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Abstract

SU(2) Yang-Mills theory in the Savvidy background is studied at both zero tem-
perature and finite temperature. The Savvidy vacuum in the Gaussian appros-
imation is plagued by unstable modes both at zero temperature and at fnite
temperature. These unstable modes lead to an imaginary part in the one-loop
effective energy density; therefore the Savvidy vacuum 1s unstable.  With the
motivation to get real one-loop effective energy density, the stable and unstable
modes are separated. The stable modes are treated keeping terms only quadratic
in the fluctuation. For the unstable modes we consider the full action including
the cubic and quartic terms and the one-loop effective energy density of the un-
stable modes is added to that of the stable modes, The resulting energy density is
real, This real one-loop effective energy density of the Savvidy vacuum has heen
used to calculate the bag constant 8. The bag constant found to be Bi = 188
MeV for Ny = 6 for the gluon condensate 0.012 GeV? which compares well with
the MIT bap model value of 145 MeV, It Las been used for the caleulation of the
A-function and the caleulated F-function is found to be in agreement with the
known result.

The above procedure has been extended to finite temperature to get the real
one-loop energy density as the temperature dependent imaginary part inhibits
the analysis of phase transitions. We have introduced a chemical potential for
ghions originating from the conservation of color charges. The resulting one-
loop effective energy density at finite temperature and chemical potential in the
Savvidy background is found to be real. The variation of the scaled temperature-
dependent effective energy density with scaled temperature for different values
of the chemical potential has been numerically evaluated. At high temperatures,
the behaviour is like that of a noninteracting relativistic gas. A nonzero chemical
potential triggers a possible deconfinement phase transition.

The issue of chiral symmetry breaking has been studied using Gribov's ap-
proach. The Schwinger-Dyson equation gets converted into a differential equation
involving the quark propagator only in the Feynman gange. This equation has
been further modified with pion correction. A relation between dynamical mass
function of the quark without pion correction, My(g®), and with pion correction,
M{(g%), at low momentum has been found. For low momentum, the variation of
My(g*) and M(g*) with respect to g has been numerically studied. The result of
this study led to the conclusion that pion back reaction has a small effect on the
dynamical mass of quarks.
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Chapter 1

Introduction

Gauge theories describe the interactions of elementary particles, The local Abelian
[7{1) gauge theory provides the electromagnetic interactions. The unification of
the weak and electromagnetic interactions is achieved by the SU(2); @ U(1) gauge
eroup by Weinberg, Salam and Glashow with SU(2), ® U(1) svinmetry broken to
(1) - The strong interactions of quarks and gluons are described by the local
SU(3), gauge theory with the unbroken gauge group as color SU(3),.. This theory
is called ‘Quantum Chromo Dynamics’. In order to understand the vacuum of
QCD, physicists have studied the ground state of the non-Abelian SU{2) Yang-
Mills theory. Such a study provides a qualitative understanding of the ground
state of QQCD. In this thesis, we examine the ground state of SU(2) Yang-Mills
theory using the Background Field Method (BFM), the background being the
classical covariantly constant chromomagnetic field in the third colour direction,
known as the Savvidy Background—first at zero temperature and then at finite
temperature. The motivations for such a study are given at the end of this chapter.
Another important aspect of QCD, namely, the Spontaneous Breaking of Global
Chiral Symmetry, is studied in Chapter V, using Gribov's approach.

1.1 QCD and its Birth

Quantum Chromo Dynamics (QCD) is accepted as the theory of strong interaction
of quarks and gluons. It is a gange theory with the gauge group as SU(3),, the
unbroken color group, Quarks (spin-1) are in the fundamental representation
and gluons (spin-1) are in the adjoint representation. Just as photons mediate
the electromagnetic interaction between electrons in Quantum Electrodynamics
(QED), the gluons mediate the strong interactions between the quarks in Quantum
Chromo Dynamics (QCD). There are differences. While photons do not carry
electric charge, gluons carry colour charge. QCD is a non-Abelian gauge theory
and so the gluons interact among themselves (self-coupling). As the SU(3), gauge




symmetry is exact, the gluons are massless. We give a brief genesis of QCD now.

The quark model for hadrons, proposed by Gell-Mann [1] and independently
by Ne'eman and Zweig [2], gave a neat classification scheme for hadrons with
the underlying symmetry group being SU({3). This is distingnished from SU(3).
as SU(3)s. e, Havor SU(3). In their original proposal, there were 3 favors,
u-quark (2]e|), d-quark (-}|e|) and s-quark (-i|e}), the quantities in the bracket
referring to their electric charges. The Proton consists of two u quarks and one d
quark. Mesons are made up of quark-antiquark pairs. Such a scheme explained
the observed pattern of mesons and baryons [3] on the basis of unitary symmetry.
The successful prediction of the barvon € (sss) with mass (1672 MeV) has been
confirmed by experimental observation [4]. Besides describing the static properties
of hadrons, the SU(3) ; -quark model with current algebra techniques described the.
weak and electromagnetic interactions of hadrons [3,5]. However, the dynamics of
the quarks inside the hadrons was not satisfactorily described by the quark model.
A striking difficulty was the constitution of AT (unu) in which three identical
fermions were in the same state (£ = 0), violating the Pauli Exclusion principle.
The latter issue led to the introduction of an additional quantum number, color,
by Han and Nambu, Greenberg and Gell-Mann, carried by the quarks. Baryon
wave functions must be totally antisvmmetric in color guantum munber.  All
observed hadrons are color singlet. In the simplest model, guarks are assigned
the fundamental representation of a new, internal SU(3), global symmetry. At
present, we have six flavors of quarks, each coming in three colors (say, red, blue
and green).

The three-calor hypothesis received support from two important physical pro-
cesses, namely, the total cross-section for ete~ — hadrons and in the decay rate
of 7 — 2+. The discrepancy between the experimental results and the thearetical
predictions was resolved by endowing quarks with three colors. The next impor-
tant step was to elevate color as a dynamical degree of freedom of the strong
interactions with the color symmetry group as SU(3)., by Fritzsch, Gell-Mann
and Leutwyler [6]. Thus QCD came into being as a theory of strong interactions
by the confluence of non-Abelian gauge theory with gauge group SU(3), and color
as the dynamical degree of freedom. The Lagrangian density for QCD is thus,

1 y .
Lacp = F}?y F* 4 afvd D, (1.1)
where,
F;Tu = a,u AT.- = ai-f ﬂ’dl; s ﬂfﬂbﬂ *4!;-: A:r '

P - Dy,
D, = Gy — ig[Au] (1.2)

Ay, = i A?: ;

[te, ] = A e )



In equation (1.1) and (1.2), g is the QCD coupling constant defining the self-
interaction of the gluons (gauge fields) and also is the guark-gluon (minimal)
coupling, 4" are the Dirac matrices, and 1*'s are the generators of SU(3). Here
the f™ are SU(3) structure constants and in this thesis we focus on SU/(2) which
has structure constants [3] given by the Levi-Civita symbol ¢, The sum over
quark flavors is understood.

Now we summarise the important developments leading to the properties of
the quark-gluon coupling. In the deep inelastic scattering of electrons or neutrinos
by the nucleon, the two independent variables are the energy loss v = E, — E; and
the square of the momentum transfer Q* = —g” > 0. Introducing a dimensionless
variable & = 0*/(2Mv), where M is the nucleon mass, Bjorken [7] found that the
structure functions describing the target, have the scaling property,

MW, (z,Q%) — Fiz),
uH@(m,sz — Falx)

when » — oo, Q* — oo, with 5:5 fixed. This property, known as “Bjorken
scaling” tells that in this limit the scattering cross-section depends upon one
variable which is the signature for elastic scattering of the electrons from one of
the free and point-like constituents that carry a fraction x of the four-momentum
of the proton. This implies that during a rapid scattering process the interactions
among the constituents of the proton can be ignored. Bjorken [7] surmised that
this feature may emanate {rom a new field theory. Feynman [8] interpreted the
above scaling in terms of the parton model according to which the proton is a
loosely bound assemblage of a small number of constituents (partons) and the
virtual photon is elastically scattered by them. The deep inelastic eross-section is
just the incoherent sum of the individual (electron-parton) cross-sections. So, a
field theory of quarks should be such that at large momentum (short-distance) the
quarks must be non-interacting inside the hadrons. This is precisely demonstrated
by Gross and Wilezek [9] and Politzer [10], by caleulating the one-loop G-function
for SU(3). Yang-Mills theory. The negativeness of the (-function resulted in a
momentium dependence of g or a, = -‘5;'; such that as ¢° — o0, a, — 0, the
quarks are asymptotically free. Thus the field theory of the strong interaction
of quarks and gluons is experimentally confirmed to be the SU(3). Yang-Mills
theory. The behavior of a,(g?) is such that at low momentum (large distance of
separation for quarks), the coupling is very large. This region is the confining
region. As the quark-gluon coupling (and the gluon-glion coupling) is very large
in this region, perturbative methods cannot be reliably used. The ground state
of QCD in this region is identified with the “non-perturbative” QCD vacuum,
This is non-trivial. The vacuum expectation value (VEV) (0[F, F***|0) is not
zero and this is one of the ingredients of the sum rule approach to QCD [11].
There are experimental supports for the non-vanishing of the above condensate

3



from Charmonium decay analysis [12]. The “non-perturbative” QCD vacuum is
thus characterised by non-vanishing condensates (0| F2%, F|0) and (0)in)[0). In
the absence of a complete solution of QCD in this region, appropriate models
of the QCD vacuum have been suggested and are useful in making quantitative
estimates of the condensates. Such models are: the Dual Superconducting model
[13], the Savvidy Vacuum Maodel [14], Bag models [15] and Instanton Gas Models
[16].

1.2 Overview of the Thesis

In this thesis, we study the Savvidy vacuum with the emphasis on the unsta-
ble modes. Savvidy [14] considered SU(2) Yang-Mills theory and found that the
one-loop effective energy density in a covariantly constant chromomagnetic field
has a minimum at non-zero magnetic feld, lower than the classical minimum (at
zero magnetic field). This feature gave rise to (0] £, F***|0) # 0, i.e., the vacuum
contains some nonzero field. However Nielsen and Olesen [17] pointed out that
the one-loop effective energy density has an imaginary part and its presence im-
plied that the Savvidy vacuum is unstable. In search of a lower energy state to
which the above could decay, Nielsen and Ninomiya [18], using an ansatz for the
unstable modes and adding this to the classical background, semi-classically ob-
tained a lower energy density than the Savvidy value. Nielsen and Olesen [19] and
Ambjorn and Olesen [20] studied quantum fluetuations in the Nielsen-Ninomiya
approach and proposed a disordered “flux-tube” vacuum, The occurrence of the
imaginary part in the one-loop energy density has been noted by Trottier [21],
Parthasarathy, Singer and Viswanathan [22], Huang and Levi [23] in constant
non-Abelian background as well.

In order to avoid the imaginary part in the one-loop effective energy density,
varions proposals have been made. Cho [24] used gauge invariance arguments
to exclude the imaginary part. Kondo [26] introduced mass terms for the off-
diagonal gluons to produce a stable vacuum. The generation of mass for the
off-diagonal gluons is an additional input, not present in the original Lagrangian.
Cho, Lee, Walker and Pak (25| have considered the unstable modes issue in the
Gaussian approximation and by using a Wick rotation with causality were able to
obtain a real effective energy density. Flory [27] considered a class of backgrounds
(classical) having electric and magnetic hields and treated the unstable modes
beyond the one-loop. This indicated the possibility of obtaining a stable vacuum.
Thus, in order to represent the ground state of QCD by the Savvidy vacuum, it is
necessary to realise a real minimum for the one-loop effective energy density. This
requirement is further driven at finite temperature [28-31]. These studies show
the effective energy density at finite temperature involve a temperature-dependent,
imaginary part. This severely inhibits the progress.




In these above studies, the Background Field Method (BFM) is used. This
consists in expanding the action in (L.1) around a classical background for the
gauge field Aj, say A%, as
At = Ai+tal, (1.3)

i

where af}’s are the quantun fluctuations. The gauge chosen is the *background
¥

gauge’,
Dl = (9,6Y + g f* A%)al, =0. (1.4)

The corresponding gauge fixing term and Faddeev-Popov ghost terms are added.
The calculation of the partition function Z involves a path integral over aj. At this
stage, terms up to quadratic in @} alone are retained in most of these studies. This
quadratic or Gaussian approximation eventually gives an effective energy density
involving an imaginary part. The origin of the imaginary part is the negativeness
of one of the eigenvalue of the fluctuation operator, the lowest Landau level in the

infrared region.

In this thesis, in Chapter 111, we study the Savvidy background feld,

Ad = D

_ Hy Hzx

a S od o

i = o (-5 5R0),

. = H, ) (1.5)

that is, a covariantly constant color magnetic field in the third color direction of
SU(2). The action (1.1) is used and expanded using (1.3). Since the quark fields
1 are quantum, the Dirac term (1.1) becomes #1401, neglecting term involving
ajy, as higher order. Since there are no unstable modes for the Dirac part, it is
‘enough to have the above term only, and the Dirac Lagrangian is 0. As this
does not involve aj, this can be evaluated separately and added at the end. This
leaves — 3 F%, F™ to be expanded. This is done keeping the cubic and the quartic
‘terms in af. This expansion is exact. The terms quadratic in af are then analyzed
to find the stable and unstable modes. For the stable modes, it is sufficient to
retain terms up to quadratic in af, as the functional integral is convergent. For the
unstable modes, the functional integral becomes convergent only when the cubic
“and quartic terms are included. This is evaluated and added to the contribution
from the stable modes. The resulting energy density has no imaginary parts and
E'iﬁiiucidas with the real part of the earlier calculations. To this, the contribution
from the quarks (Ny, number of flavors) is to be added. The energy density for
|pure SU{(2) Yang-Mills with one-loop correction is given by,

H* i e gH 1
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The inclusion of fermions or quarks with N flavors changes 11 in (1.6) to (11— Nj)
[32]. The energy density with inclusion of Ny flavor fermions is given by,

CH (=N g ofl) 1
& = ?-waﬂ'ﬂ} lﬂg p' _E : {1.?}
_,&l-  — '241&2
This has minimum £ = —“:,—ﬁ_:;'[—:l{p"']r: w0 at H. = -!—;-ﬂ TN Inclu-

sion of fermions raises the minimum energy density and hence fermions tend
to destabilise the vacuum. Since the minimum energy density in field theory
corresponds to vacuum, we have a non-trivial vacuum with energy Enin. As
H2 = (0|Fg, Fo#|0) # 0, the fact that the minimum occurs at H, # 0 im-
plies (0] m,F“"”HJ'} # 0. The connection to the bag model is made by stating
that the inside state of the bag is a perturbative vacuum where quarks and gluons
are free and whose energy density can be, without any loss of generality, taken
fo be zero. The outside state of the bag is considered to be a non-perturbative

T i
vacuum whose energy density is £ = —%‘rf—] () g M-F7%  Then the bag con-

__4AxY @
stant B = Mf’—{ EHE) = ” B0 (e ™07 The numerical value of the
bag constant B can he calcula.ted by equa.tmg the Lrltlcal value of the um,gnLtu
field H, with the gluon condensate as (0 |—‘3—F;j'uF“”“|ﬂ} H?. From (1.7), the

:.une-l{:-up f-function is found to be 7 = %:}L %, The negativeness for N <11
ensures asymptotic freedom and this result agrees with the general expression for

the G-function (16.135) of Peskin [33], for SU(2).

