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Abstract

Recent experimental results for the B → Kπ modes, show deviations
from Standard Model (SM) expectations based on estimates of hadronic
parameters; the discrepancies are commonly referred to as the “B → Kπ
puzzle.” The discrepancies are now reduced, nevertheless it is important
to understand the implication of NP on these modes. The B → Kπ modes
have certain inherent limitations. These discrepancies may lead to a signal of
New Physics (NP), physics beyond the SM. We show that NP which affects
B decays with any topological amplitude can be absorbed by redefinitions of
the SM amplitudes. Hence, there are no clean signals of NP in such decays
unless there is an accurate theoretical estimate of parameters or a justifiable
approximation can be made.

The four B → Kπ decay modes can be expressed in terms of 6 topolog-
ical parameters; T , C, P , PEW , PC

EW , Puc and γ. Experiment can yield at
most 9 observables: four each of the branching ratios and direct CP asymme-
tries and one time-dependent CP asymmetry. Clearly, the 9 observables are
insufficient to determine all the 12 theoretical parameters needed to describe
these decay modes model independently.

We study B → K∗ρ modes that are analogues of the much studied B →
Kπ modes with B decaying to two vector mesons instead of pseudoscalar
mesons, using topological amplitudes in the quark diagram approach. We
show how B → K∗ρ modes can be used to obtain many more observables
than those for B → Kπ modes, even though the quark level subprocesses of
both modes are exactly the same since there are three helicities for each of
the modes of the amplitudes for B → K∗ρ. Hence, the number of amplitudes
for the B → K∗ρ modes is three times that for the B → Kπ modes, i.e.
there are 36 theoretical parameters. The four B → K∗ρ decay modes can
experimentally yield at most 35 observables. Therefore, all the theoretical
parameters can be determined in terms of the observables and γ without any
model-dependent assumption. If we measure γ from somewhere else, then we
have full information about topological amplitudes in terms of experimental
observables. Hence we can test the SM and probe NP effects as well.

We demonstrate how B → K∗ρ can also be used to verify if there exist
any relations between theoretical parameters, such as the hierarchy relations
between the topological amplitudes and possible relations between the strong
phases. Conversely, if there exist reliable theoretical estimates of amplitudes
and strong phases, the presence of New physics could be probed. We show
that if the tree and color-suppressed tree are related to the electroweak
penguins and color-suppressed electroweak penguins, it is not only possible



to verify the validity of such relations but also to have a clean measurement
of New Physics parameters.

In conclusion, a few aspects of B physics were studied and we emphasize
on two main points:“B → Kπ puzzle” and “the signal of new physics”.
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Chapter 1

Introduction to B Physics

and CP Violation

1.1 Introduction

One of the most difficult problems in physics is to explain why the universe
is made up mostly of matter, rather than consisting of equal parts of matter
and antimatter. According to the most successful theory of the origin and
evolution of the cosmos (the Big Bang), matter and anti-matter should have
produced in equal amounts. It was demonstrated by Sakharov that to cre-
ate an imbalance between matter and antimatter from an initial condition of
balance, certain conditions must be satisfied - there must exist baryon num-
ber violation, an asymmetry of physical laws under charge conjugation and
also an asymmetry of physical laws under the product of charge conjugation
and parity. Further there must exist thermal non-equilibrium.

The aim of the study of elementary particle physics is to understand
the nature of fundamental particles and their interactions, and to get the
answers to some of the most fundamental questions about Nature, especially
what it is made up of and what holds it together. Our current knowledge
on elementary particle physics is gathered in the Standard Model (SM) [1],
a result of mammoth experimental and theoretical effort spanning more
than fifty years. It is extremely successful in explaining almost all gathered
experimental data, yet there are strong indications that it is not the final
answer to all the questions on the nature of elementary particles and their
interactions. The SM is regarded as theoretically incomplete in part due to
the gauge hierarchy or naturalness problem and the origin of CP violation.
The quest of theoretical and experimental activity is to probe for physics
beyond the SM.

1



It was assumed until mid fifties that parity is a good symmetry. However,
violation of the parity symmetry predicted by Lee and Yang was observed
soon in the weak decays of Cobalt-60 by Wu et al. [4]. Most physicists still
assumed that the combined charge-parity (CP) symmetry was not violated.
However, Cronin and Fitch found the evidence for CP violation in the decay
process of neutral kaons.

In 1977, a team of physicists, led by Leon M. Lederman, working on the
historic experiment E288 (p+p→ X(X → µ+µ−)+ anything) in the proton
beam line of the Fermilab fixed target areas discovered a new particle [2].
This is acknowledged to be the best way to detect any new particle decaying
into µ+µ−. The new particle “Upsilon” – the bound state of a b quark and
a b antiquark has a mass of about 9.5 GeV. The glorious era of B meson
physics started with this famous experiment.

Charged and neutral B mesons are composed of a quark-antiquark pair;
one quark is always a ”bottom” quark and the another partner is a light
quark, either of “up”, “down”, or “strange” type. The heavy b quark decays
weakly and the B meson thus has a long life time of 1.5 ps. This makes it
feasible to study CP violation in B decays. It was realised that interesting
signals of CP violation can occur in B meson decays [5]. It was also shown
that CP violating phases can be measured with hadronic uncertainty (to a
very good approximation) using B meson decays

In SM, the masses and mixing of quarks have a common origin. They
arise from the Yukawa interactions with the Higgs doublets. The Yukawa
coupling matrices (not Hermitian) are diagonalised by bi-unitary transfor-
mation consisting of two different unitary matrices. The combination of
these two different unitary matrices is known as Cabibo-Kobayashi-Maskawa
(CKM) matrix. There are 1

2(n− 1)(n− 2) independent complex phases for
any n x n unitary matrix. Thus in the three-generation SM, there is only
one single complex phase, which is responsible for CP violation. This in
essence is the Kobayashi Maskawa [6] hypothesis for introducing CP viola-
tion in the SM. Like the neutral K meson, where CP violation is observed,
the neutral B0 meson also oscillates to its antiparticle the B0 meson. Hence,
experiments with B meson were planed to learn more about CP violation.
The main goal of these experiments is to measure CP violating phases and
test the consistency of the CKM hypothesis in the SM. In 2001, the BaBar
Experiment at SLAC [7] and the Belle Experiment at the KEK [8] in Japan,
observed CP violation in decays of the B mesons. Although the degree of
CP violation currently observed in experiment is consistent with the SM, it
is not enough to account for the baryon-antibaryon asymmetry determined
from astronomical observations. Thus, it is expected that mechanisms other



than the SM CP violation must be responsible for the dominance of matter
over antimatter in today’s universe. The Kobayashi-Maskawa hypothesis
has been verified to be the dominant mechanism of CP violation, However,
CP violation beyond the SM may still exist and show signals in B decays.
Such signals of New Physics (NP), physics beyond the SM, have attracted
both theoretical and experimental attraction.

A promising class of NP signals are Flavour Changing Neutral Current
(FCNC) processes, which are mediated by amplitudes involving virtual loops
that might include contributions from unobserved particles and interactions.
These processes include b→ s penguin amplitudes, occurring in decays such
as B → Kπ etc, which have been observed and studied for signatures of
CP violation. Although several hints of deviations from SM predictions
have been seen in these rare modes, no definitive inconsistencies have been
established. The data on the charged and neutral B → Kπ decays which
are sizeably affected by electroweak penguin contributions, have moved close
towards the SM predictions, which are almost unchanged, thereby reducing
the “B → Kπ puzzle.”

Unfortunately, we still cannot draw definite conclusions about the pres-
ence of NP in the B → Kπ system (and other b→ s penguin decays, such as
B0 → φKS). The main motivation of this thesis is to resolve the “B → Kπ
puzzle.” We investigate when NP signals can be distinguished from hadronic
uncertainties, if at all possible.

1.2 Discrete Symmetry

A discrete symmetry is a symmetry that describes non-continuous changes in
a system, e.g. an equilateral triangle possesses discrete rotational symmetry,
as only rotations by multiples of 60o will preserve the triangle’s original ap-
pearance. We will mainly discuss three types of discrete symmetry, namely:
Parity, Charge Conjugation and Time Reversal.

1.2.1 Parity

To distinguish between left and right, we use the concept of parity. The
law of conservation of parity means complete symmetry between the left
and right hands. Parity symmetry (P ), consists in the invariance of physics
under a discrete transformation that changes the sign of the space coordi-
nates x, y, z, i.e. P (x, y, z) = (−x,−y,−z) or in other words P~r = −~r.
This corresponds to the inversion of the three coordinate axes through
the origin, a transformation that changes the handedness of the system



of axes. A right-handed system becomes left-handed under a parity trans-
formation. So the only relevant point as far as parity transformation is
concerned is whether the process is invariant under mirror reflection. If it
is, then we call the interaction responsible for that process invariant un-
der parity Pf(x, y, z) ≡ f(−x,−y,−z) = f(x, y, z), otherwise it is violated
Pf(x, y, z) ≡ f(−x,−y,−z) 6= f(x, y, z). Applying two parity transforma-
tions in succession is equivalent to no transformation at all, i .e. P 2(x, y, z) =
P (−x,−y,−z) = (x, y, z). There are some physical quantities that change
sign under parity transformation - velocity, momentum, electric dipole mo-
ment, helicity etc, and some not - angular momentum, spin, magnetic dipole
moment, etc. We can divide the physical quantities on the basis of parity
transformation

All vectors and pseudo-scalars change their sign under parity transforma-
tion, and all scalars and pseudo-vectors do not change their sign under this
transformation. Till date, parity violation is confirmed only in weak inter-
action, and other interactions preserve the parity symmetry. Since Hamil-
tonian of Classical Mechanics and Quantum Electrodynamics (QED) are
invariant under the parity transformation, we can define the parity operator
for fermion and boson fields in Quantum Mechanics. Since parity operator
is unitary and QED Hamiltonian (H) is invariant under parity transforma-
tion, i.e. [P,H] = 0; this implies PHP † = H because P−1 = P †. We define
the parity operator of the fields as is shown in Table 1.1.

Field Parity Operator Transformed Field under parity

Scalar P φ(t, ~r)P † exp(iαp)φ((t,−~r)
Psudoscalar P φ(t, ~r)P † −exp(iαp)φ((t,−~r)
Vector P Aµ(t, ~r)P † Aµ(t,−~r)
Pseudovector P Aµ(t, ~r)P † −Aµ(t,−~r)
Spinor of 1st kind P ψ(t, ~r)P † exp(iβp) γ

o ψ((t,−~r)
Spinor of 2nd kind P ψ(t, ~r)P † exp(−iβp)ψ((t,−~r) γo

Table 1.1: Parity Operator of Free Fields.

Until 1957 physicists believed this symmetry to hold for all physical pro-
cesses. In 1956-1957 Wu, et al. found a clear violation of parity conservation
in the beta decay of Cobalt-60. Therefore, parity is conserved in electromag-
netism, strong interactions and gravity but not in weak interaction. The SM
incorporates parity violation by expressing the weak interaction as a chiral
gauge interaction. Only the left-handed components of particles and right-



handed components of antiparticles participate in weak interactions in the
SM. This implies that parity is not a symmetry of our universe.

1.2.2 Charge-Conjugation

Like parity (P ) symmetry, charge-conjugation (C) symmetry consists in the
invariance of physics under a discrete transformation that flips only the sign
of the charge of a particle, i .e. charge-conjugation symmetry means the
symmetry of physical laws under a charge-conjugation transformation. This
symmetry is related to the existence of an antiparticle for every particle, a
prediction of relativistic Quantum Mechanics, that is confirmed by experi-
ment through the discovery of the positron [9] and antiproton [10]. Charge
symmetry assumes that antiparticles behave in exactly the same way as
the corresponding particles. It is just convention that electron, proton, etc
are considered particles while positron, antiproton, etc are considered an-
tiparticles. Under charge conjugation transformation, a particle would be
converted into an antiparticle and vice-versa.

Charge conjugation invariance is true for strong and electromagnetic in-
teractions, but not for weak interactions. It is found that only left-handed
neutrinos and only right-handed antineutrinos are involved in weak pro-
cesses. Charge conjugation (C) changes a left-handed neutrino into a left-
handed antineutrino and right-handed neutrino to a right-handed antineu-
trino. But processes involving right handed-neutrinos or left-handed an-
tineutrinos are not seen. So it is clear that charge conjugation symmetry
does not apply to weak processes. This property is known as the “maximal
violation” of C-symmetry in the weak interaction. Using this information,
we can define the charge-conjugation operator for fermion and boson fields
in Quantum Mechanics. Since charge-conjugation operator is unitary and
QED Hamiltonian (H) is invariant under charge-conjugation transforma-
tion, i .e. [C,H] = 0; this implies CHC† = H because C−1 = C†. We define
the charge-conjugation operator of the fields as is shown in Table 1.2.

Charge conjugation changes the sign of all quantum numbers (electrical
charge, baryon number, lepton number, flavor charges, isospin z-component,
magnetic moment) but does not change these – mass, linear momentum,
spin, chirality.

1.2.3 Time-Reversal

Time reversal transformation, usually denoted by (T ), consists of changing
the sign of the time coordinate, i .e. under T transformation t → −t. The



Field Charge-Conjugation Operator Transformed Field

Scalar of 1st kind C φ(t, ~r)C† exp(iαc)φ
†((t, ~r)

Scalar of 2nd kind C φ†(t, ~r)C† exp(−iαc)φ((t, ~r)

Vector C Aµ(t, ~r)C† −Aµ(t, ~r)

Pseudovector C Bµ(t, ~r)C† Bµ(t, ~r)

Spinor of 1st kind C ψ(t, ~r)C† exp(iβc)ψ
c((t, ~r)

Spinor of 2nd kind C ψ(t, ~r)C† exp(−iβc)ψ
c
((t, ~r)

Table 1.2: Charge-Conjugation Operator of Free Fields.

time reversal operator reverses momentum and spin and also flips the sign
of the time component of a state. If we look at any particle collision, we can
relate it to another particle collision with all momenta reversed in direction
and all angular momenta likewise reversed.

In classical mechanics, a velocity reverses under the operation of T, but
an acceleration does not; consequently the laws of mechanics are time re-
versal invariant. This invariance is also exact in strong and electromagnetic
processes, but not in weak interactions [11]. The time reversal operator for
fermion and boson fields can be defined in Quantum Mechanics if we assume
that QED Hamiltonian is invariant under this transformation. Since time
reversal operator is anti-unitary and QED Hamiltonian (H) is invariant un-
der time reversal transformation, i .e. [T,H] = 0; this implies THT−1 = H.
We define the time reversal operator of the fields as is shown in Table 1.3

Field time reversal Operator Transformed Field

Scalar of 1st kind T φ(t, ~r)T−1 exp(iαt)φ((−t, ~r)
Scalar of 2nd kind T φ†(t, ~r)T−1 exp(−iαt)φ

†((−t, ~r)
Vector T Aµ(t, ~r)T−1 Aµ(−t, ~r)
Pseudovector T Bµ(t, ~r)T−1 Bµ(−t, ~r)
Spinor of 1st kind T ψ(t, ~r)T−1 exp(iβt) γ

1 γ2 ψ((−t, ~r)
Spinor of 2nd kind T ψ(t, ~r)T−1 exp(−iβt)ψ((−t, ~r) γ2 γ1

Table 1.3: Time reversal operator of Free Fields.

1.2.4 CP

CP is the product of two symmetries: charge conjugation (C) and parity
(P ). The CP symmetry means that all physical laws would preserve their



form when a charge-inversion transformation and a parity-inversion trans-
formation are done simultaneously. Explicitly, the C operation reverses all
additive quantum numbers such as electric charge, hypercharge, strangeness,
etc, while the P transformation “inverts” the coordinate system and the ori-
entation of all objects in it: x→ −x, y → −y, z → −z. If the spin is aligned
with the velocity, the particle is referred to as having “positive helicity.” If
the spin is anti-parallel to the velocity direction, the particle has “negative
helicity.” Under a P transformation, the velocity direction is reversed but
the spin direction is not; thus a positive helicity particle → negative helic-
ity antiparticle and vice versa. So under a CP transformation, a negative
helicity electron becomes a positive helicity positron.

In 1964, James W. Cronin and Val L. Fitch found that the long-lived
neutral K meson does decay into two pi mesons. If CP was conserved,
the short-lived variety of K meson would always decay into two π mesons,
whereas the long-lived variety of K meson would always decay into three π
mesons. Hence, Cronin and Fitch found an example of CP violation [12].
After that in 2001, CP violation is also confirmed in B mesons at the BaBar
Experiment and the Belle Experiment [7, 8]. Therefore, CP violation is
confirmed in weak interaction but no CP violation occurs in the Strong and
electromagnetic interactions.

The SM Lagrangian is invariant under CP transformation if we do not
include the Cabibo Kobayashi Masikawa (CKM) matrix in the Lagrangian
for third generation. Therefore, the only source of CP violation in SM is
the complex phase of CKM matrix [13]. This tiny CP violation is unable
to explain the matter-antimatter difference in the universe. It seems that
the SM does not accurately predict this discrepancy. It is hoped that in the
future new sources of CP violation will be found to resolve this discrepancies.

1.2.5 CPT

CPT is the product of the three operations: charge conjugation , parity, and
time reversal. In the late 1950s the violation of P-symmetry, C-symmetry
and T-symmetry were revealed in weak decay process. For a short time, the
CP-symmetry was believed to be preserved by all physical phenomena, but
that was later found to be false, too. On the other hand, there is a theorem
that derives the preservation of CPT symmetry for all of physical phe-
nomena assuming the correctness of quantum laws and Lorentz invariance.
Specifically, the CPT theorem states that any Lorentz invariant local quan-
tum field theory with a Hermitian Hamiltonian must have CPT symmetry.
A consequence of this derivation is that a violation of CPT automatically



indicates a Lorentz violation. Till date, there is no signal of CPT violation.
All particle physics theories are based on relativistic quantum field theory.
CPT invariance is an exact property in the theory. If experiments discover
that CPT invariance is not exact, it would require us to develop a new kind
of theory.

1.3 Basics of the CP Phenomenology in B meson Decays

We present a general formalism for CP violation in the decay of a pseu-
doscalar meson B that might be a charged or a neutral [14]. While con-
structing a field theory we always require locality, Lorentz invariant and
hermiticity of Lagrangian. That is sufficient to make any field theory invari-
ant under CPT transformation. In many theories CP and T are separately
invariant. All the field theories that had been studied upto that time had
automatic CP conservation. After the experimental discovery of CP viola-
tion, people started to find the origin of CP violation and also wanted to find
which theory is providing it. CP non conservation shows up a rate differ-
ence between two processes that are the CP conjugate to one-another. The
phases of each partial amplitude may be changed at will and is meaningless,
but the relative phase of two partial amplitudes is rephasing invariant and
has observable effects. Only phases which are rephasing invariant have a
physical meaning and lead to CP violation. There are mainly two kinds of
phases that may arise in transition amplitudes:

• Weak or CP-odd phase: a weak phase is defined to be one which
has opposite signs in the transition amplitude for a process and in
the transition amplitude for its CP-conjugate process. Weak phases
usually originate from complex couplings in the Lagrangian.

• Strong or CP-even phase: a strong phase has the same sign in the
transition amplitudes for two CP-conjugate processes.

1.3.1 Charged and neutral B meson decays

Till date, CP violation has been observed only in weak interaction and hence
we concentrate only on weak Hamiltonian H in this sub-section. We define
decay amplitudes of B and its CP conjugate B to a multi-particle final state
f and its CP conjugate f as

Af = 〈f |H|B〉, Af = 〈f |H|B〉 (1.1)



Af = 〈f |H|B〉, Af = 〈f |H|B〉 (1.2)

The action of CP on these states introduces phases ξB and ξf that
depend on their flavor content, according to

CP |B〉 = eξB |B〉, CP |f〉 = eξf |f〉 (1.3)

CP |B〉 = e−ξB |B〉, CP |f〉 = e−ξf |f〉 (1.4)

If CP is conserved by the dynamics, [CP,H] = 0, then Af and Af have
the same magnitude and an arbitrary unphysical relative phase

Af = e(ξf−ξB)Af =⇒ |Af | = |Af | (1.5)

For final CP eigenstate (i .e. f = f),

|Af | = |Af | (1.6)

1.3.2 Neutral B meson mixing

A state that is initially a superposition of B0 and B
0

say

|ψ(0)〉 = a(0)|B0〉 + b(0)|B0〉 (1.7)

will evolve in time acquiring components that describe all possible decay
final states {f1, f2, ...}, that is,

|ψ(t)〉 = a(t)|B0〉 + b(t)|B0〉 + c1(t)|f1〉 + c2(t)|f2〉 + ... (1.8)

Since we are interested in computing only the values of a(t) and b(t)
and the times t in which we are interested are much larger than the typical
strong interaction scale, we can use a simplified formalism in which ci(t)
are neglected, i .e. the simplified time evolution is determined by a 2 × 2
effective Hamiltonian H that is not Hermitian, since otherwise the mesons
would only oscillate and not decay. Any complex matrix, such as H, can be
written in terms of Hermitian matrices M and Γ as

H = M − i

2
Γ. (1.9)

M and Γ and are associated with (B0, B
0
) → (B0, B

0
) transitions via off-

shell (dispersive), and on-shell (absorptive) intermediate states, respectively.



Diagonal elements ofM and Γ are associated with the flavor-conserving tran-

sitions B0 → B0 and B
0 → B

0
while off-diagonal elements are associated

with flavor-changing transitions B0 → B
0
.

Let the eigenvalues of M be mH and mL, and similarly the eigenvalues
of Γ be ΓH and ΓL.

Under Wigner Weisskopf formalism [15], we can describe the time evo-
lution of the state vector as

|ψ(t)〉 = a(t) |B0〉 + b(t) |B0〉. (1.10)

and the effective Schrödinger equation as

i
∂

∂t
|ψ(t)〉 = H |ψ(t)〉 (1.11)

Under the assumption of CPT invariance, the eigenvector of H may be
written as

|BH〉 = p |B0〉 + q |B0〉, |BL〉 = p |B0〉 − q |B0〉. (1.12)

Where |B0〉 and |B0〉 are flavour eigen states, and |BH〉 and |BL〉 weak eigen
states (mass eigen states). On solving the Eq. (1.11) under CPT invariance,
we can get

(

q

p

)2

=
M∗

12 − i
2 Γ∗

12

M12 − i
2 Γ12

(1.13)

For convenience, we define some notations as follows

m ≡ mH +mL

2
, Γ ≡ ΓH + ΓL

2
, (1.14)

∆m ≡ mH −mL, ∆Γ ≡ ΓH − ΓL, (1.15)

x ≡ ∆m

Γ
, y ≡ ∆Γ

2Γ
, u ≡ −y

x
. (1.16)

λf ≡ q

p

Af

Af
, δ ≡ |p|2 − |q|2 (1.17)

If we assume that Hamiltonian is CP invariant then

M∗
12 = e2 i ξ M12 Γ∗

12 = e2 i ξ Γ12 (1.18)

Consequently, we have

q

p
= ±ei ξ =⇒

∣

∣

∣

∣

q

p

∣

∣

∣

∣

= 1 (1.19)



Therefore, we denote the ratio of mixing parameters in B system as:

qB
pB

= ηfe
2i φM (1.20)

where, ηf may be positive or negative and ξ = 2φM .

If the Hamiltonian is CP invariant (|pB| = |qB|), then 〈BL|BH〉 = |pB|2−
|qB|2 = 0, i .e. δB ≡ |pB|2 − |qB|2 = 0. Therefore δB measures CP violation
in B meson due to mixing. With time being mass eigenstates BH and BL

will evolve with evolution laws with well-defined masses and decay widths.
Thus, we can write the time dependent mass eigenstates BH(t) and BL(t)
under CPT invariant as:

|BH(t)〉 = e−i(MH− i
2

ΓH)|BH〉, |BL(t)〉 = e−i(ML− i
2

ΓL)|BL〉 (1.21)

Using Eqs. (1.12) and (1.21), we can get the time dependent of flavour
eigenstates as:

|B0(t)〉 = g+(t) |B0〉 +
qB
pB

g−(t) |B0〉, (1.22)

|B0
(t)〉 =

pB

qB
g−(t) |B0〉 + g+(t) |B0〉 (1.23)

where

|g±(t)|2 =
1

4

[

e−ΓL t + e−ΓH t ± 2 e−Γ t cos(∆mt)
]

(1.24)

g+(t)∗ g−(t) =
1

4

[

e−ΓL t − e−ΓH t + 2 i e−Γ t sin(∆mt)
]

, (1.25)

1.3.3 CP violation in B system

There are three types of CP violation:

• CP violation in decay, which occurs in both charged and neutral de-
cays, when the amplitude for a decay and its CP-conjugate process
have different magnitudes, i .e. |Af | 6= |Af |.

• CP violation in mixing, which occurs when the two neutral mass eigen-

state admixtures cannot be chosen to be CP-eigenstates, i .e.
∣

∣

∣

qB
pB

∣

∣

∣ 6= 1.

• CP violation in the interference of decays with and without mixing,
which occurs in decays into flavour-blind final states that are common
to both states, i .e. Imλf 6= 0.



In B decays, it is generally assumed, based on both experimental and
theoretical arguments, that there is no CP violation in the mixing: There
are then two possible forms of CP violation: direct CP violation, and CP
violation in the interference between the mixing and the decays. According
to superweak theory, there is no CP violation in the decay amplitudes. We

define CP asymmetries in B mesons on the basis that ∆Γ = 0 and
∣

∣

∣

qB
pB

∣

∣

∣ = 1.

