
Complexity Theoretic Aspects of

Rank, Rigidity and Circuit Evaluation

By

Jayalal Sarma M.N.

THE INSTITUTE OF MATHEMATICAL SCIENCES,

CIT CAMPUS, TARAMANI, CHENNAI.

A thesis submitted to the

Board of Studies in Mathematical Sciences

In partial fulfillment of the requirements

For the Degree of

DOCTOR OF PHILOSOPHY

of

HOMI BHABHA NATIONAL INSTITUTE

February 2009

2

Homi Bhabha National Institute

Recommendations of the Viva Voce Board

As members of the Viva Voce Board, we recommend that the dissertation prepared by
Jayalal Sarma M.N. entitled Complexity Theoretic Aspects of Rank, Rigidity and Circuit
Evaluation may be accepted as fulfilling the dissertation requirement for the Degree of
Doctor of Philosophy.

Date :

Chairman : V. Arvind

Date :

Convener : Meena Mahajan

Date :

Member 1: N.S. Narayanaswamy

Date :

Member 2: K.V. Subrahmaniam

Date :

Member 3: C.R. Subramanian

Date :

Final approval and acceptance of this dissertation is contingent upon the candidate’s
submission of the final copies of the dissertation to HBNI.

I hereby certify that I have read this dissertation prepared under my direction and rec-
ommend that it may be accepted as fulfilling the dissertation requirement.

Date :

Guide : Meena Mahajan

DECLARATION

I, hereby declare that the investigation presented in the thesis has been carried out by me.
The work is original and the work has not been submitted earlier as a whole or in part for
a degree/diploma at this or any other Institution or University.

Jayalal Sarma M.N.

ACKNOWLEDGEMENTS

One of my favourite quotes reads To do what you like is freedom, To like what you do is

happiness. Thanks to many, I was free and happy, during the phase of my life when this

thesis work was done. I will mention a few who made invaluable contributions that I am

aware of, towards this venture.

It is my pleasure to thank my advisor Meena Mahajan. Right from my first day at IMSc,

I was fortunate enough to receive guidance and encouragement from her in all academic

endeavours that I was into. She has been a great teacher and a friendly and accessible

mentor. As my research advisor, she gave me the freedom to choose my own research

problems, and came up with timely guidance, ideas and support especially at difficult

phases of this work. Her professional, systematic and down-to-earth approach to research,

clarity of writing and presentation, are among the many things that I always proudly try

to imitate.

Many results that appear in this thesis have been obtained in collaborative efforts. I

thank my collaborators : Abhinav Kumar, Nutan Limaye, Satya Lokam, Meena Mahajan

and Vijay Patankar for their contributions to this thesis in terms of ideas and insights. In

addition, I thank V. Arvind, N.S. Narayanaswamy and C. R. Subramanian for being active

members in my doctoral committee, and providing their inputs and support during the reg-

ular committee meetings. Thanks to K.V. Subrahmanyam for many insightful discussions

we had on some topics of this thesis.

I have been fortunate to have an opportunity to work closely with Satya (Lokam) and

Vijay (Patankar). I learned a lot from their wealth of experience, in terms of mathematical

ideas and approach to research life. Thank you, for all the conversations we had, not

excluding the academic discussions, ranging from topics like - when not to submit a paper

to a conference, to - which restaurent to go to, for dinner. I express my gratitude to both

of them, and Microsoft Research India, for facilitating my frequent visits to the Microsoft

Research Lab in Bangalore, and for the kind hopitality that they extended during those

visits.

My coursework at IMSc (and CMI) has been extremely useful in building up my out-

look towards theoretical computer science and mathematics. I thank R. Balasubrama-

nian, Kamal Lodaya, Meena Mahajan, K.N. Raghavan, Venkatesh Raman, R. Ramanujam

and K.V. Subrahmanyam for the wonderful courses they offered during my first year at

IMSc/CMI. Thanks to Kamal Lodaya for several non-technical educating conversations. I

also thank K. Muralikrishnan and Vinod Pathari for their guidance during my undergradu-

ate years, and for encouraging me to take academic research as a career route.

I thank The Institute of Mathematical Sciences for their generous funding for my doc-

toral studies in the form of fellowships, national and international travel grants, and con-

tingency grants. The calm atmostphere in the institute has been extremely motivating

for academic work. I thank all the staffs of IMSc, for the amount of work they put in to

facilitate smooth functioning of my academic endeavours.

I have been blessed with many good friends at IMSc, who have always been there

during difficult times for me to reflect upon myself. Special thanks are due to Ved (Prakash

Gupta), Piyush (Kurur), Muthu(kumar T.), Narayanan N., Raghavendra (Rao), and Sunil

(Easaw Simon).

Last, but perhaps the most, I would like to thank my parents and my extended family,

for supporting my choices all along, especially when I wanted to take the road that is

usually not taken, after my undergraduate studies that had many things to offer. This

doctoral thesis, the first of its kind from the family, is indeed dedicated to them.

6

Abstract

This thesis studies some combinatorial, topological and linear algebraic parameters

associated with Boolean and Arithmetic circuits. It is mainly divided into two parts.

The first part describes a study of combinations of graph-theoretic or circuit-theoretic

restrictions that we can impose on Boolean circuits to obtain complexity-theoretic charac-

terisations for the circuit value problem (CVP). We first address the question of evaluating

monotone planar circuits (MPCVP). Using recent insights developed in the context of topo-

logical constraints in small-width circuits, we - in this thesis - review the developments

leading up to and beyond the “MPCVP is in NC ” result, and make some improvements

on the known bounds for general MPCVP as well as some special cases. Our main im-

provements are obtained while considering circuits with cylindrical embeddings. Another

contribution is that we are able to extend the NC upper bound on MPCVP to toroidal

(genus one) monotone circuits.

Exploring how topological restrictions interfere with those in circuit theoretic param-

eters, we show that unless P = NC in the non-uniform setting, there are P-computable

functions requiring super-polylogarithmic number of negation gates in any poly-sized pla-

nar circuit computing them. In order to achieve this we prove that any circuit C with

poly-logarithmic number of negation gates can be evaluated in NC. In a similar spirit,

we prove an NC upper bound for evaluating a circuit which has poly-logarithmic cross-

ing height when presented along with an embedding which achieves this crossing height.

Combining these results, we show that any circuit C which has at most polylog crossing

number and use polylog number of negations can be evaluated in NC when presented with

along with an embedding which achieves this crossing height.

Motivated by applications in circuit complexity bounds, in the second part of the thesis

we study the complexity of some linear algebraic parameters associated with the circuits.

We first explore the circuit and computational complexity of matrix rank. This problem, in

general is known to characterise a complexity class inside P. We study several restricted

cases of the problem to obtain algebraic characterisations of the complexity classes. For

instance we prove that computing the rank, over Q, of matrices that are symmetric, non-

negative and diagonally dominant, exactly characterises deterministic log-space computa-

tion by Turing machines..

We next turn to optimisation problems associated with matrix rank. and briefly survey

the applications of these problems in proving lower bounds in circuit complexity theory.

Motivated by these applications we study the complexity of computing the rigidity of a

7

matrix : the minimum number of entries of the matrix that need to be changed in order to

bring down the rank below a given value. We consider several variants of the problem, and

characterise them in terms of complexity classes. In particular, we prove complexity theo-

retic characterisations for the problem when restricted to 0-1 matrices, and k is bounded

by a constant. We also note that, in general, over F2, approximating the minimum number

of changes needed up to a constant factor is NP-hard. We then consider the bounded norm

variant of the problem, where changed matrix entries can differ from the original entries

by at most a pre-specified amount. We note that it is NP-hard to compute this too.

We next attempt to construct explicit matrices which have super-linear rigidity. In this

setting, we formulate the problem using the language of algebraic geometry, and prove

tight maximal bounds for a specific family of matrices over C. We then study continuity

properties of matrix rigidity function, and prove that rigidity function is not semi-conituous

in general, but for some special families of matrices, there is semi-continuity property. In

the setting of the lower bounds, we apply and extend some known combintorial techniques

to show almost optimal lower and upper bounds that for rigidity of a restricted triangular

matrices.

8

Contents

1 Introduction 1

I Topological Constraints in Boolean Circuits 12

2 Monotone Planar Circuit Value Problem 13

2.1 Introduction . 13

2.2 Basic definitions . 15

2.2.1 Circuits . 15

2.2.2 Topological Embeddings and Drawings 17

2.2.3 Representing embeddings . 20

2.3 Graphs on cylinders . 22

2.4 Circuits on cylinders . 27

2.5 Improved Upper bounds for MPCVP . 30

2.6 Discussion . 36

3 Extensions of Topological restrictions to other parameters 39

3.1 Monotone Circuits on the Torus . 40

3.2 Monotone Multi-cylindrical circuits . 42

3.3 Circuits with Limited Negations . 44

3.4 Circuits with Limited Crossing Number . 46

4 On the Thickness of Branching Programs 49

4.1 Preliminaries . 50

4.2 Thickness of Branching Programs . 52

4.2.1 Thickness characterisation of NC1 and L 52

4.2.2 Page Characterisation of NC1 and L 53

i

4.2.3 Book-thickness characterisation of NC1 and L 54

II Linear Algebraic Concepts Related to Circuit Complexity 56

5 Circuit Complexity of Matrix Rank 57

5.1 Basic Definitions . 58

5.2 Rank Computation for Diagonally Dominant Matrices 62

5.3 Determinant Computation of Special Matrices 67

6 Optimising Matrix rank 71

6.1 Basic Definitions and Properties . 71

6.2 Matrix Rigidity . 74

6.3 Applications to Lower bounds . 77

6.4 Previous Attempts on Lower Bounds . 81

6.5 An Almost Tight Bound for the Full 1s ELT Matrix 83

7 Lower bounds for Matrix Rigidity 89

7.1 Introduction . 89

7.2 Notations & Background . 91

7.2.1 Elimination Theory: Closure Theorem 92

7.3 Use of Elimination Theory . 93

7.3.1 Determinantal Ideals and their Elimination Ideals 93

7.3.2 Valiant’s Theorem . 94

7.3.3 Rigid Matrices over C . 98

7.4 Reduction to Determinantal Ideals . 103

7.5 Semi-continuity of Rigidity . 105

7.6 Conclusions and Open Questions . 111

8 Complexity of Computing Matrix Rigidity 113

8.1 Introduction . 113

8.2 Basic complexity results in rigidity . 115

8.2.1 Some Basic Approaches . 115

8.2.2 Connection with Matrix Completion Problems 117

8.2.3 Characterisations when k is a constant 118

8.2.4 Inapproximability results on Rigidity 120

ii

8.2.5 A Maximisation Version of Rigidity 121

8.3 Computing Bounded Rigidity . 123

A Complexity Theory Preliminaries 128

B Algebraic Geometry Preliminaries 132

C Algebraic Number Theory Preliminaries 137

iii

List of Figures

2.1 Relationship between various topological restrictions in the context of MCVP 15

2.2 A planar DAG that is cylindrical but not upward planar 18

2.3 A planar DAG that is not cylindrical . 18

2.4 A layered planar DAG with an upward planar embedding and a one-input-

face embedding but with no upward one-input-face embedding 19

2.5 Representing a cylindrical embedding . 21

2.6 Layered embedding algorithm ([Yan91] Section 3, [DK95] Section 4) . . . 23

2.7 Obtaining H from a connected G. 25

2.8 Patching H1 and H2 preserving planarity. 27

2.9 Obtaining an upward circuit equivalent to a cylindrical one. 28

2.10 Bi-cylindrical embeddings . 35

3.1 Relationship between various topological restrictions in the context of MCVP 40

3.2 Patching the copies . 42

3.3 Multi-cylindrical embeddings . 43

3.4 Gadget which replaces a crossing with negations 47

4.1 The first two are the two layers for σ and the last two are the two layers for τ . 52

4.2 Identity permutation can be embedded in layer 1 of σ and layer 2 of τ

without increasing their thickness. 53

4.3 Arranging the instructions : (ℓ, σ, id), (ℓ, id, id), (ℓ, τ, id), (ℓ, id, id) 55

5.1 Width-2 branching program for tridiagonal permanent 69

5.2 Components of Width-2 layered planar graphs 69

iv

List of Tables

2.1 Improved upper bounds . 16

3.1 Generalisations of MPCVP . 40

3.2 Upper bounds for Multicylinderical Circuits 43

5.1 RANK BOUND, SINGULAR, and DETERMINANT for special matrices 62

6.1 Lower bounds on Matrix Rigidity : Current Snapshot 82

8.1 Bounds on RIGID when k ∈ O(1) or r = n− 1 115

v

List of Publications/Reports

[1] Nutan Limaye, Meena Mahajan, and Jayalal M.N. Sarma. Evaluating Monotone Cir-

cuits on Cylinders, Planes and Tori. In Proceedings of 23rd International Symposium on

Theoretical Science(STACS), volume 3884 of Lecture Notes in Computer Science, pages

660–671, February 2006. Journal Version to appear in Computational Complexity un-

der the title "Improved Upper Bounds for Monotone Circuit Value: Some Restrictions

and Generalisations".

[2] Meena Mahajan and Jayalal M.N. Sarma. On the Thickness of Branching Programs.

Presented at Workshop on Computational Complexity and Decidability in Algebra

(WCCDA 2007), Ekaterinburg, Russia, September 2007.

[3] Meena Mahajan and Jayalal M.N. Sarma. A Note on Evaluating Crossing Limited

circuits. Manuscript, June 2007.

[4] Meena Mahajan and Jayalal M.N. Sarma. On the Complexity of Matrix Rank and

Rigidity. In Proceedings of 2nd International Computer Science Symposium in Russia

(CSR), volume 4649 of Lecture Notes in Computer Science, pages 269–280, September

2007. Journal version to appear in the special issue of Theory of Computing Systems.

[5] Meena Mahajan and Jayalal M.N. Sarma. Rigidity of a Simple Extended Lower

Triangular Matrix. To appear in Information Processing Letters, February 2008.

http://dx.doi.org/10.1016/j.ipl.2008.02.010.

[6] Abhinav Kumar, Satyanarayana V. Lokam, Vijay Patankar, and Jayalal M.N. Sarma.

Using Elimination Theory to Construct Rigid Matrices. Manuscript, April 2008.

vi

Chapter 1

Introduction

The Hilbert’s program, formulated by German mathematician David Hilbert in the 1920s,

aimed at formalising all existing theories to a finite, complete set of axioms, and provide

a proof that these axioms were consistent. Attempts in this direction led to the formal

definition of the notion of computation. Church and Turing proposed different formal ways

to abstract them, based on intuitions from mathematics and physics. The robustness of

these models, supported by physical intuition, led to the formulation of the Church-Turing

thesis, which states that computational problems that are algorithmically solvable are those

that can be solved using a Turing machine. Taking this philosophical view point further,

the area of recursion theory addresses questions about functions that are computable in

these models.

When physical electronic computers were constructed in the late 1940s, the importance

of having algorithms which uses minimum resources became prominent. However, despite

lot of efforts by various researchers, certain problems seemed to require enormous amount

of computational resources for solving instances of reasonable size. These considerations

led to a formalised scaled down version of recursion theory, called complexity theory that

studies the power and limitations of efficient computation in various computational models

in terms of different computational resources. Not surprisingly, since its inception, the

area has received a lot of attention from both theoretical and practical point of view, as

it proved exceedingly relevant to both. The rapid development of this area of research

in the last four decades established many surprising connections to various aspects in

physical, mathematical, biological sciences. In particular, the area has its special interplay

with various branches of mathematics such as combinatorics, graph theory, linear algebra,

geometry, analysis etc., which played vital roles in settling many questions in this area.

1

Needless to say, despite these efforts, many important questions still remain open.

Circuits and Computation

Despite its simplicity, the model of Turing machines is not fully amenable to algebraic

and combinatorial analysis. Historically, although developed independently, circuits as a

model of computation proved to be a useful abstraction to bridge the gap. They are simply

directed acyclic graphs, with a designated set of nodes called the inputs, and the rest are

called gates, among which a few are called outputs.

The history of theoretical investigations about circuits goes back to the days of Shannon

and Lypanov [Sha49, Lyp58]. Shannon proved close connections between what was then

called switching circuits and Boolean algebra, and thus to the notion of circuits in the

modern terminology. The initial stage of these developments was quite independent from

the classical Turing machine based complexity theory. The fundamental question that

was considered in those contexts was of the flavour : how many gates does a switching

circuit need exactly to compute a particular function?. Thus, the number of gates in the

circuit, or the size of the circuit, forms a resource under consideration. Other resources

considered, in the context of circuits, are depth of the circuit (the graph), the width of

the circuit, and the fanin of each gates (the in-degree of each node). Various attempts

to answer the most general form of these questions have provided many insights into the

study of other associated mathematical structures. In a more practical development, the

model also turned out to be a useful abstraction of the notion of parallel computation and

communication.

An important characteristic of circuits, as a model of computation, is that the abstrac-

tion allows to use different circuits for different input lengths, as opposed to Turing ma-

chines where the same machine description should work for all inputs. However, not

surprisingly, under computational constraints (called uniformity,see [BI97]) on how to

obtain the description of the circuit which works for all inputs of a given length, there

are strong connections between circuit complexity classes and Turing machine complex-

ity classes. The investigation in this thesis revolves around this aspect, studying many

problems relevant for both models of computation, under various resources. A classical

example for this connection is that the class of problems computed by polynomial time

Turing machines can also be computed by polynomial sized uniform circuits.

This connection is more tightly woven, when the resource under consideration is space;

the number of cells on the working tape used by the Turing machine. This makes it more

2

relevant in many practical applications, since space, as a resource, faithfully abstracts out

the number of memory cells used by a particular algorithm when implemented on a phys-

ical computer. Two classical examples of these tight relationships are: non-deterministic

Turing machines which use only log space, poly time with has access to a poly bounded stack

solve exactly same problems that can be solved by a uniform family of Boolean circuits of

log depth and poly size, bounded fanin ∧ gates, and unbounded fanin ∨ gates [Ven91]. The

class of problems solved by circuit of log width circuits of bounded fanin are exactly char-

acterised by deterministic Turing machines which uses log space [Pip79]. There are also

trade-off results of the form: the class of problems solved by a uniform family of circuits of

polynomial size and constant width is characterised by family of circuits of log depth, poly

size and constant fanin [Bar89].

Various other parameters of the circuit can also be considered as a computational re-

source. Some natural choices for these are topological parameters on the graph and the

type of gates that the Boolean circuit can use. The motivation for studying these, again, is

the hope of gaining more combinatorial insights into the structure of the class of problems

considered above. This line of study has been initiated long back, and several constrained

families of circuits have been shown to be as powerful as the general ones. In this thesis

we revisit some of these problems and obtain new results.

Evaluating Restricted Circuits

Given a Boolean circuit C over n inputs x1, . . . , xn, and an assignment xi = ai for each

variable xi, the Circuit Value Problem (CVP) is to determine the value C(a1, . . . , an). This

is a fundamental problem in complexity theory, since circuits capture computation in a

very natural and universal way. When each gate is labelled ∧, ∨ or ¬, CVP is complete

for the complexity class P. It remains complete if the circuits are monotone (no ¬ gates

except at the leaves); it also remains complete if the underlying graph has a planar em-

bedding. This raises an important question; what are the combinations of graph-theoretic

or circuit-theoretic restrictions that we can impose and obtain complexity-theoretic char-

acterisations. This thesis explores this question in four tracks.

Evaluating Monotone Planar Circuits: Goldschlager [Gol80] proved a striking result

that if the circuit is simultaneously monotone and planar (MPCVP) and is in a certain nor-

mal form, then evaluating it is in NC . That is, it can be solved using polylogarithmic

time, using polynomial number of processors. Subsequently, Dymond and Cook [DC89]

3

improved the upper bound for this special case to LogCFL, and Kosaraju [Kos90] extended

the result by showing that a less restrictive special case, namely that of layered upward

planar monotone circuits (subsuming Goldschlager’s case), is also in NC, in fact in NC3.

Independently and in parallel, Delcher and Kosaraju [DK95] and Yang [Yan91] showed

that MPCVP in its full generality is in NC4 and in NC3 respectively. More recently, Bar-

rington et al[BLMS99] showed that for monotone upward stratified circuits — the special

case considered in [Gol80, DC89] — there is in fact an upper bound of LogDCFL. Recall

that L ⊆ NL ⊆ LogCFL, L ⊆ LogDCFL ⊆ LogCFL, and LogCFL = SAC1 ⊆ AC1 ⊆ NC2 (see

appendix A for more details on basic complexity classes).

Using recent insights [BLMS99, HMV06, Han04, ADR05a], in the context of topological

constraints in small-width circuits, we - in this thesis - review the developments leading up

to and beyond the “MPCVP is in NC ” result, and make some improvements on the known

bounds for general MPCVP as well as some special cases. Our main improvements are

obtained while considering circuits with cylindrical embeddings. Such embeddings strictly

subsume upward planar embeddings, but are not strong enough to capture all of planarity.

Another major contribution is to extend the NC upper bound on MPCVP to toroidal (genus

one) monotone circuits. This result appears in Chapter 3.

Evaluating Negation-Limited Planar Circuits: Markov [Mar58] showed that to compute

a Boolean function on n variables, ⌈log(n+1)⌉ negation gates are necessary and sufficient.

Fischer [Fis74] showed that the same holds even when restricted to polynomial sized

circuits. In contrast, Santha and Wilson [SW91] proved that there are functions requir-

ing super-logarithmic number of negation gates in any poly-sized constant-depth circuit

computing them. We show a conditional topological analogue of this result, restricted to

P-computable functions : unless P = NC in the non-uniform setting, there are P-computable

functions requiring super-polylogarithmic number of negation gates in any poly-sized planar

circuit computing them. In order to achieve this we prove that any circuit C with poly-

logarithmic number of negation gates can be evaluated in NC.

Evaluating Crossing-Limited Monotone Circuits: The crossing number of a path of a

graph in a given (combinatorial) embedding is the total number of crossings in the em-

bedding of the path. The crossing height of a vertex v of a directed acyclic graph G, with

respect to an embedding of G, is the smallest integer h such that any path starting from

v to a leaf has crossing number at most h. The crossing height of a circuit C with respect

to an embedding, is the crossing height of the root gate with respect to that embedding.

In a spirit similar to limiting the negations that the circuit can use, we prove an NC upper

4

bound for evaluating a circuit which has poly-logarithmic crossing height when presented

along with an embedding which achieves this crossing height. However, this does not im-

ply a conditional lower bound as above, since computing the embedding which achieves

this crossing height is hard in general.

Evaluating Crossing-Limited Negation-Limited Circuits: A natural combination of the

above two considerations (in fact a stronger form of the result on negation limited circuits)

gives the following: Any circuit C which has at most polylog crossing number and use

polylog number of negations can be evaluated in NC when presented with along with an

embedding which achieves this crossing height.

Evaluating Thickness-Limited Skew Circuits: Skew circuits are polynomial sized circuits

where ∧ gates is allowed to have exactly one input other that the inputs to the circuit.

They exactly correspond to what are called branching programs where computation may

be stated as a graph graph reachability problem. The ∧ gate will decide the presence or ab-

sence of an edges, and the circuit evaluation essentially is equivalent to testing reachability

between two designated nodes. It is quite clear that polynomial-size branching programs

decide exactly the languages in NL and while counting paths in such branching programs

characterises the corresponding counting complexity classes. A surprising result of Bar-

rington [Bar89] establishes that all of log depth bounded fanin circuits can be captured by

bounded-width branching programs (in fact, width 5 suffices).

Recently, there has been some work on the topological restrictions of the underlying

graphs in the context of width bounded circuits. Hansen [Han04] proved that constant

width planar circuits capture exactly constant depth circuits equipped with mod gates

too. More recently, Allender et al. [ADR05a] extended this result, by showing that constant

width circuits with polylog genus can also be simulated by constant depth circuits with the

help of mod gates.

It is natural to ask similar questions in the case of branching programs too. In this

direction, Barrington et al. [BLMS97] showed that constant width planar branching pro-

grams capture exactly the languages accepted by constant depth circuits. In this context,

Hansen [Han04] proved that bounded width branching programs which can be embedded

on a cylinder can be computed by constant depth circuits with the help of mod gates.

We explore this thread further. In particular, we concentrate on another generalisation

of the planarity criterion, namely thickness of the circuit. This has been already considered

in [ADR05a] adopting a non-standard definition of thickness. We clean up the literature

in this direction a bit, and compare with the standard definitions of thickness of circuits.

5

Along similar lines, Roy [Roy06] proved a thickness characterisation of deterministic log

space computation. We tighten these results and align them with the standard notions of

thickness. We obtain tighter characterisations of NC1, using some variations of the existing

constructions. We found that even with thickness 2, the class of NC1 can be completely

captured. For another variant of thickness, namely book thickness, a thickness of 3 suffices.

These results also scale up to deterministic log space computation and slightly improve

some of the bounds that are obtained in [ADR05a]. We conclude that the thickness pa-

rameter is not fine enough to bring out the fine structure of NC1.

Circuit Lower Bounds

Circuit complexity theory came into limelight in the early eighties when many researchers

had the view that the model might be at the right level of abstraction for attacking an im-

portant (non-uniform) version of the, by then famous P vs. NP problem [Coo03]. Attempts

to prove lower bounds for various parameters of the circuit family computing explicit func-

tions were the drive for a decade since then. Many important separation results followed

suit [Hås86, Raz87, Smo87, Raz88]. But more importantly, many insightful proof tech-

niques were developed.

Failures to prove super-polynomial size lower bounds for explicit Boolean functions

motivated researchers to get to a meta level of the proofs themselves, and prove theorems

about the proof techniques. Such an attempt had already appeared in the Turing machine

complexity setting, which proved that only non-relativizing [BGS75] proof techniques can

answer some of the big questions in complexity theory. The lower bound drive during the

80s did provide many non-relativizing techniques which resulted in some weak separation

results in circuit complexity, but were unable to attack the big questions.

Getting to a meta level again, Razborov and Rudich [RR94], introduced the concept of

natural proofs and ruled out many techniques from being useful in proving strong separa-

tion theorems in circuit complexity. Their arguments crucially used the notion of pseudo-

random generators, in order to derive consequences at the meta level. But in the last

decade, many proof techniques have been discovered which overcome both the above

barriers [Vin05, San07]. Although they were sufficient to prove the above meta level argu-

ments to be inadequate, they do not seem to provide a way forward towards the big ques-

tions. The reason, again were discovered recently, by Aaronson and Wigderson [AW08],

who came up with a new barrier through the notion of algebraic relativisation, which they

proved that all current techniques satisfy. In other words, any proof that separates P from

6

NP will have to be non-relativizing in an algebraic sense. However, it is quite unclear how

these meta level arguments compare with each other.

In a positive move, researchers also tried out proving lower bounds in the setting of

arithmetic circuits. Arithmetic circuit complexity also forms a part of a more general

framework of algebraic complexity theory [BCS97]. The arithmetic circuit model is similar

to Boolean circuits except that the gates can compute more general arithmetic functions.

In many respects, this poses the problems in a more mathematical domain, thus making it

possible to use well developed mathematical techniques. A prominent example of this is

the ongoing program called geometric complexity theory [MS07], which attempts to prove

super-polynomial lower bounds for permanent functions using techniques from algebraic

geometry and representation theory.

With a different perspective, instead of moving to the setting of arithmetic complexity

as such, researchers also tried to capture the combinatorial notion of computation using

algebraic problems. This turned out to be a promising area of research. Much of the

work in this direction has been done with the view that more methods from algebraic

structures could be used to obtain results about the power of the computational model

in the Boolean setting itself. In order to facilitate such approaches to major questions in

space bounded boolean complexity theory, which we will be interested in, it will be useful

to have algebraic problems capturing space bounded complexity classes. We attempt to do

this for some of the classes in this thesis.

Circuit Complexity of Matrix Rank

A series of seminal papers by a variety of people including Grigoriev, Chistov, Mulmu-

ley, Valiant, Toda and Vinay [Gri76, Chi85, Mul87, Val92, Tod91, Vin91] set the stage for

studying the complexity of computing matrix properties (in particular, determinant and

rank) in terms of log space computation and poly-size polylog depth circuits. This area

has been active for many years, and efficient parallel algorithms (NC upper bound) are

known for many related problems in linear algebra; see for instance [All04]. Some of the

major results in this area are that computing the determinant and checking singularity of

integer matrices characterise important complexity classes. In addition, the complexity

of computing the rank of a given matrix over Q has been well studied. For general ma-

trices, checking if the rank is at most r is has been characterised in a complexity theory

perspective [ABO96].

The problem has also been studied under various restricted cases. An important com-

7

binatorial object associated with a matrix is the graph that it represents. Hence constraints

on this graph, is a natural way to impose restrictions on the matrix. In this direction,

Braverman et.al [BKR07], studies the circuit complexity of rank computation of restricted

matrices where the matrix entries are constrained by imposing constraints on the graph

which it represents. However, it is important to note that we do not know any com-

binatorial parameter on the graph which characterises the rank of its adjacency matrix.

Braverman et.al. also studied the circuit complexity of matrix rank under restrictions on

the field in which the rank is computed.

Taking a different route, we impose constraints that are more algebraic in nature. More

precisely, we consider restrictions which are combinations of non-negativity, 0-1 entries,

symmetry, diagonal dominance, tridiagonal and diagonal support, and we consider the

complexities of three problems: computing the rank, computing the determinant and test-

ing singularity. One of the interesting results that we obtained in this direction is that

computing the rank, over Q, of matrices that are symmetric, non-negative and diagonally

dominant, exactly characterises deterministic log-space computation by Turing machines.

Optimising Matrix Rank

Optimisation search problems for the above matrix properties can be considerably harder.

In particular, an optimisation version of the rank computation problem would ask, given a

matrix M and an integer r, what is the matrix nearest to M which has rank at most r. The

notion of nearness is important in this consideration. The problem was first studied under

the 2-norm (see Chapter 6 for a definition by Eckart et.al. [EY36]). Several variants of this

problem were considered since then [Rum03a, Rum03b], and connections with the well

studied notion of condition numbers were discovered .

We consider a variant of the problem in Chapter 8. Over any field, computing rank

is known to be in NC [Chi85, Mul87]. Now consider the following existential search

question: Given a matrix M over a field K, a target rank r and a bound k, decide whether

the rank of M can be brought down to below r by changing at most k entries of M . In

Chapter 8, we consider several variants of the problem, and characterise them in terms of

complexity classes. In particular, we prove complexity theoretic characterisations for the

problem when restricted to 0-1 matrices, and k is bounded by a constant. We also note

that, in general, over F2, approximating the minimum number of changes needed up to a

constant factor is NP-hard.

We also consider the bounded norm variant of the problem, where changed matrix

8

entries can differ from the original entries by at most a pre-specified amount θ. This

variant behaves very differently. For a given a matrix M , a rank r and a bound θ, it may

not be possible to bring the rank down to r even if you allow changing all the n2 entries.

Using results from [Roh89], we show that it is NP-hard to even test this.

Matrix Rigidity

Now we come back to the circuit lower bounds setting. As discussed above an important

direction in which the attempts for proving lower bounds for circuit parameters have been

partially successful is in the case of arithmetic circuits. We now come to a linear algebraic

concept which is related to proving super linear lower bounds on circuit size.

For an n× n matrix over any field, the rigidity function RM(r) is the minimum number

of entries that need to be changed to bring down the rank of the matrix below r. A folklore

result is that over any field, rank(M) − r ≤ RM(r + 1) ≤ (n − r)2. This concept, defined

in [Val77, Gri76], is directly related to the rank optimisation question that we described

above. The rigidity of a matrix is the smallest value of k for which the answer is affirmative.

An important result in this direction, established by Valiant [Val77], says that if for

some ǫ > 0 there exists a δ > 0 such that an n × n matrix Mn has rigidity RMn
(ǫn) ≥

n1+δ over a field F, then the transformation x → Mx cannot be computed by linear size

logarithmic depth linear circuits. See [Che05] for a survey of this result. Razborov [Raz89]

(Lokam [Lok95]) proved that good lower bounds on rigidity (bounded norm variant) over

a finite field (over reals) imply strong separation results in communication complexity. :

For an explicit infinite sequence of (0,1)-matrices {Mn} over a finite field F , if RM(r) ≥
n2

2(log r)o(1) for some r ≥ 2(log log n)ω(1)
, then there is an explicit language LM /∈ PHcc, where

PHcc is the analog of PH in the communication complexity setting. See chapter 6 for a

precise statements and brief survey of these results.

However, obtaining explicit bounds on the rigidity of explicit family of matrices is sur-

prisingly elusive, and thus has received a lot of attention (see introduction of [Lok95] and

Chapter 6 for a survey). Lokam [Lok00] observed combinatorial limitations of the known

approaches towards proving lower bounds for matrix rigidity. More recently, Lokam [Lok06]

proved an unconditional quadratic lower bound for rigidity for a specific family of matrices

(over C). However, similar results are not known for Q or for finite fields Fq for any q ≥ 2.

We provide a different way to overcome the combinatorial barrier, using tools from

algebraic geometry. Our approach is simple, first we consider the dimension of the space

of rigid matrices (for particular n, r and k). We formulate the problem in the language

9

of algebraic geometry. We then use theorems from elimination theory to show existence

of certain polynomials which have to be satisfied by matrices of rigidity k. This approach

enabled us to prove tight bounds; for a specific family of matrices (again over C) we could

prove that the rigidity is exactly (n − r)2. Although this does not lead to an asymptotic

improvement over the results in [Lok06], we believe that this new technique can be used

to prove lower bounds for other families of matrices.

Having a matrix over C, to obtain a matrix over Q with the same rigidity, the natural

approach is to turn to analytical properties of rigidity as a function over C. In Chap-

ter 7, we asked if the rigidity function is lower semi-continuous (i.e., does the value of the

function drop suddenly in the neighbourhood of a point, with respect to the underlying

topology). The hope is that we might be able to produce explicit rigid matrices over Q

taking “good” rational approximations of the entries of the matrix produced in [Lok06].

However, we found that the answer is negative in general. However, using the framework

of elimination theory, we argue that for some special families of matrices, we can take

rational approximations.

The rareness of matching, or even close, lower and upper bounds correlates well with

the lack of upper bounds on the computational version of rigidity. Due to the difficulty in

obtaining non-trivial bounds, the exploration of combinatorial techniques that may lead

to such bounds becomes interesting. A rare case where a closed-form expression has been

obtained for rigidity is full-1s lower triangular matrices ([PV91]). We apply and extend

their techniques to full-1s extended lower triangular (elt) matrices. In an elt matrix, the

first diagonal above the main diagonal can be non-zero, but all other elements above the

diagonal must be 0. We show lower and upper bounds that differ by an additive factor of

roughly n/r.

Structure of the thesis

This thesis is divided into two parts. The first part addresses the effect of topological re-

strictions on the circuit, on the complexity of evaluating them. In Chapter 2, we present

the improved upper bounds for monotone circuit value problem. In Chapter 3, we present

extensions of these techniques to the case of higher genus circuits, circuits with limited

negations, circuit with limited crossing number and finally circuits with limitations on

crossing number and negations. In Chapter 4 we address the effect of topological restric-

tions on branching programs.

The second part of the thesis deals with algebraic parameters associated with circuits.

10

The circuit complexity of rank computation is discussed in Chapter 5. The notion of opti-

mising matrix rank is introduced in Chapter 6. This chapter is a very brief survey of the

various applications of matrix rigidity in complexity theory, and of the previous attempts

to prove lower bounds in matrix rigidity. In the end of this chapter 6 we present the result

on almost tight rigidity bounds for extended lower triangular matrices.

We get to the lower bounds in Chapter 7 where we present the algebraic geometric

formulation of the rigidity problem, dimension bounds of the space of rigid matrices, and

application of elimination theory to obtain negative conditions on rigid matrices, and fi-

nally choosing the entries of the matrix such that it fails satisfy these conditions, and hence

remains rigid. In chapter 8 of the thesis, we present the complexity results concerning the

problem of computing the rigidity of a matrix.

In three appendices (A,B and C) we present the basic material from complexity theory,

algebraic geometry, and algebraic number theory that will be needed in this thesis.

11

Part I

Topological Constraints in Boolean

Circuits

12

Chapter 2

Monotone Planar Circuit Value Problem

The P-complete Circuit Value Problem CVP, when restricted to monotone planar circuits

MPCVP, is known to be in NC3, and for the special case of upward stratified circuits, it is

known to be in LogDCFL. In this chapter we re-examine the complexity of MPCVP, with

special attention to circuits with cylindrical embeddings. We characterise cylindricality,

which is stronger than planarity but strictly generalises upward planarity, and make the

characterisation partially constructive. We use this construction, and three key reduction

lemmas, to obtain several improvements. We show that stratified cylindrical monotone

circuits can be evaluated in LogDCFL, and arbitrary cylindrical monotone circuits can be

evaluated in AC1(LogDCFL), while monotone circuits with one-input-face planar embed-

dings can be evaluated in LogCFL. For monotone circuits with focused embeddings, we

show an upper bound of AC1(LogDCFL). We re-examine the NC3 algorithm for general

MPCVP, and note that it is in AC1(LogCFL) = SAC2. For formal definitions of the com-

plexity classes in this chapter, see the appendix. The results in this chapter appears in

[1].

2.1 Introduction

Given a Boolean circuit C over n inputs x1, . . . , xn, and an assignment xi = ai for each

variable xi, the Circuit Value Problem CVP is to determine the value C(a1, . . . , an). This

is a fundamental problem in complexity theory, since circuits capture computation in a

very natural and universal way. When each gate is labelled AND, OR or NOT, CVP is

complete for the complexity class P. It remains complete if the circuits are monotone (no

NOT gates); it also remains complete if the underlying graph has a planar embedding.

13

However, if the circuit is simultaneously monotone and planar (MPCVP), then evaluating

it is in NC.

The history of MPCVP begins with the papers of Goldschlager, where it is shown that

planar CVP and monotone CVP are P-complete [Gol77], and that a special case of MPCVP,

upward stratified circuits (see Section 2.2 for a formal definition) is in NC2 [Gol80]. Sub-

sequently, Dymond and Cook [DC89] improved the upper bound for this special case to

LogCFL, and Kosaraju [Kos90] extended the result by showing that a less restrictive special

case, namely that of layered upward planar monotone circuits (subsuming Goldschlager’s

case), is also in NC, in fact in NC3. Independently and in parallel, Delcher and Kosaraju

[DK95] and Yang [Yan91] showed that MPCVP in its full generality is in NC4 and in NC3

respectively. More recently, Barrington, Lu, Milterson and Skyum [BLMS99] showed that

for monotone upward stratified circuits — the special case considered in [Gol80, DC89]

— there is in fact an upper bound of LogDCFL.

