators without intraell oupling. Parameters α0 = 10.0, α1 =
0.2, df = db = 0.24, g1 = 0.0, g2 = g3 = 0.2, g4 = 0.0 for both repressilators.Initial onditions pf

11(0) = 0.5, pf
12(0) = 1.0.Figures 4.21 and 4.22 indiate the ase with stronger intraell oupling (g1 =

1.4) keeping all other parameter values same and di�erent initial onditions. Itis seen that with inreasing strength of the intraell oupling, the phase-urvemoves towards a smaller limit-yle. At muh higher values of g1(∼ 4.0), we get a�xed-point, indiating no osillations. That is borne out by onentration plots.These plots have been made but are not shown here. Inreasing the intraelloupling seems to push the system loser to a non-osillatory �xed-point. This is
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Figure 4.19: First bound protein onentration vs time for two unoupled repres-silators with intraell oupling. Parameters α0 = 10.0, α1 = 0.2, df = db = 0.24,
g1 = 0.2, g2 = g3 = 0.2, g4 = 0.0 for both repressilators. Initial onditions
pf
11(0) = 0.5, pf

12(0) = 1.0.
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Figure 4.20: Phase urve of the �rst bound protein onentration of the twounoupled repressilators without intraell oupling. Parameters α0 = 10.0, α1 =
0.2, df = db = 0.24, g1 = 0.2, g2 = g3 = 0.2, g4 = 0.0 for both repressilators.Initial onditions pf

11(0) = 0.5, pf
12(0) = 1.0.beause the mehanism underlying the oupling of the seond loop (see Chapter2) is positive feedbak whih when boosted kills o� the osillations sustained bynegative feedbak.A thing to note: although Case (A) with di�erent initial onditions (phasediagram 4.18) and Case (B) with non-zero intraell oupling (phase diagrams4.20 and 4.22) exhibit no entrainment3, there is phase-loking. We of ourse3Where entrainment is stritly de�ned (as earlier) as phase-loking with phase di�erene
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Figure 4.21: First bound protein onentration vs time for two unoupled repres-silators with intraell oupling. Parameters α0 = 10.0, α1 = 0.2, df = db = 0.24,
g1 = 1.4, g2 = g3 = 0.2, g4 = 0.0 for both repressilators. Initial onditions
pf
11(0) = 0.5, pf

12(0) = 1.0.
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Figure 4.22: Phase urve of the �rst bound protein onentration of the twounoupled repressilators with intraell oupling. Parameters α0 = 10.0, α1 =
0.2, df = db = 0.24, g1 = 1.4, g2 = g3 = 0.2, g4 = 0.0 for both repressilators.Initial onditions pf

11(0) = 0.5, pf
12(0) = 1.0.do not expet entrainment without interell oupling. We get phase lokingbeause the natural frequenies of the two repressilators are the same. So wegive one set of graphs (�gs. 4.23 and 4.24) showing osillations for Case (B) withdi�erent frequenies. We hange frequenies by tuning the deay parameters.It is seen that there is no longer any limit-yle type osillations (�g.4.24).of 0 or π
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Figure 4.23: First bound protein onentration vs time for two unoupled re-pressilators with intraell oupling. Parameters α0 = 10.0, α1 = 0.2, g1 = 1.4,
g2 = g3 = 0.2, g4 = 0.0 for both repressilators. Initial onditions pf

11(0) = 0.5,
pf
12(0) = 1.0. Deay parameters df = db = 0.24 for one repressilator,

df = db = 0.264 for the other.