Using these approximation we get

Γ[B0(t) → f ] =
|Af |2e−Γt

2
[1 + |λf |2 + (1 − |λf |2) cos ∆mt+ 2Imλf sin∆mt],

Γ[B
0
(t) → f ] =

|Af |2e−Γt

2
[1 + |λf |2 − (1 − |λf |2) cos ∆mt− 2Imλf sin ∆mt]

(1.26)

For the time-integrated decay rates

Γ
[

B0 → f
]

=
|Af |2
2 Γ

[

1 + |λf |2 +
1 − |λf |2 + 2x Imλf

1 + x2

]

,

Γ
[

B
0 → f

]

=
|Af |2
2 Γ

[

1 + |λf |2 −
1 − |λf |2 + 2x Imλf

1 + x2

]

,

(1.27)

Now we define the time dependent CP - violating asymmetry that B0 and

B
0

decays into CP eigenstate using the decay rates Eqs. (1.26) and (1.27)

ACP (t) ≡
Γ
[

B0(t) → f
]

− Γ
[

B
0
(t) → f

]

Γ [B0(t) → f ] + Γ
[

B
0
(t) → f

]

= adir cos ∆mt+ aint sin∆mt, (1.28)

where

adir =
1 − |λf |2
1 + |λf |2

, aint =
2 Imλf

1 + |λf |2
(1.29)

Similarly we can define time independent CP- violating asymmetry that B0

and B
0

decays into CP eigenstate using the decay rates Eqs. (1.26) and
(1.27)

ACP ≡
Γ
[

B0 → f
]

− Γ
[

B
0 → f

]

Γ [B0 → f ] + Γ
[

B
0 → f

]

=
adir + x aint

1 + x2
(1.30)



adir measures direct CP violation and aint measures interference CP viola-
tion.

Let us consider the decay of a B meson (model independently) into
some specific final state f . where,B stands for B+, B0

d or B0
s . We can then

parametrize the decay amplitudes as

Af = A1e
iφ1eiδ1 +A2e

iφ2eiδ2 , (1.31)

Af = A1e
−iφ1eiδ1 +A2e

−iφ2eiδ2 , (1.32)

where φ1 and φ2 are two CP-odd weak phases 1; A1 and A2 are the mag-
nitudes of the corresponding terms; and δ1 and δ2 are the corresponding
CP-even strong phases.

For the discussion about neutral B meson decays, we need Eqs. (1.31),
(1.32), and also the mixing parameter Eq. (1.20).

Therefore,

λf =
qB
pB

Af

Af
(1.33)

= ηfe
−2iφ1f

1 + rei(φ1f−φ2f )eiδ

1 + re−i(φ1f−φ2f )eiδ
, (1.34)

where φ1f ≡ φ1 − φM , φ2f ≡ φ2 − φM , δ = δ2 − δ1, and r = A2/A1. Hence,
φ1f − φ2f = φ1 − φ2. We have assumed that |qB/pB| = 1, meaning that the
CP violation in B −B mixing is negligible. It is known

that λf is measurable from the decay rates through

Sf ≡ 2Im(λf )

1 + |λf |2
= −ηf

sin (2φ1f ) + 2r sin (φ1f + φ2f ) cos δ + r2 sin (2φ2f )

1 + 2r cos (φ1f − φ2f ) cos δ + r2
,

(1.35)

Cf ≡ 1 − |λf |2
1 + |λf |2

=
2r sin (φ1f − φ2f ) sin δ

1 + 2r cos (φ1f − φ2f ) cos δ + r2
, (1.36)

since

λf =
1

1 + Cf

(

±
√

1 − C2
f − S2

f + iSf

)

(1.37)

For simplicity, we will assume in the following that Sf and Cf can be mea-
sured with absolute precision.

1Here φi do not refer to the angles of Unitarity triangles (UT). Throught the thesis we
have used α, β and γ for the angles of the UT. For historical reasons, both the notations
(α (φ2), β (φ1) and γ (φ3) ) are shown in Fig. 1.1



If Cf = 0, then the Eq. (1.36) implies that: i) r = 0 (and there is only
one amplitude/weak phase); or that ii) φ1f = φ2f (and there is only one
weak phase); or that iii) δ1 = δ2. In the last case, we can always find a
magnitude A3 and a weak phase φ3 such that

Af =
(

A1e
iφ1 +A2e

iφ2

)

eiδ1 = A3e
iφ3eiδ1 , (1.38)

Af = ηf

(

A1e
−iφ1 +A2e

−iφ2

)

eiδ1 = ηfA3e
−iφ3eiδ1 . (1.39)

These equalities are satisfied by

A2
3 = A2

1 +A2
2 + 2A1A2 cos (φ1 − φ2), (1.40)

e−2iφ3 =
A1e

−iφ1 +A2e
−iφ2

A1eiφ1 +A2eiφ2
=

1 + rei(φ1−φ2)

1 + re−i(φ1−φ2)
e−2iφ1 , (1.41)

from which we can always determine φ3, because the numerator and the
denominator on the RHS of Eq. (1.41) are complex conjugate.

In cases i) and ii) Sf = −ηf sin (2φ1f ); in case iii) Sf = −ηf sin (2φ3f ),
where φ3f = φ3−φM . Hence, if Cf = 0 then we are sure that the amplitudes
can be written in terms of only one weak phase, which is measured through
Sf . Therefore, we can say as: “if the decay amplitude is determined by only
one weak phase, then we can relate experiment with theory; if more than
one weak phase is involved, then we cannot”. Hence, if the decays of B0

and B
0

into CP eigenstate f is dominated by a single weak phase, then the
weak phase can be determined easily but in the presence of more than one
weak phase, the determination of weak phases is very difficult.

1.4 The Standard Model

The Standard Model, based on local symmetry (SU(3) ⊗ SU(2) ⊗ U(1))
and consistent with quantum field theory [16], of particle physics describes
three of the four known fundamental interactions (strong, weak and elec-
tromagnetism) between the elementary particles that make up all matter.
In the mid sixties, Abdus Salam, Sheldon Glashow and Steven Weinberg
proposed the unified description of the electromagnetism and the weak in-
teraction, known as the electroweak theory and later it was also extended
for strong interaction (quantum chromodynamics QCD) by David Politzer,
Frank Wilczek and David Gross. To date, almost all experimental tests of
the three forces described by the SM have agreed with its predictions.

The electroweak interaction is described by a gauge theory [17] based
on the SU(2)L ⊗U(1)Y group, which is spontaneously broken via the Higgs



mechanism. The matter fields “leptons and quarks” are organized in fami-
lies, with the left handed fermions belonging to weak isodoublets while the
right handed components transform as weak isosinglets. The vector bosons,
W±, Z0 and γ, that mediate the interactions are introduced via minimal
coupling to the matter fields.

The SM is now on solid ground; the works have been supplemented by
the proof of renormalizability of the theory [18], the introduction of three
lepton and quark generations , and the proof of tree-level cancellation of
flavour-changing neutral currents (FCNC) [19]. There have been numerous
pioneering experiments, like the discovery of the J/ψ meson [20]; the exis-
tence of neutral current mediated processes [21]; the discovery of W± and
Z at the CERN pp collider [22]; the discoveries of the τ lepton [23], and the
bottom [24] and the top quarks [25]; and observation of CP violation in K
and B meson systems [28]. We are yet to find the most important ingredient
of the SM, the Higgs boson [29].

There are many excellent books that deal with the SM in great detail for
particle physics [30], however we will just mention some important points
that would be relevant for the phenomenology of B meson.

If a local gauge symmetry is unbroken, the corresponding gauge bosons
remain massless. The strong interaction is an exact symmetry, so the glu-
ons are massless and SU(3)c (the subscript stands for colour) is unbroken.
However, weak gauge bosons W± and Z are massive. The mass generation
is one of the most elegant features of the GWS model. An unbroken SU(2)×
U(1) symmetry at a high energy scale, which is nothing but the unification
of electromagnetic and weak forces, gets broken at a few hundreds of GeV;
out of the four gauge bosons of the unbroken theory, three become massive
(W± and Z), and one remains massless, which is the photon, and corre-
sponds to an unbroken U(1)em gauge symmetry. This symmetry breaking,
which occurs due to the fact that the vacuum (and not the Lagrangian)
is asymmetric under the gauge group and is, hence, known as spontaneous
symmetry breaking (SSB), requires the existence of a scalar field. This is
a doublet under weak SU(2), and after SSB, a neutral scalar remains as
its remnant. This is known as the Higgs boson and is the only missing
component of the SM till now.

Apart from the bosons, there are fermions, divided into three generations
with two leptons and two quarks apiece. Remember that left and right chiral
particle states are different as far as weak interaction goes (the first is a
doublet, and hence feels charge-changing weak interaction, while the second
is a singlet, and does not feel it); also, leptons are singlet under SU(3)c while



quarks are triplets. Taking neutrinos as massless 2 the number of fermion
fields in each generation adds up to 15 (eL, eR, νe, (u, d)L,R × 3).

The electroweak Lagrangian density has three parts:

L = Lgauge + Lhiggs + Lfermion (1.42)

where

Lgauge = −1

4
W a

µνW
µνa − 1

4
BµνB

µν (1.43)

with

W a
µν = ∂µW

a
ν − ∂νW

a
µ + gεabcW

b
µW

c
ν (1.44)

and

Bµν = ∂µBν − ∂νBµ. (1.45)

Here, W a
µ is the triplet vector field (a=1,2,3) associated with SU(2)L and

Bµ is the singlet field associated with the hypercharge gauge group U(1)Y .
g denotes the SU(2) gauge coupling constant.

Lfermion, which includes the fermion kinetic terms as well as its interac-
tion with gauge and Higgs fields, looks like

Lfermion =
∑

j

ψ
L
j iγ

µDµψ
L
j +

∑

j

ψ
R
j iγ

µD′
µψ

R
j + LY , (1.46)

where LY , discussed later, gives the Yukawa interaction between the fermions
and the scalar doublet.

The SU(2)×U(1) covariant derivative is

Dµ = ∂µ + ig
σa

2
W a

µ + ig′
Y

2
Bµ (1.47)

where g′ is the U(1)Y coupling constant, and the hypercharge assignment
is given by Q = I3 + Y/2, where I3 is the third component of the weak
isospin. For the right-chiral fermions, we use D′, for which the SU(2) part is
absent (and of course Y is different). Table 1.1 lists the fermionic quantum
numbers. This assignment makes the model anomaly-free.

Lhiggs is given by

Lhiggs = (DµΦ)†(DµΦ) − V (Φ) (1.48)

2They are not. This is the first unambiguous signal of NP beyond the SM. However,
νRs can easily be accommodated in the SM, but they are peculiar in the sense that they
do not have any gauge interaction.



Sector Spin Field

SU(3) gauge bosons (gluons) 1 G ≡ (8, 1)0
SU(2) gauge bosons W ≡ (1, 3)0
U(1) gauge boson B ≡ (1, 1)0

Chiral matter 1
2 Qa ≡

(

ua

da

)

L

≡ (3, 2) 1
6

(Three families: a = 1, 2, 3)
uRa ≡ (3, 1) 2

3

dRa ≡ (3, 1)− 1
3

La ≡
(

νa

e−a

)

L

≡ (1, 2)− 1
2

eRa ≡ (1, 1)−1

Symmetry breaking 0 Φ ≡
(

Φ+

Φ0

)

≡ (1, 2)− 1
2

(the Higgs boson)

Table 1.4: The SM field content. (Qc, QL)QY/2
lists color, weak isospin and

hypercharge assignments of a given field, respectively, and Qc = 1, QL = 1
or QY/2 = 0 represent a singlet under the respective group transformations.
The T3 isospin operator is +1/2 (−1/2) when acting on the upper (lower)
component of an isospin doublet (and zero otherwise).



where Dµ is given by Eq. (1.47). V (Φ) is the potential term for the doublet
field Φ. This field can be written as

Φ ≡
(

φ+

1√
2
(φ0 + iφ3)

)

(1.49)

and after Spontaneous Symmetry Breaking, φ0 gets a vacuum
expectation value (VEV) < φ0 >≡ v ≈ 246 GeV. The numerical value is

obtained from the comparison of W mass and the Fermi coupling constant
GF .

All fermions remain massless before SSB, since a mass term of the form
−mψψ is forbidden from gauge invariance: ψR ≡ PRψ is a singlet under
weak SU(2) while ψL ≡ PLψ is a doublet (we use the standard chirality
projection operators PR(L) = (1 + (−)γ5)/2. However, there is a gauge
invariant fermion-scalar Yukawa interaction of the form

LY = −fe
ijliLΦejR − fd

ijqiLΦdjR + h.c (1.50)

which, after SSB, generates the charged lepton and down-type quark masses
of the form

me = fev/
√

2. (1.51)

Here i, j = 1, 2, 3 are the generation indices. There are two points to note.
First, up-type quark masses are obtained from the VEV of the field Φ̃ ≡
iσ2Φ

∗. Second, the mass matrices are not diagonal and can even be complex.
This means that the weak eigenstates are not physical states; one should
perform field rotations to make the mass matrices diagonal. In turn, the
weak interaction becomes non-diagonal and can occur between particles of
different generations.

As a convention, we denote the fields in the weak or flavour basis by a
prime, and the corresponding unprimed states denote the physical fields.
A general complex matrix can be diagonalized by a biunitary transfor-
mation. Let us write the diagonal down-type mass matrix (Md)diag ≡
diag(md,ms,mb) = D†

LMdDR where (Md)ij = fd
ijv/

√
2. If the Lagrangian

remains invariant, the fields must transform as

d′R = DRdR, d′L = DLdL. (1.52)

One gets a similar transformation for the up-type quarks, involving the
unitary matrices UR and UL.

The charged weak current is

u′iγ
µ(1 − γ5)d

′
i = uiU†

LDLγ
µ(1 − γ5)di. (1.53)



It is only the combination U†
LDL that can be probed in charged current weak

interaction. There is no way to extract any information on the individual
matrices, and the right-hand matrices are completely unknown, except for
their unitarity property. The combination U†

LDL is called the Cabibbo-
Kobayashi-Maskawa (CKM) matrix and is denoted by V , so that the weak
interaction takes the form

Vijuiγ
µ(1 − γ5)djW

+
µ + h.c. (1.54)

Remember that the hermitian conjugate involves V ∗
ij , which may be different

from Vij .
The neutral weak current is flavour diagonal to start with. Now, the

combination qL(R)γ
µqL(R) remains invariant under field rotation, since the

rotation matrices are unitary. Thus, there is no flavour-changing neutral
current (FCNC) in the SM at the tree-level. This is called the GIM mecha-
nism [19].

The CKM matrix as shown in Eq.(1.53) specifies the misalignment be-
tween the up-type quarks and the down-type quarks. Apparently, this has
9 elements, and all can be complex; so the number of independent elements
seems to be 18. For a generalN×N CKM matrix (forN generations, i.e., 2N
quarks) the number of independent elements is 2N2; but there are N2 con-
straints coming from V †V = V V † = 1, and (2N−1) phases can be absorbed
by quark field redefinitions. Thus, one has 2N2 −N2 − (2N − 1) = (N − 1)2

independent elements in the N -generation CKM matrix. For our case ( N
= 3), this is 4.

Not all these elements are real. To find out the number of real elements,
we redo the exercise for an orthogonal N×N matrix. There are N2 elements
to start with, and N(N+1)/2 constraints coming from OOT = OTO = 1 (N
constraints with right hand side equal to 1, and N(N−1)/2 with r.h.s. equal
to 0). There is no question of field redefinition, since the elements are all
real. So we have N(N−1)/2 independent elements. Thus, in a N generation
CKM matrix, N(N − 1)/2 elements are real, and (N − 1)2 −N(N − 1)/2 =
(N − 1)(N − 2)/2 elements are complex phases.

For a 3-generation matrix, there are 3 real elements and 1 complex phase.
We will now see how this complex phase generates CP violation. This is
not possible for two generations. Under CP, the particles are transformed to
antiparticles, and the (V −A) current retains its Lorentz structure. Consider,
for example, the coupling of W to b and u quarks. The Lagrangian is given
by

L = − g√
2

[

Vub uL γ
µbLW

+
µ + V ∗

ub bL γ
µuLW

−
µ

]

,



CP L (CP )−1 = − g√
2

[Vub bL γ
µuLW

−
µ + V ∗

ub uL γ
µbLW

+
µ ], (1.55)

which is the same only if Vub = V ∗
ub. This shows why CP violation is

related to complex phases in couplings. Yet this is only a necessary but
not a sufficient condition for a theory to violate CP . A phase rotation of
the quark fields in the CP transformed Lagrangian changes the phases of
the couplings. If we can, in this way, rotate the phases in CP L (CP )−1

back into those in L, then CP is conserved. In our example the choice
φb − φu = 2 arg Vub would transform CP L (CP )−1 back into L. We will
later show that to obtain CP violation, one needs at least two competing
amplitudes for a process, and it is the interference phenomenon that leads
to CP violation.

There are many possible parametrizations of the CKM matrix. The
standard parametrization, recommended by the Particle Data Group [28],
is

V =







c12c13 s12c13 s13e
−iδ

−s12c23 − c12s23s13e
iδ c12c23 − s12s23s13e

iδ s23c13
s12s23 − c12c23s13e

iδ −s23c12 − s12c23s13e
iδ c23c13






, (1.56)

where cij = cos θij and sij = sin θij , i and j being generation labels (i, j =
1, 2, 3). δ is the phase necessary for CP violation. cij and sij can all be
chosen to be positive and δ may vary in the range 0 ≤ δ ≤ 2π. However,
the measurements of CP violation in K decays force δ to be in the range
0 < δ < π. From experiments, we know that s13 and s23 are small numbers:
O(10−3) and O(10−2), respectively. Consequently, to an excellent accuracy
c13 = c23 = 1 and the four independent parameters are given as

s12 = |Vus|, s13 = |Vub|, s23 = |Vcb|, δ (1.57)

The first three can be extracted from the tree level decays by the quark
transitions of s → u, b → u and b → c respectively. The phase δ can
be extracted from CP violating transitions or loop processes sensitive to
|Vtd|. The latter fact is based on the observation that for 0 ≤ δ ≤ π, as
required by the analysis of CP violation in the K system, there is a one-to-
one correspondence between δ and |Vtd| given by

|Vtd| =
√

a2 + b2 − 2ab cos δ, a = |VcdVcb|, b = |VudVub| . (1.58)

The CP violating phase is always multiplied by the very small s13. This is
reflective of the fact that CP is an almost exact symmetry of nature; the



violation is small, irrespective of the actual value of δ. However once the four
parameters in the CKM matrix have been determined, it is often useful to
make a change of basic parameters in order to see the structure of the result
more transparently. This brings us to the Wolfenstein parametrization.

The unitarity of the CKM matrix leads to the following set of equations:

VudV
∗
us + VcdV

∗
cs + VtdV

∗
ts = 0

VudV
∗
ub + VcdV

∗
cb + VtdV

∗
tb = 0

VusV
∗
ub + VcsV

∗
cb + VtsV

∗
tb = 0

VudV
∗
cd + VusV

∗
cs + VubV

∗
cb = 0

VudV
∗
td + VusV

∗
ts + VubV

∗
tb = 0

VcdV
∗
td + VcsV

∗
ts + VcbV

∗
tb = 0. (1.59)

These equations originate from the orthogonality of different columns and
rows. They are of particular interest since they can be represented as six
“unitarity” triangles in the complex plane. They are invariant under any
phase transformation of the quark fields; this is just equivalent to rotating
the triangle in the complex plane.

Since the angles and the sides of these triangles remain unchanged and
therefore are independent of the CKM phase convention, these quantities
are physical observables. It can be shown that all six triangles have the
same area which is related to the measure of CP violation JCP, known as
the Jarlskog parameter:

| JCP |≡ Im(ViαV
∗
iβVjβV

∗
jα) = 2A∆, (1.60)

where i, j are up-type quark indices, α, β are down-type quark indices (no
summation is implied), and A∆ denotes the area of the unitarity triangles.

Only two of these six triangles, given by the second and the fifth rela-
tionships, look like triangles; others are very squashed in nature. This can
be easily shown by considering the order of each side in terms of the small
parameter λ; only for these two triangles all sides are of order λ3. The
second relationship, known as the bd triangle, can be probed in B decays.

Let us concentrate on the bd triangle:

VudV
∗
ub + VcdV

∗
cb + VtdV

∗
tb = 0. (1.61)

The angles of the unitarity triangle are geometrically defined as

α ≡ arg(−V ∗
tbVtd/V

∗
ubVud), (1.62)

β ≡ arg(−V ∗
cbVcd/V

∗
tbVtd), (1.63)

γ ≡ arg(−V ∗
ubVud/V

∗
cbVcd). (1.64)
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Figure 1.1: Unitarity triangle

These angles do not necessarily agree with the CP angles to be measured
in experiments. Phenomenologically this triangle is very interesting as it
involves simultaneously the elements Vub, Vcb and Vtd which are under ex-
tensive discussion at present.

The angles β and γ of the unitarity triangle are related directly to the
complex phases of the CKM-elements Vtd and Vub, respectively, through

Vtd = |Vtd|e−iβ, Vub = |Vub|e−iγ . (1.65)

The angles (α, β and γ ) of CKM unitarity triangle are related by the
relation

α+ β + γ = 180◦. (1.66)

1.4.1 Wolfenstein parametrization

This is an approximate parametrization of the CKM matrix in which each
element is expanded as a power series in the small parameter λ = |Vus| =
0.22 [27, 28]. At the leading order, V can be written as

V =







1 − λ2

2 λ Aλ3(̺− iη)

−λ 1 − λ2

2 Aλ2

Aλ3(1 − ̺− iη) −Aλ2 1






+ O(λ4) , (1.67)

and the previous representation is replaced by

λ, A, ̺, η . (1.68)



Here λ is small (≈ 0.22), so it is sufficient to keep only the first few terms in
this expansion. It is certainly more transparent than the standard parametriza-
tion. If one requires sufficient level of accuracy, the higher order terms in λ
have to be included. There is no unanimous prescription for this, but one
of the more commonly used ways is as follows [31]:

Vud = 1 − 1

2
λ2 − 1

8
λ4 + O(λ6),

Vus = λ+ O(λ7),

Vub = Aλ3(̺− iη),

Vcd = −λ+
1

2
A2λ5 [1 − 2(̺+ iη)] + O(λ7),

Vcs = 1 − 1

2
λ2 − 1

8
λ4(1 + 4A2) + O(λ6),

Vcb = Aλ2 + O(λ8),

Vtd = Aλ3
[

1 − (̺+ iη)(1 − 1

2
λ2)

]

+ O(λ7),

Vts = −Aλ2 +
1

2
A(1 − 2̺)λ4 − iηAλ4 + O(λ6),

Vtb = 1 − 1

2
A2λ4 + O(λ6). (1.69)

Note that by definition Vub remains unchanged and the corrections to
Vus and Vcb appear only at O(λ7) and O(λ8), respectively. Consequently to
an excellent accuracy we have

Vus = λ, Vcb = Aλ2, Vub = Aλ3(̺− iη), Vtd = Aλ3(1 − ̺− iη), (1.70)

with

̺ = ̺(1 − λ2

2
), η = η(1 − λ2

2
). (1.71)

To include the next-to-leading O(λ5) terms, we note first that

VcdV
∗
cb = −Aλ3 + O(λ7). (1.72)

Thus to an excellent accuracy VcdV
∗
cb is real with |VcdV

∗
cb| = Aλ3. Keeping

O(λ5) corrections and rescaling all terms in (1.61) by Aλ3 we find

1

Aλ3
VudV

∗
ub = ̺+ iη,

1

Aλ3
VtdV

∗
tb = 1 − (̺+ iη) (1.73)
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Figure 1.2: The unitarity triangle of the CKM matrix.

Thus we can represent Eq. (1.61) as the unitarity triangle in the complex
(̺, η) plane. This is shown in fig. 1.2. The advantage of this generalization
of the Wolfenstein parametrization over other generalizations found in the
literature is the absence of relevant corrections to Vus, Vcb and Vub and an
elegant change in Vtd which allows a simple generalization of the so-called
unitarity triangle beyond the leading order.

1.4.2 Limitation of Standard Model

The SM is not the end of the story, however successful it might be. It is
at best an effective theory, valid upto some energy scale. There are enough
reasons to believe that some NP will appear around that energy scale. The
reasons are as follows.

The Higgs boson mass is not protected by any symmetry. There is no
apparent reason why it should be of the order of a few hundreds of GeV,
and not 1019 GeV. So, unless there is some NP to protect the Higgs mass,
this is a case of a very unnatural fine-tuning. There are many approaches to
solve this problem: Technicolour type theories, where the Higgs is assumed
to be a composite of two fermions; Supersymmetry, where new particles
are proposed which cancel the large radiative corrections coming from the
SM fields; Models with compactified extra dimensions, where the Planck
scale is lowered to a few TeV by appealing to the fact that gravity is weak
not because of a large Planck mass but due to a small intercept of higher



dimensional gravitational wave function with our physical world; and Little
Higgs models, where the Higgs is constructed as a pseudo-Goldstone boson
and hence has its mass protected.

The three gauge couplings do not unify in the SM. So, the SM cannot
lead to a unified theory of strong and electroweak interactions. This is
an aesthetic objection, but Supersymmetry provides a nice way to gauge
coupling unification and hence a Grand Unified Theory.

The number of free parameters is too large in the SM for any fundamental
theory: the nine Yukawa couplings (not counting the neutrinos), four CKM
parameters, three gauge couplings, Higgs mass, VEV of the scalar field, and
the θ-parameter related with the strong CP problem. It is hoped that a
more fundamental theory will relate some of them.