There has recently been a spurt of activity examining topological constraints in small-

width circuits [BLMS99, HMV06, Han04, ADR05b]. These works provide more insights

into how to exploit the restricted topology. Using these insights, we review the devel-

opments leading up to and beyond the “MPCVP is in NC” result, and make some im-

provements on the known bounds for general MPCVP as well as some special cases.

(However, we do not consider width restrictions in this work.) Our main improvements

are obtained while considering circuits with cylindrical embeddings. Such embeddings

strictly subsume upward planar embeddings, but are not strong enough to capture all

of planarity. They have been studied in depth in the context of small-width circuits in

[HMV06, Han04, Han08].

A key limiting problem that arises in our constructions is that of finding the length of

a longest path in a planar directed acyclic graph (planar DAG). We define PDLP to be the

class of problems log-space many-one reducible to this problem. While finding longest

paths in general is hard, finding longest paths in DAGs is easily seen to be in NL, and in

fact, NL-complete. It is conceivable, however, that the longest path problem over planar

DAGs is considerably easier than NL. Recently, in [LMN08], this problem was shown to be

in UL∩ coUL. However, since there are no completeness results known for PDLP, when we

need longest paths in planar DAGs, we state our upper bounds explicitly in terms of PDLP

rather than UL, keeping in mind that PDLP ⊆ UL ∩ coUL.

The main contributions in this chapter are as follows:

1. We characterise cylindrical graphs as spanning subgraphs of single-source single-sink

14

planar DAGs (Theorem 2.4). This is implicit in the result of Hansen (Theorem 2 of

[Han04]), where layered cylindrical graphs are characterised as subgraphs of single-

source single-sink layered planar DAGs. We state it explicitly because we obtain a

partial logspace-constructive version, even when the given DAG is not layered to

begin with. (Layering, in general, could be harder than logspace.) These results are

presented in Section 2.3.

2. We present (in section 2.4) three reduction lemmas (Lemma 2.7, 2.8, and 2.9)

which are at the heart of the improvements we obtain. The topological constraints

considered are shown in Figure 2.1. The thick arrows go from stronger to weaker

constraints, the dotted arrows indicate logspace reductions, and the dashed arrows

indicate the reductions in L(PDLP). Using the reduction lemmas, in section 2.5, we

obtain improved upper bounds for various version of the problem; see Table 2.1 1

Upward Stratified //

��

Layered Upward Planar

��

// Upward Planar

��

Cylindrical Stratified

L (Lemma 2.7)

OO

//

��

Layered Cylindrical

L (Lemma 2.7)

OO

oo _____
Cylindrical//

L(PDLP)

(Lemma 2.8)

��

One-input-face

��

L(PDLP) (Lemma 2.9)

OO�
�

�

Multi-cylindrical

L-Turing

3;

Bi-cylindricaloo

ww

L-Turing

KS

Focused // Planar
//
Toroidal

L (Lemma 3.2)
oo

Figure 2.1: Relationship between various topological restrictions in the context of MCVP

2.2 Basic definitions

2.2.1 Circuits

A circuit C with n inputs x1, . . . , xn of size s is simply a directed acyclic graph on s vertices,

with the vertices assigned one of the following types: (1) vertices whose in-degree is 0 are

1Some of the results in Table 2.1 are proved in Chapter 3, but we include them here for completeness.

15

(Monotone) Embedding Our upper bound Previous
Circuit type bound
Cylindrical given LogDCFL (Thm. 2.10) NC2

stratified ([Yan91] Sec. 2)
One input face not needed L(PDLP⊕ LogDCFL) (Thm. 2.11) NC2

⊆ LogCFL ([Yan91] Sec. 3)
Cylindrical given AC1(LogDCFL) (Thm. 2.14) –
Planar not needed AC1(LogCFL) = SAC2 (Thm. 2.17) NC3 [Yan91]

Table 2.1: Improved upper bounds

called the input nodes and are assigned one of the literals or 0 or 1, (2) vertices whose in-

degree and out-degree are non-zero are called gates, and (3) the vertices whose out-degree

is zero are called output nodes.

We consider circuits with gates labelled AND, OR, NO-OP. A gate labelled AND or OR

has fan-in two, a gate labelled NO-OP has fan-in one, and a gate labelled by a constant

has fan-in zero and is a source node. Without loss of generality, we assume that constant

gates have fan-out one and that no gate has fan-out greater than two. We do not assume

that there is a single sink 2.

A circuit with variables is a circuit in which some fan-in zero gates are labelled by

variables. By generalised circuits we mean circuits which also have constant gates with

non-zero fan-in and possible fan-out more than one; the output of such a gate is inde-

pendent of its inputs, but the input wires could play a role in determining the planar

embeddings. Generalised circuits, with or without variables, arise in the recursive steps of

the algorithms from [DK95, Yan91].

A circuit is said to be layered if there is a partition V = V0 ∪ V1 ∪ . . . ∪ Vh such that all

edges go from some layer Vi to the next layer Vi+1. A circuit is said to be stratified if it is

layered and all source nodes are in layer V0.

A language L is said to be in NC if there is a family of polynomial-size polylog depth

circuits {Cn} with AND, OR, and NOT gates, with all NOT gates at the leaves, such that

x ∈ L iff C|x|(x) = 1. Circuit Cn having depth O(logi n) corresponds to NCi if the AND/OR

gates have bounded fan-in, to ACi if they have unbounded fan-in, and to SACi if only the

AND gates are constrained to bounded fan-in. Clearly, NCi ⊆ SACi ⊆ ACi ⊆ NCi+1.

2The earlier NC algorithms for MPCVP made this assumption, since if there are multiple sinks, each of
them can be evaluated independently. However, removing nodes with no path to the designated sink may
not be possible in logspace, so we explicitly note this as a computational requirement.

16

2.2.2 Topological Embeddings and Drawings

In this paper, we are concerned with directed acyclic graphs, denoted DAGs. Though many

of the definitions below apply to general graphs, we will use them specialised to DAGs.

A graph is said to be planar if it can be embedded in the plane without crossings. That

is, the nodes and edges of the graph can be drawn in such a way that the representations

of no two edges intersect, except at shared endpoints. A plane graph is a graph along with

a planar embedding. Note that planarity is independent of whether the graph is directed

or not. By the results of [RR94, AM04, Rei05], deciding if a given graph is planar and if so

finding a planar embedding is in AC1, SL , and now L.

A planar embedding is bimodal if at every vertex v, all outgoing (incoming) edges

appear consecutively around v. It is easy to see ([TT86], [Han04] Lemma 5, [Yan91]

Lemmas 3.1 and 3.2) that in a planar DAG with a single source and a single sink, (a) every

embedding is bimodal, and (b) for every face f , the edges incident on f form a simple

(undirected) cycle consisting of two directed paths.

A planar embedding of a DAG is said to be a one-input-face embedding if all source

nodes lie on the same face. Testing if a planar DAG is one-input-face, and if so, uncovering

such an embedding, is easy: add a new source node with edges to all the old sources, and

test for planarity.

A drawing (not necessarily planar) of a digraph on the plane is upward if the drawing of

every edge is monotonically increasing in the vertical direction. Every DAG has an upward

embedding, which can be recovered by a topological sort. (Also, only DAGs have upward

embeddings, since a cycle cannot be embedded in an upward way.)

A digraph is upward planar if it has an embedding that is simultaneously upward and

planar. Though all DAGs are upward, not all planar DAGs are upward planar. Figure 2.2

shows a standard instance of a planar DAG which is not upward planar (see for instance

[BT88]). In fact, given a planar DAG, deciding whether it is upward planar is NP-complete

[GT01]. (It is also known that every upward planar graph has an upward planar embed-

ding using only straight-line drawings of all edges [BT88]. Furthermore, if the DAG is

layered, all nodes in the same layer will have the same y-coordinate.)

A digraph is cylindrical if it can be embedded on a cylinder surface, in a way such that

all edges are monotonically increasing in the direction of the axis of the cylinder. (Clearly

such a digraph must also be acyclic, a DAG.) As observed in [Han04], this generalises up-

wardness, with the edges embedded on the surface of the cylinder rather than on a plane.

Note that the surface of the cylinder can be embedded on a plane in a straightforward

17

A
B C

D

E

F

Figure 2.2: A planar DAG that is cylindrical but not upward planar

way: place the right end of the cylinder (the end towards which all edges flow) on the

plane, and dilate the cylinder in a continuous way into a cone section until its surface lies

flat around the end placed first. (In fact, the converse is also true: any embedding on the

plane can be drawn on the surface of the cylinder. But the edges may not be monotone

along the cylinder axis.) Thus a cylindrical embedding will give rise to a planar embedding

where all edges flow in an inward direction towards a central face. It follows that every

cylindrical embedding is also bimodal, even if it is not single-source single-sink.

Cylindricality strictly generalises upward planarity, as Figure 2.2 shows. The example

of Figure 2.3 shows that cylindricality does not capture all planar DAGs.

B

C E

F G

A

D

H

I

J

Figure 2.3: A planar DAG that is not cylindrical

A layered cylindrical embedding of a layered digraph is a cylindrical embedding where

layers correspond to disjoint circles of the cylinder (or concentric circles on the plane, in

the corresponding inward drawing). In recent literature in the graph drawing commu-

18

nity, the term radial drawing is used. For instance, the radial levelled planar drawings of

[BBF03] are exactly layered cylindrical embeddings. We continue to use the term cylindri-

cal rather than radial, since the main issue in radial levelled planar drawings appears to

be: given the partition of the vertex set into sets lying on the same layer, find the ordering

on each layer. On the other hand, we are often concerned with finding the partition as

well, and this could well be a harder problem.

Recall that a layered circuit (in general, a layered DAG) is said to be stratified if all

source nodes appear at layer 0. A DAG is said to be upward stratified (cylindrical stratified)

if it is layered, stratified, and has an upward planar (cylindrical respectively) embedding.

It follows that an upward/cylindrical stratified circuit has a one-input-face embedding.

Figure 2.4 shows a layered planar DAG which has an upward planar embedding and a

one-input-face embedding but no upward one-input-face embedding. In [DK95], the term

restricted stratified is used to denote circuits which are cylindrical stratified as defined above

(without the restricted, the authors of [DK95] mean generalised circuits). On the other

hand, in [BLMS99], stratified refers to upward stratified as described here.

A

B

C

D E
F

H

I
J

K

L

M

G

P

N

Q

LO

R

S

A

B

C

D E
F

H

I K

L

M

G

P

N

Q

J

R

S

Figure 2.4: A layered planar DAG with an upward planar embedding and a one-input-face
embedding but with no upward one-input-face embedding

A planar embedding of a DAG G is focused if there is a subset S of source nodes, all of

which are embedded on a single face, and every node of G not reachable from S is itself a

source node. This is a topological analogue of a skewness condition on circuits. Note that

one-input-face embeddings are (vacuously) focused; S is the set of all source nodes.

We use the terms SSPD and SMPD to mean single-source single-sink planar DAGS and

single-source multiple-sink or multiple-source single-sink planar DAGs respectively.

19

2.2.3 Representing embeddings

Planar embeddings: By the results of [RR94, AM04, Rei05], deciding if a given graph

is planar and if so finding a planar embedding is in AC1, SL , and now L. The embedding

so obtained is a planar combinatorial embedding, specifying the cyclic (clockwise, say) or-

dering of edges around each vertex in some plane embedding. (In fact, specifying for each

vertex the clockwise cyclic ordering of edges around it is what is called a combinatorial

embedding, and corresponds to an embedding of the graph on some orientable surface of

appropriate genus.) Checking whether a given combinatorial embedding corresponds to

an embedding on the plane can be done in logspace (see [AM04]).

We briefly discuss how faces are specified in any planar embedding. Recall that embed-

dings ignore directions on edges. In fact, for each (undirected) edge (u, v), the embedding

will specify where arc (u, v) figures in the circular list around u, and where arc (v, u) figures

in the circular list around v. The arcs (u, v) and (v, u) are expected to be superimposed

in the corresponding geometric embedding. We use the term edges to refer to directed

edges of the original graph, while we use the term arcs to refer to the directed arcs in the

combinatorial embedding. For every arc e = (u, v), there are faces L(e) and R(e) to the

left and right, respectively, of the edge. (These could both be the same, if, say, e is a bridge

in the underlying graph.) If G is a connected graph when directions on edges are ignored,

then for every face f , the set of edges e with f ∈ {L(e), R(e)} form a connected graph.

This set can be traversed systematically as follows. Start with an arc e = (u, v) such that,

say, f = R(e). Let e′ = (v, w) be the arc preceding (v, u) in the cyclic ordering around v.

Then f = R(e′). Keep advancing in this way until the starting arc is encountered again; in

the process, the entire boundary of f will be traversed. We assume that f is “named” by

the lexicographically smallest arc a = (u, v) such that f = R(a). See [MT01, Whi73] for

more about representing embeddings.

Layered cylindrical or Layered upward planar embeddings: We assume that the em-

bedding is given in the following form: (a) the cyclic ordering of edges around each vertex

(the planar combinatorial embedding) corresponding to the geometric embedding, and

(b) the circular or left-to-right ordering of vertices at each layer. It is straightforward to

see that given such information, we can verify in logspace that it indeed corresponds to

some layered cylindrical or layered upward planar geometric embedding.

20

Cylindrical embeddings: For cylindrical embeddings of non-layered graphs, we need to

specify some more information. Imagine circles drawn along the surface of the cylinder,

through each vertex. The ordering of the circles along the axis of the cylinder imposes

a partial order on the vertices (total, if no two vertices lie on the same circle); consider

any total order extending this. This ordering corresponds to non-decreasing distance of

vertices from the bottom end of the cylinder. For each vertex u, we can talk of its left

face and its right face: the left face is the face between u’s leftmost incoming edge (last

incoming edge in clockwise ordering) and leftmost outgoing edge (first outgoing edge in

clockwise ordering), while the right face is the face between its rightmost incoming and

outgoing edges. If u is a source, then the left and the right face are the same, and it is the

face containing the (initial segment of) the ray drawn out of u against the cylinder axis.

Similarly, if u is a sink, it is the face containing the (initial segment of) the ray drawn out

of u along the cylinder axis. Given the clockwise ordering of edges around each vertex,

the left and right faces can be determined for each u that is not a source or sink. For a

source/sink u, if we explicitly specify the leftmost outgoing/incoming edge, then this face

can be determined. We call this edge L(u). For instance, see the example in Figure 2.5. The

total order is A B E F C D. For source A, L(A) = (A,B), while for sink D, L(D) = (C,D).

The left faces of B and C are fl and fr respectively. The right face of B is the region inside

the quadrilateral BFEA, while the right face of C is the region inside the triangle BCD.

A

B

C

D

E F

f
l

f
r

Figure 2.5: Representing a cylindrical embedding

With this background, we now assume that the following information about the cylin-

drical embedding is available: (a) the cyclic ordering of edges around each vertex (the

planar combinatorial embedding), (b) a total order v1, v2, . . . , vn of the vertices, extending

the partial order induced by the cylindrical embedding, and (c) for each source/sink u, the

21

edge L(u). In particular, the edges L(v1) and L(vn) specify the faces fb and ft correspond-

ing to the bottom and top ends of the cylinder.

It is not clear that given (a),(b),(c) above, one can check in logspace if the correspond-

ing plane embedding is cylindrical. However, this information is sufficient for the results

of this paper.

2.3 Graphs on cylinders

Upward planar graphs have been characterised independently in [Kel87] and [BT88]: A

DAG is upward planar if and only if it is a spanning subgraph of a planar st-digraph, that is,

a planar DAG with a single source s, a single sink t, and an edge from s to t. Extending this

result, [Han04] characterises layered cylindricality: a layered digraph is layered cylindrical

if and only if it is a subgraph of a layered planar DAG with a unique source and a unique

sink (an SSPD). While the result is implicit in the work of [TT89], the major contribution

in the proof of [Han04] is to make the transformation uniform. In a similar vein, we

characterise cylindricality (without the layered property); while the topological ideas are

already there in the proofs of [TT89, Han04], we prove it in a different way to obtain

suitable uniformity bounds. We then use these to evaluate cylindrical circuits.

One direction of our characterisation crucially uses a layered embedding algorithm

independently due to [Yan91] and [DK95]. The algorithm of [Yan91] is stated for single-

sink digraphs where there is a one-input-face planar embedding (an embedding in which

all sources appear on the same face), while that of [DK95] is stated for what are called

focused circuits. We will use the algorithm for single-sink one-input-face planar DAGs, and

we observe that this includes, as a special case, SSPDs. ([Yan91] uses the notation layered

one-input-face for cylindrical stratified (all source nodes at the first layer)). An important

property of such embeddings is that all vertices are bimodal; thus left and right faces of a

vertex are defined. The algorithm is described in Figure 2.6.

Steps 1-2 of the algorithm provide the layering, step 3 provides the cylindrical embed-

ding of the layered graph. To see why the algorithm is correct, see Section 3 of [Yan91] or

[DK95]. We observe the following:

Proposition 2.1. The layered embedding algorithm above runs in L(PDLP). 2

Now we establish our characterisation by the following two lemmas.

22

Input: a one-input-face single-sink planar directed acyclic graph H.

Output: A layered cylindrical embedding of a graph H ′, obtained from H by sub-
dividing edges into directed paths.

Method: Let t be the sink of H.

1. For each node v in H find the longest distance d(v) to t. Let d =
maxv{d(v)}; there are d+1 layers. The input nodes are in V0. A non-input
node u is in layer l(u) = d− d(u).

2. For a directed edge (u, v) in the graph, let k = l(v)−l(u)−1. If k > 0, then
introduce dummy nodes n1, n2 . . . nk and add the edges (u, n1),(n1, n2) . . .
(nk, v). (That is, we subdivide edge (u, v) into a directed path of length
l(v) − l(u).) The dummy node ni will be in layer l(u) + i.

3. For each node u (including dummy nodes), walk along the boundary
of the left (or right, respectively) face of u beginning at u. The first
node encountered with the same layer number as u is the left (or right,
respectively) neighbour of u.

Figure 2.6: Layered embedding algorithm ([Yan91] Section 3, [DK95] Section 4)

Lemma 2.2. If a planar DAG G is a spanning subgraph of an SSPD H (a planar DAG with a

single source and a single sink), then G has a cylindrical embedding which, given G and H,

can be constructed in L(PDLP).

Proof. Using the algorithm of Fig. 2.6, a cylindrical embedding can be found for H ′ ob-

tained from H by edge subdivision. Replacing the directed paths obtained through subdi-

vision by original edges, we get a cylindrical embedding of H, and hence of G. The upper

bound for constructing the embedding of H follows from Proposition 2.1.

Lemma 2.3. If a planar DAG G has a cylindrical embedding, then it is a spanning subgraph

of a cylindrical DAG H with a single source and a single sink.

Proof. Consider the layout of the graph on the cylinder surface, with vertices in order

v1, v2, . . . , vn as specified by the cylindrical embedding. Clearly, v1 is a source and vn is

a sink. Without loss of generality, we assume that the circles of the cylinder through v1

and vn do not contain any other vertex. (If they do, move vertex v1 slightly towards the

cylinder bottom, vn towards the top. This does not change the combinatorial specification

of the embedding.)

23

If any vertex vi other than vn is a sink, we need to add an edge from it to some vj

with j ≥ i without destroying cylindricality. Such a vj can always be found as follows:

imagine a particle moving out of vi along the direction of the cylinder axis. It aims to avoid

intersecting any edge. So if it encounters an edge, it moves parallel to and infinitesimally

close to the edge. Since all edges are cylindrical, its movement is still monotonic with

respect to the axis. As soon as it reaches (infinitesimally close to) a vertex, we declare that

vertex to be vj. If it never encounters an edge or a vertex, then it will exit at the right

end of the cylinder. In this case we declare vn to be the desired vj. The movement of

the particle ensures that the edge (vi, vj) can be added preserving cylindricality. A similar

procedure applied after this will work to make all sources other than v1 have incoming

edges.

Theorem 2.4. Let G be any planar directed acyclic graph. The following are equivalent.

1. G has a cylindrical embedding.

2. G is a spanning subgraph of a cylindrical SSPD.

3. G is a spanning subgraph of an SSPD.

It follows that testing for cylindricality is in NP. However, though cylindricality gen-

eralises upward planarity, testing for which is NP-complete, it is possible that testing for

cylindricality is easier.

One direction of the theorem above is already constructive using Lemma 2.2. We make

the proof of Lemma 2.3 constructive via a more complicated construction. This construc-

tion works only for one stage (multiple sinks to single sink or multiple sources to single

source), and yields only a planar (not cylindrical) embedding of H. The advantage is that

it is implementable in logspace.

Lemma 2.5. Let G be a connected (in the undirected sense) cylindrical DAG with S sources

and T sinks. Given the cylindrical embedding of G, we can construct, in L, a planar single-

source DAG Hs with T sinks and a planar single-sink DAG Ht with S sources such that G is a

spanning subgraph of both.

Proof. We describe how to construct Hs; the construction of Ht is symmetric. Since G is

connected, for every face f , the edges incident on f form a connected graph. For each

face f , let i be the smallest index such that vi is on the boundary of the face. Then there

is some edge e = (vi, vj) such that f = R(e). Start traversing the boundary of f , starting

24

with such an edge e = (vi, vj). For each vk encountered on the boundary with in-degree 0,

add edge (vi, vk). See Figure 2.7 (a), (b) for an example.

(c) Eliminating all but one sink

(a) The graph G, with 5 sources and 5 sinks

(b) Eliminating all but one source

Figure 2.7: Obtaining H from a connected G.

Clearly this preserves acyclicity, since all new edges are from a lower indexed to larger

indexed vertex. This also preserves planarity. The new edges are inserted, in the order

encountered, into the cyclic ordering around vi immediately after the arc (vi, vj). A new

edge (vi, vk) is inserted into the cyclic ordering around vk immediately after the arc (vl, vk)

which led to the discovery of vk on this face boundary. Thus we can easily compute the

new planar combinatorial embedding.

As the figure shows, we may end up adding far more edges than is necessary. (Multiple

edges will not get added if we process each face sequentially. But in logspace, we cannot

25

cascade polynomially many such stages. So while processing each face, we check for in-

degree zero in the original graph.) Since G is connected, every source has an (undirected)

path to v1. Hence every source lies on the boundary of at least one face with a lower

indexed vertex, and hence acquires an incoming edge. Thus at the end, only v1 is a source.

As figure 2.7 (b) shows, applying the above construction on a graph to remove multiple

sources may trap a sink. So we cannot sequentially remove multiple sources and then

multiple sinks. In fact, after removing multiple sources, we do not know if the graph H so

constructed necessarily has a cylindrical embedding. Even if it does, we do not know how

to recover one.

In the above proof, connectedness ensured that every source other than v1 acquired an

incoming edge. We observe in the following lemma that absolute connectedness is not a

critical requirement.

Lemma 2.6. Let G be a cylindrical DAG where each connected component of the underlying

undirected graph has either a single source or a single sink. Then a planar single-source

single-sink DAG H of which G is a spanning subgraph can be constructed in L.

Proof. Partition the underlying undirected graph of G, in L, into connected components

G1, . . . , Gc. For each component, there is a cylindrical embedding inherited from that of

G, which can be efficiently retrieved. By Lemma 2.5, each Gi is a spanning subgraph of

a planar DAG Hi, with a single-source si and single-sink ti, and Hi can be constructed in

logspace. All that remains is to combine these Hi. Since each Hi is acyclic, the graph H

obtained by adding edges ti, si+1 is also acyclic, and has a single source s1 and single sink

tc. To see why it is planar, consider planar embeddings of each Hi with si on the external

face. (The construction of Lemma 2.5 does yield such embeddings.) Consider any face f

for which ti is on the boundary. We insert the embedding of Hi+1 in this face, and connect

ti to si+1. (See Figure 2.8.)

To construct a planar embedding of H, we can simply construct afresh a planar embed-

ding of H in L. (Strictly speaking, this is not necessary. The edge (ti, si+1) can be inserted

anywhere in the cyclic ordering of ti. In the cyclic ordering of si+1, it should be inserted

in such a way that it lies on the external face of Hi+1. Given the way Hi+1 is constructed

from Gi+1, this information about the external face is indeed available.)

26

s t1
1

s2

t1

t2

1s
2s

2t

Figure 2.8: Patching H1 and H2 preserving planarity.

2.4 Circuits on cylinders

We now show that for circuit evaluation, any technique applicable to layered upward pla-

nar circuits also applies to cylindrical circuits, with a uniformity requirement in L(PDLP) ⊆
UL ∩ coUL. The result is obtained in two stages: first we show how to deal with layered

cylindrical circuits, and then we show how to layer arbitrary cylindrical circuits. We also

show that one-input-face circuits reduce to upward stratified circuits, with a similar uni-

formity requirement.

Lemma 2.7. Given a circuit C with a layered cylindrical embedding E , we can in logspace

obtain an equivalent circuit C ′ with a layered upward planar embedding E ’. Further, if E is

stratified, so is E ’. Also, if C is monotone, so is C ′.

Proof. Intuitively, what we want to do is as follows. Consider a geometric embedding of C

on the plane, with layers corresponding to concentric circles and edges travelling inwards.

By rotating a ray shooting out of the root, we can find an angular position where it does

not contain the embedding of any node. By deforming edge representations if necessary,

we can ensure that each edge intersects the ray (at this angular position) in at most one

point. Now simply “cut” the circuit C along the ray. This gives rise to dangling in-edges

and out-edges and a circuit D which is layered upward planar. Patch multiple copies of D

side-by-side, feeding zeroes to the dangling edges of the extremal copies, and let the root

of the middle copy be the new root. See Figure 2.9.

To translate this into a formal proof, we need to describe (a) how to obtain, in logspace,

the curve along which we will cut the circuit C to get D, (b) how the copies will be

patched functionally, (c) how the embeddings of the copies will be patched, and (d) why

27

(a) A layered cylindrical circuit

 around the cylinder)
 (the dashed edge is embedded

(b) After cutting along right end

(c) Joining up copies of cut circuit

0

Figure 2.9: Obtaining an upward circuit equivalent to a cylindrical one.

the resulting circuit is equivalent to C.

We first perform some preprocessing on the circuit. Since we are given the layering as

well as the label r of the circuit output gate, we can throw away all gates at a larger layer

than r. Now, treating all edges as undirected, use the logspace connectivity algorithm to

delete all gates with no (undirected) path to r. Let the resulting circuit be C1, with layers

V0, V1, . . . , Vh and r at layer h. We replace each vertex u by vertices uin and uout with a

directed edge from uin to uout. The type of gate uin is the type of u, while uout is a NO-OP

gate. An edge (u, v) is replaced by the edge (uout, vin). The resulting circuit, call it C2, has

2h layers: an out layer for V0, an in layer for Vh, and two for all other layers. The layered

cylindrical embedding of C2 is easily obtained from that of C1, and hence of C, in logspace.

The only tricky point is handling sources/sinks of C1. If u is a source of C1, we need to

decide where to insert the edge (uin, uout) into the cyclic ordering of edges leaving uout.

This is where we need the third part of the representation of cylindrical embeddings: we

insert this edge just before the edge L(u). Similarly for a sink v, we insert (vin, vout) in the

ordering around vin just after L(v). C2 is clearly equivalent to C; further, it has the nice

28

property that no layer has a source as well as a sink.

To see (a), we start with vertex r of C2. At some stage, suppose that the path ρ under

construction has reached vertex g from above. If g is at the lowest layer, we are done.

Otherwise, move down to any neighbour of g at a lower layer. Suppose there is no such

neighbour; that is, g is a source node. Then g is of the form vin for some v ∈ C1. Traverse

the boundary of the face to the right of (vin, vout), until it first encounters a vertex g′ at a

layer lower than g. Such a vertex must exist, since g has undirected connectivity to r which

has undirected connectivity to the layer below g. The path ρ now proceeds from g to g′.

The path ρ constructed uses some circuit edges and some dummy edges. Let C3 be the

graph C2 ∪ ρ. The above procedure of constructing ρ also gives us a layered cylindrical

embedding of C3.

We cut C3 to the immediate right of the path, starting at r, to obtain a layered upward

planar circuit C4. The embedding of C4 is specified as follows: Retain edges (u, v) where

neither u nor v is on ρ. For u on ρ, retain edges leaving or entering u to/from the path ρ

or the left of ρ. Replace an edge (u, v) leaving ρ on its right by the edges (x, v) and (u, x′),

where x and x′ are new gates of fan-in/fan-out zero. Similarly, replace an edge (w, u)

entering ρ from its right by the edges (y′, u) and (w, y), where y′ and y are new gates of

fan-in/fan-out zero. It is clear that this can be performed in logspace. C4 is the circuit D

informally described earlier.

Let d be the depth of C2. Place 2d + 1 copies of C4 side by side in a row. Identify new

node x′ of copy i with new node x of copy i + 1. Identifying x and x′ gives a subdivision

of an edge present in a copy of C4. Restore the subdivision to a single edge (remove the

identified node). New nodes x of the leftmost copy, and new nodes x′ of the rightmost

copy, are fed constant 0, via paths of NO-OP gates of appropriate length (this is done to

preserve stratifiedness). See Figure 2.9 (c). Designate the root of copy d + 1 as the new

root. Let this circuit be called D. It is easy to see that D is layered upward planar, and that

its embedding can be obtained from that of C4 in logspace. Also, if C2 is stratified, so are

C4 and D.

We claim that D is equivalent to C2, and hence to C. The reason is simple: at the

lowest level, all nodes of D are correct (they evaluate to the same value as corresponding

nodes in C2). If at level l, the copies i − 1, i, i + 1 of C4 are correct, then at level l + 1 the

ith copy of C4 is correct. Thus over 2d + 1 levels, we may lose at most 2d copies, but the

central copy will correctly evaluate the root of C2.

In the above proof, the layering of the given circuit appears crucial. We observe below

29

that without layering, the same conversion can be performed in L(PDLP).

Lemma 2.8. Evaluating a circuit C with a cylindrical embedding E reduces in L(PDLP) to

evaluating a layered cylindrical circuit C ′ with embedding E ’. Further, if E is one-input-face,

then E ’ is stratified. Also, if C is monotone, so is C ′.

Proof. We proceed in four steps.

1. We remove from C all nodes with no directed path to the output gate of C. This

gives an equivalent circuit G with a single sink, and with an inherited cylindrical

embedding.

2. From the given cylindrical embedding of G, we construct the SSPD H with the same

vertices as G and containing all the edges of G.

3. Using the layered embedding algorithm of Figure 2.6, we obtain a layered cylindrical

embedding of an SSPD H ′, obtained by subdividing edges of H into directed paths.

4. We recover a layered cylindrical embedding of a digraph G′ from that of H ′ by simply

throwing away all directed paths corresponding to edges in H \G. We convert G′ to

a circuit by specifying that all the new subdivision vertices have type NO-OP.

Since C is a planar DAG, Step (1) can be performed in L(PDLP). Step (2) uses Lemma 2.5,

and can be performed in logspace. Step (3) uses Lemma 2.2, and runs in L(PDLP). It is

straightforward to see that Step (4) can be performed in logspace.

Note that the layered embedding algorithm needs a single-sink one-input-face embed-

ding. In the above proof, the one-input-face condition is achieved in step 2 by exploiting

cylindricality. However, if the given circuit already has a one-input-face embedding, then

cylindricality is not needed. Thus we have:

Lemma 2.9. Evaluating a circuit C with a one-input-face embedding E is reducible, in

L(PDLP), to evaluating a stratified cylindrical circuit C ′ with embedding E ’. Also, if C is

monotone, so is C ′. 2

2.5 Improved Upper bounds for MPCVP

In this section we revisit some of the MPCVP algorithms in the literature. We observe that

some of these algorithms have tighter bounds than claimed. Wherever possible, we apply

30

(some of) the reduction lemmas of Section 2.4 to expand the class of circuits for which the

algorithm applies. Wherever possible, we also try to weaken the input requirements.

Goldschlager [Gol80] considered upward stratified circuits. He showed that in this spe-

cial case, if the corresponding embedding is given with the input, then MPCVP is in NC2.

This upper bound was improved to LogCFL by Dymond and Cook [DC89]. They use the

characterisation (due to [Coo71, Sud78]) of LogCFLas languages accepted by polynomial-

time-bounded pushdown automata augmented with an auxiliary logspace worktape, Aux-

PDA(poly) in short. (Similarly, LogDCFL is characterised as languages accepted by de-

terministic polynomial-time-bounded pushdown automata augmented with an auxiliary

logspace worktape, DAuxPDA(poly).)

The main idea behind obtaining the LogCFL bound is as follows: since the circuit is

monotone, intervals of contiguous 1s at the input level travel upwards as contiguous seg-

ments which may shrink, expand, or merge, but never split. (This last property breaks

down if the embedding is not stratified.) So evaluating the given circuit C amounts to

proving that an interval is true (or valid), by finding a set of intervals at the previous level

which imply its validity, and recursively proving their validity. An important property of

a minimal set of intervals proving validity of the root (a “proof tree” on intervals) is that

it is polynomial sized; hence an auxiliary push-down automaton performing the recursive

verification nondeterministically will run in polynomial time. But this is precisely the class

LogCFL.

The work of Barrington et al.[BLMS99] brings the evaluation of monotone upward

stratified circuits, presented along with such an embedding, down to LogDCFL by evalu-

ating the circuit in a bottom up fashion. The DAuxPDA algorithm repeatedly transforms

the input by (a) detecting when a 0- or 1- interval at the input layer fails to propagate

high enough, and (b) replacing the interval by all 1s or all 0s. The transformation thus

preserves the value of the output gate. The stack is used to keep track of the frontier up

to which simplifying transformations have been made. Polynomial running time is en-

sured, amongst other things, by the placement of a virtual blocking interval of 0s on either

extreme at each level. The algorithm requires the upward stratified embedding to be sup-

plied as input. Though not stated explicitly, it also works for circuits with multiple sinks.

(The only point to be checked is that intervals of 1s may merge though separated not just

by a 0 interval but by 0- and 1- intervals, all arising at sinks; see the discussion preceding

Proposition 8 of [BLMS99]. This makes no difference to the technical claims.)

Since virtual blocking intervals cannot be placed at extremes of each layer for a cylindri-

31

cal embedding, we do not see how to extend this algorithm to work for stratified cylindrical

circuits. However, we can still obtain this upper bound by using Lemma 2.7 in conjunction

with this algorithm:

Theorem 2.10. Given a monotone planar circuit C with a stratified cylindrical embedding,

determining whether C evaluates to 1 is in LogDCFL. 2

What if the embedding needed for Theorem 2.10 is not explicitly given, but there is

the promise that such an embedding exists? At some cost, we can recover a suitable

embedding. The cost is high enough that we can weaken the premise further. Note that

stratified cylindrical embeddings are one-input-face, though the converse may not hold.

But one-input-face embeddings can be constructed in logspace. With such an embedding,

we can apply Lemma 2.9 and Theorem 2.10; thus we get a slightly weaker upper bound

for a more general class:

Theorem 2.11. Given a monotone planar circuit C, if C has a one-input-face embedding,

then C can be evaluated in L(PDLP⊕ LogDCFL).

Proof. We first construct a one-input-face embedding of C in logspace, as described in

Section 2.2.2. Then we apply Lemma 2.9 to obtain an equivalent cylindrical stratified

circuit C ′, and use Theorem 2.10.

Layered one-input-face circuits were considered by Yang [Yan91] as a step towards

placing general MPCVP in NC . Note that these are precisely cylindrical stratified circuits.

In Section 2 of [Yan91], an upper bound of NC2 is obtained for evaluating such circuits.

Rather than use a tool like Lemma 2.7 followed by the bound of [Gol80], Yang devised a

somewhat different algorithm, since a modification of it was used in a later section. The

essence of his algorithm was the same as in [DC89]: evaluating the given circuit C is

equivalent to evaluating a circuit C ′ which tries to determine, for each interval or segment

of gates at each level, whether this interval evaluates to all 1s. Further, he carried the

range of inputs used in proving validity as a parameter. That is, for each interval i, j of

gates numbered between i and j at level l, and for each input range x, y, determine if the

interval i, j, l can be proved valid using only inputs from the range x, y. (Note: it is not

claimed that all inputs in the range x, y are 1s, merely that 1s outside this range are not

needed for proving validity.) By doing this, he was able to establish that C ′ has polynomial

algebraic degree. Then he appealed to [MRK88] to obtain the NC2 bound. However, it is

now known that circuits of degree polynomial in circuit size can be evaluated in LogCFL

[Ruz80, Ven91]. Thus we have,

32

Proposition 2.12. The algorithm of Section 2 from [Yan91], for evaluating instances of

MPCVP presented with cylindrical stratified embeddings, has a LogCFL implementation. 2

Another notable point is that though Yang assumed a single-sink circuit, his algorithm

works also in the presence of multiple sinks.

This bound was independently obtained by Delcher and Kosaraju [DK95], who ob-

served that the algorithm of [DC89], though presented only for upward stratified circuits,

works also for the cylindrical stratified case. This is because even for such embeddings, the

proving sub-circuit for validity of intervals has a tree structure which is polynomial-sized.

In [Kos90], the requirement that the circuit be stratified was dropped for the first time.

The input is required to be a monotone layered upward planar circuit, with the witnessing

embedding supplied. Dropping the stratified (one-input-face, for layered circuits) condi-

tion means that intervals of contiguous 1s can split due to the presence of an input node

at an intermediate layer, and this makes all the preceding algorithms for upward-planar or

cylindrical stratified circuits inapplicable. Kosaraju’s idea is, however, quite simple and el-

egant: repeatedly split the circuit horizontally at a layer such that both pieces are between

1/4 and 3/4 of the entire circuit in size. Evaluate each piece recursively, replacing cut off

wires by variables. (The details of the recursive splitting are a bit sketchy in [Kos90] but

are supplied in full in [DK95] for the stratified case.)

But what does it mean to evaluate a circuit with variables? Due to monotonicity, if

a gate evaluates to 1 (0) even when all variables are set to 0 (1, respectively), then the

gate evaluates to 1 (0, respectively) for all settings of the variables. So by evaluating

such a circuit on two settings — all variables 1, and all variables 0 — the gates can be

partitioned into three sets: evaluating to 1, or 0, or depending on the input variables.

Once the recursive evaluation is done, the bottom piece is entirely evaluated and the top

piece has some variable gates. But now the values of all its variable inputs are known from

the bottom piece, so this piece can be fully evaluated.

Clearly, the recursion depth is logarithmic, and the base case of recursion is a monotone

upward stratified circuit with variables. As observed above, [Kos90] used the fact that the

NC2 bound of [Gol80] applies also in the presence of variables to obtain the three-part

partition. Using this bound for the base case, [Kos90] reported an upper bound of NC3.