The above study of the Savvidy vacuum is extended in Chapter IV to finite
temperature. Earlier studies of the Savvidy vacuum at finite temperature by Ni-
nomiva and Sakai [28], Cabo, Kalashnikov and Shabad [29], Starinets, Vshivtsev
‘and Zhukovsky [30] and Meisinger and Ogilvie [31] employed the quadratic ap-
proximation and invariably ended in a temperature dependent complex energy
density. The presence of the temperature dependent imaginary part inhibits the
‘analysis of phase transitions. Also, there is a discrepancy in the analytical expres-
“sions for the one-loop energy density between [30] and [31], an interchange of J,
and Y3, and a relative sign between two K functions. In Chapter 111, we care-
fully examine the one-loop energy density by identifying the stable and unstable
modes and evaluating the Matsubara sum and the functional integrals, including
the cubic and quartic terms for the unstable modes. We have introduced a chem-
ical potential for gluons originating from the conservation of color charges; the
details are given in Chapter V. The resulting energy density is found to be real
and coincides with the real part of [31], thereby resolving the discrepancy in favor
of [31]. This allows us to analyse the phase structure of the theory and, at high
temperatures, the behaviour is like that of a relativistic gas.

Thus in Chapters IIT and IV, we have shown the ground state energy of the

6




Savvidy model is real both at zero and finite temperature. The phenomenon of
chiral symmetry breaking can be addressed in the same scenario, by introdncing
a mass term for quarks in (1.1) Le., my, and evaluating %(V;_fm,,ﬂ,,,:n. This
is always found to be zero. So, in order to understand chiral symmetry breaking
in the low momentum region, we follow the approach of Gribov [34-36]. This
is based on the use of Schwinger-Dyson equations for the inverse of the quark
propagator with the gluon propagator in the Feynman gauge, and the assumption
that at low momentum, the coupling g is a slowly varying function of momentum.
Then, the Schwinger-Dyson equation is transformed to a differential equation.
This is solved at high and low momentum region [34-36]. It is found that the
dynamical mass function M(g*) for quark is such that M(0) £ 0. This shows
that chiral symmetry is broken. The resulting Goldstone mode is the pion, The
Schwinger-Dyson equation is modified for the pion contribution. We have studied
this improved Schwinger-Dyson equation at low momentum. The corresponding

dynamical mass function for quarks 1s found. Its variation with the momentum is
studied.

Chapter 11 describes briefly the Background Field Method. It is applied to
SU(2) Yang-Mills theory with the (classical) Savvidy background in Chapter I11.
The resulting effective density is real and its properties are discussed. Chapter IV

contains the above study at finite temperature for gluons only. Gribov's approach
to chiral symmetry breaking with pion corrections is studied in Chapter V.

1.3 Summary of the Main Results of the Thesis

We summarise our results:
1. In Chapter II1, the one-loop effective energy density of a SU(2) Yang-Mills
in the Savvidy background is found to be

Hrlz {1.1—1""-'_1} G oppd QH 1
7t e ) (e U7 ‘5}*

where Ny is the number of fermion flavors. This energy density has no

E:

imaginary part. The F-function for this calculated to be —%f—} g°. The

q4=7
. 1n-N i TR TP -
bag constant B is calculated to be ! = }[_u"'}e H=Rpes, For My =196,

Bi = 188 M eV, using the gluon condensate value of 0.012 GeV*. This is to
be compared with MIT bag model value of 145 MeV.

. In Chapter IV, we calculate the one-loop effective energy density in the
Savvidy background for pure SU(2) Yang-Mills theory at finite temperature
and chemical potential,

H* 11 gH 1
£ = 5+ gm o {le(53) - 5
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4531
il
gl )7 X cos( ol T
¢ RSl (v o
T 4 2

=1

o0
+ K(A8JgH)+25 VIn+1 Ki(V2n+ 18t gHj) ,

where 7 = il? i is the chemical potential, Y] is the Neumann and K is the
modified Bessel function. This energy density is real without an imaginary
part. Using this energy density, the temperature dependent part of £ ie.
(Er) sealed by '(gH)*" is plotted with respect to the sealed temperature
T[m%] for four values of chemical potential. At high temperature -4 >
1.4, the behaviour is like that of non interacting relativistic gas. For the
chemical potential b = (), the variation is smooth but for b = 1.2, 3, the
variation shows a minimum and then rises smoothly. So, a nonzero chemical
potential triggers a possible deconfinement phase transition.

. In Chapter V, in Gribov's approach at low momentum, we find a relation
between the dynamical mass with pion correction M(g*) and the dynamieal
mass without pion correction My(g®),

2 L2( o
Mig*) = Myle®) [1 + (%ﬁﬁp) (é) (1 = M“q{gf }H . (1.8)

B {mth () N 3 g ]

where

2h 4p 1672 f2p

and 5 =1—g, f: =93 MeV, and p and ¢ are solutions to the parametric
Schwinger-Dyson equation without pion correction. For low momentum, a
graph has been plotted for M(g?) and My(¢?) versus g; it is seen that the
pion correction has a small effect on the quark mass My(g*?) but makes it
heavier.




Chapter 2

The Background Field Method
(BFM)

2.1 Introduction

The Background Field Method (BFM] is useful in calculating the effective action
of a Quantum Field Theory by expanding the field around a classical background
field, The Green's functions are evaluated as a function of the background field.
Historically, this method was introduced by DeWitt [37], then by Honerkamp [38]
and was made popular by G. 't Hooft [39]. In the gauge theory, the classical
Lagrangian is constructed to be gauge invariant but on quantisation the explicit
gauge invariance is lost in the Feynman rules because of the necessity to add the
gange fixing and Faddeev-Popov ghost terms. To avoid the explicit breaking of
gauge symmetry, the background field method (BFM) was developed in which one
breaks only the invariance of the theory under quantum gauge transformations
and there remains the gange invariance of the classical fields, and it is this residual
gauge invariance which serves as a useful book keeping device [40],

Briefly, the basic idea of the background field method is to write the gauge
field appearing in the classical action as Aﬂ + aj,, where Ai iz the classical back-
ground field and af) is the quantum field which is the variable of integration in
the functional integral. Then. the gaupge is chosen as the backsround field gauge,
which breaks the gauge invariance in terms of the af(r) field, but retains gauge
invariance in terms of the Aj(z) field. Background field gauge invariance is fur-
ther assured by coupling external sources only to the A} {r) field. Thus, quantum
calenlations can be performed, yet explicit gauge invariance in the background

field is not lost [41].



2.2 The Generating Functional in the Background
Field Method

The generating functional for a non-Abelian gauge theory is given by

1) = [[dA]det [i[’f] exp ﬁ[S’{A] . % C.G+ J,A] , (2.1)

where A7 is the SU(2) gauge field, G*'s are the gauge fixing condition, w' are

the infinitesimal gauge parameters and J is the external source and the classical
action S[A] is given by,

1
5= - ;f-‘i“‘ {Fa, Fod (2.2)
where
F, = 84, — A5 +gf*™ALA

For SU(2), f** will be replaced by ¢,
In the ‘background field method’ we expand Af(x) = ;’;{:r} + ag(r) and the
expanded generating functional is,

Z[J. A%x)] = f [da?) det [‘E,] exp i[S[ﬂ+a]—%@.GN+J.ﬁ . (2.3)

where G is the modified gauge fixing condition, the Background field gauge fixing
condition, given by

g% = a, ay +gf“d‘.4; i:D‘”’ a’ = 0.

The infinitesimal transformation are defined according to,

gay = —wgf“b‘"'u.rba:';,

§AL = —gfut AL + "

e [ — abe b e /
&, = —g 5w dhn (2.4)

so that the sum of both fields transforms in the usual way,
S(AZ + ) = —gf™u (A + af) + 8,0t

‘and hence the classical action remains invariant [42]. It is to be noticed that
‘in equation (2.4), the background gauge field fl“ transforms like the gauge field
while the quantum fields aj transform hmmngpnmualy In the loop caleulation
cof the effective action, the backgrmmd field ‘A" appears in external amputated
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legs, whereas the quantum gauge fields ‘af,’ and the ghost fields ‘n®" live only in
internal lines.

2.3 The Background Field Gauge

One of the remarkable features of the background gauge is that it is free from
the Gribov ambiguity. The background gauge fixing condition is given by,

éa s Dubub {:"] I§|'1|’| X gfmh!lr:]ﬂ ==1j,

Now, consider the variation in this gauge G under the infinitesimal transforma-
tion (2.4):

5G° = §(@uap) + 9/ 8(Agal),

= 6 (Duay) + g™ 0(ALap),

= O (0al) + g fo* [(:’iﬁl“)a + Al (8af)]
We use the infinitesimal transformation (2.4),

0G* = Ou(—gf™utal) + gf™ [~gfMwP Ala, + (B0)a
_chmijinﬁ] :
= —gf (B, — gt (Bah) — g 0 fr AL

+af (D)o, — g F fTP Rl

After cancellation of the first term with the fourth term, we have,

6G° = —gfiyt Au(af) — o* f% oy Alal —g¥ [ fP P AL ol
= —of"WO(a) — Gl ([T 4 [ f7) Al

Using the Jacobi identity,
b L s i R el
§G* = —gf™uwdula)) + g f7 F*u" A af,
ol & o

= —gf"™w' D (al).
‘Therefore, under the background gauge transformation G* = fﬁ'ﬂ“{ai} transforms
like aij:
BG* = —g f%uw® DI (al),

= —gfoeyt e,

11



Thus, G* transforms homogeneously and 8 G2 is proportional to G®. So on fixing
the gauge G° = 0 , the change in the gauge § G* will be zero. So, the change in
the gange is free from the Gribov ambiguity. The change in the gauge fixing term
T;—EG“.G“ s —5-0(G*.G*) = —3-2G".8G" = Lgf*™wPGe.G*. Thus the change
in gauge fixing term is proportional to itself. so that it is free from the Gribov
ambiguity [42].

2.4 Quantum Yang-Mills Action in the Back-
ground Field
The original Lagrangian density depends on A" and aj, only through the sum
[A” + ag). From (2.4) we have
§(AY + af) = fj;‘;" (A + a)ut
= Guw® + g [ A + o)’ (2.5)

The gauge transformation in (2.4) should be distingnished from a true gange
transformation, by which we mean that the background field ;1“ is taken as a
fiwed classical background with § A5 = 0, the fluctuations traannrmmg as,

§aft = DPBub=9,0" + g fh A + ),

D“"u;! 4 gf””’ € w. (2.6)
This transformation is in effect the same as (2.5) for (A% + al). Now,
§G* = DYPDMLY — g DI (f*4ural), (2.7)
such that
5G - ,
ot Df D:'f - _-:;er’( i aﬂ}. (2.8)
Then the Faddeev-Popov determinant is given by,
&I"P — dEf{Dah DM gDah [fhm ;11}]_ E‘Eﬁ}

This is mpml(‘nhlﬂ.l.{_d using scalar anti-commuting variables (ghosts) n, n°
give Loynost = {D"E'T WDH 5. — gf nya?) and the gange fixing term is Lop =
- {D‘”’ ")?. The full quantum action is

Log = La, + Lgposr + Lap:

such that
1 /- 5 i 2
La, = —7 (F2, + Dual — Dyaly + g [™dliaf) ;
Lo = — (DN;;}(D" e — qubcﬂhﬂf:};
l TR TT |
Lpp = = E{Di ag)* (2.10)
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where

Fo, = 845 — 8,45 + g f** AL A,
D*al = 8,4 + g f* A

[ e

Din* = Oun® + gf*™ Apn’.

Then, the functional integral in (2.3) over aj(x) can be performed to obtain the
effective energy density. This method is used in Chapters 111 and TV,
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Chapter 3

Savvidy Vacuum in SU(2)
Yang-Mills Theory*

3.1 Introduction

The status of the vacuum in Quantum Field Theory (QFT) is like the phys-
ical medium in which creation and annililation of various particles and their
interactions are taking place in analogy with the ground state (vacuum) of con-
densed matter physics. QCD 1s a non-Abelian gauge theory and the source of its
non-Abelian nature is interactions among gluons which are (unlike photon) color
charged and this glion-gluon interaction makes QCD ground state (vacuum) a
complex and structured object. The non-trivial structure of the QCI vacunm
manifests itself through the existence of various condensates. Two of the simplest
are: the gluon condensate {GlEFL‘,,F a0y of ‘mass® dimension and the chiral
condensate (0|u1p]0) of ‘mass® dimension . These condensates are supposed to
be of non-perturbative nature, which means that their finite numerical values are
supposed to remain so after the divergent expressions obtained for the expecta-
tion values in perturbation theory are eliminated by renormalization. It is believed
that the non-trivial vacuum structure of QCD forbids the propagation of quarks
and gluons outside hadrons. Therefore, the question of confinement of quarks and
gluons boils down to the study of the QCD vacuum. The first progress in this
direction was made in 1975 by Polvakov [43], who discovered the non-perturbative
Hlnstanton” solutions of the classical gauge-field equations. These Instantons are
localised both in space and in imaginary time, and they have an energy lower than
the perturbative vacuum. As a possibility, the structure of the ground state of
QCD can contain a gas of such Instantons in Euclidean space-time,

The second progress in the direction to understand the QCD vacuum was made

*This chapter is based on the publication, “Savvidy Vacuum in SU7(2) Yang-Mills Theory™,
. Kav, A. Kumar and R.P.: Mod. Phys. Lett. A20, 1655-1662 (2005),
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by George Savvidy in 1977, He probed the vacuum by applying a background
(external) chromomagnetic field and, for simplicity, he chose pure SU(2) Yang-
Mills theory in a covariantly constant magnetic field in the third color direction
(Fi, = H) [14]. Savvidy found the one-loop effective energy density of the theory

a8,
H? 11 5 gl 1 )
E = ? + *'iﬂ‘ﬂ'z [(}'jf:l {lﬂlg (F) o= 5} i {-i‘])

The minimum of £ is —zHs (gH,)* for a non-zero value of the applied chromomag-
2

netic field H = H,. = E&: ¢ WeZ, The variation of the classical energy density {HTE}
and the one-loop effective energy density (3.1) with the chromomagnetic field H
is qualitatively shown in Figure 3.1 for a, = 1 and g = 2.3. From Figure 3.1
it can be seen that the one-loop effective energy density has minimum negative
value for nonzero value of H unlike its classical part which has minimum value
zero for H = 0. This study led to the conclusion that QCD vacuum with zero field
strength is unstable, and decays into a state with a non-vanishing value of the field
ie., the energy density of perturbative vacuum gets lowered by the introduction
of an external constant gauge field of magnetic type.

o2r

Dar

004 -

Q.06

Classical

Enargy dansity, E

0.0 - b
#
Q.02 i
y
ol— = 3
S, &= -

—0.02} ~ - .
-0.04 e S T—_;—]uﬂpaﬂactlva
_0.06 A : L i
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Chromomagnatic field, H

Figure 3.1: Variation of the classical energy density (solid line) and the one-loop
effective energy density (broken line) with external applied chromomagnetic field
uH

Further, Nielsen and Olesen [17] studied the Savvidy background carefully and
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observed that the one-loop effective energy density has an imaginary part. The
presence of an imaginary part in the effective energy density is the signature of
instability in the Savvidy vacuum and hence implies that the Savvidy vacuum
would decay (dissipate) to a further lower energy state. In the search of a lower
state to which the unstable Savvidy vacunm would decay, Nielsen and Ninomiya
[18], using an ansatz for the unstable modes and adding this to the classical back-
ground, obtained semi-classically a lower energy density than the Savvidy value.
Further Nielsen and Olessen [19] and Ambjorn and Olessen [20] studied gquantum
fluctuations in the Nielsen-Ninomiya approach and produced a disordered “Hux-
tube” vacuum. While the Savvidy background [Af = 0; A? = 5“3{—%5, iz 0)] for
SU(2) Yang-Mills theory is Abelian-like, the persistence of the imaginary part in
the one-loop effective energy (hence instability) was shown even in a non-Abelian
background by Anishetty [44] and Parthasarathy, Singer and Viswanathan [22].