Experimental observation of neutrino mass and oscillations cannot be
accounted for in the SM. One has to introduce the neutrino masses by hand.

The GIM cancellation holds at the tree-level of the SM; it is violated
in loop-mediated decays (e.g., b → sγ), and can also be violated at the
tree-level for extensions of the SM.

As is well-known, the couplings depend on the energy scale at which they
are measured; in common parlance, they ‘run’. In the processes considered,
the triple and quartic gluon couplings enter only through the running of
the QCD coupling constant and in higher order QCD corrections to weak
decays. The quartic electroweak couplings do not enter our discussion at
the level of approximations considered.

The photonic and gluonic vertices are vectorlike (V ), the W± vertices
are purely V − A, whereas the Z vertices involve both V − A and V + A
structures. The Higgs coupling can always be neglected unless it couples
to the top quark, and in some exceptional cases, to the bottom quark. We
expect that any theory which tries to answer these puzzles should leave some
low-energy signatures.

1.4.3 Summary

The phenomenology of the B system and CP violation is very active and
exciting field of research. We started in Chapter 1 with a short introduc-
tion of B physics and CP violation. We discussed mainly three types of
discrete symmetry (Parity, Charge-Conjugation and Time reversal) briefly.
We discussed CP and CPT symmetry, as well. These symmetries are very
important tools to study CP violation. Basics of the CP Phenomenology in
B meson decays (charged and neutral B meson decays, and neutral B meson
mixing) were discussed, too. We discussed various types of CP violation in



B system. We also presented a very brief discussion of the SM. The source of
CP violation in SM is only through CKM matrix elements. The important
parametrizations (Standard Parametrization, Wolfenstein Parametrization)
were also described briefly. We also discussed the limitation of the SM at
the end this chapter.



Chapter 2

Study of B meson in

Standard Model

We point out some salient features of the SM dynamics that affect B physics.
The dominant decay channel of the b quark is b → c. This leads to the
semileptonic and nonleptonic decays involving J/ψ or D mesons in the final
state. They have comparatively large branching ratios; so, even though they
are useful to determine the shape of the unitary triangle (UT), a better place
to look for indirect signals of NP is the rare B decay channels. They are of
following types:

• Leptonic—They involve the channels B+ → ℓ+ν and B0(Bs) → ℓ+ℓ−.
The first one is essentially a replica of the π+ decay. The second one
proceeds through electromagnetic penguins and W -mediated boxes.
Bs → µ+µ− is expected to be a good candidate where potential NP
(e.g., supersymmetry) could show up.

• Semileptonic—The decays B → Xs,dℓ
+ν and B → Xs,dℓ

+ℓ− fall in
this category. They are mediated by the same operators; however, for
the exclusive channels the hadronic matrix element brings some extra
theoretical uncertainty in the predictions.

• Radiative—They include the inclusive channel B → Xs,dγ and its
exclusive counterparts, and are controlled by the magnetic penguin
operators.

• Nonleptonic—They include all nonleptonic decays of b not involving a
charm quark. Notable examples are B → φKS , B → ππ, B → η

′
K,

etc

27



b q1

q2

d (s)

W

Figure 2.1: Tree diagrams (q1, q2 ∈ {u, c}).

2.1 Effective Hamiltonian

We use low-energy effective Hamiltonians [32], which are calculated by mak-
ing use of the “operator product expansion”, yielding transition amplitudes
of the following structure:

〈f |Heff |i〉 =
GF√

2
λCKM

∑

k

Ck(µ)〈f |Qk(µ)|i〉. (2.1)

Here GF denotes Fermi’s constant, λCKM is a CKM factor, and µ denotes a
renormalization scale. The technique of the operator product expansion al-
lows us to separate the short-distance contributions to this transition ampli-
tude from the long-distance ones, which are described by perturbative quan-
tities Ck(µ) (“Wilson coefficient functions”) and non-perturbative quantities
〈f |Qk(µ)|i〉 (“hadronic matrix elements”), respectively. The Qk are local op-
erators, which are generated through the electroweak interactions and the
interplay with QCD, and govern “effectively” the decay in question. The
Wilson coefficients are – simply speaking – the scale-dependent couplings of
the vertices described by the Qk

Let us consider the quark-level process b → cus, which originates from
a tree diagram of the kind shown in Fig. 2.1, as a simple illustration. If we

b d (s)
u, c, t

W

g

q1

q2 = q1

Figure 2.2: QCD penguin diagrams (q1 = q2 ∈ {u, d, c, s}).
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Figure 2.3: Electroweak penguin diagrams (q1 = q2 ∈ {u, d, c, s}).

“integrate out” the W boson having four-momentum k, i.e. use the relation

gνµ

k2 −M2
W

k2≪M2
W−→ − gνµ

M2
W

≡ −
(

8GF√
2g2

2

)

gνµ, (2.2)

we arrive at the following low-energy effective Hamiltonian:

Heff =
GF√

2
V ∗

usVcbO2, (2.3)

with the “current–current” operator

O2 ≡ [sαγµ(1 − γ5)uα] [cβγ
µ(1 − γ5)bβ ] (2.4)

and the Wilson coefficient C2 = 1; α and β are the SU(3)C indices of
QCD. Taking now QCD effects, i.e. the exchange of gluons, into account and
performing a proper “matching” between the full and the effective theories,
a second current–current operator,

O1 ≡ [sαγµ(1 − γ5)uβ ] [cβγ
µ(1 − γ5)bα] , (2.5)

is generated, involving a Wilson coefficient C1(µ). Due to the impact of
QCD, also the Wilson coefficient of O2 acquires now a renormalization-scale
dependence and deviates from one. The results for the Ck(µ) contain terms
of log(µ/MW ), which become large for µ = O(mb), the typical scale govern-
ing the hadronic matrix elements of the four-quark operators Ok. In order
to deal with these large logarithms, “renormalization-group-improved” per-
turbation theory offers the appropriate tool [33]. The fact that 〈f |Heff |i〉 in
(2.1) cannot depend on the renormalization scale µ implies a renormalization
group equation, which has a solution of the following form:

~C(µ) = Û(µ,MW ) · ~C(MW ). (2.6)



Here the “evolution matrix” Û(µ,MW ) connects the initial values ~C(MW )
encoding the whole short-distance physics at high-energy scales with the
coefficients at scales at the level of a few GeV. Following these lines,

αn
s

[

log

(

µ

MW

)]n

(LO), αn
s

[

log

(

µ

MW

)]n−1

(NLO), ... (2.7)

can be systematically summed up, where “LO” and “NLO” stand for the
leading and next-to-leading order approximations, respectively. If we apply
the unitarity of the CKM matrix, we find that the corresponding CKM
factors are related through

V ∗
urVub + V ∗

crVcb + V ∗
trVtb = 0, (2.8)

Finally, using (2.8) to eliminate V ∗
trVtb, we obtain an effective Hamiltonian

of the following structure:

• Current-Current:

O1 = (cb)8,V −A (sc)8,V −A, O2 = (cb)1,V −A (sc)1,V −A. (2.9)

Only a typical combination sc is shown; there may be other combina-
tions.

• QCD Penguins:

O3(4) = (sb)1(8),V −A

∑

q

(qq)1(8),V −A,

O5(6) = (sb)1(8),V −A

∑

q

(qq)1(8),V +A. (2.10)

The sum runs over all the lighter flavours (u, d, s, c).

• Electroweak Penguins:

O7(8) =
3

2
(sb)1(8),V −A

∑

q

eq (qq)1(8),V +A,

O9(10) =
3

2
(sb)1(8),V −A

∑

q

eq(qq)1(8),V −A. (2.11)

• Magnetic Penguins:

O7γ =
e

8π2
mbsσ

µν(1+γ5)bFµν , O8G =
g

8π2
mbsασ

µν(1+γ5)T
a
αβbβG

a
µν

(2.12)
Here α and β are colour indices and T a are the SU(3) generators.



• ∆B = 2 Operators:

O(∆B = 2) = (db)1,V −A(db)1,V −A (2.13)

This is only relevant for the SM calculation of B0 −B0 box.

• Semileptonic Operators:

O9V = (db)1,V −A(ee)V O10A = (db)1,V −A(ee)A (2.14)

This also contributes to leptonic decays. Again, this basis is for the
SM only.

The subscripts 1 and 8 denote whether the currents are in singlet-singlet
or octet-octet combination of colour SU(3), and V − (+)A stands for the
Lorentz structure of 1 − (+)γ5.

2.2 Leptonic decays

In the SM the B+ → ℓ+ν decay is of particular interest, due to its sensitivity
to both the meson decay constant and the CKM matrix elements Vub. In the
matrix elements, only pseudoscalar and axial vector operators contribute.
They are given by the PCAC [34] relations:

〈0|uγµγ5b|B+(p)〉 = i fB p
µ
B,

〈0|uγ5b|B+(p)〉 = −i fB
m2

B

mb +mu
. (2.15)

Assuming that the neutrino is massless we get the helicity suppressed branch-
ing fraction

Br(B+ → ℓ+νℓ) =
G2

F

8π
|Vub|2fbτBmBm

2
l

[

1 − m2
l

m2
B

]2

. (2.16)

For different lepton flavours the theoretical predictions [35] are

Br(e+ν) = 6.9 × 10−12, Br(µ+ν) = 2.9 × 10−7, Br(τ+ν) = 6.6 × 10−5.
(2.17)

The upper bounds on the branching fractions are 9.8× 10−6 and 1.7× 10−6

respectively for e and µ modes. But branching ratio for τ mode has been
reported as 1.4 ± 0.4 × 10−4 [28].

The decay Bq → ℓ+ℓ−, where q = d or s and ℓ = e, µ or τ , proceeds
through loop diagrams and is of fourth order in the weak coupling. In the



SM, the dominant contributions to this decay come from the W box and Z
penguin diagrams. Because the contributions with a top quark in the loop
are dominant, at low energies of order mb the decay can be described by a
local bqℓℓ coupling via the effective Hamiltonian (2.14), and the branching
fraction is given by

Br(B0 → ℓ+ℓ−) =

G2
F

8π
f2

BτBm
3
B

√

(1 − 4m2
ℓ

m2
B

)

[

|Cℓℓ
P − 2mℓ

mB
Cℓℓ

A |2 +

(

1 − 4m2
ℓ

m2
B

)

|Cℓℓ′

P |2
]

(2.18)

In the SM Cℓℓ′
P and Cℓℓ

P arise from penguin diagram with physical and un-
physical neutral scalar exchange, and are suppressed by a factor (mb/mW )2.
The decay rate is controlled by the coefficient

[

Cℓℓ
A

]

SM
=

αVtbV
∗
td√

8π sin2 θw

Y (xt) (2.19)

where xt ≡ m2
t

m2
W

, sin2 θw is the weak mixing angle, and the function Y (xt) is

given by Y (xt) ≈ 1.03Y0(x), where

Y0(x) =
x

8

[

x− 4

x− 1
+

3x

(x− 1)2
log(x)

]

(2.20)

For different lepton flavour the SM branching fractions are [31]

Br(e+e−) = 2.6×10−15, Br(µ+µ−) = 1.1×10−10, Br(τ+τ−) = 3.1×10−8.
(2.21)

These numbers show that purely leptonic decays are too rare to be observed
unless they are significantly enhanced by NP. The upper bounds on the
branching fractions are [28]: 11.3 × 10−8 (e+e−), 1.5 × 10−8 (µ+µ−), and
4.1 × 10−3 (τ+τ−).

2.3 Semileptonic decays

The semileptonic inclusive decay B → Xs,dℓ
+ℓ−, originating from the parton

level process b→ s(d)ℓ+ℓ−, can be calculated using the effective Hamiltonian
formalism as:

A(B → Xsℓ
+ℓ−) =

√
2GFα

π
VtbV

∗
ts[C

eff
9 sLγ

µbLℓγµℓ+ C10sLγ
µbLℓγµγ5ℓ

−2Ceff
7 mbsLiσ

µν qν
q2
bRℓγµℓ], (2.22)



where q2 is the momentum transferred to the lepton pair. The WCs C7

and C9 contain, apart from the RG evolutions of C7 and C9 at the weak
scale, mixing effects with operators O1−6 (for C9) and O2 and O8 (for C7);
hence the superscript. There is also a sizable long-distance coming from
B → K(∗)ψ and ψ → ℓ+ℓ−, where ψ is a generic vector cc state.

For the exclusive decays, one needs to compute the following matrix
elements, given by

〈K(p′)|sγµb|B(p)〉 = (p+ p′)µF1(q
2) +

m2
B −m2

K

q2

(

F0(q
2) − F1(q

2)
)

.(2.23)

〈K(p′)|siσµνqνb|B(p)〉 =
[

(p+ p′)µq2 − (m2
B −m2

K)qµ
] FT (q2)

mB +mK
. (2.24)

〈K∗(p′, ǫ)|sγµ(1 − γ5)b|B(p)〉 = ǫµναβǫ∗νpαp
′
β

2V (q2)

mB +mK∗

−iǫ∗µ(mB +mK∗)A1(q
2) + i(ǫ∗.q)(p+ p′)µ A2(q

2)

mB +mK∗

+i(ǫ∗.q)
2mK∗

q2

(

A3(q
2) −A0(q

2)
)

qµ. (2.25)

〈K∗(p′, ǫ)|sσµνqν
(1 + γ5)

2
b|B(p)〉 = iǫµναβǫ∗νpαp

′
β 2T1(q

2)

+
[

ǫ∗µ(m2
B −m2

K∗) − (ǫ∗.q)(p+ p′)µ
]

T2(q
2)

+(ǫ∗.q)

[

qµ − q2

m2
B −m2

K∗

(p+ p′)µ

]

T3(q
2). (2.26)

Here, q = p − p′ is the momentum transferred to the lepton pair, F1(0) =

F0(0), A3(q
2) =

mB +mK∗

2mK∗
A1(q

2) − mB −mK∗

2mK∗
A2(q

2), A3(0) = A1(0),

and T1(0) = iT2(0). The value of T1(0) is fixed from B → K∗γ decay rate.
These form factors have been estimated by different groups using different
techniques; table 2.1 summarises the SM predictions [36, 37, 38, 39, 40, 41].
The branching ratios ( in 10−6) of these observed decay modes [28] are given
in this Table 2.2:

Here ℓ+ℓ− indicates an average over all leptonic channels. There are
upper limits on lepton-flavour violating modes. This places tight constraints
on the parameter spaces of NP. Decay asymmetries and final state lepton
polarizations are also sensitive observables on the structure of NP.



Technique Br(B → Kℓ+ℓ−) Br(B → K∗e+e−) Br(B → K∗µ+µ−)

Lattice QCD 1.15 1.15
QCD sum rules 0.3 1 1
Light cone sum 0.25 ± 0.07 0.95
Quark model1 0.62 ± 0.13 2.1 ± 0.7 1.5 ± 0.6
Quark model2 0.5 1.4
Quark model3 0.59 ± 0.22 3.4 ± 1.3 2.2 ± 0.9

Table 2.1: Exclusive branching ratios in different theoretical models. All
numbers are to be multiplied by 10−6.

Decay modes Br. (in 10−6) Decay modes Br. (in 10−6)

B → Ke+e− 0.42 ± 0.06 B → K∗e+e− 1.24 ± 0.19
B → Kµ+µ− 0.47 ± 0.06 B → K∗µ+µ− 1.08 ± 0.15
B → Kℓ+ℓ− 0.43 ± 0.04 B → K∗ℓ+ℓ− 1.00 ± 0.11

Table 2.2: Observed branching ratios in 10−6.

2.4 Radiative decays

The inclusive decay B → Xsγ, and its parton-level counterpart b → sγ,
proceeds through the magnetic penguin operator O7γ . The complete NLO
calculation is available and the theoretical prediction of Br(B → Xsγ) =
(3.28±0.33)×10−4 agrees pretty well with the experimental result of (3.56±
0.25)× 10−4 [28]. B → Xdγ is CKM suppressed; the theoretical estimate is

0.017 <
Br(B → Xdγ)

Br(B → Xsγ)
< 0.074 (2.27)

where the uncertainty is largely due to the poorly determined CKM el-
ements. Determination of this ratio should give a clean measurement of
|Vtd/Vts|.

2.5 Nonleptonic decays

For the exploration of CP violation, non-leptonic B decays play the key role.
The final states of such transitions consist only of quarks, and they are medi-
ated by b→ q1 q2 d (s) quark-level processes, with q1, q2 ∈ {u, d, c, s}. There
are basically two types of topologies contributing to such decays: “tree” and
“penguin” topologies. The latter consist of gluonic (QCD) and electroweak
(EW) penguins. The corresponding leading-order Feynman diagrams are
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Figure 2.4: Box diagrams contributing to B0
q–B0

q mixing (q ∈ {d, s}).

shown in Figs. (2.1), (2.2) and (2.3). We can categorize the non-leptonic
b→ q1 q2 d (s) decays, depending on the flavour content of their final states
as follows:

• q1 6= q2 ∈ {u, c}: only tree diagrams contribute.

• q1 = q2 ∈ {u, c}: tree and penguin diagrams contribute.

• q1 = q2 ∈ {d, s}: only penguin diagrams contribute.

We can use low-energy effective Hamiltonian for the description of weak

B-meson decays, as well as B0
q–B

0
q mixing. At a renormalization scale

µ = O(mb), the Wilson coefficients of the current–current operators are
C1(µ) = O(10−1) and C2(µ) = O(1), whereas those of the penguin opera-
tors are as large as O(10−2). Although short-distance part is tamed , the
long-distance piece still suffers large theoretical uncertainties. Non-leptonic
decay “B → f” is given by the hadronic matrix elements 〈f |Qk(µ)|B〉 of
the four-quark operators. It is very difficult to solve this hadronic matrix
element; An easy way to solve it by the product of the matrix elements
of two quark currents under favourable “factorization scale” µ = µF. This
procedure can be justified in the large-NC approximation,[42, 43] however,
it is in general not on solid ground. Interesting theoretical progress could be
made through the development of the QCD factorization (QCDF) [44] and
perturbative QCD (PQCD) [45] approaches, the soft collinear effective the-
ory (SCET), [46] and QCD light-cone sum-rule methods. [47] An important
target of these methods is given by B → ππ and B → Kπ decays. Since
the data indicate large non-factorizable corrections, [48, 49, 50] the long-
distance contributions to these decays remain a theoretical challenge. The
best way to deal with all such problems is through model independent way.
We will discuss in a bit detail about the model independent way to explain
the data what it is confronting with the theoretical model’s predictions.

Within the SM, B0–B
0

mixing arises from the box diagrams shown in
Fig. 2.4 and it is dominated by only single weak phase. In this special case,



Figure 2.5: The current situation in the ρ–η plane.

there is no direct CP violation (adir = 0, i.e. |λf | = 1 or |Af | = |Af |) and
no indirect CP violation (i .e. qB

pB
= ηfe

2i φM ) but there is CP violation only
due to interference between decay and mixing. Therefore, we can write the
SM amplitude for this process as

Af = |Af | eiδ eiφw (2.28)

where δ is strong phase, invariant under CP transformation, and φw is a weak
phase coming from CKM matrix and it changes under CP transformation.
The CP- conjugate amplitude for this process is

Af = |Af | eiδ e−iφw (2.29)

λf = ηfe
i(2φM−2φw) =⇒ Imλf = ηf sin 2(φM − φw) (2.30)

we define φ = φM − φw.
The corresponding time-dependent CP asymmetry now takes the follow-

ing simple form:

Γ(B0(t) → f) − Γ(B0(t) → f)

Γ(B0(t) → f) + Γ(B0(t) → f)

∣

∣

∣

∣

∣

∆Γ=0

= ηf sin 2φ sin(∆mt), (2.31)

and allows an elegant determination of sin 2φ.

2.6 Extraction of CKM angles

The extraction of CKM angles are essential to study of CP violation. The-
ory is used to convert experimental data into contours in the ρ–η plane,
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Figure 2.6: Feynman diagrams contributing to B0
d → J/ψKS. The dashed

lines in the penguin topology represent a colour-singlet exchange.

where semileptonic b → uℓνℓ, cℓνℓ decays and B0
d,s–B

0
d,s mixing allow us

to determine the UT sides Rb ≡
∣

∣

∣

Vud Vub
Vcd Vcb

∣

∣

∣ and Rt =≡
∣

∣

∣

Vtd Vtb
Vcd Vcb

∣

∣

∣, respectively,

i.e. to fix two circles in the ρ–η plane. On the other hand, the indirect CP
violation in the neutral kaon system described by εK can be transformed
into a hyperbola. It is possible to convert measurements of CP-violating ef-
fects in B-meson decays into direct information on the UT angles. The most
prominent example is the determination of sin 2β through Bd → J/ψKS.

In Fig. (2.5), the shaded dark ellipse is the result of a CKM fit [52],
the straight lines represent the measurement of sin 2β and the quadrangle
corresponds to a determination of α from Bd → π+π− decays, etc, [28, 26,
52].

The data is mostly consistent with the SM. Additionally, the recent
data for B → πρ, ρρ as well as Bd → D(∗)±π∓ and B → DK decays give
constraints for the UT that are also in accordance with the KM mechanism.
But there is still hope to encounter deviations from the SM despite this
consistent picture. The B-meson system provides a variety of processes
for the exploration of CP violation [26]. Rare B and K meson decays,
originating from loop effects in the SM , provide complementary insights
into flavour physics.

2.6.1 Extraction of angle β

The decay mode “B0
d → J/ψKS” (at quark level transition b→ ccs) is very

important to extract one of the CKM angle “β”. Both diagrams (tree and
penguin like topologies, Fig.(2.6) are needed. We can write the correspond-



ing amplitude as[54]

A(B0
d → J/ψKS) = λ(s)

c

(

Ac′

t +Ac′

pen

)

+ λ(s)
u Au′

pen + λ
(s)
t At′

pen , (2.32)

where Ac′
t denotes the “tree” processes and the Aq′

pen describe the contribu-
tions from penguin topologies with internal q quarks (q ∈ {u, c, t}). These
penguin amplitudes take into account both QCD and EW penguin contri-
butions. We define the CKM factors for the transition b→ s as:

λ(s)
q ≡ V ∗

qb Vqs (2.33)

Now we use the unitarity of the CKM matrix to eliminate λ
(s)
t through

λ
(s)
t = −λ(s)

u − λ
(s)
c , and the Wolfenstein parametrization, it can be written

as:

A(B0
d → J/ψKS) ∝

[

1 + λ2aeiθeiγ
]

, (2.34)

where the hadronic parameter aeiθ measures, the ratio of penguin- to tree-
diagram-like contributions to B0

d → J/ψKS. Since this parameter enters in
a doubly Cabibbo-suppressed way, we can neglect the term to good approx-
imation and using the definition of adir and amix

adir(B0
d → J/ψKS) = 0, amix(Bd → J/ψKS) = − sin 2β. (2.35)

where φ = 2β in the SM.

The present status of sin 2β for the decay mode Bd → J/ψKS is given
as follows:

sin 2β =

{

0.660 ± 0.036 ± 0.012 (BaBar [55])
0.643 ± 0.038 (Belle [56]),

(2.36)

yielding the world average for all charmonium modes [57]

sin 2β = 0.672 ± 0.024, (2.37)

which agrees well with the results of the “standard analysis” of the unitarity
triangle, implying 0.6 ≤ sin 2β ≤ 0.9.

We are expecting that the experimental accuracy of the measurement of
sin 2β will be increased by one order of magnitude in near future. Therefore,
it is possible to obtain deeper insights (due to high accuracy and precision)
into the theoretical uncertainties affecting Eq. (2.35) due to penguin contri-
butions.



Although the agreement between (2.37) and the results of the CKM fits
is striking, there is still some room for NP that may hide in amix(Bd →
J/ψKS). The key quantity is actually β, which is fixed through sin 2β =
0.65 ± 0.025 up to a twofold ambiguity,

β = (21.1 ± 0.9)◦ ∨ (68.9 ± 1.0)◦ . (2.38)

Here the former solution would be in perfect agreement with the range im-
plied by the CKM fits, 40◦ ≤ 2β ≤ 60◦, whereas the latter would correspond
to NP. The two solutions can be distinguished through a measurement of
the sign of cos 2β: in the case of cos 2β = +0.74 > 0, we would conclude
β = 21◦, whereas cos 2β = −0.74 < 0 would point towards β = 69◦, i .e. NP.
There are several ways to resolve the two-fold ambiguity in the extraction
of 2β [58, 59, 60, 61] but they are rather challenging practically. The BaBar
and Belle collaborations have performed measurements of sin 2β and cos 2β
in time-dependent transversity analyses of the pseudoscalar to vector-vector
decay B0 → J/ψK∗, where cos 2β enters as a factor in the interference
between CP-even and CP-odd amplitudes.

An important testing ground for the SM description of CP violation is
also provided by the decay mode B → φK. The decay modes are governed
by QCD penguin processes [63], and EW penguins [64, 65]. Therefore,
B → φK modes represent a sensitive probe for NP, too. In the SM, we have
the following relations [66, 67, 68, 69]:

adir(Bd → φKS) = 0 + O(λ2) (2.39)

amix(Bd → φKS) = amix(Bd → J/ψKS) + O(λ2). (2.40)

All the modes Bd → φKS, B
± → φK± can be used to get the whole pic-

ture [69] but NP still cannot be distinguished from the SM [53, 69].
Till date, the summary of experimental report is as follows:

adir(Bd → φKS) = −0.01 ± 0.12 (2.41)

amix(Bd → φKS) = 0.39 ± 0.17 (2.42)

Unfortunately, the experimental uncertainties are still very large. Because
of amix(Bd → J/ψKS) = −0.65 ± 0.025 (see (2.35) and (2.37)), there were
already speculations about new-physics effects in Bd → φKS [72]. In this
context, it is interesting to note that there are more data available [28]:

adir(Bd → η′KS) = −0.04 ± 0.20 (2.43)

amix(Bd → η′KS) = 0.43 ± 0.17 (2.44)



adir(Bd → K+K−KS) = 0.07 ± 0.36 ± 0.08 (2.45)

amix(Bd → K+K−KS) = −0.74 ± 0.11. (2.46)

The corresponding modes are governed by the same quark-level transitions
as Bd → φKS. Consequently, there is not clear cut signals of NP in Bd →
φKS [62]. It is expected that the experimental situation will be improved
significantly in the future.

