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iAbstra
tBiologi
al 
lo
ks are found everywhere in the natural world. From
ir
adian (day-night) rhythms to pa
emakers of the heart, biologi
al
lo
ks are an essential part of the smooth fun
tioning of living or-ganisms. They are 
omposed of mi
ros
opi
 
lo
ks whi
h operate atthe 
ellular level. The ma
ros
opi
 
lo
k fun
tions by syn
hronisa-tion of these smaller units through inter
ell 
oupling. These 
lo
kskeep time with amazing regularity even in the fa
e of random exter-nal �u
tuating e�e
ts or internal noise whi
h are ubiquitous in thenatural world. In order to attempt to understand the robustness ofsu
h 
lo
ks against sto
hasti
 e�e
ts, a model geneti
 
ir
uit 
alledthe repressilator was 
onstru
ted as a simple 
lo
k. The motivationis to �nd generi
 features whi
h underlie the operation of 
omplexbiologi
al 
lo
ks in a simple model. In this thesis, we review pre-vious work done on single repressilators as well as on repressilators
oupled by the quorum sensing me
hanism. We perform numeri
alsimulations to study the properties of a mathemati
al model of therepressilator. We suggest a new me
hanism by whi
h repressilator
ir
uits 
an be 
oupled. Numeri
al simulations of two repressilators,
oupled by our me
hanism, show attra
tive phase syn
hronisationwhen their natural frequen
ies are identi
al. When the natural fre-quen
ies are distin
t, our results rule out entrainment and seem toindi
ate the absen
e of phase-lo
king.
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Chapter 1Introdu
tionThe Dut
h physi
ist Christiaan Huygens is most well known for his dis
overyof the pendulum 
lo
k. He is less well known as the dis
overer of a ratherinteresting and 
urious phenomenon pervading in pendulum 
lo
ks. The yearis 1665, the month is a 
old February, and Huygens is 
on�ned to his bed withsome small ailment. With nothing better to do, he falls into an idle study of thetwo pendulum 
lo
ks hanging side by side on the wall�
lo
ks he had re
entlybuilt. Curiously, he observes that the 
lo
ks are running in exa
t syn
hrony.This syn
hronisation lasts for as long as he wat
hes the 
lo
ks. Intrigued, hegets up and deliberately desyn
hronises them. To his astonishment, they fall instep on
e again after some time and stay in mutual syn
hrony. Huygens thentries another approa
h. He shifts one 
lo
k to another part of the room�thewall opposite to the �rst 
lo
k. This time the two 
lo
ks fail to mar
h together�Huygens observes one losing about �ve se
onds per day relative to the other.Thus he 
on
ludes that the two 
lo
ks syn
hronise through tiny 
oupling for
estransmitted through air or the wall to whi
h they were atta
hed[12℄.Huygens' a

idental observation has 
reated what is now known as the the-ory of 
oupled os
illators1. Su
h 
oupled os
illators are ubiquitous in the naturalworld. In fa
t, every human being has a proliferation of su
h 
oupled os
illa-tors. Pa
emaker 
ells in the heart, insulin-se
reting 
ells in the pan
reas, neuralnetworks in the brain and spinal 
ord are all examples. These 
olle
tions ofos
illators perform su
h diverse and fundamental physiologi
al fun
tions su
has pumping blood throughout the body or regulating the level of hormones in1An os
illator is any system that exe
utes periodi
 behaviour.1



2 CHAPTER 1. INTRODUCTIONthe blood. They enable the performan
e of basi
 jobs su
h as breathing, run-ning or 
hewing[12℄. It is also very mu
h possible that not all biologi
al 
oupledos
illators need to be 
on�ned within the same organism. A superb example ofthis is in 
ongregations of syn
hronously �ashing �re�ies. Another example is a

Figure 1.1: Thousands of �re�ies �ash in unison in this time-exposure of ano
turnal mating display. Ea
h inse
t has its own rhythm, but they syn
hronisewith the others through its nearest neighbours' rhythms. Pi
ture from the paperby Strogatz and Stewart[12℄group of 
ri
kets that 
hirp in absolute (and sometimes maddening) syn
hrony.In order to understand how 
oupled os
illators work together, it is importantto understand how a single os
illator operates. A pendulum is a good exampleof a single harmoni
 os
illator. A harmoni
 os
illator is a linear os
illator.



3Its amplitude is �xed by initial 
onditions while its frequen
y 
an be variedby 
hanging the values of the parameters (the length of the pendulum, forexample). Amplitude and frequen
y 
an be tuned independent of ea
h other forsu
h os
illators. However, a biologi
al os
illator is a non-linear os
illator andits amplitude and frequen
y 
annot be varied indepent of ea
h other. It is dueto non-linearity that it is ne
essary to thoroughly understand the me
hanismby whi
h a single os
illator operates.Coupled os
illators 
an syn
hronise in a variety of possible ways. In the
ase of two 
oupled os
illators, phase-lo
king2 
an be brought about in twoways�syn
hrony and anti-syn
hrony[12℄. In the former 
ase, the phase di�er-en
e between the os
illations of the two os
illators are 
ompletely in phase, i.e.their relative phase is zero. In the latter 
ase, the relative phase di�eren
e is
π. These two phenomena are also known as attra
tive and repulsive entrain-ment3[5℄. It is to be remembered however that if two os
illations are phaselo
ked it does not mean they are syn
hronised. Only if the phase di�eren
ebetween the two os
illators is 0 or π 
an they be 
alled syn
hronised. If thephase di�eren
e should fall between these two values, the os
illations are sim-ply phase-lo
ked, and not syn
hronised in the te
hni
al sense[12℄[5℄. However,this is a matter of 
onvention. Other authors[10℄ use the words `phase-lo
king'and `syn
hronisation' equivalently. Perhaps it would be better to say that thereis `phase-syn
hronisation' if there is `phase-lo
king'[8℄. In this thesis, we haveadopted the Kuramoto and Strogatz viewpoint and have meant `
omplete syn-
hronisation', i.e. phase-lo
king by 0 or π when we speak of 'syn
hronisation'.A ni
e example of attra
tive and repulsive 
oupling in the natural world iskangaroos and humans running[12℄. The hind legs of kangaroos fall in step asit runs, showing attra
tive 
oupling, whereas a human runs on alternating legsdisplaying repulsive 
oupling. Three or more 
oupled os
illators show even morediverse behaviour. Three os
illators 
an 
ouple in four ways: all in phase; all outof phase by π/3; two in phase and the third out of phase by any value and �nallytwo out of phase by π and the third going twi
e as fast. The �nal pattern is ex-hibited by a man walking slowly with the help of a walking sti
k. His legs have2A de�nite phase di�eren
e existing between os
illators with the same patter of os
illation3Entrainment is a term used by Yoshiki Kuramoto that means the same thing as syn
hro-nisation in the sense we use it here, whi
h is phase syn
hronisation with a phase-di�eren
e of
0 or π.



4 CHAPTER 1. INTRODUCTIONa π phase di�eren
e, while his walking sti
k has a frequen
y double that of hislegs (see �gure 1.2). Another important 
lass of os
illatory phenomena sharedby many living organisms in the biologi
al world are 
ir
adian rhythms[1℄[5℄.Cir
adian rhythms are approximately 24-hour 
y
les in the bio
hemi
al, physi-ologi
al or behavioural pro
esses of living beings. Under normal environmental
onditions, su
h os
illations are syn
hronised by periodi
 external for
es asso-
iated with the sunrise-sunset 
y
le. However, it has been observed that su
hos
illations 
ontinue taking pla
e (albeit with a slight deviation form their 24-hour 
y
le) even if the periodi
 driving for
es are removed. This leads to the
on
lusion that there are limit-
y
le os
illators in-built into living organism. Inthe mi
ros
opi
 domain, these 
onsist of a 
olle
tion of mutually 
oupled andsyn
hronised (or at least phase-lo
ked) 
ellular os
illators.A very interesting aspe
t of syn
hronisation among 
oupled os
illators is thatthe onset of syn
hrony 
an be treated as a phase-transition4[5℄. In natural sys-tems, a 
olle
tion of 
oupled os
illators are very seldom exa
tly identi
al�thereremain some (small) di�eren
e between them, mostly in the form of a range ofnatural frequen
ies for the 
olle
tion. Additionally, environmental e�e
ts areever-present, and these e�e
ts 
an introdu
e di�erent responses from otherwiseidenti
al os
illators. Thus su
h os
illators a�e
ted by random external e�e
tsform a statisti
l ensemble. The external sto
hasti
 perturbations 
an be detri-mental to the attainment of mutual entrainment[5℄. Contrary to this, 
oupledos
illators have the tenden
y to a
hieve mutual entrainment. These two oppos-ing e�e
ts play against ea
h other in driving the phase transition of the systemfrom a non-entrained to an entrained state[5℄.Syn
hronisation is 
ontrolled by two independent aspe
ts�the properties ofthe single os
illator and the number of os
illators that are 
oupled. Sto
hasti
-ity, both internal and external, a�e
t the time-keeping ability�or the stability ofos
illation�of a single os
illator. It is primarily the number of os
illators whi
hdetermine the time-keeping ability�the stability of syn
hronisation�of a 
ol-le
tion of os
illators. We use a master equation approa
h in order to a

ountfor internal noise, external random in�uen
es and the e�e
t of varying numberof os
illators. In the limit of small �u
tuations we re
over the deterministi
4A rapid 
hange of a system from one state to another for a very small 
hange in 
ontrolparameter(s)



5

Figure 1.2: Di�erent examples of phase-lo
king in the natural world�man andkangaroo. Figure from the paper by Strogatz and Stewart[12℄



6 CHAPTER 1. INTRODUCTIONdes
ription.The outline of the thesis is as follows. We have studied the repressilatorwhi
h a simple model 
lo
k 
onstru
ted using a negative feedba
k geneti
 
ir-
uit. The motivation is to �nd generi
 features whi
h underlie the operationof 
omplex biologi
al 
lo
ks in a simple model. We have reviewed previouswork done on single repressilators as well as on repressilators 
oupled by thequorum sensing me
hanism. Chapter 2 
ontains a des
ription of the repressi-lator as well as a review of experimental results regarding the operation of therepressilator. Chapter 3 reviews the mathemati
al models (both deterministi
and sto
hasti
) used to model the repressilator as well as 
omputer simulationresults of those models. Chapter 4 
ontains our analysis of the repressilator.We have performed numeri
al simulations to study the properties of existingdeterministi
 and sto
hasti
 mathemati
al models of the repressilator. We havealso suggested a new me
hanism by whi
h repressilator 
ir
uits 
an be 
oupledand have performed numeri
al simulations of two repressilators 
oupled by ourme
hanism in order to study entrainment between the two os
illators.