Similar calenlations in 3-d (Euclidean) SU(2) Yang-Mills theory using the
Savvidy background by Trottier [21] and the constant non-Abelian background of
Ref. [22] by Huang and Levi [23] revealed the oceurrence of the imaginary part
in the one-loop effective energy density. In contrast, Lentwyler [45] considered a
self-dual background and showed that there is no imaginary part. Parthasarathy,
Basu and Anishetty [46] studied the Savvidy vacuum using the auxiliary feld
method and showed that the vacuum is stable for a range of coupling strengths.

All these studies of the QQCD vacuum demonstrate its non-trivial structure.
Although these studies are encouraging in the understanding of non-perturbative
aspects of QCD, the persistence of the imaginary part in the effective energy den-
sity Is disappointing and requires special attention. Cho used gauge invariance
arguments to exclude the imaginary part so that the real part alone need be con-
sidered [24]. This result led to studies [25] on the unstable modes nsing a Wick
rotation and causality. Further, Kondo [26] observed that the dynamically gener-
ated mass term for the off-diagonal gluons results in a stable vacuum, However,
the gauge invariance arguments are qualitative and the generation of mass for the
off-diagonal gluons is an additional input, not present in the original Lagrangian.
Therefore, it is highly imperative to address this imaginary part of the one-loop
effective energy density within the framework of the Background Field Method
(BFM) without taking any resort to qualitative argument.

An effort in this direction was taken by Flory [27] by treating the unstable
modes beyond the one-loop approximation i.e., Gaussian approximation. for a
class of backgrounds having electric and magnetic fields. Subsequently, Kay [47]
considered the Savvidy background following Flory. The results of Flory and Kay
indicate a possibility of obtaining a stable Savvidy vacuum solution within the
Background Field Method in a gauge invariant manner. With this motivation to
study the Savvidy vacuum to obtain a real one-loop energy density, we consider
the unstable modes in the Savvidy background carefully and separate them from
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the stable modes. Then for the unstable modes, we include the cubic and quartic
terms in the expanded action. The corresponding partition function is evaluated
and added to the effective one-loop energy density for the stable modes. The
resulting energy density has no imaginary part and coincides with the real part
of the earlier caleulations [48].

3.2 The Effective Energy Density in the Back-
ground Field Method (BFM)

For simplicity, we choose pure Yang-Mills theory to study the Savvidy back-
ground. We consider the Euclidean partition function for SU/{2) Yang-Mills the-
ory. The Euclidean functional integral for a pure SU(2) Yang-Mills theory is

Z = f [dA2] e, (3.2)

s = [az{-;rr), (3.3)

with F7,

st

the feld strength tensor, given as
Fi, = 0,A% — 8, A% + g AL AT (3.4)

Under the spell of the background field method (BFM), we expand the gauge field
Aj around the classical background field A“ which satisfies the classical equation
nf motion D2 F), = 0 with D’ = ,6% + qc”d'A" as the “background covariant
derivative”, Emd F 2 =8,4% -8, A" + gette Af' A"

Expanding, A},

A.u = A# + a,
we have,
t I = Rac o ahe B r f
oy = by AO0Fa; = Dife +ae (3.9)

The full expanded action is given hy

| T i
f da{-J Fo Bl + (DYFL)al + a5 (D D)ol

g »
1
__.n. EDmDuc‘] ,u_§ EbC.F“:yﬂ-“ "_gfu&‘u{ﬂuc c] :.Lﬂ
1 ’ 4
_zg 4 gile “hﬁrjfluﬁugal;}. (3.6)
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The first term is purely classical and the second term is linear in the quantum
fluctuation ‘ay’. The second term vanishes as the background field satisfies the
classical equation of motion. The third , fourth and fifth terms are quadratic in the
quantum fluctuation. The sixth term is cubic in the quantum HAuctuation and the
seventh term in the expanded action (3.6) is quartic in the quantum Auctuation.
We consider the terms quadratic in the quantum fuctuations and denote them by

Tﬂ:

T = S0 (DRDF)al — Sab (D DI)ay — 5 g™ Bl dbas. (87)
We use the relation
DD — Do ﬁ;‘:“' = g FY (3.8)
to simplify Th as,
T = %a: e a, — %u.f: (D3 DI af,, (3.9)
where
O = (DYDY) b + 29 F,. (3.10)
The full expanded action then becomes,
g = fu"r {— i L e %uﬁ@ﬁi ag, + g€ (D5 af) af, )
— ‘%2 ({ﬂ; a%)? — (af, af, af, af )} — %a;‘, {Dﬂbﬂﬂ‘}a;. (3.11)
The integration measure is
[dA%] = [dAY][dal). (3.12)
For constant background field A;, we have
[dAS] — [da]]. (3.13)

For the quantisation of the theory, we have to fix the gauge, We choose the
background field gauge (as explained in Chapter 11, this gauge is free from the
Gribov ambiguity):

Ditgh = o, (3.14)

and employ the Faddeev-Popov method for quantisation in the background gange.
We have the Euclidean partition function,

ahb b}Z

i N][da;]awﬁ(s—%f“ff’u al?), (3.15)
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where App is the Faddeev-Popov determinant and gauge fixing (3.14) is imple-
mented by the second term in the exponent. Now,

1 3 =4 1
— [ sDEd) = Efd‘:rﬂ“*' o D*a,
= fd':rﬂ“ D"‘I‘ Biegs. (3.16)
where a partial integration is performed. Then,
b hr/[da ]le'PfL +2n Ird'“xr:" U""D"‘!qu,] . [:il?::l

Choosing @ = 1 in (3.17), the gauge fixing term cancels the last term of the
full expanded classical action (3.11). The ghost Lagrangian is given by (2.10)
in Chapter II. The second term is cubic in the combined ghost and gauge field
fluctuations and is omitted, so the Lopae = —(D&n*") (D49, In Z, the functional
integral over the ghost felds gives the Faddeev-Popov determinant, as

= (o Pybe .
App = —det(—DJDY). (3.18)
The complete Euelidean partition function is
72 = N f [dal] e (3.19)
with

o = fdd { Fn rn 1 aQac e +yEﬂr'd'[:Dw r':] ﬂd

_l Jaas E F T a1 Ui ;; L
A
—%([ a%)? — (af af, al ot )} — log det(—D3 DY), (3.20)

where @} is given by (3.10). The last term of (3.20) is the result of integration

over the ghost fields. Equation (3.20) is the full effective action after quantisation
in the constant covariant background field A7,

In the Gaussian approximation, one ignores the cubic and guartic terms in
the quantum fluctuations ‘af’. The linear term in the fluctuation drops out as
the background feld solves the classical equation of motion. Therefore, in the
Gaussian approximation, the effective potential (action), is

rr_-j'_f = Sc! i Fma—!mp1
and

1 — =
[one—loop  _ ETT log det (—655,) — Tr log det (—D*DY).  (3.21)
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For four-dimensional SU({2) Yang-Mills theory, in the Savvidy background,

Ay = 0
2 ; Hy Hx
A = g (_T‘- T‘”) _. (3.22)
which solves the classical equation of motion, D2 F! = 0, we notice
ac Pyl Pyl
_B f — e-;-;l_ — D;I,D 1
2"{ = (@ =y = = =) (3.23)

The contributions from p, » = 3,4 cancel exactly the ghost contribution as can
be seen from (3.21). Therefore, we need to consider eigenmodes and eigenvalnes
for further analysis of ©fF for only i,j = 1,2 and a.c = 1,2,3. The correspond-
ing eigenmodes and eigenvalues are (see Appendix 3.2 for the eigenvalues and
eigenmodes caleulation):

af £ia) : ki + k] (plane waves),
(ay + ia)) 4+ i(al +ia3) : (2n+1 gH—ZgII—:—kE-I- K,
i 2

(aj + iad) — i(al +ia3) : (2n+1)gH + 2gH + ki + k3, (3.24)
(a; —ia)) +ifal —ia3) : (2n+1)gH + 2gH + k2 + &2,
(a7 —ias) —ifa] —ia3) : (2n+1)gH — 2¢gH + k2 + k.

Therefore, within the Gaussian (quadratic) approximation, we then have,

i 1 gl 2 o fdhy o dky
[omne loop .  — (t ) 2 s PR
2w nEl:] —o 2 Jee Zm

llug{ : {{Zn—i-l]qH + 2gH + ki + k }}
+log{ {2n+1)gH — 29H + K + L,,}H, (3.25)

where the *Ei%‘ prefactor is from the harmonic oscillator density of states, the
‘2" prefactor is due to the multiplicity of each eigenvalue in (3.24) and p* is the
dimensionful constant to render the argument of the logarithm dimensionless.
Expression (3.25) agrees with (32) of Flyvberg [32].

It is to be noticed that the integrals (3.25) have ultra-violet divergences as
ks and ky tend to infinity and both logarithmic functions diverge. In order to
regularise these ultra-violet divergences, we use the e-regularization prescription
by Salam and Strathdee [49]. This regularization preseription is explained in
detail in Appendix (3.1). The argument of the first logarithmic function in (3.25)
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is positive for all n, ks, ky. The sum over n and the integration over &y, ky with
Salam’s e-regularization prescription give the finite part, as,

1, H |
o (6°H?) {Ic:g (*‘LE ) - C}, (3.26)

where C is a real constant.

The argument of the second logarithmic function in (3.25) is positive for all
k3, ky and n # 0 and a similar regularization gives the finite part for n +# 0 as,

Qb Gr2 (g"H?) {lng ( LH) - C*’} (3.27)

where € is a real constant. The argument of the second logarithmic function
will be negative far n = 0 and k% + k¥ < ¢H and the logarithmic function with
negative argument will produce an imaginary part. This imaginary part is the
source of instability in the Savvidy vacuum in the quadratic approximation. Nev-
ertheless, we employ the Salam’s e-regularization prescription for n = 0 in the
second logarithmic function of (3.25) to calculate the finite part as,

H S :
7 (1) {lug (“L ) F g } ~ i 5 (¢*H?)(m). (3.28)

We collect all finite parts obtained using Salam’s e-regularization prescription
(3.26), (3.27) and (3.28) and add to the classical background contribution, to
obtain the resulting one-loop effective energy density as

_ H? 11 5.3 gH giH?

&€ = 5 + IIS'.I‘"J H {lug_,(p ) + R} = (3.29)
where [ is a real constant which can be fixed by the Coleman-Weinberg normal-
isation,

d 1
Re(£) = -, (3.30)
aH? gt 2
as R = —}. This result for £ with R = —} agrees with earlier calculations [32],

3.3 Zero Temperature Unstable Modes—Inclusion
of the Cubic and Quartic Terms

In order to tame the instability of the Savvidy vacuum in the guadratic ap-
proximation we go beyond the quadratic approximation for unstable modes and
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consider the full action for the unstable modes. As seen from (3.24), there are two
unstable modes,

al = (ay +iay) + i(a] + ia3),

a- = (a; — iay) — i(a] — iad), (3.31)
whose eigenvalues become negative and result in an imaginary part to the one-
loop effective energy density, when k3 + k3 < gH for n = 0. These unstable
modes each have density of states ‘%—:Ti‘. These unstable modes are given in terms
of the normalised eigenfunctions, as

H 1 g
G'»‘k;,;.:.;{iﬁ} 5 gz—ﬂe_s{i[:ﬂ§+-r§}mﬁliﬂaxa-z—qu”‘ {332}

where the first exponential is the ground state wave function (n = 0) of the two-
dimensional harmonic oscillator in the (#-75) plane while the second exponential
is the “box-normalised” plane wave in the xy and x4 directions. It is easy to
vnrify fg;bls 5 ()P kg (7) d'az = 1. The unstable modes in (3.31) are expressed
as af = cfog, ,(7) and aZ = eZ¢}, (), its complex conjugate, with ¢l (") as
constant vectors. For these unstable modes we consider the full action in (3.20).

The unstable modes involve only the Lorentz indices 1 and 2 (as can be seen
from (3.24)) and SU(2) indices 1 and 2 (because the classical background A“‘ i
in the third ecolor isospin direction). Thernfﬂre. the cubic term e (Doe aF}u” ad

vanishes because the first term, ¢ (d,a?) af, af, reduces to €*!{(8;a8) afaf +
(@a?) a$ ad}, which is ?FI‘D when a,c,d are restrlcted to 1 and 2, and the sec-
ond term ¢4 ¢#% A3 o€ af af = A3 {a‘i Sal — afaf al} vanishes as well, as the

unstable modes do not 11w01ve the SU{ } index 3.

The term quartic in the fluctuations aj; in (3.20) has two parts, (af af,)* and
aj aj, agag. Again, the unstable modes involve the Lorentz and SU(2) color in-
dmes 1 and 2, so that the combined term (af f1“]‘E — ag aj ay, a; is found to be
ta”a_al a_, where al and a” are given in {3 31). From [3 1":!} and (3.20), the
partition function for the unstable modes is

zurls!'uhl't' - f{dﬂ-:] 'F,’J- d* r{au L‘J‘H—k;—kf]au—%lauﬁ]‘
= f[d; ] p— [ & =lay l:k§+ﬁ:3—gﬂ}au+g;|ﬂu|-i}1 (3.33)

where @, stands for af and a”. It is clear from (3.24) that the unstable modes
oceur for &% + k3 < gH. For this. the quadratic term in the exponent (3.33)
diverges. However, the quartic term in (3.33) provides necessary and crucial
convergence. The normalised unstable mode eigenfunctions can be obtained from
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(3.32). The degeneracy factor D is given by

. Ifj'H Lg L.| . gH i
= e T ar (e4)

where the factor 2 accounts for the two unstable modes and € = Lj Ly is the
two-dimensional volume. The quadratic term in the exponential of (3.33) is

[ ' we® (k5 + = gH) o, 4, () (3.35)

and since ¢f, . (x)'s are normalised to unity, (3.35) becomes

e? (k2 + k2 — gH). (3.36)
The guartic term in the exponential of (3.33) is
2
) b . Ly Ly !
2 f Pzl () {ZW} f d Ky ARy 63 5 (), (3.37)

where,
1. we have introduced primed states for the second pair of unstable modes and
integrated them as is necessitated by the oceurrence of af af a” @~ and the
pair a” are allowed to have momenta differing from those of al by a small

but bounded region < gH, and

2. we have infroduced the density of states for the primed modes by {...} in
(3.37).

