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Abstract

Biological clocks are found everywhere in the natural world. From
circadian (day-night) rhythms to pacemakers of the heart, biological
clocks are an essential part of the smooth functioning of living or-
ganisms. They are composed of microscopic clocks which operate at
the cellular level. The macroscopic clock functions by synchronisa-
tion of these smaller units through intercell coupling. These clocks
keep time with amazing regularity even in the face of random exter-
nal fluctuating effects or internal noise which are ubiquitous in the
natural world. In order to attempt to understand the robustness of
such clocks against stochastic effects, a model genetic circuit called
the repressilator was constructed as a simple clock. The motivation
is to find generic features which underlie the operation of complex
biological clocks in a simple model. In this thesis, we review pre-
vious work done on single repressilators as well as on repressilators
coupled by the quorum sensing mechanism. We perform numerical
simulations to study the properties of a mathematical model of the
repressilator. We suggest a new mechanism by which repressilator
circuits can be coupled. Numerical simulations of two repressilators,
coupled by our mechanism, show attractive phase synchronisation
when their natural frequencies are identical. When the natural fre-
quencies are distinct, our results rule out entrainment and seem to
indicate the absence of phase-locking.
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Chapter 1

Introduction

The Dutch physicist Christiaan Huygens is most well known for his discovery
of the pendulum clock. He is less well known as the discoverer of a rather
interesting and curious phenomenon pervading in pendulum clocks. The year
is 1665, the month is a cold February, and Huygens is confined to his bed with
some small ailment. With nothing better to do, he falls into an idle study of the
two pendulum clocks hanging side by side on the wall—clocks he had recently
built. Curiously, he observes that the clocks are running in exact synchrony.
This synchronisation lasts for as long as he watches the clocks. Intrigued, he
gets up and deliberately desynchronises them. To his astonishment, they fall in
step once again after some time and stay in mutual synchrony. Huygens then
tries another approach. He shifts one clock to another part of the room—the
wall opposite to the first clock. This time the two clocks fail to march together
Huygens observes one losing about five seconds per day relative to the other.
Thus he concludes that the two clocks synchronise through tiny coupling forces
transmitted through air or the wall to which they were attached[12].

Huygens’ accidental observation has created what is now known as the the-
ory of coupled oscillators'. Such coupled oscillators are ubiquitous in the natural
world. In fact, every human being has a proliferation of such coupled oscilla-
tors. Pacemaker cells in the heart, insulin-secreting cells in the pancreas, neural
networks in the brain and spinal cord are all examples. These collections of
oscillators perform such diverse and fundamental physiological functions such

as pumping blood throughout the body or regulating the level of hormones in

L An oscillator is any system that executes periodic behaviour.



2 CHAPTER 1. INTRODUCTION

the blood. They enable the performance of basic jobs such as breathing, run-
ning or chewing[12]. It is also very much possible that not all biological coupled
oscillators need to be confined within the same organism. A superb example of

this is in congregations of synchronously flashing fireflies. Another example is a

Figure 1.1: Thousands of fireflies flash in unison in this time-exposure of a
nocturnal mating display. Each insect has its own rhythm, but they synchronise
with the others through its nearest neighbours’ rhythms. Picture from the paper
by Strogatz and Stewart[12]

group of crickets that chirp in absolute (and sometimes maddening) synchrony.
In order to understand how coupled oscillators work together, it is important
to understand how a single oscillator operates. A pendulum is a good example

of a single harmonic oscillator. A harmonic oscillator is a linear oscillator.



Its amplitude is fixed by initial conditions while its frequency can be varied
by changing the values of the parameters (the length of the pendulum, for
example). Amplitude and frequency can be tuned independent of each other for
such oscillators. However, a biological oscillator is a non-linear oscillator and
its amplitude and frequency cannot be varied indepent of each other. It is due
to non-linearity that it is necessary to thoroughly understand the mechanism
by which a single oscillator operates.

Coupled oscillators can synchronise in a variety of possible ways. In the
case of two coupled oscillators, phase-locking? can be brought about in two
ways—synchrony and anti-synchrony[12]. In the former case, the phase differ-
ence between the oscillations of the two oscillators are completely in phase, i.e.
their relative phase is zero. In the latter case, the relative phase difference is
m. These two phenomena are also known as attractive and repulsive entrain-
ment®|5]. It is to be remembered however that if two oscillations are phase
locked it does not mean they are synchronised. Only if the phase difference
between the two oscillators is 0 or 7 can they be called synchronised. If the
phase difference should fall between these two values, the oscillations are sim-
ply phase-locked, and not synchronised in the technical sense[12][5]. However,
this is a matter of convention. Other authors[10] use the words ‘phase-locking’
and ‘synchronisation’ equivalently. Perhaps it would be better to say that there
is ‘phase-synchronisation’ if there is ‘phase-locking’[8]. In this thesis, we have
adopted the Kuramoto and Strogatz viewpoint and have meant ‘complete syn-
chronisation’, i.e. phase-locking by 0 or m when we speak of ’synchronisation’.

A nice example of attractive and repulsive coupling in the natural world is
kangaroos and humans running[12]. The hind legs of kangaroos fall in step as
it runs, showing attractive coupling, whereas a human runs on alternating legs
displaying repulsive coupling. Three or more coupled oscillators show even more
diverse behaviour. Three oscillators can couple in four ways: all in phase; all out
of phase by 7/3; two in phase and the third out of phase by any value and finally
two out of phase by 7 and the third going twice as fast. The final pattern is ex-

hibited by a man walking slowly with the help of a walking stick. His legs have

2A definite phase difference existing between oscillators with the same patter of oscillation

3Entrainment is a term used by Yoshiki Kuramoto that means the same thing as synchro-
nisation in the sense we use it here, which is phase synchronisation with a phase-difference of
Oorm.
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a 7 phase difference, while his walking stick has a frequency double that of his
legs (see figure 1.2). Another important class of oscillatory phenomena shared
by many living organisms in the biological world are circadian rhythms[1][5].
Circadian rhythms are approximately 24-hour cycles in the biochemical, physi-
ological or behavioural processes of living beings. Under normal environmental
conditions, such oscillations are synchronised by periodic external forces asso-
ciated with the sunrise-sunset cycle. However, it has been observed that such
oscillations continue taking place (albeit with a slight deviation form their 24-
hour cycle) even if the periodic driving forces are removed. This leads to the
conclusion that there are limit-cycle oscillators in-built into living organism. In
the microscopic domain, these consist of a collection of mutually coupled and
synchronised (or at least phase-locked) cellular oscillators.

A very interesting aspect of synchronisation among coupled oscillators is that
the onset of synchrony can be treated as a phase-transition?[5]. In natural sys-
tems, a collection of coupled oscillators are very seldom exactly identical there
remain some (small) difference between them, mostly in the form of a range of
natural frequencies for the collection. Additionally, environmental effects are
ever-present, and these effects can introduce different responses from otherwise
identical oscillators. Thus such oscillators affected by random external effects
form a statisticl ensemble. The external stochastic perturbations can be detri-
mental to the attainment of mutual entrainment[5]. Contrary to this, coupled
oscillators have the tendency to achieve mutual entrainment. These two oppos-
ing effects play against each other in driving the phase transition of the system
from a non-entrained to an entrained state[5].

Synchronisation is controlled by two independent aspects the properties of
the single oscillator and the number of oscillators that are coupled. Stochastic-
ity, both internal and external, affect the time-keeping ability or the stability of
oscillation of a single oscillator. It is primarily the number of oscillators which
determine the time-keeping ability—the stability of synchronisation—of a col-
lection of oscillators. We use a master equation approach in order to account
for internal noise, external random influences and the effect of varying number

of oscillators. In the limit of small fluctuations we recover the deterministic

4A rapid change of a system from one state to another for a very small change in control
parameter(s)



d TWO TN SYHCHRONY

) A, A M

7N

B Two OUT OF SYMCHRONY

At ALA

& THREE IM SYRHCHROMNY

:

¢

d THREE OME THIRD OUT OF PHASE

)

& TWC I SYNCTHRONY AMD OHE WILD

((

f Two OUT OF SYNCHRONY AMD ONE TWICE AS FAST

L AL AL

%

Figure 1.2: Different examples of phase-locking in the natural world man and
kangaroo. Figure from the paper by Strogatz and Stewart[12]



6 CHAPTER 1. INTRODUCTION

description.

The outline of the thesis is as follows. We have studied the repressilator
which a simple model clock constructed using a negative feedback genetic cir-
cuit. The motivation is to find generic features which underlie the operation
of complex biological clocks in a simple model. We have reviewed previous
work done on single repressilators as well as on repressilators coupled by the
quorum sensing mechanism. Chapter 2 contains a description of the repressi-
lator as well as a review of experimental results regarding the operation of the
repressilator. Chapter 3 reviews the mathematical models (both deterministic
and stochastic) used to model the repressilator as well as computer simulation
results of those models. Chapter 4 contains our analysis of the repressilator.
We have performed numerical simulations to study the properties of existing
deterministic and stochastic mathematical models of the repressilator. We have
also suggested a new mechanism by which repressilator circuits can be coupled
and have performed numerical simulations of two repressilators coupled by our

mechanism in order to study entrainment between the two oscillators.