2.6.2 Extraction of angle α

The CKM angle γ can be determined by the mode B0
d → π+π− (b →

uud quark-level transitions) in the B factories. The corresponding decay
amplitude can then be written as [73]:

A(B0
d → π+π−) = λ(d)

u

(

Au
t +Au

pen

)

+ λ(d)
c Ac

pen + λ
(d)
t At

pen. (2.47)

On using the unitarity of the CKM matrix and Wolfenstein parametrization,
we obtain

A(B0
d → π+π−) ∝

[

eiγ − deiθ
]

, (2.48)

where

deiθ ≡ 1

Rb

(

Ac
pen −At

pen

Au
CC +Au

pen −At
pen

)

(2.49)

measures the ratio of penguin to tree contributions in Bd → π+π−. In
contrast to the B0

d → J/ψKS amplitude (2.34), this parameter does not
enter in (2.48) in a doubly Cabibbo-suppressed way, thereby leading to the
well-known “penguin problem” in Bd → π+π−. If we had negligible penguin
contributions, i.e. d = 0, the corresponding CP-violating observables were
given as follows:

Adir
CP(Bd → π+π−) = 0, Amix

CP (Bd → π+π−) = sin(2β + 2γ) = − sin 2α,
(2.50)

The phases 2β = φ and γ enter directly in the Bd → π+π− observables.
Consequently, we can fix φ through Bd → J/ψKS and we can use Bd →
π+π− to probe α. Measurements of CP asymmetries in the modes Bd →
π+π− are already available [28]:

adir(Bd → π+π−) = −0.38 ± 0.17 , (2.51)

amix(Bd → π+π−) = 0.61 ± 0.08 (2.52)



where the errors in brackets are the ones increased by the PDG scaling-
factor procedure [76]. For direct CP violation at this level, it is required large
penguin contributions with large CP-conserving strong phases. A significant
impact of penguins on Bd → π+π− is also indicated by data on B → Kπ, ππ
decays, as well as by theoretical considerations [77, 78]. Consequently, it is
already evident that the penguin contributions to Bd → π+π− cannot be
neglected.

The penguin problem can be tackled in many ways to extract the weak
phases from the CP-violating Bd → π+π− observables; but the isospin anal-
ysis of the B → ππ system [79] is the best theoretical way to extract
the α. This can be achieved by using isospin to relate the amplitudes of
B0

d → π+π−, B0
d → π0π0, and B+

u → π+π0. The B has only I = 1
2 state

and ππ final states can have only I = 0 or I = 2. The tree diagram can
lead to either I = 0 or I = 2 final states but gluonic penguin can lead
to only I = 0 state; i.e. the ∆I = 3

2 operator occurs purely as a tree
diagram, but ∆I = 1

2 operator has both tree and penguin diagrams. There-
fore, B+

u → π+π0 arises only from tree contribution. The amplitudes for
B0

d → π+π−, B0
d → π0π0 and B+

u → π+π0 can be written in terms of the
I = 0 and I = 2 pieces as [80]:

1/
√

2A+− = A2 −A0, (2.53)

A00 = 2A2 +A0, (2.54)

A+0 = 3A2, (2.55)

where A0 and A2 for I = 0 and I = 2, respectively. Using the above
relations, it is easy to get the triangle relations

1√
2
A+− + A00 = A+0 , (2.56)

1√
2
A+−

+ A00
= A+0

. (2.57)

Sides of the above triangle are obtained from the magnitude of decay
amplitudes. Consequently |A2| are obtained directly from |A+0|. |A0| and
cos θ (θ is the angle between A2 and A0) are also obtained from the triangle.
Under the assumption that direct CP asymmetry is zero and using the Eqs.
(1.17), (1.19), (1.26) and (1.29), it is possible to obtain sin 2α from the two
modes: B0

d → π+π− and B0
d → π0π0. The angle α can also be measured

from B → ρπ mode [83] and from B → ρρ mode [84]. There are also various
other ways to obtain α [73, 85, 86, 87, 88, 89].
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Figure 2.7: Complex triangle of (a) Eq. (2.56) and (b) Eq. (2.57).

2.6.3 Extraction of angle γ

The determination of the angle γ of the unitarity triangle of the CKM matrix
is regarded as a challenge for B-physics experiments. In the SM, γ is the
relative phase between b→ cus and b→ cus transition; i .e. uc(uc) hadronize
into single D0(D0) meson, which is subsequently seen as a CP eigenstate
and lead to a common final state. Therefore, these two channels interfere
and giving CP violating effects.

The Gronau-London-Wyler (GLW) method extracts the angle γ from the
measurements of the branching ratios of the six processes, B+ → K+D0,
B+ → K+D0, B+ → K+(fCP )D, and their CP-conjugate processes; where
(fCP )D is a CP eigenstate (e.g . fCP = π+π−, etc.). The two interfering
amplitudes have a CP violating phase difference γ. But the problem in
this method is that CP violating asymmetries tend to be small since B+ →
K+D0 is color suppressed, whereas B+ → K+D0 is color allowed. The
former amplitude is an order of magnitude smaller than the latter. To
overcome this, Atwood-Dunietz-Soni (ADS) suggested that analysis should
be performed with non-CP eigenstates; especially appealing are modes f
such that D0 → f is doubly Cabibbo suppressed while D0 → f is Cabibbo
allowed (e.g . f = K+π−, etc.). As a result, the interfering amplitudes
become comparable. By measuring the branching ratios of the decay of the
D mesons, the CKM angle γ can be extracted.

γ =

{

(92 ± 41 ± 11 ± 12)◦ (BaBar [55])
(53 ± 16 ± 3 ± 9)◦ (Belle [56]),

(2.58)

The precision on the angle γ from B → DK has to be improved to at
least 5% to match the precision of its indirect estimate from a global fit
to CKM parameters. At present, it has large error but it’s precision will
be improved in LHCb. LHCb measurement of the angle γ and the indirect
determination of γ will provide a stringent test of the SM.



2.7 Evidence of Direct CP Asymmetry

CP violation arises via the interference of at least two diagrams with com-
parable amplitudes but different CP conserving and violating phases. In
golden mode (B → J/ψKS), mixing induced CP violation has been estab-
lished. In B meson system, sizable direct CP violation is also expected in
the SM. The first experimental evidence for direct CP violation in B mesons
was shown by Belle for the decay mode B0 → π+π− [93]. This result shows
large interference between penguin and tree diagrams [94]. Belle [95] and
Babar [96] have also reported direct CP violation in B0 → K+π−.

2.8 Hint of New Physics

Constraining the angles α, β and γ by CP asymmetries is complementary to
these CP conserving measurements. The asymmetry measurements involve
the discrete ambiguities in the angles, which ought to be resolved [97]. In
near future, we will have better understanding not only of the CKM param-
eters but also of inconsistencies, if any beyond the SM level. It would be im-
portant to identify the source of the inconsistencies in a model-independent
way and then we can hunt for new theory to explain the existing data.

Physics beyond the SM can modify CKM phenomenology and predic-
tions for CP asymmetries by introducing additional contributions in three
types of amplitudes:

• B0 −B
0

and B0
s −B

0
s mixing amplitudes.

• Penguin decay amplitudes (both gluonic and electroweak).

• Tree decay amplitudes (both color allowed and color suppressed).

Large variety of models can show the possibility of 1st type. The mixing
amplitudes can be identified either by measuring asymmetries which lie out-
side the allowed range, or by comparison with mixing-unrelated constraints.
New contributions in decay amplitudes [98] are usually small and can be
detected by comparing asymmetries in different processes. Extremely small
asymmetries under KM hypothesis are particularly sensitive to new ampli-
tudes.

We list a few examples of signals for NP.

• Rate enhancement beyond the SM predictions for electroweak penguin
decays, B → Xd,sℓ

+ℓ−, B0/Bs → ℓ+ℓ−.



• Lepton asymmetry Asl ≥ O(10−2).

• Different asymmetries in B0(t) → ψKS , φKS , η
′KS .

• Sizable asymmetries in b→ sγ or Bs → ψφ.

• Contradictory constraints on γ from B → Kπ, B → DK, Bs → DsK.

2.9 Summary

In this chapter, we have reviewed some important features ofB meson decays
in the frame-work of SM. We discussed various important decay channels
(Leptonic, Semileptonic, Radiative and Nonleptonic) with the help of effec-
tive Hamiltonian. Babar and Belle group have established CP violation in
the B system. We discussed briefly the extraction of the CKM angles α, β
and γ. The main goal is to overconstrain the unitarity triangle as much as
possible so that we can perform a stringent test of the KM mechanism of
CP violation. For this reason many important benchmark modes (B → ππ,
B → φK and B → Kπ decays, etc) are being explored. We also explored the
possible hint of NP beyond the SM. In the near future, we can understand
better the physics regarding CP violation.



Chapter 3

Study of New Physics

3.1 Introduction

CP violations in B decays are a sensitive probe of NP in the quark sector,
because they may differ from the SM predictions if the sources of CP viola-
tion are beyond the CKM phase of the SM. This can accord in the following
ways:

• If the unitarity of the three-generation CKM matrix does not hold.

• If there are convincing contributions to B−B mixing beyond the box
diagram with intermediate top quarks.

• The constraints on the CKM parameters may change if there are sig-
nificant new contributions to B −B mixing and to ǫK .

• Γ12 ≪ M12. To violate this relation, one needs a new dominant con-
tribution to tree decays of B mesons, which is highly unlikely.

• The relevant decay processes are dominated by SM diagrams. Con-
sequently, it is highly unlikely that NP (primarily takes place at a
high energy scale) would compete with weak tree decays. Therefore,
there is a high chance to get the significant contributions from NP for
penguin dominated decays.

Within the SM, CP asymmetries in both B decays and B − B mixing are
determined by combinations of CKM elements. The asymmetries then mea-
sure the relative phase between these combinations. Unitarity of the CKM
matrix relates these phases to angles of the unitarity triangles. In models
with NP, unitarity of the three-generation charged-current mixing matrix
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may be lost and consequently the relation between the CKM phases and
angles of the unitarity triangle violated [99].

Thus, when studying CP asymmetries in models of NP, we look for
violation of the unitarity constraints and, even more importantly, for con-
tributions to B−B mixing that are different in phase and not much smaller
in magnitude than the SM contribution. But it is better to study about CP
asymmetries model independently. If we take the value of branching ratios,
CP asymmetries from experiment and we want to extract the NP effect be-
yond the SM, then we can say that it is a clean signal of NP. But sometimes
it is not possible to extract NP effect even if there is a contribution from
NP. We discuss the impact of reparametrization invariance, physical results
are invariant under this reparametrization, to search for the pattern of NP
in B decays.

3.2 Reparametrization Invariant

The source of CP violation in the SM of electroweak interactions is one
single irremovable phase in the CKM matrix. We can exploit B physics
experiments to uncover NP effects [?, 100, 101]. The extraction of CKM
matrix elements is complicated due to hadronic uncertainty. In a few cases,
it is possible to remove such hadronic matrix elements and we can relate
experimental observables with parameters in the original Lagrangian of the
electroweak theory. To study the NP, we can write the matrix elements in
two parts one coming from the SM and another from beyond the SM. We
know that any complex number can be written as linear combination of two
known complex number; e.g. let 2 + i and 5 + 3i are known (given) complex
number and we can write 9 + 5i = 2 (2 + i) + 1 (5 + 3i), here 2 + i and 5
+ 3i are considered as basis vectors. Therefore, any decay amplitude can be
described by any two weak phases considered as basis phases chosen com-
pletely at random (as long as they do not differ by a multiple of 180◦); we
can change the basis utilized to describe the weak phases from {φ1, φ2} into
{φ′1, φ′2} but physical results cannot be changed under such a reparametriza-
tion, we refer to this property as “reparametrization invariance” [102] of the
decay amplitudes.

Let us consider the decay of a B meson (model independently) into
some specific final state f . where, B stands for B+, B0

d or B0
s . We can then

parametrize the decay amplitudes as

Af = Ã1e
iφ1eiδ1 + Ã2e

iφ2eiδ2 , (3.1)

Af = Ã1e
−iφ1eiδ1 + Ã2e

−iφ2eiδ2 , (3.2)



where φ1 and φ2 are two CP-odd weak phases; A1 and A2 are the magnitudes
of the corresponding terms; and δ1 and δ2 are the corresponding CP-even
strong phases. It is easy to show that a third weak phase φ3 in Af and Af
can be described in terms of φ1 and φ2 as:

eiφ3 = ceiφ1 + deiφ2 ,

e−iφ3 = ce−iφ1 + de−iφ2 , (3.3)

where c and d are such that

c =
sin (φ3 − φ2)

sin (φ1 − φ2)
,

d =
sin (φ3 − φ1)

sin (φ2 − φ1)
, (3.4)

which are valid if φ1 − φ2 6= nπ, with n integer, meaning that the same
cannot be done with only one weak phase.

We can use this result to write any amplitude, with an arbitrary number
N of distinct weak phases, in terms of only two.

Af = Ã1e
iφ1eiδ̃1 + Ã2e

iφ2eiδ̃2 +
N
∑

k=3

Ãke
iφkeiδ̃k

= A1e
iφ1eiδ1 +A2e

iφ2eiδ2 , (3.5)

where

A1e
iδ1 = Ã1e

iδ̃1 +
N
∑

k=3

ckÃke
iδ̃k ,

A2e
iδ2 = Ã2e

iδ̃2 +
N
∑

k=3

dkÃke
iδ̃k , (3.6)

and

ck =
sin (φk − φ2)

sin (φ1 − φ2)
,

dk =
sin (φk − φ1)

sin (φ2 − φ1)
. (3.7)

We can also describe the decay amplitudes with different sets of weak
phases {φ′1, φ′2} as our basis.



Using Eqs. (3.3) and (3.4), then it is easy to show that

Af = Ã1e
iφ1eiδ1 + Ã2e

iφ2eiδ2 ,

= A′
1e

iφ′
1eiδ

′
1 +A′

2e
iφ′

2eiδ
′
2 , (3.8)

as long as

A′
1e

iδ′1 = Ã1e
iδ1 sin (φ1 − φ′2)

sin (φ′1 − φ′2)
+ Ã2e

iδ2 sin (φ2 − φ′2)
sin (φ′1 − φ′2)

,

A′
2e

iδ′2 = Ã1e
iδ1

sin (φ1 − φ′1)
sin (φ′2 − φ′1)

+ Ã2e
iδ2

sin (φ2 − φ′1)
sin (φ′2 − φ′1)

. (3.9)

Using Eq. (3.9), we can relate the parameters needed to describe the decay
amplitudes with two different choices for the pair of weak phases used as a
basis. Therefore, weak phases may be chosen completely at will. Of course,
physical results cannot change under such a reparametrization; we refer to
this property as “reparametrization invariance”.

3.3 Pattern of New Physics in B Decays

Now we discuss in details about the possible pattern of new physics in B
Decays and their impact. We use the diagrammatic approach to write the
amplitudes for B decays. Using this approach, the amplitudes are written in
terms of diagrams: the color-favored and color-suppressed tree amplitudes
T and C, the gluonic penguin amplitude P , the color-favored and color-
suppressed electroweak penguin amplitudes PEW and PC

EW , the annihilation
and exchange amplitudes A and E, the penguin-annihilation amplitude PA,
the penguin exchange amplitude EP , and color-suppressed electroweak pen-
guin exchange amplitude EPC

EW [103].
In the SM, the b → q transitions (q = d, s) involve the three CKM

structures V ∗
ubVuq, V

∗
cbVcq, and V ∗

tbVtq. A decay amplitude may be written as

A(b→ q) = V ∗
ubVuqAu + V ∗

cbVcqAc + V ∗
tbVtqAt, (3.10)

where the Ai (i = u, c, t) involve the relevant hadronic matrix elements with
the corresponding CP-even strong phases. Using the unitarity of the CKM
matrix,

V ∗
ubVuq + V ∗

cbVcq + V ∗
tbVtq = 0, (3.11)

From Eq. (3.11), we can eliminate V ∗
cbVcq as:

V ∗
cbVcq = −V ∗

ubVuq − V ∗
tbVtq , (3.12)



Using Eq. (3.12), we can rewrite the Eq. (3.10) as:

A(b→ q) = V ∗
ubVuqAu − (V ∗

ubVuq + V ∗
tbVtq)Ac + V ∗

tbVtqAt ,

= V ∗
ubVuq(Au −Ac) + V ∗

tbVtq(At −Ac) ,

= V ∗
ubVuqAuc + V ∗

tbVtqAtc . (3.13)

where, we define Aij ≡ (Ai −Aj).

Hence a decay amplitude can be written in terms of only two weak phases
with three possibilities as:

A(b→ q) = V ∗
ubVuqAuc + V ∗

tbVtqAtc. (3.14)

A(b→ q) = V ∗
ubVuqAut + V ∗

cbVcqAct. (3.15)

A(b→ q) = V ∗
cbVcqAcu + V ∗

tbVtqAtu. (3.16)

the relations among the above parametrization have been discussed in
detail by Gronau and Rosner in [104]. In the SM, it is very difficult to
calculate exactly the amplitudes Ai (hadronic matrix elements). Hence, in
the context of the SM, Eqs. (3.14) through (3.16) provide us with three
natural choices for the pair of weak phases {φ1, φ2} chosen as the basis for
Eq. (3.5).

Using Wolfenstein Parametrization and Eq. (3.14), we can write a decay
amplitude for b→ s transition

A(b→ s) = A′
uce

iγ −A′
tc. (3.17)

where, we define A′
uce

iγ ≡ V ∗
ubVusAuc and −A′

tc ≡ V ∗
tbVtsAtc

Similarly a decay amplitude for b→ d transition can be written as:

A(b→ d) = A′′
uce

iγ + A′′
tce

−iβ . (3.18)

where, A′′
uce

iγ ≡ V ∗
ubVudAuc and −A′′

tce
−iβ ≡ V ∗

tbVtdAtc.

In this thesis, it is assumed that isospin is a good symmetry, even for any
new physics beyond the SM. We use isospin symmetries to relate different B
decay amplitudes and thus reduce the number of independent diagrammatic
amplitudes. Some of the decays where this approach is particularly useful
include B → ππ, B → Kπ, B → ρρ, etc.



We now consider the contribution of NP to these decays. There are a
variety of ways of parametrizing this NP, but in this thesis we propose a dia-
grammatic approach which allows each diagram to be individually modified:
DeiφSM → DeiφSM +NPeiφNP . The addition of NP effects in terms of dia-
grams is equivalent to the inclusion of NP operators in terms of quarks [105].
Now, NP matrix elements can in general include several contributions, and
may not have a well-defined weak phase. However, individual matrix ele-
ments do have well-defined phases. Therefore, the addition of these individ-
ual NP matrix elements to the diagrams is considered one by one.

Though our discussions are general, as an example B → Kπ decay modes
are focused on because present data are at odds with the predictions of the
SM [106]. This discrepancy is known as“Kπ-puzzle,” .

The quark subprocess for the decay channel B → Kπ is b→ uus. Using
diagrammatic approach, we can write the amplitudes for B → Kπ decay
channel in the SM. The decay channel B+ → K0π+ consists basically five
diagrams: the annihilation amplitude (A), the gluonic penguin amplitude
(P ), color-suppressed electroweak penguin amplitude (PC

EW ), penguin ex-
change amplitude (EP ) and color suppressed electroweak penguin exchange
amplitude (EPC

EW ).

In the SM the B+ → K0π+ amplitudes can be written as:

A(B+ → K0π+) = AV ∗
ubVus +

∑

i=u,c,t

(Pi −
1

3
PC

EWi + EPi +
2

3
EPC

EWi)V
∗
ibVis

= (A+ Puc −
1

3
PC

EWuc + EPuc +
2

3
EPC

EWuc)V
∗
ubVus

+ (Ptc −
1

3
PC

EWtc + EPtc +
2

3
EPC

EWtc)V
∗
tbVts

= (A′ + P ′
uc −

1

3
P ′C

EWuc + EP ′
uc +

2

3
EP ′C

EWuc) e
iγ

− (P ′
tc −

1

3
P ′C

EWtc + EP ′
tc +

2

3
EP ′C

EWtc)

A(B+ → K0π+) = −P ′ + A′ eiγ (3.19)

where, in order to simplify the expressions, we have introduced

P ′ ≡ P ′
tc −

1

3
P ′C

EWtc + EP ′
tc +

2

3
EP ′C

EWtc,

and

A′ ≡ A′ + P ′
uc −

1

3
P ′C

EWuc + EP ′
uc +

2

3
EP ′C

EWuc.



Similarly the decay channel B+ → K+π0 consists eight diagrams: the
color-favored tree amplitude (T ), the color-suppressed tree amplitude (C),the
annihilation amplitude (A), the gluonic penguin amplitude (P ), color-favored
electroweak penguin amplitude (PEW ) and color-suppressed electroweak pen-
guin amplitude (PC

EW ). In the SM the B+ → K+π0 amplitudes can be
written as:

−
√

2A(B+ → K+π0) = (T + C +A)V ∗
ubVus

+
∑

i=u,c,t

(Pi + PEWi +
2

3
PC

EWi + EPi +
2

3
EPC

EWi)V
∗
ibVis

= (T + C +A)V ∗
ubVus

+ (Puc + PEWuc +
2

3
PC

EWuc + EPuc +
2

3
EPC

EWuc)V
∗
ubVus

+ (Ptc + PEWtc +
2

3
PC

EWtc + EPtc +
2

3
EPC

EWtc)V
∗
tbVts

= ((T + Puc +
2

3
PC

EWuc + EPuc −
1

3
EPC

EWuc)

+ (C − Puc + PEWuc +
1

3
PC

EWuc − EPC
EWuc +

1

3
EPC

EWuc)

+ (A+ Puc −
1

3
PC

EWuc + EPuc +
2

3
EPC

EWuc))V
∗
ubVus

+ ((Ptc −
1

3
PC

EWtc + EPtc +
2

3
EPC

EWtc)

+ (PEWtc + EPC
EWtc) + (PC

EWtc − EPC
EWtc))V

∗
tbVts

= ((T ′ + P ′
uc +

2

3
P ′C

EWuc + EP ′
uc −

1

3
EP ′C

EWuc)

+ (C ′ − P ′
uc + P ′

EWuc +
1

3
P ′C

EWuc − EP ′C
EWuc +

1

3
EP ′C

EWuc)

+ (A′ + P ′
uc −

1

3
P ′C

EWuc + EP ′
uc +

2

3
EPC

EWuc)) e
iγ

− ((P ′
tc −

1

3
PC

EWtc + EP ′
tc +

2

3
EPC

EWtc)

+ (P ′
EWtc + EPC

EWtc) + (PC
EWtc − EPC

EWtc))√
2A(B+ → K+π0) = (P ′ + P ′

EW + P ′C
EW ) − (T ′ + C′ + A′) eiγ . (3.20)

where, we have introduced

P ′ ≡ P ′
tc −

1

3
P ′C

EWtc + EP ′
tc +

2

3
EP ′C

EWtc,

A′ ≡ A′ + P ′
uc −

1

3
P ′C

EWuc + EP ′
uc +

2

3
EP ′C

EWuc,



T ′ ≡ T ′ + P ′
uc +

2

3
P ′C

EWuc + EP ′
uc −

1

3
EP ′C

EWuc,

C′ ≡ C ′ − P ′
uc + P ′

EWuc +
1

3
P ′C

EWuc − EP ′C
EWuc +

1

3
EP ′C

EWuc,

P ′
EW ≡ P ′

EWtc + EP ′C
EWtc,

and
P ′C

EW ≡ P ′C
EWtc − EP ′C

EWtc.

Similarly we can write the decay amplitude of B0 → K+π−

−A(B0 → K+π−) = T V ∗
ubVus

+
∑

i=u,c,t

(Pi +
2

3
PC

EWi + EPi −
1

3
EPC

EWi)V
∗
ibVis

= T ′ eiγ − (P ′ + P ′C
EW )

A(B0 → K+π−) = (P ′ + P ′C
EW ) − T ′ eiγ . (3.21)

The decay amplitude for B0 → K0π0 can be written as

√
2A(B0 → K0π0) = −C V ∗

ubVus

+
∑

i=u,c,t

(Pi − PEWi −
1

3
PC

EWi + EPi −
1

3
EPC

EWi)V
∗
ibVis

= −C′ eiγ − (P ′ − P ′
EW )√

2A(B0 → K0π0) = −(P ′ − P ′
EW ) − C′ eiγ . (3.22)

Hence, in the SM the four B → Kπ amplitudes are given by

A(B+ → K0π+) = −P ′ + A′eiγ ,√
2A(B+ → K+π0) = (P ′ + P ′

EW + P ′C
EW )

− (T ′ + C′ + A′)eiγ , (3.23)

A(B0 → K+π−) = (P ′ + P ′C
EW ) − T ′eiγ ,√

2A(B0 → K0π0) = −(P ′ − P ′
EW ) − C′eiγ .