It is worthwhile noting that at internal stages of the recursion, the circuits could become

generalised; they could have constant gates with non-zero fan-in (e.g. an OR gate could

get as inputs one 1 and one variable from the preceding level of recursion). So, to apply

Goldschlager’s algorithm to the base case, the constant gates with non-zero fan-in are

33

explicitly removed. That is, to patch up the two pieces, only the sub-circuit induced by

gates which depend on variables is considered.

It is also worthwhile noting that this algorithm is also insensitive to multiple sinks,

since the strategy evaluates not just a designated sink but every gate in the circuit.

Kosaraju’s upper bound can be tightened by noting that a log-recursion-depth algo-

rithm, using the algorithm of [BLMS99] rather than [Gol80] for the base case, yields an

implementation in AC1(LogDCFL).

Proposition 2.13. The algorithm of [Kos90], for evaluating instances of MPCVP presented

with layered upward planar embeddings, has an AC1(LogDCFL) implementation. 2

Further, the class of circuits for which this bound applies can be expanded to cylindrical

circuits:

Theorem 2.14. An instance of MPCVP, presented with a cylindrical embedding, can be solved

in AC1(LogDCFL). 2

Proof. Let C be the given circuit with a cylindrical embedding. Using Lemma 2.8, we ob-

tain in L(PDLP) ⊆ NL ⊆ AC1 an equivalent circuit C ′ with a layered cylindrical embedding

E . Applying Lemma 2.7 gives, in L ⊆ AC1, an equivalent layered upward planar circuit C ′′,

to which the preceding proposition can be applied. Note that for subcircuits evaluated at

recursive steps, embeddings are inherited from E .

Bi-cylindrical Circuits : We now consider a generalisation of cylindrical circuits, which

we call bi-cylindrical circuits. These strictly subsume cylindrical, while still lying within

planar circuits.

Definition 2.15 (Bi-cylindrical circuits). A DAG or circuit G is bi-cylindrical if it has an

embedding on the surface of the cylinder such that there is a circle C going around the cylinder

surface, and all edges go towards C.

Thus C splits G into two pieces (overlapping only on C) where each piece is cylindrical.

(See Figure 2.10.)

Now each piece can be evaluated separately, and the the root gate can then be evaluated

from its values in the two pieces. Depending on whether the pieces are layered or not, and

whether they have one-input-face embeddings or not (if both do, then all inputs lie on the

two extreme ends of the bi-cylinder), we have the following upper bounds:

34

Figure 2.10: Bi-cylindrical embeddings

bi-cylindrical circuit type layered not layered

inputs only at extremes LogDCFL L(PDLP⊕ LogDCFL)

inputs anywhere AC1(LogDCFL) AC1(LogDCFL)

Focused circuits : Focused embeddings are considered in [DK95], since they arise in re-

cursive stages of their final algorithm for general MPCVP. Recall that a focused embedding

is one where all sources other than those in a designated face f feed into a node reachable

from a source in f . This is a topological analogue of a skewness condition on circuits. Such

a circuit C can be converted to an equivalent upward stratified one C ′ (with such an em-

bedding explicitly obtained) by simplifying the neighbours of the inputs not on the special

face and then using Lemma 2.9 followed by Lemma 2.7. One consequence is that some

internal nodes may be constant nodes; e.g. an OR gate with a skew 1 input from outside

f simplifies to a constant gate, but still has another input wire feeding into it. We could

cut off such wires as well. (But we must do this after obtaining the stratified cylindrical

embedding; if we do it before that, then the resulting circuit is no longer one-input-face, so

Lemma 2.9 does not apply.) After this cutting, the resulting circuit C ′′ will not be stratified,

so we can only use the bound of Theorem 2.14 and not that of Theorem 2.10. Since C ′ can

be obtained from C in L(PDLP) ⊆ AC1, and since C ′′ can be obtained from C ′ in logspace,

we have:

Theorem 2.16. Given a monotone planar circuit C with a focused embedding, determining

whether C evaluates to 1 is in AC1(LogDCFL). 2

The final algorithms of both [Yan91] and [DK95] make no assumptions about the em-

bedding; given an instance of MPCVP with any planar embedding, they show that evalua-

tion is in NC . Both algorithms repeatedly evaluate carefully chosen smaller circuits with

special embeddings (cylindrical stratified or focused). But the noteworthy point is that

these special embeddings for the smaller circuits can always be obtained, in NC , from the

given planar embedding.

Yang’s analysis proceeds by showing that O(log n) iterations of the following suffice:

For each face f containing some inputs, consider the subcircuit Cf reachable (in a directed

35

sense) from f . Cf can have some dangling in-edges from the rest of the circuit; replace

these by variables to get a circuit with variables and a focused embedding. Evaluate this

circuit as far as possible (the variables, or unknown wires, do not allow complete evalu-

ation), using a generalisation of the scheme leading to Proposition 2.12. Then perform

some obvious simplifications, and reiterate.

The generalisation does not permit the use of [BLMS99] or Theorem 2.10. However,

the strategy is the same as originally used by Yang for one-input-face embeddings; namely,

there is an equivalent polynomial degree circuit doing this partial evaluation. Hence, by

[Ven91], it can be performed in LogCFL. Hence, a careful analysis of Yang’s algorithm

allows us to conclude that MPCVP is in AC1(LogCFL). However, it can be seen that this

class is the same as SAC2. Thus we have the following:

Theorem 2.17. Given a monotone planar circuit C, determining whether C evaluates to 1 is

in SAC2. 2

2.6 Discussion

This investigation leaves many questions unanswered.

1. Is cylindricality testing NP-hard? Recall that cylindricality strictly generalises upward

planarity, testing for which is NP-hard ([GT01]), and is strictly stronger than pla-

narity, testing for which is in L([RR94, AM04, Rei05]). Actually, upward planarity

testing becomes hard only in the presence of multiple sources, but is in AC1 for

single-source planar DAGs [BBMT98].

2. How can a cylindrical embedding be represented so that given a representation of

this form, verifying that it is indeed cylindrical can be done in logspace? The repre-

sentation we have used does not seem to have enough information for this.

3. Given a graph with the promise that it is cylindrical/layered cylindrical/layered up-

ward planar, what is the complexity of recovering a witnessing embedding? This can

make a big difference to the complexity of circuit evaluation; see item 5 below.

4. Recently, via a different approach bypassing Figure 2.6, Theorem 2.11 has been im-

proved: one-input-face MPCVP has been shown to be reducible to layered upward

planar monotone circuits, and hence is in LogDCFL [CD06]. It appears that focused

MPCVP can also be captured in LogDCFL via this approach.

36

5. There are very few hardness results with respect to topological constraints. A well-

known result due to [Bus87] says that evaluating a Boolean formula (the circuit is a

tree) is NC1-complete, thus MPCVP is at least NC1-hard. A more recent notable re-

sult [Han04] shows that constant-width planar circuits characterise ACC0. Are there

natural topological restrictions which, placed on MPCVP, give instances complete for

LogDCFL, NL and LogCFL? In particular, is stratified cylindrical MPCVP hard for

LogDCFL?

In [CD06], one-input-face MPCVP is shown to be hard for L. The hard instance pro-

duced here is in fact a width-2 tree. However, the result of [Han04] does not imply

that evaluating it is in ACC, because the ACC evaluation procedure of [Han04] explic-

itly needs the layered bounded-width presentation of the circuit, and it is computing

this that is L-hard. Similarly, the result of [Bus87] does not imply that evaluating it

is in NC1, because the NC1 evaluation procedure of [Bus87] requires the formula to

be explicitly presented in fully parenthesised form, and computing this is L-hard. In

other words, the hardness of evaluating one-input-face MPCVP lies in the hardness

of obtaining a small-width specification, or even an explicit tree description, under

the promise that the circuit is indeed a small-width tree. This situation thus under-

scores the difference that supplying an embedding can make; hence the importance

of item 3.

A special case of layered upward planar MPCVP arises when all AND gates are skew.

(The hard instances of [CD06] are skew.) In this case, the circuit evaluates to 1 if and

only if there is a path from an input labelled 1 to the root; it captures reachability in

layered upward planar graphs. It is noteworthy that we do not know L-hardness for

reachability in layered grid graphs, or even in grid graphs; the best lower bound is

NC1 (see [ABC+06]). However, it is possible that layered upward planar monotone

circuits are harder to evaluate than similar skew circuits.

6. Let DLPi denote the class of problems logspace many-one reducible to the problem

DAGLONGPATH where the DAGs are unrestricted for i = 0, planar for i = 1, planar

single-source or planar single-sink for i = 2, and planar single-source single-sink

for i = 3. (Thus, DLP1 is what is referred to as PDLP till now in this paper.) Let

DRi denote the class of problems logspace many-one reducible to reachability in the

corresponding DAGs. Clearly, DRi ⊆ DLPi, and DLP0 = DR0 = NL. What other

relationships can be deduced among these classes?

37

Notice that the layering algorithm of Figure 2.6 already needs a one-input-face single-

sink planar DAG. A circuit on such a DAG can trivially be converted to an equivalent

instance of DR3 by adding a dummy source. Thus, the upper bounds of L(PDLP),

obtained in Proposition 2.1 and Lemma 2.2, can actually be replaced by DLP3, which

may conceivably be stronger. In recent work by [ABC+06], DR3 and DR2 are shown

to be in L. Thus, if DLP3 can be shown to be equivalent to DR3, or reducible to

DR2, then the upper bounds of this paper will drop further. We need to be a bit

careful: Lemma 2.8, for instance, uses Proposition 2.1 as well as DR1 (step 1 uses

DR1 to obtain an equivalent instance of DR2), and thus has a fine upper bound of

L(DLP3 ⊕ DR1). To establish Lemma 2.9, on the other hand, L(DLP3) suffices, since

the first step is also dispensable. These finer bounds can be carried over to all the

results of Section 2.5.

38

Chapter 3

Extensions of Topological restrictions to

other parameters

In this chapter we extend the ideas developed in the previous chapter to some non-planar

cases, as well as to the non-monotone case. The results in this chapter appear in [1] and

[3].

• We consider a generalisation to genus 1 (toroidal) in Section 3.1 and show that such

monotone circuits can be evaluated in NC.

• We consider a restricted generalisation to higher genus in Section 3.2 and show that

such monotone circuits can be evaluated in NC.

• We also consider planar non-monotone circuits with restrictions on the placement of

negation gates, in Section 3.3, and show that such circuits too can be evaluated in

NC.

• We consider monotone circuits with bounds on the crossing number of the circuit, in

Section 3.4, and show that such circuits too can be evaluated in NC.

• We combine the above two restrictions and obtain NC upper bounds for circuits

where the crossing number and the negations are bounded simultaneously.

See figure 3.1 and table 3.1 for listing and comparison of these restrictions with the

ones in the previous chapter.

39

Cylindrical // Bi-cylindrical

��vvmmmmmmmmmmmmm

Multi-cylindrical

L-Turing

KS

Planar
//
ToroidalL

(Lem. 3.2)
oo

Figure 3.1: Relationship between various topological restrictions in the context of MCVP

Circuit type Embedding Our upper bound Previous
bound

Toroidal given SAC2 (Thm. 3.3) P

Multicylindrical given AC1(LogCFL) = SAC2 P

(Table 3.2) P

Non-monotone Planar not NC

polylog negation-height needed (Lem. 3.5,3.6) P

Monotone, given NC P

polylog Crossing Number (Thm. 3.10)
polylog Negation Height given NC P

polylog Crossing Number (Thm. 3.12)

Table 3.1: Generalisations of MPCVP

3.1 Monotone Circuits on the Torus

We start with the case of a torus which is the canonical surface of genus 1. A digraph is

toroidal if it can be embedded on a torus. We look at circuits whose underlying DAG is

toroidal. We assume that the toroidal embedding is given as a combinatorial embedding;

verifying that this embedding has genus one can be done in log space (see [AM04]).

Any closed curve separates the plane into disconnected regions, but a closed curve

can disconnect the surface of a torus or leave it connected. In the latter case, it is called

a surface non-separating curve. Any non-planar toroidal graph has at least one surface

non-separating cycle. The following lemma is from [ADR05a]:

Lemma 3.1 ([ADR05a]). Given a non-planar graph G with an embedding on the torus, a

surface non-separating cycle in G can be found in L.

Using this result, we establish the following reduction lemma, which along with Theo-

rem 2.17, immediately gives the main result of this section.

40

Lemma 3.2. A circuit C with a toroidal embedding can be converted in log space to an

equivalent circuit C ′ with a planar embedding. Also, if C is monotone, so is C ′.

Proof. The lemma is proved by essentially using the idea from [ADR05a]. Intuitively what

we want to do is as follows. Consider a given toroidal embedding. Using Lemma 3.1, we

will find a cycle (in the undirected sense) such that “cutting” the circuit along the cycle

will make the remaining graph planar. Now we will paste together several copies as in

the cylindrical case (Lemma 2.7) such that one copy evaluates to the same function as the

original circuit. Also, the pasting will be done preserving planarity.

As in Lemma 2.7, to translate this into a formal proof, we need to describe (a) how to

obtain, in log space, the curve along which we will cut the circuit (b) how the embeddings

of the copies will be patched, (c) how the copies will be patched functionally, and (d) why

the resulting circuit is equivalent to C.

For (a) and (b), we use Lemma 3.1. Borrowing the notation from [ADR05a], let

v1, v2 . . . vr be the non-separating cycle returned by the log-space procedure. Let G′ be the

graph obtained after cutting along this cycle. This graph will have two copies of the vertices

on the cycle on each end of the cylinder. Let these be v1,1, v2,1, . . . vr,1 and v1,2, v2,2, . . . vr,2

respectively. Let d be the depth of the original circuit. We make 2d+ 1 copies of the circuit

and place them side by side, identifying the corresponding vertices and edges. The combi-

natorial embedding of C ′ is obtained exactly as in Section 3 of [ADR05a], see Figure 3.2

for an illustration. Clearly, C ′ is planar, since it has an embedding on the surface of the

cylinder. (Note, however, that the embedding may not be “cylindrical”.)

For (c), each gate in each copy behaves exactly as in the original circuit. Edges coming

into the extreme copies from outside are set to source nodes with value 0. Let this new

circuit be called C ′.

Now to establish (d), we introduce the notion of cycle-height. Let c be the non-separating

cycle with respect to which cutting has been performed. The cycle-height of gate g is the

smallest non-negative integer k such that every path from a leaf to g “crosses” the cycle

c at most k times. By a simple inductive argument, we can establish that if gate g has

cycle-height k, then all copies of g in C ′, except those in the leftmost k and rightmost k

copies of C, evaluate to the same value as g in C. It follows that in the middle copy, all the

gates will get evaluated correctly.

Theorem 3.3. A monotone circuit, given with an embedding on a torus, can be evaluated in

SAC2. 2

41

e1

eℓ

e1 e1

eℓ
eℓ

eℓ−1

e2ed

eℓ+1
eℓ+1

ed

eℓ−1

e2

v1
v2

ed

e2

eℓ+1
eℓ−1

Figure 3.2: Patching the copies

An obvious question is whether the above technique can be extended to give an NC

upper bound for higher genus circuits. The limitation is that if we do not get a genus 0

surface to make copies, then the process of making copies will increase the genus.

3.2 Monotone Multi-cylindrical circuits

We extend the idea of bi-cylindrical circuits in a natural way to what we call multi-

cylindrical circuits. Such circuits strictly subsume the bi-cylindrical case, but are incom-

parable with planar circuits. A noteworthy point is that a multi-cylindrical circuit can be

of arbitrary genus. The following definition captures this extension.

A k-cylindrical circuit can be presented as a set of k components. Each of these has a

cylindrical embedding. The edges of each cylindrical component flow towards the right

rim. And the right rims of each can be identified (let us call that curve c). Another circuit

sits on the gates in c such that all the inputs to this circuit come only from gates in c. This

circuit can be cylindrical stratified, cylindrical, planar or toroidal.

A multi-cylindrical circuit is a k-cylindrical circuit, for some k.

Notice that 2-cylindrical according to this definition is stronger than the bi-cylindricality

discussed earlier. This is because we allow a circuit C ′ sitting on the nodes on c. But

42

Figure 3.3: Multi-cylindrical embeddings

allowing this is also essential, since each gate is assumed to have fan-in at most 2. If such

a construct were not allowed, then the root gate would itself have to sit on c and take

inputs from at most 2 components. The other components would play no role at all and

could be excised, making k-cylindrical equal to 2-cylindrical for k > 2. On the other hand,

allowing such a construct, bi-cylindrical circuits are exactly those 2-cylindrical circuits for

which C ′ is the trivial circuit; it merely pulls out the value of a fixed gate appearing on the

curve on c.

Let C ′ be the subcircuit sitting over the nodes in c. Now C ′ can be thought of as

a circuit which has c as its set of input nodes. We can evaluate each of the cylindrical

components separately in parallel. With this, we get the value of each node in c. Now we

can evaluate C ′ using the values of nodes in c. Depending on the complexity of evaluating

each component, and of evaluating C ′ from c, we have the following upper bounds:

Inputs on ci’s Type of C ′ layered not layered
only at extremes cylindrical stratified LogDCFL L(PDLP⊕ LogDCFL)
anywhere cylindrical AC1(LogDCFL) AC1(LogDCFL)
anywhere planar AC1(LogDCFL) SAC2

anywhere toroidal − SAC2

Table 3.2: Upper bounds for Multicylinderical Circuits

As one can see, this gives upper bounds only for the promise problem. Also, one limita-

tion is that we do not know the complexity of obtaining such an embedding if one exists,

and hence the embedding need to be explicitly given along with the input. As far as we

know, this is the first result on evaluating a class of monotone circuits which contains some

43

arbitrary genus circuits, in NC . Clearly, if P 6= NC in the non-uniform setting, there are

high genus circuits which do not have multi-cylindrical embeddings.

3.3 Circuits with Limited Negations

We now consider planar circuits which are not monotone, but where the negation gates

are limited in some way. Without such a limitation, there is no hope of evaluating the

circuit inside NC unless P= NC , since planar CVP is known to be P-complete [Gol77].

How many negation gates are needed to obtain this hardness? We show in this section that

unless P= NC , there are P-computable functions requiring super-polylogarithmic number

of negation gates in any poly-sized planar (and even toroidal) circuit computing them

(Lemmas 3.5,3.6).

Markov [Mar58] came up with a surprisingly tight bound on the number of negation

gates that are needed to compute any boolean function. He showed that to compute a

boolean function on n variables, ⌈log(n + 1)⌉ negation gates are necessary and sufficient.

One natural question to ask is whether such a bound holds for restricted families of cir-

cuits as well. Fischer [Fis74] showed that for every poly-sized log-depth circuit, there is

another equivalent poly-sized log-depth circuit which uses at most ⌈log(n+ 1)⌉ negations.

A noteworthy point in Fischer’s construction [Fis74] is that it is not planar; so it does not

imply that evaluating planar circuits with O(log n) negations is P-hard. In contrast, Santha

and Wilson [SW91] showed that there are functions requiring super-logarithmic number

of negation gates in any poly-sized constant-depth circuit computing them. Our result can

be viewed as a conditional topological analogue of this result, restricted to P-computable

functions.

Let us try to evaluate a non-monotone planar circuit in parallel. The computation

proceeds in stages. For any gate g where the subcircuit rooted at g has no negations, the

value of g can be found in SAC2, by Theorem 2.17. Assume that all such gates have been

evaluated. Now let g be a gate such that in the sub-circuit rooted at g, a root-to-leaf path

has at most one negation gate. Such gates can be evaluated by an SAC2 circuit whose

inputs include the original circuit input, the values of the gates already evaluated, and the

negations of these values. Generalising this, we define negation-height, akin to the notion

of cycle-height from the proof of Lemma 3.2.

Definition 3.4 (Negation Height). The negation-height of an input gate (variable or con-

stant) is 0, by convention. The negation-height of gate g is the smallest non-negative integer

44

h such that every path from a leaf to g has at most h negation gates.

At stage k, we evaluate all gates at negation-height k. The inputs to the stage-k circuit

are the circuit inputs, and the values as well as negated values of all gates at negation-

height j < k. Each stage k has an SAC2 circuit, obtained by putting together the SAC2

circuits for each gate at negation-height j < k. Thus if gate g has negation-height k, then

g can be evaluated by a polynomial-sized semi-unbounded circuit of depth O(k log2 n).

Of course, this requires negation-height to be explicitly available. By placing a weight

of 1 on edges out of a negation edge, and a weight of 0 on other edges, we see that

negation-height of g is exactly the maximum weight of a g-to-leaf path. Since the circuit is

a DAG, this is in NL, in SAC2. So computing the negation-height is not a real bottleneck.

We thus have the following result:

Lemma 3.5. A planar circuit in which the output gate is at negation-height k can be evaluated

by a polynomial size semi-unbounded circuit of depth O(k log2 n). Thus planar circuits with

polylog negation-height can be evaluated in NC . 2

It is not necessary that the entire circuit be planar. Since the evaluation proceeds in

stages, it is sufficient if for each h, the subgraph of all gates with negation-height h is

planar. (It is easy to construct such circuits that are non-planar.)

Lemma 3.6. A circuit C where

1. the output gate has negation-height k, and

2. for each 0 ≤ h ≤ k, the subcircuit consisting of gates at negation-height exactly h is

planar,

can be evaluated by a polynomial size semi-unbounded circuit of depth O(k log2 n). 2

This result can be combined with the results of Sections 3.1 and 3.2. If the (output gate

of the) circuit has negation-height k ∈ O(logi n), and if for each 0 ≤ h ≤ k, the subgraph

of gates with negation-height exactly h is toroidal or multi-cylindrical, then the whole

circuit can be evaluated in NC , provided the appropriate embedding for each subgraph is

given. (Such embeddings are not explicitly required in proving Lemma 3.6, since planar

embeddings can be constructed in L.)

45

3.4 Circuits with Limited Crossing Number

In this section we use the results in the previous sections and show that monotone circuits

with polylogarithmic crossing number can be evaluated in NC.

We first define the notion of crossing number that we will be studying in this section.

Definition 3.7 (Crossing Number). The crossing number of a drawing of a graph is the

total number of crossings of edges. The crossing number of G, cr(G), is the smallest crossing

number of any drawing of G.

Notice that genus of graphs with crossing number k is at most k. However, we do not

know if this inclusion is strict.

We consider monotone circuits which are not planar, but whose crossing number is

limited in some way. Again, without such a limitation, there is no hope of evaluating

the circuit inside NC unless P = NC, since monotone CVP is known to be P-complete

[Gol77]. However, in this connection, it is worth noting that given any graph G computing

the crossing number of G exactly is a hard problem [GJ92]. In addition, even with the

promise that the crossing number of a graph G is k, obtaining the drawing of the graph

which realises this crossing number is quite hard [Bie90]. But one may ask, in general,

how many crossings are there in the graphs of the circuit corresponding to the P-hard

instances?

The crossings associated with a combinatorial embedding can also be represented along

with it. For each directed edge e = (u, v) in the graph we can manintain an ordered list of

edges which cross e, in the order in which they cross e while traversing from u to v.

Similar to the notions of cycle height and negation height in the previous section, we

define the following:

Definition 3.8 (Crossing Height). The crossing number of a path of a graph in a given

drawing is the total number of crossings in the embedding of the path. The crossing height

of a vertex v in a drawing of an directed acyclic graph G, cr(G), is the maximum crossing

number of any path starting from v to a leaf in the drawing. Crossing height of a circuit with

respect to a given drawing of the underlying directed acyclic graph G is the crossing height of

the root vertex in the drawing.

Notice that the crossing height of the root in the directed acyclic graph can be much

less than the overall crossing number of the graph.

46

x

GFED@ABC⊕

OO

y GFED@ABC⊕oo GFED@ABC⊕oo

OO

yoo

^=̂========

x

OOaaCCCCCCCCC

?>=<89:;∨

OO

?>=<89:;∧

??~~~~~~~~~
?>=<89:;¬ //oo ?>=<89:;∧

__@@@@@@@@@

a

OO

// ?>=<89:;∧

OO

b

OO

oo

(a) Gadget with ⊕ gate (b) Implementing the ⊕ gate

Figure 3.4: Gadget which replaces a crossing with negations

Figure 3.4 shows a standard gadget for replacing a crossing in a non-planar drawing

with two negations. Using this, we can easily derive the following lemma.

Lemma 3.9. Let C be a circuit and let a drawing of C with respect to which C has crossing

height of at most k be given. Obtain circuit C ′ by replacing each of the crossing in the drawing

with the gadget in figure 3.4. Then, the negation height of C ′ is at most 2k.

Proof. We prove it by induction on k. Clearly if k = 0, the useful part of the circuit (which

is reachable from the root) circuit is planar and nothing is to be done. Suppose it is true

for k′ < k, and consider the root gate of C ′. (If there is more than one output, choose

all the nodes which have the maximal crossing height, and apply the induction step to

each of them). We can assume that the circuit is layered. Let r be the layer in which

the first crossing occurs for the optimum layered embedding of the graph, and v be the

corresponding vertex after this crossing. Thus crossing height of v is at most k− 1, and we

can apply the induction hypothesis. Now replacing this particular crossing by the gadget

of figure 3.4, will increase the negation height of root by at most 2, and hence the lemma

follows.

Noticing that C ′ is planar we can use Lemma 3.5 to get the following theorem.

Theorem 3.10. A monotone circuit where the crossing height of the root is at most k can be

evaluated by a semi-unbounded circuit of polynomial size and depth 2k log2 n. When k is a

constant this is in SAC2. When k is polylog the problem has an NC upper bound.

47

For applying the idea of Lemma 3.5, it is not necessary that the entire circuit be planar.

Since the evaluation proceeds in stages, it is sufficient if for each h, the subgraph of all

gates with negation-height h is planar. Using Lemma 3.6 we have the following:

Theorem 3.11. A monotone circuit in which the crossing height of the root is at most k and

for each 0 ≤ h ≤ k, the subcircuit consisting of gates at crossing height exactly h is planar,

can be evaluated by a semi-unbounded circuit of polynomial size and depth k
2
log2 n, given an

embedding which achieves this crossing height and planarity.

We can extend this even further, to put simultaneous restrictions on both crossing num-

ber and the number of negations. This presumably is the largest circuit class that can be

considered in this context.

Suppose that the root gate of the given circuit has negation height bounded by kn and

crossing height bounded by kc. Then first apply the above construction to replace the

crossing edges with corresponding gates there by incurring an additional negation height

of two per crossing. This gives a planar circuit where the negation height of the root gate

is at most kn + 2kc.

Theorem 3.12. Let C be a circuit where the crossing height, and negation height of the root

gate are at most most kc and kn respectively. Given an embedding which achieves this crossing

number, C can be evaluated by a semi-unbounded circuit of depth 2(kn + 2kc) log2 n. When k

is a constant this is in SAC2. When k is polylog the problem has an NC upper bound.

48

Chapter 4

On the Thickness of Branching Programs

Since their introduction, the branching program model has been an object of much at-

tention. A folklore result shows that polynomial-size branching programs decide exactly

the languages in NL while counting paths in such branching programs characterises #L

and GapL. The surprising result of Barrington [Bar89] establishes that all of NC1 can be

captured by bounded-width branching programs (in fact, width 5 suffices). Subsequently,

Caussinius et al [CMTV98] extended these results to the arithmetic setting and showed

that width-6 branching programs capture GapNC1.

Recently, there has been some work on topological restrictions of the underlying graphs

in the context of circuits. Hansen [Han04] proved that constant width planar circuits cap-

ture exactly ACC0. More recently, Allender et.al [ADR05a] extended this result, character-

ising ACC0 using constant width poly-log genus circuits.

It is natural to ask similar questions in the case of branching programs too. In this di-

rection, Barrington et.al [BLMS97] showed that constant width upward planar branching

programs capture exactly AC0. Recently, Hansen [Han04] proved that circuits which can

be embedded on a cylinder can be computed in ACC0.

We explore this thread further. In particular, we concentrate on another generalisation

of the planarity criterion, namely thickness of the circuit. This has been already considered

in [ADR05a] adopting a non-standard definition of thickness. We clean up the literature

in this direction a bit, and compare with the standard definitions of thickness of circuits.

Along the similar lines, Roy [Roy06] proves a thickness characterisation for L. We tighten

these results and align them with the standard notions of thickness. In section 2, we

introduce the definitions and in section 3, we prove the results on thickness of circuits and

the connections to NC1. The results in this chapter appear in [2].

49

4.1 Preliminaries

The thickness of a graph G, denoted θ(G), is the minimum number of planar subgraphs

into which the edges of G can be partitioned. Equivalently, it is the minimum number of

layers in a planar drawing of G, such that each edge belongs to a single layer, no two edges

in the same layer cross, and edges are allowed to be drawn as arbitrary curves [Kai73].

The geometric thickness of a graph G, denoted θ̄(G), is the minimum number of layers

in a planar drawing of G, such that each edge belongs to a single layer, no two edges in

the same layer cross, and edges must be drawn as straight line segments. Similar notions

were also studied by Kainen [Kai73] and [DEH00].

Bernhart et.al. [BK79] define a related to geometric thickness as the book thickness

denoted by bt(G). In this variation, the additional constraint is that the vertices of G must

be placed in convex position. They also prove (see Lemma 2.1 of [BK79]) the equivalence

of this definition of book thickness with the following more commonly used one, which we

will also adopt for the purposes of the results in this chapter.

A book with k pages, a k-book, is a line L (called the spine) along with k non-intersecting

half planes having L as their common boundary. For a graph G, bt(G) can be defined as

the minimum number of half planes needed to embed the graph such that all the vertices

of G can be placed in the line L and each edge is embedded on a single layer, no two edges

in the same layer cross.

There are further variants of thickness considered in the literature; for instance, Wood [Woo01]

considers layouts in which each edge is drawn with at most one bend, at which it may

change layers. For more results on thickness, see the survey of Mutzel et al [MOS98].

Clearly, from these definitions, θ(G) ≤ θ̄(G) ≤ bt(G), and these inequalities have been

shown to be strict [DEH00]. In addition, Eppstein [Epp01] shows that the gap can be

made arbitrarily large.

We will also need some complexity theoretic notions. A program over a semigroup

〈S, ◦〉 of length ℓ is a sequence of instructions of the form Ik = (xi, a, b) where a, b ∈ S, xi

is the ith input and 1 ≤ k ≤ ℓ, where each instruction is interpreted as

if xi = 1 then a else b

50

On an input instance, each of the instructions Ii will yield an element zi ∈ S and

x ∈ L ⇐⇒
ℓ
∏

i=1

zi = id

Permutation branching programs are layered graphs G = (V,E) with V1, V2 . . . Vℓ as the

vertices in each layer with |Vi| = |Vi+1| for every i. Each edge is labelled with an input bit

which decides whether it is active or not for the particular input. In addition, the edge set,

that are active for each input, should be a permutation from Vi to Vi+1 for each i.

To prove the claims about the classes NC1 and L we will use the following complete

languages for these classes.

Lemma 4.1 ([Bar89]). Permutation branching programs of bounded width and polynomial

size compute exactly the languages in NC1.

In other words, given a sequence of elements from a fixed non-solvable group, the prob-

lem of testing whether the product of the elements gives the identity or not, is complete

for the class NC1.

Cook and McKenzie [CM87] (see also [IL89]) proved that computing the iterated prod-

uct of permutation matrices is complete for L. The permutation corresponding to each

layer in the permutation branching program can be represented by permutation matrices

by taking their bipartite adjacency matrix. If the permutation branching program is of

polynomial size, these matrices will be of polynomial order. The operation of taking prod-

uct of permutations can be represented as the product of permutation matrices. Thus we

have the following lemma.

Lemma 4.2 ([CM87]). Permutation branching programs of polynomial size compute exactly

the languages in L.

We will also use the following basic facts about permutations. Any element in Sn can

be written as a product of transpositions. From this, the following fact is obvious. Let τu
denote the transposition that exchanges elements in positions u and u+1; let σ denote the

permutation (12 . . . n) i.e a cyclic shift.

Fact 4.3. Any permutation in Sn can be generated by the two permutations σ = (1, 2 . . . n)

and τ1 = (1, 2), and the chain of product is of length O(n2).

The following observation is immediate. Consider the permutation represented as a

bipartite graph. Even if we disallow edges being embedded outside the set of vertices, we

51

have thickness 2 for these two special permutations. To impose this restriction, we talk

about the layered thickness of the permutations.

Fact 4.4. The bipartite graphs corresponding to the permutations σ and τ are of layered

thickness 2, layered geometric thickness 2.

The following figure illustrates this fact.

Figure 4.1: The first two are the two layers for σ and the last two are the two layers for τ .

4.2 Thickness of Branching Programs

The notion of thickness of graphs can be naturally extended to circuits too where we talk

about the thickness of the underlying directed acyclic graph.

4.2.1 Thickness characterisation of NC1 and L

The following proposition directly follows from Lemma 4.2 and facts 4.3 and 4.4.

Proposition 4.5. 1. Permutation branching programs of polynomial size and thickness 2

compute exactly the languages in L.

2. Permutation branching programs of polynomial size and geometric thickness 2 compute

exactly the languages in L.

Proof. By Lemma 2, it is sufficient to reduce the the problem of testing whether permu-

tation branching programs accepts or not, to the corresponding thickness 2 BPs. The

program consists of triplets of the form 〈xi, θ, δ〉, which stands for the statement:

If xi then θ else δ

where θ and δ are permutations in Sn.

52

Replace every such instruction by by the pair of instructions, (xi, θ, id),(¬xi, δ, id).

Every permutation θ can be written as a product of transpositions θ1, . . . θk where each

θi is a permutation of the form τu for some u. So replace every statement of the form

(xi, θ, id) by the set of instructions (xi, θ1, id)(xi, θ2, id) . . . (xi, θk, id).

As in the case of facts 4.3 and 4.4. to write each τu(u > 1) as σn+1−uτ1σ
u−1. Replace

every instruction of the form (li, τu, id) with u > 1 by the set of statements: (li, σ, id)n+1−u,

(li, τ1, id), (li, τ1, id)u−1. The following figure illustrates that the identity permutation can

also be embedded on each layer of the branching program without increasing the thick-

ness.

Figure 4.2: Identity permutation can be embedded in layer 1 of σ and layer 2 of τ without
increasing their thickness.

To see the claim about geometric thickness, observe that as bipartite graphs, the permuta-

tions of transposition and cyclic shift are of geometric thickness 2 (see fact 4.3, and then

using fact 4.3.

Barrington characterised NC1 in terms of bounded width branching programs over S5.

Notice that branching programs of width w can be of thickness w in general. However,

using an argument similar to the above for programs over Sk where k ≥ 5 is a constant,

gives the following:

Proposition 4.6. 1. Permutation branching programs of bounded width, polynomial size

and thickness 2 computes exactly the languages in NC1.

2. Permutation branching programs of bounded width, polynomial size and geometric

thickness 2 computes exactly the languages in NC1.

4.2.2 Page Characterisation of NC1 and L

In this subsection we describe a characterisation of NC1 recently proved by Allender et.

al.[ADR05a]. They define the notion of pages as half planes joined in a common spine. A

53

constant width circuit is of k pages if the vertices can be embedded on each of the half-

planes(which are called pages) with the restriction that any subgraph embedded on each

half plane is upward planar.

Theorem 4.7 ([ADR05a]). Polynomial sized circuits of 3 pages with bounded width on each

page recognise exactly the languages in NC1

However the terminology of pages used above is nonstandard. Notice the embedding

on each of the edge can be made straight line upward planar embedding. Thus it is easy

to see that graphs with k-page embedding have geometric thickness k − 1 or less. Thus, in

terms of the standard terminologies, the above result also implies proposition 4.6 (b).

Along, [Roy06] proves the following bound on number of pages needed to capture L.

Theorem 4.8 ([Roy06]). L = 4-PAGES.

However, this translates to a weaker bound in terms of geometric thickness compared

to proposition 4.5.

Since book thickness can be strictly larger than geometric thickness, it is natural to look

for book-thickness bounds for NC1 and L. The proof of theorem 4.7 in [ADR05a] does not

already give a book-thickness of 3, because for embedding each of the instructions for each

stack, we would require to split up the edges into different layers for each of the pages.

4.2.3 Book-thickness characterisation of NC1 and L

In this subsection we tighten proposition 4.5 further, by arguing that book thickness of 3

suffices. We will prove it in the most general form.

Theorem 4.9. Every language in L can be accepted by a polynomial size branching program

of book-thickness 3. In addition, the embedding is upward planar on each of the pages of the

book.

Proof. Again we start with the complete problem for L given by Lemma 4.2. By the proof

ideas used in proposition 4.5, the permutation branching program can be written in such

a way that each instruction is of the form (ℓi, σ, id) or (ℓi, τ, id) where ℓi is an input literal.

Now insert a dummy instruction of the form (ℓi, id, id) between every two instructions of

the program.

Call this resulting branching program P . This is directly embeddable in 3 pages: num-

ber the vertices (i, l) where i in [n], l is the layer number. Place the vertices on the spine

54

in layer-major order, with even-layer vertices ordered 1, 2, . . . n and odd-layer vertices or-

dered n, n − 1, . . . 2, 1. Put the dummy layer edges on page 1. Put the real layer edges

except edge (2, 2i) − (1, 2i+ 1) or (n, 2i) − (1, 2i+ 1) on page 2. Put the (2, 2i) − (1, 2i+ 1)

and (n, 2i) − (1, 2i + 1) edges where they exist on page 3. This is illustrated in figure 4.3

for the case of n = 5.

����������◦ ��
GG◦ GG GG◦ GG GG◦ GG FF◦ FF FF◦ ��◦ ��◦ ��◦ ��◦ ��◦ GG◦ GG◦ GG◦ ��

GG◦ FF FF◦ ��◦ ��◦ ��◦ ��◦ ��◦ ◦ ◦ ◦ ◦

Figure 4.3: Arranging the instructions : (ℓ, σ, id), (ℓ, id, id), (ℓ, τ, id), (ℓ, id, id)

Specialising the above arguments to the case of S5, we have the following.

Theorem 4.10. Every language in NC1 can be accepted by a polynomial size branching pro-

gram of width 5 and book-thickness 3. In addition, the embedding is upward planar on each

of the pages of the book.

55

Part II

Linear Algebraic Concepts Related to

Circuit Complexity

56

Chapter 5

Circuit Complexity of Matrix Rank

Capturing the combinatorial notion of computation using algebraic problems is a promis-

ing area of research. Much of the work in this direction has been done with the view that

the well-developed methods from algebraic structures could be used to obtain results about

the power of the computational model. An important work [MS07] in this direction is the

attempt to separate regarding the complexity of determinant and permanent of a matrix.

In order to facilitate such approaches to major questions in space bounded boolean com-

plexity theory, it will be useful to have algebraic problems capturing complexity classes. In

this chapter we attempt this with the rank computation problem.

Many problems in Linear algebra have been shown to have efficient parallel algorithms.