Using (3.32), (3.37) becomes,
2 2
) 4_ 2 QH) 1 Ly Ly _g;f{f.;.;r'ﬂjf Pyt P
P [ ot [ i dbkdk, . ;
32 f”’ e (h g ey e sek s (835)

Now [ diy dig e~ 91 (=1 +53) = g and [ daydry = Ly Ly, so that (3.38) becomes

3
g H Pyl
e f Ak, d K, (3.39)
For the primed states differing from k3, k4 by a small amount bounded by g, we

have [ dkid k|, = mgH and so (3.39) becomes

4 g2
g H
256m? g 340
Using (3.36) and (3.40) in (3.33), we get
D
[P 1% ST S LH2
Fciatntty = (H fn{cﬂ { (k3 +kf—gi) + L7 }) 1 (3.41)
Feg kg
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where we have introduced the d:—*generafv f’mtm Din Z,,ame. Now we make the
s " . . - i ey

following substitutions: ¢/ = gHe, k} = JH‘ ky = 2,

so that (3.41) becomes,

o
1 —{c’zik'1+k“=—1h+—9—,2 .-f-i}
Harmie = ||y / dele L 70 T e . (3.42)
) ( g -'»‘H.;

It is important to observe that the expression in the curly brackets in the exponent
(3.42) is indf-pendeut of H. The H dependence in Z,.um. 15 only from the
prefactor u’_ﬂ D and from the ks and ky integrations. This is very essential for
our purpose. Next, we observe that the functional integral over [da,] in (3.33) is
converted to an ordinary integral over de’ in (3.42). Now, the integral in (3.42)
over d¢ is convergent, due to the ¢ term in the exponent (coming from the
quartic contribution), irrespective of whether k¥ + & is < 1 or > 1. Denoting
the value of this integral by I (which is independent of H), the contribution to
the energy density from the unstable modes is,

1 . v I
Eumlfubh: = = ﬁ ]0!-,"{2:411,:.'«&!:} == "t 'ﬁ' ]'DE (ﬁ) f d:';l::l dkl
i {
= HY1 . 3.45
”[fﬂ;r }ng(m)JrJ_ (3.43)

where we have used the unstable eigenvalue requirement k3 + k7 < gH in per-
forming the d ks d ky integrations in (3.43) to get the first term in the second line
of (3.43). The contribution from the dkydk, integration beyond the above re-
quirement will be infinite and is denoted by J in (3.43). By considering the finite
part (consistent with (3.28)), and nsing D in (3.34), the finite part of the unstable
maode contribution to the energy density becomes,

g H* qH g?H? gHY\ ¢°H?
pPe {Iﬂg{f} — —lﬂg ( )} =% log (T) e log(f).  (3.44)

IS

The first term in (3.44) 1 is exactly the real part (3.28) as the second term in (3.44)
can be absorbed into € in (3.28), In this procedure of including the quartic
terms in the unstable modes, there iz no imaginary part and so the effective
energy density is

H*? 1 gH 1
& = _?_ + W(Q H :] LDE_, Iu. A= E N [345)
which coincides with the real part of earlier calculations.

It is to be mentioned that in treating the unstable modes exactly, we have
considered the contributions of the quadratic and quartic terms. Despite this,
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the calculations leading to the effective action are gauge invariant. Tn order to
see this, notice that the mixing of the quadratic and the guartic terms oceurs in
the exponent in equation (3.42). The first term comes from the quadratic part
and the second from the quartic part of the unstable modes. The second term is
one order in g* higher. The crucial ohservation is that these two terms in (3.42)
are independent of H. The H-dependence is in the prefactor ﬁ D in (3.34)
and the d kg d ky integrations in (3.42) and all these involve the gauge invariant
combination gH. The mixing effect is thus contained in the integral I which is
independent of H. Then the calculation for the complete unstable modes leads to
(3.44). The effect of mixing is contained in — ﬂ% log(I) which is absorbed into
C" (3.28). Therefore It in (3.29) is fixed by Coleman-Weinberg normalisation as
= %. So the calculations involve only gauge invariant quantities.

3.4 Inclusion of Fermions

Inclusion of fermions will not change the form of the enerpy density: the only
change will be the replacement of the prefactor 11 in (3.45) by (11-Nj) for N
fermion flavors. In order to caleulate the contribution to the one-loop effective
energy density of the inclusion of N; fermion Havors in the Savvidy background,
we consider the partition function for fermions [32],

AF = f [d )] [d] exp [ f d i, D,;ﬁ!?] ; (3.46)

The sum over quark flavors is understood. Upon carrying out the functional
integral, (3.46) becomes

AF = detfiv,D,). (3.47)
The fermion contribution to the classical action is
I' = —=Trinfiv: D, (3.48)

In order to compute I', we need to solve the Dirac equation,

i Dy = Ay,
ﬁ_n = tf.“ +"£[ﬁ.u.-]~
Ay = Ajin
For the Savvidy background, i, D, is found to be diagonal in SU(2) space and
each Dirac equation describes a fermion moving in a constant (color) magnetic
fﬁeld. The eigenvalues for massless fermions are given by

Moo= K+ k] + %[En + 1 +A); (3.49)
n = (,b1,2.3,...,
A, = ],




Unlike the gauge field fluctuation, for &% — 0,n = 0, the eigenvalues do not
become negative. Evaluating “Ir log” using e-regularization procedure, we find

_ 1 o g H 2 (1) ) .
AF = ——— (g H}N;lng(ﬂ )—i—g H (G -) + RFC) ,(350)

where RFC is a real finite constant and O(3) — oo as € — (. After renormalization
like the gauge field case,

gl 1 o

Therefore, the one-loop effective potential in the Savvidy background with the
inclusion of Ny fermion flavors is

B (11 ) g H 1 \
£ =% T[ﬁx‘ﬁ {iog( ) " —} : (3.52)

The one-loop effective energy density is free from imaginary part i.e., it is real
and can be used for further calculation like the bag constant.

Let us caleulate the minimum for the one-loop energy density, in the Savvidy

‘background,
d& (11 — Ny) ; 4 gH
_— = ——~(g"H) ¢ 1 : 3.03
or ~ Ht Tgm WH e a (3%}
For the minimum of £, -g-:}gf = (), gives,
(11 — NI:' 2 gH
R T T = + 1 +5
H [1 t = (g7) log 2 0 (3.54)

The above equation has two solutions,

H = 0 and
(11 — Ny) gH.\ o
aigz 9 1o (,u ) - k2]

¥
Therefore, the minimum for the energy density &, is for H = H, = “—P =Nyl
and not for H = 0 as it can be verified from the sign of second denvahw B&—H%

The minimum energy is given by

T

Sﬂli.ﬂ. =

(3.56)
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at

H = H:.'.-.
2 _ ux*
= H . meapeaE (3.57)
q

The bag constant, B, which is the difference of the encrgy density of the pertur-
bative vacuum and the non-perturbative vacuum, is

B = 0- Eﬁiiﬂ

— Ew?
= “iqﬁ—f’r}p ¢ MNP (3.58)
-

The numerical value of the bag constant can be caleulated by finding H = H,
where the energy density eruId be minimum and equating 7 with the gluon
condensate, {U{J—FE,,F“"HD) . The value of the gluon condensate has been
obtained using Charmoninm df'ca} &Ilﬁl}"hl.‘:n Using this value of the gluion conden-
sate, G = 0.012 GeV'", (3.58) gives Bi = 188 MeV for N; = 6, BY = 196 MeV for
N; =5, and BT = 205 MeV for Ny = 4. This value for B should be compared
with the phenomenological MIT estimate of 145 Mev [32]. Although our estimate
for Ny = 6 is close to the MIT value, as the gluon condensate value came form
Charmonium decay, it is appropriate to use the estimate for Ny = 4. This is in

qualitative agreement with the MIT value. We have considered SU(2) QCD here
and this can be improved by considering SU(3) QCD,

Now, we use the one-loop effective energy density (3.52) to calculate the beta
function by the Callan-Symanzik equation,

i) il il
—_— —_— _ — TR
[ﬂ 7 + B(g) 3g v H BH} (g, H,u) 0, (3.59)

where 3 = g [47],

4] ; d H 0
— + 3 H, 3.60
a0t {2 - o )| T = (3.60)
Now recognising T in (3.60) as £ and solving the equation (3.60), we have,

(1-Ny) »  Blg)

) = 3,61
2 9 T, el

_f_['herefﬂre the beta function is given by

ﬁ{g] _ _{II_NI} 3

Tao? (3.62)
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The one-loop expression for /7 -function for SU(N) theory given in Peskin (equation
(16.135)) [33] agrees with (3.62) for N = 2. The above result obtained for SU(2)
can be extended to SU(3). It is discussed in detail in [50] that the result is the
same as (3.45) for the one-loop effective energy density with (11 — N;) replaced
by 33—22!\",:'
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Chapter 4

SU(2) Yang-Mills Theory in the
Savvidy Background at Finite

Temperature and Chemical
Potential®

4.1 Introduction

We study in this chapter the Savvidy vacuum at finite temperature and cheni-
ical potential as a continuation of Chapter I1I. The Savvidy vacuum at finite
temperature has been studied by several authors [51-52,28-31] in the quadratic
approximation. The results of these studies show the ocenrrence of an imaginary
part in the effective energy density even at finite temperature like in the zero
temperature case. This persistence of the imaginary part as a funetion of tem-
perature is a serious issue in the view of the stability of the Savvidy vacuum at
finite femperature. It has been observed by Meisinger and Ogilvie [31] that with
the introduction of a Polyakov loop, specified by ¢, it is possible to stabilise the
vacuum, if 3\/gH < ¢ < 2% — 3y/gH, where 3 = 1/kT, H is the chromomag-
netic background in the third color direction, as for this range of ¢, the imaginary
part becomes zero. However, the imaginary part is nonzero at the global mini-
mum. Therefore, in the understanding of the finite temperature behaviour. the
temperature-dependent imaginary part poses difficulty and hence it is required
o be addressed in the finite temperature field theory using the background field
~ method. The main purpose of this chapter is to extend the method of Chapter
III and [48] to finite temperature. We also introduce a chemical potential for

“This chapter is based on the publication, “SU(2) Yang-Mills Theory in the Savvidy Back-
ground at finite Temperature and Chemical Potential”, R. Parthasarathy and A. Knmar: Phys.
Rev. D75, 085007 (2007).




gluons. The one-loop corrected effective energy density is found to be real when
we include the cubic and quartic terms for the unstable modes.

We introduce a chemical potential for massless non-Abelian gauge bosons,
although the notion of chemical potential for bosons is not defined in the sense
that particle number is not conserved. However, in the case of non-Abelian gauge
bosons, the notion of chemical potential is possible as argued by Anishetty [53].
It is based on the observation that in non-Abelian SU(N) gauge theories, the
local gauge invariance of the action § = [ F, F? d*r under the infinitesimal
gauge transformation A — A5 + D;jbwb where Dﬂb is the standard covariant
derivative and w® € SU(N), gives conserved color charges, Q* = [ d*rj2, where
Ju = f“b"AtF;'“ is the divergence less Noether current, since using DE"F; b =
0, we have ji = —éﬁuﬂ‘}# and so d,j; = 0. The color charge of the physical
states obeying Gauss law DP®E? [) = 0, E? = F#, is invariant up to global
gauge transformations. The above conserved color charges satisfy the algebra,
Q" Q"] = fo%) and so one cannot define charge eigenstates with respect to all
color directions. Hence, one chooses eigenstates of Q*Q° and Q° where the index
¢ specifies the Cartan sub-algebra. In the case of SU(2) it will be (}*, Further, as
the quadratic charge operator in the partition function generates a non-locality in
the action density, one chooses (" in SU(2) gauge theory. The grand canonical
partition function will now have p@” in the Hamiltonian, where p is space-time
independent. This leads to the result (see Anishetty in [53] for details) of using
Af = A" — ipd™, where A® vanishes over the space boundary. Thus in massless
gauge theories, the chemical potential u arises from conserved color charges. This
procedure will not be applicable to Abelian gauge bosons. It can be interpreted
as the constant term which the A§ field approaches at the space boundary. This
conclusion has also been obtained by Actor [53].

The presence of the chemical potential does not change the short-distance
properties of the fields. The role of the chemical potential as a constant term in
the Af field is similar to the [53] constant color background A field of Belyaev or
fo the Polyakov loop specified by a constant A3 field in the third color direction
as in [31]. As we will see, the chemical potential will appear as (ky + pu) in
the eigenvalues and its effect is to keep the diagonal gluons (o = 3) massless.
The off-diagonal gluons acquire an effective mass in the infrared region. Another
purpose of this chapter, is to resolve a discrepancy in the analytical expressions
for the finite temperature one-loop energy density between [30] and [31]. (The
discrepancy is an interchange of J; and ¥, and also a relative sign between the
two Ky functions in the energy density). Our results show that the finite part of
the effective energy density is real. The real energy density coincides with the real
part of [31] which therefore resolves the discrepancy as mentioned above, in favor

of [31].
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4.2 The Effective Energy Density in the Back-
ground Field Method (BFM) at Finite Tem-
perature

The BEuclidean [unctional integral for an SU(2) pure Yang-Mills theory is

7 = f[fm;;eﬁ'. (4.1)
where
] 1] (e
8 = f““?- {—gflpF‘* } (4.2)
and
i, = 0,AL — 0,A% + ge AL AL (4.3)

We expand Aj = A‘; +aj, with ﬁ; as the classical background field satisfying the
equation of motion DiPFL, = 0, with D = 8,6 + ge** A% as the background
covariant dertative; Fj, is the same as (4.3) with A%. We choose the background
field gauge to satisfy

DPad = 0 (4.4)

In order to quantise the non-Abelian gauge theory, we have to fix the gauge and we
use the Faddeev-Popov method of path integral quantisation in the background
field gauge. Using the background gange (4.4) and calculating the Faddeev-Popov
ghost determinant as we have done in Chapter 111, we have

L = f[da:]eﬁ‘1 (4.5)
with
| Fy— 1 )
s = [da(~3FLE + 5010550 + g (Difag)agal
2
"%“ﬂﬂﬂﬁ ? —ajagaja)} — log det(— Dy D)), (4.6)

where, the differential operator 8% is given by
O = (DYDY)du + 2ge"°Fy,, (4.7)

‘The expansion of (4.6) is exact. Now, in the quadratic (Gaussian) approximation,
‘one ignores the cubic and the quartic terms in the quantum fluctuation af, and
then the one-loop effective potential is,

_ 1 =i
one—loop  _ iT-r log det(—655) — Tr log det(—Dg' D). (4.8)
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The Savvidy background is the chromomagnetic field in the third color direction
and is given by

Ar=o0 ; A" = § (—@, EE,{})? (4.9)
2 2
which gives F}, = H and solves the classical equation of motion, D®F, = 0. One

of the ways to introduce a chemical potential, p, is via a bac kg;rmmd ﬁeld and we
introduce it as in [53],

i

A% = };upc'i“:’, v, = (1,0,0,0). (4.10)

We combine both backgrounds (4.9) and (4.10) to get,

] i Hy Hz
A = g (%_FHTI']) (4.11)

which again gives Fi, = H as the non-vanishing background field strength and
which solves the classical equation of motion. In this method of introducing the
chemical potential via (4.10) and (4.11), it will play the role as the Polyakov loop
specified by a constant Af field in the third color direction as in [31] with the
identification ¢ = Gu. As in Chapter III and in Ref. [48] equation (10), we notice
that (4.7) gives,

ti=90% = DYDY, (4.12)
where
DY = 86"+ ge™ A} + pePuy, (4.13)

where A3 is given by (4.9) and w, is defined in (4.10). Using (4.11) in (4.7), it is
found that

n=0= 0y =65 =05=0 (4.14)

Therefore, the ghost contributions cancel exactly the contributions of 87 cor-
responding to the indices p, v = 3, 4. The only eigenvalues of 87 which are
relevant correspond to p, v = 1, 2. The eigenmodes and the corresponding eigen-
values of B} for ¢, j = 1, 2 are found to be (see Appendix 3.2):

(a] +ia]) +i(ad +iad) : (ks +p)® + &2+ (2N + L)gH — 29H,
(at +ia?) —i(ad +iad) : (L4—|—,UJ +H+(2N+1]qH+2qH
(a; —iad) +i(ad —iad) : (ky—p)+ k3 + (2N + V)gH + 2gH, (4.15)
(a} —ia?) — i(a} — ia?) {Li — 1)+ k3 + (2N + 1)gH — 2gH,
a’ : Az-i—ﬁ?—l—kf—l—k’f; t=1E
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where N = 0,1,2,--- is the harmonic oscillator quantum mumber (in the z-y
plane). If we take u = 0 in (4.15), the spectrum of (4.15) will match with the
spectrum of equation (3.24) in Chapter ITI, which is the case of the Savvidy
background without chemical potential.