Now we add new physics contribution into B → Kπ decays; e.g. let’s
consider first a NP contribution to the electroweak penguin: P ′

EW → P ′
EW +

N ′eiφ. It has been shown that any complex number can be written in terms
of two other pieces with arbitrary phases [reparametrization invariance (RI)]
[107]. Since the B → Kπ amplitudes involve the phases 0 and γ, we rewrite
N ′eiφ as N ′

1 +N ′
2e

iγ . After the addition of this new physics, the amplitudes
become



A(B+ → K0π+) = −P ′ + A′eiγ ,√
2A(B+ → K+π0) = (P ′ + P ′

EW +N ′
1 + P ′C

EW )

− (T ′ + C′ −N ′
2 + A′)eiγ , (3.24)

A(B0 → K+π−) = (P ′ + P ′C
EW ) − T ′eiγ ,√

2A(B0 → K0π0) = −(P ′ − P ′
EW −N ′

1) − (C′ −N ′
2)e

iγ .

With the new physics contributing to P ′
EW , only the amplitudesA(B+ →

K+π0) and A(B0 → K0π0) are affected. Now N ′
1 and N ′

2 can be re-
moved by making the following redefinitions: C′ → Ĉ′ ≡ C′ − N ′

2 and
P ′

EW → P̂ ′
EW ≡ P ′

EW +N ′
1.

A(B+ → K0π+) = −P ′ + A′eiγ ,√
2A(B+ → K+π0) = (P ′ + P̂ ′

EW + P ′C
EW )

− (T ′ + Ĉ′ + A′)eiγ , (3.25)

A(B0 → K+π−) = (P ′ + P ′C
EW ) − T ′eiγ ,√

2A(B0 → K0π0) = −(P ′ − P̂ ′
EW ) − Ĉ′eiγ .

Consequently, the above amplitudes (with NP contribution) now reduce
to the same form as in the SM [Eq. (3.23)]. We can see the effects of this as
follows: First, it is clear that the new physics cannot be detected directly
through measurements of B → Kπ decays. Second, we can see that there is
indirect effect related to the size of P ′

EW and C′ ( P ′
EW and C′ are modified).

Similarly if we included the contribution of new physics to C′eiγ instead of
P ′

EW , the amplitudes in the presence of this new physics would again have
the same form as in the SM with the redefinitions C′ → Ĉ′ ≡ C′ + N ′

2 and
P ′

EW → P̂ ′
EW ≡ P ′

EW −N ′
1.

If we add the new physics to other diagrams, the effect is similar. In
all cases, we can write the new amplitudes in the same form as that of the
SM. Hence we cannot see a clean signal of NP in the B → Kπ modes.
There are two cases. (i) The new physics is added to T ′: T ′eiγ → T ′eiγ +
N ′eiφ. A(B+ → K+π0) and A(B0 → K+π−) are affected. One makes
the redefinitions T ′ → T̂ ′ ≡ T ′ +N ′

2 and P ′C
EW → P̂ ′C

EW ≡ P ′C
EW −N ′

1. The
situation is the same, apart from a change of relative sign in the redefinitions,
if the new physics is added to P ′C

EW . (ii) The new physics is added to P ′:
P ′ → P ′ + N ′eiφ. Now all four amplitudes are affected. One makes the
redefinitions P ′ → P̂ ′ ≡ P ′+N ′

1 and A′ → Â′ ≡ A′−N ′
2, C′ → Ĉ′ ≡ C′+N ′

2,
T ′ → T̂ ′ ≡ T ′−N ′

2. Once again the situation is the same. if the new physics
is added to A′, the situation is still the same.



We, therefore conclude that, regardless of how one adds the new physics,
it is always possible to write the B → Kπ amplitudes as in the SM. This
implies that there is no clean signal of new physics in B → Kπ decays. The
reason for this is reparametrization invariance [107] and the fact that the
B → Kπ amplitudes involve two phases.

We can see similar results in B → ππ decays(b → d). Using the redefi-
nitions:

P ′′ ≡ P ′′
tc −

1

3
P ′′C

EWtc + PA′′
tc + EP ′′

tc −
1

3
EP ′′C

EWtc,

P ′′
uc ≡ P ′′

uc + E′′ − 1

3
P ′′C

EWuc + PA′′
uc + EP ′′

uc −
1

3
EP ′′C

EWuc,

T ′′ ≡ T ′′ + P ′′C
EWuc,

C′′ ≡ C ′′ + P ′′
EWuc,

P ′′
EW ≡ P ′′

EWtc

and

P ′′C
EW ≡ P ′′C

EWtc,

the complete SM amplitudes for these decays are

−
√

2A(B+→ π+π0) =
(

T ′′+C′′) eiγ +
(

P ′′
EW + P ′′C

EW

)

e−iβ,

−A(B0→ π+π−) = (T ′′+P ′′
uc)e

iγ + (P ′′
EW + P ′′)e−iβ , (3.26)

−
√

2A(B0→ π0π0) = (C′′−P ′′
uc)e

iγ + (P ′′
EW − P ′′)e−iβ .

It is easy to see that if new physics enters any of the diagrams above, we can
divide it into two pieces as Neiφ = N1e

iγ +N2e
−iβ, and absorbed through

redefinitions of the SM diagrams. Hence no clean NP signal is possible in
the B → ππ either. Once again, just as in the B → Kπ case, we find
that new physics introduced in P ′′

EW or C′′ modifies P ′′
EW and C′′ amplitudes

simultaneously. The case for the pairs (T ′′,P ′′
EW ) and (P ′′,P ′′

uc) are similar.

In fact, there are significant differences between B → ππ and B → Kπ
decays. The P ′′

EW and P ′′C
EW contributions in B → ππ decays are expected

to be tiny and are hence justifiably ignored within the SM. If there is new
physics, the amplitudes cannot be recast in the SM form if P ′′

EW and P ′′C
EW

are neglected. Hence, direct CP violation in B+ → π+π0 is a clean signal
of new physics. Thus, it is only if P ′′

EW and P ′′C
EW are kept that one can

conclude that no clean NP signal is possible.

Similarly we can easily analysed other B decays if we look at the quark-
level topologies. B → Kπ and B → ππ decays are b → suu and b → duu,



respectively. The analysis of all decays of the form b → duu, b → suu,
b → dcc, or b → scc is thus identical to those above. If we keep all SM
diagrams, any NP effects can be absorbed by redefining the SM diagrams,
so that there are no clean signals of NP in such decays. Decays of the form
b → ddd, b → sdd, b → dss, or b → sss are slightly different because T
and C cannot enter (i.e. they are “pure penguin”). For example, consider
B0 → K0K0. The amplitude for this decay is

A(B0 → K0K0) = Puce
iγ + Pe−iβ , (3.27)

where P and Puc are as defined above except there is no E contribution
here. It is easy to see that NP added to any of the diagrams can once again
be absorbed by redefinitions of the amplitudes. Thus, there can be no clean
signal of NP in B0 → K0K0 decays.

Hence,we can say that there are no clean signals of NP in B decays which
receive penguin contributions. This result was earlier stated in Ref. [108] in
weak form (only by modifying one of the weak phases by the contribution of
NP). But our conclusion is more robust as it is obtained when an arbitrary
NP amplitude is introduced. If we make some approximation in the SM
amplitudes, then only we can get a signal of NP in modes with penguin
contributions. The approximation must be such a way that NP altered
amplitudes cannot be recast in the SM form. The signal of NP so obtained
will be reliable, if the approximation is justifiable.

The clean signals of NP are possible only in the pure tree-level decays
b → ucd, b → cud, b → ucs, and b → cus. Through the measurements of
direct CP violation, NP can be detected because these decays have only one
weak phase. However, any NP effects are purely tree-level and are therefore
much suppressed [109]. In modes with penguin contributions, our observa-
tion that NP -modified amplitudes retain the SM form has two additional
consequences which we discuss in detail.

Kπ puzzle can be solved if we assume that a large electroweak-penguin
amplitude is resulting from NP. Several fits to the B → Kπ data [106]
is indicating that the electroweak-penguin amplitude is indeed large, but
it is difficult to accommodate the data without demanding a larger-than-
expected C′ amplitude. A priori no one would expect a tree-level amplitude
to be considerably affected by NP. However, as Indeed it is illustrated above
that the simultaneous effect of NP on C′ and P ′

EW is not an accident. In
fact, a second conclusion that emerges from the above discussion is that NP
always affects diagrammatic amplitudes in pairs. Therefore, we find that the
following pairs of amplitudes are simultaneously affected by NP: i)P ′

EW and
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Figure 3.1: Various topological equivalent diagrams

C′ (P ′
EW and C′), ii) P ′C

EW and T ′ (P ′C
EW and T ′), iii) P ′ and A′ (P ′ and A′).

These pairs of diagrams are topologically equivalent in the sense that if
they contribute to any decay mode, they always appear together, shown in
fig 3.1. Hence, NP must contribute to specific pairs of amplitudes simulta-
neously. The fact that fits to the B → Kπ data require a large C′ may well
indicate a contribution of NP to P ′

EW .

Now, the B → Kπ modes have been used to measure the weak phase γ.
It is important to examine the effect of NP on this weak-phase measurement.
It is shown that all the isospin-related B → Kπ amplitudes have the same
form as in the SM even in the presence of NP. Therefore, the measured weak
phase with or without NP should remain the same. However, γ cannot be
extracted without resorting to some approximations because the number of
theoretical parameters is more than the number of independent observables.



when no approximations are made, NP does not alter the SM form of the
amplitudes. However, if some of the diagrammatic amplitudes are neglected,
then the NP -modified amplitudes may not have the SM form. Whenever we
make the approximations such that the amplitudes with the addition of NP
retain the SM form, then the weak phase measured remains unaltered from its
SM value, even in the presence of NP. Therefore, it explains nicely why fits
to the B → Kπ data [106] often yield γ consistent with the CKM fits [52]. In
case the approximations made are such that the amplitudes in the presence
of NP cannot be recast in the SM form, the addition of NP will result in
adding to the number of theoretical parameters, rendering the weak-phase
measurement impossible without further assumptions. If γ is nevertheless
measured and is found to differ from the SM value, the deviation may be
either due to NP or due to the invalid approximations used. In this sense
a discrepancy in the measured value of γ is not necessarily an unambiguous
signal of NP.

We see that there are more theoretical parameters than observables in
B → Kπ modes. At best there can be 9 independent observables ( 4 branch-
ing ratios and 4 direct CP asymmetries and 1 time-dependent CP asymme-
try) for B0

d → K0π0. But there are six diagrammatic amplitudes and two
weak phases γ and β, resulting in a total of 13 parameters in this decay mode
[Eq. (3.23)]. We can take the measurement of sin 2β in B0(t) → J/ψKS:
sin 2β = 0.65 ± 0.025 [26] and leaving 12 theoretical unknowns. It is there-
fore clear that one needs to make some approximation in order to analyze
these modes.

In Ref. [103], the relative sizes of the amplitudes were estimated to be
roughly

1 : |P ′
tc|, O(λ) : |T ′|, |P ′

EW | ,
O(λ

2
) : |C ′|, |P ′C

EW |, O(λ
3
) : |A′|, (3.28)

where λ ∼ 0.2. We can use these SM estimates as a guide to neglect dia-
grammatic amplitudes and reduce the number of parameters.

If only the “large” diagrams (P ′
tc, T

′, P ′
EW ) are retained, the B → Kπ

amplitudes can be written

A(B+ → K0π+) ≃ −P ′
tc ,√

2A(B+ → K+π0) ≃ P ′
tc + P ′

EW − T ′eiγ ,

A(B0 → K+π−) ≃ P ′
tc − T ′eiγ ,√

2A(B0 → K0π0) ≃ −P ′
tc + P ′

EW . (3.29)



The signals of NP are possible in the above approximate form since some of
the amplitudes have a well-defined phase and RI is lost. For example, the
direct CP asymmetry in B+ → K0π+ and B0 → K0π0 vanishes. Similarly,
the mixing-induced CP asymmetry in B0(t) → K0π0 should be equal to
that in B0(t) → J/ψKS. If we get any deviation from these expectations
may imply presence of NP. But we can conclude this only on the validity of
the approximations made in the above parametrization.

Another NP signal can be found as follows. In the SM, the following
sum rule holds approximately [111]:

Γ(B0 → K+π−) + Γ(B+ → K0π+) ≈
2Γ(B+ → K+π0) + 2Γ(B0 → K0π0) . (3.30)

The error in this sum rule is quadratic in the subdominant terms (T ′, P ′
EW ).

If it is found not to hold, again NP will be deduced.
In a fit to the B → Kπ data, smaller diagrams can be retained. First,

we observe that not all the diagrams are independent. In the SM, to a good
approximation, the diagrams P ′

EW and P ′C
EW are related to T ′ and C ′ using

flavor SU(3) [112]:

P ′
EW

T ′ ≃ 3

2

[

c9 + c10
c1 + c2

]

R ,

P ′C
EW

C ′ ≃ 3

2

[

c9 + c10
c1 + c2

]

R . (3.31)

Here, the ci are Wilson coefficients [32] and

R ≡
∣

∣

∣

∣

∣

V ∗
tbVts

V ∗
ubVus

∣

∣

∣

∣

∣

=
1

λ2

sin(β + γ)

sinβ
. (3.32)

The B → Kπ amplitudes thus depend on eleven theoretical parameters:
the magnitudes and relative strong phases of P ′

tc, T
′, C ′, P ′

uc and A′, and the
weak phases β and γ. The phase β can be taken from the measurement of
sin 2β in B0(t) → J/ψKS and leaving ten theoretical unknowns. However,
there are only nine B → Kπ measurements: four CP-averaged branching
ratios, four direct CP asymmetries, and one mixing-induced CP asymmetry
(in B0(t) → K0π0). In order to perform a fit, it is therefore necessary to
make an approximation to reduce the number of theoretical parameters, i.e.
certain diagrams must be neglected.

There are also other approximate parametrization for the B → Kπ am-
plitudes considered in literature [113] is

A(B+ → K0π+) ≃ −P ′
tc ,



√
2A(B+ → K+π0) ≃ P ′

tc + P ′
EW − (T ′ + C ′)eiγ ,

A(B0 → K+π−) ≃ P ′
tc − T ′eiγ ,√

2A(B0 → K0π0) ≃ −P ′
tc + P ′

EW − C ′eiγ . (3.33)

C ′ is retained even though it is subdominant, as it is claimed that the
fit is extremely poor without retaining C ′. Leaving aside the merits of
such an assumption, we see that in Eq. (3.33) we have 9 variables and 9
observables. Hence, all the variables can be solved in terms of observables.
It is straightforward to see that if new physics contributes to P ′

EW or C ′ it can
be reabsorbed using RI. This is because P ′

EW and C ′ appear simultaneously
in the amplitudes. Since the amplitudes have the same form with or without
new physics the value of γ measured under this approximation would not
differ from the SM value even in the presence of NP. If we get disagreement
in the value of γ, it must indicate a failure of the assumptions made. If NP
contributes to other topologies it cannot be reabsorbed using RI and the
value of γ cannot be measured unless further approximations are made.

Given that the pairing of P ′
EW and C ′ is the reason for fits to the B → Kπ

data finding a value for γ consistent with the SM CKM fits, it is puzzling why
fits to the B → Kπ data using Eq. (3.29) (e.g., Ref. [114]) also result in a
value for γ in agreement with the SM. The explanation lies in the large error
in the data, due to which the two parametrizations in Eqs. (3.29) and (3.33)
cannot be distinguished. This argument is vindicated by the fits performed
in Ref. [114] when NP is included. If NP is added to P ′

EW in Eq. (3.29),
it can be recast in the form of Eq. (3.33) with C ′ being replaced entirely
by a NP contribution and P ′

EW being redefined. Only new physics of this
kind (scenario (i) of Ref. [114]) results in the best fits and γ is remarkably
consistent with the SM. The point is that the agreement of γ obtained with
the SM value does not a priori rule out new physics, but rather strengthens
the arguments in favor of NP contributing to P ′

EW .

3.4 Summary

We point out that a generic B → f decay amplitude may be written as a
sum of two terms, corresponding to a pair of weak phases {φ1, φ2} chosen
completely at will (as long as they do not differ by a multiple of 180◦).
Clearly, physical observables may not depend on this choice; we designate
this property by “reparametrization invariance”.

We explore some of the unusual features of reparametrization invariance.
we have made three main points. First, there are no clean signals of NP in



any B decay which receives penguin contributions. In order to obtain a sig-
nal of NP, it is necessary to either have an accurate theoretical estimate of
parameters or to make a justifiable approximation. Second, we have noted
that in all decays with penguin contributions, NP always affects diagram-
matic amplitudes in pairs. The diagrams P ′

EW and C′, P ′C
EW and T ′, and

P ′ and A′ are simultaneously affected by NP. Fits to B → Kπ data suggest
larger-than-expected PC

EW and C ′ contributions. In view of our observation,
the requirement of large C ′ may be a sign of NP. Finally, we have shown
that if NP contributes in such a way that the amplitudes retain the SM form
using RI, the weak phase obtained will not be altered due to the presence
of NP. This provides a natural explanation of the result that several fits to
B → Kπ data with varying approximations yield γ in accord with the SM.
The observation of a large C ′ and γ consistent with the SM in B → Kπ
decays provide substantial circumstantial evidence in favor of NP [148].



Chapter 4

B → Kπ Puzzle

4.1 Introduction

Excellent progress of the B factory experiments throws light on the study
of rare B decays, which are crucial for testing the SM and detecting any
hints beyond the SM. B factories has been producing large numbers of B
mesons, providing accurate measurements of branching ratios and direct
CP asymmetry for many modes; the B → PP , B → PV and B → V V
modes, where P and V denote a pseudoscalar meson and a vector meson.
B → Kπ decays are of great importance not only to investigate NP beyond
the SM but also to examine the hadronic parameters and CKM matrix
elements within the SM. The special property of penguin dominance for the
B → Kπ modes provides us a golden opportunity to study NP in the b→ s
penguin processes. The B → Kπ modes has been studied extensively for
quite a long time. For example, the angle γ of the CKM unitary triangle
has been determined in model independent ways using B → Kπ over the
past ten years even before the new generation of the experimental data
came out [116, 117, 118]. Many elaborate theoretical predictions based on
QCDF [119], PQCD [120, 121] and SCET [122] have been also produced for
physical observables in the B → Kπ modes within the SM.

NP beyond the SM in B → Kπ decays has been inspired by experimental
results as follows. First, the ratios

Rc ≡ 2
BR(B+ → K+π0)

BR(B+ → K0π+)
and Rn ≡ 1

2

BR(B0 → K+π−)

BR(B0 → K0π0)
(4.1)

are expected to satisfy Rc ≈ Rn within the SM [118]. Before ICHEP-2008,
those experimental values had shown a significant discrepancy, but as time
passes they were getting closer to each other [123]. Current data updated by
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Sep 2008 in HFAG [26] show Rc = 1.11±0.05 and Rn = 0.99±0.05, which are
consistent with the SM expectation. On the other hand, the CP asymmetry
measurements still show a disagreement with the SM prediction. The SM
naively expects ACP (B0 → K+π−) ≈ ACP (B+ → K+π0) for the direct CP
asymmetry and (sin 2β)KSπ0 ≈ (sin 2β)ccs = 0.675 for the mixing-induced
CP asymmetry. But the current experimental data show

ACP (B+ → K+π0) − ACP (B0 → K+π−) = 0.13 ± 0.02, (4.2)

(sin 2β)KSπ0 − (sin 2β)ccs = −0.1 ± 0.15. (4.3)

The recent PQCD result for the difference of the above direct CP asymme-
tries is 0.08 ± 0.09, which is actually consistent with the data. However,
the PQCD prediction ACP (B+ → K+π0)PQCD = −0.01+0.03

−0.05 still has some
difference from the current experimental data ACP (B+ → K+π0)EXP =
0.027 ± 0.029. Moreover, the difference of the mixing-induced CP asym-
metry from the PQCD prediction is 0.065 ± 0.04, which shows still some
deviation from the data.

On the one hand,the electroweak penguin (EWP) processes in the B →
Kπ decays has drawn lots of attention for studying NP for a long time,
especially based on various specific NP scenarios such as SUSY models [125],
flavor-changing Z ′ models [126], four generation models [127], and so on, and
on the other hand, numerous model-independent attempts have been also
made in search of NP within the quark diagram approach. Many authors
made known that the anomalous behaviors of the experimental data could
be accommodated with the enhancement of the EWP amplitude [128, 129]
as well as an additional weak phase in the electroweak sector [130, 131, 132].
A few authors have also found that the color-suppressed tree amplitude
would be the main source of NP in the B → Kπ modes [132, 133]. However,
any NP contribution can be absorbed into the SM amplitudes always in
pair, due to re-parametrization invariance (RI) of decay amplitudes [102,
148]; for example, both the color-suppressed tree and the EWP amplitude.
Hence, the large enhancement of the color-suppressed tree amplitude can
be understood by a NP contribution to the EWP amplitude with a non-
zero NP weak phase. The study of two-body hadronic B decays provides
good opportunities to test the SM and more to probe possible NP effects
beyond the SM. Large numbers of B mesons have been produced at the B
factories enabling accurate measurements of branching ratios and direct CP
asymmetry for many modes. Polarization measurements for several such
modes have been reported, as well.

Recent experimental results [26, 135, 136] for the B → Kπ mode, show
deviations from SM expectations; the discrepancy, commonly being referred



to as the “B → Kπ puzzle.” The dominant quark level subprocesses for
B → Kπ decays are b → sqq (q = u, d) penguin processes which are poten-
tially sensitive to NP effects. Many efforts have been made to resolve the
puzzle [129, 155]. A model-independent study shows that the experimental
data strongly indicate large enhancements of both the electroweak (EW)
penguin and the color-suppressed tree contributions [155]. The B → Kπ
modes have certain inherent limitations. The four B → Kπ decay modes
can experimentally yield at most 9 observables: four each of the branching
ratios and direct CP asymmetries and one time-dependent CP asymmetry.
Clearly, the 9 observables are insufficient to determine all the 12 theoretical
parameters [155] needed to describe these decay modes. One hence needs to
make some assumptions. Traditionally, assumptions have often been made
on sizes of the topological amplitudes as well as on the strong phases of the
different topologies.

4.2 Solution of B → Kπ Puzzle through B → K∗ρ

The B → V V modes, where V denotes a vector meson, have the advan-
tage that they provide many more observables, compared with those being
measured in B → PP (e.g., B → Kπ) or B → V P (e.g., B → K∗π)
modes, where P denotes a pseudoscalar meson, due to spins of the final
state vector mesons. Since the first observation of B → K∗φ by CLEO
Collaboration, several B decays to two charmless vector mesons, such as
B → K∗ρ and B → ρρ, have been reported by BABAR and BELLE Col-
laboration [26, 135, 138, 139, 140, 141].

The B → K∗ρ modes (B → V V ) are the analogues of B → Kπ modes
(B → PP ) at the quark level processes because the quark level processes
of both modes are exactly the same. Therefore, it is assumed that if there
appear any NP effects through B → Kπ, then similar new physics effects
will appear through B → K∗ρ as well. However, the study of B → V V
modes requires performing an angular analysis in order to obtain the helic-
ity amplitudes. While angular analysis is often regarded as an additional
complication needed due to the presence of both CP-even and CP-odd com-
ponents that dilute the time dependent CP asymmetry, it can provide an
impressive gain in terms of the large number of observables. In fact, pre-
liminary polarization measurement for B+ → K∗+ρ0, B+ → K∗0ρ+ and
B0 → K∗0ρ0 have already been done [26, 135, 138, 141].

We have studied B → K∗ρ decays in a model-independent approach.
We have shown that the B → K∗ρ modes result in a total of 35 independent
observables in comparison to the B → Kπ modes that yield 9 observables.



However, we need 36 independent parameters for theoretical description of
B → K∗ρ, which is still one short of the number of possible observables. If
we assume that one of the parameter γ is measured somewhere else, then
we can determine all the remaining parameters in terms of observables and
therefore we can resolve the “B → Kπ puzzle.” First, we will determine
all the theoretical parameters (except γ) describing the decay amplitudes of
B → K∗ρ in a model-independent way in terms of experimental observables.
We will then compare these determined theoretical parameters with the
corresponding model estimates. It is very important for improving model
calculations, like QCD factorization [142], perturbative QCD [143], and so
on. Secondly, certain tests of the SM are discussed that may reveal NP
effects if they appear in B → K∗ρ decays. Any indication of NP effects in
B → K∗ρ will provide valuable hints on possible NP effects in B → Kπ
decays because both decay modes are same at the quark level. We write
the decay amplitudes of B → K∗ρ in terms of linear combinations of the
topological amplitudes in the quark diagram approach [103]. Then we focus
on how to extract all the theoretical parameters, including the magnitudes of
the topological amplitudes and their strong phases, in terms of experimental
observables. Finally, it is possible to determine all the parameters in analytic
forms. We also propose tests of conventional hierarchy relations between the
topological amplitudes and of possible relations between the relevant strong
phases within the SM. A breakdown of these relations may indicate possible
NP contributions appearing in B → K∗ρ decays, as well as in the analogous
mode B → Kπ. One could hence verify if NP is the source of the “B → Kπ
puzzle.”