Chapter 2

The Repressilator

2.1 Introduction

Sailing ships in the 16th and 17th century faced a singularly difficult naviga-
tional problem. Navigators in the Age of Sail were experts in finding out the
current latitude of their ship, but it was the accurate determination of the
current longitude that foxed them. One solution was to have two clocks on
board one kept at Greenwich time and the other kept at ship time according
to the positioning of the sun at zenith, which was marked as noon. The differ-
ence in time between the two clocks would give the current longitude. However,
differences in temperature and rough sea conditions played havoc with the ac-
curate time-keeping abilities of the two clocks. Errors in determining longitude,
however small time-wise, would translate into big differences in actual distance.
For instance, one degree longitude approximately equals 111 km at the equator.
One degree is also equivalent to four minutes of time (24 x 60/360). So an error
of a mere four minutes in timekeeping would translate into an error of 111 km
or 69 miles or 60 nautical miles. This might seem small in the vast oceans, but
this error tended to accumulate. Consequentially, people were lost at sea. The
need of the hour was to build an accurate and robust clock which would keep
perfect time in face of even a thundering hurricane. The British government
offered an incredible £20,000 (about £6 million at present) for the building of

this clock. John Harrison was the man who did it[11].

The point of this is that John Harrison was able to make a clock that kept

accurate time even in the face of severe weather conditions like rolling seas and
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temperature differences. The clock is an oscillator, and the weather conditions
are stochastic perturbations that tend to force the clock to run incorrectly. A
similar problem is faced by biological oscillators. Stochasticity is inherent in
the natural world, and noise is a constant hindrance to the suitable working
of any biological oscillator. However, in spite of this, the familiar biological
oscillators in the brain or the pacemaker of the heart are incredibly robust and
keep accurate time. If they had been unable to do so, life as we know it might
not have survived. So the question is, what is it that lends robustness to these
natural oscillators? To study this question, physicists have made a (sort of a)
‘spherical cow’ model—a simple clock, constructed out of three genes connected
to each other in a negative feedback circuit. This is the Repressilator. It was
Michael Elowitz and Stanlislas Leibler[3] who first proposed and constructed

such a model in the bacterium FEscherichia col.

2.2 Description of a repressilator
2.2.1 Generic Schematic Description

A gene is a segment of DNA! that codes for a particular protein or RNAZ2. It is
the smallest unit of an organism that is still able to contain and transfer genetic
information. The genes, located on the chromosomes, contain the information
for the production of proteins. Gene expression is a process through which
a gene produces protein, and consists of two sub-processes: Trascription and
Translation. Transcription is the production of messenger RNA from the genes,

while translation is the conversion of mRNA into protein.

Ca)

GO

Figure 2.1: Schematic description of a repressilator (figure from [3])

IDNA: deoxyribonucleic acid
2RNA: ribonucleic acid
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Figure 2.1 describes the repressilator schematically. A repressilator has three
genes a, b and ¢ along with the corresponding proteins they express: A, B and
C. These proteins act as repressors, i.e. they repress or inhibit the rate of
expression of the gene next in line. For example, protein A represses gene b,
slowing down the production of protein B. This inhibitory effect increases as
the concentration of the protein increases. Similar to A repressing b, B represses
c and finally C represses a to complete the cycle. Hence it is a negative feedback
loop. For example, if we were to start out with a bit of A and no B or C, and
if these genes were not connected, then the concentrations of each of A, B and
C would keep on increasing since the rate of expression is constant. The only
check to this would then be the natural degradation of the proteins (maybe into
their constituent amino acids), which is also always present at a constant rate.
However, once they are connected, a high concentration of A would decrease the
expression rate of b, which would decrease the concentration of B. This would
then let ¢ express at a faster rate, which would increase the concentration of C'.
This would ultimately result in a checking effect on the production of A, which
would have to decrease. Then b would be freer and B would increase, decreasing
C and increasing A again. Hence, the cycle would start once again. Oscillations
can be expected, and are found, in the concentrations of the proteins in the

steady state (i.e. after a transient state).

2.2.2 Elowitz and Leibler’s construction

The repressilator created by Elowitz and Leibler is described thus (see figure
2.2). TetR, Acl and Lacl are the three proteins that are expressed by their
parent genes tetR, ¢l and lacl. The gene lacl is obtained from E. coli, tetR
from the tetracycline-resistance transposon® Tn10 and ¢l from A phage. The
protein Lacl inhibits the expression of the gene tetR. The protein TetR in turn
inhibits the expression of the gene ¢I while protein Acl inhibits the expression of
lacI, thus completing the cycle. So it is a negative feedback circuit, which could
lead to oscillations, as we shall see. A green fluorescent protein (GFP) is used
to detect the concentration levels of the repressilator components. In the second

figure it can be seen that TetR inhibits GFP, so that decrease in intensity of

3A transposon is a discrete piece of DNA that can insert itself into other DNA sequences
within the cell
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Figure 2.2: Diagram of the repressilator showing the genes and the proteins that
make up the repressilator (figure from [6])

the GFP as seen by an optical microscope indicates high concentration of TetR.
The experiment performed by Elowitz and Leibler showed oscillations in the
concentrations of the proteins with time periods greater than cell-division time,

implying that the state of the oscillator is transmitted through generations.

2.3 Experimental Results: Elowitz and Leibler

Elowitz and Leibler built their repressilator in the bacteria E. coli, and used GFP
to observe the presence (or absence) of oscillations. Since single cells had no
apparent means to achieve or maintain synchrony, individual cells were isolated
under the microscope and the their fluorescent intensity was studied as these
cells grew into small two-dimensional micro-colonies consisting of hundreds of
progeny cells. The graph shows temporal oscillations in GFP fluorescence inten-
sity with a time-period of roughly 150 minutes, which happened to be almost
three times as large as cell-division time-scales. Snapshots of a microcolony of
bacteria are given in figure 2.3, while the fluorescence intensity of the marked
cell against time is given in figure 2.4.

Looking at the graph (figure 2.4), one can see that the time-period of os-
cillations is around 150 mins (peak-to-peak). The bars at the bottom of the
graph show that septation* occurs about three times per oscillation cycle on av-

erage, that is, with a time period of about 50 mins. This conforms to standard

4Septation means cell-division
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Figure 2.3: Snapshots of a microcolony of E. coli taken in (a) fluorescence and (b)
bright-field. The arrows indicate the cell under observation (figure from [3]).

Fluorescence
(arbitrary units)

120

100}
80
60 |-
40 |-

20

$.
I

= &,

Ba 0

e

an*w*uﬁé __________ _________ i

0
0

100

i
200

300

4
400

—1
500

600

Time (min)

Figure 2.4: Oscillations in GFP fluorescence intensity (bars at the bottom indicate
septation events) (figure from [3])

cell-division time-periods. Therefore it is seen that the state of the network is
transmitted to its offsprings despite there being noise in the form of stochastic
fluctuations in the dynamics of the cellular clock. However, significant differ-
ences in period and amplitude of the oscillator were observed in the oscillator
output. These differences were seen among cells in different lineages (descended
from different ancestors) or among the cells in one lineage, which are called
siblings (see figure 2.5).

Elowitz and Leibler conclude that it is possible to design and construct
a new artificial genetic oscillator with new functional properties from generic
components. It might then be possible to attempt to understand the design
principles of more complex oscillators such as the circadian oscillator using the
simple repressilator model. However, as opposed to the robust behaviour of
the circadian clock, the behaviour of the repressilator (according to the these

experimental results) seemed to be noisy and variable.



12 CHAPTER 2. THE REPRESSILATOR

150 150 A
)
100} . r?'f{\f 100 - llll?
T r|"|

50 : | _.-ri"\ -

ﬂﬂ 200 400 600
150 400

AT
200 ol “‘5

TN

LN

00 300 600

"~

Figure 2.5: Top left figure shows phase delays after septation among sibling
cells (blue and green) relative to the reference cell(red). Top right figure shows
that phase is maintained but amplitude varies greatly after septation. Bottom
left figure is for reduced period (green) and long delay(blue). Bottom right
figure shows large variations in period and amplitude. The top two figures and
the bottom left figure show the variation of oscillation among cells of the same
lineage. The bottom right one shows the variations between cells of different
lineages. Figures from [3].
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2.4 Quorum Sensing

Elowitz and Leibler’s results show that there are significant variation in fre-
quency and amplitude among different repressilators. The problem with using
a small number of biological oscillators is that stochastic fluctuations (noise)
tend to dominate the oscillations preventing mutual entrainment or effective
synchronisation. Intercell coupling is a way to address these issues. But how
would one couple different cells (repressilators)? A possible answer is through

quorum sensing.

2.4.1 What is Quorum Sensing?

Bacteria can communicate with each other by releasing and detecting ‘signalling
molecules’” within their environment. The term ‘quorum sensing’ is used to de-
scribe the phenomenon whereby the accumulation of signalling molecules enable
a single cell to sense the number of bacteria (cell density). However, in the
natural environment, different classes of bacteria may use different signalling
molecules, so that communication is possible only within the same class of bac-

teria.

Quorum sensing allows bacteria to communicate with each other and co-
ordinate their behaviour. Conditions in the natural world change often and
quickly, and quorum sensing allows bacteria to respond speedily and adapt
themselves to the change in order to survive. For example, discovery of a source
of nutrients needs to be communicated quickly to the entire bacterial popula-
tion for first claim. Also, conflict with other organisms might be necessary for
securing claim over the source of nutrients. Co-ordination of behaviour (timing
aggression and defence) is done using quorum sensing. Again chemicals like an-
tibiotics are toxic to the bacteria. Detection and avoidance of regions with high
toxicity concentration (for the bacteria) is essential for survival. Additionally,
it is very important for pathogenic® bacteria during infection of a host (e.g. hu-
mans, other animals or plants) to co-ordinate their virulence in order to escape

the immune response of the host and establish a successful infection.