One of the formal ways to take finite temperature into account in quantum field
theoretic descriptions due to Matsubara [55], known as imaginary time formalism,
is explained in detail in Appendix 4.1. In this formalism, we re place ‘" by ‘2""
and [T, d kg by 327 [54]. We use the cigenvalues for the eigenmodes of e as in
(4.15) f::nr the ca.lLulaf:mn of Toe~eor (4 8) and employ the Matsubara fc:rma.hsm to

get the effective potential in the “quadratic approximation” at finite temperature
and chemical potential, which is given hy

3 Bl
[ometionn: Z /.M L.% (4?}? +FH

Ti_—m

1S £

1 27 "
l“g{xa{(?“) *‘fﬁ”’”*”g""‘z““’ﬂ}}
i 2mn *
""”g{rw {(T )+ EN ””H”gﬂ} }
1 2mn s
+ log {_ﬁ? {(_ﬁ- = ,!L) + k3 + (2N + 1)gH +29H}}

1 [ {2mn _ S :
—I—lﬂg{ﬁi(%— ) +k§+[2h‘+1}gH—2§H}”,

where the first term corresponds to the last eigenvalues in (4.15) and the remaining

.__mrrespﬂnd respectively, to the first four eigenvalues in (4.15). The prefactor
-*9—‘ is the harmonic oscillator degeneracy and the prefactor 2 in the first term
:-:-ﬂ_.C(:GU.IltS for the two modes in the last term in (4.15) for i = 1,2. Here A is
the dimensionful parameter to render the argument of the logarithmic function in
(4.16) dimensionless. Tt is convenient to suppress ‘A® hereafter,

This expression for the one-loop effective potential at finite temperature and
chemical potential (4.16) agrees with equation (8) of Ref. [31] with their ¢ replaced
by pf and with equation (2.16) of Ninomiya and Sakai [28] with = 0. It can be
‘noticed from (4.15), that for k3 = 0 and n = 0, N = 0, the first and the fourth
eigenvalues become (2 — g H and therefore to avoid negative eigenvalues u > /gH.
;HGWE'UET, for n = 1, the fourth eigenvalue becomes [%—r —p)?* —gH (with N =0

‘and ky = 0) and if this is to remain positive, then pu < %‘ — v/gH. With this, the
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first eigenvalue remains positive. So for oH < p < 2 — \J/gH, it is possible to
avoid the negative eigenvalues and hence the matablhtyr However, the instability
enters af the global minimum [31]. So, this kind of restriction on g is not enough.

In order to see the origin of the instability, we consider the second logarithmic
of (4.16) (excluding prefactor)

r”f.s 2t 2 .
_zm J;ufw 2 {(_g‘ +H) +Fu3+f1}1 (4.17)

where A = 2NgH — gH. The integral Ly is regularised using the e-repularization
prescription of Salam and Strathdee [49] (and explained in Appendix 3.1):

Z Ef ks [ g gt e_t{{z%ﬂlzﬂi-M}_

fimad N w 27 Ju

After performing the ky-integration and the sum over n, we have,

B 1 _a 2t dwit —t(ut+a)
Ly = EV,_Zf dt 73 ﬂ;(ﬁ )e ,

N={) .62
where
oG _ 3
'5.:! (37 'TJ i Z ﬁm-rn EZmnz :
==

is the Jacobi theta function. We use the property of the #y-function (see the
Appendix 4.2 for the f3-function ) [56],

5'3{2??:1"} = T_% e(:f':_) iy (£1i)?
T

to rewrite the above expression for Ly as

D‘.':-
Ly e i j dt 20, ﬁ i ) e=tA,
Ax M=o ' At

Including the prefactor in [4.1&], the contribution to [~ from [, is

*
ane—loup : }: -2 -”'-‘3 13 —iA
v (L) = 1'57'2 f SR (2 amt) ¢

The unstable mode corresponds to N = 0. Splitting the above sum over N for
N=0and N=1,2,:+-,00, and ca,rr_g,ring out the sum over N (1 to o), we find,

Pome-lomb(75) = f dt t=2 04 (”ﬁ i )

l[ﬁ"3 47t

- E-!.gH
o (Eg 4 1—\0—_259&-) : (418}
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The first term in (---) of (4.18) corresponds to the unstable mode (N = 0) con-
tribution and the second term is the result of the sum over N from 1 to oo,

The third term in (4.16) has no negative eigenvalue and writing this as in
(4.17), the sum over N =(0,1,2,.- ., 0c is performed to give

oo g y pl g\ S _ X
Tom :W(L:aj = 157r2f dtt 2193(2 g Zﬁﬁ (2N 1)gH +20H)
_a pd ig? g—atuH
lﬁ?rz.[ s (27 4-;;5) 1 — g2tal (4.19)

The fourth term in (4.16) is the same as the third term except for p replaced by
—. So also the fifth term and the second term are same but p is replaced by
—p. We use the property of the Jacobi theta function, #4(z,7) = 84—z, 1) [56];
therefore, we have,

[one—toop g4 f fdt 72 LS a—
Z (L) = 872 Jo it (271‘141T?f-
- QﬂmtgH
3 (E!yﬁ _etall 4 m) . (4.20)

Now we can rewrite fy (5‘%, alfr—i) using the definition of 3,

(s =]
H:{ ["21 T} —a Z Hiﬂff: E,z#l:zf-

f=—na

Isolating the £ = 0 part and carrying out the sum over ¢ from 1 to oo, we have,

i) ()
By (27 471:) = 1+2?;;m3(pﬁf] .

The exponentials in (4.20) can be combined to give %ﬁ;—% ie,
g~lH _ gtoH | Zeran _ cosh(2tgH ].
1— ¢ 29l sinh(tgH)
Therefore, (4.20) becomes
— 5 Jodt 2 ) (1 + 2752, cos(ue) e-"%) : (4.21)

The first term in (4.16) is given by

1 &8 d* k d7* n?
Tm:_Im(Li] B ?)’ Z f slﬂg]i i +Ii.u.:2i|




We use the spherical co-ordinate of & and perform the summation from n = —oc
to oo with the use of the relation

— U 1 =«
— = —— 4 —poth 5
Zem ~ gty

This familiar term [™€~'®( L) has a finite part which is found to be —x2/(453").
Thus the one-loop potential is

,ﬂ_j

ene—loop .
r YL (4.22)

gH]zj‘ 2 cosh(27) _ atgn
e dr ~ b +EZC{)S pl)e 3 :

where 7 = gHt. It is to be noticed in (4.22) that the first term of the second term
is independent of 3 = 1/kT and reproduces the temperature independent part
(i.e. zero temperature, T' = 0,) term. This term was evaluated in Chapter III and
in [48] treating the unstable modes carefully including the cubic and showing that
the quartic terms and the effective energy density have no imaginary part. It is
given by,

: H* 1{gH) ((gH 1 ,
Eome-toon(T=0) = -+ — 21 {(F) = E} . (4.23)

We consider only the temperature-dependent part of (4.22),

e e
(gH)* j’“" _ cosh(2tgH ) (_grzﬁgaf)
4m? Jo drr* sinh(tgH) ZCDS{“'BE :
REW“T]I'IG % = ,|"._l_'-!?HI tﬂ” + 1 A8 ”:ﬂ . we hﬂ\-'ﬂ
e— 'JTE QH 2
poneioop(T') e {ﬁﬂrz} (4.24)

2,2

3 - - 9e=T oo A rgn'
L drT E(ET—E T-I-m) (Emﬁ(#ﬁf}ﬁ( » ))

The first term in f;~ corresponds to the contribution from the unstable modes.
Now, we expand

1 e . e ;
: — - Z e—ln'r =14 Z E—En'.r!
=& n=fl n=1
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and we introduce the notation for the integrals as follows,

o 4243
= f drr e e T (4.25)
1]
EZ'EE
f dr 72 6T =T 5 (4.26)
o oo LF g
i = EZfG d 772 et o~ (4.27)

The finite temperature part of (4.24) is written as

Fm:c—iﬁnp I "n'J
4534
(gH)? &

T 2o cos(ul) (L+ L+ 1), (4.28)
=1

in which [, is from the N = 0 unstable mode.

In I, {4.25), we perform a Wick rotation to arrive at

Iy o= r'fm dit2e (o 22 )
1]

- 2mi (13 : c
o \/g_ﬁ (Bty/gH), (4.29)

where H\" is the Hankel function of the first kind [57]. I and I, integrals are
evaluated using [57]

K, (z2) = ”—; fﬂm (v FE) gy, (4.30)
As
k= m Ky (pey/gH). (4.31)

B = 8% LoD w(Gar /o), (432)

n=1

so that the finite part of (4.28) becomes,

I-\me—impl:T] . 4';;4 N [QHI}’ EWS(?ﬂE { il}l (ﬁf\fgﬁ) (4.33)

ar* =
+K (Bey/gH ) +2 S J/en DK (van+1pe/oH) } :
n=1
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Now, using H,{l}[ﬁé.’-g’g_H} = (00/gH) +iY,(F6/gH), we find that our
result (4.33) agrees with Meisinger and Ogilvie [31] who used a different method
fo evaluate (4.16). The interchange of J, and Y} and a relative sign between the
two Ky functions in Starinets, Vshivtsev, and Zhukovskii [30] are incorrect, From
(4.28) and (4.33), it is seen that the unstable mode (N = 0) contributions are
contained in [} and explicitly

s = <R pRLCL
{-%}3 (ﬁf gﬂ) +‘E—é'r.11 (ﬁf gH)}, (4.34)

The imaginary part above is reminiscent of the zero temperature situation in
Chapter III and in Ref. [48]. In Ref. [48] we have treated the unstable modes hy
including the cubic and quartic terms in (3.6) and showed that the contribution
is real. In view of the important difficulties arising from the imaginary part at
finite temperature, we treat the unstable modes at finite temperature including
the cubic and the quartic terms in the expansion (4.6).

4.3 Finite Temperature Unstable Modes—Inclusion
of the Cubic and Quartic Terms

There are two unstable modes for the harmonic oscillator quantum number

N = 0, as seen from (4.15). They are the first and the fourth eigenvalues in

(4.15) with N = 0. In order to consider unstable modes in the full expansion Le.,

including the cubic and quartic terms, we consider directly (4.5) for Z but confine
ourselves only to the unstable modes. These two unstable modes are

@k aj +iaj) +i(ad + 7a?) }

[ ar
a_ {ﬂ% - E-.ﬂ‘i!:] —i(a,,i = IEI%:} [4.5.}]

-

with eigenvalues (kq + p)* + k3 — gH and(ky — p)? + &2 — gH respectively,

The normalised unstable mode eigenfunctions are

J9H _giia..2 1 —ikgra (220 )y ) ;
O a(z) = yfe—e T eited) - ~i(kemat (340 1 (4.36)
i 2% 3 LJE

where the *+' sign and the '’ sign over ¢} () are corresponding to al and a”
respectively and hereafter it will be followed. The first exponential is the ground
state wave function (N = 0) of the harmonic oscillator in the (a1-9) plane, the
second exponential is the box-normalised plane wave in the Ty direction and the
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Sl harmonics in the r;-direction. The index n is the Matsubara index and is not
the same n in (4.33) as the latter index originated in the expansion of ﬁg in
the expression above (4.27). The unstable eigenmodes in (4.15) are given by

ar = (f"‘_l:k:],.,ﬂ.}rb;;hu{m]}

aZ = ¢ (ks n)dp,n(T) (4.37)

where the summation over kzn is understood in the sense that (4.35) forms a
complete orthonormal set. Since (af)! =aZ, so (¢t ot} =7 ¢

The unstable modes involve Lorentz indices 1 and 2 (as can be seen in (4.15)
and (4.35)) and the SU(2) color indices 1 and 2, since the classical background in
(4.11) is in the third color direction. Therefore, we restrict Lorentz iudirea to 1
and 2 and color indices to 1 and 2, when the cubic term Eﬂm{{ﬂ“ﬂ,“] a;; ‘a vanishes

as in Chapter ITL. The quartic terms in aj, in (4.5) is found to be & - :‘Ij'_ a” al aZ
as in Chapter I11. The full partition funr’rmn for the unstable modes, from (4.5)
and (4.6), is

zunﬂtnb.[n = f[dﬂ_;:] E_fu‘du'-{ﬂ-u{kg+|:k¢:|:“l]?—ﬂHl]ﬂu+'§;ﬂ;'.}‘ {4‘38]

where a, stands for af and a”. From (4.38), it can be seen, replacing ky by
21 (Matsubara frequency), that the unstable modes for &5 + [5’%’1 +u)? < gH
render the quadratic term in a, in the exponent of (4.38) divergent. However,
the quartic term in ay in the exponent of (4.38) provides the necessary and the
crucial convergence, Thus the overall integral over a,, will be convergent. Now we
expand a, in terms of the eigenfunctions (4.36) and carry out the d'z integration
in the exponent. The quadratic term becomes

{kF + (B2 £ n)® — gH }c* (ks n), (4.39)
and the quartic term becomes

% iﬂ_ﬂL gHC ks, n) = ua;r c*(ka, ), (4.40)

‘where we have taken all the four ¢y, (x) having the same k3, n and |[¢*]> = [¢7|* =
|e|*. Then, we obtain

0o
bl | = (f H de(ky, n) g{(ﬂn_%—(%ﬂiu] )c’ %z%lrﬂ}) ’ {4‘41}
kam

where D is the degeneracy factor, D = -""2%1«", with V' as the spatial volume. Tt is
to be observed in (4.41) that the index n (from from the Matsubara replacement
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of ks by 2mn/3) takes values from —oo to oo, Now, introducing é = /gHe and
ks = fi‘-af*q,.-"g}q, [4.-’11} 15 written as

Bomotaits = (ﬁ f 11 dae{(l_ﬁ_(%ﬁﬁ)?)éz_ﬁ%ﬁ#})a, (4.42)

The contribution of the complete unstable modes to the energy density,
((=1/8V) log Zunsiane ), 18 then

H ; J(ks,m
Cy = —%[&%Ziﬂg( E/gT::)) (4.43)

where

J(ks,n) = f_ Z dé e{ (I_H_(%*#)z)ég_mﬁméd}. (4.44)

In (4.44), if the quartic term is neglected, then (4.44) will give (4.34). We re-
tain the cruecial quartic term contribution. The integral over di is convergent
irrespective of the sign of the coefficient of the ¢ term. It is evaluated using [57],

o 4 4
L T T e LA (f.ai) i
fu é dz zz(ﬁ) e\ Ky | g )
with

2

2 9
: 1287 (gH)'

1 = 2mn 1 :
P = kg + -1,
! 2 (A"1 ¥ (ﬁvyﬂ v’yH) )

Then (4.44) becomes,

Tissm) = Sy/mgH (£§+( 2mn

#'_.
V2g AveH = Vol

16w(gH) | :» 2mn I i B 2 .
XK1 (—n——‘._;2 {.1.3 + (ﬁ\/ﬁ - m) 1} ) . (4.45)

When 2 + (ﬁ;ﬁq + 7&]7}2 < 1 (that is where the instability arises: the left hand
side never becomes zero at finite temperature since n starts from 1 and so the
argument of K 3 will be small), the above expression is approximated using [58]

, L : 2 .30
) i) e
Ly &

r—1
K.(z) — Z—IFE; small x,

-rl'-"
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V2g OvgH = gH
2-11(4) Vi

(.lrz (B + ) - )5 2(mgH)t’

= Efﬁ_{TqH]d""F (4) (4.46)

—— 2 H
Jks,n) =~ b fod il (ﬁ‘:ﬁ+( s g B ) —l)

x

-~ L -
In particular the radical {k + (22  —7)" — 1)" gets cancelled. When i +

( cull g ;7'7;) < 1, the exponential in (4.45) is approximated to unity. This
msmft is real. The tmaginary part coming from the radical gets cancelled by the
contribution from K 1. This is made possible by the inclusion of the guartic term.