4.2.1 Formalism for B → K∗ρ decays

On the basis of quark diagram approach, the decay amplitudes for B → K∗ρ
modes can be written in terms of the topological amplitudes similar to Eq.
( 3.23)as follows:

A0+
λ ≡ Aλ(B+ → K∗0ρ+) = −P ′

λ + A′
λe

iγ , (4.4)

√
2A+0

λ ≡
√

2Aλ(B+ → K∗+ρ0) = (P ′
λ + P ′

EW,λ + P ′C
EW,λ)

− (T ′
λ + C′

λ + A′
λ)eiγ , (4.5)

A+−
λ ≡ Aλ(B0 → K∗+ρ−) = (P ′

λ + P ′C
EW,λ) − T ′

λ , (4.6)



√
2A00

λ ≡
√

2Aλ(B0 → K∗0ρ0) = −(P ′
λ − P ′

EW,λ) − C′
λe

iγ . (4.7)

where the subscript λ = {0, ‖,⊥} denotes the helicity of the amplitudes. We
follow and generalize the notation used in Ref. [155].

Now we again redefine the topological amplitudes as:

A′
λ ≡ Ãλ e

iδA
λ , (4.8)

P ′
λ ≡ P̃λ e

iδP
λ , (4.9)

T ′
λ ≡ T̃λ e

iδT
λ , (4.10)

C′
λ ≡ C̃λ e

iδC
λ , (4.11)

P ′
EW,λ ≡ P̃EW

λ eiδ
EW
λ , (4.12)

P ′C
EW,λ ≡ P̃EW

C,λ e
iδCEW

λ . (4.13)

Now we re-express Eqs. (4.4)−(4.7) as

A0+
λ = eiγÃλe

iδA
λ − P̃λe

iδP
λ , (4.14)

A+0
λ = − 1√

2

[

eiγ(T̃λe
iδT

λ + C̃λe
iδC

λ + Ãλe
iδA

λ )

−(P̃λe
iδP

λ + P̃EW
λ eiδ

EW
λ + P̃EW

C,λ e
iδCEW

λ )
]

, (4.15)

A+−
λ = −

[

eiγ T̃λe
iδT

λ − (P̃λe
iδP

λ + P̃EW
C,λ e

iδCEW
λ )

]

, (4.16)

A00
λ = − 1√

2

[

eiγC̃λe
iδC

λ + (P̃λe
iδP

λ − P̃EW
λ eiδ

EW
λ )

]

, (4.17)

where the γ and δλ’s are the weak phase and the relevant strong phases, re-
spectively. And the amplitudes for these 4 decay modes and their conjugate
modes can be related by isospin symmetry[80] as:

1√
2

(

A0+
λ −A+−

λ

)

= A00
λ −A+0

λ , (4.18)

1√
2

(

A
0+
λ −A

+−
λ

)

= A
00
λ −A

+0
λ . (4.19)

There are three helicities for each of the modes of the amplitudes for
B → K∗ρ. We can express all these amplitudes and their conjugates as

Amp(B → K∗ρ) = A0g0 +A‖g‖ + i A⊥g⊥ ,

Amp(B → K∗ρ) = A0g0 +A‖g‖ − i A⊥g⊥ , (4.20)

where the gλ are the coefficients of the helicity amplitudes written in the
linear polarization basis. The gλ depend only on the angles describing the



kinematics [144]. We can denote the helicity amplitudes (and their conjugate

amplitudes) for the fourK∗ρmodes as A0+
λ , A+−

λ , A+0
λ , A00

λ , (and A
0+
λ , A

+−
λ ,

A
+0
λ , A

00
λ ). Hence, the number of amplitudes for the B → K∗ρ modes is

three times that for the B → Kπ modes. In principle, it is possible to
measure many more observables in the B → K∗ρ case compared to the
B → Kπ case. In the B → K∗ρ modes, without including the interference
terms between helicities, we have three times the number of observables
(i.e., 27 observables) in comparison to the Kπ modes (i.e., 9 observables).
In addition to these observables, there are many more of observables result
from the interference terms between the helicities. We can examine in detail
the number of observables available in B → K∗ρ.

The time dependent decay for B → f , where f is one of the K∗ρ final
state, may be expressed as

Γ(B
(–)

(t) → f) = e−Γt
∑

λ≤σ

(

Λf
λσ ± Σf

λσ cos(∆Mt) ∓ ρf
λσ sin(∆Mt)

)

gλgσ ,(4.21)

where

Bf
λ ≡ Λf

λλ =
1

2
(|Af

λ|2 + |Af
λ|2), Σf

λλ =
1

2
(|Af

λ|2 − |Af
λ|2),

Λf
⊥i = −Im(Af

⊥A
f∗
i −Af

⊥A
f∗
i ), Λf

‖0 = Re(Af
‖A

f∗
0 +A

f
‖A

f∗
0 ),

Σf
⊥i = −Im(Af

⊥A
f∗
i +A

f
⊥A

f∗
i ), Σf

‖0 = Re(Af
‖A

f∗
0 −Af

‖A
f∗
0 ),

ρf
⊥i =Re

(

e−iφq
M[Af∗

⊥ A
f
i +Af∗

i A
f
⊥]
)

, ρf
⊥⊥=Im

(

e−iφq
M Af∗

⊥ A
f
⊥
)

,

ρf
‖0 =−Im

(

e−iφq
M [Af∗

‖ A
f
0 +Af∗

0 A
f
‖ ]
)

, ρf
ii =−Im

(

e−iφq
MAf∗

i A
f
i

)

,

(λ, σ = {0, ‖,⊥}, i = {0, ‖}) . (4.22)

We can measure all these 18 observables only for the CP eigenstate ofK∗0ρ0 .
The other 3 modes are not CP eigenstates so that time dependent asymmetry
cannot be measured. But we can measure Λf

λσ and Σf
λσ for each of these

modes, resulting in a total of 12 observables for each of the 3 modes: B0 →
K∗+ρ−, B+ → K∗0ρ+ and B+ → K∗+ρ0. Hence, we can get a total of 54
observables. However, due to the isospin relations in Eqs. (4.18) and (4.19),
the number of independent amplitudes is 18. i.e. at best we can get total
of 35 independent informations related to 18 magnitudes of the amplitudes
and their 17 relative phases. Thus, only 35 of the above 54 observables are
independent.



We can describe the modes B → K∗ρ using isospin analogous to the
B → Kπ modes. Since there are three helicity states, the amplitudes cor-
responding to the different topologies carry a helicity index and may be
denoted by T̃λ, C̃λ, Ãλ, P̃λ, P̃EW

λ , and P̃EW
C,λ . Therefore, there are 18 ampli-

tudes each with its own strong phase denoted by δT
λ , δC

λ , δA
λ , δP

λ , δEW
λ and

δCEW
λ , respectively. Since we can measure only relative strong phases, so

the number of strong phases become 17. Thus, we require 36 parameters:
18 (real) amplitudes, 17 strong phases and γ. Despite the large number
of observables in the K∗ρ case, we still have one more parameter than the
observables.

In the next section, we discuss how to determine all the theoretical pa-
rameters, such as the magnitudes and strong phases of the topological am-
plitudes, in term of the observables.

4.2.2 Extracting contributions of various topologies

We can describe the B → K∗ρ modes by a total of 36 parameters. However,
it is not possible to obtain more than 35 independent informations from the
measurements. Thus, it is only possible to solve for the parameters with
respect to one unknown parameter namely γ. It is well known that the
weak phase γ can be measured through certain B decay processes, such as
B → D(∗)K(∗) [134, 135]. In this section, we present analytic solutions to
all the parameters with respect to γ. To simplify expression we introduce
some new notation. We define

yf
λ =

√

√

√

√1 −
(Σf

λλ

Λf
λλ

)2
, (4.23)

αij
λ = arg(Aij

λ ) , αij
λ = arg(A

ij
λ ) , (4.24)

where (ij) = (0+), (+0), (+−), (00) and λ = {0, ‖,⊥}.
We first find the phases αij

λ and αij
λ in terms of observables. Then,

using the αij
λ and αij

λ , we determine the amplitudes T̃λ, C̃λ, Ãλ, P̃λ, P̃EW
λ ,

P̃EW
C,λ as well as the strong phases δT

λ , δC
λ , δA

λ , δP
λ , δEW

λ , and δCEW
λ given in

Eqs. (4.14)−(4.17).

The relative sizes among these topological amplitudes are roughly esti-
mated [145] as

1 : |V ∗
tbVts Ptc|,

O(λ) : |V ∗
ubVus T |, |V ∗

tbVts P
EW |,



O(λ
2
) : |V ∗

ubVus C|, |V ∗
tbVts P

EW
C |,

O(λ
3
) : |V ∗

ubVus A|, |V ∗
ubVus Puc|, (4.25)

where λ ∼ 0.2. We can roughly estimate the relative size of |V ∗
ubVus Puc| as

∣

∣

∣

∣

∣

V ∗
ubVus Puc

V ∗
tbVts Ptc

∣

∣

∣

∣

∣

∼ λ
2
∣

∣

∣

∣

Puc

Ptc

∣

∣

∣

∣

. (4.26)

Here |Pu| and |Pc| are smaller than |Pt| [146], and 0.2 < |Puc/Ptc| < 0.4
within the perturbative calculation [147]. Hence, it can be assumed that

|(V ∗
ubVus Puc)/(V

∗
tbVts Ptc)| ∼ O(λ

3
) for our analysis.

Since the estimation of the annihilation contribution(Ã/P̃ ∼ O(λ
3
)

where λ ∼ 0.2) is very small, so it can be neglected [149]. After neglecting
the annihilation terms We can write the decay amplitudes of the K∗0ρ+

modes as

P̃λ = |A0+
λ | , (4.27)

δP
λ = α0+

λ − π , (4.28)

α0+
λ = α0+

λ . (4.29)

These relations imply that the direct CP asymmetry of the K∗0ρ+ mode
vanishes: Σ0+

λλ = 0 or y0+
λ = 1. We can set α0+

0 = π or δP
0 = 0 without loss

of generality. Then the phases α0+
‖ and α0+

⊥ can be obtained from the relative

phases (α0+
‖ − α0+

0 ) and (α0+
⊥ − α0+

0 ) that are determined from the angular

analysis through the measurement of Λ0+
⊥0, Σ0+

⊥0, Λ0+
‖0 , Σ0+

‖,0. Subsequently

all the δP
λ and α0+

λ for λ = {0, ‖,⊥} are determined from Eqs. (4.28) and
(4.29), up to a discrete ambiguity. We can remove this ambiguity by using
theoretical estimates [139]. Now we re-parameterize for each helicity state
of every relevant phase, such as δT

λ , δC
λ , α+−

λ , etc., as the relative phase to
δP
λ . For example, the strong phase δT

‖ should be understood as (δT
‖ − δP

‖ ).

Now, using the isospin analysis, we determine αij
λ , αij

λ in terms of the
observables. The isospin relations between the decay amplitudes for B →
K∗ρ and their conjugate modes are the same as those given in Eqs. (4.18)
and (4.19). Eq. (4.18) can be rewritten as

1√
2

(

|A0+
λ |eiα0+

λ − |A+−
λ |eiα+−

λ

)

= |A00
λ |eiα00

λ − |A+0
λ |eiα+0

λ , (4.30)

where Aij
λ ≡ |Aij

λ |eiα
ij
λ and α0+

0 = π (λ = {0, ‖,⊥}). In Eq. (4.30) we

see that it is possible to measure all the magnitudes |Aij
λ | of the decay



amplitudes and the relative phases (αij
‖ − αij

0 ) and (αij
⊥ − αij

0 ). Therefore,

the three isospin relations given in Eq. (4.30) are described by only three
independent parameters, α+−

0 , α00
0 and α+0

0 ,for the three helicity states λ =
{0, ‖,⊥}. Since we have 3 independent complex equations with these 3 real
parameters for λ = {0, ‖,⊥}, we can solve all these equations to determine
the parameters α0+

0 , α+−
0 and α+0

0 . As a result, all the 12 magnitudes |Aij
λ |

and the 12 phases αij
λ are completely determined. Details of the solutions

of the phases and magnitudes of Aij
λ (and A

ij
λ ) are given in Appendix A.

For the CP conjugate decay modes, one can use the same method as the
above by starting with the isospin relations:

1√
2

(

A
0+
λ eiα

0+
λ −A

+−
λ eiα

+−
λ

)

= A
00
λ e

iα00
λ −A

+0
λ eiα

+0
λ , (4.31)

where A
ij
λ ≡ Aij

λ e
iαij

λ and α0+
0 = α0+

0 = π (λ = {0, ‖,⊥}). Thus, in Eq. (4.31)
for λ = {0, ‖,⊥} there are only three independent parameters α+−

0 , α00
0 and

α+0
0 and we can determine these by solving the three independent complex

equations. Consequently, we can determine all the 12 A
ij
λ and the 12 αij

λ .

Now we define the following useful parameters :

Xλe
iδX

λ = |A+−
λ |eiα+−

λ − P̃λ, Xλe
iδ

X
λ = |A+−

λ |eiα+−
λ − P̃λ , (4.32)

Yλe
iδY

λ =
√

2 |A00
λ |eiα00

λ + P̃λ, Y λe
iδ

Y
λ =

√
2 |A00

λ |eiα00
λ + P̃λ .(4.33)

Since everything on the right-hand side of these equations has been found,
we can determine for each helicity state all the 8 parameters Xλ, Xλ, Yλ,

Y λ, δX
λ , δ

X
λ , δY

λ , δ
Y
λ on the left-hand side in terms of the known parameters

by directly solving the 4 complex equations. Then we re-express Eqs. (4.16)
and (4.17) as

Xλe
iδX

λ = −eiγ T̃λe
iδT

λ + P̃EW
C,λ e

iδCEW
λ , (4.34)

Yλe
iδY

λ = −eiγC̃λe
iδC

λ + P̃EW
λ eiδ

EW
λ . (4.35)

These two complex equations together with their CP conjugate mode equa-
tions (i.e., 8 real equations) include 8 real parameters (the magnitudes and
strong phases of 4 topological amplitudes) for each λ that can be determined
in terms of the observables as: From Eqn. (4.34) and its CP conjugate, we
have

Xλe
iδX

λ = −eiγ T̃λe
iδT

λ + P̃EW
C,λ e

iδCEW
λ , (4.36)



Xλe
iδ

X
λ = −e−iγ T̃λe

iδT
λ + P̃EW

C,λ e
iδCEW

λ . (4.37)

From Eqn. (4.32),

Xλe
iδX

λ −Xλe
iδ

X
λ = (|A+−

λ |eiα+−
λ − P̃λ) − (|A+−

λ |eiα+−
λ − P̃λ)

= |A+−
λ |eiα+−

λ − |A+−
λ |eiα+−

λ

= |A+−
λ |(cosα+−

λ + i sinα+−
λ )

−|A+−
λ |(cosα+−

λ + i sinα+−
λ )

= (|A+−
λ | cosα+−

λ − |A+−
λ | cosα+−

λ )

+ i(|A+−
λ | sinα+−

λ − |A+−
λ | sinα+−

λ )

(4.38)

From Eqns. (4.36) and (4.37), we have

Xλe
iδX

λ −Xλe
iδ

X
λ = −(eiγ − e−iγ)T̃λe

iδT
λ

= −2i sin γ(cos δT
λ + i sin δT

λ )Tλ

= 2 sin γ sin δT
λ Tλ − 2i sin γ cos δT

λ T̃λ (4.39)

On comparing Eqns. (4.38) and (4.39), we have

2 sin γ sin δT
λ T̃λ = |A+−

λ | cosα+−
λ − |A+−

λ | cosα+−
λ (4.40)

−2 sin γ cos δT
λ T̃λ = |A+−

λ | sinα+−
λ − |A+−

λ | sinα+−
λ (4.41)

Now squaring and adding Eqns. (4.40) and (4.41), we get

4 sin2 γ T̃ 2
λ = |A+−

λ |2 + |A+−
λ |2 − 2|A+−

λ | |A+−
λ | cos(α+−

λ − α+−
λ )

= 2B+−
λ −

√

4|A+−
λ |2 |A+−

λ |2 cos(α+−
λ − α+−

λ ) (4.42)

Since
√

4|A+−
λ |2 |A+−

λ |2 =
√

(|A+−
λ |2 + |A+−

λ |2)2 − (|A+−
λ |2 − |A+−

λ |2)2

=
√

4(B+−
λ )2 − 4(Σ+−

λ )2

= 2B+−
λ

√

√

√

√1 −
(Σ+−

λ

B+−
λ

)2

= 2B+−
λ y+−

λ (4.43)



Therefore,

4 sin2 γ T̃ 2
λ = 2B+−

λ − 2B+−
λ y+−

λ cos(α+−
λ − α+−

λ )

= 2B+−
λ

[

1 − y+−
λ cos(α+−

λ − α+−
λ )

]

T̃λ =

√

B+−
λ

2 sin2 γ

[

1 − yλ
+− cos(α+−

λ − α+−
λ )

]

(4.44)

From Eqns. (4.40) and (4.41), we get the value of tan δT
λ .

tan δT
λ = −|A+−

λ | cosα+−
λ − |A+−

λ | cosα+−
λ

|A+−
λ | sinα+−

λ − |A+−
λ | sinα+−

λ

, (4.45)

Similarly we can solve for other parameters in terms of observables as:

T̃λ =

√

B+−
λ

2 sin2 γ

[

1 − yλ
+− cos(α+−

λ − α+−
λ )

]

, (4.46)

C̃λ =

√

B00
λ

sin2 γ

[

1 − yλ
00 cos

(

α00
λ − α00

λ

)

]

, (4.47)

P̃EW
C,λ =

√

1

4 sin2 γ

[

X2
λ +X

2
λ − 2XλXλ cos(δ

X
λ − δX

λ + 2γ)
]

, (4.48)

P̃EW
λ =

√

1

4 sin2 γ

[

Y 2
λ + Y

2
λ − 2YλY λ cos(δ

Y
λ − δY

λ + 2γ)
]

. (4.49)

And the strong phases are

tan δT
λ = −|A+−

λ | cosα+−
λ − |A+−

λ | cosα+−
λ

|A+−
λ | sinα+−

λ − |A+−
λ | sinα+−

λ

, (4.50)

tan δC
λ = −|A00

λ | cosα00
λ − |A00

λ | cosα00
λ

|A00
λ | sinα00

λ − |A00
λ | sinα00

λ

, (4.51)

tan δCEW
λ = − |A+−

λ | cos(α+−
λ + γ) − |A+−

λ | cos(α+−
λ − γ)

|A+−
λ | sin(α+−

λ + γ) − |A+−
λ | sin(α+−

λ − γ) − 2|A0+
λ | sin γ

,(4.52)



tan δEW
λ = − |A00

λ | cos(α00
λ + γ) − |A00

λ | cos(α00
λ − γ)

|A00
λ | sin(α00

λ + γ) − |A00
λ | sin(α00

λ − γ) +
√

2 |A0+
λ | sin γ

.(4.53)

It is shown that all the hadronic parameters can be cast in terms of the
observables and only one unknown parameter γ. If we assume that γ is
measured from somewhere else, then we can achieve a model-independent
understanding of which hadronic parameter is dominating in these modes.

In near future experiments, we can get the necessary information to ex-
tract each hadronic parameter. For example, we can determine the parameters–
the color-suppressed tree (C̃λ) and the EW penguin (P̃EW

λ ) amplitudes by
using the relevant observables expected to be measured in the near future
and the formulas given in Eqs. (4.47) and (4.49). Then, we can compare
the determined parameters with theoretical predictions, one can then fur-
ther investigate possible NP effects(if any) appearing in B → K∗ρ decay
processes [150]. In the next section it is discussed in details how we can
determine these parameters in terms of the observables to verify the hier-
archy relations between the topological amplitudes that are conventionally
assumed to be true in the SM. Then it is also discussed various ways to test
the validity of assumptions equating the strong phases of a certain set of
topological amplitudes.

4.2.3 Testing the hierarchy of topological amplitudes and pos-

sible relations between their strong phases

All the topological amplitudes and strong phases can be estimated in terms
of the observables and γ. One can conclude that if there exist any obtained
relations between the theoretical parameters they must also result in rela-
tions among the observables. We first derive certain relations between the
observables that can test the conventional hierarchy between the topological
amplitudes within the SM. It may be expected that

T̃λ

P̃λ

≈ P̃EW
λ

P̃λ

≈ λ ,
C̃λ

P̃λ

≈
P̃EW

C,λ

P̃λ

≈ λ
2

(4.54)

in analogy to the expectations [103] for the modes B → Kπ because the two
modes are topologically equivalent.

The topological amplitudes P̃λ, Ãλ, T̃λ, C̃λ, P̃EW
λ and P̃EW

Cλ have been
expressed in terms of the observables and γ in the previous section. It is
therefore easy to see that there must exist a relation between the observ-
ables and γ that must hold as a consequence of the hierarchy between the



topological amplitudes. The relations (4.54) indicate the hierarchy relation
P̃λ > T̃λ ≈ P̃EW

λ > C̃λ ≈ P̃EW
Cλ which must hold within the SM.

A simple approach would be to test the hierarchy P̃λ > T̃λ > C̃λ, which
would imply the following relation:

2 sin2 γB0+
λ > B+−

λ

[

1 − yλ
+− cos(α+−

λ − α+−
λ )

]

>

2B00
λ

[

1 − yλ
00 cos(α00

λ − α00
λ )
]

. (4.55)

To test the hierarchy P̃EW
λ > P̃EW

C,λ , one can test the following relation:

Y 2
λ + Y

2
λ − 2YλY λ cos(δ

Y
λ − δY

λ + 2γ) >

X2
λ +X

2
λ − 2XλXλ cos(δ

X
λ − δX

λ + 2γ). (4.56)

Besides the above relation, simple tests verifying the hierarchy of P̃EW
λ and

P̃EW
Cλ can be derived. Assuming that P̃EW

Cλ = λ
2
P̃λ in Eq. (4.16), it can be

shown that

B+−
λ

[

1 − yλ
+− cos(α+−

λ − α+−
λ + 2γ)

]

2 sin2 γB0+
λ

= 1 + O(λ
2
) (4.57)

Similarly assuming that PEW
λ = λ Pλ in Eq. (4.17), it can be found that

B00
λ

[

1 − yλ
00 cos(α00

λ − α00
λ + 2γ)

]

sin2 γB0+
λ

= 1 + O(λ) (4.58)

The relations T̃λ ≈ P̃EW
λ and C̃λ ≈ P̃EW

Cλ would imply that

2B+−
λ

[

1 − yλ
+− cos(α+−

λ − α+−
λ )

]

≈ Y 2
λ + Y

2
λ − 2YλY λ cos(δ

Y
λ − δY

λ + 2γ) ,

(4.59)

4B00
λ

[

1 − yλ
00 cos(α00

λ − α00
λ )
]

≈ X2
λ +X

2
λ − 2XλXλ cos(δ

X
λ − δX

λ + 2γ) .(4.60)

Testing the hierarchy T̃λ > P̃EW
C,λ and P̃EW

λ > C̃λ is rather simple. We note

that T̃λ and C̃λ can be rewritten as

T̃λ =

√

1

4 sin2 γ

[

X2
λ +X

2
λ − 2XλXλ cos(δ

X
λ − δX

λ )
]

, (4.61)

C̃λ =

√

1

4 sin2 γ

[

Y 2
λ + Y

2
λ − 2YλY λ cos(δ

Y
λ − δY

λ )
]

. (4.62)



Comparing these equations with Eqs. (4.48) and (4.49), we find that

T̃λ > P̃EW
C,λ =⇒ sin

(

δ
X − δX + γ

)

< 0 , (4.63)

P̃EW
λ > C̃λ =⇒ sin

(

δ
Y − δY + γ

)

> 0 . (4.64)

The hierarchy assumption between the magnitudes of topological ampli-
tudes can be verified by using the relations (4.55)−(4.64). These relations
will provide a litmus test to verify the above hierarchy assumption . The
same hierarchy relation is expected to hold in B → Kπ modes becauuse
the decay modes B → Kπ and B → K∗ρ are equivalent at quark level.
We can also derive several relations in terms of the observables and γ by
assuming relations between the strong phases of the topological amplitudes.
We can use these relations to verify the assumptions often made between
these strong phases, such as δC

λ ≈ δCEW
λ ≈ δP

λ and δEW
λ ≈ δT

λ , expecting
to hold within the SM. We will discuss only a few such relations that test
some common assumptions being made on the strong phases; however more
general relations between observables under various assumptions on strong
phases without neglecting the annihilation contribution are also available in
Appendix B.

We can start with the interesting relation δC
λ = δP

λ . In our convention
(δP

λ ≡ 0), this implies δC
λ = 0. So from Eq. (4.51) we get the relation

|A00
λ | cosα00

λ = |A00
λ | cosα00

λ . (4.65)

If δC
λ = 0, then the real part of the amplitude A00

λ is the same as that of its

CP conjugate amplitude A
00
λ , which is just the restatement of the relation

(4.65). Since the topological amplitude C̃λ is estimated to be very small

(C̃λ = λ
2
P̃λ) in the SM, it is also expected from Eq. (4.17) that in the SM

the direct CP asymmetry in the K∗0ρ0 mode almost vanishes. Similarly the
assumption δCEW

λ = δP
λ leads to the relation

|A+−
λ | cos(α+−

λ + γ) = |A+−
λ | cos(α+−

λ − γ) , (4.66)

obtained from Eq. (4.52). Finally, from the assumption δT
λ = δEW

λ , we get
the relation

|A+−
λ | cosα+−

λ − |A+−
λ | cosα+−

λ

|A+−
λ | sinα+−

λ − |A+−
λ | sinα+−

λ

=
|A00

λ | sinα00
λ + |A00

λ | sinα00
λ

2|A00
λ | cosα00

λ +
√

2|A0+
λ |

[1 + O(λ
2
)],

(4.67)



where we have used C̃λ = λ
2
P̃λ.