Chapter 2The Repressilator
2.1 Introdu
tionSailing ships in the 16th and 17th 
entury fa
ed a singularly di�
ult naviga-tional problem. Navigators in the Age of Sail were experts in �nding out the
urrent latitude of their ship, but it was the a

urate determination of the
urrent longitude that foxed them. One solution was to have two 
lo
ks onboard�one kept at Greenwi
h time and the other kept at ship time a

ordingto the positioning of the sun at zenith, whi
h was marked as noon. The di�er-en
e in time between the two 
lo
ks would give the 
urrent longitude. However,di�eren
es in temperature and rough sea 
onditions played havo
 with the a
-
urate time-keeping abilities of the two 
lo
ks. Errors in determining longitude,however small time-wise, would translate into big di�eren
es in a
tual distan
e.For instan
e, one degree longitude approximately equals 111 km at the equator.One degree is also equivalent to four minutes of time (24× 60/360). So an errorof a mere four minutes in timekeeping would translate into an error of 111 kmor 69 miles or 60 nauti
al miles. This might seem small in the vast o
eans, butthis error tended to a

umulate. Consequentially, people were lost at sea. Theneed of the hour was to build an a

urate and robust 
lo
k whi
h would keepperfe
t time in fa
e of even a thundering hurri
ane. The British governmento�ered an in
redible ¿20, 000 (about ¿6 million at present) for the building ofthis 
lo
k. John Harrison was the man who did it[11℄.The point of this is that John Harrison was able to make a 
lo
k that kepta

urate time even in the fa
e of severe weather 
onditions like rolling seas and7



8 CHAPTER 2. THE REPRESSILATORtemperature di�eren
es. The 
lo
k is an os
illator, and the weather 
onditionsare sto
hasti
 perturbations that tend to for
e the 
lo
k to run in
orre
tly. Asimilar problem is fa
ed by biologi
al os
illators. Sto
hasti
ity is inherent inthe natural world, and noise is a 
onstant hindran
e to the suitable workingof any biologi
al os
illator. However, in spite of this, the familiar biologi
alos
illators in the brain or the pa
emaker of the heart are in
redibly robust andkeep a

urate time. If they had been unable to do so, life as we know it mightnot have survived. So the question is, what is it that lends robustness to thesenatural os
illators? To study this question, physi
ists have made a (sort of a)`spheri
al 
ow' model�a simple 
lo
k, 
onstru
ted out of three genes 
onne
tedto ea
h other in a negative feedba
k 
ir
uit. This is the Repressilator. It wasMi
hael Elowitz and Stanlislas Leibler[3℄ who �rst proposed and 
onstru
tedsu
h a model in the ba
terium Es
heri
hia 
oli.2.2 Des
ription of a repressilator2.2.1 Generi
 S
hemati
 Des
riptionA gene is a segment of DNA1 that 
odes for a parti
ular protein or RNA2. It isthe smallest unit of an organism that is still able to 
ontain and transfer geneti
information. The genes, lo
ated on the 
hromosomes, 
ontain the informationfor the produ
tion of proteins. Gene expression is a pro
ess through whi
ha gene produ
es protein, and 
onsists of two sub-pro
esses: Tras
ription andTranslation. Trans
ription is the produ
tion of messenger RNA from the genes,while translation is the 
onversion of mRNA into protein.
Figure 2.1: S
hemati
 des
ription of a repressilator (�gure from [3℄)1DNA: deoxyribonu
lei
 a
id2RNA: ribonu
lei
 a
id



2.2. DESCRIPTION OF A REPRESSILATOR 9Figure 2.1 des
ribes the repressilator s
hemati
ally. A repressilator has threegenes a, b and c along with the 
orresponding proteins they express: A, B and
C. These proteins a
t as repressors, i.e. they repress or inhibit the rate ofexpression of the gene next in line. For example, protein A represses gene b,slowing down the produ
tion of protein B. This inhibitory e�e
t in
reases asthe 
on
entration of the protein in
reases. Similar to A repressing b, B represses
c and �nally C represses a to 
omplete the 
y
le. Hen
e it is a negative feedba
kloop. For example, if we were to start out with a bit of A and no B or C, andif these genes were not 
onne
ted, then the 
on
entrations of ea
h of A, B and
C would keep on in
reasing sin
e the rate of expression is 
onstant. The only
he
k to this would then be the natural degradation of the proteins (maybe intotheir 
onstituent amino a
ids), whi
h is also always present at a 
onstant rate.However, on
e they are 
onne
ted, a high 
on
entration of A would de
rease theexpression rate of b, whi
h would de
rease the 
on
entration of B. This wouldthen let c express at a faster rate, whi
h would in
rease the 
on
entration of C.This would ultimately result in a 
he
king e�e
t on the produ
tion of A, whi
hwould have to de
rease. Then b would be freer and B would in
rease, de
reasing
C and in
reasing A again. Hen
e, the 
y
le would start on
e again. Os
illations
an be expe
ted, and are found, in the 
on
entrations of the proteins in thesteady state (i.e. after a transient state).2.2.2 Elowitz and Leibler's 
onstru
tionThe repressilator 
reated by Elowitz and Leibler is des
ribed thus (see �gure2.2). TetR, λ
I and La
I are the three proteins that are expressed by theirparent genes tetR, 
I and la
I. The gene la
I is obtained from E. 
oli, tetRfrom the tetra
y
line-resistan
e transposon3 Tn10 and 
I from λ phage. Theprotein La
I inhibits the expression of the gene tetR. The protein TetR in turninhibits the expression of the gene 
I while protein λ
I inhibits the expression ofla
I, thus 
ompleting the 
y
le. So it is a negative feedba
k 
ir
uit, whi
h 
ouldlead to os
illations, as we shall see. A green �uores
ent protein (GFP) is usedto dete
t the 
on
entration levels of the repressilator 
omponents. In the se
ond�gure it 
an be seen that TetR inhibits GFP, so that de
rease in intensity of3A transposon is a dis
rete pie
e of DNA that 
an insert itself into other DNA sequen
eswithin the 
ell
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Figure 2.2: Diagram of the repressilator showing the genes and the proteins thatmake up the repressilator (�gure from [6℄)the GFP as seen by an opti
al mi
ros
ope indi
ates high 
on
entration of TetR.The experiment performed by Elowitz and Leibler showed os
illations in the
on
entrations of the proteins with time periods greater than 
ell-division time,implying that the state of the os
illator is transmitted through generations.2.3 Experimental Results: Elowitz and LeiblerElowitz and Leibler built their repressilator in the ba
teria E. 
oli, and used GFPto observe the presen
e (or absen
e) of os
illations. Sin
e single 
ells had noapparent means to a
hieve or maintain syn
hrony, individual 
ells were isolatedunder the mi
ros
ope and the their �uores
ent intensity was studied as these
ells grew into small two-dimensional mi
ro-
olonies 
onsisting of hundreds ofprogeny 
ells. The graph shows temporal os
illations in GFP �uores
en
e inten-sity with a time-period of roughly 150 minutes, whi
h happened to be almostthree times as large as 
ell-division time-s
ales. Snapshots of a mi
ro
olony ofba
teria are given in �gure 2.3, while the �uores
en
e intensity of the marked
ell against time is given in �gure 2.4.Looking at the graph (�gure 2.4), one 
an see that the time-period of os-
illations is around 150 mins (peak-to-peak). The bars at the bottom of thegraph show that septation4 o

urs about three times per os
illation 
y
le on av-erage, that is, with a time period of about 50 mins. This 
onforms to standard4Septation means 
ell-division
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Figure 2.3: Snapshots of a mi
ro
olony of E. 
oli taken in (a) �uores
en
e and (b)bright-�eld. The arrows indi
ate the 
ell under observation (�gure from [3℄).

Figure 2.4: Os
illations in GFP �uores
en
e intensity (bars at the bottom indi
ateseptation events) (�gure from [3℄)
ell-division time-periods. Therefore it is seen that the state of the network istransmitted to its o�springs despite there being noise in the form of sto
hasti
�u
tuations in the dynami
s of the 
ellular 
lo
k. However, signi�
ant di�er-en
es in period and amplitude of the os
illator were observed in the os
illatoroutput. These di�eren
es were seen among 
ells in di�erent lineages (des
endedfrom di�erent an
estors) or among the 
ells in one lineage, whi
h are 
alledsiblings (see �gure 2.5).Elowitz and Leibler 
on
lude that it is possible to design and 
onstru
ta new arti�
ial geneti
 os
illator with new fun
tional properties from generi

omponents. It might then be possible to attempt to understand the designprin
iples of more 
omplex os
illators su
h as the 
ir
adian os
illator using thesimple repressilator model. However, as opposed to the robust behaviour ofthe 
ir
adian 
lo
k, the behaviour of the repressilator (a

ording to the theseexperimental results) seemed to be noisy and variable.
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Figure 2.5: Top left �gure shows phase delays after septation among sibling
ells (blue and green) relative to the referen
e 
ell(red). Top right �gure showsthat phase is maintained but amplitude varies greatly after septation. Bottomleft �gure is for redu
ed period (green) and long delay(blue). Bottom right�gure shows large variations in period and amplitude. The top two �gures andthe bottom left �gure show the variation of os
illation among 
ells of the samelineage. The bottom right one shows the variations between 
ells of di�erentlineages. Figures from [3℄.



2.4. QUORUM SENSING 132.4 Quorum SensingElowitz and Leibler's results show that there are signi�
ant variation in fre-quen
y and amplitude among di�erent repressilators. The problem with usinga small number of biologi
al os
illators is that sto
hasti
 �u
tuations (noise)tend to dominate the os
illations preventing mutual entrainment or e�e
tivesyn
hronisation. Inter
ell 
oupling is a way to address these issues. But howwould one 
ouple di�erent 
ells (repressilators)? A possible answer is throughquorum sensing.2.4.1 What is Quorum Sensing?Ba
teria 
an 
ommuni
ate with ea
h other by releasing and dete
ting `signallingmole
ules' within their environment. The term `quorum sensing' is used to de-s
ribe the phenomenon whereby the a

umulation of signalling mole
ules enablea single 
ell to sense the number of ba
teria (
ell density). However, in thenatural environment, di�erent 
lasses of ba
teria may use di�erent signallingmole
ules, so that 
ommuni
ation is possible only within the same 
lass of ba
-teria.Quorum sensing allows ba
teria to 
ommuni
ate with ea
h other and 
o-ordinate their behaviour. Conditions in the natural world 
hange often andqui
kly, and quorum sensing allows ba
teria to respond speedily and adaptthemselves to the 
hange in order to survive. For example, dis
overy of a sour
eof nutrients needs to be 
ommuni
ated qui
kly to the entire ba
terial popula-tion for �rst 
laim. Also, 
on�i
t with other organisms might be ne
essary forse
uring 
laim over the sour
e of nutrients. Co-ordination of behaviour (timingaggression and defen
e) is done using quorum sensing. Again 
hemi
als like an-tibioti
s are toxi
 to the ba
teria. Dete
tion and avoidan
e of regions with hightoxi
ity 
on
entration (for the ba
teria) is essential for survival. Additionally,it is very important for pathogeni
5 ba
teria during infe
tion of a host (e.g. hu-mans, other animals or plants) to 
o-ordinate their virulen
e in order to es
apethe immune response of the host and establish a su

essful infe
tion.5A pathogen (from Greek pathos, su�ering/emotion, and gene, to give birth to), infe
tiousagent, or more 
ommonly germ, is a biologi
al agent that 
auses disease or illness to its host.