When (4.46) is used in (4.43), we have

B 2v2 (mgH)i, 3 gHVgH [ .
Cu = —lt_‘rg{? T T(4)} = ffu,,-;}; (4.47)

The ks-integration and the sum over n are constrained by B2 (2, 4 BV T,

e e A .ﬂv’_H Vall
and so 1 < "i"é?—?l[] —.‘{.‘%}EZF%,, with T%I:E{Wﬂ{l—kgji ,h. So,
e o Vall _
= o L 3 —_ el
fdkﬂ nE::,; 2_/-[. dk-’i Nnar L { 4 = ‘2';1‘}

‘Then, the above expression (4.47) becomes independent of 3. For studying finite
temperature effects, this term does not contribute. Then, the expression (4.47)

becomes,
e ()
- ﬂﬁ;:"rz-ﬂ E{ ;/_(W H)i 2“1“( )} (@;;—W) (4.48)

which is independent of 3.

When k2 + St & “#7)? > 1, the integration for ks will be from 1 to oc
[If however the pm-ﬂluw value of this is close to unity, then the argument of the
K 1 function will be small and the small  approximation can be used to get

expressions similar to (4.48) which will produce uninteresting (3 independent)
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terms|, the argument of K 1 function becomes large and the expression (4.45) is
approximated, using [58],

K.lz) — ,,l'ie_“’; large x,
2z

wal—=

oy — iz 2mn i 3_ 3
J(kz, ) \r(kﬁﬁ—(ﬁmﬂ:@) 1) : (4.49)

Then (4.43) is evaluated using

oo . 2 1 = . . 2mn i E
dka ¥ log J(ky,n) = ——f i log < k3 + ( + ) —13,
fj 3 g 4 5/, 3; 5y R Al ol
(4.50)
after omitting — [}~ ¥, d ks log /gH and I dhey 37, log(+/7) as these give an

infinite contribution. Now, we consider the R.H.S. of (4.50) without .ﬁ:g integration,
to perform the summation over n:

S nixlug{f:%-l-l- (ﬁ%i J;iﬂ)g}‘
= i lmg[( i T )2{1_1_(;'3%)2”1

tH=—n0 .ﬁ\-‘ EH "I.I"IEEH 27”’1 + j_.!.ﬁ
Y 2
=B 5 g B N SR b BygH (i — 1)
n=—nc . AvgH — gH g & 2+ pud ’

We neglect the first term, as it will give an uninteresting infinite term when the
ky-integration is performed. So

g = ki ﬁ {1+(vaﬂ{£§"1])z}

AL 2mn 4 uf
ok (ﬁm — cos( /)
= log 1 — cos(pd) |

= log {cosh (S\JQH{R‘;% —-1)) - c:ﬂs[,txrﬁ}} — log (1 — cos(pd)) .




We omit the last term, which will not give a finite contribution en performing the
k3 integration. So

S = log {msh (ﬁm - cus{luﬁj} .
= log {eﬁm + e BVl _ o cus(,uﬁ}} — log(2),
~ log {eﬂv’gﬂmg—n (1 4 e~ 2BV/EHIED _ g Em{ﬂme_ﬂm)}T
= S\/m + log (1 +e VoD _ g (:-:}s{p;?}e"'-’xm) 1
= f ng:f.:g — 1)+ log (1 e e(_zﬂmﬂw)) + log (1 = E(_Eﬁm——ﬂ—imi)) 1

where we have omitted terms which does not give a finite result. We use the
following expansion,

log(l—-z) = > —,
to write

= s (—mﬁ-.,.e’gff{'ﬁg—l]wimp.fi) idis (—m.l_i Q’H{E%—l]"i'rﬂj.[ﬁ)
§ = AfgHE -1+ & e £ ,

m=] i =] "
3 =0 :—mﬁm : i
= BgHE -1+ 3 i
hopez T
1 .
— o -1 +2 Y, D) /iR
= 1T

Using this S in (4.43), we find

Cu= {g;;]ﬁ lﬁﬁmdkam"'_z Zﬁmdﬁacus{z#ﬂ‘} e"“ﬂxm] +

m=1

B3l

From the Table of Integrals, [57],

X ammi A gH  _ T 3 9./ .
j; e W= = —EYI{nzﬁq.f'gH]—fn cos(mi3y/gH cos @) cosfdd,

s0 we have,

a
Fhs “;‘EF dkyy/gH (k3 — 1)
7 1

+{gH]% i cos(pBt) (—%Y] (ﬁg gH)) + 1, (4.51)

An? B, £
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where

(gH)?

L =
! At

f Cos (EH gH cos 6’) cos 0 df. (4.52)

The first term of (4.51) is 3 mdependent and can be neglected while discnssing
finite temperature effects. The integral I; in (4.52) is evaluated [57] to be

L HVGHR( [ & (1) (nBgH)*
i = G2 g( { l+£ 1+(22—1) (42— 1)---((2k)2 - 1]})

which does not contribute to the finite part of the energy density. Thus, the
unstable mode contributions to the finite G-dependent part of the energy density

is found to be
[fij‘iz: Z co&.{;mji ( Ty (fﬁm)) (4.53)

=1

which is just the real part of (4.34). There is no imaginary part. This is due to
the inclusion of the cubic and the quartic terms in the unstable modes. Thus, the
difficulties associated with the imaginary part are not due to the intrinsic property
of the 5U(2) chromomagnetic ground state but due to the use of the Gaussian

approximation. This reaffirms our earlier study of Chapter I1T and Ref. [48] of the
same system af zero temperature.

The complete expression for the energy density of the SU(2) chromomagnetic
state, including the zero contribution from Ref. [48] is,

H? 11(gH)? gH 1
2= e {ee(fs) 2}

LT

4534

T S0 [ (0o

+ K, (ﬁf gH) +23 Von+1K, (\#2?1 + 13¢ QH)] . (4.54)
n=1

The finite temperature part agrees with the real part of [31].

4.4 Numerical Results and Discussion

The expression for the effective energy density (4.54) involves summation over
£ and in most studies, the high and low temperature behaviours have heen exam-
ined. First, it can be seen from Ref. [59] that the K| functions fall-off to zero when
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the argument is greater than 5. On the other hand the Y function is oscillatory
with decreasing amplitude. Second, we use the “polynomial approximations” for
these functions as given in Ref, [59] and verify that they are good by computing
these functions for various values of 2 from 0.05 to large values and comparing
them with the tables of these functions. Then, MATLAB was used to find the
values of Y (z) and K(r) for various values of x; these agree with the previous
method. Third, we need to evaluate the sums in (4.54).

For the Y5 function appearing in (4.54), we found the typical sum 3772, w
converged to a steady value for £z up to 200 whereas for the sum 772, &f” a
steady value is reached when fx = 20. These allow us to choose £, = 200/x
for the Y} sum while £, = 20/x for the sum involving K. Keeping ., as
20/z, in the last K sum, the n sum was carried out from n = 1 1o 1. with
¢ W E{gﬂfl — 1}. In order to evaluate the temperature variation of (4.54), we

first set J = —=7 and p = by/gH. Then the temperature dependent part of (4.54)
hecomes

Er w I = eos( rrh!’} s
— _Tyvi(at
GHE ~ Bai ' 2 (= ZYilet)

+ K (ab) +2 Z V2n+ 1Ky (aly2n +1)). (4.55)

n=1}
In Figure 4.1, we have plotted FIT}_T with T = —“'—?ﬁﬂ ﬁ, that is, T in units of
—i—. for b=0,1,2.3. For b =0, zero chemical potential, the variation is smooth
apart from small oscillatory behaviour at low temperatures. For b = 2,3, the
variation shows a minimum and then rises smoothly. At high temperatures, the
behaviour is like that of a non-interacting relativistic gas. In [31], the Polyakov
loop is measured in terms of ¢ which in our notation is g/ and that is ab. In
the sense that o is a variable, it is not possible to relate directly our results to
[31]. However, the importance of the chemical potential is seen in Figure 4.1. A
non-zero chemical potential or non-zero ¢ triggers a possible deconfinement phase
transition. Our variation is qualitatively in agreement with [31] for their “real

n

part”.

Now, we wish to examine the inclusion of the cubic and quartic terms for all
the modes. It can be seen from (4.15) that the stable eigenvalues are distinctly
different from the unstable eigenvalues for a given N. So it is justifiable to consider
the corresponding eigenmodes as orthogonal. Then, from (4.15), it follows that the
cubic terms will vanish for the stable modes as well. The resulting full expression
can be evaluated as in (4.45) with explicit N appearing. When the logarithm is
taken, as in (4.43), the finite part will remain unaltered. The situation for the
unstable modes is different in the sense the troublesome imaginary part does not
appear in (4.46). At high temperatures, the behaviour of & vs T is like that of a
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Figure 4.1: Variation of scaled energy density with scaled temperature.

relativistic gas. Recently [82], there are speculations that the behaviour at high 7°
could be similar to that of a fAuid. These studies use hydrodynamical equations to
include the correlations among hadrons. Since correlations require some energy,
the behaviour of Ep at large T will show a dewnward trend. In this thesis, we have
considered gluons and quarks. Hadronization has not been studied. In future, we
will try to include correlation among quarks and gluons, besides the condensates.

4.5 Conclusion

We have considered the one-loop effective energy density of a pure SU(2) Yang-
Mills theory in the Savvidy background at finite temperature and chemical po-
tential. The unstable modes are treated by keeping the cubic and the quartic
terms in the fluctuations. This result is added to the contribution from the stable
modes. There is no imaginary part. The variation of the energy density for a given
chromomagnetic background with temperature is studied numerically. When the
chemical potential is non-zero, the variation shows a minimum which is (roughly)
interpreted as indicating a deconfinement phase transition. At high temperatures,
the behaviour is like that of a relativistic gas.
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Chapter 5

Spontaneous Breaking of Chiral
Symmetry (SBCS) using Gribov’s
Method™

5.1 Introduction

Spontaneous breaking of chiral symmetry and confinement, are the two generic
non-perturbative features of QCD in the infrared region and they are supposed to
be related in the sense that both have the same origin in the non-Abelian nature
of the theory [60]. A study of these features requires non-perturbative tools. The
Schwinger-Dyson equations (DSEs) are one of these non-perturbative tools. It
is an “infinite tower” of coupled integral equations. They are difficult to solve
exactly. Chiral symmetry is the invariance of the Lagrangian with respect to
independent rotation of the left-handed, [1%19}1;5.- and the right-handed, ( l—z’fﬂ}-a,-':
spinors in the chiral limit (i.e., when the bare mass of the fermions set to zero
in the Lagrangian). Whenever a mass term (myn) is added to the model an
interaction between the left-handed and the right-handed spinors is introduced,
giving the fermion a mass, and chiral symmetry is broken explicitly. But in the
chiral limit (mp. = 0}, it may happen that strong interactions between massless
fermions give rise to the formation of fermion-anti-fermion bound states and gen-
eration of a fermion mass and we say the global symmetry is broken spontanconsly.
Spontancous breaking of global chiral symmetry is a kind of phase transition with
order parameter (0fynp|0) # 0, which is called the chiral condensate.

*T'his chapter is based on “Chiral Symmetry Breaking in Gribov's Approach to QUD at Low
Momentum,” Alok Kumar, arXiv:0711.3970v] [hep-th].
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5.2 The Schwinger-Dyson Equation

One of the relevant Schwinger-Dyson equations for the study of spontaneous
breaking of chiral symmetry is the ‘Gap equation’. This is called the gap equa-
tion for quarks because for values of the coupling constants above some critical
value, this equation has nonzero solution for the fermion mass even in the ab-
sence of an explicit external mass [61]. The Schwinger-Dyson equation provides a
non-perturbative analysis of the quark propagator and is given by,

: d’-l : At A 2]
S7Hp) = Za (1y - p+mp) + Zy {2:}",, g S@I" DEp—q),  (51)
where S{p) is the full quark propagator, Dﬁﬁ is the dressed gluon propagator, TV

is the dressed quark-gluon vertex, my is the bare mass of the quark (which would
be put to zero for avoidance of explicit breaking of chiral symmetry), Z; is the
quark-gluon vertex renormalization and Zs is the gquark wave function renormal-
ization. A complete solution of (5.1) is difficult to realize fully. We invoke some
approximations and assumptions following Gribov [36] :

1. QCD coupling g* in the infrared region, will be taken to be constant following
Gribov [36]. This kind of ‘freezing’ of g* has been pointed out earlier [62,63]
and diseussed by Aguilar Mihara and Natale [64];

2. We will take Z; = £, = 1 and m,, = 0;

3. We will invoke the rainbow approximation (Ladder approximation). The
Ladder or planar approximation is a replacement of the full gluon-quark
vertex '™ by the bare vertex 4 (gluon lines don’t eross) so that ' = T“%h;

4. We will take Dﬁﬂ{p —q) =46 D, (p— q) for the gluon propagator.

Then, (5.1) becomes,

- : . d? &
SHp) = iv-p +:?jf{T_r?-,,':r"5[P—9’}’r D,.(p—q). (5.2)

The standard procedure is to assume a solution of (5.2) in terms of functions A(p?)
and M{p*) so as to have

1

g = = jv.p C(p B(p*), 5.
(p) P AGE T MGE) = C(p) + B(p”) (5.3)
where
2 o A{F!]
CW) = ~FEE) + 1)

P2 A2 p?) + M2 (p?)
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Equation (5.3) is used for solution of (5.2) and this leads to two coupled equations
invalving unknowns B(p?) and C(p*) upon taking traces on both sides of (5.2), as

H{ }:} 2 d‘-i i Z E
p’ft’-'f[p'l11+ S / @y D B2 =4, (5:4)
HC" p° 9 4 -Il y
R CEE;,?] rf Lah}e} = g f #C{{P— g)*) x

20 (p—a) — p0—0) 6"} Dula). (5.5)

In Ref. [65], it is demonstrated that the gluon propagator has "E]—__r‘ behaviour in the
infrared region which is faster than the Coulombic-like ‘%°. This demonstration
is based on the dual-Meissner effect and it is also supported by phenomenological
quark-antiquark confining linear potentials, Therefore, in the Feynman gauge,

Tﬂz

DY = ——§,.0%, (5.6)

PLE 4

where m is & parameter of mass dimension. We consider B(k?) as an analytic
function of k% and use the integral representation of B(k?) as.

Bla
B(kY) = 2,.:[ da = (5.7)

Such a representation is justifiable on the ground that quark fields are not observ-
able, the observability criteria being taken as the vanishing of the commutator of
the BRST charge ()5 and the corresponding field [66], the physical subspace heing
annihilated by Jg. As the commutator of (Jp with quark fields is not vanishing,
gquarks are not observable. This ensures that the quark fields are not asymptotic
states. Such a representation is used in Ref, [67], a theory of QCD with string
tension. We use (5.6), (5.7) in order to simplify (5.4) and (5.5). With the help
of the Feynman parametrisation technique to solve the integration, it has been
found [68].

4;" 5 g m? g*
A = H.
Loargy) = 2L (58)
which gives
M) = lim M(pi}=;%:‘;, (5.9)

This nonzero value of the dynamical mass function in the zero momentum limit
shows that chiral symmetry is broken spontaneously in the confining region of
QCD described by the model of Ref. [65]. The results consist of two parameters,
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m and the (QCD coupling constant, g in the infrared region. Denoting %i%f by D,
we have found that [68],

_amv’ﬁ

(qq) = 502

Using the lattice QCD estimate [69] of (0]un)|0) as (=250 Me"u"] for light quarks,
VD is determined to he 534 MeV. This gives M(0) (5.9) as 0.534 GeV which
compares well with the lattice estimate of = 0.6 GeV [?’[}]. The determination
of D using light quark condensate fixes ’”Ti%: as (.28 GeVZ We need to know g2
for the determination of m. We use the expression of Alkofer and Fischer [71]
for a(p®) which is :r after normalising the parameters of a(M2) . So m depends
upon p this its numerical values are tabulated in Ref. [68]. We find for g* ~ 8, the
dual gluon mass is = 828 MeV. This value agrees well with the estimate of Baker
et al. [72] who used the above value of ¢°.