5A pathogen (from Greek pathos, suffering/emotion, and gene, to give birth to), infectious
agent, or more commonly germ, is a biological agent that causes disease or illness to its host.
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2.4.2 Using Quorum Sensing in Repressilators

Jordi Garcia-QOjalvo, Michael Elowitz and Steven Strogatz[4] have used the idea
of quorum sensing to couple different non-identical and noisy repressilators.
They have shown through computational modelling that it is possible for an
ensemble of uncorrelated repressilators to achieve mutual entrainment through
a phase transition, i.e. a sudden shift to mutual entrainment as a function of cell-
density. Additionally, they have shown that coupling via quorum sensing can

also make the ensemble of repressilators robust against stochastic fluctuations.

2.4.3 Coupling Mechanism

Figure 2.6: Mechanism for coupling repressilators using the auto-inducer (figure
from [4])

Cell membranes are usually very selective about letting in or letting out
molecules. It is not usually possible for proteins to directly diffuse out of cell
membranes and interact with other proteins form other cells. As a result, some
new exchange component needs to be introduced into a repressilator cell in
order to enable coupling. The diagram above describes the system proposed
by Garcia-Ojalvo, Elowitz and Strogatz. They have used the quorum sensing
mechanism of the bacterium Vibrio fischeri, which is a bioluminicent organism
that lives in symbiosis with certain marine hosts forming part of specialised
light-emitting organs. The protein LuxI synthesises a small molecule called
the auto-inducer (AI). This is the critical coupling component as the Al is the
molecule that can diffuse through cell membranes. Another protein LuxR binds
with this Al and induces some genes to transcribe creating certain enzymes
that ultimately lead to the emission of light. Garcia-Ojalvo et al. have placed

the protein Lacl of the original repressilator under the control of the LuxR-AI
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complex as well as placing LuxI under the control of another copy of Lacl. The

model is described in more detail thus.

e The protein synthesises the autoinducer AT which can diffuse through

cell membranes

e The protein LuxR binds to AI: the LuxR-AI complex induces the expres-

sion of a second copy of the gene lacl
e The expression of the gene [uzR is controlled by the original protein Lacl
e A second feedback loop appears in the cell

e Increased Lacl concentration inhibits the rate of expression of the genes

tet2 and

e Decreased concentration decreases concentration of LuxR-AI com-

plex
e Decreased LuxR-Al concentration decreases lacI concentration

e The two Lacl transcripts are assumed to be identical

2.4.4 Conclusions

A description of the mathematical modelling as well as the simulation results by
Garcia-Ojalvo et al. is given in the next chapter. Briefly, what they conclude is
that quorum sensing can be an especially effective method of intercell couping
between repressilators, and this can lead to global synchronisation among a
highly heterogeneous ensemble of repressilators. Also, they found that such an
ensemble is also robust to random phase drifts of the individual oscillators due to
noise[4]. It is an interesting result and seems to suggest that the problems faced
by Elowitz and Leibler[3] using a single repressilator with noise can be resolved
by using a large number of repressilators coupled by quorum sensing, even in the
presence of noise. The positive effect of coupling is one of the points by which
this model differs from the original design of the repressilator, which had only
negative feedback, and it is possible that such positive feedback is instrumental
in providing mutual entrainment and robustness against stochasticity. However,

it is to be remembered (as Garcia-Ojalvo, Elowitz and Strogatz themselves admit
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in their paper) that quorum sensing is but one of the many different ways of
coupling cells together. Examples given in their paper include the coupling in
the sinoatrial node® of the heart which is electronic and is mediated by gap
junctions. Also, in the suprachiasmatic nuclei” of the mammalain circadian
pacemaker, coupling is proposed to occur due to the diffusion of an inhibitory
neurotransmitter.

Thus such examples of naturally occurring robust clocks cannot be modelled
by the mechanism proposed by Garcia-Ojalvo et al.. A close analog as mentioned
in the paper might be in metabolic synchrony observed in yeast cells. So the
proposed system only partially reflects the natural world. However, it is true
that the variability of types of intercell coupling in naturally occurring oscillators
is too great to allow for an effective model by any single simple mechanism. From
that viewpoint, the work done by these three researchers is important. However,
according to a private communication from Mukund Thattai, experimentalists
have so far been unable to reproduce the simulation results given above. A
possible reason for this is that the strength of intercell coupling by quorum

sensing might not be strong enough to overcome noise and fluctuation effects.

6The sinoatrial node of the heart is what is commonly known as the pacemaker. It is
responsible for maintaining sinus rhythm, that is the regular beating of the heart.

7The suprachiasmatic nucleus is a bilateral region of the brain located in the hypothalamus
responsible for carrying out circadian rhythms within the body.



Chapter 3

Mathematical Modelling

3.1 Introduction

The dharma of physicists is to model physical systems (simple or complicated)
and the tool that is used to achieve such ends is Mathematics. However, solving
mathematical equations can sometimes be impossible due to non-linearity of the
equations or the complexity of the problem. Computer simulations then come
to the rescue. The repressilator too has been modelled mathematically.[3][6][4]
Elowitz and Leibler, in addition to performing experiments, also modelled the
repressilator mathematically[3]. They used deterministic modelling using the
chemical kinetics approach which involved Michaelis-Menten dynamics that reg-
ulate the rate of formation and reactions of enzymes. They also modelled the
repressilator stochastically, and used the Gillespie algorithm|[2] to solve it. Adiel
Loinger and Ofer Biham|6] chose to adopt the rate equation approach for the
deterministic case and the master equation approach for the stochastic case.
Finally, Garcia-Ojalvo, Elowitz and Strogatz[4] modelled the quorum sensing
problem using the Michaelis-Menten approach. They also added a Gaussian

noise component of the Ornstein-Uhlenbeck type[9] to model the stochastic case.

3.2 Elowitz and Leibler’s model
3.2.1 Deterministic: Michaelis-Menten Kinetics

The dynamic variables in this model are the repressor proteins and the mRNA
molecules. As defined earlier in Chapter 2, gene expression is a combination

of two processes: transcription, in which a gene produces messenger RNA, and

17
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translation, in which proteins are produced from mRNA. Each of the three

proteins/mRNA molecules were considered to be identically behaved. There

are six coupled first-order differential equations.
dm; «

dt :—mi‘Fm‘FaO

(3.1)

— = =B (pi —my) (3.2)

The indices i and j run from 1 to 3. Here ¢ =lacl, tetR, cI, while j =cl lacl tetR.
The quantities p; and m; are the concentrations of the repressing protein and
the mRNA respectively and suitably normalized (‘concentration’ here means
the average copy number! per cell). The parameter a + ag is the rate of pro-

duction of the protein in absence of the repressing protein. In the presence of

1+p]

of the concentration of the repressor protein modified by the Hill coefficient n,

a repressor the rate drops to ( & B + a, where the first term gives the effect

and aq is the ‘leakiness quotient’ that describes translation rate independent of
the repressor. So the process of gene expression in the repressilator circuit is
divided into two parts: the rate part that is modified by the concentration of
the repressor and the other part that is not. The parameter 3 is the ratio of the
decay rates of the protein and the mRNA. The normalization of the protein and
mRNA concentration are thus: m; is normalized by the translation efficiency
which is the average number of proteins produced per mRNA molecule, while
p; is normalized by the quantity K, (called the Michaelis constant) which is
the number of repressor necessary to half-maximally repress a promoter (i.e. an
mRNA molecule which performs translation). The Hill coefficient is a measure
of the degree of cooperativity of the attaching molecules (here the repressors).
A Hill coefficient of 1 indicates that the effect of binding a repressor does not
depend on the number of repressors already present. A Hill coefficient greater
than one indicates positive cooperativity so that the effect of the binding of each
new repressor is enhanced by the number of repressors already bound. A Hill
coefficient less than one indicates the the effect of existing repressors decreases

the effect of each new binding.

LCopy number means the average number of molecules of a gene per genome contained in
a cell. Genome is the complete package of genetic material for a living thing. A copy of the
genome is found in most cells.
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Figure 3.1: Oscillation in the levels of the three repressor proteins in the deter-
ministic case. The inset shows the normalized autocorrelation function of the
first protein. The parameter values used by Elowitz and Leibler were as follows:
average translation efficiency = 20 proteins per transcript, Hill coefficient n = 2,
protein half-life = 10 minutes, mRNA half-life = 2 minutes, K,,, = 40 repressors
per cell (figure from [3]).
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Figure 3.2: Analysis of the stability of the steady state against parameters (3
and « x K,,. Stable and unstable regions in the (- parameter space with
respect to the steady state are shown. The cross mark in the unstable region of
the graph corresponds to the parameter values of figure 3.1. It is in the unstable
steady state that oscillations occur (figure from [3]).

The shaded region in figure 3.2 shows the region of parameter space for which

oscillations take place.

3.2.2 Stochastic: Gillespie Algorithm

Elowitz and Leibler used the Gillespie SSA algorithm[2] to solve for the stochas-
tic case (following the Gillespie prescription|2]). Parameter values used were
chosen keeping in mind that they approximately be similar to those chosen in
the deterministic case. The output was the following figure.

It can clearly be seen (figure 3.3) that there are oscillations which persist,

but there is large variability. As a result, the autocorrelation time is finite
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Figure 3.3: Oscillation in the levels of the three repressor proteins in the stochas-
tic case (y-axis is proteins per cell). The inset shows the normalized autocor-
relation function of the first protein. A similar set of values of parameters to
those of figure 3.1 were used (figure from [3]).

(approximately two periods). So stochasticity seems to be a nuisance for regular
oscillations in the single repressilator both experimentally (see Chapter 2) and
in simulations.

In this model, oscillations are not seen if the Hill coefficient is taken as 1.
this means that a single repressor attached to each transcript carries out the
job of repression. This is called non-cooperative binding. As the Hill coefficient
is increased to 2, oscillations are observed for suitable values of the parameters
only if the mRNA level is included. For Hill coefficient 3 or larger, oscillations
take place even if the mRNA level is not included in he analysis. This seems to

show that there is positive cooperativity in the system.