14 CHAPTER 2. THE REPRESSILATOR2.4.2 Using Quorum Sensing in RepressilatorsJordi Gar
ia-Ojalvo, Mi
hael Elowitz and Steven Strogatz[4℄ have used the ideaof quorum sensing to 
ouple di�erent non-identi
al and noisy repressilators.They have shown through 
omputational modelling that it is possible for anensemble of un
orrelated repressilators to a
hieve mutual entrainment througha phase transition, i.e. a sudden shift to mutual entrainment as a fun
tion of 
ell-density. Additionally, they have shown that 
oupling via quorum sensing 
analso make the ensemble of repressilators robust against sto
hasti
 �u
tuations.2.4.3 Coupling Me
hanism
Figure 2.6: Me
hanism for 
oupling repressilators using the auto-indu
er (�gurefrom [4℄)Cell membranes are usually very sele
tive about letting in or letting outmole
ules. It is not usually possible for proteins to dire
tly di�use out of 
ellmembranes and intera
t with other proteins form other 
ells. As a result, somenew ex
hange 
omponent needs to be introdu
ed into a repressilator 
ell inorder to enable 
oupling. The diagram above des
ribes the system proposedby Gar
ia-Ojalvo, Elowitz and Strogatz. They have used the quorum sensingme
hanism of the ba
terium Vibrio �s
heri, whi
h is a biolumini
ent organismthat lives in symbiosis with 
ertain marine hosts forming part of spe
ialisedlight-emitting organs. The protein LuxI synthesises a small mole
ule 
alledthe auto-indu
er (AI). This is the 
riti
al 
oupling 
omponent as the AI is themole
ule that 
an di�use through 
ell membranes. Another protein LuxR bindswith this AI and indu
es some genes to trans
ribe 
reating 
ertain enzymesthat ultimately lead to the emission of light. Gar
ia-Ojalvo et al. have pla
edthe protein La
I of the original repressilator under the 
ontrol of the LuxR-AI
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omplex as well as pla
ing LuxI under the 
ontrol of another 
opy of La
I. Themodel is des
ribed in more detail thus.
• The protein LuxI synthesises the autoindu
er AI whi
h 
an di�use through
ell membranes
• The protein LuxR binds to AI: the LuxR-AI 
omplex indu
es the expres-sion of a se
ond 
opy of the gene la
I
• The expression of the gene luxR is 
ontrolled by the original protein La
I
• A se
ond feedba
k loop appears in the 
ell
• In
reased La
I 
on
entration inhibits the rate of expression of the genestetR and luxI
• De
reased LuxI 
on
entration de
reases 
on
entration of LuxR-AI 
om-plex
• De
reased LuxR-AI 
on
entration de
reases la
I 
on
entration
• The two La
I trans
ripts are assumed to be identi
al2.4.4 Con
lusionsA des
ription of the mathemati
al modelling as well as the simulation results byGar
ia-Ojalvo et al. is given in the next 
hapter. Brie�y, what they 
on
lude isthat quorum sensing 
an be an espe
ially e�e
tive method of inter
ell 
oupingbetween repressilators, and this 
an lead to global syn
hronisation among ahighly heterogeneous ensemble of repressilators. Also, they found that su
h anensemble is also robust to random phase drifts of the individual os
illators due tonoise[4℄. It is an interesting result and seems to suggest that the problems fa
edby Elowitz and Leibler[3℄ using a single repressilator with noise 
an be resolvedby using a large number of repressilators 
oupled by quorum sensing, even in thepresen
e of noise. The positive e�e
t of 
oupling is one of the points by whi
hthis model di�ers from the original design of the repressilator, whi
h had onlynegative feedba
k, and it is possible that su
h positive feedba
k is instrumentalin providing mutual entrainment and robustness against sto
hasti
ity. However,it is to be remembered (as Gar
ia-Ojalvo, Elowitz and Strogatz themselves admit



16 CHAPTER 2. THE REPRESSILATORin their paper) that quorum sensing is but one of the many di�erent ways of
oupling 
ells together. Examples given in their paper in
lude the 
oupling inthe sinoatrial node6 of the heart whi
h is ele
troni
 and is mediated by gapjun
tions. Also, in the supra
hiasmati
 nu
lei7 of the mammalain 
ir
adianpa
emaker, 
oupling is proposed to o

ur due to the di�usion of an inhibitoryneurotransmitter.Thus su
h examples of naturally o

urring robust 
lo
ks 
annot be modelledby the me
hanism proposed by Gar
ia-Ojalvo et al.. A 
lose analog as mentionedin the paper might be in metaboli
 syn
hrony observed in yeast 
ells. So theproposed system only partially re�e
ts the natural world. However, it is truethat the variability of types of inter
ell 
oupling in naturally o

urring os
illatorsis too great to allow for an e�e
tive model by any single simple me
hanism. Fromthat viewpoint, the work done by these three resear
hers is important. However,a

ording to a private 
ommuni
ation from Mukund Thattai, experimentalistshave so far been unable to reprodu
e the simulation results given above. Apossible reason for this is that the strength of inter
ell 
oupling by quorumsensing might not be strong enough to over
ome noise and �u
tuation e�e
ts.

6The sinoatrial node of the heart is what is 
ommonly known as the pa
emaker. It isresponsible for maintaining sinus rhythm, that is the regular beating of the heart.7The supra
hiasmati
 nu
leus is a bilateral region of the brain lo
ated in the hypothalamusresponsible for 
arrying out 
ir
adian rhythms within the body.



Chapter 3Mathemati
al Modelling3.1 Introdu
tionThe dharma of physi
ists is to model physi
al systems (simple or 
ompli
ated)and the tool that is used to a
hieve su
h ends is Mathemati
s. However, solvingmathemati
al equations 
an sometimes be impossible due to non-linearity of theequations or the 
omplexity of the problem. Computer simulations then 
ometo the res
ue. The repressilator too has been modelled mathemati
ally.[3℄[6℄[4℄Elowitz and Leibler, in addition to performing experiments, also modelled therepressilator mathemati
ally[3℄. They used deterministi
 modelling using the
hemi
al kineti
s approa
h whi
h involved Mi
haelis-Menten dynami
s that reg-ulate the rate of formation and rea
tions of enzymes. They also modelled therepressilator sto
hasti
ally, and used the Gillespie algorithm[2℄ to solve it. AdielLoinger and Ofer Biham[6℄ 
hose to adopt the rate equation approa
h for thedeterministi
 
ase and the master equation approa
h for the sto
hasti
 
ase.Finally, Gar
ia-Ojalvo, Elowitz and Strogatz[4℄ modelled the quorum sensingproblem using the Mi
haelis-Menten approa
h. They also added a Gaussiannoise 
omponent of the Ornstein-Uhlenbe
k type[9℄ to model the sto
hasti
 
ase.3.2 Elowitz and Leibler's model3.2.1 Deterministi
: Mi
haelis-Menten Kineti
sThe dynami
 variables in this model are the repressor proteins and the mRNAmole
ules. As de�ned earlier in Chapter 2, gene expression is a 
ombinationof two pro
esses: trans
ription, in whi
h a gene produ
es messenger RNA, and17



18 CHAPTER 3. MATHEMATICAL MODELLINGtranslation, in whi
h proteins are produ
ed from mRNA. Ea
h of the threeproteins/mRNA mole
ules were 
onsidered to be identi
ally behaved. Thereare six 
oupled �rst-order di�erential equations.
dmi

dt
= −mi +

α
(

1 + pn
j

) + α0 (3.1)
dpi

dt
= −β (pi − mi) (3.2)The indi
es i and j run from 1 to 3. Here i =la
I, tetR, 
I, while j =
I,la
I,tetR.The quantities pi and mi are the 
on
entrations of the repressing protein andthe mRNA respe
tively and suitably normalized (`
on
entration' here meansthe average 
opy number1 per 
ell). The parameter α + α0 is the rate of pro-du
tion of the protein in absen
e of the repressing protein. In the presen
e ofa repressor the rate drops to α

(1+pn
j )

+ α0, where the �rst term gives the e�e
tof the 
on
entration of the repressor protein modi�ed by the Hill 
oe�
ient n,and α0 is the `leakiness quotient' that des
ribes translation rate independent ofthe repressor. So the pro
ess of gene expression in the repressilator 
ir
uit isdivided into two parts: the rate part that is modi�ed by the 
on
entration ofthe repressor and the other part that is not. The parameter β is the ratio of thede
ay rates of the protein and the mRNA. The normalization of the protein andmRNA 
on
entration are thus: mi is normalized by the translation e�
ien
ywhi
h is the average number of proteins produ
ed per mRNA mole
ule, while
pi is normalized by the quantity Km (
alled the Mi
haelis 
onstant) whi
h isthe number of repressor ne
essary to half-maximally repress a promoter (i.e. anmRNA mole
ule whi
h performs translation). The Hill 
oe�
ient is a measureof the degree of 
ooperativity of the atta
hing mole
ules (here the repressors).A Hill 
oe�
ient of 1 indi
ates that the e�e
t of binding a repressor does notdepend on the number of repressors already present. A Hill 
oe�
ient greaterthan one indi
ates positive 
ooperativity so that the e�e
t of the binding of ea
hnew repressor is enhan
ed by the number of repressors already bound. A Hill
oe�
ient less than one indi
ates the the e�e
t of existing repressors de
reasesthe e�e
t of ea
h new binding.1Copy number means the average number of mole
ules of a gene per genome 
ontained ina 
ell. Genome is the 
omplete pa
kage of geneti
 material for a living thing. A 
opy of thegenome is found in most 
ells.
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Figure 3.1: Os
illation in the levels of the three repressor proteins in the deter-ministi
 
ase. The inset shows the normalized auto
orrelation fun
tion of the�rst protein. The parameter values used by Elowitz and Leibler were as follows:average translation e�
ien
y = 20 proteins per trans
ript, Hill 
oe�
ient n = 2,protein half-life = 10 minutes, mRNA half-life = 2 minutes, Km = 40 repressorsper 
ell (�gure from [3℄).