In particular, the complexity of computing the rank of a given matrix over a field F has been

well studied. When the field under question is Q, using a classic algorithm due to Csanky

[Csa76], Ibarra et.al [IMR80] developed an efficient parallel algorithm (NC2) to compute

the rank of the matrix. Over arbitrary fields, a non-uniform NC3 algorithm was developed

by Chistov [Chi85]. Using a different approach, Mulmuley [Mul87] developed an NC2

algorithm for the problem. Taking a more complexity theoretic perspective, building on

Mulmuley’s results, Allender et.al. [ABO96] showed that, for general matrices, computing

the rank of a matrix over Q exactly can be done in L
C=L. In addition, they showed that

checking if the rank of a given matrix M is at most r is C=L-complete [ABO96], thus pro-

viding an exact complexity theoretic characterisation for the problem. It can be easily seen

that their algorithm also works over the field Zp, and in this case the problem characterises

ModpL instead of C=L.

With the above motivation of characterising space bounded computation using alge-

braic problems, we study the problem of computing the rank under restricted settings.

57

The problem has been considered in the literature. In [BKR07], circuit complexity of com-

puting the rank of restricted matrices is studied where the matrix entries are constrained

by imposing constraints on the graph which it represents.

Here we take a different direction. The constraints that we impose on the matrix are

more algebraic in nature. The main contribution in this chapter is the characterisation

of deterministic log-space computation using rank computation problem for algebraically

constrained matrices. In addition, we consider restrictions which are combinations of non-

negativity, 0-1 entries, symmetry, diagonal dominance, tridiagonal and diagonal support,

and we consider the complexities of three problems: computing the rank, computing the

determinant and testing singularity. These, though intimately related, can have differing

complexities, as Table 5.1 shows.

The results in this chapter appears in [4].

5.1 Basic Definitions

The notion of rank is a very basic concept in linear algebra. We start with the basic defini-

tion of rank of a matrix.

Definition 5.1. Let M be an n × n matrix over a field K. The following are equivalent and

define the rank of the matrix over K.

1. The size of the largest submatrix with a non-zero determinant.

2. The number of linearly independent rows/columns of a matrix.

3. The smallest r such that M = AB where A ∈ Kn×r, B ∈ Kr×n.

4. The smallest k such that M is the sum of k rank 1 matrices, where rank 1 matrix is one

in which there is a row(column) v such that each other row(column) is either a multiple

of v or the zero vector.

However, the above equivalence does not hold unless we are working over a field. We

demonstrate this by an example. Consider a matrix:







2 3 5

4 0 4

0 0 0






over the ring Z6. By

definition (4), the row rank of the matrix is 1, but the column rank of the matrix is 2.

The rank of a matrix over an integral domain I is same as that in the field of fractions

of the F (I). Indeed, any linear combination with coefficients from F (I) can be translated

58

to one in I by just clearing of the denominators. Thus, the rank of a matrix with rational

entries is same over Z and Q.

The rank of a matrix over a field K remains the same over a field L which contains K.

Indeed, when the determinant of a matrix over a field K is non-zero, it remains non-zero

in any field L such that K ⊆ L. Thus for M ∈ Zn×n, the rank is remains same over Z, R, Q

and C.

We consider the following computational problems.

SINGULAR(K) = {M | Over K, M is not full rank}

RANK BOUND(K) = {(M, r) | Over K, rank(M) < r}

As discussed in the introduction, complexity theoretic characterisations for both these

problems are known. (Note that for any type of matrices, and any complexity class C,

C-hardness of SINGULAR implies C-hardness of RANK BOUND.)

Proposition 5.2 ([ABO96]). When K = Z or Q, SINGULAR(K) and RANK BOUND(K) and

are complete for C=L.

We now define some structural parameters of the matrix. In the following, let K be

Z,Q,R,or C.

Definition 5.3. (Diagonally Dominant) A matrix M over K, is called diagonally dominant

if:

∀i, |mi,i| ≥
∑

j 6=i

|mi,j|.

If all the inequalities are strict, then M is said to be strictly diagonally dominant.

Here is an interesting property of strictly diagonally dominant matrices, follows from

the standard Cholesky decomposition of matrices (See [MM64]). In the following we

include a more direct proof.

Proposition 5.4. ([MM64]) If a matrix M is strictly diagonally dominant, then it is non-

singular.

Proof. Let M be strictly diagonally dominant matrix. For the sake of contradiction assume

that M is singular. Thus there is a non-zero vector such that Mx = 0. Thus, for any

i,
∑

j m(i, j).xj = 0 Choose a k for which |xk| ≥ |xi| for all i. In particular for this k,

59

|m(k, k)|.|xk| = | −∑j 6=k m(k, j).xj)| ≤ |xk|
∑

j 6=k |m(k, j)|. This is a contradiction to strict

diagonal dominance on the row k.

Thus, if a matrixM is strictly diagonally dominant, the rank of the matrix is n and trivial

to compute. As an example, consider the identity matrix I which is strictly diagonally

dominant, and is of full rank. Now consider a matrix It where some of the non-zero entries

on the diagonal are zeroed out. It is indeed true that the rank of the matrix is exactly

n minus the number of such diagonal dominances which are not strict. An immediate

question is about generalising this idea to arbitrary diagonally dominant matrices. We

describe this briefly below.

Dahl [Dah99] established a strong connection between diagonal dominance on matri-

ces and certain associated graphs defined as follows.

Definition 5.5. For a non-negative symmetric diagonally-dominant matrix M , the support

graph GM is the undirected graph GM = (V,EM) where V = {1, . . . n}, and EM = {(i, j) |
i 6= j, mi,j > 0} ∪ {(i, i) | mi,i >

∑

i6=j mi,j} (That is, self loops are added only at those

vertices where the diagonal dominance is strict.)

Lemma 5.6 ([Dah99]). Let M be a non-negative symmetric diagonally dominant matrix of

order n over R. Then rank(M) = n− c, where c is the number of bipartite components in the

support graph GM .

Proof. This is reproduced from [Dah99] for completeness. Let e1, . . . , en be standard basis

for the vector space Rn. Let ∆i = eie
T
i , and ∆i,j = (ei + ej)(ei + ej)

T .

A set X ⊆ R is a cone if for α, β ≥ 0, x, y ∈ X =⇒ αx + βy ∈ X. Extending

this definition to Rn×n, we can prove that non-negative symmetric diagonally dominant

matrices form a cone and any such matrix can be decomposed as:

A =
n
∑

i=1

(

aii −
∑

j 6=i

aij

)

∆i +
∑

i<j

ai,j∆
i,j (5.1)

To analyse the rank of the matrix, it is natural to analyse how the matrix acts as a linear

transformation on a vector x = (x1, . . . , xn). Writing this down explicitly will give us:

xTAx =
n
∑

i=1

(

aii −
∑

j 6=i

aij

)

x2
i +

∑

i<j

ai,j(xi + xj)
2

60

When x is in the kernel, Ax = 0, and so,

xi =

{

0 (i, i) ∈ EM

−xj (i, j) ∈ EM , i 6= j

Thus, for any component C in GM , if there is odd cycle or a self loop for any vertex v,

then xi = 0 for all i ∈ C. For any bipartite component C in GM , it is easy to see that if we

choose a value for xi for some i ∈ C, that will essentially determine the values of xi for all

i ∈ C. Thus, dimension of the null space of the matrix is exactly the number of bipartite

components (c) and hence rank(M) = n− c.

Remark 5.7. When the matrix M is over Q, using the fact that rank remains the same over

Q and R, the above Lemma also holds for Q.

Note that the presence of a self-loop means a component is non-bipartite. Hence the

above lemma goes in accordance with the intuition that the rows in M for which diag-

onal dominance is not strict creates linear dependence in the subspace in corresponding

connected component in GM .

If all self-loops are present (that is, M is strictly diagonally dominant), then c = 0 and

so M is non-singular. Thus it provides another proof of Proposition 5.4. (This latter result

holds even if M is not symmetric or non-negative.)

Remark 5.8. A natural question is about generalising the above lemma to matrices which

are not symmetric. To this end, first we note that that the diagonally dominant matrices over

C (even over R) does not form a cone. But it is known that the set of diagonally dominant

matrices with non-negative diagonal forms a cone([Dah99]). Define Sn to be set of matrices

containing eie
T
i , ei(ei + ej)

T for every i. The techniques in Dahl [Dah99] also implies that

the set of non-negative diagonally dominant matrices is exactly cone(S). Using similar com-

putations as in the proof of Lemma 5.6, it follows that the kernel of M will be exactly the

x = (x1, . . . , xn) which are solutions of equations of the form

aiix
2
i =

∑

i6=j

aijxixj

However, there does not seem to be a relation between x and the combinatorial structure

of the graph associated with it.

61

Matrix type (over Q) RANK BOUND SINGULAR DETERMINANT

general C=L-complete C=L-complete GapL-complete
(even 0-1) [ABO96] [ABO96] [Dam91, Vin91]

[Tod91, Val92]
symmetric non-negative C=L-complete C=L-complete GapL-hard

(≤log
T redn.)

[ABO96] [ABO96] [Kul07]
symmetric non-negative
diagonally dominant (d.d.) L-complete L-complete ?
symmetric L-hard
diagonally dominant even when det ∈ {0, 1} ?
symmetric d.d. L-hard even when det ∈ {0, 1} ?
diagonal TC0-complete AC0 TC0-complete
tridiagonal C=NC1 GapNC1

tridiagonal non-negative non-negative permin planar # BWBP

Table 5.1: RANK BOUND, SINGULAR, and DETERMINANT for special matrices

Complexity Theory Preliminaries: We refer to the appendix for the basic complexity

theory definitions needed in this chapter. Computing the determinant over Z or Q is

complete for GapL. In contrast, computing the permanent is complete for #P, the class of

functions counting accepting paths of an NP machine. One of the classes figuring here that

needs special explanation is planar #BWBP.

Branching programs as a computational model have been shown to be surprisingly

powerful in the Boolean context; e.g. bounded-width branching programs (BWBP) cap-

ture NC1, the class of languages polynomial size logarithmic depth circuits. However, in

the arithmetic context, where we are interested in computing values rather than deter-

mining membership, they are not that well understood. It is still open ([All04, CMTV98])

whether the containment #BWBP ⊆ #NC1 is in fact an equality. It is known that width-

2 layered planar #BWBP is at least as hard as NC1 [AAB+99]. Our results concerning

tridiagonal and diagonal matrices give a simpler proof of a weaker result: width-2 layered

planar #BWBP is at least as hard as TC0.

5.2 Rank Computation for Diagonally Dominant Matrices

In this section we present the results on non-negative symmetric diagonally dominant

matrices. To start our investigation about the combining the restrictions of various param-

62

eters, the following is easy to see: We include a proof for completeness.

Proposition 5.9. The languages RANK BOUND(Z) and SINGULAR(Z) remain C=L-hard even

if the instances are restricted to be symmetric 0-1 matrices.

Proof. LetA′ be the symmetric matrix

[

0 A

AT 0

]

. Since rank(A′) = 2(rank(A)), RANK BOUND(Z)

remains C=L-hard when restricted to symmetric matrices. Further, DETERMINANT remains

GapL hard even the matrices are restricted to be 0-1 (see for instance [Tod91]). Thus

SINGULAR remains C=L-hard even when restricted to 0-1 matrices. Since M is in SINGULAR

if and only if (M,n) is in RANK BOUND if and only if (M ′, 2n) is in RANK BOUND, it follows

that RANK BOUND(Z) remains C=L-hard for symmetric 0-1 matrices as well.

This trick does not work for computing determinants, because det(A′) will equal ± det(A)2

and GapL is not known to be closed under taking square-roots. We do not know (any other

way of showing) similar hardness for symmetric DETERMINANT. While it remains GapL

hard for 0-1 matrices, it is not clear that there are GapL -hard symmetric instances. Re-

cently, Kulkarni [Kul07] has observed that symmetric instances are GapL-hard under Turing

reductions. The idea is to first use Chinese Remaindering: any determinant can be com-

puted in L if its residues modulo polynomially many primes are available. Small primes

(logarithmically many bits) suffice and can be obtained explicitly. Now to find the deter-

minant modulo a small prime p, range over all a ∈ {0, 1, . . . , p − 1} and test if it equals a

modulo p. But this can be recast, using the GapL -completeness proofs of the determinant,

as asking if a related determinant is 0 modulo p. Finally, using the idea in the proof of

Proposition 5.9, we can ask the oracle for the determinant of a related symmetric matrix

and test (in L) if it is 0 modulo p. We now consider an additional restriction where the

matrix is diagonally dominant. We show:

Theorem 5.10. SINGULAR(Z) and RANK BOUND(Z) restricted to non-negative diagonally

dominant symmetric matrices are L-complete. The hardness is via uniform AC0-computable

many-one reductions.

Proof. To show this, we exploit the connection between such matrices and their support

graphs (see definition 5.5). For a matrix M , the support graph GM is the undirected graph

GM = (V,EM) where V = {v1, . . . vn}, and EM = {(vi, vj) | i 6= j, mi,j > 0} ∪ {(vi, vi) |
mi,i >

∑

i6=j mi,j}. Now Lemma 5.6 essentially establishes that computing the rank of M is

equivalent to counting the number of bipartite components in the support graph GM .

63

Membership in L: Now, given a matrix M satisfying the stated conditions, it is straight-

forward to construct the support graph GM . By [AG00, NTS95, Rei05], checking whether

two vertices belong to the same component in an undirected graph, counting the number

of components, and checking bipartiteness of a named component [JLL76] are all in L.

Hence, by Lemma 5.6, rank(M) can be computed in L.

Hardness: The reduction is from undirected forest accessibility UFA, which is L-complete

and remains L-hard even when the graph has exactly 2 components [CM87]. We state in

the following lemma the special form that we need, and include the proof for complete-

ness.

Lemma 5.11. ([CM87]) Given an undirected forest G, of bounded degree with exactly two

components, and three special vertices s, t and q, with the guarantee that t and q are in

different components, deciding which component s belongs to is L-hard.

Proof. The reduction is from the machine model for L, and is essentially reproduced from

[CM87]. We rephrase the proof here to highlight the fact that the normal form we need is

indeed achievable.

To begin with, modify the machine description such that whenever the computation is

on an infinite loop, the machine clears off the worktape and goes to an error state e. Thus

there are only two poossible final states for the machine, one is the error configurations e,

and the other is the accepting configuration t.

The set of configurations of a Turing machine with a fixed input w forms the vertices

of such a graph G, and the (unique) accepting configuration is accessible from the initial

configuration if and only if the Turing machine accepts the input w. G can be made acyclic

by associating a time stamp with the configurations, and insisting that an edge always joins

a configuration at time i to a configuration at time i + 1. If p(n) is an upper bound on the

computation time of the Turing machine with input w, then we let the node t in the graph

be the accepting configuration with time stamp p(n), and s will be the initial configuration

with time stamp 0.

By definition, the number of possible (in/out)-neighbours of any node is bounded by a

constant. In addition there are exactly two nodes of outdegree 0, and they correspond to

the configurations e and t.

Viewing each edge in the resulting digraph as undirected yields an undirected forest

such that s and t belong to the same tree if and only if a directed path existed from s

to t in the original digraph. Note that the resulting undirected forest has precisely two

components, and the three vertices satisfy the required properties of the reduction.

64

We now construct G′ as follows: Make two copies G1 and G2 of G. Add a new vertex

u. Add edges (s1, s2), (t1, u), (t2, u). Add self-loops at q1 and q2.

G′ has at most three components (copies of the components containing t join up via u).

The component(s) containing copies of q are necessarily non-bipartite.

If there is an s ; t path ρ in G, then in G′ the two copies of the path, along with the

edges (s1, s2), (t1, u), (u, t2) create an odd cycle, so the new joined up component is also

not bipartite. Hence G′ has no bipartite components.

If there is no s ; t path in G, the component containing t1 and t2 will remain bipartite.

Thus there is exactly one bipartite component now. To complete the proof, we need to

produce a matrix M such that G′ is its support graph. We construct M as follows:

For each i 6= j mi,j =

{

1 if (i, j) ∈ E ′

0 otherwise

For each i mi,i =

{

1 +
∑

j 6=imi,j if (i, i) ∈ E ′

∑

j 6=imi,j otherwise

M can be constructed from G by a uniform TC0 circuit. From Lemma 5.6, M is singular

if and only if there is no s ; t path in G.

It is clear that M can be constructed from G′, and hence from G, by a uniform TC0

circuit.

Now we show that in fact it can be constructed in AC0. First, observe that the forest

that we start with (as the L-hard instance) has bounded degree. So we would like to

rewrite the summation
∑

j 6=imi,j as
∑

j 6=i;mi,j 6=0mi,j. But how do we know a priori which

entries are non-zero? For a node i, define Li to be the list of nodes for which mi,j can

possibly be non-zero. Since the log-space Turing machine alters only a small part of the

configuration in one step, this list is of bounded length, with the bound l depending only on

the machine’s description and not on the input length. Let list(i, t) denote the tth element

in a lexicographical enumeration of Li; on input i, t, list(i, t) can be determined in AC0.

Now the required summation is exactly
∑

j∈Li
mi,j =

∑l
t=1mi,list(i,t), and thus it can be

computed by an AC0 circuit.

Corollary 5.12. The language RANK BOUND(Z), restricted to symmetric non-negative diago-

nally dominant instances, is L-complete.

However, the hardness of RANK BOUND(Z) is not just from the hardness of SINGULAR

problem. An obvious way to obtain hardness at other values of rank (rather than r = n in

the case of SINGULAR) is to pad out the matrix with zero rows and/or columns. We present

65

here a slight modification of the proof of Theorem 5.10 which establishes hardness of

deciding whether the rank is n− 1 or n− 2.

Proof. The reduction is from undirected forest accessibility UFA, which is L-complete and

remains L-hard even when the graph has exactly 2 components [CM87].

Let G, s, t be an instance of UFA, where G has two trees. We construct a new graph

G′ = (V ′, E ′) as follows: take two disjoint copies of G. Add a new vertex u and connect it

to both copies of t. Connect the two copies of s. Also, add self-loops at both copies of t.

If there is an s ; t path ρ in G, then G′ has three components: the copies of the

component containing s an t join up, while the copies of the other component remain

disconnected (and hence bipartite). The two copies of the path, along with the edges

(s1, s2), (t1, u), (u, t2) create an odd cycle, so the new joined up component is not bipartite.

Hence G′ has exactly two bipartite components.

If there is no s ; t path in G, the component containing s1 and s2 will remain bipartite.

The other component is not bipartite due to the self loops at t,t2. Thus there is exactly one

bipartite component now.

To complete the proof, we need to produce a matrix M such that G′ is its support graph.

This can be done exactly in the same way as in the above proof.

In Theorem 5.10, if we relax the condition of non-negativity, then the hardness of

course continues to hold (but we do not know how to show membership in L). Via a

somewhat different reduction, we show that for such matrices, L-hardness of SINGULAR

holds even for matrices whose determinant is known to be in {0, 1}.

Theorem 5.13. SINGULAR(Z) for symmetric diagonally dominant matrices is L-hard, even

when restricted to instances with 0-or-1 determinant.

Proof. As in the proof of Theorem 5.10, we begin with an instance (G, s, t) of UFA where

G has exactly two components. Add edge (s, t) to obtain graph H. By the matrix-tree

theorem, (see for e.g. Theorem II-12 in [Bol84]), if A is the Laplacian matrix of H (defined

below), and B is obtained by deleting the topmost row and leftmost column of A, then

det(B) equals the number of spanning trees of H.

ai,i = the degree of vertex i in H

ai,j = −1 if i 6= j and (i, j) is an edge in H

ai,j = 0 if i 6= j and (i, j) is not an edge in H

66

Clearly, A is diagonally dominant (in fact, for each i, the constraint is an equality); also,

since H is an undirected graph, A is symmetric.

Now the number of spanning trees in H is 1 if s 6;G t (H itself is a tree) and is 0 if

s ;G t (H still has two components).

5.3 Determinant Computation of Special Matrices

Though rank for symmetric non-negative diagonally dominant matrices can be computed

in L, we do not know how to compute the exact value of the determinant itself. In this

section we address the question of determinant computation for restricted matrices. If a

matrix is to have no trivial (all-zero) rows, and yet be diagonally dominant, then it cannot

have any zeroes on the diagonal. How restrictive is this requirement? In general, it isn’t

too much so, as we show below. However, we do not know of a many-one reduction.

Lemma 5.14. For every GapL function f and every input x, f(x) can be expressed as det(M)−
1, where M has no zeroes on the diagonal. Further, M can be obtained from x via projections.

Proof. Consider Toda’s proof [Tod91] for showing that DETERMINANT is GapL hard (see

also [ABO96, MV97]). Given any GapL function f and input x, it constructs a directed

graph G with self-loops at every vertex except a special vertex s. G also has the property

that every non-trivial cycle (not a self-loop) in G passes through s. If A is the adjacency

matrix of G, then the construction satisfies f(x) = det(A). Now consider the matrix B

obtained by adding a self-loop at s. What additional terms does det(B) have that were

absent in det(A)? Such terms must correspond to cycle covers using the self-loop at s; i.e.

cycle covers in G \ {s}. But G \ {s} has no non-trivial cycles, so the only additional cycle

cover is all self-loops, contributing a 1. Thus det(B) = 1 + det(A), and B is the required

matrix.

Continuing further along restricting matrices, we consider the simplest form of the

matrices considered in Theorem 5.10, namely non-negative diagonal matrices. Clearly,

the rank is now the number of non-zero entries. Checking whether an entry is zero can

be done by a single AND gate which looks at the negated literals in that entry. Since

polylog thresholds are in AC0 [RW91], it follows that not just singularity, but also instances

(M, r) of RANK BOUND where r is within a polylog additive (subtractive) factor of 0 (or n,

respectively) are in fact in AC0. RANK BOUND(Z) itself, for such matrices, is in TC0. Also,

the determinant can be computed in TC0 since it merely involves iterated multiplication.

67

On the other hand, an instance x1 . . . xn of the TC0-complete problem co -MAJORITY can

be written as the instance (D(x), n/2) of RANK BOUND(Z). (D(x) is the matrix obtained by

placing the vector x on the diagonal and placing zeroes elsewhere.) Similarly, an instance

a1, . . . , an of iterated multiplication (n n-bit numbers) can be recast as such a determinant

by placing the numbers on the diagonal. Thus

Theorem 5.15. RANK BOUND(Z) and DETERMINANT, restricted to diagonal matrices, are

TC0-complete. The hardness does not require negative entries.

This is another instance where RANK BOUND does not derive its hardness from the sin-

gularity threshold; it is in fact (provably) harder than SINGULAR. (The first instance is in

the Note after Theorem 5.10; however, in that case, SINGULAR is also equally hard.)

The next restriction we consider is tridiagonal matrices: mi,j 6= 0 =⇒ |i − j| ≤ 1. We

show that DETERMINANT and PERMANENT are in GapNC1, by using bounded-width branch-

ing programs BWBP . In the Boolean context, BWBP equals NC1. However, in the

arithmetic context, they are not that well understood. It is still open ([All04, CMTV98])

whether the containment #BWBP ⊆ #NC1 is in fact an equality (though it is known that

GapBWBP = GapNC1). Layered planar BWBP are the G-graphs referred to in [AAB+99].

Counting paths in G-graphs may well be simpler than GapNC1 due to planarity. However

[AAB+99] (see also [All04]) shows that even over width-2 G-graphs, it is hard for NC1. We

show that the permanent and determinant of tridiagonal matrices are essentially equiva-

lent to counting in width-2 G-graphs. In what follows we have a weighted BWBP, where

the weight of a path is the product of the weights of the edges on the path. The value of a

weighted BWBP is the sum, over all s-t paths, of the weights of the paths.

Theorem 5.16. Computing the permanent and determinant of a non-negative tridiagonal

matrix over Z is equivalent to evaluating a layered planar weighted BWBP of width 2.

Proof. Given a tridiagonal matrix A, let Ai be the top-left submatrix of A of order i, and

let Xi and Yi denote its permanent and determinant respectively. We have the following

recurrences:

X0 = Y0 = 1 X1 = Y1 = a1,1

Xi = ai,iXi−1 + ai−1,iai,i−1Xi−2 Yi = ai,iYi−1 − ai−1,iai,i−1Yi−2

Figure 5.1 shows a weighted branching program for Xn that has width 2 and can be

drawn in a layered planar fashion. The construction for the determinant Yn is similar, using

some negative weights. This completes the proof of one direction.

68

◦X0
a12 //

a11

��?
??

??
??

??
??

??
? ◦ a21 //◦X2

a33

��?
??

??
??

??
??

??
?

a34 //◦ a43 //◦X4 ◦//an,n−1
??

ann

��
��

��
��

��
��

�� Xn

◦
X1

a22

??��������������
a23

//◦ a32

//◦
X3

a45

//

a44

??�������������� ◦ ◦
Xn−1

Figure 5.1: Width-2 branching program for tridiagonal permanent

We remark that in the construction for the permanent (Xn), when all entries are non-

negative, this problem reduces to counting paths in unweighted planar branching pro-

grams of width 5. To see this, replace each weighted edge in Figure 1 with a width-three

gadget having the appropriate number of paths in a standard way.

To see the other direction, notice that any layer of a width-2 planar BWBP should look

like one of the following structures.

◦ a //
b

��@
@@

@@
@@

@ ◦ ◦ d //◦

◦ c
// ◦

f
//

e
??~~~~~~~ ◦

D U

Figure 5.2: Components of Width-2 layered planar graphs

Now any width-2 graph G corresponding to the BP can be encoded as a sequence

of D and U components as indicated in figure 5.2. First consider the case where the

sequence consists of alternating D and U; that is consider sequences in (DU)∗. Each such

sequence looks exactly like the graph in figure 5.1. By just reading off the weights on

the corresponding edges in the graph, we can produce two matrices M1 and M2 such that

permanent of M1 and the determinant of M2 (by putting in appropriate negations) equal

to the value of the weighted BWBP.

Now it is sufficient to argue that the graph corresponding to any BWBP can be trans-

formed to this form. If the string does not start with a with a D component, we will just

put in a prefix D with abc = 101. Similarly, add a suffix U component with def = 101 if

necessary. We need to handle the case when there are two consecutive components of the

same type; UU or DD. Simply put in a D component with abc = 101 between two Us, and

a U component with def = 101 between two Ds. Notice that the new width-2 graph when

encoded will be an element of (DU)∗, and the weights of the paths are preserved in the

transformation. The above reduction now gives the two matrices M1 and M2. In addition,

69

observe that if the BWBP is unweighted, then the matrix M1 that we produce has only 0,1

entries, and M2 will have entries from {−1, 0, 1}.

Corollary 5.17. Computing the permanent and determinant of a tridiagonal matrix over Z

is in GapNC1, and is hard for NC1 under AC0[5] reductions.

70

Chapter 6

Optimising Matrix rank

In this chapter we address the question of how close is a given matrixM to a matrix of given

rank r. This is a natural optimisation question associated with matrix rank. The notion

of rank-robustness of matrices has found many applications in circuit complexity, com-

munication complexity, and learning complexity ([FKL+01], [For02],[Raz89], [Lok95],

[PP04], [LS06]). Historically, the problem was first studied by [EY36]. Besides the the-

oretical interests related to complexity theory, the related notion of rank robustness also

finds practical applications; especially in Control Systems Design [Bol70, Bar75, BT00],

Artificial Intelligence and Cognitive Sciences [BBF+74].

This notion is also a close variant of the problem of dimension reduction which, be-

sides its theoretical applications, has also received a lot of attention in applied areas in

computer science such as machine learning [DM01], computer vision, and information

retrieval[BDO95, SJ03]. In these contexts, the main aim is to obtain more compact rep-

resentation of data with limited loss of information. A matrix of low rank, intuitively has

a compact representation. Thus, approximating the given matrix (with an appropriate

notion of distance to the original matrix) using another matrix of given rank, forms an

important question in many areas.

6.1 Basic Definitions and Properties

In order to formulate our problem, we need to define the notion of distance between two

matrices. The possible candidates for the notion of distance, comes from the matrix norms.

We first recall some basic definitions from matrix analysis. Let V be vector space V

over a subfield F of the complex numbers. Let |.| denotes the absolute value. A norm on V

71

is a function p : V → R; x 7→ p(x) with the following properties: (1) For all a ∈ F and all

u, v ∈ V , p(av) = |a|p(v), p(u+ v) ≤ p(u) + p(v), (2) ∀v ∈ V , p(v) = 0 if and only if v is the

zero vector. A norm of v is denoted by ||v||, instead of p(v). In particular, the p-norm of a

vector (x1, . . . , xn) ∈ Fn is denoted by, ||v||p = (
∑n

i=1 x
p
i)

1
p . ||v||∞ = maxi |xi|.

We start with a very general definition of matrix norm.

Definition 6.1. Given two vector norms ||.||α and ||.||β over vectors in Rn, and a matrix

M ∈ Rm×n, the subordinate matrix norm is defined to be:

||M ||α,β = max
||x||α=1

||Mx||β

Based on choice of the norms α and β, we get different notions of distances. Indeed, for

any choice of norms α and β, the above quantities forms norms of the spaces. For example,

notice that ||M ||1,∞ = maxij |mij|. In general when α = β, we get the usual matrix norms.

||M ||1 = ||M ||1,1 = max
||x||1=1

||Mx||1 = max
j

∑

i

|mij|

is the max column vector norm.

||M ||2 = ||M ||2,2 = max
||x||2=1

||Mx||2 =
√

λmax(MTM))

is the spectral norm.

||M ||∞ = ||M ||∞,∞ = max
||x||∞=1

||Mx||∞ = max
i

∑

j

|mij|

is the max row vector norm.

The Frobenius norm of the matrix is simply the ℓ2 norm of the vector obtained by

interpreting the matrix as an element in n2-dimensional vector space. That is,

||M ||F =

√

∑

ij

|mij|2.

From now on, unless otherwise stated, we assume α = β and denote the norm by

||M ||α. We will also assume that the matrix is a square matrix. We state a general version

of our problem.

Problem 1. Fix the vector norm ||.||α in Rn. For any matrix M ∈ Rn×n and an integer r ≤ n,

72

find a matrix N ∈ Rn×n of rank at most r for which ||M −N ||α is minimised.

The problem has been well studied under several choices of the norm α. The most

general exact answer known is in the case when r = n− 1.

Theorem 6.2 ([EY36]). For any non-singular matrix M ∈ Rn×n, there exists a matrix N

which is singular such that

||M −N ||2 =
1

||M−1||2
.

In the cases when the norm α is Frobenius norm, the singular values (eigen values of

MMT) of the matrix M gives much information about the distance to the nearest singular

matrix. Using this method, approximating a matrix with another one of low rank has

also been considered in the literature under the name low rank approximations of matrices

(see [FKV04] and references therein). A generalisation of the problem called subspace

approximation has been considered in [DV07, Des07].

A natural variant of the problem is when we allow bounds on the component wise

distance of the matrix. We say that |M −N |c ≤ δ when maxij |mij − nij| ≤ δ. This variant

has also been well studied. Demmel [Dem92] provided some connections to the notion

of condition number of the matrix. In a spirit similar to the Theorem 6.2, Poljack and

Rohn [PR93] proved the following.

Theorem 6.3 ([PR93]). For any non-singular matrix M ∈ Rn×n, there exists a matrix N

which is singular such that

|M −N |c =
1

||M−1||∞,1

.

Also, when different bounds are imposed on different entries (given by a matrix ∆),

Poljak and Rohn [PR93] proved relationships to what are called signature matrices associ-

ated with the given matrix M . We skip more details and refer the reader to [Roh96].

A major component missing in the above considerations is the adaptability to the case

of finite fields. The notion of distance with respect to norms is not defined over finite

fields. In fact, the most natural notion of distance in the case of finite structures is that of

Hamming distance. In a more algorithmic framework, the problem can also be viewed as

the edit distance to the set of matrices of a given rank.

In the setting that we will be looking at, we are interested in constructing matrices

such that there are no matrices at a low Hamming distance with rank less than a given

value. We return to the computational question in this context later. We consider this in

the following section under a more commonly known title.

73

6.2 Matrix Rigidity

A matrix is rigid if it is hard to lower its rank. More formally, the rigidity of a given

matrix M with respect to a target rank r is the minimum number of entries that need to

be changed in order to bring down the rank below r. Matrix rigidity was introduced by

Valiant [Val77]; a similar notion was also studied independently by Grigoriev [Gri76]. In

terms of standard notations:

Definition 6.4 (Matrix Rigidity). Over any field K, the rigidity of a matrix M ∈ Kn×n with

respect to a target rank r is defined as:

Rig(K,M, r)
def
= inf

N

{

support(M −N) | N ∈ Kn×n, rank(N) ≤ r
}

where support(X) denotes the number of non-zero entries of the matrix X. When the field

under question is clear, we denote the quantity by RM(r).

We now review some basic properties of this function. First of all notice that since it

depends only on rank of the matrix, it is invariant under row and column permutations.

The following bounds are well known.

Proposition 6.5 ([Val77]). Over any field F,

rank(M) − r ≤ RM(r) ≤ (n− r)2.

Proof. We use the following fact, which is folklore.

Fact 6.6. Over any field F, for any two matrices M and N of the same order,

rank(M) − rank(N) ≤ rank(M +N) ≤ rank(M) + rank(N).

The upper bound follows from sub-additivity property of matrix rank. To see the lower

bound, write C = M + N . Thus rank(M) = rank(C − N) ≤ rank(C) + rank(N). Thus,

rank(M +N) ≥ rank(M) − rank(N).

It is immediate that if support(M − N) = 1 then | rank(M) − rank(N)| ≤ 1. Thus, by

changing an entry of a matrix we can change the rank by at most 1. This immediately

shows that RM(r) ≥ rank(M) − r.

Now we show the other direction. Without loss of generality we can assume that rank

of M is at least r + 1, otherwise the statement is vacuously true since RM(r) = 0. Now,

74

permute the rows and columns of the matrix such that the r × r submatrix at the top left

corner is non-singular. Note that this is always possible since the rank of the matrix is at

least r + 1. Now consider the bottom right (n− r) × (n− r) submatrix of M .

M =

(

A B

C D

)

where A ∈ Fr×r, B ∈ Fr×(n−r), C ∈ F(n−r)×r, D ∈ F(n−r)×(n−r). Consider the n × r matrix

obtained by joining A and C, which is rank exactly r. Thus we conclude that rows of C

are expressible as the linear combinations of the rows of A. Let c1, c2, . . . cn−r be the rows

of the matrix C, a1, a2, . . . ar that of A. For each i,

ci =
r
∑

j=1

αjaj (6.1)

Using the coefficients αj, we change the rows of D to d1, . . . , dn−r to get matrix M ′, where:

di =
r
∑

j=1

αjbj

where b1, . . . br are the rows of B. Notice that we changed only the entries of D in the

above process. That is, we changed at most (n− r)2 entries. By choice of the entries, every

row of the matrix M ′ is expressible as a linear combination of the first r rows. Hence M ′

has rank at most r.

The underlying field plays an important role in the above definition. If for a matrix M ,

we know that k = Rig(K,M, r), over a field K, a natural question is how does the value of

rigidity in a subfield of K, or in another field F which is an extension of K. The following

proposition follows from definitions

Proposition 6.7. Let K be a field and F be an extension of K, and let M ∈ Kn×n then:

Rig(K,M, r) ≥ Rig(F,M, r).

An algebraic geometric formulation of the above problem is as follows. Consider a

generic n× n matrix X = (xij). The condition of the rank of the matrix being at most r is

equivalent to the condition that all the (r+1)× (r+1) minors of X are zero. This defines a

set of
(

n
r+1

)

polynomials whose common zeros are exactly the rank r matrices. Thus the set

75

of rank r matrices forms an affine variety (for formal definitions see Appendix B). Indeed,

matrix rigidity RM(r) is the hamming distance of M to this variety.

Bounded Rigidity: We will also consider the notion of bounded rigidity, which is re-

lated to the component-wise distance that was discussed in the previous section. Namely,

changed matrix entries can differ from the original entries by at most a pre-specified

amount θ. Let K be R or Q such that there is a notion of distance between two elements

which is a norm.

Definition 6.8 (Bounded Rigidity). The bounded rigidity of a matrix M ∈ Kn×n with respect

to a target rank r, and a θ ∈ K is defined as:

Rig(K,M, r, θ)
def
= inf

N

{

support(M −N) : N ∈ Kn×n, rank(N) ≤ r,∀i, j : |mi,j − ni,j| ≤ θ
}

where support(X) denotes the number of non-zero entries of the matrix X. When the field

under question is clear from the context, we denote the quantity by RM(r, θ).

Definition 6.9 (Norm Rigidity). The norm bounded rigidity of a matrix M ∈ Kn×n with

respect to a target rank r ≤ n, and a θ ∈ K is defined as:

∆(K,M, r)
def
= inf

N

{

∑

i,j

|mi,j − ni,j|2 : N ∈ Kn×n, rank(N) ≤ r

}

When the field under question is clear from the context, we denote the quantity by ∆M(r).

The following lemma shows that the bounded rigidity functions can behave very differ-

ently from the standard rigidity function.

Lemma 6.10. For any ǫ, and for any sufficiently large n such that n
log n

> ǫ + 1, there is an

n × n matrix M such that RM(n − 1) = 1, ∆M(n − 1) = Θ(4n), and the bounded rigidity

RM(n− 1, nǫ) is undefined.

Proof. Let M be an n × n diagonal matrix with mi,i = 2n and mi,j = 0 for i 6= j. Clearly,

RM(n − 1) = 1; just zero out any diagonal entry. This involves a norm change of 4n.

Can M be made singular by a smaller norm-change, even allowing more entries to be

changed? Recall the definition of strict diagonal dominance from Section 5.2. We in-

voke the Levy-Desplanques theorem (see for instance Theorem 2.1 in [MM64]) that says

that the determinant of a strictly diagonally dominant matrix is non-zero. Now, a total

76

norm-change less than 4n will not destroy strict diagonally dominance, and the matrix will

remain non-singular. Hence ∆M(n− 1) = 4n, and RM(n− 1, nǫ) is undefined.

We will come back to this question again when we study computational question on

rigidity in Chapter 8. As noted before the gap between the upper bound and lower bound

for matrices in general is linear. In next two subsections we provide a quick survey of the

applications of rank robustness in computational complexity theory.

6.3 Applications to Lower bounds

The notion of matrix rigidity found applications in complexity theory, in particular in the

attempts to prove circuit lower bounds. In this section we briefly mention them.

To begin with, we recall the definition of arithmetic circuits. We will be interested in

arithmetic circuits computing linear transformations, which are linear functions.