3.3 Loinger and Biham’s model

Adiel Loinger and Ofer Biham have recently studied[6] the repressilator through
computer simulations. In the Elowitz-Leibler model, oscillations were not, ob-
served for Hill coefficient n = 1, even if the mRNA level was included. However,
Loinger and Biham have attempted to check for oscillations without coopera-
tive binding (n = 1) using the following reclassifications of proteins and ignoring
the mRNA level. They have subdivided the proteins into two types: free and
bound. As mentioned earlier, a protein represses the next gene and slows down
its rate of expression. Loinger and Biham theorise that in order to bring about
its repressive action on the gene next in line, a protein needs to be bound to
the gene. If a protein expressed by a gene is not bound to the gene next in

line, it is then considered to be ‘free’ and ‘inactive’. If it is bound, then it is
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considered to be carrying out repression and is labelled ‘bound’ or ‘active’. The
word ‘binding’ implies that the protein has bound itself to the mRNA next in
line and is inhibiting transcription, which effectively represses expression. The
absence of cooperative binding also means that there is only one binding site
per mRNA molecule (or gene).

The present problem can be studied both deterministically and stochasti-

cally. We begin by studying the deterministic case.

3.3.1 Deterministic treatment

The concentration? of the i*" protein p; is subdivided into the above-mentioned

two classes:
a) Free (or inactive) : pif
b) Bound (or active) : p?
Of course p; = plf + p?, with i going from 1 to 3.
Processes

The processes involved in the time-evolution of the two classes of proteins are

thus:

1. Degradation: Both the free and bound proteins degrade at certain rates.
The parameter ¢ represents the rate of degradation of the free proteins,
while the parameter -, indicates the rate of degradation of the bound

proteins.

2. Expression: Free proteins are expressed from their parent genes at a con-
stant rate g, while the rate of production is repressed by the previous
bound protein. The word ‘previous’ implies that if it is the rate of pro-
duction of the i*" protein under consideration, then the (i — 1)*" protein
will be called the ‘previous’ protein. Bound proteins cannot be directly

expressed by genes.

3. Exchange of protein classes: Free and bound proteins can convert between

themselves. The process of a free protein converting into a bound one is

2As defined earlier, ‘concentration’ here means the average copy number per cell
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called ‘binding’ and the process of a bound proteins converting into a free

protein is called ‘unbinding’.

2)

Binding: Free proteins attach themselves to vacant binding sites and
convert to bound proteins. This is the only way bound proteins are
formed. The rate of such conversion depends on the number of cur-
rent free proteins as well as on the number of current vacant binding
sites. The latter can be reinterpreted as the number of current bound
proteins if the number of binding sites is held constant. A point to
be remembered is that a free protein can only bind to the gene (that
is, the mRNA) next in line. This means that the i*" free protein can
only bind to the (i + 1)** vacant binding site. Free TetR for example
cannot bind itself to lacl, but can bind to A ¢l.

Unbinding: Bound proteins can unbind themselves from the mRNA
and become free proteins. The rate of such conversion depends only
on the number of current bound proteins, as there is no limit to the

number of free proteins.

Rate Equations

The above processes give rise to six differential rate equations (two for each of

the three proteins). They are (the index i goes over 1, 2 and 3):

dp] ' '

o =9 =pt) = p] —aop] (1= p) + arpf (3.3)
dp?
v aopl (1 —pb) — arpl — vup? (3.4)

Always p; = p{ + p?, with i going from 1 to 3.

We look at the two equations term by term.

e Equation (3.3)

a) First term:

The first term g(1 — p?_,) represents the rate of expression of the
it" free protein. As mentioned earlier, ¢ is the constant rate of ex-

pression. Here we have normalised the number of binding sites per
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cell per protein. Therefore the expression (1 — p?_,) is equal to the
number of vacant binding sites of the previous ((i — 1)*") protein and
indicates the effect of repression by the previous protein. More the
value of the (1 — p? ;) expression, lesser is the repression on the i'"

protein.

Second term:

The second term ”yfpzf gives the degradation of the free protein at a

rate determined by the parameter ;.

Third term:

The third term ozopf(l — p?) is a bilinear term. It is the binding
term, and indicates the rate of binding of the free protein to a vacant
binding site. This term depends on the free protein concentration
as well as the number of vacant binding sites of the current (i*")

protein. More the value of this expression, greater is the probability

of conversion of a free protein into a bound one.

Fourth term:

The fourth term a;p? is a linear term. It is the unbinding term, and
indicates the unbinding of the bound proteins from the binding sites,
conversion into free proteins and freeing up of the binding sites. This
term only depends on the bound protein concentration as there is no
limit on the number of free proteins. More the value of the expression

p?, greater is the possibility of unbinding.

e Equation (3.4)

a)

b)

c)

First term:

The first term agp! (1 —p?) is the bilinear binding term, as described
earlier.

Second term:

The second term aopif(l — p?) is the linear unbinding term, as de-

scribed earlier.

Third term:
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The third term v,p? gives the degradation of the bound protein at a

rate determined by the parameter ~;.

It is seen that adding equations (3.3) and (3.4) gives the rate equations for

the whole protein p;.

dp;
- =9(1 —p0_1) — vl — ot (3.5)

Figure 3.4 shows the processes involved and the function of each term in the

rate equations 3.3 and 3.4.

Previous bound protein

Repression/ | g(1 — pf?_l)

Expression

Binding term
aop! (1—pb)

Free protein _9

arp?

Bound protein

b
p;

Unbinding term
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Figure 3.4: Schematic diagram showing the various processes involved and the
function of each term in the rate equations 3.3 and 3.4.

3.3.2 Stochastic treatment

The repressors and the binding sites often appear in low copy numbers. As

a result, the oscillations are noisy and irregular|[7]. Therefore the repressilator
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circuit cannot be fully analysed by using the deterministic rate equations ap-
proach. It is necessary that we switch to a stochastic approach, and perform

our analysis using master equations.
Markov Processes

Master equations are valid for Markov processes[9] only. A Markov process is
defined as a stochastic process with the property that for any set of n successive

times (that is, t; <ty < ... < t,) one has
Pin—1 (Yn,tn | Y1t y2,t25 5 Un—1,tn—1) = Pijp Unsta | Yn—1,tn-1)  (3.6)

The state n is defined as the state of the system when the variable Y takes
the value y,, at time ¢,,. Py,,_; and P;; denote conditional probabilities. Py,_;
is the probability density of the variable Y to have taken the value ¥, at time
tn, given that it had taken the values y,_1 at time ¢,,_1, y,—2 at time ¢,,_o and
so on upto y; at time ¢;. P}y is the probability density of the variable Y to have
taken the value y, at time ¢, given the value y,—1 at time ¢,_;. P}y is also
called the transition probability. The left-hand side of the equation represents
the transition probability of a system at the state n given all the previous states
in the system’s path through phase space. The right hand side denotes the
transition probability of the system at state n given the state n — 1.

The above relation implies that the conditional probability density at t,,
given the value y,,—1 at t,_1, is uniquely determined and is not affected by any
knowledge of the values at earlier times. This means that the evolution of the
system at a certain time-step for a discrete Markov process depends only on the
value of the system variable at the previous time-step and not on any of the

preceding time-steps. In other words, the system has no memory.
Master Equations

Let the range of the system variable Y be a discrete set of states n (as defined

earlier). Then we can write the master equation as:

don _ > {W P (6) = W pa (1) } (3.7)

The quantity W, is the transition probability per unit time from state n’

to state n, while the quantity W, , is the transition probability per unit time
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from state n to state n’. The quantity p, (¢) is the probability of the system
to be in state n at time ¢, while the quantity p, (t) is the probability of the
system to be in state n’ at time t. The LHS dp,,/dt denotes the time evolution
of the probability of the system to be in state n at time t. The sum is over all
the states n’ # n.

The master equation is thus a gain-loss equation for the probabilities of
separate states n. The first term in the equation, W,/ p, (t), is the gain of
state n due to transitions from all other states n’. The second term in the
equation, W, p, (t) is the loss due to transitions from state n into other states
n/. Also, the transition probability is positive or zero for all cases where the
initial and final states are unequal; that is, W,,» > 0 when n’ # n. Of course,

terms with n = n’ do not contribute to the sum.

Loinger-Biham master equations

f

In the stochastic description, we denote the number of the it free protein by n;,
and the number of the i*" bound protein by n?. We consider the time evolution
of the probability distribution function P (n{,ng,n?{,nl{,ng,ng). This is the

probability for a cell to include n{ copies of the i free protein and n? copies
f

; can take values 0,1,2..., while the

of the i*" bound protein. The quantity n
quantity nli’ can only take values 0,1, since we have assumed a single binding

site. Our master equation will therefore be
st bbb
P(n{vnévng’nl’n%’HB)

= Z {g(l—ngl) [P(...,n{—1,...,nl{,ng,ng) —P(ﬁf,ﬁb)}

+ [(n{—l—l)P (...,n{—l—l,...,nl{,ng,ng) —n{P(ﬁf,ﬁb)}
+ ag [(n{—kl)an ...,nl-f—kl,...,n?—l,...) —n{(l—n?)P(ﬁf’ﬁb)}

+aq [(1—nf)P(...,n-f—1,...,nf+1,...) —an(ﬁf,ﬁb)}
+ Y [(n?—i—l)P (n{,ng,ng,...,nf—i—l,...) —nlP (ﬁj’jﬁb)} } (3.8)

The expression i/ = (n{,ng,ng) while the expression 7° = (n},n5,nb).