Figure 3.2: Analysis of the stability of the steady state against parameters βand α × Km. Stable and unstable regions in the β-α parameter spa
e withrespe
t to the steady state are shown. The 
ross mark in the unstable region ofthe graph 
orresponds to the parameter values of �gure 3.1. It is in the unstablesteady state that os
illations o

ur (�gure from [3℄).The shaded region in �gure 3.2 shows the region of parameter spa
e for whi
hos
illations take pla
e.3.2.2 Sto
hasti
: Gillespie AlgorithmElowitz and Leibler used the Gillespie SSA algorithm[2℄ to solve for the sto
has-ti
 
ase (following the Gillespie pres
ription[2℄). Parameter values used were
hosen keeping in mind that they approximately be similar to those 
hosen inthe deterministi
 
ase. The output was the following �gure.It 
an 
learly be seen (�gure 3.3) that there are os
illations whi
h persist,but there is large variability. As a result, the auto
orrelation time is �nite
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Figure 3.3: Os
illation in the levels of the three repressor proteins in the sto
has-ti
 
ase (y-axis is proteins per 
ell). The inset shows the normalized auto
or-relation fun
tion of the �rst protein. A similar set of values of parameters tothose of �gure 3.1 were used (�gure from [3℄).(approximately two periods). So sto
hasti
ity seems to be a nuisan
e for regularos
illations in the single repressilator both experimentally (see Chapter 2) andin simulations.In this model, os
illations are not seen if the Hill 
oe�
ient is taken as 1.this means that a single repressor atta
hed to ea
h trans
ript 
arries out thejob of repression. This is 
alled non-
ooperative binding. As the Hill 
oe�
ientis in
reased to 2, os
illations are observed for suitable values of the parametersonly if the mRNA level is in
luded. For Hill 
oe�
ient 3 or larger, os
illationstake pla
e even if the mRNA level is not in
luded in he analysis. This seems toshow that there is positive 
ooperativity in the system.3.3 Loinger and Biham's modelAdiel Loinger and Ofer Biham have re
ently studied[6℄ the repressilator through
omputer simulations. In the Elowitz-Leibler model, os
illations were not ob-served for Hill 
oe�
ient n = 1, even if the mRNA level was in
luded. However,Loinger and Biham have attempted to 
he
k for os
illations without 
oopera-tive binding (n = 1) using the following re
lassi�
ations of proteins and ignoringthe mRNA level. They have subdivided the proteins into two types: free andbound. As mentioned earlier, a protein represses the next gene and slows downits rate of expression. Loinger and Biham theorise that in order to bring aboutits repressive a
tion on the gene next in line, a protein needs to be bound tothe gene. If a protein expressed by a gene is not bound to the gene next inline, it is then 
onsidered to be `free' and `ina
tive'. If it is bound, then it is



3.3. LOINGER AND BIHAM'S MODEL 21
onsidered to be 
arrying out repression and is labelled `bound' or `a
tive'. Theword `binding' implies that the protein has bound itself to the mRNA next inline and is inhibiting trans
ription, whi
h e�e
tively represses expression. Theabsen
e of 
ooperative binding also means that there is only one binding siteper mRNA mole
ule (or gene).The present problem 
an be studied both deterministi
ally and sto
hasti-
ally. We begin by studying the deterministi
 
ase.3.3.1 Deterministi
 treatmentThe 
on
entration2 of the ith protein pi is subdivided into the above-mentionedtwo 
lasses:a) Free (or ina
tive) : pf
ib) Bound (or a
tive) : pb
iOf 
ourse pi = pf

i + pb
i , with i going from 1 to 3.Pro
essesThe pro
esses involved in the time-evolution of the two 
lasses of proteins arethus:1. Degradation: Both the free and bound proteins degrade at 
ertain rates.The parameter γf represents the rate of degradation of the free proteins,while the parameter γb indi
ates the rate of degradation of the boundproteins.2. Expression: Free proteins are expressed from their parent genes at a 
on-stant rate g, while the rate of produ
tion is repressed by the previousbound protein. The word `previous' implies that if it is the rate of pro-du
tion of the ith protein under 
onsideration, then the (i − 1)th proteinwill be 
alled the `previous' protein. Bound proteins 
annot be dire
tlyexpressed by genes.3. Ex
hange of protein 
lasses: Free and bound proteins 
an 
onvert betweenthemselves. The pro
ess of a free protein 
onverting into a bound one is2As de�ned earlier, `
on
entration' here means the average 
opy number per 
ell
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alled `binding' and the pro
ess of a bound proteins 
onverting into a freeprotein is 
alled `unbinding'.a) Binding: Free proteins atta
h themselves to va
ant binding sites and
onvert to bound proteins. This is the only way bound proteins areformed. The rate of su
h 
onversion depends on the number of 
ur-rent free proteins as well as on the number of 
urrent va
ant bindingsites. The latter 
an be reinterpreted as the number of 
urrent boundproteins if the number of binding sites is held 
onstant. A point tobe remembered is that a free protein 
an only bind to the gene (thatis, the mRNA) next in line. This means that the ith free protein 
anonly bind to the (i+1)th va
ant binding site. Free TetR for example
annot bind itself to la
I, but 
an bind to λ 
I.b) Unbinding: Bound proteins 
an unbind themselves from the mRNAand be
ome free proteins. The rate of su
h 
onversion depends onlyon the number of 
urrent bound proteins, as there is no limit to thenumber of free proteins.Rate EquationsThe above pro
esses give rise to six di�erential rate equations (two for ea
h ofthe three proteins). They are (the index i goes over 1, 2 and 3):
dpf

i

dt
= g(1 − pb

i−1) − γfpf
i − α0p

f
i (1 − pb

i) + α1p
b
i (3.3)

dpb
i

dt
= α0p

f
i (1 − pb

i) − α1p
b
i − γbp

b
i (3.4)Always pi = pf

i + pb
i , with i going from 1 to 3.We look at the two equations term by term.

• Equation (3.3)a) First term:The �rst term g(1 − pb
i−1) represents the rate of expression of the

ith free protein. As mentioned earlier, g is the 
onstant rate of ex-pression. Here we have normalised the number of binding sites per
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ell per protein. Therefore the expression (1 − pb
i−1) is equal to thenumber of va
ant binding sites of the previous ((i−1)th) protein andindi
ates the e�e
t of repression by the previous protein. More thevalue of the (1 − pb

i−1) expression, lesser is the repression on the ithprotein.b) Se
ond term:The se
ond term γfpf
i gives the degradation of the free protein at arate determined by the parameter γf .
) Third term:The third term α0p

f
i (1 − pb

i) is a bilinear term. It is the bindingterm, and indi
ates the rate of binding of the free protein to a va
antbinding site. This term depends on the free protein 
on
entrationas well as the number of va
ant binding sites of the 
urrent (ith)protein. More the value of this expression, greater is the probabilityof 
onversion of a free protein into a bound one.d) Fourth term:The fourth term α1p
b
i is a linear term. It is the unbinding term, andindi
ates the unbinding of the bound proteins from the binding sites,
onversion into free proteins and freeing up of the binding sites. Thisterm only depends on the bound protein 
on
entration as there is nolimit on the number of free proteins. More the value of the expression

pb
i , greater is the possibility of unbinding.

• Equation (3.4)a) First term:The �rst term α0p
f
i (1−pb

i ) is the bilinear binding term, as des
ribedearlier.b) Se
ond term:The se
ond term α0p
f
i (1 − pb

i) is the linear unbinding term, as de-s
ribed earlier.
) Third term:
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b
i gives the degradation of the bound protein at arate determined by the parameter γb.It is seen that adding equations (3.3) and (3.4) gives the rate equations forthe whole protein pi.

dpi

dt
= g(1 − pb

i−1) − γfpf
i − γbp

b
i (3.5)Figure 3.4 shows the pro
esses involved and the fun
tion of ea
h term in therate equations 3.3 and 3.4.

Figure 3.4: S
hemati
 diagram showing the various pro
esses involved and thefun
tion of ea
h term in the rate equations 3.3 and 3.4.3.3.2 Sto
hasti
 treatmentThe repressors and the binding sites often appear in low 
opy numbers. Asa result, the os
illations are noisy and irregular[7℄. Therefore the repressilator
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ir
uit 
annot be fully analysed by using the deterministi
 rate equations ap-proa
h. It is ne
essary that we swit
h to a sto
hasti
 approa
h, and performour analysis using master equations.Markov Pro
essesMaster equations are valid for Markov pro
esses[9℄ only. A Markov pro
ess isde�ned as a sto
hasti
 pro
ess with the property that for any set of n su

essivetimes (that is, t1 < t2 < . . . < tn) one has
P1|n−1 (yn, tn | y1, t1; y2, t2; . . . ; yn−1, tn−1) = P1|1 (yn, tn | yn−1, tn−1) (3.6)The state n is de�ned as the state of the system when the variable Y takesthe value yn at time tn. P1|n−1 and P1|1 denote 
onditional probabilities. P1|n−1is the probability density of the variable Y to have taken the value yn at time

tn, given that it had taken the values yn−1 at time tn−1, yn−2 at time tn−2 andso on upto y1 at time t1. P1|1 is the probability density of the variable Y to havetaken the value yn at time tn given the value yn−1 at time tn−1. P1|1 is also
alled the transition probability. The left-hand side of the equation representsthe transition probability of a system at the state n given all the previous statesin the system's path through phase spa
e. The right hand side denotes thetransition probability of the system at state n given the state n − 1.The above relation implies that the 
onditional probability density at tn,given the value yn−1 at tn−1, is uniquely determined and is not a�e
ted by anyknowledge of the values at earlier times. This means that the evolution of thesystem at a 
ertain time-step for a dis
rete Markov pro
ess depends only on thevalue of the system variable at the previous time-step and not on any of thepre
eding time-steps. In other words, the system has no memory.Master EquationsLet the range of the system variable Y be a dis
rete set of states n (as de�nedearlier). Then we 
an write the master equation as:
dpn

dt
=

∑

n′

{

Wnn′ pn′ (t) − Wn′n pn (t)

} (3.7)The quantity Wnn′ is the transition probability per unit time from state n′to state n, while the quantity Wn′n is the transition probability per unit time



26 CHAPTER 3. MATHEMATICAL MODELLINGfrom state n to state n′. The quantity pn (t) is the probability of the systemto be in state n at time t, while the quantity pn′ (t) is the probability of thesystem to be in state n′ at time t. The LHS dpn/dt denotes the time evolutionof the probability of the system to be in state n at time t. The sum is over allthe states n′ 6= n.The master equation is thus a gain-loss equation for the probabilities ofseparate states n. The �rst term in the equation, Wnn′pn′ (t), is the gain ofstate n due to transitions from all other states n′. The se
ond term in theequation, Wn′npn (t) is the loss due to transitions from state n into other states
n′. Also, the transition probability is positive or zero for all 
ases where theinitial and �nal states are unequal; that is, Wnn′ ≥ 0 when n′ 6= n. Of 
ourse,terms with n = n′ do not 
ontribute to the sum.Loinger-Biham master equationsIn the sto
hasti
 des
ription, we denote the number of the ith free protein by nf

i ,and the number of the ith bound protein by nb
i . We 
onsider the time evolutionof the probability distribution fun
tion P

(

nf
1 , nf

2 , nf
3 , nb

1, n
b
2, n

b
3

). This is theprobability for a 
ell to in
lude nf
i 
opies of the ith free protein and nb

i 
opiesof the ith bound protein. The quantity nf
i 
an take values 0, 1, 2 . . ., while thequantity nb

i 
an only take values 0, 1, sin
e we have assumed a single bindingsite. Our master equation will therefore be
Ṗ (nf

1 , nf
2 , nf

3 , nb
1, n

b
2, n

b
3)

=
∑

i=1,2,3

{

g
(

1 − nb
i−1

)

[

P
(

. . . , nf
i − 1, . . . , nb

1, n
b
2, n

b
3

)

− P
(

~nf , ~nb
)

]

+ γf

[

(nf
i + 1)P

(

. . . , nf
i + 1, . . . , nb

1, n
b
2, n

b
3

)

− nf
i P

(

~nf , ~nb
)

]

+ α0

[

(nf
i + 1)nb

iP
(

. . . , nf
i + 1, . . . , nb

i − 1, . . .
)