Definition 6.11 (Linear Circuits). A linear circuit over a fieldK is a directed acyclic graph(DAG)

with n source nodes (nodes of in-degree 0) and m sink nodes (nodes of out-degree 0) in which

each edge is labelled by a non-zero element of K. Each vertex of the graph denotes a gate

g which takes in values from its in-coming edges labelled by α1, . . . , αk coming from gates

g1, . . . , gk, then g computes

[g] :=
k
∑

i=1

αi[gi]

where [gi] ∈ F is the value computed at gate gi. The size of a linear circuit is defined to be

the number of edges in the graph. The depth of a circuit is the length of longest path from a

source node to a sink node.

When the depth of the circuit is Ω(log n), the fan-in of each gate can be assumed to be

2, otherwise, it is at least 2. Notice that each gate of a linear circuit is computing a linear

function.

For a circuit C let y1, . . . , ym be the m sink nodes and x1, . . . , xn be the n source nodes.

It is easy to see that since each gate computes a linear combination of its inputs, there

exists a matrix A such that,









a11 . . . a1n

... . . .
...

am1 . . . amn

















x1

...

xn









=









y1

...

ym









77

where each aij is a linear combination of the α. More precisely, if we assume that the

graph is layered into k layers, we can show that

aij =
∑

p

α1 . . . αk

where p ranges over all paths which takes source i to sink j.

The following result is well known, and establishes a very natural connection to rank of

the matrix M and the combinatorics of the circuit that computes the linear transformation

defined by M .

Lemma 6.12 (folklore,[Pud94]). Let M be a matrix over a field F. Let C any linear circuit

computing the linear transformation corresponding to M , and let G be the corresponding

directed acyclic graph. IF rankF(M) ≤ r then G cannot have an r − 1 vertex cut in the

underlying directed acyclic graph. Conversely, if there are r vertex disjoint paths in G, then

rankF(M) ≥ r.

Following the intuition behind this combinatorial connection, Valiant [Val77] proved

the following. (The following version is stated in [PP04].)

Lemma 6.13 ([Val77],[PP04]). Let r, δ, σ be positive integers with k = δ
4σ
> 1. Every linear

transformation defined by an n-input m-output linear circuit over a field F, with linear gates

and with size at most r log δ
2 log k

and depth at most δ can be written as

A+BC

Here B ∈ Fn×r, C ∈ Fr×m and the rows of A and B contains at most 2σ non-zero entries.

Notice that if M is the matrix which defines the linear transformation computed by the

linear circuit, then the above theorem immediately proves that there is a matrix A such

that M − A is a matrix of rank at most r. (Indeed, by the above theorem M − A can be

written as the product of an n × r matrix and an r × n matrix ; recall Definition 5.1). An

interesting observation by [PP04] is that M −A = BC where B is also sparse. Inspired by

this observations, they studied a variant of rigidity. We refer the reader to [PP04].

We state the following as the corollary:

Theorem 6.14 ([Val77]). If for some ǫ > 0 there exists a δ > 0 such that an n × n matrix

Mn has rigidity RMn
(ǫn) ≥ n1+δ over a field F, then any linear circuit of depth O(log n)

computing the transformation x→Mx has size Ω(n).

78

In a similar note, [Pud94] also proves a connection between linear functions computed

by bounded depth circuits and decomposition of the corresponding matrices. For i ∈ [k],

let Ci be a circuit which computes the linear transformation Mi. Then combining them in

a linear fashion will give a circuit which computes the linear transformation M =
∏k

i=1Mi.

Using this connection, Pudlak [Pud94] proved the following implication for depth 2 cir-

cuits.

Theorem 6.15 ([Pud94]). For every ǫ > 0, there exists δ > 0 such that for every n×n matrix

over F, 1 ≤ m1 ≤ m2 ≤ n,

[

∀r ∈ [m1,m2],

RM(r) ≥ ǫn2

r

]

=⇒
[

∀A,B : M = AB,

|A| + |B| ≥ δn log m2

m1

]

where |A| denote the number of non-zero entries in A. This also implies that every linear

circuit of depth 2 which computes M must have size at least δn log m2

m1
.

For depth d, where d is a constant,

Theorem 6.16 ([Pud94]). Let F be a field, and M be an n×m matrix. For every integer r,

1 ≤ r ≤ n, for any constant d, any depth d circuit computing M must have size at least,

(

RM(r)

n

) 1
d

r

We also state the applications of rigidity notion to communication complexity. Moti-

vated by Yao’s [Yao79] seminal work on the model of communication complexity, Babai et

al. [BFS86] defined communication complexity analogs of of various complexity classes.

Let Σ2∗ = {(x, y) | x, y ∈ {0, 1}∗, |x| = |y|} and consider any language L ⊆ Σ2∗. We can

naturally represent its characteristic function on pairs of strings of length n as a 2n × 2n

boolean (or ±1) matrix. On the other hand, given any m × m matrix (m ≥ 2n) we can

associate a boolean function on 2n bits to it. (Note that this may not be unique as m may

not be of the form 2n for some n.) Now, [BFS86] defines the analog of PH as follows. Let

m be a positive integer,

A language L is in Σcc
k if for some choice of ℓ1(n), ℓ2(n), . . . ℓk(n), there exists boolean

functions φ, ψ such that (x, y) ∈ Ln if

∃u1∀u2 . . . Qkuk (φ(x, u) ⋄ ψ(x, u))

79

where u = u1 . . . uk, |ui| = ℓi(n),
∑

i ℓi(n) = ℓ(n) ≤ (log n)c for some constant c ≥ 0,

φ, ψ maps n+ ℓ(n) bits to 1 bit, Qk is ∀,∃ and ⋄ is ∨,∧ when k is even and odd respectively.

By allowing an bounded and unbounded (but not more than polylog) number of quantifiers

we get PHcc and PSPACEcc, the communication complexity analogues of PH and PSPACE

respectively. However, we do not know any explicit language outside Σcc
2 . In the context,

the following theorems show that lower bounds on rigidity of explicit 0-1 matrices would

imply such separation results.

Theorem 6.17 ([Raz89]). Let {An} be an infinite family of 0-1 matrices over a finite field

F, and LA be the associated language. For r ≥ (log log n)ω(1) if

RA(r) ≥ n2

2(log r)o(1)

then LA /∈ PHcc.

Theorem 6.18 ([Lok95]). Let {An} be an infinite family of ±1 matrices, and LA be the

associated language. For some constant c and for all constants c1, c2 > 0, if over the reals,

RA

(

2(log log n)c1 , 2(log log n)c2
)

≥ n2

2(log log n)c

then LA /∈ PHcc. In particular, if such a bound holds for the Hadamard matrix H for arbitrary

c1, c2 and c, there is an explicit language in PSPACEcc which is not in PHcc.

The Challenge: As we described above, obtaining strong lower bounds for matrix rigid-

ity and bounded rigidity for an explicit family of matrices, will yield lower bounds and

separation results in various computational models. The notion of explicitness has ap-

peared in many contexts in computer science, for example in the case of expander graphs,

randomness extractors, linear codes.

As in many cases of problems regarding explicit constructions, the random matrix (un-

der proper interpretations) achieves the desired rigidity bounds. The following was shown

by Valiant in his seminal paper itself [Val77].

Theorem 6.19 ([Val77]). Among all n× n matrices, almost all have rigidity (n− r)2 if F is

infinite, and (n− r)2/ log n when F is finite.

Notice that over infinite fields, this is to be interpreted as the set of all rigid matrices

is the complement of solution set of a finite system of algebraic equations. We will come

80

back to a detailed proof of this, in the language of algebraic geometry in Section 7.3.2. To

complete the picture, we may define the notion of explicitness a little more formally.

Definition 6.20 (Explicit). An infinite family of matrices {An}n∈I , I ⊆ N is explicit if there

is a polynomial sized algebraic or Boolean circuit C which takes in as input n, i, j such that

1 ≤ i, j ≤ n, tests if n ∈ I and if yes, outputs An(i, j).

The above definition may be relaxed based on the application. For example, if we want

to use Theorem 6.14 to obtain a lower bound for linear circuits over C, we may allow the

entries of the matrix to be arbitrary complex numbers. Thus they may not be polynomial

time computable in the Turing machine model.

6.4 Previous Attempts on Lower Bounds

As we saw in the previous section, the main challenge about matrix rigidity is to ob-

tain lower bounds for explicit matrices. Since strong lower bounds on rigidity will imply

significant breakthroughs in complexity theory, many researchers [Raz89, SSS97, Fri93,

Pud94, PR93, Lok95, Lok00, Lok06, LTV03] have explored the connections of this to var-

ious branches of mathematics. We refer the reader to [Cod00] and [Che05] for some

comprehensive surveys on the topic. Several candidate matrices have been proposed, and

many of them are conjectured to have quadratic rigidity. Table 6.1 shows what is known

till date.

Out of the previous results mentioned in Table 6.1, the approaches in all attempts

except 3,9-12, follows a common line of argument. Given a matrix M and a value r:

• First, show that most submatrices of size r + 1 have non-zero determinant.

• If you change too few entries, then there is a submatrix of size r+1 which will remain

untouched, and hence the rank of the matrix will be at least r+ 1, thus contradicting

the rigidity requirement.

The first step varies from the choice of the candidate matrix. For example, for the case

of Vandermonde matrices, [Pud94, Lok00] uses algebraic techniques, and for Hadamard

matrices [KR97] uses techniques from functional analysis. But in a more general sense,

the essence of this argument is captured by the proof of (5) due to [SSS97], where all the

submatrices are non-singular.

81

No. Family of Matrices Field F rank r Best References
(size n, 1 ≤ i, j ≤ n) Bounds

1 V = (aj−1
i) C Ω(n2

r) [Pud94, Lok00]
(Vandermonde)

2 V −1 C any r Ω(n2

r) [Raz89]
(Inverse Vandermonde)

3 V (X) = (xj−1
i) C r ≤ √

n Ω(n2) [Lok00]
(Generic Vandermonde)

4 V (ζ) = (ζ(i−1)(j−1)) C log2 n ≤ r ≤ n
2 Ω(n2

r log(n
r) [SSS97, Lok00]

(Discrete Fourier Transform)
5 M : |M−1| = n2 C log2 n ≤ r ≤ n

2 Ω(n2

r log(n
r) [SSS97]

(Highly Non-singular)
6 H : |hij | = 1 : HH∗ = nIn C log2 n ≤ r ≤ n

2 Ω(n2

r) [Alo94, Lok95]
(Generalised Hadamard) [KR97]

7 Parity Check Matrices |Fq| = q 2n√
q−1 ≤ r ≤ n

2 Ω(n2

r log n
r) [Fri93, SSS97]

of Linear Codes
8 C(X,Y) = (1

xi+yj
) : ∀ i, j : xi 6= yj |Fn| ≥ 2n log2 n ≤ r ≤ n

2 Ω(n2

r log n
r) [SSS97]

(Cauchy Matrices)
9 Triangular Shifters Any F Any r Ω(n2

r) [PV91]
(Full 1s Lower Triangular)

10 Full 1s Extended Lower Any F Any r Ω(n2

r) [5]
Triangular Matrices

11 M(P) = (
√

pij) C Any r Ω(n2) [Lok06]
pij are distinct primes

12 M(P) = (e2πi/pi,j) C Any r (n − r)2 [6]
pij are distinct primes of order nn5

Table 6.1: Lower bounds on Matrix Rigidity : Current Snapshot

However, this strategy has the following drawback, as observed by Lokam [Lok00]. A

theorem due to Lovasz [Lov75] implies the following:

Observation 1 ([Lok00]). In any n× n matrix M , for any integer 0 < r < n, there exists a

set S of the entries of M such that, every (r+ 1)× (r+ 1) submatrix has at-least one entry in

S, and

|S| = O

(

n2

r
log

n

r

)

Thus using step (2), we cannot hope to prove a lower bound for matrix rigidity better

than Ω
(

n2

r
log n

r

)

. This provides a combinatorial barrier for the arguments which are based

simply on the choice of entries.

The first technique which seems to implicitly surpass this barrier was developed by

Lokam [Lok00] (based on the notion of algebraic dimension introduced in [SS91]) for

the case of generic Vandermonde matrices (3). This was later extended [Lok06] to the

82

case of matrices with entries based derived from prime numbers (rows 4,5 in Table 6.1).

This approach penetrates the combinatorial barrier by essentially exploiting the algebraic

structure of the entries of the matrix. However, a similar argument which works in the

case of finite fields is not yet known.

We attempt to break this barrier by using geometric arguments about the space of rigid

matrices. The study of geometry of matrix rigidity has been initiated in [LTV03]. We take a

different approach and produce a family of matrices over C which achieves the maximum

possible rigidity, (n− r)2.

Intuitively, the idea is quite simple. Step (2) in earlier attempts essentially tried to make

sure that the matrix is outside the rank r variety by proving the existence of an untouched

non-singular submatrix of order r + 1. Note that this could be thought of as trying not to

satisfy one of the generators of ideal corresponding to the rank r variety.

We take a slightly different route to penetrate the combinatorial barrier. We attempt

to directly argue that there are explicit matrices outside closure (in the Euclidean or even

Zariski sense) the the set of rigid matrices. It suffices to show the existence of some nice

polynomials with such properties which generate the ideal corresponding to the (Zariski)

closure of the set of rigid matrices, and choose entries such that they are not satisfied

under any choice of the changes. However, there are many technicalities to be settled

in the above formalism. We set it up in the language of algebraic geometry, and use the

machinery of elimination theory to exactly describe the variety which is the Zariski-closure

of the set of matrices which are not maximally rigid. This formulation helps us to come

up with a “low-degree” polynomial with properties and hence choose a matrix which does

not satisfy it. These results are described in Chapter 7. However, we do not know how this

approach compares with that of [Lok06].

6.5 An Almost Tight Bound for the Full 1s ELT Matrix

As we saw in the previous section, obtaining explicit bounds on the rigidity of special

matrices is surprisingly elusive, and thus has received a lot of attention. The rareness of

matching, or even close, lower and upper bounds, correlates well with the lack of upper

bounds on the computational version of rigidity Chapter 8.

A rare case where a closed-form expression has been obtained for rigidity is full-1s

triangular shifters (lower triangular matrices) [PV91, SK92]. An interesting point about

their proof [PV91] is that it is completely combinatorial and does not follow the two step

83

line of argument that we described in the previous section. In addition, it proves that

the known rigidity bounds of many matrices can be achieved by a simple matrix: full 1s

triangular shifters.

The rigidity is for the full-1s lower triangular matrices Tn: Tn is the matrix of order n

with j ≤ i =⇒ mi,j = 1, j > i =⇒ mi,j = 0. It is shown in [PV91] that over any field,

RTn
(r) =

(n− r + ∆)(n+ r − ∆ + 1)

2(2r + 1)

where n = 2rk + r + k + ∆ for k ≥ 0, 1 ≤ ∆ ≤ 2r + 1.

In this section we consider an extension of the result of [PV91] to full-1s extended lower

triangular (elt) matrices. In an elt matrix, the first diagonal above the main diagonal can

be non-zero, but all other elements above the diagonal must be 0. (That is, mi,j 6= 0 =⇒
j ≤ i + 1.) It is worthwhile noting that elt matrices can capture a lot of information: it is

known that determinant/permanent computation of elt matrices is as hard as the general

case, see [AAM03, Li92]. A full-1s elt matrix ELm of order m is an elt matrix satisfying

j ≤ i + 1 =⇒ mi,j = 1. Even with this small extension beyond Tm, we cannot obtain a

closed-form expression for rigidity; however, we show lower and upper bounds differing

by an additive factor of roughly n/r. It may be worthwhile noting that even this simple

family of matrices, also achieves the rigidity bounds known for many families of matrices.

Theorem 6.21. Given n and r such that r ≤ n − 2, define the following quantities: k =
⌊

n−r−1
2r+1

⌋

; δ = n− r − k(2r + 1); Γ = (k+1)
2

(n− r + δ); ℓ =
⌊

n−r
2r+1

⌋

. Now, over any field,

1. If n ≤ 3r, then RELn
(r) = n− r − 1.

2. If n ≥ 3r + 1, then Γ ≤ RELn
(r) ≤ Γ + ℓ− 1.

Our upper bound proof directly mimics that of [PV91]. Our lower bound proof mimics

that of [PV91] to obtain one bound, and then further tightens it when n = 3r + 1. A

combinatorial argument that can provide a similar tightening at all n = r + k(2r + 1)

would completely close the gap between the upper and lower bounds, but we do not see

how to obtain this.

Upper Bound: Define τ = n− r − (2r + 1)ℓ. We will show that

RM(r) ≤ (ℓ+ 1)

2
(n− r + τ) + ℓ− 1

84

This immediately yields the claimed upper bound when n ≤ 3r. When n ≥ 3r+1, consider

two cases:

Case 1: ℓ = k. Then τ = δ and so Γ = (k+1)
2

(n− r + δ) = (ℓ+1)
2

(n− r + τ).

Case 2: ℓ = k + 1. Then τ = 0, δ = 2r + 1, and n = 2rℓ+ r + ℓ = δℓ+ r. So

Γ = (k+1)
2

(n− r + δ)

= (ℓ+1)
2

(n− r + δ) − 1
2
(n− r + δ)

= (ℓ+1)
2

(n− r + τ) + (ℓ+1)
2

(δ) − 1
2
(δℓ+ δ)

= (ℓ+1)
2

(n− r + τ)

Thus in either case, the upper bound holds.

Now we establish the upper bound in terms of ℓ and τ .

We start with the matrix ELn, of rank n − 1. We identify r linearly independent rows

Rj1 , . . . Rjr
which we will keep intact, so the rank of the resulting matrix is still at least

r. We will change each of the other rows to one of these rows by changing some entries.

But to minimise the number of entries changed, we adopt the following general strategy

used in [PV91] for Tn. Let n0 be the first set of rows which we will explicitly make zero.

Similarly, n2i−1 is the number of rows just above Rji
which are changed to Rji

by changing

the appropriate 0s to 1s, and n2i is the number of rows below the row Rji
which are

changed to Rji
by changing the appropriate 1s to 0s. Now the total number of changes is a

function of these ni’s, as described below, and the natural idea for minimising the number

of changes be to make the contribution of each ni roughly equal. In particular, this evenly

spaces out the rows to be preserved. In detail:

of changes in n0-block =
∑n0

t=1(t+ 1) = n0(n0+3)
2

of changes in n2i−1-block =
∑n2i−1

t=1 t = n2i−1(n2i−1+1)
2

of changes in n2i-block =
∑n2i

t=1 t = n2i(n2i+1)
2

)

of changes in n2r-block = n2r − 1 +
∑n2r−1

t=1 t = (n2r+2)(n2r−1)
2

and we want to minimise the total number of changes.

It can be seen that the optimal choice to achieve this would be to make all the ni’s

equal, except n0 which should be one less. This can happen when τ = 2r; we set n0 = ℓ,

ni = ℓ + 1 for i ≥ 1. When τ < 2r, some of the blocks other than n0 will also have size ℓ

rather than ℓ + 1. We let the last τ blocks have size ℓ + 1, and the first (2r + 1 − τ) be of

85

size ℓ. Thus,

Total number of changes = ℓ(ℓ+1)
2

(2r + 1) + ℓ− 1 + (ℓ+ 1)τ

= (ℓ+1)
2

[n− r + τ] + ℓ− 1

Lower Bound: The lower bound when n ≤ 3r is easy to see: for decreasing the rank of

any matrix, at least one entry has to be changed.

The lower bound when n ≥ 3r + 1 is a little more tricky. In [PV91], the corresponding

lower bound for lower triangular matrices Tn is obtained by first showing that if Tn + Bn

has rank bounded by r, then some row of Bn has at least k + 1 non-zero entries. Deleting

this row and column yields Tn−1 +Bn−1 also of rank bounded by r. Applying this argument

repeatedly, the total number of changes is bounded by a certain sum, yielding the result.

Our proof follows the same outline, and differs in essentially two places: (a) Deleting any

row i and column i+ 1 of ELn yields ELn−1. (b) At n = 3r+ 1 a tighter bound is possible.

Given r, for each n we define

kn,r =

⌊

n− r − 1

2r + 1

⌋

; δn,r = n− r − kn,r(2r + 1)

Thus kn,r(2r + 1) + r + 1 ≤ n ≤ kn,r(2r + 1) + 3r + 1. The value of kn,r remains unchanged

for 2r + 1 successive values of m, during which δm,r ranges over 1 to 2r + 1.

Notice that if r + 2 ≤ n ≤ 3r + 1, there is a row with at least 1 change. Now, for a

general n, assuming that ELn + Bn has rank bounded by r, repeated applications of the

following lemma show that Bn has reasonable row-wise density.

Lemma 6.22. Let r ≤ n − 2, and let Bn be a matrix such that rank(ELn + Bn) ≤ r. Let

k = kn,r, δ = δn,r. Then some row in Bn, other than the last row, has at least (k + 1)

non-zeroes.

Proof. This proof is similar to that in [PV91]. Assume to the contrary that every row of Bn

(possibly other than row n) has fewer non-zeroes than required. Let An = ELn +Bn. The

idea is to choose a set S of r + 1 rows which exclude row n, are linearly independent in

ELn, and are linearly dependent in An, and to then show that one of the rows from S in

Bn has many non-zeroes. We choose S as follows

S = {k, k + (2k + 1), . . . , k + r(2k + 1)}

Since rank(An) ≤ r, the rows indexed by S are linearly dependent in An; hence for some

86

non-empty subset S ′ of S, we have non-zero αj ’s satisfying

∑

j∈S′

αjaj = 0 and hence
∑

j∈S′

αjlj = −
∑

j∈S′

αjbj

Here aj, lj, bj refer to the jth row vectors of An, ELn and Bn respectively. By our assump-

tion, the vector on the right-hand-side RHS has at most s′k non-zero entries (s′ = |S ′|).

Exploiting the special structure of the matrix, we show that the left-hand-side LHS has

more non-zero terms than the RHS and get a contradiction. Due to the structure of ELn,

the LHS is of the form (c1, c1 . . . c1, c2, c2 . . . c2, . . . cs′ . . . cs′ , 0 . . . 0). Each ci section is of size

at least 2k+1, except the c1 section, which has size at least k+1. Two consecutive sections

cannot be zeros since αj 6= 0 for all j. And the last section necessarily has cs′ 6= 0.

Case 1: s′ = 2t + 1 for some t. Now consider the LHS. There are at least t + 1 blocks of

non-zeroes. At most one of these (the first) is of size k+1; all the rest have size 2k+1.

Hence the number of non-zero elements on the LHS is at least (2k + 1)t + k + 1 =

(2t+ 1)k + t+ 1 > s′k.

Case 2: s′ = 2t with t 6= 0. There are at least t blocks of non-zeros. Furthermore, if the

first block is a non-zero block, then in fact there must be t+ 1 non-zero blocks. Thus

there are at least t blocks of non-zeros of size 2k+ 1. Thus the number of non-zeroes

on the LHS is at least t(2k + 1) > s′k.

Lemma 6.23. RELn
(r) ≥ 2r + 1 when n = 3r + 1.

Proof. Suppose not; assume that 2r changes suffice to bring the rank of E = EL3r+1 to r

or less. That is, there is a matrix B with at most 2r non-zero entries such that A = B + E

has rank r or less. Since there are 3r + 1 rows, at least r + 1 of them are left unchanged.

These must be linearly dependent to achieve rank(A) ≤ r, so they must include rows n− 1

and n of E (all other rows of E are linearly independent) and exactly r − 1 other rows.

Let S be the set of preserved rows; |S| = r + 1 and {n − 1, n} ⊆ S. Let S ′ = [n] \ S;

then |S ′| = 2r. Each row of B in S ′ has at least one non-zero. But since there are only 2r

non-zeroes overall, each row in S ′ has, in fact, exactly one non-zero.

For each i ∈ S ′, row i is dependent on S and on S \ {n}. (With a single change per

row, no row cannot be zeroed out.) Let U = (S \ {n}) ∪ {i}. Then, as in the proof of

87

Lemma 6.22, there exists U ′ ⊆ U : i ∈ U ′, and for each u ∈ U ′, ∃αu 6= 0 such that

∑

u∈U ′

αueu = −
∑

u∈U ′

αubu.

The RHS has a single non-zero in row i since rows of B from S are zero. The LHS is of

the form (c1, c1 . . . c1, c2, c2 . . . c2, . . . cu′ . . . cu′ , 0 . . . 0) where cu′ 6= 0. To get just one non-

zero on the LHS, cu′ must be a block of size 1, and all other cj ’s must be zero. Thus

∃k : U ′ = {k − 1, k}, and αk + αk−1 = 0. But, we know that αi must be non-zero, since

this is the row we are expressing as a combination of rows in S. Hence U ′ must be either

{i − 1, i} or {i, i + 1}. Thus, for each row i ∈ S ′, either row i − 1 or row i + 1 is in S. So

rows in S can be separated by at most 2 rows of S ′. Since rows n = 3r + 1 and n− 1 = 3r

are in S, the 3rd last row of S is at least 3r− 3, the 4th last row of S is at least 3r− 6, and

so on; the first row of S is at least row 3. But then row 1 does not have a neighbouring

row in S, a contradiction.

Using these lemmas we can establish the lower bound. When n ≥ 3r + 2, apply

Lemma 6.22 repeatedly, eliminating one dense row each time, preserving the ELT struc-

ture, until n comes down to 3r + 1. Now Lemma 6.23 says that 2r + 1 more changes are

necessary. Thus the total number of changes is at least δ(k + 1) + (2r + 1)k + (2r + 1)(k −
1) + . . .+ (2r + 1)3 + (2r + 1)2 + (2r + 1) = (k+1)

2
(n− r + δ), giving the lower bound.

88

Chapter 7

Lower bounds for Matrix Rigidity

In this chapter, we describe the construction of an infinite family of complex matrices with

the largest possible, i.e., (n− r)2, rigidity. The entries of an n× n matrix in this family are

distinct primitive roots of unity of orders roughly n4n4
. These matrices, though not entirely

explicit, do have a succinct algebraic description.

Our construction is based on elimination theory of polynomial ideals. In particular,

we use results on the existence of polynomials in elimination ideals with effective degree

upper bounds (effective Nullstellensatz). Using elementary algebraic geometry, we prove

that the exact dimension of the affine variety of matrices of rigidity at most k is n2 − (n−
r)2 + k. Finally, we use elimination theory to examine whether the rigidity function is

semicontinuous.

The results in this chapter appears in [6].

7.1 Introduction

As we saw in the previous chapter, the study of lower bounds on rigidity of explicit ma-

trices are motivated by their numerous applications in complexity theory. Over finite

fields, the best known lower bound for explicit A was first proved by Friedman [Fri93]

and is Rig(A, r) = Ω(n2

r
log n

r
) for parity check matrices of good error-correcting codes.

Over infinite fields, the same lower bound was proved by Shokrollahi, Spielman, and Ste-

mann [SSS97] for Cauchy matrices, Discrete Fourier Transform matrices of prime order,

and other families. Note that this type of lower bound for high rank (rank(A) = Ω(n))

matrices reduces to the trivial Rig(A, r) = Ω(n) when r = Ω(n). In [Lok06], lower

bounds (over C) of the form Rig(A, ǫn) = Ω(n2) were proved when A = (
√
pjk) or when

89

A = (exp(2πi/pjk)), where pjk are the first n2 primes. These matrices, however, are not

explicit in the sense defined in Section 6.2 (Definition 6.20).

In this chapter, we construct an infinite family of complex matrices with the highest

possible, i.e., (n − r)2 rigidity. The entries of the n × n matrix in this family are primitive

roots of unity of orders roughly n4n4
. We show that the real parts of these matrices are

also maximally rigid. Like the matrices in [Lok06], this family of matrices is not explicit

in the sense of efficient computability described earlier. However, as mentioned above,

one of the motivations for studying rigidity comes from algebraic complexity. In the world

of algebraic complexity, any element of the ground field (in our case C) is considered a

primitive or atomic object. In this sense, the matrices we construct are explicitly described

algebraic entities. To the best of our knowledge, this is the first construction giving an

infinite family of non-generic/concrete matrices with maximum rigidity. It is still unsatis-

factory, though, that the roots of unity in our matrices have orders doubly-exponential in

n. Earlier constructions in [Lok06] use roots of unity of orders O(n2) but the bounds on

rigidity proved there are weaker: n(n− cr) for some constant c > 2.

Our approach to studying rigidity is based on elementary algebraic geometry and elim-

ination theory. To set up the formalism of this approach, we begin by reproving Valiant’s

result that the set of matrices of rigidity less than (n−r)2 form a Zariski closed set in Cn×n,

i.e., such matrices are solutions of a finite system of polynomial equations (hence a generic

matrix has rigidity at least (n− r)2). In fact, we prove a more general statement: the set of

matrices of rigidity at most k has dimension (as an affine variety) exactly n2 − (n− r)2 + k.

This sheds light on the geometric structure of rigid matrices. Our transversality argument

in this context is clearer and cleaner than an earlier attempt in this direction (in the projec-

tive setting) by [LTV03]. To look for specific matrices of high rigidity, we consider certain

elimination ideals associated to matrices with rigidity at most k. A result in [BMMR02]

using effective Nullstellensatz bounds [Bro87], [Kol88]) shows that an elimination ideal

of a polynomial ideal must always contain a nonzero polynomial with an explicit degree

upper bound (Theorem 7.11). We then use simple facts from algebraic number theory

to prove that a matrix whose entries are primitive roots of sufficiently high orders cannot

satisfy any polynomial with such a degree upper bound. This gives us the claimed family

of matrices of maximum rigidity.

Our primary objects of interest in this chapter are the varieties of matrices with rigidity

at most k. For a fixed k, we have a natural decomposition of the variety based on the

patterns of changes. We prove that this natural decomposition is indeed a decomposition

90

into irreducible components (Corollary 7.17). In fact, these components are defined by

elimination ideals of determinantal ideals generated by all the (r + 1) × (r + 1) minors

of an n × n matrix of indeterminates. While determinantal ideals have been well-studied

in mathematical literature, their elimination theory does not seem to have been studied.

Application to rigidity of these elimination ideals of determinantal ideals might be a natural

motivation for studying them.

We next consider the question: given a matrix A, is there a small neighbourhood of

A within which the rigidity function is nondecreasing, i.e. such that every matrix in this

neighbourhood has rigidity at least equal to that of A? This is related to the notion of

semicontinuity of the rigidity function. We give a family of examples to show that the rigid-

ity function is in general not semicontinuous. However, the specific matrices we produce

above, by their very construction, have neighbourhoods within which rigidity is nonde-

creasing.

The rest of the chapter is organised as follows. In the next two subsections, we intro-

duce some definitions and notations, recall a basic result from elimination theory. Much of

the necessary background from algebraic geometry is briefly introduced in the appendix B.

We introduce our main approach in Section 7.3, reprove Valiant’s theorem, and compute

the dimension of the variety of matrices of rigidity at most k. We present our new construc-

tion of maximally rigid matrices in Section 7.3.3. Connection to the elimination ideals of

determinantal ideals is established in Section 7.4. In Section 7.5, we study semicontinuity

of the rigidity function through examples and counterexamples.

7.2 Notations & Background

First we recall some notation introduced before. Let F be a field. Then, by Mn(F) we

denote the algebra of n×n matrices over F. At times, when it is clear from the context, we

will denote Mn(F) by Mn. Let X ∈ Mn(F). Then by Xij we will denote the (i, j)-th entry

of X. Given X ∈Mn(F), the support of X is defined as Supp(X) := {(i, j) | Xij 6= 0 ∈ F}.

Given a non-negative integer k, we define

S(k) := {X ∈Mn(F) : |Supp(X)| ≤ k}.

Thus, S(k) is the set of matrices over F with at most k non-zero entries.

Definition 7.1. A pattern π is a subset of the positions of a matrix of size n × n. By |π| we

91

denote the number of non-zero elements in the pattern π.

For any pattern π, we define:

S(π) := {X ∈Mn(F) : Supp(X) ⊆ π}

Note that S(k) = ∪|π|=kS(π).

We will recall (and reword) the definition of matrix rigidity from the previous chapter,

and say that a matrix X is (r, k)-rigid if changing at most k entries of X does not bring

down the rank of the matrix to r or less. More formally,

Definition 7.2. A matrix X is (r, k)-rigid if rank(X + T) > r whenever T ∈ S(k).

Definition 7.3. The rigidity function Rig(X, r) is the smallest integer k for which the matrix

X is not (r, k)-rigid. That is, Rig(X, r) is the minimum number of entries we need to change

in the matrix X so that the rank becomes at most r:

Rig(X, r) := min{|Supp(T)| : rank(X + T) ≤ r}.

Sometimes, we will allow T to be chosen in Mn(L) for L an extension field of F . In this case

we will denote the rigidity by Rig(X, r, L).

Let RIG(n, r, k) denote the set of n × n matrices X such that Rig(X, r) = k. Similarly,

we define RIG(n, r,≥ k) to be the set of matrices of rigidity at least k and RIG(n, r,≤ k) to

be the set of matrices of rigidity at most k. For a pattern π of size k, let RIG(n, r, π) be the

set of matrices X such that for some T ∈ S(π) we have rank(X + T) ≤ r. Then we have

RIG(n, r,≤ k) =
⋃

π,|π|=k

RIG(n, r, π).

7.2.1 Elimination Theory: Closure Theorem

Here we recall a basic result from Elimination Theory. As the name suggests, Elimination

Theory deals with elimination of a subset of variables from a given set of polynomial equa-

tions and finding the reduced set of polynomial equations from which these variables have

been eliminated. The main results of Elimination Theory, especially the Closure Theorem,

describe a precise relation between the reduced ideal and the given ideal, and its corre-

sponding geometric interpretation. We refer to [CLO07] for a more detailed description.

92

Definition 7.4 (Elimination Ideal). Given an ideal I = 〈f1, . . . , fs〉 ⊆ F [x1, . . . , xn], the l-th

elimination ideal Il is the ideal of F [xl+1, . . . , xn] defined by

Il := I ∩ F [xl+1, . . . , xn].

Theorem 7.5 (Closure Theorem). Let I be an ideal of F [x1, . . . , xn, y1, . . . , ym] and Im :=

I ∩F [y1, . . . , ym] be the n-th elimination ideal associated to I. Let V (I) and V (Im) be the sub-

varieties of An+m and Am. Let p be the natural projection map from An+m → Am (projection

map onto the y-coordinates). Then,

1. V (In) is the smallest (closed) affine variety containing p(V (I)) ⊆ Am. In other words,

V (In) is the Zariski closure of p(V (I))(F) ⊆ F
m

.

2. When V (I)(F) 6= φ, there is an affine variety W strictly contained in V (In) such that

V (In) −W ⊆ p(V (I)).

7.3 Use of Elimination Theory

7.3.1 Determinantal Ideals and their Elimination Ideals

We will now investigate the structure of the sets RIG(n, r,≤ k) and RIG(n, r, π) and their

Zariski closures.

W(n, r,≤ k) := RIG(n, r,≤ k)

W(n, r, π) := RIG(n, r, π)

in the n2-dimensional affine space of n×n matrices. Let X be an n×n matrix with entries

being indeterminates x1, . . . , xn2 . For a pattern π of k positions, let Tπ be the n× n matrix

with indeterminates t1, . . . , tk in the positions given by π and zero in the rest. Note that

saying X + Tπ has rank at most r is equivalent to saying that all its (r+ 1)× (r+ 1) minors

vanish. Let us consider the ideal generated by these minors:

I(n, r, π) :=
〈

Minors(r+1)×(r+1)(X + Tπ)
〉

⊆ F [x1, . . . , xn2 , t1, . . . , tk]. (7.1)

93

It then follows from the definition of rigidity that RIG(n, r, π) is the projection from An2×Ak

to An2
of the algebraic set V (I(n, r, π))(F). Thus, if we define the elimination ideal

EI(n, r, π) := I(n, r, π) ∩ F [x1, . . . , xn2] ⊆ F [x1, . . . , xn2],

then by the Closure Theorem (Theorem 7.5), we obtain

W(n, r, π) = V (EI(n, r, π)). (7.2)

Note that

W(n, r,≤ k) =
⋃

π,|π|=k

W(n, r, π).

7.3.2 Valiant’s Theorem

The following theorem due to Valiant [Val77, Theorem 6.4, page 172] says that a generic

matrix has rigidity (n − r)2. That is, for k < (n − r)2, the dimension of W(n, r,≤ k) is

strictly less than n2.

In the following we will rephrase Valiant’s proof in the language of algebraic geometry.

The point of doing this is to set up the formalism and use it later; in particular, when we

compute the exact dimension of the rigidity variety W(n, r,≤ k)

Theorem 7.6 (Valiant). Let n ≥ 1, 0 < r < n and 0 ≤ k < (n − r)2. Let W := W(n, r,≤ k)

be as above. Then,

dim(W) < n2.

Proof. Let π ⊆ {(i, j)|1 ≤ i, j ≤ n} be a pattern of size k. Let τ be a fixed r×r minor. Define

RIG(n, r, π, τ) to be the set of all n×nmatrices A that satisfy the following properties: there

exists some n× n matrix Tπ such that

1. Supp(Tπ) ⊆ π,

2. rank(A+ Tπ) = r, and

3. det((A+ Tπ)τ) 6= 0 where τ denotes the fixed r × r minor as above.

Recall that S(π) is the set of matrices whose support is contained in π. Let us also

define

RANK(n, r, τ) := {C ∈Mn | rank(C) = r and det(Cτ) 6= 0}.

94

By definition, every element A ∈ RIG(n, r, π, τ) can be written as C + Tπ, with C ∈
RANK(n, r, τ) and Tπ ∈ Sπ.

Consider the following natural map Φ:

An2−(n−r)2 × Ak ⊃ RANK(n, r, τ) × S(π)
Φ−→Mn

∼= An2

, (7.3)

taking (X,Tπ) to X + Tπ. The image of Φ is exactly RIG(n, r, π, τ).

Lemma 7.7.

dim(RANK(n, r, τ)) = n2 − (n− r)2

Proof. Without loss of generality we can assume that the τ is the upper left r × r-minor.

Thus we can write a C ∈ RANK(n, r, τ) as

C =

(

C11 C12

C21 C22

)

,

where rank(C) = r and C11 is an r × r matrix whose determinant is non-zero.

Since the matrix C11 is nonsingular of dimension equal to r = rank(C), it follows that

the first r columns are linearly independent and span the column space of C. Therefore

each of the last (n−r) columns is a linear combination of the first r columns in exactly one

way, and the linear combination is determined by the entries of C12. Formally, we have the

equation

C22 = C21C
−1
11 C12.

The set of all C11 is an affine open set of dimension r2 and C12 and C21 can each range

over Ar(n−r). This gives a set of rational r2 + 2r(n− r) independent rational functions and

hence, the algebraic set RANK(n, r, τ) has dimension n2 − (n− r)2.

Also, note that

dim(S(π)) = |π|.