The validity of the several relations derived above, or the degree to which
they fail to hold, will shed light on the possible origins of the “B → Kπ
puzzle,” and therefore help in uncovering possible new physics contributions.

4.2.4 Isolating signals of New Physics in B → K∗ρ modes

In the previous section we have derived some possible relations between
topological amplitudes and strong phases. If we assume that these rela-
tions hold within the SM, then a violation of these relations would indicate
about NP beyond SM. The expressions in Eqs. (4.14)−(4.17) for the decay
amplitudes B → K∗ρ modes describe not only the SM contributions but
also any possible NP effects that contribute to the amplitude. For example,
Let’s consider the contribution of NP with an amplitude Nλe

iδλeiφNP . This
amplitude can be re-expressed using reparametrization invariance [102] as a
sum of two contributions with one term having no weak phase and the other
term having a weak phase γ, i.e. Nλe

iδλeiφNP ≡ Nλ
1 e

iδλ +Nλ
2 e

iδλeiγ , where
Nλ

1 and Nλ
2 are determined purely in terms of φNP and γ. As an explicit ex-

ample let us consider NP contributing via the EW penguin to amplitudes in
Eqs. (4.15) and (4.17). Using reparametrization invariance it can easily be
absorbed by redefining the amplitudes P̃EW

λ and C̃λ, so that the amplitudes
in Eqs. (4.15) and (4.17) retain the same form. In general NP contributing
to any of the topological amplitudes can be easily absorbed so that the am-
plitudes in Eqs. (4.14)–(4.17) retain the same form. However, if there exist
relations between the amplitudes or strong phases, the B → K∗ρ amplitudes
would differ from the SM form in the presence of NP. Since the number of
independent SM parameters is reduced. Therefore we, not only be able to
see signals of NP but also solve for NP parameters. In this section we con-
sider two cases to explore this possibility. We first discuss the consequence
of relations between P̃EW

λ eiδ
EW
λ and T̃λe

iδT
λ , and P̃EW

C,λ e
iδCEW

λ and C̃λe
iδC

λ

that are expected to hold in the SM. We next consider the case where the
strong phases are related in the SM. Let us consider a NP contribution in the
EW penguins, to amplitudes in Eqs. (4.15) and (4.17). It is assumed that

NP contributes with an amplitude Nλe
iδN

λ eiφNP ≡ Nλ
1 e

iδN
λ +Nλ

2 e
iδN

λ eiγ . We
have shown that using angular-analysis we can solve for all the parameters
in Eqs. (4.14)−(4.17). In particular we can measure P̃EW

λ , P̃EW
C,λ , T̃λ, C̃λ,

δEW
λ , δCEW

λ , δT
λ , δC

λ in terms of γ. Note that these measured values include
any NP contributions that may be present. In fact, if NP contributes via
the EW penguins, the SM amplitudes (defined by calligraphic characters)–
P̃EW

λ and C̃λ are the only ones modified by NP, but they cannot them-



selves be measured. The other amplitudes are unmodified by NP and hence
we need not distinguish the SM amplitudes from the amplitudes defined in
Eqs. (4.14)−(4.17).

Using flavor SU(3), we can relate the ∆I = 3/2 parts of the tree and
electroweak penguin Hamiltonians(SM part) as [112]

HEW
∆I=3/2 = −3

2

[

c9 + c10
c1 + c2

]

∣

∣

∣

∣

∣

V ∗
tbVts

V ∗
ubVus

∣

∣

∣

∣

∣

Htree
∆I=3/2 . (4.68)

Hence, P̃EW
λ eiδ

EW
λ and P̃EW

C,λ e
iδCEW

λ are related to T̃λe
iδT

λ and C̃λe
iδC

λ :

P̃EW
λ eiδ

EW
λ ≃ 3

2

[

c9 + c10
c1 + c2

]

∣

∣

∣

∣

∣

V ∗
tbVts

V ∗
ubVus

∣

∣

∣

∣

∣

T̃λe
iδT

λ ≡ ζT̃λe
iδT

λ ,

P̃EW
C,λ e

iδCEW
λ ≃ 3

2

[

c9 + c10
c1 + c2

]

∣

∣

∣

∣

∣

V ∗
tbVts

V ∗
ubVus

∣

∣

∣

∣

∣

C̃λe
iδC

λ ≡ ζC̃λe
iδC

λ , (4.69)

where the ci are Wilson coefficients [32]. Using the SM relations in Eq. (4.69),
we can see that

ζC̃λe
iδC

λ = ζC̃λe
iδC

λ + ζNλ
2 e

iδN
λ ,

= P̃EW
C,λ e

iδCEW
λ + ζNλ

2 e
iδN

λ , (4.70)

P̃EW
λ eiδ

EW
λ = P̃EW

λ eiδ
EW
λ +Nλ

1 e
iδN

λ ,

= ζT̃λe
iδT

λ +Nλ
1 e

iδN
λ . (4.71)

Eqs. (4.70) and (4.71) form four relations in terms of only three unknowns
Nλ

1 , Nλ
2 and δN

λ for each λ. Hence we can solve Nλ
1 , Nλ

2 and δN
λ . the weak

phase of NP φNP can also be obtained from the relation

Nλ
1

Nλ
2

=
sin(γ − φNP )

sinφNP
. (4.72)

We have enough observables even to solve for ζ. Therefore, we not only mea-
sure NP but also test the SU(3) assumption under the above assumptions
made.

We now assume that in the SM the strong phases are related such that
δC
λ = δCEW

λ = δP
λ and δEW

λ = δT
λ . Then we can see that

P̃EW
λ eiδ

EW
λ = P̃EW

λ eiδ
T
λ +Nλ

1 e
iδN

λ (4.73)

C̃λe
iδC

λ = C̃λe
iδP

λ +Nλ
2 e

iδN
λ (4.74)



Now we can see that there are four equations, but now in terms of five
unknowns P̃EW

λ , C̃λ, Nλ
1 , Nλ

2 and δN
λ ; i,e. it is not possible to solve all five

unknowns. Hence if the strong phases are related in the SM, the failure of
the relations δC

λ = δCEW
λ = δP

λ and δEW
λ = δT

λ can be tested. Hence, it
is not possible to get clean signal of NP under the assumptions on strong
phases; the failure of the relations between strong phases could be due to
NP or simply due to hadronic effects within the SM.

We have emphasized that it is generally impossible to have a clean signal
of NP due to reparameterization invariance [148]. It is not always possible
to independently test the hadronic assumption and at the same time cleanly
measure the NP parameters. However, we do demonstrate that if the tree
and color-suppressed tree are related to the electroweak penguins and color-
suppressed electroweak penguins by the well known relations of Eq. (4.69),
it is possible not only to verify the validity of these relations but also to have
a clean measurement of NP parameters. Therefore, an angular analysis in
B → K∗ρ is essential not only to establish cleanly the validity of the relations
in Eq. (4.69) but also at the same time to cleanly probe for new physics.

4.2.5 Summary

We have performed a detailed study of the B → K∗ρ decays using a model-
independent approach. It was shown that B → K∗ρ modes have a distinct
advantage due the large number of independent observables that can be
measured. In comparison to the B → Kπ modes that yield only 9 inde-
pendent observables, the B → K∗ρ modes result in as many as 35 inde-
pendent observables. Since B → Kπ and B → K∗ρ have the same quark
level subprocess, the study of B → K∗ρ may well shed light on the well
known “B → Kπ puzzle.” The relevant decay amplitudes were decomposed
into linear combinations of the topological amplitudes with their respective
strong phases assuming isospin. We have pointed out that the amplitude
written this way are the most general ones and included contributions not
only from the SM but also any NP that might exist. We obtained explicit
model-independent expressions for all the topological amplitudes and their
strong phases in terms of observables and the weak phase γ. With γ mea-
sured using other modes, our results are the first in literature to estimate
the topological amplitudes and strong phases purely in terms of observables,
for the B → Kπ analogous modes. We further suggested clean tests to ver-
ify if there existed any hierarchy relations among topological amplitudes
analogous to the ones conventionally assumed to be existed for B → Kπ in
the SM. In addition, we presented tests that would verify any equality be-



tween the strong phases of the topological amplitudes. A model independent
understanding of the relative sizes of the topological amplitudes and rela-
tions between their strong phases could provide valuable insights into NP
searches. Generally it is not in general possible to independently test the
hadronic assumption and at the same time cleanly measure the NP parame-
ters, we show one example where it is possible to do both. We demonstrated
that if the tree and color-suppressed trees were related to the electroweak
penguins and color-suppressed electroweak penguins. Therefore it is shown
that it is not only possible to verify the validity of such relations but also to
cleanly measure NP parameters [151].



Chapter 5

Summary

In this thesis, a few aspects of B physics were studied. We now summarise
the main features. In Chapter 1, we begin with a short introduction of
B physics and CP violation. We briefly discussed the discrete symmetries
C (Charge-Conjugation), P (Parity) and T (Time reversal). We extended
the discussion to CP and CPT symmetries as well. Basics of the CP phe-
nomenology in B meson decays were briefly reviewed. We discussed various
types of CP violation in B system. We also presented a very brief discus-
sion of the SM. The source of CP violation in the Standard Model (SM) is
only through CKM matrix elements. The two important parametrizations of
CKM matrix, Standard Parametrization and Wolfenstein Parametrization,
were described briefly. We discussed the limitation of the SM and reasons
to believe in the existence of physics beyond SM. Finally we explored how
B mesons can be used to seek evidence of New Physics (NP).

In chapter 2, we reviewed some important features of B meson decays in
the framework of the SM. We discussed various important decay channels
with the help of effective Hamiltonians. Extraction of weak phases α, β
and γ of the unitary triangle were also discussed briefly. The main goal is
to overconstrain the unitarity triangle as much as possible so that we can
perform a stringent test of the KM mechanism of CP violation.

In third chapter, we examined the pattern of NP if it enters in any
particular quark-level diagram. We have shown how NP contribution to
amplitudes can be absorbed into SM topological amplitudes. Consequently
we have shown the difficulties in distinguishing the NP signals from the SM.
We point out that a generic B → f decay amplitude may be written as a
sum of two terms, corresponding to a pair of weak phases {φ1, φ2} chosen
completely at will (as long as they do not differ by a multiple of 180◦).
Clearly, physical observables may not depend on this choice; we designate
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this property by “reparametrization invariance”.
We have explored some of the unusual features of reparametrization in-

variance. We have made three main points. First, there is no clean signal
of NP in any B decay which receives penguin contributions. In order to
obtain a signal of NP, it is necessary to either have an accurate theoretical
estimate of parameters or to make a justifiable approximation. Second, we
have noted that in all decays with penguin contributions, NP always affects
diagrammatic amplitudes in pairs; e.g . in B → Kπ decay,the diagrams P ′

EW

and C ′, P ′C
EW and T ′, and P ′ and P ′

uc are simultaneously affected by NP.
Fits to B → Kπ data suggest larger-than-expected PC

EW and C ′ contribu-
tions. In view of our observation, the requirement of large C ′ may be a sign
of NP. Finally, we have shown that if NP contributes in such a way that
the amplitudes retain the SM form using reparametrization invariance, the
weak phase obtained will not be altered due to the presence of NP. This
provides a natural explanation of the result that has several fits to B → Kπ
data with varying approximations yielding γ in accord with the SM. The
observation of a large C ′ and γ consistent with the SM in B → Kπ decays
provide ample circumstantial evidence in favor of NP.

In chapter four, we have studied the “B → Kπ Puzzle” in details. We
have also studied how it is possible to solve the “B → Kπ Puzzle” using B →
K∗ρ mode. We have performed a detailed study of the B → K∗ρ decays
using a model-independent approach. It was shown that B → K∗ρ modes
had a distinct advantage due the large number of independent observables
that could be measured. In comparison to the B → Kπ modes that yield
only 9 independent observables, the B → K∗ρ modes result in as many as
35 independent observables. Since B → Kπ and B → K∗ρ have the same
quark level subprocess, the study of B → K∗ρmay well shed light on the well
known “B → Kπ puzzle.” The relevant decay amplitudes were decomposed
into linear combinations of the topological amplitudes with their respective
strong phases assuming isospin. We have pointed out that the amplitude
written this way are the most general ones and included contributions not
only from the SM but also any NP that might exist.

We have obtained explicit model-independent expressions for all the
topological amplitudes and their strong phases in terms of observables and
the weak phase γ. With γ measured using other modes, our results are the
first in literature to estimate the topological amplitudes and strong phases
purely in terms of observables, for any mode which receives B → Kπ like
topological contributions. We further suggested clean tests to verify if there
existed any hierarchical relations among topological amplitudes analogous to
the ones conventionally assumed to exist for B → Kπ in the SM. In addition,



we have presented tests that would verify any equality between the strong
phases of the topological amplitudes. A model independent understanding
of the relative sizes of the topological amplitudes and relations between their
strong phases could provide valuable insights into NP investigations. Gener-
ally, it is not possible to independently test the hadronic assumption and at
the same time cleanly measure the NP parameters; however we have shown
one example where it is possible to do both. We have demonstrated that if
the tree and color-suppressed tree are related to the electroweak penguins
and color-suppressed electroweak penguins, it is not only possible to verify
the validity of such relations but also to cleanly measure NP parameters.





Appendix A

Determination of A
f
λ and A

f
λ

with observables

A.1 Determination of the magnitude A
f
λ and A

f
λ

The branching ratios (BRs) and direct CP asymmetries of the decay modes
B → K∗ρ are measured experimentally [134, 135]. Using the measured
values of BRs and direct CP asymmetry of each helicity for the decay modes,
|Af

λ| (magnitude of Af
λ ) can be determined straightforwardly. The direct

CP asymmetry is defined as af
λ ≡ Σf

λλ

Bf
λ

, where Σf
λλ and Bf

λ are defined in

Eq. (4.22), and f is one of the final states of K∗ρ. Therefore, |Af
λ| and |Af

λ|
can be written as

|Af
λ|2 = Bf

λ + Σf
λλ and |Af

λ|2 = Bf
λ − Σf

λλ . (A.1)

A.2 Determination of the phases of A
f
λ and A

f
λ

Let us first try to find out the phases αij
λ of Af

λ. Since the relative phases

(αij
‖ − αij

0 ) and (αij
⊥ − αij

0 ) can be measured in experiment, one needs to

determine only αij
0 . We express the three equations of Eq. (4.30) explicitly

with three unknown parameters α+−
0 , α00

0 , and α+0
0 :

1√
2

[

|A0+
0 |eiπ − |A+−

0 |eiα+−
0

]

= |A00
0 |eiα00

0 − |A+0
0 |eiα+0

0 ,

1√
2

[

|A0+
‖ |eiπ − |A+−

‖ |ei(α
+−
0 +φ̃+−

‖
)
]

= |A00
‖ |ei(α

00
0 +φ̃00

‖
) − |A+0

‖ |ei(α
+0
0 +φ̃+0

‖
)
,
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1√
2

[

|A0+
⊥ |eiπ − |A+−

⊥ |ei(α+−
0 +φ̃+−

⊥
)
]

= |A00
⊥ |ei(α00

0 +φ̃00
⊥ ) − |A+0

⊥ |ei(α+0
0 +φ̃+0

⊥
) ,

(A.2)

where φ̃ij
‖ and φ̃ij

⊥ are defined in terms of the observables φij
‖ (≡ αij

‖ − αij
0 )

and φij
⊥ (≡ αij

⊥ − αij
0 ) such that

φ̃ij
‖ = φij

‖ − φ0+
‖ and φ̃ij

⊥ = φij
⊥ − φ0+

⊥ . (A.3)

Here we remind that in our convention each phase αij
‖(⊥) has been defined

as the relative phase to δP
‖(⊥) = α0+

‖(⊥) − α0+
0 ≡ φ0+

‖(⊥). Then we can re-write

Eq. (A.2) as the matrix equation

SX = A , (A.4)

where the matrix S and the column vectors X and A are given by

S11 =
1√
2
|A+−

0 |, S12 = 0, S13 = |A00
0 |,

S14 = 0, S15 = −|A+0
0 |, S16 = 0 , (A.5)

S21 = 0, S22 =
1√
2
|A+−

0 |, S23 = 0,

S24 = |A00
0 |, S25 = 0, S26 = −|A+0

0 | , (A.6)

S31 =
1√
2
|A+−

‖ | cos φ̃+−
‖ , S32 = − 1√

2
|A+−

‖ | sin φ̃+−
‖ , S33 = |A00

‖ | cos φ̃00
‖ ,

S34 = −|A00
‖ | sin φ̃00

‖ , S35 = −|A+0
‖ | cos φ̃+0

‖ , S36 = |A+0
‖ | sin φ̃+0

‖ , (A.7)

S41 =
1√
2
|A+−

‖ | sin φ̃+−
‖ , S42 =

1√
2
|A+−

‖ | cos φ̃+−
‖ , S43 = |A00

‖ | sin φ̃00
‖ ,

S44 = |A00
‖ | cos φ̃00

‖ , S45 = −|A+0
‖ | sin φ̃+0

‖ , S46 = −|A+0
‖ | cos φ̃+0

‖ , (A.8)

S51 =
1√
2
|A+−

⊥ | cos φ̃+−
⊥ , S52 = − 1√

2
|A+−

⊥ | sin φ̃+−
⊥ , S53 = |A00

⊥ | cos φ̃00
⊥ ,

S54 = −|A00
⊥ | sin φ̃00

⊥ , S55 = −|A+0
⊥ | cos φ̃+0

⊥ , S56 = |A+0
⊥ | sin φ̃+0

⊥ , (A.9)

S61 =
1√
2
|A+−

⊥ | sin φ̃+−
⊥ , S62 =

1√
2
|A+−

⊥ | cos φ̃+−
⊥ , S63 = |A00

⊥ | sin φ̃00
⊥ ,

S64 = |A00
⊥ | cos φ̃00

⊥ , S65 = −|A+0
⊥ | sin φ̃+0

⊥ , S66 = −|A+0
⊥ | cos φ̃+0

⊥ (A.10)

X =
(

cosα+−
0 sinα+−

0 cosα00
0 sinα00

0 cosα+0
0 sinα+0

0

)T
,(A.11)

A =
(

− 1√
2
A0+

0 0 − 1√
2
A0+

‖ 0 − 1√
2
A0+

⊥ 0
)T

.(A.12)



where X is the column vector to be determined. One can easily solve this
matrix equation by calculating the inverse matrix of S. The solution X is
given by

X = S−1A . (A.13)

We note that in Eq. (A.13) both cosine and sine of each phase α+0
0 , α00

0 , α
0+
0

can be determined, which results in removing discrete ambiguities associated
with trigonometrical functions of the solution.

By using exactly the same method as above, one can also find the phases

αij
λ of the CP conjugate amplitudes Af

λ.





Appendix B

All Possible Relations

B.1 Case I: yλ
ij 6= 1

B.1.1 P̃λ > T̃λ > P̃EW
λ > C̃λ > P̃EW

Cλ > Ãλ

B0+
λ [1 − yλ

0+ cos(θ0+
λ + 2γ)] > B+−

λ [1 − yλ
+− cos θ+−

λ ] >
(

2B00
λ [1 − yλ

00 cos(θ00
λ + 2γ)] +B0+

λ [1 − yλ
0+ cos(θ0+

λ + 2γ)]

−2
√

2B00
λ B

0+
λ [1 − yλ

00 cos(θ00
λ + 2γ)][1 − yλ

0+ cos(θ0+
λ + 2γ)] cosχ1

)

>

2B00
λ [1 − yλ

00 cos θ00
λ ] >

(

B+−
λ [1 − yλ

+− cos(θ+−
λ + 2γ)] +B0+

λ [1 − yλ
0+ cos(θ0+

λ + 2γ)]

−2
√

B+−
λ B0+

λ [1 − yλ
+− cos(θ+−

λ + 2γ)][1 − yλ
0+ cos(θ0+

λ + 2γ)] cosχ2

)

>

B0+
λ [1 − yλ

0+ cos θ0+
λ ] (B.1)

B.1.2 δC
λ = δP

λ

2B00
λ [1 + cos2 γ − 2y00

λ cos γ cos(θ00
λ + γ)] sinχ1 = Σ00

λλ sin 2γ cosχ1 (B.2)

B.1.3 δCEW
λ = δP

λ
√

[1 − yλ
+− cos(θ+−

λ + 2γ)][1 − yλ
0+ cos(θ0+

λ + 2γ)] sin2 χ2

2
= 0 (B.3)

B.1.4 δEW
λ = δT

λ
√

2B00
λ [1 − yλ

00 cos(θ00
λ + 2γ)] sinχ3 =

√

B0+
λ [1 − yλ

0+ cos(θ0+
λ + 2γ)] sinχ4

(B.4)
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B.1.5 δCEW
λ = δC

λ
√

B0+
λ [1 − yλ

0+ cos(θ0+
λ + 2γ)] sinχ5 =

√

B+−
λ [1 − yλ

+− cos(θ+−
λ + 2γ)] sinχ6

(B.5)

B.1.6 δA
λ = δT

λ

B0+
λ [− cos γ + yλ

0+ cos(θ0+
λ + γ)] sinχ4 = Σ0+

λλ sin γ cosχ4 (B.6)

B.1.7 δA
λ = δEW

λ
√

2B00
λ [1 − yλ

00 cos(θ00
λ + 2γ)] sinχ7 =

√

B0+
λ [1 − yλ

0+ cos(θ0+
λ + 2γ)] sinχ8

(B.7)

B.1.8 δC
λ = δP

λ and δEW
λ = δT

λ

2B00
λ [1 + cos2 γ − 2y00

λ cos γ cos(θ00
λ + γ)] sinχ1 = Σ00

λλ sin 2γ cosχ1

√

2B00
λ [1 − yλ

00 cos(θ00
λ + 2γ)] sinχ3 =

√

B0+
λ [1 − yλ

0+ cos(θ0+
λ + 2γ)] sinχ4

(B.8)

B.1.9 δC
λ = δP

λ and δA
λ = δT

λ

2B00
λ [1 + cos2 γ − 2y00

λ cos γ cos(θ00
λ + γ)] sinχ1 = Σ00

λλ sin 2γ cosχ1

B0+
λ [− cos γ + yλ

0+ cos(θ0+
λ + γ)] sinχ4 = Σ0+

λλ sin γ cosχ4 (B.9)

B.1.10 δC
λ = δP

λ and δA
λ = δEW

λ

2B00
λ [1 + cos2 γ − 2y00

λ cos γ cos(θ00
λ + γ)] sinχ1 = Σ00

λλ sin 2γ cosχ1

√

2B00
λ [1 − yλ

00 cos(θ00
λ + 2γ)] sinχ7 =

√

B0+
λ [1 − yλ

0+ cos(θ0+
λ + 2γ)] sinχ8

(B.10)

B.1.11 δCEW
λ = δP

λ and δEW
λ = δT

λ

√

[1 − yλ
+− cos(θ+−

λ + 2γ)][1 − yλ
0+ cos(θ0+

λ + 2γ)] sin2 χ2

2
= 0

√

2B00
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00 cos(θ00
λ + 2γ)] sinχ3 =

√

B0+
λ [1 − yλ

0+ cos(θ0+
λ + 2γ)] sinχ4
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B.1.12 δCEW
λ = δP

λ and δA
λ = δT

λ

√

[1 − yλ
+− cos(θ+−

λ + 2γ)][1 − yλ
0+ cos(θ0+

λ + 2γ)] sin2 χ2

2
= 0

B0+
λ [− cos γ + yλ

0+ cos(θ0+
λ + γ)] sinχ4 = Σ0+

λλ sin γ cosχ4 (B.12)

B.1.13 δCEW
λ = δP

λ and δA
λ = δEW

λ

√

[1 − yλ
+− cos(θ+−

λ + 2γ)][1 − yλ
0+ cos(θ0+

λ + 2γ)] sin2 χ2

2
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√
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00 cos(θ00
λ + 2γ)] sinχ7 =

√
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0+ cos(θ0+
λ + 2γ)] sinχ8

(B.13)

B.1.14 δCEW
λ = δC

λ and δEW
λ = δT

λ

√

B0+
λ [1 − yλ

0+ cos(θ0+
λ + 2γ)] sinχ5 =

√

B+−
λ [1 − yλ

+− cos(θ+−
λ + 2γ)] sinχ6

√

2B00
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00 cos(θ00
λ + 2γ)] sinχ3 =

√

B0+
λ [1 − yλ

0+ cos(θ0+
λ + 2γ)] sinχ4

(B.14)

B.1.15 δCEW
λ = δC

λ and δA
λ = δT

λ

√

B0+
λ [1 − yλ

0+ cos(θ0+
λ + 2γ)] sinχ5 =

√

B+−
λ [1 − yλ

+− cos(θ+−
λ + 2γ)] sinχ6

B0+
λ [− cos γ + yλ

0+ cos(θ0+
λ + γ)] sinχ4 = Σ0+

λλ sin γ cosχ4 (B.15)

B.1.16 δCEW
λ = δC

λ and δA
λ = δEW

λ

√

B0+
λ [1 − yλ

0+ cos(θ0+
λ + 2γ)] sinχ5 =

√

B+−
λ [1 − yλ

+− cos(θ+−
λ + 2γ)] sinχ6

√

2B00
λ [1 − yλ

00 cos(θ00
λ + 2γ)] sinχ7 =

√

B0+
λ [1 − yλ

0+ cos(θ0+
λ + 2γ)] sinχ8

(B.16)