− nf
i (1 − nb

i)P
(

~nf , ~nb
)

]

+ α1

[

(1 − nb
i)P

(

. . . , nf
i − 1, . . . , nb

i + 1, . . .
)

− nb
iP

(

~nf , ~nb
)

]

+ γb

[

(nb
i + 1)P

(

nf
1 , nf

2 , nf
3 , . . . , nb

i + 1, . . .
)

− nb
iP

(

~nf , ~nb
)

]

} (3.8)The expression ~nf = (nf
1 , nf

2 , nf
3 ), while the expression ~nb = (nb

1, n
b
2, n

b
3).Therefore, the expression P

(

~nf , ~nb
)

= P
(

nf
1 , nf

2 , nf
3 , nb

1, n
b
2, n

b
3

).Lets look at equation (3.8) term by term.
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• LHS:This term is the time evolution of the probability distribution fun
tion

P
(

nf
1 , nf

2 , nf
3 , nb

1, n
b
2, n

b
3

) de�ned earlier.
• RHS: First term:This term (

g
(

1 − nb
i−1

)

[

P
(

. . . , nf
i − 1, . . . , nb

1, n
b
2, n

b
3

)

− P
(

~nf , ~nb
)

]) rep-resents the 
hange of one ith free protein and is the sto
hasti
 equivalentof the rate of expression of the ith free protein. The term g
(

1 − nb
i−1

)

[

P
(

. . . , nf
i − 1, . . . , nb

1, n
b
2, n

b
3

)] implies the transition of the system froma state having one less ith free protein to the 
urrent state, while the otherterm g
(

1 − nb
i−1

) [

P
(

~nf , ~nb
)] implies the transition of the system fromthe 
urrent state to another state having one less ith free protein. It repre-sents, like equation (3.7), a gain-loss s
enario. The expression g

(

1 − nb
i−1

)is the transitions probability and plays the roles assigned to Wnn′ as wellas Wn′n in equation (3.7). The expression P
(

. . . , nf
i − 1, . . . , nb

1, n
b
2, n

b
3

)takes the pla
e of pn′ in equation (3.7) while P
(

~nf , ~nb
) substitutes pn.

• RHS: Se
ond term:This term γf

[

(nf
i + 1)P

(

. . . , nf
i + 1, . . . , nb

1, n
b
2, n

b
3

)

− nf
i P

(

~nf , ~nb
)

] rep-resents the de
ay of the free protein. The state (. . . , nf
i +1, . . . , nb

1, n
b
2, n

b
3)is the initial state while (~nf , ~nb) is the 
urrent state. The transition fromthe initial to the 
urrent state is a

ompanied by the transition probabil-ity γf (nf

i + 1), while the reverse transition is weighted by the transitionprobability γfnf
i .

• RHS: Third term:This term (

α0

[

(nf
i + 1)nb

iP
(

. . . , nf
i + 1, . . . , nb

i − 1, . . .
)

− nf
i (1 − nb

i )P
(

~nf , ~nb
)

])is equivalent to the unbinding term. The transition from state (. . . , nf
i +

1, . . . , nb
i −1, . . . ) to the 
urrent state (~nf , ~nb) means that one free proteinis de
reased and one bound protein is in
reased. This is weighted by thetransition probability α0(n

f
i +1)nb

i . The reverse transition is weighted bythe transition probability α0n
f
i (1 − nb

i).
• RHS: Fourth term:
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α1

[

(1 − nb
i)P

(

. . . , nf
i − 1, . . . , nb

i + 1, . . .
)

− nb
iP

(

~nf , ~nb
)

])is equivalent to the binding term. The transitions take pla
e betweenstates (. . . , nf
i − 1, . . . , nb

i + 1, . . . ) and (~nf , ~nb) whi
h is the 
urrent state.Evidently, the number of free proteins in
rease by one and the number ofbound proteins de
rease by one in the `forward' pro
ess, while the oppositehappens in the `reverse' pro
ess. The `forward' or `gain' pro
ess is weightedby α1(1 − nb
i ) while the reverse has the transition probability α1n

b
i .

• RHS: Fifth term:This term (

γb

[

(nb
i + 1)P

(

nf
1 , nf

2 , nf
3 , . . . , nb

i + 1, . . .
)

− nb
iP

(

~nf , ~nb
)

]) rep-resents the de
ay of the bound protein. The transition is between states
(nf

1 , nf
2 , nf

3 , . . . , nb
i + 1, . . . ) and the 
urrent state. Here the number ofbound proteins de
rease or in
rease by one for the forward and reversepro
esses. The weights are γb(n

b
i + 1) and γbn

b
i respe
tively.We have made an analysis of the repressilator using the Loinger-Biham rateequations as well as the master equations. The results are given in the next
hapter.



3.4. QUORUM SENSING MODEL 293.4 Quorum sensing model3.4.1 Model (without sto
hasti
ity)The model used by Gar
ia-Ojalvo et al.[4℄ (refer to 
hapter 2) in des
ribing theirmodel of inter
ell 
oupling through quorum sensing makes use of Mi
haelis-Menten kineti
s in the same spirit as Elowitz and Leibler. The equations formRNA have terms representing degradation of mRNA and repression by pro-teins. The term for the la
I gene is also modi�ed by the AI 
on
entration.mRNA equations
dai

dt
= −ai +

α

1 + Cn
i

(3.9)
dbi

dt
= −bi +

α

1 + An
i

(3.10)
dci

dt
= −ci +

α

1 + Bn
i

+
κSi

1 + Si

(3.11)Here ai, bi and ci are the 
on
entrations in the ith 
ell of the mRNA tran-s
ribed from genes tetR, 
I and la
I respe
tively. The 
orresponding protein
on
entrations are given here by Ai, Bi and Ci respe
tively, keeping in mindthat the two 
opies of La
I are assumed to be identi
al. The quantity Si is the
on
entration of AI. The Hill 
oe�
ient n indi
ates (as usual) the level of 
oop-erative binding. The model is non-dimensionalised by measuring time in units ofmRNA lifetime whi
h is assumed equal for all genes. The protein levels as wellas the AI levels are normalised by their Mi
haelis 
onstants (as de�ned earlierin se
tion 1 of this 
hapter). The parameter α is the dimensionless trans
riptionrate in absen
e of repressors (equal to α + α0 from se
tion 1 of this 
hapter),while κ is the maximal 
ontribution to la
I trans
ription in the presen
e ofsaturating amounts of AI.Protein equationsThe equations for the rate of 
hange of protein 
on
entrations are given next.
dAi

dt
= β (ai − Ai) (3.12)



30 CHAPTER 3. MATHEMATICAL MODELLINGThe equations for Bi and Ci are similar with bi and ci respe
tively (for the
ith 
ell). The parameter β is the ratio of protein and mRNA degradation rates(i.e. the lifetime of mRNA divided by the lifetime of the protein). The mRNA
on
entrations here have been res
aled by their translational e�
ien
y whi
h,as de�ned earlier in se
tion 1, is the average number of proteins produ
ed permRNA mole
ule.AI equationsThe equations for AI has terms representing degradation, produ
tion and inter-
ell di�usion.

dSi

dt
= −ks0Si + ks1Ai − η(Si − Se) (3.13)The �rst term on the right is the degradation term with the de
ay 
oe�
ient

ks0. The se
ond term is the synthesis term while the third term is the inter
ell
oupling term. The lifetimes of TetR and LuxI are assumed to be equal andas a result the 
on
entration of TetR (Ai) also des
ribes the 
on
entration ofLuxI here. The 
oe�
ient of the 
oupling term η = σA/Vc = δ/Vc where
σ represents the permeability of the 
ell membrane, A is the surfa
e area ofthe 
ell membrane and Vc is the volume of the 
ell.The three parameters havebeen non-dimensionalised by time-res
aling. The quantity Se represents theextra
ellular 
on
entration of AI. Its dynami
al equation is

dSe

dt
= −kseSe + ηext

N
∑

j=1

(Sj − Se) ≡ −kseSe + kdiff (S̄ − Se) (3.14)Here ηext = δ/Vext. Vext is the total extra
ellular volume, and the barrepresents averaging over all 
ells. The di�usion rate is given by kdiff = ηextNand the degradation rate is given by kse. N is the total number of 
ells.In the above model, variations in 
ell density are ignored the 
on
entrationof AI is assumed uniform throughout the experimental substrate.



3.4. QUORUM SENSING MODEL 31Order parameterFinally, an order parameter3 is de�ned as a measure of phase transition betweenunsyn
hronisation and mutual entrainment.The quantity bi(t) is the 
on
entration of mRNA in the ith 
ell. The averageof this over all 
ells is given by
M(t) = (1/N)

n
∑

i=0

bi(t) (3.15)The order parameter R is de�ned as the ratio of time-varian
e of M(t) andthe varian
e of bi averaged over i. So it is basi
ally the ratio of the time-varian
eof the 
ell-average of the signal (bi(t)) and the 
ell-varian
e of the time-averageof the signal.
R =

〈M2〉 − 〈M〉2

〈b2
i 〉 − 〈bi〉2

(3.16)If the signals are 
ompletely syn
hronized, then bi(t) = bj(t) = b(t) ∀i, j ⇒

M(t) = b(t). Sin
e all the signals are equal, 〈b(t)〉 = 〈b̄(t)〉 (time-averaging and
ell-averaging 
ommute), and hen
e R = 1 for 
omplete syn
hronization. For
omplete unsyn
hronisation, the signals are 
ompletely un
orrelated and as aresult the 〈M2〉 = 〈M〉2 ⇒ R = 0.If R is plotted against some 
ontrol parameter, a sudden 
hange in its valuefrom 0 to 1 will indi
ate phase transition.The 
ontrol parameter is given by the quantity Q whi
h is de�ned as
Q =