As a summary, the :_1{-. behaviour of the infrared gluon propagator obtained
from the dual Meissner effect deseription of QCD in the confining region as in
Ref. [66] is used in the Schwinger-Dyson equation for the quark propagator in the
rainbow approximation in the Feynman gauge. Chiral symmetry hreaking is seen
from M(0) 0. qug the light quark mndensate value, the numerical value of Lhe
combination m* g% is determined as —-5’- = .28 GeVZ2 The expression of Alkofer
and Fischer [71] is used to evaluate gé and this depends upon the momentum p.
The corresponding m value for g> = 8 is found to be 828 MeV as a prediction
which agrees with [72]. These results were obtained in the rainbow approximation,
in which the full quark-gluon vertex had been replaced by the bare vertex. We
now consider an approach by Gribov, in which the full quark-gluon verter is used,
along with the Ward identity.

5.3 Gribov’s Concept of Chiral Symmetry Break-
ing

In order to address the issues of confinement and chiral symmetry, Gribov
developed a different picture of infrared region of QCD. His first observation is
that the existence of light (almost massless) quarks might be playing a fundamen-
tal role in making the QCD vacuum a nontrivial and highly polarizable medium
forbidding quark propagation outside hadrons [34,74,75]. He suggested that the
mechanism of the confinement is due to the existence of light quarks. The motiva-
tion behind this is the phenomenon of supereritical binding of electrans by heavy
nuclei in Quantum Electrodynamics (QED) [73]. He applied the phenomenon of
supercritical binding of electrons by heavy nuclei in QED to QCD. In the strong
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static central electric field (Coulombic potential) of heavy nuelei, the electron
would be relativistic and its energy spectrum would be given by the Dirac equa-
tion. The ground state energy of the electron in the Coulombic field of nuclens
with charge Ze™ is found to be B, o /(1 = (aZ)?) where a = o7 s the fine
structure constant. It can be seen from the ground state energy relation that
when Z > Z., = 137, the ground state energy becomes imaginary—this is an
indication of instability of the physical system. Hence an isolated point-like nu-
cleus with charge Z > 137 would be unstable and capture an electron from the
vacuum to form a supercritical bound state while a positron is emitted: thus the
stability with charged vacuum is achieved. Outside the length of this bound state
the nucleus would be seen with an effective charge of (Z — 1)et and this process
continues until the effective charge of the nucleus becomes 2 = Zerit = 137 [74].
Gribov’s idea is that a similar mechanism is responsible for the confinement of
quarks in QCD due to the existence of very light quarks.

This process applies even to the color charged single quark, where the role of
(aZ) is played by the quark-gluon strong running coupling constant at large dis-
tance. The vacuum structure of light quarks is drastically modified due to this pro-
cess, and the quark becomes a resonance that cannot be observed as an asymptotic
state. In Ref. [35] Gribov caleulated that a pair of light fermions interacting in a
Coulomlr-like manner develops super-critical behaviour much earlier when the run-
ning coupling constant attains a definite value . /7T = G;I[l - M] = 0:137
where O = %'?T_;]-, N, is the number of color charges and Cp = { for N. =3 and
Cp is the Casimir operator. 1t is to be noted that the critical value for QCD is
0.137 whereas it is 1 for QED. Therefore, the phenomenon of supercritical binding
happens earlier in the case of QCD than QED.

For the quantitative description of the physical picture of supereritical binding
of color charges, Gribov derived a nonlinear differential equation for the Green
function of the light quarks using the Schwinger-Dyson equation. In deriving this
equation, he chose Feynman gauge for gluons and collected only the most singular
(logarithmically enhanced) terms in the infrared momentum region as these con-
tributions are expected to canse the chiral symmetry breaking and confinement
[36]. The second term in (5.2), using a,/(47) = ¢%, Dulp — q) = — g (i
Feynman gauge) and letting p — g = k, becomes,

(¥ dt & 1
=0 =X | —— ARk .. -
'I{:jl." p 471_2’}-' C(L.}":r'ﬂ {q ,’1‘.:]2‘

(5.10)
where we denoted the external momentum by gy, introduced Cp = f—‘“’;ﬁrl"' which
is § for N, = 3 and denoted S by G. Then (5.2) becomes

dt ke 1

GHa) = ivg—Cr2 [ 4 Q) A, — .
(@ = iva-0r2 [ 51 G e

= (5.11)
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Differentiating (5.11) twice with respect to the external momentum, . and using,

2 1

= = Wi — g 5.12
=i 4 i 8 (g — k) (5.12)

we find,
s )
3G (g) = Cp ? T G(q) Y- (5.13)

Equation (5.13) describes the lowest order diagram with the quark-gluon vertex as
the bare vertex. Higher order diagrams can be effected by replacing ~ w in (5.11) hy
[#{q, k,q — k). When (5.11) is differentiated (twice) with respect to the external
momentum g,, it is found [77] that in each diagram, the most singular contribution
from the infrared is obtained when both the derivatives act in the same glion line
which gives the delta-function. Other terms, which have derivatives on [, are less
singular and are omitted. Then for the most singnlar terms, we have T%(g, ¢, 0).
It is to be noted that while the original Schwinger-Dyson equation involves one
bare and one full vertex, in Gribov's approach we have two full vertices. The use
of the Ward identity leads to

Tu(g,9.0) = 9.G'(q) (5.14)

to write (5.13) as
PG g = g(GYGB.E™) +.vi, (5.15)
where g = Cp 22 and the dots in (5. 15) stand for less infra-red singular terms

which are neglcctrd here. In this way, the integral Srhmmgrmﬂyson equation is
converted into a partial differential equation for G='(q) and this has been made
possible by the choice of the Feynman gauge. The remarkable feature is that
(5.15) involves only the quark Green function,

5.4 Solutions of Gribov’s Equation for Quark
Green Function

We use the general form of the inverse quark Green function,

a) = alg®) f—blg*), (5.16)

where a and b are two unknown scalar functions of ¢°. A polar parametrisation
of G~'(q) is given by

G Hg) = —pexp (—]—a‘:—). (5.17)




where p and ¢ are functions of ¢ (¢ = \/¢q,). We use the relation gg = ¢ which
is due to the anti-commutation relation of gamma matrices, to expand the R.1.S.
exponential function of (5.17), as

2 k] 4
4ot _ L4 1(0) 178V 1 ()
‘ = 1=, alz) ~@\g) o tals ‘

The expansion of cosh and sinh are given by,

il Py ef —e"3
simh 5 = T,

_ o 1 (o)
2 32
i - £¥+ﬂ_%
cnsh(g) 2 ;
1 {o}*
kﬂﬁlf

Therefore, we can write e %9 as,

(5.18)
Hence, from (5.16) and (5.17), we find

G g) = —p {cc}sh (g—) - gsinh (g)} =alq*) d — b(g®).  (5.19)

The comparison of the two equivalent forms of G~'(g) in (5.19), gives,

] 1
alq’) = =psinh (f) : (5.20)
q 2
I ¢
blg) = p cosh 3] (5.21)
The dynamical mass function My(g®) of the quark is defined as
blg®) ¢
folg®) = 29 _ o coth (2 :
Malg®) (@) g coth 5 ) (5.22)
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which involves only ¢. The subscript ‘0" on M will be explained later. From (5.19),

we hiave
I, :
G g) = ErI.':rs.inh (E) — pcosh (E) \
7 2 2

£ = Ing=In,/g"q, (5.23)

and denote 9 f(q) = f(q). Substituting this in (5.15), we obtain a pair of coupled
differential equations for ¢ and p as [76],

We introduce € as

H = 1—p*—f* (i ¢? + 3 sinh? (g)) v (5.24)

¢+2pd—3sinh(d) = 0, (5.25)
where
p = 1+8%,
fil
withg = 1—g=1-Cp2e (5.26)
m

By solving (5.24) and (5.25) for ¢ and p for large and small g, it was found
[35,36] that the dynamical mass function, My(g?) in (5.22) behaved such that
My(0) # 0. This is taken as the signature for chiral symmetry breaking since on
general grounds the Green function has the form G~'(g?) = Zu( 4 — M;) to be
identified with a(¢®)¢ — b(g*).

5.5 Solutions of Gribov’s Equation for Quark
Green Function with Pion Correction

In the spontaneous breaking of chiral symmetry, massless pions appear as the
Goldstone mode in the physical spectrum and they make corrections to the quark
propagator. Gribov took into account this back-reaction of the pions on quarks,
and obtained a ‘plon corrected’ equation for G~1(qg) [35,36]. The coupling of the
pion to the quark can be related to the pion decay constant f, via the Goldberger-
Trieman relation, by taking into account the proper isospin factors for the light
quark flavors. The pion corrected equation for quark Green function, see Gribov
[79] and Ref. [78] for a review, is

PG = (@G G967 - {i7%, G} G (i, 67"}, (5.27)

1t f2
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where f is the pion decay constant, f. = 0.093GeV. It is to be noted that the
pion corrected Gribov’s equation is still a differential equation involving only light
quark Green functions.

We use the same parametrisation as (5.17) for (5.27), with (p, @) replaced hy

(0, ¢, ie.,

Gig) = —fexp H@Eﬂ . (5.28)

Writing (5.28) as
/ '
G q) = gﬂ' sinh (%) — ¢’ cosh (%) .

and substituting in (5.27), we obtain,

. ! 2 i
P = 1-p*-4° (%¢*2+3sinh? (%)) + j-:—ij'—:i’;? cosh? (%) . (5.29)

¢ +2p ¢ —3sinh(¢') = 0. (5.30)
Equations (5.29) and (5.30) reduce to (5.24) and (5.25) respectively when the

pion correction is neglected. In the spirit of (5.22), the dynamical mass with pion
correction is

: g
M(qg*) = g coth (E) ; (5.31)

We are interested in the infrared region. For low momentum, || — 0. we linearise
the pair of equations (5.29) and (5.30) around (o, ) as

d=d+dp & p=p+dp

and keep only terms linear in §¢ and dp. This is a reasonable procedure as we are
interested in the low momentum region. Then, the ¢-equations (5.25) and (5.30)
give the relation

2dpp — 3 cosh (¢)dp = 0, (5.32)

and the p-equations (5.24) and (5.29) give

37? 30¢* ) . 30¢° ¢
[E_p = (— -+ ) sinh ((25] deh + m (!IIZIGhI2 (5) i (533}

4p 1672 f7p
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From (5.32) and (5.33), we find

coth(¢) B B¢’ ] _ BaMy(g?) (5.34)

0 | ——= T oon E 1
@ 2 dp 167 f."p 1672 f.°p

where we have used coth (g) == %‘ﬂ from (5.22). The dynamical mass with pion
correction (5.31) is

Y
M) = qcntll(¢; @)1
coth (§)+%‘E
l+%mhh(§) ’

[ra(2)- S]]
(g 0-me2)]

where we have kept the terms linear in d¢. We use the relation coth (%) = k’q"ﬂ
from (5.22), so M(g%) becomes,

@) - i+ (2)(1-29). g

&

it

2

Substituting d¢ from (5.34) in (5.35), we find

2 2¢ 2

where

__ cuth{qﬁ}_i_E_ Ag*
| 26 T dp 16x%f2p|°

Equation (5.36) gives a relationship between the dynamical mass of quarks with

| pion correction, M(g*), and without pion correction, My(q?), at low momentum.
This is our main result [81]. Further the expression in (5.36) and a involve solu-
tions to (5.24) and (5.25). It can be seen from equation (5.36) that in the limit
fr — oc (i.e., no pion correction), M(g?) — My(q?).

5.6 Results and Discussion

Now we consider the solutions of (5.24) and (5.25) in the infrared region q — 0.

In Ref. [76], one possible solution when |§| — 0is p — py with p2 = 1 and
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¢ = Ce* for pg = 1, where the arbitrary constant € has the dimension inverse of
length. We use the expansion for coth(r) and keep the first three terms only [80],

coth(r) = %+§ T (5.37)
h e}

Using the solution for ¢ at low momentum ¢ = C'q and ¢ = Cq, the dynamical
mass without pion correction, My(g?), is given by,

2 i 2 C:! 4 a
Mo(q*) = C + ﬁi}' = —‘,ﬁT (5.38)
while « is given by
1 ! 1 e 7 Aq*

‘- E(Cﬂ—gz 37 45 )+T_1ﬁx2f;’ W33)

and fhe dynamical mass with pion correction, M(g?), is given by

22,2 [P-M3(e"))
. . sergl 2
M(g®) = My(g®) [1+ Mt Je : . (5.40)
L+ (3+ 5102 - S -85 F

This 1s valid in the low momentum region only. In the limit ¢ — 0, we find
M(0) — My(0) = & # 0. For space-like momenta we replace *¢2* by ‘—¢%', and
(5.38) and (5.40) change to,

= 2 C"qr! (:.'3 qd
M) = 6% 360>

(5.41)

a2 (24 M2(7%)
Iu'jl CE EJT‘Z (Il."'.l—'rr'?_fg_l

M(¢®) = My(¢®) |1+ = Tca o
I R Y T

(5.42)

We use (5.41) and (5.42) to exhibit the behaviour of My(¢?) and M (¢°) at low
momentum. We use f. = 0,003 GeV [33] and the arbitrary constant ' is taken
to reproduce the numerical value of My(0) = M(0) as estimated in Ref, [76]:
My(0) = M(0) = 0.1 GeV and so from (5.41), C = 20 GeV~'. At low momenta
we take the strong coupling constant to be constant and use the supereritical value
e = 0.43 as found by Gribov [36]. For this value of a,, 3 =1 —¢ = 0.8175.
We show the variation of My(g?) and M(q*) for a range of g from g = 0 to 0.045
GeV using Matlab in Figure 5.1. Here the solid line corresponds to the variation
of Ma(g®) and the broken line is that for M(¢?). It is seen from Figure 5.1 that
in the low momentum region the pion correction to the mass of quarks is small.
This feature is similar to the study of Ref. [76] at large momentum.
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Figure 5.1: Variation of dynamical mass function with pion correction, M(g?)
(broken line), and withont pion correction, My(q*) (solid line), with momentum
scale.