Therefore, the expression P (ﬁf, ﬁb) =P (n{, ng, ng, n},ng, ng)

Lets look at equation (3.8) term by term.
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e LHS:

This term is the time evolution of the probability distribution function

P (n{, ng, ng, n%, n, ng) defined earlier.

e RHS: First term:

This term (g (1 — nli’fl) {P ( .. ,nzf —-1,.. .,nl{,ng,ng) - P (ﬁf, ﬁb)D rep-
resents the change of one i free protein and is the stochastic equivalent
of the rate of expression of the i'" free protein. The term g (1 —n?_,)
[P ( .. ,nlf —1,...,n8,nk, ng)} implies the transition of the system from
a state having one less i*" free protein to the current state, while the other
term g (1 —nb_,) [P (7f,7")] implies the transition of the system from
the current state to another state having one less i*" free protein. It repre-
sents, like equation (3.7), a gain-loss scenario. The expression g (1 — ”?71)
is the transitions probability and plays the roles assigned to W, as well

as Wy, in equation (3.7). The expression P ( .. ,nif —1,.. .,n?,né,n%)

takes the place of p, in equation (3.7) while P (ﬁf, ﬁb) substitutes p,.

e RHS: Second term:

This term vy [(n{ +1)P ( .. ,nzf +1,.. .,nl{,ng,ng) — n{P (i, ﬁb)} rep-
resents the decay of the free protein. The state (... ,nlf +1,...,n% n5,nd)
is the initial state while (7i/,7®) is the current state. The transition from
the initial to the current state is accompanied by the transition probabil-

ity v (nzj + 1), while the reverse transition is weighted by the transition

probability vy n{

e RHS: Third term:

This term (ao [(nzf +1)ntpP (,nlf +1,...,n0 - 1,...) —nl(1-nb)P (ﬁf,ﬁb)D
is equivalent to the unbinding term. The transition from state (... ,nif +
1,...,n?—1,...) to the current state (7i/, 7®) means that one free protein
is decreased and one bound protein is increased. This is weighted by the
transition probability ao(n{ + 1)nf. The reverse transition is weighted by

the transition probability aon{(l —nb).

7

e RHS: Fourth term:
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This term (al [(1 —nb)P ( nl —

/ 1,...,ng+1,...)_ngp(ﬁf,ﬁb)])
is equivalent to the binding term. The transitions take place between
states (... ,nif —1,...,nt+1,...) and (7i/, %) which is the current state.
Evidently, the number of free proteins increase by one and the number of
bound proteins decrease by one in the ‘forward’ process, while the opposite

happens in the ‘reverse’ process. The ‘forward’ or ‘gain’ process is weighted
b

i

by a;(1 — n?) while the reverse has the transition probability a;n

e RHS: Fifth term:

This term (% {(nﬁ’ +1)P (n{, ng, ng, e ,né’ +1,.. ) — ni?P (ﬁf,ﬁb)D rep-
resents the decay of the bound protein. The transition is between states
(n{,ng,n?{, ...,n? +1,...) and the current state. Here the number of
bound proteins decrease or increase by one for the forward and reverse

processes. The weights are %(né’ +1) and %nﬁ-’ respectively.

We have made an analysis of the repressilator using the Loinger-Biham rate
equations as well as the master equations. The results are given in the next

chapter.



3.4. QUORUM SENSING MODEL 29

3.4 Quorum sensing model

3.4.1 Model (without stochasticity)

The model used by Garcia-Ojalvo et al.[4] (refer to chapter 2) in describing their
model of intercell coupling through quorum sensing makes use of Michaelis-
Menten kinetics in the same spirit as Elowitz and Leibler. The equations for
mRNA have terms representing degradation of mRNA and repression by pro-

teins. The term for the lacl gene is also modified by the AI concentration.

mRNA equations

dai [

a = “tiver (3.9)

dbz (6%

Di Y 1

at iy ay (3.10)
de; « kS;

K Y 3.11
T W i s (8.11)

Here a;, b; and ¢; are the concentrations in the " cell of the mRNA tran-
scribed from genes tetR, c¢I and lacl respectively. The corresponding protein
concentrations are given here by A;, B; and C; respectively, keeping in mind
that the two copies of Lacl are assumed to be identical. The quantity S; is the
concentration of AI. The Hill coefficient n indicates (as usual) the level of coop-
erative binding. The model is non-dimensionalised by measuring time in units of
mRNA lifetime which is assumed equal for all genes. The protein levels as well
as the AI levels are normalised by their Michaelis constants (as defined earlier
in section 1 of this chapter). The parameter « is the dimensionless transcription
rate in absence of repressors (equal to a + g from section 1 of this chapter),
while k is the maximal contribution to lacl transcription in the presence of

saturating amounts of Al

Protein equations

The equations for the rate of change of protein concentrations are given next.

& 6 (a; — A;) (3.12)
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The equations for B; and C; are similar with b; and ¢; respectively (for the
it" cell). The parameter 3 is the ratio of protein and mRNA degradation rates
(i.e. the lifetime of mRNA divided by the lifetime of the protein). The mRNA
concentrations here have been rescaled by their translational efficiency which,
as defined earlier in section 1, is the average number of proteins produced per

mRNA molecule.

AT equations

The equations for Al has terms representing degradation, production and inter-

cell diffusion.

ds;
dt

= —ks0Si + ks1Ai — n(S; — Se) (3.13)

The first term on the right is the degradation term with the decay coefficient
kso. The second term is the synthesis term while the third term is the intercell
coupling term. The lifetimes of TetR and LuxI are assumed to be equal and
as a result the concentration of TetR (A4;) also describes the concentration of
LuxI here. The coefficient of the coupling term n = 0 A/V. = §/V, where
o represents the permeability of the cell membrane, A is the surface area of
the cell membrane and V. is the volume of the cell. The three parameters have
been non-dimensionalised by time-rescaling. The quantity S, represents the

extracellular concentration of Al. Its dynamical equation is

N
dS. _
= _kse e ex i — De) = _kse e k if f - e 14
= Se+1 tj;(‘ga Se) Se + kaigg(S = Se) (3.14)
Here Next = 0/Vewt. Vewr is the total extracellular volume, and the bar

represents averaging over all cells. The diffusion rate is given by kgi¢s = Next IV

and the degradation rate is given by ks.. N is the total number of cells.

In the above model, variations in cell density are ignored the concentration

of AT is assumed uniform throughout the experimental substrate.
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Order parameter

Finally, an order parameter® is defined as a measure of phase transition between
unsynchronisation and mutual entrainment.
The quantity b;(t) is the concentration of mRNA in the i*" cell. The average

of this over all cells is given by

n

M(t) = (1/N) Y bi(t) (3.15)

i=0
The order parameter R is defined as the ratio of time-variance of M(t) and
the variance of b; averaged over i. So it is basically the ratio of the time-variance
of the cell-average of the signal (b;(¢)) and the cell-variance of the time-average
of the signal.
p— M0 Z (M) (3.16)
(b7) — (bi)?
If the signals are completely synchronized, then b;(¢) = b;(t) = b(t) Vi, j =
M (t) = b(t). Since all the signals are equal, (b(t)) = (b(t)) (time-averaging and
cell-averaging commute), and hence R = 1 for complete synchronization. For
complete unsynchronisation, the signals are completely uncorrelated and as a
result the (M?) = (M)? = R = 0.
If R is plotted against some control parameter, a sudden change in its value

from 0 to 1 will indicate phase transition.

The control parameter is given by the quantity ) which is defined as

Né—/v;,mt

Q: kse"'N(S/‘/emt

where § = o A. It is assumed that the extracellular volume V.., >> V., the in-
dividual cellular volume. According to this definition, if N§/V,,+ << kse which
is the degradation rate of the extracellular AI, then @ is linearly proportional
to the cell density (since the permeability o, the area A and the extracellular
degradation rate ks. can be assumed constant). So @ takes the role of the

control parameter against which the order parameter R is plotted.

3An order parameter is a useful measure of phase transition. The value of the order
parameter varies with some control parameter and changes at a phase transition.
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Figure 3.5: Order parameter against QQ for the deterministic case.

Results

Simulations carried out by Garcia-Ojalvo, Elowitz and Strogatz yielded the
following results. Figure 3.6 shows that synchronization increases as the cell
density increases.

Figure 3.5 gives a plot of the order parameter against cell density. It shows
that there is a phase transition to synchronization. The parameter AJ is the
spread in parameter values. So Garcia-Ojalvo et al. found that there is syn-
chronisation if the number of cells coupling together increases. Also, there is
a phase transition to mutual entrainment, which from the figure (f), seems to
us to be of the attractive type (as defined in chapter 2) as there is no phase

difference between the oscillations.

3.4.2 Model with stochasticity

Extrinsic noise was modelled into the parameter 5 by adding a Gaussian noise
term to it: § — B; +£.:(t), where ¢ is the cell-index and g is the protein-index.
The term &,,(t) was a Gaussian correlated noise of the Ornstein-Uhlenbeck type
with zero mean and correlation (£,;(t)&,;(t')) = 0,,0i5 (D/7)exp (—[t —t'|/7).
The noise is uncorrelated between cells and between genes in each cell. The
intensity is D and autocorrelation time is 7. Plots of power spectrums of mRNA

concentration as well as order parameter are given in figure 3.7.
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Figure 3.6: Figures in the left column are frequency histograms for different

cells.