Nδ/Vext

kse + Nδ/Vextwhere δ = σA. It is assumed that the extra
ellular volume Vext >> Vc, the in-dividual 
ellular volume. A

ording to this de�nition, if Nδ/Vext << kse whi
his the degradation rate of the extra
ellular AI, then Q is linearly proportionalto the 
ell density (sin
e the permeability σ, the area A and the extra
ellulardegradation rate kse 
an be assumed 
onstant). So Q takes the role of the
ontrol parameter against whi
h the order parameter R is plotted.3An order parameter is a useful measure of phase transition. The value of the orderparameter varies with some 
ontrol parameter and 
hanges at a phase transition.
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Figure 3.5: Order parameter against Q for the deterministi
 
ase.ResultsSimulations 
arried out by Gar
ia-Ojalvo, Elowitz and Strogatz yielded thefollowing results. Figure 3.6 shows that syn
hronization in
reases as the 
elldensity in
reases.Figure 3.5 gives a plot of the order parameter against 
ell density. It showsthat there is a phase transition to syn
hronization. The parameter ∆β is thespread in parameter values. So Gar
ia-Ojalvo et al. found that there is syn-
hronisation if the number of 
ells 
oupling together in
reases. Also, there isa phase transition to mutual entrainment, whi
h from the �gure (f), seems tous to be of the attra
tive type (as de�ned in 
hapter 2) as there is no phasedi�eren
e between the os
illations.3.4.2 Model with sto
hasti
ityExtrinsi
 noise was modelled into the parameter β by adding a Gaussian noiseterm to it: β → βi + ξµi(t), where i is the 
ell-index and µ is the protein-index.The term ξµi(t) was a Gaussian 
orrelated noise of the Ornstein-Uhlenbe
k typewith zero mean and 
orrelation 〈ξµi(t)ξνj(t
′)〉 = δµνδij (D/τ) exp (−|t − t′|/τ).The noise is un
orrelated between 
ells and between genes in ea
h 
ell. Theintensity is D and auto
orrelation time is τ . Plots of power spe
trums of mRNA
on
entration as well as order parameter are given in �gure 3.7.
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Figure 3.6: Figures in the left 
olumn are frequen
y histograms for di�erent
ells. The �gures in the right 
olumn are signals for di�erent 
ells plottedagainst time. Values of Q are 0.4 in the top row, 0.63 in the middle row and
0.8 in the bottom row. The other parameter values used are α = 216, κ = 20,
n = 2.0, ks0 = 1, η = 2.0 and ks1 = 0.01. The lifetime ratio is 
hosen froma random Gaussian distribution of mean 1 and standard deviation ∆β = 0.05.Figures from[4℄.
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Figure 3.7: Figure on the left gives the power spe
trum of the mRNA 
on
en-tration bi(t) averaged over 100 repressilators plotted with 
oupling strength asparameter.Q = 0 for 
urve 1 and Q = 1 for 
urve 2. Noise broadening is seenfor the zero-
oupling 
urve (
urve 1) while the peaks are far sharper for �nite
oupling (Q = 1 for 
urve 2). The value of the noise intensity is D = 0.4 forboth 
urves (�g. 3.7). Figure on the right gives the order parameter vs noiseintensity. τ = 15min, η = 10 and ∆β = 0. The other parameters have the samevalue as in �gure 3.6. Figures from[4℄.3.4.3 Con
lusionGar
ia-Ojalvo, Elowitz and Strogatz observed[4℄ that in their sto
hasti
 quo-rum sensing model, syn
hronisation and 
oheren
e is 
ompletely lost as thenoise intensity in
reases beyond a 
ertain value (D ≃ 0.75 as seen from �gure3.7), no matter the 
oupling strength. If the noise intensity remains below that
riti
al value then a �nite value of the 
oupling strength 
an bring about syn-
hronisation. However, they have not studied the e�e
t of internal noise on theos
illations.



Chapter 4
Our Analysis of theRepressilator
4.1 Overview of Work DoneOur study of the repressilator began with the single repressilator. The �rst jobwas to non-dimensionalize the rate equations given by Loinger and Biham[6℄.Our study was without 
ooperative binding i.e. with the Hill 
oe�
ient set to 1.Then we simulated the equations to get 
on
entration vs time graphs for ea
hprotein, free or bound. All simulations (in
luding these and subsequent ones)were done in Matlab. After the simulation of the 
on
entration for di�erentvalues of the remaining parameters, we moved on to simulations of amplitudes,frequen
ies and waveforms of the protein 
on
entrations against varying pa-rameters. We found de�nite regions of parameter spa
e for whi
h there wereos
illations, as indi
ated by the above studies of amplitudes and frequen
ies.The waveforms also di�ered with parameter values, but were overall 
loser tosinusoids than relaxation types. These were for the deterministi
 
ase. For thesto
hasti
 
ase, we simulated the master equations given by Loinger and Bihamusing the Gillespie algorithm[2℄ and obtained os
illation graphs vs time. Finally,we went on to two repressilators 
oupled by AI and simulated 
on
entrations vstime graphs and phase di�eren
es to �nd out the type of entrainment.35



36 CHAPTER 4. OUR ANALYSIS OF THE REPRESSILATOR4.2 Single Repressilator: Deterministi
4.2.1 Non-dimensionalizationWhy?One of the problems fa
ed while setting values of parameters to be used insimulations is a baseline to 
ompare them with. The usual modus operandi isto non-dimensionalize them against some parameter. This not only redu
es thenumber of parameters in the problem, it also serves a guideline for interpretationof the values of the parameters.How?The parameters in the equations are the following (as de�ned in 
hapter 3):
• The expression 
onstant g: This is the 
onstant rate of expression of theproteins in the absen
e of repressors.
• The free-protein degradation 
onstant df (previously γf )
• The bound-protein degradation 
onstant db (previously γb)
• The binding 
onstant α0

• The unbinding 
onstant α1We non-dimensionalize the Loinger-Biham equations by the parameter g andget the following:
dpf

i

dτ
= (1 − pb

i−1) − d̃fpf
i − α̃0p

f
i (1 − pb

i) + α̃1p
b
i (4.1)

dpb
i

dτ
= α̃0p

f
i (1 − pb

i) − α̃1p
b
i − d̃bpb

i (4.2)wherea) τ = tgb) d̃f = df/g
) d̃b = db/gd) α̃0 = α0/ge) α̃1 = α1/g



4.2. SINGLE REPRESSILATOR: DETERMINISTIC 374.2.2 Simulation of Con
entrations vs TimeWe simulated the 
on
entrations of the proteins vs time for di�erent values ofthe parameters using the RK41 algorithm with adaptive time stepping. Thetime of running the simulation was 
hosen to have approximately 20 or morestable os
illation 
y
les. The graphs are given in �gure 4.1.The values of the parameters are the s
aled non-dimensionalized `tilde' valuesof the parameters (we are removing the tilde forthwith for ease of understanding�now onwards the non-tilde versions will mean the non-dimensionalized param-eters). So the system was run with some initial 
on
entration of the �rst freeand bound proteins (p1(0) = 1.7) and zero 
on
entration of the others. [Note:the `�rst' protein 
ould be either of the three (TetR, 
I or La
I)�the equationsare symmetri
al with respe
t to that℄.It should be noted that the os
illations, while not relaxational, are not ex-a
tly sinusoidal either. This issue will be studied more 
losely in the se
tion onwaveforms.Further graphs of 
on
entration vs time have also been plotted for varyingvalues of parameters. We do not in
lude them here.4.2.3 Waveform analysisWe have plotted the 
on
entration of the �rst bound protein (`�rst' merelymeans it has some starting 
on
entration) for varying values of the degradationparameters df and db. The plots are given in �gures 4.2, 4.3 and 4.4. Lookingat these �gures, we see a 
lear trend. For low values of df , the waveforms are`top-heavy' with a sort of a plateau at the 
rests and a spike at the troughs.This is true even for higher values of db if df be low. For higher values of df ,the waveforms move 
loser to a sinusoidal shape.
1RK stands for Runge-Kutta
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Figure 4.1: The �gure on the top gives free protein 
on
entration vs time show-ing approximately 10 
y
les. The �gure at the bottom gives bound protein
on
entration vs time showing approximately 10 
y
les. The di�erent 
oloursindi
ate the di�erent protein 
on
entrations. The parameter values used were
df = 0.06, db = 0.06, α0 = 10, α1 = 0.2. The initial values of the protein 
on-
entrations were pf

1 (0) = 0.7, pf
i (0) = 0.0 for i = 2, 3; pb

1(0) = 1.0, pb
i (0) = 0.0for i = 2, 3.
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Figure 4.2: Waveform of �rst bound protein for df=db=0.06
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Figure 4.3: Waveform of �rst bound protein for df=0.06, db=0.36
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Figure 4.4: Waveform of �rst bound protein for df=0.36, db=0.244.2.4 Amplitude analysisThis analysis was done in the following way. The signal was �rst detrended2and then the absolute value of the signal was taken. Finally a linear �t was doneon the signal and the y-inter
ept was taken. It is quite possible that there are�u
tuations at high frequen
ies but the variations in protein 
on
entration areminimal. This analysis gives an idea of the `amount' of �u
tuations present inthe os
illations. We have plotted the inter
epts obtained in the way des
ribedagainst the de
ay parameters df and db.Figure 4.5 is a s
an of the inter
ept against db for �xed value (0.06) of df . It
an be seen from this �gure that there is substantial amplitude for a large rangeof db (range of db in �gure is 0.02 to 0.60). However, this is for small df = 0.06.We have done a s
an for the inter
ept against both db and df and 3D plot is2Detrending means setting the mean to zero. This will simply shift the x-axis higher inthe graphs.
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Figure 4.5: S
an of the inter
ept against the parameter db for df = 0.06given in �gure 4.6, and the top-view is given in �gure 4.7.

Figure 4.6: 2D s
an of the inter
ept against the parameters df and db. Theparameter values are non-s
aled values. The ranges of both db and df are 0.02to 0.58 in steps of 0.04 after s
aling by g.
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Figure 4.7: Top-view.of the 2D s
an of the inter
ept against the parameters dfand db. The parameter values are non-s
aled values. The ranges of both db and
df are 0.02 to 0.58 in steps of 0.04 after s
aling by g.So we see that there are signi�
ant os
illations for a 
ertain region of the pa-rameter spa
e of df and db. For low df , there are os
illations almost throughoutthe range of db. But in the higher regime of df values, os
illations are found forshorter and shorter ranges of db values. At quite high df > 0.52, there are nosigni�
ant os
illations at all.So we 
on
lude that the amplitude of os
illationsof the �rst bound protein are 
ontrolled more by the value of the degradation
onstant of the free proteins than that of the bound proteins.4.2.5 Frequen
y analysisNatural frequen
ies of os
illations are very important when trying to syn
hroniseos
illators. A study of the frequen
ies of the os
illations of proteins of a singlerepressilator is done next. There are two ways of �nding out the frequen
yof a time-dependent signal. The �rst involves �nding the Fourier transform ofthe signal. The power spe
trum of the Fourier transformed signal gives thedominant frequen
y. This is the frequen
y obtained from the Fourier transformanalysis. Call it ωFT . The other method involves taking the Hilbert transformof the signal. The Hilbert transformed signal is now multiplied by ı and added



42 CHAPTER 4. OUR ANALYSIS OF THE REPRESSILATORto the original signal to give the `analyti
 signal'. The phase of this analyti
signal, when di�erentiated, gives the frequen
y. Call it ωHT . The �nal a

eptedfrequen
y (ω) is the mean of these two frequen
ies ω = (ωFT +ωHT )/2. A moredetailed des
ription of the Hilbert analysis is given in the Appendix..
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Figure 4.8: S
an of the frequen
y against the parameter db for df = 0.06. Therange of db is 0.0 to 1.0 (s
aled) for df = 0.06.The interesting thing to observe is that the frequen
ies seem to rise graduallywith in
reasing db upto 0.56, where it suddenly dips to a very low value. Nearthe edge of the range the frequen
y is very 
lose to zero. The following graph(�gure (4.9)) is the 3D plot against both df and db. Figure 4.10 is the top-view.The 3D plot of the frequen
y s
an against df and db (�gs 4.9 and 4.9) showsa sharp region where there are �nite frequen
ies. The 2D plot (�g. 4.8) as wellas the �rst 3D plot (�g. 4.9) shows that the frequen
y in
reases gradually with
db and then falls sharply. This fall happens at lower and lower values of db asthe value of df in
reases. At higher values of df , there is a very small range of
db for whi
h there are �nite frequen
ies. This behaviour is qualitatively similarto the behaviour of the amplitudes.
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Figure 4.9: 2D s
an of the frequen
y against the parameters df and db. Therange of db is 0.02 to 0.70 at intervals of 0.02, while that for df is 0.02 to 0.58at intervals of 0.04.