B.1.17 δC
λ = δP

λ = δCEW
λ

2B00
λ [1 + cos2 γ − 2y00

λ cos γ cos(θ00
λ + γ)] sinχ1 = Σ00

λλ sin 2γ cosχ1

√

[1 − yλ
+− cos(θ+−

λ + 2γ)][1 − yλ
0+ cos(θ0+

λ + 2γ)] sin2 χ2

2
= 0

√

B0+
λ [1 − yλ

0+ cos(θ0+
λ + 2γ)] sinχ5 =

√

B+−
λ [1 − yλ

+− cos(θ+−
λ + 2γ)] sinχ6

(B.17)

B.1.18 δA
λ = δT

λ = δEW
λ

B0+
λ [− cos γ + yλ

0+ cos(θ0+
λ + γ)] sinχ4 = Σ0+

λλ sin γ cosχ4

√

2B00
λ [1 − yλ

00 cos(θ00
λ + 2γ)] sinχ3 =

√

B0+
λ [1 − yλ

0+ cos(θ0+
λ + 2γ)] sinχ4

√

2B00
λ [1 − yλ

00 cos(θ00
λ + 2γ)] sinχ7 =

√

B0+
λ [1 − yλ

0+ cos(θ0+
λ + 2γ)] sinχ8

(B.18)

B.1.19 δC
λ = δP

λ = δCEW
λ and δEW

λ = δT
λ

2B00
λ [1 + cos2 γ − 2y00

λ cos γ cos(θ00
λ + γ)] sinχ1 = Σ00

λλ sin 2γ cosχ1

√

[1 − yλ
+− cos(θ+−

λ + 2γ)][1 − yλ
0+ cos(θ0+

λ + 2γ)] sin2 χ2

2
= 0

√

B0+
λ [1 − yλ

0+ cos(θ0+
λ + 2γ)] sinχ5 =

√

B+−
λ [1 − yλ

+− cos(θ+−
λ + 2γ)] sinχ6

√

2B00
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00 cos(θ00
λ + 2γ)] sinχ3 =

√

B0+
λ [1 − yλ

0+ cos(θ0+
λ + 2γ)] sinχ4

(B.19)

B.1.20 δC
λ = δP

λ = δCEW
λ and δA

λ = δT
λ

2B00
λ [1 + cos2 γ − 2y00

λ cos γ cos(θ00
λ + γ)] sinχ1 = Σ00

λλ sin 2γ cosχ1

√

[1 − yλ
+− cos(θ+−

λ + 2γ)][1 − yλ
0+ cos(θ0+

λ + 2γ)] sin2 χ2

2
= 0

√

B0+
λ [1 − yλ

0+ cos(θ0+
λ + 2γ)] sinχ5 =

√

B+−
λ [1 − yλ

+− cos(θ+−
λ + 2γ)] sinχ6

B0+
λ [− cos γ + yλ

0+ cos(θ0+
λ + γ)] sinχ4 = Σ0+

λλ sin γ cosχ4 (B.20)



B.1.21 δC
λ = δP

λ = δCEW
λ and δA

λ = δEW
λ

2B00
λ [1 + cos2 γ − 2y00

λ cos γ cos(θ00
λ + γ)] sinχ1 = Σ00

λλ sin 2γ cosχ1
√

[1 − yλ
+− cos(θ+−

λ + 2γ)][1 − yλ
0+ cos(θ0+

λ + 2γ)] sin2 χ2

2
= 0

√

B0+
λ [1 − yλ

0+ cos(θ0+
λ + 2γ)] sinχ5 =

√

B+−
λ [1 − yλ

+− cos(θ+−
λ + 2γ)] sinχ6

√

2B00
λ [1 − yλ

00 cos(θ00
λ + 2γ)] sinχ7 =

√

B0+
λ [1 − yλ

0+ cos(θ0+
λ + 2γ)] sinχ8

(B.21)

B.1.22 δA
λ = δT

λ = δEW
λ and δC

λ = δP
λ

2B00
λ [1 + cos2 γ − 2y00

λ cos γ cos(θ00
λ + γ)] sinχ1 = Σ00

λλ sin 2γ cosχ1

B0+
λ [− cos γ + yλ

0+ cos(θ0+
λ + γ)] sinχ4 = Σ0+

λλ sin γ cosχ4
√

2B00
λ [1 − yλ

00 cos(θ00
λ + 2γ)] sinχ3 =

√

B0+
λ [1 − yλ

0+ cos(θ0+
λ + 2γ)] sinχ4

√

2B00
λ [1 − yλ

00 cos(θ00
λ + 2γ)] sinχ7 =

√

B0+
λ [1 − yλ

0+ cos(θ0+
λ + 2γ)] sinχ8

(B.22)

B.1.23 δA
λ = δT

λ = δEW
λ and δCEW

λ = δP
λ

√

[1 − yλ
+− cos(θ+−

λ + 2γ)][1 − yλ
0+ cos(θ0+

λ + 2γ)] sin2 χ2

2
= 0

B0+
λ [− cos γ + yλ

0+ cos(θ0+
λ + γ)] sinχ4 = Σ0+

λλ sin γ cosχ4
√

2B00
λ [1 − yλ

00 cos(θ00
λ + 2γ)] sinχ3 =

√

B0+
λ [1 − yλ

0+ cos(θ0+
λ + 2γ)] sinχ4

√

2B00
λ [1 − yλ

00 cos(θ00
λ + 2γ)] sinχ7 =

√

B0+
λ [1 − yλ

0+ cos(θ0+
λ + 2γ)] sinχ8

(B.23)

B.1.24 δA
λ = δT

λ = δEW
λ and δCEW

λ = δC
λ

√

B0+
λ [1 − yλ

0+ cos(θ0+
λ + 2γ)] sinχ5 =

√

B+−
λ [1 − yλ

+− cos(θ+−
λ + 2γ)] sinχ6

B0+
λ [− cos γ + yλ

0+ cos(θ0+
λ + γ)] sinχ4 = Σ0+

λλ sin γ cosχ4
√

2B00
λ [1 − yλ

00 cos(θ00
λ + 2γ)] sinχ3 =

√

B0+
λ [1 − yλ

0+ cos(θ0+
λ + 2γ)] sinχ4

√

2B00
λ [1 − yλ

00 cos(θ00
λ + 2γ)] sinχ7 =

√

B0+
λ [1 − yλ

0+ cos(θ0+
λ + 2γ)] sinχ8

(B.24)



B.1.25 δC
λ = δP

λ = δCEW
λ and δA

λ = δT
λ = δEW

λ

2B00
λ [1 + cos2 γ − 2y00

λ cos γ cos(θ00
λ + γ)] sinχ1 = Σ00

λλ sin 2γ cosχ1
√

[1 − yλ
+− cos(θ+−

λ + 2γ)][1 − yλ
0+ cos(θ0+

λ + 2γ)] sin2 χ2

2
= 0

√

B0+
λ [1 − yλ

0+ cos(θ0+
λ + 2γ)] sinχ5 =

√

B+−
λ [1 − yλ

+− cos(θ+−
λ + 2γ)] sinχ6

B0+
λ [− cos γ + yλ

0+ cos(θ0+
λ + γ)] sinχ4 = Σ0+

λλ sin γ cosχ4
√

2B00
λ [1 − yλ

00 cos(θ00
λ + 2γ)] sinχ3 =

√

B0+
λ [1 − yλ

0+ cos(θ0+
λ + 2γ)] sinχ4

√

2B00
λ [1 − yλ

00 cos(θ00
λ + 2γ)] sinχ7 =

√

B0+
λ [1 − yλ

0+ cos(θ0+
λ + 2γ)] sinχ8

(B.25)

B.1.26 Reparametrization of observables

where χ1 = {±(ξ1 + ξ2) + (α00
λ − α0+

λ ), ± (ξ1 − ξ2) + (α00
λ − α0+

λ )},
χ2 = {±(π − ξ1 − ξ3) + (α+−

λ − α0+
λ ), ± (π − ξ1 + ξ3) + (α+−

λ − α0+
λ )},

χ3 = {±(π− ξ2 + ξ4)+(α00
λ −α+−

λ +γ), ± (π− ξ2− ξ4)+(α00
λ −α+−

λ +γ)},
χ4 = {±(π−ξ1 +ξ4)+(α0+

λ −α+−
λ +γ), ± (π−ξ1−ξ4)+(α0+

λ −α+−
λ +γ)},

χ5 = {±(π − ξ1 + ξ5) + (α0+
λ − α00

λ + γ), ± (π − ξ1 − ξ5) + (α0+
λ − α00

λ γ)},
χ6 = {±(ξ3 + ξ5) + (α+−

λ − α00
λ + γ), ± (ξ3 − ξ5) + (α+−

λ − α00
λ + γ)},

χ7 = {±(2π − ξ2 − ξ6) + (α00
λ − α0+

λ + γ), ± (ξ2 − ξ6) + (α00
λ − α0+

λ + γ)},
χ8 = {±(2π − ξ1 − ξ6) + γ, ± (ξ1 − ξ6) + γ}. and

ξ1 = arccos
( sin γ + y0+

λ sin(θ0+
λ + γ)

√

2[1 − yλ
0+ cos(θ0+

λ + 2γ)]

)

(B.26)

ξ2 = arccos
( sin γ + y00

λ sin(θ00
λ + γ)

√

2[1 − yλ
00 cos(θ00

λ + 2γ)]

)

(B.27)

ξ3 = arccos
( sin γ + y+−

λ sin(θ+−
λ + γ)

√

2[1 − yλ
+− cos(θ+−

λ + 2γ)]

)

(B.28)

ξ4 = arccos
( sin γ − y+−

λ sin(θ+−
λ + γ)

√

2[1 − yλ
+− cos(θ+−

λ + 2γ)]

)

(B.29)

ξ5 = arccos
( sin γ − y00

λ sin(θ00
λ + γ)

√

2[1 − yλ
00 cos(θ00

λ + 2γ)]

)

(B.30)

ξ6 = arccos
( sin γ − y0+

λ sin(θ0+
λ + γ)

√

2[1 − yλ
0+ cos(θ0+

λ + 2γ)]

)

(B.31)



(P̃EW
λ )2 =

1

2 sin2 γ

(

2B00
λ [1 − yλ

00 cos(θ00
λ + 2γ)] +B0+

λ [1 − yλ
0+ cos(θ0+

λ + 2γ)]

−2
√

2B00
λ B

0+
λ [1 − yλ

00 cos(θ00
λ + 2γ)][1 − yλ

0+ cos(θ0+
λ + 2γ)] cosχ1

)

.

(B.32)

(P̃EW
Cλ )2 =

1

2 sin2 γ

(

B+−
λ [1 − yλ

+− cos(θ+−
λ + 2γ)] +B0+

λ [1 − yλ
0+ cos(θ0+

λ + 2γ)]

−2
√

B+−
λ B0+

λ [1 − yλ
+− cos(θ+−

λ + 2γ)][1 − yλ
0+ cos(θ0+

λ + 2γ)] cosχ2

)

.

(B.33)

B.2 Case II: yλ
ij ≈ 1

yλ
ij ≈ 1,Σij

λλ ≈ 0, Bij
λ = |Aij

λ |2,[1 − yλ
ij cos(θij

λ + 2γ)] = 2 sin2(
θij
λ
2 + γ),

ξ1 =
θ0+
λ
2 and procedures are same

B.2.1 P̃λ > T̃λ > P̃EW
λ > C̃λ > P̃EW

Cλ > Ãλ

B0+
λ sin2(

θ0+
λ

2
+ γ) > B+−

λ sin2(
θ+−
λ

2
) > [2B00

λ sin2(
θ00
λ

2
+ γ)

+B0+
λ sin2(

θ0+
λ

2
+ γ) − 2

√

2B00
λ B

0+
λ sin(

θ00
λ

2
+ γ) sin(

θ0+
λ

2
+ γ) cosχ′

1] >

2B00
λ sin2(

θ00
λ

2
) > [B+−

λ sin2(
θ+−
λ

2
+ γ) +B0+

λ sin2(
θ0+
λ

2
+ γ)

−2
√

B+−
λ B0+

λ sin(
θ+−
λ

2
+ γ) sin(

θ0+
λ

2
+ γ) cosχ′

2] > B0+
λ sin2(

θ0+
λ

2
)(B.34)

B.2.2 δC
λ = δP

λ

[1 + cos2 γ − 2 cos γ cos(θ00
λ + γ)] sinχ′

1 = 0 (B.35)

B.2.3 δCEW
λ = δP

λ

sin(
θ+−
λ

2
+ γ) sin(

θ0+
λ

2
+ γ) sin2 χ

′
2

2
= 0 (B.36)

B.2.4 δEW
λ = δT

λ

√

2B00
λ sin(

θ00
λ

2
+ γ) sinχ′

3 =
√

B0+
λ sin(

θ0+
λ

2
+ γ) sinχ′

4 (B.37)



B.2.5 δCEW
λ = δC

λ

√

B0+
λ sin(

θ0+
λ

2
+ γ) sinχ′

5 =
√

B+−
λ sin(

θ+−
λ

2
+ γ) sinχ′

6 (B.38)

B.2.6 δA
λ = δT

λ

From Eq.(34) and (17)

sin(
θ0+
λ

2
+ γ) sin(

θ0+
λ

2
) sinχ′

4 = 0 (B.39)

B.2.7 δA
λ = δEW

λ

and from Eqs. (40), (41)

√

2B00
λ sin(

θ00
λ

2
+ γ) sinχ′

7 =
√

B0+
λ sin(

θ0+
λ

2
+ γ) sinχ′

8 (B.40)

B.2.8 δC
λ = δP

λ and δEW
λ = δT

λ

[1 + cos2 γ − 2 cos γ cos(θ00
λ + γ)] sinχ′

1 = 0

√

2B00
λ sin(

θ00
λ

2
+ γ) sinχ′

3 =
√

B0+
λ sin(

θ0+
λ

2
+ γ) sinχ′

4 (B.41)

B.2.9 δC
λ = δP

λ and δA
λ = δT

λ

[1 + cos2 γ − 2 cos γ cos(θ00
λ + γ)] sinχ′

1 = 0

sin(
θ0+
λ

2
+ γ) sin(

θ0+
λ

2
) sinχ′

4 = 0 (B.42)

B.2.10 δC
λ = δP

λ and δA
λ = δEW

λ

[1 + cos2 γ − 2 cos γ cos(θ00
λ + γ)] sinχ′

1 = 0

√

2B00
λ sin(

θ00
λ

2
+ γ) sinχ′

7 =
√

B0+
λ sin(

θ0+
λ

2
+ γ) sinχ′

8 (B.43)



B.2.11 δCEW
λ = δP

λ and δEW
λ = δT

λ

sin(
θ+−
λ

2
+ γ) sin(

θ0+
λ

2
+ γ) sin2 χ

′
2

2
= 0

√

2B00
λ sin(

θ00
λ

2
+ γ) sinχ′

3 =
√

B0+
λ sin(

θ0+
λ

2
+ γ) sinχ′

4 (B.44)

B.2.12 δCEW
λ = δP

λ and δA
λ = δT

λ

sin(
θ+−
λ

2
+ γ) sin(

θ0+
λ

2
+ γ) sin2 χ

′
2

2
= 0

sin(
θ0+
λ

2
+ γ) sin(

θ0+
λ

2
) sinχ′

4 = 0 (B.45)

B.2.13 δCEW
λ = δP

λ and δA
λ = δEW

λ

sin(
θ+−
λ

2
+ γ) sin(

θ0+
λ

2
+ γ) sin2 χ

′
2

2
= 0

√

2B00
λ sin(

θ00
λ

2
+ γ) sinχ′

7 =
√

B0+
λ sin(

θ0+
λ

2
+ γ) sinχ′

8 (B.46)

B.2.14 δCEW
λ = δC

λ and δEW
λ = δT

λ

√

B0+
λ sin(

θ0+
λ

2
+ γ) sinχ′

5 =
√

B+−
λ sin(

θ+−
λ

2
+ γ) sinχ′

6

√

2B00
λ sin(

θ00
λ

2
+ γ) sinχ′

3 =
√

B0+
λ sin(

θ0+
λ

2
+ γ) sinχ′

4 (B.47)

B.2.15 δCEW
λ = δC

λ and δA
λ = δT

λ

√

B0+
λ sin(

θ0+
λ

2
+ γ) sinχ′

5 =
√

B+−
λ sin(

θ+−
λ

2
+ γ) sinχ′

6

sin(
θ0+
λ

2
+ γ) sin(

θ0+
λ

2
) sinχ′

4 = 0 (B.48)



B.2.16 δCEW
λ = δC

λ and δA
λ = δEW

λ

√

B0+
λ sin(

θ0+
λ

2
+ γ) sinχ′

5 =
√

B+−
λ sin(

θ+−
λ

2
+ γ) sinχ′

6

√

2B00
λ sin(

θ00
λ

2
+ γ) sinχ′

7 =
√

B0+
λ sin(

θ0+
λ

2
+ γ) sinχ′

8 (B.49)

B.2.17 δC
λ = δP

λ = δCEW
λ

[1 + cos2 γ − 2 cos γ cos(θ00
λ + γ)] sinχ′

1 = 0

sin(
θ+−
λ

2
+ γ) sin(

θ0+
λ

2
+ γ) sin2 χ

′
2

2
= 0 (B.50)

√

B0+
λ sin(

θ0+
λ

2
+ γ) sinχ′

5 =
√

B+−
λ sin(

θ+−
λ

2
+ γ) sinχ′

6

B.2.18 δA
λ = δT

λ = δEW
λ

sin(
θ0+
λ

2
+ γ) sin(

θ0+
λ

2
) sinχ′

4 = 0

√

2B00
λ sin(

θ00
λ

2
+ γ) sinχ′

3 =
√

B0+
λ sin(

θ0+
λ

2
+ γ) sinχ′

4 (B.51)

√

2B00
λ sin(

θ00
λ

2
+ γ) sinχ′

7 =
√

B0+
λ sin(

θ0+
λ

2
+ γ) sinχ′

8

B.2.19 δCEW
λ = δC

λ = δP
λ and δEW

λ = δT
λ

[1 + cos2 γ − 2 cos γ cos(θ00
λ + γ)] sinχ′

1 = 0

sin(
θ+−
λ

2
+ γ) sin(

θ0+
λ

2
+ γ) sin2 χ

′
2

2
= 0

√

B0+
λ sin(

θ0+
λ

2
+ γ) sinχ′

5 =
√

B+−
λ sin(

θ+−
λ

2
+ γ) sinχ′

6 (B.52)

√

2B00
λ sin(

θ00
λ

2
+ γ) sinχ′

3 =
√

B0+
λ sin(

θ0+
λ

2
+ γ) sinχ′

4



B.2.20 δCEW
λ = δC

λ = δP
λ and δA

λ = δT
λ

[1 + cos2 γ − 2 cos γ cos(θ00
λ + γ)] sinχ′

1 = 0

sin(
θ+−
λ

2
+ γ) sin(

θ0+
λ

2
+ γ) sin2 χ

′
2

2
= 0

√

B0+
λ sin(

θ0+
λ

2
+ γ) sinχ′

5 =
√

B+−
λ sin(

θ+−
λ

2
+ γ) sinχ′

6 (B.53)

sin(
θ0+
λ

2
+ γ) sin(

θ0+
λ

2
) sinχ′

4 = 0

B.2.21 δCEW
λ = δC

λ = δP
λ and δA

λ = δEW
λ

[1 + cos2 γ − 2 cos γ cos(θ00
λ + γ)] sinχ′

1 = 0

sin(
θ+−
λ

2
+ γ) sin(

θ0+
λ

2
+ γ) sin2 χ

′
2

2
= 0

√

B0+
λ sin(

θ0+
λ

2
+ γ) sinχ′

5 =
√

B+−
λ sin(

θ+−
λ

2
+ γ) sinχ′

6 (B.54)

√

2B00
λ sin(

θ00
λ

2
+ γ) sinχ′

7 =
√

B0+
λ sin(

θ0+
λ

2
+ γ) sinχ′

8

B.2.22 δC
λ = δP

λ and δA
λ = δT

λ = δEW
λ

[1 + cos2 γ − 2 cos γ cos(θ00
λ + γ)] sinχ′

1 = 0

sin(
θ0+
λ

2
+ γ) sin(

θ0+
λ

2
) sinχ′

4 = 0

√

2B00
λ sin(

θ00
λ

2
+ γ) sinχ′

3 =
√

B0+
λ sin(

θ0+
λ

2
+ γ) sinχ′

4 (B.55)

√

2B00
λ sin(

θ00
λ

2
+ γ) sinχ′

7 =
√

B0+
λ sin(

θ0+
λ

2
+ γ) sinχ′

8



B.2.23 δCEW
λ = δP

λ and δA
λ = δT

λ = δEW
λ

sin(
θ+−
λ

2
+ γ) sin(

θ0+
λ

2
+ γ) sin2 χ

′
2

2
= 0

sin(
θ0+
λ

2
+ γ) sin(

θ0+
λ

2
) sinχ′

4 = 0

√

2B00
λ sin(

θ00
λ

2
+ γ) sinχ′

3 =
√

B0+
λ sin(

θ0+
λ

2
+ γ) sinχ′

4 (B.56)

√

2B00
λ sin(

θ00
λ

2
+ γ) sinχ′

7 =
√

B0+
λ sin(

θ0+
λ

2
+ γ) sinχ′

8

B.2.24 δCEW
λ = δC

λ and δA
λ = δT

λ = δEW
λ

√

B0+
λ sin(

θ0+
λ

2
+ γ) sinχ′

5 =
√

B+−
λ sin(

θ+−
λ

2
+ γ) sinχ′

6

sin(
θ0+
λ

2
+ γ) sin(

θ0+
λ

2
) sinχ′

4 = 0

√

2B00
λ sin(

θ00
λ

2
+ γ) sinχ′

3 =
√

B0+
λ sin(

θ0+
λ

2
+ γ) sinχ′

4 (B.57)

√

2B00
λ sin(

θ00
λ

2
+ γ) sinχ′

7 =
√

B0+
λ sin(

θ0+
λ

2
+ γ) sinχ′

8

B.2.25 δCEW
λ = δC

λ = δP
λ and δA

λ = δT
λ = δEW

λ

[1 + cos2 γ − 2 cos γ cos(θ00
λ + γ)] sinχ′

1 = 0

sin(
θ+−
λ

2
+ γ) sin(

θ0+
λ

2
+ γ) sin2 χ

′
2

2
= 0

√

B0+
λ sin(

θ0+
λ

2
+ γ) sinχ′

5 =
√

B+−
λ sin(

θ+−
λ

2
+ γ) sinχ′

6



sin(
θ0+
λ

2
+ γ) sin(

θ0+
λ

2
) sinχ′

4 = 0 (B.58)

√

2B00
λ sin(

θ00
λ

2
+ γ) sinχ′

3 =
√

B0+
λ sin(

θ0+
λ

2
+ γ) sinχ′

4

√

2B00
λ sin(

θ00
λ

2
+ γ) sinχ′

7 =
√

B0+
λ sin(

θ0+
λ

2
+ γ) sinχ′

8

B.2.26 Reparametrisation of observables for case II

where χ′
1 = {±(

θ0+
λ + θ00

λ

2
) + (α00

λ − α0+
λ ), ± (

θ0+
λ − θ00

λ

2
) + (α00

λ − α0+
λ )},

χ′
2 = {±(π− (

θ0+
λ + θ+−

λ

2
)) + (α+−

λ −α0+
λ ), ± (π− (

θ0+
λ − θ+−

λ

2
)) + (α+−

λ −
α0+

λ )},

χ′
3 = {±[arccos

(

cot(
θ+−
λ

2
+ γ) sin

θ+−
λ

2

)

− θ00
λ

2
] + (α00

λ − α+−
λ + γ),

± [arccos
(

cot(
θ+−
λ

2
+ γ) sin

θ+−
λ

2

)

+
θ00
λ

2
] + (α00

λ − α+−
λ + γ),

χ′
4 = {±[arccos

(

cot(
θ+−
λ

2
+ γ) sin

θ+−
λ

2

)

− θ0+
λ

2
] + (α0+

λ − α+−
λ + γ),

± [arccos
(

cot(
θ+−
λ

2
+ γ) sin

θ+−
λ

2

)

+
θ0+
λ

2
] + (α0+

λ − α+−
λ + γ)},

χ5 = {±[arccos
(

cot(
θ+−
λ

2
+ γ) sin

θ00
λ

2

)

− θ0+
λ

2
] + (α0+

λ − α00
λ + γ),

± [arccos
(

cot(
θ+−
λ

2
+ γ) sin

θ00
λ

2

)

+
θ0+
λ

2
] + (α0+

λ − α00
λ γ),

χ′
6 = {±(π −

(θ+−
λ

2
+ arccos

(

cot(
θ+−
λ

2
+ γ) sin

θ00
λ

2

)

+ (α+−
λ − α00

λ + γ),

± (π −
(θ+−

λ

2
− arccos

(

cot(
θ+−
λ

2
+ γ) sin

θ00
λ

2

)

+ (α+−
λ − α00

λ + γ)} ,

χ′
7 = {±(2π − θ0+

λ
2 − arccos

(

cot(
θ0+
λ
2 ) sin(

θ0+
λ
2 )
)

+ (α00
λ − α0+

λ + γ),

± (
θ0+
λ
2 − arccos

(

cot(
θ0+
λ
2 ) sin(

θ0+
λ
2 )
)

) + (α00
λ − α0+

λ + γ)},

χ′
8 = {±(2π− θ00

λ
2 −arccos

(

cot(
θ0+
λ
2 ) sin(

θ0+
λ
2 )
)

)+γ, ±(
θ00
λ
2 −arccos

(

cot(
θ0+
λ
2 ) sin(

θ0+
λ
2 )
)

)+

γ}.
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