The figures in the right column are signals for different cells plotted

against time. Values of @) are 0.4 in the top row, 0.63 in the middle row and
0.8 in the bottom row. The other parameter values used are o = 216, k = 20,
n = 2.0, ksg = 1, n = 2.0 and ks; = 0.01. The lifetime ratio is chosen from
a random Gaussian distribution of mean 1 and standard deviation AS = 0.05.
Figures from|[4].
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Figure 3.7: Figure on the left gives the power spectrum of the mRNA concen-
tration b;(t) averaged over 100 repressilators plotted with coupling strength as
parameter.Q) = 0 for curve 1 and @ = 1 for curve 2. Noise broadening is seen
for the zero-coupling curve (curve 1) while the peaks are far sharper for finite
coupling (Q = 1 for curve 2). The value of the noise intensity is D = 0.4 for
both curves (fig. 3.7). Figure on the right gives the order parameter vs noise
intensity. 7 = 15min, n = 10 and AB = 0. The other parameters have the same
value as in figure 3.6. Figures from[4].

3.4.3 Conclusion

Garcia-Ojalvo, Elowitz and Strogatz observed[4] that in their stochastic quo-
rum sensing model, synchronisation and coherence is completely lost as the
noise intensity increases beyond a certain value (D ~ 0.75 as seen from figure
3.7), no matter the coupling strength. If the noise intensity remains below that
critical value then a finite value of the coupling strength can bring about syn-
chronisation. However, they have not studied the effect of internal noise on the

oscillations.



Chapter 4

Our Analysis of the
Repressilator

4.1 Overview of Work Done

Our study of the repressilator began with the single repressilator. The first job
was to non-dimensionalize the rate equations given by Loinger and Biham|6].
Our study was without cooperative binding i.e. with the Hill coefficient set to 1.
Then we simulated the equations to get concentration vs time graphs for each
protein, free or bound. All simulations (including these and subsequent ones)
were done in Matlab. After the simulation of the concentration for different
values of the remaining parameters, we moved on to simulations of amplitudes,
frequencies and waveforms of the protein concentrations against varying pa-
rameters. We found definite regions of parameter space for which there were
oscillations, as indicated by the above studies of amplitudes and frequencies.
The waveforms also differed with parameter values, but were overall closer to
sinusoids than relaxation types. These were for the deterministic case. For the
stochastic case, we simulated the master equations given by Loinger and Biham
using the Gillespie algorithm|[2] and obtained oscillation graphs vs time. Finally,
we went on to two repressilators coupled by Al and simulated concentrations vs

time graphs and phase differences to find out the type of entrainment.

35
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4.2 Single Repressilator: Deterministic

4.2.1 Non-dimensionalization

Why?

One of the problems faced while setting values of parameters to be used in
simulations is a baseline to compare them with. The usual modus operandi is
to non-dimensionalize them against some parameter. This not only reduces the
number of parameters in the problem, it also serves a guideline for interpretation

of the values of the parameters.
How?
The parameters in the equations are the following (as defined in chapter 3):

e The expression constant g: This is the constant rate of expression of the

proteins in the absence of repressors.
o The free-protein degradation constant df (previously ~yy)
e The bound-protein degradation constant db (previously 73)
e The binding constant oy
e The unbinding constant a;

We non-dimensionalize the Loinger-Biham equations by the parameter g and

get the following:

dp] 7 ~ ~
- = (=piy) = dfp] — o (1 - 1)) + Gl (4.1)
dp? ~ f b ~ b 71 b
dr = Qop; (1 —p;) — a1p; — dbp; (4.2)
where
a) T=1g
b) df =df/g
¢) db=db/g
d) do = ao/g
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4.2.2 Simulation of Concentrations vs Time

We simulated the concentrations of the proteins vs time for different values of
the parameters using the RK4! algorithm with adaptive time stepping. The
time of running the simulation was chosen to have approximately 20 or more
stable oscillation cycles. The graphs are given in figure 4.1.

The values of the parameters are the scaled non-dimensionalized ‘tilde’ values
of the parameters (we are removing the tilde forthwith for ease of understanding
now onwards the non-tilde versions will mean the non-dimensionalized param-
eters). So the system was run with some initial concentration of the first free
and bound proteins (p;(0) = 1.7) and zero concentration of the others. [Note:
the ‘first’ protein could be either of the three (TetR, cI or Lacl) the equations
are symmetrical with respect to that].

It should be noted that the oscillations, while not relaxational, are not ex-
actly sinusoidal either. This issue will be studied more closely in the section on
waveforms.

Further graphs of concentration vs time have also been plotted for varying

values of parameters. We do not include them here.

4.2.3 Waveform analysis

We have plotted the concentration of the first bound protein (‘first’ merely
means it has some starting concentration) for varying values of the degradation
parameters df and db. The plots are given in figures 4.2, 4.3 and 4.4. Looking
at these figures, we see a clear trend. For low values of df, the waveforms are
‘top-heavy’ with a sort of a plateau at the crests and a spike at the troughs.
This is true even for higher values of db if df be low. For higher values of df,

the waveforms move closer to a sinusoidal shape.

IRK stands for Runge-Kutta
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s vs time for df=db=0.06, 0=10.0, a1=0.2
T
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Figure 4.1: The figure on the top gives free protein concentration vs time show-
ing approximately 10 cycles. The figure at the bottom gives bound protein
concentration vs time showing approximately 10 cycles. The different colours
indicate the different protein concentrations. The parameter values used were
df = 0.06, db = 0. 06 ap = 10, 041 = 0.2. The initial values of the protein con-
centrations were pj (O) = 0.7, p; 7(0) = 0.0 for i = 2,3; pt(0) = 1.0, p2(0) = 0.0
for i = 2,3.

Figure 4.2: Waveform of first bound protein for df=db=0.06
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Waveform for concentration of bound protin 1 for cf=0.06, db=0.36

Figure 4.3: Waveform of first bound protein for df=0.06, db—0.36

Figure 4.4: Waveform of first bound protein for df=0.36, db=0.24

4.2.4 Amplitude analysis

This analysis was done in the following way. The signal was first detrended?
and then the absolute value of the signal was taken. Finally a linear fit was done
on the signal and the y-intercept was taken. It is quite possible that there are
fluctuations at high frequencies but the variations in protein concentration are
minimal. This analysis gives an idea of the ‘amount’ of fluctuations present in
the oscillations. We have plotted the intercepts obtained in the way described
against the decay parameters df and db.

Figure 4.5 is a scan of the intercept against db for fixed value (0.06) of df. It
can be seen from this figure that there is substantial amplitude for a large range
of db (range of db in figure is 0.02 to 0.60). However, this is for small df = 0.06.
We have done a scan for the intercept against both db and df and 3D plot is

2Detrending means setting the mean to zero. This will simply shift the x-axis higher in
the graphs.
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Intecept vs parameter db (for df=0.06, a0=10.0, a1=0.2)
T

0035

Figure 4.5: Scan of the intercept against the parameter db for df = 0.06

given in figure 4.6, and the top-view is given in figure 4.7.

Surtace plot of inercept against the parameters of & do

parameter dh o

parameter df

Figure 4.6: 2D scan of the intercept against the parameters df and db. The
parameter values are non-scaled values. The ranges of both db and df are 0.02
to 0.58 in steps of 0.04 after scaling by g.
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Surface plot of intercept against the parameters df & db

parameter db

parameter df

Figure 4.7: Top-view.of the 2D scan of the intercept against the parameters df
and db. The parameter values are non-scaled values. The ranges of both db and
df are 0.02 to 0.58 in steps of 0.04 after scaling by g.

So we see that there are significant oscillations for a certain region of the pa-
rameter space of df and db. For low df, there are oscillations almost throughout
the range of db. But in the higher regime of df values, oscillations are found for
shorter and shorter ranges of db values. At quite high df > 0.52, there are no
significant oscillations at all.So we conclude that the amplitude of oscillations
of the first bound protein are controlled more by the value of the degradation

constant of the free proteins than that of the bound proteins.

4.2.5 Frequency analysis

Natural frequencies of oscillations are very important when trying to synchronise
oscillators. A study of the frequencies of the oscillations of proteins of a single
repressilator is done next. There are two ways of finding out the frequency
of a time-dependent signal. The first involves finding the Fourier transform of
the signal. The power spectrum of the Fourier transformed signal gives the
dominant frequency. This is the frequency obtained from the Fourier transform
analysis. Call it wpp. The other method involves taking the Hilbert transform

of the signal. The Hilbert transformed signal is now multiplied by 2 and added
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to the original signal to give the ‘analytic signal’. The phase of this analytic
signal, when differentiated, gives the frequency. Call it wyr. The final accepted
frequency (w) is the mean of these two frequencies w = (wpr +wg7r)/2. A more

detailed description of the Hilbert analysis is given in the Appendix..

Figure 4.8: Scan of the frequency against the parameter db for df = 0.06. The
range of db is 0.0 to 1.0 (scaled) for df = 0.06.

The interesting thing to observe is that the frequencies seem to rise gradually
with increasing db upto 0.56, where it suddenly dips to a very low value. Near
the edge of the range the frequency is very close to zero. The following graph
(figure (4.9)) is the 3D plot against both df and db. Figure 4.10 is the top-view.

The 3D plot of the frequency scan against df and db (figs 4.9 and 4.9) shows
a sharp region where there are finite frequencies. The 2D plot (fig. 4.8) as well
as the first 3D plot (fig. 4.9) shows that the frequency increases gradually with
db and then falls sharply. This fall happens at lower and lower values of db as
the value of df increases. At higher values of df, there is a very small range of
db for which there are finite frequencies. This behaviour is qualitatively similar

to the behaviour of the amplitudes.
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Surface plot of freguency against the parameters df & db

Figure 4.9: 2D scan of the frequency against the parameters df and db. The
range of db is 0.02 to 0.70 at intervals of 0.02, while that for df is 0.02 to 0.58
at intervals of 0.04.

Surface plot of frequency against the parameters df & db

Figure 4.10: 2D scan of the frequency against the parameters df and db. The
range of db is 0.02 to 0.70 at intervals of 0.02, while that for df is 0.02 to 0.58
at intervals of 0.04.