Figure 4.10: 2D s
an of the frequen
y against the parameters df and db. Therange of db is 0.02 to 0.70 at intervals of 0.02, while that for df is 0.02 to 0.58at intervals of 0.04.4.3 Single Repressilator: Sto
hasti
The sto
hasti
 simulations are done by solving the Master Equation (eq. 3.8)using the Gillespie algorithm[2℄.
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Figure 4.11: Free protein 
opy number vs time. α0 = 10.0, α1 = 0.2, df = db =
0.06, initial �rst free protein number f1(0) = 10.0, initial �rst bound proteinnumber b1(0) = 1.0, other initial numbers equalling zero. Time of runningis tmax = 1500 timesteps. Maximal 
opy number is ∼ 20 − 25 with ∼ 10os
illations in 1500 time steps.

Figure 4.12: Free protein 
opy number vs time. α0 = 10.0, α1 = 0.2, df = db =
0.12, initial �rst free protein number f1(0) = 10.0, initial �rst bound proteinnumber b1(0) = 1.0, other initial numbers equalling zero. Time of runningis tmax = 750 timesteps. Maximal 
opy number is ∼ 10, with ∼ 10 − 15os
illations in 750 time-steps.A 
omparison of �gures 4.11, 4.12, 4.13 and 4.14 exhibit the e�e
t of 
hangingthe value of the de
ay parameters on the frequen
y and maximal 
opy number.It is seen that as the values of the de
ay parameters in
rease the frequen
y
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Figure 4.13: Free protein 
opy number vs time. α0 = 10.0, α1 = 0.2, df = db =
0.03, initial �rst free protein number f1(0) = 10.0, initial �rst bound proteinnumber b1(0) = 1.0, other initial numbers equalling zero. Time of runningis tmax = 3000 timesteps. Maximal 
opy number is ∼ 35 − 40, with ∼ 10os
illations in 3000 time-steps.

Figure 4.14: Free protein 
opy number vs time. α0 = 10.0, α1 = 0.2, df = db =
0.01, initial �rst free protein number f1(0) = 50.0, initial �rst bound proteinnumber b1(0) = 1.0, other initial numbers equalling zero. Time of running is
tmax = 3000 timesteps. Maximal 
opy number is ∼ 100, with ∼ 8 os
illationsin 8000 time-steps.in
reases but the maximal 
opy number de
reases, and vi
e versa.
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an summarize the qualitative e�e
ts of the parameters thus:
• In
reasing de
ay parameters in
reases frequen
ies but de
reases maximal
opy number.
• De
reasing de
ay parameters de
reases frequen
ies but in
reases maximal
opy number.
• Changing the initial 
opy number has no qualitatively dis
ernible e�e
t.
• Changing the binding parameter has no qualitatively dis
ernible e�e
tother than a very slight 
hange in maximal 
opy number.
• De
reasing the unbinding parameter in
reases the maximal 
opy numberslightly. However, in
reasing it de
reases the maximal 
opy number some-what.Apart from the e�e
ts of 
hanging the de
ay parameters, the other e�e
tswere not very pronoun
ed and in a sto
hasti
 system, more rigorous and 
arefulanalysis is required to pinpoint the e�e
ts. The graphs plotted for examiningthe 
hange of the binding and unbinding parameters are not given here.4.4 Two Coupled RepressilatorsThe 
oupling is, as des
ribed in Chapter 3, done by ex
hange of the autoindu
erAI between 
ells. This is the quorum sensing me
hanism. We have modi�ed theLoinger-Biham rate equations is the following way to introdu
e the e�e
t of AI
oupling.4.4.1 Modi�
ation to Loinger-Biham rate equationsWe have two repressilator 
ells. Our equations for the proteins are
dpf

11

dt
= g(1 − pa

i−1) − γfpf
i − α0p

f
i (1 − pa

i ) + α1p
a
i + (pf

11/p11)g1 a1 (4.3)
dpa

12

dt
= α0p

f
i (1 − pa

i ) − α1p
a
i − γapa

i + (pa
11/p11)g1 a1 (4.4)
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11 is the 
on
entration of the �rst free protein of the �rst 
ell, pb

11is the 
on
entration of the �rst bound protein of the �rst 
ell and pf
11 is thetotal 
on
entration of the �rst protein of the �rst 
ell. The modi�
ation terms

(pf
11/p11)g1 a1 and (pa

11/p11)g1 a1 are parametrized by g1. These two termsdes
ribe the 
oupling between the se
ond feedba
k loop to the �rst (refer tothe des
ription in se
tion 2.4.3). So g1 
an be 
alled the intra
ell 
ouplingparameter.The rate equations of the AI 
on
entrations are given thus:
da1

dt
= −g2a1 + g3p12 − g4(a1 − a2) (4.5)

da2

dt
= −g2a2 + g3p22 − g4(a2 − a1) (4.6)Here p12 is the se
ond protein in the �rst 
ell and p22 is the se
ond proteinin the se
ond 
ell. The parameter g2 is the degradation rate of the AI, g3 isthe indu
tion rate quanti�ed by the 
on
entration of LuxI whi
h is taken to bethe same as that of TetR, following the method adopted by Loinger and Bihamand des
ribed earlier in 
hapter 3. The inter
ell 
oupling parameter is g4 andthe terms −g4(a1 − a2) and −g4(a2 − a1) ensure that AI always di�uses out ofa 
ell having higher 
on
entration into the other one.4.4.2 EntrainmentWe need to 
onsider a few 
ases here.(A) No intra
ell or inter
ell 
oupling.In this 
ase we will reprodu
e the results of se
tion 1 for ea
h 
ell, andwe will not expe
t the os
illations to be entrained ex
ept for the trivial
ase of same parameters (i.e. same natural frequen
ies) and same initial
onditions.(B) No inter
ell 
oupling, but �nite intra
ell 
ouplingWe still do not expe
t entrainment. However the results, while indepen-dent 
ell-wise, will not be expe
ted to reprodu
e the single repressilator
ases. There is essentially nothing mu
h of interest here. However, theimportant 
ase is the next one.
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ell and intra
ell 
ouplingThis will have three sub-
ases:(a) Same initial 
onditions and parameters: It will a trivial 
ase and theos
illations are expe
ted to perfe
tly entrain.(b) Di�erent initial 
onditions, same parameters: The natural frequen-
ies are same but the initial 
onditions are di�erent. Still, we expe
tentrainment as di�erent initial 
onditions should not a�e
t the phasedi�eren
e between the 
ells. however, they might, and it needs to belooked into. The question will be whether the entrainment will beattra
tive or repulsive.(
) Di�erent initial 
onditions and parameters: This is the real deal. Thetwo 
ells will have di�erent natural frequen
ies. The study will be
arried out using di�erent values of the inter
ell 
oupling parameter
g4.4.4.3 ResultsCase (A)We get the graph (�g. 4.15) keeping initial 
onditions and parameter valuessame for both repressilators.As the 
on
entration graph (�g. 4.15) indi
ates and the phase 
urve graph(�g. 4.16) 
on�rms, the two repressilators behave exa
tly equally. This is whatwas expe
ted, and this is simply a 
onsisten
y 
he
k. [Note: We have �xedthe values of the df and db parameters at 0.24 ea
h to keep the individualfrequen
ies near the 
entre of the os
illatory region.℄ Next we 
hange the initial
onditions. We �nd no entrainment (�gs. 4.17 and 4.18) although we do havephase-lo
king..Case (B)Here we introdu
e �nite intra
ell 
oupling. We expe
t no entrainment. We getnone. Figures 4.19 and 4.20 attest to that. There is phase-lo
king. There is notmu
h di�eren
e between phase-diagrams 4.18 and 4.20, the former with zerointra
ell 
oupling and the latter with low intra
ell 
oupling (g1 = 0.2).
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Figure 4.15: First bound protein 
on
entration vs time for two un
oupled re-pressilators without intra
ell 
oupling. The 
on
entrations are indi
ated bythe blue line (for one repressilator) and red dots (for the other). Parameters
α0 = 10.0, α1 = 0.2, df = db = 0.24, g1 = 0.0, g2 = g3 = 0.2, g4 = 0.0 for bothrepressilators. Initial 
onditions pf

11(0) = 0.5, pf
12(0) = 0.5.
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Figure 4.16: Phase 
urve of the �rst bound protein 
on
entration of the twoun
oupled repressilators without intra
ell 
oupling. Parameters α0 = 10.0, α1 =
0.2, df = db = 0.24, g1 = 0.0, g2 = g3 = 0.2, g4 = 0.0 for both repressilators.Initial 
onditions pf

11(0) = 0.5, pf
12(0) = 0.5. There is 
lear entrainment.
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Figure 4.17: First bound protein 
on
entration vs time for two un
oupledrepressilators without intra
ell 
oupling. Parameters α0 = 10.0, α1 = 0.2,
df = db = 0.24, g1 = 0.0, g2 = g3 = 0.2, g4 = 0.0 for both repressilators. Initial
onditions pf

11(0) = 0.5, pf
12(0) = 1.0.
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Figure 4.18: Phase 
urve of the �rst bound protein 
on
entration of the twoun
oupled repressilators without intra
ell 
oupling. Parameters α0 = 10.0, α1 =
0.2, df = db = 0.24, g1 = 0.0, g2 = g3 = 0.2, g4 = 0.0 for both repressilators.Initial 
onditions pf

11(0) = 0.5, pf
12(0) = 1.0.Figures 4.21 and 4.22 indi
ate the 
ase with stronger intra
ell 
oupling (g1 =

1.4) keeping all other parameter values same and di�erent initial 
onditions. Itis seen that with in
reasing strength of the intra
ell 
oupling, the phase-
urvemoves towards a smaller limit-
y
le. At mu
h higher values of g1(∼ 4.0), we get a�xed-point, indi
ating no os
illations. That is borne out by 
on
entration plots.These plots have been made but are not shown here. In
reasing the intra
ell
oupling seems to push the system 
loser to a non-os
illatory �xed-point. This is
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Figure 4.19: First bound protein 
on
entration vs time for two un
oupled repres-silators with intra
ell 
oupling. Parameters α0 = 10.0, α1 = 0.2, df = db = 0.24,
g1 = 0.2, g2 = g3 = 0.2, g4 = 0.0 for both repressilators. Initial 
onditions
pf
11(0) = 0.5, pf

12(0) = 1.0.
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Figure 4.20: Phase 
urve of the �rst bound protein 
on
entration of the twoun
oupled repressilators without intra
ell 
oupling. Parameters α0 = 10.0, α1 =
0.2, df = db = 0.24, g1 = 0.2, g2 = g3 = 0.2, g4 = 0.0 for both repressilators.Initial 
onditions pf