0.5 0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95
0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

Protein 1 of cell 1

P
ro

te
in

 1
 o

f c
el

l 2

Bound protein 1 in cell 1 vs bound protein 1 in cell 2: g1=1.4 , g4=0.0 

Figure 4.24: Phase urve of the �rst bound protein onentration of the two un-oupled repressilators with intraell oupling. Parameters α0 = 10.0, α1 = 0.2,
g1 = 1.4, g2 = g3 = 0.2, g4 = 0.0 for both repressilators. Initial onditions
pf
11(0) = 0.5, pf

12(0) = 1.0. Deay parameters df = db = 0.24 for one repressila-tor, df = db = 0.264 for the other.Case (C)Here we introdue interell oupling as well. In the �rst sub-ase, we keepnatural frequenies and parameters same. We �nd the trivial ase of perfetattrative entrainment (plots not shown). Next we hange initial onditions(�gs. 4.25 and 4.26).
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Figure 4.25: First bound protein onentration vs time for two oupled repressi-lators with intraell oupling. Parameters α0 = 10.0, α1 = 0.2, df = db = 0.24,
g1 = 0.2, g2 = g3 = 0.2, g4 = 0.2 for both repressilators. Initial onditions
pf
11(0) = 0.5, pf

12(0) = 1.0.
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Figure 4.26: Phase urve of the �rst bound protein of the two oupled repressi-lators with intraell oupling. Parameters α0 = 10.0, α1 = 0.2, df = db = 0.24,
g1 = 0.2, g2 = g3 = 0.2, g4 = 0.2 for both repressilators. Initial onditions
pf
11(0) = 0.5, pf

12(0) = 1.0.We �nd from �gures 4.25 and 4.26 a transient state after whih the twoosillations get entrained attratively. This happens even with oupling strengthlow for the two repressilators having same natural frequenies.Finally we ome to the ase of di�erent initial onditions and natural fre-quenies. We get �gures 4.27, 4.28 and 4.29.At a high di�erene of natural frequenies, the osillations are not evenphase-loked (�g. 4.27). However, as the di�erene in frequenies dereasesdown from 10% to 1%, there is a tendeny to move towards phase-loking (�g.
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Figure 4.27: Phase urve for 10 % di�erene in natural frequenies
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Figure 4.28: Phase urve for 5 % di�erene in natural frequenies
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Figure 4.29: Phase urve for 1 % di�erene in natural frequenies4.29). However, there is no entrainment as suh as ould be seen by visualinspetion of the phase-urves. Boosting the values of the intraell and/or theinterell parameters also does not a�et things greatly, in that even at quitehigh g4 ∼ 10.0, we �nd no entrainment.



56 CHAPTER 4. OUR ANALYSIS OF THE REPRESSILATOR4.4.4 SummaryAll this analysis was done for the �rst bound protein. It seems that there isno entrainment for the two repressilators di�ering in natural frequenies. Ifthe di�erene is high, there is no orrelation between the phases. However, atlower di�erenes, we get something like phase-loking. However, entrainmentstill eludes. This was expeted.Our study was on the �rst bound protein. It is quite possible the otherprotein osillations might entrain. That needs be heked. However, it is quiteunlikely. Also, our analysis of entrainment was by visual inspetion of the phase-urves. This is all right for two repressilators, for the presene or absene ofentrainment is quite evident from looking at the pahse urves. However, thisapproah is not feasible if there are more than two oupled repressilators. Inorder to quantitatively hek for entrainment or phase-loking for more thantwo repressilators oupled together, we need to de�ne some order parameter.



Chapter 5ConlusionThe primary motive in studying the repressilator was to try and model natu-ral biologial osillators. The interesting and ritial feature of suh naturallyourring osillators was that they preserve their periods of osillations evenif there are externally imposed �utuations prevalent in natural environments.Examples of suh robust osillators inlude the iradian osillator, the pae-maker of the heart et. Eah of these osillators are made up of olletions ofellular osillators. So there are also internal �utuations brought about by thedi�erent operations of the individual osillators. In spite of both internal andexternal �utuations, biologial osillators are extremely robust and maintaintheir periodiity. In this thesis, we have reviewed experimental and omputersimulation studies of the single repressilator model whih showed that singlerepressilators are not robust to �utuations. Our review then extended to theoupling of repressilators using the quorum sensing mehanism. Simulationsshowed that there was robustness against noise for high enough oupling andhigh enough number of oupled repressilators. However, this has not yet beenborne out by experiments.In our analysis of the repressilator, we started o� by studying the singlerepressilator deterministially using non-dimensionalized rate equations. Wemanaged to isolate regions of parameter spae where the single repressilatorshows osillations. Stohasti study by master equations on�rmed the resultthat there are no stable osillations with stohastiity for the single repressila-tor. Then we moved on two repressilators oupled using the quorum sensingmehanism. The oupling used between the two repressilators was di�usive in57