We note that if there is a surjective morphism from an affine variety X to another affine

variety Y , then dimY ≤ dimX (a more formal statement appears as Lemma B.5 in Ap-

pendix B). Thus for k ≤ (n− r)2 − 1, we get

dim(Im(Φ)) = dim(RIG(n, r, π, τ)) ≤ n2 − (n− r)2 + k < n2.

95

Note that

W =
⋃

τ,π

RIG(n, r, π, τ)

and that completes the proof of the theorem.

Thus we have proved that the set of matrices of rigidity strictly smaller than (n − r)2

is contained in a proper closed affine variety of An2
, and thus is of dimension strictly less

than n2. In other words, a generic matrix, i.e. a matrix that lies outside a certain proper

closed affine subvariety of An2
, is maximally rigid. Therefore, over an infinite field F (for

instance, an algebraically closed field), there always exist maximally rigid matrices.

We now refine Valiant’s argument and prove the following exact bound on the dimen-

sion of W. The main point of the proof is a lower bound on dim(W).

Theorem 7.8. Let 0 ≤ r ≤ n and 0 ≤ k ≤ (n− r)2. Then

dim(W) = n2 − (n− r)2 + k.

Proof. With the notation of the previous proof, we have the map

Φ : RANK(n, r, τ) × S(π)
+→Mn.

Let RANK(n,≤ r) be the set of n × n matrices of rank at most r. Let S(k) be the set of

matrices of support at most k.

Now note that GL(n) × GL(n) acts on RANK(n,≤ r) by multiplication on the left

and right, and the action is transitive on the set of matrices with rank exactly r, which

forms a Zariski open subset of RANK(n,≤ r). Therefore RANK(n,≤ r) is an irreducible

algebraic variety. It is not difficult to see (for instance, from the computation below of the

tangent space; see appendix B for an intuitive explanation) that its singular locus is exactly

RANK(n,≤ r − 1), the set of matrices with rank less than r.

On the other hand S(k) splits up into components Sπ depending on the pattern π and

is thus a union of various affine subspaces (each associated to a π of size at most k). The

nonsingular elements of S(k) are those which have support of size exactly k.

We can put together the maps Φ, as defined in the proof of Theorem 7.6, arising from

various choices of τ and π to write the map

Φ : RANK(n,≤ r) × S(k) → RIG(n, r,≤ k).

96

We have seen that Φ is a surjective morphism of affine varieties. If we can find a

nonsingular point of RANK(n,≤ r)×S(k) for which the map on tangent spaces is injective,

then the dimension of the target space RIG(n, r,≤ k) will be at least (and hence equal to)

dim RANK(n,≤ r) + dimS(k) = n2 − (n − r)2 + k, proving the theorem. Since the map

on tangent spaces is simply addition of matrices, we need to see that the subspaces do not

intersect non-trivially and that would complete the proof of the theorem. For any smooth

point x ∈ RANK(n, r), the smooth locus of RANK(n,≤ r), we will find a pattern π of size k

and y ∈ Sπ for which the tangent spaces at x and y intersect transversely.

Assume first that the point x is
(

Ir 0

0 0

)

.

We choose the pattern π to lie completely in the bottom right hand block of size (n −
r) × (n− r), and choose any smooth point y of Sπ (i.e. having all k entries nonzero).

The tangent space of x is
(

∗ ∗
∗ 0

)

.

That is, it consists of the subspace of Mn consisting of matrices with arbitrary entries

except in the lower (n− r) × (n− r) block, which is constrained to be the zero submatrix.

The dimension of the tangent space is r2 + 2r(n− r) = n2 − (n− r)2, as expected.

The tangent space of y is
(

0 0

0 ∗π

)

where ∗π means that the entries in positions of π are arbitrary, and the other entries

are zero.

It’s clear that the two tangent spaces intersect transversely. Now we need to show this

for more a general x ∈ RANK(n, r). Assume that the top left r×r minor of x is nonsingular

(else we can multiply by permutation matrices on left and right, noting that permutations

just shuffle the various S(π) for |π| = k).

The first r columns of x are independent and span the column space of x, so there exists

a matrix

g =

(

Ir ∗
0 In−r

)

97

such that xg has the form
(

∗ 0

∗ 0

)

.

Then using that the first r rows of xg are independent and span its row space, we can

find an invertible matrix

h =

(

∗ 0

∗ In−r

)

such that

hxg =

(

In−r 0

0 0

)

.

The tangent space of x is

h−1

(

∗ ∗
∗ 0

)

g−1.

We need to show this does not intersect S(π) for some π. That is,

(

∗ ∗
∗ 0

)

does not intersect

h

(

0 0

0 ∗π

)

g

except in zero. But this follows from the fact that the latter is a matrix of the same form

(in fact, multiplication by h and g leave any element of S(π) unchanged).

Remark 7.9. A similar line of study - though in the projective setting - is found in [LTV03].

However, we think that our formalism and proofs are clearer and simpler, and gives an explicit

bound on the dimension of the set of matrices considered.

7.3.3 Rigid Matrices over C

Recall that to say that the rigidity of a matrix A for target rank r is at least k it suffices

to prove that the matrix A is not in W(n, r,≤ (k − 1)). We use this idea to achieve the

maximum possible lower bound for the rigidity of a family of matrices over the field of

complex numbers C. As a matter of fact, we obtain matrices with real algebraic entries

with rigidity (n− r)2.

98

Theorem 7.10. Let δ(n) = n4n4
. Let pi,j for 1 ≤ i, j ≤ n be distinct primes such that

pi,j > δ(n). Let K = Q(ζ1,1, . . . , ζn,n) where ζi,j = e2πi/pi,j . Let A(n) := (ζi,j) ∈ M(n,K).

Then, for any field L containing K,

Rig(A(n), r, L) = (n− r)2.

Proof. For simplicity, we will index the ζi,j by ζα for α = 1 to n2, and similarly pα. We prove

the theorem by showing that

A(n) /∈ W(n, r,≤ (n− r)2 − 1)(L).

Thus it is sufficient to prove that

A(n) /∈ W(n, r, π)(L)

for any pattern π with |π| = (n− r)2 − 1. Let π be any such pattern. To simplify notation,

let us define, W := W(n, r, π)(L). By Theorem(7.6) we have:

dim(W) ≤ dim(W(n, r,≤ (n− r)2 − 1)) ≤ (n2 − 1) < n2

Equivalently (by Hilbert’s Nullstellensatz),

EI(n, r, π) 6= (0).

Proving that A(n) /∈ W is equivalent to showing the existence of a g ∈ EI(n, r, π) such

that g(A(n)) 6= 0. We produce such a g using the following theorem:

Theorem 7.11. ([BMMR02, Page 6,Theorem 4]) Let I = 〈f1, . . . , fs〉 be an ideal in the

polynomial ring F[Y] over an infinite field F, where Y = {y1, . . . , ym}. Let d be the maximum

total degree of the generators fi. Let Z = {yi1 , . . . , yiℓ} ⊆ Y be a subset of indeterminates

of Y . If I ∩ F [Z] 6= (0) then there exists a non-zero polynomial g ∈ I ∩ F [Z] such that,

g =
∑s

i=1 gifi, with gi ∈ F [Y] and

deg(gifi) ≤ (µ+ 1)(m+ 2)(dµ + 1)µ+2,

where µ = min{s,m}.

Let us apply Theorem(7.11) to our case - in the notation of this theorem our data is as

99

follows:

F := Q

Y := {x1, . . . , xn2 , t1, . . . , tk}
Z := {x1, . . . , xn2}

Σr+1 := set of all minors of size (r + 1)

fτ := det((X + Tπ)τ) for τ ∈ Σr+1

Here by Yτ we denote the τ -th minor of Y , and I := I(n, r, π) = 〈fτ : τ ∈ Σr+1〉 as in (7.1).

Furthermore, we have:

m = n2 + (n− r)2 − 1 ≤ 2n2 − 2

µ = min

{

n2 + (n− r)2 − 1,

(

n

r + 1

)2
}

≤ n2 + (n− r)2 − 1 ≤ 2n2 − 2,

d = r + 1 ≤ n,

I ∩ F [Z] = EI(n, r, π) 6= (0).

By Theorem(7.11) there exists a

g 6= 0 ∈ EI(n, r, π) ⊆ Q[x1, . . . , xn2]

such that

deg(g) ≤ (2n2 − 1)(2n2)(n2n2−2 + 1)2n2

< n4n4

= δ(n).

Without loss of generality, let x1 be a variable that appears in g(x1, . . . , xn). Let l :=

degx1
(g) < N . Thus,

g(x) =
l
∑

i=0

fi(x2, . . . , xn2) xi
1, where fi ∈ Q[x2, . . . , xn2].

We will now apply the following Lemma 7.12 to this situation.

Lemma 7.12. Let N be a positive integer. Let θ1, . . . , θm be m algebraic numbers such that

100

for any 1 ≤ i ≤ m, the field Q(θi) is Galois over Q and such that

[Q(θi) : Q] ≥ N,

Q(θi) ∩ Q(θ1, . . . , θi−1, θi+1, . . . , θm) = Q.

Let g(x) 6= 0 ∈ Q[x1, . . . , xm] such that deg(g) < N . Then,

g(θ1, . . . , θm) 6= 0.

Let us set m = n2, N = δ(n), l := deg(g) ≤ N in Lemma(7.12). We need to ensure two

conditions to apply the above lemma. The first condition:

[Q(ζα) : Q] = pα − 1 ≥ δ(n) = N

follows simply because the minimal polynomial of ζα is xpα−1 − 1. The second one follows

from standard facts in number theory:

Claim 1 (See Theorem 4.10 in [Nar04]).

Q(ζα) ∩ Q(ζ1, . . . , ζα−1, ζα+1, . . . , ζn2) = Q.

To give a little intuition here: the prime pα is totally ramified in Q(ζα) (this means that

the ideal generated by pα in the ring of integers of the number field, factors into one single

prime ideal, see the appendix C). At the same time, the prime pα is totally unramified in

Q(ζ1, . . . , ζα−1, ζα+1, . . . , ζn2).

Thus, Lemma(7.12) is applicable and we get:

g(ζ1, . . . , ζn2) 6= 0

and that completes the proof of Theorem(7.10).

Note that Theorem(7.10) is true for any family of matrices A(n) = [θi,j] provided the

θi,j satisfy Lemma(7.12). Thus, we have:

Corollary 7.13 (Rigid Matrices over R). Let A(n) := (ζi,j + ζi,j), where ζi,j are primitive

roots of unity of order pi,j such that pi,j − 1 ≥ 2δ(n) (here ζi,j denotes the complex conjugate

of ζi,j). Then, A(n) ∈M(n,R) has Rig(A(n), r) = (n− r)2.

101

Proof of Lemma 7.12: By induction on m. For m = 1 this is trivial.

Now suppose that the statement is true when the number of variables is strictly less

than m. Assuming that the statement is not true for m, we will arrive at a contradiction.

This will prove the Lemma.

Let g ∈ Q[x] with l := deg(g) < N be such that

g(θ1, . . . , θm) = 0,

with θi, 1 ≤ i ≤ m, satisfying the conditions as in the theorem. Since the statement is true

for any (m− 1) number of variables, without loss of generality, we can assume that all the

variables and hence xm appears in g. Let us denote xm by x. Let us write

g(x1, . . . , xm) =
l
∑

i=0

fi(x1, . . . , xm−1)x
l−i.

Note that l < N and deg(fi) < N for 0 ≤ i ≤ l. Since g 6= 0, for some i, 0 ≤ i ≤ l the

polynomial fi 6= 0. Thus, by the inductive hypothesis,

fi(θ1, . . . , θm−1) 6= 0.

Thus g(θ1, . . . , θm−1)(x) 6= 0 ∈ Q(θ1, . . . , θm−1)[x]. This implies that θm satisfies a non-

zero polynomial over Q(θ1, . . . , θm−1) of degree l < N . Thus:

[Q(θ1, . . . , θm) : Q(θ1, . . . , θm−1)] ≤ l < N. (7.4)

On the other hand, since Q(θm) ∩ Q(θ1, . . . , θm−1) = Q and the fields Q(θi) are Galois

over Q, by Theorem(7.14) (stated below), we conclude that

[Q(θ1, . . . , θm−1)(θm) : Q(θ1, . . . , θm−1)] = [Q(θm) : Q] > N

This contradicts (7.4) above and that proves the lemma.

For two field K and F, let KF denote the compositum of the two fields, which is the

smallest field containing both K and F.

Theorem 7.14 ([Lan04], Theorem 1.12, page 266). Let K be a Galois extension of k, let

F be an arbitrary extension and assume that K, F are subfields of some other field L. Then

KF (the composition of K and F) is Galois over F, and K is Galois over K
⋂

F . Let H be the

Galois group of KF over F, and G the Galois group of K over k. If σ ∈ H then the restriction

102

of σ to K is in G, and the map:

σ 7→ σ|K

gives an isomorphism of H on the Galois group of K over K ∩ F . In particular,

[KF : K] = [K : K ∩ F].

7.4 Reduction to Determinantal Ideals

This section shows that, in order to prove bounds on rigidity, it is sufficient to address the

question for the class of determinantal ideals associated with it. This provides a simplifi-

cation and it may be possible that better bounds are known for such kind of ideals.

More precisely, we show that the natural decomposition of the rigidity variety W(n, r,≤
k) = ∪|π|=kW(n, r, π) is indeed a decomposition into irreducible affine algebraic varieties.

In fact, these components turn out to be varieties defined by elimination ideals of determi-

nantal ideals generated by all the (r + 1) × (r + 1) minors.

We will continue to use the notation from Section 7.3. Consider the matrix X +Tπ. Let

x = {x1, . . . , xn2} = xπ̄ ∪ xπ, where xπ is the set of variables that are indexed by π and xπ̄

is the set of remaining variables.

Let

J := I(n, r, π) =
〈

Minors(r+1)×(r+1)(X + Tπ)
〉

be the ideal of Q[x, t] = Q[xπ, xπ̄, tπ] generated by the (r + 1) × (r + 1) minors of X + Tπ.

Let
J1 := J ∩ Q[xπ, xπ̄] ⊆ Q[x1, . . . , xn2]

J2 := J1 ∩ Q[xπ̄]

Ir+1 :=
〈

Minors(r+1)×(r+1)(X)
〉

⊆ Q[x]

EIr+1 := Ir+1 ∩ Q[xπ̄] ⊆ Q[xπ̄]

Notice that since J1 is the elimination ideal of J w.r.t. eliminating variables tπ, a matrix

A lies in W(n, r,≤ k) = RIG(n, r,≤ k) if and only if its entries lie in the variety defined by

the ideal J1. Also, Ir+1 is the ideal generated by the (r+1)× (r+1) minors of X and EIr+1

its elimination ideal for the rational ring generated by the variables xπ̄.

103

Proposition 7.15. J1 = J2Q[x] (the ideal generated by J2 in Q[x]) and J2 = EIr+1. In

particular, EI(n, r, π) = EIr+1Q[x] considered as ideals in Q[x].

Proof. First, notice that in the (r + 1) × (r + 1) minors of X + Tπ, the variable ti,j, for

(i, j) ∈ π, always occurs in combination with xi,j as ti,j + xi,j. Therefore, eliminating the

variables tπ will also automatically eliminate the variables xπ, giving the equality of the

generators of the ideals J1 and J2. Therefore J1 = J2Q[x]. More formally, consider the

isomorphism between the two coordinate rings φ : Q[xπ, xπ̄, tπ] and Q[xπ, xπ̄, tπ] defined by

letting φ(ti,j) = xi,j + ti,j for each (i, j) ∈ π and φ(xi,j) = xi,j for all (i, j) 6∈ π. The ideal

J1 = J∩Q[xπ, xπ̄] ⊆ Q[x1, . . . , xn2] must equal the ideal φ(φ−1(J)∩φ−1Q[x1, . . . , xn2]), since

φ is an isomorphism. But φ−1(J) is generated by matrices only involving the variables of

tπ and xπ̄, whereas φ−1Q[x1, . . . , xn2]) = Q[x1, . . . , xn2], so that φ−1(J)∩φ−1Q[x1, . . . , xn2] is

generated by polynomials only involving the variables of xπ̄. Therefore φ−1(J1) = φ−1(J)∩
φ−1Q[x1, . . . , xn2] = J2Q[x] and taking the image under φ, we get J1 = J2Q[x].

The equation J2 = EIr+1 follows from similar considerations, noting that the vari-

ables xi,j for (i, j) ∈ π always occur in the combination xi,j + ti,j. Therefore eliminating

them eliminates ti,j as well. More formally, consider the isomorphism ψ : Q[xπ, xπ̄, tπ] →
Q[xπ, xπ̄, tπ] defined by letting ψ(xi,j) = xi,j + ti,j for each (i, j) ∈ π, while ψ(ti,j) = ti,j for

(i, j) ∈ π and ψ(xi,j) = xi,j for (i, j) 6∈ π. Then again we have J2 = J1∩Q[xπ̄] = J ∩Q[xπ̄] =

ψ(ψ−1(J) ∩ ψ−1(Q[xπ̄])) = φ(Ir+1Q[x, tπ] ∩Q[xπ̄]) = φ(EIr+1) = EIr+1 ⊂ Q[xπ̄].

The following is a well-known theorem; see [HE71, Theorem 1] and [BV80, Chapter

2].

Theorem 7.16. Let RANK(n,≤ r) be the set of all rank ≤ r matrices of Mn
∼= An2

. Then

• I(RANK(n,≤ r)) = Ir+1 and RANK(n,≤ r) = V (Ir+1).

• Ir+1 is a prime ideal of Q[X]. In particular, RANK(n,≤ r) is an irreducible variety.

Corollary 7.17. In the natural decomposition W(n, r,≤ k) = ∪|π|=kW(n, r, π), the W(n, r, π)

are irreducible varieties.

Proof. The elimination ideal EIr+1 ⊆ Q[xπ̄] is a prime ideal since Ir+1 ⊆ Q[x] is prime by

Theorem 7.16. By Proposition 7.15, V (EIr+1) = V (EI(n, r, π)) is irreducible in An2
. Now,

by (7.2), we conclude that W(n, r, π) is an irreducible affine variety.

104

7.5 Semi-continuity of Rigidity

Currently we know ([Lok00], Theorem 7.10, Corollary 7.10) families of matrices lower

bounds for matrices whose entries are in C (and over R). One possible approach to get to

an explicit family of matrices, from these known families is to search in their neighbour-

hoods (in the Euclidean topology) to get to a rational matrix. An effectively computable

realization of this approach demands for an explicit poly(n) bound on the number of bits

needed to represent each entry of the n× n matrix.

However, this indeed motivates the study of continuity properties of rigidity. Intuitively,

if a function is (lower) semi-continuous at a given point, then within a small neighbour-

hood of that point the function is nondecreasing. More formally,

Definition 7.18 (Semi-continuity). Let Y be a topological space. A function φ : Y → Z is

lower semi-continuous if for each ℓ, the set {y ∈ Y | φ(y) ≤ ℓ} is a closed subset of Y . That

is, for each y there is a neighbourhood U of y such that for y′ ∈ U, φ(y′) ≥ φ(y). Intuitively, φ

can jump up only at special points, and it can’t jump down.

In contrast, if for each y there is a neighbourhood U of y such that for y′ ∈ U, φ(y′) ≤ φ(y),

then we say that the function φ is upper semi-continuous.

In our context, we will be interested in studying lower semi-continuity properties of

the rigidity function. To make this a little more precise, let Y be a topological space and

let ψ : Y → Rn×n be continuous. Then we want to study the continuity properties of the

function Rigr : y 7→ Rig(ψ(y), r).

We start with a simple case; namely the rank function. The rank function of a matrix,

for example, is a lower semi-continuous function on the space of all n × n complex ma-

trices as shown in the following proposition (This follows from basic ideas, but somewhat

detailed description appears in [Lew06].)

Proposition 7.19 (Lower semi-continuity of rank). Let Y be a topological space and let

ψ : Y → Rn×n be continuous, then the function φ : y 7→ rank(ψ(y)) is lower semi-continuous.

Proof. For any y, if rank(ψ(y)) = r, there is an r × r sub-determinant which becomes non-

zero at ψ(y). Let this determinant be the multi-linear polynomial p, and we know that

p(ψ(y)) 6= 0. However, since polynomials are continuous there is a small neighbourhood

Uy of y such that, for all u ∈ U p(u) 6= 0. Thus for all u ∈ U , rank(u) ≥ r. In other words,

if A in a n× n matrix over C and rank(A) = r then there is an ǫ = ǫ(A, k, r) such that for

all matrices B in the ǫ ball of A we have rank(B) ≥ r.

105

In fact, the same proof also shows that nullity function is upper semi-continuous.

Upper Semi-continuity: We study this for completeness, although it does not suit for our

lower bound applications. The upper semi-continuity property does not hold for rigidity

function. We give a direct counter example. Let A be the n × n matrix obtained by

adjoining identity matrix Im, r < m < n with the 0 matrix, and let r be the target rank.

Clearly RM(r) ≤ m − r. Now for any ǫ-ball U around M , construct the a matrix M ′ in U

as follows: put the ǫ on the diagonal of the 0-matrix in M to get a matrix M ′ such that

RM ′(r) > m− r.

Lower Semi-continuity: From now on we look at only lower semi-continuity, which is

more relevant for our applications. Unless otherwise mentioned, by semi-continuity we

mean lower semi-continuity.

To begin with, we see that the above lemma shows the semi-continuity of rigidity func-

tion for a restricted case of RIG(M, r, k), where k = 1. However, rigidity function does not

have semi-continuity properties in general. In this section, we give examples to show that

the rigidity function is not semicontinuous in general. However, it seems to have semi-

continuity property at some interesting matrices. In particular, the matrices A(n) from

Theorem 7.10 and Corollary 7.13 have an open neighbourhood around them within which

the rigidity function is constant. This is a direct consequence of their very construction

since they are outside the closed sets W(n, r,≤ (n− r)2 − 1). Another finite example with

square roots of primes as its entries appears in below. However, we do not know if the

matrices produced in [Lok00](where the (i, j) entry of the matrix is the square root of
√
pij for distinct primes pij, see (11) of table 6.1) have this property.

We illustrate that rigidity function is not lower semi-continuous. That is, we show that

there is an infinite family of matrices {Mn}n≥1, for which for any n, for any ǫn, there is a

matrix Nn which is ǫn-close to Mn such that rigidity of Nn is strictly smaller than that of

Mn.

The following is an example for 3 × 3 matrices. Let a, b, c, d, e be non-zero rational

numbers. Consider

A =







a b c

d 0 0

e 0 0






∈M(3,C)

Observe that rank(A) = 2 and by changing two entries its rank can be brought down to 1.

106

Hence, Rig(A, 1) = 2. Now for any ǫ > 0 let

B =







a b c

d bdδ cdδ

e beδ ceδ






∈M(3,C),

where δ 6= 0 and δ 6= 1/a is such that ǫ ≥ max{bdδ, cdδ, beδ, ceδ}. Thus B is in the open ball

of radius ǫ around A. Note that rank(B) = 2. Also Rig(B, 1) = 1 because changing a to
1
δ

will make all the 2 × 2 sub-determinants of B zero. Thus, we have a matrix B which is

in the ǫ open ball around A such that Rig(A, 1) > Rig(B, 1). To produce an infinite family,

for any given n, let

An :=























α a1 a2 . . . an−1

b1 0 0 . . . 0

b2 0 0 . . . 0

.

.

bn−1 0 0 . . . 0























∈M(n,C).

Then, we have:

Lemma 7.20. For n ≥ 3, rank(An) = 2, Rig(An, 1) = n− 1.

Proof. By Induction: We already argued for the base case when n = 3.

Let n ≥ 3, if we expand the determinant by the first row, every minor is of the form

An−1, and hence have the determinants zero by induction. Thus the rank is same as the

rank of A3 which is 2. It is easy to see that rank(An) = 2. In fact, all the 2 × 2 subdetermi-

nants involving ai, bi and α are non-zero. So we have to change at least (n− 1) entries so

that all the 2 × 2 subdeterminants vanish. On the other hand, it suffices to change all the

ai from i = 2 to n to reduce the rank to 1.

107

Similarly for any ǫ, choose an δ such that ǫ ≥ maxi,j{aibjδ}.

Bn =























α a1 a2 . . . an

b1 a1b1δ a2b1δ . . . anb1δ

b2 a1b2δ a2b2δ . . . anb2δ

.

.

bn a1bnδ a2bnδ . . . anbnδ























∈M(n,C)

Observe that for every sub-determinant of An that is non-zero, the corresponding sub-

determinant of Bn will also remain non-zero. Thus rank(Bn) = 2. Also Rig(Bn, 1) = 1

because if one changes α to 1
δ

then every 2 × 2 sub-determinant becomes zero. Now we

concentrate more on the 3 × 3 example A3

A =







a b c

d 0 0

e 0 0







As seen earlier, A ∈ RIG(3, 1, 2) and yet there are matrices arbitrarily close to it that

belong to RIG(3, 1, 1). Thus A is in the Euclidean closure of RIG(3, 1, 1), hence it is also in

the Zariski closure of RIG(3, 1, 1), since the Euclidean or complex topology is finer than the

Zariski topology.

Let us verify this directly. We want to verify that A ∈ ⋃π W(3, 1, π,≤ 1). We do this by

demonstrating a pattern π such that A ∈ W(3, 1, π,≤ 1). Let π := {(1, 1)}. Let us write:

X + t1 :=







x1 + t1 x2 x3

x3 x5 x6

x7 x8 x9







where t1 is the variable associate to π. Here we get:

I(3, 1, 1, π) = 〈t1x5 + x1x5 − x2x4, t1x6 + x1x6 − x3x4,

t1x8 + x1x8 − x2x7, t1x9 + x1x9 − x3x7,

x2x6 − x3x5, x2x9 − x3x8, x4x8 − x5x7,

x4x9 − x6x7, x5x9 − x6x8〉

108

Eliminating t1 from I(3, 1, 1, π) using the Groebner Basis algorithm we get:

EI(3, 1, 1, π) = 〈x2x6 − x3x5, x2x9 − x3x8, x4x8 − x5x7,

x4x9 − x6x7, x5x9 − x6x8〉

Note that A does satisfy these generating polynomials. However, this does not mean

that A is in the Euclidean closure, as in general, it could be that Euclidean closure is strictly

smaller than the Zariski closure.

Examples which are maximally rigid: Now we produce examples of matrices with max-

imum rigidity where the semi-continuity property of rigidity fails. Take a matrix

A =







a b c

d e 0

g 0 i







where a, b, . . . , g are non-zero rational numbers. n = 3, r = 1, k = 3. Notice that changing

4 entries (namely a, b, d, e) will be enough to bring the rank down to 1. It is easy to verify

that changing 3 entries will not suffice for a general choice of a, . . . , i. Thus, Rig(A, 1) =

4 = (3 − 1)2 = (n− r)2.

Let M be a generic matrix and let π be the diagonal pattern of size 3 (represented by

variables t1, t2, t3. Consider:

M + Tπ =







a+ t1 b c

d e+ t2 f

g h i+ t3







It can be checked that the elimination ideal is generated by bfg − cdh. Note that

A satisfies this equation and thus it follows that A ∈ RIG(3, 1, 3, π). This implies that

any Zariski open neighbourhood of A intersects RIG(3, 1, 3, π). This is straightforward

consequence of the definitions. What is unclear is whether every Euclidean neighbourhood

of such an A intersects RIG(3, 1, 3, π).

A Technique for proving semicontinuity: However, this suggests a technique for prov-

ing that there is an ǫ such that ǫ-neighbourhood of a matrix does not contain matrices of

109

strictly smaller rigidity. For this we closely studied the Zariski closure of matrices of rigidity

at most k−1 (for some k). For a matrix M of rigidity at least k, if we prove that it does not

lie in the above closure, it means that it is in the complement of a Zariski closed set, and

hence in a Euclidean open set. Thus there is an ǫ such that ǫ-neighbourhood of M matrix

does not contain matrices of rigidity smaller than k.

We illustrate the above technique by an example: Consider the matrix

M :=







√
2

√
3

√
5√

7
√

11
√

13√
17

√
19

√
23






∈M(3,C).

It is easy to check that Rig(M, 1) = 4. That is M ∈ RIG(3, 1, 4), and we want to prove

that M /∈ W(3, 1, 3)).

We want to check this for all patterns π. But we can rule out some of them quickly as

follows. Consider the pattern matrix Tπ such that

M + Tπ =







a+ t1 b+ t2 c+ t3

d e f

g h i







In the elimination ideal, the equation:

∣

∣

∣

∣

∣

e f

h i

∣

∣

∣

∣

∣

= 0 which will not be satisfied by M . It is

easy to check that the matrix M , due to its choice of entries, has the property that all the

submatrices have full rank. Thus, the pattern Tπ should touch all 2 × 2 minors. Thus, up

to permutations (since choice of primes in M could be arbitrary but distinct) we need to

check the case when Tπ has the variables on the diagonal

M + Tπ =







a+ t1 b c

d e+ t2 f

g h i+ t3







In this case, the elimination ideal is generated by a single polynomial, namely bfg − cdh,

which M does not satisfy. Since up to permutations, all patterns of size 3 can be written

as above, we conclude that M /∈ W(3, 1, 3). But in addition, by the above argument about

semi-continuity, it will also imply that for the matrix Mp, there is an ǫ such that all the

matrices in the ǫ-neighbourhood are outside W(3, 1, 3).

110

RIG(n, r,≤ k)(C) : Euclidean Closure vs Zariski Closure:

In all the examples of the matrices that we constructed we proved that the matrix vio-

lates semicontinuity by demonstrating that it lies in the Euclidean closure of matrices of

smaller rigidity. Thus they are also in the Zariski closure. It is natural to ask if one can

construct examples, where the matrix is outside the Euclidean closure of the matrices of

smaller rigidity, but inside their Zariski closure. This leads to the following natural ques-

tion. How do we compare the two closures of RIG(n, r,≤ k)(C). We settle this question in

the following:

Proposition 7.21. The Euclidean Closure of RIG(n, r,≤ k)(C) equals its Zariski Closure.

Proof. Recall that we can write

RIG(n, r,≤ k) =
⋃

π, | π|=k

RIG(n, r, π).

Thus, to prove the proposition, it is sufficient to prove that for any pattern π, the Euclidean

closure of RIG(n, r, π) equals its Zariski Closure.

By Closure Theorem, there exists a subvariety V strictly contained in W := RIG(n, r, π)

such that

W(C) − V (C) ⊆ RIG(n, r, π)(C) ⊆ W(C)

Since W(C) is closed in the Euclidean topology, we will done if we prove that the

Euclidean closure of W(C) − V (C) is W(C). This is precisely the statement of the follow-

ing lemma from [Sha94b], which we state below for easy reference. Also note that, by

Corollary 7.17, W is an irreducible variety for every pattern π and hence the lemma is

applicable.

Lemma 7.22 (Lemma 1, Page 124 [Sha94b]). If X is an irreducible algebraic variety and

Y (X a proper subvariety then the set X(C) − Y (C) is dense in X(C).

7.6 Conclusions and Open Questions

In this work, we considered two questions regarding matrix rigidity, namely constructing

an explicit family of matrices that are rigid and the semicontinuity question about rigidity.

The implication of the work in the computational complexity setting can be stated (in a

simplified version) as follows:

111

Theorem 7.23 (Superlinear Lowerbound). Let δ(n) = n4n4
. Let pi,j for 1 ≤ i, j ≤ n be

distinct primes such that pi,j > δ(n). Let A(n) := (ζi,j) ∈ Cn×n. ζi,j = e2πi/pi,j . Then, any

linear circuit over C of depth O(log n) computing x→ Ax must have size Ω(n).

Let B(n) := (ζi,j + ζi,j) ∈ Rn×n. ζi,j = e2πi/pi,j . Then, any linear circuit over R of depth

O(log n) computing x→ Ax must have size Ω(n).

As we stated in the introduction, the above family of matrices is not explicit as in the

sense of definition 6.20. To this end, we can hope to use using rational approximations

of small size to the entries of the matrix in order to obtain a rigid matrix with rational

entries. This motivated the study of semiconituity. Although we could prove that there

are explicit matrices over complex numbers where the semi-continuity property holds, the

bounds we have for the degree and coefficients on the polynomial are too weak in order

to provide a polynomial size approximation for the entries which preserves the rigidity.

Hence improving the bounds is also an interesting direction for further research.

Another important line of research is extending this approach to prove lower bounds

for other more explicit families of matrices. As one can easily see, the potential of the

approach in this work is far from fully exploited. In particular, it will be interesting to

prove properties about the elimination ideal which are useful in deriving optimal lower

bounds for matrix rigidity for other families of matrices. Moreover, in section 7.4, we could

argue that it is sufficient to prove properties about the elimination ideals that arises out

of determinantal ideals. Again, since determinantal ideals are more special (for example,

they are prime ideals), it is conceivable that the elimination ideals have more properties.

In an attempt to combine our approach to other known approaches, it might be inter-

esting to see how it compares with that of Lokam [Lok06]. Notice that both techniques

penetrate the combinatorial barrier using seemingly different techniques. In addition, it

seems that there is a close connection between the notion of algebraic dimension used in

[Lok06] and the well studied mathematical notion of Hilbert functions. We think that a

general theory of lower bounds based on this approach will unify the two directions and

will be interesting in this context.

112

Chapter 8

Complexity of Computing Matrix

Rigidity

In chapter 5 we discussed the complexity of computing the rank of a matrix exactly,

and tried to characterise small circuit complexity classes based on restricted versions of

the problem. However, corresponding optimisation search problems can be considerably

harder. We saw in chapter 6 different optimisation versions associated with rank of a

matrix.

In this chapter, we study the complexity of computing matrix rigidity. In particular,

we examine the complexity of the following questions and obtain completeness results for

small (counting logspace or smaller) classes: (a) determining whether k ∈ O(1) changes

to a matrix suffice to bring its rank below a specified value, and (b) constructing a singular

matrix closest (in a restricted sense) to the given matrix. We then consider bounded rigidity,

where the magnitude of individual changes is bounded by a pre-specified value, and show

NP hardness in general, and tighter bounds in special cases. Most of the results in this

chapter appear in [4].

8.1 Introduction

Over any field, computing rank is known to be in NC [Mul87]. Now consider the following

existential search question corresponding to matrix rigidity: Given a matrix M over a ring

K, a target rank r and a bound k, decide whether the rank of M can be brought down to

below r by changing at most k entries of M .

As indicated in chapter 6, the main motivation for studying rigidity is that good lower

113

bounds on rigidity give important complexity-theoretic results in other computational

models, like linear algebraic circuits and communication complexity. Though the ques-

tion we address is in fact a computational version of rigidity, it has no direct implications

for these lower bounds. However, it provides natural complete problems based on linear

algebra for important complexity classes.

An important aspect of computing rigidity is its possible connection to the theory of

natural proofs developed by Razborov and Rudich [RR97]. Valiant’s reduction [Val77]

(stated in Theorem 6.14) identifies “high rigidity” as a combinatorial property of func-

tions, based on which he proves linear-size lower bounds for log-depth circuits. However,

we do not know how the theory of natural proofs applies to the model of arithmetic cir-

cuits. This has not been studied in sufficient detail in order to draw conclusions about the

power of the proof technique. Nevertheless, this could be thought of as motivation for the

computational question of rigidity.

Our question bears close resemblance to the body of problems considered under matrix

completion, see for instance [BFS97, Lau01]. Given a matrix with indeterminates in some

locations, can we instantiate them in such a way that some desired property (e.g. non-

singularity) is achieved? In section 8.2.2, we discuss how results from matrix completion

can yield upper bounds for our question.

Since even an upper bound of NP is not obvious, we would like to restrict the choice

available in changing matrix entries. We consider two variants:

1. In the input, a finite subset S ⊆ K is given. M has entries over S, and the changed

entries must also be from S; rank computation continues to be over K. (For instance,

we may consider Boolean matrices, so S = {0, 1}, while rank computation is over

K.) It is easy to see that this variant is indeed in NP , and in NC if K is a field and

k ∈ O(1).

2. In the input, a bound θ is given. We require that the changes be bounded by θ; we

may apply the bound to each change, or to the total change, or to the total change per

row/column. (Recall definitions 6.8) and 6.9). This version has close connections

with another well-studied area called linear interval equations which arises naturally

in the context of control systems theory (see [Roh96]).

We obtain tighter lower and upper bounds for some of these questions. We obtain a

completeness result of C=L when k ∈ O(1) in the first variant, of NP when r = n− 1 in the

114

second variant, and of C=L when r = n in the general case. The table below summaries

the results.

K, S ⊂ K restriction bound
(if *, then S = K)
Fp, ∗ in NP

Fp, ∗ k ∈ O(1) ModpL-complete
Z or Q, {0,1} or in NP

specified in input
Z or Q, {0,1} k ∈ O(1) C=L-complete
Z or Q, ∗ k ∈ O(1) C=L-hard
Fp, ∗ r = n− 1 ModpL-complete

witness-search in ModpL

Q, ∗ r = n− 1 C=L-complete
witness-search in L

GapL

Z, ∗ r = n− 1 and k = 1 in L
GapL

Z or Q, ∗ bounded rigidity NP-hard
Z or Q, ∗ bounded rigidity, r = n− 1 NP-complete
Z or Q, ∗ bounded rigidity, r = n− 1, k = 1 In PL, and C=L-hard

Table 8.1: Bounds on RIGID when k ∈ O(1) or r = n− 1

8.2 Basic complexity results in rigidity

We recall the necessary definitions. In particular the rigidity function, and its decision

version, are as defined below (Here support(N) = #{(i, j) |N(i, j) 6= 0}.)

RM(r)
def
= inf

N
{support(N) : rank(M +N) < r}

RIGIDK = {(M, r, k) | RM(r) ≤ k}

8.2.1 Some Basic Approaches

Intuitively, one would expect RIGIDK to be in ∃ · NC: guess k locations where M is to be

changed, guess the new entries to be inserted there, and compute the rank. However, this

intuition, while correct for finite fields, does not directly translate to a proof for infinite

fields, since the required new entries may not have representations polynomially-bounded

in the input size.

115

We formulate the problem in terms of polynomials. Given M, r, k, guess the k positions

where the entries need to be changed, and assign distinct variables (x1, . . . , xk) to each of

those positions. Now, to achieve rank r we just need to find a common zero of t =
(

n
r+1

)

polynomials which are the (r + 1) × (r + 1) minors of the matrix. Let f1, . . . , ft be these

polynomials, and let I be the ideal generated by them over K[x1, . . . xk]. This is equivalent

to checking if the algebraic variety defined by the t minors is non-empty.

When K is algebraically closed (say when K = C or R) we can use the tools from

algebraic geometry to check this. A basic tool is the weak form of Hilbert’s Nullstellensatz

(Ch. 4, Thm. 1 in [CLO07]) which states as follows:

Proposition 8.1 (Weak Hilbert Nullstellensatz). Let I be an ideal in K[x1, . . . , xk] . Then

V (I) = φ if and only if I = K[x1, . . . xk].