11(0) = 0.5, pf
12(0) = 1.0.be
ause the me
hanism underlying the 
oupling of the se
ond loop (see Chapter2) is positive feedba
k whi
h when boosted kills o� the os
illations sustained bynegative feedba
k.A thing to note: although Case (A) with di�erent initial 
onditions (phasediagram 4.18) and Case (B) with non-zero intra
ell 
oupling (phase diagrams4.20 and 4.22) exhibit no entrainment3, there is phase-lo
king. We of 
ourse3Where entrainment is stri
tly de�ned (as earlier) as phase-lo
king with phase di�eren
e
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Figure 4.21: First bound protein 
on
entration vs time for two un
oupled repres-silators with intra
ell 
oupling. Parameters α0 = 10.0, α1 = 0.2, df = db = 0.24,
g1 = 1.4, g2 = g3 = 0.2, g4 = 0.0 for both repressilators. Initial 
onditions
pf
11(0) = 0.5, pf

12(0) = 1.0.
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Figure 4.22: Phase 
urve of the �rst bound protein 
on
entration of the twoun
oupled repressilators with intra
ell 
oupling. Parameters α0 = 10.0, α1 =
0.2, df = db = 0.24, g1 = 1.4, g2 = g3 = 0.2, g4 = 0.0 for both repressilators.Initial 
onditions pf

11(0) = 0.5, pf
12(0) = 1.0.do not expe
t entrainment without inter
ell 
oupling. We get phase lo
kingbe
ause the natural frequen
ies of the two repressilators are the same. So wegive one set of graphs (�gs. 4.23 and 4.24) showing os
illations for Case (B) withdi�erent frequen
ies. We 
hange frequen
ies by tuning the de
ay parameters.It is seen that there is no longer any limit-
y
le type os
illations (�g.4.24).of 0 or π
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Figure 4.23: First bound protein 
on
entration vs time for two un
oupled re-pressilators with intra
ell 
oupling. Parameters α0 = 10.0, α1 = 0.2, g1 = 1.4,
g2 = g3 = 0.2, g4 = 0.0 for both repressilators. Initial 
onditions pf

11(0) = 0.5,
pf
12(0) = 1.0. De
ay parameters df = db = 0.24 for one repressilator,

df = db = 0.264 for the other.
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Figure 4.24: Phase 
urve of the �rst bound protein 
on
entration of the two un-
oupled repressilators with intra
ell 
oupling. Parameters α0 = 10.0, α1 = 0.2,
g1 = 1.4, g2 = g3 = 0.2, g4 = 0.0 for both repressilators. Initial 
onditions
pf
11(0) = 0.5, pf

12(0) = 1.0. De
ay parameters df = db = 0.24 for one repressila-tor, df = db = 0.264 for the other.Case (C)Here we introdu
e inter
ell 
oupling as well. In the �rst sub-
ase, we keepnatural frequen
ies and parameters same. We �nd the trivial 
ase of perfe
tattra
tive entrainment (plots not shown). Next we 
hange initial 
onditions(�gs. 4.25 and 4.26).



54 CHAPTER 4. OUR ANALYSIS OF THE REPRESSILATOR
0 2 4 6 8 10 12 14 16 18 20

0.4

0.5

0.6

0.7

0.8

0.9

1

time

co
nc

en
tr

at
io

n

Entrainment of first protein: df=0.24, db−0.24, g1=0.2, g4=0.2 

Figure 4.25: First bound protein 
on
entration vs time for two 
oupled repressi-lators with intra
ell 
oupling. Parameters α0 = 10.0, α1 = 0.2, df = db = 0.24,
g1 = 0.2, g2 = g3 = 0.2, g4 = 0.2 for both repressilators. Initial 
onditions
pf
11(0) = 0.5, pf

12(0) = 1.0.
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Figure 4.26: Phase 
urve of the �rst bound protein of the two 
oupled repressi-lators with intra
ell 
oupling. Parameters α0 = 10.0, α1 = 0.2, df = db = 0.24,
g1 = 0.2, g2 = g3 = 0.2, g4 = 0.2 for both repressilators. Initial 
onditions
pf
11(0) = 0.5, pf

12(0) = 1.0.We �nd from �gures 4.25 and 4.26 a transient state after whi
h the twoos
illations get entrained attra
tively. This happens even with 
oupling strengthlow for the two repressilators having same natural frequen
ies.Finally we 
ome to the 
ase of di�erent initial 
onditions and natural fre-quen
ies. We get �gures 4.27, 4.28 and 4.29.At a high di�eren
e of natural frequen
ies, the os
illations are not evenphase-lo
ked (�g. 4.27). However, as the di�eren
e in frequen
ies de
reasesdown from 10% to 1%, there is a tenden
y to move towards phase-lo
king (�g.
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Figure 4.27: Phase 
urve for 10 % di�eren
e in natural frequen
ies
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Figure 4.28: Phase 
urve for 5 % di�eren
e in natural frequen
ies
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Figure 4.29: Phase 
urve for 1 % di�eren
e in natural frequen
ies4.29). However, there is no entrainment as su
h as 
ould be seen by visualinspe
tion of the phase-
urves. Boosting the values of the intra
ell and/or theinter
ell parameters also does not a�e
t things greatly, in that even at quitehigh g4 ∼ 10.0, we �nd no entrainment.



56 CHAPTER 4. OUR ANALYSIS OF THE REPRESSILATOR4.4.4 SummaryAll this analysis was done for the �rst bound protein. It seems that there isno entrainment for the two repressilators di�ering in natural frequen
ies. Ifthe di�eren
e is high, there is no 
orrelation between the phases. However, atlower di�eren
es, we get something like phase-lo
king. However, entrainmentstill eludes. This was expe
ted.Our study was on the �rst bound protein. It is quite possible the otherprotein os
illations might entrain. That needs be 
he
ked. However, it is quiteunlikely. Also, our analysis of entrainment was by visual inspe
tion of the phase-
urves. This is all right for two repressilators, for the presen
e or absen
e ofentrainment is quite evident from looking at the pahse 
urves. However, thisapproa
h is not feasible if there are more than two 
oupled repressilators. Inorder to quantitatively 
he
k for entrainment or phase-lo
king for more thantwo repressilators 
oupled together, we need to de�ne some order parameter.



Chapter 5Con
lusionThe primary motive in studying the repressilator was to try and model natu-ral biologi
al os
illators. The interesting and 
riti
al feature of su
h naturallyo

urring os
illators was that they preserve their periods of os
illations evenif there are externally imposed �u
tuations prevalent in natural environments.Examples of su
h robust os
illators in
lude the 
ir
adian os
illator, the pa
e-maker of the heart et
. Ea
h of these os
illators are made up of 
olle
tions of
ellular os
illators. So there are also internal �u
tuations brought about by thedi�erent operations of the individual os
illators. In spite of both internal andexternal �u
tuations, biologi
al os
illators are extremely robust and maintaintheir periodi
ity. In this thesis, we have reviewed experimental and 
omputersimulation studies of the single repressilator model whi
h showed that singlerepressilators are not robust to �u
tuations. Our review then extended to the
oupling of repressilators using the quorum sensing me
hanism. Simulationsshowed that there was robustness against noise for high enough 
oupling andhigh enough number of 
oupled repressilators. However, this has not yet beenborne out by experiments.In our analysis of the repressilator, we started o� by studying the singlerepressilator deterministi
ally using non-dimensionalized rate equations. Wemanaged to isolate regions of parameter spa
e where the single repressilatorshows os
illations. Sto
hasti
 study by master equations 
on�rmed the resultthat there are no stable os
illations with sto
hasti
ity for the single repressila-tor. Then we moved on two repressilators 
oupled using the quorum sensingme
hanism. The 
oupling used between the two repressilators was di�usive in57



58 CHAPTER 5. CONCLUSIONnature. We studied phase 
urves of the os
illations of one of the proteins inthe two 
ells. We found as expe
ted that there is attra
tive entrainment if thenatural frequen
ies are the same, but no entrainment if they are not. The sys-tem is phase-lo
ked and 
omes 
lose to attra
tive entrainment if the di�eren
esin natural frequen
ies is redu
ed. These result did not 
hange by in
reasing
oupling strength to large but �nite values. However, in general, our 
on
lusionis that at the very least, more than two repressilators need to be 
oupled inorder to get entrainment in the deterministi
 
ase when the natural frequen
iesof the repressilators are di�erent. We have not yet studied sto
hasti
 e�e
ts on
oupling, but it 
an be expe
ted that the system will move further away fromentrainment if sto
hasti
ity is in
luded.Our ultimate aim is to study n of 
oupled repressilators with sto
hasti
ity.We would like to study this in the framework of phase-transitions by de�ninga suitable order parameter and studying its behaviour with in
reasing numberof 
ells. We believe that the interplay between sto
hasti
ity inherent in a singlerepressilator, sto
hasti
ity from external environmental noise, and the size of therepressilator population will lead to non-trivial stru
ture in the phase-diagramof 
oupled repressilator 
ir
uits.



AppendixHilbert AnalysisThe aim of Hilbert analysis is to extra
t the phase of some signal and then maybethe frequen
y (whi
h is what we have done). The algorithm is as follows. Wede�ne the following notations:
• s(t) → the signal that is to be analysed
• s(ω) → the fourier transform fo the signal
• s′(t) → the Hilbert transform of the signal s(t)

• s̃(t) → the `analyti
 signal', de�ned belowOur order of operations is
s(t)

Hilbert
−−−−−−−→
transform

s′(t) −→ s̃(t) = s(t) + is′(t)The Hilbert transform s′(t) of a signal s(t) is de�ned as
s′(t) =

1

π
PV

∫ ∞

−∞

s(τ)

t − τ
dτ (5.1)where PV means prin
ipal value.It is obtained thus:

• Fourier transform1 the signal: s(t)
FFT
−−−→ s(ω)

• De�ne s>(ω) ≡ s(ω) for ω > 0

• De�ne s<(ω) ≡ s(ω) for ω < 01While 
oding with Matlab, we have to 
arry out a Fast Fourier Transform (FFT) due tothe dis
rete nature of the operation of the program59



60 APPENDIX
• Shift phase of s>(ω) by −π

2 :
s>(ω)

Phase shift
−−−−−−−−→

−π
2

s>(ω) e−ı π
2 ≡ s′>(ω)

• Shift phase of s<(ω) by π
2 :

s<(ω)
Phase shift
−−−−−−−−→

π
2

s<(ω) eı π
2 ≡ s′<(ω)

• Add: s′(ω) ≡ s′>(ω) + s′<(ω)

• Carry out an inverse fourier transform: s′(ω)
IFFT
−−−−→ s′(t), whi
h is theHilbert transformWe obtain the phase by putting A(t)eıφ(t) = s̃(t), where we 
all A(t) thetime-dependent amplitude and φ(t) the time-dependent phase of the analyti
signal. The phase of the signal will then be simply φ(t).For example, if s(t) = cosωt, then s′(t) = sinωt, and

s̃(t) = cosωt + ı sin ωt = eıωt = Aeıφ(t)

⇒ φ(t) = ωtand A(t) = 1.This is 
onsistent, for obviously the phase of the signal cosωt is ωt andamplitude is 1.
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