58 CHAPTER 5. CONCLUSIONnature. We studied phase urves of the osillations of one of the proteins inthe two ells. We found as expeted that there is attrative entrainment if thenatural frequenies are the same, but no entrainment if they are not. The sys-tem is phase-loked and omes lose to attrative entrainment if the di�erenesin natural frequenies is redued. These result did not hange by inreasingoupling strength to large but �nite values. However, in general, our onlusionis that at the very least, more than two repressilators need to be oupled inorder to get entrainment in the deterministi ase when the natural frequeniesof the repressilators are di�erent. We have not yet studied stohasti e�ets onoupling, but it an be expeted that the system will move further away fromentrainment if stohastiity is inluded.Our ultimate aim is to study n of oupled repressilators with stohastiity.We would like to study this in the framework of phase-transitions by de�ninga suitable order parameter and studying its behaviour with inreasing numberof ells. We believe that the interplay between stohastiity inherent in a singlerepressilator, stohastiity from external environmental noise, and the size of therepressilator population will lead to non-trivial struture in the phase-diagramof oupled repressilator iruits.



AppendixHilbert AnalysisThe aim of Hilbert analysis is to extrat the phase of some signal and then maybethe frequeny (whih is what we have done). The algorithm is as follows. Wede�ne the following notations:
• s(t) → the signal that is to be analysed
• s(ω) → the fourier transform fo the signal
• s′(t) → the Hilbert transform of the signal s(t)

• s̃(t) → the `analyti signal', de�ned belowOur order of operations is
s(t)

Hilbert
−−−−−−−→
transform

s′(t) −→ s̃(t) = s(t) + is′(t)The Hilbert transform s′(t) of a signal s(t) is de�ned as
s′(t) =

1

π
PV

∫ ∞

−∞

s(τ)

t − τ
dτ (5.1)where PV means prinipal value.It is obtained thus:

• Fourier transform1 the signal: s(t)
FFT
−−−→ s(ω)

• De�ne s>(ω) ≡ s(ω) for ω > 0

• De�ne s<(ω) ≡ s(ω) for ω < 01While oding with Matlab, we have to arry out a Fast Fourier Transform (FFT) due tothe disrete nature of the operation of the program59
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• Shift phase of s>(ω) by −π

2 :
s>(ω)

Phase shift
−−−−−−−−→

−π
2

s>(ω) e−ı π
2 ≡ s′>(ω)

• Shift phase of s<(ω) by π
2 :

s<(ω)
Phase shift
−−−−−−−−→

π
2

s<(ω) eı π
2 ≡ s′<(ω)

• Add: s′(ω) ≡ s′>(ω) + s′<(ω)

• Carry out an inverse fourier transform: s′(ω)
IFFT
−−−−→ s′(t), whih is theHilbert transformWe obtain the phase by putting A(t)eıφ(t) = s̃(t), where we all A(t) thetime-dependent amplitude and φ(t) the time-dependent phase of the analytisignal. The phase of the signal will then be simply φ(t).For example, if s(t) = cosωt, then s′(t) = sinωt, and

s̃(t) = cosωt + ı sin ωt = eıωt = Aeıφ(t)

⇒ φ(t) = ωtand A(t) = 1.This is onsistent, for obviously the phase of the signal cosωt is ωt andamplitude is 1.
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