Now we use the notion of Gröbner basis (see Appendix B). Let GI be the reduced Gröb-

ner basis of the ideal I w.r.t the standard term ordering. From the Hilbert Nullstellensatz,

and the definition (B.6) of reduced Gröbner basis, it follows that V (I) = φ if and only if

GI = {1}. Thus,

Proposition 8.2. Given polynomials f1, . . . , ft, there are no solutions to the system f1 =

0, f2 = 0, . . . , ft = 0 in K if and only if GI = {1}.

Thus we just need to compute the reduced Gröbner basis of the ideal generated by

the fi’s. Using the algorithm due to Buchberger [Buc83] this gives a double exponential

time upper bound. Since there could be exponentially many possible minors this gives the

following:

Theorem 8.3. When K is algebraically closed, RIGIDK can be solved in non-deterministic

triple exponential time.

As one can see, this is far from satisfactory. Before we end this subsection, we remark

that if the underlying field is R, there is another natural approach. Consider, f =
∑

i=1 f
2
i .

Clearly, the zeroes of f will be common zeroes of the fis. Thus, finding the roots of

multivariate polynomial f in R will be enough to test if RM(r) ≤ k. However, this does

not seem to give a better bound in general. In the following, using a connection to matrix

completion problems, we derive PSPACE upper bound for the problem over both C and R.

116

8.2.2 Connection with Matrix Completion Problems

Now we discuss the connections between matrix rigidity and matrix completion problems.

A mixed matrix is a matrix in which every entry is either a number or an indeterminate.

Matrix completion problems, in general, ask if there is a choice of entries for the indeter-

minates (this is called a completion) such that the resulting matrix M satisfies a property

P .

More formally, Let F be a field, and x1, . . . , xk be variables. Let K = F[x1, . . . , xk]. A

matrix M ∈ (F ∪ {x1, . . . xk})n×n is called a mixed matrix. In our context we consider the

property P as : rank(M) < r for a given r. Such instances are called minrank completion

problems, see for instance [BFS97].

Definition 8.4 (Minrank Completion). Let F be a field. Given a matrix M with entries from

F ∪ {x1 . . . xk},

MINRANKF(M) = min
(α1,...αk)∈Fk

rankF(M(α1, . . . αk))

Given M and r, decide if MINRANKF(M) ≤ r.

1-MINRANK is a special case of the above problem where each xi occurs in M at most

once. We can easily reduce RIGID to 1-MINRANK. An NP machine can simply guess the

entries to be changed, and put variables in those positions, and check if there exists a

choice of values for those positions such that rank goes below r. Thus we have :

Proposition 8.5. RIGID ∈ NP(1-MINRANK). In particular,

1-MINRANK ∈ NP =⇒ RIGID ∈ NP

However, the best known upper bound for 1-MinRank over Q is recursively enumerabil-

ity. A major open problem here, thus, is to obtain a better upper bound (e.g., decidability

is not known) for the computational rigidity question.

But the approach is useful to give a weak upper bound in the following setting. For

MINRANK, Buss et.al.[BFS97] proves PSPACE upper bounds for over real(R) and complex(C)

numbers and decidability over the p-adic numbers (Qp). Using these we get the following

proposition,

Theorem 8.6. If the input matrix is over Q, RIGIDC, and RIGIDR are decidable in PSPACE,

and RIGIDQp
is decidable.

117

However, in the case of arbitrary infinite fields, the best upper bound we can see in the

general case is recursive enumerability, and in particular, this is the situation over Q. We

also do not know any lower bounds for this question over Q. In the rest of this chapter, we

explore the computational complexity of several variants of this problem.

8.2.3 Characterisations when k is a constant

We now study the decision version of rigidity RIGIDK, and also its restriction RIGIDK,S

defined below, where the matrices can have entries only from S ⊆ K.

RIGIDK,S =

{

(M, r, k) | M over S, ∃M ′ over S :

rank(M ′) < r ∧ support(M −M ′) ≤ k

}

We will mostly consider S to be either all of K, or only We also consider the complexity

of RIGID when k is fixed, via the following language:

RIGIDK,S(k) = {(M, r) | (M, r, k) ∈ RIGIDK,S}

The language RIGIDZ(0) is nothing but RANK BOUND(Z) (see definition in Section 5.1) ,

and hence by [ABO96] is complete for C=L. When k > 0, we can still obtain some bounds

provided S is finite. We have the following completeness result for one such case.

Theorem 8.7. For each k, RIGIDZ,B(k) is complete for C=L.

Proof. Membership: We show that for each k, RIGIDZ,B(k) is in C=L. An instance (M, r)

is in RIGIDZ,B(k) if there is a set of 0 ≤ s ≤ k entries of M , which, when flipped, yield

a matrix of rank below r. The number of such sets is bounded by Σk
s=0

(

n2

s

)

= t ∈ nO(1).

Let the corresponding matrices be denoted M1,M2 . . .Mt; these can be generated from

M in logspace. Now (M, r) ∈ RIGIDZ,B(k) ⇐⇒ ∃i : (Mi, r) ∈ RANK BOUND(Z). Hence

RIGIDZ,B(k) ≤log
dtt RANK BOUND(Z). Since RANK BOUND(Z) is in C=L, and since C=L is closed

under logspace disjunctive truth-table reductions [AO96], it follows that RIGIDZ,B(k) is in

C=L.

Hardness: Now we show a corresponding hardness result: The hardness for RIGIDZ,B(0)

is easy to see. Indeed, M is singular if and only if (M,n − 1) ∈ RIGIDZ,B(0). In addition,

SINGULAR remains C=L-hard even when restricted to 0-1 matrices. Hardness for other

values of k follows from this fact, and from the following claim. Let Nk = M ⊗ Ik+1, where

118

⊗ denotes tensor product. Note that rank(Nk) = (k + 1) rank(M). Now,

(1) M ∈ SINGULAR(Z) =⇒ (Nk, (n− 1)(k + 1) − k) ∈ RIGIDZ,B(0) ⊆ RIGIDZ,B(k)

(2) M 6∈ SINGULAR(Z) =⇒ (Nk, (n− 1)(k + 1) − k) 6∈ RIGIDZ(k)

To see this, observe that if M ∈ SINGULAR(Z), then rank(M) ≤ n − 1 and so rank(Nk) ≤
(k + 1)(n − 1) < (n − 1)(k + 1) − k. Thus RNk

((n − 1)(k + 1) − k) = 0. Thus (Nk, (n −
1)(k+ 1)− k) ∈ RIGIDZ,B(0). If M 6∈ SINGULAR(Z), then rank(Nk) = (n− 1)(k+ 1), and by

Lemma 6.5, RNk
(n(k + 1) − k) > k. Thus, (Nk, n(k + 1) − k) 6∈ RIGIDZ(k).

However, in the case when the underlying ring is infinite, where S is given more implic-

itly with size not exponentially bounded, the changed entry might not have a polynomial

sized representation in terms of the input size, this approach fails.

Now we look for analogues of these results over finite fields of the form Fp where p is

prime. We first pinpoint the complexity of computing rank. It is known [BDHM92] that

SINGULAR(Fp) is complete for ModpL. (In fact, computing the exact value of the determi-

nant over Fp is in ModpL.) We observe that so is RANK BOUND(Fp).

Lemma 8.8. For prime p, RANK BOUND(Fp) is in ModpL.

Proof. Over an arbitrary finite field, Mulmuley’s algorithm [Mul87] reduces the problem of

computing the rank of a matrix to testing whether certain coefficients of the characteristic

polynomial of a related (univariate) polynomial matrix are all 0. Over Z, each coefficient

of the characteristic polynomial can be computed in GapL ; hence checking that it is 0 in

the field Fp can be tested in ModpL. Since ModpL is closed under conjunctive truth-table

reductions [AO96], it follows that RANK BOUND(Fp) is also in ModpL.

Now we can obtain analogues of Theorem 8.7 using Lemma 8.8 and the fact that ModpL

is closed under disjunctive truth-table reductions [AO96].

Theorem 8.9. For each k, and each prime p, RIGIDFp
(k) is complete for ModpL.

The hardness results above were obtained essentially by exploiting the hardness of

testing singularity. Therefore we now consider the complexity of RIGID at the singular-vs-

non-singular threshold, i.e. when r = n.

From Proposition 6.5, we know that over any field F, (M,n−1, k) is in RIGID whenever

k ≥ 1. And (M,n− 1, 0) is in RIGID if and only if M ∈ SINGULAR(F). So the complexity of

deciding this predicate over Q is already well understood. We then address the question

of how difficult it is to come up with a witnessing matrix.

119

Theorem 8.10. Given a non-singular matrix M over Q, a singular matrix N satisfying

support(M −N) = 1 can be constructed in LGapL.

Proof. For each (i, j), let M(i, j) be the matrix obtained from M by replacing mi,j with an

indeterminate x. Then det(M(i, j)) is of the form ax+ b, and a and b can be determined in

GapL (see for instance [AAM03]). Since RM(n− 1) = 1, there is at least one position (i, j)

where the determinant is sensitive to the entry, and hence a 6= 0. Setting mi,j to be −b/a
gives the desired N .

Another question that arises naturally is the complexity of RIGID at the singularity

threshold over rings. Note that Proposition 6.5 does not necessarily hold for rings. For in-

stance, changing one entry of a non-singular rational matrix M suffices to make it singular.

But even if M is integral, the changed matrix may not be integral, and over Z, RM(n− 1)

may well exceed 1. (It does, for the matrix

[

2 3

5 7

]

.) Thus, the question of deciding

RM(n) over Z is non-trivial. We show:

Theorem 8.11. Given M ∈ Zn×n, deciding if (M,n − 1, k) is in RIGID(Z) is (1) trivial for

k ≥ n, (2) C=L complete for k = 0, and (3) in L
GapL for k = 1.

Proof. The first part holds because zeroing out an entire row always gets singularity. The

second part merely says that SINGULAR(Z) is C=L-complete. For the third part, we use the

idea from the proof of Theorem 8.10. (M,n, k) ∈ RIGID(Z) if and only if there exists a

position (i, j) such that det(M(i, j)) = ax + b and b/a is integral. A logspace machine can

check integrality of b/a, obtaining the bits of a and b by querying GapL.

In particular, the third result in this theorem implies that if over Z, RM(n) = 1 for a

non-singular matrix M , and if N is the witnessing matrix, then the single non-zero entry

in N has size polynomially bounded in that of M . However, if RM(n) > 1 we do not know

such a size bound.

8.2.4 Inapproximability results on Rigidity

Now we observe that inapproximability results for rigidity over F2 follow from a reduction

from the nearest codeword problem (NCP) discovered by Deshpande [Des07]. We need

some background from coding theory:

A linear code is a linear subspace of the vector space Fn along with an encoding func-

tion E : Fm → Fn and a decoding function D : Fn → Fm. The generator matrix G ∈ Fm×n

120

provides the encoder as a linear transformation from Fm → Fn. Given x ∈ Fm, the

codeword corresponding to x is given by xG, and the set of codewords is defined by

C = {xG ∈ Fn | x ∈ Fm}. Equivalently, there exists a parity check matrix H ∈ F(n−m)×n

such that C = {x ∈ Fm | Hx = 0 ∈ Fn−m}.

Definition 8.12 (Nearest Codeword Problem - NCP(H, z, d)). Given the parity check matrix

of a linear code H(n−m)×n, a received vector z ∈ Fn, and distance d, check if there a vector

y ∈ Fn such that Hy = 0 and ∆(z, y) ≤ d.

Reduction from NCP to Rigidity [Des07]: Let G and H be the generator matrix and

parity check matrix of the linear code respectively. Construct an (m(n+1)+1)× (n) matrix

M by putting z = 1n in the first row and stacking (n+ 1) copies of G below it. We assume

that the generator matrix is full row-rank. Then the rank of M is m if z is in the row span

of G, and m + 1 otherwise. Now the rigidity instance that we produce is (M,m, d). Thus

the factors appear in terms of the number of columns of the given matrix. The following

lemma establishes the correctness of the reduction.

Lemma 8.13 ([Des07]). RM(m) ≤ d ⇐⇒ (H, z, d) ∈ NCP.

We get the inapproximability results by directly combining the above Lemma with the

known inapproximability results for NCP [ABSS93].

Theorem 8.14. Over F2, for any constant α > 1, given a matrix M ∈ Fm×n
2 of rank r,

deciding if RM(r − 1) ≤ k or RM(r − 1) ≥ αk is NP-hard.

Theorem 8.15. Assuming NP is not contained in DTIME(nlog n), over F2, for any ǫ > 0, for

α ≤ 2n log0.5−ǫ n, given a matrix M ∈ Fm×n
2 , of rank r it is impossible to distinguish between

the following two cases:

1. RM(r − 1) ≤ k.

2. RM(r − 1) ≥ αk.

8.2.5 A Maximisation Version of Rigidity

In this section, we consider a variant of the problem of matrix rigidity where we ask for

the minimum number of entries needed to bring up the rank above a given value r. We

start with the following definitions.

121

RM(r)
def
= inf

N
{support(N) : rank(M +N) ≥ r}

MAXRIGID = {(M, r, k) | RM(r) ≤ k}

Intuitively, one would expect that MAXRIGID is easier because to ensure that the rank

of the matrix is at least r, is it sufficient to change values such that at least one r× r minor

becomes non-zero. We show that much more is true.

Lemma 8.16. RM(r) = max{0, r − rank(M)}.

Proof. If r ≤ rank(M) then there is nothing to prove. So we assume that rank(M) < r.

Using Fact 6.6, it is easy to see that RM(r) ≥ r − rank(M). Indeed, a change in the matrix

can change the rank by at most 1.

To see the other direction, let the rank of the matrix be ℓ. If ℓ ≥ r we have nothing

to prove. So assume that ℓ < r. Choose an ℓ × ℓ submatrix M0 of M which has non-zero

determinant. Without loss of generality, we can assume that M0 is the top left corner of

M . Replace (ℓ + 1, ℓ + 1)th entry with a variable x. Let M1 be the top-left (ℓ + 1) × (ℓ + 1)

submatrix of M . The determinant of M1 is of the form ax + b where a = det(M0). Choose

x 6= −(b/a) thus ensuring det(M1) is non-zero. Repeat this procedure choosing M1 to be

the new M0 and ℓ + 1 to be the new ℓ. At each step we are increasing the rank of M

by 1, by changing exactly one entry, and hence by r − rank(M) steps we will reach a

matrix M ′ of rank at least r which differs from M in at most r − rank(M) positions. This

RM(r) ≤ r − rank(M).

Thus, to test if (M, r, k) ∈ MAXRIGID it is sufficient to test if rank(M) > r−k−1. Hence,

by proposition 5.2, we have the following theorem.

Theorem 8.17. Over Z or Q, MAXRIGID is coC=L-complete. Over Fp, MAXRIGID is ModpL-

complete

In the above proof, in order to choose x at each stage, we need to compute the coeffi-

cients a and b which are determinants themselves. This gives a polynomial time procedure

which given M and r computes the actual changes that we need to make to bring up the

rank of the matrix to r or more.

We remark that this characterisation (Lemma 8.16) and the upper bound for max ver-

sion of the rigidity, brings out a subtle difference between the rigidity-like problems and

122

matrix completion problems considered in the literature. To make this clearer, we describe

the maximum rank matrix completion problem (the max version of Section 8.2.2, studied

in [BFS97]).

Given a matrix with indeterminates and a value r the problem is to check if there is a

choice of values for the indeterminates such that the matrix (when the indeterminates are

substituted with these values) has rank r or more. A special case of this problem (called

1-MAXRANK) is when each indeterminate can appear only once in the matrix. An easy

argument similar to that of Proposition 8.5 gives: MAXRIGID ∈ NP (1-MAXRANK). Notably,

1-MAXRANK also has a polynomial time upper bound. Using more involved arguments

from matroid theory Murota [Mur93] and Geelen [Gee99] independently gave polynomial

time algorithms for the problem.

8.3 Computing Bounded Rigidity

We now consider the bounded norm variant of rigidity which was described in Chap-

ter 6. Namely, changed matrix entries can differ from the original entries by at most a

pre-specified amount θ. Note that over Q, this still does not imply an a priori polynomial-

size bound on the changed entries.

Recall the definition of norm rigidity ∆M(r) and bounded rigidity RM(r, θ) from chap-

ter 6. We define a corresponding decision version:

B-RIGIDK = {(M, r, k, θ) | RM(r, θ) ≤ k}.

Recall from Lemma 6.10 that there are cases when RM(r, θ) is undefined. This moti-

vates the following question. Given a matrix M , a rank r and θ how difficult is it to check

whether RM(r, θ) is defined? We show the following:

Theorem 8.18. 1. Given a matrix M ∈ Qn×n, and a rational number θ > 0, testing if

RM(n− 1, θ) is defined is NP-complete.

2. Given M and θ as above, and further given an integer k, testing if RM(n − 1, θ) is at

most k is NP-complete.

Proof. To begin with, notice that, RM(n− 1, θ) is defined if and only if RM(n− 1, θ) ≤ n2.

Membership: We first show the membership in NP for (2). Membership in (1) follows by

using this with k = n2. We use notation and some results from the linear interval equations

123

literature. For two matrices A and B, we say that A ≤ B if for each i,j, Aij ≤ Bij. For

A ≤ B, the interval of matrices [A,B] is the set of all matrices C such that A ≤ C ≤ B.

An interval is said to be singular if it contains at least one singular matrix; otherwise it

is said to be regular. By Theorem 2.8 of [PR93] (or directly from Lemma 8.20), checking

singularity of a given interval matrix is in NP.

Given M , θ and k, we want to test whether RM(n, θ) is at most k. In NP, we guess k

positions (i1, j1), (i2, j2), . . . (ik, jk) and construct the matrix Vimjm
= θ for all 1 ≤ m ≤ k

and 0 elsewhere. Now let A = M − V and A = M + V . Then RM(n− 1, θ) ≤ k if and only

if for some such guessed V , the interval [A,A] is singular, and this can be tested in NP.

Hardness: It suffices to prove hardness for (1), since hard instances of (1) along with

k = n2 gives hard instances of (2). We start with the maximum bipartite subgraph problem:

Given an undirected graph G = (V,E), with n vertices and m edges and a number k, check

whether there is bipartite subgraph with at least k edges. This problem is known to be NP-

complete (see [GJ79]). In [PR93], there is a reduction from this problem to computing the

radius of non-singularity, defined as follows: Given a matrix A, its radius of non-singularity

d(A) is the minimum ǫ > 0 such that the interval [A− ǫJ, A+ ǫJ] is singular, where J is the

all-1s matrix.

We sketch the reduction of [PR93] below and observe that it yields NP-hardness for

our problem as well.

Given an instance G, k of the maximum bipartite subgraph problem, we define the

matrix N as,

Nij =











−1 if i 6= j and i and j are adjacent in G

2m+ 1 if i = j

0 otherwise

Notice that sinceN is diagonally dominant, by Levy-Desplanques theorem (see for instance

Theorem 2.1 in [MM64]), N is invertible. Let M = N−1.

By Theorems 2.6 and 2.2 of [PR93],
(G, k) is a Yes instance ⇐⇒ 1/d(M) ≥ (2m+ 1)n+ 4k − 2m

⇐⇒ d(M) ≤ θ = 1
(2m+1)n+4k−2m

⇐⇒ the interval [M − θJ,M + θJ] is singular

⇐⇒ RM(n− 1, θ) is defined.

Unravelling the NP algorithm described in the membership part above, and its proof of

correctness, is illuminating. Essentially, what is established in [Roh94] and used in [PR93]

124

is the following:

Lemma 8.19 ([Roh94]). If an interval [A,B] is singular, i.e. the determinant vanishes for

some matrix C within the bounds A ≤ C ≤ B, then the determinant vanishes for a matrix

D ∈ [A,B] which, at all but at most one position, takes an extreme value (dij is either aij or

bij).

In particular, this implies that there is a matrix in the interval whose entries have rep-

resentations polynomially long in that of A and B. To see this, let D be the matrix claimed

to exist as above, and let k, l be the (only) position where akl < dkl < bkl. The other

entries of D match those of A or B and hence are polynomially bounded anyway. Now

put a variable x at k, l to get matrix Dx. Its determinant is a univariate linear polynomial

αx + β which vanishes at x = dkl. Now α and β can be computed from Dx in GapL , and

have polynomially bounded representations. If α = 0, then β = 0 and the polynomial is

identically zero. Otherwise, the zero of the polynomial is −β/α. Either way, there is a zero

with a polynomially long representation.

In [Roh94], the above lemma is established as part of a long chain of equivalences

concerning determinant polynomials. However, it is in fact a general property of arbitrary

multilinear polynomials, as we show below.

Lemma 8.20 (Zero-on-an-Edge Lemma). Let p(x1 . . . xt) be a multilinear polynomial over

Q. If it has a zero in the hypercube H defined by [ℓ1, u1], . . . [ℓt, ut], then it has a zero on an

edge of H, i.e. a zero (a1, . . . , at) such that for some k, ∀(i 6= k), ai ∈ {ℓi, ui}.

Proof. The proof is by induction on the dimension of the hypercube. The case when t = 1

is vacuously true, since H is itself an edge. Consider the case t = 2. Let p(x1, x2) be

the multilinear polynomial which has a zero (z1, z2) in the hypercube H; ℓi ≤ zi ≤ ui for

i = 1, 2. Assume, to the contrary, that p has no zero on any edge ofH. Define the univariate

polynomial q(x1) = p(x1, z2). Since q(x1) is linear and vanishes at z1, p(ℓ1, z2) and p(u1, z2)

must be of opposite sign. But the univariate linear polynomials p(ℓ1, x2) and p(u1, x2) do

not change signs on the edges either, and so p(ℓ1, u2) and p(u1, u2) also have opposite sign.

By linearity of p(x1, u2), there must be a zero on the edge x2 = u2, contradicting our

assumption.

Let us assume the statement for hypercubes of dimension less than t. Consider the

hypercube of dimension t and the polynomial p(x1, . . . xt). Let (z1 . . . zt) be the zero inside

the hypercube. The multilinear polynomial r corresponding to p(x1, . . . xn−1, zt) has a zero

inside the (t − 1)-dimensional hypercube H ′ defined by intervals [ℓ1, u1], . . . [ℓt−1, ut−1]. By

125

induction, r has a zero on an edge of H ′. Without loss of generality, assume that this zero

is (z′1, α2 . . . αt−1) where αi ∈ {ℓi, ui}. Thus the polynomial q(x1, xt) = p(x1, α2 . . . αt−1, xt)

has a zero in the hypercube defined by intervals [ℓ1, u1], [ℓt, ut]. Hence the base case applies

again, completing the induction.

The hard instance that we get in Theorem 8.18 is a matrix with a rational entries and

the bound θ is also a rational number. If M is such a matrix, we can produce an integer

matrix N with the same rank by multiplying each entry by ℓ where ℓ is the lcm of the

denominators of the entries. RM(r, θ) = RN(r, ℓθ). Thus, theorem 8.18 hold for integer

matrices too, and recall that the rank of an integer matrix over Z and Q are the same.

Remark 8.21. The matrices that are produced in the above reduction are all symmetric. Rohn

[Roh94] considered the case when the interval of matrices under consideration is symmetric;

that is both the boundary matrices are symmetric. Notice that the interval can still contain

non-symmetric matrices. He proved that in such an interval, if there is a singular matrix, then

there must be a symmetric singular matrix too. So even restricted to symmetric matrices, the

above result holds.

Remark 8.22. A set of matrices C is a convex set if for any set of matrices M1, . . . ,Mk ∈ C

and any α1, . . . , αk such that,
∑

i αi = 1, the matrix M =
∑

i αiMi is also in C. Notice that

in the case of an interval matrix A = [A,A], the hypercube defined by the intervals is a convex

set, where the corners of the set(polytope) are the 2n2
matrices :

{

Ã | Ãij = Aij or Aij

}

Thus, the above reduction also implies the hardness of optimising rank over a convex set C (of

m corners) of matrices when the set is represented by encoding its corners using logm bits.

Analogous to Theorem 8.7, we consider the complexity of B-RIGIDK when k ∈ O(1).

Theorem 8.23. B-RIGIDK is C=L-hard for each fixed choice of k, and remains hard when r is

restricted to be n− 1. When k = 1 and r = n− 1, it is in PL.

Proof. For any k, (M,n, k, 0) ∈ B-RIGIDK ⇐⇒ M is singular; hence C=L-hardness.

To see the PL upper bound, let θ = p
q
. For each element (i, j), define the the (i, j)th

element as variable x and then write the determinant as ax + b. Thus, if |x| = | b
a
| ≤ p

q
for

at least one such (i, j) pair, we are done. This is equivalent to checking if (bq)2 ≤ (ap)2.

a and b can be written as determinants, hence (ap)2 and (bq)2 are GapL functions, and

126

comparison of two GapL functions can be done in PL. Since PL is closed under disjunction

(see [AO96]), the entire computation can be done in PL.

127

Appendix A

Complexity Theory Preliminaries

In this chapter we recall the basic complexity theory that is needed this thesis. We refer the

reader to any standard textbook on complexity theory ([DK00]), and to a survey article by

Fortnow and Homer [FH03] for a historical perspective and pointers to many important

results of complexity theory.

The following notation is from classical automata theory : an alphabet is a finite set Σ

(in our case {0, 1})) of symbols. A finite sequence x = x1 . . . xn where each xi ∈ Σ forms

a string of length n, and we will use |x| to denote the length of x. Σ∗ denotes the set of

all strings over Σ. A language L over Σ is a subset of Σ∗. Computational problems are

often posed as decision problems where the answer that we expect is either yes/no. By

suitably encoding with binary strings they define a language L over {0, 1}∗. In contexts

where we expect more than one bit as output, the problem is thought of as a function from

{0, 1}∗ → {0, 1}∗. They will be called functional problems.

Definition A.1. The complexity class P is the class of decision problems that can be solved by

a Turing machine in time bounded by a polynomial in the size of the input.

The robustness properties of this class motivated Edmond [Edm65] to suggest, what is

now widely accepted as the Extended Church-Turing thesis, that P is the class of problems

which are tractable under any reasonable model of computation.

To abstract out the properties of decision problems that could be outside this class the

notion of non-determinism was introduced. In this model, the machine is allowed to guess

a solution and verify if it is indeed one, and is said to accept if at least one of them is indeed

a solution. This captures efficient verifiability property of a candidate solution that appears

to be the structure of certain languages that are seemingly not efficiently computable.

128

Definition A.2. The class of decision problems, that can be solved by non-deterministic poly-

nomial time bounded Turing machines is called NP.

It is a big open question [Coo03] in complexity theory if there is a language in NP

which is provably not in P.

In an attempt to understand the structure of decision problems, classical recursion

theory formalised the notion of reductions and completeness for a class of problems.

Definition A.3. (reductions) Let A and B two languages, we say that A many-one reduces

to B, denoted by A ≤m B if there is a function f : Σ∗ → Σ∗ that maps instances of problem

A to instances of problem B such that yes and no instances of A gets mapped to yes and no

instances of B respectively. Further, a reduction is said to be in poly time, denoted by A ≤p
m B,

if the function f can be computed by a polynomial time Turing machine. We say that A Turing

reduces to B, denoted by A ≤T B, if there is a Turing machine M for A which can ask, during

its computation, some membership questions about language B. Further, if the time taken by

the machine is bounded by polynomial, and the length of the query strings for membership

questions asked about B, is also bounded by polynomial, then we say that A is polynomial

time Turing reducible to B and denote it by A ≤p
T B.

We will also use variants of this definition based on resource bounds for the machine

M .

A language L is complete for a complexity class C under many-one (Turing) C′-reductions

if for every language L′ ∈ C, L′ many-one (Turing) reduces to L where the complexity of

reduction is in C′ . Thus L is the hardest problem in C. It is easy to see that this notion will

be useful when the class C′ is contained in C and is not known to be the same as C. This

gives a class of problems which are candidates for the separation of the two classes.

The notion of NP-completeness gives more candidate problems to attack for settling

the P vs. NP problem. See [GJ79] for a list of NP-complete problems.

Now we turn into the space bounded complexity classes.

Definition A.4. L denotes the class of languages accepted by deterministic Turing machines

which run in space at most log n. NL denotes the class of languages accepted by non-deterministic

Turing machines which use at most log n space and for which the input available on a read-

only tape.

Reachability problems in graphs is a source of complete problems for space bounded

classes in the combinatorial domain. The problem in general is of the form: given a

129

graph G and two designated vertices s and t, determine if there is a path from s to t. A

complete problem for L is the reachability problem in undirected forests [CM87]. Recent

results [Rei05] show that the reachability problem in undirected graphs can also be solved

in L, and hence the problem is L-complete. Reachability in directed graphs can be easily

seen to be complete for NL.

Now we equip the space bounded Turing machine with a poly size bounded stack. This

model called AUXPDA can accept all context free languages (since it can simulate push

down automata), and in fact more.

Definition A.5. LogCFL is the set of problems which are log space many one reducible to some

CFL. LogDCFL is the set of problems which are log space many one reducible to some DCFLs.

We now [Sud78, Coo71] (see also [Ruz80, Ven91, MRV99]) know that the class of

languages accepted by the AUXPDA running in polynomial time is exactly LogCFL. Similar

results are known for LogDCFLs as well.

We will also need the notion of counting in space bounded complexity classes. For

a nondeterministic Turing machine M we denote by accM(x) and rejM(x) the number of

accepting and rejecting computation paths of M on input x respectively.

Definition A.6 (#L). The class #L is defined as the class of functions f : Σ∗ → N for

which there is a nondeterministic logspace-bounded Turing machine M , such that ∀x ∈ Σ∗,

f(x) = accM(x).

Definition A.7 (GapL). The class GapL is defined as the class of functions f : Σ∗ → Z for

which there is a nondeterministic logspace-bounded Turing machine M , ∀x ∈ Σ∗, f(x) =

accM(x) − rejM(x).

Based on these class of functions one can define the following decision problems.

Definition A.8. C=L is the class of languages for which there is a function f in GapL such

that

∀x ∈ Σ∗ : x ∈ L ⇐⇒ f(x) 6= 0

Definition A.9. PL is the class of languages for which there is a function f in GapL such that

∀x ∈ Σ∗ : x ∈ L ⇐⇒ f(x) ≥ 0

Definition A.10. Let k ≥ 2 be an integer. ModkL is the class of sets L such that there is an

f ∈ #L with

∀x ∈ Σ∗ : x ∈ L ⇐⇒ f(x) 6≡ 0(modk)

130

We now turn to circuit complexity classes that are relevant to this thesis. We refer the

reader to a standard textbook [Vol99] for a detailed exposition of this material. Circuits

C over the basis B with n inputs x1, . . . xn, are directed acyclic graphs (DAGs) where the

nodes are labelled by gates g ∈ B. The gates at the nodes with in-degree 0 are simply

the input literals. The gates at the nodes with out-degree 0 are called the output nodes.

The in-degree of a node is the fanin. The depth of a circuit is the length of the longest

directed path in the underlying graph. The size of the circuit is simply the number of nodes

in the underlying graph. Now we can define the following complexity classes. For the

basis B = {∧k,∨k,¬, mod k,majk} denote the boolean gates for computing conjunction,

disjunction, negation, modulus, and majority of fanin at most k. A circuit family {C} is

said to accept a language L, if ∀x ∈ Σ∗, x ∈ L ⇐⇒ C|x| evaluates to 1 on input x.

Definition A.11. NCi is the class of languages that can be computed by circuits of size poly(n)

and depth O(logi n) over the basis {∧2,∨2,¬}. NC = ∪iNCi.

Definition A.12. ACi is the class of languages that can be computed by circuits of size poly(n)

and depth O(logi n) over the basis {∧m,∨m,¬} where m = poly(n). AC = ∪iACi

Definition A.13. ACCi is the class of languages that can be computed by circuits of size poly(n)

and depth O(logi n) over the basis {∧m,∨m, mod m,¬} where m = poly(n). ACC = ∪iACCi.

Definition A.14. TCi class of languages that can be computed by circuits of size poly(n) and

depth O(logi n) over the basis {∧m,∨m,majm,¬} where m = poly(n). TC = ∪iTCi.

In a spirit similar to the class GapL and C=L one can define GapNC1 and C=NC1.

Definition A.15. (GapNC1) The class #NC1 is defined as the class of functions f : Σ∗ → N

for which there is a uniform family of circuits C of poly(n) size and O(log n) depth such that,

∀n, ∀x ∈ Σn, f(x) = accC(x)

where accC(x) will denote the number of accepting subtrees of circuit Cn ∈ C on input x.

Now GapNC1 denotes the class of functions which can be expressed as the difference of two

functions in #NC1. C=NC1 is a language class such that there is a function f in GapNC1, such

that x ∈ L ⇐⇒ f(x) 6= 0.

131

Appendix B

Algebraic Geometry Preliminaries

Here we recall some basic notions from algebraic geometry. We refer the reader to [Sha94b,

Sha94a] for detailed treatment the these notions.

Let F be a field. Let F denote the fixed algebraic closure of F. Let x1, . . . , xn be n

algebraically independent variables over F. Let F[x1, . . . , xn] be the polynomial ring in n

variables over F. An ideal I is by definition a sub-module of the ring F[x1, . . . , xn]. More

explicitly, I is a subset of F[x1, . . . , xn] which is a subgroup of F[x1, . . . , xn] under addition,

and which is also closed under multiplication by elements of F[x1, . . . , xn].

By an algebraic subset V (Σ) of Fn, we mean the set of common zeros of a set Σ of

polynomials in F[x1, . . . , xn]. If Σ is a set of homogeneous polynomials then V (Σ) is a

subspace of Fn. If Σ is a set of non-homogeneous polynomials then V (Σ) is either empty

or translate of a subspace of Fn.

Given a subset Σ of F[x1, . . . , xn] we may consider the ideal IΣ = 〈Σ〉 generated by Σ

in F[x1, . . . xn]. Given an ideal I of F[x1, . . . , xn] and a field L containing F, by V (I)(L) we

mean the set of points a := (a1, · · · , an) such that a is a zero of all polynomials belonging

to I and all the ai ∈ L. We let V (I) denote the affine variety defined by I over F. This is a

geometric object with a natural structure of a topological space, where the closed subsets

are V (J) for ideals J ⊆ F[x1, . . . , xn] containing I. This is called the Zariski topology. The

algebraic set V (I)(L) consists of the L-points of the affine variety V (I).

V (I)(L) := {a = (a1, . . . , an) ∈ Ln | ∀f ∈ I, f(a) = 0 }.

On the other hand, given a subset S of F
n
, let us define I(S) to be the set of polynomials

f ∈ F[x1, . . . , xn] such that f(s) = 0, ∀s ∈ S. It is easy to see that I(S) is an ideal of

132

F[x1, . . . , xn]. Let us define:

√
I := {f ∈ F[x1, · · · , xn] | ∃ m ∈ N such that fm ∈ I}.

√
I is called the radical of the ideal I. We then have the following basic theorems.

Theorem B.1 (Hilbert’s Nullstellensatz). Let I be an ideal of F[x1, . . . , xn], then:

√
I = I(V (I)).

We will always deal with radical ideals, namely those I which are equal to
√
I. The

affine variety V (I) is often interchangeably used with its F-valued points V (I)(F), which

is the algebraic set it defines.

Given a subset S of Fn, the Zariski-closure of S to be denoted by Z(S) or S is by defini-

tion the smallest algebraic subset of Fn containing S that is defined by a set of polynomials

with coefficients in F.

We call an algebraic subset S irreducible if it cannot be written as a union of two

algebraic sets S1 and S2 properly contained in S. Note that X is irreducible if and only if

I(X) is a prime ideal.

A morphism φ : X ⊆ An → A1 from an affine closed subvariety of affine n-space to

the affine line is a polynomial map (x1, . . . xn) 7→ p(x1, . . . , xn), where p is a polynomial.

We naturally extend this to a morphism between affine varieties.

Definition B.2 (morphism). Let X ⊆ An and Y ⊆ Am be two closed affine varieties. A

morphism φ : X → Y is defined to be a map φ whose components are polynomials. In other

words, φ has the form:

φ(x1, . . . , xn) = (f1(x1, . . . , xn), . . . , fm(x1, . . . , xm)),

where f1, . . . fm are polynomials, and with the property that φ maps the subset X to Y .

The morphism φ is called dominant if φ(X) is dense in Y .

Dimension of a Variety

Let X be a closed affine variety of An over the field F associated with the ideal I(X). Let

F(X) denote the ring of fractions of the coordinate ring R = F[x1, . . . , xn]/I. If I(X) is a

prime ideal, F(X) is a field and is called the function field of X. Elements of the function

133

field F (X) are called rational functions on the variety X. In informal terms, the dimension

of X is the number of independent rational functions on X.

Definition B.3. Let K be a finitely generated extension field over a base field F. Let S be

a maximal set of algebraically independent elements of K over F. Such an S is called a

transcendence basis of K over F. It can be proved that |S| is independent of S, and is called

the transcendence degree of K over F and will be denoted by tr.deg(K/F).

Definition B.4. The dimension of an affine variety X ⊆ F n denoted by dim(X) is the tran-

scendence degree of the function field F(X) of the variety X over the base field F. Thus,

dim(X) := tr.deg(F (X)/F).

For easy reference we state a lemma below that we need.

Lemma B.5 ([Sha94a]). Let φ : X → Y be a dominant morphism. Then φ∗ induces a

natural isomorphic inclusion of F(Y) →֒ F(X). In particular, dim(Y) = tr.deg(F (Y)) ≤
tr.deg(F (X) = dim(X).

To give a more intuitive understanding of the notion of dimension, we describe a simple

example. If V is a linear subspace of Fn (or a translate of such a subspace) of dimension

d (in the linear algebraic sense), then it is an easy to show that the dimension of V as an

affine variety is also d. Indeed, one can (upto isomorphism) choose a set of d coordinates

xi1 , . . . , xid and variables corresponding to the remaining coordinates (as polynomials of

degree 1) form the ideal defining the variety. In other words, the coordinate ring F[V] =

F[x1, . . . , xn]/I(V) is canonically isomorphic to F[xi1 , . . . , xid] (where the xij are the free

variables in the system of linear equations defining V). Thus, the dimension of F(V) over

F is exactly d.

In more intuitive terms, in the case of linear algebra, we say V has dimension n by

pointing out that its elements are parametrised by n-tuples. However, in the case of alge-

braic sets, it is not true, in general, that the points of an algebraic set of dimension n are

parametrised by n-tuples; the most one can say is that for any irreducible algebraic variety

of dimension d, there is a finite surjective map φ : V → Ad. This is a re-statement of the

Noether Normalization Theorem.