Appendix 3.1

e - Regularization Prescription'

For the illustration of Salam’s e-regularization prescription, which is the regu-
larization of the ultraviolet divergence in logarithmic functions, let us choose a
typical integral, for example, the first logarithmic integral of equation (3.25) of
Chapter TIT :

gHY\ & 1= dky o dky 1 ; :
= \zr 5= | 5= legs—={(2n+: H+ k2 4+ 52y b

: (Zw)gj oo 2 Jooo 2w lﬂg{,ﬂg“ n+1)gH + 29H + ki + K}
(1)

Let us change the Cartesian coordinates (ks.ks) to polar coordinates (k.0) and
take the gH factor outside the inner curly bracket. The angular integration over
f produces an overall 27 factor. We re-seale k by /gHk as this rescaling produces
an overall factor (gH ) but does not affect the limit of integration of & i.e., 0 to
oo, Then (1) becomes

_ (@HPE = . gH i 2 ;
P 2 ;A dk lng{“:, {(2n+3) + & }}. (2)

Let us suppose F = %[:27?. + 3+ k) . The integral is ultra-violet divergent. To
avoid the ent in the logarithm we add the Feynman condition '—id’ i.e. log(E) —
log(E —id). Next, the integrand is regularized by observing that up-to an infinite
uninteresting constant,

. — i) -

log(E —8) = lim {E—"E}——l

- Fgi=N) &

€=+0 £ E

(3)
The infinite ! term is omitted. Then

A _5 E
log(E — id) — lim {E—;i

'A.Salam and J. Strathdee Nucl. Phy. B0, 203 (1975).
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; (B —id)™
= lim——1
e— £

Let us consider the Gamma function,
T(e) = fm ittt et
Substituting t = iy (£ — ) and dt = idy (E — id), we have
T(e) = j; dyi(E — id) y" (i) (B —ig) " emWIE,
= i“(E—ib)" fu dy y=! ¢~ E=9),

Therefore,

3 E

I = : .
E-if)™ = — gyt griE, 4
(B=i6)" = 5oy [ atee #

So, the integral I can be evaluated, using this prescription, as

{EEH}z f 2 it j‘ e —it( (2484 k)
= It i e 3 =
I ) {H Z dk EF[: } i e i

Under Wick rotation we perform the following substitution,
dt

I — - dt — —,
i i

s0 that

7= (:’?H}2 f 452 2 j’ dff H"f t[f}:[zmamzj
'—'U ~el(e) R i

We integrate out & and perfnrrn the sum over n to get,

(gH)* . P{=14+¢€})\ .. (gH\ 3
— iad — S R g (_ : _) : 5
: g2 eT(c) B i (5)
where £ is Riemann Zeta function. We use the property of the Grmurm function,

['(n+1) = nl'(n) to write ['(¢) = (—1+¢)['(—1+¢) and ”ﬁ%l = L. We expdnd

the Zeta function around e = 0 as £(—1 + ¢, 3) = &(-1,%) + ¢ f— ,2)

Only the first two terms of the Zeta func tmn e:xpansmn vnll contribute, The
contribution of the other terms to I will be zero as € — 0. Therefore, (5) can be
written as

=1 (gH)? 2-ct) e‘”ﬂa(fé) .2
= I T e(ﬁ 15)
(GH)? 2040 (gH\™ 3
C ST (—14e) \ 2 &-1.3)|- N
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()
In the limit ¢ — 0, =t

— — log -'}g and we use the value §(—1, 3) L

T
The second term produces a real finite constant (RFC) which corresponds to ¢,
Putting everything in (6), we get the desired result of Chapter 111, equation (3.26),

11g*° H? gH
Foay =S8 I .
r {Iﬂp_, ( o FC (7)

This procedure is used for the regularization of ultraviolet divergences of the
logarithmic functions in Chapter 111 and Chapter IV.

267

i1




Appendix 3.2

Eigenfunctions and Eigenvalues of ©{f(x)

©7j () is the differential operator which occurs in the determinant as (~©¢(z))
when the quadratic approximation was used in Chapter 111 and Chapter IV. In
order to evaluate the determinant, we find the eigenfunctions and eigenvalues in
this appendix which have been used directly in Chapter 111 and Chapter IV in
the Savvidy background. It is to be noted that ©ff(x) consists of indices of three
types : color indices (a, ¢}, Lorentz group indices (i, j), and = which is a continuous
space-time index. Color indices take values (1,2,3) as the color symmetry group is
SU(2) and Lorentz indices are restricted to (1,2) due to cancellation of the terms
involving the (3,4) indices from the ghost contribution. In order to caleulate the
eigenfunctions and the eigenvalues of ©¢f(z) in the Savvidy background, we need
to solve the following eigenvalue equation,

Oy (r)aj = Aaf, (1)

1

where
Bf;{I] = E_ﬂibﬂtfjéu -_ 'Egr-?“e'c ]_7'131 [.2}

and the overall negative sign is put in the definition of ¢ () by hand as it appears

as '—BF(x)" in the determinant. The Savvidy background is given by

A2 = 0,

Ar = aﬁ*(-; —u)

where i = 1,2,3 and @ = 1,2,3. In this background, Ff, = —F}, = H and F'% =0
for other combination of a, 4, j. In this background, the relevant quantities for our
purpose are,

<, " ’
Algy = % (210y — @l );
— H . . .
Aix‘li J= T(JS]‘-FI‘E:},
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with

fjf" e Ejp"iub + q Em’.ﬁh gj
D = a\d + g &,
(=D5'DY) = —(8:8x8" + 2ge™ A3, + ¢° "M AT AT,
2yr2
E_E})ﬂ\bﬂiﬂ) _ _a}'alﬁm: . yf:fc“"**’{:rlﬂ; . mﬁal] - %Euiihfbattx? n .Tg} {3:'
o i AW ader . < qu‘fﬂ adb bders 2 i
Bij = ﬂlﬂhﬂl— g'HE {.L]ag — Ig{fj] = TE 3 f:ﬂ’:! -t—,t-z]l 51"
—2;;&“3“}73? (4)
where a,c=1,2,3; A=1,2,3,4, and i, 7 = 1, 2. It is observed that,
B?_.I‘S = —H,s,ﬂ;tﬁl-j.
i 22 o g gH? 2 i
eij = 'ij = | —d\dy + : (x7 4 1‘2] JI-J, (5)
ealf = _B?jl = (gH(x,0; — -’i-‘zaﬂﬁsﬂ = EHFE',

6l = oY =6 =6%=0.

Let us consider equation (1).

1. Fora=3,

A Elf = Gf}" ri; = [-5;,5;,}5,&(1?

Ao} = (~0dh)aj, (6)
so, a; are plane waves. The eigenfunctions and eigenvalues are a?, al ;
B2+ k3 + K2+ ki

% Fora=L2

1 111 12 2 o
Aﬂi = B’J a'_;l' -+ B‘J ﬂ.j. {Ir?]
2 _ gl 2 o *
Aa; = ©j e, +6;a], (8]

80 (8) can be rewritten, with the help of (5), as
Xa = —EJ',!_.? rJ,_,:- + B't-ljl ﬂ.?. (9]

Now, we perform the operation (7)+i(9) to give
MMaj £iaf) = 8} (aj £ iaf) + O} (a] Fiaj). (10)

On simplifving (10),

Alal £ial) = (O} Fi0)7) (a; £ia). (11}

Equation (11) is diagonalised in color indices.
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Let us introduce the notation

af = al +ie;
T (e
iy = ﬂ.1 = ?.ﬂ-:- |

Equation (11) can be rewritten with the help of these a, as,

kel = I:B;]-] 02 }ﬂj, (12)
Aa; = (O} +i07)a; . (13)

Now, we consider equation (12)

Xay = f@ﬂ—z@ﬁ]a;
= (811 —i05)ai + (6]; — i015)af, (14)
Aoy = (B —iO5)af + (O} —iO3)a;. (15)

It 1s ohserved that,

oll = gl =
Béf = _Hm = —2gH,
. T

03 = O\ =gH(nd —2.9)).
Therefore, (14) and (15) become,

Aai = (B - “Bn}ﬂj + (= 3912}'511 (16)
Aaf = (i03)af + (8] —i613)as. (17)

We perform the operation (16) =+ i(17) and take the complex conjugate. We
introduce the notation,

P ey s
a, = a; +ay,
f{f = ril.]+ - z'u:;,_",
a; = a; +iag,
a_ = a; —ia,,

and we ind : :
lrxi = {HH - EHH — BE}HI.
ak {81] = ?IB Yo e]g]ﬂ-—_'-'u
(Ol +i08 + 812)ar, (18)
(O] +ield H}% B

B e B
==
Folige] g
o
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Now we consider the first equation in (18) for finding the cigenvalues and eigen-
Vectors,

Aal = (O - “HH - E’ii}”L
= (= - 35 -8 — ) —igH (2,0, — wp)

HEE{E

4
As the 3.4 indices are free, these correspond to plane waves with eigenvalue k3 + k7.
We need to consider the eigenvalue of the part consisting of indices 1 and *2 nn]v
which are mixed. In order to consider the eigenvalues of the operator —df — 85 —
igH (0 — waily) + ﬂi{,rl +r3), we suppose the following,

—2gH +

(27 + x5)- (19)

" H
iy = dl e HTI]*.
H
ﬂJJr = —fh+ %—Ii.
gH
ay = 324-?1’2:
i H
o) = —&+ 2 Ta,
2
H
D = a, — ifln = E?l — ith + g—{ﬂ"] = i’-.'l':'g}.

2
: : H :
Dt = uI + m.; =—h —ids + %{IJ + irg).

It can be seen from the above notation that

. ‘ szz ; ;
DO = <8R g = igH (210 — 00,) + 1 (aF + x5),

]

D'D = -7 -8 — gH —igH (2102 — 20
D ﬂ*] = 2gH,

T+ aa),

so the eigenvalue of a} is given by DD+ gH —2gH + k2 + k2 where D! and D are
like harmonic oscillator creation and annihilation operators. This number operator
can be replaced by n(2gH) and we have the eigenvalue (2n+1)gH —2gH +k2+ k2.
Similarly, we can find the remaining three eigenvalues by complex conjugation and
following the above procedure. Thus all eigenmodes and eigenvalues are given by,

ay £ ia) : ki + ki (plane waves),
(a; + iay) +i(al +ia2) : (2n+1)gH — 29H + ki + k7,
(ay +iay) —i(a] +iad) © (2n+1)gH + 2gH + k2 + k2, (20)
(a; —iad) + i(a? — iad) : (2n+1)gH + 2gH + ki + k3,
(a7 — iag) —ifa; —ia}) : (2n+1)gH — 2gH + k2 + k2.




Appendix 4.1

Matsubara Frequency’

We cannot use directly the results of zero-temperature at finite temperature, The
reason is that at finite temperature, we have to average over all excited states of
the system, not only its ground state. While the ground state (which state cor-
responds to zero temperature) is unique, the excited states are highly degenerate
(infinitely degenerate in the thermodynamic limit). Matsubara used the analogy
between the evolution operator in conventional time, U/ = ¢~ and the (non-
normalised) equilibrium statistical mechanics operator j = e 87 g — 7. The
idea of Matsubara was to use this analogy to define some new Matsubara, or ther-
mal, Green's functions, closely related to conventional cansal Green's functions in
real time.

If we introduce the variable 7, 0 < 7 < 3, we see that p satisfies the Bloch
equation,

L) = —Hin), 1)

with the initial condition $(0) = I. If we perform the transformation # « —ir
this equation transforms into the Schrodinger equation for A(it) on the imaginary
interval 0 > ¢ > —ir:

it = ML), 2)

The general definition of the causal, retarded, and advanced one-particle Green's
functions, is

Gap(Ty tyyma, ta) = —iTrp (I’J‘T (Wn{fh ty )b (s, fz))) - (3)
We can define the thermal Green's funetion in analogy with the above,
Gao (8,733, 7) = —(Tr (42 (&, 7) B (&, 7))
=_-Tr {E—S{H—fﬂ T (ﬁ;f{ifrj e T’})} . (4)

T, Matsubara, Prog. Theo. Phys., 14 351 (1955).
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where T is the time-ordered product with respect to the time variable 7 and ¢
is the Matsubara operators, obtained by Wick's rotation of Heisenberg operators:

(i 1) = e () E—fﬂt i TJ'IMI:J?.', 7).
_ FHTT.lIz[:j"} Ehf-."r

and it satisfies the analytic continued Heisenberg equations,

= vz, 1) = [H, Mz, 7)] .

ar
MNow, if 7 > 7', then
G(&,mi#,7) = —Tr{ePH-NyM (g o) gM (7, )}
= 0. {E—@ H#_nfru.,{i}ﬂ—Href?r'@,{i]ﬁm’} :
N {E—{.ﬂ—r+r'i H _,r;,{.jlf.—mr—v‘l 1,’_41(:%}} . (5)

So, thermal Green’s functions depend on a variable r—7, which changes from -3 to
3. Because of the trace eyclicity property, G is a periodic function of A7 = 7 — 7/
on the whole real axis. Therefore, it can be expanded in a Fourier series,

;
Git) = HZG{MH}E"”“T,

where the Matsubara frequencies are w,, = % Let us take some T < (0

Gir) = :I:Tr{emﬁ“ff}-t}ﬁ’reﬂfﬂmﬂv}‘

= 470y {E—ﬂ'{'ri—;‘i‘] u{,feﬁrw} .

G(r+8) = —Tr {Eﬂfﬂ—ﬂ} o H{T+0) " pH(r+7) .#;:T} 1
= A7y {r:”"r i E—Hfrﬂi‘lw’r} ;
FG{7).

I

(6)

The negative sign is for Fermi statistics. Thus thermal Green's functions are
periodic (for bosons) and anti-periodic (for fermions) with respeet to the period
. Therefore, the Matsubara frequencies are,

Wy, = zri;h, for Bosons, n=10,+1,---
I
Wy = W for Fermions, n=0,41,---
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Appendix 4.2

The Jacobi ;3 Function and its Properties

The Jacobi # functions are four basic functions of Jacobi's theory of elli ptic func-
tions. They are functions of two complex variables, 2 and 7, known as the ar-
gument and the half period ratio, respectively. It is often convenient to use the
quantity ¢ = e™". In Chapter IV we used the Jacobi theta function of the third
kind: #5(z, 7) which is defined as,

I'?I::.T} e i E?TiTn: F_:_Errinz?
n=-oo

©
= 1+2) grim cos (2minz). (1)

n=1
Various properties of #3(z, 7) are as follows:

e It can be seen from equation (1) that 65(z, 7) is an even function with respect
to z Le., if we replace z by —z we get the same value because 'cosine’ and
'n*' are even functions.

® 03(2,7) is a periodic function with respect to the variable z with period 1,

E'.'T'IT:I'[" E:2"11'1:'.11{:: +1} :

[~

If}_q{z -+ I,T} =

T

=0

E?trrrl‘ eimn: c.l‘ﬂ'm!

[
e 1

TL

—oG

= f3(z,7) [ase®™"

is 1 for integer value of n]. (2)
o O3(z+qr,7) = e o2 iaz (> 7): this can be seen as,

mitn? 2win(z4gT)
y

Os(z +qr.7) = e 8

frr{n? 42y n) plwinz



o . 2._.1_ 7 :
r:..,r.-.'rlfri bgt—imTy E,Emn 1

I
gl

— Dy

T

S 2 »
E::rr[n—l-q’;l primTY E_jmr.l.._ {3]

[
[~8

TE=—m0

Substituting n+ ¢ = N, (4.3) becomes,

B3(z+qr,7) = T Z T QAN - e

(& =]
o NT Nz
= o iTTq j : Enrr"‘v ‘,.I.a'.‘l'lf-' q) !

N=—og
= g AR g ), (4)
One of the important Jacobi identities used in Chapter TV is,

1'r#t2 = i
Oo(z,im) = (B e o (2,2).
s(z,07) = (1) Fe F gy (2,2

For the proof of this identity, we use Fmssou s summation formula. Let f: R — R
be an integrable funetion and let. f(£) = [, e~ 27ie flx)dz, &€ R be its Fourier
transform. The Poisson summation fl:nrmulu is the assertion that 37, ., f(n) =

Sonez f(n), whenever f is such that both the infinite sums are absolutely conver-
gent, Let

f{:f-') - ﬁ'.rr"r;r: II,___Em'.a::l {5]
The Fourier transform of f(z) is given by
fﬁﬂ Eiwrr“+‘2m.rze—2ﬁ i;rydm = (“'.’ET;]_% E_—i-rr':__rﬁ. [Tﬁ:]
—1)

We apply the Poisson summation formula, as explained above,

=]

z eirrmﬂ+2ﬁfnz i _”.) Z B i :1 1
—i
1
(~#7) e T T
Substituting = — i, we get
. I z f
Bi(z,i7) = (1) 2e¢ 7 04 (?—;1;) (7)
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