4.3 Single Repressilator: Stochastic

The stochastic simulations are done by solving the Master Equation (eq. 3.8)

using the Gillespie algorithm[2].
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|

Figure 4.11: Free protein copy number vs time. oy = 10.0, oy = 0.2, df = db =
0.06, initial first free protein number f1(0) = 10.0, initial first bound protein
number by(0) = 1.0, other initial numbers equalling zero. Time of running
is tmax = 1500 timesteps. Maximal copy number is ~ 20 — 25 with ~ 10
oscillations in 1500 time steps.
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Figure 4.12: Free protein copy number vs time. ag = 10.0, a3 = 0.2, df = db =
0.12, initial first free protein number f;(0) = 10.0, initial first bound protein
number b;(0) = 1.0, other initial numbers equalling zero. Time of running
is tmax = 750 timesteps. Maximal copy number is ~ 10, with ~ 10 — 15
oscillations in 750 time-steps.

A comparison of figures 4.11, 4.12, 4.13 and 4.14 exhibit the effect of changing
the value of the decay parameters on the frequency and maximal copy number.

It is seen that as the values of the decay parameters increase the frequency
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Figure 4.13: Free protein copy number vs time. ag = 10.0, a3 = 0.2, df = db =
0.03, initial first free protein number f1(0) = 10.0, initial first bound protein
number b;(0) = 1.0, other initial numbers equalling zero. Time of running
is tmax = 3000 timesteps. Maximal copy number is ~ 35 — 40, with ~ 10
oscillations in 3000 time-steps.
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Figure 4.14: Free protein copy number vs time. ag = 10.0, oy = 0.2, df = db =
0.01, initial first free protein number f;(0) = 50.0, initial first bound protein
number b1(0) = 1.0, other initial numbers equalling zero. Time of running is
tmaz = 3000 timesteps. Maximal copy number is ~ 100, with ~ 8 oscillations
in 8000 time-steps.

increases but the maximal copy number decreases, and vice versa.
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We can summarize the qualitative effects of the parameters thus:

e Increasing decay parameters increases frequencies but decreases maximal

copy number.

e Decreasing decay parameters decreases frequencies but increases maximal

copy number.
e Changing the initial copy number has no qualitatively discernible effect.

e Changing the binding parameter has no qualitatively discernible effect

other than a very slight change in maximal copy number.

e Decreasing the unbinding parameter increases the maximal copy number
slightly. However, increasing it decreases the maximal copy number some-

what.

Apart from the effects of changing the decay parameters, the other effects
were not very pronounced and in a stochastic system, more rigorous and careful
analysis is required to pinpoint the effects. The graphs plotted for examining

the change of the binding and unbinding parameters are not given here.

4.4 Two Coupled Repressilators

The coupling is, as described in Chapter 3, done by exchange of the autoinducer
AT between cells. This is the quorum sensing mechanism. We have modified the
Loinger-Biham rate equations is the following way to introduce the effect of Al

coupling.
4.4.1 Modification to Loinger-Biham rate equations
We have two repressilator cells. Our equations for the proteins are

dp{l

i g(1—pfy) —vsp! — aopl (1 —p¢) + crpf + (pf1 /p11)grar  (4.3)

dpi,

= aop! (1 = p%) — a1p? — vap® + (pS1/p11)g1 ar (4.4)
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Here p{l is the concentration of the first free protein of the first cell, p%,
is the concentration of the first bound protein of the first cell and p{l is the
total concentration of the first protein of the first cell. The modification terms
(p{1/p11)gl ap and (p§,/p11)g1 a1 are parametrized by g;. These two terms
describe the coupling between the second feedback loop to the first (refer to
the description in section 2.4.3). So g1 can be called the intracell coupling
parameter.

The rate equations of the AI concentrations are given thus:

da
d_tl = —goa1 + g3p12 — ga(a1 — a2) (4.5)
da
d_t2 = —goas + g3p22 — ga(az — a1) (4.6)

Here pio is the second protein in the first cell and pos is the second protein
in the second cell. The parameter go is the degradation rate of the Al, g3 is
the induction rate quantified by the concentration of LuxI which is taken to be
the same as that of TetR, following the method adopted by Loinger and Biham
and described earlier in chapter 3. The intercell coupling parameter is g4 and
the terms —g4(a; — az) and —g4(as — ay) ensure that Al always diffuses out of

a cell having higher concentration into the other one.

4.4.2 Entrainment

We need to consider a few cases here.

(A) No intracell or intercell coupling.

In this case we will reproduce the results of section 1 for each cell, and
we will not expect the oscillations to be entrained except for the trivial
case of same parameters (i.e. same natural frequencies) and same initial

conditions.

(B) No intercell coupling, but finite intracell coupling

We still do not expect entrainment. However the results, while indepen-
dent cell-wise, will not be expected to reproduce the single repressilator
cases. There is essentially nothing much of interest here. However, the

important case is the next one.
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(C) Finite intercell and intracell coupling

This will have three sub-cases:

(a) Same initial conditions and parameters: It will a trivial case and the

oscillations are expected to perfectly entrain.

(b) Different initial conditions, same parameters: The natural frequen-
cies are same but the initial conditions are different. Still, we expect
entrainment as different initial conditions should not affect the phase
difference between the cells. however, they might, and it needs to be
looked into. The question will be whether the entrainment will be

attractive or repulsive.

(c) Different initial conditions and parameters: This is the real deal. The
two cells will have different natural frequencies. The study will be

carried out using different values of the intercell coupling parameter

94.

4.4.3 Results
Case (A)

We get the graph (fig. 4.15) keeping initial conditions and parameter values
same for both repressilators.

As the concentration graph (fig. 4.15) indicates and the phase curve graph
(fig. 4.16) confirms, the two repressilators behave exactly equally. This is what
was expected, and this is simply a consistency check. [Note: We have fixed
the values of the df and db parameters at 0.24 each to keep the individual
frequencies near the centre of the oscillatory region.] Next we change the initial
conditions. We find no entrainment (figs. 4.17 and 4.18) although we do have
phase-locking..

Case (B)

Here we introduce finite intracell coupling. We expect no entrainment. We get
none. Figures 4.19 and 4.20 attest to that. There is phase-locking. There is not
much difference between phase-diagrams 4.18 and 4.20, the former with zero

intracell coupling and the latter with low intracell coupling (g1 = 0.2).
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Entrainment of first protein: d=0.24, db-0.24, g1=0.0, §4=0.0
o
T
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Figure 4.15: First bound protein concentration vs time for two uncoupled re-
pressilators without intracell coupling. The concentrations are indicated by
the blue line (for one repressilator) and red dots (for the other). Parameters
ap = 10.0, a; = 0.2, df = db=0.24, g1 = 0.0, g2 = g3 = 0.2, g4 = 0.0 for both
repressilators. Initial conditions pf, (0) = 0.5, p/,(0) = 0.5.

Bound protein 1 in cell 1 vs bound protein 1 in cell 2: g1=0.0,, g4=0.0
o
T T T T T

Protein 1 of cell 2.

Figure 4.16: Phase curve of the first bound protein concentration of the two
uncoupled repressilators without intracell coupling. Parameters ag = 10.0, a; =
0.2, df =db=0.24, g1 = 0.0, go = g3 = 0.2, g4 = 0.0 for both repressilators.
Initial conditions p{l (0) = 0.5, p{2(0) = 0.5. There is clear entrainment.
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Entrainment of first protein: df=0.24, db-0.24, g1=0.0, g4=0.0
1
T T T T T

X ‘o\ (\\ \\ /\\ "‘\ ‘(\ i “\ ‘\ “(\‘ (\\ ‘\ (H (\\ | \ l /\ /\ “ |

il \ I \M\MHM

—

Figure 4.17: First bound protein concentration vs time for two uncoupled
repressilators without intracell coupling. Parameters ag = 10.0, o = 0.2,
df =db=0.24, g1 = 0.0, g2 = g3 = 0.2, g4 = 0.0 for both repressilators. Initial
conditions p!, (0) = 0.5, pl,(0) = 1.0.

Bound protein 1 in cell 1 vs bound protein 1in cell 2: g1=0.0, g4=0.0
T T

Figure 4.18: Phase curve of the first bound protein concentration of the two
uncoupled repressilators without intracell coupling. Parameters ag = 10.0, a; =
0.2, df = db=0.24, g1 = 0.0, go = g3 = 0.2, g4 = 0.0 for both repressilators.
Tnitial conditions pf,(0) = 0.5, p/,(0) = 1.0.

Figures 4.21 and 4.22 indicate the case with stronger intracell coupling (g1 =
1.4) keeping all other parameter values same and different initial conditions. It
is seen that with increasing strength of the intracell coupling, the phase-curve
moves towards a smaller limit-cycle. At much higher values of g1 (~ 4.0), we get a
fixed-point, indicating no oscillations. That is borne out by concentration plots.
These plots have been made but are not shown here. Increasing the intracell

coupling seems to push the system closer to a non-oscillatory fixed-point. This is
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Entrainment of first protein: df=0.24, db-0.24, g1=0.2, §4=0.0
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Figure 4.19: First bound protein concentration vs time for two uncoupled repres-
silators with intracell coupling. Parameters ag = 10.0, o3 = 0.2, df = db = 0.24,
g1 = 0.2, go = g3 = 0.2, g4 = 0.0 for both repressilators. Initial conditions
p1(0) = 0.5, pf,(0) = 1.0,

Bound protein 1 n cell 1 vs bound protein 1 in cell 2: g1=0.2 , g4=0.0
T T T T
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Figure 4.20: Phase curve of the first bound protein concentration of the two
uncoupled repressilators without intracell coupling. Parameters ag = 10.0, oy =

0.2, df =db=0.24, g1 = 0.2, go = g3 = 0.2, g4 = 0.0 for both repressilators.
Initial conditions p/,(0) = 0.5, p/,(0) = 1.0.

because the mechanism underlying the coupling of the second loop (see Chapter
2) is positive feedback which when boosted kills off the oscillations sustained by
negative feedback.