A related question to ask is how many polynomials (equations) are needed to define an

algebraic set V . If V is a linear subspace of Fn(or translate of such a subspace), then linear

algebra shows that it is the zero set of n − dim(V) polynomials. But in general, for an

algebraic set, all one can say is that at least n − dim(V) polynomials are needed to define

134

V . However, in most cases, many more are required. Given a variety, determining exactly

how many is an area of active research.

Gröbner basis

Let the set T of products of the variables be defined as follows

Tn =
{

xβ1

1 · · ·xβn

n | βi ∈ N, i = 1, . . . n
}

Sometimes we will denote xβ1

1 · · ·xβn
n by xβ, where β = (β1, . . . , βn) ∈ Nn. A term order

is a total order on the set Tn that is a well ordering. A simple example is the lexicographical

ordering. Fix some term order, on K[x1, . . . , xn]. Then for all f ∈ K[x1, . . . xn], with f 6= 0,

we may write it as f = a1x
α1 + a2x

α2 + · · · + arx
αr , where for all i, ai’s are non-zero and

xαi > xαi+1 . Now lp(f) = xαi .

Definition B.6 (Gröbner basis). The Gröbner basis of an ideal I is the set of polynomials G =

{g1, . . . , gk} contained in I such that for all f ∈ I such that f 6= 0, there exists i ∈ {1, . . . , t}
for which the leading power term (w.r.t. the chosen term order) of gi divides that of f ; or

equivalently, Lt(I) = Lt(G). In addition, if for all i no non-zero term in gi is divisible by any

lp(gj) for i 6= j, then we say that the basis is a reduced Gröbner basis.

Gröbner basis need not be unique. Moreover, it also depends on the choice of the term

order. Buchberger [Buc83] proved that for fixed a term order, every non-zero ideal has

a unique reduced Gröbner basis with respect to this term order. He also suggested an

algorithm to compute the reduced Gröbner basis.

Transversality and Tangent Spaces

A (topological) manifold is an abstract mathematical space in which every point has a

neighborhood which resembles Euclidean space, Rn. Formally, it is a topological space

locally homeomorphic to a Euclidean space. This means that every point has a neigh-

bourhood for which there exists a homeomorphism (a bijective continuous function whose

inverse is also continuous) mapping that neighbourhood to an open subset of Rn.

In a one-dimensional manifold (or one-manifold), every point has a neighborhood that

looks like a segment of a line. Examples of one-manifolds are a line, a circle, two separate

circles etc. In a two-manifold, every point has a neighborhood that looks like a disk.

135

Examples include a plane, the surface of a sphere, and the surface of a torus etc. Algebraic

geometers view an affine variety as a topological object, and study topological notion of

tangent spaces.

Now, intuitively, a subspace is a tangent to a curve at a point if it is closest approxima-

tion to the neighbourhood at that point. We can make this a little more formal.

Let p ∈ V ⊂ An be a point on an affine variety defined by f1 = f2 = . . . fℓ = 0. The

tangent space at p = (p1, . . . pn), denoted by TpV , is the subspace of the vector space with

origin a cut out by the set of ℓ linear equations given by: 1 ≤ j ≤ ℓ,

n
∑

i=1

∂fj

∂xi

(p)(xi − pi) = 0

Thus, dimTpV = n− rank(J), where J is the Jacobian matrix defined by,









∂f1

∂x1
. . . ∂fℓ

∂x1
... . . .

...
∂f1

∂xn
. . . ∂fℓ

∂xn









Points on the variety where dimTpV = dimV are called non-singular or smooth points.

Points where dimTpV 6= dimV are called singular points. If V us reducible a point p is

non-singular if dimTpV is equal to the maximum dimension of an irreducible component

passing through p. In this case it turns out that the singular points are exactly those points

which either (1) lie in more than one component (2) is a singular point of the unique

irreducible variety in which it lies.

Two subvarieties of a given variety are said to intersect transversally if at every point

of intersection, their separate tangent spaces at that point together generate the tangent

space of the variety at that point.

For sets A,B,C ⊆ Ak. If we have an additive map A × B onto C as a well defined

affine map φ : Ak × Ak → Ak; to prove that dimC = dimA + dimB, it is sufficient to

find a smooth point of A × B for which the map φ acts injectively on the corresponding

tangent spaces. If we verify that the two tangent spaces intersect transversally, it proves

that dimension of the set C is at least the sum of that of A and B. This abstract idea is

used in proof of Theorem 7.8.

136

Appendix C

Algebraic Number Theory Preliminaries

Although the following can be stated in general for any field, the fields that we consider

will be Q and extensions of Q since we require only that in the proof of Theorem 7.10. We

refer the reader to [AW04] for a more general treatment.

Suppose K/Q is a field extension (which means K is a field and Q is a subfield of K).

We call K is finite extension of Q, if K is a finite dimensional vector space over Q. The

dimension of this vector space is the degree of the extension. For our case all extensions

will be finite. Finite extensions of Q are called algebraic number fields.

For α1, . . . , αn ∈ K we can think of the smallest subfield of K containing Q and these

elements, denoted by Q(α1. . . . , αn). When there exists αs such that L = Q(α1. . . . , αn), the

the extension is finitely generated.

An element α ∈ K is algebraic over Q if there is a non-zero polynomial with coefficients

in Q which it satisfies. If an element α is algebraic, the non-zero monic polynomial of

least degree (which by definition is irreducible), pα, which it satisfies, is called the minimal

polynomial of α over Q. The extension is algebraic if every element of L is algebraic over

Q.

Now we talk about algebraic extensions. The extension is normal if and only if for every

α ∈ L, all the roots of pα are in L. In other words, L contains the splitting field of every

α ∈ L. If an extension is finite and normal, then it is simple. That is, there exists a single

element α ∈ L such that K = Q(α)

The extension is separable if for every α ∈ L, all the roots of pα are distinct. An extension

is Galois if it is normal and separable. An element α ∈ K is an algebraic integer if its

minimal polynomial pα is monic with integral coefficients. The set of algebraic integers

form a ring, called ring of integers.

137

Having defined algebraic numbers it is a natural question to ask if the unique factori-

sation property enjoyed by the integers also holds in the ring of integers in an algebraic

number field. In 1844, E. Kummer showed that this does not hold, in general. About three

years later, he showed that the unique factorisation in such rings is possible if numbers

are replaced by the notion of ideal numbers. In effect, Dedekind showed that the ring of

integers of an algebraic number field has the following property: every nonzero ideal in this

ring factors uniquely as a product of prime ideals.

Now in the ring of integers of a number field, a prime p ∈ Z may not remain a prime.

For instance, in Q(
√
−1), 2 and 5 are no longer prime numbers but 3 is. This can be

seen as But the ideal generated by p, can be uniquely factored into prime ideals. Roughly

speaking, the phenomenon of a prime splitting into several primes in an extension, is

known as ramification. A prime number p ∈ Z (also called the rational prime) is said to

be totally ramified in an algebraic number field of degree n, if the ideal generated by p,

denoted by 〈p〉 is the power of some prime ideal in the ring of integers OK. The prime

is said to be unramified if in the prime decomposition of the corresponding ideal, every

prime ideal occurs at most once.

Now, by choice of ζα = e2πi/pα, we know that pα totally ramifies in Q(ζα). It is also true

that it is unramified in Q(ζ1, . . . , ζα−1, ζα+1, . . . , ζn2). Thus the intersection of these two

extensions cannot contain anything more than the base field Q. Thus,

Q(ζα) ∩ Q(ζ1, . . . , ζα−1, ζα+1, . . . , ζn2) = Q.

138

Bibliography

[AAB+99] E. Allender, A. Ambainis, D. A. Mix Barrington, S. Datta, and H. LeThanh.

Bounded-depth Arithmetic Circuits: Counting and Closure. In Proceedings

of 26th International Colloquium on Automata, Languages and Programming

(ICALP), volume 1644 of Lecture Notes in Computer Science, pages 149–158.

Springer-Verlag, 1999.

[AAM03] E. Allender, V. Arvind, and M. Mahajan. Arithmetic Complexity, Kleene Clo-

sure, and Formal Power Series. Theory of Computing Systems, 36(4):303–328,

2003.

[ABC+06] E. Allender, D. A. Mix Barrington, T. Chakraborty, S. Datta, and S. Roy. Grid

Graph Reachability Problems. In Proceedings of 21st IEEE conference on com-

putational complexity (CCC 2006), pages 299–313, 2006.

[ABO96] Eric Allender, Robert Beals, and Mitsunori Ogihara. The Complexity of Matrix

Rank and Feasible Systems of Linear Equations. In Proc. 28th ACM Symposium

on Theory of Computing (STOC 96), pages 161–167, 1996. Journal version :

Computational Complexity 8(2), 99–126, 1999.

[ABSS93] Sanjeev Arora, L Babai, Jacques Stern, and Z. Sweedyk. The Hardness of

Approximate Optimia in Lattices, Codes, and Systems of Linear Equations. In

IEEE Symposium on Foundations of Computer Science, pages 724–733, 1993.

[ADR05a] E. Allender, S. Datta, and S. Roy. The Directed Planar Reachability Problem. In

Proceedings of 25th International Conference Foundations of Software Technol-

ogy and Theoretical Computer Science(FSTTCS), volume 3821 of Lecture Notes

in Computer Science, pages 238–249, 2005.

139

[ADR05b] Eric Allender, Samir Datta, and Sambuddha Roy. Topology inside NC1. In Pro-

ceedings of IEEE Conference on Computational Complexity (CCC 2005), 2005.

Electronic Colloquium on Computational Complexity (ECCC), TR04-108.

[AG00] C Àlvarez and R Greenlaw. A compendium of problems complete for symmet-

ric logarithmic space. Computational Complexity, 9:73–95, 2000.

[All04] E. Allender. Arithmetic Circuits and Counting Complexity Classes. In Jan Kra-

jicek, editor, Complexity of Computations and Proofs, Quaderni di Matematica

Vol. 13, pages 33–72. Seconda Universita di Napoli, 2004. An earlier version

appeared in the Complexity Theory Column, SIGACT News 28, 4 (Dec. 1997)

pp. 2-15.

[Alo94] N. Alon. On the Rigidity of a Hadamard matrix. Manuscript, 1994.

[AM04] E. Allender and M. Mahajan. The Complexity of Planarity Testing. Information

and Computation, 189(1):117–134, 2004.

[AO96] E. Allender and M. Ogihara. Relationships among PL, #L, and the Determi-

nant. RAIRO Theoretical Information and Applications, 30:1–21, 1996. Con-

ference version in Proc. 9th IEEE Structure in Complexity Theory Conference

(1994), 267–278.

[AW04] Saban Alaca and Kenneth S. Williams. Introductory Algebraic Number Theory.

Cambridge University Press., 2004.

[AW08] Scott Aaronson and Avi Wigderson. Algebrization: A New Barrier in Complex-

ity Theory. In Proceedings of the 40th Annual ACM Symposium on Theory of

Computing (STOC), 2008.

[Bar75] Stephen Barnett. Introduction to Mathematical Control Theory. Oxford Applied

Mathematics and Computing Science. Oxford University Press, 1975.

[Bar89] David A. Mix Barrington. Bounded-width Polynomial-size Branching Programs

Recognize Exactly Those Languages in NC1. Journal of the Computer and Sys-

tem Sciences, 38:150–164, 1989. Preliminary version appeared in Proceedings

of the 18th Annual ACM Symposium on Theory of Computing (1986).

140

[BBF+74] J.R. Barclay, J.D. Bransford, J.J. Franks, N.S. MacCarell, and K. Nitsch. Com-

prehension and Semantic Flexibility. Journal of Verbal Learning and Verbal

Behaviour, 13:471–481, 1974.

[BBF03] C. Bachmaier, F.-J. Brandenburg, and M. Forster. Radial Level Planarity Testing

and Embedding in Linear Time. In Proceedings of 11th International Sympo-

sium on Graph Drawing (GD 03), Perugia, Italy, volume 2912 of Lecture Notes

in Computer Science, pages 393–405, 2003.

[BBMT98] P. Bertolazzi, G. Di Battista, C. Manning, and R. Tamassia. Optimal Upward

Planarity Testing of Single-source Digraphs. SIAM Journal on Computing,

27:132–169, 1998.

[BCS97] Peter Bürgisser, Michael Clausen, and Mohammad A. Shokrollahi. Alge-

braic Complexity Theory, volume 315 of Grundlehren der mathematischen Wis-

senschaften. Springer Verlag, 1997.

[BDHM92] G. Buntrock, C. Damm, U. Hertrampf, and C. Meinel. Structure and Impor-

tance of Logspace MOD-classes. Math. Systems Theory, 25:223–237, 1992.

[BDO95] M. Berry, S. Dumais, and G. O’Berie. Using Linear Algebra for Intelligent

Information Retrieval. SIAM Review, 37:573–595, 1995.

[BFS86] László Babai, Peter Frankl, and Janos Simon. Complexity Classes in Com-

munication Complexity Theory (preliminary version). In Proceedings of 27th

Annual Symposium on Foundations of Computer Science, 27-29 October 1986,

Toronto, Ontario, Canada, pages 337–347. IEEE, 1986.

[BFS97] Jonathan F. Buss, Gudmund Skovbjerg Frandsen, and Jeffrey Shallit. The

Computational Complexity of Some Problems of Linear Algebra (Extended

Abstract). In Proceedings of 16th Annual Symposium on Theoretical Aspects of

Computer Science(STACS), volume 1200 of Lecture Notes in Computer Science,

pages 451–462, 1997. JCSS 1999, 58 pp 572-596.

[BGS75] Theodore P. Baker, John Gill, and Robert Solovay. Relativizatons of the P vs.

NP Question. SIAM Journal of Computing, 4(4):431–442, 1975.

141

[BI97] David Mix Barrington and Neil Immerman. Time, Hardware, and Uniformity.

In Complexity theory retrospective II, chapter 1, pages 1–22. Springer-Verlag

New York, Inc., 1997.

[Bie90] Daniel Bienstock. Some provably hard crossing number problems. In SCG ’90:

Proceedings of the sixth annual symposium on Computational geometry, pages

253–260, 1990.

[BK79] F. Bernhart and P. C. Kainen. The Book Thickness of a Graph. Journal of

Combinatorial Theory, Ser. B, 27(3):320–331, 1979.

[BKR07] Mark Braverman, Raghav Kulkarni, and Sambuddha Roy. Parity Problems in

Planar Graphs. In IEEE Conference on Computational Complexity, pages 222–

235, 2007.

[BLMS97] David A. Mix Barrington, Chi-Jen Lu, Peter Bro Miltersen, and Sven Skyum.

Searching Constant Width Mazes Captures the AC 0 Hierarchy. In Proceedings

of Symposium on Theoretical Aspects of Computer Science (STACS), pages 73–

83, 1997. ECCC Technical report TR97-044.

[BLMS99] David A. Mix Barrington, Chi-Jen Lu, Peter Bro Miltersen, and Sven Skyum.

On Monotone Planar Circuits. In Proceedings of the 14th Annual IEEE Confer-

ence on Computational Complexity (CCC), pages 24–31, 1999.

[BMMR02] Anna Bernasconi, Earnst W. Mayr, Michal Mnuk, and Martin Raab. Com-

puting the Dimension of a Polynomial Ideal. http://www14.informatik.tu-

muenchen.de/personen/raab/, 2002.

[Bol70] V.G. Boltyanskii. Mathematical Methods of Optimal Control. Holt, Rinehard

and Wineston Inc., 1970. Tranlated from Russian by K.N. Tririgoff.

[Bol84] B. Bollobas. Modern Graph Theory, volume 184 of Graduate texts in mathe-

matics. Springer, 1984.

[Bro87] W. D. Brownawell. Bounds on the degrees of Nullstellensatz. Annals of Math-

ematics, 126:577–592, 1987.

[BT88] G. Di Battista and R. Tamassia. Algorithms for plane representations of acyclic

digraphs. Theoretical Computer Science, 61:175–198, 1988.

142

[BT00] Vincent D. Blondel and John N. Tsitsiklis. A Survey of Computational Com-

plexity Results in Systems and Control. Automatica, 36(9):1249–1274, 2000.

[Buc83] B. Buchberger. A Note on the Complexity of Constructing Grobner Bases. In

EUROCAL ’83, European Computer Algebra Conference, pages 137–145, 1983.

[Bus87] S. Buss. The Boolean Formula Value Problem Is in ALOGTIME. In Proceedings

of the 19th Annual ACM Symposium on Theory of Computing, pages 123–131,

1987.

[BV80] Winfried Bruns and Udo Vetter. Determinantal Rings, volume 1327 of Lecture

Notes in Mathematics. Springer-Verlag, 1980.

[CD06] Tanmoy Chakraborty and Samir Datta. One-input-face MPCVP is hard for L,

but in LogDCFL. In S. Arun Kumar and Naveen Garg, editors, Proc. of 26th

Conference on Foundations of Software Technology and Theoretical Computer

Science (FSTTCS 06), volume 4337 of Lecture Notes in Computer Science, pages

57–68, 2006.

[Che05] Mahdi Cheraghchi. On Matrix Rigidity and the Complexity of Linear Forms.

Electronic Colloquium on Computational Complexity (ECCC), (070), 2005.

[Chi85] Alexander L. Chistov. Fast Parallel Computation of the Rank of Matrices over

a Field of Arbitrary Characteristic. In Proceedings of 10th International Sympo-

sium on Fundamentals of Computation Theory (FCT’95), volume 199 of Lecture

Notes in Computer Science, pages 63–69, 1985.

[CLO07] D. Cox, J. Little, and D. O’Shea. Ideals, Varieties,and Algorithms (An Introduc-

tion to Computational Algebraic Geometry and Commutative Algebra). Under

Graduate Textbooks in Mathematics. 3rd edition, 2007.

[CM87] Stephen Cook and Pierre McKenzy. Problems Complete for Deterministic Log-

arithmic Space. Journal of Algorithms, 8:385–394, 1987.

[CMTV98] Herve Caussinus, Pierre McKenzie, Denis Therien, and Heribert Vollmer. Non-

deterministic NC1 Computation. Journal of Computer and System Sciences,

57(2):200–212, 1998.

[Cod00] Bruno Codenotti. Matrix Rigidity. Linear Algebra and its Applications, 304(1–

3):181–192, 2000.

143

[Coo71] S. Cook. Characterizations of pushdown machines in terms of time-bounded

computers. Journal of Association of Computing Machinery, 18:4–18, 1971.

[Coo03] Stephen Cook. The Importance of the P versus NP question. Journal of the

ACM, 50(1):27–29, 2003.

[Csa76] L. Csanky. Fast parallel matrix inversion algorithms. SIAM Journal on Comput-

ing, 5(4):618–623, 1976.

[Dah99] G. Dahl. A note on nonnegative diagonally dominant matrices. Linear Algebra

and Applications, 317:217–224, 1999.

[Dam91] C. Damm. det = l(#l). Technical Report Informatik-Preprint 8, Fachbereich

Informatik der Humboldt–Universität zu Berlin, 1991.

[DC89] P. W. Dymond and S. A. Cook. Complexity Theory of Parallel Time and Hard-

ware. Information and Computation, 80(3):205–226, 1989.

[DEH00] M. B. Dillencourt, D. Eppstein, and D.S. Hirschberg. Geometric thickness of

complete graphs. Journal of Graph Algorithms and Applications, 4(3):5–17,

2000.

[Dem92] James Demmel. The componentwise distance to the nearest singular matrix.

SIAM Journal on Matrix Analysis and Applications, 13(1):10–19, 1992.

[Des07] Amit Deshpande. Sampling-based dimension reduction algorithms. PhD thesis,

MIT, May 2007.

[DK95] A. L. Delcher and S. R. Kosaraju. An NC algorithm for Evaluating Monotone

Planar Circuits. SIAM Journal of Computing, 24(2):369–375, 1995.

[DK00] Ding-Zhu Du and Ker-I Ko. Theory of Computational Complexity. Wiley-

Interscience series in Discrete Mathematics and Optimisation. Wiley Inter-

science Publication, 2000.

[DM01] I. Dhillon and D. Modha. Concept Decompositions for Large Sparse Text Data

Using Clustering. Machine Learning, 42:143–175, 2001.

[DV07] Amit Deshpande and Kasturi R. Varadarajan. Sampling-based dimension re-

duction for subspace approximation. In STOC, pages 641–650, 2007.

144

[Edm65] Jack Edmonds. Paths, trees, and flowers. Canadian Journal of Mathematics,

17:449–467, 1965.

[Epp01] David Eppstein. Separating geometric thickness from book thickness.

arXiv.org:math/0109195, 2001.

[EY36] Carl Eckart and Gale Young. The Approximation of One Matrix by Another of

Lower Rank. Psychometrika, 1(3):211–218, September 1936.

[FH03] Lance Fortnow and Steven Homer. A short history of computational complex-

ity. Bulletin of the EATCS, 80:95–133, 2003.

[Fis74] Michael J. Fischer. The Complexity of Negation-limited Networks (a brief

survey). Lecture Notes in Computer Science, 33:71–82, 1974.

[FKL+01] Jürgen Forster, Matthias Krause, Satyanarayana V. Lokam, Rustam Mubarakz-

janov, Niels Schmitt, and Hans Ulrich Simon. Relations between communi-

cation complexity, linear arrangements, and computational complexity. In Fst

tcs 2001: foundations of software technology and theoretical computer science

(bangalore), volume 2245 of Lecture Notes in Comput. Sci., pages 171–182.

Springer, Berlin, 2001.

[FKV04] Alan M. Frieze, Ravi Kannan, and Santosh Vempala. Fast monte-carlo algo-

rithms for finding low-rank approximations. Journal of ACM, 51(6):1025–

1041, 2004.

[For02] Jürgen Forster. A linear lower bound on the unbounded error probabilistic

communication complexity. J. Comput. System Sci., 65(4):612–625, 2002.

Special issue on complexity, 2001 (Chicago, IL).

[Fri93] J. Friedman. A Note on matrix rigidity. Combinatorica, 13(2):235–239, 1993.

[Gee99] James F. Geelen. Maximum rank matrix completion. Linear Algebra and its

Applications, 288(1–3):211–217, 1999.

[GJ79] M. R. Garey and D. S. Johnson. Computers and Intractability: A Guide to the

Theory of NP-Completeness. W.H.Freeman and Co., 1979.

[GJ92] M.R. Garey and D.S. Johnson. The np-completeness column: An ongoing

guide. Journal of Algorithms, 3:89–99, 1992.

145

[Gol77] L. M. Goldschlager. The monotone and planar circuit value problems are

logspace complete for P. SIGACT News, 9(2):25–29, 1977.

[Gol80] Leslie M. Goldschlager. A Space Efficient Algorithm for the Monotone Planar

Circuit Value Problem. Information Processing Letters, 10(1):25–27, 1980.

[Gri76] Dima Grigoriev. Using the Notions of Seperability and Independence for Prov-

ing the Lower Bounds on the Circuit Complexity (In Russian). Notes of the

Leningrad branch of the Steklov Mathematical Institute, Nauka, 1976. English

translation in Journal of Soviet Math., 14(5), pp. 1450-1456, 1980.

[GT01] A. Garg and R. Tamassia. On the computational complexity of upward and

rectilinear planarity testing. SIAM Journal on Computing, 31(22):601–625,

2001.

[Han04] Kristoffer Arnsfelt Hansen. Constant Width Planar Computation Characterizes

ACC0. In 21st Symposium on Theoretical Aspects of Computer Science (STACS),

volume 2996 of Lecture Notes in Computer Science, pages 44–55, 2004. Journal

Version : Theory of Computing Systems, 39(1), 79-92, 2006.

[Han08] Kristoffer Arnsfelt Hansen. Constant Width Planar Branching Programs Char-

acterize ACC0 in Quasipolynomial Size. In IEEE Conference on Computational

Complexity (CCC 2008), 2008. To appear.

[HE71] M. Hochster and J.A. Eagon. Cohen-Macaulay Rings, Invariant Theory, and

the generic perfection of determinantal loci. American Journal of Mathematics,

93:1020–1058, 1971.

[HMV06] Kristoffer Arnsfelt Hansen, Peter Bro Miltersen, and V Vinay. Circuits on cylin-

ders. Computational Complexity, 15(1):62–81, May 2006.

[Hås86] Johan Håstad. Almost Optimal Lower Bounds for Small Depth Circuits. In

Proceedings of the 18th Annual ACM Symposium on Theory of computing : STOC

’86, pages 6–20, 1986.

[IL89] Neil Immerman and Susan Landau. The complexity of iterated multiplication.

In Structure in Complexity Theory Conference, pages 104–111, 1989.

146

[IMR80] Oscar H. Ibarra, Shlomo Moran, and Louis E. Rosier. A note on the paral-

lel complexity of computing the rank of order n matrices. Inf. Process. Lett.,

11(4/5):162, 1980.

[JLL76] Neil D. Jones, Y.E. Lien, and William T. Laaser. New problems complete for

non-deterministic logspace. Mathematical Systems Theory, 10:1–17, 1976.

[Kai73] P. C. Kainen. Thickness and coarseness of graphs. Abh. Math. Sem. Univ.

Hamburg, 39:88–95, 1973.

[Kel87] D. Kelly. Fundamentals of planar ordered sets. Discrete Mathematics,

63(2,3):197–216, 1987.

[Kol88] Janos Kollar. Sharp Effective Nullstellensatz. Journal of American Mathemati-

cal Society, 1(4):963–975, 1988.

[Kos90] S. Rao Kosaraju. On the Parallel Evaluation of Classes of Circuits. In Proc.

10th FSTTCS Conference, LNCS vol. 472, pages 232–237, 1990.

[KR97] Boris S. Kashin and Alexander A. Razborov. Improved lower bounds on

the rigidity of hadamard matrices (in Russian). Matematicheskie Zametki,

63(4):535–540, 1997. English translation available at authors webpage.

[Kul07] Raghav Kulkarni. Personal communication, January 2007.

[Lan04] Serge Lang. Algebra. Springer-Verlag, revised third edition, 2004.

[Lau01] M. Laurent. Matrix completion problems. In C.A. Floudas and P.M. Pardalos,

editors, The Encyclopedia of Optimization, volume 3, pages 221–229. Kluwer,

2001.

[Lew06] Andrew C. Lewis. Semicontinuity of Rank and Nullity and Some Conse-

quences, January 2006. Manuscript.

[Li92] L. Li. Formal power series: An algebraic approach to the GapP and #P func-

tions. In Proc. 7th Structure in Complexity Theory Conference, pages 144–154,

1992.

[LMN08] Nutan Limaye, Meena Mahajan, and Prajakta Nimbhorkar. Longest Paths

in Planar DAGs in Unambiguous Logspace. http://arxiv.org/abs/0802.1699,

February 2008.

147

[Lok95] Satyanarayana V. Lokam. Spectral methods for matrix rigidity with applica-

tions to size-depth tradeoffs and communication complexity. In Proc. 36th

Annual IEEE Symposium on Foundations of Computer Science (FOCS), pages 6

– 15, 1995. Journal of Computer and System Sciences, 63(3):449-473, 2001.

[Lok00] Satyanarayana V. Lokam. On the Rigidity of Vandermonde matrices. Theoret.

Comput. Sci., 237(1-2):477–483, 2000. Presented at the DIMACS-DIMATIA

workshop on Arithmetic Circuits and Algebraic Methods, June , 1999.

[Lok06] Satyanarayana V. Lokam. Quadratic Lowerbounds on Matrix Rigidity. In Pro-

ceedings of International Conference on Theory and Applications of Models of

Computation (TAMC 2006), volume 3959 of Lecture Notes in Computer Sci-

ence, 2006.

[Lov75] Lászlo Lovász. On the ratio of optimal integral and fractional covers. Discrete

Mathematics, 13(4):383–390, 1975.

[LS06] Nathan Linial and Adi Shreibman. Learning Complexity vs. Communication

Complexity. Weblink : http://www.cs.huji.ac.il/ nati/PAPERS/lcc.pdf, 2006.

[LTV03] J. M. Landsberg, J. Taylor, and Nisheeth K. Vishnoi. The Geometry of Ma-

trix Rigidity. Technical Report GIT-CC-03-54, Georgia Institute of Technology,

http://smartech.gatech.edu/handle/1853/6514, 2003.

[Lyp58] O.B. Lypanov. On the Synthesis of Contact Networks. Dokl. Akad. Nauk. SSSR,

119:23–26, 1958.

[Mar58] A. A. Markov. On the Inversion Complexity of a System of Functions. The Jour-

nal of the Association of Computing Machinery (JACM), 5(4):331–334, 1958.

[MM64] Marvin Marcus and Henryk Minc. A Survey of Matrix Theorey and Matrix in-

equalities, volume 14 of The Prindle, Weber and Schmidt Complementary Series

in Mathematics. Allyn and Bacon, Boston, 1964.

[MOS98] P. Mutzel, T. Odenthal, and M. Scharbrodt. The thickness of graphs: a survey.

Graphs Combinatorics, 14(1):59–73, 1998.

[MRK88] G.L. Miller, V. Ramachandran, and E. Kaltofen. Efficient parallel evaluation of

straight-line code and arithmetic circuits. SIAM Journal of Computing, 17:687–

695, 1988.

148

[MRV99] P. McKenzie, K. Reinhardt, and V. Vinay. Circuits and context-free languages.

In Proceedings of 5th Annual International Computing and Combinatorics Con-

ference (COCOON), 1999.

[MS07] Ketan D. Mulmuley and Milind Sohoni. Geometric Complexity Theory : An

Introduction. Technical Report TR-2007-16, Computer Science Department,

University of Chicago, 16 October 2007.

[MT01] B. Mohar and C. Thomassen. Graphs on Surfaces. John Hopkins University

Press, Maryland, 2001.

[Mul87] Ketan Mulmuley. A Fast Parallel Algorithm to Compute the Rank of a Matrix

over an Arbitrary Field. Combinatorica, 7:101–104, 1987.

[Mur93] K. Murota. Mixed matrices - Irreducibility and decomposition. In R. A. Brualdi,

S. Friedland, and V. Klee, editors, Combinatorial and Graph-Theoretic Problems

in Linear Algebra, volume 50 of The IMA Volumes in Mathematics and Its Appli-

cations, pages 39 – 71. Springer, 1993.

[MV97] M. Mahajan and V Vinay. Determinant: combinatorics, algorithms, complexity.

Chicago Journal of Theoretical Computer Science, 1997:5, dec 1997.

[Nar04] Wladyslow Narkiewicz. Elementary and Analytic Theory of Algebraic Numbers,

volume XI of Springer Monographs in Mathematics. Springer, 2004.

[NTS95] N. Nisan and A. Ta-Shma. Symmetric Logspace is closed under complement.

Chicago Journal of Theoretical Computer Science, 1995.

[Pip79] Nicholas Pippenger. On Simultaneous Resource Bounds. In 20th IEEE Founda-

tions of Computer Science (FOCS 1979), pages 307–311, 1979.

[PP04] Ramamohan Paturi and Pavel Pudlák. Circuit Lower Bounds and Linear Codes.

In E. A. Hirsch, editor, Notes of Mathematical Seminars of St.Petersburg De-

partment of Steklov Institute of Mathematics, volume 316 of Teoria slozhnosti

vychislenij IX, pages 188–204, 2004. Technical Report appeared in ECCC :

TR04-04.

[PR93] S. Poljak and J. Rohn. Checking robust nonsingularity is NP-hard. Math.

Control Signals Systems, 6:1–9, 1993.

149

[Pud94] Pavel Pudlak. Communication in bounded depth circuits. Combinatorica,

14(2):203–216, 1994.

[PV91] P. Pudlak and Z. Vavrin. Computation of rigidity of order n2/r for one simple

matrix. Comment. Nath. Univ. Carolinae., 32(2):213–218, 1991.

[Raz87] Alexander A. Razborov. Lower bounds on the size of Bounded Depth Net-

works over a Complete Basis with Logical Addition. Mathematicheskie Zamet-

ski, 41(4):598–607, 1987. English Translation in Mathematical Notes of the

Academy of Sciences in USSR 41(4), 333-338.

[Raz88] Alexander A. Razborov. Bounded-depth formulae over the basis {AND, XOR}

and some combinatorial problems (Russian). In Problems of Cybernetics. Com-

plexity Theory and Applied Mathematical Logic, pages 149–166. 1988.

[Raz89] Alexander A. Razborov. On rigid matrices. manuscript in russian, 1989.

[Rei05] O. Reingold. Undirected st-conenctivity in logspace. In Proc. 37th Annual ACM

Symposium on Theory of Computing STOC, pages 376–385, 2005.

[Roh89] Jiri Rohn. Systems of Linear Interval Equations. Linear Algebra and Its Appli-

cations, 126:39–78, 1989.

[Roh94] J. Rohn. Checking positive definiteness or stability of symmetric interval

matrices is NP-hard. Commentationes Mathematicae Universitatis Carolinae,

35:795–797, 1994.

[Roh96] Jiri Rohn. Checking Properties of Interval Matrices. Kluwer, 1996. 36 p.

[Roy06] Sambuddha Roy. Complexity Theoretic Aspects of Planar Restrictions and Obliv-

iousness. PhD thesis, Department of Computer Science, Rutgers University,

2006.

[RR94] Alexander A. Razborov and Steven Rudich. Natural proofs. In ACM Symposium

on Theory of Computing (STOC), pages 204–213, 1994. Full version appears

in Journal of Computer and System Sciences (JCSS) 55(1): 24-35 (1997).

[RR97] Alexander A. Razborov and Steven Rudich. Natural proofs. Journal of the

Computer and System Sciences, 55(1):24–35, 1997.

150

[Rum03a] Siegfried M. Rump. Structured Perturbations Part I: Normwise Distances.

SIAM Journal of Matrix Analysis and Applications, 25(1):1–30, 2003.

[Rum03b] Siegfried M. Rump. Structured Perturbations Part II: Componentwise Dis-

tances. SIAM Journal of Matrix Analysis and Applications, 25(1):31–56, 2003.

[Ruz80] W.L. Ruzzo. Tree-size bounded alternation. Journal of Computer and System

Sciences, 21:218–235, 1980.

[RW91] P. Radge and A. Wigderson. Linear-size constant-depth polylog-threshold cir-

cuits. Information Processing Letters, 39:143–146, 3 1991.

[San07] Rahul Santhanam. Circuit lower bounds for merlin-arthur classes. In Pro-

ceedings of the 39th Annual ACM Symposium on Theory of Computing (STOC),

pages 275–283, 2007.

[Sha49] Claude E. Shannon. The Synthesis of Two-terminal Switching Circuits. Bell

Systems Technical Journal, (28):59–98, 1949.

[Sha94a] Igor R. Shafarevich. Schemes and Complex Manifolds, volume 2 of Basic Alge-

braic Geometry. Springer-Verlag New York, Inc., second edition, 1994.

[Sha94b] Igor R. Shafarevich. Varieities in Projective Space, volume 1 of Basic Algebraic

Geometry. Springer Verlag, second edition, 1994.

[SJ03] N. Srebro and T. Jakkola. Weighted Low Rank Approximations. In Proceedings

of International Conference on Machine Learning (ICML), pages 720–727, 2003.

[SK92] Amber Settle and Peter Kimmel. Reducing the Rank of Lower Triangular All-

Ones Matrices. Technical Report TR-92-21, Department of Computer Science,

University of Chicago, 6 November 1992.

[Smo87] Roman Smolensky. Algebraic Methods in the Theory of Lower Bounds for

Boolean Circuit Complexity. In Proceedings of the 19th Annual ACM conference

on Theory of Computing (STOC), pages 77–82, 1987.

[SS91] Victor Shoup and Roman Smolensky. Lower bounds for polynomial evaluation

and interpolation problems. In IEEE Symposium on Foundations of Computer

Science, pages 378–383, 1991.

151

[SSS97] D. A. Spielman, M. A. Shokrollahi, and V. Stemann. A remark on Matrix

Rigidity. Information Processing Letters, 64(6):283–285, 1997.

[Sud78] I. Sudborough. On the tape complexity of deterministic context-free language.

Journal of Association of Computing Machinery, 25(3):405–414, 1978.

[SW91] Miklos Santha and Christopher Wilson. Polynomial Size Constant Depth Cir-

cuits with a Limited Number of Negations. In Proceedings of the 8th annual

symposium on theoretical aspects of computer science (STACS 91), volume 480

of Lecture Notes in Computer Science, pages 228–237, 1991.

[Tod91] Seinosuke Toda. Counting problems computationally equivalent to the de-

terminant. Technical Report CSIM 91-07, Dept of Comp Sc & Information

Mathematics, Univ of Electro-Communications, Chofu-shi, Tokyo, 1991.

[TT86] R. Tamassia and I. G. Tollis. A unified approach to visibility representations of

planar graphs. Discrete and Computational Geometry, 1(1):312–341, 1986.

[TT89] R. Tamassia and I. G. Tollis. Tessellation representations of planar graphs. In

Proc. 27th Annual Allerton Conference on Communications, Control and Com-

puting, UIUC, pages 48–57, 1989.

[Val77] Leslie G. Valiant. Graph Theoretic Arguments in Low-level Complexity. In Pro-

ceedings of 6th International Symposium on Mathematical Foundations of Com-

puter Science (MFCS), volume 53 of LNCS, pages 162–176. Springer, Berlin,

1977.

[Val92] Leslie G. Valiant. Why is Boolean Complexity Theory Difficult? In Proceedings

of the London Mathematical Society symposium on Boolean function complexity,

pages 84–94, New York, NY, USA, 1992. Cambridge University Press.

[Ven91] H. Venkateswaran. Properties that characterize LogCFL. Journal of Computer

and System Sciences, 42:380–404, 1991.

[Vin91] V. Vinay. Counting Auxiliary Pushdown Automata and Semi-Unbounded Arith-

metic Circuits. In Proc. 6th Structure in Complexity Theory Conference, vol-

ume 223 of Lecture Notes in Computer Science, pages 270–284, Berlin, 1991.

Springer.

152

[Vin05] N. V. Vinodchandran. A note on the circuit complexity of pp. Theoretical

Computer Science, 347(1-2):415–418, 2005.

[Vol99] H. Vollmer. Introduction to Circuit Complexity: A Uniform Approach. Springer

New York Inc., 1999.

[Whi73] A. T. White. Graphs, Groups and Surfaces. North-Holland, Amsterdam, 1973.

[Woo01] D. R. Wood. Geometric thickness in a grid of linear area. In Proceedings

of European Conference Combinatorics, Graph Theory and Applications, pages

310–315, 2001.

[Yan91] H. Yang. An NC Algorithm for the General Planar Monotone Circuit Value

Problem. In Proc. 3rd IEEE Symp. on Parallel and Distributed Processing, pages

196–203, 1991.

[Yao79] Andrew C. Yao. Some complexity questions related to distributive comput-

ing(preliminary report). In Proceedings of the eleventh annual ACM symposium

on Theory of computing (STOC), pages 209–213, New York, NY, USA, 1979.

ACM Press.

153