A thing to note: although Case (A) with different initial conditions (phase
diagram 4.18) and Case (B) with non-zero intracell coupling (phase diagrams

4.20 and 4.22) exhibit no entrainment®, there is phase-locking. We of course

3Where entrainment is strictly defined (as earlier) as phase-locking with phase difference
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Figure 4.21: First bound protein concentration vs time for two uncoupled repres-
silators with intracell coupling. Parameters oy = 10.0, a; = 0.2, df = db = 0.24,
g1 = 14, go = g3 = 0.2, g4 = 0.0 for both repressilators. Initial conditions

p{1(0) =0.5, p{Q(O) = 1.0.

Bound protein 1 in cell 1 vs bound protein 1in cell 2: g1=1.4 , g4=0.0
T T T T

Figure 4.22: Phase curve of the first bound protein concentration of the two
uncoupled repressilators with intracell coupling. Parameters ag = 10.0, aq =
0.2, df =db=0.24, g1 = 14, go = g3 = 0.2, g4 = 0.0 for both repressilators.
Tnitial conditions p/,(0) = 0.5, p/,(0) = 1.0.

do not expect entrainment without intercell coupling. We get phase locking
because the natural frequencies of the two repressilators are the same. So we
give one set of graphs (figs. 4.23 and 4.24) showing oscillations for Case (B) with
different frequencies. We change frequencies by tuning the decay parameters.

It is seen that there is no longer any limit-cycle type oscillations (fig.4.24).

of 0 or w
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Entrainment of first protein: different decay parameters, g1=1.4, g4=0.0
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Figure 4.23: First bound protein concentration vs time for two uncoupled re-
pressilators with intracell coupling. Parameters oy = 10.0, a; = 0.2, g1 = 1.4,
g2 = g3 = 0.2, g4 = 0.0 for both repressilators. Initial conditions p{l (0) = 0.5,
p{2(0) = 1.0. Decay parameters df = db = 0.24 for one repressilator,
df = db = 0.264 for the other.

Bound protein 1 in cell 1 vs bound protein 1 in cell 2: g1=1.4 , §4=0.0
1,
T T T

0o B

08 B

0750 B

Figure 4.24: Phase curve of the first bound protein concentration of the two un-
coupled repressilators with intracell coupling. Parameters ag = 10.0, oy = 0.2,

g1 = 14, go = g3 = 0.2, g4 = 0.0 for both repressilators. Initial conditions

p{l (0) = 0.5, p{Q(O) = 1.0. Decay parameters df = db = 0.24 for one repressila-

tor, df = db = 0.264 for the other.

Case (C)

Here we introduce intercell coupling as well. In the first sub-case, we keep
natural frequencies and parameters same. We find the trivial case of perfect
attractive entrainment (plots not shown). Next we change initial conditions

(figs. 4.25 and 4.26).
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Figure 4.25: First bound protein concentration vs time for two coupled repressi-
lators with intracell coupling. Parameters ag = 10.0, o = 0.2, df = db = 0.24,
g1 = 0.2, go = g3 = 0.2, g4 = 0.2 for both repressilators. Initial conditions
P{l (0) = 0.5, P{2(0) = 1.0.

Bound protein 1 in cell 1 vs bound protein 1in cell 2: g1=0.2 , g4=0.2
T T T T

tein 1 of cell 2

Figure 4.26: Phase curve of the first bound protein of the two coupled repressi-
lators with intracell coupling. Parameters ag = 10.0, oy = 0.2, df = db = 0.24,
g1 = 0.2, go = g3 = 0.2, g4 = 0.2 for both repressilators. Initial conditions

P11 (0) = 0.5, p5(0) = 1.0.

We find from figures 4.25 and 4.26 a transient state after which the two
oscillations get entrained attractively. This happens even with coupling strength
low for the two repressilators having same natural frequencies.

Finally we come to the case of different initial conditions and natural fre-
quencies. We get figures 4.27, 4.28 and 4.29.

At a high difference of natural frequencies, the oscillations are not even
phase-locked (fig. 4.27). However, as the difference in frequencies decreases

down from 10% to 1%, there is a tendency to move towards phase-locking (fig.
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Bound protein 1.in cell 1 vs bound protein 1 n cell 2: g1=0.2  g4=0.2
T T T T
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Figure 4.28: Phase curve for 5 % difference in natural frequencies

Figure 4.29: Phase curve for 1 % difference in natural frequencies

4.29). However, there is no entrainment as such as could be seen by visual
inspection of the phase-curves. Boosting the values of the intracell and/or the
intercell parameters also does not affect things greatly, in that even at quite

high g4 ~ 10.0, we find no entrainment.
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4.4.4 Summary

All this analysis was done for the first bound protein. It seems that there is
no entrainment for the two repressilators differing in natural frequencies. If
the difference is high, there is no correlation between the phases. However, at
lower differences, we get something like phase-locking. However, entrainment
still eludes. This was expected.

Our study was on the first bound protein. It is quite possible the other
protein oscillations might entrain. That needs be checked. However, it is quite
unlikely. Also, our analysis of entrainment was by visual inspection of the phase-
curves. This is all right for two repressilators, for the presence or absence of
entrainment is quite evident from looking at the pahse curves. However, this
approach is not feasible if there are more than two coupled repressilators. In
order to quantitatively check for entrainment or phase-locking for more than

two repressilators coupled together, we need to define some order parameter.



Chapter 5

Conclusion

The primary motive in studying the repressilator was to try and model natu-
ral biological oscillators. The interesting and critical feature of such naturally
occurring oscillators was that they preserve their periods of oscillations even
if there are externally imposed fluctuations prevalent in natural environments.
Examples of such robust oscillators include the circadian oscillator, the pace-
maker of the heart etc. Each of these oscillators are made up of collections of
cellular oscillators. So there are also internal fluctuations brought about by the
different operations of the individual oscillators. In spite of both internal and
external fluctuations, biological oscillators are extremely robust and maintain
their periodicity. In this thesis, we have reviewed experimental and computer
simulation studies of the single repressilator model which showed that single
repressilators are not robust to fluctuations. Our review then extended to the
coupling of repressilators using the quorum sensing mechanism. Simulations
showed that there was robustness against noise for high enough coupling and
high enough number of coupled repressilators. However, this has not yet been
borne out by experiments.

In our analysis of the repressilator, we started off by studying the single
repressilator deterministically using non-dimensionalized rate equations. We
managed to isolate regions of parameter space where the single repressilator
shows oscillations. Stochastic study by master equations confirmed the result
that there are no stable oscillations with stochasticity for the single repressila-
tor. Then we moved on two repressilators coupled using the quorum sensing

mechanism. The coupling used between the two repressilators was diffusive in

a7
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nature. We studied phase curves of the oscillations of one of the proteins in
the two cells. We found as expected that there is attractive entrainment if the
natural frequencies are the same, but no entrainment if they are not. The sys-
tem is phase-locked and comes close to attractive entrainment if the differences
in natural frequencies is reduced. These result did not change by increasing
coupling strength to large but finite values. However, in general, our conclusion
is that at the very least, more than two repressilators need to be coupled in
order to get entrainment in the deterministic case when the natural frequencies
of the repressilators are different. We have not yet studied stochastic effects on
coupling, but it can be expected that the system will move further away from
entrainment if stochasticity is included.

Our ultimate aim is to study n of coupled repressilators with stochasticity.
We would like to study this in the framework of phase-transitions by defining
a suitable order parameter and studying its behaviour with increasing number
of cells. We believe that the interplay between stochasticity inherent in a single
repressilator, stochasticity from external environmental noise, and the size of the
repressilator population will lead to non-trivial structure in the phase-diagram

of coupled repressilator circuits.



Appendix

Hilbert Analysis

The aim of Hilbert analysis is to extract the phase of some signal and then maybe
the frequency (which is what we have done). The algorithm is as follows. We

define the following notations:

e 5(t) — the signal that is to be analysed
e s(w) — the fourier transform fo the signal
e 5'(t) — the Hilbert transform of the signal s(t)

e 5(t) — the ‘analytic signal’, defined below

Our order of operations is

s(t) —HRt L o (4) — 3(t) = s(t) +is'(t)

transform

The Hilbert transform s'(¢) of a signal s(¢) is defined as

s'(t) = %PV/OO :(_T)TdT (5.1)

where PV means principal value.

It is obtained thus:

e Fourier transform® the signal: s(t) ELEIN s(w)

e Define s (w) = s(w) for w >0

e Define s<(w) = s(w) for w <0

'While coding with Matlab, we have to carry out a Fast Fourier Transform (FFT) due to
the discrete nature of the operation of the program

59
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e Shift phase of s+ (w) by —7:

s> (w)

Phase shift
ANy

e Shift phase of s<(w) by Z:

3<(w) Phase shift

s

e Add: §'(w) = sL (w) + s_(w)

IFFT
—_—

e Carry out an inverse fourier transform: s'(w) s'(t), which is the

Hilbert transform

We obtain the phase by putting A(t)e'®) = 3(t), where we call A(t) the
time-dependent amplitude and ¢(¢) the time-dependent phase of the analytic
signal. The phase of the signal will then be simply ¢(t).

For example, if s(t) = coswt, then §'(t) = sinwt, and
5(t) = coswt +1sinwt = et = Ae*?®)

= P(t) = wt

and A(t) = 1.
This is consistent, for obviously the phase of the signal coswt is wt and

amplitude is 1.
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